
 

Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

 

Aminoethylene-lipopeptides for intracellular delivery  

of gene modulating tools 

 

Jasmin Kuhn 

aus Villingen-Schwenningen, Deutschland 

 

2019 



TABLE OF CONTENTS  

Erklärung  

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. 

November 2011 von Herrn Prof. Dr. Ernst Wagner betreut. 

 

 

 

 

 

Eidesstattliche Versicherung  

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.  

 

 

München, 12.12.2019 

 

............…………………………… 

                                                                               Jasmin Kuhn 

 

 

Dissertation eingereicht am 13.12.2019 

1. Gutachter: Prof. Dr. Ernst Wagner 

2. Gutachter: Prof. Dr. Wolfgang Frieß 

Mündliche Prüfung am 04.02.2020 



TABLE OF CONTENTS  

 

 

 

 

 

 

 

 

 

Meiner Familie, die mich lehrte eigenständig nachzudenken 

und Tim, der jetzt mit den Konsequenzen leben muss! 

 

 

 

 

 

 

 

 

 

 



TABLE OF CONTENTS  

Table of Contents 

1 Introduction ..................................................................................... 1 

1.1 Regulation of gene expression ................................................................... 1 

1.1.1 RNA processing ...................................................................................... 2 

1.1.2 Alternative splicing - Multiple proteins from a single gene ....................... 4 

1.1.3 Aberrant splicing ...................................................................................... 5 

1.2 Molecular therapeutics to modulate the disease at its roots ....................... 7 

1.3 Splice-switching antisense oligonucleotides as therapeutic drugs .............. 8 

1.4 The CRISPR/Cas9 system as genome editing tool .................................. 11 

1.5 Delivery strategies for different molecular therapeutics ............................ 13 

1.5.1 Delivery systems for synthetic uncharged antisense oligonucleotides .. 15 

1.5.2 Cas9/sgRNA delivery ............................................................................ 16 

1.5.3 Sequence-defined oligo(ethylenamino) amides ..................................... 18 

1.6 Aim of the thesis ....................................................................................... 19 

2 Chapter I: ........................................................................................ 20 

Supramolecular Assembly of Aminoethylene-Lipopeptide PMO 

Conjugates into RNA Splice-Switching Nanomicelles ..................... 20 

2.1 Abstract .................................................................................................... 21 

2.2 Introduction ............................................................................................... 22 

2.3 Material and Methods ............................................................................... 23 

2.3.1 Materials ................................................................................................ 23 

2.3.2 Solid-phase peptide synthesis ............................................................... 24 

2.3.3 Analytical methods ................................................................................ 28 



TABLE OF CONTENTS  

2.3.4 PMO functionalization ........................................................................... 28 

2.3.5 AF488-labeling of LP LenA.................................................................... 30 

2.3.6 Statistical azide-functionalization of oligo- and polymers ...................... 30 

2.3.7 Fluorescence correlation spectroscopy (FCS)....................................... 31 

2.3.8 Transmission electron microscopy (TEM) ............................................. 32 

2.3.9 Cell culture ............................................................................................ 32 

2.3.10 Splice-switching and luciferase activity assay in vitro ............................ 32 

2.3.11 RT-PCR ................................................................................................. 33 

2.3.12 Cell viability assay (MTT) ...................................................................... 34 

2.3.13 Flow cytometry ...................................................................................... 34 

2.3.14 Confocal laser scanning microscopy (CLSM) ........................................ 35 

2.3.15 Calcein release assay by CLSM ............................................................ 36 

2.3.16 Calcein release assay by flow cytometry ............................................... 36 

2.3.17 Erythrocyte leakage assay .................................................................... 37 

2.3.18 Splice-switching and luciferase activity assay in vivo ............................ 37 

2.3.19 Cultivation, treatment and RT-PCR analysis of H2K-mdx52 cells ......... 38 

2.3.20 Statistical analysis ................................................................................. 39 

2.4 Results and Discussion ............................................................................ 40 

2.4.1 Conjugate design and evaluation .......................................................... 40 

2.4.2 Lead identification ................................................................................. 41 

2.4.3 Structural variations ............................................................................... 44 

2.4.4 Particle formation .................................................................................. 52 

2.4.5 Membrane interaction ............................................................................ 54 



TABLE OF CONTENTS  

2.4.6 DMD myotube treatment ....................................................................... 57 

2.5 Conclusion ................................................................................................ 59 

2.6 Acknowledgements................................................................................... 59 

2.7 Supporting information figures .................................................................. 60 

3 Chapter II: ....................................................................................... 73 

Delivery of Cas9/sgRNA Ribonucleoprotein Complexes via 

Hydroxystearyl Oligoamino Amides .................................................. 73 

3.1 Abstract .................................................................................................... 74 

3.2 Introduction ............................................................................................... 75 

3.3 Material and Methods ............................................................................... 77 

3.3.1 Materials ................................................................................................ 77 

3.3.2 Cas9 protein expression and purification .............................................. 77 

3.3.3 ATTO647N-labeling of Cas9 protein ..................................................... 79 

3.3.4 In vitro transcription of sgRNAs ............................................................. 79 

3.3.5 In vitro cleavage assay to test the RNP functionality ............................. 81 

3.3.6 Cell culture ............................................................................................ 81 

3.3.7 Formulation of RNP oligomer complexes .............................................. 81 

3.3.8 Cellular treatments under serum-free conditions ................................... 82 

3.3.9 Cellular treatment under standard conditions ........................................ 82 

3.3.10 Particle size and zeta potential .............................................................. 83 

3.3.11 Fluorescence (cross-) correlation spectroscopy (FCS/FCCS) ............... 83 

3.3.12 Flow cytometry ...................................................................................... 85 

3.3.13 Confocal laser scanning microscopy (CLSM) ........................................ 85 

3.3.14 Erythrocyte leakage assay .................................................................... 86 



TABLE OF CONTENTS  

3.3.15 Folate receptor expression levels .......................................................... 86 

3.3.16 DNA sequencing ................................................................................... 87 

3.3.17 Statistical analysis ................................................................................. 87 

3.4 Results and Discussion ............................................................................ 88 

3.4.1 Lead structure identification................................................................... 88 

3.4.2 Lipid variation ........................................................................................ 89 

3.4.3 Impact of lipid on nanoparticle formation and membrane interaction .... 91 

3.4.4 RNP complex formulation ...................................................................... 93 

3.5 Conclusion .............................................................................................. 102 

3.6 Acknowledgements................................................................................. 102 

3.7 Supporting information figures and tables .............................................. 103 

4 Summary ...................................................................................... 107 

5 Appendix ...................................................................................... 109 

5.1 Abbreviations .......................................................................................... 109 

5.2 Analytical Data ........................................................................................ 110 

5.2.1 MALDI-TOF mass spectrometry of artificial peptides .......................... 110 

5.2.2 MALDI-TOF mass spectrometry of PMO derivatives ........................... 111 

6 References ................................................................................... 113 

7 Publications ................................................................................. 131 

8 Acknowledgements ..................................................................... 133 



   INTRODUCTION 

1 

1 Introduction 

This chapter provides a brief introduction into the research field of molecular therapeutics 

and associated efficient delivery strategies. It is not considered to be a complete review of 

the whole scientific area. 

 

1.1 Regulation of gene expression 

Different mechanisms in cells regulate the synthesis of gene products like RNA and 

proteins. These modulation programs build the fundament for the proteomic and 

functional diversity of eukaryotes and the ability of the cell to activate different 

developmental stages, to respond to extracellular signals and to adapt to 

environmental conditions.1  

Since less than two percent of the human genome belongs to the ~25.000- 35.000 

protein coding genes, the main part of the genome consists of non-coding DNA.1 A 

part of the non-coding DNA is transcribed into transfer, ribosomal or nuclear RNA 

molecules as well as other transcriptional and translational regulatory elements. 

Considering that the human proteome consists of over 100.000 proteins, it seems 

certain that the ''one-gene-one-enzyme hypothesis'' of Beadle and Tantum from 1941 

explaining the relationship between genes and proteins is too simple.2 Several post-

transcriptional modification processes were identified, which play an important role in 

the generation of the proteome diversity of eukaryotes. One of the most notable  

contributions to that enormous diversity can be generated by a process called RNA 

processing.3-4 
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1.1.1 RNA processing  

The discovery that every RNA sequence is not representing a simple copy of its 

coding DNA, as well as the detection of long heterogeneous nuclear RNAs 

(hnRNAs), investigated the role of RNA regulation as a central point in gene 

expression.5-6  

Controlled by transcription factors, cis-elements as well as promoter, enhancer and 

silencer sequences, the nowadays termed pre messenger RNA (pre-mRNA) is 

transcribed from the DNA template by the RNA-Polymerase II. After transcription, the 

conversion of pre-mRNA transcripts into smaller mature messenger RNA (mature 

mRNA) takes place. This process is called RNA processing. The pre-mRNA 

undergoes three main modifications, the 5´ capping, 3' polyadenylation, and RNA 

splicing.7 These nuclear processes determine the fate of the transcript and thereby 

regulate the cellular machinery.8  

The first RNA processing event is the 5' capping. Here, the 5' triphosphate terminus 

(pppN) of a primary transcript is modified by the enzymatic activity of a 

triphosphatase, a guanyl transferase and a methyl transferase to a 7-

methylguanosine-triphosphate (7meGpppN).9 This modification protects the RNA 

from exonucleases10 and facilitates the transport through nuclear pores into the 

cytosol as well as the recruitment of the mature mRNA to the ribosomes.7 After the 

final endonucleolytic cleavage, 10-30 nucleotides downstream of a signal sequence, 

the resulting 3' end gets polyadenylated by the polyadenylate polymerase using ATP 

as a precursor.10 The poly(A) tail also protects the transcript and thereby defines the 

half-life of the mature mRNA.11  

The third and most complex part of RNA processing is the removal of noncoding 

intervening sequences (introns) from the pre-mRNA sequence and the 

rearrangement of coding sequences (exons). The splicing process is controlled and 

catalyzed by a large complex called spliceosome. The complex comprises several 

proteins and small nuclear RNA molecules forming small nuclear ribonucleoproteins 

(snRNPs) to interact with the intron and to form the different complex compositions 

needed for the splicing process.12-13 The intron recognition and removal relies on 

three certain sequences, including the 5' splice site, the branch point and the 3' splice 

site (Figure 1). The highly conserved 5' splice site (acceptor site) labels the transition 
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from an exon to an intron and is composed of two nucleotides (GU). The 3' splice site 

(donor site) AG is located at the end of an intron and is connected to an upstream 

polypyrimidine tract followed by an adenosine as branching point.3, 14 The splicing 

mechanism consists of two sequential transesterification reactions. First, the 2' OH-

group of the branching point builds a phosphodiester bond with the nucleotide of the 

5' splice site, forming the lariat intermediate. This is followed by the ligation of the two 

exons, in which the free 3' OH group of the released 5' exon is attacking the last 

nucleotide of the intron at the 3' splice site, releasing the intron lariat.12, 15 

 

 

Figure 1. RNA splicing mechanism. After the transcription of the DNA into an exact RNA copy called 

precursor messenger RNA (pre-mRNA) the noncoding intron sequences have to be removed and the 

coding exons are joined together. This mechanism is regulated and catalyzed by the spliceosome, a 

large RNA-protein complex consisting of five small nuclear RNPs and numerous additional proteins. 

The identification of the noncoding intragenic region is obtained by conserved sequences flanking this 

sequence: the 5' splice site (GU) and 3' splice site (AG) as well as an adenine nucleotide (A) as 

branching point in close proximity to the 3' splice site. The biochemical mechanism is based on two 

sequential transesterification reactions (indicated in red). After the first transesterification of the 5' 

splice site and the branch point a lariat intermediate is formed. The second transesterification 

assembles the exon sequences forming the spliced mRNA and releases the intron lariat.  
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1.1.2 Alternative splicing - Multiple proteins from a single gene 

Alternative splicing is one of the key mechanisms of proteomic and functional 

diversity in eukaryotes.16 This tightly regulated gene expression process leads to a 

single gene coding for multiple proteins (Figure 2) in a cell type and developmental 

stage specific manner. Various alternative splicing forms, regulated by a system of 

trans-acting proteins (activators and repressors) and their cis-acting binding sides 

(silencer and enhancer), are responsible for the correct integration of the right 

exons.17 The process of constitutive splicing aligns all exons of a pre-mRNA 

transcript. The most common alternative splicing mode in humans is exon skipping. 

Hereby, an exon is completely spliced out, which results in a shorter mRNA transcript 

(Figure 2). Alternative splicing thereby directs the synthesis of various protein 

isoforms with different cellular functions from a single mRNA transcript.  

 

Figure 2. Schematic illustration of the alternative splicing process. This process enables mRNA 

to direct synthesis of various protein isoforms from a single pre-mRNA transcript. After the 

transcription of pre-mRNA, the molecule undergoes the splicing procedure as one part of the RNA 

processing. The constitutive splicing process (red) aligns all exons of the pre-mature transcript and 

removes the introns. The alternative splicing process is most often conducted by exon skipping 

(orange) resulting in various forms of mature mRNA coding for different protein isoforms.  

It was shown that more than 95% of the human genes containing several exons 

undergo alternative splicing processes.16, 18-20 Not only exon-skipping but also intron 

retention, mutually exclusive exons or the induction of alternative 3' or 5' splice sites 

are possible alternative splicing events ( Figure 3). Since alternative splicing impacts 

development and physiology, alterations in mRNA splicing caused by genomic 

mutations can induce numerous human diseases.   
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1.1.3 Aberrant splicing  

Splicing is a tightly regulated gene expression process. Alterations caused by 

genomic mutations can lead to incorrect splice site recognition. Furthermore, 

changes and defects in the splicing machinery can occur, both resulting in aberrantly 

spliced mRNA.21-22 Mutations in the cis-acting elements (splicing sites) have a direct 

impact on the expression of one gene and can mainly result in skipping of one or 

more exons as well as intron retention.23 Single-nucleotide polymorphisms (SNPs) 

located in coding regions can have a severe influence on splicing, inducing various 

diseases.24 This process is driven either by splice site disruption, or activation of 

cryptic splice sites when a mutation disrupts the original site or create a de novo 

splice site ( Figure 3).25  

 Figure 3. Schematic illustration of alternative or aberrant splicing patterns. A multi-exon pre-

mRNA sequence can be spliced in various modes, resulting in different mature mRNAs. In contrast to 

constitutive splicing, intron retention (inclusion of an intron), exon skipping (exclusion of an exon), or 

the extension and shortening of sequence parts by the activation and creation of new cryptic sites can 

take place. Alterations in mRNA splicing caused by genomic mutations can induce defective 

alternative splicing patterns and severe diseases. 

 

Partly intron retention in β-Thalassemia, a genetic blood disorder, is caused by a 

point-mutation in intron 2 of the β-globin gene activating aberrant splice sites.26-27 

Disruption of an alternative splice site in cystic fibrosis caused by a cis-acting 

mutation results in loss of function of the cAMP-dependent transmembrane chloride 

channel that is expressed in secretory epithelium, which is followed by a severe 

pulmonary and pancreatic disease.28 
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The congenital neuropathy Familial Dysautonomia (FD) is induced by a splice site 

mutation of the IKBKAP gene. An intronic T→C substitution disrupts binding of the 

U1 snRNP to the 5' splice site (donor site), causing exon skipping which results in a 

frameshift. Dysfunctional IKBKAP generates a demyelinating phenotype affecting the 

autonomic nervous system and somatic sensory neurones.29 

Hutchinson–Gilford progeria syndrome (HGPS) is caused by mutations in the lamin 

gene (LMNA), coding for two alternatively spliced proteins. The most common 

mutation is a C→T point mutation in exon 11, activating a cryptic splice site, resulting 

in a partly exon exclusion. This genetic disorder leads to premature aging including 

postnatal growth retardation, atherosclerosis and bone dysplasia.30 

Tauopathies are an example for diseases of the central nervous system caused by a 

change in the protein isoforms ratio. Here, the microtubules binding tau protein 

induces abnormal intracellular filament accumulations, due to an aberrant ratio of the 

protein isoforms containing three or four microtubule binding regions. Especially 

mutations effecting the splicing regulation of exon 10 (inclusion or skipping) alter the 

normal fraction of tau protein isoformes.31 

Alternative splicing has also been shown to be a main participant in cancer 

development, including uncontrolled proliferation, migration, methylation changes 

and resistance to apoptosis and chemotherapy. It contributes to tumorigenesis due to 

the production of cancer progress stimulating splice isoforms induced by mutations 

effecting splice sites or the spliceosome.32-36 

Alteration in the splicing process can directly cause diseases and is also able to 

modify the severity of the disease phenotype or be linked with disease susceptibility. 

An enormous amount of diseases are based on mutations exhibiting a primary 

pathogenic effect on splicing.28 These numbers reveal the necessity to target mRNA 

processing  directly, to modulate the disease at its roots. 
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1.2 Molecular therapeutics to modulate the disease at its roots 

The completion of the Human Genome Project enabled the identification and 

biochemical characterization of genes as well as the detection of diseases derived by 

abnormalities in the genome or gene expression.1, 37 

The evolving knowledge about genetic disorders accelerated the development of 

biomedical research and the strongly connected field of molecular therapy. The 

substitution of deficient genes by transfer of genetic material known as gene therapy, 

as well as protein transduction and the combination of both, build novel strategies for 

a causal treatment of diseases. 

Up to now approaches to treat human disease are most often focused on the end of 

the defective signaling cascade like inhibiting enzymes, supplementing metabolites or 

interfering in signaling pathways. To directly target the genome, which serves as a 

blueprint of all downstream activities, or the direct transcripts revolutionized the 

toolbox of molecular therapeutics to modulate the disease at its roots. Furthermore, 

previous studies have shown that even a small portion of drug reaching the molecular 

target site is able to provide the therapeutic effect, indicating the strength of 

molecular therapeutics including gene therapy.38 

Antisense oligonucleotides (ASOs) targeting the splicing mechanism in mRNA 

processing hold great promises due to the high amount of aberrant splicing diseases 

and the involvement of splicing aberrations in cancer development. Furthermore, 

ASOs can be applied to alter the splicing pattern and thereby restore functional gene 

expression of several acquired or inherited diseases caused by mutations in the 

genomic DNA,.39-41 

Another encouraging approach is to treat the disease just once by direct targeting of 

the genomic DNA. Purposive treatment of the genomic DNA could have the ability to 

replace further treatments and cure several hereditary genetic diseases. To realize 

this concept, an editing tool with the ability to target, cut and alter the genomic DNA 

in a highly specific manner is needed. The investigation of the CRISPR/Cas9 system 

comprises these characteristics and thereby constitutes a promising technique to 

treat genetic disorders on DNA level.   
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1.3 Splice-switching antisense oligonucleotides as therapeutic drugs 

The concept of synthetic ASOs was first reported in 1978.42 Their identification as an 

efficient tool to regulate gene expression aroused the interest in this technology in 

terms of therapeutic applications. However, the successful application of ASOs as 

therapeutic drugs require a deeper understanding of the molecular mechanisms, as 

well as the development of efficient and safe delivery vehicle. Classical therapeutic 

ASOs are 15 to 30 nucleotides long and target a specific complementary mRNA 

region.  

This chapter focuses on ASOs which specifically target and alter the splicing process 

and are therefore termed splice-switching oligonucleotides (SSOs). To use this 

technology several limitations needed to be addressed. First, the effective 

intracellular delivery of sufficient SSO amounts had to be enabled. A favorable 

pharmacokinetic profile with a high stability and low toxicity of the SSO as well as a 

high specificity with low off-target effects to keep other cellular functions intact was 

crucial.43  

SSOs are synthetic molecules, designed to complementary bind pre-mRNA creating 

a steric block to alter the recognition by splicing factors resulting in an alternative 

splicing pattern or the reactivation of the normally used splice site.41 To perform this 

task the SSO needs to be chemically modified to avoid cleavage by RNase H44-45 and 

to increase serum stability due to resistance against enzymatic degradation. Further 

characteristics like a strong binding to the pre-mRNA sequence as well as a low 

immunogenicity are needed for further in vivo applications.36 Several chemical 

modifications including carbohydrate, backbone and base modifications were 

investigated to fulfill the requirements needed for successful splicing alteration.  

After the improvement of the first ASO chemistry from a phosphodiester to a more 

stable phosphorothioate moiety, several further synthetic derivatives with a high 

stability and affinity were developed. Modifications at the 2'-hydrogen of the ribose 

with different residues like a 2'-O-methyl (OMe) and 2‘-O-methoxyethyl (MOE) or a 

2‘-O-aminopropyl (AP) results in RNase H resistance as well as nuclease resistance 

in general and higher binding affinities (Figure 4).46 Therefore, these nucleic acid 

modifications made them suitable for the usage in SSOs. Many phosphorothioates 

are currently being developed as potential therapeutic for several diseases including 
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the Alzheimer disease,47 spinal muscular atrophy,48 DMD,49-50 Huntington disease,51 

hypercholesterolemia52 as well as in different cancer treatments.36, 53  

Another promising ASO group are the locked nucleic acid (LNA) oligomers. In LNAs, 

the 2' oxygen and 4' carbon of the ribose are linked via a methylene bridge resulting 

in a locked 3'-endoconformation, which reduces the conformational flexibility of the 

ribose. This leads to remarkably high binding affinities with an increased melting 

temperature of around 5 °C per base and nuclease resistance.54 

Besides carbohydrate modifications, alteration of the entire backbone revealed a high 

potential for further SSO therapeutic development (Figure 4). Peptide nucleic acids 

(PNAs) with a polyamide backbone55 and especially phosphorodiamidate 

morpholinos (PMOs) with bases bound to morpholine rings linked through uncharged 

phosphorodiamidate groups have demonstrated efficacy in the treatments of genetic 

disorders.44, 56 PMOs combine all key properties required for effective antisense 

splice-switching activity like sequence specificity, resistance to degradation, a lack of 

off-target effects as well as no significant effects on the on the innate immune 

system, good water solubility and well as no required assistance from other cell 

factors.44, 56-57 However, a safe and efficient in vivo delivery technology resulting in 

sufficient intracellular PMO amounts still constitutes the major obstacle.  

 

Figure 4: Chemical structure of different oligonucleotide analogs. RNA: Ribonucleic acid; PS: 

Phosphorothioate RNA; PS 2'OMe: Phosphorothioate 2‘-O-methyl; LNA: Locked-nucleic acid; PMO: 

Phosphorodiamidate morpholino oligomer; PNA: Peptide nucleic acid  

Nusinersen and eteplirsen are the first successful examples of FDA approved 

SSOs.48, 58 Nusinersen (Spinraza™, Ionis Pharmaceuticals) is a phosphorothioate 

SSO, with a methoxyethyl modification on the 2′ position of the ribose sugar, against 

spinal muscular atrophy (SMA). This autosomal recessive disease is caused by 

mutations in the SMN1 gene resulting in a loss of SMN1 protein function and thereby 
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the degradation of motor neurons. A nearly identical gene from the same family 

called SMN2 just differs in a single nucleotide that result in the exclusion of exon 7 

and a fast degradation of the nonfunctional RNA transcript. Nusinersen is targeting 

the intronic splicing silencer N1 resulting in the inclusion of exon 7 in SMN2 restoring 

a fully functional SMN protein.48   

Eteplirsen (Exondys 51™, Sarepta Therapeutics Inc.) is a PMO for the treatment of 

DMD, a X-linked recessive neuromuscular disorder.58 DMD is caused by mutations in 

the DMD gene coding for a membrane associated protein linking cytoskeletal actin 

with the extracellular matrix. Several different possible mutations in the DMD gene 

are known to either result in the disruption of the reading frame or to introduce a stop 

codon. Exon 51 is part of the mutation hotspot region in this gene, approximately 13 

% of DMD patients suffer from inclusion of a defective exon 51 transcript. Eteplirsen 

binds specifically to a binding site in exon 51 resulting in exon skipping and 

restoration of the reading frame producing a shorter but functional dystrophin-like 

protein.59-61 
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1.4 The CRISPR/Cas9 system as genome editing tool 

The investigation of the CRISPR/Cas9 system as an easily programmable RNA 

guided nuclease revolutionized the field of genome engineering. The technology, 

derived from the bacterial adaptive immune system, enables fast and accurate 

altering of genomic information with a simple two-component system.62-63  

The molecular mechanism of the Cas9 protein complexed to a single guide RNA 

(sgRNA) relies on the generation of DNA double-strand breaks (DSBs, Figure 5). The 

sgRNA is composed of a crRNA sequence, a 20 nucleotides long sequence at the 5' 

end matching the target gene sequence fused to the hairpin building trans activating 

crRNA (tracrRNA) sequence at the 3' end that binds to the Cas9 protein. This 

enables the sgRNA to bind, stabilize and guide the Cas9 endonuclease to the DNA 

target site.62 Watson-Crick base-pairing between the sgRNA and the target DNA as 

well as the presence of the protospacer adjacent motive (PAM-sequence, consisting 

of a NGG)64 activate the two catalytic nuclease domains of the Cas9 protein.65 After 

inducing a double-strand-break the DNA damage is repaired by cellular DNA repair 

mechanisms, either via the non-homologous end joining DNA repair pathway (NHEJ) 

or the homology directed repair (HDR) pathway. The repair of the DNA is error prone. 

Thereby the insertions and deletions, which might be introduced, can disrupt the 

gene function and cause a knockout of the target gene due to the induction of 

frameshift mutations (Figure 5).63, 66 By providing a donor DNA with homologous 

regions the HDR pathway can be utilized for the introduction of precise genetic 

modifications creating transgenic DNA.67-69 

RNA guided DNA recognition of the CRISPR/Cas9 system offers several advantages 

over other genome editing systems such as the Zinc Finger Nucleases (ZFNs) or 

Transcription Activator-like Effector Nucleases (TALENs). It provides high specificity 

and efficiency regardless of the methylation status of the target gene. Usage of more 

than one sgRNA sequence enables editing of multiple genes simultaneously, so-

called multiplexing.70 Furthermore, it has a high simplicity in target design and no 

need to reengineer the nuclease for each new target.71 

Not only the therapeutic use of this technology72-75 will have a high impact on 

molecular therapeutics, it will also have a big influence on drug discovery.76-78 By 

using the CRISPR/Cas9 system to inactivate or accelerate specific genes, the 
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determination of genes or proteins that affect or cause a disease will provide new 

targets for potential drugs. Furthermore, engineered cell based or in vivo models with 

precise genetic modifications will help to predict efficacy as well as side effects.75, 79 

 

 

Figure 5. Schematic illustration of the CRISPR/Cas9 genome editing mechanism. To use the 

CRISPR/Cas9 system as genomic tool a minimal set of two molecules is needed. The Cas9 nuclease 

and the sgRNA build the ribonucleoprotein complex (RNP). Binding of the sgRNA to the target DNA 

next to a protospacer adjacent motive (PAM) sequence results in a blunt double-strand break of the 

DNA. Repair of the double-strand break by cellular DNA repair mechanisms is error prone. Nucleotide 

insertion and deletions (INDELs) can occur and destroy the gene function.  

 

A clear drawback of this technology are the off-target effects, immunogenicity as well 

as the size of the Cas9 protein which complicates efficient delivery. Developing better 

delivery strategies and minimizing off-target effects by limiting the presence of the 

functional complex, have the ability to further develop the usage of this innovative 

genomic tool. Previous studies have shown that the direct delivery of the RNP 

complex instead of the DNA or RNA analogues is able to reduce off-target effects 

due to the timely degradation. Furthermore, the complex is directly functional without 

the need of transcription and translation and avoids the risk of spontaneous genome 

integration. The following chapter of this thesis will focus on most recent delivery 

strategies of Cas9/sgRNA RNP complexes. 
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1.5 Delivery strategies for different molecular therapeutics 

To use molecular therapeutics for efficient treatment, it is imperative to achieve 

sufficient intracellular drug concentrations. The cellular uptake and especially 

endosomal escape of unmodified macromolecular drugs including nucleic acids and 

their analogs, proteins as well as RNP complexes are very low. Therefore, the 

success of these molecular therapeutics rises and falls with an efficient delivery 

vehicle. For the development of a suitable carrier system several circumstances need 

to be considered, including cargo properties, target tissue, intracellular target site as 

well as the targeted molecule and the molecular mechanism - all requiring different 

carrier characteristics.80-81 In comparison to viral vectors, which are limited to a rather 

low capacity, non-viral vectors exhibit enormous high flexibility regarding possible 

cargos including macromolecular structures like proteins.82 This given fact, as well as 

several further limitations of viral vectors like the scale-up of virus production, the 

potential for insertional mutagenesis and possible immune responses,83 suggest the 

development of synthetic carrier systems towards higher efficiency as the most 

promising strategy.84 

To reach the target site, several hurdles need to be addressed, like rapid molecule 

degradation in biological fluids, fast clearance after systemic administration, immune 

system recognition, as well as target cell penetration and intracellular release.85 

Besides the already discussed chemical modifications, also conjugation to a carrier 

molecule or supramolecular assembly into nanosized formulations can mediate cargo 

protection and a favorable pharmacokinetic profile. The different delivery stages 

require biodynamic flexibility of the physicochemical and biological properties of an 

effective carrier system. The surface charge, size, polydispersity, shape and surface 

hydrophobicity/hydrophilicity can significantly influence the interaction with serum 

proteins and thereby the particle stability as well as the particle identity due to the 

emerging protein corona.86-87 Depending on the nanoparticulate characteristics 

interaction with the cell membrane results in the uptake mainly through endocytosis. 

Depending on the cell type, as well as the carrier and cargo properties different active 

endocytotic uptake mechanisms are taking place.88-89 Furthermore, unspecific 

adsorption of positively charged carrier systems to the negatively charged cell 

surface can mediate enhanced cellular uptake as well as cytotoxicity, due to 

increased surface tension and pore formation.90-92 Another important role is 
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constituted by hydrophobicity and interfacial force between nanoparticles and the 

cellular membrane, resulting in an enhanced lipid membrane interaction.93-94 

The intracellular fate of the internalized cargo, initially results in vesicular or 

endosomal entrapment.95 Most of the early endosomes undergo a series of 

maturation stages driven by acidification and recruitment of lysosomal enzymes. 

Escape of the cargo from this destructive environment into the cytosol is a crucial 

step for further cellular trafficking to the final target site.96 Escape from the 

endolysosomal compartment requires membrane disturbance, for example through 

cationic carrier systems initiating the proton sponge mechanism, first described by 

Jean-Paul Behr.97-98 The classical hypothesis describes a buffering mechanism 

induced due to protonation of the amino groups, followed by proton accumulation and 

chloride influx into the endosomal lumen, which leads to osmotic swelling and finally 

endosomal membrane rupture.98-99 Beside cytosolic delivery, intracellular transfer to 

the site of action, as well as cargo release are required for therapeutic efficiency. 

Extracellular and intracellular requirements differ tremendously regarding particulate 

stability, a compromise between a stable extracellular assembly and intracellular 

disassembly is required for successful cargo release within a desired cellular region. 

Depending on the cargo and target site, specific localization tags, like the nuclear 

localization signal (NLS) peptide sequence for nuclear targeting, can influence the 

intracellular trafficking.100 

Several approaches for enhancing the intracellular delivery of macromolecules have 

been investigated, including the use of cationic polymers,99, 101 peptides,102-103 

proteins,104 and lipids,105-106 as well as liposomes,107-109 and membrane translocating 

peptides.110 Especially carrier systems with an amphiphilic character have proven to 

be successful for macromolecular drug delivery.88, 99, 106, 111-113 A better understanding 

of the relationship between physicochemical properties and biological behavior as 

well as a redesign of the properties based on this knowledge could optimize the 

activity/toxicity profile of carrier systems tremendously.  
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1.5.1 Delivery systems for synthetic uncharged antisense oligonucleotides  

The use of chemically modified synthetic nucleic acids in the antisense therapy is 

highly promising and already showing first success in various clinical trials.114 

Nevertheless, efficient and safe delivery of sufficient ASOs amounts to the 

intracellular target site is still a major obstacle for further clinical development. Due to 

their favorable characteristics, uncharged ASOs such as PNAs and PMOs hold great 

promises as antisense therapeutics, especially for treatments based on splicing  

modification (Chapter 1.3). Although SSOs can be delivered as naked 

oligonucleotides,115 after systemic administration the unmodified molecules are 

cleared rapidly and additionally insufficient amounts are delivered to the intracellular 

target site due to poor cellular uptake.116-117 The development of a carrier system 

could increase tissue specific delivery and efficiency at lower doses, limiting off-target 

effects and toxicity. 

Since uncharged nucleic acids are not prone to form ionic complexes with positively 

charged carrier systems, covalent modification (conjugation to targeting ligands or 

carrier systems) or incorporation into a drug delivery system (nanoparticle-based 

approaches) are needed for a successful intracellular delivery. Previous strategies for 

improved delivery have been largely based on cell penetrating peptides (CPPs).118-121 

But also guanidine dendrimers,122 cationic backbone123 and lipidic124 modifications, 

as well as liposomes,125 were utilized to enhance the transfection efficiency of SSOs. 

The already discussed, convincing characteristics of PMOs lead to a number of 

delivery approaches to enhance in vivo transfection efficiency. The investigation of 

CPPs covalently conjugated to PMOs achieved remarkable results in pre-clinical 

DMD and SMA mouse models.103, 126-128 The uptake mechanism of CPPs is 

discussed controversially, from the initial widespread theory of direct translocation 

across the cell membranes, to interaction of the positively charged CPPs with the 

negatively charged cell surface followed by endocytic pathways.129-135 Nevertheless, 

most CPPs suffer from high toxicity, low cell, and tissue selectivity as well as poor 

endosomal escape abilities upon endosomal entrapment and instability due to 

enzymatic degradation in biological fluids. 

Various advanced SSOs with highly specific target sites were detected,41, 136 the 

combination with improved delivery vehicles would be of great utility and provides 

insights into potential SSO-based therapeutics.  
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1.5.2 Cas9/sgRNA delivery  

Genome editing technologies like the CRISPR/Cas9 system have the potential to be 

utilized to cure diseases caused by a genetic disorder. To use this system 

therapeutically, a safe and efficient delivery into the nucleus of the target cells is 

needed. Previous strategies are most commonly based on the delivery of the nucleic 

acid precursors of both needed components. Beside physical delivery methods 

including microinjection,137-138 electroporation139-140 and hydrodynamic delivery141 with 

limited in vivo applications, several viral vector based delivery methods evolved to 

use this highly efficient gene editing tool. Especially for in vivo applications viral 

vectors including specifically engineered adeno-associated virus (AAV)142 and full 

sized adenovirus143 as well as lentivirus144 vehicles are used due to the high knock 

out efficiencies. However, mutagenesis, immunogenicity and limited loading capacity 

are major drawbacks for their use as carrier systems for therapeutic approaches. 

The direct delivery of the functional Cas9 protein complexed with its sgRNA has 

several advantages over the delivery of their encoding DNA sequences or mRNA 

molecules, as described in chapter 1.4. However, the stability of proteins and 

especially single stranded RNA molecules in biological fluids is rather low due to 

enzymatic degradation. Therefore, incorporation into a stable carrier system is 

required to retain functionality for efficient intracellular activity. Furthermore, binding 

of the slightly positively charged Cas9 protein to the negatively charged sgRNA 

results in a negatively charged RNP complex exhibiting a poor membrane 

permeability, but a proper binding affinity to potentially positively charged carrier 

systems. Based on this characteristic and several further approaches different non-

viral delivery technologies evolved for the delivery of Cas9/sgRNA RNP complexes.  

Ramakrishna et al. successfully generated the first Cas9 protein and sgRNA co-

delivery system by a CPP-conjugated recombinant Cas9 protein and co-delivered 

CPP-complexed sgRNA in form of positively charged nanoparticles. They 

demonstrated in several cell lines efficient gene disruption, with reduced off-target 

effects relative to plasmid transfection.145  

Another highly promising approach is based on gold nanoparticles with a cationic 

arginine surface modification complexed to an engineered Cas9/sgRNA RNP 

resulting in remarkable knock out efficiencies.146 Lee et al. also reported the use of 



   INTRODUCTION 

17 

gold nanoparticles complexed to RNP complexes and finally coated with a silica layer 

to increase the negative charge density followed by coating with endosomal 

disruptive polymer, to treat mice suffering from DMD. They demonstrated that a 

single injection showed partially recovered dystrophin gene expression and thereby 

muscle function and reduced levels of fibrosis.147  

Liposome, as well as cationic lipid based systems, are well-established nonviral 

vector systems used for a wide range of macromolecules.148 Lipid nanoparticles 

demonstrated several advantages including protein and nucleic acid protection due 

to encapsulation. Furthermore, the lipid moieties are able to interact with the cellular 

membrane enhancing cellular uptake and endosomal escape. Zuris and colleagues 

used the commercially available Lipofectamine 2000TM for the packaging of the highly 

anionic RNP complex and demonstrated gene knock out in the mouse inner ear in 

vivo, demonstrating cationic lipids as a powerful tool for the delivery of Cas9/sgRNA 

RNPs.111 Using bioreducible cationic lipids containing a disulfide linkage in the 

hydrophobic tail, lead to the degradation of the lipid in the reductive intracellular 

environment, enhancing cargo release and thereby knock out efficiency.149 In a more 

recent study, nanoliposomes containing lecithin were used to modulate the function 

of glucagon-like peptide 1, by delivery of functional Cas9/sgRNA RNP complexes in 

type 2 diabetes mellitus mice, resulting in normalized blood glucose levels.150 

Polymeric carriers exhibit ideal characteristics for a reasonable delivery material, due 

to their biocompatibility, flexibility, and simplicity. In a recent work from Liu et al. 

boronic acid-rich dendrimers were used for the delivery of several native proteins and 

Cas9/sgRNA RNPs. The dendrimer efficiently assembled the RNP complexes into 

nanoparticles and showed GFP knock out efficiencies up to 40%. Furthermore, the 

system was used to target multiple genome loci of different cell lines, which indicates 

a promising and broad biomedical applicability.151 

Several Cas9/sgRNA RNP delivery systems evolved since the discovery of the 

CRISPR/Cas9 system. But major drawbacks including immunogenicity, low in vivo 

efficiency, and toxicity demonstrate the requirement of better carrier systems for a 

more favorable activity/toxicity profile and precise genome modification. 
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1.5.3 Sequence-defined oligo(ethylenamino) amides  

Sequence-defined oligo(ethylenamino) amides (OAAs) are a versatile delivery 

platform for various therapeutic modalities, like nucleic acids,152-153 proteins101, 106 and 

drugs.154-155 These artificial peptide-like structures consist of different combinations of 

distinct building blocks, like natural α-amino acids, artificial oligoamino acids as well 

as hydrophobic fatty acid domains. Different topological subclasses, like 2-arm,156 3-

arm,152 4-arm,157-158 comb architectures159 or T-shaped,152 were developed.  

OAAs are assembled via solid phase assisted peptide synthesis, which determines 

their highly precise nature.160  They can be tailored specifically to meet the 

requirements of different cargos and were optimized in several studies towards their 

specific payload. The oligomers typically contain several repetitions of the artificial 

oligoamino acid succinyl-tetraethylenpentamine (Stp). This cationizable building block 

is partially protonated at physiological pH and enables the complexation of negatively 

charged cargos, like nucleic acids, into nanoparticles. Furthermore, the Stp units 

facilitate endosomal escape, due to the ―proton-sponge effect‖ and thereby overcome 

a major obstacle in the delivery pathway.99, 161 Additionally, the oligomers contain 

different natural α-amino acids. Terminal cysteines (Cys) have been shown to 

promote improved nanoparticle stability due to their crosslinking-potential through the 

formation of disulfide bonds.161 The introduction of histidines (His) was shown to 

induce improved endosomal buffering and thus, endosomal escape.162 Fatty acid 

domains can on the one hand stabilize the delivery systems via hydrophobic 

interactions. On the other hand, they enable efficient intracellular delivery by 

promoting membrane lipid disorders.163 Structural modifications of the hydrocarbon 

moieties have been shown to impact the bioactivity of the carrier system.164-165 

Tyrosine tripeptide motifs promote the stable incorporation of the cargo into the 

nanoparticle via π-stacking effects.166 T-shape lipo-OAAs, which consist of a linear 

backbone of natural and artificial amino acids and a branching fatty acid unit, have 

been successfully used for the delivery of various therapeutic molecules.154, 166-168  

To reduce the risk for unspecific interactions with biological components upon 

exposure to physiological media, the surface of the delivery system can be modified 

by covalent attachment of shielding agents like polyethylene glycol (PEG). The 

introduction of an active targeting ligand can facilitate the efficient internalization of 

the nanoparticle into the target cell. 155, 167-168 
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1.6 Aim of the thesis 

Novel molecular therapeutics like artificial antisense nucleotides and genome editing 

nucleases revolutionized the field of molecular therapeutics. Efficient intracellular 

delivery of sufficient drug amounts is imperative to achieve a therapeutic effect. 

Combining save and efficient delivery system with these technologies could lead to a 

new era of individualized molecular medicine to treat diseases at their origin.  

The aim of this thesis was the development of delivery strategies for two highly 

promising molecular therapeutics, with substantially different physicochemical 

characteristics: phosphorodiamidate morpholino oligomers (PMOs) and Cas9/sgRNA 

ribonucleoprotein (RNP) complexes. In both cases, the nucleus is the ambitious 

target site to achieve intended therapeutic actions. For both cargo types, carrier 

systems based on sequence-defined aminoethylene lipopeptides were to be 

developed and optimized. 

PMOs are a class of artificial ASOs and hold great potential to treat diseases by 

splicing modification. Since PMOs are uncharged molecules they do not form ionic 

complexes with positively charged carriers. Modification of PMOs with 

dibenzocyclooctyne needed to be introduced for the covalent linkage of azide-

bearing lipopeptides via strain-promoted azide-alkyne addition for the development of 

new aminoethylene-based PMO conjugates. Further structural variations, different 

formulations and mechanistic studies needed to be conducted to determine the 

impact of the contained fatty acid.  

The CRISPR/Cas9 system is a highly precise and programmable endonuclease. The 

presence of this functional RNP complex inside cells is imperative for intended 

specific genome modifications.  For the development of a favorable carrier system, a 

human optimized version of the Cas9 protein needed to be expressed, several 

sgRNAs in vitro transcribed and both components purified. Binding of the negatively 

charged sgRNA by the Cas9 protein results in negatively charged RNPs. Suitable 

carriers needed to be identified to stably encapsulate both components to protect the 

enzymatic activity of the protein as well as the highly labile single stranded RNA 

against enzymatic degradation. Structural variation and complex formation studies 

needed to be conducted to obtain intranuclear delivery of the functional RNP 

complex for efficient knock out of an endogenous gene construct. 
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2 Chapter I: 

Supramolecular Assembly of Aminoethylene-Lipopeptide 

PMO Conjugates into RNA Splice-Switching Nanomicelles 

Jasmin Kuhn[1], Philipp M. Klein[1], Nader Al Danaf[2], Joel Z. Nordin[3,5], Sören 

Reinhard[1], Dominik M. Loy[1], Miriam Höhn[1], Samir El Andaloussi[3], Don C. Lamb[2], 
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The following sections are directly adapted from the original publication, which was 

finally published as Kuhn et al., Adv. Funct. Mater. 2019, 1906432.  

Sections may have been moved for consistency. 

Contributions: JK performed the experiments (PMO modifications, lipopeptide 

formulations for all experiments, HeLa pLuc/705 treatments in vitro and in vivo, 

erythrocyte leakage assays and flow cytometry) and wrote the manuscript. PMK 

synthesized the sequence defined aminoethylene-lipopeptides. NAD and the group 

of DCL performed the fluorescence correlation spectroscopy. JZN and the group of 

YA performed the treatment and RT-PCR analysis of H2K-mdx52 cells. SR 

supported the erythrocyte leakage assays. DML captured the transmission electron 

microscopy pictures. MH captured the confocal laser scanning microscopy pictures. 

TL and the group of SEA performed RT-PCR experiments and conducted splice-

switching and luciferase activity assays in pLuc/705 based human hepatoma (Huh7), 

murine neuroblastoma (Neuro2A) and murine myoblast (C2C12) cells. EW provided 

conceptual advice. TL and UL conceived the study and wrote the manuscript. All 

authors contributed to the manuscript and conclusions of this work. 
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2.1 Abstract 

Phosphorodiamidate morpholino oligomers (PMOs) are oligonucleotide analogs that 

can be used for therapeutic modulation of pre-mRNA splicing. Similar to other 

classes of nucleic acid-based therapeutics, PMOs require delivery systems for 

efficient transport to the intracellular target sites. Here, we present artificial peptides 

based on the oligo(ethylenamino) acid succinyl-tetraethylenpentamine (Stp), 

hydrophobic modifications and an azide-group, which we use for strain-promoted 

azide-alkyne cycloaddition conjugation with splice-switching PMOs. By systematically 

varying the lead structure and formulation, we determined that the type of contained 

fatty acid and supramolecular assembly have a critical impact on the delivery 

efficacy. A compound containing linolenic acid with three cis double bonds exhibited 

highest splice-switching activity and significantly increased functional protein 

expression in pLuc/705 reporter cells in vitro and after local administration in vivo. 

Structural and mechanistic studies revealed that the lipopeptide-PMO conjugates 

form nanoparticles which accelerates cellular uptake and that the content of 

unsaturated fatty acids enhances endosomal escape. In an in vitro DMD exon 

skipping model using H2K-mdx52 dystrophic skeletal myotubes, the highly potent 

PMO conjugates mediated significant splice-switching at very low nanomolar 

concentrations. The presented aminoethylene-lipopeptides are thus a promising 

platform for the generation of PMO-therapeutics with favorable activity/toxicity profile. 
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2.2 Introduction 

Antisense oligonucleotides (ASOs) are a versatile molecular tool to modulate cellular 

processes by interacting with endogenous nucleic acids. Phosphorodiamidate 

morpholino oligomers (PMOs) are a class of artificial, uncharged ASOs with favorable 

stability, nuclease-resistance, low immunogenicity and toxicity.56 A promising 

therapeutic approach based on ASOs is the modulation of gene expression by 

interfering with pre-mRNA splicing.136, 169 Such splice-switching oligonucleotides 

(SSOs) represent innovative therapeutics and could be applied for a diverse range of 

acquired or inherited diseases,41 including neuromuscular disorders,112, 170-173 

thalassemia,174-175 inflammation,176 retinopathies177-178 and cancer.179-180 

Eteplirsen, a PMO for treatment of Duchenne muscular dystrophy (DMD) and 

nusinersen, a phosphorothioate oligonucleotide against spinal muscular atrophy 

(SMA), are first examples of approved SSO therapeutics.48, 58 Similar to other 

therapeutic nucleic acid approaches, SSOs require delivery systems for efficient 

transport to their target tissues and intracellular target sites.181-182 Previous strategies 

for improved delivery of PMOs have been based on cell-penetrating peptides 

(CPPs),118-120, 183-186 guanidine dendrimers122 or cationic backbone modifications.123 

Wood and Gait have developed highly potent and well-studied PMO conjugates 

based on arginine-rich CPPs termed Pips that display remarkable efficacy in DMD 

and SMA mouse models.103, 126-128, 187 Although not yet conclusively resolved, for the 

efficient cellular uptake of guanidinium-containing scaffolds, such as arginine-rich 

CPPs or dendrimers, contribution of non-endocyototic translocation mechanisms is 

discussed.129-131, 133-134 A well-established alternative chemical motif of intracellular 

delivery systems is based on repeated aminoethylene units, such as in 

polyethyleneimine or related polyamines and conjugates.188-194 Although the exact 

mechanism also here is still disputed, the high efficiency is generally attributed to a 

characteristic protonation of the repeating aminoethylene units in the endosomal 

range between pH 5 and 7.4 after endocytotic internalization.98, 195-199 Sequence-

defined oligo(ethylenamino) amides based on artificial oligoamino acids and solid-

phase synthesis have been established as a delivery platform for charged nucleic 

acids and other therapeutics, which combines the advantages of aminoethylene 

based polymers with the chemical precision and versatility of peptides.200-201 Here, 
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the synthetic strategy was utilized for the specific development of new aminoethylene 

based PMO conjugates. 

 

2.3 Material and Methods 

2.3.1 Materials  

Phosphorodiamidate morpholino oligomers (PMOs) with the sequence 

CCTCTTACCTCAGTTACAATTTATA targeting a T to G point mutation at position 

705 in intron 2 of the human β-globin gene (IVS2-705), and 51D with the sequence  

TTGTTTTATCCATACCTTCTGTTTG targeting the splice donor site of Dmd exon 51, 

were acquired from Gene Tools, LLC (Philomath, OR, USA). All PMOs were modified 

with a 3'-primary amine (PMO-NH2) for DBCO functionalization. For experiments with 

fluorescence-based detection, PMO labeling was carried out using an additional 5'-

azide modification (PMO-N3).  

Deionized water was purified in-house using an Evoqua Ultra Clear® Glass Panel 

Systems (Günzburg, Germany) and was used for all experiments.  

Kaiser test solutions: 80 % (w/v) phenol in EtOH; 5 % (w/v) ninhydrine in EtOH; 20 

µM KCN in pyridine (2 mL of 1 mM KCN (aq) in 98 mL of pyridine).3  

HEPES buffered glucose (HBG, 20 mM HEPES, 5 % w/v glucose, pH 7.4) was 

prepared by dissolving 2.38 g HEPES (10 mmol) and 27.5 g glucose monohydrate in 

490 mL water. The pH was adjusted to 7.4 by the addition of NaOH and water was 

added to a final volume of 500 mL. 
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2.3.2 Solid-phase peptide synthesis 

Table 1. Summary of synthesized peptide sequences. 

ID Description Sequence (C->N) 

991 LP CholA Y3-Stp2-K-ε[G-K-α,ε(CholA)2]αStp2-Y3 

1106 LP CholA Y3-Stp2-K-ε[G-K-α,ε(CholA)2]αStp2-Y3-K-ε(N3) 

1169 LP OleA Y3-Stp2-K-ε[G-K-α,ε(OleA)2]αStp2-Y3-K-ε(N3) 

1171 LP LinA Y3-Stp2-K-ε[G-K-α,ε(LinA)2]αStp2-Y3-K-ε(N3) 

1172 LP SteA Y3-Stp2-K-ε[G-K-α,ε(SteA)2]αStp2-Y3-K-ε(N3) 

1195 LP LenA Y3-Stp2-K-ε[G-K-α,ε(LenA)2]αStp2-Y3-K-ε(N3) 

1204 LP GonA Y3-Stp2-K-ε[G-K-α,ε(GonA)2]αStp2-Y3-K-ε(N3) 

1205 LP AraA Y3-Stp2-K-ε[G-K-α,ε(AraA)2]αStp2-Y3-K-ε(N3) 

1206 LP EPA Y3-Stp2-K-ε[G-K-α,ε(EPA)2]αStp2-Y3-K-ε(N3) 

1207 LP DHA Y3-Stp2-K-ε[G-K-α,ε(DocA)2]αStp2-Y3-K-ε(N3) 

1228 Pip6a-azide H2N-K-ε(N3-Hx)-KBRXRBRXRILFQYRXRRBRRXR-Ac 

1239 LP (RRRR) CholA Y3-R4-K-ε[G-K-α,ε(CholA)2]-R4-Y3-K-ε(N3) 

1240 LP (RRXRR) CholA Y3-R2XR2-K-ε[G-K-α,ε(CholA)2]-R2XR2-Y3-K-ε(N3) 

1241 LP (RKRK) CholA Y3-RKRK-K-ε[G-K-α,ε(CholA)2]-KRKR-Y3-K-ε(N3) 

1242 LP (RHRH) CholA Y3-RHRH-K-ε[G-K-α,ε(CholA)2]-HRHR-Y3-K-ε(N3) 
 

α-amino acids are indicated in one-letter code. Stp, succinyl-tetraethylenpentamine; K-ε(N3), azidolysine;  N3-Hx, 

6-azido-hexanoic acid; B, β-alanine; X, 6-aminohexanoic acid; CholA, 5β-cholanic acid; OleA, oleic acid; LinA, 

linoleic acid; SteA, stearic acid; LenA, linolenic acid; GonA, gondoic acid; AraA, arachidonic acid; EPA, 

eicosapentaenoic acid; DHA, docosahexaenoic acid; Ac, N-acetyl. 

 

 

Loading of 2-chlorotrityl chloride resin  

2-Chlorotrityl chloride resin (750 mg) was weighed in a syringe microreactor and 

swollen in water-free DCM (5 mL) with an overhead shaker for approximately 20 min. 

The C-terminal Fmoc protected amino acid of the sequence (0.35 mmol) and DIPEA 

(0.7 mmol) were dissolved in water-free DCM (5 mL), added to the resin and shaken 

for 60 min. The reaction solvent was drained and a mixture of DCM/MeOH/DIPEA 

(80/15/5 v/v/v) (5 mL) was added twice for 10 min each. After the removal of the 

reaction mixture, the resin was washed 5 times with DCM. 

A resin sample was drawn and dried for the determination of resin loading. Three 

samples of 5-10 mg dry resin were weighed in reaction tubes and treated with 1 mL 

deprotection solution (20 % piperidine in DMF) for 1 h under shaking. The resin was 

allowed to settle and the supernatant was diluted for photometrical measurement at λ 

= 301 nm. The loading of each sample was then calculated according to the following 

equation: resin load [mmol/g] = (A × 1000) / (m [mg] × 7800 × df) with A as measured 
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absorbance, m as exact mass and df as the dilution factor. The mean value of three 

samples was used as final resin loading. 

The remaining resin was treated four times with 20 % piperidine in DMF to remove 

the Fmoc protection group. The reaction progress was monitored using the Kaiser 

test.3 Afterwards, the resin was washed three times with DMF and DCM and dried in 

vacuo. 

 

Synthesis of lipopeptides  

The artificial amino acid Fmoc-Stp(Boc)3-OH was synthesized according to the 

protocol published in Schaffert et al.1 Oligoaminoamides were synthesized using a 2-

chlorotrityl resin preloaded with Tyr(tBu)-OH (resin loading above). The sequence 

(C → N) [Y(tBu)]3-[Stp(Boc)3]2-K(Dde)-[Stp(Boc)3]2-[Y(tBu)]3 was synthesized with a 

SyroWaveTM synthesizer (Biotage, Uppsala, Sweden). Double coupling steps were 

carried out twice for 12 min at 50 °C each using 4 eq. Fmoc-amino acid, 4 eq. HOBt, 

4 eq. HBTU, and 8 eq. DIPEA in NMP/DMF (5 mL g−1 resin). Equivalents were 

calculated relative to free resin-bound amines (1 eq.). Fmoc deprotection was 

accomplished by 5 × 10 min incubation with 20 % piperidine in DMF (7 mL g−1 resin). 

Washing was accomplished by 6 × 1 min DMF (8 mL g−1 resin) after each coupling 

and deprotection step.The remaining couplings steps were performed manually using 

syringe microreactors and an overhead shaker. Coupling steps were carried out with 

4 eq. Fmoc-amino acid, 4 eq. HOBt, 4 eq. PyBOP, and 8 eq. DIPEA in DCM/DMF 

(50 /50) (10 mL g−1 resin) for 90 min. Fmoc deprotection was accomplished by 4 × 10 

min incubation with 20 % piperidine in DMF (10 mL g−1 resin). A washing procedure 

comprising 3 × 1 min DMF, 3 × 1 min DCM incubation (10 mL g−1 resin each) and a 

Kaiser test was performed after each coupling and deprotection step. When the 

Kaiser test yielded a positive result after coupling, the last coupling step was 

repeated. In the case of a negative result after deprotection, the last deprotection 

step was repeated. 

Fmoc-Lys(N3)-OH was coupled to the backbone and after the removal of the Fmoc 

protecting group, the N-terminal NH2-group was protected with 10 eq. Boc2O and 

10 eq. DIPEA in DCM/DMF (50/50 v/v). Dde-deprotection was performed 15 times 

with the automatic SyroWaveTM synthesizer. A hydrazine/DMF solution (2/98 v/v) was 
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added and vortexed for 2 min. The reaction solvent was drained and fresh solution 

was added again. Afterwards, the resin was washed with 5 × 1 min DMF, 5 × 1 min 

DIPEA/DMF (10/90) and 3 × 1 min DCM (10 mL g−1 resin each). After the coupling of 

a Fmoc-Gly-OH, a symmetrical branching point was introduced by using Fmoc-

Lys(Fmoc)-OH. In the final coupling step, the respective fatty acid was coupled (5β-

cholanic acid (CholA) for 1106; oleic acid (OleA) for 1169; linoleic acid (LinA) for 

1171; stearic acid (SteA) for 1172; linolenic acid  (LenA) for 1195; gondoic acid 

(GonA) for 1204; arachidonic acid (AraA) for 1205, eicosapentaenoic acid (EPA) for 

1206; docosahexaenoic acid (DHA) for 1207). 

 

Synthesis of Pip6a-azide 

The original Pip6a-PMO conjugate, as reported in the literature, is assembled by 

conjugation of the C-terminus of Pip6a (Ac-RXRRBRRXRYQFLIRXRBRXRB) to the 

3‘-amine of a PMO via amidation reaction.4 To adapt this composition and orientation 

to the click-chemistry approach used in this work, a Pip6a-azide derivative (Ac-

RXRRBRRXRYQFLIRXRBRXRBK(N3-Hx)-NH2) carrying a C-terminal azide function 

for conjugation with the 3‘-DBCO of a PMO was synthesized. The solid-phase 

synthesis was conducted on a Rink-amide resin to generate a C-terminal 

carboxamide in order to produce a Pip6a-PMO conjugate with equal peptide charge 

as the original conjugate. Synthesis of the peptide backbone 

RXRRBRRXRYQFLIRXRBRXRBK(Dde) with a C-terminal Nε-Dde protected lysine 

was synthesized using a SyroWaveTM synthesizer (Biotage, Uppsala, Sweden). 

Double coupling steps were carried out twice for 10 min at 60 °C each using 4 eq. 

Fmoc-amino acid, 4 eq. HOBt, 4 eq. HBTU, and 8 eq. DIPEA in NMP/DMF (5 mL g−1 

resin). Equivalents were calculated relative to free resin-bound amines (1 eq). Fmoc 

deprotection was accomplished by 4 × 10 min incubation with 20 % piperidine in 

DMF (7 mL g−1 resin). Washing was accomplished by 6 × 1 min DMF (8 mL g−1 resin) 

after each coupling and deprotection step. N-terminal acetylation was accomplished 

by 60 min incubation with 10 eq. acetic anhydride in DCM (5 mL g−1 resin) at room 

temperature followed by 6 × 1 min DMF wash (8 mL g−1 resin). Subsequently, Dde-

deprotection was performed 15 times with the automatic SyroWaveTM synthesizer. A 

hydrazine/DMF solution (2/98 v/v) was added and vortexed for 2 min. The reaction 
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solvent was drained and fresh solution was added again. Afterwards, the resin was 

washed with 5 × 1 min DMF, 5 × 1 min DIPEA/DMF (10/90 v/v) and 3 × 1 min DCM 

(10 mL g−1 resin each). Finally, the azide-function was introduced at the ε-amine of 

the C-terminal lysine by incubating the resin with 4 eq. 6-azido-hexanoic acid, 4 eq. 

HOBt, 4 eq. Pybob, and 8 eq. DIPEA in DCM/DMF (5 mL g−1 resin) for 60 min at 

room temperature. The resin was washed 3 × 1 min with DMF and 3 × 1 min with 

DCM (8 mL g−1 resin).  

 

Peptide cleavage and purification 

Peptide cleavage off the resin was performed by incubation with TFA/TIS/H2O 

(95 /2.5 /2.5 v/v/v) (10 mL g−1 resin). To avoid side-reactions with lipopeptides 

containing unsaturated fatty acids, the cleavage solution was cooled to 4 °C prior to 

addition and incubation was terminated after 30 min followed by immediate 

precipitation in 40 mL of pre-cooled MTBE/n-hexane (50/50 v/v).5, 6 Other 

lipopeptides and Pip6a-azide were cleaved during 90 min incubation with the 

cleavage solution at room temperature followed by precipitation in 40 mL of pre-

cooled MTBE/n-hexane (50/50 v/v). The peptides were purified by size exclusion 

chromatography using an Äkta purifier system (GE Healthcare Bio-Sciences AB, 

Sweden) based on a P-900 solvent pump module, a UV-900 spectrophotometrical 

detector, a pH/C-900 conductivity module, a Frac-950 automated fractionator, a 

Sephadex G-10 column and 10 mM HCl in H2O/ACN (70/30 v/v) as solvent. The 

pooled fractions containing the peptides were combined, snap-frozen and freeze-

dried. Pip6a-azide was additionally purified by preparative RP-HPLC using a VWR 

LaPrep system (VWR International GmbH, Darmstadt, Germany), a Waters 

SymmetryPrep C18 column (7 µm, 19x150mm) and a water/acetonitrile solvent 

gradient containing 0.1 % TFA.  
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2.3.3 Analytical methods 

Proton 1H NMR spectroscopy 

1H NMR spectra were recorded using an Advance III HD 400 MHz Bruker BioSpin 

(400 MHz) or an Advance III HD 500 MHz Bruker BioSpin (500 MHz) with 

CryoProbe™ Prodigy probe head. All spectra were recorded without TMS and 

chemical shifts were calibrated to the residual proton signal of the solvent and are 

reported in ppm. The spectra were analyzed using MestreNova (MestReLab 

Research). Integration was performed manually. 

MALDI mass spectrometry 

1 μL matrix solution containing 10 mg/mL Super-DHB (90/10 m/m mixture of 2,5-

dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid) in 69.93/30/0.07 (v/v/v) 

H2O/ACN/TFA was spotted on an MTP AnchorChip (Bruker Daltonics, Bremen, 

Germany). After the matrix crystallized, 1 µL of sample solution (10 mg/mL in water) 

was added to the matrix spot. Samples were analyzed using an Autoflex II mass 

spectrometer (Bruker Daltonics, Bremen, Germany). All spectra were recorded in 

positive ion mode. 

 

2.3.4 PMO functionalization  

Synthesis of PMO-DBCO  

For the DCBO functionalization of morpholino oligomers (PMOs), 2 µmol of PMO with 

3' primary amine modification (Gene Tools, USA) was dissolved in 600 µL water-free 

DMSO. 5 mg DBCO-NHS ester (Sigma-Aldrich, Germany) was dissolved in 200 µL 

water-free DMSO. The dissolved components were mixed and 4 µmol DIPEA was 

added. The reaction was incubated overnight in a shaker at 25 °C and 300 rpm. The 

DBCO-modified PMO was purified by size exclusion chromatography (SEC) using an 

Äkta purifier system based on a P-900 solvent pump module, a UV-900 

spectrophotometrical detector, a pH/C-900 conductivity module, a Frac-950 

automated fractionator, a Sephadex G-10 column and 30 % acetonitrile as solvent. 

The pooled PMO-DBCO fractions were lyophilized after SEC, dissolved in water and 

analyzed by MALDI-MS. The concentration of the resulting PMO solution was 

determined photometrically at 265 nm using the extinction coefficient provided by the 

PMO supplier.   



   CHAPTER I: PMO-LP CONJUGATES 

29 

Synthesis of AF647-PMO-DBCO 

PMO (IVS2-705) containing a 5' azide modification (PMO-N3) and 3‘ primary amine 

was labeled with 1.5 eq. AF647-DBCO and subsequently functionalized with DBCO-

NHS by the following procedure. PMO-N3 (1.17 µmol) was dissolved in 234 µL water-

free DMSO. 2 mg AF647-DBCO (1.76 µmol) was dissolved in 266 µL water-free 

DMSO and mixed with the PMO-N3 solution to a final volume of 500 µL. The solution 

was incubated overnight at room temperature under constant shaking. On the next 

day, 100 µL water-free DMSO containing 3 mg DBCO-NHS ester and 0.35 µL DIPEA 

(2.34 µmol) was added to the PMO solution, the solution was vortexed and incubated 

for 24 h under constant shaking. The obtained product was first purified by dialysis 

(Spectrapor MWCO 3.5 kDa, Repligen GmbH, Ravensburg, Germany) against water 

(overnight, 4 °C). The A647N-PMO-DBCO was further purified by RP-HPLC using a 

Waters RP 8 column (5 µm, 150 x 4.6 mm) connected to a VWR Hitachi Chromaster 

HPLC system (5160 pump module, 5260 auto sampler, 5310 column oven, 5430 

diode array detector). A gradient from 5 % acetonitrile (0.1 % TFA) to 100 % 

acetonitrile (0.1 % TFA) over 22.5 min was used and product elution was monitored 

photometrically at 214 nm. Fractions containing A647N-PMO were pooled and 

freeze-dried. 

 

PMO-lipopeptide conjugation 

For cell culture experiments, FCS and TEM measurements, conjugation of PMO and 

lipopeptide was carried out by diluting PMO-DBCO (stock solution in water ~700 µM) 

with HBG to a concentration of 100 µM. Lipopeptides were diluted with HBG to 100 

µM for the 1:1 formulations. For formulations with excess of free LP, the 

concentration of LP was increased accordingly (e.g. 300 µM for 1:3 ratio of PMO to 

LP). Equal volumes of both components were mixed and incubated overnight at room 

temperature under constant shaking, resulting in a 50 µM PMO-LP conjugate solution 

without (1:1) or with (e.g. 1:3) additional free LP. For in vivo experiments, conjugation 

was carried out analogously at higher concentration. 
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2.3.5 AF488-labeling of LP LenA 

To label the free fraction of LP LenA in formulations containing an excess of free 

lipopeptide, LP LenA was reacted with Alexa Fluor 488 (AF488-DBCO) at the azide 

function. The resulting labeled LP LenA is not able to undergo covalent reaction with 

PMO-DBCO and therefore stays free in the formulation. 2.38 mg LP LenA was 

dissolved in 250 µL water. 1 mg AF488-DBCO was dissolved in 250 µL water, the 

two components were mixed and incubated overnight under constant shaking at 

room temperature. Uncoupled dye was removed by dialysis (Spectrapor MWCO 2 

kDa, Repligen GmbH, Ravensburg, Germany) against water (overnight, 4 °C) and 

the purified product was freeze-dried. 

 

2.3.6 Statistical azide-functionalization of oligo- and polymers  

For an initial library screening, amine-containing oligo- and polymers were statistically 

modified with 1.5 eq. azidobutyric acid N-hydroxysuccinimidyl ester and subsequently 

used for conjugation with PMO-DBCO and cell experiments. Two days prior to 

transfection, the samples were diluted with 10 mM HEPES buffer to a final 

concentration of 200 µM, azidobutyric acid N-hydroxysuccinimidyl ester was diluted 

to a concentration of 300 µM. Equal volumes of both solutions were mixed and 

incubated overnight under constant shaking, resulting in a 100 µM oligo- or polymer 

solution. One day prior to transfection, an equal volume of 100 µM PMO-DBCO 

solution was added and incubated overnight. Transfections were performed as 

described in paragraph 2.3.10 for the luciferase activity assay in vitro. 

Table 2. Oligo- and polymers used in the library screening 

Compound ID Type Sequence Publication 

PAMAM G5 Dendrimer Commercially available - 

PPI G2 Dendrimer Commercially available - 

LPEI Polymer - Rödl et al.7 

454 T-shape C-Y3-Stp2-K(K-OleA2)-Stp2-Y3-C Troiber et al.8 

784 4-arm KK[HK(H-SPH-K)3-H-C)2]2 Beckert et al.9 

689 3-arm C-H-(Stp-H)3-K-[H-(Stp-H)3-C]2 Kos et al.10 

552 Comb-like C-[K-(Stp)-H]8-C Scholz et al.11 

734 PEG 4-arm K-(PEG24-Glu)-K-[k-(Stp4-C)2]2 He et al.12 

991 T-shape Y3-Stp2-K(G-K(CholA)CholA)-Stp2-Y3 Klein et al.13 
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2.3.7 Fluorescence correlation spectroscopy (FCS) 

The fluorescence correlation measurements were performed on a home-built 

microscope as described elsewhere.14 A pulsed laser diode at 470-nm wavelength 

(LDH-P-C-470, PicoQuant) was used for excitation of the Alexa fluorophore 488 

(AF488)-dye labeled LP LenA and a pulsed laser diode at 635-nm (LDH-P-C-635b, 

PicoQuant) was used for excitation of the Alexa fluorophore 647 (AF647)-dye 

labeled-PMO. Laser powers of ~ 4.5 µW for both the 470 and 635-nm lasers were 

used, measured at the sample with a slide power meter (S170C-Thorlabs). The 

measurements were performed using a 60x water immersion objective, NA 1.27 

(Plan Apo 60 x WI, Nikon). The raw optical data and subsequent correlation analysis 

were performed with our home written software PIE analysis with Matlab (PAM).15 

PAM is a stand-alone program (MATLAB; The MathWorks GmbH) for integrated and 

robust analysis of fluorescence ensemble, single-molecule, and imaging data.  

The FCS data were acquired by recording the detected photons of the single photon 

avalanche photodiodes (SPADs) on time correlated single photon counting cards 

(TCSPC, SPC-150 Becker and Hickl) for a period of 15 minutes. Lifetime 

measurements were performed to investigate whether the self-association of the 

AF488-LP LenA drastically changes its photophysical properties (Figure S13). From 

both the FCS data and the lifetime measurements (Figure S13), aggregate formation 

with quenching of the fluorescence is observable at concentrations of 10 µM and 

above. The corresponding intensities traces are shown in Figure S14. The lifetime 

decay of AF647-PMO was also investigated in formulations with LP LenA at ratios of 

1:1 and 1:3 (Figure S15). Incorporation of AF647-PMO into nanoparticles was 

observed at 1.25 µM concentration for the 1:3 formulation and at 5 µM for the 1:1 

formulation. An increase in the fluorescence lifetime of the AF647-PMO was 

observed upon association into nanoparticles. The corresponding intensities traces 

are shown in Figure S16. Measurements were conducted in HBG buffer for 

simulating physiological body conditions. 
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2.3.8 Transmission electron microscopy (TEM) 

PMO-LP conjugates were prepared in water as described in paragraph 2.3 for the 

PMO-lipopeptide conjugation. Samples either contained PMO alone or PMO with LP 

LenA at a 1:1 or 1:3 ratio. Carbon coated copper grids (Ted Pella, Inc. USA, 300 

mesh, 3.0 mm O. D.) were hydrophilized with a plasma cleaner under argon 

atmosphere (420 V, 1 min). The grids were placed with the activated face down on 

top of 10 µL sample droplets for 20 s. Afterwards, the sample was removed with a 

filter paper and stained using a two-step process: first, the grid was washed with 5 µL 

staining solution (1.0 % uranyl formate in water), which was removed immediately. 

Second, 5 µL of the same solution was left on the grid for 5 s. Afterwards, it was 

removed with a filter paper and grids were allowed to dry for 20 min. Grids were 

stored at room temperature. The samples were measured on a JEOL JEM-1100 

electron microscope using 80 kV acceleration voltage.   

 

2.3.9 Cell culture  

HeLa pluc/705 cells were grown in RPMI-1640 medium (L-alanyl-glutamine and 

sodium bicarbonate) supplemented with 10 % FBS, 100 U/mL penicillin and 100 

μg/mL streptomycin. The cells were cultured in ventilated flasks in the cell incubator 

at 37 °C and 5 % CO2 in a humidified atmosphere. Cells were passaged at a 

confluency of approx. 80 %. 

 

2.3.10 Splice-switching and luciferase activity assay in vitro 

Splic- switching experiments were performed in triplicates in 96-well plates. 24 h prior 

to transfection, the plates were coated with collagen and 5.000 HeLa pLuc/705 cells 

were seeded per well. Before transfection, 50 µM PMO-LP solutions were diluted 

with HBG buffer to 25 µM, 12.5 µM and 6.25 µM. The medium was replaced with 90 

μL fresh serum-containing growth medium. 10 µL PMO-LP solution was added to 

each well and incubated at 37 °C. The medium was removed after the indicated 

incubation time and cells were treated with 100 μL cell lysis buffer per well. 

Luciferase activity in 35 μL cell lysate was measured in a luciferin-LAR buffer solution 

(20 mM glycylglycine, 1 mM MgCl2, 0.1 mM EDTA, 0.051 % (w/v) DTT, 0.0278 % 
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(w/v) ATP, 0.5 % (v/v) Coenzyme A stock solution, pH 8-8.5) using a Centro LB 960 

plate reader luminometer (Berthold Technologies, Bad Wildbad, Germany). Light 

emission from each well was integrated over 10 s. The relative light units (RLU) were 

normalized to buffer-treated cells and the results are presented as fold increase in 

luminescence.  

  

2.3.11 RT-PCR 

40.000 HeLa pLuc/705 cells per well were seeded in 24-well plates 48 h before 

transfection. PMO-LP solution was prepared as described above. On the day of 

transfection, the medium was replaced with 270 μL fresh serum-containing medium. 

The PMO-LP to be tested was diluted with HBG to the intended concentration and 30 

μL of sample solution was added to each well. After 24 h of incubation, the medium 

was removed, cells were collected and the total RNA was isolated with Tri-Reagent® 

(Sigma-Aldrich) according to the manufacturer's protocol. 200 nanograms of RNA 

was used for the cDNA synthesis with the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems) according to the manufacturer's protocol. PCR 

was performed using the HotStarTaq Plus DNA polymerase kit (QIAGEN) following 

the manufacturer's protocol.  

Primers had the following sequence: 

forward: 5' TTGATATGTGGATTTCGAGTCGTC 

reverse: 5' TGTCAATCAGAGTGCTTTTGGCG 

PCR program:  

1 x  95 °C  5 min 

29 x  95 °C  30 sec 

  55 °C  30 sec 

  72 °C  30 sec 

1 x  72 °C  10 min 

RT-PCR products were analyzed on a 1.25 % agarose gel in TBE buffer and 

visualized using SYBRgold (Invitrogen). Electrophoresis was run at 90 V for 45 

minutes and analyzed on a Fluor-S gel documentation system (Bio-Rad) with the 

Quantity One software (Bio-Rad). 
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2.3.12 Cell viability assay (MTT) 

Cell viability after treatment of HeLa pLuc/705 cells with PMO formulations was 

determined using a MTT assay. Transfections were carried out as described in 

paragraph 2.9 for the luciferase activity assay in vitro. HeLa pLuc/705 were seeded in 

96-well plates at a density of 5.000 cells/ well. After 24 h medium was replaced with 

90 μL fresh medium. Before transfection, 50 µM PMO-LP solutions were diluted with 

HBG buffer to 25 µM, 12.5 µM and 6.25 µM. 10 µL PMO-LP solution was added to 

each well. Cells were incubated for 24 h or 48 h at 37 °C and 5 % CO2 in a humidified 

incubator. 10 μL MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

(5 mg/mL) was added to each well. After an incubation time of 2 h, unreacted dye 

and medium were removed, and the 96-well plates were frozen at −80 °C for at least 

30 min. To dissolve the purple formazan product, 100 μL DMSO was added per well 

and the plate was incubated for 30 min at 37 °C under constant shaking. Each well 

was quantified by measuring the absorbance at 590 nm with background correction 

at 630 nm using a microplate reader (Tecan Spark 10M, Tecan, Switzerland). All 

studies were performed in triplicate. The relative cell viability (%) was calculated 

relative to control wells treated with HBG as ([A] test/[A] control) × 100 %. Means are 

reported +/- standard deviation. 

 

2.3.13 Flow cytometry 

One day prior to uptake experiments, HeLa pLuc/705 cells were seeded into 24-well 

plates (Corning ® Costar, Sigma-Aldrich, Germany) at a density of 50.000 cells/well 

and a 12.5 µM PMO-DBCO solution in HBG (pH 7.4), which was prepared with 5 % 

AF647 labeled and 95 % unlabeled PMO-DBCO. The concentrations of the 

lipopeptide solutions were calculated according to the indicated equivalents used. 

Equivalents represent the molar ratio of PMO to cationic lipopeptide in the PMO-LP 

solutions. Equal volumes of both components were mixed (end concentration 6.25 

µM PMO-LP in HBG) and incubated overnight under constant shaking. On the next 

day, the medium in each well was replaced with 450 μL fresh medium and 50 µL 

PMO-LP solution (5 % AF647-PMO-LP) resulting in a concentration of 0.625 µM 

PMO-LP (5 % AF647-PMO-LP). Control experiments were performed with 50 µL 

HBG buffer or PMO-DBCO (containing 5 % AF647-PMO-DBCO) without the addition 
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of lipopeptide. Cells were incubated for the indicated time at 37 °C and 5 % CO2 in a 

humidified incubator, collected and resuspended in PBS buffer containing 10 % FBS. 

All samples were analyzed by flow cytometry using a LSR Fortessa flow cytometer 

(BD Biosciences, Singapore). 1 ng/μL 4′,6-diamidino-2-phenylindole (DAPI) was 

added shortly before the measurement and used to discriminate between viable and 

dead cells. The cellular fluorescence was assayed by excitation of DAPI at 405 nm 

and detection of emission at 450 nm and the excitation of AF647 at 640 nm and 

detection of emission at 670 nm. Only isolated viable cells were evaluated. Flow 

cytometry data were analyzed using FlowJo 7.6.5 flow cytometric analysis software 

by FlowJo, LLC (Ashland, OR, USA). All experiments were performed in triplicate.  

 

2.3.14 Confocal laser scanning microscopy (CLSM) 

15.000 HeLa pLuc/705 cells were seeded in collagen-coated 8 well-Ibidi μ-slides 

(Ibidi GmbH, Planegg/Martinsried, Germany) in a total volume of 300 µL medium per 

well. Cells were incubated at 37 °C and 5 % CO2. A 25 µM PMO-LP solution in HBG 

containing 20 % AF647 labeled and 80 % unlabeled PMO-DBCO were prepared and 

incubated overnight under constant shaking. The amount of the lipopeptide was 

calculated according to the indicated equivalents used. Equivalents represent the 

molar ratio of PMO to cationic lipopeptide in the PMO-LP solutions. For the co-

localization experiments, 20 % of the lipopeptide was substituted by an AF488-

labeled version. On the next day, the medium was replaced with 240 μL fresh 

medium. The PMO-LP solutions were diluted with HBG buffer and 60 µL PMO-LP (20 

% AF647-PMO-LP) was added to each well resulting in a final concentration of 0.625 

µM PMO-LP. After the indicated time, each well was washed twice with 300 µL PBS 

and cells were subsequently fixed with 4 % paraformaldehyde in PBS (40 min 

incubation at RT). After fixation, each well was again washed two times with 300 µL 

PBS, the cell nuclei were stained with DAPI (2 µg/mL) and F-actin was labeled with 

rhodamine-phalloidin (1 µg/mL). After 20 min of incubation (light protected at RT), the 

staining mixture was aspirated and replaced with 300 µL PBS per well. Images were 

recorded utilizing a Leica-TCS-SP8 confocal laser scanning microscope (CLSM) 

equipped with an HC PL APO 63x 1.4 objective (Germany). DAPI emission was 

recorded at 460 nm, AF488-LP at 519nm, rhodamine at 580 nm and AF647-PMO-LP 
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at 665 nm. Afterwards, all images were processed using the LAS X software from 

Leica. 

 

2.3.15 Calcein release assay by CLSM 

24 hours prior to the PMO conjugate addition, 15.000 HeLa pLuc/705 cells were 

seeded per well in collagen-coated 8-well Ibidi μ-slides (Ibidi GmbH, 

Planegg/Martinsried, Germany). The cells were incubated with 30 μL of PMO-LP 

conjugate (50 µM) in a 1:3 ratio along with 0.45 mg/ml calcein in 270 μL RPMI 

medium containing 10 % FBS for 4 hours. Afterwards, the cells were washed three 

times with PBS and the medium was replaced with 300 μL RPMI medium containing 

10 % FBS without phenol red. Images were recorded by confocal laser scanning 

microscopy with 488 nm laser excitation (TCS-SP8 confocal laser scanning 

microscope equipped with an HC PL APO 63x 1.4 objective, Leica Microsystems, 

Germany).  

 

2.3.16 Calcein release assay by flow cytometry 

24 hours prior to the PMO conjugate addition, 50.000 HeLa pLuc/705 cells per well 

were seeded in collagen-coated 24-well plates in a total volume of 1 mL per well. The 

cells were incubated with 50 μL of PMO-LP conjugate (50 µM) in a 1:3 ratio along 

with 0.45 mg/ml calcein in 450 μL RPMI medium containing 10 % FBS for 4 hours. 

Cells were incubated for 4 h at 37 °C and 5 % CO2 in a humidified incubator, washed 

three times with PBS, collected and resuspended in PBS buffer containing 10 % 

FBS. All samples were analyzed by flow cytometry using a LSR Fortessa flwo 

cytometer (BD Biosciences, Singapore) as described in paragraph 2.12. The cellular 

calcein emission was assayed at 519 nm. Flow cytometry data were analyzed using 

FlowJo 7.6.5 flow cytometric analysis software by FlowJo, LLC (Ashland, OR, USA). 

All experiments were performed in triplicate. 
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2.3.17 Erythrocyte leakage assay 

EDTA-blood was washed with phosphate-buffered saline (PBS) containing 25 mM 

sodium citrate. The washed erythrocyte suspension was centrifuged and the pellet 

was diluted to 5 × 107 erythrocytes per mL with PBS (pH 7.4, 6.5 and 5.5). A volume 

of 75 μL of erythrocyte suspension and 75 µL of PMO-LP solution (previously diluted 

with PBS of the respective pH) were added to each well of a V-bottom 96-well plate 

(NUNC, Denmark), resulting in the stated PMO-LP concentration. The plates were 

incubated at 37 °C under constant shaking for 1 h. After centrifugation, 80 µL of the 

supernatant was analyzed for hemoglobin release by monitoring the absorption at 

405 nm wavelength using a microplate reader (Spectrafluor Plus, Tecan Austria 

GmbH, Grödig, Austria). PBS-treated erythrocytes were set to 0 %. Erythrocytes 

treated with 1 % Triton X-100 (previously diluted with PBS of the respective pH) 

served as positive control and was set to 100 %. Data are presented as the mean 

value (± SD) of four independent measurements. 

 

2.3.18 Splice-switching and luciferase activity assay in vivo 

All animal studies were performed according to guidelines of the German Animal 

Welfare Act and were approved by the animal experiments ethical committee of the 

―Regierung von Oberbayern‖, District Government of Upper Bavaria, Germany. 

Eight-week-old, female, nude mice, Rj: NMRI-nu (nu/nu) (Janvier, Le Genest-Saint-

Isle, France), were housed in isolated ventilated cages under pathogen-free condition 

with a 12 h light/dark interval and were acclimated for seven days prior to 

experiments. Water and food were provided ad libitum. 5 × 106 HeLa pLuc/705 cells 

were injected subcutaneously into the left flank. The tumor volume was measured 

using a caliper and calculated as [0.5 × (longest diameter) × (shortest diameter)2] and 

the body weight was recorded daily.  

The PMO solutions were prepared 24 h before injection and contained 450 µg PMO 

(~15 mg/kg body weight) unconjugated or conjugated with 1 eq. LP LenA (1195), 

Pip6a-azide, respectively formulated with 3 eq. LP LenA (1195), LP OleA (1169), LP 

LinA (1171), LP AraA (1205) in a total volume of 50 μL HBG. Equivalents represent 

the molar ratio of PMO to cationic lipopeptide in the PMO-LP solutions. When tumors 
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reached 500-700 mm3, the animals were randomly divided into groups (n=3), 

anesthetized with 3 % isoflurane in oxygen and injected with 50 µL PMO solution 

intratumorally. All mice were euthanized by cervical dislocation 48 h after intratumoral 

injection. Tumors were collected and homogenized in cell culture lysis buffer 

(Promega, Germany) using a tissue and cell homogenizer (MP FastPrep®-24, 

Hyland Scientific, USA). The samples were subsequently centrifuged at 3000 g at 4 

°C for 10 minutes to separate insoluble cell components. Luciferase activity was 

determined in the supernatant using a luciferin-LAR (20 mM Glycylglycine, 1 mM 

MgCl2, 0.1 mM EDTA, 0.051 % (w/v) DTT, 0.0278 % (w/v) ATP, 0.5 % (v/v) 

Coenzyme A Stock solution, pH 8-8.5) buffer solution and measured with a Centro 

LB 960 plate reader luminometer (Berthold Technologies, Germany). 

 

2.3.19 Cultivation, treatment and RT-PCR analysis of H2K-mdx52 cells 

H2K-mdx52 cells were cultivated at 33 °C and 10 % CO2 in growth media containing 

DMEM (Thermo Fisher Scientific, Waltham, MA) supplemented with 20 % FBS (FBS 

Gold, PAA Laboratories), 2 % chicken embryo extract (Seralab), 1 % 

penicillin/streptomycin (P/S) (Life Technologies) and 20 U/ml of γ-interferon 

(PeproTech). For exon skipping experiments, 35.000 cells were seeded in 24-well 

gelatine-coated plates in growth medium. On the next day, the media was changed 

to differentiation media containing DMEM supplemented with 5 % horse serum (Life 

Technologies) and 1 % P/S and cultured at 37 °C and 5 % CO2. On day 3, the media 

was exchanged to fresh differentiation media and directly afterwards splicing 

compounds were added in the stated concentration. After 48 h, total RNA was 

extracted from the cells by RNeasy MiniKit (Qiagen, Hilden, Germany) according to 

the manufacturer‘s instructions.  

200 ng of extracted RNA was used for cDNA synthesis using the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, Warrington, UK) according to 

the manufacturer's instructions. For one RT-PCR reaction, 1 μL of cDNA template 

was mixed with 14.9 μL of water, 0.2 μL of 10 μM forward primer, 0.2 µL of 10 μM 

reverse primer, 1.6 μL of 2.5 mM dNTPs, 2 μL of 10 × Ex Taq Buffer, and 0.1 μL Ex 

Taq DNA polymerase (Takara Bio, Shiga, Japan).  

  



   CHAPTER I: PMO-LP CONJUGATES 

39 

Primers for amplification of cDNA from exons 49–54 had the following sequence: 

Ex49F 5′-AAACCAAGCACTCAGCCAGT-3′ 

Ex54R 5′-CAGCAGAATAGTCCCGAAGAA-3′ 

PCR program:  

1 x  95 °C  4 min 

35 x  94 °C  1 min 

  58 °C  1 min 

  72 °C  1 min 

1 x  72 °C  7 min 

PCR products were detected using MultiNA, a microchip electrophoresis system 

(Shimadzu, Kyoto, Japan). Exon-skipping efficiency (%) was calculated as (exon-

skipped transcript molarity)/(unskipped + exon-skipped transcript molarity) × 100 % 

using MultiNA. 

 

2.3.20 Statistical analysis 

Data were analyzed with GraphPad prism 5. The statistical significance of 

experiments was estimated using the two-tailed student‘s t-tests, *** p ≤ 0.001, ** p ≤ 

0.01, * p ≤ 0.05. 
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2.4 Results and Discussion 

2.4.1 Conjugate design and evaluation 

Since PMOs are uncharged nucleic acid analogs, they are not prone to the formation 

of ionic complexes with positively charged transfecting reagents. Strain-promoted 

azide-alkyne cycloaddition (SPAAC), initially established by Carolyn R. Bertozzi,202 

was used for the covalent linkage of dibenzocyclooctyne (DBCO) modified PMO and 

azide-containing artificial peptides. For activity screenings and structural 

optimizations, a PMO sequence against a thalassemicβ-globin intron mutation IVS2-

705 was selected to enable quantitative evaluation of splicing correction in different 

cell lines containing the pLuc/705 construct developed by RyszardKole‘s lab in the 

1990s. The cells contain a luciferase reporter which is interrupted by the globin IVS2-

705 resulting in increased luciferase activity depending on successful splice-

switching (Figure 6).203 Since the construct exhibits a certain background luciferase 

activity, luminescence levels were always normalized to the background of untreated 

cells  and expressed as ‗fold increase in luminescence‘. 

 

Figure 6. Schematic illustration of PMO induced splicing correction in HeLa pLuc/705 cells.
203

 

The construct in the top represents luciferase pre-mRNA interrupted by a human ß-globin intron 2 

carrying an A-to-G mutation at nucleotide 705. This mutation creates an additional 5' splice site and 

activates a cryptic 3' splice site. PMO targeted to the splice site around nucleotide 705 prevents 

aberrant splicing (solid arrow) and restores correct splicing (dashed arrow) resulting in expression of 

functional luciferase protein.  
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2.4.2 Lead identification 

To assess the general potential of oligo(ethylenamino) amides for PMO delivery, a 

first library screen was conducted with a statistical azide-functionalization approach 

(Figure 7).  

 

Figure 7. Schematic illustration of an oligomer library screening for lead PMO conjugates. An 

initial oligomer screening was carried out by statistical azide-modification of cationic oligomers. PMO 

with a 3‘ primary amine was functionalized with DBCO-NHS ester (top, left) and purified by size 

exclusion chromatography. Representatives of oligomers with different architectures were statistically 

functionalized with 1.5 eq. azidobutyric acid NHS ester (top, right), conjugated with PMO-DBCO and 

used for transfection of HeLa pLuc/705 cells. The splice-switching activity of the different PMO 

conjugates was evaluated by luciferase activity assays to identify lead structures for PMO delivery. 

 

Selected representatives of cationic polymers (PAMAM dendrimer G5, PPI dendrimer 

G3, LPEI 22 kDa) and artificial peptides with different architectures (branched 3-

arm,162 4-arm,158, 197 comb-like,204 PEGylated153 and lipid-modified113, 205) were first 

functionalized with 1.5 eq. of azidobutyric acid NHS ester, subsequently click-

conjugated to PMO-DBCO and finally used for transfection of HeLa pLuc/705 cells 
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(Figure 8). Here, the lipopeptide (LP) #991 was identified as the most efficient 

facilitator of PMO-mediated splice-switching. It contains the oligo(ethylenamino) acid 

succinyl-tetraethylenepentamine (Stp) as a cationic building unit, cholanic acid as a 

hydrophobic modification and tyrosine, which previously showed beneficial effects on 

charged nucleic acid delivery.205-208 

 

Figure 8. Luciferase activity assay results of oligomer library screening. The increase in 

luminescence in HeLa pLuc/705 cells was determined 24 h after transfection of PMO-DBCO with 

representatives of different oligomer groups. Oligomers were tested without azide-functionalization 

(top graphs) and with statistical azidobutyric acid-functionalization. Transfections were performed 

under serum-free conditions (4 h serum-free followed by 20 h serum containing conditions, left graphs) 

as well as under serum containing conditions (right graphs). Data are presented as the mean ± SD 

(n=3). 

 

For further validation of this screening hit, a #991 analog with azide-group at a 

defined position, oligomer #1106 (LP CholA)167, was used for transfections in 

comparison to unmodified #991 and at different PMO to oligomer ratios (Figure 9). 

Here, 1:1 represents the ratio of PMO to LP in the reaction resulting in an equimolar 

mixture of PMO-DBCO + LP CholA (noncovalent, #991) or the PMO-LP CholA 
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conjugate (covalent, #1106). Surprisingly, noncovalent PMO formulations with #991 

were also able to mediate increased luciferase activity, but only at higher oligomer to 

PMO ratios. Covalent formulations (PMO-LP CholA) were superior in all cases, but 

also here a beneficial effect of additional unconjugated LP was evident. 

 

Figure 9. PMO-LP conjugation and evaluation. (A) The chemical structure of the lipopeptide#991 

and its analog #1106 with N-terminal azidolysinefor conjugation to PMO-DBCO via strain-promoted 

azide-alkyne cycloaddition (SPAAC). (B) The increase in luminescence in HeLa pLuc/705 cells 24 h 

after transfection with noncovalent #991 or covalent #1106 formulations at different PMO-DBCO to 

oligomer ratios. The fold increase in luminescence represents arbitrary light units normalized to the 

mean background level of buffer treated cells. Data are presented as mean ± SD (n=3).  Additional cell 

viability data (MTT) are provided in Figure 23. 
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To validate the formulation via click reaction, HeLa pLuc/705 cells were treated side 

by side with the PMO-LP CholA 1:1 formulation and the purified PMO-LP CholA 

conjugate (Figure 10). Both PMO formulations mediated comparable levels of 

luciferase activity which confirms the reliability of the formulation approach. 

 

Figure 10. Comparison of PMO-LP CholA 1:1 formulation to purified PMO-LP CholA conjugate. 

Increase in luminescence in HeLa pLuc/705 cells was determined 24 h after transfection of PMO-LP 

CholA at a 1:1 ratio and compared to the HPLC purified conjugate. CholA: cholanic acid. Data are 

presented as the mean ± SD (n=3). 

 

2.4.3 Structural variations  

First, the impact of the repeated aminoetylene motif in the identified lipopeptide 

architecture was assessed in systematic variations of the lead structure #1106 by 

replacement of the contained oligoamino acid Stp with basic α-amino acids lysine, 

arginine, histidine, their combinations, or a 6-aminohexanoic acid-arginine motif 

(RXR).118, 184 Although the derivatives were designed to contain an equal number of 

protonatable amines in the biologically relevant pH range above pH 5, the 

substitution of Stp resulted in a complete loss of activity (Figure 11).  
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Figure 11. PMO-LP CholA (#1106) backbone variation. Increase in luminescence in HeLa pLuc/705 

cells was determined 24 h after transfection of PMO-DBCO conjugated to different lipopeptides at a 

1:1 ratio. The lead structure #1106 (-Stp-Stp-) was varied by replacement of the artificial oligoamino 

acid Stp with basic α-amino acids lysine (K), arginine (R), histidine (H) and combinations thereof or an 

arginine - aminohexanoic acid - arginine (RRXRR) motif. CholA: cholanic acid. Data are presented as 

the mean ± SD (n=3). 

 

This indicates that the artificial oligoamino acid Stp is an essential part of this 

particular lipopeptide architecture,presumably due the unique endosomal protonation 

characteristics of repeated aminoethylene motifs.In contrast, substitution of 

unsaturated fatty acids for the cholanic acid part resulted in improved activity (Figure 

12).  

 

Figure 12. PMO-LP fatty acid variation. The increase in luminescence in HeLa pLuc/705 cells was 

determined 24 h after transfection of PMO-DBCO conjugated to lipopeptides containing different fatty 

acids at a 1:1 ratio. CholA, cholanic acid; OleA, oleic acid; LinA, linoleic acid. Data are presented as 

the mean ± SD (n=3). 
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This is in line with previous findings that the hydrophobic core of Pip6a derivatives is 

a critical element for efficient PMO delivery.103 Based on this observation, a series of 

#1106 analogs containing fatty acids with different numbers of unsaturated bonds 

was synthesized and functional luciferase expression was assessed in a kinetic study 

12 to 72 h after transfection (Figure 13). Here, a distinct dependence of splice-

switching activity on the contained fatty acids and the degree of unsaturation was 

observed: the luminescence increases gradually with increasing number of 

unsaturated bonds up to three (Figure 13B, left, top). The PMO conjugate containing 

linolenic acid with three double bonds (PMO-LP LenA) promoted the highest splice-

switching at 5 µM concentration. The high activity of PMO-LP LenA was not 

exceeded by conjugates containing fatty acids with four to six double bonds (Figure 

13B, left, bottom).  

 

 

Figure 13. Structure- and formulation-activity relationships of PMO-LP conjugates.(A) A 

schematic illustration of artificial lipopeptides (LP) with systematic variation of contained fatty acids 

(FA) with 0 (stearic acid, SteA, C18:0) to 6 (docosahexaenoic acid, DHA, C22:6) all-cis double bonds. 

(B) Kinetics of the increase in luminescence between 12 to 72 h after transfection with PMO conjugate 

formulations in 1:1 (left, middle) or 1:3 (right) PMO-DBCO to LP ratio. Fold increase in luminescence 

represents arbitrary light units normalized to the mean background levels of buffer treated cells. 

Figures show a comparison between LP containing 0 to 3 (top) or 3 to 6 cis double bonds (bottom). A 

Pip6a-azide derivative served as a positive control in the same PMO-DBCO conjugation protocol at a 

1:1 ratio. Data are presented as mean ± SD (n=3). A complete set of PMO formulations at different 

concentrations are provided in Figure 24 and Figure 25. 
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In addition to HeLa, three other cell lines were treated with the same set of PMO 

conjugates to confirm the general ability to mediate splice-switching of thalassemic β-

globin IVS2-705 (Figure 14). Similar structure-activity relationships and significant 

splice-switching activities were also observed in pLuc/705 based human hepatoma 

(Huh7), murine neuroblastoma (Neuro2A) and murine myoblast (C2C12) cells.209-210 

 

 

Figure 14. Splice-switching activity of PMO-LP formulations in different pLuc/705 based cell 

lines.
209-210

 The increase in luminescence was determined 24 h after transfection of PMO-LP 

formulations at a 1:1 ratio. Figures show a comparison between PMO-LPs containing fatty acids with 1 

(OleA), 2 (LinA), 3 (LenA) or 4 (AraA) double bonds. 50 µM PMO-LP formulations in HBG were 

produced at the LMU Munich and freeze-dried. Transfections of human hepatoma (Huh7), murine 

neuroblastoma (N2a), murine myoblast (C2C12) as well as human cervix carcinoma cells HeLa, all 

containing the pLuc/705 construct, were carried out at the Karolinska Institute in Stockholm after 

reconstitution of the freeze-dried samples. Data are presented as the mean ± SD (n=3). 
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The PMO-sequence specificity was assessed in HeLa pLuc/705 treatments with 

PMO-LP LenA1:1 and 1:3 formulations containing eitherPMO IVS2-705or 51D 

(Figure 15). The data illustrate a high increase in luminescence mediated by the 

specific PMO-705 in contrast to a very low unspecific response towards the PMO-

51D formulations. 

 

 

Figure 15. PMO-sequence specific splice-switching mediated by PMO-LP LenA formulations. 

Increase in luminescence in HeLa pLuc/705 cells was determined 24 h after transfection of two 

different PMO-DBCO sequences formulated with LP LenA at 1:1 and 1:3 ratio. PMOs targeting the T 

to G point mutation at position 705 in intron 2 of the human β-globin gene (IVS2-705), and 51D 

targeting the splice donor site of Dmd exon 51 were used. Data are presented as the mean ± SD 

(n=3). 

 

In all transfections the activities of PMO-LP conjugates showed a strong dose-

dependency. Upon decreasing the concentration of PMOs to 0.625 µM, the activity 

and increase in luminescence dropped to low levels (Figure 13B, middle). As 

observed before (Figure 9B), additional unconjugated peptide enhanced the splice-

switching activity and a high increase in luminescence was achieved by the PMO-LP 

1:3 formulations at low PMO concentrations (Figure 13B, right, Figure 24). 
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A systematic dose titration clearly illustrated the shifted splice-switching activities of 

PMO-LP LenA at 1:1 or 1:3 ratio on the RNA and protein activity level (Figure 16). 

The ratio between aberrant and corrected splicing was determined by RT-PCR 

specific for a sequence surrounding the β-globin IVS2 (Figure 16A). The band 

intensities of related PCR products (268 bp aberrant, 142 bp corrected) indicate that 

complete splicing-correction was achieved with PMO-LP LenA 1:3 at a concentration 

of 1.25 µM PMO whereas, at a 1:1 ratio, 2.5 µM PMO were required. This also 

correlates with the dose-response at the luciferase activity level (Figure 16B). Bare 

PMO-DBCO, up to a concentration of 10 µM, was not able to increase luciferase 

activity significantly. Dose titrations of both PMO-LP LenA 1:1 and 1:3 formulations 

side by side revealed equal maximum levels between 2.5 and 5 µM and an enhanced 

potency for the 1:3 formulation at lower concentrations due to the additional fraction 

of free LP. At the high concentration of 10 µM, the excess of unconjugated LP (20 

µM) also mediated cytotoxicity (Figure 16C), which was responsible for the drop of 

luciferase activity. An azide-containing derivative of the efficient CPP Pip6a served as 

a positive control and benchmark compound; the PMO-DBCO conjugation was 

carried out analog to the LP formulations at a 1:1 ratio. In direct comparison to Pip6a-

PMO, PMO-LP LenA 1:3 showed a comparable potency at low concentrations, higher 

maximal luciferase activity and reduced cytotoxicity at higher concentrations. PMO-

LP LenA 1:1 exhibited the best tolerability and no observable signs of cytotoxicity or 

reduced luciferase activity up to a concentration of 10 µM PMO. Notably, all 

formulations clearly outperformed the commercial noncovalent PMO delivery reagent 

‗Endo-Porter‘ which was supplemented at constant 6 µM concentration, as 

recommended by the distributor.122, 211 
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Figure 16. Dose-response effects of PMO formulations on HeLa pLuc/705 cells. (A) Detection of 

corrected β-globin intron splicing by RT-PCR. The total RNA was extracted from cells 24 h after PMO-

LP LenA 1:1 (top) or 1:3 (bottom) treatment and amplified using RT-PCR specific for a sequence 

surrounding β-globin IVS2. Arrows indicate the PCR products resulting from unchanged aberrant (268 

bp) and corrected (142 bp) mRNA splicing. PMO-DBCO was used at 5 µM concentration. (B) Fold 

increase in luminescence and (C) metabolic activity 24 h after treatment with PMO-DBCO formulations 

containing 0.156 to 10 µM PMO. Free PMO-DBCO, PMO-DBCO formulations with constant 6 µM 

‗Endo-Porter‘ reagent (Gene Tools, LLC) and PMO-Pip6a served as references. Data are presented 

as mean ± SD (n=3). 

 

  



   CHAPTER I: PMO-LP CONJUGATES 

51 

Next, to understand if these structure-activity relationships identified under cell 

culture conditions would also translate to a more complex in vivo environment, PMO-

LP formulations were locally injected into subcutaneous HeLa pLuc/705 xenograft 

tumors in mice (Figure 17). The quantification of ex vivo luciferase activity in the 

tumor confirmed the two key findings of the previous in vitro studies: first, the fraction 

of free peptide in PMO-LP 1:3 formulations enhances splice-switching activity (Figure 

17A), and second, LP LenA containing linolenic acid with three unsaturated bonds is 

superior to analogs containing fatty acids with one (OleA), two (LinA) or four (AraA) 

double bonds (Figure 17B). The studies demonstrate that PMO-LP LenA 1:3 

represents a potent formulation with significant splice-switching activity in the 

investigated models. 

 

 

Figure 17. Ex vivo luciferase activity in subcutaneous HeLa pLuc/705 tumors 48 h after local 

injection. (A) Comparison of PMO-LP LenA formulations at a 1:1 or 1:3 ratio. (B) Comparison of 

PMO-LP (1:3) formulations with fatty acids containing 1 (OleA), 2 (LinA), 3 (LenA) or 4 (AraA) double 

bonds. A Pip6a-azide derivative served as a benchmark in the same PMO-DBCO conjugation protocol 

at a 1:1 ratio. All formulations contained 450 µg PMO. Data are presented as mean ± SD (n=3). 

 

The exclusive investigation of luminescence levels as final result of a complex 

transfection process is not sufficient to elucidate the underlying mechanisms. 

Therefore, specific mechanistic studies were conducted to clarify the impact of free 

LP (Figure 18) and unsaturated fatty acids (Figure 19) in the PMO-LPs. 
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2.4.4 Particle formation 

To investigate the formation of PMO-LP nanoparticles, fluorescence correlation 

spectroscopy (FCS) experiments with PMO-LP LenA 1:1 and 1:3 formulations at 

various PMO-LP concentrations each containing 50 nM Alexa Fluor 647 labeled PMO 

(AF647-PMO) were carried out (Figure 18A). FCS is based on the diffusion of 

fluorescent molecules through a small confocal volume (~1 fL), where the 

fluorescence signal is recorded and the fluctuations analyzed.212-214 Changes in the 

rate of diffusion due to the assembly of PMO-LP nanoparticles causes a shift in the 

temporal autocorrelation function (ACF) of the FCS signal to slower timescales. 

Already at 1.25 µM PMO, a significantly slower ACF decay of the PMO-LP 1:3 

formulation was observed, which did not significantly change at higher 

concentrations. Although, a decrease in the decay time of the ACF of the PMO-LP 

1:1 formulation was observed at a concentration of 2.5 µM, it was only at a 

concentration of 5 µM that the decay time of the ACF approached that of the 1.25 µM 

of the 1:3 formulation. 

These observations indicate a dose-dependent self-association and complex 

formation of PMO-LP formulations. In this process, the fraction of free LP in 1:3 

formulations seems to contribute to the complex assembly at low PMO 

concentrations. Interestingly, neither labeled PMO-DBCO (at 1 µM and 50 µM 

concentrations, Figure 26) nor LP LenA alone (below 10 µM concentrations) showed 

substantial supramolecular assembly (Figure 27 and Figure 28), compared to the 

PMO-LP LenA formulations. The conjugation seems to change the assembly 

tendency compared to the unconjugated reaction partners.Similar findings were 

obtained by transmission electron microscopy (TEM, Figure 18B). At a PMO 

concentration of 5 µM, spherical nanomicelles were detected in both PMO-LP 1:1 

and 1:3 formulations, whereas, at 1.25 µM PMO, similar complexes could only be 

observed in the 1:3 formulation. Free PMO-DBCO did not form particles at any 

concentration. To address the impact of unconjugated LP on the PMO transfection 

process, cellular uptake of PMO-LP 1:1 and 1:3 was investigated by confocal laser 

scanning microscopy (CLSM, Figure 18C) and flow cytometry (Figure 18D). Already 

5 min after addition of the formulations to HeLa pLuc/705 cells, cellular association 

could be observed in the 1:3 formulation, which rapidly increased over time. Despite 

the same PMO concentration, cellular uptake was significantly enhanced 15 min after 
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transfection by the fraction of free peptide in the 1:3 formulation compared to 1:1 

(Figure 18D), which presumably is a result of the facilitated complex formation and 

nanoparticle internalization.132 The resulting higher PMO uptake after 24 h (Figure 

35) is in line with the enhanced splice-switching activity mediated by PMO-LP 1:3 

formulations.The intracellular fate of PMO-LP and free LP was assessed in an 

additional CLSM experiment with a PMO-LP LenA 1:3 formulation containing AF647-

PMO and Alexa Fluor 488 labeled free LP LenA (Figure 18E). The images verify that 

both separate components co-localize within the cells and seem to remain associated 

up to 24h after transfection. 

 

Figure 18. Impact of free LP in the PMO formulations. (A) Fluorescence correlation spectroscopy 

(FCS) measurements of PMO-LP LenA 1:1 and 1:3 formulations at different concentrations where 50 

nM of Alexa Fluor 647 labeled PMO-DBCO (AF647-PMO) was included. The slower decay of the 

autocorrelation function represented by a shift toward higher time lag  indicates the slower diffusion of 

AF647-PMO-LP nanoparticles. (B) Transmission electron microscopy (TEM) images of bare PMO-

DBCO or formulations with LP LenA at 1:1 and 1:3 ratio. (C) Confocal laser scanning microscopy 

(CLSM) images of HeLa pLuc/705 cells 5 min, 15 min or 30 min after transfection with PMO-LP LenA 

1:1 or 1:3 (0.625 µM PMO) containing 20 % AF647-PMO. (D) The uptake of PMO-LP LenA 1:1 and 

1:3 (0.625 µM PMO) containing 5 % AF647-PMO into HeLa pLuc/705 cells 15 min after transfection 

determined by flow cytometry (median fluorescence intensity, MFI, n=3) is shown. (E) CLSM images 

of HeLa pLuc/705 cells 24 h after transfection with PMO-LP LenA 1:3 containing 20 % AF647-PMO 

and 20 % Alexa Fluor 488-labeled free LP-LenA (LP-AF488). Nuclei were stained with DAPI (blue), 

actin filaments with rhodamine phalloidin (yellow). The merged channel indicates co-localization 

(yellow) of AF647-PMO-LP and free LP-AF488. Additional FCS, TEM, CLSM and flow cytometry data 

are provided in Figure 26 - Figure 35. 
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2.4.5 Membrane interaction 

From additional flow cytometry studies, it is evident that the beneficial effect of the 

unconjugated LP in 1:3 formulations on the cellular uptake is independent of the 

different lipid or fatty acid modifications (Figure 35). 1:1 formulations with LP 

containing cholanic acid or fatty acids with 1 to 4 unsaturated bonds mediated 

comparable levels of cellular PMO uptake. In all cases, a distinct PMO uptake 

enhancement was observed in the corresponding 1:3 formulations. Obviously, 

enhanced cellular uptake can explain the advantage of free LP in the formulations, 

but not the advantage of a specific fatty acid content.Therefore, the high efficacy of 

LP LenA must be the result of a different mechanism associated with the intracellular 

PMO trafficking. The lipid modifications turn the cationic conjugates into amphiphilic 

structures and provide the potential for membrane interactions. It has been shown 

previously that unsaturated fatty acids can mediate pH-dependent membrane lytic 

activity in nucleic acid transfecting agents.161, 164, 201 For this reason, we hypothesize 

membrane interaction and endosomal release after endocytotic internalization as 

being a potential explanation for the superiority of PMO-LP LenA. An endosomal 

membrane integrity and release assay197, 215-216 was carried out with fluorescent 

calcein being loaded into endosomes during transfection with PMO-LP SteA 

(saturated) or PMO-LP LenA (unsaturated) formulations (Figure 19A). In both cases, 

calcein was taken up efficiently (Figure 19B) but it was only in the case of PMO-LP 

LenA that a broad and homogenous distribution of fluorescence intensity were 

evident over the cell indicating release of the fluid phase marker calcein from the 

endosomes. An erythrocyte leakage assay verified the pH-dependent membrane 

interactive potential of PMO-LP containing unsaturated fatty acids (Figure 19C).The 

set of PMO-LP formulations containing CholA or fatty acids with zero to four double 

bonds was incubated with erythrocytes at physiological pH 7.4 or endolysosomal pH 

6.5 and 5.5. A clear trend showed an increasing erythrocyte leakage, particularly at 

acidic pH, with an increasing number of double bonds. The highest lytic activity was 

observed with PMO-LP LenA and AraA, which altogether supports the initial 

hypothesis of increased endosomal membrane interaction and release of the PMO-

LP formulation containing unsaturated bonds.  
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Figure 19. Impact of unsaturated fatty acids on cellular membrane interactions. (A) CLSM 

images of HeLa pLuc/705 cells treated with 0.45 mg/mL calcein and 5 µM PMO-LP SteA (1:3) or 

PMO-LP LenA (1:3) for 4 h. (B) The cellular calcein fluorescence intensity determined by flow 

cytometry (median fluorescence intensity, MFI, n=3) is shown. (C) Hemoglobin release was 

determined photometrically for 3.75 × 10
6
 erythrocytes that were incubated for 60 min with 2.5 µM 

PMO-LP (1:3) at pH 7.4, 6.5 and 5.5. Values were normalized to positive control samples treated with 

1 % Triton X-100 (100 % lysis). Data are presented as mean ± SD (n=4). 

 

Additional erythrocyte leakage assays were conducted to clarify the contribution of 

free LP in PMO-LP 1:3 formulations (1 eq. PMO-LP conjugate, 2 eq. free LP) on 

membrane disruption (Figure 20). Erythrocytes were treated with free LP SteA or 

LenA (2.5 µM, 5 µM, 7.5 µM), PMO-LP SteA or LenA 1:1 (2.5, 7.5 µM) and PMO-LP 

SteA or LenA 1:3 (2.5 µM) formulations. The concentrations were chosen to enable 

direct comparison of equal free and total LP contents. Here, several significant 

observations were made. First, the higher lytic activity of LP LenA compared to LP 

SteA was confirmed in all three different states: free LP, PMO-LP 1:1 and 1:3 

formulations. Second, free LP mediated by far the highest erythrocyte leakage in all 

cases which indicates a reductionof lytic potential due toconjugation. Third, PMO-LP 

1:3 (2.5 µM) exhibited lower lytic activity than the corresponding samples with equal 

amount of free (5 µM) or total (7.5 µM) LP content. Apparently, the presence of PMO-
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LP reduces lytic potential of free LP which can be explained by the observed co-

assembly into nanomicelles.Finally, the initially speculated contribution of free LP on 

membrane disruptionwas confirmed: in both cases (LP SteA, LP LenA), PMO-LP 1:3 

formulations mediated higher lytic activity thanthe corresponding 1:1 formulations. 

 

 

Figure 20. Impact of free LP in PMO-LP 1:3 formulations on membrane disruption. Hemoglobin 

release was determined photometrically for 3.75 × 10
6
 erythrocytes that were incubated for 60 min 

with indicated amounts of PMO-DBCO, LP LenA and formulations of the two components at pH 7.4, 

6.5 and 5.5. Values were normalized to positive control samples treated with 1 % Triton X-100 (100 % 

lysis). Data are presented as mean ± SD (n=4). 
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2.4.6 DMD myotube treatment 

As an additional model with clinical relevance, an alternative PMO sequence 51D217 

mediating exon skipping in H2K-mdx52 dystrophic skeletal myotubes was selected 

(Figure 21). In mdx52 mice, a deletion of dystrophin exon 52 was generated by gene 

targeting,218 which belongs to the ‗deletion mutation hotspot‘219 of human DMD. H2K-

mdx52 myotubes were treated with varying concentrations of PMO-LP LenA 1:1 

(12.5 – 50 nM) or 1:3 (2 – 50 nM) and Pip6a at 50 nM. After 48 h, the exon skipping 

rate of extracted RNA was determined by RT-PCR amplification of dystrophin exons 

49–54 and microchip electrophoresis. In this in vitro DMD exon skipping model the 

PMO-LP formulations displayed remarkably high activity. Both the 1:1 and 1:3 

formulations achieved > 85 % exon skipping at a concentration of 50 nM. The exon 

skipping rate mediated by the 1:1 formulation dropped to approx. 43 % at 25 nM and 

24 % at 12.5 nM concentrations. Consistent with the findings obtained in HeLa 

pLuc/705 cells, also in H2K-mdx52 dystrophic mytobes the PMO conjugates strongly 

benefit from the additional free LP in the formulation.  

 

Figure 21. Exon skipping efficiency in H2K-mdx52 myotubes. H2K-mdx52 myoblasts were 

differentiated for 3 days and treated with varying concentrations of PMO-LP LenA 1:1 or 1:3. PMO-

Pip6a 1:1 at 50 nM concentration and untreated cells (UT) served as controls. After 48 h, the total 

RNA was extracted from the cells and RT-PCR amplifying cDNA from exons 49–54 was carried out. 

PCR products were detected using a microchip electrophoresis system. Exon-skipping efficiency (%) 

was calculated as (exon-skipped transcript molarity) / (unskipped + exon-skipped transcript molarity) × 

100 %. Data are presented as mean ± SD (n=3). Additional data of PMO-LP LenA 1:1 and PMO-Pip6a 

are provided in Figure 22. 
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PMO-LP LenA 1:3 mediated significantly higher exon skipping (approx. 25 % at 2 nM, 

approx. 100 % at 50 nM) compared to PMO-Pip6a (approx. 6 % at 50 nM, approx. 77 

% at 400 nM, Figure 22). 

 

 
Figure 22. Exon skipping efficiency in H2K-mdx52 myotubes. H2K-mdx52 myoblasts were 

differentiated for 3 days and treated with varying concentrations of PMO-LP LenA 1:1 or PMO-Pip6a 

1:1 and untreated cells (UT) served as controls. After 48 h total RNA was extracted from the cells and 

RT-PCR amplifying cDNA from exons 49–54 was carried out. PCR products were detected using a 

microchip electrophoresis system. Exon-skipping efficiency (%) was calculated as (exon-skipped 

transcript molarity) / (unskipped + exon-skipped transcript molarity) × 100 %. Data are presented as 

mean ± SD (n=3). Subset of the data is shown in Figure 21. 
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2.5 Conclusion 

In summary, we report novel aminoethylenelipopeptide-PMO conjugates with a high 

potential for promoting splice-switching PMO delivery. During the screening and 

optimization process, two key parameters of highly active formulations were 

identified: (1) PMO-LP conjugates containing linolenic acid mediate the highest 

effects, and (2) additional unconjugated LP in the formulation enhances the potency 

and activity at low concentrations. The PMO-LP conjugatesself-associate into 

nanocomplexes in a concentration-dependent fashion and a fraction of additional free 

LP in the formulation contributes to the particle formation. The content of unsaturated 

fatty acid LenA was found to facilitate endosomal release after cellular internalization, 

most likely via membrane interactions. The splice-switching activity of the PMO-LP 

formulations was confirmed in human cervix carcinoma (HeLa), human hepatoma 

(Huh7), murine neuroblastoma (Neuro2A) and murine myoblast (C2C12) pLuc/705 

cells in vitro as well as after local injection into HeLa pLuc/705 tumors in vivo. The 

encouraging splice-switching activity was additionally confirmed in H2K-mdx52 

dystrophic skeletal muscle cells where the identified PMO-LP formulation exhibited 

remarkably high potency and mediated significant exon skipping at low concentration 

< 10 nM. The presented LP conjugates and formulations are considered a highly 

potent platform for the delivery of PMO therapeutics with antisense or splicing-

modifying mechanism. 
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2.7 Supporting information figures  

 

Figure 23. HeLa pLuc/705 cell viability after treatment with PMO-LP CholA. Metabolic activity of 

HeLa pLuc/705 cells was determined using a MTT assay 24 h after transfection with noncovalent #991 

or covalent #1106 formulations at different concentrations and PMO to lipopeptide ratios. Data are 

presented as % cell viability with respect to the control cells ± SD (n=3). 
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Figure 24. Luciferase activity kinetic in HeLa pluc/705 cells after PMO-LP transfection. The 

kinetics of the increase in luminescence from 12 to 72 hours [h] after transfection with PMO conjugate 

formulations containing 5 µM (A) or 2.5 µM (B) PMO at a 1:1 (left graphs) or 1:3 (right graphs) PMO-

DBCO to LP ratio. Luciferase activity was measured every 12 hours. Figures show a comparison 

between LP containing 0 to 3 (top A and B) or 3 to 6 double bonds (bottom A and B). A Pip6a-azide 

derivative served as a positive control in the same PMO-DBCO conjugation protocol at a 1:1 ratio. 

Data are presented as the mean ± SD (n=3). Subset of the data is shown in Figure 13 of the main 

manuscript. 
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Figure 25. Luciferase activity kinetics in HeLa pluc/705 cells after PMO-LP transfection. The 

kinetics of the increase in luminescence from 12 to 72 hours [h] after transfection with PMO conjugate 

formulations containing 1.25 µM (A) or 0.625 µM (B) PMO at a 1:1 (left graphs) or 1:3 (right graphs) 

PMO-DBCO to LP ratio. Luciferase activity was measured every 12 hours. Figures show a comparison 

between LP containing 0 to 3 (top A and B) or 3 to 6 double bonds (bottom A and B). A Pip6a-azide 

derivative served as a positive control in the same PMO-DBCO conjugation protocol at a 1:1 ratio. 

Data are presented as the mean ± SD (n=3). Subset of the data is shown in Figure 13 of the main 

manuscript. 
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Figure 26. The absence of interactions between PMOs at two different concentrations 

monitored using FCS and fluorescence lifetime. (A) Fluorescence intensity traces, (B) FCS 

measurements, and (C) lifetime decay traces of AF647-PMO mixed with two different concentrations 

of unlabeled PMOs: 100 nM AF647-PMO was spiked with 0.9 µM (orange trace) and 49.9 µM (blue 

trace) unlabeled PMO. The high resemblance in both the autocorrelation function and lifetime decay 

indicates the absence of PMO interactions. The binning time is 100 ms. 
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Figure 27. Interactions between LP LenA oligomers at different concentrations monitored using 

FCS and fluorescence lifetime. (A) FCS measurements and (B) fluorescence lifetime decay of 100 

nM AF488-LP LenA spiked with different LP LenA concentrations as given in the figure legend. The 

lifetime showed a consistent mono-exponential decay for LP LenA concentrations below 10 µM with a 

lifetime τ ~ 4.1 ns. A bi-exponential decay, with lifetimes of τ1 ~ 1.3 ns and τ2 ~ 3.7 ns, was observed 

for LP LenA concentrations of 10 µM and above indicating the interaction of LP LenA at higher 

concentrations. 
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Figure 28. Fluorescence intensity traces of AF488-LP LenA at different concentrations of 

unlabeled LP LenA. 100 nM AF488-LP LenA was spiked with different concentrations of unlabeled 

LP LenA as given in the figure legend. The binning time is 100 ms. The spikes visible in the intensity 

traces at 2 and 10 µM total concentration of LP LenA indicates that the peptide starts to aggregate. 

Above 10 µM, the aggregates prevail and a more homogenous signal is observed. These results are 

supported from the FCS experiments in Figure 27A. 



   CHAPTER I: PMO-LP CONJUGATES 

66 

 

Figure 29. Interactions between PMO and LP LenA oligomer at different concentrations 

monitored using FCS and fluorescence lifetime. (A) The FCS measurements and (B) lifetime 

decay traces of 50 nM AF647-PMO LP spiked with different PMO and LP LenA concentrations in 

ratios of 1:1 and 1:3 PMO-LP LenA. The lifetime showed a bi-exponential decay with lifetimes of τ1 ~ 

1.5 ns and τ2 ~ 2.2 ns, where the fraction of the longer 2.2 ns lifetime component increases with 

increasing PMO-LP LenA concentration. Subset of the data is shown in Figure 18 of the main 

manuscript. 
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Figure 30. Fluorescence intensity traces of AF647-PMO in combination with different 

concentrations of 1:1 PMO-LP LenA (left) and 1:3 PMO-LP LenA (right). 50 nM AF647-PMO was 

spiked with different concentrations of unlabeled PMO and LP LenA as given in the legend for each 

measurement condition. The binning time is 100 ms. Spikes in the intensity traces indicate the 

formation of heterogenous aggregates. 
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Figure 31. Transmission electron microscopy (TEM) images of free PMO-DBCO (left) or PMO-

LP LenA formulations at 1:1 (middle) and 1:3 (right) ratio. Scale bars represent 200 nm. 
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Figure 32. Confocal laser scanning microscopy (CLSM) images of AF647-PMO-LP LenA (1:1) 

uptake kinetics. HeLa-pLuc/705 cells were incubated with 0.625 µM PMO-LP LenA at a 1:1 ratio 

containing 20 % AF647-labeled PMO. Images were recorded after 5 min, 15 min, 30 min, 1 h, 2 h and 

4 h. First column: fluorescence of phalloidin-rhodamine stained actin filaments; second column: 

nuclear staining with DAPI; third column: fluorescence of AF647-labeled PMO; fourth column: merge 

of all three channels. Subset of the data is shown in Figure 18 of the main manuscript. 
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Figure 33. Confocal laser scanning microscopy (CLSM) images of AF647-PMO-LP LenA (1:3) 

uptake kinetics. HeLa-pLuc/705 cells were incubated with 0.625 µM PMO-LP LenA at a 1:3 ratio 

containing 20 % AF647-labeled PMO. Images were recorded after 5 min, 15 min, 30 min, 1 h, 2 h and 

4 h. First column: fluorescence of phalloidin-rhodamine stained actin filaments; second column: 

nuclear staining with DAPI; third column: fluorescence of AF647-labeled PMO; fourth column: merge 

of all three channels. Subset of the data is shown in Figure 18 of the main manuscript. 
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Figure 34. Confocal laser scanning microscopy (CLSM) images of AF647-PMO-LP LenA uptake 

24 h after transfection. HeLa-pLuc/705 cells were incubated with 0.625 µM PMO-DBCO (top) as well 

as PMO-LP LenA formulations at a 1:1 (middle) or 1:3 (bottom) ratio, each containing 20 % AF647-

labeled PMO. Images were recorded 24 h after transfection. First column: fluorescence of phalloidin-

rhodamine stained actin filaments; second column: nuclear staining with DAPI; third column: 

fluorescence of AF647-labeled PMO; fourth column: merge of all three channels. 
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Figure 35. Cellular uptake of PMO-LP formulations containing different fatty acids determined 

by flow cytometry. HeLa-pLuc/705 cells were incubated with 0.625 µM PMO-DBCO (5% AF647-

labeled) as well as with PMO-LP formulations at a 1:1 or 1:3 ratio containing different fatty acids. Flow 

cytometry was conducted 24 h after PMO transfection. (A) A FACS histogram plot of each sample 

group. (B) A comparison of the measured median fluorescence intensities. The data are presented as 

the mean ± SD (n=3). 
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3.1 Abstract 

The programmable endonuclease activity and simple usage of CRISPR/Cas9 

revolutionized the field of genome editing. The binding of single guide RNA (sgRNA) 

by the Cas9 protein results in the formation of negatively charged ribonucleoprotein 

(RNP) complexes. The presence of this functional complex inside cells is imperative 

for intended specific genome modifications. Direct intracellular delivery of 

Cas9/sgRNA RNP complexes would be of great utility. A compound library of 

sequence-defined oligo(ethylenamino) amides containing structural motifs for stable 

nanoparticle formation, cellular uptake and endosomal release was utilized for the 

screening and development of suitable Cas9 RNP delivery vehicles. Lipid containing 

oligoaminoamides (lipo-OAAs) were identified as most efficient carriers for 

intracellular Cas9/sgRNA delivery and gene disruption. Fluorescence correlation 

spectroscopy measurements indicated that the lipo-OAAs only interact with sgRNA-

loaded Cas9 protein which suggest exclusive ionic interaction with the negatively 

charged RNPs. The type of contained fatty acid turned out to have a critical impact 

on the knock out efficiency: the presence of one hydroxy group in the fatty acid 

dramatically changes the properties and performance of resulting Cas9/sgRNA lipo-

OAA complexes. The lipo-OAA containing hydroxy-stearic acid (OHSteA) was 

superior to the analogs with saturated or unsaturated fatty acids without 

hydroxylation; it formed smaller and more defined nanoparticles with Cas9/sgRNA, 

improved the cellular uptake and exhibited favorable interaction with membranes at 

acidic pH which is suggested to facilitate intracellular release out of endosomes. The 

efficient and adaptable delivery platform is considered to have high potential for the 

future development of therapeutics based on precise genome modification. 
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3.2 Introduction 

Protein therapeutics have emerged as a major new class of biopharmaceuticals, 

since the discovery and approval of the first recombinant protein.220-221 This class of 

drugs, which includes hormones, antibodies, cytokines, growth factors, enzymes as 

well as bone and blood related agents, exhibits an enormous therapeutic potential 

due to its involvement in various biochemical processes, its high specificity, 

tolerability and safety.222  

CRISPR (clustered, regularly interspaced, short palindromic repeats) Cas (CRISPR-

associated) is an adaptable DNA cleavage system found in bacteria,62, 223 and has 

been utilized as an efficient RNA-guided genome-editing tool in numerous 

species,224-226 as well as in human cells.70, 227 The target sequence of the 

programmable nuclease Cas9 is controlled by a guide RNA (combination of crRNA 

and tracrRNA) or a single guide RNA (sgRNA).62 For efficient genome editing, a 

successful intracellular delivery of the CRISPR/Cas9 components is essential. So far, 

the most common strategy is based on the delivery of the CRISPR/Cas9 encoding 

DNA sequences or in vitro transcribed RNA molecules.228 However, the direct 

delivery of the Cas9 protein complexed with sgRNA has several advantages over the 

delivery of corresponding nucleic acid precursors, as the ribonucleoprotein (RNP) 

complex is immediately functional without the requirement of transcription and 

translation. Furthermore, there is no risk of spontaneous genome integration, and the 

timely degradation reduces off-target effects.69  

Since nucleic acids and proteins are susceptible to enzymatic degradation the 

incorporation into a carrier system can increase their stability.229-230 In addition, the 

poor membrane permeability impedes transport of Cas9/sgRNA RNPs to the 

intracellular target site and requires development of suitable delivery vehicles.231 

Different non-viral delivery technologies evolved for the direct delivery of the RNP 

complexes including cell-penetrating peptides,145 DNA nanoclews,232 gold 

nanoparticles,146-147 polymeric systems,233-235 as well as lipid nanoparticles.111, 149 

Nonetheless, the requirement of better carriers for stable RNP components 

packaging, high cellular uptake, efficient endosomal escape and nuclear entry while 

preserving biological activity of the protein remains. 
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Sequence-defined oligo(ethylenamino) amides (OAAs) based on artificial oligoamino 

acids and solid-phase synthesis have recently been developed as a platform for the 

delivery of nucleic acids,152 proteins230 and drugs.154 They combine the advantages 

of aminoethylene based polymers with the chemical precision of peptides and enable 

cargo-specific optimization. OAAs with a favorable stability, biocompatibility and 

toxicity profile were generated.152, 236  

In this study, lipo-OAAs were established as a new delivery platform for co-delivery of 

the Cas9 protein and sgRNA. Different architectures were screened to identify 

favorable structural motifs and the most suitable reagents. Here, the artificial 

oligoamino acids were intended to complex the negatively charged RNP complexes 

and facilitate their endosomal escape via the hypothesized proton sponge effect.237 

Additional cysteines (C) and hydrophobic motifs, like the tyrosine (Y) tripeptide, have 

been shown to improve nanoparticle stability in context of other delivery purposes.166, 

238 Fatty acids can enable efficient intracellular delivery by promoting membrane 

interaction and endosome disruption.163-165 
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3.3 Material and Methods 

3.3.1 Materials 

Oligoamino amides were synthesized by solid-phase synthesis152 as described 

previously.164 Detailed sequence information can be found in chapter 3.7 Supporting 

Information Table 3. HEPES buffered glucose (HBG) containing 20 mM HEPES 

(Biomol GmbH, Germany) and 5 % w/v glucose (Merck, Germany) was adjusted to 

pH 7.4. ATTO647N NHS-ester was purchased from ATTO-TEC (Germany), 5-(3-

aminoallyl)-uridine-5'-triphosphate-ATTO488 from Jena Bioscience (Germany). Cell 

culture media, antibiotics, and fetal bovine serum (FBS) were purchased from 

Invitrogen (Germany). All solvents and other reagents were purchased from Sigma-

Aldrich, Iris Biotech (Germany), Merck (Germany), or AppliChem (Germany). All 

flasks, dishes, and multiwell plates were manufactured by TPP (Switzerland). 

Deionized water was purified in-house using an Evoqua Ultra Clear® Glass Panel 

Systems (Germany) and was used for all experiments. 

 

3.3.2 Cas9 protein expression and purification 

Recombinant Cas9 was produced by bacterial expression of a plasmid 

pET28a/Cas9-Cys containing the human codon-optimized Cas9 nuclease gene with 

a N-terminal His-tag and a C-terminal cysteine. pET28a/Cas9-Cys was a gift from 

Hyongbum Kim (Addgene plasmid # 53261).239 The plasmid pET28a/Cas9-Cys was 

transformed into RosettaBL21(DE3)pLysS (Merck Millipore, Germany), as 

recommended by the manufacturer.  

An overnight culture of RosettaBL21(DE3)pLysS (pET28a/Cas9-Cys) was grown in 

lysogeny broth (LB) medium containing 34 μg/mL chloramphenicol and 50 μg/mL 

kanamycin at 37 °C under constant shaking. On the next day, the bacterial culture 

was 1:100 diluted with LB medium (34 μg/mL chloramphenicol and 50 μg/mL 

kanamycin) and incubated at 37 °C under constant shaking until an optical density of 

0.5-0.7 (600 nm) was reached. Afterwards, the bacterial suspension was cooled 

down to room temperature (RT), protein expression was induced by adding 1 mM 

isopropyl β- D-1-thiogalactopyranoside (IPTG) and the culture was incubated 

overnight at RT under constant shaking.  
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Bacteria were harvested by centrifugation (20 min, 5000 x g, 4 °C). The supernatant 

was discarded and the pellet was resuspended in bacterial lysis buffer (20 mM 

trizma-base, 0.2 M NaCl, 20 % sucrose, 10 mM MgCl2, pH 7.5). The final 

concentrations added were 10 μg/mL RNase, 30 μg/mL DNase, 1 mg/mL lysozyme 

and 1 mM phenylmethylsulfonyl fluoride (PMSF). The lysed bacterial suspension was 

frozen in liquid nitrogen, thawed on ice and sonicated (3 x 20 sec on ice, full power). 

The bacterial lysate was ultracentrifuged (1 h, 20.000 rpm, 4 °C) and filtered using a 

0.45 μm syringe filter. 

The Cas9 protein was purified by nickel chromatography (HisTrap HP column, GE 

Healthcare, Sweden) using a gradient from binding buffer (20 mM trizma-base, 0.5 M 

NaCl, pH 7.4, 20 mM imidazole) to elution buffer (20 mM trizma-base, 0.5 M NaCl, 

pH 7.4, 0.5 M imidazole). Afterwards, the Cas9 containing fractions were 

concentrated with Amicon Ultra centrifugal filter units (MWCO=100 kDa, Millipore, 

USA). Finally, the protein solution was subjected to size exclusion chromatography 

(SEC) using an Äkta purifier system based on a P-900 solvent pump module, a UV-

900 spectrophotometrical detector, a pH/C-900 conductivity module, a Frac-950 

automated fractionator, a Superdex 200 size exclusion column and storage buffer (20 

mM HEPES, 200 mM KCl, 10 mM MgCl2, 1mM DTT) as solvent. The pooled fractions 

containing the Cas9 protein were combined, the amount of purified protein was 

quantified using a Nanodrop photometer (Thermo Scientific, USA) and an extinction 

coefficient of ɛ/1.000= 120 M-1cm-1. The solution was snap-frozen and stored at -80 

°C. Protein purity was analyzed on a Coomassie Brilliant Blue stained 10 % SDS-

PAGE gel (Chapter 3.7 Supporting Information Figure 42A). 
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3.3.3 ATTO647N-labeling of Cas9 protein 

Cas9 protein was diluted in HEPES (adjusted to pH 8.0 with 0.2 M sodium 

bicarbonate solution) to a concentration of 2 mg/mL. ATTO647N NHS-ester was 

solubilized in DMSO (10 mM) and a twofold molar excess of reactive dye were added 

to the protein solution. The mixture was incubated under constant stirring for 1 h at 

RT. Uncoupled dye was removed by size exclusion chromatography (Äkta purifier 

system GE Healthcare Bio-Sciences AB, Sweden) with a Superdex 200 size 

exclusion column using storage buffer (20 mM HEPES, 200 mM KCl, 10 mM MgCl2, 

1 mM DTT) as mobile phase. The pooled fractions containing the Cas9 protein were 

combined, the amount of purified protein was quantified using a Nanodrop  

photometer (Thermo Scientific, USA) and an extinction coefficient of ɛ/1.000= 120 M-

1cm-1. The solution was snap-frozen and stored at -80 °C. 

 

3.3.4 In vitro transcription of sgRNAs 

The general sgRNA design was based on Larson et al.240 Specific sgRNA sequences 

were derived from Qi et al. (sgGFP)241 and Sun et al. (cgRNA).232 The DNA template 

for the in vitro transcription of sgRNA was assembled from two single-stranded 

oligonucleotides with 21 nucleotide overhangs which were annealed and extended 

with T4 DNA polymerase (NEB, Germany). The template was purified using a 

QIAquick PCR Purification Kit (QIAGEN, Germany) and stored in RNase-free water. 

The linear DNA fragments containing the T7 promoter followed by the sgRNA 

sequence were analyzed on an agarose gel and transcribed in vitro using the 

HiScribeT7 High Yield RNA Synthesis Kit (NEB, Germany) according to the 

manufacturer's instructions.  

ATTO488-labeled sgRNA was synthesized by substitution of 7 % of the UTPs with 

aminoallyl-UTP-ATTO488 (Jena Bioscience, Germany) during in vitro transcription. 

After transcription, 1 µL DNase was added and incubated for 15 min at 37 °C. The in 

vitro transcribed sgRNA was purified using the peqGOLD Mikro RNA kit (peqLab, 

Germany) according to the manufacturer's instructions. The purified sgRNA was 

heated to 80 °C for 2 min, directly snap frozen in liquid nitrogen and stored at -80 °C. 

Purity of the sgRNA was analyzed on a GelRed stained 10 % DNA-PAGE gel (Figure 

42B). 
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ssDNA oligonucleotides for assembly of dsDNA templates: 

F-sgGFP:  5´-GCGGCCTCTAATACGACTCACTATAGGACCAGGATGGG 

  CACCACCCGTTTTAGAGCTAGAAATAGCA-3` 

 

F-cgRNA:   5´-GCGGCCTCTAATACGACTCACTATAGGGTAACCGTGCGG 

  TCGTACGTTTTAGAGCTAGAAATAGCA-3` 

 

F-sgFolR1: 5´-TTCTAATACGACTCACTATAGAGGGTTTAACAAGTGCGCAG 

  GTTTTAGAGCTAGA-3´ 

 

R-sgRNA:  5´-AAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAA 

  CGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC-3´ 

 

sgRNA sequences after in vitro transcription: 

sgGFP:  5´-GACCAGGATGGGCACCACCCGTTTTAGAGCTAGAAATAG  

  CAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTG 

  GCACCGAGTCGGTGCTTTTTTT-3´ 

 

cgRNA: 5´-GGGTAACCGTGCGGTCGTACGTTTTAGAGCTAGAAATAG  

  CAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTG  

  GCACCGAGTCGGTGCTTTTTTT-3´ 

 

sgFOLR1:  5´-GGGTTTAACAAGTGCGCAGTGTTTTAGAGCTAGAAATAG  

  CAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTG  

  GCACCGAGTCGGTGCTTTTTTT-3´ 
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3.3.5 In vitro cleavage assay to test the RNP functionality  

To confirm the functionality of Cas9 and sgRNA in vitro, 300 ng of a linearized 

plasmid or PCR amplicon containing the sgRNA target site was generated. The linear 

DNA fragment was then incubated with the precomplexed RNPs (150 ng Cas9 

protein and 60 ng sgRNA)for 2 h at 37 °C. The reaction mixture was analyzed by 

agarose gel electrophoresis (1.5 % agarose gel). Due to the asymmetric location of 

the sgRNA-target sequence within the amplicon, successful cleavage by the 

Cas9/sgRNA complex results in two bands on the agarose gel(Figure 42C). 

 

3.3.6 Cell culture 

Neuro2a eGFP-Luc, HeLa eGFP-Tub and HeLa pLuc/705 cells were grown in DMEM 

medium supplemented with 10 % FBS, 100 U/mL penicillin and 100 μg/mL 

streptomycin. The cells were cultured in ventilated flasks in the cell incubator at 37 °C 

and 5 % CO2 in a humidified atmosphere. Cells were passaged at approximately 80 

% confluency. 

 

3.3.7 Formulation of RNP oligomer complexes 

To formulate RNP oligomer complexes, the indicated amount of Cas9 protein and 

sgRNA were mixed and pre-incubated for 15 min at RT. For the uptake studies, 20 % 

of the Cas9 protein was substituted by ATTO647N-Cas9 and 20 % of the sgRNA by 

ATTO488-sgRNA. The calculated amount of oligomer at the indicated lipo-

nanoparticle (N/P) ratio was diluted in a separate tube (total volume 10 μL) in HBG 

buffer. After 15 min incubation of Cas9 and sgRNA, the RNP complex solution is 

diluted to a volume of 10 µL and added to the oligomer solution, mixed by pipetting 

and incubated for another 15 min at RT. 
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3.3.8 Cellular treatments under serum-free conditions 

For an initial library screening, 5.000 Neuro2a eGFP-Luc cells per well were seeded 

into 96-well plates the day before cell treatment. 15 min prior the treatment, the full 

serum medium (DMEM containing 10 % FBS) was substituted by 80 µL fresh 

prewarmed serum-free medium. 20 µL of the RNP oligomer complexes formed as 

described above was added to each well. After 4 h of serum free incubation, 100 µL 

medium containing 20 % serum was added and the cells incubated for another 44 h. 

After 48 h total incubation time, the cells were transferred into 24-well plates and 

incubated for additional 72 h. All treatments were performed in triplicates. The knock 

out efficiency was determined by flow cytometry as the percentage of GFP negative 

cells after subtraction of unspecific GFP negative population in HBG treated cells. 

Data are presented as the mean value (± SD) of three independent measurements. 

 

3.3.9 Cellular treatment under standard conditions 

RNP lipo-nanoparticle treatments were performed in triplicates in 96-well plates. 

5.000 cells were seeded per well 24 h prior transfection. On the next day, the 

medium was replaced by 80 µL fresh prewarmed medium containing 10 % FBS. The 

nanoparticles were prepared as described above and 20 µL of the transfection mix 

were added. After 48 h treatment, the cells were transferred into 24-well plates and 

further incubated for 72 h. The knock out efficiency was determined by flow cytometry 

as the percentage of GFP negative cells after subtraction of unspecific GFP negative 

population in HBG treated cells. Data are presented as the mean value (± SD) of 

three independent measurements. The relative cell number (%) was calculated 

relative to control wells treated with HBG as ([A] test/[A] control) × 100 %. Means are 

reported +/- standard deviation. 
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3.3.10 Particle size and zeta potential  

Particle sizes and zeta potentials of Cas9/sgRNA ribonucleoprotein lipo-nanoparticles 

were determined by dynamic and electrophoretic light scattering in folded capillary 

cells (DTS 1070) using a Zetasizer Nano ZS (Malvern Instruments, UK). RNP lipo-

nanoparticles containing 12.5 μg Cas9 protein and 2.5 μg sgRNA at N/P 24 were 

formed in 200 μL HBG. For size measurements, each sample was measured three 

times with 13 subruns at RT. For zeta potential measurements, the sample was 

diluted to 800 μL with 20 mM HEPES pH 7.4 buffer and measured three times with 

10 to 15 subruns. Zeta potentials were calculated by the Smoluchowski equation.242 

 

3.3.11 Fluorescence (cross-) correlation spectroscopy (FCS/FCCS) 

The fluorescence correlation spectroscopy and dual-color fluorescence cross-

correlation spectroscopy measurements (FCCS) were performed on a home-built 

microscope as described elsewhere.243 A pulsed laser diode at 470-nm wavelength 

(LDH-P-C-470, Pico Quant) was used for excitation of the ATTO488 labeled sgRNA 

(ATTO488-sgRNA) and a pulsed laser diode at 635-nm (LDH-P-C-635b, Pico Quant) 

was used for excitation of the ATTO647N labeled Cas9 protein (ATTO647N-Cas9). 

Laser powers of ~ 4.5 µW for both the 470 and 635-nm lasers were used, measured 

at the sample with a slide power meter (S170C-Thorlabs). The measurements were 

performed using a 60x water immersion objective, NA 1.27 (Plan Apo 60 x WI, 

Nikon).  

The correlation analyses were performed with our home written software PIE analysis 

with Matlab (PAM).244 PAM is a stand-alone program (MATLAB; The Math Works 

GmbH) for integrated and robust analysis of fluorescence ensemble, single-molecule, 

and imaging data. The FCS data were acquired by recording the photons with a 

single APD on a time-correlated single-photon-counting card (TCSPC, SPC-150 

Becker and Hickl) for a period of 15 minutes. The FCCS data were acquired by 

recording the detected photons of two single photon avalanche photodiodes (SPADs) 

on two separate but synchronized TCSPC cards for a period of 15 minutes. 

Measurements were conducted in HBG buffer for simulating physiological body 

conditions. 
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The autocorrelation functions (ACFs) were fit using a single or two-component model 

with a triplet fraction, assuming a 3D Gaussian focus shape. 
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where A is the size-weighted relative-amplitude of particles in the observation 

volume. The A1 fraction refers to the unbound, freely diffusing labeled sgRNA or 

Cas9 protein, while A2 corresponds to the RNP complex bound-labeled sgRNA or 

Cas9 protein. D1 and D2 refer to the respective diffusion coefficients of A1 and A2, 

respectively. The time delay of the autocorrelation is represented by  𝜏. 𝜔𝑟  and 𝜔𝑧  are 

the lateral and axial focus sizes, respectively, defined as the distance from the focus 

center to the point where the signal intensity has decreased to 1/e2 of the maximum. 

The shape factor 𝛾 is 2-3/2 for a 3D Gaussian.  

The triplet dynamics were accounted for by an additional factor, where T is the triplet 

fraction and ƮT is the triplet time constant. The fitting was used to extract the fraction 

of freely diffusing vs. complex bound ATTO488-sgRNA / ATTO647N-Cas9, in the 

absence and presence of the T-OHSteA oligomer. The unbound freely diffusing 

ATTO488-sgRNA and ATTO647N-Cas9 diffusion coefficients D1 and D2 were fixed in 

the fitting to the value of 56.0 and 18.2 µm2/s, respectively, which was previously 

determined by measuring ATTO488-sgRNA and ATTO647N-Cas9 alone, 

respectively. 
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3.3.12 Flow cytometry 

After the specified treatments, the cells were collected and resuspended in 

phosphate-buffered saline(PBS) buffer containing 10 % FBS (FACS buffer). All 

samples were analyzed by flow cytometry using a LSR Fortessa flow cytometer 

(Becton, Dickinson and Company Biosciences, Singapore). 1 ng/μL 4′,6-diamidino-2-

phenylindole (DAPI) was added shortly before the measurement and used to 

discriminate between viable and dead cells. The cellular fluorescence was assayed 

by excitation of DAPI at 405 nm and detection of emission at 450 nm and the 

excitation of ATTO647N at 640 nm and detection of emission at 670 nm. ATTO488 

as well as the cellular eGFP expression was assayed by excitation at 488 nm and the 

detection of emission at 530 nm. Only isolated viable cells were evaluated. Flow 

cytometry data were analyzed using FlowJo 7.6.5 flow cytometric analysis software 

by FlowJo, LLC (Becton, Dickinson and Company, USA). All experiments were 

performed in triplicates. 

 

3.3.13 Confocal laser scanning microscopy (CLSM) 

15.000 Neuro2a eGFP-Luc cells were seeded in 8 well-Ibidi μ-slides (Ibidi GmbH, 

Germany) in a total volume of 300 µL medium per well. Cells were incubated at 37 °C 

and 5 % CO2. On the next day, the medium was replaced with 240 μL fresh medium. 

60 µL of Cas9/sgRNA RNP (20 % ATTO647N labeled Cas9, 20 % ATTO488 labeled 

sgRNA) lipo-nanoparticles was added to each well resulting in a final concentration of 

75 nM RNP complex. After 4 h, each well was washed twice with 300 µL PBS 

followed by a 20 min incubation on ice with 300 µLPBS containing 500 I.U./mL of 

heparin. The cells were washed twice with 300 µL PBS and subsequently fixed with 4 

% paraformaldehyde in PBS (40 min incubation at RT). After fixation, each well was 

washed twice with 300 µL PBS, the cell nuclei were stained with DAPI (2 µg/mL) and 

F-actin was labeled with rhodamine-phalloidin (1 µg/mL). After 20 min of incubation 

(light protected at RT), the staining mixture was aspirated and replaced with 300 µL 

PBS per well.  

Images were recorded with a Leica-TCS-SP8 confocal laser scanning microscope 

(CLSM) equipped with a HC PL APO 63x 1.4 objective (Germany). DAPI emission 

was recorded at 460 nm, ATTO488-sgRNA at 519nm, rhodamine at 580 nm and 
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ATTO647N-Cas9 at 665 nm. All images were processed using the LAS X software 

from Leica. 

 

3.3.14 Erythrocyte leakage assay 

EDTA-blood was washed with PBS buffer containing 25 mM sodium citrate. The 

washed erythrocyte suspension was centrifuged and the pellet was diluted to 5 × 107 

erythrocytes per mL with PBS (pH 7.4, 6.5 and 5.5). A volume of 75 μL of erythrocyte 

suspension and 75 µL of oligomer solution (diluted with PBS at the respective pH) 

was added to each well of a V-bottom 96-well plate (NUNC, Denmark), resulting in 

the indicated oligomer concentration. The plates were incubated at 37 °C under 

constant shaking for 1 h. After centrifugation, 100 µL of the supernatant was 

analyzed for hemoglobin release by monitoring the absorption at 405 nm using a 

microplate reader (Spectrafluor Plus, Tecan Austria GmbH, Austria). PBS-treated 

erythrocytes were set to 0 %. Erythrocytes treated with 1 % (v/v) Triton X-100 (diluted 

with PBS at the respective pH) served as positive control and was set to 100 %. Data 

are presented as the mean value (± SD) of four independent measurements. 

 

3.3.15 Folate receptor expression levels 

To examine the folate receptor (FolR1) expression of the different cell lines, 500.000 

cells were collected in 100 µL FACS buffer. For the detection of the FolR1, 5 µL 

allophycocyanin (APC)-conjugated α-FolR1 IgG1 antibody was added and incubated 

on ice for 1 h. As a negative control, allophycocyanin (APC)-conjugated anti control 

IgG1 antibody with no specific target was used. After the incubation on ice, cells were 

washed twice with 1 mL FACS buffer, resuspended in 600 μL FACS buffer and 

analyzed by flow cytometry using a LSR Fortessa flow cytometer (BD Biosciences, 

Singapore). 1 ng/μL DAPI was added shortly before the measurement and used to 

discriminate between viable and dead cells. The amount of folic acid receptor positive 

cells was analyzed through excitation of the dye at 640 nm and detection of emission 

at 670 nm. Flow cytometry data were analyzed using FlowJo 7.6.5 flow cytometric 

analysis software by FlowJo, LLC (Becton, Dickinson and Company, USA). 
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3.3.16 DNA sequencing  

Single cell clones were generated from treated cells as described above using 

limiting dilution method in 96-well plates. Genomic DNA of the isolated single cell 

clones was extracted by QIAamp® DNA Mini Kit (QIAGEN, Germany) following the 

manufacture‘s protocol. The target regions of eGFP or FolR1 gene were amplified 

with OneTaq® DNA polymerase (NEB, Germany) using primers eGFP-F/eGFP-R or 

FolR1-F/FolR1-R. The amplicons were purified by gel extraction with QIAquick® Gel 

Extraction Kit (QIAGEN, Germany). Purified amplicons at concentrations of 10-30 

ng/μL were sequenced by Eurofins GATC Biotech (Germany) with primer eGFP-S or 

FolR1-R.Sequences of the Primers can be found in the Supporting Information. 

PCR and sequencing primer sequences: 

eGFP-F:  5‘-GGTGAGCAAGGGCGAGGAGCTGTTCAC-3‘ 

eGFP-R:  5‘-GCGGTCACGAACTCCAGCAGGACCATG-3‘ 

FolR1-F:  5‘-GACCATGGAGCAGGAACC-3‘ 

FolR1-R:  5‘-CAGCTCCAGTTCTATTCGG-3‘ 

eGFP-S:  5‘-TCGGCCATGATATAGACGTT-3‘ 

 

3.3.17 Statistical analysis  

Data were analyzed with GraphPad prism 5. The statistical significance of 

experiments was determined using the two-tailed student‘s t-tests, *** p ≤ 0.001, ** p 

≤ 0.01, * p ≤ 0.05. 
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3.4 Results and Discussion 

3.4.1 Lead structure identification 

To assess the general potential of oligo(ethylenamino) amides (OAAs) for 

Cas9/sgRNA RNP delivery, a first library screen was conducted. Sequence-defined 

OAAs with different architectures and structural motifs were selected, which showed 

efficient intracellular delivery of other cargos such as small interfering RNA (siRNA), 

plasmid DNA (pDNA) and proteins in previous studies.101, 152, 159, 238 GFP reporter 

gene was used as read-out to assess the knock-out efficiency for the identification of 

the best performing structures. Neuro2a eGFP-Luc cells were treated with 

Cas9/sgRNA RNP formulations for 4 h without serum. Subsequently, serum was 

added and cells were incubated for additional 44 h. All samples were analyzed by 

flow cytometry 3-4 days after the cell treatment. As expected, the bare RNP complex 

did not induce substantial GFP knock out (Figure 36). Commercially available 

lipofectamine 3000 (LF 3) achieved reporter gene knock out of approximately 11 % at 

higher concentrations, while succinylated polyethyleneimine (PEI-Suc)245 increased 

knock out levels to 15 %. Sequence-defined OAAs with comb-like architecture, which 

initially were designed as efficient pDNA delivery agents159 did not induce significant 

GFP knock-out with Cas9/sgRNA. In contrast, branched 3- and 4-arm OAAs 

exhibited distinct Cas9/sgRNA delivery efficiency. In case of 3-arm OAAs, the 

introduction of hydrophobic tyrosine tripeptide motifs strongly improved the GFP 

knock out efficiency from 2 % (Stp-H-C) to 18 % (Stp-H-Y3-C). A 4-arm OAA (Sph-H-

C) based on the artificial oligoamino acid succinyl-pentaethylene hexamine (Sph) 

mediated 23 % GFP knock out. A substitution of Sph with the shorter oligoamino acid 

glutaryl-triethylene tetramine (Gtt-H-C) eliminated the delivery efficiency completely 

which shows the critical impact of slight structural variations and optimal composition. 

The highest Cas9/sgRNA delivery potency and approximately 28 % GFP knock out 

was observed with a lipid-modified T-shape structure (T-OleA) containing the 

cationizable oligoamino acid stuccinyl-tetraethylene pentamine (Stp), oleic acid and 

stabilizing tyrosine trimers.166 The same oligomer did not induce any reduction of 

GFP expression with Cas9/cgRNA RNP containing a control guide RNA (cgRNA) 

without specific target in the genome, which confirms the sequence specific GFP 

knock out. 
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Figure 36: GFP knock out efficiency results of the oligomer library screening. The percentage of 

GFP knock out in Neuro2a eGFP-Luc cells was determined by FACS analysis 7 days after treatment 

with RNP OAA nanoparticles containing representatives of oligomer groups with different functional 

motifs and architectures. Naked Cas9/sgRNA complex (75 nM Cas9 protein and 150 nM sgRNA) 

without OAA serves as negative control. RNP complex formulated with Lipofectamine 3000 (LF3) 

served as a positive control. The polymeric PEI-Suc as well as 3-arm, 4-arm, comb- and T-shape 

structures with different functional units were compared in terms of knock out efficiency. Cas9 protein 

complexed with control guide RNA (cgRNA) with no specific target served as negative control. 

Detailed sequence information can be found in the supporting information table S1. The samples were 

normalized to HBG treated cells. Transfections were performed under serum free conditions (4h 

serum-free followed by 44 h serum containing conditions). Data are presented as mean ± SD (n=3). 

 

3.4.2  Lipid variation  

The initial library screen had identified the T-shape oligomer T-OleA as the best-

performing structure for Cas9/sgRNA RNP delivery (Figure 36). The fatty acids in the 

delivery system are suggested to boost intracellular delivery by hydrophobic 

nanoparticle stabilization as well as endosomal membrane interaction and 

release.163, 246-247 Based on the promising results obtained with T-OleA, which 

contains the unsaturated C18 fatty acid oleic acid (OleA), different T-shape lipo-

OAAs with fatty acid variations were screened (Figure 37). We recently reported that 

the degree of unsaturation of the fatty acid moiety critically impacts the delivery of 

phosphorodiamidate morpholino oligomers (PMOs).165 Analogs of T-OleA containing 

saturated stearic acid, bis-unsaturated linoleic acid (LinA), 8-nonanamidooctanoic 

acid (NonOcA) and hydroxystearic acid (OHSteA) instead of oleic acid were 
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synthesized (Figure 37A). To determine the influence of the fatty acid variation, 

Neuro2a eGFP-Luc cells were incubated with Cas9/sgRNA RNP formulations for 48 

h in serum-containing medium (Figure 37B). As expected, the bare RNP complex did 

not induce GFP knock out. In presence of serum, which represent more challenging 

conditions compared to the initial library screen, neither saturated T-SteA, nor the 

mono-unsaturated T-OleA resulted in significant GFP knock out. In contrast, bis-

unsaturated T-LinA and T-NonOcA increased the GFP knock out efficiency to around 

12 % or 7 %, respectively. Notably, the hydroxylated T-OHSteA mediated the highest 

GFP knock out of 40 % after the single Cas9/sgRNA treatment. The cell number after 

the treatments with the lipo-nanoparticles was determined as a measure for 

nanoparticle toxicity (Figure 37C). All lipo-nanoparticles were generally well tolerated 

with T-NonOcA exhibiting the highest effect on the cell number. 

 

 

Figure 37: Lipid variation. (A) A schematic illustration of T-shape OAAs with different fatty acids 

(FA). SteA: stearic acid; OleA: oleic acid; LinA: linoleic acid; NonOcA: nonanamidooctanoic acid; 

OHSteA: hydroxystearic acid; Stp: succinyl‐tetraethylene pentamine. (B) GFP knock out efficiency 

determined by flow cytometry and (C) cell number of Neuro2a eGFP-Luc cells 3-4 d after the 48 h 

treatment with 75 nM RNP lipo-nanoparticles (N/P 24) targeting the eGFP gene. Cells were 

normalized to HBG buffer treated cells. RNP complex without lipo-OAA served as negative control. 

Data are presented as mean ± SD (n = 3). 
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3.4.3 Impact of lipid on nanoparticle formation and membrane interaction 

The lipo-nanoparticles, which were formed from T-shape lipo-OAAs containing the 

different lipid variations and the RNP complex, were further characterized in terms of 

their physicochemical properties, since they can significantly impact the in vitro and in 

vivo characteristics of a carrier system.248-249 The nanoparticle size, polydispersity 

and the zeta potential were determined by DLS (Figure 38A-C). Lipo-nanoparticles 

containing Cas9/sgRNA and the saturated (T-SteA), mono- (T-OleA) and bis-

unsaturated fatty acids (T-LinA) or the amide-lipid (T-NonOcA) displayed 

hydrodynamic sizes of 247-293 nm, whereas the more hydrophilic hydroxylated T-

OHSteA counterpart produced significantly smaller nanoparticles with a z-average of 

168 nm (Figure 38A). The polydispersity index (PDI) as a measure for the 

homogeneity of the particle population (Figure 38B), also suggested more 

homogenous nanoparticle formation with T-OHSteA (PDI 0.24) compared to the other 

four oligomers (PDI 0.45-0.56). The zeta potential of all lipo-nanoparticles ranged 

from +15 to +18 mV (Figure 2C), suggesting positive surface charges which are 

beneficial for cellular uptake via electrostatic interactions.250 

The intracellular delivery of the Cas9/sgRNA complex formulations into Neuro2a cells 

was determined by confocal laser scanning microscopy (CLSM, Figure 38D). To 

investigate the uptake of both RNP components individually, the Cas9 protein and 

the sgRNA were labeled with fluorescent dyes ATTO647N and ATTO488, 

respectively. While cellular internalization of the Cas9 protein (top images, red 

channel) was observed for both formulated (RNP+T-OHSteA) as well as bare RNP 

complexes (RNP), intracellular sgRNA was only detected in combination with the 

lipo-OAA (middle images, green channel).A possible explanation for this observation 

is the stabilization and protection of single stranded RNA by complexation and 

encapsulation in the carrier system.229 Importantly, these data show that only the lipo-

nanoparticles mediate co-delivery of both functional RNP components, which are 

essential for genome editing activity. 

The lipid modification of the T-shape lipo-OAA was shown to have a major impact on 

GFP knock out efficiency (Figure 37). To investigate a possible explanation for the 

importance of suitable lipid modification, lipo-nanoparticle uptake into Neuro2a cells 

was determined by flow cytometry (Figure 38E). The mono-unsaturated T-OleA and 

hydroxylated T-OHSteA mediated the highest levels of cellular internalization, while 
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all other screened compounds were inferior. Since no distinct difference between the 

T-OleA and T-OHSteA was observed, the superiority of T-OHSteA in terms of GFP 

reporter gene knock out cannot only be explained by a higher cellular uptake. 

Inadequate endosomal escape has often been identified as a key bottleneck in 

cellular delivery of biomolecules.229, 251-252 Since the conducted cellular uptake study 

does not identify the intracellular localization and, in particular, does not differentiate 

between the endolysosomal or cytosolic compartment, the advantage of T-OHSteA 

lipid nanoparticles might be related to a superior endosomal release. The amphiphilic 

character of the lipid modified cationic oligomer provides the potential of lytic 

membrane interactions. Previous nucleic acids studies have shown that unsaturated 

fatty acids can enhance pH‐dependent membrane lysis and thereby endosomal 

escape.113, 166, 238 Erythrocyte leakage assays were carried out to assess the pH-

dependent membrane interaction of lipo-OAAs. 

The T-shape oligomers with different fatty acids were incubated with erythrocytes at 

physiological pH 7.4 as well as endolysosomal pH of 6.5 or 5.5. The results (Figure 

38F) indicate increasing erythrocyte leakage at pH 5.5 with an increasing number of 

double bonds, which is consistent with previous findings.113, 165 Highest lytic activities 

were observed for lipo-OAAs containing bis-unsaturated linoleic acid and hydroxy 

stearic acid. Comparing the lipo-OAA containing SteA and the hydroxylated version 

of this fatty acid (OHSteA), it is clearly visible that the fatty acid hydroxylation has an 

enormous effect on the lytic potential. Cis-unsaturated fatty acids are suggested to 

affect the phase behavior and fluidity of biomembranes,163, 253-254 which explains the 

higher lytic activity of T-OleA and T-LinA compared to T-SteA.164 It can be speculated 

that the bulky hydroxyl group (-HC-OH)in OH-SteA results in a similarly sterically 

favored angled conformation of hydroxy-stearic acid compared to constrained cis-

unsaturated bonds. The enhanced pH-dependent membrane lysis indicates 

beneficial effects on cell tolerability at neutral pH and promotes increased endosomal 

escape due to vesicular acidification. 

Summing up, the beneficial effect of the RNP T-OHSteA formulation is suggested to 

rely on a combination of effects on defined particle formation (smallest z-average, 

lowest PDI), enhanced cellular uptake as well as a better endosomal escape due to 

the favorable lytic interaction with membranes at acidic pH. 
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Figure 38: Impact of lipid modification on particle formation (A-C), cellular uptake (D-E) and 

membrane interaction (F). (A) Particle size (z-average) in nm, (B) polydispersity index (PDI) and (C) 

zeta potential in mV of 75nM Cas9/sgRNA solutions complexed with different lipo-OAAs at N/P 24. 

Particles were formed in HBG and three technical replicas were measured. (D) CLSM images of 

Neuro2a cells treated for 4 h with 75 nM Cas9/sgRNA RNP (Cas9:sgRNA 1:1, 20 % ATTO647N-

labeled Cas9 protein, 20 % ATTO488-labeled sgRNA) with (right) or without (left) encapsulation into T-

OHSteA at N/P 24. Additional data of the full set of all RNP lipo-nanoparticles can be found in in 

chapter 3.7 Supporting Information Figure 43. (E) The cellular ATTO647N-Cas9 fluorescence intensity 

determined by flow cytometry (median fluorescence intensity, MFI, n = 3) is shown. (F) Erythrocyte 

leakage assays by photometrical determination of hemoglobin that was released from 3.75 × 

10
6
 erythrocytes after 60 min incubation with 2.5 µM lipo-OAA at pH 7.4, 6.5 or 5.5. Values were 

normalized to positive control samples treated with 1 % (v/v) Triton X‐100 (100 % lysis). Data are 

presented as mean ± SD (n = 4). 

 

3.4.4 RNP complex formulation 

GFP knock out efficiency studies (Figure 37) as well as cellular internalization 

experiments (Figure 38) identified the lipo-OAA T-OHSteA as the best performing 

structure in terms of RNP delivery. To further characterize RNP complex formulation 

and optimal composition, dose-titration experiments with varying RNP complex 

concentrations, varied Cas9 protein to sgRNA molar ratios as well as lipo-OAA 

nitrogen to sgRNA phosphate (N/P) ratios were performed in two reporter cell lines 

(Figure 39).  
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First, nanoparticles were formed at a fixed N/P ratio of 24. The concentration of the 

RNP complex in Neuro2a eGFP-Luc and HeLa GFP-Tub treatments ranged between 

1 nM to 100 nM. RNP compositions of Cas9 protein to sgGFP of 1:1 (green line) and 

1:2 (blue line) were applied (Figure 39A and B). In treatments of Neuro2a eGFP-Luc 

cells with Cas9/sgRNA RNPs at a ratio of 1:1, the GFP knock out increased with 

RNP concentration between 1 to 75 nM and did not improve further at the higher 

concentration of 100 nM (Figure 39A). In case of particles containing Cas9:sgGFP 

RNPs at a ratio of 1:2, the treatment with 50 nM RNP complex mediated the highest 

GFP knock out levels, suggesting it as the optimal concentration. Overall, differences 

between the Cas9/sgRNA composition ratios 1:1 or 1:2 were minor in treatments of 

Neuro2a eGFP-Luc cells. In contrast, treatments of HeLa GFP-Tub reporter cells 

resulted in a slightly different observation (Figure 39B); at both ratios the GFP knock 

out efficiency increases with increasing RNP concentration up to 50 nM; maximal 

knock out levels were reached at 50 nM with RNPs at 1:1 ratio and already at 25 nM 

with RNPs at 1:2 ratio. While the knock out efficiency with Cas9/sgGFP RNPs at 1:1 

ratio did not decrease dramatically at higher concentrations, at 1:2 ratio it dropped to 

low levels at concentrations > 50 nM of RNP. The abrupt decrease of the GFP knock 

out efficiency could be attributed to an increased toxicity due to the double lipo-OAA 

concentration in case of RNPs at 1:2 ratio (Chapter 3.7 Supporting Information Figure 

44). Overall, single treatments of HeLa GFP-Tub cells with both Cas9/sgGFP T-

OHSteA formulations resulted in remarkably high GFP knock out levels of over 89 %. 

However, it has to be mentioned that the GFP fusion to tubulin in HeLa GFP-Tub 

cells could negatively affect proliferation which in turn could favor growth of knock out 

populations. 

Additionally, nanoparticles were formed at different N/P ratios (Figure 39C and D). 

Two different lipo-OAA concentrations were kept constant and RNP levels were 

gradually increased. On Neuro2a eGFP-Luc cells, lipo-OAA concentrations of 9.5 µM 

(red line) and 14.3 µM (black line, Figure 39C) were used. GFP knock out efficiencies 

could be steadily improved by decreasing the N/P ratio, with a maximal effect at N/P 

24 for both concentrations (indicated by arrows). Due to the higher overall GFP knock 

out levels on HeLa GFP-Tub cells (Figure 39B), lower lipo-OAA concentrations of 4.8 

µM (blue line) and 9.5 µM (red line, Figure 39D) were chosen for this cell line. At a 

concentration of 4.8 µM lipo-OAA, the successive addition of RNP complex resulting 
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in N/P ratios of 12 increased GFP knock out levels. At lower N/P ratios the knock out 

efficiency dropped indicating the requirement for an optimal lipo-OAA ratio. At 9.5 

µM, the transfection efficiency increased steadily to an N/P ratio of 24, where a 

plateau was reached. Based on these observations, an N/P ratio of 24 in 

Cas9/sgRNA T-OHSteA complexes was considered optimal.  

To assess the RNP delivery potential of T-OHSteA at the determined formulation 

conditions, the delivery system was compared to other reagents in term of GFP 

knock out efficiency (Figure 39E). Classical transfection reagents such as 

succinylated polyethylenimine (PEI-Suc), linear polyethylenimine (linPEI) as well as 

Lipofectamine CRISPRMAX (LF CM), a commercially available reagent for 

Cas9/sgRNA RNP transfections, were evaluated in Neuro2a eGFP-Luc cells side-by-

side with T-OHSteA. The PEI derivatives were used at published optimal 

polymer:nucleic ratios (linPEI 0.8 w/w, PEI-Suc 4 w/w).245 In case of lipofectamine, 

four different procedures (LF CM1 to 4) with different concentrations and mixing 

procedures were included for a reliable comparison under the conditions suggested 

by the manufacturer as well as the parameters of lipo-OAA formulations. The 

cationizable PEI-polymers, which are known to mediate efficient intracellular delivery 

of nucleic acids like siRNA and pDNA,99, 245, 255 were not able to mediate distinct 

effects on the GFP expression levels. The cationic lipid Lipofectamine, an otherwise 

potent transfection reagent, only showed up to 7 % GFP knock out at concentrations 

and mixing procedures suggested by the manufacturer (LF CM1 and CM2) as well as 

at the same concentrations used for the RNP T-OHSteA formulations (LF CM3 and 

CM4). In the side-by-side comparison, the Cas9/sgRNA RNP formulation containing 

lipo-OAA T-OHSteA outperformed all other reagents mediating highest knock out 

levels of 38 %.  

Successful gene knock out was additionally verified on genomic level (Figure 39F). 

After 48 h treatment of Neuro2a eGFP-Luc cells with 75 nM RNP complexed with T-

OHSteA at N/P 24, cells were diluted to generate monoclonal cell populations from 

single cells. 29 of the 70 monoclonal cell populations showed a complete loss of GFP 

expression (determined by flow cytometry), matching the knock out efficiency of 

previous knock out experiments. The genomic DNA of the cell populations was 

harvested, target region of the GFP gene amplified by PCR and analyzed by 
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sequencing. Figure 39F illustrates exemplary insertions and deletions (INDELS) at 

the expected site of the sgGFP target sequence. 

 

 

Figure 39: Dose-titration and characterization of RNP T-OHSteA formulations.  (A,B) Dose-

titration experiment in Neuro2a eGFP-Luc (A) or HeLa GFP-Tub (B) cells treated with 1-100 nM 

Cas9/sgRNA RNP complex at a 1:1 (blue) or 1:2 (green) ratio formulated with T-OHSteA at N/P 24. 

(C) N/P variation in Neuro2a eGFP-Luc cells by keeping T-OHSteA concentration constant (red curve: 

9.5 µM; black curve: 14.3 µM) and varying the amount of RNP complex (in nM) at a 1:1 ratio. Arrows 

of the same color indicate an N/P of 24. (D) N/P variation experiment in HeLa GFP-Tub cells by 

keeping T-OHSteA concentration constant (blue curve: 4.8 µM; red curve: 9.5 µM) and varying amount 

of RNP complex at a 1:1 ratio. Arrows of the same color indicate an N/P of 24. (E) Comparison of RNP 

T-OHSteA formulations with established transfection reagents in terms of knock out efficiency. RNP 

complex without carrier served as negative control. Established transfection reagents included 

succinylated polyethylenimine (PEI-Suc) at a w/w ratio of 4, linear polyethylenimine (linPEI) at w/w 0.8 

of polymer to sgRNA. Lipofectamine CRISPRMAX (LF CM) was tested at three different 

concentrations and with two different mixing procedures. LF CM 1 (6 nM RNP) and 2 (15 nM RNP) 

and 3 (75 nM RNP) were prepared as recommended by the manufacturer. LF CM 4 (75 nM RNP) as 

well as T-OHSteA (75 nM RNP) were mixed according to the protocol for formulation of RNP lipo-OAA 

formulations. All data points indicate the % knock out efficiency 3-4 d after a 48 h treatment in 

presence of 10 % FBS. The % of GFP knock out was normalized to HBG buffer treated cells. Data are 

presented as mean ± SD (n = 3). (F) Sequencing of monoclonal GFP knock out cells. The green 

sequence indicates the sgRNA target sequence in the eGFP gene next to the protospacer adjacent 

motive (PAM) sequence in red. Insertions and deletions caused by the DNA repair mechanisms after 

the Cas9 induced double strand break are highlighted in blue. 
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In view of addressing the interaction between sgRNA and Cas9, i.e. the RNP 

complex formation, and the RNP interaction with the T-OHSteA oligomer, 

fluorescence correlation spectroscopy (FCS) was used (Figure 40). FCS records and 

analyzes the intensity fluctuations through a small (≈fL) observation volume, caused 

by the diffusion of fluorescent particles in and out of this observation volume. From 

the temporal autocorrelation function (ACF) of the signal, a slower diffusion 

coefficient due to the building of complexes causes a shift in the temporal ACF to 

slower timescales.212-213, 256 The diffusion of the single-labeled ATTO647N-Cas9 

(18.2 µm2/s) and ATTO488-sgRNA (56.0 µm2/s) corresponds to their individual 

molecular weights and confirms the presence of a monomolecular species in solution 

(Figure 40A and B, light blue curves), (Chapter 3.7 Supporting Information Table 4 

and Table 5). 

Addition of the positively charged oligomer T-OHSteA to the Cas9 protein does not 

mediate a shift toward higher time lag , which indicates the absence of strong 

interactions between the two components (Figure 40A, orange curve). In contrast, the 

addition of T-OHSteA to sgRNA shows a strong shift of the autocorrelation function 

towards a higher time lag  due to formation of an RNA polyplex (Figure 40B, orange 

curve). The appearance of a slowly diffusing component (4.02 µm2/s) is a further 

indication of the RNA polyplex formation (Chapter 3.7 Supporting Information Table 

4). Similarly, the mixture of sgRNA and Cas9 protein shows species with slower 

diffusion in both channels (~1.5 µm2/s), suggesting the formation of Cas9/sgRNA 

RNP complexes (Figure 40A and B, yellow curves), (Chapter 3.7 Supporting 

Information Table 4 and Table 5).  

Additionally, we performed fluorescence cross-correlation spectroscopy (FCCS) 

experiments, a dual-color extension of standard FCS.257-258 Here, the temporal cross-

correlation functions (CCFs) between the detection channels for the two fluorescently 

labeled ATTO647N-Cas9 and ATTO488-sgRNA proteins were analyzed. In FCCS, a 

cross-correlation signal is only present in the case of concerted motion of the 

different labels, i.e. the formation of an RNP complex. Thus, not only the temporal 

decay of the CCF is changed upon binding, but also the amplitude, making it much 

more sensitive as compared to standard FCS.257  
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The interaction of Cas9 and sgRNA and thus RNP formation is confirmed by the 

cross correlation of the two differently labeled components (Figure 40C, orange 

curve). The addition of T-OHSteA to Cas9/sgRNA RNPs results in a slightly faster 

diffusion coefficient, suggesting the reassembly or compaction of the RNP 

complexes, upon the addition of the highly positive oligomers (Figure 40A and B, 

purple curve). This compaction is better observable in the CCF (Figure 40C, absence 

vs. presence of T-OHSteA), where the diffusion coefficients of the RNP complex in 

the presence (~0.5 µm2/s) and the absence (~1 µm2/s) of the T-OHSteA shows the 

compaction resulting in a twice faster diffusion. Importantly, the addition of cationic T-

OHSteA does not seem to disrupt the RNPs by detachment of sgRNA from the Cas9 

protein, since the relative cross-correlation amplitude does not decrease but actually 

increases slightly upon addition of the oligomer (Figure 40C). 
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Figure 40: Interactions between sgRNA, Cas9 and T-OHSteA monitored by fluorescence (cross) 

correlation spectroscopy FCS (FCCS). (A) Autocorrelation function (ACF) of 100 nM ATTO647N-

Cas9 showing its interaction with 100 nM ATTO488-sgRNA and 19 µM T-OHSteA (corresponding to 

N/P 24). The ATTO647N ACF is shown as a reference for a freely diffusing fluorophore. Note that the 

orange curve is largely overlapping the blue curve. (*) indicates the fluorescent species which is 

detected (red channel). (B) ACF of 100 nM ATTO488-sgRNA showing its interaction with 100 nM 

ATTO647N-Cas9 and 19 µM T-OHSteA (corresponding to N/P 24). The ATTO488 ACF is shown as a 

reference for a freely diffusing fluorophore. The slower decay of the ACFs represented by the shift 

towards higher time lag τ, indicates a slower diffusion and an increase in the hydrodynamic size due to 

the complex formation. (*) indicates the fluorescent species which is detected (green channel). (C) 

Relative cross-correlation (obtained by the division of the CCF amplitude by the ACF amplitude of the 

ATTO647N-Cas9) between 100 nM ATTO647N-Cas9 and 100 nM ATTO488-sgRNA in the presence 

(red) or absence (orange) of 19 µM T-OHSteA (corresponding to N/P 24). A mixture of ATTO647N 

and ATTO488 served as a reference showing the absence of any cross-correlation between the freely 

diffusing fluorophores (pink curve). The lines represent the obtained fit for the data points represented 

as dots. (*) indicates the fluorescent species which are detected (red and green channel). 
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Knock out of an endogenous gene 

The delivery system based on lipo-OAA T-OHSteA, the Cas9 protein and sgGFP was 

optimized to facilitate the knock out of a GFP gene construct in two artificial reporter 

cell lines (Figure 37 and Figure 39). To verify that this delivery system can mediate 

knock out of an endogenous gene, a sgRNA targeting the folate receptor 1 gene 

(sgFolR1) was loaded into the Cas9-protein and complexed with the carrier system 

(Figure 41). Lipo-nanoparticles were formed with T-OHSteA and either Cas9/sgFolR1 

or Cas9/cgRNA with no specific target in the genome. Folate receptor 1 (FolR1) 

negative Neuro2a cells and FolR1 positive HeLa cells were incubated with HBG or 

the RNP containing delivery systems at 25 nM, 50 nM and 75 nM (Figure 41A). The 

FolR1 status upon incubation was assessed by flow cytometry after treatment of cells 

with an allophycocyanin (APC)-conjugated antibody (FolR1-AB). FolR1 negative 

Neuro2a cells, which do not express the FolR1, served as a negative control and 

could not be stained with the FolR1-AB upon treatment with HBG. As a second 

negative control for unspecific background fluorescence, FolR1 positive HeLa cells 

were treated with HBG and subsequently incubated with a control antibody (Ctrl-AB). 

As a positive control, HeLa cells were treated with HBG and stained with Fol1R-AB. 

At all concentrations, the FolR1 status was clearly positive. Upon incubation of HeLa 

cells with Cas9/cgRNA, no FolR1 knock out could be detected. In contrast, HeLa 

cells treated with Cas9/sgRNA showed partial knock out of the endogenous receptor. 

The FolR1 knock out efficiency of HeLa cells treated with Cas9/sgRNA were 

quantified (Figure 41B). At all concentrations, FolR1 knock out levels of around 30 % 

could be detected.  

The knock out of the FolR1 gene was additionally confirmed on the genomic level 

(Figure 41C). After 48 h treatment of HeLa cells with the carrier systems containing 

75 nM RNP and T-OHSteA at N/P 24, cells were single cell diluted into 96-well plates 

to generate monoclonal selected cell lines. After continued cultivation, the genomic 

DNA of the cell populations was harvested, the FolR1 sequences amplified and 

analyzed by sequencing. Figure 41C indicates the insertions and deletions (INDELS) 

introduced due to cell repair mechanisms. 
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Figure 41: Knock out of the endogenous folate receptor 1 (FolR1). (A) Histograms showing the 

FolR1 expression of Neuro2a (FolR1 negative cell line) and HeLa (FolR1 positive cell line) cells after 

48 h treatment with HBG buffer, Cas9/cgRNA with no specific target in the genome or Cas9/sgFolR1 

targeting the endogenous folate receptor 1 gene. Cells were treated with three different RNP 

concentrations (25, 50, 75 nM RNP) complexed with T-OHSteA at N/P 24.  Read out was performed 

by flow cytometry 7 d after the treatment. For the detection of the folate receptor status, cells were 

treated with an allophycocyanin (APC)-conjugated antibody against the folate receptor. As a negative 

control, an (APC)-conjugated anti control antibody with no specific target was used. (B) Quantification 

of the FolR1 knock out efficiency in %. Cells were normalized to HBG treated cells. Data are 

presented as mean ± SD (n = 3). (C) Sequencing of monoclonal FolR1 knock out cells. Green 

sequences indicate the sgRNA target sequence in the FolR1 gene next to the protospacer adjacent 

motive (PAM) sequence in red. Insertions and deletions (INDELS) caused by the DNA repair 

mechanisms after the Cas9 induced double strand break are highlighted in blue. 
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3.5 Conclusion 

In this study, a novel delivery platform for the delivery of Cas9 protein/sgRNA RNP 

complexes was developed. Different lipo-oligomers were used to incorporate the 

Cas9 protein and different sgRNAs into cationic lipo-OAA nanoparticles. Lipo-OAAs 

were varied in terms of their fatty acid domains. Structures containing the saturated 

stearic acid were screened side-by-side to mono- or bis-unsaturated as well as 

amide-functionalized and hydroxylated lipid moieties. The T-shape lipo-OAA T-

OHSteA was identified as the best-performing structure, and the hydroxylation of the 

contained fatty acid changed the properties and relevant parameters dramatically; the 

cationic lipo-OAA complexes with Cas9/sgRNA were smaller and more defined, 

exhibited higher cellular uptake and higher membrane lytic potential. T-OHSteA 

facilitated efficient intracellular delivery of the RNP complex and GFP gene knock out 

efficiencies up to 40 % on Neuro2a eGFP-Luc and up to 89 % on HeLa GFP-Tub 

cells, respectively. Additionally, knock out of the endogenous FolR1 gene coding for 

the folate receptor 1 could be demonstrated in HeLa cells. Overall, the reported lipo-

nanoparticles hold great potential for genome editing applications and will be further 

optimized to target genes for therapeutic applications in vivo. 
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3.7 Supporting information figures and tables  

Table 3: Summary of synthesized oligoamino amide sequences with different topologies. 

ID Type Sequence Abbreviation Reference 

PEI-Suc Polymer PEI-Suc 10 % - Zintchenko et al.
245

 

689  3-arm C-H-(Stp-H)3-K-[H-(Stp-H)3-C]2 Stp-H-C Kos et al.
162

 

849 3-arm C-Y3-H-(Stp-H)3-K-[H-(Stp-H)3-Y3-C]2 Stp-H-Y3-C Levacic et al.
259

 

784 4-arm K-K-[H-K-(H-Sph-K)3-H-C)2]2 Sph-H-C Beckert et al.
158

 

577 4-arm A-K-(H-K-(H-Gtt-H-Gtt-H-Gtt-H-C)2)2 Gtt-H-C Lächelt et al.
197

 

552 Comb C-[K-(Stp)-H]8-C C-Stp-H Scholz et al.
159

 

454 T-shape C-Y3-Stp2-K(K-OleA2)-Stp2-Y3-C T-OleA Troiber et al.
166

 

1104 T-shape C-Y3-Stp2-K(K-NonOcA2)-Stp2-Y3-C T-NonOcA Reinhard et al.
164

 

1105 T-shape C-Y3-Stp2-K(K-OHSteA2)-Stp2-Y3-C T-OHSteA " 

1165 T-shape C-Y3-Stp2-K(K-LinA2)-Stp2-Y3-C T-LinA " 

1072 T-shape C-Y3-Stp2-K(K-SteA2)-Stp2-Y3-C T-SteA " 

α-amino acids are indicated in one-letter code. Stp, succinyl-tetraethylene pentamine; Sph, succinyl-

pentaethylene hexamine; Gtt, glutaryl-triethylene tetramine; OleA, oleic acid; NonOcA,8-

nonanamidooctanoic acid; OHSteA, mono-hydroxylated stearic acid; LinA, linoleic acid; SteA, stearic 

acid. 

 

Figure 42: Synthesis, purification and functionality assay of the Cas9/sgRNA ribonucleoprotein 

components. (A) Representative analysis of purified recombinant Cas9 protein on a Coomassie 

Brilliant Blue stained 10 % SDS-PAGE gel. M: Page Ruler, prestained protein ladder, marker band 

sizes are indicated in kDa. (B) Representative analysis of in vitro transcribed and purified sgRNA on a 

Gel Red stained 10% DNA-PAGE gel. M: 50 bp DNA ladder, marker band sizes are indicated in base 

pairs (BP). (C) In vitro cleavage assay to check the functionality of the RNP complex. Representative 

analysis of the initially linearized plasmid containing the sgRNA target side (LP) followed by a second 

cleavage due to incubation with precomplexed RNP visualized on a 1.5 % agarose gel containing Gel 

Red. DNA cleavage products of the second digest after incubation with sgRNA precomplexed with 

commercially available NEB Cas9 (NB) or after incubation with sgRNA precomplexed with in-house 

purified Cas9 (IH). 
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Figure 43: Confocal laser scanning microscopy (CLSM) images of Cas9-ATTO647N/sgRNA-

ATTO488 lipo-nanoparticles uptake. Neuro2a eGFP-Luc cells were incubated with 75 nM RNP lipo-

nanoparticles (containing 20 % labeled RNP components) mixed at N/P 24. Images were recorded 

after 4 h incubation and fixation with 4 % paraformaldehyde. First column: fluorescence of phalloidin-

rhodamine stained actin filaments; second column: nuclear staining with DAPI; third column: 

fluorescence of ATTO488-labeled sgRNA; fourth column: fluorescence of ATTO647N-Cas9; fifth 

column: merge of all three channels. Subset of the data is shown in Figure 38. 
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Figure 44: Effect of RNP T-OHSteA treatments on cell number.  (A,B) Dose-titration experiment in 

Neuro2a eGFP-Luc (A) or HeLa-GFP-Tub (B) cells treated with 1-100 nM Cas9/sgRNA RNP complex 

at a 1:1 (blue) or 1:2 (green) ratio formulated with T-OHSteA at N/P 24. (C) N/P variation in Neuro2a 

eGFP-Luc cells by keeping T-OHSteA concentration constant (red curve: 9.5 µM; black curve: 14.3 

µM) and varying the amount of RNP complex (in nM) at a 1:1 ratio. (D) N/P variation experiment in 

HeLa GFP-Tub cells by keeping T-OHSteA concentrations constant (blue curve: 4.8 µM; red curve: 

9.5 µM) and varying amount of RNP complex at a 1:1 ratio. (E) Comparison of RNP T-OHSteA 

formulations with established transfection reagents in terms of cell number. RNP complex without 

carrier served as negative control and were determined as 100 %. Established transfection reagents 

included succinylated polyethylenimine (PEI-Suc) at a w/w ratio of 4, linear polyethylenimine (linPEI) at 

w/w 0.8 of polymer to sgRNA. Lipofectamine CRISPRMAX (LF CM) was tested at three different 

concentrations and with two different mixing procedures. LF CM 1 (6 nM RNP) and 2 (15 nM RNP) 

and 3 (75 nM RNP) were prepared as recommended by the manufacturer. LF CM 4 (75 nM RNP) as 

well as T-OHSteA (75 nM RNP) were mixed according to the protocol for formulation of RNP lipo-OAA 

formulations. All data points indicate % cell numbers 3-4 d after a 48 h treatment in presence of 10 % 

FBS. The % of cell number was normalized to HBG buffer treated cells. Data are presented as mean ± 

SD (n = 3). 
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FCS Results  

Table 4: The values obtained from the FCS measurements of ATTO488-sgRNA, applying a 2-

Component diffusion fit with a triplet fraction, where A1 and A2are the (size-weighted) relative 

amplitudes of free and RNP complex bound ATTO488-sgRNA. D1 and D2 refer to the respective 

diffusion coefficients of A1 and A2, respectively. 

 A1 A2 D1 

(µm2/s) 
D2 

(µm2/s) 
Triplet/µs 
(fraction) 

ATTO488 1.00 - 373 - - 

ATTO488-sgRNA 1.00 - 56.0 - 38.4 (0.33) 

ATTO488-sgRNA  +T-OHSteA 0.071 0.929 56.0 4.04 14.1 (0.04) 

ATTO488-sgRNA 

+ATTO647N-Cas9 

0.525 0.475 56.0 1.67 30.4 (0.30) 

ATTO488-sgRNA 

+ATTO647N-Cas9  +T-OHSteA 

0.407 0.593 56.0 2.32 22.3 (0.27) 

 

 

Table 5: The values obtained from the FCS measurements of ATTO647N-Cas9, applying a 2-

Component diffusion fit with a triplet fraction, where A1 and A2 are the (size-weighted) relative 

amplitudes of free and RNP complex bound ATTO647N-Cas9. D1 and D2 refer to the respective 

diffusion coefficients of A1 and A2, respectively. 

 A1 A2 D1 

(µm2/s) 
D2 

(µm2/s) 
Triplet/µs 
(fraction) 

ATTO488 1.00 - 373 - - 

ATTO488-sgRNA 1.00 - 56.0 - 38.4 (0.33) 

ATTO488-sgRNA  +T-OHSteA 0.071 0.929 56.0 4.04 14.1 (0.04) 

ATTO488-sgRNA 

+ATTO647N-Cas9 

0.525 0.475 56.0 1.67 30.4 (0.30) 

ATTO488-sgRNA 

+ATTO647N-Cas9  +T-OHSteA 

0.407 0.593 56.0 2.32 22.3 (0.27) 
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4 Summary 

The fast-growing field of molecular therapeutics represents an innovative way to 

target diseases on an early molecular level. These compounds, designed to target 

certain specific molecular structures, comprise several classes of macromolecules 

with a vast variety of physicochemical and biological characteristics. Safe and 

efficient delivery of sufficient drug amounts to the specific target site builds a major 

hurdle for the approval of nanopharmaceuticals. Potent carrier systems must be 

multifunctional and overcome several barriers to achieve successful drug delivery, 

including packaging of the cargo, intracellular delivery, endosomal escape as well as 

cargo release at the target site. Sequence-defined oligo(ethylenamino) amides 

(OAAs) generated by solid-phase synthesis and based on natural α-amino acids, 

artificial oligoamino acids and different additional functional units like hydrophobic 

modifications were recently established as a delivery system for charged nucleic 

acids, proteins and other therapeutics. They combine the advantages of 

aminoethylene based polymers with the chemical precision and versatility of 

peptides. In two different projects, these highly defined molecules were utilized for 

the development of novel delivery strategies for two completely different and 

promising molecular therapeutics. 

Phosphorodiamidate morpholino oligomers (PMOs), a class of artificial, uncharged 

ASOs with favorable stability, nuclease-resistance, low immunogenicity and toxicity 

represent the first cargo of interest. This type of antisense oligonucleotides is able to 

restore functional gene expression by modification of pre-mRNA splicing to modulate 

cellular processes. After an initial library screen, potent artificial aminoethylene-

lipopeptides were identified for the synthesis of PMO conjugates via copper-free click 

chemistry. To evaluate efficient site-specific delivery of the cargo, the splice-switching 

activity in HeLa pLuc/705 cells containing a luciferase reporter gene with an aberrant 

splicing pattern were used as a test system. In this reporter cell line, successful PMO 

delivery, resulted in increased luciferase activity, depending on successful splice-

switching. Systematic variations of the lead structure by substitution of contained fatty 

acids revealed that the degree of unsaturation had a critical impact on the splice-

switching activity. PMO lipopeptide conjugates containing linolenic acid with three 

double bonds exhibited the highest splicing correction and significantly increased 
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functional protein expression in several reporter cell lines containing the pLuc/705 

construct. Not only the conjugate type, but also formulation with an excess of 

lipopeptide increased splice-switching activity in vitro as well as in vivo after 

intratumoral injection. Structural and mechanistic studies revealed that the 

lipopeptide-PMO conjugates associated into nanocomplexes in a concentration 

dependent manner, remarkably enhanced the uptake kinetic and splicing correction 

activity. Furthermore, it could be shown that the type of contained fatty acid played an 

essential role in membrane interaction and pH-dependent lytic activity, promoting 

better endosomal release of the PMO-LP conjugates. In a final approach, two 

formulations with the most potent PMO-LP containing linolenic acid were tested in 

H2K-mdx52 dystrophic skeletal myotubes, to assess the therapeutic potential of the 

new PMO carrier system in a more clinical relevant model. Already low nanomolar 

PMO-LP concentrations mediated significant splice-switching of dystrophin pre-

mRNA, especially in formulations containing threefold excess of LP. Lipopeptide-

PMOs are therefore considered as a promising platform for therapeutic splice-

switching with favorable activity/toxicity profile. 

The second cargo, a highly specific and programmable endonuclease called Cas9 

bound to a single guide RNA resulting in a negatively charged ribonucleoprotein 

complex, was used to modify gene expression at DNA level. After successful 

production and purification of both functional components, an initial library screening 

with different oligo(ethylenamino) amides of different topologies was conducted. In 

this project, a lipid containing T-shape oligomer (lipo-OAA) with complex stabilizing 

moieties was identified as the most potent candidate. Further structural mechanistic 

studies revealed that the type of contained fatty acid had a critical impact on the 

knock out efficiency, since one hydroxy group in the fatty acid dramatically changed 

the properties and performance of the resulting Cas9/sgRNA lipo-OAA complexes. A 

lipo-OAA containing hydroxy-stearic acid was superior compared to analogs with 

saturated or unsaturated fatty acids without hydroxylation in terms of particle 

formation, cellular uptake, lytic potential at acidic pH, which suggests enhanced 

endosomal release and finally knock out efficiency. The investigation of this highly 

efficient and dynamic delivery platform is considered to have a high potential for the 

development of precise gene modifying therapeutics to treat diseases at their roots. 
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5 Appendix 

5.1 Abbreviations 

ASO   Antisense oligonucleotide 

cgRNA  control guide RNA 

CRISPR  Clustered, regularly interspaced, short palindromic repeats  

Cas    CRISPR-associated 

DIPEA  N,N-Diisopropylethylamine 

DMEM  Dulbecco‘s modified Eagle‘s medium 

FCS   Fetal calf serum 

FolR1   Folate receptor 1 

HBG   Hepes-buffered glucose 

HEPES  N-(2-hydroxethyl) piperazine-N‗-(2-ethansulfonic acid) 

LP   Lipopeptide 

PEI   Polyethylenimine 

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

N/P   (Protonatable) nitrogen to phosphates ratio 

NHS   N-Hydroxysuccinimide 

OAA   Oligo(ethylenamino) amides 

PDI   Polydispersity index 

PMO   Phosphorodiamidate morpholino oligomers 

RLU   Relative light units 

RNP   Ribonucleoprotein  

RT   Room temperature  

SEC   Size-exclusion chromatography 

sgRNA  single guide RNA 

SPAAC  Strain-promoted alkyne-azide cycloaddition 

SSO    Splice-switching oligonucleotide 

Stp   Succinyl-tetraethylene pentamine 
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5.2 Analytical Data 

5.2.1 MALDI-TOF mass spectrometry of artificial peptides 

1 μL matrix solution containing 10 mg/mL Super-DHB (90/10 m/m mixture of 2,5-

dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid) in 69.93/30/0.07 (v/v/v) 

H2O/acetonitrile/trifluoroacetic acid was spotted on an MTP AnchorChip (Bruker 

Daltonics, Germany). After the matrix crystallized, 1 µL of sample solution (10 mg/mL 

in water) was added to the matrix spot. Samples were analyzed using an Autoflex II 

mass spectrometer (Bruker Daltonics, Germany). All spectra were recorded in 

positive ion mode. 

 

Table 6. Summary of peptide mass data. 

ID Description Molecular formula [M+H]+ calc. [M+H]+ found 

454 T-OleA C156H254N32O27S2 3074.0 3064.0 
991 LP CholA C164H259N31O26 3079.0 3074.2 

1072 T-SteA C156H258N32O27S2 3078.0 3070.0 
1104 T-NonOcA C154H252N34O29S2 3108.0 3103.0 
1105 T-OHSteA C156H252N32O29S2 3110.0 3103.0 
1106 LP CholA C170H269N35O27 3234.1 3233.0 
1165 T-LinA C156H250N32O27S2 3069.0 3067.0 
1169 LP OleA C158H257N35O27 3078.0 3076.1 
1171 LP LinA C158H253N35O27 3074.0 3074.1 
1172 LP SteA C158H261N35O27 3082.0 3083.2 
1195 LP LenA C158H249N35O27 3069.9 3170.5 
1204 LP GonA C162H265N35O27 3134.0 3131.2 
1205 LP AraA C162H253N35O27 3122.0 3120.1 
1206 LP EPA C162H249N35O27 3117.9 3116.4 
1207 LP DHA C166H253N35O27 3170.0 3169.2 
1228 Pip6a-azide C142H254N60O26 3216.0 3214.9 
1239 LP(RRRR) CholA C170H265N47O27 3399.2 3394.0 
1240 LP(RRXRR) CholA C182H287N49O29 3625.5 3619.1 
1241 LP(RKRK) CholA C170H265N39O27 3287.1 3283.1 
1242 LP(RHRH) CholA C170H245N43O27 3323.0 3317.9 
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5.2.2 MALDI-TOF mass spectrometry of PMO derivatives  

MALDI-TOF MS of PMO-NH2  

 

MALDI-TOF MS of PMO-DBCO 
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MALDI-TOF MS of PMO-LP CholA  

(formulation with excess of free LP CholA) 

 

 

MALDI-TOF MS of PMO-LP CholA  

(HPLC purified conjugate) 
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deine grenzenlose Unterstützung und Liebe. Dank gilt auch meiner großen 

Schwester Tamara, die wohl beste Zuhörerin auf diesem Planeten, mit den zwei 

süßesten Kindern. Ich bin sehr froh euch zu haben. 

Zuletzt geht mein tiefster Dank an Tim, der es selbst an den schwierigsten Tagen 

schafft ein Lächeln in mein Gesicht zu zaubern und mit seiner Liebe mein ganzes 

Leben bereichert. Ich freue mich wahnsinnig auf unsere gemeinsame Zukunft. 

 

 

 

 


