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Summary 

Protein translocation into or across the endoplasmic reticulum (ER) membrane via the 

Sec translocon occurs either co-translationally or in a post-translational manner. 

Despite involved components being well investigated in yeast and humans, there is 

only scarce knowledge regarding the Arabidopsis Sec translocon. It is composed of 

the central Sec61 complex, the J-domain containing AtERdj2A/B and the luminal 

AtBiP. It additionally involves the recently described chaperone docking protein 

AtTPR7, the yet uncharacterised AtSec62 as well as cytosolic chaperones for post-

translational translocation. 

In this study, an atsec62 T-DNA insertion line was characterised revealing the 

importance of AtSec62 for vegetative and generative growth resulting in an altered root 

morphology, impaired growth and reduced male fertility in atsec62 probably due to the 

involvement of AtSec62 in protein translocation and subsequent secretion. atsec62 

displayed an increased susceptibility towards high-temperature and ER stress, 

indicating that it might be involved in ER stress recovery similar to human Sec62. In 

contrast to its yeast and human homologues, AtSec62 was shown to have an additional 

third transmembrane domain with its luminal exposed C-terminus being crucial for 

proper AtSec62 function in Arabidopsis.  

Potential AtSec62 interacting or associating proteins were identified, including other 

Sec translocon components like AtTPR7 and subunits of the Sec61 complex, the GET-

pathway proteins AtGET1 and AtGET3a and other proteins like AtATG8e, AtCNX1 and 

the tail-anchored protein AtSYP123. Moreover, the interaction of AtTPR7 with putative 

candidates for post-translational translocation like AtPYK10 and AtGLL23 was 

confirmed by in vitro pull-down assays.  

The investigation of AtSec62 topology as well as AtSec62 and AtTPR7 interacting 

proteins provides further insight into the composition of the Arabidopsis Sec post-

translocon and reveals potential translocation substrates. However, the exact function 

of respective components and the general mechanism of translocation still remain 

unknown and should be addressed in future studies. 
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Zusammenfassung 

Der Proteintransport in das endoplasmatische Retikulum (ER) erfolgt entweder co- 

oder post-translational mithilfe des Sec-Translocons. Obwohl die beteiligten Proteine 

in Hefe und im Menschen bereits charakterisiert wurden und entsprechend homologe 

Proteine auch in Pflanzen existieren, sind die Zusammensetzung des Translocons und 

der genaue Translokationsmechanismus dort noch weitgehend unerforscht. In 

Arabidopsis besteht das Sec-Translocon aus dem zentralen Sec61-Komplex, den 

Membranproteinen AtERdj2A/B sowie dem luminalen AtBiP. Darüber hinaus beinhaltet 

es das Rezeptorprotein AtTPR7, welches mit zytosolischen Chaperonen interagiert, 

und das noch unerforschte AtSec62.  

In dieser Arbeit wurde eine atsec62 T-DNA Insertionslinie charakterisiert, die eine 

veränderte Wurzelmorphologie, beeinträchtigtes Wachstum sowie eine reduzierte 

männliche Fertilität aufweist, was die Bedeutung von AtSec62 für den Proteintransport 

und die nachfolgende Proteinsekretion verdeutlicht. Eine erhöhte Empfindlichkeit der 

atsec62-Pflanzen gegenüber Hitze und ER-Stress weist zudem daraufhin, dass 

AtSec62 wie sein humaner Gegenspieler an der ER stress recovery beteiligt sein 

könnte. AtSec62 besitzt drei Transmembrandomänen und infolgedessen einen 

luminal-exponierten C-terminus, der für die Proteinfunktion in Arabidopsis essentiell 

ist.  

Darüber hinaus wurden potentielle AtSec62 Interaktionspartner oder AtSec62 

assoziierte Proteine identifiziert. Dazu zählen beispielsweise andere Proteine des Sec-

Translocons wie AtTPR7 und Untereinheiten des Sec61-Komplexes, AtGET1 und 

AtGET3a sowie AtATG8e, AtCNX1 und das tail-anchored AtSYP123. Zudem wurde 

die Interaktion zwischen AtTPR7 und Kandidaten für den post-translationalen 

Proteintransport wie AtPYK10 und AtGLL23 bestätigt.   

Die Topologie von AtSec62 und die Identifikation möglicher AtSec62 und AtTPR7 

Interaktionspartner gewähren nicht nur tiefere Einblicke in die Zusammensetzung des 

Sec-Translocons in Arabidopsis, sondern zeigen auch mögliche Substrate für den 

Proteintransort auf. Dennoch sind sowohl die genaue Funktion der jeweiligen Proteine 

als auch der genaue Translokationsmechanismus weiterhin unbekannt und sollten in 

zukünftigen Experimenten genauer untersucht werden.    
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1. Introduction 

1.1. Protein translocation at the endoplasmic reticulum membrane 

To reach their final destination within the cell, membrane and secretory proteins that 

are synthesised on cytosolic ribosomes need to be transported into or across the 

endoplasmic reticulum (ER) membrane for processing and further transport via the 

Golgi apparatus. In contrast to chloroplasts and mitochondria, translocation of 

preproteins at the ER membrane can occur either co- or post-translationally (reviewed 

by Rapoport 2007, Cross et al. 2009, Hegde and Keenan 2011, Zimmermann et al. 

2011, Aviram and Schuldiner 2017, Linxweiler et al. 2017, Van Puyenbroeck and 

Vermeire 2018). 

Proteins destined for secretion or targeted to the ER lumen usually display an N-

terminal, cleavable signal sequence harbouring a section of seven to twelve 

hydrophobic amino acids, whereas membrane proteins feature at least one 

transmembrane domain (TMD) of around 20 hydrophobic amino acids (Ng et al. 1996, 

Park and Rapoport 2012, Ast et al. 2013, Schibich et al. 2016). Both signals can be 

recognised by the signal recognition particle (SRP) and allow guidance to the ER 

membrane (Park and Rapoport 2012). In addition, so called tail-anchored (TA) proteins 

harbour a hydrophobic TMD at their very C-terminus which is only exposed shortly 

before translation is terminated thereby depending on post-translational translocation 

(Borgese and Gaetani 1983, Aviram and Schuldiner 2017). 

Depending on their signal sequence, preproteins use different translocation and 

insertion pathways at the ER membrane. However, all following pathways include 

cytosolic factors for substrate recognition – during or after protein translation – and 

interaction with receptors located at the ER membrane as well as subsequent 

translocation and insertion (compare to Aviram and Schuldiner 2017).  

1.2. Endoplasmic reticulum translocation and insertion pathways  

Protein translocation across or into the ER membrane in yeast occurs via the SRP-

dependent, the SRP-independent or via the Guided Entry of Tail-anchored proteins 

(GET)-pathway (reviewed by Aviram and Schuldiner 2017) (Figure 1).  

Co-translational protein transport via the SRP-dependent pathway involves the SRP 

binding to the ribosome-nascent polypeptide chain complex and recruiting it to the ER 

membrane via the SRP receptor, which is composed of two subunits named 

SRP101p/SRα and SRP102p/SRβ (Gilmore et al. 1982a, Gilmore et al. 1982b, Meyer 
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et al. 1982, Young et al. 1995). The ribosome-nascent chain complex is then 

transferred to the heterotrimeric Sec61 complex, which is composed of Sec61p, Sbh1p 

and Sss1p and forms the translocation channel (Panzner et al. 1995, Harada et al. 

2011). The J-domain containing protein Sec63p and the heat shock protein (Hsp) 70-

like, luminal Kar2p (named BiP in mammalian cells) are additionally involved in co-

translational translocation to facilitate unidirectional translocation (Linxweiler et al. 

2017).  

Alternatively, co-translational translocation can occur in an SRP-independent manner 

with the recently identified ribosome-interacting Snd1p and the membrane proteins 

Figure 1: Translocation and insertion pathways at the ER membrane in yeast. Co-

translational translocation via the SRP-dependent pathway features the signal recognition 

particle (SRP) pausing translation of the emerging polypeptide chain at the ribosome, the SRP 

receptor, composed of SRP101p/SRα and SRP102p/SRβ, and the Sec61 translocation pore. 

Alternatively, co-translational translocation via the SRP-independent pathway involves the 

recently identified ribosome-interacting Snd1p and the membrane proteins Snd2p and Snd3p. 

SRP-independent and post-translational translocation is achieved by preprotein interacting, 

cytosolic Hsp70-like chaperones, the signal peptide receptor, which is composed of Sec62p, 

the J-domain containing Sec63p, Sec71p and the TPR protein Sec72p, the Sec61 

translocation pore and the luminal Hsp70-like chaperone Kar2p/BiP. Tail-anchored proteins 

are inserted into the ER membrane by the Guided Entry of Tail-anchored proteins (GET)-

pathway featuring the pre-targeting complex (Sgt2p, Get4p and Get5p), the Get3p dimer and 

the Get1p-Get2p insertase. For simplicity, the suffix ‘p’ has been omitted in protein names in 

the actual figure. Reviewed by Saraogi and Shan 2011, Hegde and Keenan 2011, Aviram and 

Schuldiner 2017, Van Puyenbroeck and Vermeire 2018.  
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Snd2p and Snd3p, officially named ENV10 and PHO88 (Aviram et al. 2016). Snd2p 

and Snd3p are interacting with the Sec61 complex, indicating that both proteins might 

be involved in substrate targeting to the ER membrane (Aviram et al. 2016). Moreover, 

it was suggested that the SND-pathway, which also seems to be conserved in 

mammalian cells (Haßdenteufel et al. 2017), deals with a broad substrate range 

focussing on substrates featuring central TMDs and compensates defects in the SRP-

dependent and the GET-pathway (Aviram et al. 2016). However, the exact mode of 

substrate recognition for the SND-pathway still remains unclear (Aviram and 

Schuldiner 2017). 

Small pre-secretory proteins are generally imported post-translationally as their signal 

sequence is only transcribed shortly before translation is entirely completed (Lakkaraju 

et al. 2012, Ast and Schuldiner 2013). Fully translated preproteins are bound by Hsp70-

like chaperones like Ssa1p (Chirico et al. 1988, Deshaies et al. 1988, Tripathi et al. 

2017) and targeted to the ER membrane via a tetrameric complex, composed of 

Sec63p, Sec62p and the yeast specific Sec71p and Sec72p, which enables binding to 

cytosolic chaperones via its tetratricopeptide repeat (TPR) domain (Deshaies et al. 

1991, Fang and Green 1994, Feldheim and Schekman 1994, Panzner et al. 1995, 

Lyman and Schekman 1997, Plath et al. 1998, Schlegel et al. 2007, Harada et al. 

2011). As for co-translational translocation, the luminal Hsp70-like chaperone Kar2p 

facilitates protein translocation via the Sec61 protein-conducting channel by binding 

the translocating preprotein upon interaction with the Sec63p J-domain and thereby 

preventing the polypeptide from sliding back into the cytosol (Brodsky and Schekman 

1993, Brodsky et al. 1995, Panzner et al. 1995, Osborne et al. 2005, Rapoport 2007). 

Despite small differences regarding the overall composition of the Sec translocon, 

homologous proteins for the post-translational translocation pathway are present in 

mammals and plants (summarised by Zimmermann et al. 2011, Schweiger and 

Schwenkert 2013). 

Post-translational translocation and subsequent insertion of TA proteins into the ER 

membrane occurs via the GET-pathway. Preproteins are bound by the ribosome-

associated chaperone Sgt2p, which is part of the pre-targeting complex together with 

the cytosolic Get4p and Get5p (Wang et al. 2010a, Denic et al. 2013). The TA protein 

is then passed on to the homodimeric ATPase Get3p (Rome et al. 2013, Mateja et al. 

2015), which targets the pre-preprotein to the heterodimeric Get1p-Get2p insertase in 

the ER membrane (Schuldiner et al. 2008). The homologous pathway in mammalian 
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cells features the chaperone SGTA, GET4/TRC35, the Get5p homologue UbI4a, the 

Get3p homologous TRC40 (Stefanovic and Hegde 2007) and the Get1p and Get2p 

homologues CAML and WRP but also involves additional proteins like Bat3 and Bag6 

(Mariappan et al. 2010, Yamamoto and Sakisaka 2012, Shao et al. 2017). However, 

the GET-pathway in yeast not only targets TA proteins to the ER membrane but also 
glycosylphosphatidylinositol-anchored proteins (Ast et al. 2013), while mammalian 

TRC40 was suggested to additionally guide small secretory proteins to the Sec61 

complex (Johnson et al. 2012). Moreover, homologues of yeast Get1p, Get3p and 

Get4p have been identified in Arabidopsis with AtGET3a guiding TA proteins to the ER 

membrane localised AtGET1 (Srivastava et al. 2017, Xing et al. 2017). Even though 

respective proteins are not essential for plant growth, loss-of-function mutants display 

defective root hair growth (Xing et al. 2017) and an increased susceptibility towards 

ER stress (Srivastava et al. 2017).   

1.3. Co- and post-translational translocation via the Sec translocon 

Co- and post-translational protein translocation via the Sec translocon including 

underlying mechanisms (compare to Figure 2) have already been extensively studied 

in yeast and humans in contrast to the GET-pathway (Schuldiner et al. 2008) and the 

recently discovered SND-pathway (Aviram et al. 2016).  

For co-translational translocation in yeast and mammals, the large ribonucleoprotein 

complex SRP binds to the ribosome and the signal peptide of the emerging nascent 

polypeptide chain at the ribosome via a methionine-rich domain of its Srp54p/SRP54 

component, thereby arresting protein translation (Krieg et al. 1986, Kurzchalia et al. 

1986, Römisch et al. 1990, Zopf et al. 1990, Lütcke et al. 1992, Saraogi and Shan 

2011).  

The SRP and the associated ribosome-nascent chain complex are targeted to the ER 

membrane by the ER localised SRP receptor, which is composed of the soluble 

SRP101p/SRα and the membrane anchored SRP102p/SRβ (Gilmore et al. 1982a, 

Gilmore et al. 1982b, Meyer et al. 1982, Tajima et al. 1986, Young et al. 1995, Schwartz 

and Blobel 2003). For stable interaction, the GTPases SRP54 as well as SRα need to 

be GTP-bound, while GTP-binding of SRβ is additionally required for its interaction 

with SRα (Zopf et al. 1993, Schwartz and Blobel 2003).  

Binding of the SRP to its GTP-bound receptor enables the transfer of the ribosome-

nascent chain complex from the SRP to the Sec61 translocon, which interacts with the 

ribosome mainly via the loop region L6 and L8 of Ssh1p, while it is interacting with the 
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nascent polypeptide chain via loop L6 (Becker et al. 2009, Saraogi and Shan 2011, 

Aviram and Schuldiner 2017). 

The Sec61 complex is built up by the pore-forming Sec61p and the accessory Sbh1p 

and Sss1p (Panzner et al. 1995, Harada et al. 2011) (corresponding to Sec61α, 

Sec61β and Sec61γ in mammalian cells, Görlich and Rapoport 1993). The α-subunit 

can be divided into the transmembrane segments 1-5 and 6-10 with the loop region 

serving as a hinge during lateral gate opening (Rapoport 2007). The γ-subunit links 

those two halves of the α-subunit, while the β-subunit is non-essential (Rapoport 2007). 

The Sec61 channel is primed by binding of the ribosome and activated by insertion of 

the signal peptide into the lateral wall leading to the preprotein being inserted as a loop 

(Osborne et al. 2005, Rapoport 2007).  

The SRP-SRα-SRβ complex dissociates upon GTP hydrolysis, which is coupled to the 

transfer of the ribosome-nascent chain complex to the Sec61 translocon (Connolly et 

al. 1991, Song et al. 2000, Fulga et al. 2001, Zhang et al. 2009). After dissociation from 

the SRP, translation continues, while the emerging polypeptide is simultaneously 

translocated through the Sec61 complex (Saraogi and Shan 2011). 

Successful translocation additionally involves the J-domain containing Sec63p and the 

ER luminal Hsp70-like chaperone Kar2p/BiP, which are essential for co- and post-

translational protein translocation (Brodsky et al. 1995, Zimmermann et al. 2011). Upon 

interaction of Kar2p/BiP with the J-domain of Sec63p, its ATPase domain is activated 

and its peptide binding pocket is closed, thereby preventing the still translocating 

preprotein from sliding back into the cytosol (Brodsky and Schekman 1993, Brodsky et 

al. 1995, Panzner et al. 1995, Matlack et al. 1999, Osborne et al. 2005, Rapoport 

2007). Peptide-bound Kar2p/BiP is released by ADP-ATP exchange upon terminated 

translocation (Osborne et al. 2005, Rapoport 2007). 

In contrast to the co-translational pathway, post-translational protein translocation at 

the ER membrane involves cytosolic Hsp70-like chaperones, which bind the translated 

preprotein in an ATP-dependent manner, preventing molecular crowding and 

premature folding and which guide preproteins to the Sec translocon (Chirico et al. 

1988, Deshaies et al. 1988, Zimmermann et al. 1988, Deshaies et al. 1991, Ng et al. 

1996, Ngosuwan et al. 2003, Tripathi et al. 2017).  

Besides the trimeric Sec61 complex, post-translational translocation in yeast 

additionally features a tetrameric complex composed of Sec63p, Sec62p, Sec71p and 

Sec72p (Deshaies et al. 1991, Panzner et al. 1995, Harada et al. 2011).  
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 Figure 2: Co- and post-translational protein translocation via the yeast Sec translocon. 

For co-translational translocation, the signal recognition particle (SRP) pauses translation of 

the emerging polypeptide chain at the ribosome and its binding to the SRP receptor (SRα and 

SRβ) enables guidance to the Sec61 translocation pore. Upon GTP hydrolysis, the SRP and 

SRα as well as SRβ are dissociating. For post-translational translocation, the preprotein is 

bound by cytosolic Hsp70-like chaperones, which are bound by the TPR protein Sec72p, being 

part of the signal peptide receptor complex together with Sec71p, Sec62p and Sec63p. Co- 

and post-translational translocation feature the Sec61 translocation pore and the luminal 

Hsp70-like chaperone Kar2p/BiP, which is binding the polypeptide upon ATP hydrolysis, 

thereby preventing the polypeptide from sliding back into the cytosol. Reviewed by Rapoport 

2007, Saraogi and Shan 2011, Park and Rapoport 2012, Aviram and Schuldiner 2017. 



 Introduction 

9 
 

While Sec61 and Sec63p are involved in co- and post-translational translocation, 

Sec62p, Sec71p and Sec72p are specifically associated with post-translational 

translocation and probably act as signal peptide receptor (Deshaies et al. 1991, 

Brodsky and Schekman 1993, Fang and Green 1994, Panzner et al. 1995, Lyman and 

Schekman 1997, Plath et al. 1998, Dünnwald et al. 1999). Sec72p is thereby enabling 

interaction with cytosolic chaperones via its cytosol exposed TPR domain (Feldheim 

and Schekman 1994, Schlegel et al. 2007). Depending on signal sequence 

characteristics, Sec63p, Sec62p, Sec71p and Sec72p might associate in different 

combinations for optimal binding to preproteins (Yim et al. 2018). The Sec62p-Sec63p 

complex has additionally been shown to interact with Sec61 via Sec63p leading to 

lateral channel opening and activating Sec61 for subsequent protein translocation 

(Harada et al. 2011, Itskanov and Park 2019, Wu et al. 2019). 

Post-translational translocation in mammalian cells features auxiliary components like 

the translocating chain-associating membrane protein TRAM (Hegde et al. 1998, 

Tamborero et al. 2011), the translocon-associated protein complex TRAP (Sommer et 

al. 2013, Pfeffer et al. 2017) and other additional proteins (summarised by 

Zimmermann et al. 2011).  

Protein transport in yeast and mammals further involves modifying enzymes like the 

signal peptidase complex required for processing/ cleaving the signal peptide, the 

oligosaccharyltransferase complex for N-linked glycosylation of translocated 

preproteins (Chen et al. 2001, Wild et al. 2018) and the glycosylphosphatidylinositol 

transamidase (Fraering et al. 2001, Zhu et al. 2005, Zimmermann et al. 2011). 

1.4. The Arabidopsis Sec translocon 

In contrast to yeast and mammals, there is only scarce knowledge concerning the ER 

Sec translocation complex in plants. The Arabidopsis genome encodes three isoforms 

of the channel-forming Sec61p/Sec61α homologue, which share 89% sequence 

identity with each other as well as 52% and 67% identity with their yeast and 

mammalian counterparts (Schweiger and Schwenkert 2013). Moreover, two 

homologous isoforms for yeast Sec63p are present in Arabidopsis, named AtERdj2A 

and AtERdj2B, showing 74% sequence identity to each other and 22% and 19% 

sequence identity to Sec63p and human Sec63 (ERdj2) (Yamamoto et al. 2008, 

Schweiger and Schwenkert 2013). Neither AtERdj2A nor AtERdj2B was able to rescue 

the thermosensitive growth phenotype of the respective yeast mutant, probably due to 

their inability to form proper complexes with other components of the yeast Sec 
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translocon (Yamamoto et al. 2008). Whereas AtERdj2B seems to have auxiliary 

functions only, AtERdj2A is important for proper translocation and subsequent 

secretion, thereby being indispensable for male fertility in Arabidopsis, reflected by 

lethality of the respective T-DNA insertion line and drastically affected tube germination 

of aterdj2a pollen (Yamamoto et al. 2008). Together with the yet uncharacterised 

AtSec62 and the recently described chaperone docking protein AtTPR7, AtERdj2A/B 

and the Sec61 complex probably build up the Arabidopsis Sec post-translocon 

(Schweiger et al. 2012, Schweiger and Schwenkert 2013) (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For successful translocation, additional chaperone activity is required involving 

cytosolic HSP70 and HSP90 chaperones (Schweiger et al. 2012, Schweiger et al. 

2013) and ER luminal AtBiP, which is present as three isoforms in Arabidopsis, AtBiP1, 

AtBiP2 and AtBiP3, and probably interacting with the J-domain of AtERdj2A/B 

(Yamamoto et al. 2008, Maruyama et al. 2010, Maruyama et al. 2014). AtBIP1/2 are 

ubiquitously expressed, whereas AtBIP3 is expressed in pollen, pollen tubes and under 

ER stress conditions (Maruyama et al. 2014). Due to its generally low expression 

Figure 3: Working model of the Arabidopsis Sec post-translocon. Post-translational 

translocation involves the cytosolic HSP70 and HSP90 chaperones, the TPR protein AtTPR7, 

the Sec61 translocation channel, the J-domain containing AtERdj2A/B, the putative Sec 

translocon component AtSec62 and the ER luminal AtBiP (Yamamoto et al. 2008, Schweiger 

et al. 2012, Schweiger and Schwenkert 2013). Scheme based on Schweiger et al. (2012). 
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levels, AtBiP3 can only partially suppress defects in bip1 bip2 pollen, while bip1 bip2 

bip3 pollen are not even viable probably due to blocked protein secretion, which is 

especially required during pollen tube germination and growth (Maruyama et al. 2014). 

1.4.1. Preprotein guidance by AtTPR7 

The tail-anchored AtTPR7 was identified by Prasad et al. (2010) and has been recently 

described as part of the Arabidopsis Sec post-translocon (Schweiger et al. 2012, 

Schweiger and Schwenkert 2013, Schweiger et al. 2013), while it was originally 

described as the chloroplast outer envelope protein AtOEP61 (von Loeffelholz et al. 

2011). It was proposed to function as alternative chaperone docking protein at the 

chloroplast membrane next to AtToc64 (compare to Schwenkert et al. 2018), therefore 

guiding AtHSP70-bound preproteins to the chloroplast (von Loeffelholz et al. 2011).  

In general, TPR motifs were identified in a wide range of proteins in all eukaryotic 

organisms and TPR proteins are not only involved in guiding chaperone-bound 

preproteins to membranes of various cell compartments, thereby being important for 

proper protein import, but also fulfill other functions in gene expression or protein 

homeostasis (Schlegel et al. 2007, Kriechbaumer et al. 2012, Bohne et al. 2016, 

Graham et al. 2019). Clamp-type TPR domains consist of three TPR motifs with a 34 

amino acid repeat displaying seven conserved positions, which are important for 

proper TPR domain structure as well as substrate specificity (Sikorski et al. 1990, 

Kriechbaumer et al. 2012). They form a peptide binding groove composed of seven α-

helices including a C-terminal stabilisation/ solvation helix and binding to the C-

terminus of Hsp70 and Hsp90 (Scheufler et al. 2000, Brinker et al. 2002, D'Andrea and 

Regan 2003, Kriechbaumer et al. 2012, Schweiger et al. 2012).  

AtTPR7 possesses such an N-terminal clamp-type TPR domain, which is composed 

of three TPR repeats, and a C-terminal transmembrane domain (von Loeffelholz et al. 

2011, Schweiger et al. 2012). It is interacting with cytosolic chaperones especially with 

AtHSP70-1 and the constitutively expressed AtHSP90.2, AtHSP90.3 and AtHSP90.4, 

while there is only weak interaction with the heat shock-induced AtHSP90.1 (Krishna 

and Gloor 2001, Schweiger et al. 2012, Schweiger et al. 2013). Its TPR domain is 

essential for chaperone interaction and AtTPR7 was suggested to functionally replace 

the yeast TPR protein Sec72p as well as Sec71p, which anchors Sec72p to the ER 

membrane (Schweiger et al. 2012). However, AtTPR7 is not essential for ER protein 

translocation and can probably be bypassed as the respective attpr7 T-DNA insertion 

shows no obvious growth phenotype (Schweiger et al. 2012). 
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AtTPR7 has further been shown to interact with AtERdj2A/B and AtSec62, thereby 

providing further insights into the Arabidopsis Sec post-translocon (Schweiger et al. 

2012, Schweiger and Schwenkert 2013).  

1.4.2. AtSec62 and its homologues in yeast and mammals 

In contrast to the Sec61p/Sec61α and Sec63p/Sec63 homologues in Arabidopsis, 

there is only one homologous isoform for Sec62p/Sec62 encoded, displaying only 12% 

and 15% sequence identity to its yeast and mammalian counterparts (Schweiger and 

Schwenkert 2013).  

While Sec62p and human Sec62 possess two transmembrane domains, resulting in 

the N- and the C-terminus being exposed to the cytosol, a third transmembrane domain 

is only predicted for plant Sec62 homologues (Schweiger and Schwenkert 2013). 

However, the actual AtSec62 topology and its exact function still remain unknown, 

whereas the involvement of its yeast and mammalian homologues in ER protein 

translocation is largely investigated.  

Sec62p is part of a tetrameric complex together with Sec63p, Sec71p and Sec72p and 

is associated with post-translational translocation only (Deshaies et al. 1991, Panzner 

et al. 1995, Harada et al. 2011). Its positively charged N-terminus is important for its 

interaction with Sec63p (Wittke et al. 2000, Willer et al. 2003, Müller et al. 2010, Jung 

et al. 2014) and its C-terminus probably has an essential function during signal peptide 

recognition (Deshaies and Schekman 1990, Dünnwald et al. 1999, Wittke et al. 2000). 

According to recent studies, the Sec62p-Sec63p complex might even be involved in 

membrane protein insertion and topogenesis of signal anchor proteins (Reithinger et 

al. 2013, Jung et al. 2014, Jung et al. 2019). 

Mammalian Sec62 and Sec63 are not only associated with the Sec61 complex (Meyer 

et al. 2000, Tyedmers et al. 2000) but are also involved in recruiting BiP and 

translocation substrates to the translocon with Sec62 ensuring efficient post-

translational translocation of proteins shorter than around 160 amino acids and being 

crucial for proteins up to a length of 100 amino acids (Müller et al. 2010, Lakkaraju et 

al. 2012). Sec62 has a C-terminal EF-hand motif and is generally important for Ca2+ 

homeostasis due to its Ca2+-sensitive interaction with Sec61 channel (Linxweiler et al. 

2013). Furthermore, a C-terminal region of human Sec62 has been shown to be 

required for delivering proteins to the autolysosomal system, indicating an additional 

role of Sec62 in ER stress recovery (Fumagalli et al. 2016) and correlating its 
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overexpression to various tumors and pathologies (Zimmermann et al. 2006, Greiner 

et al. 2011a, Greiner et al. 2011b, Linxweiler et al. 2013, Bergmann et al. 2017).     

Two oligopeptide motifs exclusively found in mammalian Sec62 enable an interaction 

with the ribosomal tunnel exit, suggesting that Sec62 additionally functions in co-

translational protein translocation, which is the favoured pathway in mammalian cells 

(Müller et al. 2010). However, ribosome binding by Sec62 might only be relevant in 

coordinating protein translocation across the ER membrane as SEC62 silencing only 

impairs post-translational import of small, presecretory proteins, whereas post-

translational membrane insertion of TA proteins and co-translational translocation 

remain unaffected (Lang et al. 2012).  

1.5. Aims of this study 

While protein translocation into or across the ER membrane is well studied in yeast 

and mammals, the actual components involved in translocation as well as potential 

candidates for co- and post-translational translocation still remain hardly investigated 

in plants.  

For this reason, the putative Arabidopsis Sec translocon component AtSec62 should 

be characterised in this study, especially regarding its presumably altered topology 

(Schweiger and Schwenkert 2013) and importance in ER protein translocation also 

being reflected by its impact on plant development and growth.  

General growth, root morphology and gametophytic defects in an atsec62 T-DNA 

insertion line should be investigated, besides examination of atsec62 susceptibility 

towards high-temperature and ER stress. The expected ER localisation of AtSec62 

should be confirmed by GFP-fusion, whereas topology analysis should be conducted 

using Split-GFP. The importance of the Arabidopsis AtSec62 C-terminal region should 

additionally be studied by performing complementation analyses.  

To further elucidate ER protein-translocation and the post-translational pathway in 

particular, potential AtSec62 and AtTPR7 associating or interacting proteins should be 

identified by mass spectrometric analyses and should be subsequently confirmed by 

rBiFC and pull-down experiments.  
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2. Material and Methods 

2.1. Material 

2.1.1. Chemicals, beads and membranes 

Chemicals used in the following experiments were purchased from bts Biotech Trade 

& Service (Kraichtal, Germany), Duchefa Biochemie (Haarlem, Netherlands), J.T. 

Baker Chemicals (Deventer, Netherlands), Fluka (Buchs, Schweiz), Merck (Darmstadt, 

Germany), New England Biolabs (Frankfurt am Main, Germany), Serva (Heidelberg, 

Germany), Sigma-Aldrich (Taufkirchen, Germany), ThermoFisher Scientific 

(Braunschweig, Germany) and Roth (Karlsruhe, Germany). 35S-methionine was 

received from PerkinElmer (Walluf, Germany). Ni-NTA-Agarose beads were obtained 

from Macherey-Nagel (Düren, Germany), GFP-Trap® Magnetic Agarose (MA) beads 

from ChromoTek (Planegg-Martinsried, Germany) and Strep-Tactin® Sepharose® and 

D-desthiobiotin from IBA (Göttingen, Germany). PVDF transfer membrane was 

purchased from Millipore (Billerica, MA, USA) and the blotting paper from Macherey-

Nagel (Düren, Germany). 

2.1.2. Enzymes and Kits 

Restriction endonulceases, T4 DNA Ligase, Q5 DNA Polymerase, SP6 RNA 

Polymerase and Phusion® High Fidelity DNA Polymerase were purchased from New 

England Biolabs (Frankfurt am Main, Germany), DFS-Taq DNA Polymerase from 

Bioron (Ludwigshafen, Germany) and M-MLV Reverse Transcriptase from Promega 

(Madison, WI, USA). BP and LR Clonase® II mix and Proteinase K for Gateway® 

cloning were purchased from Invitrogen (Karlsruhe, Germany). Cellulase Onozuka 

R10 and macerozyme R10 were received from Serva (Heidelberg, Germany) and 

zymolase from Roth (Karlsruhe, Germany). Wheat Germ Extract and rRNasin® 

Ribonuclease Inhibitor were obtained from Promega (Madison, WI, USA) and 

cOmpleteTM Mini EDTA-free Protease Inhibitor Cocktail from Roche (Penzberg, 

Germany).  

TNT® Coupled Reticulocyte Lysate Systems for in vitro transcription/ translation were 

purchased from Promega (Madison, WI, USA). The NuceloSpin® Plasmid EasyPure 

Kit and the NucleoBond® Xtra Midi or NucleoBond® PC 100 Kit from Macherey-Nagel 

(Düren, Germany) were used for plasmid isolation from Escherichia coli. Gel extraction 

or purification of PCR products were performed using the NucleoSpin® Gel and PCR 

Clean-up Kit from Macherey-Nagel (Düren, Germany). Isolation of RNA was done with 
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the RNeasy® (Plant) Mini Kit from Qiagen (Hilden, Germany). Site-directed 

mutagenesis was performed with the Q5® Site-Directed Mutagenesis Kit from New 

England Biolabs (Frankfurt am Main, Germany) and Zero Blunt® Cloning with the Zero 

Blunt® PCR Cloning Kit from Invitrogen (Karlsruhe, Germany).  

2.1.3. Molecular weight size marker and DNA standard 

Protein Marker I (unstained), peqGOLD (VWR, Ismaning, Germany) was used as 

molecular weight marker, displaying following sizes: 116, 66.2, 45, 35, 25, 18.4 and 

14.4 kDa. HindIII and EcoRI digested λ-phage DNA (New England Biolabs, Frankfurt 

am Main, Germany) was used as DNA standard, resulting in following fragments: 

21226, 5148, 4973, 4268, 3530, 2027, 1904, 1584, 1375, 947, 831 and 564 bp. 

2.1.4. Plant material 

Arabidopsis thaliana ecotype Columbia (Col-0) was used as wild-type (WT). The attpr7 

T-DNA insertion line (SALK_057977) was obtained from the SALK collection 

(http://signal.salk.edu/) (compare to Schweiger et al. 2012), while the atsec62 T-DNA 

insertion line (GK-871A06) was obtained from the European Arabidopsis Stock Centre 

(http://arabidopsis.info/). Arabidopsis seeds were stored in the dark at room 

temperature. Nicotiana benthamiana was used for Agrobacterium-mediated transient 

transfection.   

2.1.5. Bacterial strains 

For cloning and general plasmid amplification, chemically competent Escherichia coli 

Top10 cells were used, whereas ccdB-resistant DB3.1 cells were used for amplification 

of empty Gateway® cloning vectors. Escherichia coli BL21(DE3)pLysS and BL21-

CodonPlus(DE3)-RIPL cells were used for heterologous protein overexpression. 

Stable transfection of Arabidopsis plants as well as transient transfection of tobacco 

leaves (Nicotiana benthamiana) was performed using Agrobacterium tumefaciens Agl1 

(Carbenicillin resistance) or GV3101 (Rifampicin/ Gentamycin resistance). Chemically 

competent cells used in this study were prepared by Tamara Bergius and Carina 

Engstler. 

2.1.6. Yeast strains 

The Saccharomyces cerevisiae strain W303 was used as wild-type and was provided 

by Nikola Wagener. The thermosensitive sec62-ts yeast mutant (BY4741; MATa; 

ura3D0; leu2D0; his3D1; met15D0; sec62-ts:kanMX) was purchased from 

EUROSCARF (http://euroscarf.de/).  

http://signal.salk.edu/
http://arabidopsis.info/
http://euroscarf.de/
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2.1.7. Accession numbers 

Accession numbers of genes or proteins used in this study are listed in Table 1. 

Detailed sequence data can be found under respective accession numbers in the NCBI 

data libraries (https://www.ncbi.nlm.nih.gov/).  

Table 1: Accession numbers of proteins used in this study.  

Protein Accession number Species 

ATG8e At2g45170 Arabidopsis thaliana 

BiP2 At5g42020 Arabidopsis thaliana 

CA1β At3g01500 Arabidopsis thaliana 

CNX1 At5g61790 Arabidopsis thaliana 

CYP83A1 At4g13770 Arabidopsis thaliana 

DGL1 At5g66680 Arabidopsis thaliana 

ERdj2A At1g79940 Arabidopsis thaliana 

GET1 At4g16444 Arabidopsis thaliana 

GET3a At1g01910 Arabidopsis thaliana 

GET4 At5g63220 Arabidopsis thaliana 

GLL23 At1g54010 Arabidopsis thaliana 

HSP70-1 At5g02500 Arabidopsis thaliana 

HSP90.2/ HSP81.2 At5g56030 Arabidopsis thaliana 

PHB3 At5g40770 Arabidopsis thaliana 

PBP1 At3g16420 Arabidopsis thaliana 

pSSU 
XP_016440853/ 

XP_016481946 
Nicotiana tabacum 

PYK10/ BGLU23 At3g09260 Arabidopsis thaliana 

Sec61α1 At2g34250 Arabidopsis thaliana 

Sec61β1 At2g45070 Arabidopsis thaliana 

Sec61γ1 At5g50460 Arabidopsis thaliana 

Sec62 

XP_006838327 Amborella trichopoda 

At3g20920 Arabidopsis thaliana 

XP_003573202 Brachypodium distachyon 

NP_495908 Caenorhabditis elegans 

XP_001701717 Chlamydomonas reinhardtii 

NP_001020701 Danio rerio 

XP_017075746 Drosophila eugracilis 

NP_001012620 Gallus gallus 

XP_003551357 

XP_003532206 
Glycine max 

NP_003253 Homo sapiens 

XP_003712053 Magnaporthe oryzae 

MARPO_0080s0045 Marchantia polymorpha 

XP_003600465 Medicago truncatula 

NP_081292 Mus musculus 

AFJ68748.1 Nannochloropsis gaditana 

https://www.ncbi.nlm.nih.gov/
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Protein Accession number Species 

Sec62 

XP_016469805 Nicotiana tabacum 

XP_015627309 Oryza sativa 

XP_024398141 Physcomitrella patens 

NP_015231 Saccharomyces cerevisiae 

NP_594256 Schizosaccharomyces pombe 

XP_002969339 

XP_002970672 
Selaginella moellendorfii 

XP_004250935 

XP_004228518 
Solanum lycopersicum 

NP_001121518 Xenopus tropicalis 

XP_008681002 Zea mays 

SHD At4g24190 Arabidopsis thaliana 

SYP123 At4g03330 Arabidopsis thaliana 

SYP43 At3g05710 Arabidopsis thaliana 

TGG1/ BGLU38 At5g26000 Arabidopsis thaliana 

TPR7/ OEP61 At5g21990 Arabidopsis thaliana 

VHA-A At1g78900 Arabidopsis thaliana 

 

2.1.8. Vectors and clones 

Split-GFP vectors for topology analysis (pSP-GFP1-10-HDEL, pGFP1-10, pGFP11-

GW and pGW-GFP11) were provided by Hans Thordal-Christensen (compare to 

Cabantous et al. 2005, Xie et al. 2017). The modified Gateway® vectors facilitate N- 

and C-terminal fusion of the eleventh β-sheet to the protein of interest, while control 

plasmids encode the GFP β-sheets 1-10, being expressed either in the cytosol (GFP1-

10) or in the ER lumen by an integrated ER retention signal (GFP1-10-HDEL) (Xie et 

al. 2017). The ER marker used for localisation studies consists of a fluorophore with 

an N-terminal ER targeting signal and a C-terminal ER retention signal (compare to 

Nelson et al. 2007, Schweiger et al. 2012). pDONR221-P1P4 and pDONR221-P3P2 

as well as pBiFCt-2in1-NN, pBiFCt-2in1-NC, pBiFCt-2in1-CN and pBiFCt-2in1-CC 

were provided by Christopher Grefen (compare to Grefen and Blatt 2012). Gateway® 

vectors pBGW, pB7CWG2, pB7FWG2, pB7YWG2, pK7FWG2, pK7WGF2 and 

pAG425GPD-ccdB have been described recently (Karimi et al. 2002, Alberti et al. 

2007, Karimi et al. 2007). The helper plasmid p19 was additionally added if necessary, 

to enhance protein expression in transiently transfected tobacco plants.  

Constructs used for this study are listed in Table 2, also indicating restriction sites used 

for cloning and the purpose of generated constructs. As indicated, constructs were 

partially generated under the control of the endogenous promoter of AtSEC62 (base 
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pairs 800-1899) and encode the full length genomic AtSEC62 (amino acids 1-365), the 

AtSec62 N-terminus (AtSec62-N, amino acids 1-160) or a truncated AtSec62 version 

lacking the C-terminal region and the putative third transmembrane domain (amino 

acids 1-247), named AtSec62-ΔTMD3/C.  

Table 2: Constructs used in this study. Genes and vectors, detailed sequence description, 

restriction sites for cloning and purpose of use are indicated. 

No. Gene Vector Description2 
Restriction 

site 
Purpose3 

1 AtATG8e pDONR221-P1P4 - Gateway® rBiFC 

2 AtBIP2 pDONR221-P1P4 no stop Gateway® rBiFC 

3 AtCA1β pDONR207 no stop Gateway® L 

4 AtCA1β pDONR221-P1P4 no stop Gateway® rBiFC 

5 AtCA1β pK7FWG2 no stop Gateway® L 

6 AtCNX1 pDONR221-P1P4 no stop Gateway® rBiFC 

7 AtCYP83A1 pDONR221-P1P4 no stop Gateway® rBiFC 

8 AtERDJ2A pDONR221-P1P4 no stop Gateway® rBiFC 

9 AtDGL1 pDONR221-P1P4 no stop Gateway® rBiFC 

10 AtGET1 pDONR221-P1P4 no stop Gateway® rBiFC 

11 AtGET3A pB7CWG2 no stop Gateway® R 

12 AtGET3A pDONR207 no stop Gateway® R 

13 AtGET3A pDONR221-P1P4 no stop Gateway® rBiFC 

14 AtGET4 pDONR221-P1P4 no stop Gateway® rBiFC 

15 AtGLL23 pCR Blunt - EcoRI/ SalI Cloning 

16 AtGLL23 pSP65 - EcoRI/ SalI T 

171 AtHSP70-1 pET51b - 
BamHI/ 

HindIII 
O 

181 AtHSP90.2 pET51b - KpnI/ NotI O 

19 AtPBP1 pCR Blunt - SacI/ SalI Cloning 

20 AtPBP1 pSP65 - SacI/ SalI T 

21 AtPHB3 pCR Blunt - EcoRI/ SalI Cloning 

22 AtPHB3 pSP65 - EcoRI/ SalI T 

23 AtPYK10 pCR Blunt - EcoRI/ SalI Cloning 

24 AtPYK10 pSP65 - EcoRI/ SalI T 

25 AtSEC61α1 pDONR221-P1P4 - Gateway® rBiFC 

26 AtSEC61β1 pDONR221-P1P4 - Gateway® rBiFC 

27 AtSEC61γ1 pDONR221-P1P4 - Gateway® rBiFC 

28 AtSEC62 pAG425GPD-ccdB - Gateway® C (yeast) 

29 AtSEC62 pAG425GPD-ccdB ΔTMD3/C, stop Gateway® C (yeast) 

30 AtSEC62 pB7FWG2 no stop Gateway® L 

31 AtSEC62 pB7YWG2 amino acids 1-160 Gateway® R 

32 AtSEC62 pB7YWG2 no stop Gateway® R 

33 AtSEC62 pBGW 
endogenous promoter,  

full length (genomic) 
Gateway® C (plant) 



 Material and Methods 

19 
 

No. Gene Vector Description2 
Restriction 

site 
Purpose3 

34 AtSEC62 pBGW 
endogenous promoter,  

ΔTMD3/C (genomic) 
Gateway® C (plant) 

35 
AtSEC62 

AtATG8e 
pBiFCt-2in1-NN 

Sec62-P3P2,  

ATG8e-P1P4 
Gateway® rBiFC 

36 
AtSEC62 

AtBIP2 
pBiFCt-2in1-CC 

Sec62-P3P2,  

BiP2-P1P4 
Gateway® rBiFC 

37 
AtSEC62 

AtCA1β 
pBiFCt-2in1-NC 

Sec62-P3P2,  

CA1β -P1P4 
Gateway® rBiFC 

38 
AtSEC62 

AtCNX1 
pBiFCt-2in1-NC 

Sec62-P3P2,  

CNX1-P1P4 
Gateway® rBiFC 

39 
AtSEC62 

AtCYP83A1 
pBiFCt-2in1-NC 

Sec62-P3P2,  

CYP83A1-P1P4 
Gateway® rBiFC 

40 
AtSEC62 

AtDGL1 
pBiFCt-2in1-NC 

Sec62-P3P2,  

DGL1-P1P4 
Gateway® rBiFC 

41 
AtSEC62 

AtERDJ2A 
pBiFCt-2in1-NC 

Sec62-P3P2,  

ERdj2A-P1P4 
Gateway® rBiFC 

42 
AtSEC62 

AtGET1 
pBiFCt-2in1-NC 

Sec62-P3P2,  

GET1-P1P4 
Gateway® rBiFC 

43 
AtSEC62 

AtGET3A 
pBiFCt-2in1-NC 

Sec62-P3P2,  

GET3a-P1P4 
Gateway® rBiFC 

43 
AtSEC62 

AtGET4 
pBiFCt-2in1-NC 

Sec62-P3P2,  

GET4-P1P4 
Gateway® rBiFC 

44 
AtSEC62 

AtSEC61α1 
pBiFCt-2in1-NN 

Sec62-P3P2,  

Sec61α1-P1P4 
Gateway® rBiFC 

45 
AtSEC62 

AtSEC61β1 
pBiFCt-2in1-NN 

Sec62-P3P2,  

Sec61β1-P1P4 
Gateway® rBiFC 

46 
AtSEC62 

AtSEC61γ1 
pBiFCt-2in1-NN 

Sec62-P3P2,  

Sec61γ1-P1P4 
Gateway® rBiFC 

47 
AtSEC62 

AtSHD 
pBiFCt-2in1-CC 

Sec62-P3P2,  

SHD-P1P4 
Gateway® rBiFC 

48 
AtSEC62 

AtSYP123 
pBiFCt-2in1-NN 

Sec62-P3P2,  

SYP123-P1P4 
Gateway® rBiFC 

49 
AtSEC62 

AtSYP43 
pBiFCt-2in1-NN 

Sec62-P3P2,  

SYP43-P1P4 
Gateway® rBiFC 

50 
AtSEC62 

AtTGG1 
pBiFCt-2in1-CC 

Sec62-P3P2,  

TGG1-P1P4 
Gateway® rBiFC 

51 
AtSEC62 

AtTPR7 
pBiFCt-2in1-NN 

Sec62-P3P2,  

TPR7-P1P4 
Gateway® rBiFC 

52 
AtSEC62 

AtVHA-A 
pBiFCt-2in1-NN 

Sec62-P3P2,  

VHA-A-P1P4 
Gateway® rBiFC 

531 AtSEC62 pDONR207 - Gateway® Cloning 

54 AtSEC62 pDONR207 amino acids 1-160 Gateway® R 

55 AtSEC62 pDONR207 ΔTMD3/C, stop Gateway® C (yeast) 
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No. Gene Vector Description2 
Restriction 

site 
Purpose3 

56 AtSEC62 pDONR207 
ΔTMD3/C,  

no ATG, stop 
Gateway® Split-GFP 

57 AtSEC62 pDONR207 
ΔTMD3/C, no stop,  

C-terminal His-tag 
Gateway® Split-GFP 

58 AtSEC62 pDONR207 
endogenous promoter,  

full length (genomic) 
Gateway® C (plant) 

59 AtSEC62 pDONR207 
endogenous promoter,  

ΔTMD3/C (genomic) 
Gateway® C (plant) 

601 AtSEC62 pDONR207 no ATG Gateway® Cloning 

61 AtSEC62 pDONR207 no stop Gateway® Cloning 

62 AtSEC62 pDONR221-P3P2 - Gateway® rBiFC 

63 AtSEC62 pDONR221-P3P2 no stop Gateway® rBiFC 

641 AtSEC62 pET21a amino acids 1-160 NotI/ NdeI O 

65 AtSEC62 pGFP11-GW 
ΔTMD3/C,  

no ATG, stop 
Gateway® Split-GFP 

66 AtSEC62 pGFP11-GW no ATG Gateway® Split-GFP 

67 AtSEC62 pGW-GFP11 
ΔTMD3/C, no stop,  

C-terminal His-tag 
Gateway® Split-GFP 

68 AtSEC62 pGW-GFP11 no stop Gateway® Split-GFP 

69 AtSEC62 pK7WGF2 no ATG Gateway® L 

70 AtSHD pDONR221-P1P4 no stop Gateway® rBiFC 

71 AtSYP123 pDONR221-P1P4 - Gateway® rBiFC 

72 AtSYP43 pDONR221-P1P4 - Gateway® rBiFC 

73 AtTGG1 pDONR221-P1P4 no stop Gateway® rBiFC 

74 AtTPR7 pDONR221-P1P4 - Gateway® rBiFC 

751 AtTPR7 pET21a ΔTMD NdeI/ XhoI O 

761 AtTPR7 pET21a ΔTPR, ΔTMD - O 

77 AtVHA-A pDONR221-P1P4 - Gateway® rBiFC 

781 
pSSU 

(tobacco) 
pSP65 - - T 

79 ScSEC62 pAG425GPD-ccdB - Gateway® C (yeast) 

80 ScSEC62 pDONR207 - Gateway® C (yeast) 
1 Constructs were generated in the laboratories of Jürgen Soll and Serena Schwenkert for previous 

studies and have been reused for this thesis. 
2 If not stated otherwise, the full-length coding sequence was used for construct generation. ΔTMD3/C: 

AtSec62 amino acids 1-247, ΔTMD: AtTPR7 amino acids 1-500 (compare to Schweiger et al. 2012), 

ΔTPR: AtTPR7 Δbp 309-636 (compare to Schweiger et al. 2012), P1P4/ P3P2: derived from 

pDONR221-P1P4/ -P3P2. 
3 C: complementation analysis, L: localisation analysis, O: overexpression, R: recruitment assay, rBiFC: 

interaction analysis (Grefen and Blatt 2012), Split-GFP: topology analysis (Xie et al. 2017), T: in vitro 

transcription and translation. 
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2.1.9. Oligonucleotides 

Used oligonucleotides are listed in Table 3 and were ordered in standard desalted 

quality from metabion (Planegg, Germany). Oligonucleotides for Gateway® Cloning 

were either designed according to the manufacturer’s Gateway® Technology manual 

(https://tools.thermofisher.com/content/sfs/manuals/gatewayman.pdf) or based on 

instructions for 2in1 Gateway® primer design (Grefen laboratory, https://www.ruhr-uni-

bochum.de/botanik/Resources/pdf/Entry_clone_preparation_for_2in1_cloning.pdf).     

Table 3: Oligonucleotides used in this study. Their 5’- 3’ sequence and purpose of use are 

indicated. 

No. Oligonucleotide 5’- 3’ sequence Purpose 

1 35S-Prom-for GTTCATTTCATTTGGAGAGGACTC Sequencing  

2 35S-Term-rev GACTGGTGATTTTTGCGGAC Sequencing  

3 AtSEC62-5’UTR-f CTTGAAATGTGAGAAAAATGAAATAC Genotyping 

4 AtSEC62-Exon1-f ATGAAGAAGCCGGTCGGAGCCGAG RT-PCR 

5 AtSEC62-Exon2-r ATCGTCTGTGTCAAGGTCTTTATC Genotyping 

6 AtSEC62-Exon5-r TTATGTTTTAAGATCAGAGTCAGTCC RT-PCR 

7 AtSEC62-ΔTMD3/C-r 
GGGGACCACTTTGTACAAGAAAGCTGG

GTCTTAGTCTTTCTTTGGCCAGAAAC 

RT-PCR/ 

Split-GFP/ 

pBGW/  

pAG425GPD

-ccdB 

8 AtSEC62-3’UTR-rev GAATACTTCAGATGTTGCCAC Genotyping 

9 AtTPR7-Exon1-attB-f 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTCATGTTTAACGGGTTAATGG 
RT-PCR 

10 AtTPR7-Exon9-f GTTTCGAACCAAGCATCCCTTC  Genotyping 

11 AtTPR7-Exon11-attB-r 
GGGGACCACTTTGTACAAGAAAGCTGG 

GTCGTTTCCAATATAGCCGAGAC 
RT-PCR 

12 AtTPR7-Exon11-r CCAATATAGCCGAGACGGTGAAG  Genotyping 

13 BGLU23-EcoR1-for GAATTCATGGTTTTGCAAAAGCTTCC pSP65 

14 BGLU23-Sal1-rev GTCGACTTAAAGCTCATCCTTCTTGAG pSP65 

15 BiP2-ApaI-ATG-for 
GTACGGGCCCATGGCTCGCTCGTTTGG

AG 
RT-PCR 

16 BiP2-NotI-nostop-rev  
GTACGCGGCCGCAGAGCTCATCGTGAG

ACTCATC 
RT-PCR 

17 CA1β-GFP-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTCATGGGAACCGAAGCATAC 
pK7FWG2 

18 CA1β-GFP-nostop-rev 
GGGGACCACTTTGTACAAGAAAGCTGG

GTCCAGCTTCCAATGTAGTATGG 
pK7FWG2 

19 CYC1-Term-rev GCGTGAATGTAAGCGTGAC Sequencing  

20 Gabi-LB8409 ATATTGACCATCATACTCATTGC Genotyping 

21 GET3a-attB-f 
GGGGACAAGTTTGTACAAAAAAGCAGG

C TTCATGGCGGCGGATTTG 
pB7CWG2 

https://tools.thermofisher.com/content/sfs/manuals/gatewayman.pdf
https://www.ruhr-uni-bochum.de/botanik/Resources/pdf/Entry_clone_preparation_for_2in1_cloning.pdf
https://www.ruhr-uni-bochum.de/botanik/Resources/pdf/Entry_clone_preparation_for_2in1_cloning.pdf
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No. Oligonucleotide 5’- 3’ sequence Purpose 

22 GET3a-nostop-attB-r 
GGGGACCACTTTGTACAAGAAAGCTGG

GTCGCCACTCTTGACCCGTTC 
pB7CWG2 

23 GFP-for TG ACTTCAAGATCCGCCACAACA Sequencing 

24 GFP-rev CTCGCCGGACACGCTGAACTTG Sequencing 

25 GLL23-EcoRI-for 
GAATTCATGATGGCAAAAAACTGTAATT

TAG  
pSP65 

26 GLL23-SalI-rev GTCGACTCAGTAATACTCGTAACCGC  pSP65 

27 GPD-Prom-for CGGTAGGTATTGATTGTAATTCTG Sequencing 

28 LBa1 TGGTTCACGTAGTGGGCCATCG Genotyping 

29 M13-for GTAAAACGACGGCCAGT Sequencing 

30 M13-rev GGAAACAGCTATGACCATG Sequencing 

31 NosT-BiFC-rev CATCTCATAAATAACGTCATGCATTAC Sequencing 

32 P1P4-ATG8e-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGAATAAAGGAAGCATC 
rBiFC 

33 P1P4-ATG8e-stop-rev 
GGGGACAACTTTGTATAGAAAAGTTG 

GGTTTAGATTGAAGAAGCACC 
rBiFC 

34 P1P4-BiP2-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGGCTCGCTCGTTTG 
rBiFC 

35 P1P4-BiP2-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGGAGCTCATCGTGAGACTC 
rBiFC 

36 P1P4-CA1β-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGGGAACCGAAGCATAC 
rBiFC 

37 P1P4-CA1β-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGCAGCTTCCAATGTAGTATGG 
rBiFC 

38 P1P4-CNX1-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGAGACAACGGCAAC 
rBiFC 

39 P1P4-CNX1-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGATTATCACGTCTCGGTTG 
rBiFC 

40 P1P4-CYP83A1-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGGAAGATATCATCATCGG 
rBiFC 

41 P1P4-CYP83A1-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGATACTTGTTCACTTTCTCTG 
rBiFC 

42 P1P4-ERdj2A-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGGCGGCGTCAGAAGAG 
rBiFC 

43 P1P4-ERdj2A-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGCTCTTCCTCCGATCCCGACTC 
rBiFC 

44 P1P4-DGL1-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATG GTGAACCTCTCGAG 
rBiFC 

45 P1P4-DGL1-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGCTTATGGTAGAGGTAGACG 
rBiFC 

46 P1P4-GET1-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGGAAGGAGAGAAGCTTATAG 
rBiFC 

47 P1P4-GET1-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGGAACTCCACGAACCTACACAC 
rBiFC 
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No. Oligonucleotide 5’- 3’ sequence Purpose 

48 P1P4-GET3a-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGGCGGCGGATTTG 
rBiFC 

49 P1P4-GET3a-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGGCCACTCTTGACCCGTTC 
rBiFC 

50 P1P4-GET4-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGTCGAGAGAGAGGATC 
rBiFC 

51 P1P4-GET4-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGGCCCATCATCTTGAAGATGTC 
rBiFC 

52 P1P4-Sec61α1-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGGGAGGAGGATTTAGAG 
rBiFC 

53 P1P4-Sec61α1-stop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GT TTAGAACCCGAAGAAGCCG 
rBiFC 

54 P1P4-Sec61β1-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

C TTAATGGTGGGAAGTGGAG 
rBiFC 

55 P1P4-Sec61β1-stop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GT TCATTTGACAAAGTAGAGCTTG 
rBiFC 

56 P1P4-Sec61γ1-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

C TTAATGGACGCCATTGATTCCGTC 
rBiFC 

57 P1P4-Sec61γ1-stop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GT CTAAGTGGCACCGACGATGATG 
rBiFC 

58 P1P4-SHD-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGAGGAAGAGGACGCTC 
rBiFC 

59 P1P4-SHD-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGCAGTTCGTCCTTGGTGTTC 
rBiFC 

60 P1P4-SYP123-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

C TTAATGAACGATCTTATCTCAAG 
rBiFC 

61 P1P4-SYP123-stop-rev 
GGGGACAACTTTGTATAAAAAGTTGGGT 

TCAAGGTCGAAGTAGAGTG 
rBiFC 

62 P1P4-SYP43-for 
GGGGACAAGTTTGTACAAAAAAGCA 

GGC TTAATGGCGACTAGGAATCGTAC 
rBiFC 

63 P1P4-SYP43-stop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GT TCACAACAGAATCTCCTTG 
rBiFC 

64 P1P4-TGG1-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

C TTAATGAAGCTTCTTATGCTCGC 
rBiFC 

65 P1P4-TGG1-nostop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GTGTGCATCTGCAAGACTCTTCC 
rBiFC 

66 P1P4-TPR7-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGTTTAACGGGTTAATGGATC 
rBiFC 

67 P1P4-TPR7-stop-rev 
GGGGACAACTTTGTATAGAAAAGTTGG

GT CTAGTTTCCAATATAGCCGAG 
rBiFC 

68 P1P4-VHA-A-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTAATGCCGGCGTTTTACGG 
rBiFC 

69 P1P4-VHA-A-stop-rev 
GGGACAACTTTGTATAGAAAAGTTGGGT 

TTACCGAGTTTCATCTTCCAAAG 
rBiFC 

70 P35S-BiFC-for GACGCACAATCCCACTATCC Sequencing 
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No. Oligonucleotide 5’- 3’ sequence Purpose 

71 P3P2-Sec62-for 
GGGGACAACTTTGTATAATAAAGTTGGA

ATGAAGAAGCCGGTCG 
rBiFC 

72 P3P2-Sec62-nostop-rev 
GGGGACCACTTTGTACAAGAAAGCTGG

GTGTGTTTTAAGATCAGAGTCAG 
rBiFC 

73 P3P2-Sec62-stop-rev 
GGGGACCACTTTGTACAAGAAAGCTGG

GTTTATGTTTTAAGATCAGAGTCAG 
rBiFC 

74 PBP1-Sac1-for  GAGCTCATGGCCCAAAAGGTGGAAGC  pSP65 

75 PBP1-Sal1-rev  GTCGACTCAGTTGGATAAAGGACGAAC  pSP65 

76 pDONR207-for  TCGCGTTAACGCTAGCATGGATCT  Sequencing 

77 pDONR207-rev  GTAACATCAGAGATTTTGAGACAC  Sequencing 

78 pDONR221-for CTTAAGCTCGGGCCCCAAATAATG Sequencing 

79 pDONR221-rev CCTGCAGCTGGATGGCAAATAATG Sequencing 

80 PHB3-EcoRI-for  GAATTCATGGGAAGCCAACAAGCGGC  pSP65 

81 PHB3-SalI-rev  GTCGACTCAACGGTTCAGGGCAAAGAG  pSP65 

82 pSP65-for CACATACGATTTAGGTGACAC  Sequencing 

83 pSP65-rev CAGCTATGACCATGATTACGC  Sequencing 

84 ScSec62-attB-ATG-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTATGTCAGCCGTAGGTCCAGG 

pAG425GPD

-ccdB 

85 ScSec62 attB-stop-rev 
GGGGACCACTTTGTACAAGAAGCTGGG

TCTCAGTTTTGTTCGGCTTTTTC 

pAG425GPD

-ccdB 

86 Sec62-ATG-attB-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTCATGAAG 

pAG425GPD

-ccdB 

87 Sec62-attB-for 
ACAAGTTTGTACAAAAAAGCAGGCTTAA

GAGCTTCCATGGCAACT 
pBGW 

88 Sec62-attB-rev 
ACCACTTTGTACAAGAAAGCTGGGTTTA

TGTTTTAAGATCAGAGT 
pBGW 

89 Sec62-stop-attB-rev 
GGGGACCACTTTGTACAAGAAAGCTGG

GTCTTATGTT 

RT-PCR/ 

pAG425GPD

-ccdB 

90 Sec62-muta-for  GACCCAGCTTTCTTGTAC  Mutagenesis 

91 Sec62-muta-rev  TGTTTTAAGATCAGAGTCAG  Mutagenesis 

92 Sec62N-attB-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTCATGAAGAAGCCGGTCGGAGC 

pK7FWG2/ 

pB7YWG2 

93 Sec62N-nostop-attB-rev 
GGGGACCACTTTGTACAAGAAAGCTGG

GTCTAGCGGATGCCGTTTTTCGA 

pK7FWG2/ 

pB7YWG2 

94 Sec62-ΔTMD3/C-attB-for 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTTCATGAAGAAGCCGGTCGG 
Split-GFP 

95 Sec62-ΔTMD3/C-His-attB-rev 

GGGGACCACTTTGTACAAGAAAGCTGG

GTCGTGGTGGTGGTGGTGGTGGTCTTT

C TTTGGCCAGAAAC 

Split-GFP 

96 Sec62-ΔTMD3/C-nostop-rev 
CGATCTCGAGGTCTTTCTTTGGCCAGAA

AC 
RT-PCR 

97 T7-Prom-for TAATACGACTCACTATAGG Sequencing 

98 T7-Term-rev GCTAGTTATTGCTCAGCGG Sequencing 
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2.1.10. Antisera and antibodies 

Primary αAtSec62 antiserum (1:500 dilution used in 5% (w/v) milk, 40 mM Tris/HCl (pH 

7.5), 270 mM NaCl, 0.05% (v/v) Tween 20) was generated in rabbits by BioGenes 

(Berlin, Germany). It was raised against the recombinant AtSec62 N-terminus (amino 

acids 1-160) fused to a C-terminal His-tag, overexpressed and purified by Thomas 

Brylok (compare to Figure A1a). Primary anti-GFP antibody (1:1,000 dilution) was 

purchased from Roche (Penzberg, Germany), while secondary anti-rabbit (1:20,000 

dilution) as well as anti-mouse (1:6,000 dilution) antibodies coupled to horseradish 

peroxidase were purchased from Sigma-Aldrich (Taufkirchen, Germany). 

2.1.11. Statistical analysis 

Statistical analysis was accomplished using Statistic R (R Core Team (2019), R version 

3.6.1, http://www.R-project.org/, including the ‘multcompview’ package) or Microsoft 

Excel 2013.  

To assess deviations of the observed segregation pattern from the expected 

Mendelian ratios, chi-squared analysis was performed, while root and seed yield 

analyses were done using Student’s t-test (two-sided, equal variance). Pull-down 

experiments were evaluated by performing one-way ANOVA with subsequent Tukey’s 

post hoc comparison. The significance threshold was set at p ≤ 0.05.  

2.1.12. Computational analysis and software 

Boxplots were generated by using the BoxPlotR software (Spitzer et al. 2014, 

http://shiny.chemgrid.org/boxplotr/). Phylogenetic trees were generated with MEGA-X 

(Kumar et al. 2018, version 10.0.5), using the Maximum Likelihood method, having 500 

bootstrap replications and applying the Jones-Taylor-Thornton substitution model 

(Jones et al. 1992) and Nearest-Neighbour-Interchange.  

NCBI Conserved Domain Search was used to identify the conserved Sec62 domain 

(compare to https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Transmembrane 

domains of Sec62 homologues were defined based on predictions by TMHMM2.0 

(http://www.cbs.dtu.dk/services/TMHMM/), Phobius (http://phobius.sbc.su.se/), DAS-

TMfilter (http://www.enzim.hu/DAS/DAS.html) and TMpred (https://embnet.vital-

it.ch/software/TMPRED_form.html). 

Amino acid sequence alignments were generated using CLC Main Workbench (version 

7.7) and modified using GeneDoc (version 2.7). General sequence analyses were 

done using BioEdit (version 7.2.6.1) and UGENE (version 1.29.0). Promoter regions 

http://www.r-project.org/
http://shiny.chemgrid.org/boxplotr/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.cbs.dtu.dk/services/TMHMM/
http://phobius.sbc.su.se/
http://www.enzim.hu/DAS/DAS.html
https://embnet.vital-it.ch/software/TMPRED_form.html
https://embnet.vital-it.ch/software/TMPRED_form.html
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were narrowed down using PlantPAN2.0 (http://plantpan2.itps.ncku.edu.tw/). NEB 

tools (https://international.neb.com/tools-and-resources/interactive-tools) were used 

for classical cloning, designing site-directed mutagenesis oligonucleotides and for 

calculating annealing temperatures. Potential restriction sites within coding regions 

were identified using RestrictionMapper (http://www.restrictionmapper.org/). 

Microscope images were taken and analysed using Leica Application Suite (version 

4.1.0), Leica Application Suite X (version 3.3.0) or Leica Application Suite Advanced 

Fluorescence (version 2.6.3.8173) for fluorescent images. ImageQuant LAS 4000 

(version 3.1) was used to detect chemiluminescent signals. Analysis of fluorescent 

images for line histograms and general image analyses were done using ImageJ 

(version 1.51j8)/Fiji (1.52i). Final figures were generated using Adobe Illustrator® CS3 

(version 13.0.0) and GIMP (version 2.10.10). 

2.2. Methods 

2.2.1. Growth conditions 

2.2.1.1. Growth conditions for Escherichia coli and Agrobacterium tumefaciens 

Bacterial strains were grown in LB medium (1% (w/v) peptone ex casein (tryptic digest), 

0.5% (w/v) yeast extract, 1% (w/v) NaCl) and 160 rpm (Multitron and Minitron, INFORS 

HT). Solid media were supplemented with 1.5% (w/v) agar-agar. If not stated 

otherwise, Escherichia coli were grown at 37°C overnight, while Agrobacterium 

tumefaciens cells were grown at 28°C for two to three days. Final concentrations of 

required antibiotics are listed in Table 4.  

Table 4: Antibiotic agents used for bacterial work in this study.  

Antibiotic agent Solvent 
Stock concentration 

[mg ml-1] 

Final concentration 

[μg ml-1] 

Ampicillin  ddH2O 100 100 

Carbenicillin ddH2O 100 100 

Chloramphenicol 100% EtOH 12.5 25 

Gentamycin ddH2O 10 20 

Kanamycin ddH2O 50 50 

Rifampicin DMSO 25 100 

Spectinomycin ddH2O 100 100 

 

Bacterial glycerol stocks were prepared with 25% (v/v) glycerol and subsequent 

freezing of the sample in liquid nitrogen, prior to long term storage at -80°C. For short-

http://plantpan2.itps.ncku.edu.tw/
https://international.neb.com/tools-and-resources/interactive-tools
http://www.restrictionmapper.org/
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term storage, LB medium plates with respective bacterial strains were sealed with 

Parafilm® “M” Laboratory Film (Bemis) and stored at 4°C.  

2.2.1.2. Growth conditions for Saccharomyces cerevisiae 

Yeast strains were either grown in YPD medium (1% (w/v) bacto yeast extract, 2% 

(w/v) bacto peptone, 2% (w/v) glucose) or in SCD medium (0.7% (w/v) yeast nitrogen 

base without amino acids, 2% (w/v) glucose, 0.2% (w/v) dropout mix without leucine). 

Solid media were supplemented with 2% (w/v) bacto agar. Yeast cells were grown at 

30°C and 140 rpm (Minitron, INFORS HT) for liquid cultures, except for 

complementation analysis using 28°C as permissive and 37°C as restrictive 

temperature. Yeast glycerol stocks were prepared with 25% (v/v) glycerol and were 

directly stored at -80°C without freezing in liquid nitrogen. 

2.2.1.3. Growth conditions for Arabidopsis thaliana and Nicotiana benthamiana 

Arabidopsis thaliana plants were grown on soil either under greenhouse conditions or 

in climate chambers (Phytotron, Imtech and Percival (models I-36LLVL, I-36L4VL and 

LT-36VL), CLF Plant Climatics) under long day conditions (16 h light/ 8 h dark, 

22°C/18°C, 100 μmol photons m-2 sec-1). Plants for high-temperature treatment were 

grown on half-strength MS medium plates (1% (w/v) sucrose, 0.238% (w/v) MS salts 

including vitamins, 0.05% (w/v) MES (pH 5.7), 0.6% (w/v) Gelrite®), supplemented with 

10 μg ml-1 sulfadiazine for segregation analysis. Plants for root length analysis were 

grown vertically on half-strength MS medium plates (0.238% (w/v) MS salts, 0.05% 

(w/v) MES (pH 5.7), 1.0% (w/v) Phytoagar). For ER stress treatment, the medium was 

supplemented with DTT (1.5 mM, 2 mM) or Tunicamycin (0.025 µg ml-1, 0.05 µg ml-1). 

Seeds were surface sterilised using 0.05% (v/v) Triton X-100 in 70% (v/v) ethanol for 

10 min, prior to three times washing in 100% (v/v) ethanol and subsequent drying on 

sterile filter paper. Seeds were stratified at 4°C for two to three days in the dark, before 

being transferred to climate chambers featuring long day conditions. For conducting a 

high-temperature stress treatment according to Yang et al. (2009), seeds on half-

strength MS medium plates were germinated at 37°C for 48 h and then transferred to 

22°C, whereas control seeds were germinated and grown at 22°C.  

Kanamycin selection was performed according to Harrison et al. (2006). For this 

purpose, plants were grown on half-strength MS medium plates (0.238% (w/v) MS 

salts, 0.05% (w/v) MES (pH 5.7), 1.0% (w/v) Phytoagar), supplemented with 50 μg ml-1 

Kanamycin. Seeds were stratified for two days at 4°C in the dark, then exposed to light 
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for four to six hours at 22°C, prior to incubation for two days in the dark. Upon 

subsequent light exposition, resistant plants with green and expanded cotyledons were 

transferred to soil. For BASTA® selection, plants were grown either on half-strength 

MS medium plates containing 50 μg ml-1 BASTA® or on soil with seedlings being 

sprayed after two as well as three weeks growth.  

Nicotiana benthamiana was grown in soil under greenhouse conditions for four to six 

weeks.  

2.2.2. Pollen staining and germination assay 

Alexander staining solution for differential staining of viable and non-viable pollen was 

prepared according to Alexander (1969) by adding 10 ml 96% (v/v) ethanol, 1 ml of 1% 

(w/v) malachite green solution in 96% (v/v) ethanol, 50 ml ddH2O, 25 ml glycerol, 5 g 

phenol, 5 g chloral hydrate, 5 ml of 1% (w/v) acid fuchsin solution in ddH2O, 0.5 ml of 

1% (w/v) Orange G solution in ddH2O and 4 ml glacial acetic acid to a light protected 

bottle. Anthers of opening buds or open flowers were placed on a microscope slide 

with 40 μl Alexander staining solution. Samples were covered and sealed airtight, then 

incubated at room temperature for at least 90 min. For in vitro pollen germination 

assays, pollen grains from eight-week-old plants were spread onto solidified 

germination medium (1 mM MgCl2, 0.16 mM H3BO3, 1 mM CaCl2, 1 mM Ca(NO3)2, 

18% (w/v) sucrose, 0.65% (w/v) Phytoagar). Prepared microscope slides were 

transferred onto watered filter papers in Petri dishes to provide high humidity and 

samples were incubated at 25°C and 37°C in the dark for 22 h. Pollen staining and 

pollen tube germination were documented using a binocular microscope (DM1000 with 

DFC320 or DFC7000 T digital cameras, Leica). 

2.2.3. Microsomal membrane preparation from Arabidopsis thaliana leaves 

Microsomal membrane preparation was carried out at 4°C on ice. Plant material from 

four-week-old Arabidopsis plants was frozen in liquid nitrogen and pestled in isolation 

medium (50 mM Tris/HCl (pH 7.5), 2 mM MgCl2, 100 mM KCl and 0.5 M sucrose). 

Homogenised samples were filtered through gauze and were centrifuged once at 4,200 

g for 10 min, at 10,000 g for 10 min and at 22,000 g for 30 min to remove chloroplasts 

and mitochondria. The remaining supernatant was centrifuged at 100,000 g for 1 h to 

pellet microsomal membranes. For further purification, the resulting pellet was 

resuspended in 2 ml wash buffer (50 mM Tris/HCl (pH 7.5), 2 mM MgCl2, 100 mM KCl 

and 12% (w/v) sucrose) and loaded onto a step gradient (5 ml of 50%, 5 ml of 30% 
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and 3 ml of 20% (w/v) sucrose in wash buffer), prior to centrifugation at 100,000 g for 

1 h. The fraction between 50% and 30% (w/v) sucrose was washed once at 100,000 

g for 1 h and the remaining pellet was then resuspended in 25 mM Tris/HCl (pH 7.5), 

0.33 M sucrose and 0.5 mM DTT and stored at -80°C.  

Microsomal membranes for GFP-Trap® pull-down experiments (compare to 2.2.27.) 

were alternatively isolated from four-week-old plants homogenised in 50 mM Tris/HCl 

(pH 7.5), 0.5 M sucrose and 1 mM EDTA and filtered through gauze. Samples were 

centrifuged once at 4,200 g for 10 min, at 10,000 g for 10 min and 100,000 g for 1 h.  

2.2.4. Isolation of soluble and membrane proteins from leaves 

Arabidopsis leaves were ground in 300 μl homogenisation medium (10 mM EDTA, 

2 mM EGTA, 50 mM Tris/HCl (ph 8.0), 10 mM DTT) using an electric micro-pestle, 

prior to adding additional 300 μl homogenisation medium. Alternatively, several 

Arabidopsis leaves or one tobacco leaf were pestled three times in liquid nitrogen and 

transferred to 2-5 ml homogenisation medium. Homogenised plant material was 

incubated on ice for 10 min, filtered through gauze and then centrifuged for 10 min at 

9,300 g and 4°C. The resulting supernatant contained soluble proteins, while 

membrane proteins were present in the remaining pellet, which was resuspended in 

appropriate amounts of homogenisation medium. Samples were stored at -80°C.  

2.2.5. Determination of protein concentration by Bradford  

1 μl sample was added to 799 μl ddH2O, prior to applying 200 μl Bradford solution 

(0.1 mM coomassie brilliant blue G-250, 5% (v/v) ethanol, 10% (v/v) H3PO4) and 

incubating the mixture for 5 min in the dark. The absorbance at 595 nm was then 

measured against the reference and the protein concentration was calculated based 

on a BSA calibration curve. 

2.2.6. SDS-Polyacrylamide gel electrophoresis and immunoblotting 

Proteins were separated by SDS-PAGE and either transferred onto PVDF membranes 

(Millipore) for subsequent immunodetection or stained using coomassie staining 

solution.  

2.2.6.1. SDS-Polyacrylamide gel electrophoresis 

Protein separation by discontinuous SDS-PAGE was conducted based on Laemmli 

(1970) using a 5% stacking gel (125 mM Tris/HCl (ph 6.8), 0.1% (w/v) SDS, 5% (w/v) 

acrylamide, 0.1% (w/v) APS, 1% (v/v) TEMED) and a 10 – 15% separating gel 
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(390 mM Tris/HCL (pH 8.8), 0.1% (w/v) SDS, 10 – 15% (w/v) acrylamide, 0.1% (w/v) 

APS, 1% (v/v) TEMED). Samples were incubated in SDS loading buffer (62.5 mM 

Tris/HCl (pH 6.8), 2% (w/v) SDS, 10% (v/v) glycerol, 5% (v/v) β-mercaptoethanol, 

0.004% (w/v) bromphenol blue) for 5 min at 95°C, then loaded onto SDS-PAGE gels, 

which were run in SDS running buffer (25 mM Tris/HCl (pH 8.2 – 8.4), 192 mM glycine, 

0.1% (w/v) SDS).  

2.2.6.2. Coomassie staining 

SDS-PAGE Gels were stained with coomassie staining solution (45% (v/v) methanol, 

9% (v/v) acetic acid, 0.2% (w/v) coomassie brilliant blue R-250), destained (45% (v/v) 

methanol, 9% (v/v) acetic acid) and dried for storage or further analysis.  

2.2.6.3. Semi-dry electro blot  

Proteins were transferred from SDS-PAGE gels onto PVDF membranes by semi-dry 

electro blotting with components assembled on the anode as follows: one blotting 

paper soaked in anode buffer I (0.3 M Tris/HCl (pH 10.4), 20% (v/v) methanol), two 

blotting paper soaked in anode buffer II (25 mM Tris/HCl (pH 10.4), 20% (v/v) 

methanol), PVDF membrane (activated in 100% (v/v) methanol and washed in anode 

buffer II), SDS-PAGE gel rinsed  in cathode buffer (25 mM Tris/HCl (pH 9.4), 40 mM 

6-aminohexanoic acid, 20% (v/v) methanol) and three blotting paper soaked in cathode 

buffer. Alternatively, blotting papers were soaked and PVDF membrane was washed 

in Towbin buffer (25 mM Tris/HCl (pH 8.2 – 8.4), 192 mM glycine, 0.1% (w/v) SDS, 

20% (v/v) methanol). Transfer was performed for 1 h and 0.8 mA cm-2, then proteins 

on PVDF membrane were visualised with Ponceau staining solution (5% (v/v) acetic 

acid, 0.3% (w/v) Ponceau S).  

2.2.6.4. Immunodetection 

PVDF membranes were blocked in 5% (w/v) milk in TBS-T (20 mM Tris/HCl (pH 7.5), 

135 mM NaCl, 0.05% (v/v) Tween 20) for 30 min, then membranes were washed twice 

in TBS-T for 10 min. Incubation with the primary antibody (compare to 2.1.10.) was 

conducted for 2 h at room temperature before washing the membrane three times in 

TBS-T for 10 min and subsequently incubating the membrane with the secondary 

antibody (compare to 2.1.10.) for 2 h. Alternatively, incubation with the primary or 

secondary antibody was performed overnight at 4°C. After three times washing in TBS-

T for 10 min, equal volumes of ECL (enhanced chemiluminescence) detection solution 

I (0.1 M Tris/HCl (pH 6.8), 1% (w/v) luminol, 0.44% (w/v) coumaric acid) and II (0.1 M 
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Tris/HCl (pH 6.8),0.018% (v/v) H2O2) were applied onto the membrane. The 

chemiluminescent signal was detected using ImageQuant LAS 500/ 4000 (GE 

Healthcare).  

2.2.7. Amplification of DNA fragments by Polymerase chain reaction  

Plasmid DNA, genomic DNA and cDNA were used as templates for DNA amplification. 

DFS-Taq DNA polymerase was used for general PCR reactions according to 

manufacturer’s instructions, whereas PCR for generation of DNA fragments used for 

subsequent cloning was performed using Phusion® High Fidelity DNA Polymerase 

based on manufacturer’s instructions (New England Biolabs). Annealing temperature 

and elongation time were adjusted depending on used oligonucleotides and fragment 

length. Samples were run on 1% (w/v) agarose gels containing ethidium bromide in 

TAE buffer (40 mM Tris/HCl (pH 8.0 – 8.5), 2.6 mM EDTA, 0.1% (v/v) acetic acid). 

Respective DNA fragments were excised under UV light and purified using the 

NucleoSpin® Gel and PCR Clean-up Kit (Macherey-Nagel) according to 

manufacturer’s instructions. Purified DNA was either frozen at -20°C or directly used 

for subsequent cloning (compare to 2.2.14.).  

2.2.8. Isolation of genomic DNA from Saccharomyces cerevisiae 

Yeast genomic DNA was isolated according to Lõoke et al. (2011). For this purpose, 

one yeast colony was suspended in 100 μl extraction buffer (200 mM LiOAc, 1% (w/v) 

SDS) and incubated for 5 min at 70°C. 70% (v/v) ethanol was added for DNA 

precipitation and the samples were centrifuged for 3 min at 15,000 g to spin down 

DNA. The pellet was washed in 500 μl 70% (v/v) ethanol and then centrifgued for 1 min 

at 15,000 g. The remaining pellet was dried at room temperature, before being 

dissolved in 50 μl ddH2O. The sample was centrifuged for 15 sec at 15,000 g with the 

resulting supernatant being used for PCR.  

2.2.9. Isolation of genomic DNA from Arabidopsis thaliana leaves  

Single leaves of three- to four-week-old Arabidopsis plants were homogenised in 

500 μl extraction buffer (1 M Tris/HCl (pH 7.5), 0.05 M NaCl, 0.05 M EDTA (pH 8.0), 

1% (w/v) PVP-40) using the TissueLyser (Qiagen). 66 μl of 10% (w/v) SDS solution 

and 166 μl 5 M KOAc solution (3 M potassium acetate, 11.5% (v/v) glacial acetic acid 

(pH 5.8)) were added and samples were mixed by inverting several times. Samples 

were then centrifuged for 15 min at 16,100 – 21,000 g and the supernatant was 

transferred to a new tube, prior to the addition of 0.7 volumes of isopropanol, 
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subsequent mixing by inverting and incubation at -20°C for at least 30 min. Following 

centrifugation for 15 min at 16,100 – 21,000 g, the pellet was washed in 500 μl 70% 

(v/v) ethanol and centrifuged for 5 min at 16,100 – 21,000 g. The remaining pellet was 

dried for 10 min at 50°C and dissolved in 30 μl ddH2O. Isolated genomic DNA (gDNA) 

was stored at -20°C. 

2.2.10. Genotyping using Arabidopsis thaliana genomic DNA 

Genotyping was conducted twice for each sample using DFS-Taq DNA polymerase, 

2 μl of gDNA template and specific oligonucleotides (compare to Table 3).  

2.2.11. RNA extraction from Arabidopsis thaliana leaves 

RNA was isolated from leaves of four- to five-week-old Arabidopsis plants using the 

RNeasy® Plant Mini Kit (Qiagen) according to manufacturer’s instructions but 

performing the DNase I digest for 30 min at room temperature and resuspending the 

final pellet in 30 μl RNase free H2O. RNA concentration was measured and RNA quality 

was investigated by loading samples onto 1% (w/v) agarose gels. RNA was stored at 

-80°C.  

2.2.12. RNA extraction from Saccharomyces cerevisiae 

RNA from 10 ml overnight cultures was extracted using the RNeasy® Mini Kit (Qiagen) 

according to manufacturer’s instructions, however 2 mg ml-1 zymolase were used for 

spheroplast generation. Further steps were performed as described in section 2.2.11.  

2.2.13. cDNA synthesis and RT-PCR analysis 

cDNA was synthesised from 0.5 μg RNA using the M-MLV Reverse transcriptase 

(Promega) according to manufacturer’s instructions and was stored at -20°C. 

Subsequent reverse transcription PCR (RT-PCR) was conducted using respective 

oligonucleotides (compare to Table 3).  

2.2.14. Cloning strategies 

Constructs were generated by traditional cloning, Zero Blunt® Cloning, Gateway® 

Cloning or by site-directed mutagenesis and transformed into competent Escherichia 

coli Top10 cells (compare to 2.1.5.). To confirm the presence of respective inserts, 

colony PCR using DFS Taq-DNA polymerase was performed by directly adding 

individual colonies to the PCR reaction mix. Proper insertion was verified by 

sequencing (compare to 2.2.17.).  
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2.2.14.1. Traditional cloning by restriction enzyme digest and ligation 

Double digest of vectors and DNA fragments was performed for 1 h at 37°C using 

appropriate restriction endonucleases (compare to Table 2) based on manufacturer’s 

instructions (New England Biolabs). Digested samples were loaded onto 1% (w/v) 

agarose gels and subsequently purified using the NucleoSpin® Gel and PCR Clean-up 

Kit (Macherey-Nagel) according to manufacturer’s instructions. Ligation with T4 DNA 

Ligase was conducted for 3 h at room temperature based on manufacturer’s 

instructions (New England Biolabs) using 50 ng vector DNA and a vector to insert ratio 

of at least 1:3.  

2.2.14.2. Zero Blunt® Cloning 

Zero Blunt® Cloning was done using the Zero Blunt® PCR Cloning Kit (Invitrogen) 

according to manufacturer’s instructions. Ligation was carried out for 3 h at room 

temperature using T4 DNA Ligase as described in section 2.2.14.1. but only using 

25 ng vector DNA.  

2.2.14.3. Gateway® Technology based cloning 

Based on manufacturer’s instructions (Invitrogen), DNA fragments possessing 

respective attB-flanking sequences were cloned into the entry vectors pDONR207, 

pDONR221-P1P4 or pDONR221-P3P2, prior to transfer into binary destination vectors 

(pGFP11-GW, pGW-GFP11, pBiFCt-2in1-NN, pBiFCt-2in1-NC, pBiFCt-2in1-CN, 

pBiFCt-2in1-CC, pAG425GPD-ccdB, pBGW, pB7CWG2, pB7FWG2, pB7YWG2, 

pK7FWG2, pK7WGF2).  

2.2.14.4. Site-directed mutagenesis 

Site-directed mutagenesis was performed using the Q5® Site-Directed Mutagenesis 

Kit (New England Biolabs) according to manufacturer’s instructions.  

2.2.15. Transformation of Escherichia coli 

Chemically competent Escherichia coli cells were prepared based on Hanahan (1983), 

all centrifugation steps were performed at 4°C. 500 ml LB medium were inoculated 

with an overnight preculture and grown to an OD600 of 0.4. Cells were incubated for 

15 min in ice water, prior to centrifugation for 5 min at 4,400 g. Pelleted cells were 

resuspended in 250 ml of 100 mM MgCl2, then centrifuged for 10 min at 2,800 g. 

Escherichia coli cells were solved in 500 ml of 100 mM CaCl2, incubated for 10 min on 

ice and pelleted at 2,800 g for 10 min. The pellet was resuspended in 5 ml 85 mM 
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CaCl2 and 15% (v/v) glycerol and 50 μl aliquots of chemically competent cells were 

frozen in liquid nitrogen and stored at -80°C.  

For transformation, plasmid DNA was added to competent Escherichia coli cells and 

the suspension was incubated for 30 min on ice. Subsequent heat shock was 

performed at 42°C for 45 sec, then cells were transferred back to ice before adding 

250 μl LB medium. Cells were grown for 1 h at 37°C and 750 rpm (ThermoMixer®, 

eppendorf). Cells were pelleted at 1,500 g for 4 min, resuspended in 50 μl LB medium 

and plated on LB medium plates containing appropriate antibiotics. 

For blue-white selection, 40 μl of 0.1 M (w/v) IPTG and 40 μl of 40 mg ml-1 X-Gal 

(dissolved in DMSO) were spread on selective LB medium plates before plating 

bacterial suspensions.  

2.2.16. Purification of plasmid DNA from Escherichia coli 

Plasmid DNA was isolated from 3 ml or 50 – 100 ml overnight culture using the 

NuceloSpin® Plasmid EasyPure Kit or the NucleoBond® Xtra Midi/ PC 100 Kit 

(Macherey-Nagel) according to manufacturer’s instructions. Plasmid concentrations 

were determined using a Nanophotometer (IMPLEN) and isolated plasmid DNA was 

stored at -20°C.  

2.2.17. Sequencing 

Sequencing of used plasmids and generated constructs was performed by the 

Sequencing Service of the Genomics Service Unit of the Ludwig-Maximilians-

University Munich (http://www.gi.bio.lmu.de/sequencing/help/index_html). Required 

amounts of samples (compare to http://www.gi.bio.lmu.de/sequencing/help/protocol, 

sequencing service: Cycle, Clean & Run with BigDye v3.1 sequencing chemistry) were 

submitted in 10 mM Tris/HCl (pH 8.5) with appropriate oligonucleotides (compare to 

Table 3).  

2.2.18. Overexpression of recombinant proteins in Escherichia coli 

Prior to growing large scale cultures, transformed Escherichia coli cells were tested 

according to the manufacturer’s BL21-CodonPlus Competent Cells instruction manual 

(https://www.agilent.com/cs/library/usermanuals/public/230240.pdf).  

After successful testing, Escherichia coli precultures were grown overnight and used 

for inoculating 1 L selective LB medium. Overexpression was induced at an OD600 of 

0.4 – 0.6 by 1 mM (w/v) IPTG and cultures were grown overnight at 18°C. Cells were 

http://www.gi.bio.lmu.de/sequencing/help/index_html
http://www.gi.bio.lmu.de/sequencing/help/protocol
https://www.agilent.com/cs/library/usermanuals/public/230240.pdf
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then pelleted for 15 min at 3,300 g and 4°C and used for subsequent protein 

purification. 

2.2.19. Purification of His-/ Strep-tagged proteins  

For purifying His-tagged proteins, pelleted cells were resuspended in 30 ml lysis buffer 

(20 mM Tris/HCl (pH 7.5), 200 mM NaCl, 20 mM imidazol) and broken using a 

microfluidizer (Microfluidics). The suspension was centrifuged for 30 min at 20,000 g 

and 4°C and the supernatant was rotated 2 h at room temperature or overnight at 4°C 

with 100 μl Ni-NTA-Agarose beads per 10 ml supernatant. The sample was transferred 

onto an equilibrated column, washed three times with 5 ml His-tag wash buffer (20 mM 

Tris/HCl (pH 7.5), 200 mM NaCl, 40 mM imidazol) and proteins were eluted four times 

with 300 μl His-tag elution buffer (20 mM Tris/HCl (pH 7.5), 200 mM NaCl, 200 mM 

imidazol) after 5 min incubation each. Samples were stored at -80°C.  

Strep-tagged proteins were purified exactly as His-tagged proteins, but pelleted cells 

were resuspended in Strep-tag wash buffer (100 mM Tris/HCl (pH 8.0), 150 mM NaCl), 

100 μl Strep-Tactin® Sepharose® per 10 ml supernatant were used for overnight 

incubation, subsequent washing was performed with 5 ml Strep-tag wash buffer and 

proteins were eluted five times with 300 μl Strep-tag elution buffer (100 mM Tris/HCl 

(pH 8.0), 150 mM NaCl, 1 mM EDTA, 2.5 mM desthiobiotin).  

2.2.20. In vitro transcription and translation using 35S-methionine 

Linearisation of respective plasmids was conducted for 1 h at 37°C using 50 μg plasmid 

DNA and NheI-HF restriction endonuclease based on manufacturer’s instructions 

(New England Biolabs). DNA was purified using the NucleoSpin® Gel and PCR Clean-

up Kit (Macherey-Nagel) according to manufacturer’s instructions. 

In vitro transcription was performed based on manufacturer’s instructions (New 

England Biolabs), using 0.5 μg linearised template and 40 units SP6 RNA Polymerase. 

Following incubation for 2 h at 40°C, RNA integrity was analysed on 1% (w/v) agarose 

gels and RNA was stored at -80°C.  

In vitro translation in Wheat Germ Extract using 35S-methionine was conducted 

according to manufacturer’s instructions (Promega) with 5 μl RNA template but without 

potassium acetate. The mixture was incubated at 25°C for 110 min.  

Alternatively, in vitro transcription and translation were performed simultaneously using 

the TNT® Coupled Reticulocyte Lysate System (Promega) according to manufacturer’s 
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instructions, however Wheat Germ Extract was used instead of Reticulocyte Lysate 

and magnesium acetate was added in appropriate amounts if necessary.  

2.2.21. In vitro pull-down assay 

For pull-down experiments, 20 μg of recombinant protein (compare to 2.2.19.) and 

15 μl translation product (compare to 2.2.20.) were incubated in 300 μl PBS (140 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3), rolling for 1 h at room 

temperature. 20 – 30 μl Ni-NTA-Agarose beads or Strep-Tactin® Sepharose® were 

added and incubated for 1 h, prior to loading onto an equilibrated column (Micro Bio-

Spin®, Bio-Rad). Washing was repeated three times using 500 μl PBS, containing 

50 mM imidazole for His-tagged proteins, and subsequent centrifugation at 1,000 g for 

1 min. Elution was conducted after 5 min incubation with 20 μl PBS, containing either 

300 mM imidazole or 2.5 mM desthiobiotin, and centrifugation at 15,000 g for 1 min. 

Proteins were directly loaded onto SDS-PAGE gels without incubation at 95°C 

(compare to 2.2.6.1.).  

2.2.22. Detection of radiolabelled proteins 

Radiolabelled proteins were visualised by overnight exposure of dried, Coomassie 

stained SDS-PAGE gels (compare to 2.2.6.2.) on BAS-MS imaging plates (Fujifilm) 

and detection by a Typhoon Trio Variable Mode Imager (Amersham Biosciences).  

For quantification of pull-down experiments, the signal intensity was measured and 

adjusted based on the actual amount of His-/ Strep-tagged protein in the respective 

lane on the Coomassie stained SDS-PAGE gel. The ratio of the elution to the mean 

signal intensity of the respective translation product was then calculated and plotted.  

2.2.23. Transformation and complementation analysis in Saccharomyces 

cerevisiae 

Preparation of competent yeast cells as well as subsequent transformation was based 

on Staudinger et al. (1995). 50 ml YPD medium were inoculated with overnight pre-

culture and harvested at OD600 0.5 – 0.6 by centrifugation for 5 min at 700 g and 4°C. 

Pelleted yeast cells were washed once with 50 ml sterile ddH2O and centrifuged for 

5 min at 700 g and 4°C, followed by washing with 12.5 ml sterile filtered LiSorb 

(100 mM LiOAc, 10 mM Tris/HCl (pH 8), 1 mM EDTA (pH 8.0), 1 M sorbitol). Cells 

were resuspended in 300 μl LiSorb before adding 42 μl carrier-DNA (2 mg ml-1 

denatured and syringe sheared herring sperm DNA). Competent yeast cells were 

either stored at -80°C or directly used for transformation. For this purpose, 5 μl plasmid 
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DNA and 300 μl sterile filtered LiPEG (100 mM LiOAc, 10 mM Tris/HCl (pH 8.0), 1 mM 

EDTA (pH 8.0), 40% (w/v) PEG 3350) were added to 50 μl competent cells. The 

mixture was incubated for 20 min at room temperature, prior to adding 35 μl DMSO 

and performing 15 min heat shock at 42°C. After pelleting at 700 g for 90 sec, yeast 

cells were resuspended in 100 μl 0.9% (w/v) sterile filtered NaCl and spread on several 

SCD medium plates.  

For complementation analysis, transformed yeast cells were grown in SCD medium 

and OD600 was adjusted to 1.0, then 7.5 μl of serial dilutions (100, 10-1, 10-2, 10-3 and 

10-4 in SCD medium) were spotted onto SCD medium plates and yeast cells were 

grown at 28°C and 37°C for 48 h.  

2.2.24. Transformation of Agrobacterium tumefaciens 

For preparation of chemically competent cells, 500 ml LB medium were inoculated with 

an Agrobacterium tumefaciens preculture and grown to an OD600 of 1.0. Cells were 

pelleted at 3,000 g for 15 min, resuspended in 10 ml ice-cold 10 mM CaCl2 and 100 μl 

aliquots were frozen in liquid nitrogen and stored at -80°C.  

Chemically competent Agrobacterium tumefaciens cells were thawed on ice before 

adding 1 – 2 μg plasmid DNA. Cells were incubated for 5 min on ice, then 5 min in 

liquid nitrogen followed by 5 min heat shock at 37°C. 800 μl LB medium were added 

and cells were grown for 4 h at 28°C and 750 rpm (ThermoMixer®, eppendorf). 

Following centrifugation for 2 min at 1,500 g, pelleted cells were resuspended in 100 μl 

LB medium and plated onto LB medium plates containing appropriate antibiotics.   

2.2.25. Agrobacterium-mediated transient expression of fluorescent proteins in 

Nicotiana benthamiana 

Infiltration of four- to six-week-old Nicotiana benthamiana leaves and subsequent 

protoplast isolation were performed as described previously (Koop et al. 1996, 

Schweiger and Schwenkert 2014).  

Transformed Agrobacterium tumefaciens cells were grown in selective LB medium, 

pelleted at 3,200 g and 4°C for 15 min and resuspended in infiltration medium (10 mM 

MES (pH 6.0), 100 – 200 μM acetosyringone (in 60% (v/v) ethanol), 10 mM MgCl2) 

with an OD600 of 1.0. Cells were rotated at room temperature for two to four hours in 

the dark and mixed in a 1:1 ratio in case of co-infiltration, before infiltrating tobacco 

leaves. Plants were covered overnight and protoplasts were isolated after two to three 

days growth.  
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Centrifugation steps for protoplast isolation were performed at room temperature with 

low acceleration and deceleration, osmolality of buffers was adjusted to 550 mosmol 

kg-1 and protoplasts were slowly pipetted with cut tips. One tobacco leaf was cut into 

approximately 1 cm x 1 cm pieces in 10 ml enzyme solution (1% (w/v) cellulase 

Onozuka R10, 0.3% (w/v), macerozyme R10, 0.1% (w/v) BSA in F-PIN solution 

containing 10 mM KNO3, 3 mM CaCl2, 1.5 mM MgSO4, 1.2 mM KH2PO4, 20 mM NH4-

succinate (4 M KOH (pH 5.8), 2 M succinic acid, 2 M NH4Cl), 2 mM MES (pH 5.8), 

4.5 μM KI, 0.1 mM EDTA iron(III) sodium salt, 0.05 mM H3BO3, 60 μM MnSO4, 7 μM 

ZnSO4, 1 μM Na2MoO4, 0.1 μM CuSO4, 0.1 μM CoCl2, 120 g L-1 (approximately 

350 mM) sucrose). Following vacuum infiltration for 30 sec, leaf pieces were shaken 

at 40 rpm for 90 min in the dark on an orbital shaker. Protoplasts were released at 

80 rpm for 1 min, filtered through a nylon mesh/gauze and overlaid with 2 ml F-PCN 

(same as F-PIN solution but 80 g L-1 (approximately 440 mM) glucose instead of 

sucrose). Intact protoplasts accumulated at the interface between enzyme solution and 

F-PCN after 10 min at 70 g and were transferred to new tubes, before washing with 

10 ml W5 buffer (125 mM CaCl2, 5 mM KCl, 2 mM MES (pH 5.7), 7 g L-1 (approximately 

120 mM) NaCl). Protoplasts were then pelleted for 10 min at 50 g and gently 

resuspended in 0.5 ml W5 buffer.  

2.2.26. Agrobacterium-mediated stable transfection of Arabidopsis thaliana  

Stable transfection of Arabidopsis plants was conducted by floral dip (compare to 

Clough and Bent 1998). 400 ml selective LB medium were inoculated with transformed 

Agrobacterium tumefaciens preculture and grown for 24 h. Cells were pelleted at 

2,800 g and 4°C for 20 min and solved in equal volume of sucrose solution (5% (w/v) 

sucrose, 0.05% (v/v) Silwet L-77). Four- to five-week-old plants were dipped into 

bacterial suspensions for 10 sec, covered overnight and then grown under greenhouse 

conditions. Floral dipping was repeated once after five to seven days.  

2.2.27. Immunoprecipitation of GFP-fused proteins using GFP-Trap® Magnetic 

Agarose beads 

GFP-Trap® pull-down was conducted based on manufacturer’s instructions 

(ChromoTek). Microsomal membranes (compare to 2.2.3.) were resuspended in 200 μl 

20 mM HEPES (pH 7.5), 40 mM KCl, 1 mM EDTA, 0.1% (w/v) DTT, 0.1% (w/v) n-

dodecyl-β-D-maltosid and 1x protease inhibitor cocktail. 50 μl GFP-Trap® MA beads 

were equilibrated in 500 μl wash buffer (20 mM HEPES (pH 7.5), 40 mM KCl, 1 mM 
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EDTA, 0.1% (w/v) DTT, 1x protease inhibitor cocktail) for three times, then 150 μl of 

equilibrated beads were added per 2 mg isolated microsomal membranes and tumbled 

overnight at 4°C. Beads were separated magnetically and samples were washed three 

times in 500 μl wash buffer, before proteins were eluted twice in 50 μl SDS loading 

buffer at 95°C for 10 min. Eluted samples were run on a 5% stacking SDS-PAGE gel, 

excised and frozen at -20°C, prior to submitting for mass spectrometric analysis 

(compare to 2.2.28.).  

2.2.28. Mass spectrometry  

Mass spectrometric analysis (proteomics) was done by the MSBioLMU service unit 

(Mass Spectrometry of Biomolecules at the Ludwig-Maximilians-University Munich, for 

information concerning sample preparation compare to http://www.en.biologie.uni-

muenchen.de/core_facilities/massspectrometry/index.html).  

For subsequent evaluation, the score obtained from mass spectrometric analysis was 

aggregated for all protein sequences derived from the same accession number. Stable 

Arabidopsis lines expressing either GFP-AtSec62 or AtSec62-GFP were used for 

analysis, while non-transformed wild-type plants were used as control. Protein 

sequences which were present in equal amounts in the control and the actual samples 

were omitted. 

2.2.29. Transient transformation of isolated Arabidopsis thaliana protoplasts 

Centrifugation steps for Arabidopsis protoplast isolation were performed at room 

temperature with low acceleration and deceleration, osmolality of buffers was adjusted 

to 550 mosmol kg-1 and protoplasts were slowly pipetted with cut tips. 10 – 20 leaves 

of four-week-old Arabidopsis plants were gently incised in 10 ml enzyme solution (1% 

(w/v) cellulase Onozuka R10, 0.3% (w/v), macerozyme R10, 0.1% (w/v) BSA, 20 mM 

MES (pH 5.7), 400 mM mannitol, 20 mM KCl, 10 mM CaCl2), vacuum infiltrated for 

30 sec and shaken for 90 min at 40 rpm in the dark on an orbital shaker. Protoplasts 

were released by applying 80 rpm for 1 min, filtered through a nylon mesh/gauze and 

centrifuged at 100 g for 2 min. Pelleted protoplasts were resuspended in 500 μl MMg 

buffer (4 mM MES (pH 5.7), 400 mM mannitol, 15 mM CaCl2) and layered onto a 

gradient consisting of 9 ml MSC buffer (10 mM MES (pH 5.8), 20 mM MgCl2, 120 g L-1 

(approximately 350 mM) sucrose) and 2 ml MMg buffer, prior to 10 min centrifugation 

at 70 g. Intact protoplasts at the interface between MMg and MSC buffer were 

transferred to new tubes with 5 ml W5 buffer (same as in 2.2.25.) and pelleted at 100 g 

http://www.en.biologie.uni-muenchen.de/core_facilities/massspectrometry/index.html
http://www.en.biologie.uni-muenchen.de/core_facilities/massspectrometry/index.html
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for 2 min. Protoplasts were resuspended in MMg buffer, counted using a 

haemocytometer (Neubauer improved) and adjusted to approximately 4 x 10-6 

protoplasts ml-1. 100 μl of isolated protoplasts were mixed with 20 μg plasmid DNA, 

before adding 110 μl PEG/Ca solution (2 g PEG 4000 with 1.75 ml H20, 1 ml of 1 M 

mannitol solution and 0.5 ml of 1 M Ca(NO3)2 solution). Samples were incubated in the 

dark for 10 min, prior to adding 500 μl W5 buffer and 1 min centrifugation at 100 g. 

Pelleted protoplasts were resuspended in 1 ml W5 buffer, sealed with Parafilm® “M” 

Laboratory Film (Bemis) and incubated at room temperature overnight in the dark. 

2.2.30. Confocal microscopy 

Fluorescent signals in leaves or protoplasts were detected at room temperature by 

confocal laser scanning microscopy (Leica TCS SP5, objective: HCX PL APO, 

magnification: 63x, imaging medium: glycerol) using the Leica Application Suite 

Advanced Fluorescence for image acquisition (compare to Schweiger and Schwenkert 

2014).  

Pictures were taken in 512 x 512 or 1024 x 1024 format (width x height) and a scan 

speed of 100 Hz. The maximum distance between stacks for z-stackings of isolated 

protoplasts was set at 0.67 µm. 
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3. Results 

3.1. Identification of atsec62 and attpr7 T-DNA insertion lines 

An attpr7 T-DNA insertion line has been described recently with the insertion being 

located in exon 9 of AT5G21990 (AtTPR7) (Schweiger et al. 2012, Figure 4a). 

Homozygous attpr7 plants were confirmed by PCR using the oligonucleotides AtTPR7-

Exon9-f, AtTPR7-Exon11-r and LBa1 (Figure 4b). Even though AtTPR7 transcript was 

absent in mutant plants, no obvious phenotype was observable in comparison with 

Col-0 (compare to Schweiger et al. 2012, Figure 4c, d).  

 

 

 

 

 

 

 

 

 

 

The insertion of the identified atsec62 T-DNA insertion line is located in Exon 1 of 

AT3G20920 (AtSEC62) and homozygous mutant plants were selected by PCR using 

the oligonucleotides Sec62-5’UTR-for, Sec62-Exon2-rev and Gabi-LB8409 (Figure 5a, 

b). atsec62 plants displayed an impaired growth in comparison with wild-type plants 

after four weeks growth (Figure 5c), although no obvious aerial phenotype was 

observable during initial growth. Absence of AtSEC62 transcripts in atsec62 was 

verified by RT-PCR using the oligonucleotides AtSec62-Exon1-f and AtSec62-Exon5-r, 

Figure 4: Confirmation of an attpr7 T-DNA insertion line. (a) AT5G21990 (AtTPR7) gene 

structure and location of the T-DNA insertion (black triangle) in exon 9, also indicating the 

T-DNA left (LB) and right border (RB). Exons are indicated by black boxes. Based on 

Schweiger et al. (2012). (b) Genotyping PCR for Col-0 and attpr7 using the oligonucleotides 

AtTPR7-Exon9-f, AtTPR7-Exon11-r and LBa1. Oligonucleotide binding sites in AtTPR7 are 

indicated in (a). (c) RT-PCR for AtTPR7 and the control AtBIP2 using Col-0 and attpr7. 

Oligonucleotide binding sites for AtTPR7-Exon1-attB-f and AtTPR7-Exon11-attB-r in AtTPR7 

are indicated in (a). (d) Phenotype of four-week-old Col-0 and attpr7 plants. Scale bar 

represents 2 cm. Compare to Schweiger et al. (2012) for initial characterisation of attpr7.  



 Results 

42 
 

while the absence of AtSec62 protein was confirmed by using a specific αAtSec62 

antibody leading to a detectable signal at the expected molecular weight of 41.9 kDa 

only in isolated wild-type microsomal membranes (Figure 5d, e).  

For complementation analysis, AtSEC62 encoded under the control of the endogenous 

promoter was transformed into atsec62 mutant plants and the presence of respective 

transcripts was confirmed for two independent lines, named pAtSEC62::AtSEC62 

#14-6 (#14-6) and pAtSEC62::AtSEC62 #27-2 (#27-2) (Figure 5b, d). The observed 

growth phenotype of atsec62 plants was rescued in both lines upon expression of 

endogenous AtSec62 (Figure 5c).  

In contrast to the aerial phenotype, an altered root morphology of atsec62 was already 

visible in two-week-old seedling plants, which were grown vertically on half-strength 

Figure 5: Isolation of an atsec62 T-DNA insertion line and respective complementation 

lines. (a) AT3G20920 (AtSEC62) gene structure and location of the T-DNA insertion (black 

triangle) in exon 1, also indicating the T-DNA left (LB) and right border (RB). Exons are 

indicated by black boxes. (b) Genotyping PCR for Col-0 and atsec62 plants as well as 

complementation lines pAtSEC62::AtSEC62 #14-6 (#14-6) and pAtSEC62::AtSEC62 #27-2 

(#27-2) using the oligonucleotides AtSEC62-5’UTR-f, AtSEC62-Exon2-r and Gabi-LB8409. 

Oligonucleotide binding sites in AtSEC62 are indicated in (a). (c) Phenotype of four-week-old 

Col-0 and atsec62 as well as #14-6 and #27-2 plants. Scale bar represents 2 cm. (d) RT-PCR 

for AtSEC62 and the control AtBIP2 using Col-0, atsec62, #14-6 and #27-2. Oligonucleotide 

binding sites for AtSEC62-Exon1-f and AtSEC62-Exon5-r in AtSEC62 are indicated in (a). (e) 

Immunodetection of Col-0 and atsec62 microsomal membranes using an αAtSec62 antiserum 

(upper panel) and Coomassie stain (lower panel). Putative signal for AtSec62 is indicated by 

black arrow. Figure taken from Mitterreiter et al. (2020).  
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MS medium (Figure 6a – d). atsec62 seedlings displayed a primary root length of 

3.67 ± 1.15 cm in comparison to wild-type roots with 5.32 ± 0.82 cm length (shown as 

mean ± SD, n = 36 (Col-0), n = 37 (atsec62), Figure 6a, b), whereas the number of 

lateral roots was increased by nearly 50%, with atsec62 seedlings having 

23.46 ± 10.73 lateral roots per plant in comparison to wild-type seedlings only having 

15.69 ± 4.03 (shown as mean ± SD, n = 36 (Col-0), n = 37 (atsec62), Figure 6a, c, d).  

Beside the visible growth phenotype, a very low number of homozygous mutant plants 

was observable during initial screening. For this reason the segregation pattern of 

progeny plants derived from heterozygous atsec62 plants (+/-) was investigated to 

identify potential defects of atsec62. Only 8.83% homozygous progeny plants, but 

40.38% wild-type and 50.79% heterozygous progeny plants were identified (n = 317), 

significantly differing from the expected Mendelian ratio that would imply 50% 

heterozygous progeny, 25% wild-type and 25% homozygous progeny (Table 5).  

Figure 6: Root morphology of two-week-old atsec62 seedlings in comparison to Col-0. 

(a) Root phenotype of Col-0 and atsec62 seedlings. Scale bar represents 1 cm. (b) Boxplot 

depicting primary root length of Col-0 and atsec62 seedlings. Centre lines of boxes show the 

medians with limits at 25th and 75th percentiles. Tukey – whiskers extend to 1.5 x interquartile 

range; notches indicate 95% confidence interval; outliers are represented by dots; sample 

means are indicated by black crosses; sample size n = 36 (Col-0), 37 (atsec62). Differences 

between genotypes were validated by Student’s t-test. (c) Boxplot as in (b), showing number 

of lateral roots per seedling for atsec62 in comparison to Col-0. Sample size n = 36 (Col-0), 37 

(atsec62). (d) Primary root tips of Col-0 and atsec62 seedlings. Scale bars represent 1 mm. 

Figure taken from Mitterreiter et al. (2020).    
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Table 5: Segregation analysis for progeny plants derived from heterozygous atsec62 

(+/-) plants. Progeny genotypes were identified by PCR using AtSEC62 and T-DNA specific 

oligonucleotides (compare to Figure 5a, b). Table taken from Mitterreiter et al. (2020), modified. 

Genotype 
wild-type 

progeny 

heterozygous 

progeny 

homozygous 

progeny 
p1:2:1 

atsec62 (+/-) 128 161 28 1.92 x 10-4 

Due to their T-DNA insertion, homozygous as well as heterozygous atsec62 plants 

should be resistant towards sulfadiazine, whereas wild-type plants remain sensitive, 

resulting in 75% resistant progeny plants derived from atsec62 (+/-). Again an altered 

segregation pattern was observable with only 58.63% resistant plants (n = 278), rather 

resembling an 3:2 ratio than the expected 3:1 ratio, but also significantly differing from 

an 1:1 ratio, which would be typically expected for male and female gametophyte 

mutants (Liu and Qu 2008, Drews and Koltunow 2011) (Table  6).    

Table 6: Segregation analysis on sulfadiazine. Number of sulfadiazine resistant (SulfaR) 

and sensitive (SulfaS) Col-0, atsec62 as well as pAtSEC62::AtSEC62 #14-6 (#14-6) and 

pAtSEC62::AtSEC62 #27-2 (#27-2) plants. p-value for expected segregation, validation by χ2 

analysis. Table taken from Mitterreiter et al. (2020), modified. 

Genotype SulfaR SulfaS SulfaR [%] p3:1 p1:1 p3:2 

Col-0 0 100 0 - - - 

atsec62 (+/-) 163 115 58.63 2.94 x 10-10 0.0040 0.6418 

#14-6 98 0 100 - - - 

#27-2 103 0 100 - - - 

 

3.2. Generative defects in atsec62   

For further investigation of potential gametophytic defects in atsec62, siliques, anthers 

and pollen of mutant plants were examined. Siliques of six- to seven-week-old atsec62 

plants seemed to be aborted and had a reduced length of only 0.45 ± 0.09 cm in 

contrast to wild-type plants having siliques of 1.74 ± 0.07 cm length and 

complementation lines with 1.70 ± 0.13 cm (#14-6) and 1.77 ± 0.08 cm (#27-2) (shown 

as mean ± SD, n = 32) (Figure 7a, b). Additionally, most of atsec62 siliques were empty 

resulting in a drastically reduced seed yield of 3.79 ± 2.42 mg seeds per plant (n = 28), 

whereas wild-type plants yielded 440.50 ± 26.33 mg seeds per plant (n = 7) (shown as 

mean ± SD, p = 4.86 x 10-40, compare to Figure 7c).  
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When investigating siliques of atsec62 (+/-) neither a reduced seed set nor defective 

seeds were observable, indicating that the female gametophyte was still functional (Liu 

and Qu 2008, Drews and Koltunow 2011). Upon investigation of pollen viability by 

Alexander staining, which allows discrimination between viable (violet staining) and 

non-functional pollen grains (greenish staining) (Alexander 1969), Col-0 and both 

complementation lines showed violet and clearly distinguishable pollen grains, which 

Figure 7: Reduced seed yield and altered pollen development in atsec62. (a) Phenotype 

of six-to seven-week-old Col-0 and atsec62 as well as pAtSEC62::AtSEC62 #14-6 (#14-6) and 

pAtSEC62::AtSEC62 #27-2 (#27-2) plants. Scale bar represents 4 cm. (b) Siliques of six- to 

seven-week-old Col-0, atsec62, #14-6 and #27-2 plants. Scale bars represent 5 mm. (c) Col-0 

and atsec62 seed yield from one single plant. Scale bar represents 5 mm. (d) Alexander 

staining of anthers from opening buds (upper panels) and open flowers (lower panels) of eight-

week-old Col-0, atsec62, #14-6 and #27-2 plants. Scale bars represent 100 µm. Figure partially 

taken from Mitterreiter et al. (2020), modified. 
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were already visible in anthers of opening buds, while the majority of atsec62 anthers 

appeared greenish with only occasionally faint violet staining and no pollen-like 

structures observable (Figure 7d). Only upon testing anthers of already open flowers, 

corresponding to dehiscent wild-type anthers, violet staining of clustered pollen-like 

structures was observable for atsec62. (Figure 7d).  

For subsequent in vitro pollen germination, atsec62 pollen were hardly released from 

the anthers and their germination rate was reduced by 57% in comparison to wild-type 

pollen when incubated at 25°C (Table 7).  

3.3. High-temperature and ER stress sensitivity of atsec62 

To identify other defects in atsec62 besides general vegetative and generative defects, 

in vitro pollen tube germination was additionally conducted at 37°C, leading to mutant 

pollen hardly germinating at all (Table 7). High-temperature sensitivity was then further 

investigated according to Yang et al. (2009). Seeds were either germinated at 37°C for 

48 h and then transferred to 22°C or directly germinated and grown at 22°C. Seed 

germination rate was determined after seven days growth, so five days after the actual 

heat treatment, whereas the survival rate upon high-temperature stress was examined 

after 14 days growth. atsec62 seed germination was reduced by 15% even without 

heat treatment, while there was no further effect caused by high-temperature stress 

(Table 7). However, the survival rate of germinated atsec62 plants was decreased with 

25.96% of atsec62 seedlings suffering and dying due to the preceding heat treatment, 

whereas germinated wild-type plants remained unaffected (Table 7). 

Table 7: Pollen tube germination, seed germination and survival of Col-0 and atsec62 

plants upon high-temperature stress. Numbers indicate percentage of germinated pollen 

and seeds or percentage of germinated plants that survived high-temperature stress. Table 

taken from Mitterreiter et al. (2020), modified.  

Line  
Pollen tube germination [%]1 Seed germination [%]2 Survival [%]3 

25°C 37°C 22°C 37°C 22°C 37°C 

Col-0 24.56 15.78 97.80 96.12 100.00 99.24 

atsec62 10.50 0.82 83.46 81.40 96.43 74.04 

1 Col-0 at 25°C (n = 950), Col-0 at 37°C (n = 928), atsec62 at 25°C (n = 203), atsec62 at 37°C (n = 164).  
2 Col-0 at 22°C (n = 139), Col-0 at 37°C (n = 129), atsec62 at 22°C (n = 133), atsec62 at 37°C (n = 129). 
3 Col-0 at 22°C (n = 133), Col-0 at 37°C (n = 131), atsec62 at 22°C (n = 112), atsec62 at 37°C (n = 104). 

atsec62 susceptibility towards ER stress was tested by growing plants on different 

concentrations of DTT or Tunicamycin. In both cases accumulation of misfolded or 
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unfolded proteins triggers the unfolded protein response (UPR) with DTT preventing 

the formation of disulphide bonds and Tunicamycin blocking N-linked glycosylation. 

While increased concentrations of DTT were affecting atsec62 seedlings slightly more 

than the wild-type control, there was no observable effect of Tunicamycin on atsec62 

(Figure 8a, b).  

 

 

 

 

 

 

 

 

 

3.4. AtSec62 localisation and topology analysis  

Besides its role in plant growth and development, AtSec62 localisation and topology 

were investigated, as it has been suggested that AtSec62 possesses a third 

transmembrane domain (Schweiger and Schwenkert 2013), resulting in an altered 

topology in contrast to its yeast and mammalian counterparts (Deshaies and 

Schekman 1989, 1990, Müller et al. 2010). Amino acid sequences of various Sec62 

homologues were therefore compared regarding their predicted transmembrane 

domains, including higher plants like Arabidopsis thaliana, Oryza sativa and Zea mays, 

the moss Physcomitrella patens, the unicellular green algae Chlamydomonas 

reinhardtii, mammals like Homo sapiens and Mus musculus, Drosophila eugracilis and 

the yeast Saccharomyces cerevisiae (Figure 9a, for complete phylogenetic tree 

including additional species see Figure A2).  

 

Figure 8: ER stress sensitivity of Col-0 and atsec62 seedlings. Sensitivity of two-week-old 

plants towards DTT (1.5 mM, 2 mM) (a) and Tunicamycin (0.025 µg ml-1, 0.05 µg ml-1) (b) 

induced ER stress. Scale bar represent 5 mm. Figure partially taken from Mitterreiter et al. 

(2020).   
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Figure 9: Predicted transmembrane domains for Sec62 homologues and AtSec62 

constructs used in this study. (a) Amino acid sequence alignment of Sec62 homologues 

from Oryza sativa, Zea mays, Arabidopsis thaliana, Physcomitrella patens, Chlamydomonas 

reinhardtii, Homo sapiens, Mus musculus, Drosophila eugracilis and Saccharomyces 

cerevisiae. Detailed information regarding accession numbers is given in section 2.1.7. 

Conserved amino acids are shaded in black/ grey. (continued on next page) 
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While two transmembrane domains were predicted for all analysed Sec62 

homologues, a third transmembrane domain harbouring many hydrophobic amino 

acids was only predicted for plant Sec62 (Figure 9a). Potential N-glycosylation sites 

with the consensus motif N-X-S/T (with X being any amino acid except proline) 

(compare to Marshall 1972) were additionally found in higher plants, but were absent 

in mosses, algae as well as yeast and mammals (Figure 9a).    

For localisation and topology analyses, full-length AtSec62 and AtSec62-ΔTMD3/C 

were used with AtSec62-ΔTMD3/C lacking the C-terminal region of AtSec62 including 

the putative third transmembrane domain (Figure 9b).  

To initially confirm the predicted ER localisation of AtSec62 and to test whether GFP-

fusion might affect proper AtSec62 targeting, N- and C-terminal GFP-fusion constructs, 

named GFP-AtSEC62 and AtSEC62-GFP, were transiently expressed in tobacco 

leaves together with an ER marker (compare to Nelson et al. 2007, Schweiger et al. 

2012). Following co-infiltration of tobacco leaves with Agrobacteria carrying respective 

constructs, fluorescent signals were detected by confocal laser scanning microscopy 

in intact leaves and isolated protoplasts (Figure 10a, b). For both GFP-fusion proteins 

the fluorescent signal co-localised with the ER marker confirming the putative ER 

localisation of AtSec62 (Figure 10c, d). The presence of full-length GFP-AtSec62 and 

AtSec62-GFP with an expected molecular weight of 68.8 kDa (41.9 kDa for AtSec62 

and 26.9 kDa for GFP) was proven by isolating proteins out of infiltrated tobacco leaves 

(Figure 10e).  

Subsequent topology analysis was performed by fusing the eleventh GFP β-sheet to 

the N- or the C-terminus of AtSec62 or AtSec62-ΔTMD3/C, thereby generating 

constructs for expression of GFP11-AtSec62, AtSec62-GFP11, GFP11-AtSec62-

ΔTMD3/C and AtSec62-ΔTMD3/C-GFP11 constructs (compare to Cabantous et al. 

2005, Xie et al. 2017). The AtSEC62-ΔTMD3/C-GFP11 fusion construct contained an 

additional C-terminal His-tag as linker between the actual AtSEC62 coding region and 

the GFP encoding section.  

Predicted transmembrane domains are indicated in dark blue (TMD1), light blue (TMD2) and 

green (TMD3), putative N-glycosylation sites are shown in orange. (b) Scheme of AtSec62 

constructs used in this study. AtSec62 (amino acids 1-365), AtSec62-ΔTMD3/C (amino acids 

1-247) and AtSec62-N (amino acids 1-160) are shown with potential transmembrane domains 

(black boxes). The stop codon inserted for generation of the AtSec62-ΔTMD3/C construct is 

indicated in red in (a). Figure taken from Mitterreiter et al. (2020), modified. 
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Respective constructs were co-transformed into tobacco leaves together with plasmids 

encoding the GFP β-sheets 1-10 (compare to Cabantous et al. 2005), which are either 

localised to the cytosol (GFP1-10) or to the ER lumen by an integrated ER retention 

signal (GFP1-10-HDEL) (Xie et al. 2017). While fluorescent signals for GFP11-

AtSec62, GFP11-AtSec62-ΔTMD3/C and AtSec62-ΔTMD3/C-GFP11 were detectable 

when co-expressed with cytosolic GFP1-10, signals for AtSec62-GFP11 were only 

monitored upon co-expression with the ER luminal GFP1-10-HDEL (Figure 11a, b). 

These results indicate that AtSec62 has indeed an altered topology in comparison to 

its yeast and mammalian counterparts with its C-terminus facing the ER lumen (Figure 

11c).  

Figure 10: Localisation of AtSec62 GFP-fusion proteins in transiently transformed 

tobacco leaves. Tobacco leaves were co-transformed with Agrobacteria carrying constructs 

for an ER marker (mCherry) and constructs for GFP-AtSec62 or AtSec62-GFP. Fluorescent 

signals were detected by confocal laser scanning microscopy in intact leaves (a) or isolated 

protoplasts (b). Scale bars represent 10 µm. Line histograms along the yellow arrow indicated 

in (a), depict the relative fluorescence intensity of GFP-AtSec62 (c) or AtSec62-GFP (d) 

(green) and the ER marker (magenta). (e) Membrane proteins were isolated from infiltrated 

tobacco leaves and GFP-fusion proteins (indicated by black arrow) were detected using an 

anti-GFP antibody (αGFP). Figure partially taken from Mitterreiter et al. (2020), modified. 
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On top of its possibly altered topology, AtSec62 shares only 12% and 15% overall 

sequence identity with its yeast and human homologues and even regarding the 

predicted Sec62 domain (compare to Schweiger and Schwenkert 2013), it shows only 

14% sequence identity, while yeast Sec62p and human Sec62 share 19% sequence 

identity.  

 

 

 

Figure 11: AtSec62 topology analysis in transiently transformed tobacco leaves. 

Tobacco leaves were co-transformed with Agrobacteria carrying constructs for either GFP11-

AtSec62, AtSec62-GFP11, GFP11-AtSec62-ΔTMD3/C or AtSec62-ΔTMD3/C-GFP11 and 

cytosolic GFP1-10 or ER luminal GFP1-10-HDEL (compare to Xie et al. 2017). Fluorescent 

signals were detected by confocal laser scanning microscopy in intact leaves (a) or isolated 

protoplasts (b). Scale bars represent 10 µm. (c) Proposed topology model for AtSec62 and 

AtSec62-ΔTMD3/C in comparison to yeast Sec62p (ScSec62p) and human Sec62 (HsSec62). 

Figure taken from Mitterreiter et al. (2020), modified. 



 Results 

52 
 

3.5. Yeast complementation analysis using AtSec62 

To test whether AtSec62 or AtSec62-ΔTMD3/C can nonetheless rescue the growth 

phenotype of the sec-ts yeast mutant despite its low sequence identity with Sec62p 

and its possibly altered topology, complementation analysis in yeast was conducted. 

sec62-ts is thermosensitive due to an amino acid substitution (G37D) in Sec62p, 

enabling normal growth only at permissive temperature (28°) but not at restrictive 

temperature (37°C). While growth was restored upon expression of the endogenous 

Sec62p, neither AtSec62 nor AtSec62-ΔTMD3/C was able to rescue the 

thermosensitive growth phenotype, even though respective transcripts were present 

as verified by RT-PCR (Figure 12a, b).  

 

 

 

 

 

3.6. Importance of the AtSec62 C-terminus for its function in plants 

For further examination of the AtSec62 C-terminal region, complementation analysis 

in atsec62 was conducted by using an AtSEC62-ΔTMD3/C construct under the control 

of the endogenous promoter (Figure 9b, Figure 13a). Two lines of homozygous 

atsec62 plants carrying respective constructs were identified and named 

pAtSEC62::AtSEC62-ΔTMD3/C #30-23 and pAtSEC62::AtSEC62-ΔTMD3/C #12-22 

(Figure 13b). In contrast to complementation with the full-length AtSec62, the truncated 

AtSec62-ΔTMD3/C was neither able to rescue the atsec62 growth phenotype nor the 

observed silique phenotype, even though respective transcripts were present (Figure 

13c – e). Siliques of seven- to eight-week-old #30-23 and #12-22 plants have a length 

of 0.55 ± 0.29 cm (n = 14) and 0.52 ± 0.14 cm (n = 18) similar to atsec62 with 

Figure 12: Complementation analysis in sec62-ts. (a) Wild-type yeast (W303) and 

thermosensitive sec62-ts were transformed with constructs for expression of yeast Sec62p 

(ScSec62p), AtSec62, AtSec62-ΔTMD3/C or the empty vector control. Serial dilutions were 

dropped onto solid SCD medium plates and yeast cells were grown at either permissive (28°C) 

or restrictive (37°C) temperature for 48h. (b) RT-PCR for ScSEC62, AtSEC62 and AtSEC62-

ΔTMD3/C using Col-0 and sec62-ts transformed with constructs as described in (a). Figure 

taken from Mitterreiter et al. (2020). 
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0.51 ± 0.15 cm (n = 17), while wild-type siliques have a length of 1.59 ± 0.13 cm 

(n = 16) (shown as mean ± SD). These results indicate that the AtSec62 C-terminal 

region and especially the C-terminus facing the ER lumen, is critical for proper AtSec62 

function or stability.  

3.7. Identification of potential AtSec62 and AtTPR7 interaction partners by mass 

spectrometry 

Since AtSec62 and AtTPR7 are putative components of the Arabidopsis Sec post-

translocon (Schweiger et al. 2012, Schweiger and Schwenkert 2013), potential 

interaction partners or preproteins destined for translocation should be identified. 

Respective candidates for AtTPR7 have been identified recently by isolating 

Figure 13: Complementation analysis in atsec62 using AtSEC62-ΔTMD3/C. (a) Scheme 

of full length AtSEC62 and the truncated AtSEC62-ΔTMD3/C construct. (b) Genotyping PCR 

for Col-0 and atsec62 plants as well as lines carrying constructs for expression of AtSEC62-

ΔTMD3/C, AtSEC62-ΔTMD3/C #30-23 and #12-22, using the oligonucleotides indicated in 

Figure 5a. (c) Phenotype of five-week-old Col-0 and atsec62 as well as #30-23 and #12-22 

plants. Scale bar represents 2 cm. (d) Siliques of seven- to eight-week-old Col-0, atsec62, #30-

23 and #12-22 plants. Scale bars represent 5 mm. (e) RT-PCR for AtSEC62 or AtSEC62-

ΔTMD3/C and the control AtBIP2 using Col-0, atsec62, #30-23 and #12-22. Oligonucleotide 

binding sites for AtSEC62-Exon1-f, AtSEC62-ΔTMD3/C-r and AtSEC62-Exon5-r in AtSEC62 

or AtSEC62-ΔTMD3/C are indicated in (a). Figure taken from Mitterreiter et al. (2020). 
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microsomal membranes from an inducible srα RNAi-line and subsequent mass 

spectrometric analysis (Dissertation of Brylok 2018). Among identified proteins were 

the β-glycosyl hydrolase AtPYK10 (Matsushima et al. 2003, Nagano et al. 2005, 

Nagano et al. 2008), the GDSL-like lipase AtGLL23 (Nagano et al. 2008, Jancowski et 

al. 2014) and the AtPYK10 interacting AtPBP1 (Nagano et al. 2005, Nagano et al. 

2008) being involved in glucosinolate biosynthesis as well as the prohibitin AtPHB3 

(Christians and Larsen 2007, Van Aken et al. 2007, Wang et al. 2010b) (summarised 

in Table 8). Chloroplast localised pSSU from tobacco was additionally used for 

following analyses as AtTPR7 was initially suggested to be an outer envelope protein 

associating with pSSU (von Loeffelholz et al. 2011).  

Table 8: Candidate preproteins for post-translational translocation via AtTPR7. Proteins 

were selected based on mass spectrometric analysis (Dissertation of Brylok 2018) or recent 

publications (von Loeffelholz et al. 2011). 

Protein Localisation1 Biological process/ complex/ protein class1 

AtGLL23 ER (transiently) GDSL-like lipase 

AtPBP1 cytosol inhibitor-type lectin/ PYK10 interacting 

AtPHB3 
nucleus/ mitochondria/ 

plasma membrane 

mitochondrial and cell metabolism and 

biogenesis/ ethylene and NO signalling 

pSSU chloroplast RuBisCO 

AtPYK10 ER bodies β-glucosidase 

1 Localisation and biological process/ complex or protein class of proteins based on aramemnon 

(http://aramemnon.uni-koeln.de/) and UniProt (https://www.uniprot.org/) and references therein.   

For identifying potential AtSec62 associating or interacting proteins, microsomal 

membranes were isolated out of wild-type plants either expressing GFP-Atsec62 or 

AtSec62-GFP (Figure 14a) or untransformed wild-type plants which were used as 

control.  

Mass spectrometric analysis was performed after conducting GFP-trap® pull-down 

experiments to isolate GFP-fusion proteins and associated proteins out of the plant 

lysate (Figure 14b).  

The obtained score was aggregated for all protein sequences of the same accession 

number and protein sequences which were present in equal amounts in the wild-type 

control and the actual samples were omitted. Proteins were selected for further 

analysis based on their overall score, their predicted localisation and their potential 

involvement in certain cellular pathways or processes. 

http://aramemnon.uni-koeln.de/
https://www.uniprot.org/
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Hereby identified proteins included the ER luminal HSP70-like chaperone AtBiP1/2 

(Maruyama et al. 2010, Maruyama et al. 2014), the HSP90-type chaperone AtSHD 

(Krishna and Gloor 2001, Ishiguro et al. 2002, Chong et al. 2015), the calnexin-type 

lectin chaperone AtCNX1 (Liu et al. 2017, Vu et al. 2017), the cytochrome P450 

monooxygenase AtCYP83A1 being involved in glucosinolate biosynthesis (Bak and 

Feyereisen 2001, Hemm et al. 2003, Naur et al. 2003), AtDGL1 being a putative 

component of the oligosaccharyltransferase complex (Lerouxel et al. 2005), the 

putative thioglucoside glucohydrolase AtTGG1 (Zhao et al. 2008), the vacuolar V-type 

ATPase component AtVHA-A (Sze et al. 2002, Jaquinod et al. 2007) and the β-

carbonic anhydrase AtCA1β (Fabre et al. 2007, Hu et al. 2015, Huang et al. 2017) 

(compare to Table 9, protein names and putative functions based on aramemnon 

(http://aramemnon.uni-koeln.de/) and UniProt (https://www.uniprot.org/), for full list of 

identified proteins see Table A1).  

 

Figure 14: GFP-trap® pull-down using stable AtSec62 GFP-fusion lines. (a) Col-0 plants 

expressing GFP-AtSec62 or AtSec62-GFP upon stable transfection by floral dip. Fluorescent 

signals were detected by confocal laser scanning microscopy in intact leaves. Scale bars 

represent 50 µm. (b) GFP-trap® pull-down using microsomal membranes isolated from plants 

expressing either GFP-AtSec62 or AtSec62-GFP. 2% of the input (In, corresponding to 25 µg 

microsomal membranes), 2.5% supernatant (S), 3% of washes (W1 – W3) and 5% elution (E) 

were loaded onto SDS-PAGE gels. Immunodetection of GFP-fusion proteins was performed 

using an anti-GFP antibody. Full length proteins are indicated by black arrows. 

http://aramemnon.uni-koeln.de/
https://www.uniprot.org/
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Table 9: Potential AtSec62 interacting/ associating proteins selected for further 

interaction analysis. Score is given for proteins identified by GFP-trap® pull-down with 

AtSec62-GFP or GFP-AtSec62 and subsequent mass spectrometric analysis.   

Protein Localisation1 

Biological process/ 

complex/  

protein class1 

Origin2 

 Score3 

AtSec62

-GFP 

GFP-

AtSec62 

AtATG8e  
cytosol/ 

autophagosome  
autophagy P - - 

AtBiP2  ER 
Sec translocation 

pathway/ chaperone 
MS 468.91 n.d. 

AtCA1β  
chloroplast/ 

cytosol 
β-carbonic anhydrase MS 861.56 n.d. 

AtCNX1  ER ER stress response MS 865.66 1250.723 

AtCYP83A1  ER 
glucosinolate 

biosynthesis 
MS 602.83 674.437 

AtDGL1  ER N-linked glycosylation MS n.d. 611.146 

AtERdj2A  ER 
Sec translocation 

pathway 
IS - - 

AtGET1  ER GET pathway CG - - 

AtGET3a  cytosol GET pathway IS - - 

AtGET4  cytosol GET pathway IS - - 

AtSec61α1 ER 
Sec translocation 

pathway 
IS - - 

AtSec61β1  ER 
Sec translocation 

pathway 
IS - - 

AtSec61γ1  ER 
Sec translocation 

pathway 
IS - - 

AtSHD  ER chaperone MS 348.6 1136.636 

AtSYP123  ER/ Golgi vesicle trafficking CG - - 

AtSYP43  ER/ Golgi vesicle trafficking CG - - 

AtTGG1  
secretory 

pathway/ vacuole 

glucosinolate 

biosynthesis 
MS 234.623 591.76 

AtTPR7  ER 
Sec translocation 

pathway 
P - - 

AtVHA-A  vacuole V-type ATPase MS 951.937 739.36 

1 Localisation and biological process/ complex or protein class of proteins based on aramemnon 

(http://aramemnon.uni-koeln.de/) and UniProt (https://www.uniprot.org/) and references therein.   
2  CG: Christopher Grefen (personal communication), IS: independent selection, MS: identified by mass 

spectrometric analysis, P: recent publication (AtATG8e in Hu et al. 2020, AtTPR7 in Schweiger and 

Schwenkert 2013).  
3  n.d.: not detected in mass spectrometric analysis. 

 

http://aramemnon.uni-koeln.de/
https://www.uniprot.org/
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Besides proteins identified by mass spectrometry, other interesting candidate proteins 

were selected (Table 9). These include AtATG8e, which was recently proposed to be 

interacting with AtSec62 during autophagy (Hu et al. 2020), as well as other putative 

components of the Arabidopsis Sec translocon like AtSec61α1, AtSec61β1, 

AtSec61γ1, AtERdj2A (Yamamoto et al. 2008) and AtTPR7 (Schweiger et al. 2012), 

which has already been shown to be interacting with AtSec62 (Schweiger and 

Schwenkert 2013).  

Additionally, AtGET1, AtGET3a and AtGET4 as components of the Arabidopsis GET-

pathway were selected (Srivastava et al. 2017, Xing et al. 2017), as AtGET1 was 

shown to interact with AtSec62 (Christopher Grefen, personal communication). 

AtSYP123 (Ichikawa et al. 2014) and AtSYP43 (Kim and Bassham 2013) were used 

as exemplary tail-anchored proteins with AtSYP123 being inserted into the ER 

membrane via the GET-pathway (Xing et al. 2017). However, most of the proteins 

identified by mass spectrometry either contained an N-terminal signal sequence or 

belonged to the class of signal anchor proteins, rather than being tail-anchored 

proteins. 

3.8. Verification of AtSec62 associating or interacting proteins  

To confirm association or interaction of identified proteins with AtSec62, rBiFC 

experiments were performed. The two halves of the fluorophore, nYFP and cYFP, are 

fused to potentially interacting proteins while cytosolic RFP is expressed as 

transformation control (Grefen and Blatt 2012). N- and C-terminal fusions of cYFP to 

proteins were performed depending on the presence of a signal peptide or tail-anchor 

and functional protein domains. After infiltrating tobacco leaves, fluorescent signals 

were detected by confocal laser scanning microscopy in intact leaves after two days 

incubation.  

When focusing on the nuclear region, it is evident that the RFP signal is not detected 

in the YFP channel (compare to Grefen and Blatt 2012). However, as general signal 

intensity and respective RFP expression drastically varied between samples and due 

to YFP background signals (compare to Figure A3), quantification of fluorescent 

signals was not performed in this study. 

Interaction of AtSec62 with other Sec translocon components was initially monitored. 

While the interaction with the chaperone docking protein AtTPR7 was confirmed 

(compare to Schweiger and Schwenkert 2013), no distinct fluorescent signal was 

detectable for AtSec62 and AtBiP2 or AtERdj2A (Figure 15). Intense fluorescent 
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signals were observable for the putative components of the Sec61 protein-conducting 

channel, AtSec61β1 and AtSec61γ1, whereas only faint signals were detectable for 

AtSec61α1 (Figure 15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides observed signals with other Sec translocon components, fluorescent signals 

were also detectable for AtSec62 and AtATG8e (Figure 16), confirming the proposed 

interaction of both proteins based on co-localisation upon ER stress (Hu et al. 2020). 

Moreover, fluorescent signals were monitored for proteins identified via GFP-trap pull-

down experiments, including AtCNX1, AtCYP83A1, AtDGL1 and AtCA1β, which was 

Figure 15: rBiFC analysis of AtSec62 and other components of the Sec translocon. 

Tobacco leaves were transformed with Agrobacteria carrying rBiFC constructs for expression 

of nYFP-AtSec62 or AtSec62-nYFP and AtBiP2-cYFP, AtERdj2A-cYFP, cYFP-AtSec61α1, 

cYFP-AtSec61β1, cYFP-AtSec61γ1 or cYFP-AtTPR7 as well as cytosolic RFP. Fluorescent 

signals were detected by confocal laser scanning microscopy in intact leaves. Scale bars 

represent 50 µm. 
 



 Results 

59 
 

localised to the cytosol in this study (Figure A4, compare to Fabre et al. 2007, Hu et al. 

2015, Huang et al. 2017), whereas no signal was detectable for AtSHD, AtTGG1 and 

AtVHA-A (Figure 16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: rBiFC analysis of AtSec62 and potentially interacting or associating proteins. 

Tobacco leaves were transformed with Agrobacteria carrying rBiFC constructs for expression 

of nYFP-AtSec62 or AtSec62-nYFP and cYFP-AtATG8e, AtCA1β-cYFP, AtCNX1-cYFP, 

AtCYP83A1-cYFP, AtDGL1-cYFP, AtSHD-cYFP, AtTGG1-cYFP or cYFP-AtVHA-A as well as 

cytosolic RFP. Fluorescent signals were detected by confocal laser scanning microscopy in 

intact leaves. Scale bars represent 50 µm. 
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When testing for potential interactions with GET-pathway components and exemplary 

tail-anchored proteins, fluorescent signals were only detectable for AtSec62 and 

AtGET1, AtGET3a or AtSYP123 but not for AtGET4 or AtSYP43 (Figure 17). These 

results indicate that AtSec62 might be additionally involved in the GET-pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

 

To further test this hypothesis and to investigate whether AtSec62 recruits AtGET3a to 

the ER membrane in a similar manner than AtGET1, recruitment assays were 

performed (Christopher Grefen, personal communication) (Figure 18a).  

For this purpose, constructs coding for expression of AtGET3a-CFP, AtSec62-YFP 

and AtSec62-N-YFP were generated and co-transformed into tobacco leaves together 

with the helper plasmid p19 to enhance protein expression. Fluorescent signals were 

then monitored by confocal laser scanning microscopy. Faint signals for AtGET3a-CFP 

were also detectable in the YFP channel, while intense signals for AtSec62-YFP and 

Figure 17: rBiFC analysis of AtSec62 and components of the GET pathway or tail-

anchored proteins. Tobacco leaves were transformed with Agrobacteria carrying rBiFC 

constructs for expression of nYFP-AtSec62 and AtGET1-cYFP, AtGET3a-cYFP, AtGET4-

cYFP, cYFP-AtSYP123 or cYFP-AtSYP43 as well as cytosolic RFP. Fluorescent signals were 

detected by confocal laser scanning microscopy in intact leaves. Scale bars represent 50 µm.  
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AtSec62-N-YFP were only monitored in the YFP channel, confirming that CFP signals 

in co-transformed tobacco leaves indeed originated from AtGET3a-CFP (Figure 18b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Recruitment assay for AtGET3a and AtSec62. (a) Schematic overview of the 

recruitment assay setup. Upper panel shows single constructs while lower panels show co-

transformed constructs in case of recruitment or without recruitment. (continued on next page) 
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Similar to previous GFP-localisation experiments, AtSec62-YFP localises to the ER, 

while AtSec62-N-YFP, lacking all transmembrane domains, localises to the cytosol and 

also migrates to the nucleus (Figure 18b). Signals for AtGET3a-CFP were detectable 

in the cytosol when expressed alone or when co-expressed with AtSec62-YFP and 

AtSec62-N-YFP (Figure 18b), indicating that AtSec62 is not recruiting it to the ER 

membrane.  

3.9. Confirmation of potential preproteins for post-translational translocation 

To confirm candidate preproteins for post-translation translocation, in vitro pull-down 

experiments were performed. Preproteins were in vitro translated and labeled with 35S-

methionine, while Strep-tagged chaperones and His-tagged AtTPR7 constructs were 

overexpressed in Escherchia coli and subsequently purified (Figure A1a, b).  

If proteins were destined for post-translational import into the ER via AtTPR7, they 

should be interacting with cytosolic chaperones like AtHSP70-1 and AtHSP90.2. 

AtPHB3, AtPYK10 and AtGLL23 were bound by AtHSP70-1 as well as AtHSP90.2, 

whereas an interaction of the cytosolic AtPBP1 with both chaperones was not 

detectable (Figure 19a). As expected, pSSU was rather bound by AtHSP70-1 than 

HSP90.2 (May and Soll 2000, Fellerer et al. 2011) (compare to Figure 19a).  

The interaction of respective candidate preproteins with AtTPR7 should be 

investigated afterwards. For this purpose, recombinant AtTPR7ΔTMD and 

AtTPR7ΔTPRΔTMD were used, both lacking the C-terminal transmembrane domain 

and AtTPR7ΔTPRΔTMD additionally missing the TPR domain being required for 

interaction with AtHSP70-1 and AtHSP90.2 (Schweiger et al. 2012, Schweiger et al. 

2013). AtPHB3, AtPYK10 and AtGLL23 were bound by AtTPR7ΔTMD, while 

interaction was slightly reduced for AtTPR7ΔTPRΔTMD (Figure 19b). No interaction 

was observable for AtPBP1, whereas a very faint signal was detectable for pSSU 

corresponding to unspecific binding or low amounts of AtTPR7 being indeed present 

in chloroplasts (von Loeffelholz et al. 2011, Schweiger et al. 2012) (Figure 19b).  

  

(b) Tobacco leaves were co-transformed with Agrobacteria carrying the helper plasmid p19 

and constructs for AtGET3a-CFP, AtSec62-YFP, AtSec62-N-YFP, AtGET3a-CFP and 

AtSec62-YFP or AtGET3a-CFP and AtSec62-N-YFP. Fluorescent signals were detected by 

confocal laser scanning microscopy in intact leaves. An overlay of signals obtained in the CFP 

and the YFP channel and a close-up are shown. Scale bars represent 50 µm and 20 µm for 

close-ups. 
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Figure 19: Candidate preproteins for post-translational translocation. In vitro pull-down 

assay using 35S-labelled preproteins (pSSU, AtPBP1, AtPHB3, AtPYK10 and AtGLL23) and 

purified Strep-tagged AtHSP70-1 and AtHSP90.2 (a) or His-tagged AtTPR7ΔTMD and 

AtTPR7ΔTPRΔTMD (b). No Strep-/ His-tagged proteins were added for control samples. 5% 

of the translation product (TL), 2% of the flow-through (FT) and of the first wash (W1) and the 

complete elution were loaded. (c) Boxplots depicting relative intensity of signals derived from 
35S-labelled preproteins (pSSU, AtPBP1, AtPHB3, AtPYK10 and AtGLL23) that were adjusted 

to the actual amount of AtHSP70-1 and AtHSP90.2 and ratioed against the mean signal 

intensity of the translation product. (continued on next page) 
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When quantifying signals derived from radiolabelled candidate proteins, observed 

differences were only significant for pSSU and AtPHB3 regarding their interaction with 

chaperones (Figure 19c) and for AtPYK10 and AtGLL23 regarding their interaction with 

AtTPR7ΔTMD (Figure 19d). This might be due to large variation between samples and 

high background signals for the control samples (compare to Figure 19b), even though 

clear pattern was observable for all candidate preproteins (compare to Figure 19c, d). 

 

  

 

 

Centre lines of boxes show the medians with limits at 25 th and 75th percentiles. Tukey – 

whiskers extend to 1.5 x interquartile range; individual data points are represented by dots; 

sample means are indicated by black crosses; sample size n = 3 (n = 2 for pSSU/control and 

AtPBP1/AtHSP70-1). Differences between samples were validated by one-way ANOVA and 

subsequent Tukey’s post hoc comparison. Mean values with unlike letters were significantly 

differing between samples. (d) Boxplots as in (c), 35S-derived signals were adjusted to the 

actual amount of AtTPR7ΔTMD and AtTPR7ΔTPRΔTMD. Sample size n = 4, n = 3 (pSSU).  
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4. Discussion 

In this study, the importance of AtSec62 for plant growth and development was 

demonstrated especially regarding male fertility. AtSec62 has three transmembrane 

domains in contrast to its yeast and mammalian homologues and its luminal exposed 

C-terminus was shown to be crucial for proper AtSec62 function in Arabidopsis. In 

addition, potential AtSec62 and AtTPR7 interacting or associating proteins were 

identified providing further insight in the composition and translocation substrates of 

the Arabidopsis Sec translocon.  

4.1. atsec62 but not attpr7 displays vegetative and generative growth defects 

similar to other secretory pathway mutants  

An atsec62 T-DNA insertion line has been isolated and verified on RNA and on protein 

level and respective complementation lines have proven that lack of AtSec62 is indeed 

causing the observed generative and vegetative growth defects. Additionally, the 

absence of respective AtTPR7 transcript in a recently described attpr7 mutant line was 

confirmed and no obvious growth phenotype was detectable in accordance with 

previous studies (Lister et al. 2007, Schweiger et al. 2012). These results indicate that 

AtTPR7 is not essential for ER protein translocation and can probably be bypassed 

similar to other chaperone docking proteins like chloroplast localised AtToc64 and 

mitochondrial AtOM64 (Aronsson et al. 2007, Lister et al. 2007, Schweiger et al. 2012), 

whereas AtSec62 is critical for proper plant growth and development especially 

regarding male gametophyte development. The observed atsec62 dwarf-like 

phenotype and the abnormal pollen morphology have also been shown by another 

independent study, also confirming the late onset of the aerial phenotype (Hu et al. 

2020). The altered atsec62 root morphology with reduced root length but an increased 

number of lateral roots might be due to disturbed ER protein translocation, also 

interfering with hormone signalling and root nutrient uptake, for example regarding 

phosphate (compare to Pérez-Torres et al. 2008, Malhotra et al. 2018). This would in 

return also affect growth of aerial plant tissues, thereby contributing to the observed 

phenotype maybe even in a time-displaced manner.  

Besides general vegetative growth defects, atsec62 displays defects in male 

gametophyte development. Only clustered pollen-like structures are observable in 

mutant anthers instead of distinct pollen grains and pollen development appears to be 

delayed in contrast to wild-type anthers. Due to this delayed pollen development as 
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well as reduced and probably temperature-dependent pollen tube germination, 

atsec62 pollen might not reach the female gametophyte in time for proper pollination 

leading to drastically reduced seed yield.  

Observed generative defects in male transmission in atsec62 resemble defects in other 

mutant lines with defective or missing secretory pathway components (Jakobsen et al. 

2005, Yamamoto et al. 2008, Conger et al. 2011, Maruyama et al. 2014, Vu et al. 

2017). For example, polar nuclei fusion and pollen tube growth in bip1 bip2 are 

affected, whereas bip1 bip2 bip3 pollen are not even viable (Maruyama et al. 2010, 

Maruyama et al. 2014) and aterdj2a as well as atsec24a-1 pollen fail to properly 

germinate resulting in male sterility (Yamamoto et al. 2008, Conger et al. 2011). Similar 

to AtSec62, AtERdj2A is part of the Sec translocon and is indispensable for 

translocation and subsequent secretion (Yamamoto et al. 2008), while AtSEC24A is 

probably part of the COPII coat, thereby being involved in selective cargo binding in 

protein ER export (Kuehn et al. 1998, Conger et al. 2011). Reduced pollen viability and 

tube growth were also observed for the cnx1 crt1 crt2 crt3 quadruple mutant, lacking 

ER resident calnexin and calreticulin, both involved in protein quality control (Vu et al. 

2017). Moreover, AtMIA is essential for protein secretion due to its involvement in 

vesicle trafficking and mia-1 pollen not only fail to germinate in vitro but also stick to 

the anthers probably due to remnants of the pollen mother cell and the callosic wall 

still attached to the pollen grains (Jakobsen et al. 2005). However, protein secretion 

from tapetal cells is required for degradation of callose and the pollen mother cell wall 

(Stieglitz 1977, Rhee et al. 2003, Lu et al. 2014) as well as for pollen exine formation, 

which among others depends on secreted lipid transfer proteins becoming part of the 

microspore surface (Huang et al. 2013).  

Incomplete removal of the callosic wall and the pollen mother cell wall might likewise 

be the reason for clustered pollen-like structures in atsec62 next to other effects 

caused by defective protein translocation and subsequent protein secretion similar to 

aterdj2a (Yamamoto et al. 2008).  

Defective pollen development and reduced seed germination match the AtSEC62 

expression pattern with high expression levels in mature pollen, seeds and during 

anther development and only moderate expression in vegetative tissue (Arabidopsis 

eFP browser, http://bar.utoronto.ca/, Winter et al. 2007). Due to the presence of 

homozygous atsec62 plants and to atsec62 (+/-) progeny plants not segregating in the 

http://bar.utoronto.ca/
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expected 1:1 ratio for gametophyte mutants, the absence of AtSec62 can presumably 

be partially bypassed or compensated by an alternative translocation pathway.  

Interestingly, the phenotype of the recently described line with AtGET3a 

overexpression in an Atget1-1 background resembles the atsec62 phenotype, also 

displaying impaired growth, shorter roots and reduced seed set (Xing et al. 2017), while 

Atget1-1 alone has no severe phenotype (Srivastava et al. 2017, Xing et al. 2017). For 

this reason, Xing et al. (2017) suggested that there might be an alternative 

translocation pathway next to the GET-pathway, which might be disturbed in respective 

AtGET3a overexpressing lines due to trapping of tail-anchored proteins in the cytosol, 

thereby causing the observed phenotype. This alternative pathway might be the 

Arabidopsis Sec post-translocon but might involve additional, yet undiscovered 

components. AtSec62 might otherwise be part of the GET-pathway rather than the 

actual Sec translocon (Christopher Grefen, personal communication). 

4.2. atsec62 is sensitive towards high-temperature and ER stress 

Besides impaired growth and reduced male fertility of atsec62 under normal growth 

conditions, seedling survival after high-temperature treatment is reduced in contrast to 

wild-type plants and atsec62 pollen are hardly germinating at all, whereas there is no 

further effect on seed germination. As storage compounds are already present in 

seeds, there might only be low ER import rates increasing upon further vegetative 

growth and therefore causing no effects regarding seed germination.   

The increased susceptibility towards high-temperature stress might not only be due to 

a generally reduced fitness of atsec62 plants but also to an involvement of AtSec62 in 

plant thermotolerance.   

atsec62 additionally showed a higher susceptibility towards DTT induced ER stress, 

while it remained unaffected by Tunicamycin treatment (0.05 µg ml-1). However, when 

applying higher concentrations of Tunicamycin (0.1 µg ml-1), atsec62 plants turn 

sensitive with the observed effect being rescued by overexpressing YFP-AtSec62 in 

an amiRNAi-atsec62 background (Hu et al. 2020). Hu et al. (2020) additionally showed 

an increased sensitivity of atsec62 and amiRNAi-atsec62 plants towards NaCl induced 

salt stress which in return also triggers ER stress in plants. AtSec62 might be involved 

in the UPR (reviewed by Strasser 2018, Pastor-Cantizano et al. 2020, Wang et al. 

2020) by translocating required components but might also be directly involved in ER 

stress recovery similar to its mammalian homologues (Linxweiler et al. 2013, Fumagalli 

et al. 2016). Hu et al. (2020) suggested that AtSec62 acts as an ER-phagy receptor in 
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plants based on co-localisation of the autophagosome marker AtATG8e as well as on 

atsec62, atg5 and atg7 displaying similar survival rates upon Tunicamycin treatment. 

It was further proposed that AtSec62 has two LC3 interacting region (LIR)/ Atg8-family 

interacting motifs (AIM) being required for interaction with AtATG8e (Hu et al. 2020). 

Moreover, AtSec62 might also be involved in the salt-induced ER-associated 

degradation (ERAD) pathway, which was suggested to have an interactive mechanism 

with the UPR in Arabidopsis even though respective mechanisms still remain unknown 

(Li et al. 2017, Hu et al. 2020).  

4.3. AtSec62 localises to the ER membrane and has three transmembrane 

domains with its C-terminus being crucial for its function in plants 

As expected, due to its interaction with AtTPR7 (Schweiger and Schwenkert 2013) and 

localisation predictions (http://aramemnon.uni-koeln.de/, https://www.uniprot.org/), 

AtSec62 localises to the ER membrane. Hu et al. (2020) independently showed that 

YFP-tagged AtSec62 is an integral membrane protein and co-localises with AtCNX1 

and the Sec translocon components AtSec61α1 and AtERdj2A.  

AtSec62 has a third predicted TMD in contrast to its yeast and mammalian homologues 

(Deshaies and Schekman 1989, 1990, Müller et al. 2010, Schweiger and Schwenkert 

2013) and also putative N-glycosylation sites, residing in the C-terminal region, hint 

towards the AtSec62 C-terminus being exposed to the ER lumen rather than the 

cytosol (compare to Figure 20). The presence of this putative third transmembrane 

domain was proven by Split-GFP topology analysis in this study and by protease 

protection assays of YFP-AtSec62 by Hu et al. (2020). 

 

 

 

 

 

 

 

 

Figure 20: Topology model and amino acid motifs of Sec62 homologues. Positively 

charged regions (red), LIR/ AIM motifs (green), EF-hand motifs (blue) and N-glycosylation sites 

(N-Gly, orange) in yeast Sec62p (ScSec62p), human Sec62 (HsSec62) and AtSec62 are 

indicated. Figure taken from Mitterreiter et al. 2020, modified. Motifs based on Müller et al. 

2010, Linxweiler et al. 2013, Jung et al. 2014, Fumagalli et al. 2016 and Hu et al. 2020.  

http://aramemnon.uni-koeln.de/
https://www.uniprot.org/
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To further assess the importance of the prolonged C-terminal region in plants and to 

test for potential functional conservation, complementation analysis using AtSec62 as 

well as AtSec62-ΔTMD3/C was conducted in atsec62 and sec62-ts.  

In contrast to full-length AtSec62, AtSec62-ΔTMD3/C was not able to rescue the 

observed vegetative and generative growth defects in atsec62, indicating that the C-

terminal region is essential for proper AtSec62 function in plants. This might also 

involve membrane insertion of AtSec62 as well as protein stability or folding besides 

solely functional properties. Its C-terminus might be crucial for interaction with Sec 

translocon components or translocation substrates. Furthermore, it might be involved 

in recognising misfolded or unfolded proteins and in promoting further interaction with 

AtATG8e in course of ER-phagy (Hu et al. 2020).  

When performing complementation analysis in yeast, neither AtSec62 nor the 

truncated AtSec62-ΔTMD3/C was able to restore normal growth of thermosensitive 

sec62-ts, while human Sec62 as well as Sec62 from Drosophila and the 

phytopathogen Magnaporthe oryzae were able to rescue the growth phenotype of 

respective yeast mutants (Noёl and Cartwright 1994, Müller et al. 2010, Zhou et al. 

2016). Even though AtSec62-ΔTMD3/C topology at least resembles Sec62p topology, 

the inability of plant Sec62 to complement sec62-ts might be due to the cytosol 

exposed C-terminus of Sec62p having an essential function in yeast by contributing to 

signal peptide recognition (Deshaies and Schekman 1990, Dünnwald et al. 1999, 

Wittke et al. 2000). Similar to AtERdj2A, AtSec62 might additionally be unable to form 

proper complexes with yeast Sec translocon components (Yamamoto et al. 2008). 

AtERdj2A as well as AtERdj2B displays only around 20% sequence identity to 

Sec63p/Sec63, comparable to AtSec62 sharing only 12% and 15% sequence identity 

with Sec62p and human Sec62 (Yamamoto et al. 2008, Schweiger and Schwenkert 

2013). Also sequence identity regarding the actual predicted Sec62 domain (compare 

to Schweiger and Schwenkert 2013) is low with AtSec62 showing only 14% identity to 

Sec62p/Sec62. Notably, also Sec62p and human Sec62 share only 19% sequence 

identify regarding the conserved Sec62 domain.  

Summarising, AtSec62 and especially its luminal C-terminus is probably not conserved 

when compared to its yeast and mammalian counterparts and is likely to have acquired 

a unique function in plants.  
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4.4. Putative interaction partners of the Arabidopsis Sec translocon 

To gain further insights into ER protein translocation in Arabidopsis, potential 

interacting/ associating proteins of the Sec translocon components AtSec62 and 

AtTPR7 were identified also including putative translocation substrates (summarised 

in Figure 21). An interaction between AtSec62 and AtTPR7 has already been reported 

(Schweiger and Schwenkert 2013) and was confirmed by rBiFC experiments in this 

study, while there was no interaction detectable between AtSec62 and AtERdj2A or 

AtBiP2. This might be due to general low expression of respective constructs and 

therefore only low signal intensity or it might indicate that AtSec62 is not associating 

with AtERdj2A in contrast to its yeast and mammalian homologues (Deshaies et al. 

1991, Panzner et al. 1995, Tyedmers et al. 2000, Harada et al. 2011). Signal peptide 

recognition in plants might no longer depend on the formation of the Sec62-Sec63 

complex but might be conducted by AtSec62 alone and AtERdj2A might only be 

important for recruiting AtBiP to the translocon (compare to Yamamoto et al. 2008). 

Besides the majority of mammalian Sec62 and Sec63 being not complexed, smaller 

fractions of Sec62 were associated with Sec61β, while Sec63 was associated with 

Sec61α (Meyer et al. 2000). Similar results were obtained for the yeast homologues 

with Sec62p being associated with Sec61βp (Sbh1p) and probably playing a role in TA 

protein insertion (Tyedmers et al. 2000), whereas Sec63p – together with Kar2p – and 

Sec61αp (Sec61p) were proposed to be involved in delivering proteins for degradation 

(Knittler et al. 1995, Wiertz et al. 1996, Pilon et al. 1997, Plemper et al. 1997, Tyedmers 

et al. 2000). In line with these observations, fluorescent signals were obtained for 

AtSec62 together with AtSec61β1 and additionally with AtSec61γ1 and faint signals 

with AtSec61α1, indicating that – instead of the respective homologues AtERdj2A/B – 

AtSec62 might have partially overtaken the function of Sec63p.  

A putative interaction or association was observable for AtSec62 and AtGET1, 

AtGET3a and the TA protein AtSYP123. AtGET3a might not only recruit TA proteins 

to AtGET1 but also to AtSec62, which might play a comparable role for TA protein 

insertion as its yeast homologue Sec62p (Tyedmers et al. 2000). However, a 

recruitment of AtGET3a to the ER membrane via AtSec62 was not observable in this 

study. Besides lack of actual recruitment, this might be due to only faint interactions 

not being detectable due to general low signal intensity of AtGET3a-CFP. As for other 

potential interacting/ associating proteins, further experiments are required to prove 
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these interactions and to elucidate the actual function for protein translocation or 

potential other pathways, thereby also explaining the observed atsec62 phenotype.  

Furthermore, an interaction between AtSec62 and AtATG8e was detectable, providing 

further evidence for the proposed involvement of AtSec62 in ER-phagy (Hu et al. 

2020). AtSec62 is also interacting with AtCNX1, which is involved in ER quality control 

(Liu et al. 2017, Vu et al. 2017), and AtDGL1, which might be part of the 

oligosaccharyltransferase complex, thereby belonging to the auxiliary Sec translocon 

machinery (Lerouxel et al. 2005). Respective cnx1 crt1 crt2 crt3 mutant plants – 

additionally lacking ER resident calreticulin – have a similar phenotype as atsec62 with 

drastically affected pollen tube and root growth (Vu et al. 2017), indicating that AtSec62 

and AtCNX1 might either be involved in the same cellular process or are at least both 

influencing proper protein translocation and subsequent quality control.  

A fluorescent signal was additionally detected for AtSec62 and AtCYP83A1, which is 

involved in glucosinolate biosynthesis (Bak and Feyereisen 2001, Hemm et al. 2003, 

Naur et al. 2003) and might rather be a translocation substrate than a direct AtSec62 

interacting protein.  

Figure 21: Analysis of potential AtSec62 and AtTPR7 interacting/ associating proteins. 

rBiFC analysis (for AtSec62) and in vitro pull-down experiments (for AtTPR7ΔTMD) showed 

putative interacting/ associating proteins (green boxes and arrows) or non-interacting proteins 

(red boxes and arrows). Interaction of potential post-translational translocation substrates with 

AtTPR7 possibly also involves the cytosolic chaperones AtHSP70-1 and/ or AtHSP90.2. 

Proteins involved in the Sec translocation pathway are highlighted in blue. 
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Interestingly, an interaction with AtCA1β was observable, which was localised to the 

cytosol in this study but also shows chloroplast localisation depending on respective 

splice variants used (Fabre et al. 2007, Hu et al. 2015). For this reason it might also 

be considered as translocation substrate similar to other carbonic anhydrases that 

were reported to enter chloroplasts via the ER (Villarejo et al. 2005).  

As AtTPR7 translocation substrates, proteins were identified that are mainly involved 

in the glucosinolate pathway, hormone signaling and plant defense (Matsushima et al. 

2003, Nagano et al. 2005, Christians and Larsen 2007, Van Aken et al. 2007, Nagano 

et al. 2008, Wang et al. 2010b, Jancowski et al. 2014). AtPYK10, AtPHB3 and AtGLL23 

were shown to interact with cytosolic chaperones as well as with AtTPR7 via 

chaperones as interaction with AtTPR7 lacking the N-terminal TPR domain was 

reduced (compare to Figure 21). These results provide first insight into potential 

substrates for post-translational translocation in plants. All three proteins display high 

overall hydrophobicity scores in contrast to predictions for post-translationally 

transported yeast proteins (Ng et al. 1996, dissertation of Brylok 2018). Substrate 

recognition by AtTPR7 might occur only for non-essential proteins, thereby explaining 

the missing attpr7 phenotype, or AtTPR7 can be bypassed by other proteins – maybe 

even AtSec62, which might be acting as signal peptide receptor on its own (compare 

to Schweiger et al. 2012). 

4.5. Conclusion and future perspectives 

In this study, it has been shown that the ER luminal C-terminus of AtSec62 is critical 

for plant growth and male fertility and that it probably has acquired a unique function 

in comparison to its yeast and mammalian counterparts.  

Potential AtSec62 and AtTPR7 interacting/ associating proteins have been identified 

but need to be confirmed by additional experiments. For example, ER import 

experiments should be carried out into plant microsomal membranes to verify potential 

translocation substrates. Furthermore, additional translocation substrates and 

potential common features should be identified to predict post-translationally 

transported proteins in the future.  

In summary, this study contributed to understanding ER protein translocation in 

Arabidopsis by providing further insights into the composition of the Arabidopsis Sec 

translocon and by revealing potential translocation substrates.  

Nevertheless, the exact function of AtSec62 still remains unknown and will be an 

interesting issue to address in future studies. These might also reveal whether AtSec62 
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functions in post-translational translocation only or whether it is also involved in co-

translational transport similar to mammalian Sec62 (compare to Panzner et al. 1995, 

Müller et al. 2010).  
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Appendix 

Table A1: Complete list of potential AtSec62 interacting/ associating proteins. Proteins 

were identified by GFP-trap® pull-down with AtSec62-GFP or GFP-AtSec62 and subsequent 

mass spectrometric analysis resulting in the given score. Two biological replicates (R1 and 

R2) were analysed for AtSec62-GFP. 

Accession 

number  
Protein name1 

Score AtSec62-GFP2 Score  

GFP-AtSec622 R1 R2 

AT1G08450.2 AtCRT3/ AtPSL1 n.d. n.d. 160.46 

AT1G11860.3 AtGDT1/ AtGDC-T1 n.d. 108.57 107.69 

AT1G12900.2 AtGAPa-2 113.70 n.d. n.d. 

AT1G13100.1 AtCYP71B29 n.d. NaN 160.18 

AT1G14320.1 AtRPL10A n.d. 119.21 NaN 

AT1G15690.1 AtVHP1.1/ AtAVP1/ AtFUGU5 85.807 n.d. n.d. 

AT1G16410.2 AtCYP79F1/ AtSPS n.d. 102.07 331.368 

AT1G20620.4 AtCAT3/ AtSEN2 82.831 n.d. n.d. 

AT1G22530.1 AtPATL2 270.191 n.d. n.d. 

AT1G42970.1 AtGAPb 489.94 n.d. n.d. 

AT1G43170.4 AtRPL3A n.d. 157.75 63.864 

AT1G52370.3 - 57.047 n.d. n.d. 

AT1G56070.1 AtLOS1 n.d. 104.75 96.253 

AT1G59870.1 AtABCG36/ AtPDR8/ AtPEN3 n.d. 238.88 549.61 

AT1G78900.2 AtVHA-A 607.63 951.937 739.36 

AT2G01250.1 AtRPL7B n.d. 109.79 200.93 

AT2G01720.1 AtOST1a n.d. 125.22 n.d. 

AT2G21160.2 - n.d. 128.91 77.192 

AT2G28900.1 AtOep16-1 329.95 n.d. n.d. 

AT2G34420.1 AtLHCb1.5 231.54 n.d. n.d. 

AT2G37270.2 AtRPS5A n.d. 120.45 NaN 

AT2G39730.3 AtRCA 903.708 n.d. n.d. 

AT2G44060.2 - n.d. NaN 184.96 

AT2G45470.1 AtFLA8 n.d. n.d. 155 

AT2G45960.2 AtPIP1.2/ AtPIP1b/ AtTMPa 136.27 n.d. n.d. 

AT2G47470.4 AtPDI-S/ AtPDIL4-1/ AtPDI11 n.d. 289.9 263.42 
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Accession 

number  
Protein name1 

Score AtSec62-GFP2 Score  

GFP-AtSec622 R1 R2 

AT3G01500.1 AtBCA1/ AtCA1 861.56 n.d. n.d. 

AT3G02650.1 - 47.067 n.d. n.d. 

AT3G04920.1 AtRPS24A n.d. n.d. 392.73 

AT3G13870.2 AtRHD3 n.d. 97.779 177.048 

AT3G14210.1 AtESM 160.52 n.d. n.d. 

AT3G14420.3 AtGOX1 582.448 n.d. n.d. 

AT3G14600.1 AtRPL18aC n.d. 149.4 146.94 

AT3G16240.1 AtTIP2.1 n.d. 112.17 n.d. 

AT3G17390.1 AtMAT4/ AtSAMS3/ AtMTO3 n.d. NaN 113.89 

AT3G18740.1 AtRPL30C n.d. n.d. 258.07 

AT3G18780.1 AtACT2 300.844 n.d. n.d. 

AT3G19820.3 AtDIM/ DWF1 77.279 91.123 164.68 

AT3G20920.2 AtSec62 342.704 404.671 1703.046 

AT3G25520.2 AtRPL5A n.d. NaN 240.46 

AT3G26520.1 AtTIP1.2 247.73 n.d. n.d. 

AT3G43950.1 - 58.699 n.d. n.d. 

AT3G46740.1 AtToc75-III 99.732 n.d. n.d. 

AT3G47370.3 AtRPS20B n.d. 155.47 285.32 

AT3G52590.1 AtRPL40B/ AtUBQ1 105.17 n.d. n.d. 

AT3G53020.1 AtRPL24b/ AtSTV n.d. 125.97 159.5 

AT3G53420.2 AtPIP2.1/ AtPIP2a 769.83 n.d. n.d. 

AT3G55410.1 - n.d. NaN 1120.25 

AT3G58510.3 AtRH11 n.d. n.d. 123.35 

AT3G61430.2 AtPIP1.1/ AtPIP1a 313.69 n.d. n.d. 

AT3G63160.1 AtOEP7.2 146.79 n.d. n.d. 

AT3G63410.1 AtAPG1/ AtVTE3 160.48 n.d. n.d. 

AT3G63520.1 AtCCD1/ AtNCED1 n.d. NaN 150.1 

AT4G02080.1 AtSARA1c n.d. NaN 255.86 

AT4G09800.1 AtRPS18C n.d. 120.99 n.d. 

AT4G10450.1 AtRPL90D n.d. NaN 99.136 

AT4G12320.1 AtCYP706A6 n.d. NaN 261.17 
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Accession 

number  
Protein name1 

Score AtSec62-GFP2 Score  

GFP-AtSec622 R1 R2 

AT4G12420.2 AtSKU5 n.d. n.d. 248.96 

AT4G12800.1 AtPsaL n.d. 204.42 71.501 

AT4G13770.1 AtCYP83A1 n.d. 602.83 674.437 

AT4G14960.1 AtTUA6 n.d. 156.927 625.75 

AT4G15000.2 AtRPL27C n.d. n.d. 127.83 

AT4G16920.1 - 17.943 n.d. n.d. 

AT4G20360.1 AtTufA/ AtRABE1b/ AtSVR11 157.34 116.37 134.48 

AT4G21150.2 AtHAP6 n.d. 217.659 735.238 

AT4G21770.1 - n.d. n.d. 116.84 

AT4G21960.1 AtPer42/ AtPRXR1 n.d. n.d. 294.082 

AT4G24190.2 AtHSP90.7/ AtSHD n.d. 348.6 1136.636 

AT4G28390.1 AtAAC3 n.d. n.d. 332.83 

AT4G28750.1 AtPsaE1 n.d. 153.1 218.02 

AT4G30190.1 AtAHA2 122.28 314.83 340.259 

AT4G31490.1 AtCopB1 n.d. n.d. 269.14 

AT4G31500.1 AtCYP83B1/ AtSUR2/ AtRED1 n.d. 152.54 278.83 

AT4G33010.1 AtGDP1/ AtGDC-P1/ AtGLDP1 n.d. 112.85 304.036 

AT4G33240.3 AtFab1a n.d. n.d. 84.916 

AT4G34450.1 - n.d. 279.12 277.37 

AT4G34670.1 AtRPS3aB n.d. n.d. 109.16 

AT4G35000.1 AtAPX3 n.d. NaN 56.632 

AT4G35100.2 AtPIP2.7/ AtPIP3a 315.429 n.d. n.d. 

AT4G35860.2 AtRAB-B1c n.d. n.d. 143.96 

AT4G36130.1 AtRPL8C n.d. 161.51 n.d. 

AT5G02500.2 AtHsp70-1 n.d. 487.71 276.34 

AT5G02870.2 AtRPL4D n.d. 238.2 278.38 

AT5G03850.1 AtRPS28B n.d. 189.24 n.d. 

AT5G06660.1 - n.d. n.d. 301.35 

AT5G08690.1 AtmtATP-beta2 317.245 n.d. n.d. 

AT5G09660.2 AtpMDH2 n.d. n.d. 591.37 

AT5G12470.1 AtRER4 66.621 n.d. n.d. 
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Accession 

number  
Protein name1 

Score AtSec62-GFP2 Score  

GFP-AtSec622 R1 R2 

AT5G14740.2 AtBCA2/ AtCA2 257.92 n.d. n.d. 

AT5G17920.2 AtMS1/ AtCIMS/ AtMETS1 91.961 NaN 418.88 

AT5G25980.2 AtBGLU37/ AtTGG2 n.d. 561.03 789.01 

AT5G26000.2 AtBGLU38/ AtTGG1 n.d. 234.623 591.76 

AT5G26742.3 AtRH3 n.d. 424.463 888.13 

AT5G27850.1 AtRPL18C n.d. 169.37 205.585 

AT5G28540.1 AtBiP1/ AtBP1/ AtHsp70-11 n.d. 835.156 1416.834 

AT5G35630.3 AtGLN2/ AtGSL1 113.61 n.d. n.d. 

AT5G42020.2 AtBiP2/ AtBP2/ AtHsp70-12 468.91 n.d. n.d. 

AT5G42650.1 AtCYP74A/ AtAOS n.d. 407.683 708.4 

AT5G44340.1 AtTUB4 170.178 n.d. n.d. 

AT5G45620.2 - n.d. 82.75 n.d. 

AT5G45770.1 AtSNC3/ AtRLP55 17.647 n.d. n.d. 

AT5G46110.2 AtTPT 248.66 n.d. n.d. 

AT5G50920.1 AtClpC1/ AtHSP93-V 375.144 400.13 286.56 

AT5G59840.1 AtRAB-E1b n.d. 270.02 n.d. 

AT5G60390.2 - 1237.849 599.237 1073.969 

AT5G61790.1 AtCNX1 760.788 865.66 1250.723 

AT5G64990.1 AtRAB-H1a n.d. 123.21 126.31 

AT5G66680.1 AtDGL1 n.d. 186.78 611.146 

AT5G67560.1 AtARLA1d/ AtARL8b n.d. 85.533 184.36 

1 Protein name according to aramemnon (http://aramemnon.uni-koeln.de/). 
2 n.d.: not detected in mass spectrometric analysis. NaN: not a number.  
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Figure A1: Protein purification for subsequent antibody generation or in vitro pull-down 

analysis. AtSec62-N, AtTPR7ΔTPRΔTMD and AtTPR7ΔTMD were expressed with a C-

terminal His-tag (a), whereas AtHSP70-1 and AtHSP90.2 were expressed with a C-terminal 

Strep-tag (b). Fractions indicated on Coomassie stained SDS-PAGE gels correspond to 5 µl 

pre-induction (Pre) and post-induction sample (Post), 3 µl of the resuspended pellet (P), 15 µl 

flow-through (FT) and washes (W1 – W5) and 5 µl of the elutions (E1 – E5) (compare to 2.2.18. 

and 2.2.19.). 
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Figure A2: Phylogenetic analysis of Sec62 homologues. The phylogenetic tree was 

generated with MEGA-X (Kumar et al. 2018), using the Maximum Likelihood method, having 

500 bootstrap replications and applying the Jones-Taylor-Thornton substitution model (Jones 

et al. 1992) and Nearest-Neighbour-Interchange. It is drawn to scale with branch length 

measured in the number of substitutions per site. The percentage of trees in which the 

associated taxa clustered together is shown next to the branches. Detailed information 

regarding accession numbers is given in section 2.1.7. Species marked in blue were used for 

amino acid sequence alignment (compare to Figure 9a). 
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Figure A4: AtCA1β-GFP localisation. Fluorescent signals were detected by confocal laser 

scanning microscopy in transiently transformed tobacco leaves (upper panel) or isolated 

Arabidopsis protoplasts (lower panel). Scale bars represent 10 µm. 

Figure A3: Untransformed leaf sample for rBiFC analysis. Fluorescent signals were 

detected by confocal laser scanning microscopy. Scale bars represent 50 μm. 
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