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Z U S A M M E N FA S S U N G

Die Vorhersage von konvektivem Niederschlag ist für heutige, numerische Wettervorhersagemo-
delle eine besondere Herausforderung. Die Ursache dafür liegt insbesondere an unzureichend
aufgelösten Grenzschichtprozessen, welche für die Entstehung von Konvektion besonders re-
levant sind. Diese Arbeit befasst sich mit drei solchen Prozessen, die Grenzschichtturbulenz,
mechanische Hebung durch Subgrid-skalige Orographie und Cold Pools. Ziel ist es, systemati-
sche Fehler in den simulierten Prozessen zu identifizieren und die Darstellung der Prozesse in
Konvektions-erlaubenden Modellen zu verbessern.

Grenzschichtturbulenz wird in den meisten Modellen durch Parameterisierungen näherungs-
weise dargestellt, indem nur der mittlere Einfluss der Turublenz in einer Gitterbox berücksich-
tigt wird. Für die Entstehung von Konvektion ist jedoch die subgrid-skalige Variabilität von
entscheidender Bedeutung. Um diese fehlende Variabilität dennoch zu berücksichtigen, haben
Kober und Craig (2016) ein physikalisch basiertes, stochastisches Störungschema (PSP) entwi-
ckelt, wodurch zusätzlich Modellunsicherheiten direkt dort quantifiziert werden, wo sie entste-
hen. Das ist besonders wichtig, um zuverlässige Vorhersagen zu erhalten. Das Verhalten des
PSP-Schemas zeigt jedoch in manchen Fällen unerwünschte Effekte, welche wir in dieser Arbeit
verringern. Dafür entwickeln wir einige Modifikationen des PSP Schemas. Zum Beispiel stö-
ren wir die horizontalen Wind-Komponenten, sodass 3d Divergenzfreiheit gegeben ist und die
Vertikalwindstörungen länger anhalten. Daraus entsteht eine entsprechend verbesserte Version,
das PSP2, welches stärker unserem physikalischen Verständnis folgt und ähnliche Verbesse-
rungen beim Einsetzen von konvektivem Niederschlag aufweist wie in dem ursprünglichem
PSP-Schema und zusätzlich eine verbesserte Strukture der Niederschlagszellen zeigt.

Als nächst-wichtigsten Prozess für die Konvektionsauslösung berücksichtigen wir die He-
bung durch subgrid-skalige Orographie. Dafür entwickeln wir eine weitere, stochastische Para-
meterisierung, das SSOSP-Schema, welches den Effekt der mechanischen Hebung durch subgrid-
skalige Orographie darstellt. Dazu wird die Amplitude von Schwerewellen durch Informatio-
nen zur subgrid-skaligen Orographie dargestellt und verwendet. Zwar ist durch das SSOSP-
Schema eine deutliche Erhöhung der Konvektionsauslösung in orografischen Regionen möglich,
jedoch fällt dies mit einem unerwünschten Einfluss auch auf nicht-orografische Regionen zu-
sammen. Im Gegensatz zu unseren ursprünglichen Erwartungen kommen wir zu dem Schluss,
dass die subgrid-skalige Orographie keine entscheidende Rolle spielt, da sie meist von aufge-
löster Orographie begleitet wird.

Der bedeutendste Teil der Arbeit befasst sich mit Cold Pools. Cold Pools sind vor Allem für
die Organisation von Konvektion entscheidend, sowie für die Auslösung von Konvektion am
Nachmittag und Abend. Dass Konvektions-erlaubende Modelle Cold Pools nicht ausreichend
gut darstellen können, liegt nahe. Um genauer zu verstehen, welche Aspekte der Cold Pools
mangelhaft dargestellt werden, verwenden wir hochauflösende Simulationen um Cold Pools,
Cold Pool Ränder und ausgelöste Konvektion zu identifizieren. Dabei stellen wir fest, dass
Cold Pools in Simulationen mit niedrigerer Auflösung häufiger, kleiner und weniger intensiv
sind und schwächere Böenfronten aufweisen. Wir verwenden eine lineare Kausalitätsanalyse,
um verschiedene indirekte Effekte zu quantifizieren. Dabei finden wir einen dominierenden
Effekt: Durch die Reduzierung der Gittergrößen wird der aufwärts-gerichtete Massenfluss an
der Böenfront reduziert, was zu geringeren Wahrscheinlichkeiten für die Konvektionsauslösung
führt.
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Basierend auf diesem gewonnen Verständnis entwickeln wir anschließend eine determinis-
tische Cold-Pool-Parametrisierung, CPP, die die Aufwärtsbewegung an den Böenfronten von
Cold-Pools verstärkt, um die Konvektionsauslösung durch Cold Pools zu verbessern. Dabei
wird der Niederschlag besonders am Nachmittag und Abend verstärkt und die Organisation
der Konvektion nimmt zu, woruch Niederschlagsvorhersagen verbessert werden.
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A B S T R A C T

Current deficits of numerical weather prediction models in predicting convective precipitation
are presumably caused by insufficiently resolved boundary-layer processes and their role in
initiating convection. This thesis addresses three such boundary-layer processes, which are ex-
pected to be the most relevant ones for convective initiation. We identify current deficits and
improve their representation in convection-permitting models to improve the representation
of convection itself. The three considered processes are boundary-layer turbulence, mechanical
lifting by subgrid-scale orography and cold pools.

Boundary layer turbulence is mostly parameterized in these models and only represented
by the average effect on a grid box. As the subgrid-scale variability is crucial for convective
initiation, Kober and Craig (2016) have developed a unique, physically based stochastic pertur-
bation scheme (PSP) to reintroduce the subgrid-scale variability of boundary-layer turbulence in
a stochastic manner. This allows the quantification of model uncertainty at its source - a crucial,
but rarely performed step for reliable forecasts. As the PSP scheme also introduced some un-
desired behavior, we develop several modifications to pertain the positive effect of the original
PSP scheme while being physically more consistent. For example, we included perturbations
in horizontal wind components in a 3d non-divergent way to obtain persistent vertical velocity
perturbations. A revised version, PSP2, is physically more consistent and shows improvements
in the onset of convective precipitation similar to the original scheme and an improved structure
of precipitation cells.

The next important process is assumed to be convective initiation by subgrid-scale orography.
We develop an additional stochastic parameterization, the SSOSP scheme, to include the effect
of mechanical lifting by subgrid-scale orography using a gravity wave formalism and informa-
tion on subgrid-scale orography. While a clear increase in convective initiation over orographic
regions is possible by the SSOSP scheme, this usually coincides with an undesired impact also
on non-orographic regions. We conclude - in contrast to our initial expectations - that, most
likely, subgrid-scale orography does not play a crucial role because it is mostly accompanied by
resolved orography.

The most notable parts of this thesis are concerned with cold pools. Cold pools are expected
to play a crucial role in the convective organization and for late afternoon and evening convec-
tive initiation. However, km-scale models are not expected to simulate cold pools with sufficient
accuracy. To better understand, which aspects of cold pools are insufficiently represented, we
identify cold pools, cold pool boundaries and initiated convection in high-resolution simula-
tions. We find that cold pools are more frequent, smaller, less intense and have weaker gust
fronts in lower resolution simulations. We use a linear causal graph analysis to disentangle dif-
ferent indirect effects. Doing so, we identify one single, dominant effect: reducing grid sizes
reduces upward mass flux at the gust front directly, which causes weaker triggering probabili-
ties.

Based on these results, we then develop a deterministic cold pool parameterization, CPP,
which strengthens the upward motion at cold pool gust fronts to improve cold pool driven
convective initiation. We find that precipitation is amplified and becomes more organized in the
afternoon and evening. Better precipitation forecasts will then be possible.
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1
I N T R O D U C T I O N

Atmospheric deep convection, or simply convection, represents the formation of fast-
developing cloud systems, that extend throughout the whole depth of the troposphere.
The most prominent example of such clouds are thunderstorms. Such convective clouds
can result in high wind speeds, heavy precipitation, hail or flooding, thereby disturbing
our everyday life, devastating areas and causing material losses and even casualties. In
June 2019, for instance, a specifically large and long-lived thunderstorm occured over
Bavaria which caused hail with up to 5 cm diameter, extreme precipitation (27 mm h−1),
and wind speeds of up to 120 km h−1 (Deutscher Wetterdienst, 2019). According to Mu-
nich Re (2020), damages of almost 1 billion dollars occured, which made this single
thunderstorm event the most expensive natural hazard in Germany in 2019. A differ-
ent, highly convective weather situation caused severe flooding and damages in several
towns in Germany in May and June 2016. These floodings lead to financial losses of
up to 2.2 billion dollars (Piper et al., 2016; Kron et al., 2019). To prevent, or at least mit-
igate, such tremendous damages, people, companies or governments require reliable
warnings and, hence, predictions of such convective events sufficiently in advance.

However, predicting convective clouds has been a long-standing challenge. Until the
last century, the prediction of thunderstorms was based on eye-observations of clouds,
the categorization of previous weather types and experience (Nebeker, 1997). Conse-
quently, only very short-term or relatively crude predictions were possible. When the
first numerical weather predictions became operational in the 1950s and 60s (Golding
et al., 2004; Harper et al., 2007; Randall et al., 2018), it was finally possible to predict
the larger-scale weather based on physical equations, which tremendously improved
weather forecasts. However, the lack of computational power, model complexity and
observations still prohibited the explicit simulation of deep convective clouds for sev-
eral decades. In the late 1980s, with the availability of radar and satellite observations,
nowcasting techniques were developed to project the behavior of existing clouds into
the future (Golding et al., 2004). These extrapolation techniques, however, could not
predict the initiation of new cells, nor were their forecasts skillful beyond a few hours.

A milestone was reached when increasing computational possibilities joined with in-
tensive model development enabled the explicit simulation of deep convective circula-
tions with numerical models in the 1990s. At first, such simulations were only feasible
for research purposes and selected events (Clark et al., 2016). Lilly (1990) speculated
about the operational, numerical prediction of thunderstorms in 1990, but it still took
more than a decade for most weather services to develop and afford models suited
for this challenge (e.g., Baldauf et al., 2011; Clark et al., 2016). Today, such convection-
permitting models are the model type of choice for regional weather prediction and
many other applications.
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2 introduction

While these models have undoubtedly led to a step-change in forecasting deep con-
vection (Clark et al., 2016), several deficits remain. The primary deficits in simulating
deep convective systems manifest in biases in the diurnal cycle and a lack of organi-
zation of convection. Responsible are processes, that are tightly coupled to convection,
but are so small, that even convection-permitting models cannot resolve them explicitly.
This grey zone for convection modeling poses a severe challenge for current weather
prediction. The largest portion of these deficits is ascribed to insufficiently represented
processes in the boundary layer (≈ the lowest kilometer of the atmosphere), which are
crucial for initiating the formation of deep convective clouds. The presumably three
most essential processes for improving convective initiation are boundary-layer turbu-
lence, small-scale orography and cold pools. In this thesis, we will better understand
which aspects of these processes are insufficiently represented in numerical models and
develop new or recently proposed approaches to improve their representation. Doing
so, we address the current challenge of the convective grey zone.

1.1 numerical weather prediction

Numerical weather prediction (NWP) uses computational models that describe atmo-
spheric flow to a certain degree of complexity. They consist of physical, partial differ-
ential equations, including the momentum equations for each velocity component, the
thermodynamic equation, the continuity equation and prognostic equations for mois-
ture quantities. As they cannot be solved analytically, these equations are approximated
for a discrete three-dimensional grid representing the earth’s atmosphere. First, a cur-
rent state of the atmosphere, i.e., the initial condition, has to be derived from obser-
vations and previous forecasts, a process termed data assimilation. Then numerical
integration for future, discrete time steps enables a prediction of the future state of the
atmosphere. Processes that occur on scales smaller than the model grid spacing, i.e.,
subgrid-scale processes, are therefore not explicitly included. Instead, their impact is
approximated in terms of the resolved variables and parameters. Such approximations
are called parameterizations and will be introduced in more detail in Sec. 1.2 and 1.3.

1.1.1 Errors and uncertainty

The fundamental challenge of NWP originates due to the atmosphere’s chaotic nature
- a characteristic made popular by the butterfly effect - which is intimately connected
with a myriad of atmospheric scales interacting with each other. As a consequence,
small errors, e.g., in the initial conditions, grow rapidly in space and time and are
hence projected on all scales. This error growth radically limits our ability to predict
the weather to a few weeks, days and sometimes even hours1.

1 Often, a clear distinction between intrinsic and practical predictability is made. The former describes for
how long in advance useful, hypothetical predictions can be made given infinitesimal errors. Despite
the deterministic nature of the governing equations, this time scale does not grow indefinitely with
decreasing errors. The practical predictability, on the other hand, is a characteristic of current NWP
systems with finite errors. The specific limit of both types of predictability strongly depends on the
spatial scales of interest and the flow situation.
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Errors originate from all parts of the NWP chain, for instance, from insufficient obser-
vations, from erroneous initial conditions and approximations in the numerical meth-
ods and physical parameterizations. Progress in reducing such errors can be made by
increasing computational power, improving different components of NWP models, or
by intensive testing and tuning. This last aspect, although perhaps unsatisfying from a
scientific point of view, is commonly done at operational weather services and refers
to the determination of otherwise vague parameters by optimizing forecast skill scores
(Mauritsen et al., 2012; Hourdin et al., 2017).2

As it is not possible to completely remove errors, and as substantial biases still exist
in real-world models, their impact on the forecast should be quantified. This uncertainty
quantification is now typically done using ensembles (Buizza, 2018) by perturbing each
ensemble member within the range of uncertainty. Different methods to generate en-
semble members include perturbations in initial and boundary conditions, parameter
perturbations of parameterizations, multi-physics approaches where different parame-
terization schemes are used, or even the use of different models. In addition, stochastic
parameterizations (see Sec. 1.2.2) inherently include uncertainty and are also often used
to generate ensembles. By using such ensemble methods, uncertainty is quantified, and
its nonlinear, flow-dependent propagation in space and time is simulated.3 Overall,
reducing and quantifying uncertainty is continuously being achieved at various com-
ponents of NWP. As a result, the practical predictability has increased by one day per
decade since the 1980s, which even gained the notion of a "quiet revolution" (Bauer
et al., 2015, title).

1.1.2 Challenges for convective scale NWP

Simulating and predicting convective processes, and thus convective precipitation, is a
particular challenge for NWP. The following four aspects dominate this challenge. First,
convection is "fundamentally a turbulent process" (Yano et al., 2018, p. 701), and is sub-
stantially more nonlinear than synoptic-scale systems. Hohenegger and Schär (2007),
for instance, compare a 7 h convection forecast to a 10-day synoptic forecast concern-
ing nonlinearity. Consequently, errors grow more rapidly, and predictability of convec-
tive scale systems is limited to only a few hours (Hohenegger and Schär, 2007; Trapp,
2013). Additionally, the assimilation of convective scale observations poses a current
challenge (see Gustafsson et al., 2018, for a review). Furthermore, due to the intermit-
tent and often localized behavior of convection, traditional verification metrics often
fail to give meaningful evaluations, which hinders model development. Alternative ap-
proaches include fuzzy or object-based verification methods. Some will be introduced

2 Although the necessity to tune the numerical models is widely acknowledged, tuning can result in
different biases compensating each other and models might yield the right results for the wrong reasons.
Such compensating errors can substantially hinder model development as an improved representation of
physical processes can deteriorate forecast skills when biases are not compensated any more (Palmer and
Weisheimer, 2011). Furthermore, models are sometimes tuned to optimize single variables at the expense
of others (Baldauf et al., 2011). We will come back to tuning related problems throughout the thesis.

3 An alternative approach to quantify and predict uncertainty is based on the prediction of the Liouville
equation, as the fundamental quantity for uncertainty. However, its application in operational, fully
complex models is not feasible (Ehrendorfer, 1994a,b; Buizza, 2018).
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in Chapter 2. Another major complication arises as many scales relevant for convection
are so small that they are often only poorly represented by the model dynamics or the
parameterizations. These include evaporation, droplet formation, entrainment, the ini-
tiation of convection and sometimes even the deep convective circulations themselves.
This aspect will become more evident in the following section.

1.1.3 Atmospheric models of different scales

Figure 1: Illustration of processes at different scales in comparison to different model types and
their grid sizes. As described in the text, to explicitly resolve the processes, the grid sizes of
the models need to be significantly smaller than the process itself. Consequently, LES can re-
solve larger turbulent eddies and shallow convection, convection-permitting models (CPMs)
can resolve larger deep convective circulations and general circulation models (GCMs) only
synoptic or planetary processes.

The atmosphere contains many different processes of different spatial and temporal
scales. Some characteristic phenomena of different scales are turbulence, thunderstorm-
s/deep convection or synoptic high and low-pressure systems, to name a few. Turbu-
lence in the boundary layer has its largest spatial scales in the range of the boundary-
layer height (usually less than 1 km) and a typical lifetime of several minutes. Deep con-
vective circulations, on the other hand, extend few kilometers and few hours. Synoptic
high or low-pressure systems have even larger spatial scales of thousand kilometers
and usually last for a few days.

Depending on the processes of interest, different types of numerical models are be-
ing used. For numerical models to explicitly simulate any process, their grid sizes have
to be significantly smaller than the process itself. Otherwise, the process can only be
approximated by parameterizations (see Sec. 1.2), resulting in a crude approximation
of the effect on grid scales. But computational resources are limited, and a mere halv-
ing of grid size easily octuples the computational requirements (e.g., Warner, 2010,
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p. 362). Therefore, the computational requirements of smaller grid sizes are compen-
sated by reducing computational requirements otherwise. Usually, this is obtained by
reducing total domain size, but limiting total integration time or ensemble dimension
reduces computing requirements as well. This tradeoff gives rise to various types of at-
mospheric, numerical models depending on their purpose and the respective processes
that they can simulate explicitly.

We illustrate this hierarchy of atmospheric models by considering three types of
models as selected examples, namely global NWP models or general circulation mod-
els (GCMs), convection-permitting models (CPMs) and large eddy models for turbulent
scales (LES). See also Fig. 1 for the grid sizes of these models and corresponding pro-
cesses.

Global weather prediction models, which simulate the global atmosphere of the
earth, usually can only afford grid sizes of ten kilometers. For instance, the opera-
tional setup from the German weather service (DWD), has an effective grid spacing of
13 km (Reinert et al., 2018) and the European center for medium-range weather fore-
casting (ECMWF) uses a discretization of approximately 9 km and 18 km for their high-
resolution run and their ensemble, respectively (ECMWF, 2019). Such resolutions are
sufficient to simulate synoptic fronts, cyclones or other high- and low-pressure systems
or planetary waves explicitly.

To resolve thunderstorm circulations or larger convective clouds, grid sizes of less
than a few kilometers are necessary, often 1-5 km grid sizes are used. We will refer to
such models as km-scale or convection-permitting models (CPM). This regime of models is
now widely used for different applications: convection-permitting models are used for
regional weather prediction by most weather services (Baldauf et al., 2011; Clark et al.,
2016); they are being tested for applications in regional climate modeling (Leutwyler
et al., 2017; Schär et al., 2019); and they are even used for exploratory, global convection-
permitting simulations (Judt, 2018; Stevens et al., 2019b; Zhou et al., 2019). Convection-
permitting models will doubtlessly be used for even more applications in the future.
For instance, at ECMWF, global models are planned to have 5 km grid sizes by 2025

(ECMWF, 2016), and Palmer (2019a) is speculating that global ensemble simulations
will have 1 km grid sizes in 25 years.

On even smaller scales, large-eddy simulations (LES) can be used to simulate larger
turbulent eddies in the planetary boundary layer explicitly. These models require grid
sizes well below 1 km, and sometimes have grid sizes of only tens of meters. LES are
often used for idealized cases, but also more realistic situations have been computed
for research purposes (Heinze et al., 2017; Stevens et al., 2019a). As far as we are aware,
no plans exist to make such models operational in the next decade.

Hence, models with grid sizes of few kilometers will likely dominate the atmospheric
modeling landscape for years to come. Maximizing the highly flow-, space- and time-
dependent predictability of convection within such km-scale models is consequently
a dominant challenge for NWP today, and much research is devoted towards it. This
includes coupling subgrid-scale processes to the resolved convective scales and quanti-
fying uncertainties accordingly. This will be a challenge throughout this thesis, where
we specifically focus on the improved representation of convective initiation by subgrid-
scale or insufficiently resolved processes. Such coupling of resolved and unresolved
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processes can be achieved by parameterizations, which we will formally introduce in
the following.

1.2 parameterizations

Parameterizations approximate the effect of subgrid-scale, unresolved processes on the
resolved scale. Let us consider the set of variables φ averaged over the model grid box,
φ. The residual, i.e., the subgrid-scale fluctuations from the grid mean, is represented
as φ′, so that φ = φ + φ′. This partitioning is often denoted as Reynolds averaging.4

Then numerical weather prediction can be conceptualized as the numerical integration
of the prognostic equation for φ:

∂φ

∂t
= f (φ) + g(φ, φ′), (1)

where f (φ) corresponds to resolved scale dynamics and g(φ, φ′) represents interactions
between resolved and subgrid-scales and how they impact the resolved scale variables.
However, the subgrid-scale fluctuations φ′ are not specified and g(φ, φ′) needs to be
approximated only in terms of φ, i.e., g(φ, φ′) ≈ h(φ). This approximation is called
parameterization.

A wide variety of processes is usually parameterized separately. The impact of unre-
solved eddies is approximated in turbulence parameterizations. The influence of shal-
low and deep convection on resolved scales is usually considered separately in param-
eterizations. Cloud processes, like condensation or droplet formation, are represented
by microphysics parameterizations. Radiative processes are approximated for compu-
tational efficiency in radiation parameterization. Furthermore, many other processes
like gravity wave drag, land surface processes or atmosphere-ocean interactions are
often represented in some form of parameterization. In addition, interactions between
different parameterizations also need to be included.

Various approaches are used to build parameterizations. Traditional parameteriza-
tions are usually based on empirical methods and conceptual process understanding.
Sometimes parameterizations can be derived with several approximations from first
principles, although empirical closure assumptions usually have to be made. Conse-
quently, such parameterizations represent severe sources of errors and uncertainty in
weather and climate models, and considerable effort is made to improve their accuracy.
Progress with traditional parameterizations is ongoing, but also different perspectives
are being considered (Yano, 2016; Rio et al., 2019).

In the last years, the development of other approaches has grown. Exceptionally ac-
curate are Super- or even Ultraparameterizations, which embed higher resolution models
within each grid box of the coarser model (Grabowski, 2004; Parishani et al., 2017; Ran-

4 Reynolds averaging represents the process of averaging equations after separating each variable x into a
slowly varying mean x and a fluctuating perturbation term x′: x = x + x′. The average can be considered
either over time, space or an ensemble (Wyngaard, 2010). See e.g., Markowski and Richardson (2011) for
the fundamental three averaging rules and application.
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dall et al., 2018)5. Per large scale time step, the subgrid-scale tendencies can then explic-
itly be computed, which enables a high precision of these tendencies. The major draw-
back is the immense computational power required for the embedded high-resolution
simulations. Hence, their application in operational modeling is not useful. Approaches
based on deep neural networks are now also being developed. The neural networks are
trained with traditional parameterizations, CRMs or Superparameterizations to emu-
late their behavior while being computationally more efficient (Gentine et al., 2018; Rasp
et al., 2018a; Brenowitz and Bretherton, 2018). Several challenges, however, remain to be
solved. Recently, so-called multi-fluid representations have been tested in meteorolog-
ical applications, where the subgrid fluid is conditionally decomposed into multiple
components (e.g., updrafts or downdrafts) (Thuburn et al., 2018, 2019). More and more
popular are stochastic parameterizations, where stochastic components are included in
parameterizations to quantify uncertainty. They will play a major role in this thesis, and
further details will be given in Section 1.2.2.

1.2.1 Scale separation and grey zones

Figure 2: Illustration of the scale separation of convection parameterizations. The boxes repre-
sent model grid boxes. (a) displays the situation where the cloud scales and grid scales are
well separated. In (b), the grey zone situation is displayed where some clouds are almost as
large as the grid boxes themselves. From Palmer (2019a).

A fundamental problem for parameterizations is the artificial separation between
the resolved and parameterized scales. For instance, in Fig. 2b, we can assume that
the large-scale, synoptic conditions are identical for all four grid boxes, but the clouds
are not. We see that there is a distribution of different cloud sizes where individual
clouds can be as large as the grid size, while other clouds are too small to be explicitly
resolved. Furthermore, some clouds can be attributed to more than just one grid box.
Also, the lifetimes of these clouds may or may not be longer than the model time step.
Despite identical large scale conditions, the average effect of the clouds on each grid
box is not necessarily identical. Instead the impact on each grid box can be viewed as
one realization of a distribution for g(φ, φ′) (see Equ. (1)), as conceptually illustrated in

5 Superparameterizations usually embed convection-permitting simulations with grid sizes of few kilome-
ters within in the coarser model. Recently, LES-type models with grid sizes of only a few hundred meters
have been embedded in a coarser model as Ultraparameterization (Parishani et al., 2017).
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Fig. 3 (green or orange curve). The figure further shows that the subgrid source terms
are highly sensitive to the total number of clouds per grid box and hence strongly
depend on the grid size (Ngrey−α and Ngrey−β). Craig and Cohen (2006) introduced a
formal theory for such probability density functions for convective mass fluxes based
on statistical mechanics.

These observations can be generalized for other processes as well, including turbu-
lent eddies in the planetary boundary layer. An ideal parameterization should represent
the probability distribution of underlying processes, automatically adapt to changing
grid sizes, and should be correlated in space and time according to the spatial and
temporal characteristics of the considered processes. These are, however, serious re-
quirements for parameterizations and pose a severe challenge for numerical modeling
today.

Traditional parameterizations were originally developed for models with tens or hun-
dreds of kilometers. By assuming that the resolved scale acts on asymptotically larger
spatial and temporal scales than the parameterized processes, traditional parameteriza-
tions circumvent the above described problems. Then, a scale-separation is obtained, as
illustrated in Figure 2a for clouds. The subgrid-scale processes are temporally and spa-
tially uncorrelated at the model temporal and spatial discretization, and no prognostic
subgrid-scale variables, temporal or spatial correlations are required. Furthermore, fol-
lowing the central limit theorem, the distribution of the subgrid term g(φ, φ′) converges
towards a Dirac delta function in the limit of infinitely many subgrid-scale objects as
conceptually illustrated in Fig. 3. Consequently, the ensemble average approximates the
subgrid-scale effects sufficiently well, which justifies traditional, deterministic parame-
terizations.

With the rise of convection-permitting models (see Sec. 1.1.3), these assumptions
are now strongly violated for convection or turbulence, while the respective processes
are still not entirely resolved by the model dynamics. Such resolutions, where the cor-
responding processes are neither well parameterized by traditional methods nor well
resolved, are often referred to as the grey zone (Palmer, 2019b). Sometimes it is specified
as the regime where the process is partially resolved, and partially subgrid-scale (Chow
et al., 2019; Kealy, 2019).

One obvious solution to the grey zone problem is to skip grey zone resolutions and
directly use grid sizes where the model dynamics completely resolve the processes.
Unfortunately, every parameterization has its own grey zone at a different scale so
that resolutions beyond, e.g., the convective grey zone, are challenged by the turbulent
grey zone, as indicated in Fig. 1 and Sec. 1.1.3. Hence Chow et al. (2019) refer to a
gray continuum where the single grey zones of convection, topography and turbulence
smoothly transition from one grey zone into the next and challenge mesoscale model-
ing of complex terrain. Due to the immense computational power necessary for only
halving horizontal grid sizes (see Sec. 1.1.3), grey zones cannot be avoided overall. An
alternative, commonly applied solution is to switch off traditional parameterizations.
For example, deep convection is often not parameterized in models with grid lengths
below a few kilometers, although they simulate only the largest convective updrafts
explicitly (e.g., Baldauf et al., 2011; Clark et al., 2016). Consequently, the minimum size
of the convective updrafts is determined by the grid length, and strong sensitivities to



1.2 parameterizations 9

resolution occur (Hanley et al., 2015; Morrison, 2016b; Jeevanjee, 2017; Panosetti et al.,
2019).

These two solutions, which both bypass the actual problem, are not very satisfactory.
Hence a lot of effort is currently devoted to address the grey zone and its problems
properly. For instance, an international project is ongoing to synchronize model and ob-
servation data for the development of grey zone parameterizations for turbulence and
convection (Tomassini et al., 2019). One part of a solution can be the use of prognostic
subgrid-scale variables or stochastic, temporally correlated variables to enable memory
of the subgrid-scale variables (Rio et al., 2019). Other methods use coupling with nearby
grid boxes to relax the spatial scale separation, for instance, by using cellular automata
(e.g., Bengtsson et al., 2013). The uncertainty related to the probability density functions
of the subgrid terms (Fig. 3) should also be appropriately quantified. This can be done
by using stochastic parameterizations, which will also be used in this thesis. Details on
such parameterizations are given in the following section.

Figure 3: Probability density function of sub-
grid source terms are conceptually illus-
trated for the fully unresolved regime (N =

∞), the grey zone and the fully resolved
regime (N = 0). At the higher resolution
part of the grey zone (Ngrey−β), the distri-
butions are not necessarily Gaussian dis-
tributed.

1.2.2 Stochastic parameterizations

As the name implies, stochastic parameterizations are a form of parameterization that
include a random component which can represent the variability of the subgrid-scale
probability density functions as described above (Section 1.2.1) and illustrated in Fig. 3.
In doing so, the impact from the subgrid-scales on the resolved scales is determined not
only by the resolved variables but also by a random variable η(x, t), often a function of
space and time:

∂φ

∂t
≈ f (φ) + h1(φ) + h2(φ) · η(x, t)︸ ︷︷ ︸

≈g(φ,φ′)

.

See also equ. (1) for comparison. h1 and h2 represent general functions that need to be
determined by the parameterization. Depending on the nature of h1 and h2, stochastic
parameterizations can be multiplicative or additive. Stochastic parameterizations are
mathematically well justified (Penland, 2003; Franzke et al., 2015) and can be based on
first principles using homogenization theory (Berner et al., 2017). Indeed, several studies
rigorously derive stochastic representations of subgrid effects in idealized models (e.g.,
Vissio and Lucarini, 2018; Chapron et al., 2018; Demaeyer and Vannitsem, 2017, 2018).
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For fully complex NWP or climate models, however, this is more challenging, if not
impossible.

Nonetheless, such models can still benefit from more pragmatic stochastic param-
eterizations. First, stochastic parameterizations provide means to quantify model un-
certainty, which is important for realistic ensemble spread and hence reliable models.
Since many models are found to be under-dispersive (Berner et al., 2017; Palmer, 2019b),
stochastic parameterizations are often used to account for model error in a bulk way.
A second advantage arises from the so-called noise induced drift. As illustrated in Fig. 4

overcoming nonlinear barriers will be more likely with stochastic forcing. Consequently,
distributions of affected variables can change, biases be reduced, and the representation
of extremes improved (Palmer, 2019b). Hence, stochastic parameterizations can affect
not only the ensemble spread, but also the ensemble average of a simulation. A par-

Figure 4: Conceptual illustration of noise-induced state
transition by sufficiently strong noise. Too weak per-
turbations in the potential well in (a) prohibit a state
transition, whereas the stronger noise in (c) enables
state transitions. (b) and (d) illustrate the associated
probability density functions. Figure from Berner
et al. (2017), modified. ©American Meteorological So-
ciety. Used with permission.

ticular benefit arises for grey zones. The probability density function of subgrid terms
can be appropriately represented, and memory terms or spatial correlations can further
improve the coupling between subgrid and resolved terms.

For fully complex NWP or climate models, several stochastic parameterizations have
been developed. Holistic approaches as the Stochastically Perturbed Parameterization
Tendencies (SPPT) (Buizza et al., 1999) and Stochastic Kinetic Energy Backscatter (SKEBS)
(Shutts, 2005) approaches provide a bulk representation for many types of model error.
In contrast, process-level stochastic perturbations directly represent model uncertain-
ties at its known sources. Ollinaho et al. (2017) and Jankov et al. (2017, 2019) propose
stochastic perturbations of uncertain model parameters (SPP). Christensen et al. (2017)
update the SPPT scheme to treat different processes independently, which better fit ob-
servations compared to bulk approaches. Based on a statistical mechanics perspective
of convection (Craig and Cohen, 2006), Plant and Craig (2008) introduce a physically
motivated approach for deep convection and Sakradzija et al. (2016) for shallow con-
vection. And Kober and Craig (2016) developed unique, physically based stochastic
perturbations, the PSP scheme, to improve the coupling between boundary-layer turbu-
lence and convective initiation in convection-permitting models. The PSP scheme will
be addressed and revised in detail in Chapter 3 of this thesis.
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1.3 relevant physical processes and their model representation

As identified before (Section 1.1.3 and 1.1.2), a common model type for NWP today are
km-scale models. Maximizing their skill is a current challenge for the NWP research
community. One of the most effective ways to address this challenge is presumably
to improve the initiation of convection by still subgrid-scale processes. As this will be
addressed in detail in this thesis, we will now properly introduce atmospheric deep
convection, its initiation, and how it is often represented in models. Then, we focus on
the three most relevant processes for convective initiation based on their frequency, their
different effects on convection and their insufficient respresentation in current models.
These processes are boundary-layer turbulence, orographic convection and cold pools
and are likely responsible for most deficiencies concerning convective initiation.

1.3.1 Convection and its initiation

Atmospheric deep convection represents the rapid formation of clouds in a condition-
ally unstable atmosphere. Such clouds extend throughout the depth of the troposphere
and coincide with strong condensation and often heavy precipitation. In principle, the
atmosphere is stably stratified, so that small displacements do not lead to an accelera-
tion of rising air parcels. This is illustrated in Fig. 5a by the increase of environmental
potential temperature with height throughout most of the troposphere. However, if air
parcels are lifted beyond their lifting condensation level (LCL), clouds form due to con-
densation, latent heat is released, and the rising parcels become even warmer and less
dense. At some point, called the level of free convection (LFC), the air will become
less dense than its environment, and the lifted air will accelerate due to the continued
release of latent heat (see Fig. 5a). This rising usually continues throughout the depth
of the troposphere. Only at the tropopause, where temperatures start increasing with
height, the acceleration ceases at the level of neutral buoyancy (LNB). This accelerated
rising air is termed atmospheric deep moist convection or simply convection6.

Typically, the possibility and strength of convection are characterized by the convec-
tive available potential energy, CAPE, and the convective inhibition, CIN. CAPE defines
the energy that can be released due to evaporation and is given by the vertical integral
of positive buoyancy B (Markowski and Richardson, 2011):

CAPE =
∫ LNB

LFC
Bdz ≈ g

∫ LNB

LFC

(θv,parcel − θv)

θv
dz.

The buoyancy is approximated in terms of the acceleration of gravity g and the virtual
potential temperatures of a horizontally uniform reference state θv and a hypothetical,
rising parcel θv,parcel. In Fig. 5, we regard the reference temperature as characteristic
for the environmental temperature with typical vertical profiles similar to the orange
curve. The dry and moist adiabatic rising of a surface air parcel results in a typical
vertical profile of θv similar to the blue curve. CAPE can then be interpreted as the

6 In the field of meteorology dry convection, i.e., buoyantly driven unsaturated thermals, or shallow moist
convection are also often referred to by convection. In this thesis, however, we will use the term as an
abbreviation for deep moist convection and specify other types of convection accordingly.
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Figure 5: a) Conceptual illustration of environmental potential temperature θenv and potential
temperature of lifted air parcels θparcel . The air parcel is lifted under dry adiabatic ascent
(constant θ) from the surface to its lifting condensation level (LCL) and under moist adi-
abatic ascent from the LCL upward. If the parcel’s potential temperature is higher/lower
than the environmental one, the parcel is positively/negatively buoyant and will acceler-
ate/decelerate. b) Conceptual interpretation of CAPE and CIN in a potential well.

area between the parcel’s and environmental temperature profiles (blue and orange
curves) from LFC to LNB. Convection transforms this potential energy into kinetic
energy, and vertical velocities of up to w =

√
2CAPE can be reached. However, prior to

the accelerated rising, the air first requires lifting to the LFC for which it usually needs
to break through a layer of warmer, less dense air. This layer is called the convection
inhibition layer, and the corresponding energy required for overcoming it is quantified
by CIN. It is defined as the vertical integral of buoyancy from the surface up to the LFC
(see also Fig. 5a):

CIN =−
∫ LFC

s f c
Bdz ≈ −g

∫ LFC

s f c

(θv,parcel − θv)

θv
dz.

When both CIN and CAPE > 0, the air parcels are stable to an infinitesimal pertur-
bation but becomes unstable for sufficiently large perturbations, as illustrated in Fig. 5b
by a potential well. Hence, for convection to occur, this CIN either has to be removed
locally or overcome by forced lifting. We will refer to the process of overcoming CIN,
either by local removal of CIN or by forced ascent, and reaching their level of free
convection as convective initiation.

The described concepts are based on the so-called parcel theory. It assumes isolated
air parcels that are distinct from their environmental air and do not interact with
it. While some observations are fairly consistent with parcel theory (Trapp, 2013), it
strongly simplifies convective processes. Perturbation pressure gradients, entrainmen-
t/detrainment, hydrometeor loading, latent heating from freezing water droplets or
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compensating environmental subsidence are neglected (Markowski and Richardson,
2011). A major implication is that buoyant acceleration is overestimated as persistent
plumes are often necessary to sustain the buoyancy of detraining air (Trapp, 2013).

Convective initiation can occur due to numerous processes and their interactions.
Surface heating can locally remove CIN or produce unstable, rising air parcels or turbu-
lent eddies with sufficient buoyancy or kinetic energy to overcome CIN (see Sec. 1.3.2).
Furthermore, several aspects of orographically induced flow can result in lifting to the
LFC (see Sec. 1.3.3). A third mechanism that is actively investigated in many studies is
the secondary convective initiation by cold pools (Sec. 1.3.4). Further processes include
synoptically driven frontal systems, convergence lines, horizontal convective rolls or
mesoscale circulations like land see breezes.

As already described in Section 1.1.3, the representation of convection in models
strongly depends on the used grid sizes. NWP models with grid sizes of O(10 km)−
O(100 km) (e.g., global NWP models, see Sec. 1.1.3) are not able to resolve these deep
convective overturning circulations. Instead, parameterizations are used to represent
their effect on the resolved variables. Most schemes apply a mass flux approach intro-
duced by Arakawa and Schubert (1974), where fast convective mass fluxes are assumed
to balance large scale and radiative forcing (quasi-equilibrium assumption). A wide va-
riety of different approaches and modifications exist and are still being developed (Rio
et al., 2019). Current development focuses explicitly on improving the transition from
shallow to deep convection, unifying shallow and deep convection schemes, including
convective memory and stochastic schemes to account for cloud size distributions (Rio
et al., 2019).

Nonetheless, due to the many underlying approximations and systematic biases of
convection parameterizations (e.g., Gentine et al., 2018) models that can explicitly re-
solve deep convective overturning are highly desirable (e.g., Clark et al., 2016). As de-
scribed in Section 1.1.3, such convection-permitting models require grid sizes of few
kilometers or less and are now feasible for some applications like regional weather pre-
diction and will likely become important also for other applications (see Section 1.1.3).
Fig. 6 visualizes such resolved clouds in a convection-permitting model with grid sizes
of 2 km and illustrates how crude such cloud simulations still are. Many grey zone prob-
lems are consequently highly relevant for these models (see Sec. 1.2.1) and deficits in
precipitation forecasts exists.

Even though deep convective circulations can be explicitly simulated, several tightly
coupled processes cannot. Shallow cumulus clouds are usually still parameterized,
which results in an often inaccurate transition from shallow to congestus and deep con-
vection (Baldauf et al., 2011; Rio et al., 2019). Also, such models still have to parameterize
turbulence, which results in an unsatisfactory turbulent exchange of environmental air
with the cloud, i.e., entrainment and detrainment (de Rooy et al., 2013; Rio et al., 2019).
Tang and Kirshbaum (2020), for instance, show resolution sensitivities of convective ini-
tiation even in hectometer scale models, which are partially related to turbulent mixing.
On a more fundamental level, vertical acceleration itself depends on the horizontal ex-
tent of the forcing. For convective scale processes in km-scale models, this horizontal
extent is constrained by the horizontal resolution of the model, and vertical velocities
are reduced (Weisman et al., 1997; Pauluis and Garner, 2006; Morrison et al., 2015; Morri-
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Figure 6: This figure visualizes resolved
convective clouds in a convection-
permitting model in three dimensions.
The white cubes correspond to cloudy
grid boxes in the model. Simula-
tions were computed with the EULAG
model using 2 km grid sizes. The figure
ist taken from Mayer (2018), with cour-
tesy of B. Mayer.

son, 2016a; Jeevanjee and Romps, 2016; Jeevanjee, 2017). This quite certainly will affect
the initiation and behavior of convection. Furthermore, processes for overcoming the
convective inhibition are often still subgrid-scale and hinder the initiation of convec-
tion. Such processes include boundary-layer turbulence, orographically induced lifting
or cold pools. We will address the coupling of these processes with convective initiation
within convection-permitting models throughout this thesis.

These problems consequently impact the quality of precipitation forecasts. Hanley
et al. (2015), for instance, find a strong sensitivity of precipitation cell sizes, intensity or
initiation time to the mixing length parameter of the subgrid turbulence scheme. Biases
in the diurnal cycle of convection have also been identified by Baldauf et al. (2011); Clark
et al. (2016); Rasp et al. (2018b), and a lack of persistent organization into the night was
identified by Rasp et al. (2018b).

1.3.2 Boundary layer turbulence

The planetary boundary layer (PBL) is the lowest part of the troposphere where the
impact of the earth’s surface on atmospheric momentum, heat and moisture is crucial.
The upper height of the PBL varies from 100 m to a few kilometers. The dominant
transport of surface properties, like momentum, heat or moisture, occurs via 3D turbu-
lence, which facilitates a fast response of the PBL to surface changes. As a consequence,
the summer-time boundary layer typically follows a diurnal evolution forced by radia-
tion, as depicted in Fig. 7. After sunrise, surface heating induces turbulent sensible heat
fluxes, which enable vertical mixing within the so-called mixed layer (D). Overshooting
thermals penetrate the stably stratified atmosphere above until their negative buoyancy
compensates their kinetic energy (D, E). This layer is referred to as the entrainment
zone and separates the boundary layer from the free atmosphere. Then, the mixing
layer grows with continued surface heating (D, E, A). The turbulent eddies are mostly
generated by buoyancy and can extend throughout the whole depth of the mixed layer.
After sunset, outgoing longwave radiation cools the surface and stabilizes the lower
boundary layer (B, C). In this stable boundary layer, buoyancy-driven turbulence is
suppressed, but intermittent turbulence driven by shear can still occur.
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Figure 7: A typical diurnal evolution of the planetary boundary layer in summer time condi-
tions. The top figure displays the schematic evolution while the bottom figures show vertical
profiles at selected times. From Markowski and Richardson (2011).

Turbulence can be formally quantified by the turbulent kinetic energy (TKE) e. It is de-
fined as the Reynolds averaged, mass-specific kinetic energy of perturbation velocities
u′, v′, w′:

e =
1
2

(
u′2 + v′2 + w′2

)
TKE is not a conserved quantity, and several sources and sinks exist. On the molecular
scale, viscous dissipation transfers turbulent energy to internal energy at the molecular
scale and hence always decreases TKE. It is, however, only dominant for scales smaller
than the Kolmogorov length scale, which is in the order of millimeters for the atmo-
sphere (Vallis, 2017). The most frequent drivers for TKE in the boundary layer are given
by buoyancy and shear. The former is based on vertical heat fluxes that produce TKE
under unstably stratified situations and decrease TKE in stable situations. The latter,
usually dominated by vertical shear of horizontal winds, can generate TKE very locally.
In stable situations, e.g., in a nighttime PBL, TKE can only be produced if the shear pro-
duction dominates over buoyant suppression. See Markowski and Richardson (2011)
for more details or Stull (1988) and Wyngaard (2010) for a comprehensive treatment.
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As described in the previous section, the boundary layer is closely linked to convec-
tive initiation. The depth of the boundary layer, in combination with the temperature
difference in the entrainment zone, determine the convective inhibition (see Fig. 5). Fur-
thermore, if a parcel’s buoyancy is sufficiently large, it can reach the LFC and transform
into a deep convective updraft.

So how can chaotic turbulence be represented by NWP models with grid sizes larger
than the typical scale of the eddies? By Reynolds-averaging the primitive equations,
resolved scale model equations can, in principle, be derived from first principles. The
arising equations constitute prognostic equations for Reynolds averaged quantities. For
the x-component of the Navier-Stokes equation under the assumption of constant den-
sity ρ, we obtain the following equation:

∂u
∂t

+ (v · ∇)u =− 1
ρ

∂p
∂x
−∇ · (v′u′), (2)

with ∇ · (v′u′) = ∂

∂x
u′u′ +

∂

∂y
v′u′ +

∂

∂z
w′u′

(Vallis, 2017). The last term in (2), the Reynolds stress term, describes the influence of the
subgrid-scale eddies on the resolved term. The arising subgrid terms for all averaged
equations can be categorized into turbulent kinematic momentum fluxes, consisting only
of velocity components, turblent kinematic heat fluxes (e.g., w′θ′) and turbulent kinematic
moisture fluxes (e.g., w′r′v). As these terms cannot be solved explicitly by the model,
they need to be specified using resolved, i.e., Reynolds averaged variables. A variety of
approaches exist to determine these subgrid terms (Stensrud, 2007). Usually, such PBL
schemes assume horizontally homogenous situations and, thus, only consider vertical
flux terms. Hence, such schemes are one-dimensional turbulence parameterizations.
Local schemes determine the turbulent fluxes only by using local flow characteristics.
Non-local schemes, in contrast, often include characteristics of the whole boundary
layer.

A common local approach applies the so-called K-theory. Doing so, these terms are
viewed in analogy to molecular viscosity, so they are approximated by the resolved
scale gradients, e.g., u′w′ ≈ −Km

∂u
∂z . Km is denoted as the eddy viscosity and needs to

be specified. Often a characteristic mixing length l is used to determine Km. Higher-
order schemes include prognostic equations also for eddy terms. Then, however, third
or even higher-order eddy terms arise which need a parameterization. One example
is a so-called 1.5 TKE closures, where a prognostic equation for the TKE is used to
specify the eddy correlation terms. Common schemes that combine local and non-local
behavior are eddy diffusivity/mass flux schemes (EDMF) (Siebesma et al., 2007) and
are now also being developed as unified parameterization for turbulence and shallow
or deep convection (Tan et al., 2018) or with stochastic components (Sakradzija et al.,
2016).

As horizontal grid sizes reach the scale of the boundary-layer height, the assumptions
of the Reynolds averaged equations break down.7 If grid sizes become so small that

7 As argued in Wyngaard (2010), Reynolds averaging should at best refer to an ensemble average, i.e.,
the average over many realizations under the same larger-scale conditions. Due to the often practical
limitations of an ensemble average, it can be approximated by temporal or spatial averages under certain
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Figure 8: Different mechanisms of convec-
tion triggering by orography. See text
for details. From Kirshbaum et al.
(2018).

the ratio of the typical eddy length l and grid size ∆x is large, i.e., l
∆x � 1, most

eddies can be explicitly resolved by the model and only the smallest scales have to be
parameterized. Simulations in this regime are referred to as Large eddy simulations (LES),
and established 3D turbulence parameterization schemes exist. If, however, l

∆x ≈ 1
neither the LES nor the Reynolds averaging approaches are valid. Wyngaard (2004)
termed this regime as the terra incognita, the grey zone of turbulence parameterizations.
Suitable schemes are actively being developed (see Chow et al., 2019, for a review) and
often blend between the 3D LES and 1D PBL approach in a scale adaptive way (Hanley
et al., 2019; Kealy et al., 2019; Kealy, 2019).

1.3.3 Orographic convection and the role of subgrid-scale orography

Orographic convection

Various orography related processes have been proposed for the initiation of convection.
In general, orographically induced convection can be categorized into mechanically
and thermally driven convection and their interactions. Most relevant processes are
illustrated in Fig. 8.

For mechanically induced convective initiation by circular orography, the non-dimen-
sional mountain height M categorizes two different flow types:

M =
Nhm

U
,

conditions. These conditions arise from ergodic theory: under stationary or homogenous situations, the
temporal or spatial average converges to the ensemble mean. In real-world phenomena, only quasi-
stationary or quasi-homogeneous situations exist, and the question arises how long/far we must average
to yield a temporal/spatial average that sufficiently represents the ensemble average. Averages over grid
sizes of 10-100 km are likely sufficiently accurate.
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with the Brunt-Väisälä freqeuncy N, the mountain height hm and a characteristic hori-
zontal wind speed U. For M < 1, the horizontal flow contains sufficient kinetic energy
to overcome the height barrier of the mountain, and if the lifted air reaches its LFC,
convection occurs (Fig. 8a). We will refer to this mechanism as mechanical lifting and
specifically focus on it in this thesis. For M > 1, on the other hand, the kinetic energy is
insufficient, and the flow is blocked by the mountain. Several possibilities for initiating
convection occur. Flow deceleration by upstream blocking may result in convection on
the mountain luv (Fig. 8b). Another possibility is the lee-side convergence with sub-
sequent convection, as illustrated in Fig. 8c. Additionally, mountain generated gravity
waves and hydraulic jumps can result in further convective initiation.

Thermally driven circulations can result from surface heating or cooling. During the
day, diabatic surface heating results in higher potential temperatures at mountain tops
(elevated heating) compared to the valley. Thus, on similar height levels, temperature
gradients exist that induce a baroclinic circulation resulting in up-slope winds, as il-
lustrated in Fig. 9. A subsequent convergence at the mountain top can then trigger
convection (see also Fig. 8d). During nighttime katabatic, down-slope winds can occur
and lead to mountain base convective initiation (Fig. 8e).

Interactions between up-slope winds and gravity waves with background wind sit-
uations (Fig. 8f) or cold pools (Fig. 8g) can further induce convection. The specific
relevance and technicalities of each process are still the topic of current research. Fur-
ther details can be found in the recent review by Kirshbaum et al. (2018) on orographic
convection or in the more general review by Houze (2012) on orographic precipitation.

Figure 9: Illustration of thermally induced orographic circulations. The warming of elevated sur-
faces results in higher temperatures at the mountain compared to the same height above the
valley, as illustrated by the red isolines of potential temperature. This horizontal tempera-
ture gradient induces a baroclinic circulation represented by the black circles. If the upward
branch of the circulation reaches the LFC, convection can occur on top of the mountain.
From Geerts et al. (2008). ©American Meteorological Society. Used with permission.

The role of subgrid-scale orography

While the specific relevance and details of single processes may still be an unsettled
topic, the overall relevance of orography for convection is undeniable. In numerical
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models, however, the effects of orography are, in general, only included if the model
grid sufficiently resolves orography. With decreasing grid sizes of numerical models,
more and more of the fractal orography is resolved by the model grid, enabling an
explicit representation of these processes. In fact, better resolving orography is often
mentioned as a dominant benefit of increased resolutions (Wagner et al., 2014; Kealy,
2019).

Nonetheless, it is also possible to include the effects of subgrid-scale orography (SSO)
to some extent via SSO-parameterizations. The effect of non-local orographic drag is
represented in parameterizations for orographic gravity waves (Lott and Miller, 1997).
Furthermore, the more local effect is accounted for in the specification of the roughness
length. The recent development of parameter perturbations even allows for uncertainty
in the roughness length (Ruckstuhl and Janjić, 2020). Current developments further aim
to properly include SSO in boundary-layer turbulence parameterizations (Rotach et al.,
2015). The influence of SSO on convection, however, is otherwise not parameterized in
models.

This consequently raises the question of whether SSO, i.e., small orographic scales,
is, in fact, necessary for convection. Several studies have addressed this question. While
Kirshbaum et al. (2007a) find that scales smaller than few kilometers are not dominant
for convective initiation when a range of orographic scales exist, various studies em-
phasize the role of small scale orographic features using analytical models, idealized
simulations or case studies. Panosetti et al. (2016) find differences in thermally induced
orographic convection between idealized LES and CRM simulations. Kirshbaum et al.
(2007b,a) also show that small, single scale orographic features can dictate the spacing
of convective bands, and Langhans et al. (2011) conclude that small scale orography con-
tributes significantly to convective initiation. By evaluating the effect of smoothed ter-
rain on convection in high-resolution simulations, Schneider et al. (2018) find complex
interactions between background flow and orographic scales. These diverse results il-
lustrate the complexity of the problem and that the relevance of small orographic scales
for convection is still uncertain.

Despite these ambiguous conclusions for small scale orography, and hence SSO, it
could be worth to consider its effect for convective initiation in a parameterization. In
general, orography can act as an intrinsic source of predictability for otherwise often
unpredictable summertime convection (Bachmann et al., 2019, 2020). Also, Kirshbaum
et al. (2018) recognizes the lack of SSO in convection parameterizations as a "longstand-
ing deficiency". The authors further emphasize that, within the "mountain ’grey zone’,
where a smoothed profile of a mountain range is explicitly resolved, but important
smaller-scale forcing is not", (Kirshbaum et al., 2018, p.19) the development of scale
aware parameterizations is required to include convective initiation by SSO.

1.3.4 Cold pools

Cold pools are volumes of negatively buoyant air that originate from precipitating
downdrafts. Evaporation of precipitation in the sub-cloud layer, combined with the
weight of the condensed water, creates negative buoyancy and thereby accelerates the
downdraft. When these cold, moist air masses hit the surface, they spread in circular-
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Figure 10: Schematic illustration of cold pool generatation by convective downdrafts (a) and
maintenance of convective cells by secondary convective initiation via mechanical forcing
(b). Shear-driven horizontal vorticity is displayed in purple, buoyancy related horizontal
vorticity in white. From Markowski and Richardson (2011).

like shapes, as illustrated in Fig. 10a. Cold pools can be regarded as density currents,
which are well studied fluid dynamical objects. One well-established framework pro-
vides the possibility to estimate the propagation speed of density currents as U =

√
BH,

where B represents the buoyancy anomaly of the cold pool and H the height of the
anomaly (see, e.g., von Kármán, 1940; Benjamin, 1968; Bryan and Rotunno, 2014b,a). In
the atmosphere, cold pools actively interact with the surface (Peters and Hohenegger,
2017; Grant and van den Heever, 2018; Gentine et al., 2018) and are lead by a gust front,
where lifting occurs that fosters the initiation of new convection (Fig. 10b).

In recent decades, three major mechanisms have been proposed as explanations for
this secondary convective initiation. First, Rotunno et al. (1988) and Weisman and Ro-
tunno (2004) proposed that horizontal vorticity linked to cold pool induced buoyancy
gradients at the gust front interacts with the vorticity generated by the background
wind shear to yield approximately vertical updrafts. This pattern of convergence and
ascent is optimal for initiating new convection and thereby enables the reinforcement
and propagation of squall lines (Rotunno et al., 1988; Weisman and Rotunno, 2004;
Markowski and Richardson, 2011). We will refer to this mechanism as mechanical lift-
ing. Second, the collision of cold pools has been identified as a major contributor for
initiating new convection (Feng et al., 2015; Cafaro and Rooney, 2018; Haerter et al.,
2018; Torri and Kuang, 2019). Collisions of two cold pools can cause a superposition of
their updraft velocity resulting in stronger updrafts. Collisions of three cold pools can
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trap non-cold pool air in between the colliding fronts, which results in even stronger
vertical motion (Haerter et al., 2018). Third, Tompkins (2001) proposed a mechanism
based on buoyancy-driven initiation: decaying cold pools accumulate moisture from
the perished precipitation downdrafts at their boundaries. This increased moisture can
compensate the effect of cold temperatures on buoyancy (especially for "old" cold pools,
where entrainment has depleted the cold air) and thereby reduce the convective inhibi-
tion, which supports the initiation of new convection. Torri et al. (2015) investigated the
relevance of the mechanical and thermodynamic mechanisms in idealized studies and
found that, initially, mechanical lifting drives the vertical motion, whereas higher in the
boundary layer, moisture seems to be relevant for vertical acceleration. Independent of
the specific mechanism, the effect of cold pools is to trigger convection in the vicinity
of already existing convection, leading to the organization of convective cells and a
more clustered precipitation pattern. Cold pools may also influence the diurnal cycle of
convection since they are relevant triggering mechanisms, only after initial precipitation
events have occurred. Especially in the late afternoon/evening, when other mechanisms
like surface heating are no longer strong, cold pool triggering may dominate.

In coarser weather and climate models, cold pools are often not resolved. Yet only
recently are the effects of cold pools being considered in convection parameterizations
(e.g., in Grandpeix and Lafore, 2010; Grandpeix et al., 2010), often to improve convec-
tive memory and organization (Rio et al., 2019). With km-scale grid sizes, models can
simulate cold pools explicitly. Cold pool properties, however, are highly sensitive to
changes in model resolution, suggesting that these models are not able to simulate cold
pools accurately. Grid sizes of below 100 m are expected to be necessary for accurately
resolving the fine-scale structures of cold pool gust fronts (Grant and van den Heever,
2016). How to best tackle this cold pool grey zone is still an open question. A coexis-
tence of resolved and parameterized cold pools may be useful for the coarser grid sizes,
whereas alternative approaches might directly improve the resolved cold pools.

1.4 summary and research goals

A large part of precipitation and associated hazards comes from deep convective clouds
which develop due to accelerated rising air by condensation. To reduce associated dam-
ages, early and reliable predictions are crucial. Predicting such deep convection, how-
ever, has been a long-standing challenge. In the last decade, km-scale models, which
enable the explicit simulation of such deep convection (i.e., convection-permitting mod-
els), have become more and more accessible for operational weather prediction (Bal-
dauf et al., 2011; Clark et al., 2016) and even climate projections (Leutwyler et al., 2017;
Stevens et al., 2019a), and they are expected to prevail for the next decades (Palmer,
2019a). Consequently, convection parameterizations - containing many approximations
and systematic biases (Gentine et al., 2018) - are not required any more, and convection
forecasts were significantly improved (Baldauf et al., 2011; Clark et al., 2016). Nonethe-
less, not all deficits concerning convective precipitation have been solved just by turning
from parameterized convection to convection-permitting simulations. Most importantly,
capturing the diurnal cycle of convection is still problematic (Baldauf et al., 2011; Clark
et al., 2016; Hanley et al., 2019) and a lack of persistent organization into the night
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was identified by Rasp et al. (2018b). These inconsistencies become particularly relevant
when synoptic forcing is weak, and local mechanisms are the main driver for overcom-
ing convective inhibition (Keil et al., 2014).

The underlying causes for these deficits can mostly be ascribed to the grey zone
problem: grid sizes of convection-permitting models only allow the explicit simulation
of large deep convective clouds; smaller convective systems and many processes, that
are tightly coupled to convection, can still not sufficiently be resolved. These processes
include evaporation and condensation, droplet formation, entrainment or detrainment,
but, most importantly, the initiation of convection (Baldauf et al., 2011; Yano et al., 2018;
Kober and Craig, 2016): for the formation of deep convective clouds to be kicked off, air
parcels need to overcome the convective inhibition, which often requires local triggering
processes related to boundary-layer processes. Currently, the most efficient way to im-
prove convection is likely by improving the reprentation of processes that are relevant
for convective intiation.

Hence, in this this thesis, we aim to understand how such triggering processes are
insufficiently accounted for in convection-permitting models and to improve their rep-
resentation accordingly. Based on their frequency, their distinct influence on convection
and their insufficient representation in current models, we choose the three processes
that are most promising to benefit convective initiation. These processes are boundary-
layer turbulence, subgrid-scale orographic lifting and cold pools.

boundary layer turbulence Boundary layer turbulence is an omnipresent phe-
nomenon in summer-time boundary layers, occurs in a variety of situations and conse-
quently contributes substantially to total convective initiation. It is specifically impor-
tant during summer-time situations when synoptic, resolved scale forcing mechanisms
are weak. Boundary layer turbulence is a subgrid-scale process in km-scale models and
only represented approximately via parameterizations. Km-scale grid sizes specifically
challenge traditional turbulence parameterizations as they approach the grey zone of
turbulence. To improve its representation in km-scale models, we consider one of the
first process-level stochastic parameterizations, the aforementioned PSP scheme (Kober
and Craig, 2016), which introduces stochastic perturbations to account for the miss-
ing subgrid-scale variability of turbulence. We substantially revise the PSP scheme to
improve its physical consistency and to eliminate some undesired effects. For example,
previously ineffective vertical velocity perturbations are improved to be more persistent
by also perturbing horizontal wind components in a 3d non-divergent way. The revised
PSP scheme, PSP2, is then applied on a 10 day period to confirm its impact.

subgrid-scale orographic lifting The next most relevant process is thought
to be orographically driven convective initiation. It is limited to orographic regions,
yet many parts of Germany, Europe or the whole earth are indeed subject to complex
terrain. Small scale orography, i.e., subgrid-scale orography, is not explicitly resolved,
and its effect can only be approximated in the form of parameterizations. As explained
in Section 1.3.3, however, it is not yet clear how relevant small scale orography, i.e.,
subgrid-scale orography in km-scale models, is for convective initiation. To contribute
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to this unanswered research question, we develop stochastic perturbations similar to the
PSP scheme, the SSOSP, to account for mechanical lifting by subgrid-scale orography.

cold pools The largest part of this thesis addresses cold pools. Cold pools are a
more local and time-dependent phenomenon, and proper observations are still miss-
ing to quantify their frequency. Cold pools interact strongly with convection itself and
are considered particularly for their role in organizing convection and for producing
persistent precipitation into the evening. While km-scale models indeed simulate cold
pools themselves, many of their characteristics are still sensitive to the resolution, and
their ability to trigger new convection is questionable. In the first cold pool project, we
investigate in detail which aspects of cold pool driven convective initiation convection-
permitting models are struggling with. We analyze the resolution sensitivity of cold
pools, cold pool gust fronts and related convective initiation in high-resolution sim-
ulations. We further apply a linear causal analysis to better understand, how model
resolution impacts cold pool driven convective initiation via different indirect effects.
In the second cold pool project, we apply the gained understanding to develop a deter-
ministic cold pool parameterization, the CPP scheme, where we strengthen cold pool
gust fronts to improve cold pool driven convective initiation. This CPP scheme is then
also applied on ten days to evaluate its impact, and its combination with PSP2 is tested.

We summarize the arising research questions as follows:

Chapter 3 How can we improve the physical consistency of the PSP scheme to rep-
resent the influence of subgrid-scale turbulence on convective initiation
better?

Chapter 4 How can we represent the effects of subgrid-scale orography for convec-
tive initiation and how relevant is subgrid-scale orography for convective
initiation in km-scale models?

Chapter 5 What are convection-permitting models missing with regard to cold pool
driven convective initiation?

Chapter 6 How can we improve the representation of cold pool driven convective
initiation in km-scale models and how does this affect precipitation?

By adressing these research questions, we provide new understanding on the repre-
sentation of convective initiation. This will help to guide future research. We further
provide innovative approaches to improve the representation of convective initiation
in numerical models at grey zone resolutions. The most beneficial aspects are, first,
the better representation of the processes which will likely improve future forecasts;
second, the quite unique combination of process-based design with stochastic compo-
nents, which allows a better quantifcation of model uncertainty at its source. This is
a crucial, but rarely considered, way to get more reliable forecasts. Furthermore, the
schemes can partially adjust to different model resolutions. Also, tuning, to compen-
sate for insufficiently represented processes, can be reduced.
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1.5 outline

This thesis is structured as follows. The COSMO model and setup, which is used
throughout this thesis except for Chapter 5, is described in Chapter 2, as well as re-
lated verification metrics and used radar observations. Boundary layer turbulence is
addressed in Chapter 3, where we comprehensively revise this PSP scheme and subse-
quently evaluate a new version on a 10-day test period. The representation of subgrid-
scale orographic lifting for convective initiation is developed and minimally evaluated
in Chapter 4. Cold pool driven convective initiation is addressed in Chapter 5 and 6.
A comprehensive evaluation of existing deficits in Chapter 5 facilitates insight on how
cold pool driven convective initiation is insufficiently represented. The gained insight
is then used to develop cold pool related perturbations in Chapter 6 to reduce corre-
sponding deficits. We close with a summary and conclusions in Chapter 7.

1.6 publications

Parts of this dissertation are published as the following two publications:

(a) Hirt, M., Rasp, S., Blahak, U., & Craig, G. (2019). Stochastic parameterization of pro-
cesses leading to convective initiation in kilometre-scale models. Monthly Weather Review,
147, 3917–3934, doi: 10.1175/MWR-D-19-0060.1. ©American Meteorological Society.
Used with permission.

This publication addresses the modifications to the PSP scheme, (i.e., Chapter 3

in this thesis) and the development of the SSO scheme (Chapter 4 here). Parts of
Chapter 1, 2 and 7 are also included in this publication.

(b) Hirt, M., Craig, G. C., Schäfer, S., Savre, J., & Heinze, R. (2020). Cold pool driven con-
vective initiation: using causal graph analysis to determine what convection-permitting
models are missing. Quarterly Journal of the Royal Meteorological Society, doi: 10.1002/
qj.3788

This second manuscript addresses cold pool driven convective initiation and its
sensitivity to model resolution in high-resolution simulations. Doing so, we iden-
tify potential deficits in convection-permitting models. This publication corre-
sponds to Chapter 5 in this thesis. Parts of Chapter 1 and 7 are also included
in this publication.

10.1175/MWR-D-19-0060.1
10.1002/qj.3788
10.1002/qj.3788


2
C O S M O : M O D E L S E T U P, S I M U L AT I O N P E R I O D A N D
V E R I F I C AT I O N

For chapters 3, 4 and 6, we aim to improve convective precipitation forecasts by develop-
ing better representations of boundary-layer processes for state-of-the-art, convection-
permitting models. With this objective, we choose the COSMO model in a convection-
pertmitting setup as it is used for the operational weather prediction by the German
Weather Service. To test the impact of the parameterization schemes and their adaptabil-
ity to different flow situations, we select a ten day time period with active convection
and different synoptic situations. The used domain over Germany also contains oro-
graphic regions in the Southern part of the domain (Alps) and flat terrain in Northern
Germany. This enables the better evaluation of the subgrid-scale orography scheme in
different orographic situations. To evaluate the influence of the schemes on precipita-
tion, we compare the simulation results to radar observations of precipitation, which
have a high spatial coverage compared to other types of precipitation measurements.
This comparison entails the computation of verification metrics, which allow meaning-
ful insight in intermittent precipitation fields. Further details on these aspects are given
below. Simulations and methods used for Chapter 5 will be explained then.

2.1 model and simulation setup

Most simulations (except for those used in Chapter 5) are computed with the COSMO
(COnsortium for Small-scale MOdeling) model (Baldauf et al., 2011), version 5.4g, in a
convection-permitting setup with ∆x = 0.025◦, roughly 2.8 km, and a time step of 25 s.
The setup uses 50 vertically stretched model layers ranging from 10 m above ground
to 22 km above mean sea level. A staggered grid (Arakawa-C/Lorenz) is used with
terrain following coordinates (Schättler et al., 2016). As a consequence, a proper trans-
formation between model level and height depends on the horizontal coordinates. For
comparability, we will give approximate, domain averaged transformations when nec-
essary. Shallow convection is parameterized using the Tiedtke scheme. Details on pa-
rameterizations can be found in Doms et al. (2011). The setup follows the operational
COSMO-DE setup with 461 by 421 grid points centered over Germany at 10

◦E and
50
◦N.
The only major deviation from the current operational setup is a change of the tuning

parameter tur_len in the boundary-layer scheme to 500 m. For the operational COSMO
version, a decision was made to decrease tur_len to 150 m in order to reduce a lack of
summer-time convection (Baldauf et al., 2011). This, however, comes at the expense of
temperature biases, which are widely observed in different studies (Baldauf et al., 2011;
Schraff et al., 2016; Leutwyler et al., 2017; Necker et al., 2018). Baldauf et al. (2011) argue
that "the improved forecasts of deep convection outweigh those disadvantages" (p. 3902,

25
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Figure 11: Synoptic charts at (a) 00:00 UTC 30 May and (b) 00:00 UTC 5 June 2016. White lines
represent mean sea level pressure (hPa). Colors represent 500-hPa geopotential (dam). Fig-
ures created from the operational analyses of the ECMWF IFS.

l. 8, 9) and also climate simulations with a km-scale COSMO version exploit this aspect
(e.g., Leutwyler et al., 2017). Such biases, however, can pose a severe problem for data
assimilation systems (Schraff et al., 2016; Necker et al., 2018), and improvement of deep
convection without the loss of temperature skill is desirable. By setting tur_len back to
its original value, we will examine whether it is possible to achieve realistic convective
initiation without this correction.

Initial conditions are taken from the COSMO-KENDA ensemble data assimilation
system (Schraff et al., 2016), which is based on a local ensemble transform Kalman filter
to directly assimilate conventional observations. Additionally, radar observations are
assimilated through latent heat nudging. In our experiments, we only use the determin-
istic analysis. Using initial conditions provided by a convective-scale data assimilation
system reduces the model spin-up compared to downscaled initial conditions. Bound-
ary conditions are provided by global ICON forecasts. Our simulations are started at
00 UTC on each of the simulation days and extend for 24 h.

A simulation without any perturbations, also with tur_len = 500 m, is denoted as
Reference.

2.2 simulation period with cosmo

We select a 10-day period from 29 May to 7 June 2016 for our experiments computed
with COSMO, which was characterized by heavy precipitation over Germany (Piper
et al., 2016). The first half of the period was dominated by an upper-level trough and
associated low-pressure systems over Germany and is represented by the 30 May in
Fig. 11a. The resulting synoptic lifting combined with South-Easterly advection of moist
air caused heavy rainfalls, particularly on 30 May. In the second half of the period, the
trough made way for a persistent ridge structure reminiscent of an omega-block. Then
the synoptic situation was calm, allowing large instability to build up each day, followed
by strong convection. This behavior was particularly dominant on 6 June (Fig. 11b). Due
to the intense convective activity and high variability in underlying forcing, this period
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has been considered in a number of studies on convection (Rasp et al., 2018b; Baur et al.,
2018; Bachmann et al., 2019; Keil et al., 2019) and provides a good testing ground for the
developed schemes. For specific purposes, single days from this period are investigated
in more detail.

2.3 observations

We compare our simulations to radar-derived precipitation fields. We use the Radar On-
line Aneichung (RADOLAN) quality-controlled radar observations (EY product) pro-
vided by the German Weather Service, which is based on European radar reflectivities
and provides radar coverage for most of our domain (Deutscher Wetterdienst, 2018a,b).
For all analyses of our simulations, we restrict the geographical region to grid points
where radar data is available.

We mostly focus on the systematic impact of the developed schemes on the behavior
of the model. The comparison to radar observation only serves as a guideline. Trying to
improve the forecast scores would require much longer simulation periods and tuning
of several model parameters (e.g., tur_len). We anticipate, however, that the systematic
impacts of the here considered schemes are independent of the specific model configu-
ration.

2.4 verification metrics

As we are mostly interested in convection, we focus on the verification of precipitation.
Traditional measures like mean absolute error or the root mean squared error are often
not very effective when intermittent, localized precipitation fields are considered. For
instance, if precipitation objects are slightly shifted between observations and model
simulations, such methods penalize twice: once for regions where precipitation occurs
in the observations but not in the simulations, and once where precipitation occurs
in the simulations but not in the observations. This problem is often referred to as
the double penalty problem. Furthermore, such skill scores easily improve with more
precipitation. Alternative measures to quantify the quality of simulated precipitation
in comparison to observations, however, exist. Fuzzy verification methods reduce the
double penalty by filtering the precipitation fields and thereby allowing for some spatial
shifts in the precipitation fields. A widely used fuzzy/neighborhood metric is the so-
called fraction skill score, FSS (see Sec. 2.4.1). Other approaches are based on objects.
Such methods identify single objects, i.e., clouds or precipitation cells, and compare
their characteristics with each other. Such metrics include the Structure component of
the Structure-Amplitude-Location (SAL, Sec. 2.4.2) score or simple size and frequency
distributions of the identified objects (Sec. 2.4.3). See, e.g., Gilleland et al. (2009) for an
intercomparison of some methods.

2.4.1 Fraction skill score

The fraction skill score (FSS) evaluates how two precipitation fields, usually radar ob-
servations O and model forecast F, agree with each other within a given neighborhood.
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Figure 12: Schematic illustration of the neighbor-
hood approach of the FSS. Radar (left) and fore-
cast (right) precipitation is displayed per model
grid box in grey shading. The bold big box
corresponds to the neighborhood at which the
area fraction of precipitation is being evaluated.
From Roberts and Lean (2008). ©American Me-
teorological Society. Used with permission.

First, a binary precipitation field is determined by setting precipitation above/below a
certain threshold q to 1/0. Next, the area fraction of this binary precipitation field is
computed by accounting for a n× n box centered around each grid point, as illustrated
in Fig 12. These area fractions Õ(n)(i, j), F̃(n)(i, j) are then used to compute the ratio of
the mean squared errors:

MSE(n) =
1

NxNy

Nx

∑
i=1

Ny

∑
j=1

[
O(n)i,j − F(n)i,j

]2
, and

MSE(n)re f =
1

NxNy

[
Nx

∑
i=1

Ny

∑
j=1

O2
(n)i,j +

Nx

∑
i=1

Ny

∑
j=1

F2
(n)i,j

]
.

Then, the FSS is defined as:

FSSn,q = 1−
MSE(n)

MSE(n),re f
.

Values of FSS range from 0 to 1, with a perfect forecast score of 1. With f0 as the area
fraction of precipitation in the total domain, Roberts and Lean (2008) suggest that a
forecast only contains spatially skillful information if FSS > 0.5 + f0

2 . Two parameters,
the precipitation threshold q and the neighborhood scale n, have to be specified. In gen-
eral, larger neighborhood scales results in higher FSS values and higher precipitation
thresholds at a decrease in FSS. Further details can be found in Roberts and Lean (2008),
a comparison with other metrics in Gilleland et al. (2009).

2.4.2 The structure component of the SAL-score

A quantitative measure for the structure of the precipitation field is the S(tructure)
component of the SAL score (Wernli et al., 2008). It is based on comparing the normal-
ized area and intensity of precipitation objects between observations (radar) and model
output. Precipitation objects are identified using the threshold R*, which is computed
based on the suggestion by Wernli et al. (2009): R∗ = 1

15 R95 where R95 corresponds to
the 95th percentile of precipitation of grid points exceeding 0.1 mm

h . R95 is computed
separately for radar and forecast and for each time step. For each identified object n
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a "scaled volume" Vn is computed as the total precipitation of the object Rn = ∑i,j Ri,j
normalized by its maximum precipitation rate Rmax

n :

Vn =
Rn

Rmax
n

.

Having computed this scaled volume for all precipitation objects its weighted average
can be computed:

V(R) =
∑M

n1
RnVn

∑M
n1

Vn

Finally the S-score is computed as the normalized difference in V between model (mod)
and observations (obs):

S =
V(Rmod)−V(Robs)

0.5 [V(Rmod)−V(Robs)]

Negative S values imply that the simulated precipitation cells are too small and peaked
compared to the radar observations while S = 0 suggests a perfect match in terms
of structure. Different threshold choices, such as fixed precipitation amounts, did not
change the outcome qualitatively.

The amplitude (A) and location (L) score of the SAL score are also object-based
methods. For our purposes, however, we do not find additional value in considering
them.

2.4.3 Size and frequency distributions

It is also possible to simply analyze size or frequency distributions of identified precip-
itation objects. Objects are then simply identified as a connected agglomeration of grid
points with precipitation higher than a specific threshold.
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As explained in Sec. 1.3.2, boundary-layer turbulence is strongly coupled to convective
initiation. Daytime surface heating stimulates boundary-layer turbulence and thereby
warms up the boundary layer via mixing, reduces CIN and preconditions the boundary
layer for convective initiation. Stronger turbulent eddies can further push through the
convective inhibition, reach their LFC and develop to convective plumes.

The largest turbulent eddies in the boundary layer have characteristic scales corre-
sponding to the boundary-layer height, i.e., around 1 km, and have to be parameterized
in NWP models (see Sec. 1.1.3 and 1.2). Originally such boundary-layer parameteri-
zations were developed for grid sizes that are large relative to the turbulent eddies
and typically only represent the mean mixing caused by subgrid-scale eddies in a de-
terministic way. The parameterization predicts the mean effect of a large ensemble of
eddies, and the variability associated with the individual eddies is averaged out. For
convection-permitting models, however, a km-scale grid box will contain only a small
number of the largest eddies, and their variability will have a substantial effect on the
grid-box mean (see Sec. 1.2.1 on grey zones). As a result, the variability on the smallest
resolved scales in convection-permitting model is under-represented, and difficulties in
overcoming convective inhibition arise. This ultimately causes deficits in precipitation
forecasts, particularly when synoptic forcing is weak (Keil et al., 2014). These deficits are
specifically a lack of convective initiation during the day, a late onset of convection, too
frequent grid cell storms, and a shortage of organization (Baldauf et al., 2011; Hanley
et al., 2015; Clark et al., 2016; Rasp et al., 2018b).

In this chapter, we aim to improve the representation of convective initiation by
boundary-layer turbulence in km-scale models. We use process-level stochastic pertur-
bations, which better represent the subgrid-scale variability and accordingly quantify
uncertainty, as explained in Sec. 1.2.2. A corresponding parameterization was originally
developed by Kober and Craig (2016), the physically-based stochastic perturbations, i.e.,
PSP. We revise this scheme to improve its consistency using COSMO. Based on these
results, an updated version of the PSP scheme will be defined that has the potential to
improve forecast skill for convective precipitation.

The PSP scheme (Kober and Craig, 2016) aims to better couple subgrid-scale tur-
bulence to convective initiation by reintroducing missing subgrid-scale variance to the
resolved scales. This is done by adding stochastic perturbations to the model tendencies
of temperature, humidity and vertical velocity. The perturbation structure is given by a
horizontally correlated random field that is regenerated every 10 minutes, a time span
that represents the average lifetime of a boundary-layer eddy. Since such eddies span
the entire depth of the convective boundary layer, the perturbations are kept vertically
coherent by applying the same random field at all model levels. Most importantly, the
amplitudes of the perturbations are scaled by physical information on the subgrid-scale
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variance computed in the turbulence parameterization. This scaling links the perturba-
tion strength to the physical processes that cause small-scale turbulence. Furthermore,
this enables the scheme to adapt to different atmospheric situations.

The PSP scheme showed promising results in a range of case studies (Kober and
Craig, 2016). Under weak synoptic forcing, the perturbations trigger more convective
cells and consequently produce more precipitation. This improved the diurnal cycle
and amplitude of precipitation. Further, Rasp et al. (2018b) have successfully exploited
its capability to create different realizations of the convective cloud field for the same
synoptic situation by generating different random fields for each ensemble member. The
magnitude of the ensemble spread created by different PSP realizations was also found
to be comparable to operational ensembles (Keil et al., 2019). And in a convective-scale
data assimilation framework, the PSP scheme produced a beneficial impact in ensemble
spread and precipitation forecasts (Zeng et al., 2020).

However, the original version of the PSP scheme also leads to undesirable side effects.
We investigate these issues and propose modifications to alleviate them. In particular,
four topics will be covered:

1. In its current formulation, the evolution of the random field is temporally dis-
continuous, being regenerated every 10 minutes. To avoid these discontinuities,
we introduce a continuously evolving random field using an autoregressive (AR)
process.

2. Unrealistically high night-time precipitation has been observed using the PSP
scheme (Rasp et al., 2018b). As we will show, this is related to perturbations in
the free-troposphere. These do not fit with the rationale of the PSP scheme, which
is designed to represent vertically coherent structures in convective boundary lay-
ers. Hence to remove these artifacts, we restrict the perturbations to the boundary
layer.

3. Furthermore organized convective structures were found to be broken apart by
the perturbations. To prevent this, we investigate the use of a mask to switch off
the perturbations in regions where precipitation is already occurring.

4. Finally, the vertical velocity perturbations were found to have an insignificant ef-
fect compared to the temperature and humidity perturbations (Kober and Craig,
2016). As we will discuss in this paper, this is associated with the generation of
acoustic modes, which lead to the rapid dissipation of the imposed vertical ve-
locity perturbations. By introducing balanced, 3D wind perturbations, we obtain
lasting and effective wind perturbations.

After evaluating the modifications separately, we propose a revised version of the
scheme, which we will call PSP2.

In Section 3.1, the formulation of the PSP scheme is explained in detail, as well as
the four modifications mentioned above. In Section 3.2, we describe our strategy for the
model. The results are presented in Section 3.3 followed by a summary and discussion
in Section 3.4.
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3.1 conception of the stochastic perturbations

In this section, we summarize the original perturbation scheme for boundary-layer tur-
bulence (PSP) by Kober and Craig (2016) and then describe our modifications to im-
prove the physical consistency of the scheme.

3.1.1 Physically based stochastic perturbations for subgrid-scale turbulence (PSP)

The PSP scheme for boundary-layer turbulence was first described in Kober and Craig
(2016). Here we present an updated formulation according to Rasp et al. (2018b).

The PSP scheme reintroduces the influence of the lost small-scale variability of bound-
ary layer eddies by adding perturbations to the tendencies of the temperature, hu-
midity and vertical velocity field (T, qv, w) on the smallest effectively resolved scale,
∆xeff = 5∆x (see e.g., Bierdel et al., 2012). For this we assume a random, horizontal
eddy field η(x, y, t) with temporal and spatial correlation scales τeddy and ∆xeff (see
Fig. 13a). The temporal correlation is given by the typical life time of convective eddies,
i.e., τeddy = 10 min, and is also theoretically justified by the missing scale separation
between resolved and subgrid-scales which necessitates the representation of memory
effects (see e.g., Berner et al., 2017, or Sec. 1.2). The perturbation amplitude is chosen

to be proportional to the subgrid standard deviation
√

Φ′2 for Φ ∈ {T, qv, w}, which
is taken directly from the turbulence scheme. The COSMO model uses a 1.5 order clo-
sure (Raschendorfer, 2001) based on level 2.5 of Mellor and Yamada (1982), in which
the second moments are diagnostically computed based on the turbulence kinetic en-
ergy and the vertical gradients of the variables in question. In addition, the scheme
adapts to the grid spacing. For uncorrelated subgrid-scale eddies the variability scales
with 1/

√
Neddy, where Neddy = ∆x2

l2
eddy

is the number of eddies of scale leddy = 1000 m

in a grid box (Craig and Cohen, 2006). Dividing by τeddy ensures that the accumulated

perturbations during this time period scale as
leddy
∆xeff

√
Φ′2. The complete mathematical

formulation is:

∂tΦ|PSP = αtuningη
1

τeddy

leddy

∆xeff

√
Φ′2, (3)

where αtuning is a free parameter that should be of order one, if the length, time and
variance scales that appear in the equation have the correct orders of magnitude. A
single choice of αtuning should apply for all weather regimes and model resolutions, if
the physical assumptions of the scheme are satisfied. Example fields for the random
field η, the subgrid standard deviation for temperature and the resulting temperature
perturbations are shown in Fig. 13.
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Figure 13: Different components for the stochastic perturbations are shown for the 5th lowest
model level at 18:00 UTC using the PSP simulation (see Table 1). (a) shows the gaussian
convolved random field; (b) displays the subgrid variability of temperature (in [K2]); and
(c) shows the final temperature perturbations (in [Ks−1]).

3.1.2 Modifications to the PSP scheme

3.1.2.1 Autoregressive process: PSP-AR

In the original version of the PSP scheme, a new random field η was generated every
τeddy = 10 min and was held constant in between, as illustrated in Fig. 14. To ensure a
more realistic evolution, we introduce a continuously evolving random field by using
an auto-regressive (AR) process:

ηt = στ · ηt−1 + σε · εt.

The autoregressive parameter στ defines the temporal correlation scale as described
below. A random field εt is generated at each time step t with same spatial correlation
scale as η, and standard deviation 1 and mean 0. The parameter σε scales ε as described
below. To ensure a stationary process (i.e., mean and variance remain constant with
time) that contains "memory" (i.e., subsequent time steps are positively correlated) we
require 0 < |στ| < 1 (Wilks, 2005). To determine the two scaling parameter στ and σε we
consider two constraints. First, the variance of the random field ηt is required to be 1,
which leads to the relationship σε =

√
1− σ2

τ . Second, the autoregressive parameter στ

is defined in terms of the characteristic time scale for decay of the temporal correlation
between two fields, τ. We take this correlation time scale τ as the exponential decay
scale of the autocorrelation function ρ(k) = σk

τ = ek ln στ , where k corresponds to the lag
t− t0. Then, the correlation time scale is linked the autoregressive parameter στ by τ =
− 1

ln στ
(see Wilks, 2005, for more details). We set τ to the time scale at which the random

field was modified in the original PSP scheme, i.e., τeddy = 10 min. A corresponding
time series is shown in Fig. 14. The original PSP scheme with this modification will be
denoted as PSP-AR.

3.1.2.2 Adaptive boundary-layer height restriction: PSP-HPBLcut

It will be shown in section3.3.2 that the original PSP showed unrealistic precipitation
at night (Fig.15), which can be related to considerable perturbations in the free tropo-
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Figure 14: Time series of possible
random values at single grid
points for the original for-
mulation (blue) and with an
autoregressive process. One
time steps corresponds to 25

seconds.

sphere present also during the night (see Fig. 16). However, the PSP was developed
with the convective boundary layer in mind, and many of its assumptions (notably ver-
tically correlated eddies) are not valid for free tropospheric turbulence. So to improve
the physical integrity of the scheme and simultaneously reduce unrealistic precipitation,
we limit the perturbations to the planetary boundary-layer height HPBL. We determine
HPBL as the height at which the bulk Richardson number reaches the critical Richardson
number as implemented in the COSMO model. This value is 0.33 under stable condi-
tions (Wetzel, 1982) and 0.22 under convective conditions (Vogelezang and Holtslag,
1996). Below HPBL, the perturbations are applied as usual. Above, however, the pertur-
bations are decreased linearly to zero at a height of 500 m above HPBL. This modification,
applied to the PSP-AR version of the scheme, will be termed PSP-HPBLcut.

3.1.2.3 Masking of already precipitating areas: PSP-mask

We observed that, in certain situations, the original PSP scheme appeared to break up
organized convection (see Section 3.3.3). We hypothesize that this is partly caused by
the perturbations disturbing already existing updrafts. As a simple ad hoc fix, we test
turning off the perturbations in grid columns where the vertically integrated precipitat-
ing hydrometeor content exceeds 10−3 kg m−2. This adjustment to the PSP-AR version
will be labeled as PSP-mask.

3.1.2.4 3D non-divergent perturbations: PSP-3D

Kober and Craig (2016) observed that the impact of the original PSP scheme was caused
by the temperature and humidity perturbations while the vertical velocity perturba-
tions had essentially no effect. Further analysis shows that the w perturbations decay
rapidly in a few time steps. This can be related to pressure perturbations: Chagnon and
Bannon (2005), for example, show that an injection of vertical momentum efficiently
induces high-frequency acoustic waves causing a rapid removal of the imposed verti-
cal updraft. Following their approach, we extend the scheme to add perturbations to
the horizontal velocity field that approximate three-dimensional non-divergence. The
goal is to suppress the excitation of spurious acoustic waves so that the vertical velocity
perturbations persist (see e.g., Fiedler, 2002; Chagnon and Bannon, 2005; Edson and
Bannon, 2008).
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Non-divergence is given by:

∇ ·~v =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0.

We neglect modifications due to the terrain following vertical coordinate system of the
COSMO-model and the metrical terms due to the spherical earth as well as compress-
ibility. Neglecting the distortion to the grid due to these effects greatly simplifies the
computation, but implies that the resulting wind perturbations will not be exactly non-
divergent, and some perturbation energy will be lost to acoustic waves. However, this
lost perturbation energy will be small in comparison to the lost perturbation energy
of the original PSP scheme, where the wind perturbation was entirely divergent, and
almost all the energy was rapidly dissipated. The COSMO-model employs a rotated
spherical coordinate system with earth radius R, rotated longitude λ and latitude φ,
so that ∂x = R cos φ∂λ and ∂y = R∂φ. Due to the rotated coordinate system and the
comparably small domain, we neglect the trigonometric terms for simplicity.

This results in the following approximate non-divergence criterion for the PSP setup:

−R · ∂w
∂z

=

[
∂u
∂λ

+
∂v
∂φ

]
(4)

We define the horizontal perturbations by the velocity potential χ: ~vh = ∇χ. Con-
sequently, the horizontal perturbations are non-rotational, which is in accordance with
the incentive of the perturbations.

Computing the divergence of ~vh and substituting in equation 4 we obtain the follow-
ing Poisson equation:

−R2 · ∂w
∂z

=

[
∂2χ

∂λ2 +
∂2χ

∂φ2

]
(5)

For a vertical velocity perturbation (increment) given by eq. 3 we derive u and v per-
turbations by solving (5) for the corresponding perturbation of χ. A finite-difference
approximation is obtained by replacing the Laplace operator with a five-point-stencil
Laplace matrix.

To avoid large vertical velocity gradients ∂w
∂z near the lower boundary, we linearly

increase w perturbations from 0 at the surface to the original value at z0. We chose
z0 = 500 m to include a sufficient number of vertical model levels while ensuring that
the full perturbation amplitude is active at the height of the daytime inversion, where
we expect the perturbations to be most effective.

Applying these balanced wind perturbations to PSP-AR will be denoted as PSP-3D.

3.2 strategy for evaluating the impact of the psp modifications

To evaluate the impact of the PSP variants, we compute several simulations with differ-
ent setups of the COSMO model. We investigate each modification of PSP individually
on one day with weak synoptic forcing of convection, 6 June 2016. For comparison, we
use 30 May, 2016 as an example of a strong forcing day with synoptically driven, co-
herent precipitation. Based on these results, we decide on a suitable configuration for a
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Figure 15: (a) Hourly accumulated domain-mean precipitation for 6 June 2016. The domain-
mean is computed only for the region of available radar data. (b) Snapshots of hourly
precipitation accumulation at 1500 UTC on 6 June 2016. Grey shading indicates missing
radar data. The different experiments are listed in Table 1 (The perturbed simulations
shown were computed using α0 = 7.2).

revised PSP version, PSP2, and compute 10 subsequent days with total simulation time
of 24h to confirm our findings. See Table 1 for an overview of the experiments. Details
on COSMO, the selected days, the used radar observations and verification metrics can
be found in Chapter 2.

Table 1: Overview of the considered experiments and corresponding model settings.

Pert. variables

Exp. name T, qv w u-v rand. field αtuning Description

PSP yes yes no const. for τ α0 = 7.2 As in Kober and Craig (2016)

PSP-AR yes yes no AR α0 = 7.2, α1 = 2 Auto-regressive random field

PSP-HPBLcut yes yes no AR α0 = 7.2 Pert. go to zero above BL height

PSP-mask yes yes no AR α0 = 7.2 No pert. in precipitating columns

PSP-AR Tqv yes no no AR α1 = 2 Only pert. to thermodynamic variables

PSP-3D w no yes yes AR α1 = 2 Only 3D non-divergent wind pert.

PSP-3D all yes yes yes AR α1 = 2 Pert. to all fields

PSP2 yes yes yes AR α f inal = 1.5 Comb. modifications (3D all + HPBLcut)

3.3 results

3.3.1 Autoregressive Process in PSP-AR

To test the influence of the AR random field, we focus on 6 June, a weakly forced day
on which the perturbations are expected to have a large influence on the precipita-
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Figure 16: Standard deviation of tendency perturbations over the horizontal domain for each
vertical model level and hourly timesteps: temperature (top row), specific humidity (mid-
dle row) and vertical velocity (bottom row). The left/right columns show the perturbations
for the PSP-AR/PSP-HPBLcut simulations.

tion. The original PSP scheme (PSP), in which the random field is regenerated every
10 minutes, leads to an increase and earlier onset of precipitation (Fig. 15a) compared
to the unperturbed reference simulation. We note that the diurnal cycle and amplitude
of precipitation from radar observations (Fig. 15a) are already well matched by the Ref-
erence simulation. The PSP simulations consequently produce too much precipitation.
This behavior is, however, not necessarily typical of longer periods (see Section 3.3.5).
As mentioned above, due to the tuning problem of NWP, we concentrate on the sys-
tematic impacts of the PSP schemes, not their performance compared to observations.
Switching to a continuously evolving random field (PSP-AR) further increases the pre-
cipitation amount. Example precipitation fields in Fig. 15b confirm that this increase in
precipitation is a consequence of more convective cells and, thus, more triggering.

We explain this behavior by the different meaning of τeddy in the PSP-AR setup:
For the AR process, τ represents the average decay scale, while for single grid points
and time ranges longer correlation times are possible. These might be more effective
in triggering precipitation. The PSP-AR perturbation can be scaled by tuning αtuning,
which we will do after also considering the other modifications. Note also that these
results are robust for different random seeds (not shown). In the remainder of this
paper, we will always use the AR random field, unless otherwise specified.

3.3.2 Adaptive boundary-layer height restriction in PSP-HPBLcut

Next, we investigate the impact of constraining the perturbations to the height of the
planetary boundary layer (PSP-HPBLcut). Fig. 16 shows the horizontal standard de-
viations of the perturbations. Without limiting the perturbation height (PSP-AR) the
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Figure 17: Illustrating the impact of precipitation mask: time evolution for the 30 May 2016

for (a) domain averaged precipitation and (b) structure component of SAL. (c) Example
precipitation fields for 30 May 2016, 08 UTC.

perturbations are largest in the boundary layer, but significant perturbations in the
mid-troposphere are present as well. As discussed above, this is conceptually inconsis-
tent with the rationale of the PSP scheme. Limiting the height in HPBLcut removes this
inconsistency. This modification leads to a decrease in the total precipitation amount
and, most importantly, removes the precipitation peak at night (Fig. 15a).

3.3.3 Masking of already precipitating areas in PSP-mask

In the original and the PSP-AR scheme, we observed a breaking up of larger-scale pre-
cipitation structures. An example for this can be seen on 30 May (Fig. 17c), a strongly
forced convective day. A coherent, synoptically-driven precipitation structure is present
over Western Germany and Belgium, which is well reproduced by the reference sim-
ulation. Adding the PSP-AR perturbations breaks up this structure into many smaller
convective cells. Turning off the perturbations in precipitating columns, PSP-mask cor-
rects this problem but also reduces the impact on weak forcing days (see Fig. 15). A
too-small threshold for precipitating hydrometeors can be responsible for switching off
the perturbations before deep convection has developed.

A quantitative measure for the structure of the precipitation field is the S(tructure)
component of the SAL score (Wernli et al., 2008) displayed in Fig. 17 b. Negative S values
imply that the simulated precipitation cells are too small and peaked compared to the
radar observations, while S = 0 suggests a perfect match in terms of structure (see 2.4.2
for details). During the morning hours on 30 June, when the synoptic structure is most
salient, the PSP-AR simulations show a clear reduction of the S score, indicating smaller
cells. The precipitation mask reverts the structure back to its original value.
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Figure 18: (a) As Figure 15a but considering different PSP setups for analysing the 3D modifi-
cation. Note that α1 = 0.28α0. (b) Structure component S of SAL for selected simulations
as indicated by colors and line style. The RMS between 11 and 22UTC, when most precipi-
tation occurs, is given in the legend as well. Values close to zero indicate similar structure
as radar observations. Positive/negative S implies that the simulated precipitation cells
are too small/widespread when compared to radar observations. (c) As Fig. 15b but for
different PSP setups.

The precipitation mask solves the problem of the original scheme, where organized
convection was broken up, but as noted above, it also reduces the triggering effect in
weak forcing situations.

3.3.4 3D non-divergent perturbations in PSP-3D

As a last modification to the PSP scheme, we investigate the impact of adding non-
divergent wind perturbations. For these experiments, we reduce the perturbation ampli-
tude αtuning to α1 = 2 because larger horizontal wind perturbations resulted in numeri-
cal instabilities. The domain averaged precipitation time series are displayed in Fig. 18a.
As expected, the precipitation increase is lower for the new perturbation amplitude α1
compared to the original perturbation amplitude α0 (see Tab. 1). We first investigate
the impact of the original w perturbations without horizontal wind perturbations by
comparing PSP-AR, α1 to PSP-AR Tqv, α1, where only temperature and humidity are
perturbed. Consistent with the results of Kober and Craig (2016), w has a negligible
effect in this experiment.
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Adding the u and v components to enforce non-divergent wind perturbations results
in a marked increase in precipitation even without the T and qv perturbations (PSP-3D
w, α1). Including perturbations to T and qv again (PSP-3D all, α1) further increases the
effect . This suggests that the effect of non-divergent wind perturbations is now of the
same order of magnitude as the T and q perturbations. We emphasize that the relative
amplitudes of the imposed wind and thermodynamic perturbations are determined
from the subgrid variances derived from the turbulence scheme.

We further investigate the impact of the non-divergent wind perturbations on the
precipitation structure (Fig. 18b, c). PSP-3D all, α1 has fewer but larger convective cells
compared to PSP, α0 at a comparable total precipitation amount. Again we look at the
S score to quantify the convective structure. In general, the model simulations show
negative S values. This confirms the visual impression that the cells are too small and
intense and lack the stratiform precipitation regions in the observations. During the
daytime the PSP-AR simulation has slightly improved scores compared to the unper-
turbed reference simulations. The non-divergent wind perturbations result in a further
improvement, particularly during the time of maximum convection in the afternoon.
Hence, balanced wind perturbations lead to larger cell structures.

In general, the non-divergent wind perturbations are very effective in triggering con-
vection and also appear to induce mesoscale circulations that cause larger precipitation
cells.

3.3.5 Combining the modifications for PSP2
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Finally, we choose the most suitable combination of modifications to PSP for further
investigation. This includes the AR random field, HPBLcut and the non-divergent wind
perturbations and will be denoted as PSP2. Since the 3D wind perturbations already im-
prove the precipitation structure (see Fig. 17c, PSP2), we do not include the precipitation
mask, which has the undesirable side effect of reducing convective initiation. Because
of the many changes to the original scheme, we start by determining a reasonable per-
turbation amplitude αtuning. Corresponding domain averaged precipitation time series
are displayed in Fig. 19 for αtuning = 1, 1.5, 2. We select α f inal = 1.5 which produces
perturbation amplitudes comparable to the original PSP (see blue line in Fig. 15) and
use this value henceforth.
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Figure 20: (a) Daily cycle of hourly accumulated, domain averaged precipitation separated into
a weakly and a strongly forced period. (b) Daily cycle of S(tructure) component of SAL for
the weakly forced period and (c) FSS for the whole period (dotted), strong (dashed) and
weak (solid) forcing. The FSS was computed using a threshold of 0.1 mmh−1 and a scale of
227 km.

We now simulate the entire high-impact weather period. For the analysis, we divide
it into a strong forcing period (29 May – 2 June) and a weak forcing period (3 – 7 June).
For both synoptic situations, the modified PSP2 scheme produces an earlier peak of
precipitation (Fig. 20a). This effect is desirable, since it addresses the known problem
of late initiation of convection in km-scale models. However, it should be noted that for
this particular model and this weather period, the change does not result in an overall
improvement in the precipitation forecast in comparison to radar observations.

For the weak forcing days, the precipitation amplitude is also increased, while for
the strong forcing days, the amplitude is decreased slightly. This reduction could be
caused by a reduction of CAPE in the evening due to earlier triggering or the 3D wind
perturbations.

We again look at the S component of the SAL score to investigate the impact on
precipitation structure (Fig. 20b). For the weak forcing period, the PSP2 scheme shows
a shift towards more coherent precipitation. This is a change in the right direction, but
the convective cells are still too small-scale compared to observations.

Finally, in Fig. 20c, we look at a common metric for assessing precipitation forecast
skill, the fraction skill score (FSS). Displayed is the FSS for a scale of 227 km with a pre-
cipitation threshold of 0.1 mmh−1. Results have also been computed for other scales and
thresholds (not shown). As expected, the skill decreases for smaller scales and higher
thresholds; however, the relative performance of the reference and PSP2 forecasts is
similar for all values. In particular, the PSP2 perturbations lead to a slight improvement
in skill for the strong forcing days, particularly during the time of maximum convective
activity. For the weak forcing days, there is a skill increase during the time of convective
initiation but a small decrease of skill towards the evening hours. This decrease is likely
connected with the too early decrease in precipitation caused by the perturbations, as
discussed above. To evaluate the significance of these differences, longer periods need
to be investigated.

To summarize, the new version, PSP2, includes the AR random field, the restriction
of the perturbations to the boundary layer, and the balanced wind perturbations. As
a preliminary estimate, we re-tune the perturbation amplitude αtuning to 1.5 to match
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the precipitation amplitude of the original PSP scheme. For operational use, this choice
would have to be revisited to produce the best overall precipitation forecast over a
long test period. Although a clear overall improvement in forecast skill scores was not
demonstrated in the preliminary evaluation here, the specific impacts of the changes
to the scheme were as expected. In particular, PSP2 maintains the desired effect of the
original PSP scheme, namely an earlier peak and increased amplitude of convection
precipitation in weak forcing situations, while several drawbacks have been eliminated.
In addition, it improves the cell structure and the spatial forecast skill compared to the
unperturbed simulation.

3.4 summary and discussion

Four concerns of the original PSP scheme were addressed and corrected by modifying
different aspects of the original PSP scheme:

1. The autoregressive process in PSP-AR generates a physically more realistic, con-
tinuous evolution of the random field and hence refines the concept of the scheme.
The performance is qualitatively comparable to the original PSP.

2. In PSP-HPBLcut, we constrain vertically correlated perturbations to the boundary
layer in accordance with the vertical extent of boundary-layer eddies. This re-
moves perturbations in the free troposphere that resulted in spurious night time
precipitation.

3. By excluding perturbations in precipitating regions in PSP-mask, we are able to
reestablish organized convective structures. However, we decided not to include
the PSP-mask adjustments in the revised PSP2 version for two reasons: first, the
other modifications improved the break-up of organized structures already; sec-
ond, this ad hoc fix has the undesirable side effect of reducing convective initiation
overall.

4. In PSP-3D, we included 3D non-divergent wind perturbations to prevent the rapid
dissipation of vertical velocity perturbations. Interestingly, these consistent wind
perturbations are at least as effective as the T and qv perturbations in triggering
convection. The relative importance of buoyant and mechanical lifting in initiating
convective updrafts in nature is still unknown. Both processes were found by Torri
et al. (2015) to play a role in secondary initiation by cold pools. It also appears
that the cell structures in the simulations with non-divergent wind perturbations
were more comparable to radar observations. The relationship between triggering
processes and the resulting convective structures is an important topic for future
research.

We combined the first, second and fourth modification to define the PSP2 scheme
and selected a tuning parameter of αtuning = 1.5 to match the precipitation amplitude
of the original PSP. The optimal value of the tuning parameter is of order one, which
is an encouraging sign that our physical reasoning is appropriate. By evaluating PSP2

on a longer time period, we find its behavior well in accordance with the rationale of
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the original scheme: when synoptic forcing is weak, we observe a small shift in the
diurnal cycle and an increase in total precipitation amplitude; this could counteract
long-standing biases in current NWP systems (Baldauf et al., 2011; Clark et al., 2016).
During strongly forced episodes or at night, the scheme has only a small impact.

In addition to the systematic impact of the PSP scheme on convective initiation, stud-
ies have also demonstrated its ability to increase ensemble spread (Rasp et al., 2018b;
Keil et al., 2019). This has the potential to help reduce the under-dispersion in many
current convective-scale ensemble forecasting and data assimilation systems (see, e.g.,
Berner et al., 2017; Ollinaho et al., 2017). Direct radar assimilation might benefit espe-
cially from such a perturbation scheme where sufficient spread in the first guess ensem-
ble is particularly necessary. One remaining, undesired effect of the PSP2 scheme is a
decrease of precipitation towards the evening. We note that this has also been identified
for the original PSP by Rasp et al. (2018b), who related this to a lack of convective or-
ganization. The organization of convection is caused by processes other than the ones
addressed with the PSP2 scheme, most notably cold pools. A better representation of
these features and their ability to trigger new convection might be necessary to capture
organized evening convection. This will be addressed in in Chapter 5 and 6.

Overall, we conclude the PSP revisions by recommending PSP2 instead of the origi-
nal PSP: PSP2 contains comparable advantages as the PSP while being physically more
consistent.
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R E P R E S E N T I N G L I F T I N G B Y S U B G R I D - S C A L E O R O G R A P H Y

In this chapter, we address the influence of subgrid-scale orography (SSO) on triggering
convection as a complementary process to turbulence. As described in the introduction
(Sec. 1.3.3), the importance of orography on convective initiation is unquestioned. Many
different mechanisms contribute to orographic convection, including thermally driven
slope winds or mechanical lifting, but specific details are less understood. In addition,
the relevance of small scale orography, as a proxy for subgrid-scale orography in km-
scale models, has not been universally quantified (Tucker and Crook, 2005; Kirshbaum
et al., 2007b,a; Langhans et al., 2011; Schneider et al., 2018). Nonetheless, Kirshbaum et al.
(2018) emphasize the need to account for SSO in convection parameterizations and for
developing scale-aware parameterizations in the mountain grey zone. This is further
motivated, as SSO can potentially act as a source of predictability (Bachmann et al.,
2019, 2020). While most NWP models include some form of parameterization for SSO,
vertical motion responsible for triggering convection by SSO, however, is not addressed
in these parameterizations (see Sec. 1.3.3).

Consequently, we propose stochastic perturbations to account for convective initia-
tion by subgrid-scale orography. We will name it the SSOSP scheme. We focus on the
effects of mechanical lifting and the resulting gravity waves. This process is chosen as
the most direct effect of orography among those mentioned in Sec. 1.3.3: the flow over a
mountain causes an upward displacement of the air parcels, i.e., a vertical velocity per-
turbation, which may decay with height, or propagate as gravity wave away from the
source, depending on the stratification of the atmosphere. The upward displacement
may cause the parcels to reach their level of free convection (LFC) and thereby initiate
deep convective updrafts. See Fig. 21 for an illustration.

The new scheme closely follows the formulation of the PSP scheme: vertical velocity
tendencies are randomly perturbed with an amplitude that scales with theoretical grav-
ity waves excited by SSO, and horizontal wind fields are accordingly perturbed to yield
3D non-divergence, as illustrated in Fig. 21. We present a considerably revised scheme
of one already developed by Brundke (2015) as part of his Master thesis.

Investigating the impact of this scheme will further allow us to estimate the impor-
tance of SSO for convective initiation, thereby contributing to the discussion mentioned
in the introduction.

We will first introduce the concept of the SSOSP scheme in Sec. 4.1. Then, in Sec. 4.2,
we will explain the model simulations to evaluate the scheme. The corresponding re-
sults are presented in Sec. 4.3, followed by a summary and discussion in Sec. 4.4.
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Figure 21: Schematic illustration of the SSOSP scheme. The left box illustrates the physical pro-
cess of mechanical lifting by subgrid-scale orography. The right box shows, how this pro-
cess is parameterized with SSOSP.

4.1 formulation of the parameterization

4.1.1 The SSOSP scheme

Inspired by the PSP scheme, we introduce stochastic vertical velocity perturbations that
scale with the amplitude of the SSO lifting and the induced gravity waves. The horizon-
tal wind is perturbed to approximate non-divergence, as described in Section 3.1.2.4.
Since the errors in the estimation of the non-divergent wind perturbations are likely
to be largest over strong orography where the grid is most distorted, there will be an
additional source of noise in these regions. However, we were unable to identify any
obvious effects in the simulation results.

The tendency of vertical velocity w is perturbed according to

∂w
∂t

∣∣∣∣
sso

=
αtuning

τ
· η · w′. (6)

η(τη, σ) denotes a horizontally correlated AR random field as described in Sec. 3.1.2.1.
Instead of τ = τeddy we assume that slower processes such as the synoptic wind field
and the diurnal cycle dominate the evolution of orographically induced flow structures.
Craig and Selz (2018) for example show that the time scales of gravity waves (even on
scales of 1 km) can range from minutes to days. Since no single time scale stands out,
we test several values, τ = 30 min, 2 h, 5 h. As for the PSP scheme, αtuning is a tuning
parameter; ideally, O(1) if the physical scaling is appropriate.

The variable w′ represents the physical scaling of the perturbations. It depends on
the amplitude w0 (at given height) and vertical wavenumber m of a gravity wave in-
duced by the SSO. This includes both propagating and decaying gravity waves and
also represents the effect of mechanical lifting. Both w0 and m are considered in terms
of forced gravity waves as in Gill (1982) and approximated with available SSO infor-
mation. Following Baines and Palmer (1990), the subgrid-scale orography for one grid
box of the COSMO model is represented by four parameters, namely θsso, γsso, σsso and
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Figure 22: Four fields describing the subgrid-scale orography information. These are the stan-
dard deviation µsso [m], the shape γsso, the orientation θsso and the slope σsso, and µsso.
The data is derived from 30 m ASTER elevation data (Schättler et al., 2016).

µsso. They describe the orientation, shape, slope and standard deviation of the height
of the orography, respectively, and are displayed in Fig. 22. The specific formulation
for w0 and m in terms of horizontal wind speed, Brunt-Väisälä frequency N and SSO
information is presented in the next two sections.

To avoid numerical instabilities near the surface, we decrease the perturbations lin-
early to zero between zmax = 500 m and the surface. We further constrain the pertur-
bations to the planetary boundary layer, where we assume triggering processes to be
most relevant: we impose an exponential decay of the perturbations at zmax that scales
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to γ = 1
2 km for non-damped waves and to max(γ0,

√
−m) for damped waves. Mathe-

matically, this can be expressed as:

w′ = w0 · f (z),

where f (z) =

e−γ·(z−zmax), if z ≥ zmax

1
zmax
· z, if z < zmax

with γ =

γ0 ω2 ≤ N2 (nondamped)

max(γ0,
√
−m) ω2 ≥ N2 (damped).

Details on w0 and m are given in the following section. First, the formulation for
orographically induced gravity waves is given. Then we approximate the gravity wave
amplitude within the framework of the subgrid-scale orography for the parametriza-
tion.

4.1.2 Physical scaling based on orographic gravity waves

Orography acts as a boundary and creates internal gravity waves, which can be evanes-
cent or propagating. The orographic height can be idealized as a two-dimensional sine
wave with amplitude h0 and horizontal wavenumbers k and l (or a composition of many
such sine waves). Using a general exponential ansatz for vertical velocity w as solution
to the Taylor-Goldstein equation and ω as oscillation frequency, the following two cases
can be distinguished (Gill, 1982): for the propagating case, i.e., ω2 ≤ N2, the solution
for w reads:

w = w0 · cos(kx + ly + mz−ωt); (7)

when ω2 > N2, the amplitude of the vertical displacement decays with height:

w = w0 · e−γz · cos(kx + ly−ωt), (8)

with γ2 = −m2.
For both cases, ω = ku + lv and w0 and m are given as:

w0 = (ku + lv)h0 (9)

m = (k2 + l2)

(
N2

(ku + lv)2 − 1
)

, (10)

where u, v denote x- and y-components of the horizontal wind. Further details can be
found in Gill (1982).

For the parameterization, we are not interested in representing the complete wave
structure. Instead, we aim at representing the effect of SSO-induced gravity waves on
the resolved scales in a stochastic manner by scaling the random perturbations accord-
ingly. w′ of eq. 6 is hence linked to the amplitude of gravity waves triggered by SSO (see
eqs. 7 and 8). To do so, the amplitude of gravity waves triggered by orography (eqs. 7

and 8) is approximated and formulated with the available SSO variables. The cosine
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terms in (7) and (8) are consequently neglected. w0 and m are formulated in terms of
SSO information. We specify the velocities u, v as u′, v′ in the rotated system of the SSO:

u′ = u · cos θsso + v · sin θsso

v′ = v · cos θsso − u · sin θsso.

The horizontal wave numbers k and l (in the rotated system of the SSO) are obtained
by using the semi-minor and semi-major axes a, b for the elliptical mountains that result
when the orography is represented by sine waves:

k =
π

2a
≈ π

2
σsso

µsso

l =
π

2b
≈ π

2
σssoγsso

µsso

(Lott and Miller, 1997). We set h0 to be µsso, implying that higher mountains will result
in larger vertical displacements.

Using these approximations, we can formulate the vertical wavenumber m and wave
amplitude w0, given by (10) and (9), in the following way:

m2 = (1 + γ2
sso) ·

(
N2

(u′ + v′γsso)2 −
π2σ2

sso
4µ2

sso

)
,

w0 =
π

2
· σsso · (u′ + v′γsso).

w0 and m can now be used as physical scaling for the stochastic parameterization.

4.2 model simulations , observations and simulation period

As for the PSP scheme, we evaluate the impact of the SSOSP scheme by computing sev-
eral simulations with different setups using the COSMO model as described in Chap-
ter 2. We only consider 6 June 2016 as a day with weak synoptic forcing (see Chapter 2).
First, we test several settings of the SSOSP scheme, namely the impact of the correlation
time scale τ and the perturbation amplitude αre f , where αre f =

αtuning·2h
τ . This re-scales

the final perturbation amplitude for different values of τ with respect to a reference
timescale τre f = 2 h. We identify the most appropriate setting and compute an ensem-
ble simulation with 10 members, where different random seeds of the random field η

are used.
To see the effects of the orography more clearly, we analyze orographic and flat grid

points separately by defining orographic/flat grid points as gridpoints where the SSO
standard deviation µsso is larger/lower than 20 m. This threshold approximately coin-
cides with the median of SSO-std height. Separating Southern and Northern Germany
or the Alpine region instead of single grid points showed similar results.

4.3 simulation results

First, we investigate the impact on the precipitation amount for different values of
the correlation time scale τ and perturbation amplitude αre f . Corresponding domain
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Figure 23: Domain averaged, hourly accumulated precipitation for a several different SSOSP
settings. Left figure shows precipitation averaged over all grid points, that have a SSO-
std≥ 20 m, the right figure summarizes grid points with SSO-std< 20 m.

averaged precipitation is displayed in Fig. 23. For orographic grid points increasing αre f
from 0.18 to 0.42 leads to more precipitation but, counter-intuitively, a further increase
of αre f causes a reduction in the precipitation amount. Interestingly, flat grid points only
experience a reduction with increased αre f . One hypothesis for this decrease is that the
perturbations enhance the mixing of boundary-layer and free tropospheric air, reducing
instability, and leading to a reduction in precipitation. Monotonically increasing τ leads
to more precipitation. More slowly evolving perturbations allow stronger updrafts to
develop. These stronger updrafts cause an increased probability of convective initiation.

For maximum impact we chose αre f = 0.42 and τ = 5 h for further ensemble ex-
periments with 10 members. The domain averaged precipitation time series in Fig. 24

shows reasonable spread between ensemble members for both orographic and flat grid
points. This spread is comparable to the spread generated by the original PSP scheme
(see Kober and Craig (2016), Fig. 7d). While spread over orographic regions is desired,
further insight is necessary to understand the behavior over flat grid points. Moreover,
the behavior of individual ensemble members suggests a significant increase in precip-
itation over orographic grid points and a decrease over flat grid points. This is further
illustrated in Fig. 24 where ensemble precipitation fields are displayed for two time
steps: precipitation within the SSOSP scheme mainly occurs in the alpine region while
most parts of Germany are precipitation free.

Overall, the SSOSP scheme shows a non-monotonic dependence on perturbation
amplitude αre f , while increasing the correlation time scale τ appears to give increasing
precipitation over orographic regions. For flat regions, however, the scheme causes an
undesired reduction of precipitation.
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Figure 24: (a, b) Domain averaged, hourly accumulated precipitation for an ensemble simula-
tion with τ = 5 h, α = 1.05 (αre f = 0.42). The bold red line gives the ensemble mean, while
red shading indicates the standard deviation. Single ensemble members are displayed in
thin red lines. (a) shows precipitation averaged over all grid points, that have an SSO-
std≥ 20 m, (b) summarizes grid points with SSO-std< 20 m. (c, d) Example precipitation
contours at (c) 12 UTC and (d) 16 UTC for a 10 member ensemble. Shown are 0.1 mm
precipitation contours for radar in grey (filled), reference in black and SSOSP member in
red.
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4.4 summary and discussion

We have developed SSOSP, a scheme to account for subgrid-scale orography and its
impact on convective initiation. Doing so, we consider mechanical lifting by SSO taking
into account the stratification of the atmosphere. Again, reasonable values of the tuning
parameter αtuning are of order one, supporting our physical reasoning.

The impact of the SSOSP on precipitation is not clear-cut. While we observe a pre-
cipitation increase over orographic regions, the scheme also leads to a reduction of
precipitation over flat terrain. Furthermore, there is a non-monotonic relationship be-
tween the perturbation amplitude and the precipitation amount, which may be related
to a combination of mechanical triggering and a mixing-induced reduction of CAPE.
An ensemble simulation with SSOSP showed that spread over orographic terrain is
generated but also over flat regions, which is conceptually not desired.

This behavior of the SSOSP makes it hard to employ. Furthermore, the impacts are
not clearly complementary to those of PSP2: the precipitation impact of SSOSP is ei-
ther too weak or coupled with an undesired impact on flat regions, and the generation
of ensemble spread by SSOSP can also be achieved with PSP2. For these reasons, we
refrained from combining the SSOSP perturbations and the PSP2 configuration. Concep-
tually, however, schemes for different subgrid-scale processes could easily be combined.

In the introduction, we referred to the open question of whether small-scale orog-
raphy matters for convective initiation. Here we tested this by modeling subgrid-scale
mechanical lifting on the smallest resolved scale. Our results suggest that the subgrid-
scale orographic triggering effect most likely is not that relevant. On the one hand,
to see the desired effect in mountainous regions, we had to increase the perturbation
strength to a point where unwanted effects occurred over flat terrain. On the other hand,
the perturbations introduced by our scheme are active on the smallest resolved scales of
the km-scale model. Actual small-scale orography perturbations would be even smaller,
and therefore likely even less influential. In general, our results confirm in a realistic
setup, what has been observed in other studies (Tucker and Crook, 2005; Kirshbaum
et al., 2007b; Langhans et al., 2013; Schneider et al., 2018): conceptually, SSO may be rele-
vant in regions of insignificant resolved orography; yet due to the fractal, scale-invariant
structure of orography (Turcotte, 1987) regions of high subgrid-scale orographic varia-
tions are generally also regions of high grid-scale orography. This larger scale, resolved
orography may dominate the triggering of convection so that SSO is virtually irrelevant
for convective initiation.
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C O L D P O O L D R I V E N C O N V E C T I V E I N I T I AT I O N ( I ) : W H AT A R E
C O N V E C T I O N - P E R M I T T I N G M O D E L S M I S S I N G ?

Now we focus on the role of cold pools in driving convective initiation and their rep-
resentation in convection-permitting models. As introduced in Sec. 1.3.4, cold pools
arise from evaporation in precipitating downdrafts and spread as density currents at
the surface. Their gust fronts have the potential to trigger new convection mostly in the
vicinity of already existing convection. Such secondary convective initiation can lead to
the organization of convection, but also may be a pronounced trigger mechanism in the
late afternoon and thereby contribute to the diurnal cycle of convection.

The difficulty of capturing the diurnal cycle of convection has been documented in a
variety of km-scale models (Baldauf et al., 2011; Hanley et al., 2015; Clark et al., 2016). In
contrast to convection-parameterized models, where convection occurs too early during
the day (Leutwyler et al., 2017), convection in convection-permitting models starts too
late during the day (Baldauf et al., 2011; Clark et al., 2016). This error can be improved
by tuning the model, e.g., with the turbulent mixing length, but at the expense of
other biases (Baldauf et al., 2011; Schraff et al., 2016; Leutwyler et al., 2017). By using
a more physically based approach, the PSP/PSP2 scheme (see Chapter 3), we were
able to improve the onset of convection using stochastic perturbations to account for
boundary-layer turbulence (see Chapter 3). However, a lack of precipitation in the late
afternoon and evening remained. A similar behavior was documented by Rasp et al.
(2018b) based on a 12-day summertime convective period over Germany. In addition,
missing convective organization and structural deficits in cloud sizes were found (Rasp
et al., 2018b; Senf et al., 2018; Panosetti et al., 2019).

Given the deficits of convective forecasts from convection-permitting models, the
question arises whether such models can simulate cold pool related triggering processes
with sufficient accuracy. Grant and van den Heever (2016) have revealed a resolution
dependence of cold pool gust fronts in idealized, two-dimensional LES simulations with
grid sizes of 50-400m, namely weaker maximum vertical velocities in coarser models.
This is consistent with studies showing a general sensitivity of vertical velocity to model
resolution (e.g., Heinze et al., 2017; Jeevanjee, 2017). Squitieri and Gallus (2020) recently
identified a resolution sensitivity of cold pools in mesoscale convective systems with
a higher frequency and larger areas in higher-resolution simulations. However, these
studies have not investigated how well the triggering mechanisms are represented in
convection-permitting models.

Considering the characteristics of cold pools, as described in the first paragraph (or
Section 1.3.4), we expect cold pools to be relevant for the lack of late afternoon/evening
precipitation and organization. A quantitative understanding of how cold pools and
the associated circulations depend on the model resolution could potentially provide
the basis for an improved treatment in km-scale models, similar to the improved repre-
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sentation of marginally-resolved boundary-layer turbulence given by the PSP2 scheme
from Chapter 3.

In this study, we address the following three research questions:

1. Are cold pools a significant factor for the diurnal cycle and the organization of
convection for mid-latitude, continental weather?

2. Can convection-permitting models adequately represent cold pool driven convec-
tive initiation processes?

3. If not, which misrepresented processes are responsible for the deficiencies in cold
pool driven convective initiation?

Since observations of cold pools are sparse and often incomplete, we base our work
on high-resolution simulations of realistic weather situations over Germany. Simula-
tions with 156 m grid sizes are available from the HD(CP)2 project (Heinze et al., 2017).
The simulations have been thoroughly compared to observations, confirming that their
turbulence profiles or cloud distributions are sufficiently comparable to observations
(Heinze et al., 2017). We assume that cold pool dynamics will be sufficiently resolved as
well. The 156 m simulation can be compared with additional simulations at 312 m and
625 m grid spacing. By comparing cold pool and convective initiation characteristics
between these resolutions, we draw conclusions regarding the ability of convection-
permitting models to represent cold pool driven convective initiation. In doing this, we
assume that higher resolution produces more realistic cold pools and cold pool driven
convective initiation and that the simulations with 625 m grid spacing are sufficiently
representative of convection-permitting simulations - or at least its higher resolution
end of the spectrum. Due to the immense computational cost of the high-resolution
simulations, we are only able to analyze four summertime convective days. These days
have been selected with a range of large-scale meteorological conditions that we believe
are representative of the diversity typically found in nature. To address the question
of which processes are responsible for the differences between the simulations at dif-
ferent resolutions, we apply linear causal effect estimation based on Pearl’s causality
(Pearl, 2009) and the graphical representation of causal structures (Wright, 1921; Pearl,
2013; Chen and Pearl, 2015). This enables a formalized estimation of different direct or
indirect causal effects in the model data. While this framework is not yet commonly ap-
plied in atmospheric sciences, some climate studies have applied and developed related
causality concepts (e.g., Ebert-Uphoff and Deng, 2012; Runge et al., 2015; Kretschmer
et al., 2016; Samarasinghe et al., 2019). A recent review of causality inference in Earth
system science can be found in Runge et al. (2019).

This chapter is structured as follows. In Section 5.1 we lay out relevant details of
the numerical simulations and the days to be investigated, how we identify cold pools,
cold pool boundaries and convective initiation, and the applied diagnostic and causal
methods. Section 5.2 presents the results of this study organized around the three re-
search questions. In Section 5.3, we provide a summary of our results and discuss their
underlying assumptions and implications.
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5.1 data and methods

5.1.1 ICON-LEM simulations

The basis of this study is a set of high-resolution summertime simulations over Ger-
many performed with the large-eddy version of the ICOsahedral Non-hydrostatic at-
mosphere model (Zängl et al., 2015; Dipankar et al., 2015) in limited area model con-
figuration (Heinze et al., 2017) as part of the HD(CP)2 project. Simulations have been
performed at horizontal resolutions of 156 m, 312 m and 625 m on a number of days with
a range of meteorological conditions. Details of the model setup and a comprehensive
evaluation of the simulations can be found in Heinze et al. (2017). The meteorologi-
cal situations, thermodynamic conditions and cloud and precipitation properties seen
in observations are generally well captured in the ICON-LEM simulations and show
improvements when compared to km-scale simulations (Heinze et al., 2017). For com-
parability, the model output is interpolated onto a common 1.2 km latitude-longitude
grid for all three resolutions. We select a region of 5.503-14.496

◦ E and 47.599-54.496
◦ N

for our analysis, which is available for all dates and resolutions. The simulation output
is available from 6:00 UTC to 24:00 UTC with 5-minute output frequency (simulations
start at 00:00 UTC).

5.1.2 Selected days and their synoptic situations

We have selected four days that represent diverse large scale conditions and exhibit
summertime convection and cold pools, namely 5 July 2015, 29 May, 6 June and 1 Au-
gust 2016. Snapshots of buoyancy intensity (as defined in Sec. 5.1.3.1), precipitation and
cold pool boundaries are shown for each day in Fig. 25. Time series of selected domain
aggregated variables that capture the large scale convective situation are displayed in
Fig 26.

On 5 July 2015, Germany lay in the warm sector of a frontal system that had ap-
proached from France. The approaching front was led by a convergence line, and rel-
atively strong south-westerly winds were present. High CIN, CAPE, bulk Richardson
number (BRN) 8 and significant wind shear were present over the simulated domain
(see Fig. 26a, b, e, f). Squall line-like structures developed in the simulations, travel-
ing over Germany from West to East, accompanied by two enormous cold pools (see
Fig. 25a, the second enormous cold pool is entering the domain from the West at this
time). On 29 May 2016, a low-pressure system connected to an omega block was cen-
tered over Germany. Cyclonic rotation, large scale lifting (Fig. 26d) and intense and
damaging flooding, especially in Braunsbach, Baden-Württemberg, occurred. Several
cold pools are found in the simulations. The high-pressure system of the omega block
slowly shifted subsequently to fully enclose Germany on 6 June 2016, suppressing large
scale lifting (Fig. 26d) and wind shear (Fig. 26f), but leaving high values of CAPE and
BRN (Fig. 26b, e). During the day, widespread scattered convection is simulated, and

8 The bulk Richardson number is computed as specified by Markowski and Richardson (2011). For the 0-6
km mean wind, the model levels 76 to 150 are used and for the 0-500 m mean wind model levels 139 to
150 are used.
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(a) (b)

(c) (d)

~100 km

Figure 25: Example snap-
shots of buoyancy in-
tensity (see Sec. 5.1.3.1)
[m s−1] in color, cold
pool boundary regions
in grey shading and
precipitation intensity
in white (1 mm h−1)
to black (20 mm h−1)
are displayed for each
day from the 156 m
grid size simulations.
Dotted and solid black
lines show country
borders and coastlines
respectively.

an organized band forms from merged cold pools and spreads over South-Eastern Ger-
many during the afternoon. Due to the intense convective activity and high variability
in underlying forcing, the period spanning 29 May and 6 June 2016 has been considered
in a number of studies on convection (Rasp et al., 2018b; Baur et al., 2018; Bachmann
et al., 2019; Keil et al., 2019) and analyzed in detail by Piper et al. (2016). As explained
in Chapter 2, these days are also considered in chapters 3, 4 and 6. On 1 August 2016, a
low-pressure system over Scandinavia and a small high-pressure system over Switzer-
land dominated the synoptic situation over Germany. Relatively small CAPE values
(Fig. 26b), a deep boundary layer, some large scale subsidence, and significant shear are
simulated (Fig. 26c, d, f). The simulations produce many small cold pools over northern
Germany (see Fig 25d).

5.1.3 Detection of cold pools and their edges

5.1.3.1 Cold pool detection

We identify cold pools using the density potential temperature perturbation and precip-
itation on the lowest layer above the surface. Density potential temperature is defined
as θρ = θ(1 + 0.608rv − rw − ri − rr − rs − rg − rh) (Emanuel, 1994, eq. 4.3.2 and 4.3.6,
using an approximation to first order in r analogous to eq. 4.3.1). Here θ denotes the
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Figure 26: Time series of domain aggregated variables describing the synoptic situation: a) mean
layer convective inhibition [J kg−1] (direct model output) ; b) mean layer convective avail-
able potential energy [J kg−1] (direct model output); c) height of the planetary boundary
layer [m ASL] (direct model output); d) vertical velocity at approximately 5 km [m s−1];
e) Bulk Richardson number (BRN) (computed according to Markowski and Richardson,
2011); f) 0-6km wind shear [m s−1] (model levels 150 and 76 are used). For BRN, the do-
main median has been computed due to the occurrence of high outlier values. Otherwise,
domain averages are displayed.

potential temperature, rv the water vapour mixing ratio and rw, ri, rr, rs, rg and rh the
mixing ratios of liquid cloud water, cloud ice, rain, snow, graupel and hail, respectively.

We calculate the local perturbation in density potential temperature, θ′ρ,0, relative to

a moving average, θρ
m

, of filter size 166 pixels (≈ 200 km) horizontally and 8 h in time.
The moving average is computed with reflection at the boundaries. This combination of
spatial and temporal filtering enables the identification of large cold pools (especially
on 5 July 2015) while background θρ gradients at the coast are still sufficiently resolved
to detect cold pools there. A small sensitivity analysis with different spatial filtering
scales and with/without temporal filtering showed no strong influence on the qualita-
tive behavior of our results. We further calibrate the perturbations by subtracting the
domain-mean density potential temperature perturbation: θ′ρ = θ′ρ,0− θ′ρ,0. We then iden-
tify regions where the density potential temperature perturbation θ′ρ is below −2 K and
apply the watershed-merge segmentation method of Senf et al. (2018) to identify cold
pools. The segmentation algorithm partitions these cold areas into cold pool objects
by first shrinking the objects to identify object cores and assigning each edge pixel to
the nearest core. If part of the interface between two objects thus found is farther from
the environment than half of the maximum distance to the environment in one of the
objects (i.e., the interface passes through an inner part of the object), they are merged
again, otherwise (if the interface lies close to the outer edge), they are kept separate
(Appendix A in Senf et al., 2018). Cold pool objects smaller than 20 pixels, i.e., with an
equivalent diameter of ≈ 6 km, are excluded. Following Senf et al. (2018), this criterion
has been chosen to only include cold pools with an equivalent diameter larger than
the effective model resolution of the coarsest model (≈ 5 km; see Heinze et al., 2017). In
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order to exclude cold areas like sea breezes or valley inversions that are not connected
to convection, we stipulate that precipitation in at least one pixel of the cold pool object
must exceed 10 mm/h, and discard objects otherwise.

This method successfully identifies roughly convex cold pool areas connected to con-
vective precipitation. It is not very sensitive to the choice of thresholds, and is more ro-
bust than more complex derived cold pool identifiers suggested by Drager and van den
Heever (2017). Given our selected criteria, however, we will not be able to identify very
weak cold pools (with regard to buoyancy anomaly), very small cold pools or non-
/weakly-precipitating cold pools, which may especially exclude very young and old
cold pools. This may have some implications for our results, but due to the small size
and the weak strength of young and old cold pools, we expect to have captured most
cold pools that are relevant for convective initiation. The expectation that dissipating
cold pools trigger fewer new convective cells is also supported by results from Fournier
and Haerter (2019).

For each air column, we define the cold pool intensity I using the integrated buoyancy
anomaly bint over the lowest five layers:

I = sign(bint)
√
|2bint|, with bint =

∫ ≈150 m

0 m
bdz and buoyancy b = g

θ′ρ

θρ
m .

This definition is chosen to agree with the cold pool intensity used by Feng et al. (2015),
except for the sign which we choose to be positive for positively buoyant air (and
therefore negative within cold pools). We choose fixed model layers as cold pool depth
for simplicity. The lowest 5 model layers (ca. 150m) were selected as they include the
buoyancy perturbation of most cold pools - integrating slightly higher than the cold
pool top does not affect the result, since the buoyancy anomaly is small at these levels.
Fig. 25 shows snapshots of intensity for a selected time on each of the four days.

The algorithm for this cold pool detection was provided by R. Heinze and modified
in collaboration with S. Schäfer.

5.1.3.2 Cold pool boundary regions

It is not the cold pool itself but the leading gust front with thermodynamic or me-
chanical lifting that drives the initiation of new convection. Detecting the gust fronts
is however not trivial in an automated framework and associating it to a specific cold
pool is also ambiguous. For instance, using horizontal wind speed or vertical velocity
above a threshold to identify cold pool gust fronts will also capture other phenomena
like land-sea breezes, orography or convergence lines. Recently, Fournier and Haerter
(2019); Henneberg et al. (2020) developed two approaches for detecting cold pool gust
fronts based on horizontal wind speeds, which may provide better alternatives in the
future. By using the above cold pool definition, the gust fronts tend to lie just outside of
the identified cold pools (see Fig. 27). To avoid the difficulties of objectively identifying
gust fronts, we define a cold pool boundary region as a zone around each cold pool
with ≈ 25 km width, which is the region most likely to contain the gust front. With
this definition, large buoyancy gradients and forced ascent will occupy only a fraction
of this region. To characterize the gust front itself, we consider 95th percentile values,
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rather than averages over the entire gust front region. An advantage of considering this
cold pool boundary region is that the thermodynamic lifting will be included, which
may not necessarily be located directly at the gust front. Grid points belonging to the
original cold pool or other cold pools are excluded from the boundary region. Overlap
with other cold pool boundary regions is, however, possible. We will consider overlap-
ping boundary regions as a proxy for cold pool collisions.

Comparing cold pool boundaries with vertical velocity in Fig. 27, many line struc-
tures of strong vertical velocity can be identified as cold pool gust fronts (e.g., A and B
in Fig. 27b) and generally they are positioned somewhere within the defined cold pool
boundary region. This confirms that such cold pool boundaries are a useful proxy for
their gust fronts.

5.1.4 Defining convective initiation

(a) (b)

(c) (d)

w [m s-1]

B

A Figure 27: Example snap-
shots of vertical
velocity at ≈ 1 km in
color [m s−1], cold pool
boundaries in grey
shading and locations
of convective initiation
in yellow for each
model resolution on
6th June 2016 13:00

UTC. The black box in
(a) marks the displayed
region for (b), (c) and
(d).

There is no standard definition for identifying convective initiation. In this study,
we aim to relate the initiation of a convective cloud to properties in the boundary layer,
such as the gust front vertical velocity. Hence, to obtain an independent identification of
vertical velocity at the gust front and convective initiation, we refrain from using vertical
velocity as an indicator for convective initiation. We also avoid using quantities such as
precipitation particles, which occur later in the convective cloud life cycle and may
be difficult to associate with boundary-layer features due to advection of the cloud to
neighboring grid points. With these conditions in mind, we choose the decisive variable
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((

Figure 28: Schematic illustration of (a)
classification of gridpoints into cold
pools, cold pool boundaries and no
cold pools; and (b) cold pool popula-
tions.

for convective initiation to be the temporal change of cloud water content in the mid-
troposphere. The onset of deep convection is associated with a rapid generation of
cloud droplets extending through a large part of the tropospheric depth; hence large
values of the temporal change of cloud water content ∂rw

∂t = ∂trw are associated with
convective initiation. The following definition for convective initiation is used:

r∗w = G

[
8 km

∑
z=2.5 km

∂trwz

]
> br∗w .

The temporal change is computed offline with 5 min time intervals. To eliminate the
effect of high cirrus clouds and low stratocumulus, we consider only mid-tropospheric
levels and compute the sum of ∂trw over the model levels 60-110, corresponding ap-
proximately to 2.5-8 km. To reduce noise and to allow for some spatial displacement,
we apply a Gaussian filter G using two grid boxes as the standard deviation for the
Gaussian kernel. Convective initiation is determined to have occurred at grid points
where r∗w exceeds a threshold br∗w that depends on day and resolution. The threshold
value is defined as the α-percentile of the r∗w field, where α = 1− fprec with fprec being
the relative frequency of precipitating grid points for that day and model resolution. A
grid point is identified as precipitating if the rain rate exceeds 1 mm h−1. In this way,
we identify as many grid points as having convective initiation as we have precipitat-
ing gridpoints for that day and model resolution. We note that single grid points can
be identified as convective initiation for subsequent time steps as long as the criterion
holds.

Example fields of convective initiation are displayed in Fig. 27. Further visual com-
parisons with precipitation fields (not shown) reveal that most identified convective
initiation is indeed related with an onset of precipitation at later times and that advec-
tion of deep convection is only rarely identified as convective initiation.

5.1.5 Diagnostic approaches

grid point classification With the criteria defined above, we can partition the
horizontal domain into four categories, namely 1) no cold pools, 2) cold pools, 3) cold
pool edges, and 4) overlapping cold pool edges, as schematically illustrated in Fig. 28a.
Overlapping cold pool edge regions are also included in the cold pool edge category,
as discussed below.
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Table 2: Quantities that represent essential characteristics of cold pools and their gust fronts.

Variables region description

Intensity cold pool Buoyancy anomaly θ′ρ integrated vertically over the 5 lowest model
levels (≈ 150 m). Area averages (mean) or integrals (sum) are con-
sidered.

D-mass
flux

cold pool Downward mass flux, i.e., negative values of ρw at ca. 1km, inte-
grated over each cold pool area (sum).

Radius cold pool Equivalent radius, estimated as the radius of a circle with the same
area as the cold pool.

Precipitation cold pool Precipitation inside cold pools, integrated over the cold pool area.

Gust front
vertical ve-
locity

edges 95th percentile of vertical velocity in the cold pool boundary region
at ca. 1km height. This height was visually identified as the height
of most pronounced gust fronts.

Gust front
mass flux

edges Upward mass flux inside the cold pool edge regions at 1km height.
Both the area integrated (sum) and area average (mean) are used.

Buoyancy edges 95th percentile of buoyancy at ca. 150m height. Potential tempera-
ture, moisture or surface fluxes are not considered, as buoyancy is
expected to hold most of their information relevant for convective
initiation.

Triggering
probability,
P[CI]

edges Number of gridpoints with convective initiation divided by the
number of grid points in the cold pool edge region.

cold pool objects We can further identify every single cold pool as an object and
compute cold pool characteristics averaged or integrated over its cold pool region (see
Fig. 28b). To each cold pool, we associate a cold pool edge, which represents the 25 km
wide boundary region defined above. Recall that grid points belonging to a cold pool
are excluded from the cold pool edge. Regions that overlap with another cold pool’s
edge region are included. This means that some grid points may be counted as part of
the cold pool edge region for more than one cold pool. Again, for each cold pool edge,
area-averaged or -integrated quantities can be computed, but also 95th percentiles to
represent the more extreme behavior of the actual gust fronts. As defined in Table 2,
eight quantities are used to describe the essential characteristics of cold pools and their
boundaries. For the cold pool, these are intensity, downdraft mass flux, radius and
precipitation, while for the cold pool edge region, we use vertical velocity, mass flux,
and buoyancy. The relative frequency of grid points where convective initiation occurs
defines the probability of convective initiation, P[CI], or triggering probability.

cold pool populations Given these characteristics, we can compare the distribu-
tions of cold pool properties (populations) between model resolutions. For this purpose,
we will generally show the median of the cold pool distributions and vertical bars for
the 95% confidence interval, which is computed via bootstrapping with 1000 draws. We
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Figure 29: Example directed, acyclic graphs illustrating the concepts of a collider, d-separation
or the single door criterion. See text for details.

note that cold pools from 5 min output are used and that the same, temporally corre-
lated cold pools appear more than once in the cold pool populations. Hence the data is
not independent, and the significance of our results will likely be overestimated. This
possibility has been briefly tested and confirmed by sub-sampling the data every full
hour.

5.1.6 Estimating linear causal effects

To determine the processes through which model resolution affects cold pool driven
convective initiation, we apply linear causal effect estimation. In general, associational
expressions like regression estimates do not prove causal relationships – correlation is
not causation9 – because common drivers may produce associations between two vari-
ables without one causing the other. Furthermore, in complex systems, there may be a
chain of causality through different variables, and it is of interest to quantify and com-
pare different pathways from the original cause to the effect, since they may represent
different physical mechanisms. To do this, we follow the framework reviewed by Chen
and Pearl (2015) and Pearl (2013, 2009) based on Pearl’s causality (Pearl, 2009) and
the graphical representation of causal structures, first proposed by Wright (1921). This
framework is based on the causal graph of the underlying phenomenon, which has to
be determined using a priori process understanding. We will assume that all variables
are linearly related, so that multiple linear regressions can be used to determine single
causal effects. The graphical analysis can also be applied for nonlinear relationships,
but for this work, we will avoid the additional complexity. Importantly, the required
predictors for the multiple linear regressions are selected based on the structure of the
causal graph by the so-called single door criterion. The remainder of this section will more
carefully define a causal effect, and illustrate the analysis method with some simple ex-
amples of causal graphs. To define the single door criterion, we will need to introduce
additional concepts, including directed acyclic graphs, collider and d-separation. Note
that these latter concepts are not needed to understand the application of causal anal-
ysis to our cold pool experiments in Section 5.2.3, provided that the reader is willing
to accept the structure of the multiple linear regressions that results from the analysis.

9 But they are correlated.
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For a more thorough introduction to linear causal analysis, we refer the reader to Chen
and Pearl (2015).

A causal effect of X on Y can be defined as the change of the expected value of
Y when X is changed actively (by intervention) from X = x to X = x + ∆x. The
active intervention is crucial because it eliminates any factors that otherwise impact
X. Consequently, randomized experiments or model sensitivity studies are commonly
performed to quantify causal effects. For example, X can be the wetness of grass and Y
the wetness of the adjacent street. If one wants to test the hypothesis that the wet grass
causes the wet street (see Fig. 29a), simply computing the correlation of the wetness of
the street with the wetness of the grass will give a biased estimate, because the common
cause of rain has not been included. One way to avoid such a spurious correlation is
by active intervention. If the grass is actively moistened, e.g., by using a sprinkler, the
correlation with a wet street will be reduced.

Fortunately, under certain circumstances, it is possible to determine causal effects
solely from associations, without doing any intervention. In the simple example of wet
grass and street, the solution would be to condition on the presence of rain, e.g., by
including rain as an additional predictor in a linear regression. On rainy days, every-
thing will be wet, but on dry days, the wetness of the grass and street is determined
by sprinklers and street cleaners and will not be correlated, thus reducing the overall
spurious correlation. For more complex systems, it can be difficult to determine a set of
parameters that can be conditioned on to allow a causal connection to be identified, or
even if such a set of parameters exists. Here we identify these circumstances with the
so-called single door criterion, which makes use of the following concepts.

Directed acyclic graphs are graphs with directed edges and no cyclic structures.
They are powerful tools to visualize causal structures and enable graphical criteria
to estimate causal effects. Example graphs are shown in Fig. 29. In this application,
the nodes of a directed acyclic graph represent variables of a causal model, which
are causally influenced by their parent nodes and themselves cause changes in child
nodes. Parents and children of a node are determined by the direction of the arrows
connecting them: arrows pointing towards a node emanate from its parent nodes and
arrows emanating from a node point to its child nodes. In the example of Fig. 29b, Z is
a child of both X and Y, whereas in Fig. 29c, Z is a parent of X and Y. The concepts of
ancestors and descendants of a node follow naturally. By assuming linearity, a directed
edge connecting a parent and a child node can be associated with single path coefficient
representing the direct causal effect, i.e., the rate of change of the child variable, when
the parent is actively perturbed. It is these path coefficients that we wish to estimate by
appropriate multiple linear regressions.

A collider is a special element on a path in a causal graph, where two arrowheads
collide at one node. If a path between X and Y passes through a collider, that path is
said to be blocked: despite its connection by the colliding edges, no information will pass
through this pathway. In Fig. 29b, for instance, Z is a collider for the path connecting X
and Y through Z. Collider nodes will have important consequences, as described in the
following paragraph.
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Directed separation, or d-separation, encapsulates the graphical conditions that cor-
respond to a missing causal relationship. There are three rules for two variables to be
d-separated (Chen and Pearl, 2015):

1. If there is no active path between X and Y, the variables X and Y are d-separated.
An active path refers to any path that is not blocked by a collider. In Fig. 29b X
and Y are d-separated as the only path is blocked by the collider Z. In Fig. 29c, d
and e, X and Y are not d-separated as active paths exist.

2. X and Y can also be d-separated conditioned on a set of nodes Z, if there is no active
path between X and Y without traversing Z. Meaning, if Z is included in all active
paths from X to Y, X and Y are d-separated conditioned on Z. In Fig. 29c and d, X
and Y are only d-separated if conditioned on Z, as the only active path between X
and Y is via Z.

3. If a conditional set Z contains a collider or a child of a collider, X and Y cannot
be d-separated conditioned on Z. Hence, X and Y in Fig. 29b are not d-separated
conditioned on Z.

If two variables X and Y are d-separated conditioned on a set of nodes Z, the partial cor-
relation coefficients between X and Y, where Z is accounted for, vanish (see, e.g., Chen
and Pearl, 2015). By applying this concept, causal graphs can be linked to statistical
(conditional) independence.

With these concepts, we can now state the conditions under which we can determine
causal effects from non-interventional data. In a linear framework, this is formally given
by the single door criterion. It states that the direct causal effect of X on Y within a
causal graph G is identifiable if a set of variables Z exists with the following criteria: (i)
Z contains no descendent of Y, and (ii) X and Y are d-separated conditioned on Z in the
hypothetical graph G’ where the direct path from X to Y is removed (this implies that Z
does not contain a collider or a child of a collider). Most importantly, such identifiable
path coefficients are equal to the regression coefficient that is obtained from multiple
linear regression predicting Y using not just X but also Z as predictors. We will refer to
Z as the adjustment set. The aggregated causal effects of parallel or sequential paths can
then be derived from single path estimates by addition or multiplication, respectively.

Considering the example graph in Fig. 29e, Z d-separates X from Y in the graph
where the direct X-Y path is removed (here corresponding to Fig. 29d). Hence the direct
effect of X on Y is identifiable and can be estimated via the regression estimate of X from
a linear regression where both X and Z are used as predictors, and Y is the predictand.
To estimate the direct causal effects between X and Y in Fig. 29b, c and d (which are
all zero due to missing, direct links) Z has to be included in Fig. 29c and d, whereas
it must not be included in Fig. 29b. Returning to the example in Fig. 29a, the single
door criterion shows that, to estimate the causal effect of the wetness of grass on the
wetness of the street from observational data (no intervention), the rain amount has to
be included in the linear regression. 10

10 The single door criterion is sufficient, but not a necessary criterion to identify causal effects. Further
criteria, the backdoor criteria and instrumental variables, enable additional identification (Chen and Pearl,
2015). In our case, however, the single-door criterion is adequate. It is also possible to identify different



5.2 results 65

(a) (b)

Figure 30: a) Domain and time integrated precipitation for the 156 m resolution simulation out-
side cold pools, within cold pools and within cold pool boundaries. b) Time series of
domain integrated precipitation within cold pools and outside cold pools. A 3 h running
mean has been applied to smooth the data.

In summary, this framework enables a graphical criterion, namely the single-door
criterion, which specifies if and how causal conclusions can be drawn from purely sta-
tistical associations. The causal, graphical structure, however, must be provided using a
priori understanding of the governing processes. We apply this framework to identify
the impact of model resolution on cold pools and convective initiation in Section 5.2.3.

5.2 results

5.2.1 Linking precipitation and convective initiation with cold pools

The first question we address is the relevance of cold pools for precipitation and espe-
cially for its diurnal cycle and organization. We focus on the 156 m grid size simulations
as the qualitative results are mostly similar for the other two resolutions. We compare
temporally and spatially integrated precipitation amounts inside cold pools (cp_mask)
and outside cold pools (no coldpool) in Fig. 30a for each day using the gridpoint classi-
fication described previously. First, we consider some general behavior of precipitation
inside and outside of cold pools on these four days. The magnitude of total precipitation
clearly depends on the day, with 29 May 2016 showing the highest total amplitude and
1 August 2016 the lowest. But the relative importance of precipitation inside cold pools
also varies: on 6 June 2016 precipitation inside cold pools (cp_mask) was approximately
three times greater than outside cold pools whereas on 29 May 2016 precipitation out-
side cold pools dominates. Nonetheless, precipitation inside cold pools contributes sub-
stantially for all days, ranging from approximately 50 to 300 percent of precipitation
outside cold pools. This corroborates that precipitation predominantly produces cold
pools and indicates the potential importance of cold pools. Fig. 30a also shows that
significant amounts of precipitation occur in cold pool edge regions, which provides a
first indication of the role of cold pools in initiating convection.

indirect causal effects for nonlinear or non-parametric models (Pearl, 2014). The necessary conditions for
identification are however more restrictive and the required estimation methods more complex.
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(a) (b)

Figure 31: a) Triggering probability in the four grid point categories. b) Ratio of convective initi-
ation inside cold pool boundaries or overlapping cold pool boundaries to total convective
initiation for each day and model resolution. A 3 h running mean has been applied to
reduce noise.

Time series of domain integrated precipitation for the different model resolutions
are shown in Fig. 30b. Again, we find a strong dependence of the diurnal cycle on
the synoptic conditions. In general, cold pool related precipitation, but also no coldpool
precipitation, tends to be more dominant during the day and decreases in the evening.
Also, the phase and amplitudes of the diurnal cycles do not completely coincide with
the diurnal cycle of precipitation outside cold pools. On 5 July 2015, when two enor-
mous cold pools develop, cold pool precipitation increases until the early afternoon
without noteworthy precipitation outside cold pools. On 29 May 2016, the increase in
precipitation during the day occurs both inside and outside cold pools. However, pre-
cipitation outside cold pools continues to increase throughout the night, likely related
to synoptically driven ascent. Interestingly, on the other two days, the rapid evening de-
cline of cold pool related precipitation tends to occur later than for precipitation outside
of cold pools, again suggesting a role for cold pools in maintaining convection.

We now focus on the connection between cold pool gust fronts and convective initi-
ation, which indicates the influence of cold pools on precipitation. Fig. 31a shows the
triggering probability as function of gridpoint classification and day. In no_coldpool re-
gions, we find the lowest probability of convective initiation for all days. Triggering is
substantially enhanced inside cold pools. Note that this behavior is based on our def-
inition of convective initiation as a strong increase in cloud water content and several
possible explanations for convective initiation inside cold pools exist.11 As expected, the
cold pool edge regions have even higher triggering probability. Depending on the day,
from 7% to almost 20% of gridpoints inside cold pool boundaries initiate convection.
The highest triggering probability on most days is found for overlapping edges, with
an increase in the probability of CI of approximately 3% in comparison to all cold pool

11 These explanations include 1) merged cold pools which may still have active gust fronts within the
identified cold pool regions; 2) gust fronts at the edge, but still inside identified cold pool region; 3)
rapid growth or propagation (not advection) of existing cells within the cold pool. A further reason
could be due to the wrong identification of advected cells.
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edges. These findings are consistent with previous studies showing that cold pools are
very efficient at initiating new convection nearby.

To estimate the absolute impact of cold pools on total convective initiation, Fig. 31b
displays the diurnal cycle of convective initiation within cold pool edges and overlap-
ping edges relative to total convective initiation. We find that triggering by cold pool
edges accounts for up to 50% of total triggering. For the last two days, this is especially
strong in the afternoon and evening. Although we have seen a high efficiency in trigger-
ing by overlapping edges, their contribution to the total convective initiation is small
(Fig. 31b), being usually well under 10%.

The results address the first research question, showing that cold pool driven con-
vective initiation plays a substantial role in the diurnal cycle and the organization of
convection. Strong links between precipitation and cold pools are observed, with cold
pool triggering contributing up to 50% of total convective initiation with particular rel-
evance in the evening in some synoptic situations. Cold pool boundaries are found to
be particularly important for triggering of convection. In two cases, this impact is felt
strongly during the evening, when non-cold pool triggering has decreased in strength.

5.2.2 Sensitivity of cold pool properties to resolution

Having established strong indications for the influence of cold pools on the initiation
and diurnal cycle of convection, it follows that the appropriate representation of cold
pool dynamics in convection-permitting models is vital. We will evaluate whether cold
pools and the related convective initiation are indeed appropriately represented at all
resolutions and hence insensitive to model resolution.

For the first two days in Fig. 30b no systematic differences in the diurnal cycle of
precipitation between model resolutions are visible. For the third case, 6 June 2016, the
coarsest model shows a higher peak in the early afternoon, and increased model reso-
lution results in a shift of cold pool related precipitation towards the evening. A similar,
but less pronounced behavior is also visible for the last day, 1st August 2016. Surpris-
ingly, on this day, precipitation outside cold pools shows a relatively strong sensitivity
to model resolution, related to many small, scattered precipitation cells over Northern
Germany in the coarsest model, which become less frequent at higher resolutions.

To investigate the resolution dependence of cold pools more systematically, we now
examine distributions of cold pool properties. Fig. 32 summarizes the most evident
differences between resolutions. For all four days, the number of cold pools is reduced
at higher resolutions. The size of cold pools (i.e., the equivalent radius), on the other
hand, increases with resolution. These observations are also in accordance with the
visual impression given in Fig. 27. Cold pools are generally more intense (integrated or
averaged over their areas), and have stronger precipitation (mainly on first and last day)
and integrated downward mass flux at higher resolutions. Some of these differences
between model resolutions are relatively small compared to the day-to-day variability.
Especially the first day (5 July 2017) is different since it has only a few, enormous,
cold pools (see Fig. 25). Overall, the dependencies of cold pool properties are quite
systematic, despite the large differences in their absolute values from day to day.
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(a) (b) (c)

(d) (e) (f)

Figure 32: Overview of differences in cold pool populations: a) number of cold pools; b) equiv-
alent cold pool radius (derived from cold pool area); c) cold pool mean intensity; d) cold
pool integrated intensity; e) cold pool integrated precipitation and f) cold pool integrated
downward mass flux. Except for the cold pool frequency, the median of the distributions
is displayed with 95 % confidence intervals estimated by bootstrapping.

Having seen systematic dependencies of cold pool properties on the resolution, we
now look for corresponding sensitivities in convective initiation and cold pool edge
properties that may impact initiation. Comparing the model resolutions in Fig. 31b the
last two days show a substantial sensitivity to the relative importance of cold pool
driven convective initiation in the cold pool boundary region. This sensitivity becomes
especially evident in the evening, when the higher resolutions are associated with more
persistent convective activity (6 June 2016), or simply a higher peak (1 August 2016).
Again we consider cold pool objects and focus now on the characteristics of their edges.
Medians of convective initiation related variables are displayed in Fig 33, namely trig-
gering probability, mean and total upward mass flux, and 95th percentiles of vertical
velocity and buoyancy. Fig 33 shows a modest tendency towards increasing triggering
probability with higher model resolution. Mean and total upward mass flux and 95th
percentile of vertical velocity increase systematically with the resolution, although the
strength of the increase varies between days. In contrast, the 95th percentile of buoy-
ancy at the cold pool edge does not show a systematic dependence. While the first day
shows enhanced buoyancy in higher resolutions, the buoyancy on the other three days
is relatively insensitive, or even decreasing slightly with model resolution.

Concerning our second research question, we find that coarser models have more,
but smaller and less intense cold pools. Their cold pools also have weaker gust fronts
(with respect to upward mass flux/vertical velocity) and a tendency towards reduced
initiation of convection. The combination of these differences are also evident in diurnal
cycles of total cold pool precipitation.
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(a) (b) (c)

(d) (e)

Figure 33: Overview of differences in cold pool populations with regard to their boundary re-
gions and convective initiation: a) triggering probability; b) upward mass flux averaged
over each cold pool boundary (1 km); c) upward mass flux integrated of the cold pool
boundary area; d) 95th percentile vertical velocity (1 km) at cold pool boundaries; e) 95th
percentile of buoyancy (150 m) at cold pool boundaries. Median of the distributions is dis-
played with 95 % confidence intervals estimated by bootstrapping.
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Figure 34: Dependence of triggering probability at cold pool boundaries to a) mean upward
mass flux (1 km) and b) 95th percentile buoyancy (150 m) at cold pool boundaries. Trig-
gering probability has been binned according to mass flux and buoyancy. To reduce sparse
data ranges, values below or above the displayed ranges of mass flux and buoyancy have
been set to the threshold values.
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5.2.3 Identifying causes of the resolution dependence of convective initiation

Given the results from the previous section, can we conclude that the weaker vertical ve-
locity in coarser models causes a reduction of convective initiation? Fig. 34a shows that
higher mean upward mass flux is related to higher triggering, which would endorse
such a conclusion. However, the triggering differences might be caused by differences
in cold pool intensities. And while we observe differences between gust front strengths
for all days, the difference in convective initiation is only clear for the last two days.
Fig. 34b further seems to suggest that an increase in buoyancy is related to more con-
vective initiation. Can we still neglect buoyancy because differences between resolutions
are not as systematic?

To disentangle such different aspects, we follow the approach of Pearl (2013); Chen
and Pearl (2015) to investigate the causal pathways under the assumption of linearity
(as described in Sec. 5.1). Our goal is to identify how model resolution R impacts convec-
tive initiation P[CI]. We distinguish between the formulation of our causal model (Sec.
5.2.3.1) and the estimation of causal path coefficients (Sec. 5.2.3.2). In Section 5.2.3.1, we
describe the design of a causal graph representing our conceptual understanding of the
relevant pathways through which changes in model resolution may impact convective
initiation. We identify which indirect effects are reasonable and which confounding vari-
ables exist, and specify a causal graph structure with several acyclic, directed pathways
from resolution R to triggering probability P[CI]. In Section 5.2.3.2, we quantify these
different pathways by applying multi-linear regression. After normalizing the data by
subtracting the mean and dividing by standard deviation, we estimate each path coeffi-
cient using linear regression and include additional variables as predictors, as specified
by the single door criterion. Aggregated pathways are then derived by multiplication
or addition of sequential or parallel paths. For statistical uncertainty quantification, we
apply bootstrapping (N = 1000). The magnitudes of the different, aggregated pathways
allow us to draw conclusions about the relative importance of each pathway. To evalu-
ate the robustness of our causal model and the subsequent estimated causal effects, we
further evaluate the sensitivity of our model to some modifications (Sec. 5.2.3.3).

5.2.3.1 Causal structure

To determine the dominant effect of model resolution on triggering probability by cold
pools, we propose a causal structure, as illustrated in Fig. 35. The selected variables of
interest are the model resolution (R), cold pool integrated intensity (I), cold pool bound-
ary 95th percentile buoyancy (B), mean upward mass flux at cold pool boundaries (G),
and triggering probability (P) at cold pool boundaries.

model resolution Our goal is to identify the main pathway through which model
resolution (R) impacts convective initiation (P). A direct effect is represented by
the arrow from R to P. This pathway could also incorporate indirect pathways that
are not represented in the causal model, e.g., differences in vertical acceleration,
condensation processes or entrainment/detrainment due to model resolution. We
have further observed that model resolution affects cold pool intensity and vertical
velocity. These dependencies can be related to microphysical processes, surface
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Figure 35: Conceptual causal model
of how model resolution can im-
pact convective initiation. Black
arrows are used to emphasize
their role as common driver.
Blue/red arrows are used for
paths that influence how model
resolution (R) impacts convec-
tive initiation (P). The red paths
display the below identified
dominant pathway. See text for
explanation.

fluxes or vertical acceleration. For buoyancy, the influence was not found to be
very systematic, but we evaluate its strength in this model anyway. These causal
relationships are represented by the arrows from R to I, G and B.

cold pool intensity It is reasonable to assume that stronger cold pools have dif-
ferent buoyancy (B) or vertical velocity (G) at the cold pool boundary. Hence, we
draw two paths IB and IG. We have further included a direct arrow from cold
pool intensity to convective initiation to evaluate whether we are missing some
important processes that are not captured by buoyancy or vertical velocity (IP).

buoyancy Buoyancy certainly influences vertical velocity, but there might also be a
direct effect on triggering. These effects are represented by the arrows BG and BP.

gustfront The impact of gust front upward mass flux (mean) on convective initiation
is represented by the arrow GP.

triggering We don’t consider any impact of triggering on other variables. Hence
there is no feedback, and we consequently have a directed acyclic graph. This is a
necessary feature to enable the following estimation of causal pathways.

Furthermore, we have included the synoptic situation and diurnal cycle (D), as repre-
sented by the variables given in Fig. 26. This is necessary because we expect them to be
common drivers for cold pool intensity, buoyancy, gust front and convective initiation.
Time of day, however, is not taken into account explicitly.

Several noteworthy assumptions have been made with regard to the causal struc-
ture. First, no temporal evolution or time lag is considered. Hence we assume that the



72 cold pool driven convective initiation (i)

autocorrelation time scale of the variables of interest is longer than the time it takes
for stronger cold pool intensities to affect gust fronts, buoyancy or convective initia-
tion. This also means, that the data are not independent, as subsequent time steps may
include the same, temporally correlated cold pool. The causal time series approach in-
troduced by Runge et al. (2015) is likely better suited for time series, and we consider
its application to tracked cold pools in the future. We also neglect any feedback cycles,
e.g., that stronger convective initiation might lead to a strengthening of cold pools. This
is justified if the autocorrelation time scale of the variables of interest is expected to be
smaller than the 15–30 min timescale for precipitation development. Furthermore, no
impact of model resolution on synoptic conditions is assumed (no link between R and
D). This is justified by the small resolution sensitivity of the domain aggregated, large
scale variables in Figure 26. Finally, we assume that we have captured all major vari-
ables that have a strong influence on at least two of the variables of interest (assumption
of no unobserved common drivers).

5.2.3.2 Estimating causal effects

To estimate the path coefficients of the causal graph, we apply multiple linear regres-
sion based on the single door criterion using all identified cold pools at all time steps.
Table 4 displays the predictor sets considered for each path. The resulting average path
estimates are illustrated in Fig. 36a. As expected, strong paths are observed between
buoyancy and gust front upward mass flux, and also between gust front mass flux
and triggering probability. The impact of buoyancy on triggering probability, however,
seems to be completely mediated by the gust front. More intense cold pools lead to an
increase in buoyancy at the cold pool boundaries and a small decrease in upward mass
flux (the signs of these paths arise from the fact that intensity is negative). The graph
further shows that, in comparison to synoptic conditions, the model resolution is of sec-
ondary importance for the variables of interest. Hence, all models are able to capture
the dominant, physical processes. This is to be expected and does not undermine the
importance of comparably small, systematic biases due to model resolution.

To evaluate dominant direct and indirect pathways between resolution and trigger-
ing probability, aggregated path estimates are displayed in Fig. 36b. The ∗ in R ∗ B ∗ P
denotes that all possible direct or indirect paths between the two specified variables
are accounted for. This shows that the RP, RIP, RIGP and R ∗ B ∗ P paths are rela-
tively small. Hence, the dependence of the cold pool intensity and the buoyancy on
resolution do not play an important role in triggering probability. The RGP path clearly
dominates: larger grid sizes decrease upward mass flux at the cold pool boundaries,
which consequently reduces convective initiation. The displayed, de-normalized value
of −0.017 means that if model grid size is increased from 156 to 625 m, triggering prob-
ability will be reduced by 0.017. This is somewhat less than some of the differences
observed in Fig. 33 but still of comparable magnitude. Furthermore, this corresponds
to a difference of 10-30% in median triggering probability.
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Figure 36: (a) Causal structural model of how model resolution can impact convective initiation.
Single estimated path coefficients (normalized) are displayed and qualitatively visualized
by the thickness of the respective paths. Negative arrows (red) indicate that an increase
in the parent variable results in a decrease in the child variable. The paths from the di-
urnal/synoptic variables display the sums over all diurnal/synoptic variables for better
visualization and are colored in grey. (b) Aggregated path estimates, de-normalized to
represent the causal effect of changing model resolution by 625 m − 156 m on triggering
probability. (c) as (b), but with stratification by days. Note that (b) can not be obtained
simply as the average over the four days of (c). The whiskers of the box plots correspond
to the 95 % confidence intervals from bootstrapping.
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5.2.3.3 Robustness

The statistical robustness of the results and their sensitivity to several of the assump-
tions made in constructing the causal graph are examined in Appendix A.2. This in-
cludes tests of the statistical significance of the linear regression results, the linearity
of the response to changing model resolution, selecting different variables as proxies
for gust front or cold pool intensity, sensitivity to stratification by days, and of the im-
pact of model resolution on the synoptic conditions. One noteworthy concern arises
from sometimes relatively small R2 values, which can imply that several informative
variables may not be included in our causal graph. This can increase the likelihood of
missing common driver, which causes biased causal effect estimates (see Appendix A.2
for more details).

Nonetheless, the causal effect estimates vary moderately under most modifications
with no strong dependence on the specific resolution range or the selected variables.
Only the stratification of the data into the four individual days substantially influences
the causal effects. The path estimates computed for each of the four days are illustrated
in Fig 36c. The estimates for the paths RIP and RIGP show some variability between
days, but the values are all close to zero. The path estimates of the R*B*P path show
stronger variability among the days, although centered around zero. The RGP path,
which we have earlier identified as the dominant path, shows moderate variability be-
tween the days, with values ranging from -0.02 to -0.04. Thus, this effect is relatively
robust to the stratification by days and is consistently stronger than other indirect ef-
fects. On the other hand, the direct effect of resolution on triggering (RP) shows a strong
sensitivity to the day, ranging from 0.03 to -0.01. Since the direct RP path includes influ-
ences of causal processes not represented explicitly in the graph, it is interesting to note
that it is strongest on 29 May 2016, when the diurnal cycle of precipitation is disturbed
by strong synoptic forcing. In such situations, the initiation of convection may be less
influenced by cold pool effects.

Overall, we conclude that the relatively robust RGP path predominates in most situ-
ations. Hence, to answer our third research question, the reduction in cold pool driven
convective initiation in coarser models is a direct result of reduced upward mass flux at
cold pool boundaries. The eventual impact on precipitation, however, is very dependent
on the weather situation, since the dominant RGP path can be partially compensated
by other processes.

5.3 summary and discussion

This work aims to identify the relevance of cold pools for the diurnal cycle and the
organization of convection; whether convection-permitting models can adequately rep-
resent cold pool driven convective initiation; and which misrepresented processes dom-
inate the deficiencies in cold pool driven convective initiation. To do so, we compared
available high-resolution ICON simulations with grid sizes 156 m, 312 m and 625 m of
four selected days over Germany and identified cold pools, cold pool boundaries and
convective initiation locations.
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The first research question was to determine whether cold pools are a significant
factor for the diurnal cycle and organization of convection. To address this, we have
evaluated identified cold pools and quantified the related precipitation and convective
initiation. We found strong links between precipitation and cold pools. Although day-
to-day variability is high, cold pool driven convective initiation can be as much as 50%
of the total convective initiation. For two of the four days, this is especially prominent
in the late afternoon and evening. Cold pool boundary regions, where gust fronts occur,
were identified as very efficient convection initiators, with triggering probabilities sev-
eral times higher than outside cold pools. Consistent with previous studies (e.g., Böing
et al., 2012; Schlemmer and Hohenegger, 2014; Feng et al., 2015), these results demon-
strate the importance of cold pools for convective organization and the diurnal cycle of
convection, but also the strong role of the synoptic environment.

The second research question asks whether convection-permitting models can accu-
rately represent the convective initiation process. This was addressed by evaluating the
sensitivity of cold pool related properties to model resolution, using simulations with
grid sizes from 156 m, where there is some hope of resolving the relevant processes, to
625 m, where the characteristic errors of convection-permitting models should be appar-
ent. For two of the four days we identified a significant sensitivity of the diurnal cycle of
precipitation and convective initiation to model resolution. The cold pools themselves
were found to be smaller and less intense at coarser resolutions, which is in agreement
with the results from Squitieri and Gallus (2020). Regarding the influence of model res-
olution on convective initiation, a reduced triggering probability with increasing grid
size was found for two of the four simulated days. Vertical velocity and upward mass
flux at the gust fronts were reduced with increasing grid sizes, while buoyancy in this
region did not show a systematic sensitivity. These findings show that coarser mod-
els have difficulties in representing cold pool driven convective initiation. The specific
character, however, seems to depend on the large scale situation.

The third research question is concerned with which errors in the coarse resolu-
tion simulations lead to the observed differences in convective initiation with changing
model resolution. To evaluate the relative importance of different causal mechanisms,
we applied a linear causal effect estimation based on causal graphs. Again the day-
to-day variability is large, but a systematic and dominant causal effect was identified:
Coarser models yield weaker updrafts at the cold pool gust fronts, which then cause
reduced convective initiation. Since the intensity of the cold pools and the buoyancy of
the lifted air do not appear to play a role in the sensitivity, it is likely that the reduced
upward motion at the boundary is simply a result of insufficiently resolving sharp
gradients at the gust front.

The causal analysis is based on several assumptions of the underlying model, that
have been mentioned and tested to some extent in Section 5.2.3.1, 5.2.3.3 and Appendix
A.2. Open issues include the possibility of missing common drivers, e.g., due to ne-
glecting the temporal evolution of cold pools or due to missing other variables. This
possibility is strengthened by moderately high R2 values (see Appendix A.2). Further-
more, by using identified cold pools from 5 min model output, subsequent time steps
include the same cold pools, and the data is not independent. This may cause an over-
estimation of the significance. Extensive testing of the robustness of the causal analysis
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revealed one important sensitivity, namely the dependence on the different synoptic
conditions present on the four days. This resulted in a large variability of the direct ef-
fect of model resolution on triggering probability (RP). On some days, this direct effect
partially compensates the effect of reduced convective initiation by weaker gust fronts
(RGP), whereas on other days, the effect is negligible or complements the RGP path.
Since the direct path includes the effects of mechanisms not represented in the causal
graph (which was focused on cold pool processes), it may become important when
strong synoptic forcing leads to convective quasi-equilibrium, and local triggering pro-
cesses are less relevant (Keil et al., 2014). To investigate such processes thoroughly will
require a much larger number of simulation days than are currently available. It is
worth recalling, however, that there was no day in the current analysis where the RP
path became as strong as the dominant RGP path.

While we investigated the causes of the reduced triggering probability for our third
research question, we have not addressed the causes of the differences in cold pool
sizes and intensities. We speculate that the following processes may be relevant. First,
the representation of cloud microphysics can have a substantial influence on precip-
itating downdrafts or on sub-cloud layer evaporation, which can, in turn, influence
cold pool numbers, sizes and intensities. Entrainment or detrainment into or from the
downdraft or the cold pool can also be relevant. They are mostly determined by tur-
bulence parameterizations, which show substantial deficiencies even in models with
resolutions of hundreds of meters, often denoted as the terra incognita, or grey zone, of
turbulence parameterization (Wyngaard, 2004; Honnert, 2016). Surface fluxes have also
been found to have a significant impact on cold pools (Gentine et al., 2018; Grant and
van den Heever, 2018) and can be sensitive to the resolution of small scale surface fea-
tures. Finally, stronger convective initiation at the gust front can result in reinforcement
of the original cold pool and thereby increase cold pool size and intensity (Böing et al.,
2012; Schlemmer and Hohenegger, 2014). Further analysis of the statistics of cold pools
and the mechanisms that influence them within the ICON simulations is planned for a
future publication.

The original motivation for this study came from systematic errors observed in
kilometer-scale numerical weather prediction models. The extrapolation of the present
results to such models is based on two critical assumptions. First, the highest resolu-
tion simulation examined here must behave sufficiently similar to the real atmosphere
to serve as a reference. A thorough evaluation of the ICON configuration used here
(Heinze et al., 2017) confirms that the highest resolution configuration is able to re-
produce observed turbulence profiles well and generates cloud size distributions that
are more realistic than for the coarser resolutions. Pscheidt et al. (2019) still find some
deficits in precipitation and cloud coverage, but convective organization seems to be
well captured. Second, the errors in the coarser-resolution runs must be representative
of errors found in the NWP models, if the results are to provide guidance for correcting
those errors. One concern regards the different approaches for turbulence parameteriza-
tions. While a three-dimensional, LES-type turbulence closure (Heinze et al., 2017) was
employed in the hectometer-scale simulations analysed, most km-scale models, includ-
ing the COSMO model (Chapter 2), are equipped with a one-dimensional PBL-scheme
(e.g., Kealy, 2019, or Chapter 1.3.2). However, both hectometer- and km-scale models
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suffer from similar deficiencies: the lag in timing of the diurnal cycle of convection and
a relative lack of convective organization, especially late in the day (e.g., Baldauf et al.,
2011; Clark et al., 2016; Rasp et al., 2018b). Hence we conclude, that the here obtained
biases in cold pool driven convective initiation for hectometer-simulations are valid and
likely even more pronounced in km-scale models and that they are partially responsi-
ble for biases in precipitation forecasts. However, given the large day to day variability
seen here, future studies using much longer time periods are desirable.

In the next chapter, we will now use the gained understanding to improve the rep-
resentation of cold pool driven convection in the km-scale model COSMO. We expect
that the observed systematic errors can thereby be reduced.
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M O D E L D E F I C I T S

Now we turn again to km-scale models and address how we can improve the inade-
quate cold pool driven convective initiation in such models.

As already described in Chapter 1.3.4 and confirmed in chapter 5, cold pool gust
fronts provide efficient triggers for new convection in the vicinity of already existing
convection. As a consequence, cold pools contribute to the organization of convection
and provide enhanced trigger mechanisms in the late afternoon, which impacts the
diurnal cycle of convection.

Both a lack of organization and difficulties in capturing the diurnal cycle have been
identified in km-scale models by several studies. Missing convective organization, struc-
tural deficits in cloud sizes or biases in the onset of convection and the afternoon and
evening amplitude were found (Baldauf et al., 2011; Hanley et al., 2015; Clark et al., 2016;
Senf et al., 2018; Rasp et al., 2018b; Panosetti et al., 2019).

That cold pools will be responsible for at least part of these deficits was further sup-
ported by results from the previous chapter. In the previous chapter, we evaluated the
sensitivity of cold pools and cold pool driven convective initiation to model resolution.
We found that cold pools are more frequent, but smaller, less intense and trigger less
new convection in coarser resolutions. Specifically, we found that the dominant deficit
in triggering probabilities comes from too weak gust fronts. Total cold pool driven con-
vective initiation is likely further affected by the size of the cold pools. Smaller cold
pools mean less total convective initiation even if the gust fronts have the same trigger-
ing probabilities.

Building on these previous results, we now aim to improve the representation of
cold pools in km-scale models. Few such cold pool parameterizations already exist
for convection parameterized models, but their application in convection-permitting
simulations is generally not valid (Rozbicki et al., 1999; Grandpeix and Lafore, 2010;
Grandpeix et al., 2010; Park, 2014). The ParaCon project (ParaCon, 2020) is currently de-
veloping a new type of scale-adaptive convection parameterizations for the convective
grey zone, which will include parameterized cold pools to enhance convective initiation
(personal communication). Although they pursue a scale adaptive grey zone parameter-
ization, their parameterized cold pools will likely coincide with crudely resolved cold
pools. Here, we explicitly target km-scale models where cold pools are comparably well
resolved, and - instead of parameterizing whole cold pools - we aim to modify resolved
cold pools in a more subtle way to obtain more realistic triggering of convection at their
gust fronts.

Based on the results from the previous chapter (Chapter 5) that differences in cold
pool intensity only marginally impact the triggering probability (RIGP path) whereas
the resolution directly affects gust front strength and thereby triggering (RGP path)

79
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(see Fig. 36), we apply the following strategy to improve cold pool driven convective
initiation: by perturbing vertical velocity tendencies at gust front regions in the model,
the gust fronts will be strengthened. We expect this strengthening to directly enhance
convective initiation at gust front regions. Additional, indirect benefit may occur as
stronger cold pool driven convective initiation may further strengthen the original con-
vective system and thereby also enhance cold pool size and intensity. This may further
improve convective initiation, resulting in a feedback loop (Böing et al., 2012; Schlemmer
and Hohenegger, 2014).

We summarize the primary research goals of this chapter as follows:

1. To develop a cold pool perturbation scheme, the CPP scheme, to improve cold
pool driven convective initiation.

2. To identify the impact of CPP on different aspects of the model, most importantly,
the afternoon/evening precipitation and its organization.

To address these research goals, we will test the CPP scheme on one single day with
several different parameter settings and a different model configuration. For a reduced
selection of settings, we apply the CPP scheme also for the ten days considered in
chapters 2 and 3. We identify how CPP affects the diurnal cycle and organization of
convection and whether it reduces the mentioned biases. We will further evaluate the
combination of the CPP scheme with the PSP2, as a complementary process represen-
tation (subgrid-scale variability of boundary-layer turbulence) to CPP (see Chapter 3).
Hence their combined impact is expected to yield additional benefit compared to using
either CPP or PSP2.

This chapter is structured as follows. First, we give a short overview of the selected
days and the simulation strategy in Section 6.1. Next, we will describe some theoretical
considerations on the resolution dependence of cold pool gust fronts in Section 6.2.1,
which we then use to formulate the CPP scheme in Section 6.2. Then, we will evaluate
the impact of the CPP scheme in Section 6.3 and end with a discussion in Section 6.4.

6.1 strategy for developing cpp and evaluating its impact

We develop CPP and evaluate its impact first for one single day, 5 June 2016. This day
represents a day with many cold pools, and hence the impact of CPP is expected to
be strong. We further use this day to investigate the sensitivity of the CPP impact to
changes in some of its parameters and model settings. Based on these simulations, we
then select reasonable parameters to test CPP for ten subsequent days, each with 24 h
simulation time to confirm our findings and evaluate the flow dependency of CPP. As
for Chapter 3 and 4, we will use the COSMO model over Germany and compare the
precipitation fields with radar observations. Aside from domain averaged precipitation
fields, we consider the fraction skill score (FSS) as a diagnostic for the spatial location
of precipitation, the structure component of the SAL score (S-SAL), average cell sizes,
and frequency to identify changes in the diurnal cycle and organization of convection.
Further details on the selected days, the COSMO model, radar data and diagnostics are
given in Chapter 2.
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6.2 cold pool perturbations cpp

In the previous chapter we have seen that lower resolution simulations yield weaker
vertical velocities at cold pool gust fronts. Hence, their gust fronts are expected to
be underresolved. As correcting measure, the cold pool perturbations aim to impose
vertical velocity perturbations to achieve the following: lower resolution simulations of
otherwise underresolved gust fronts will then produce vertical velocity scales of fully
resolved cold pool gust fronts. To get a better understanding of how grid size affects
the vertical velocity scale of gust fronts we use dimensional analysis in Section 6.2.1.
This also provides a target vertical velocity scale w0 of fully resolved cold pools. In the
subsequent subsections, we use this target vertical velocity scale w0 to build appropriate
cold pool perturbations for the numerical model.

6.2.1 Scale of gust front vertical velocity

For the dimensional analysis, the inviscid, Boussinesque approximated set of equations
for the stream function Φ, vorticity η and vertical velocity w in a two dimensional plane
in x and z are used, which are often considered for density currents (Rotunno et al., 1988;
Weisman and Rotunno, 2004; Bryan and Rotunno, 2014b). Characteristic scales are used
to non-dimensionalize the equations. A detailed derivation is given in Appendix B. The
following characteristic scale W for the vertical velocity is then given as a function of
the characteristic buoyancy scale B, the horizontal length scale L and the vertical length
scale H:

W =

√
BH

1 + L2

H2

. (11)

This relationship describes the characteristic, vertical velocity scale within a circulation
driven by horizontal buoyancy gradients and how it depends on both the horizontal
and vertical length scales in addition to the characteristic buoyancy scale.

Similar relationships have been formulated for rising warm bubbles by Weisman et al.
(1997); Pauluis and Garner (2006); Morrison (2016a,b); Jeevanjee and Romps (2016); Jee-
vanjee (2017). These studies investigate buoyant acceleration and associated pressure
perturbations, which arise from displacing the air above the vertically accelerating par-
cel to make way for it. These pressure perturbations can reduce the effective accelera-
tion substantially. Importantly, these pressure perturbations depend on the horizontal
extent L and the vertical extent H of the buoyancy acceleration: for thin and tall parcels
( L

H ≈ 1), the pressure perturbation deceleration is moderate while for wide and flat
parcels ( L

H � 1) the pressure perturbation deceleration is larger as substantially more
air has to be displaced. Dependent on the specific formulation of the problem, the
arising dependency of W on L

H varies in the different studies. However, Jeevanjee (2017)
showed that the different scalings from Weisman et al. (1997); Pauluis and Garner (2006);
Morrison (2016a); Jeevanjee (2017) are comparable. We have further confirmed a close
resemblance of (11) with the formulations of the mentioned studies. As the underlying
physical processes for the generation of vertical motion are comparable for cold pool
gust fronts, this resemblance is not surprising.



82 cold pool driven convective initiation (ii)

0 50 100 150
Time [min]

2

4

6

8

10
w

[m
s

1 ] cp= 1; =10min
cp= 1; =30min
cp= 1; =60min
cp= 0.5; =10min
BH

BH /2

Figure 37: Schematic illustration of the
temporal evolution of w and how it
depends on τcp and αcp. Here, we con-

sider the isolated situation of ∂w
∂t

∣∣∣
cp

when no other effects are included,
and w0 remains constant.

Within current NWP models, the horizontal scale L is limited by the horizontal grid
size ∆x, explaining resolution sensitivities and weaker vertical velocities with coarser
resolutions.

In the case of a fully resolved gust front, we assume L
H ≈ 1. Then we obtain a

characteristic vertical velocity scale w0:

w0 =

√
BH
2

.

This relationship is further comparable to the well-established propagation speed of
density currents U =

√
2BH (e.g., von Kármán, 1940; Benjamin, 1968; Bryan and Ro-

tunno, 2008; Markowski and Richardson, 2011, chap. 5.3.2).

6.2.2 Basic approach of CPP

We now develop a pragmatic approach, the CPP, to remedy the deficit of W in coarser
model resolutions. To do so, we apply tendency perturbations ∂w

∂t

∣∣∣
cp

to the model verti-

cal velocity w so that the amplitude of w will converge to the target w0 on a time scale
determined by τcp:

∂w
∂t

∣∣∣∣
cp

=
1

τcp
(w0 − w).

This behavior is schematically illustrated in Fig. 37 for the isolated situation where
all other effects are neglected.12 To ensure a persistent impact on w as for the PSP2

and SSOSP scheme, we further perturb tendencies of the horizontal wind fields u
and v to yield three dimensional, non-divergent perturbations. Details can be found
in Sec. 3.1.2.4.

Given this basic framework, the following details have to be considered, which will
be addressed separately in the next subsections:

1. Approximating and tuning w0

12 A similar perturbation structure is sometimes used to nudge the model towards observations, e.g., latent
heat nudging (see, e.g., Schraff et al., 2016), and sometimes referred to as Newtonian relaxation.
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Figure 38: Comparison of maximum vertical velocity wmax in the lowest kilometer at the surface
(a) and the target vertical velocity w0 (αcp = 1) as approximated from θv gradients (b). Note
the different scales of the colorbars.

2. Considering the vertical distribution of the perturbations

3. Finding a reasonable timescale τcp

4. Confining perturbations to cold pool gust fronts

6.2.3 Approximation of w0 and αcp

To compute the target vertical velocity for CPP, w0 =
√

BH
2 , we have to approximate the

cold pool buoyancy B and its height H. For simplicity, we fix H = 200 m. This height
corresponds approximately to the buoyancy anomaly of cold pools within the COSMO
simulations (not shown) and has also been used in the ICON simulations in Chapter 5.
As we do not intend to identify cold pools online in the model, we estimate the cold
pool buoyancy as the local buoyancy gradient near the surface multiplied by the width
of the gradient. As the model cannot resolve sharp gradients, we assume that gradients
will be flattened on a scale of the effective model resolution of 5∆x. We define B as:

B = |∇θv| · 5∆xg
1
θv

,

where the bar denotes the mass-weighted average over the lowest 5 model levels, which
corresponds approximately to the lowest 200 m.13

Doing so, we obtain
√

BH with values of up to O(10 m s−1) at cold pool gust fronts,
as displayed in Fig. 38b. While this is significantly stronger than what is currently sim-
ulated for w with the model (Fig. 38a), and even with the 156 m ICON-LEM simulation

13 Instead of using the environmental θv as reference temperature (as is usually considered for buoyancy),
we use the local values instead. With temperature differences of few Kelvin compared to reference tem-
peratures of O(300K), this is a reasonable assumption and strongly simplifies the computation.
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from Chapter 5, it provides a characteristic scale, that can be regarded as the upper
limit. Aspects, such as friction or entrainment, which expectedly reduce the vertical ve-
locity, have not been taken into account. Also, several strong approximations have led
to the computation of

√
BH. Hence, we allow for some flexibility with regard to w0 by

introducing the tuning parameter αcp as:

w0 = αcp
√

BH (12)

If the construction of CPP is physically reasonable, αcp should be of magnitude O(1)
and should generalize to other situations and model setups.

6.2.4 Vertical distribution of the perturbations

As the scale w0 does not include any information on the vertical distribution of w, we
will use the vertical distribution from the model vertical velocity itself to scale ∂w

∂t

∣∣∣
cp

.14

To do so, we compare w0 to the maximum vertical velocity wmax from the surface to a
fixed model level kre f = 38. This height corresponds approximately to 1070 m and has
been chosen as an approximate upper limit for the cold pool gust front. We assume that
the difference between w0 and wmax applies to the other model levels in a multiplica-
tive way. Fig. 39 schematically illustrates this: the relative difference w0−wmax

wmax
is used as

multiplication factor for all other model levels. Then, we can write the CPP scheme as:

∂w
∂t

∣∣∣∣
cp

=
1
τ

(αcp
√

BH − wmax)

wmax
· w(z).

We further aim to constrain the perturbations to the layer where the cold pool gust
front is active, i.e., the lowest model levels up to level kre f . Above this model level, the
perturbations are linearly tapered to zero over ∆H = 500 m, as visualized by the dark
blue line in Fig. 39.

6.2.5 Time scale τcp

The time scale τcp at which the target w0 is approached, has to be determined under
the following two constraints. First, the time scale should not be too short, as this will
mean virtually instantaneous perturbations, which likely cause instabilities. In order to
allow for sufficient adaptation of the boundary layer to the perturbations, the time scale
should not be shorter than the lifetime of the turbulent eddies, i.e., 10 min. Second, the
time scale should be shorter than the lifetime of the cold pool gust fronts. Otherwise,
the target w0 will not be realized. The lifetime of cold pool gust fronts is, however,
highly variable and can be as short as several minutes and as long as few hours (e.g.,
Feng et al., 2015). From this perspective, the time scale should be as short as possible.
Consequently we consider a time scale of τcp = 10 min, but we will also evaluate the
behavior of longer time scales (20 and 30 min).

14 For the dimensional analysis we can formulate the dimensional vertical velocity w as w = W(B, H, L)w̃,
where w̃ represents a non-dimensional function, that only depends on other non-dimensional variables.
This justifies the use of the vertical profile for w from the model also for the perturbations.
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Figure 39: Schematic illustration of how the ver-
tical structure of the perturbations is de-
signed. wmodel (blue line) represents a pos-
sible vertical structure of vertical velocity
at a cold pool gust front. Its difference to
w0 at a given height k(wmax) is used as
the target ∆w for this height. ∆wz for all
other heights are then scaled according to
the wmodel profile. Above a certain height
(kre f = 38 corresponds to ≈ 1 km), the per-
turbations are linearly decreased to zero
(dark blue line).

6.2.6 Limiting perturbations to cold pools

Now, we describe how we constrain the perturbations to cold pool gust fronts. Without
having to identify cold pools or cold pool gust fronts directly, we apply the following
criteria.

First, to avoid perturbing areas with very weak θv gradients - which likely do not
coincide with cold pool gust fronts and, hence, our reasoning is not valid there - we
constrain the perturbations to be active only if a certain threshold of |∇θv| is exceeded,
namely θ∗v,g = 0.75 K ∆x−1. To smooth the resulting field, we apply a uniform filtering
with n f ilter = 3 grid boxes filter size.

Second, we identify gust fronts as grid points with strong vertical velocities and
hence we require wmax to be larger then w∗max = 0.5 m s−1 for active perturbations.
Example fields of these two criteria are shown in Fig. 40a, b and confirm that these
criteria work well to identify cold pool gust fronts. However, we still find many active
grid points over orographic regions, which are mostly not associated with cold pools.

The third criterion excludes these orographic regions by switching off the perturba-
tions at grid points with a standard deviation of subgrid-scale orographic height µsso
above a threshold µ∗sso = 50 m (see Fig. 22a for the µsso field).

We include one last constraint for grid columns, where the model vertical velocity
wmax is already larger than the target vertical velocity w0. Then, the perturbations are
set to zero.

The arising horizontal mask for the first three criteria is displayed in Fig. 40c. Most
perturbations are now indeed related to cold pool gust fronts. We note that also land-
sea-breezes are partially included, which will be discussed in more detail in Sec. 6.4.
The final perturbations are displayed in Fig. 40d.
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Figure 40: Illustration of how the perturbations are constrained to cold pool gust fronts. In (a),
the buoyancy gradients are displayed with values smaller than 0.75 K ∆x−1 shaded grey. In
(b), wmax is shown with values smaller 0.5 m s−1 shaded grey. In (c), wmax is shaded using
the first two criteria combined with the orography criterion. In (d), the final perturbations
for ∂w

∂t are shown.
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6.2.7 Overview of parameters

As has been explained above, several parameters have to be specified, which are listed
in Table 3. As there is some uncertainty in these parameters, we will test in Sec. 6.3.4
how sensitive the CPP impact is to changes in some parameters. The selected values
are further displayed in Table 3.

Table 3: Parameters of CPP are listed. Default values are shown in bold font. Note that we only
evaluate the sensitvity of CPP to the first four parameters.

Parameter Description Values Sensitivity

αcp Tuning parameter to scale the
target w0

0.15, 0.2, 0.3 Increased values result in higher
target w0 and in a stronger pre-
cipitation impact.

τcp Time scale over which to reach
target w0

10, 20, 30

[min]
Increased values can be compen-
sated by reductions in αtuning to
some extent, and vice versa.

w∗max wmax > w∗max for perturbations
to be active.

0.3, 0.5, 0.7
[m s−1]

Reducing w∗max increases hori-
zontal area of perturbations and
precipitation impact.

kre f Maximum height level for
searching wmax and the pertur-
bations.

38 ≈ 1 km,
36, 34

Reducing kre f (increasing the
height) strengthens the impact
of CPP.

n f ilter Filter size for smoothing gust
fronts

3 ∆x

θ∗v,g Threshold for θv gradient 0.75 K∆x−1

µ∗sso Threshold for extracting only
non-orographic grid points

50m

∆H linear decrease above kre f 500m

6.3 impact of cpp

We now first consider 5 June 2016 with default settings for CPP (see table 3) to briefly
evaluate the general impact of CPP.

6.3.1 Cold pool gust fronts

The most direct effect of CPP should certainly be visible in the cold pool gust fronts.
Fig. 41 shows vertical velocity five model levels (≈ 200 m) above the surface. In com-
parison to the reference run, the gust fronts, i.e., the line structures of positive vertical
velocity, are enhanced with higher vertical velocities in the CPP simulation. This snap-
shot indicates that the intention of the CPP - namely to strengthen cold pool gust fronts
- is achieved.
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Figure 41: Vertical velocity for the reference (a) and a CPP (b) simulation is displayed. Fields are
displayed for the 5th model level (≈ 200 m) above surface at 15 UTC and a selected region
with several cold pool gust fronts over central Germany.

6.3.2 Impact on precipitation

As the main incentive of CPP is to improve precipitation forecasts, we now evaluate its
impact on precipitation in more detail. Considering example precipitation fields, we see
the biggest differences in the late afternoon and evening. Fields for 19:00 UTC are dis-
played in Fig. 42 for illustration. Overall, there is more precipitation in CPP compared
to the reference simulations, and the precipitation cells seem to be stronger, larger or
more clustered together. Precipitation structures are also slightly more intense in CPP.
15 For more quantitative results, we will investigate both the impact on the diurnal cy-
cle, i.e., afternoon/evening precipitation and the organization in a more quantitative
way in the next two sections.

6.3.2.1 Diurnal cycle

For the diurnal cycle, we first consider domain averaged precipitation amounts as a
function of time, as displayed in Fig. 43a. Regarding the discrepancies between the
model and observations in the first half of the day, the large scale situation (with re-
gard to precipitation) is still captured by the model, with organized precipitation over
southern Germany and the Alps. However, spurious convection early on, and too weak
precipitation, later on, can explain the observed differences. The CPP schemes do not
show any impact then. For our default setting of τcp = 10 min we find an increased
amount of precipitation starting around 13:00 UTC, which continues throughout the
afternoon and evening. The most considerable differences occur between 15-18:00 UTC.
CPP does not simply increase the amplitude of the precipitation peak, but a shift in pre-
cipitation towards the evening occurs. In comparison to the radar observations, these
differences improve the domain averaged precipitation. While the precipitation peak

15 The stronger cells can be quantified via histograms of precipitation (not shown) and confirm that CPP
has a higher frequency of extreme precipitation than both reference and radar. The differences to the
reference in such histograms were, however, weak in relation to differences to the radar observations.
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Figure 42: Example precipitation fields [mmh−1] are shown for radar observations (a), the refer-
ence (b) and a CPP (c) simulation at 19 UTC.
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Figure 43: Time series of domain averaged precipitation (a) and fracion skill score (b). The bold
dark grey lines display the reference simulation, the bold light grey line the radar observa-
tions and colored lines CPP configurations with different τcp but otherwise default settings.
We have tested different scales and thresholds for the FSS as well, but the qualitative impact
of CPP is not strongly sensitive for most settings.
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Figure 44: Time series of the structure component of the SAL score (a), average cloud radii
(b) and cloud numbers (c). The bold dark grey lines display the reference simulation, the
bold light grey lines the radar observations and colored lines the CPP configurations with
different τcp but otherwise default settings.

around 15 UTC is somewhat overestimated by CPP (the reference underestimates the
peak), the domain mean precipitation of CPP matches well with the observations from
18-21:00 UTC.

To verify that the enhanced precipitation by CPP is located somewhat realistically,
we consider the Fraction Skill Score (FSS) displayed in Fig. 43b.16 Considerable im-
provements to the reference simulation occur between 15-21 UTC, in accordance with
the domain averaged precipitation amount. Improvements of up to 0.2 occur, e.g., at
19 UTC. After 22 UTC, however, the FSS of CPP deteriorates in comparison to the ref-
erence. We note that the displayed FSS considers a spatial scale of 227 km, which is
relatively large for the convective scale. Smaller scales have been considered as well,
which give similar responses of the CPP scheme, but with overall lower FSS values for
all simulations.

We summarize that - in accordance with our objective - CPP enhances cold pool
driven convective initiation and thereby specifically improves the afternoon and evening
precipitation amount and forecast skill as quantified by the FSS.

6.3.2.2 Organization

To quantify the organization of convection, we first consider the S(tructure) component
of the SAL score in Fig. 44a17. Especially after 15 UTC less negative S-SAL values occur
with the CPP scheme compared to the reference simulation. This confirms that cloud
structures become larger and less peaked and thereby match the radar observations
better. The mean cell radii computed from closed precipitating areas (Fig. 44b ) fur-
ther confirm this aspect. They show that precipitation cells tend to be larger in the
CPP simulation after 13 UTC. The values are, however, still too small compared to the
observations. The total number of clouds also reduces after 12 UTC. We have further
tested a watershed segmentation for treating merged cells separately. Differences to

16 The FSS compares the fractions of precipitating gridpoints within a specified neighborhood (scale) be-
tween model and radar data. Higher FSS values indicate more skill up to FSS = 1 as a perfect match.
Values below ≈ 0.5 are assumed to be without any skill. See Sec. 2.4.1 for more details.

17 The S(tructure) component of the SAL score is a quantitative measure for the structure of the precipitation
field. Negative S values imply that the simulated precipitation cells are too small and peaked compared
to the radar observations while S = 0 suggests a perfect match in terms of structure (see 2.4.2 for details).
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Figure 45: Virtual potential temperature θv is displayed for the reference (a) and a CPP (b) sim-
ulation for the lowest model level (≈ 10 m) at 15 UTC. Note that only a subdomain of the
whole simulation domain is shown.

the reference simulations were similar to the non-separated cells. To further quantify
organization concerning cell distances, we considered the Iorg and radial distribution
functions (Rasp et al., 2018b; Pscheidt et al., 2019). While the former evaluates the near-
est neighbor distances, the latter considers cell densities at a given distance to one cell.
Due to different cell size distributions, different total cell numbers, background gradi-
ents or simply noisy data, we struggled in interpreting the results and decided not to
include them here.

In summary, there seems to be some form of stronger, area-based organization with
CPP resulting in improved cell structures (S-SAL), larger single cell sizes and also larger,
but fewer cell agglomerations. However, we could not identify a clear signal in the
distance-based metrics for organization.

6.3.3 Other impacts of CPP

We have further found an impact of CPP on aspects other than precipitation, namely
cold pools, land-sea breezes and the horizontal wind fields.

As we have speculated in the introduction, enhanced convective initiation at cold
pool gust front may also be able to strengthen the cold pools themselves. We shortly
evaluate this possibility by displaying example fields of virtual potential temperature
θv at the lowest model level (≈ 10 m) in Fig. 45. We can indeed confirm that many cold
pools tend to be somewhat colder in the CPP simulations.

Fig. 45 further shows a stronger land-sea breeze near the coast, likely related to the
application of the cold pool perturbations to gust fronts of the land-sea breeze. Land-
sea breezes can also be regarded as density currents and can initiate new convection.
Hence, the application of CPP to land-sea breezes can be reasonable as will be discussed
in more detail in Sec. 6.4.

We have further identified a considerable impact on the horizontal wind fields. Ex-
ample fields reveal substantial differences in the large scale structure of the wind field
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Figure 46: U-component of the horizontal wind speeds for the reference (a) and a CPP (b) sim-
ulation is displayed for the 6th model level (≈ 300 m) above surface at 15 UTC. The root
mean square difference (RMSD) of the horizontal, zonal wind (u) between the two simula-
tions is displayed in (c). The cross marks the height and time for the fields in (a) and (b).
As the RMSD above two kilometers is small, only the lowest five kilometers are shown.

(see Fig. 46a, b). By computing root mean square differences between the reference and
the CPP simulations, as shown in Fig. 46, this impact is mostly evident in the lowest
two kilometers in the afternoon. The two observed maxima in the vertical correlate
well with the heights of the strongest horizontal wind perturbations, where the vertical
gradient of the vertical velocity is strongest (not shown). Similar observations can be
made for the meridional wind component v. We note, however, that above 2 km, the
large scale wind field in the CPP run is reasonably similar to the reference simulation.
Further discussion on possible causes, impacts and solutions of this horizontal wind
impact will be given in Section 6.4.

6.3.4 Parameter sensitivity of CPP

As displayed in Table 3, several parameters have to be chosen within CPP. We shortly
evaluate the impact of changes in four selected parameters, namely αcp, τcp, w∗max and
kre f . Changes in the other parameters are expected to have only a small impact or an
impact similar to one of the first four parameters: small changes in θ∗v,g, n f ilter or µ∗sso
will only marginally affect the results, as w∗max is the dominant constraint for masking
the perturbations in the horizontal (see Fig. 40); changes in ∆H will likely behave sim-
ilar to changes in kre f , as in both cases, the perturbations will extent higher into the
atmosphere.

sensitivity to τcp and αcp As the different simulations in Fig. 43 and 44 show, a
reduction in τcp tends to increase the impact on precipitation, FSS, S-SAL, cloud sizes
and numbers. This difference is more clear for τcp = 10 min and τcp = 20 min, while the
measures for τcp = 20 min and τcp = 30 min are more similar. For αcp = 0.15 (instead of
0.2), the response to changes in τcp are comparable (Fig. 47, dashed lines).

With regard to αcp, an increase in αcp - resulting in larger target w0 - seems to increase
precipitation amount (e.g., for τcp = 30 min, green lines). If τcp is reduced too much, or
αcp increased too much, a stronger, nonlinear response occurs: for αcp = 0.3, τcp =
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Figure 47: Time series of domain averaged precipitation (a) and fracion skill score (b) for differ-
ent parameters of αcp and τcp. The bold dark grey lines display the reference simulation,
the bold light grey line the radar observations and colored lines CPP configurations with
different τcp and αcp but otherwise default settings.

10 min, i.e., the blue, dotted line, precipitation impact is already strong at 7:00 UTC
but then reduced during the day joint with a strong loss of FSS. This suggests that the
perturbations are too strong, resulting in spurious gravity waves, convection and other
nonlinear responses that cause a loss of precipitation and skill. We have also considered
S-SAL, cell sizes and numbers, but the behavior is mostly similar to the one displayed
in Fig. 44 and hence not shown for different αcp.

Overall, these responses to changes in τcp correspond to our expectations: Reduced
τcp will cause a faster imposition of the target ∆w, hence larger perturbations per time
step, and subsequently larger precipitation impact. Increases in αcp result in larger tar-
get w0 and hence also in larger perturbations per time step and a larger precipitation
impact. If the perturbations are imposed too fast, or the target w0 is too large, however,
the simulations break down, nonlinear effects occur, and comparability to the reference
simulation is lost.

sensitivity to k re f The precipitation response to changes in kre f - the height level
up to which wmax is searched for and the perturbations are imposed - is displayed in
Fig. 48a. For an increase in height from level number 38 to 36 (from ≈1 km to ≈1.5 km),
the impact increases. As the perturbations extend higher up, the probability of initiating
new convection is likely enhanced. A further increase in height to kre f = 34 (≈1.9 km),
however, does not seem to enhance the precipitation response any further. We suggest,
however, that kre f should be chosen as the expected height of the cold pool gust front.

sensitivity to w∗max The precipitation response to changes in w∗max - the minimum
wmax that is required for CPP - is displayed in Fig. 48b. If we increase w∗max to 0.7 m s−1,
fewer grid points will be perturbed, and we find a slightly reduced response in precip-
itation. If we reduce w∗max to 0.3 m s−1, more grid points with weaker vertical velocities
will be perturbed. Interestingly, for this situation, the overall precipitation amplitude is
also reduced. However, deviations from the reference simulation occur already in the



94 cold pool driven convective initiation (ii)

03 06 09 12 15 18 21 00

Time [HH UTC]

0.1

0.2

0.3

Pr
e
ci

p
it
a
ti
o
n
 [

m
m
h

1
]

kref
kref34
kref36
kref38

(a) (b)

03 06 09 12 15 18 21 00

Time [HH UTC]

0.1

0.2

Pr
e
ci

p
it
a
ti
o
n
 [

m
m
h

1
]

w*max [ms 1]
0.3
0.5
0.7

Figure 48: Time series of domain averaged precipitation for different simulations where (a) kre f
and (b) w∗max is changed. The specified model levels 38, 36 and 34 for kre f correspond ap-
proximately to 1, 1.5 and 1.9 km heights. The bold dark grey lines display the reference
simulation, the bold light grey line the radar observations and colored lines CPP configu-
rations with different kre f and wmax∗ but otherwise default settings.

morning, and a substantial reduction in FSS occurs (not shown). This is again an indi-
cation that the perturbations are too strong and acting at grid points, which may not
be related to cold pool gust fronts. We conclude that w∗max ≈ 0.5 is a reasonable value,
with a small sensitivity for higher values, but a break down of the CPP scheme with
lower values.

6.3.5 10 day period

We now apply the CPP scheme on the ten days also used in Chapter 3 to evaluate the
robustness of our results to other days and the adaptation of the scheme on different
synoptic conditions. As in Chapter 3, we separate the ten days into five days with
stronger synoptic forcing and five days with weaker synoptic forcing. The diurnal cycle
of precipitation for the default CPP displayed in Fig. 49a (blue line) shows a similar
impact as observed for 5 June 2016 for the weakly forced days: the precipitation is
enhanced especially in from 15 to 19 UTC and thereby reduces the bias with regard to
observations. Some small overestimation of precipitation now even occurs around 17

and 22 UTC. These are, however, small relative to the bias in the reference simulation.
For the strongly forced period, the impact of CPP is small.

The FSS behaves similarly to the domain averaged precipitation (Fig. 49b). For weakly
forced days, CPP improves the FSS from 14 to 23 UTC by up to 0.05. For the strongly
forced days, the impact is small, but small improvements can be seen from 15 UTC
onward. We have further evaluated the S-SAL score, cloud sizes and numbers, and the
impact of CPP is similar to the impact on precipitation amount and FSS concerning the
timing and the degree of improvements. An alternative CPP simulation with αcp = 0.3
and τcp = 30 min behaves very similarly (light organge lines in Fig. 49).

We summarize that the impact of CPP on the weakly forced days is comparable
to our findings for 5 June 2016, although somewhat weaker, while the impact on the
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Figure 49: Diurnal cycle of domain averaged precipitation (a) and FSS (b) averaged over the four
weakly and four strongly forced days. For the FSS, a precipitation threshold of 0.1 mm h−1

and a scale of 227 km have been used. We have tested different settings as well, but the
qualitative impact of CPP is not sensitive for most settings.

strongly forced days is small. Due to weaker surface heating or stratiform precipitation
during the strongly forced period, we expect cold pools to be weaker and less frequent.
Joint with weaker CAPE and stronger synoptic forcing for convection, cold pools are
expected to be less critical for the initiation of convection during the strongly forced
period. This can explain the weak impact of CPP for these days.

6.3.6 Combining CPP with PSP2

We now further evaluate the combined impact of PSP2 and CPP, denoted as PSP2+CPP.
For comparison, we have also included the PSP2 run with the settings concluded from
Chapter 3 in Fig. 49. For the combined simulation, however, we rescaled the amplitude
of PSP2 from αtuning = 1.5 to αtuning = 1 to yield comparable precipitation amplitudes.
From Fig. 49a we can indeed confirm, that both characteristics of PSP2 and CPP are visi-
ble in the combined simulation: the onset of precipitation is shifted slightly towards the
morning in comparison to the CPP or the reference simulation; the afternoon/evening
precipitation amount is increased towards more realistic values in comparison to the
PSP2 or the reference simulation for the weakly forced period. For the strongly forced
period, a considerable increase in precipitation amplitude is visible for the combined,
PSP2+CPP simulation in comparison to the PSP2 simulation, although only a small in-
crease is visible for CPP in comparison to the reference simulation. Considering Fig. 49b,
the FSS of PSP2+CPP is considerably improved for the weakly forced period compared
to the reference simulation and exceeds both CPP and PSP2 for most of the time.
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6.4 discussion

In this chapter, we developed deterministic perturbations for the three wind compo-
nents with the incentive to strengthen cold pool gust fronts and thereby enhance the af-
ternoon/evening precipitation and organization of convection. The perturbations were
designed so that the vertical velocity in the lowest kilometer at cold pool gust fronts con-
verges towards a target vertical velocity, which was obtained from dimensional analysis
and estimated by local buoyancy gradients.

6.4.1 Benefits for precipitation

Example fields of vertical velocity revealed stronger updrafts at cold pool gust fronts
with CPP compared to the reference simulation. Afternoon/evening precipitation is en-
hanced, and FSS improved by CPP. Both S-SAL and cloud size and numbers improved
to a small amount for the CPP simulations, which provide proxies for area-based or-
ganization. These results confirmed that CPP indeed achieves the original goals of the
scheme.

These generally positive results were further confirmed on five weakly forced days,
although to a lesser extent. The impact of CPP on five strongly forced days is weak, as
expected, due to the assumed weaker role of cold pools for convective initiation. Hence,
the design and settings of CPP, which we developed/chose based on 5 June 2016, are
also applicable to other situations, and CPP adapts well to different situations.

Furthermore, we tested how sensitive the impact of CPP is to changes in some of
the CPP settings. As the most direct tuning parameters of CPP, reducing the time scale
τcp or enhancing αcp results in stronger perturbations and impacts of CPP. We found
further sensitivities to other parameters, but we recommend their default values based
on physical reasoning. If the chosen settings result in unusually high perturbation am-
plitudes, i.e., by using too small τcp, w∗max or too large αcp, spurious gravity waves,
convection and other artifacts arise, and the simulations lose their comparability to the
reference simulation. Such settings should be avoided. We hope this sensitivity study
will give some guidance for future applications with CPP on which settings to choose.

The combined impact of CPP with the PSP2 scheme provides an additional high-
light, as the combined simulation outperformed both singularly perturbed simulations.
The results confirm the complementary behavior of the two process-based perturbation
schemes PSP2 and CPP, and hence also the relevance of boundary-layer turbulence and
cold pools for initiating convection. We can envision modeling frameworks where a
multitude of complementary, process-level perturbation schemes can be combined to
improve weather forecasts. Such frameworks may also enable a better evaluation of the
relevance of single processes or their interactions.

6.4.2 Other impacts of CPP

Aside from precipitation, we also identified impacts of CPP on other aspects, namely
on cold pools, land-sea breezes and horizontal wind fields.
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Example θv fields near the surface suggest that cold pools are stronger with CPP. A
proper quantification of this effect is currently addressed in a Bachelor thesis, where
the cold pool detection algorithm from the previous chapter (Chapter 5) is applied to
the here used COSMO simulations. Preliminary results indeed confirm this indication.
Such strengthening of the cold pools by CPP hints at a feedback loop by which stronger
cold pool driven convective initiation by CPP strengthens the convection within the
original cold pools and thereby the cold pool itself. This feedback loop has further been
mentioned by Böing et al. (2012); Schlemmer and Hohenegger (2014).

These θv fields further displayed an impact on the land-sea breeze, where CPP was
also active. As the land-sea breeze is also a form of a density current (e.g., Moncrieff
and Liu, 1999), we expect a similar resolution sensitivity as for cold pools. In addition,
land-sea breezes can also initiate new convection. These similarities between cold pool
gust fronts and land-sea breezes suggest that it may be indeed appropriate to apply
CPP to land-sea breezes. Further investigation will be necessary to identify whether
land-sea breezes are indeed insufficiently resolved at km-scales and whether the CPP
scheme is an appropriate solution. This includes the applicability of the CPP settings,
such as the height scale H = 200 m for land-sea breezes.

We further found an impact of CPP on the horizontal wind fields in the lowest
two kilometers where the w-perturbations change strongest with height. The structure
of this impact suggest that the positive, vertical velocity perturbations require a con-
vergent flow near the surface, where the w-perturbations increase with height, and a
divergent flow at ≈ 1.5 km, where the w-perturbations decrease with height to satisfy
3d non-divergence. Due to the very localized w-perturbations, we expected the com-
pensating horizontal flow to be small. Unfortunately, this seems not to be the case.
Nonetheless, we do not expect that this behavior has a strong effect on precipitation:
the strength of the vertical velocity should be the primary mechanism for convective
initiation, and, as the effect is localized to few height levels in the boundary layer, con-
vective updrafts in the free troposphere should not be affected. Also, the positive impact
on the spatial distribution of precipitation implies that the large scale situation is still
sufficiently represented. For the operational application of CPP, however, other aspects,
e.g., transport of pollutants in the boundary layer, have to be considered as well, which
may be negatively affected by the current impact of CPP on the horizontal wind fields.
Hence, a reduction of this impact is desireable for the future. A possible solution could
be to include compensating subsidence nearby cold pool gust fronts.

6.4.3 Future steps

Above, we already described possible actions to improve the current CPP scheme, most
importantly, addressing the impact on the horizontal wind. Two other steps that should
be carefully considered are the modification of CPP for scale adaptivity and a compre-
hensive tuning of the model joint with CPP.

As scale adaptivity is a crucial feature for grey zone parameterizations (see Sec. 1.2.1),
it is worth considering the applicability of the current CPP for different model resolu-
tions. Certainly, CPP should only be applied if the models can explicitly resolve cold
pools and deep convection. This likely limits CPP to resolutions below ten or even
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five kilometers. Nevertheless, the parameters chosen here will likely be required to be
adapted. w∗max is expected to depend on model resolution as vertical velocity gener-
ally depends on it (Weisman et al., 1997; Pauluis and Garner, 2006; Morrison, 2016a,b;
Jeevanjee and Romps, 2016; Jeevanjee, 2017). Theoretically derived relationships for w
and grid size, however, already exist (e.g., Jeevanjee, 2017) and could be used to formu-
late a scale-dependent w∗max. Similarly, the threshold to exclude orographic grid points
µ∗sso could be formulated using scaling laws of orography. As cold pool strengths also
appear to be sensitive to resolution (see chap. 5), gradients of θv will change as well.
Despite the expected, weak sensitivity of the CPP impact to θ∗v,g, the chosen threshold
for θ∗v,g may have to be adapted for different model resolutions. If no theoretical for-
mulation can be found, empirical relationships could be used to find a scale adaptive
formulation of θ∗v,g. Simulations with different model resolutions will then allow insight
on the scale adaptivity of CPP.

We emphasize that current models have been tuned over years - and sometimes
even decades - to best fit observations. The arising presence of compensating errors is
widely acknowledged (e.g., Palmer and Weisheimer, 2011; Mauritsen et al., 2012; Hanley
et al., 2015; Berner et al., 2017; Hourdin et al., 2017), and challenges the development of
process-based schemes such as CPP. One aforementioned example includes the tuning
of the turbulent lenght scale tur_len to improve precipitation forecasts at the expense
of temperature biases (Baldauf et al., 2011; Schraff et al., 2016). By providing process-
based schemes instead, we hope that the physical processes will be represented more
realistically, and resulting model responses will occur for the right reasons. Another
approach that could prove beneficial with regard to cold pools is the use of a two-
moment microphysics scheme, which allows for a more sophisticated representation of
cloud condensation and evaporation processes. But to obtain a useful model setup with
CPP and a two-moment microphysics scheme, parameters of both schemes have to be
tuned simultaneously. Ideally, such process-based schemes, including also PSP2, should
be incorporated in the comprehensive tuning process of operational models before they
can be used operationally. This is a costly endeavor, beyond the scope of any researcher.
We hope we have given enough reasons for national weather centers to take over.

In summary, to address our posed research goals, we successfully developed a cold
pool parameterization which strengthens cold pool gust fronts and - to all appearances
- thereby enhances cold pool driven convective initiation. As anticipated, the late after-
noon/evening precipitation improves for weakly forced situations, and enhanced orga-
nization is indicated. Further development and evaluation may be necessary to ensure
scale adaptivity and to quantify unforeseen side effects.
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S U M M A RY A N D C O N C L U S I O N S

7.1 summary

Some of the largest problems of convective precipitation forecasts in state-of-the-art,
convection-permitting models are biases in the diurnal cycle and the organization of
convection. A large portion of theses deficits is currently ascribed to the insufficient rep-
resentation of processes leading to convective initiation. These processes occur in the
boundary layer and are mostly too small to be sufficiently resolved even by convection-
permitting models. This thesis has contributed to this unsettled research topic - regard-
ing the deficiency in convective initiation - by identifying model deficits and potential
solutions. Specifically, three of the most important processes for convective initiation
have been considered in detail, namely boundary-layer turbulence, subgrid-scale orog-
raphy and cold pools.

representing boundarylayer turbulence variability Turbulence is a ubiq-
uitous process in convective boundary layers and tightly coupled to convective initia-
tion. Km-scale models traditionally include turbulence in deterministic, parameterized
form, i.e., the mean impact on the resolved scales is considered. As the subgrid variabil-
ity of turbulence can be crucial for convective initiation, the PSP scheme was introduced
by Kober and Craig (2016) to account for this subgrid variability in a stochastic manner
and to enhance convective initiation. In the first part of this thesis, four modifications
of this scheme were considered to improve its physical consistency and reduce un-
wanted side effects. These included an autoregressive, continuously evolving random
field; a limitation of the perturbations to the boundary layer that removes artificial con-
vection at night; a mask that turns off perturbations in precipitating columns to retain
coherent structures; and non-divergent wind perturbations that drastically increase the
effectiveness of the vertical velocity perturbations. In a revised version, PSP2, the com-
bined modifications retain the physically-based coupling to the boundary-layer scheme
while being physically more consistent. In addition, the spatial structure of the simu-
lated precipitation cells was improved and spurious night-time precipitation reduced.
Overall, this scheme has the potential to improve predictions of convective initiation in
kilometer-scale models while minimizing other biases.

representing lifting by subgrid-scale orography Orography is an unde-
niable trigger for convective initiation by a range of different mechanisms. In km-scale
models, a large part of the orography is explicitly included, and the relevance of small
scale, i.e., subgrid-scale orography, for convective initiation is ambiguous. Nonetheless,
we developed a stochastic scheme to include the effect of mechanical lifting by subgrid-
scale orography, the SSOSP scheme. The mechanical lifting effect was chosen as the

99
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most direct effect and approximated by gravity wave formalism and information on
subgrid-scale orography. While a clear increase in convective initiation over orographic
regions was possible by the SSOSP scheme, this usually coincided with an undesired
impact also on non-orographic regions. We concluded, that too large perturbation am-
plitudes were necessary to see a substantial impact and that most likely, subgrid-scale
orography is not of primary relevance in the presence of resolved orography. Hence,
we will focus from now on more on PSP2 and cold pools.

In both the PSP2 and the SSOSP stochastic perturbations were chosen to better rep-
resent subgrid-scale distributions in the grey zone. This combination of process-level
perturbations and stochastic components is rare and innovative. It enables the reduc-
tion of model errors by noise-induced drift, for instance by improving precipitation
amplitudes or the diurnal cycle of precipitation; but also it facilitates the quantification
of model uncertainty at its source, which is crucial - yet uncommon - for reliable ensem-
bles. For example, the commonly used stochastic approaches SPPT (Buizza et al., 1999)
and SKEBS (Shutts, 2005) only facilitate the increase in ensemble spread without any
attribution to specific, physical processes.

cold pool driven convective initiation The two most notable chapters of
this thesis are concerned with cold pool driven convective initiation. Cold pools provide
triggering mechanism nearby already existing convection and thereby contribute to the
organization of convection. This further can prolong the lifetime of convection and be
an effective trigger mechanism in the late afternoon, which influences the diurnal cy-
cle of convection. Whether cold pools and their contribution to convective initiation
are properly represented in km-scale models was an open question. Hence, cold pool
driven convective initiation was investigated in the first of the two cold pool chapters
with a focus on the diurnal cycle and organization of convection and the sensitivity to
grid size. Simulations of the ICON-LEM model with grid sizes from 156 m to 625 m
over Germany were used. In these simulations, we identified cold pools, cold pool
boundaries and initiated convection. Cold pool driven convective initiation can be as
dominant as 50% of total convective initiation, in particular in the late afternoon. In
addition, cold pool related triggering is many times more efficient than without cold
pools. By comparing different model resolutions, we found that cold pools are more
frequent, smaller and less intense in lower resolution simulations. Furthermore, their
gust fronts are weaker and less likely to trigger new convection. To identify how model
resolution affects this triggering probability, we used a linear causal graph analysis. In
doing so, we postulated a graph structure with potential causal pathways and then
applied multi-linear regression accordingly. Despite several possible indirect pathways,
we found one dominant, systematic effect: reducing grid sizes directly reduces upward
mass flux at the gust front, which causes weaker triggering probabilities. These findings
are expected to be even more relevant for km-scale, numerical weather prediction mod-
els. We expected that a better representation of cold pool driven convective initiation
will advance forecasts of convective precipitation.

Consequently, in the second cold pool chapter, we developed a deterministic cold
pool scheme to strengthen cold pool gust fronts and thereby improve cold pool driven
convective initiation in km-scale models. A target vertical velocity scale for cold pool
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gust fronts was derived using dimensional analysis and approximated based on lo-
cal buoyancy gradients. Vertical velocity perturbations were then imposed so that the
model vertical velocity at cold pool gust fronts converges towards this target scale. In
addition, horizontal wind components were perturbed in a 3d non-divergent manner
as for PSP2 and SSOSP. Our results showed that cold pool gust fronts are strengthened
by CPP and - to all appearances - enhances cold pool driven convective initiation. As
anticipated, the late afternoon/evening precipitation is improved for weakly forced situ-
ations and indications for enhanced organization were found. Further development and
evaluation may be necessary to ensure scale adaptivity and to quantify and eliminate
side effects.

In addition, we evaluated the combined use of both PSP2 and CPP, as they represent
two complementary processes. Such a combined simulation revealed the benefits of
both schemes, with an earlier onset of convection and improved afternoon/evening
precipitation. This confirms the possibility, that process-based schemes can be used in
an additive way to yield quasi-additive improvements of the forecasts.

7.2 future steps for psp2 and cpp

For now, we have focused on understanding the systematic changes caused by the
perturbation schemes rather than on absolute forecast scores. Thus, whether PSP2 or
CPP18 will improve forecasts still needs to be fully determined before they can be used
in operational weather forecasts. To do so, the following steps to further evaluate and
develop the schemes are advisable.

1. As the operational use and development of the here used COSMO-DE model
will be migrated to the ICON model in the future (personal communication with
DWD), so should PSP2 and CPP. First pursuits to transfer PSP2 to the ICON model
are currently underway, but new challenges due to an irregular grid structure in
ICON arise.

2. The computational efficiency of the schemes will likely have to be improved. This
can be achieved by improving the computational implementation of the schemes,
or by allowing approximations of some of the more cost-intensive aspects of the
schemes. This will be a priority for implementing PSP2 in ICON.

3. The schemes should be tested at different model resolutions to evaluate their
scale adaptivity, a greatly desirable characteristic (see Section 1.2.1). Additional
development will likely be required to satisfy it.

4. Simulations using a full ensemble prediction system over a sufficiently long time
period are necessary to thoroughly validate the impact of the schemes. This should
include data assimilation, a comprehensive selection of different weather situa-
tions, and comparison to observations.

5. A retuning of other model parameters will likely be necessary. Dealing with a
highly complex model with dozens of adjustable parameters inevitably conjures

18 As we have not found any potential benefit of the SSOSP scheme, I will concentrate on PSP2 and CPP.
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up the curse of model tuning (Palmer and Weisheimer, 2011; Mauritsen et al., 2012;
Hourdin et al., 2017). Over many years the parameters in an operational model are
modified to achieve the best forecast scores. This most likely invoked a multitude
of compensating errors. Introducing more physical parameterizations, therefore,
demands a careful retuning of the parameters.

Most of these steps are of technical nature and should be addressed by the capacities
and expertise of national weather services. We hope that, by now, national weather
services have been convinced of the potential benefits of PSP2 and CPP to continue
further development. In fact, the promises of the PSP scheme have motivated the Ger-
man, Swiss and British weather services to adapt similar schemes for testing (personal
communications with DWD, MeteoSwiss and MetOffice). Also, in a current project by
DWD, the SINPHONY project (Deutscher Wetterdienst, 2020), plans exist to integrate
PSP2 in their new setup (personal communications).

7.3 conclusions

The research presented in this dissertation contributes to open research topics in dif-
ferent ways. We provided answers to the open research questions concerning the sub-
ordinate relevance of small scale orography for convective initiation or the resolution
sensitivity of cold pools and cold pool driven convective initiation. Such improved un-
derstanding helped us, but will likely also help others in directing their research. Fur-
thermore, we developed three different schemes, PSP2, SSOSP and CPP, which provide
novel approaches to address boundary-layer turbulence, subgrid-scale orography, cold
pools, convective initiation and model uncertainty. The specific advantage of PSP2 lies
in the combination of a stochastic component and its process-level, physically-based
design, which not only reduces biases but also allows the quantification of uncertainty
at its source. The CPP scheme provides another, notable innovation on how cold pools
can be better represented at grey zone resolutions. By combining both PSP2 and CPP
we confirmed their quasi-additive benefits, which helps to improve convective initiation
in a more realistic, flow-dependent way, without the requirement to compensate errors
with other processes and tuning. Importantly, PSP2 and CPP showed clear positive
impacts on precipitation.

By developing these schemes, we substantially improved the representation of con-
vective initiation in convection-permitting models. We comprehensively included pro-
cesses relevant for convective initiation. At this point, we do not expect further, mea-
surable benefits of including more processes or developing different schemes. Land-sea
breezes, for instance, are already partially addressed by the CPP scheme, and other
processes will likely only marginally impact convective initiation. Nonetheless, not all
biases in convective precipitation forecasts were eliminated by the improved represen-
tation of convective initiation in this thesis. For further improvements in convective
precipitation, aspects other than convective initiation should now be considered. The
currently most promising aspects are better representations of microphysical processes,
advancing convective-scale data assimilation and making good use of ensemble simu-
lations.
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Microphysical processes, such as evaporation, condensation and droplet formation,
are often represented by single-moment microphysics schemes and are likely the most
crudely approximated processes in current numerical models, despite their relevance
for almost any weather situation. Using and developing two-moment microphysics
schemes, instead, allows a more sophisticated representation of these processes, which
may prove useful for the representation of clouds, convection and precipitation in the
future (Seifert and Beheng, 2006; Baldauf et al., 2011; Igel et al., 2015).

Convective scale data assimilation uses a growing network of convective scale ob-
servations in combination with previous forecasts to obtain better initial conditions for
current forecasts. Due to its youth (see, e.g., Schraff et al., 2016), its potential possibilities
are not yet fully exploited (Gustafsson et al., 2018). In addition, data assimilation further
requires reliable ensemble spread of the previous forecast, which is often missing and
hence artificially inflated. Zeng et al. (2020), for instance, showed that the use of the PSP
scheme within data assimilation cycling improves forecasts due to enhanced spread.
Further development of data assimilation techniques and their combination with new
techniques to quantify model uncertainty will likely benefit forecasting convection.

This already emphasizes the need for reliable ensembles. Most fundamentally, en-
sembles will allow the simulation and quantification of uncertainty. Then, the limits
of predictability can be detected and the reliability of the forecast quantified. Unfortu-
nately, finite computational capacities do not allow for sufficiently large ensembles for
operational weather forecasts. This leads to under-dispersive ensembles and spurious
correlations for data assimilation. Necker et al. (2020), however, has shown, that such
sampling errors can be reduced for small ensembles. Further research in improving con-
vective scale model spread, in correcting sampling errors and in determining necessary
ensemble sizes will benefit forecasts of convective precipitation.

In this dissertation, we have comprehensively improved the representation of convec-
tive initiation in convection-permitting models. This contributed to improved represen-
tation of convection itself and, thereby, will potentially benefit forecasts of precipitation
in the future. Such improved forecasts will allow more reliable and early warnings and
can help our society to make better decisions to reduce casualties, financial losses and
to improve our quality of life.

7.4 causal methods and their potential for improving nwp

This thesis contributed to the research community also on a methodological level. We
provided an example, how causal methods can be used with atmospheric modeling
data to better understand the simulation of underlying processes (cold pool driven con-
vective initiation). This gained understanding then helped to build a better parameteri-
zation (the CPP scheme). We believe, such a procedure has great potential to improve
the development of parameterizations and NWP in the future.

The formal theory of causality is still fairly new to atmospheric sciences and only a
small - but growing - number of applications exist. Recently, Nowack et al. (2020) used
causal networks to evaluate climate models and Krich et al. (2020) to better understand
biosphere-atmosphere interactions. The main advantage of the causal methods applied
in this thesis lies in the formal framework, which specifies how causal effects can be
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estimated from non-interventional data without the need for complex methods. Other
approaches even enable the detection of causal structures, i.e. causal discovery (Pearl,
2009). Developments of new approaches and generalizations are growing. Runge et al.
(2019), for instance, introduce an approach to detect nonlinear causal relationships in
time series data.

These causal methods are useful for observations, but also simulation data sets where
focused interventions are often not feasible. The increasing availability of computation-
ally expensive model output will provide new opportunities to explore the physical
processes controlling cumulus convection and many other weather phenomena across
a wide range of scales. Such data sets include the high-resolution simulations made
available by the HD(CP)2 project (Heinze et al., 2017; Stevens et al., 2019a) and the DYA-
MOND model intercomparison project (Stevens et al., 2019b), or very large ensembles as
in Necker et al. (2020). The gained process understanding can then be used, for instance,
to build better parameterizations.

Nonetheless, for high-dimensional, causal structures or interacting, nonlinear causal
relationships, the application of such causal methods can be complex, if not impossible.
Current developments of combining causal approaches with machine learning tech-
niques seem promising and may overcome some fundamental problems of both causal
and machine learning methods (see e.g. Athey, 2017; Schölkopf, 2019; Pearl, 2019). The
successful outcome of such developments will have great implications not only for nu-
merical weather prediction.
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D E TA I L S O N T H E C A U S A L A N A LY S I S

a.1 single door criterion for the causal model

We provide the outcome of applying the single door criterion (see Sec. 5.1) to our
causal structure (Fig. 35). Each set of adjustment variables that are necessary to estimate
the direct causal effects by means of linear regression is given in Table 4. The D in
brackets for the RI path marks a special situation: It is not necessary to include the
diurnal/synoptic variables for the RI path, because we have postulated that model
resolution does not impact the large scale situation. However, including it should not
affect the regression estimate either, unless this hypothesis is violated. In the following
section, we will also evaluate this hypothesis by comparing the regression estimates of
RI when the diurnal/synoptic conditions (D) are included or excluded.

a.2 sensitivity and robustness of the causal analysis

In this section we test the robustness of our causal analysis to some of the more impor-
tant assumptions used in constructing the graph.

evaluation of linear regression By evaluating some standard properties of
the applied linear regressions, some weak conclusions for our causal model can be
drawn. We focus here on the p-values, which contain similar information as the boot-
strapping, and the coefficients of determination R2 (Wilks, 2005).

The p-values, displayed in Fig. 50a, b, are mostly small (below 0.05), which suggest
that the estimated correlation coefficients differ significantly from zero. This implies
that the corresponding variables, that we have identified, are indeed correlated. It fol-
lows that the variables are not d-separated under the adjustment sets given in Table 4.
Consequently, there must be some causal connection between the selected variables.
This causal connection, however, does not have to correspond to our causal structure
(Pearl, 2009). Note that the RP and BP path (Fig. 50a) and a few path coefficients for
single days (Fig. 50b), do not yield small p-values and no causal connection can be
inferred.

The R2 values are given in Fig. 50c, d and characterize the relative amount of vari-
ability that can be explained by the predictors. For gust front mass flux and triggering
probability as predictands, the R2 values are approximately 0.4 (Fig. 50c), which im-
plies that a substantial part of their variability is included in our model. If separate
days are considered, the highest R2 values are ca. 0.8 (Fig.50d). Such high values con-
firm that a substantial part of the information necessary to determine the predictor has
been included. It is consequently less likely that we have missed influential common
drivers. Unfortunately, not all cases show such high R2 values. This can be problematic,
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Table 4: Estimation of direct path coefficients: To allow the estimation of path coefficients by
multiple linear regression estimates, adjustment sets need to be included. The necessary
adjustment sets are given by the single door criterion. They are then used as additional
predictors (together with the parent of the direct path) within the multiple linear regression
for predicting the child of the given path. For the RI path, the adjustment set [D] is not strictly
necessary, since no link between RD is assumed.

Path adjustment set

R -> I [ D ]

R -> B I, D

I -> B R, D

R -> G I, B, D

I -> G R, B, D

B -> G R, I, D

R -> P I, B, G, D

I -> P R, B, G, D

B -> P R, I, G, D

G -> P R, I, B, D

if the missing informative variables also influence other variables of our causal model
(common driver).

stratification by model resolution We can further evaluate the causal ef-
fects by using only two of three model resolutions. Corresponding causal effects are
displayed in Fig. 51. We find that no substantial differences exist whether 156m - 312m,
312m - 625m or 156m - 625m are compared. Hence, within the given range of model
resolution, the sensitivity to model resolution is indeed sufficiently linear.

stratification by days As described in Sec. 5.2 and 5.3, the causal effects can
also be evaluated for each day. The high variability in the RP path implied that the
large scale conditions influence the RP effect, violating our linearity assumption. Since
this is an important sensitivity it is discussed extensively in the main text in Chapter 5.

sensitivity of chosen synoptic variables We have specified six synoptic
variables that we use to describe the synoptic and diurnal situation. We have also con-
sidered several other variables (e.g., specific humidity or virtual potential temperature)
and used each variable separately. These modifications in the synoptic variables how-
ever, did not lead to any substantial deviations in the estimated direct and indirect path
coefficients from model resolution to triggering probability (not shown).
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(a) (b)

(c) (d)

Figure 50: The p (a, b) and R2 (c, d) values of the estimated path coefficients. (a, c) for all cold
pools and (b, d) when stratified according to the four different days. The whiskers of the
box plots correspond to the 95% confidence intervals from bootstrapping.

Figure 51: Aggregated path coefficients
computed using only two of the three
model resolutions. The whiskers of
the box plots correspond to the 95%
confidence intervals from bootstrap-
ping.
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d) Figure 52: Normalized path estimates for the impact of model res-

olution on cold pool intensity (RI path) by including or ex-
cluding the diurnal/synoptic variables (D) as adjustment set
for the linear regression. The whiskers of the box plots corre-
spond to the 95% confidence intervals from bootstrapping.

different variables The choice of variables used to specify the I- and G-node is
not unambiguous. Consequently we have evaluated several reasonable possibilities. We
have determined the I-node by the area-averaged intensity, area-integrated intensity or
the effective radius of the cold pools. To measure the gust front strength, we have con-
sidered 95th percentile vertical velocity and area-averaged or -integrated upward mass
flux within the cold pool boundaries. The different combinations of variables however
did not substantially impact the results of the causal path estimates (not shown).

impact of resolution on synoptic conditions Properly evaluating the ef-
fect of model resolution on the diurnal/synoptic conditions (RD) is not trivial, because
links between the different large scale variables are to be expected (this complicates the
identification). An indication that this RD effect is small is provided by the small, mostly
unsystematic differences between resolutions of each large scale variable (see Fig. 26).
Additionally, we can include or exclude the large scale variables when estimating the RI
path. If there is indeed no link between model resolution and diurnal/synoptic condi-
tions, both estimates will be equal. The corresponding two estimates for the RI path are
displayed in Fig. 52. The strongly overlapping distributions of the bootstrapping sam-
ple suggest, that the two estimates are not significantly different. Thus, it is reasonable
to neglect a causal connection between model resolution and synoptic conditions.
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Here, we give the full derivation for a characteristic vertical velocity scale W for cold
pool gust fronts, which is used in Chapter 5. We consider the inviscid, Boussinesque
approximated set of equations for the streamfunction Φ, vorticity η and vertical velocity
w in a two dimensional plane in x and z, which is often considered for density currents
(Rotunno et al., 1988; Weisman and Rotunno, 2004; Bryan and Rotunno, 2014b):

dη

dt
= − ∂b

∂x
,

∇2Φ = η,

w = −∂Φ
∂x

and

w =
dz
dt

.

We consider a parcel situated at a horizontal, time-independent buoyancy gradient ∂b
∂x

(i.e., a cold pool gust front). First, we non-dimensionalize the equations using character-
istic scales B, H, L, W, η∗, Φ∗ and non-dimensional variables denoted wtih a tilde-sign,
e.g. x̃:

b = Bb̃,
x = Lx̃,
z = Hx̃,
t = Tt̃,

w = Ww̃,
η = η∗η̃,

Φ = Φ∗Φ̃.

VII
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The non-dimensional variables here represent functions that depend only on other non-
dimensional variables. This gives the following, transformed set of equations:

dη̃

dt̃
= − BT

η∗L
· ∂b̃

∂x̃
,

∂Φ̃
∂x̃2 =

η∗

Φ∗( 1
L2 +

1
H2 )
· η̃,

w̃ = − Φ∗

WL
· ∂Φ̃

∂x̃
and

w̃ =
H

WT
· dz̃

dt̃
.

The dimensionless factors consisting only of characteristic scales on the right-hand side
can be set to equal 1, by determining values for η∗, φ∗, T and W accordingly:

η∗ =
BT
L

,

Φ∗ =
η∗

( 1
L2 +

1
H2 )

,

W =
Φ∗

L
,

T =
H
W

.

Substituting the first, second and last equation into the third, we obtain the following
relationship for W:

W =

√
BH

1 + L2

H2

,

which describes the characteristic, vertical velocity scale within a circulation driven by
horizontal buoyancy gradients and how it depends on both the horizontal and vertical
length scales L and H in addition to the characteristic buoyancy scale B. See Chapter 5

for further discussion, publications with similar W scalings and the approximation
for L

H ≈ 1. For a detailed introduction to dimensional analysis we refer the reader to
Barenblatt (2003) or Witelski and Bowen (2015).
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L I S T O F A B B R E V I AT I O N S

ar Autoregressive (process)

brn Bulk richardson number

cape Convectively available potential energy

cin Convective inhibition

cosmo COnsortium for Small-scale MOdeling

cpp Cold Pool Perturbations

dwd The German weather service (Deutscher Wetterdienst)

ecmwf European center for medium range weather forecasting

edmf Eddy diffusivity/mass flux

fss Fraction Skill Score

icon ICOsahedral Nonhydrostatic [model]

icon-lem ICON Large eddy model

les Large eddy simulations

lfc Level of free convection

lnb Level of neutral buoyancy

nwp Numerical weather prediction

pbl Planetary boundary layer

pdf Probability density function

psp Physically based stochastic perturbations

rdf Radial Distribution Function

sal Structure - Amplitude - Location

sso Subgrid-scale orography

ssosp SSO stochastic perturbations

IX
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Ruckstuhl Y, Janjić T. 2020. Combined state-parameter estimation with the letkf for
convective-scale weather forecasting. Monthly Weather Review 148(4): 1607–1628, doi:
10.1175/MWR-D-19-0233.1.

Runge J, Bathiany S, Bollt E, Camps-Valls G, Coumou D, Deyle E, Glymour C,
Kretschmer M, Mahecha MD, Muñoz-Marí J, van Nes EH, Peters J, Quax R, Reich-
stein M, Scheffer M, Schölkopf B, Spirtes P, Sugihara G, Sun J, Zhang K, Zscheischler
J. 2019. Inferring causation from time series in Earth system sciences. Nature Commu-
nications 10(1): 2553, doi: 10.1038/s41467-019-10105-3.

Runge J, Petoukhov V, Donges JF, Hlinka J, Jajcay N, Vejmelka M, Hartman D, Marwan
N, Paluš M, Kurths J. 2015. Identifying causal gateways and mediators in complex
spatio-temporal systems. Nature communications 6: 8502, doi: 10.1038/ncomms9502.

Sakradzija M, Seifert A, Dipankar A. 2016. A stochastic scale-aware parameterization
of shallow cumulus convection across the convective gray zone. Journal of Advances in
Modeling Earth Systems 8(2): 786–812, doi: 10.1002/2016MS000634.

Samarasinghe SM, McGraw MC, Barnes EA, Ebert-Uphoff I. 2019. A study of links
between the Arctic and the midlatitude jet stream using Granger and Pearl causality.
Environmetrics 30(4): e2540, doi: 10.1002/env.2540.

Schär C, Fuhrer O, Arteaga A, Ban N, Charpilloz C, Di Girolamo S, Hentgen L, Hoefler
T, Lapillonne X, Leutwyler D, Osterried K, Panosetti D, Rüdisühli S, Schlemmer L,
Schulthess T, Sprenger M, Ubbiali S, Wernli H. 2019. Kilometer-scale climate models:
Prospects and challenges. Bulletin of the American Meteorological Society doi: 10.1175/
BAMS-D-18-0167.1.

Schättler U, Doms G, Schraff C. 2016. A description of the nonhydrostatic regional
COSMO model, Part VII: User’s guide, Consortium for Small-Scale Modelling
(COSMO). Deutscher Wetterdienst, Offenbach, Germany .

Schlemmer L, Hohenegger C. 2014. The formation of wider and deeper clouds as a
result of cold-pool dynamics. Journal of the Atmospheric Sciences 71(8): 2842–2858, doi:
10.1175/JAS-D-13-0170.1.

Schölkopf B. 2019. Causality for machine learning. arXiv preprint; arXiv:1911.10500v2 .

Schneider L, Barthlott C, Barrett AI, Hoose C. 2018. The precipitation response to vari-
able terrain forcing over low mountain ranges in different weather regimes. Quarterly
Journal of the Royal Meteorological Society 144(713): 970–989, doi: 10.1002/qj.3250.



Bibliography XXIII

Schraff C, Reich H, Rhodin A, Schomburg A, Stephan K, Periáñez A, Potthast R. 2016.
Kilometre-scale ensemble data assimilation for the COSMO model (KENDA). Quar-
terly Journal of the Royal Meteorological Society 142(696): 1453–1472, doi: 10.1002/qj.
2748.

Seifert A, Beheng KD. 2006. A two-moment cloud microphysics parameterization for
mixed-phase clouds. Part 1: Model description. Meteorology and Atmospheric Physics
92(1-2): 45–66, doi: 10.1007/s00703-005-0112-4.

Senf F, Klocke D, Brueck M. 2018. Size-Resolved Evaluation of Simulated Deep Tropical
Convection. Monthly Weather review 146(7): 2161–2182, doi: 10.1175/MWR-D-17-0378.
1.

Shutts G. 2005. A kinetic energy backscatter algorithm for use in ensemble prediction
systems. Quarterly Journal of the Royal Meteorological Society 131(612): 3079–3102, doi:
10.1256/qj.04.106.

Siebesma AP, Soares PMM, Teixeira J. 2007. A Combined Eddy-Diffusivity Mass-Flux
Approach for the Convective Boundary Layer. Journal of the Atmospheric Sciences 64(4):
1230–1248, doi: 10.1175/JAS3888.1.

Squitieri BJ, Gallus WA. 2020. On the forecast sensitivity of mcs cold pools and related
features to horizontal grid spacing in convection-allowing wrf simulations. Weather
and Forecasting 35(2): 325–346, doi: 10.1175/WAF-D-19-0016.1.

Stensrud DJ. 2007. Parameterization Schemes, vol. 9780521865. Cambridge University
Press: Cambridge, ISBN 9780511812590.

Stevens B, Acquistapace C, Hansen A, Heinze R, Klinger C, Klocke D, Schubotz W,
Windmiller J, Team HAV. 2019a. Large-eddy and Storm Resolving Models for Climate
Prediction - The Added Value for Clouds and Precipitation. Journal of the Meteorologi-
cal Society Japan in review.

Stevens B, Satoh M, Auger L, Biercamp J, Bretherton C, Düben P, Judt F, Khairoutdinov
M, Klocke D, Kornblueh L, Kodama C, Neumann P, Lin S, Putman WM, Röber N,
Shibuya R, Vidale P, Wedi N. 2019b. DYAMOND: The DYnamics of the Atmospheric
general circulation Modeled On Non-hydrostatic Domains. Prog. In Earth and Planet.
Sci : 1–18.

Stull RB. 1988. An introduction to boundary layer meteorology. Kluwer Academic Publish-
ers, ISBN 9027727686.

Tan Z, Kaul CM, Pressel KG, Cohen Y, Schneider T, Teixeira J. 2018. An Extended
Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Tur-
bulence and Convection. Journal of Advances in Modeling Earth Systems 10(3): 770–800,
doi: 10.1002/2017MS001162.

Tang SL, Kirshbaum DJ. 2020. On the sensitivity of deep-convection initiation to
horizontal grid resolution. Quarterly Journal of the Royal Meteorological Society doi:
10.1002/qj.3726.



XXIV Bibliography

Thuburn J, Efstathiou GA, Beare RJ. 2019. A two-fluid single-column model of the
dry, shear-free, convective boundary layer. Quarterly Journal of the Royal Meteorological
Society 145(721): 1535–1550, doi: 10.1002/qj.3510.

Thuburn J, Weller H, Vallis GK, Beare RJ, Whitall M. 2018. A Framework for convection
and boundary layer parameterization derived from conditional filtering. Journal of the
Atmospheric Sciences 75(3): 965–981, doi: 10.1175/JAS-D-17-0130.1.

Tomassini L, Honnert R, Efstathiou G, Lock A, Siebesma AP. 2019. Second phase of
the Grey Zone Project. URL https://www.metoffice.gov.uk/research/approach/

collaboration/grey-zone-project/index, accessed 2019-09-24.

Tompkins AM. 2001. Organization of Tropical Convection in Low Vertical Wind Shears:
The Role of Water Vapor. Journal of the Atmospheric Sciences 58(6): 529–545, doi: 10.
1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

Torri G, Kuang Z. 2019. On Cold Pool Collisions in Tropical Boundary Layers. Geophys-
ical Research Letters 46(1): 399–407, doi: 10.1029/2018GL080501.

Torri G, Kuang Z, Tian Y. 2015. Mechanisms for convection triggering by cold pools.
Geophysical Research Letters 42(6): 1943–1950, doi: 10.1002/2015GL063227.

Trapp RJ. 2013. Mesoscale-convective processes in the atmosphere. Cambridge University
Press.

Tucker DF, Crook NA. 2005. Flow over heated terrain. Part II: Generation of convective
precipitation‘. Monthly Weather Review 133(9): 2565–2582, doi: 10.1175/MWR2965.1.

Turcotte DL. 1987. A fractal interpretation of topography and geoid spectra on the Earth,
Moon, Venus, and Mars. Journal of Geophysical Research: Solid Earth 92(B4): E597–E601,
doi: 10.1029/JB092iB04p0E597.

Vallis GK. 2017. Atmospheric and oceanic fluid dynamics: Fundamentals and large-scale circu-
lation, second edition. Cambridge University Press: Cambridge, ISBN 9781107588417.

Vissio G, Lucarini V. 2018. A proof of concept for scale-adaptive parametrizations:
the case of the Lorenz ’96 model. Quarterly Journal of the Royal Meteorological Society
144(710): 63–75, doi: 10.1002/qj.3184.

Vogelezang DHP, Holtslag AAM. 1996. Evaluation and model impacts of alternative
boundary-layer height formulations. Boundary-Layer Meteorology 81(3-4): 245–269, doi:
10.1007/BF02430331.

von Kármán T. 1940. The engineer grapples with nonlinear problems. Bulletin of the
American Mathematical Society 46(8): 615–684, doi: 10.1090/S0002-9904-1940-07266-0.

Wagner JS, Gohm A, Rotach MW. 2014. The Impact of Horizontal Model Grid Reso-
lution on the Boundary Layer Structure over an Idealized Valley. Monthly Weather
Review 142(9): 3446–3465, doi: 10.1175/MWR-D-14-00002.1.

https://www.metoffice.gov.uk/research/approach/collaboration/grey-zone-project/index
https://www.metoffice.gov.uk/research/approach/collaboration/grey-zone-project/index


Bibliography XXV

Warner TT. 2010. Numerical Weather and Climate Prediction, vol. 9780521513. Cambridge
University Press: Cambridge, ISBN 9780511763243.

Weisman ML, Rotunno R. 2004. “A Theory for Strong Long-Lived Squall Lines” Revis-
ited. Journal of the Atmospheric Sciences 61(4): 361–382, doi: 10.1175/1520-0469(2004)
061<0361:ATFSLS>2.0.CO;2.

Weisman ML, Skamarock WC, Klemp JB. 1997. The resolution dependence of explicitly
modeled convective systems. Monthly Weather Review 125(4): 527–548, doi: 10.1175/
1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

Wernli H, Hofmann C, Zimmer M. 2009. Spatial forecast verification methods inter-
comparison project: application of the SAL technique. Weather and Forecasting 24(6):
1472–1484, doi: 10.1175/2009WAF2222271.1.

Wernli H, Paulat M, Hagen M, Frei C. 2008. SAL—A Novel Quality Measure for the
Verification of Quantitative Precipitation Forecasts. Monthly Weather Review 136: 4470–
4487, doi: 10.1175/2008MWR2415.1.

Wetzel PJ. 1982. Toward parameterization of the stable boundary layer. Journal of Applied
Meteorology 21(1): 7–13, doi: 10.1175/1520-0450(1982)021<0007:TPOTSB>2.0.CO;2.

Wilks DS. 2005. Statistical Methods in the Atmospheric Sciences. Academic Press, ISBN
0080456227.

Witelski T, Bowen M. 2015. Methods of mathematical modelling. Springer, ISBN 978-3-319-
23042-9.

Wright S. 1921. Correlation and causation. Journal of Agricultural Research 20: 557–585.

Wyngaard JC. 2004. Toward numerical modeling in the "Terra Incognita". Journal
of the Atmospheric Sciences 61(14): 1816–1826, doi: 10.1175/1520-0469(2004)061<1816:
TNMITT>2.0.CO;2.

Wyngaard JC. 2010. Turbulence in the Atmosphere. Cambridge University Press: Cam-
bridge, ISBN 9780511840524, doi: 10.1017/CBO9780511840524.

Yano JI. 2016. Subgrid-scale physical parameterization in atmospheric modeling: How
can we make it consistent? Journal of Physics A: Mathematical and Theoretical 49(28):
284 001, doi: 10.1088/1751-8113/49/28/284001.
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