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Zusammenfassung
Die experimentelle Kontrolle und Beobachtung von Quantenvielteilchensystemen
ist durch das Aufkommen ultrakalter Quantenmaterie Realität geworden. Das hohe
Maß an Isolation in diesen Experimenten, zusammen mit der Entwicklung neuarti-
ger Messmethoden, hat eine Grundsatzdebatte über die Thermalisierung in isolierten
Quantensystemen, die “Quantenthermalisierung”, wieder aufleben lassen. In dieser
Doktorarbeit nutzen wir ein Quantengasmikroskop um die Thermalisierungsdyna-
mik in hochgradig isolierten Systemen ultrakalter bosonischer Atome zu erforschen.
Die Fähigkeit, Quantensysteme hunderter Atome zu realisieren und zu kontrollieren,
ermöglicht die Untersuchung von Prozessen, die eine Herausforderung für klassische
numerische Simulationen darstellen.

Einer der Hauptteile dieser Dissertation behandelt Bose-Hubbard-Systeme in Ge-
genwart von Unordnung. Wir beginnen mit einer Untersuchung der mikroskopischen
Eigenschaften der Phasen nahe dem Gleichgewicht. Durch eine kontrollierbare Stär-
ke der Unordnung beobachten wir Merkmale, die vereinbar mit der Entstehung ei-
ner sogenannten Bose-Glas Phase sind. Anschließend realisieren wir Zustände fern
vom Gleichgewicht und untersuchen deren Quantenvielteilchendynamik. Insbeson-
dere beobachten wir hierbei Hinweise für das Phänomen der “Vielteilchenlokalisie-
rung”, eine Ausnahme der Quantenthermalisierung. Darüber hinaus untersuchen
wir, ob die Kopplung an ein Wärmebad mit nur wenigen Freiheitsgraden, d.h. ein
Quantenbad, einen lokalisierten Zustand thermalisieren kann. Hierfür realisieren wir
eine Mischung zweier wechselwirkender atomarer Spezien, wobei eine als Bad, und
die andere als lokalisierendes System agieren. Wir beobachten delokalisierende Dy-
namik für ein ausreichend großes Bad, wobei Lokalisierungsmerkmale bei schwacher
Kopplung für extrem lange Zeiten überleben können.

Der zweite Schwerpunkt dieser Doktorarbeit ist die Thermalisierung von peri-
odisch getriebenen Vielteilchensystemen, die sogenannte Floquet-Thermalisierung. In
diesen Systemen gilt keine Energieerhaltung, was jeden Anfangszustand irgendwann
in einen Zustand unendlicher Temperatur uberführt. Für ausreichend hohe Frequen-
zen kann dieser Thermalisierungsprozess beliebig lange dauern, was die Realisierung
exotischer, langlebiger, prethermischer Zustände erlaubt. Die experimentelle Untersu-
chung dieser Zustände wird in unserem System durch den hohen Grad an Isolation
und die Sensitivität der Quantengasmikroskopie ermöglicht. Dadurch können wir die
Heizraten für ein weites Spektrum an Antriebsfrequenzen und Wechselwirkungsstär-
ken messen. Unsere Ergebnisse zeigen eine starke Unterdrückung der Heizraten mit
ansteigender Antriebsfrequenz, welche konsistent sind mit den theoretischen Erwar-
tungen.





Abstract
The experimental control and observation of quantum many-body systems has be-
come a reality with the advent of ultracold quantum matter. The high level of iso-
lation of these experiments, together with the development of novel measurement
techniques, has revived a fundamental debate concerning the thermal equilibration
of isolated quantum systems, commonly named “quantum thermalization”. In this
thesis we make use of a quantum-gas microscope to explore the thermalizing dynam-
ics of highly isolated systems of ultracold bosonic atoms in optical lattices. The ability
to prepare and control quantum systems made up of hundreds of atoms makes it pos-
sible to explore regimes that represent a challenge for classical numeric simulations.

A major part of this dissertation deals with Bose-Hubbard systems in the pres-
ence of quenched disorder. We begin by studying the microscopic properties of its
phases near equilibrium, where by tuning the strength of the disorder, observe fea-
tures consistent with the emergence of a so-called Bose-glass phase. We then continue
by preparing states far from equilibrium and exploring their quantum many-body
dynamics. In particular, we observe signatures of the phenomenon of “many-body
localization”, which implies a breakdown of quantum thermalization. In addition,
we study whether localized systems can be thermalized via the coupling to a bath of
few degrees of freedom, i.e. a quantum bath. We do so by preparing a mixture of
two interacting atomic species, where one acts as the bath and the other as the local-
ized system. We do observe delocalizing dynamics for large enough baths, though in
regimes of weak coupling localization can survive for extremely long times.

The second main topic of this thesis is the thermalization of periodically driven
many-body systems, so-called Floquet thermalization. In these systems, the absence
of energy conservation eventually brings any initial state into a featureless infinite-
temperature one. However, for sufficiently high frequencies this thermalization pro-
cess can take arbitrarily long times, which can enable the engineering of exotic long-
lived prethermal states. We use the high isolation of our system, together with the
high sensitivity of quantum-gas microscopy, to measure the heating rates for a range
of driving frequencies and interaction regimes. Our results show a dramatic suppres-
sion of the heating as the frequency of the drive is increased, which is consistent with
theoretical expectations.
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Chapter 1

Introduction
The last three decades have witnessed how ultracold atoms have extended from the
field of atomic physics onto the one of condensed matter. The low temperatures at
which dilute atomic gases can be cooled, enable the study of many-body proper-
ties emerging from their intrinsic quantum statistics. Beginning with the milestone
of atomic Bose-Einstein condensates [1, 2], a series of developments have extended
our understanding of bosonic as well as fermionic degenerate quantum gases [3].

The landmark achievement of bringing quantum gases into the strongly correlated
regime was enabled by the implementation of many novel experimental tools. In par-
ticular, by loading ultracold atoms into optical lattices, i.e. dipole potentials based on
interfering laser beams, one can reach a strong confinement and an enhancement of
the atomic interactions. This has allowed for the realization of low-dimensional sys-
tems [4–6] as well as lattice models such as the Bose- and the Fermi-Hubbard [7, 8].
In addition, recent progress in combining cooling and imaging techniques has led to
the arrival of quantum-gas microscopy. This enables one to resolve at the single-atom
level the occupations in the lattice sites of two-dimensional systems of bosons [9, 10]
or fermions [11–14]. These microscopes have made it possible to measure density cor-
relations [15] as well as spin correlations, essential for the study of quantum mag-
netism [16–18]. The opportunity of experimentally realizing fundamental models of
condensed matter, together with the high degree of control and tunability in these
systems, has put them in the frontier of analog quantum simulation [19–21].

While many of these experimental studies have focused on the study of ground-
state properties and phases of matter, one can go one step further and explore out-
of-equilibrium dynamics [22] as well. By performing a quench in the system, one can
subsequently track its complex many-body dynamics. Two landmark experiments in
this field are the observation of coherent collapse and revival dynamics [23] and of
momentum-space oscillations in a 1D Bose gas [24]. A vast amount of experiments
have followed soon after in distinct quantum-gas setups, as for example the dynamics
of ferromagnetic spinor condensates [25], the relaxation of density waves [26] and
phase coherence [27], coherent oscillations in Ising models [28] or the decay of spin
waves in Heisenberg models [29].
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Some of these experiments display an almost perfect isolation from their envi-
ronment, which has sparked discussion on many fundamental topics concerning the
equilibration of isolated quantum systems [30–33]. While in the absence of an exter-
nal heat bath it might seem unlikely for a system to locally reach thermal equilibrium,
the coupling of small subsystems with the rest of the system can resemble the cou-
pling to an effective reservoir [34]. The developments of these and many other ideas
have pushed forward the field of quantum thermalization, with major new concepts
like the eigenstate thermalization hypothesis [35–38], which implies that the individual
many-body eigenstates are, in a way, already thermal.

While most generic systems seem to follow this quantum version of thermaliza-
tion, as also shown by experimental evidence [39], a failure of equilibration has been
predicted in some disordered systems. The presence of quenched disorder is known
to lead to a breakdown of transport properties [40], which has been shown to sur-
vive even in the presence of finite interactions [41, 42]. This phenomenon, dubbed
many-body localization (MBL), has lately attracted much attention, in part due to its
incompatibility with quantum statistical mechanics, but also as a path to enable the
realization of ordered phases out of equilibrium [34].

In experiments with ultracold atoms, disorder can be implemented by the gener-
ation of random or quasiperiodic dipole potentials, which makes them great candi-
dates for the study of the non-ergodic phenomenon of MBL. So far, several studies
have looked at interacting disordered gases in one-dimensional [43–45] as well as
in higher-dimensional systems [46–48]. Many of these experiments have shown sig-
natures of localization, mostly based on transport properties, for sufficiently strong
disorder. A major part of the present thesis will deal with experiments of disordered
bosons in a two-dimensional square optical lattice.

A quite different scenario for the study of out-of-equilibrium dynamics is that of
periodically driven systems, i.e. Floquet systems. This field has also captured much
attention over the last few years, in part for the possibility of implementing phases of
matter that would otherwise not exist in non-driven systems [49]. However, a constant
exchange of energy with the drive eventually brings Floquet systems into an infinite-
temperature state, a consequence of quantum thermalization. This hinders the realiza-
tion of any long-lived exotic models. A solution can be found by considering Floquet
MBL systems, which can stabilize such phases for indefinite times, by preventing the
thermalization of the system. This approach is, however, restricted to models with
some specific conditions, such as the presence of disorder or the interaction range. A
different path is that opened by Floquet prethermalization, namely the suppression of
the thermalization rates for high-frequency drives [50, 51]. This allows one to prepare
exotic states for exponentially long times even in generic systems without disorder,
and thereby prepare the preparation of prethermal phases of matter [52]. This phe-
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nomenon will also be explored in this thesis, via the implementation of a periodically
modulated lattice.

Outline of the thesis
In this thesis, a bosonic quantum-gas microscope has been used to explore some of
the out-of-equilibrium phenomena discussed in the previous section, including many
aspects that had been only explored theoretically until now.

In Part I we summarize the main ideas and tools that make it possible to mi-
croscopically study the Bose-Hubbard model in two dimensions. In Ch. 2 we in-
troduce the Bose-Hubbard Hamiltonian together with its ground-state phases and
phenomenology. We then show that it accurately describes the physics of ultracold
bosonic atoms loaded in optical lattices. In Ch. 3 we describe our experimental setup,
emphasizing the site-resolved imaging and addressability.

In Part II we focus on one of the core contents of the dissertation: the study of
disordered many-body systems. We begin in Ch. 4 by introducing the ground-state
phases of the disordered Bose-Hubbard model, and comparing previous experiment
with our implementation of programmable quenched disorder. We observe how dis-
order induces the emergence of a compressible and non-superfluid state, consistent
with a Bose glass phase. In Ch. 5 we shift into the field of out-of-equilibrium dynam-
ics, and we introduce the theoretical basis behind the concepts of ergodicity, quan-
tum thermalization and many-body localization, which are experimentally explored
in the following two chapters. In Ch. 6 we start by introducing our scheme to gen-
erate far-from-equilibrium states, which is based on a quench of the optical lattice.
We then present measurements of the quench dynamics for systems with increasing
disorder strengths and also distinct prepared initial states. Based on the measurement
of density imbalances, we identify dynamics compatible either with the thermaliza-
tion of the system or many-body-localization. In Ch. 7 we address the question of
whether a localized disordered system can thermalize via coupling to a thermal bath
with few degrees of freedom. We do this by studying a mixture of two atomic species,
in which one displays disorder-induced localization, while the other plays the role of
a disorder-insensitive quantum bath. The results indicate that for large enough baths,
an efficient delocalization of the system can take place, while for small sizes of the
thermal component, localization remains even for the longest measured times.

Part III deals with the thermalization of driven (Floquet) quantum many-body
systems. Ch. 8 summarizes the main ideas and motivation behind the study of peri-
odically driven systems, and explains the emergence of Floquet thermalization, which
eventually takes a driven system into a featureless infinite-temperature state. We then
discuss how high-frequency drives can extend the lifetime of such driven systems be-
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fore thermalization takes place, so-called Floquet prethermalization. Evidence of this
phenomenon is experimentally observed in Ch. 9, in which we measure the heating
dynamics of an atomic cloud under the periodic modulation of the optical lattices.
The use of a sensitive thermometry technique allows us to identify an exponential-
in-frequency suppression of the heating rates, the signature of Floquet prethermaliza-
tion.

In a final chapter, we summarize the contents and results presented in this thesis
and present an outlook, in which we discuss possible extensions of the experiments
performed so far.
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Chapter 2

The Bose-Hubbard model with
ultracold atoms
The Hubbard model has become an essential tool in the description and understand-
ing of many systems in the field of condensed matter physics [53]. In the context of
ultracold atoms, its precise description of bosons and fermions in optical lattices has
made it extremely common in both theoretical and experimental studies. In this chap-
ter we define and describe the main properties of the Bose-Hubbard model, which
are particularly relevant for the rest of the thesis. We will first go through the ground-
state phases of the model and discuss basic out-of-equilibrium examples. Next, we
will derive how ultracold atoms loaded in optical lattices can be described by the
Bose-Hubbard model assuming only the lowest band is populated.

2.1 Basics of the Bose-Hubbard model
The Hubbard model was originally conceived as an approximate model for correlated
electrons in solids. In essence, it can be seen as an interacting extension of the tight-
binding model [54], which considers electrons solely in the surroundings of the ions of
a crystal and their hopping through the ionic lattice. Its bosonic counterpart, the Bose-
Hubbard (BH) model [55], was at first devised to describe superfluid helium in porous
media, but its most common application has become the description of degenerate
bosonic atoms in optical lattices [56].

In its simplest version, the BH Hamiltonian can be written in the formalism of
second quantization as

ĤBH = −J ∑
〈i,j〉

â†i âj +
U
2 ∑

i
n̂i (n̂i − 1)−µ∑

i
n̂i, (2.1)

where the symbols âi, â†i and n̂i denote the bosonic annihilation, creation and number
operators for a particle in the site at position i. The first term describes the hopping be-
tween nearest-neighbour sites 〈i, j〉 with tunneling amplitude J, and the second term
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the on-site interactions between two or more particles with interaction strength U. The
last term includes the chemical potential µ, which fixes the number of bosons when
assuming the grand-canonical ensemble. In most cases we will restrict ourselves to a
fixed total boson number such that this term will remain unchanged in homogeneous
systems.

Figure 2.1: Cartoon depiction of the two-dimensional Bose-Hubbard model. Picture
of a 5× 5 lattice grid with few particles illustrating the tunneling of single particles
and doubly and triply occupied sites.

2.1.1 Single-particle eigenstates
Before discussing any eigenstates of the BH model, it will be helpful to consider only
the hopping term, i.e. the tight-binding model, ĤTB = ĤBH(U = 0). Let us assume a
lattice of arbitrary dimension with a total number of lattice sites M, for which we can
express the state of a single boson localized in an individual site as

|j〉 = â†j |0〉, (2.2)

where |0〉 denotes the vacuum state, i.e. an empty lattice. The single-particle eigen-
states of ĤTB can be written in this basis of localized bosons as an equally weighted
superposition with a relative phase,

|q〉 = â†q |0〉 =
1√
M ∑

j
eiq·rj |j〉, (2.3)
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where q is the so-called lattice momentum, a vector where each component ql can
be considered a quantum number, and rj the position vector of each lattice site. The
components of the lattice momentum can take values ql ∈ [−π/a, + π/a], where a is
the lattice spacing (here we assume it to be the same for all l directions).

These |q〉 are the lattice periodic Bloch states [54], and to directly see that they are
the eigenstates of the system, we can act with the Hamiltonian from the left, obtaining
the energy eigenvalues

ĤTB |q〉 = −2J ∑
l

cos(ql a) |q〉. (2.4)

This expresssion directly indicates that for the non-interacting case, the energy band-
width for d dimensions will be given by EBW = 2zJ, where z = 2d is the coordination
number, i.e. the number of nearest neighbours.

2.1.2 Phases in the ground state
Simple as it is, the BH model displays many interesting physical features. A funda-
mental one is the appearance of a quantum phase transition (QPT), that is a change in
the ground-state phase as one parameter of the Hamiltonian is tuned [57]. By tuning
the ratio of the BH parameters J/U, the ground state displays a transition between a
superfluid and an insulating phase.

Superfluid phase

Let us start in the regime of extremely weak interactions (U � J). The ground state
is essentially a Bose-Einstein condensate in the lowest energy state, i.e. a product of
single-particle Bloch states at q = 0,

|ΨSF〉 =
1√
N!

(
â†q=0

)N
|0〉 = 1√

N!

(
1√
M ∑

j
â†j

)N

|0〉, (2.5)

where N is the total number of bosons. For large M and N, the superfluid state can
also be written as a product of single-site coherent states

|ΨSF〉 = ∏
j
|α〉j = ∏

j

(
e−|α|

2/2
∞
∑

n=0

αn
√

n!
|n〉j

)
, (2.6)

in which α =
√

N
M , and |n〉 is a single-site Fock state, i.e. an eigenstate of n̂i, with

n bosons. This leads to a Poissonian on-site number distribution p(n) = α2n e−α
2
/n!

with mean occupationα2 = N/M and equal to its variance σ2 = N/M.



12 2. The Bose-Hubbard model with ultracold atoms

Additionally, it can be shown that the state |ΨSF〉 displays off-diagonal long-range
order, given by finite first-order correlation 〈â†j âk〉 > 0 when |rj − rk| → ∞. This is
precisely the order parameter that identifies the superfluid phase.

Mott insulator

We now turn to the opposite parameter regime, in which the tunneling is negligibly
small compared to the single-site interaction (J � U). In this limit, the ground state
for a system with commensurate filling n is

|ΨMI〉 = ∏
j
|n〉j =

1√
n!

∏
j

(
â†j
)n
|0〉, (2.7)

in which each particle is restricted to an individual lattice site, and therefore the vari-
ance is σ2

i = 0. This describes an insulating phase and is called the Mott insulator.
The expectation value of the field operator is 〈â j〉 = 0 and thereby it has vanishing
long-range order.

While the vanishing variance might seem as a suitable order parameter, note that
|ΨMI〉 only describes the ground state in the atomic limit. For small but finite values
of the tunneling J, the ground state is instead given by

|Ψ(1)〉 ≈ |ΨMI〉+
J

U ∑
〈i,j〉

â†i âj |ΨMI〉, (2.8)

for which σ2
i > 0. The order parameter for the Mott insulator is therefore instead

given by the local compressibility κi ∝ d〈n̂i〉/dµ, which has a vanishing value κi = 0
in the Mott insulator phase, i.e. it is an incompressible phase. Note also that |Ψ(1)〉 has
a finite short-range coherence, originating from particle-hole pairs, i.e. the additional
term in Eq. 2.8 [58, 59].

Another useful way of understanding the properties of these two distinct phases,
in the context of quantum optics, is by considering their uncertainty in the phase of
each site φi due to the well-defined atom number ni. These are expected to fulfill the
phase-number uncertainty relation ∆ni ∆φi ≥ 1/2. In the case of the Mott insulator,
the fixed boson number per site leads to a high uncertainty in the phase of the single-
site matter field. In the superfluid, the phases of each site are well defined, due to
the high fluctuations in the particle number, and in addtion, the tunneling between
the different sites locks all the phases to each other, leading to the characteristic long-
range coherence [60].
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2.1.3 Quench dynamics
Let us now go beyond the physics of individual eigenstates and consider few ex-
amples of out-of-equilibrium dynamics that can be explored within the BH model.
The main process behind non-equilibrium quantum systems is the introduction of a
quench in the system, i.e. a sudden change of a Hamiltonian parameter, which projects
an initial state into a superposition of eigenstates of the final Hamiltonian. This will
typically lead to non-trivial dynamics that can involve many eigenstates from a cer-
tain part of the energy spectrum. In the BH case, this will be a quench of the tunneling
and/or the interactions.

Coherent collapse and revival

Let us consider the preparation of a coherent state as described in Eq. 2.6, e.g. by
preparing a superfluid, and suddenly quench the tunneling strength to zero, such
that the time evolution will only be given by the interaction part of the Hamiltonian
ĤBH(J = 0). This will lead to a trivial time-evolution of each one of its single-site
eigenstates |n〉 as

|n(t)〉 = e−iĤt/h̄ |n〉 = e−i Un(n−1)t/2h̄ |n〉, (2.9)

and therefore to a time evolution of the initial single-site coherent state given by

|α(t)〉 = e−iĤt/h̄ |α〉 = e−|α|
2/2

∞
∑

n=0

αn
√

n!
e−i Un(n−1)t/2h̄ |n〉. (2.10)

The dynamics of this state will first lead to a dephasing of the different |n〉 states,
such that the coherence will quickly collapse. Later on, for multiples of the timescale
trev = h/U, all phase factors will be multiples of 2π , leading to a full revival of the
coherence.

An experimental realization of such out-of-equilibrium dynamics has been per-
formed with ultracold atoms in optical lattices [23, 61].

Quantum walk in real space

Let us now consider the opposite scenario of the quench described above. We prepare
a single-site Fock state, e.g. beginning from a Mott insulator, and quench the tunnel-
ing to a finite value J, while the interaction U is fixed to zero. For simplicity we will
assume a one-dimensional system with a single particle at site j, which can be writ-
ten as | j〉 = |n = 1〉 j, consistent with the nomenclature used in Sec. 2.1.1. The time
evolution will then be given by the tight-binding Hamiltonian, and since ĤTB is di-
agonal in the basis of Bloch states |q〉, we should reexpress | j〉 in terms of those as
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| j〉 = 1√
M ∑q e−iqx j |q〉 [62]. This leads to the time evolution

|ψ(t)〉 = e−i ĤTBt/h̄ | j〉 = 1√
M ∑

q
e−i cos(qa)2Jt/h̄ e−iqx j |q〉. (2.11)

Taking M → ∞ and a → 0, we can consider the continuum limit of the previous
expression reaching

|ψ(t)〉 = 1
2π

∫ +π

−π
dq e−i cos(q)2Jt/h̄ e−iq j |q〉. (2.12)

We now calculate the overlap of |ψ(t)〉 with a localized state in a single lattice site l,

〈l|ψ(t)〉 = 1
2π

∫ +π

−π
dq e−i cos(q)2Jt/h̄ e−iq( j−l), (2.13)

which by using the integral representation of the Bessel function Jn(x),

Jn(x) =
1

2π

∫ +π

−π
dq ei(x sin x−nx), (2.14)

can be rewritten as

〈l|ψ(t)〉 = J| j−l|

(
2Jt
h̄

)
(2.15)

This means that in a lattice site d sites away from the initial one, the probability of
finding a particle as a function of time is pd = |Jd(2Jt/h̄)|2.

Such spatial quantum walks have been explored in the BH model for different
settings of ultracold atoms in optical lattices [63–65] and recently in superconducting
circuits [66].

2.2 Ultracold atoms in optical lattices
The situation of an individual atom moving in an optical lattice has a direct resem-
blance to electrons moving in a perfect crystal. This has been precisely the motivation
to study the BH model using ultracold atoms in optical lattices [56], given that in
many regimes this is a very precise description of this system.

In this section we will show how Eq. 2.1 and its terms emerge from considering a
quantum particle in the lowest band of a (sinusoidal) periodic potential and link the
physical quantities in the atomic physics context to the BH parameters.
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2.2.1 Single atom in a periodic potential
We consider the situation of a single neutral atom trapped in a three-dimensional
dipole potential made by three perpendicular optical lattices with wavelengths
λx, λy, λz and lattice spacing given by alat,i = π/ki = λi/2 (in the case of retrore-
flected lattices). Assuming homogeneous, infinite laser beams, the AC-Stark shift ex-
perienced by the atoms [67] in such a lattice structure can be simply written as a sum
of three potentials,

V(x,y,z) = Vx cos2(kxx) + Vy cos2(kyy) + Vz cos2(kzz). (2.16)

As it is common in the field of ultracold atoms, we will express the lattice depth Vi in
units of the lattice recoil energy Er,i = h2/8ma2

lat,i. The expression of Eq. 2.16 directly
implies that the problem is separable, and allows us to focus on solving only the one-
dimensional Schrödinger equation

− h̄2

2m
∂

2
x + Vx cos2(kxx)ψx(x) = Eψx(x). (2.17)

This problem is indeed a fundamental one in the field of quantum theory and solid-
state physics: a quantum particle in a sinusoidal potential.
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Figure 2.2: Lowest-band Bloch waves in a square lattice at V= 12 Er. 2D plot of
the real part of the two-dimensional Bloch wavefunction ψ0,q(x,y) in a square lattice.
Each 2D plot corresponds to a different value of q, expressed in units of π/alat.
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Bloch waves

We know from Bloch’s theorem [54] that given the periodicity of the lattice potential,
i.e. V(x) = V(x + alat), the eigenstates of the system can be written as Bloch waves

ψn,q(x) = e−iqx un,q(x), (2.18)

where un,q is a function with the same periodicity as the lattice, n the band index, and
q is the quasimomentum or lattice momentum, analogous to the one we introduced
for the tight-binding solution, and therefore |q| < π/alat.

The solutions of Eq. 2.17 can be obtained numerically (a more detailed derivation
can be found in [68, 69]), but one can also directly use the solutions of the Mathieu
equation, the so-called Mathieu functions of the first kind [70, 71]. In Fig. 2.2 we plot
the real part of the two-dimensional solutions, ψn,q(x,y) = ψnx ,qx(x) ·ψny ,qy(y), in a
square lattice for three different values of q at nx = ny = 0.

Wannier functions

While the Bloch waves are the direct solutions to Eq. 2.17, the Wannier functions are
an extremely useful tool in the context of particles in crystals [72], and will be required
to connect to the second quantization formalism later. The expression for a Wannier
function in the n-th band and localized around site j is given by

wn(x− x j) =
1√
N ∑

q
e−iqx j ψn,q(x) (2.19)

where the summation runs over all quasimomenta q within the first Brillouin zone,
and can be seen as the discrete Fourier transform of the Bloch functions. N is a
normalization constant. These functions fulfill few important conditions:

· They are defined centered around the potential minima at x j.

· Their set forms an orthonormal basis for the states in the corresponding band.

· They are exponentially localized around their site at x j.

We can now consider again the three-dimensional case and express the Wannier func-
tion as the product of the one-dimensional ones:

wn(r−Rj) = wnx(x− xj) · wny(y− yj) · wnz(z− zj). (2.20)
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2.2.2 Linking to the Bose-Hubbard
We now consider the three-dimensional problem of a gas of N interacting atoms in an
optical lattice. Atom-atom interactions in dilute Bose gases can typically be modelled
as an effective contact interaction [3, 73], and the many-body Hamiltonian in second
quantization can be expressed as

ĤOL =
∫

dr Ψ̂†(r)

[
− h̄2

2m
∇2 + V(r)

]
Ψ̂(r) (2.21)

+
4π h̄2as

2m

∫
dr Ψ̂†(r) Ψ̂†(r) Ψ̂(r) Ψ̂(r),

where as is the s-wave scattering length for the corresponding species and Ψ̂(†)(r) are
the quantum field operators [74].

We now use the three-dimensional Wannier function wn(r−Rj) to express the field
operators in their basis as

Ψ̂(r) = ∑
n,j

w∗n(r−Rj) ân,j . (2.22)

The next step will be to proceed by taking the single-band approximation, which
means we will consider the population in any Bloch bands other than the lowest one
to be negligible. This allows us to drop the n index of the Wannier functions. We now
take a look at the kinetic and the interaction terms separately.

Kinetic energy term

The final expression we reach for the first (kinetic) term of Eq. 2.21 is

Ĥkin =
∫

dr

(
∑

i
w(r−Ri) â†i

)[
− h̄2

2m
∇2 + V(r)

](
∑

j
w∗(r−Rj) âj

)
(2.23)

= ∑
i,j

â†i âj

∫
dr w(r−Ri)

[
− h̄2

2m
∇2 + V(r)

]
w∗(r−Rj)︸ ︷︷ ︸

−Jij

.

Now, using the fact that Wannier functions fall off exponentially from Ri, we can
directly see that Jij can be neglected for any two sites beyond nearest-neighbor. In the
case of a cubic lattice, it will directly lead to the tight-binding expression we saw in
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section 2.1,
Ĥkin ≈ −J ∑

〈i,j〉
â†i âj . (2.24)

From this, we can also reconnect to Eq. 2.4 in terms of Bloch waves, and alternatively
obtain the nearest-neighbour tunneling J directly from the width of the band

J ≈ Emax − Emin

2 z
, (2.25)

which for the one-dimensional case is just

J ≈ E(q = π/alat)− E(q = 0)
4

. (2.26)

Interaction energy term

We now follow similar steps for the second term of Eq. 2.21, and replace the quantum
field operators by their expansion in terms of Wannier functions. From this we obtain

Ĥint =
4π h̄2as

2m ∑
ijkl

â†i â†j âk âl

∫
dr w(r−Ri)w(r−Rj)w∗(r−Rk)w∗(r−Rl) (2.27)

≈ 4π h̄2as

2m ∑
i

â†i â†i âi âi

∫
dr |w(r−Ri)|4

=
4π h̄2as

m

∫
dr |w(r−Ri)|4︸ ︷︷ ︸
U

1
2 ∑

i
â†i âi

(
â†i âi − 1

)
.

In the second line we have used again the properties of the Wannier functions to keep
only the integrals in which i = j = k = l, given the small overlap between functions
of different sites. In the last line, we have taken the integral out of the sum, which
is justified for an homogeneous system, and we have used the bosonic commutation
relation [âi, â†j ] = δi,j to rewrite the four-operator term.

With this, we have derived the connection between the physical parameters of the
atomic system and the BH model, and we can write the kinetic and interacting terms
together in the form

ĤOL ≈ −J ∑
〈i,j〉

â†i âj +
U
2 ∑

i
n̂i (n̂i − 1). (2.28)
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This expression directly reflects that a quantum simulation of the BH model can be
realized with ultracold bosonic atoms in optical lattices, which is a cornerstone of the
experiments in this thesis.
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Figure 2.3: Wannier functions in a square lattice at different lattice depths. 2D plots
of the probability density for a lowest-band Wannier function, |w0(x,y)|2, for different
lattice depths. The colormap is in a logarithmic scale to better appreciate the parts of
the Wannier function in the neighbouring sites. Below 5 Er, the overlap of the wave-
functions with those for next-nearest neighbours is not negligible in comparison to
the nearest neighbours, and cannot thereby be mapped to a model with only nearest
neighbour tunneling.

2.2.3 Additional effects
Here we discuss other effects and contributions that have been ignored in the previous
section but which are particularly important for real experiments with ultracold atoms
in optical lattices.

System inhomogeneity

While in this chapter we have only considered homogeneous systems, i.e. translation-
ally invariant, the laser beams used to generate the trapping potentials are generally
Gaussian, and hence the main source of their inhomogeneity is their Gaussian in-
tensity profile. This can be generally taken into account by considering a harmonic
potential along each axis l, that is

Vext(ri) = ∑
l

1
2

m(ωl ri,l)
2 . (2.29)
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Where ri,l is the l-th component of the position ri at site i. This contribution can be
absorbed into an effective local chemical potential given by

µi = µ −Vi = µ −Vext(ri) . (2.30)

This allows one to consider the system locally as an homogeneous system with chemi-
cal potentialµi. In a harmonic trap, this implies that in the center of the trap the system
has a chemical potential µ, and as one moves away from the center µi will decrease,
hence one probes different chemical potentials at the same time in a single system,
and a coexistence of superfluid and Mott-insulating phases can take place [75].

Shallow lattices

In Eq. 2.24 we neglected any tunneling terms Ji j beyond nearest neighbours. This is a
very good approximation close to the atomic limit, but for very shallow lattice depths,
next-nearest-neighbour terms can become significant. In the experiments in this the-
sis, this assumption remains valid, since even for a small depth of 3 Er, this suppres-
sion between nearest-neighbour and next-nearest-neighbour tunneling is of roughly
an order of magnitude [76]. Hence a breakdown of the tight-binding approximation,
and thereby of the BH model, will only take place at shallower lattices or for very
long times. In Fig. 2.3 we can see the probability density of the Wannier functions in
two dimensions for different lattice depths. One can see that at 3 Er the overlap with
beyond nearest-neighbours sites is significantly higher than at 7 and 20 Er.
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Chapter 3

Experimental setup
In this chapter the setup and the main techniques used in the experiments of this
thesis are described. We first discuss the main parts of the sequence used to gener-
ate a two-dimensional cloud of ultracold atoms in a square optical lattice. Next, we
describe the properties of our high-resolution imaging setup and the scheme used
for microscopically detecting the atoms. We continue by presenting the tools used for
site-resolved addressing, involving a resonant microwave transfer and the use of a
spatial light modulator. Finally, we mention few of the most crucial calibrations rou-
tinely performed for our experiments.

3.1 The sequence
The preparation of a two-dimensional degenerate quantum gas of 87Rb in a square op-
tical lattice, as desired for the simulation of the Bose-Hubbard model, involves three
different vacuum chambers and a series of stages involving cooling, transport and
state transfers for a total duration above 20 seconds. In this section we summarize the
main parts of this sequence, including few recent changes and upgrades respect to the
description in previous PhD theses [59, 77–80].

3.1.1 Laser cooling and transport stage
The sequence starts with a 2D+ magneto-optical trap (MOT) stage in a chamber at
4× 10−7 mbar, with a high rubidium pressure to ensure an efficient loading. This
generates an atomic beam that travels through a differential pumping stage to reach
a second chamber (at 1× 10−11 mbar) where it feeds the 3D MOT, in which atoms are
cooled and loaded during 2-3 seconds [81].

After the MOT stage, the atoms in the low-field-seeking |F = 1, mF = −1〉 state are
loaded into a quadrupole magnetic trap with a field gradient of∼ 180 G/cm, in which
an evaporation stage takes place employing a microwave (MW) knife, which transfers
the hottest atoms to the untrapped |F = 2, mF = −2〉 state. This is the longest process
of the sequence and takes ∼ 6.5 s.

Once the MW evaporation stage is over, the atoms have reached a temperature
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around 20 µK and are loaded into the transport dipole trap, with λ = 1070 nm, placed
below the magnetic trap. In addition to the original single focused beam configura-
tion, we currently can use a crossed transport trap (CTT) with a small angle (3.5◦),
generated by splitting and separating the original beam before the first focusing lens
of the setup [59]. The laser used is an Ytterbium fiber laser from IPG laser (YLR-50-
1070-LP) with a linewidth of ∼ 5 nm, which ensures no strong interference effects in
the CTT.

Once the magnetic gradient has been completely ramped down, the position of
the transport beam focus is displaced by 13 cm to the science chamber, taking in total
∼ 2.5 s. A piezo mirror tuned during the transport allows to overlap the position of
the CTT with the lattice beams in the science chamber.

3.1.2 Preparation of a 2D quantum gas
Once the focus of the transport trap reaches the center of the science chamber, the
cloud is transferred into a crossed dipole trap (CDT) made out of two perpendicular
in-plane λ = 1064 nm beams with waists of 70 µm. These are the same beams used to
later generate the horizontal optical lattices, though with their retroreflective mirrors
blocked by a flipper mount. Next, we force evaporation by decreasing exponentially
the depth of the CDT to a value low enough to bring the gas close to degeneracy. Next,
the cold three-dimensional cloud is loaded into an optical lattice along the z axis, gen-
erated by the reflection of a vertical λ = 1064 nm beam from a coated viewport (see
Fig. 3.1). All the mentioned optical lattices are generated from two Mephisto MOPA
lasers with ultra-narrow linewidth (from Innolight/Coherent), which feature a long
coherence length and very low noise. After the ramping of this vertical z-lattice, the
atoms populate several of its antinodes.

The z-lattice provides the strong vertical confinement required to generate a two-
dimensional system. While ideally one would populate only a single lattice antinode,
the approach in our setup is instead to optically remove all the initially occupied lay-
ers except for one. To do so, a strong magnetic vertical gradient field (45 G/cm or
∼ 5 kHz/µm) is used such that one can resolve the individual planes of the lattice by
a narrow MW sweep (∼ 2 kHz) on their hyperfine transitions.

After this “slicing” process (described in more detail in [77]), a single plane is pop-
ulated with atoms in the F = 1 hyperfine states. Next, the last evaporation stage of the
sequence takes place, for which a strong horizontal magnetic gradient is introduced
by placing the zero of the magnetic field in the plane and shifted from the cloud (us-
ing three pairs of “offset” coils along the x,y,z axes). This gradient allows to spill out
the atoms horizontally during evaporation in a combined dipole trap of the z-lattice
and the tight “dimple” dipole trap. This dimple is based on a laser beam at 850 nm
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focused through the objective (10 µm waist [59]). The dimple evaporation takes 1 s,
and the temperatures reached after this last stage reach the few nK regime.

3.1.3 Producing a Mott insulator in a square lattice
Having achieved a single 2D degenerate gas, we finally introduce the in-plane optical
lattices, allowing us to describe the system with an atomic Bose-Hubbard model as
discussed in Ch. 2. Typically, we obtain a superfluid state by slowly ramping the depth
of both in-plane lattices below 10 Er, where Er is the recoil energy given by a photon
of λ = 1064 nm to a 87Rb atom. By ramping to even deeper lattices, we can prepare
the cloud in a Mott-insulator state. To stay close to adiabaticity while crossing the
critical point, we usually employ two consecutive s-shaped ramps (using a sigmoid
function) [79], the first one until 10 Er and the following one beyond, often up to 40 Er
(the deep atomic limit). Given that no further cooling takes place beyond this stage, it
is very important to avoid heating during the initial turn-on of the lattices, for which
we carefully monitor any spikes in the intensity stabilization.

The state most commonly prepared for all our experiments is a Mott insulator at
unit filling. To produce it, we tune the dimple evaporation to set the right number of
atoms, such that no n = 2 shell appears in the center of the cloud. The maximum size
of the unit-filling Mott insulator will therefore be restricted by the trapping potentials
generated by the three lattices. Notice that by reducing the depth of the vertical lattice
during the ramp-up of the horizontal lattices one can achieve slightly bigger sizes
than otherwise (roughly 30% more, a total of 250 atoms). Other alternatives involve
the use of deconfining optical beams [82] or our magnetic gradient.

3.2 Site-resolved microscopy
The main feature enabling most of the experiments performed in our ultracold-atom
setup is quantum-gas microscopy, i.e. the possibility of measuring the atomic occu-
pations in the individual optical lattice sites by using a fluorescence scheme with a
high-resolution imaging setup. In the current section we describe the main properties
of the imaging setup and the imaging techniques.

3.2.1 The imaging setup
Identifying the occupation in each individual lattice site means distinguishing the po-
sitions of the atoms at distances below the lattice spacing alat. This requires an imag-
ing system with a high optical resolution, which in our setup is based on a objective
with a high numerical aperture (NA) placed outside of the science chamber. The main
specifications of the objective and the imaging setup are indicated in Tab. 3.1. Since
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Figure 3.1: Quantum-gas microscopy of a two-dimensional Bose-Hubbard system.
a Schematic of the optical-lattice structure, high-NA objective and imaging. b Exam-
ple fluorescence snapshot of a unit-filling Mott insulator with only a single defect in
the bulk, together with its reconstructed occupation. c Example snapshot of a Mott
insulator with few excitations on top, together with its reconstructed occupation.

we employ the D2 line of 87Rb (at λ = 780 nm) to image the atoms, this leads to an
expected optical resolution of R ≈ 700 nm, based on the Rayleigh criterion.1 Notice
that while this is higher than the lattice spacing alat = 532 nm, the knowledge that the
atoms sit only on the antinodes of the optical lattice enables nonetheless to reconstruct
the occupations by using a reconstruction algorithm [78].

Table 3.1: Main parameters of the objective and the imaging setup.

The imaging setup
NA @ 780 nm 0.68
Magnification 130
Solid angle 0.13 · 4π
Depth of focus 1.7 µm

1The Rayleigh criterion considers two point sources to be resolved when the maximum of the Airy
diffraction disk of one falls in the first minimum of the pattern of the other (see [83], for example). This
can be expressed as R = 0.61 λ/NA for a microscope.
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3.2.2 Optical-molasses imaging
By combining a high-resolution imaging setup with high-power lasers that strongly
pin the position of the atoms into individual lattice sites, it is possible to image their
positions by scattering a high amount of photons from each atom. For this, all lattices
are taken to a extreme depth of∼ 3000 Er. Nonetheless, this photon scattering process
will efficiently heat the atoms into higher bands, and eventually lead to the atoms
tunneling to neighboring sites or escaping the central region of the trap. Because of
this, we use optical-molasses cooling during the imaging stage, which ensures that
the atoms remain in low bands and at the same time efficiently scatter many photons.

The optical molasses scheme is performed on the D2 line, and arranged with two
in-plane retroreflected beams (with opposite circular polarizations) and a single ver-
tical beam, each one of those along the lattice axes. To avoid an unwanted inten-
sity modulation due to interference between the beams, two piezo controllers in the
retroreflecting mirror are modulated, and the vertical beam position rotates circularly.

A basic drawback of this imaging technique is the fast loss of atomic pairs due to
light-assisted collisions. This deprives one from faithfully imaging multiply-occupied
sites, such that we resort to a controlled excitation of atomic pairs before imaging,
leading to the well-known “parity projection” [9, 10]. More details of the whole pro-
cess of molasses imaging can be found in [77].

During the imaging duration, of approximately 1 s, each atom can typically scat-
ter tens of thousands of photons, of which we detect roughly 7% of the total, which
is ∼ 7000 photons per atom. The spatial distribution of the photons after being col-
lected by the objective is measured by an electron-multiplying charge-coupled device
(EMCCD), in particular the model iXonEM + 897 from Andor technology (now part
of Oxford instruments), which allows for a good detection in the few-photon regime.
From a Gaussian-profile fit of the point spread function of a single atom, based on
several snapshots of isolated atoms, one obtains a σ ≈ 267 nm = 0.5 alat [78]. This
corresponds to an imaging resolution2 of R ≈ 724 nm, consistent with the expecta-
tion from the NA of our objective.

Even with molasses cooling, heating to higher bands during the imaging will oc-
cur, which can lead to hopping events of the atoms from their lattice sites. This will
either change their original position or directly lead to losses due to light-induced
collisions with nearby atoms. We usually optimize the lattice and molasses alignment
such that we observe less than 1% of hopping events in the cloud. This commonly
involves a fine alignment of the retroreflections of the optical-lattice beams and also
of the molasses beams, which can be aided by optimizing the far-field coherent scat-

2Here we approximated the first lobe of the Airy diffraction pattern with a Gaussian profile, and
enforcing them to have the same volume leads to σ = 0.225 λ/NA [84].
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tering peaks [85].
Additionally, to ensure that the objective remain in focus with the atoms, we rou-

tinely run an “idle sequence” [78], which takes 7 snapshots of a same Mott-insulator
cloud at different vertical positions of the objective (shifted by a piezo controller) and
feeds back the correct value to the rest of sequences.

3.2.3 Accessible observables
In situ imaging is the main application for quantum-gas microscopy, providing us
with the site-resolved occupation of the system. Nonetheless, additional information
about the properties of the system can be obtained through different imaging meth-
ods. In this subsection we discuss the three main approaches that are relevant for the
experiments performed in this thesis.

In situ imaging

In most cases, the described imaging technique is used to directly measure the spatial
occupations of a prepared state in the lattice plane. To do this, we first ramp up the
depth of all three lattices to the atomic limit (V = 40 Er) in less than a millisecond.
Next, we ramp all the lattices to the imaging depth, ∼ 3000 Er for each axis. During
the first ramp, the intensity of the lattices is actively stabilized, while the final ramp is
just set to the maximum power available in a free-running mode.

Let us now discuss in more detail which observables we access via quantum-gas
microscopy. Ideally one wishes to measure n̂i, i.e. the atom number in a single site i, by
reconstructing it from a fluorescence picture. Due to parity projection, one measures
n̂det, i instead, which we will refer to as the “detected occupation”. Considering the
observable in only a single lattice site, n̂det, we can define it as

n̂det |m〉 = (m mod 2)|m〉 , (3.1)

where |m〉 is a Fock state with m particles. If we now consider the reduced density
matrix ρ̂ of a single site, the expectation value of the detected occupation is given by

〈n̂det〉 = Tr(ρ̂ n̂det) = ∑
m
ρmm · (m mod 2) , (3.2)

and therefore 0 ≤ 〈n̂det〉 ≤ 1. Now let us take a look at the variance of the detected
occupation, which is given by

σ2
det = 〈n̂2

det〉 − 〈n̂det〉2 . (3.3)

Using that the eigenvalues of n̂det can only be 0 or 1, we can see that 〈n̂2
det〉 = 〈n̂det〉,
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and therefore one can express the previous equation simply as

σ2
det = 〈n̂det〉(1− 〈n̂det〉) , (3.4)

which makes it easy to see that 0 ≤ σ2
det ≤ 0.25.

With this knowledge, we can now analyze what will these observables tell us about
the phases of the Bose-Hubbard model. For an atomic-limit Mott insulator with m
particles per site, the detected mean atom number is given by 〈n̂det〉 = m mod 2, and
the detected variance will vanish, σ2

det = 0. In the case of a superfluid, we already
discussed in Ch. 2 that for large system sizes we ideally expect a Poissonian distri-
bution of the single-site occupation number. The detected occupation is then given
by 〈n̂det〉 = 0.5 (1 − exp(−2α2)) and the detected variance σ2

det will have a finite
value. For single-site densities of few particles this values will already saturate to
〈n̂det〉 = 0.5 and σ2

det = 0.25, which is the maximum detectable variance.

1012232424
10 μm

a b c

Figure 3.2: Individual snapshots after an in-plane TOF. Single fluorescence images
taken of a superfluid state after a TOF of a t = 0, b t = T/8, c t = T/4.

Momentum-space imaging

A common tool in the field of ultracold atoms is the imaging in momentum space
after a time of flight (TOF). In the TOF measurement, the atoms are suddenly released
from the trapping potentials into free space, and after a long-enough evolution, the
momenta of the particles are mapped into their spatial distribution, which is typically
measured via absorption imaging of the cloud [7, 58]. This measurement method is
used very often in systems with finite- or long-range phase coherence, since from the
measured interference pattern, properties of the coherence can be quantified.

In our quantum-gas microscope, imaging in momentum space faces two chal-
lenges: First, the small atom number with which we routinely work (few hundreds of
atoms) makes it hard to resolve the momentum distribution via an absorption mea-
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surement in free space. Second, the size of the region imaged by the microscope is
quite limited, which restricts the maximum possible TOF time. These two issues can
be addressed by implementing an in-plane TOF followed by a recapture in the in-
plane lattices that allows to image in fluorescence. On the one hand, the fluorescence
imaging ensures single-particle detection (aside from parity projection), while on the
other, the TOF in an harmonic trap allows to image the momentum distribution with a
reasonably short time. This can be explained by the fact that after a quarter of a period
(T/4) of an oscillation in the harmonic trap, the initial momentum distribution will be
mapped into the spatial one [86]. While during the TOF interactions are still present,
they are weak given the absence of the in-plane lattices. A similar technique was al-
ready used in a quantum-gas microscope to identify the transition from superfluid to
Mott insulator [10].

In Fig. 3.2 we show examples of the fluorescence pictures taken after different
TOFs for a cloud in the superfluid state. For t = T/4, one can appreciate the typical
interference pattern expected for long-range coherence in a square lattice. While the
exact mapping to momentum space is valid at T/4, notice that it can be convenient to
extract the information on the coherence from shorter times of expansion, such as at
T/8, to avoid higher occupations leading to parity projection.

To quantify the coherence of an atomic phase in a lattice we can measure the inter-
ference visibility V. Its definition is given by

V =
Nmax − Nmin

Nmax + Nmin
, (3.5)

where Nmax(min) denotes the number of detected atoms in the maxima(minima) of the
interference pattern (see Fig. 3.3). This quantity should give a value of V ≈ 1 for a
system with long-range coherence, and V ≈ 0 for a totally incoherent system. A finite
value of V is consistent with short-range coherence or a finite superfluid fraction. A
description of the properties of the interference visibility can be found in [58].

Measurement of the total atom number

Due to the light-induced collisions that take place during the optical-molasses imag-
ing, the measurement of the total atom number in the 2D system is hindered. This is
an important measurement, for example, to quantify the particle losses in the system.
An alternative for such cases is to allow for a short in-plane TOF, as described in the
previous subsection, to strongly reduce the density, and then recapture the atoms in
the in-plane lattices for imaging. To avoid any constructive interference effects, which
might enhance light-induced collisions, one can start from very deep in-plane lattices.
This allows one to measure the total atom number N. Aside from a study on losses,
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V = 0.89(2) V = 0.55(3)
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+

Figure 3.3: Measurement of the interference visibility. Visibility for two examples
of mean-atom-number distribution after a t = T/8 TOF. The orange circles indicate
the position of the four maxima regions (first peaks of the interference pattern) and
the blue circles the minima regions (at the same distance from the center but along the
diagonal).

this method can be used to estimate the fraction of highly-occupied sites in a prepared
state, by comparing the total atom number with the parity-projected one [87]. Notice
that while such a measurement will not provide any information on the initial spatial
position of the atoms, one can also consider a one-dimensional TOF by switching off
only one of the in-plane lattices, leading to a propagation in individual tubes, similar
as done in other microscope experiments [39]. A similar approach has also been used
in our setup to faithfully distinguish the spin degree of freedom from holes giving the
same signal [88, 89].

3.2.4 Mott-insulator thermometry
The site-resolved measurement of the atomic occupations enables a sensitive ther-
mometry technique, based on a fit of the density profile of the cloud in the atomic
limit [9]. Let us consider the Bose-Hubbard Hamiltonian for a vanishing tunneling

ĤBH (J = 0) = ∑
i

(
U
2

n̂i (n̂i − 1)−µi n̂i

)
= ∑

i
ĥi , (3.6)

where we have assumed the local density approximation for µi, as described in
Sec. 2.2.3. We see that the dynamics in each lattice site i is given by a single local
Hamiltonian ĥi. Hence, the system is now formed of an array of decoupled wells,
determined by its interactions and its local chemical potential [90].

We can now obtain the probability for each single-site microstate, which is deter-
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mined by the occupation n in that site, from the grand-canonical ensemble as

p(n) =
e−β(E(n)−µ)

Z(µ, T)
, (3.7)

where β = 1/kBT, E(n) = U n(n − 1)/2 and Z = ∑n e−β(E(n)−µ) is the grand-
canonical partition function. From this expression, one can extract the mean detected
atom number, considering parity projection, at a finite temperature T

〈n̂det〉(µ, T) =
1

Z(µ, T) ∑
m

e−β(E(m)−µ) · (m mod 2) . (3.8)

If we now consider our 2D system and assume an isotropic trapping, that isωx =
ωy, this implies that µi = µ(r), where r is the distance from the center of the trap. One
can then fit the experimentally measured 〈n̂det〉(r) to the expression in Eq. 3.8, from
which we can extract the temperature T and the chemical potential in the center of the
trap µ = µ(r = 0). One can even use this thermometry method for a single snapshot,
since an azimuthal average at constant r is equivalent to an ensemble averaging [9,
59, 77].

A typical temperature measured in our system is of T ∼ 0.1 U/kB [9], and the
melting temperature of the Mott insulator is roughly at T = 0.2 U/kB [90].

3.3 Single-site addressability
Aside from the possibility of resolving the occupation of individual atoms in each lat-
tice site, the high NA of the objective in our setup opens the door to the site-resolved
manipulation of the state of the atoms, as well as the projection of potentials featuring
short-scale correlations. In this section we describe the approach used in our setup,
which combines two main features: the use of a spatial light modulator to engineer
arbitrary patterns, and a technique based on selective MW transfer to change the in-
ternal state of addressed atoms.

3.3.1 The addressing laser
For the addressing setup we employ laser light at λ ≈ 787 nm provided from a com-
mercial external-cavity diode laser with a tapered amplifier stage (TA pro, from TOP-
TICA Photonics). The chosen wavelength lies between the D1 and D2 lines of 87Rb,
which allows us to induce a high differential light shift between the |1〉 = |F =
1, mF = −1〉 and the |2〉 = |F = 2, mF = −2〉 hyperfine states. This will be a re-
quirement for the MW addressing technique that we describe below. Concerning the
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generation of potentials, an advantage of this wavelength is that we are not restricted
to either attractive or repulsive potentials, given that control on the polarization and
the wavelength allows to tune between them. Additionally, for the σ− polarization
the laser can be fine tuned to the “tune-out” (also called “magic-zero”) wavelength,
which for the |1〉 state is precisely at 787.55 nm, and can be used to introduce poten-
tials which are insensitive to one specific spin [63, 91], as seen in Fig. 3.4.
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Figure 3.4: Spectrum of the light shift around the tune-out wavelength. Plot of
the AC-Stark shift (in arbitrary units) from σ−-polarized light as a function of the
optical wavelength for hyperfine states |1〉 (blue line) and |2〉 (red line). The tune-out
wavelength for |1〉, at 787.55 nm, is indicated by a yellow circle.

While the use of such a near-detuned laser can be inconvenient, due to enhanced
off-resonant scattering, in most of our experiments the atoms will be trapped by the
far-detuned optical lattices and only moderate light shifts will be required from the
addressing beam.

3.3.2 Digital-micromirror-device projection
To project arbitrary patterns in the atomic plane we use an imaging setup consisting of
a digital micromirror device (DMD) at the image plane of the atoms. The DMD model
is the DLP Discovery 4100 from Texas Instruments, provided by Vialux. Notice that
this approach for addressing differs from the one using Fourier plane filtering [92] or
the focusing of a single Gaussian beam with a tunable position, which was originally
used in our setup [77].
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The imaging system consists mainly of a Gaussian beam (FWHM ≈ 5.5 mm)
which illuminates the mirror array of the DMD and a path of telescopes through
which the image is propagated until the objective setup. An optical layout of the setup
can be found in [79]. The total magnification and other technical parameters are spec-
ified in Tab. 3.2. Since the laser is closely detuned from the D2 line, the dichroic shift is
minimal, and the same feedback for the objective position obtained from the imaging
idle can be used to ensure that the addressed image is properly focused.

The magnification in our setup is chosen so that each individual lattice site is over-
sampled by an array of ≈ 8× 8 pixels, which allows us to project grayscale intensity
distributions using an error diffusion algorithm [93]. Another alternative to gener-
ate grayscale potentials would be to used time-averaged potentials, but the flickering
frequency in the DMD, set by the motion of their mechanical mirrors, would be detri-
mental for the temperature of the atoms, which would be resonantly heated. Gener-
ally, we only program the DMD in a 400 × 400 array of the whole size, limited by
the intensity profile of the laser beam. This nonetheless allows us to image an area of
50× 50 lattice sites, usually well above the size of our unit-filling Mott insulators.

Table 3.2: Main parameters of the DMD and the addressing setup.

The DMD addressing
DMD resolution 1024× 768
DMD pixel pitch 13.68 µm
Refresh rate 32.55 kHz
Total demagnification 195
Pixels per lattice site 7.7× 7.7

3.3.3 MW addressing
The possibility of programming the DMD to illuminate only specific lattice sites,
together with the differential light shift induced between different hyperfine states,
makes it possible to selectively drive MW transitions in the atomic plane. In the most
common approach of this technique, we start with a unit-filled Mott insulator in the
|1〉 state and apply a MW Landau-Zener sweep of 20 ms around 6.8 GHz which reso-
nantly transfers only the optically addressed atoms to the |2〉 state. The prepared spin
pattern can be mapped to a density pattern by additionally applying a D2 push-out
pulse to the |2〉 state. It is remarkable that, by using the MW sweep, the effective reso-
lution of the addressing process is given by a σ ≈ 140 nm, well below the diffraction
limit of the addressing-laser wavelength, and the spin-flip fidelity is around 95% [63].
Nonetheless, the simultaneous transfer done with the DMD might make this fidelity
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slightly smaller for certain patterns.

3.3.4 Site-resolved potentials
By using the tools described above, we can study quantum systems with arbitrary
potentials superimposed with the bare optical lattices. There is, however, a caveat,
namely the finite resolution of the imaging setup. We can estimate a Gaussian point
spread function of σ787 ≈ 269 nm = 0.506 alat, which leads to a finite correlation
between the potentials in nearby sites. This does not represent a big issue for the cre-
ation of, for example, random potentials, but makes it hard to generate potentials with
strong anticorrelations between nearest neighbours, such as quasiperiodic models. To
obtain an approximation of the potential projected in the atomic plane, necessary for
any theoretical model, we introduce a Gaussian blur to the programmed potential, i.e.
we convolve it with a Gaussian function. This is shown in Fig. 3.5a, where a convolu-
tion with a 2D Gaussian with σ = 0.506 alat was used. For our programmed disorder
potentials this leads to a correlation length ξ ≈ 0.6 alat, and changes the overall distri-
bution from a uniform to a rather Gaussian one (see supplementary material in [47]).

To ensure that the programmed potentials are faithfully projected into the 2D
atomic system, it is desirable to measure the on-site potential directly in the atomic
plane. By making use of the same ideas that enable single-site addressing, we can
characterize the potential projected on the atomic plane. We use MW spectroscopy to
measure the local light shift experienced by the atoms. We start by preparing a unit-
filling Mott insulator in the |2〉 hyperfine state deep in the atomic limit. We then set the
DMD pattern and ramp up the addressing laser to its maximum (stabilized) power.
Then we perform a narrow-frequency sweep, transferring few of the atoms into |1〉,
and we then optically push out the atoms in |2〉 and image the remaining atoms in
|1〉. By repeating this process (with the same disordered pattern) over a range of fre-
quencies, we are able to obtain a site-resolved MW spectrum, and map the local MW
resonances (see Fig. 3.5b). The shift of the resonance frequency in each site determines
the local differential light shift.

Given that the region addressed by the DMD (around 50× 50 lattice sites) is much
larger than the typically prepared system sizes of our clouds (below 20× 20 sites, and
∼ 300 atoms), it is convenient to prepare a Mott insulator as large as possible for the
disorder calibration. With our current optical-lattice confinement, this can be around
500 atoms. Even if the increased size might be at the expense of an increased temper-
ature of the Mott insulator, leading to holes and doublons, these will not significantly
affect the resonance, since we only image the atoms that are efficiently transferred.
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Figure 3.5: Projected potential and site-resolved spectroscopy. a Schematic of the
programmable projection setup. A grayscale pattern programmed in the DMD, in
this case disordered, is projected into the atomic plane through the objective, that due
to its finite resolution leads to a slightly blurred disorder. The projected pattern can
be obtained via MW spectroscopy of a Mott insulator. b Examples of three different
single-site spectra and their Gaussian fits (gray curves).

3.4 System calibration
Four most of our experiments we have to keep a series of parameters properly cali-
brated and characterized. Here we briefly describe the most relevant calibrations for
the experiments in this thesis.

Lattice depth calibration

The tunability to an exact depth of the optical lattices [94] is extremely important
for all the experiments performed in our setup. Even for experiments that mostly
require the preparation of a Mott insulator as an initial state (such as those exploring
frozen Rydberg gases) it is important to know the exact position of the critical point
to adiabatically ramp through it.

In our experiment we routinely perform a band spectroscopy, via lattice modula-
tion [95], to calibrate the exact intensity for a lattice depth of 10 Er. From this value, we
linearly extrapolate to all other stabilized lattice depths, based on the measured beam
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power. To locate the exact depth for the in-plane lattices, we begin with a condensate
loaded into a single plane of the vertical lattice. We then ramp either the x or y lattice
to a specific amplitude V and then modulate its depth at the frequency of the reso-
nance between the lowest band and the second excited band at q = 0 (obtained from
non-interacting numerics or the solutions of the Mathieu equation, as discussed in
Sec. 2.2.1). We keep this frequency constant and then search the resonance by sweep-
ing the depth V through each experimental repetition. The resonance is identified as
an spatial expansion of the atoms along the modulated lattice. In the case of calibrat-
ing the vertical lattice, the procedure is a bit harder, since at low depths a potential
gradient is always present (gravitational or magnetic) which will require to identify
field-dependent sidebands, due to the Wannier-Stark ladder [62].

An alternative method for the calibration of the lattice in our setup is performing
Raman sideband spectroscopy. This method, however, requires to perform the cali-
bration at very deep lattices, which might increase the uncertainty of the depths at
low powers.

Removal of magnetic gradients

The presence of residual magnetic gradients in the atomic plane can be a problem
for many of our performed experiments. In this thesis this is particularly detrimental
in experiments involving resonant tunneling, such as the dynamics in Part II. Our
in situ imaging allows for a good characterization of such gradients by performing
Ramsey interferometry between the two hyperfine states |1〉 and |2〉. This procedure
is described in detail in the thesis [79].

Alignment of the addressing pattern

Generating site-resolved potentials and addressing single atoms with high fidelity
requires an exquisite alignment between the projected pattern from the DMD and
the antinodes of the in-plane optical lattices. In our experiment, the position of the
addressing beam is very stable (it is projected through the objective) but thermal fluc-
tuations shift the phase of the lattice sites in the plane [78].

To keep the phase of the lattices and the pattern locked to each other, we make use
of a feedback scheme. It is based on using our addressing technique to prepare a well-
defined atomic distribution, together with a position calibration based on automatic
detection of the position of individual atoms.

Homogeneity of the DMD potential

An exact optical benchmark of the spatially modulated potentials projected in the
atomic plane is not possible, and one mainly relies on using beam profilers before
sending the beam through the objective. However, the presence of dirt and imperfec-
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tions in the imaging system can lead to significant undesired speckle contributions.
Because of this it is desirable to directly characterize the projected potential through
the atoms. This is done by using the technique described in Sec. 3.3.4 to map out the
site-resolved potential in the atomic plane. This then allows one to feedback to the
programmed pattern in the DMD to correct global unwanted gradients [79].

A future solution that could strongly reduce any speckle inhomogeneity in our
setup is the use of an incoherent laser source, as demonstrated in [96].

Heating and losses

Since the remaining openness in the system is a fundamental limitation in all experi-
ments exploring quantum out-of-equilibrium dynamics, it is important to quantify all
uncontrolled processes leading to heating or atom losses. In our experiment, particle
losses can either be caused by background-gas collisions [97], parametric excitation or
photon scattering. Background-gas collisions are limited by the quality of the vacuum
in the science chamber, and in our setup are taken as intrinsic. Parametric excitation
processes will most likely stem from fluctuations in the dipole traps, which can either
be caused by intensity, frequency or mechanical noise. Finally, photon scattering is
likely to come either from leakage of resonant light (limited by shutters or acousto-
optic modulators) or from off-resonant scattering of high-intensity dipole traps. Aside
from processes that take the atoms out of the system, we are also extremely sensitive
to heating processes within the lowest band. These are believed to come purely from
parametric excitations.

In the conditions in which the experiments described in Part II were realized, we
observed atomic losses of 20% of the system after∼ 6 s (see Supplementary Materials
in [87]), which were believed to be caused mainly by intensity noise in the optical
lattices. In addition, in clean systems we observed a heating onset on a timescale of
∼ 300 τ (around ∼ 2 s, see Supplementary Information in [47]).

Before the beginning of the experiments in Part III, an optimization of the inten-
sity stabilization of the optical lattices was carried out. This led to a considerable im-
provement in the isolation of our system, which would have otherwise made it im-
possible to observe the results described in Ch. 9. In particular, atomic losses are now
negligible, with measurements of the single-atom lifetime showing a decay timescale
of ∼ 600 s. These lifetimes exceeding several minutes are expected to be limited by
background-gas collisions and off-resonant scattering of light at λ = 1064 nm. Con-
cerning intraband heating, we observed a depth-dependent heating on timescales al-
ways above 4000 τ (which can be more than 10 s), and hence enhanced for higher
tunneling J. The origin of this residual heating still remains to be identified, but we
suspect it to arise from acoustic mechanical noise.



Part II

Disordered bosons: phases and
dynamics
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Chapter 4

Microscopy of dirty bosons
Quenched disorder is a fundamental ingredient in many real condensed matter sys-
tems, as generated by dislocations and impurities in crystals, but commonly absent
in many simplified effective models. This can make a big difference in many systems,
since a plethora of physical phenomena, such as the quantum Hall effect or Anderson
localization, are a direct consequence of potentials with a disordered landscape.

In this chapter we will introduce the disordered Bose-Hubbard model and de-
scribe the main properties of its phases. We will then compare our experimental im-
plementation, based on the engineering of site-resolved disordered potentials, with
those in previous experiments with ultracold gases. Next, we will experimentally ex-
plore the effects of disorder close to equilibrium in our two-dimensional system. We
will present and discuss experimental results obtained by using in situ and TOF imag-
ing to identify some of the key features present in these disordered phases. Last, we
summarize the conclusions from these experiments and mention possible extensions
of this work.

4.1 The disordered Bose-Hubbard model
In the seminal paper in which the Bose-Hubbard model and its phases were intro-
duced [55], the authors do not only discuss the clean case and the superfluid-to-
insulator transition, but also consider a scenario in which quenched disorder, i.e. a
frozen random potential, is present in the system. This is described by

ĤdBH = −J ∑
〈i,j〉

â†i âj +
U
2 ∑

i
n̂i (n̂i − 1) +∑

i
(−µi + δi) n̂i , (4.1)

which is essentially the same Hamiltonian as in Eq. 2.1, but now δi is a local potential
given by a certain random probability distribution (e.g. uniform, Gaussian, etc.). This
is commonly referred to as the disordered Bose-Hubbard (dBH) model.

The original motivation to consider such disordered bosonic systems came in part
from the experimental context of superfluid Helium-4 in porous media [98]. Those
experiments studied thin films of Helium-4 in materials like Vycor glass, which have
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a sponge-like structure with interconnected pores that can be randomly distributed
in three dimensions. However, the importance of studying disordered interacting
bosons goes way beyond this particular case. The competition between superfluidity,
localization and interactions [99] leads to a rich diagram of insulating and conducting
phases, the so-called “dirty-boson problem” [100].

4.1.1 Phases in equilibrium
In Ch. 2 we discussed that the (clean) BH model displays a quantum phase transi-
tion between two distinct phases: a superfluid (SF) phase, which displays long-range
coherence and finite compressibility; and a Mott-insulating phase (MI), that is incom-
pressible, with gapped spectrum and no superfluid order parameter. As we introduce
finite disorder into the system, a new phase emerges: the Bose glass.
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Figure 4.1: Phase diagrams of the dBH for fixed disorder strengths. a In the absence
of disorder, the diagram shows only the clean SF and MI phases. b For a finite disor-
der, the BG intervenes between the MI and the SF as a Griffiths phase. c For sufficiently
strong disorders, the MI phase is completely absent. The white dashed vertical arrow
indicates the range of local chemical potentials µi that are probed in the experiments
of Sec. 4.3 due to the inhomogeneity of the trap confinement.

Properties of the disordered phases

The Bose glass (BG) is an insulating phase with finite compressibility, vanishing SF
order parameter and no gap [55]. One can think of it as a bunch of disconnected SF
puddles. In the absence of coupling between these different SF pools, their phases
will be uncorrelated, hence no long-range SF order. The vanishing gap allows for local
excitations of these puddles, which locally display short-range coherence, but globally
the system remains an insulator.
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Concerning the SF phase in the dBH model, it is important to notice that, while it
is still defined by the same superfluid order parameter, its features are a bit less robust
than in the bare clean case. In general, one will deal with an inhomogeneous SF, which
aside from a spatially dependent density distribution, will display a smaller, though
finite, SF fraction [101, 102]. This means that the thermal SF-to-normal transition will
happen at much lower temperatures, making it challenging for experiments to reach
this regime.

In contrast, the MI phase remains robust for small disorders, and only eventually
does the formation of SF puddles lead to a BG for strong interactions.

Table 4.1: Main properties of the three phases in the dBH model.

Compressible
Superfluid

Fraction
Spectrum

Superfluid Yes Finite Gapless
Bose glass Yes Zero Gapless
Mott insulator No Zero Gapped

Shape of the phase diagram

A long-standing theoretical debate concerned the exact shape and topology of the
dBH phase diagram. In particular, the question of whether there is a direct MI-SF
quantum phase transition in the presence of disorder. While already early on this was
argued to not be the case [55], it was only recently formally proven. The solution
came from the so-called “theorem of inclusions” [103] and by the calculation of the
3D phase diagram via quantum Monte Carlo [101]. The theorem implies that any
phase transition in a disordered system will display on each side of the transition rare
regions of the competing phase. This means that the transition from a gapped phase
to a gapless phases has to involve an intervening Griffiths phase [104], which in the
dBH is the BG.

4.1.2 Experiments so far
While the original motivation for the dirty-boson problem stemmed from the study of
superfluid helium films in porous glasses [98], ultracold bosonic gases have emerged
as systems that can be almost ideally described by such bosonic models, though
dirty phases have also been explored in solid-state disordered quantum antiferro-
magnets [105].

In an early experiment, a system of one-dimensional Bose gases was studied in
the presence of a quasiperiodic potential, and the observation of a state with vanish-
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ing long-range coherence and a flat excitation spectrum was taken as evidence of a
Bose glass [106]. Later on, additional measurements showed signatures of an insula-
tor phase surviving both at weak and strong interactions [43].

Other experiments explored both transport properties and coherence in three
dimensions, observing a transition from a superfluid to a disordered insulator
state [107]. In a second experiment, the SF-to-BG phase transition was explored by
measuring excitations after performing a quench [108].

Certain aspects like the measurement of the density distribution or the realization
of two-dimensional systems have been less explored so far. Our setup, which com-
bines the ability to engineer site-resolved potentials and that of measuring the atomic
occupations, is a great candidate for studying such kinds of disordered systems. In
the remainder of this chapter, we will first introduce our implementation of quenched
disorder, and then show and discuss experimental results obtained close to equilib-
rium.

4.2 Implementing quenched disorder
Quenched disorder has already been introduced in a vast variety of experiments with
ultracold atoms, in particular to study Anderson localization of Bose-Einstein con-
densates in free space [109, 110] and disordered Hubbard models with bosons and
fermions [46, 106]. A very common way to implement disorder in such systems in-
volves random potentials using speckle-patterned light [111, 112], obtained by send-
ing a laser beam through a diffuser plate.

In systems of atoms loaded in an optical lattice, a second approach consists in in-
troducing an additional lattice with an incommensurate spacing [44, 106], which gen-
erates a quasiperiodic potential (sometimes misleadingly called quasirandom). An
advantage of incommensurate lattices is that they generate a potential with subwave-
length resolution, in contrast to the high autocorrelation lengths typically displayed
by speckle potentials, set by the size of the speckle grains. At the same time they allow
for a well-defined analytic formulation of the problem, as studied by Aubry and An-
dré [113]. Nonetheless, these potentials are strictly speaking not random, and display
very special correlations.

In the experiments described in this thesis, we do not follow any of these two ap-
proaches. We instead make use of the high resolution of our imaging system, together
with a DMD setup, to generate programmable site-resolved potentials. This means
that we can effectively tune the values δi in Eq. 4.1, and thereby directly realize the
dBH model. The details and limitations of this technique have already been described
in Ch. 3, here we will just focus on the specific implementation of disorder and its
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calibration.
In our experiments with two-dimensional disorder, we generate a 2D array of

random numbers given by a uniform box distribution (based on a pseudorandom
number algorithm) which sets the site-resolved grayscale distribution that will be
programmed into the DMD. By using the MW spectroscopy technique described in
Sec. 3.3.4, we can obtain the map of all the site-resolved resonances (see Fig. 4.2a) and
use it calibrate the strength of the projected disorder. To do so, we first compute the
distribution of the site-resolved resonances, and perform a fit with a skewed Gaussian
function (see Fig. 4.2b), due to an asymmetry caused by the finite resolution. From the
fit we can extract the variance of the distribution, and define the disorder strength ∆

as the full width at half maximum (FWHM) of the distribution. Based on this calibra-
tion, we can tune the disorder strength in the experiment by modifying the intensity
of the addressing laser, which should depend linearly on each other.
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Figure 4.2: Calibration of the disorder strength. a Map of the fitted resonance fre-
quencies in the system. b Histogram of the resonance frequencies (red bars) together
with a fit of a skewed Gaussian (blue curve). The black arrows indicate the FWHM of
the distribution, used to define the disorder strength ∆.

4.3 Measurements at strong interactions
In this section we microscopically observe the changes induced by the disorder in the
strongly interacting regime. In particular, we will remain at J/U = 0.01, with an in-
plane lattice depth of V = 18 Er, which corresponds to a deep MI phase in the clean
case. As the disorder strength is increased, one expects that once ∆ gets on the order of
the Mott gap (Eg ≈ U), the MI phase will become unstable, and a transition towards a
BG phase will take place. This transition, driven by the competition between disorder
and interactions, should be identifiable as the emergence of a compressible phase.
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Figure 4.3: Ramp of the lattice depth and the disorder in the strongly interacting
regime. Example of a sequence for preparing a disordered state with high interac-
tions. The lattice depth (blue curve) is first ramped to V = 10 Er in an s-shaped ramp
of 75 ms and subsequently ramped to a deeper value in 150 ms simultaneously as the
disorder strength ramp (red curve).

To experimentally prepare such a disordered state in a deep lattice, we ramp up
both the in-plane lattices and the intensity of the disorder laser over a duration of
150 ms (see Fig. 4.3). By doing so, we avoid fast ramps in the regimes of slow dy-
namics. After the preparation, we proceed directly to take in situ imaging and obtain
the site-resolved occupations. Concerning the disorder pattern in the DMD, it can be
programmed to be either the same or different in each sequence. By repeating several
snapshots with the same patternα, we can obtain the mean occupation 〈n̂〉

α
and from

several of those we can obtain the disorder-averaged

〈n̂〉
α
=

1
Np

∑
α

〈n̂〉
α

, (4.2)

where the overline indicates the average over several disorder patterns, with the total
number of patterns being Np. From now on we will refer to it using n = 〈n̂〉

α
for

simplicity.
In Fig. 4.4 we plot the 2D mean occupation for a single disorder pattern 〈n̂〉

α
(upper

images), and for the pattern-averaged n (lower images), obtained from Np = 8 dif-
ferent disorder patterns. As the disorder strength ∆ is increased, we observe how the
homogeneous density distribution in the center, typical of a unit-filling MI [9], gives
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Figure 4.4: Transition from a MI into a disordered compressible state. Mean de-
tected density at J/U = 0.01 for increasing disorder strength ∆. From left to right,
∆ = 0.11 U, 0.45 U, 0.67 U, 0.9 U. The upper row shows the mean detected occupa-
tion obtained for the same disorder pattern 〈n̂〉α. The bottom row shows the pattern-
average of the mean occupation, n, obtained from averaging over 8 different disorder
patterns. Any remaining inhomogeneities are associated to the finite number of pat-
terns or to intrinsic features of the addressing beam.

birth to a seemingly random pattern of single-site densities, associated to the pro-
jected disorder potential. This tendency creeps in from the edges of the cloud, which
correspond to the smallest local chemical potential µi (discussed in Sec. 2.2.3), as indi-
cated by the white arrows in the phase diagram in Fig. 4.1. Only for ∆ ∼ U does the
melting of the Mott insulator take place over the whole cloud. Looking at n, one can
more clearly see the reduction in the mean detected atom number, beginning from the
outer part of the cloud.

To obtain more insight into this transition, in Fig. 4.5 we plot the azimuthal av-
erage of the disorder-averaged density n and its variance σ2 as a function of the ra-
dial distance from the center of the cloud. This allows one to observe how the initial
squeezing in the central atom number, characteristic of the MI phase with n ≈ 1 and
σ2 ≈ 0, gets eventually destroyed by the influence of the disorder, leading to higher
local fluctuations and hence an indication of a finite compressibility. In fact the profile
obtained for the highest disorder strength, with ∆ = 1.12 U, is reminiscent of the one
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Figure 4.5: Density profiles for increasing disorder strength at strong interactions.
a Density profile of the disorder-averaged mean detected occupation n and b its vari-
ance σ2. The measurements were taken for J/U = 0.01, and the disorder strength
values go through ∆ = 0.11 U, 0.45 U, 0.67 U, 0.9 U, 1.12 U (darker markers corre-
spond to stronger disorder).

for a SF in the clean case [9].

4.3.1 Measuring the Edwards-Anderson parameter
Given that the BG phase shares properties with both the SF and the MI case, it can be
challenging to unambiguously identify it. One cannot use a single order parameter to
distinguish the three existing phases. Recently, it has been suggested that an analog
of the so-called “Edwards-Anderson” (EA) parameter could be used as an order pa-
rameter for the BG [114, 115]. Originally defined in the context of spin glasses [116],
the definition we use here in the BH model is

qEA = (〈n̂〉
α
− n)2 = 〈n̂〉

α
2 − 〈n̂〉

α

2
, (4.3)

where again n = 〈n̂〉
α

, and the overline always indicates an average over different
disorder patterns. The EA parameter can be thought of as the fluctuation of the den-
sity distribution over different disorder distributions. In Fig. 4.6 we show the mean
density distributions 〈n̂〉

α
for three different disorder patterns, which gives an intu-

ition on the fluctuations that qEA quantifies. The possible values of qEA are bound by
the detected variance σ2, and therefore 0 ≤ qEA ≤ 0.25.

In a non-disordered system, qEA will, by definition, always be zero. This is no
longer true in the presence of weak disorder, and the BG phase will always display a
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finite value of qEA. In the MI phase, however, the value of qEA should vanish even for
finite disorder strengths. This means that a rise of the EA parameter can be attributed
to the transition from a MI to a BG phase. However, qEA will in general also be fi-
nite for an inhomogeneous SF [115], and hence it cannot be established as an order
parameter for the BG. Nonetheless, it remains a physically interesting parameter in
disordered systems.
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Figure 4.6: Mean detected densities for three different disorder patterns. 2D plots
of the mean detected occupation 〈n̂〉α obtained for three different disorder patterns.
The data was taken for a value J/U = 0.01 and with a disorder strength ∆ = 0.9 U.
The results reflect how, for sufficiently strong disorder, the distribution of the density
can strongly differ for different programmed disorder patterns.

Our setup makes it possible to directly measure qEA in the dBH. Here we present
the first measurements in an experiment of the EA parameter and use it to qualita-
tively characterize the emergence of a BG phase as disorder is increased. In Fig. 4.7, we
plot the site-resolved qEA for three disorder strengths. One can see that at ∆ = 0.11 U
(a) the measured parameter is essentially vanishing, at ∆ = 0.45 U (b) a strong in-
crease emerges from the edges of the cloud and finally, at ∆ = 1.12 U (c) a finite value
of qEA penetrates also through the bulk.

In Fig. 4.7d we get a better quantitative insight of the values of qEA by plotting
their profile (similar to Fig. 4.5). We note that the highest measured value, qEA ≈ 0.06,
is below the theoretical maximum value of qEA = 0.25. This is a direct consequence
of the finite temperature of our system. The dependence of qEA on the temperature
was numerically studied in [115], predicting an effect on the qEA consistent with our
observations at a temperature of T ≈ 0.15 U, measured from in situ thermometry in
the clean case (see Sec. 3.2.4). As we mentioned earlier, a finite qEA cannot be used to
unequivocally distinguish a BG and an inhomogeneous SF. Nonetheless, at the strong
interactions present in the system, in which no superfluid phase is expected, the ob-
served signal suggests a state with the properties of a BG.
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Figure 4.7: Measurement of the Edwards-Anderson parameter. 2D plots of qEA at
J/U = 0.01 for disorder strengths of a ∆ = 0.11 U, b ∆ = 0.45 U and c ∆ = 1.12 U.
d Profile of the EA parameter obtained from an azimuthal average for disorder
strengths ∆ = 0.11 U, 0.22 U, 0.45 U, 0.67 U, 1.12 U (darker markers correspond to
stronger disorder).

4.4 Measurements at large tunneling
We now take a look at the effects of disorder in the regime of weak interactions and
large tunneling. In the clean case, this implies starting from a homogeneous SF phase.
We prepare the lattice depth at V = 7 Er, for which J/U ≈ 0.22. As one introduces
disorder in the system, the density distribution of the SF should be strongly modified,
giving rise to an inhomogeneous SF with a reduced SF fraction. Eventually, for even
stronger disorders, one would completely suppress any long-range coherence and
reach a BG phase [101, 102].

In Fig 4.8, we show the mean detected density for a fixed disorder pattern both for
in situ and TOF imaging. The in situ pictures show how, as the disorder strength is
increased (from left to right), the density shifts from an homogeneous distribution (in
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Figure 4.8: Decrease of the SF phase coherence and fragmentation of the density
for increasing disorder. Measurements at J/U = 0.22 of the single-pattern mean oc-
cupation 〈n̂〉α for in situ imaging (top pictures) and TOF imaging (bottom pictures).
The corresponding disorder strengths are ∆ = 0 J, 5.5 J, 15 J (from left to right). One
can see that as the disorder strength ∆ is increased, the homogeneity of the in situ
cloud is lost, and the visibility of the coherence peaks is suppressed.

the clean case) to a more fragmented one, with many sites displaying a vanishing den-
sity. In TOF, one appreciates how the initial long-range coherence of the superfluid,
characterized by the interference peaks, is strongly suppressed for higher disorder.
Nonetheless, a visible cross-like pattern remains in the density.

From these two different observables, one can infer that the increase in the disorder
induces a redistribution of the atomic density, due to a specific landscape of valleys
and peaks, which leads to a shrinking in the SF fraction, related to a reduction in the
global transport of the system. One can understand this in terms of a number-phase
uncertainty relation, as already discussed in Sec. 2.1.1. The global phase of the system
will only be well defined when the different clusters of fluctuating sites are coupled
to each other via tunneling. That is to say a percolation between all the disconnected
SF puddles [117]. The process of disconnection between the SF regions is precisely the
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mechanism that eventually drives the transition from a SF to a BG phase.
To better characterize this effect, we calculate two suitable quantities, based on

the data from a single disorder pattern, and study their dependence on the disor-
der. The first quantity is the interference visibility (defined in Ch. 3), which quantifies
the phase coherence in the system. The second one is the local variance per site, σ2,
which we average in a region of interest in the center of the cloud. In Fig. 4.9 we show
the dependence of these two quantities on the disorder strength. Both show qualita-
tively the same dependence, monotonically decreasing, indicating their relation and
compatible with the view that sites with a well-defined phase will have high fluctua-
tions. These quantities do not sharply identify any phase transition, and in fact the SF
phase is expected to remain stable even for such high disorder strengths. However it
is important to underline that a finite visibility does not necessarily imply long-range
phase coherence, but is also an indicator of short-ranged coherence. Therefore the re-
maining signal, even for strong disorders, does not imply a survival of superfluidity,
which could be hindered by our finite size and temperature.
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Figure 4.9: Decay of the interference pattern and the occupation variance for in-
creasing disorder. Plot of the local variance, averaged over sites in the center of the
cloud, (orange markers) and the interference visibility (green markers) as a function
of the disorder strength ∆. The system is at J/U = 0.22, and the data was obtained
from measurements with a single disorder pattern. One can see that both quantities
show a similar dependence on the disorder strength, indicating the relation between
the decrease of the long-range coherence and the fragmentation of the system.
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4.5 Summary and outlook
To summarize, in this chapter we have studied the close-to-equilibrium properties of
the dBH for the first time in a two-dimensional experiment. To do so we have im-
plemented a novel approach to introduce disorder in experiments of ultracold atoms
in optical lattices, based on a high-resolution objective and the use of a DMD to pro-
gram arbitrary disorder patterns. With the available tools, we have explored different
regimes of interactions, tunneling and disorder, and used our microscopy technique
to get new insight into the local density of disordered bosonic systems, in contrast to
previous measurements based on global observables [43, 106–108].

In the strongly interacting limit, this has allowed us to identify the appearance of
a state with an enhanced occupation variance as one increases the disorder strength
starting from a unit-filling MI. The observed behavior is consistent with the emer-
gence of a BG phase as a result of the competition between disorder and interactions.
In addition, we have performed the first measurement of the EA parameter, relevant
for probing spin glasses [116], in a Hubbard system. We have identified that the emer-
gent compressible phase displays a nonzero EA parameter, whose value increases as
the disorder gets stronger.

Finally, we have also explored the regime of weak interactions. By combining our
local probes with in-plane TOF measurements, we have been able to correlate a loss in
the phase coherence of a SF with the fragmentation of its density distribution, induced
by the presence of disorder. This observation is consistent with the transition from
a SF to a BG phase, or with the formation of an inhomogeneous SF, which is also
characteristic of the dBH model.

Among the possible future directions, the study of much larger disordered sys-
tems and with weaker harmonic confinement would be highly desirable. This would
allow for a more precise measurement of the phase-coherence properties, better statis-
tics due to single-shot disorder averaging, and particularly reduced finite-size effects
in the vicinity of phase transitions. Another direction is the study of dynamics at low
temperatures, which for example could directly probe transport properties of the dif-
ferent phases [118].
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Chapter 5

Thermalization, ergodicity and MBL
The development of statistical mechanics has been extremely successful at linking
concepts of microscopic physics with laws involving macroscopic observables. It has
essentially made it possible to derive the laws of thermodynamics based on those of
classical and quantum mechanics [31–33]. Nonetheless, many questions remain open
in the field of non-equilibrium statistical mechanics, with much interest for many-
body quantum systems. In this chapter we will introduce theoretical ideas from non-
equilibrium physics of classical and quantum systems. Then we will look specifically
at the problem of quantum thermalization in isolated quantum systems and how it
leads to the eigenstate thermalization hypothesis. Last, we will discuss cases where
quantum thermalization can fail, and focus on the phenomenon of many-body local-
ization, which will be experimentally studied in the last two chapters of this part.

5.1 Basics of non-equilibrium physics
In many problems in thermodynamics and statistical mechanics we take for granted
that we work with states in thermal equilibrium. However, the power of statistical
mechanics can also be extended into the field of non-equilibrium physics, though a
general framework to describe relaxation processes is still missing [33]. The typical
scenario considered in this field is the preparation of a system in an out-of-equilibrium
state, followed by its own dynamics which lead to its relaxation into thermal equilib-
rium. Some of the fundamental questions addressed are: Which processes make a spe-
cific system undergo irreversible dynamics towards equilibrium? Are there systems which fail
to equilibrate and, if so, why? These two examples alone face several apparent para-
doxes, such as the fact that irreversibility can emerge from (quantum) mechanical
time-reversible processes (commonly referred to as the arrow of time), or that isolated
systems can relax into a thermal state in the absence of an external bath.

5.1.1 Approach to equilibrium
Let us consider an isolated classical system. Typically, the microcanonical ensemble
is used to derive its properties in equilibrium where we assume all microstates in
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the same energy window are equally probable. This description of equilibrium states
works very well, but provides no intuition into how classical dynamics takes a system
from an initial arbitrary configuration through all the microstates of the ensemble.
To gain some insight, let us consider a common textbook example: A gas of parti-
cles (maybe atoms or molecules) in a box where, after forcing them to a corner, they
are released and evolve until they homogeneously occupy the whole box. Explain-
ing the origin of this every-day intuitive behavior with a certain rigorousness can be
very challenging. In Fig. 5.1 we consider a toy model of the gas in a box: the Hardy-
Pomeau-De Pazzis (HPP) lattice gas automaton.1 We prepare an initial state with a
clear periodic density pattern and with random velocities, and plot the dynamics of
the imbalance I , which, in short, quantifies the visibility of the initial pattern, as a
function of the number of steps. We see how the system evolves until it settles to a
roughly constant value of I = 0. Other initial distributions will also converge to this
long-time state.

This simple deterministic model of many interacting particles already illustrates
the approach to equilibrium of an out-of-equilibrium state. While the simulation does
not explain why this process takes place, we can get an answer in terms of typicality.
That is the fact that almost all the available microstates look macroscopically identical
(homogeneous density), and if we start in a configuration with an atypical macroscopic
observable (e.g. a density imbalance) it will naturally evolve into a typical configura-
tion [33].

5.1.2 Ergodicity and integrability
“Ergodicity” is another important concept to understand relaxation processes. A sys-
tem is said to be ergodic whenever the time-average of a macroscopic observable O is
equal to the ensemble average. That is

O(t) =
1
N ∑

i
Oi, (5.1)

where the overline indicates here a long-time average, i labels each independent con-
figuration of the ensemble, and N is the total number of configurations. In this sense,
thermalization happens as the system dynamically explores all possible configura-
tions. In the above example of a gas in a box, ergodicity is fulfilled, since the long-time
average of the imbalance is equal to the average over all possible density configura-
tions.

1The HPP lattice gas automaton is a dynamics model for fluids in 2D, which considers particles in
a square lattice with four possible velocities [119]. The model is deterministic and made out of propa-
gation and collision steps.
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Figure 5.1: Classical relaxation dynamics based on an HPP model. a Individual
snapshots of the density for four different evolution times. b Plot of the density im-
balance I , which quantifies the visibility of the initial density pattern, as a function
of the number of evolution cycles. The simulation was done in a square lattice with
100× 100 sites and a total of 104 particles organized in stripes of 5 sites of length.

Should we expect all systems to display ergodicity and hence to thermalize? In
ergodic classical systems, a common property is chaotic dynamics. In the lattice gas
example, a change in the initial velocity of a single particle will lead to a significantly
different long-time evolution. One can also see this with a single billiard ball bounc-
ing against the walls of a stadium-shaped container, which will end up exploring the
whole phase space [33]. Such chaotic dynamics vanish in systems with an extensive
number of independently conserved quantities, i.e. integrals of motion. Integrable
systems show a breakdown of ergodicity due to restrictions on the available trajecto-
ries. A billiard ball bouncing in a circular container will show non-chaotic dynamics,
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and will not explore the whole phase space. This non-ergodicity can also happen in
more complex interacting systems, as for example in the Fermi-Pasta-Ulam-Tsingou
problem. In their numerical experiment, considered the first computer-based sim-
ulation ever, they found an absence of thermalization in the modes of a nonlinear
string [120].

5.2 Quantum thermalization
Let us now consider the approach to equilibrium in many-body quantum systems.
At first, it seems like the conflict between the microscopic and macroscopic dynamics
will only be amplified in the quantum case. After all, the evolution by the Schrödinger
equation is linear, and if we consider a single eigenstate, this evolution is in fact a
trivial one. In this section we will see that, in a way, recent developments have left a
clearer picture for quantum thermalization than for its classical counterpart [31–33].

In quantum statistical mechanics it is common to consider a system of interest cou-
pled to an external heat reservoir (see Fig. 5.2a), allowing for an exchange of energy
and particles. This configuration naturally brings our system into thermal equilib-
rium, as described by a thermal density matrix ρ̂th in the canonical (Gibbs) ensemble.
But how is thermal equilibrium reached if we consider an isolated quantum many-
body system? One might consider full isolation to be unrealistic, but the same prob-
lem can be reached when absorbing the external heat reservoir into the system.

Starting the system in a pure state, described by a density matrix ρ̂(0), it seems
clear that unitary dynamics will not modify the global purity of the system and that
it cannot reach a thermal state ρ̂th. To solve this apparent paradox, one should con-
sider the thermalization of a local physical observable instead [30]. In fact, when we
consider a thermodynamic system, it should be clear that measuring global operators
does not make physically sense. The relevant object to keep track of, given an opera-
tor that acts on a finite region of the Hilbert space A (see Fig. 5.2b), will be the density
matrix ρ̂A(t) = TrB(ρ̂(t)) (where B is the remainder of the system).

Quantum thermalization takes place then when ρ̂A(t) ≈ ρ̂A,th. A globally pure
system can look thermal locally (in A), whenever the remainder of the system (B) can
efficiently act as a thermal bath for it. Assuming we start with a system that looks
initially pure in A, e.g. a product state, the generation of entanglement between A
and B will be the process driving its thermalization, and leads to a spread of initially
local information and dephasing [34, 121].
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a b

A
B

System

System

Thermal bath

Figure 5.2: Two different approaches to quantum statistical mechanics a The sce-
nario most commonly considered is a system coupled to a reservoir with which en-
ergy and particles can be exchanged. b The scenario of a single isolated quantum
system, where the observables of a region A can thermalize if the remainder B acts as
an effective bath.

5.2.1 The eigenstate thermalization hypothesis
Let us consider the out-of-equilibrium dynamics of a pure system. We start with an
eigenstate |ψ0〉 of the initial Hamiltonian Ĥ0. We then quickly change to a new Hamil-
tonian Ĥ, and we can reexpress |ψ0〉 as a superposition of the eigenstates of the new
Hamiltonian:

|ψ0〉 = ∑
α

cα|φα〉, (5.2)

which leads to the time evolution of the state

|ψ(t)〉 = e−iĤt/h̄ |ψ0〉 = ∑
α

cα e−iεαt/h̄ |φα〉. (5.3)

The time evolution of some observable Â will be given by

〈Â(t)〉 = 〈ψ(t)| Â |ψ(t)〉 = ∑
α,β

c∗αcβ ei(εα−εβ)t/h̄ Aαβ, (5.4)

where Aαβ = 〈φα| Â |φβ〉. Note that if we look at the average of 〈Â(t)〉 over long
times, the exponential term will average to zero for any oscillating phase, i.e. Eα 6= Eβ,
and hence one obtains

〈Â(t)〉 = ∑
α

|cα|2 Aαα . (5.5)
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Quantum thermalization emerges from this last step. From Eq. 5.5 it is clear that the
long-time average of the observable will only depend on the weights of each eigen-
state |φα〉. This is commonly referred to as the “diagonal ensemble”. If the system
thermalizes at long times we expect the average obtained from this diagonal ensem-
ble to coincide with the one from a microcanonical ensemble with energy E0, defined
as

〈A〉µc :=
1
N ∑

α′
Aα′α′ , (5.6)

where the sum is taken only over the N eigenstates that fulfill |E0 −ε′α| < δE. There-
fore the condition for the thermalization of the system can be written as

〈Â(t)〉 = 〈A〉µc. (5.7)

Given that the left hand side of Eq. 5.7 explicitly depends on the initial conditions (via
the coefficients cα), while the right hand side is only fixed by the energy of the state
E0, one needs to find a mechanism that makes this equality fulfilled. One possible
way is for the diagonal elements Aαα close in energy to only weakly fluctuate. In
that case, Aαα can be taken out of the sum in Eq. 5.5, and the dependence on the
coefficients cα is effectively gone, since the sum of probabilities must add up to 1. This
is in fact the main idea behind the so-called “Eigenstate Thermalization Hypothesis”
(ETH) [35–38], which can be stated as:

The expectation value of the (local) observable Â for a single eigenstate with energy Eα is
the same as the predicted by a microcanical ensemble around that same energy:

Aαα = 〈A〉µc. (5.8)

A consequence of ETH is that local observables of individual eigenstates will
smoothly depend on their eigenenergies. And its name can be better understood by
considering each one of the individual eigenstates already to be a “thermal” state.
Even though an initial pure state can look far from equilibrium (due to the coherence
between eigenstates set by its coefficients cα), the long-time dephasing will reveal the
previously hidden thermal properties of the involved eigenstates.

While ETH is only a hypothesis, there is wide numerical evidence in many mod-
els and also analytic results [33, 38]. Additionally, many experiments, in particular
with ultracold atoms [22], have considered the study of thermalization and relaxation
dynamics in isolated quantum systems [26, 39, 122], providing evidence of quantum
thermalization in different ways. In the next subsection we will, however, discuss spe-
cific cases in which ETH does not hold at all.
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5.2.2 Breakdown of ETH
Similar as in our discussion of classical ergodicity, we will see that there are few mod-
els that violate ETH. These systems fail to serve as a bath for their subsystems, and
because of this they are of fundamental interest. Let us go through some known exam-
ples of models and also mention few experiments in which quantum thermalization
seems to fail.

Integrable systems

Similarly as in the classical case, the existence of integrals of motion in a quantum
system lead to restrictions of its otherwise ergodic behavior. This usually takes place
in low-dimensional systems such as models of hard-core bosons in 1D [123]. This
kind of breakdown of ergodicity is, however, fine-tuned, in the sense that as a single
parameter shifts the system away from integrability, thermalization might end up
taking place, though potentially over arbitrary long timescales [124].

Few experiments with 1D Bose gases have addressed these kinds of systems. The
early article A quantum Newton’s craddle [24] triggered many theoretical discussions,
and over the last few years other similar experiments have observed prethermaliz-
ing dynamics [27] or the emergence of thermalization due to integrability-breaking
interactions [125].

Anderson-localized systems

In single-particle systems, the influence of quenched disorder can lead to a breakdown
of its transport properties. This can be directly seen in a tight-binding model with
diagonal disorder, as originally considered by P. W. Anderson [40], for which both the
eigenstates and the dynamics can display full localization. In such disordered systems
there is a strong suppression of the transport and therefore a breakdown of quantum
thermalization.

Anderson localization has been experimentally observed with matter waves, i.e.
Bose-Einstein condensates, in disordered optical potentials [109, 126]. But as a wave
phenomenon, it has also been explored in many other experiments involving the lo-
calization of light [127], microwaves [128] or sound waves [129].

Many-body-localized systems

Extending Anderson localization beyond the non-interacting limit has been the focus
of a lot of recent research, though Anderson already speculated on this possibility in
his original work on single-particle localization [40]. Localization has been shown to
survive for high-enough disorder strengths and moderate interactions [41, 42]. This
is a very significant result, since it implies that there is a generic type of quantum
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many-body systems that exhibit a failure of thermalization even at finite energy den-
sities [34]. This contrasts with the two examples above, which were either fine tuned
to integrability, or to a non-interacting scenario. Additionally, it promotes many-body-
localized states to a new phase of matter. The properties and phenomenology of
many-body localized systems will be discussed in detail in Sec. 5.3.

Quantum many-body scars

A new kind of non-thermalizing possibility has recently emerged, though currently
still at the center of much debate, the so-called “quantum many-body scars” [130]. The
motivation emerged from the results of a recent experiment with Rydberg-atom ar-
rays [131]. The main observation was a lack of thermalization for certain high-energy
states (leading to an almost undamped periodic oscillation) in contrast to an efficient
thermalization for other states at similar energies. The situation might emerge from a
small set of eigenstates that violate ETH, even though most of the other eigenstates
of the spectrum do follow ETH. Given the recent emergence of this phenomenon, a
full understanding of its mechanism is not yet present, though some connection to
integrability is likely to be behind it.

5.3 The many-body-localized phase
Let us begin by reemphasizing some of the features of many-body localization (MBL)
that make it so unique. Systems exhibiting MBL display a nonergodic behavior far
from equilibrium, and because of their violation of the ETH, they resist to be described
by the formalism of quantum statistical mechanics. This places the phenomenon in a
very singular context, and it signifies the emergence of a new phase of matter and of
a new kind of quantum phase transition: an eigenstate phase transition. This means a
phase transition that instead of corresponding to a change of its properties in ther-
mal equilibrium, it corresponds to a change in all of the eigenstates of a many-body
Hamiltonian.

By modifying one parameter of the Hamiltonian, e.g. the disorder strength or the
interactions, it is possible to cross from an ergodic phase that satisfies ETH to a local-
ized one where ETH fails. While localization-delocalization transitions are common
in many disordered models in the low-temperature limit, MBL can also exist at finite
energy densities above the ground state. This means that in contrast to a conventional
quantum phase transition, which strictly takes place at T = 0, the MBL-ergodic phase
transition can happen even at infinite temperatures [132]. A common approach to
study the properties of the MBL phase transition is the exact diagonalization of small
systems, successfully implemented to a range of different models, such as spinless
fermions [132] or Heisenberg [133, 134] and Ising spin models [135].
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While the phenomenology of MBL is fundamentally interesting on its own right,
another dramatic consequence of these properties is that MBL may enable quantum
order that is protected by localization even at finite energy densities [135–137]. This
goes beyond the thermal-MBL phase diagram, and it can display more than a sin-
gle localized phase, each one of them identified by a different order parameter. This
also connects to the possibility of stabilizing phases of matter in periodically driven
systems [49], which we discuss in more detail in Ch. 8.

5.3.1 Properties of the ergodic and localized phases
In this subsection we review few phenomenological properties of the MBL phase and
contrast them with the characteristics of the ergodic phase. The discussion will focus
either on out-of-equilibrium states or individual eigenstates with finite energy densi-
ties, to avoid any ground-state effects.

Eigenstate properties

On the ergodic side, the eigenstates are thermal and obey the ETH. This implies that
as the system size diverges, the reduced density matrix of finite subsystems will be
thermal. Another consequence is that the entropy of entanglement will scale propor-
tional to the size of these subsystems, i.e. it follows a “volume law”.

On the localized phase, the eigenstates are not thermal and therefore ETH does not
apply. As those states cannot serve as a heat bath for their subsystems, their entangle-
ment is only short-ranged and their entropy of entanglement obeys an “area law”.
Note that even in non-disordered local Hamiltonians, area laws are a generic prop-
erty found in ground states [138]. In some sense, MBL extends ground-state physics
to all temperatures.

Eigenstate structure

While the difference between the dependence of the entropy of entanglement in the
two phases can be used to identify them, this is in practice hard, since it requires
to study different sizes of the same system. A very common approach used instead
is to study the spectral statistics of adjacent energy levels. In the ergodic phase, the
eigenstates obey the Wigner-Dyson statistics of random matrix theory (given by the
Gaussian orthogonal ensemble). This is due to the level repulsion, a property associ-
ated to systems with quantum chaos [33]. On the other hand, in the strongly localized
limit, eigenstates with nearby energies will in general have almost no overlap in Fock
space with each other, such that they will not interact and hence level repulsion is
absent [132]. The distribution of eigenenergies is instead given by a Poissonian distri-
bution.
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Another property that one can directly observe in the eigenstate structure, and
which is a direct implication of ETH (as discussed in Sec. 5.2), is the dependence of
a local observable as a function of the energy. In an ergodic system, we expect these
observables to change smoothly through the spectrum, as required by ETH. However,
in the MBL phase local observables might strongly fluctuate for eigenstates arbitrarily
close in energy [49].

Memory of the initial conditions

Aside from the direct eigenstate properties, let us now discuss the phenomenology
in the dynamics of far-from-equilibrium states. First note that a direct consequence of
thermalization is the erasure of the system memory concerning certain initial condi-
tions. In quantum thermalization, this means that local information of an initial state
will spread through the whole system and thereby remain hidden (since unitary evo-
lution cannot erase that information) [34]. Because of this, any initial distribution in
which we prepare an out-of-equilibrium state will fade once the system thermalizes.

In contrast, in MBL systems a partial memory of the initial conditions can survive
locally for arbitrary long times. Because of this, the study of long-time dynamics can
be used to distinguish a thermal from a localized non-equilibrium state. This property
is particularly used in experiments exploring MBL, as we will discuss in the following
chapter.

Spread of entanglement

Finally, let us take a look at the dynamics of the bipartite entropy of entanglement after
a quench to an out-of-equilibrium product state. If the system is ergodic, the entropy
of entanglement will quickly increase, in a ballistic fashion [139], until it saturates to
an entropy that will be proportional to the number of degrees of its subsystems (again
a volume law).

In the MBL phase, the entropy monotonically increases after long times only in a
logarithmic fashion [140]. The entanglement entropy to which it eventually saturates
will actually obey a volume law, but have a smaller value than in the ergodic case.
This is a key property that distinguishes the physics of MBL from that of Anderson
localization. In the latter, there is no such monotonic increase of the entanglement
entropy for long times, indicating the role of interactions in the phenomenon of MBL.
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Chapter 6

Probing ergodicity and localization in
the 2D BH model
In this chapter we show how our quantum-gas microscope can be used to explore
thermalization and MBL in the two-dimensional BH model, and present experimen-
tal results showing signatures of these phenomena. We start by motivating some of
the strengths of our system and comparing it to previous and current experiments
concerning MBL. Then we proceed to describe how the available tools in our setup
are used to prepare an out-of-equilibrium initial state and for its local measurement.
In the following section, we show data of measured dynamics in a system with a
domain-wall initial state, showing signatures of a long-lived memory of the initial
conditions, and also observe its dependence on the density of the system. We continue
the experimental results by studying the dependence of the observed features in sys-
tems with a different initial density modulation. This allows to get more insight into
the relation between the localization length in the system and the measured observ-
able, the “imbalance”. Finally, we discuss possible future experiments and additional
models that can be directly studied in our setup.

6.1 Experimental motivation
Because of the fundamental implications that MBL has in the field of quantum statis-
tical mechanics, the possibility of experimentally realizing such MBL phases is very
exciting. The fact that MBL appears in quite generic models, i.e. locally interacting
systems with quenched disorder, and that it can be observed at finite temperatures,
means that the phenomenon can be realized in many diverse experimental platforms.
Aside from systems of ultracold atoms in optical lattices [44–47], experiments with
chains of trapped ions [141, 142], superconducting circuits [143–145] or solid-state
spin systems [146] have also observed signatures of MBL in very different regimes.

While the high level of controllability in some of these platforms (with the goal
of quantum computation) makes them great for arbitrary preparations and measure-
ments, there are two main reasons that put ultracold atoms at the forefront of exper-
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imentally exploring MBL. The first one is their great level of isolation, allowing one
to explore thousands of tunneling times [87, 147]. The second one is a higher degree
of scalability, which makes it possible to work with system sizes on the order of hun-
dreds [47] or even thousands [48] of lattice sites. Both long evolution times and big
system sizes are features that make classical computer simulations of these systems
extremely hard, especially in the far-from-equilibrium regime. These reasons make
it strongly desirable to use ultracold atoms as analog quantum simulators of MBL
models and their phase transitions.

The experiments performed in this and the following chapter describe out-of-
equilibrium experiments in a two-dimensional disordered Bose-Hubbard model with
hundreds of lattice sites and particles. In addition to the dimensionality and the size
of the system, the bosonic nature also adds a level of complexity. While in general it
is true that in these high-temperature states quantum statistics play a negligible role,
in practice higher occupations (e.g. n = 2,3...) can be achieved, and it also leads to an
enhancement of interaction effects.

6.2 Description of our approach
In this section we explain the main ideas behind our approach to study thermalization
and MBL, including the experimental techniques and its theoretical interpretation. In
a nutshell, we will be combining our ability to realize the disordered BH model, which
we already described in Ch. 4, with a fast quench of the lattice depth. The preparation
of a well-defined initial state with a specific density modulation, typically stripes of
occupied and unoccupied lattice sites, will be used as a initial-condition reference,
whose visibility can be microscopically tracked after a certain evolution.

We will first formally discuss the prepared quantum states and their dynamics,
and then provide a summary of the main procedures carried out in our setup con-
cerning the preparation, evolution and imaging of out-of-equilibrium states.

6.2.1 Formal description
We begin by introducing the starting point of the experiment, a unit-filling MI in the
atomic limit, whose quantum state is

|ΨMI〉 = ∏
j

â†j|0〉, (6.1)

and which can be reached by preparing the ground state of ĤBH(J = 0). In the next
step, we proceed by selectively removing the bosons sitting in a subset of all lattice
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sites B,

|ΨDP〉 = D̂B |ΨMI〉 =
(

∏
l ∈ B

âl

)
|ΨMI〉 = ∏

j∈ A
â†j |0〉, (6.2)

thereby preparing a density-patterned (DP) product state |ΨDP〉, with particles only
occupying the sites in A (the remainder of B). This state with all particles well local-
ized in individual sites, will be the initial state of our dynamics, |Ψ(t = 0)〉 = |ΨDP〉.

Now we continue by performing a quench of the Hamiltonian to that of Eq. 4.1.
This means that we suddenly tune to a finite value of J and introduce a disorder
patternα with strength ∆. This directly leads to the time evolution

|Ψα(t)〉 = e−iĤdBHt/h̄ |ΨDP〉. (6.3)

which will depend on t, the Hamiltonian parameters and the initial density pattern,
characterized by the subset of occupied sites A.

After a certain evolution time t, we can proceed to measure the state of the system.
While there are several interesting observables, here we will focus on the imbalance
operator Î , which we define as

Î =
N̂A − N̂B

N̂A + N̂B
, (6.4)

where N̂A(B) is the operator for the total atom number in region A(B), defined as
N̂A(B) = ∑ j∈ A(B) n̂ j. Now we can compute the disorder average of the expectation
value as

I(t) = 〈I(t)〉
α
= 〈Ψα(t)| Î |Ψα(t)〉. (6.5)

Note that, by definition, I(t = 0) = 1. In the clean system, we expect the evolution of
the system to eventually lead to a quantum thermalization of the state, and hence to
I(t→ ∞) = 0. This is taken as evidence of the system being in the ergodic phase, and
particles fully delocalizing over the entire system. However, in the presence of strong
quenched disorder, MBL can emerge, which we can identify by I(t→ ∞) > 0, which
implies a remaining memory of the initial density pattern.

This measured observable, the imbalance, is model-free and is equivalent to the
correlation with the initial state at t = 0, Ĉi(t) = n̂i(t) · n̂i(0), which is commonly
used in theoretical simulations with arbitrary initial product states [148].

6.2.2 Experimental implementation
Now let us summarize how the procedure introduced in the previous subsection is
routinely implemented in our experimental setup.
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Figure 6.1: Schematic overview of the experimental sequence. An initial unit-filling
MI, deep in the atomic limit (red box), is prepared into a certain density pattern by
removing the atoms in some regions. Subsequently we proceed with the quench by
turning on the disorder and suddenly ramping down the in-plane lattices (yellow
box). After a certain time t of dynamics under the dBH Hamiltonian, we ramp up the
lattices again and proceed to image the occupations in the system.

Initial state preparation and quench

The first step in the experiment involves the preparation of a two-dimensional unit-
filling MI, with typically an atom number of N ≈ 240. The lattices are then ramped to
a depth of 40 Er, in the deep atomic limit, to ensure that no particles tunnel during the
preparation of the density-patterned state. For this, we program the DMD with a spe-
cific pattern, such that only half of the lattice sites (region B) will be illuminated. Next,
we use our single-site MW addressing techniques (described in Ch. 3), to selectively
transfer the illuminated atoms into a different state, and afterwards optically remove
them. This process takes the system into a half-filling configuration, and already far
from its original state close to “zero temperature”.

In the next step, we use a MW π pulse to transfer all the remaining particles from
the hyperfine state |F = 1, mF = −1〉 to the |F = 2, mF = −2〉, which is repulsively
affected by the light shift of the addressing laser. Then, we first reprogram the DMD to
a grayscale disorder pattern (see Ch. 4) and then we slowly ramp the intensity of the
laser sent through the DMD to the atoms (in approximately 150 ms) until it reaches
a specific disorder strength ∆. Note that since we are still in a quite deep lattice, the
introduction of the disorder potential will generally not induce any tunneling dynam-
ics.
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In the last part of the preparation, we perform a quench in the system by ramping
down the in-plane lattices from 40 to 12 Er in less than a millisecond. While this is
a fast quench respect to the Bose-Hubbard dynamics, it is essentially adiabatic with
respect to the band degree of freedom, and hence no transfers into higher bands take
place.

Evolution and subsequent imaging

After performing the quench, the system is allowed to evolve for a certain time t
under the dBH Hamiltonian of Eq. 4.1. At 12 Er the tunneling strength is set to a value
of J/h̄ = 2π × 24.8 Hz and the interactions to U = 24.4 J (see App. A). To ensure
the coherence of the dynamics, it is particularly important to ensure a good isolation
during this stage. The typical measured timescales go beyond few 100 τ (∼ 600 ms),
where τ = h̄/J is one tunneling time.

After a certain evolution time t, we proceed to image the occupation in the lattice
sites of the system, following the description in Sec. 3.2.3. From the reconstructed
lattice-site occupations one effectively measures the observable Î , and by repeating
the experiment several times and with different disorder patterns we can obtain the
quantity I , and hence estimate the visibility of the initial pattern.

In most experiments, we directly take the disorder averaging by preparing a dif-
ferent disorder pattern in each individual measurement. This ensures that our obser-
vations are not limited by a finite amount of disorder patterns. To compute the imbal-
ance, we typically consider a region of interest (ROI) of 100 lattice sites in the center of
the cloud. This has the advantage that one can focus on the most homogeneous region
of the system, since the harmonic trap might induce additional localization effects in
the edges of the cloud. This contrasts with other experiments without in-situ reso-
lution of the imbalance, where one effectively averages different regions of the trap.
Concerning the light-induced losses in our imaging, leading to parity-projection (see
Ch. 3), they will cause the measured imbalance to be strongly affected in the presence
of higher occupations. Because of this, it is desirable to work in strongly interacting
regimes, – in this experiment J/U ≈ 0.04 parameters– where only a small number of
doubly occupied sites are present.

Estimation of the energy density

A requirement for the study of far-from-equilibrium phenomena, such as MBL, is for
the prepared states to be at finite energy densities. In real experiments, it is generally
not straightforward to characterize the effective temperature after a quench, since it
requires knowledge of the entire spectrum. We nonetheless bring up few arguments
to bring confidence on the high energy density in the system, and its position in the
many-body spectrum.
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Let us consider first the single-particle case in an homogeneous lattice. We note
that preparing a single particle localized in a single lattice site (a Wannier-like state)
corresponds to populating all kinetic energy states of that particle (all Bloch waves).
Now we consider a system of hard-core bosons at half filling, which in fact is a good
approximation of our system for ∆ = 0, since U > 16J = 2 × EBW. Assuming all
bosons are initially prepared in a state localized to a single site, the energy of the pre-
pared state will be exactly in the middle of the many-body spectrum, thereby corre-
sponding to the energy at infinite temperature. Additionally introducing a disordered
landscape in the system will (on average) not modify the previous conclusion, since
the localized particles will randomly sample the disordered potential.

Following similar arguments, one can extrapolate this result to a system also dis-
playing few doubly occupied sites. In this sense one can always define an effective
maximum local Hilbert space dimension, which suffices to describe the system, and
consider the energy density with respect to the spectrum of that model. In addition to
these theoretical arguments, quantitative estimations of the energy density and effec-
tive temperature were provided in the supplementary material of [87] for our experi-
mental parameters.
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Figure 6.2: Comparison of 1D nearest-neighbour detunings for a quasiperiodic po-
tential and a normal distribution. a Quasiperiodic potential given by the incommen-
surate periodic potential V(i) = cos(2πβi) where β = (

√
5 − 1)/2 ≈ 0.618 is the

inverse golden ratio and i are integer values. b Random values given by a normal
(Gaussian) distribution with µ = 0 and σ = 0.35. Both histograms have been ob-
tained by sampling 20000 points.
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True random disorder

A specific feature that is characteristic of our experimental implementation is that
the projected disorder potentials are “true random”. This means that, in contrast to
quasiperiodic models, the potential in each site δi is almost independent (uncorre-
lated) of the values in other lattice sites (only limited by the finite resolution in our
imaging system). We would like to emphasize that the experimental results obtained
with these different distributions can be significantly different. Aside from differences
related only to the histogram distribution of the single-site potentials, a main dif-
ference can be found in the nearest-neighbour detuning. In Fig. 6.2 we compare the
nearest-neighbour potential differences for a 1D quasiperiodic and 1D Gaussian ran-
dom distribution. We observe that, while in the quasiperiodic case the distribution is
peaked at the maximum possible detunings, in the Gaussian case the distribution is
centered around the vanishing difference.

In practice, this means that in general one cannot directly compare the dependence
on their disorder strengths, since ∆qp typically denotes the amplitude of the modulat-
ing sinusoid, while ∆Gau the width of the Gaussian distribution. In fact, the emerging
physical phenomenology can be fundamentally different [149], and a study of these
two kinds of disorder, in the same experimental setup, would be particularly interest-
ing.

As a last remark, note that similar results are also reached when considering uni-
form (instead of Gaussian) distributions, and that similar comparisons, with modified
conclusion, can be obtained when considering quasiperiodic models in higher dimen-
sions [48].

6.3 A first glimpse at MBL: domain-wall dynamics
A first experiment concerning MBL realized in our setup was done by preparing an
initial state with all particles prepared on one side of our trap, i.e. a density domain
wall. The imbalance I was computed by taking

I =
NL − NR

NL + NR
, (6.6)

where NL(R) is the number of particles in the left(right) side of the harmonic trap for
the selected region of interest. In this section we will discuss some of the main results
of the publication Exploring the many-body localization transition in two dimensions [47].
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6.3.1 Imbalance dynamics
Following the experimental implementation described in the previous section, the
system was allowed to evolve for few hundreds of tunneling times and its imbalance
measured. In Fig. 6.3a one can already qualitatively appreciate the behavior expected
for a thermalizing and a localized state. In the absence of disorder, the density gets
homogeneously distributed in the harmonic trap after more than a 100 τ , while for a
disorder strength of ∆ = 13 J, clearly most of the particles remain in the left side of
the trap even after 249 τ .
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Figure 6.3: Dynamics of a domain wall for different disorder strengths. a Evolution
of the density in the system, illustrating thermalization and localization. The left two
columns show the evolution in the absence of disorder, with individual snapshots in
the left and the mean occupations in the right (black-red-yellow colormap). For the
right two columns, the disorder strength is ∆ = 13 J and most particles remain on
the left side of the trap even after long times. b Plot of the imbalance I as a function
of time for five different disorder strengths. The solid lines are fits of an exponential
with an offset.

The imbalance dynamics are plotted in Fig. 6.3b for five different disorder
strengths. For ∆ < 4 J, the imbalance ends up vanishing for long times, an indica-
tion of the delocalization of the particles over the trap. For the datasets at ∆ = 8 J and
13 J, we see a remaining imbalance (as high as I ≈ 0.5) even after the longest mea-
sured times, which evidences a localization of the particles, and hence a breakdown
of ergodicity. The dynamics of the imbalance is compatible with an exponential decay
with a long-time offset , that is I(t) = (I0 − I∞) e−t/t1 + I∞.
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Figure 6.4: Long-time imbalance vs disorder strength for two different densities.
We plot the imbalance I at t = 187τ as a function of the disorder strength ∆ for
initial states close to unit filling (light blue) and states with one quarter of that density
(dark blue). The two solid lines indicate a double linear fit, and the vertical faded lines
indicate the fitted location of the transition.

6.3.2 Density dependence
A natural question to ask is what is the effect of interactions in the dynamics of the
system, to therefore distinguish this phenomenon from Anderson localization. While
in our system it is not possible to tune the interaction strength U via a Feshbach reso-
nance, a direct way of exploring this direction is to reduce the density in the system.
This can be done by pushing out a selective fraction of the particles after the prepara-
tion of the MI in the atomic limit, which can be done by a MW pulse followed by an
optical push.

In Fig. 6.4 we show the imbalance after a long time of t = 187τ as a function
of the disorder strength for two different densities. One is essentially at unit-filling,
that is at the same conditions as in the dynamics, and the other one with ∼ 25% of
the initial density. One can appreciate that, while in the unit-filling case the imbal-
ance remains close to 0 until ∆ ≈ 6J, in the low-density dataset the imbalance goes
above zero already for ∆ ≈ 3J. We can perform a piecewise double-linear fit with
the function I(∆) = I1 + C2 ·max(0, ∆− ∆c), which allows us to extract the critical
disorder strengths ∆c = 5.5(4) J and ∆c = 3.6(2) J. This shows that the localization
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transition is shifted to stronger disorder strengths ∆ as one increases the effect of in-
teractions. This is consistent with interactions reducing localization, and indicates the
many-body character of our system.

6.4 Probing localization at different lengthscales
An interesting direction to explore concerns the effects on localization by preparing
diverse initial states. For example, one can prepare states with different energy densi-
ties, which can be used to study the existence of many-body mobility edges [150, 151].
On the other hand, the transport properties and the relaxation timescales can highly
depend on the specific density configuration that one explores [148, 152]. In particular,
in our domain-wall experiment we effectively probe the transport over a lengthscale
on the order of the size of the system (∼ 12 sites). This is quite different from ex-
periments probing charge density waves, which effectively probe localization on the
order of one lattice site. In this section, we make use of our capabilities to prepare
initial density patterns with density modulations on very different lengthscales.

6.4.1 Experimental results

l
= 1 l = 2 l = 4 l = 8 l = 12

Figure 6.5: Snapshots of different stripe patterns. Individual fluorescence pictures
of the initial state for the five different stripe patterns. The stripe widths go through
l = 1, 2, 4, 8, 12 (from left to right).

Initial stripe patterns

The prepared initial density patterns are made of occupied stripes (with one atom
per site) of tunable width l (see Fig. 6.5). One can also consider them square charge
density waves with different periods. The l = 1 case (a Néel-like state) is precisely
the initial state prepared in superlattice MBL experiments [44, 48], which refer to as
“charge density wave”. The largest width, of l = 12, is roughly half of the system size,
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and hence is equivalent to the domain-wall state.
To avoid significant contributions from the harmonic trap confinement, we pre-

pare the stripes symmetrically with respect to the center of the trap. This means that
the total atom number and the energy density is the same for all states with different
density modulation. In principle, this implies that in the different experiments one
deals with the same MBL relaxation physics but probes different lengthscales.
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Figure 6.6: Long-time imbalance as a function of the disorder strength for differ-
ent density stripes. Plot of the generalized imbalance measured after t = 625 τ as
a function of disorder strength. The stripe widths correspond to l =1, 2, 4, 8 and 12
sites (yellow-green-blue colormap). The solid curves are the fit of the piecewise bi-
linear function I(∆) = C2 ·max(0, ∆− ∆c). We can see how the dependence of the
imbalance is steeper for the longer lengthscales.

Localization and disorder dependence

The quench and the dynamics follow the same conditions as described in Sec. 6.2.2. To
study the degree of localization in these states, we will use the generalized version of
imbalance defined in Eq. 6.4. In the absence of disorder, the imbalance Il of all these
different states will relax to a vanishing value. This nicely reflects the process of quan-
tum thermalization, in the sense that, regardless of the initial density distribution, the
system relaxes to the “same” state.

Now we focus on the localization in the presence of disorder. To do so, we measure
the imbalance for different disorder strengths after an evolution of t = 625 τ , to en-
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sure that the we are beyond the initial relaxation dynamics. The results are shown in
Fig. 6.6 for stripe widths of l = 1, 2, 4, 8 and 12 sites. Qualitatively, all datasets behave
similarly to the ones in Fig. 6.4. They show a vanishing imbalance for small disor-
der strengths ∆ which becomes finite above a certain threshold of disorder. Above
that threshold, the imbalance monotonically grows (roughly linearly) as the disorder
is increased. The slope of the dependence, however, is dramatically different for the
different stripe widths. While the l = 12 case (domain wall) shows a steep growth
(similar as in Fig. 6.4) and reaches values of the imbalance close to I = 0.8, for the
l = 1 case the dependence is weaker, and even for the strongest disorders one ob-
serves I < 0.2.

To better characterize the dependence, we also perform a double linear fit I(∆) =
C2 ·max(0, ∆− ∆c) for each dataset. From the solid lines in Fig. 6.6 one can directly
see how the slope increases for wider stripes. This dependence can be intuitively un-
derstood in terms of the localization length of the particles. The width-dependent
imbalance Il can be seen as a probe of localization on a lengthscale l, and therefore
Il=1, for example, will only grow to a significant value once the localization length is
below few lattice sites.

From these results, one can quantify the localization length as a function of the dis-
order strength. To do so, we define an arbitrary finite threshold value of the imbalance,
here Il = 0.2, for all stripe widths. If the imbalance goes above this threshold, we con-
sider the atoms to be localized on a lengthscale l. This allows us to extract a threshold
disorder strength ∆t(l) for each stripe width l. In Fig. 6.7 we show this dependence by
plotting the stripe width l as a function of the threshold disorder strength. This plot is
similar to that in other works in 1D, where the dependence of the localization length
on the disorder was characterized for Anderson localization [109] and MBL [45].

In the same figure, we also show the relation between the stripe width l and the
“critical” value ∆c. The dependence looks very similar as ∆t, which seems to suggest
that the phase transition gets shifted to higher disorder strengths for shorter stripe
widths. However, this effect could be just explained by the weaker sensitivity of Il for
localization lengths way above l. In this sense, experimentally measured values of ∆c
are likely to be an underestimated in finite-sized systems.

6.4.2 Non-interacting simulation
Last, to provide some more intuition into the dependence on the stripe width, we per-
form simulations for a non-interacting disordered tight-binding model. We simulate
single-particle dynamics in a disordered lattice of a particle initially prepared in one
lattice site. We then compute the imbalance from the single-particle wavefunction,
and do the same for different initial positions in the lattice. The total imbalance, for a
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Figure 6.7: Stripe width vs localization threshold. We plot the width of the density-
striped state vs its corresponding threshold ∆t for a localization with I = 0.2 (dark
orange). We also do the same plot for the critical value ∆c, which can be seen as a
threshold for I > 0. The dashed vertical gray line indicates the position of ∆c(l = 12),
which is the longest measured width.

specific density pattern, can then be calculated by averaging only the imbalance of the
particles in a subset A. Finally, we also average over the total imbalance several dis-
order patterns. This approach has the advantage to be only limited by the dimension
of the single-particle Hilbert space, allowing to simulate large 2D systems easily.

The results are shown in Fig. 6.8, where we have also considered the harmonic
confinement. For Anderson localization in 2D one expects, in contrast to MBL, lo-
calization to start for an arbitrarily small disorder strength. While the imbalance for
l = 12 shows a quite sharp increase (though partially affected by finite-size effects),
Il=1 only shows a clear onset as the disorder goes way beyond ∆ = 5 J. This is con-
sistent with the previous line of argument concerning the sensitivity of Il for small
values of l.

6.5 Summary and outlook
To summarize, in this chapter we introduced our scheme to study out-of-equilibrium
dynamics in a disordered two-dimensional BH system. A spatially modulated prod-
uct state is initially prepared and, by means of a quench of the lattice depth and of a
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Figure 6.8: Steady-state imbalance vs disorder strength for a non-interacting simu-
lation. Plot of the imbalance for the five stripe patterns as a function of the disorder
strength. The stripe widths correspond to l =1, 2, 4, 8 and 12 sites (yellow-green-blue
colormap). The results have been obtained from a single-particle simulation in a lat-
tice with the same parameters as in the experiment. The results show few features
qualitatively similar to those in the experimental results for an interacting system, as
the distinct dependence for increasing stripe width. For low disorder strengths, finite-
size effects arise related to the harmonic confinement, especially for the l = 12 case.

disordered potential, is brought far from equilibrium. By measuring the density im-
balance and tuning the disorder strength, we have observed an onset of localization,
which is a key signature of the ergodic-to-MBL phase transition. By preparing dif-
ferent initial states with tunable density modulation, we have gained insight into the
length over which the particles are localized in our system. These results are among
the very few experimental studies of MBL in higher dimensions, and only recently
have some numerical results shown evidence of 2D localization [153–155].

In the future, there are several exciting directions to be explored. A major one
is to study larger system sizes, which would also make it possible to prepare large
homogeneous one-dimensional systems, which have not been explored in this thesis.
Another one is to explore more exotic observables, such as density correlators [45] or
probes of entanglement [88]. Last, it would be interesting to explore additional models
displaying MBL, such as with hard-core bosons or the Heisenberg model, which can
be studied in our setup with minor changes in our implementation.



77

Chapter 7

Coupling a quantum bath to a MBL
system
A major open question in the field of MBL concerns the robustness of localization
when coupled to finite thermal regions. In this chapter we consider the situation of
coupling a disorder-free system to a localized one to observe how it affects its out-of-
equilibrium dynamics. We will first motivate simple models that provide insight into
these delocalization questions and comment on some theoretical results. We will then
describe the two-species system studied in the experiments of this chapter, consisting
of a clean and a dirty component. Next we will track the imbalance dynamics of the
dirty component under a tunable presence of the clean one, and discuss its interpre-
tation. We will continue by tracking the dynamics of the clean component too. Finally
we will discuss possible extensions of this work and similar experiments. The con-
tents of this chapter are based on the article Many-body delocalization in the presence of a
quantum bath [87].

7.1 Motivation
When discussing the phenomenon of MBL and its properties, we commonly consider
it as a discrete opposition to ergodicity. Nonetheless, in many relevant situations one
finds states with partially thermalizing features, even in the MBL side. For example,
as one approaches the MBL phase transition rare locally thermal regions proliferate
through the system [156]. The processes through which these locally thermalized re-
gions couple to the rest of the system are at the heart of recent discussions concerning
the stability of MBL in higher dimensions [157]. These scenarios are also related to
the existence of many-body mobility edges, where the ETH might be obeyed in some
parts of the spectrum but be violated in others [158–161].

Some of these fundamental questions could be addressed by considering the cou-
pling between two different systems, one in an ergodic state and the other one fully
localized. While this is the kind of problem already treated when coupling a macro-
scopic external heat bath to a MBL system [147, 162–165], it would be particularly
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Clean chain

Dirty chain

Figure 7.1: Schematic illustration of a hybrid clean-dirty system. The system is
made out of two coupled chains, each one of them with interacting and tunneling
particles. The upper chain is purely periodic, while the lower one displays quenched
disorder.

interesting to consider cases where the thermal bath is only made up of few degrees
of freedom. This would allow to answer questions such as How small can a bath be to
delocalize MBL?, or Can the MBL system affect the dynamics in thermal one?

To study such phenomena in a well-controlled setting, one can consider a lad-
der model consisting of a dirty chain (with a quenched-disorder potential) coupled
to a clean chain [166–168]. In this model, particles could hop and interact within each
respective chain, and an interchain coupling would emerge for particles in the same
rung (see Fig. 7.1). In the uncoupled case, the particles in the clean chain will quantum
thermalize, while on the dirty chain localization might take place for strong enough
disorders. By introducing interactions between the chains, the clean particles can now
be regarded as a quantum bath for the dirty chain.

In this chapter, we will describe an experiment that makes such a realization of a
MBL system coupled to a quantum bath. By employing a state-dependent disorder,
we study the dynamics of a two-dimensional mixture of atoms in a dirty and a clean
state. While the atoms of the dirty component show strong signatures of localization
in the absence of a bath, by introducing a large enough number of atoms in the clean
component, the signs of localization eventually vanish. For intermediate sizes of the
bath, the situation is less clear and a finite imbalance remains even beyond 1000 tun-
neling times.

7.2 Experimental details
The details of the experimental system and the initial preparation of the out-of-
equilibrium state are very similar to those described in Ch. 6. Starting with a unit-
filling MI, we first prepare a charge-density-wave pattern (stripe width l = 1) by se-
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Figure 7.2: Schematic illustration of the experiment. A charge-density-wave pattern
of atoms is prepared in a 2D square lattice. The atoms populate two different states
(blue atoms in |d〉, red atoms in |c〉), and the disorder potential (blue boxes) is only
experienced by the atoms in the dirty |d〉 state.

lectively removing all atoms in the odd columns (see Fig. 7.2). The total atom number
after this procedure is of N = 124(12). Next, we use a resonant MW pulse to prepare
the atoms in a mixture of the hyperfine |F = 2, mF = −2〉 and |F = 1, mF = −1〉
states. By modifying the length of the pulse we can tune the population in each one
of those states (see Fig. 7.3a). After preparing this initial state in deep lattices, we then
quench the system by ramping up a disordered potential and ramping down the in-
plane lattices.

200

150

100

50

0
12080400

At
om

 n
um

be
r N

c/
d

Pulse duration (μs) Atom number in 

Atom number in
120

120

60

  60

 0

 0

20 100

C
ou

pl
ed

100 20

 a  b

x

y

Figure 7.3: Preparation of the state mixture. a Plot of the number of atoms in the |c〉
and |d〉 states as a function of the duration of the resonant MW pulse. b Pictures of
the averaged occupations in states |c〉 and |d〉 after an evolution time of 281 τ for three
different population ratios.
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The important point to note is that by tuning the disorder beam to be in the tune-
out wavelength of the |F = 1, mF = −1〉 state (λ = 787.55 nm, as discussed in Ch. 3),
we have effectively generated a lattice with a state-dependent disorder. This means
that while the dirty species |d〉 = |F = 2, mF = −2〉 experiences the disorder potential,
the clean |c〉 = |F = 1, mF = −1〉 is only affected by the purely periodic optical-lattice
potential. The scattering lengths are essentially the same both for intra- and inter-
species interactions, and thereby the onsite interactions fulfill Udc ' Ucc ' Udd ≡ U.
Because of this, the system can be well described by the two-species BH Hamiltonian

Ĥ =− J ∑
〈i,j〉,σ

â†i,σ âj,σ +
U
2 ∑

i,σ
n̂i,σ(n̂i,σ − 1) (7.1)

+ U ∑
i

n̂i,d n̂i,c +∑
i,σ

Vi n̂i,σ +∑
i
δi n̂i,d,

with âi,σ , â†i,σ and n̂i,σ denoting the annihilation, creation and number operators for a
particle in state σ ∈ {c, d} at a site i of the 2D lattice [i = (ix, iy)]. The first term in-
dicates the tunneling between nearest-neighbour sites 〈i, j〉 with a state-independent
amplitude J, followed by the intra- and inter-species interaction terms. Next, the har-
monic trap potential is given by Vi, and the last term is the state-dependent on-site dis-
order, affecting only the |d〉 state. The single-site potential δi is Gaussian distributed
with a full-width-at-half-maximum ∆. For all experiments in this chapter, the Bose-
Hubbard parameters are fixed to J/h̄ = 2π × 24.8 Hz, U = 24.4 J and the disorder
distribution to a strength ∆ = 28 J.

Let us begin by considering the outcome of preparing the system purely in one of
the two hyperfine states. At these parameters of tunneling and interactions, a system
in the |d〉 state will display a very slow decrease in the visibility of the initial pattern
(see Fig. 7.4a) until it reaches a long-lived steady state of finite imbalance, as we saw in
the dynamics of Ch. 6, which is a signature of many-body localization. On the other
hand, a purely clean system will fade into a state with homogeneous density after
very few tunneling times (see Fig. 7.4b). This qualitatively shows that we indeed have
realized a setup where we can prepare a hybrid system with localizing or thermalizing
particles.

7.3 Dynamics of the dirty component
In this section we will focus on the effects induced by the coupling of a quantum bath
into a MBL system and its dynamics. Working always with the same total number of
atoms, we transfer a preset number Nc of atoms into the clean state, which constitute
the thermalizing bath with few degrees of freedom. After the dynamics, we remove all
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Figure 7.4: Evolution of the site-resolved density for a purely clean or dirty system.
Plot of the mean measured densities in the lattice for the independent dirty (blue) and
clean (red) systems. The dirty atoms show a pattern remaining even after several tens
of tunneling times, while the density pattern in the clean atoms disappears in few
tunneling times.

|c〉 atoms by performing a MW transfer followed by a resonant D2 light pulse before
imaging the occupation of the remaining |d〉 atoms.

7.3.1 Dynamics in the absence of a bath
We begin by preparing a state with no particles in the clean component, i.e. in the
absence of coupling to a quantum bath. In Fig. 7.5 we plot the dynamics of the imbal-
ance of the dirty component Id. Overall, we observe a decrease of the initial imbalance
from Id = 0.91(1) to a long-time steady value of Id ≈ 0.13. This resilience of a finite
imbalance after long times is a signature of MBL.

The observed relaxation of the imbalance takes place on two different timescales,
and one phenomenologically describe the data by a sum of two exponentials plus
a stationary offset, Id(t) = I1 e−t/t1 + I2 e−t/t2 + I∞. A first timescale is identified
with a decay time of t1 = 0.6(1) τ , during which the atoms mainly expand freely
into the empty sites. Next, a much smaller dynamics takes place, with a decay time
of t2 = 103(6) τ , in which interactions are actually relevant. The changes in this last
decay once the clean particles are introduced will be the focus of following analysis in
this experiment. Note that the separation of these two timescales was not identified in
the domain-wall dynamics shown in the previous chapter (see Fig. 6.3). This is caused
by the much faster initial decay in the CDW case, due to its short spatial modulation.
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Additionally to the imbalance, we also resolve the generation of doubly occupied
sites (which we refer to as doublons) during the relaxation dynamics (see inset of
Fig. 7.5). We do so by comparing the total measured atom number (see Sec. 3.2.3) with
the parity-projected one (more details can be found in the Supplementary Information
of [87]). Beginning from a doublon-free initial state, we observe a very rapid forma-
tion after the quench, followed by a saturation of the doublon fraction. Bear in mind
that this effect requires both the presence of disorder and interactions, given that for
the parameters of the experiment (strong interactions), a disorder-free lattice would
not display such a dynamical formation of doublons. The behavior of both the imbal-
ance and the doublon dynamics is qualitatively reproduced by exact-diagonalization
simulations shown in App. B.

Beyond the characterized timescales, we expect the finite isolation of the experi-
ment, which is unavoidable in any experiment, to become significant for longer times.
In this experiment, it led to an atom loss of 15% of the total atom number after 600 τ .
We expect these losses to be mainly due to excitation to higher bands during the dy-
namics. While it is unclear what is the effect of this coupling on localization, our ex-
periments do not seem to show a strong delocalization for long times. Any subsequent
relaxation of the imbalance must be well separated from the initial decays, and based
on a bootstrap analysis of an exponential fit for the data beyond 500 τ , we were able
to bound any further relaxation to be t3 > 2300 τ with 92% confidence.

7.3.2 Dynamics in the presence of a bath
In Fig. 7.6 we plot the imbalance of the dirty component Id for three different bath
sizes (Nc = 20, 40, 90), together with the purely dirty case (Nc = 0) as reference. This
last dataset is the same one as in Fig. 7.5. Qualitatively, we see that as the size of the
bath is increased the overall imbalance gets reduced. While the imbalance does end
up vanishing for the two biggest bath sizes (Nc = 40 and Nc = 90), a very small
finite imbalance remains for the smallest bath size (Nc = 20). We should stress that,
while preparing a fraction of clean atoms implies reducing the density of the dirty
component, this alone would actually lead to a higher long-time imbalance, as we
discussed in Ch. 6 and in [47].

To get a better insight, especially into the delocalizing dynamics, we plot those
same datasets in a log-lin scale in Fig. 7.7, which makes it easier to identify solely ex-
ponential behavior. For the biggest bath size, the Nc = 90 case, the imbalance relaxes
to zero in less than 300 τ , implying that the atoms have been delocalized over few
lattice sites. From fitting a single exponential, that is I(t) = I1 e−t/t1 , we obtain a time
constant of 140(30) τ (red dashed line). For the Nc = 40 case we observe a similar
delocalization, whose exponential fit gives a slower time constant of 200(20) τ . These
results evidence that the atoms in the clean component act as an effective bath, desta-
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Figure 7.5: Dynamics of solely the dirty component. We plot the measured long-time
evolution of the dirty-component imbalance Id. We observe a monotonic decrease of
the imbalance in two distinct timescales. An initial quick decay, in which interactions
play not much of a role, is followed by a much slower one related to relaxation of
doubly occupied sites. After roughly 300 τ the system reaches a steady state with
Id ≈ 0.13. Inset rectangles show the mean density in the center of the trap (black-
red-yellow colormap) for four different times, t = 0 τ , 63 τ , 219 τ and 1094 τ which
illustrate the reduction in imbalance. In the inset plot (top-right corner) we plot the
dynamics of Id (blue markers) and the fraction of doubly occupied sites pd (red mark-
ers) for very short times. Notably, the rate of doublon generation sharply changes be-
tween the two regimes of the imbalance decay. The error bars represent one standard
error of the mean (s.e.m).

bilizing the localized dirty component and bringing it towards thermalization. Note
that this effect is only caused by intercomponent collisions, with same strength as the
intracomponent interactions in the system. This means that no additional energy scale
has been introduced by adding the clean component, underlining the non-triviality of
the observed localization.

For even smaller sizes of the bath (Nc = 20), the overall imbalance reduction can
be appreciated, but there is a qualitative difference in its dynamics. There still remains
a finite value of the imbalance for the longest measured times (above 1000 τ), and the
data is no longer well described with a simple exponential fit. Instead, we introduce
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Figure 7.6: Full-range dirty-component dynamics. Dynamics of the imbalance Id of
the atoms in the dirty state for four different sizes of the bath (Nc = 0 in dark blue,
Nc = 20 in green, Nc = 40 in purple and Nc = 90 in red). Increasing the population
of the clean component leads to delocalization, as indicated by a reduction in the
imbalance Id. The imbalance relaxes completely for the two largest bath sizes, while
for the smallest size of the bath (Nc = 20), a finite imbalance still remains after long
times. The horizontal dashed gray line indicates the typical statistical threshold at
which the imbalance is compatible with zero. The error bars indicate one standard
error of the mean (s.e.m.).

a steady-state offset, as we did in the fit of the bath-free case, which matches the data
much better (solid curves). Additional fits of the other datasets reveal this as the sim-
plest model that can give a good description of all data. Concerning any potential
subsequent relaxation, a bootstrap analysis revealed that to be bound by t3 > 1100 τ
with a confidence of 92%.

To give a clearer picture of the delocalization in the long-time limit, in Fig. 7.8
we plot the imbalance Id as a function of bath size for two different evolution times
(t = 859 τ and t = 1094 τ). The imbalance values for both cases are quite similar, and
they are also compatible with the offsets obtained from the exponential-plus-constant
fits of the data in Fig. 7.7. We observe that a finite imbalance is still present for datasets
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Figure 7.7: Zoomed dirty-component dynamics in log-lin plot. Dynamics of the im-
balance Id of the atoms in the dirty state for four different sizes of the bath (Nc = 0 in
dark blue, Nc = 20 in green, Nc = 40 in purple and Nc = 90 in red) in a log-lin plot.
The solid curves are fits of an exponential with an offset, while the dashed curves are
fits of a single exponential decay. The horizontal dashed gray line indicates the typi-
cal statistical threshold at which the imbalance is compatible with zero. The error bars
indicate one s.e.m.

with bath sizes Nc . 40.
The phenomenology of the dynamics for small baths could be a consequence of

a very slow delocalization of the dirty component, leading to a decay well below
all other timescales of the system. Nonetheless, it could also be explained by a com-
plete failure of thermalization. In one dimension, theoretical studies considering sys-
tems of interacting clean-dirty components have found persisting localization in some
regimes where the clean component has a reduced tunneling [166, 167]. A similar pro-
cess could be happening in our experiment, explained by a reduction in the coupling
of spatially separated points, due to the reduction in the size of the bath component.
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Figure 7.8: Experimental steady-state imbalance as a function of the bath size. Plot
of the long-time imbalance Id vs the number of atoms in the clean state Nc. The data
was measured at t = 859 τ (round points in blue) and at t = 1094 τ (round points
in light blue). The square points correspond to the asymptotic offsets obtained from
the four solid line fits in Fig. 7.7. The horizontal dashed gray line indicates the typical
statistical threshold at which the imbalance is compatible with zero. The error bars
indicate one s.e.m.

7.4 Dynamics of the clean component
After focusing on tracking the dynamics of the dirty component, in this section we
look at the dynamics of the imbalance of the clean-component atoms Ic. By doing so,
we probe the back-action of the dirty component on the quantum bath and its dy-
namics. We proceed by removing all the atoms in state |d〉 before imaging. We do so
by first applying a microwave π-pulse that swaps the populations of the two hyper-
fine states and then applying a resonant light pulse in the D2 line. The results show
that, independently of how small the size of the bath is, Ic quickly relaxes to a van-
ishing value, on a timescale of few tunneling times. This means that any potential
interaction-induced localization of the atoms in the bath by the dirty component has
to be given by a localization length spanning at least few lattice sites, and therefore be-
yond what our short-distance imbalance probe can detect. Since for the smallest bath
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(Nc = 20) the remaining imbalance of the dirty component, Id = 0.07(2), is already
very small, it should only act as a pretty weak source of disorder.
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Figure 7.9: Clean-component dynamics. Evolution of the imbalance of the clean com-
ponent Ic for three different number of atoms in the clean component (Nc = 120 in
light orange, Nc = 60 in orange and Nc = 20 in dark orange). The dashed-lined
curve is an exponential fit of the decay, with a time constant of t1 ≈ 0.7 τ . The out-
come is essentially the same for all bath sizes, i.e. the imbalance vanishing in few
tunneling times. In the inset we plot the long-time imbalance for the clean compo-
nent Ic together with the dirty-component imbalance Id for the purely disordered
case (Nc = 0). This underlines the dramatic difference in the relaxation time scales.
The horizontal dashed gray line indicates the typical statistical threshold at which the
imbalance is compatible with zero. The error bars indicate one s.e.m.

7.5 Summary and outlook
The experiments described in this chapter have realized for the first time the cou-
pling between a MBL system and a quantum bath of controllable size. Overall, the
introduction of the small bath drives the system towards delocalization, which for a
sufficiently large sizes of the bath seems to totally thermalize. In the less trivial regime
of a very small bath, memory of the initial state of the system remains even after long
times.
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In the future, it would be interesting to explore different regimes of interaction
and disorder. In particular to explore the question of proximity-induced localiza-
tion [166, 167], which can be realized based on the disorder originating from inter-
atomic interactions [169, 170]. Additionally, the preparation of systems with local ab-
sence of disorder could be used to directly address the question on the stability of
MBL when coupled to thermal inclusions, given its relevance for systems in higher
dimensions [156, 157]. Initial experiments in this direction have already been explored
in our experiment, though seem to indicate that the delocalization processes could be
beyond the extent of our experimental
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Chapter 8

Dynamics of Floquet quantum
systems
The study of periodically driven (Floquet) systems [171] has had a remarkable boost
over the last few years, both theoretically and experimentally. This development has
greatly benefited the field of ultracold atoms, where closed driven systems can be
naturally implemented. In this chapter we start by motivating and giving some ex-
amples of applications of periodic driving in different platforms. We then introduce
the main properties of Floquet quantum systems and describe their stroboscopic evo-
lution in terms of the Floquet Hamiltonian. We also show how the Magnus expansion
provides an expression for the effective Hamiltonian of the system. Next, we consider
the heating dynamics in interacting Floquet systems, a major bottleneck for Floquet
engineering, and present ways to avoid it. Last, we discuss which specific aspects
must be taken into account when considering a system of ultracold atoms in a driven
optical lattice.

8.1 Motivation
The scenario of a physical system under periodic modulation is a common one in
physics. A broad range of theoretical and experimental studies have considered sys-
tems under electromagnetic modulation or mechanical kicks. An example in classi-
cal physics is the paradigmatic Kapitza pendulum [172], which shows how an unex-
pected configuration of the system can be stabilized through a periodic drive. Simi-
larly, in the quantum side we obtain the phenomenon of dynamical localization [173],
where a particle in a lattice can get spatially localized by simply introducing an AC
field. These two examples reveal the kind of new opportunities that can be enabled by
the periodic driving of a system. Recently, a revival of the field of Floquet systems has
emerged from the study of out-of-equilibrium dynamics in quantum systems [49, 174–
177].

In the field of ultracold atoms, the periodic driving of certain experimental pa-
rameters, such as the depth of the dipole trap or the strength of a magnetic field,
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has become a common tool. This has led to many examples of Floquet imple-
mentations [174], such as the experimental demonstration of dynamical localiza-
tion [178–180]. A very successful application has been the creation of artificial mag-
netic fields [181] , which has led to the implementation of the Hofstadter [182] and
the Haldane model [183]. Another quite different example is the study of (classical)
frustrated spin models [184].

In other systems aside from quantum gases, Floquet engineering has also become
a common part of their toolbox. For example topological Floquet insulators, where
systems with static topologically trivial phases are electromagnetically driven to en-
gineer new exotic band structures [185]. This method has been implemented in semi-
conductor quantum wells as well as in graphene [186, 187].

Most of these implementations of periodic drives allow to engineer models or
phases of matter that, while possible, can be hard to realize in static systems. However,
a completely new direction is the study of quantum Floquet matter with no analog in
static phases of matter. A clear example of such a phase of matter is the discrete time
crystal [188–197], which extends spontaneous symmetry breaking to the time domain.
Another recently discovered example is the anomalous Floquet insulator [198–200].

It is important to note that in these new exotic phases of matter, the high number
of involved degrees of freedom requires to consider the onset of heating in driven
systems [49], as we will discuss later in this chapter.

8.2 Floquet quantum systems

8.2.1 Time evolution
The time evolution of a quantum state under an arbitrary time-dependent Hamilto-
nian Ĥ(t) is given by the Schrödinger equation

ih̄
d
dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉. (8.1)

Assuming the case of a static Hamiltonian Ĥ0, this directly leads to the well-known
expression for the unitary evolution

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 = exp
(
− i

h̄
(t− t0)Ĥ0

)
|ψ(t0)〉. (8.2)

We now consider instead the Hamiltonian of a periodically driven system, i.e. Ĥ(t) =
Ĥ(t + T), where T is the period of one Floquet cycle. The time evolution over one
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single period is given by the unitary evolution operator

Û(t0 + T, t0) = T exp
(
− i

h̄

∫ t0+T

t0

dt Ĥ(t)
)

, (8.3)

where T denotes the time ordering of the operators. Due to the periodicity of the
Hamiltonian, we can obtain the time evolution over a certain number of Floquet cycles
Ncyc by just applying the operator Û(t0 + T, t0) a number Ncyc of times. Based on this,
we can always express the time evolution operator as

Û(t + NcycT, t0) = Û(t, t0)
[
Û(t0 + T, t0)

]Ncyc , (8.4)

where t ∈ [t0, t0 + T]. This indicates that the additional knowledge of the evolution
operator within a cycle, Û(t, t0), suffices to calculate the evolution to an arbitrary time
of the system. This evolution within a Floquet cycle is referred to as “micromotion”,
which is in contrast to the “stroboscopic” evolution, described by Eq. 8.3. In the rest
of this chapter, we will leave the discussion of any micromotion aside and restrict
ourselves to the stroboscopic evolution of the system.

8.2.2 The Floquet operator
We now proceed by discussing the properties of the solutions to the Floquet problem.
We begin by considering the one-cycle time evolution, commonly known as the “Flo-
quet operator”, which from now on we will simply write as Û(T) = Û(T, 0). Let us
now consider the eigenstates of Û(T), defined by

Û(T) |φα〉 = e−iεαT/h̄ |φα〉. (8.5)

These |φα〉 are the so-called Floquet modes, and the εα the corresponding quasiener-
gies. This is the perfect point to discuss the analogy existing between the problem of
a potential periodic in time and a potential periodic in space, and thereby between
Floquet’s theorem and Bloch’s theorem. In a spatially periodic potential, a continuous
space-translation symmetry is broken into a discrete one, which is reflected by the in-
variance under a spatial translation operator T̂(alat). This requires that the solutions
of the problem will be given by eigenstates of the translation operator, and also that
momentum is no longer a conserved quantity, but rather quasimomentum. In the Flo-
quet case, Û(T) plays the role of the translation operator, manifesting the discrete time
translation symmetry, and leading to the conservation of the quasienergy instead of
the energy. Making use of this analogy, one can apply Floquet’s theorem, which says
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that the family of solutions to the Schrödinger equation is of the form

|ψα(t)〉 = e−iεαt/h̄|φα(t)〉, (8.6)

where |φα(t)〉 = |φα(t + T)〉. These solutions |ψα(t)〉 also obey

|ψα(t + T)〉 = e−iεαT/h̄|ψα(t)〉. (8.7)

Last, let us realize that the fact that Û(T) describes a unitary evolution means that it
can be expressed as the exponential of a time-independent Hermitian operator, as in
Eq. 8.2, hence

Û(T) = exp
(
− i

h̄
TĤF

)
. (8.8)

ĤF is the so-called “Floquet Hamiltonian”, and describes the stroboscopic dynamics
of the system. Note that the Floquet modes |φα〉 are eigenstates of ĤF with eigenval-
ues εα, which are only defined modulo 2π/T.

The relevance and beauty of the Floquet Hamiltonian resides on the fact that by
periodically driving a system, one can effectively generate exotic dynamics which can
be very different from the ones emerging from the original physical Hamiltonian. The
calculation and study of this Hamiltonian is the main goal in Floquet engineering,
which we will further discuss in the next section.

8.2.3 The Magnus expansion
Now that we have introduced the Floquet Hamiltonian, we ask the question of how
can one obtain an accurate expression of ĤF for some given drive parameters. This is
desirable, for example, to tune the parameters to achieve some exotic target Hamil-
tonian. The answer is that one has to resort to expansion methods, since in general it
is not possible to obtain an exact expression for ĤF. These expansions apply in par-
ticular to the high-frequency case, with the driving frequencyω = 2π/T well above
the physical energy scales of the effective Hamiltonian. A common approach to this
problem is the Magnus expansion [177, 201, 202], which gives a formal expression for
ĤF as

ĤF =
∞
∑

n=0
Ĥ(n)

F , (8.9)

where each one of the Ĥ(n)
F terms is given by a series of higher-order commutators.

Note that this expansion can be seen as a continuous analog of the Baker-Campbell-

1The Baker-Campbell-Hausdorff formula is an expression to solve for Z in eX eY = eZ, where X, Y, Z
are operators.
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Hausdorff formula1. The first two terms of the Magnus expansion are

Ĥ(0)
F =

1
T

∫ T

0
dt Ĥ(t) , (8.10)

Ĥ(1)
F = − i

2T

∫ T

0
dt1

∫ T

0
dt2 [Ĥ(t1), Ĥ(t2)] .

Higher order terms scale as 1/ωn for an order n, and because of this it is common to
express Eq. 8.9 as an explicit high-frequency expansion ĤF = ∑

∞
n=0 TnΩ̂n. In general,

this formal series will not converge. Among the few exceptions where it does, there
is the case of single-particle system with a drive frequencyω above its energy band-
width. But in the case of many-body systems a divergence of the series is the expected
outcome. However, while the divergence arises from the contribution of higher-order
terms which are relevant as t → ∞, the transient dynamics for “short-enough” times
can still be described by a truncated expansion

Ĥeff =
m

∑
n=0

Ĥ(n)
F , (8.11)

defined up to some optimal order m, typically given by m ∼ O(ω). Note that, due to
the definition of the individual terms, the unitarity of the time evolution operator is
preserved even for a truncated expression.

8.3 Floquet thermalization
Until now we have, at least partially, neglected the elephant in the room: a periodically
driven system does not fulfill energy conservation. The lack of a continuous time-
translation symmetry implies that any initially prepared state will eventually heat to
infinite temperature under a periodic drive. Such an infinite-temperature state will
have trivial properties and will not display anymore any order shown in the transient
regime. The heating process, commonly dubbed “Floquet thermalization”, is a major
bottleneck for any application of Floquet engineering. Nonetheless, it is at the same
time a fundamentally interesting physical problem on its own.

8.3.1 ETH in Floquet systems
In Ch. 5 we already introduced the ETH and discussed its implications in the context
of non-driven systems. We saw that in systems obeying ETH, the local observables
of the individual eigenstates will have a smooth dependence on their energy density.
When extending ETH to the periodically driven scenario, it leads to the driven eigen-
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Figure 8.1: Eigenstate distributions for static and Floquet ETH systems. a Typical
distribution of a local observable for each eigenstate in a static Hamiltonian, ordered
according to their eigenenergy. b Equivalent distribution but in the case of a periodic
Hamiltonian, ordered according to the quasienergy of each eigenstate. In contrast to
the static case, where the observables changes smoothly, in the Floquet case it is es-
sentially constant and the same for all eigenstates.

states, i.e. the Floquet modes |φα〉, involving a superposition of many eigenstates of
the static Hamiltonian. These static eigenstates may correspond to very different en-
ergy sectors, and as a consequence, the local observables of the Floquet modes will be
an average of those over the entire static spectrum, hence corresponding to states at
T = ∞ (see Fig. 8.1). Additionally, the entropy of entanglement of all driven eigen-
states will fulfill a volume law, with an entropy saturated to its maximum value [49].

Considering an arbitrary initial pure state |ψ(0)〉, which can be expressed as a
superposition of Floquet modes, it will evolve in time as

|ψ(t)〉 = ∑
α

cα e−iεαt/h̄ |φα(t)〉. (8.12)

Due to Floquet ETH, for t → ∞ the system will ultimately thermalize to an infinite-
temperature-like state.

This Floquet-ergodic phase is expected to generally show up in clean, interacting,
driven systems. Given that these are properties that we would find in almost all phys-
ically relevant implementations of Floquet engineering, one could wonder what is the
hope to realize exotic phases of matter, such as topologically non-trivial ones, which
are long lived in driven systems. The answer is that we will require systems display-
ing a high number of conserved quantities, such that even after long times, the system
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will not be able to efficiently thermalize.

8.3.2 Exceptions to Floquet ETH
Similar as our discussion in Sec. 5.2.2, we here consider which kinds of systems will
lead to a breakdown of the process of Floquet thermalization. We will see that this will
generally take place in quantum systems displaying an extensive number of integrals
of motion.

Integrable Floquet systems

A first way to escape heating in periodically driven systems is integrability (briefly
introduced in Sec. 5.2.2). Systems such as periodically driven free fermions or hard-
core bosons in one dimension are some of the possible models [49, 203–205]. The out-
of-equilibrium dynamics in such integrable Floquet systems end up relaxing into a
periodic steady state, described by the so-called periodic Gibbs ensemble [203].

Again as in the static case, it is important to stress that such systems will only
remain non-ergodic in fine-tuned regimes without the presence of integrability-
breaking terms.

Floquet MBL

The only known way to generically hold Floquet thermalization indefinitely is via
MBL [206–209]. Starting from a static MBL system, introducing a periodic drive at
high enough frequencies will not lead to thermalization. In this regime, the system
will just resemble a set of (quasi-)decoupled “spins” which are Rabi-driven [49]. This
will, however, not be the case for low frequencies of the drive, since local resonances
can be resonanly excited and trigger a heating avalanche of the whole system. Re-
cently, the range of stability of a periodically driven MBL system was also experimen-
tally studied [210].

The most important consequence of the breakdown of Floquet thermalization due
to MBL is that it enables the existence of non-equilibrium phases of matter in peri-
odically driven systems [188]. The paradigmatic example of such Floquet quantum
matter is the recently discovered discrete time crystal (also referred to as the π−spin
glass) [188–191, 196]. A time crystal is a phase of matter which, in a way, extends
spontaneous symmetry breaking to the time domain (in analogy to a regular crystal,
which does it in space). Such a phase is believed to not exist in systems with continu-
ous time symmetry, but can be realized in periodically driven ones. The phase should
display so-called discrete time-crystalline order, and recently such signatures were
observed in systems of nitrogen-vacancy centers [192] as well as trapped ions [193].
In the former, the disorder emerged in the interactions due to the random positions
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of the individual dipolar spins [211], while in the latter it was programmed as an
effective onsite magnetic field [141].

8.3.3 Floquet prethermalization
From the discussion in the previous section, one concludes that MBL is the only
generic solution to create driven phases of matter. However one might wonder if, in-
stead of finding an absolute violation of ETH, one may find a “temporary” one. That
means shifting the question of whether thermalization will happen to the question of
how quickly will it happen. For this we leave aside these disordered or integrable non-
ergodic Floquet phases, and focus again on the dynamics of interacting, clean, driven
systems.

Even if the fate of such generic clean systems is to heat up to infinite temperature
in the long-time limit, they might still display interesting dynamics in some transient
timescales. Such a dichotomy in the dynamics of a system, is directly connected with
the broader phenomenon of “prethermalization” [27, 212–214]. The dynamics of sys-
tems displaying prethermalization involve the relaxation of a non-equilibrium state
through two well-separated timescales. In the first timescale, the system reaches a,
potentially long-lived, “thermal-like” state. A second and slower timescale brings the
system to its true thermal equilibrium. In static systems, these prethermal dynam-
ics typically take place in scenarios close to integrability. In this section, however, we
will be considering generic systems driven at high frequencies, which as we will see,
display a similar prethermalizing behavior.

Thermal and prethermal Floquet dynamics

The dynamics of Floquet quantum systems, as we discussed in Sec. 8.2, can be de-
scribed through a time-independent effective Hamiltonian Ĥeff, which is made up
of local terms and can be computed from a truncated Magnus expansion, as given
in Eq. 8.11. This description is, however, only valid for short-enough times during
which the energy is quasiconserved, but will eventually break down as higher orders
of the expansion become significant. In many-body systems, these higher-order con-
tributions introduce non-local couplings and will ultimately lead to the emergence of
Floquet thermalization, i.e. heating. The timescale in which this heating process takes
place, tth, sets the range of validity of the quasi-conserved effective Hamiltonian Ĥeff,
which one can refer to as the “prethermal” Hamiltonian [215].

From a practical point of view, what is meaningful when considering the dynam-
ics of driven systems is to compare the timescale teff, set by the prethermal effective
Hamiltonian, with the thermalization timescale tth. The goal in such systems is to re-
main in regimes with teff � tth, and hence one desires tth to be as high as possible.
Note that in a real experiment, one could already compromise to work with a tth well
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Prethermal regime Thermal regime
Time t

· Quasi-conserved Hamiltonian Heff

· Saturation to steady state set by Heff

· Relaxation independent of ω

·  Random matrix as the Hamiltonian

· Saturation to a state with T ≈ ∞ 

· Exponential dependence of tth on ω

t >> ttht ≈ ttht = 0

Figure 8.2: Schematic of the properties for the prethermal and thermal dynamics in
driven many-body systems. For dynamics short in comparison to any Floquet ther-
malizing process, the system is well described by a prethermal Hamiltonian (blue
range). This effective description eventually breaks down at longer times (red range).

above the accessible timescales of the setup (which could be technically limited).
Because of these arguments, which are schematically summarized in Fig. 8.2, an

understanding of the heating processes taking place in many-body systems is of ut-
most importance, and has been recently intensely studied. Aside from any experi-
mental implications, fundamental theoretical questions stem from this field such as
the relation between the heating to infinite temperature and the divergence of the
Magnus expansion, which are believed to be intimately connected [51]. A very im-
portant result, shown by many analytical and numerical studies, implies that for high
frequencies of the drive, the prethermal Hamiltonian may capture the system dynam-
ics for exponentially long times. This more haste less speed result implies that out-of-
equilibrium phases of matter could be stabilized for arbitrarily times, even in the ab-
sence of MBL.

Exponential suppression of the heating

Recent studies have found that the thermalizing rates in some driven many-body sys-
tems can be exponentially suppressed as the driving frequency is increased [50, 51,
216–218]. While some of these rigorous analytical results have only been proven for
lattice models with a bound local spectrum, such as for fermions or spin models, sim-
ilar exponential bounds are expected for unbound bosonic systems [219]. The general
idea is that for a system driven at a frequency ω � Jeff, where Jeff denotes a typical
local energy scale of the system, the thermalization time grows as tth & O(eh̄ω/Jeff)
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(see Fig. 8.3). In general Ĥeff and teff would, however, not be modified for different
frequencies. This exponential-in-frequency suppression of the Floquet heating rate is
what is commonly referred to as “Floquet prethermalization”.

To get more of a physical intuition into the origin of this phenomenon, let us con-
sider a simple example. Take a physical system composed of many local degrees of
freedom, each one of them displaying a non-interacting bandwidth EBW. We now add
to the system a periodic drive at frequency ω. In the absence of any interactions in
the system, we expect the energy absorption from the drive to only take place when
h̄ω . EBW. If we now introduce a short-ranged interaction in the system, any fre-
quency that falls within the many-body bandwidth (which will diverge in the ther-
modynamic limit) can be absorbed by the system. This means that the system will
indefinitely absorb energy from a drive with an arbitrary frequency. However, due to
the local character of the system, absorbing a single quantum of excitation from the
drive will in general require a number N ∼ h̄ω/EBW of rearrangements of its local
degrees of freedom. This absorption process will become inefficient and be strongly
reduced for higher frequencies, since it will involve high-order processes.

This kind of phenomenon, in which a single high-energy state gets converted into
collective low-energy ones, is also similar to the one observed in the elastic decay
of doublons in the Fermi-Hubbard model [220]. In that case, the interaction energy of
the doublon U needs to be redistributed among the (bound) kinetic energies of several
individual fermions in the lattice, which leads to an exponential-in-interaction lifetime
of the doublons.

8.4 Ideal regimes for driven lattices
In this section we discuss what is the suitable range for the driving frequencies in
real Floquet physical systems. In particular, we will consider a system of particles in
a periodic potential, relevant for the description of ultracold atoms in optical lattices.

From the results discussed in this chapter, it seems obvious that to realize long
prethermal regimes one must drive the system at frequencies as high as possible.
While this might be technically limited, due to the unfeasibility of driving certain
physical parameters arbitrarily fast (e.g. magnetic fields, laser intensities), a priori
there seems to be no reason to avoid pushing in this direction. However most theo-
retical works dealing with Floquet prethermalization assume the absence of degrees
of freedom additional to the ones that are explicit in the microscopic model. This as-
sumption will not remain valid for most real physical systems, in particular for lattice
models, where high-energy states will be inevitably present.

To provide a concrete example, consider how we commonly describe the physics
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Figure 8.3: Floquet prethermal dynamics in a log-lin plot. Illustration of the evo-
lution of a local observable in a driven system exhibiting Floquet prethermalization.
After initiating the drive, the dynamics start and take the system towards a steady-
state (dashed blue line), related to its effective prethermal Hamiltonian Ĥeff. For much
longer times, Floquet thermalization takes the system from this quasi-steady state to a
featureless infinite-temperature one. This happens with a timescale that exponentially
diverges as the frequency of the drive is linearly increased (gray-to-green colormap).

of ultracold bosonic atoms in an optical lattice with the Bose-Hubbard model, thereby
restricting the effective energy subspace to the lowest Bloch band (see Ch. 2). The
validity of this approximation is particularly challenged in the presence of a periodic
drive, where resonant coupling to states h̄ω apart in energy might take place. For any
finite drive, these higher states will be populated at a certain rate, and we then rely
on the timescales of the physics we explore to be much shorter than the emergence
of those rates. For those rates to be small, the energy of the drive quantum h̄ω needs
to be well below the gap to the relevant excited band ∆. This is commonly called the
“low-frequency approximation” [221]. However, even fulfilling h̄ω� ∆, multiphoton
interband transitions can take place for strong enough drives. Because of this, it is also
required that the amplitude of the drive g remains low enough to avoid mth-order
multiphoton transitions, with m ≈ ∆/h̄ω.

Putting everything together, we conclude that there is only a narrow range of
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frequencies (if any at all) for which Floquet engineering is suitable in such lattice
systems. On the one hand it is required to be in the high-frequency limit, h̄ω � J,
(where J represents a local energy scale in the microscopic model), and on the other
one h̄ω � ∆ and g � 1 to ensure the low-frequency approximation. These conclu-
sions will be used in the experiment in the following chapter, to ensure that no higher
bands are populated due to the periodic drive.

8.5 Summary
In this chapter we have covered the basic concepts of Floquet quantum systems and
their dynamics. We have also gone through the thermodynamical implications of ETH
in the case of driven systems, which explains the process of Floquet thermalization.
We have discussed in which cases one can approximate the dynamics of the system
with an effective time-independent description, and discussed for how long. We have
then seen that driving at high frequencies can dramatically increase the timescale for
Floquet engineering, and explained its relation to the Magnus expansion.

Finally, we have also discussed how driving at arbitrarily high frequencies will
lead to interband transitions and which criteria must be fulfilled in the driving of
systems like our setup. Many of these ideas will be revisited again in the next chapter,
in which we experimentally probe Floquet prethermalization.
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Chapter 9

Floquet prethermalization in a
Bose-Hubbard system
In this chapter we describe experiments in a driven quantum gas providing evi-
dence of the phenomenon of Floquet prethermalization, taken as an exponential-in-
frequency decrease in the heating. We first motivate the challenges and the impor-
tance of this research direction, which were already partially introduced in Ch. 8. We
then continue with the experimental implementation of the driven system and the
temperature measurement scheme. We present measurements of the dynamics of the
system in two dimensions, which already illustrate the thermalization process and
its rate reduction for high driving frequencies. We then turn to discuss the spectral re-
sponse of the system in one and two dimensions, extracted from a single-site-resolved
thermometry method, which shows indications of an exponential-in-frequency reduc-
tion. From comparing the experimental results with a spectrum obtained numerically
we gain insight into the heating processes in our system. The contents of this chapter
are based on the preprint article Floquet prethermalization in a Bose-Hubbard system [222].

9.1 Introduction
In the previous chapter we explained that generic many-body driven systems will
thermalize to an infinite-temperature state. While systems with disorder or fine-tuned
parameters might provide exceptions to this heating outcome [206–210, 215], we also
saw that an alternative route is opened when the system is driven at high-enough
frequencies. Even if heating must eventually take place in generic interacting and
clean systems, the timescale at which this happens has been shown to be exponentially
bounded for frequencies of the drive well above local energy scales in the system [50–
52, 216–218, 223–231].

At the same time, many recent experiments have addressed the topic of heating
in driven many-body systems, particularly in the field of ultracold atoms. The energy
absorbed from the drive by the system has been probed in both fermionic and bosonic
systems, by tracking the momentum distribution, the occupation in the bands, or the
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production of doublons [179, 232–236]. In another very recent experiment, the band
population of a condensate in an optical lattice was tracked under an extremely strong
driving [237] and showed signatures of prethermal plateaux.

It has nonetheless remained elusive to experimentally identify Floquet prether-
malization based on its frequency-dependent heating. One of the main challenges for
such a demonstration is the necessity of probing dynamics in time ranges which can
differ by few orders of magnitude. This means that the isolation of the system must
be able to preserve the coherence of the system on times longer than the heating pro-
cesses that are the goal of the study. Another big limitation, especially in trapped
atomic systems, is the existence of degrees of freedom energetically above the low-
energy microscopic model (such as higher bands on top of the Bose-Hubbard model).
This means that the dynamic range for the driving frequency can easily become too
small to appreciate any exponential dependence.

In this chapter we describe an experiment in which we observed evidence of an
exponential-in-frequency suppression of the heating rates in a driven interacting lat-
tice system. The driving is based on a periodic modulation of the amplitude of the
optical lattices in the plane. This experiment mainly benefits from the low bare heat-
ing in our system (see Ch. 3) and from quantum-gas microscopy, which enables high-
sensitivity thermometry [9]. These two properties make it possible to track the depen-
dence of the heating dynamics while remaining in the weak-drive regime.

The optical-lattice tuning allows us to explore both the setting of one- and two-
dimensional systems, and also a range of different interacting regimes. By studying
the response of the system both in the superfluid and the Mott-insulator side, we
appreciate that the exponential dependence is cleaner in the weakly interacting su-
perfluid. Additional features on top of the overall exponential trend are associated
to its Bogoliubov spectrum. On the other hand, the Mott insulator shows a highly
non-monotonic response, directly explained by the excitation of higher occupations in
each lattice site. In both of the regimes, we see the heating rate substantially reduced,
even as much as by two orders of magnitude, while remaining in a modest frequency
range. Numerically obtained spectra bring additional confidence to the interpretation
based on the measured data.

9.2 The experimental setup
We start the experiment by preparing a two-dimensional cloud of ultracold 87Rb
atoms, which are trapped in a single antinode of a vertical optical lattice. The cloud
is then slowly loaded into the in-plane optical lattices at depth V0. The total atom
number is fixed in such a way that the central part of the trap has an occupation close
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Figure 9.1: Schematic of the process of Floquet thermalization in our experiment.
Starting from a low-temperature state in the lowest band of the system, the en-
ergy absorbed from the drive eventually brings the system to a single-band infinite-
temperature state without populating any of the higher bands.

to one atom per lattice site, and that is Nat ' 200. At the cold temperature at which
we prepare the cloud, all atoms populate only the ground band of the lattice poten-
tials and, similarly to the rest of experiments in this thesis, can be captured by a 2D
Bose-Hubbard model, described by the following Hamiltonian:

Ĥ0 = −J ∑
〈i,j〉

â†i âj +
U
2 ∑

i
n̂i (n̂i − 1) +∑

i
εi n̂i. (9.1)

As in Eq. 2.1, âi , â†i and n̂i respectively denote the annihilation, creation and number
operators at a site i of the square lattice [i = (ix, iy)], J is the hopping amplitude, U
the on-site interaction energy, and εi the potential of the harmonic trap. This is given
by εi = ma2

lat(ω
2
x i2

x +ω
2
y i2

y)/2, whereωx andωy are the frequencies of the harmonic
trap. Notice that these frequencies will in general depend on the lattice depth. In this
experiment they fall in the range of 2π × 45 Hz < ωx , ωy < 2π × 55 Hz. Until this
stage of the experiment, virtually no heating has taken place, and thereby the atoms
are close to the ground state of Ĥ0. Now we proceed by modulating the depth of the
in-plane lattices in a sinusoidal way, that is as V(t) = V0(1 + A cos(ωt)) where A
is the normalized modulation amplitude. This drive leads to a modulation of all the
parameters in the Hamiltonian (see Fig. 9.2), but since the tunneling strength depends
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Figure 9.2: Schematic of the experimental setup and the lattice modulation. a
Schematic drawing of the two-dimensional system of ultracold atoms loaded in a
driven optical lattice. b Plots of the periodic modulation of the lattice depth V and
the calculated dependence of the Bose-Hubbard parameters J and U. The modula-
tion is done for a bare lattice depth of V0 = 8 Er and a modulation frequency of
ω = 2π × 2 kHz.

exponentially on the lattice depth, it has the biggest contribution. Hence,

Ĥ(t) ≈ Ĥ0 + g cos(ωt) Ôdrv, (9.2)

where g = δ J/J and Ôdrv = J ∑〈i,j 〉 â†i âj implements the drive. This driving technique
is quite common in experiments of ultracold atoms in optical lattices [238, 239]. Dur-
ing the driving, the atoms can in principle be transferred into the higher bands of the
system. To ensure that this is not the case, we track any atoms appearing in regions of
high potential energy (far from the center of the cloud). This leads to the requirement
of restricting the driving frequencies below the first bandgap [221] and using a weak
modulation aplitude, A� 1, since multi-photon transitions are also expected to take
place [240].

The system is driven for a certain duration, commensurate with the driving period,
and stops after a number of Floquet cycles Ncyc = ω tdrv/2π . Then, we ramp adia-
batically the lattice depth to the atomic limit. In this regime, the tunneling dynamics
is frozen and, if no energy is absorbed during the drive, results in a near unit-filling
Mott insulator. Finally, we perform fluorescence imaging to extract the atomic occu-
pation (see Ch. 3). Any heating processes during the driving of the cloud will lead
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to the presence of defects in the atomic limit, which will increase the variance of the
single-site occupation. Because of parity projection, this increase in temperature is di-
rectly linked to a growth of the density of measured empty sites (holes). Thus, we can
use the density of holes as a proxy for the energy density of the system, and therefore
track the heating dynamics.

9.3 Probing the thermalization dynamics
We now focus on following the heating dynamics in the cloud for very long times.
The evolution of the density of holes ρh is plotted in Fig. 9.3 for four different driving
frequencies. Those measurements were taken at a lattice depth of V0 = 8 Er and with
a modulation amplitude of A = 0.05. The four different datasets manifest a qualita-
tively similar evolution, though the rates of the thermalization are vastly different. An
increase of less than twice in the driving frequency gives rise to a timescale difference
over more than one and a half orders of magnitude. This strong dependence on the
frequency of the drive is an indication of an exponential suppression of the heating,
as is characteristic for Floquet prethermalization.

In terms of the energy density, in our experiment we expect a linear increase in
time followed by a saturation at long times to the infinite-temperature energy density.
We can describe then the dynamics of the density of holes ρh by the expression

ρh(Ncyc) ' ρ0 + (ρ∞ − ρ0)
[
1− exp(−Ncyc/Nth

cyc)
]

, (9.3)

where ρ0 is the low-temperature value measured in the absence of the drive, ρ∞ the
infinite-temperature value, and Nth

cyc is the timescale of thermalization in number of
Floquet cycles.

The solid lines in Fig. 9.3 are fits of the data based on Eq. 9.3, which show good
agreement. The fitted values of Nth

cyc go from 4 × 102 cycles for ω = 19.3 J/h̄ to 104

cycles for ω = 35.5 J/h̄. The longest measured times in those datasets are above
3000 h̄/J, which indicates the high degree of isolation in our system. In contrast to
what we discussed in Sec. 8.3.3, we do not expect any short-time dynamics during
the prethermal regime in our experiment. This is explained by the fact that our initial
state is already in thermal equilibrium with respect to the effective Hamiltonian Ĥeff.

In addition to these experimentally observed dynamics, in App. C we show nu-
merical simulations based on Krylov subspace method for the time evolution [241],
which indicates similar dynamics of the density of holes. By comparing the depen-
dence of the simulated energy density and the simulated density of holes, we further
support the interpretation of ρh as a proxy for the energy density.
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Figure 9.3: Floquet thermalization dynamics of the density of holes. Lin-log plot
of the density of holes as a function of the number of Floquet cycles Ncyc. We show
four different datasets, all in the superfluid regime at V0 = 8 Er with a J/U = 0.16,
at four different driving frequencies: ω = 19.3 J/h̄ (gray), ω = 25.8 J/h̄ (light blue),
ω = 29.0 J/h̄ (blue) and ω = 35.5 J/h̄ (green). The density of holes is based on a
region of interest of 10 × 10 sites in the center of the trap. The solid curves are the
respective fits to the exponential form in Eq. 9.3. The separation between the differ-
ent thermalization timescales separated is of more than an order of magnitude. The
errorbars denote the standard error of the mean (s.e.m.). The box insets indicate the
reconstructed atomic number distribution (red circles) in the center of the cloud for
three example snapshots.

9.4 Dynamics in the linear regime
While by observing the dynamics of ρh(t) we obtain a qualitative illustration of the
phenomenon of Floquet prethermalization, our quantum-gas microscope further al-
lows for a precise characterization of the temperature of the cloud and hence of the
heating rates. For this we use our thermometry method based on a grand-canonical
fit [9, 239], which is described in Sec. 3.2.4.

This technique makes it possible to extract the temperature from a single shot,
and allows us to quantiatively characterize the heating induced by the drive. A great
advantage of it is that it is sensitive enough to allow us to remain in the regime of
linear heating, such that even by driving the system with a relatively small amplitude
A the heating rates can be identified. By remaining in the weak-drive regime, we can
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strongly suppress any multiphoton interband transitions. This weak-drive probing
contrasts with recent measurements of the response of Bose-Einstein condensates in
one and two-dimensional optical lattices [235, 236], which focused on the emergence
of parametric instabilities under strong drives.

In Fig 9.4 we plot the temperature dynamics of a superfluid driven at V0 = 6 Er for
four different driving frequencies and with a relative driving amplitude A = 0.05. The
time trace seems consistent with the linear regime of the heating processes. The heat-
ing rate per Floquet cycle φ(ω) can be then extracted as φ(ω) = kB dT/dt× 2π/ω,
where kB is the Boltzmann constant, T is the measured temperature, and 2π/ω is the
drive cycle period. Furthermore, we have studied the heating rates at a fixed drive
frequency for different drive amplitudes A, plotted in Fig. 9.5, and which behaves
according to the prediction of Fermi‘s Golden Rule, i.e. proportional to A2. The fit
of a power law, given by the function φ(A) = c Aα, gave consistently the result of
c = 4.0(4) andα = 2.11(4).

In summary, our sensitive thermometry technique allows us to faithfully compare
the rates of heating per Floquet cycle φ(ω) for different amplitudes and driving fre-
quencies, which is a crucial requirement to identify Floquet prethermalization as an
exponential-in-frequency dependence.
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Figure 9.4: Heating dynamics in the linear regime. Temperature of a driven system
with V0 = 6 Er for four different frequencies of the drive as a function of evolution
time t. The continuous lines are linear fits. The errorbars denote the s.e.m.
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Figure 9.5: Fermi-golden-rule scaling. Heating rate as a function of the drive am-
plitude on a log-log scale. The data was taken at V0 = 8 Er with driving frequency
ω = 14.5 J/h̄. The solid line is a power-law fit, compatible with a dependence on A2.
The errorbars denote the s.e.m.

9.5 1D spectrum from numerics
Before exploring the spectral results obtained in the experiment, let us first develop
some intuition by considering few numerical results for the heating in the Bose-
Hubbard model. These numerical calculations were carried out by Matteo Ippoliti
and Vedika Khemani [222], and are based on numerical exact diagonalization.

While Floquet prethermalization is expected even for arbitrarily strong drives, this
experiment remains in the regime of weak modulation, i.e. g � 1. Because of this,
the energy absorbed per Floquet cycle is well captured by the linear response theory,
identified with the dissipative part of the response function,

Φ(ω) = ∑
n 6=0
|〈n|Ôdrv|0〉|2 δ(En − h̄ω), (9.4)

where {En, |n〉} are the eigenvalues and eigenvectors of the average Hamiltonian Ĥ0
(|0〉 labels the ground state, with energy E0 = 0), and the driven operator Ôdrv is
defined in Eq. 9.2.

The heating Φ(ω) was bounded rigorously by an exponential envelope in
Ref. [50]. It has units of energy and for weak drives is proportional to the energy
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absorbed per Floquet cycle, dE/dNcyc = φ(ω) ∼ g2Φ(ω).
By performing exact diagonalization (ED) we can compute Φ(ω) for a 1D chain

at unit filling with L = 9 sites. No harmonic potential is considered, due to the small
system size, but instead open boundary conditions are used. While the ED approach is
very limited in size, it offers great flexibility in choosing the ratio J/U and the driving
frequencyω. At the same time, it allows us to probe almost arbitrary long timescales
(while remaining in the linear response regime). We show the obtained results in two
different plots, to stress the individual features of the two ground-state phases. In
Fig 9.6 we plot the results in the superfluid side, with both Φ and ω expressed in
units of the tunneling strength J. In Fig 9.7 the results in the Mott-insulator regime are
instead expressed in units of the interaction strength U.
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Figure 9.6: Numerical spectra of the heating rate Φ(ω) in the superfluid regime
in 1D. We plot the linear-response heating rate Φ(ω) as a function of the driving
frequency, obtained from an exact-diagonalization calculation on a unit-filling chain
of L = 9 sites. Both Φ and ω are expressed in units of the tunneling strength J. The
value of J/U varies from 0.6 (lightest blue) to 16 (darkest blue). The value of J/U at
the critical point is approximately (J/U)c = 0.26.

In the weakly interacting limit of the the superfluid phase, the spectrum shows a
very efficient heating for frequencies below ω = 8J/h̄ (with some dips, which are a
finite-size feature of the numerics) followed by a sharp suppression, in an exponential
way, together with additional kink-like features for multiples of 8J/h̄. These results
directly suggest that the heating mechanism is based on a quasiparticle excitation on
top of the condensate. Since the driving method used in our experiment, described
by Eq. 9.2, does not transfer any net momentum, the excitation of quasiparticles must
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take place in pairs of opposite momenta ±q. If the driving frequency is set above
Ω2qp, which is twice the quasiparticle bandwidth, the absorption by the system of an
energy quantum with energy h̄ω must involve the scattering of multiple pairs, such
that each additional scattering event will be suppressed by factors with U/J � 1. This
directly connects with the intuition behind Floquet prethermalization, as discussed in
Sec. 8.3.3, and explains the observed exponential scaling and the features seen in in
Fig. 9.6 for multiples of 8J/h̄, which is twice the non-interacting bandwidth. As inter-
actions are increased, i.e. a smaller J/U, many of the above features get washed out
and the kink feature at Ω2qp is shifted according to the prediction for the Bogoliubov
bandwidth Ω2qp ' 8J/h̄

√
1 + U/2J.
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Figure 9.7: 1D numerical spectra of the heating rate Φ(ω) in the Mott-insulating
regime. We plot the linear-response heating rate Φ(ω) as a function of the driving
frequency, obtained from an exact-diagonalization calculation on a unit-filling chain
of L = 9 sites. Both Φ andω are expressed in units of the interaction strength U. The
value of J/U varies from 0.02 (darkest red) to 0.16 (lightest red). The value of J/U at
the critical point is approximately (J/U)c = 0.26.

When increasing the interactions beyond the transition from superfluid to Mott in-
sulator (see Fig. 9.7), new spectral features emerge given by sharp peaks for multiples
of U/h̄, which are associated to higher occupations in each lattice site (two, three, etc.).
A more detailed discussion on the relative heights of those peaks and their derivation
from perturbing an atomic-limit Mott insulator can be found in the Appendix of [222].

While these numerical results were restricted to the linear response regime, in
App. C we verify that a qualitatively similar picture remains even outside of it, by
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considering the exact time evolution of the system to infinite temperature.

9.6 Experimental spectrum in 2D
We now take a look at the spectra obtained experimentally, by measuring the heat-
ing rate per Floquet cycle φ(ω), based on the method described in Sec. 9.4. We first
consider a purely two-dimensional system with lattice depths within V0 = 5− 11 Er
and a drive set with a fixed modulation A = 0.05. The results are shown in units of
the tunneling strength J in Fig. 9.8, and reveal a clear suppression of the heating as
we increase the frequency, extending over more than two decades in the measured
frequency range. Such a stark arrest of the rates of Floquet thermalization is evidence
for a Floquet prethermal regime.

In the superfluid phase, that is for J/U higher than the critical point (J/U)c '
0.06 [242], the behavior is qualitatively the same for all datasets, consisting of a mono-
tonic decrease of the heating rates. These datasets also display an approximately ex-
ponential dependence, and for the two weakest interacting sets we fit an exponential
function of the form φ(ω) = C e−h̄ω/Jeff , from which we obtain their effective local
energy scales Jeff,1 = 5.76(16) J and Jeff,2 = 5.9(2) J (see dotted lines in Fig. 9.8). Note
that, as expected, the extracted values of Jeff are on the same order of magnitude as J
and U.

Shifting to stronger interactions, we observe a visible kink emerge in addition to
the bare exponential trend. In Sec. 9.5 we discussed that the dominant heating process
in the superfluid phase is the creation of quasiparticle pairs of opposite momenta.
Based on this process we expect a reduction on the heating to take place for frequen-
cies of the drive higher than twice the Bogoliubov bandwidth, which in the 2D case
is Ω2qp,2D = 2 × 8J/h̄

√
1 + U/4J [223]. Five small arrows indicate the position of

Ω2qp,2D in Fig. 9.8 for the first four datasets, showing a rough agreement with the
kink-like features seen in the data.

We note that, however, the heating rates do not stay flat below twice the single-
particle bandwidth (2 × 8J/h̄ in 2D), in contrast to what we observed in the 1D nu-
merics. The reason for this difference can be explained by the shape of the density
of states in the tight-binding model of a square lattice in two dimensions. In 2D, the
density of states peaks in the middle of the band, making the quasiparticle excita-
tion most efficient in the middle of the 2-quasiparticle bandwidth, which is roughly
ω ≈ 8J/h̄ [243]. One last point to notice is that, for higher J/U, the measured dy-
namic range of driving frequencies gets limited to lower values. The reason for this
is that higher values of J require higher absolute frequencies for the drive to observe
prethermalization, which poses a more severe limit due to an enhancement of inter-
band transitions.
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Considering now the regime of even stronger interactions, we see new features
emerge. To better identify them, in Fig. 9.9 we plot the same results as in Fig. 9.8 but
in units of the interaction strength U. The strongest interacting dataset was measured
at J/U = 0.06, which is in fact the only one strictly in the Mott-insulating phase, and
shows spectral peaks at ω = U/h̄ and 3 U/h̄, asymptotically corresponding to the
doublon and triplon resonances respectively. As interactions are reduced, one can see
how these spectral features fade into a continuum towards the superfluid phase, in a
similar fashion to what we saw in the numerics in Fig. 9.7.

Finally, notice that the smallest measured heating rates, appearing in the limit of
high drive frequencies, reach the sensitivity limit of the experiment. Due to the very
long measurement times and the contribution of background heating, this leads to a
noise floor that will in general depend on the specific value of J/U.
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Figure 9.8: 2D experimental heating rates vs driving frequency in units of J.
Measured heating rates per Floquet cycle φ(ω), expressed in units of the tunneling
strength J, for a two-dimensional system. The datasets were measured for the range
of lattice depths V0 = 5− 11 Er, varying from shallower (dark blue) to deeper (light
blue) lattices. The corresponding values of J/U are 0.47− 0.06. The errorbars denote
the s.e.m. We indicate the value of Ω2qp,2D for the first five datasets with five small
arrows. Two dotted line indicates exponential fits to the first two datasets.
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Figure 9.9: 2D experimental heating rates vs driving frequency in units of U. Mea-
sured heating rates per Floquet cycle φ(ω), expressed in units of the on-site inter-
action strength U, for a two-dimensional system. The datasets are the same as in
Fig. 9.8, measured in the range of lattice depths V0 = 5− 11 Er, varying from deeper
(dark orange) to shallower (light orange) lattices. The corresponding values of J/U are
0.47− 0.06. The errorbars denote the s.e.m. The dashed vertical gray lines indicate the
doublon and triplon resonances atω = U/h̄ and 3 U/h̄ respectively.

9.7 Experimental spectrum in 1D
Our experimental setup also allows us to produce one-dimensional systems. This is
achieved by ramping one of the in-plane lattices, in this case the one along the y
axis, to an atomic-limit depth of V0, y = 20 Er before the driving pulse starts. The
confinement of the transverse lattice contributes to the harmonic trap with a roughly
constant value ofωx ' 2π × 70 Hz, and leads to the typical size of the system being
of Nat ' 15.

In Fig. 9.10 we plot the measured heating rates in the 1D geometry, in units of
J ≡ Jx, for lattice depths in the range V0,x = 3− 9 Er and driven by a relative lattice
modulation of Ax = 0.1 (while Ay = 0). In this case we also identify a sharp exponen-
tial suppression of the heating as the frequency of the drive ω is increased, though
we note that for ω < 8 J/h̄ we observe an almost flat dependence of φ(ω), much in
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agreement with the numerical results shown in Fig. 9.6. This behavior can be mainly
explained in terms of twice the non-interacting bandwidth, 2× 4J/h̄, though we also
observe a second kink-like behavior at slightly higher frequencies, which shifts to
higher frequencies for stronger interactions. Four small arrows in Fig. 9.10 point the
position of two times the Bogoliubov bandwidth Ω2qp,1D = 2× 4J/h̄

√
1 + U/2J for

the first four datasets. This shows a reasonable agreement which eventually gets dis-
crepant for smaller J/U. For reference, we also fit an exponential to the dataset with
J/U = 0.62, obtaining the local energy scale Jeff = 3.0(3) J, which is roughly half
of the one extracted in the 2D experiment. This difference seems consistent with the
bandwidth of the system being also twice smaller. The stronger interactions in 1D
lead to slight deviations respect to the simple exponential trend even for the weakest
interactions.

The heating dependence becomes nonmonotonic for higher U, as seen in the nu-
merics and 2D experiments, but the associated features are visibly less sharp, which
can be partially explained by the inhomogeneity caused by the stronger harmonic
trap in this 1D case.

9.8 Summary and outlook

9.8.1 Summary
In the experiments described in this chapter we have measured heating rates and
characterized their dependence for a system of ultracold bosonic atoms in an
intensity-driven optical lattice. The results indicate strong evidence for a thermaliza-
tion time that exponentially diverges as the frequency of the drive is increased, which
is one of the main predictions of Floquet prethermalization.

The observed results also shed light into the specific mechanisms involved in Flo-
quet prethermalization for a real physical system. The general intuition is that quan-
tum systems driven at high frequencies can only absorb energy at very slow rates due
to the need for local rearrangements of its degrees of freedom. Such rearranging pro-
cesses are directly consistent with the features experimentally observed, and reflect
themselves quite differently for the two phases of the model, the superfluid and the
Mott insulator.

9.8.2 Outlook
The techniques described in this chapter already allow for many extensions of the
present work involving the characterization of heating rates in our experimental
setup. One possibility is to study the present system in the limit of hard-core bosons in
1D, where due to its proximity to integrability, different dependences are expected to
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Figure 9.10: 1D experimental heating rates vs driving frequency in units of J.
Measured heating rates per Floquet cycle φ(ω), expressed in units of the tunneling
strength J, for a one-dimensional system. The datasets were measured for the range
of lattice depths V0,x = 3, 4, 5, 6, 7, 9 Er, varying from shallow (dark blue) to deep
(light blue) lattices. The corresponding values of J/U are 0.62 − 0.09. The errorbars
denote the s.e.m. We indicate the value of Ω2qp,1D for the first four datasets with four
small arrows. A dotted line indicates an exponential fit of the first dataset. We indicate
the region below twice the non-interacting bandwidth, ω = 8 J/h̄, by a grey shaded
area.

emerge for Floquet prethermalization, as recently studied numerically [227]. Another
option is to explore the dissipative response of the system in the presence of disorder,
which can be realized in our system as described in Part II. This would allow for a
microscopical characterization of the failure of MBL phase to thermalize in a driven
system.

Further possibilites are the implementation of more exotic drives, such as
quasiperiodic ones [230, 231], the use of strong drives to probe the heating in our
system way beyond the linear response regime, and exploring the dependence on the
temperature of the initially prepared state. Last, as we have motivated earlier, this
first observation of this prethermal phenomenon (recently also observed in dipolar
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spin chains [244]) paves the way for future realizations of novel prethermal phases of
matter with no static analogs.
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Chapter 10

Conclusion and outlook

10.1 Conclusion
In this thesis we have presented experiments performed in a two-dimensional system
of ultracold bosonic atoms in optical lattices. By exploiting the tools and advantages
provided by quantum-gas microscopy, we have made experimental progress into the
fields of dirty bosons and out-of-equilibrium dynamics.

Introducing a projected disorder on top of our optical-lattice potentials has made
it possible to directly look at glassy and localized phases. Close to equilibrium we
saw signatures of the emergence of a Bose glass phase, based on site-resolved mea-
surements and also phase coherence. Shifting away from equilibrium, we were able
to probe the processes behind quantum thermalization and its breakdown in disor-
dered systems. In particular, we have performed the first experiments of MBL in two
dimensions, allowing us to estimate the position of the ergodic-MBL phase transi-
tion. These experiments represent a milestone of quantum simulation, since the exact
simulation of such 2D systems still remains out of reach. In addition, we studied the
delocalization processes that arise when coupling an MBL system to a quantum bath,
that is a thermal system made up of few degrees of freedom. By tuning the number of
particles that form the thermal component, we observed that a delocalization of the
system takes place for a sufficiently large bath.

Last, we have studied periodically driven systems, by modulating the intensity of
our optical lattices. Our main result has been the first experimental demonstration of
the phenomenon of Floquet prethermalization. We have detected it as an exponential-
in-frequency suppression of the drive-induced heating, by making use of a single-site
thermometry technique. This effect remained for different interaction regimes of the
model and was observed both in one and two dimensions. This prethermal behavior
could open the door to new kinds of non-equilibrium phases of matter.
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10.2 Outlook
Some possible future experimental directions have already been mentioned in the
outlook of each experimental chapter in this thesis. In this final outlook section, we
aim to focus on potential upgrades of our system, and the experiments that those
could enable, as well as completely new experimental fields that go beyond the topics
that have been discussed in the chapters of this thesis.

Upgrades to the system

The main technical direction currently pursued in our setup is the increase of the
system size. Until now, the limitation in our cloud sizes has only been set by the con-
finement of the three optical lattice beams. Since these beams are used for both the
physics and the imaging parts, their properties are strongly restricted by the pinning
requirements during the optical-molasses imaging. The introduction of wider beams
with higher powers, elliptical beams or independent lattices for dynamics and imag-
ing are some of the ideas that will enable surpassing the current confinement. This
is a particularly exciting direction for one-dimensional systems, which in our current
setup are typically restricted to sizes below 20 lattice sites.

On another direction, improving the current imaging method could relax some of
the conditions needed for faithful microscopy, and hence allow for bigger system sizes
with the present lattice intensities. Using Raman cooling imaging [245] in a lattice, as
has also been done for fermionic quantum-gas microscopes [12–14], could be very
beneficial, since it would allow to work closer to the single-well ground state during
the imaging. At the same time, the Raman sideband cooling process could also be use-
ful to keep the atoms trapped and localized in experiments involving weak-intensity
probing of the atoms [246]. While not described in this thesis, this imaging method has
already been proven in our setup, though subsequent optimization is still required.

Another improvement of fundamental importance for quantum simulation, espe-
cially for experiments exploring long times as in this thesis, is the enhancement of the
isolation of the system. In the course of this thesis, technical upgrades in the intensity
stabilization of the lattices have taken the system to a next level, and the limiting heat-
ing mechanisms in the current system are believed to stem from mechanical vibrations
of the optics. A precise characterization of these heating sources and the introduction
of more stable optical mounts could reduce these detrimental effects further, allowing
the exploration of quantum dynamics at much longer timescales.

Bose-Hubbard physics in equilibrium

The study of ground-state quantum phase transitions is at the heart of the field of
quantum matter. While overcoming current finite-temperature limitations in our sys-
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tem is unlikely, the constraints due to finite size and homogeneity could definitely
be reduced. The technical upgrades described above, combined with the addition of
repulsive barriers and deconfining potentials, would make it possible to prepare box
potentials, which could allow for detailed studies of criticality [75]. A controlled tun-
ing of the system size and the particle number could also provide insight into finite-
size effects.

Bose-Hubbard physics out of equilibrium

Similar as in the equilibrium case, bigger system sizes and more homogeneous con-
finement would also benefit the study of dynamical quantum phase transitions. A
precise characterization of the MBL-ergodic phase transition and the study of its size
dependence are some of the open possibilities in 2D. In 1D, larger systems could en-
able more detailed studies of 1D MBL, of Heisenberg chains or the dynamical re-
sponse of bosonic Luttinger liquids [247].

Additionally, many recent theoretical concepts and proposals have appeared in the
out-of-equilibrium context, which make it hard to predict which new directions will
be available for quantum-gas microscopes in the next few years. Some of the current
trendy fields that are likely to be extensively studied in the near future are “Stark
localization” [248, 249], which displays a breakdown of ergodicity in non-disordered
systems under the presence of a tilted potential, quantum many-body scars [250–252]
or the study of models displaying superdiffusion [253].

Experiments enabled by Rydberg atoms

A variety of experiments that has not been discussed in this thesis at all is that of Ryd-
berg atoms, i.e. atoms in highly excited electronic states. In our setup, two-photon [78]
as well as single-photon [80] excitation schemes are routinely used to, for example,
probe long-range interacting systems [254] or the photoassociation of “macrodimer
molecules” [255]. Many proposals involving novel out-of-equilibrium phases, such
as the realization of Floquet symmetry-protected topological phases [256], could be
realized in our system through chains of Rydberg-dressed atoms [89].

Going beyond these experiments, which until now were restricted to the frozen
atomic limit, a major achievement would be the realization of extended Hubbard
models based on Rydberg-interacting atoms tunneling in a lattice. While collective
losses seem to limit such experiments, even when using off-resonant coupling to Ry-
dberg states [257], new possibilities could be opened by considering dissipative mod-
els, based for example on the resonant excitation of macrodimers, which could enable
distant hard-core interactions [258].



122 10. Conclusion and outlook

New directions

Aside from the routes explored in our setup so far, there is a myriad of new ideas that
could be explored using some of the tools already demonstrated. One for which our
setup is particularly suited is the study of collective light-matter interactions in atoms
trapped tightly close to each other. Our very recent experiment [246] is a promising
starting point for this direction, which could be enhanced by introducing tools like
Rydberg excitation [259] or achieving the direct detection of single excitations in the
cloud [78].

A related topic one could also consider is the simulation of light-emission
processes using matter waves in optical lattices [260, 261]. This was recently exper-
imentally demonstrated in a one-dimensional lattice with a single atom [262]. Our
site-resolved addressing, together with the state-dependent potential explored in
Ch. 7, could allow to explore similar systems in higher dimensions with well-defined
initial states.

Overall, there are many exciting experiments which could be readily realized in
our current setup with minor changes. However, soon-to-come upgrades could sub-
stantially push forward the possibilities for quantum-gas microscopes in the context
of quantum simulation, and enable novel exotic models together with larger system
sizes and longer evolution times.
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Appendix A

Calculated Bose-Hubbard and band
parameters
In this Appendix we present the calculated parameters, both for the Bose-Hubbard
model and for the bandgaps, relevant for the experiments described in each chapter
of the thesis. The calculations are based on numerics of the band structure (following
the ideas described in Ch. 2). The values of the specific lattice depths V have been
calibrated via lattice driving spectroscopy (see Ch. 3), and are estimated to have an
uncertainty of roughly 2%.

A.1 Bose-Hubbard parameters
In this section we show different tables containing the calculated values of J and U
for each of the lattice parameters used in the different experiments in this thesis.

A.1.1 Equilibrium disordered Bose-Hubbard experiments
In Ch. 4, we studied two different regimes of interactions and tunneling strengths. The
first one, described in Sec. 4.3, considered the strongly interacting limit at a V = 18 Er.
The second one, in Sec. 4.4, was performed at V = 7 Er.

Table A.1: Table of Bose-Hubbard parameters for the experiments in Ch. 4.

V (Er) J/h (Hz) U/h (Hz) J/U
18 7.3 658 0.01
7 80.0 363 0.22

A.1.2 MBL experiments
All the experiments on many-body localization, in both Ch. 6 and Ch. 7 were per-
formed at the same lattice parameters of V = 12 Er.
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Table A.2: Table of Bose-Hubbard parameters for the MBL experiments.

V (Er) J/h (Hz) U/h (Hz) J/U
12 24.8 602 0.04

A.1.3 Floquet experiments
Here, we show the calculated parameters for the relevant depths in the periodically
driven experiments of Ch. 9. We present two different tables of parameters for the
2D and the 1D experiments. In the 2D experiment, the in-plane lattices were at the
same depth and they were modulated by an amplitude A = 0.05 (see Tab. A.3). In
the 1D case, the y-lattice was fixed to a depth of 20Er and the x-lattice to V0,x and
modulated with an amplitude Ax = 0.1 (see Tab. A.4). We also plot the modulation of
the tunneling strength δ J, defined as δ J = (JV0−A − JV0+A)/2.

Table A.3: Table of Bose-Hubbard parameters for the 2D Floquet experiments.

V0 (Er) J/h (Hz) U/h (Hz) J/U δ J/h (Hz) δ J/J
5 134.0 288 0.47 8.8 0.067
6 103.2 327 0.32 8.0 0.077
7 80.0 363 0.22 7.0 0.088
8 62.5 396 0.16 6.1 0.098
9 49.2 427 0.11 5.3 0.11

10 38.9 457 0.085 4.5 0.12
11 31.0 485 0.064 3.8 0.12

Table A.4: Table of Bose-Hubbard parameters for the 1D Floquet experiments.

V0,x (Er) Jx/h (Hz) U/h (Hz) Jx/U δ Jx/h (Hz) δ Jx/Jx

3 229.1 288 0.62 18.7 0.08
4 174.9 412 0.42 18.8 0.11
5 134.0 446 0.30 17.7 0.13
6 103.2 475 0.22 16.0 0.16
7 80.0 500 0.16 14.1 0.18
9 49.2 543 0.09 10.6 0.22
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A.2 Band structure
In this section we also pay attention to the higher-band structure of the system, which
is important in the experiments with periodic driving.

A.2.1 Floquet experiments
As we discussed in Ch. 8, the frequencies of the drive have to be kept small enough
and the amplitudes weak in order to not populate higher bands. Naively, this would
only require to stay below the gap to the second excited band, Eg,2 = E2(q =
0) − E0(q = 0), since due to symmetry reasons there is no coupling to the first ex-
cited band with gap Eg,1 = E1(q = π/a) − E0(q = 0). Nonetheless, multiphoton
resonances can trigger interband transfers even for drive frequencies well bellow the
bandgaps, such that in practice one needs to identify in each regime where the onset
of interband heating starts and avoid those limits. In Tab. A.5, we plot both Eg,1 and
Eg,2, also obtained from numerics of the band structure, for five lattice depths within
the explored range. The drive frequencies in the experiments of Ch. 9 are well below
both Eg,1 and Eg,2/3.

Table A.5: Table with the bandgaps for different lattice depths.

V0 (Er) Eg,1/h (kHz) Eg,1 (J) Eg,2/h (kHz) Eg,2 (J)
3 3.9 17 9.1 40
5 5.5 41 10.6 79
7 7.1 89 12.5 156
9 8.7 176 14.7 298

11 10.1 328 16.9 544
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Appendix B

Numerics for MBL simulation
In this appendix we show results obtained from an exact-diagonalization simulation
of the disordered Bose-Hubbard model out of equilibrium. To perform the simula-
tions, we use the package “QuSpin”, which offers simplifies tool for the simulation of
bosonic, fermionic and spin many-body systems [263].

B.1 Ladder system
Motivated to get some more insight into the observed dynamics in Ch. 7 for a dirty
system, we have performed simulations of small disordered systems. Since the exact
diagonalization of a reasonable size in two dimensions is extremely demanding for
a Bose-Hubbard model, here we restrict ourselves to a ladder system. The simulated
system consists of 5 bosons in a 2× 6 lattice with periodic boundary conditions. The
particles are prepared in a CDW-like pattern (see Fig. B.1).

Figure B.1: Schematic of the ladder system simulated in this section. The initial
density is in a CDW-like state, such that I(0) = 1. The simulation is performed with
periodic boundary conditions.

The chosen parameters for the system are taken close to the experimental ones.
The quenched disorder distribution is given by a Gaussian with FWHM of ∆ = 25 J
and we compare the non-interacting (U = 0) and a strongly interacting interacting
case (U = 25 J). In the non-interacting case, we see that the imbalance I quickly
relaxes to a steady value of I ≈ 0.7, in less than 10 τ (see Fig. B.2a). In the presence
of strong interactions, however, the relaxation process takes more than a 100 τ , and
two distinct timescales can be identified. A first one decaying to I ≈ 0.6 in less than
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a tunneling time, and the second slow one reaching the value of I ≈ 0.5. Such a
two-timescale slow relaxation is qualitatively similar to the experimental results in
Fig. 7.5. Nonetheless, the final imbalance is way smaller in the experiment than in this
small system, which is not surprising given the strong difference in dimensionality
and number of particles.
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Figure B.2: Simulated imbalance and doublon dynamics for a ladder dBH system. a
Imbalance dynamics for the non-interacting case (U = 0) and the strongly interacting
one (U = 25 J). b Doublon formation dynamics for the strongly interacting case (U =
25 J).

Additionally, the simulation also allows us to study the process of doublon forma-
tion (see Fig. B.2b). We see that, as in the experiment, a quick formation of doublons
takes place, and reaches a doublon fraction of ∼ 15%, also consistent with the experi-
mental value.

Finally, it is worth noting that similar simulations in a purely 1D system did not
show any second slow timescale, indicating the simulation of a ladder as one of the
simplest models for 2D MBL.
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Appendix C

Numerics on Floquet thermalization
In Ch. 9 we presented numerical results obtained from linear response theory and
exact diagonalization. The results there were focused on the spectral response, and
involved small system sizes (L = 9 sites) and weak drives. In this Appendix we show
additional numerics for the driven BH model based on the Krylov subspace method
for time evolution [241]. This method allows us to explore slightly bigger system sizes
(L = 12 sites) and also stronger drives. These simulations were carried out by Matteo
Ippoliti and Vedika Khemani.

C.1 The method and observables
By using the Krylov subspace method, the dynamics of a state |ψ(t)〉 at stroboscopic
times t = Ncyc T can be simulated (T = 2π/ω is the drive period). We use this first
to track the “energy” of the system, which we defined in relation to Ĥ0 as ENcyc ≡
〈ψ(t)|Ĥ0|ψ(t)〉. From this we can define the normalized energy density as

ε(Ncyc) ≡
ENcyc − E0

E∞ − E0
, (C.1)

where E∞ ∝ Tr(Ĥ0) denotes the value of the energy at infinite temperature. In the
Floquet thermalization dynamics, this will obey 0 ≤ ε(Ncyc) ≤ 1. In addition, we can
also keep track of the “density of holes”

ρh(Ncyc) =
1
L ∑

i
〈ψ((t))|ρ̂h,i|ψ((t))〉 , (C.2)

where ρ̂h,i projector onto even occupation of site i, to take into account the experimen-
tal parity projection.
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C.2 State preparation and dynamics
We take as initial state |ψ(0)〉 the ground state of Ĥ0 (obtained using the Lanczos
method). The time evolution is then obtained by approximating each Floquet cycle by
a sequence of s constant Hamiltonians, {Ĥ(t = Tk/s) : k = 0, . . . s− 1}, and time-
evolve the state vector for time T/s with each of these Hamiltonians using the Krylov
subspace method. In practice, using s = 32 steps suffices, and increasing s does not
change the obtained results appreciably.
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Figure C.1: Numerical simulation of Floquet thermalization. Simulation of a 1D BH
chain of L = 12 sites at unit filling in the superfluid phase. The modulation amplitude
is g = 0.5 and after the driving, the system is subsequently brought to the atomic limit.
a Density of holes ρh and b normalized energy density ε as a function of the Floquet
cycle number Ncyc . The results are shown for values of the drive frequency going
fromω = 2 J/h̄ (gray curves) toω = 12 J/h̄ (dark green curves). In the inset of b, the
heating rate (defined as the inverse number of cycles Ncyc for ε to cross the threshold
ε? = 0.1) is plotted against the frequency of the driveω.
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After the Floquet dynamics, we additionally “ramp” the system into the atomic-
limit (a Mott insulator for zero temperature), to have a more analogous comparison
with the experimental procedure. To do this, we first stop the drive and linear take
J → 0 in a long-enough timescale (here τ = 100 h̄/U). This last evolution is also
accomplished by time-evolving with piecewise constant Hamiltonians.

The simulated dynamics are shown in Fig. C.1, where we considered fairly strong
amplitude of the drive g = 0.5 (in contrast to the weak driving in Ch. 9). The qualita-
tive behavior of the time traces of ρh in Fig. C.1a, is the same as in the the experimental
data in Fig. 9.3, and they also seem consistent with the dynamics of the energy density
ε, plotted in Fig. C.1b.

In addition to the time evolution of ρh and ε, we also calculate heating rates, based
on the inverse of the thermalization time Nth

cyc. We define Nth
cyc as the number of cycles

after which ε(Ncyc) surpasses some arbitrary threshold ε? (here ε? = 0.1). This allows
us to plot the dependence of the heating rate on the frequency of the drive (inset of
Fig. C.1b), which can be directly compared to the results at weak drives. The results
of the spectrum seem to agree with those obtained with linear response theory in the
superfluid side (see Fig 9.6). The inverse of Nth

cyc(ω) remain roughly flat forω . Ω2qp,
and gets exponentially suppressed above it.
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Figure C.2: Corroboration of the density of holes as a proxy for energy density. Plot
of the density of holes ρh vs the energy density ε, from the dynamics simulated in
Fig. C.1. The drive frequencies range from ω = 2 J/h̄ (gray markers) to ω = 12 J/h̄
(dark green markers).

Finally, to bring even further confidence into the use of ρh as a proxy for energy
density, we directly plot these two quantities against each other in Fig. C.2. The plot
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shows a similar dependence between the two variables for all driving frequencies,
and one that seems roughly linear for short times (low temperatures).

More details into the numerical procedures, together with additional calculations
for finite temperature can be found in the original publication [222].
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[207] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin. Many-Body Localization
in Periodically Driven Systems. Phys. Rev. Lett. 114, 140401 (2015). (Cited on
pages 97 and 103)

[208] P. Ponte, A. Chandran, Z. Papic, and D. A. Abanin. Periodically driven ergodic
and many-body localized quantum systems. Ann. Phys. (Amsterdam) 353, 196 –
204 (2015). (Cited on pages 97 and 103)

[209] D. A. Abanin, W. De Roeck, and F. Huveneers. Theory of many-body localization
in periodically driven systems. Ann. Phys. (Amsterdam) 372, 1–11 (2016). (Cited
on pages 97 and 103)

[210] P. Bordia, H. Lüschen, U. Schneider, M. Knap, and I. Bloch. Periodically driv-
ing a many-body localized quantum system. Nat. Phys. 13, 460 (2017). (Cited on
pages 97 and 103)

[211] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig, H. Sumiya, S. On-
oda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao, and M. D. Lukin. Critical Ther-
malization of a Disordered Dipolar Spin System in Diamond. Phys. Rev. Lett. 121,
023601 (2018). (Cited on page 98)

[212] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda. Thermalization and prethermal-
ization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt.
Phys. 51, 112001 (2018). (Cited on page 98)

[213] J. Berges, S. Borsányi, and C. Wetterich. Prethermalization. Phys. Rev. Lett. 93,
142002 (2004). (Cited on page 98)

[214] K. Mallayya, M. Rigol, and W. De Roeck. Prethermalization and Thermalization in
Isolated Quantum Systems. Phys. Rev. X 9, 021027 (2019). (Cited on page 98)

[215] L. D’Alessio and M. Rigol. Long-time Behavior of Isolated Periodically Driven Inter-
acting Lattice Systems. Phys. Rev. X 4, 041048 (2014). (Cited on pages 98 and 103)

[216] D. A. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers. Effective Hamiltoni-
ans, prethermalization, and slow energy absorption in periodically driven many-body
systems. Phys. Rev. B 95, 1–8 (2017). (Cited on pages 99 and 103)

[217] D. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers. A Rigorous Theory of
Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems.
Commun. Math. Phys. 354, 809–827 (2017). (Cited on pages 99 and 103)

[218] T. Mori, T. Kuwahara, and K. Saito. Rigorous Bound on Energy Absorption and

http://dx.doi.org/10.1103/PhysRevLett.114.140401
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2014.11.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2014.11.008
http://dx.doi.org/10.1016/j.aop.2016.03.010
http://dx.doi.org/10.1038/nphys4020
http://dx.doi.org/10.1103/PhysRevLett.121.023601
http://dx.doi.org/10.1103/PhysRevLett.121.023601
http://dx.doi.org/10.1088/1361-6455/aabcdf
http://dx.doi.org/10.1088/1361-6455/aabcdf
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1103/PhysRevX.9.021027
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/10.1103/PhysRevB.95.014112
http://dx.doi.org/10.1007/s00220-017-2930-x


152 BIBLIOGRAPHY

Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116,
1–5 (2016). (Cited on pages 99 and 103)

[219] A. Eckardt and E. Anisimovas. High-frequency approximation for periodically
driven quantum systems from a Floquet-space perspective. New J. Phys. 17, 93039
(2015). (Cited on page 99)

[220] N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sen-
sarma, D. Pekker, E. Altman, and E. Demler. Observation of elastic doublon decay
in the Fermi-hubbard model. Phys. Rev. Lett. 104, 1–4 (2010). (Cited on page 100)

[221] G. Sun and A. Eckardt. Optimal frequency window for Floquet engineering in optical
lattices. Phys. Rev. Res. 2, 013241 (2020). (Cited on pages 101 and 106)

[222] A. Rubio-Abadal, M. Ippoliti, S. Hollerith, D. Wei, J. Rui, S. L. Sondhi, V. Khe-
mani, C. Gross, and I. Bloch. Floquet Prethermalization in a Bose-Hubbard System.
Phys. Rev. X 10, 021044 (2020). (Cited on pages 103, 110, 112, and 132)

[223] M. Bukov, S. Gopalakrishnan, M. Knap, and E. Demler. Prethermal Floquet Steady
States and Instabilities in the Periodically Driven, Weakly Interacting Bose-Hubbard
Model. Phys. Rev. Lett. 115, 205301 (2015). (Cited on pages 103 and 113)

[224] F. Machado, G. D. Kahanamoku-Meyer, D. V. Else, C. Nayak, and N. Y. Yao.
Exponentially slow heating in short and long-range interacting Floquet systems. Phys.
Rev. Res. 1 (2019). (Cited on page 103)

[225] S. Vajna, K. Klobas, T. Prosen, and A. Polkovnikov. Replica Resummation of the
Baker-Campbell-Hausdorff Series. Phys. Rev. Lett. 120, 200607 (2018). (Cited on
page 103)

[226] D. J. Luitz, R. Moessner, S. L. Sondhi, and V. Khemani. Prethermalization without
Temperature. Phys. Rev. X 10, 021046 (2020). (Cited on page 103)

[227] K. Mallayya and M. Rigol. Heating rates in periodically driven strongly interact-
ing quantum many-body systems. Phys. Rev. Lett. 123, 240603 (2019). (Cited on
pages 103 and 117)

[228] A. Haldar, R. Moessner, and A. Das. Onset of Floquet thermalization. Phys. Rev. B
97, 1–8 (2018). (Cited on page 103)

[229] O. Howell, P. Weinberg, D. Sels, A. Polkovnikov, and M. Bukov. Asymptotic
Prethermalization in Periodically Driven Classical Spin Chains. Phys. Rev. Lett. 122,
10602 (2019). (Cited on page 103)

http://dx.doi.org/10.1103/PhysRevLett.116.120401
http://dx.doi.org/10.1103/PhysRevLett.116.120401
http://dx.doi.org/10.1088/1367-2630/17/9/093039
http://dx.doi.org/10.1088/1367-2630/17/9/093039
http://dx.doi.org/10.1103/PhysRevLett.104.080401
http://dx.doi.org/10.1103/PhysRevResearch.2.013241
http://dx.doi.org/10.1103/PhysRevX.10.021044
http://dx.doi.org/10.1103/PhysRevLett.115.205301
http://dx.doi.org/10.1103/physrevresearch.1.033202
http://dx.doi.org/10.1103/physrevresearch.1.033202
http://dx.doi.org/10.1103/PhysRevLett.120.200607
http://dx.doi.org/10.1103/PhysRevX.10.021046
http://dx.doi.org/10.1103/PhysRevLett.123.240603
http://dx.doi.org/10.1103/PhysRevB.97.245122
http://dx.doi.org/10.1103/PhysRevB.97.245122
http://dx.doi.org/10.1103/PhysRevLett.122.010602
http://dx.doi.org/10.1103/PhysRevLett.122.010602


BIBLIOGRAPHY 153

[230] D. V. Else, W. W. Ho, and P. T. Dumitrescu. Long-Lived Interacting Phases of Mat-
ter Protected by Multiple Time-Translation Symmetries in Quasiperiodically Driven
Systems. Phys. Rev. X 10, 021032 (2020). (Cited on pages 103 and 117)

[231] W. De Roeck and V. Verreet. Very slow heating for weakly driven quantum many-
body systems. arXiv:1911.01998 (2019). (Cited on pages 103 and 117)

[232] G. Jotzu, M. Messer, F. Görg, D. Greif, R. Desbuquois, and T. Esslinger. Creating
State-Dependent Lattices for Ultracold Fermions by Magnetic Gradient Modulation.
Phys. Rev. Lett. 115, 073002 (2015). (Cited on page 104)

[233] M. Reitter, J. Näger, K. Wintersperger, C. Sträter, I. Bloch, A. Eckardt, and
U. Schneider. Interaction Dependent Heating and Atom Loss in a Periodically Driven
Optical Lattice. Phys. Rev. Lett. 119, 200402 (2017). (Cited on page 104)

[234] M. Messer, K. Sandholzer, F. Görg, J. Minguzzi, R. Desbuquois, and T. Esslinger.
Floquet Dynamics in Driven Fermi-Hubbard Systems. Phys. Rev. Lett. 121, 1–6
(2018). (Cited on page 104)

[235] T. Boulier, J. Maslek, M. Bukov, C. Bracamontes, E. Magnan, S. Lellouch, E. Dem-
ler, N. Goldman, and J. V. Porto. Parametric Heating in a 2D Periodically Driven
Bosonic System: Beyond the Weakly Interacting Regime. Phys. Rev. X 9, 11047 (2019).
(Cited on pages 104 and 109)

[236] K. Wintersperger, M. Bukov, J. Näger, S. Lellouch, E. Demler, U. Schneider,
I. Bloch, N. Goldman, and M. Aidelsburger. Parametric Instabilities of Interacting
Bosons in Periodically Driven 1D Optical Lattices. Phys. Rev. X 10, 011030 (2020).
(Cited on pages 104 and 109)

[237] K. Singh, C. J. Fujiwara, Z. A. Geiger, E. Q. Simmons, M. Lipatov, A. Cao,
P. Dotti, S. V. Rajagopal, R. Senaratne, T. Shimasaki, M. Heyl, A. Eckardt, and
D. M. Weld. Quantifying and Controlling Prethermal Nonergodicity in Interacting
Floquet Matter. Phys. Rev. X 9, 041021 (2019). (Cited on page 104)

[238] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger. Transition from a
strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 1–4 (2004).
(Cited on page 106)

[239] M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C. Gross, E. Dem-
ler, S. Kuhr, and I. Bloch. The ’Higgs’ amplitude mode at the two-dimensional
superfluid/Mott insulator transition. Nature 487, 454–458 (2012). (Cited on
pages 106 and 108)

http://dx.doi.org/10.1103/PhysRevX.10.021032
https://arxiv.org/abs/1911.01998
http://dx.doi.org/10.1103/PhysRevLett.115.073002
http://dx.doi.org/10.1103/PhysRevLett.119.200402
http://dx.doi.org/10.1103/PhysRevLett.121.233603
http://dx.doi.org/10.1103/PhysRevLett.121.233603
http://dx.doi.org/10.1103/PhysRevX.9.011047
http://dx.doi.org/10.1103/physrevx.10.011030
http://dx.doi.org/10.1103/PhysRevX.9.041021
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1038/nature11255


154 BIBLIOGRAPHY

[240] M. Weinberg, C. Ölschläger, C. Sträter, S. Prelle, A. Eckardt, K. Sengstock, and
J. Simonet. Multiphoton interband excitations of quantum gases in driven optical
lattices. Phys. Rev. A 92, 43621 (2015). (Cited on page 106)

[241] S. R. Manmana, A. Muramatsu, and R. M. Noack. Time evolution of one-
dimensional Quantum Many Body Systems. AIP Conference Proceedings 789, 269–
278 (2005). (Cited on pages 107 and 129)

[242] B. Capogrosso-Sansone, S. G. Söyler, N. Prokof’ev, and B. Svistunov. Monte Carlo
study of the two-dimensional Bose-Hubbard model. Phys. Rev. A 77, 015602 (2008).
(Cited on page 113)

[243] S. D. Huber, B. Theiler, E. Altman, and G. Blatter. Amplitude mode in the quantum
phase model. Phys. Rev. Lett. 100, 1–4 (2008). (Cited on page 113)

[244] P. Peng, C. Yin, X. Huang, C. Ramanathan, and P. Cappellaro. Observation of
Floquet prethermalization in dipolar spin chains. arXiv:1912.05799 (2019). (Cited on
page 118)

[245] B. J. Lester, A. M. Kaufman, and C. A. Regal. Raman cooling imaging: Detecting
single atoms near their ground state of motion. Phys. Rev. A 90, 011804 (2014). (Cited
on page 120)

[246] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M. Stamper-Kurn,
C. Gross, and I. Bloch. A subradiant optical mirror formed by a single structured
atomic layer. arXiv:2001.00795 (2020). (Cited on pages 120 and 122)

[247] R. Citro, E. Demler, T. Giamarchi, M. Knap, and E. Orignac. Lattice modulation
spectroscopy of one-dimensional quantum gases:Universal scaling of the absorbed en-
ergy. arXiv:2003.05373 (2020). (Cited on page 121)

[248] M. Schulz, C. A. Hooley, R. Moessner, and F. Pollmann. Stark Many-Body Local-
ization. Phys. Rev. Lett. 122, 040606 (2019). (Cited on page 121)

[249] E. Van Nieuwenburg, Y. Baum, and G. Refael. From Bloch oscillations to many-
body localization in clean interacting systems. Proc. Natl. Acad. Sci. 116, 9269–9274
(2019). (Cited on page 121)
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