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1 INTRODUCTION 

 

Preface 

When I started my PhD thesis in the Dube group in July 2015, my experience in the fields of 

photochemistry, physical chemistry and theoretical chemistry was very limited, as my previous 

internships and theses dealt with solid-state chemistry, inorganic primary explosives, polymers 

and synthetic metal organic chemistry. 

This introduction is meant to give a brief overview of typical photophysical effects that occur 

within the excited states of matter. It also shows possibilities on how to convert photonic energy 

into chemical reactions and controllable molecular motions. The intention of this brief 

introduction is outlining some of the basic principles in photochemistry to chemists without a 

background in photophysics. 

As photochemistry is a very interdisciplinary field that can range from synthetic chemistry 

to biology over molecular- / supramolecular dynamics and engineering to molecular computing 

to controlling of logical gates, only a few relevant aspects of the used photochemistry in this 

thesis can be implemented in this introduction. 
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1.1 Photochemistry - A brief introduction 

 

Biological aspects  

The most prominent and important example of a photochemical reaction cascade is 

photosynthesis. Its two main biochemical pathways consist of harvesting photons to provide 

adenosine triphosphate (ATP) as chemical energy and nicotinamide adenine dinucleotide 

phosphate (NADP) as reducing agent for the conversion of carbon dioxide and water into 

energetically upcycled glucose and oxygen.[1, 2, 3] Without these complex reaction cascades, the 

sun’s power to fuel life on earth would be mainly untapped in the ways we are aware of now. 

Another important photochemical reaction in biological systems is the vision of animals, which 

involves the cis-trans photoisomerization of retinal embedded in variable opsin proteins to 

convert photons with different wavelengths and intensities into electrical stimuli within the 

retina of the eye.[4, 5] Recently, the photochemical Hula-Twist mechanism - that was proposed 

in 1985 as underlying mechanism of this cis-trans isomerization of incorporated retinal - was 

directly evidenced to exist in a model system by our group.[6] However, for retinal itself, a 

recent time-resolved femtosecond x-ray crystallography study suggests an aborted bicycle 

pedal- instead of the Hula-Twist mechanism.[7] The biosynthesis of vitamin D3 in animal skin 

is another photoinduced biosynthetic pathway that utilizes cholesterol as starting material and 

UV light. This biosynthetic pathway is crucial to many life forms as vitamin D3 is only scarcely 

present in common food sources.[8] 

 

Absorption, fluorescence and phosphorescence 

Color theory enthralled mankind for millennia and is also a major part of photophysics and -

chemistry.[9] It describes the impression of dyes, chromophores and pigments to the human eye. 

Absorbance and luminescence are hereby the most commonly observed phenomena and can be 

described in detail by quantum theory.[10] Besides reflection and scattering, non-transparent 

matter shows at least absorption of photons in the visible spectrum of light, which can be 

understood as (internal) energy conversion of one or more photonic wavelengths with different 

intensities into phononic (heat), electrical or chemical energy.[11] This process subtracts the 

absorbed wavelengths from the incident light distribution and reflects the complementary color 

back to e.g. the opsins of the human eye.[5] 



1 INTRODUCTION 

3 

 

Luminescence can be observed in matter that does not dissipate external stimuli (Phononic 

excitation, photons, magnetic- or electric fields, electrons, hadrons…) thermally or chemically, 

leaving only emission of a photon as de-excitation pathway.[12] One prominent example of a 

commonly encountered luminescence phenomenon is photoluminescence, which can be 

categorized into fluorescence and phosphorescence. Fluorescence, for example, is encountered 

naturally by UV irradiation of calcium fluoride crystals or animal teeth.[13, 14] Whitening agents 

in textiles or quinine-containing beverages like tonic water also show fluorescent behavior 

under UV irradiation. 

A theoretical approach to describe fluorescence uses the Born-Oppenheimer approximation 

in which the electronic structure of a vibrating molecule is treated with almost no mass 

compared to its nuclei with respectively almost infinite masses.[15] This becomes possible as 

electronic and nuclear motions usually take place at vastly different timescales, which facilitates 

solving the Schrödinger equation in the ground state but results in unreliable predictions for the 

excited states.[16, 17, 18] Jablonski diagrams (Figure 1), which also utilize the Born-Oppenheimer 

approximation, can be used to describe excited state behavior.[19, 20] These diagrams assign 

nuclei position on the abscissa and the energies of ground- and excited states on the ordinate. 

Vertical excitations between ground- and excited states symbolize the fast time-dependent 

change in electronic structure due to photon absorption within femtoseconds while the nuclei’s 

positions are virtually frozen in position. 
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Figure 1: Simplified Jablonski diagram. Absorption of a photon results in excitation of the 

molecule e.g. into the singlet state 1 or 2 (S1 or S2, blue arrow) within an 

accessible vibronic state. Lower lying vibronic states can be populated by 

phononic de-excitations, which can be simplified as cooling of an excited 

vibrating molecule towards a state of lower energy (wavy lines). The lowest 

energy vibronic mode of the excited state (here: S1-0) must be in phase with at 

least one vibronic mode x (in most cases not the lowest vibronic mode) of the 

ground state (singlet state 0 or S0) to emit a photon (fluorescence). This photon 

has the same energy as the energy gap between S1-0 and S0-x. The same principle 

can be applied to the triplet states with the additional aspect that the required 

changes in spin polarization from triplet to singlet states are forbidden. This 

circumstance can trap molecules in long-lasting triplet states for time periods 

that extend fluorescent phenomena by several orders of magnitude. 

The mechanism behind fluorescence consists of photon absorption into the electronic excited 

state and instead of thermal deactivation (internal conversion) to the electronic ground state, a 

photoemission pathway is taken, immediately emitting the photon within nanoseconds at a 

lower energy wavelength. Photon emission requires oscillations from the molecular nuclei, as 

the singlet state 1 and singlet state 0 need to experience an in-phase oscillation for this process. 
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Phosphorescence was first reported in 1602 by V. Casciorolo within barium sulfide and can 

also be observed on pilot / diving watch faces or on emergency exits that utilize phosphorescent 

paint. The mechanism of phosphorescence resembles fluorescent behavior with the exception 

that de-excitation takes place via intersystem crossing (see Figure 1). Here, the excited singlet 

state is converted into an intermediate triplet state by a forbidden change of spin polarization. 

This results in the longevity of the triplet state, which de-excites by emission of low energy 

photons over minutes, hours or days after the initial excitation.[19, 21] 

 

From photochemistry to molecular machines 

The ability of photons to initiate or drive chemical reactions is a long and well known 

phenomenon. An early example of photochemistry is black-white photography where light 

sensitive silver bromide (yellow) coated plates are exposed to UV light through a lens 

system.[22] Photons catalyze the disproportion of the silver bromide to elemental silver (black) 

and bromide within the plate matrix. Fixation by eliminating residual silver bromide in the dark 

leaves the negative impression of the photographed image. Another example of a 

photochemical reaction starts with the UV light-induced homolytic dissociation of chlorine gas 

in presence stoichiometric amounts of hydrogen. The initially formed chlorine radicals react in 

chain propagation and termination reactions to form hydrogen chloride within an exothermic 

reaction cascade. The dissipated heat will further increase reaction kinetics and gas volume, 

leading to an exponential reaction profile, causing a detonation.[23] 

Modern applications of photochemistry and -physics consist of e.g. solar cells, photoredox 

catalysis and the emerging field of photoswitches and light driven molecular machinery. 

Most inorganic solar cells use doped crystalline or amorphous semiconducting silicon to 

propagate photon induced charge separations.[24, 25] These accelerated charges can be harvested 

on adjacent electrodes to obtain a direct current source that becomes usable in all sorts of 

electronic devices upon respective conversion. 

A prominent example of a photoredox catalyst is tris(bipyridine)ruthenium(II) chloride. In 

combination with common organocatalysts, new synthetic photon-driven methodologies based 

on single electron transfers can be derived.[26] One trait of photoredox catalysis is the ability to 

utilize catalytic amounts of photons to generate the desired products. This can be observed for 

the quantum yield (QY, QY = number of absorbed photons divided by the number of formed 

product molecules) of the single electron generation of tris(bipyridine)ruthenium(II) chloride. 
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This photoreaction supports a quantum yield of 2.8% but the catalytic nature of the reaction 

cascade allows for enlarged quantum yields with respect to the formed products by up to two 

orders of magnitude.[27, 28] 

A research field that also vastly gains momentum is the development of photoswitches and 

light driven molecular machines. The first example of a photochemical transformation was 

reported with sunlight irradiation of α-santonin crystals by H. Trommsdorf.[29] The incident light 

turned the crystals yellow before bursting due to substantial changes in crystal volume upon 

dimerization.[30] Likewise, a molecular photoswitch supports two or multiple isomeric forms 

that can be interconverted at least from one state to the other by light. One of the first known 

examples is the trans to cis double bond isomerization of stilbene by UV light (Scheme 1).[31, 

32] 

 

Scheme 1: Photoisomerization of trans stilbene to cis stilbene by irradiation with UV-light. 

Another prominent photoswitchable molecular transformation is the light induced ring-opening 

and -closing reaction of e.g. diarylethenes,[33] spiropyranes[34] and Stenhouse adducts[35] (see 

Figure 2). 

Most of the envisioned applications of photoswitches and light-driven molecular machinery 

reside in the fields of photopharmacology,[36, 37] sensing,[38, 39, 40] information processing,[41] 

materials science[42] and nanorobotics.[43, 44] The most prominent application of photoswitches 

to date is the sun-light induced tinting of sun glasses using spiropyranes as light responsive 

component.[45] 

Photopharmacology describes the field in which an active pharmaceutical ingredient (API) 

is switched on at a specified location within an organism by preferably harmless (visible) light. 

This portrays another level of precise temporal and spatial control as the drug is only active at 

a desired tissue for precisely controlled time intervals. This is in contrast to common APIs that 

are unwanted and possibly dangerous (as metabolites) within other parts of the organism until 

conversion towards harmless derivatives by the organisms metabolism or excretion.[46, 47, 48, 49] 

Advanced sensing applications consist e.g. of photoswitches that show fluorescent behavior 

in one isomeric form but not in the other.[39] For example, switchable spatial fluorescent 
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mapping of biological matrices can be utilized to trace dynamics within cells to visualize 

biological pathways.[50]  

Digital molecular information processing strongly relies on interconvertible molecules with 

two or multiple different states to assemble logical devices such as memory, various logical 

gates (e.g. AND, XOR etc.), keypad locks or half-adders.[41] Quantum computing beyond 0’s 

and 1’s requires multiple states and readouts at desirably the smallest possible scale.[51] 

Photoswitches can be used as a molecular scaffold to build light driven molecular motors, 

which are defined by their property of a unidirectional rotation around one bond or by traversing 

of different molecular states under continuous irradiation in a favored order and trajectory.[52, 

53] 

Incorporating molecular switches or motors within macromolecular scaffolds / -polymers or 

metal- / covalent organic frameworks can change the overall properties of these materials upon 

irradiation of light.[42] 

With these tools on hand, artificial robots at the molecular scale can be envisioned.[43, 54] 

Photoswitches and molecular motors could be key tools not only to provide specific control of 

the principles of molecular motion motions but also to actively power them with high spatio-

temporal precision.[55] Although known systems are far off from being assembled into artificial 

autonomous nanomachines,[56] the archetypes have already been created by nature: Enzymes, 

ribosomes, the cellular apparatus, intercellular communication, muscle tissue and nervous 

systems. The orchestration of these molecular machines and signal transductors leads to the 

possibility of complex life forms, all constantly utilizing their nanomachines to survive. The 

incorporation of a likewise complexity into a synthetic world is achievable in theory but 

surpasses human capabilities (at the moment).  
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Overview of known photoswitchable scaffolds 

Photoswitches and molecular motors / -machines use mainly Z / E- or cis-trans isomerizations 

and ring opening- / -closing mechanisms upon photoexcitation to switch from their global 

thermodynamic minimum to metastable states.[20, 57] 

 

Figure 2: Overview of different classes of photoswitches. In general, thermodynamically 

stable forms are shown on the left, metastable products are shown on the right. 
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Rule-of-thumb performances with regard to red-shifted photoswitching and long 

thermal half-lives at 25 °C are shown for a respective isomerization direction. 

Very fast = ns to s. fast = s to min, medium fast = min to h, medium slow = h to 

days, slow = days to years, very slow = years to millennia. NIR = near infrared 

Nowadays, photoswitching in general is explained by the excited state topology of the potential 

energy surface and its conical intersection towards the ground state potential energy surface, 

allowing for the generation of metastable products. The theory of conical intersections links the 

observation of short-lived excited states that do not deexcite via e.g. fluorescence to phononic 

molecular motion that leads to observable, metastable photoproducts.[20, 58, 59] 

 

Figure 3: Simplified depiction of a conical intersection for a Z / E double bond 

isomerization, X represents the reaction coordinate. The excited state S1 rapidly 

de-excites towards the S0 state of the Z- or E isomer with a 1 to 1 probability.  

Figure 3 also visualizes why achieving quantum yields beyond 50% is expected to be 

impossible for double bond isomerizations. This can be assumed if the incident photonic energy 

is completely converted into electronic excited state energy and only a singular, symmetric 

conical intersection is present within the potential energy surface. The latter is not necessarily 

the case as electrostatic- or steric bias in the excited state could influence the topology around 

the conical intersection. Conical intersections describe the often very fast formations of 

metastable photoproducts within few picoseconds very accurately.[20, 60] This indicates that after 

establishment of the excited state orbital structure, the molecular nucleic scaffold reacts to the 

changed electronic environment at a speed above the diffusion limit. If the instantly induced 

electronic structure change in the excited state favors the rearrangement of the molecular 

structure to a conical intersection that is intermediate to starting- and product structures, a 
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bifurcation towards two reaction paths that yield either the Z- or E isomers with equal 

probability is established. The conical intersection structure is populated more readily when 

one or multiple vibrational modes of the molecule already point towards the correct trajectory. 

This excited state then de-excites by directly forming either the starting material or the product 

species. In addition, hot ground states with a thermal bifurcation of the reaction coordinate can 

be used to explain the outcome of photoreactions towards the starting material or different 

products.[20, 58, 61] 
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1.2 Indigo 

The synthesis[62] and structure[63] of indigo was first described by Adolf von Baeyer in 1870 and 

1883. Indigo is still one of the most prominent dyes to date as its deep blue color and stability 

towards light and chemicals, accompanied by its low solubility, prevents it from being bleached 

out of dyed fabrics during wearing and washing. These properties also makes it unsuitable to 

directly apply indigo onto clothes, which is why it is reduced to its colorless and water soluble 

leuco form for dyeing processes. (Figure 4) Treated textiles can be left on air for leuco indigo 

to be re-oxidized to its blue form, which is now deeply embedded within the fibers. This 

indicates that the central double bond in this molecule plays a major role for its deep blue 

color.[64] 

 

Figure 4: Indigo and its reduced leuco form. 

Indigo is a quite intriguing dye as its deep blue color cannot be explained solely by the size of 

the conjugated system and is still not fully understood.[65, 66] When designing red-shifted dyes, 

the rationale consists in bringing the highest occupied molecular orbital (HOMO or S0) and the 

lowest unoccupied molecular orbital (LUMO or S1) closer together. This can be realized by 

incorporating an elongated aromatic system and placing a strong donor and a strong acceptor 

at its opposite ends. However, with indigo, all the amine donors and carbonyl acceptors are 

located adjacent to the central double bond. Multiple mesomeric forms, which exhibit electron 

donating pathways directly from one amine to the closest carbonyl or from one amine to the 

carbonyl opposite of the central double bond, can be proposed. All these possible excitation 

modes seem to contribute in bringing HOMO and LUMO closer together, resulting in a low 

energy absorption maximum at approximately 615 nm (red) that is perceived as the eponymous 

indigo blue. 

Another extraordinary trait is the stability of indigo pigments towards irradiation, 

temperature, chemicals and dissolution. Destruction by photobleaching is prevented trough 

excited state proton transfer (ESPT) which potentially can take place twice per molecule.[65] 

This dissipates the absorbed energy from the excited state not only through phononic radiation 
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of heat but also by dissociation of protons from the amine towards the carbonyl oxygen or the 

matrix, temporarily strengthening the hydrogen bonds within the structure.[67] 

Strong intermolecular hydrogen bonding and pi-pi stacking lowers its solubility and hence the 

reactivity of indigo compared to indoles or indoxyls.[68] 

Altogether, these characteristics are highly beneficial for indigo as a dye but utilizing it as 

cis-trans photoswitch in its nitrogen-unsubstituted form is impractical. Another drawback is the 

very low thermal bistability of its cis isomer as its half-life lies in the range of picoseconds, 

which makes it impossible to analyze without transient or cryogenic spectroscopic methods.  

Additionally, it is known that substitution reactions of the amine protons cannot be carried 

out easily, as harsh reaction conditions are required and poor yields with many similar and 

inseparable side products can be expected. 

Recent publications report actual photoswitching and thermal half-lives of the formed 

metastable cis-isomers ranging from minutes to hours at 25 °C for mono- and di-N-substituted 

indigo derivatives.[69] These findings suggest that suppression of the ESPT pathway is one of 

the most promising approaches for realizing efficient photoswitching properties of indigo and 

for diminishing ultrafast thermal back reactions from the cis to the trans state.[66] 

 

This work 

In this work thermochromic effects on indigo derivatives were studied. The parent indigo 

scaffold was substituted by various symmetric and non-symmetric aryls on both nitrogen 

positions. Also, methyl groups were introduced on the indigo core adjacent to the nitrogen-aryl 

axes. Substitution in general led to good trans to cis photoswitching properties of several 

derivatives, especially at low temperatures. The properties beyond trans to cis photoswitching 

are outlined in Section 2.4. 
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1.3 Red-shifting of indigoid photoswitches 

Most substituted indigo photoswitches can be addressed with red light at 620 nm, which is 

already an ideal property for biological applications, as low energy red light does not destroy 

cellular components unlike high energy UV light.[66, 69] Furthermore, deep tissue penetration is 

achieved by red light while blue or UV light is readily absorbed by prevalent molecules of 

biological entities. This can be demonstrated by a simple experiment shown in Figure 5 below. 

 

 

Figure 5: Irradiation of biological tissue with 405 nm (100 mW of light power, left) and 

625 nm (130 mW of light power, right) light emitting diodes (LEDs). The lower 

measured power (~30%) for the LED on the left is not the main cause for the 

significant transmission difference (>> 30%) when compared to the right. 

However, thermal stabilities of indigo photoswitches still remain in the realm of nanoseconds 

to minutes at 37.5 °C.[66, 69] To address this shortcoming, the nitrogen atoms can be substituted 

by sulfur to form thioindigo, as Adolf von Baeyer’s student, Paul Friedländer had shown in 

1904.[70, 71] This violet dye is soluble in organic solvents and the metastable cis isomer shows 

thermal half-lives of several hours at ambient temperatures, depending on its substituents.[72] 

Further improvements regarding thermal stability are achieved by formal cleavage of the 

thioindigo chromophore at its central double bond and substitution with a hemistilbene.[41, 73] 

This leads to the class of hemithioindigo (HTI) derivatives, which overall exhibit long thermal 
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half-lives by sacrificing some of the red-shifted absorption of thioindigo. Electron donating 

substitutions at the stilbene fragment increase the red-shift of hemithioindigo while 

significantly lowering the thermal stabilities of the photoproducts.[73] To overcome these 

drawbacks, the nitrogen of the parent indigo chromophore was introduced again in this work to 

obtain hemiindigo (HI), which was also reported by Adolf von Baeyer in 1883.[63] The 

unsubstituted hemiindigo photoswitch is already red-shifted by 50 nm compared to the 

respective hemithioindigo and in contrast, electron donating substitutions at the stilbene 

fragment do not severely impede the thermal bistability of the chromophores.[74] Figure 6 

summarizes the enhancements of thermal stability throughout various classes of indigoid 

photoswitches. 

 

Figure 6: Overview of increasing thermal half-lives for different indigoid photoswitches 

at 25 °C. 

This work 

Highly bistable and efficient photoswitching at the biooptical window is demonstrated with 

electron donor-substituted hemiindigo derivatives. The peak performance values throughout all 

derivatives of this class of photoswitches show almost quantitative switchability from 99% Z- 

to 98% E isomer content with low energy red- and green light between Z and E states with 

quantum yields of up to 49% and thermal half-lives up to 3400 years at 25 °C.[74, 75] Good to 

excellent switchability throughout all solvent polarities as well as in gas and polymer phase is 

maintained. Repeated photostationary state (PSS) switching over hundreds of cycles and 

photobleaching experiments over days showed good fatigue resistance of these compounds 

towards irradiation with high-energy blue light.[76]  

The two main pitfalls of the photoswitching performance of hemiindigos are discussed. One 

factor that disrupts the photoswitchability is addition of significant amounts of Brønsted acid / 

base. Second, especially for electron donating substitutions at the stilbene fragment, pure water 
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poses also a problem, as no switching is observed without addition of a few drops or sometimes 

up to 20% of water miscible organic solvent, e.g. tetrahydrofuran, N,N-dimethylformamide or 

dimethyl sulfoxide. However, utilization of less electron-rich stilbene fragments makes it 

possible to obtain hemiindigos that show potent photoswitching in pure water.[40] 
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1.4 Switching of ECD responses 

Enantiomerically pure chiral compounds twist the plane of polarized light by an angle α 

respectively to the polarized input plane as intrinsic property.[77] A polarimeter can be used to 

measure α, which is given as material constant for a specific concentration of enantiopure 

compound and used solvent.[78] Electronic circular dichroism (ECD) spectroscopy measures the 

wavelength dependency of this phenomenon and reports the ellipticity similar to UV-Vis 

spectroscopy with the unit mdeg (millidegrees) instead of a.u. (arbitrary units) for (chiral) 

absorptivity.[78] 

The manipulation of ECD signals is not as straightforward as red-shifting chromophores 

because the complete geometry and constitution of the molecules in solution contributes to its 

ECD signal in an almost unpredictable way. Recent advances show photoswitches with attached 

chiral complexing domains, which change their ECD signal upon switching of the binding 

geometry of the metal.[79] Enantiomerically pure molecular motors exhibit changes in their ECD 

response when switching through different helicities within their rotation cycle.[80] These 

systems display changes in shape and intensity of their wavelength dependent ability to rotate 

a polarized plane of light. Regardless of the isomer distribution of the molecules, an ECD 

response is observed as long as no racemization occurs. Modulation of the entire ECD response 

between two photoswitchable isomers while maintaining absorptivity in the visible spectrum 

of light was not observed until recently.[75] 

 

This work 

To address the previous point, introduction of (axial) chirality to the hemiindigo photoswitch[74] 

at the amine functionality leads to intriguing spectral observations, especially regarding its ECD 

responses. Derivatives bearing ortho-tolyl moieties have been synthesized and it was observed 

that the Z isomers show intense ECD spectra while the spectra of E isomers were diminished. 

Repeated cycling between Z- and E states could reliably recover the ECD signal while a 

decrease in intensity could be completely attributed to thermal atropisomerization of the axially 

chiral ortho-tolyl residue with only little photodegradation. This is the first observation of an 

ON-OFF circular dichroism switch that switches its ECD signal while maintaining absorbance 

in the same wavelength region.[75] The drawback of ECD signal loss caused by thermal 

atropisomerization could be reduced for one axially chiral hemiindigo derivative and even 

eliminated for a chiroptical switch supporting a permanent stereo center. 
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1.5 Molecular machines 

By the time of writing, there is still controversy regarding the definition of molecular machines. 

A. Coskun, M. Banaszak, R. D. Astumian, J.F. Stoddart and B. A. Grzybowski state that 

switchable systems do not carry out work because they will retrieve their starting state by 

reversing the initial switching motion. A machine, in contrast, continuously performs work in 

form of driving chemical reactions or performing ongoing mechanical motion.[81]  

A hotel elevator, for example, would not be considered as a machine from this point of view. 

If a person decides to ride to the 17th floor and notices that they forgot something in the lobby, 

the elevator will not have performed any work by arriving at the ground floor again, except 

overcoming mechanical friction and air resistance. Elevating a person to the 17th floor stores 

potential energy, which will be released when the person leaves again or eventually at the 

demolition of the building. 

In this work a molecular machine is defined as an entity that converts different forms of 

energy into each other to carry out work (in principle) against an equilibrating force, e.g. lifting 

a weight onto a table to store potential energy against gravity. 

At the macroscopic scale, motions often do not store energy directly but always have to 

overcome friction and the momentum of acceleration / deceleration. Macroscopic rotary motors 

are mostly attached to a winch, pinion and rack, gears or a pump to translate rotary motion into 

another rotary- / linear motion or into pressure. In order to achieve observable work, the 

machine must deliver enough force to induce a positional change or to reside in a higher state 

of energy, which can be used later on. 

An electrical capacitor or accumulator, for example, wired to a generator with a diode in 

series would be considered as machine in this point of view, as turning of the DC generator 

would result in an electrical current that is forwarded by the diode and charges the capacitor 

until its saturation or voltage limit. Uncoupling of the generator shaft and shorting the diode 

would result in rotation of the shaft powered by the capacitor until all stored potential electrical 

energy is depleted. 

A bistable photoswitch can be considered as a similar setup, with the thermodynamic 

minimum being the e.g. Z- or E state or respective equilibrium composition and a PSS 

constituting the charged form with a higher heat of formation and potentially strained geometry. 

The energy of the switch is slowly released by thermally overcoming the activation barrier 

towards the favored state or equilibrium. Shorting of the diode in the generator setup is 

equivalent to heating the photoswitch for faster retrieval of the stored potential energy.  
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The molecular motor published by M. Güntner provides a fully unidirectional rotation around 

the central double bond in four distinct steps (see Figure 7).[82] Starting from the 

thermodynamically most stable Z-(S)-(P) isomer a light induced double bond isomerization to 

the E-(S)-(M) isomer takes place. The metastable E-(S)-(M) form, is able undergo a thermal 

helix inversion, yielding the E-(S)-(P) isomer. This property is often described as thermal 

ratcheting as the photochemistry of the thermally obtained E-(S)-(P) derivative is entirely 

different from the E-(S)-(M) isomer and shows complete selectivity towards the Z-(S)-(M) 

product formation. The latter can also thermally invert its helicity, yielding the 

thermodynamically favored Z-(S)-(P) isomer and completing the unidirectional rotational 

cycle. The intermediates prevent a photochemical or thermal back reaction to an extent where 

the number of forward rotations entirely overcome the number of backward pathways. 

 

Figure 7: Energy profile of the unidirectional rotational cycle of the molecular motor as 

published by M. Güntner.[82] Black lines represent theoretically obtained values 

calculated at the MPW1K/6-31+G(d,p) level of theory, blue values indicate 

experimentally measured values. 

Molecular setups as described by Figure 7 could make it possible for the motor to transport 

itself on a surface,[83] to drive molecular gears, racks or to act as winch or pump, which is 

already observed for natural molecular motors within cells, bacteria and higher life forms.  
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This work 

Axially chiral disubstituted indigo photoswitches were synthesized and characterized. One 

derivative in particular showed enrichment of the thermodynamically disfavored anti-trans 

state that was inaccessible by pure photochemistry starting from the syn-trans isomer as global 

minimum.  

 

Figure 8: Simplified motional cycle of an axially chiral di-N-arylated indigo derivative. 

Experimental data and theoretical evaluation supported the molecule in Figure 8 to undergo a 

photoinduced unidirectional two-step double bond rotation and a unidirectional four-step single 

bond rotation. The findings also suggest this setup to be a prospective molecular motor that can 

selectively modulate the rates of rotation of its two rotatable axes relatively to each other by 

changing the temperature of the sample. In addition, a combined photoinduced- and thermal 

Hula-Twist motion over three bonds can be proposed by observations via low temperature 

NMR spectroscopy. This also implies a geared motion between the photoinduced power stroke 

of the central double bond isomerization and the single bond rotation. Furthermore, the 

direction of the accumulation of syn-trans and anti-cis isomer can be selected and reversed by 

a temperature change from 25 °C to -50 °C. This highly intriguing molecular setup is proposed 

as the prospectively first known indigo-based molecular motor and the first molecular motor 

that can be fueled directly by red light.  
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2 RESULTS AND DISCUSSION 

The main focus of this work consisted of the design and characterization of a novel class of 

high performing, thermally bistable, red-shifted photoswitches and their applicability in 

gaseous, liquid and solid phases. Subsequent endeavors headed at the utilization of these 

compounds for establishing control of molecular motion and / or chiral properties as well as 

entering the fields of biology and materials science.[74, 75, 76] 

The main property of the investigated class of photoswitches is exhibited in the photo- or 

thermally induced Z / E or E / Z isomerization of the central double bond, shown in Figure 9.  

 

Figure 9: Nomenclature and fundamental switching processes of a hemiindigo 

photoswitch induced by visible light or thermal excitation. 

The two formal parts of the molecule are referred to as (hemi-)indigo or indoxyl fragment (left) 

and (hemi-)stilbene fragment (right). The two stable conformations, namely Z- and E isomer, 

differ vastly in their (photo-)physical properties and can be examined independently by 

common spectroscopic methods. The isomerization process also yields a rather large 

mechanical change with an expansive swing of the phenyl group when the indoxyl fragment is 

regarded as static. When the stilbene fragment is treated as fixed, a volume-demanding 180° 

rotation of the indoxyl fragment can be postulated. Linear and rigid substituents at the N-H or 

adjacent aromatic C-H position would experience extensive conformational changes upon 

switching because of their enhanced mechanical leverage. Such large geometrical changes 

makes Z / E double bond isomerizing switches viable in situations where substantial mechanical 

change is required. Examples are the photocontrol of binding affinities of small molecules to 

active sites in protein complexes or the opening / closing of ion channels within membranes.[46, 

84] The red-shifted absorptions of hemiindigos makes them perfect candidates for the use inside 

bacteria, cells or biological tissues, as green and red light will not damage proteins or DNA. 

Long wavelength light is also beneficial for deep tissue penetration as it would not be absorbed 
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as readily as UV or blue light by skin.[66, 69] Another benefit of this class of photoswitches is 

their high thermal bistability, supporting half-lives over months or years even at physiological 

temperatures. Good photoquantum yields enable quick and efficient irradiation timeframes. 

Normally, only the Z isomer is shown as Lewis-formula in this work for clarity. If not stated 

otherwise, only one E isomer with its respective enantio- or diastereomers can be formed. 
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2.1 Hemiindigo - Improving the performance of 
photoswitches 

Hemiindigo was first described by A. von Baeyer in 1883 within one of his landmark 

publications “Über die Verbindungen der Indigogruppe”.[63] Its potential as photoswitch was 

untapped until research by T. Arai et al. in 1999 discovered the pyrrole-substituted hemiindigo 1 

as viable photoswitch and fluorescence modulator in bovine serum albumin (Scheme 2).[39, 85]  

 

Scheme 2: Photoisomerization of pyrrole-substituted hemiindigo 1 by T. Arai. 

The challenge to find novel photoswitches with potentially improved performance 

characteristics compared to stilbenes, azobenzenes, diarylethenes, spiropyranes and Stenhouse 

adducts led to the synthesis of several hemiindigo derivatives, which was initially covered by 

the work of F. Kink. The first generation of hemiindigo photoswitches comprised a methoxy 

group attached to the stilbene fragment in para-position based on previous findings for 

hemithioindigo done by S. Wiedbrauk.[86] Different electron donating and withdrawing groups 

at the stilbene fragment of hemithioindigo showed the fastest switching characteristics of 

2.4 picoseconds (ps) for the methoxy derivative, which was measured via time resolved UV-

Vis spectroscopy by R. Wilcken.[86, 87] The resulting high thermal stabilities and good switching 

performance made this substitution pattern a good starting point for the related hemiindigo 

system. However, hemithioindigo behaves vastly different compared to hemiindigo, as the 

para-methoxy substituted molecule shows strong, rapidly decreasing fluorescence and majorly 

photodestruction over prolonged irradiation periods, probably caused by intermolecular excited 

state proton transfer (ESPT), which triggers unidentified side reactions.  
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This unfavorable behavior of hemiindigos can be overcome by substitution of the amine 

hydrogen by e.g. acetyl, as done by F. Kink. The obtained molecules 2 are stable towards 

irradiation and show high thermal bistabilities with barriers of about 33 kcal/mol. 

 

Scheme 3: Photoswitching and thermal isomerization pathways of hemiindigo 2. 

Transient measurements done by R. Wilcken from the group of E. Riedle revealed 

photoisomerization speeds for this photoswitch of 2.1 ps, which is very similar to the 

corresponding methoxy-substituted hemithioindigo derivative. 

 

Figure 10: Transient absorption spectra of hemiindigo 2 recorded after 45 femtoseconds 

photoexcitation of the Z isomer with 400 nm light. 
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Electron donating groups like dimethyl amino or julolidine at the stilbene fragment in 

combination with alkyl-substitution of the NH proton result in a strong, solvent dependent red-

shift of absorptions up to 100 nm for hemithioindigo and hemiindigo derivatives alike. 

 

Scheme 4: Exemplary Z / E isomerization of hemiindigo 3 with nominal green 530 nm LED 

light to 93% E isomer and nominal red 680 nm LED light to 99% Z isomer in 

dimethyl sulfoxide. The Z isomer has a thermal half-life of 0.7 years and the E 

isomer of 0.9 years at 25 °C. 

One drawback of red-shifted hemithioindigos is their overall low thermal stability and the 

significantly lowered thermal stability if substituents of increasing donor strength (and thus red-

shifting capacity) are introduced. The energy barriers for the thermal double bond 

isomerizations in toluene solution decrease from 26.4 kcal/mol for the methoxy-substituted 

hemithioindigo 4 to 24.7 kcal/mol, for the dimethylamino derivative 5 to 21.4 kcal/mol for the 

julolidine derivative 6. At the same time these energy barriers are sensitive to solvent dipole 

moment and decrease further with increasing polarity. Interestingly for hemiindigos the energy 

barriers remain significantly higher in the range of 25 - 30 kcal/mol within aprotic solvents for 

derivatives 7, 8 and 3.[74] This displays their seldom trait of red-shifted absorptions combined 

with high thermal bistability, which makes photoswitching switching accessible with low 

energy green and red light, which is highly favorable for biological applications. Quantum 

yields of approximately 20% for the Z- to E-photoisomerization and 10% for the E- to Z-

photoisomerization within all solvent polarities ensure the practical efficiencies of the switching 

processes.  
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Figure 11: Lewis-formulas of hemithioindigos E-4, 5, 6 (top) and hemiindigos E-7, 8, 3 

(bottom) and their free activation enthalpies ΔG* for the respective E to Z 

isomerizations in toluene.  
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2.2 Hemiindigo - Rationale of substitution patterns 

The generalized rationale behind the substitution patterns for adjusting the photophysical 

properties of hemiindigo photoswitches is depicted below (Figure 12). 

 

Figure 12:  Rationale for the substitution and selection of solvents for tailoring hemiindigo 

photoswitches. EWG = Electron withdrawing group, EDG = electron donating 

group. Electron donating moieties at the N-R position result in red-shifted 

chromophores, the same can be seen for the para-position of the stilbene 

fragment. Electron withdrawing groups will result in blue-shifted absorptions, 

this includes the proton substitution at the central double bond. Introduction of 

bulk at the ortho-positions of the stilbene fragment or at the central double bond 

will result in twisting of the adjacent single bond and loss of pi-conjugation along 

the chromophore, which also blue-shifts absorptions. Polar solvents will red-

shift absorptions and enhance thermal bistabilities while lowering quantum 

efficiencies upon switching. Apolar solvents will reverse these trends.  
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2.2.1 Indoxyl fragment: N-H unsubstituted hemiindigo 9 

The fist investigated hemiindigo chromophore 9 was derived from hemithioindigo 4 by S. 

Wiedbrauk, which showed the fast transient switching behavior in the range of 

picoseconds.[59] The first experiments on hemiindigos were carried out in our 

group by F. Kink. Scheme 5 shows the applied synthetic procedure by U. Burger 

et al.[88] 

 

Scheme 5: Condensation of indoxyl acetate and an aldehyde to obtain hemiindigo 9. 

Basic ester cleavage of indoxyl acetate 10 at 100 °C yields the indoxyl, which is immediately 

deprotonated in α-position and leaves a deep green colored reaction mixture upon completion. 

After cooling to 0 °C, the nucleophilic carbanion attacks the aldehyde carbon under C-C bond 

formation with subsequent abstraction of water to yield the central double bond. Upon workup, 

hemiindigo 9 is obtained in a very good yield of 90% as orange crystalline squares (1-2 mm 

edge length). 

 

Figure 13: Crystals (left) and structure of hemiindigo Z-9 (left) in the crystalline state. An 

almost planar conformation of the single bond with a dihedral angle of 9.26° for 

C8-C9-C10-C11 can be observed. The double bond (red) measures 1.352 Å in 

length and the stilbene single bond (green) at 1.451 Å. 
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However, the promising substitution of sulphur with nitrogen yielded a molecule with slightly 

enhanced red-shifted absorptions but with sub-par photophysical properties. Figure 15 shows 

the photoswitching behavior of hemiindigo 9 in apolar and polar solvents. Only N-H 

unsubstituted derivatives and neutral to moderate electron donors like methyl and methoxy 

groups in para-position of the stilbene fragment initially show strong fluorescent behavior, 

which is lost upon photoswitching or exposure to air at ambient temperatures (Figure 16). 

Irradiation with green light leads to significant destruction of the chromophore within minutes, 

which can be followed by the loss of absorption at the isosbestic point at 470 nm (toluene) and 

500 nm (dimethyl sulfoxide) as exemplified for hemiindigo 9 in Figure 15. This might be 

caused by excited state proton transfer (ESPT), which could yield reactive intermediates that 

further destabilize the Michael system. These findings lead to a pronounced focus on 

substitution patterns containing N-substituted chromophores (see Section 2.2.3). 

 

Figure 14: Lewis-formula of hemiindigo 9. 

 

Figure 15: Photoswitching of hemiindigo 9 in toluene (left) and dimethyl sulfoxide (right) 

at different wavelengths. Z isomer enriched states are colored in red, E isomer 

enriched states are colored in blue. Comparable amounts of photodestruction can 

be seen over this broad range of solvent polarity. The estimated increase in 

isomeric yields of the E isomer in toluene can be attributed to the overall 

improved quantum yields of hemiindigos in apolar solvents, which is discussed 

in Section 2.2.25. Exact quantification of thermal bistabilities, isomeric ratios 



2 RESULTS AND DISCUSSION 

33 

 

and quantum efficiencies were not carried out as the constant degradation of this 

molecule would not yield accurate results. 

 

Figure 16: Fluorescence spectra of hemiindigo 9 in toluene (left) and dimethyl sulfoxide 

(right). This strong fluorescence is exclusive to N-H unsubstituted and stilbene 

para-proton, -methyl and -methoxy substituted hemiindigos. Fluorescence is lost 

upon photoswitching and by exposure to atmospheric conditions.  

The N-H unsubstituted hemiindigos show complete recovery of the Z isomer exclusively upon 

heating, similar to hemithioindigos. However, substitution of the N-H proton shifts the Z state 

closer to the E state energetically, which results in thermodynamic equilibria with both isomeric 

stated being populated.  



2.2.2   INDOXYL FRAGMENT: N-H ACETYLATED HEMIINDIGO 2 

34 

2.2.2 Indoxyl fragment: N-H acetylated hemiindigo 2 

Introduction of an acetyl group at the indoxyl nitrogen utilizing hemiindigo 2 as precursor was 

carried out by F. Kink. Reproduction with altered conditions according to Moon et al. is shown 

in Scheme 6.[89] 

 

Scheme 6: Acetylation of hemiindigos 9 and 11 utilizing acetic anhydride, 4-

dimethylaminopyridine as nucleophilic catalyst and Hünig’s base (N,N-

diisopropylethylamine) at 100 °C. Moderate yields of 61% for 2 and 64% for the 

dimethyl amino derivative 12 are obtained after purification by high performance 

liquid chromatography (HPLC). Subsequent crystallization yielded yellow 

needles. 

 

Figure 17: Structure of hemiindigo Z-2 in the crystalline state. The viewing angle on the 

right emphasizes the strong helical twisting within the Z isomer with a dihedral 

torsion angle of 52.97° for C1-N1-C10-C11. The stilbene single bond is twisted 

by 23.24° for C10-C11-C12-C13. The length of the double bond (red) is 

contracted from 1.352 to 1.344 Å and the single bond (green) elongated from 

1.451 to 1.459 Å compared to hemiindigo 9. 
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The twisted single bond shown in green in Figure 17 contributes to the hypsochromic shift of 

the absorption by hindering the overall pi-conjugation. This is generally beneficial for a greater 

separation of Z and E absorption bands, which is usually beneficiary for isomer accumulation 

in the photostationary state. 

 

Figure 18: Lewis-formula of hemiindigo 2. 

Compared to hemiindigo 9, the acetylated derivative 2 exhibits substantially differing 

properties with blue-shifted absorptions, no fluorescent behavior, very good photostability, 

good isomeric yields in the PSS, very high thermal bistability and a thermal Z / E isomer 

equilibrium at higher temperatures in toluene solution. 

 

Figure 19: Molar absorption (left) and PSS (right) spectra of hemiindigo 2 in 

dichloromethane. A blue shifted absorption compared to the N-H substituted 

compound 9 can be observed resulting from acetylation of the indoxyl nitrogen 

(Figure 15). Defined isosbestic points can be seen at 260 nm, 320 nm, 360 nm 

and 430 nm, which indicates good photostability of this compound. Highest 

isomeric yields were obtained at 385 nm irradiation (88% E isomer) and at 

505 nm irradiation (87% Z isomer). Energy barriers for thermal double bond 

isomerizations were determined to be 24.4 kcal/mol for the Z to E and 

24.0 kcal/mol for the E to Z direction at 24 °C, which translates to thermal half-

lives of 12.5 h and 24.5 h at 25 °C, for the respective isomers. 
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The relatively low thermal bistabilities of hemiindigo 2 can be attributed to the presence of 

small amounts of hydrochloric acid, which is a contaminant of the dichloromethane solvent. 

Filtration of the solvent through aluminium(III) oxide increased the measured energy barrier 

for thermal double bond isomerizations significantly, as shown for hemiindigo derivatives 

(Figure 20). 

 

Figure 20: Molar absorption (left) and PSS (right) spectra of hemiindigo 2 in toluene. 

Almost similar absorption profiles can be observed compared to 

dichloromethane as solvent (Figure 19). The isosbestic points are well defined, 

verifying the photostability of this compound. Highest isomeric yields were 

obtained at 385 nm irradiation (89% E isomer) and at 490 nm irradiation (99% 

Z isomer). Energy barriers for thermal double bond isomerizations were 

determined to be 32.6 kcal/mol for the Z to E and 31.4 kcal/mol for the E to Z 

direction at 100 °C, which translates to thermal half-lives of 2895 years and 

381 years at 25 °C, for the respective isomers.  
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2.2.3 Indoxyl fragment: N-H alkylation of hemiindigos 

As the substitution of the N-H proton by an acetyl group yielded stable photoswitches, the next 

iteration of hemiindigo photoswitches was set to utilize electron donating substituents at the 

indoxyl nitrogen. The first experiments employing a methyl substituent were done by F. Kink 

and furnished difficult to purify and barely stable molecules. Nonetheless, reproduction and 

temporal purification of the unstable compounds was possible and a crystal structure for 

hemiindigo 13 in the E isomeric form could be obtained (Figure 21) 

 

Figure 21: Structure of hemiindigo 13 in the crystalline state in its E isomeric form. Full 

planarity for the E isomer can be observed, which is seen for all hemiindigos 

with ortho-unsubstituted stilbene fragments. The double (red) and single bond 

(green) are elongated from 1.352 to 1.354 Å and 1.451 to 1.455 Å, respectively, 

compared to N-H substituted chromophore 2. This can be caused by the +I effect 

of the methyl group or the overall electronically different E isomeric form. 

The lack of photostability of hemiindigo 13 led to discardment of this substitution pattern.  

An ethyl group was introduced instead to probe if an aliphatic substitution can be made feasible 

at all. Recrystallization of the N-ethyl substituted hemiindigo 14 at 100 °C in ethanol / water 

mixtures yielded the undesired molecule shown in Figure 22. 
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Figure 22: Unexpected dipolar [2+4] cycloaddition product upon recrystallization of N-

ethyl substituted hemiindigo 14 at approximately 100 °C in ethanol / water. 

Bond lengths are shown in respective colors. 

Ethyl substituents at the indoxyl nitrogen showed a [2+4] cycloaddition reaction upon standard 

recrystallization conditions and were abandoned for these reasons. 

The introduction of a propyl group was seen as last trial to obtain this class of alkylated 

photoswitches.  
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The introduction of electron donating aliphatic substituents was carried out according to 

procedures from V. Velezheva et al.[90]  

 

Scheme 7: Alkylation of hemiindigo 9 via an SN2 mechanism to obtain compound 7 in 

excellent yields. 

Deprotonation of the nitrogen proton by sodium hydride yielded a deep green solution. 

Dropwise addition of an electrophile creates orange reaction hot spots upon contact with the 

vigorously stirring solution, which indicates fast reaction kinetics. Small orange crystals could 

be obtained after workup (Figure 23). 

 

Figure 23: Structure of hemiindigo 7 in the crystalline state. The viewing angle on the right 

emphasizes the strong single bond twisting of the stilbene fragment. The stilbene 

single bond dihedral torsion angle amounts to 43.47° for C8-C9-C10-C15 in the 

Z isomeric state and the dihedral helical torsion angle amounts to 8.73° for C17-

N1-C8-C9. The double bond (red) is contracted from 1.352 to 1.346 Å and the 

single bond (green) is highly elongated from 1.451 to 1.467 Å compared to the 

N-H unsubstituted chromophore 9.  
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Figure 24: Comparison of helical torsion and stilbene single bond rotation for alkylated 

hemiindigo 7 (left) and acetylated hemiindigo 2 (right) 

In the crystalline state, alkylated hemiindigo 7 (Figure 24, left) shows a stilbene single bond 

dihedral torsion angle of 43.47°, which is almost doubled compared to the 23.24° of the 

acetylated compound. This occurs at the cost of helical dihedral torsion, which is reduced from 

52.97° to 8.73° for the alkylated compound 7 (Figure 24, left). This indicates increased 

protrusion of the acetyl substituent, as the amide bond tries to stay as planar as possible due to 

its drive to maximize pi-conjugation. Additionally, the electron withdrawal of the acetyl seems 

to increase the rigidness of the stilbene single bond, as bending of the indoxyl core for 

hemiindigo 2 is favored over a single bond rotation. The electron donating alkyl chain in 

hemiindigo 7 benefits the overall bathochromic absorption shift while the stronger out-of-plane 

twisting of the stilbene single bond in the Z isomeric state induces a hypsochromic shift. This 

brings both absorption bands for Z and E isomers further apart (i.e. increases photochromism), 

which increases obtainable isomeric yields upon continuous irradiation if differences in 

quantum yields and molar absorption coefficients are assumed to be non-variant.  
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Figure 25: Lewis-formula of hemiindigo 7. 

 

Figure 26: Molar absorption (left) and PSS (right) spectra of hemiindigo 7 in 

dichloromethane. The isosbestic points are well defined, verifying the 

photostability of this compound. Highest isomeric yields were obtained at 

435 nm irradiation (96% E isomer) and at 565 nm irradiation (54% Z isomer). 

Energy barriers for thermal double bond isomerizations were determined to be 

23.8 kcal/mol for the Z to E and 23.7 kcal/mol for the E to Z direction at 100 °C, 

which translates to thermal half-lives of 8.9 h and 7.5 h at 25 °C, for the 

respective isomers. Quantum yields were determined at 17 ±3% (449 nm) for Z 

to E and 3.2 ±1% (565 nm) for E to Z direction. 
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Figure 27: Molar absorption (left) and PSS (right) spectra of hemiindigo 7 in toluene. 

Similar spectra can be observed compared to dichloromethane as solvent (see 

Figure 26). The isosbestic points are well defined, verifying the photostability of 

this compound. Highest isomeric yields were obtained at 435 nm irradiation 

(97% E isomer) and at 530 nm irradiation (18% Z isomer). Energy barriers for 

thermal double bond isomerizations were determined to be 31.5 kcal/mol for the 

Z to E and 29.8 kcal/mol for the E to Z direction at 100 °C, which translates to 

thermal half-lives of 452 years and 25.6 years at 25 °C, for the respective 

isomers.  
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2.2.4 Stilbene fragment: Electron donating substituents 

Another important position to tailor the photophysical properties of hemiindigo photoswitches 

is the para-position of the stilbene fragment. The acetylated methoxy derivative 2 has proven 

as reliable photoswitching system. However, proton or alkyl substitution suffered major 

drawbacks regarding their thermo- and photostability or applicability in apolar solvents. The 

para-methoxy derivatives were abandoned at this time in favor of the electron rich 

dimethylamino and julolidine derivatives. 

To obtain these electron rich hemiindigos 11 and 15 and , a synthetic route that utilizes similar 

conditions as for the methoxy derivatives (see Scheme 5) by the procedure of U. Burger et al. 

was employed. 

 

Scheme 8: Synthesis of hemiindigos 11 and 15 from indoxyl acetate 10 and electron-rich 

aldehydes in good to moderate yields. The products can be crystallized as violet 

needles (dimethylamino moiety) or red / green dichroic crystals (julolidine 

derivative).  
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Figure 28: Structure of hemiindigo Z-11 (left) and Z-15 (right) in the crystalline state. Both 

derivatives remain planar in the Z form, as no bulk is introduced at the indoxyl 

nitrogen. The double (red) and single bond (green) lengths change from 1.352 to 

1.357 to 1.347 Å and 1.451 to 1.438 to 1.449 Å for the methoxy, dimethylamino 

and julolidine derivatives 9, 11 and 15, respectively. 

 

Figure 29: Dichroic crystals of hemiindigo 15 obtained in lengths from 5 to 10 mm. 

Adapted with permission from [74]. Copyright 2017 American Chemical Society.  
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Figure 30: Lewis-formula of hemiindigo 11. 

 

Figure 31: Molar absorption spectra of pure Z and E isomers of 11 measured in solvents of 

increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). PSS and 

switching spectra are omitted for clarity reasons and can be found in the 

literature.[74] A clear correlation between rising solvent polarity and red-shift of 

absorptions can be observed, evidencing moderate solvatochromism. Adapted 

with permission from [74]. Copyright 2017 American Chemical Society. 

Table 1: Photophysical properties of hemiindigo 11 in different solvents. 

Solvent 
Z/E /% 

(at nm) 

E/Z /% 

(at nm) 

Isomeric yield 

(LED nm) 

G* Z/E  

/kcal mol-1 

G* E/Z 

/kcal mol-1 

T½ Z at 

25 °C 

T½ E at 

25 °C 

toluene 
24 ±2 

(467) 

9 ±2 

(600) 

99% Z (617 nm) 

87% E (470 nm) 

 

- 24.1 - 15 h 

THF - - 
94% Z (617 nm) 

89% E (435 nm) 

 

- 24.5 - 1.2 d 

DMSO 
19 ±2 

(467) 

 

11 ±2 

(600) 

98% Z (617 nm) 

89% E (470 nm) 

 

- 26.9 - 70 d 
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Figure 32: Lewis-formula of hemiindigo 15. 

 

Figure 33: Molar absorption spectra of pure Z and E isomers of 15 measured in solvents of 

increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). PSS and 

switching spectra are omitted for clarity reasons and can be found in the 

literature.[74] A clear correlation between rising solvent polarity and red-shift of 

absorptions can be observed, evidencing moderate solvatochromism. Adapted 

with permission from [74]. Copyright 2017 American Chemical Society. 

Table 2: Photophysical properties of hemiindigo 15 in different solvents. 

Solvent 
Z/E /% 

(at nm) 

E/Z /% 

(at nm) 

Isomeric yield 

(LED nm) 

G* Z/E  

/kcal mol-1 

G* E/Z 

/kcal mol-1 

T½ Z at 

25 °C 

T½ E at 

25 °C 

toluene  
99% Z (617 nm) 

83% E (470 nm) 
  - 8.9 h 

THF  
99% Z (617 nm) 

90% E (470 nm) 
  - 50 min 

DMSO 








95% Z (617 nm) 

81% E (505 nm) 
  - 11 d 
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2.2.5 Indoxyl fragment: N-H alkylation of electron-rich hemiindigos 

Substitution with electron donating substituents in para-position of the stilbene fragment 

proved as successful approach to improve the overall photophysical properties of hemiindigos, 

easily outperforming the n-propyl methoxy derivative 7 in every aspect except its higher 

thermal stability in some solvents. 

Substitution of the N-H proton of the improved switches 11 and 15 is the next logical step 

and was carried out according to procedures from V. Velezheva et al.[90] 

 

Scheme 9: Alkylation of N-protonated hemiindigos 11 and 15 via an SN2 mechanism to 

yield alkylated compounds 8 and 3. 

The respective hemiindigo photoswitches were obtained in good to very good yields. Deep 

violet crystals could be obtained in both cases. 

 

Figure 34: Structure of hemiindigo E-8 (left) and E-3 (right) in the crystalline state. Both 

derivatives remain planar in the E isomeric form. The double (red) and single 

bond (green) lengths change from 1.354 to 1.363 to 1.362 Å and 1.455 to 1.450 

to 1.445 Å for the N-methyl methoxy, dimethylamino and julolidine derivatives 

7, 8 and 8, respectively. A clear trend for stilbene-single-bond-shortening can be 

observed by increasing electron donor strength in the para-position. 
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Figure 35: Lewis-formula of hemiindigo 8. 

 

Figure 36: Molar absorption spectra of pure Z and E isomers of 8 measured in solvents of 

increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). PSS and 

switching spectra are omitted for clarity reasons and can be found in the 

literature.[74] A clear correlation between rising solvent polarity and red-shift of 

absorptions can be observed, evidencing moderate solvatochromism. Adapted 

with permission from [74]. Copyright 2017 American Chemical Society. 

Table 3: Photophysical properties of hemiindigo 8 in different solvents. 

Solvent 
Z/E /% 

(at nm) 

E/Z /% 

(at nm) 

Isomeric yield 

(LED nm) 

G* Z/E  

/kcal mol-1 

G* E/Z 

/kcal mol-1 

T½ Z at 

25 °C 

T½ E at 

25 °C 

toluene  
99% Z (617 nm) 

93% E (470 nm) 
  60 a 83 a 

THF  
99% Z (625 nm) 

93% E (470 nm) 
  1.2 a 0.9 a 

DMSO 








98% Z (617 nm) 

95% E (470 nm) 
  1.7 a 4.0 a 
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The already established n-propyl substitution of the indoxyl N-H proton also benefits the 

hemiindigo photoswitches with electron donating stilbene substituents. Almost quantitative 

photoswitching upon irradiation with blue and red light in combination with very high thermal 

bistabilities (half-lives from 0.9 to 83 years) over a broad solvent polarity range and good 

quantum yields could be achieved for hemiindigo 8. 

Additional experiments were carried out to scrutinize the photostability of the compound. 

 

Figure 37: Prolonged photoswitching of hemiindigo 8 from Z PSS (590 nm) to E PSS 

(470 nm) and vice versa in dimethyl sulfoxide over 50 cycles. Only minor 

amounts of photodestruction could be observed. Adapted with permission from 

[76]. Copyright 2018 American Chemical Society.  



2.2.5   INDOXYL FRAGMENT: N-H ALKYLATION OF ELECTRON-RICH HEMIINDIGOS 

50 

Photoswitching of hemiindigo 8 in water could only be realized in mixtures containing four 

volumetric parts of water and one part of dimethyl sulfoxide, N,N-dimethylformamide or 

tetrahydrofuran. It is assumed that solely solubility played a role in this behavior as precipitation 

can be observed within the cuvette. Exemplary absorption spectra recorded during 

photoswitching are shown for clarity reasons, the complete data can be found in the literature.[74] 

 

Figure 38: Absorption spectra during photoswitching of hemiindigo 8 in 4 / 1 water / N,N-

dimethylformamide. Visually unhampered photoswitchability remains even at 

high water contents. Adapted with permission from [74]. Copyright 2017 

American Chemical Society. 

Nonetheless, the synthesis of ionic derivatives of hemiindigo 8 for gas phase experiments (see 

Section 2.5) proved that these compounds with electron rich para-substituted stilbene 

fragments do not photoswitch in pure water. However, D. Berdnikova rediscovered the 

previously abandoned para-methoxy stilbene substituted hemiindigo derivatives as useful 

motifs that remain switchable in pure water (see Section 2.6).  
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Experiments by A. Gerwien proved that hemiindigo 8 can be incorporated inside poly(methyl 

methacrylate) matrices by diffusion. This process preserves the photoswitchability of this 

compound within polymeric material and can be observed by the naked eye. 

 

Figure 39: Poly(methyl methacrylate) piece treated with a solution of hemiindigo 8 in 

dichloromethane. Photoswitchability was preserved within the polymer. 

Experiments with UV curable clear resins for 3D printing by Formlabs were also 

successful, which makes it possible to print photoswitches favorably within 

translucent polymer materials.  
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Figure 40: Lewis-formula of hemiindigo 3. 

 

Figure 41: Molar absorption spectra of pure Z and E isomers of 3 measured in solvents of 

increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). PSS and 

switching spectra are omitted for clarity reasons and can be found in the 

literature.[74] A clear correlation between rising solvent polarity and red-shift of 

absorptions can be observed, evidencing moderate solvatochromism. Adapted 

with permission from [74]. Copyright 2017 American Chemical Society. 

Table 4: Photophysical properties of hemiindigo 3 in different solvents. 

Solvent 
Z/E /% 

(at nm) 

E/Z /% 

(at nm) 

Isomeric yield 

(LED nm) 

G* Z/E  

/kcal mol-1 

G* E/Z 

/kcal mol-1 

T½ Z at 

25 °C 

T½ E at 

25 °C 

toluene  
99% Z (617 nm) 

95% E (470 nm) 
  1.2 d 1.4 d 

THF  
96% Z (617 nm) 

90% E (470 nm) 
  2.0 a 3.4 a 

DMSO 








99% Z (680 nm) 

98% E (505 nm) 
  0.7 a 0.9 a 
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Introducing an n-propyl group to hemiindigo 15 yields compound 3 with strongly red-shifted 

absorptions towards the biooptical window. This photoswitch can be addressed with low energy 

green and red light while maintaining almost quantitative photoisomerization yields in 

combination with high thermal bistability (half-lives from 1.2 days to 3.4 years) over a broad 

solvent polarity range. Also good quantum yields were measured for the photoisomerization in 

both Z to E and E to Z directions. 

Photoswitching of hemiindigo 3 in water could only be realized in mixtures containing four 

volumetric parts of water and one part of dimethyl sulfoxide, N,N-dimethylformamide or 

tetrahydrofuran. 

 

Figure 42: Photoswitching of hemiindigo 3 in 4 / 1 water / N,N-dimethylformamide. 

Excellent photoswitching performance can be observed even at high water 

contents. Adapted with permission from [74]. Copyright 2017 American 

Chemical Society. 

As mentioned before, the synthesis of ionic derivatives of hemiindigo 3 for gas phase 

experiments (see Section 2.5) proved that the compounds with electron rich stilbene fragments 

do not switch in pure water. However, D. Berdnikova rediscovered the previously abandoned 

para-methoxy stilbene substituted hemiindigo derivatives as useful motifs that remain 

switchable in pure water (see Section 2.6).   
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2.2.6 Indoxyl fragment: N-H arylation of electron-rich hemiindigos 

Another possibility in improving the performance of hemiindigo photoswitches was envisioned 

by further increasing the electron-donating strength at the indoxyl nitrogen. This can be 

achieved by introduction of an (electron-rich) aryl substituent. Preparation utilizing a palladium 

catalyzed Buchwald-Hartwig cross-coupling reaction according to Old et al. leads to late-stage 

arylated hemiindigo 16 in moderate yields. 

 

Scheme 10: Palladium catalyzed Buchwald-Hartwig cross-coupling reaction of an electron-

poor aromatic secondary amine, i.e. hemiindigo 11 and para-bromotoluene 

utilizing DavePhos as ligand L. SM = Starting Material.  
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Figure 43:  Lewis-formula of hemiindigo 16. 

 

Figure 44: Molar absorption spectra of pure Z and E isomers of 16 measured in solvents of 

increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). PSS and 

switching spectra are omitted for clarity reasons and can be found in the 

literature.[74] A clear correlation between rising solvent polarity and red-shift of 

absorptions can be observed, evidencing moderate solvatochromism. Adapted 

with permission from [74]. Copyright 2017 American Chemical Society. 

Table 5: Photophysical properties of hemiindigo 16 in different solvents. 

Solvent 
Z/E /% 

(at nm) 

E/Z /% 

(at nm) 

Isomeric yield 

(LED nm) 

G* Z/E  

/kcal mol-1 

G* E/Z 

/kcal mol-1 

T½ Z at 

25 °C 

T½ E at 

25 °C 

toluene  
99% Z (617 nm) 

95% E (470nm) 
  77 a 77 a 

THF  
98% Z (617 nm) 

86% E (470 nm) 
  14 a 14 a 

DMSO 








93% Z (625 nm) 

97% E (470 nm) 
  9 d 6 d 
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Introducing an aryl group to hemiindigo 11 yields compound 16 with strongly red-shifted 

absorptions towards the biooptical window. This photoswitch can be addressed with low energy 

green and red light while maintaining almost quantitative photoisomerization yields in 

combination with high thermal bistability (half-lives from 6.0 days to 77 years) over a broad 

solvent polarity range. Also good quantum yields were measured for the photoisomerization in 

both Z to E and E to Z directions. 

2.2.7 Indoxyl fragment: Sterically demanding N-H arylations of 

electron-rich hemiindigos 

As N-arylation with a symmetric para-tolyl residue led to photoswitching properties 

comparable to n-propylation, the unique possibility of substitution with a non-symmetric aryl 

moiety, i.e. an ortho-tolyl substituent at this position seemed very promising. The hereby 

introduced chiral axis along the N-CAryl bond unveils interesting motional effects and adds 

several intriguing molecular properties (see Section 2.3 for further details). However, enforcing 

a strong twist of the chiral aryl axis was expected to already change the photophysical properties 

of hemiindigo in highly beneficial ways. An additionally introduced methyl group at the 7 

position of indoxyl core also aides in forcing the ortho-tolyl axis further orthogonally towards 

the indoxyl plane. 

As the Buchwald-Hartwig type late stage arylation was not feasible with ortho-tolyl halides 

or with 7-methyl indoxyls under previously described conditions (Scheme 10), another 

synthetic route was established to gain access to these compounds. 7-Methyl-1-(o-tolyl)-1H-

indole 17 was prepared according to the published procedure of J. Antilla et al. from 18 at 

elevated temperatures in pressure tubes.[91] 

 

Scheme 11: Preparation of N-arylated indole 17. 

Chiral HPLC at 0 °C did not afford separation of rotamers, which indicates a low free activation 

enthalpy of the rotational axis below ΔG* = 20 kcal/mol in apolar solvent. 

7-Methyl-1-(o-tolyl)-1H-indol-3-yl acetate 19 was prepared from 17 according to the 

procedure by P. Choy et al.[92] 
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Scheme 12: Preparation of N-arylated indoxyl acetate 19. 

Hemiindigo 20 was prepared according to the same procedure as reported in Scheme 5 for the 

synthesis of hemiindigo 11. 

 

Scheme 13: Preparation of hemiindigo 20. Low yields after HPLC separation are caused by 

injection loss and the collection of only one isomer peak. 

 

Figure 45: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS 

at different wavelengths of irradiation PSS (right) spectra of hemiindigo 20 in 

dimethyl sulfoxide. The isosbestic points are well defined, verifying the 

photostability of this compound. Highest isomeric yields were obtained at 

470 nm irradiation (93% E isomer) and at 625 nm irradiation (97% Z isomer). 

Energy barriers for thermal double bond isomerizations were determined to be 

30.6 kcal/mol for the Z to E and 32.1 kcal/mol for the E to Z direction at 114 °C, 
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which translates to thermal half-lives of 99 years and 1140 years at 25 °C, for 

the respective isomers. Quantum yields were determined at 33 ±2% (467 nm) for 

Z to E and 9 ±1% (600 nm) for E to Z photoisomerizations. In 83 / 17 heptane / 

ethyl acetate, the quantum yields increase up to 49 ±2% (450 nm) for Z to E and 

12 ±2% (520 nm) for E to Z photoisomerization. Adapted with permission from 

[75]. Copyright 2018 American Chemical Society. 

Hemiindigo derivative 20 shows comparable or increased photophysical properties as 

hemiindigo 16 mainly because of the increased thermal bistabilities and quantum yields. 

 

Figure 46: Comparison of molar absorption spectra for less twisted para-tolyl (16) and 

strongly twisted ortho-tolyl derivative 20 in dimethyl sulfoxide. No significant 

batho- or hypsochromic shift can be observed. Thus the wavelengths of 

absorption are mainly determined by the stilbene-fragment and much less so by 

the twisting of the N-indoxyl substituent. A reduction of ε by 30% can be 

observed. However, this does not hamper the responsiveness of the twisted 

system, as even higher quantum yields are reported for hemiindigo 20. 

The increased thermal stability of the Z isomer with twisted N-aryl substitution can be explained 

by its decreased sterical interference with the stilbene fragment in the Z state compared to 

hemiindigo 16. The E form, however, should not be largely influenced in its thermal stability 

by the substituents at the indoxyl nitrogen atom. Apparently, other factors also play an 

important role in increasing the thermal stability of the axially chiral hemiindigo derivative 20. 
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These findings led to the idea of incorporating an enlarged aromatic system as stilbene fragment 

to achieve further red-shifted absorption in combination with enhanced thermal stabilities. 

2.2.8 Stilbene fragment: Extension of the aromatic system 

Julolidine 21 was prepared from 22 according to H. Katajama et al. (Scheme 14).[93]  

 

Scheme 14: Cyclization reaction of 1,2,3,4-tetrahydroquinoline 22 and 1-bromo-3-

chloropropane. 

The poor isolated yield of the highly unstable product was caused by a second silica column 

chromatography attempt using 100% hexane as eluent, which led to degradation of the product. 

The preceding column with 9 / 1 hexane / ethyl acetate as eluent did not achieve satisfactory 

separation from by-products. The isolated compound turns from a clear, colorless oil to a brown 

mass within minutes upon exposure to air. 

The subsequent bromination was carried out by using N-bromosuccinimide to yield 

compound 23. 

 

Scheme 15: Bromination of julolidine 21. 

The obtained product was not as sensitive as its precursor but still degrades within days on air. 

Subsequent Suzuki cross-coupling was carried out according to Scheme 16.[94] 
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Scheme 16: Suzuki cross-coupling of bromojulolidine 23 and 4-formylphenylboronic acid. 

Condensation of the now stable aldehyde 24 with the arylated indoxyl acetate 19 was done 

according to a modified procedure of U. Burger et al. and yielded hemiindigo 25 .[88] 

 

Scheme 17: Condensation reaction between arylated indoxyl acetate 19 and an extended 

electron-rich aldehyde 24. 

 

Figure 47: UV-Vis spectrum of hemiindigo 25 in dimethyl sulfoxide.  
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No red-shift could be observed compared to 20. The photoswitching performance was sub-par 

compared to dimethyl amino derivative 8. Increasing the conjugated pi-system therefore did 

not seem to be feasible and this approach was abandoned at this time. 

2.2.9 Stilbene and indoxyl fragment: Push-pull effects 

To further scrutinize the push-pull effects on the indoxyl-nitrogen and stilbene fragment of the 

hemiindigo photoswitch, hemiindigo 12 was prepared according to Scheme 6. According to 

previous experiments, the acetyl group causes a hypsochromic shift of the chromophore while 

the dimethylamino moiety is responsible for a bathochromic shift. This molecule was 

synthesized to discern one dominating effect over the other and / or if a push-pull can be 

established that will benefit red-shifting. 

 

Figure 48: Lewis-formula of hemiindigo 12. 

 

Figure 49: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS 

at different wavelengths of irradiation PSS (right) spectra of hemiindigo 12 in 

dichloromethane that was filtered through aluminium(III) oxide to reduce 

prevalent amounts of hydrochloric acid. The isosbestic points are well defined, 

verifying the photostability of this compound. Highest isomeric yields were 

obtained at 420 nm irradiation (79% E isomer) and at 625 nm irradiation (99% 

Z isomer). Energy barriers for thermal double bond isomerizations were 

determined to be 25.9 kcal/mol for the Z to E and 27.9 kcal/mol for the E to Z 
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direction at 100 °C, which translates to thermal half-lives of 13 days and 1 year 

at 25 °C, for the respective isomers. 

 

Figure 50: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS 

at different wavelengths of irradiation PSS (right) spectra of hemiindigo 12 in 

dichloromethane that was filtered through aluminium(III) oxide to reduce 

prevalent amounts of hydrochloric acid. The isosbestic points are well defined, 

verifying the photostability of this compound. Highest isomeric yields were 

obtained at 420 nm irradiation (77% E isomer) and at 530 nm irradiation (96% 

Z isomer). Energy barriers for thermal double bond isomerizations were 

determined to be 29.8 kcal/mol for the Z to E and 30.3 kcal/mol for the E to Z 

direction at 100 °C, which translates to thermal half-lives of 26 years and 60 

years at 25 °C, for the respective isomers. Unprecedented behavior of this 

compound can be seen as the only intermediate Z / E composition is obtained 

with 470 nm irradiation (broken light blue line). For previous compounds, a 

more or less continuous distribution of PSS compositions was obtained when 

sweeping through all available wavelengths for irradiation. In this case, however, 

a sharp discrimination for wavelengths below 470 nm and above 470 nm can be 

observed, which strongly favor one or the other isomer in the PSS. 
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2.2.10 Central double bond: Substitution of the vinylic proton by a 

cyano group 

Substitution of the proton at the central double bond by a methyl group using diazomethane 

was proven feasible on hemithioindigo derivatives by M. Schildhauer and K. Hoffmann. This 

approach was unsuccessful on hemiindigo, as no reaction progress could be observed under 

similar conditions. However, nitrile could be successfully incorporated by following a 

procedure from V. Velezheva et al. to obtain compound 26 (Scheme 20). In order to obtain 

hemiindigo derivatives with potentially high atropisomerization barriers, hemiindigo 27 was 

synthesized starting from indoxyl acetate using the condensation conditions by U. Burger et 

al.[88] 

 

Scheme 18: Condensation reaction of indoxyl acetate 10 and 4-methoxy-2,3,6-trimethyl-

benzaldehyde according to the procedure of U. Burger et al. to yield 

hemiindigo 27. 

 

Scheme 19: SN2 reaction of 1-propyliodide with the deprotonated nitrogen of hemiindigo 27 

according to the procedure of V. Velezheva et al. to yield compound 28.[90]  
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Scheme 20: Vicarious SNAr reaction of the protonated central double bond position of 

hemiindigo 28 with potassium cyanide according to the procedure of V. 

Velezheva et al. to yield hemiindigo 26.[90] 

The ortho-methyl substituents on the stilbene-fragment in hemiindigo 26 served as proof-of-

concept for hindering the rotational barrier of the single bond connecting the stilbene moiety 

with the photoisomerizable double bond. The introduced non-symmetric stilbene fragment is 

needed for establishing a chiral axis along the hindered single bond, which should lead to two 

different enantiomeric rotamers. Further separation via HPLC and ECD measurements of the 

possibly enantiopure rotamers need to be carried out to verify the thermal stability of the chiral 

axis. 

 

Figure 51: UV-Vis spectra of irradiation experiments on hemiindigo 26 in cyclohexane 

(left) and dichloromethane (right). Photoswitching can be seen in cyclohexane. 

The initial Z / E composition is switched with 435 nm LED light and can be 

recovered by irradiation with 530 nm. Little photoswitching is observed in 

dichloromethane, which was also assessed via NMR in Figure 53. 

The photochromism is strongly reduced by the present substitution pattern in hemiindigo 26. 

The overall red-shift of absorption is comparable to other twisted methoxy substituted 

hemiindigos (see Section 2.3.8). The low photoisomerization yields (Figure 51) can be 
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attributed to low photochromism in combination with poor quantum yields of Z and E isomers, 

which is why this substitution pattern was not studied further. 

 

Figure 52: UV-Vis spectra of irradiation experiments on hemiindigo 26 in dimethyl 

sulfoxide. Little photoswitching can be seen. This kind of substitution pattern 

seems to perform poorly within polar solvents, in contrast to derivatives 

possessing only a threefold substituted double bond. 

 

Figure 53: 1H-NMR spectra recorded during irradiation experiments on hemiindigo 26 in 

dichloromethane-d2 at 25 °C, 400 MHz. The initial Z / E composition before 
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irradiation is the same as observed in the spectrum on top and is not shown. 91% 

of the Z isomer are present in the thermal equilibrium and photoswitching to 23% 

E isomer content is possible. 

 

Figure 54: Chromatogram of hemiindigo 26 recorded via gas chromatography - mass 

spectrometry. Only the mass trace with an m/z of 360 corresponding to the 

product 26 is shown. Two distinct peaks connected by a streaking area can be 

observed at 300 °C, suggesting interconversion of Z- and E isomers during 

elution. 

The effect observed in Figure 54 is unprecedented compared to other hemiindigo derivatives 

measured via the same methodology and conditions. Quantification of the thermal dynamics 

could be done by measurements at different elution temperatures utilizing the equations 

developed by O. Trapp.[95]  
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2.2.11 Stilbene fragment: Electron withdrawing substituents 

As electron donating stilbene substituents led to very well performing, red-shifted 

photoswitches, electron withdrawing groups are expected to lead to blue-shifted absorptions. 

Hemiindigo 29 was synthesized to confirm these assumptions. 

 

Figure 55: Lewis-formula of hemiindigo 29. 

 

Figure 56: UV-Vis spectra of photoswitching experiments of hemiindigo 29 in dimethyl 

sulfoxide (left) and comparison to the dimethylamino derivative 20. The 

absorption maximum of the Z isomer (red) is not shifted but the E isomer (blue) 

exhibits a hypsochromic shift beyond the most red-shifted Z isomer maximum.  

The poor photoisomerization yields obtained for hemiindigo 29 can again be attributed to low 

photochromism in combination with poor quantum yields of Z and E isomers, which is why this 

substitution pattern was also not studied further. 

Large changes of photophysical properties can be expected by introducing substituents at 

the stilbene ortho-positions. Bulky methyl groups should strongly twist the stilbene single bond 

out of the indoxyl plane. Conditions for the condensation of indoxyl acetate and the respective 

aldehyde have to be adjusted for this substitution pattern, as the sterical demand requires 

increased temperatures for these compounds to react. 
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2.2.12 Stilbene fragment: Introduction of methyl groups in the ortho-

position 

The synthetic scheme according to U. Burger et al. was altered using dioxane as co-solvent and 

the starting materials are added prior to heating to 100 °C.[88] The reaction mixture was kept at 

100 °C for 18 h to yield hemiindigo 30. 

 

Scheme 21: Preparation of hemiindigo 30 from indoxyl acetate 19. Moderate to low yields 

were obtained after HPLC purification, which was caused by losses during 

injection and discarded fractions due to elution overlap with other compounds. 

 

Figure 57: Lewis-formula of hemiindigo 30. 

 

Figure 58: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS 

at different wavelengths (right) of hemiindigo 30 in dimethyl sulfoxide. The 

isosbestic points are well defined, verifying the photostability of this compound. 

Highest isomeric yields were obtained at 450 nm irradiation (56% E isomer) and 
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at 617 nm irradiation (96% Z isomer). Energy barriers for thermal double bond 

isomerizations were determined to be 30.5 kcal/mol for the Z to E and 

31.7 kcal/mol for the E to Z direction at 114 °C, which translates to thermal half-

lives of 78 years and 614 years at 25 °C, for the respective isomers. Quantum 

yields were determined at 12 ±2% (450 nm) for Z to E and 12 ±2% (520 nm) for 

E to Z direction. In 83 / 17 heptane / ethyl acetate the quantum yield rises to 

33 ±2% (435 nm) for Z to E and is lowered to 10 ±2% (520 nm) for E to Z 

photoisomerizations . This increase in quantum yield of the Z isomer over the E 

isomer improves the photoisomerization yields to 98% Z isomer (530 nm) and 

84% E isomer (435 nm) in apolar medium. Adapted with permission from [75]. 

Copyright 2018 American Chemical Society. 

 

Figure 59: Comparison of molar absorption spectra for less (20) and highly stilbene single 

bond-twisted hemiindigo 30 in 83 /17 heptane / ethyl acetate. A strong 

hypsochromic shift of the twisted derivative 30 can be observed and its molar 

absorptivity ε is lowered by 70%. 

The poor separation of Z and E absorption maxima is likely to be an important reason for the 

mediocre E isomeric yield of 56%. The thermal half-lives for hemiindigo 30 were slightly 

reduced from 99 years to 78 years for the Z isomer and from 1140 years to 614 years at 25 °C 

compared to hemiindigo 20. The twisting of the stilbene single bond is not beneficial with 

regard to red-shifting the hemiindigo chromophore, increasing quantum yields or enhancing 

thermal bistabilities. Nonetheless, the derivatives with twisted N-aryl substituents and twisted 

stilbene single bond still remain potent and robust photoswitches. For details regarding their 

chiral properties, see Section 2.3.8.  
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The late stage arylation of 7-methyl indoxyls with 1-naphthyl halides was not feasible, therefore 

another synthetic route was established to gain access to the N-naphthyl-substituted 

compounds. 7-Methyl-1-(naphthalen-1-yl)-1H-indole 31 was prepared from 18 and 1-

bromonaphthalene according to a procedure of J. Antilla et al. at elevated temperatures in 

pressure tubes.[91] 

 

Scheme 22: Preparation of N-arylated indole 31. 

The naphthyl substituted indole 31 could be crystallized unlike the N-ortho-tolyl substituted 

indole 17, which is a clear, colorless oil. 

 

Figure 60: Structure of naphthylated indole 31 in the crystalline state. The perspective on 

the right emphasizes the nearly orthogonal planes of indole and naphthyl. The 

dihedral angle between the indole and naphthyl plane is close to 90° with 86.28° 

for the angle C8-N1-C10-C19. This proves that the introduction of the 7-methyl 

group alone twists the aryl axis to nearly its maximum in the crystalline state, 

which is also reproduced by DFT calculations (see Section 2.3.7). Chiral HPLC 

at 0 °C did not show a separation of rotamers for 31, which indicates a low 

thermal stability of its rotational axis suggesting a rotational energy barrier of 

less than 20 kcal/mol.  
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7-Methyl-1-(naphthalen-1-yl)-1H-indol-3-yl acetate 32 was prepared from 31 according to a 

procedure reported by P. Choy et al.[92] 

 

Scheme 23: Preparation of N-arylated indoxyl acetate 32. 

Hemiindigo 33 was prepared according to the modified procedure from U. Burger et al. used 

for the synthesis of hemiindigo 30.[88] 

 

Scheme 24: Preparation of hemiindigo 33 in moderate yields. Loss of substance during 

HPLC injection was minimized by recovery and re-injection of spilled material.  
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Figure 61: Lewis-formula of hemiindigo 33. 

 

Figure 62: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS 

at different wavelengths of irradiation PSS (right) spectra of hemiindigo 33 in 

dimethyl sulfoxide. The isosbestic points are well defined, verifying the 

photostability of this compound. Highest isomeric yields were obtained at 

450 nm irradiation (43% E isomer) and at 595 nm irradiation (98% Z isomer). 

Energy barriers for thermal double bond isomerizations were determined to be 

31.8 kcal/mol for the Z to E and 32.7 kcal/mol for the E to Z direction at 114 °C, 

which translates to thermal half-lives of 750 years and 3427 years at 25 °C, for 

the respective isomers. Quantum yields were determined at 5 ±1% (450 nm) for 

Z to E and 8 ±2% (520 nm) for E to Z photoisomerizations. In 83 / 17 heptane / 

ethyl acetate, quantum yields were determined at 27 ±2% (435 nm) for Z to E 

and 9 ±2% (520 nm) for E to Z photoisomerizations This increase in quantum 

yield of the Z isomer over the E isomer improves the photoisomerization yields 

to 98% Z isomer (530 nm) and 83% E isomer (435 nm) in apolar medium. 

Adapted with permission from [75]. Copyright 2018 American Chemical Society. 
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Figure 63: Comparison of molar absorption spectra of N-naphthyl substituted 

hemiindigo 33 and N-ortho-tolyl substituted hemiindigo 30. The shape of 

absorption spectra is almost identical whereas the molar absorptivity ε is 

increased by 20% for the naphthyl derivative. 

The change from ortho-tolyl to naphthyl does not change the absorption profile significantly 

but drastically increases the thermal half-lives in between Z and E isomers by one order of 

magnitude for the Z isomer and by three times for the E isomer. This could be explained by the 

better sterical fit of the flat naphthyl residue between methyl group and twisted stilbene 

fragment compared to the sterically more demanding methyl group that protrudes the phenyl 

plane on both sides.  

In summary the introduction of a spatially better fitting naphthyl group increased the thermal 

double bond isomerization half-lives significantly while not severely interfering with other 

photophysical parameters. 

Incorporation and switching of this compound was also carried out within Formlabs clear photo 

curable polymer, which makes it possible to dissolve and 3D print this matrix with the 

functional switches inside. The procedure of incorporating soluble photoswitches into the 

viscous resin was first applied by A. Gerwien. The photoswitch is dissolved with a few drops 

of dichloromethane, added to the resin and stirred vigorously by hand. The resin is placed under 

high vacuum to evaporate the dichloromethane, which can cause bubbles upon polymerization. 

The desired amount of resin is put on a microscope sample carrier plate and two equally sized 

capillaries are used as spacers. Another carrier plate is pressed on top and the resin is 

polymerized with a 150 mW 405 nm LED for 5 minutes. The prepared plates can be analyzed 

within commercial UV-Vis and electronic circular dichroism (ECD) spectrometers. 
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Figure 64: UV-Vis spectra of hemiindigo 33 dissolved in Formlabs clear resin (left) and 

photograph of prepared samples (right). Photoswitchability between >95% Z 

isomer and >83% E isomer can be seen, which equals the performance of 

hemiindigo 33 in apolar solvent mixtures of 87 / 13 heptane / ethyl acetate. The 

black circle on sample “348-H 1” served as positional marker for circularly 

polarized light (CPL) irradiations and ECD measurements. 

As future perspective, the addition of enantiopure rotamers of hemiindigo 33 in these matrices 

can be examined with regard to changes of the thermal stability of the rotational aryl axes, 

allowing the measurements of precise kinetics in the polymer matrix and their comparison to 

solution experiments.  
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2.2.13 Conclusion: Rationale of substitution patterns 

It could be shown that hemiindigos are a class of virtually unexplored, potent photoswitches 

supporting high photoisomerization ratios with blue over green to yellow and red light, high 

thermal bistabilities, good quantum yields and high tolerance of the photoreactions towards 

solvent polarity changes. The effects of different substitutions at the indoxyl- and stilbene 

fragments could be shown, with electron donating substituents being beneficial for red-shifted 

absorptions and twisted aryl axes at the indoxyl-nitrogen increasing thermal bistability while 

maintaining its red-shift. Increase of conjugation strength at the stilbene fragment did not yield 

desired red-shifted hemiindigos. The thermal bistabilities of Z and E isomers can be increased 

by electron withdrawing groups at the indoxyl nitrogen or by electron-neutral stilbene 

fragments. The thermal bistabilities of N-arylated hemiindigos profit from twisting of the N-

aryl moiety and from decreasing sterical bulk between the indoxyl core methyl group and the 

stilbene fragment by substituting an ortho-tolyl group with a naphthyl group. 

Further experiments on substitutions at the aromatic indoxyl positions have to be carried out, 

as DFT calculations show a large red-shift for nitro substituted derivatives (Figure 65). 

 

Figure 65: Calculated UV-Vis spectra at the B3LYP/6-311+G(d,p) level of theory, 

(TD-DFT, nstates = 30) for a potentially red-shifted hemiindigo derivative, 

Z isomer (top) and E isomer (bottom) are shown. Absorption maxima of 625 nm 

(Z) and 660 nm (E) can be observed, an increase towards longer wavelengths is 

expected for the experiment, as DFT calculations tend to underestimate the red-

shift.[74]  
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2.2.14 Hemiindigo - Solvatochromism and the influence of water on 

hemiindigo chromophores 

The following sections serve as a quick overview of the discussed results and methods 

throughout this work, starting with solvatochromism and photoswitchability of hemiindigos in 

water. 

Regardless of structural modifications, hemiindigos exhibit strong solvatochromism but little 

thermochromism, which stands in contrast to the results on the parent indigo chromophore (see 

Section 2.1).  

For the class of hemiindigo photoswitches, apolar solvents as well as the gas phase (see 

Section 2.5) show blue-shifted absorptions while polar organic solvents and their water 

mixtures exhibit strongly red-shifted absorptions for these compounds. This experimentally 

observed significant solvatochromism cannot be fully explained by the utilized DFT level of 

theory.[74] 

It is highly desirable to operate molecular switches and machines in water, as it is the most 

abundant and likewise most important liquid for life on earth. Biological applications demand 

good solubility, photoswitchability and photostability of the utilized switch or machine to 

perform within or around cells or bacteria. 

Hemiindigos exhibit very good overall photoswitching performance, but they display 

unpredictable behavior when water is used as (co-)solvent, especially for hemiindigos 

substituted with a 4-(dimethyl amino) phenyl or julolidine moiety as stilbene fragments. 

Proficient photoswitching could be observed for one cycle in water / polar organic solvent 

mixtures (up to 80 - 97%, v / v) with e.g. tetrahydrofuran, dimethylformamide or dimethyl 

sulfoxide as organic modifiers (see Figure 42 and literature[74]). At high water contents 

precipitation can be observed but no obvious decrease of photoisomerization efficiency could 

be tested at the time these measurements were carried out.  

Introduction of a permanent charge tag (see Section 2.5) made electron rich hemiindigo 

derivatives 8 and 3 soluble in pure water, further proving their diminished switching behavior 

in this solvent. Insolubility could thus be excluded as the main reason for non-existent 

photoisomerization yields. 

D. Berdnikova introduced a hydrophilic alkyl dimethylamino side chain to a phenylmethoxy 

substituted hemiindigo 34 and showed that photoswitching in water was feasible again, even 

when binding of the hemiindigo to RNA / DNA complexes occurs.[40] Controlling RNA - 
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protein interactions by visible light can serve as therapeutic handle within the emerging field of 

photopharmacology.[96]  

 

Figure 66: Hemiindigo derivative 34 was synthesized by D. Berdnikova. Photoswitching 

and unspecified binding to HIV-1 TAR RNA, HIV-1 RRE-IIB RNA and HIV-1 

TAR Tat complexes with fluorescent responses could be shown.[40] 

As part of a collaboration with D. Berdnikova, charge tagged hemiindigo derivatives without 

strongly electron donating stilbene fragments were synthesized and tested for their binding and 

switching properties on DNA and RNA (see Section 2.6). 

The exact reason why electron donating stilbene fragments show no photoswitching 

behavior in water is still not understood to date. One possible explanation is excited state proton 

energy transfer (ESPT), as the basic amino functionalities abstract protons from remaining 

water molecules and cleaves the associated protons upon irradiation as deexcitation channel. 

Another possible theory is the ratio between an apolar biradical and a polar ionic state of the Z 

/ E transition state structure at the central double bond. Electron donating stilbene fragments 

might favor an ionic state at the central double bond, which can be stabilized by water 

molecules. This might lower the thermal stabilities of the photoswitch to such an extent that no 

photoisomerization or distinct spectra of Z and E can be seen at ambient temperatures. Since 

low temperature experiments in water in its liquid state are not possible at ambient pressure, 

transient spectroscopy on a dimethylamino and a methoxy substituted hemiindigo would be the 

method of choice to confirm or disprove these theories. Addition of polar organic solvent 

restores photoswitchability in between Z and E isomers, which underlines this argument as the 

organic solvent shell displaces the water.  
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2.2.15 Hemiindigo - Effects of pH-modulation 

Addition of Brønsted acids and -bases reduces photoswitchability in a reversible fashion by 

shifting the initial Z / E compositions towards a new equilibrium or by generating an 

intermediate protonated form. Strong changes in absorption and photochromic shifts can be 

observed upon protonation. Lower thermal stabilities (21 - 24 kcal/mol) in untreated 

dichloromethane compared to dichloromethane filtered through aluminium oxide (23 - 

26 kcal/mol) can be observed as well. 

 

Figure 67: Lewis-formula of hemiindigo 9. 

 

Figure 68: Impact of acids and base additions on the absorption of hemiindigo 9 in toluene. 

Photoswitchability without additives was ensured first (broken blue line and 

solid red line). Addition of 8 drops of trifluoroacetic acid to 2 mL of toluene 

volume yielded spectrum shown in green. Irradiation in this state did not induce 
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any spectral changes. This can be caused by low thermal barriers in between Z 

and E isomer or due to deexcitation trough ESPT. An increase of molar 

absorptivity can be seen although the photoswitch concentration was diluted 

throughout this experiment. Neutralizing the solution yielded the bright blue 

line. In this state photoswitchability could be restored (broken violet line). 

Addition of a few drops of triethylamine yielded the pink spectrum. 

In summary, photoswitchability is lost for hemiindigo 9 when exposed to acids or excess base 

in organic solution. 

 

Figure 69: Lewis-formula of hemiindigo 11. 

 

Figure 70: Impact of acids and base addition on the absorption of hemiindigo 11 in toluene. 

Photoswitchability without additives was ensured first (dashed blue line and 

solid red line). Addition of 4 drops of trifluoroacetic acid to 2 mL of toluene 
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solution yielded the spectrum shown in green. Irradiation in this state did not 

induce any spectral changes. This can be caused by low thermal barriers in 

between Z and E isomer or due to deexcitation trough ESPT. A strong decrease 

of molar absorptivity can be seen as the photoswitch was not diluted by a factor 

of three by the small volumes of acid / base added. Excess triethylamine (violet 

line) restores proper photoswitchability (broken violet line, pink line) and results 

in a defined isosbestic point shifted by approximately 10 nm to the red part of 

the visible light spectrum compared to the neutral solution. A decrease in molar 

absorptivity by 20% can be observed. 

The effect of acids can also be seen within measurements of thermal stabilities in 

dichloromethane. The remaining hydrochloric acid severely lowers the thermal Z / E 

isomerization barriers. For hemiindigo 8, an energy barrier of 20.3 kcal/mol for the thermal Z 

to E and 20.6 kcal/mol for the thermal E to Z isomerization was measured. If dichloromethane 

is filtered through aluminium(III) oxide to remove residual acid in the solvent, the measured 

energy barriers amounted to 21.8 kcal/mol for the thermal Z to E and 21.9 kcal/mol for the 

thermal E to Z isomerization direction. Filtration increases the thermal half-life 18-fold for the 

Z isomer and 10-fold for the E isomer. 

For hemiindigo 16, an energy barrier of 20.7 kcal/mol for the thermal Z to E and 

21.2 kcal/mol for the E to Z isomerization was measured. If dichloromethane is filtered through 

aluminium(III) oxide, the measured energy barriers amounted to 22.4 kcal/mol for the thermal 

Z to E and 24.1 kcal/mol for the thermal E to Z isomerization. The thermal half-life is also 

increased 18-fold for the Z isomer and 134-fold for the E isomer. 

In conclusion, pure water as solvent and acidic / basic conditions are factors that decrease 

the photophysical performance of hemiindigo chromophores.  

Methoxy derivatives (see Section 2.2.1) are able to overcome the inability to photoswitch in 

water at the cost of less red-shifted absorptions.  
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2.2.16 Conclusion: Solvent, Water and pH influence 

The effects of solvent polarity on hemiindigo photoswitches could be demonstrated. Generally, 

red-shift is increased and quantum yields are slightly decreased for polar solvents, these trends 

are reversed for apolar solvents, with few exceptions. Photoswitching in water can only be 

realized by addition of 2.5 - 30% of water miscible organic solvent for hemiindigos supporting 

electron rich stilbene fragments.[74] Water soluble, ionic hemiindigos can only photoisomerize 

if the stilbene fragment features weak electron donating groups like methoxy or methyl (see 

section 2.2.5 and Section 2.6 for details). Acidic or basic conditions do not show visible 

photoswitching of hemiindigo chromophores.  
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2.2.17 Hemiindigo - Photoswitching between photostationary states 

A photostationary state (PSS) is defined as the state of an irradiated sample where the isomeric 

ratio of e.g. Z and E isomers of a photoswitch does not change while intensity and wavelength 

of the irradiating light is held constant. The composition of isomers in a particular PSS 

represents the maximum obtainable isomeric yield for a specific irradiation condition and is a 

key photophysical property that depends on the following combined parameters, namely 

photochromism, molar absorptivities, quantum yields and thermal stabilities. A strong 

photochromism usually enables enrichment of specific isomers by selectively irradiating at 

wavelengths where only one isomer absorbs strongly using e.g. distinct wavelength 

distributions as emitted by LEDs or monochromatic laser light. High quantum yields and molar 

absorptivities will enhance the overall photoisomerization speed for a specific isomer. High 

thermal stabilities of all present isomers will prevent them from thermal interconversion 

towards their equilibrium concentration, which makes these species visible even for non-

transient spectroscopic methods at ambient or elevated temperatures. 

Hemiindigos exhibit very high isomer ratios in the PSS at different wavelengths reaching up 

to 99% Z and 98% E isomer for the best performing switches. The following Table 6 provides 

a brief selection of measured compositions in the PSS at different wavelengths. 

Table 6: Isomer yields obtained in the PSS after Z / E and E / Z photoisomerization of the 

respective hemiindigo in different solvents at different wavelengths. Isomer 

yields were determined via UV-Vis measurements at ~2.5·10-5 M concentration. 

Hemiindigo  Solvent Wavelength % E isomer % Z isomer Duration 

 

11 

toluene 470 nm 

490 nm 

505 nm 

515 nm 

530 nm 

565 nm 

590 nm 

617 nm 

87 

57 

55 

31 

15 

12 

46 

0.9 

13 

43 

45 

69 

85 

88 

54 

99 

1 min 

1 min 

1 min 

1 min 

1 min 

1 min 

1 min 

4 h 

 THF 435 nm 

470 nm 

490 nm 

505 nm 

515 nm 

530 nm 

565 nm 

89 

87 

69 

68 

44 

28 

17 

11 

13 

31 

32 

56 

72 

83 

1 min 

1 min 

1 min 

1 min 

2 min 

1 min 

1 min 
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595 nm 

617 nm 

14 

3.8 

86 

96 

1 min 

6 h 

 DMSO 470 nm 

490 nm 

505 nm 

515 nm 

530 nm 

565 nm 

595 nm 

617 nm 

89 

84 

85 

75 

73 

48 

13 

2.0 

11 

16 

15 

25 

27 

52 

87 

98 

1 min 

1 min 

1 min 

1 min 

1 min 

1 min 

1 min 

4 h 

 

15 

toluene 470 nm 

490 nm 

505 nm 

515 nm 

530 nm 

565 nm 

595 nm 

617 nm 

83 

61 

61 

46 

35 

22 

7.7 

0.5 

17 

39 

39 

54 

65 

78 

92 

99 

10 s 

30 s 

30 s 

30 s 

30 s 

30 s 

5 min 

1 h 

 THF 470 nm 

490 nm 

505 nm 

515 nm 

530 nm 

565 nm 

595 nm 

617 nm 

90 

82 

81 

68 

59 

38 

11 

1.2 

10 

18 

19 

32 

41 

62 

89 

99 

10 s 

10 s 

10 s 

20 s 

30 s 

30 s 

90 s 

45 min 

 DMSO 470 nm 

490 nm 

505 nm 

515 nm 

530 nm 

565 nm 

595 nm 

617 nm 

680 nm 

81 

81 

81 

77 

75 

59 

25 

4.9 

9.3 

19 

19 

19 

23 

25 

41 

75 

95 

91 

5 s 

10 s 

5 s 

5 s 

5 s 

10 s 

20 s 

3 min 

5 h 

 

8 

toluene 405 nm 

420 nm 

435 nm 

470 nm 

490 nm 

505 nm 

515 nm 

530 nm 

565 nm 

590 nm 

71 

81 

92 

93 

87 

84 

73 

55 

38 

2.0 

29 

19 

8.0 

7.0 

13 

16 

27 

45 

62 

98 

5 min 

5 min 

5 min 

5 min 

5 min 

5 min 

5 min 

5 min 

5 min 

15 min 
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  617 nm 

625 nm 

0.7 

1.9 

99 

98 

4 h 

4 h 

 THF 405 nm 

420 nm 

435 nm 

470 nm 

490 nm 

505 nm 

515 nm 

530 nm 
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515 nm 
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6.9 

4.2 

1.7 

3.8 

27 

29 

21 
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98 
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1 min 
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10 min 

30 min 

1 h 

 

3 

toluene 470 nm 

490 nm 

505 nm 

515 nm 

530 nm 

565 nm 

595 nm 

617 nm 

95 

91 

91 

82 

77 

54 

12 

0.5 

5.0 

9.0 

9.0 

18 

23 

46 

88 

99 

5 s 

10 s 

10 s 

15 s 

15 s 

30 s 

60 s 

20 min 
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90 

85 

85 

78 

72 
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88 
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5 s 
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16 
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30 
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93 
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DMSO 435 nm 

450 nm 
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83 

88 
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90 

90 

17 
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Heptane/Ethyl 

acetate 

87/13 
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83 

82 

64 
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9.1 
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30 

96 
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25 
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36 
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2.2.18 Hemiindigo - Thermal bistabilities 

A high thermal bistability of photoproducts, which can be formed with low energy red light is 

a rare and highly sought after property of photoswitches. Mechanically rigid switching scaffolds 

often require high energy UV / blue light to populate their excited states.[53] Hemiindigos 

undergo photoisomerization with blue and green or green and red light with thermal half-lives 

of years to millennia at 25 °C. N-H unsubstituted hemiindigos thermally convert entirely to the 

Z isomeric form in the dark, in contrast to nitrogen substituted switches, as these form 

temperature- and solvent specific isomer equilibria. Racemization kinetics of axially chiral 

hemiindigos (see Section 2.3.6) to an equally distributed Ra- / Sa state are treated by first order 

kinetics. 

2.2.19 First order kinetics without entering the equilibrium  

The thermal stabilities of Z / E double bond isomerizations with 100% Z or 100% E isomer as 

thermodynamic minimum were determined via NMR or UV-Vis spectroscopy (see 2.2.3 and 

Section 2.2.7). Tightly sealed cuvettes were used for elevated temperature UV-Vis 

measurements and observation of clear isosbestic points proved no concentration changes 

during the measurements. 

When the thermal isomerization is a unimolecular first order reaction and proceeds completely 

towards pure states, eq. 1 can be applied:  

 −
𝑑[isomer excess]

𝑑𝑡
=  𝑘[isomer excess] eq. 1 



2.2.19   FIRST ORDER KINETICS WITHOUT ENTERING THE EQUILIBRIUM 

88 

The rate constant k of the reaction is obtained by plotting ln(ct0/ct) versus time, with ct0 being 

the initial excess of the starting isomer at t0 and ct being the decreasing isomer excess at 

increasing time increments t. The slope of the graph gives the rate constant k for the 

isomerization of the respective hemiindigo Z / E isomers or atropisomers. 

 
𝑘 =  

ln (
[isomer excess]𝑡0

[isomer excess]𝑡
)

𝑡
 

eq. 2 

The free activation enthalpy ΔG* for the process can be calculated from the rate constant k of 

the reaction (eq. 2) by using the Eyring equation (eq. 3): 

 𝑘 =
𝑘𝐵  𝑇

ℎ
 𝑒

−Δ𝐺∗

𝑅𝑇  eq. 3 

   with  kB = Boltzmann constant (1.381·10-23 J·K-1) 

    T = temperature in K 

    h = Planck constant (6.626·10-34 J·s) 

    k = rate constant of the reaction 

eq. 3 can be rearranged to give eq. 4 and the numerical value of the rate constant k obtained 

from eq. 2 can be inserted: 

 ∆𝐺∗ (in J mol−1) =  8.314 ∙ 𝑇 ∙  [23.760 + ln (
𝑇

𝑘
)] eq. 4 

This methodology was applied to atropisomers as well which were quantified by electronic 

circular dichroism (ECD) spectroscopy in heptane / ethyl acetate solutions at different 

temperatures and separately for Z and E isomers. Pure enantiomers were obtained prior to 

measurements by separation via chiral HPLC. Rotation of the ortho-tolyl or naphthyl fragments 

around their chiral hemiindigo N-C axis was observed as loss of the ECD signal over time since 

this rotation results in racemization of the samples. The quantification was carried out by adding 

the area in the ECD spectrum above and below the x-axis from e.g. 250 - 500 nm, which was 

set as 100%. However, the endpoint was set to 0% and not to the 50% equilibrium of the 

racemate, which is the correct value. This leaves the plotted k values underestimated by 50%, 

resulting in higher free activation enthalpies for thermal atropisomerization barriers (which is 

better in all presented cases). For the sake of consistency and comparability, the plots of the 

atropisomerization reactions are displayed with this systematic error in mind. The magnitude 

of this error is displayed in a calculational example (Table 7) for commonly measured thermal 

atropisomerization barriers for hemiindigo and indigo molecules: 
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Table 7: Overview of different incorrectly determined free activation enthalpies 

(exemplary values) and the respective correction of systematic error. 

Incorrectly 

calculated ΔG* 

[kcal/mol] 

Incorrectly 

determined 

k (s-1) 

Incorrectly 

calculated 

thermal half-

life (25 °C) 

Correctly 

calculated ΔG* 

[kcal/mol] 

Correctly 

determined 

k (s-1) 

Correctly 

calculated 

thermal half-

life (25 °C) 

15 61.7 0.01 s 15.4 30.9 0.02 s 

20 0.013 52 s 20.4 0.007 105 s 

25 2.85x10-6 2.81 d 25.4 1.42x10-6 5.63 d 

30 6.13x10-6 35.8 a 30.4 3.06x10-6 71.7 a 

In principle, halving of the determined k value results in an increased free activation enthalpy 

of about 0.41 kcal/mol and doubled thermal half-lives for all cases, which is a significant 

improvement in stability compared to the initially reported values.  
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Exemplary plots are shown for the E to Z thermal central double bond isomerization of 

hemiindigo 15 in three different solvents. The complete data can be found in the literature.[74] 

 

Figure 71: A first order kinetic analysis of the thermal E to Z isomerization of 

hemiindigo 15 in toluene (black, 22 °C), tetrahydrofuran (red, 25 °C), and 

dimethyl sulfoxide (grey, 51 °C) gives a linear relationship. The slope m can be 

translated into the rate constant k for this process. The corresponding Gibbs 

energies of activation are given in Table 8. Adapted with permission from [74]. 

Copyright 2017 American Chemical Society.  
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Table 8: Free activation enthalpies G* and corresponding half-lives at 25 °C for the 

thermal E / Z as well as Z / E isomerizations of hemiindigos 11 and 15 without 

entering equilibria. 

Hemiindigo Solvent 

Polarity -

ET(30)[97] 

/kcal 

mol-1 

G* 

(therm.Z/

E equil.) 

/kcal 

mol-1 

G* 

(therm.E/

Z equil.) 

/kcal 

mol-1 

Equilibra-

tion half-

life of pure 

Z isomer at 

25 °C 

Equilibra-

tion half-

life of pure 

E isomer at 

25 °C 

Thermo-dynamic 

%E/%Z 

equilibrium in the 

dark 

(at T in °C ) 

 

toluene 33.9 - 24.1 - 15 h 
0/100 

(26) 

THF 37.4 - 24.5 - 1.2 d 
0/100 

(28) 

11 DMSO 45.1 - 26.9 - 70 d 
0/100 

(51) 

 

toluene 33.9 - 23.8 - 8.9 h 
0/100 

(22) 

THF 37.4 - 22.4 - 50 min 
0/100 

(25) 

15 DMSO 45.1 - 25.8 - 11 d 
0/100 

(51) 

In contrast to N-H substituted hemiindigos, the unsubstituted species convert completely into 

their Z isomeric state, similar to many hemithioindigo derivatives. 

To assess the thermal stability of the introduced chiral axes in the respective hemiindigo 

photoswitches 30 and 33, the rotamers were separated via chiral HPLC at 0 °C. The absolute 

area of their ECD response was measured within an ECD spectrometer at defined temperatures 

and plotted against time to obtain kinetic datasets. An exemplary plot is given below for 

hemiindigo 30. The complete data can be found in the literature.[74] 

The obtained free activation enthalpies G* for the thermal chiral axis racemization and 

corresponding extrapolated half-lives at 25 °C are given in Table 11. 
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Figure 72: Exemplary illustration of the decaying ECD response of Z-(Ra)-30 at 40 °C in 93 

/ 7 heptane / ethyl acetate. The red spectrum with strongest ECD response 

represents t = 0 s and was set to 100% (added absolute spectral area for positive 

and negative signals). Correspondingly, the blue spectrum with weakest ECD 

response represents t = 3720 s at the end of measurement. Kinetic plots were 

conducted within these respective margins. Yellow and green represent 

intermediate time points within the measurement. Adapted with permission from 

[75]. Copyright 2018 American Chemical Society. 
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Figure 73: First order kinetic analyses of the thermal racemization via atropisomerization 

of hemiindigo 30 in 93 / 7 heptane / ethyl acetate in the dark. The slopes m can 

be translated into the rate constant k for each process. Racemization in the Z 

isomeric state (red, see also Figure 72) was measured at 40 °C and gives an 

energy barrier of 23.1 kcal/mol. Racemization in the E isomeric state (blue) was 

measured at 60 °C and proceeds over an energy barrier of 26.1 kcal/mol. Poor 

R² values are based on bad signal to noise ratios caused by the weak ECD 

response of the E isomer. Adapted with permission from [75]. Copyright 2018 

American Chemical Society. 

An overview of obtained atropisomerization barriers is given in Table 11, Section 2.3.8. 

The introduction of ortho-methyl substituents at the stilbene fragment increases the thermal 

stability of the ortho-tolyl chiral axis resulting in half-lives that range from seconds to days at 

25 °C for hemiindigo 30. This could be attributed to the twisting of the stilbene fragment around 

its single bond, interfering less with the ortho-tolyl moiety. Substitution of the ortho-tolyl 

moiety by a naphthyl residue raises the thermal half-lives further to days and months. This could 

be explained by the better fit of the naphthyl group in between the methyl group of the indoxyl 

core and the stilbene fragment.  
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2.2.20 First order kinetics with entering the equilibrium - E/Z 

isomerizations 

The thermal Z to E or E to Z isomerizations of hemiindigos proceed mainly at elevated 

temperatures resulting in stable mixtures of isomers in specific equilibrium compositions. 

Measurements were performed via 1H-NMR spectroscopy in deuterated dimethyl sulfoxide, 

toluene, tetrahydrofuran, dichloromethane or by UV-Vis spectroscopy in heptane / ethyl acetate 

mixtures. 

NMR tubes were charged with 1.1 mg to 2.5 mg of the respective hemiindigo compound and 

0.6 mL - 0.7 mL of deuterated solvent resulting in mM concentrations. The NMR tubes were 

irradiated at suitable wavelengths to accumulate a high percentage of the desired isomer. 

Subsequent heating of the samples was carried out in the dark at 60 - 114 °C and the thermal 

isomerization kinetics were followed by repeating 1H-NMR measurements in determined time 

intervals (typically hours to days). Lower thermal stabilities ≤26 kcal/mol were quantified by 

UV-Vis spectroscopy at 24 - 82 °C in heptane / ethyl acetate mixtures or dichloromethane. In 

cases with barriers below 26 kcal/mol, data points were typically taken in shorter time intervals 

after the initial irradiation interval. After prolonged heating, the stable equilibrium 

concentrations of Z and E isomers were obtained from integration of indicative signals in the 

1H-NMR spectrum or from the known extinction coefficients and absolute absorption values of 

the E isomers in the red part of the absorption spectrum (where the absorption of Z isomers is 

approximately zero). 

The thermal E / Z isomerization is a unimolecular reaction of first order and proceeds 

towards an equilibrium E / Z-isomer composition where both isomers are present as described 

by eq. 5: 

 ln (
[𝐸 isomer]𝑡0

− [𝐸 isomer]𝑒𝑞

[𝐸 isomer]𝑡 − [𝐸 isomer]𝑒𝑞
) = (𝑘𝐸/𝑍 + 𝑘𝑍/𝐸)𝑡 eq. 5 

with [E isomer]t0 being the initial concentration of the E isomer at the time t = 0, [E isomer]eq 

being the concentration of the E isomer at the equilibrium, [E isomer]t representing the 

concentration of the E isomer at specific times in the measurement t, kE/Z being the rate constant 

k of the E to Z isomerization, kZ/E being the rate constant k of the Z to E isomerization, and t 

being the elapsed time. When plotting the logarithmic left part of eq. 5 versus time t the obtained 

slope m contains both rate constants for the isomerization reactions taking place. The rate 

constant kE/Z can then be calculated according to eq. 6: 
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𝑘𝐸/𝑍  =  

𝑚

1 +  
[𝐸 isomer]𝑒𝑞

[𝑍 isomer]𝑒𝑞

  
eq. 6 

when taking into account the law of mass action (eq. 7): 

 
[𝐸 isomer]𝑒𝑞

[𝑍 isomer]𝑒𝑞
=

𝑘𝑍/𝐸

𝑘𝐸/𝑍
 eq. 7 

likewise, the rate constant for kZ/E can be calculated according to eq. 8: 

 
𝑘𝑍/𝐸  =  

𝑚

1 +  
[𝑍 isomer]𝑒𝑞

[𝐸 isomer]𝑒𝑞

  
eq. 8 

from the same kinetic plot (see Figure 74 for plots of the thermal E to Z and Z to E 

isomerizations of hemiindigo 20 in dimethyl sulfoxide as an example).  

By rearranging the Eyring equation (eq. 3), the free activation enthalpy ΔG* can be 

calculated from the rate constants kE/Z or kZ/E of the reaction according to eq. 4. 

The obtained free activation enthalpies G* for the thermal Z / E as well as E / Z 

isomerizations of selected hemiindigos and the corresponding extrapolated half-lives at 25 °C 

are given in Table 9.  

The obtained kinetic plot for hemiindigo 20 is shown exemplarily for clarity reasons. The 

full data can be found in the literature.[75]  

 

Figure 74: Kinetics of the thermal isomer interconversion of hemiindigo 20 at 103 °C in 

dimethyl sulfoxide-d6 in the dark starting from either 92% E-20 (blue) or 96% 

Z-20 (red). After prolonged heating, a stable 87 / 13 E / Z isomer mixture is 

obtained independently for both experiments. Adapted with permission from [75]. 

Copyright 2018 American Chemical Society. 
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Figure 75: First order kinetic analysis of the thermal E to Z and Z to E isomerization of 

hemiindigo 20 in dimethyl sulfoxide-d6 at 103 °C starting from either 92% E-20 

(blue) or 96% Z-20 (red). After prolonged heating in the dark, a stable 87/13 E/Z 

isomer composition is observed in both experiments. Linearized plots according 

to eq. 5 are shown. The slopes m can be translated into the rate constant k for 

each isomerization direction. Analysis of the thermal Z to E equilibration 

reaction (red) gave energy barriers of 30.6 for Z / E- and 32.0 kcal/mol for the E 

/ Z isomerizations. Analysis of the thermal E to Z equilibration reaction (blue) 

gave energy barriers of 30.6 for Z / E- and 32.1 kcal/mol for E / Z isomerizations, 

respectively. The close agreements of these two independent experiments can be 

seen by the almost similar slopes for the Z to E and E to Z isomerization 

experiments. Adapted with permission from [75]. Copyright 2018 American 

Chemical Society.  
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Table 9: Free activation enthalpies G* for the thermal Z / E and E / Z isomerizations of 

selected hemiindigos and corresponding extrapolated half-lives at 25 °C. 

Hemiindigo Solvent 

Polarity 

ET(30)[

97] /kcal 

mol-1 

G* 

(therm.Z/

E equil.) 

/kcal 

mol-1 

G* 

(therm.E/

Z equil.) 

/kcal 

mol-1 

Equilibra-

tion half-

life of pure 

Z isomer at 

25 °C 

Equilibra-

tion half-

life of pure 

E isomer at 

25 °C 

Thermodynamic 

%E/%Z 

equilibrium in the 

dark 

(at T in °C ) 

 

8 

toluene 33.9 30.3 30.5 60 a 83 a 
57/43 

(100) 

THF 37.4 28.0 27.8 1.2 a 0.9 a 
41/59 

(63) 

DMSO 45.1 28.2 28.7 1.7 a 4.0 a 65/35 

(100) 
 DCM 40.7 20.3 20.6 87 s 144 s (24) 

 
DCM/ 

Al2O3 
40.7 21.8 21.9 18 min 22 min (24) 

 

3 

toluene 33.9 24.5 24.6 1.2 d 1.4 d 
52/48 

(52) 

 
THF 37.4 28.3 28.6 2.0 a 3.4 a 

59/41 

(63) 

DMSO 45.1 27.7 27.8 0.7 a 0.9 a 
52/48 

(52) 

 

16 

toluene 33.9 30.5 30.5 83 a 83 a 
50/50 

(100) 

THF 37.4 29.5 29.5 15 a 15 a 
50/50 

(63) 

DMSO 45.1 25.4 25.7 6 d 9 d 
40/60 

(47) 

 DCM 40.7 21.2 20.7 6.6 min 2.9 min (24) 

 
DCM/ 

Al2O3 
40.7 24.1 22.4 15 h 50 min (24) 

 

20 

DMSO 45.1 30.6 32.1 99 a 1140 a 
87/13 

(103) 

Hept/EA 

83/17 
 26.4 27.1 30 d 104 d 

77/23 

(82) 
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30 

DMSO 45.1 30.5 31.7 78 a 614 a 
87/13 

(114) 

 

33 

DMSO 45.1 31.8 32.7 750 a 3427 a 
77/23 

(113) 

 

2.2.21 Quantum yield determination 

The photochemical quantum yields of the Z / E and E / Z photoisomerization Z/E and E/Z, 

respectively were calculated as the ratio between the numbers of isomerized molecules n(Z) or 

n(E) and the number of absorbed photons n(hv) (eq. 9). The published instrumental setup from 

the group of E. Riedle was used for this purpose.[98] 

 ϕ =  
𝑛(ℎ𝑣)

𝑛(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠)
 eq. 9 

The photochemical quantum yields Z/E and E/Z were determined using eq. 10: 

 ϕ =
 Vsample · 𝑁A · h · c

𝑃0 · f · λex
· m0 · concsample  eq. 10 

with 𝑃0 = (Psolv − Psample) at 𝑡0 and f = 
1 + R 

Psample

Psolv

1 − R
  

where Vsample is the volume of the sample measured within a UV-Vis cuvette, NA is Avogadro’s 

constant (6.02214·1023 mol-1), h is Planck’s constant (6.62607·10-34 Js), c is the speed of light 

(2.99792·108 ms-1), R is the reflection coefficient of the cuvette (at the exit surface with a 

literature value of 0.0357),[98] λex is the excitation wavelength in nm, concsample is the total 

concentration of the sample, m0 is the initial slope of the recorded photokinetic in %Zs-1 or 

%Es-1. The value t0 represents the starting point of the measurement (i.e. = 0 s) and is linked to 

the sample Z0 / E0 composition of the system prior to irradiation. P0 represents the absorbed 

power by the sample and is calculated by subtraction of Psample (which is the recorded power 

read-out at the thermal photometer in the presence of a sample filled cuvette under irradiation) 

from Psolv, which corresponds to the power read-out at the thermal photometer under irradiation 
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of a solely solvent-filled cuvette in place. The weighted initial power factor P0
.f at t0 was 

calculated by plotting the relative concentration decrease (in %) of the prevalent species versus 

the increasing P.f values. P0
.f was obtained at the 100% value of the abscissa of that plot (see 

Figure 83 and Figure 85). The potential loss in LED irradiation power on duty caused by warm-

up was considered by plotting Pair,start and Pair,end against tstart and tend in a linear fashion and 

consideration of this linear equation at every t and Psample read-out. The slope m0 was obtained 

from a linear regression of the initial part of the concentration versus time plot, which is 

generated by plotting the increasing amount of produced isomer in % on the ordinate versus 

irradiation time t in s on the abscissa.  

For all quantum yield measurements spectroscopic concentrations of 1x10-5 molL-1 - 

7x10-5 molL-1 were used in toluene, dimethyl sulfoxide or heptane / ethyl acetate - the exact 

values are given in Table 10. The progress of photoisomerizations was followed using UV-Vis 

spectroscopy by taking into account the known extinction coefficients of both individual 

isomers. Quantum yields were measured using a 450 nm (Prizmatix high power LED coupled 

to glass fiber) or 467 nm LED for the Z to E photoisomerizations and a 520 nm (Prizmatix high 

power LED coupled to glass fiber) or 600 nm LED for the E to Z photoisomerizations. Data 

evaluation was carried out by the initial slope method. 

For measurements in the E to Z photoisomerization direction the respective solutions were 

irradiated at a suitable wavelength to obtain the maximum possible content of E isomer prior to 

measurement. The same procedure was carried out to obtain the maximum PSS composition of 

the Z isomer for the quantum yield measurement of the Z to E photoisomerization direction (see 

Table 10). 

2.2.22 Benchmarking: Quantum yield determination of diarylethenes 

The photophysical quantum yield measurements for the model compound 4,4'-

(perfluorocyclopent-1-ene-1,2-diyl)bis(3,5-dimethyl-2-phenylthiophene) 35 were carried out 

to demonstrate small intrinsic deviations of our quantum yield determination methodologies. 

This commercially available photoswitch exhibits quantitative switching behavior to its open 

form with 530 nm and a PSS consisting of 79% to its closed form, which was obtained by 

irradiation with a 254 nm UV lamp. The pure “ring-closed” isomer was obtained by separation 

from residual „ring-open“ isomer using reverse phase HPLC (Machery-Nagel VP 250/21 

NUCLEODUR Sphinx RP 5 µm column, 15 mLmin-1, 35 °C column temperature, 100% 

Acetonitrile, retention times: open form at 6.1 min), see chromatogram in Figure 76.  
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Figure 76: Chromatogram of the HPLC separation of diarylethene 35 in pure acetonitrile. 

3D plot of the diode array detector (DAD, top), trace of the Vis detector at 

500 nm (bottom). A baseline resolved separation could be obtained. 

 

Figure 77: Lewis-formula of 35. 

 

Figure 78: 1H-NMR spectrum of the HPLC separated diarylethene 35 (closed form) in 

dichloromethane-d2. No open form is visible.  
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The molar absorptivities were determined by weighting in 0.2738 mg of the compound on a 

Sartorius nanogram balance and dissolving the solid in 10 mL n-hexane. 

 

Figure 79: Molar absorption spectra of diarylethene 35 in n-hexane. The molar absorptions 

reported by Sumi et al. of 28400 Lmol-1cm-1 at 268 nm for the open form and 

10900 Lmol-1cm-1 at 562 nm for the closed form match very well with the 

recorded data (28517 Lmol-1cm-1 (blue) at 268 nm and 11123 Lmol-1cm-1 at 

562 nm (red)).  
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2.2.23 Benchmarking: Quantum yield determination of the ring-

opening photoreaction of diarylethene 35 using the Riedle 

setup 

Absorption spectra were recorded at different time points during irradiation of ring-closed 

diarylethene 35 (Figure 80) with a 520 nm LED light source. Power values P were obtained 

after irradiation lengths >15 s at the end of each irradiation step (after this time interval the 

power reading is measured most accurately in correlation to the determined open / closed 

composition because of the slowness of the utilized power meter) and then used for the absorbed 

power versus composition plot. Further parameters to consider are: concentration of the sample 

were determined as concsample = 5.764*10-5 molL-1, cuvette volume Vcuv = 2.82*10-3 L, power 

reading with pure solvent n-hexane Psolv = 3.400*10-3 W ±3.3*10-6 W, power reading of the 

LED at measurement start t0 in air Pair(0) = 3.680*10-3 W and at the end of the experiment 

Pair(end) = 3.466*10-3 W after tmeas = 3420 s. 

 

Figure 80: Photoisomerization progress of the ring-opening reaction of diarylethene 35 at 

different time points in n-hexane. 
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The individual spectra were translated into %open isomer using the known extinction molar 

absorptivities and were plotted versus time (Figure 81). 

 

Figure 81: Recorded photokinetic (blue) and polynomial fit (dotted blue) during the 

photoswitching of diarylethene 35 from 100% closed to 80% open form in 

n-hexane. 

Plotting the initial linear slope of the %open isomer m0 multiplied by the total concentration 

concsample versus time gives the turnover rate m0 concsample in c(open)s
-1 after linear regression as 

shown below (Figure 82). 
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Figure 82: Starting points / linear segment of the photokinetic shown in Figure 81 measured 

during the photoswitching of diarylethene 35 from 100% closed to 8% open form 

in n-hexane 

The transmitted power readings Psample were translated into absorbed power P by the compound 

relatively to Psolv. The absorbed power P at different time points during measurements was 

plotted as a function of the closed isomer percentage to extrapolate the weighted initial power 

factor P0
.f at the beginning of the measurement (t0) where the slow responsiveness of the power 

meter makes a direct measurement impossible (Figure 83). Furthermore, the thermal LED 

power drift (with active cooling) was considered by measuring the power values of the LED in 

air from start t0 to the end of the experiment. The thermal LED power drift was taken in 

consideration as described in Section 2.7.2 to increase precision and eliminate this systematic 

error margin. 
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Figure 83: Regression of the weighted power factor versus the percentage of 100% closed 

diarylethene 35 in n-hexane to extrapolate the power value P0
.f the time t0. Linear 

approximation (broken blue line) and polynomial fit (broken orange line) which 

improves the obtained quantum yield by 4.6% compared to the linear regression 

value. 

Measured hemiindigos exhibit completely linear behavior in the P0
.f versus %E or %Z plots 

until reaching their respective PSS. However, the power plot data points for diarylethene 35 

differs from the linear fit, which gives P0
.f = 2.443 mW for 100% closed form. A polynomial 

fit of the data gives a P0
.f value of 2.335 mW, which increases the quantum yield by 4.6% 

(relative value). 

After inserting the extrapolated P0
.f value at t0 (i.e. at 100% closed isomer) and the slope m0 

concsample value in eq. 11: 
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A quantum yield for the ring opening photoreaction of 2.69% was determined with the Riedle 

setup in n-hexane. This finding reproduces the reported quantum yield of 2.2% (eq. 12) by Sumi 

et al.[99] for irradiations at 520 nm according to: 

 Φclosed to open = 10(−2.67+
526

520
)
 eq. 12 

In a second independent measurement a 60 / 40 mixture of closed / open form of the 

diarylethene was used for the determination of the quantum yield for the photochemical ring 

opening reaction instead of the pure ring closed compound. Irradiation was done with a 520 nm 

LED. The measurement is shown in Figure 84 utilizing a fifth order polynomial fit from which 

the extrapolated initial slope m0 was derived. 

 

Figure 84: Quantum yield measurement, photokinetic, and polynomial fit for the ring-

opening photoswitching reaction of diarylethene 35 at 520 nm irradiation 

starting from a 60% to 40% closed to open form mixture in n-hexane. 

The concentration of the sample was concsample = 4.97x10-5 molL-1, the volume of the cuvette 

was 2.5 mL, and the weighted power factor P0
.f = 2.560 mW was determined by extrapolation 

of measured power factors P.f during irradiation as described before (see Figure 85). With the 

obtained data, a quantum yield of 2.29% was determined in this case, which is in very good 

agreement with the literature value of 2.2%.[99] 
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Figure 85: Regression to calculate the power value P0
.f at the time t0 for the ring-opening 

photoswitching reaction of diarylethene 35 at 520 nm irradiation starting from a 

60% to 40% closed to open form mixture in n-hexane. The linear approximation 

is shown in broken orange lines. 

These experiments show that the intrinsic error is small for our methodology as starting from 

60% closed form and starting from 100% closed form gave quantum yield values ranging from 

2.29% and 2.69%, which is in good agreement to the 2.2% reported by literature.[99]  
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2.2.24 Benchmarking: Quantum yield determination of the ring-

opening photoreaction of diarylethene 35 using the Zinth 

setup 

With this method, the quantum yield was determined by directly irradiating the sample in the 

UV-Vis spectrometer with a monochromatic laser setup at 473 nm and concomitant continuous 

tracking of the changing absorption at one selected wavelength (650 nm in this case).[100] The 

obtained slope m of the initial “linear” segment with neglectable absorption of the ring-open 

isomer is defined by (eq. 13): 

 𝑚 =  ∑
ΔAbs 𝑖,𝑖−1

Δ𝑡𝑖
 i = 1,2,… eq. 13 

The quantum yield closed/open can be determined according to eq. 14: 

 𝜙𝑐𝑙𝑜𝑠𝑒𝑑/𝑜𝑝𝑒𝑛 =  
 𝑉 · 𝑁𝐴 · ℎ · 𝑐

𝑃𝑎𝑏𝑠 · 𝜆𝑒𝑥 · (𝜀𝑜𝑝𝑒𝑛 − 𝜀𝑐𝑙𝑜𝑠𝑒𝑑) · 𝑑
 · 𝑚 eq. 14 

With V = sample volume in the cuvette (0.0018 L), Pabs = absorbed power by the sample 

(4.5×10-5 W), λex = irradiation wavelength (4.73×10-7 m), (εopen – εclosed) = difference in molar 

absorptivity of pure isomers at the read-out wavelength (-1954 Lmol-1cm-1 at 650 nm), m = 

slope of absorption change versus time, NA = Avogadro constant (6.022×1023 mol-1), h = Planck 

constant (6.626×10-34 J.s) and d = thickness of cuvette (1 cm).  

Linear regression of the initial part of the kinetic plot gave the slope m = -4.8836 s-1 (Figure 86 

below).  
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Figure 86: Initial linear part (orange) and slope (blue) for the photoisomerization from 

100% closed to open form recorded with the Zinth laser setup. Only the part from 

10 s to 180 s is shown, as the first seconds gave inaccurate results because of 

laser adjustment. 

The full kinetic plot over 60 min including the fit to the initial slope drawn for comparison is 

given in Figure 87. 

 

Figure 87: Complete plot for measurements (orange) and slope t0 (blue and green dotted 

line) for the photoisomerization from 100% closed to open form recorded with 

the Zinth laser setup. Slope t0 considers only the data points shown in Figure 86 

and is added for comparison. 
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A red filter glass with the absorption characteristics shown in Figure 88 was used to minimize 

potential noise hitting the detector by reflections of the laser on the stirring bar. The absorption 

of the compound at the start and end of the measurement and the excitation / read out 

wavelengths are shown as well. 

 

Figure 88: Overlay of the t0 spectrum of diarylethene 35 in n-hexane (yellow), tend spectrum 

(green), irradiation wavelength (473 nm, blue), absorption profile of the low pass 

filter glass, which was installed between the irradiated cuvette and the detector 

and readout wavelength (650 nm dark red).  

The measurement utilizes 473 nm laser light with 45.0 µW of constant power output throughout 

the measurement which is completely absorbed by the sample. Measurement of a cuvette with 

a sample concentration of 2.1409 *10-4 molL-1 and 1.80 mL sample volume results in a quantum 

yield of 2.53%, which is in accordance to the previous measurements from the Riedle setup[101] 

(2.29%, 2.69%) and the reported literature value (2.2%).[99] 

With these experiments we could show that the used methodology consistently delivers the 

reported quantum yields published by Sumi et al.[99]  
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2.2.25 Quantum yield determination for the photoisomerization 

reactions of hemiindigo 20 using the Riedle setup 

Two quantum yield measurements are shown exemplarily for hemiindigo 20 in the following 

section. The complete data can be found in the literature.[74, 75] 

The quantum yield measurement for the Z to E photoisomerization of hemiindigo 20 in 83 / 

17 heptane / ethyl acetate at 450 nm started with a mixture of 95.9% Z-20 and 4.1% E-20. The 

whole photoconversion kinetic was fitted with a fourth order polynomial and eq. 15 was 

obtained: 

 
y = – 2.1622× 10−7x4 + 1.2061× 10−4x3 – 2.4589× 10−2x2 + 

2.3202x – 2.0972 
eq. 15 

Extrapolation of the polynomial to y = %E isomer = 0 gives x = -1.7618. Differentiation of eq. 

15 gives eq. 16:  

 
y' = – 8.6488× 10−7 x³ + 3.6183× 10−4 x² – 4.9178× 10−2 x + 

2.3202 
eq. 16 

Insertion of the x value at y = 0 into eq. 16 gives the initial slope m0 = 2.408%Es-1 (see Figure 

89). The initial power factor at t0 P0
.f for 0% E isomer was extrapolated to be 2.474 mW, 

resulting in a quantum yield Z/E = 49.26% 

 

Figure 89: Quantum yield measurement of the Z to E photoisomerization of hemiindigo 20 

in 83 / 17 heptane / ethyl acetate (blue dots) using a 467 nm LED for irradiation 

and starting from 95.9% Z-20 and 4.1% E-20. The whole photoconversion 
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kinetic was fitted with a fourth order polynomial (blue broken line). The 

polynomial formula is given in blue. Extrapolation of the polynomial to y = %E 

isomer = 0, differentiation and insertion of the corresponding x-value gives an 

initial slope m0 = 2.408%Es-1 (orange formula). Adapted with permission from 

[75]. Copyright 2018 American Chemical Society. 

The quantum yield measurement for the E to Z photoisomerization of hemiindigo 20 in 83 / 17 

heptane / ethyl acetate at 520 nm started with a mixture of 95.8% E-20 and 4.2% Z-20. The 

whole photo conversion kinetic was fitted with a fourth order polynomial (eq. 17): 

 
y = 5.2765× 10−10x4 + 8.9917× 10−8x3 – 7.5945× 10−4x2 + 

4.5415× 10−1x + 4.2489 
eq. 17 

Extrapolation of the polynomial to y = %Z isomer = 0 gives x = -9.2136. Differentiation of eq. 

17 gives eq. 18: 

 
y' = 2.1106× 10−9x³ + 2.6975× 10−7 x² – 1.5189 × 10−3x + 

0.45415 
eq. 18 

Insertion of the x value at y = 0 into eq. 18 gives the initial slope m0 = 0.4682%Z.s-1 (see Figure 

90). The initial power factor at t0 P0
.f for 0% Z isomer was extrapolated to be 1.779 mW, 

resulting in a quantum yield E/Z = 11.54%. 
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Figure 90: Quantum yield measurement of the E to Z photoisomerization of hemiindigo 20 

in 83 / 17 heptane / ethyl acetate (blue dots) using a 520 nm LED for irradiation 

and starting from 95.8% E-20 and 4.2% Z-20. The whole photoconversion 

kinetic was fitted with a fourth order polynomial (blue broken line). The 

polynomial formula is given in blue. Extrapolation of the polynomial to y = %Z 

isomer = 0, differentiation and insertion of the corresponding x-value gives an 

initial slope of m0 = 0.4682%Zs-1 (orange formula). Adapted with permission 

from [75]. Copyright 2018 American Chemical Society. 

An overview of selected quantum yield measurements is given in Table 10. 

Table 10: Overview of measured quantum yields and experimental measurement 

parameters using the Riedle setup.  

HI Solvent Z/E /% 

(at nm) 

E/Z /% 

(at nm) 

Conc. Sample 

in mol.L-1 

V 

cuvette 

in mL 

P0
.f Z to E 

/E to Z in 

mW 

m0 in %E.s-1 

/%Z.s -1 

11 

toluene 
24 ±2 

(467)

9 ±2 

(600)
2.948x10-5 2.5 3.978/0.5265 5.116/0.3262 

DMSO 
19 ±2 

(467)

11 ±2 

(600)
3.449x10-5 2.5 4.189/0.4557 3.547/0.27775 

DMSO 
15 ±2 

(565)

8 ±2 

(565)
3.099x10-5 2.5 2.299/3.622 2.125/1.8068 

* DMSO 
18 ±2 

(473)
- 6.694x10-5 1.8 0.158/- -/- 
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15 

DMSO 
16 ±2 

(467)

10 ±2 

(600)
2.123x10-5 2.5 1.534/4.336 1.820/3.914 

8 

DMSO 
23 ±2 

(467)

9 ±2 

(600)
2.602x10-5 2.5 4.233/2.479 5.768/1.643 

3 

DMSO 
22 ±2 

(467)

7 ±2 

(600)
1.862x10-5 2.5 0.8107/2.469 1.493/1.895 

16 

DMSO 
22 ±2 

(467)

2 ±1 

(625)
2.239x10-5 2.5 1.185/0.1839 1.811/0.036 

20 

DMSO 
33 ±2 

(467)  

9 ±2 

(600) 
2.4316x10-5 3.26 1.724/1.138 2.835/0.6314 

Hept./EA 

83/17 

49 ±2 

(450) 

12 ±2 

(520) 
7.3025x10-5 2.50 2.474/1.779 2.408/0.4682 

 

30 

DMSO 
12 ±2 

(450)  

12 ±2 

(520) 

Z: 8.357x10-5 

E: 9.385x10-5  
2.00 2.205/3.252 0.4415/0.7977 

Hept./EA 

93/7 

34 ±2 

(450) 

10 ±2 

(520) 
9.2871 x10-5 2.50 2.769/5.527 1.540/0.8274 

 

33 

DMSO 
5 ±2 

(450) 

8 ±2 

(520) 
3.4797x10-5 2.50 2.589/2.164 0.5234/0.9035 

Hept./EA 

87/13 

27 ±2 

(450) 

9 ±2 

(520) 
3.8782x10-5 2.50 1.432/1.110 1.506/0.4215 

* Measurement using the Zinth setup utilizing a 473 nm laser.[86]  
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2.2.26 Conclusion: Quantum yields 

A general trend towards higher quantum yields especially for the Z to E direction when 

changing from polar to apolar solvents can be observed. This could be explained by a highly 

polar excited state structure similar to charge-transfer (CT) states, which would be stabilized 

by a polar environment. Such CT states would lead to competing deexcitation channels, which 

reduce the photoisomerization quantum yield - similar to the twisted intramolecular charge 

transfer (TICT) state behavior of donor-substituted twisted hemithioindigos.[87, 102] In theory, if 

the conical intersection shows symmetric pathways towards Z or E isomer, the maximum 

obtainable quantum yield should amount 50%. However, sterical pre-twisting of a molecule or 

specific electronic structures can prearrange and favor the trajectory of the desired 

photoreaction leading to quantum yields beyond 50%. Rational design of quantum yield 

efficiencies is therefore very challenging, as these effects cannot be easily predicted. 

The introduction of a twisted ortho-tolyl aryl axis (hemiindigo 20) increases the Z to E 

quantum yield by 10% compared to the para-toluene axis supported by hemiindigo 16 and the 

n-propyl residue found with hemiindigo 8. The significant drop of photoisomerization 

efficiency to 2% observed with hemiindigo 16 could be circumvented by remotely twisting the 

aryl axis away from the stilbene fragment. A possible explanation for this low quantum yield is 

the collision of the stilbene fragment with the para-tolyl residue which tries to planarize to 

extend its pi-conjugation towards the indoxyl core. With the twisted N-aryl axis in 

hemiindigo 20 its quantum yield rises 4.5-fold from 2 to 9%. This also indicates that the E to Z 

isomerization power stroke is barely able to twist the conjugated para-tolyl out of its way.  

It would also be possible for the para-tolyl hemiindigo 16 to twist the stilbene fragment 

around its single bond, which can be discarded as this would cause a significant bathochromic 

shift, which cannot be observed compared to the ortho-tolyl derivative 20 (see Figure 46, 

Section 2.2.7 for comparison). These findings suggest that the torsion of the N-aryl axis is 

favored, while the stilbene single bond remains within the conjugated indoxyl plane. The 

stilbene fragment could be regarded as a torsion sensor that reports increased twisting with a 

bathochromic shift.  
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2.3 Chiral hemiindigos - Switching of ECD signals and control 
over atropisomerization speed and directionality 

The previously outlined rationale concerning viable substitution patterns of the hemiindigo 

chromophore lead to the development of highly bistable and red-shifted photoswitches that can 

be addressed with green and red light. These properties are favorable for their usage in life 

sciences, as harmful UV- or blue light is circumvented and longer wavelength light is generally 

absorbed less by biological tissues, allowing for deeper penetration of the generated light 

stimuli. Applications within the field of materials science are also imaginable, as the absorption 

window for orthogonal photoswitching is significantly enlarged.[74] 

2.3.1 Chiral hemiindigos - Designing molecular gearboxes 

The introduction of a chiral moiety or axis at the hemiindigo nitrogen and / or the stilbene 

fragment is a strategy to obtain molecular systems that could pose as potential molecular motors 

or geared molecular assemblies. The molecular setup of hemiindigo allows the substitution of 

chiral groups at the indoxyl nitrogen to be potentially driven by the power-stroke of the 

photoisomerization reaction. Several approaches were envisioned and are outlined below. 

 

Figure 91: Initial design idea for a unidirectional molecular gearbox (top middle, 36). A, B 

and C pose as different substituents to yield a stereocenter at the indoxyl 

nitrogen. Indanone (top left, 37) and fluorenone (top right, 38) stilbene fragments 

could be used as rigid paddles to drive the adjacent N-C axis. Triptycyl moieties 



2 RESULTS AND DISCUSSION 

119 

 

(bottom, 39 and 40) could provide better geared engagement between the 

photochemically driven stilbene fragment and the coupled, mechanically driven, 

single bond rotation attached to the nitrogen. 

Semi-empirical calculations at the PM6 level of theory were performed for the undecorated 

triptycyl fluorenone derivative by rotating of the dihedral angle at the central double bond 

(Figure 91, bottom left, 39) to scrutinize its effect on the triptycyl moiety. Based on the 

calculations, a geared motion was predicted, in which the rotation of the double bond 

intermeshes with the triptycyl moiety. This leaves the possibility to create a light-driven gear 

box on the basis of a hemiindigo photoswitch. 

 

Figure 92: Sequence for a geared, photodriven motion of the triptycyl residue at the indoxyl 

nitrogen of a model hemiindigo chromophore. One intermeshing step is shown 

in the sequence from 1 - 5. Calculations were done at the PM6 level of theory, 

the central double bond was rotated in 90 steps of two degrees each for the full 

180° rotation of the double bond. 

The N-alkylated derivatives (Figure 91, top left and right) are difficult to synthesize as reaction 

conditions for a successful direct N-alkylation by tertiary alkyls could not be found for this 

chromophore. Therefore, introduction of the sterically more demanding triptycenes was not 

attempted. 

A synthesis described by A. Fletcher,[103] however, can circumvent these issues by 

introducing tertiary alkyls as primary amines to 1-bromo-2-(2-chlorovinyl)benzene 41 yielding 

indole 42 (Scheme 25).  
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Scheme 25: Introduction of tertiary alkyl substituents at the indole nitrogen atom. * = yield 

reported in the literature. 

This reaction yields indoles, which can be acetylated to indoxyl acetates, one of the main 

precursors of hemiindigo photoswitches (see Section 2.2.7). However, viable reaction 

conditions to condensate ketones instead of aldehydes to indoxyl or indoxyl acetate have not 

been found yet. The common conditions for the related condensation reaction of ketones with 

benzothiophenones yielding hemithioindigos utilize boron trihalides as Lewis-acids. However, 

addition of Lewis-acids turns indoxyl containing reaction mixtures black within seconds even 

at -78 °C. This was observed for N-H and also N-R substituted indoxyl acetates or indoxyls, 

indicating a fast reaction of boron with the nitrogen-containing compounds forming undefined 

side-products. Piperidine or sodium hydroxide gave no productive reactivity in catalytic and 

stoichiometric conditions. Another approach towards the desired condensation products 

consists of strongly increasing the reactivity of the starting materials. This can be realized by 

an approach commonly used by the Feringa group, the Barton-Kellogg or Staudinger-type 

diazo-thioketone coupling. 

The synthesis of the starting materials for a Barton-Kellogg-type coupling were tried with 

minor success, starting from indoxyl diacetate. The N-acetylated substitution was chosen as test 

reaction as it is already described in the literature.[104] The synthesis starts with an ester cleavage 

of 43 reported by Shcherbakova et al. and leads to the N-acetylated indoxyl precursor 44.[105] 

In contrast to the literature, no further purification other than washing with water was necessary 

to obtain a clean product in very good yields. 

 

Scheme 26: Synthesis of the N-acetylated indoxyl building block 44. 

Subsequently, the synthesis of thioketone substituted indoxyl 45 by V. Velezheva et al. was 

carried out starting with a bromination of 44 giving 46 (Scheme 27).[104] 
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Scheme 27: Synthetic route to the 2-thioketone precursor. * = yield reported by literature.[104] 

The published route by V. Velezheva et al. towards the thioketone 45 did not yield the desired 

product as crystals but a non-purifiable violet slush.  

However, the main target was the coupling reaction of the indoxyl thioketone 45 with a 

diazofluorenone derivative 47 reported by M. Ramana and is outlined below.[106] The exemplary 

conditions are the ones used by N. Ruangsupapichat to synthesize crowded olefin motor 

systems by the Feringa group and suggests a possible route to the desired products.[107] 

 

Scheme 28: Proposed coupling conditions of the 2-thioketone indoxyl 45 by V. Velezheva 

with the diazofluorenone 47 by M. Ramana utilizing the conditions of N. 

Ruangsupapichat yielding intermediate 48 and model system 49 (top). The 

desired triptycyl derivative 39 is shown below. 

These unsuccessful approaches lead to abandoning indanones and fluorenones as stilbene 

fragments in hemiindigo architectures. However, a geared motion might also be obtained by 

the photoinduced power stroke of a comparably simple phenyl dimethylamino moiety (Figure 

91, 40). The bulky alkyl substituents were also abandoned in favor of the bigger and more rigid 

triptycenes (Figure 91, 40).  
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2.3.2 Acetylated hemiindigos - First route for introduction of axial 

chirality  

To test the feasibility of constructing hemiindigo based molecular motors and machines, 

introduction of asymmetry into the molecular framework is a first necessity. To this end, 

introduction of axial chirality seemed to be a very interesting and straight forward possibility. 

A simple case is establishment of a chiral axis across the N-C bond of by acetylation to yield 

hemiindigo 2. As evidenced by crystal structure data and theoretical assessment, the acetyl 

cannot fully planarize in the Z isomeric form for steric reasons (Section 2.2.2, Figure 17 and 

Figure 94). 

 

Figure 93: Lewis-formula of hemiindigo 2. 

 

Figure 94: Calculated ground and transition state structures of hemiindigo 2 at the 

B3LYP/6-311+G(d,p) level of theory. Transition states for the 

atropisomerizations and the stilbene single bond rotations were found for Z and 
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E isomers. The disfavored transition state for the E isomer did not converge after 

several attempts and tweaks. The “+” sign in front of transition state values 

indicates the energy difference with respect to the lowest ground state of 

respective Z or E isomers. Structures in the box both correspond to the transition 

states of the stilbene rotational barriers of the anti-Z-isomer. 

The amide bond in hemiindigo 2 tries to planarize as much as possible and is assumed to be 

reasonably stable towards rotation (see crystal structure in section 2.2.2, Figure 17), which 

should result in two diastereomers that should be visible as separate species at low temperatures. 

However, a splitting and / or intensity difference of the proton signals associated with the acetyl 

group could not be observed in the 1H- and NOESY-NMR spectra. Irradiation of the solution 

with 470 nm over 3 hours to yield predominantly Z isomer did also not result in a second set of 

signals (not shown). 

The calculations predicted very low energy barriers for the thermal rotation of the amide 

bonds in the electronic ground state, which explains why it was impossible to observe separate 

rotamers at 0 °C via chiral HPLC or 1H-NOESY cross-peaks at -80 °C. One explanation would 

be that the methyl group is not bulky enough to lead to a high energy barrier of this rotation.  

K. Jordan synthesized three different hemiindigos with sterically demanding and / or 

asymmetric stilbene fragments and functionalized the amine proton with bulky isobutyryl 

residues during his bachelor’s thesis. 
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2.3.3 Synthesis of hemiindigos with axially chiral and achiral 
stilbene fragments 

Next, introduction of asymmetry via axially chiral stilbene fragments was scrutinized and 

hemiindigos 50, 51 and 52 (Scheme 29) were synthesized and evaluated. 

 

Scheme 29: Synthesis of hemiindigos with asymmetric and / or bulky stilbene fragments. 

Synthesis of hemiindigos 50, 51 and 52 from indoxyl acetate 10 with axially chiral and achiral 

stilbene fragments. 

The naphthyl hemiindigo derivative 50 shows a strongly twisted stilbene fragment in the 

crystalline state (Figure 96), evidencing the presence of pronounced axial chirality in this 

structure. Unfortunately, the N-unsubstituted naphthalene derivative 50 (Figure 97) shows poor 

photoswitching properties and -stability towards irradiation, which is common for N-H 

unsubstituted hemiindigos without strong electron donors at the para-position of the stilbene 

fragment.  
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Figure 95: Lewis-formula of hemiindigo 50. 

 

Figure 96: Structure of hemiindigo 50 in the crystalline state. The viewing angle on the right 

emphasizes the pronounced stilbene single bond twisting. The stilbene single 

bond dihedral torsion angle amounts to 42.05° for C8-C9-C10-C11 in the E 

isomeric state. The double bond (red) length amounts to 1.345 Å and the single 

bond (green) to 1.468 Å. 

 

Figure 97: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 50 in 

toluene. The isosbestic points are not well defined, verifying the photolability of 

this compound. The Z state cannot be recovered upon irradiation, which could 

be caused by a low quantum yield for the E to Z photoisomerization.  
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The characterization of the N-unsubstituted anthracene derivative 51 also revealed a 

pronounced out of conjugation twisting of the anthracene moiety compared to the indoxyl plane 

(Figure 99). Because of the symmetry of the anthracene moiety, no chiral axis is established. 

However, this compound can still be regarded as chiral because of the helicity induced by the 

twisting in the molecule. Given the expected low energy barrier for thermal helix inversion 

around the single bond, which connects the anthracene with the central double bond, this 

molecule is most likely prone to fast thermal racemizations. Again, sub-par photoswitching 

properties are observed for 51 most likely caused by similar effects as seen with hemiindigo 50. 

 

Figure 98: Lewis-formula of hemiindigo 51. 

 

Figure 99: Structure of hemiindigo 51 in the crystalline state. The viewing angle on the right 

emphasizes the pronounced single bond twisting of the anthracene. The 

anthracene single bond dihedral torsion angle amounts to -59.61° for C8-C9-

C10-C11 in the Z isomeric state, which is about 17° larger than the value of the 

corresponding torsion angle in the E state of naphthyl derivative 50. The double 

bond (red) length amounts to 1.331 Å and the single bond (green) to 1.472 Å. 

Comparison to the E form of the naphthyl derivative 50 does not allow for 

unambiguous conclusions as electronic effects in between Z and E form might 

outweigh the influence of the added phenyl core resulting in the observed 

torsional differences. 
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The characterization of the N-H unsubstituted anthracene derivative 51 also revealed similar, 

sub-par photoswitching properties caused by the same effects observed on hemiindigo 50. 

 

Figure 100: Molar absorption in dichloromethane (left) and PSS (right) UV-Vis spectra of 

hemiindigo 51 in toluene. The isosbestic points are well defined in 

dichloromethane, which is not true for toluene, verifying the solvent dependent 

photolability of this compound as mainly photodegradation can be observed in 

latter case. 

Hemiindigo 52 (Figure 101) with non-symmetric stilbene fragment, which also bears a para-

methoxy substituent, is highly twisted owed to the presence of ortho-methyl groups and 

possesses axial chirality (Figure 102). The stilbene fragments single bond dihedral torsion angle 

almost matches the 59.61° angle of the anthracene derivative 51. An elongation from 1.331 Å 

(double bond) and 1.472 Å (single bond) compared to the anthracene derivative 51 can be 

observed, which could be explained by the sterically larger methyl groups. The expected 

increase in torsion for 52, which does not take place, is compensated by elongation of the central 

double- and single bond.  

This substitution pattern leads to significantly better photoswitching properties compared to the 

naphthyl and anthracene derivatives 50 and 51. The photodegradation is reduced but 

photochromism and estimated isomer yields in the PSS are still worse compared to the N 

substituted derivatives. However, the three methyl groups and one methoxy group seem to 

introduce enough electron density towards the central double bond for the molecule to achieve 

a comparable photostability as the dimethylamino and julolidine derivatives. 
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Figure 101: Lewis-formula of hemiindigo 52. 

 

Figure 102: Structure of hemiindigo 52 in the crystalline state. The viewing angle on the right 

emphasizes the strong stilbene single bond twisting. The stilbene single bond 

dihedral torsion angle amounts to 58.25° for C8-C9-C10-C15 in the Z isomeric 

state, the double bond (red) length amounts to 1.342 Å and the single bond 

(green) to 1.477 Å.  

The N-H unsubstituted di-ortho methylated asymmetric methoxy derivative 52 shows better 

photoswitching properties and photostability compared to the naphthyl and anthracene 

derivatives. The photodegradation is reduced compared to 50 and 51 but the photochromism 

and estimated PSS yields are not on par to the N-H substituted derivatives (see Section 2.2.5). 

However, the three methyl groups and one methoxy group seem to introduce enough electron 

density towards the central double bond for the molecule to achieve a comparable photostability 

as the dimethylamino and julolidine derivatives 11 and 15. 
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Figure 103: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 52 in 

toluene. The isosbestic points are well-defined compared to previously 

synthesized derivatives 50 and 51 as viable photoswitchability can be observed.  

The stilbene single bond dihedral torsion angle almost matches the 59.61° of the anthracene 

derivative 51. An elongation from 1.331 Å (double bond) and 1.472 Å (single bond) compared 

the anthracene derivative 51 can be observed, which could be explained by the sterically larger 

methyl groups. The expected increase in torsion for 52, which does not take place, is 

compensated by elongation of the central double- and single bond. 

To yield a photoswitchable system that shows mechanical coupling of motions between two 

rotatable molecule parts, additional functionality was introduced at the indoxyl nitrogen of 

hemiindigos 50, 51 and 52. If amides are formed or chiral residues are used for this purpose, 

additional non-symmetric information is introduced into the molecules. Albeit this complicates 

the conformational analyses, this information is necessary for evidencing gearing processes and 

the trajectory of light induced and thermal motions. 

Initially, the introduction of a pivaloyl residue was tested under varying conditions, which 

yielded highly unstable products 53 that could only be observed by immediate subsequent mass 

spectrometry analysis. Chromatographic purification did not provide the target compounds. The 

change to isobutyryl chloride 54 made desired products 55, 56 and 57 obtainable in moderate 

to good yields. 
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Scheme 30: Introduction of an isobutyryl moiety via 4-dimethylaminopyridine (DMAP) 

mediated nucleophilic catalysis in dichloroethane (DCE) utilizing triethylamine 

(TEA) as base. The introduction of a pivaloyl residue did not yield products 53. 

A drawback of the isobutyryl substituent is the α-acidic proton located at the isopropyl residue, 

which can be deprotonated by triethylamine and undergoes a nucleophilic attack on another 

isobutyryl chloride molecule. Also, this acylation reaction seems to be very specific towards 

the used solvent and base, as only chlorinated solvents and triethylamine as base showed any 

reaction progress. The change to sodium hydride as base or N,N-dimethylformamide, 

tetrahydrofuran, toluene or pyridine as solvents did not result in any significant product 

formation. 

The main goal for the synthesis of these compounds was answering the question on how to 

decorate the photoswitchable hemiindigo chromophore to achieve observable feedback 

between the light-induced power stroke of the stilbene fragment and an asymmetric group in its 

proximity. The acyl groups were the only potential asymmetric groups with relatively high 

sterical demand that could be introduced at this time. 

The naphthyl bearing hemiindigo 50 was acylated with isobutyric acid chloride yielding 

hemiindigo 55 (Figure 104) to explore the properties of two asymmetric units that can be 

switched from a close interaction in the Z isomer to no interaction in the E isomer. The 1H-NMR 

solution spectra showed no split signals of diastereomeric rotamers in either the E or Z isomeric 

state (Figure 105). 
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Figure 104: Lewis-formula of hemiindigo 55. 

 

Figure 105: 1H-NMR spectrum of HPLC separated Z and E isomers of hemiindigo 55 in 

chloroform-d at 27 °C. 

The lack of observing different diastereomeric rotamers of 55 in solution can be explained by 

the low energy barriers for rotation around the chiral axes in hemiindigo 55 single bond 

amounting to 8.32 kcal/mol for rotation of the naphthyl fragment in the Z state and 

4.80 kcal/mol for the same rotation in the E isomeric state as calculated at the B3LYP/6-

311+G(d,p) DFT level of theory (see Figure 106).  
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Figure 106: Calculated ground and transition state structures of hemiindigo 55 at the 

B3LYP/6-311+G(d,p) level of theory. Transition states for the 

atropisomerizations for Z and E isomers and the naphthyl single bond rotation 

for anti-diastereomers were found. The “+” sign in front of transition state values 

indicates the energy difference with respect to the lowest ground state of the 

respective Z or E isomers. The syn- transition states of the stilbene single bond 

rotation, however, did not converge after several attempts and tweaks. The 

isopropyl C-C single bond rotation and the methyl group rotation 

(+7.26 kcal/mol when adjacent to the carbonyl group, not shown) were found 

only for the Z isomer.  

As freezing rotations with energy barriers this low is impossible at -80 or -105 °C, no split 

signals should be observable. Theoretically, the acyl rotation could be sufficiently slowed down 

at -105 °C and thus further experiments have to be carried out to scrutinize this system. 
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UV-Vis spectroscopy showed photoswitching into the E state but no photoisomerization back 

to the Z state, which renders 55 an impractical photoswitch in toluene (Figure 107). 

 

Figure 107: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 55 in 

toluene. The isosbestic points are not well defined, verifying the photolability of 

this compound. The Z state cannot be recovered upon irradiation. 

The inability to efficiently perform the photoinduced E to Z isomerization can also be observed 

for hemiindigo 7 in toluene (see Section 2.2.3). This can be caused by a poor quantum yield 

and / or by a weak power stroke towards the sterically more crowded Z isomer. 

1H-NMR signal splitting cannot be expected for the acylated anthracene derivative 56 (Figure 

108) at ambient temperatures as the amide single bond supports an expected rotational barrier 

below 13 kcal/mol (see Figure 107 for the naphthyl derivative 55) to obtain stable rotamers. 

However, cooling to -80 °C could be a successful approach and has yet to be tried for this 

compound. 

 

Figure 108: Lewis-formula of hemiindigo 56. 
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Figure 109: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 56 in 

toluene. The isosbestic points are well defined, verifying the restored 

photostability of this compound after acylation. Photoswitching proceeds readily 

in both directions and a strong red-shift of about 60 nm compared to the naphthyl 

derivative 55 can be observed. 

The often observed instability of N-H unsubstituted hemiindigos could be circumvented by 

acylation of the anthracene derivative 51. Signal splitting could not be observed at ambient 

temperatures as the thermal N-acyl bond barrier is estimated to be below 16 kcal/mol. 

 

Figure 110: Lewis-formula of hemiindigo 57. 

The asymmetric di-ortho-methyl para-methoxy stilbene substituted hemiindigo 57 was also 

acylated to scrutinize the effects of the isobutyryl group on photoswitching within a hemiindigo 

with axially chiral stilbene fragment possessing considerable rotational barriers. 

Hemiindigo 57 showed viable photoswitching with visible light in both Z to E and E to Z 

directions (Figure 111). 
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Figure 111: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 57 in 

toluene. The isosbestic points are well defined, verifying the photostability of 

this compound. Photoswitching proceeds readily in both directions, a large blue-

shift of approx. 60 nm can be observed compared to the anthracene derivative. 

A fine structure can be seen for the Z isomer, which can be attributed to multiple, 

discernable oscillation modes with smaller full widths at half maximum 

(FWHM). 

Introduction of the ortho-methyl groups increases the single bond rotational barrier of the 

stilbene fragment significantly compared to the naphthyl compound 55. This can be observed 

via 1H-NMR at ambient temperatures (Figure 112). 
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Figure 112: Comparison of 1H-NMR spectra of hemiindigo 55 in chloroform-d (600 MHz, 

27 °C) and 57 in dichloromethane-d2 (800 MHz , 27 °C), only the aliphatic 

region is shown. A pronounced splitting of the isobutyryl methyl signals (2) can 

be observed which is enlarged in the Z state by almost one order of magnitude 

from 5.70 Hz to 52.36 Hz at 800 MHz NMR spectrometer frequency.  

The splitting of the isobutyryl methyl signals (protons 2, Figure 112) observed for the Z and E 

isomers of hemiindigo 57 proves the existence of two rotamers for the stilbene single bond axis. 

The N-carbonyl axis is not locked and neither is the carbonyl-isopropyl axis, which can is 

evidenced by the lack of signal splittings for protons 1 (see assignments in Figure 112) in the Z 

and E isomeric forms. The fast dynamics cause protons 1 and 2 to appear completely symmetric 

towards the asymmetric stilbene fragment, as no other split signals can be observed at the NMR 

timescale at ambient temperatures. This observation will be crucial to understand the 

increasingly rigid systems in Section 2.3.6 later on. The twofold signal set of protons 2 can be 

attributed to the asymmetric environment introduced by the stilbene fragment. Even if the 

stilbene fragment is interconverting from one rotamer to the other, the induced chemical shift 

difference of the isobutyryl methyl groups remains the same on average as long as the rotation 
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is not exceeding the time scale of the NMR experiment. This is important to consider, as the 

rotational barrier of the stilbene fragment is estimated to be at 16 kcal/mol by DFT calculations, 

which is considered as free rotation at ambient temperatures. In fact, every rotational barrier in 

this system is free to interconvert at ambient temperatures. Signal splittings can be observed for 

57 because atropisomerization of the stilbene fragment is within the NMR timescale under the 

utilized conditions. Hemiindigo 55 possesses a sterically less hindered naphthyl moiety and 

atropisomerization is consequently faster than the NMR time scale, which results in no split 

signals in this case. 

Attempted separation of rotamers for hemiindigo 57 at 0 °C via chiral HPLC did yield one sharp 

peak and no separation. Molecules with rotational barriers as low as 20 kcal/mol could be 

previously separated and isolated utilizing this method. This experiment thus proves energy 

barriers of <20 kcal/mol for hemiindigo 57. Besides enriching one rotamer and tracing its 

kinetics towards the racemate as done in Section 2.3.6, coalescence can be used to get accurate 

measurements of the rotational barriers. A variable temperature coalescence NMR experiment 

was conducted for hemiindigo 57 to directly obtain the energy barriers for the 

atropisomerization reaction (Figure 113). 
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Figure 113: 1H-NMR spectra of a mixture of Z and E isomers of hemiindigo 57 in toluene-d8 

measured at different temperatures on a 400 MHz NMR spectrometer.  
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The coalescence temperature is defined as the temperature where a signal splitting is barely 

discernable and can be inserted into eq. 19: 

 ∆𝐺 = 𝑅𝑇𝑐 (22.96 + ln (
𝑇𝑐

∆𝜈
)) eq. 19 

Where 𝑇𝑐 is the temperature of coalescence in K, ∆𝜈 represents the maximum shift difference 

of split signals in Hz (typically measured at several different temperatures, which are far lower 

than the coalescence temperature to establish no further change in the signal splitting) and 𝑅 

equals the gas constant in Jmol-1K-1. With the experimentally determined values of 

∆𝜈 = 25.52 Hz and 𝑇𝑐 = 336.15 K, the free activation enthalpy ∆𝐺∗ can be determined at 

71.37 kJ/mol or 17.06 kcal/mol, which translates to a thermal half-life of 0.36 s at 25 °C and is 

in very good agreement with the theoretical prediction for thermal atropisomerization of 

hemiindigo 57. It is noteworthy that ∆𝜈 is the divisor of the fraction in eq. 19, which correlates 

smaller chemical shift splittings to higher barriers. This means larger splittings correspond to 

lower barriers when the same coalescence temperature is determined. As the 400 MHz NMR 

device cannot resolve the shifts of split protons 2 in the E isomer and the only available 

800 MHz NMR device is not equipped with a heatable probe head, the coalescence temperature 

of the E isomer could not be determined. If, hypothetically, the same coalescence temperature 

as in the Z isomer is assumed, the smaller signal splitting of 2.85 Hz (5.70 Hz divided by two 

for a 400 MHz spectrometer) is caused by a calculated free activation enthalpy of 77.50 kJ/mol 

or 18.52 kcal/mol, which translates to a thermal half-life of 4.3 s. Counterintuitively, 

photoswitching from the E state to the more sterically demanding Z state is inherently linked to 

lowered rotational barriers for partaking molecular entities. This is consistently shown for the 

chiral hemiindigos in Section 2.3.5 by experiment and theory. 
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Figure 114: Calculated ground and transition state structures of hemiindigo 57 at the 

B3LYP/6-311+G(d,p) level of theory. Transition states for the 

atropisomerizations for Z and E isomers and two stilbene single bond rotation 

for the anti-Z isomer were found. The “+” sign in front of transition state values 

indicates the energy difference with respect to the lowest ground state of 

respective Z or E isomers. The E- transition states of the stilbene single bond 

rotation, however, did not converge after several attempts and tweaks. The 

isopropyl single bond rotation was found only for the Z isomer. The calculated 

value of the stilbene single bond rotation in the Z state is in good agreement to 

the experimentally determined value of 17.06 kcal/mol. 

In hindsight, these molecules vastly helped understanding the underlying kinetic processes and 

the interpretation of NMR spectra of the chiroptical hemiindigo photoswitches presented in 

Section 2.3.7.  
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2.3.4 Introduction of a permanent stereocenter at the indoxyl 

fragment 

After the introduction of non-symmetric acyl residues to the hemiindigo nitrogen atom resulting 

in axially- or helically chiral, yet thermally unstable rotamers, the N-H substitution of 

hemiindigo 27 with a residue bearing a permanent stereocenter was explored subsequently. 

Hemiindigo 58 possesses a permanent stereocenter adjacent to the nitrogen atom and the 

already introduced non-symmetric di-ortho methyl meta-methyl para-methoxy stilbene 

fragment, which is responsible for introducing axial chirality to the molecule (Figure 116). 

 

Scheme 31: Introduction of a secondary alkyl residue to the hemiindigo chromophore. 

Elevated temperatures are necessary for the reaction to progress and only low 

yields of 58 could be obtained. 

For analysis of the chiroptical properties of hemiindigo 58 enantiomers were separated using 

chiral HPLC (Figure 115). 
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Figure 115: 1H-NMR spectra of enantiopure HPLC fractions of hemiindigo 58 in 

dichloromethane-d2 at ambient temperatures. The matching signals prove the 

separated HPLC fractions to be enantiomers. 

Crystals suitable for x-ray structural analysis were obtained for each enantiomer (Figure 116). 

Because of the absence of heavy atoms in the structure and overall quality of the crystals no 

absolute assignment of the stereoconfiguration could be made by these experiments. 
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Figure 116: Structures of the enantiopure crystallization batches for E isomers of 

hemiindigo 58 in the crystalline state. The structure on the left (inside rectangle) 

was crystallized from the first enantiomeric fraction, the structure on the right 

from the second one, respectively. The chiral nature of the compound requires 

four molecules to determine its unit cell. Both crystal structures purposely show 

the R configuration at the stereocenter as the evaluation of the structural data 

done by P. Mayer was not unambiguous to assign the enantiomers to their 

respective stereodescriptors. This is generally difficult to achieve if the 

molecules do not contain at least one heavy atom, for example sulphur, or if only 

small crystals can be obtained. The stilbene single bond dihedral torsion angle 

amounts to 78.20° for C54-C55-C56-C57 in the E isomeric state. The double 

bond (red) length amounts to 1.337 Å and the single bond (green) to 1.488 Å.  
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Figure 117: PSS (left) UV-Vis and ECD spectra of hemiindigo 58 in dimethyl sulfoxide. The 

isosbestic points are well defined, verifying the photostability of this compound 

after alkylation. Photoswitching proceeds readily in both directions. A red-shift 

of the absorption of approximately 40 nm can be observed compared to the 

absorption of the acylated derivative 57. A strong modulation of the ECD signal 

can be seen in between Z and E isomer. Adapted with permission from [75]. 

Copyright 2018 American Chemical Society. 

Hemiindigo 58 shows viable and fully reversible photoswitching with visible light and at the 

same time a strong modulation of its ECD signal in an ON/OFF manner (Figure 117).  

Increased intramolecular twisting in the Z state compared to the less twisted E state causes 

the strong ECD modulation for this hemiindigo chromophore, which is explained in detail in 

Section 2.3.5. This made hemiindigo 58 a first prototype for the chiroptical switches portrayed 

in Section 2.3.8 with the added benefit of a permanent stereocenter that cannot be racemized 

thermally.  

Experiments with circularly polarized light were carried out on this compound, see Figure 

118 below.  
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The research field of absolute asymmetric synthesis also covers the prebiotic approach to 

explain the homochirality seen with L-amino acids and D-sugars within all lifeforms on earth. 

B. Feringa, P. Hashim and K. Rijeesh already showed that circularly polarized light (CPL) can 

deracemize chiral- or prochiral photoswitches to induce miniscule amounts of enantiomeric 

excess (ee).[108, 109, 110] With a chiroptical hemiindigo photoswitching system at hand, 

experiments were carried out on compound 58 observe deracemization by CPL irradiation and 

to potentially improve upon currently possible generation of ee. 

 

Figure 118: Setup for alternatively irradiating liquid samples with right or left handed 

circularly polarized light (CPL) and non-polarized light. LED 1 is focused with 

a lens on a stack of microscopy plates at the Brewster angle of 56°. The reflected 

linearly polarized light (LPL) was tested with sunglasses (which can pose as 

linear polarizators) and could be extinguished upon turning the glasses within 

the plane of the lens, which proved successful linear polarization. The addition 

of a Fresnel rhomb (which poses also as a quarter wave plate) with its optical 

axis turned at 45° to the light path led to a non-extinguishable ray of CPL. When 

another quarter wave plate (like the Fresnel rhomb) is added to the beam path, 

CPL is again transformed to extinguishable LPL, which proves the successful 

circular polarization of the LED light. A microcontroller can be used for 

actuating a relay board to run cyclic experiments where a sample is repeatedly 

irradiated with CPL and normal, unpolarized light to its initial state. 
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Irradiation of a racemic mixture of hemiindigo 58 with circularly polarized light did not yield 

any observable deracemization, which can be attributed to the relatively low sensitivity of the 

used ECD spectrometer or the wrong molecular setup. The fixed stereocenter might pose a 

problem as it cannot be interconverted to the other handedness by circularly polarized light, 

which made the deracemization process rely solely on the difference in ECD absorption and 

the associated difference in photoquantum efficiency. A molecular setup with chiral axes had 

to be developed for the circularly polarized light to prefer one enantiomeric rotamer over the 

other, resulting in population of one species and generating enantiomeric excess, in theory. 

Section 2.3.5 details the efforts towards this research field. However, the drawbacks of thermal 

racemization of the axially chiral axes can be prevented by the introduction of a permanent 

stereocenter, which was shown for hemiindigo 58. This poses as a potential candidate for 

materials science, data applications with multiple read-outs or quantum computing without the 

drawbacks of a thermal racemization process and subsequent data loss as observed with the 

axially chiral derivatives.  
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2.3.5 Ortho-arylated hemiindigos - Second route for introduction of 

axial chirality  

The chiral properties were disregarded in Section 2.2.7 as this section will explain them in full 

detail. To study the cooperativity, dynamics and properties of a chiral axis adjacent to a 

photoswitchable molecule part and to potentially improve approaches towards absolute 

asymmetric synthesis, an ortho-tolyl moiety was introduced to the hemiindigo chromophore.  

Introduction of a chiral aryl axis to the hemiindigo photoswitch at the nitrogen position together 

with a methyl group at the 7 position of the indoxyl fragment, which functions as a bulky 

stopper, adds another rotational axis which can be photochemically controlled. The ortho-aryl 

and naphthyl residues together with di-ortho-substituted stilbene fragments yield 

photoswitchable systems that can gate the rotational speed of the chiral axis, control their 

rotational directionality towards racemization and modulate large amounts of the ECD signal 

in between Z and E isomeric states solely with visible light. 

 

Figure 119: Design principles of axially chiral hemiindigo photoswitches. The chiral axis 

together with a methyl group in 7-position of the indoxyl core yield HPLC-

separable rotamers for specific stilbene substitution patterns in Z and E isomeric 

forms.  
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The introduction of a twisted chiral aryl axis makes it possible to measure their free activation 

enthalpies and thermal half-lives. 

 

Figure 120: Overview of selected axially chiral hemiindigos 20, 59, 29, 25, 60, 61, 30 and 

33. Only respective E isomers are shown. The properties of compound 25 were 

discussed in Section 2.2.7, as no chiral HPLC separation was performed on this 

molecule. 

Addition of ortho-methyl groups at the stilbene fragment (30) slightly lowers the thermal Z / E 

isomerization barriers compared to 20. For the naphthalene derivative 33, however, the Z / E 

barriers are improved significantly. In both cases this comes at the cost of red-shift, as the out-

of-plane twisting of the stilbene fragment reduces the pi-delocalization of the chromophore. 

The hypsochromic shift manifests in a color change from orange / pink (20) to yellow / darker 

yellow (30 and 33) for respective Z / E isomers. The atropisomerization barriers are vastly 

improved upon twisting the stilbene single bond as well as by introduction of a naphthalene 

moiety seen for hemiindigo 33. One explanation consists of a better fit of the flat naphthyl 

residue between the indoxyl methyl group and the stilbene fragment or central double bond 

proton compared to the protruding methyl group of the ortho-tolyl moiety. This is emphasized 

in the Z state, as a 3 kcal/mol atropisomerization barrier increase from Z- compared to E isomers 

can be observed, which is also well reflected by calculations at the B3LYP/6-311G+(d,p) level 

of theory.  
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Presented chiral hemiindigos were synthesized starting from 7-methyl indole 18 and ortho-

bromotoluene via a copper(I) mediated cross coupling by a procedure of J. Antilla et al.[91] 

Elevated temperatures of 150 - 160 °C and pressure tubes or xylene were utilized instead of 

110 °C and toluene where no reaction progress could be observed. Oxidative acetylation of the 

indole was performed according to P. Choy et al.[92] and the condensation of the obtained 

indoxyl acetate and aldehydes was carried out according to U. Burger et al.[88] with increased 

temperatures up to 100 °C. The detailed synthesis can be found in Section 2.2.7.  
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2.3.6 First generation of axially chiral arylated hemiindigos - 

Electronic effects on the stilbene fragment 

The three discussed first-generation derivatives were brought forward to explore electron 

donating, neutral and electron withdrawing groups regarding the possible change in rotational 

properties of the ortho-tolyl substituent. This was done via chiral HPLC by separating the 

rotamers from each other with subsequent re-injection after the irradiation or thermal 

racemization of isolated species. After these preliminary results, ECD spectra of the 

enantiomers were recorded and photochemical- as well as thermal behavior was tested. 

 

Figure 121: First generation of synthesized axially chiral hemiindigo derivatives 20, 59 and 

29. 

Photophysical properties regarding the Z / E isomerization of compounds 20 and 29 are 

discussed in detail in Section 2.2.7 and are omitted here. 

Priorly, the conformation of hemiindigo 20 was investigated via 1H-NMR spectroscopy. The 

ortho-tolyl axis is substantially twisted in the Z isomeric state with the aryl substituent at the 

indoxyl nitrogen being oriented in a perpendicular fashion to the indoxyl moiety. This leaves 

the aniline moiety not being able to planarize. This geometric arrangement is confirmed by the 

theoretical description and can be observed experimentally by the significantly upfield-shifted 

signals of aromatic- and aliphatic protons of the ortho-tolyl substituent compared to the 

corresponding signals for the E isomer (Figure 122) for hemiindigo 20. In the E state of 20, the 

aniline moiety can planarize completely, which reduces the overall twist in the molecule and 

increases conjugation of the pi-system.  
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Figure 122: Section of the 2D 1H-NOESY NMR spectrum (dichloromethane-d2, 600 MHz, 

27 °C) of hemiindigo 20. An unambiguous assignment of the double bond 

configuration can be done with this spectrum. A strong NOE cross signal 

between Z 12 and Z 22 evidences the Z isomeric state. The strong NOE cross 

signal between proton E 10 and protons E 22 evidences the E isomer. The 

corresponding cross signal of Z 10 and Z 22 is very weak, indicating a farther 

distance of the methyl group associated to the ortho-tolyl residue to the double 

bond proton in the Z isomeric state.   
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Figure 123: Aromatic section of the 1H-NMR spectra (dichloromethane-d2, 800 / 600 MHz, 

27 °C) of E (top) and Z isomer (bottom) enriched mixtures of hemiindigo 20. 

Large upfield shifts can be observed upon transition from E to Z isomer, which 

indicate proximity of the shielding aniline ring-current to the chiral ortho-tolyl 

residue in the Z state. Adapted with permission from [75]. Copyright 2018 

American Chemical Society.  
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In general, separation of rotamers was done via chiral HPLC (Diacel Chiralpak IC and / or ID 

columns, 5 µm pore size, 10 mm inner diameter, 250 mm length, 8 mL/min flow rate at 0 °C) 

with heptane / ethyl acetate mixtures as eluents. 

 

Figure 124: 3D UV-Vis Chromatograms of hemiindigo 20 on a chiral HPLC column 

recorded at 0 °C in 87 / 13 heptane / ethyl acetate. The peak intensity scale is 

given in mAU (milli a.u., arbitrary units).  

Injection of a Z / E mixture gives three separable peaks, E 1 E 2 and Z 1. Collection and re-

injection of E 2 gives the pure peak and some residual E 1 from fraction overlap. Irradiation of 

E 2 to the Z state and back to the E form gives E 1 and E 2 in a 1 to 1 racemic mixture. E 2 left 

in the dark did not racemize significantly (not shown).  
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Figure 125: Molar absorption coefficients (left) of 20 in 83 / 17 heptane / ethyl acetate with 

the Z isomer shown in red and the E isomer in blue. Spectral changes recorded 

after different irradiation times show clear isosbestic points (right). Adapted with 

permission from [75]. Copyright 2018 American Chemical Society. 

 

Figure 126: ECD spectrum measurement of Z-20 at 25 °C (left). Because of the low energy 

barrier of 19.9 kcal/mol for atropisomerization via N-(indoxyl)-o-tolyl single-

bond rotation (corresponding to a half-life of 43 s at 25 °C) the ECD signal has 

almost completely vanished at 0 °C. Molar ellipticity ECD spectra of E-20 in 83 

/ 17 heptane/ethyl acetate at 25 °C (right), (Ra)-E-20 shown in blue, (Sa)-E-20 

shown in red. Adapted with permission from [75]. Copyright 2018 American 

Chemical Society. 

Samples at ~2.5·10-5 
M concentrations were irradiated at 0 °C or 23 °C and the ECD / UV-Vis 

spectra were recorded before and after irradiation steps.  
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Figure 127:  UV-Vis absorption (left) and ECD spectrum (right) of 20 in 83 / 17 heptane / 

ethyl acetate recorded for one switching cycle starting from pure (Ra)-E-20 (solid 

blue), which was photoisomerized to Z-20 (5 min, 595 nm, solid red) and then 

switched back to E-20 (1 min, 470 nm, light blue, dashed) in high isomeric yields 

at 23 °C. The low free activation enthalpy ΔG* = 19.9 kcal/mol for thermal 

atropisomerization in the Z isomeric state leads to fast racemization in this state 

within ~2 minutes (thermal half-life of 43 s at 25 °C) under the applied 

measurement conditions. Consequently, the ECD signal is already lost in the Z 

isomeric state (right, red spectra) and photoisomerization back to the thermally 

more stable E-20 therefore shows no leftover ECD signal for the E isomer (right, 

light blue, dashed line). Adapted with permission from [75]. Copyright 2018 

American Chemical Society. 

A cryogenic cuvette (see Figure 377, Section 2.7.5) was used to measure the decline in ECD 

response at -20 °C for a sample of E isomer that was in situ irradiated to the Z form at -80 °C. 
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Figure 128: First order kinetic analyses of the thermal racemization via atropisomerization 

of hemiindigo 20 in 83 / 17 heptane / ethyl acetate in the dark. The slopes m can 

be translated into the rate constants k for each process. Racemization in the Z 

isomeric state (red) was measured at -20 °C and proceeds over an energy barrier 

of 19.9 kcal/mol. Racemization in the E isomeric state (blue) was measured at 

40 °C and proceeds over an energy barrier of 23.4 kcal/mol. Poor R² values are 

based on bad signal to noise ratios caused by weak ECD responses. Adapted with 

permission from [75]. Copyright 2018 American Chemical Society. 

DFT calculations were carried out to obtain further insight in the motional behavior of 

chiroptical hemiindigo photoswitches. 
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Figure 129: Calculated ground and transition state structures of hemiindigo 20 at the 

B3LYP/6-311+G(d,p) level of theory. Transition states for the 

atropisomerization and the stilbene single bond rotation were found. The 

disfavored atropisomerization transition states did not converge after several 

attempts and tweaks. The calculated energies are in good agreement to the 

experimental values. The “+” sign in front of transition state values indicates the 

energy difference with respect to the lowest ground state of respective Z or E 

isomers.  

A by 3.5 kcal/mol lowered atropisomerization barrier for the Z isomers can be measured and 

confirmed by theory, which is in agreement to the previous findings during HPLC experiments. 

The stilbene single bond rotation barrier is also lowered by 4 kcal/mol in the Z state. The 

transition state structures suggest a rotation around the ortho-tolyl axis with its methyl group 

passing over the indoxyl core methyl group in the Z state while the E form prefers rotation of 

the methyl group over the central double bond. These findings show that gating of thermal 

barriers as well as their directionality are possible for these chiroptical photoswitches. 

Benchmarking with different DFT functionals and the same 6-311+G(d,p) basis set yielded 

consistent results. The addition of GD3BJ dispersion to the B3LYP functional lowered the 

differences of ground and transition states, which is mainly observed for the ωB97XD 
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functional as this functional is already parametrized to include dispersive and long range 

corrections. A reversal of ground state energies takes place by using this functional, which, 

however, describes the 13 / 87 Z / E thermal equilibrium composition in dimethyl sulfoxide less 

adequately than the other functionals. It has to be noted that the high solvent polarity of dimethyl 

sulfoxide can change the thermal equilibrium compared to non-polar solvents and calculations 

without solvent model. 

 

Figure 130: Benchmarking results for hemiindigo 20 using different DFT functionals for the 

6-311+G(d,p) basis set. “Z” and “E” represent the ground states and “Z Me-Me” 

and “E Me-DB” the energetically lowest found transition state for the rotation 

around the ortho-tolyl axis with the respective double bond configuration (see 

Figure 129). The “+” sign in front of transition state values indicates the energy 

difference with respect to the lowest ground state of respective Z or E isomers. 

For the Z isomer, a rotation of the chiral axis methyl over the indoxyl core methyl group is 

preferred for all functionals. In the E isomer, the bulky methyl group always takes the path over 

the central double bond. This stands in contrast to the observations for hemiindigo 30 and 33. 

The dispersive and long range correction within the ωB97XD functional gives the Z form as 

thermodynamic minimum and reverses the suggested directional behavior. 

The theoretical evaluation of the isomeric and enantiomeric forms of hemiindigo 20 was 

successful and yielded very good results compared to the experiment. As it is not possible to 
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measure the rotational direction of the racemization process by common spectroscopies, 

theoretical calculations are the only way to obtain insight in the underlying transition states. It 

could be shown that gating of the thermal barriers by 3 kcal/mol as well as control over the 

racemization direction could be established. 

The oddity of a lowered thermal barrier in the sterically more encumbered Z state can be 

explained by the influential stilbene fragment, which is forced towards planarity to regain 

mesomeric stabilization. This interferes with the twisted ortho-aryl axis as the protons on the 

edge of the stilbene fragment displace the ortho-aryl axis against the indoxyl core methyl group, 

elongating the N-aryl bond. This will lower the free activation enthalpy of the chiral axis and 

overcoming the indoxyl core methyl group is favored. N-aryl axis lengths in the transition state 

amount to 1.470 Å for Z- and 1.446 Å for E isomeric states, which further underlines this theory. 

This also means that the disfavored rotational direction for the E isomer, where the chiral axis 

methyl group passes over the indoxyl core methyl, supports an even higher rotational barrier 

than the favored 23 kcal/mol. Switching into the Z state does not only lower this barrier by the 

nominal 3 kcal/mol but by 3 + X kcal/mol compared to a methyl over methyl passing in the E 

state. However, the disfavored transition state in the E isomer did not converge after several 

attempts and tweaks at the utilized level of theory, giving no value for X and the total lowering 

of the rotational barrier  
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The para-methyl substituted hemiindigo 59 is regarded as neutral in terms of electron accepting 

or donating properties at the silbene part. 

 

Figure 131: Lewis-formula of hemiindigo 59. 

 

Figure 132: 3D UV-Vis Chromatograms of hemiindigo 59 on a chiral HPLC column (Diacel 

Chiralpak IC, 5µm, 8 mL/min) recorded at 0 °C in 95 / 5 heptane / ethyl acetate. 

Injection of a Z / E mixture gives three separable peaks, E 1 E 2 and Z 1. The 

peak intensity scale is given in mAU (milli a.u., arbitrary units).  

Collection and re-injection of E 1 gives the pure peak and some residual E 2 from fraction 

overlap. Irradiation of E 1 to the Z state and back to the E form gives E 1 and E 2 in a 1 to 1 

racemic mixture. E 1 left in the dark did not noticeably racemize, heating to 100 °C for 

5 minutes, however, yielded the racemate (not shown). As the para-methyl derivative 59 did 

not show different chiral behavior compared to the electron-rich hemiindigo substitution 20, 

investigation was not carried out further. 
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The para-cyano stilbene fragment substituted hemiindigo 29 represents an electron accepting 

derivative. 

 

Figure 133: Lewis-formula of hemiindigo 29. 

 

Figure 134: 3D UV-Vis Chromatograms of hemiindigo 29 on a chiral HPLC column (Diacel 

Chiralpak IC, 5µm, 8 mL/min) recorded at 0 °C in 83 / 17 heptane / ethyl acetate. 

Injection of a Z / E mixture gives mainly two separable peaks, E 1 and E 2. The 

peak intensity scale is given in mAU (milli a.u., arbitrary units).  

Collection and re-injection of E 1 gives the pure peak and some residual E 2 from fraction 

overlap (not shown). Irradiation of E 1 to the Z state did yield peaks for the Z isomers, which 

show streaking a 0 °C, indicating a small rotational barrier for the chiral axis. The low Z isomer 



2.3.6   FIRST GENERATION OF AXIALLY CHIRAL ARYLATED HEMIINDIGOS - ELECTRONIC EFFECTS ON THE STILBENE 

FRAGMENT 

162 

yields can be caused by the already confirmed poor photoswitching behavior of 26, see section 

2.2.11. Irradiation back to the E form, however, restored the racemate, which is consistent to 

the dimethylamino and methyl derivatives. E 1 left in the dark did not noticeably racemize, 

heating to 100 °C for 20 minutes, however, yielded the racemate (not shown). 

As this substitution pattern did also not show different chiral behavior besides its poor 

isomeric yields for the Z isomer after photoswitching, it was also not investigated further.  
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2.3.7 Second generation of axially chiral arylated hemiindigos - 

Introduction of axially chiral stilbene fragments 

As the thermal barriers for the atropisomerizations seemed to be low for hemiindigo 20, 

especially in the Z isomeric state, naphthyl moieties were introduced as stilbene fragment with 

the intent to stabilize the chiral axes. This should be observed by twisting of the stilbene 

fragment caused by sterical interference of the central double bond proton and the naphthyl 

proton and / or the ortho-methyl group, respectively. This twisting should reduce sterical strain 

at the ortho-tolyl chiral axis, increasing its rotational barriers. The introduction of two 

asymmetric units was also revisited, as previous molecules 55 and 57 did not show desired 

properties at ambient temperatures. 

 

Figure 135: Second generation of synthesized axially chiral hemiindigo derivatives 60 and 

61.  
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Figure 136: Lewis-formula of hemiindigo 60. 

 

Figure 137: 3D UV-Vis Chromatograms of hemiindigo 60 on a chiral HPLC column (Diacel 

Chiralpak IC, 5µm, 8 mL/min) recorded at 0 °C in 95 / 5 heptane / ethyl acetate. 

Injection of a Z / E mixture gives four separable peaks, Z 1, Z 2, E 1 and E 2, 

which is a novelty compared to the previously synthesized hemiindigos 

substituted with chiral axes. The peak intensity scale is given in mAU (milli a.u., 

arbitrary units). Collection and re-injection of E 1 (left) gives the pure E peak. 

Collection and re-injection of Z 1 (right) gives the pure peak and some unknown 

side product, which is probably a residue from a previous run. Irradiation of Z 1 

to the E state yielded the E 1 isomer almost quantitatively. E 1 and Z 1 left in the 

dark did not noticeably racemize, heating to 100 °C for 25 minutes, however, 

yielded the racemates (not shown). 

Irradiation of E 1 to the Z state did only yield small amounts of the Z isomer because of poor 

choice of irradiation wavelength, as the PSS is already heavily E isomer enriched at 505 nm, 
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which is caused by the presumably very high quantum yield of this compound in apolar 

solvents. However, only the Z 1 isomer is obtained and not the racemic mixture of both, which 

shows that the photoisomerization itself does not racemize the chiral axis. This compound does 

not significantly racemize in its Z isomer at 0 °C in contrast to all previously examined 

hemiindigos substituted with chiral axes. As the introduction of naphthyl residues yielded stable 

chiral axes in both Z and E isomeric forms, it was possible to isolate and study these compounds 

via NMR, UV-Vis, ECD spectroscopy and X-ray crystallography. 

 

Figure 138: Structure of hemiindigo 60 in the crystalline state. The viewing angle on the right 

emphasizes the strong twisting of the naphthyl stilbene fragment and the ortho-

tolyl chiral axis within the Z form. Latter is strongly twisted with a dihedral 

torsion angle of 102.71° for C25-C20-N1-C1. The twist around the stilbene 

single bond amounts to 72.49° for C8-C9-C10-C19. The length of the double 

bond (red) amounts to 1.342 Å and the single bond (green) amounts to 1.482 Å.  
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Figure 139: Section of the NOESY 1H-NMR spectrum (dichloromethane-d2, 800 MHz, 

27 °C) of hemiindigo E-60. The strong NOE cross signal between proton E 10 

and protons E 22 and the weak interaction between E 12 and E 22 suggest the E 

conformation. Cross signal E 27 / E 22 and the downfield shift of E 12 and E 27 

suggest the naphthyl moiety to face away from the carbonyl oxygen while 

maintaining rotatability at the carbon-carbon single bond (weak signals E 12 / E 

22). Cross signals E 21 / E 23, E 18 / E 23 and E 20 / E 23 exemplify the 

proximity of methyl group E 23 towards the ring system of the chiral aryl axis. 
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Figure 140: Section of the NOESY 1H-NMR spectrum (dichloromethane-d2, 600 MHz, 

27°C) of hemiindigo Z-60. The missing NOE cross signal between proton Z 10 

and protons Z 22 and the strong interaction between Z 12 and Z 22 suggest the Z 

conformation. Cross signal Z 27 / Z 22 suggests twisting of the stilbene and the 

downfield shift of Z 27 suggest the naphthyl moiety to face towards the carbonyl 

oxygen while maintaining rotatability at the carbon-carbon single bond. Signal 

Z 12 shows a strong upfield shift, hinting towards increased distance towards the 

carbonyl oxygen. Cross signal Z 21 / Z 23, exemplifies the proximity of methyl 

group Z 23 towards the ring system of the chiral aryl axis.  
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Figure 141: Section of the 1H-NMR spectra (dichloromethane-d2, 800 / 600 MHz, 27 °C) of 

E (top) and Z isomer (bottom) enriched mixtures of hemiindigo 60. Strong 

chemical shifts can be observed upon transition from E to Z isomer, which 

indicates proximity of the stilbene ring current towards the N-aryl chiral axis in 

the Z state as the signals for the E isomer are separated from each other and tend 

to shift upfield in the Z isomer. The large upfield shifts of signals 12, 18, 19, 20 

and 21from E to Z and the downfield shift of signal 27 indicates transition from 

a mostly planar stilbene fragment in E configuration to pronounced twisting of 

the naphthalene in the E state. 



2 RESULTS AND DISCUSSION 

169 

 

 

Figure 142: Molar absorption (left) and PSS (right) spectra of hemiindigo 60 in 95 / 5 

heptane / ethyl acetate. The isosbestic points remain defined, verifying the 

photostability of this compound. Best isomeric yields were determined at 95% 

E isomer (435 nm) and 39% Z isomer (617 nm).  

The low isomeric yield for the Z isomer of 39% is caused by the high difference in quantum 

yields for Z and E isomer. If a solution of the Z form is exposed to room light, large amounts of 

E isomer are generated immediately, which was not observed for any other hemiindigo so far. 

 

Figure 143: Molar electronic circular dichroism spectra of hemiindigo 60 for the Z (left) and 

E isomer (right) in 95 / 5 heptane / ethyl acetate at 0 °C. Fractions Z 1 and E 1 

yielded the red spectra (ortho-tolyl Sa configurations) while Z 2 and E 2 yielded 

the blue spectra (Ra configurations). 
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Figure 144: UV-Vis (left) and ECD spectrum (right) of 60 in 95 / 5 heptane / ethyl acetate 

after one cycle of switching of E (blue) and Z (red) isomers at 0 °C. 

Isomerization from E to Z was not feasible with all wavelengths available in this 

solvent mixture (irradiation in dimethyl sulfoxide yielded the Z isomer). The 

mediocre thermal barrier of the chiral aryl axis in the Z isomer (right, red) 

prevents racemization at 0 °C and irradiation from Z to the E isomer (blue) 

yielded almost exactly the ECD spectrum of the isolated pure E isomer (light 

blue, dotted line). Irradiation with 530 nm for 5 min did not yield the Z isomer 

but did also not change the ECD spectrum (light blue, dashed line). (Z to E 

irradiation: 2 min 470 nm) 

 

Figure 145: First order kinetic analyses of hemiindigo 60 in 95 / 5 heptane / ethyl acetate for 

the atropisomerization of Z isomer (red) and E isomer (blue). The data points are 

fitted with a linear relationship. The slope m can be translated into the rate 

constant k for this process. For the Z isomer, a rotational barrier of 21.7 kcal/mol 

was determined at 10 °C, which translates into a thermal half-life of 15 min at 

25 °C. For the E isomer, a rotational barrier of 24.3 kcal/mol was determined at 

60 °C, which translates into a thermal half-life of 21 h at 25 °C.  
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The introduction of a naphthyl group proved as a major success as all four forms of 

hemiindigo 60 could be isolated and examined. This was achieved due to the chiral aryl axis 

barrier reaching values over 21 kcal/mol, which makes handling of the compounds possible at 

0 °C. 

 

Figure 146: Calculated ground and transition state structures of hemiindigo 60 at the 

B3LYP/6-311+G(d,p) level of theory. All transition states for the 

atropisomerization and one for the stilbene single bond rotation were found. The 

transition state of the stilbene single bond did not converge after several attempts 

and tweaks. The “+” sign in front of transition state values indicates the energy 

difference with respect to the lowest ground state of respective Z or E isomers. 

The calculated energies are in good agreement to the experimental values for the 

Z isomer, however the lowest transition state of the E isomer is undershot by 

about 4 kcal/mol compared to the experimental values. The methyl-over-methyl 
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transition state is disfavored by 4 kcal/mol in the E isomer and the methyl over 

central double bond transition state is disfavored by 1 kcal/mol in the Z state. A 

by 2.6 kcal/mol lowered atropisomerization barrier for the Z isomers can be 

measured. The transition state structures suggest a rotation of the ortho-tolyl axis 

methyl group over the indoxyl core methyl group in the Z state while the E form 

prefers passing of the methyl group over its central double bond. These findings 

show that gating of thermal barriers as well as their directionality are possible 

for these chiroptical photoswitches. 

 

Figure 147: Benchmarking results for hemiindigo 60 using different DFT functionals for the 

6-311+G(d,p) basis set. “Z-anti/syn” and “E-anti/syn” represent the ground 

states and “Z-Anti-Me-Me” and “E-Syn-Me-DB” the energetically lowest 

transition state for respective isomer and rotation pathway in all cases without 

dispersive corrections except for the PBEPBE functional. The “+” sign in front 

of transition state values indicates the energy difference with respect to the 

lowest ground state of respective Z or E isomers. 

For the E isomer, a rotation of the chiral axis methyl over the central double bond is preferred 

for all functionals. In the Z isomer, the PBEPBE-, ωB97XD- and B3LYP functional with 

GD3BJ dispersion favors a rotation of the methyl group over the central double bond. The 

B3LYP- and MPW1K functional suggest the rotation over the indoxyl methyl group by a small 



2 RESULTS AND DISCUSSION 

173 

 

margin, which stands in contrast to hemiindigo 30 and 33. Disabling dispersive corrections 

yields very similar results for all functionals. 

 

Figure 148: Lewis-formula of hemiindigo 61. 

 

Figure 149: 3D UV-Vis Chromatograms of hemiindigo 61 on a chiral HPLC column (Diacel 

Chiralpak IC, 5µm, 8 mL/min) recorded at 0 °C in 95 / 5 heptane / ethyl acetate. 

Injection of a Z / E mixture gives four separable peaks, Z 1, Z 2, E 1 and E 2, 

which shows similar results to hemiindigo 60 with the addition that eight peaks 

were expected, see Figure 151. The peak intensity scale is given in mAU (milli 

a.u., arbitrary units).  

Collection, irradiation with 565nm and re-injection of E 2 (left) gives the E 2 and only small 

amounts of the Z 2 peak because of the broad spectrum of this LED color. Irradiation of Z to 

the E state showed only small changes as the E isomer resides as major species. However, only 

the Z 2 and E 2 isomers are obtained. Collection, irradiation and re-injection of Z 1 (right) gives 

the pure E 1 peak. Collection and heating to 100 °C for 16 min of Z 2 yielded all isomers at 
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different intensities. The Z 1 isomer is formed first, followed by the E 2 isomer and lastly the 

E 1 isomer. 

The high thermal barriers of hemiindigo 61 allow for easy separation and handling of isomers. 

 

Figure 150: Structure of (Sa)-(Sa)-anti-E-61 in the crystalline state. The anti form is defined 

by the higher oxidized carbon position in the phenyl ring opposing the ortho-

tolyl methyl group. This means that in the anti form both methyl groups involved 

in axial chirality are configured syn to each other. The viewing angle on the right 

emphasizes the strong twisting of the naphthyl stilbene fragment and the ortho-

tolyl chiral axis within the E form. Latter is strongly twisted with a dihedral 

torsion angle of 84.09° for C25-C20-N1-C1. The stilbene single bond is twisted 

by 53.58° for C8-C9-C10-C11. The length of the double bond (red) amounts to 

1.340 Å and the single bond (green) amounts to 1.469 Å. 

As one asymmetric chiral axis induces asymmetry in an adjacent symmetric part of the 

molecule, as seen with hemiindigo 60, desymmetrization of this symmetric part will also split 

the signals of the initial asymmetric chiral axis. This can be observed for hemiindigo 61 via 

NMR spectroscopy. 
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Figure 151: Overview of all possible conformations of hemiindigo 61. 

The ability to separate only four of the eight prevalent enantio- and diastereomers via chiral 

HPLC at 0 °C hints towards an unlocked stilbene single bond rotation barrier, as the used chiral 

HPLC column reliably separates between the Ra- and Sa-ortho-tolyl axes of all investigated 

hemiindigos so far. This means that syn- and anti diastereomers cannot be separated at the 

utilized conditions. NMR studies (Figure 152) confirm these assumptions, as the Z 1 and Z 2 as 

well as the E 1 and E 2 fractions show exactly the same spectra, respectively. This labels all of 

the isolated fractions as mixtures of syn- / anti diastereomers, which explains the large amount 

of visible signals to the additionally occurring two-fold signal splitting for each molecular part 

that experiences an asymmetric environment. This means a doubled signal set for all ortho-tolyl 

and naphthyl hydrogen and carbon signals is expected for each syn and anti diastereomer for 

every fraction Z 1, Z 2, E 1 and E 2. As enantiomers cannot be discerned via NMR without 

chiral alignment media,[111] the amounts of signals is reduced by half. This means that in theory 

a minimum of (10 * 2 + 7) * 2 = 54 proton and (14 * 2 + 14) * 2 = 84 carbon signals should be 

observable for non-helically twisted molecules. A maximum of (12 * 2 + 5) * 2 = 58 proton 

and (18 * 2 + 10) * 2 = 92 carbon signals should be observable for helically twisted molecules. 

These calculations are be applicable for Z and E isomers each, doubling the theoretical amount 

of signals for isomeric Z / E mixtures. 
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Figure 152: 1H-NMR spectra (dichloromethane-d2, 600 MHz, 27 °C) of all four separable Z 

and E isomers of hemiindigo 61. Six distinct methyl group signals can be 

observed for the Z isomer, three of them each belong to the respective anti- or 

syn diastereomers. In the E form, overlapping signals can be observed as the 

chemical shift between diastereomers is too small / similar to cause distinct 

signal shifts.  
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Figure 153: Lewis-formula of hemiindigo 61. 

 

Figure 154: 1H-NOESY 2D NMR spectrum of syn- and anti-Z-61 (dichloromethane-d2, 

600 MHz, 27 °C). An unambiguous assignment can be made as cross-signal 22 

/ 23 is observable for syn and anti forms but signal 29 / 22 is only visible in the 

anti form in which both rotatable methyl groups are closest together. As NOESY 

and EXSY share the same pulse sequence, positive (red) signals between syn and 

anti forms prove an observable fast exchange of nuclei for these positions caused 

by the dynamics being faster than the used mixing time of 1.2 s. 

The indicated red signals underline the rotatability of only the stilbene single bond, as one 

rotational flip around this axis will yield the other diastereomer while the ortho-tolyl axis 

remains stable. This explains why both signals 29 and 22 show the same positive cross-signal 

at the same intensity. The anti form is preferred by 5% over the syn isomer, which is also in 

accordance to the theoretical results (Figure 166). The 1H-NMR integrals are in accordance 

with the NOESY assignment.  
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Figure 155: Lewis-formula of hemiindigo 61. 

 

Figure 156: 1H-NOESY 2D NMR spectrum of syn- and anti-E-61 (dichloromethane-d2, 

600 MHz, 27 °C). An unambiguous syn / anti assignment cannot be made. 

However, the crystallized E isomer resides in the anti form (Figure 150), hinting 

towards its higher thermodynamic stability or crystal packing effects. The 

signals of 22 can be seen for the syn- and anti form and very pronounced positive 

(red) signals for syn to anti transitions of signals 22 and 29 can be observed. This 

proves faster dynamics of the stilbene single bond rotation in the E isomer 

compared to the Z state (see Figure 154).  
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Figure 157: Lewis-formula of hemiindigo 61. 

 

Figure 158: 1H-HSQC 2D NMR spectrum of syn- and anti-E-61 (dichloromethane-d2, 

600 MHz, 27 °C). An unambiguous syn / anti assignment cannot be made. 

However, the superimposing signals can be differentiated, suggesting the 

1H-NOESY assignment regarding the positions of the methyl groups to be 

correct.  
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Figure 159: 13C-NMR spectrum of syn- and anti-Z-61 (dichloromethane-d2, 600 MHz, 

27 °C). The two insets above magnify the large amounts of signals and 

multiplets.  

Six proton signals could be obtained for the methyl groups of these compounds while six 

respective multiplets are observed in the 13C-NMR spectrum. These signals show second order 

AA’BB’ multiplet patterns comparable to para-substituted aromatic systems supporting 

unequal positions 1 and 4.  
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Figure 160: 13C-NMR spectrum of syn- and anti-E-61 (dichloromethane-d2, 600 MHz, 

27 °C). The insets above visualize the large amounts of signals and multiplets. 

Four proton signals could be obtained for the methyl groups of these compounds 

while two respective multiplets are observed in the 13C-NMR spectrum.  
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Figure 161: 1H-HMBC 2D NMR spectrum of syn- and anti-Z-61 (dichloromethane-d2, 

600 MHz, 27 °C). An unambiguous assignment of all protons and carbons 

cannot be made, as interpretation by hand is impossible with this large amount 

of overlapping signals and ghost peaks which were observed with multiple 

sample preparations on 600 and 800 MHz NMR devices.  
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Figure 162: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 61 in 95 / 

5 heptane / ethyl acetate. The isosbestic points remain defined, verifying the 

photostability of this compound. Best isomeric yields were determined at 98% 

E isomer (470 nm) and 25% Z isomer (505 nm). 

The low isomeric yield for the Z isomer of 25% is caused by the high difference in quantum 

yields for Z and E isomer. If the Z form is exposed to room light, large amounts of E isomer are 

generated immediately, which was also observed for hemiindigo 60. 

 

Figure 163: Molar electronic circular dichroism spectra of hemiindigo 61 for the Z (left) and 

E isomer (right) in 95 / 5 heptane / ethyl acetate at 0 °C. Fractions Z 1 and E 1 

yielded the red spectra (ortho-tolyl Sa configurations) while Z 2 and E 2 yielded 

the blue spectra (Ra configurations). 
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Figure 164: UV-Vis (left) and CD spectrum (right) of hemiindigo 61 in 95 / 5 heptane / ethyl 

acetate after one cycle of switching from Z (red) to E (blue) to little Z contents 

(blue, dashed line) at 0 °C. The high thermal barrier for the chiral aryl axis in the 

Z isomer (right, red) prevents racemization from 0 °C up to ambient 

temperatures and irradiation to the E isomer (blue) yielded almost exactly the 

ECD spectrum of the isolated pure E isomer (light blue, dotted line). Irradiation 

with 505 nm for 10 min did yield the Z isomer in low contents but did also not 

change the ECD spectrum (blue, dashed line), which shifts proportionally 

towards the Z state. (Z to E irradiation: 5 min 470 nm). 

 

Figure 165: First order kinetic analyses of hemiindigo 61 in 95 / 5 heptane / ethyl acetate for 

the atropisomerization of Z isomer (red) and E isomer (blue). The data points are 

fitted with a linear relationship. The slope m can be translated into the rate 

constant k for this process. For the Z isomer, a rotational barrier of 24.6 kcal/mol 

was determined at 40 °C, which translates into a thermal half-life of 35 h at 

25 °C. For the E isomer, a rotational barrier of 26.8 kcal/mol was determined at 

80 °C, which translates into a thermal half-life of 59 d at 25 °C. Used formulas 

and equations can be found in Section 2.2.19.  
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Figure 166: Calculated ground and transition state structures of hemiindigo 61 at the 

B3LYP/6-311+G(d,p) level of theory. Transition states for the 

atropisomerization and the stilbene single bond rotation were found. The 

disfavored atropisomerization transition state for the Z isomer and the stilbene 

rotation in the E isomer did not converge after several attempts and tweaks. The 

“+” sign in front of transition state values indicates the energy difference with 

respect to the lowest ground state of respective Z or E isomers.  

The calculated energies are in good agreement to the experimental values for the Z and E 

isomer, however the lowest transition state of the E isomer is overshot by about 1.5 kcal/mol 

compared to the experimental values. The methyl-over-methyl transition state differs only by 

0.2 kcal/mol in the E isomer. The atropisomerization barrier is lowered by 2 kcal/mol in the Z 

state. The transition state structures suggest a rotation of the ortho-tolyl axis methyl group over 

the indoxyl core methyl group in the Z state while the E form prefers passing of the methyl 

group over its central double bond by a small margin. The stilbene fragment shows a relatively 

high rotational barrier of 19.79 kcal/mol, which is in good agreement to the NOESY NMR 
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experiments. These findings show that gating of thermal barriers is possible for these chiroptical 

photoswitches and that the design intents did work out towards the desired direction. 

 

Figure 167: Benchmarking results for hemiindigo 61 using different DFT functionals for the 

6-311+G(d,p) basis set. “Z-anti/syn” and “E-anti/syn” represent the ground 

states and “Z-Anti-Me-Me” and “E-Syn-Me-DB” the energetically lowest 

transition state for respective isomer and rotation pathway (see Figure 166). The 

“+” sign in front of transition state values indicates the energy difference with 

respect to the lowest ground state of respective Z or E isomers.  

For the E isomer, a rotation of the chiral axis methyl over the central double bond is preferred 

for all functionals. For the Z state, only the methyl over methyl transition state could be found. 

The experimental value is in good agreement, however, an energetically lower transition state 

can possibly be found via DFT calculations, making an unambiguous suggestion on 

directionality impossible to date.  



2 RESULTS AND DISCUSSION 

187 

 

2.3.8 Third generation of axially chiral arylated hemiindigos - 

Increasing the rotational barriers 

As increasing the sterical demand of the stilbene fragment yielded higher atropisomerization 

barriers for the ortho-tolyl axis in derivatives 60 and 61, the third generation of axially chiral 

hemiindigos was synthesized. 

 

Figure 168: Third generation of axially chiral hemiindigos 30 and 33. 

Photophysical properties regarding the Z / E isomerization of compounds 30 and 33 are 

discussed in detail in Section 2.2.7 and are omitted here. HPLC runs and experiments are also 

not shown because 30 and 33 show the same observations as 61 but two different chiral columns 

(Diacel Chiralpak IC and ID) are needed to separate the rotamers of Z and E isomer, 

respectively. 

 

Figure 169: Lewis-formula of hemiindigo 30. 

 

Figure 170: Molar absorption coefficients of 30 in 93 / 7 heptane / ethyl acetate (left) with 

the Z isomer shown in red and the E isomer in blue. Spectral changes recorded 
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after different irradiation times show clear isosbestic points (right). Adapted with 

permission from [75]. Copyright 2018 American Chemical Society. 

  

Figure 171: Molar ellipticity ECD spectra of Z-30 in 93 / 7 heptane / ethyl acetate (left), (Ra)-

Z-30 shown in blue, (Sa)-Z-30 shown in red. Molar ellipticity ECD spectra of 

E-30 in 93 / 7 heptane / ethyl acetate (right), (Ra)-E-30 shown in blue, (Sa)-E-30 

shown in red. Adapted with permission from [75]. Copyright 2018 American 

Chemical Society. 

  

Figure 172: UV-Vis absorption (left) and ECD spectrum (right) of 30 in 93 / 7 heptane / ethyl 

acetate recorded for one switching cycle starting from pure (Ra)-Z-30 (solid red), 

which was photoisomerized to (Ra)-E-30 (1 min 435 nm, solid blue) and then 

switched back to (Ra)-Z-30 (1 min 530 nm, pale red, dashed) in high isomeric 

yields at 0 °C. The high free activation enthalpies ΔG* = 24.0 kcal/mol for 

thermal atropisomerization in the Z isomeric state and ΔG* = 26.1 kcal/mol in 

the E isomeric state prevent any racemization at 0 °C and even ambient 

temperatures. Therefore, the initial ECD spectrum of the pure Z isomer is fully 

recovered after a complete photoswitching cycle (solid red and pale red dashed 
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spectra). Adapted with permission from [75]. Copyright 2018 American Chemical 

Society. 

 

Figure 173: First order kinetic analyses of the thermal racemization via atropisomerization 

of hemiindigo 30 in 93 / 7 heptane / ethyl acetate in the dark. The slopes m can 

be translated into the rate constant k for each process. Racemization in the Z 

isomeric state (red, see also Figure 174) was measured at 40 °C and proceeds 

over an energy barrier of 23.1 kcal/mol. Racemization in the E isomeric state 

(blue) was measured at 60 °C and proceeds over an energy barrier of 

26.1 kcal/mol. Poor R² values are based on bad signal to noise ratios caused by 

the weak ECD response of the E isomer. Adapted with permission from [75]. 

Copyright 2018 American Chemical Society. 

To further benchmark the photoswitchability of the now well-performing chiroptical 

photoswitches, cyclic irradiation experiments were carried out to examine the robustness of 

ECD photoswitching.  
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At first, hemiindigo 30 was photoswitched between Z and E isomeric state and the ECD spectra 

were recorded after a specific number of cycles (Figure 174). Details on the experimental low-

temperature ECD spectrometer setup with in situ irradiation capabilities can be found in Section 

2.7.5. 

 

Figure 174: Repetitive photoswitching of the ECD spectrum of hemiindigo 30 (solid lines: 

(Sa) configuration) and thermal decay of the ECD spectrum in the dark (broken 

lines: (Ra) configuration) in 93 / 7 heptane / ethyl acetate. Spectra of Z isomers 

are shown in red and of E isomers in blue (light blue after 36 cycles / 90 minutes). 

The (Sa) and (Ra) configured samples were handled at 18 °C within an air-

conditioned room. The (Sa)-30 isomer was photoswitched 12 times between its 

two PSS’ at 435 nm (30 s irradiation time at 260 mW per cycle to reach the PSS) 

and 505 nm (120 s irradiation time at 80 mW per cycle to reach the PSS) within 

30 minutes. An ECD spectrum was recorded at this time interval and the 

procedure was repeated for two times (red solid line spectra, total of 36 

photoswitching cycles within 90 min). The (Ra)-Z-30 isomer was kept in the dark 

at 18 °C and was also measured in 30 min intervals to show the thermal 

racemization of the chiral axis (red broken line spectra). ECD measurements 

were conducted at 0 °C and samples were put on ice (0 °C) during transfer of 

samples and waiting times in complete darkness. The slightly faster decline of 

the photoswitched sample (red solid line spectra) results from additional heating 

effects of the LED irradiations, which were measured to result in 6.15 °C higher 
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sample temperature compared to the surrounding 18 °C. Adapted with 

permission from [75]. Copyright 2018 American Chemical Society. 

 

Figure 175: Repetitive photoswitching of the ECD spectrum of (Sa)-30 (red, see also Figure 

174) and thermal decay of (Ra)-Z-30 (violet) in 93 / 7 heptane / ethyl acetate. 

Photoirradiation was performed at 24.15 °C (red for the Z state, blue for the E 

state). The ECD signal at 420 nm is used exemplarily because at this spectral 

position signal intensity for the PSS solution enriched in E isomer (84% E-30 

and 16% Z-30 in the PSS at 435 nm) is zero. The thermal decay of the Z-30 ECD 

signal was measured at 18 °C and then extrapolated to 24.15 °C to ensure 

comparability (solid violet line). The residual loss of ECD signal is attributed to 

irreversible photodegradation (green) over 36 photoswitching cycles and was 

determined from the corresponding experimental absorption spectra (5% after 

36 cycles). Adapted with permission from [75]. Copyright 2018 American 

Chemical Society. 
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Figure 176: Fully reversible photoswitching of the ECD spectrum of (Sa)-30 (red for the Z 

state, blue for the E state) in 93 / 7 heptane / ethyl acetate is seen after correction 

for thermal ECD decay of (Sa)-Z-30. No racemization of the chiral N-indoxyl-

ortho-tolyl axis by photoinduced double-bond isomerization is observed over 36 

switching cycles excluding light induced coupled motions between the aniline 

fragment and the ortho-tolyl residue. Photodegradation is plotted in green for 

comparison. Adapted with permission from [75]. Copyright 2018 American 

Chemical Society. 

A second ECD measurement at -20 °C was designed to again confirm the sole dependency of 

the ECD decay within cyclic irradiation experiments.  
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Figure 177: Repetitive photoswitching of the ECD spectrum of hemiindigo 30 (solid lines: 

(Ra) configuration) 93 / 7 heptane / ethyl acetate. Spectra of Z isomers are shown 

in red and of E isomers in blue (light blue at the start). The (Ra) configured 

sample was irradiated and measured at -20 °C within a cryostat mounted inside 

the ECD spectrometer equipped with a glass fiber directly inserted into the 

sample cuvette inside the cryostat (see Section 2.7.5 for the newly built setup for 

this purpose). The (Ra)-30 isomer was photoswitched 7 times between its two 

PSS’ at 450 nm (10 s irradiation time at 193 mW per cycle to reach the PSS) and 

520 nm (60 s irradiation time at 92 mW per cycle to reach the PSS). An ECD 

spectrum was recorded after every irradiation step. Adapted with permission 

from [75]. Copyright 2018 American Chemical Society. 
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Figure 178: 3D plot showing modulation of the ECD of hemiindigo 30 by repetitive 

photoswitching between the PSS at 435 nm (weak signals) and the PSS at 

520 nm (strong signals) at -20 °C. Adapted with permission from [75]. Copyright 

2018 American Chemical Society. 

 

Figure 179: Repetitive photoswitching of the ECD spectrum of (Ra)-30 (red) in 93 / 7 heptane 

/ ethyl acetate. Photoirradiation was performed at -20 °C (red for the Z enriched 

state at 520 nm, blue for the E enriched state at 450 nm). No thermal 

racemization or photodegradation could be observed over the course of the 

experiment at -20 °C. The ECD signal at 420 nm is used exemplarily because at 

this spectral position signal intensity for the PSS solution enriched in E isomer 

(83% E-30 and 17% Z-30 in the PSS at 450 nm) is almost zero. Adapted with 

permission from [75]. Copyright 2018 American Chemical Society. 
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Figure 180: Photoswitching of the g factors of hemiindigo 30 in 93 / 7 heptane / ethyl acetate 

(blue: E isomers, red: Z isomers, solid lines: (Sa) configuration, broken lines: (Ra) 

configuration). Adapted with permission from [75]. Copyright 2018 American 

Chemical Society.  
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Figure 181: Calculated ground and transition state structures of hemiindigo 30 at the 

B3LYP/6-311+G(d,p) level of theory. Transition states for all 

atropisomerization and the stilbene single bond rotation in the Z state were 

found. The “+” sign in front of transition state values indicates the energy 

difference with respect to the lowest ground state of respective Z or E isomers.  

The calculated energies are in good agreement to the experimental values for the Z and E 

isomer. A by 3 kcal/mol lowered atropisomerization barrier for the Z isomers can be measured. 

The transition state structures suggest a rotation of the ortho-tolyl axis methyl group over the 

central double bond is preferred in the Z state with the E form also passing over the central 

double bond. These findings show that gating of thermal barriers is possible for these chiroptical 

photoswitches and the trend for the directionality of the Z-30 isomer could be reversed 

compared to other axially chiral hemiindigos.  
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Figure 182: Benchmarking results for hemiindigo 30 using different DFT functionals for the 

6-311+G(d,p) basis set. “Z” and “E” represent the ground states and “Z-Me-DB” 

and “E-Me-DB” the energetically lowest transition state for respective isomer 

and rotation pathway (see Figure 181). The “+” sign in front of transition state 

values indicates the energy difference with respect to the lowest ground state of 

respective Z or E isomers.  

For Z- and E isomers of 30, a rotation of the chiral axis methyl over the central double bond is 

preferred for all functionals. This stands in contrast to the change in directionality observed for 

hemiindigos 20, 60 and 61. The transition state energy is enlarged and the ground state energy 

is decreased for Z isomers when using the ωB97XD- or B3LYP functional with GD3BJ 

dispersive corrections.  
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As hemiindigo 30 performed well under cyclic irradiation conditions, one way of enlarging 

sterical hindrance at the chiral axis and hence the atropisomerization barrier is the introduction 

of a naphthyl moiety. As second- and third generation chiroptical hemiindigo photoswitches 

are already heavily sterically crowded, especially in the Z form, naphthyl should occupy less 

space compared to ortho-tolyl while still being cumbersome when rotated. 

 

Figure 183: Lewis-formula of hemiindigo 33. 

The photophysical details were already discussed in Section 2.2.7, its chiroptical properties are 

subsequently highlighted in full detail. 

 

Figure 184: Molar absorption coefficients of 33 in 87 / 13 heptane / ethyl acetate (left) with 

the Z isomer shown in red and the E isomer in blue. Spectral changes recorded 

after different irradiation times show clear isosbestic points (right). Adapted with 

permission from [75]. Copyright 2018 American Chemical Society.  
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Figure 185: Molar ellipticity ECD spectra of Z-33 (left) in 87 / 13 heptane / ethyl acetate, 

(Ra)-Z-33 shown in blue, (Sa)-Z-33 shown in red. Determination of the absolute 

configuration is based on the theoretical description. Molar ellipticity ECD 

spectra of E-33 (right) in 87 / 13 heptane / ethyl acetate, (Ra)-E-33 shown in blue, 

(Sa)-E-33 shown in red. Adapted with permission from [75]. Copyright 2018 

American Chemical Society. 

  

Figure 186: UV-Vis absorption (left) and ECD spectrum (right) of 33 in 87 / 13 heptane / 

ethyl acetate recorded for one switching cycle starting from pure (Ra)-Z-33 (solid 

red), which was photoisomerized to (Ra)-E-33 (30 s, 435 nm, solid blue) and then 

switched back to (Ra)-Z-33 (2 min, 505 nm, pale red, dashed) in high isomeric 

yields at 0 °C. The further increased free activation enthalpies ΔG* = 

24.8 kcal/mol for thermal atropisomerizations in the Z isomeric state and ΔG* = 

27.6 kcal/mol in the E isomeric state prevent any racemization also at ambient 

temperatures. Therefore, the initial ECD spectrum of the pure Z isomer is fully 

recovered after a complete photoswitching cycle (solid red and pale red dashed 

spectra). Adapted with permission from [75]. Copyright 2018 American Chemical 

Society.  
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Figure 187: First order kinetic analyses of the thermal racemization via atropisomerization 

of hemiindigo 33 in 87 / 13 heptane/ethyl acetate in the dark. The slopes m can 

be translated into the rate constant k for each process. Racemization in the Z 

isomeric state (red) was measured at 40 °C and proceeds over an energy barrier 

of 24.8 kcal/mol. Racemization in the E isomeric state (blue) was measured at 

90 °C and proceeds over an energy barrier of 27.6 kcal/mol. Adapted with 

permission from [75]. Copyright 2018 American Chemical Society. 
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Table 11: Free activation enthalpies G* for thermal racemizations of the chiral axes of 

hemiindigos 20, 30 and 33 measured separately for Z and E isomers in heptane / 

ethyl acetate mixtures. Corresponding half-lives in a = years, d = days, min = 

minutes and s = seconds were extrapolated to 25 °C. 

Hemiindigo Solvent 

ΔG* 

(therm. rac.  

Z isomer) 

/kcal mol-1 

ΔG* 

(therm. rac.  

E isomer) 

/kcal mol-1 

Racemization 

half-life of 

pure Z isomer 

at 25 °C 

Racemization 

half-life of 

pure E isomer 

at 25 °C 

 

20 

Hept/EA 

83/17 
19.9 23.4 43 s 286 min 

 

60 

Hept/EA 

95/5 
21.7 24.3 15 min 21 h 

 

61 

Hept/EA 

95/5 
24.6 26.8 35 h 59 d 

 

30 

Hept/EA 

93/7 
23.1 26.1 164 min 19.3 d 

 

33 

Hept/EA 

87/13 
24.8 27.6 2.01 d 0.622 a 

With significantly enlarged atropisomerization barriers at hand (compared to hemiindigo 20), 

repeated photoswitching of the ECD response of hemiindigo 33 was carried out at 19.2 °C 
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Figure 188: Repetitive photoswitching of the ECD spectrum of hemiindigo 33 (solid lines: 

(Sa) configuration) and thermal decay of the ECD spectrum in the dark (broken 

lines: (Ra) configuration) in 87 / 13heptane / ethyl acetate. Spectra of Z isomers 

are shown in red and of E isomers in blue (light blue after 160 cycles/120 min). 

The (Sa) and (Ra) configured samples were handled at 18 °C within an air-

conditioned room. The (Sa)-33 isomer was photoswitched 40 times between its 

two PSS’ at 435 nm (7 s irradiation time at 260 mW per cycle to reach the PSS) 

and 505 nm (38 s irradiation time at 80 mW per cycle to reach the PSS) within 

30 minutes. A spectrum was recorded after this time interval and this procedure 

was repeated for three times (red solid line spectra, total of 160 photoswitching 

cycles within 120 min). The (Ra)-Z-33 isomer was kept in the dark at 18 °C and 

was also measured in 30 min intervals to show the thermal racemization of the 

chiral axis (red broken line spectra). ECD measurements were conducted at 0 °C 

and samples were kept at 22 °C during transfer of samples and waiting times in 

complete darkness. The slightly faster decline of the photoswitched sample (red 

solid line spectra) results from heat dissipation of the LEDs, which were 

measured to result in 1.23 °C higher sample temperature with respect to the 

surrounding 18 °C. A new fan equipped irradiation setup was built to cool LEDs 

and sample during irradiation and is depicted in Section 2.7.4. Adapted with 

permission from [75]. Copyright 2018 American Chemical Society. 
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Figure 189: Repetitive photoswitching of the ECD spectrum of (Sa)-33 (red, see Figure 190), 

thermal decay of (Ra)-Z-33 (violet) extrapolated to 19.2 °C and photodegradation 

(green) in 87 / 13 heptane / ethyl acetate. Photoirradiation was performed at 

19.2 °C (red for the Z state, blue for the E state). The ECD signal at 435 nm is 

used exemplarily because at this spectral position signal intensity for the PSS 

solution enriched in E isomer (83% E-3 and 17% Z-33 in the PSS at 435 nm) is 

close to zero. The thermal decay of the Z-33 ECD signal was measured at 18 °C 

and extrapolated to the actual 19.2 degrees of the irradiation sample temperature 

(violet). The residual loss of ECD signal after correcting for thermal decay is 

attributed to irreversible photodegradation over 160 photoswitching cycles and 

amounts to 2% (green, derived from absorption loss during UV-Vis 

measurements). Adapted with permission from [75]. Copyright 2018 American 

Chemical Society. 

 

Figure 190: Fully reversible photoswitching of the ECD spectrum of (Sa)-33 in 83 / 17 

heptane / ethyl acetate (red for the Z state, blue for the E state) is observed after 
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correction for thermal ECD decay of (Sa)-Z-33. No racemization of the chiral N-

indoxyl-naphthyl axis by photoinduced double-bond isomerization is observed 

over 160 cycles excluding light induced coupled motions between the aniline 

fragment and the naphthyl residue. Photodegradation is plotted in green for 

comparison. Adapted with permission from [75]. Copyright 2018 American 

Chemical Society. 

 

Figure 191: Photoswitching of the g factors of hemiindigo 33 in 83 / 17 heptane / ethyl 

acetate (blue: E isomers, red: Z isomers, solid lines: (Sa) configuration, broken 

lines: (Ra) configuration). Adapted with permission from [75]. Copyright 2018 

American Chemical Society.  
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Figure 192: Calculated ground and transition state structures of hemiindigo 33 at the 

B3LYP/6-311+G(d,p) level of theory. Transition states for all 

atropisomerizations were found. The stilbene rotation transition states did not 

converge after several attempts and tweaks. The “+” sign in front of transition 

state values indicates the energy difference with respect to the lowest ground 

state of respective Z or E isomers.  

The calculated energies are in good agreement to the experimental values. The naphthyl-over-

methyl transition state is disfavored by 0.4 kcal/mol in the E isomer and by 2.7 kcal/mol in the 

Z state. A by 2.8 kcal/mol lowered atropisomerization barrier for the Z isomer can be measured. 

The transition state structures suggest a rotation of the naphthyl over the central double bond in 

both cases as seen with hemiindigo 30. These findings show that gating of thermal barriers is 

possible for these chiroptical photoswitches and the trend for the directionality of the Z-33 

isomer could be reversed compared to other axially chiral hemiindigos 20, 60 and 61. 
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Figure 193: Benchmarking results for hemiindigo 33 using different DFT functionals for the 

6-311+G(d,p) basis set. “Z” and “E” represent the ground states and “Z-Nph-

DB” and “E-Nph-DB” the energetically lowest transition state for respective 

isomer and rotation pathway (see Figure 192). The “+” sign in front of transition 

state values indicates the energy difference with respect to the lowest ground 

state of respective Z or E isomers. The “Z-Nph-DB” transition state did not 

converge with the ωB97XD functional after several attempts and tweaks. 

For Z and E isomers, a rotation of the chiral axis naphthyl core over the central double bond is 

preferred for all functionals. This stands in contrast to the change in directionality observed for 

hemiindigos 20, 60 and 61. The transition state energy is enlarged and the ground state energy 

is decreased for Z isomers when using the ωB97XD- or B3LYP functional with GD3BJ 

dispersive corrections.  
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2.3.9 Third generation of axially chiral arylated hemiindigos - 

Comparison of aliphatic signals and rotational barriers 

A comparison of the aliphatic 1H-NMR signals for three axially chiral hemiindigos bearing 

symmetric stilbene fragments is given in Figure 194 below. 20 shows no split signals of the 

stilbene fragment, as its rotational single bond barrier was calculated at +6.86 kcal/mol (Z) and 

+7.09 kcal/mol, which shows no difference in chemical shift for protons off the single bond 

straight line. In the case of 30, however, a doubled signal set in the Z isomer can be observed 

for methyl protons 24a and 24b, which is also seen for the aromatic protons and all respective 

carbons within the 13C spectrum. The single bond rotation barrier for the Z isomer was 

calculated at +17.32 kcal/mol, a similar rotational barrier was measured on the acylated di-

ortho-methyl substituted hemiindigo 57 with +17.06 kcal/mol, which could also be measured 

via its coalescence in an 1H-NMR temperature sweep experiment (see Section2.3.2, Figure 

113). The same effect can be seen on hemiindigo 33 with the addition that the E isomer also 

shows signal splitting for the methyl signals, hinting towards an increased rotational barrier in 

the E isomeric state. 

 

Figure 194: Conformational analysis of hemiindigos 20, 30 and 33. a) - c) Molecular 

structures of (Ra)-Z- and (Ra)-E-isomers of 20, 30 and 33 from left to right 

optimized at the DFT B3LYP/6-311+G(d,p) level of theory. d) Aliphatic region 

of the 1H NMR spectrum (400 MHz, dichloromethane-d2, 27 °C) of Z-20 (violet) 

and E-20 (black). Indicative signals of the methyl groups are upfield shifted in 

Z-20 compared to E-20. Signals of protons 24a and 24b are split and strongly 
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separated for Z-30. In the corresponding E-30 isomer the signal of protons 24 

are broadened. e) Aliphatic region of the 1H NMR spectrum of Z-30 (red) and E-

30 (blue). Indicative signals of the methyl groups are upfield shifted in Z-30 

compared to E-30. f) Aliphatic region of the 1H NMR spectrum of Z-33 (green) 

and E-33 (brown). Indicative signals of the methyl groups are upfield shifted in 

Z-33 compared to E-33. Signals of protons 24a and 24b are split and strongly 

separated for Z-33. In the corresponding E-33 isomer the corresponding signals 

are also already split at ambient temperature (see inset 600 MHz, 

dichloromethane-d2, 27 °C). The “*” symbol represents the water peak. Adapted 

with permission from [75]. Copyright 2018 American Chemical Society.  
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An overview of all measured free activation enthalpies ΔG* for the switches with symmetrical 

stilbene fragments is given in Figure 195: 

 

Figure 195: All atropisomerization and Z / E isomerization barriers for hemiindigos 20, 30 

and 33. Changes are indicated with +/– over the respective arrows. A clear 

tendency towards higher atropisomerization barriers from 20 over 30 to 33 can 

be seen. A slight drop the Z / E isomerization barrier can be seen for 

hemiindigo 30 compared to 20 and 33. Adapted with permission from [75]. 

Copyright 2018 American Chemical Society.  
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2.3.10 Conclusion: Axially chiral hemiindigos 

The introduction of a chiral acyl or aryl axis on hemiindigo chromophores at the indoxyl 

nitrogen was tested with various substitution patterns to explore the influence of electronics and 

sterics on the photoswitching behavior and motion of the passive chiral axes.  

First experiments were carried out with acyl residues as the pi-delocalization of the amide 

bond was thought to be stable enough for low temperature measurements. This could not be 

achieved and the low thermal barriers of this atropisomerization are only reported by theory. 

Changing the acetyl to an isobutyryl group increased the sterical bulk and yielded presumably 

higher rotational barriers as split signals could be observed via 1H NMR spectroscopy when 

sterically hindered, asymmetrical stilbene fragments are introduced to the hemiindigo 

photoswitch. This splitting, however, is not caused by the high rotational barrier of the 

isobutyryl group but by the averaged asymmetric environment induced by the stilbene 

fragment. The rotational barrier of the stilbene fragment could be determined via temperature 

dependent 1H-NMR coalescence measurements. 

The introduction of a chiral aryl axis to the hemiindigo chromophore was done utilizing a 

novel synthetic route coupling sterically demanding 2-bromotoluene to 7-methyl indole as 

precursor. The resulting chiroptical switches were scrutinized via chiral HPLC, 1H NMR, 

UV-Vis and (low temperature) electronic circular dichroism (ECD) spectroscopy. In general, a 

by 3 kcal/mol lowered atropisomerization barrier for the Z isomers compared to the E isomers 

could be observed. For all non-ortho stilbene substituted derivatives, the calculated transition 

states of Z isomers show passing of the ortho-tolyl methyl group over the indoxyl core methyl 

group while E isomer transition states prefer rotation of said methyl group over the central 

double bond, introducing directionality of the thermal atropisomerization. Furthermore, a 

strong modulation of ECD signals could be observed between Z and E isomers for derivatives 

30 and 33. Cyclic experiments showed that the atropisomerization is not influenced by the 

photoswitching motion, making these materials viable chiroptical switches addressable by 

visible light. The drawback of the fast racemization of 33 in its Z state could be improved by 

the introduction of a naphthyl moiety which makes the chiroptical properties of these switches 

usable for prolonged times at 25 °C.  

Derivative 58 (see Section 2.3.4) supports a permanent stereocenter and shows similar 

magnitudes of ECD modulation as derivatives 30 and 33 while maintaining its UV-Vis 

absorption profile. This type of compounds could be used for prolonged data storage 

applications beyond 1s and 0s and advanced chiroptical filter systems.  
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2.4 Indigo - From dye to molecular machines 

The indigo chromophore is one of the oldest and most prominent dyes known to mankind and 

possesses strongly red-shifted absorptions. Recent works describe the feasibility of cis to trans 

photoswitching at the central double bond with red light for this chromophore.[66, 69] The two 

opposing nitrogen atoms - which can be accessed by substitution reactions - exhibit a large 

positional change upon photoisomerization respective to each other. This feature of indigo 

photoisomerization leads to interesting possibilities for non-symmetrical substitutions on the 

indigo core nitrogen atoms, potentially establishing complex motional cascades upon 

irradiation. With the steadily rising interest in the field of artificial molecular machines, finding 

and controlling of induced molecular motions becomes a necessity to peek inside the inner 

workings of these molecular setups.[55, 80, 81] Tuning of key parameters, like the type of driving 

force and stability of metastable states is crucial for addressability and access to spectroscopic 

evidence of transitional intermediates. Light as fuel is highly desirable, as it is waste-free, cheap 

and precisely controlled in temporal and spatial dimensions. Low energy red light is highly 

advantageous for biological applications as it offers deep tissue penetration and overall mild 

irradiation conditions, minimizing cellular damage. The indigo chromophore offers red-shifted 

absorptions in the 620 nm region and poses as an ideal candidate for red-shifted photoswitches 

upon substitution of its nitrogen protons.[66, 69] Single molecule artificial molecular motors and 

machines to date all rely on high energy UV- or blue to green light as fuel, which can be 

circumvented with the herein described prospective molecular motor based on the indigo 

chromophore.[53, 82, 112] 

A short overview on the thermochromism of the indigo chromophore is given in the section 

below as the examination of the herein proposed indigo based motors and / or machines can 

only proceed with experiments at variable temperatures. 

2.4.1 Indigo - The aspect of thermochromism 

The investigation of the thermochromism of the indigo chromophore is crucial for the 

examination of the proposed indigo based motors and / or machines as the required experiments 

to elucidate their molecular movements have to be conducted at variable temperatures. 

Experiments on the (substituted) indigo chromophore resulted in the observation of intensity 

and wavelength modulation in their absorption spectra upon temperature change. This indicates 

thermochromic effects which could be demonstrated for the “naked” indigo chromophore as 

well as the derivatives below, which suggests thermochromism to be an intrinsic property of 
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the indigo scaffold. Precise measurements of molar absorptivities or isosbestic points should be 

done at well-defined and regulated temperatures, as lowering temperatures will enlarge and 

bathochromically shift the most red-shifted absorption maximum. The opposite effect can be 

seen by increasing the temperature beyond the ambient starting conditions. Photokinetic 

reaction rates should also be increased by enlarged molar absorptivities. 

 

Figure 196: Overview of investigated compounds 62, 63, 64 and 65 regarding their UV-Vis 

spectra at different temperatures. Compound 63 was synthesized and 

characterized by L. Huber.[66] The syn- / anti-stereodescriptors are explained in 

detail within Section 2.4.5. 

To date, thermochromism of indigo was not studied in detail. Publications by K. Ramig and O. 

Lavinda et al. suggest that the change in color intensity of indigo dyed cotton fibers results from 

the interaction of indigo with the fabric and / or solid state aggregation effects.[113, 114] In this 

work, the measurements on indigo derivatives in solution showed that a fabric / solid state phase 

is not needed for thermochromic effects, which suggests other, additional mechanisms to be 

responsible for the change in color intensity of indigo. Another publication by G. Wyman 

reports thermochromic effects on thioindigo.[115] 

To obtain temperature dependent absorption spectra, a UV-Vis spectrophotometer was 

equipped with a temperature probe with external data logging fixated on the sample cuvette 

holder and a thermostat. Heating was implemented via thermostat, cooling was achieved by 

adding ice to the circulating water in the reservoir. A lag between temperature read-out and 

absorption response can be expected, as the heating / cooling ramp could not be precisely 

controlled. Starting points might differ from the initial 100% value as the depicted spectra and 

graphs only show the measurement progress upon heating / cooling and not the static plateau / 

equilibration period at the beginning or at the end of the measurement. Slower heating / cooling 

leaves more time for thermal equilibration of thermometer readout and sample equilibration 

and should be used for future experiments.   
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Figure 197: Lewis-formula of trans-indigo 62. 

 

Figure 198: UV-Vis spectra (left) and plot of absorption maximum (right) against 

temperature for the parent indigo 62 in chloroform. A thermochromic shift of 

about 20 nm can be seen. Also, a decline in absorption to about 60 °C can be 

observed with a subsequent sharp increase in absorbance starting at 78 °C 

probably caused by boiling chloroform. The initial absorbance is not lost upon 

cooling, but the higher values at the end can be explained by increasingly 

dissolved chromophore, as this compound tends to be very insoluble in most 

solvents. 

 

Figure 199: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) 

for the parent indigo 62 in N,N-dimethylformamide. A thermochromic shift of 

about 10 nm can be seen. Also, a steady decline in absorption to 78 °C can be 

observed with a subsequent sharp drop in absorbance starting from 78 °C. The 

initial absorbance can be partially restored upon cooling, however, a permanent 

decline of 44% can be observed. This thermal degradation can also be observed 

for arylated derivatives for this solvent.  
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As irreversible thermal degradation of the indigo chromophores in N,N-dimethylformamide 

represents the major mechanism behind its absorption change, the results in other solvents 

suggest another cause for the observed effects. Twisting of the central double bond can be 

addressed via DFT calculations at the B3LYP/6-311+G(d,p) level of theory show how this 

twisting influences the absorption and electronic circular dichroism (ECD) spectra of indigo 

62. 

 

Figure 200: DFT calculations at the B3LYP/6-311+G(d,p) level of theory for indigo 62, UV-

Vis spectra including oscillator energies (left) and ECD spectra (right) were 

calculated using TD-DFT, nstates = 20 or * = 30 (the other enantiomer was 

calculated for 135°). The trans-form of indigo represents its global minimum, 
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while dihedral torsion of the central double bond by 180° gives the cis-state. 

Incremental torsion in 15° - 45° steps yields two red-shifted maxima for a 45° 

and a 135° torsion angle. 

Generally, a pronounced loss of absorption is observed (see left intensity scale in Figure 200) 

when torsion is introduced to the indigo chromophore, which is the case for N-substituted 

derivatives. This supports the main experimental observation. An additional and 

bathochromically shifted oscillation with an absorption maximum of up to 740 nm can be 

observed for twisted derivatives, which contradicts the experiment at first (Figure 200). 

However, imaginary averaging of the two most red-shifted absorptions gives a slightly shifted 

absorption maximum at 600 nm, which is in accordance to the rater small hypsochromic shift 

within the experiment. These findings suggest restoration of planarity upon cooling, which can 

be experimentally seen for chiral indigo 64 (see Figure 208). The chiral indigo derivatives also 

show the same red-shifted ECD signals at 600 nm which are independent of the ECD 

absorptions of the chiral axes, see Section 2.4.9.  

As the parent indigo chromophore does not permit a wide range of usable solvents, soluble 

N-substituted indigo chromophores were tested for their thermochromic properties. First, the 

di-para-tolyl-indigo 63 synthesized by L. Huber was investigated in chloroform, 

dimethylformamide and toluene to exclude possible effects of the chiral axes on the 

thermochromic behavior. 

 

Figure 201: Lewis-formula of di-para-tolyl-indigo 63. 
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Figure 202: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) 

for the di-para-tolyl substituted indigo 63 in chloroform. A thermochromic shift 

of about 30 nm can be seen. Also, a steady and linear decline in absorption to 

80 °C can be observed. The initial absorbance can be completely restored upon 

cooling. 

 

Figure 203: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) 

for the di-para-tolyl substituted indigo 63 in N,N-dimethylformamide. A 

thermochromic shift of about 20 nm can be seen. Also, a steady decline in 

absorption to 80 °C can be observed. The initial absorbance can be partially 

restored upon cooling, although the same kind of loss of absorbance can be seen 

with the parent indigo chromophore 62 in N,N-dimethylformamide. 



2.4.1   INDIGO - THE ASPECT OF THERMOCHROMISM 

218 

 

Figure 204: UV-Vis spectra (left) and plot of absorption maximum vs. temperature for the 

di-para-tolyl substituted indigo 63 in toluene. A thermochromic shift of about 

20 nm can be seen. Also, a steady and linear decline in absorption to 80 °C can 

be observed. 

To investigate chiral indigo derivatives and their thermochromism, non-symmetric substituents 

were introduced at the indoxyl-N atom. The precursor 1-(o-tolyl)-1H-indole 66 was prepared 

according to the published procedure of J. Antilla et al. from indole 67.[91] 

 

Scheme 32: Preparation of N-arylated indole 66. 

1-(o-tolyl)-1H-indol-3-yl acetate 68 was prepared from 66 according to the procedure by P. 

Choy et al.[92] 

 

Scheme 33: Preparation of N-arylated indoxyl acetate 68.  
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The synthesis of indigo 64 is shown in Scheme 34 below.  

 

Scheme 34: Deacylation of indoxyl acetate 68 according to U. Burger et al.[88] with dioxane 

as co-solvent and subsequent oxidation with manganese(III) acetate to furnish 

indigo 64 in good yield. 

Chiral indigo derivative 64 showed pronounced thermochromism as depicted in Figure 206 to 

Figure 209. 

 

Figure 205: Lewis-formula of di-ortho-tolyl-indigo 64. 

 

Figure 206: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) 

for the di-ortho-tolyl substituted indigo 64 in chloroform. A thermochromic shift 

of about 20 nm can be seen. Also, a steady decline in absorption to 80 °C can be 

observed. The initial absorbance can be completely restored upon cooling. 



2.4.1   INDIGO - THE ASPECT OF THERMOCHROMISM 

220 

 

Figure 207: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) 

for the di-ortho-tolyl substituted indigo 64 in chloroform. A thermochromic shift 

of about 10 nm can be seen. Also, a steady decline in absorption to 80 °C can be 

observed. 

 

Figure 208: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) 

for the di-ortho-tolyl substituted indigo 64 in 83 / 17 heptane / ethyl acetate. A 

thermochromic shift of about 20 nm can be seen. Also, a steady and linear 

increase towards -80 °C and a decline in absorption to 80 °C can be observed. 
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Figure 209: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) 

for the di-ortho-tolyl substituted indigo 64 in 83 / 17 heptane / ethyl acetate at 1 

/ 5 of the concentration as shown in Figure 208. A thermochromic shift of about 

20 nm can be seen. Also, a steady and linear decline in absorption to 80 °C can 

be observed. The initial absorbance can be completely restored upon cooling. 

The synthesis of indigo 65 from indoxyl acetate 19 is shown in Scheme 35 below. The synthesis 

of 19 is shown in Section 2.2.7 

 

Scheme 35: Deacylation of 19 according to U. Burger et al.[88] with dioxane as co-solvent 

and subsequent oxidation with manganese(III) acetate to furnish indigo 65 in 

low yield. 

 

Figure 210: Lewis-formula of di-ortho-tolyl-indigo 65. 
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Figure 211: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) 

for the di-ortho-tolyl di-7-methyl-substituted indigo 65 in 83 / 17 heptane / ethyl 

acetate. A thermochromic shift of about 15 nm can be seen. Also, a steady and 

linear decline in absorption to 80 °C can be observed. 

These thermochromic effects of N-substituted indigos in solution suggest a temperature 

dependent change in the structure, electronics or hydrogen bonding strength of the unsubstituted 

indigo chromophore. As di-substitution eliminates the effect of hydrogen bonding and 

introduces enhanced skewing / bending / torsion to the core chromophore,[116] temperature 

dependent effects caused by structural changes become more likely. This can be explained by 

different geometries within and adjacent to the crucial central double bond, which, in 

combination with the donor / acceptor setups, is responsible for the color of indigo. A 

hypsochromic shift combined with a loss of absorptivity hints towards twisting of the double 

bond as the cross-talk of donors and acceptors is reduced. The latter trend is reversed upon 

cooling up to -80 °C without observable non-linearities within this measurement range. This 

can also be explained via Boltzmann-distributions at different temperatures, populating the 

increasingly planarized conformers at lower temperatures.  
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2.4.2 Axially chiral indigos 

The synthesis of axially chiral hemiindigos described in section 2.2.7 yielded axially chiral 

indigo 65 as side product upon oxidation of unreacted starting materials on air during workup. 

The synthetic procedure was optimized by using manganese(III) acetate or potassium 

permanganate as oxidant to synthesize the desired indigo compounds efficiently and in higher 

yields. 

This first generation of disubstituted chiral indigos was expected to show very interesting 

properties and characteristics especially with regard to molecular motors, machinery and 

complex molecular motions, driven by highly desirable red light. 

 

Figure 212: Overview of 1st (65 and 69), 2nd (64 and 70) and 3rd (71, 72 and 73) generation 

of axially chiral di-N-substituted indigos. 

The following sections describe the evolution and investigation of hemiindigo 64 and other 

axially chiral indigo (model) compounds (1st to 3rd Generation) and the concurrent progress 
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made in the interpretation of experimental data to give explanations for the intriguing motional 

behavior of the second generation indigo 64. 

Unidirectional single- and double bond motor rotations, photoinduced/thermal extended Hula-

Twist, geared processes and pumping of bistable states against the thermal equilibrium, all 

fueled by red light, can be interpreted into the obtained experimental and theoretical data for 

64. An extensive computational DFT assessment was carried out on conformation, transition 

states, ECD / UV-Vis spectra and 1H-NMR-shifts to model the experimental data. 

Desymmetrization of di-arylated indigos was carried out via different approaches, which are 

found in Section 2.4.27 and are still investigated to date. The non-symmetrical derivatives are 

expected to give further experimental proof of the underlying light-induced motions and 

trajectories of this class of compounds via predominantly NMR studies. 

2.4.3 Symmetric chiral indigos - First generation indigo 65 

Indigo 65 was the first compound of this class, which was initially obtained as synthetic side 

product. Its optimized synthesis is shown in Scheme 35, Section 2.4.1. 

 

Figure 213: Overview of the three trans rotamers of indigo 65. Formally, the same amount 

of rotamers is expected for the less stable cis form. Two-fold stereo descriptors 

like e.g. (Sa)-(Sa)-syn-trans emphasize the syn-trans forms to be enantiomeric 

whereas the anti-forms are meso-forms. 

7,7'-Dimethyl-N,N'-di(o-tolyl)indigo 65 was isolated as turquoise oxidative side product of a 

condensation reaction between ortho-tolyl-arylated indoxyl acetate 19 and aldehydes. Besides 

its unexpected low solubility in various solvents, photoirradiation experiments followed via 

UV-Vis, NMR or chiral HPLC experiments did not show any trans-cis photoisomerization 

properties. 
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Figure 214: UV-Vis spectra of indigo 65 are shown exemplarily in dichloromethane. No 

change during longer irradiations (30 min) in dimethyl sulfoxide, acetonitrile, 

tetrahydrofuran or toluene could be observed. 

Separation of rotamers was also impossible at different temperatures ranging from 40 °C to 

0 °C, which is intriguing, as split signal sets for syn- and anti diastereomers are observed by 

NMR spectroscopy. Additionally, only one extremely broad peak (10 min compared to 

expected 30 s) could be eluted via achiral reversed phase (RP) and chiral normal phase HPLC 

under similar conditions as for indigo 64 (see Figure 230). 

 

Figure 215: Chiral HPLC separation attempt on indigo 65 at 0 °C with 9 / 1 heptane / ethyl 

acetate as solvent. No rotamers or peak shoulders are visible. Very high solvent 

polarities (50 - 100% ethyl acetate) yielded one single sharp peak. 

Oddly, the solubility of compound 65 is drastically reduced in organic solvents compared to all 

other arylated indigo chromophores, which can be quickly dissolved in e.g. toluene. Sonication 

and heating is necessary to obtain solutions suitable for NMR measurements. 
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A low rotational barrier for the ortho-aryl axis below 20 kcal/mol is expected as the isomers 

are inseparable via HPLC at 0 °C. The barrier of the cis to trans isomerization should also 

amount to less than 18 kcal/mol as no photoisomerization products can be observed because of 

the presumably fast thermal recovery of the trans state observed at 0 °C. Additionally, low 

quantum yields or the indigo not undergoing photoisomerization caused by the cis-isomer being 

highly thermodynamically disfavored could not be ruled out at this stage. 

 

 

Figure 216: Aliphatic section of the 1H-NMR spectrum of trans-65 (dichloromethane-d2, 

600 MHz, 27 °C). The syn isomer is preferred by 10% over the anti-form. Syn- 

and anti-diastereomers show distinct shifts for indigo-core- (15) and rotatable 

ortho-tolyl methyl group protons (14). Assignments by 2D NMR spectroscopy 

are shown starting from Figure 219. 

As the insights by photoisomerization experiments were very limited, a theoretical assessment 

was carried out.  
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Figure 217: Comparison of obtained minimum geometries of syn(left)- and anti(right)-trans 

indigo 65 at the B3LYP/6-311+G(d,p) level of theory, view along the central 

double bond. 

Both diastereomers show torsion around their central double bond, the anti form, however, 

experiences additional bending at this position to lower the strain induced by the methyl group 

pointing towards the other aryl moiety. The obtained minimum energies are in good agreement 

to the observed 1.2 / 1.0 syn- / anti-trans ratio observed via 1H-NMR spectroscopy in Figure 

216 when taking into account the Gibbs-Helmholtz equation. 
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Figure 218: Calculated ground and transition state structures and energies of indigo 65 at the 

B3LYP/6-311+G(d,p) level of theory. Transition states for three of eight 

possible atropisomerizations could be found. The other possible transition state 

for the cis isomer did not converge after several attempts and tweaks. The “+” 

sign in front of transition state values indicates the energy difference with respect 

to the lower ground state of the respective cis or trans isomers. Missing 

experimental data for the cis isomer makes it difficult to assign the reported 

transition state to be high or low in energy or to address the preferred 

directionality for this rotation.  

The favored atropisomerization energy barrier for the trans state of 65 was determined at 

relatively low values of about ΔG* = 20 kcal/mol. Besides the comparably long retention times 

of this compound, chiral HPLC separation at 0 °C is expected to be difficult because of this fast 

thermal racemization. The cis state is strongly disfavored by 9 - 13 kcal/mol according to the 

theoretical description, which could explain the lack of photochemistry taking place for this 
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compound. The atropisomerization barrier in the cis state is calculated at even lower values 

compared to the trans state, with 12.6 kcal/mol higher in energy than the respective syn-cis-

ground state, making kinetic observations not feasible at -80 °C. 

1H-nuclear Overhauser effect spectroscopy (NOESY) NMR experiments were carried out with 

65 at ambient temperatures. Positive NOEs indicate fast dynamics which support the low 

atropisomerization barriers found via DFT calculations. 

 

 

Figure 219: Aliphatic section of the 1H NOESY (dichloromethane-d2, 600 MHz, 27 °C) of 

trans-65. Expected cross peaks for syn / anti 14 / 15 can be observed. Signals of 

anti 14 and syn 14 show one of two positive NOE signals (see Figure 221), while 

the rest of the molecule shows negative NOEs if the diagonal signals are set to 
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positive values according to convention. This strongly indicates fast dynamics 

in between syn- and anti molecules as NOESY utilizes the same pulse sequence 

as exchange spectroscopy (EXSY) and the used mixing time of 1.2 s is much 

longer than the exchange of respective nuclei, hinting towards an 

atropisomerization barrier between 17- and 20 kcal/mol. 

 

 

Figure 220: Aliphatic / aromatic 1H NOESY spectrum (dichloromethane-d2, 600 MHz, 

27 °C) of trans-65. Syn- and anti form can be distinguished by the NOE signal 

of anti 14 / 13 and the non-existent signal for syn 14 / 13. This indicates the 

proximity of methyl group anti 14 to the back of the other ortho-tolyl (proton 

anti 13) on the opposite side of the central double bond.  
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Figure 221: Aromatic section of the 1H NOESY spectrum (dichloromethane-d2, 600 MHz, 

27 °C) of trans-65. No indicative signals to prove syn- or anti configuration can 

be found. Signals of anti 13 and syn 13 show one of two positive NOE signals 

(see Figure 219), while the rest of the molecule shows negative NOEs. This is in 

accordance to fast dynamics in between syn and anti molecules as NOESY uses 

the same pulse sequence as EXSY and the used mixing time of 1.2 s is much 

longer than the exchange of respective nuclei.  
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Figure 222: Aromatic (left) and aliphatic (right) sections of 1H-NMR spectra of trans-65 

from -80 °C (start) to 0 °C, starting after 60 min of in situ irradiation with 625nm 

at -80 °C(dichloromethane-d2, 400 MHz). The diagnostic signals 13 / 14 

disappear completely at about -60 °C due to signal broadening, making low 

temperature analysis of the (photo) kinetics of this compound inaccurate or 

impossible. 

 

Figure 223: Aromatic (left) and aliphatic (right) sections of 1H-NMR spectra of trans-65 with 

in situ irradiation at 625 nm (dichloromethane-d2, 600 MHz, -80 °C). Spectra 

were recorded in 1 minute intervals. A fast but small increase of one or multiple 

accumulated cis isomers can be observed. Apolar solvents increase the thermal 

stability of cis isomers for indigo 64 (see Section 2.4.13), which should be tried 

with this compound despite its overall low solubility.  
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2.4.4 Symmetric chiral indigos - Second generation indigo 64 - 

Achiral aspects 

As indigo 65 did not possess the optimal photophysical properties to be examined in 

dichloromethane and probably other solvents, indigo 64 was synthesized without the “stopper” 

methyl groups at the aromatic indigo core structure (see Sections 2.2.7 and Section 2.4.1). 

 

Figure 224: Photo- and thermally induced cis-trans isomerization of indigo 64. 

The synthesis of 64 is described in Scheme 34, Section 2.4.1 in detail. This compound shows 

significantly increased photoswitching activity at ambient temperatures in comparison to 

derivative 65. First, racemic mixtures of enantiomers and mixtures of syn- / anti diastereomers 

are investigated, later these mixtures could be separated and the enantiomers are examined 

individually to gain insights in the mechanism of their photochemistry. 

 

Figure 225: UV-Vis spectra of N,N'-di(o-tolyl)indigo 64 in THF, irradiation yields 20 - 30% 

of cis isomer (estimated by low temperature NMR and UV-Vis spectroscopy in 
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aprotic, apolar solvents, (see Section 2.4.13) which quickly returns to its trans 

state within a few minutes. 

The thermal cis-trans isomerization barriers can be estimated by tracing the thermal cis- to trans 

isomerization at 600 nm observer wavelength in the UV-Vis spectrometer at 24 °C. 

 

Figure 226: Immediate tracking of the thermal cis to trans isomerization of indigo 64 after 

625 nm irradiation in THF at 24 °C. An estimated thermal cis to trans barrier 

between 20- and 21 kcal/mol can be regarded as reasonable from the data 

displayed in this measurement course. Precise evaluation and determination of 

isomerization barriers via 1H-NMR spectroscopy can be found in Section 2.4.19. 

The thermal cis to trans barrier for indigo 64 is estimated to lie between 20 and 21 kcal/mol. 

The reduced sterical hindrance in the cis states of this chiral derivative provides detectable 

photoisomerization yields of the cis isomer at ambient temperatures for the first time.  
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2.4.5 Symmetric chiral indigos - Second generation indigo 64 - 

Assignment of trans isomers - NMR experiments 

1H-NMR experiments on indigo 65 revealed the syn isomer to be thermodynamically preferred 

by about 20%. The bias for indigo 64 is unexpectedly increased four-fold to 80% syn isomer. 

The combination of different spectroscopic methods and synthesis of several model compounds 

was necessary to unambiguously assign the signals of syn- and anti diastereomers in the 

symmetric systems 65 and 64, see Figure 227 to Figure 234. 

 

 

Figure 227: Aliphatic / aromatic section of the 1H- / 13C-HMBC NMR spectrum of trans-64 

(dichloromethane-d2, 600 MHz, 27 °C). Integrals for anti- and syn isomer are 

shown at the top, 3J proton couplings to carbon atoms are displayed for anti- and 

syn isomers. A comparable chemical shift of the methyl groups can be seen for 

indigo 64 as observed with indigo 65. The ratio between anti- / syn isomer (1 / 5) 

is strongly shifted favoring the syn diastereomer for indigo 64 compared to 

anti- / syn isomer (1.0 / 1.2) for indigo 65.  
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Figure 228: Aliphatic / aromatic section of the 1H-NOESY NMR spectrum of trans-64 

(dichloromethane-d2, 600 MHz, 27 °C). No signals for unambiguous 

determination of anti- / syn conformations can be seen. Assignment was done 

according to separated peaks by HPLC and subsequent ECD and NMR analyses. 

The aromatic region (not shown) does not yield indicative signals as well. 

Repetition of this experiment with an 800 MHz NMR device did not yield any 

new indicative signals. Positive signals between syn- and anti-trans isomers 

were not observed, as the atropisomerization barrier of 23.6 kcal/mol is too high 

in energy to show a proton exchange for a mixing time of 1.2 s.  
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2.4.6 Symmetric chiral indigos - Second generation indigo 64 - 

Assignment of trans isomers - HPLC experiments 

After obtaining the promising results for racemic indigo 64, separation of rotamers via chiral 

HPLC was carried out. 

 

Figure 229: Overview of the three trans rotamers of indigo 64. Formally, the same number 

of rotamers is expected in the less stable cis form. 

 

Figure 230: Separation of trans-64 rotamers via chiral HPLC with 83 / 17 heptane / ethyl 

acetate as eluent at 0 °C displayed three peaks with the corresponding relative 

intensity in square brackets: (Sa)-(Sa)-syn-trans [2.5], (Ra)-(Ra)-syn-trans [2.5] 

and the (Sa)-(Ra)-anti-trans [1] (meso form) in this order. Thermal racemization 
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of the pure (Ra)-(Ra)-syn-trans fraction at 25 °C over 70 min yielded (Sa)-(Sa)-

syn-trans and (Sa)-(Ra)-anti-trans in small and equal quantities. Photoswitching 

to the cis state and back to the trans isomer gave all three fractions again, hinting 

towards a lower thermal atropisomerization barrier in the cis state or an 

underlying photoreaction. 

The (Sa)-(Ra)-anti-trans peak in the chromatogram shown in Figure 230 was initially interpreted 

as cis isomer with inseparable rotamers as NMR measurements and DFT calculations on di-

para-tolyl indigo 63 by L. Huber suggested a 9 / 1 trans- / cis equilibrium for compound 63 in 

chlorinated organic solvents.[66] Nonetheless, chiral HPLC separation at 0 °C of indigo 63 did 

not show a clearly identifiable 9 / 1 trans / cis ratio (Figure 231), which could be caused by 

isomerization of the cis isomer while interacting with the stationary phase or due to changed 

isomer stabilities induced by different solvent properties. 

 

Figure 231: Injection of indigo 63 by L. Huber onto a chiral HPLC column at 0 °C with 83 / 

17 heptane / ethyl acetate as eluent. No clearly identifiable cis isomer can be 

observed. The retention times of the syn isomers of indigo 64 amount to 2.5 min 

and 5.0 min for applied conditions, indigo 63 elutes at 6.5 min. 

Solvent polarity effects or residual acidic impurities in chlorinated organic solvents might cause 

the invisibility of the cis isomer of 63 due to shifting of the cis-trans equilibrium towards 100% 

trans isomer. The possibly low stability of the cis isomer might also play a role for not observing 

this species. 

However, NMR studies in dichloromethane-d2 at 27 °C (Figure 227) suggest the syn form 

of 64 to be thermodynamically favored with a syn- / anti equilibrium of 5 / 1 without any cis 

isomer signals. Favored torsion / bending / skewing of the indigo core and steric repulsion of 

the methyl groups might be responsible for the energy differences between syn-trans and anti-
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trans forms. Fractions (Sa)-(Sa)-syn-trans and (Ra)-(Ra)-syn-trans show mirrored ECD spectra 

while (Sa)-(Ra)-anti-trans shows no ECD signal at all, which is expected for the meso form as 

the establishment of enantiomers is impossible for this diastereomer. 

 

Figure 232: Scaled UV-Vis and corresponding ECD spectra of all peaks obtained from chiral 

HPLC separation ((Sa)-(Sa)-syn-trans (ExE1) (Ra)-(Ra)-syn-trans (ExE2) and 

(Sa)-(Ra)-anti-trans-1 (ExE3)) of N,N'-di(o-tolyl)indigo 64 in 83 / 17 heptane / 

ethyl acetate at 0 °C. Both syn isomers (solid blue and broken red spectrum) 

show strong ECD responses while the anti (meso, solid green spectrum) form 

shows no ECD signal at all. 

 

Figure 233: NMR Spectra for all three HPLC separable peaks ((Sa)-(Sa)-syn-trans (Peak 1) 

(Ra)-(Ra)-syn-trans (Peak 2) and (Sa)-(Ra)-anti-trans-1 (Peak 3)) of N,N'-di(o-

tolyl)indigo 64 (dichloromethane-d2, 400 MHz, 27 °C). 
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With all combined data from UV-Vis, ECD and NMR spectroscopy, the syn- and anti form of 

indigo 64 can be unambiguously assigned without observing indicative NOESY signals. 

Separation of one syn-rotamer and tracing of the thermal decrease in ECD signal intensity (area) 

in the dark yields the kinetic plot shown in Figure 234 below. Evaluation via 1H-NMR 

measurements for the atropisomerization of a racemic syn-trans mixture to the anti-trans 

diastereomer is also possible and should result in the same energy value, which is to be tested 

to date. 

 

Figure 234: Linearization of the first order kinetics for the atropisomerization of N,N'-di(o-

tolyl)indigo 64 at 40 °C in 83 / 17 heptane / ethyl acetate. A barrier of 

23.6 kcal/mol and a half-life of 6.23 h at 25 °C could be determined. Used 

formulas and equations can be found in Section 2.2.19. 

2.4.7 Symmetric chiral indigos - Second generation indigo 64 - 

Assignment of trans and cis isomers - ECD experiments 

Low temperature ECD spectroscopy at -80 °C was carried out in an apolar 83 / 17 heptane / 

ethyl acetate solvent mixture to scrutinize the chiral behavior of indigo 64 invisible for NMR 

spectroscopy. In-situ irradiations within the ECD spectrometer in toluene at 0 °C showed 

similar results (omitted here). 
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Figure 235: a) ECD spectra for different temperatures, irradiation- and thermal annealing 

steps of enantiopure syn-trans isomer of indigo 64. The sample was irradiated in 

situ at -80 °C with 625 nm LED light for 8 minutes to an estimated PSS 

consisting of 70-80% of cis isomer b) Kinetic ECD measurement for the thermal 

isomerization from the anti-cis- to the syn-trans isomer at 0 °C in the dark, c) 

Corresponding UV-Vis spectra for b) at 0 °C (starting point dashed red 

spectrum, end point after 22 min. dashed blue spectrum). All spectra were 

recorded from the same sample in an 83 / 17 heptane / ethyl acetate solvent 

mixture. 

When starting from the enantiopure (Sa)-(Sa)-syn-trans isomer, ECD- and UV-Vis 

measurements as depicted in Figure 235 show that no racemization towards the syn-cis- or anti-

trans isomers takes place at low temperatures, which is agreement with a high rotational 

atropisomerization barrier for 64. When comparing the t0 state with the tend state at 0 °C in 

Figure 235 a), however, incomplete restoration of the initial ECD signal could be observed. It 

is impossible for this compound to show thermal atropisomerization reactions with the 

previously determined barrier of 23.6 kcal/mol for the trans-isomer at these temperatures 

during the time period of the measurement, which indicates a significantly lower rotational 

barrier in the anti-cis isomer. The latter thermally branches into to the syn-cis state (loss of ECD 
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signal) and the enantiopure (Sa)-(Sa)-syn-trans state (restoration of ECD signal). Finally the 

populated syn-cis isomer is thermally converted into the anti-trans isomer (loss of ECD signal). 

The two latter molecules cannot show an ECD signal - even in their pure forms - as both 

derivatives constitute a meso form. This behavior is further elaborated via NMR studies shown 

in Section 2.4.13. For apolar solvents (toluene), the anti-cis- to syn-trans isomer barrier was 

determined at 18.5 kcal/mol, which is comparable to the observed UV-Vis kinetics at 0 °C in 

83 / 17 heptane / ethyl acetate. However, the thermal anti-cis- to syn-cis isomer reaction 

trajectory is followed only on a small scale, as this atropisomerization barrier was determined 

at 19.11 kcal/mol at the B3LYP/6-311+G(d,p) level of theory. These ECD measurements prove 

that within the thermal branching process of the anti-cis isomer(s), the thermal double bond 

isomerization is preferred, as majorly restoration of the ECD signal was observed.  
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2.4.8 Symmetric chiral indigos - Second generation indigo 64 - 

Assignment of trans and cis isomers - DFT calculations 

Besides the two observable trans species of indigo 64, only one respective cis-species was 

experimentally confirmed via low temperature ECD spectroscopy (see Figure 235). The 

decrease in signal intensity after irradiation at low temperatures was ascribed to the generation 

of ECD-invisible syn-cis- and anti-trans- isomers. DFT calculations, however, suggested 

multiple isomers as local minimum structures (Figure 236). 

 

Figure 236: All possible diastereomers (inside box) and respective enantiomers for indigo 64 

calculated at the B3LYP/6-311+G(d,p) level of theory. Energies are given 

corresponding to the lowest ground state energy of the syn-trans-1 isomers.  

Comparison of the measured to the calculated ECD spectra can help with the assignment or 

confirmation of the prevalent anti-cis species in solution. 
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To assign the ECD spectrum of the anti-cis signal in Figure 235, a comparison of the calculated 

ECD spectra at the B3LYP/6-311+G(d,p) level of theory of the different isomers of 64 as shown 

in Figure 236 is given in Figure 237 below. The syn-cis (meso) form is expected to show fast 

interconversion of its helicity as only one set of aromatic 1H-NMR signals and no ECD signal 

can be observed experimentally. The aliphatic methyl signals are completely invisible via 1H-

NMR spectroscopy due to signal broadening below -20 °C (Section 2.4.14, Figure 263). The 

anti-trans (meso) “forms” do not exist as separable enantiomers as they represent the same 

molecule. 

 

Figure 237: Measured, 100% enantiopure trans isomer (solid blue line) and calculated trans 

isomer ECD spectra of indigo 64 at the B3LYP/6-311+G(d,p) level of theory, 

the measured spectrum was scaled in intensity to the calculated values. The 

spectrum shown in the broken blue line represent the best fitting calculated 

spectrum. Signal intensities at and below 250 nm are not reliable experimentally 

as solvent absorptions (83 / 17 heptane / ethyl acetate) are obscuring the 

measurements. 

The assignment in Figure 237 for the measured syn-trans isomer spectrum to be associated to 

the (Sa)-(Sa)-(M)-syn-trans-1 structure of indigo 64 is based on the observation at the 600 nm 

region, where (Sa)-(Sa)-(M)-syn-trans-1 is the only trans isomer that shows a negative ECD 
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response as observed for the measured sample. The syn-trans-2 isomer shows a pronounced 

trend towards the opposite sign of the ECD absorption. The anti-trans isomer is out of 

consideration because it represents a meso form that yields no ECD signal (see Figure 232). 

The 275 nm region shows a good fit to the experimental measurement as well. 

 

Figure 238: Measured, 70-80% cis isomer, estimated (solid red line) and calculated cis 

isomer ECD spectra of indigo 64 at the B3LYP/6-311+G(d,p) level of theory, 

measured spectra were scaled in intensity to the calculated values. The spectrum 

shown in the broken red line represents the best fitting calculated spectrum. 

Signal intensities at and below 250 nm are not reliable experimentally as solvent 

absorptions (83 / 17 heptane / ethyl acetate) are obscuring the measurements. 

The anti-cis isomer (Figure 238) was assigned to be (Sa)-(Sa)-(M)-anti-cis-2 by the 600 nm - 

450 nm region, as the general shape of anti-cis-1 shows a less matching graph to the experiment 

than (Sa)-(Sa)-(M)-anti-cis-2, especially in the 500 - 650 nm region. The syn-cis isomer is out 

of consideration because it represents a meso form that yields no ECD spectrum. 
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Figure 239: Comparison of measured (solid blue (100% enantiopure trans isomer) and red 

(70-80% cis isomer, estimated) lines) and best fitting calculated ECD spectra 

(broken blue- and red lines) of indigo 64 at the B3LYP/6-311+G(d,p) level of 

theory, measured spectra were scaled in intensity to the calculated values. Signal 

intensities at and below 250 nm are not reliable experimentally as solvent 

absorptions (83 / 17 heptane / ethyl acetate) are obscuring the measurements. 

Comparison of both trans and cis isomers shows that no helix inversion around the aryl axes as 

well as within the indigo core takes place as this would result in a mirrored ECD response, 

which is not observed. 

This assignment and the observed effects suggests a photoinduced trans to cis isomerization 

supporting solely a 180° rotation of the central double bond from the lowest energy (Sa)-(Sa)-

(M)-syn-trans-1- to the highest energy (Sa)-(Sa)-(M)-anti-cis-2 isomer without any additional 

single bond rotations of the chiral axes, which is in accordance to the 1H-NMR spectroscopic 

results shown in Section 2.4.13. A 147° rotation of the central double bond would result in the 

anti-cis-1 isomer and hence a more positive ECD signal, especially in the 500 - 650 nm region. 

This is important to consider for the proposed two-step double motor motion of indigo 64 

discussed in Section 2.4.21.  
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2.4.9 Non-symmetric chiral indigos - Second generation chimeric 

model compound indigo 70 - Disentanglement of chiral axes 

At this point it was not certain if the kinetic plot in Figure 234 represented a cooperative process 

by the influence of both chiral axes or the independent but simultaneous atropisomerization of 

each chiral axis. To discern these two possibilities, chimeric model compound 70 was 

synthesized by F. Binder during his research internship. Another possibility, the simultaneous 

two-fold rotation of both axes for indigo 64 can be generally ruled out as this would suggest an 

experimental free activation enthalpy larger than ΔG* = 2 * 23.6 kcal/mol for the same 

transition state geometry as calculated for a singular atropisomerization reaction. This is not 

feasible as a temperature of 313.2 °C is necessary to achieve the same thermal half-life of 6.35 h 

which is shown by the 23.6 kcal/mol atropisomerization barrier at 25 °C. Considering the 

Boltzmann distribution of the energies within molecules in bulk conditions, it is extremely 

unlikely for a simultaneous rotation of both axes to take place. 

 

Figure 240: Lewis-formula of indigo 70. 

As the determined atropisomerization barrier of 23.6 kcal/mol for indigo 64 represents the loss 

of ECD signal area in a molecular setup with two atropisomeric ortho-tolyl axes, indigo 70 was 

synthesized to examine the properties of a single chiral aryl axis for this class of compounds. 

The synthesis follows established protocols from U. Burger et al.[88] using dioxane as co-solvent 

and subsequent oxidation with manganese(III) acetate to yield 70 in a mixture of products 

(Scheme 36). 
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Scheme 36: Simultaneous deacylation of 68 and 74 according to U. Burger et al.[88] with 

dioxane as co-solvent and subsequent oxidation with manganese(III) acetate 

yielding indigos 64, 70 and 63. The low yields can be attributed to the increased 

sterical hindrance of the more planarized para-tolyl moiety. 

The use of potassium permanganate for the general oxidation reaction of arylated indoxyls to 

indigo is also possible, dropping the reaction times to 10 minutes. The expected statistical 

product distribution of 1 / 2 / 1 ortho-ortho- (64) / ortho-para- (70) / para-para- (63) indigo 

was not obtained by this reaction, instead, a 6 / 2 / 1 ratio was observed. The formation of dimers 

from twisted precursors is highly favored while the planar starting material 74 reacts at a slower 

rate. This can be attributed to increased sterical hindrance at the α-position of the indoxyl caused 

by the protruding planarized para-tolyl substituent. The chimeric indigo 70 is obtained in a 

doubled yield compared to 63. 

Chiral HPLC separation yielded the two expected rotamers of 63 in (Sa)- and (Ra) configuration 

(Figure 241, chromatogram not shown). 

 

Figure 241: Scaled UV-Vis (left) and ECD (right) spectra of (Ra)-N-(o-tolyl)-N'-(p-

tolyl)indigo 70 in 83 / 17 heptane / ethyl acetate at 0 °C (green), after 5 min of 

irradiation with 617 nm (red). (Sa)-(Sa)-Syn-trans-1 (E1) and (Ra)-(Ra)-syn-trans-

1 (E2) of N,N'-di(o-tolyl)indigo 64 (broken blue and light blue lines) are added 

for comparison. Irradiation of 70 gives slightly better cis isomer yields compared 

to 64. 
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The comparison of the ECD spectra intensities of 70 to 64 (scaled by the absorption maxima at 

the red part of the spectra) shows that the area of the ECD signal is decreased by approximately 

50% from 240 nm to 400 nm, which is in accordance to the removal of one chiral aryl axis. 

Interestingly, the range from 400 nm to 650 nm shows the same signal intensity, hinting 

towards the twisted indigo core absorbing circularly polarized light (CPL) as the ortho-aryls 

are not capable of absorbing green, yellow and red light. Photoisomerization of 70 at ambient 

temperatures suggests a fast racemization in the cis state because of the nearly complete loss of 

ECD signal intensity - a behavior also seen with indigo 64. This shows that racemization in the 

cis state is accelerated because of a lower rotational energy barrier, regardless of the presence 

of a secondary chiral axis present in indigo 64. At this stage, it cannot be discerned if the 

racemization takes place thermally or during a photostep, although experiments on chiral 

hemiindigos showed entirely thermal processes to be responsible for atropisomerization 

reactions (see Section 2.3.8). 

With molecule 70 at hand, subtraction of the ECD signal of (Ra)-(M)-N-(o-tolyl)-N'-(p-

tolyl)indigo 70 from (Ra)-(Ra)-syn-trans-N,N'-di-(o-tolyl)indigo 64 is possible, which gives the 

spectrum of one ortho-tolyl group attached to the indigo core (Figure 242).  

 

Figure 242: Spectra subtraction of the ECD response of (Ra)-70 from (Ra)-(Ra)-syn-trans-64. 

The influence of the additional ortho-tolyl moiety of 64 can be observed in the 

range from 240 nm to 400 nm. 
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Figure 243: Linearized first order kinetics of the racemization of 70 (E1) in 83 / 17 heptane 

/ ethyl acetate solution at 40 °C. The free activation enthalpy of thermal 

atropisomerization ΔG* was determined to be 23.1 kcal/mol with a thermal half-

life of 2.7 h at 25 °C. Used formulas and equations can be found in Section 

2.2.19. 

The determined barriers for trans-70 (23.1 kcal/mol) and trans-64 (23.6 kcal/mol) are in good 

agreement, which indicates no or insignificant cooperativity during rotation of diarylated chiral 

indigo trans-64. 
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2.4.10 Non-symmetric chiral indigos - First generation chimeric 

model compound indigo 69 - Disentanglement of chiral axes 

As the model compound 70 proved as a successful probe for identifying the properties of a 

singular chiral aryl axis attached to a diarylated indigo chromophore, chimeric model 

compound 69 was prepared as shown in Scheme 37 by F. Binder. 

 

Figure 244: Lewis-formula of indigo 69. 

In order to scrutinize the behavior of symmetric 7,7'-dimethyl-N,N'-di(o-tolyl)indigo 65, indigo 

69 was prepared and characterized.  

 

Scheme 37: Simultaneous deacylation of 19 and 74 according to U. Burger et al.[88] with 

dioxane as co-solvent and subsequent oxidation with manganese(III) acetate to 

yield indigos 65, 69 and 63. The low yields can be attributed to the increased 

sterical hindrance of the planar para-tolyl moiety. 

The use of potassium permanganate for the general oxidation reaction of arylated indoxyls to 

indigo is also possible, dropping the reaction times to 10 minutes. The expected statistical 

product distribution of 1 / 2 / 1 ortho-ortho- (65) / ortho-para- (69) / para-para- (63) indigo 

was not obtained in this reaction, instead, a 6 / 2 / 1 ratio was observed. The formation of dimers 

from twisted precursors is strongly favored while the planar products represent minor species. 

The chimeric indigo 69 is obtained in twofold yield compared to 63. 
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Separation with chiral HPLC at 0 °C was feasible for indigo 69, two rotamers (Sa)-trans-69 and 

(Ra)-trans-69 could be isolated. 

 

Figure 245: Chiral HPLC separation of the (Sa)-trans-69 and (Ra)-trans-69 indigo rotamers 

at 0 °C with 50 / 50 heptane / ethyl acetate as eluents. The two expected rotamers 

can be seen. The streaks between the two peaks indicate an active 

atropisomerization reaction taking place, interconverting one rotamer to the 

other while on the chiral column. The immediate stop of this “streaking” after 

the complete elution of the (Ra)-trans-69 underlines these findings. The polarity 

of the eluent mixture was significantly increased compared to the separation of 

70 to yield an acceptable difference in retention times. 

O. Trapp showed that the observed “streaking” during HPLC separation of 69 can be used to 

obtain kinetic data for the interconversion of molecular species via liquid- and gas 

chromatography.[95, 117] This should also be applicable in this case, as the difference in peak 

retention times should decrease while the intensity of the streaking level should increase for 

higher separation temperatures or molecules with lower interconversion barriers. 

Immediate cooling and ECD measurement of the obtained fractions furnished the remaining 

ECD areas in Figure 246 below.  
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Figure 246: Scaled UV-Vis (left) and ECD (right) spectra of 7-methyl-N-(o-tolyl)-N'-(p-

tolyl)indigo 69 in 83 / 17 heptane / ethyl acetate at 0 °C (fraction 1, blue and 

fraction 2 broken light blue) and after 5 min of 617 nm irradiation (red).  

 

Figure 247: Linearized first order kinetics of the thermal atropisomerization of (Ra)-trans-69 

in 50 / 50 heptane / ethyl acetate at 0 °C. The free activation enthalpy ΔG* for 

this process was determined to be 20.4 kcal/mol resulting half-lives of 1.73 min 

at 25 °C and 44.4 min at 0 °C. Used formulas and equations can be found in 

Section 2.2.19. 

The low ECD signal of “pure” 69 can be attributed to an intrinsic property of the molecule to 

show less ECD response or due to the low free activation energy for the thermal 

atropisomerization (ΔG* = 20.4 kcal/mol with half-lives of 1.73 min at 25 °C and 44.4 min at 

0 °C) resulting in significant racemization before ECD measurement. Fast sample handling with 

immediate cooling in total absence of light is crucial for bridging the large spatial distances 

between the available analytical devices within our laboratory. Measurement at night and 

utilization of a scooter for fast sample transfer is advised under given circumstances. However, 

most of the ECD response of separated samples might have vanished due to the HPLC detector 
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and outlet tubing not being coolable to 0°C. No photoswitching could be observed after 

irradiation of trans-69 with 617 nm for 5 min at 0 °C, which resembles the behavior of 

compound 65. Irradiation to the non-observable cis isomer (quick thermal cis to trans 

isomerization) and thermal atropisomerization of the chiral axis in this unstable cis state quickly 

decreases the ECD signal of 69 as seen with other chiral indigo derivatives 64 and 70. 

The additional methyl group in position 7 of the indoxyl fragment adds sterical hindrance to 

the ortho-aryl group, which gets wedged in between the methyl group and carbonyl oxygen of 

the opposite indoxyl fragment. This reduces the stability of the chiral ortho-aryl axis as seen 

with all Z isomers of chiral hemiindigo derivatives (see Section 2.3.6) and indigo 65.  

Indigo 65 possesses two adjacent methyl groups next to its chiral axes and should show 

similar atropisomerization barriers as indigo 69. The barriers of 65 cannot be measured via ECD 

spectroscopy as separation of atropisomers is not possible with the available equipment to date. 

However, suggestions by R. Linser supported EXSY NMR spectroscopy as possible method to 

obtain quantitative kinetic data for indigo 65. 

The synthesis, characterization and kinetic measurements of indigos 70 and 69 underlined the 

theories for the behavior of symmetric indigos 64 and 65 These experiments also hinted towards 

the cis / trans / syn / anti assignments and gave the initial ideas for further low temperature 

ECD and NMR experiments to unambiguously assign the obtained signals to the correct 

molecular structure.  
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2.4.11 Symmetric chiral indigos - Second generation indigo 64 - 

Experimental photophysical data 

The goal of the following sections consists of supporting the proposed (uni-)directional 

motional cycles of indigo 64 experimentally and with the help of DFT theory. The developed 

molecular setup allows for several different kinds of (uni-)directional motional cascades at 

different temperatures and was tested in dichloromethane and toluene as solvents. Keeping a 

physical molecular model from a building kit at hand is highly advised to keep track of the 

proposed geometrical changes within this molecule. The experimental data is presented 

coherently for two types of proposed unidirectional motors, thermally reversible photoinduced 

pumping of isomers and photoinduced- / thermal extended Hula-Twist / geared steps, as most 

of the proofs are redundant for each motion. Further interpretation of the data is given starting 

from Section 2.4.19. 

The generally applied color code for the isomers is defined as following: syn-trans + anti-

trans isomers = blue, syn-cis + anti-cis isomers = red, syn-trans + syn-cis isomers = green, 

anti-cis + anti-trans = violet. If syn- and anti forms are discernable from each other - regardless 

if a cis- or trans indigo core structure is present - the syn- / anti colors are chosen for respective 

signals. Blue- and red signals indicate the presence of combined syn- / anti signals within the 

respective trans or cis form.  
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2.4.12 Symmetric chiral indigos - Second generation indigo 64 - 

Photoinduced trans to cis double bond isomerizations 

As starting point, the simplified photoinduced central double bond isomerization of different 

isomers of indigo 64 is shown with Lewis-formulas in Figure 248.  

 

Figure 248: a) Rota- and diastereomers of trans-64, b) photoinduced rota- and diastereomers 

of cis-isomers by irradiation with red light. A rotation around the central double 

bond within the indigo core plane for the meso form (Sa)-(Ra)-anti-trans-64 gives 

(Ra)-(Sa)-anti-trans-64, proving both projections to be the same molecule. The 

meso form of the cis-isomer supports a mirror plane between both ortho-arylated 

indoxyls, proving both projections to be the same molecule. The trans to cis 

isomerizations (and vice versa) to the respective products can be followed by the 

indicated vertical (de-) excitations. 

The meso forms are invisible by ECD spectroscopy while enantiomers cannot be discerned by 

NMR spectroscopy without chiral alignment media. The two possible diastereomers for the 

anti-cis isomers (namely -1 and -2, caused by the freezing of helicity at -60 °C) and two 

diastereomers of the syn-trans isomers (namely -1 and -2, caused by the freezing of helicity at 
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-60 °C) are not discerned in Figure 248, as indication of the helicity around the central double 

bond is not done for clarity reasons and is discussed below and in Section 2.4.16. 

As previously shown in Figure 230, indigo 64 can be separated via chiral HPLC into (Sa)-(Sa)-

syn-trans-, (Ra)-(Ra)-syn-trans- and (Sa)-(Ra)-anti-trans isomers with a ratio of 2.5 / 2.5 / 1 in 

83 / 17 heptane / ethyl acetate. A 5 / 1 syn- / trans isomer ratio is also observed via 1H-NMR 

spectroscopy in dichloromethane-d2. Irradiation with a 625 nm LED light provides the 

corresponding cis isomers at temperatures below 0 °C. The meso forms possess an inversion 

center in the trans state and a mirror plane in the cis form, converting (Sa)-(Sa)- and (Ra)-(Ra) 

enantiomers into one single (Sa)-(Ra) species upon atropisomerization. 

The vertical, photoinduced double bond isomerizations from e.g. (Sa)-(Sa)-syn-trans- to the 

(Sa)-(Sa)-anti-cis isomer etc. and also the thermally- or photoinduced back reaction to the trans 

state are always observed experimentally e.g. at -5 °C in toluene. Higher temperatures allow 

for the thermal cis to trans central double bond isomerization to proceed, at e.g. 40 °C, however, 

the reaction rate is too fast for detection via NMR or stationary UV-Vis spectroscopy. If these 

vertical trans to cis to trans reactions would be the only observable pathways, the 

thermodynamic equilibrium ratio of 5 / 1 syn- / anti-trans isomer cannot be changed under any 

circumstances (within a closed system and no photodegradation). If a change in these ratios is 

observed, other occurring photochemical or thermal reactions are mandatory to shift the 

system out of its thermal equilibrium. 

Lewis-formulas make visualization of the prevalent molecular helicities and diastereomers 

very confusing, therefore, the computationally optimized molecular structures are shown from 

now on. An overview of all experimentally- and computationally observed species and their 

properties is given in Table 12, Section 2.4.16, including short explanations. This is done to 

outline the complex motions and observed bistable intermediates to avoid confusion along the 

increasing number of experiments. 

Table 12 shows the converged structures upon optimization (DFT) of respective isomers. 

The depicted structure is postulated, as a still unexplained additional signal set is observed upon 

irradiation of the anti-trans isomer at -60 °C in toluene-d8 and dichloromethane-d2. These 

unexplainable signals show the same thermal stability as the anti-cis-1 and -2 isomers in 

dichloromethane-d2 and are converted to the anti-cis-1 signal in toluene-d8 at -20 °C. This hints 

towards another anti-cis species or a coalescence for split signals of the anti-cis-1 form, (see 

Section 2.4.14 for details).  
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2.4.13 Symmetric chiral indigos - Second generation indigo 64 - Low 

temperature NMR Data starting from the syn-trans-1 isomers 

To clarify which processes are responsible for the enrichment of respective isomers of indigo 

64, low temperature kinetic NMR studies were conducted on a 400 MHz NMR device with a 

glass fiber coupled to a high power 625 nm LED and are shown in this section.  

In the case of dichloromethane, the free activation enthalpies for the thermal double bond 

isomerization from anti-cis- to syn-trans- and syn-cis- to anti-trans isomers differ vastly by 

5 kcal/mol, as shown in Figure 249 and Figure 250 below. 

 

Figure 249: Irradiation of a 5 / 1 syn- / anti mixture of indigo 64 yields mainly the anti-cis-2 

isomer in dichloromethane-d2 followed by 1H-NMR spectroscopy at -50 °C. 

52% of anti-cis-2 isomer could be obtained in the PSS at 625 nm irradiation. 

Subsequent measurements of the decaying cis isomers in the dark gave a free 

activation enthalpy ΔG* = 15.8 kcal/mol. The decreasing anti-cis-2 isomer was 

fully converted back to the rising syn-trans-1 isomer. No second signal for the 

anti-cis-1 form at 1.9 ppm can be observed (see Figure 261). The signal at 

1.72 ppm (red rectangle) of the thermally stable syn-cis isomer population - 

generated from the minor anti-trans isomer - is also not visible due to signal 
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broadening and subsequent shifting towards 1.45 ppm (see Figure 258 and 

Figure 222 for indigo 65). 

 

Figure 250: Aromatic part of the irradiation of a 5 / 1 syn- / anti mixture of indigo 64 to the 

anti-cis-2 (violet) and syn-cis (green) isomers in dichloromethane-d2 followed 

by 1H-NMR spectroscopy at -50 °C. Subsequent measurements of the decaying 

anti-cis-2 isomer in the dark gave a free activation enthalpy ΔG* = 

15.8 kcal/mol. The decreasing anti-cis-2 isomer was not converted to the stable 

syn-cis isomer, only the syn-trans-1 isomer population was restored during the 

decay of the anti-cis-2 isomer. The integrals of the anti-cis-2 signals are 

underrepresented, especially in the aromatic region, as the total amount of cis-

isomers reported at the signal located at 7.78 ppm exceeds the combined integral 

value located at 6.38 ppm. 
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Figure 251: Irradiation of a 5 / 1 syn- / anti mixture of indigo 64 to the syn-cis isomer (green) 

in dichloromethane-d2 followed by 1H-NMR spectroscopy at 11 °C. 20% of syn-

cis isomer could be obtained at this temperature in the PSS (77% at -80 °C, 

Figure 253), which can be explained by the low thermal stability of the anti-cis-2 

isomer, which represents the mayor photoproduct. However, minor amounts of 

anti-trans isomer are responsible for the photogeneration of the syn-trans-1 

isomer population. Subsequent measurements of the decaying cis isomers in the 

dark gave a free activation enthalpy ΔG* = 20.7 kcal/mol for this thermal 

reaction. The decreasing syn-cis isomer is thermally converted at a slow rate to 

the rising anti-trans isomer at this temperature. The violet rectangle at 1.45 ppm 

indicates the absence of the anti-cis-2 isomer at 11 °C, which is to be expected 

because of its low thermal stability.  

Irradiation of a 5 / 1 syn- / anti mixture of indigo 64 at -50 °C yields the product derived from 

a double bond isomerization starting from the syn-trans-1 isomer, namely the anti-cis-2 isomer. 

However, the thermally more stable syn-cis isomer, which is generated from the anti-trans-2 

isomer, remains static throughout the course of the kinetic measurement. The situation is 
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changed for irradiations at 11 °C, as it is impossible to observe the anti-cis-2 isomer at this 

temperature. Irradiation yields solely the syn-cis isomer as photoproduct but, surprisingly, a rise 

in anti-trans isomer can also be observed during irradiation (Figure 251).  

A hypothetical reaction pathway towards the anti-trans isomer consists of a temperature 

independent photoinduced single bond rotation, which can be most likely ruled out as a rise of 

anti-trans isomer at -50 °C or -80 °C is not observed. The reaction pathway shown in the cycle 

described in Figure 279, Section 2.4.19, is suggested as the syn-trans- to anti-cis-2 isomer 

pathway branches into two thermally available reactions at 11 °C. These consist of the anti-cis-

2- to syn-trans-1 double bond isomerization towards the thermodynamic minimum represented 

by the syn-trans-1 state and the atropisomerization of anti-cis-2 towards the thermodynamically 

more favored syn-cis state. The latter is thermally converted back to the anti-trans state via 

double bond isomerization, accumulating this specific isomer against its thermal equilibrium. 

The atropisomerization barrier of 23.6 kcal/mol allows for restoring of the initial syn-trans-1 

isomer population, closing the motional cycle. 

Figure 250 unambiguously shows that both cis isomers exhibit very different thermal 

barriers in dichloromethane-d2 and can be populated by irradiation with 625 nm red light in a 

single experiment despite very different ratios of the starting trans isomers. It could also be 

shown that the decrease of anti-cis-2 does not increase the amount of syn-cis isomer, proving 

that the thermal anti-cis-2 to syn-cis barrier is not overcome at this temperature while the anti-

cis-2 to syn-trans-1 double bond isomerization takes place readily.  
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Figures reporting the integration results like Figure 252 below show the distributions at the 

beginning or end of each measurement array under given conditions. Spectra without changes 

of representing key points of the measurement are omitted for clarity. The overall cis to trans 

ratios were determined with the non-shifting / unbroadened syn+anti-cis signals at 7.75 ppm 

(red) and syn+anti-trans signals at 6.55 ppm (blue). The syn / anti ratios of cis and trans isomers 

were determined within the aliphatic or aromatic region, depending on visibility and estimated 

degree of signal broadening. The methyl signal of the thermodynamically most stable syn-anti 

state (green) were used as internal integration reference (normalized to 1) to facilitate analysis. 

 

Figure 252: Selected 1H-NMR spectra recorded during the irradiation of a 5.0 / 1.0 syn- / 

anti-trans mixture of indigo 64 populating the anti-cis-2 and syn-cis isomers 

(dichloromethane-d2 at -50 °C). The Spectra were taken from the irradiation and 

thermal annealing experimens shown in Figure 249 and Figure 250. A PSS 

consisting of 56% cis isomers (compared to all trans isomers) can be obtained 

at -50 °C. Relative normalized (to the syn-anti isomer methyl group signals) 

integrals for indicated signal areas are given below the respective peak. The 

integrals of the anti-cis-2 signals are underrepresented, especially in the aromatic 

region, as the total amount of cis-isomers reported at the signal located at 

7.78 ppm exceeds the combined integral value located at 6.38 ppm. 
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Irradiation at -50 °C yields the signals for anti-cis-2 and syn-cis isomers at 6.38 ppm and 

6.34 ppm and after switching off the light source, the anti-cis-2 signal thermally disappears 

after several minutes at -50 °C while the syn-cis signals remain unchanged. Switching to an 8.3 

/ 1.0 syn- / to anti-trans isomer ratio after the thermal annealing at -50 °C can be explained by 

selective thermal isomerization from anti-cis-2 to syn-trans isomers while the syn-cis isomer 

remains and functions as a “storage” of the missing anti-trans isomer population. The syn-cis 

isomer is converted to the anti-trans isomer starting above 0 °C. For the measurement shown 

in Figure 249, Figure 250 and Figure 251, however, thermal annealing at higher temperatures 

was not carried out. 

To disentangle thermal- and photochemical reaction kinetics, in situ irradiations at -80 °C with 

subsequent thermal annealing steps at increasingly higher temperatures were carried out (Figure 

253). 

 

Figure 253: 1H-NMR spectra recorded during 625 nm the irradiation of a 5.0 / 1.0 syn- / anti-

trans mixture of indigo 64 to the anti-cis- and syn-cis isomers in 

dichloromethane-d2 at -80 °C and stepwise annealing at higher temperatures. A 

PSS containing 77% cis isomers (respective to all trans isomers) can be obtained 

at -80 °C. Integrals for indicated signal areas are given below the respective 

peak. Thermal decay in the dark is clearly seen at around -40 °C. The integrals 
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of the anti-cis-2 signals are underrepresented, especially in the aromatic region, 

as the total amount of cis-isomers reported at the signal located at 7.78 ppm 

exceeds the combined integral value located at 6.38 ppm. 

Figure 253 shows the photoinduced population of syn- and anti-cis-2 isomers with red light at 

-80 °C. Both isomers can be observed in the aromatic region at 6.38 ppm (syn-cis form) and 

6.34 ppm (anti-cis-2 form). The methyl signals of the syn-cis isomer cannot be observed 

because of signal broadening at low temperatures (see Figure 254 for the traced signals at 

different tramperatures). The lower thermal stability of the anti-cis-2 isomer can also be 

observed at -40 °C as the corresponding signal of this species decreases in intensity while the 

syn-cis signal remains unchanged (Figure 253). After full thermal conversion of the cis isomers 

back to the trans isomers at ambient temperatures, the initial composition of syn- to anti-trans 

isomers is restored which is consistent with the other low temperature measurements. 

 

Figure 254: Temperature dependence of the syn-cis isomer ortho-methyl signal of indigo 64 

in the range of 11 °C to -50 °C. Irradiation at 11 °C yielded the previously 

observed syn-cis isomer with the methyl-group signal residing at 1.69 ppm, 

cooling to -10 °C showed a slight upfield shift and signal broadening. Cooling 

to -30 °C strongly shifts the syn-cis methyl group signal under the also shifted 

water peak, while cooling to -50 °C gives another separate signal. Irradiation at 

-50 °C increases the broad signal of the methyl group of the anti-cis-2 isomer at 

1.43 ppm. 
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The assignments of the methyl-group signals in Figure 254 are not unambiguous as the shifts 

cannot be followed conclusively. However, it could be demonstrated that shifting and signal 

broadening takes place at different rates for the methyl signals of syn-cis isomers, which 

explains why the syn-cis and possibly other isomers cannot be observed simultaneously at low 

temperatures. This broadening might be caused by a constant change in helicity of the on 

average symmetric syn-cis isomer. This effect can also be observed for the fast motions of 

indigo 65 (Section 2.4.3, Figure 222).  
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As experiments in dichloromethane as solvent showed vast differences between the thermal 

stabilities for anti-cis- and syn-cis isomers, the experiments were repeated in toluene solution 

where the anti-cis-2 isomer can already be observed at 0 °C instead of -50 °C (Figure 255). 

 

Figure 255: Irradiation of a 5.0 / 1.0 syn- / anti mixture of indigo 64 with 625 nm LED light 

to the anti-cis-2 and syn-cis isomers in toluene-d8 at -60 °C. Spectra were 

recorded in one minute intervals. Generation of cis isomers can be observed, the 

syn-cis species is expected to show broad signals for its methyl protons at low 

temperatures (see Figure 254), which leaves the anti-cis-2 isomer as the only 

visible new species in the aliphatic part of each spectrum. Discerning of syn- and 

anti-cis-2 isomers is impossible at -60 °C in this solvent as signal overlap and / 

or -broadening at in the aromatic part of the spectrum causes inseparable signals. 
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Figure 256: 1H-NMR spectra of the irradiation of a 5.0 / 1.0 syn / anti mixture of indigo 64 

to the anti-cis-2 and syn-cis isomers in toluene-d8 at -60 °C and subsequent 

behavior in the dark at various temperatures. A PSS consisting of 79% cis 

isomers (respective to all trans isomers) can be obtained during irradiation at -

60 °C. Integrals for indicated signal areas are given below the respective peak. 

The integrals of the anti-cis-2 signals are underrepresented, especially in the 

aromatic region, as the total amount of cis-isomers reported at the signal located 

at 7.78 ppm exceeds the combined integral values located at 6.34 ppm. 

Figure 255 shows the photoinduced population of syn- and anti-cis-2 isomers with red light at 

-60 °C in toluene solution and the subsequent species development at different temperatures in 

the dark. Both cis isomers can be observed in the aromatic region at 6.38 ppm (syn-cis form) 

and 6.34 ppm (anti-cis-2 form) after irradiation while the methyl signals of the syn-cis isomer 

cannot be seen because of signal broadening at low temperatures. The syn- / anti-trans isomeric 

ratio remains unchanged, showing equal turn-over rates for syn- and anti-cis-2 isomers. The 

lower thermal stability of the anti-cis-2 isomer can be observed at 0 °C (in contrast to -50 °C in 

dichloromethane-d2) and the corresponding signals of this species now decrease only at a 

slightly faster rate than the syn-cis signal (Figure 256).  
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2.4.14 Symmetric chiral indigos - Second generation indigo 64 - Low 

temperature NMR Data starting from the anti-trans isomer 

In situ irradiation of an anti-trans-64 enriched isomeric mixture (obtained by low temperature 

HPLC separation of the trans isomers) yielded the 1H-NMR spectra shown in Figure 257 below. 

 

Figure 257: Aromatic part of the 1H NMR spectra recorded during 625 nm irradiation of a 

1.0 / 6.5 syn / anti mixture of indigo 64 to yield syn-cis, anti-cis-1 and syn-trans-

2 signals in dichloromethane-d2 at -60 °C. Coincident generation of syn-, anti-

cis-1 and syn-trans-2 signals can be observed. The rate of the photoreactions can 

be seen to be faster for the syn-cis isomer and slower for the anti-cis isomer as 

the syn-trans-1 isomer represents as minor species for the photoreaction and 

generates anti-cis-1- / syn-trans-2 signals in lower quantities, respectively. The 

previously generated anti-cis-2 isomer is not observed (Figure 250). 

Figure 257 shows that anti-cis-1 / syn-trans-2 signals are generated exclusively and no anti-

cis-2 signal at 6.34 ppm can be observed. This suggests skipping of the anti-cis-1 and syn-trans-

2 state within the photoinduced trajectory of the syn-trans- to the anti-cis-2 isomer. 

Additionally, the anti-cis-2 state is never populated when starting from the anti-trans isomer.
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The aromatic region of anti-trans indigo 64 is clearly responsible for generating a new signal 

at 6.85 ppm and 5.96 ppm within 1H-NMR in situ irradiation experiments. The comparison of 

the aliphatic parts of the 1H-NMR spectra recorded during irradiation of either syn-trans or anti-

trans enriched solutions in different solvents is shown in Figure 258. 

 

Figure 258: Comparison of three in situ irradiation experiments of indigo 64 with 625 nm 

LED light at low temperatures in dichloromethane-d2. The spectra were taken at 

a 1 minute time interval. The relative integrals for start and end of each 

photoreaction course are given in orange. The plots on the left and middle start 

with a 1.0 / 0.2 syn- / anti-trans mixture, the plot on the right with a 0.2 / 1.0 syn- 

/ anti-trans mixture. The rise of novel signals at 1.89 ppm (anti-cis-1) and 

1.38 ppm (syn-trans-2) with comparable estimated photokinetics as the signal at 

1.46 ppm (anti-cis-2 generated from the syn-trans-1 isomer) can be observed. 

The syn-cis isomer is the major photoproduct originating from the anti-trans 

isomer but shows broad aliphatic signals at these temperatures and can only be 

observed in the aromatic region or at temperatures above -20 °C, see Figure 253 

and Figure 254. 

With anti-trans being the initial major species at the start of the irradiation experiment (which 

undergoes only little atropisomerization to equal amounts of (Sa)-(Sa)-syn- or (Ra)-(Ra)-syn-

trans-1 isomer during sample handling), the two concomitantly arising signals at 1.90 ppm 
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(anti-cis-1) and 1.38 ppm (syn-trans-2) are unexpected because majorly the syn-cis isomer 

should be generated within this experiment if the isomerization mechanism would consist of a 

sole double bond photoisomerization. A possible explanation for the experimental observation 

is a photoreaction from anti-trans to anti-cis-1, which is not visible when only low amounts of 

anti-trans are present (see experiments starting with enriched syn-trans isomers as described 

above). This photoreaction could be described as a photoinduced extended Hula-Twist (PEHT) 

and rotates both the central double bond and one spatially close chiral aryl axis concertedly. 

This hithero unknown reaction pathway might be the key step for the selective generation of 

the anti-cis-1 / syn-trans-2 isomer instead of the previously observed anti-cis-2 isomer (Figure 

253). 

 

Figure 259: Comparison of 1H-NMR spectra obtained after irradiation of a 5.0 / 1.0 syn- / 

trans- (top) and a 1.0 / 6.5 syn- / anti-trans isomer (bottom) of indigo 64 at -

60 °C in dichloromethane-d2. If the syn-trans-1 isomer is the major initial 

species, single signals at 6.34 and 1.43 ppm can be observed for the anti-cis-2 

isomer. When the anti-trans isomer represents the major initial species, two 

emerging signal sets at 6.85 ppm, 5.95 ppm and 1.89 ppm, 1.38 ppm can be 

observed after irradiation for the anti-cis-1 / syn-trans-2 isomers, which could 

be populated by a photoinduced extended Hula-Twist motion as the anti-cis-1 

isomer cannot be generated by solely double bond isomerizations from the anti-

trans isomer, which is also true for syn-trans-2. The syn-trans-1 isomer is too 

low in quantity to yield the significant amounts of (underrepresented) anti-cis-2 

isomer in the second experiment (bottom).  
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Two novel signals at 1.89 ppm and 1.38 ppm appear with the same rate and integral height 

during irradiation and decrease in population at -50 °C in the dark. Regarding their low thermal 

stability, these signals should correspond to the anti-cis-1 / 2 isomers, which also show by three-

fold enlarged integrals for the methyl signal compared to a singular proton intensity in the 

aromatic region. One of the two emerging signals for the anti-trans-enriched measurement 

course can be explained by two possible diastereomers of the chiral axes for the anti-cis-1 and 

anti-cis-2 states, which is also backed by DFT calculations, see Section 2.4.8, Figure 236 and 

Section 2.4.16, Figure 269 for details. The syn-trans-2 signal was assigned to best knowledge, 

but highly speculative suggestions consist in a coalescence between the signals of 

interconverting edge-to-face configurations depicted in Figure 260 and the local minimum of 

anti-cis-1, which is highly unlikely. Nonetheless, calculational efforts were taken to estimate 

the stability of these isomeric forms. 

 

Figure 260: Both hypothetical edge-to-face conformations of indigo 64 that are 

experimentally stable solely at -60 °C. DFT optimizations at the M05-2x/6-

31+G(d) level of theory did not yield local minimum structures. 

The M05-2x functional with 6-31+G(d) basis set was chosen as reports by E. Wheeler showed 

that it predicts edge-to-face energies and interactions of benzene very closely to the 

CCSD(T)/AVDZ level of theory with a fraction of required computational resources.[118] 

Irradiation of the anti-trans isomer at -60 °C also confirmed the simultaneous generation of 

three cis- or two cis- and one trans isomer. Examining of the 1H-NMR proton signal area 

intensities at key steps over the course of the experiment showed that the anti-cis-1 signal was 

in part thermally converted into the syn-cis isomer during irradiation. The rates and kinetic 

barriers could not be determined as all relevant signals disappeared during the change in 

temperature from -60 °C to -50 °C over 15 minutes. However, the major product of this 

irradiation was the syn-trans-1 isomer, which can only be generated from anti-cis-1 / -2- or syn-

trans-2 isomers from a thermal isomerization around the central double bond or thermal helix 

inversion. This was observed by the product amounts at 25 °C. Measurements in toluene-d8 

observed the anti-cis-1 signal at -20 °C to 0 °C while syn-trans-2 disappeared completely at -

40 °C (due to its low thermal stability or caused by signal broadening, see Figure 263).  
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Figure 261: 1H-NMR spectra obtained after the irradiation of a 1.0 / 6.5 syn / anti isomer 

mixture of indigo 64 to the anti-cis and syn-cis isomers in dichloromethane-d2 at 

-60 °C and subsequent behavior in the dark at various temperatures. Integrals for 

indicated signal areas are given below the respective peak. A PSS consisting of 

87% cis isomers can be obtained (respective to all trans isomers). 

Coincident generation of syn- and anti-cis-1 / syn-trans-2 isomers can be observed. Starting 

from 1.0 / 6.5 syn- / anti-trans (87%), a 1.0 / 4.0 ratio of syn- / anti-trans (80%) can be obtained 

after irradiation, indicating a faster photoinduced turn-over rate for the anti-trans isomer which 

can be caused by its higher abundance or quantum yield. Thermal annealing of the anti-cis-1 / 

syn-trans-2 isomers at -50 °C showed a slight shift towards a 1.0 / 5.0 ratio of syn- / anti-trans 

(83%), which indicates back-conversion of anti-cis-1- or syn-trans-2- towards the anti-trans 

isomer. This is suggested by the syn-cis isomer not being able to contribute to the anti-trans 

isomer at this temperature due to its 20.7 kcal/mol double bond isomerization barrier. After 

irradiation, 13% of syn- + anti-trans isomers (1.2 / (1.2 + 7.9) * 100 = 13%) are obtained and 

subsequent thermal annealing step at -50 °C yielded 16% of syn- + anti-trans isomers (1.6 / 

(1.6 + 8.5) * 100 = 16%). The rise of the anti-trans isomer population by 3% (80% anti-trans 

at -60 °C, 83% anti-trans at -50 °C) can be quantitatively accounted to the 3% decrease of 25% 

anti-cis-1 / syn-trans-2 species ((2.0 + 0.8) / (7.0 + 2.0 + 0.8) * 0.87 * 100) to 22% of anti-cis 
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1 / syn-trans-2 species. This suggests a photoinduced extended Hula-Twist (PEHT) motion, as 

all other reaction trajectories would not lead to the observed products.  

The syn-cis- to syn- + anti-trans isomer ratio remains constant at ~81% syn-cis isomer (7.0 

* 3 / (7.0 * 3 + 1.0 + 4.0) * 100 = 80.8%), (8.2 * 3 / (8.2 * 3 + 1.0 + 5.0) * 100 = 80.4%) 

throughout the thermal reaction at -50 °C in the dark. This supports a thermal extended Hula-

Twist (TEHT) reaction of 3% anti-cis-1 / syn-trans-2 isomers to the anti-trans isomer. The 

residual 22% of anti-cis-1 / syn-trans-2 isomer are converted to the syn-trans-1 isomer between 

-50 °C and 25 °C. The syn-trans-1 isomer was the observed product at -50 °C starting from 

irradiation of the syn-trans-1 to the anti-cis-2 isomer. For anti-trans, this is not the case as anti-

cis-1 / syn-trans-2 is directly formed and partially converted back to the anti-trans state. A 

selectivity of the photo- and thermal reactions to the respective start- and end states can be 

observed. 

Heating to 25 °C in the dark resulted in a large population shift from 83% anti-trans to 61% 

anti-trans isomer, which could not be obtained by a thermal atropisomerization under these 

conditions, as the barrier in the trans state amounts to 23.6 kcal/mol. These results suggest the 

syn-trans-1 isomer being generated from the residual 22% anti-cis-1 / syn-trans-2 isomers over 

a cis to trans double bond isomerization, which shifted the syn- / anti-trans ratio from 17% to 

39% syn-trans-1 isomer at 25 °C. This shows that a minimum of 22% of anti-trans isomers was 

converted to the anti-cis-1- / syn-trans-2 form via PEHT. 

The methyl signals of the stable syn-cis isomer with expected relative peak intensities of 

21.0 - 24.0 cannot be observed due to signal broadening (see Figure 254). Prolonged thermal 

stability at -50 °C and complete back reaction from cis to trans at 25 °C suggests the aromatic 

signals at 7.73 ppm and 6.36 ppm (green) to be associated towards the more stable syn-cis 

isomer.  
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Low temperature NMR measurements starting from an enriched anti-trans mixture of 64 in 

toluene-d8 were carried out as this solvent showed shifting of the anti-cis-1- and disappearing 

of the syn-trans-2 signals, resulting in presumably only the anti-cis-1 signal between -60 °C 

and -20 °C (see Figure 263). 

 

Figure 262: Aliphatic part after the irradiation of a 1.0 / 11.1 syn- / anti mixture of indigo 64 

to the anti-cis- and syn-cis isomers in toluene-d8 at -60 °C with 625 nm LED 

light. Two peaks can be observed, which is similar to the experiments in 

dichloromethane (see Figure 261). The detailed explanation of this behavior is 

given in Section 2.4.16, as two helicities are assumed to exist for anti-cis- and 

syn-trans- isomers. 

Low temperature measurements at -60 °C in toluene showed the same population of both anti-

cis-1 and syn-trans-2 isomers (see Figure 274). The syn-cis isomers cannot be observed due to 

signal broadening at low temperatures. Nonetheless, syn-cis isomer signals can be seen 

at -20 °C or 0 °C (Figure 263).  
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Figure 263: 1H-NMR spectra obtained after the irradiation of a 1.0 / 11.1 syn- / anti mixture 

of indigo 64 to the anti-cis- and syn-cis isomers in toluene-d8 at -60 °C and 

subsequent behavior in the dark at various temperatures. A PSS consisting of 

69% cis isomers (respective to syn-trans-1 and anti-trans isomers) can be 

obtained at -60 °C. Integrals for indicated signal areas are given below the 

respective peak. 

Figure 263 shows the low temperature irradiation experiments with subsequent thermal 

annealing steps. A PSS consisting of 69% cis isomers can be reached. For the anti-cis isomers, 

two methyl group- (1.70 ppm = anti-cis-1, 1.19 ppm = syn-trans-2) and two indicative aromatic 

signals (6.21 ppm = anti-cis-1, 5.85 ppm = syn-trans-2) can be observed at -60 °C. This pattern 

is also observed in dichloromethane (Figure 257). Starting from a 0.09 / 1.0 syn- / anti-trans 

(92%) isomer mixture, irradiation with 625 nm LED light at -60 °C yielded a 0.07 / 1.0 syn- / 

anti-trans (94%) isomer mixture. Also, a slightly broadened syn-cis signal can be observed at 

6.12 ppm at -60 °C. The anti-cis-1 and syn-cis isomers amount to 28% each ((0.4) / (0.2 + 0.4 

+ 0.4) * 0.69 *100 = 28%) and the anti-cis isomer to 14% ((0.2) / (0.2 + 0.4 + 0.4) * 0.69 * 100 

= 14%) after irradiation. After heating to -40 °C, all anti-cis signals disappear and the aliphatic 

syn-cis signal is still not visible due to signal broadening. However, the syn- to anti-trans ratio 

changed from 0.07 / 1.0 syn- / anti-trans (94%) to 0.05 / 1.0 syn- / anti-trans (95%). This could 
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be addressed in dichloromethane, as 3% of anti-cis-1 / syn-trans-2 isomers were converted to 

solely the anti-trans isomer. This should not be the case in toluene as the anti-cis-1 isomer is 

stable up to 0 °C in contrast to the observations at -50 °C in dichloromethane. Heating to -20 °C 

shows only one signal for anti-cis-1- (6.18 ppm) and a novel signal for the syn-cis isomer 

(1.44 ppm), indicating that the syn-trans-2 species to be thermally less stable than the anti-cis-

1 isomer. The cis-isomers remain at 69% (0.9 / (0.9 + 0.4) * 100 = 69%) with 61% syn-cis 

isomer (0.8 / 0.9 * 0.69 * 100 = 61%) and 8% of visible, broadened anti-cis-1 isomer. The syn-

trans-2 signals disappeared completely, which can be attributed to its lower thermal energy 

barrier for the helix inversion compared to a double bond isomerization. Increasing the 

temperature to 0 °C enables the thermal cis to trans double bond isomerization. At the start of 

the 0 °C thermal annealing experiment, the cis-isomers amount to 60% (0.6 / (0.4 + 0.6) * 100 

= 60%) with 27% of anti-cis-1 isomer (0.4 / (0.4 + 0.5) * 0.6 * 100 = 27%) and 33% of syn-cis 

isomer (0.5 / (0.4 + 0.5) *0.6 * 100 = 33%). The initial 42% (28% + 14%) of anti-cis-1- / syn-

trans-2 - and 28% of syn-cis isomer ratio was shifted to 27% anti-cis- and 33% syn-cis isomer, 

which is in accordance to the overall lower thermal stability of the anti-cis-1- and syn-trans-2- 

isomer compared to the syn-cis isomer. After 60 minutes of thermal annealing at 0 °C, an 

increase of syn-trans-1 isomer from a 0.12 / 1.0 syn- / anti-trans (89%) to a 0.26 / 1.0 syn- / 

anti-trans (79%) ratio can be observed after the initial 60 minutes of irradiation at -60 °C. This 

suggests that a minimum of 10% anti-cis-1 and/or syn-trans-2 isomer was generated via PEHT 

at -60 °C, which is in accordance to the experiments in dichloromethane (Figure 261).  
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2.4.15 Symmetric chiral indigos - Second generation indigo 64 - Low 

temperature NMR Data - Syn-trans-1 to anti-trans kinetic 

analysis 

As measurements in toluene allowed for parallel generation and depletion of syn-cis and anti-

cis-2 isomers of indigo 64, a temperature of -5 °C was chosen to track all four isomers 

simultaneously. 

 

Figure 264: 1H-NMR spectra (aromatic part) of the irradiation and subsequent behavior in 

the dark of a 5 / 1 syn- / anti-trans isomer mixture of indigo 64 in toluene-d8 at 

-5 °C measured on a 400 MHz spectrometer. Each spectrum was measured with 

a 1 minute time interval. A PSS consisting of 73% cis isomers could be obtained. 

Subsequent measurements of the differently decaying cis isomers in the dark 

gave free activation enthalpies ΔG* = 18.5 kcal/mol with a half-life of 4.15 s at 

25 °C for the anti-cis-2- and ΔG* = 19.4 kcal/mol with a half-life of 19.0 s at 

25 °C for the syn-cis isomer. The decreasing cis isomer signals were assigned to 

the increasing trans isomer signals after the LED was turned off. Accumulation 

of the anti-trans- compared to the syn-trans-1 isomer can be observed at 

6.44 ppm. 
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Figure 265: 1H-NMR spectra (aliphatic part) of the irradiation and subsequent behavior in 

the dark of a 5 / 1 syn- / anti-trans isomer mixture of indigo 64 in toluene-d8 at 

-5 °C measured on a 400 MHz spectrometer. Each spectrum was measured with 

a 1 minute time interval. A PSS consisting of 73% cis isomers could be obtained. 

Subsequent measurements of the differently decaying cis isomers in the dark 

gave free activation enthalpies ΔG* = 18.5 kcal/mol with a half-life of 4.15 s at 

25 °C for the anti-cis-2 and ΔG* = 19.4 kcal/mol with a half-life of 19.0 s at 

25 °C for the syn-cis isomer. The decreasing cis isomer signals were assigned to 

the increasing trans isomer signals after the LED was turned off. Accumulation 

of anti-trans isomer can be observed at 2.28 ppm. 
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Figure 266: Linearized first order kinetic plots of anti-cis- (violet) and syn-cis-64 (green) in 

toluene-d8 at 0 °C derived from Figure 265 above. The thermal cis to trans 

isomerization barriers were determined at 18.5 kcal/mol with a half-life of 4.15 s 

at 25 °C for the anti-cis- and 19.4 kcal/mol with a half-life of 19.0 s at 25 °C for 

the syn-cis isomer. Used formulas and equations are given in Section 2.2.20. 

As previously shown, a large increase of the thermal cis to trans isomerization barrier from 

15.8 kcal/mol to 18.5 kcal/mol for the anti-cis-2 isomer can be observed in toluene or other 

non-chlorinated, apolar solvents like 83 / 17 heptane / ethyl acetate mixtures.  
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Figure 267: 1H-NMR spectra obtained after the irradiation of a 5.0 / 1.0 syn- / anti mixture 

of indigo 64 to the anti-cis and syn-cis isomers in toluene-d8 at -5 °C and 

subsequent behavior in the dark. A PSS consisting of 73% cis isomers can be 

obtained at -5 °C, which is comparable to the observed PSS consisting of 77% 

cis isomers in dichloromethane-d2 at -80 °C. Integrals for indicated signal areas 

are given below the respective peak. 

Figure 267 shows the low temperature irradiation NMR experiments with subsequent thermal 

annealing steps. After irradiation at -5 °C, a PSS consisting of 73% cis isomers can be obtained. 

An (almost) 1 / 1 syn-cis- / anti-cis-2 isomer ratio can be obtained at 6.19 - 6.15 ppm after 

60 min of irradiation, which can also be observed regardless if starting from the syn-trans- or 

anti-trans isomers. These 1 / 1 equilibria are supposedly obtained as the reaction trajectory of 

the fast photokinetic and the thermally less stable anti-cis-2 isomer (see Figure 249 and Figure 

255, generated from the more abundant syn-trans-1 isomer) branches towards the more stable 

syn-cis isomer and the syn-trans isomer as stating point. Figure 268 shows these findings in 

detail. 
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Figure 268: Plots of the respective percentages of all four isomers from 1H-NMR 

measurements with in situ irradiation and subsequent thermal annealing 

conditions of indigo 64 in toluene-d8 recorded on a 400 MHz NMR spectrometer 

at -5 °C. Raw data (left) and smoothed data (right, Savitzky-Golay-Filter, 20 

points of window) is shown for easier visibility of the reaction rates, the 

immediate stopping of the photokinetics in the dark can be better demonstrated 

with the raw data. 

Figure 268 shows the fast anti-cis-2 isomer (red) generation from the rapidly decreasing syn-

trans-1 isomer (blue) when irradiated with 625 nm LED light. The syn-cis isomer (green) is 

immediately generated from the anti-cis-2 isomer (violet), which peaks at 45% total abundance 

after 10 minutes of irradiation. Subsequently, a photostationary anti-cis-2 to syn-trans-1 

isomeric ratio is established. Both populations decrease at roughly the same rate as the 

anti-cis-2 isomer population is branched towards the stable syn-cis isomer, which is hence 

converted to the steadily increasing anti-trans isomer population. Switching off the LED 

immediately stops the syn-cis isomer generation and the thermal anti-cis-2- to syn-trans-1 

isomer reaction pathway gains full speed (Better visible in Figure 268, left). The syn-cis- to 

anti-trans isomer reaction proceeds at a slower rate and generates only anti-trans isomer as 

long as syn-cis isomers are available. 

If the calculated atropisomerization barrier of 19.11 kcal/mol from the anti-cis-2- to the syn-cis 

isomer is assumed to be correct and the favored anti-cis-2- to syn-trans-1 isomer double bond 

isomerization barrier amounts to 18.5 kcal/mol, then a by 0.61 kcal/mol increased transition 

state energy barrier towards the disfavored anti-cis-2- to syn-cis isomer trajectory must be 

overcome. The k values for both pathways amount to 0.045 s-1 (DBI) and 0.015 s-1 (SBR), 

suggesting a three-fold faster anti-cis-2- to syn-trans-1 reaction rate, quickly depleting the 

available anti-cis-2 isomer towards the syn-trans-1 isomer, showing only a little thermal 
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conversion rate towards the syn-cis state in the dark. This is seen in Figure 268 above, as no or 

just minimal amounts of syn-cis isomer are generated after the switching off the light source. 

Another indication for this pathway is its strong thermal dependence as the anti-cis-2 to syn-cis 

isomer trajectory is not observed at lower temperatures, which is indicative for a thermal 

reaction.  
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2.4.16 Symmetric chiral indigos - Second generation indigo 64 - DFT 

overview 

  

Table 12: Overview of the observed and calculated properties of the 

indigo 64 isomers (Measurements in toluene). 

ECD Ar ms. Ar. cl. Al. ms. Al. cl. Atrop. DB 

Yes 6.36 6.51 2.65 2.73 23.6 ms. - 

Global thermodynamic minimum, 5 / 1 syn- / anti-trans mixture, 

625 nm irradiation at -60 °C yields exclusively anti-cis-2 isomer 

(DBI). 

Yes* 5.85 6.44 1.19 1.61 26.8 cl. - 

Disfavored syn-trans isomer, generated at -60 °C from a possibly 

incomplete PEHT or direct photoinduced SBR. 

 

No 6.38 6.43 2.23 2.32 24.5 cl. - 

Local minimum trans structure 5 / 1 syn- / anti-trans mixture, 

generated from syn-cis (DBI) and anti-cis-1 (TEHT). 

 

 

No 6.19 6.26 1.47 1.68 19.1 cl. 19.4 ms. 

Global thermodynamic minimum for all cis isomers, generated from 

anti-trans (DBI) or anti-cis isomers (SBR). 

 

 

 

Yes* 6.27 6.45 1.65 1.92 19.1 cl. 18.5 ms. 

Favored anti-cis isomer, generated exclusively from the anti-trans 

isomer (PEHT). 

 

 

 

Yes 6.09 6.18 1.43 1.39 20.1 cl. 18.5 ms. 

Higher energy anti-cis isomer, generated exclusively from syn-trans 

(DBI). 

 

Ar. = aromatic- , Al. = aliphatic NMR shift in ppm, ms. = measured, cl. 

= calculated, Atrop. = Atropisomerization energy barrier (ΔG* in 

kcal/mol), DB = cis-trans energy barrier (ΔG* in kcal/mol) 
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Explanation of the abbreviations in Table 12: ms. = measured, cl. = calculated, ECD = 

electronic circular dichroism visible, Ar. = aromatic- , Al. = aliphatic NMR shift in ppm, * = 

theoretically visible if isolated, can only be generated as racemate by a photoreaction, DBI = 

central double bond isomerization, SBR = chiral single bond rotation = atropisomerization, 

TEHT = thermal extended Hula-Twist, PEHT = photoinduced extended thermal Hula-Twist. 

DFT calculations of transition states of indigo 64 are shown in Figure 269 below. 

 

Figure 269: Calculated ground and transition state structures and energies of indigo 64 at the 

B3LYP/6-311+G(d,p) level of theory. Transition states for seven out of eight 

possible atropisomerizations could be found. The other possible transition state 



2 RESULTS AND DISCUSSION 

285 

 

for the cis isomer did not converge after several attempts and tweaks. The “+” 

sign in front of transition state values indicates the energy difference with respect 

to the lowest ground state of respective cis or trans isomers. Missing 

experimental data for the cis isomer makes it difficult to assign the reported 

transition state to be high or low in energy or to address the preferred 

directionality for this rotation. 

Benchmarking of different functionals was carried out to test the robustness of the applied 

calculational methods. 

 

Figure 270: Benchmarking results for ground and transition states of indigo 64 using 

different DFT functionals for the 6-311+G(d,p) basis set. The “+” sign in front 

of transition state values indicates the energy difference with respect to the 

lowest ground state of respective cis or trans isomers. Missing transition states 

did not converge after several attempts and tweaks. “E” represents the trans- and 

“Z” the cis isomeric state. “E-Syn-1” represents the lowest ground state for all 

functionals in the trans state while “Z-Syn” constitutes the lowest energy cis 

state in most cases. “E-anti-Me-DB” shows the lowest transition state energy in 

all cases and suggests a rotation of an ortho-methyl group over the central double 

bond in the trans state. “Z-Anti-Me-H” shows the energetically lowest transition 

state for the cis isomers and suggests that the ortho-methyl group is rotated over 

its adjacent indoxyl core proton.  
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Benchmarking of different functionals and basis sets was carried out on the ground states to test 

the robustness of the applied calculational methods. 

 

Figure 271: Benchmarking results for ground states of indigo 64 using different DFT 

functionals and basis sets. “E” represents the trans- and “Z” the cis isomeric 

state. “E-Syn-1” represents the lowest ground state for all functionals in the trans 

state while “Z-Syn” constitutes the lowest energy cis state in most cases. The 

“no+” indicator represents the 6-311G(d,p) Pople basis set, the ”no1” indicator 

the 6-31+G(d,p) basis set and the “no1+” indicator the 6-31G(d,p) basis set. 

Functionals with dispersive corrections (ωB97XD, B3LYP-GD3BJ, indicated as 

“Dispersion”, “Disp”) and PCM solvent modelling (“B3LYP-Disp-Solv”, 

dichloromethane) show lower differences between the trans and cis isomer 

ground states. 

Overall, a good consistency of ground- and transition state values over all tested functionals 

and basis sets can be observed. The experimental values are also consistent with the calculated 

ground states and free activation enthalpies.  
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2.4.17 Symmetric chiral indigos - Second generation indigo 64 - DFT 

NMR 

To further approve the assignment of syn-trans-1-, syn-trans-2-, anti-trans, syn-cis- and anti-

cis-1- and -2 signals of indigo 64, DFT calculations of the 1H-NMR shifts was carried out 

utilizing the gauge-including atomic orbital (GIAO) method. 

 

Figure 272: 1H-NMR spectra of a 3 / 2 syn- / anti-trans isomer mixture of 64 in 

dichloromethane-d2 (24 °C) with overlaid calculated 1H-NMR shifts (colored 

lines) at the B3LYP/6-311+G(d,p) level of theory using the gauge-including 

atomic orbital (GIAO) method (TMS B3LYP/6-311+G(2d,p), GIAO as 

reference for zero). The reported shifts agree well with the experimentally 

obtained signals and the previous assignment of trans isomers. The signals 

corresponding to the yellow line should not be observable as the syn-trans-2 

isomer is supposedly not stable at 24 °C. The yellow and violet lines within the 

aromatic part are almost overlapping.  
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Figure 273: Benchmarking of 1H-NMR shifts at the B3LYP/6-311+G(d,p) level of theory 

using the gauge-including atomic orbital (GIAO) method (TMS B3LYP/6-

311+G(2d,p), GIAO as reference for zero) and comparison to measured σ-values 

(framed in black). The shifts for syn-trans-2 could not be measured as this 

species is not stable at ambient temperatures and was not observed at low 

temperatures as thermal- or photoproduct in dichloromethane or toluene. 

Overall, a good agreement for polarizable continuum model (PCM) solvent 

corrections (dichloromethane, toluene) was obtained.  
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Figure 274: 1H-NMR spectra of an irradiated 5 / 1 syn- / anti-trans isomer mixture (top) and 

an irradiated 1 / 6.5 syn- / anti-trans isomer mixture (bottom) of 64 in 

dichloromethane-d2 (-60 °C) with overlaid calculated 1H-NMR shifts (colored 

lines) at the B3LYP/6-311+G(d,p) level of theory using the gauge-including 

atomic orbital (GIAO) method (TMS B3LYP/6-311+G(2d,p), GIAO as 

reference for zero). The reported shifts agree well with the experimentally 

obtained signals and the previous assignment of both cis isomers in the aliphatic 

region. The signals in the aromatic regions agree qualitatively to the calculation 

with a matching order of observed and calculated shifts. The aliphatic signal for 

the syn-cis isomer can only be observed at temperatures above -20 °C (Figure 

263, toluene and Figure 251, dichloromethane) at 1.69 ppm due to signal 

broadening and is indicated below the spectrum. The signals of anti-cis-1 can 

only be observed in toluene (from -20 °C to 0°C, Figure 263) and are indicated 

below the spectrum. The syn-trans-2 signal disappears at -50 °C.  
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Figure 275: Benchmarking of 1H-NMR shifts of indigo 64 at the B3LYP/6-311+G(d,p) level 

of theory using the gauge-including atomic orbital (GIAO) method (TMS 

B3LYP/6-311+G(2d,p), GIAO as reference for zero) and comparison to 

measured σ-values (framed in black). The additional signals of anti-cis-1 

aromatic (green, red, not framed) for and aliphatic regions is also displayed. 

Overall, a good agreement for polarizable continuum model (PCM) solvent 

corrections (dichloromethane, toluene) was obtained. 

The calculated 1H-NMR shifts are in accordance to the previous assignment of isomers, the 

additionally observed syn-trans-2 signal is assumed to be populated by a single bond rotation 

caused by an incomplete photoinduced extended Hula-Twist, see Section 2.4.22. Another 

possible explanation is an edge-to-face conformation of the chiral aryls (see Figure 260) of the 

anti-cis-1 isomer, which are accessed exclusively by the photoinduced extended Hula-Twist 

reaction trajectory and are only stable below -60 °C. This can be observed in Figure 263, as 

annealing the sample from -60 °C to -20 °C (toluene) converts both aromatic anti-cis-1 / syn-

trans-2 signals at 6.16 ppm and 5.81 ppm into one signal at 6.18 ppm from -20 to 0 °C.  

Besides the very good correlation of measured and calculated ECD spectra and measured 

and calculated NMR shifts, chemical intuition also supports the proposed assignment.  
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2.4.18 Symmetric chiral indigos - Second generation indigo 64 - 1H-

NMR-Shifts 

Besides utilizing calculational assignments, the observation of 1H-NMR chemical shifts can 

also give substantial arguments for assigning syn-cis, anti-cis-1 and anti-cis-2 isomers to their 

respective signals. This is discussed by reference to Figure 274. 

The anti-cis-1 methyl groups are downfield shifted because of their proximity towards both 

electron-withdrawing carbonyls. The syn-cis methyl groups show an intermediate shift because 

on average, only one methyl group is in proximity of a carbonyl functionality and only one is 

adjacent to the shielding effect of the ring current of the other ortho-tolyl-moiety. At last, the 

anti-cis-2 isomer methyl groups both experience a ring current from its folded conformation, 

leading to an upfield shift. 

The diagnostic proton 7 can also serve as an indicator for the torsional strain on the ortho-

tolyl moieties because of its different shift values for syn-cis, anti-cis-1-, syn-trans-2 and anti-

cis-2 signals. Here, the outwards-pushing of methyl groups in close proximity to proton 7 will 

cause an upfield shift of proton 7. This is observed for anti-cis-2, which shows the overall 

largest upfield shift. The intermediate syn-cis isomer has the possibility for sterical evasion of 

one methyl group. The anti-cis-1 isomer shows the farthest distance of its methyl groups 

towards proton 7 and is thus downfield shifted in comparison. These findings are in accordance 

to the calculated NMR parameters. However, the calculated energies suggest the syn-cis isomer 

as the energetically most stable conformer by 0.13 kcal/mol compared to the anti-cis-1 isomer. 

The anti-cis-2 isomer is disfavored by 0.57 kcal/mol compared to the syn-cis form.  

These assessments are in accordance the theoretical and experimental observations for the 

occurrences of cis- isomers. 

The syn-trans-2 isomer is expected to display strongly upfield shifted methyl signals caused 

by the maximum methyl - carbonyl distance of all possible isomers. The sterical repulsion of 

both methyl groups should also cause significant upfield shifting of protons 7, which is, 

however, not predicted by the calculation. The latter does not differ in shift value for protons 7 

compared to the other trans isomers. DFT energies, however, predict this isomer to be more 

stable by approx. 5 kcal/mol compared to all observed cis-isomers, which supports its existence 

energetically. 

Additionally, 1H-NOESY spectroscopy at -60 °C or -80 °C could also show indications for 

the assignment of anti-cis-2, anti-cis-1 and syn-trans-2 signals to the respective isomers.  
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2.4.19 Symmetric chiral indigos - Second generation indigo 64 - 

Photoinduced syn-trans-1 to anti-trans pumping 

Irradiation of a 5 / 1 syn / anti-trans isomer containing solution of indigo 64 with 625 nm at 

27 °C yielded the 1H-NMR spectra shown in Figure 276. 

 

Figure 276: Irradiation of a thermally equilibrated 1.0 / 0.2 syn- / anti mixture of indigo 64 

with 625 nm red light at 27 °C in dichloromethane-d2. A shift in population 

towards the anti-trans form can be observed, as a PSS consisting of a 1.0 / 0.7 

syn- / anti ratio is obtained. 

As indigo 64 showed photoinduced enrichment of its anti-trans isomer with red light against 

the thermal equilibrium in dichloromethane, toluene was also tested as solvent and yielded 

slightly better PSS ratios favoring the anti-trans isomer, see Figure 277 below. 
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Figure 277: Irradiation of indigo 64 with 625 nm LED light in toluene-d8 at 25 °C. An 

increase in anti-trans isomer population with slightly better photoinduced yields 

of the anti-trans isomer compared to dichloromethane solutions can be observed. 

 

Figure 278: Overview of the aliphatic region of the 1H-NMR experiments on syn-trans-1 (1st 

and 2nd HPLC fraction) and anti-trans isomers (3rd HPLC fraction) at 27 °C in 

dichloromethane-d2. A clear rise in population of the anti-trans isomer at 

2.31 ppm after 16 min of 625 nm irradiation can be observed. 9 minutes at 

ambient temperatures in the dark did not change the signal ratio, suggesting the 
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absence of cis isomers. Irradiation of majorly anti-trans isomer with 625 nm 

light reaches the previously observed PSS at a higher rate than the previously 

determined thermal reaction alone, suggesting the photoinduced extended Hula-

Twist reaction as the major trajectory (see Figure 261) at 25 °C. Thermal 

annealing over 1 day at ambient temperatures restores the 5 / 1 syn- / anti-trans 

isomer thermodynamic equilibrium. Prolonged irradiation with 625 nm light, 

again, yields the previously observed PSS. 

As stated before, a simple trans to cis back to trans reaction for all three observed trans ground 

states is never able to shift the thermal equilibrium between syn-trans- and anti-trans states (a 

photoinduced single bond rotation is only proposed for the generation of the syn-trans-2 isomer 

and never observed elsewhere). Figure 276 and Figure 277 show the opposite behavior 

(generation of anti-trans- from syn-trans isomers) with surprisingly high yields, which 

indicates feasible conversion rates of the following proposed reaction pathways. The 

unexpected observations depicted in Figure 276 can be explained by the reaction cycle shown 

in Figure 279 below. 

 

Figure 279: Proposed reaction pathway by irradiation of indigo 64 at 25 °C in 

dichloromethane d2 enriching the anti-trans-64- starting from majorly syn-trans-

64 isomer out of the thermodynamic equilibrium. Optimized ground- and 
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transition states calculated at the B3LYP/6-311+G(d,p) level of theory are 

shown, calculated values are placed within the circular graphic in black, 

measured values and transition state barriers are shown in the respective colors 

adjacent to the arrows. 

At 25 °C in dichlormomethane-d2, the motional cycle can be broken down into four steps: First, 

a photoinduced 180° trans to cis isomerization of the thermodynamically favored syn-trans- 

towards the anti-cis-2 isomer takes place. Secondly, the anti-cis-2 isomer is thermally branched 

into the cis to trans double bond isomerization pathway and the single bond rotation of one 

ortho-tolyl axis from the anti-cis-2- to the syn-cis state. Thirdly, a thermal cis- to trans 

isomerization from the syn-cis- to the anti-trans diastereomer takes place. Fourthly, a thermal 

atropisomerization from the anti-trans- to the syn-trans-1 state closes the cycle. 

 

Figure 280: Proposed reaction pathway by irradiation of indigo 64 at 25 °C in toluene-d8 

enriching the anti-trans-64- starting from majorly syn-trans-64 isomer out of the 

thermodynamic equilibrium. Optimized ground- and transition states calculated 

at the B3LYP/6-311+G(d,p) level of theory are shown, calculated values are 

placed within the circular graphic in black, measured values and transition state 

barriers are shown in the respective colors adjacent to the arrows. 
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The motional cycle of 64 can also be observed in toluene with a significantly enlarged anti-cis-2 

isomer barrier of 18.5 kcal/mol (15.8 kcal/mol in dichloromethane), accumulating the anti-

trans isomer. The syn-trans-1 isomer is populated at -50 °C when staring from the anti-trans 

isomer (see Section Figure 263), which changes the preferably accumulated isomer from 

previously anti-trans- (25 °C) to the syn-trans-1 isomer (-50 °C).  
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2.4.20 Symmetric chiral indigos - Second generation indigo 64 - 

Photoinduced unidirectional single bond motor 

Trajectories for the prospective one-photon-four-step single bond motor 

Theoretical calculations were carried out on indigo 64 to address their possible reaction 

trajectories towards unidirectional motion. For simplicity, one chiral axis of the molecule is 

considered as fixed, in reality, both axes undergo the same motions at equal rates. However, 

two-fold reactions of both axes could be ruled out via low temperature NMR- and ECD 

experiments as well by energetic criteria described in Section 2.4.9. The first example below 

discusses the syn-trans-1 isomer as starting point and considers the experimentally observed 

intermediates and their products after thermal annealing at ambient temperatures in toluene and 

dichloromethane. The second evaluation of the trajectories in Figure 283 considers the anti-

trans isomer as starting point to explain the experimentally observed intermediates and their 

products after thermal annealing from -50 °C to ambient temperatures. 

 

Figure 281: All possible theoretical trajectories for the reaction cycle of the syn-trans-1 

isomer of indigo 64 at ambient temperatures. CW = clockwise rotation, CCW = 

counter clockwise rotation. (SB) = Single bond rotation, (DB) = Double bond 

rotation. The rotational direction is defined by the view alongside of the 

respective single or double bond axis. Rotational directions marked in red 

represent the favored rotations for single- and double bonds. The two lowest 
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energy transition states are shown for each respective reaction path. Calculated 

energies at the B3LYP/6-311+G(d,p) level of theory are given below the 

stereodescriptors respective to the lowest ground state energy, which was set to 

0.00 kcal/mol. 

Arguments for assigning the CW / CCW directions for each respective state 

Starting from the syn-trans-1 state of indigo 64 (Figure 281), a clockwise (CW) and a counter 

clockwise (CCW) rotation (R) can be postulated for the photoinduced central double bond 

isomerization. Section 2.2.26 elaborated why pre-twisting of a molecule leads to higher 

quantum yields towards its metastable state. Pre-twisting is assumed to shape the potential 

energy surface (PES) to a steeper gradient, leading towards the conical intersection for the 

respective photoisomerization product. This argument can be considered to explain why a CWR 

is preferred over a CCWR in this case, however, detailed and exhaustive excited state 

calculations have to be carried out to address this further by theory. 

The other possibility, namely a photoinduced CCW double bond rotation would assume a 

PES gradient that either populates or skips the by ~4 kcal/mol (calculated) disfavored syn-trans-

2 isomer against the pre-twisted conformation of the syn-trans-1 state. This is energetically 

possible within a photostep, but highly unlikely due to experimental observations on pre-twisted 

hemiindigo chromophores. 

Interestingly, the formation of anti-cis-1 / syn-trans-2 signals could not be observed for the 

syn-trans-1 starting material, as exclusively the higher energy anti-cis-2 isomer is produced by 

a 180° rotation of the double bond. The energy of the excited state is assumed to dissipate by 

this extensive motion, resulting in skipping over the lower energy local minimum and 

geometrically closer anti-cis-1 isomers as their characteristic signals could not be observed via 

NMR spectroscopy. This shows that the CW double bond rotation covers a dihedral angle of 

180° (Instead of 147°) and does not thermally convert back to the anti-cis-1 state, but solely to 

the syn-trans-1 form. 

The anti-cis-2 state prefers a CCWR with the rotatable methyl group passing over one indigo 

core proton as lowest energy transition state. 

The syn-cis isomer exhibits a thermal CCWR due to the pre-twisting argument. The thermal 

isomerization, however, does not proceed as forcefully as the photoreaction, leading to the 

geometrically closer anti-trans isomer. Experimentally, all generated anti-trans isomers are 

congruent, as this species represents a meso form. 
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The anti-trans isomer prefers a CCWR with the rotatable methyl group passing over the 

central indigo double bond as lowest energy transition state. 

These arguments support a nominal back-and-forth motion for the central double bond and a 

unidirectional motion considering one rotatable- and one fixed chiral axis. Possible trajectories 

are shown in Table 13 below. 

Table 13: Permutation of possible theoretical trajectories for the reaction cycle of the syn-

trans-64 isomer at ambient temperatures for Figure 281. Preferred rotations are 

marked in red. “T1” stands for “Trajectory1”. DBR = Double bond rotation, SBR 

= single bond rotation. 

 

Phot. 

DBI1 

180° 

Atrop. 

cis1 

180° 

Therm. 

DBI2 

180° 

Atrop. 

trans2 

180° 

Resulting 

trajectory 

T1: DBR CW  CW  Unidirectional 

T1: SBR  CW  CW Unidirectional 

T2: DBR CCW  CW  Not unidirectional 

T2: SBR  CW  CW Unidirectional 

T3: DBR CCW  CW  Not unidirectional 

T3: SBR  CCW  CW Not unidirectional 

T4: DBR CCW  CCW  Unidirectional 

T4: SBR  CCW  CW Not unidirectional 

T4: DBR CCW  CCW  Unidirectional 

T4: SBR  CCW  CCW Unidirectional 

T5: DBR CW  CCW  Not unidirectional 

T5: SBR  CCW  CCW Unidirectional 

T6: DBR CW  CCW  Not unidirectional 

T6: SBR  CW  CCW Not unidirectional 

T7: DBR CW  CW  Unidirectional 

T7: SBR  CW  CCW Not unidirectional 

T8: DBR CW  CCW  Not unidirectional 

T8: SBR  CCW  CW Not unidirectional 

T9: DBR CCW  CW  Not unidirectional 

T9: SBR  CW  CCW Not unidirectional 

T10: SBR CCW  CCW  Unidirectional 

T10: DBR  CW  CW Unidirectional 

T11: SBR CW  CW  Unidirectional 

T11: DBR  CCW  CCW Unidirectional 

T12: SBR CCW  CCW  Unidirectional 

T12: DBR  CW  CCW Not unidirectional 

T13: SBR CCW  CW  Not unidirectional 

T13: DBR  CCW  CCW Unidirectional 

T14: SBR CW  CW  Unidirectional 

T14: DBR  CCW  CW Not unidirectional 

T15: SBR CW  CCW  Not unidirectional 

T15: DBR  CW  CW Unidirectional 
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Table 12 shows that trajectory 5 is preferred by the arguments based on experimental and 

theoretical data for Figure 281 above. This suggests the trajectory of the single bond to be 

unidirectional, which prospectively makes the major syn-trans-1 indigo 64 species a one photon 

driven, red-light fueled, four step single bond motor that rotates with a frequency of 3×10-5 Hz 

at 25 °C (23.6 kcal/mol, 83 / 17 heptane / ethyl acetate). 

2.4.21 Symmetric chiral indigos - Second generation indigo 64 - 

Photoinduced unidirectional double bond motor 

Besides the proposed four-step single bond motor trajectory, a unidirectional, one photon, two-

step motor cycle for syn-trans-1-indigo-64 can be postulated. 

 

Figure 282: The photoinduced 180° double bond isomerization of indigo 64 at -50 °C in 

dichloromethane-d2 yields the anti-cis-2 isomer starting from majorly syn-

trans-1 isomer. The subsequent thermal back-reaction takes place over a free 

activation enthalpy of ΔG* = 15.8 kcal/mol. The anti-cis-1 states are skipped in 

both cases. CCW = counter clockwise, DB = double bond. Optimized ground 

states calculated at the B3LYP/6-311+G(d,p) level of theory are shown, 

calculated values are placed within the circular graphic in black, the measured 

value is shown in blue.  
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Arguments for assigning the CCW / CW directions for each respective state 

Starting from the syn-trans-1 state of indigo 64 (Figure 281), a clockwise (CCW) and a counter 

clockwise (CW) rotation (R) can be postulated for the photoinduced central double bond 

isomerization. Section 2.2.26 elaborated why pre-twisting of a molecule leads to higher 

quantum yields towards its metastable state. Pre-twisting is assumed to shape the potential 

energy surface (PES) to a steeper gradient leading towards the conical intersection for the 

respective photoisomerization product. This argument can be considered to explain why a 

CCWR is preferred over a CWR in Figure 282, however, detailed and exhaustive excited state 

calculations have to be carried out to address this further by theory. 

The other possibility, namely a photoinduced CW double bond rotation, would assume a 

PES gradient that either populates or skips the by ~4 kcal/mol (calculated) disfavored 

syn-trans-2 isomer against the pre-twisted conformation of the syn-trans-1 state. This is 

energetically possible for a photostep, but highly unlikely due to experimental observations on 

pre-twisted hemiindigo chromophores and shaping of the (electronic) structure towards the 

transition state (see Section 1.1, Figure 3). This would also assume that solely a back-and-forth 

motion between the most disfavored (and experimentally invisible) trans state (syn-trans-2) 

and the globally most disfavored cis state (anti-cis-2) state takes place, which is also highly 

unlikely as the signals corresponding to the syn-trans-2 isomer cannot be observed by 

irradiation of the syn-trans-1 isomer. The surprising circumstance of three experimentally 

visible states for a single trans to cis photoisomerization and the skipping of two of them 

suggests indigo 64 to serve as an extremely rare example of a prospective photodriven, 

unidirectional two-step motor. In general, it is impossible to prove the (uni-) directionality of a 

two-step motor directly, as a simple photoisomerization consists only of two observable steps 

or states. In this case, however, the entirely different behavior of the interconvertible syn-trans- 

and anti-trans isomers makes indirect observation of the proposed two-step motor possible, as 

no chemical modifications of the chromophore are needed to e.g. capture intermediate states, 

as these steps can be generated simply via irradiation of the anti-trans isomer. 

The prevalence of pre-twisting in the syn-trans-1 ground state, 180° rotation of the 

powerstroke (which is also observed within the four-step motor system published by M. 

Güntner[82]) and herby skipping of the local minimum at 147° rotation angle, however, enable 

the determination of the unidirectionality for this system if a CCWR of the double bond is 

assumed. 
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The two 180° CCW rotation steps yield a 360° double bond isomerization rotation, 

supporting indigo 64 to be a red light driven, one photon, unidirectional, two-step double bond 

isomerization motor that rotates with 16 Hz at 25 °C (15.8 kcal/mol, DCM) and with 4×10-2 Hz 

at 25 °C (19.4 kcal/mol, toluene). 

J. M. Lehn proposed a mechanism for light-driven, unidirectional two-step motors based on 

chiral imines in 2006.[119] In 2015, L. Greb of the Lehn group published experimental findings 

on these systems by utilization of the stereochemical bias of camphorquinone imines to 

introduce diastereomeric excess via cyclization reactions towards spirocyclic pyrrolines.[120] 

The bias observed by L. Greb amounts to 58/42 endo/exo form and represents trapping of a 

biradical S1 state towards the locked intermediate steps, again subdividing the rotational motion 

into four discrete (and two hypothetical) states. 

For the chiral indigo system at hand, the argument for stereochemical bias shifts from 

whether the rotation direction can be (directly) proven towards the predominant helicity as bias 

for a CCWR of the central double bond. The latter could be possibly proven via transient ECD 

spectroscopy in a direct fashion while the two-step cycle of the motion is proposed by the 

experiments shown in this work.  
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2.4.22 Symmetric chiral indigos - Second generation indigo 64 - 

Photoinduced and thermal extended Hula-Twist 

For the discussion of the possible Hula-Twist motion in Figure 283, virtual trajectories based 

on theoretical calculations of atropisomerization directions, pre-twisting directionalities and the 

observed 147° angle of the photoinduced powerstroke are used as arguments. The presumably 

concerted nature of the extended Hula-Twist motion argues against a stepwise progression of 

this motion. However, for the sake of argumenting towards possible directionalities of the entire 

trajectory, hypothetical intermediates based on the previously obtained data and calculations 

are considered, as experimental proof of the exact motion is impossible to obtain with our 

available resources at this time. The instantaneous transformation of significant amounts of 

anti-trans isomer signals to anti-cis-1 isomer signals at -60 °C suggests a photoinduced 

extended Hula-Twist to take place (Section 2.4.14, Figure 261 and Figure 263). Also, thermal 

annealing of the anti-cis-1 product yields small amounts of the unexpected anti-trans isomer 

signals and branches the remaining anti-cis-1 population towards the expected syn-trans-1 

isomer. (Section 2.4.14, Figure 261 and Figure 263) This reaction pathway is thermally 

impossible at -60 °C and the opposite is observed when irradiating the syn-trans-1 isomer at 

25 °C (Section 2.4.13). 
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Figure 283: Possible theoretical trajectories of indigo 64 for the reaction cycle of the anti-

trans isomer between -60 °C, -50 °C and 25 °C. CW = clockwise rotation, CCW 

= counter clockwise rotation, PEHT = photoinduced extended Hula-Twist, 

TEHT = thermal extended Hula-Twist. The rotational direction is defined by the 

view on top of the respective single or double bond axis. Rotational directions 

marked in red represent the favored rotations for single- and double bonds. The 

two lowest energy transition states are shown for respective reaction path. 

Calculated energies at the B3LYP/6-311+G(d,p) level of theory are given below 

the stereodescriptors respective to the lowest ground state energy. (SB) = 

rotation directions for the single bond, (DB) = rotation directions for the central 

double bond. 

Arguments for assigning the CW / CCW directions for each respective (virtual) state in 

Figure 283 

The concerted rotational motions are split into virtual atropisomerization- and thermal- or 

photoinduced double bond isomerization steps as an attempt to model the trajectories of the 

anti-trans isomer at -50 °C in dichloromethane. The virtual atropisomerization step (trans1) 

passes its rotatable methyl group CCW over the central double bond according to the lowest 
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energy transition state. The 24.54 kcal/mol (calcd.) or 23.6 kcal/mol (measured) barrier can 

only be overcome photochemically at -60 °C.  

The virtual subsequent photoinduced double bond isomerization is assumed to take place in 

a CWR because of the pre-twisting argument. This step is assumed to push the methyl group of 

the single bond transition state backwards in a CCWR, if the assumed concerted photoreaction 

is split into virtual steps. It is also important that the virtual atropisomerization “has to take 

place first” for a PEHT, as the generated syn-cis isomer is also observed starting from irradiation 

of the anti-trans isomer.  

Interestingly, the previously observed photodriven 180° motion with the syn-trans-1 isomer 

(when anti-cis-2 is formed) is not completed in the anti-trans case, which stops after 147° of 

CCWR (anti-cis-1 is formed). This can be explained by deexcitation upon concertedly rotating 

the single bond, giving the extended Hula-Twist trajectory, this can be described as a 

photodriven geared motion (see Section 2.4.23)  

Table 14 below shows the resulting directionalities for the postulated rotation directions. 

Table 14: Permutations of possible theoretical trajectories for the photodriven / thermal 

extended Hula-Twist reaction cycle of the anti-trans-64 isomer at -60 °C, -50 °C 

for Figure 283. Preferred rotations are marked in red. “T1” stands for 

“Trajectory1”. DBR = Double bond rotation, SBR = single bond rotation. 

 

Atrop. 

trans1 

180° 

Phot. 

DBI1

147° 

Atrop. 

cis1 

180° 

Therm. 

DBI2 

180° 

Resulting 

trajectory 

T1: SBR CW  CW  Unidirectional 

T1: DBR  CW  CW Unidirectional 

T2: SBR CCW  CW  Not unidirectional 

T2: DBR  CW  CW Unidirectional 

T3: SBR CCW  CW  Not unidirectional 

T3: DBR  CCW  CW Not unidirectional 

T4: SBR CCW  CCW  Unidirectional 

T4: DBR  CCW  CW Not unidirectional 

T4: SBR CCW  CCW  Unidirectional 

T4: DBR  CCW  CCW Unidirectional 

T5: SBR CW  CCW  Not unidirectional 

T5: DBR  CCW  CCW Unidirectional 

T6: SBR CW  CCW  Not unidirectional 

T6: DBR  CW  CCW Not unidirectional 

T7: SBR CW  CW  Unidirectional 

T7: DBR  CW  CCW Not unidirectional 

T8: SBR CW  CCW  Not unidirectional 

T8: DBR  CCW  CW Not unidirectional 

T9: SBR CCW  CW  Not unidirectional 
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T9: DBR  CW  CCW Not unidirectional 

T10: SBR CCW  CCW  Unidirectional 

T10: DBR  CW  CW Unidirectional 

T11: SBR CW  CW  Unidirectional 

T11: DBR  CCW  CCW Unidirectional 

T12: SBR CCW  CCW  Unidirectional 

T12: DBR  CW  CCW Not unidirectional 

T13: SBR CCW  CW  Not unidirectional 

T13: DBR  CCW  CCW Unidirectional 

T14: SBR CW  CW  Unidirectional 

T14: DBR  CCW  CW Not unidirectional 

T15: SBR CW  CCW  Not unidirectional 

T15: DBR  CW  CW Unidirectional 

 

 

Table 14 suggests a geared, unidirectional, red light-driven, one photon, two-step (PEHT, 

TEHT) single bond motor assembly with undeterminable rotational speed.  
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2.4.23 Symmetric chiral indigos - Second generation indigo 64 - 

Photodriven extended Hula-Twist gear 

The evaluation by virtual steps in Section 2.4.22 suggests a unidirectional rotation of one axially 

chiral single bond caused by the “virtual atropisomerization step cis1” for the thermal single 

bond rotation by a small margin (19.11 kcal/mol, CCW versus 19.32 kcal/mol, CW). 

Chemical intuition, however, suggests the PEHT and TEHT motion to follow the trajectory 

displayed in Figure 284 below: 

 

Figure 284: Suggestion of the PEHT and TEHT motion of indigo 64 based on chemical 

intuition. The first state on the left and the last state on the right represent 

minimum structures calculated at the B3LYP/6-311+G(d,p) level of theory, 

intermediate geometries represent arbitrary structures to visualize the proposed 

geared Hula-Twist motion. Top: view along a single bond, bottom: view along 

the central double bond. 

As the introduced virtual steps are highly speculative and pose no significance in reality, an 

intuitive suggestion for the PEHT and TEHT trajectory is given in Figure 284. The depicted 

concerted Hula-Twist motions show no 360° rotations and thus no unidirectionality, as solely 

a back-and-forth motion is assumed. The chiral aryl axes are decoupled from the electronic 

influences of the central double bond and are assumed to rotate without the influence of the 

photochemistry taking place. This can be observed for the syn-trans-1 isomer showing no single 
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bond rotations or racemizations when irradiated (see Section 2.4.13). The sterically “charged” 

state of the anti-trans isomer supports a “pocket” between the central double bond and the 

opposing aryl axis. This suggests the methyl group to engage with the electronic surface of this 

cavity, being pushed by the light-driven powerstroke into the backside of the opposing aryl 

moiety. This constitutes in a 147° double bond rotation and a formal 180° single bond rotation 

of electronically independent and remote systems within one photostep. This behavior can be 

interpreted as a geared motion to populate and depopulate the energetically intermediate anti-

cis-1 state from / to the anti-trans state. 

Figure 284 also implies another photoinduced motion that could take place at an equal rate, 

namely the rotation of the aryl axis that was kept fixed in Figure 284. Starting from the left 

molecule, the rotation of the single bond over the central double bond is hindered upon 

photoisomerization, resulting in a rotation over the disfavored trajectory bypassing proton 7 of 

the indigo core. This sterical clash might lead to the deexcitation of the excited state, terminating 

the PEHT motion midway, which results in a single bond rotation without changing of the 

helicity at -60 °C and without trans to cis photoisomerization, exclusively giving the syn-

trans-2 isomer. This could explain the additional signal set besides anti-cis-1 isomer signals 

that is only stable at -60 °C (or heavily broadened) and populates the syn-cis-1 isomer upon 

thermal annealing. 
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2.4.24 Symmetric chiral indigos - Second generation indigo 64 - 

Overview of trajectories 

Figure 281 is extended in Figure 285 below to visualize all possible and non-redundant 

trajectories in the photoswitching system of indigo 64 for the sake of completeness. 

 

Figure 285: Possible theoretical trajectories for the reaction cycle of the anti-trans isomer 

between -60 °C, -50 °C and 25 °C. CW = clockwise rotation, CCW = counter 

clockwise rotation. The rotational direction is defined by the view on top of the 

respective single or double bond axis. Rotational directions marked in red 

represent the favored rotations for single- and double bonds. The two lowest 

energy transition states are shown for respective reaction path. Calculated 

energies at the B3LYP/6-311+G(d,p) level of theory are given below the 

stereodescriptors respective to the lowest ground state energy, which is set to 

0.00 kcal/mol. (SB) = rotation directions for the single bond, (DB) = rotation 

directions for the central double bond. 

Overview and explanation of the possible trajectories in Figure 285 

Starting from the anti-trans isomer, photoinduced branching towards the syn-cis and anti-cis-1 

isomers can be observed at -60 °C. The anti-trans- to syn-cis isomer trajectory follows a 

photoinduced double bond isomerization at -60 °C (End1) which is reversed at -5 - +25 °C, 

yielding the anti-trans starting material (End3). The anti-trans to anti-cis-1 trajectory follows 

a photoinduced extended Hula-Twist (PEHT, orange) motion. The PEHT is broken down into 

a preferably CCW virtual atropisomerization- and a CW double bond isomerization step to 
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permutatively address its directionality. A more elaborated assessment of the trajectory for this 

photoreaction taking place at -60 °C can only be assessed by detailed and exhaustive excited 

state calculations. The generated anti-cis-1 isomer is partially converted to the anti-trans isomer 

at -50 °C, which can only take place via a thermal extended Hula-Twist trajectory (TEHT), as 

a simple CW thermal double bond isomerization would lead towards the syn-trans-1 isomer 

(End2). This supposedly concerted thermal reaction pathway is split into a preferably CCW 

atropisomerization and CW double bond isomerization to permutatively address its 

directionality, as observed with the PEHT trajectory. Continuing from the slowly accumulated 

syn-trans-1 isomer, the previously shown cycle would be active at -5 °C to 25 °C. However, at 

-50 °C, the anti-cis-2 isomer is the main photoproduct by a CW double bond isomerization. It 

is thermally branched back towards the syn-trans-1- (End2) via CW thermal double bond 

isomerization and syn-cis isomer (End1) via CCW atropisomerization over the favored 

transition state (methyl group passes over indigo core proton). Continuing from anti-cis-1, 

thermal branching to a CWR around the central double bond (pre-twisting) to the syn-trans-1 

and a CCWR around the single bond (lowest cis transition state passes its methyl group over 

the indigo core proton) to the syn-cis isomer can be postulated. 

Continuing from the slowly accumulating syn-trans-1 isomer, thermal branching to the 

previously described prospective unidirectional double bond motor rotation cycle (2x CWR at 

double bond) and CCW atropisomerization towards the syn-cis isomer takes place (lowest cis 

transition state passes its methyl group over the indigo core proton). 

CW double bond isomerization from the syn-cis- to the anti-trans state with subsequent 

CCW atropisomerization to the syn-trans-1 state (arrow not shown) above 0 °C engages the 

prospective syn-trans-1 unidirectional single bond motor cycle shown in Figure 279. 

The sequences of all trajectories for the anti-trans isomer starting point at 25 °C are given in 

Table 15 

Table 15 below for a few examples, as a table with 720 entries would be necessary to display 

all possible ordered unique permutations. 

Table 15: Permutation of seven possible theoretical trajectories for the photodriven / 

thermal extended reaction cycle of the anti-trans-64 isomer at 25 °C for Figure 

285. Preferred rotations are marked in red. “T1” stands for “Trajectory1”. DBR 

= Double bond rotation, SBR = single bond rotation. 

 

Atrop. 

trans1

180° 

Phot. 

DBI2

147° 

Therm. 

DBI2 

147° 

Phot. 

DBI3

180° 

Atrop. 

cis2 

180° 

Therm. 

DBI1 

180° 

Resulting 

trajectory 
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T1: DBR  CW CCW CW  CCW Not unidirectional 

T1: SBR CCW    CCW  Unidirectional 

T2: DBR  CCW CCW CCW  CCW 1xUnidirectional 

T2: SBR CW    CCW  Not unidirectional 

T3: DBR  CW CCW CCW  CCW 1xUnidirectional 

T3: SBR CW    CCW  Not unidirectional 

T4: DBR  CW CW CCW  CCW Not unidirectional 

T4: SBR CW    CCW  Not unidirectional 

T4: DBR  CW CW CW  CCW 1xUnidirectional 

T4: SBR CW    CCW  Not unidirectional 

T5: DBR  CW CW CW  CCW 1xUnidirectional 

T5: SBR CW    CW  Unidirectional 

T6: DBR  CW CW CW  CW 2xUnidirectional 

T6: SBR CW    CW  Unidirectional 

T7: DBR  CCW CCW CCW  CW 1xUnidirectional 

T7: SBR CCW    CCW  Unidirectional 

 

Table 15 suggests a geared, unidirectional, red light, one photon-driven, six- or respectively 

two-step (PEHT, Atrop. cis2) prospective single bond motor assembly that rotates at 6×10-2 Hz 

at 25 °C (19.11 kcal/mol, calculated). 

The directionality of this cycle is based on the two energetically favored transition states 

changing their rotational preference between the trans and cis state, as seen with the single bond 

rotational cycle proposed in Figure 279.  
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2.4.25 Symmetric chiral indigos - Second generation indigo 64 - 

Temperature- and solvent dependence of cyclic trajectories 

Table 16 shows an overview of the prospective cyclic motor / machine properties of the axially 

chiral disubstituted indigo 64. 

Table 16: Overview of the direction of thermally switchable pumping against the thermal 

equilibrium and prospective unidirectional 2-step double- (DBI) / 4-step single bond (SBR) 

isomerization motor properties for indigo 64 in various solvents. HEA = 83 / 17 heptane / ethyl 

acetate 

 25 °C -50 °C 

Pumping direction 

 

syn- to anti-trans 

(DCM, Tol) 

anti- to syn-trans 

(DCM, Tol) 

Prospective 2-step 

DBI motor 

 

1.6×101 Hz (DCM) 

3.7×10-2 Hz (Tol) 

1.5×10-3 Hz (DCM) 

4.5×10-7 Hz (Tol) 

Prospective 4-step 

SBR motor 

3.0×10-5 Hz (HEA) 3.5×10-11 Hz (HEA) 

In summary, the combination of a (relatively) temperature independent single 

photoisomerization step with several (branched) thermal steps makes gating of the reaction 

pathways possible by disfavoring energetically higher thermal barriers at low temperatures. The 

latter is observed with the anti-cis-2 to syn-cis atropisomerization as key step for the pumping 

of the syn-trans-1 to the anti-trans isomer against its equilibrium ratio. Cooling to -50 °C 

completely cancels this pathway, favoring the photoinduced extended Hula-Twist reaction, 

which converts the anti-trans- to the anti-cis-1- / syn-trans-2 signals. The anti-cis-1 isomer is 

then thermally converted to the syn-trans-1 isomer at -50 °C in dichloromethane, reversing the 

pumping direction when cooled down.  
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2.4.26 Symmetric chiral indigos - Second generation indigo 64 - 

Conclusion 

The complex motional cascades of a red light-driven, one photon powered, unidirectional two-

step double bond- or four-step single bond axially chiral indigo motor that shows thermally 

switchable enrichment of one of its two different trans states against the thermodynamic 

equilibrium could be proposed. The underlying thermal anti-trans-2 to syn-cis step was shown 

to play a key role for the syn-trans- to anti-trans isomer enrichment at 25 °C. Also, a novel 

photoinduced- and thermal Hula-Twist motion spanning over three bonds could be 

demonstrated. The latter is proposed to show a geared motion between its two chiral aryl axes 

and represents the key step at -50 °C for the anti-trans to syn-trans-1 enrichment. An 

unexpected selectivity for the syn-cis isomer to photochemically yield only the anti-cis-2 isomer 

with the anti-trans isomer yielding only the syn-cis- and anti-cis-1 / syn-trans-2 signals could 

be shown via low temperature 1H-NMR spectroscopy and DFT theory. 

Further experiments on non-symmetric derivatives of this class compound should be carried 

out to scrutinize the intriguing motional behavior of this molecular setup. 

These unprecedented motions utilizing the indigo scaffold expand the scope of designing 

and understanding future molecular motors and machines towards mechanical transmission of 

force and demonstrates the possibility of their usage within biological systems.  
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2.4.27 Non-symmetric chiral indigos - Third generation chimeric 

indigo 71 

Experiments on indigo 69 in Section 2.4.10 determined a thermal atropisomerization barrier of 

20.4 kcal/mol for indigo 69, which led to another chimeric indigo derivative 71 which was 

synthesized and characterized by F. Binder during his research internship. 

 

Figure 286: Overview of the trans forms of indigo 71. The same amount of enantio and 

diastereomers is expected for the cis state. 

The hybrid between chiral indigos 65 and 64 supports two chiral axes with potentially different 

thermal barriers and properties. 7-Methyl-N,N'-di(o-tolyl)indigo 71 supports two chiral ortho-

aryl axes with one being sterically encumbered by a methyl group attached to the indoxyl core. 

Eight enantio- / diastereomers are expected for this molecule when cis isomers are taken into 

consideration (not shown). 

 

Figure 287: Chiral HPLC separation of the (Sa)-(Sa)-syn-trans-, (Ra)-(Ra)-syn-trans-, 

(Sa)-(Ra)-anti-trans- and (Ra)-(Sa)-anti-trans indigo 71 rota- and diastereomers at 

0 °C with an 8 / 2 heptane / ethyl acetate mixture as eluent, the four separated 

rotamers can be observed.  
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The streaks between peaks indicate atropisomerization reactions taking place, which 

interconvert one rotamer to the other during elution from the chiral column. As the rotational 

barrier of the chiral axis adjacent to the core methyl group is expected to be below 21 kcal/mol, 

streaking between all isomers should be observable. This can be seen as the first streak between 

(Sa)-(Sa)- and (Sa)-(Ra) isomer is low in intensity while the (Ra)-(Ra) to (Ra)-(Sa) streak is added 

in intensity. A (Sa)-(Sa)- to (Ra)-(Ra)- as well as a (Ra)-(Sa) to (Sa)-(Ra) streak should not be 

visible at 0 °C. Latter is hard to observe because of the close proximity of both peaks. The 

immediate stop of the streaking after the complete elution of the (Ra)-(Ra)-trans-71 isomer 

underlines these findings. 

Separation by chiral HPLC at 0 °C yielded four peaks with relative intensities in square 

brackets: ExE1 (Sa)-(Sa)-syn-trans- [2], ExE2 (Ra)-(Ra)-syn-trans- [2], E3 (Sa)-(Ra)-anti-trans- 

[1] and E4 (Ra)-(Sa)-anti-trans- [1] isomer. 

  

Figure 288: Scaled UV-Vis (left) and ECD (right) spectra of 7-methyl-N,N'-di(o-

tolyl)indigo 71 in 8 / 2 heptane / ethyl acetate at 0 °C (blue / green and broken 

light blue / green) and after 6 min of 617 nm irradiation (red and broken light 

red). 

E1 and E2 can be assigned to the syn isomers and E3 / E4 to both anti isomers. Lower ECD 

signal intensities for E1 / 2 of 71 were measured compared to the ones of E1 / 2 for 64 or 70. 

Nonetheless, higher ECD responses than 65 and 69 could be obtained. E3 and E4 also show 

lower ECD intensity compared to E1 and E2 which is consistent to the observations for the 

meso form of 64. The fact that removing one chiral axis yields half of the ECD response and 

the observation that chiral axes adjacent to the core methyl group also show only low ECD 

responses confirms the assignment. 

When two chiral o-aryl axes motions are assumed for indigo 71, two different free activation 

enthalpies should be measurable, first the one of model compound 69 at 0 °C with ΔG* = 
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20.4 kcal/mol and second one that corresponds to model compound 70 at 40 °C with ΔG* = 

23.1 kcal/mol. Irradiation shows no visible photoswitching at ambient temperatures except for 

the racemization of the sample, which is also seen for chiral indigos 65 and 69. 

 

Figure 289: Linearized first order kinetics of 71 E1 and E3 in 8 / 2 heptane / ethyl acetate at 

0 °C and 40 °C. The thermal atropisomerization barriers were determined as 

follows: E1 at 40 °C: 22.9 kcal/mol with a half-life of 1.98 h, E3 at 40 °C: 

23.0 kcal/mol with a half-life of 2.32 h, E1 at 0 °C: 21.7 kcal/mol with a half-

life of 15.2 min and E3 at 0 °C: 22.3 kcal/mol with a half-life of 44.0 min. Half-

lives are given for a temperature of 25 °C. Used formulas and equations are 

described in Section 2.2.19. 

The smaller barrier corresponding to the 7-methyl substituted ortho-aryl axis of indigo 71 as 

seen in model compound 69 is difficult to measure because of the bad signal-to-noise ratio of 

the ECD spectrophotometer for small signal intensities. The higher barrier corresponding to the 

sterically less encumbered chiral axis can be determined at almost the same values for 64 and 

70. The values measured at 0 °C correspond to the more stable chiral axis as values differ 

substantially from the previously determined 20 kcal/mol. Plots following the Eyring equation 

tend to vary with different measurement temperatures, giving slightly lower barriers for lower 

measurement temperatures and vice versa.  
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Figure 290: Aliphatic 1H-NOESY NMR-spectrum of the syn- and anti-rotamer of 7-methyl-

N,N'-di(o-tolyl)indigo 71, (600 MHz, dichloromethane-d2, 27 °C). Signals of 

protons anti 14 and syn 14 show positive NOE signals, while the rest of the 

molecule shows negative NOEs when the diagonal line is set to positive values 

according to convention. This is confirms the expected fast dynamics between 

syn- and anti diastereomers (see indigo 65, Section 2.4.3) as the used mixing 

time of 1.2 s is longer than the exchange of respective nuclei. Signal syn 14 / syn 

15 shows stronger intensity than anti 14 / anti 15, which hints towards steric 

repulsion between methyl groups syn 14 / syn 14’ (NOE not visible due to 

diagonal peak overlap) forcing methyl group 14 closer towards methyl group 15.  
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Figure 291: Aromatic / aliphatic 1H-NOESY NMR-spectrum of the syn- and anti-rotamer of 

7-methyl-N,N'-di(o-tolyl)indigo 71, measured at 27 °C, 600 MHz, dichloro-

methane-d2, 27 °C). The anti conformation can be unambiguously assigned as 

cross-signals anti 13’ / anti 14 and anti 13 / anti 14’ can be observed. The 

difference intensity of these signals supports a twisted conformation of the 

molecule with aryl edge 13’ closer to methyl group 14.  
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Figure 292: Aromatic 1H-NOESY NMR-spectrum of the syn- and anti rotamer of 7-methyl-

N,N'-di(o-tolyl)indigo 71, measured at (600 MHz, dichloromethane-d2, 27 °C). 

Signals syn 13 / syn 13’ are visible while signals anti 13 / anti 13’are not visible, 

which underlines this assignment to be correct.  
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Further low temperature 1H-NMR experiments were carried out on this compound to scrutinize 

its photoisomerization behavior. 

 

Figure 293: Irradiation of a 1.6 / 1.0 syn- / anti-trans mixture of indigo 71 in 

dichloromethane-d2 (400 MHz) after irradiation at various temperatures. The 

generation of stable cis isomers can be observed at -80 °C. 

Increasing the temperature to -60 °C showed no thermal reactions, only changing- / 

disappearing peak shapes of the cis isomers can be observed. When heating to -40 °C, the 

observed cis isomers start to disappear thermally, which is shown in Figure 294 below.  
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Figure 294: Kinetic plots for the thermal cis to trans isomerization of indigo 71 at -40 °C. 

An increase of all trans isomers can be observed while the cis states are 

depopulated.  

The yellow line remains relatively constant as the anti-trans 14 signal is overlapped with the 

cis 1 peak, see Figure 293. A temperature of -30 °C or longer acquisition times should be tried 

for tracking of the kinetics to obtain more defined slopes for analysis of the prevalent barriers. 

Also, the anti-trans isomer should be isolated and irradiated at low temperatures. Future 

experiments have to be carried out on this intriguing system.  
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2.4.28 Non-symmetric chiral indigos - Third generation chimeric 

indigo 72 

The synthesis and characterization of second generation non-symmetric chiral indigo 71 proved 

as success. Another approach desymmetrize the axially chiral indigo scaffold consisted in 

introduction of a functional group at the periphery of one chiral axis of this molecular setup. 

The goal of this project was to leave the atropisomerization barriers and photoinduced- / thermal 

trajectories of indigo 64 unchanged. K. Jordan synthesized N-(4-methoxy-2-methylphenyl)-N'-

(o-tolyl)indigo 72 during his master’s thesis to explore the properties of these systems. 

 

Figure 295: Overview of the trans forms of N-(4-methoxy-2-methylphenyl)-N'-(o-

tolyl)indigo 72. The same amount of enantio and diastereomers is expected for 

the cis state.  

 

Scheme 38: Simultaneous deacylation of indoxyl acetates 75 and 68 was carried out 

according to U. Burger et al. with dioxane as co-solvent. Subsequent oxidation 

using manganese(III) acetate furnished 76, 72 and 64 in low yields. 
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Figure 296: Optimized reversed-phase HPLC separation of indigo 72 with 9 / 1 acetonitrile 

/ water as eluent. The difference in retention times proved as unfeasible for 

separation and changing of eluent(s) and / or composition, temperature and 

column phase did not yield satisfactory results. The expected 1 / 2 / 1 pattern for 

this statistical reaction can be observed. 

 

Figure 297: Injection of the H2 peak of indigo 72 from the preceding reversed-phase HPLC 

run onto a chiral HPLC column at 0 °C with 83 / 17 heptane /ethyl acetate as 

eluent. Poor separation and carry-over of the three different molecules with three 

to four rotamers each make obtaining of enantiopure fractions impossible. 



2.4.29   NON-SYMMETRIC CHIRAL INDIGOS - THIRD GENERATION CHIMERIC INDIGO 73 

324 

The dissatisfactory separations lead to abandoning the methoxy substitution pattern. Ether 

cleavage with borontrihalides did not yield the hydroxyl derivatives. 

2.4.29 Non-symmetric chiral indigos - Third generation chimeric 

indigo 73 

As the methoxy substitution (indigo 72) proved as unsuccessful approach towards 

measurements on third generation non-symmetric chiral indigos, N-(4-fluoro-2-methylphenyl)-

N'-(o-tolyl)indigo 73 was synthesized and purified by K. Jordan during his master’s thesis. 

 

Figure 298: Overview of the trans forms of N-(4-fluoro-2-methylphenyl)-N'-(o-tolyl)indigo 

73. The same amount of enantio and diastereomers is expected for the cis state.  

 

Scheme 39: Simultaneous deacylation of indoxyl acetates 77 and 68 was carried out 

according to U. Burger et al. with dioxane as co-solvent. Subsequent oxidation 

using manganese(III) acetate furnished indigos 78, 73 and 64 in moderate yields.  
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Figure 299: Optimized reversed-phase HPLC separation of indigo 73 with 6 / 4 acetonitrile 

/ water as eluent. The expected 1 / 2 / 1 pattern for this statistical reaction can be 

observed. 

 

Figure 300: Injection of the H2 peak of indigo 73 from the preceding reversed-phase HPLC 

run onto a chiral HPLC column at 0 °C with 83 / 17 heptane /ethyl acetate as 

eluent. The expected four rotamers can be observed, however, the rotamers of 

residual difluorated indigo 79 from fraction H1 can also be seen. 
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Figure 301: Scaled UV-Vis (left) and corresponding ECD spectra (right) of all four peaks 

obtained from chiral HPLC separation (syn-trans-1 (ExE1), syn-trans-2 (ExE2), 

anti-trans-1 (ExE3) and anti-trans-2 (ExE4)) of N-(4-fluoro-2-methylphenyl)-

N'-(o-tolyl)indigo 73 in 83 / 17 heptane / ethyl acetate at 0 °C. Samples were 

irradiated and measured within the ECD spectrophotometer at 0 °C, which 

records UV-Vis spectra with poor quality. This was done because the other UV-

Vis spectrophotometer cannot be cooled to 0 °C. Both syn isomers (blue and 

broken blue lines) show strong ECD responses while the anti forms (green and 

pink lines) show no ECD signal at all. This can be explained by the cancellation 

of ECD signal for a (Ra)- and a (Sa) chiral axis in the same molecule, see Section 

2.4.9. Irradiation at 0 °C shows the anti-cis isomers (red and broken red lines). 

 

Figure 302: Linearization of the first order kinetics for the atropisomerization of N-(4-fluoro-

2-methylphenyl)-N'-(o-tolyl)indigo 73 at 40 °C in 83 / 17 heptane / ethyl acetate. 

A barrier of 23.7 kcal/mol with a half-life of 7.90 h at 25 °C could be determined. 

Used formulas and equations can be found in Section 2.2.19. 



2 RESULTS AND DISCUSSION 

327 

 

 

Figure 303: 1H-NMR spectra of all four isolated rotamers of indigo 73. 1st and 2nd HPLC 

fractions can be regarded as enantiomers, which is also true for the 3rd and 4th 

fraction as they show the same spectra. Residual difluorated indigo 78 can only 

be observed in the 1st fraction, which shows that the separation of rotamers for 

this compound is feasible compared to indigo 72. 

To obtain insight in the motional behavior of this compound, further low temperature 1H-NMR 

measurements are carried out in the time of writing. The non-symmetric molecular setup should 

allow the recording of EXSY NMR spectra for separated dynamic signals to scrutinize their 

dynamics.  
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2.4.30 Conclusion: Axially chiral indigos 

The presented axially chiral molecular setups based in the diarylated indigo scaffold show 

vastly different behaviors upon their substitution patterns by changing the position and number 

of methyl groups at crucial positions.  

The first generation of this molecule class could not be easily analyzed due to its 

unexpectedly fast conversion rates and 1H-NMR signal broadening at low temperatures. 

The second generation avoided the indigo core methyl groups, giving higher 

atropisomerization rates, enabling the separation of isomers for their individual analyses. Their 

complex motions could be determined to prospective unidirectional double- and single bond 

motors, thermally switchable enriching of syn- / anti-trans states against the thermal 

equilibrium and photochemically- / thermally induced, geared Hula-Twist motions. 

Several non-symmetric axially chiral model compounds were successfully synthesized and 

characterized by F. Binder to disentangle and verify the observed properties shown by the 

symmetric derivatives. A novel chimeric compound supporting two different chiral axis setups 

was also explored. 

The third generation of axially chiral indigos was successfully synthesized and characterized 

by K. Jordan to gain further insights on the exhibited motional cascades within these molecules, 

further experiments are carried out at the time of writing. 

Overall, the unexpected behavior of these fairly small and formally simple looking molecules 

was scrutinized. Their potential as prospective molecular motors and -machines was 

demonstrated, giving insights into novel photoinduced- and thermal motions, which is crucial 

for the design of nanomachines and molecular robots. Also, addressability within the biooptical 

window was achieved, as all photosteps can be driven with low energy, 625 nm LED light, 

making the application of likewise systems available on biological tissues in vitro and in vivo. 
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2.5 Ionic hemiindigos - Photoswitching of collision cross-
sections in the gas phase - Introduction 

Achieving rational- and cost-effective design strategies for indigoid and other photoswitches 

requires a detailed understanding - both experimentally as well as theoretically - of their 

fundamental photochemical- and physical properties by exploring the underlying mechanisms. 

Most commonly, these properties are experimentally probed in solution or the solid state, i.e. 

in situations where the influence of the surrounding medium is important. Techniques that 

enable probing of the structure and photoinduced changes of an isolated molecule in the gas 

phase are still quite exotic despite offering unique insights into crucial intrinsic molecular 

properties. Such methods allow one to disentangle the influences of the surrounding medium 

and have the advantage of providing data directly comparable to theoretical descriptions.[121, 

122, 123, 124, 125] 

Hemiindigo photoswitches show almost quantitative isomer accumulation, high thermal 

bistabilities, good quantum yields and independence of solvent polarity upon photoswitching. 

Isolation of the hemiindigo photoswitches from the solvent matrix was scrutinized during gas 

phase experiments carried out by E. Carrascosa, M. Schulz and J. Bull from the Bieske group 

located at the University of Melbourne, Australia. Permanent charge tags were attached to 

hemiindigo photoswitches to further investigate the mechanistic properties and expanding the 

scope of their photoswitchability in both solution and the gas phase.[126] The use of ion mobility 

mass spectrometry coupled to laser spectroscopy enabled the observation of photochromism 

and reversible Z- / E isomer photoswitching in a solvent-free environment. This method 

provides direct experimental evidence for significant light-induced changes in the collision 

cross-section of these novel hemiindigos in the gas phase. As the influences of a surrounding 

medium can be eliminated, the resulting measured physical properties are directly relatable to 

theoretical descriptions. The combination of solution NMR and UV-Vis absorption 

spectroscopies with gas phase action spectroscopy delivers insights into the environmental 

influences on the photoswitching properties of hemiindigos. It could be shown that this 

approach represents a powerful and generally applicable strategy for studying the 

photoisomerization mechanisms and structural changes of isolated molecular switches.  

An experimental approach combining ion mobility mass spectrometry with laser 

spectroscopy was developed by the Bieske group to obtain electronic action spectra of specific 

isomer ions, which has been applied successfully to a range of photoswitches and 

biochromophores.[127] Separation and photochemical characterization of the Z and E isomers of 
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three newly developed and permanently charged hemiindigo photoswitches 80, 81 and 82 

(Figure 304) could be carried out in the gas phase by utilization of this setup. The photochemical 

behavior of the isolated isomers was compared to the corresponding behavior in solution as 

well as to quantum chemical calculations. 

Time-resolved collision cross-section experiments were carried out on the synthesized ionic 

hemiindigo photoswitches by mass filtering specific isomers and submitting them to a low 

pressure collision gas area within the tandem mass spectrometer. The collision gas decelerates 

the larger molecular conformers while the smaller ones travel less hindered at faster speeds 

towards the detector. This technique allows for the observation of delicate conformational 

changes of molecules that cannot be examined within solution or solid state in which Brownian 

motion is dominating. 

The measurement course consists of in situ laser irradiation of isomer compositions to yield 

Z- or E isomer enriched and isomer specific arrival time distributions (ATDs) as photoproducts. 

The comparison of the in situ generated ATDs to the ATDs for samples which were previously 

enriched outside of the mass spectrometer to the Z- or E isomeric states makes an unambiguous 

assignment of the in situ generated ATDs possible, as the irradiation behavior in solution is 

known by UV-Vis and NMR spectroscopy. The photoswitches were irradiated outside the 

spectrometer and the isomerically enriched solutions were submitted to electrospray ionization 

(ESI), showing the same differences in arrival times as the in situ irradiated samples (Figure 

307).  

The comparison of the experimental datasets with the theoretical evaluation of the findings 

done by E. Carrascosa and M. Scholz gives insights in otherwise non-observable 

conformational effects within ionic hemiindigo photoswitches. 

 

Figure 304: Overview of synthesized and investigated hemiindigos 80, 81 and 82. Only Z 

isomers are shown. 

For hemiindigos 80, 81 and 82 the charge-tag is peripherally attached to the chromophore via 

an alkyl chain, which is meant to minimize the electronic communication to the photoswitch 
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(Figure 304). While hemiindigo 80 and 81 only differ in the length of the charge-tag chain, 

hemiindigo 82 incorporates a stronger electron donating julolidine moiety. 

2.5.1 Ionic hemiindigos - Synthesis 

Hemiindigos 11 and 15 were prepared according to Section 2.2.4 or literature procedures.[74, 88] 

Sodium hydride, 1,2-dibromoethane and 1,3-dibromopropane were purchased from Sigma-

Aldrich and used as received. Hemiindigos 83, 84 and 85 were synthesized according to V. 

Velezheva et al. with changes to addition order and -speed.[90, 128]  

 

Scheme 40: Preparation of alkylated photoswitches 83, 84 and 85 supporting a terminal 

bromine functionality starting from hemiindigo derivatives 11 and 15. 

Hemiindigos 83, 84 and 85 were obtained by deprotonation with sodium hydride 

and a subsequent SN2 reaction with terminal dibromoalkanes by addition via 

syringe pump at ambient temperatures. Lower HPLC yields are caused by loss 

of material86 upon injection and / or isolation of only one isomer peak starting 

from a Z / E mixture. 

 * 1.5 equivalents sodium hydride and 5.0 equivalents of 1,2-dibromoethane were 

used. Addition of 1,2-dibromoethane to a basified mixture of 11 in N,N-

dimethylformamide was done rapidly without syringe pump. 
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Excess of base tends to eliminate bromine for entries 83 and 85 via an E1cB mechanism, leaving 

hemiindigo switches with 1-propenyl attached to the indoxyl nitrogen as side product (approx. 

10 - 20%). 

The introduction of a charge tag to the hemiindigo photoswitch is necessary for proving 

photoswitchability within ion mobility experiments in the gas phase. 1,4-

Diazabicyclo[2.2.2]octane (DABCO) was chosen as charge tag because of its superior 

ionization yields reported by M. Cydzik compared to imidazolium and alkyl ammonium 

tags.[129] 

1,4-Diazabicyclo[2.2.2]octane was purchased from Sigma-Aldrich and was used as received. 

Hemiindigos 80, 81 and 82 were prepared according to B. Almarzoqui et al. at elevated 

temperatures.[130] 

 

Scheme 41: Preparation of charge-tagged hemiindigos Z / E 80, 81 and 82. 1,4-

Diazabicyclo[2.2.2]octane reacts almost quantitatively to its quaternary bromide 

salts with hemiindigos 83 and 85 via a Menschutkin reaction at 45 °C in one day. 

*Hemiindigo 81 was prepared with 5.0 equivalents of 1,4-

diazabicyclo[2.2.2]octane and showed no quantitative reaction.  
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The hexafluorophosphate salt of 81 was prepared because the low solubility of the bromine salt 

in dichloromethane with minor success, as the hexafluorophosphate salt did not increase the 

solubility of 81 substantially. Therefore, (deuterated) acetonitrile was further used as suitable 

solvent for NMR- and UV-Vis measurements. 

2.5.2 Ionic hemiindigos - Gas phase photoisomerization 

experiments 

To investigate the photoisomerization of the isolated charge-tagged hemiindigos 80, 81 and 82, 

a homebuilt tandem ion-mobility mass spectrometer (IMS) was employed by E. Carrascosa 

from the Bieske group.[123] The principle of ion-mobility spectrometry is based on the spatial 

separation of isomeric molecular ions due to differences in their drift mobilities.  

To study the photoisomerization reactions of the assigned isomers in the gas phase, a specific 

mobility separated ion distribution was selected using a pulsed ion gate located halfway along 

the ion mobility spectrometer. Exposure of the initial isomer composition to wavelength- and 

intensity tunable laser light promotes photoisomerization reactions, which separate the resulting 

Z- or E enriched isomer mixtures from its precursor composition in the second drift region. 

Monitoring the isomeric intensities as a function of wavelength in a laser on-laser off 

experiment (see Figure 309, upper row) yields the Z to E and E to Z photoisomerization action 

spectra (Figure 309, middle row). It is found that all three hemiindigos undergo Z to E and E to 

Z photoisomerization in the absence of surrounding solvent. This observation is in contrast to a 

recent work on a hemithioindigo derivative, where reversible photoisomerization was only 

found in solution and the gas phase allowed only Z to E photoswitching.[122] The maxima of the 

Z to E photoisomerization action spectra of hemiindigos 80, 81 and 82 appear at 450 nm, 

410 nm, and 470 nm, respectively, while the corresponding E to Z photoisomerization response 

peaks are found at 505 nm, 490 nm, and 530 nm. The significant red-shift observed in the 

photoisomerization band of 82 can be explained by the presence of the strong electron donating 

julolidine group, as seen for hemiindigo 3 in Section 2.2.5. The absorption wavelengths of all 

hemiindigos 80, 81 and 82 were calculated at the df-CC2/aug-cc-pVDZ level of theory using 

the MRCC software. The experimentally obtained photoisomerization spectra may represent a 

convolution of the photoresponses of several conformers that interconvert as they pass through 

the drift region, leading to a single ATD peak. Absorption wavelengths were only calculated 

for the previously identified low energy conformers.  
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An ions’ mobility K can be expressed by the Mason-Schamp equation[131] (eq. 20): 

 𝐾 =
3𝑧𝑒

16𝑁
 √

2𝜋

µ𝑘𝑏𝑇
 (

1

𝛺
) =

𝑙2

𝑡𝑑𝑉
 eq. 20 

Here, z is the ion's charge number, e the electron charge, N the density of the buffer gas,  the 

reduced mass of the collision partners and kb the Boltzmann constant.  represents the integral 

collision cross-section and depends on the interaction between ion and buffer gas molecule, so 

that it is dependent on the molecular arrangement of the given ion. Bulky, unfolded molecules 

have larger collision cross-sections and therefore drift more slowly (larger td) than compact 

molecules. Figure 305 shows a schematic representation of the experimental arrangement. 

 

Figure 305: Schematic representation of the homebuilt tandem ion mobility mass 

spectrometer. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 

Hemiindigos 80, 81 and 82 were electrosprayed from ~0.1 mM solutions of the respective 

precursor in acetonitrile. The ions were then transferred through a heated capillary into a first 

radiofrequency (RF) driven ion funnel (IF1) for radial confinement. No significant effect of the 

RF drive voltage amplitude on the relative peak intensities in the arrival time distributions was 

observed. The absence of collisionally induced rearrangements suggests the existence of large 

thermal Z / E isomerization barriers for all three compounds. After confinement along the first 

ion funnel, the ions were injected as pulsed packets into a two-stage drift region filled with N2 

buffer gas at ≈6.2 Torr using an electrostatic ion gate (IG1). The ion gate was pulsed for 120 μs 

at a rate of 40 Hz. The drift tube consists of a series of ring electrodes which established an 

electric field (44 V/cm) that propelled the ions through the drift region. OPO = optical 

parametric oscillator, a wavelength- and intensity tuneable pulsed laser light source. 
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Figure 306: Arrival time distributions (ATDs) for the three investigated hemiindigo ions 80, 

81 and 82 recorded with N2 buffer gas (upper row) and with N2 doped with 1% 

2-propanol (lower row). Adapted with permission from [126]. Copyright 2020 

Wiley VCH. 

While two almost baseline resolved peaks were obtained for hemiindigo 81 in N2, only one 

broad arrival time distribution was observed for compounds 80 and 82 with N2 buffer gas (see 

Figure 306, upper row). Better separation was achieved by seeding the N2 buffer gas with ≈1% 

2-propanol (Figure 306, lower row). This allowed separating the E- and Z isomers for 

hemiindigos 80 and 82, which was necessary to isolate and irradiate individual isomers.  

80 81 82 
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2.5.3 Ionic hemiindigos - ATD peak assignments and determination 

of isomeric yields upon irradiation in solution 

To assign the ATD peaks to specific isomers, a series of pre-irradiation experiments in solution 

were carried out by E. Carrascosa in the syringe connected to the electrospray source (see 

Figure 307). ATDs were monitored after irradiation of the sample with blue (Laserglow LRS-

473-TM-30-5, 39.5mW, 430-473nm), green (Thorlabs CPS533, 4.5mW, 532nm) or red (Melles 

Griot He-Ne Laser, 25-LHP-151-249, <15mW, 632.8nm) cw lasers for 5-10 minutes, 

establishing a photostationary state (PSS) and comparing the irradiated samples to the 

distribution of the non-irradiated solution (see Figure 307). The resulting effect of light 

irradiation on the ATD peak intensities are shown in Figure 307 below. The obtained 

distributions were Gaussian fitted, constraining the width of both peaks to be equivalent. 

Figure 307: Fitted arrival time distributions (ATDs) for the three investigated hemiindigo 

ions 80, 81 and 82 with different solution irradiation conditions. The left column 

shows the resulting ATD after 5 minutes irradiation of each sample with blue 

light, whereas the right column shows the ATDs after irradiation with green or 

red light prior to electrospray. The fitted contributions of each isomer are given 

under the obtained curves. Adapted with permission from [126]. Copyright 2020 

Wiley VCH.  

Hemiindigo 80 

 

 

 

 

Hemiindigo 81 

 

 

 

 

Hemiindigo 82 
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Figure 308: (a) ATDs showing mobility-separated Z and E isomers of hemiindigos 80, 81 

and 82. The black traces show the ATDs of the electrosprayed samples shielded 

from light, whereas colored traces represent the distributions after exposure of 

each hemiindigo solution to the indicated wavelength of light. (b) Solution 

absorption spectra of an isomeric mixture of hemiindigos 80, 81 and 82after 

irradiation with different wavelengths of light promoting formation of either Z 

or E isomers. A reversal of the arrival times of Z and E isomers for hemiindigo 81 

compared to 80 and 82 can be observed. Adapted with permission from [126]. 

Copyright 2020 Wiley VCH. 

The resulting isomer PSS abundances compare well with the values obtained in solution. This 

comparison relies on the same PSS being established in both sets of measurements. The 

contribution of conformers associated with each isomer can be different for E and Z, thus 

causing a different broadening in the E- and Z ATDs. Therefore, assuming the same widths for 

Hemiindigo 82 

Hemiindigo 81 

Hemiindigo 80 
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each Gauss-distribution may induce a small uncertainty in the isomer abundances shown in 

Figure 307. 

2.5.4 Ionic hemiindigos - Photoisomerization action spectroscopy 

experiments 

Photoisomerization experiments in the gas phase were carried out by E. Carrascosa and 

M. Scholz by selecting an ion distribution using a Bradbury-Nielsen-type ion gate (IG2) situated 

midway along the drift region which was opened for 100 μs at an appropriate delay with respect 

to IG1 (see Figure 305). Shortly after being gated, the ions were irradiated with a light pulse 

from a tuneable optical parametric oscillator (OPO, EKSPLA NT342B, 20 Hz, 5 ns pulse 

width). The photoproducts were separated from the parent isomers in the second stage of the 

drift region and were then guided through a second ion funnel (IF2) followed by a differentially 

pumped octupole ion guide, a quadrupole for mass selection and a channel electron multiplier 

(Channeltron) detector. The OPO was fired at 20 Hz and overlapped every second ion packet 

allowing ‘light on’ and ‘light off’ ATDs to be collected, the difference between ATDs reflects 

the effect of light on the parent cation. Thus, a given photoisomer appeared as a separate peak 

in the ‘light on’ ATD. 

 

Figure 309: Example Z isomer photoaction ATDs (a-c), gas-phase action spectra (d-f) and 

solution absorption spectra (g-i) for the Z and E isomers of hemiindigos 80 (left 

Hemiindigo 80       Hemiindigo 81            Hemiindigo 82 
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column), 81 (middle column) and 82 (right column). For the isolated hemiindigo 

isomers, the calculated absorption wavelengths are marked with bars of the 

corresponding color. Adapted with permission from [126]. Copyright 2020 Wiley 

VCH. 

For the E isomers, the calculated absorption wavelengths (506 nm, 504 nm, and 543 nm for 80, 

81 and 82) agree well with the experimental results (see Figure 309, middle row). For the Z 

isomers, the calculated absorption wavelength is blue-shifted by about 50 nm with respect to 

the experimental band maxima for 80 and 82 (409 nm and 419 nm), whereas it agrees with the 

experimental value for 81 (405 nm). Despite these slight deviations for some Z isomers, the 

calculated values lie in the wavelength range of the experimentally obtained photoisomerization 

response. While the photoisomerization action spectra potentially suffer from conformational 

broadening, this effect does not account for the observed slight disagreement between the Z to 

E photoisomerization action spectra maxima of hemiindigos 80 and 82 and the theoretically 

obtained absorptions. 

The measured gas phase photoisomerization action spectra can be compared to the solution 

absorption spectra of the pure hemiindigo isomers (Figure 309, lower row). In all cases, the 

solution absorption spectra are red-shifted relative to the gas phase action spectra. While the 

shift between the Z to E and E to Z photoisomerization maxima does not change from solution 

compared to the gas phase for hemiindigos 80 and 82 (Δ = ~50 - 70 nm), it significantly 

increases for hemiindigo 81 in the gas phase (Δ = 80 - 90 nm).  
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2.5.5 Ionic hemiindigos - Power dependence 

To evaluate the effect of light intensity on the photoisomerization yield, the Z isomer of 

hemiindigos 80, 81 and 82 were irradiated at different light fluences at 450 / 430nm by E. 

Carrascosa. Resulting power dependence plots are shown in Figure 310. A linear fit of the data 

points shows that the photoinduced isomeric yield is directly proportional to light fluence for 

hemiindigos 80 and 81, which is consistent to a single-photon isomerization. For 

hemiindigo 82, the linear dependence is not followed at fluences above 1 mJ/pulse/cm2, 

suggesting saturation / multiphoton processes above this light fluence. All photoisomerization 

measurements were performed at fluences below 0.8 mJpulse-1cm-2. Similar power dependence 

measurements were not performed for the E to Z photoisomerization channels due to the 

significantly lower photoisomerization response. However, similar behavior as seen in the Z to 

E power dependences can be expected. 

 

Figure 310: Normalized yield of E photoisomer as a function of light fluence. The 

experiments were performed at 450nm (Hemiindigos 80 and 81) and 430nm 

(Hemiindigo 82), respectively. All photoisomerization experiments were 

performed at a light fluence of <0.8 mJpulse-1cm-2. Adapted with permission 

from [126]. Copyright 2020 Wiley-VCH.  

Hemiindigo 80        Hemiindigo 81                     Hemiindigo 82 
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2.5.6 Ionic hemiindigos - Conformer evaluation in the gas phase 

To identify the potential contribution of several conformations of the alkyl chain and aniline / 

julolidine moiety in each ATD peak, a non-exhaustive conformer search was performed by 

E. Carrascosa and M. Scholz using the Force Field tool in Avogadro. Conformations with 

relative energies <40 kJ/mol were re-optimized at the B97XD/cc-pVDZ level of theory using 

the Gaussian16 package.[132] These geometries were then used as input for theoretical collision 

cross-section calculations using a version of the MOBCAL package parametrized for N2 buffer 

gas.[133] Electronic excitation energies were calculated at the df-CC2/aug-cc-pVDZ level of 

theory using the MRCC program.[134] Figure 311 shows the optimized three-dimensional 

structures of Z and E conformers of hemiindigos 80, 81 and 82, respectively. Associated 

calculated energies, transition wavelengths and collision cross-sections for these conformers 

are given in Table 17. 

 

Figure 311: Calculated geometries and relative energies for representative low-energy E and 

Z conformers of hemiindigos 80 (a), 81 (b), and 82 (c) calculated at the 

B97XD/cc-pVDZ level of theory. The energies are given in kcal/mol with 

respect to the most stable conformer. (d) Calculated averaged collision cross-

section (CCS) for E and Z isomers in 80, 81 and 82, assuming a Boltzmann 

distribution of the individual conformers shown in (a-c) at a temperature of 

300 K. Adapted with permission from [126]. Copyright 2020 Wiley VCH.  
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Table 17: Optimized ground state energies, transition wavelengths and theoretical collision 

cross-sections in pure N2 buffer gas for a series of Z / E conformers of 

hemiindigos 80, 81 and 82.  

Hemiindigo Conformer Optimized energy 

[kcal/mol] 

Transition 

wavelength [nm] 

CCS  

[Ǻ2] 

Z-80 A 0.00 409||364 206 

 B 1.69 405||362 214 

 C 2.92 398||355 211 

E-80 A 2.31 506||399 216 

 B 3.87 502||396 206 

 C 3.89 497||393 211 

 D 3.96 517||387 218 

 C 11.29 478||367 233 

Z-81 A 0.00 405||365 208 

 B 1.45 440||385 213 

 C 1.89 398||366 211 

E-81 A 4.40 504||391 213 

 B 4.51 504||390 213 

Z-82 A 0.00 419||372 222 

 B 1.46 439||374 221 

 C 1.99 418||371 225 

E-82 A 1.39 543||417 225 

 B 2.56 527||415 220 

 C 3.48 559||402 231 

 D 5.30 515||417 218 

 E 11.16 518||397 247 

All calculated and Boltzmann averaged collision cross-sections of hemiindigos 80, 81 and 82. 

Figure 311, (d) shows smaller values for their respective Z- compared to their E isomers. This, 

however, is only reflected with the ATDs of hemiindigo 81, photoswitches 80 and 82 show 

faster arriving E instead of Z isomers. Nonetheless, the trend within the E isomers is reflected 

well, as hemiindigo 81 generally arrives first. The Z isomer of 81 should travel faster through 

the collision gas compared to 80 according to the collision cross-section value. Hemiindigo 82 

shows the latest ATDs, which is in accordance to the biggest collision cross-sections of its 

isomers.  
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2.5.7 Ionic hemiindigos - Conformational analysis in solution 

To correctly assign Z and E isomeric states to absorption spectra and ATDs, the respective Z 

and E isomers were investigated via 1H-NOESY NMR spectroscopy. The 2D NOESY spectra 

of the julolidine derivative 82 show similar respective signals compared to 80 and are omitted 

here. 

Aromatic / aliphatic NOEs of hemiindigo 80  

 

 

Figure 312: Section of the 2D NOESY NMR spectrum (dichloromethane-d2, 600 MHz, 

27 °C) of hemiindigo 80. The strong NOE cross signals between protons E 16 / 

17 / E 10 and the weak signal of E 18 indicates their assignment to the E isomer 

to be correct. Z 10 shows no cross peaks with the chain protons. Z 16 / 17 show 

overlapping cross signals with protons Z 3 / 12, resolving the Z 12 / Z 3 signals 
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determines the preferred conformer in proximity of proton 3 instead of 12. 

Adapted with permission from [126]. Copyright 2020 Wiley VCH. 

 

 

Figure 313: Section of the 2D NOESY NMR spectrum (dichloromethane-d2, 600 MHz, 

27 °C) of hemiindigo 80. The expected signals for the alkyl chain and 

diazabicyclo[2.2.2]octane can be identified. Adapted with permission from [126]. 

Copyright 2020 Wiley VCH.  
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Aromatic/aliphatic NOEs of hemiindigo 81  

 

 

Figure 314: Section of the 2D-NOESY NMR spectrum (acetonitrile-d3, 400 MHz, 27 °C) of 

hemiindigo 81. Strong cross signals of E 10 with protons E 16 and overlapped 

protons E 17 / 18 support their correct assignment to the E isomer. Z 10 shows 

no NOEs with alkyl chain protons. Z 12 shows strong signals with proton Z 16 

but no cross signal with Z 17 / 18 / 19 while proton Z 3 shows signals with Z 16 

and Z 17. This suggests a preferred chain conformer population in proximity of 

proton 3, although in a less pronounced manner than observed for Z-80. E 12 

exhibits weak overlapped cross signals for protons E 17 / 18, which cannot be 

seen for E 18 / 19 in hemiindigo E-80 as the elongated chain negates significant 

NOE signals to the peripheral diazabicyclo[2.2.2]octane tag. Adapted with 

permission from [126]. Copyright 2020 Wiley VCH.  
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Figure 315: Section of the 2D NOESY NMR spectrum (acetonitrile-d3, 400 MHz, 27 °C) of 

hemiindigo 81. The expected signals of the alkyl chain and 

diazabicyclo[2.2.2]octane can be identified. Adapted with permission from [126]. 

Copyright 2020 Wiley VCH.  
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2.5.8 Ionic hemiindigos - PSS UV-Vis spectra 

To compare gas phase experiments to solution, ionic hemiindigos 80, 81 and 82 were dissolved 

and irradiated in acetonitrile at different wavelengths. The photoswitching performance and 

photochromism is similar to the respective neutral hemiindigos 8 and 3, see Section 2.2.6. 

 

Figure 316: PSS UV-Vis spectra at different irradiation wavelengths for Z- / E-80 in 

acetonitrile. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 

As ionic hemiindigo 80 is completely water soluble, photoisomerization in pure water 

(deionized, from laboratory tap) was tested as well. However, no photoswitchability of this 

compound could be observed in water at ambient temperatures (not shown).  
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Figure 317: PSS UV-Vis spectra at different irradiation wavelengths for Z- / E-81 in 

acetonitrile. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 

As ionic hemiindigo 81 is completely water soluble, photoisomerization in pure water was 

tested as well. However, no photoswitchability of this compound could be observed in water at 

ambient temperatures (not shown). 

 

Figure 318: PSS UV-Vis spectra at different irradiation wavelengths for Z- / E-82 in 

acetonitrile. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 
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As ionic hemiindigo 82 is completely water soluble, photoisomerization in pure water was 

tested as well. However, no photoswitchability of this compound could be observed in water at 

ambient temperatures (not shown). 

The lack of photoswitchability of hemiindigos substituted with electron-rich stilbene 

fragments can be overcome by utilization of less electron-donating groups than the 

dimethylamino moiety, which is addressed in Section 2.6. 

 

Figure 319: Absorbance normalized 100% Z / E UV-Vis spectra for 80 (blue), 81 (red) and 

82 (black) in acetonitrile. Adapted with permission from [126]. Copyright 2020 

Wiley VCH. 

The expected red-shift from dimethylamino substituted phenyl (80 and 81) to julolidine stilbene 

fragment (82) can also be observed for this class of ionic hemiindigos. The blue-shift of the 

short chain substitution 81, however, was unexpected. See the following section for possible 

explanations.  
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2.5.9 Ionic hemiindigos - Evaluation of chain length effects  

Besides spectroscopic differences between ethyl- and n-propyl chains, varying chemical and 

physical properties are observed for the short chain hemiindigo 81. First, the reaction yields for 

the alkylation step drop from 59% or 45% to 15% and yields of the subsequent Menschutkin 

reaction drop from 99% to 30% for this compound. Second, overall solubility in polar organic 

solvents is drastically decreased. Ionic hemiindigos supporting n-propyl chains are soluble in 

ethyl acetate (relative polarity: 0.288) as the generally less soluble bromine salts. This stands in 

contrast to the short chain derivative, which is insoluble in dichloromethane (relative polarity: 

0.309) as the generally more soluble hexafluorophosphate salt. Acetonitrile (relative polarity: 

0.460) had to be used to obtain NMR data of this compound as hexafluorophosphate salt. This 

can be explained by a stronger tendency of 81 to precipitate, which is caused by increased 

electrostatic effects or by a less flexible alkyl chain, which is not able to keep the molecules in 

solution. 

The UV-Vis assessment in solution and action spectroscopy in the gas phase showed a blue-

shift and ATD inversion of Z and E isomers for hemiindigo 81 compared to 80. One explanation 

of the blue-shift is the closer proximity of the bulky diazabicyclo[2.2.2]octane moiety in the Z 

isomeric state, forcing the stilbene fragment out of the indoxyl plane, decreasing the pi-

delocalization of the chromophore. This is also observed for twisted hemiindigos 30 and 33, 

Section 2.2.7. However, the molecular geometries obtained by quantum chemical calculations 

suggest a reversed trend, showing slightly more pronounced twisting of the stilbene fragment 

for the Z isomers of hemiindigo 80 and 82 compared to 81 (Figure 321). 

Another explanation is the closer proximity of the positive ion charge towards the electron 

rich stilbene fragment, which decreases its electron donating strength towards the central double 

bond (see molecular electrostatic potentials (MEPs) and explanation of Figure 322). 

Nonetheless, the E isomer should be completely planar and unaffected by shortening of the 

alkyl chain, as the distance to the positive ion charge is increased from the Z- to the E isomeric 

state. However, the two most red-shifted Z- and E maxima for 81 experience an equal 

hypsochromic shift by 8 nm from 484 nm to 476 nm (Z isomer) and 537 nm to 529 nm 

(E isomer) compared to 80. This finding suggests a mostly Z / E isomer-independent cause of 

the blue-shift, which can be obtained by substitution of the indoxyl N-H proton with electron 

withdrawing groups, e.g. acetyls, see hemiindigo 12, Section 2.2.9.  
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Figure 320: 1H-NMR spectra of Z / E 81 (top) and Z / E 80 (bottom) in acetonitrile-d3, only 

the aliphatic section is shown. Corresponding Lewis-formula are shown at the 

top and bottom. Adapted with permission from [126]. Copyright 2020 Wiley 

VCH. 

1H-NOESY spectroscopy did not show unexpected or indicative signals for hemiindigos 80, 81 

and 82 and is therefore omitted here. 
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The diazabicyclo[2.2.2]octane substitution introduces a permanent positive charge at the 

quaternary nitrogen, which could be responsible for the electron density withdrawal from the 

electron-poor indoxyl fragment. This is hindered for hemiindigo 80, as the additional aliphatic 

chain CH2 group 20 (Figure 322) could act as an electronic decoupler between the photoswitch 

and the positive charge. For hemiindigo 81, both aliphatic chain CH2 groups 16 and 17 are 

connected to electron-poor nitrogen centers, which is also reflected by their 1H-NMR 

downfield-shifted signals, see Figure 320. The central chain CH2 group 20 of compound 80 

experiences less downfield-shift because it is not connected to a heteroatom. However, 

switching from the Z- to the E isomeric state induces a strong downfield shift on CH2 group 20, 

which can be caused by increased electron withdrawal of the carbonyl group and / or by the 

lack of the shielding ring-current of the stilbene fragment. The latter argument is supported by 

the pronounced shifting of CH2 signals 18 and 19, as these positions also experience a large 

downfield shift when switched to the E isomer. It is unlikely that an electron-withdrawing effect 

originating from the indoxyl fragment causes downfield-shifts of up to 0.5 ppm in the periphery 

over four to six unconjugated covalent bonds for the E isomer. Nonetheless, the shifts of signals 

16 do not change drastically during Z / E isomerization. This can be caused by the misalignment 

of the stilbene ring current towards these protons, which is responsible for significant shielding 

in the Z- compared to the E isomeric state. 

Considering all signal positions, deshielding occurs in the Z to E isomerization direction for 

both molecules with downfield shifts ranging from 0.2 to 0.7 ppm. Compared to hemiindigo 80, 

the shifting of signals 16, 17, 18 and 19 between Z- and E isomers is significantly pronounced 

for the shorter chain of hemiindigo 81. This can be attributed to the proximity of the positive 

ion charge towards the electron-withdrawing hemiindigo chromophore, especially in the E 

state. The electron-rich stilbene moiety can donate electron density towards the carbonyl 

function in the Z state, which is impeded in the E state and compensated by electron-withdrawal 

from the substituted alkyl chain. Deshielding of all signals except for protons Z 19 and Z 18 can 

be observed for 81 when compared to 80. The slight deshielding of diazabicyclo[2.2.2]octane 

protons 18 and 19 for the Z isomer of hemiindigo 80 can be explained by less influence of the 

stilbene ring-current as the alkyl chain is able to move freely.  
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Figure 321: Energetically favored Z and E isomers of hemiindigo 81 (top) and 80 (bottom) 

calculated at the B97XD/cc-pVDZ level of theory. 

Figure 321 shows the calculated lowest energy conformers of hemiindigo 81 and 80. Overall, 

very similar conformations can be observed, with a twisted stilbene fragment for the Z isomers 

and planar E isomers. The difference in 1H-NMR shifts seen in Figure 320 can be explained by 

the varying influence on the aliphatic protons caused by the aromatic ring current at the stilbene 

fragment, which is well aligned towards the positive charge on the side chain in the Z isomeric 

state. 
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Figure 322: Molecular electrostatic potentials (MEPs), highest occupied molecular orbitals 

(HOMOs) and lowest unoccupied molecular orbitals (LUMOs) of hemiindigos 

80 (top, left), 81 (top right) and 82 (bottom) calculated at the B97XD/cc-pVDZ 

level of theory. Only the conformers with the lowest respective energy are 

shown. The MEPs show the affinity towards a positive test charge, red areas 

show high and blue areas low affinities. The same color margin values of -0.01 

and +0.18were used for all MEPs. 

Visualization of HOMOs and LUMOs for hemiindigos 80, 81 and 82 show comparable orbital 

shapes to previously obtained computational results.[74] The HOMOs show significant electron 

densities at the indoxyl nitrogen and along the alkyl chains, which disappear in the LUMO state. 

As a side note, this electron density at the alkyl chain might explain the low (photo-)stability of 

the methyl- (13) and ethyl (14) hemiindigo derivatives (see Section 2.2.3). For the ionic 

compound 81, the electron density on the shorter chain is adjacent to the permanent positive 
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charge, which might also contribute to the immobilization of the side chain, decreasing its 

reactivity and solubility. The LUMO of the E isomeric state of 81 is the only molecular orbital 

where electron density is localized on the diazabicyclo[2.2.2]octane tag. Examination of the 

MEPs shows reduced charge separations for the E isomeric states of 80 and 81 compared to 

their respective Z states. A decrease in negative charge of the stilbene fragment can be observed 

for the Z isomers, which is in accordance to the shielding effects on aliphatic protons seen in 

1H-NMR spectra (see Figure 320). When comparing hemiindigos 80 and 82 to 81, overall 

increased positive charges can be observed for 81. Especially the E isomeric state shows no 

significant reduction in positive charge from the initial Z isomer as seen with 80 and 82. These 

observations hint towards another explanation of the reversed ATDs: The slight difference in 

charge distribution between Z and E isomers and hemiindigos 80, 81 and 82 interplays with 

their collision cross-section, more positively charged isomers experience a stronger force 

towards the negatively charged accelerators of the mass spectrometer, respectively reducing 

their ATD (see influence of charge z in eq. 20). Collision cross-section should be relatively 

independent from charge differences. With this theory at hand, the obtained ATDs represent 

the averaged effect between acceleration of more positively charged isomers and their 

deceleration caused by bigger collision cross-sections. As these effects are hard to disentangle 

experimentally, the outweighing effect cannot be unambiguously determined. However, the 

trend of faster arriving E isomers for 80 and 82 compared to Z isomers is not reproduced when 

an increasingly exposed positive charge is correlated to higher acceleration and faster ATDs. 

Nonetheless, acceleration and swapping of ATDs for hemiindigo 81 compared to 80 and 82, 

which also shows unexpected behavior in solution, can be explained by this suggestion.  
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2.5.10 Conclusion: Ionic hemiindigos 

In conclusion, three permanently charged thermally bistable hemiindigos were synthesized and 

their photochemical properties in the gas phase and in solution were investigated. It is shown 

that gas-phase experiments agree with the theoretical description and capture essential intrinsic 

molecular properties, including absorption wavelengths or collision cross-sections. Describing 

the influence of polar solvents on the photochemical behavior on the other hand is still 

challenging using this theoretical approach. Additionally, a novel way of separating stable 

hemiindigo isomers from an isomeric mixture to obtain isomer-specific photoisomerization 

responses without the need for spectral deconvolution of mixtures in solution is presented. It is 

further demonstrated, that reversible photoisomerization and strong photochromism for all 

isolated gas-phase hemiindigos is shown upon exposure to visible light. The influence of the 

shorter chain-length on absorption wavelengths, photoisomerization properties, overall 

reactivity and solubility were elaborated further. Possible explanations for the reversal of ATDs 

of Z and E isomers of the short-chain hemiindigo 81 are given. 

The use of ion mobility mass spectrometry coupled to laser spectroscopy offers unique 

insights into the subtle effects of intrinsic molecular constitution and electronic structure - 

separated from environment influences - of photoactive molecules. Such fundamental 

investigations can be useful for rationally designing better molecular photoswitches and serve 

as a benchmark for developing accurate theoretical models for their photoisomerization 

dynamics / and mechanisms.  
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2.6 Hemiindigos in water - Photoswitchable interactions with 
DNA / RNA biomolecules 

Experiments on various hemiindigos in Section 2.2.5 and Section 2.5 showed either no 

solubility in pure water or no photoswitchability of ionic hemiindigos with electron-rich 

stilbene fragments. D. Berdnikova of the Ihmels group in Siegen, Germany recently reported 

on a water soluble hemiindigo derivative that is able to photoswitch in pure water. Furthermore, 

binding of this compound towards parts of the human immunodeficiency virus type 1 (HIV-1) 

ribonucleic acid (RNA) with a fluorescent response could be shown. The occurring 

fluorescence could be switched off by visible light without decreasing affinity of the hemiindigo 

to the RNA complex.[40] 

As part of a collaboration with D. Berdnikova, various hemiindigo derivatives were 

synthesized to examine if (ionic) hemiindigos show binding towards deoxyribonucleic acid 

(DNA) or RNA target sites. This was done with the goal to establish a photoswitchable 

therapeutic handle for the HIV-1 translation rates at the RNA level. A possible strategy to 

achieve this is the design of photoswitches that exhibit specific Tat (Trans-activator of 

transcription) protein binding or by (specific) RNA binding to e.g. the transactivation response 

element (TAR) or the Rev-response element region IIB (RRE-IIB). Photoisomerization of the 

bound photoswitch with preferably visible light could be able to modulate the proliferation rate 

of the HIV-1 virus in vitro and in vivo. 

This project is still in progress to date and the herein presented preliminary results are meant 

to give a brief overview of possible substitution patterns and their effects on water solubility, 

photoswitchability and DNA / RNA binding properties. Full analytical data is not given for all 

compounds as most of the synthesized molecules did not meet the requirements for 

photoswitching upon binding to DNA / RNA, which makes further investigation pointless 

regarding the objective of this project. However, some of the permanently charged compounds 

were also sent to E. Carrascosa (see Section 2.5) for vibrational tandem mass spectrometry at 

cryogenic temperatures to the L'Ecole polytechnique fédérale de Lausanne, Switzerland for 

scrutinizing the properties of these compounds in the gas phase.  
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The ability of small molecules to exhibit binding or to modulate protein binding affinities and 

conformational changes to RNA is reported by recent literature.[96, 135, 136] N,N-dimethylamino 

alkyl chains are often found in RNA / DNA binders.[137] Three design examples of compounds 

that show related motifs to the introduced N,N-dimethylamino alkyl chains and hemiindigo 

photoswitch are given in Figure 323 below. 

 

Figure 323: Three small molecules (86, 87 and 88) that show affinities and conformational / 

regulatory changes at the RNA level in biological assemblies. Similarities of 

functional groups to the investigated hemiindigo photoswitches are marked red. 

Compound 86 (Figure 323, left) selectively targets a pocket within the HIV-1 TAR hairpin loop 

with high affinity, which is rarely observed for small molecules.[135] Molecule 87 (middle) 

shows affinity towards the internal ribosome entry site (IRES) RNA of the hepatitis C virus 

(HCV), which inhibits translation within HCV infected cells.[138] The compound on the right 

(88) is able to modulate the heat shock response (HSR) in E. coli bacteria by stabilizing a 

messenger RNA (mRNA) three-way junction (3WJ) within the sigma factor 32 (σ³²) mRNA 

inhibiting translation of heat shock proteins (HSP).[136] 

The design of the hemiindigo photoswitches relies on the relatively easy introduction of 

n-propyl N,N-dimethylamino chains, which can be optionally converted to a permanently 

charged quaternary trimethylammonium species. These patterns - in conjunction to the 

hemiindigo photoswitch itself - try to integrate aspects of the aforementioned RNA-binding 

molecules in structure and / or type and abundance of functional groups. The vast amount of 

RNA / DNA binders and their structural / chemical similarities to hemiindigos cannot be shown 

with in its entirety in this work. The purpose of mimicking known DNA / RNA binders is the 

addition of controllability of their binding affinities by visible light. 

According to the rationale for hemiindigo substitution patterns, N-H unsubstituted and non-

electron-rich derivatives show poor photostability and less red-shifted absorptions than their 

electron-rich, N-H substituted counterparts. This was also addressed within a series of 

synthesized hemiindigo photoswitches.  
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2.6.1 Hemiindigos in water - Synthesis 

As the synthesis of hemiindigos with electron-neutral stilbene fragments proved as challenging 

in Section 2.2.1, commercially available aldehydes with high degrees of substitutions by 

methyl- or methoxy groups and one or two hydroxyl groups for functionalization with 1-N,N-

dimethylaminopropyl moieties were chosen as starting materials. Anthracene as lipophilic 

stilbene fragment was tested as well. The detailed elution parameters for flash column 

chromatographic- and / or HPLC separation are given in this section to estimate the effects on 

polarity, solubility and overall “stickiness” of varying numbers of 1-N,N- dimethylaminopropyl 

groups to the respective solid phases during chromatography. The influence of the N-H group 

on elution and solubility of the hemiindigo photoswitch can also be estimated. 

 

Scheme 42: SN2 reaction of the phenolic hydroxyl group of 89 and 90 with 3-chloro-1-(N,N-

dimethyl)propylamine in N,N-dimethylformamide (DMF) at 120 °C with 

potassium carbonate as base. Aldehydes 91 and 92 could be obtained in good to 

excellent yields. 

 

Scheme 43: SN2 reaction of two phenolic hydroxyl groups of 93 and 94 with two equivalents 

of 3-chloro-1-(N,N-dimethyl)propylamine in N,N-dimethylformamide at 120 °C 
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with potassium carbonate as base. Aldehydes 95 and 96 could be obtained in 

good yields. 

The 1-N,N-dimethylaminopropyl disubstituted aldehydes 95 and 96 were purified by column 

chromatography with very polar eluent mixtures: 68 / 30 / 2 (silica) or 98 / 1 / 1 (aluminium(III) 

oxide, Brockmann III) dichloromethane / methanol / triethylamine. 

The prepared aldehydes supporting one or two 1-N,N-dimethylaminopropyl chains were 

condensated with indoxyl acetate according to a procedure by U. Burger et al. to yield 

hemiindigo photoswitches.[88] 

 

Scheme 44: Condensation reaction of different aldehydes (Aldehydes 91, 92, 95 and 96) with 

indoxyl acetate 10 in to furnish hemiindigos 34, 97, 98 and 99 in moderate yields. 

The stilbene 1-N,N-dimethylaminopropyl substituted hemiindigo photoswitches 34 and 97 were 

purified by column chromatography with 84 / 14 / 2 (silica) or 98 / 1 / 0 (aluminium(III) oxide, 

Brockmann III) dichloromethane / methanol / triethylamine mixtures. The stilbene 1-N,N-
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dimethylaminopropyl disubstituted hemiindigo photoswitches 98 and 99 were purified by silica 

column chromatography with 33 / 33 / 31 / 2 dichloromethane / methanol / n-hexane / 

triethylamine mixtures. 

Hemiindigo 34 was prepared and characterized by D. Berdnikova for RNA binding studies, it 

was reproduced for further functionalization at the indoxyl nitrogen. The N-H unsubstituted 

hemiindigo photoswitches are soluble in water and show viable photoswitching behavior, in 

contrast to the ionic, electron-rich derivatives shown in Section 2.5. 

The substitution at the indoxyl nitrogen with another 1-N,N-dimethylaminopropyl chain 

anticipated more mechanical leverage upon photoswitching. This is caused by e.g. the binding 

site attached to the stilbene fragment, which experiences a large geometrical change respective 

to the 1-N,N-dimethylaminopropyl chain at the indoxyl fragment. This might be crucial to 

photochemically control its regioselectivity, binding mode and ability to promote or hinder 

RNA / DNA-Protein complex formations at different rates between Z- and E isomers. The 

synthesis was carried out according to a modified procedure by V. Velezheva et al.[90]  
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Scheme 45: SN2 reaction of N-H unsubstituted hemiindigo photoswitches (51, 34, 97, 98 and 

99) with 3-chloro-1-(N,N-dimethyl)propylamine in N,N-dimethylformamide at 

100 - 120 °C with sodium hydride as base. Low to good yields of hemiindigos 

100, 101, 102, 103 and 104 could be obtained. 

The indoxyl nitrogen 1-N,N-dimethylaminopropyl substituted hemiindigo photoswitch 100 was 

purified by silica column chromatography with 88 / 10 / 2 dichloromethane / methanol / 

triethylamine mixture. The 1-N,N-dimethylaminopropyl disubstituted photoswitches 101 and 

102 were purified by column chromatography with 35 / 25 / 40 / 2 (silica) or 98 / 1 / 0 / 0 

(aluminium(III) oxide, Brockmann III) dichloromethane / methanol / n-hexane / triethylamine 

mixtures. The 1-N,N-dimethylaminopropyl trisubstituted photoswitches 103 and 104 were 

purified by silica column chromatography with 61 / 35 / 4 dichloromethane / methanol / 

triethylamine mixtures. 
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The first reversed-phase- (RP) HPLC purifications of the 1-N,N-dimethylaminopropyl 

disubstituted photoswitches 101 and 102 were carried out on a preparative Machery-Nagel VP 

250/21 NUCLEODUR Sphinx 5 μm column under acidic / basic / neutral / ionic eluent 

conditions with varying organic modifiers, showing no success as mostly streaking of the 

desired peaks was observed. Obtaining of a preparative Agilent XDB 100/21 Zorbax 5 μm 

column yielded acceptable peak separations for stilbene 1-N,N-dimethylaminopropyl 

substituted hemiindigo photoswitch 101 with a 9 / 1 / 0.01 methanol / water / triethylamine 

mixture as eluent and for 1-N,N-dimethylaminopropyl disubstituted photoswitch 102 with a 8 / 

2 / 0.01 methanol / water / triethylamine mixture as eluent. 

The tris-alkyl-dimethylamino compounds 103 and 104 were not submitted to RP-HPLC 

because of their high polarity and a high chance of contaminating the columns. 

The loss of the N-H proton reduced the general water solubility of these compounds. This does 

not interfere with the objectives of the project, as a subsequent introduction of permanent 

charges by a Menschutkin reaction was planned.[139] 

 

Scheme 46: Menschutkin reaction of excess methyl iodide in acetonitrile with dimethylamino 

alkyl chain substituted hemiindigos 100, 101 and 102 yielding quaternary 

ammonium ion substituted hemiindigos 105, 106 and 107 . This reaction 

introduces a permanent charge-tag to the hemiindigo photoswitch. 

Purification of the ionic compounds was previously tried with minor success as these 

compounds are very hard to elute from RP-HPLC columns. Buffers, basic and acidic conditions 

were tried, with minor success. Large streaks of elution peaks over 20 minutes up to hours could 
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be observed. The use of anion exchange resins was tested, successfully changing iodide to 

hexafluorophosphate. This, however, introduces residual hexafluorophosphate salts upon 

evaporation, which makes yield determination or submitting these sample to elemental analysis 

or binding studies not feasible. The use of ammonium formate as volatile buffer did not yield 

satisfactory results as the salt could not be completely sublimated from the samples without 

destroying the photoswitches. The remaining salts pose no difficulties for NMR analysis or 

mass spectrometry, however, elemental analysis cannot be passed this way. 

 

Scheme 47: Menschutkin reaction of excess methyl iodide in acetonitrile with dimethylamino 

alkyl chain substituted hemiindigos 101, 102, 98 and 99 yielding two quaternary 

ammonium ions, introducing permanent charge-tags to the hemiindigo 

photoswitches 108, 109, 110 and 111. Low to good yields could be obtained. 
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Scheme 48: Menschutkin reaction of excess methyl iodide in acetonitrile with three 

dimethylamino alkyl chain substituted hemiindigo 104 yielding three quaternary 

ammonium ions, introducing permanent charge-tags to hemiindigo 112.  

The reaction of 103 with methyl iodide was not carried out as the triple charged photoswitches 

showed very unspecific binding to the highly anionic DNA backbone.  
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2.6.2 Hemiindigos in water - Photoswitching of non-ionic 

compounds 

The general photoswitching behavior of the novel, water soluble hemiindigo compounds was 

tested. The dimethylamino alkyl chains were attached to achieve binding towards DNA / RNA 

and to introduce permanent charge-tags upon quaternization of the 1-N,N-dimethylamino 

moiety. The bare 1-N,N-dimethylamino moieties, the unsubstituted N-H functionality on the 

indoxyl core and especially permanent charge-tags promote the solubility of hemiindigo 

photoswitches in pure water. However, in some cases, the neutral compounds need additives in 

forms of buffer salt, acidity or water miscible polar organic solvents to dissolve. 

This section deals with designing hemiindigo photoswitches that are able to switch in water, 

which is mandatory to show a modulation of affinity towards DNA / RNA. As the variability 

of substitution patterns is basically limitless, few molecular substitution patterns were tested by 

D. Berdnikova in Section 2.6.4 for their binding and photoswitching properties when introduced 

to biomolecules. Compounds that show dissatisfactory results were not looked into further, 

some molecules showed decomposition when stored in sealed vials at ambient temperatures in 

the dark over several weeks. 

Baseline drifts seen in UV-Vis spectra are caused by air bubbles and / or precipitation, 

compounds with low solubility got dissolved over time, which can cause unexpected increases 

of absorption values during the measurement course. The used cuvettes supported a light-path 

of 1 cm and a volume of 2.5 - 3.0 mL. 

Compound 34 was synthesized, characterized and published by D. Berdnikova.[40] This 

compound was revisited to pose as precursor for the attachment of a second alkyl chain.  



2 RESULTS AND DISCUSSION 

371 

 

 

Figure 324: Lewis-formula of hemiindigo 34. 

 

Figure 325: UV-Vis spectra of hemiindigo 34 in pure water under different irradiation 

conditions.  

The PSS for irradiation with 470 nm LED light was reported at 80% E isomer and at 97% Z 

isomer for 590 nm LED light. Molar extinction coefficients were reported at 10456 L mol-1 cm-1 

(478 nm, Z isomer) and 6289 Lmol-1cm-1 (501 nm, E isomer). The thermal E to Z isomerization 

barrier was determined at 23.7 kcal/mol with a thermal half-life of 10.8 h at 25 °C. The quantum 

yields were determined at 2.7% for Z to E and 0.2% for E to Z isomerization direction. 

Photodegradation over prolonged irradiation courses seems to be an issue with this compound. 

The photophysical data is reported according to the publication by D. Berdnikova for 

comparison with the following synthesized molecular substitution patterns.[40] 

  

Figure 326: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 34 (600 MHz, 

dichloromethane-d2, 27 °C).  
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Figure 327: Lewis-formula of hemiindigo 97. 

 

Figure 328: UV-Vis spectra of hemiindigo 97 in pure water under different irradiation 

conditions. 

Solubility in water is reduced for compound 97 compared to 34, the quantum yields can be 

estimated at 1-3% for the Z to E- and below 1% for E to Z isomerization direction because of 

the elapsed time until the respective PSS is reached. The most red-shifted absorption maximum 

for the Z isomer remains at 478 nm while the E isomer shifts from 501 nm to 492 nm, which 

might cause a reduction of the isomeric yield for the E form caused by spectral overlap. 

Photodegradation over prolonged irradiation courses seems to be an issue with this compound. 

  

Figure 329: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 97 (600 MHz, 

dichloromethane-d2, 27 °C).  
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Figure 330: Lewis-formula of hemiindigo 100. 

 

Figure 331: UV-Vis spectra of hemiindigo 100 in a 2 / 4 / 4 water / sat. aq. ammonium 

chloride / dimethyl sulfoxide mixture under different irradiation conditions. 

Solubility in water is drastically reduced for compound 100 compared to 34 and 97, which can 

be explained by the hydrophobicity of the anthracene moiety and the loss of the hydrophilic N-

H proton. The quantum yields can be estimated at 1-2% for the Z to E- and below 1% for E to 

Z isomerization direction. The most red-shifted absorption maximum for the Z isomer shifts 

from 478 nm to 482 nm and the E isomer changes from 501 nm (for hemiindigo 34) to 495 nm. 

The low solubility and usage of additives show bubbles and precipitation of the photoswitch 

within the cuvette, which causes drifting of the baseline and the isosbestic points.  

  

Figure 332: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 100 (600 MHz, 

dichloromethane-d2, 27 °C).  
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Figure 333: Lewis-formula of hemiindigo 101. 

 

Figure 334: UV-Vis spectra of hemiindigo 101 in water with one drop of sat. aq. ammonium 

chloride as additive under different irradiation conditions. 

Solubility in water is increased for 101 in comparison to derivative 100 but reduced compared 

to 34 according to the absorptivity of qualitatively saturated solutions. Removal of the 

anthracene moiety reduces hydrophobicity while dimethylamino propyl substitution at the 

indoxyl N-H also lowers the hydrophilicity of this molecule. Addition of ammonium chloride 

protonates the basic dimethylamino functionality and increases its water solubility as salt. The 

quantum yields can be estimated at 1-2% for the Z to E- and below 1% for E to Z isomerization 

direction. The most red-shifted absorption maximum for the Z isomer shifts from 478 nm (for 

hemiindigo 34) to 490 nm and the E isomer shifts from 501 nm (for hemiindigo 34) to 510 nm. 

Photodegradation cannot be observed within this short irradiation experiment. 

  

Figure 335: 1H-NMR spectra of hemiindigo 101 (400 MHz, dichloromethane-d2, 27 °C). 

RP-HPLC purification (right) yielded more signals than the precedent silica 

column separation (left), suggesting stability issues with this compound. 
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13C- and 2D-NMR spectra were not recorded as another purification protocol had to be found 

at that time. However, from preparation to shipment of this compound to D. Berdnikova, 

significant degradation of the sample was visible after one month, making it not viable for 

quantitative binding studies. This might be caused by oxidation of the basic dimethylamino 

side-chains and / or their reaction with the photoswitch. Also, gradually proceeding cleavage 

of the aldehyde can be observed via the signal at 9.8 ppm in the 1H-NMR spectrum after several 

weeks. The low shelf-life of the compound led to its discardment.  
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Figure 336: Lewis-formula of hemiindigo 102. 

 

Figure 337: UV-Vis spectra of hemiindigo 102 in water with one drop of sat. aq. ammonium 

chloride and seven drops of dimethyl sulfoxide as additives under different 

irradiation conditions. 

Solubility in water is increased for 102 in comparison to derivative 100 but reduced compared 

to 34 and 101. Addition of ammonium chloride protonates the basic dimethylamino 

functionality and increases its water solubility as salt. The quantum yields can be estimated at 

1-2% for the Z to E- and below 1% for E to Z isomerization direction. The most red-shifted 

absorption maximum for the Z isomer shifts from 478 nm (for hemiindigo 34) to 484 nm and 

the E isomer shifts from 501 nm (for hemiindigo 34) to 497 nm. 

  

Figure 338: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 102 (600 MHz, 

dichloromethane-d2, 27 °C).  
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Figure 339: Lewis-formula of hemiindigo 98. 

 

Figure 340: UV-Vis spectra of hemiindigo 98 in pure water at different irradiation 

conditions. 

Solubility in water is increased for 98 in comparison to derivative 102 but lowered compared 

to 34. The most red-shifted absorption maximum for the Z isomer shifts from 478 nm (for 

hemiindigo 34) to 482 nm. Photodegradation and slow dissolution is mostly observed for this 

compound after a thermal kinetic experiment showed irregular absorption increases in the dark 

without isomerization reactions taking place (not shown). 

  

Figure 341: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 98 (600 MHz, 

dichloromethane-d2, 27 °C).  
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Figure 342: Lewis-formula of hemiindigo 99. 

Almost identical photophysical properties are expected for compound 99 compared to 

hemiindigo 98. 

  

Figure 343: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 99 (400 MHz, 

dichloromethane-d2, 27 °C).  
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Figure 344: Lewis-formula of hemiindigo 103. 

 

Figure 345: UV-Vis spectra of the degradation products of hemiindigo 103 in water after 

three months shelf storage in the dark at ambient temperatures. This compound 

was not measured via UV-Vis spectroscopy before degradation, spectra of 101 

and 102 should be similar in shape. 

The chromophore is completely degraded, which led to discardment of this substitution pattern. 

 

Figure 346: 1H-NMR spectra of hemiindigo 103 (400 MHz, dichloromethane-d2, 27 °C). 

Purification issues because of the high polarity of this compound yielded unclean 

products in low abundance. 

The 1H-NMR spectrum recorded directly after synthesis and purification showed a set of 

desired and additional signals, indicating that purification is not optimized yet. The very polar 

nature of this compound makes it hard to elute from most stationary phases.  
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Figure 347: Lewis-formula of hemiindigo 104. 

 

Figure 348: UV-Vis spectra of the degradation products of hemiindigo 104 in water after 

three months shelf storage in the dark at ambient temperatures. This compound 

was not measured via UV-Vis spectroscopy before degradation, spectra of 101 

and 102 should be similar in shape. 

The chromophore is almost completely degraded, attempts on photoswitching showed almost 

no modulation. This led to discardment of this substitution pattern. 

 

Figure 349: 1H-NMR spectra of hemiindigo 104 (400 MHz, dichloromethane-d2, 27 °C). 

Purification issues because of the high polarity of this compound yielded unclean 

products. 
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The 1H-NMR spectrum recorded directly after synthesis and purification showed a set of 

desired and additional signals, indicating that purification is not optimized yet. The very polar 

nature of this compound makes it hard for elution from most stationary phases.  
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2.6.3 Hemiindigos in water - Photoswitching of ionic compounds 

One goal of this project was to supply D. Berdnikova with permanently charged, water soluble 

hemiindigo photoswitches for submission to quantitative binding studies on biomolecules. As 

synthesis and purification of the neutral compounds is already difficult and labor-intensive, the 

addition of a permanent charge-tag makes things worse. Elution from the available stationary 

RP-HPLC phases did not yield satisfactory peak separations and proceeded over 20 minutes to 

hours. Basic or acidic buffer systems improved this streaking but yielded no clean products as 

e.g. the cleaved, charge-tagged aldehydes could not be separated from the products. Another 

problem of the usage of buffers or ion exchange chromatography is the buffer salt solution itself 

as it is mixed with the desired photoswitch salt in undefinable amounts after evaporation. This 

makes weighing of the photoswitch for the preparation of defined solutions for titration in 

binding experiments very inaccurate. Ammonium formate as volatile buffer system was tested 

as well with minor success, as sublimation under high vacuum could not remove it entirely 

without degrading the photoswitchable compound. 

The most practical way of preparing pure compounds with stoichiometric photoswitch to 

anion ratios was synthesizing the permanently charged compounds directly from HPLC purified 

starting materials (if possible) by quantitative reaction (if applicable) with methyl iodide in a 

Menschutkin type reaction in acetonitrile. Removal of excess methyl iodide and acetonitrile 

gives the pure desired compounds as iodine salts. Weighting of starting materials and products 

confirmed 99% reaction progress, as reacted methyl iodide contributes to the product mass 

while unreacted methyl iodide is removed in vacuo. However, small scale reactions with 

<10 mg of starting material and / or incomplete reaction progress introduced systematic errors 

for the yield determination. This was not crucial at this stage of the project, as testing of the 

binding properties of the various hemiindigo photoswitches was carried out with DNA samples 

to estimate the binding- and photoswitching properties of the molecules. The compounds 

showing positive results were synthesized in larger quantities for further investigation.  
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Figure 350: Lewis-formula of hemiindigo 106. 

 

Figure 351: UV-Vis spectra of hemiindigo 106 in pure water under different irradiation 

conditions. 

The (photo) physical data according to the publication by D. Berdnikova should be similar for 

this ionic compound as the permanent charge-tag is electronically decoupled from the pi-

system. The tripled amount of dissolved photoswitch compared to 34 showed no solubility 

issues.  
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Figure 352: Lewis-formula of hemiindigo 107. 

 

Figure 353: UV-Vis spectra of hemiindigo 107 in pure water under different irradiation 

conditions. 

The (photo) physical data of this compound should be similar to its precursor 97 as the 

permanent charge-tag is electronically decoupled from the pi-system. Solubility and 

photostability in water increased for this molecule compared to 97.  
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Figure 354: Lewis-formula of hemiindigo 105. 

 

Figure 355: UV-Vis spectra of hemiindigo 105 in pure water under different irradiation 

conditions.  

The (photo) physical data of this compound should be similar to its precursor 100 as the 

permanent charge-tag is electronically decoupled from the pi-system. Solubility and 

photostability in water is drastically increased for this molecule compared to 100 as no additives 

(2 / 4 / 4 water / sat. aq. ammonium chloride / dimethyl sulfoxide mixture) are needed to dissolve 

this ionic photoswitch. It can also be stated that the introduction of one positive charge with 

iodine as counter anion outperforms the hydrophilicity of the N-H or a dimethylamino moiety. 

Also, an increase in photostability and quantum yields, especially for the E to Z isomerization 

direction can be observed. The thermal bistability was tested at 25 °C for 24 h, which showed 

no change in absorption, yielding a free activation enthalpy ΔG* > 25 kcal/mol and minimal 

thermal half-lives in the range of days to weeks. The most red-shifted absorption maximum for 

the Z isomer is located at 481 nm and at 487 nm for the E isomer. 

D. Berdnikova showed that 105 binds to ct DNA, maintaining its photoswitchability, while 

binding to the HIV-1 RNA on the TAR and RRE sites could be observed as well. This was the 

indication for upscaling and purification of this compound to obtain 40 mg for quantitative 

binding studies. Further photophysical measurements of this compound have to be carried out 

after completion of the binding studies to do further research on this system. 
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Figure 356: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 105 (800 MHz, 

dichloromethane-d2, 27 °C). 

 

Figure 357: Lewis-formula of hemiindigo 108. 

This compound was abandoned for its poor shelf-life of its precursor of only a few weeks within 

sealed conditions in the dark at ambient temperatures. It is listed here for the discussion of all 

iterations of designed molecules. 

 

Figure 358: Lewis-formula of hemiindigo 109. 

This compound was abandoned for the poor shelf-life of its precursor of only a few months 

within sealed conditions in the dark at ambient temperatures. It is listed here for the discussion 

of all iterations of designed molecules.  
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Figure 359: Lewis-formula of hemiindigo 110. 

 

Figure 360: UV-Vis spectra of hemiindigo 110 in pure water under different irradiation 

conditions. 

The (photo) physical data of this compound should be similar to its precursor 98 as the 

permanent charge-tag is electronically decoupled from the pi-system. Solubility and 

photostability in water increased for this molecule compared to 98. Viable Photoswitching for 

this compound can now be observed in pure water, which was not the case for its precursor. 

The most red-shifted absorption maximum for the Z isomer shifts from 480 nm (for ionic 

hemiindigo 106) to 487 nm while the E isomer shifts from 501 nm (for ionic hemiindigo 106) 

to 489 nm.  
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Figure 361: Lewis-formula of hemiindigo 111. 

 

Figure 362: UV-Vis spectra of hemiindigo 111 in pure water under different irradiation 

conditions. 

The (photo) physical data of this compound should be similar to its precursor 99 as the 

permanent charge-tag is electronically decoupled from the pi-system. Solubility and 

photostability in water increased for this molecule compared to 99. Viable Photoswitching for 

this compound can now be observed in pure water, which was not the case for its precursor. 

The most red-shifted absorption maximum for the Z isomer shifts from 487 nm (for ionic 

hemiindigo 110) to 474 nm while the E isomer shifts from 489 nm (for ionic hemiindigo 110) 

to 477 nm.  
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Figure 363: Lewis-formula of hemiindigo 113. 

The ionic derivative of this compound was not synthesized as binding studies with triple 

charged hemiindigo 112 showed excessively strong and unspecific interactions with the 

negatively charged phosphate backbone of DNA, which was not desired. It is listed here for the 

discussion of all iterations of designed molecules. 

 

Figure 364: Lewis-formula of hemiindigo 112. 

 

Figure 365: UV-Vis spectra of hemiindigo 112 in pure water under different irradiation 

conditions. 

Surprisingly, this compound was stable over several months compared to its precursor, hinting 

towards the dimethylamino moieties being responsible for degradation of the compounds. 

Viable switching without photobleaching to good estimated isomeric yields can be contested. 

Also, the most red-shifted absorptions for Z (490 nm) and E isomers (514 nm) can be observed 

for this compound, which is caused by the N-H substitution with a dimethylamino alkyl chain.  
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2.6.4 Hemiindigos in water - DNA / RNA binding 

The main goal of this project consisted in finding suitable substitution patterns of hemiindigo 

photoswitches to show that hemiindigos are capable of interactions with nucleic acids while 

maintaining their photoswitching properties. Calf thymus DNA (ct DNA) and regulatory 

elements of HIV-1 RNA (TAR and RRE-IIB) were used for binding studies. Ct DNA is a 

natural DNA widely used in studies of DNA binding anti-cancer agents and DNA binding 

agents that modulate DNA structure and function. Ct DNA represents a linear polymeric chain 

comprising thousands of base pairs. The regulatory elements of HIV-1 RNA represent 

oligonucleotide fragments of the viral genome RNA with the length about 30 bases. The main 

goal was to find a ligand that would efficiently interact with a certain type of nucleic acids and 

would allow to control the structure and properties of DNA / RNA by photoswitching. The 

results of the binding studies of various neutral- and charge-tagged hemiindigos on DNA and 

RNA is shown in Table 18.  
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Table 18: Photoswitching and ct DNA + HIV-1 RNA binding studies by D. Berdnikova in 

water without buffer. 

Compound 
Photoswitching 

in water 

Interaction & 

photoswitching 

with ct DNA 

Interaction & 

photoswitching 

with HIV-1 RNA 

 
51 

Switching: 

No 

Interaction: 

None 

Switching: 

No 

N/A 

 
105 

Switching: 

Z to E 

E to Z 

Interaction: 

Binding 

Switching: 

Z to E 

E to Z 

TAR: binds 

RRE: binds 

Switching: 

To be tested 

 
8 

Switching: 

No 

(precipitation 

and/or other 

photoprocess) 

Interaction: 

Some 

Switching: 

No 

N/A 

 
15 

Switching: 

No 

(other 

photoprocess) 

Interaction: 

Some 

Switching: 

No 

(other 

photoprocess) 

N/A 

 
3 

Switching: 

No 

(other 

photoprocess) 

Interaction: 

Binding 

Switching: 

No 

(other 

photoprocess) 

N/A 
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Compound 
Photoswitching 

in water 

Interaction & 

photoswitching 

with ct DNA 

Interaction & 

photoswitching 

with HIV-1 RNA 

 
81 

Switching: 

No 

Interaction: 

Strong binding 

Switching: 

No 

(other 

photoprocess) 

N/A 

 
80 

Switching: 

No 

Interaction: 

Strong binding 

Switching: 

No 

RRE: no or very 

weak 

interaction + 

precipitation 

Switching: 

No 

 
82 

Switching: 

No 

Interaction: 

Strong binding 

Switching: 

No 

(other 

photoprocess) 

N/A 

 
106 

Switching: 

Z to E 

E to Z 

Interaction: 

Binding 

Switching: 

Z to E 

N/A 

 
108 

Switching: 

Z to E 

E to Z 

Interaction: 

Binding 

Switching: 

Z to E 

N/A 
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Compound 
Photoswitching 

in water 

Interaction & 

photoswitching 

with ct DNA 

Interaction & 

photoswitching 

with HIV-1 RNA 

 
97 

Switching: 

Z to E 

E to Z 

Interaction: 

Binding 

Switching: 

Z to E 

N/A 

 
107 

Switching: 

Z to E 

E to Z 

Interaction: 

Binding 

Switching: 

Z to E 

N/A 

 
109 

Switching: 

Z to E 

E to Z 

Interaction: 

Binding 

Switching: 

Z to E 

N/A 

 
98 

Switching: 

No 

(other 

photoprocess) 

Interaction: 

Some 

Switching: 

Z to E 

N/A 

 
110 

Switching: 

No 

(other 

photoprocess) 

Reduced 

absorbance 

Interaction: 

Binding 

Switching: 

Poorly 

Z to E 

N/A 
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111 

Switching: 

Slow / 

incomplete 

Z to E 

E to Z 

Interaction: 

Some 

Switching: 

Poorly 

Z to E 

E to Z 

N/A 

112 

Switching: 

Some 

Z to E 

No / Slow 

E to Z 

Interaction: 

Some 

Switching: 

Z to E 

TAR: no clear 

Interaction / 

switching 

Red = unfavored result, yellow = mediocre result, green = desired result 
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The results in Table 18 show that positively charged hemiindigos are expected to stick to the 

highly negatively charged RNA / DNA backbones. Increasing the permanent charges beyond a 

dicationic state yields unspecific binding at multiple and / or undesired sites. It should be 

mentioned that the basic functionalities of the non-ionic derivatives should experience 

protonation by surrounding water molecules under physiological conditions. This also renders 

them as ionic compounds within the binding experiments, although their binding affinity is not 

as pronounced as with the permanently charged derivatives. However, the particular binding 

modes cannot be determined at this stage. It can be stated that binding to DNA / RNA changes 

the photokinetics of hemiindigo with a general tendency for one-way or no photoswitching 

reactions. Derivatives that did not show photoswitching in water also show no photoswitching 

upon binding except for 98 and 110. The most promising candidate is hemiindigo 105, as 

switchability upon binding is observed. This compound was synthesized and purified at larger 

scale (40 mg) for submission to NMR binding studies carried out by D. Berdnikova. Further 

experiments will scrutinize the selectivity and binding affinity of this compound towards the 

regulatory elements of HIV-1 RNA.  
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2.6.5 Conclusion: Hemiindigos in water 

As shown in Section 2.5, the ionic derivatives of highly bistable, red-shifted, electron rich 

hemiindigo photoswitches did not show photoisomerization reactions in pure water. D. 

Berdnikova of the Ihmels group in Siegen, Germany, synthesized the previously avoided 

hemiindigo derivatives featuring neutral stilbene fragments and made them water soluble by 

attaching a dimethylamino propyl chain at the stilbene fragment. This compound showed 

binding affinities towards HIV-1 TAR and RRE-IIB RNA and could be photoswitched in its 

fluorescent response.[40] 

In accordance to the promising results of this therapeutic approach to potentially gain control 

of the HIV-1 proliferation apparatus, a series of hemiindigos with varying substitution patterns 

was synthesized and submitted to preliminary binding studies carried out by D. Berdnikova. 

Another promising candidate, namely hemiindigo 105, was hereby found and synthesized at 

larger scale for further RNA binding studies followed with NMR spectroscopy by D. 

Berdnikova. These experiments will reveal the possible selectivity and binding constants of this 

photoswitch and its usability in controlling the HIV-1 activity.  
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2.7 Photophysics - Improvements on the accuracy, 
repeatability and convenience of measurements 

Automatization of repeating tasks and their analysis and interpretation is a key principle to 

increase productivity, repeatability and reliability. Several calculational tools were written in 

this work within Microsoft Excel to process the experimentally obtained photophysical data. 

The main purposes of these tools are automatized deconvolution of mixture UV-Vis spectra 

into pure spectra, determination of molar extinctions, photostationary isomeric yields, thermal 

kinetics and quantum yields. Additionally, this can be achieved by fast, resource-efficient UV-

Vis experiments. UV-Vis spectrophotometers are fairly inexpensive, achieve fast measurement 

speeds, have no need for deuterated solvents and utilize only small quantities of valuable 

compounds. However, the usage of solvents is limited, as the observed molecules should absorb 

in different regions than the solvent matrix. This makes the herein presented methodology 

applicable for metastable photoswitches with barriers greater than 22 kcal/mol which absorb in 

the visible region of light. The compounds should also exhibit a photochromism greater than 

10 nm between their most red shifted maxima. 

2.7.1 Photophysics - Development of an “all-in-one” calculational 

Excel tool - 100% Z / E spectrum calculator 

Observations of the key requirements of complete photophysical characterizations of 

photoswitches led to the development of an Excel tool that directly handles the spectrometer 

output files. The tool is able to calculate the following data: 100% Z / E spectra from two 

mixture spectra, molar extinction coefficients, photostationary states (PSS), multiple thermal 

kinetics via UV-Vis or NMR spectroscopy and quantum yields in both directions for up to four 

irradiation wavelengths. This requires meticulously obtained data and correctly determined 

analyte masses and measured solvent volumes with all photoswitches handled in absolute 

darkness over all the time. The benefits are reproducible results without copying tens of 

thousands of data points and handedly setting up their complicated calculations every time anew 

for each examined photoswitch in every utilized solvent. 

When I began my PhD in the Dube group, quantitative kinetic- and PSS measurements were 

done largely via NMR spectroscopy. This leads to several shortcomings: At first, the irradiation 

duration of light increases with higher sample concentrations. The concentration difference 

between UV-Vis and NMR spectroscopy amounts to roughly a factor of 300 for acceptable 

signal-to-noise ratios of the measurements. This means that the amount of photons needed to 
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irradiate an NMR sample to the same isomeric ratio as an UV-Vis sample is increased by 300 

for an ideal case, assuming the utilized LEDs are outputting a constant photon flux. 

Secondly, the prolonged irradiation times within NMR tubes heat the sample and enable 

substantial contributions of possible thermal (back) reactions, giving inaccurate PSS results. 

Thirdly, samples with very high molar absorptivities yield the same NMR peak intensities 

compared to samples with low molar absorptivities. This requires large amounts of photons and 

vigorous stirring to expose the entire sample volume to the incident light when used in high 

concentrations. The cause for this observation is the small penetration depth in highly 

concentrated solutions, as all present isomers absorb parts of the incoming light, shielding the 

inner region of the sample volume. This rendered some investigated photoswitches with 

quantum yields of about 20% as poorly photoswitchable at NMR concentrations at first. This 

observation also causes the inability to photoswitch large quantities, e.g. a 10 mmol reaction 

batch to the desired and potentially more reactive isomer. For example, the output of a 435 nm 

LED amounts to 257 mW, which translates to 5.62×1017 photons per second. Assuming a 

quantum yield of 20% and 10 mmol of photoswitch, irradiation has to be carried out for 14.9 h 

if every photon can always reach every molecule within the entire volume of the solution. This 

is not the case for optically dense solutions, as only a thin layer at the interface between air / 

glass and solution is efficiently irradiated, converting most of the incident light energy into heat. 

This could be overcome by higher photon outputs, which induce additional heating of the 

reaction mixture and cause potential photodamage. 

These findings led to the conclusion that the lowest possible sample concentration that yields 

acceptable signal-to-noise ratios for a measurement is to be preferred for photoisomerization 

experiments. If viable molar absorptions are apparent, UV-Vis spectroscopy is very sensitive 

und yields excellent signal-to-noise ratios for little amounts of sample. 

As UV-Vis spectroscopy is not able to give structural or quantitative information by itself, 

calibration needs to be done to determine isomeric ratios. One approach consists of purification 

and measurement of both pure isomers and mathematically scaling them to a common isosbestic 

point. This is often impractical and / or labor intensive, as almost all hemiindigo compounds 

require separation via HPLC. The usage of mixtures can avoid tedious separation of isomers. 

The first attempts on spectra deconvolution in the Dube group consisted in recording a UV-Vis 

spectrum of the pure hemithioindigo Z isomer (often obtained in its pure form) and subsequent 

irradiation to an estimated 50 / 50 Z / E ratio within an NMR tube. The irradiated mixture was 

kept in the dark (and sufficiently cooled) to measure if a 50 / 50 isomer composition was reached 

via NMR spectroscopy. Afterwards, this 50 / 50 mixture was measured via UV-Vis 
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spectroscopy and the product of pure Z spectrum and a factor F consisting of amount of 

Z isomer in the mixture (in %) divided by 50% was subtracted (eq. 21). The factor F which is 

desirably 1 in cases of a 50 / 50 Z / E ratio (eq. 22).  

 𝐴𝑏𝑠(𝐸) = 𝐴𝑏𝑠(𝑀𝑖𝑥) − 𝐴𝑏𝑠(𝑍) ∗ 𝐹 eq. 21 

 𝐹 =
%𝑍(𝑀𝑖𝑥)

50%
 eq. 22 

This, however, underestimates the absorptivity of the correct 100% E spectrum (see Figure 366 

below), as absorption values were only subtracted from the spectrum and nothing was scaled 

up to make up for the loss of absorption. 

 

Figure 366: Example of an underestimated 100% E spectrum (red line) obtained by eq. 21 

and eq. 22. 

These observations led to a new mathematical approach by trial and error, which is described 

in the following section. The first major breakthrough was the possibility of using two mix 

spectra, as N-substituted hemiindigo compounds have their thermodynamic minima at variable 

Z / E equilibrium ratios. This circumvented the often impossible separation of Z and E isomers 

via reversed-phase HPLC and made it possible to utilize the generally very good (>90%) PSS 

yields of hemiindigos for the calculation of the 100% Z- and E spectra. 
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In general, UV-Vis spectra are recorded with the wavelength in nm as abscissa and absorption 

in a.u. (arbitrary units) as ordinate. The spectrophotometer, however, measures transmission, 

which is defined as (eq. 23): 

 %𝑇 =
𝐼

𝐼0
∗ 100% eq. 23 

with I0 being the light intensity emitted by the light source and I being the transmitted light 

which was not absorbed by the sample. 

 𝐴 = −𝑙𝑜𝑔10 (
𝐼

𝐼0
) eq. 24 

Calculation of the negative decadic logarithm of T yields the absorption A (eq. 24), which scales 

linearly with sample concentration. 

To obtain the 100% spectra of solely Z or E isomers from two random isomeric mixtures, 

the exact composition of each mixture must be measured via NMR- and UV-Vis spectroscopy. 

For a successful spectra calculation, the required difference in isomer composition between the 

two measurement points is dependent on the photochromism of the compound. This translates 

to: more photochromism requires less difference in isomeric ratio between mixture A and B 

and vice versa. Also, thermal- and photoinduced reactions that shift the isomeric ratio within 

the NMR tube or the UV-Vis cuvette must be ruled out between the measurements. This allows 

to set up two UV-Vis spectra with exactly known isomeric compositions. However, it is not 

necessary to determine the sample concentrations if acceptable signal-to-noise ratios are 

prevalent, as all spectra will be scaled to a defined isosbestic point. The basic principle consists 

of calculating the spectrum Acalc. by subtracting the Zmix spectrum from the Emix spectrum and 

calculating the spectrum Bcalc. by subtracting the E spectrum from the Z spectrum. The obtained 

Acalc. and Bcalc. spectra are now multiplied with the respective isomer content determined via 

NMR spectroscopy. Subsequent multiplication of an upkeep factor is necessary to yield both 

100% spectra that cross at the isosbestic points of the measured spectra. 
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Figure 367: Example of the accuracy of the first generation of the 100% Z / E calculator, 

green and violet: measured 100% molar absorption spectra, black and red: 

calculated 100% molar absorption spectra.  
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A guide for successfully measuring and calculating 100% Z / E UV-Vis spectra was written to 

avoid potential mistakes beforehand, the section for the 100% spectrum calculator reads as 

follows (updated): 

“Determination of physical and photophysical 

properties of photoswitches via UV-Vis 

spectroscopy (suggestions) 

0.) General considerations for UV-Vis measurements: 

Always clean your cuvettes prior to any measurement, use the soft tissues provided 

and double-check for fingerprints / solvent spillage. Use spectroscopic grade solvents 

filled into a separate beaker directly from the flask, no pipettes inside the flasks! 

Prevent solvent loss during (heated) measurements by plugging the cuvette. Try to use 

the same cuvette for the same compound and always face the cuvette in the same 

direction. Measure one baseline for every batch file you create and do not exceed 27 

measurements per file. Choose an appropriate wavelength range for your 

measurements in your method and always use the same starting wavelength within 

your project, e.g. 800 nm (otherwise you will have to shift the wavelengths manually 

within the calculator, which does not save time at all!). 

1.) Extinction coefficient measurements: 

Use the nanogram scale with an aluminium foil bowl (never touch it!) and the anti-

electrostatic gun, weigh 0.2 mg to 2.0 mg depending on the expected molar absorption 

and mass of your chromophore. Use the anti-electrostatic gun again and drop the 

aluminium bowl without loss of compound into a 50 mL volumetric flask. Fill your flask 

with the desired solvent to the indicator in absence of light, plug it tightly and shake the 

flask thoroughly before taking out sample solution. Fill a clean cuvette with ~3 mL of 

the pure solvent and measure a baseline. Clean and dry your cuvette and fill it up with 

your compound solution, name your batch file “XX123_SOLVENT_ExCo” and the 

spectrum “ExCo 1. t0”. You should aim for a minimum of 0.3 Abs and maximum 1.5 

Abs at the most red-shifted local maximum, repeat everything with more or less amount 

of compound if this is not the case. Choose a suitable wavelength to irradiate your 
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sample directly in the UV-Vis spectrometer. Irradiate in steps of 1, 5, 15, 30, 60, 120, 

240… seconds until you reach the first PSS consisting of e.g. mainly E isomer, name 

your spectra “ExCo 2. 1s irrXXXnm”, “ExCo 3. 5s irrXXXnm” etc. Change to another 

suitable wavelength and irradiate to the second PSS e.g. mainly Z isomer, adjust the 

times if necessary and use a continuous numbering throughout the batch file. Save the 

batch file as .BSW and .csv. 

2.) UV-Vis - NMR correlation measurements: 

Charge a NMR tube with 0.5 to 3.0 mg of your compound and dissolve it in ~0.6 mL of 

deuterated solvent. Fill a cuvette with the same kind of non-deuterated solvent, chose 

a fitting method, create “XXX123_SOLVENT_NMR.BSW” and measure a baseline. 

Turn off the light and proceed in absolute darkness from now on: Take a droplet from 

the NMR tube and add it to the solvent filled cuvette, measure an UV-Vis spectrum 

with at least 0.5 - 1.5 abs. Measure an NMR spectrum in absolute darkness (or black 

tube) on preferably a 400 MHz+ device as soon as possible and name it 

“XX123_SOLVENT_NMR_XXXmin_irrXXXnm”. Irradiate your NMR tube (transfer the 

content of the black tube to a cuvette for irradiation) with the best suitable wavelength 

from your PSS measurement for E or Z isomers with the most powerful LED available 

to the respective PSS (~100 - 500x longer irradiation times than in the cuvette). Take 

a droplet from the irradiated NMR tube and add it to another clean and solvent filled 

cuvette, measure an UV-Vis spectrum with at least 0.5 - 1.5 abs. Save .BSW and .csv 

file. For pure compounds: Import UV-Vis spectra of pure E or Z isomer and set their 

NMR integrals to 99.99… % within the calculator. Import only baseline, isomer 1 and 

isomer 2, the isomer order can be changed with one click.” 

With the correctly measured data at hand, the next step consisted of manually importing the 

data (Wavelength / absorption, Zmeas. / Emeas.) and the isomeric ratios measured via 1H-NMR 

spectroscopy (%ZNMR / %ENMR for both isomeric mixtures) into the first iteration of the 

calculational tool (see Figure 368).  
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Figure 368: Screenshot of the spectra deconvolution Excel tool version 1.0 to obtain 100% 

Z- and E spectra from arbitrary mixtures. The red ellipsoid shows the three 

variable parameters for each Z- and E enriched isomer mixture. Vertical lines 

represent observation wavelengths to confirm the consistency of the calculated 

isomeric compositions from 359 nm to 477 nm, deviations below 1% were 

observed, which is dependent on the quality of data and the photochromism of 

the compound. 

Adjusting the six parameters is done to obtain isosbestic points and thus correct 100% spectra 

by intuition, avoiding negative absorption values or unreasonable shapes. The three parameters 

consisted in: X / Y represent values which are multiplied with the respective measured 

absorption spectra (Zmeas. / Emeas.) to roughly adjust for concentration differences, W / U 

represent values which are multiplied with (Emeas. × %ENMR / 100 × X – Zmeas. × %ZNMR / 100 × 

Y) or (Zmeas. × %ZNMR / 100 × Y – Emeas. × %ENMR / 100 × X) to adjust the magnitude of the 

spectra subtraction. V / T represent values which are multiplied with the previously obtained 

values to adjust the resulting data to the measured isosbestic points in concentration. This was 

done iteratively by hand to obtain reasonable spectra with already acceptable results as the 

calculated spectra represented the measurements in good agreement. This methodology could 

be seen as proof-of-concept that UV-Vis spectrum deconvolution is able to predict the pure 

spectra from two arbitrary mix spectra at arbitrary concentrations.  
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As this approach by trial and error was successful, a correct mathematical solution to this 

problem was implemented in version 2.0 of the calculational tool shown in Figure 369. 

 

Figure 369: Screenshot of the spectra deconvolution Excel tool version 2.0 to obtain 100% 

Z- and E spectra from arbitrary mixtures. The violet ellipsoid shows that - 

besides the experimentally determined 1H-NMR signal integral ratios of each 

isomer - only one variable parameter for each Z- and E enriched isomer mixture 

is needed to adjust for the respective measured concentration. The crosshair 

(green) marks the most red-shifted isosbestic point for concentration adjustment. 

The second iteration of the calculational Excel tool shows similar results as version 1.0 without 

the time-consuming manual adjustments and the uncertainty of possible misalignments. The 

formulas for the Z / E isomer spectrum deconvolution employed by the calculator are shown in 

eq. 25 and eq. 26 below. 

 

𝑍100% = ((𝑍meas. × X ×
%𝑍NMR−𝐸enr.

100
) −  (𝐸meas. × Y ×

%𝐸NMR−𝑍enr.

100
)) ×

1

(
1−(100−%𝑍NMR−𝑍enr.)

100
)
  

eq. 25 

 

𝐸100% = ((𝐸meas. × Y ×
%𝐸NMR−𝐸enr.

100
) −  (𝑍meas. × X ×

%𝑍NMR−𝐸enr.

100
)) ×

1

(
1−(100−%𝐸NMR−𝐸enr.)

100
)
  

eq. 26 

with Z / E100% being the deconvoluted 100% spectra values, Z / Emeas. being the measured 

UV-Vis spectrum of the Z / E isomer, X / Y being the Z / E concentration factor and %ZNMR-Eenr. 
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being the e.g. percentage of Z isomer within the majorly E isomer enriched isomeric mixture 

determined via 1H-NMR spectroscopy. 

Rearrangement of eq. 25 and eq. 26 above initiated by A. Gerwien gave the following, tidied 

up mathematical description: 

eq. 27 defines the spectrum S of the e.g. E isomer (E) as heaps of colligated numeric values: 

 S(𝐸)  =  S(𝑤𝐸1,2…,, 𝑎𝐸1,2…) eq. 27 

with wE1 = wavelength 1 in nm as x value and aE1 = absorption 1 in a.u. as y value representing 

the absorption spectrum with eq. 28 and eq. 29 defining the measured E / Z-enriched mixture 

spectrum Smix(E+/Z+) as a composite of pure S(E) and S(Z) spectra: 

 𝑆𝑚𝑖𝑥(𝐸 +) = 𝑆(𝐸) × 𝑓1 + 𝑆(𝑍) × 𝑓2 eq. 28 

 𝑆𝑚𝑖𝑥(𝑍 +) = 𝑆(𝐸) × 𝑓3 + 𝑆(𝑍) × 𝑓4 eq. 29 

with f1,… being factors to account for the concentrations of each isomer in the mixture, which 

were determined by NMR measurements and the corresponding magnitudes of the absorption 

spectra. Solving the system of linear equations for S(E) and S(Z) results in eq. 30 / eq. 31: 

 𝑆(𝐸) =  
𝑆𝑚𝑖𝑥(𝑍 +) × 𝑓2  −  𝑆𝑚𝑖𝑥(𝐸 +) ×  𝑓4

𝑓2 × 𝑓3 −  𝑓1 × 𝑓4
 eq. 30 

 𝑆(𝑍) =  
𝑆𝑚𝑖𝑥(𝑍 +) × 𝑓1  − 𝑆𝑚𝑖𝑥(𝐸 +) × 𝑓3

𝑓1 × 𝑓4  −  𝑓2 × 𝑓3
 eq. 31 

Factors f1 - f4 were obtained from integrated indicative signals in the 1H-NMR spectrum 

(percentage divided by 100) for the E or Z isomer in the E or Z enriched mixture according to 

the following matrix: 

 Z isomer E isomer 

Z enriched 

mixture 
f1 f2 

E enriched 

mixture 
f3 f4 

The hereby determined spectra consist of 100% E isomer S(E) and 100% Z isomer S(Z), 

respectively.  
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To date, version 5.2 was released which utilizes only a few experimentally determined input 

parameters and automatically extracts spectrum data directly from the .csv output files of the 

Varian Cary 5000 UV-Vis spectrophotometer software (see Figure 370). The only manual input 

parameter concerning the calculation is the observer wavelength, which should be chosen 

within an area of large UV-Vis spectral changes for the best signal-to-noise ratio of the 

processed data. 

 

Figure 370: Screenshot of the spectra deconvolution Excel tool version 5.2 to obtain 100% 

Z- and E spectra from arbitrary mixtures. The violet ellipsoid shows that only a 

suitable observer wavelength needs to be set. The other parameters are needed 

for the calculation of molar absorption spectra and quantum yield determination, 

which are shown in sections 2.2.21 and 2.7.2. 

The example in Figure 370 utilized pure, thermally stable isomers of hemiindigo 33 which were 

baseline separated via HPLC, no NMR measurements were needed to determine the isomeric 

ratios, which is why they were set to the respective 100% values. As the calculational Excel 

tool was expanded to be more versatile, a major part of the analysis and quantification of 

photophysical data could be carried out with it. This is the reason for using this tool even on 

pure compounds, as data importing, plotting and evaluation is done automatically and 

consistently, which is elaborated in Section 2.7.2 below.  
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Additionally, a web-based version of this tool was written in javascript by Y. Ruppenthal which 

is functional but still unfinished to date. Further efforts to implement photophysical analysis 

tools and input compatibility regarding different layouts of spectrometer output data need to be 

made to reach its full potential. Also, a detailed set of tooltips must be implemented for the ease 

of usage. 

 

Figure 371: Input page of the online based deconvolution tool by Y. Ruppenthal. The same 

functionality as the excel tool was achieved within this version.  
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2.7.2 Photophysics - Development of an “all-in-one” calculational 

Excel tool - Photophysical data evaluation 

With the previously described deconvolution tool at hand, a precise determination of isomeric 

compositions for two interconverting compounds can be made at all times during an UV-Vis 

measurement course. This does not only save large amounts of compound but also irradiation- 

and measurement time as only a comparably small number of molecules need to be irradiated 

for a detectable shift in isomer composition. Additionally, UV-Vis spectroscopy is a rather fast 

and cheap measurement technique compared to NMR spectroscopy and can be utilized in online 

quantum yield measurements if a suitable setup is provided. 

These features make PSS determinations, thermal kinetic measurements and quantum yield 

measurements fast, convenient and reproducible while wasting only little amounts of 

compounds and expensive deuterated solvents. The mathematical and physical formulas 

implemented within the calculator are given in Sections 2.2.20/2.2.21/2.7.1. 

Examples of a UV-Vis equilibrium kinetic and a photoquantum yield measurement are 

shown in Figure 372 and Figure 373 below. 

 

Figure 372: Kinetic analysis of the E to Z thermal isomerization of hemiindigo 8 in 

tetrahydrofuran measured at 26 °C over 180 minutes within the calculational 

Excel tool version 5.2. 

 

Figure 373: Photoquantum yield analysis of the Z to E photoisomerization of hemiindigo 20 

in 83 / 17 heptane / ethyl acetate within the calculational Excel tool version 5.2. 
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If the suggested order of measurements is followed, all obtained data can be directly imported 

into the tool and results are calculated immediately with a minimal amount of manual input and 

adjustment. 

The following sections of the guide provided with the calculational tool concern the required 

procedures for setting up photophysical measurements and read as following (continued from 

Section 2.7.1, updated): 

“3.) PSS measurements: 

Copy the ExCo.BSW file, save it as “XX123_SOLVENT_PSS.BSW”, delete everything except the baseline, 

t0 and the two PSS spectra measured beforehand and rename them to “PSS 1. t0, PSS 2. XXXs 

irrXXXnm”, “PSS 3. XXXs irrXXXnm” etc. Sweep through all desired wavelengths and record the spectra 

assigning order of measurement, time and wavelength to each spectrum. Try to switch large amounts 

of E to Z or Z to E, take into account that the LEDs have optical powers ranging from 22 to 260 mW. 

Possibly low extinctions of your compound in the red part of the visible spectrum will call for irradiation 

times up to several hours or days. Save .BSW and .csv file. 

4.) Thermal stability measurements of Z and E Isomers: 

Open a suitable method and record a baseline, measure your compound (0.5 - 1.5 abs), name the file 

“XX123_SOLVENT_Tkin1.BSW” and the first spectrum Tkin1 0. t0. Irradiate your compound to max. E 

or max. Z PSS, measure it and name your spectrum accordingly. Bring your cuvette to your desired 

constant temperature and measure UV-Vis spectra in reasonable time increments and indicate time 

and temperature in your spectra, e.g. “Tkin1 2. XXmin XX°C”. Type in absolute times, for 10 min 

increments type 0min, 10min, 20min etc. (don’t use “.” or ”,”, it will mess up the import in excel!). Try 

to heat until you reach the equilibrium if applicable. Do the same for the other isomer, this can be 

done in the same file (max. 27 spectra), use continuous numbering. Save the .BSW and .csv file. 

5.) Quantum Yield measurements: 

Get an instruction on how to set up the QYDS optics correctly and/or read the manual. Install the 

desired LED to the X / Y translation stage, let the fan blow onto the heatsink and open the case to some 

extent. Tilt the photometer slightly so that reflections will not enter the cuvette. Open the PowerMax 

software, choose the proper Powermeter device, press “start data collection”, zero the sensor in 

absolute darkness and set your desired wavelength in the software (does not make a observable 

difference). Use a reasonable P0 power value, depending on your absorption and estimated switching 

speed / quantum yield guess. Leave the LED to equilibrate for 10-30 min until you reach a standard 

deviation of about 4 µW and write down this P0 power (mean value) and the absolute time e.g. 

“P0start=4.523 mW, ±4 mW, 13:37”. Open a suitable method file at the UV-Vis device and measure a 

baseline with pure solvent. Put your solvent-filled cuvette in the QYDS and write down the Psolv power 

value. Proceed in absolute darkness from now on. Clean and dry the cuvette, add exactly 2.5 mL (or 

any defined volume from 1.5 to 3.0 mL) of your compound solution and a small magnetic stirring bar 

to your cuvette and put the cuvette lid on. Measure your sample (0.5 - 1.5 absorption), create the file 

“XX123_SOLVENT_ QYD1.BSW” and name your spectrum “QYD1 1. t0”. Skip irradiation to the max. PSS 

if you have a pure compound. Put a piece of cardboard in the beam path of the QYDS in front of the 

cuvette. Sync yourself with a clock and remove the cardboard for 1s as fast as possible and put it back 

on. Measure UV-Vis without exposing the sample to room- or sunlight. Name your spectrum e.g. 

“QYD1 3. 1s irr467nm”. Repeat ~5 times with 1s increments to get E/Z ratios for 1, 2, 3, 4 and 5s of 
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irradiation. Raise the time increment to 10s (15s total) and measure another UV-Vis spectrum. Raise 

the increment to 15s (30s total) and write down the power as close to the 15s mark as possible, e.g. 

“QYD1 9. 30s irr467nm P=4.232 mW, P0=4.492 mW”, repeat with total times of 60, 120, 240s, 480s… 

not necessarily to the PSS, but accurate power readings at the end of each point are crucial. Remove 

the cuvette when finished, write down the P0 value and the absolute time, e.g. 14:07. Irradiate to the 

max. PSS consisting of the other isomer, change the LED in the QYDS and set it up properly (thermal 

equilibration of LED, P0 value at absolute time). Measure UV-Vis at the t0 value after irradiation in the 

same file and use continuous numbering (max. 27 spectra per file). Start with 5x 1s increments as in 

the previous measurement and proceed similarly. Take out the cuvette, write down the P0 value and 

the absolute time, empty the cuvette, clean it and fill it with pure solvent to measure Psolv for the recent 

power and wavelength. Save the .BSW and .csv file. 

6.) Calculations: 

Set Excel to use “.” as decimal separator in File > Options > Advanced. Import your raw data to the 

“Import ExCo/NMR/PSS/Tkin1/Tkin2/QYD1/QYD2” sheets in the calculator with “,” as delimiter 

between columns. Go to the “Spectra” sheet to overview your raw data. If something seems wrong: 

Delete the text the UV-Vis software creates at the end of the data values, check if every set of columns 

starts with the same wavelength, e.g. 800 nm. If not, delete your data in the Import Sheet, open a new 

file in excel, import your data there and sort it properly. DO NOT SHIFT CELLS IN THE IMPORT SHEET, 

the calculator file will be useless afterwards. Zoom into your ExCo measurement and pick the 

wavelength at the most red-shifted isosbestic point, enter it in the first box (only natural digits), cross-

check if the averaged absorption value matches the ExCo spectra. Every value in a black outlined box 

has to be entered or set by the user, do not change anything else! Set a wavelength at which all 

determinations will be carried out throughout the whole calculator, best done on the right side to the 

most red-shifted isosbestic point with large absorption changes. Enter mass, volume, cuvette path 

length and molecular weight. 

6.1.) Calculated 100% Z and 100% E spectra: (boundaries for all other calculations) 

Open your NMR spectra from the correlated UV-Vis - NMR measurements and enter your integrals for 

Z and E in the Z enriched spectrum and for Z and E in the E enriched spectrum. Look at the second of 

the three UV-Vis headers below and decide if this UV-Vis spectrum represents the Z enriched spectrum 

or not. Check the box if yes, uncheck if not. Go to the Spectra Sheet and look at the first graph for 100% 

Z and E spectra. Z should be red and on the left side, E blue and on the right side.  

Troubleshoot: Do the extinctions make sense? If not: Are NMR integrals assigned correctly? Integration 

of other NMR signals? (Baseline and Phase correction? Solvent peak on reference for both spectra?) 

Check or uncheck the Check Box, parasitic irradiation from room lighting? Thermal isomerization in the 

time between UV-Vis and NMR measurement? Are the UV-Vis spectra of the right compound? Correct 

mass/volume/molecular weight in case of odd values for the molar absorption? If everything is alright, 

proceed to PSS calculation. 

6.2.) PSS value determination: 

Set the range of Max E and Max Z to valid values, the highest and lowest PSS value in %E should be 

shown and at which wavelength they occur. All other PSS values can be read from the table. 

Troubleshoot: Negative or values over 100% indicate measurements close to the calculated 

boundaries. This indicates thermal/irradiative back isomerization within the NMR/UV-Vis correlation 

measurement or other issues as stated above. The automatic scaling process can create overshoot in 

these regions within ~1 - 2% or due to little photo destruction.  
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6.3.) Thermal stability determination: 

Pull a rectangle around the extracted data in the UV-Vis Tkin section and paste one series of coherent 

measurements starting from t0 = 0s in the black outlined boxes below according to E to Z or Z to E 

direction of isomerization. Read the times from the descriptors and enter them in minutes below. 

Double click the “Edit Slope here” box and choose all valid values except for the last ones in the series 

and hit enter. The slope should match the slope in the first graph. Double click “Set equilibrium conc. 

%E here” and choose the last E% value and hit enter. Set the temperature of your measurement in the 

box below. The thermal barrier can be read out in the last box and half-lives can be set for desired 

temperatures on the right. Repeat for the other isomerization direction and Tkin2 if applicable. NMR 

Integrals can be entered in the NMR Tkin section, the procedure stays the same. 

Troubleshoot: The first graph should be a perfectly straight line. Curvature? Equilibrium not reached! 

If done correctly for E to Z and Z to E isomerization, the second graph should show both kinetics 

stopping at the same E to Z ratio, only then the true equilibrium was reached.  

First order kinetics without equilibrium? No problem, the last point of the measurement gets discarded 

in comparison to the “normal” first order kinetics formula, the rest stays the same. 

6.4.) Quantum yield determination: 

QYD Section: Check if the automatic concentration adjustment makes sense “Conc. Factor (test):” for 

the same solution as the ExCo measurement it should be around “1”. Draw a rectangle around the 

extracted data in the QYD section and paste one series of coherent measurements starting from t0 = 

0s in the black outlined boxes below according to E to Z or Z to E direction of QY measurement. Read 

the time values from the descriptors and enter them in minutes below, do the same for power values. 

Enter volume, irradiation wavelength, P0start, P0end and the time between these points from your 

absolute time values here. Enter Psolv below. Double click the “Set Slope value for extrapol. power” box 

and choose all valid values in the series and hit enter. The slope should match the slope in the first 

graph. Paste the read-out for the Y-Intercept from the first graph in the “Paste offset value for extrapol. 

Power” box. This will calculate the absorbed power of the sample at point t0 before the actual 

absorption of any light. Set the second slope to 0, 1s, 2s … or more / less ((in)valid, “linear”) values, the 

quantum yield for the isomerization is shown below. Repeat for the other quantum yield 

measurements. 

Troubleshoot: Too fast / too slow measurement? Too much / little power? Bad signal-to-noise ratio 

towards background / sample signal? Thermal LED drift taken into account correctly (times, values)? 

Everything done in darkness? Good 1s increment measurements? LED mounted and cooled correctly 

(no Tape etc., fan switched on? Case opened slightly?)? Screw of the sample holder not within the 

beam path? Stirrer switched on? Powermeter tilted / equilibrated / zeroed / mean values used if 

possible? All parts of the assembly screwed to the breadboard? Feasible concentrations? 

Happy measuring!” 

With these suggestions taken into account, quantum yield- and other photophysical 

measurements can be conveniently carried out mainly via UV-Vis spectroscopy.  
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2.7.3 Photophysics - Building of an inexpensive quantum yield 

determination setup 

A low-cost version of the published instrumental setup from the group of E. Riedle (see Section 

2.2.23) was built as a prototype with the goal of cancelling thermal LED fluctuations to give 

accurate readings for the absorbed light energy.[98] The detection of light flux was done via 

photovoltaic diodes as suggested by R. Wilcken. The photovoltaic diodes scale the incident light 

power with their output current in a linear fashion. A simple transimpedance amplifier is able 

to convert the generated current into a linearly dependant voltage output. After calibration to 

an accurate thermal powermeter, the photodiode is able to translate the measured voltage into 

photon counts, which - besides reaction progress - is a key parameter to determine quantum 

efficiency. 

The usage of LEDs as irradiation sources poses several (dis-) advantages. On one hand, LEDs 

are lightweight, cheap, relatively powerful, simple to use and easy to cool. One the other hand, 

they normally do not emit monochromatic light but wavelength distributions, which can 

complicate measurements. Furthermore, increasing heatsink temperatures decrease their light 

output gradually within a measurement, which leads to significantly false readouts. As a 

solution to this problem, the low-cost quantum yield determination prototype supports two 

photodiodes as detectors. The incident light path is split by a stack of several glass microscopic 

slides at a ~45° angle before the sample. One of the two light rays is directed to the calibrated 

photovoltaic diode (reference diode) while the other light ray is sent towards the sample. The 

second calibrated photodiode (measurement diode) is located behind the sample and detects the 

absorbed power differentially towards the reference diode (see Figure 374). An Arduino 

microcontroller is used for data collection, calibration and calculation. The analog 10-bit inputs 

were used to detect the amplified output voltages between 0 V and 5 V, to compare them to 

changes at the reference photodiode and to calculate the absorbed power value P of the sample 

in mW at time t. Even significant short drops in LED light intensity do not affect the graph of 

the photokinetic as the absorbed power values are always relative to the reference power. 

Prolonged reduction of the light source intensity will slow down the progress of the 

photoreaction. This can also be compensated by tracking the changing power values of the 

reference photodiode as the physical property of quantum yield already implies a linear 

relationship of light intensity to reacted molecules, e.g. a quantum yield of 20% translates to 5 

necessary photons to transform one starting molecule to one product molecule. 
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Figure 374: Low-cost quantum yield measurement prototype with differential read-out of 

absorbed power. The LED light is focused with two magnifying glasses onto a 

beam splitter made out of a stack of microscopy plates. One part of the light 

beam is measured with a calibrated reference diode, the other part of the beam 

is sent through the sample. The calibrated measurement diode reports the 

remaining light power which was not absorbed by the sample. The Arduino 

microcontroller subtracts the power values of the measurement diode from the 

reference diode, giving accurate absorbed power values even upon LED power 

fluctuations. 

The parts for the device shown in Figure 374 were obtained for roughly 50 €, the Coherent 

thermal powermeter of the Riedle setup prices at roughly 1000 - 1500 € without optics, holders, 

light sources, computer hardware and software. The plywood holders are fixated on a scrap 

metal plate with three strong neodymium magnets each, making adjustments easy without 

easily shifting them by accident. Two transimpedance amplifiers convert the output current of 

the photodiodes into a linear voltage with an adjustable 0 V to 5 V output range that can be 

processed and quantized by the analog inputs of the Arduino microcontroller. 
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Figure 375: Circuit board and Arduino microcontroller of the inexpensive quantum yield 

determination setup. The current of the photodiodes is linearly converted into 

voltage and amplified utilizing two of the four operational amplifiers of the 

integrated circuit (IC) chip (MCP6004-I/P PDIP-14) wired as transimpedance 

amplifier. The amplification factor is adjusted individually for each photodiode 

by a trimmer potentiometer. A third trimmer potentiometer is used to normalize 

reference- and measurement photodiode when no sample is placed within the 

beam path prior to measurement. The Arduino microcontroller converts the 

measured voltage differences into light power according to a previously 

determined calibration curve and plots the absorbed power versus time on a 

computer screen for data acquisition. 

One major drawback of this prototype are the 10-bit analog inputs of the Arduino 

microcontroller, which allow for analog to digital conversion of a 0 V to 5 V input voltage into 

values from 0 to 1023. The usage of 16- or 24 bit analog to digital converters should be 

considered as they will drastically improve signal resolution by dividing the 5 V measurement 

range into 6.55×104 or 1.68×107 steps, respectively. The code for the Arduino is shown below 

in Figure 376. Also, specialized quartz optics can be implemented to transmit light within the 

UV range. A magnetic stirrer was not yet implemented as it was not required for the proof-of-

concept. Auto samplers for cuvette- or LED changes could also be implemented for further 

automatization. 
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Figure 376: Programming of the Arduino microcontroller in C++ to measure the absorbed 

power of the sample with respect to the reference photodiode. 

#include <SoftwareSerial.h> 

float refPin = 0; 

float measPin = 1; 

float refValue; 

float refValue2; 

float measValue; 

float measValue2; 

float diffValue; 

float offsetPin = 2; 

float gainPin = 3; 

float gainValue; 

float gainValue2; 

float offsetValue; 

float offsetValue2; 

 

void setup() { 

  Serial.begin(9600); 

  delay(500); 

} 

 

void loop() { 

  refValue = analogRead(refPin); 

  measValue = analogRead(measPin); 

  offsetValue = analogRead(offsetPin); 

  offsetValue2 = (offsetValue/100)-5; 

  gainValue = analogRead(gainPin); 

  gainValue2 = 805+(825*(gainValue/25000)); 

  refValue2 = (refValue/gainValue)*(4/2.25)*5.103; 

  measValue2 = (measValue/gainValue*5.103); 

  diffValue = ((measValue2+offsetValue2)-refValue2); 

   

  Serial.print(diffValue, DEC); 

  Serial.println(" mW"); 

  delay(250); 

} 
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Additionally, a methodology for processing the obtained power data was developed in Excel, 

as it was found out that absorbed power and isomeric composition (e.g. in percent) give a linear 

correlation (most of the time) when plotted against each other, see Section 2.2.21. This makes 

it possible to record the entire photokinetic without obtaining more than two data points via 

UV-Vis (in theory). Additionally, the actual absorbed power values are given incidentally, 

allowing to fully automate quantum yield measurements by this methodology in the future. The 

novel calculator is not shown in this work as further experiments need to be carried out to test 

the robustness of its automatic output.  
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2.7.4 Photophysics - Building of an alternating irradiation device 

To address the photofatigue of photoswitchable compounds, an automated alternating 

irradiation device was built to obtain data of almost arbitrary counts of photoswitching cycles. 

An Arduino microcontroller was used to control a relay board in order to switch the potentially 

high currents of the LED power supply. Two suitable LED wavelengths were set up into a 

homemade LED and cuvette holder with cooling fan. After calibration of the ideal irradiation 

times (e.g. reaching the PSS composition of a specific irradiation wavelength) for each LED, 

prolonged irradiation cycles can be run by measuring UV-Vis spectra at defined time intervals. 

Dividing the total elapsed time by the time needed for one cycle results in the total amount of 

switching cycles. The results for photoswitching of hemiindigo 8 can be seen in Section 2.2.5 

and for switching of electronic circular dichroism of hemiindigo 33 in Section 2.3.8. Pictures 

of the setup are depicted in Figure 377 and Figure 378. 

 

Figure 377: Improved setup for sample cooling during alternating irradiation experiments. 

During irradiation it was ensured that air gaps between LEDs and cuvette were 

present for effective fan-cooling (see Figure 377, top left corner). Direct 

temperature measurements inside a water filled cuvette determined temperature 

deviations of up to 1.23 °C during irradiation cycles in a control experiment (see 

inset in the right picture).  
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Figure 378: Depiction of the air gap between LEDs and sample (top left corner) and 

calibration of the different temperature sensors 1 to 3 within the air stream of the 

fan. The respective temperature deviations between the different sensors are very 

small. The surrounding room was not yet cooled to 18 °C at this time of 

measurement. 

 

Figure 379: Monitored temperature of the surrounding air during 160 cycles of alternating 

irradiations of hemiindigo 33 (left). Spikes represent warming of the air stream 

during manual sample handling. Temperature difference (right) between the 

inside of the cuvette (red) and the surrounding room temperature (blue) 

measured for a water-filled cuvette during 9 cycles of alternating irradiations. 

On average, a 1.23 °C temperature difference was observed between irradiations 

for 7 s at 435 nm and 260 mW output power and 38 s at 505 nm and 80 mW 

output power. Spikes correspond to the flashing of the 435 nm LED, which 

dissipates more heat.  
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2.7.5 Photophysics - Building of a cuvette holder for cryogenic ECD 

measurements 

Low temperature UV-Vis and ECD spectroscopy requires specialized equipment to avoid the 

condensation of water within the surrounding air. Because of the size of a cryogenic cuvette 

(cryostat), several problems arise when attempting to mount these devices within 

spectrophotometers. For UV-Vis spectroscopy, a sufficiently sized light path within the sample 

chamber and some height- and rotational adjustability is required. Adjustments can be made by 

dialing in the cuvette(s) position and minimizing the absorbance of a solvent filled cuvette as 

baseline priorly to the measurement of the sample itself. With ECD spectroscopy, however, 

differences in the angles of glass surfaces within the light path distort the circularly polarized 

light and add unwanted ellipticity as systematic error. This can be dialed in by minimizing the 

absorptivity as well for the solvent filled cuvette without sample. Nonetheless, without a proper 

cuvette holder and rigidity in the setup, sample change will relocate the cryostat, losing the 

adjusted positioning. Adjusting the cuvettes(s) anew with the sample in the light path is prone 

to give different results compared to the baseline measurement. 

If in-situ irradiation by light is required, the attachment of LEDs within the spectrometer can 

also pose as a challenge due to the already limited space. This requires removing the cryostat 

from the spectrophotometer and losing the positioning again. As these drawbacks will add 

undefinable systematic errors, especially when only small signal changes need to be recorded, 

a homemade cuvette holder for an Oxford Optistat DN cryostat within a Jasco J-810 ECD 

spectrometer was built from plywood (Figure 380). The cryostat and the aluminium mounting 

bracket were kindly supplied by the groups of A. Ofial and H. Mayr. This setup allows for rigid 

fastening of the aluminium holder with X / Y translation stage inside the sample chamber, which 

allows for removal and reinsertion of the cryostat without losing of the positioning. Also, 

repeatable adjustments in seven axes can be made towards a minimized absorptivity of the 

solvent filled cuvette for baseline measurement and positional calibration. 
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Figure 380: Different views of the homemade plywood cryostat mounting bracket outside 

the ECD spectrometer. The cryostat can be adjusted within five dimensions and 

the cuvette holder within the sample chamber can be moved in two dimensions.  
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Figure 381: Instrumental setup used for repetitive ECD measurements in-between alternating 

irradiations of the (Ra)-30 isomer at -20 °C using an Oxford instruments Optistat 

DN cryostat. A rotary pump maintains a vacuum of 3x10-3 mbar for the isolation 

chamber of the cryostat to increase its operation time. The temperature controller 

was set to 253.2 K and maintained the temperature by successive heating pulses. 

A membrane pump is utilized for secondary control of temperature by regulating 

the exiting N2 gas stream and hence the coolant flow (LN2) respectively. 

Alternating irradiation inside the cryostat is realized by using two glass fiber-

coupled LEDs, which can be exchanged at one end of the fiber without 

disturbing the sensitive setup (10 s 450 nm at 193 mW and 60 s 520 nm at 

92 mW irradiations were used for each cycle). A home-made mounting bracket 

was used to ensure reproducible cryostat and sample holder alignments for each 

mechanical change in the setup (i.e. sample exchange for baseline 

measurements) as circularly polarized light gradually changes ellipticity if its 

beam is not passed through the cuvette windows perpendicularly. 

The successfully obtained ECD data of hemiindigo 30 during cyclic switching experiments are 

depicted in Section 2.3.8.  
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2.7.6 Conclusion: Photophysics 

The developed “all-in-one” Excel tool proved as a success as repetitive measurements of 

different photoswitches in various solvents require a robust and repeatable methodology to 

compare obtained datasets. Its ease of use and time- / compound savings for the required (photo) 

physical measurements (Molar absorptivity, PSS determination, thermal kinetics and quantum 

yield determination) was a major help in processing the acquired data via UV-Vis- and NMR 

spectroscopy. 

The construction of a low-budget quantum yield measurement device with differential 

detection setup was a success and showed that even cheap components can be used for this kind 

of measurements as photodiodes are very sensitive towards minimal changes of light intensity 

and output a corresponding current in a linear fashion. Further improvements of the quantum 

yield measurement data processing are in preparation to date. 

To consistently test the photofatigue of photoswitches, repeated cyclic measurements were 

set up by successfully building an alternating LED irradiation device controlled via a 

microcontroller. This allows for virtually infinite of switching cycles to be run, giving reliable 

degradation kinetics. 

As ECD measurements are quite susceptible to angle changes of the cuvette(s) within the 

beam path of the circularly polarized light, a cryostat mount was built that allowed for 

adjustment in seven axes including removal and reinsertion of the cryostat / sample cuvette into 

the spectrometer without losing its positioning. Successful repeated ECD measurements proved 

the rigidity and usability of this setup.  
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3 EXPERIMENTAL SECTION 

The characterized compounds are sorted by reaction type. Synthetic schemes can be found 

within the respective “Results and discussion” sections.  
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3.1 General experimental 

Reagents and solvents were obtained from Acros, Aldrich, Fluka, Fluorochem, Merck, or 

Sigma-Aldrich in the qualities puriss., p.a., or purum and used as received. Technical solvents 

were distilled before use for column chromatography and extraction on a rotary evaporator 

(Vacuubrand CVC 3000). Reactions were monitored on Merck Silica 60 F254 or Aluminium(III) 

oxide 60 F254 neutral TLC plates. Detection was done by irradiation with UV light (254 nm or 

366 nm). 

Column chromatography was performed with silica gel 60 (Merck, particle size 0.063 - 0.200 

mm) or aluminium(III) oxide (Sigma-Aldrich, pore size 58 Å, Brockmann III, 6% water, w / w) 

and distilled technical solvents. 

1H-NMR and 13C-NMR spectra were measured on a Varian Mercury 200 VX, Varian 300, 

Inova 400, Varian 600 NMR, or Bruker Avance III HD 800 MHz spectrometer. Chemical shifts 

(δ) are given relative to tetramethylsilane as external standard. Deuterated solvents were 

obtained from Cambridge Isotope Laboratories and used without further purification. Residual 

solvent signals in the 1H and 13C-NMR spectra were used as internal reference: For 1H-NMR: 

CD2Cl2 = 5.32 ppm, CDCl3 = 7.26 ppm, CD2Cl2 = 5.32 ppm, toluene-d8 = 2.08 ppm, 

cyclohexane-d12 = 1.38 ppm, (CD3)2SO = 2.50 ppm, CD3CN = 1.94 ppm, THF-d8 = 1.72, 

3.58 ppm. For 13C-NMR: CD2Cl2 = 53.84 ppm. CDCl3 = 77.16 ppm, CD2Cl2 = 53.84 ppm, 

toluene-d8 = 20.43, cyclohexane-d12 = 26.43 ppm, CD3CN = 118.26, 1.32 ppm, THF-d8 = 

67.57, 23.37 ppm. The resonance multiplicity is indicated as s (singlet), d (doublet), t (triplet), 

q (quartet), quin (quintet), sext (sextet), and m (multiplet) and br (broad signal). The chemical 

shifts are given in parts per million (ppm) on the delta scale (δ) and the coupling constant values 

(J) are given in hertz (Hz). Signal assignments are given in the experimental part using the 

arbitrary numbering indicated.  

Electron Impact (EI) mass spectra were measured on a Finnigan MAT95Q or on a Finnigan 

MAT90 mass spectrometer.  

Electrospray ionization (ESI) mass spectra were measured on a Thermo Finnigan LTQ-FT. 

The most important signals are reported in m/z units with M as the molecular ion. 

Elemental analysis was performed in the micro analytical laboratory of the LMU department 

of chemistry on an Elementar Vario EL apparatus. 
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Infrared spectra were recorded on a Perkin Elmer Spectrum BX-FT-IR instrument equipped 

with a Smith DuraSamplIR II ATR-device. Transmittance values are qualitatively described by 

wavenumber (cm-1) as strong (s), medium (m), and weak (w). 

UV-vis spectra were measured on a Varian Cary 5000 spectrophotometer. The spectra were 

recorded in a quartz cuvette (10 mm path length). Solvents for spectroscopy were obtained from 

VWR and Merck. Absorption wavelength (λ) are reported in nm and the extinction coefficients 

(ε) L·mol-1·cm-1 are given in brackets. Shoulders are declared as sh. 

Electronic circular dichroism spectra were measured on a Jasco J-810 CD 

spectropolarimeter equipped with a Jasco CDF-426S Peltier temperature controller. Baseline 

corrected spectra were recorded with standard sensitivity (100 mdeg), data pitch of 1 nm, 

500 nm/min scanning speed, 1s response time and fivefold accumulation. Resulting spectra 

were smoothed via the adaptive- or Savitzky-Golay filter function. 

Low temperature UV-vis and electronic circular dichroism spectra were measured with an 

Oxford instruments Optistat DN cryostat within an adjustable custom-made holder. 

Irradiation at low temperature was carried out with a Prizmatix UHP-T-LED Controller 

powering collimated UHP-T-450-EP and UHT-T-520-DI LEDs coupled to a 3 m long coated 

glass fiber with 1.5 mm inner diameter. 

Melting points (m.p.) were measured on a Büchi B-540 melting point apparatus in open 

capillaries. 

Gas chromatography - Mass spectrometry (GC-MS) was performed on a Shimadzu GC2010 

Plus gas chromatograph with a Shimadzu QP2010SE Mass detector, equipped with an Agilent 

VF-5ms Column (30 m length, 0.25 mm inner diameter, 0.25 µm film thickness). Standard 

method: Injection: 250 °C liner temperature, 1 µL injection volume, split ratio: 5.0, 45 cm/sec 

gas speed (linear velocity), carrier gas type: helium. Column program: hold 75 °C for 2 min, 

50 °C/min heating ramp for 4.5 min, hold 300 °C for 14.5 min. MS detection: 200 °C ion source 

temperature, 250 °C interface temperature, 3.2 min solvent cut time, 0.15 s event time, scan 

speed: 5000s-1, start m/z: 35 u, end m/z: 700 u, 70 eV ionization energy. 

High performance liquid chromatography (HPLC) was performed on a Merck-Hitachi 

LaChrom Series HPLC system consisting of a D-7000 interface, a L-7150 solvent delivery 

module, a L-7350 column oven, a L-7420 UV-vis detector and a L-7455 diode array detector 
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using a preparative Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP (particle size 5 µm) 

column (7 / 3 to 1 / 0, acetonitrile / water, v / v, 12 to 15 mL/min, 35 °C column temperature) 

or on a Shimadzu HPLC system consisting of two LC-20AP solvent delivery modules, a CTO-

20A column oven, a SPD-M20A photodiode array UV-vis detector, and a CBM-20A system 

controller using a semi preparative Diacel CHIRALPAK® IC / ID column (particle size 5 µm) 

cooled within an ice bath and HPLC grade solvents (ethyl acetate and n-heptane) from Sigma-

Aldrich and ROTH. 

Theoretical DFT calculations of optimizations of ground- and transition states were conducted 

at the B3LYP/6-311G+(d,p) level of theory using Gaussian 16 Rev. B.01 if not stated 

otherwise.[132] Frequency analysis confirmed all ground state structures to be stationary points 

since no imaginary frequencies were found. Transition states (TS) were found by scanning the 

minimized ground state structures around the N-C or stilbene single bond. The dihedral angle 

was rotated in steps of 2 degrees to complete one whole rotation. The respective maximum 

energy structures were subjected to a transition state optimization with the Berny, QST2 or 

QST3 algorithm,[140] first at the at B3LYP/3-21 level of theory, then at the 

B3LYP/6-311+G(d,p) level of theory. Undesired local minima (e.g. methyl group rotations) 

were frozen upon optimization. Converged transition state structures were checked for 

conclusiveness of their single imaginary vibrational mode. UV-vis and ECD spectra were 

calculated using TD-DFT at the B3LYP/6-311+G(d,p) level of theory, singlet excitations only, 

nstates=30, if not stated otherwise.[141] NMR spectra were calculated using the GIAO 

method.[142] Visualization of minimized structures, energies, oscillator strengths, electronic 

circular dichroism and NMR shifts was done with GaussView 6.0.16.[143] 



3.2   INDOLE PRECURSORS - COPPER-CATALYZED N-ARYLATIONS 

430 

3.2 Indole precursors - Copper-catalyzed N-arylations 

Scheme 11 for the cross-coupling reaction can be found in Section 2.2.7. 

7-Methyl-1-(o-tolyl)-1H-indole (17) 

 

To a sealable, N2 purged pressure tube (40 mL total volume) equipped with a magnetic stirring 

bar 7-methyl-1H-indole (2.00 g, 15.3 mmol, 1.0 equiv.), copper iodide (0.146 g, 1.01 mmol, 

0.05 equiv.) and anhydrous potassium phosphate (6.80 g, 32.0 mmol, 2.1 equiv.) were added. 

The pressure tube was evacuated and refilled with N2 three times. Subsequently, 2-

bromotoluene (2.61 g, 15.3 mmol, 1.0 equiv.), cyclohexane-1,2-diamine (0.348 g, 3.05 mmol, 

0.2 equiv.) and toluene (15.3 mL, resulting in a 1 M solution) were added. The pressure tube 

was placed behind a blast shield and the mixture was vigorously stirred at 160 °C for 1 day. 

After cooling to 22 °C the mixture was neutralized with aq. sat. ammonium chloride solution, 

filtered through celite, extracted with ethyl acetate and washed with brine. The combined 

organic phases were dried over sodium sulfate and the volatiles were removed in vacuo. 

Subsequent purification by flash column chromatography (silica, hexanes) yielded 7-methyl-1-

(o-tolyl)-1H-indole 17 (0.893 g, 4.04 mmol, 27%) as clear colorless oil. 

Rf = 0.39 (silica, hexanes). 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.53 (d, 3J = 8.3 Hz, 1H , H-C(6)), 7.40 (t, 3J = 

7.6 Hz, 1H, H-C(13)), 7.36 (d, 3J = 7.9 Hz, 1H, H-C(15)), 7.33 (d, 3J = 7.6 Hz, 1H, H-C(12)), 

7.30 (t, 3J = 7.9 Hz, 1H, H-C(14)), 7.06 (d, 3J = 3.3 Hz, 1H, H-C(9)), 7.02 (t, 3J = 7.6 Hz, 1H, 

H-C(5)), 6.90 (d, 3J = 7.3 Hz, 1H, H-C(4)), 6.64 (dd, 3J = 3.3 Hz, 4J = 0.7 Hz, 1H, H-C(8)), 

1.96 (s, 3H, H-C(16)), 1.90 (s, 3H, H-C(17)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 140.61 (C(10), 137.35 (C(11)), 135.48 (C(2)), 

130.08 (C(12)), 129.50 (C(9)), 129.03 (C(15)), 128.93 (C(7)), 128.56 (C(13)), 126.07 (C(14)), 

124.20 (C(4)), 121.58 (C(3)), 119.89 (C(5)), 118.80 (C(6)), 102.25 (C(8)), 17.97 (C(17)), 16.87 

(C(16)). 
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IR (Diamond ATR): 𝜈 (cm-1) = 3045 (w), 2952 (w), 2923 (w), 2859 (w), 2738 (w), 2557 (w), 

1902 (w), 1828 (w), 1698 (w), 1599 (w), 1583 (w), 1520 (m), 1496 (s), 1483 (s), 1457 (s), 1440 

(m), 1418 (m), 1381 (w), 1366 (w), 1331 (s), 1281 (m), 1245 (m), 1225 (s), 1197 (m), 1163 

(w), 1139 (m), 1114 (w), 1075 (m), 1039 (w), 984 (w), 954 (m), 944 (w), 865 (w), 844 (m), 

782 (s), 765 (s), 745 (s), 716 (s), 689 (s), 659 (w). 

MS (EI+, 70 eV): m/z (%) = 221.1 (58), 220.1 (23), 206.1 (28), 204.1 (19), 70.0 (11), 61.0 (19), 

45.0 (16), 43.0 (100). 

HRMS (EI+, C16H15N): calcd.: 221.1204; found: 221.1202 (M+). 

1-(4-methoxy-2-methylphenyl)-1H-indole (114) 

 

A flame dried, N2-flushed Schlenk flask, equipped with a magnetic stirring bar, is charged with 

1H-indole (0.500 g, 4,268 mmol, 1.0 equiv.), copper iodide (0.041 g, 0.213 mmol, 0.05 equiv.), 

potassium phosphate (1.902 g, 8.963 mmol, 2.1 equiv.), 1-bromo-4-methoxy-2-methylbenzene 

(0.858 g, 4.268 mmol, 1.0 equiv.), N1,N2-dimethylethane-1,2-diamine (0.075 g, 0.854 mmol, 

0.2 equiv.) and toluene (4.268 mL, 1 M). The mixture was stirred at 110 ºC for 18 h. The 

reaction was stopped with a sat. aq. ammonium chloride solution and extracted with ethyl 

acetate. The combined organic layers were dried over sodium sulfate. The mixture was filtrated 

and the solvents were removed in vacuo. Purification by flash column chromatography (silica, 

hexanes / ethyl acetate, 9 / 1, v / v) yielded 1-(4-methoxy-2-methylphenyl)-1H-indole 114 (0.789 g, 

3.33 mmol, 78%) as colorless liquid. 

Rf = 0.43 (silica, hexanes / ethyl acetate, 9 / 1, v / v). 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.71 - 7.67 (m, 1H, H-C(4)), 7.24 (d, 3J = 8.6 Hz, 

1H, H-C(13)), 7.20 - 7.11 (m, 3H, H-C(2, 5, 7)), 7.04 - 7.00 (m, 1H, H-C(6)), 6.94 (d, 3J = 

2.8 Hz, 1H, H-C(10)), 6.87 (dd, 3J = 8.6 Hz, 4J = 3.0 Hz, 1H, H-C(12)), 6.67 (dd, 3J = 3.2 Hz, 

4J = 0.9 Hz, 1H, H-C(3)), 3.88 (s, 3H, H-C(15)), 2.02 (s, 3H, H-C(14)). 
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13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 159.90 (C(11)), 137.98 (C(7a)), 137.96 (C(9)), 

131.66 (C(8)), 129.64 (2C, C(2, 13))), 128.82 (3a), 122.41 (C(5)), 121.23 (C(4)), 120.20 (C(7)), 

116.57 (C(10)), 112.38 (C(12)), 110.92 (C(6)), 102.54 (C(3)), 56.01 (C(15)), 18.07 (C(14)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3050 (w), 2932 (w), 2836 (w), 1611 (m), 1581 (w), 1512 (s), 

1502 (s), 1474 (m), 1457 (m), 1379 (w), 1332 (m), 1295 (m), 1281 (m), 1247 (m), 1226 (s), 

1212 (m), 1159 (m), 1138 (m), 1121 (m), 1100 (m), 1062 (m), 1039 (m), 1009 (m), 960 (m), 

929 (w), 915 (w), 882 (m), 847 (m), 810 (m), 763 (m), 739 (s), 716 (m), 658 (m). 

MS (EI+, 70 eV): m/z (%) = 237.1 (97), 236.1 (62), 223.1 (15), 222.1 (100), 221.1 (10), 204.1 

(21), 194.1 (30), 193.1 (23), 192.1 (21), 191.1 (21), 167.1 (10), 165.1 (15). 

HRMS (EI+, C16H15NO): calcd.: 237.1154; found: 237.1145 (M+). 

1-(4-fluoro-2-methylphenyl)-1H-indole (115) 

 

A flame dried, N2-flushed Schlenk flask is charged with 1H-indole (0.100 g, 0.854 mmol, 

1.0 equiv.), copper iodide (0.0008 g, 0.043 mmol, 0.05 equiv.), potassium phosphate (0.38 g, 

1.79 mmol, 2.1 equiv.), 1-bromo-4-fluoro-2-methylbenzene (0.161 g, 0.854 mmol, 1.0 equiv.), 

N1,N2-dimethylethane-1,2-diamine (0.015 g, 0.171 mmol, 0.2 equiv.) and toluene (0.427 mL, 

2 M). The mixture was stirred at 110 ºC for 18 h. The reaction was stopped with a sat. aq. 

ammonium chloride solution and extracted with ethyl acetate. The combined organic layers 

were dried over sodium sulfate. The mixture was filtrated and the solvents were removed in 

vacuo. Purification by flash column chromatography (silica, hexanes / ethyl acetate, 9.5 / 0.5, 

v / v) yielded 1-(4-fluoro-2-methylphenyl)-1H-indole 115 (0.789 g, 3.33 mmol, 87%) as 

colorless liquid. 

Rf = 0.53 (silica, hexanes / ethyl acetate, 9.5 / 0.5, v / v). 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.68 (ddd, 3J = 7.1 Hz, 4J = 2.0 Hz, 4J = 0.8 Hz, 1H, 

H-C(4)), 7.30 (dd, 3J = 8.6 Hz, 4J = 5.4 Hz, 1H, H-C(13)), 7.20 - 7.10 (m, 4H, H-C(2, 6, 5, 10)), 
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7.08 - 6.98 (m, 2H, H-C(12, 7)), 6.68 (dd, 3J = 3.2 Hz, 4J = 0.8 Hz, 1H, H-C(3)), 2.03 (s, 3H, 

H-C(14)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 162.61 (d, 1J = 246.5 Hz, 1C, C(11)), 139.21 (d, 3J 

= 8.5 Hz, 1C, C(9)), 137.72 (C(7a)), 134.87 (d, 4J = 3.0 Hz, 1C, C(8)), 130.31 (d, 3J = 9.1 Hz, 

1C, C(13)), 129.30 (C(2)), 128.89 (C(3a)), 122.65 (C(6)), 121.34 (C(4)), 120.45 (C(5)), 118.05 

(d, 2J = 22.3 Hz, 1C, C(10)), 114.03 (d, 2J = 22.4 Hz, 1C, C(12)), 110.77 (C(7)), 103.06 (C(3)), 

18.02 (d, 4J = 1.4 Hz, 1C, C(14)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3052 (w), 2922 (w), 2026 (w), 1891 (w), 1704 (w), 1612 (w), 

1591 (w), 1512 (m), 1499 (s), 1474 (m), 1457 (m), 1381 (w), 1331 (m), 1307 (m), 1286 (w), 

1268 (m), 1242 (m), 1220 (s), 1150 (m), 1135 (m),1112 (w), 1096 (m), 1060 (w), 1036 (w), 

1009 (m), 967 (m), 926 (m), 882 (m), 864 (m), 818 (m), 763 (m), 739 (s), 715 (m), 658 (m). 

MS (EI+, 70 eV): m/z (%) = 225.1 (51), 224.1 (100), 222.1 (25), 204.1 (19). 

HRMS (EI+, C15H12FN): calcd.: 225.0945; found: 225.0942 (M+). 

7-methyl-1-(naphthalen-1-yl)-1H-indole (31) 

 

To a sealable, N2 purged round bottom flask equipped with a magnetic stirring bar, 7-methyl-

1H-indole (2.00 g, 15.3 mmol, 1.0 equiv.), copper iodide (0.292 g, 1.52 mmol, 0.1 equiv.), 

anhydrous potassium phosphate (6.80 g, 32.0 mmol, 2.1 equiv.), and 1-bromonaphthalene 

(4.74 g, 22.9 mmol, 1.5 equiv.) were added. The flask was evacuated and refilled with N2 three 

times. Subsequently, cyclohexane-1,2-diamine (0.696 g, 6.10 mmol, 0.4 equiv.), and p-xylene 

(15.3 mL) were added. The mixture was heated to 160 °C and stirred for 1 day. After cooling 

to 22 °C the mixture was neutralized with aq. sat. ammonium chloride solution, filtered through 

celite, extracted with ethyl acetate and washed with brine. The combined organic phases were 

dried over sodium sulfate and the volatiles were removed in vacuo. Subsequent purification by 

flash column chromatography (silica, hexanes / ethyl acetate, 100 / 1, v / v) yielded 7-methyl-

1-(naphthalen-1-yl)-1H-indole 31 (1.12 g, 4.65 mmol, 31%) as white solid. 
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Rf = 0.18 (silica, hexanes / ethyl acetate, 100 / 1, v / v). 

m.p. (°C): 118. 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 8.01 (dd, 3J = 7.5 Hz, 4J = 1.9 Hz, 1H, H-C(13)), 

7.98 (d, 3J = 8.3 Hz, 1H, H-C(15)), 7.62 - 7.59 (m, 1H, H-C(12)), 7.60 - 7.57 (m, 1H, H-C(11)), 

7.59 - 7.56 (m, 1H, H-C(6)), 7.53 (ddd, 3J = 8.2 Hz, 3J = 7.0 Hz, 4J = 1.3 Hz, 1H, H-C(16)), 

7.39 (ddd, 3J = 8.3 Hz, 3J = 6.86 Hz, 4J = 1.2 Hz, 1H, H-C(17)), 7.22 (d, 3J = 3.2 Hz, 1H, H-

C(9)), 7.15 (d, 3J = 8.5 Hz, 1H, H-C(18), 7.05 (dd, 3J = 7.34 Hz, 3J = 7.15 Hz, 1H, H-C(5), 6.86 

(d, 3J = 7.15 Hz, 1H, H-C(4)), 6.72 (d, 3J = 3.23 Hz, 1H, H-C(8)), 1.67 (s, 3H, H-C(20)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 138.79 (C(10)), 137.35 (C(2)), 134.25 (C(14)), 

133.19 (C(19)), 131.48 (C(9)), 129.64 (C(7)), 129.33 (C(13)), 128.64 (C(15)), 127.81 (C(17)), 

127.21 (C(16)), 126.92 (C(11)), 125.58 (C(12)), 124.95 (C(4)), 123.50 (C(18)), 122.38 (C(3)), 

120.74 (C(5)), 119.49 (C(6)), 103.11 (C(8)), 18.62 (C(20)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3359 (w), 3050 (w), 2971 (w), 1700 (w), 1576 (m), 1517 (w), 

1505 (m), 1481 (m), 1451 (m), 1436 (m), 1421 (m), 1394 (m), 1382 (m), 1363 (w), 1340 (w), 

1321 (m), 1279 (m), 1243 (m), 1226 (m), 1214 (m), 1181 (m), 1157 (m), 1140 (m), 1097 (w), 

1072 (m), 1037 (m), 1014 (m), 951 (w), 933 (m), 880 (w), 866 (w), 852 (w), 843 (m), 814 (w), 

802 (s), 776 (s), 745 (s), 737 (m), 714 (s), 680 (m). 

MS (EI+, 70 eV): m/z (%) = 258.1 (21), 257.1 (100), 256.1 (65), 254.1 (19), 242.1 (18), 241.1 

(58), 127.6 (12), 127.1 (13), 120.5 (26). 

HRMS (EI+, C19H15N): calcd.: 257.1205; found: 257.1199 (M+). 
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3.3 Indoxyl acetate precursors - Oxidative acetoxylations 

Scheme 12 for the carbo acetylation reaction can be found in Section 2.2.7. 

1-(p-tolyl)-1H-indol-3-yl acetate (74) 

 

A flame-dried Schlenk flask was charged with N-(p-tolyl)indole (0.590 g, 2.85 mmol, 

1.0 equiv.), iodobenzene-I,I-diacetate (1.84 g, 5.70 mmol, 2.0 equiv.), palladium(II) acetate 

(0.032 g, 0.142 mmol, 0.05 equiv.) and potassium acetate (0.100 g, 2.85 mmol, 1.0 equiv.). 

After evacuating and refilling the flask with N2 three times, degassed acetonitrile (12 mL) was 

added under N2 atmosphere and the reaction mixture was stirred for 2 h at 70 °C. The reaction 

was stopped with an aq. sat. sodium bisulfite solution and water, filtered over celite, extracted 

with ethyl acetate and washed with brine. The combined organic layers were dried over sodium 

sulfate and evaporated to dryness in vacuo. Subsequently, the crude product was purified by 

flash column chromatography (silica, hexanes / ethyl acetate / triethylamine, 9.5 / 0.5 / 0.2, v / 

v / v). 1-(p-Tolyl)-1H-indol-3-yl acetate 74 (0.433 g, 1.63 mmol, 57%) was obtained as 

colorless oil. 

Rf = 0.40 (silica, hexanes / ethyl acetate / triethylamine, 9.5 / 0.5 / 0.2, v / v / v). 

1H-NMR (CD2Cl2, 600 MHz): δ (ppm) = 7.59 (dd, 3J = 7.9 Hz, 4J = 1.5 Hz, 1H, H-C(5)), 7.53 

(dd, 3J = 7.8 Hz, 1H, H-C(9)), 7.52 (s, 1H, H-C(2)), 7.41 (dd, 3J = 8.5 Hz, 2H, H-C(11)), 7.35 

(dd, 3J = 8.5 Hz, 2H, H-C(12)), 7.25 (ddd, 3J = 7.5 Hz, 4J = 1.3 Hz, 1H, H-C(7)), 7.18 (ddd, 3J 

= 7.5 Hz, 4J = 1.0 Hz, 1H, H-C(6)), 2.44 (s, 3H, H-C(14)), 2.38 (s, 3H, H-C(16)). 

13C-NMR (CD2Cl2, 151 MHz): δ (ppm) = 168.49 (C(15)), 136.74 (C(10)), 136.56 (C(13)), 

133.02 (C(9)), 131.19 (C(3)), 130.11 (C(12)), 124.21 (C(11)), 123.00 (C(7)), 121.17 (C(4)), 

120.14 (C(6)), 117.62 (C(5)), 117.18 (C(2)), 110.53 (C(8)), 20.72 (C(14)), 20.70 (C(16)). 
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MS (EI+, 70 eV): m/z (%) = 265.1 (18), 224.1 (16), 223.1 (100), 222.1 (14), 194.1 (14), 180.1 

(11), 43.1 (10). 

HRMS (EI+, C17H15NO2): calcd.: 265.1103; found: 265.1101 (M+). 

1-(o-tolyl)-1H-indol-3-yl acetate (68) 

 

A flame dried, N2-flushed Schlenk flask is charged with 1-(o-tolyl)-1H-indole 66 (0.162 g, 

0,782 mmol, 1.0 equiv.), iodobenzene-I,I-diacetate (0.503 g, 0.1.563 mmol, 2.0 equiv.), 

palladium(II) acetate (0.009 g, 5 mol%), potassium acetate (0.044 g, 0.782 mmol, 1.0 equiv.) 

and acetonitrile (1.8 mL, 0.43 M). The contents were stirred at 70 °C for 2 h. The reaction was 

stopped with an aq. sodium bisulfate solution (1 M), filtered through celite and extracted with 

ethyl acetate. The combined organic layers were dried over sodium sulfate. The mixture was 

filtrated and the solvents were removed in vacuo. Purification by flash column chromatography 

(silica, hexanes / ethyl acetate / triethylamine, 88 / 10 / 2, v / v / v) yielded 1-(o-tolyl)-1H-indol-

3-yl acetate 68 (0.071 g, 0.268 mmol, 34%) as colorless liquid. 

Rf = 0.42 (silica, hexanes / ethyl acetate / triethylamine, 88 / 10 / 2, v / v / v). 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.60 (d, 3J = 7.6 Hz, 1H, H-C(4)), 7.41 - 7.36 (m, 

3H, H-C(10, 12, 2)), 7.35 - 7.32 (m, 2H, H-C(11, 13)), 7.19 (ddd, 3J = 8.2 Hz, 3J = 7.0 Hz, 4J = 

1.4 Hz, 1H, H-C(6)), 7.16 (ddd, 3J = 7.4 Hz, 3J = 7.0 Hz, 4J = 1.1 Hz, 1H, H-C(5)), 7.01 (d, 3J 

= 8.2 Hz, 1H, H-C(7)), 2.37 (s, 3H, H-C(16)), 2.08 (s, 3H, H-C(14)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 169.01 (C(15)), 138.26 (C(9)), 136.51 (C(8)), 

134.62 (C(7a)), 131.77 (C(10)), 131.20 (C(3)), 128.91 (C(12)), 128.72 (C(13)), 127.34 (C(11)), 

123.40 (C(6)), 120.84 (C(3a)), 120.40 (C(5)), 118.49 (C(2)), 118.08 (C(4)), 111.13 (C(7)), 

21.32 (C(16)), 17.92 (C(14)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3055 (w), 2925 (w), 1968 (w), 1745 (m), 1614 (w), 1603 (w), 

1582 (w), 1548 (w), 1498 (m), 1461 (m), 1364 (s), 1311 (m), 1235 (m), 1203 (s), 1162 (m), 
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1124 (m), 1124 (m), 1076 (m), 1042 (m),1008 (m), 938 (m), 892 (m), 844 (w), 774 (m), 737 

(s), 720 (s), 688 (m). 

MS (EI+, 70 eV): m/z (%) = 265.1 (15), 224.1 (15), 223.1 (100), 209.1 (10), 204.1 (14), 194.1 

(26), 179.3 (18), 164.5 (11), 151.7 (10), 91.0 (13), 77.0 (17), 65.0 (14), 57.0 (26), 55.0 (15), 

43.5 (36), 42.5 (18), 40.1 (13). 

HRMS (EI+, C17H15NO2): calcd.: 265.1103; found: 265.1109 (M+). 

1-(4-methoxy-2-methylphenyl)-1H-indol-3-yl acetate (75) 

 

A flame dried, N2-flushed Schlenk flask is charged with 1-(4-methoxy-2-methylphenyl)-1H-

indole 114 (0.050 g, 0.211 mmol, 1.0 equiv.), iodobenzene-I,I-diacetate (0.136 g, 0.421 mmol, 

2.0 equiv.), palladium(II) acetate (0.002 g, 5 mol%), potassium acetate (0.012 g, 0.211 mmol, 

1.0 equiv.) and acetonitrile (0.6 mL, 0.35 M). The contents were stirred at 70 °C for 2 h. The 

reaction was stopped with an aq. sodium bisulfate solution (1 M), filtered through celite and 

extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate. The 

mixture was filtrated and the solvents were removed in vacuo. Purification by flash column 

chromatography (silica, hexanes / ethyl acetate / triethylamine, 88 / 10 / 2, v / v / v) yielded 1-

(4-methoxy-2-methylphenyl)-1H-indol-3-yl acetate 75 (0.023 g, 0.078 mmol, 37%) as 

colorless liquid. 

Rf = 0.35 (silica, hexanes / ethyl acetate / triethylamine, 88 / 10 / 2, v / v / v)). 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.58 (dd, 3J = 7.5 Hz, 4J = 1.6 Hz, 1H, H-C(4)), 7.32 

(s, 1H, H-C(2)), 7.24 (d, 3J = 8.6 Hz, 1H, H-C(13)), 7.21 - 7.11 (m, 2H, H-C(6, 5)), 6.99 - 6.95 

(m, 1H, H-C(7)), 6.91 (d, 3J = 2.8 Hz, 1H, H-C(10)), 6.85 (dd, 3J = 8.6 Hz, 4J = 2.9 Hz, 1H, H-

C(12)), 3.86 (s, 3H, H-C(15)), 2.36 (s, 3H, H-C(17)), 2.01 (s, 3H, H-C(14)). 
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13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 169.04 (C(16)), 159.99 (C(11)), 138.09 (C(9)), 

135.00 (C(7)), 131.09 (C(8)), 130.93 (C(3)), 129.80 (C(13)), 123.28 (C(6)), 120.71 (C(3a)), 

120.27 (C(5)), 118.79 (C(2)), 118.00 (C(4)), 116.58 (C(10)), 112.40 (C(12)), 111.07 (C(7)), 

56.02 (C(15)), 21.31 (C(17)), 18.04 (C(14)). 

IR (Diamond ATR): 𝜈 (cm-1) = 2919 (w), 2849 (w), 2090 (w), 1745 (m), 1609 (m), 1579 (w), 

1548 (w), 1505 (s), 1458 (m), 1366 (m), 1296 (m), 1283 (m), 1246 (m), 1200 (s), 1159 (m), 

1122 (m), 1072 (m), 1040 (m), 1008 (m), 950 (m), 891 (m), 848 (m), 805 (m), 766 (m), 738 (s), 

677 (m). 

MS (EI+, 70 eV): m/z (%) = 295.1 (6), 254.1 (16), 253.1 (100), 252.1 (35), 238.1 (14), 224.1 

(30), 210.1 (13), 180.1 (14), 122.1 (29). 

HRMS (EI+, C18H17NO3): calcd.: 295.1208; found: 295.1200 (M+). 

1-(4-fluoro-2-methylphenyl)-1H-indol-3-yl acetate (77) 

 

A flame dried, N2-flushed Schlenk flask is charged with 1-(4-fluoro-2-methylphenyl)-1H-

indole 115 (0.100 g, 0.444 mmol, 1.0 equiv.), iodobenzene-I,I-diacetate (0.286 g, 0.888 mmol, 

2.0 equiv.), palladium(II) acetate (0.002 g, 2 mol%) and potassium acetate (0.025 g, 

0.444 mmol, 1.0 equiv.) and acetonitrile (1.2 mL, 0.37 M). The contents were stirred at 70 °C 

for 2 h. The reaction was stopped with an aq. sodium bisulfate solution (1 M), filtered through 

celite and extracted with ethyl acetate. The combined organic layers were dried over sodium 

sulfate. The mixture was filtrated and the solvents were removed in vacuo. Purification by flash 

column chromatography (silica, hexanes / ethyl acetate / triethylamine, 97 / 1 / 2, v / v / v) 

yielded 1-(4-fluoro-2-methylphenyl)-1H-indol-3-yl acetate 77 (0.063 g, 0.222 mmol, 50%) as 

colorless liquid. 

Rf = 0.23 (silica, hexanes / ethyl acetate / triethylamine, 97 / 1 / 2, v / v / v). 
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1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.60 (dd, 3J = 8.0 Hz, 4J = 1.6 Hz, 1H, H-C(4)), 7.34 

(s, 1H, H-C(2)), 7.31 (dd, 3J = 8.6 Hz, 4J = 5.4 Hz, 1H, H-C(13)), 7.23 - 7.13 (m, 2H, H-C(13, 

6)), 7.11 (dd, 3J = 9.4 Hz, 4J = 2.9 Hz, 1H, H-C(10)), 7.03 (dd, 3J = 8.1 Hz, 4J = 3.0 Hz, 1H, H-

C(12)), 6.97 (dd, 3J = 7.7 Hz, 4J = 1.6 Hz, 1H, H-C(7)), 2.37 (s, 3H, H-C(16)), 2.04 (s, 3H, H-

C(14)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 168.98 (C(15)), 162.68 (d, 1J = 246.7 Hz, 1C, 

C(11)), 139.35 (d, 3J = 9.0 Hz, 1C, C(9)), 134.81 (C(7a)), 134.34 (d, 4J = 3.0 Hz, 1C, C(8)), 

131.31 (C(3)), 130.49 (d, 3J = 9.2 Hz, 1C, C(13)), 123.55 (C(6)), 120.86 (C(3a)), 120.52 (C(5)), 

118.46 (C(2)), 118.14 (C(4)), 118.10 (d, 2J = 22.4 Hz, 1C, C(10)), 114.09 (d, 2J = 22.4 Hz) 

(C(12)), 110.93 (C(7)), 21.32 (C(16)), 18.02 (d, 4J = 1.3 Hz, 1C, C(14)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3057 (w), 2925 (w), 2852 (w), 1929 (w), 1746 (m), 1613 (w), 

1549 (w), 1501 (s), 1458 (m), 1367 (m), 1312 (m), 1266 (m), 1234 (m), 1198 (s), 1150 (m), 

1125 (m), 1100 (m), 1076 (m), 1041 (w), 1008 (m), 960 (m), 918 (w), 891 (m), 864 (m), 820 

(m), 806 (m), 766 (w), 738 (s), 677 (m). 

MS (EI+, 70 eV): m/z (%) = 283.1 (10), 242.1 (16), 241.1 (100), 240.1 (46), 212.1 (40), 198.1 

(12), 196.1 (10). 

HRMS (EI+, C17H14FNO2): calcd.: 283.1009; found: 283.1001 (M+). 

7-Methyl-1-(o-tolyl)-1H-indol-3-yl acetate (19) 

 

To a flame dried Schlenk flask, equipped with a magnetic stirring bar, 7-methyl-1-(o-tolyl)-1H-

indole 17 (0.651 g, 2.94 mmol, 1.0 equiv.), iodobenzene-I,I-diacetate (1.90 g, 5.88 mmol, 

2.0 equiv.), palladium(II) acetate (0.033 g, 0.147 mmol, 0.05 equiv.), and potassium acetate 

(2.94 g, 0.289 mmol, 1.0 equiv.) were added and the Schlenk flask was evacuated and refilled 

with N2 for three times. Then, acetonitrile (6.0 mL, 0.5 M, degassed with N2) was added and the 

mixture was stirred at 70 °C for 2 h. The mixture was treated with aq. sat. sodium bisulfite 
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solution, filtered through celite, extracted with ethyl acetate and washed with brine. The 

combined organic phases were dried over sodium sulfate and the volatiles were removed in 

vacuo. Subsequent purification by flash column chromatography (silica, hexanes / ethyl acetate 

/ triethyl amine, 9.5 / 0.5 / 0.2, v / v / v) yielded 7-methyl-1-(o-tolyl)-1H-indol-3-yl acetate 19 

(0.735 g, 2.63 mmol, 90%) as clear, colorless oil, which was stored under N2 atmosphere.  

Rf = 0.50 (silica, hexanes / ethyl acetate / triethyl amine, 9.5 / 0.5 / 0.2, v / v / v). 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.43 (d, 3J = 7.9 Hz, 1H , H-C(6)), 7.38 (dd, 3J = 

7.4Hz, 3J = 7.4 Hz, 1H, H-C(13)), 7.37 (d, 3J = 7.4 Hz, 1H, H-C(15)), 7.31 (d, 3J = 7.5 Hz, 1H, 

H-C(12)), 7.28 (dd, 3J = 7.5 Hz, 3J = 7.5 Hz, 1H, H-C(14)), 7.22 (s, 1H, H-C(9)), 7.03 (dd, 3J 

= 7.1 Hz, 3J = 7.1 Hz, 1H, H-C(5)), 6.92 (d, 3J = 7.1 Hz, 1H, H-C(4)), 2.35 (s, 3H, H-C(19)), 

1.96 (s, 3H, H-C(16)), 1.86 (s, 3H, H-C(17)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 168.99 (C(18)), 140.63 (C(10)), 137.04 (C(11)), 

138.04 (C(2)), 133.21 (C(8)), 131.03 (C(12)), 130.72 (C(15)), 129.31 (C(13)), 126.71 (C(14)), 

125.61 (C(4)), 122.49 (C(3)), 121.43 (C(7)), 120.50 (C(5)), 119.17 (C(9)), 115.95 (C(6)), 21.32 

(C(19)), 18.48 (C(17)), 17.42 (C(16)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3157 (w), 3051 (w), 2953 (w), 2924 (w), 2860 (w), 2086 (w), 

1908 (w), 1766 (s), 1747 (s), 1604 (w), 1582 (w), 1555 (w), 1497 (s), 1457 (m), 1417 (m), 1361 

(s), 1290 (m), 1242 (m), 1205 (s), 1156 (s), 1128 (s), 1108 (m), 1073 (s), 1042 (m), 1019 (m), 

1002 (m), 953 (w), 918 (m), 878 (m), 811 (w), 775 (s), 763 (s), 740 (s), 724 (s), 694 (m), 670 

(m). 

MS (EI+, 70 eV): m/z (%) = 279.1 (24), 238.1 (15), 237.1 (100), 236.1 (15), 222 (13), 91.1 

(11), 42.9 (17). 

HRMS (EI+, C18H17NO2): calcd.: 279.1259; found: 279.1256 (M+). 

EA (C18H17NO2): calcd.: N, 5.01; C, 77.40; H, 6.13; found: N, 4.88; C, 77.31; H, 6.26. 
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7-methyl-1-(naphthalen-1-yl)-1H-indol-3-yl acetate (32) 

 

To a flame dried Schlenk flask, equipped with a magnetic stirring bar, 7-methyl-1-(naphthalen-

1-yl)-1H-indole 31 (0.500 g, 1.94 mmol, 1.0 equiv.), iodobenzene-I,I-diacetate (1.25 g, 

3.89 mmol, 2.0 equiv.), palladium(II) acetate (0.022 g, 0.097 mmol, 0.05 equiv.), and 

potassium acetate (0.191 g, 1.94 mmol, 1.0 equiv.) were added and the Schlenk flask was 

evacuated and refilled with N2 for three times. Then, acetonitrile (6.0 mL, 0.5 M, degassed with 

N2) was added and the mixture was stirred at 75 °C for 2 h. The mixture was treated with aq. 

sat. sodium bisulfite solution, filtered through celite, extracted with ethyl acetate and washed 

with brine. The combined organic phases were dried over sodium sulfate and the volatiles were 

removed in vacuo. Subsequent purification by flash column chromatography (silica, hexanes / 

ethyl acetate / triethyl amine, 9.5 / 0.5 / 0.2, v / v / v) yielded 7-methyl-1-(naphthalen-1-yl)-1H-

indol-3-yl acetate 32 (0.297 g, 0.94 mmol, 49%) as clear colorless oil, which was stored under 

N2 atmosphere and crystallizes to an off-white powder over time. 

Rf = 0.36 (silica, hexanes / ethyl acetate / triethyl amine, 9.5 / 0.5 / 0.2, v / v / v). 

m.p. (°C): 116 - 117. 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 8.01 (d, 3J = 8.1 Hz, 1H, H-C(13)), 7.97 (d, 3J = 

8.4 Hz, 1H, H-C(15)), 7.64 - 7.58 (m, 1H, H-C(11)), 7.60 - 7.56 (m, 1H, H-C(12)), 7.54 (ddd, 

3J = 8.1 Hz, 3J = 6.9 Hz, 4J = 1.3 Hz, 1H, H-C(16)), 7.50 (d, 3J = 8.0 Hz, 1H, H-C(6)), 7.41 

(ddd, 3J = 8.3 Hz, 3J = 7.0 Hz, 4J = 1.2 Hz, 1H, H-C(17)), 7.39 (s, 1H, H-C(9)), 7.20 (d, 3J = 

8.49 Hz, 1H, H-C(18)), 7.08 (dd, 3J = 7.60 Hz, 3J = 7.19 Hz, 1H, H-C(5)), 6.90 (d, 3J = 7.2 Hz, 

1H, H-C(4)), 2.37 (s, 3H, H-C(22)), 1.66 (s, 3H, H-C(20)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 169.02 (C(21)), 138.22 (C(10)), 134.46 (C(2)), 

134.27 (C(14)), 133.11 (C(19)), 131.29 (C(8)), 129.52 (C(13)), 128.69 (C(15)), 127.92 (C(17)), 
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127.25 (C(16)), 127.18 (C(11)), 125.80 (C(4)), 125.57 (C(12)), 123.37 (C(18)), 122.71 (C(3)), 

121.67 (C(7)), 120.79 (C(5)), 120.56 (C(9)), 116.09 (C(6)), 21.34 (C(22)), 18.56 (C(20)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3050 (w), 2953 (w), 2923 (w), 1907 (w), 1764 (s), 1745 (s), 

1616 (w), 1596 (m), 1575 (w), 1558 (w), 1521 (w), 1508 (m), 1496 (w), 1466 (m), 1454 (m), 

1436 (m), 1421 (s), 1396 (m), 1365 (s), 1342 (m), 1285 (m), 1241 (m), 1201 (s), 1154 (s), 1131 

(s), 1070 (m), 1046 (m), 1016 (s), 999 (m), 955 (w), 940 (w), 913 (m), 878 (m), 822 (w), 802 

(s), 791 (m), 771 (s), 739 (s), 701 (w), 684 (w), 675 (w). 

MS (EI+, 70 eV): m/z (%) = 315.1 (28), 274.1 (22), 273.1 (100), 272.1 (17), 244.1 (34), 128.1 

(16), 127.1 (12), 43.0 (11). 

HRMS (EI+, C21H17NO2): calcd.: 315.1259; found: 315.1255 (M+). 
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3.4 Aldehyde precursors - SN2 reactions 

Scheme 42 for SN2 reactions with phenolic alcohols can be found in Section 2.6.1. 

4-(3-(dimethylamino)propoxy)-3,5-dimethylbenzaldehyde (92) 

 

To a round bottom flask, equipped with a magnetic stirring bar, 4-hydroxy-3,5-

dimethylbenzaldehyde (0.500 g, 3.33 mmol, 1.0 equiv.), 3-chloro-N,N-dimethylpropan-1-

amine (0.607 g, 4.99 mmol, 1.5 equiv.), potassium carbonate (1.38 g, 9.99 mmol, 3.0 equiv.), 

and dimethylformamide (3.3 mL, 1 M) were added. The mixture was heated to 120 °C for 

40 min and cooled to 23 °C. Afterwards, the mixture was filtered through celite, extracted with 

ethyl acetate and washed with brine. The combined organic phases were dried over sodium 

sulfate and the volatiles were removed in vacuo. This yielded 4-(3-(dimethylamino)propoxy)-

3,5-dimethylbenzaldehyde 92 (0.691 g, 2.94 mmol, 88%) as clear colorless oil. 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 9.84 (s, 1H, H-C(1)), 7.53 (s, 2H, H-C(4)), 3.86 (t, 

3J = 6.4 Hz, 2H, H-C(8)), 2.46 (t, 3J = 7.1, 2H, H-C(10)), 2.33 (s, 6H, H-C(7)), 2.21 (s, 6H, H-

C(11)), 1.95 (d, 3J = 6.6 Hz, 2H, H-C(9)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 192.01 (C(2)), 162.03 (C(6)), 132.66 (2C, C(5)), 

132.71 (C(3)), 130.95 (2C, C(4)), 71.03 (C(8)), 56.55 (C(10)), 45.74 (2C, C(11)), 28.98 (C(9)), 

16.65 (2C, C(7)). 

MS (EI+, 70 eV): m/z (%) = 235.2 (4), 58.0 (100), 43.0 (45). 

HRMS (EI+, C14H21NO2): calcd.: 235.1572; found: 235.1572 (M+).  
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3,5-bis(3-(dimethylamino)propoxy)benzaldehyde 96 

 

To a round bottom flask, equipped with a magnetic stirring bar, 3,5-dihydroxybenzaldehyde 

(0.300 g, 2.17 mmol, 1.0 equiv.), 3-chloro-N,N-dimethylpropan-1-amine (0.792 g, 6.52 mmol, 

3.0 equiv.), potassium carbonate (1.80 g, 13.0 mmol, 6.0 equiv.), and dimethylformamide 

(4.5 mL, 0.5 M) were added. The mixture was heated to 120 °C for 1 h and cooled to 23 °C. 

Afterwards, the mixture was filtered through celite, extracted with ethyl acetate and washed 

with brine. The combined organic phases were dried over sodium sulfate and the volatiles were 

removed in vacuo. Subsequent purification by flash column chromatography (silica, 

dichloromethane / methanol / triethyl amine, 69 / 29 / 2, v / v / v) yielded 3,5-bis(3-

(dimethylamino)propoxy)benzaldehyde 96 (0.492 g, 1.60 mmol, 73%) as clear colorless oil. 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 9.88 (s, 1H, H-C(1)), 6.99 (d, 3J = 2.3 Hz, 2H, H-

C(4)), 6.72 (t, 3J = 2.3 Hz, 1H, H-C(6)), 4.05 (t, 3J = 6.4 Hz, 4H, H-C(7)), 2.47 (t, 3J = 7.2 Hz, 

4H, H-C(9)), 2.24 (s, 12H, H-C(10)), 1.95 (quin, 3J = 6.6 Hz, 4H, H-C(8)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 192.36 (C(2)), 161.30 (2C, C(5)), 139.04 (C(3)), 

108.30 (C(6)), 108.05 (2C, C(4)), 67.17 (2C, C(7)), 56.44 (2C, C(9)), 45.50 (4C, C(10)), 27.66 

(2C, C(8)). 

MS (EI+, 70 eV): m/z (%) = 263.2, (11), 86.1 (11), 85.1 (11), 84.1 (27), 59.1 (10). 58.1 (100), 

42.9 (13), 41.9 (13). 

HRMS (EI+, C17H28N2O3): calcd.: 308.2100; found: 308.2101 (M+). 
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3.5 Condensation reactions of indoxyl acetates with aromatic 
aldehydes 

Scheme 5 for the condensation reaction of indoxyl acetates with aldehydes can be found in 

Scheme 2.2.1. 

(Z)-2-(4-methoxybenzylidene)indolin-3-one (9) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (11.0 mL, 16.4 mmol, 1.5 M, 8.2 equiv., degassed with nitrogen) 

and 1H-indol-3-yl acetate (0.35 g, 2.00 mmol, 1.0 equiv.) were added and heated to 100 °C for 

10 min. Then, 4-methoxybenzaldehyde (0.27 g, 2.00 mmol, 1.0 equiv.) in methanol (0.29 mL, 

6.9 M, degassed) was added to the solution at 0 °C and stirred for 18 h from 0 °C to 23 °C. 

Filtration of the mixture and subsequent purification by flash column chromatography (silica, 

hexanes / ethyl acetate, 8 / 2, v / v) and recrystallization from ethanol / water yielded (Z)-2-(4-

methoxybenzylidene)indolin-3-one 9 (0.364 g, 1.45 mmol, 72%) as orange crystals. 

Rf = 0.25 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

m.p. (°C): 186 - 187. 

1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.75 (d, 3J = 7.9 Hz, 1H, H-C(6)), 7.53 - 7.49 (m, 2H, 

H-C(12), 7.46 (ddd, 3J = 8.3 Hz, 3J = 7.4 Hz, 4J = 1.32 Hz, 1H, H-C(4)), 7.01 (dd, 3J = 8.20 Hz, 

4J = 0.76 Hz, 1H, H-C(3)), 6.99 - 6.93 (m, 3H, H-C(13), H-C(5)), 6.86 (s, 1H, H-C(10)), 6.81 

(s, 1H, H-N(1)), 3.85 (1s, 3H, H-C(15)). 

13C-NMR (101 MHz, CDCl3): δ (ppm) = 186.54 (C(8)), 160.08 (C(14)), 153.18 (C(2)), 135.97 

(C(4)), 134.42 (C(9)), 131.35 (2C, C(12)), 127.42 (C(11)), 125.06 (C(6)), 122.21 (C(7)), 120.70 

(C(5)), 114.94 (2C, C(13)), 112.34 (C(3)), 112.20 (C(10)), 55.55 (C(15)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3325 (m), 2988 (w), 2974 (w), 2931 (w), 2851 (w), 2836 (w), 

2568 (w), 2349 (w), 2293 (w), 2107 (w), 2005 (w), 1960 (w), 1928 (w), 1894 (w), 1806 (w), 
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1760 (w), 1683 (m), 1619 (s), 1605 (s), 1581 (s), 1569 (s), 1511 (m), 1483 (m), 1461 (m), 1437 

(w), 1427 (s), 1382 (s), 1317 (s), 1309 (s), 1297 (s), 1250 (s), 1193 (m), 1178 (s), 1159 (s), 1135 

(s), 1115 (s), 1095 (s), 1027 (s), 1010 (m), 982 (w), 967 (m), 950 (m), 924 (w), 889 (m), 881 

(s), 861 (m), 858 (m), 823 (s), 797 (s), 747 (s), 719 (m), 707 (s), 687 (s), 

MS (EI+, 70 eV): m/z (%) = 252.1 (18), 251.1 (100), 250.1 (64), 236.1 (41), 220.1 (23), 208.1 

(18). 

HRMS (EI+, C16H13NO2): calcd.: 251.0946; found: 251.0941 (M+). 

EA (C16H13NO2): calcd.: N, 5.57; C, 76.48; H 5.21; found: N, 5.50; C, 76.54; H 5.43. 

(Z)-2-(4-(dimethylamino)benzylidene)indolin-3-one (11) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (3.74 g, 93.6 mmol, 1.5 M, 8.2 equiv.) degassed with nitrogen 

and 1H-indol-3-yl acetate (2.00 g, 11.4 mmol, 1.0 equiv.) were added and heated to 100 °C for 

15 min. Then, 4-(dimethylamino)benzaldehyde (1.70 g, 11.42 mmol, 1.0 equiv.) suspended in 

methanol (11.4 mL, 1 M, degassed) was added to the solution at 0 °C and stirred for 3 d at 23 °C. 

The mixture was neutralized with 1 M aq. hydrochloric acid and extracted with ethyl acetate. 

The combined organic layers were dried over sodium sulfate and the solvents were removed in 

vacuo. Subsequent purification by flash column chromatography (silica, hexanes / ethyl acetate, 

1 / 1, v / v) and recrystallization from ethanol / water yielded (Z)-2-(4-(dimethylamino)-

benzylidene)indolin-3-one 11 (2.47 g, 9.36 mmol, 82%) as deep violet crystals. 

Rf = 0.30 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

m.p. (°C): 235 - 236 (decomposition). 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.68 (d, 3J = 7.7 Hz, 1H, H-C(6)), 7.51 - 7.47 (m, 

2H, H-C(12)), 7.5 (ddd, 3J = 8.4 Hz, 3J = 7.3 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 7.06 (d, 3J = 8.1 Hz, 

1H, H-C(3)), 6.96 (ddd, 3J = 8.0 Hz, 3J = 7.34 Hz, 4J = 0.9 Hz, 1H, H-C(5)), 6.99 (s, br, 1H, H-

N(1)), 6.81 (s, 1H, H-C(10)), 6.79 - 6.74 (m, 2H, H-C(13)), 3.03 (s, 6H, H-C(15)). 
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13C-NMR (400 MHz, CD2Cl2): δ (ppm) = 186.07 (C(8)), 153.22 (C(2)), 151.16 (C(14)), 

135.74 (C(4)), 133.43 (C(9)), 131.90 (2C, C(12)), 124.78 (C(6)), 122.86 (C(7)), 122.54 (C(11)), 

120.69 (C(5)), 114.05 (C(10)), 112.86 (2C, C(13)), 112.71 (C(3)), 40.48 (2C, C(15)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3227 (m), 3085 (w), 2919 (m), 2854 (m), 2817 (w), 2652 (w), 

2551 (w), 2124 (w), 1997 (w), 1954 (w), 1922 (w), 1893 (w), 1656 (s), 1603 (s), 1548 (s), 1539 

(s), 1524 (s), 1487 (s), 1462 (s), 1436 (m), 1392 (m), 1369 (s), 1319 (s), 1302 (m), 1262 (m), 

1239 (m), 1230 (m), 1186 (s), 1157 (s), 1123 (s), 1097 (s), 1064 (s), 1011 (m), 965 (m), 947 

(m), 932 (m), 893 (s), 857 (m), 828 (m), 807 (s), 790 (m), 781 (m), 753 (s), 727 (m), 707 (s), 

687 (s). 

MS (EI+, 70 eV): m/z (%) = 265.1 (19), 264.1 (100), 247.1 (14), 220.1 (21), 132.1 (9). 

HRMS (EI+, C17H16N2O): calcd.: 264.1263; found: 264.1256 (M+). 

EA (C17H16N2O): calcd.: N, 10.60; C, 77.25, H, 6.10; found: N, 10.38; C, 77.14, H 6.20. 

(Z)-2-((2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)indolin-3-one 

(15) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (0.41 g, 10.3 mmol, 1.5 M, 8.2 equiv.) degassed with nitrogen 

and 1H-indol-3-yl acetate (0.22 g, 1.26 mmol, 1.0 equiv.) were added and heated to 100 °C for 

15 min. Then, 2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinoline-9-carbaldehyde (0.25 g, 

1.26 mmol, 1.0 equiv.) suspended in methanol (4.2 mL, 0.3 M, degassed) was added to the 

solution at 0 °C and stirred for 3 d at 23 °C. The mixture was neutralized with 1 M aq. 

hydrochloric acid and extracted with ethyl acetate. The combined organic layers were dried 

over sodium sulfate and the solvents were removed in vacuo. Subsequent purification by flash 

column chromatography (silica, hexanes / ethyl acetate, 1 / 1, v / v) and recrystallization from 

ethanol / water yielded (Z)-2-(4-(dimethylamino)benzylidene)indolin-3-one 15 (0.28 g, 

0.87 mmol, 69%) as deep red / green dichroic crystals. 
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Rf = 0.14 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

m.p. (°C): 211- 212. 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.67 (d, 3J = 7.7 Hz, 1H, H-C(6)), 7.45 (ddd, 3J = 

8.2 Hz, 3J = 7.2 Hz, 4J = 1.1 Hz, 1H, H-C(4)), 7.07 (d, 3J = 8.2 Hz, 1H, H-C(3)), 7.03 (s, 2H, 

H-C(12)), 6.94 (dd, 3J = 7.5 Hz, 3J = 7.4 Hz, 1H, H-C(5)), 6.82 (s, br, 1H, H-N(1)), 6.72 (s, 1H, 

H-C(10)), 3.26 - 3.24 (m, 4H, H-C(15)), 2.77 (t, 4H, H-C(17)), 1.99 - 1.95 (m, 4H, H-C(16)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 185.86 (C(8)), 153.07 (C(2)), 144.54 (C(14)), 

135.58 (C(4)), 132.94 (C(9)), 129.86 (2C, C(12)), 124.81 (C(6)), 123.17 (C(7)), 122.40 (2C, 

C(13)), 121.56 (C(11)), 120.68 (C(5)), 115.21 (C(10)), 112.83 (C(3)), 50.64 (2C, C(15)), 28.51 

(2C, C(17)), 22.38 (2C, C(16)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3230 (s), 2964 (w), 2942 (w), 2922 (m), 2836 (w), 2634 (w), 

2128 (w), 1933 (w), 1906 (w), 1670 (m), 1621 (s), 1606 (s), 1569 (s), 1577 (s), 1516 (m), 1502 

(s), 1486 (s), 1463 (s), 1443 (m), 1411 (m), 1391 (m), 1368 (s), 1338 (w), 1327 (m), 1313 (s), 

1301 (s), 1278 (s), 1266 (s), 1213 (m), 1195 (m), 1181 (s), 1170 (s), 1150 (s), 1129 (s), 1097 

(s), 1074 (s), 1050 (s), 1031 (m), 1012 (m), 1000 (s), 949 (m), 907 (s), 898 (s), 876 (s), 862 (s), 

852 (m), 796 (m), 780 (m), 744 (s), 720 (m), 696 (s), 658 (s). 

MS (EI+, 70 eV): m/z (%) = 317.2 (19), 316.2 (100), 315.2 (19). 

HRMS (EI+, C21H20N2O): calcd.: 316.1576; found: 316.1571. 

EA (C21H20N2O): calcd.: N, 8.85; C, 79.72, H, 6.37; found: N, 8.76; C, 79.72; H, 6.58.  
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(Z)-7-methyl-2-(4-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)benzylidene)-

1-(o-tolyl)indolin-3-one (25) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (1.7 mL, 2.6 mmol, 1.5 M, 8.2 equiv.) degassed with nitrogen 

and 7-methyl-1-(o-tolyl)-1H-indol-3-yl acetate 19 (0.087 g, 0.31 mmol, 1.0 equiv.) were added 

and heated to 100 °C for 15 min and subsequently cooled to 23 °C. Then, 4-(2,3,6,7-tetrahydro-

1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)benzaldehyde 24 (0.086 g, 0.31 mmol, 1.0 equiv.) and 

dioxane (0.3 mL, 0.3 M, degassed) were added to the solution and it was stirred for 18 h at 

23 °C. The mixture was neutralized with 1 M aq. hydrochloric acid, filtered through celite and 

extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate and 

the solvents were removed in vacuo. Subsequent purification by flash column chromatography 

(aluminium(III) oxide, Brockmann III, 6% water, w / w, hexanes / ethyl acetate, 9 / 1, v / v) 

yielded crude (Z)-7-methyl-2-(4-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)ben-

zylidene)1-(o-tolyl)indolin-3-one 25 (0.030 g, 0.060 mmol, 19%) as orange solid. Purification 

via HPLC was omitted as the compound did not show sufficient red-shift of its absorption. 

MS (EI+, 70 eV): m/z (%) = 498.3 (16), 497.3 (41), 496.3 (100), 495.3 (14), 263.2 (11), 262.2 

(63), 223.1 (14). 

HRMS (EI+, C21H20N2O): calcd.: 496.2515; found: 496.2508. 
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(Z)-2-(naphthalen-1-ylmethylene)indolin-3-one (50) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (15.6 mL, 23.4 mmol, 1.5 M, 8.2 equiv., degassed with nitrogen) 

and 1H-indol-3-yl acetate (0.50 g, 2.85 mmol, 1.0 equiv.) were added and heated to 100 °C for 

10 min. Then, 1-naphthaldehyde (0.45 g, 2.85 mmol, 1.0 equiv.) in methanol (0.41 mL, 6.9 M, 

degassed) was added to the solution at 0 °C and stirred for 3 h from 0 °C to 23 °C. The mixture 

was neutralized with 1 M aq. hydrochloric acid and extracted with ethyl acetate. The combined 

organic layers were dried over sodium sulfate and the solvents were removed in vacuo. 

Subsequent purification by flash column chromatography (silica, hexanes / ethyl acetate, 8 / 2, 

v / v) and recrystallization from ethanol / water yielded (Z)-2-(naphthalen-1-

ylmethylene)indolin-3-one 50 (0.275 g, 0.101 mmol, 36%) as orange crystals. 

Rf = 0.42, (silica, hexanes / ethyl acetate, 8 / 2, v / v). 

m.p. (°C): 215 (decomposition). 

1H-NMR (800 MHz, CDCl3): δ (ppm) = 8.15 (d, 3J = 8.3 Hz, 1H, H-C(19)), 7.89 (dd, 3J = 

7.7 Hz, 4J = 1.6 Hz, 1H, H-C(16)), 7.86 (d, 3J = 8.2 Hz, 1H, H-C(14)), 7.78 (d, 3J = 7.7 Hz, 1H, 

H-C(6), 7.74 (d, 3J = 7.0 Hz, 1H, H-C(12)), 7.58 - 7.54 (m, 3H, H-C(18, 13, 17)), 7.47 (s, 1H, 

H-C(10)), 7.46 (ddd, 3J = 8.2 Hz, 3J = 7.3 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 6.96 (ddd, 3J = 7.7 Hz, 

3J = 7.1 Hz, 4J = 0.6 Hz, 1H, H-C(5)), 6.92 (d, 3J = 8.0 Hz,1 H, H-C(3)), 6.81 (s, 1H, H-N(1)). 

13C-NMR (201 MHz, CDCl3): δ (ppm) = 186.15 (C(8)), 153.21 (C(7)), 136.91 (C(9)), 136.37 

(C(4)), 134.04 (C(15)), 132.05 (C(20)), 131.87 (C(11)), 129.26 (C(14)), 128.88 (C(16)), 126.99 

(C(18)), 126.97 (C(12)), 126.66 (C(17)), 125.62 (C(13)), 125.31 (C(6)), 124.57 (C(19)), 121.98 

(C(2)), 120.58 (C(5)), 111.81 (C(3)), 108.50 (C(10)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3350 (m), 3042 (w), 2921 (w), 1912 (w), 1688 (s), 1628 (s), 

1591 (s), 1506 (m), 1489 (s), 1470 (s), 1405 (m), 1379 (s), 1366 (s), 1337 (s), 1314 (s), 1294 

(s), 1252 (s), 1212 (w), 1198 (s), 1157 (s), 1135 (s), 1095 (s), 1021 (w), 957 (w), 889 (w), 873 

(w), 849 (w), 837 (w), 812 (w), 788 (s), 763 (s), 743 (s), 699 (s), 678 (m), 655 (m). 
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MS (EI+, 70 eV): m/z (%) = 272.1 (19), 271.1 (82), 270.1 (100), 254.1 (13), 241.1 (19), 44.1 

(12), 41.3 (15). 

HRMS (EI-, C19H13NO): calcd.: 271.0997; found: 270.0914 (M−H+). 

EA (C19H13NO,): calcd.: C, 84.11; H, 4.83; N, 5.16; found: C, 84.28; N, 5.16; H 4.86. 

(Z)-2-(anthracen-9-ylmethylene)indolin-3-one (51) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (63.0 mL, 93.6 mmol, 1.5 M, 8.2 equiv., degassed with nitrogen) 

and 1H-indol-3-yl acetate (2.00 g, 11.4 mmol, 1.0 equiv.) were added and heated to 100 °C for 

10 min. Then, 9-anthracenecarboxaldehyde (2.35 g, 11.4 mmol, 1.0 equiv.) in methanol 

(12 mL, 1.0 M, degassed) was added to the solution at 0 °C and stirred for 18 h from 0 °C to 

23 °C. The mixture was neutralized with 1 M aq. hydrochloric acid and extracted with ethyl 

acetate. The combined organic layers were dried over sodium sulfate and the solvents were 

removed in vacuo. Subsequent purification by flash column chromatography (silica, hexanes / 

ethyl acetate 8 / 2, v / v) and recrystallization from ethanol / water yielded (Z)-2-(anthracen-9-

ylmethylene)indolin-3-one 51 (2.93 g, 9.12 mmol, 80%) as orange crystals. 

Rf = 0.46 (silica, hexanes / ethyl acetate 8 / 2, v / v). 

m.p. (°C): 255 ºC. 

1H-NMR (800 MHz, CDCl3): δ (ppm) = 8.51 (s, 1H, H-C(18)), 8.14 - 8.13 (m, 2H, H-C(13)), 

8.08 - 8.06 (m, 2H, H-C(16)), 7.80 (d, 3J = 7.7 Hz, 1H, H-C(6)), 7.73 (s, 1H, H-C(10)), 7.54 - 

7.51 (m, 4H, H-C(14, 15)), 7.40 (ddd, 3J = 8.2 Hz, 3J = 6.9 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 6.94 

(dd, 3J = 7.5 Hz, 3J = 7.4 Hz, 1H, H-C(5)), 6.71 (d, 3J = 8.0 Hz, 1H, H-C(3)), 6.10 (s, 1H, H-

N(1)). 

13C-NMR (201 MHz, CDCl3): δ (ppm) = 185.58 (C(8)), 152.87 (C(7)), 138.37(C(9)), 136.57 

(C(4)), 131.59 (2C, C(17)), 129.77 (2C, C(12)), 129.22 (2C, C(16)), 128.35 (C(18)), 127.74 
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(C(11)), 126.74 (2C, C(15)), 125.86 (2C, C(13)), 125.73 (2C, C(14)), 125.34 (C(6)), 121.75 

(C(2)), 120.38 (C(5)), 111.51 (C(3)), 107.79 (C(10)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3426 (w), 3272 (m), 3047 (w), 2970 (w), 2925 (w), 2879 (w), 

2360 (w), 1682 (s), 1669 (m), 1616 (s), 1587 (s), 1520, (w), 1485 (s), 1465 (s), 1442 (m), 1382 

(m), 1363 (w), 1336 (m), 1310 (s), 1248 (s), 1195 (m), 1155 (s), 1127 (s), 1096 (s), 1037 (m), 

1016 (m), 972 (w), 947 (m), 929 (w), 890 (m), 878 (s), 846 (w), 830 (m), 798 (w), 758 (m), 748 

(s), 727 (s), 706 (s), 655 (m). 

MS (EI+, 70 eV): m/z (%) = 322.1 (20), 321.1 (100), 320.1 (64), 319.1 (11), 304.1 (32), 292.1 

(14), 291.1 (19), 290.1 (11), 202.1 (21), 160.6 (11), 160.1 (12), 145.5 (12). 

HRMS (EI+, C23H15NO): calcd.: 321.1154; found: 321.1158 (M+). 

EA (C23H15NO): calcd.: C, 85.96; H, 4.70; N, 4.36; found: C, 85.59; H, 4.84; N, 4.28. 

(Z)-2-(4-methoxy-2,3,6-trimethylbenzylidene)indolin-3-one (52) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (6.24 mL, 9.36 mmol, 1.5 M, 8.2 equiv., degassed with nitrogen) 

and 1H-indol-3-yl acetate (0.20 g, 1.14 mmol, 1.0 equiv.) were added and heated to 100 °C for 

10 min. Then, 4-methoxy-2,3,6-trimethylbenzaldehyde (0.20 g, 1.14 mmol, 1.0 equiv.) in 

methanol (1.7 mL, 1.0 M, degassed) was added to the solution at 0 °C and stirred for 18 h from 

0 °C to 23 °C. The mixture was neutralized with 1 M aq. hydrochloric acid and extracted with 

ethyl acetate. The combined organic layers were dried over sodium sulfate and the solvents 

were removed in vacuo. Subsequent purification by flash column chromatography (silica, 

hexanes / ethyl acetate, 85 / 15, v / v) and recrystallization from ethanol / water yielded (Z)-2-

(4-methoxy-2,3,6-trimethylbenzylidene)indolin-3-one 52 (0.234 g, 0.798 mmol, 71%) as 

orange crystals. 

Rf = 0.46 (silica, hexanes / ethyl acetate, 85 / 15, v / v). 
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m.p. (°C): 188 - 190 ºC. 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 7.63 (d, 3J = 7.8 Hz, 1H, H-C(6)), 7.4 (ddd, 3J = 

8.2 Hz, 3J = 7.3 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 6.89 (ddd, 3J = 7.8 Hz, 3J = 7.3 Hz, 4J = 0.7 Hz, 

1H, H-C(5)), 6.87 - 6.86 (m, 2H, H-C(3), H-C(10), 6.66 (s, 1H, H-C(15)), 6.42 (s, 1H, H-N(1), 

3.81 (s, 3H, H-C(19)), 2.26 (s, 3H, H-C(20)), 2.20 (s, 3H, H-C(17)), 2.14 (s, 3H, H-C(18)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 185.79 (C(8)), 157.80 (C(14)), 153.56 (C(2)), 

137.52 (C(16)), 136.83 (C(12)), 136.63 (C(4)), 135.43 (C(9)), 125.38 (C(11)), 125.08 (C(6)), 

123.42 (C(13)), 122.38 (C(7)), 120.23 (C(5)), 112.00 (C(3)), 111.96 (C(10)), 110.48 (C(15)), 

55.99 (C(19)), 21.13 (C(20)), 17.80 (C(17)), 12.03 (C(18)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3403 (m), 3355 (w), 3046 (w), 3015 (w), 2920 (m), 2835 (w), 

2359 (w), 1695 (s), 1632 (s), 1607 (s), 1468 (s), 1379 (s), 1353 (s), 1307 (s), 1283 (s), 1243 

(m), 1229 (s), 1160 (m), 1136 (s), 1111 (s), 1012 (w), 992 (m), 957 (m), 886 (m), 832 (s), 750 

(s), 702 (s), 675 (w). 

MS (EI+, 70 eV): m/z (%) = 294.1 (11), 293.1 (39), 292.1 (20), 279.1 (17), 278.1 (100), 276.1 

(58), 261.1 (28), 234.1 (14), 218.1 (12), 85.9 (14), 55.0 (13), 44.0 (96). 

HRMS (EI+, C19H19NO2): calcd.: 293.1416; found: 293.1393 (M+). 

EA (C19H19NO2): calcd.: C, 77.79; H, 6.53; N, 4.77; found: C, 77.64; H, 6.53; N, 4.65. 
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(Ra/Sa)-(Z/E)-2-(4-(dimethylamino)benzylidene)-7-methyl-1-(o-tolyl)indolin-3-one (20) 

 

To a nitrogen-flushed Schlenk flask equipped with a magnetic stirring bar and a rubber septum 

7-methyl-1-(o-tolyl)-1H-indol-3-yl acetate 19 (0.106 g, 0.379 mmol, 1.0 equiv.), 4-

(dimethylamino)benzaldehyde (0.063 g, 0.422 mmol, 1.0 equiv.), aq. sodium hydroxide 

solution (0.124 g, 3.11 mmol, 1.5 M, 2.07 mL, 8.2 equiv., degassed with N2) and dioxane 

(0.4 mL, 1 M, degassed) were added and the resulting mixture was heated to 100 °C for 30 min. 

The mixture was cooled to 23 °C, neutralized with aq. hydrochloric acid (1.0 M), extracted with 

ethyl acetate and washed with brine. The combined organic phases were dried over sodium 

sulfate and the volatiles were removed in vacuo. Subsequent purification by flash column 

chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl 

acetate, 4 / 1, v / v) yielded (Ra/Sa)-(Z/E)-2-(4-(dimethylamino)benzylidene)-7-methyl-1-(o-

tolyl)indolin-3-one 20 (0.129 g, 0.351 mmol, 93%) as deep red solid. Further purification was 

carried out via preparative HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm 

column, acetonitrile / water, 4 / 1, v / v, 15 mL/min, 35 °C column temperature, retention times: 

12.5 min, E isomer, 17.3 mg; 17% isolated yield). 

Rf = 0.18 (silica, hexanes / ethyl acetate, 8 / 2, v / v). 

m.p. (°C): 169 - 171 (decomposition). 

Z isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.43 - 7.39 (m, 1H, H-C(20)), 7.37 (d,3J = 7.7 Hz, 

1H, H-C(18)), 7.36 - 7.34 (m, 1H, H-C(21)), 7.34 - 7.32 (m, 1H, H-C(19)), 7.29 (d, 3J = 7.6 Hz, 

1H, H-C(6)), 7.20 (d, 3J = 7.6 Hz, 1H, H-C(4)), 6.98 (s, 1H, H-C(10)), 6.86 (t, 3J = 7.5, 1H, H-

C(5)), 6.62 - 6.58 (m, 2H, H-C(12)), 6.30 - 6.27 (m, 2H, H-C(13)), 2.88 (s, 6H, H-C(15)), 2.03 

(s, 3H, H-C(22)), 1.65 (s, 3H, H-C(23)). 
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13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 186.53 (C(8)), 152.11 (C(2)), 150.36 (C(14)), 

140.69 (C(16)), 139.56 (C(17)), 139.36 (C(4)), 134.96 (C(9)), 132.47 (2C, C(12)), 131.98 

(C(21)), 131.10 (C(18)), 129.36 (C(19)), 126.83 (C(20)), 122.77 (C(6)), 122.69 (C(7)), 122.54 

(C(3)), 121.00 (C(11)), 120.53 (C(5)), 116.27 (C(10)), 111.47 (2C, C(13)), 40.41 (2C, C(15)), 

19.15 (C(23)), 18.06 (C(22)). 

E isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 8.08 - 8.04 (m, 2H, H-C(12)), 7.62 (d, 3J = 7.9 Hz, 

1H, H-C(6)), 7.43 - 7.39 (m, 1H, H-C(20)), 7.37 (d,3J = 7.7 Hz, 1H, H-C(18)), 7.36 - 7.34 (m, 

1H, H-C(21)), 7.34 - 7.32 (m, 1H, H-C(19)), 7.15 (d, 3J = 7.4 Hz, 1H, H-C(4)), 6.81 (t, 3J = 7.4, 

1H, H-C(5)), 6.67 - 6.63 (m, 2H, H-C(13)), 5.89 (s, 1H, H-C(10)), 3.01 (s, 6H, H-C(15)), 2.14 

(s, 3H, H-C(22)), 1.64 (s, 3H, H-C(23)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 183.61 (C(8)), 151.45 (C(2)), 150.10 (C(14)), 

139.51 (C(16)), 138.75 (C(17)), 137.85 (C(4)), 136.81 (C(9)), 132.89 (2C, C(12)), 131.49 

(C(19)), 131.16 (C(18)), 129.26 (C(20)), 127.33 (C(21)), 123.05 (C(7)), 122.79 (C(10)), 122.70 

(C(11)), 122.31 (C(6)), 121.58 (C(3)), 119.15 (C(5)), 111.40 (2C, C(13)), 40.26 (2C, C(15)), 

18.16 (C(23)), 17.70 (C(22)). 

IR (Diamond ATR): 𝜈 (cm-1) = 2897 (w), 1655 (s), 1591 (s), 1553 (s), 1522 (s), 1489 (s), 1447 

(s), 1391 (s), 1367 (s), 1348 (s), 1323 (s), 1278 (s), 1244 (m), 1212 (m), 1196 (s), 1147 (m), 

1102 (m), 1027 (s), 986 (m), 933 (m), 899 (w), 868 (w), 823 (m), 755 (s), 731 (w), 670 (w). 

MS (EI+, 70 eV): m/z (%) = 369.2 (26), 368.2 (100), 367.2 (26), 184.6 (11), 44.0 (16). 

HRMS (EI+, C25H24N2O): calcd.: 368.1889; found: 368.1875 (M+). 
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(Ra/Sa)-(Z/E)-2-(4-(dimethylamino)-2,6-dimethylbenzylidene)-7-methyl-1-(o-tolyl)-

indolin-3-one (30) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (0.117 g, 2.94 mmol, 1.5 M, 2.00 mL, 8.2 equiv., degassed with 

N2), 7-methyl-1-(o-tolyl)-1H-indol-3-yl acetate 19 (0.100 g, 0.358 mmol, 1.0 equiv.), 4-

(dimethylamino)-2,6-dimethylbenzaldehyde (0.063 g, 0.358 mmol, 1.0 equiv.), and dioxane 

(0.36 mL, 1 M, degassed) were added and the mixture was heated to 100 °C for 18 h. After 

cooling to 23 °C, the mixture was neutralized with aq. hydrochloric acid (1.0 M), extracted with 

ethyl acetate and washed with brine. The combined organic phases were dried over sodium 

sulfate and the volatiles were removed in vacuo. Subsequent purification by flash column 

chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl 

acetate, 4 / 1, v / v) yielded (Ra/Sa)-(Z/E)-2-(4-(dimethylamino)-2,6-dimethylbenzylidene)-7-

methyl-1-(o-tolyl)indolin-3-one 30 (0.064 g, 0.161 mmol, 45%) as orange to red solid. Further 

purification was carried out via preparative HPLC (Machery-Nagel VP 250/21 NUCLEODUR 

Sphinx RP 5 µm column, acetonitrile / water, 8 / 2, v / v, 15 mL/min, 35 °C column temperature, 

retention times: 15.0 min, Z+E isomer, 14.1 mg; 16% isolated yield). 

Rf = 0.43 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

m.p. (°C): 60 - 70. 

Z isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.63 (d, 3J = 7.5 Hz, 1H, H-C(6)), 7.17 (d, 3J = 

7.3 Hz, 1H, H-C(4)), 6.99 (d, 3J = 8.1 Hz, 1H, H-C(21)), 6.97 (s, 1H, H-C(10)), 6.94 (t, 3J = 

7.2 Hz, 1H, H-C(19)), 6.92 - 6.90 (m, 1H, H-C(18)), 6.90 - 6.88 (m, 1H, H-C(5)), 6.72 (t, 3J = 

7.4 Hz, 1H, H-C(20)), 6.22 (d, 3J = 2.3 Hz, 1H, H-C(13a)), 6.02 (d, 3J = 2.2 Hz, 1H, H-C(13b)), 
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2.80 (s, 6H, H-C(15)), 2.16 (s, 3H, H-C(24a)), 1.87 (s, 3H, H-C(22)), 1.85 (s, 3H, H-C(24b), 

1.55 (s, 3H, H-C(23)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 186.68 (C(8)), 154.56 (C(2)), 150.71 (C(14)), 

140.97 (C(9)), 139.51 (C(16)), 139.45 (C(4)), 137.39 (C(17)), 137.01 (C(12a)), 136.88 

(C(12b)), 131.55 (C(21)), 130.30 (C(18)), 128.30 (C(19)), 125.99 (C(20)), 123.66 (C(3)), 

123.17 (C(7)), 122.88 (C(6)), 121.99 (C(11)), 121.11 (C(5)), 115.67 (C(10)), 112.02 (C(13a)), 

111.95 (C(13b)), 41.11 (C(15)), 21.64 (C(24a)), 21.04 (C(24b)), 18.49 (C(23)), 18.13 (C(22)). 

E isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.52 (d, 3J = 7.6 Hz, 1H, H-C(6)), 7.41 - 7.38 (m, 

1H, H-C(19)), 7.40 - 7.37 (m, 1H, H-C(18)), 7.38 - 7.35 (m, 1H, H-C(21)), 7.35 - 7.33 (m, 1H, 

H-C(20)), 7.17 (d, 3J = 7.4 Hz, 1H, H-C(4)), 6.81 (t, 3J = 7.4 Hz, 1H, H-C(5)), 6.43 (s, 2H, H-

C(13)), 5.84 (s, 1H, H-C(10)), 2.93 (s, 6H, H-C(15)), 2.25 (s, 3H, H-C(22)), 2.12 (s, br, 6H, H-

C(24)), 1.68 (s, 3H, H-C(23)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 184.96 (C(8)), 151.60 (C(2)), 150.38 (C(14)), 

139.47 (C(9)), 139.26 (C(16)), 139.05 (C(17)), 138.73 (C(4)), 138.42 (C(12)), 131.42 (2C, 

C(18)), 130.98 (C(21)), 129.38 (C(19)), 127.67 (C(20)), 122.98 (C(7)), 122.48 (C(6)), 122.12 

(C(11)), 121.82 (C(3)), 119.80 (C(5)), 116.56 (C(5)), 111.82 (C(10)), 40.77 (2C, C(15)), 21.19 

(br, 2C, C(24)), 18.28 (C(23)), 17.94 (C(22)). 

IR (Diamond ATR): 𝜈 (cm-1) = 2918 (m), 2777 (m), 1691 (w), 1665 (m), 1652 (m), 1590 (s), 

1540 (m), 1490 (m), 1456 (m), 1441 (m), 1421 (m), 1383 (w), 1355 (s), 1323 (m), 1281 (m), 

1268 (m), 1242 (m), 1220 (m), 1191 (w), 1143 (s), 1070 (m), 1033 (m), 988 (w), 931 (w), 877 

(w), 855 (w), 823 (s), 781 (s), 753 (m), 725 (w), 711(w). 

MS (EI+, 70 eV): m/z (%) = 396.2 (47), 382.2 (13), 381.2 (24), 380.2 (24), 379.2 (72), 365.2 

(19), 364.2 (30), 335.2 (17), 177.1 (14), 176.1 (26), 44.2 (100), 43.3 (16). 

HRMS (EI+, C27H28N2O): calcd.: 396.2201; found: 396.2213 (M+).  



3.5   CONDENSATION REACTIONS OF INDOXYL ACETATES WITH AROMATIC ALDEHYDES 

458 

(Ra/Sa)-(Z/E)-2-(4-(dimethylamino)-2,6-dimethylbenzylidene)-7-methyl-1-(naphthalen-1-

yl)indolin-3-one (33) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (0.119 g, 2.96 mmol, 1.5 M, 2.00 mL, 8.2 equiv., degassed with 

N2), 7-methyl-1-(naphthalen-1-yl)-1H-indol-3-yl acetate 32 (0.114 g, 0.361 mmol, 1.0 equiv.), 

4-(dimethylamino)-2,6-dimethylbenzaldehyde (0.064 g, 0.361 mmol, 1.0 equiv.), and dioxane 

(0.36 mL, 1 M, degassed) were added and the mixture was heated to 100 °C for 18 h. After 

cooling to 23 °C, the mixture was neutralized with aq. hydrochloric acid (1.0 M), extracted with 

ethyl acetate and washed with brine. The combined organic phases were dried over sodium 

sulfate and the volatiles were removed in vacuo. Subsequent purification by flash column 

chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl 

acetate, 4 / 1, v / v) yielded (Ra/Sa)-(Z/E)-2-(4-(dimethylamino)-2,6-dimethylbenzylidene)-7-

methyl-1-(naphthalen-1-yl)indolin-3-one 33 (0.076 g, 0.174 mmol, 47%) as orange to red solid. 

Further purification was carried out via preparative HPLC (Machery-Nagel VP 250/21 

NUCLEODUR Sphinx RP 5 µm column, acetonitrile / water, 4 / 1, v / v, 15 mL/min, 35 °C 

column temperature, retention times: 9.5 min, Z+E isomer, 67.6 mg; 43% isolated yield). 

Rf = 0.54 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

m.p. (°C): 141 - 150. 

Z isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.79 (d, 3J = 7.9 Hz, 1H, H-C(6)), 7.71 (d, 3J = 

7.2 Hz, 1H, H-C(21)), 7.56 - 7.53 (m, 1H, H-C(24)), 7.54 - 7.51 (m, 1H, H-C(19)), 7.39 (ddd, 

3J = 8.1 Hz, 3J = 6.8 Hz, 4J = 1.2 Hz, 1H, H-C(22)), 7.30 (ddd, 3J = 8.3 Hz, 3J = 6.7 Hz, 4J = 
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1.2 Hz, 1H, H-C(23)), 7.30 (dd, 3J = 8.6 Hz, 4J = 1.3 Hz, 1H, H-C(17)), 7.13 (d, 3J = 7.3 Hz, 

1H, H-C(4)), 7.07 (dd, 3J = 8.3 Hz, 3J = 7.3 Hz, 1H, H-C(18)), 6.95 (s, 1H, H-C(10)), 6.93 (dd, 

3J = 7.5 Hz, 3J = 7.4 Hz, 1H, H.C(5)), 6.05 (d, 4J = 2.6 Hz, 1H, H-C(13a), 5.60 (d, 4J = 2.5 Hz, 

1H, H-C(13b)), 2.72 (s, 6H, H-C(15)), 2.11 (s, 3H, H-C(27a)), 1.39 (s, 3H, H-C(26)), 1.37 (s, 

3H, H-C(27b)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 186.60 (C(8)), 155.05 (C(2)), 150.25 (C(14)), 

141.57 (C(9)), 139.63 (C(4)), 137.16 (C(16)), 136.71 (C(12a)), 136.24 (C(12b)), 134.36 

(C(20)), 132.43 (C(25)), 128.89 (C(19)), 128.63 (C(21)), 128.62 (C(17)), 126.77 (C(23)), 

126.38 (C(22)), 125.25 (C(18)), 123.70 (C(24)), 123.63 (C(3)), 123.10 (C(7)), 122.94 (C(6)), 

121.57 (C(11)), 121.19 (C(5)), 115.90 (C(10)), 111.83 (C(13a)), 111.80 (C(13b)), 40.98 (2C, 

C(15)), 21.63 (C(27a)), 20.60 (C(27b)), 18.76 (C(26)). 

E isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 8.01 (d, 3J = 7.8 Hz, 1H, H-C(21)), 7.99 (d, 3J = 

7.9 Hz, 1H, H-C(19)), 7.87 (d, 3J = 8.2 Hz, 1H, H-C(24)), 7.66 - 7.63 (m, 1H, H-C(23)), 7.64 - 

7.60 (m, 1H, H-C(18)), 7.59 (d, 3J = 7.6 Hz, 1H, H-C(6)), 7.56 (ddd, 3J = 8.1 Hz, 3J = 6.7 Hz, 

4J = 1.4 Hz, 1H, H-C(22)), 7.51 (ddd, 3J = 8.5 Hz, 3J = 7.1 Hz, 4J = 1.2 Hz, 1H, H-C(17)), 7.15 

(d, 3J = 7.3 Hz, 1H, H-C(4)), 6.86 (dd, 3J = 7.5 Hz, 3J = 7.5 Hz, 1H, H-C(5)), 6.38 (s, 2H, H-

C(13)), 5.84 (s, 1H, H-C(13)), 2.91 (s, 6H, H-C(15)), 2.07 (s, br, 3H, H-C(27a)), 2.02 (s, br, 

3H, H-C(27b)), 1.48 (s, 3H, H-C(26)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 184.98 (C(8)), 152.41 (C(2)), 150.37 (C(14)), 

140.77 (C(9)), 138.78 (C(4)), 138.41 (br, 2C, C(12)), 137.19 (C(16)), 134.96 (C(20)), 133.17 

(C(25)), 129.58 (C(21)), 129.11 (C(19)), 128.75 (C(23)), 127.83 (C(17)), 127.26 (C(22)), 

126.26 (C(18)), 123.69 (C(24)), 123.25 (C(3)), 122.50 (C(6)), 122.11 (C(7)), 121.97 (C(11)), 

120.11 (C(5)), 117.57 (C(10)), 111.74 (2C, C(13)), 40.73 (2C, C(15)), 21.10 (2C, C(27)), 18.40 

(C(26)). 

IR (Diamond ATR): 𝜈 (cm-1) = 2912 (w), 2226 (w), 1690 (s), 1623 (m), 1600 (s), 1490 (s), 

1456 (m), 1415 (m), 1394 (m), 1357 (s), 1309 (m), 1278 (s), 1245 (m), 1208 (m), 1172 (m), 

1133 (s), 1077 (s), 1051 (m), 1031 (s), 988 (m), 936 (w), 900 (w), 890 (w), 827 (m), 796 (m), 

775 (s), 755 (s), 714 (m), 698 (w). 

MS (EI+, 70 eV): m/z (%) = 433.2 (23), 432.2 (55), 418.2 (11), 417.2 (35), 416.2 (34), 415.2 

(100), 401.2 (18), 400.2 (25), 371.2 (18), 260.1 (15). 
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HRMS (EI+, C30H28N2O): calcd.: 432.2202; found: 432.2197 (M+). 

EA (C30H28N2O): calcd.: N, 6.48; C, 83.30; H, 6.52; found: N, 6.42; C, 83.44; H, 6.34. 

(Ra/Sa)-(Z/E)-7-methyl-2-(naphthalen-1-ylmethylene)-1-(o-tolyl)indolin-3-one (60) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (0.117 g, 2.94 mmol, 1.5 M, 2.00 mL, 8.2 equiv., degassed with 

N2), 7-methyl-1-(o-tolyl)-1H-indol-3-yl acetate 19 (0.100 g, 0.358 mmol, 1.0 equiv.), 1-

naphthaldehyde (0.056 g, 0.358 mmol, 1.0 equiv.) and dioxane (0.36 mL, 1 M, degassed) were 

added and the mixture was heated to 100 °C for 5 h. After cooling to 23 °C, the mixture was 

neutralized with aq. hydrochloric acid (1.0 M), extracted with ethyl acetate and washed with 

brine. The combined organic phases were dried over sodium sulfate and the volatiles were 

removed in vacuo. Subsequent purification by flash column chromatography (aluminium(III) 

oxide, Brockmann III, 6% water, w / w), hexanes / ethyl acetate, 4 / 1, v / v) yielded (Ra/Sa)-

(Z/E)-7-methyl-2-(naphthalen-1-ylmethylene)-1-(o-tolyl)indolin-3-one 60 (0.128 g, 

0.342 mmol, 96%) as deep red solid. Further purification was carried out via preparative HPLC 

(Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / water, 4 / 1, 

v / v, 15 mL/min, 35 °C column temperature, retention times: 18.5 min, Z isomer, 6.3 mg; 20.2 

min, E isomer, 14.9 mg; 18.5 - 23.0 min, Z+E isomer, 37.4 mg; 67% overall yield. 

Rf = 0.63 (silica, hexanes / ethyl acetate, 8 / 2, v / v). 

E isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 8.04 (d, 3J = 7.5 Hz, 1H, H-C(12)), 7.86 (d, 3J = 

8.1 Hz, 1H, H-C(24)), 7.83 (d, 3J = 8.2 Hz, 1H, H-C(14)), 7.70 (d, 3J = 8.6, 1H, H-C(27)), 7.54 

(d, 3J = 7.9 Hz, 1H, H-C(6)), 7.50 - 7.48 (m, 1H, H-C(13)), 7.49 - 7.47 (m, 1H, H-C(21)), 7.48 

- 7.46 (m, 1H, H-C(19)), 7.46 - 7.45 (m, 1H, H-C(25)), 7.45 - 7.44 (m, 1H, H-C(18)), 7.44 - 

7.42 (m, 1H, H-C(26)), 7.42 - 7.40 (m, 1H, H-C(20)), 7.21 (d, 3J = 7.3 Hz, 1H, H-C(4)), 6.85 



3 EXPERIMENTAL SECTION 

461 

 

(t, 3J = 7.5 Hz, 1H, H-C(5)), 6.40 (s, 1H, H-C(10)), 2.33 (s, 3H, H-C(22)), 1.71 (s, 3H, H-

C(23)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 184.67 (C(8)), 151.01 (C(2)), 139.58 (C(9)), 138.83 

(C(4)), 138.67 (C(17)), 138.17 (C(16)), 133.45 (C(11)), 131.75 (C(28)), 131.11 (C(18)), 130.53 

(C(26)), 130.35 (C(15)), 129.17 (C(21)), 128.70 (C(14)), 128.58 (C(24)), 128.10 (C(12)), 

127.36 (C(20)), 126.13 (C(25)), 125.64 (C(19)), 125.03 (C(13)), 123.95 (C(27)), 122.51 (C(7)), 

122.29 (C(6)), 121.39 (C(3)), 119.74 (C(5)), 114.43 (C(10)), 17.67 (C(23)), 17.45 (C(22)). 

Z isomer: 1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.92 - 7.87 (m, 1H, H-C(27)), 7.73 - 7.69 

(m, 1H, H-C(24)), 7.68 (d, 3J = 8.1 Hz, 1H, H-C(6)), 7.50, 3J = 8.1 Hz, 1H, H-C(14)), 7.46 - 

7.43 (m, 1H, H-C(26)), 7.43 - 7.41 (m, 1H, H-C(25)), 7.37 (s, 1H, H-C(10)), 7.18 (d, 3J = 

7.4 Hz, 1H, H-C(4)), 7.00 - 6.96 (m, 1H, H-C(13)), 6.94 (d, 3J = 8.0 Hz, 1H, H-C(21)), 6.90 

(dd, 3J = 7.5 Hz, 3J = 7.5 Hz, 1H, H-C(5)), 6.83 (dd, 3J = 7.5 Hz, 3J = 7.5 Hz, 1H, H-C(19), 6.81 

(d, 3J = 7.0 Hz, 1H, H-C(12)), 6.68 (d, 3J = 7.5 Hz, 1H, H-C(18)), 6.64 (t, 3J = 7.7 Hz, 1H, H-

C(20)), 1.87 (s, 3H, H-C(22)), 1.53 (s, 3H, H-C(23)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 186.89 (C(8)), 153.43 (C(2)), 140.11 (C(4)), 139.69 

(C(9)), 139.26 (C(16)), 138.28 (C(17)), 133.38 (C(15)), 132.06 (C(28)), 131.17 (C(21)), 130.98 

(C(11)), 130.35 (C(18)), 128.65 (C(19)), 128.58 (C(24)), 127.74 (C(14)), 127.43 (C(12)), 

126.35 (C(26)), 126.19 (C(25)), 126.13 (C(20)), 125.94 (C(27)), 124.95 (C(13)), 123.10 (C(6)), 

122.77 (C(3)), 122.35 (C(7)), 120.97 (C(5)), 111.54 (C(10)), 18.56 (C(23)), 17.94 (C(22)). 

MS (EI+, 70 eV): m/z (%) = 376.2 (25), 375.2 (100), 374.2 (88), 234.1 (11). 

HRMS (EI+, C27H21NO): calcd.: 375.1623; found: 375.1610 (M+).  
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(Ra/Sa)-(Z/E)-(syn/anti)-7-methyl-2-((2-methylnaphthalen-1-yl)methylene)-1-(o-

tolyl)indolin-3-one (61)  

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (0.117 g, 2.94 mmol, 1.5 M, 2.00 mL, 8.2 equiv., degassed with 

N2), 7-methyl-1-(o-tolyl)-1H-indol-3-yl acetate 19 (0.100 g, 0.358 mmol, 1.0 equiv.), 2-

methyl-1-naphthaldehyde (0.061 g, 0.358 mmol, 1.0 equiv.) and dioxane (0.36 mL, 1 M, 

degassed) were added and the mixture was heated to 100 °C for 18 h. After cooling to 23 °C, 

the mixture was neutralized with aq. hydrochloric acid (1.0 M), extracted with ethyl acetate and 

washed with brine. The combined organic phases were dried over sodium sulfate and the 

volatiles were removed in vacuo. Subsequent purification by flash column chromatography 

(aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl acetate, 4 / 1, v / v) 

yielded (Ra/Sa)-(Z/E)-(syn/anti)-7-methyl-2-((2-methylnaphthalen-1-yl)methylene)-1-(o-

tolyl)indolin-3-one 61 (0.105 g, 0.277 mmol, 78%) as orange to red solid. Further purification 

was carried out via preparative HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 

5 µm column, acetonitrile, 15 mL/min, 35 °C column temperature, retention times: 5.9 min, 

Z+E isomer, 28.1 mg; 37% overall yield). 

Rf = 0.79 (hexanes / ethyl acetate, 4 / 1, v / v). 
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Note: The obtained NMR data is displayed in Section 2.3.7, Figure 152. Even the spectra of 

the enantiopure compounds cannot be solved by hand due to signal splitting and -overlap within 

1H- and 13C-NMR spectra. The amount of 13C signals cannot be determined properly (Figure 

159 and Figure 160), which makes unambiguous solving of 2D HSQC- and HMBC NMR 

spectra (Figure 161) impossible by hand. The aliphatic signals were assigned via 1H 2D NOESY 

NMR spectra (Figure 154 and Figure 156). 

Z syn / -anti isomers: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.86 - 7.79 (m, 1H), 7.71 - 7.67 (m, 4H), 7.67 - 7.64 

(m, 2H), 7.57 (dd, 3J = 7.8 Hz, 4J = 1.5 Hz, 1H), 7.44 - 7.41 (m, 3H), 7.41 - 7.36 (m, 2H), 7.28 

(ddd, 3J = 8.1 Hz, 3J = 6.8 Hz, 4J = 1.5 Hz, 1H), 7.26 (dd, 3J = 8.2 Hz, 4J = 1.6 Hz, 1H), 7.24 - 

7.20 (m, 2H), 7.16 (ddd, 3J = 7.3 Hz, 3J = 3.1 Hz, 4J = 1.1 Hz, 2H), 7.07 (d, 3J = 8.3 Hz, 1H), 

6.95 (d, 3J = 8.4 Hz, 1H), 6.93 - 6.87 (m, 3H), 6.79 - 6.74 (m, 1H), 6.69 (dd, 3J = 7.5 Hz, 4J = 

1.4 Hz, 1H), 6.61 - 6.55 (m, 1H), 6.54 (dd, 3J = 7.6, 3J = 1.7 Hz, 1H), 6.34 - 6.29 (m, 1H), 6.21 

(dd, 3J = 7.9 Hz, 4J = 1.3 Hz, 1H), 6.09 (dd, 3J = 7.6 Hz, 4J = 1.5 Hz, 1H), 2.37 (s, 3H, H-C(syn 

29)), 2.18 (s, 3H, H-C(anti 29)), 1.92 (s, 3H, H-C(anti 22)), 1.68 (s, 3H, H-C(syn 22), 1.47 (s, 

3H, H-C(syn 23)), 1.43 (s, 3H, H-C(anti 23). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 185.95, 185.90, 153.55, 153.43, 140.58, 140.57, 

139.38, 139.34, 139.30, 139.26, 137.85, 137.69, 137.18, 136.79, 133.66, 133.21, 131.95, 

131.61, 131.39, 131.31, 130.96, 130.86, 129.83, 129.81, 129.54, 129.29, 129.25, 129.22, 

129.21, 129.16, 127.79, 127.76, 127.71, 127.64, 127.59, 127.47, 127.45, 127.44, 127.43, 

127.34, 127.27, 126.95, 126.91, 126.87, 126.84, 126.06, 126.02, 125.72, 125.68, 125.64, 

125.58, 125.04, 124.87, 124.84, 124.83, 124.69, 124.66, 124.65, 124.63, 124.56, 124.49, 

122.65, 122.56, 122.55, 122.50, 122.49, 122.00, 121.93, 120.61, 120.56, 120.51, 120.47, 

111.29, 111.20, 111.11, 53.77, 53.59, 53.48, 53.41, 53.34, 53.23, 53.17, 53.04, 20.73, 20.68, 

20.28, 20.25, 17.78, 17.73, 17.68, 17.64, 17.59, 17.57, 17.53, 17.47, 17.46. 

E syn / -anti isomers: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.83 - 7.78 (m, 2H), 7.77 - 7.75 (m, 1H), 7.74 - 7.69 

(m, 2H), 7.57 - 7.53 (m, 1H), 7.49 - 7.42 (m, 9H), 7.38 (m, 7H), 7.22 (m, 2H), 6.82 (m, 3H), 

2.43 (s, 3H, H-C(syn 22)), 2.40 (s, 4H, H-C(anti 29)), 2.35 (s, 6H, H-C(anti 22, syn 29)), 1.73 

(s, 6H, H-C (anti-, syn 23)). 
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13C-NMR (151 MHz, CD2Cl2): 185.31, 152.15, 140.90, 140.77, 139.39, 139.33, 139.15, 

138.86, 138.82, 135.05, 132.58, 132.55, 132.35, 131.68, 130.84, 130.47, 130.42, 129.63, 

129.11, 129.04, 128.70, 127.88, 127.84, 126.39, 126.33, 125.26, 122.72, 122.67, 121.98, 

120.30, 120.28, 113.01, 112.91, 20.89, 20.84, 20.81, 20.76, 18.26, 18.24, 18.21, 18.17, 18.06, 

18.02. 

MS (EI+, 70 eV): m/z (%) = 390.2 (17), 389.2 (53), 375.2 (28), 374.2 (100), 373.2 (25), 372.2 

(93), 357.2 (19). 

HRMS (EI+, C28H23NO): calcd.: 389.1780; found: 389.1780 (M+). 

(Z)-2-(4-(3-(dimethylamino)propoxy)-3,5-dimethylbenzylidene)indolin-3-one (97) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (1.63 mL, 20.1 mmol, 1.5 M, 8.2 equiv., degassed with N2), 1H-

indol-3-yl acetate (0.429 g, 2.45 mmol, 1.0 equiv.), 4-(3-(dimethylamino)propoxy)-3,5-

dimethylbenzaldehyde 92 (0.576 g, 2.45 mmol, 1.0 equiv.) and dioxane (1.2 mL, 2 M, 

degassed) were added and the mixture was heated to 100 °C for 30 min. After cooling to 23 °C, 

the mixture was neutralized with aq. hydrochloric acid (1.0 M), filtered through celite, extracted 

with ethyl acetate and washed with brine. The combined organic phases were dried over sodium 

sulfate and the volatiles were removed in vacuo. Subsequent purification by flash column 

chromatography (silica, dichloromethane / methanol / triethylamine, 84 / 15 / 1, v / v / v) yielded 

(Z)-2-(4-(3-(dimethylamino)propoxy)-3,5-dimethylbenzylidene)indolin-3-one 97 (0.488 g, 

1.391 mmol, 57%) as orange viscous oil. 

Rf = 0.25 (silica, 84 / 15 / 1, methanol / dichloromethane / triethylamine, v / v / v). 

Z isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.68 (d, 3J = 7.6 Hz, 1H, H-C(6)), 7.49 (ddd, 3J = 

8.3 Hz, 3J = 7.2 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 7.24 (s, 2H, H-C(12)), 7.07 (d, 3J = 8.1 Hz, 1H, 

H-C(3)), 6.99 (s, br, 1H, H-N(1)), 6.97 (dd, 3J = 8.0 Hz, 3J = 7.1 Hz, 1H, H-C(5)), 6.71 (s, 1H, 
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H-C(10)), 3.84 (t, 3J = 6.3 Hz, 3J = 6.3 Hz, 2H, H-C(16)), 2.53 (t, 3J = 6.5 Hz, 2H, H-C(18)), 

2.32 (s, 6H, H-C(15)), 2.26 (s, 6H, H-C(19)), 1.98 (p, 3J = 6.7 Hz, 2H, H-C(17)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 186.02 (C(8)), 156.57 (C(14)), 153.06 (C(2)), 

135.84 (C(4)), 134.57 (C(11)), 132.08 (2C, C(13)), 130.11 (2C, C(12)), 129.99 (C9)), 124.43 

(C(6)), 121.70 (C(7)), 120.36 (C(5)), 112.01 (C(3)), 111.22 (C(10)), 70.34 (C(16)), 56.07 

(C(18)), 45.03 (2C, C(19)), 28.25 (C(17)), 16.16 (2C, C(15)). 

MS (EI+, 70 eV): m/z (%) = 350.2 (4), 86.1 (37), 61.2 (11), 58.0 (62), 45.0 (12), 43.2 (100). 

HRMS (EI+, C22H26N2O2): calcd.: 350.1994; found: 350.1978 (M+). 

(Z)-2-(2,5-bis(3-(dimethylamino)propoxy)benzylidene)indolin-3-one (98) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (1.05 mL, 12.9 mmol, 1.5 M, 8.2 equiv., degassed with N2), 1H-

indol-3-yl acetate (0.275 g, 1.57 mmol, 1.0 equiv.), 2,5-bis(3-

(dimethylamino)propoxy)benzaldehyde 95 (0.808 g, 1.57 mmol, 1.0 equiv.) and dioxane 

(0.8 mL, 2.0 M, degassed) were added and the mixture was heated to 100 °C for 30 min. After 

cooling to 23 °C, the mixture was neutralized with aq. hydrochloric acid (1.0 M), filtered 

through celite, extracted with ethyl acetate and washed with brine. The combined organic 

phases were dried over sodium sulfate and the volatiles were removed in vacuo. Subsequent 

purification by flash column chromatography (silica, dichloromethane / methanol / hexanes / 

triethylamine, 33 / 33 / 31 / 2, v / v / v / v) yielded (Z)-2-(2,5-bis(3-(dimethylamino)propoxy)-

benzylidene)indolin-3-one 98 (0.418 g, 0.986 mmol, 63%) as orange viscous oil. 

Rf = 0.29 (silica, 33 / 33 / 31 / 2, methanol / dichloromethane / hexanes / triethylamine, v / v / 

v / v). 

Z isomer: 
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1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 8.22 (s, br, 1H, H-N(1)), 7.65 (d, 3J = 7.7 Hz, 1H, H-

C(6)), 7.45 (ddd, 3J = 8.3 Hz, 3J = 7.1 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 7.09 (d, 3J = 2.9 Hz, 1H, 

H-C(16)), 7.02 (d, 3J = 8.0 Hz, 1H, H-C(3)), 6.94 - 6.88 (m, 2H, H-C(5, 13)), 6.86 (dd, 3J = 

8.8 Hz, 3J = 3.0 Hz, 1H, H-C(14)), 6.84 (s, 1H, H-C(10)), 4.08 (t, 3J = 6.5 Hz, 2H, H-C(17)), 

4.03 (t, J = 6.3 Hz, 2H, H-C(21)), 2.56 (t, J = 7.2 Hz, 2H, H-C(19)), 2.45 (t, J = 7.1 Hz, 2H, H-

C(23)), 2.30 (s, 6H, H-C(20)), 2.20 (s, 6H, H-C(24)), 1.97 (m, 4H, H-C(18, 22)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 186.85 (C(8)), 153.75 (C(15)), 153.66 (C(2)), 

151.50 (C(12)), 136.44 (C(4)), 135.97 (C(9)), 125.41 (C(7)), 124.95 (C(6)), 121.81 (C(11)), 

120.22 (C(10)), 117.55 (C(16)), 116.48 (C(14)), 115.00 (C(13)), 112.36 (C(3)), 107.16 (C(10)), 

68.67 (C(17)), 66.98 (C(21)), 56.36 (C(23)), 56.12 (C(19)), 45.31 (2C, C(24)), 45.08 (2C, 

C(20)), 27.61 (C(18)), 27.40 (C(22)). 

MS (EI+, 70 eV): m/z (%) = 423.2 (4), 86.1 (11), 84.1 (34), 61.2 (10), 58.1 (42), 45.1 (10), 43.2 

(100). 

HRMS (EI+, C25H33N3O3): calcd.: 423.2522; found: 423.2516 (M+). 

(Z)-2-(3,5-bis(3-(dimethylamino)propoxy)benzylidene)indolin-3-one (99) 

 

To a nitrogen-flushed Schlenk flask, equipped with a magnetic stirring bar and rubber septum, 

aq. sodium hydroxide solution (0.54 mL, 6.69 mmol, 1.5 M, 8.2 equiv., degassed with N2), 1H-

indol-3-yl acetate (0.143 g, 0.816 mmol, 1.0 equiv.), 3,5-bis(3-(dimethylamino)propoxy)-

benzaldehyde 96 (0.252 g, 0.816 mmol, 1.0 equiv.) and dioxane (0.4 mL, 2.0 M, degassed) were 

added and the mixture was heated to 100 °C for 30 min. After cooling to 23 °C, the mixture 

was neutralized with aq. hydrochloric acid (1.0 M), filtered through celite, extracted with ethyl 

acetate and washed with brine. The combined organic phases were dried over sodium sulfate 

and the volatiles were removed in vacuo. Subsequent purification by flash column 

chromatography (silica, dichloromethane / methanol / hexanes / triethylamine, 30 / 34 / 34 / 2, 



3 EXPERIMENTAL SECTION 

467 

 

v / v / v / v) yielded (Z)-2-(2,5-bis(3-(dimethylamino)propoxy)benzylidene)indolin-3-one 99 

(0.231 g, 0.545 mmol, 67%) as orange viscous oil.  

Rf = 0.30 (silica, 30 / 34 / 34 / 2, methanol / dichloromethane / hexanes / triethylamine, v / v / 

v / v). 

Z isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.85 (s, br, 1H, (H-N(1)), 7.64 (d, 3J = 7.6 Hz, 1H, 

H-C(6)), 7.45 (ddd, 3J = 8.4 Hz, 3J = 7.2 Hz, 3J = 1.4 Hz, 1H, H-C(4)), 7.08 (d, 3J = 8.2 Hz, 1H, 

H-C(3)), 6.92 (ddd, 3J = 7.5 Hz, 3J = 7.5 Hz, 3J = 0.8 Hz, 1H, H-C(5)), 6.71 (d, 3J = 2.2 Hz, 2H, 

H-C(12)), 6.65 (s, 1H, H-C(10)), 6.43 (t, 3J = 2.2 Hz, 1H, H-C(14)), 4.03 (t, 3J = 6.4 Hz, 4H, 

H-C(15)), 2.45 (t, 3J = 7.1 Hz, 4H, H-C(17)), 2.23 (s, 12H, H-C(18)), 1.92 (quin, 3J = 6.7 Hz, 

4H, H-C(16)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 186.51 (C(8)), 160.64 (2C, C(13)), 153.67 (C(2)), 

136.43 (C(11)), 136.04 (C(4)), 135.55 (C(9)), 124.46 (C(6)), 121.38 (C(7)), 120.23 (C(5)), 

112.24 (C(3)), 110.74 (C(10)), 108.12 (2C, C(12)), 101.66 (C(14)), 66.31 (2C, C(15)), 55.89 

(2C, C(17)), 44.98 (4C, C(18)), 27.22 (2C, C(16)). 

MS (EI+, 70 eV): m/z (%) = 423.3 (9), 86.1 (11), 84.1 (36), 58.1 (100). 

HRMS (EI+, C25H33N3O3): calcd.: 423.2522; found: 423.2509 (M+). 
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3.6 Oxidative dimerization of arylated indoxyl acetates 

Scheme 35 for the oxidative dimerization reaction can be found in Section 2.4.1. 

(trans)-7,7'-Dimethyl-N,N'-di(o-tolyl)indigo (65) 

 

To a flame dried Schlenk flask, indoxyl acetate 19 (0.140 g, 0.501 mmol, 1.0 equiv.), aq. 

sodium hydroxide solution (2.74 mL, 4.11 mmol, 1.5 M, 8.2 equiv., degassed) and dioxane 

(0.5 mL, 1 M, degassed) were added under N2 atmosphere. After stirring at 100 °C for 30 min 

and cooling of the reaction mixture to 23 °C, manganese(III) acetate (0.282 g, 1.05 mmol, 

2.1 equiv.) was added. The suspension was stirred for 3 h at room temperature. Subsequently, 

the mixture was treated with aq. sat. ammonium chloride solution, filtered over celite, extracted 

with ethyl acetate and washed with brine. The combined organic layers were dried over sodium 

sulfate and evaporated to dryness in vacuo. The crude product was purified by flash column 

chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl 

acetate, 4 / 1, v / v) to yield (trans)-7,7'-dimethyl-N,N'-di(o-tolyl)indigo 65 (0.040 g, 

0.085 mmol, 34%) as green-blueish solid. 

Rf = 0.70 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

Syn-trans-1 isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.87 (dd, 3J = 7.4 Hz, 4J = 1.6 Hz, 2H, H-C(13)), 

7.43 (dd, 3J = 6.6 Hz, 4J = 1.4 Hz, 2H, H-C(4)), 7.33 - 7.21 (m, 6H, H-C(10, 11, 12)), 7.14 (m, 

2H, H-C(6)), 6.90 (d, 3J = 7.2 Hz, 2H, H-C(5)), 1.95 (s, 6H, H-C(14)), 1.65 (s, 6H, H-C(15)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 184.91 (2C, C(3)), 151.18 (2C, C(7a)), 142.35 (2C, 

C(8)), 138.37 (2C, C(6)), 138.10 (2C, C(9)), 131.22 (2C, C(13)), 130.79 (2C, C(2)), 130.28 
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(2C, C(10)), 128.49 (2C, C(11)), 125.60 (2C, C(12)), 123.42 (2C, C(7)), 122.78 (2C, C(3a)), 

121.72 (2C, C(5)), 121.62 (2C, C(4)), 18.40 (2C, C(14)), 18.04 (2C, C(15)). 

Anti-trans isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.72 (d, 3J = 7.6 Hz, 2H, H-C(13)), 7.43 (dd, 3J = 

6.6 Hz, 4J = 1.4 Hz, 2H, H-C(4)), 7.33 - 7.21 (m, 6H, H-C(10, 11, 12)), 7.14 (m, 2H, H-C(6)), 

6.90 (d, 3J = 7.2 Hz, 2H, H-C(5)), 2.20 (s, 6H, H-C(14)), 1.62 (s, 6H, H-C(15)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 184.91 (2C, C(3')), 150.91 (2C, C(7a)), 141.94 (2C, 

C(8)), 138.37 (2C, C(6)), 138.30 (2C, C(9)), 131.24 (2C, C(13)), 130.79 (2C, C(2)), 130.45 

(2C, C(10)), 128.45 (2C, C(11)), 125.34 (2C, C(12)), 123.29 (2C, C(7)), 122.70 (2C, C(3a)), 

121.72 (2C, C(5)), 121.62 (2C, C(4)), 18.78 (2C, C(14)), 18.08 (2C, C(15)). 

MS (EI+, 70 eV): m/z (%) = 472.2 (17), 471.2 (50), 470.2 (100), 456.2 (20), 427.2 (15), 425.2 

(14), 246.1 (21), 245.2 (54), 237.1 (15), 236.1 (36), 235.1 (14), 224.1 (20), 223.1 (37), 208.1 

(18), 206.1 (16), 204.1 (16), 194.1 (22), 91.0 (18), 71.1 (15), 69.1 (15), 57.1 (26), 55.0 (14), 

44.1 (20), 43.2 (15), 43.1 (61), 41.2 (13). 

HRMS (EI+, C32H26N2O2): calcd.: 470.1994; found: 470.1989 (M+). 

(trans)-N,N'-Di(o-tolyl)indigo (64) 

 

To a flame dried Schlenk flask, indoxyl acetate 68 (0.140 g, 0.528 mmol, 1.0 equiv.), aq. 

sodium hydroxide solution (2.89 mL, 4.33 mmol, 1.5 M, 8.2 equiv., degassed) and dioxane 

(0.5 mL, 1 M, degassed) were added under N2 atmosphere. After stirring at 100 °C for 15 min 

and cooling of the reaction mixture to 23 °C, manganese(III) acetate (0.282 g, 1.05 mmol, 

2.1 equiv.) was added. The suspension was stirred for 2 h at room temperature. Subsequently, 

the mixture was treated with aq. sat. ammonium chloride solution, filtered over celite, extracted 
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with ethyl acetate and washed with brine. The combined organic layers were dried over sodium 

sulfate and evaporated to dryness in vacuo. The crude product was purified by flash column 

chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl 

acetate, 4 / 1, v / v) to yield (trans)-N,N'-di(o-tolyl)indigo 64 (0.096 g, 0.217 mmol, 82%) as 

green-blueish solid. 

Rf = 0.70 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

Syn-trans-1 isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.54 (d, 3J = 8.0 Hz, 2H, H-C(10)), 7.53 (d, 3J = 

8.1 Hz, 2H, H-C(4)), 7.38 (ddd, 3J = 8.2 Hz, 3J = 7.2 Hz, 4J = 1.3 Hz, 2H, H-C(6)), 7.32 - 7.29 

(m, 2H, H-C(11)), 7.20 (ddd, 3J = 8.0 Hz, 3J = 7.5 Hz, 4J = 1.4 Hz, 2H, H-C(12)), 7.08 (dd, 3J 

= 7.9 Hz, 4J = 1.3 Hz, 2H, H-C(13)), 6.99 (dd, 3J = 7.9 Hz, 3J = 7.1 Hz, 2H, H-C(5)), 6.56 (d, 

3J = 8.3 Hz, 2H, H-C(7)), 2.60 (s, 6H, H-C(14)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 185.03 (2C, C(3)), 152.93 (2C, C(7a)), 141.55 (2C, 

C(8)), 138.26 (2C, C(9)), 134.82 (2C, C(6)), 131.20 (2C, C(10)), 127.54 (2C, C(11)), 126.91 

(2C, C(12)), 126.40 (2C, C(2)), 123.55 (2C, C(13)), 123.46 (2C, C(4)), 121.69 (2C, C(3a)), 

121.49 (2C, C(5)), 111.73 (2C, C(7)), 18.97 (2C, C(14)). 

MS (EI+, 70 eV): m/z (%) = 444.2 (13), 443.2 (35), 442.2 (100), 413.2 (15), 397.2 (14), 335.1 

(10), 232.1 (18), 231.1 (53), 222.1 (11), 221.1 (12), 220.1 (10), 204.1 (17), 180.1 (14), 65.0 

(11). 

HRMS (EI+, C30H22N2O2): calcd.: 442.1681; found: 442.1677 (M+).  
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(trans)-N-(o-Tolyl)-N'-(p-tolyl)indigo (70) 

 

To a flame dried Schlenk flask, 1-(o-tolyl)-1H-indol-3-yl acetate 68 (0.050 g, 0.188 mmol, 

1.0 equiv.), 1-(p-tolyl)-1H-lindol-3-yl acetate 74 (0.050 g, 0.188 mmol, 1.0 equiv.), aq. sodium 

hydroxide solution (2.2 mL, 3.30 mmol, 1.5 M, 8.2 equiv., degassed) and dioxane (0.5 mL, 1 M, 

degassed) were added under N2 atmosphere. After stirring at 100 °C for 30 min and cooling of 

the reaction mixture to 23 °C, manganese(III) acetate (0.212 g, 0.79 mmol, 4.2 equiv.) was 

added. The suspension was stirred for 3 h at room temperature. Subsequently, the mixture was 

treated with aq. sat. ammonium chloride solution, filtered over celite, extracted with ethyl 

acetate and washed with brine. The combined organic layers were dried over sodium sulfate 

and evaporated to dryness in vacuo. The crude product was purified by flash column 

chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl 

acetate, 4 / 1, v / v) to yield crude (trans)-N-(o-tolyl)-N'-(p-tolyl)indigo 70 (0.019 g, 

0.043 mmol, 23%) as green-blueish solid. Further purification was carried out via preparative 

HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / 

water, 9 / 1, 15 mL/min, 35 °C column temperature, retention time: 7.5 min, 2.2 mg, 2% overall 

yield). 

Rf = 0.69 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.59 - 7.50 (m, 3H, H-C(4, 10')), 7.44 - 7.35 (m, 4H, 

H-C(4', 6, 6', 10)), 7.30 - 7.35 (m, 3H, H-C(9', 11)), 7.27 - 7.22 (m, 1H, H-C(12)), 7.18 (dd, 3J 

= 7.9 Hz, 4J = 1.3 Hz, 1H, H-C(13)), 7.03 - 6.96 (m, 3H, H-C(5, 5', 7')), 6.60 (dd, 3J = 8.2 Hz, 

4J = 0.8 Hz, 1H, H-C(7), 2.56 (s, 3H, H-C(14)), 2.43 (s, 3H, H-C(14')). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 184.92 (C(2)), 184.38 (C(2')), 153.63 (C(7a')), 

152.93 (C(7a)), 141.23 (C(11')), 139.81 (C(8)), 136.70 (C(11)), 135.80 (C(3a)), 134.89 (C(5)), 

134.83 (C(5')), 134.75 (C(6')), 134.69 (C(6)), 131.26 (2C, C(10')), 131.21 (C(12)), 129.80 

(C(4')), 129.75 (C(9)), 128.13 (C(2)), 127.66 (2C, C(9')), 126.79 (C(8')), 125.74 (C(10)), 124.46 
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(C(13)), 123.55 (C(4)), 123.49 (C(2')), 121.73 (C(3a')), 111.73 (C(7)), 111.70 (C(5')), 20.91 

(C(14)), 18.96 (C(12')). 

MS (EI+, 70 eV): m/z (%) = 443.2 (29), 425.2 (11), 413.2 (24), 397.2 (15), 232.1 (17), 231.1 

(55), 221.1 (15), 204.1 (17), 180.1 (11), 91.1 (10), 70.0 (12), 61.0 (14), 44.0 (28), 43.0 (83). 

HRMS (EI+, C30H22N2O2): calcd.: 442.1679; found: 442.1677 (M+). 

(trans)-7-Methyl-N-(o-tolyl)-N'-(p-tolyl)indigo (69) 

 

To a flame dried Schlenk flask, 1-(p-tolyl)-1H-indol-3-yl acetate 74 (0.050 g, 0.188 mmol, 

1.0 equiv.), 1-(o-tolyl)-1H-7-methylindol-3-yl acetate 19 (0.053 g, 0.188 mmol, 1.0 equiv.), aq. 

sodium hydroxide solution (2.2 mL, 3.30 mmol, 1.5 M, 8.2 equiv., degassed) and dioxane 

(0.5 mL, 1 M, degassed) were added under N2 atmosphere. After stirring at 100 °C for 30 min 

and cooling of the reaction mixture to 23 °C, manganese(III) acetate (0.212 g, 0.79 mmol, 

4.2 equiv.) was added. The suspension was stirred for 3 h at room temperature. Subsequently, 

the mixture was treated with aq. sat. ammonium chloride solution, filtered over celite, extracted 

with ethyl acetate and washed with brine. The combined organic layers were dried over sodium 

sulfate and evaporated to dryness in vacuo. The crude product was purified by flash column 

chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl 

acetate, 4 / 1, v / v) to yield crude (trans)-7-methyl-N-(o-tolyl)-N'-(p-tolyl)indigo 69 (0.027 g, 

0.060 mmol, 33%) as green-blueish solid. Further purification was carried out via preparative 

HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / 

water, 9 / 1, 15 mL/min, 35 °C column temperature, retention time: 10.0 min, 2.2 mg, 2% 

overall yield). 

Rf = 0.70 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 
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1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.61 (dd, 3J = 7.8 Hz, 4J = 1.3 Hz, 1H, H-C(13)), 

7.52 (dd, 3J = 7.7 Hz, 4J = 1.4 Hz, 1H, H-C(4')), 7.41 (dd, 3J = 7.6 Hz, 4J = 1.4 Hz, 1H, H-C(4)), 

7.39 - 7.33 (m, 5H, H-C(6', 9', 10, 11)), 7.31 - 7.28 (m, 2H, H-C(10')), 7.26 (m, 1H, H-C(12)), 

7.16 (dd, 3J = 7.3 Hz, 4J = 1.5 Hz, 1H, H-C(6)), 6.99 (dd, 3J = 7.4 Hz, 4J = 0.8 Hz, 1H, H-C(5')), 

6.94 (dd, 3J = 8.3 Hz, 4J = 0.8 Hz, 1H, H-C(7')), 6.90 (ddd, 3J = 7.4 Hz, 1H, H-C(5)), 2.40 (s, 

3H, H-C(12')), 2.35 (s, 3H, H-C(14)), 1.67 (s, 3H, H-C(15)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 184.80 (C(3')), 184.53 (C(3)), 153.49 (C(7a')), 

150.93 (C(7)), 141.93 (C(8)), 140.09 (C(8')), 139.14 (C(9)), 138.63 (C(6)), 136.69 (C(11')), 

134.58 (C(6')), 130.47 (C(10)), 129.66(2C, C(10')), 129.55 (C(13)), 128.53 (C(11)), 

128.52((C(2')), 126.66 (C(2)), 126.07 (2C, C(9')), 125.78 (C(12)), 123.44 (C(4')), 123.18 

(C(7a)), 122.55(C(3a)), 121.85 (C(3a')), 121.70 (C(4)), 121.70 (C(5')), 121.61 (C(5)), 111.46 

(C(7')), 20.86 (C(12')), 19.10 (C(14)), 17.88 (C(15)). 

MS (EI+, 70 eV): m/z (%) = 458.2 (14), 457.2 (38), 456.2 (100), 442.2 (13), 439.2 (21), 428.2 

(16), 427.2 (27), 413.2 (20), 411.2 (12), 245.1 (27), 236.1 (13), 228.1 (11), 223.1 (18), 61.0 

(11), 45.1 (14), 44.1 (19), 43.2 (88). 

HRMS (EI+, C31H24N2O2): calcd.: 456.1838; found: 456.1838 (M+). 

(trans)-7-Methyl-N,N'-di(o-tolyl)indigo (71) 

 

To a flame dried Schlenk flask, 1-(o-tolyl)-1H-indol-3-yl acetate 68 (0.050 g, 0.188 mmol, 

1.0 equiv.), 1-(o-tolyl)-1H-7-methylindol-3-yl acetate 19 (0.053 g, 0.188 mmol, 1.0 equiv.), aq. 

sodium hydroxide solution (2.2 mL, 3.30 mmol, 1.5 M, 8.2 equiv., degassed) and dioxane 

(0.5 mL, 1 M, degassed) were added under N2 atmosphere. After stirring at 100 °C for 30 min 

and cooling of the reaction mixture to 23 °C, manganese(III) acetate (0.212 g, 0.79 mmol, 

4.2 equiv.) was added. The suspension was stirred for 3 h at room temperature. Subsequently, 
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the mixture was treated with aq. sat. ammonium chloride solution, filtered over celite, extracted 

with ethyl acetate and washed with brine. The combined organic layers were dried over sodium 

sulfate and evaporated to dryness in vacuo. The crude product was purified by flash column 

chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl 

acetate, 4 / 1, v / v) to yield crude (trans)-7-methyl-N,N'-di(o-tolyl)indigo 71 (0.045 g, 

0.096 mmol, 51%) as green-blueish solid. Further purification was carried out via preparative 

HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / 

water, 9 / 1, 15 mL/min, 35 °C column temperature, retention time: 9.5 min, 4.0 mg, 5% overall 

yield). 

Rf = 0.70 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

Syn-trans-1 isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.52 (dd, 3J = 7.7 Hz, 4J = 1.0 Hz, 2H, H-C(4', 10')), 

7.47 (d, 3J = 7.7 Hz, 1H, H-C(10)), 7.42 - 7.38 (m, 1H, H-C(4)), 7.38 - 7.32 (m, 2H, H-C(6', 

11)), 7.30 - 7.26 (m, 1H, H-C(11')), 7.23 - 7.17 (m, 1H, H-C(12)), 7.18 - 7.13 (m, 2H, H-C(6, 

12')), 7.05 (dd, 3J = 7.9 Hz, 4J = 1.5 Hz, 1H, H-C(13)), 7.00 (m, 1H, H-C(5')), 6.92 - 6.86 (m, 

2H, H-C(5, 13')), 6.55 (dd, 3J = 8.2 Hz, 4J = 0.8 Hz, 1H, H-C(7')), 2.59 (s, 3H, H-C(14')), 2.58 

(s, 3H, H-C(14)), 1.68 (s, 3H, H-C(15)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 185.09 (C(3)), 184.86 (C(3')), 151.78 (C(7a)), 

150.61 (C(3a)), 142.21 (C(9)), 141.88 (C(9')), 138.77 (C(6)), 138.39 (C(8')), 138.03 (C(8)), 

137.65 (C(2)), 134.60 (C(6')), 134.46 (C(3a')), 131.27 (C(10')), 130.67 (C(10)), 128.76 (C(11)), 

127.66 (C(11')), 126.83 (C(12')), 126.50 (C(12)), 123.66 (C(13)), 123.36 (C(4')), 121.90 

(C(7a')), 121.76 (C(4)), 121.69 (C(5)), 121.65 (C(13')), 121.65 (C(2')), 121.56 (C(7)) 121.49 

(C(5')), 111.81 (C(7')), 19.74 (C(14)), 18.99 (C(14')), 17.59 (C(15). 

Anti-trans isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 8.21 (dd, 3J = 7.7 Hz, 4J = 1.7 Hz, 1H, H-C(13)), 

7.58 (dd, 3J = 7.7 Hz, 4J = 1.1 Hz, 1H, H-C(4')), 7.47 (d, 3J = 7.7 Hz, 1H, H-C(10')), 7.38 - 7.32 

(m, 2H, H-C(6', 12)), 7.31 (dd, 3J = 7.5 Hz, 4J = 1.2 Hz, 1H, H-C(11)), 7.30 - 7.26 (m, 2H, H-

C(5, 11')), 7.23 - 7.17 (m, 3H, H-C(4, 10, 12')), 7.16 (dd, 3J = 8.2 Hz, 4J = 1.5 Hz, 1H, H-C(6)), 

7.05 (dd, 3J = 7.9 Hz, 4J = 1.5 Hz, 1H, H-C(13')), 7.00 (dd, 3J = 7.4 Hz, 4J = 0.9 Hz, 1H, H-

C(5')), 6.52 (dd, 3J = 8.2 Hz, 4J = 0.8 Hz, 1H, H-C(7')), 2.51 (s, 3H, H-C(14')), 1.99 (s, 3H, H-

C(14)), 1.64 (s, 3H, H-C(15)). 
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13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 185.16 (C(3)), 184.76 (C(3')), 151.79 (C(7)), 141.72 

(C(9)), 141.06 (C(9')), 141.05 (C(2')), 138.38 (C(6)), 137.65 (C(8')), 136.24 (C(8)), 134.82 

(C(3a')), 134.45 (C(13)), 131.27 (C(10')), 130.59 (C(11)), 130.24 (C(4)), 128.77 (C(2)), 128.66 

(C(12)), 127.65 (C(11')), 127.64 (C(5)), 126.50 (C(10)), 126.10 (C(12')), 125.41 (C(13')), 

125.24 (C(3a)), 123.80 (C(7a)), 123.47 (C(4')), 121.56 (C(5')), 121.48 (C(7a')) 121.44 (C(6')), 

111.64 (C(7')), 18.98 (C(14')), 18.45 (C(15)), 18.10 (C(14).  

MS (EI+, 70 eV): m/z (%) = 458.2 (19), 457.2 (38), 456.2 (100), 442.2 (11), 427.2 (11), 349.1 

(13), 245.1 (30), 236.1 (19), 232.1 (13), 231.1 (34), 223.1 (25), 220.1 (13), 209.1 (15), 206.1 

(10), 205.1 (11), 204.1 (17), 194.1 (17), 180.1 (18), 91.1 (13), 69.1 (11), 65.0 (18), 57.1 (18), 

55.1 (11), 44.0 (19), 43.1 (17), 43.0 (49). 

HRMS (EI+, C31H24N2O2): calcd.: 456.1838; found: 456.1836 (M+). 

(trans)-1-(4-methoxy-2-methylphenyl)-1'-(o-tolyl)-[2,2'-biindolinylidene]-3,3'-dione (72) 

 

A flame dried, N2-flushed Schlenk flask is charged with 1-(o-tolyl)-1H-indol-3-yl acetate 68 

(0.021 g, 0.078 mmol, 1.0 equiv.), 1-(4-methoxy-2-methylphenyl)-1H-indol-3-yl acetate 75 

(0.023 g, 0.0.78 mmol, 1.0 equiv.), aq. sodium hydroxide solution (0.42 mL, 8.2 equiv. 1.5 M, 

degassed) and dioxane (0.2 mL, 0.3 M, degassed). The contents were stirred at 100 °C for 

15 min, then manganese(III) acetate (0.038 g, 0.163 mmol, 2.1 equiv.) was added. The mixture 

was cooled to 23 ºC and stirred for 2 h. The reaction was stopped with a sat. aq. ammonium 

chloride solution, filtered through celite and extracted with ethyl acetate. The combined organic 

layers were dried over sodium sulfate. The mixture was filtrated and the solvents were removed 

in vacuo. Purification by flash column chromatography (aluminium(III) oxide, Brockmann III, 

6% water, w / w, hexanes / ethyl acetate, 9 / 1, v / v) yielded crude (trans)-1-(4-methoxy-2-

methylphenyl)-1'-(o-tolyl)-[2,2'-biindolinylidene]-3,3'-dione 72 (0.011 g, 0.023 mmol, 30%) as 

blue solid. Purification via reversed phase- and chiral normal phase HPLC was not able to 



3.6   OXIDATIVE DIMERIZATION OF ARYLATED INDOXYL ACETATES 

476 

separate axially chiral disubstituted indigo 64 without the para-methoxy group, product 72 and 

the bis-para-methoxy derivative 76. 

Rf = 0.16 (silica, hexanes / ethyl acetate, 9 / 1, v / v). 

m.p. (°C): 303 (decomposition). 

IR (Diamond ATR): 𝜈 (cm-1) = 2956 (m), 2921 (m), 2851 (m), 2388 (w), 2176 (w), 1987 (w), 

1740 (m), 1659 (m), 1600 (m), 1499 (m) 1461 (m), 1375 (m), 1319 (m), 1295 (m), 1257 (m), 

1239 (m), 1182 (m), 1092 (m), 1039 (s), 923 (m), 908 (m), 854 (m), 840 (m), 797 (s), 749 (s), 

718 (m), 698 (m). 

MS (EI+, 70 eV): m/z (%) = 472.2 (100), 443.2 (26), 442.2 (47), 427.2 (12), 335.1 (13), 262.1 

(14), 261.1 (38), 236.1 (26), 233.1 (11), 232.1 (16), 231.1 (41), 221.1 (13), 220.1 (21), 204.1 

(25), 203.1 (12), 192.1 (13), 191.1 (11), 190.1 (14), 180.1 (18), 167.1 (11), 165.1 (14), 91.1 

(16), 77.0 (14), 69.1 (13), 57.1 (17), 55.1 (13), 44.0 (45), 43.0 (17), 41.0 (13). 

HRMS (EI+, C31H24N2O3): calcd.: 472.1787; found: 472.1797 (M+). 

(trans)-1-(4-fluoro-2-methylphenyl)-1'-(o-tolyl)-[2,2'-biindolinylidene]-3,3'-dione (73) 

 

A flame dried, N2-flushed Schlenk flask is charged with 1-(o-tolyl)-1H-indol-3-yl acetate 68 

(0.059 g, 0.222 mmol, 1.0 equiv.), 1-(4-fluoro-2-methylphenyl)-1H-indol-3-yl acetate 77 

(0.063 g, 0.222 mmol, 1.0 equiv.), aq. sodium hydroxide solution (1.21 mL, 8.2 equiv., 1.5 M, 

degassed) and dioxane (0.6 mL, 0.3 M, degassed). The contents were stirred at 100 °C for 

15 min, then manganese(III) acetate (0.108 g, 0.465 mmol, 2.1 equiv.) was added. The mixture 

was cooled to 23 ºC and stirred for 2 h. The reaction was stopped with a sat. aq. ammonium 

chloride solution, filtered thorough celite and extracted with ethyl acetate. The combined 

organic layers were dried over sodium sulfate. The mixture was filtrated and the solvents were 

removed in vacuo. Purification by flash column chromatography (aluminium(III) oxide, 
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Brockmann III, 6% water, w / w, hexanes / ethyl acetate, 9 / 1, v / v) yielded (trans)-1-(4-fluoro-

2-methylphenyl)-1'-(o-tolyl)-[2,2'-biindolinylidene]-3,3'-dione 73 (0.053 g, 0.115 mmol, 52%) 

as blue solid. Further purification was carried out via preparative HPLC (Machery-Nagel VP 

250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / water 6 / 4, v / v, 15 mL/min, 

35 °C column temperature, retention time: 59.0 min with 18% yield. 

Rf = 0.25 (silica, hexanes / ethyl acetate, 9 / 1, v / v). 

m.p. (°C): 301 (decomposition). 

Syn- / anti-trans isomers: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 7.55 - 7.52 (m, 3H, H-C(4, 4’, 10)), 7.41 - 7.37 (m, 

2H, H-C(6, 6’)), 7.31 (ddd, 3J = 7.5 Hz, 3J = 7.5 Hz, 4J = 1.3 Hz, 1H, H-C(11)), 7.25 (dd, 3J = 

9.5 Hz, 4J = 3.0 Hz, 1H, H-C(10’)), 7.18 (ddd, 3J = 7.6 Hz, 3J = 7.6 Hz, 4J = 1.5 Hz, 1H, H-

C(12)), 7.05 - 7.02 (m, 2H, H-C(13, 13’)), 7.02 - 6.99 (m, 2H, H-C(5, 5’)), 6.89 (dd, 3J = 8.3 Hz, 

4J = 3.0 Hz, 1H, H-C(12’)), 6.58 - 6.54 (m, 2H, H-C(7, 7’)), 2.60 (s, 5H, H-C(syn 14, syn 14’)), 

2.31 (s, 0.5 H, H-C(anti 14, anti 14’)), 2.29 (s, 0.5 H, H-C(anti 14, anti 14’)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 185.73 (C(3)), 185.45 (C(3’)), 161.96 (d, 1J = 

248.6 Hz, 1C, (11’)), 153.59 (C(7a)), 153.48 (C(7a’)), 142.07 (C(8)), 141.68 (d, 3J = 8.8 Hz, 

1C, C(9’)), 138.88 (C(9)), 138.13 (C(8)), 135.57 (C(6)), 135.52 (C(6’)), 131.85 (C(10)), 128.81 

(C(2)), 128.72 (C(2’)), 128.21 (C(11)), 127.53 (C(12)), 125.75 (d, 3J = 8.8 Hz, 1C, C(13’)), 

124.13 (C(4)), 124.11 (C(13)), 124.08 (C(4’)), 122.28 (C(3a)), 122.24 (C(5)), 122.22 (C(3a’)), 

122.20 (C(5’)), 118.18 (d, 2J = 22.4 Hz, 1C, C(10’)), 114.21 (d, 2J = 22.8 Hz, 1C, C(12’)), 

112.37 (C(7)), 112.16 (C(7’)), 19.79 (C(syn 14)), 19.58 (C(syn 14’)), 19.42 (C(anti 14)), 19.39 

(C(anti 14’)). 

19F-NMR (377 MHz, CD2Cl2): δ (ppm) = -115.07 (ddd, 3J = 9.4 Hz, 3J = 8.0 Hz, 4J = 5.3 Hz, 

anti), -115.16 (ddd, 3J = 9.4 Hz, 3J = 8.0 Hz, 4J = 5.3 Hz, syn). 

IR (Diamond ATR): 𝜈 (cm-1) = 2922 (m), 2852 (m), 2179 (w), 2026 (w), 1987 (w), 1951 (w), 

1738 (w), 1660 (m), 1600 (m), 1538 (w), 1494 (m), 1461 (m), 1375 (m), 1332 (m), 1296 (s), 

1256 (m), 1231 (m), 1183 (s), 1144 (m), 1092 (m), 1050 (s), 1013 (m), 959 (m), 933 (m), 916 

(m), 852 (m), 814 (m), 763 (m), 749 (s), 720 (m), 697 (m), 665 (m). 

MS (EI+, 70 eV): m/z (%) = 460.2 (17), 125.1 (14), 123.1 (15), 111.1 (28), 109.1 (23), 97.1 

(43), 96.1 (17), 95.1 (34), 85.1 (35), 83.1 (50), 82.1 (17), 81.1 (39), 72.0 (23), 71.1 (54), 70.1 
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(22), 69.1 (68), 68.1 (13), 67.1 (28), 59.0 (35), 57.1 (100), 56.1 (28), 55.1 (83), 43.1 (99), 42.1 

(14), 41.1 (57). 

HRMS (EI+, C30H21FN2O2): calcd.: 460.1587; found: 460.1590 (M+). 
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3.7 Late stage substitutions at the indoxyl-nitrogen 

Introduction of various substituents at the hemiindigo nitrogen was furnished via SN2 reactions 

(Section 2.2.3, Scheme 9), Buchwald-Hartwig cross-couplings (Section 2.2.6, Scheme 10) or 

4-dimethylaminopyridine (DMAP) catalyzed acylation reactions (Section 2.2.2, Scheme 6). 

3.7.1 N-Alkylations - SN2 reactions 

Scheme 9 for alkylation reactions can be found in Section 2.2.3. 

(Z/E)-2-(4-(methoxy)benzylidene)-1-propylindolin-3-one (7) 

 

A flame dried, nitrogen -flushed round bottom flask, equipped with a magnetic stirring bar was 

charged with sodium hydride (0.030 g, 0.758 mmol, 1.5 equiv., 60% w / w in paraffin oil), (Z)-

2-(4-methoxybenzylidene)indolin-3-one 9 (0.127 g, 0.505 mmol, 1.0 equiv.) and dimethyl-

formamide (1 mL, 0.5 M).The formed deep green solution was stirred at 23 °C for 15 min. 

1-Iodopropane (0.103 g, 0.606 mmol, 1.2 equiv.) was added dropwise and it was stirred at 

23 °C for 5 min until an orange solution emerged. The reaction was terminated with sat. aq. 

ammonium chloride solution, extracted with ethyl acetate, treated with sat. aq. sodium bisulfite 

solution and washed ten times with water. The combined organic layers were dried over sodium 

sulfate. Removal of the solvents in vacuo after filtration and subsequent purification by flash 

column chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / 

ethyl acetate, 9 / 1, v / v), yielded crude (Z/E)-2-(4-methoxybenzylidene)-1-propylindolin-3-

one 7 (0.147 g, 0.501 mmol, 99%) as orange solid. Further purification was carried out via 

preparative HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, 

acetonitrile / water, 7 / 3, v / v, 15 mL/min, 35 °C column temperature, retention times: 9.1 min 

(Z isomer) and 10.2 min (E isomer)) with 77% overall yield. 

Rf = 0.61 (silica, hexanes / ethyl acetate, 4 / 1, v / v) 

m.p. (°C): 92 - 93. 
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Z isomer: 

1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.73 (d, 3J = 7.7 Hz, 1H, H-C(6)), 7.48 (ddd, 3J = 

8.4 Hz, 3J = 7.3 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 7.39 - 7.34 (m, 2H, H-C(12)), 7.02 (s, 1H, H-

C(10)), 6.99 (d, 3J = 8.3 Hz, 1H, H-C(3)), 6.96 - 6.90 (m, 3H, H-C(5), H-C(13)), 3.86 (s, 3H, 

H-C(15)), 3.74 (t, 3J = 7.69 Hz, 2H, H-C(16)), 1.33 (sext, 3J = 7.69 Hz, 2H, H-C(17)), 0.57 (t, 

3J = 7.5 Hz, 3H, H-C(18)). 

13C-NMR (101 MHz, CDCl3): δ (ppm) = 187.54 (C(8)), 159.63 (C(14)), 156.14 (C(2)), 136.67 

(C(9)), 135.97 (C(4)), 131.79 (2C, C(12)), 126.88 (C(11)), 125.01 (C(6)), 122.54 (C(7)), 119.96 

(C(5)), 113.90 (2C, C(13)), 113.56 (C(10)), 111.03 (C(3)), 55.48 (H-C(15)), 46.69 (H-C(16)), 

20.20 (H-C(17)), 11.24 (H-C(18)). 

E isomer: 

1H-NMR (400 MHz, CDCl3): δ (ppm) = 8.12 - 8.07 (m, 2H, H-C(12)), 7.67 (d, 3J = 7.7 Hz, 

1H, H-C(6)), 7.44 (ddd, 3J = 8.4 Hz, 3J = 7.2 Hz, 4J = 1.4 Hz, 1H, H-C(4)) 6.96 - 6.90 (m, 2H, 

H-C(13)), 6.87 (d, 3J = 8.3 Hz, 1H, H-C(3)), 6.83 (ddd, 3J = 7.7 Hz, 3J = 7.2 Hz, 4J = 0.7 Hz, 

1H, H-C(5)), 6.34 (s, 1H, H-C(10)), 3.86 (s, 3H, H-C(15)), 3.62 (t, 3J = 7.3 Hz, 2H, H-C(16)), 

1.78 (sext, 3J = 7.3 Hz, 2H, H-C(17)), 1.02 (t, 3J = 7.5 Hz, 3H, H-C(18)). 

13C-NMR (101 MHz, CDCl3): δ (ppm) = 184.68 (C(8)), 160.30 (C(14)), 152.51 (C(2)), 135.78 

(C(4)), 135.63 (C(9)), 132.23 (2C, C(12)), 126.95 (C(11)), 124.86 (C(6)), 121.38 (C(7)), 118.59 

(C(5)), 117.70 (C(10)), 113.67 (2C, H-C(13)), 108.74 (C(3)), 55.48 (H-C(15)), 44.17 (H-

C(16)), 20.94 (H-C(17)), 11.86 (H-C(18)). 

IR (Diamond ATR): 𝜈 (cm-1) = 2966 (w), 2935 (w), 2874 (w), 2361 (w), 1693 (m), 1629 (m), 

1600 (s), 1582 (m), 1569 (m), 1508 (m), 1474 (s), 1456 (m), 1417 (w), 1386 (m), 1366 (m), 

1345 (s), 1311 (m), 1301 (m), 1289 (m), 1259 (s), 1245 (s), 1173 (s), 1156 (m), 1128 (s), 1109 

(m), 1109 (m), 1095 (s), 1051 (s), 1021 (s), 966 (m), 909 (m), 887 (w), 859 (s), 843 (s), 829 (s), 

812 (s), 779 (w), 750 (s), 702 (s), 674 (m). 

MS (EI+, 70 eV): m/z (%) = 294.2 (19), 293.1 (100), 292.1 (13), 265.1 (16), 264.1 (88), 221.1 

(10), 220.1 (11). 

HRMS (EI+, C19H19NO2): calcd.: 293.1411; found: 293.1416 (M+). 

EA (C19H19NO2): calcd.: N, 4.77; C, 77.79; H, 6.53; found: N, 4.77; C, 77.62; H, 6.56. 
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(E)-2-(4-(dimethylamino)benzylidene)-1-propylindolin-3-one (8) 

  

A flame dried, nitrogen-flushed round bottom flask, equipped with a magnetic stirring bar was 

charged with sodium hydride (0.03 g, 0.76 mmol, 1.5 equiv., 60% w / w in paraffin oil), (Z)-2-

(4-(dimethylamino)benzylidene)indolin-3-one 11 (0.13 g, 0.50 mmol, 1.0 equiv.) and 

dimethylformamide (1.00 mL, 0.5 M). The solution was stirred at 23 °C for 15 min. 

1-Iodopropane (0.10 g, 0.60 mmol, 1.2 equiv.) was added dropwise and it was stirred at 23 °C 

for 5 min until a red solution emerged. The reaction was terminated with sat. aq. ammonium 

chloride solution, extracted with ethyl acetate, treated with sat. aq. sodium bisulfite solution, 

washed ten times with water and once with sat. aq. sodium chloride solution. The combined 

organic layers were dried over sodium sulfate. Removal of the solvents in vacuo after filtration 

and subsequent purification by flash column chromatography (aluminium(III) oxide, 

Brockmann III, 6% water, w / w), hexanes / ethyl acetate 9 / 1) yielded (E)-2-(4-

(dimethylamino)benzylidene)-1-propylindolin-3-one 8 (0.142 g, 0.463 mmol, 92%) as deep 

violet crystals. 

Rf = 0.45 (silica, hexanes / ethyl acetate, 4 / 1, v / v) 

m.p. (°C): 105 - 106. 

Z isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 7.66 (d, 3J = 7.5 Hz, 1H, H-C(6)), 7.49 (ddd, 3J = 

8.0 Hz, 3J = 7.0 Hz, 4J = 1.1 Hz, 1H, H-C(4)), 7.37 - 7.34 (m, 2H, H-C(12)), 7.08 (d, 3J = 8.3 Hz, 

1H, H-C(3)), 6.96 (s, 1H, H-C(10)), 6.94 - 6.92 (m, 1H, H-C(5)), 6.75 - 6.73 (m, 2H, H-C(13)), 

3.73 (t, 3J = 7.6 Hz, 2H, H-C(16)), 3.02 (s, 6H, H-C(15)), 1.35 (sext, 3J = 7.3 Hz, 2H, H-C(17)), 

0.59 (t, 3J = 7.5 Hz, 3H, H-C(18)). 
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13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 187.29 (C(8)), 156.46 (C(2)), 150.87 (C(14)), 

134.66 (C(4)), 133.97 (C(9)), 132.62 (2C, C(12)), 124.73 (C(6)), 123.59 (C(7)), 121.96 (C(11)), 

120.13 (C(5)), 115.79 (C(10)), 112.11 (2C, C(13)), 112.04 (C(3)), 47.49 (C(16)), 40.54 (2C, 

C(15)), 20.62 (C(17)), 11.52 (C(18)). 

E isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 8.17 - 8.14 (m, 2H, H-C(12)), 7.63 (d, 3J =7.5 Hz, 

1H, H-C(6)), 7.43 (ddd, 3J = 8.3 Hz, 3J = 7.3 Hz, 4J = 1.2 Hz, 1H, H-C(4)), 6.92 - 6.90 (m, 1H, 

H-C(3)), 6.81 (ddd, 3J = 7.5 Hz, 3J = 7.2 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 6.73 - 6.70 (m, 2H, H-

C(13)), 6.39 (s, 1H, H-C(10)), 3.77 (t, 3J = 7.4 Hz, 2H, H-C(16)), 3.06 (s, 6H, H-C(15)), 1.76 

(sext, 3J = 7.5 Hz, 2H, H-C(17)), 1.00 (t, 3J = 7.4 Hz, 3H, H-C(18)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 184.13 (C(8)), 152.25 (C(2)), 151.51 (C(14)), 

135.76 (C(9)), 135.45 (C(4)), 132.80 (2C, C(12)), 124.62 (C(6)), 122.98 (C(11)), 121.90 (C(7)), 

120.20 (C(10)), 118.36 (C(5)), 111.74 (2C, C(13)), 109.27 (C(3)), 44.53 (C(16)), 40.50 (2C, 

C(15)), 21.48 (C(17)), 11.96 (C(18)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3854 (w), 2958 (m), 2922 (m), 2852 (m), 2361 (w), 1663 (s), 

1603 (s), 1554 (s), 1524 (s), 1524 (s), 1472 (s), 1409 (w), 1360 (s), 1317 (s), 1293 (m), 1263 

(m), 1228 (m), 1208 (s), 1188 (s), 1153 (s), 1124 (s), 1095 (s), 1064 (m), 1049 (s), 1024 (m), 

972 (s), 946 (m), 906 (m), 894 (m), 880 (s), 848 (m), 818 (s), 743 (s), 716 (s), 703 (s). 

MS (EI+, 70 eV): m/z (%) = 307.2 (28), 306.2 (100), 305.2 (13), 277.1 (52), 264.1 (11), 263.1 

(38), 248.1 (16), 247.1 (14), 233.1 (15), 232.1 (17), 220.0 (15), 159.0 (14), 138.0 (10). 

HRMS (EI+, C20H22N2O): calcd.: 306.1732; found: 306.1726 (M+). 

EA (C20H22N2O): calcd.: N, 9.14; C, 78.40; H, 7.24; found: N, 8.81; C, 78.48; H, 7.24.  
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(Z/E)-1-propyl-2-((2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-

yl)methylene)indolin-3-one (3) 

 

A flame dried, nitrogen-flushed round bottom flask, equipped with a magnetic stirring bar was 

charged with sodium hydride (0.03 g, 0.76 mmol, 1.5 equiv., 60% w / w in paraffin oil), (Z)-2-

((2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)indolin-3-one 15 (0.16 g, 

0.50 mmol, 1.0 equiv.) and dimethylformamide (4.00 mL, 0.13 M). The solution was stirred at 

23 °C for 15 min. 1-Iodopropane (0.10 g, 0.60 mmol, 1.2 equiv.) was added dropwise and it 

was stirred at 23 °C for 5 min until a violet solution emerged. The reaction was terminated with 

sat. aq. ammonium chloride solution, extracted with ethyl acetate, treated with sat. aq. sodium 

bisulfite solution, washed ten times with water and once with sat. aq. sodium chloride solution. 

The combined organic layers were dried over sodium sulfate. Removal of the solvents in vacuo 

after filtration and subsequent purification by flash column chromatography (aluminium(III) 

oxide, Brockmann III, 6% water w / w), hexanes / ethyl acetate, 9 / 1, v / v) yielded (Z/E)-1-

propyl-2-((2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)indolin-3-one 3 

(0.105 g, 0.291 mmol, 87%) as deep violet solid. Further purification was carried out via 

preparative HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, 

acetonitrile / water 7 / 3, v / v, 15 mL/min, 35 °C column temperature, retention times: 25.5 min 

(E isomer) with 38% yield. Recrystallization from dichloromethane / ethyl acetate / heptane, 

~5 / 15 / 80, v / v / v, yielded deep violet crystals. 

Rf = 0.42 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

m.p. (°C): 160 - 161.  
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Z isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.65 (d, 3J = 7.2 Hz, 1H, H-C(6)), 7.48 (ddd, 3J = 

8.4 Hz, 3J = 7.2 Hz, 4J = 1.7 Hz, 1H, H-C(4)), 7.09 (d, 3J = 8.5 Hz, 1H, H-C(3)), 6.94 - 6.91 (m, 

3H, H-C(5), H-C(12)), 6.88 (s, 1H, H-C(10)), 3.78 - 3.71 (m, 2H, H-C(18)), 3.26 - 3.21 (m, 4H, 

H-C(15)), 2.79 - 2.74 (m, 4H, H-C(17)), 1.99 - 1.94 (m, 4H, H-C(16)), 1.42 (sext, 3J = 7.7 Hz, 

2H, H-C(19)), 0.63 (t, 3J = 7.5 Hz, 3H, H-C(20)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 187.05 (C(8)), 156.38 (C(2)), 143.89 (C(14)), 

135.57 (C(9)), 135.43 (C(4)), 130.55 (2C, C(12)), 124.58 (C(6)), 123.88 (C(7)), 121.36 (2C, 

C(13)), 120.82 (C(11)), 120.06 (C(5)), 116.98 (C(10)), 112.21 (C(3)), 50.48 (2C, C(15)), 47.83 

(C(18)), 28.24 (2C, C(17)), 22.34 (2C, C(16)), 20.87 (C(19)), 11.61 (C(20)). 

E isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.80 (s, 2H, H-C(12)), 7.62 (d, 3J = 7.8 Hz, 1H, H-

C(6)), 7.41 (ddd, 3J = 8.3 Hz, 3J = 7.1 Hz, 4J = 1.0 Hz, 1H, H-C(4)), 6.92 - 6.90 (m, 1H, H-

C(3)), 6.79 (dd, 3J = 7.5 Hz, 3J = 7.3 Hz, 1H, H-C(5)), 6.31 (s, 1H, H-C(10)), 3.78 - 3.71 (m, 

2H, H-C(18)), 3.26 - 3.21 (m, 4H, H-C(15)), 2.79 - 2.74 (m, 4H, H-C(17)), 1.99 - 1.94 (m, 4H, 

H-C(16)), 1.74 (sext, 3J = 7.7 Hz, 2H, H-C(19)), 0.98 (t, 3J = 7.5 Hz, 3H, H-C(20)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 183.52 (C(8)), 151.73 (C(2)), 144.78 (C(14)), 

135.02 (C(4)), 133.92 (C(9)), 130.70 (2C, C(12)), 124.45 (C(6)), 122.08 (C(11)), 121.99 (C(7)), 

121.54 (C(10)), 120.89 (2C, C(13)), 118.11 (C(5)), 109.23 (C(3)), 50.56 (2C, C(15)), 44.50 

(C(18)), 28.32 (2C, C(17)), 22.42 (2C, C(16)), 21.55 (C(19)), 11.96 (C(20)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3058 (w), 2925 (s), 2873 (m), 2841 (m), 2128 (w), 1941 (w), 

1625 (s), 1600 (s), 1565 (w), 1528 (s), 1509 (s), 1480 (s), 1461 (s), 1431 (s), 1357 (s), 1306 (s), 

1268 (s), 1258 (s), 1207 (m), 1173 (s), 1156 (s), 1125 (s), 1088 (s), 1044 (s), 1030 (s), 1006 (s), 

953 (s), 921 (s), 900 (s), 862 (m), 833 (m), 748 (s), 720 (s), 703 (s). 

MS (EI+, 70 eV): m/z (%) = 359.2 (31), 358.2 (100), 287.1 (29). 

HRMS (EI+, C24H26N2O): calcd.: 358.2045; found: 358.2041 (M+). 

EA (C24H26N2O): calcd.: N, 7.81; C, 80.41; H, 7.31; found: N, 7.58; C, 80.41; H, 7.61.  
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(Z/E)-2-(4-methoxy-2,3,6-trimethylbenzylidene)-1-propylindolin-3-one (28) 

 

A flame dried, nitrogen-flushed round bottom flask, equipped with a magnetic stirring bar was 

charged with sodium hydride (0.03 g, 0.76 mmol, 1.5 equiv., 60% w / w in paraffin oil), (Z)-2-

(4-methoxy-2,3,6-trimethylbenzylidene)indolin-3-one 27 (0.149 g, 0.51 mmol, 1.0 equiv.) and 

dimethylformamide (4.00 mL, 0.13 M). The solution was stirred at 23 °C for 15 min. 

1-Iodopropane (0.104 g, 0.61 mmol, 1.2 equiv.) was added dropwise and it was stirred at 23 °C 

for 5 min until a yellow solution emerged. The reaction was terminated with sat. aq. ammonium 

chloride solution, extracted with ethyl acetate, treated with sat. aq. sodium bisulfite solution, 

washed ten times with water and once with brine. The combined organic layers were dried over 

sodium sulfate. Removal of the solvents in vacuo after filtration and subsequent purification by 

flash column chromatography (aluminium(III) oxide, Brockmann III, 6% water w / w), hexanes 

/ ethyl acetate, 9 / 1, v / v) yielded (Z/E)-2-(4-methoxy-2,3,6-trimethylbenzylidene)-1-

propylindolin-3-one 28 (0.152 g, 0.453 mmol, 89%) as yellow solid.  

Rf = 0.29 (silica, hexanes / ethyl acetate, 9 / 1, v / v). 

Z isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = (d, 3J = 7.6 Hz, 1H, H-C(6), 7.47 (dd, 3J = 7.5 Hz, 

7.5 Hz, 1H, H-C(4)), 6.90 (dd, 3J = 8.0 Hz, 3J = 8.0 Hz, 1H, H-C(5)), 6.88 (dd, 3J = 8.0 Hz, 3J 

= 8.0 Hz, 1H, H-C(3)), 6.64 (s, 1H, H-C(10)), 6.59 (s, 1H, H-C(15)), 3.86 (s, 3H, H-C(19)), 

3.25 - 3.16 (m, 2H, H-C(21)) 2.57 (s, 3H, H-C(20)), 2.51 (s, 3H, H-C(17)), 2.14 (s, 3H, H-

C(18)), 1.18 (sext, 3J = 7.3 Hz, 2H, H-C(22)), 0.43 (t, 3J = 7.4 Hz, 3H, H-C(23)). 

MS (EI+, 70 eV): m/z (%) = 258.1 (11), 145.6 (13). 

HRMS (EI+, C22H25NO2): calcd.: 335.1885; found: 335.1879 (M+).  
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(Z/E)-1-(sec-butyl)-2-(4-methoxy-2,3,6-trimethylbenzylidene)indolin-3-one (58) 

 

A flame dried, nitrogen-flushed round bottom flask, equipped with a magnetic stirring bar was 

charged with sodium hydride (0.033 g, 0.793 mmol, 1.5 equiv., 60% w / w in paraffin oil), (Z)-

2-(4-methoxy-2,3,6-trimethylbenzylidene)indolin-3-one 27 (0.155 g, 0.53 mmol, 1.0 equiv.) 

and dimethylformamide (4.5 mL, 0.13 M). The solution was stirred at 23 °C for 15 min. 

2-Iodobutane (0.117 g, 0.61 mmol, 1.2 equiv.) was added and it was stirred at 60 °C for 15 h. 

The reaction was terminated with sat. aq. ammonium chloride solution, extracted with ethyl 

acetate, treated with sat. aq. sodium bisulfite solution, washed ten times with water and once 

with brine. The combined organic layers were dried over sodium sulfate. Removal of the 

solvents in vacuo after filtration and subsequent purification by flash column chromatography 

(aluminium(III) oxide, Brockmann III, 6% water w / w), hexanes / ethyl acetate, 9 / 1, v / v) 

yielded (Z/E)-1-(sec-butyl)-2-(4-methoxy-2,3,6-trimethylbenzylidene)indolin-3-one 58 

(0.035 g, 0.099 mmol, 19%) as yellow solid. Further purification was carried out via preparative 

HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / water 

8 / 2, v / v, 15 mL/min, 35 °C column temperature, retention times: 11.5 min (E isomer, 8.0 mg), 

13.5 min (Z isomer, 16 mg) with 13% overall yield. 

Rf = 0.30 (silica, hexanes / ethyl acetate, 9/ 1, v / v). 

Z isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.68 (dd, 3J = 7.6 Hz, 3J = 1.3 Hz, 1H, H-C(6)), 7.42 

(ddd, 3J = 8.4 Hz, 3J = 7.2 Hz, 3J = 1.4 Hz, 1H, H-C(4)), 7.05 (d, 3J = 8.7 Hz, 1H, H-C(3)), 6.89 

(dd, 3J = 7.4 Hz, 3J = 7.4 Hz, 1H, H-C(5)), 6.85 (s, 0.5H, H-C(10)), 6.84 (s, 0.5H, H-C(10*)), 

6.65 (s, 1H, H-C(15)), 3.83 (s, 3H, H-C(19)), 3.56 - 3.47 (m, 1H, H-C(21)), 2.23 (s, 3H, H-

C(18)), 2.19 (s, 3H, H-C(17)), 2.14 (s, 1.5 H, H-C(18)) 2.13 (s, 1.5H, H-C(18*)), 1.82 - 1.72 
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(m, 1H, H-C(22)), 1.55 - 1.45 (m, 1H, H-C(22*)), 1.24 - 1.19 (m, 3H, H-C(24)), 0.57 (t, 3J = 

6.4 Hz, 1.5H, H-C(23)), 0.54 (t, 3J = 6.4 Hz, 1.5H, H-C(23*)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 186.63 (0.5C, C(8)), 186.60 (0.5C, C(8*)), 157.59 

(0.5C, C(14)), 157.58 (0.5C, C(14*)), 154.24 (0.5C, C(2)), 154.22 (0.5C, C(2*)), 139.55 (0.5C, 

C(9)), 139.43 (0.5C, C(9*)), 136.45 (0.5C, C(16)), 136.33 (0.5C, C(16*)), 136.06 (0.5C, C(4)), 

136.04 (0.5C, C(4*)), 134.75 (0.5C, C(12)), 134.72 (0.5C, C(12*)), 126.13 (0.5C, C(11)), 

126.11 (0.5C, C(11*)), 125.19 (C(6)), 123.38 (0.5C, C(3)), 123.37 (0.5C, C(3*)), 123.02 (0.5C, 

C(13)), 123.00 (0.5C, C(13*)), 119.68 (C(5)), 113.46 (0.5C, C(3)), 113.44 (0.5C, C(3*)), 

112.22 (0.5C, C(10)), 112.15 (0.5C, C(10*)), 110.11 (0.5C, C(15)), 110.09 (0.5C, C(15*)), 

55.98 (0.5C, C(19)), 55.97 (0.5C, C(19*)), 54.20 (0.5C, C(21)), 54.16 (0.5 C(21)) 27.78 (0.5C, 

C(22*)), 27.71 (0.5C, C(22)), 21.35 (0.5C, C(20)), 21.30 (0.5C, C(20*)), 18.68 (0.5C, C(24)), 

18.60 (0.5C, C(24*)), 18.02 (0.5C, C(17)), 18.01 (0.5C, C(17*)), 12.00 (0.5C, C(18)), 11.91 

(0.5C, C(18*)), 11.83 (0.5C, C(23)), 11.76 (0.5C, C(23*)). 

E isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.50 (dd, 3J = 7.8 Hz, 1.2 Hz, 1H, H-C(6)), 7.43 (ddd, 

3J = 8.5 Hz, 3J = 7.2 Hz, 3J = 1.5 Hz, 1H, H-C(4)), 7.03 (d, 3J = 8.3 Hz, 1H, H-C(2)), 6.78 (ddd, 

3J = 7.4 Hz, 3J = 7.4 Hz, 3J = 0.7 Hz, 1H, H-C(5)), 6.64 (s, 1H, H-C(15)), 6.44 (s, 1H, H-C(10)), 

4.23 - 4.13 (m, 1H, H-C(21)), 3.83 (s, 3H, H-C(19)), 2.21 - 2.10 (m, 1H, H-C(22)), 2.19 (s, 3H, 

H-C(20)), 2.14 (s, 6H, H-C(17, 18)), 1.91 - 1.79 (m, 1H, H-C(22*)), 1.56 (s, 1.5H, H-C(24)), 

1.55 (s, 1.5H, H-C(24*)), , 0.96 (t, 3J = 7.4 Hz, 3H, H-C(24)). 

MS (EI+, 70 eV): m/z (%) = 349.2 (43), 335.2 (25), 334.2 (100), 333.2 (13), 332.2 (48). 

HRMS (EI+, C23H27NO2): calcd.: 349.2042; found: 349.2033 (M+). 
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(Z/E)-1-(3-bromopropyl)-2-(4-(dimethylamino)benzylidene)indolin-3-one (83) 

 

To a sealable, N2 purged round bottom flask, equipped with a magnetic stirring bar, (Z)-2-(4-

(dimethylamino)benzylidene)indolin-3-one 11 (0.100 g, 0.378 mmol, 1.0 equiv.) sodium 

hydride (60% w / w, 0.018 g, 0.454 mmol, 1.2 equiv.) and dimethylformamide (4 mL, 0.1 M) 

were added and the deep green solution was stirred for 15 min at 23 °C. The mixture was taken 

up in a syringe and added via syringe pump (0.25 mL/h) to another N2 purged round bottom 

flask, equipped with a magnetic stirring bar, filled with 1,3-dibromopropane (0.092 mg, 

0.454 mmol, 1.2 equiv.) and dimethylformamide (4 mL, 0.1 M) at 23 °C. After completion of 

the addition, the mixture was neutralized with aq. sat. ammonium chloride solution, extracted 

with ethyl acetate, washed ten times with water and treated with brine once. The combined 

organic phases were dried over sodium sulfate and the volatiles were removed in vacuo. 

Subsequent purification by flash column chromatography (aluminium(III) oxide, 

Brockmann(III), hexanes / ethyl acetate, 4 / 1, v / v) yielded (Z/E)-1-(3-bromopropyl)-2-(4-

(dimethylamino)benzylidene)indolin-3-one 83 (0.086 g, 0.22 mmol, 59%) as deep red solid. 

Further purification was carried out via preparative HPLC (Machery-Nagel VP 250/21 

NUCLEODUR Sphinx RP 5 μm column, acetonitrile / water, 8 / 2, v / v, 15 mL/min, 35 °C 

column temperature, retention times: 9.8 min, 53 mg (37%) of an E / Z mixture was obtained. 

Rf = 0.37 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

Z isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.68 (dd, 3J = 7.6 Hz, 4J = 1.4 Hz, 1H, H-C(6)), 7.52 

(ddd, 3J = 8.4 Hz, 3J = 7.1 Hz, 4J = 1.4 Hz, 1H, H-C(4)), 7.37 - 7.34 (m, 2H, H-C(12)), 7.14 

(dd, 3J = 8.2 Hz, 4J = 0.8 Hz, 1H, H-C(3)), 7.02 (s, 1H, H-C(10)), 6.97 (ddd, 3J = 7.7 Hz, 3J = 

7.3 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 6.76 - 6.73 (m, 2H, H-C(13)), 3.96 (t, 3J = 7.1 Hz, 2H, H-
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C(16)), 3.04 (t, 3J = 6.7 Hz, 2H, H-C(18)), 3.03 (s, 6H, H-C(15)), 1.80 (quin, 3J = 6.9 Hz, 2H, 

H-C(17)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 186.98 (C(8)), 155.87 (C(2)), 150.97 (C(14)), 

135.90 (C(4)), 134.29 (C(9)), 132.71 (2C, C(12)), 124.79 (C(6)), 123.76 (C(7)), 121.47 (C(11)), 

118.78 (C(5)), 116.54 (C(10)), 112.11 (C(3)), 112.11 (2C, C(13)), 44.07 (C(16)), 40.51 (2C, 

C(15)), 31.17 (C(18)), 30.17 (C(17)). 

E isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 8.20 - 8.17 (m, 2H, H-C(12)), 7.65 (dd, 3J = 7.5 Hz, 

4J = 1.3 Hz, 1H, H-C(6)), 7.46 (ddd, 3J = 8.4 Hz, 3J = 7.1 Hz, 4J = 1.4 Hz, 1H, H-C(4)), 7.01 

(dd, 3J = 8.4 Hz, 4J = 0.7 Hz, 1H, H-C(3)), 6.85 (ddd, 3J = 7.7 Hz, 3J = 7.2 Hz, 3J = 0.8 Hz, 1H, 

H-C(5)), 6.73 - 6.71 (m, 2H, H-C(13)), 6.48 (s, 1H, H-C(10)), 4.00 (t, 3J = 6.9 Hz, 2H, H-

C(16)), 3.50 (t, 3J = 6.2 Hz, 2H, H-C(18)), 3.04 (s, 6H, H-C(15)), 2.30 (quin, 3J = 6.7 Hz, 2H, 

H-C(17)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 183.85 (C(8)), 151.82 (C(14)), 151.57 (C(2)), 

135.56 (C(4)), 132.93 (2C, C(12)), 132.71 (C(9)), 124.66 (C(6)), 122.71 (C(11)), 122.06 (C(7)), 

120.62 (C(5)), 120.54 (C(10)), 111.67 (2C, C(13)), 109.20 (C(3)), 40.92 (C(16)), 40.46 (2C, 

C(15)), 31.85 (C(18)), 31.24 (C(17)). 

MS (EI+, 70 eV): m/z (%) = 386.1 (20), 384.1 (22), 305.2 (24), 304.2 (100), 303.1 (16), 277.1 

(17), 264.1 (17), 263.1 (83), 248.1 (30), 247.1 (20), 232.1 (14), 220.1 (19), 219.1 (19), 159.1 

(11), 134.1 (14), 57 (12). 

HRMS (EI+, C20H21BrN2O): calcd.: 384.0837; found: 384.0831(M+).  
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(Z/E)-1-(2-bromoethyl)-2-(4-(dimethylamino)benzylidene)indolin-3-one (84) 

 

To a sealable, N2 purged round bottom flask, equipped with a magnetic stirring bar, (Z)-2-(4-

(dimethylamino)benzylidene)indolin-3-one 11 (0.200 g, 0.757 mmol, 1.0 equiv.) sodium 

hydride (60% w / w, 0.045 g, 1.135 mmol, 1.5 equiv.) and dimethylformamide (8 mL, 0.1 M) 

were added and the deep green solution was stirred for 15 min at 23 °C. 1,2-dibromoethane 

(0.711 g, 3.78 mmol, 5.0 equiv.) was added and the solution mixture was stirred for 30 min at 

23 °C. The mixture was neutralized with aq. sat. ammonium chloride solution, extracted with 

ethyl acetate, washed ten times with water and treated with brine once. The combined organic 

phases were dried over sodium sulfate and the volatiles were removed in vacuo. Subsequent 

purification by flash column chromatography (aluminium(III) oxide, Brockmann(III), hexanes 

/ ethyl acetate, 8 / 2, v / v) yielded (Z/E)-1-(3-bromoethyl)-2-(4-(dimethylamino)benzylidene)-

indolin-3-one 84 (0.042 g, 0.113 mmol, 15%) as deep red solid. Further purification was carried 

out via preparative HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 μm column, 

acetonitrile / water, 9 / 1, v / v, 15 mL/min, 35 °C column temperature, retention times: 5.4 min, 

38 mg (14%) of an E/Z mixture was obtained.  

Rf = 0.34 (silica, hexanes / ethyl acetate, 4 / 1, v / v). 

Z isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.70 (dd, 3J = 7.7 Hz, 4J = 1.4 Hz, 1H, H-C(6)), 7.54 

(ddd, 3J = 8.4 Hz, 7.2 Hz, 1.4 Hz, 1H, H-C(4)), 7.39 - 7.33 (m, 2H, H-C(12)), 7.14 (d, 3J = 

8.3 Hz, 1H, H-C(3)), 7.04 (s, 1H, H-C(10)),7.01 (ddd, 3J = 7.4 Hz, 3J = 6.3 Hz, 4J = 0.9 Hz, 1H, 

H-C(5)), 6.78 - 6.74 (m, 2H, H-C(13)), 4.20 (t, 3J = 7.4 Hz, 2H, H-C(16)), 3.16 (t, 3J = 7.3 Hz, 

7.1 Hz, 2H, H-C(17)), 3.05 (s, 6H, H-C(15)). 
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13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 186.79 (C(8)), 155.72 (C(2)), 151.10 (C(14)), 

135.93 (C(4)), 134.97 (C(9)), 132.62 (2C, C(12)), 124.93 (C(6)), 123.92 (C(7)), 121.10 (C(11)), 

119.39 (C(5)), 116.76 (C(10)), 112.24 (2C, C(13)), 111.96 (C(3)), 44.71 (C(16)), 40.47 (2C, 

C(15)), 28.26 (C(17)). 

E isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 8.21 - 8.13 (m, 2H, H-C(12)), 7.67 (dd, 3J = 7.6 Hz, 

4J = 1.4 Hz, 1H, H-C(6)), 7.48 (ddd, 3J = 8.4 Hz, 3J = 7.2 Hz, 4J = 1.4 Hz, 1H, H-C(4)), 7.00 

(d, 3J = 7.4 Hz, 1H, H-C(3)), 6.89 (ddd, 3J = 7.8 Hz, 3J = 7.3 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 6.74 

- 6.69 (m, 2H, H-C(13)), 6.42 (s, 1H, H-C(10)), 4.23 (t, 3J = 7.4 Hz, 2H, H-C(16)), 3.60 (t, 3J = 

7.3 Hz, 7.1 Hz, 2H, H-C(17)), 3.04 (s, 6H, H-C(15)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 183.57 (C(8)), 151.73 (C(14)), 151.39 (C(2)), 

135.57 (C(4)), 133.76 (C(9)), 133.03 (2C, C(12)), 124.76 (C(6)), 122.39 (C(11)), 122.30 (C(7)), 

121.08 (C(5)), 120.56 (C(10)), 111.69 (2C, C(13)), 109.30 (C(3)), 47.01 (C(16)), 40.50 (2C, 

C(15)), 28.28 (C(17)). 

MS (EI+, 70 eV): m/z (%) = 373.1 (23), 372.1 (100), 371.1 (29), 370.1 (95), 292.2 (16), 291.2 

(27), 290.2 (60), 289.2 (21), 288.1 (29), 287.1 (12), 278.1 (10), 277.1 (53), 275.1 (10), 273.1 

(11), 264.1 (16), 261.1 (12), 248.1 (26), 247.1 (21), 233.1 (18), 232.1 (15), 220.1 (20), 219 (17), 

159.1 (12), 145.1 (10), 144.1 (12), 138.1 (18). 

HRMS (EI+, C19H19BrN2O): calcd.: 372.0660; found: 372.0710(M+). 
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(Z/E)-1-(3-bromopropyl)-2-((2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-

yl)methylene)indolin-3-one (85) 

 

To a sealable, N2 purged round bottom flask, equipped with a magnetic stirring bar, (Z)-2-

((2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)indolin-3-one 15 

(0.050 g, 0.158 mmol, 1.0 equiv.) sodium hydride (60% w / w, 0.008 g, 0.190 mmol, 

1.2 equiv.) and dimethylformamide (1.6 mL, 0.1 M) were added and the deep green solution 

was stirred for 15 min at 23 °C. The mixture was taken up in a syringe and added via syringe 

pump (0.25 mL/h) to another N2 purged round bottom flask equipped with a magnetic stirring 

bar filled with 1,3-dibromopropane (0.038 g, 0.190 mmol, 1.2 equiv.) and dimethylformamide 

(1.6 mL, 0.1 M) at 23 °C. After completion of the addition, the mixture was neutralized with aq. 

sat. ammonium chloride solution, extracted with ethyl acetate, washed ten times with water and 

treated with brine once. The combined organic phases were dried over sodium sulfate and the 

volatiles were removed in vacuo. Subsequent purification by flash column chromatography 

(aluminium(III) oxide, Brockmann(III), hexanes / ethyl acetate, 8 / 2, v / v) yielded (Z/E)-1-(3-

bromopropyl)-2-((2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)indolin-

3-one 85 (0.032 g, 0.073 mmol, 46%) as deep violet solid. Further purification was carried out 

via preparative HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 μm column, 

acetonitrile / water, 9 / 1, v / v, 15 mL/min, 35 °C column temperature, retention times: 7.6 min, 

18 mg (26%) of an E/Z mixture was obtained. 

Rf = 0.29 (silica, hexanes / ethyl acetate, 8 / 2, v / v). 

Z isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.67 (dd, 3J = 7.6 Hz, 4J = 1.3 Hz, 1H, H-C(6)), 7.44 

(ddd, 3J = 8.5 Hz, 3J = 7.2 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 7.15 (d, 3J = 8.3 Hz, 1H, H-C(3)), 6.96 

(ddd, 3J = 7.8 Hz, 3J = 7.3 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 6.94 (s, 1H, H-C(10)), 6.91 (s, 2H, H-
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C(12)), 3.97 (t, 3J = 6.7 Hz, 2H, H-C(16)), 3.24 (t, 3J = 6.5 Hz, 4H, H-C(15)), 3.07 (t, 3J = 

6.4 Hz, 2H, H-C(18)), 2.75 (t, 3J = 6.5 Hz, 4H, H-C(19)), 1.96 (quin, 3J = 6.7 Hz, 4H, H-C(20)), 

1.84 (quin, 3J = 6.9 Hz, 2H, H-C(17)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 186.77 (C(8)), 155.83 (C(2)), 144.08 (C(14)), 

135.59 (C(4)), 135.03 (C(9)), 130.83 (2C, C(12)), 124.67 (C(6)), 124.10 (C(7)), 121.85 (2C, 

C(13)), 120.56 (C(5)), 120.40 (C(11)), 117.75 (C(10)), 112.27 (C(3)), 50.46 (2C, C(15)), 44.35 

(C(16)), 31.31 (C(18)), 30.40 (C(17)), 28.26 (2C, C(19)), 22.29 (2C, C(20)). 

E isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.82 (s, 2H, H-C(12)), 7.64 (dd, 3J = 7.6 Hz, 4J = 

1.3 Hz, 1H, H-C(6)), 7.51 (ddd, 3J = 8.5 Hz, 3J = 7.3 Hz, 4J = 1.4 Hz, 1H, H-C(4)), 7.01 (d, 3J 

= 8.3 Hz, 1H, H-C(3)), 6.83 (ddd, 3J = 7.7 Hz, 3J = 7.3 Hz, 4J = 0.7 Hz, 1H, H-C(5)), 6.30 (s, 

1H, H-C(10)), 3.99 (t, 3J = 6.4 Hz, 2H, H-C(16)), 3.48 (t, 3J = 6.1 Hz, 2H, H-C(18)), 3.25 (t, 3J 

= 6.4 Hz, 4H, H-C(15)), 2.78 (t, 3J = 6.5 Hz, 4H, H-C(19)), 2.27 (quin, 3J = 6.6 Hz, 2H, H-

C(17)), 1.97 (quin, 3J = 6.6 Hz, 4H, H-C(20)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 183.25 (C(8)), 151.37 (C(2)), 144.94 (C(14)), 

135.14 (C(4)), 133.58 (C(9)), 130.62 (2C, C(12)), 124.51 (C(6)), 122.22 (C(7)), 121.86 (C(10)), 

121.43 (C(11)), 120.88 (2C, C(13)), 118.57 (C(5)), 109.19 (C(3)), 50.56 (2C, C(15)), 40.96 

(C(16)), 31.84 (C(18)), 31.30 (C(17)), 28.31 (2C, C(19)), 22.37 (2C, C(20)). 

MS (EI+, 70 eV): m/z (%) = 439.1 (25), 438.1 (100), 437.1 (27), 436.1 (99), 357.2 (19), 356.2 

(39), 355.2 (10), 329.1 (29), 315.1 (16), 288.1 (15), 287.1 (59), 186.1 (52), 173.1 (26), 164.6 

(10), 164.1 (17), 150.1 (10), 57 (12), 44.0 (19). 

HRMS (EI+, C24H25BrN2O): calcd.: 436.1150; found: 436.1146 (M+).  
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(Z/E)-2-(anthracen-9-ylmethylene)-1-(3-(dimethylamino)propyl)indolin-3-one (100) 

 

To a sealable, N2 purged round bottom flask, equipped with a magnetic stirring bar, (Z)-2-

(anthracen-9-ylmethylene)indolin-3-one 51 (0.050 g, 0.156 mmol, 1.0 equiv.) sodium hydride 

(60% w / w, 0.009 g, 0.233 mmol, 1.5 equiv.) and dimethylformamide (0.3 mL, 0.5 M) were 

added and the deep green solution was stirred for 15 min at 23 °C. 3-chloro-N,N-

dimethylpropan-1-amine (0.023 g, 0.187 mmol, 1.2 equiv.) was added and the mixture was 

heated to 120 °C for 5 min and slowly cooled to 23 °C. The reaction was treated with aq. sat. 

ammonium chloride solution, extracted with ethyl acetate, washed ten times with water and 

treated with brine once. The combined organic phases were dried over sodium sulfate and the 

volatiles were removed in vacuo. Subsequent purification by flash column chromatography 

(silica, dichloromethane / methanol / triethylamine, 88 / 10 / 2, v / v / v) yielded (Z/E)-2-

(anthracen-9-ylmethylene)-1-(3-(dimethylamino)propyl)indolin-3-one 100 (0.018 g, 

0.044 mmol, 28%) as viscous orange oil. 

Rf = 0.11 (silica, dichloromethane / methanol / triethylamine, 88 / 10 / 2, v / v / v). 

Z isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 8.47 (s, 1H, H-C(18)), 8.15 - 8.07 (m, 4H, H-C(16, 

13)), 7.76 (d, 3J = 7.5 Hz, 1H, H-C(6)), 7.60 - 7.36 (m, 6H, H-C(10, 4, 15, 14)), 6.96 (ddd, 3J = 

7.5 Hz, 3J = 7.5 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 6.89 (d, 3J = 8.2 Hz, 1H, H-C(3)), 2.91 - 2.85 (m, 

2H, H-C(19)), 1.60 (s, 6H, H-C(22)), 1.21 (t, 3J = 8.3 Hz, 2H, H-C(21)), 1.00 (quin, 3J = 8.2 Hz, 

2H, H-C(20)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 186.34 (C(8)), 155.61 (C(2)), 139.56 (C(9)), 136.96 

(C(4)), 131.84 (C(11)), 130.73(2C, C(12)), 129.38 (C(2C, 13)), 129.29 (C(18)), 126.91 (2C, 

C(15)), 126.52 (2C, C(16)), 126.51 (C(10)), 126.05 (C(2C, 14)), 125.19 (C(6)), 126.21 (2C, 

C(17)), 120.22 (C(5)), 109.37 (C(3)), 107.39 (C(7)), 44.56 (2C, C(22)), 42.21 (C(19)), 25.18 

(C(20)), 21.16 (C(21)). 
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E isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 8.53 (s, 1H, H-C(18)), 8.15 - 8.07 (m, 4H, H-C(16, 

13)), 7.78 (d, 3J = 7.6 Hz, 1H, H-C(6)), 7.60 - 7.36 (m, 6H, H-C(10, 4, 15, 14)), 7.10 (d, 3J = 

8.0 Hz, 1H, H-C(3)), 6.81 (ddd, 3J = 7.4 Hz, 3J = 7.3 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 2.96 (m, 3J 

= 6.7 Hz, 2H, H-C(19)), 2.28 (s, 6H, H-C(22)), 2.12 (quin, 3J = 6.8 Hz, 2H, H-C(20)), 1.31 (t, 

3J = 6.7 Hz, 2H, H-C(21)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 185.72 (C(8)), 154.67 (C(2)), 139.35 (C(9)), 137.51 

(C(4)), 130.40 (2C, C(12)), 129.70 (2C, C(13)), 128.36 (C(11)), 127.57 (C(10)), 127.24 

(C(18)), 126.25 (2C, 16)), 126.09 (2C, C(17)), 126.03 (C(2C, 14)), 125.70 (C(2C, 15)), 125.39 

(C(6)), 119.35 (C(5)), 108.46 (C(3)), 107.17 (C(7)), 45.67 (2C, C(22)), 40.70 (C(19)) 26.01 

(C(20)), 9.14 (C(21)). 

MS (EI+, 70 eV): m/z (%) = 406.2 (11), 335.1 (10), 215.1 (23), 208.1 (10), 191.1 (13), 180.1 

(10), 178.1 (22), 61.0 (12), 58.1 (57), 45.0(13), 43.0 (100). 

HRMS (EI+, C28H26N2O): calcd.: 406.2045; found: 406.2037 (M+).  
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(Z/E)-2-(4-(3-(dimethylamino)propoxy)-3-methoxybenzylidene)-1-(3-(dimethylamino)-

propyl)indolin-3-one (101) 

 

To a sealable, N2 purged round bottom flask, equipped with a magnetic stirring bar, (Z)-2-(4-

(3-(dimethylamino)propoxy)-3-methoxybenzylidene)indolin-3-one 34 (0.050 g, 0.142 mmol, 

1.0 equiv.) sodium hydride (60% w / w, 0.009 g, 0.213 mmol, 1.5 equiv.) and 

dimethylformamide (0.3 mL, 0.5 M) were added and the deep green solution was stirred for 

15 min at 23 °C. 3-chloro-N,N-dimethylpropan-1-amine (0.021 g, 0.170 mmol, 1.2 equiv.) was 

added and the mixture was heated to 120 °C for 5 min and slowly cooled to 23 °C. The reaction 

was treated with aq. sat. ammonium chloride solution, extracted with ethyl acetate, washed ten 

times with water and treated with brine once. The combined organic phases were dried over 

sodium sulfate and the volatiles were removed in vacuo. Subsequent purification by flash 

column chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w, 

dichloromethane / methanol, 99.5 / 0.5, v / v) yielded (Z/E)-2-(4-(3-(dimethylamino)propoxy)-

3-methoxybenzylidene)-1-(3-(dimethylamino)-propyl)indolin-3-one 101 (0.021 g, 

0.047 mmol, 33%) as viscous orange oil. Further purification was carried out via preparative 

HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 μm column, acetonitrile / water 

/ triethylamine, 90 / 10 / 0.1, v / v / v, 10 mL/min, 35 °C column temperature, retention times: 

13.0 min, 14 mg (23%) of an E / Z isomer mixture and cleaved aldehyde was obtained due to 

the low stability of the product. 

Rf = 0.68 (silica, dichloromethane / methanol, 99.5 / 0.5, v / v). 

MS (EI+, 70 eV): m/z (%) = 435.3 (9), 215.1 (12), 86.1 (75), 84.1 (19), 58.1 (100), 42.8 (21). 

HRMS (EI+, C26H35N3O3): calcd.: 437.2678; found: 437.2670 (M+).  
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(Z/E)-2-(4-(3-(dimethylamino)propoxy)-3,5-dimethylbenzylidene)-1-(3-

(dimethylamino)propyl)indolin-3-one (102) 

 

To a sealable, N2 purged round bottom flask, equipped with a magnetic stirring bar, (Z)-2-(4-

(3-(dimethylamino)propoxy)-3,5-dimethylbenzylidene)indolin-3-one 97 (0.050 g, 

0.143 mmol, 1.0 equiv.) sodium hydride (60% w / w, 0.009 g, 0.214 mmol, 1.5 equiv.) and 

dimethylformamide (0.3 mL, 0.5 M) were added and the deep green solution was stirred for 

15 min at 23 °C. 3-chloro-N,N-dimethylpropan-1-amine (0.021 g, 0.171 mmol, 1.2 equiv.) was 

added and the mixture was heated to 120 °C for 5 min and slowly cooled to 23 °C. The reaction 

was treated with aq. sat. ammonium chloride solution, extracted with ethyl acetate, washed ten 

times with water and treated with brine once. The combined organic phases were dried over 

sodium sulfate and the volatiles were removed in vacuo. Subsequent purification by flash 

column chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w, 

dichloromethane / methanol, 99.5 / 0.5, v / v) yielded (Z/E)-2-(4-(3-(dimethylamino)propoxy)-

3,5-dimethylbenzylidene)-1-(3-(dimethylamino)propyl)indolin-3-one 102 (0.046 g, 

0.106 mmol, 74%) as viscous orange oil. Further purification was carried out via preparative 

HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 μm column, acetonitrile / water 

/ triethylamine, 90 / 10 / 0.1, v / v / v, 10 mL/min, 35 °C column temperature, retention times: 

20.0 min, 17 mg (28%) of an E / Z isomer mixture was obtained. 

Rf = 0.70 (silica, dichloromethane / methanol, 100 / 0.5, v / v). 

Z isomer: 

1H-NMR (400 MHz, CD2Cl2): δ (ppm) = 7.65 (dd, 3J = 7.6 Hz, 3J = 1.4 Hz, 3J = 0.7 Hz, 1H, 

H-C(6)), 7.50 (ddd, 3J = 8.4 Hz, 3J = 7.2 Hz, 3J = 1.4 Hz, 1H, H-C(4)), 7.07 (s, 2H, H-C(12)), 

7.06 (d, 3J = 8.6 Hz, 1H, H-C(3)), 6.92 (ddd, 3J = 7.4 Hz, 7.3 Hz, 0.8 Hz, 1H, H-C(5)), 6.89 (s, 

1H, H-C(10)), 3.87 - 3.81 (m, 2H, H-C(20)), 3.72 - 3.68 (m, 2H, H-C(16)), 2.47 (t, 3J = 7.2 Hz, 
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2H, H-C(22)), 2.29 (s, 6H, H-C(15)), 2.22 (s, 6H, H-C(23)), 1.92 (s, 6H, H-C(19)), 1.95 (quin, 

3J = 7.3 Hz, 2H, H-C(21)), 1.85 - 1.81 (m, 2H, H-C(18)), 1.37 (quin, 3J = 7.3 Hz, 2H, H-C(17)). 

MS (EI+, 70 eV): m/z (%) = 437.3 (10), 86.1 (70), 84.1 (13), 58.1 (100), 43.0 (18). 

HRMS (EI+, C27H37N3O2): calcd.: 435.2886; found: 435.2873 (M+). 

(Z/E)-2-(2,5-bis(3-(dimethylamino)propoxy)benzylidene)-1-(3-

(dimethylamino)propyl)indolin-3-one (103) 

 

To a sealable, N2 purged round bottom flask, equipped with a magnetic stirring bar, (Z)-2-(2,5-

bis(3-(dimethylamino)propoxy)benzylidene)indolin-3-one 98 (0.033 g, 0.078 mmol, 

1.0 equiv.) sodium hydride (60% w / w, 0.005 g, 0.117 mmol, 1.5 equiv.) and 

dimethylformamide (0.2 mL, 0.5 M) were added and the deep green solution was stirred for 

15 min at 23 °C. 3-chloro-N,N-dimethylpropan-1-amine (0.011 g, 0.093 mmol, 1.2 equiv.) was 

added and the mixture was heated to 120 °C for 5 min and slowly cooled to 23 °C. The reaction 

was treated with aq. sat. ammonium chloride solution, extracted with ethyl acetate, washed ten 

times with water and treated with brine once. The combined organic phases were dried over 

sodium sulfate and the volatiles were removed in vacuo. Subsequent purification by flash 

column chromatography (silica, dichloromethane / methanol / triethylamine, 61 / 35 / 4, v / v / 

v) yielded crude (Z/E)-2-(2,5-bis(3-(dimethylamino)propoxy)benzylidene)-1-(3-(dimethyl-

amino)propyl)indolin-3-one 103 (0.018 g, 0.035 mmol, 45%) as viscous orange oil. 

Purification via HPLC was not feasible for this compound. 

MS (EI+, 70 eV): m/z (%) = 86.1 (11), 85.1 (10), 61.0 (13), 58.1 (47), 45.0 (14), 43.0 (100). 

HRMS (EI+, C30H44N4O3): calcd.: 508.3413; found: 508.3420 (M+).  
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(Z/E)-2-(3,5-bis(3-(dimethylamino)propoxy)benzylidene)-1-(3-

(dimethylamino)propyl)indolin-3-one (104) 

 

To a sealable, N2 purged round bottom flask, equipped with a magnetic stirring bar, (Z)-2-(3,5-

bis(3-(dimethylamino)propoxy)benzylidene)indolin-3-one 99 (0.078 g, 0.184 mmol, 

1.0 equiv.) sodium hydride (60% w / w, 0.011 g, 0.276 mmol, 1.5 equiv.) and 

dimethylformamide (0.4 mL, 0.5 M) were added and the deep green solution was stirred for 

15 min at 23 °C. 3-chloro-N,N-dimethylpropan-1-amine (0.027 g, 0.221 mmol, 1.2 equiv.) was 

added and the mixture was heated to 120 °C for 5 min and slowly cooled to 23 °C. The reaction 

was treated with aq. sat. ammonium chloride solution, extracted with ethyl acetate, washed ten 

times with water and treated with brine once. The combined organic phases were dried over 

sodium sulfate and the volatiles were removed in vacuo. Subsequent purification by flash 

column chromatography (silica, dichloromethane / methanol / triethylamine, 61 / 35 / 4, v / v / 

v) yielded (Z/E)-2-(3,5-bis(3-(dimethylamino)propoxy)benzylidene)-1-(3-(dimethylamino)-

propyl)indolin-3-one 104 (0.031 g, 0.060 mmol, 33%) as viscous orange oil. Purification via 

HPLC was not feasible for this compound. 

MS (EI+, 70 eV): m/z (%) = 508.3 (8), 215.1 (11), 127.9 (11), 86.1 (20), 84.1 (33), 61.0 (13), 

58.1 (100), 45.1 (13), 44.1 (16), 43.1 (100), 42.2 (15). 

HRMS (EI+, C30H44N4O3): calcd.: 508.3413; found: 508.3408 (M+).  
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3.7.2 N-Arylations - Buchwald-Hartwig cross-couplings 

Scheme 10, Section 2.2.6 depicts a late-stage Buchwald-Hartwig cross-coupling reaction 

according to Old et al.[144] 

(Z/E)-2-(4-(methoxy)benzylidene)-1-(p-tolyl)indolin-3-one (116) 

 

A flame dried, nitrogen-flushed round bottom flask, equipped with a magnetic stirring bar, was 

charged with tris(dibenzylideneacetone)dipalladium(0) (0.009 g, 0.01 mmol, 0.02 equiv.), 2-

dicyclohexylphosphino-2′-(N,N-dimethylamino)biphenyl (0.012 g, 0.03 mmol, 0.06 equiv.), 

dry toluene (4 mL, 0.125 M) and sodium tert-butoxide (0.068 g, 0.704 mmol, 1.40 equiv.). The 

mixture was stirred at 80 °C for 5 min. Then, (Z)-2-(4-methoxybenzylidene)indolin-3-one 9 

(0.127 g, 0.505 mmol, 1.00 equiv.) was added to the suspension at 80 °C and it was stirred for 

5 min. Subsequently, 4-bromotoluene (0.085 g, 0.495 mmol, 0.98 equiv.) was added to the 

reaction and it was stirred at 80 °C for 18 h. The reaction was stopped with sat. aq. ammonium 

chloride solution, filtered through celite, extracted with ethyl acetate and washed with sat. aq. 

sodium bisulfite solution. The combined organic layers were dried over sodium sulfate, filtered 

and the solvents were removed in vacuo. Subsequent purification by flash column chromato-

graphy (aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl acetate, 9 / 1, 

v / v) yielded crude (Z/E)-2-(4-(methoxy)benzylidene)-1-(p-tolyl)indolin-3-one 116 (0.083 g, 

0.244 mmol, 48%) as orange solid. Further purification was carried out via preparative HPLC 

(Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / water, 7 / 3, 

v / v, 15 mL/min, 35 °C column temperature, retention times: 15.1 min (Z isomer), 22.5 min (E 

isomer) with 29% yield. 

Rf = 0.55 (E isomer), 0.38 (Z isomer), (silica, hexanes / ethyl acetate, 4 / 1, v / v) 



3 EXPERIMENTAL SECTION 

501 

 

m.p. (°C): 103 - 104.  
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Z isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 7.75 (d, 3J = 7.5 Hz, 1H, H-C(6), 7.43 (ddd, 3J = 

8.0 Hz, 3J = 7.0 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 7.09 - 7.07 (m, 2H, H-C(18)), 7.06 - 7.03 (m, 

4H, H-C(17), H-C(10), H-C(3)), 7.01 (ddd, 3J = 7.5 Hz, 3J = 7.0 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 

6.97 - 6.95 (m, 2H, H-C(12)), 6.55 - 6.52 Hz (m, 2H, H-C(13)), 3.71 (s, 3H, H-C(15)), 2.30 (s, 

3H, H-C(20)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 187.22 (C(8)), 160.17 (C(14)), 155.98 (C(2)), 

137.37 (C(16)), 137.29 (C(19)), 136.28 (C(4)), 135.69 (C(9)), 132.83 (2C, C(12)), 130.35 (2C, 

C(18)), 127.09 (2C, C(17)), 126.21 (C(11)), 124.95 (C(6)), 122.65 (C(7)), 121.52 (C(5)), 

114.74 (C(10)), 113.62 (2C, C(13)), 111.59 (C(3)), 55.89 (C(15)), 21.42 (C(20)). 

E isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 8.05 - 8.02 (m, 2H, H-C(12)), 7.71 (d, 3J = 7.7 Hz, 

1H, H-C(6)), 7.40 - 7.38 (m, 2H, H-C(18)), 7.37 (ddd, 3J = 8.2 Hz, 3J = 7.3 Hz, 4J = 1.4 Hz, 

1H, H-C(4)), 7.29 - 7.26 (m, 2H, H-C(17)), 6.90 (ddd, 3J = 7.5 Hz, 3J = 7.3 Hz, 4J = 0.9, 1H, 

H-C(5)), 6.89 - 6.86 (m, 2H, H-C(13)), 6.65 (d, 3J = 8.3 Hz, 1H, H-C(3)), 6.25 (s, 1H, H-C(10)), 

3.83 (s, 3H, H-C(15)), 2.46 (s, 3H, H-C(20)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 184.71 (C(8)), 161.10 (C(14)), 153.34 (C(2)), 

138.99 (C(19)), 138.34 (C(9)), 136.15 (C(4)), 135.11 (C(16)), 132.93 (2C, C(12)), 132.51 (2C, 

C(18)), 129.38 (2C, C(17)), 127.44 (C(11)), 124.89 (C(6)), 122.24 (C(7)), 120.45 (C(10)), 

119.91 (C(5)), 114.10 (2C, C(13)), 110.57 (C(3)), 56.00 (C(15)), 21.68 (C(20)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3032 (w), 2967 (w), 2927 (w), 2839 (w), 2361 (w), 1923 (w), 

1671 (m), 1602 (s), 1577 (m), 1549 (m), 1510 (s), 1467 (s), 1445 (m), 1426 (m), 1395 (m), 1352 

(m), 1313 (s), 1304 (s), 1255 (s), 1191 (m), 1177 (s), 1147 (m), 1136 (s), 1108 (m), 1096 (s), 

1035(s), 978 (m), 947 (m), 931 (m), 884 (s), 828 (s), 810 (s), 802 (m), 790 (m), 746 (s), 713 

(m), 702 (s). 

MS (EI+, 70 eV): m/z (%) = 342.2 (29), 341.4 (100), 340.1 (45), 326.1 (29), 324.1 (12), 310 

(10), 298.1 (10), 170.5 (11). 

HRMS (EI+, C23H19NO2): calcd.: 341.1416; found: 341.1412 (M+). 

EA (C23H19NO2): calcd.: N, 4.10; C, 80.92; H, 5.61; found: N, 3.97; C, 80.84; H, 5.70.  
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(Z)-2-(4-(dimethylamino)benzylidene)-1-(p-tolyl)indolin-3-one (16) 

 

A flame dried, nitrogen-flushed round bottom flask, equipped with a magnetic stirring bar, was 

charged with tris(dibenzylideneacetone)dipalladium(0) (0.009 g, 0.01 mmol, 0.02 equiv.), 2-

dicyclohexylphosphino-2′-(N,N-dimethylamino)biphenyl (0.012 g, 0.03 mmol, 0.06 equiv.), 

dry toluene (4 mL, 0.125 M) and sodium tert-butoxide (0.068 g, 0.704 mmol, 1.40 equiv.). The 

mixture was stirred at 80 °C for 5 min. Then, (Z)-2-(4-(dimethylamino)benzylidene)indolin-3-

one 11 (0.133 g, 0.503 mmol, 1.00 equiv.) was added to the suspension at 80 °C and it was 

stirred for another 5 min. Subsequently, 4-bromotoluene (0.084 g, 0.493 mmol, 0.98 equiv.) 

was added to the reaction and it was stirred at 80 °C for 18 h. The reaction was stopped with 

sat. aq. ammonium chloride solution, filtered through celite, extracted with ethyl acetate and 

washed with sat. aq. sodium bisulfite solution. The combined organic layers were dried over 

sodium sulfate, filtered and the solvents were removed in vacuo. Subsequent purification by 

flash column chromatography (aluminium(III) oxide (Brockmann III, 6% water, w / w), 

hexanes / ethyl acetate 9 / 1, v / v, yielded crude (Z/E)-2-(4-(dimethylamino)benzylidene)-1-(p-

tolyl)indolin-3-one 16 (0.122 g, 0.344 mmol, 68%) as orange to reddish solid. Further 

purification was carried out via preparative HPLC (Machery-Nagel VP 250/21 NUCLEODUR 

Sphinx RP 5 µm column, acetonitrile / water, 7 / 3, v / v, 15 mL/min, 35 °C column temperature, 

retention times: 16.1 min (Z isomer) with 50% yield. 

Rf = 0.45 (silica, hexanes / ethyl acetate 4 / 1, v / v). 

m.p. (°C): 146 - 148. 

Z isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 7.75 (d, 3J = 7.7 Hz, 1H , H-C(6)), 7.41 (ddd, 3J = 

8.5 Hz, 3J = 7.3 Hz, 4J = 1.2 Hz, 1 H, H-C(5)), 7.14 - 7.12 (m, 2H, H-C(18)), 7.11 - 7.09 (m, 
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3H, H-C(17, 16)), 7.07 (s, 1H, H-C(10)), 7.01 (ddd, 3J = 7.8 Hz, 3J = 7.3 Hz, 4J = 0.7 Hz, 1H, 

H-C(4)), 6.95 - 6.92 (m, 2H, H-C(12)), 6.36 - 6.34 (m, 2H, H-C(13)), 2.90 (s, 6H, H-C(15)), 

2.33 (s, 3H, H-C(20)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 186.73 (C(8)), 155.44 (C(2)), 150.75 (C(14)), 

138.01 (C(16)), 136.95 (C(19)), 135.54 (C(4)), 133.97 (C(9)), 133.36 (2C, C(12)), 130.24 (2C, 

C(18)), 126.81 (2C, C(17)), 124.57 (C(6)), 123.08 (C(7)), 121.23 (C(5)), 120.94 (C(11)), 

117.14 (C(10)), 111.67 (C(3)), 111.38 (2C, C(13)), 40.37 (2C, C(15)), 21.32 (C(20)). 

E isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 8.10 - 8.08 (m, 2H, H-C(12)), 7.7 (d, 3J =7.8 Hz, 1H, 

H-C(6)), 7.39 - 7.37 (m, 2H, H-C(18)), 7.35 (ddd, 3J = 8.2 Hz, 3J = 7.0 Hz, 4J = 1.3 Hz, 1H, H-

C(5)), 7.28 - 7.26 (m, 2H, H-C(17)), 6.89 (ddd, 3J = 7.8 Hz, 3J = 7.4 Hz, 4J = 0.7 Hz, 1H, H-

C(4)), 6.69 - 6.66 (m, 3H, H-C(13, 3)), 6.28 (s, 1H, H-C(10)), 3.02 (s, 6H, H-C(15)), 2.46 (s, 

3H, H-C(20)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 183.69 (C(8)), 152.58 (C(2)), 151.70 (C(14)), 

138.56 (C(19)), 136.81 (C(9)), 135.36 (C(16)), 135.27 (C(4)), 133.09 (2C, C(12)), 131.26 (2C, 

C(18)), 129.34 (2C, C(17)), 124.51 (C(6)), 122.79 (C(10)), 122.74 (C(11)), 122.39 (C(7)), 

119.32 (C(5)), 111.67 (2C, C(13)), 110.38 (C(3)), 40.45 (2C, C(15)), 21.54 (C(20)). 

IR (Diamond ATR): 𝜈 (cm-1) = 2898 (w), 2362 (w), 1676 (w), 1660 (w), 1600 (s), 1559 (s), 

1520 (s), 1475 (m), 1461 (m), 1444 (m), 1398 (w), 1359 (s), 1308 (s), 1295 (m), 1252 (w), 1228 

(m), 1184 (s), 1169 (s), 1147(m), 1110 (s), 1096 (s), 1062 (m), 1019 (m), 992 (m), 980 (m), 945 

(m), 922 (s), 890 (m), 859 (w), 837 (w), 816 (s), 786 (m), 754 (s), 728 (m), 721 (m), 704 (s). 

MS (EI+, 70 eV): m/z (%) = 355.2 (25), 354.2 (100), 353.2 (40), 337.2 (12), 337.1 (15), 310.1 

(12), 177.5 (11). 

HRMS (EI+, C24H22N2O): calcd.: 354.1732; found: 354.1722 (M+). 

EA (C24H22N2O): calcd.: N, 7.90; C, 81.33; H, 6.26; found: N, 7.82; C, 81.14; H, 6.41.  
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3.7.3 N-Acetylations - Nucleophilic catalysis 

Scheme 6, Section 2.2.2 depicts a 4-dimethylaminopyridine (DMAP) catalyzed acylation 

reaction. 

(Z/E)-1-acetyl-2-(4-(methoxy)benzylidene)indolin-3-one (2) 

 

A flame dried, nitrogen-flushed round bottom flask, equipped with a magnetic stirring bar, was 

charged with (Z)-2-(4-methoxybenzylidene)indolin-3-one 9 (0.123 g, 0.489 mmol, 1.0 equiv.), 

4-N,N-dimethylaminopyridine (0.006 g, 0.049 mmol, 0.1 equiv.), acetic anhydride (4.9 mL, 

0.1 M) and N,N-diisopropylethylamine (0.127 g, 0.979 mmol, 2.0 equiv.). The mixture was 

stirred at 100 °C for 1 day. The remaining acetic anhydride was removed in vacuo, the residual 

slur was extracted with ethyl acetate, basified with sat. aq. sodium hydrogen carbonate solution, 

washed ten times with water and sat. aq. sodium chloride solution. The combined organic layers 

were dried over sodium sulfate, filtered and the solvent was removed in vacuo. Subsequent 

purification by flash column chromatography (silica, hexanes / ethyl acetate, 9 / 1, v / v) yielded 

(Z/E)-1-acetyl-2-(4-methoxybenzylidene)indolin-3-one 2 (0.093 g, 0.318 mmol, 65%) as 

yellow solid. Further purification was carried out via preparative HPLC (Machery-Nagel VP 

250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / water, 7 / 3, v /v, 15 mL/min, 

35 °C column temperature, retention times: 9.1 min (Z isomer) with 61% total yield. 

Rf = 0.30 (silica, hexanes / ethyl acetate, 9 / 1, v / v). 

m.p. (°C): 135 - 136. 

Z isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 8.24 (d, 3J = 8.3 Hz, 1H, H-C(6)), 7.81 (d, 3J = 

7.5 Hz, 1H, H-C(3)), 7.67 (ddd, 3J = 8.3 Hz, 3J = 7.5 Hz, 4J = 1.4 Hz, 1H, H-C(4)), 7.55 - 7.52 
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(m, 2H, H-C(12)), 7.31 (ddd, 3J = 7.5 Hz, 3J = 7.4 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 7.28 (s, 1H, 

H-C(10)), 6.99 - 6.97 (m, 2H, H-C(13)), 3.86 (s, 3H, H-C(15)), 2.04 (s, 3H, H-C(17)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 186.38 (C(8)), 171.14 (C(16)), 161.68 (C(14)), 

150.88 (C(2)), 136.57 (C(4)), 134.40 (C(9)), 133.03 (2C, C(12)), 126.92 (C(11)), 125.40 (C(5)), 

125.09 (C(7)), 124.40 (C(6)), 123.73 (C(10)), 118.45 (C(3)), 115.31 (2C, C(13)), 56.14 (C(15)), 

25.66 (C(17)). 

E isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 8.14 (d, 3J = 8.3 Hz, 1H, H-C(6)), 7.98 - 7.95 (m, 

2H, H-C(12)), 7.77 (d, 3J = 7.5 Hz, 1H, H-C(3)), 7.64 (ddd, 3J = 8.6 Hz, 3J = 7.3 Hz, 4J = 1.5 Hz, 

1H, H-C(4)), 7.46 (s, 1H, H-C(10)), 7.26 (ddd, 3J = 7.5 Hz, 3J = 7.5 Hz, 4J = 0.7 Hz, 1H, H-

C(5)), 6.97 - 6.95 (m, 2H, H-C(13)), 3.88 (s, 3H, H-C(15)), 2.59 (s, 3H, H-C(17)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 183.33 (C(8)), 169.94 (C(16)), 162.20 (C(14)), 

148.73 (C(2)), 136.24 (C(4)), 134.45 (C(11)), 134.18 (2C, C(12)), 131.02 (C(10)), 125.59 

(C(9)), 125.50 (C(7)), 125.02 (C(5)), 124.42 (C(6)), 117.94 (C(3)), 114.03 (2C, C(13)), 56.12 

(C(15)), 26.86 (C(17)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3066 (w), 2922 (m), 2852 (m), 2361 (w), 1706 (m), 1682 (s), 

1629 (m), 1600 (s), 1509 (s), 1474 (w), 1456 (s), 1438 (m), 1361 (s), 1318 (m), 1303 (s), 1255 

(s), 1231 (s), 1203 (m), 1177 (s), 1137 (m), 1098 (s), 1048 (m), 1030 (s), 1004 (s), 988 (s), 956 

(m), 948 (m), 908 (m), 896 (m), 878 (s), 842 (s), 814 (s), 789 (m), 762 (s), 754 (s), 742 (m), 

703 (s), 674 (m). 

MS (EI+, 70 eV): m/z (%) = 293.1 (38), 252.1 (18), 251.1 (100), 250.1 (51), 236.1 (20), 235.1 

(11), 220.1 (33). 

HRMS (EI+, C18H15NO3): calcd.: 293.1052; found: 293.1045 (M+). 

EA (C18H15NO3): calcd.: N, 4.78; C, 73.71; H 5.15; found: C, 73.44; N, 4.74; H 5.15.  
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(Z/E)-1-acetyl-2-(4-(dimethylamino)benzylidene)indolin-3-one (12) CP181 

 

A flame dried, nitrogen-flushed round bottom flask, equipped with a magnetic stirring bar, was 

charged with (Z)-2-(4-(dimethylamino)benzylidene)indolin-3-one 11 (0.123 g, 0.465 mmol, 

1.0 equiv.), 4-N,N-dimethylaminopyridine (0.047 mmol, 0.006 g, 0.1 equiv.), acetic anhydride 

(4.7 mL, 0.1 M) and N,N-diisopropylethylamine (0.120 g, 0.931 mmol, 2.0 equiv.). The mixture 

was stirred at 100 °C for 1 day. The remaining acetic anhydride was removed in vacuo, the 

residual slur was extracted with ethyl acetate, basified with sat. aq. sodium hydrogen carbonate 

solution, washed ten times with water and once with sat. aq. sodium chloride solution. The 

combined organic layers were dried over sodium sulfate, filtered and the solvent was removed 

in vacuo. Subsequent purification by flash column chromatography (silica, hexanes / ethyl 

acetate, 9 / 1, v / v) yielded (Z)-1-acetyl-2-(4-(dimethylamino)benzylidene)indolin-3-one 12 

(0.139 g, 0.454 mmol, 98%) as violet solid. Further purification was carried out via preparative 

HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / 

water, 7 / 3, v / v, 15 mL/min, 35 °C column temperature, retention times: 10.5 min (Z isomer) 

with 64% total yield. 

Rf = 0.19 (silica, hexanes / ethyl acetate, 9 / 1, v / v). 

m.p. (°C): 140 - 142. 

Z isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 8.25 (d, 3J = 8.3 Hz, 1H, H-C(6)), 7.79 (d, 3J = 

7.5 Hz, 1H, H-C(3)), 7.64 (ddd, 3J = 8.4 Hz, 3J = 7.3 Hz, 4J = 1.4 Hz, 1H, H-C(5)), 7.49 - 7.47 

(m, 2H, H-C(12)), 7.29 (ddd, 3J = 7.4 Hz, 3J = 7.4 Hz, 4J = 0.7 Hz, 1H, H-C(4)), 7.27 (s, 1H, 

H-C(10)), 6.74 - 6.71 (m, 2H, H-C(13)), 3.05 (s, 6H, H-C(15)), 2.12 (s, 3H, H-C(17)). 
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13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 185.91 (C(8)), 171.55 (C(16)), 151.95 (C(14)), 

150.27 (C(7)), 135.82 (C(5)), 133.37 (2C, C(12)), 132.28 (C(9)), 125.47 (C(2)), 125.01 (C(4)), 

125.00 (C(10)), 123.94 (C(3)), 120.96 (C(11)), 118.23 (C(6)), 112.33 (2C, C(13)), 40.38 (2C, 

C(15)), 25.64 (C(17)). 

E isomer:  

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 8.18 (d, 3J = 8.5 Hz, 1H, H-C(6)), 8.04 - 8.02 (m, 

2H, H-C(12)), 7.77 (d, 3J = 7.4 Hz, 1H, H-C(3)), 7.60 (ddd, 3J = 8.6 Hz, 3J = 7.2 Hz, 3J = 1.4 Hz, 

1H, H-C(5)), 7.3 (s, 1H, H-C(10)), 7.25 (ddd, 3J = 7.4 Hz, 3J = 7.4 Hz, 4J = 0.7 Hz, 1H, H-

C(4)), 6.75 - 6.73 (m, 2H, H-C(13)), 3.08 (s, 6H, H-C(15)), 2.57 (s, 3H, H-C(17)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) =) 182.09 (C(8)), 169.86 (C(16)), 152.73 (C(14)), 

147.96 (C(7)), 135.36 (C(5)), 134.61 (2C, C(12)), 132.84 (C(10)), 132.26 (C(9)), 125.90 (C(2)), 

124.61 (C(4)), 123.88 (C(3)), 120.50 (C(11)), 117.75 (C(6)), 111.34 (2C, C(13)), 40.44 (2C, 

C(15)), 26.65 (C(17)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3087 (w), 3018 (w), 2986 (w), 2894 (w), 2816 (w), 2003 (w), 

1979 (w), 1940 (w), 1889 (w), 1822 (w), 1681 (s), 1596 (s), 1586 (s), 1557 (m), 1524 (s), 1487 

(w), 1474 (m), 1454 (s), 1411 (w), 1367 (s), 1358 (s), 1314 (m), 1302 (m), 1271 (s), 1243 (m), 

1230 (m), 1211 (m), 1181 (s), 1170 (s), 1156 (m), 1140 (s), 1095 (s), 1067 (m), 1048 (m), 1036 

(m), 1006 (s), 991 (m), 961 (w), 947 (m), 935 (m), 917 (w), 910 (w), 896 (s), 883 (m), 809 (s), 

788 (m), 759 (s), 727 (m), 722 (m), 705 (s), 667 (m). 

MS (EI+, 70 eV): m/z (%) = 307.1 (20), 306.1 (91), 265.1 (11), 248.1 (21), 247.1 (21), 220.1 

(27), 219.1 (20), 159.1 (13). 

HRMS (EI+, C19H18N2O2): calcd.: 306.1368; found: 306.1361 (M+). 

EA (C19H18N2O2): calcd.: N, 9.14; C, 74.49; H 5.92; found: N, 9.04; C, 74.31; H 5.88.
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(Z/E)-1-isobutyryl-2-(naphthalen-1-ylmethylene)indolin-3-one (55) 

 

A flame dried, N2-flushed Schlenk flask, equipped with a magnetic stirring bar, is charged with 

triethylamine (0.082 g, 0.81 mmol, 1.1 equiv.), 4-(dimethylamino)-pyridine (0.009 g, 

0.073 mmol, 0.1 equiv.), dichloroethane (3.0 mL, 0.25 M) and (Z)-2-(naphthalen-1-

ylmethylene)indolin-3-one 50 (0.200 g, 0.737 mmol, 1.0 equiv.). The contents were stirred at 

23 °C for 5 min, then isobutyryl chloride (0.086 g, 0.811 mmol, 1.1 equiv.) was added. The 

mixture was stirred at 80 ºC for 18 h. The reaction was stopped with sat. aq. ammonium chloride 

solution and extracted with ethyl acetate. The combined organic layers were dried over sodium 

sulfate. The mixture was filtrated and the solvents were removed in vacuo. Purification by flash 

column chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w, hexanes / 

ethyl acetate, 9 / 1, v / v) yielded (Z/E)-1-isobutyryl-2-(naphthalen-1-ylmethylene)indolin-3-

one 55 (0.204 g, 0.598 mmol, 81%) as yellow solid. Further purification was carried out via 

preparative HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, 

acetonitrile / water 7 / 3, v / v, 15 mL/min, 35 °C column temperature, retention time: 10.0 min 

(Z isomer) with 38% yield. 

Rf = 0.36 (silica, hexanes / ethyl acetate, 9 / 1, v / v). 

m.p. (°C): 69 - 71. 

Z isomer: 

1H-NMR 600 MHz, CDCl3): δ (ppm) = 8.21 (dd, 3J = 8.4 Hz, 4J = 0.7 Hz, 1H, H-C(6)), 8.12 

(dd, 3J = 8.3 Hz, 4J = 0.9 Hz, 1H, H-C(19)), 7.93 - 7.88 (m, 4H, H-C(16, 10, 3, 14)), 7.69 - 7.60 

(m, 3H, H-C(5, 12, 18)), 7.59 (ddd, 3J = 6.8 Hz, 3J = 5.6 Hz, 4J = 1.3 Hz, 1H, H-C(17)), 7.51 

(dd, 3J = 8.2 Hz, 3J = 7.2 Hz, 1H, H-C(13)), 7.29 (ddd, 3J = 7.5 Hz, 3J = 6.7 Hz, 4J = 0.8 Hz, 

1H, H-C(4)), 2.61 (sept, 3J = 6.7 Hz, 1H, H-C(22)), 0.49 (d, 3J = 6.8 Hz, 6H, H-C(23)). 
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13C-NMR (150 MHz, CDCl3): δ (ppm) = 185.17 (C(8)), 178.74 C(21)), 150.75 (C(2)), 136.66 

(C(4)), 136.08 (C(9)), 133.86 (C(15)), 131.46 (C(20)), 131.11 (C(11)), 130.20 (C(14)), 128.96 

(C(16)), 127.54 (C(12)), 127.39 (C(18)), 126.76 (C(17)), 125.67 (C(13)), 124.41 (C(6)), 124.36 

(C(5)), 123.98 (C(19)), 123.29 (C(7)), 118.92 (C(10)), 116.38 (C(3)), 35.14 (C(22)), 18.31 (2C, 

C(23)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3056 (w), 2965 (m), 2921 (m), 2850 (m), 2359 (w), 1682 (s), 

1604 (s), 1584 (s), 1507 (w), 1457 (s), 1384 (s), 1355 (s), 1317 (m), 1298 (s), 1268 (m), 1242 

(s), 1211 (m), 1181 (s), 1153 (m), 1127 (m), 1080 (s), 1043 (w), 1017 (w), 978 (m), 956 (m) 

898 (m), 857 (w), 843 (w), 799 (s), 773 (s), 754 (s), 700 (s), 657 (w). 

MS (EI+, 70 eV): m/z (%) = 341.1 (21), 272.1 (21), 271.1 (100), 270.1 (67), 241.1 (19), 71.0 

(14), 43.0 (34). 

HRMS (EI+, C23H19NO2): calcd.: 341.1416; found: 341.1412 (M+). 

EA (C23H19NO2): calcd.: C, 80.92; H, 5.61; N, 4.10; found: C, 80.84; H, 5.86; N, 4.00.  
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(Z/E)-2-(anthracen-9-ylmethylene)-1-isobutyrylindolin-3-one (56) 

 

A flame dried, N2-flushed Schlenk flask, equipped with a magnetic stirring bar, is charged with 

triethylamine (0.035 g, 0.342 mmol, 1.1 equiv.), 4-(dimethylamino)-pyridine (0.004 g, 

0.031 mmol, 0.1 equiv.), dichloroethane (1.3 mL, 0.25 M) and (Z)-2-(anthracen-9-

ylmethylene)indolin-3-one 51 (0.100 g, 0.311 mmol, 1.0 equiv.) were added. The contents were 

stirred at 23 °C for 5 min, then isobutyryl chloride (1.1 equiv.) was added. The mixture was 

stirred at 80 ºC for 22 h. The reaction was stopped with sat. aq. ammonium chloride solution 

and extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate. 

The mixture was filtrated and the solvents were removed in vacuo. Purification by flash column 

chromatography (aluminium(III) oxide, Brockmann III, 6% water, w / w, hexanes / ethyl 

acetate, 9 / 1, v / v) yielded (Z/E)-2-(anthracen-9-ylmethylene)-1-isobutyrylindolin-3-one 56 

(0.063 g, 0.161 mmol, 52%) as orange solid. Further purification was carried out via preparative 

HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / 

water, 7 / 3, v / v, 15 mL/min, 35 °C column temperature, retention time: 12.5 min (Z isomer) 

with 56% yield. 

Rf = 0.28 (hexanes / ethyl acetate, 4 / 1, v / v). 

m.p. (°C): 54 - 56. 

Z isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 8.56 (s, 1H, H-C(18)), 8.20 (s, 1H, H-C(10)), 

8.11 - 8.07 (m, 3H, H-C(6, 13)), 8.00 - 7.97 (m, 2H, H-C(15)), 7.95 (dd, 3J = 7.6 Hz, 4J = 

0.9 Hz, 1H, H-C(3)), 7.69 (ddd, 3J = 8.4 Hz, 3J = 7.3 Hz, 4J = 1.4 Hz, 1H, H-C(5)), 7.56 - 7.53 

(m, 4H, H-C(16, 14)), 7.34 (ddd, 3J = 8.0 Hz, 3J = 7.5 Hz, 4J = 0.7 Hz, 1H, H-C(4)), 2.27 (sept, 

3J = 6.8 Hz, 1H, H-C(20)), 0.07 (d, 3J = 6.8 Hz, 6H, H-C(21)). 
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13C-NMR (150 MHz, CD2Cl2): δ (ppm) = 184.82 (C(8)), 177.41 (C(19)), 150.53 (C(2)), 

136.63 (C(5)), 131.48 (2C, C(17)), 129.23 (2C, C(12)), 129.18 (2C, C(16)), 129.11 (C(18)), 

128.88 (C(9)), 127.31 (C11)), 127.15 (2C, C(14)), 125.69 (2C, C(13)), 124.94 (2C, C(15)), 

124.35 (C(4)), 124.30 (C(3)), 123.43 (C(7)), 117.28 (C(10)), 116.43 (C(6)), 34.53 (C(20)), 

17.93 (2C, C(21)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3341 (w), 3049 (w), 2920 (s), 2850 (s), 2361 (w), 2340 (w), 

1696 (s), 1604 (s), 1540 (w), 1520 (m), 1507 (w), 1457 (s)1384 (m), 1363 (m), 1336 (m), 1312 

(s), 1246 (s), 1184 (s), 1157 (s), 1131 (s), 1096 (s), 978 (w), 955 (m), 930 (w), 910 (w), 885 (s), 

842 (m), 798 (w), 733 (s). 

MS (EI+, 70 eV): m/z (%) = 391.2 (21), 374.1 (12), 322.1 (13), 321.1 (52), 320.1 (100), 319.1 

(40), 304.1 (23), 290.1 (18), 57.1 (11), 44.0 (15), 43.0 (28), 41.0 (11). 

HRMS (EI+, C27H21NO2): calcd.: 391.1572; found: 391.1569 (M+). 

EA (C27H21NO2): calcd.: C, 82.84; H, 5.41; N, 3.58; found: C, 82.80; H, 5.62; N, 3.53. 
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(Z/E)-1-isobutyryl-2-(4-methoxy-2,3,6-trimethylbenzylidene)indolin-3-one (57) 

 

A flame dried, N2-flushed Schlenk flask, equipped with a magnetic stirring bar, is charged with 

triethylamine (0.082 g, 0.81 mmol, 1.1 equiv.), 4-(dimethylamino)-pyridine (0.009 g, 

0.074 mmol, 0.1 equiv.), dichloroethane (3 mL, 0.25 M) and (Z)-2-(4-methoxy-2,3,6-

trimethylbenzylidene)indolin-3-one 52 (0.216 g, 0.737 mmol, 1.0 equiv.). The contents were 

stirred at 23 °C for 5 min, then isobutyryl chloride (0.086 g, 0.810 mmol, 1.1 equiv.) was added. 

The mixture was stirred at 80 ºC until reaction was complete (indicated by GCMS analysis). 

The reaction was stopped with sat. aq. ammonium chloride solution and extracted with ethyl 

acetate. The combined organic layers were dried over sodium sulfate. The mixture was filtrated 

and the solvents were removed in vacuo. Purification by flash column chromatography 

(aluminium(III) oxide, Brockmann III, 6% water, w / w, hexanes / ethyl acetate, 9 / 1, v / v) 

yielded (Z/E)-1-isobutyryl-2-(4-methoxy-2,3,6-trimethylbenzylidene)indolin-3-one 57 

(0.230 g 0.632 mmol, 86%) as yellow solid. Further purification was carried out via preparative 

HPLC (Machery-Nagel VP 250/21 NUCLEODUR Sphinx RP 5 µm column, acetonitrile / 

water, 7 / 3, v / v, 15 mL/min, 35 °C column temperature, retention time: 11.0 min (Z isomer) 

with 42% yield. 

Rf = 0.63 (silica, hexanes / ethyl acetate, 8 / 2, v /v). 

m.p. (°C): 64 - 66. 

Z isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 8.21 (d, 1H, H-C(6)), 7.86 (dd, 3J = 7.6 Hz, 4J = 

1.3 Hz, 1H, H-C(3)), 7.69 - 7.66 (m, 1H, H-C(4)), 7.42 (s, 1H, H-C(10)), 7.30 (ddd, 3J = 7.4 Hz, 

3J = 6.7 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 6.71 (s, 1H, H-C(15)), 3.85 (s, 3H, H-C(19)), 2.47 (sept, 
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3J = 6.8 Hz, 1H, H-C(22)), 2.21 (s, 3H, H-C(20)), 2.17 (s, 6H, H-C(17, 18)), 0.61 (d, 3J = 6.7 Hz, 

3H, H-C(23)), 0.54 (d, 3J = 6.7 Hz, 3H, H-C(23*)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 184.86 (C(8)), 178.21 (C(21)), 157.96 (C(14)), 

150.33 (C(7)), 136.29 (C(4)), 136.14 (C(13)), 136.09 (C(16)), 134.72 (C(12)), 125.17 (C(11)), 

124.16 (C(9)), 124.09 (C(5)), 123.92 (C(3)), 123.55 (C(2)), 121.34 (C(10)), 116.24 (C(6)), 

110.52 (C(15)), 55.49 (C(19)), 34.97 (C(22)), 20.30 (C(20)), 18.68 (C(23*)), 18.28 (C(23)), 

17.06 (C(17)), 11.38 (C(18)). 

E isomer: 

1H-NMR 800 MHz, CD2Cl2): δ (ppm) =8.20 (d, 3J = 8.2 Hz, 1H, H-C(6)), 7.72 (dd, 3J = 

7.5 Hz, 4J = 1.4 Hz, 1H, H-C(3)), 7.69 - 7.66 (m, 1H, H-C(4)), 7.44 (s, 1H, H-C(10)), 7.27 (ddd, 

3J = 7.3 Hz, 3J = 6.7 Hz, 4J = 0.8 Hz, 1H, H-C(5)), 6.71 (s, 1H, H-C(15)), 3.89 (s, 3H, H-C(19)), 

3.56 (sept, 3J = 6.7 Hz, 1H, H-C(22)), 2.29 (s, 3H, H-C(20)), 2.22 (s, 3H, H-C(17)), 2.20 (s, 

3H, H-C(18)), 1.34 (d, 3J = 6.5 Hz, 3H, H-C(23)), 1.33 (d, 3J = 6.5 Hz, 3H, H-C(23*)). 

13C-NMR (201 MHz, CD2Cl2): δ (ppm) = 182.75 (C(8)), 177.29 (C(21)), 157.27 (C(14)), 

148.65 (C(7)), 136.65 (C(16)), 135.73 (C(5)), 135.06 (C(13)), 135.01 (C(12)), 125.95 (C(10)), 

124.76 (C(11)), 124.53 (C(2)), 123.75 (C(3)), 123.60 (C(4)), 122.16 (C(9)), 117.16 (C(6)), 

109.39 (C(15)), 55.39 (C(19)), 34.06 (C(22)), 20.71 (C(20)), 19.78 (C(23*)), 19.74 (C(23)), 

17.12 (C(17)), 11.45 (C(18)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3358 (w), 2968 (m), 2927 (m), 2853 (m), 1759 (m), 1694 (s), 

1630 (s), 1588 (s), 1455 (s), 1383 (m), 1357 (m), 1315 (s), 1300 (s), 1262 (s), 1224 (m), 1181 

(m), 1149 (w), 1119 (s), 1098 (s), 1043 (w), 1010 (w), 992 (w), 952 (w), 911 (m), 894 (m), 801 

(w), 755 (s), 704 (m), 672 (m). 

MS (EI+, 70 eV): m/z (%) = 433.2 (16), 364.2 (15), 363.2 (60), 349.2 (19), 348. 2 (89), 293.1 

(36), 292.1 (66), 279.1 (18), 278.1 (94), 277.1 (33), 276.1 (96), 262.1 (28), 261.1 (27), 260.1 

(11), 234.1 (14), 190.1 (45), 151.1 (10), 150.1 (100), 120.0 (18), 71.0 (13), 43.1 (50). 

HRMS (EI+, C23H25NO3): calcd.: 363.1834; found: 363.1830 (M+). 

EA (C23H25NO3): calcd.: C, 76.01; H, 6.93; N, 3.85; found: C, 75.80; H, 7.04; N, 3.85.  
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3.7.4 Vicarious nucleophilic substitution at the central double bond 

Scheme 20, Section 2.2.10 depicts the substitution of the vinylic proton by a cyano group. 

(E/Z)-2-(4-methoxy-2,3,6-trimethylphenyl)-2-(3-oxo-1-propylindolin-2-

ylidene)acetonitrile (26) 

 

To a round bottom flask, equipped with a magnetic stirring bar and a rubber septum, (Z/E)-2-

(4-methoxy-2,3,6-trimethylbenzylidene)-1-propylindolin-3-one 28 (0.060 g, 0.179 mmol, 

1.0 equiv.), potassium cyanide (0.035 g, 0.537 mmol, 3.0 equiv.) and dimethyl sulfoxide 

(3.0 mL, 0.04 M) were added and the solution was stirred at 23 °C for 5 d. The reaction treated 

with sodium bisulfite solution, filtered through celite, extracted with ethyl acetate and washed 

with brine. The combined organic layers were dried over sodium sulfate, filtered and the 

solvents were removed in vacuo. Subsequent purification by flash column chromatography 

(aluminium(III) oxide, Brockmann III, 6% water, w / w), hexanes / ethyl acetate, 9 / 1, v / v) 

yielded (E/Z)-2-(4-methoxy-2,3,6-trimethylphenyl)-2-(3-oxo-1-propylindolin-2-ylidene)aceto-

nitrile 26 (0.028 g, 0.077 mmol, 43%) as orange solid. 

Rf = 0.12 (silica, hexanes / ethyl acetate, 9 / 1, v /v). 

Z isomer: 

1H-NMR (800 MHz, CD2Cl2): δ (ppm) = 7.74 (dd, 3J = 7.6 Hz, 3J = 1.4 Hz, 1H, H-C(6)), 7.54 

(ddd, 3J = 8.2 Hz, 3J = 7.3 Hz, 3J = 1.4 Hz, 1H, H-C(4)), 7.04 (ddd, 3J = 7.5 Hz, 3J = 7.5 Hz, 3J 

= 0.7 Hz, 1H, H-C(5)), 6.89 (d, 3J = 8.3 Hz, 1H, H-C(3)), 6.69 (s, 1H, H-C(15)), 3.84 (s, 3H, 

H-C(19)), 3.14 - 2.97 (m, 2H, H-C(21)), 2.27 (s, 3H, H-C(20)), 2.24 (s, 3H, H-C(17)), 2.15 (s, 

3H, H-C(18)), 0.89 (quin, 3J = 8.3 Hz, 2H, H-C(22)), 0.44 (t, 3J = 7.4 Hz, 3H, H-C(23)). 

MS (EI+, 70 eV): m/z (%) = 360.2 (31), 346.2 (24), 345.2 (11), 343.2 (32), 328.2 (24), 320.2 

(16), 315.1 (10), 303.1 (15), 299.1 (15), 281.1 (18 225.0 (17). 
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HRMS (EI+, C23H24N2O2): calcd.: 360.1838; found: 360.1834 (M+). 

3.7.5 Quaternary ammonium salts - Menschutkin reactions 

Scheme 41, Section 2.5.1 shows the quaternization of 1,4-diazabicyclo[2.2.2]octane via SN2 

reaction with an aliphatic halide substituted hemiindigo photoswitch. 

(Z/E)-1-(3-(2-(4-(dimethylamino)benzylidene)-3-oxoindolin-1-yl)propyl)-1,4-

diazabicyclo[2.2.2]octan-1-ium bromide (80) 

 

To a round bottom flask, equipped with a magnetic stirring bar and a rubber septum, (Z/E)-1-

(3-bromopropyl)-2-(4-(dimethylamino)benzylidene)indolin-3-one 83 (0.0154 g, 0.040 mmol, 

1.0 equiv.), 1,4-diazabicyclo[2.2.2]octane (0.0067 g, 0.060 mmol, 1.5 equiv.) and acetonitrile 

(0.25 mL, 0.1 M) were added and the solution was heated to 45 °C for 1 d. The volatiles and 

1,4-diazabicyclo[2.2.2]octane were removed in vacuo and 19.7 mg (0.0397 mmol, 99%) of 

(Z/E)-1-(3-(2-(4-(dimethylamino)benzylidene)-3-oxoindolin-1-yl)propyl)-1,4-diazabicyclo-

[2.2.2]octan-1-ium bromide 80 was obtained as deep red solid. 

Z isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.66 (ddd, 3J = 7.6 Hz, 4J = 1.3 Hz, 4J = 0.6 Hz, 1H, 

H-C(6)), 7.55 (ddd, 3J = 8.4 Hz, 3J = 7.2 Hz, 4J = 1.4 Hz, 1H, H-C(4)), 7.37 - 7.33 (m, 2H, H-

C(12)), 7.34 (d, 3J = 8.2 Hz, 1H, H-C(3)), 7.02 (s, 1H, H-C(10)), 6.98 (ddd, 3J = 7.8, 3J = 7.5, 

4J = 0.7 Hz, 1H, H-C(5)), 6.77 - 6.73 (m, 2H, H-C(13)), 4.02 (t, 3J = 7.5 Hz, 2H, H-C(16)), 3.79 

(t, 3J = 7.6 Hz, 6H, H-C(19)), 3.24 - 3.20 (m, 2H, H-C(18)), 3.14 - 3.11 (m, 6H, H-C(20)), 3.02 

(s, 6H, H-C(15)), 1.64 (quin, 3J = 7.6 Hz, 2H, H-C(17)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 186.83 (C(8)), 155.42 (C(2)), 151.01 (C(14)), 

136.57 (C(4)), 135.16 (C(9)), 132.71 (2C, C(12)), 124.81 (C(6)), 123.47 (C(7)), 121.12 (C(11)), 
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121.08 (C(5)), 116.04 (C(10)), 112.49 (C(3)), 112.20 (2C, C(13)), 62.11 (C(18)), 52.95 (3C, 

C(19)), 45.70 (3C, C(20)), 42.49 (C(16)), 40.55 (2C, C(15)), 19.91 (C(17)). 

E isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 8.40 - 8.36 (m, 2H, H-C(12)), 7.63 (ddd, 3J = 7.6 Hz, 

4J = 1.3 Hz, 4J = 0.7 Hz, 1H, H-C(6)), 7.46 (ddd, 3J = 8.3, 3J = 7.1, 4J = 1.4 Hz, 1H, H-C(4)), 

7.20 (d, 3J = 8.3 Hz, 1H, H-C(3)), 6.84 (ddd, 3J = 7.8 Hz, 3J = 7.2 Hz, 4J = 0.6 Hz, 1H, H-C(5)), 

6.78 (s, 1H, H-C(10)), 6.69 - 6.66 (m, 2H, H-C(13)), 4.06 (t, 3J = 7.2 Hz, 2H, H-C(16)), 3.89 - 

3.84 (m, 2H, H-C(18)), 3.50 (t, 3J = 7.6 Hz, 6H, H-C(19)), 3.17 - 3.13 (m, 6H, H-C(20)), 2.99 

(s, 6H, H-C(15)), 2.23 - 2.16 (m, 2H, H-C(17)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 183.75 (C(8)), 151.66 (C(14)), 151.45 (C(2)), 

135.93 (C(4)), 133.90 (C(9)), 133.52 (2C, C(12)), 124.58 (C(6)), 122.81 (C(11)), 122.11 (C(7)), 

121.35 (C(10)), 119.08 (C(5)), 111.60 (2C, C(13)), 109.86 (C(3)), 62.21 (C(18)), 53.25 (3C, 

C(19)), 45.82 (3C, C(20)), 40.44 (2C, C(15)), 39.74 (C(16)), 21.16 (C(17)). 

HRMS (ESI+, C26H33N4O+): calcd.: 417.26489; found: 417.26459 (M+). 

(Z/E)-1-(2-(2-(4-(dimethylamino)benzylidene)-3-oxoindolin-1-yl)ethyl)-1,4-diazabicyclo-

[2.2.2]octan-1-ium hexafluorophosphate (81) 

 

To a round bottom flask, equipped with a magnetic stirring bar and a rubber septum, (Z/E)-1-

(3-bromoethyl)-2-(4-(dimethylamino)benzylidene)indolin-3-one 84 (0.036 g, 0.097 mmol, 

1.0 equiv.), 1,4-diazabicyclo[2.2.2]octane (0.055 g, 0.485 mmol, 5.0 equiv.) and acetonitrile 

(0.1 mL, 0.1 M) were added and the solution was heated to 45 °C for 1 d. The volatiles and 1,4-

diazabicyclo[2.2.2]octane were removed in vacuo. Water and diethyl ether were added and the 

extracted organic layers were combined, weighted and reused. The aqueous phase was charged 

onto a Supleco DSC-WCX ion exchange sorbent and eluted with a 30 mM water / acetonitrile 
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(7 / 3, v / v) potassium hexafluorophosphate solution and concentrated in vacuo. Subtraction of 

the previously weighted unreacted starting material yielded 0.016 g (0.029 mmol, 30% of 

(Z/E)-1-(2-(2-(4-(dimethylamino)benzylidene)-3-oxoindolin-1-yl)ethyl)-1,4-diazabicyclo-

[2.2.2]octan-1-ium hexafluorophosphate 81 as deep red solid with potassium 

hexafluorophosphate as residue. 

Z isomer: 

1H-NMR (400 MHz, CD3CN): δ (ppm) = 7.67 (d, 3J = 7.6 Hz, 1H, H-C(6)), 7.63 (ddd, 3J = 

8.3 Hz, 3J = 7.2 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 7.40 - 7.35 (m, 2H, H-C(12)), 7.31 (d, 3J = 8.3 Hz, 

1H, H-C(3)), 7.07 (ddd, 3J = 7.8, 3J = 7.3 Hz, 0.9 Hz, 1H, H-C(5)), 7.06 (s, 1H, H-C(10)), 6.85 

- 6.80 (m, 2H, H-C(13)), 4.27 (t, 3J = 8.7 Hz, 2H, H-C(16)), 3.00 (s, 6H, H-C(15)), 2.91 (t, 3J = 

7.2 Hz, 6H, H-C(19)), 2.87 - 2.81 (m, 2H, H-C(17)), 2.77 (t, 3J = 7.2 Hz, 6H, H-C(18)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 186.52 (C(8)), 155.15 (C(2)), 151.82 (C(14)), 

136.97 (C(4)), 134.69 (C(9)), 132.93 (2C, C(12)), 124.93 (C(6)), 123.78 (C(7)), 121.93 (C(5)), 

120.42 (C(11)), 117.07 (C(10)), 112.74 (2C, C(13)), 112.15 (C(3)), 59.20 (C(17)), 52.84 (3C, 

C(18)), 45.11 (3C, C(19)), 40.11 (2C, C(15)), 37.47 (C(16)). 

E isomer: 

1H-NMR (400 MHz, CD3CN): δ (ppm) = 8.24 - 8.19 (m, 2H, H-C(12)), 7.64 (d, 3J = 7.6 Hz, 

1H, H-C(6)), 7.56 (ddd, 3J = 8.4 Hz, 3J = 7.2 Hz, 4J = 1.3 Hz, 1H, H-C(4)), 7.11 (d, 3J = 8.3 Hz, 

1H, H-C(3)), 6.95 (ddd, 3J = 7.8, 3J = 7.2 Hz, 4J = 0.6 Hz, 1H, H-C(5)), 6.79 - 6.74 (m, 2H, H-

C(13)), 6.51 (s, 1H, H-C(10)), 4.29 (t, 3J = 8.4 Hz, 2H, H-C(16)), 3.38 (t, 3J = 7.8 Hz, 2H, H-

C(17)), 3.37 (t, 3J = 7.8 Hz, 6H, H-C(18)), 3.15 (t, 3J = 7.1 Hz, 6H, H-C(19)), 3.03 (s, 6H, H-

C(15)). 

13C-NMR (101 MHz, CD2Cl2): δ (ppm) = 183.58 (C(8)), 152.26 (C(14)), 151.06 (C(2)), 

136.25 (C(4)), 133.53 (2C, C(12)), 133.30 (C(9)), 124.77 (C(6)), 122.67 (C(7)), 122.36 (C(11)), 

121.79 (C(10)), 120.06 (C(5)), 111.88 (2C, C(13)), 109.78 (C(3)), 59.58 (C(17)), 53.29 (3C, 

C(18)), 45.37 (3C, C(19)), 40.02 (2C, C(15)), 35.42 (C(16)). 

19F-NMR (376 MHz, CD3CN): δ (ppm) = -72.99 (d, 1J = 706.0 Hz, 6F, F-P). 

31P-NMR (162 MHz, CD3CN): δ (ppm) = -144.67 (sept, 1J = 706.2 Hz, 1P, P-F). 

HRMS (ESI+, C25H31N4O+): calcd.: 403.24924, found: 403.24925 (M+).  
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(Z/E)-1-(3-(3-oxo-2-((2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)-

indolin-1-yl)propyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide (82) 

 

To a round bottom flask, equipped with a magnetic stirring bar and a rubber septum, (Z/E)-1-

(3-bromopropyl)-2-((2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)-

indolin-3-one 85 (0.0182 g, 0.0416 mmol, 1.0 equiv.), 1,4-diazabicyclo[2.2.2]octane (0.0051 g, 

0.046 mmol, 1.0 equiv.) and acetonitrile (0.42 mL, 0.1 M) were added and the solution was 

heated to 45 °C for 1 d. The volatiles and 1,4-diazabicyclo[2.2.2]octane were removed in vacuo 

and 22.6 mg (0.0411 mmol, 99%) of (Z/E)-1-(3-(3-oxo-2-((2,3,6,7-tetrahydro-1H,5H-

pyrido[3,2,1-ij]quinolin-9-yl)methylene)-indolin-1-yl)propyl)-1,4-diazabicyclo[2.2.2]octan-1-

ium bromide 82 was obtained as deep violet solid. 

Z isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.66 (dd, 3J = 7.6 Hz, 4J = 1.2 Hz, 1H, H-C(6)), 7.54 

(ddd, 3J = 8.4 Hz, 3J = 7.2 Hz, 4J = 1.4 Hz, 1H, H-C(4)), 7.32 (d, 3J = 8.3 Hz, 1H, H-C(3)), 6.98 

(ddd, 3J = 7.8 Hz, 3J = 7.3, 4J = 0.8 Hz, 1H, H-C(5)), 6.96 (s, 1H, H-C(10)), 6.91 (s, 2H, H-

C(12)), 4.05 (t, 3J = 7.5 Hz, 2H, H-C(16)), 3.26 - 3.24 (m, 4H, H-C(15)), 3.23 - 3.20 (m, 2H, 

H-C(18)), 3.18 (t, 3J = 7.5 Hz, 6H, H-C(19)), 3.04 (t, 3J = 7.7 Hz, 6H, H-C(20)), 2.75 (t, 3J = 

6.2 Hz, 4H, H-C(22)), 1.98 - 1.94 (m, 4H, H-C(21)), 1.65 (quin, 3J = 8.0 Hz, 2H, H-C(17)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 186.65 (C(8)), 155.29 (C(2)), 144.32 (C(14)), 

136.22 (C(4)), 134.45 (C(9)), 130.64 (2C, C(12)), 124.39 (C(6)), 123.93 (C(7)), 121.58 (2C, 

C(13)), 121.06 (C(5)), 119.96 (C(11)), 117.52 (C(10)), 112.71 (C(3)), 62.16 (C(18)), 52.94 (3C, 

C(19)), 50.43 (2C, C(15)), 45.82 (3C, C(20)), 42.60 (C(16)), 28.23 (2C, C(22)), 22.17 (2C, 

C(21)), 19.78 (C(17)).  
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E isomer: 

1H-NMR (600 MHz, CD2Cl2): δ (ppm) = 7.99 (s, 2H, H-C(12)), 7.62 (dd, 3J = 7.6 Hz, 4J = 

1.3 Hz, 1H. H-C(6)), 7.45 (ddd, 3J = 8.3 Hz, 3J = 7.2 Hz, 4J = 1.4 Hz, 1H, H-C(4)), 7.20 (d, 3J 

= 8.3 Hz, 1H, H-C(3)), 6.83 (3J = 7.7 Hz, 3J = 7.3 Hz, 4J = 0.6 Hz, 1H, H-C(5)), 6.59 (s, 1H, H-

C(10)), 4.03 (t, 3J = 7.4 Hz, 2H, H-C(16)), 3.84 - 3.77 (m, 2H, H-C(18)), 3.50 (t, 3J = 8.3 Hz, 

6H, H-C(19)), 3.24 - 3.22 (m, 4H, H-C(15)), 3.13 (t, 3J = 7.7 Hz, 6H, H-C(20)), 2.74 (t, 3J = 

6.1 Hz, 4H, H-C(22)), 2.22 - 2.15 (m, 2H, H-C(17)), 1.94 - 1.90 (m, 4H, H-C(21)). 

13C-NMR (151 MHz, CD2Cl2): δ (ppm) = 183.06 (C(8)), 150.96 (C(2)), 145.11 (C(14)), 

135.53 (C(4)), 133.09 (C(9)), 131.30 (2C, C(12)), 124.70 (C(6)), 122.49 (C(10)), 122.21 (C(7)), 

121.80 (C(11)), 120.79 (2C, C(13)), 118.90 (C(5)), 109.87 (C(3)), 62.25 (C(18)), 53.23 (3C, 

C(19)), 50.52 (2C, C(15)), 45.75 (3C, C(20)), 39.71 (C(16)), 28.25 (2C, C(22)), 22.30 (2C, 

C(21)), 21.26 (C(17)). 

HRMS (ESI+, C30H37N4O+): calcd.: 469.29619; found: 469.29606 (M+). 

(Z)-3-(2-(anthracen-9-ylmethylene)-3-oxoindolin-1-yl)-N,N,N-trimethylpropan-1-

aminium iodide (105) 

 

To a round bottom flask, equipped with a magnetic stirring bar and a rubber septum, (Z/E)-2-

(anthracen-9-ylmethylene)-1-(3-(dimethylamino)propyl)indolin-3-one 100 (0.050 g, 

0.119 mmol, 1.0 equiv.), iodomethane (0.025 g, 0.597 mmol, 5.0 equiv.) and acetonitrile 

(1.2 mL, 0.1 M) were added and the solution was heated to 40 °C for 90 min. The volatiles were 

removed in vacuo and 65.6 mg (0.119 mmol, 99%) of (Z)-3-(2-(anthracen-9-ylmethylene)-3-

oxoindolin-1-yl)-N,N,N-trimethylpropan-1-aminium iodide 105 was obtained as orange solid. 

m.p. (°C): 198 (decomposition).  
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Z isomer: 

1H-NMR (800 MHz, CD3CN): δ (ppm) = 8.68 (s, 1H, H-C(18)), 8.20 - 8.11 (m, 4H, H-C(16, 

13)), 7.77 (d, 3J = 7.7 Hz, 1H, H-C(6)), 7.63 - 7.53 (m, 6H, H-C(4, 15, 14, 10)), 7.05 (d, 3J = 

8.7 Hz, 1H, H-C(3)), 7.04 (dd, 3J = 8.2 Hz, 7.4 Hz, 1H, H-C(5)), 2.93 (t, 3J = 7.4 Hz, 2H, H-

C(19)), 2.36 (s, 9H, H-C(22)), 2.08 - 1.99 (m, 2H, H-C(21)), 1.26 - 1.18 (m, 2H, H-C(20)). 

13C-NMR (201 MHz, CD3CN): δ (ppm) = 185.90 (C(8)), 155.03 (C(2)), 139.40 (C(9)), 137.37 

(C(4)), 131.65 (C(11)), 130.67 (2C, C(12)), 129.73 (2C, C(16)), 128.73 (C(18)), 127.53 (2C, 

C(14)), 126.41 (2C, C(15)), 126.36 (2C, C(13)), 126.10 (2C, C(17)), 125.12 (C(6)), 121.88 

(C(7)), 121.03 (C(5)), 110.70 (C(3)), 107.12 (C(10)), 63.50 (C(21)), 52.95 (3C, C(22)), 40.46 

(C(19)), 21.54 (C(20)). 

IR (Diamond ATR): 𝜈 (cm-1) = 3751 (w), 2916 (w), 1698 (s), 1607 (s), 1474 (s), 1370 (m), 

1338 (m), 1309 (m), 1134 (m), 1101 (m), 1056 (w), 882 (w), 849 (w), 752 (s), 735 (s). 

HRMS (ESI+, C29H29N2O+): calcd.: 421.22744; found: 421.22729 (M+). 
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4.1 Hemiindigo - Rationale of substitution patterns 

It could be shown that hemiindigos are a class of virtually unexplored, potent photoswitches 

supporting high photoisomerization ratios with blue over green to yellow and red light, high 

thermal bistabilities, good quantum yields and high tolerance of the photoreactions towards 

solvent polarity changes. The effects of different substitutions at the indoxyl- and stilbene 

fragments could be shown, with electron donating substituents being beneficial for red-shifted 

absorptions and twisted aryl axes at the indoxyl-nitrogen increasing thermal bistability while 

maintaining its red-shift. Increase of conjugation strength at the stilbene fragment did not yield 

desired red-shifted hemiindigos. The thermal bistabilities of Z and E isomers can be increased 

by electron withdrawing groups at the indoxyl nitrogen or by electron-neutral stilbene 

fragments. The thermal bistabilities of N-arylated hemiindigos profit from twisting of the N-

aryl moiety and from decreasing sterical bulk between the indoxyl core methyl group and the 

stilbene fragment by substituting an ortho-tolyl group with a naphthyl group. 
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4.2 Hemiindigo - Solvent, Water and pH influence 

The effects of solvent polarity on hemiindigo photoswitches could be demonstrated. Generally, 

red-shift is increased and quantum yields are slightly decreased for polar solvents, these trends 

are reversed for apolar solvents, with few exceptions. Photoswitching in water can only be 

realized by addition of 2.5 - 30% of water miscible organic solvent for hemiindigos supporting 

electron rich stilbene fragments.[74] Water soluble, ionic hemiindigos can only photoisomerize 

if the stilbene fragment features weak electron donating groups like methoxy or methyl (see 

section 2.2.5 and Section 2.6 for details). Acidic or basic conditions do not show visible 

photoswitching of hemiindigo chromophores. 
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4.3 Quantum yields 

A general trend towards higher quantum yields especially for the Z to E direction when 

changing from polar to apolar solvents can be observed. This could be explained by a highly 

polar excited state structure similar to charge-transfer (CT) states, which would be stabilized 

by a polar environment. Such CT states would lead to competing deexcitation channels, which 

reduce the photoisomerization quantum yield - similar to the twisted intramolecular charge 

transfer (TICT) state behavior of donor-substituted twisted hemithioindigos.[87, 102] In theory, if 

the conical intersection shows symmetric pathways towards Z or E isomer, the maximum 

obtainable quantum yield should amount 50%. However, sterical pre-twisting of a molecule or 

specific electronic structures can prearrange and favor the trajectory of the desired 

photoreaction leading to quantum yields beyond 50%. Rational design of quantum yield 

efficiencies is therefore very challenging, as these effects cannot be easily predicted. 

The introduction of a twisted ortho-tolyl aryl axis (hemiindigo 20) increases the Z to E 

quantum yield by 10% compared to the para-toluene axis supported by hemiindigo 16 and the 

n-propyl residue found with hemiindigo 8. The significant drop of photoisomerization 

efficiency to 2% observed with hemiindigo 16 could be circumvented by remotely twisting the 

aryl axis away from the stilbene fragment. A possible explanation for this low quantum yield is 

the collision of the stilbene fragment with the para-tolyl residue which tries to planarize to 

extend its pi-conjugation towards the indoxyl core. With the twisted N-aryl axis in 

hemiindigo 20 its quantum yield rises 4.5-fold from 2 to 9%. This also indicates that the E to Z 

isomerization power stroke is barely able to twist the conjugated para-tolyl out of its way.  

It would also be possible for the para-tolyl hemiindigo 16 to twist the stilbene fragment 

around its single bond, which can be discarded as this would cause a significant bathochromic 

shift, which cannot be observed compared to the ortho-tolyl derivative 20 (see Figure 46, 

Section 2.2.7 for comparison). These findings suggest that the torsion of the N-aryl axis is 

favored, while the stilbene single bond remains within the conjugated indoxyl plane. The 

stilbene fragment could be regarded as a torsion sensor that reports increased twisting with a 

bathochromic shift. 
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4.4 Axially chiral hemiindigos 

The introduction of a chiral acyl or aryl axis on hemiindigo chromophores at the indoxyl 

nitrogen was tested with various substitution patterns to explore the influence of electronics and 

sterics on the photoswitching behavior and motion of the passive chiral axes.  

First experiments were carried out with acyl residues as the pi-delocalization of the amide 

bond was thought to be stable enough for low temperature measurements. This could not be 

achieved and the low thermal barriers of this atropisomerization are only reported by theory. 

Changing the acetyl to an isobutyryl group increased the sterical bulk and yielded presumably 

higher rotational barriers as split signals could be observed via 1H NMR spectroscopy when 

sterically hindered, asymmetrical stilbene fragments are introduced to the hemiindigo 

photoswitch. This splitting, however, is not caused by the high rotational barrier of the 

isobutyryl group but by the averaged asymmetric environment induced by the stilbene 

fragment. The rotational barrier of the stilbene fragment could be determined via temperature 

dependent 1H-NMR coalescence measurements. 

The introduction of a chiral aryl axis to the hemiindigo chromophore was done utilizing a 

novel synthetic route coupling sterically demanding 2-bromotoluene to 7-methyl indole as 

precursor. The resulting chiroptical switches were scrutinized via chiral HPLC, 1H NMR, 

UV-Vis and (low temperature) electronic circular dichroism (ECD) spectroscopy. In general, a 

by 3 kcal/mol lowered atropisomerization barrier for the Z isomers compared to the E isomers 

could be observed. For all non-ortho stilbene substituted derivatives, the calculated transition 

states of Z isomers show passing of the ortho-tolyl methyl group over the indoxyl core methyl 

group while E isomer transition states prefer rotation of said methyl group over the central 

double bond, introducing directionality of the thermal atropisomerization. Furthermore, a 

strong modulation of ECD signals could be observed between Z and E isomers for derivatives 

30 and 33. Cyclic experiments showed that the atropisomerization is not influenced by the 

photoswitching motion, making these materials viable chiroptical switches addressable by 

visible light. The drawback of the fast racemization of 33 in its Z state could be improved by 

the introduction of a naphthyl moiety which makes the chiroptical properties of these switches 

usable for prolonged times at 25 °C.  

Derivative 58 (see Section 2.3.4) supports a permanent stereocenter and shows similar 

magnitudes of ECD modulation as derivatives 30 and 33 while maintaining its UV-Vis 

absorption profile. This type of compounds could be used for prolonged data storage 

applications beyond 1s and 0s and advanced chiroptical filter systems. 
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4.5 Axially chiral indigos 

The presented axially chiral molecular setups based in the diarylated indigo scaffold show 

vastly different behaviors upon their substitution patterns by changing the position and number 

of methyl groups at crucial positions.  

The first generation of this molecule class could not be easily analyzed due to its 

unexpectedly fast conversion rates and 1H-NMR signal broadening at low temperatures. 

The second generation avoided the indigo core methyl groups, giving higher 

atropisomerization rates, enabling the separation of isomers for their individual analyses. Their 

complex motions could be determined to prospective unidirectional double- and single bond 

motors, thermally switchable enriching of syn- / anti-trans states against the thermal 

equilibrium and photochemically- / thermally induced, geared Hula-Twist motions. 

Several non-symmetric axially chiral model compounds were successfully synthesized and 

characterized by F. Binder to disentangle and verify the observed properties shown by the 

symmetric derivatives. A novel chimeric compound supporting two different chiral axis setups 

was also explored. 

The third generation of axially chiral indigos was successfully synthesized and characterized 

by K. Jordan to gain further insights on the exhibited motional cascades within these molecules, 

further experiments are carried out at the time of writing. 

Overall, the unexpected behavior of these fairly small and formally simple looking 

molecules was scrutinized. Their potential as prospective molecular motors and -machines was 

demonstrated, giving insights into novel photoinduced- and thermal motions, which is crucial 

for the design of nanomachines and molecular robots. Also, addressability within the biooptical 

window was achieved, as all photosteps can be driven with low energy, 625 nm LED light, 

making the application of likewise systems available on biological tissues in vitro and in vivo. 
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4.6 Ionic hemiindigos 

In conclusion, three permanently charged thermally bistable hemiindigos were synthesized and 

their photochemical properties in the gas phase and in solution were investigated. It is shown 

that gas-phase experiments agree with the theoretical description and capture essential intrinsic 

molecular properties, including absorption wavelengths or collision cross-sections. Describing 

the influence of polar solvents on the photochemical behavior on the other hand is still 

challenging using this theoretical approach. Additionally, a novel way of separating stable 

hemiindigo isomers from an isomeric mixture to obtain isomer-specific photoisomerization 

responses without the need for spectral deconvolution of mixtures in solution is presented. It is 

further demonstrated, that reversible photoisomerization and strong photochromism for all 

isolated gas-phase hemiindigos is shown upon exposure to visible light. The influence of the 

shorter chain-length on absorption wavelengths, photoisomerization properties, overall 

reactivity and solubility were elaborated further. Possible explanations for the reversal of ATDs 

of Z and E isomers of the short-chain hemiindigo 81 are given. 

The use of ion mobility mass spectrometry coupled to laser spectroscopy offers unique 

insights into the subtle effects of intrinsic molecular constitution and electronic structure - 

separated from environment influences - of photoactive molecules. Such fundamental 

investigations can be useful for rationally designing better molecular photoswitches and serve 

as a benchmark for developing accurate theoretical models for their photoisomerization 

dynamics / and mechanisms. 
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4.7 Hemiindigos in water 

As shown in Section 2.5, the ionic derivatives of highly bistable, red-shifted, electron rich 

hemiindigo photoswitches did not show photoisomerization reactions in pure water. D. 

Berdnikova of the Ihmels group in Siegen, Germany, synthesized the previously avoided 

hemiindigo derivatives featuring neutral stilbene fragments and made them water soluble by 

attaching a dimethylamino propyl chain at the stilbene fragment. This compound showed 

binding affinities towards HIV-1 TAR and RRE-IIB RNA and could be photoswitched in its 

fluorescent response.[40] 

In accordance to the promising results of this therapeutic approach to potentially gain control 

of the HIV-1 proliferation apparatus, a series of hemiindigos with varying substitution patterns 

was synthesized and submitted to preliminary binding studies carried out by D. Berdnikova. 

Another promising candidate, namely hemiindigo 105, was hereby found and synthesized at 

larger scale for further RNA binding studies followed with NMR spectroscopy by D. 

Berdnikova. These experiments will reveal the possible selectivity and binding constants of this 

photoswitch and its usability in controlling the HIV-1 activity. 
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4.8 Photophysics 

The developed “all-in-one” Excel tool proved as a success as repetitive measurements of 

different photoswitches in various solvents require a robust and repeatable methodology to 

compare obtained datasets. Its ease of use and time- / compound savings for the required (photo) 

physical measurements (Molar absorptivity, PSS determination, thermal kinetics and quantum 

yield determination) was a major help in processing the acquired data via UV-Vis- and NMR 

spectroscopy. 

The construction of a low-budget quantum yield measurement device with differential 

detection setup was a success and showed that even cheap components can be used for this kind 

of measurements as photodiodes are very sensitive towards minimal changes of light intensity 

and output a corresponding current in a linear fashion. Further improvements of the quantum 

yield measurement data processing are in preparation to date. 

To consistently test the photofatigue of photoswitches, repeated cyclic measurements were 

set up by successfully building an alternating LED irradiation device controlled via a 

microcontroller. This allows for virtually infinite of switching cycles to be run, giving reliable 

degradation kinetics. 

As ECD measurements are quite susceptible to angle changes of the cuvette(s) within the 

beam path of the circularly polarized light, a cryostat mount was built that allowed for 

adjustment in seven axes including removal and reinsertion of the cryostat / sample cuvette into 

the spectrometer without losing its positioning. Successful repeated ECD measurements proved 

the rigidity and usability of this setup. 
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5.1 List of Abbreviations 

δ  chemical shift 

ΔT  temperature difference 

λmax  absorption maximum 

calcd.  calculated 

ECD  electronic circular dichroism 

EI  electron ionization 

ESI  electrospray ionisation 

equiv.  equivalent 

ESPT  excited-state proton transfer 

et al.   et alii (and others) 

GC-MS gas chromatography–mass spectrometry 

HMBC heteronuclear multiple-bond correlation spectroscopy 

HOMO highest occupied molecular orbital 

HPLC  high-performance liquid chromatography 

HRMS  high-resolution mass spectrometry 

hν  light 

kcal  kilocalorie 

LUMO  lowest unoccupied molecular orbital 

m/z  mass/charge 

MS  mass spectrometry 

NMR   nuclear magnetic resonance 

NOE  nuclear Overhauser effect 

NOESY nuclear Overhauser effect spectroscopy 

o  ortho 

m  meta 

p  para 

ppm   parts per million 

PSS  photostationary state 

Rf  retardation factor 

UV  ultraviolet 

vis  visible 

Further abbreviations used in the text are explained in the corresponding passages. 
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5.2 Table of Figures 

Figure 1: Simplified Jablonski diagram. Absorption of a photon results in excitation of the molecule e.g. into the singlet state 1 or 2 (S1 or S2, blue arrow) within 
an accessible vibronic state. Lower lying vibronic states can be populated by phononic de-excitations, which can be simplified as cooling of an 
excited vibrating molecule towards a state of lower energy (wavy lines). The lowest energy vibronic mode of the excited state (here: S1-0) must be in 
phase with at least one vibronic mode x (in most cases not the lowest vibronic mode) of the ground state (singlet state 0 or S0) to emit a photon 
(fluorescence). This photon has the same energy as the energy gap between S1-0 and S0-x. The same principle can be applied to the triplet states with 
the additional aspect that the required changes in spin polarization from triplet to singlet states are forbidden. This circumstance can trap molecules in 
long-lasting triplet states for time periods that extend fluorescent phenomena by several orders of magnitude. 4 

Figure 2: Overview of different classes of photoswitches. In general, thermodynamically stable forms are shown on the left, metastable products are shown on 
the right. Rule-of-thumb performances with regard to red-shifted photoswitching and long thermal half-lives at 25 °C are shown for a respective 
isomerization direction. Very fast = ns to s. fast = s to min, medium fast = min to h, medium slow = h to days, slow = days to years, very slow = years 
to millennia. NIR = near infrared 8 

Figure 3: Simplified depiction of a conical intersection for a Z / E double bond isomerization, X represents the reaction coordinate. The excited state S1 rapidly 
de-excites towards the S0 state of the Z- or E isomer with a 1 to 1 probability. 9 

Figure 4: Indigo and its reduced leuco form. 11 
Figure 5: Irradiation of biological tissue with 405 nm (100 mW of light power, left) and 625 nm (130 mW of light power, right) light emitting diodes (LEDs). The 

lower measured power (~30%) for the LED on the left is not the main cause for the significant transmission difference (>> 30%) when compared to 
the right. 13 

Figure 6: Overview of increasing thermal half-lives for different indigoid photoswitches at 25 °C. 14 
Figure 7: Energy profile of the unidirectional rotational cycle of the molecular motor as published by M. Güntner.[82] Black lines represent theoretically obtained 

values calculated at the MPW1K/6-31+G(d,p) level of theory, blue values indicate experimentally measured values. 18 
Figure 8: Simplified motional cycle of an axially chiral di-N-arylated indigo derivative. 19 
Figure 9: Nomenclature and fundamental switching processes of a hemiindigo photoswitch induced by visible light or thermal excitation. 24 
Figure 10: Transient absorption spectra of hemiindigo 2 recorded after 45 femtoseconds photoexcitation of the Z isomer with 400 nm light. 27 
Figure 11: Lewis-formulas of hemithioindigos E-4, 5, 6 (top) and hemiindigos E-7, 8, 3 (bottom) and their free activation enthalpies ΔG* for the respective E to Z 

isomerizations in toluene. 29 
Figure 12:  Rationale for the substitution and selection of solvents for tailoring hemiindigo photoswitches. EWG = Electron withdrawing group, EDG = electron 

donating group. Electron donating moieties at the N-R position result in red-shifted chromophores, the same can be seen for the para-position of the 
stilbene fragment. Electron withdrawing groups will result in blue-shifted absorptions, this includes the proton substitution at the central double bond. 
Introduction of bulk at the ortho-positions of the stilbene fragment or at the central double bond will result in twisting of the adjacent single bond and 
loss of pi-conjugation along the chromophore, which also blue-shifts absorptions. Polar solvents will red-shift absorptions and enhance thermal 
bistabilities while lowering quantum efficiencies upon switching. Apolar solvents will reverse these trends. 30 

Figure 13: Crystals (left) and structure of hemiindigo Z-9 (left) in the crystalline state. An almost planar conformation of the single bond with a dihedral angle of 

9.26° for C8-C9-C10-C11 can be observed. The double bond (red) measures 1.352 Å in length and the stilbene single bond (green) at 1.451 Å. 31 
Figure 14: Lewis-formula of hemiindigo 9. 32 
Figure 15: Photoswitching of hemiindigo 9 in toluene (left) and dimethyl sulfoxide (right) at different wavelengths. Z isomer enriched states are colored in red, E 

isomer enriched states are colored in blue. Comparable amounts of photodestruction can be seen over this broad range of solvent polarity. The 
estimated increase in isomeric yields of the E isomer in toluene can be attributed to the overall improved quantum yields of hemiindigos in apolar 
solvents, which is discussed in Section 2.2.25. Exact quantification of thermal bistabilities, isomeric ratios and quantum efficiencies were not carried 
out as the constant degradation of this molecule would not yield accurate results. 32 

Figure 16: Fluorescence spectra of hemiindigo 9 in toluene (left) and dimethyl sulfoxide (right). This strong fluorescence is exclusive to N-H unsubstituted and 

stilbene para-proton, -methyl and -methoxy substituted hemiindigos. Fluorescence is lost upon photoswitching and by exposure to atmospheric 
conditions. 33 

Figure 17: Structure of hemiindigo Z-2 in the crystalline state. The viewing angle on the right emphasizes the strong helical twisting within the Z isomer with a 
dihedral torsion angle of 52.97° for C1-N1-C10-C11. The stilbene single bond is twisted by 23.24° for C10-C11-C12-C13. The length of the double 
bond (red) is contracted from 1.352 to 1.344 Å and the single bond (green) elongated from 1.451 to 1.459 Å compared to hemiindigo 9. 34 

Figure 18: Lewis-formula of hemiindigo 2. 35 
Figure 19: Molar absorption (left) and PSS (right) spectra of hemiindigo 2 in dichloromethane. A blue shifted absorption compared to the N-H substituted 

compound 9 can be observed resulting from acetylation of the indoxyl nitrogen (Figure 15). Defined isosbestic points can be seen at 260 nm, 320 nm, 

360 nm and 430 nm, which indicates good photostability of this compound. Highest isomeric yields were obtained at 385 nm irradiation (88% E 
isomer) and at 505 nm irradiation (87% Z isomer). Energy barriers for thermal double bond isomerizations were determined to be 24.4 kcal/mol for 
the Z to E and 24.0 kcal/mol for the E to Z direction at 24 °C, which translates to thermal half-lives of 12.5 h and 24.5 h at 25 °C, for the respective 
isomers. 35 

Figure 20: Molar absorption (left) and PSS (right) spectra of hemiindigo 2 in toluene. Almost similar absorption profiles can be observed compared to 
dichloromethane as solvent (Figure 19). The isosbestic points are well defined, verifying the photostability of this compound. Highest isomeric yields 
were obtained at 385 nm irradiation (89% E isomer) and at 490 nm irradiation (99% Z isomer). Energy barriers for thermal double bond 
isomerizations were determined to be 32.6 kcal/mol for the Z to E and 31.4 kcal/mol for the E to Z direction at 100 °C, which translates to thermal 
half-lives of 2895 years and 381 years at 25 °C, for the respective isomers. 36 

Figure 21: Structure of hemiindigo 13 in the crystalline state in its E isomeric form. Full planarity for the E isomer can be observed, which is seen for all 

hemiindigos with ortho-unsubstituted stilbene fragments. The double (red) and single bond (green) are elongated from 1.352 to 1.354 Å and 1.451 to 
1.455 Å, respectively, compared to N-H substituted chromophore 2. This can be caused by the +I effect of the methyl group or the overall 

electronically different E isomeric form. 37 
Figure 22: Unexpected dipolar [2+4] cycloaddition product upon recrystallization of N-ethyl substituted hemiindigo 14 at approximately 100 °C in ethanol / water. 

Bond lengths are shown in respective colors. 38 
Figure 23: Structure of hemiindigo 7 in the crystalline state. The viewing angle on the right emphasizes the strong single bond twisting of the stilbene fragment. 

The stilbene single bond dihedral torsion angle amounts to 43.47° for C8-C9-C10-C15 in the Z isomeric state and the dihedral helical torsion angle 
amounts to 8.73° for C17-N1-C8-C9. The double bond (red) is contracted from 1.352 to 1.346 Å and the single bond (green) is highly elongated from 
1.451 to 1.467 Å compared to the N-H unsubstituted chromophore 9. 39 

Figure 24: Comparison of helical torsion and stilbene single bond rotation for alkylated hemiindigo 7 (left) and acetylated hemiindigo 2 (right) 40 
Figure 25: Lewis-formula of hemiindigo 7. 41 
Figure 26: Molar absorption (left) and PSS (right) spectra of hemiindigo 7 in dichloromethane. The isosbestic points are well defined, verifying the photostability 

of this compound. Highest isomeric yields were obtained at 435 nm irradiation (96% E isomer) and at 565 nm irradiation (54% Z isomer). Energy 
barriers for thermal double bond isomerizations were determined to be 23.8 kcal/mol for the Z to E and 23.7 kcal/mol for the E to Z direction at 
100 °C, which translates to thermal half-lives of 8.9 h and 7.5 h at 25 °C, for the respective isomers. Quantum yields were determined at 17 ±3% 
(449 nm) for Z to E and 3.2 ±1% (565 nm) for E to Z direction. 41 

Figure 27: Molar absorption (left) and PSS (right) spectra of hemiindigo 7 in toluene. Similar spectra can be observed compared to dichloromethane as solvent 
(see Figure 26). The isosbestic points are well defined, verifying the photostability of this compound. Highest isomeric yields were obtained at 435 nm 
irradiation (97% E isomer) and at 530 nm irradiation (18% Z isomer). Energy barriers for thermal double bond isomerizations were determined to be 
31.5 kcal/mol for the Z to E and 29.8 kcal/mol for the E to Z direction at 100 °C, which translates to thermal half-lives of 452 years and 25.6 years at 
25 °C, for the respective isomers. 42 

Figure 28: Structure of hemiindigo Z-11 (left) and Z-15 (right) in the crystalline state. Both derivatives remain planar in the Z form, as no bulk is introduced at the 

indoxyl nitrogen. The double (red) and single bond (green) lengths change from 1.352 to 1.357 to 1.347 Å and 1.451 to 1.438 to 1.449 Å for the 
methoxy, dimethylamino and julolidine derivatives 9, 11 and 15, respectively. 44 

Figure 29: Dichroic crystals of hemiindigo 15 obtained in lengths from 5 to 10 mm. Adapted with permission from [74]. Copyright 2017 American Chemical 
Society. 44 

Figure 30: Lewis-formula of hemiindigo 11. 45 
Figure 31: Molar absorption spectra of pure Z and E isomers of 11 measured in solvents of increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). 

PSS and switching spectra are omitted for clarity reasons and can be found in the literature.[74] A clear correlation between rising solvent polarity and 
red-shift of absorptions can be observed, evidencing moderate solvatochromism. Adapted with permission from [74]. Copyright 2017 American 
Chemical Society. 45 

Figure 32: Lewis-formula of hemiindigo 15. 46 
Figure 33: Molar absorption spectra of pure Z and E isomers of 15 measured in solvents of increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). 

PSS and switching spectra are omitted for clarity reasons and can be found in the literature.[74] A clear correlation between rising solvent polarity and 
red-shift of absorptions can be observed, evidencing moderate solvatochromism. Adapted with permission from [74]. Copyright 2017 American 
Chemical Society. 46 

Figure 34: Structure of hemiindigo E-8 (left) and E-3 (right) in the crystalline state. Both derivatives remain planar in the E isomeric form. The double (red) and 

single bond (green) lengths change from 1.354 to 1.363 to 1.362 Å and 1.455 to 1.450 to 1.445 Å for the N-methyl methoxy, dimethylamino and 
julolidine derivatives 7, 8 and 8, respectively. A clear trend for stilbene-single-bond-shortening can be observed by increasing electron donor strength 

in the para-position. 47 
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Figure 35: Lewis-formula of hemiindigo 8. 48 
Figure 36: Molar absorption spectra of pure Z and E isomers of 8 measured in solvents of increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). 

PSS and switching spectra are omitted for clarity reasons and can be found in the literature.[74] A clear correlation between rising solvent polarity and 
red-shift of absorptions can be observed, evidencing moderate solvatochromism. Adapted with permission from [74]. Copyright 2017 American 
Chemical Society. 48 

Figure 37: Prolonged photoswitching of hemiindigo 8 from Z PSS (590 nm) to E PSS (470 nm) and vice versa in dimethyl sulfoxide over 50 cycles. Only minor 
amounts of photodestruction could be observed. Adapted with permission from [76]. Copyright 2018 American Chemical Society. 49 

Figure 38: Absorption spectra during photoswitching of hemiindigo 8 in 4 / 1 water / N,N-dimethylformamide. Visually unhampered photoswitchability remains 
even at high water contents. Adapted with permission from [74]. Copyright 2017 American Chemical Society. 50 

Figure 39: Poly(methyl methacrylate) piece treated with a solution of hemiindigo 8 in dichloromethane. Photoswitchability was preserved within the polymer. 
Experiments with UV curable clear resins for 3D printing by Formlabs were also successful, which makes it possible to print photoswitches favorably 
within translucent polymer materials. 51 

Figure 40: Lewis-formula of hemiindigo 3. 52 
Figure 41: Molar absorption spectra of pure Z and E isomers of 3 measured in solvents of increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). 

PSS and switching spectra are omitted for clarity reasons and can be found in the literature.[74] A clear correlation between rising solvent polarity and 
red-shift of absorptions can be observed, evidencing moderate solvatochromism. Adapted with permission from [74]. Copyright 2017 American 
Chemical Society. 52 

Figure 42: Photoswitching of hemiindigo 3 in 4 / 1 water / N,N-dimethylformamide. Excellent photoswitching performance can be observed even at high water 
contents. Adapted with permission from [74]. Copyright 2017 American Chemical Society. 53 

Figure 43:  Lewis-formula of hemiindigo 16. 55 
Figure 44: Molar absorption spectra of pure Z and E isomers of 16 measured in solvents of increasing polarity (toluene, tetrahydrofuran and dimethyl sulfoxide). 

PSS and switching spectra are omitted for clarity reasons and can be found in the literature.[74] A clear correlation between rising solvent polarity and 
red-shift of absorptions can be observed, evidencing moderate solvatochromism. Adapted with permission from [74]. Copyright 2017 American 
Chemical Society. 55 

Figure 45: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS at different wavelengths of irradiation PSS (right) spectra of 
hemiindigo 20 in dimethyl sulfoxide. The isosbestic points are well defined, verifying the photostability of this compound. Highest isomeric yields were 
obtained at 470 nm irradiation (93% E isomer) and at 625 nm irradiation (97% Z isomer). Energy barriers for thermal double bond isomerizations 
were determined to be 30.6 kcal/mol for the Z to E and 32.1 kcal/mol for the E to Z direction at 114 °C, which translates to thermal half-lives of 99 
years and 1140 years at 25 °C, for the respective isomers. Quantum yields were determined at 33 ±2% (467 nm) for Z to E and 9 ±1% (600 nm) for E 
to Z photoisomerizations. In 83 / 17 heptane / ethyl acetate, the quantum yields increase up to 49 ±2% (450 nm) for Z to E and 12 ±2% (520 nm) for E 
to Z photoisomerization. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 57 

Figure 46: Comparison of molar absorption spectra for less twisted para-tolyl (16) and strongly twisted ortho-tolyl derivative 20 in dimethyl sulfoxide. No 
significant batho- or hypsochromic shift can be observed. Thus the wavelengths of absorption are mainly determined by the stilbene-fragment and 
much less so by the twisting of the N-indoxyl substituent. A reduction of ε by 30% can be observed. However, this does not hamper the 
responsiveness of the twisted system, as even higher quantum yields are reported for hemiindigo 20. 58 

Figure 47: UV-Vis spectrum of hemiindigo 25 in dimethyl sulfoxide. 60 
Figure 48: Lewis-formula of hemiindigo 12. 61 
Figure 49: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS at different wavelengths of irradiation PSS (right) spectra of 

hemiindigo 12 in dichloromethane that was filtered through aluminium(III) oxide to reduce prevalent amounts of hydrochloric acid. The isosbestic 

points are well defined, verifying the photostability of this compound. Highest isomeric yields were obtained at 420 nm irradiation (79% E isomer) and 
at 625 nm irradiation (99% Z isomer). Energy barriers for thermal double bond isomerizations were determined to be 25.9 kcal/mol for the Z to E and 
27.9 kcal/mol for the E to Z direction at 100 °C, which translates to thermal half-lives of 13 days and 1 year at 25 °C, for the respective isomers. 61 

Figure 50: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS at different wavelengths of irradiation PSS (right) spectra of 
hemiindigo 12 in dichloromethane that was filtered through aluminium(III) oxide to reduce prevalent amounts of hydrochloric acid. The isosbestic 
points are well defined, verifying the photostability of this compound. Highest isomeric yields were obtained at 420 nm irradiation (77% E isomer) and 
at 530 nm irradiation (96% Z isomer). Energy barriers for thermal double bond isomerizations were determined to be 29.8 kcal/mol for the Z to E and 
30.3 kcal/mol for the E to Z direction at 100 °C, which translates to thermal half-lives of 26 years and 60 years at 25 °C, for the respective isomers. 
Unprecedented behavior of this compound can be seen as the only intermediate Z / E composition is obtained with 470 nm irradiation (broken light 
blue line). For previous compounds, a more or less continuous distribution of PSS compositions was obtained when sweeping through all available 
wavelengths for irradiation. In this case, however, a sharp discrimination for wavelengths below 470 nm and above 470 nm can be observed, which 
strongly favor one or the other isomer in the PSS. 62 

Figure 51: UV-Vis spectra of irradiation experiments on hemiindigo 26 in cyclohexane (left) and dichloromethane (right). Photoswitching can be seen in 
cyclohexane. The initial Z / E composition is switched with 435 nm LED light and can be recovered by irradiation with 530 nm. Little photoswitching is 
observed in dichloromethane, which was also assessed via NMR in Figure 53. 64 

Figure 52: UV-Vis spectra of irradiation experiments on hemiindigo 26 in dimethyl sulfoxide. Little photoswitching can be seen. This kind of substitution pattern 

seems to perform poorly within polar solvents, in contrast to derivatives possessing only a threefold substituted double bond. 65 
Figure 53: 1H-NMR spectra recorded during irradiation experiments on hemiindigo 26 in dichloromethane-d2 at 25 °C, 400 MHz. The initial Z / E composition 

before irradiation is the same as observed in the spectrum on top and is not shown. 91% of the Z isomer are present in the thermal equilibrium and 
photoswitching to 23% E isomer content is possible. 65 

Figure 54: Chromatogram of hemiindigo 26 recorded via gas chromatography - mass spectrometry. Only the mass trace with an m/z of 360 corresponding to the 
product 26 is shown. Two distinct peaks connected by a streaking area can be observed at 300 °C, suggesting interconversion of Z- and E isomers 

during elution. 66 
Figure 55: Lewis-formula of hemiindigo 29. 67 
Figure 56: UV-Vis spectra of photoswitching experiments of hemiindigo 29 in dimethyl sulfoxide (left) and comparison to the dimethylamino derivative 20. The 

absorption maximum of the Z isomer (red) is not shifted but the E isomer (blue) exhibits a hypsochromic shift beyond the most red-shifted Z isomer 
maximum. 67 

Figure 57: Lewis-formula of hemiindigo 30. 68 
Figure 58: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS at different wavelengths (right) of hemiindigo 30 in dimethyl 

sulfoxide. The isosbestic points are well defined, verifying the photostability of this compound. Highest isomeric yields were obtained at 450 nm 
irradiation (56% E isomer) and at 617 nm irradiation (96% Z isomer). Energy barriers for thermal double bond isomerizations were determined to be 
30.5 kcal/mol for the Z to E and 31.7 kcal/mol for the E to Z direction at 114 °C, which translates to thermal half-lives of 78 years and 614 years at 
25 °C, for the respective isomers. Quantum yields were determined at 12 ±2% (450 nm) for Z to E and 12 ±2% (520 nm) for E to Z direction. In 83 / 
17 heptane / ethyl acetate the quantum yield rises to 33 ±2% (435 nm) for Z to E and is lowered to 10 ±2% (520 nm) for E to Z photoisomerizations . 
This increase in quantum yield of the Z isomer over the E isomer improves the photoisomerization yields to 98% Z isomer (530 nm) and 84% E 
isomer (435 nm) in apolar medium. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 68 

Figure 59: Comparison of molar absorption spectra for less (20) and highly stilbene single bond-twisted hemiindigo 30 in 83 /17 heptane / ethyl acetate. A strong 
hypsochromic shift of the twisted derivative 30 can be observed and its molar absorptivity ε is lowered by 70%. 69 

Figure 60: Structure of naphthylated indole 31 in the crystalline state. The perspective on the right emphasizes the nearly orthogonal planes of indole and 
naphthyl. The dihedral angle between the indole and naphthyl plane is close to 90° with 86.28° for the angle C8-N1-C10-C19. This proves that the 
introduction of the 7-methyl group alone twists the aryl axis to nearly its maximum in the crystalline state, which is also reproduced by DFT 
calculations (see Section 2.3.7). Chiral HPLC at 0 °C did not show a separation of rotamers for 31, which indicates a low thermal stability of its 

rotational axis suggesting a rotational energy barrier of less than 20 kcal/mol. 70 
Figure 61: Lewis-formula of hemiindigo 33. 72 
Figure 62: Molar absorption spectra of pure isomers (left) and spectra recorded at the PSS at different wavelengths of irradiation PSS (right) spectra of 

hemiindigo 33 in dimethyl sulfoxide. The isosbestic points are well defined, verifying the photostability of this compound. Highest isomeric yields were 

obtained at 450 nm irradiation (43% E isomer) and at 595 nm irradiation (98% Z isomer). Energy barriers for thermal double bond isomerizations 
were determined to be 31.8 kcal/mol for the Z to E and 32.7 kcal/mol for the E to Z direction at 114 °C, which translates to thermal half-lives of 750 
years and 3427 years at 25 °C, for the respective isomers. Quantum yields were determined at 5 ±1% (450 nm) for Z to E and 8 ±2% (520 nm) for E 
to Z photoisomerizations. In 83 / 17 heptane / ethyl acetate, quantum yields were determined at 27 ±2% (435 nm) for Z to E and 9 ±2% (520 nm) for 
E to Z photoisomerizations This increase in quantum yield of the Z isomer over the E isomer improves the photoisomerization yields to 98% Z isomer 
(530 nm) and 83% E isomer (435 nm) in apolar medium. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 72 

Figure 63: Comparison of molar absorption spectra of N-naphthyl substituted hemiindigo 33 and N-ortho-tolyl substituted hemiindigo 30. The shape of 

absorption spectra is almost identical whereas the molar absorptivity ε is increased by 20% for the naphthyl derivative. 73 
Figure 64: UV-Vis spectra of hemiindigo 33 dissolved in Formlabs clear resin (left) and photograph of prepared samples (right). Photoswitchability between 

>95% Z isomer and >83% E isomer can be seen, which equals the performance of hemiindigo 33 in apolar solvent mixtures of 87 / 13 heptane / ethyl 
acetate. The black circle on sample “348-H 1” served as positional marker for circularly polarized light (CPL) irradiations and ECD measurements. 74 

Figure 65: Calculated UV-Vis spectra at the B3LYP/6-311+G(d,p) level of theory, (TD-DFT, nstates = 30) for a potentially red-shifted hemiindigo derivative, 
Z isomer (top) and E isomer (bottom) are shown. Absorption maxima of 625 nm (Z) and 660 nm (E) can be observed, an increase towards longer 
wavelengths is expected for the experiment, as DFT calculations tend to underestimate the red-shift.[74] 75 

Figure 66: Hemiindigo derivative 34 was synthesized by D. Berdnikova. Photoswitching and unspecified binding to HIV-1 TAR RNA, HIV-1 RRE-IIB RNA and 

HIV-1 TAR Tat complexes with fluorescent responses could be shown.[40] 77 
Figure 67: Lewis-formula of hemiindigo 9. 78 
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Figure 68: Impact of acids and base additions on the absorption of hemiindigo 9 in toluene. Photoswitchability without additives was ensured first (broken blue 

line and solid red line). Addition of 8 drops of trifluoroacetic acid to 2 mL of toluene volume yielded spectrum shown in green. Irradiation in this state 
did not induce any spectral changes. This can be caused by low thermal barriers in between Z and E isomer or due to deexcitation trough ESPT. An 
increase of molar absorptivity can be seen although the photoswitch concentration was diluted throughout this experiment. Neutralizing the solution 
yielded the bright blue line. In this state photoswitchability could be restored (broken violet line). Addition of a few drops of triethylamine yielded the 
pink spectrum. 78 

Figure 69: Lewis-formula of hemiindigo 11. 79 
Figure 70: Impact of acids and base addition on the absorption of hemiindigo 11 in toluene. Photoswitchability without additives was ensured first (dashed blue 

line and solid red line). Addition of 4 drops of trifluoroacetic acid to 2 mL of toluene solution yielded the spectrum shown in green. Irradiation in this 
state did not induce any spectral changes. This can be caused by low thermal barriers in between Z and E isomer or due to deexcitation trough 
ESPT. A strong decrease of molar absorptivity can be seen as the photoswitch was not diluted by a factor of three by the small volumes of acid / 
base added. Excess triethylamine (violet line) restores proper photoswitchability (broken violet line, pink line) and results in a defined isosbestic point 
shifted by approximately 10 nm to the red part of the visible light spectrum compared to the neutral solution. A decrease in molar absorptivity by 20% 
can be observed. 79 

Figure 71: A first order kinetic analysis of the thermal E to Z isomerization of hemiindigo 15 in toluene (black, 22 °C), tetrahydrofuran (red, 25 °C), and dimethyl 

sulfoxide (grey, 51 °C) gives a linear relationship. The slope m can be translated into the rate constant k for this process. The corresponding Gibbs 
energies of activation are given in Table 8. Adapted with permission from [74]. Copyright 2017 American Chemical Society. 90 

Figure 72: Exemplary illustration of the decaying ECD response of Z-(Ra)-30 at 40 °C in 93 / 7 heptane / ethyl acetate. The red spectrum with strongest ECD 
response represents t = 0 s and was set to 100% (added absolute spectral area for positive and negative signals). Correspondingly, the blue 
spectrum with weakest ECD response represents t = 3720 s at the end of measurement. Kinetic plots were conducted within these respective 
margins. Yellow and green represent intermediate time points within the measurement. Adapted with permission from [75]. Copyright 2018 American 
Chemical Society. 92 

Figure 73: First order kinetic analyses of the thermal racemization via atropisomerization of hemiindigo 30 in 93 / 7 heptane / ethyl acetate in the dark. The 

slopes m can be translated into the rate constant k for each process. Racemization in the Z isomeric state (red, see also Figure 72) was measured at 
40 °C and gives an energy barrier of 23.1 kcal/mol. Racemization in the E isomeric state (blue) was measured at 60 °C and proceeds over an energy 
barrier of 26.1 kcal/mol. Poor R² values are based on bad signal to noise ratios caused by the weak ECD response of the E isomer. Adapted with 
permission from [75]. Copyright 2018 American Chemical Society. 93 

Figure 74: Kinetics of the thermal isomer interconversion of hemiindigo 20 at 103 °C in dimethyl sulfoxide-d6 in the dark starting from either 92% E-20 (blue) or 
96% Z-20 (red). After prolonged heating, a stable 87 / 13 E / Z isomer mixture is obtained independently for both experiments. Adapted with 

permission from [75]. Copyright 2018 American Chemical Society. 95 
Figure 75: First order kinetic analysis of the thermal E to Z and Z to E isomerization of hemiindigo 20 in dimethyl sulfoxide-d6 at 103 °C starting from either 92% 

E-20 (blue) or 96% Z-20 (red). After prolonged heating in the dark, a stable 87/13 E/Z isomer composition is observed in both experiments. 
Linearized plots according to eq. 5 are shown. The slopes m can be translated into the rate constant k for each isomerization direction. Analysis of 
the thermal Z to E equilibration reaction (red) gave energy barriers of 30.6 for Z / E- and 32.0 kcal/mol for the E / Z isomerizations. Analysis of the 
thermal E to Z equilibration reaction (blue) gave energy barriers of 30.6 for Z / E- and 32.1 kcal/mol for E / Z isomerizations, respectively. The close 
agreements of these two independent experiments can be seen by the almost similar slopes for the Z to E and E to Z isomerization experiments. 
Adapted with permission from [75]. Copyright 2018 American Chemical Society. 96 

Figure 76: Chromatogram of the HPLC separation of diarylethene 35 in pure acetonitrile. 3D plot of the diode array detector (DAD, top), trace of the Vis detector 
at 500 nm (bottom). A baseline resolved separation could be obtained. 100 

Figure 77: Lewis-formula of 35. 100 
Figure 78: 1H-NMR spectrum of the HPLC separated diarylethene 35 (closed form) in dichloromethane-d2. No open form is visible. 100 
Figure 79: Molar absorption spectra of diarylethene 35 in n-hexane. The molar absorptions reported by Sumi et al. of 28400 Lmol-1cm-1 at 268 nm for the open 

form and 10900 Lmol-1cm-1 at 562 nm for the closed form match very well with the recorded data (28517 Lmol-1cm-1 (blue) at 268 nm and 11123 
Lmol-1cm-1 at 562 nm (red)). 101 

Figure 80: Photoisomerization progress of the ring-opening reaction of diarylethene 35 at different time points in n-hexane. 102 
Figure 81: Recorded photokinetic (blue) and polynomial fit (dotted blue) during the photoswitching of diarylethene 35 from 100% closed to 80% open form in 

n-hexane. 103 
Figure 82: Starting points / linear segment of the photokinetic shown in Figure 81 measured during the photoswitching of diarylethene 35 from 100% closed to 

8% open form in n-hexane 104 
Figure 83: Regression of the weighted power factor versus the percentage of 100% closed diarylethene 35 in n-hexane to extrapolate the power value P0

.f the 
time t0. Linear approximation (broken blue line) and polynomial fit (broken orange line) which improves the obtained quantum yield by 4.6% compared 
to the linear regression value. 105 

Figure 84: Quantum yield measurement, photokinetic, and polynomial fit for the ring-opening photoswitching reaction of diarylethene 35 at 520 nm irradiation 

starting from a 60% to 40% closed to open form mixture in n-hexane. 106 
Figure 85: Regression to calculate the power value P0

.f at the time t0 for the ring-opening photoswitching reaction of diarylethene 35 at 520 nm irradiation 

starting from a 60% to 40% closed to open form mixture in n-hexane. The linear approximation is shown in broken orange lines. 107 
Figure 86: Initial linear part (orange) and slope (blue) for the photoisomerization from 100% closed to open form recorded with the Zinth laser setup. Only the 

part from 10 s to 180 s is shown, as the first seconds gave inaccurate results because of laser adjustment. 109 
Figure 87: Complete plot for measurements (orange) and slope t0 (blue and green dotted line) for the photoisomerization from 100% closed to open form 

recorded with the Zinth laser setup. Slope t0 considers only the data points shown in Figure 86 and is added for comparison. 109 
Figure 88: Overlay of the t0 spectrum of diarylethene 35 in n-hexane (yellow), tend spectrum (green), irradiation wavelength (473 nm, blue), absorption profile of 

the low pass filter glass, which was installed between the irradiated cuvette and the detector and readout wavelength (650 nm dark red). 110 
Figure 89: Quantum yield measurement of the Z to E photoisomerization of hemiindigo 20 in 83 / 17 heptane / ethyl acetate (blue dots) using a 467 nm LED for 

irradiation and starting from 95.9% Z-20 and 4.1% E-20. The whole photoconversion kinetic was fitted with a fourth order polynomial (blue broken 
line). The polynomial formula is given in blue. Extrapolation of the polynomial to y = %E isomer = 0, differentiation and insertion of the corresponding 
x-value gives an initial slope m0 = 2.408%Es-1 (orange formula). Adapted with permission from [75]. Copyright 2018 American Chemical Society. 111 

Figure 90: Quantum yield measurement of the E to Z photoisomerization of hemiindigo 20 in 83 / 17 heptane / ethyl acetate (blue dots) using a 520 nm LED for 
irradiation and starting from 95.8% E-20 and 4.2% Z-20. The whole photoconversion kinetic was fitted with a fourth order polynomial (blue broken 
line). The polynomial formula is given in blue. Extrapolation of the polynomial to y = %Z isomer = 0, differentiation and insertion of the corresponding 
x-value gives an initial slope of m0 = 0.4682%Zs-1 (orange formula). Adapted with permission from [75]. Copyright 2018 American Chemical Society. 113 

Figure 91: Initial design idea for a unidirectional molecular gearbox (top middle, 36). A, B and C pose as different substituents to yield a stereocenter at the 
indoxyl nitrogen. Indanone (top left, 37) and fluorenone (top right, 38) stilbene fragments could be used as rigid paddles to drive the adjacent N-C 
axis. Triptycyl moieties (bottom, 39 and 40) could provide better geared engagement between the photochemically driven stilbene fragment and the 

coupled, mechanically driven, single bond rotation attached to the nitrogen. 118 
Figure 92: Sequence for a geared, photodriven motion of the triptycyl residue at the indoxyl nitrogen of a model hemiindigo chromophore. One intermeshing 

step is shown in the sequence from 1 - 5. Calculations were done at the PM6 level of theory, the central double bond was rotated in 90 steps of two 
degrees each for the full 180° rotation of the double bond. 119 

Figure 93: Lewis-formula of hemiindigo 2. 122 
Figure 94: Calculated ground and transition state structures of hemiindigo 2 at the B3LYP/6-311+G(d,p) level of theory. Transition states for the 

atropisomerizations and the stilbene single bond rotations were found for Z and E isomers. The disfavored transition state for the E isomer did not 
converge after several attempts and tweaks. The “+” sign in front of transition state values indicates the energy difference with respect to the lowest 
ground state of respective Z or E isomers. Structures in the box both correspond to the transition states of the stilbene rotational barriers of the anti-Z-
isomer. 122 

Figure 95: Lewis-formula of hemiindigo 50. 125 
Figure 96: Structure of hemiindigo 50 in the crystalline state. The viewing angle on the right emphasizes the pronounced stilbene single bond twisting. The 

stilbene single bond dihedral torsion angle amounts to 42.05° for C8-C9-C10-C11 in the E isomeric state. The double bond (red) length amounts to 
1.345 Å and the single bond (green) to 1.468 Å. 125 

Figure 97: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 50 in toluene. The isosbestic points are not well defined, verifying the 

photolability of this compound. The Z state cannot be recovered upon irradiation, which could be caused by a low quantum yield for the E to Z 
photoisomerization. 125 

Figure 98: Lewis-formula of hemiindigo 51. 126 
Figure 99: Structure of hemiindigo 51 in the crystalline state. The viewing angle on the right emphasizes the pronounced single bond twisting of the anthracene. 

The anthracene single bond dihedral torsion angle amounts to -59.61° for C8-C9-C10-C11 in the Z isomeric state, which is about 17° larger than the 
value of the corresponding torsion angle in the E state of naphthyl derivative 50. The double bond (red) length amounts to 1.331 Å and the single 
bond (green) to 1.472 Å. Comparison to the E form of the naphthyl derivative 50 does not allow for unambiguous conclusions as electronic effects in 
between Z and E form might outweigh the influence of the added phenyl core resulting in the observed torsional differences. 126 

Figure 100: Molar absorption in dichloromethane (left) and PSS (right) UV-Vis spectra of hemiindigo 51 in toluene. The isosbestic points are well defined in 
dichloromethane, which is not true for toluene, verifying the solvent dependent photolability of this compound as mainly photodegradation can be 
observed in latter case. 127 

Figure 101: Lewis-formula of hemiindigo 52. 128 
Figure 102: Structure of hemiindigo 52 in the crystalline state. The viewing angle on the right emphasizes the strong stilbene single bond twisting. The stilbene 

single bond dihedral torsion angle amounts to 58.25° for C8-C9-C10-C15 in the Z isomeric state, the double bond (red) length amounts to 1.342 Å 
and the single bond (green) to 1.477 Å. 128 
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Figure 103: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 52 in toluene. The isosbestic points are well-defined compared to previously 
synthesized derivatives 50 and 51 as viable photoswitchability can be observed. 129 

Figure 104: Lewis-formula of hemiindigo 55. 131 
Figure 105: 1H-NMR spectrum of HPLC separated Z and E isomers of hemiindigo 55 in chloroform-d at 27 °C. 131 
Figure 106: Calculated ground and transition state structures of hemiindigo 55 at the B3LYP/6-311+G(d,p) level of theory. Transition states for the 

atropisomerizations for Z and E isomers and the naphthyl single bond rotation for anti-diastereomers were found. The “+” sign in front of transition 
state values indicates the energy difference with respect to the lowest ground state of the respective Z or E isomers. The syn- transition states of the 
stilbene single bond rotation, however, did not converge after several attempts and tweaks. The isopropyl C-C single bond rotation and the methyl 
group rotation (+7.26 kcal/mol when adjacent to the carbonyl group, not shown) were found only for the Z isomer. 132 

Figure 107: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 55 in toluene. The isosbestic points are not well defined, verifying the 
photolability of this compound. The Z state cannot be recovered upon irradiation. 133 

Figure 108: Lewis-formula of hemiindigo 56. 133 
Figure 109: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 56 in toluene. The isosbestic points are well defined, verifying the restored 

photostability of this compound after acylation. Photoswitching proceeds readily in both directions and a strong red-shift of about 60 nm compared to 
the naphthyl derivative 55 can be observed. 134 

Figure 110: Lewis-formula of hemiindigo 57. 134 
Figure 111: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 57 in toluene. The isosbestic points are well defined, verifying the photostability 

of this compound. Photoswitching proceeds readily in both directions, a large blue-shift of approx. 60 nm can be observed compared to the 
anthracene derivative. A fine structure can be seen for the Z isomer, which can be attributed to multiple, discernable oscillation modes with smaller 
full widths at half maximum (FWHM). 135 

Figure 112: Comparison of 1H-NMR spectra of hemiindigo 55 in chloroform-d (600 MHz, 27 °C) and 57 in dichloromethane-d2 (800 MHz , 27 °C), only the 

aliphatic region is shown. A pronounced splitting of the isobutyryl methyl signals (2) can be observed which is enlarged in the Z state by almost one 
order of magnitude from 5.70 Hz to 52.36 Hz at 800 MHz NMR spectrometer frequency. 136 

Figure 113: 1H-NMR spectra of a mixture of Z and E isomers of hemiindigo 57 in toluene-d8 measured at different temperatures on a 400 MHz NMR 
spectrometer. 138 

Figure 114: Calculated ground and transition state structures of hemiindigo 57 at the B3LYP/6-311+G(d,p) level of theory. Transition states for the 
atropisomerizations for Z and E isomers and two stilbene single bond rotation for the anti-Z isomer were found. The “+” sign in front of transition state 
values indicates the energy difference with respect to the lowest ground state of respective Z or E isomers. The E- transition states of the stilbene 
single bond rotation, however, did not converge after several attempts and tweaks. The isopropyl single bond rotation was found only for the Z 
isomer. The calculated value of the stilbene single bond rotation in the Z state is in good agreement to the experimentally determined value of 
17.06 kcal/mol. 140 

Figure 115: 1H-NMR spectra of enantiopure HPLC fractions of hemiindigo 58 in dichloromethane-d2 at ambient temperatures. The matching signals prove the 
separated HPLC fractions to be enantiomers. 142 

Figure 116: Structures of the enantiopure crystallization batches for E isomers of hemiindigo 58 in the crystalline state. The structure on the left (inside rectangle) 
was crystallized from the first enantiomeric fraction, the structure on the right from the second one, respectively. The chiral nature of the compound 
requires four molecules to determine its unit cell. Both crystal structures purposely show the R configuration at the stereocenter as the evaluation of 
the structural data done by P. Mayer was not unambiguous to assign the enantiomers to their respective stereodescriptors. This is generally difficult 
to achieve if the molecules do not contain at least one heavy atom, for example sulphur, or if only small crystals can be obtained. The stilbene single 
bond dihedral torsion angle amounts to 78.20° for C54-C55-C56-C57 in the E isomeric state. The double bond (red) length amounts to 1.337 Å and 
the single bond (green) to 1.488 Å. 143 

Figure 117: PSS (left) UV-Vis and ECD spectra of hemiindigo 58 in dimethyl sulfoxide. The isosbestic points are well defined, verifying the photostability of this 

compound after alkylation. Photoswitching proceeds readily in both directions. A red-shift of the absorption of approximately 40 nm can be observed 
compared to the absorption of the acylated derivative 57. A strong modulation of the ECD signal can be seen in between Z and E isomer. Adapted 

with permission from [75]. Copyright 2018 American Chemical Society. 144 
Figure 118: Setup for alternatively irradiating liquid samples with right or left handed circularly polarized light (CPL) and non-polarized light. LED 1 is focused with 

a lens on a stack of microscopy plates at the Brewster angle of 56°. The reflected linearly polarized light (LPL) was tested with sunglasses (which can 
pose as linear polarizators) and could be extinguished upon turning the glasses within the plane of the lens, which proved successful linear 
polarization. The addition of a Fresnel rhomb (which poses also as a quarter wave plate) with its optical axis turned at 45° to the light path led to a 
non-extinguishable ray of CPL. When another quarter wave plate (like the Fresnel rhomb) is added to the beam path, CPL is again transformed to 
extinguishable LPL, which proves the successful circular polarization of the LED light. A microcontroller can be used for actuating a relay board to run 
cyclic experiments where a sample is repeatedly irradiated with CPL and normal, unpolarized light to its initial state. 145 

Figure 119: Design principles of axially chiral hemiindigo photoswitches. The chiral axis together with a methyl group in 7-position of the indoxyl core yield HPLC-
separable rotamers for specific stilbene substitution patterns in Z and E isomeric forms. 147 

Figure 120: Overview of selected axially chiral hemiindigos 20, 59, 29, 25, 60, 61, 30 and 33. Only respective E isomers are shown. The properties of compound 
25 were discussed in Section 2.2.7, as no chiral HPLC separation was performed on this molecule. 148 

Figure 121: First generation of synthesized axially chiral hemiindigo derivatives 20, 59 and 29. 150 
Figure 122: Section of the 2D 1H-NOESY NMR spectrum (dichloromethane-d2, 600 MHz, 27 °C) of hemiindigo 20. An unambiguous assignment of the double 

bond configuration can be done with this spectrum. A strong NOE cross signal between Z 12 and Z 22 evidences the Z isomeric state. The strong 
NOE cross signal between proton E 10 and protons E 22 evidences the E isomer. The corresponding cross signal of Z 10 and Z 22 is very weak, 
indicating a farther distance of the methyl group associated to the ortho-tolyl residue to the double bond proton in the Z isomeric state. 151 

Figure 123: Aromatic section of the 1H-NMR spectra (dichloromethane-d2, 800 / 600 MHz, 27 °C) of E (top) and Z isomer (bottom) enriched mixtures of 
hemiindigo 20. Large upfield shifts can be observed upon transition from E to Z isomer, which indicate proximity of the shielding aniline ring-current to 
the chiral ortho-tolyl residue in the Z state. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 152 

Figure 124: 3D UV-Vis Chromatograms of hemiindigo 20 on a chiral HPLC column recorded at 0 °C in 87 / 13 heptane / ethyl acetate. The peak intensity scale is 
given in mAU (milli a.u., arbitrary units). 153 

Figure 125: Molar absorption coefficients (left) of 20 in 83 / 17 heptane / ethyl acetate with the Z isomer shown in red and the E isomer in blue. Spectral changes 
recorded after different irradiation times show clear isosbestic points (right). Adapted with permission from [75]. Copyright 2018 American Chemical 
Society. 154 

Figure 126: ECD spectrum measurement of Z-20 at 25 °C (left). Because of the low energy barrier of 19.9 kcal/mol for atropisomerization via N-(indoxyl)-o-tolyl 

single-bond rotation (corresponding to a half-life of 43 s at 25 °C) the ECD signal has almost completely vanished at 0 °C. Molar ellipticity ECD 
spectra of E-20 in 83 / 17 heptane/ethyl acetate at 25 °C (right), (Ra)-E-20 shown in blue, (Sa)-E-20 shown in red. Adapted with permission from [75]. 

Copyright 2018 American Chemical Society. 154 
Figure 127:  UV-Vis absorption (left) and ECD spectrum (right) of 20 in 83 / 17 heptane / ethyl acetate recorded for one switching cycle starting from pure (Ra)-E-

20 (solid blue), which was photoisomerized to Z-20 (5 min, 595 nm, solid red) and then switched back to E-20 (1 min, 470 nm, light blue, dashed) in 
high isomeric yields at 23 °C. The low free activation enthalpy ΔG* = 19.9 kcal/mol for thermal atropisomerization in the Z isomeric state leads to fast 
racemization in this state within ~2 minutes (thermal half-life of 43 s at 25 °C) under the applied measurement conditions. Consequently, the ECD 
signal is already lost in the Z isomeric state (right, red spectra) and photoisomerization back to the thermally more stable E-20 therefore shows no 

leftover ECD signal for the E isomer (right, light blue, dashed line). Adapted with permission from [75]. Copyright 2018 American Chemical Society. 155 
Figure 128: First order kinetic analyses of the thermal racemization via atropisomerization of hemiindigo 20 in 83 / 17 heptane / ethyl acetate in the dark. The 

slopes m can be translated into the rate constants k for each process. Racemization in the Z isomeric state (red) was measured at -20 °C and 
proceeds over an energy barrier of 19.9 kcal/mol. Racemization in the E isomeric state (blue) was measured at 40 °C and proceeds over an energy 
barrier of 23.4 kcal/mol. Poor R² values are based on bad signal to noise ratios caused by weak ECD responses. Adapted with permission from [75]. 
Copyright 2018 American Chemical Society. 156 

Figure 129: Calculated ground and transition state structures of hemiindigo 20 at the B3LYP/6-311+G(d,p) level of theory. Transition states for the 
atropisomerization and the stilbene single bond rotation were found. The disfavored atropisomerization transition states did not converge after several 
attempts and tweaks. The calculated energies are in good agreement to the experimental values. The “+” sign in front of transition state values 
indicates the energy difference with respect to the lowest ground state of respective Z or E isomers. 157 

Figure 130: Benchmarking results for hemiindigo 20 using different DFT functionals for the 6-311+G(d,p) basis set. “Z” and “E” represent the ground states and “Z 

Me-Me” and “E Me-DB” the energetically lowest found transition state for the rotation around the ortho-tolyl axis with the respective double bond 
configuration (see Figure 129). The “+” sign in front of transition state values indicates the energy difference with respect to the lowest ground state of 
respective Z or E isomers. 158 

Figure 131: Lewis-formula of hemiindigo 59. 160 
Figure 132: 3D UV-Vis Chromatograms of hemiindigo 59 on a chiral HPLC column (Diacel Chiralpak IC, 5µm, 8 mL/min) recorded at 0 °C in 95 / 5 heptane / ethyl 

acetate. Injection of a Z / E mixture gives three separable peaks, E 1 E 2 and Z 1. The peak intensity scale is given in mAU (milli a.u., arbitrary units). 160 
Figure 133: Lewis-formula of hemiindigo 29. 161 
Figure 134: 3D UV-Vis Chromatograms of hemiindigo 29 on a chiral HPLC column (Diacel Chiralpak IC, 5µm, 8 mL/min) recorded at 0 °C in 83 / 17 heptane / 

ethyl acetate. Injection of a Z / E mixture gives mainly two separable peaks, E 1 and E 2. The peak intensity scale is given in mAU (milli a.u., arbitrary 
units). 161 

Figure 135: Second generation of synthesized axially chiral hemiindigo derivatives 60 and 61. 163 
Figure 136: Lewis-formula of hemiindigo 60. 164 
Figure 137: 3D UV-Vis Chromatograms of hemiindigo 60 on a chiral HPLC column (Diacel Chiralpak IC, 5µm, 8 mL/min) recorded at 0 °C in 95 / 5 heptane / ethyl 

acetate. Injection of a Z / E mixture gives four separable peaks, Z 1, Z 2, E 1 and E 2, which is a novelty compared to the previously synthesized 
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hemiindigos substituted with chiral axes. The peak intensity scale is given in mAU (milli a.u., arbitrary units). Collection and re-injection of E 1 (left) 
gives the pure E peak. Collection and re-injection of Z 1 (right) gives the pure peak and some unknown side product, which is probably a residue from 
a previous run. Irradiation of Z 1 to the E state yielded the E 1 isomer almost quantitatively. E 1 and Z 1 left in the dark did not noticeably racemize, 
heating to 100 °C for 25 minutes, however, yielded the racemates (not shown). 164 

Figure 138: Structure of hemiindigo 60 in the crystalline state. The viewing angle on the right emphasizes the strong twisting of the naphthyl stilbene fragment 

and the ortho-tolyl chiral axis within the Z form. Latter is strongly twisted with a dihedral torsion angle of 102.71° for C25-C20-N1-C1. The twist 
around the stilbene single bond amounts to 72.49° for C8-C9-C10-C19. The length of the double bond (red) amounts to 1.342 Å and the single bond 
(green) amounts to 1.482 Å. 165 

Figure 139: Section of the NOESY 1H-NMR spectrum (dichloromethane-d2, 800 MHz, 27 °C) of hemiindigo E-60. The strong NOE cross signal between proton E 

10 and protons E 22 and the weak interaction between E 12 and E 22 suggest the E conformation. Cross signal E 27 / E 22 and the downfield shift of 
E 12 and E 27 suggest the naphthyl moiety to face away from the carbonyl oxygen while maintaining rotatability at the carbon-carbon single bond 
(weak signals E 12 / E 22). Cross signals E 21 / E 23, E 18 / E 23 and E 20 / E 23 exemplify the proximity of methyl group E 23 towards the ring 
system of the chiral aryl axis. 166 

Figure 140: Section of the NOESY 1H-NMR spectrum (dichloromethane-d2, 600 MHz, 27°C) of hemiindigo Z-60. The missing NOE cross signal between proton Z 
10 and protons Z 22 and the strong interaction between Z 12 and Z 22 suggest the Z conformation. Cross signal Z 27 / Z 22 suggests twisting of the 
stilbene and the downfield shift of Z 27 suggest the naphthyl moiety to face towards the carbonyl oxygen while maintaining rotatability at the carbon-
carbon single bond. Signal Z 12 shows a strong upfield shift, hinting towards increased distance towards the carbonyl oxygen. Cross signal Z 21 / 
Z 23, exemplifies the proximity of methyl group Z 23 towards the ring system of the chiral aryl axis. 167 

Figure 141: Section of the 1H-NMR spectra (dichloromethane-d2, 800 / 600 MHz, 27 °C) of E (top) and Z isomer (bottom) enriched mixtures of hemiindigo 60. 

Strong chemical shifts can be observed upon transition from E to Z isomer, which indicates proximity of the stilbene ring current towards the N-aryl 
chiral axis in the Z state as the signals for the E isomer are separated from each other and tend to shift upfield in the Z isomer. The large upfield shifts 
of signals 12, 18, 19, 20 and 21from E to Z and the downfield shift of signal 27 indicates transition from a mostly planar stilbene fragment in E 
configuration to pronounced twisting of the naphthalene in the E state. 168 

Figure 142: Molar absorption (left) and PSS (right) spectra of hemiindigo 60 in 95 / 5 heptane / ethyl acetate. The isosbestic points remain defined, verifying the 
photostability of this compound. Best isomeric yields were determined at 95% E isomer (435 nm) and 39% Z isomer (617 nm). 169 

Figure 143: Molar electronic circular dichroism spectra of hemiindigo 60 for the Z (left) and E isomer (right) in 95 / 5 heptane / ethyl acetate at 0 °C. Fractions Z 1 
and E 1 yielded the red spectra (ortho-tolyl Sa configurations) while Z 2 and E 2 yielded the blue spectra (Ra configurations). 169 

Figure 144: UV-Vis (left) and ECD spectrum (right) of 60 in 95 / 5 heptane / ethyl acetate after one cycle of switching of E (blue) and Z (red) isomers at 0 °C. 
Isomerization from E to Z was not feasible with all wavelengths available in this solvent mixture (irradiation in dimethyl sulfoxide yielded the Z isomer). 
The mediocre thermal barrier of the chiral aryl axis in the Z isomer (right, red) prevents racemization at 0 °C and irradiation from Z to the E isomer 
(blue) yielded almost exactly the ECD spectrum of the isolated pure E isomer (light blue, dotted line). Irradiation with 530 nm for 5 min did not yield 
the Z isomer but did also not change the ECD spectrum (light blue, dashed line). (Z to E irradiation: 2 min 470 nm) 170 

Figure 145: First order kinetic analyses of hemiindigo 60 in 95 / 5 heptane / ethyl acetate for the atropisomerization of Z isomer (red) and E isomer (blue). The 

data points are fitted with a linear relationship. The slope m can be translated into the rate constant k for this process. For the Z isomer, a rotational 
barrier of 21.7 kcal/mol was determined at 10 °C, which translates into a thermal half-life of 15 min at 25 °C. For the E isomer, a rotational barrier of 
24.3 kcal/mol was determined at 60 °C, which translates into a thermal half-life of 21 h at 25 °C. 170 

Figure 146: Calculated ground and transition state structures of hemiindigo 60 at the B3LYP/6-311+G(d,p) level of theory. All transition states for the 

atropisomerization and one for the stilbene single bond rotation were found. The transition state of the stilbene single bond did not converge after 
several attempts and tweaks. The “+” sign in front of transition state values indicates the energy difference with respect to the lowest ground state of 
respective Z or E isomers. The calculated energies are in good agreement to the experimental values for the Z isomer, however the lowest transition 
state of the E isomer is undershot by about 4 kcal/mol compared to the experimental values. The methyl-over-methyl transition state is disfavored by 
4 kcal/mol in the E isomer and the methyl over central double bond transition state is disfavored by 1 kcal/mol in the Z state. A by 2.6 kcal/mol 
lowered atropisomerization barrier for the Z isomers can be measured. The transition state structures suggest a rotation of the ortho-tolyl axis methyl 
group over the indoxyl core methyl group in the Z state while the E form prefers passing of the methyl group over its central double bond. These 
findings show that gating of thermal barriers as well as their directionality are possible for these chiroptical photoswitches. 171 

Figure 147: Benchmarking results for hemiindigo 60 using different DFT functionals for the 6-311+G(d,p) basis set. “Z-anti/syn” and “E-anti/syn” represent the 
ground states and “Z-Anti-Me-Me” and “E-Syn-Me-DB” the energetically lowest transition state for respective isomer and rotation pathway in all cases 
without dispersive corrections except for the PBEPBE functional. The “+” sign in front of transition state values indicates the energy difference with 
respect to the lowest ground state of respective Z or E isomers. 172 

Figure 148: Lewis-formula of hemiindigo 61. 173 
Figure 149: 3D UV-Vis Chromatograms of hemiindigo 61 on a chiral HPLC column (Diacel Chiralpak IC, 5µm, 8 mL/min) recorded at 0 °C in 95 / 5 heptane / ethyl 

acetate. Injection of a Z / E mixture gives four separable peaks, Z 1, Z 2, E 1 and E 2, which shows similar results to hemiindigo 60 with the addition 
that eight peaks were expected, see Figure 151. The peak intensity scale is given in mAU (milli a.u., arbitrary units). 173 

Figure 150: Structure of (Sa)-(Sa)-anti-E-61 in the crystalline state. The anti form is defined by the higher oxidized carbon position in the phenyl ring opposing the 
ortho-tolyl methyl group. This means that in the anti form both methyl groups involved in axial chirality are configured syn to each other. The viewing 
angle on the right emphasizes the strong twisting of the naphthyl stilbene fragment and the ortho-tolyl chiral axis within the E form. Latter is strongly 
twisted with a dihedral torsion angle of 84.09° for C25-C20-N1-C1. The stilbene single bond is twisted by 53.58° for C8-C9-C10-C11. The length of 
the double bond (red) amounts to 1.340 Å and the single bond (green) amounts to 1.469 Å. 174 

Figure 151: Overview of all possible conformations of hemiindigo 61. 175 
Figure 152: 1H-NMR spectra (dichloromethane-d2, 600 MHz, 27 °C) of all four separable Z and E isomers of hemiindigo 61. Six distinct methyl group signals can 

be observed for the Z isomer, three of them each belong to the respective anti- or syn diastereomers. In the E form, overlapping signals can be 
observed as the chemical shift between diastereomers is too small / similar to cause distinct signal shifts. 176 

Figure 153: Lewis-formula of hemiindigo 61. 177 
Figure 154: 1H-NOESY 2D NMR spectrum of syn- and anti-Z-61 (dichloromethane-d2, 600 MHz, 27 °C). An unambiguous assignment can be made as cross-

signal 22 / 23 is observable for syn and anti forms but signal 29 / 22 is only visible in the anti form in which both rotatable methyl groups are closest 
together. As NOESY and EXSY share the same pulse sequence, positive (red) signals between syn and anti forms prove an observable fast 
exchange of nuclei for these positions caused by the dynamics being faster than the used mixing time of 1.2 s. 177 

Figure 155: Lewis-formula of hemiindigo 61. 178 
Figure 156: 1H-NOESY 2D NMR spectrum of syn- and anti-E-61 (dichloromethane-d2, 600 MHz, 27 °C). An unambiguous syn / anti assignment cannot be made. 

However, the crystallized E isomer resides in the anti form (Figure 150), hinting towards its higher thermodynamic stability or crystal packing effects. 
The signals of 22 can be seen for the syn- and anti form and very pronounced positive (red) signals for syn to anti transitions of signals 22 and 29 can 
be observed. This proves faster dynamics of the stilbene single bond rotation in the E isomer compared to the Z state (see Figure 154). 178 

Figure 157: Lewis-formula of hemiindigo 61. 179 
Figure 158: 1H-HSQC 2D NMR spectrum of syn- and anti-E-61 (dichloromethane-d2, 600 MHz, 27 °C). An unambiguous syn / anti assignment cannot be made. 

However, the superimposing signals can be differentiated, suggesting the 1H-NOESY assignment regarding the positions of the methyl groups to be 
correct. 179 

Figure 159: 13C-NMR spectrum of syn- and anti-Z-61 (dichloromethane-d2, 600 MHz, 27 °C). The two insets above magnify the large amounts of signals and 

multiplets. 180 
Figure 160: 13C-NMR spectrum of syn- and anti-E-61 (dichloromethane-d2, 600 MHz, 27 °C). The insets above visualize the large amounts of signals and 

multiplets. Four proton signals could be obtained for the methyl groups of these compounds while two respective multiplets are observed in the 13C-
NMR spectrum. 181 

Figure 161: 1H-HMBC 2D NMR spectrum of syn- and anti-Z-61 (dichloromethane-d2, 600 MHz, 27 °C). An unambiguous assignment of all protons and carbons 
cannot be made, as interpretation by hand is impossible with this large amount of overlapping signals and ghost peaks which were observed with 
multiple sample preparations on 600 and 800 MHz NMR devices. 182 

Figure 162: Molar absorption (left) and PSS (right) UV-Vis spectra of hemiindigo 61 in 95 / 5 heptane / ethyl acetate. The isosbestic points remain defined, 

verifying the photostability of this compound. Best isomeric yields were determined at 98% E isomer (470 nm) and 25% Z isomer (505 nm). 183 
Figure 163: Molar electronic circular dichroism spectra of hemiindigo 61 for the Z (left) and E isomer (right) in 95 / 5 heptane / ethyl acetate at 0 °C. Fractions Z 1 

and E 1 yielded the red spectra (ortho-tolyl Sa configurations) while Z 2 and E 2 yielded the blue spectra (Ra configurations). 183 
Figure 164: UV-Vis (left) and CD spectrum (right) of hemiindigo 61 in 95 / 5 heptane / ethyl acetate after one cycle of switching from Z (red) to E (blue) to little Z 

contents (blue, dashed line) at 0 °C. The high thermal barrier for the chiral aryl axis in the Z isomer (right, red) prevents racemization from 0 °C up to 
ambient temperatures and irradiation to the E isomer (blue) yielded almost exactly the ECD spectrum of the isolated pure E isomer (light blue, dotted 
line). Irradiation with 505 nm for 10 min did yield the Z isomer in low contents but did also not change the ECD spectrum (blue, dashed line), which 
shifts proportionally towards the Z state. (Z to E irradiation: 5 min 470 nm). 184 

Figure 165: First order kinetic analyses of hemiindigo 61 in 95 / 5 heptane / ethyl acetate for the atropisomerization of Z isomer (red) and E isomer (blue). The 

data points are fitted with a linear relationship. The slope m can be translated into the rate constant k for this process. For the Z isomer, a rotational 
barrier of 24.6 kcal/mol was determined at 40 °C, which translates into a thermal half-life of 35 h at 25 °C. For the E isomer, a rotational barrier of 
26.8 kcal/mol was determined at 80 °C, which translates into a thermal half-life of 59 d at 25 °C. Used formulas and equations can be found in 
Section 2.2.19. 184 

Figure 166: Calculated ground and transition state structures of hemiindigo 61 at the B3LYP/6-311+G(d,p) level of theory. Transition states for the 
atropisomerization and the stilbene single bond rotation were found. The disfavored atropisomerization transition state for the Z isomer and the 
stilbene rotation in the E isomer did not converge after several attempts and tweaks. The “+” sign in front of transition state values indicates the 
energy difference with respect to the lowest ground state of respective Z or E isomers. 185 
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Figure 167: Benchmarking results for hemiindigo 61 using different DFT functionals for the 6-311+G(d,p) basis set. “Z-anti/syn” and “E-anti/syn” represent the 

ground states and “Z-Anti-Me-Me” and “E-Syn-Me-DB” the energetically lowest transition state for respective isomer and rotation pathway (see Figure 
166). The “+” sign in front of transition state values indicates the energy difference with respect to the lowest ground state of respective Z or E 
isomers. 186 

Figure 168: Third generation of axially chiral hemiindigos 30 and 33. 187 
Figure 169: Lewis-formula of hemiindigo 30. 187 
Figure 170: Molar absorption coefficients of 30 in 93 / 7 heptane / ethyl acetate (left) with the Z isomer shown in red and the E isomer in blue. Spectral changes 

recorded after different irradiation times show clear isosbestic points (right). Adapted with permission from [75]. Copyright 2018 American Chemical 
Society. 187 

Figure 171: Molar ellipticity ECD spectra of Z-30 in 93 / 7 heptane / ethyl acetate (left), (Ra)-Z-30 shown in blue, (Sa)-Z-30 shown in red. Molar ellipticity ECD 
spectra of E-30 in 93 / 7 heptane / ethyl acetate (right), (Ra)-E-30 shown in blue, (Sa)-E-30 shown in red. Adapted with permission from [75]. Copyright 

2018 American Chemical Society. 188 
Figure 172: UV-Vis absorption (left) and ECD spectrum (right) of 30 in 93 / 7 heptane / ethyl acetate recorded for one switching cycle starting from pure (Ra)-Z-30 

(solid red), which was photoisomerized to (Ra)-E-30 (1 min 435 nm, solid blue) and then switched back to (Ra)-Z-30 (1 min 530 nm, pale red, dashed) 
in high isomeric yields at 0 °C. The high free activation enthalpies ΔG* = 24.0 kcal/mol for thermal atropisomerization in the Z isomeric state and ΔG* 
= 26.1 kcal/mol in the E isomeric state prevent any racemization at 0 °C and even ambient temperatures. Therefore, the initial ECD spectrum of the 
pure Z isomer is fully recovered after a complete photoswitching cycle (solid red and pale red dashed spectra). Adapted with permission from [75]. 
Copyright 2018 American Chemical Society. 188 

Figure 173: First order kinetic analyses of the thermal racemization via atropisomerization of hemiindigo 30 in 93 / 7 heptane / ethyl acetate in the dark. The 

slopes m can be translated into the rate constant k for each process. Racemization in the Z isomeric state (red, see also Figure 174) was measured 
at 40 °C and proceeds over an energy barrier of 23.1 kcal/mol. Racemization in the E isomeric state (blue) was measured at 60 °C and proceeds 
over an energy barrier of 26.1 kcal/mol. Poor R² values are based on bad signal to noise ratios caused by the weak ECD response of the E isomer. 
Adapted with permission from [75]. Copyright 2018 American Chemical Society. 189 

Figure 174: Repetitive photoswitching of the ECD spectrum of hemiindigo 30 (solid lines: (Sa) configuration) and thermal decay of the ECD spectrum in the dark 
(broken lines: (Ra) configuration) in 93 / 7 heptane / ethyl acetate. Spectra of Z isomers are shown in red and of E isomers in blue (light blue after 36 
cycles / 90 minutes). The (Sa) and (Ra) configured samples were handled at 18 °C within an air-conditioned room. The (Sa)-30 isomer was 
photoswitched 12 times between its two PSS’ at 435 nm (30 s irradiation time at 260 mW per cycle to reach the PSS) and 505 nm (120 s irradiation 
time at 80 mW per cycle to reach the PSS) within 30 minutes. An ECD spectrum was recorded at this time interval and the procedure was repeated 
for two times (red solid line spectra, total of 36 photoswitching cycles within 90 min). The (Ra)-Z-30 isomer was kept in the dark at 18 °C and was also 

measured in 30 min intervals to show the thermal racemization of the chiral axis (red broken line spectra). ECD measurements were conducted at 
0 °C and samples were put on ice (0 °C) during transfer of samples and waiting times in complete darkness. The slightly faster decline of the 
photoswitched sample (red solid line spectra) results from additional heating effects of the LED irradiations, which were measured to result in 6.15 °C 
higher sample temperature compared to the surrounding 18 °C. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 190 

Figure 175: Repetitive photoswitching of the ECD spectrum of (Sa)-30 (red, see also Figure 174) and thermal decay of (Ra)-Z-30 (violet) in 93 / 7 heptane / ethyl 
acetate. Photoirradiation was performed at 24.15 °C (red for the Z state, blue for the E state). The ECD signal at 420 nm is used exemplarily because 
at this spectral position signal intensity for the PSS solution enriched in E isomer (84% E-30 and 16% Z-30 in the PSS at 435 nm) is zero. The 
thermal decay of the Z-30 ECD signal was measured at 18 °C and then extrapolated to 24.15 °C to ensure comparability (solid violet line). The 

residual loss of ECD signal is attributed to irreversible photodegradation (green) over 36 photoswitching cycles and was determined from the 
corresponding experimental absorption spectra (5% after 36 cycles). Adapted with permission from [75]. Copyright 2018 American Chemical Society. 191 

Figure 176: Fully reversible photoswitching of the ECD spectrum of (Sa)-30 (red for the Z state, blue for the E state) in 93 / 7 heptane / ethyl acetate is seen after 
correction for thermal ECD decay of (Sa)-Z-30. No racemization of the chiral N-indoxyl-ortho-tolyl axis by photoinduced double-bond isomerization is 

observed over 36 switching cycles excluding light induced coupled motions between the aniline fragment and the ortho-tolyl residue. 
Photodegradation is plotted in green for comparison. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 192 

Figure 177: Repetitive photoswitching of the ECD spectrum of hemiindigo 30 (solid lines: (Ra) configuration) 93 / 7 heptane / ethyl acetate. Spectra of Z isomers 
are shown in red and of E isomers in blue (light blue at the start). The (Ra) configured sample was irradiated and measured at -20 °C within a cryostat 
mounted inside the ECD spectrometer equipped with a glass fiber directly inserted into the sample cuvette inside the cryostat (see Section 2.7.5 for 
the newly built setup for this purpose). The (Ra)-30 isomer was photoswitched 7 times between its two PSS’ at 450 nm (10 s irradiation time at 

193 mW per cycle to reach the PSS) and 520 nm (60 s irradiation time at 92 mW per cycle to reach the PSS). An ECD spectrum was recorded after 
every irradiation step. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 193 

Figure 178: 3D plot showing modulation of the ECD of hemiindigo 30 by repetitive photoswitching between the PSS at 435 nm (weak signals) and the PSS at 
520 nm (strong signals) at -20 °C. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 194 

Figure 179: Repetitive photoswitching of the ECD spectrum of (Ra)-30 (red) in 93 / 7 heptane / ethyl acetate. Photoirradiation was performed at -20 °C (red for the 
Z enriched state at 520 nm, blue for the E enriched state at 450 nm). No thermal racemization or photodegradation could be observed over the 
course of the experiment at -20 °C. The ECD signal at 420 nm is used exemplarily because at this spectral position signal intensity for the PSS 
solution enriched in E isomer (83% E-30 and 17% Z-30 in the PSS at 450 nm) is almost zero. Adapted with permission from [75]. Copyright 2018 

American Chemical Society. 194 
Figure 180: Photoswitching of the g factors of hemiindigo 30 in 93 / 7 heptane / ethyl acetate (blue: E isomers, red: Z isomers, solid lines: (Sa) configuration, 

broken lines: (Ra) configuration). Adapted with permission from [75]. Copyright 2018 American Chemical Society. 195 
Figure 181: Calculated ground and transition state structures of hemiindigo 30 at the B3LYP/6-311+G(d,p) level of theory. Transition states for all 

atropisomerization and the stilbene single bond rotation in the Z state were found. The “+” sign in front of transition state values indicates the energy 
difference with respect to the lowest ground state of respective Z or E isomers. 196 

Figure 182: Benchmarking results for hemiindigo 30 using different DFT functionals for the 6-311+G(d,p) basis set. “Z” and “E” represent the ground states and 
“Z-Me-DB” and “E-Me-DB” the energetically lowest transition state for respective isomer and rotation pathway (see Figure 181). The “+” sign in front 
of transition state values indicates the energy difference with respect to the lowest ground state of respective Z or E isomers. 197 

Figure 183: Lewis-formula of hemiindigo 33. 198 
Figure 184: Molar absorption coefficients of 33 in 87 / 13 heptane / ethyl acetate (left) with the Z isomer shown in red and the E isomer in blue. Spectral changes 

recorded after different irradiation times show clear isosbestic points (right). Adapted with permission from [75]. Copyright 2018 American Chemical 
Society. 198 

Figure 185: Molar ellipticity ECD spectra of Z-33 (left) in 87 / 13 heptane / ethyl acetate, (Ra)-Z-33 shown in blue, (Sa)-Z-33 shown in red. Determination of the 
absolute configuration is based on the theoretical description. Molar ellipticity ECD spectra of E-33 (right) in 87 / 13 heptane / ethyl acetate, (Ra)-E-33 
shown in blue, (Sa)-E-33 shown in red. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 199 

Figure 186: UV-Vis absorption (left) and ECD spectrum (right) of 33 in 87 / 13 heptane / ethyl acetate recorded for one switching cycle starting from pure (Ra)-Z-
33 (solid red), which was photoisomerized to (Ra)-E-33 (30 s, 435 nm, solid blue) and then switched back to (Ra)-Z-33 (2 min, 505 nm, pale red, 

dashed) in high isomeric yields at 0 °C. The further increased free activation enthalpies ΔG* = 24.8 kcal/mol for thermal atropisomerizations in the Z 
isomeric state and ΔG* = 27.6 kcal/mol in the E isomeric state prevent any racemization also at ambient temperatures. Therefore, the initial ECD 
spectrum of the pure Z isomer is fully recovered after a complete photoswitching cycle (solid red and pale red dashed spectra). Adapted with 
permission from [75]. Copyright 2018 American Chemical Society. 199 

Figure 187: First order kinetic analyses of the thermal racemization via atropisomerization of hemiindigo 33 in 87 / 13 heptane/ethyl acetate in the dark. The 
slopes m can be translated into the rate constant k for each process. Racemization in the Z isomeric state (red) was measured at 40 °C and proceeds 
over an energy barrier of 24.8 kcal/mol. Racemization in the E isomeric state (blue) was measured at 90 °C and proceeds over an energy barrier of 
27.6 kcal/mol. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 200 

Figure 188: Repetitive photoswitching of the ECD spectrum of hemiindigo 33 (solid lines: (Sa) configuration) and thermal decay of the ECD spectrum in the dark 
(broken lines: (Ra) configuration) in 87 / 13heptane / ethyl acetate. Spectra of Z isomers are shown in red and of E isomers in blue (light blue after 
160 cycles/120 min). The (Sa) and (Ra) configured samples were handled at 18 °C within an air-conditioned room. The (Sa)-33 isomer was 
photoswitched 40 times between its two PSS’ at 435 nm (7 s irradiation time at 260 mW per cycle to reach the PSS) and 505 nm (38 s irradiation time 
at 80 mW per cycle to reach the PSS) within 30 minutes. A spectrum was recorded after this time interval and this procedure was repeated for three 
times (red solid line spectra, total of 160 photoswitching cycles within 120 min). The (Ra)-Z-33 isomer was kept in the dark at 18 °C and was also 
measured in 30 min intervals to show the thermal racemization of the chiral axis (red broken line spectra). ECD measurements were conducted at 
0 °C and samples were kept at 22 °C during transfer of samples and waiting times in complete darkness. The slightly faster decline of the 
photoswitched sample (red solid line spectra) results from heat dissipation of the LEDs, which were measured to result in 1.23 °C higher sample 
temperature with respect to the surrounding 18 °C. A new fan equipped irradiation setup was built to cool LEDs and sample during irradiation and is 
depicted in Section 2.7.4. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 202 

Figure 189: Repetitive photoswitching of the ECD spectrum of (Sa)-33 (red, see Figure 190), thermal decay of (Ra)-Z-33 (violet) extrapolated to 19.2 °C and 
photodegradation (green) in 87 / 13 heptane / ethyl acetate. Photoirradiation was performed at 19.2 °C (red for the Z state, blue for the E state). The 
ECD signal at 435 nm is used exemplarily because at this spectral position signal intensity for the PSS solution enriched in E isomer (83% E-3 and 
17% Z-33 in the PSS at 435 nm) is close to zero. The thermal decay of the Z-33 ECD signal was measured at 18 °C and extrapolated to the actual 

19.2 degrees of the irradiation sample temperature (violet). The residual loss of ECD signal after correcting for thermal decay is attributed to 
irreversible photodegradation over 160 photoswitching cycles and amounts to 2% (green, derived from absorption loss during UV-Vis 
measurements). Adapted with permission from [75]. Copyright 2018 American Chemical Society. 203 

Figure 190: Fully reversible photoswitching of the ECD spectrum of (Sa)-33 in 83 / 17 heptane / ethyl acetate (red for the Z state, blue for the E state) is observed 
after correction for thermal ECD decay of (Sa)-Z-33. No racemization of the chiral N-indoxyl-naphthyl axis by photoinduced double-bond isomerization 
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is observed over 160 cycles excluding light induced coupled motions between the aniline fragment and the naphthyl residue. Photodegradation is 
plotted in green for comparison. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 203 

Figure 191: Photoswitching of the g factors of hemiindigo 33 in 83 / 17 heptane / ethyl acetate (blue: E isomers, red: Z isomers, solid lines: (Sa) configuration, 

broken lines: (Ra) configuration). Adapted with permission from [75]. Copyright 2018 American Chemical Society. 204 
Figure 192: Calculated ground and transition state structures of hemiindigo 33 at the B3LYP/6-311+G(d,p) level of theory. Transition states for all 

atropisomerizations were found. The stilbene rotation transition states did not converge after several attempts and tweaks. The “+” sign in front of 
transition state values indicates the energy difference with respect to the lowest ground state of respective Z or E isomers. 205 

Figure 193: Benchmarking results for hemiindigo 33 using different DFT functionals for the 6-311+G(d,p) basis set. “Z” and “E” represent the ground states and 
“Z-Nph-DB” and “E-Nph-DB” the energetically lowest transition state for respective isomer and rotation pathway (see Figure 192). The “+” sign in front 
of transition state values indicates the energy difference with respect to the lowest ground state of respective Z or E isomers. The “Z-Nph-DB” 
transition state did not converge with the ωB97XD functional after several attempts and tweaks. 206 

Figure 194: Conformational analysis of hemiindigos 20, 30 and 33. a) - c) Molecular structures of (Ra)-Z- and (Ra)-E-isomers of 20, 30 and 33 from left to right 
optimized at the DFT B3LYP/6-311+G(d,p) level of theory. d) Aliphatic region of the 1H NMR spectrum (400 MHz, dichloromethane-d2, 27 °C) of Z-20 
(violet) and E-20 (black). Indicative signals of the methyl groups are upfield shifted in Z-20 compared to E-20. Signals of protons 24a and 24b are split 
and strongly separated for Z-30. In the corresponding E-30 isomer the signal of protons 24 are broadened. e) Aliphatic region of the 1H NMR 
spectrum of Z-30 (red) and E-30 (blue). Indicative signals of the methyl groups are upfield shifted in Z-30 compared to E-30. f) Aliphatic region of the 
1H NMR spectrum of Z-33 (green) and E-33 (brown). Indicative signals of the methyl groups are upfield shifted in Z-33 compared to E-33. Signals of 
protons 24a and 24b are split and strongly separated for Z-33. In the corresponding E-33 isomer the corresponding signals are also already split at 
ambient temperature (see inset 600 MHz, dichloromethane-d2, 27 °C). The “*” symbol represents the water peak. Adapted with permission from [75]. 
Copyright 2018 American Chemical Society. 207 

Figure 195: All atropisomerization and Z / E isomerization barriers for hemiindigos 20, 30 and 33. Changes are indicated with +/– over the respective arrows. A 
clear tendency towards higher atropisomerization barriers from 20 over 30 to 33 can be seen. A slight drop the Z / E isomerization barrier can be 
seen for hemiindigo 30 compared to 20 and 33. Adapted with permission from [75]. Copyright 2018 American Chemical Society. 209 

Figure 196: Overview of investigated compounds 62, 63, 64 and 65 regarding their UV-Vis spectra at different temperatures. Compound 63 was synthesized and 
characterized by L. Huber.[66] The syn- / anti-stereodescriptors are explained in detail within Section 2.4.5. 213 

Figure 197: Lewis-formula of trans-indigo 62. 214 
Figure 198: UV-Vis spectra (left) and plot of absorption maximum (right) against temperature for the parent indigo 62 in chloroform. A thermochromic shift of 

about 20 nm can be seen. Also, a decline in absorption to about 60 °C can be observed with a subsequent sharp increase in absorbance starting at 
78 °C probably caused by boiling chloroform. The initial absorbance is not lost upon cooling, but the higher values at the end can be explained by 
increasingly dissolved chromophore, as this compound tends to be very insoluble in most solvents. 214 

Figure 199: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) for the parent indigo 62 in N,N-dimethylformamide. A thermochromic 

shift of about 10 nm can be seen. Also, a steady decline in absorption to 78 °C can be observed with a subsequent sharp drop in absorbance starting 
from 78 °C. The initial absorbance can be partially restored upon cooling, however, a permanent decline of 44% can be observed. This thermal 
degradation can also be observed for arylated derivatives for this solvent. 214 

Figure 200: DFT calculations at the B3LYP/6-311+G(d,p) level of theory for indigo 62, UV-Vis spectra including oscillator energies (left) and ECD spectra (right) 

were calculated using TD-DFT, nstates = 20 or * = 30 (the other enantiomer was calculated for 135°). The trans-form of indigo represents its global 
minimum, while dihedral torsion of the central double bond by 180° gives the cis-state. Incremental torsion in 15° - 45° steps yields two red-shifted 
maxima for a 45° and a 135° torsion angle. 215 

Figure 201: Lewis-formula of di-para-tolyl-indigo 63. 216 
Figure 202: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) for the di-para-tolyl substituted indigo 63 in chloroform. A thermochromic 

shift of about 30 nm can be seen. Also, a steady and linear decline in absorption to 80 °C can be observed. The initial absorbance can be completely 
restored upon cooling. 217 

Figure 203: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) for the di-para-tolyl substituted indigo 63 in N,N-dimethylformamide. A 

thermochromic shift of about 20 nm can be seen. Also, a steady decline in absorption to 80 °C can be observed. The initial absorbance can be 
partially restored upon cooling, although the same kind of loss of absorbance can be seen with the parent indigo chromophore 62 in N,N-

dimethylformamide. 217 
Figure 204: UV-Vis spectra (left) and plot of absorption maximum vs. temperature for the di-para-tolyl substituted indigo 63 in toluene. A thermochromic shift of 

about 20 nm can be seen. Also, a steady and linear decline in absorption to 80 °C can be observed. 218 
Figure 205: Lewis-formula of di-ortho-tolyl-indigo 64. 219 
Figure 206: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) for the di-ortho-tolyl substituted indigo 64 in chloroform. A thermochromic 

shift of about 20 nm can be seen. Also, a steady decline in absorption to 80 °C can be observed. The initial absorbance can be completely restored 
upon cooling. 219 

Figure 207: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) for the di-ortho-tolyl substituted indigo 64 in chloroform. A thermochromic 

shift of about 10 nm can be seen. Also, a steady decline in absorption to 80 °C can be observed. 220 
Figure 208: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) for the di-ortho-tolyl substituted indigo 64 in 83 / 17 heptane / ethyl 

acetate. A thermochromic shift of about 20 nm can be seen. Also, a steady and linear increase towards -80 °C and a decline in absorption to 80 °C 
can be observed. 220 

Figure 209: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) for the di-ortho-tolyl substituted indigo 64 in 83 / 17 heptane / ethyl 
acetate at 1 / 5 of the concentration as shown in Figure 208. A thermochromic shift of about 20 nm can be seen. Also, a steady and linear decline in 
absorption to 80 °C can be observed. The initial absorbance can be completely restored upon cooling. 221 

Figure 210: Lewis-formula of di-ortho-tolyl-indigo 65. 221 
Figure 211: UV-Vis spectra (left) and plot of absorption maximum vs. temperature (right) for the di-ortho-tolyl di-7-methyl-substituted indigo 65 in 83 / 17 heptane / 

ethyl acetate. A thermochromic shift of about 15 nm can be seen. Also, a steady and linear decline in absorption to 80 °C can be observed. 222 
Figure 212: Overview of 1st (65 and 69), 2nd (64 and 70) and 3rd (71, 72 and 73) generation of axially chiral di-N-substituted indigos. 223 
Figure 213: Overview of the three trans rotamers of indigo 65. Formally, the same amount of rotamers is expected for the less stable cis form. Two-fold stereo 

descriptors like e.g. (Sa)-(Sa)-syn-trans emphasize the syn-trans forms to be enantiomeric whereas the anti-forms are meso-forms. 224 
Figure 214: UV-Vis spectra of indigo 65 are shown exemplarily in dichloromethane. No change during longer irradiations (30 min) in dimethyl sulfoxide, 

acetonitrile, tetrahydrofuran or toluene could be observed. 225 
Figure 215: Chiral HPLC separation attempt on indigo 65 at 0 °C with 9 / 1 heptane / ethyl acetate as solvent. No rotamers or peak shoulders are visible. Very 

high solvent polarities (50 - 100% ethyl acetate) yielded one single sharp peak. 225 
Figure 216: Aliphatic section of the 1H-NMR spectrum of trans-65 (dichloromethane-d2, 600 MHz, 27 °C). The syn isomer is preferred by 10% over the anti-form. 

Syn- and anti-diastereomers show distinct shifts for indigo-core- (15) and rotatable ortho-tolyl methyl group protons (14). Assignments by 2D NMR 
spectroscopy are shown starting from Figure 219. 226 

Figure 217: Comparison of obtained minimum geometries of syn(left)- and anti(right)-trans indigo 65 at the B3LYP/6-311+G(d,p) level of theory, view along the 
central double bond. 227 

Figure 218: Calculated ground and transition state structures and energies of indigo 65 at the B3LYP/6-311+G(d,p) level of theory. Transition states for three of 
eight possible atropisomerizations could be found. The other possible transition state for the cis isomer did not converge after several attempts and 
tweaks. The “+” sign in front of transition state values indicates the energy difference with respect to the lower ground state of the respective cis or 
trans isomers. Missing experimental data for the cis isomer makes it difficult to assign the reported transition state to be high or low in energy or to 
address the preferred directionality for this rotation. 228 

Figure 219: Aliphatic section of the 1H NOESY (dichloromethane-d2, 600 MHz, 27 °C) of trans-65. Expected cross peaks for syn / anti 14 / 15 can be observed. 

Signals of anti 14 and syn 14 show one of two positive NOE signals (see Figure 221), while the rest of the molecule shows negative NOEs if the 
diagonal signals are set to positive values according to convention. This strongly indicates fast dynamics in between syn- and anti molecules as 
NOESY utilizes the same pulse sequence as exchange spectroscopy (EXSY) and the used mixing time of 1.2 s is much longer than the exchange of 
respective nuclei, hinting towards an atropisomerization barrier between 17- and 20 kcal/mol. 229 

Figure 220: Aliphatic / aromatic 1H NOESY spectrum (dichloromethane-d2, 600 MHz, 27 °C) of trans-65. Syn- and anti form can be distinguished by the NOE 
signal of anti 14 / 13 and the non-existent signal for syn 14 / 13. This indicates the proximity of methyl group anti 14 to the back of the other ortho-tolyl 
(proton anti 13) on the opposite side of the central double bond. 230 

Figure 221: Aromatic section of the 1H NOESY spectrum (dichloromethane-d2, 600 MHz, 27 °C) of trans-65. No indicative signals to prove syn- or anti 
configuration can be found. Signals of anti 13 and syn 13 show one of two positive NOE signals (see Figure 219), while the rest of the molecule 
shows negative NOEs. This is in accordance to fast dynamics in between syn and anti molecules as NOESY uses the same pulse sequence as 
EXSY and the used mixing time of 1.2 s is much longer than the exchange of respective nuclei. 231 

Figure 222: Aromatic (left) and aliphatic (right) sections of 1H-NMR spectra of trans-65 from -80 °C (start) to 0 °C, starting after 60 min of in situ irradiation with 
625nm at -80 °C(dichloromethane-d2, 400 MHz). The diagnostic signals 13 / 14 disappear completely at about -60 °C due to signal broadening, 
making low temperature analysis of the (photo) kinetics of this compound inaccurate or impossible. 232 

Figure 223: Aromatic (left) and aliphatic (right) sections of 1H-NMR spectra of trans-65 with in situ irradiation at 625 nm (dichloromethane-d2, 600 MHz, -80 °C). 

Spectra were recorded in 1 minute intervals. A fast but small increase of one or multiple accumulated cis isomers can be observed. Apolar solvents 
increase the thermal stability of cis isomers for indigo 64 (see Section 2.4.13), which should be tried with this compound despite its overall low 

solubility. 232 
Figure 224: Photo- and thermally induced cis-trans isomerization of indigo 64. 233 
Figure 225: UV-Vis spectra of N,N'-di(o-tolyl)indigo 64 in THF, irradiation yields 20 - 30% of cis isomer (estimated by low temperature NMR and UV-Vis 

spectroscopy in aprotic, apolar solvents, (see Section 2.4.13) which quickly returns to its trans state within a few minutes. 233 
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Figure 226: Immediate tracking of the thermal cis to trans isomerization of indigo 64 after 625 nm irradiation in THF at 24 °C. An estimated thermal cis to trans 

barrier between 20- and 21 kcal/mol can be regarded as reasonable from the data displayed in this measurement course. Precise evaluation and 
determination of isomerization barriers via 1H-NMR spectroscopy can be found in Section 2.4.19. 234 

Figure 227: Aliphatic / aromatic section of the 1H- / 13C-HMBC NMR spectrum of trans-64 (dichloromethane-d2, 600 MHz, 27 °C). Integrals for anti- and syn 
isomer are shown at the top, 3J proton couplings to carbon atoms are displayed for anti- and syn isomers. A comparable chemical shift of the methyl 
groups can be seen for indigo 64 as observed with indigo 65. The ratio between anti- / syn isomer (1 / 5) is strongly shifted favoring the syn 
diastereomer for indigo 64 compared to anti- / syn isomer (1.0 / 1.2) for indigo 65. 235 

Figure 228: Aliphatic / aromatic section of the 1H-NOESY NMR spectrum of trans-64 (dichloromethane-d2, 600 MHz, 27 °C). No signals for unambiguous 
determination of anti- / syn conformations can be seen. Assignment was done according to separated peaks by HPLC and subsequent ECD and 
NMR analyses. The aromatic region (not shown) does not yield indicative signals as well. Repetition of this experiment with an 800 MHz NMR device 
did not yield any new indicative signals. Positive signals between syn- and anti-trans isomers were not observed, as the atropisomerization barrier of 
23.6 kcal/mol is too high in energy to show a proton exchange for a mixing time of 1.2 s. 236 

Figure 229: Overview of the three trans rotamers of indigo 64. Formally, the same number of rotamers is expected in the less stable cis form. 237 
Figure 230: Separation of trans-64 rotamers via chiral HPLC with 83 / 17 heptane / ethyl acetate as eluent at 0 °C displayed three peaks with the corresponding 

relative intensity in square brackets: (Sa)-(Sa)-syn-trans [2.5], (Ra)-(Ra)-syn-trans [2.5] and the (Sa)-(Ra)-anti-trans [1] (meso form) in this order. 
Thermal racemization of the pure (Ra)-(Ra)-syn-trans fraction at 25 °C over 70 min yielded (Sa)-(Sa)-syn-trans and (Sa)-(Ra)-anti-trans in small and 
equal quantities. Photoswitching to the cis state and back to the trans isomer gave all three fractions again, hinting towards a lower thermal 
atropisomerization barrier in the cis state or an underlying photoreaction. 237 

Figure 231: Injection of indigo 63 by L. Huber onto a chiral HPLC column at 0 °C with 83 / 17 heptane / ethyl acetate as eluent. No clearly identifiable cis isomer 
can be observed. The retention times of the syn isomers of indigo 64 amount to 2.5 min and 5.0 min for applied conditions, indigo 63 elutes at 6.5 
min. 238 

Figure 232: Scaled UV-Vis and corresponding ECD spectra of all peaks obtained from chiral HPLC separation ((Sa)-(Sa)-syn-trans (ExE1) (Ra)-(Ra)-syn-trans 
(ExE2) and (Sa)-(Ra)-anti-trans-1 (ExE3)) of N,N'-di(o-tolyl)indigo 64 in 83 / 17 heptane / ethyl acetate at 0 °C. Both syn isomers (solid blue and 

broken red spectrum) show strong ECD responses while the anti (meso, solid green spectrum) form shows no ECD signal at all. 239 
Figure 233: NMR Spectra for all three HPLC separable peaks ((Sa)-(Sa)-syn-trans (Peak 1) (Ra)-(Ra)-syn-trans (Peak 2) and (Sa)-(Ra)-anti-trans-1 (Peak 3)) of 

N,N'-di(o-tolyl)indigo 64 (dichloromethane-d2, 400 MHz, 27 °C). 239 
Figure 234: Linearization of the first order kinetics for the atropisomerization of N,N'-di(o-tolyl)indigo 64 at 40 °C in 83 / 17 heptane / ethyl acetate. A barrier of 

23.6 kcal/mol and a half-life of 6.23 h at 25 °C could be determined. Used formulas and equations can be found in Section 2.2.19. 240 
Figure 235: a) ECD spectra for different temperatures, irradiation- and thermal annealing steps of enantiopure syn-trans isomer of indigo 64. The sample was 

irradiated in situ at -80 °C with 625 nm LED light for 8 minutes to an estimated PSS consisting of 70-80% of cis isomer b) Kinetic ECD measurement 
for the thermal isomerization from the anti-cis- to the syn-trans isomer at 0 °C in the dark, c) Corresponding UV-Vis spectra for b) at 0 °C (starting 
point dashed red spectrum, end point after 22 min. dashed blue spectrum). All spectra were recorded from the same sample in an 83 / 17 heptane / 
ethyl acetate solvent mixture. 241 

Figure 236: All possible diastereomers (inside box) and respective enantiomers for indigo 64 calculated at the B3LYP/6-311+G(d,p) level of theory. Energies are 
given corresponding to the lowest ground state energy of the syn-trans-1 isomers. 243 

Figure 237: Measured, 100% enantiopure trans isomer (solid blue line) and calculated trans isomer ECD spectra of indigo 64 at the B3LYP/6-311+G(d,p) level of 
theory, the measured spectrum was scaled in intensity to the calculated values. The spectrum shown in the broken blue line represent the best fitting 
calculated spectrum. Signal intensities at and below 250 nm are not reliable experimentally as solvent absorptions (83 / 17 heptane / ethyl acetate) 
are obscuring the measurements. 244 

Figure 238: Measured, 70-80% cis isomer, estimated (solid red line) and calculated cis isomer ECD spectra of indigo 64 at the B3LYP/6-311+G(d,p) level of 
theory, measured spectra were scaled in intensity to the calculated values. The spectrum shown in the broken red line represents the best fitting 
calculated spectrum. Signal intensities at and below 250 nm are not reliable experimentally as solvent absorptions (83 / 17 heptane / ethyl acetate) 
are obscuring the measurements. 245 

Figure 239: Comparison of measured (solid blue (100% enantiopure trans isomer) and red (70-80% cis isomer, estimated) lines) and best fitting calculated ECD 
spectra (broken blue- and red lines) of indigo 64 at the B3LYP/6-311+G(d,p) level of theory, measured spectra were scaled in intensity to the 

calculated values. Signal intensities at and below 250 nm are not reliable experimentally as solvent absorptions (83 / 17 heptane / ethyl acetate) are 
obscuring the measurements. 246 

Figure 240: Lewis-formula of indigo 70. 247 
Figure 241: Scaled UV-Vis (left) and ECD (right) spectra of (Ra)-N-(o-tolyl)-N'-(p-tolyl)indigo 70 in 83 / 17 heptane / ethyl acetate at 0 °C (green), after 5 min of 

irradiation with 617 nm (red). (Sa)-(Sa)-Syn-trans-1 (E1) and (Ra)-(Ra)-syn-trans-1 (E2) of N,N'-di(o-tolyl)indigo 64 (broken blue and light blue lines) 
are added for comparison. Irradiation of 70 gives slightly better cis isomer yields compared to 64. 248 

Figure 242: Spectra subtraction of the ECD response of (Ra)-70 from (Ra)-(Ra)-syn-trans-64. The influence of the additional ortho-tolyl moiety of 64 can be 
observed in the range from 240 nm to 400 nm. 249 

Figure 243: Linearized first order kinetics of the racemization of 70 (E1) in 83 / 17 heptane / ethyl acetate solution at 40 °C. The free activation enthalpy of thermal 
atropisomerization ΔG* was determined to be 23.1 kcal/mol with a thermal half-life of 2.7 h at 25 °C. Used formulas and equations can be found in 
Section 2.2.19. 250 

Figure 244: Lewis-formula of indigo 69. 251 
Figure 245: Chiral HPLC separation of the (Sa)-trans-69 and (Ra)-trans-69 indigo rotamers at 0 °C with 50 / 50 heptane / ethyl acetate as eluents. The two 

expected rotamers can be seen. The streaks between the two peaks indicate an active atropisomerization reaction taking place, interconverting one 
rotamer to the other while on the chiral column. The immediate stop of this “streaking” after the complete elution of the (Ra)-trans-69 underlines these 
findings. The polarity of the eluent mixture was significantly increased compared to the separation of 70 to yield an acceptable difference in retention 

times. 252 
Figure 246: Scaled UV-Vis (left) and ECD (right) spectra of 7-methyl-N-(o-tolyl)-N'-(p-tolyl)indigo 69 in 83 / 17 heptane / ethyl acetate at 0 °C (fraction 1, blue and 

fraction 2 broken light blue) and after 5 min of 617 nm irradiation (red). 253 
Figure 247: Linearized first order kinetics of the thermal atropisomerization of (Ra)-trans-69 in 50 / 50 heptane / ethyl acetate at 0 °C. The free activation enthalpy 

ΔG* for this process was determined to be 20.4 kcal/mol resulting half-lives of 1.73 min at 25 °C and 44.4 min at 0 °C. Used formulas and equations 
can be found in Section 2.2.19. 253 

Figure 248: a) Rota- and diastereomers of trans-64, b) photoinduced rota- and diastereomers of cis-isomers by irradiation with red light. A rotation around the 
central double bond within the indigo core plane for the meso form (Sa)-(Ra)-anti-trans-64 gives (Ra)-(Sa)-anti-trans-64, proving both projections to be 

the same molecule. The meso form of the cis-isomer supports a mirror plane between both ortho-arylated indoxyls, proving both projections to be the 
same molecule. The trans to cis isomerizations (and vice versa) to the respective products can be followed by the indicated vertical (de-) excitations. 256 

Figure 249: Irradiation of a 5 / 1 syn- / anti mixture of indigo 64 yields mainly the anti-cis-2 isomer in dichloromethane-d2 followed by 1H-NMR spectroscopy at -
50 °C. 52% of anti-cis-2 isomer could be obtained in the PSS at 625 nm irradiation. Subsequent measurements of the decaying cis isomers in the 
dark gave a free activation enthalpy ΔG* = 15.8 kcal/mol. The decreasing anti-cis-2 isomer was fully converted back to the rising syn-trans-1 isomer. 
No second signal for the anti-cis-1 form at 1.9 ppm can be observed (see Figure 261). The signal at 1.72 ppm (red rectangle) of the thermally stable 
syn-cis isomer population - generated from the minor anti-trans isomer - is also not visible due to signal broadening and subsequent shifting towards 
1.45 ppm (see Figure 258 and Figure 222 for indigo 65). 258 

Figure 250: Aromatic part of the irradiation of a 5 / 1 syn- / anti mixture of indigo 64 to the anti-cis-2 (violet) and syn-cis (green) isomers in dichloromethane-d2 
followed by 1H-NMR spectroscopy at -50 °C. Subsequent measurements of the decaying anti-cis-2 isomer in the dark gave a free activation enthalpy 
ΔG* = 15.8 kcal/mol. The decreasing anti-cis-2 isomer was not converted to the stable syn-cis isomer, only the syn-trans-1 isomer population was 
restored during the decay of the anti-cis-2 isomer. The integrals of the anti-cis-2 signals are underrepresented, especially in the aromatic region, as 
the total amount of cis-isomers reported at the signal located at 7.78 ppm exceeds the combined integral value located at 6.38 ppm. 259 

Figure 251: Irradiation of a 5 / 1 syn- / anti mixture of indigo 64 to the syn-cis isomer (green) in dichloromethane-d2 followed by 1H-NMR spectroscopy at 11 °C. 

20% of syn-cis isomer could be obtained at this temperature in the PSS (77% at -80 °C, Figure 253), which can be explained by the low thermal 
stability of the anti-cis-2 isomer, which represents the mayor photoproduct. However, minor amounts of anti-trans isomer are responsible for the 
photogeneration of the syn-trans-1 isomer population. Subsequent measurements of the decaying cis isomers in the dark gave a free activation 
enthalpy ΔG* = 20.7 kcal/mol for this thermal reaction. The decreasing syn-cis isomer is thermally converted at a slow rate to the rising anti-trans 
isomer at this temperature. The violet rectangle at 1.45 ppm indicates the absence of the anti-cis-2 isomer at 11 °C, which is to be expected because 
of its low thermal stability. 260 

Figure 252: Selected 1H-NMR spectra recorded during the irradiation of a 5.0 / 1.0 syn- / anti-trans mixture of indigo 64 populating the anti-cis-2 and syn-cis 

isomers (dichloromethane-d2 at -50 °C). The Spectra were taken from the irradiation and thermal annealing experimens shown in Figure 249 and 
Figure 250. A PSS consisting of 56% cis isomers (compared to all trans isomers) can be obtained at -50 °C. Relative normalized (to the syn-anti 
isomer methyl group signals) integrals for indicated signal areas are given below the respective peak. The integrals of the anti-cis-2 signals are 
underrepresented, especially in the aromatic region, as the total amount of cis-isomers reported at the signal located at 7.78 ppm exceeds the 
combined integral value located at 6.38 ppm. 262 

Figure 253: 1H-NMR spectra recorded during 625 nm the irradiation of a 5.0 / 1.0 syn- / anti-trans mixture of indigo 64 to the anti-cis- and syn-cis isomers in 

dichloromethane-d2 at -80 °C and stepwise annealing at higher temperatures. A PSS containing 77% cis isomers (respective to all trans isomers) can 
be obtained at -80 °C. Integrals for indicated signal areas are given below the respective peak. Thermal decay in the dark is clearly seen at around -
40 °C. The integrals of the anti-cis-2 signals are underrepresented, especially in the aromatic region, as the total amount of cis-isomers reported at 
the signal located at 7.78 ppm exceeds the combined integral value located at 6.38 ppm. 263 

Figure 254: Temperature dependence of the syn-cis isomer ortho-methyl signal of indigo 64 in the range of 11 °C to -50 °C. Irradiation at 11 °C yielded the 
previously observed syn-cis isomer with the methyl-group signal residing at 1.69 ppm, cooling to -10 °C showed a slight upfield shift and signal 
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broadening. Cooling to -30 °C strongly shifts the syn-cis methyl group signal under the also shifted water peak, while cooling to -50 °C gives another 
separate signal. Irradiation at -50 °C increases the broad signal of the methyl group of the anti-cis-2 isomer at 1.43 ppm. 264 

Figure 255: Irradiation of a 5.0 / 1.0 syn- / anti mixture of indigo 64 with 625 nm LED light to the anti-cis-2 and syn-cis isomers in toluene-d8 at -60 °C. Spectra 

were recorded in one minute intervals. Generation of cis isomers can be observed, the syn-cis species is expected to show broad signals for its 
methyl protons at low temperatures (see Figure 254), which leaves the anti-cis-2 isomer as the only visible new species in the aliphatic part of each 
spectrum. Discerning of syn- and anti-cis-2 isomers is impossible at -60 °C in this solvent as signal overlap and / or -broadening at in the aromatic 
part of the spectrum causes inseparable signals. 266 

Figure 256: 1H-NMR spectra of the irradiation of a 5.0 / 1.0 syn / anti mixture of indigo 64 to the anti-cis-2 and syn-cis isomers in toluene-d8 at -60 °C and 
subsequent behavior in the dark at various temperatures. A PSS consisting of 79% cis isomers (respective to all trans isomers) can be obtained 
during irradiation at -60 °C. Integrals for indicated signal areas are given below the respective peak. The integrals of the anti-cis-2 signals are 
underrepresented, especially in the aromatic region, as the total amount of cis-isomers reported at the signal located at 7.78 ppm exceeds the 
combined integral values located at 6.34 ppm. 267 

Figure 257: Aromatic part of the 1H NMR spectra recorded during 625 nm irradiation of a 1.0 / 6.5 syn / anti mixture of indigo 64 to yield syn-cis, anti-cis-1 and 

syn-trans-2 signals in dichloromethane-d2 at -60 °C. Coincident generation of syn-, anti-cis-1 and syn-trans-2 signals can be observed. The rate of the 
photoreactions can be seen to be faster for the syn-cis isomer and slower for the anti-cis isomer as the syn-trans-1 isomer represents as minor 
species for the photoreaction and generates anti-cis-1- / syn-trans-2 signals in lower quantities, respectively. The previously generated anti-cis-2 
isomer is not observed (Figure 250). 268 

Figure 258: Comparison of three in situ irradiation experiments of indigo 64 with 625 nm LED light at low temperatures in dichloromethane-d2. The spectra were 
taken at a 1 minute time interval. The relative integrals for start and end of each photoreaction course are given in orange. The plots on the left and 
middle start with a 1.0 / 0.2 syn- / anti-trans mixture, the plot on the right with a 0.2 / 1.0 syn- / anti-trans mixture. The rise of novel signals at 
1.89 ppm (anti-cis-1) and 1.38 ppm (syn-trans-2) with comparable estimated photokinetics as the signal at 1.46 ppm (anti-cis-2 generated from the 
syn-trans-1 isomer) can be observed. The syn-cis isomer is the major photoproduct originating from the anti-trans isomer but shows broad aliphatic 
signals at these temperatures and can only be observed in the aromatic region or at temperatures above -20 °C, see Figure 253 and Figure 254. 269 

Figure 259: Comparison of 1H-NMR spectra obtained after irradiation of a 5.0 / 1.0 syn- / trans- (top) and a 1.0 / 6.5 syn- / anti-trans isomer (bottom) of indigo 64 
at -60 °C in dichloromethane-d2. If the syn-trans-1 isomer is the major initial species, single signals at 6.34 and 1.43 ppm can be observed for the 
anti-cis-2 isomer. When the anti-trans isomer represents the major initial species, two emerging signal sets at 6.85 ppm, 5.95 ppm and 1.89 ppm, 
1.38 ppm can be observed after irradiation for the anti-cis-1 / syn-trans-2 isomers, which could be populated by a photoinduced extended Hula-Twist 
motion as the anti-cis-1 isomer cannot be generated by solely double bond isomerizations from the anti-trans isomer, which is also true for syn-trans-
2. The syn-trans-1 isomer is too low in quantity to yield the significant amounts of (underrepresented) anti-cis-2 isomer in the second experiment 
(bottom). 270 

Figure 260: Both hypothetical edge-to-face conformations of indigo 64 that are experimentally stable solely at -60 °C. DFT optimizations at the M05-2x/6-31+G(d) 

level of theory did not yield local minimum structures. 271 
Figure 261: 1H-NMR spectra obtained after the irradiation of a 1.0 / 6.5 syn / anti isomer mixture of indigo 64 to the anti-cis and syn-cis isomers in 

dichloromethane-d2 at -60 °C and subsequent behavior in the dark at various temperatures. Integrals for indicated signal areas are given below the 
respective peak. A PSS consisting of 87% cis isomers can be obtained (respective to all trans isomers). 272 

Figure 262: Aliphatic part after the irradiation of a 1.0 / 11.1 syn- / anti mixture of indigo 64 to the anti-cis- and syn-cis isomers in toluene-d8 at -60 °C with 625 nm 
LED light. Two peaks can be observed, which is similar to the experiments in dichloromethane (see Figure 261). The detailed explanation of this 
behavior is given in Section 2.4.16, as two helicities are assumed to exist for anti-cis- and syn-trans- isomers. 274 

Figure 263: 1H-NMR spectra obtained after the irradiation of a 1.0 / 11.1 syn- / anti mixture of indigo 64 to the anti-cis- and syn-cis isomers in toluene-d8 at -60 °C 

and subsequent behavior in the dark at various temperatures. A PSS consisting of 69% cis isomers (respective to syn-trans-1 and anti-trans isomers) 
can be obtained at -60 °C. Integrals for indicated signal areas are given below the respective peak. 275 

Figure 264: 1H-NMR spectra (aromatic part) of the irradiation and subsequent behavior in the dark of a 5 / 1 syn- / anti-trans isomer mixture of indigo 64 in 
toluene-d8 at -5 °C measured on a 400 MHz spectrometer. Each spectrum was measured with a 1 minute time interval. A PSS consisting of 73% cis 
isomers could be obtained. Subsequent measurements of the differently decaying cis isomers in the dark gave free activation enthalpies ΔG* = 
18.5 kcal/mol with a half-life of 4.15 s at 25 °C for the anti-cis-2- and ΔG* = 19.4 kcal/mol with a half-life of 19.0 s at 25 °C for the syn-cis isomer. The 
decreasing cis isomer signals were assigned to the increasing trans isomer signals after the LED was turned off. Accumulation of the anti-trans- 
compared to the syn-trans-1 isomer can be observed at 6.44 ppm. 277 

Figure 265: 1H-NMR spectra (aliphatic part) of the irradiation and subsequent behavior in the dark of a 5 / 1 syn- / anti-trans isomer mixture of indigo 64 in 
toluene-d8 at -5 °C measured on a 400 MHz spectrometer. Each spectrum was measured with a 1 minute time interval. A PSS consisting of 73% cis 
isomers could be obtained. Subsequent measurements of the differently decaying cis isomers in the dark gave free activation enthalpies ΔG* = 
18.5 kcal/mol with a half-life of 4.15 s at 25 °C for the anti-cis-2 and ΔG* = 19.4 kcal/mol with a half-life of 19.0 s at 25 °C for the syn-cis isomer. The 
decreasing cis isomer signals were assigned to the increasing trans isomer signals after the LED was turned off. Accumulation of anti-trans isomer 
can be observed at 2.28 ppm. 278 

Figure 266: Linearized first order kinetic plots of anti-cis- (violet) and syn-cis-64 (green) in toluene-d8 at 0 °C derived from Figure 265 above. The thermal cis to 
trans isomerization barriers were determined at 18.5 kcal/mol with a half-life of 4.15 s at 25 °C for the anti-cis- and 19.4 kcal/mol with a half-life of 
19.0 s at 25 °C for the syn-cis isomer. Used formulas and equations are given in Section 2.2.20. 279 

Figure 267: 1H-NMR spectra obtained after the irradiation of a 5.0 / 1.0 syn- / anti mixture of indigo 64 to the anti-cis and syn-cis isomers in toluene-d8 at -5 °C 

and subsequent behavior in the dark. A PSS consisting of 73% cis isomers can be obtained at -5 °C, which is comparable to the observed PSS 
consisting of 77% cis isomers in dichloromethane-d2 at -80 °C. Integrals for indicated signal areas are given below the respective peak. 280 

Figure 268: Plots of the respective percentages of all four isomers from 1H-NMR measurements with in situ irradiation and subsequent thermal annealing 
conditions of indigo 64 in toluene-d8 recorded on a 400 MHz NMR spectrometer at -5 °C. Raw data (left) and smoothed data (right, Savitzky-Golay-

Filter, 20 points of window) is shown for easier visibility of the reaction rates, the immediate stopping of the photokinetics in the dark can be better 
demonstrated with the raw data. 281 

Figure 269: Calculated ground and transition state structures and energies of indigo 64 at the B3LYP/6-311+G(d,p) level of theory. Transition states for seven out 
of eight possible atropisomerizations could be found. The other possible transition state for the cis isomer did not converge after several attempts and 
tweaks. The “+” sign in front of transition state values indicates the energy difference with respect to the lowest ground state of respective cis or trans 
isomers. Missing experimental data for the cis isomer makes it difficult to assign the reported transition state to be high or low in energy or to address 
the preferred directionality for this rotation. 284 

Figure 270: Benchmarking results for ground and transition states of indigo 64 using different DFT functionals for the 6-311+G(d,p) basis set. The “+” sign in front 

of transition state values indicates the energy difference with respect to the lowest ground state of respective cis or trans isomers. Missing transition 
states did not converge after several attempts and tweaks. “E” represents the trans- and “Z” the cis isomeric state. “E-Syn-1” represents the lowest 
ground state for all functionals in the trans state while “Z-Syn” constitutes the lowest energy cis state in most cases. “E-anti-Me-DB” shows the lowest 
transition state energy in all cases and suggests a rotation of an ortho-methyl group over the central double bond in the trans state. “Z-Anti-Me-H” 
shows the energetically lowest transition state for the cis isomers and suggests that the ortho-methyl group is rotated over its adjacent indoxyl core 
proton. 285 

Figure 271: Benchmarking results for ground states of indigo 64 using different DFT functionals and basis sets. “E” represents the trans- and “Z” the cis isomeric 
state. “E-Syn-1” represents the lowest ground state for all functionals in the trans state while “Z-Syn” constitutes the lowest energy cis state in most 
cases. The “no+” indicator represents the 6-311G(d,p) Pople basis set, the ”no1” indicator the 6-31+G(d,p) basis set and the “no1+” indicator the 6-
31G(d,p) basis set. Functionals with dispersive corrections (ωB97XD, B3LYP-GD3BJ, indicated as “Dispersion”, “Disp”) and PCM solvent modelling 
(“B3LYP-Disp-Solv”, dichloromethane) show lower differences between the trans and cis isomer ground states. 286 

Figure 272: 1H-NMR spectra of a 3 / 2 syn- / anti-trans isomer mixture of 64 in dichloromethane-d2 (24 °C) with overlaid calculated 1H-NMR shifts (colored lines) 

at the B3LYP/6-311+G(d,p) level of theory using the gauge-including atomic orbital (GIAO) method (TMS B3LYP/6-311+G(2d,p), GIAO as reference 
for zero). The reported shifts agree well with the experimentally obtained signals and the previous assignment of trans isomers. The signals 
corresponding to the yellow line should not be observable as the syn-trans-2 isomer is supposedly not stable at 24 °C. The yellow and violet lines 
within the aromatic part are almost overlapping. 287 

Figure 273: Benchmarking of 1H-NMR shifts at the B3LYP/6-311+G(d,p) level of theory using the gauge-including atomic orbital (GIAO) method (TMS B3LYP/6-
311+G(2d,p), GIAO as reference for zero) and comparison to measured σ-values (framed in black). The shifts for syn-trans-2 could not be measured 
as this species is not stable at ambient temperatures and was not observed at low temperatures as thermal- or photoproduct in dichloromethane or 
toluene. Overall, a good agreement for polarizable continuum model (PCM) solvent corrections (dichloromethane, toluene) was obtained. 288 

Figure 274: 1H-NMR spectra of an irradiated 5 / 1 syn- / anti-trans isomer mixture (top) and an irradiated 1 / 6.5 syn- / anti-trans isomer mixture (bottom) of 64 in 

dichloromethane-d2 (-60 °C) with overlaid calculated 1H-NMR shifts (colored lines) at the B3LYP/6-311+G(d,p) level of theory using the gauge-
including atomic orbital (GIAO) method (TMS B3LYP/6-311+G(2d,p), GIAO as reference for zero). The reported shifts agree well with the 
experimentally obtained signals and the previous assignment of both cis isomers in the aliphatic region. The signals in the aromatic regions agree 
qualitatively to the calculation with a matching order of observed and calculated shifts. The aliphatic signal for the syn-cis isomer can only be 
observed at temperatures above -20 °C (Figure 263, toluene and Figure 251, dichloromethane) at 1.69 ppm due to signal broadening and is indicated 
below the spectrum. The signals of anti-cis-1 can only be observed in toluene (from -20 °C to 0°C, Figure 263) and are indicated below the spectrum. 
The syn-trans-2 signal disappears at -50 °C. 289 

Figure 275: Benchmarking of 1H-NMR shifts of indigo 64 at the B3LYP/6-311+G(d,p) level of theory using the gauge-including atomic orbital (GIAO) method 

(TMS B3LYP/6-311+G(2d,p), GIAO as reference for zero) and comparison to measured σ-values (framed in black). The additional signals of anti-cis-
1 aromatic (green, red, not framed) for and aliphatic regions is also displayed. Overall, a good agreement for polarizable continuum model (PCM) 
solvent corrections (dichloromethane, toluene) was obtained. 290 

Figure 276: Irradiation of a thermally equilibrated 1.0 / 0.2 syn- / anti mixture of indigo 64 with 625 nm red light at 27 °C in dichloromethane-d2. A shift in 

population towards the anti-trans form can be observed, as a PSS consisting of a 1.0 / 0.7 syn- / anti ratio is obtained. 292 
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Figure 277: Irradiation of indigo 64 with 625 nm LED light in toluene-d8 at 25 °C. An increase in anti-trans isomer population with slightly better photoinduced 

yields of the anti-trans isomer compared to dichloromethane solutions can be observed. 293 
Figure 278: Overview of the aliphatic region of the 1H-NMR experiments on syn-trans-1 (1st and 2nd HPLC fraction) and anti-trans isomers (3rd HPLC fraction) at 

27 °C in dichloromethane-d2. A clear rise in population of the anti-trans isomer at 2.31 ppm after 16 min of 625 nm irradiation can be observed. 9 
minutes at ambient temperatures in the dark did not change the signal ratio, suggesting the absence of cis isomers. Irradiation of majorly anti-trans 
isomer with 625 nm light reaches the previously observed PSS at a higher rate than the previously determined thermal reaction alone, suggesting the 
photoinduced extended Hula-Twist reaction as the major trajectory (see Figure 261) at 25 °C. Thermal annealing over 1 day at ambient temperatures 
restores the 5 / 1 syn- / anti-trans isomer thermodynamic equilibrium. Prolonged irradiation with 625 nm light, again, yields the previously observed 
PSS. 293 

Figure 279: Proposed reaction pathway by irradiation of indigo 64 at 25 °C in dichloromethane d2 enriching the anti-trans-64- starting from majorly syn-trans-64 
isomer out of the thermodynamic equilibrium. Optimized ground- and transition states calculated at the B3LYP/6-311+G(d,p) level of theory are 
shown, calculated values are placed within the circular graphic in black, measured values and transition state barriers are shown in the respective 
colors adjacent to the arrows. 294 

Figure 280: Proposed reaction pathway by irradiation of indigo 64 at 25 °C in toluene-d8 enriching the anti-trans-64- starting from majorly syn-trans-64 isomer out 
of the thermodynamic equilibrium. Optimized ground- and transition states calculated at the B3LYP/6-311+G(d,p) level of theory are shown, 
calculated values are placed within the circular graphic in black, measured values and transition state barriers are shown in the respective colors 
adjacent to the arrows. 295 

Figure 281: All possible theoretical trajectories for the reaction cycle of the syn-trans-1 isomer of indigo 64 at ambient temperatures. CW = clockwise rotation, 
CCW = counter clockwise rotation. (SB) = Single bond rotation, (DB) = Double bond rotation. The rotational direction is defined by the view alongside 
of the respective single or double bond axis. Rotational directions marked in red represent the favored rotations for single- and double bonds. The 
two lowest energy transition states are shown for each respective reaction path. Calculated energies at the B3LYP/6-311+G(d,p) level of theory are 
given below the stereodescriptors respective to the lowest ground state energy, which was set to 0.00 kcal/mol. 297 

Figure 282: The photoinduced 180° double bond isomerization of indigo 64 at -50 °C in dichloromethane-d2 yields the anti-cis-2 isomer starting from majorly syn-
trans-1 isomer. The subsequent thermal back-reaction takes place over a free activation enthalpy of ΔG* = 15.8 kcal/mol. The anti-cis-1 states are 
skipped in both cases. CCW = counter clockwise, DB = double bond. Optimized ground states calculated at the B3LYP/6-311+G(d,p) level of theory 
are shown, calculated values are placed within the circular graphic in black, the measured value is shown in blue. 300 

Figure 283: Possible theoretical trajectories of indigo 64 for the reaction cycle of the anti-trans isomer between -60 °C, -50 °C and 25 °C. CW = clockwise 

rotation, CCW = counter clockwise rotation, PEHT = photoinduced extended Hula-Twist, TEHT = thermal extended Hula-Twist. The rotational 
direction is defined by the view on top of the respective single or double bond axis. Rotational directions marked in red represent the favored rotations 
for single- and double bonds. The two lowest energy transition states are shown for respective reaction path. Calculated energies at the B3LYP/6-
311+G(d,p) level of theory are given below the stereodescriptors respective to the lowest ground state energy. (SB) = rotation directions for the single 
bond, (DB) = rotation directions for the central double bond. 304 

Figure 284: Suggestion of the PEHT and TEHT motion of indigo 64 based on chemical intuition. The first state on the left and the last state on the right represent 

minimum structures calculated at the B3LYP/6-311+G(d,p) level of theory, intermediate geometries represent arbitrary structures to visualize the 
proposed geared Hula-Twist motion. Top: view along a single bond, bottom: view along the central double bond. 307 

Figure 285: Possible theoretical trajectories for the reaction cycle of the anti-trans isomer between -60 °C, -50 °C and 25 °C. CW = clockwise rotation, CCW = 
counter clockwise rotation. The rotational direction is defined by the view on top of the respective single or double bond axis. Rotational directions 
marked in red represent the favored rotations for single- and double bonds. The two lowest energy transition states are shown for respective reaction 
path. Calculated energies at the B3LYP/6-311+G(d,p) level of theory are given below the stereodescriptors respective to the lowest ground state 
energy, which is set to 0.00 kcal/mol. (SB) = rotation directions for the single bond, (DB) = rotation directions for the central double bond. 309 

Figure 286: Overview of the trans forms of indigo 71. The same amount of enantio and diastereomers is expected for the cis state. 314 
Figure 287: Chiral HPLC separation of the (Sa)-(Sa)-syn-trans-, (Ra)-(Ra)-syn-trans-, (Sa)-(Ra)-anti-trans- and (Ra)-(Sa)-anti-trans indigo 71 rota- and 

diastereomers at 0 °C with an 8 / 2 heptane / ethyl acetate mixture as eluent, the four separated rotamers can be observed. 314 
Figure 288: Scaled UV-Vis (left) and ECD (right) spectra of 7-methyl-N,N'-di(o-tolyl)indigo 71 in 8 / 2 heptane / ethyl acetate at 0 °C (blue / green and broken light 

blue / green) and after 6 min of 617 nm irradiation (red and broken light red). 315 
Figure 289: Linearized first order kinetics of 71 E1 and E3 in 8 / 2 heptane / ethyl acetate at 0 °C and 40 °C. The thermal atropisomerization barriers were 

determined as follows: E1 at 40 °C: 22.9 kcal/mol with a half-life of 1.98 h, E3 at 40 °C: 23.0 kcal/mol with a half-life of 2.32 h, E1 at 0 °C: 
21.7 kcal/mol with a half-life of 15.2 min and E3 at 0 °C: 22.3 kcal/mol with a half-life of 44.0 min. Half-lives are given for a temperature of 25 °C. 
Used formulas and equations are described in Section 2.2.19. 316 

Figure 290: Aliphatic 1H-NOESY NMR-spectrum of the syn- and anti-rotamer of 7-methyl-N,N'-di(o-tolyl)indigo 71, (600 MHz, dichloromethane-d2, 27 °C). Signals 
of protons anti 14 and syn 14 show positive NOE signals, while the rest of the molecule shows negative NOEs when the diagonal line is set to 
positive values according to convention. This is confirms the expected fast dynamics between syn- and anti diastereomers (see indigo 65, Section 
2.4.3) as the used mixing time of 1.2 s is longer than the exchange of respective nuclei. Signal syn 14 / syn 15 shows stronger intensity than anti 14 / 
anti 15, which hints towards steric repulsion between methyl groups syn 14 / syn 14’ (NOE not visible due to diagonal peak overlap) forcing methyl 
group 14 closer towards methyl group 15. 317 

Figure 291: Aromatic / aliphatic 1H-NOESY NMR-spectrum of the syn- and anti-rotamer of 7-methyl-N,N'-di(o-tolyl)indigo 71, measured at 27 °C, 600 MHz, 
dichloromethane-d2, 27 °C). The anti conformation can be unambiguously assigned as cross-signals anti 13’ / anti 14 and anti 13 / anti 14’ can be 
observed. The difference intensity of these signals supports a twisted conformation of the molecule with aryl edge 13’ closer to methyl group 14. 318 

Figure 292: Aromatic 1H-NOESY NMR-spectrum of the syn- and anti rotamer of 7-methyl-N,N'-di(o-tolyl)indigo 71, measured at (600 MHz, dichloromethane-d2, 

27 °C). Signals syn 13 / syn 13’ are visible while signals anti 13 / anti 13’are not visible, which underlines this assignment to be correct. 319 
Figure 293: Irradiation of a 1.6 / 1.0 syn- / anti-trans mixture of indigo 71 in dichloromethane-d2 (400 MHz) after irradiation at various temperatures. The 

generation of stable cis isomers can be observed at -80 °C. 320 
Figure 294: Kinetic plots for the thermal cis to trans isomerization of indigo 71 at -40 °C. An increase of all trans isomers can be observed while the cis states are 

depopulated. 321 
Figure 295: Overview of the trans forms of N-(4-methoxy-2-methylphenyl)-N'-(o-tolyl)indigo 72. The same amount of enantio and diastereomers is expected for 

the cis state. 322 
Figure 296: Optimized reversed-phase HPLC separation of indigo 72 with 9 / 1 acetonitrile / water as eluent. The difference in retention times proved as 

unfeasible for separation and changing of eluent(s) and / or composition, temperature and column phase did not yield satisfactory results. The 
expected 1 / 2 / 1 pattern for this statistical reaction can be observed. 323 

Figure 297: Injection of the H2 peak of indigo 72 from the preceding reversed-phase HPLC run onto a chiral HPLC column at 0 °C with 83 / 17 heptane /ethyl 
acetate as eluent. Poor separation and carry-over of the three different molecules with three to four rotamers each make obtaining of enantiopure 
fractions impossible. 323 

Figure 298: Overview of the trans forms of N-(4-fluoro-2-methylphenyl)-N'-(o-tolyl)indigo 73. The same amount of enantio and diastereomers is expected for the 

cis state. 324 
Figure 299: Optimized reversed-phase HPLC separation of indigo 73 with 6 / 4 acetonitrile / water as eluent. The expected 1 / 2 / 1 pattern for this statistical 

reaction can be observed. 325 
Figure 300: Injection of the H2 peak of indigo 73 from the preceding reversed-phase HPLC run onto a chiral HPLC column at 0 °C with 83 / 17 heptane /ethyl 

acetate as eluent. The expected four rotamers can be observed, however, the rotamers of residual difluorated indigo 79 from fraction H1 can also be 
seen. 325 

Figure 301: Scaled UV-Vis (left) and corresponding ECD spectra (right) of all four peaks obtained from chiral HPLC separation (syn-trans-1 (ExE1), syn-trans-2 
(ExE2), anti-trans-1 (ExE3) and anti-trans-2 (ExE4)) of N-(4-fluoro-2-methylphenyl)-N'-(o-tolyl)indigo 73 in 83 / 17 heptane / ethyl acetate at 0 °C. 

Samples were irradiated and measured within the ECD spectrophotometer at 0 °C, which records UV-Vis spectra with poor quality. This was done 
because the other UV-Vis spectrophotometer cannot be cooled to 0 °C. Both syn isomers (blue and broken blue lines) show strong ECD responses 
while the anti forms (green and pink lines) show no ECD signal at all. This can be explained by the cancellation of ECD signal for a (Ra)- and a (Sa) 
chiral axis in the same molecule, see Section 2.4.9. Irradiation at 0 °C shows the anti-cis isomers (red and broken red lines). 326 

Figure 302: Linearization of the first order kinetics for the atropisomerization of N-(4-fluoro-2-methylphenyl)-N'-(o-tolyl)indigo 73 at 40 °C in 83 / 17 heptane / ethyl 
acetate. A barrier of 23.7 kcal/mol with a half-life of 7.90 h at 25 °C could be determined. Used formulas and equations can be found in Section 
2.2.19. 326 

Figure 303: 1H-NMR spectra of all four isolated rotamers of indigo 73. 1st and 2nd HPLC fractions can be regarded as enantiomers, which is also true for the 3rd 
and 4th fraction as they show the same spectra. Residual difluorated indigo 78 can only be observed in the 1st fraction, which shows that the 
separation of rotamers for this compound is feasible compared to indigo 72. 327 

Figure 304: Overview of synthesized and investigated hemiindigos 80, 81 and 82. Only Z isomers are shown. 332 
Figure 305: Schematic representation of the homebuilt tandem ion mobility mass spectrometer. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 336 
Figure 306: Arrival time distributions (ATDs) for the three investigated hemiindigo ions 80, 81 and 82 recorded with N2 buffer gas (upper row) and with N2 doped 

with 1% 2-propanol (lower row). Adapted with permission from [126]. Copyright 2020 Wiley VCH. 337 
Figure 307: Fitted arrival time distributions (ATDs) for the three investigated hemiindigo ions 80, 81 and 82 with different solution irradiation conditions. The left 

column shows the resulting ATD after 5 minutes irradiation of each sample with blue light, whereas the right column shows the ATDs after irradiation 
with green or red light prior to electrospray. The fitted contributions of each isomer are given under the obtained curves. Adapted with permission 
from [126]. Copyright 2020 Wiley VCH. 338 

Figure 308: (a) ATDs showing mobility-separated Z and E isomers of hemiindigos 80, 81 and 82. The black traces show the ATDs of the electrosprayed samples 

shielded from light, whereas colored traces represent the distributions after exposure of each hemiindigo solution to the indicated wavelength of light. 
(b) Solution absorption spectra of an isomeric mixture of hemiindigos 80, 81 and 82after irradiation with different wavelengths of light promoting 
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formation of either Z or E isomers. A reversal of the arrival times of Z and E isomers for hemiindigo 81 compared to 80 and 82 can be observed. 

Adapted with permission from [126]. Copyright 2020 Wiley VCH. 339 
Figure 309: Example Z isomer photoaction ATDs (a-c), gas-phase action spectra (d-f) and solution absorption spectra (g-i) for the Z and E isomers of 

hemiindigos 80 (left column), 81 (middle column) and 82 (right column). For the isolated hemiindigo isomers, the calculated absorption wavelengths 
are marked with bars of the corresponding color. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 340 

Figure 310: Normalized yield of E photoisomer as a function of light fluence. The experiments were performed at 450nm (Hemiindigos 80 and 81) and 430nm 
(Hemiindigo 82), respectively. All photoisomerization experiments were performed at a light fluence of <0.8 mJpulse -1cm-2. Adapted with permission 

from [126]. Copyright 2020 Wiley-VCH. 342 
Figure 311: Calculated geometries and relative energies for representative low-energy E and Z conformers of hemiindigos 80 (a), 81 (b), and 82 (c) calculated at 

the B97XD/cc-pVDZ level of theory. The energies are given in kcal/mol with respect to the most stable conformer. (d) Calculated averaged collision 
cross-section (CCS) for E and Z isomers in 80, 81 and 82, assuming a Boltzmann distribution of the individual conformers shown in (a-c) at a 

temperature of 300 K. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 343 
Figure 312: Section of the 2D NOESY NMR spectrum (dichloromethane-d2, 600 MHz, 27 °C) of hemiindigo 80. The strong NOE cross signals between protons E 

16 / 17 / E 10 and the weak signal of E 18 indicates their assignment to the E isomer to be correct. Z 10 shows no cross peaks with the chain 
protons. Z 16 / 17 show overlapping cross signals with protons Z 3 / 12, resolving the Z 12 / Z 3 signals determines the preferred conformer in 
proximity of proton 3 instead of 12. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 345 

Figure 313: Section of the 2D NOESY NMR spectrum (dichloromethane-d2, 600 MHz, 27 °C) of hemiindigo 80. The expected signals for the alkyl chain and 

diazabicyclo[2.2.2]octane can be identified. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 346 
Figure 314: Section of the 2D-NOESY NMR spectrum (acetonitrile-d3, 400 MHz, 27 °C) of hemiindigo 81. Strong cross signals of E 10 with protons E 16 and 

overlapped protons E 17 / 18 support their correct assignment to the E isomer. Z 10 shows no NOEs with alkyl chain protons. Z 12 shows strong 
signals with proton Z 16 but no cross signal with Z 17 / 18 / 19 while proton Z 3 shows signals with Z 16 and Z 17. This suggests a preferred chain 
conformer population in proximity of proton 3, although in a less pronounced manner than observed for Z-80. E 12 exhibits weak overlapped cross 
signals for protons E 17 / 18, which cannot be seen for E 18 / 19 in hemiindigo E-80 as the elongated chain negates significant NOE signals to the 

peripheral diazabicyclo[2.2.2]octane tag. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 347 
Figure 315: Section of the 2D NOESY NMR spectrum (acetonitrile-d3, 400 MHz, 27 °C) of hemiindigo 81. The expected signals of the alkyl chain and 

diazabicyclo[2.2.2]octane can be identified. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 348 
Figure 316: PSS UV-Vis spectra at different irradiation wavelengths for Z- / E-80 in acetonitrile. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 349 
Figure 317: PSS UV-Vis spectra at different irradiation wavelengths for Z- / E-81 in acetonitrile. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 350 
Figure 318: PSS UV-Vis spectra at different irradiation wavelengths for Z- / E-82 in acetonitrile. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 350 
Figure 319: Absorbance normalized 100% Z / E UV-Vis spectra for 80 (blue), 81 (red) and 82 (black) in acetonitrile. Adapted with permission from [126]. Copyright 

2020 Wiley VCH. 351 
Figure 320: 1H-NMR spectra of Z / E 81 (top) and Z / E 80 (bottom) in acetonitrile-d3, only the aliphatic section is shown. Corresponding Lewis-formula are shown 

at the top and bottom. Adapted with permission from [126]. Copyright 2020 Wiley VCH. 353 
Figure 321: Energetically favored Z and E isomers of hemiindigo 81 (top) and 80 (bottom) calculated at the B97XD/cc-pVDZ level of theory. 355 
Figure 322: Molecular electrostatic potentials (MEPs), highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) of 

hemiindigos 80 (top, left), 81 (top right) and 82 (bottom) calculated at the B97XD/cc-pVDZ level of theory. Only the conformers with the lowest 

respective energy are shown. The MEPs show the affinity towards a positive test charge, red areas show high and blue areas low affinities. The 
same color margin values of -0.01 and +0.18were used for all MEPs. 356 

Figure 323: Three small molecules (86, 87 and 88) that show affinities and conformational / regulatory changes at the RNA level in biological assemblies. 
Similarities of functional groups to the investigated hemiindigo photoswitches are marked red. 362 

Figure 324: Lewis-formula of hemiindigo 34. 371 
Figure 325: UV-Vis spectra of hemiindigo 34 in pure water under different irradiation conditions. 371 
Figure 326: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 34 (600 MHz, dichloromethane-d2, 27 °C). 371 
Figure 327: Lewis-formula of hemiindigo 97. 372 
Figure 328: UV-Vis spectra of hemiindigo 97 in pure water under different irradiation conditions. 372 
Figure 329: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 97 (600 MHz, dichloromethane-d2, 27 °C). 372 
Figure 330: Lewis-formula of hemiindigo 100. 373 
Figure 331: UV-Vis spectra of hemiindigo 100 in a 2 / 4 / 4 water / sat. aq. ammonium chloride / dimethyl sulfoxide mixture under different irradiation conditions. 373 
Figure 332: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 100 (600 MHz, dichloromethane-d2, 27 °C). 373 
Figure 333: Lewis-formula of hemiindigo 101. 374 
Figure 334: UV-Vis spectra of hemiindigo 101 in water with one drop of sat. aq. ammonium chloride as additive under different irradiation conditions. 374 
Figure 335: 1H-NMR spectra of hemiindigo 101 (400 MHz, dichloromethane-d2, 27 °C). RP-HPLC purification (right) yielded more signals than the precedent silica 

column separation (left), suggesting stability issues with this compound. 374 
Figure 336: Lewis-formula of hemiindigo 102. 376 
Figure 337: UV-Vis spectra of hemiindigo 102 in water with one drop of sat. aq. ammonium chloride and seven drops of dimethyl sulfoxide as additives under 

different irradiation conditions. 376 
Figure 338: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 102 (600 MHz, dichloromethane-d2, 27 °C). 376 
Figure 339: Lewis-formula of hemiindigo 98. 377 
Figure 340: UV-Vis spectra of hemiindigo 98 in pure water at different irradiation conditions. 377 
Figure 341: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 98 (600 MHz, dichloromethane-d2, 27 °C). 377 
Figure 342: Lewis-formula of hemiindigo 99. 378 
Figure 343: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 99 (400 MHz, dichloromethane-d2, 27 °C). 378 
Figure 344: Lewis-formula of hemiindigo 103. 379 
Figure 345: UV-Vis spectra of the degradation products of hemiindigo 103 in water after three months shelf storage in the dark at ambient temperatures. This 

compound was not measured via UV-Vis spectroscopy before degradation, spectra of 101 and 102 should be similar in shape. 379 
Figure 346: 1H-NMR spectra of hemiindigo 103 (400 MHz, dichloromethane-d2, 27 °C). Purification issues because of the high polarity of this compound yielded 

unclean products in low abundance. 379 
Figure 347: Lewis-formula of hemiindigo 104. 380 
Figure 348: UV-Vis spectra of the degradation products of hemiindigo 104 in water after three months shelf storage in the dark at ambient temperatures. This 

compound was not measured via UV-Vis spectroscopy before degradation, spectra of 101 and 102 should be similar in shape. 380 
Figure 349: 1H-NMR spectra of hemiindigo 104 (400 MHz, dichloromethane-d2, 27 °C). Purification issues because of the high polarity of this compound yielded 

unclean products. 380 
Figure 350: Lewis-formula of hemiindigo 106. 383 
Figure 351: UV-Vis spectra of hemiindigo 106 in pure water under different irradiation conditions. 383 
Figure 352: Lewis-formula of hemiindigo 107. 384 
Figure 353: UV-Vis spectra of hemiindigo 107 in pure water under different irradiation conditions. 384 
Figure 354: Lewis-formula of hemiindigo 105. 385 
Figure 355: UV-Vis spectra of hemiindigo 105 in pure water under different irradiation conditions. 385 
Figure 356: 1H- (left) and 13C-NMR spectra (right) of hemiindigo 105 (800 MHz, dichloromethane-d2, 27 °C). 386 
Figure 357: Lewis-formula of hemiindigo 108. 386 
Figure 358: Lewis-formula of hemiindigo 109. 386 
Figure 359: Lewis-formula of hemiindigo 110. 387 
Figure 360: UV-Vis spectra of hemiindigo 110 in pure water under different irradiation conditions. 387 
Figure 361: Lewis-formula of hemiindigo 111. 388 
Figure 362: UV-Vis spectra of hemiindigo 111 in pure water under different irradiation conditions. 388 
Figure 363: Lewis-formula of hemiindigo 113. 389 
Figure 364: Lewis-formula of hemiindigo 112. 389 
Figure 365: UV-Vis spectra of hemiindigo 112 in pure water under different irradiation conditions. 389 
Figure 366: Example of an underestimated 100% E spectrum (red line) obtained by eq. 21 and eq. 22. 400 
Figure 367: Example of the accuracy of the first generation of the 100% Z / E calculator, green and violet: measured 100% molar absorption spectra, black and 

red: calculated 100% molar absorption spectra. 402 
Figure 368: Screenshot of the spectra deconvolution Excel tool version 1.0 to obtain 100% Z- and E spectra from arbitrary mixtures. The red ellipsoid shows the 

three variable parameters for each Z- and E enriched isomer mixture. Vertical lines represent observation wavelengths to confirm the consistency of 
the calculated isomeric compositions from 359 nm to 477 nm, deviations below 1% were observed, which is dependent on the quality of data and the 
photochromism of the compound. 405 

Figure 369: Screenshot of the spectra deconvolution Excel tool version 2.0 to obtain 100% Z- and E spectra from arbitrary mixtures. The violet ellipsoid shows 
that - besides the experimentally determined 1H-NMR signal integral ratios of each isomer - only one variable parameter for each Z- and E enriched 
isomer mixture is needed to adjust for the respective measured concentration. The crosshair (green) marks the most red-shifted isosbestic point for 
concentration adjustment. 406 

Figure 370: Screenshot of the spectra deconvolution Excel tool version 5.2 to obtain 100% Z- and E spectra from arbitrary mixtures. The violet ellipsoid shows 
that only a suitable observer wavelength needs to be set. The other parameters are needed for the calculation of molar absorption spectra and 
quantum yield determination, which are shown in sections 2.2.21 and 2.7.2. 408 

Figure 371: Input page of the online based deconvolution tool by Y. Ruppenthal. The same functionality as the excel tool was achieved within this version. 409 
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Figure 372: Kinetic analysis of the E to Z thermal isomerization of hemiindigo 8 in tetrahydrofuran measured at 26 °C over 180 minutes within the calculational 

Excel tool version 5.2. 410 
Figure 373: Photoquantum yield analysis of the Z to E photoisomerization of hemiindigo 20 in 83 / 17 heptane / ethyl acetate within the calculational Excel tool 

version 5.2. 410 
Figure 374: Low-cost quantum yield measurement prototype with differential read-out of absorbed power. The LED light is focused with two magnifying glasses 

onto a beam splitter made out of a stack of microscopy plates. One part of the light beam is measured with a calibrated reference diode, the other 
part of the beam is sent through the sample. The calibrated measurement diode reports the remaining light power which was not absorbed by the 
sample. The Arduino microcontroller subtracts the power values of the measurement diode from the reference diode, giving accurate absorbed power 
values even upon LED power fluctuations. 415 

Figure 375: Circuit board and Arduino microcontroller of the inexpensive quantum yield determination setup. The current of the photodiodes is linearly converted 
into voltage and amplified utilizing two of the four operational amplifiers of the integrated circuit (IC) chip (MCP6004-I/P PDIP-14) wired as 
transimpedance amplifier. The amplification factor is adjusted individually for each photodiode by a trimmer potentiometer. A third trimmer 
potentiometer is used to normalize reference- and measurement photodiode when no sample is placed within the beam path prior to measurement. 
The Arduino microcontroller converts the measured voltage differences into light power according to a previously determined calibration curve and 
plots the absorbed power versus time on a computer screen for data acquisition. 416 

Figure 376: Programming of the Arduino microcontroller in C++ to measure the absorbed power of the sample with respect to the reference photodiode. 417 
Figure 377: Improved setup for sample cooling during alternating irradiation experiments. During irradiation it was ensured that air gaps between LEDs and 

cuvette were present for effective fan-cooling (see Figure 377, top left corner). Direct temperature measurements inside a water filled cuvette 
determined temperature deviations of up to 1.23 °C during irradiation cycles in a control experiment (see inset in the right picture). 419 

Figure 378: Depiction of the air gap between LEDs and sample (top left corner) and calibration of the different temperature sensors 1 to 3 within the air stream of 
the fan. The respective temperature deviations between the different sensors are very small. The surrounding room was not yet cooled to 18 °C at 
this time of measurement. 420 

Figure 379: Monitored temperature of the surrounding air during 160 cycles of alternating irradiations of hemiindigo 33 (left). Spikes represent warming of the air 

stream during manual sample handling. Temperature difference (right) between the inside of the cuvette (red) and the surrounding room temperature 
(blue) measured for a water-filled cuvette during 9 cycles of alternating irradiations. On average, a 1.23 °C temperature difference was observed 
between irradiations for 7 s at 435 nm and 260 mW output power and 38 s at 505 nm and 80 mW output power. Spikes correspond to the flashing of 
the 435 nm LED, which dissipates more heat. 420 

Figure 380: Different views of the homemade plywood cryostat mounting bracket outside the ECD spectrometer. The cryostat can be adjusted within five 
dimensions and the cuvette holder within the sample chamber can be moved in two dimensions. 422 

Figure 381: Instrumental setup used for repetitive ECD measurements in-between alternating irradiations of the (Ra)-30 isomer at -20 °C using an Oxford 
instruments Optistat DN cryostat. A rotary pump maintains a vacuum of 3x10-3 mbar for the isolation chamber of the cryostat to increase its operation 
time. The temperature controller was set to 253.2 K and maintained the temperature by successive heating pulses. A membrane pump is utilized for 
secondary control of temperature by regulating the exiting N2 gas stream and hence the coolant flow (LN2) respectively. Alternating irradiation inside 
the cryostat is realized by using two glass fiber-coupled LEDs, which can be exchanged at one end of the fiber without disturbing the sensitive setup 
(10 s 450 nm at 193 mW and 60 s 520 nm at 92 mW irradiations were used for each cycle). A home-made mounting bracket was used to ensure 
reproducible cryostat and sample holder alignments for each mechanical change in the setup (i.e. sample exchange for baseline measurements) as 
circularly polarized light gradually changes ellipticity if its beam is not passed through the cuvette windows perpendicularly. 423 
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