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A B S T R A C T

We, humans, created clocks to measure time and invented
maps to navigate to locations. However, these tools only assist
our natural capabilities for processing temporal and spatial
information as we guide our lives through time and space –
capabilities, that we share with other species. However, our
bodies are not equipped with a sensory organ for the passage
of time. Time is ultimately not a material object of the world
for which we have a unique receptor system as we have ears
for sound or eyes for light, with respective processing stages
in the brain. The perception of duration – the interval between
two successive time points of events – is essential for survival.
Animals must integrate durations to reach sources of food or
find mating partners or adapt fundamental cognitive processes
such as decision-making and planning of action.

The perception of time is not associated with specific sensory
pathways but uses a highly distributed system in the brain.
The medial prefrontal cortex appears to be one prominent
member for time perception and duration processing. Cells
in the frontal cortex exhibit climbing neural activation as a
potential neural mechanism for the representation of duration.
Climbing activity has been widely associated with mnemonic
functions in temporal information processing.

To get a better understanding of how duration estimation
as a temporal integration process in the supra-second range
is represented in the rodent brain, I performed in-vivo
extracellular recordings in the medial prefrontal cortex of
behaving Mongolian gerbils (Meriones unguiculatus). Specifically,
I sought to find out if characteristic effects of magnitude
estimation, like range effect, regression effect, and scalar
variability, are captured by the encoding system. I designed and
established a time estimation task, which required subjects to
judge duration in a retrospective and prospective manner: First,
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ABSTRACT

subjects had to measure the experience of an unexpected time
stimulus in hindsight and second reproduce this duration of
experience in time passing. Experiments were performed in a
virtual reality behavioral setup in which subjects traveled along
a virtual linear corridor. Locomotion was tracked with an optical
sensor-equipped treadmill.

I showed that the behavioral paradigm I used is effective in
reproducing known behavioral effects, such as range effect,
regression effect, and scalar variability in experiments with
humans. I succeeded in using the timing task paradigm
with gerbils and gained comparable results to humans. My
experiments demonstrate that gerbils can learn and perform
complex time estimation experiments that are more intense
in cognitive processing than time discrimination tasks or
experiments based on peak procedure paradigms.

With recordings in gerbil medial prefrontal cortex, I showed
that prefrontal neurons respond with various patterns of neural
activity to the passage of time. However, relevant patterns
were mostly observed for prospective time estimation while
reproducing a known time stimulus until a future point in
time than for retrospective time estimation, where duration
had to be judged for past events. The majority of prefrontal
neurons responded by ramping neuronal activity. In doing
so, the size of the time stimulus was encoded in gradually
adapted total discharge rate, or by gradually adapted ramping
speed in a generalized activity pattern until reaching a unified
threshold. The adaptation of ramping speed was put into effect
by temporally scaling the response pattern, notably towards
the end of time reproduction. The applied scaling followed the
prediction of stimulus sizes, yet with minor oversizing. Hence,
a key discovery was that no matter the neurons’ response,
the rate at which they adjusted their activity depended on
the time interval required. I also investigated whether cells
encoded the accuracy and precision of the duration estimate
after the end of a trial, where animals were informed about their
performance via visual feedback and appetitive reinforcement.
On a populational level, the adaptation of firing rates to the level
of accuracy demonstrated that regression effects, resulting from
strategies to cope with uncertainty about sensory information,
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ABSTRACT

are represented by neuronal activity. Precision of duration
estimates was represented by the magnitude of firing as well,
although to an internal reference instead of an absolute external
value. Using higher firing rates to provide higher information
content for less regression and low variance corroborates the
fact that the objective of timed behavior is maximal accuracy
and minimal variance.

Therefore, my results demonstrate that the medial prefrontal
cortex in rodents profoundly provides timer functions at an
internal clock stage. However, the prefrontal cortex does not
exclusively code for time but also fulfills mnemonic functions
by integrating the outcome and interaction of the decision
with the environment. This integration might serve to compare
the present outcome with previously stored values in memory.
Activity during delay phase supports the idea that the prefrontal
cortex concurrently acts as a memory stage integrating prior
knowledge and updating posterior knowledge about the
stimulus duration in accordance with Bayesian inference.

xxiii





1
I N T R O D U C T I O N

Our daily lives provide us with a vast number of sensory
cues. These sensory cues can be integrated and processed and
thereby will give information on how to adapt our behavior
and actions to the environment of continuously changing
situations. In the past decades, researchers have put much
effort into deciphering and identifying the brain’s sensory
systems, which enable us to navigate through life. While it
is to date well known how we perceive and process auditory
(Hudspeth, 1997), visual (Kuffler, 1953; Baylor, 1987) or tactile
(Johnson and Hsiao, 1992) stimuli, we still try to identify
and locate the respective sensory system - analogously to the
sensory systems of sight, smell, sound or touch - devoted to
the sense of time and space. Many percepts and our actions
in response to these percepts are acutely dependent on the
precise representation of time and space dimensions. The terms
"time" and "temporal processing" encompass a broad range of
phenomena, including simultaneity, temporal order, and the
perception of duration. Nevertheless, no specific receptor for
temporal and spatial stimuli per se has been identified and
localized, although their integration and processing in the brain
has already been intensively investigated. Spatial information,
for example, is well represented in the subregions 1 and 3 of
the cornus ammonis (CA) of the hippocampus. The neurons in
this formation of the brain, so-called place cells (O’Keefe and
Dostrovsky, 1971) encode position in space or distance from one
location (Etienne and Jeffery, 2004). This internal representation
of space is nevertheless influenced by multisensory inputs,
such as proprioceptive (Terrazas et al., 2005; Haas et al., 2019),
visual (Frenz and Lappe, 2005) or vestibular (Sharp et al., 1995)
cues and hence might strongly depend on the inclusion of
multiple senses. However, the hippocampus is not only known
for encoding spatial but rather spatiotemporal information
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INTRODUCTION

(Pastalkova et al., 2008; Macdonald et al., 2011; Kraus et al.,
2013; Howard and Eichenbaum, 2015; Salz et al., 2016). Apart
from the hippocampus, prefrontal (Kim et al., 2013; Xu et al.,
2014), parietal (Leon and Shadlen, 2003; Janssen and Shadlen,
2005) and motor (Lebedev et al., 2008) cortices, the cerebellum
(Mauk and Buonomano, 2004), and the striatum (Matell et
al., 2003; Jin et al., 2009; Adler et al., 2012; Mello et al., 2015)
have also been shown to encode temporal information during
testing of different timing tasks. The integration and processing
of temporal information are not as clear-cut defined as it is
for spatial information. Therefore the brain areas involved in
timing are variously reported, and also their possible neuronal
responsiveness.

1.1 time in the brain

The passage of time is an objective measure. A minute is
60 seconds, an hour is 60 minutes, and so on. However, the
brain processes time in the realm of memories and experiences,
so it is not always as clear-cut as minutes and seconds.
Numerous studies show evidence for specific networks of cells
in dedicated brain areas that express our sense of time and
fold it into memories and experiences. Whereas the number of
time estimation studies has increased in recent years (Wiener
et al., 2010), the underlying mechanisms remain unclear. Time
information has to be used flexibly, adjusting our behavior
to changing temporal adjustments. Thus, humans and other
animals continuously have to judge intervals between our
actions and their effects. Organisms have developed multiple
systems to deal with time. Circadian timing, interval timing,
and millisecond timing are active over more than ten orders of
magnitude and deal with various degrees of precision.

2
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1.1.1 Time scales

Circadian timing. Circadian rhythms are most recognizable
in nature. They operate in the range of the 24-h dark-light cycle,
control our sleep-wake cycle, wakefulness, physical activity,
body temperature, and the secretion of hormones (Reppert and
Weaver, 2001, 2002). The rhythm strongly relies on light input
and other cues that guide a molecular network of regulatory
feedback loops controlling gene transcription and translation.
One of the significant neural structures controlling this rhythm
- the "clock" - is located in the nucleus suprachiasmaticus (SCN)
of the hypothalamus (Darlington et al., 1998). The SCN receives
direct input from specialized retinal ganglion cells, which
contain melanopsin as a photopigment. Hence, light resets the
internal clock to start a new cycle. Single neurons in the SCN
are responsible for the ticking. Each tick is approximately 24

hours long (Aton and Herzog, 2005). It has been suggested that
the use of a circadian rhythm is the requirement for successful
time-space learning. This ability allows animals to represent
event-stimulus properties in memory together with the place
and the time of the event and thus to form an episode (Gallistel,
1990; Petruso et al., 2007).

Millisecond timing. The shortest interval to estimate is an
interval of only a few milliseconds. Millisecond timing is
thought to be associated with the motor system (Perbal-Hatif,
2012) and thereby is crucial for motor control, speech generation,
and cognition (Mauk and Buonomano, 2004), playing music and
fine-tuned movements (Ivry and Spencer, 2004). Lesion studies
revealed an inability of patients to perform tasks requiring
precise motor timing like repetitive pecking. Furthermore,
patients show impairments in tasks requiring perceptual,
non-motor timing, such as discriminating the duration of two
different intervals (Ivry et al., 1988). Thus, it is suggested that
millisecond timing is controlled by the cerebellum (Church,
1984; Gibbon et al., 1984), more precisely, by cerebellar
long-term-potentiation and long-term-depression (Ivry, 1996).

3
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Interval timing. Time estimation in the seconds-to-minutes
range is called "interval timing". It is a continuous event, a
cognitively controlled system (Lewis and Miall, 2006; Ivry and
Spencer, 2004), which requires attention and is associated with
the basal ganglia and involving related cortical structures, such
as prefrontal and parietal cortices (Duncan, 2001; Kumar et al.,
2013). It is fundamental for survival and goal-reaching. As my
interest is accurate time estimation for actions on a timescale
of daily activities, I focused on the biological substrates and
cognitive systems of time estimation in the range of seconds.

Time estimation experiments. The literature offers countless
methods for investigating the nature of time perception and
time estimation. The classic interval timing paradigm is the
fixed-interval (FI) procedure in which the subject’s first response
is rewarded only after a specified amount of time has elapsed.
A widely used discrete-trial variant of FI procedure is the
peak-interval (PI) procedure (Catania, 1970; Roberts, 1981).
Using a modified FI procedure, Mello et al. (2015) could show,
that response times of striatal neurons rescaled with the interval
being timed. Furthermore, duration categorization was reported
in striatum (Gouvêa et al., 2015), and it was found that parietal
neurons represent an estimate of elapsed time on a trial-by-trial
basis and that time intervals are measured prospectively to the
desired motor plan to reproduce a specific interval (Jazayeri
and Shadlen, 2015). Various forms of temporal information
processing have also been observed in the prefrontal cortex
(Niki and Watanabe, 1979; Brody et al., 2003; Sakurai et al.,
2004; Tsujimoto and Sawaguchi, 2005b; Genovesio et al., 2006;
Oshio et al., 2006; Lebedev et al., 2008), along with the motor
and premotor cortex (Lucchetti and Bon, 2001; Renoult et al.,
2006; Mita et al., 2009) including scaling of firing patterns
(Xu et al., 2014) and diverse neuronal activity temporally
correlated with phases during a duration discrimination task
(Kim et al., 2013). Time interval processing is essential for
sensorimotor and cognitive functions (Mauk and Buonomano,
2004; Buhusi and Meck, 2005), and often comes along with a
high degree of context-dependency in prefrontal time processing
(Tsujimoto and Sawaguchi, 2005a; Genovesio et al., 2016). To
investigate how internal timing mechanisms adapt to statistics
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of temporal stimuli, Jazayeri and Shadlen (2010) asked human
subjects to reproduce time intervals drawn from different
underlying distributions. They found that humans can exploit
the uncertainty associated with measurements of elapsed time to
optimize their timed responses to the statistics of the intervals
that they encounter. Several recent reviews and meta-analyses
of neuroimaging studies have shown that many parts of the
brain contribute to time estimation. Macar et al. (2002) defined
the dorsolateral prefrontal cortex (dlPFC), anterior cingulate
cortex (ACC), right inferior parietal lobe (IPL), supplementary
motor area (SMA), cerebellum and basal ganglia (BG) as the
core time estimation network. Lewis and Miall (2003b) reviewed
many neuroimaging studies of timing and concluded that supra
second timing tasks most commonly activated the bilateral
prefrontal cortex, bilateral parietal cortex, and cerebellum. In
their studies, the right dlPFC was the most frequently activated
area. In contrast, a relatively recent meta-analysis reported that
the SMA and right inferior frontal gyrus were part of the core
network mediating time estimation in the brain. In contrast, the
dlPFC was less important for time estimation (Wiener et al.,
2010). Thus, there have been inconsistencies regarding the neural
correlates of time estimation in previous studies, probably
because different brain structures are activated depending on
the paradigm, temporal task and duration range used (Wiener
et al., 2010; Perbal-Hatif, 2012). However, neuroimaging studies
revealing areas of activity while subjects estimate duration or
time their movements, suggest that a core temporal-processing
mechanism is located in the right prefrontal cortex for both sub-
and supra-second intervals (Rubia et al., 1998; Brunia et al., 2000;
Lewis and Miall, 2003a).
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1.1.2 Prospective vs. retrospective time estimation

Time estimation offers two different but fundamental
distinguishable perspectives: prospective and retrospective
time estimation (James et al., 1890; Zakay and Block, 2004):

Prospective time estimation. In this cognitive model, an
observer judges the duration of an interval that is being
presently experienced. Prospective time estimates are those that
people expect to make and are used in situations where it is
important to keep track of time in passing, such as for instance
the routine-life event of cooking pasta. The chef has to keep track
of time after pasta has been put to boiling water and determine
that time point in future, when cooking time has reached
to drain the noodles and have them al dente. In literature,
experimental tasks on prospective time estimation involve that
subjects are informed that they would be asked to judge the
duration of the task interval after its completion and that they
should monitor the time going by (Brown, 1985). Prospective
time estimation assumes an internal clock model (see subsection
1.3.2) with a pacemaker producing a sequence of time units
that are fed into an accumulator (Church, 1984; Treisman et
al., 1990). As a variant of the pacemaker-accumulator model,
time units can only be registered when attention is directed
to time. Thus, prospective timing is always a dual task since
an observer has to divide attention between temporal and
non-temporal processes (Taatgen et al., 2007; Macar et al., 2013).
In addition to the pacemaker, several cognitive processes such
as working memory, long-term memory, attention and decisions
are involved in prospective time perception. Pure prospective
duration judgments are only conceivable over a limited and
shorter time range where an observer attends to time for a
period of seconds to minutes (Pouthas and Perbal, 2004).

Retrospective time estimation. In retrospective time
estimation, by contrast, an observer estimates a timespan
that has already been passed and to which he is only now
paying attention. For instance, to answer the question: “How
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long was your drive?” one must make a retrospective time
estimate – that is, an unexpected time estimate of a past interval.
Usually, in experiments on retrospective time estimates, subjects
are given no information about the timing, in contrast to a
prospective paradigm (Brown, 1985). In retrospective time
estimation, the duration of a time interval that has already
elapsed is to be judged. Then, an observer has to estimate
a given time in retrospect from the amount of processed
and stored memory contents; that is, the duration must be
reconstructed from memory (Ornstein, 1997; Flaherty et al.,
2005; Noulhiane et al., 2007). The more changing experiences
we have during a specific timespan — which are stored in
memory and later retrieved — the longer the duration is
subjectively experienced (Bailey and Areni, 2006). In retrospect,
routine activity, when compared with novel activity, leads to
the perception of shorter time intervals (Avni-Babad and Ritov,
2003). Thus, the subjective impression of a long time interval
depends on the actions of the subject with diverse experiences
and recruits the activation of areas involved in episodic memory
(Noulhiane et al., 2007). Retrospective duration judgments are
based on temporal intervals spanning short durations where
short-term memory is required, e.g., a few seconds to ranges
incorporating long-term memory, which can, in principle, be a
whole lifetime (Wittmann and Lehnhoff, 2005).

There is a comprehensive report about the relative duration
of time intervals judged prospectively versus retrospectively:
Intervals judged prospectively are most often reported to be
perceived as longer than intervals judged retrospectively (Block
and Zakay, 1997; Tobin et al., 2010). Moreover, retrospective
judgments are reported to be much more variable than
prospective ones (Block and Zakay, 1997).
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1.2 the mammalian prefrontal cortex

In the mammalian brain, the prefrontal cortex (PFC) is the
anterior part of the cerebral cortex, which covers the front part of
the frontal lobe. The PFC is more or less pronounced amongst all
mammals. However, it has undergone a process of extraordinary
enlargement in all mammalian species, most in primates
and especially in humans (Fuster, 2008). By representing
approximately one-third of the entire neocortex (Figure 1.1a), it
plays an essential role as a close link to the limbic system as
well as being considered the highest association center of the
mammalian brain (Fuster, 2001, 2002, 2008). This brain region
has been assigned to play a role in planning complex cognitive
behavior, decision making, and inhibition (Fuster, 2011; Coutlee
and Huettel, 2012). Opinions about functional differentiation of
the PFC are diverse, whether there are operational subregions
or if PFC shows single-operation performance (Goldman-Rakic,
2011). The PFC has been hypothesized to exert top-down
modulatory influences on subcortical and posterior cortical
areas (O’Reilly et al., 2002).

The cortex contains excitatory and inhibitory neurons.
Pyramidal and fusiform neurons are the cortex’s principal cells,
which are glutamatergic – excitatory at their synaptic terminals.
Excitation occurs through the release of glutamate, opening
↵ - amino - 3-hydroxy - 5-methyl - 4 - isoxazolepropionic
acid (Aminomethylphosphonic Acid) (AMPA), kainate, and
N - Methyl - D-aspartate (NMDA) types of receptors,
resulting in neuronal firing. Most types of interneurons are
gabaergic-inhibitory, except for stellate cells in layer IV, which
are excitatory (see Figure 1.2). �-aminobutyric acid (GABA),
the inhibitory neurotransmitter, opens GABA receptors, causing
hyperpolarisation and thereby increasing the threshold for
neuronal firing (Petersen, 2014). Generally, in the neocortex,
the ratio of inhibitory and excitatory neurons varies between
cortical areas and layers. Layer-specific modulations caused by
a layer-specific ratio between the opposing conductances were
observed in different brain areas, such as the somatosensory,
visual, or auditory cortex (Adesnik and Scanziani, 2010; Isaacson
and Scanziani, 2011; Dehghani et al., 2016).
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Figure 1.1: The prefrontal cortex in mammalian species. (a) Location
and dimensions of prefrontal cortex (magenta) in human,
monkey (chimp) and rodent species, after Fuster (2002).
(b) Coronal slice of a rat brain at bregma +2.70 mm. The
prefrontal cortex begins below the motor cortex M2. Its
subdivisions are aligned medially on the dorsoventral axis:
The cingulate cortex Cg1 (magenta) is followed by the
prelimbic cortex (PrL) (lavender), which is on the above
infralimbic cortex (IL) (violet), after Radtke-Schuller et al.
(2016).

1.2.1 Neuroanatomical organization of the prefrontal cortex

The mammalian cortex can be subdivided by its
neuroanatomical organization into neocortex and allocortex.
The term isocortex or neocortex, which shows lamination
in six layers, describes a region of the cerebral cortex. The
human neocortex shows an extensive folding pattern. In
contrast, the rodent brain has a smooth appearance without
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sulci and gyri (Sun and Hevner, 2014), which is in line with
the differences between rodents and humans in their higher
cognitive functioning. The allocortex, however, is assigned
to cerebral regions with heterogeneous laminar structures
(Palomero-Gallagher and Zilles, 2015). The transitional zone
between these two cortical regions shows a gradual change in
the architectonical lamination pattern. Starting with a typically
isocortical structure, it turns into the characteristic allocortical
structural organization. The prefrontal cortex is represented by
the rostral part of this transition area around the frontal pole of
the hemisphere (Uylings and van Eden, 1990). The anatomical
definition of the PFC in rats is not as clear as in monkeys
(Preuss, 1995; Uylings et al., 2003). In rodents, in both of the
two prefrontal subdivisions, a clear internal granular layer IV is
absent, unlike its equivalents in higher primates and humans,
which have a distinctly developed internal granular cell layer IV.
This finding has been used to discuss the commonly assumed
homology between the rat’s medial prefrontal cortex and
the monkey’s lateral prefrontal cortex (Preuss, 1995). A more
sensible criterion for the definition of the prefrontal cortex
might be a hodological approach, considering the connective
fibers’ distribution of the cortical projections. A definition
based on the reciprocal projections existing between the PFC
and the thalamic nucleus medialis dorsalis (MD) represents
the PFC extending medially and ventrally in the anterior
part of the cerebral cortex. Thus, the PFC can be subdivided
into a medial prefrontal cortex (mPFC), a lateral prefrontal
cortex (lPFC) and an orbitofrontal cortex (OFC) (Fuster, 2001,
2002) which serves as a transitional area between the lPFC and
mPFC, represented by the dorsal and ventral agranular insular
cortex. The OFC includes areas such as the medial, ventral,
ventrolateral, and lateral orbitofrontal cortices (MO, VO, VLO,
and VL, respectively).
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1.2.2 The medial prefrontal cortex

The mPFC is made up of cytoarchitectonical different portions:
the frontal area 2 (FR2), the cingulate cortex (Cg), prelimbic
cortex (PrL), which are the most rostral components of the
ACC and the adjacent infralimbic cortex (IL) (Vogt, 2015). The
cingular cortex consists of the Cg 1-3 subareas. The subdivisions
Cg1, Cg2 and Cg3 are also known as dorsal anterior cingulate
cortex (dACC), ventral anterior cingulate cortex (vACC)
and prelimbic area (Ongur and Price, 2000; Heidbreder and
Groenewegen, 2003; Steketee, 2003; Uylings et al., 2003). Based
on various anatomical criteria, the mPFC is divided into a
dorsal (dmPFC) and a ventral (vmPFC) component. The dmPFC
component includes the FR2 and the ACC, while the vmPFC
component is represented by the PrL and IL (Figure 1.1b).
Despite the heterogeneity in the classification, the medial PFC
of the rat is equivalent to the dlPFC of humans (Uylings and
van Eden, 1990; Uylings et al., 2003). Although the IL was
shown to have a primitive lamination pattern compared to
other medial prefrontal areas and additionally has no reciprocal
association with the MD, it is considered as a portion of the PFC
(Tzschentke, 2001). This finding is supported by the topography
of the corticocortical afferents, which also applies to the frontal
area of the PFC (Heidbreder and Groenewegen, 2003; Uylings
et al., 2003).

1.2.3 Neuropsychological functions of the prefrontal cortex

The prefrontal cortex, with its rich cortical and subcortical
connections, is often classified as a multimodal association
cortex that integrates extremely processed information from
various sensory modalities in a precise fashion. It mediates
prominent actions, i.e., executive functions, which can be
defined as the ability to organize a sequence of actions towards
a goal. The strong connective properties of this brain region
suggest that the PFC is involved in integrating or combining
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different types of information according to the task goal.
As a highly developed information-processing stage, the PFC
plays a crucial role in elaborating and controlling voluntary
and goal-directed behaviors, expanding behavior far beyond
the sole repertoire of automatic and reflexive actions. These
executive functions, which can be seen as the principal, the
most general function of the PFC, encompass physiologic
constructs of memory, i.e., short-term memory tasks (Chao
and Knight, 1998) or working memory (Fuster et al., 2000),
decision making as well as inhibitory control of interference
and planning complex cognitive behavior such as language, i.e.,
regulating spontaneous speech, narrative expressions or verbal
fluency. Furthermore, the PFC is involved in initiating and
carrying out sustained attention (Luria, 1962), motor attention,
i.e., attention directed to events in the motor or executive sector
(Stuss, 1992), filtering or gating mechanism for information
processing (Shimamura et al., 1990), perception and intricate
action, stimulus detection and sequencing tasks (Lepage and
Richer, 1996), set-shifting, flexibility, delayed responding, and
active problem-solving (Romine and Reynolds, 2004).

The retrospective and prospective aspects of executive function
complement each other to serve the more general purpose of
temporal integration, which finds use in working memory and
planning. Logical reasoning considered under the aspects of
intelligence as a complex construct is mediated by the PFC
as well. Prominent among these are memory, abstraction, and
the ability to formulate plans of goal-directed behavior as well
as strategies to pursue them (Drewe, 1974). The PFC plays
a significant role in the encoding and retrieval of memory.
Neuroimaging studies found involvement of the PFC with
memory encoding and retrieval of episodic memory (Fletcher
et al., 1998a,b; Nolde et al., 1998). Lesion studies, in contrast,
reported of the PFC playing an important role in recent memory
(Luria, 1962), source memory, i.e., memory involving contextual
factors associated with learning, and sequential memory, i.e.,
encoding and representation of temporal information (Stuss and
Knight, 2013). Working memory is the ability to retain an item
of information for the prospective execution of action dependent
on that information. It is an essential cognitive function for
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the mediation of cross-temporal contingencies in the temporal
integration of all the above-mentioned functions.

The PFC is connected with the sensory systems involved in
perception, enabling access to information about the current
environment. It receives information about past events and
knowledge though connections to long-term memory circuits.
Consequently, the PFC serves as a processing stage to integrate
new informational input with already existing information
content. Linked to that, the PFC is also involved in information
processing concerning the relation of the environment and one’s
self e.g., spatial or temporal relationships or to perform tasks
that require the guidance of one’s actions by visual information,
spatial, or otherwise (McFie and Thompson, 1972). Executive
functions are also closely linked to emotional regulation. As
a part of the limbic system, the PFC receives information on
individual needs, emotions, and motivations (Schoenbaum et al.,
2009; Burgess and Fellows, 2013) to guide decisions.

The PFC interacts with motor systems that program, perform,
and monitor the plan of actions (Catani and de Schotten, 2012;
Yeterian et al., 2012; Cole et al., 2013). Thus, the PFC can be
considered a convergence hub that enables the integration of
multimodal information from different sources to create mental
representational formations of both the external and inner
worlds (Ramnani and Owen, 2004; Reynolds et al., 2006; Nee
et al., 2014) to guide more sophisticated patterns of behavior.
The diverse functions of the PFC can individually be mapped
onto separate subareas of the frontal region. Specifically, the
mPFC appears to be involved in coordination, attention to
demanding cognitive tasks, modulation of body states, spatial
memory, self-initiated movement, or and conflict resolution. The
ACC is assigned to be involved in the perception of pain and
possibly in mediating the emotional response behind it. Reward
and goal-related activity correspond to the unique patterns of
connections that link the rostral cingulate motor cortex with
the prefrontal and limbic cortices (Ramachandran, 2002). The
ventromedial region plays a role in decision-making (Spinella
et al., 2004) and the retrieval of information from long-term
memory and metacognitive processes (Schnyer et al., 2005).
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Figure 1.2: Main neuronal circuits for the mesolimbic system of
the neurotransmitters. Sagittal section through a rat
brain showing key nuclei in the limbic system. Main
neuronal circuits for mesolimbic dopamine system,
showing dopamine neurons ascending from ventral
tegmentum (VTA) (red), glutaminergic pathways (blue)
linking prefrontal cortex, hippocampus, and basal ganglia
(NAcc), and GABAergic inhibitory neurons (green), after
Kelley and Berridge (2002).

1.2.4 Prefrontal interconnections

The prefrontal cortex is highly interconnected with much of
the brain. It receives influencing afferents from numerous
cortical and subcortical brain structures. The medial-dorsal
subdivisions of the PFC can not only be structurally assigned
by the cytoarchitectonically organization but also according
to the inter-regional connectivity. Practically all the prefrontal
connections are reciprocal: structures sending fibers to the
prefrontal cortex are also the recipients of fibers from it.
Concerning the thalamocortical connectivity, the dorsal mPFC
is reciprocally connected to the lateral part of the MD, whereas
the ventral mPFC is reciprocally connected to the medial part
of the MD (Cummings, 1993). Concerning the cortico-cortical
connectivity, the dorsal mPFC is reciprocally connected to
the occipital, parietal and retrosplenial cortices, whereas the
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ventral mPFC is reciprocally connected to the rhinal cortex and
amygdala (Ongur and Price, 2000; Steketee, 2003; Uylings et al.,
2003).
The ventral mPFC can also be characterized as a medial
prefrontal area that receives a heavy innervation from the CA1

field of the hippocampus (Jay and Witter, 1991; Cenquizca
and Swanson, 2007; Hoover and Vertes, 2007) (see Figure 1.2).
Additionally, the PFC also receives input from lower levels of
the brainstem (Alvarez and Emory, 2006). These converging
efferents from the diencephalon, mesencephalon, and limbic
system play a prominent role in the involved functions of the
prefrontal cortex (see subsection 1.2.3).

All stages of the frontal motor hierarchy (prefrontal, premotor,
and primary motor) are connected with posterior neocortical
areas of sensory and mnemonic functions (Cummings,
1993). They are also connected with the BG by reentrant
connective loops that course through the lateral thalamus
and the cerebellum. The three stages of that frontal hierarchy
constitute the upper stages of the perception-action cycle.
These anatomical observations suggest that the dorsal mPFC
is the most likely candidate for the rodent brain region
comparable to the ventral dlPFC in the monkey brain, whereas
the ventral mPFC in rodents may be comparable to the mPFC
in monkeys. Anatomical studies indicate that the ventral dlPFC
in monkeys and the dorsal mPFC in rodents have much in
common, such as that they are both the major targets of
parieto-frontal projections. Empirically, both the monkey ventral
dlPFC (Petrides and Pandya, 1984, 1999, 2006; Cavada and
Goldman-Rakic, 1989) and rodent dorsal mPFC (Ongur and
Price, 2000; Uylings et al., 2003) are reciprocally connected to the
posterior parietal cortex (PPC). They also form thalamo-cortical
and cortico-striato-thalamo-cortical circuits, as the other
frontal regions do (Alexander et al., 1986). The closed-loop
reverberating circuit may be included in those inter-regional
projections.
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1.3 mechanistic models of time processing

A large number of competing models exist for how the brain
creates a representation of time (Meck, 2005; Grondin, 2010).
Prominent theories suggest a neurobiological internal clock
(Ivry, 1996; Ivry and Spencer, 2004; Buhusi and Meck, 2005),
centrally managing the temporal processing on different
time scales, organized in different areas of the brain. Other
models propose several synchronous timekeepers distributed
throughout the brain, acting as a network codifying time
in a linear or non-linear fashion, being state-dependent, or
depending on the task to be timed.

1.3.1 Scalar expectancy theory

Of these, perhaps the best known and most prominent
theoretical accounts of animal and human timing (Church and
Gibbon, 1982; Gallistel and Gibbon, 2000; Machado and Arantes,
2006) is the one of the internal clock, which is based on scalar
expectancy theory (SET) (Gibbon, 1977; Gibbon et al., 1997).
SET is a quantitative model and deals with three principle
psychophysical properties of timing data: flexible accuracy,
multiplicative variance, and ratio comparisons. Therefore, the
model consists of three components: an internal clock, that
is a timer or pacemaker-accumulator, a memory stage, and a
decision process, e.g., a comparator. It differs from many other
timing theories in its emphasis on scalar variability, a term that
refers to the linear increase in the standard deviation of timing
errors as a task’s criterion time increases, explained in detail
in subsection 1.4.3. SET describes a theory of temporal control
that uses a scalar-timing process, which rescales estimates for
different values of the interval being timed. According to Gibbon
(1977), scalar-timing implies a constant coefficient of variation.
Expectancies of reward based on these estimates are formed,
and discrimination between response alternatives is made by
taking a ratio of their expectancies. As applied in psychophysical

16



INTRODUCTION

studies of duration discrimination, the expectancy ratio reduces
the likelihood ratio, and in conjunction with the scalar property,
results in a general form of Weber’s law:

�I

I
= K (1.1)

The Weber Fraction K captures the relationship between
physical and psychological quantities: as the stimulus intensity
�I increases, it takes greater and more significant changes in
intensity I to change the perceived magnitude by some constant
amount.

1.3.2 Pacemaker accumulator model – Oscillator model

The SET incorporates a pacemaker-switch-accumulator
mechanism. Based on some periodic neural process, a
hypothetical internal pacemaker emits isochronous pulses
gated by a switch during the current to-be-timed interval
and collected by an accumulator (Gibbon et al., 1997). When
attention is directed to time passing, the switch closes, allowing
the impulses from the pacemaker to flow into the accumulator
(Kornbrot et al., 2013). At the end of the timed duration, the
switch reopens and interrupts the flow of impulses (Effron
et al., 2006). The output from the pacemaker is assumed to
be Poisson-distributed pulses. The accumulator’s content is
further transferred and stored in the working memory, which
is compared with previous exposure to the time interval
stored in the reference memory. The comparison between these
accumulated pulses in working memory and learned temporal
representations in reference memory determines the time
estimation response. If the difference between the value from
reference memory and the current accumulator value is below
a given threshold, the decision is made that the time interval is
equal to the memory for a standard (see Fig. 1.3). Thus, time is
estimated according to the numbers of impulses accumulated
during the interval of time (Kaneko and Murakami, 2009).
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According to this model, individual differences in time
estimation may be attributable to alterations in pacemaker
speed, memory efficiency, and comparator function (Meck, 2005).
Despite the effectiveness of the SET in explaining various
behavioral and physiological results, its relevance to the neural
substrates involved in accurate time estimation is not entirely
clear (Buhusi and Meck, 2005). Many lines of evidence suggest
that separate brain mechanisms are responsible for different
stages of the SET (Buhusi and Meck, 2005). In this framework,
a memory stage is functionally separated from other processing
stages (Caselli et al., 2009), and accurate time estimation capacity
is heavily dependent on working memory efficiency.
The second class of models relies on multiple neuronal
oscillators with coincidence detectors associating particular
patterns of firing with given time intervals, effectively
time-stamping when an event occurs (Miall, 1989; Church and
Broadbent, 1990; Matell and Meck, 2000). Brown et al. (2000)
suggest an alternative type of oscillator-based timing model,
which assumes that some representation of the state of an
already-running set of oscillators is associated with each event
in memory, in essence, as one of the features of the event.

Most organisms provide psychological and behavioral evidence
for biological oscillators driving repetitive motor patterns like
flapping, walking, licking, and rhythmic functions, i.e., heartbeat
or breathing, and thus, it seems reasonable that they include
concurrently oscillators involved in interval timing (Buhusi and
Meck, 2005). Instead of counting pulses, each state of a set of
oscillators of different periodicities is recorded. The oscillators
have different frequencies, and thus, the periods can be longer
than a day, or months or years, or even as long as the animal’s
lifetime. Instead of counting pulses, this model of interval timing
records the times of a signal’s on- and offset in terms of
oscillator status indicators and computes the duration from this
information. Accordingly, Buhusi and Meck (2005) suggested
that interval timing might involve coincident detection activity
in multiple areas of the brain.
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Figure 1.3: Schematic representation of the three-stage internal clock
model. Clock stage: pulses emitted from a pacemaker
are passed via an attention-modulated switch into an
accumulator during a to-be-timed interval. Memory stage:
a subjective time estimate of the present duration is held
in working memory and passed to reference memory to be
evaluated. Decision stage: Comparing the ratio of the value
from the accumulator to the value of reinforced time in
reference time memory yields a decision about whether the
current time is acceptably close to the remembered time.

1.3.3 Neural networks

Besides the theoretical approaches incorporating an internal
clock, such as the pacemaker accumulator model or its extension
to the attentional gate model (Treisman, 1963; Gibbon et al., 1984;
Zakay and Block, 1995), there are other timing models different
from the neurophysiological mechanisms proposed for time
processing, which do not suggest any internal clock components
but share the idea of multiple timing mechanisms distributed
across the brain.
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Additionally, another dichotomy can be made to the central
versus local timing debate, issuing the neural mechanisms
which, independent of their location, ultimately perform the
temporal computations that are specialized for timing (Ivry and
Schlerf, 2008). This specialized representation of time is sought
to be achieved in terms of neural-network states (Karmarkar
and Buonomano, 2007a) or neural circuits e.g., corticostriatal,
responsible for timing (Coull et al., 2004) in dedicated brain
areas. In this theoretical approach, the psychophysical task,
sensory modality, and lengths of time intervals determine the
engagement of each single mechanism (Ivry and Richardson,
2002; Durstewitz, 2003; Matell and Meck, 2004; Buonomano and
Maass, 2009).

Single-cell activity varying with time, which might influence
psychophysical judgments (Brody et al., 2003; Leon and Shadlen,
2003; Janssen and Shadlen, 2005) has intensely been studied.
A question that to date bothered many scientists is, how
these cells might reliably encode temporal patterns if they
communicate with each other and exchange dynamics in the
scope of a neural network (Durstewitz, 2003; Matell and Meck,
2004; Mauk and Buonomano, 2004; Reutimann et al., 2004; ?).
One idea hypothesizes the existence of spectral models of timing,
constituting a modular process. The phasic interactions of a
bank of oscillators (Miall, 1989; Matell and Meck, 2004) or the
exploitation of differential activity patterns in a set of delay lines
(Fiala et al., 1996; Ivry, 1996) can define different intervals.
In dedicated models, these representations are viewed as
specializations, unique to particular neural structures, that
provide a functional chronotopy that is recruited across diverse
task domains. Previous studies have reported that several
specialized brain areas are responsible for time perception.
The basal ganglia have been assigned to play a central,
content-free and supramodal role in time perception (Coull
et al., 2011). Likewise, the cerebellum has been considered to
play a significant role in this function. Besides the subcortical
activations in the cerebellum and BG, wide-ranging cortical
network activations have been shown during timing tasks.
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Itskov et al. (2011) reported a network that generates
long-lasting, reliable sequences that may be used for
time-keeping in the hippocampus on the scale of tens of
seconds. Ferrandez et al. (2003) showed that a stimulus duration
comparison task activated the BG, SMA, ventrolateral prefrontal
cortex, inferior parietal cortex, and temporal cortex. This study
suggested that the BG and SMA are related to the time-keeping
mechanisms, while the frontoparietal network might be related
to the attention and memory processes required for time
perception.

Karmarkar and Buonomano (2007b) proposed a model without
a centralized focus on timing and instead conceptualizes a
state-dependent network (SDN). On a time scale of tens to
hundreds of milliseconds, time may be represented as specific
states of a neural network. Temporal information is encoded
in the context of the entire pattern, not as conjunctions of
the component intervals, and can be explained by a complex
nonlinear function of the stimulus interaction (Buonomano et
al., 2009). This alternate model presents cortical networks that
are inherently able to tell time as a result of time-dependent
changes in a network state. Intrinsic models give a more generic
and radically different perspective on the perception of time.
These models assume that there is no specialized brain system
for representing temporal information, asserting that time is
a general feature of neural circuits and is inherent in neural
dynamics. Consequently, these same circuits process both
spatial and temporal information in a multiplexed fashion.
This property might be limited to neural regions capable
of sustaining their activity in the absence of sensory input
(Brody et al., 2003; Reutimann et al., 2004). For example, in
delayed response tasks, the duration can be encoded in the
ramped activity of neurons that provide a working memory
representation of the stimulus or the time until the response
(Lebedev et al., 2008). The model represents interacting neuronal
populations that generate an event-based representation of time
by slowly increasing activity, experimentally, demonstrated
in striatum (Matell et al., 2003) or PPC (Leon and Shadlen,
2003). Most importantly, this event-based representation of
time is consistent with Weber’s law in interval timing, i.e.,
demonstrates the scalar property (Reutimann et al., 2004).
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1.4 psychophysics of magnitude estimation

The estimation of different sensory stimuli, such as distance
or brightness, follows specific psychophysical laws. Several
attempts tried to capture and develop mathematical
relationships between the physical dimensions of a stimulus and
its perception in history. As one of the first, Wagner (1844) and
Fechner (1860), suggested a logarithmic relationship between
the intensity of a physical stimulus I and its perceived sensation
S, described by the Weber-Fechner law

S = c · log
I
I
0

(1.2)

with I0 and c depicting the detection threshold of the respective
stimulus magnitude. Almost one century later, Stevens extended
the equation because the perception of each stimulus has a
characteristic relationship to its physical value. He captured
the growing magnitude as a power function of the stimulus
magnitude in Stevens’ psychophysical power-law (Stevens, 1957)
with c referring to another constant and the exponent n
depending on the respective modality tested.

S = c · In (1.3)

Figure 1.4: Logarithmic relationship between subjective sensation and
stimulus intensity. A linear increase in stimulus magnitude
causes a logarithmic increase in subjective sensation
intensity as proposed by the Weber-Fechner law.

Emerging from Stevens’ power-law, interpretations of
Teghtsoonian and Teghtsoonian (1978) indicated that the
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exponent in Stevens’ power-law is not a fixed entity but
could reflect the subjective sensitivity range of observers.
Poulton (1968), in contrast, interpreted that the exponent
in Stevens’ power-law does not contain any information
about the observer’s subjective sensation range, but purely
reflects variability in the experimental stimulus range.
These interpretations reflect two major influencing aspects
of magnitude estimation. In detail, these are that the estimation
process is strongly dependent on internal as well as external
factors. These factors have been intensively studied in the past
and result in psychophysical principles describing specific
biases known as range effect, regression effect and scalar
variability (Poulton, 1968; Teghtsoonian and Teghtsoonian, 1978;
Zeiler and Hoyert, 1989; Jazayeri and Shadlen, 2010; Petzschner
and Glasauer, 2011; Thurley and Schild, 2018).

a cb

Figure 1.5: Schematic overview of psychophysical effects in magnitude
estimation. a) Regression effect: estimated magnitudes tend
to be biased towards the center of the full stimulus range.
As a consequence, large magnitudes are underestimated,
and small ones are overestimated. b) Range effect: the
slope, representing the relationship between estimated
magnitude and stimulus magnitude, decreases with
increasing stimulus range. c) Scalar variability: the
standard deviation of estimated magnitude increases
linearly with corresponding mean estimated magnitude.
Adapted and reprinted from A Bayesian perspective on
magnitude estimation, Vol 19, Petzschner FH, Glasauer
S, Stephan KE, No.52, 285-293., Copyright (2015), with
permission from Elsevier.
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These biases indicate that the estimation of magnitude is not
purely a scalar measurement of a sensory stimulus but reflects
a perceptual estimate processed at different stages involved.

1.4.1 Regression effect

The central tendency of judgment (Hollingworth, 1910), or
better known as the regression effect, describes the tendency of
estimates of magnitudes such as time, distance, or weight
to be gravitationally biased towards the center of the
full range of stimulus magnitude. This bias results in a
systematic underestimation of magnitudes above the mean, an
overestimation of magnitudes below the mean, and a correct
estimation of the mean magnitude in the tested distribution
(Jazayeri and Shadlen, 2010; Petzschner and Glasauer, 2011;
Thurley and Schild, 2018). The strength of the regression seems
to be subject-specific and modality-dependent (Stevens, 1960;
Stevens and Greenbaum, 1966).

1.4.2 Range effect

The range effect can be interpreted as a correlation between
the range of stimuli tested and the reciprocal exponent of
the power function. This effect describes a decrease in the
relationship between estimated magnitude and magnitude
of the stimulus with increasing stimulus range (Petzschner
and Glasauer, 2011; Thurley and Schild, 2018). It can be
summarized as an enhanced regression effect for larger stimulus
distributions, which becomes apparent as a decreased slope
of the stimulus-response relationship for stimulus ranges that
contain larger magnitudes (King, 1986).
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1.4.3 Scalar variability

Scalar variability is the linear increase of the standard deviation
of a repeatedly reproduced stimulus. As denoted by Weber’s
law (see 1.3.1), responses of subjects become more variable
with increasing stimulus magnitude. This linear relationship
implies a constant coefficient of variation (Gibbon, 1977). It is
still not clear whether this relationship is based on the fact that
subjects become increasingly noisier in their response to larger
magnitudes (i.e., there is an actual scalar increase in variability),
or if magnitudes are represented on a logarithmic scale and
this compression of the scale for larger magnitudes causes the
increase in variability (Dehaene, 2003; Cantlon et al., 2009).
Besides these most common psychophysical effects which
appear more or less pronounced in subjects, there are
considerable variabilities which play an important role in
comparing data sets from different subjects or, which should
at least be taken into consideration when data is pooled
across subjects. On the one hand, this additional variability
consists of subject-specific variability and, on the other hand, of
experience-dependent variability.

Subject-specific variability. Individual subjects are more
or less successful and accurate when estimating a stimulus.
These differences can be due to strong individual sensitivity
to a given magnitude or be dependent on the modality to be
estimated (Thurley and Schild, 2018). The individual response
characteristics might cancel out when only population data
is reported. Therefore, it is necessary to evaluate individual
subject’s data.

Experience-dependent variability. Learning and experience
can influence the decision about responses made in magnitude
estimation. The experience can encompass the same modality
(Marks and Algom, 1998; Marks and Gescheider, 2002), i.e.,
across consecutive experimental sessions or even different
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modalities (Jones and Woskow, 1962; Ekman et al., 1968). A
correlation could also be observed for responses on subsequent
trials (Taylor and Lupker, 2007; Jones et al., 2013). Stimuli
presented after a large stimulus tended to be overestimated,
whereas responses to stimuli with a preceding small stimulus
tended to be underestimated. This correlation is referred to
as sequential effect. This effect was suggested to be the basis
of the stimulus regression effect, as trials with very high
stimulus magnitudes are more likely preceded by a smaller
stimulus magnitude in a fixed test range and vice versa. Thus,
estimates should tend to be biased towards the center of the
full stimulus range (Ward, 1979). Both experience-dependent
correlations suggest that there might be a memory component
in the behavior as previous stimuli influence the estimation
of the current stimulus. There is also evidence that the
session-to-session correlations are only influenced by short-term
experience because they are not persistent over long time
scales (Teghtsoonian and Teghtsoonian, 1971). The influence
of experience-based information on responses was intensively
discussed by Petzschner et al. (2015). They describe a Bayesian
inference rooted process in a probabilistic framework for
perception, which determines the estimation behavior based
on the incorporation of a-priori knowledge in the broadest
sense. They argue that the a-priori knowledge is combined with
sensory information to yield an estimate of the magnitude.

1.4.4 Bayesian modeling

In contrast to the most common models which try to explain
the representation of magnitudes in estimation processes,
Bayesian approaches do not solely focus on modality-specific
or effect-specific explanations (Lappe et al., 2007) but rather
provide a more general explanation that applies to various of the
behavioral characteristics and overcomes modality-dependency.
According to the Bayesian model, observed characteristic
biases during magnitude estimation result from integrating
noisy sensory information while incorporating prior experience
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(Roach et al., 2017). Hence, estimation errors are not the product
of sensory limitations of the receptor channels nor deficient
representations in the cortex. Instead, the Bayesian framework
suggests an optimization process on the resulting behavior as
a consequence of principles underlying perceptual inference
by accounting for noisy information (Acerbi et al., 2012). A
critical aspect of a Bayesian model is that it is based on a
generative model of concrete sensory observations. To recognize
a presented stimulus, a Bayesian model compares predictions
based on a generative model to the observed sensory input. This
comparison leads to belief values through Bayesian inference,
indicating how probable it is that the stimulus caused the
sensory observations (Griffiths and Tenenbaum, 2011; Vilares
and Kording, 2011; Zhang and Zhou, 2017). Whenever the prior
differs from the current physical stimulus, the combination of
prior knowledge and sensory input produces biased magnitude
judgments under optimality constraints. This bias increases with
the precision, represented by the strength of the prior belief and
decreases with the signal to noise ratio of the sensory input
(Figure 1.6a1 and Figure 1.6a2).

According to Bayes’ rule, an observer process combines the prior
knowledge P(⇡) about the environment’s statistics with noisy
sensory inputs represented by the likelihood function P(s|⇡)

P(⇡|s) / P(s|⇡) · P(⇡) (1.4)

The resulting estimate is known as the posterior P(⇡|s),
which is more accurate than either of the two information
sources individually. Assuming that both, the prior and the
likelihood are Gaussian distributed, the resulting posterior will
be Gaussian as well, with the mean of the posterior representing
the uncertainty-weighted average of the sensory input about the
physical magnitude and the prior mean µ⇡ (1.6b).

µ⇡|s = ws · ⇡s +w⇡ · µ⇡ (1.5)
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b

a2

a1

Figure 1.6: Bayesian modeling of magnitude estimation. According to
Bayes’ theorem, the posterior is a proportional product of
likelihood and prior. The strength of the bias correlates
with the relative uncertainty of likelihood and prior. The
standard deviation of the likelihood increases with the size
of the magnitude and thereby causes an increased bias
towards the prior for larger magnitudes (a1) in contrast
to smaller magnitudes (a2). b) The generative model of
the Bayesian framework, combines a-priori information,
the so-called prior with noisy sensory input representing
the likelihood, and weighs the two information sources by
their relative uncertainty. The resulting posterior estimate
is computed by inferring the external cause (physical
stimulus) on current sensory input and a-priori knowledge
(e.g., experience or context) and translates it into a resulting
response via an appropriate response model. Adapted
and reprinted from A Bayesian perspective on magnitude
estimation, Vol 19, Petzschner FH, Glasauer S, Stephan KE,
No.52, 285-293., Copyright (2015), with permission from
Elsevier.

The precision of the estimates is represented by the respective
weights ws and w⇡, which are inversely proportional to the
variance of sensory input and prior depicting the uncertainty.

ws = 1-w⇡ =

1
�2s

1
�2s

+ 1
�2⇡

(1.6)
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Interval timing, as the basis for perception and action, is
consistent with Bayesian inference in various tasks, such
as sensorimotor coincidence timing (Miyazaki et al., 2005),
temporal order judgment (Miyazaki et al., 2006; Yamamoto
et al., 2012), and time estimation (Jazayeri and Shadlen, 2010;
Ahrens and Sahani, 2011; Acerbi et al., 2012; Cicchini et al.,
2012). Exposed to either simple uniform distributions (Jazayeri
and Shadlen, 2010; Cicchini et al., 2012), or complex temporal
contexts (Acerbi et al., 2012), timing performance can be
optimized by making use of the internally represented temporal
statistics of the interval to be timed.

1.5 the prefrontal cortex and perceptual

categories

PFC neurons have a crucial ability for cognitive control. With the
ability to develop abstract representations, the prefrontal cortex
plays an essential rule in generalizing and developing concepts
and principles (Miller et al., 2002). The ability to transform raw
sensory inputs into distinct categories optimizes reproductive
behavior while minimizing fatal mistakes. Categorizing sensory
inputs might be essential for survival as the perceptual
categories of crickets show: a specific range of pure tones
is divided into ’mate’-tones, which will cause the cricket to
turn towards the sound source for potential mating versus
’bat’-tones of a predator which will make the cricket turn
away from the sound source as it could mean death. Until
a certain point (16 kHz) (Wyttenbach et al., 1996), there is
virtually no distinction between frequencies over a wide range
on either side of the boundary. However, at the boundary, the
sensory input is sharply divided into perceptual categories.
This example illustrates that even though the input varies
along a continuum, the output is a binary behavior. Further, it
shows that the physical appearance of a stimulus might vary
or gradually change. To categorize efficiently, sharp boundaries
without gradual transitions are necessary. Can we thereby
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assume that the neuronal representation does gradually adapt
to changes, and neural activity encodes certain attributes? The
acquired behavioral and neurophysiological data recorded from
prefrontal cortex might help address the question of whether
there is a fixed or adaptive boundary for perceptual categories
of over- and underestimation of time intervals, analogously to
the boundary of 16 kHz in the example of the crickets. The
analysis of data sets on time estimation where specific time
stimuli were embedded in different stimulus distributions
might give an insight if the same procedural concept is applied
when the same specific sensory information is tested in different
contexts. These hypotheses could give rise to the question
if perceptual categories can be linked to the Bayesian model
and central tendency effect, with the mean of the stimulus
distribution as the crux of the matter and how perceptual
categories can be mapped onto under- and overestimation of
time intervals.

1.6 the mongolian gerbil as model organism

The Mongolian gerbil (Meriones unguiculatus) is widely used as
a model organism in laboratory experiments. For more than
30 years now, there exist numerous studies in diverse fields of
research using gerbils as their animal model of choice, notably
in hearing research (Kraus et al., 1987). Its popularity is due
to its auditory properties which – unlike in mice and rats -
include most of the human low-frequency hearing range (Ryan,
1976) and its predominantly use in the investigation of the
circuitry underlying sound source localization in vitro and in
vivo (Pecka et al., 2008; Kandler et al., 2009; Lingner et al., 2012;
Grothe and Pecka, 2014). Besides auditory research, gerbils are
frequently used in studies investigating learning and memory
(Reichenbach et al., 2015; Jarvers et al., 2016; Caras and Sanes,
2019), navigation in space (Haas et al., 2019; Mankin et al., 2019),
in-vivo pharmatoxicology (Lachau-Durand et al., 2019), or social
and cognitive-behavioral strategies compared to other rodents
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(Varty et al., 2002; Deng et al., 2017; Wang et al., 2018). Further,
the gerbil is commonly used to approach medical-biological
issues such as aging (Cheal, 1986), epilepsy (Fujisawa et al.,
2003), parasites (Conchedda et al., 2006), and viral infections
(Watanabe et al., 2001). As it allows for modeling human disease,
it offers the possibility to study types of cancer (Liu et al., 2016)
or the mechanisms of brain ischemia (Chen et al., 2017).

The taxonomic classification of the genera is not consistent.
Following the classification of Wilson and Reeder (1993), the
subfamily of Gerbillinae belongs to the family of Muridae.
In contrast, according to the taxonomic classification after
Grzimek (1960), the animals are assigned to the family of
Cricetidae, which agrees with the classification of other authors
(Kornerup Hansen, 1990; Schmidt, 1996; Sambraus and Steiger,
1997). Most of today’s laboratory gerbil colonies used in Europe
and America descend from 20 breeding pairs of the Mongolian
gerbil, captured in the basin of the river Amur, China, in 1935

(Stuermer et al., 2003). These animals were brought to Japan,
bred, and the offspring transferred to Tumblebrook Farm,
America. Nine specimens were bred in a closed commercial
colony and have been shipped worldwide for scientific purposes
since 1954 (Stuermer et al., 2003). However, the laboratory strain
bred in captivity revealed significant morphological and
behavioral differences, such as reduced body weight and
size, increased litter size, reduced brain size (Stuermer et al.,
2003), improved reproductive fitness (Stuermer et al., 2006), or
readiness to learn and motivation (Stuermer and Wetzel, 2006)
when compared to the wild-type strain. Due to their diurnal
activity cycle (Pietrewicz et al., 1982), peak activity levels are
observed around the hours of dawn and dusk. This activity
cycle influences the basal metabolic rate of the animals and
nutritional requirements, modulated by ambient temperature
conditions (Ding et al., 2018). Unlike other diurnal rodents,
gerbils are currently available from commercial suppliers and
appropriate for research that requires a model with human-like
diurnal activity rhythms (Refinetti and Kenagy, 2018). Gerbils
proved to be suitable for behavioral and neurophysiological
experiments due to their strong exploratory behavior (Ehrat et
al., 1973), and because they showed less fear and anxiousness
when traversing an open field in comparison to other rodents
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like rats (Wang et al., 2018). In accordance with other studies, I
previously could demonstrate, that gerbils show no thigmotaxis
while exploring unfamiliar environments and have the ability
to use complex cognitive-behavioral strategies (Ingle, 1981;
Thurley et al., 2014). Additionally, as a visual alert rodent (Ingle,
1981) with extraordinary visual properties regarding color
vision and vision under twilight conditions (Jacobs and Neitz,
1989; Applebury et al., 2000), it could be shown, that gerbils
have a unique receptor configuration which even allows for
UV-vision (Jacobs and Deegan, 1994; Garbers et al., 2015). In a
recent study, I could show that the virtual reality setup I used
can address these specific visual properties and use them with a
behavioral paradigm testing for color discrimination in gerbils
(Garbers et al., 2015). With their behavioral and visual abilities,
gerbils have proven to be a suitable model organism that ideally
can be used to approach scientific issues using behavioral tasks
implemented in virtual reality. (Thurley et al., 2014; Garbers et
al., 2015; Kautzky and Thurley, 2016; Haas et al., 2019).

1.7 focus of the thesis

We heavily rely on external timekeepers and temporal
organizers like clocks to keep track of the temporal properties
of events, but we are also adept at keeping track of time on
our own given the appropriate circumstances (Nobre et al.,
2010). As in other animals, our ability to time external events
in the seconds to minutes range (interval timing) allows us to
experience the passage of physical time subjectively. It allows us
to integrate action sequences, thoughts, and behavior as well
as to detect emerging trends and anticipate future outcomes
(Bechara et al., 1996; Nussbaum et al., 2006; Kotz et al., 2009). The
present thesis employed a retrospective and prospective time
estimation task to quantify time estimation; this methodology
is widely used in human studies (Fortin and Breton, 1995). This
is reasoned by the fact that the participants’ load is minimal, and
the experimental procedure is easy. However, this methodology
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has rarely been used in animal studies where interval duration
must be estimated retrospectively and prospectively in the same
experiment.

In the first phase of the timing task, the animal is required to
measure a stimulus’ duration while the animal is sitting still
and passively participating in the present task event. As the
animal can not know how long the time interval will be, it
has to judge the duration of the presented stimulus time in
a backward fashion: ’How long was the presented stimulus?’.
Thus it estimates the unexpected time of the past interval, which
I interpret to represent retrospective time estimation. In the task
event phase following this first measurement phase, the animal
then has to reproduce the previously estimated time with a
running response actively. Here the animal knows about the
stimulus interval and has to keep track of time while running
until that time point in the future when the end of the stimulus
duration has reached. Therefore, I claim that the reproduction of
the stimulus interval complies with prospective time estimation.
This task is suitable for the aimed research objective because it
relies on the scaling of subjective time by units used in daily
life.

Questions to be solved are about generic principles about
the behavior of time estimation in accordance with present
theories, such as Bayesian optimization, the role of context,
and species-specificity of these parameters. Further, I aim to
contribute to the overall knowledge of neuronal mechanisms
underlying this time estimation behaviors. I divided my research
into two major parts:

1. I implemented a time estimation task incorporating
retrospective and prospective time perspective with
humans. After standard principles of magnitude
estimation were met by using this duration estimation task,
the behavioral paradigm was implemented for rodents
using a virtual reality setup. The obtained results were
evaluated in comparison to human results.

2. The behavioral paradigm for rodents was then extended
with electrophysiological recordings to get a better
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understanding of what the neuronal activity during
time estimation tells us about the processing of time
in the brain. By means of the data, I tried to find
evidence if the prefrontal cortex can be seen as a
dedicated brain area for interval timing, considering
reward expectation and motor planning. Activity
in measurement phase and reproduction phase was
compared to investigate if retrospective (measurement)
and prospective (reproduction) interval timing do have
a shared timer. Further, behavioral outputs were related
to neuronal activity and tested if the data represented
Bayesian principles.
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M AT E R I A L S A N D M E T H O D S

2.1 subjects

Animals. For the behavior study (see section 3.1), experiments
were performed with a total of seven female adult Mongolian
gerbils (Meriones unguiculatus) genetically originating from a
wild-type culture colonized at the local animal facility of
Ludwig-Maximilians-Universität München. Animals were kept
in small family groups with a maximum of 4 animals per cage.
The box-shaped housing had dimensions of 71x46x31 cm3 and
contained bedding of wooden chips, a sleeping house made of
solid rigid plastic, and social enrichment, such as treat sticks for
gnawing and paper towels for nesting. Animals were held under
constantly controlled laboratory conditions at room temperature
(RT) (23 °C) with 55% humidity on an artificially created
12-hour day/night cycle. Experiments were performed in the
light phase of the cycle. Unrestricted water access was ensured
at any time, whereas animals were put on a diet throughout
the time of experiments. Daily dry food (ssniff Gerbil; ssniff
Spezialdiäten GmbH; Soest, Germany) was rationed to maintain
the gerbils at about 85-95% of their free-feeding weight to allow
for conditioning by reward motivation. During the experiments’
active phases, animals were rewarded with rodent enrichment
chocolate- and banana-flavored pellets (20 mg Purified Rodent
Tablet, TestDiet, Sandown Scientific, UK). Gerbils were at a
minimum age of three months when training sessions started
at which the animals weighed between 70 and 80 g. All
experiments were approved according to national and European
guidelines on animal welfare (Regierung von Oberbayern, AZ.
55.2-1-54-2532-10-11, and AZ. 55.2-1-54-2532-70-2016).
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To track the neuronal activity while executing the behavioral
task, I trained a new subset of a total of 3 animals on
time estimation on a continuous scale. Gerbils contributing
to electrophysiological experiments (see section 3.2) were
separated and housed individually before surgery of the
chronic brain implant.

Humans. Experiments with humans were conducted with six
participants, aged between 21 and 32 years old. All participants
had a normal or corrected-to-normal vision and were naive
to the purpose of the experiments. All participants gave
written informed consent to participate in the study, which
was approved by the ethics committee of the medical faculty of
the Ludwig-Maximilians-Universität München and performed
in accordance with The Code of Ethics of the World Medical
Association (Declaration of Helsinki) for experiments involving
humans.

2.2 experimental setup

Animal experiments. A virtual reality (VR) setup customized
for rodents (Figure 2.1b) designed after Hoelscher et
al. (2005) and Harvey et al. (2009) was built up at
Ludwig-Maximilians-Universität München. The VR setup has
already been content to previous studies (Thurley et al., 2014;
Garbers et al., 2015; Kautzky and Thurley, 2016; Haas et al.,
2019) with gerbils and was used for experiments presented in
this thesis.

Human experiments. Participants were placed in front of
an LCD computer monitor (resolution, 1280 800; frame rate,
59 Hz) driven by an ATI Mobility Radeon HD 3400 graphics
card. Experiments were conducted in complete darkness
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Figure 2.1: Virtual reality setup. (a) Example training session with
infinite track projection. (b) Overview of the VR setup.

except for the illumination by the monitor. The eye height
in VR was adjusted individually to the eye height of each
participant. Humans performed virtual movement with the
help of a multidirectional joystick (Speedlink Competition Pro).
Also, pink noise was played to the subjects via headphones
(RaidSonic ICY Box IB-HPh2) to hinder counting or equivalent
strategies. The volume was adjusted to acceptable levels for each
individual.

2.2.1 Movement system of the VR

A hollow styrofoam sphere with a diameter of 50.0 cm made
up the central component of the VR setup acting as a treadmill
(Figure 2.1b and 2.2a1). The styrofoam ball sat in an aluminium
bowl with a diameter of 50.4 cm which itself had a connection
port of 8 cm width for pressured air at the bottom. An air stream
was directed to the aluminium bowl from below and allowed
the styrofoam sphere to float by generating a laminar air flow.
To inhibit the treadmill’s rotation in the azimuthal plane, two
directional wheels allowing for the ball’s movement in X- and
Y- but not Z-coordinates were installed (Figure 2.2a1). These
directional wheels were placed perpendicular to the sphere’s
surface at the equator of the aluminium bowl. The animal
was positioned on the north pole of the sphere with the help
of a multi-component animal fixation. The fixation consisted
of a custom-fitted harness, made of artificial leather which
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covered the full upper body with leaving the head and legs
freely movable. The harness was further attached to a magnetic
setup handle which enabled unrestricted body movements and
rotation around the animal’s vertical body axis. Animal’s legs
movement induced rotations of the sphere while the animal was
safely fixated in place. The treadmill’s movement was detected
by two optical infrared sensors with a minimum throughput
of 16 bit per axis to ensure sufficient sampling during high
speed running of the animal. With a timely resolution of 2

16

pixels between successive USB messages, signals were fed into a
personal computer at a rate of 1000 Hz and updated the virtual
position of the gerbil with a sampling rate of 20 Hz (�t = 0.05

seconds). This computer generated and updated a virtual visual
scene in real-time that was displayed via the optical component
of the VR setup.

2.2.2 Optical system

The virtual visual scene was displayed with a video projector
(Sanyo PLC-ET30L with custom-mounted Sanyo LNS-T11

objective) via a multi-level mirror system, consisting of a planar
(LINOS Photonics) and a rotational symmetric aspherical mirror
(Kugler GmbH, Salem, Germany) onto a 360� toroidal projection
screen surrounding the treadmill and thereby created a full 360�

image. The geometry of the VR setup was adapted according
to the optical model proposed by Chahl and Srinivasan (1997).
The appropriate distance of the toroidal projection screen
from the image center in relationship to the position of the
optical transmission system and the resulting height of the
projected image on the screen was calculated with an angular
magnification of ↵ = 11 following the law of reflection by
Snell. For real-time rendering and simulation of the visual
properties of the environment, Vizard Virtual Reality Toolkit (v5,
WorldViz, https://www.worldviz.com), acting as an interpreter
of 3D data written in virtual reality modeling language (VRML)
was used. The virtual environment, hereinafter named "maze",
was designed and generated with the open-source software
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Blender (v2.49, http://www.blender.org) from which 3D data
was exported in VRML format. For details see Thurley et al.
(2014).

Whenever the animal succeeded in terms of the behavioral
paradigm (see section 2.3), a reward was delivered via the
automatic reward system controlled by the VR software.
As Vizard triggered the reward release, a food pellet was
delivered from a pellet dispenser (20 mg pellet dispenser, model
80209-20M, http://lafayetteneuroscience.com) located next
to the projector, outside of the image field. The pellet was
guided through a vertical tubing system to stop in a customized
3D-printed collecting tray adjacent to the animal’s snout when
facing the maze’s direction.

2.3 behavioral paradigm

2.3.1 Maze design

The behavioral procedure was a modified version of a
“ready-set-go” timing task (Jazayeri and Shadlen, 2010;
Petzschner and Glasauer, 2011) in which performance depends
on accurate reproduction of time intervals. By implementing
the task in a VR, it was possible to prevent landmark-based
strategies for task-solving and additionally decouple time from
a distance during responding. Subjects had to estimate the
duration of a visual stimulus (black screen) and reproduce it
by running along a virtual hallway. The task was implemented
in a virtual environment (Thurley et al., 2014) to ensure time
estimation. The hallway was presented as an infinite linear
track of 0.5 m width. A repetitive pattern of black and white
stripes, each with a height to width ratio of 1:5, covered the
walls of 0.5 m height (Figure 2.2a1 and Figure 2.2b). The floor
was presented in a homogeneous medium light-blue color, and
the sky was black (Figure 2.1a). Object colors were chosen to
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be within the detectable color spectrum of gerbils (Garbers et
al., 2015). No distal cues were provided. By randomly changing
the corresponding “gear ratio”, ranging from 0.25 to 2.25 for
animals and ranging from 1.0 to 7.0 for humans, uniformly
distributed, movement speed and optic flow were decorrelated.

2.3.2 Time estimation task

The timing task followed a basic procedure, adapted from
Jazayeri and Shadlen (2010). The behavioral paradigm applied
for gerbils and humans alike is depicted in Figure 2.2a1. Subjects
had to estimate the duration of a visual stimulus (black screen)
and reproduce it by moving in a virtual environment (VE). Each
trial started with the subject's estimation of a randomly drawn
time stimulus presented as a black screen at rest (measurement
phase (MP)). Afterward, the reproduction phase (RP) started
with the visual scene switching automatically to the virtual
hallway. During RP, the subject had to reproduce the previously
estimated passed time stimulus with a movement response.
Gerbils were running on the treadmill, and humans moved
the joystick forward. Response initiation was self-paced by the
animal and not forced by the experimenter or a motorized
treadmill. The running must fulfill the following criteria to be
included in the analysis: (1) Continuous running of minimum
1 second and (2) minimum 0.5 seconds of rest to terminate
the trial. The trial aborted automatically if the criterion of
continuous running was not met. In addition, gerbils but not
humans were provided with feedback on their reproduction
before initiating a new trial. Following the RP, an evaluation
screen, called inter-trial-interval (ITI), appeared. The ITI's
duration was 3.0 seconds ± up to 0.5 seconds. The evaluation
screen represented an accuracy tolerance that scaled with the
tested stimulus. If the given response fell "in"-side the applied
tolerance range, the feedback was presented as a homogeneous
green screen, whereas responses "out"-side the tolerance range
were presented as a white screen (Figure 2.2a1). Supplementary,
the animal was rewarded for “in”-trials with one automatically
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delivered food pellet (see section 2.1 and subsection 2.2.2 last
paragraph). At the beginning of training, the relative tolerance
ranged from -60% to +60% of the tested time stimulus. Over
the time course of the session, this accuracy tolerance decreased
by three percentage points (-3%) for responses being "in" the
previous tolerance range and increased by three percentage
points (+3%) for responses "out"-side the tolerance range
(Figure 2.2a2). The adaptation modality of the tolerance range
was visible for the animal and was represented during ITI by the
response's feedback screen. During training, animals constantly
could minimize the tolerance to about 15 percentage points
(±15%). This performance quality was further stabilized during
test sessions (see Figure 6.3). After ITI, a new trial started.

Animal experiments. Gerbils were tested on time intervals
between 3.0 seconds and 13.5 seconds, randomly chosen from
three different overlapping distributions (Figure 2.2c, filled
circles). Time stimuli included in the tested distributions were:
3.0 s, 3.75 s, 4.5 s, 5.25 s, 6.0 s, 6.75 s, 7.5 s (test set A), 6.0 s, 6.75

s, 7.5 s, 8.25 s, 9.0 s, 9.75 s, 10.5 s (test set B), and 9.0 s, 9.75 s,
10.5 s, 11.25 s, 12.0 s, 12.75 s, 13.5 s (test set C). Animals were
tested for one distribution per day. Stimulus distributions were
tested for 3-5 days en bloc but presented across distributions in
a mixed fashion.

Human experiments. Analogously to gerbils, humans were
tested on time intervals randomly chosen from three different
overlapping distributions. The stimulus distributions covered
durations between 3.0 seconds and 16.0 seconds (Figure 2.2c,
filled squares). Time stimuli included in the tested distributions
were: 3.0 s, 4.0, s 5.0 s, 6.0 s, 7.0 s, 8.0 s, 9.0 s, 10.0 s (test set A),
6.0 s, 7.0 s, 8.0 s, 9.0 s, 10.0 s, 11.0 s, 12.0 s, 13.0 s (test set B), and
9.0 s, 10.0 s, 11.0 s, 12.0 s, 13.0 s, 14.0 s, 15.0 s, 16.0 s (test set
C).
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Figure 2.2: The interval duration estimation task. Experimental
apparatus and task design for (a1) gerbils and (b) humans.
A gerbil was placed on top of a spherical treadmill that was
surrounded by a toroidal projection screen. Participants
were placed in front of an LCD computer monitor and
performed virtual movement with a multi-directional
joystick. At the beginning of a trial, a timed stimulus
was presented (black screen). The subjects had to estimate
its duration and, upon presentation of a virtual linear
corridor, reproduce the duration by running or pushing
the joystick. If the response fell into a feedback interval
close to the stimulus ("in") a food reward was delivered
for the animals. The feedback range increased/reduced
after each "out"/"in" response (a2). Additional feedback
was given visually by setting the entire screen to either
green ("in"), or white ("out") for 3-4 seconds. Finally,
another trial was initiated. (c) Sample intervals were drawn
from a discrete uniform distribution with seven values
for gerbils (circles) and eight values for humans (squares).
The sample intervals were tested in 3 overlapping separate
distributions, set A (dark blue) ranging from 3.0 s to 7.5
s for gerbils, 3.0 s to 10.0 s for humans; set B (sea green)
ranging from 6.0 s to 10.5 s for gerbils and 6.0 s to 13.0 s for
humans and set C (light yellow) ranging from 9.0 s to 13.5
s for gerbils and 9.0 s to 16.0 s for humans respectively.
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2.3.3 Experimental schedule and training

Behavioral training and experimental sessions for gerbils.
During training, one session lasted until 20 - 25 minutes had
passed. During test sessions, animals had to perform at least
45-60 responses to finish the session. Before the test sessions,
animals needed to familiarize with the experimenter, the VR
setup, and learn the behavioral task. This habituation comprised
several steps that were based on each other. First, gerbils
were familiarized with the laboratory environment where the
VR setup is located and get used to the experimenter by
playful handling, i.e., by being stroked and free running over
the experimenter’s hands. As animals did no longer show
restraint or shyness, they were familiarized with the harness.
Therefore gerbils were allowed to run through the loosely
closed harness, which thereby formed a kind of short tube.
After gerbils got familiar with the general appearance of the
harness, the animals had to acclimate to wear the harness in a
separate cage. To softly introduce the animals to wearing the
harness, it was firstly loose-fitted with the Velcro-closure in
the back and later tightened step-by-step. To facilitate harness
acclimatization and to enhance reward habituation, animals
were given flavored pellets during this habituation period. This
general adaptation took 5-10 days. Following, the animals were
familiarized with the VR setup itself. Therefore, the animal was
placed on the north pole of the treadmill while wearing the
harness, which was further connected via torso-lateral Velcro
patches to the magnetic setup handle, holding the animal in
place. During training, the toroidal screen was used in a 270�

closed configuration to allow for any time possible guidance and
assistance by the experimenter. When animals showed natural
running behavior in the VR setup, the timing task with its
consecutive phases was trained with only two time stimuli
(3.0 seconds and 6.0 seconds), which were easy to distinguish.
During this initial training phase, which took 2-4 weeks, the
animals were assisted by the experimenter by blocking the
ball during the presentation of the time stimulus to inhibit
movement and take action during RP by start rolling and
stopping the ball. To proceed with further testing, the animal’s
behavior was required to show a stable coefficient of variation
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and root-mean-square error (RMSE) (Figure 2.3). After the task
structure was understood and all task criteria were met, all
animals were tested on stimulus distribution A, to introduce
the animals to time stimuli on a continuous scale. The collected
data were evaluated daily. Two measures were considered to
decide whether to proceed with the remaining test distributions
or if further data collection was needed: The RMSE which is
a frequently used measure of the differences between values
predicted by an estimator and the values observed, calculated
as

RMSE =

vuuut
NP

i=1

(Predictedi - Actuali)2

N
(2.1)

must be stable. A positive linear correlation of stimulus time
and reproduction time must be visible (Figure 3.1a) to proceed.
When the criteria mentioned above were met, testing continued
on the other two test distributions B and C, randomly shuffled
across the animals.

a b

Figure 2.3: Coefficient of variation and root-mean-square error during
training. The subject had to show a stable coefficient
of variation (a) and stable root-mean-square error (b)
over sessions to proceed after initial training on two
well distinguishable time stimuli (training phase). Both
parameters stabilized after approximately 20 training
sessions. Data is shown for one example animal.

Behavioral training and experimental sessions for humans.
Before each experimental session, humans were instructed to
their tasks. At the beginning of each session, participants could
perform 20 training trials to familiarize themselves with the
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task and VR. Most participants chose to do the training only
before the first session. During these trials, visual feedback on
the performance was given after the reproduction with a text
message saying how far off the participants were. Afterward,
testing began, which consisted of approximately 100 test trials.
No feedback was given. Only test trials were used for data
analysis. Similar to animal experiments, the trial order for
presented time intervals was randomly shuffled. Additionally,
the experimental stimulus distributions set A, set B, and set C
were performed in a randomized order.

2.4 electrophysiological recordings

The subset of 3 animals provided data from electrophysiological
recordings with correlated behavioral data. A reusable
microdrive with eight tetrodes, which allowed movement of all
tetrodes together only, was implanted after gerbils showed stable
performance in behavior.

2.4.1 Electrodes and recording device

The electrodes loaded onto the microdrive were prepared
as tetrode bundles. To obtain tetrodes, a 17 µm diameter
platinum-iridium wire (Platinum 10% iridium HML (Heavy
Polyimide) insulation, 1, California Fine Wire company,
17.8 microns, Size: 0.0007, Length: 100 Ft, Tare: 38.295,
http://www.calfinewire.com/) was cut to a length of 23 cm.
The wire ends were closed with a soft-sticking tape and
thereby created a loop that was further folded such, that two
loops parallel to each other were formed. The four aligned
wire segments were twisted together with 90 clockwise turns
until approximately two-thirds of the tetrode segment were
organized in a tight bundle. Another 20 turns were applied
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counter-clockwise to release tension and keep the four wires in
the upper third of the tetrode segment well separated. To tighten
and intensify the bonds of the single electrodes, the insulation
of the wires was heated at 230- 240�C with a heat gun with an
attached reflector nozzle for 60 seconds. After a short cooling
phase, the tetrodes were trimmed and stored in anti-static boxes
until further processing.

The microdrive itself comprised a precision screw with a pitch of
200 µm (Axona Ltd., St. Albans, UK), which served as a movable
shuttle for the tetrodes (Figure 2.4e, left pole). It carried the
electrode interface board (EIB) (Figure 2.4d) with its connecting
wires for each channel. The used Quick Clip EIB (Neuralynx) for
eight tetrodes with 36 channels (32 electrode channels and four
reference channels) was prepared by applying an acid-based flux
(e.g., phosphoric acid) with a 30 Gauge needle into the vias
of the single channels and following pre-soldering of the vias.
The channels of each tetrode were connected to a quadruplet of
contact wires, color-coded for each tetrode (Kynar Wire Wrap
Aderleitung 0,05 mm2 Kupfer versilbert, starr, Kynar isoliert,
0,4 A), which was soldered into the respective vias from below.
Protruding wire ends on the top of the electrode interface board
(EIB) were cut and sealed with epoxy resin.

The contact wire bundles were aligned and bend into
banana-shape to fit the geometry of the microdrive’s shuttle
bone and the final implanting position on the rodent’s head (see
Figure 2.4a and Figure 2.4b). Air-drying dental cement (Simplex
Rapid, Kemdent, UK) was used to glue both components
together. When the cement had hardened, a mapping scheme
was created to identify the individual wire pins with the
output channels of the EIB (Figure 2.4c and Figure 2.4d). This
procedure was necessary to check for proper connectivity at the
soldered sites and to determine defects which might play a role
in the later steps of gold-plating or recording (see subsection
2.4.1 and subsection 2.4.2).
A guide tube was cut from a 19 Gauge needle and glued
into a platform of air-drying dental cement placed on the open
longitudinal side of the microdrive’s skeleton for further holding
the loaded tetrodes. From a 17 Gauge needle, a protection tube
was cut, approximately the same length as the guide tube
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Figure 2.4: Chronic brain implant for electrophysiological recordings.
(a) Microdrive with eight tetrodes implanted in a gerbil’s
brain. The implant was mounted with skull screws molded
in dental cement. (b) Implanted microdrive in profile view
shows the movement mechanism of the microdrive along
the dorso-ventral axis with the help of the precision screw.
(c) The reusable microdrive is shown after cleanup for the
next use. Arrays of de-insulated pins of the contact wire
are color-coded for each tetrode. (d) Electrode interface
board (EIB) for 32 Recording channels. (e) The bare bone
serving as the skeleton of the microdrive comprising the
precision screw, guide track, and foot to be mounted onto
the rodent’s skull.

extending the cement platform. The tubes were telescoped and
reversibly fixated with putty-like pressure-sensitive adhesive
(BLU TACK, Bostik) for easy removal during surgery (see
subsection 2.4.2). Additionally, a small patch of BLU Tack was
applied onto the top of the cement platform and spread with
forceps to later embed and arrange the loaded electrodes to
the respective contact wire. When the microdrive was fully
assembled with the EIB, tetrodes could be loaded into the
guide tube. Therefore, the insulation at the tips of the separated
electrodes of a tetrode was burned off with an ethanol lamp
until the blank wire was visible over a length of minimum 1 cm.
One tetrode was loaded at a time, and the single electrodes
were carefully arranged and fixated in the BLU TACK top
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patch to reach the corresponding contact wire. The blank
part of the electrode was tightly wrapped around the contact
wire’s de-insulated pins with the help of two ceramic-coated
fine-tipped forceps (Dumont #5, Fine Science Tools). When
all tetrodes were loaded and electrodes connected to the
respective channels’ pins, the wrapped-around tips were
covered with conductive silver paint (SCP03B, Electrolube,
https://uk.farnell.com) to enhance electrical conductivity.
Applied superglue in the entry of the guide tube held the
tetrodes in place. The wrapped-around and silver-painted pins
were further covered with commercially available nail polish to
make them touch-resistant and impact-proof.

As a final step, the tetrode tips to be implanted into the rodent’s
brain were aligned by applying a drop of pure water and
cut to 4-5 mm length to end at the same level with high
precision ceramic coated scissors (Cerama-Cut, Fine Science
Tools). This crucial step was monitored with binoculars to
verify that the cut led to a shiny slice plane and did not
indicate that insulation would cover the electrodes and thereby
might inhibit the tetrodes’ electrical sensitivity. To increase
the electrical sensitivity (Buzsáki, 2004), the tetrode tips were
gold-plated to reduce resistance manually or with the use of the
auto-plating software nanoZ (software v1.4, Neuralynx). For the
manual plating, the initial impedance of the several channels
was measured in isotonic sodium chloride (NaCl) solution 0.9%
(Fresenius Kabi Deutschland GmbH). After the tips had been
rinsed with distilled water, an electric pulse of 2% 100 µA was
applied for 2 seconds, while tetrode tips were dipped into gold
chloride solution (HT1004, Sigma-Aldrich). After this step, the
remaining impedance of each electrode was measured again.
The procedure was repeated as necessary until a final resistance
of 150 - 250 k⌦ was reached.
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2.4.2 Surgical implantation of the microdrive

On the day of surgery, the animal was brought to the operating
room in the morning, weighted, and let sit for approximately
one hour to calm down. Afterward, the animal was injected
with a completely antagonizable three-component anesthetic
containing Medetomidine/Midazolam/Fentanyl (MMF)
(Schneider, 2000; Erhardt et al., 2011). The initial dose was
adjusted to 0.15 mg/kg body weight Domitor®, 7.5 mg/kg
body weight Dormicum® and 0.03 mg/kg body weight fentanyl
injected subcutaneous (sc). Optional, to reach deep anesthesia,
each subsequent injection with a volume of 0.05 ml was given
every 30 minutes. To maintain stable anesthesia during surgery,
it was refreshed with injections of 2/3 the initial dose every
2 hours. When testing the status of anesthesia by a toe pinch
and the resulting withdrawal reflex revealed that the animal
was deeply asleep, lidocaine (Xylocain®, Astra Zeneca GmbH)
was applied to the scalp. Additionally, Meloxicam (Metacam®,
Boehringer Ingelheim) was given at a dosage of 0.2 mg/kg
body weight (Henke and Erhardt, 2001; Sotocinal et al., 2011;
Matsumiya et al., 2012) as analgetic. The animal was placed on
a heating pad to keep body temperature at 37�C and eyes were
covered with ointment (Bepanthen® nose and eye ointment,
BAYER). The head was carefully shaved with an electric hair
trimmer and cleaned with an antiseptic (octenisept® pump
spray, SCHÜLKE & MAYR GmbH) and cotton wipes.

The gerbil was placed in a stereotactic frame (Stoelting Co.),
the snout was fixated with the jaw holder, and the nose clamp,
while the skull was held in place with tapered ear bars. A nose
cone was placed in front of the snout, providing the animal
with oxygen at a flow rate of 1.0 liters per minute (LPM)
throughout the whole surgery. The gerbil’s body system was
kept hydrated with NaCl injections (10 mg/kg body weight
and hour) into either flank. Before surgery started, the animal
was covered with surgical incise drape, and the eyes were
additionally protected with tin foil covers. All used instruments
were autoclaved beforehand or, if needed, sterilized during
surgery with a hot bead sterilizer (Fine Science Tools) for a
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minimum of 20 seconds at 240-270

�C. All surgical steps were
performed using a binocular microscope.

Before opening the skin, it was sufficiently cleaned and
antiseptically treated with octenisept®. The incision of the scalp
was done with a scalpel to expose the area of the skull, where
the sutura coronalis meets the sutura sagittalis, the so-called
bregma in the upper third of the scalp opening. It was further
extended also to expose the skull where the sutura sagittalis
meets the sutura lambdoidea and forms the landmark known as
lambda. The skin should show smooth cutting edges to prevent
the risk of necrosis. I cleaned the skull from pericranium, fascia,
and connective tissue using a bone scraper (Fine Science Tools)
across the opened scalp and especially at and below the cutting
edges, but being careful not to incise or punctuate the muscles
above the ears and eyes. The skull was rinsed with isotonic NaCl
and dried with lint-free cotton buds. With the help of applicator
sticks, 35% phosphoric acid gel (Etch 35 Gel,iBond®; Heraeus
Kulzer GmbH) was spread over the skull and etched the bone
for a better bond. The etch was removed after 20-30 seconds with
cotton sticks and washed with NaCl. The skull was hydrated
with NaCl at regular intervals.

The head of the micro drill was aligned to bregma. The resulting
coordinates provided by the stereotaxic instrument were taken
as the origin to find the brain region of interest. From this
starting point, I navigated above the right medial prefrontal
cortex which lies 2.1 mm anterior-posterior (AP) above and 0.7
mm mediolateral (ML) aside bregma (Figure 2.5a). A hole was
drilled in the right os frontale with a dental burr of drill head
size 9. Another seven holes for mounting screws were drilled
with a burr of drill head size 14: 1 into the contralateral os
frontale, two into either os parietale and two in os occipitale
of which one was used for the electrical ground (Figure 2.5a).
The DIN 84 cylindrical screws with 1.6 x 2 mm dimensions
were mounted into the drill holes and should serve as anchors
or hooks in combination with liquid dental cement to fixate
the microdrive on the gerbil’s head. The meninges, consisting
of dura mater encephali, arachnoidea, and pia mater encephali,
needed to be opened by careful punctuation, i.e., with forceps or
needle hook. The microdrive was attached to the probe holder of
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the stereotaxic instrument and originating from alignment point
with bregma, tetrodes were moved to the right medial prefrontal
cortex and placed in the cortex just in the motor area M2 (+2.1
mm AP, -0.7 mm ML) at a dorso-ventral (DV) cortical depth of
0.7 mm (Loskota et al., 1974; Radtke-Schuller et al., 2016).

To seal the craniotomy, I used alginate (0.5% sodium alginate
and 10% calcium chloride, Sigma-Aldrich), which was further
covered with paraffin wax molten with a cauterizer. The
reversibly fixated protection tube, telescoped on the tetrodes’
guide tube, was now lowered to sit on the hardened paraffin
wax. Thereby it was protecting the exposed tetrodes between
the exit of the microdrive and entry in the brain. A 2-step etch
rinse light-curing adhesive (iBond®, Total etch, Heraeus Kulzer
GmbH) was applied around the craniotomy. To further protect
the tetrodes, the protection tube was shielded with a light-curing
hybrid composite. The composite was applied layer by layer
onto the etch & rinse adhesive to end at the upper rim of the
protection tube and cured with UV-light in between. Mobility
in the dorsal-ventral axis was maintained as the guide tube
holding the tetrodes could slide into the protection tube deeper
into the brain. The wire of the ground screw was connected to
the ground of the EIB. Afterward, the microdrive was anchored
to the head by creating a continuum between the skull screws
and foot of the microdrive’s barebone with dental acrylic cement
(iBond® Etch, Heraeus Kulzer GmbH, Germany; Simplex Rapid,
Kemdent, UK) (see Figure 2.4a). After successful implantation of
the microdrive, the implant was wrapped in soft-adhesive tape
to protect it from dust and lint. At the end of the surgery, another
dose Metacam for analgesia, glucose solution (500mg/kg body
weight), and enrofloxacin antibiosis (Baytril®, 10 mg/kg body
weight) were injected sc. Anesthesia was antagonized with
Atipamezol/Flumazenil/Naloxon (AFN) (Antisedan, 0.4 mg/kg;
Anexate, 0.4 mg/kg; Narcanti, 0.5 mg/kg, sc). Also, analgesia
was given postsurgical for three days and antibiotics for five to
seven postoperative days. The animals were allowed to recover
for two days after surgery before recordings started.
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2.4.3 Electrophysiological recording procedures

A digital high-density electrophysiology acquisition and
experiment control system, allowing for wide-band recording
(Digital Lynx, Neuralynx Inc.) was used to record the neuronal
activity while animals performed the behavioral task. The EIB
of the head-mounted microdrive was connected via a magnetic
QuickClip 32 channel headstage pre-amplifier. The recorded
analog neural signals were digitized on the headstage and were
further passed via a digital tether into the electrophysiology
acquisition system connected to a personal computer. As
the single-unit activity was recorded as extracellular action
potentials, it was necessary to invert the input arriving at the
acquisition system. The animal ground, mounted above the
occipital lobe, or alternatively, one of the tetrode channels,
was used as a reference to denoise the system. The recorded
amplified activity was band-pass filtered at 600 Hz to 6 kHz
and recorded at a sampling rate of 32 kHz. Additionally, the
activity of one channel from each tetrode was recorded as a
continuously sampled signal, the so-called local field potential
(LFP) at a rate of 2 kHz and band-pass filtered between 1 to
500 Hz. However, the LFP was not used for analysis. By turning
the precision screw, I changed the tetrodes’ position during
the recording period along the dorsoventral axis of the medial
prefrontal cortex. To ensure proper movement of the 8-tetrode
bundle through the subregions of the mPFC, I lowered the
tetrodes 50 µm every second day. The position of the tetrode
tips during the recording epoch could only be calculated with
the help of the number of turns but not be verified visually.

52



MATERIALS AND METHODS

2.5 histological visualization of tetrode

position

The location of the tetrodes was verified by postmortem
histological visualization. Animals were euthanized, the brain
preserved and prepared for examination by histopathology
(Figure 2.6).

2.5.1 Preservation of the brain

After 20 weeks of neurophysiology experiments, the animal
had to be euthanized according to the guidelines of the
animal permit provided by the Animal Welfare. The gerbil
was weighed, anesthetized with isoflurane in a gas chamber,
and injected intraperitoneal (ip) with a lethal overdose of
sodium Pentobarbital (400 - 800 mg/kg body weight, 160

mg/ml Narcoren) (Close et al., 1996, 1997; Demers, 2006). To
intracardially perfuse the animal with 4% paraformaldehyde
(PFA), the thorax was opened with a 2-3 cm lateral incision
through the integument and abdominal wall just beneath the
rib cage. The liver was carefully separated in order to prevent
perforation while opening the diaphragm with a small incision.
The incision was continued along the entire opening of the rib
cage to expose the pleural cavity. The rib cage was opened
with a caudal-cranial cut up to the collarbone on the lateral
thorax. This step was repeated on the contralateral side. The
tip of the sternum was clamped with a hemostat, lifted away,
and placed over the animal’s head. The perfusion pump was
started with an even pressure of 80 mm Hg. This pressure was
maintained throughout the entire infusion period. A 26 Gauge
injection needle was injected into the posterior end of the left
ventricle, infusing ringer solution. Immediately afterward, an
incision to the animal’s superior vena cava and right atrium
leading to the right ventricle was made using spring scissors
(Dowell, Fine Science Tools) to create as large an outlet as
possible without damaging the descending aorta. If needed, the
perfusion needle was shifted up into the ascending aorta but did
not reach the aortic arch where the brachial and carotid arteries
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diverge. At this position, it was fixated and held in place with
clay attached to the dissection tray. Once the liver showed visible
clearing, which is an indicator of good perfusion, and the fluid
ran clear, the valve was switched to pass PFA (200 - 250 ml).
Fixation tremors were observed within seconds, also indicating
successful perfusion.

Figure 2.5: Conserved brain and brain implant after
neurophysiological recordings. After 20 weeks of
neurophysiological recordings, the brain of the animal
subjects had to be conserved and removed from the skull.
The position of the tetrode placement and position of
the skull screws could be verified postmortem relative to
bregma and lambda coordinates (a). The conserved brain
implant revealed intact movability of the tetrodes along
the dorso-ventral axis (b). The explanted brain was fixated
in PFA and trimmed (dashed lines) for vibratome slicing to
identify the right and left hemisphere (c). Compass at the
bottom of each subfigure identifies the anterior-posterior
axis and right and left hemisphere of the animal.

Before dissection, the tetrode tips’ final position was reinforced
with lesion currents of 10 µA, animal-ground vs. channels.
The head was removed, and the skull exposed with a midline
incision along the integument from the neck towards the nose
until reaching the rim of the cement cap holding the implant.
The remaining neck muscles were trimmed off so that the base
of the skull was exposed. Any residual muscles were removed
with scissors. To get access to the cerebellum, a pair of sharp iris
scissors was used to cut from the foramen magnum extending
to the distal edge of the posterior skull surface along one side
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at the inner surface of the skull. This step was repeated on the
contralateral side. The skull around the cerebellum was cleared
away using blunt-tipped forceps or rongeurs. The cut along the
inner surface of the skull was extended from the dorsal distal
posterior corner towards the distal frontal edge of the skull
on either side, always cutting beneath the rim of the cement
in order to separate the microdrive from the animal’s head
(Figure 2.4b and 2.5b). As the implant was fully released from
the skull, it was carefully lifted and removed. With the help of
a spatula, the brain was carefully lifted from the ventral skull,
and the nervous connections along the ventral surface of the
brain were cut with spring scissors. The brain was gently teased
from the head, and the remaining dura trimmed and peeled
off with forceps. The brain was finally extracted from the head
and stored in a vial containing fixative fluid (approx. 80 ml).
Brains were incubated overnight in a fridge (5±3�C), placed on
a shaker (40 - 60 rpm).

2.5.2 Histology

Preparation for slicing and sectioning. After 18-24 hours
of incubation time, the brain was washed in 0.02 M
phosphate-buffered saline (PBS) three times for 10-15 minutes
placed on a shaker (60-80 rpm). As a next step, the brain
was trimmed, by slicing off the cerebellum, olfactory bulbs in
the coronal plane, and half of the non-implanted hemisphere
was removed in the sagittal plane (see Figure 2.5c). The brain
was placed in a small Petri dish with natural DV orientation
and embedded in 4% molten agar, cooled to RT. When agar
had hardened, the agar carrying the brain was cut to obtain a
cube-shaped block. The brain was glued to a holding plate with
rostral-caudal axis flipped to be vertical and fixated in the bath
chamber filled with 0.02 M PBS, and placed in the vibratome to
obtain coronal brain slices of 60-80 µm thickness, depending on
the chosen staining method.
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Figure 2.6: Histological visualization of tetrode placement. Slices of
animals were stained with Neutralred (a) or DiI with DAPI
and NeuroTrace green (b and c). Coronal sections show
the tetrode track through PFC subareas of motor area 2

(M2), cingulate cortex (Cg1), prelimbic cortex (PrL) and
infralimbic cortex (IL), which lie above and medially to the
forceps minor (fmi), depicted by arrowheads (a). In other
animals, recording sites were identified in subareas if PFC
in M2, Cg1, PrL (b) and M2, Cg1, and Cg2, right above
the external capsule (ec) by histopathology (c). Scale bars
correspond to 1 mm.

For Neutralred staining, 80 µm slices were used, whereas 60

µm slices were needed for successful staining with DiI (1,1’ -
dioctadecyl - 3,3,3’,3’-Tetramethylindocarbocyanine perchlorate),
NeuroTrace green and DAPI (4,6-diamidino-2-phenylindole).
Slices were cut with a speed of 60 mm/s and 1.20 mm razor
amplitude. One after the other, slices were collected with a brush,
transferred to a separate Petri dish filled with PBS, carefully
cleaned from agar, and pulled onto gelatin covered slide. Slides
were dried overnight under a laboratory fume hood protected
from light.
Neutral Red is a eurhodin dye that marks cell bodies by staining
lysosomes (Winckler, 1974; Chazotte, 2011) appearing in red
color when observed under the light microscope (Figure 2.6a).
Neutral Red staining was done following the staining protocol
summarized in Table 2.2

Immunohistochemical staining. The immunostaining with
DiI stain (DiIC18(3), D282, InvitrogenTM, Thermo Fischer
Scientific), NeuroTrace green (NeuroTraceTM

500/525 Green
Fluorescent Nissl Stain, N21480, InvitrogenTM, Thermo Fischer
Scientific) and DAPI (DAPI Solution (1 mg/mL), 62248, Thermo
ScientificTM, Thermo Fischer Scientific) required thinner slices of
60 µm to obtain a consistent distribution of the fluorochromes
within a short blocking interval.
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Chemical substance Duration

Neutral Red 8 - 10 min

Distilled water rinse until colorless

70% EtOH ⇠2.5 min

96% EtOH ⇠2.5 min

96% EtOH ⇠2.5 min

100% i-PrOH ⇠2.5 min

100% i-PrOH ⇠2.5 min

xylene ⇠2.5 min

xylene ⇠2.5 min

xylene ⇠2.5 min

Table 2.2: Staining protocol for Neutral Red staining. Used reagents
and corresponding bathing duration for the consecutive
steps from top to bottom.

DiI, known as DiIC18(3), is a fluorescent lipophilic cationic
indocarbocyanine dye used for electrode marking. It labels
neurons via lateral diffusion in the plasma membrane. The dye
has its absorption maximum when excited with green light at a
wavelength of 549 nm and an emission maximum at 565 nm
wavelength, which appeared as orange light (see Figure 2.6b
and Figure 2.6c). The NeuroTrace green fluorescent Nissl stain
binds to the Nissl substance, which is present exclusively in
the somata of neuronal cells. NeuroTrace green exhibits bright,
green fluorescence at 525 nm wavelength (see Figure 2.6b and
Figure 2.6c) that is visible with filters appropriate for fluorescein
when excited with blue light at 500 nm wavelength.
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DAPI is a blue fluorescent dye that fluoresces brightly upon
selectively binding to the minor groove of double-stranded
DNA. Its selectivity for DNA and high cell permeability allows
efficient staining of nuclei with a little background from the
cytoplasm. Its excitation maximum lies at 360 nm wavelength,
which corresponds to UV in the electromagnetic spectrum and
responds with an emission maximum at a wavelength of 460 nm,
visible as blue light (see Figure 2.6b and Figure 2.6c).

For the blocking solution, 50 mg of Saponin, which serves
as a non-ionic surfactant, was weighed and dissolved in 0.02

M PBS to obtain a final volume of 50 ml. 500 mg of Bovine
Serum Albumin (BSA) was weighed and dissolved in the
blocking solution. Additionally, 2.5 ml of 10% Triton® X-100,
already dissolved in PBS, were added to permeabilize the
tissue and facilitate optimal staining. Dilution factors of 1:1000

for DAPI and 1:200 were used for successful staining. For six
slides, 900 µl blocking solution was mixed with 0.9 µl DAPI
and 4.5 µl NeuroTrace green. Approximately 150 µl of the
diluted stain was applied to each slide with a microliter pipette
(Eppendorf, single-channel pipette 20-200 µ) until the sections
were sufficiently covered. The slides were stored horizontally
in a humid staining chamber and incubated overnight at 4

�C
in the dark. The next day, the staining solution was drained
off, and the slides were washed for 10 minutes by applying
a blocking solution with a microliter pipette onto the slides.
A dipping tray was filled with 0.02 M PBS, and slides were
drained off again, loaded into a slide staining rack, and washed
three times for 5 minutes. After washing, PBS was blotted off
with filter papers, and slices let dry a little. A suitable mounting
medium for fluorescence (Vectashield H-1000, Vectorlabs) was
applied, and the sections covered with a coverslip, which was
cleaned with a lintfree lens cloth. A small line of Vectashield
was applied, the short edge of the coverslip was lowered first,
and then the coverslip’s longitudinal axis was carefully lowered
and softly jiggled to avoid the inclusion of air bubbles. The
mounting medium was drawn into the seal gap as far as the
seal edge through its capillary forces. Excess fluid was removed
by wrapping the single slides in laboratory tissues. Seal edges
were covered with clear nail polish and slides let dry in the
dark. Slices were observed under a fluorescence microscope
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(Nikon Eclipse 80i) with a super high-pressure mercury lamp
with 2x objective and appropriate filters for the corresponding
stains of DAPI, Nissl, and DiI. Images were recorded with Lucia
Image software and a selected image size of 640 x 480 ’Normal’.
Camera settings ’mono camera’ and linear contrast was selected.
The setting for exposure time and gain had to be adjusted for
each filter and slice and are summarized in Table 6.1 and Table
6.2. The single color channels for each slice were later merged
with Photoshop CS6 (Adobe) by creating an overlay of the color
channels red (R), green (G), and blue (B).

2.6 data analysis

2.6.1 General analysis

Data analysis was done with open-source software Python v2.7
using the packages Numpy v1.11, Matplotlib v2.0, Scipy v0.19,
Statsmodels v0.8, and Seaborn v0.7.

For review, statistical test results were reported at significance
levels of 0.05, 0.005 and 0.001 and depicted in figures with p 6
0.05 *, p 6 0.01 **, p 6 0.001 ***.

2.6.2 Comparison parameters for behavioral data

To compare data sets across animals and stimulus distributions,
I used the following parameters to describe the accuracy and
precision of the time estimate. As described in subsection 2.3.3,
the RMSE, which was used to evaluate performance quality, is
the square root of mean-squared error (MSE), and measures for
the deviation between a given stimulus s and the respective
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response r. It is described by the decomposition of variance and
squared BIAS of the response r given stimulus s,

MSE(r) = Var(r) + BIAS2(r), (2.2)

which are further used as quality parameters to evaluate the
subject’s performance on time estimation.

The variance describes the average of the squared deviations
from the mean for responses r given stimulus s and is defined
as

Var(r) = E[(r - E[r|s])2]. (2.3)

For evaluation of individual subjects, the standard deviation
(SD) was calculated for each subject and each stimulus size
presented in one stimulus range, pooled across sessions (Figure
3.2 and Figure 3.4). The point-wise squared deviation of the
average response r from the accepted reference stimulus s is
called BIAS2. Estimation bias is a systematic error that leads to
an under- or overestimation of the actual value. The direction of
the systematic error is expressed in

BIAS(r) = E[(E[r|s]- s)]. (2.4)

with E being the expected value of the response r given stimulus
s. The bias of individual subjects was calculated analogously to
SD for analysis. As the estimated quantity provided non squared
values, the above mentioned parameters were further reported
as square roots, i.e., SD,

p
BIAS2 and root-mean-square error

(RMSE)
p
MSE.

p
BIAS2 for each subject was calculated as the

average
p
BIAS2 for each stimulus size presented in each session.

RMSE was calculated session-wise for each subject, using the
mean response values of each presented stimulus size.

The coefficient of variation (CV) for the responses r was
calculated as the average CV for each stimulus in one stimulus
range, i.e.,

CV = Es


SD(r | s)
Es [r | s]

�
. (2.5)

The slope of the linear regression between stimulus and
response was computed to compare data sets. A slope of one
would correspond to veridical estimation (i.e., no bias), whereas
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smaller slopes indicate stronger regression and thereby biased
estimates.

2.6.3 Spike sorting

Action potentials recorded from tetrodes were sorted according
to their spiking properties as spikes occurred on multiple
cells simultaneously. Because spikes occurring on different cells
should show different waveform parameters (peak height, total
energy, waveform shape, etc.), the spikes from a single cell
will form clusters in that high-dimensional space (Fig 2.7 a1
and a2). The spike sorting was done offline in a two-stage
operation. First, spike data was roughly pre-sorted using the
automated spike-separation algorithm KlustaKwik (v1.6), which
performed an expectation-maximization fit of n Gaussians to
the data and created a set of putative clusters (McNaughton
et al., 1983). These separate clusters containing spike trains
were refined in the multidimensional parameter space with
waveform parameters represented in amplitude, peak height
and valley, total energy, and waveform shape (Wilson and
McNaughton, 1993; Baeg et al., 2003), by using MClust
v4.3 ran on MATLAB2015b+ (MatlabTM, The MathWorks Inc.,
Natick MA). The received output t-files, which contained a
list of timestamps in a binary format at a resolution of 10

timestamps/ms, were used for further data analysis. Putative
interneurons and putative excitatory cells were included in the
analysis alike. Quality of spike-sorted t-files was determined
via isolation distance and L-ratio calculated using two spike
features, the peak and the valley of the waveform for each cell
(Schmitzer-Torbert et al., 2005; Rey et al., 2015) (Figure 2.7b and
Figure 2.7c).
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Ch0

Ch2

Ch3

Ch0

Ch1

Ch2

a1

a2

b

c

Figure 2.7: Spike clustering and verification of cluster quality.
Examples of spike clusters and corresponding waveforms
on each electrode channel are shown for two representative
tetrode recordings of different sessions (a1 and a2). Only
waveforms of channels used in the two-dimensional feature
plots are shown. Filtered spikes from the same unit are
coded by color and accumulated in clusters. Unclustered
spikes are depicted in gray. Two projections are shown in
the feature space of ’peak’ on different channels. Waveform
plots display mean waveform and corresponding SD.
Distribution of isolation distance (b) and L-ratio (c),
calculated for the feature space of ’peak’ (light blue) and
’valley’ (light red), were used to verify cluster quality.
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2.6.4 Classification of units

In order to separate putative pyramidal cells and putative
interneurons, a unit classification was performed. Therefore,
spikes waveforms from each cluster were aligned on each
channel. The width was determined by means of the absolute
maximum and minimum of the averaged aligned waveform,
which was then correlated with the mean firing rate. Based on
the resulting correlation, a Gaussian mixture model was used to
identify two population clusters in the data, reflecting the two
subgroups of cell types.

2.6.5 Peri-stimulus time histograms

Spikes of each neuron were sorted according to the tested
time stimuli and computed as peri-stimulus time histogram
(PSTH). The occurring spikes along the time axis for each
stimulus s were binned with a bin-width of 100 ms and
smoothed by applying a bin shift using a Gaussian kernel with
a window-width of 100 ms.

2.6.6 Modulation of activity profiles

The PSTH signals of the two alignments to be compared were
separated by stimulus size and first tested for normality with
Shapiro-Wilk test and further tested for significance with a
paired t-test or Wilcoxon test respectively. If a cell showed
significant differences between the two alignments, activity
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profiles across event phases measurement and reproduction
were evaluated by the modulation index (MI) calculated as

MI =
R - M
R + M

(2.6)

with the incorporation of the mean firing rate of measurement
(M) and mean firing rate of reproduction (R). The modulation
index yields values of +1, 0, or -1, thereby giving information
about the event phase with higher activity.
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3.1 temporal estimates of supra-second intervals

in rodents and humans - a behavior study

In this section, the focus is on the systematic behavioral
characteristics observed in timing, as described in section 1.4.
It is investigated whether the systematic errors in timing can be
characterized as effects of magnitude estimation behavior and
can be observed in different species tested. Evidence already
exists that characteristic effects in magnitude estimation can,
similar to effects in higher cognitive processes, be caused by
the incorporation of a-priori assumptions. These assumptions
are likely learned from experience or based on other contextual
information sources. The behavioral approach provides the
basis for investigations on the neural representation of interval
duration of retrospective and prospective estimates.

First, it was assessed whether a behavioral paradigm could
effectively be set up and tested analogously for animals and
humans. Second, it was examined whether the systematic errors
reported in interval timing can comparably be observed in both
species and therefore understood as characteristic effects in
magnitude estimation. Additionally, I aimed to show whether
the use of a-priori knowledge can explain this characteristic
behavior. Therefore, I designed two studies on interval timing
with rodents and humans that aimed to change the a-priori
assumptions of subjects by changing their immediate prior
experience. The first study tested human time estimation
in a combined retrospective and prospective perspective
using a production-reproduction task for three different prior
experience conditions by changing the underlying sample
distributions. In the second study, the abilities of gerbils to
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retrospectively and prospectively estimate durations were tested
alike.

To analyze the main characteristics of the time reproduction
in my experiments, I started by looking at the relation of the
reproduction times and the tested stimulus times for each
species group.

3.1.1 Time estimation in gerbils.

I conducted experiments with seven gerbils in which they
first estimated and following reproduced the duration of
a visual time stimulus via self-motion through a visually
online-updated virtual environment on a treadmill (Figure
2.2a1). Stimuli in each session were randomly drawn from one of
three uniform distributions, comprising seven durations (Figure
2.2a2). All animals performed roughly similar. Reproduced
values depended on the stimulus range. Example data of
one representative animal is shown in Figure 3.1a. The data
of all individual animal subjects is given in Figure 6.1.
The representative subject showed regression effects, which
increased with the magnitude of the stimulus distribution. In the
example of the chosen animal, the standard deviation increased
with stimulus size (Figure 3.2b; example animal marked with an
asterisk).

Also, for the remaining six gerbil subjects, standard deviation
increased with stimulus magnitude (representing scalar
variability, i.e., the increase of the variability of an estimate
with the magnitude of the stimulus, reflecting a consequence
of the Weber-Fechner law). Different comparison parameters
were extracted to quantify the results species-specific across all
subjects (see subsection 2.6.2). The square root of the mean
squared bias

p
BIAS2 gives an estimate of the deviation between

stimulus and reproduction and thereby provides information
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a b

Figure 3.1: Time reproductions of a representative subject for gerbils
and humans. Individual reproduced values for tested
stimulus intervals for one gerbil subject (a), and one
human participant (b) are given as small dots. Averages
for each stimulus are depicted as filled circles (gerbils) or
squares (humans) connected by a solid line. Colors identify
stimulus distributions (cf. Figure 2.2c). Gray dashed lines
mark bisecting lines. For both subjects, regression effects
were visible, which increased with the magnitude.

about the size of the error. The
p

BIAS2 increased linearly with
the magnitude of the tested stimulus distribution.

The BIAS, which is a good indicator for over- and
underestimation, showed to be more differentiated compared
to SD and

p
BIAS2. For smaller magnitudes of time stimuli,

the density peaks were slightly right-shifted to zero. The larger
the magnitude gets, the stronger the peaks were shifted left,
indicating that the absolute bias gets more negative for larger
stimulus distributions (Figure 3.2c).

Data were pooled for all subjects and experimental sessions
across stimulus distributions to compare the behavioral
parameters mentioned above. For the paired data comparison
across stimulus ranges, I first tested the individual data sets for
normality with Shapiro-Wilk tests. If data followed a Gaussian
distribution, differences across stimulus sets were detected
with one-way ANOVA. In case data sets were non-normally
distributed, differences were detected with non-parametric
Kruskal-Wallis test. If differences across stimulus distributions
could be detected, an independent 2-sample t-test was used to
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Figure 3.2: Comparison param-
eters

p
BIAS2, SD, and BIAS of

time reproductions of gerbils.
Selected parameters are shown
for each subject individually as
density estimates for

p
BIAS2

(a), standard deviation (b),
and BIAS (c).

p
BIAS2 and

standard deviation increased
with stimulus size (scalar
variability). The signed bias
decreased with increasing
stimulus size.

p
BIAS2 density

was calculated as the square
root of the mean squared
bias for response values
per stimulus, presented in
each session within each
stimulus distribution. The
density of the signed bias was
calculated as the averaged bias
per response of all sessions.
Standard deviation density
was calculated as the standard
deviation of all responses per
stimulus, in each stimulus
range. The representative
subject indicated in Figure 3.1
is marked with an asterisk.
Colors identify stimulus
distributions (cf. Figure 2.2c).

*

*

*

a

b

c

identify the differences within pairs of stimulus distributions
AB, BC, and AC. Due to multiple comparison testing, the
p-values were adjusted with the help of Bonferroni correction.
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a b
**

**
***

***
***

***

c d***
**

** ***
***

***

Figure 3.3: Comparison parameters
p

BIAS2, SD, RMSE, and BIAS
of time reproductions of gerbils pooled across all
subjects. Parameters were pooled across all subjects
with values from each experimental session.

p
BIAS2 (a)

as well as standard deviation (b) differed significantly
between all tested stimulus distributions. The RMSE
(c) was significantly different for the tested stimulus
magnitudes, and the BIAS (d) showed significant
differences between stimulus distributions. Colors identify
stimulus distributions (cf. Figure 2.2c). Filled circles with
black edge color mark the mean. An independent 2-sample
t-test with Bonferroni correction was used for statistical
analysis.

The
p

BIAS2 showed a significant increase with stimulus size
across tested stimulus distributions A, B and C (1.642 ± 0.690

vs. 2.214 ± 0.954 vs 3.059 ± 1.202, H = 53.373, p = 2.572 ⇥10

-12;
independent 2-sample t-test, A vs. B: T = -3.122, p 6 0.01, B
vs. C: T = -3.533, p 6 0.01, A vs. C: T = -6.885, p 6 0.001),
suggesting a stronger regression effect for the long stimulus
ranges (Figure 3.3a). Similarly, and following scalar variability,
the standard deviation was larger for the longer ranges than
the shorter ranges (1.362 ± 0.401 vs. 1.792 ± 0.455 vs. 2.321 ±
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0.400, H = 65.352, p = 6.443 ⇥10

-15; independent 2-sample t-test,
A vs. B: T = -4.502, p 6 0.001, B vs. C: T = -5.762, p 6 0.001,
A vs. C: T = -11.581, p 6 0.001) (Figure 3.3b), and so was the
RMSE for the tested stimulus distributions A, B and C (1.831 ±
0.854 vs. 2.526 ± 1.143 vs 3.391 ± 1.228, H = 52.398, p = 4.187

⇥10

-12; independent 2-sample t-test, A vs. B: T = -3.124, p 6
0.01, B vs. C: T = -3.348, p 6 0.01, A vs. C: T = -7.06, p 6 0.001)
(Figure 3.3c). Calculating the (signed) bias revealed a general
underestimation for all ranges. This effect massively increased
with stimulus magnitude A, B, and C (-0.278 ± 0.465 vs. -0.809

± 0.541 vs. -1.447 ± 0.916, F
2,131

= 33.837, p = 1.423 ⇥10

-12 ;
independent 2-sample t-test, A vs. B: T = 4.756, p 6 0.001, B vs.
C: T = 3.778, p 6 0.001, A vs. C: T = 7.645, p 6 0.001) (Figure
3.3d). This linear increase in (signed) bias helped to explain the
increase in

p
BIAS2 across stimulus distributions.

3.1.2 Time estimation in humans.

The same task structure was applied for experiments with
six young adults aged between 21 and 32 years. Instead
of reproducing the time estimate via a self-motion response,
participants controlled their virtual movement through the
virtual maze via a joystick. Figure 3.1b shows the reproduction
times depending on the stimulus times tested for each stimulus
range of one representative participant. Data of all human
individuals are shown in Figure 6.2. As with the gerbils, the
standard deviation increased with increasing stimulus size
(Figure 3.2b). Regression effects were visible and increased
with the magnitude of the stimulus distribution. Within the
human-subject group, effects of regression were more diverse
than compared to gerbils (Figure 3.4c; example subject marked
with an asterisk).

Similarly to gerbils, time reproduction correlated with stimulus
range and showed an increased

p
BIAS2 (1.276 ± 0.592 vs. 1.551

± 0.643 vs 2.227 ± 0.922, F
2,33

= 4.894, p = 0.014; independent
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*

*

*

a

b

c

Figure 3.4: Comparison param-
eters

p
BIAS2, SD, and BIAS of

time reproductions of humans.
Selected parameters are shown
for each subject individually as
density estimates for

p
BIAS2

(a), standard deviation (b)
and BIAS (c).

p
BIAS2 and

standard deviation increased
with stimulus size (scalar
variability). The signed bias
decreased with increasing
stimulus size.

p
BIAS2 density

was calculated as the square
root of the mean squared
BIAS for response values
per stimulus, presented in
each session within each
stimulus distribution. The
density of the signed bias was
calculated as the averaged bias
per response of all sessions.
Standard deviation density
was calculated as the standard
deviation of all responses per
stimulus, in each stimulus
range. The representative
participant indicated in Figure
3.1 is marked with an asterisk.
Colors identify stimulus
distributions (cf. Figure 2.2c).

2-sample t-test, A vs. B: T = -1.044, p = 0.922 failed to reach
significance, B vs. C: T = -1.993, p = 0.176 failed to reach
significance, A vs. C: T = -2.877, p 6 0.05) (Figure 3.5a), an
increased SD (0.938 ± 0.335 vs. 1.185 ± 0.311 vs 1.694 ± 0.633,
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F
2,33

= 8.039, p 6 0.01; independent 2-sample t-test, A vs. B:
T = -1.786, p = 0.263 failed to reach significance, B vs. C: T
= -2.395, p = 0.077 failed to reach significance, A vs. C: T =
-3.5, p 6 0.01) (Figure 3.5b), an increased RMSE (1.386 ± 0.608

vs. 1.660 ± 0.680 vs 2.329 ± 0.949, F
2,33

= 4.481, p 6 0.05;
independent 2-sample t-test, A vs. B: T = -0.997, p = 0.988

failed to reach significance, B vs. C: T = -1.9, p = 0.212 failed
to reach significance, A vs. C: T = -2.774, p 6 0.050) (Figure
3.5c), and overall negative bias for all tested stimulus ranges.
The (signed) bias did not decrease as strongly as for gerbils,
which was expected due to obtained values of

p
BIAS2 (-0.378

± 0.402 vs. -0.650 ± 0.635 vs -0.649 ± 1.086, F
2,33

= 0.465, p
= 0.632 failed to reach significance; independent 2-sample
t-test, A vs. B: T = 1.199, p = 0.73 failed to reach significance,
B vs. C: T = -0.002, p = 1.0 failed to reach significance, A vs.
C: T = 0.777, p = 1.0 failed to reach significance) (see Figure 3.5d).

3.1.3 Comparison of gerbils and humans

To compare the performance of humans versus animals
and species-specific performance across tested stimulus
distributions, I calculated dimensionless analysis parameters,
i.e., coefficient of variation (CV) and slope (Figure 3.6 and
Figure 3.7). The differences within species were evaluated
across stimulus distributions with one-way repeated measures
ANOVA. The differences between species were calculated using
a two-way repeated-measures ANOVA.

Coefficient of variation. The CV was calculated comparably
to the selected parameters in subsection 3.1.1 and subsection
3.1.2: Data were tested for normality, and depending on
the outcome further analyzed with one-way ANOVA or
Kruskal-Wallis test respectively. Differences in stimulus range
pairs were evaluated with an independent 2-sample t-test with
Bonferroni-corrected p-value. The CV showed no significant
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a b* *

c d*

Figure 3.5: Comparison parameters
p

BIAS2, SD, RMSE, and BIAS
of time reproductions of humans pooled across all
participants. Selected parameters include values from each
experimental session and are pooled across all participants.p

BIAS2 (a) as well as standard deviation (b) differed
significantly only between tested stimulus distributions A
and C. Both parameters increased across the magnitude of
the tested stimulus ranges but could not yield significance
due to high variability between subjects. Analogously,
the RMSE (c) showed significant differences only for
stimulus set A compared to C. The signed bias (d)
showed no significant differences. Colors identify stimulus
distributions (cf. Figure 2.2c). Filled squares with black
edgecolor mark the mean. An independent 2-sample t-test
with Bonferroni correction was used for statistical analysis.

differences for the human test group across the tested stimulus
sets (A vs. B vs. C: 0.176 ± 0.081, 95% CI [0.155, 0.198] vs. 0.149

± 0.063, 95% CI [0.132, 0.167] vs. 0.160 ± 0.073, 95% CI [0.145,
0.175]; ⌘2 = 0.168, H = 2.098, p = 0.35; Figure 3.7a). Analysis
with independent 2-sample t-test of stimulus range pairs further
confirmed that all set pairs did have a very similar mean and
showed strongly overlapping distributions (Figure 3.7a). Thus,
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a b

Figure 3.6: Time estimation performance in gerbils. Coefficient of
variation (a) and slope (b). Violin plots illustrate the
distribution of the population. Marker colors identify the
stimulus range. Filled circles mark the distribution mean.
Open circles depict the average CV per subject for each
stimulus interval included in the tested range (a). The slope
was calculated using a linear regression algorithm fitted
to the means of the responses, obtained for each stimulus
within the tested stimulus distribution (b).

none of the set pairs differed significantly from each other (AB:
T = 1.795, p = 0.228, BC: T = -0.745, p = 1.0, AC: T = 1.035, p =
0.91). The same observation was made in the data of the gerbil
population. The CV showed no significant differences across the
tested stimulus sets (A vs. B vs. C: 0.312 ± 0.114, 95% CI [0.293,
0.331] vs. 0.285 ± 0.111, 95% CI [0.271, 0.298] vs. 0.290 ± 0.086,
95% CI [0.272, 0.308]; ⌘2 = 0.242, H = 2.258, p = 0.323; Figure
3.6a), which was further confirmed by an independent 2-sample
t-test (AB: T = 1.195, p = 0.705, BC: T = -0.239, p = 1.0, AC: T =
1.098, p = 0.825) The variability of the responses was not affected
by the stimulus range, since the average CV was at about 0.3
for all ranges and animals. The analysis revealed a significant
difference between species (F

1,43

= 136.276, p = 7.649⇥10

-6, ⌘2

= 4.943) which was confirmed with an independent 2-sample
t-test (Agerbils vs. Ahumans: t = 9.224, p = 4.635⇥10

-7; Bgerbils vs.
Bhumans: t = 12.055, p = 2.831⇥10

-8; Cgerbils vs. Chumans: t = 10.857,
p = 1.156⇥10

-7). The interaction of species and stimulus set was
not significant.
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a b

Figure 3.7: Time estimation performance in humans. Coefficient of
variation (a) and slope (b). Violin plots illustrate the
distribution of the population. Marker colors identify
stimulus range. Filled squares mark the distribution mean.
Open squares depict the average CV per participant for
each stimulus interval included in the tested range (a). The
slope was calculated using a linear regression algorithm
fitted to the means of the responses, obtained for each
stimulus within the tested stimulus distribution (b).

Slope. To extract the slopes, data of individual subjects
were pooled across experimental sessions. The slope was then
calculated by using a least-squares linear regression algorithm,
fitted to the means of the responses obtained for each stimulus
within the stimulus distribution. Within animals, slopes showed
a slight decrease only. No significant differences were detected
across stimulus distributions (A vs. B vs. C: 0.573 ± 0.238,
95% CI [0.522, 0.689] vs. 0.553 ± 0.191, 95% CI [0.522, 0.607] vs.
0.558 ± 0.379, 95% CI [0.462, 0.658]; ⌘2 = 0.043, H = 0.727, p =
0.695; Figure 3.6b). Considering significance between pairs of
tested stimulus sets further confirmed the obtained results (A
vs. B: T = 0.414, p = 1.0; B vs. C: T = -0.739, p = 1.0; A vs. C:
T = 0.227, p = 1.0). For humans, the decrease in slopes with
increasing stimulus range was more pronounced compared
to gerbils, but yet did not yield significance either (A vs. B
vs. C: 0.750 ± 0.232, 95% CI [0.545, 0.953] vs. 0.758 ± 0.215,
95% CI [0.585, 0.936] vs. 0.706 ± 0.239, 95% CI [0.520, 0.897];
⌘2 = 0.01, H = 0.619, p = 0.734; Figure 3.7b). Further evaluation
with an independent 2-sample t-test confirmed that there was
no significance between pairs of tested stimulus sets (A vs. B
: T = -0.086, p = 1.0; B vs. C: T = 0.533, p = 1.0; A vs. C: T =
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0.434, p = 1.0). The difference between species failed to reach
significance (F

1,37

= 0.216, p = 0.809, ⌘2 = 0.005). The interaction
of species and stimulus range was not significant.

3.1.4 Influence of movement parameters on reproduction
performance

Movement parameters were analyzed to check whether animals
used specific running strategies to solve the task. Therefore,
correlations and interactions of the presented stimulus interval,
the reproduced time, and the distance traveled during the
reproduction phase were evaluated. Further, I investigated
whether animals could and did take advantage of the applied
gains by adjusting their running speeds and thereby infer
information about the time passed. Additionally, running
trajectories were analyzed to exclude the possibility that animals
used characteristic running patterns to precisely estimate, and
reproduce time.

Time stimuli tested in each stimulus range were evenly
distributed and equally frequent. The stimulus size strongly
correlated with the distance traveled (path length) (r = 0.49, p
< 0.01) (Figure 3.8a) - which was expected by the nature of
the task - and so did the reproduced intervals (r = 0.58, p <
0.01) (Figure 3.8b). In both cases, the provided kernel density
estimates (KDEs) on the marginal y-axis showed an upward
shift for the larger stimulus distributions and peaked from
approximately 1 meter to 3 meters. The virtual running speed,
which is the real running speed multiplied with the applied gain,
peaked around 0.25 m/s for all tested stimulus distributions and
did not show a significant correlation with presented stimuli (r
= 0.02, p = 0.2) (Figure 3.8c). However, Pearson’s correlation
coefficient did reveal a significant positive correlation of the
reproduced intervals with the virtual running speed (r = 0.04, p
< 0.01; Figure 3.8d). Also, the path length correlated positively
with the virtual running speed (r = 0.78, p < 0.01; Figure 3.8e).
The magnitude of the tested stimulus distribution did not affect
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Figure 3.8: Trajectory
parameters of temporal
reproduction for gerbils
– part I. Correlation
of stimulus intervals
with path length and
reproduced intervals
with path length (a and
b) as well as correlation
of virtual movement
speed with stimulus
intervals and virtual
movement speed with
reproduced intervals (c
and d). (e) Correlation
of path length with
virtual speed. Kernel
density estimates on the
marginal plots show the
data distributions on the
respective axis. Pearson’s
correlation coefficients
r and corresponding
p-values are provided.
Data were pooled within
the animal’s test group.
Same color conventions
as in Figure 3.1.
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the interactions of the virtual running speed with the tested
stimulus intervals or reproduced intervals, as depicted by the
strongly overlapping corresponding kernel density estimates
for the tested stimulus distributions. The described correlations
could be detected for almost all animals individually. The
individual subjects only showed minor deviations from the
overall impression and found correlations depicted in Figure 3.8.
Interactions of reproduction performance of each individual are
shown in Figure 6.4.

The applied gain factors, ranging from 0.25 to 2.25 were evenly
applied to all stimulus ranges and were not correlated with
stimulus intervals (r = 0.0, p = 0.94). Although the KDEs were
fairly similar for the interaction of reproduced intervals and
gain, Pearson correlation assigned significance to this interaction
(r = 0.04, p < 0.01) (see Figure 3.9a and Figure 3.9b). Analysis of
the physical running speed revealed, that animals ran with an
average speed of 3 m/s and did not adjust running speed for
presented stimuli (r = 0.03, p = 0.01) nor for time reproduction
(r = -0.01, p = 0.42) (see Figures 3.9c and 3.9d). The applied
gain factors showed a significant negative correlation with the
physical running speed, but kernel density estimates showed
substantial overlap for the tested stimulus ranges, indicating
that there were no significant differences across stimulus
distributions (r = -0.02, p < 0.01; Figure 3.9e). The movement
parameter running speed appeared to be much more diverse
when considered for each animal individually (Figure 6.5).
When considered separately, all animals showed a significant
relationship of running speed with presented stimulus interval,
of running speed with reproduced intervals and running speed
with applied gain. Only with minor exceptions, a shifted KDE
distribution for increasing stimulus ranges was apparent.

The relationship of stimulus intervals with starting latency as
well as the relationship of reproduced intervals with starting
latency was evaluated to exclude possibly applied strategies
facilitating time estimation. The starting latency incorporates the
time from trial onset to the start of the running response. The
starting latency peaked at approximately 7.5 s, 11 s and 14 s
for the stimulus ranges A, B, and C. It was strongly correlated
with the stimulus interval and the reproduced interval (Figure
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Figure 3.9: Trajectory
parameters of temporal
reproduction for gerbils
– part II. Correlation of
stimulus intervals with
gain and reproduced
intervals with gain (a
and b) as well as the
correlation of stimulus
intervals with animals’
running speed and
reproduced intervals
with animals’ running
speed (c and d). (e)
Correlation of gain with
the animals’ running
speed. Kernel density
estimates on the marginal
plots show the data
distributions on the
respective axis. Pearson’s
correlation coefficients
r and corresponding
p-values are provided.
Data were pooled within
the animal’s test group.
Same color conventions
as in Figure 3.1.
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a b

c d

Figure 3.10: Starting latency correlates with time stimuli and
reproduction. Correlation of stimulus interval with the
animals’ starting latency and reproduced interval with
the animal’s starting latency (a and b). Increasing starting
latencies observed for humans (c and d). Kernel density
estimates on the marginal plots show distributions on the
respective axis. Data were pooled across all subjects within
each group of the tested species. Same color conventions
as in Figure 3.1.

3.10a and Figure 3.10b). As the stimulus’s presentation time
increased with stimulus size, the correlation is strongly positive
by nature. Also, the correlation between starting latency and
reproduced intervals is naturally affected by stimulus size,
but it might also be affected by other factors. The KDEs
reinforce the impression of the increase in starting latency
across tested stimulus magnitude with an upward shift towards
larger magnitudes. The found interactions are also visible when
evaluated for animal subjects individually (see Figure 6.6). In
order to get a better comparison for the evaluation of the starting
latencies of the animals, I also looked at the starting latencies of
the human test group. Starting latencies scaled with the size of
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the stimulus distribution and the duration of the reproduced
interval. The mean starting latencies for all participants reached
a comparable maximum to the values described for gerbils.
The variability of starting latency, however, was significantly
different in gerbils and humans. Gerbil data appeared to be
much more variable than human data and spread across longer
starting latencies. Nevertheless, the main mass of data points,
representing the starting latencies, was equal or showed minor
differences as depicted by comparable density functions.

The evaluation of running trajectories showed directed running
paths with constant speeds throughout the whole path (see
Figure 6.7) for all animals. Also, here some variability was
visible across subjects. Some animals did not use the dimension
of the virtual corridor’s width, and others irregularly traversed
the corridor. Several animals did favor one side of the corridor,
as indicated by the right-side or left-side accumulated running
paths.

3.1.5 Context dependence

Context dependence was analyzed with a subset of stimuli in
the overlapping stimulus ranges. Therefore, stimulus pairs of
overlapping stimulus sizes each were compared. A stimulus pair
included reproduced values of a tested time stimulus that was
one time embedded at the upper bound of the smaller stimulus
distribution and the other time embedded at the lower bound of
the larger stimulus distribution. This grouping of stimuli yielded
two pairs (AB, BC) for the overlapping stimulus intervals with
durations of 6.0 s, 6.75 s, and 7.5 s (AB) and 9.0 s, 9.75 s, and 10.5
s (BC) for gerbils and 6.0 s, 7.0 s, 8.0 s, 9.0 s and 10.0 s (AB) and
9.0 s, 10.0 s, 11.0 s, 12.0 s, 13.0 s (BC) for humans.

Within this subset of tested stimulus values, the mean responses
increased with the size of the stimulus (Table 3.1 and Table 3.2).
This effect was stronger for humans compared to gerbils (see
Figure 3.11 and Figure 3.12).
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Stimulus

interval [s]

Pair

AB Stimulus

interval [s]

Pair

BC

6.0 5.36 ± 0.9 6.15 ± 0.98 9.0 7.69 ± 1.31 8.61 ± 1.7

6.75 5.78 ± 1.27 6.64 ± 0.8 9.75 7.94 ± 0.94 8.87 ± 1.46

7.5 6.33 ± 0.98 7.01 ± 1.06 10.5 9.07 ± 1.25 9.4 ± 1.8

Table 3.1: Summary of results for pair-wise comparison of mean
response values for overlapping stimuli in gerbils. Mean
values ± standard deviation are given for the subset of
overlapping stimuli in range pairs AB and BC.

Stimulus

interval [s]

Pair

AB Stimulus

interval [s]

Pair

BC

6.0 5.87 ± 0.59 6.05 ± 0.52 9.0 8.71 ± 0.37 9.33 ± 0.89

7.0 6.68 ± 0.37 6.79 ± 0.68 10.0 9.23 ± 0.76 10.1 ± 1.09

8.0 7.18 ± 0.69 7.7 ± 0.45 11.0 10.27 ± 0.74 10.9 ± 0.94

9.0 8.03 ± 0.76 8.71 ± 0.37 12.0 10.89 ± 1.12 11.47 ± 1.2

10.0 8.61 ± 1.07 9.23 ± 0.76 13.0 11.17 ± 1.57 12.02 ± 1.34

Table 3.2: Summary of results for pair-wise comparison of mean
response values for overlapping stimuli in humans. Mean
values ± standard deviation are given for the subset of
overlapping stimuli in range pairs AB and BC.

However, for both species, the mean of responses for each
stimulus was larger when embedded in the larger stimulus
range than when embedded in the smaller stimulus range
(ABgerbils [6.0 s]: t = -3.78, p < 0.001 ; [6.75 s]: t = -3.54, p <
0.001; [7.5 s]: t = -3.01, p < 0.01, BCgerbils [9.0 s]: t = -2.76, p <
0.01; [9.75 s]: t = -3.4, p < 0.01; [10.5 s]: t = -0.95, p = 0.34 (see
Figure 3.11); ABhumans [6.0 s]: t = -0.73, p = 0.47; [7.0 s]: t = -0.49,
p = 0.63; [8.0 s]: t = -2.09, p < 0.05; [9.0 s]: t = -2.67, p < 0.05; [10.0
s]: t = -1.56, p = 0.13; BChumans[9.0 s]: t = -2.14, p < 0.05; [10.0 s]:
t = -2.19, p < 0.05; [11.0 s]: t = -1.76, p = 0.09; [12.0 s]: t = -1.18, p
= 0.25; [13.0 s]: t = -1.36, p = 0.19 (see Figure 3.12)).
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a b

*** *** **

**
**

*** *** *** *** ***

Figure 3.11: Context dependence in gerbils. The overlapping stimuli
of stimulus pair AB (blue (A) and green (B)) (a) and BC
(green (B) and yellow (C)) (b) for all animals pooled across
sessions. Mean response values (filled circles) increased
with stimulus size. The BIAS decreased with stimulus size
and was larger for the stimuli embedded in the longer
stimulus range. Same color conventions as in Figure 3.1.

The BIAS was stable or showed a limited, yet significant decrease
across stimulus size, stronger for gerbils than for humans
(ABgerbils [6.0 s]: t = -4.31, p = 1.86⇥10

-5; [6.75 s]: t = -4.46, p
= 9.22⇥10

-6; [7.5 s]: t = -4.32, p = 1.73⇥10

-5, BCgerbils [9.0 s]: t =
-3.34, p = 0.87⇥10

-2; [9.75 s]: t = -4.23, p = 2.58⇥10

-5; [10.5 s]: t
= -1.85, p = 0.06; ABhumans [6.0 s]: t = -0.42, p = 0.67; [7.0 s]: t =
-1.74, p = 0.08; [8.0 s]: t = -3.82, p = 0.16⇥10

-3; [9.0 s]: t = -3.51,
p = 0.51⇥10

-3; [10.0 s]: t = -2.51, p = 0.01; BChumans [9.0 s]: t =
-3.48, p = 0.56⇥10

-3; [10.0 s]: t = -4.65, p = 4.93⇥10

-6; [11.0 s]: t
= -2.08, p = 0.04; [12.0 s]: t = -2.22, p = 0.03; [13.0 s]: t = -4.75, p
= 3.04⇥10

-6 (Table 3.3 and Table 3.4; see Figure 3.11 and Figure
3.12).

To assess the regression and get a better understanding of
the BIAS and the slope, I analyzed the transition point
when overestimation turned to underestimation. I investigated
whether this transition point corresponded to the mean of the
stimulus distribution as predicted by Bayes (see subsection
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***
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Figure 3.12: Context dependence in humans. The overlapping stimuli
of stimulus pair AB (blue (A) and green (B)) (a) and BC
(green (B) and yellow (C)) (b) for all humans pooled across
sessions. Mean response values (filled circles) increased
with stimulus size. The BIAS decreased with stimulus size
and was larger for the stimuli embedded in the longer
stimulus range. Same color conventions as in Figure 3.1.

Stimulus

interval [s]

Pair

AB Stimulus

interval [s]

Pair

BC

6.0 -0.39 ± 1.96 0.28 ± 2.28 9.0 -0.88 ± 2.58 -0.12 ± 3.18

6.75 -0.69 ± 2.41 0.1 ± 2.43 9.75 -1.37 ± 2.64 -0.47 ± 2.01

7.5 -0.87 ± 2.16 -0.2 ± 2.3 10.5 -1.13 ± 2.86 -0.74 ± 2.73

Table 3.3: Summary of results for pair-wise comparison of the BIAS
for overlapping stimuli in animals. Mean values ± standard
deviation are given for the subset of overlapping stimuli in
range pairs AB and BC.

1.4.4) according to the central tendency effect, or if deviations
occurred. To test this, I fitted a least-squares linear regression
to the average responses of each stimulus per session. From
this fit, the BIAS was calculated and used to determine the
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Stimulus

interval [s]

Pair

AB Stimulus

interval [s]

Pair

BC

6.0 -0.005 ± 1.31 0.05 ± 1.18 9.0 -0.18 ± 1.45 0.55 ± 2.25

7.0 -0.26 ± 1.05 -0.009 ± 1.45 10.0 -0.72 ± 1.6 0.26 ± 2.14

8.0 -0.73 ± 1.29 -0.2 ± 1.18 11.0 -0.51 ± 1.6 -0.09 ± 2.03

9.0 -0.8 ± 1.81 -0.18 ± 1.44 12.0 -0.97 ± 1.92 -0.41 ± 2.5

10.0 -1.2 ± 1.71 -0.72 ± 1.6 13.0 -1.77 ± 2.2 -0.62 ± 2.16

Table 3.4: Summary of results for pair-wise comparison of the BIAS
for overlapping stimuli in humans. Mean values ± standard
deviation are given for the subset of overlapping stimuli in
range pairs AB and BC.

a b

Figure 3.13: Transition from overestimation to underestimation.
Occurrences of transition points from overestimation
(OE) to underestimation (UE) in gerbils (a) and humans
(b). Time values derived from a least-squares linear
regression fitted to the average response per stimulus size
were counted in single sessions of the tested ranges and
accumulated. Data were pooled within subject groups.
Same color conventions as in Figure 3.1.

exact stimulus value (transition point) when a change in sign
occurred.

The analysis of transition point for the animal test group
revealed that time values of 5.0 seconds to 6.0 seconds and 4.0
seconds to 4.5 seconds were encountered as transition point 6

times, each within this given range from all animals in stimulus

85



RESULTS

range A. Each possible time point within the limited range of
0.5 seconds to 1.0 seconds and 4.5 seconds to 5.0 seconds was
counted ten times as transition point within stimulus range A,
each. The main mass of occurrences was encountered for time
values around 5.0 seconds, which is only 95% of the actual
distribution mean at 5.25 seconds (Figure 3.13a). For stimulus
distribution B, the occurrences peaked at 7.0 seconds, at only
85% of the actual mean of 8.25 seconds. 89% of the actual mean
of 11.25 seconds of stimulus distribution C served as transition
point, which had its most occurrences as 10.0 seconds (Figure
3.13a).

In humans, the transition point was at only 70% of the actual
mean of 6.5 seconds, with the most occurrences at 4.5 seconds
for stimulus range A (Figure 3.13b). With approximately 80% of
the actual mean in stimulus distribution B, the most occurrences
for transition from over- to underestimation were encountered at
the time value of 7.5 seconds. In stimulus range C, the transition
point was detected at a value of 10.0 seconds, which is 80% of
the actual mean at 12.5 seconds (Figure 3.13b).

86



RESULTS

3.2 single neuron dynamics during temporal

processing of retrospective and prospective

interval duration estimates

The animals participating in electrophysiology experiments
were trained for 6-8 weeks on two well distinguishable stimuli
and afterward on a continuous stimulus distribution. Daily,
the performance was evaluated using the RMSE as well as the
presence of a positive linear correlation of stimulus time and
reproduction time. When the daily check of behavioral data
let assume that animals had understood the task structure, the
microdrive was implanted. After recovery, animals were tested
on stimulus distributions A and stimulus distribution B, with
simultaneous recording of the underlying neuronal activity.
The data obtained during electrophysiological experiments can
be split up in 3 categories: (i) Behavior only (see subsection
3.2.1), (ii) electrophysiology only (see subsection 3.2.3) and
(iii) behavior combined with electrophysiology (see subsection
3.2.4), in order to detect sources of behavior encoded by
neuronal firing.

3.2.1 Behavioral output of underlying neuronal activity

First, the pure behavior of the three animals’ subset was
analyzed to ensure that animals did estimate and reproduce
the presented time interval. Further, it was investigated whether
the neuronal substrates recorded during task execution showed
correlations.

All animals managed to learn the timing task without using
specific running patterns (example sessions shown in Figure
3.14f and Figure 3.14i). Animals showed a positive correlation
of tested stimuli with reproduced values, and behavioral data
indicated Bayesian effects like regression effect and scalar
variability, for both tested stimulus distributions A and B
(example animal shown in Figure 3.14a and Figure 3.14b).

87



RESULTS

Figure 3.14: Behavioral output during electrophysiology experiments.
Time reproductions of all sessions tested on stimulus
range A (a) and B (b) of one representative subject.
Individual reproduced values for stimulus intervals are
given as small dots, and averages for each stimulus are
depicted as filled circles. Colors identify stimulus size
within stimulus distribution and are adapted to colors
used for stimulus distributions of Figure 3.1. Parameters
like BIAS (c), SD (d),

p
BIAS2 (e), slope (g), and CV

(h) were extracted from behavioral data, analogously to
section 3.1, and compared for the two tested stimulus
distributions. Except for the CV, none of the analyzed
parameters showed significant differences between the
tested stimulus ranges. Running trajectories split by
stimulus size of one session tested in range A (f) and
another one tested in B (i) did not show characteristic
running patterns.

Behavioral parameters of SD, BIAS,
p

BIAS2, coefficient of
variation, and slope were assessed and tested for normality with
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Shapiro-Wilk test. Differences in SD, BIAS, and
p

BIAS2 for the
tested stimulus distributions were calculated by using a paired
t-test or Mann-Whitney-U test, respectively. Differences of CV
and slope for the tested stimulus distributions were determined
using an independent 2-sample t-test or Mann-Whitney-U
test.

Standard deviation. Responses of each animal were grouped
by stimulus size, and SD calculated separately for each of the
tested stimulus distributions (n = 21). Stimulus set A and B did
not show significant differences in standard deviation (A vs. B:
0.801 ± 0.165 vs. 0.798 ± 0.179, U = 220.0, p = 0.5; Figure 3.14d)

BIAS and
p

BIAS2. BIAS was calculated as the average of
biases for all responses, grouped by stimulus size for each
animal individually, and accordingly assigned to stimulus
distribution (n=21). Similarly, the

p
BIAS2 was calculated for

each stimulus size and animal and assigned according to the
stimulus distributions tested (n = 21). Significant differences
were only observed for BIAS (A vs. B: 0.008 ± 0.409 vs. -0.131

± 0.366, t = 3.438, p < 0.01; Figure 3.14c), but not for
p

BIAS2 (A
vs. B: 0.899 ± 0.211 vs. 0.8841 ± 0.229, t = 0.407, p = 0.688; Figure
3.14e).

CV. The coefficient of variation was calculated session-wise.
Data was tested on normality, and depending on the outcome,
further analyzed with Mann-Whitney-U test or independent
2-sample t-test. The CV showed significant differences across the
tested stimulus sets (A vs. B: 0.256 ± 0.027 vs. 0.172 ± 0.025, U
= 191.0, p < 0.001; Figure 3.14h).

Slope. The slope was calculated analogously to CV, but in
contrast did not show significant differences between stimulus
sets A and B (A vs. B: 0.761 ± 0.125 vs. 0.766 ± 0.03, U = 3867.0,
p = 0.5; Figure 3.14g).
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3.2.2 Unit classification

A total of 4109 well-isolated single units were extracellularly
recorded from three animals, in 50-65 sessions for each animal,
along the dorsoventral axis of the mPFC. Unit signals were
isolated by manual cluster cutting, as described in subsection
2.6.3. Recorded unit signals were classified into putative
pyramidal cells and putative interneurons based on mean
discharge rate and spike width (see Figure 3.15a). Both types
of neurons were included in the analyses. Those neurons
with a mean firing rate < 6.44 Hz and a spike width > 0.4
ms were classified as putative pyramidal cells (PC; n = 728,
17.7%), and the remaining cells were classified as putative
interneurons (IntN; n = 3381, 82.3%). However, as this result
appeared unrepresentative compared to literature, I tried an
approximation of cell classification by using a firing rate limit
of 8.8 Hz and a width limit of 0.28 ms, as reported by Kim et
al. (2013). With this approximation, the obtained classification
yielded a populational majority of PC (n = 2975, 72.4%) in
comparison to IntN (n = 1134, 27.6%).

3.2.3 Activity profiles of individual neurons

I successfully targeted all subregions of the mPFC and recorded
a portion of 0.4% (n = 16) from subarea M2, 34.1% (n =
1401) from subarea Cg1, 23.1% (n = 949) from Cg2, 41.6%
(n = 1710) from PrL, and 0.8% (n = 33) from IL (Figure
3.15b). Only cells with a total number of spikes > 100 were
included. Only those units with a mean firing rate of 0.3 Hz
were subject to further analysis. Therefore, the obtained cell
population included all types of putative cells, homogeneously
collected from all subareas of mPFC, but was not divided
by either category for successive analysis. Diverse types of
neuronal activity profiles were observed for retrospective and
prospective interval duration estimates (Fig. 3.16 - Fig. 3.18). Of
these, the most abundant type was a monotonically changing
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activity profile (“ramping activity”) (Fuster, 1991; Durstewitz
and Seamans, 2006), represented by many neurons which
gradually increased or decreased their activity over time.

( )
(< )

a b

Figure 3.15: Cells recorded from subregions of the mPFC. (a) Unit
classification. Recorded units (n = 4109) were classified
into two groups based on the mean discharge rate and
spike width. Those neurons with a mean firing rate < 6.44

Hz and spike width > 0.4 ms were classified as putative
pyramidal cells (PC; n = 728, 17.7%), and the remaining
cells were classified as putative interneurons (IntN; n =
3381, 82.3%). An approximation with specified values of
8.8 Hz and 0.276 ms, as reported by Kim et al. (2013),
classified 2975 cells (72.4%) as PC and 1134 cells (27.6%)
as IntN (adapted classification not shown). A Gaussian
mixture model was used for cell classification, which
identified two populational clusters. (b) Overview of cell
portions recorded from targeted subareas of the mPFC.

For each neuron, the whole spike train of a recording session
was time-sliced into the individual trials and sorted according
to each presented interval duration (n = 7). Each resulting spike
raster was aligned to session events of measurement onset,
measurement offset, reproduction onset, and reproduction
offset to evaluate the resulting peri-stimulus time histograms
(see subsection 2.6.5). Thereby, activity profiles, present at
the beginning and the end of the two task phases, could
be evaluated to investigate the neural code underlying time
estimation.

Among the recorded cells, I could identify subgroups of
neurons with differentiated firing for the individual phases of
the timing task: measurement, reproduction, and evaluation
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phase, introduced as ITI in subsection 2.3.2. The present activity
profiles of each subgroup will be introduced in the following.
However, besides the modulated activity profiles, cells also
showed sustained firing across task phases, which indicated
no involvement of these cells in the process of time encoding
during retrospective and prospective duration estimation (see
Figure 6.8 in Appendix).

3.2.3-I. Neurons show modulated activity in measurement

phase

The first presented group of neurons showed modulated activity
during the measurement phase. This activity profile class can
be subdivided into cells that differed in their average firing
activity during measurement from reproduction, and cells,
which additionally showed integration of the presented stimulus
size during measurement.
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a

b

Figure 3.16: Different mean firing rate during measurement and
reproduction. Spike raster plots and PSTHs (� = 100 ms)
are shown for mPFC example neurons, recorded during
interval timing in stimulus distribution A (a) and stimulus
distribution B (b). A subset of cells showed a higher mean
discharge rate in measurement vs. reproduction (b), or a
lower mean discharge rate in measurement phase than
in reproduction phase (a). Colors identify stimulus size
within the distribution (cf. Figure 3.14a and Figure 3.14b).
Each row represents one trial. Trials were sorted according
to the length of the sampled interval and aligned to
measurement onset, measurement offset, reproduction
onset, and reproduction offset. Color shaded areas in
raster plots mark the respective phase in each trial.
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a1

a2

b1

b2

Figure 3.17: Tonic activity modulation during measurement and
reproduction phase. Spike raster plots and PSTHs (� =
100 ms) are shown for mPFC example neurons, recorded
in stimulus distribution A (a1 and b1) and B (a2 and b2).
Diverse combinations of non-monotonic with monotonic
activity during measurement and reproduction could be
observed e.g., a monotonic activity increase in MP with
monotonic activity decrease in RP (a1), a monotonic
decreasing activity in MP with monotonic increasing
firing in RP (a2), or non-monotonic activity in MP and
RP at different average discharge rates (b1), or even no
activity in MP with non-monotonic firing in RP (b2).
Colors identify stimulus size within the distribution as
shown in Figure 3.16.
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Average firing rate differs in measurement and reproduction.
The majority of cells showed a mean firing at different
rates during measurement and reproduction. A higher mean
discharge rate in measurement vs. reproduction was present
as well as a lower mean discharge rate in measurement than
in reproduction phase. Various types of activity combinations
in measurement and reproduction were observed within this
cell type due to high diversity: cells with non-monotonic
activity in measurement and a modulated activity profile during
reproduction and vice versa (Figure 3.16) Also, non-monotonic,
or monotonic activity to different extents in both, measurement
and reproduction were present (Figure 3.17). Within this
population, a subset of neurons showed differentiated activity
by the size of the presented stimulus.

Stimulus encoding during measurement phase. Although a
vast number of observed activity patterns during measurement
phase did reflect a uniform activity profile for the tested
stimulus intervals, a subpopulation of cells, which adapted
their firing according to the size of the presented stimulus,
was identified. Here, two types of activity adaptations were
observed: 1) The firing rate adapted to stimulus size over the
entire measurement phase (Figure 3.18a and Figure 3.18b), and
activity terminated at equal discharge rate levels for all stimuli.
2) The overall activity pattern was congruent for the individual
stimulus sizes, but terminated at different levels of discharge
rate towards the end of the measurement phase, and thereby
represented stimulus size (Figure 3.18c and Figure 3.18d).
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a

b

c

Figure 3.18: Stimulus integration during measurement phase. Spike
raster plots and PSTHs (� = 100 ms) are shown for mPFC
example neurons, recorded for stimulus distribution A
(a and c) and B (b). Cells integrated the length of
the presented stimulus by adapting the intensity of
their firing to the presented stimulus size. The activity
was adapted over the entire measurement phase and
terminated with converging activity profiles towards the
end of the measurement phase (a and b). Stimulus size
was represented by an overall congruent activity for the
individual stimuli, but the discharge rate adapted to the
stimulus size towards the end of the measurement phase
(c). Figure conventions are as depicted in Figure 3.16.

96



RESULTS

3.2.3-II. Modulated activity in reproduction phase

Temporally fixed activity in reproduction. A particular
subset of cells exhibited firing at a fixed time point throughout
the reproduction phase. This activity pattern was reflected by
either one single peak right at the beginning of reproduction,
or represented by a single peak right at the beginning of
reproduction, followed by a second smaller peak a few seconds
after (Figure 3.19). The width and height, as well as the center
of the second peak, varied in the found examples. The activity
profile did not show any adaptations to stimulus size, e.g., no
adaptation of the mean firing rate to stimulus size, nor was the
time course of the activity pattern compressed or stretched. This
activity pattern was observed in both tested stimulus ranges
A and B. However, this activity profile was only present in
reproduction but not in measurement.

a

b

Figure 3.19: Examples of individual neurons exhibiting a temporally
fixed activity. Spike raster plots and PSTHs (� = 100 ms)
are shown for mPFC example neurons, recorded during
interval timing in stimulus distribution A (a) and B (b).
Colors identify stimulus size within the distribution (cf.
Figure 3.14a and Figure 3.14b). Figure conventions are as
depicted in Figure 3.16.
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a

b

Figure 3.20: Examples of individual neurons responding with
monotonic decreasing activity during reproduction. Spike
raster plots and PSTHs (� = 100 ms) are shown for
mPFC example neurons, recorded during interval timing,
tested in stimulus distribution A (a) and B (b). Gradually
decreased activity profile resulted in a ramp-like PSTH,
which span the entire reproduction phase (b) or only
fractions of it (a). Colors identify stimulus size within
the tested distribution (cf. Figure 3.14a and Figure 3.14b).
Figure conventions are as depicted in Figure 3.16.

Ramping activity. The most frequently observed activity
profile during reproduction was a monotonic response pattern,
in which activity gradually increased or decreased over time.
These ramps occurred in a multi-faceted fashion, e.g., appeared
at the beginning, or the end of reproduction, and also could
span the entire reproduction phase (Figure 3.20b), or only
fractions of it (Figure 3.20a). Although this type of activity
pattern was most abundant in reproduction phase, it was
also observed in measurement phase (Figure 3.18d). Here,
the ramping effect was rarely as strong as in reproduction
and was hence described as monotonic activity in contrast.
Other cells exhibited ramp-like activity and responded with an
extraordinary feature. They adapted the time course of their
response profile to the length of the stimulus or, as seen during
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measurement phase, modulated their firing activity according
to stimulus size.

a1

a2

b

Figure 3.21: Representative neurons exhibiting scaled activity profiles
dependent on stimulus size. Spike raster plots and PSTHs
(� = 100 ms) are shown for mPFC example neurons,
recorded during interval timing, tested in stimulus
distribution A (a1 and a2) and B (b). Cells changed
the time course of their firing pattern, which affects the
speed of the up-ramping activity towards the end of the
reproduction phase. The build-up rate correlated with
stimulus size. Colors identify stimulus size within the
tested distribution (cf. Figure 3.14a and Figure 3.14b).
Figure conventions are as shown in Figure 3.16.
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Stimulus-dependent integration in reproduction. A selected
response type found in the ramping profiles adapted the time
course of their activity pattern to the stimulus’s length, i.e.,
by scaling their response. This feature was represented by the
activity profile being stretched or compressed for the individual
tested stimulus intervals. At the end of the reproduction
phase, activity strength was comparably high for all tested
stimulus intervals tested in the stimulus distribution. This
temporal scaling resulted in a change of time to establish
the ramp and thereby an adapted steepness (slope) of the
ramp (Figure 3.21). Follow-up analysis should show whether
the build-up of the ramp correlated with stimulus size. As
a second extraordinary response type during reproduction,
cells continuously represented stimulus size with a graded
magnitude of neural activity, reflected by the average firing
rate being correlated with stimulus size. Positively correlated
relationships were found (Figure 3.22), as well as firing rates
negatively correlated with stimulus size.
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a

b

c

d

Figure 3.22: Integration of stimulus size during reproduction phase.
Spike raster plots and PSTHs (� = 100 ms) are shown for
mPFC example neurons, recorded during interval timing,
tested in stimulus distribution A (a and b) and B (c and
d). Cells integrated the length of the presented stimuli
by changing the magnitude of firing relative to stimulus
size over the entire reproduction phase, which resulted in
different magnitudes of firing at the end of the response.
Small time stimuli were encoded by lower firing rates, in
contrast to large stimuli, represented with high firing rates,
and likewise vice versa. Figure conventions are as shown
in Figure 3.16.
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3.2.3-III. Reward encoding during ITI

Although previously described activity profiles might be the
source which lead to success or not by reflecting the underlying
process of timing, neural information conveyed during ITI might
give rise to the intrinsic evaluation of performance and how
reward is encoded.

mPFC neurons modulate activity during ITI. A subset of
cells presented firing rate modulations and adaptations of
activity patterns, possibly reflecting the reward’s meaning.
Some cells did show no activity at all. Thus, they did not
contribute to the encoding of reward. Other cells, in contrast,
did modulate their activity towards the evaluation phase,
e.g., drastically increased their firing at the transition of the
reproduction phase to ITI (Figure 3.23a and Figure 3.23c, or
increased their firing during the evaluation phase (Figure 3.23b).
Nevertheless, a steady activity profile for all tested stimuli and a
relative to stimulus duration gradually adapted activity profile
was observed.

3.2.4 Neural correlates of behavior

Multiple firing rate combinations during measurement phase
and reproduction phase were present in the recorded cell
population. Nevertheless, the combinations per se did not give
information about if, and to which extent, the activity might be
correlated with timing processes or correlates with behavioral
parameters. In order to investigate this issue, activity profiles
of the subpopulations were assessed. To evaluate the activity
differences, a modulation index (MI) was calculated (see section
2.6.6). The modulation index identified the cell populations,
responding with pronounced activity in either measurement
or reproduction. Additionally, with the help of the modulation
index, modulated activity in each of the phases was detected.
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a

b

c

Figure 3.23: Encoding of reward phase. Spike raster plots and PSTHs
(� = 100 ms) are shown for mPFC example neurons,
recorded in test sessions of stimulus distribution A (a
and b) and B (c). Cells increased activity towards the
onset of ITI (depicted right-side to reproduction offset),
whereas activity during reproduction was clearly reduced.
Change in activity appeared towards reproduction offset
and excludes activity solely based on noise from eating.
Figure conventions are as shown in Figure 3.16.

Therefore, the two non-overlapping periods encompassing the
first third and the last third of the stimulus-wise PSTH
were compared. The firing rate difference was tested using
a paired t-test or Wilcoxon-test. Cells, yielding test statistics
of p < 0.05, were considered to be significantly modulated
during the time estimation period. The resulting MI was used
to classify the modulation profile (monotonic increase (+1),
monotonic decrease (-1), or nonmonotonic changes (0)) during
the time-estimation periods.
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Significantly different firing in measurement phase compared
to reproduction phase was found in almost two-thirds of
the cells (n=2342, 57%) (Figure 3.24, row c). Approximately
the same portion of cells showed higher average firing in
measurement phase than in reproduction phase and vice versa
(Figure 3.24c

2

). 25% of this cell population exhibited monotonic
activity in reproduction, and 19% modulated their activity
monotonically during measurement (Figure 3.24b

3

). Fewer cells,
i.e., only 22% (n = 904) showed significant differences in activity
when the last and the first third of measurement phase were
compared (Figure 3.24, row b). The histogram of the modulation
indices indicates, that higher activity was preferably observed
towards the end of the measurement phase (Figure 3.24b

2

). 16%
and 17% of the measurement-active subpopulation responded
with monotonic activity (Figure 3.24b

3

). The majority of the
recorded cells (70%, n = 2876) showed modulated activity
during reproduction (Figure 3.24, row a). Of these, increased
activity was observed towards the end of the reproduction phase
compared to reproduction onset (Figure 3.24a

2

). Comparably,
only a small fraction of 18% and 25% responded with monotonic
activity during the reproduction, either at the start or the end of
the phase (Figure 3.24a

3

).
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Figure 3.24: Neuronal activity during measurement phase and
reproduction phase. The majority of cells showed
modulated activity in reproduction phase (RP) (a1).
Here 70% (n = 2876) of all recorded cells significantly
modulated their activity during reproduction (a2).
However, only a small fraction of 18% and 25% exhibited
monotonic activity at the beginning and the end of
reproduction phase (a3). Only 22% (n = 904) showed
significant differences (b1 and b2) in activity when the
last and first third of measurement phase (MP) were
compared. Monotonic activity was visible in 16% and 17%
of the subpopulation modulating activity in measurement
phase (b3). More than half of the cells (n=2342, 57%)
exhibited significantly different firing in measurement
phase compared to reproduction phase (c1 and c2).
The portion of cells exhibiting higher firing rates in
reproduction (MI: 0 to 1) phase was comparably similar
to those cells which responded with enhanced activity
in measurement phase (MI: -1 to 0). 25% of this cell
population exhibited monotonic activity in reproduction
phase, and 19% modulated their activity monotonically
during measurement phase (c3).
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Integration of stimulus size. In the recorded population,
some cells adapted their activity during the time estimation
period and thereby integrated the stimulus size in two different
manners: a) Single cells integrated the size of the presented
stimulus by adapting the overall magnitude of firing during the
reproduction phase. b) Others adapted the time course of their
activity profile during reproduction to the size of the presented
stimulus. These two different kinds of stimulus size integration
during reproduction were further analyzed in the upcoming
subsection. A detailed analysis should verify the hypothesis that
cells encode stimulus time by their firing magnitude. Therefore,
cells responding with ramping activity during reproduction
phase were sorted, and the obtained subpopulation split into
up-ramping cells and down-ramping cells.

I found that 1456 (35.42%) neurons of the recorded population
exhibited higher average firing rates for small stimulus intervals
in comparison to large stimuli, which were represented with a
low mean discharge rate (Pearson’s r = -0.103, p = 0.002; Figure
3.25a). Another subset of 1692 cells (41.17%), responding in a
positively correlated manner for stimulus size and average firing
rate, was identified. Here, the average discharge rate scaled
positively with the represented time interval (Pearson’s r =
0.098, p = 0.002, Figure 3.25c). However, significance was not
detected for cells tested in stimulus distribution B, although
they encoded the stimulus size in the same fashion (decreased:
Pearson’s r = -0.067, p = 0.127; Figure 3.25b and increased:
Pearson’s r = 0.065, p = 0.103, failed to reach significance; Figure
3.25d). In contrast, during measurement, this stimulus-related
activity was less observed. Here only 749 (18.22%) responded
with decreased firing to increasing stimulus size, and only 805

cells (19.53%) increased their firing with increasing stimulus size,
accordingly.

Further, only up-ramping cells with modulated "build-up rate"
property, i.e., adapted speed of the up-ramping activity to
stimulus size, were analyzed. The build-up rate was calculated
as the stimulus-wise PSTH signal divided by the corresponding
PSTH time, thereby giving information about the increase’s
slope. The slope was calculated by fitting a linear least-squares
regression to the PSTHs of each stimulus size and their
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a b

c d

Figure 3.25: Stimulus size is encoded in average firing rate. Cells
showed significant differences in firing rate for the tested
stimulus intervals. A negative (a and b) as well as a
positive (c and d) relationship of average firing rate
with stimulus size was observed. The magnitude of
the average firing rate scaled with presented stimulus
size: small stimuli were encoded with low average firing
compared to large stimulus intervals, especially for the
tested stimuli presented in distribution A (Pearson’s r
= 0.098, p = 0.002). The positive correlation for tested
values with the firing rate in stimulus distribution B did
not reach significance (Pearson’s r = 0.065, p = 0.103).
Equivalently, the negative correlation of average firing rate
with stimulus intervals, tested in the distributions A and B,
was similarly strong pronounced (A: Pearson’s r = -0.103,
p = 0.002; B: Pearson’s r = 0.067, p = 0.127, failed to reach
significance.

corresponding average firing rates. Cells were assigned to have
the build-up rate property if the Spearman’s coefficient was
significant for the correlation of stimulus size and its average
firing rate.
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Figure 3.26: Correlation of firing rate with ramping speed. The speed
of ramping activity strongly encoded the size of the tested
stimulus intervals for single cells (data not shown). This
effect reduced when observed on a populational level.
Two types of ramping speed adaptation of were found in
the population. Stimulus size was either represented with
increased ramping speed for long intervals (a and b) (A:
Pearson’s r = 0.043, p = 0.709; B: Pearson’s r = 0.067, p
= 0.736) or encoded by reduced ramping speed for long
stimulus intervals (c and d) (A: Pearson’s r = -0.002, p =
0.961; B: Pearson’s r = -0.066, p = 0.295).

Analogously to the adaptation of firing rate to stimulus size,
two different response patterns regarding the speed of the
up-ramping activity for increasing stimulus size, were found.
A minority of 105 cells (2,55%) did increase the speed of the
ramp with increasing stimulus size. This observation was not
significant in none of the two tested stimulus distributions (A:
Pearson’s r = 0.043, p = 0.709; B: Pearson’s r = 0.067, p = 0.736;
Figure 3.26a and Figure 3.26b). A small portion of 791 cells (n
= 19,24%) decreasing the speed of their ramp up activity with
increasing stimulus size was detected. However, effects were
rather small (A: Pearson’s r = -0.002, p = 0.961; B: Pearson’s r
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= -0.066, p = 0.295, Figure 3.26c and Figure 3.26d) when the
total number of build-up-modulated cells was tested. Single-cell
examples did impressively represented this adaptation to the
speed of the ramp (see Figure 3.21).

Cells with the build-up property, exhibited a uniform activity
pattern, for the different tested time stimuli. The activity profiles
only differed by the signal traces being stretched or compressed
on the time axis. Further analysis quantified the temporal scaling
property by the best temporal scaling factor. The best scaling
factor was calculated as the scaling factor, given the minimum
difference after scaling between the smallest presented stimulus
interval and the consecutive stimuli. Therefore, the average
PSTH of each consecutive stimulus size using scaling factors
from 0.2 to 1.25, with boundaries defined by sample length, was
linearly compressed (Figure 3.27a and Figure 3.27b). The MSE of
each stimulus-wise PSTH to the PSTH of the smallest presented
stimulus was assessed using the following equation:

MSE(f) =
1

n

i=1X

n
[PSTHminStim(ti)- PSTHStim(f ⇤ ti)]

2 (3.1)

The scaling factor f, which resulted in the minimum MSE, was
taken as the best scaling factor (Figure 3.27a and Figure 3.27b).
Cells with a significant correlation of scaling with stimulus size
were included in analysis.
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REPRODUCTIONMEASUREMENT

a b

c d

e f

g h

Figure 3.27: Temporal scaling represents stimulus size. The best
scaling factor for each presented stimulus size (a)
was determined by calculating the minimum MSE for
temporally scaled PSTH signals (b), with factors of 0.2
- 1.25. The best scaling factors decreased with stimulus
size (c and d) and complied with predicted scaling factors
obtained from the calculated ratios of minimum and
tested stimulus intervals (e and f). Scaling preferably
occurred towards the end of the reproduction phase (h),
but not in measurement phase (h). Color conventions are
as shown in Figure 3.14a and Figure 3.14b.

A total of 2340 cells (56.9%) showed significant temporal scaling
of their activity profile during the timing task. The scaling
factors significantly decreased for large stimulus intervals in
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both tested stimulus distributions (stimulus range A: Pearson’s r
= -0.497, p < 0.001; stimulus range B: Pearson’s r: -0.597, p <0.001;
Figure 3.27c and Figure 3.27d). However, the averaged best
scaling factors for each time stimulus in distribution A and B did
not differ significantly (t = -1.21, p = 0.25). Actual scaling factors
were correlated with the predicted scaling factors, calculated
from the ratio of the smallest stimulus size and the consecutive
large stimuli, each, to test if scaling factors follow prediction.
The data did not show a perfectly veridical match. Instead,
actual scaling factors were larger than prediction. Deviation
from predicted values was small, and the distribution of scaling
factors peaked between 0.4 and 0.8 for stimulus distribution
A and peaked between 0.6 to 0.9 for stimulus distribution B.
Despite the deviation, the results obtained corresponded to
the prediction in either stimulus distribution (Figure 3.27e and
Figure 3.27f). Deviation from prediction was comparably smaller
for stimulus distribution B than for stimulus distribution A.
To compare scaling in measurement phase and reproduction
phase, I looked at the scaling factors in both time-related phases,
with alignments on phase onset and phase offset. Scaling was
preferably found in reproduction phase (Figure 3.27g), than
in measurement phase (Figure 3.27h). Additionally, the scaling
appeared more pronounced towards the end, in both phases
(Figure 3.27h).

Neural correlates of reward. To gain insight into how the cells’
population activity reflected and represented the outcome of the
animal’s decisions, i.e., the interaction with the environment, I
focused on the time after the reproduction. I investigated if the
quality of the response, i.e., being rewarded or not, considering
tested stimulus size, was correlated with the neural activity. To
investigate this issue, I focused on cells that showed activity
during ITI compared to reproduction phase. The following
analyses were hence performed on the 3.5 seconds time period
from the end of the reproduction phase till right before the
start of the next trial. Only cells with an overall firing rate
> 0.3 Hz were included in analysis. As a second refinement,
only cells with a mean firing rate > 0.3 Hz, specifically during
ITI (n = 3610; 87.67%), were subject to analysis. I examined,
whether precision and accuracy of response were encoded
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during ITI or reproduction. Therefore, the correlation of firing
rate and behavioral outputs of time estimation of individual
trials was assessed in quantitative analysis. For each animal,
the session-wise correlation of firing rate with the behavioral
response-time parameter BIAS was evaluated. The average firing
rate of each trial during ITI was extracted and related to the
behavioral parameter’s deviation value from the mean value
per tested stimulus size. Thereby, the obtained results were
evaluated considering the "internal settings" of the animal
during this session, i.e., the attentional state, motivation, or
prior knowledge of the tested stimulus distribution. However, a
negative or positive bias, and also the strength of it, does not give
information about the time reproduction’s success. The success
of performance, i.e., the encoding of time reproduction success,
was evaluated by assessing the neural activity during ITI, further
subdivided by rewarded ("hits") and non-rewarded ("non-hits")
trials.

The results show that a wide range of firing magnitudes applied
for small biases, whereas the variety of activity magnitudes
decreased with the increasing values of absolute bias. This
observation was captured by the triangular distribution of the
data shown in Figure 3.28. The data showed a slight right-sided
inclined asymmetry, indicating that overestimation, resulting in
a negative value for the mean bias of stimulus s minus the
actual bias of the trial, is represented with lower firing, in
contrast to underestimation (Figure 3.28a and Figure 3.28c). The
subdivided BIAS, sorted by "hits" and "nonhits" revealed, that
regardless of over- or underestimation, the reward modality was
encoded and processed with a higher firing rate for "hits", in
contrast to "nonhits" (Figure 3.28b and Figure 3.28d). However,
activity during ITI was not significantly correlated with stimulus
size, neither for "hits", nor for "nonhits" (hitsA: Spearman’s ⇢ =
0.29, p = 0.53; hitsB: Spearman’s ⇢ = -0.68, p = 0.09; nonhitsA:
Spearman’s ⇢ = -0.28, p = 0.53; nonhitsB: Spearman’s ⇢ = -0.14, p
= 0.76).

The session-wise standard deviation for each presented stimulus
interval was correlated with the cells’ average firing to check if
the scalar property of timing was represented in the neuronal
activity. Additionally, I investigated if neuronal firing reflected
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Figure 3.28: Encoding of performance during ITI. Small biases were
encoded with a wide range of activity magnitudes,
whereas the variety was reduced for large biases. Higher
activity was preferably exhibited for small biases (a
and c). High overall activity was observed for "hits" (a
and b) compared to "nonhits"(c and d). Overestimation,
in contrast to underestimation, was represented with
low firing rates, as depicted by the right-side inclined
asymmetry of the data for "hits" and "nonhits".

regression effects. Therefore, the
p

BIAS2 for each presented
stimulus was calculated and the resulting data analyzed for
correlation with the average firing rate. The parameters SD andp

BIAS2 were calculated in relation to the sessions’ mean of the
respective parameter for each animal and session.

The assessed parameter of
p

BIAS2 drew a similar picture
as the assessment of the BIAS for all stimuli . A huge
variety of firing magnitude was observed for small values
of

p
BIAS2 in comparison to large ones (Figure 3.29a and

Figure 3.29b). The variety of firing magnitudes decreased with
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Figure 3.29: Regression strength but not SD is encoded during
ITI. Small activity magnitudes potentially represented
strong regression compared to weak regression, which
in contrast, was encoded with a wide range of activity
magnitudes (a and b). Stimulus-wise firing rate was
correlated with the stimulus-wise absolute behavioral
parameter

p
BIAS2 in stimulus distribution A (c

1

) and
B (c

2

), but had no significant effect. The behavioral
parameter SD was analyzed analogously, and likewise did
not correlate with activity strength nor correlated with
tested stimulus size in stimulus distribution A (f

1

) or B
(f

2

). Instead, preferably higher activity was observed for
values matching the referenced session mean (d and e).

increasing
p

BIAS2. Data evaluation of the parameter
p

BIAS2,
reflected that strong regression was preferably encoded with
low activity, whereas weak regression was represented with a
vast number of activity magnitudes (Figure 3.29a and Figure
3.29b). The stimulus-wise correlation of activity with

p
BIAS2

in the tested stimulus distributions did not reveal a significant
difference in firing magnitude (Figure 3.29c

1

and Figure 3.29c
2

).
However, it supports the impression of increased activity for
small values of

p
BIAS2. Quantitative analysis of SD also

reflected a triangular distribution of the data (Figure 3.29d).
Generally, a small SD, referenced to the session’s mean, and
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thereby resulting in positive values, as well as a large SD,
resulting in negative values, were not specifically encoded by
the magnitude of activity (Figure 3.29d). Instead, deviation
from the session-wise reference, potentially shaped by internal
parameters, was encoded in the magnitude of activity, which
was reflected by the accumulation of large activity magnitudes
up to 80 Hz (Figure 3.29e.) The correlation of activity magnitude
with the strength of SD did not reveal a significant effect for
stimulus sizes in stimulus range A and B (Figure 3.29f

1

and
Figure 3.29f

2

).
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4
D I S C U S S I O N

The first goal of this thesis was to establish a time estimation
task for physiological recordings in gerbils, which can be used
to investigate on the behavioral effects of interval timing. To
this end, I developed a production-reproduction procedure (a
modified "ready-set-go" timing task) that required retrospective
and prospective time estimation. This paradigm could be used
in a virtual environment for humans and rodents alike. As a
second objective, activity profiles occurring were evaluated and
it was analyzed whether estimation performance during the
timing task was represented by the neuronal response.

4.1 the behavior of interval timing

With the present study, I aimed to investigate the characteristic
biases namely, regression effect and range effects, in the
estimation of the magnitude of temporal stimuli. I used a
retrospective-prospective combining behavioral paradigm,
in which subjects, first estimated and then reproduced
the elapsed time, while moving in a virtual environment.
Experiments were performed with six human adults and seven
rodents. As a central finding, regression effects were found for
gerbils and humans. Both groups showed stronger regression
effects for large stimulus ranges compared to small stimulus
ranges. However, the overall differences were rather small.
The gerbil’s reproduced intervals showed greater variability
than humans, and therefore the increased regression effect
appeared to be more pronounced with larger stimulus sizes in
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humans compared to gerbils. The animals showed increased
heterogeneity in reproductive performance, so the effect of
regression on the mean was not as pronounced. Nevertheless,
the average performance of the animals was quite high overall.
The weak regression effect in large magnitudes might have
appeared as a phenomenon, resulting from "over-training".
Ellard et al. (1984) and also Legg and Lambert (1990) reported
the absence of regression to the mean when animals were
trained over a long period of time with a large number of
training sessions. Whereas the behavior of the rats showed
regression to the mean at the beginning of the training for a gap
jump task with different gap sizes. The weak regression effect in
the human data possibly resulted from pooling the populational
data and thereby canceled out individual differences between
the tested distributions. Because half of the people performed
almost perfectly with appropriate time estimation and showed
an exact time estimate. Whereas in contrast, the performance
of the participants included in the other half was rather weak.
Modality effects and individual differences are well known
in literature of interval timing (Shi et al., 2013). Cicchini et al.
(2012) showed that percussionists precisely reproduce temporal
intervals and display feeble regression effects in contrast to
normal subjects. Indeed, one of the human participants also
played a musical instrument and responded with veridical
time estimation. Internal and external factors influence the
ability to discriminate physical stimuli. An internal factor is
quantified by the so-called signal-to-noise ratio (SNR), which
inversely corresponds to the Weber fraction. It was shown
that Weber fractions depend on the stimulus modality and are
subject-specific (Kautzky and Thurley, 2016).

4.1.1 Advantage of using virtual reality

Since the first reports of successful application of VR for rodents
(Hoelscher et al., 2005; Dombeck et al., 2007), VR setups became
very popular. This popularity is primarily due to the fact that
VR setups enable the use of advanced recording techniques in
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behaving animals, such as intracellular recordings (Harvey et
al., 2009; Domnisoru et al., 2013; Haas et al., 2019), or optical
imaging of neuronal populations (Harvey et al., 2012; Keller et
al., 2012). The behavioral paradigms in use, however, are usually
very limited. Time estimation and time perception are generally
investigated by using peak-procedures, forced choice tasks,
or symbolic matching-to-sample tasks (Jazayeri and Shadlen,
2015). Nevertheless, some studies already used paradigms
implemented in VR, e.g. two-alternative-forced choice tasks in
rodents (Harvey et al., 2012; Thurley et al., 2014; Kautzky and
Thurley, 2016). These implemented paradigms have been used
to measure psychometric functions of time and other stimulus
sizes. So far, time estimates in the supra-second time range of
rodents have only been reported bases of ordinal judgments, but
not on continuous scales (Cordes and Meck, 2014). My study
was particularly characterized by the fact that it successfully
implemented a time estimation task on a continuous scale, in
which rodents learned rule-based responding, and applied the
learned on a broad range of temporal durations in VR.

4.1.2 Context and range effect

The results of the conducted experiments with humans
and animals showed that the same stimuli tested led, on
average, to different responses when embedded in different,
but overlapping stimulus distributions. Estimates of stimuli
thus depend on the stimulus context, or the environment’s
statistics (Jazayeri and Shadlen, 2010). The occurrence
of context-dependency has been shown in experiments
probing interval timing in the sub-second range (Jazayeri and
Shadlen, 2010) and experiments testing for distance estimation
(Petzschner and Glasauer, 2011; Petzschner et al., 2012) in
humans. Jazayeri and Shadlen (2015) showed that regression
effects exist in animals, but not that the central tendency
toward the mean increases with stimulus magnitude. Especially
overlapping stimulus ranges, the phenomenon of increasing
regression quantifies the range effect. In my study, I could
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show that the range effect is present in time estimation of
gerbils and humans. The mean response values for the tested
stimuli were always larger when presented in the large stimulus
distribution compared to being presented in the short one.
The stimulus’ pair-wise comparison of the signed bias in the
tested stimulus distributions revealed an increased absolute
bias for the stimuli embedded in the large than in the small
stimulus distribution. This finding indicates that the same
durations were preferably underestimated if they represented
the comparatively large stimuli within the distribution. Whereas
they were overestimated if they were considered small stimuli
within the range tested. This finding emphasizes that magnitude
estimates are not solely influenced by internal factors. These
results demonstrate how stimulus statistics influence magnitude
judgments, and hence how subjects adapt to the environment.
In section 1.5, I raised the question, how the boundary for
perceptual categories in time estimation might be classified.
The results of the analysis on context-dependency suggest
that there is an adaptive instead of a fixed boundary. On
the one hand, the same stimuli were underestimated when
embedded in a small stimulus range, but on the other hand,
were overestimated when presented in a large stimulus range.
This finding indicates that the perceptual categories applied for
time estimation follow the Bayesian framework. However, the
further analysis did reveal that in most cases, it was not the
mean of the tested stimulus distribution, which turned out to
be the transition point from over- to underestimation. In some
animals, there was no transition at all. However, some gerbil
subjects underestimated all stimuli, especially in the largest
stimulus range C. Again, also here the Bayesian framework
comes into play: One hypothesis could be, that the animal’s
prior was set such, that all stimuli presented in the largest
stimulus range were underestimated because the "mean in
mind" was smaller as the true mean for the tested stimulus
range. In this case, the consecutive trials within the single
sessions or even across all sessions for this test distribution
were not sufficient to update the prior (’mean in mind’) to
the current stimulus range. Another hypothesis could be that
the animal had an entirely updated prior but operated on a
minimum-cost - maximum profit strategy: "How much can I
risk but still save energy, to get maximum reward under known
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constraints"? The overall underestimation could also be partly
driven by error minimization due to uncertainty and partly
by a minimum-cost vs. maximum-profit strategy. Nevertheless,
the mathematical mean of the tested stimulus range could not
be identified as crux of the matter. The transition point from
overestimation to underestimation was different not only across
the individual subjects of one species but also across the several
sessions within one tested stimulus range for each subject.

4.1.3 Bayesian integration of temporal judgments

Statisticians have known for centuries that Bayesian integration
is the optimal strategy for handling uncertain information.
When we are uncertain about something, we automatically rely
on our prior experiences to optimize behavior (Jazayeri and
Shadlen, 2010; Petzschner and Glasauer, 2011; Cicchini et al.,
2012; Petzschner et al., 2015). Even subjects that can reliably
perform at magnitude estimation show remaining errors. These
are due to uncertainties from the stimulus statistics that can
not be controlled by the subject. However, these statistics define
the lower limit of error, represented in the subject’s responses.
The stimulus statistics can be quantified by the ratio between
the mean and the variance of the stimulus distribution and
can be classified as external uncertainty e.g., stimulus context.
The regression effect counteracts this uncertainty by treating
different stimuli similar to the mean of the tested stimulus
distribution. According to Weber-Fechner law, the decreased
discriminability for more difficult magnitude estimation
tasks will lead to stronger regression effects (Teghtsoonian
and Teghtsoonian, 1978; Petzschner et al., 2015). Therefore,
systematic over- and underestimation are strategic tools to
minimize reproduction errors and, hence, optimize judgments.
Recent studies on time estimation and distance estimation
reported that humans have knowledge of this uncertainty
inherent in their measurements, and use mechanisms to reduce
the average error (Jazayeri and Shadlen, 2010; Petzschner
and Glasauer, 2011; Cicchini et al., 2012). With this study, I
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provide evidence that this problem is not exclusively present
in human or primate species but also rodent species. The
relation between the present work and the Bayesian approaches
is not investigated in detail. Nevertheless, it follows the
architecture of the Bayesian framework, and also, the results
are in line with Bayesian assumptions. The measurement
phase results in an internal estimate of a stimulus drawn from
a likelihood distribution. The reproduction process gives a
posterior estimate, the reproduced stimulus, drawn from the
distribution. The obtained results are in line with the Bayesian
findings: (i) Scalar variability implies decreased reliability
and increased uncertainty of measurements of relatively
longer temporal intervals. Scalar variability was visible for
both rodents and humans. (ii) Estimates tend towards the
mean (regression effect). (iii) This effect scales with stimulus
size and also is dependent on the stimulus context (range effect).

4.1.4 Influence of movement parameters

Analyzing the influence of movement parameters on
reproduction performance revealed that animals did not
use any modulation of physical running speed, the starting
latency, or a directional running pattern to solve the task and
precisely estimate time intervals. A positive correlation of
stimulus interval with path length and a positive correlation
of reproduced interval with path length is in nature of the
task design. The resulting KDEs, representing the distribution
of traveled path length, gave sufficient reason to believe that
animals indeed performed time estimation and not distance
estimation. This finding was represented by an increased shift
of density estimates for reproduced intervals across the tested
stimulus distributions, in contrast to the strongly overlapping
KDEs, representing the path length traveled. As mentioned
above, traveled distance correlated naturally with the size
of the tested stimulus, as well as with the magnitude of the
tested stimulus distribution. However, by applying virtual gain
factors, this correlation was effectively reduced. Additionally,
the applied gains hindered distance estimation as the animals
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could not infer traveled distance from steps taken. Also, the
starting latencies naturally increased with the stimulus size and
distribution’s magnitude. Both species produced comparable
data distributions, which oppose the theory that either group
used a specific strategy e.g., adapting the running response
related to the starting latency, to solve the task other than time
estimation or to improve estimation performance. Thus, both
tested groups served as a control group for the respective other
because results are strikingly congruent. The possibility that
both species yielded strongly similar results as they used the
same strategy is eliminated by the different cognitive abilities
of the two species. The virtual speed showed a homogeneous
distribution across all stimulus ranges, and also for reproduced
intervals across all stimulus ranges. This observation indicates,
that animals randomly varied their running speed for the
applied gain factors as well as for the stimulus presented. All
animals used different running speed adaptations: One example
animal, ran with a constant running speed for increasing
stimulus magnitudes. Others reduced their running speeds for
larger magnitudes. As the running response implies physical
exhaustion, it is understandable that animals used constant
running speeds for all magnitudes or even decreased it for larger
ones. So why then increase it for larger magnitudes? From an
energy-effort point of view, it seems rather disadvantageous.
However, reward expectations might be higher the more time
passes, and therefore animals are "enthusiastic" to finish the
trial. The behavioral data revealed a negative correlation of gain
factors with running speeds, indicating that animals reduced
their running speeds. This seems reasonable as the visual
impression changed dramatically with the applied gain. The
results suggest that animals preferred a constant visual flow,
which explains the equally distributed virtual speeds. The
running trajectories showed no specific running pattern, like
Zick-zack or other geometric patterns, which would help to
solve the task. Also, running speeds for distinct sections of
the running path within one trial did not reveal significant
modulations. Summarizing, animals did not use movement
parameter interactions to improve their estimation performance
on time intervals nor developed idiosyncratic and stereotypic
behavioral strategies unlike it has been reported by Gouvêa et
al. (2014).
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4.1.5 The cognitive effort of time perception

Prospective time estimation is implicit in nature because, for
most tasks, the timing aspect is secondary to the real task being
performed. Therefore, many studies have used a prospective
paradigm, but relatively few have used a retrospective paradigm.
The main reason for this imbalance is that, after a participant
is asked to provide a retrospective judgment, the participant is
then aware that he or she may be asked to judge a subsequent
duration, which commonly reflects the defined characteristic of
prospective time judgment. The experimental design used in
my study lacks the possibility to track the active information
processing of time during the measurement phase. During this
phase, the time period in passing is passively being perceived
by the subject or participant; to the contrary in the reproduction
phase the subject’s or participant’s experience of time passing
was reflected by the proactive movement response. Prospective
duration timing depends on attention-demanding processes
that occur concurrently with the processing of nontemporal
information (Pouthas and Perbal, 2004). In my study, the
reproduction phase, encompassing the executive function of
movement response and attending to time reflects a dual-task
condition and can therefore be characterized as prospective
paradigm (Pouthas and Perbal, 2004). During measurement
phase, uncertainty remains on whether the subject’s attention
is purely directed to the dimension of time or on the time point,
when the dimension of time is in focus of attention. Nevertheless,
the presented results indicate that temporal information must
be assessed in any way, which can not be clearly identified
with the current behavioral paradigm. Therefore, the terms
"retrospective" and "prospective" could rather be understood
in a non-classical sense, namely as a cognitive load affecting
factor as proposed by Brown (1985) and Zakay and Block
(2004), in contrast to a past or future-directed estimation of
duration. Hence, different cognitive processes may underlie
prospective and retrospective timing. This interpretation follows
attentional models (Thomas and Weaver, 1975; Zakay and Block,
1996), which suggest divided attentional resources between
nontemporal and temporal information Because retrospective
and prospective duration judgements show clear differences in
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the information processing involved, they historically have been
studied as separate phenomena. Yet, they also share unifying
aspects, such as disruption from the demands of untimed tasks,
experience an increase from a rise in physical duration; the order
in which the stimulus duration occurs, and certain involved
factors affecting stimulus context (Brown and Stubbs, 1992) All
these aspects are believed to be intimately related. Consequently
they should not be considered as distinct phenomena (French et
al., 2014).

I successfully could reproduce the results of Jazayeri and
Shadlen (2010), and additionally could implement the
behavioral task with rodents using a VR. I obtained comparable
results for humans and gerbils, although the two tested species
groups were very limited in size. Due to the limited sample size
regarding the number of subjects and participants itself, the
current study should be seen as a "slim-line" version of a pilot
study probing the possibility of testing an equivalent timing
task in humans and rodents. The obtained results can, therefore,
be understood as an indication, rather than a state-of-the-art
for similarities in rodent and human species. Under the
scope of the present study, I did find generic principles that
apply to the behavior of temporal judgments in human and
non-primate species. This success offered the possibility to
investigate the underlying neuronal mechanisms of prospective
and retrospective time estimation in rodents. Therefore, in the
second part of the thesis, the experimental design was extended
to electrophysiological recordings in rodents.
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4.2 neuronal dynamics of duration estimates

In the second part of this thesis, I examined whether and how
neuronal activity in the medial prefrontal cortex represents
interval timing for a retrospective-prospective time-estimation
task. The majority of cells exhibited ramping activity, which
was previously assigned to play a crucial role in timing.
The observed ramping activity specifically occurred in two
different kinds: Stimulus duration could be encoded in ramping
magnitude, or be encoded by the slope of the up-ramping
activity. I found that 57% of the recorded neurons exhibited
temporal scaling during prospective time estimation in their
firing activity, adapted to stimulus size presented. In contrast,
a comparable scaling property during retrospective time
estimation was not observed. Further, I found diverse activity
patterns that provide a basis for the understanding of time
encoding in the brain. In detail, I found that neurons encoded
stimulus size by adapting their activity related to the estimated
time. These observations were not exclusively present in
prospective timing. However, activity adaptations to the interval
to be estimated was less notable in retrospective time estimation.
Also, I provide evidence that the accuracy and precision of
the duration estimation behavior, related to the environmental
demands, are encoded by PCF neurons. These findings indicate
that the PFC can not solely be attributed to have an inherent
clock function but might play a crucial role at the memory
stage by evaluating new to existing knowledge and updating
memory. These results provide a basis for further studies for the
investigation of the neuronal mechanisms underlying interval
timing.

4.2.1 Activity patterns in mPFC

The highly diverse firing patterns during time estimation,
observed in PFC neurons, are consistent with findings in
monkeys (Freedman et al., 2001; Wallis et al., 2001; Nieder et
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al., 2002) and other rodent species (Baeg et al., 2003; Narayanan
and Laubach, 2006; Mainen and Kepecs, 2009; Kim et al.,
2009, 2013; Xu et al., 2014). Because the mentioned studies
employed various timing paradigms, this finding presents the
heterogeneity of PFC neurons involved in regulating diverse
aspects of timing behavior. Among the variety of neural
responses, I identified cells responding with persistent firing in
measurement phase or reproduction phase, or in both phases,
as well as temporally fixed activity. Activity patterns that were
well correlated with different phases of the task, including
measurement offset, the onset and offset of reproduction, and
reward onset, represented the involvement of regulatory actions
of mPFC neurons in sensory and motor systems. Likewise,
other research groups successfully recorded cells with various
temporal profiles, including phasic, tonic, and ramping activities
during cue and delay periods, whilst monkeys performed an
interval timing task. Their studies proposed neurons in PFC that
may play a variety of roles in temporal processing, including the
monitoring of cue duration and memory encoding (Sakurai et
al., 2004; Genovesio et al., 2009; Matell et al., 2011). I successfully
recorded cells from all subregions of the prefrontal cortex, which
homogeneously presented the mentioned activity profiles over
all subareas of the PFC. However, the experimental design
cannot delineate if particular response patterns are exclusively
present in devoted subregions of the PFC, as the tetrode
position during experiments was approximated but could only
be verified post mortem. Nevertheless, the majority of cells
recorded from all subregions of the mPFC exhibited firing with a
monotonic increase or decrease in activity over time, commonly
referred to as "ramping" (Narayanan and Laubach, 2009; Kim et
al., 2013; Bekolay et al., 2014; Parker et al., 2014).

Ramps - ramps everywhere. Neurons in the medial frontal
cortex robustly ramp (Niki and Watanabe, 1976, 1979) - Ramping
activity is one type of neuronal activity patterns in the cortex,
which is thought to robustly encode temporal information.
With its consistent changes, typically starting at the beginning
of the to-be-timed interval until the end, ramping activity
could encode evidence accumulation of temporal information,
which is, that temporal expectation correlates with time passing
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and thereby leads to increased or decreased activity. Thus,
ramping activity can be understood as temporal integration of
information, which was already well captured by drift-diffusion
processes and integrative models (Durstewitz, 2003; Simen et
al., 2011; Thurley, 2016). One might argue that activity observed
especially during reproduction is conflicted with motor response
or motor planning. With the data provided, I can not fully
disentangle the contributions of PFC neurons to motor activity
and their contribution to timing activity. However, ramping
activity predicts actions, often beginning several seconds before
animals initiate their response (Kim et al., 2013; Parker et al.,
2014; Xu et al., 2014). This makes the signal unlikely to be
explicitly movement-related. Ramping activity readily scales
over a variety of intervals (Kim et al., 2013; Xu et al., 2014). In
premotor areas, movements are typically initiated when activity
reaches a threshold (Hanes and Schall, 1996; Balcı and Simen,
2016), although it is unclear how this threshold is determined.
Controversially, I found cells, which ramped to a specific
threshold toward the termination of the movement. The pattern
of ramping activity is not only limited to appear in a linear
fashion and can in contrast, be represented with exponential
features when needed, e.g. to encode hazard functions (Simen
et al., 2011; Kim et al., 2013). The precision of the temporal
estimate can therefore be encoded in the magnitude of activity
or the slope of the ramp (Reutimann et al., 2004). Ramping
was not exclusively observed for single cells but might also
occur across a population of neurons via recurrent network
interactions (Wong and Wang, 2006). This network activity
could explain ramping activity profiles of cells, which did not
span the entire phase or showed temporally fixed responses.
In this respect, cells coordinately responded as a network to
represent the timed interval. Such a neural network that spans
the entire duration of an interval by coordinated ensemble
activity has already been described in striatum (Gouvêa et al.,
2015), hippocampus (Macdonald et al., 2011), or parietal areas
(Jazayeri and Shadlen, 2015). Alternatively, ramping features
can be represented in persistent activity and encode mnemonic
information (Funahashi et al., 1989). Consequently, ramping
understood as the integral or cumulative cum of persistent
activity, might encode other cognitive variables than timing,
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which imply decision-making or working memory (Bekolay et
al., 2014).

Telling time by scalable firing. Despite the observed diversity
of firing patterns of mPFC neurons, a substantial portion
(57%) of the overall population exhibited temporal scaling of
their firing patterns while performing the prospective timing
task. The observed scaling property correlated with the timed
interval’s size and thereby matched the applied magnitude
system. The results of properly scaled activity, to match the
activity of the smallest presented stimulus in either of the
tested stimulus distributions, demonstrated that the brain uses
generalized patterns modified and adapted on a when-needed
basis. Although scaling appeared to be highly adaptive, it
was arranged, as expected by the math of the stimulus ratio.
This could be interpreted that timing is represented in a
distinct manner of numerosity, which was previously shown
by Xu et al. (2014). In a time discrimination task, neurons in
the lateral intraparietal area showed ramping activity at slow
and fast speeds, correspondingly for long or short intervals
(Leon and Shadlen, 2003), representing the feature of temporal
scaling. Similar temporal scaling of PFC neural activity has been
reported during the delay period for the working memory task
in monkeys (Brody et al., 2003). My results correspond to the
reported findings of the studies mentioned above and indicate
that temporally scalable firing-rate modulation may serve as a
mechanism for mPFC neurons to represent the timed of different
magnitudes. Also, this finding is consistent with the model that
timing information is inherent in the neural network dynamics
(Brody et al., 2003; Ivry and Schlerf, 2008; Reutimann et al.,
2004).

The math of time representation. The interaction of
numerosity and time in prefrontal cortex has already been
addressed by the neuroscience community. It was suggested
that a two-stage model represents numerosity–time interactions
whereby the interaction at the perceptual level occurs within
the parietal region and the interaction at categorical decisions
takes place in the prefrontal cortex (Hayashi et al., 2013). With
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my study, I provided evidence that stimulus-correlated activity
related to timing is in line with the proposed numerosity-time
interactions. However, it needs to be discussed how the two
different representations of stimulus size by firing magnitude,
observed during my experiments, can be explained. I found
positive as well as negative correlations of neural firing with
stimulus size. Some cells encoded small stimuli with low firing
rates, compared to large intervals being represented with high
firing rates. A substantial portion of cells responded with
reversed firing rates, which is, that small intervals were encoded
with high firing rates, whereas low firing rates represented
long durations. The applied order of magnitudes was therefore
bound to stimulus features, which suggests that the prefrontal
cortex contributes to temporal perception (Genovesio et al.,
2009). Following the argumentation of order-based activity or
representation bound to stimulus magnitude, I expect that firing
increases with stimulus size. However, this representation was
only visible in a subset of the magnitude-adapting population,
which showed correlated firing with stimulus size. Still, a
significant portion of cells, in which stimulus-size-dependent
correlation has been detected, represented the size of the tested
stimulus in a reciprocal order. From a physiological point
of view, extensive firing is energy-consuming and should be
kept to a minimum. Nevertheless, how to keep the necessary
information under constraints of energy savings? One possibility
is to convey the most energy-consuming information in the
shortest possible time interval, and degrade it when adapted
to large stimulus sizes. This encoding would advantage in
preserving the transmission of information at a moderate
energy-consuming level even for long intervals, but sacrifices
the precision of the conveyed content. As an alternative
hypothesis, cells, exhibiting a specific response type on a
continuous scale, are tuned to the time stimuli involved and
only afford a limited number of spikes. Temporally compressing
the spikes represents short intervals and thereby results in
a high discharge rate. Stretching the time period for long
intervals with a consistent number of spikes, reduces the spike
density, leading to a low discharge rate. This hypothesis for
time encoding by neural firing would be supported by the
Bayesian framework, which implies that retrieved information
depends on the incorporate mean of a stimulus distribution
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and causes errors when deviating from it. To which extent,
and if at all, both hypotheses raised apply can not be clarified
within this thesis. However, what unifies both theories, is
that they would, in either case, lead to reduced spike density
given a long stimulus interval. This reduction in spike density
then, leads to increased variance, thereby reflecting increased
uncertainty, which in turn represents the scalar property of
timing (Gibbon et al., 1984; Leon and Shadlen, 2003). The two
types of discharge rate adaptation demonstrate that separating
subpopulations, considering the stimulus size’s correlation, is
essential. Analysis of a mixed population lead to blurred effects
and hide essential information needed to clarify the role of
discharge rate adaptations.

Time in context. However, all of the described activity
modulations share the common fact that PFC neurons process
time in a highly context-dependent fashion. The influence of
external parameters, such as the magnitude of time stimuli, or
the sequence of presented stimulus intervals define the temporal
context. Genovesio et al. (2016) provided evidence that temporal
processing in the PFC is linked to specific past events, and they
showed that PFC activity in primates is profoundly affected
in a context-dependent way. Thus, adaptive coding (Everling
et al., 2002; Duncan, 2010) involves recruiting cells in highly
demanding conditions and changes the degree of neuronal
specialization. The PFC was consequently assigned not to
signal durations abstractedly, as expected of a general temporal
encoder, but instead does so in a highly context-dependent
manner. For example, Genovesio et al. (2016) showed, that
different durations were distinguished as short or long, but only
in one out of two tasks or intervals. Thereby, neurons signaled
information about duration in an uncorrelated or just weakly
correlated manner and responded in dependence of context.
To investigate context-dependence with the timing paradigm
I used, it would be mandatory to compare the activity of
tracked neurons when presented with two overlapping stimulus
distributions. An experimental approach using high resolution
techniques, like silicon probes, might be helpful to get multi-unit
recordings without reduced data size.
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4.2.2 The prefrontal cortex and interval timing

Timing-related neuronal activity has been observed in a variety
of brain regions, including PFC (Duncan, 2001; Rao et al., 2001;
Genovesio et al., 2006; Oshio et al., 2006), pre-supplementary
and supplementary motor areas (Mita et al., 2009), basal ganglia
(Rao et al., 2001; Matell et al., 2003; Meck et al., 2008), cerebellum
(Ivry and Spencer, 2004) or lateral intraparietal area (Leon
and Shadlen, 2003; Janssen and Shadlen, 2005). Recent studies
already provided converging evidence of the involvement of the
mPFC in timing. Temporary inactivation of mPFC neurons in
rats was shown to result in impaired neural processes that are
related to time interval discrimination (Dietrich and Allen, 1998),
especially in the range of a few seconds (Kim et al., 2009). So by
now, there exists profound evidence that the PFC is crucially
involved in discriminating and estimating time intervals in
humans (Mangels et al., 1998; Koch et al., 2003; Jones et al., 2004)
and animals (Glickstein et al., 1964; Rosenkilde and Divac, 1976;
Dietrich et al., 1997; Dietrich and Allen, 1998; Onoe et al., 2001;
Kim et al., 2009, 2013; Xu et al., 2014). However, the exact role of
the PFC in interval timing behavior has not been clear.

With this thesis, I tried to shed light on how the prefrontal
cortex encodes time. I could show that neurons in the prefrontal
cortex exhibit a variety of response patterns while performing
a time estimation task. Here, I presented neurons that showed
more complex timing activity, extending the monotonic ramping
activities. Example neurons exhibited a generic activity profile
for all tested stimulus durations, but adapted the activity profile
towards the end of the reproduction phase until reaching a
threshold. This adaptation was reflected by ramping activity,
which scaled with the size of the stimulus. Generally, small
stimuli were represented with temporally compressed signals,
which resulted in a fast up-ramping activity, whereas large
stimuli were temporally stretched respectively, and represented
in a slow ramp to a threshold. Thereby, cells modulated the
speed of their ramp-like activity to a certain threshold in relation
to stimulus size. Interestingly, this speed-correlated modulation,
with respect to stimulus size, was not observed when analyzing
this feature across the subpopulation of ramping speed-adapting
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cells. This was caused by the fact that data containing mixed
variants of ramping activity obscure correlation effects. In
particular, single-cell examples were shown to undoubtedly
represented adaptation of ramping speed.

Clock or memory function? Data from the present study
can be used to differentiate various hypotheses on time
representations in PFC. One such hypothesis is that timing
relies critically on ramping neuronal activity in PFC. Indeed,
changes in mPFC neurons’ firing patterns have been identified
during the performance of timed behavior (Niki and Watanabe,
1979; Xu et al., 2014). However, the procedures used in these
studies are relatively different from the timing task I used.
Moreover, ramping neuronal activity in the mPFC has also
been reported in simple reaction time tasks (Narayanan and
Laubach, 2009), or during the delay in delayed-response tasks
in primates (Quintana et al., 1988; Tsujimoto et al., 2004). Here it
was interpreted to presumably represent mnemonic processing
of stimulus attributes rather than timing on a clock stage.
Therefore, it is unlikely that ramping neuronal activity in the
mPFC solely codes for time. Hence, other putative time coding
mechanisms are worth considering. The final question remains
whether PFC activity is specific to timing, or another, more
general process, like attention, working memory, or response
selection. It has been suggested that estimation of a time interval,
its storage and retrieval, and comparison with a newly estimated
time interval, are the three basic processes for all internal time
operations (Wearden, 1999). The PFC might be in charge of one
or more of these steps. An alternative hypothesis would be that
contribution of the PFC to interval timing behavior is of general
executive functional reasons (Mangels et al., 1998; Tregellas
et al., 2006; Livesey et al., 2007) such as attentional control.
Biochemical manipulation experiments support the idea that the
mPFC may be involved in either attention or working memory
processes, rather than timing per se (Matthews et al., 2012).
Animal and human studies alike have implicated the mPFC
in a wide variety of cognitive processes. Indeed, contributions
to structural functions of attention (Arnsten, 2009; Paneri and
Gregoriou, 2017), working memory (Funahashi, 2017; Spaak et
al., 2017), planning and decision making (Padoa-Schioppa and
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Conen, 2017), and action selection (Ridderinkhof et al., 2004)
have been demonstrated.

Sequential effects have been shown to occur during estimation
tasks (Thurley and Schild, 2018). The sequential order of
events during the presented timing task required retrieving
information, based on previous experience from reference
memory, and simultaneously monitor the experienced duration.
This supports the idea that both working and reference memory,
would have been required for the prospective phase of the time
estimation task, which required associating a given duration
with a representation of intervals or knowledge of conventional
time units. The representation of conventional time units is
stored in the reference memory (Perbal-Hatif, 2012). According
to Perbal-Hatif (2012), reference memory is assimilated with
semantic memory, which stores general knowledge of the world,
including time representation. Thus, accurate time estimation,
as measured by the task of the present work, required
both working and reference memory, supporting the idea of
the prefrontal cortex in the memory stage of the SET. A
further indication for PFC neurons involved in the memory or
comparison/decision stage rather than the clock stage would
be if activity increases after the offset of the estimated time
intervals but not during their presentation. This would suggest
that information concerning comparison and or updating of
internally stored knowledge is conveyed. Previous physiological
studies have found neuronal activity possibly related to the
storage and comparison processes in the PFC. Some neurons
in the rat’s ACC showed different activity between two different
interval durations (Matell et al., 2003). Also, when monkeys were
required to discriminate durations of two successfully presented
stimuli, some PFC neurons showed duration-dependent activity
during the time period between the two stimuli (Sakurai et al.,
2004; Oshio et al., 2006; Genovesio et al., 2009), suggesting the
involvement of the PFC in holding the information on the first
time interval as working memory, which might be a step toward
long-term storage of temporal information (Wearden, 1999).
After the presentation of the second stimulus, some PFC neurons
signaled relative durations of the two stimuli (Genovesio et al.,
2009), suggesting the involvement of the PFC in the comparison
process as well. They also found that some neurons in the rat’s
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mPFC modulated their activity according to sample interval
duration after sample interval offset. These results suggest the
involvement of the mPFC in maintaining temporal information
as working memory, and possibly in comparing this information
with a reference time interval stored in long-term memory.
Collectively, the present and previous physiological studies
in rats and monkeys suggest the involvement of the PFC in
multiple processes of time-interval discrimination, raising the
possibility that the PFC might be part of a central neural system
controlling interval timing behavior. Usually, physiological
studies employing a fixed interval or peak interval procedure
suffer from confounding of timing with motor activity, because
animals emit motor responses that vary with the elapse of
time. The current study also involved a time estimation period
that might easily be confounded with motor activity. Thus,
it is difficult to isolate clock function-related neural activity
from motor response-related neural activity. For this reason,
the current study presented in the thesis focused on those
neurons that showed differential activity between the tested
interval durations as it was previously reported by Matell et al.
(2003). Kim et al. (2018) compared timing activity in striatal and
prefrontal neurons and found that both brain areas contributed
significantly to temporal processing. However, striatal neurons
rarely showed a full-interval spanning ramping activity, which
was, in contrast, frequently observed in mPFC. Striatal neurons
preferably fired briefly during sample intervals. Their study
provides evidence that brain areas dedicated to timing convey
temporal information via distinct neural processes or even adapt
to the demanded task. Bakhurin et al. (2017) share the idea, that
temporal information is encoded in a widely distributed manner
throughout multiple brain areas, but state that the striatum may
have a privileged role in timing because it has a more accurate
"clock" as it integrates information across multiple cortical areas.
In contrast to PFC, the striatum has been shown to be a more
reliable timing system, as the precision of neural time decoding
became progressively worse with increasing time duration in the
mPFC, but not in the striatum (Kim et al., 2018). Therefore, the
exact role of PFC in interval timing behavior to date could not
be clarified.
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The body of literature provides evidence that timing is an
emergent property of brain-wide interactions of the brain areas
where timing signals have been identified on a population level.
These brain areas include the hippocampus (Pastalkova et al.,
2008; Macdonald et al., 2011), medial prefrontal cortex (Kim
et al., 2013; Xu et al., 2014), parietal cortex (Leon and Shadlen,
2003; Janssen and Shadlen, 2005), motor areas (Lebedev et
al., 2008), and the cerebellum (Mauk and Buonomano, 2004) .
Contrasting brain-wide interactions, it was proposed that the
brain has several distributed timing stages which are activated
on specific timing needs. Simultaneous recordings in multiple
brain areas during time estimation tasks could enlighten the
knowledge of the numerous time-related functions we and
other organisms rely on for survival.

4.2.3 Reward encoding

Reward signals in the brain. Rewards are defined by their
action on behavior and are crucial for the survival of the
organism. They are vital in the control of homeostasis, sustain
learning of new behaviors, the induction of approach behavior,
and serve as goals for voluntary, intentional behavior. Reward
related activity has been found in various brain regions, i.e., the
hippocampus (Gauthier and Tank, 2018), striatum (Samejima et
al., 2005) and also prefrontal areas like the anterior cingulate
cortex (Amiez et al., 2006). For example, in the hippocampus
and subiculum, reward-associated cells were shown to exhibit
activity fields that strongly correlated with reward location,
and these cells entirely accounted for the excess density of
fields near reward (Gauthier and Tank, 2018). In contrast, in
the prefrontal cortex, reward-related units were not limited
to specific subregions. Instead, they were found anywhere in
the prefrontal cortex. Association with reward is common with
widely scattered neuronal groups all over the prefrontal surface.
In the monkey as in the rat, however, most promising regions in
this regard appeared to be orbital and medial prefrontal areas
(Amiez et al., 2006; Kobayashi et al., 2010; Chiang and Wallis,
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2018; Setogawa et al., 2019). However, it has been suggested
that the orbitofrontal cortex (OFC) and the medial frontal
cortex (MFC) do not encode reward associations completely
autonomously, instead, amygdala, a structure essential for the
evaluation of motivational significance was assigned to play a
crucial role in shaping the encoding in OFC and MFC (Rudebeck
et al., 2017).

Reward encoding for survival. In natural environments, the
distance and terrain that one might encounter to obtain food
(or traveling to new habitats) produce energetic costs, which
is a critical component in optimal choice (Stevens et al., 2005;
Rangel and Hare, 2010; Walton et al., 2006). Guidance of
responding to maximize benefits vs. costs was suggested to
be a major role of the PFC in optimizing behavior (Moorman
and Aston-Jones, 2015). The execution of behavior requires
that animals interact with and respond to changes in their
environment. This implies that the nervous system must
represent both the internal state and the external world in the
form of neuronal activity. Therefore, the spatial and temporal
precision of these representations fosters many behaviors crucial
to survival. Growing evidence suggests that the ACC may have
a specialized role in influencing effort-based decision making.
ACC disruptions bias animals toward actions that are associated
with less effort even when a more rewarding option is available
(Walton et al., 2002; Schweimer and Hauber, 2005; Floresco and
Ghods-Sharifi, 2007). To improve efficacy and increase chances
of survival, the representations of the to be timed interval has
to be updated when environmental reward contingencies are
modified. Researchers have proposed that a circular process
modifies the estimated value depending on the outcome because
updating of the estimated values by integrating outcomes is
fundamental to rapid adaptations of behavior. Consecutively,
outcomes have to be evaluated in relation to existing stored
values constructed through successive trials (Amiez et al.,
2006). Consequently, the relative encoding of outcomes is
essential for appropriate reactions to particular contexts and
expectancies. Nevertheless, it has to be taken into consideration
that reward-related activity can only be distinguished with
difficulty from its possible relationship to any of the various
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sensory stimuli that accompany its delivery. Nonetheless, by use
of appropriate controls, it has been determined that the activity
of some of those units is indeed related to the ingestion of the
appetitive reinforcement, whereas that of others is related to its
absence if a reward is expected (Fuster, 2008).

Reward-related activity represents precision and accuracy. In
the last part of my experimental work, I tried to find the
neural correlates of reward. Therefore, a time period of 3.5
seconds from reproduction offset to the start of the next
consecutive trial was evaluated. I found that the accuracy and
precision, represented by the behavioral parameters of BIAS,
SD, and

p
BIAS2 were encoded by neural activity. Surprisingly,

a majority of PFC neurons (88%) showed activity during ITI,
although no active timing process had to be performed at
this stage. This finding affirmed the hypothesis that PFC
neurons provided clock functions by representing actual timing
in neural activity and are responsible for evaluating and
updating memory values. Furthermore, the quantitative analysis
revealed that low behavioral bias occurring in time estimation
was encoded with a large variety of magnitudes of discharge
rates, whereas large biases were represented only on a limited
range of discharge magnitudes. The same observations were
made for the

p
BIAS2. These results indicate that the strength

of regression is encoded by neural activity. What is the
advantage of spending energy in encoding a past event?
Integration of experiences and thereby updating the current
knowledge to improve performance and efficacy for future
events represents the most likely rational. Thereby, I suggest
that evaluating performance-indicating parameters during ITI
update the internal prior, thereby leading to adaptation of
behavior and neural representation. With this property, the
mPFC encodes the accuracy of duration estimation following
Bayesian inference. In this context,the SD was not significantly
correlated with neural activity but demonstrated that precision
was one of the encoded features of PFC during ITI. Therefore,
I propose that all persistent neuronal activity during ITI of
the timing task is an expression of the involvement of cells
that exhibit activity contributing to working memory – that
is, of their participation in a network that has been activated
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temporarily for the withholding of information toward the
attainment of the reward.

Hence, as a key discovery, I found that irrespective of the
neurons’ activity pattern, the adaptation of discharge rate
depended on the time interval required. On a populational
level, I could show that firing rate adaptations, representing
performance accuracy, reflected regression effects, resulting
from strategies to cope with uncertainty about sensory
information. The precision of duration estimates was captured
by the neural activity as well, although for an internal reference
instead of an external value determined by the statistics of
the stimulus distribution. Using higher firing rates to provide
higher information content, causing less regression, and low
variance corroborates the fact that the objective of timed
behavior is maximal accuracy and minimal variance.

4.2.4 Neurophysiological predictions in humans

Magnetoencephalography (MEG) and electroencephalography
(EEG) are completely noninvasive tools that reflect the human
brain’s real-time operations in experimental conditions. Due
to inter-species differences, rodent data can not always be
directly translated to the human situation. Therefore, these
methods could be used to reproduce the neurophysiology
experiments and generate a data set of neuronal activity during
the duration estimation task comparable to the animal study
presented in this thesis. These neuroimaging techniques could
help gain insights into the sensory and cognitively controlled
neuronal responses during the duration estimation task. MEG
specifically, enables to separately measure a single brain process
rather than an amalgamate of multiple temporally overlapping
processes, which cannot be unequivocally disentangled based on
location or orientation. By using this technique, process-specific
information can be used to disambiguate event-related potential
data (ERP) recorded from the same experimental situation.
Experiments probing the estimation of the dimension of time
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while recording the underlying neural activity, have mainly been
performed using a time to contact (TTC) paradigm e.g., when a
participant has to estimate the time when an object reaches a
target (Chang and Jazayeri, 2018; Daneshi et al., 2020). However,
using EEG or MEG does not allow for assessing single-neuron
activity in humans as comparably done in this study. Without
the possibility of sorting specific response patterns of cells, the
overall detected activity while performing the time estimation
task might give no meaningful results. Separate populations
of cells with heterogeneous activity profiles analogous to
these found in the neurophysiological experiments performed
with rodents in this study, i.e., up-ramping vs. down-ramping
activity profiles, cancel out prominent activity patterns when
represented by separate subpopulations of cells simultaneously.
Nevertheless, data obtained from humans with neuroimaging
techniques, such as MEG or EEG, could be used to compare the
neuronal activity of a population as an entity and thereby enable
assessment inter-species differences or similarities of neuronal
activity while performing the duration estimation task and draw
conclusions between animals and humans. Additionally, EEG
or MEG could be used as noninvasive tools to examine the
structural activation of the prefrontal cortex or other brain areas
involved as well as the structural activation of related subareas
during the different phases of the duration estimation task and
identify their cognitive load.

Adding to the existing body of evidence, my results show that
the mPFC provides timing-related neural signals for prospective
time estimation in the supra-second range in gerbils, and that
the PFC plays an essential role in interval timing in animal
species. Although the presented complex patterns of activity
correlated strongly with stimulus size, it can not be disentangled,
that this activity was not associated with movement-related
signals or that the the signals originated because the PFC rules
as the central area where interval timing takes place. On a basis,
I agree that the distinction between sensory and motor timing
is essential, but is was shown, that these two timing systems
can also overlap. Many models of motor timing can account
for simple sensory timing tasks like interval and duration
discrimination (Paton and Buonomano, 2018) of time.

140



DISCUSSION

My results, therefore, demonstrate that the medial prefrontal
cortex of rodents profoundly provides timer functions at
an internal clock stage. However, the prefrontal cortex does
not exclusively code for time but also fulfills mnemonic
functions by integrating the outcome and interaction of the
decision with the environment. This integration might serve
to compare the present outcome with previously stored values
in memory. Activity during the delay phase supports the idea
that the prefrontal cortex concurrently acts as a memory stage,
integrating prior knowledge and updating posterior knowledge
about the stimulus duration following Bayesian inference.

Strikingly similar neural correlates of timing have been observed
in rodents and humans, i.e., ramping activity and delta/theta
rhythms that synchronize single neurons (Narayanan et al.,
2013). Humans with Parkinson’s Disease and rodents with
medial frontal dopamine depletion showed attenuated spectral
delta/theta power (Parker et al., 2015), which is coupled with
cortical ramping activity in rodents (Parker et al., 2014, 2015).
Using model organisms like rodents might help establish how
the prefrontal cortex encodes and instantiates the temporal
control of actions, thereby paving the way to identifying diseases
that degrade cortical function and potentially cause disorders
due to disrupted timing. As we continue to understand more
about time in the brain, I hope that the research community will
discover other contact points with clinical neuroscience.
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6
A P P E N D I X

Figure 6.1: Time reproductions of all gerbil subjects. Individual
reproduced values for the tested stimulus intervals are
given as small dots and averages for each stimulus
are depicted as large dots connected by a solid line.
Colors identify stimulus distributions (cf. Figure 2.2c). Gray
dashed lines mark bisecting lines.

Figure 6.2: Time reproductions of all participants (humans). Individual
reproduced values for the tested stimulus intervals are
given as small dots and averages for each stimulus are
depicted as large squares connected by a solid line.
Colors identify stimulus distributions (cf. Figure 2.2c). Gray
dashed lines mark bisecting lines.
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a b c

Figure 6.3: Performance quality of all animals progressing over time
of test sessions. Each row shows the development of
the feedback constants over sessions of the stimulus
distributions A (a), B (b) and C (c) for individual animal
subjects. Colorbars indicate the increasing session number.
Color conventions derived from those used in Figure 3.1.
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a b c d e

Figure 6.4: Trajectory parameters of temporal reproduction for all
animal subjects individually – part I. Correlation of
stimulus intervals and reproduced intervals with path
length (a + b) and correlation of stimulus intervals and
reproduced intervals with virtual running speed (c + d).
(e) Correlation of path length with virtual running speed.
Kernel density estimates on the marginal plots show the
distribution of values on the respective axis. Pearson’s
correlation coefficient r and corresponding p-values are
provided. Each row represents one individual animal. Same
color conventions as in Figure 6.1.
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a b c d e

Figure 6.5: Trajectory parameters of temporal reproduction for all
animal subjects individually – part II. Correlation of
stimulus intervals and reproduced intervals with path
length (a + b) and correlation of stimulus intervals and
reproduced intervals with virtual running speed (c + d).
(e) Correlation of applied gain factors with virtual running
speed. Kernel density estimates on the marginal plots show
the distribution of values on the respective axis. Pearson’s
correlation coefficient r and corresponding p-values are
provided. Each row represents one individual animal. Same
color conventions as in Figure 6.1.
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a b

Figure 6.6: Trajectory parameters of temporal reproduction for all
animal subjects individually – part III. Correlation of
stimulus intervals and reproduced intervals with starting
latencies (a + b). Kernel density estimates on the marginal
plots show the distribution of values on the respective axis.
Each row represents one individual animal. Same color
conventions as in Figure 6.1.
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a b c

Figure 6.7: Y-position trajectories of all animals. Y-position of the
running path is shown for tested stimulus sizes of stimulus
distribution A (a), B (b) and C (c) for individual trials. The
colorbars indicate running speed during distance travelled.
Data is shown for each subject individually, pooled across
sessions. Color conventions derived from those used in
Figure 3.1.
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a

b

Figure 6.8: Examples neurons responding with sustained firing. Spike
raster plots and spike density functions (� = 100 ms)
are shown for mPFC example neurons recorded during
interval timing. These example neurons exhibited sustained
firing in measurement phase as well as in reproduction
phase when tested on stimulus distribution A (a) and B
(b). Colors identify stimulus size within the distribution
(cf. Figure 3.14a and Figure 3.14b). Trials were grouped
according to the length of the sample interval and aligned
to measurement onset, measurement offset, reproduction
onset and reproduction offset. Color shaded areas in raster
plots mark the respective phase in each trial.
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Filter Exposure
time

Gain

Slide #01

DAPI (B)
Nissl (G)
DiI (R)

1s
4s
1s

1.4
2.0
0.5

Slide #02

DAPI (B)
Nissl (G)
DiI (R)

1s
4s
0.33s

1.4
2.0
1.0

Slide #03

DAPI (B)
Nissl (G)
DiI (R)

1s
4s
0.33s

1.4
2.0
1.0

Slide #04

DAPI (B)
Nissl (G)
DiI (R)

1.5s
6s
0.33s

1.2
2.4
1.0

Slide #05

DAPI (B)
Nissl (G)
DiI (R)

1s
6s
0.33s

1.4
2.4
1.0

Table 6.1 continued on next page
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Filter Exposure
time

Gain

Slide #06

DAPI (B)
Nissl (G)
DiI (R)

1s
6s
0.33s

1.4
2.4
1.0

Slide #07

DAPI (B)
Nissl (G)
DiI (R)

1s
6s
0.33s

1.4
2.4
1.0

Table 6.1: Software settings of Lucia Image program for taking
images of immunohistological stained coronal slices
of animal #11769. The exposure time and gain was
adjusted for each slice and fluorochrome for the
corresponding filter: DAPI - Blue (B), Nissl - green
(G), DiI - Red (R).
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Filter Exposure
time

Gain

Slide #01

DAPI (B)
Nissl (G)
DiI (R)

1.5s
46s
0.5s

1.4
2.4
1.2

Slide #02

DAPI (B)
Nissl (G)
DiI (R)

1.5s
6s
0.5s

1.4
2.4
1.2

Slide #03

DAPI (B)
Nissl (G)
DiI (R)

1.5s
6s
0.5s

1.4
2.8
1.2

Slide #04

DAPI (B)
Nissl (G)
DiI (R)

1.5s
6s
0.5s

1.4
2.8
1.2

Table 6.2: Software settings of Lucia Image program for taking
images of immunohistological stained coronal slices
of animal #11770. The exposure time and gain was
adjusted for each slice and fluorochrome for the
corresponding filter: DAPI - Blue (B), Nissl - green
(G), DiI - Red (R).
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