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Abbreviations 

4T1      mammary carcinoma cell line 

AIM2      absent in melanoma 2 

Arg-1      arginase-1 

ASC apoptosis-associated speck-like protein 

containing a CARD 

ATP      adenosine triphosphate 

BrdU      5-Bromdesoxyuridin 

BSA      bovine serum albumin 

CAR      chimeric antigen receptor 

CARD caspase activation and recruitment 

domain 

CD4+      CD4-positive 

CD8+      CD8-positive 

CTLA-4 cytotoxic T lymphocyte-associated 

protein-4 

DAMPs     damage-associated molecular patterns 

DNA      deoxyribonucleic acid 

ds      double-stranded 
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ECM      extracellular matrix 

ESL-1      E-selectin ligand-1 

FDA      Food and Drug Administration 

FLA-ST     flagellin 

G-CSF     granulocyte-colony stimulating factor  

HER-2 human epidermal growth factor receptor-

2 

HMGB1     high-mobility group box 1 

HNSCC     head and neck squamous cell carcinoma 

HPV      human papillomavirus 

IL      interleukin 

IRS-1      insulin receptor substrate-1 

i.p.       intraperitoneal 

i.s.       intrascrotal 

i.v.       intravenous 

IVM       intravital / in vivo microscopy  

LPS      lipopolysaccharides 

LRR      leucine-rich repeat 

mAb      monoclonal antibody 
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M. cremaster     musculus cremaster  

MDP      muramyl dipeptide  

MHC      major histocompatibility complex 

MMP9      matrix metallopeptidase 9 

MSU      monosodium urate 

NE      neutrophil elastase 

NETs      neutrophil extracellular traps 

NF-κB nuclear factor 'kappa-light-chain-

enhancer' of activated B cells 

NLR      NOD-like receptor 

NLRP1     NLR family pyrin domain-containing 1 

NLRP3     NLR family pyrin domain-containing 3 

NLRC4 NLR family CARD domain-containing 

protein 4 

NOD nucleotide-binding oligomerization 

domain 

PAMPs     pathogen-associated molecular patterns 

PD-1      programmed cell death protein-1 

PI3K       phosphoinositol-3-kinase  
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PMA       phorbol-12-myristat-13-acetat  

PBS       phosphate buffered saline 

PRR      pattern recognition receptor 

PSGL-1     P-selectin glycoprotein ligand-1   

RLR retinoic acid inducible gene-1 like 

receptor 

ROS      reactive oxygen species 

SCC VII     squamous cell carcinoma VII cell line  

SEM       standard error of the mean  

ss       single-stranded  

TGF-β      transforming growth factor-beta  

TH      T-helper cells 

TNF      tumor necrosis factor  

Treg      regulatory T cell 

TLR      toll-like receptor 

VEGF      vascular endothelial growth factor  

WHO      World Health Organization 

WT       wildtype  

  



5 

 

Table of contents 

1 Introduction .................................................................................................... 11 

1.1 Cancer ..................................................................................................... 11 

1.1.1 Breast cancer.................................................................................... 11 

1.1.2 Head and neck cancer ...................................................................... 12 

1.2 Therapeutic approaches of cancer .......................................................... 13 

1.3 Immunotherapy ....................................................................................... 15 

1.4 The immune system ................................................................................ 17 

1.4.1 The adaptive immune system ........................................................... 17 

1.4.2 The innate immune system ............................................................... 19 

1.5 Neutrophil functions in acute inflammatory conditions............................. 24 

1.6 Neutrophil functions in tumors ................................................................. 25 

1.6.1 Recruitment of neutrophils to tumors ................................................ 30 

1.7 Aged neutrophils ..................................................................................... 31 

1.8 The inflammasomes ................................................................................ 34 

1.8.1 The NLRP3 inflammasome ............................................................... 35 

1.8.2 The NLRP3 inflammasome in tumors ............................................... 37 

2 Objective ........................................................................................................ 39 

3 Material and Methods .................................................................................... 40 

3.1 Ethics ...................................................................................................... 40 

3.2 Animals ................................................................................................... 40 

3.3 Anesthesia .............................................................................................. 40 

3.4 Cell lines .................................................................................................. 41 



6 

 

3.4.1 Thawing of cells ................................................................................ 41 

3.4.2 Splitting of cells ................................................................................. 42 

3.4.3 Determination of cell numbers .......................................................... 42 

3.5 Animal models ......................................................................................... 42 

3.5.1 Orthotopic tumor models .................................................................. 42 

3.5.2 Heterotopic tumor models ................................................................. 47 

3.5.3 M. Cremaster assay .......................................................................... 51 

3.5.4 Peritonitis assay ................................................................................ 53 

3.6 Flow cytometry ........................................................................................ 55 

3.7 In vivo microscopy ................................................................................... 55 

3.8 Tumorigenicity of neutrophils .................................................................. 57 

3.9 Activation of neutrophils .......................................................................... 58 

3.9.1 Analysis of integrin expression on neutrophils in the blood .............. 58 

3.9.2 Analysis of ICAM-1/CD54-Fc binding properties of neutrophils ........ 58 

3.10 Activation of endothelial cells .................................................................. 59 

3.11 Immunohistochemistry and confocal microscopy .................................... 60 

3.11.1 Analysis of ICAM-1/CD54 and VCAM-1/CD106 expression in 

cremasteric venules ....................................................................................... 60 

3.11.2 Visualizing neutrophils in tumor sections ....................................... 61 

3.12 Assessment of tumor development ......................................................... 62 

3.13 Cell proliferation assay ............................................................................ 62 

3.13.1 Investigating the effect of tumor-primed neutrophils on cell 

proliferation .................................................................................................... 63 



7 

 

3.14 Endothelial cell migration ........................................................................ 64 

3.15 Multiplex immunoassays ......................................................................... 64 

3.16 ELISA ...................................................................................................... 65 

3.16.1 HMGB1 .......................................................................................... 65 

3.16.2 S100A8/A9 .................................................................................... 65 

3.17 MSU measurements ................................................................................ 65 

3.18 TLR2 and 4 activity assay ....................................................................... 66 

3.19 Statistics .................................................................................................. 66 

4 Results ........................................................................................................... 67 

4.1 Cytokines in supernatants of cultured tumor cells, solid tumors, and serum 

samples ............................................................................................................. 67 

4.2 Neutrophils in the circulation of tumor-bearing mice ............................... 68 

4.3 CXCR4 expression levels on blood neutrophils in tumor-bearing mice ... 69 

4.4 The fate of excessively aged neutrophils in tumor-bearing mice ............. 70 

4.4.1 Accumulation of aged neutrophils in the peritumoral microvasculature

 70 

4.4.2 Leukocyte subsets in solid SCC VII and 4T1 tumors ........................ 71 

4.5 The recruitment of aged neutrophils ........................................................ 73 

4.5.1 The release of DAMPs by tumor cells ............................................... 73 

4.5.2 The effect of DAMPs on myeloid leukocyte recruitment ................... 74 

4.5.3 The effect of tumor-released mediators on TLR2 and TLR4 activity . 75 

4.5.4 The effect of MSU on inflammasome activation................................ 76 

4.5.5 The effect of inflammasome activation on myeloid leukocyte 

recruitment ..................................................................................................... 77 



8 

 

4.5.6 The effect of NLRP3 inflammasome activation on neutrophils ......... 78 

4.5.7 The effect of NLRP3 inflammasome activation on endothelial cells .. 80 

4.5.8 The effect of DAMPs on endothelial cells ......................................... 81 

4.5.9 Cytokine release upon NLRP3 inflammasome activation ................. 82 

4.5.10 ICAM-1/CD54 and VCAM-1/CD106 expression on cremasteric 

endothelial cells after activation of the NLRP3 inflammasome ...................... 83 

4.5.11 Myeloid leukocyte trafficking in the cremaster muscle after NLRP3 

inflammasome activation ............................................................................... 84 

4.5.12 The effect of NLRP3 inflammasome inhibition on neutrophil 

trafficking in tumors ........................................................................................ 86 

4.6 The role of aged neutrophils in tumor progression .................................. 87 

4.6.1 The effect of depleting neutrophils in tumor-bearing mice ................ 87 

4.6.2 The effect of NLRP3, CXCR4, or CXCR2 inhibitors on tumor weight 

and neutrophil infiltration of tumors ................................................................ 89 

4.6.3 Direct effects on tumor cell proliferation ............................................ 91 

4.7 The mechanisms underlying tumor growth mediated by aged neutrophils

 92 

4.7.1 Expression of N1 and N2 phenotype-associated molecular markers in 

neutrophils recruited by NLRP3 inflammasome activation ............................. 92 

4.7.2 The effect of tumor-primed neutrophils on tumor cell proliferation .... 93 

4.7.3 The effect of tumor-primed neutrophils on microvascular endothelial 

cell proliferation .............................................................................................. 94 



9 

 

4.7.4 The effect of tumor-primed on the migration of microvascular 

endothelial cells ............................................................................................. 94 

4.7.5 The effect of neutrophil depletion on the microvascular network of 

tumors 95 

4.7.6 The effect of depleting neutrophils on T cell infiltration into tumors .. 96 

5 Discussion ..................................................................................................... 98 

5.1 Material and Methods .............................................................................. 98 

5.2 Results .................................................................................................. 103 

5.2.1 The fate of excessively ageing neutrophils in cancer ...................... 105 

5.2.2 The recruitment of excessively ageing neutrophils to tumors ......... 106 

5.2.3 The role of excessively ageing neutrophils in tumor progression ... 111 

5.2.4 The mechanisms excessively ageing neutrophils employ to mediate 

tumor growth ................................................................................................ 114 

6 Conclusion ................................................................................................... 117 

7 Table of figures and tables ........................................................................... 119 

8 References .................................................................................................. 123 

9 Acknowledgements ...................................................................................... 143 

10 Publications and scientific presentations ..................................................... 144 

11 Affidavit ........................................................................................................ 147 

12 Confirmation of congruency between printed and electronic version of the 

doctoral thesis .................................................................................................... 148 

 



10 

 

Abstract 

Neutrophils have always been recognized as key players in the acute 

inflammatory response. Their contribution to the pathogenesis of malignant 

tumors, however, is an emerging concept. Recent findings revealed that 

neutrophils undergo phenotypic changes during their time in the circulation, a 

process referred to as biological ageing. Whereas these changes have been 

shown to be crucial for their anti-infectious functions, studies also revealed these 

highly reactive immune cells can oppose a threat to the vascular health. The role 

of neutrophil biological ageing in cancer, however, remains unknown. In the 

present study, we now demonstrate that due to specific chemokines released 

during early tumorigenesis, biological ageing of circulating neutrophils is further 

accelerated, allowing these innate immune cells to accumulate in malignant 

lesions. This is facilitated by DAMPs derived from the tumor, which activate the 

NLRP3 inflammasome in peritumoral macrophages and, in turn, microvascular 

endothelial cells, ultimately facilitating the recruitment of neutrophils to the 

malignancies. Once present in the neoplastic lesions, neutrophils supported tumor 

progression by stimulating tumor cell proliferation through release of neutrophil 

elastase. Counteracting neutrophil ageing (via blockade of the chemokine receptor 

CXCR2) or neutrophil recruitment to the tumor (via inhibition of NLRP3 

inflammasome activation) in tumor-bearing mice severely compromised tumor 

growth. In conclusion, our data uncover a self-sustaining mechanism of malignant 

tumors that induces excessive biological ageing of circulating neutrophils and 

thereby promotes the progression of these neoplastic lesions. This process 

represents a particularly promising therapeutic target as first clinical studies 

already revealed encouraging results of using CXCR2 inhibitors in breast cancer. 
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1  Introduction 

1.1  Cancer 

Cancer is a disease defined by cells that are able to proliferate indefinitely, resist 

cell death, secrete self-sustaining growth signals, withstand anti-growth signals, as 

well as enhance angiogenesis and invade and metastasize (Hanahan & Weinberg, 

2011). As healthy tissue successfully manages to control all these aspects, cancer 

is considered a disease that is caused by genome instability (Hanahan & 

Weinberg, 2000). These neoplastic cells can arise from different tissues and 

organs. However, since mortality rates vary among different types of cancer, it 

becomes apparent that tumors are not merely clones of malignant cells, but rather 

complex organs (Egeblad, Nakasone, & Werb, 2010).  

 

1.1.1 Breast cancer 

Breast cancer develops from any cell of the mammary gland. However, most 

breast tumors (95 %) belong to the group of adenocarcinomas which means they 

developed from epithelial cells of the gland (Makki, 2015). Breast cancer accounts 

for about 25.1 % of all cancers and is the most common malignancy in women 

worldwide (Ghoncheh, Pournamdar, & Salehiniya, 2016). According to the World 

Health Organization (WHO), this disease is impacting 2.1 million women per year 

(WHO, 2018a).  

Apart from the female sex, the major risk factor for this disease is age. About 80 % 

of the cases are diagnosed in women above the age of 50 (Benson et al., 2009). 

With up to 10 % of breast cancer cases in western countries being linked to 
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mutations in certain genes, genetic predisposition also plays its part in developing 

this disease (McPherson, Steel, & Dixon, 2000). For instance, with breast cancer 

gene-1 (BRCA1) and -2 (BRCA2), two genes have been identified in which 

inherited mutations cause a higher risk of developing breast cancer (Ford et al., 

1998; King, Marks, & Mandell, 2003). Moreover, studies revealed that increased 

concentrations of endogenous estrogens in the serum are strongly associated with 

a higher risk for breast cancer in postmenopausal women (Key, Verkasalo, & 

Banks). Hence, as prevention it has already been suggested to influence the 

hormonal milieu of women at risk (McPherson et al., 2000). As several studies 

revealed that incidence rates are higher in more developed countries, 

corresponding rates in less developed countries are still lower. However, even in 

these countries rates are rising, suggesting external factors such as diet and 

alcohol consumption may also contribute to the pathogenesis of this oncological 

disorder (Key et al., 2001). 

 

1.1.2 Head and neck cancer 

More than 90 % of all head and neck cancers are squamous cell carcinomas. 

These can arise from squamous cells in mucous membranes in various subsites of 

the head and neck region: the hypopharynx, oropharynx, lip, oral cavity, 

nasopharynx, or larynx (Marur & Forastiere, 2008; Vigneswaran & Williams, 2014). 

Contrary to breast cancer, the squamous cell carcinoma of the head and neck only 

accounts for about 5-10 % of all cancers (Vigneswaran & Williams, 2014).  

Continuous exposure to tobacco and alcohol has been linked to the development 

of these malignancies (Marur & Forastiere, 2008). However, recently the infection 
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with high-risk human papillomaviruses (HPV), especially type 16, has also been 

shown to be implicated in the pathology of malignancies in the upper airway, such 

as respiratory papillomatosis and oropharyngeal cancer (Gillison et al., 2012; 

Sturgis & Cinciripini, 2007). Previously, these specific types of HPV were only 

linked to malignancies of the anogenital area (McKaig, Baric, & Olshan, 1998), as 

for instance, 80 % of cervical tumors are caused by these viruses (Bosch et al., 

1995). 

 

1.2 Therapeutic approaches of cancer 

In localized stage I tumors, surgery is still the most effective way of treatment, as it 

removes 100 % of all tumor cells. However, in many cases, with stage II or stage 

III malignancies, surgical approaches are combined with radiotherapy. Clinical 

radiotherapy had its debut in 1896 when Emil Grubbé treated advanced ulcerated 

breast cancer with X-rays (Bernier, Hall, & Giaccia, 2004). The aim of this form of 

therapy is to use high doses of radiation in order to eliminate cancer cells and 

shrink tumors. This method can either be employed pre-surgery (‘neo-adjuvant’), 

post-surgery (‘adjuvant’), or intraoperative. Radiotherapy alone is used in early 

stage or non-metastasized advanced head and neck cancers (Urruticoechea et al., 

2010). In case of more advanced tumors or stage IV malignancies, where the 

tumor has spread from its place of origin to another organ, systemic treatment is 

necessary. 

One example of a systemic treatment approach is the use of chemotherapeutics. 

The first cancer chemotherapeutics were developed in 1940. Whereas the early 

agents, the alkylating agents, were based on highly electrophilic reagents that 
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have the ability to react with cellular nucleophiles, the second group of cancer 

chemotherapeutics were antimetabolites (A. Baudino, 2015). Both reagents 

interfere with deoxyribonucleic acid (DNA) synthesis, thus, lead to cancer cell 

death. Nowadays, chemotherapy usually comprises a cocktail of many different 

reagents (Shewach & Kuchta, 2009) and can be used in several different ways: as 

neoadjuvant therapy (pre-surgery) in order to reduce the size of the tumor that has 

to be removed, adjuvant therapy (post-surgery) to ensure any tumor cells that 

might be left in patient are removed as well or concomitant without any surgery (A. 

Baudino, 2015). 

However, since chemotherapeutic reagents are used to treat the entire body, they 

also target and damage healthy tissue. Hence, side effects are usually quite 

severe (A. Baudino, 2015). It has become apparent that each tumor needs to be 

targeted directly and in unique ways in order to further reduce mortality, salvage 

healthy tissue and reduce side effects. Thus, the concept of targeted therapy 

evolved. These new targets include growth factors, signaling molecules, cell-cycle 

proteins, modulators of apoptosis, as well as molecules enhancing angiogenesis 

(Urruticoechea et al., 2010). In breast cancer, blocking the human epidermal 

growth factor receptor-2 (HER-2) has been shown to potently inhibit proliferation of 

breast cancer cells and is already used to treat HER-2 positive breast cancer 

patients (Plosker & Keam, 2006). Another example is the approach of targeting the 

epidermal growth factor receptor (Jablonska, Leschner, Westphal, Lienenklaus, & 

Weiss) with Cetuximab, a monoclonal antibody (mAb). It binds to the epidermal 

growth factor receptor with high affinity which has been shown to inhibit cell 

proliferation, enhance apoptosis, reduce angiogenesis, as well as invasiveness 

and metastasis (Harding, 2005). Another systemic treatment approach aiming to 
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target the tumor without causing severe side effects, is hormonal therapy. This 

treatment modality is often used in breast cancer, as certain subtypes were shown 

to be affected by hormone levels. The most common types of hormone therapy 

either aim to lower estrogen level within the entire system or to block estrogen 

from binding to its receptor on breast cancer cells (Burstein et al., 2018; Fabian, 

2007). 

 

1.3 Immunotherapy 

The most recent advances in treating cancer were made in the field of cancer 

immunotherapy. In order to develop solid tumors, cancer cells have to find 

mechanisms to avoid immune recognition and their subsequent elimination. The 

aim of immunotherapy is to use these mechanisms, interfere with them, and 

thereby inhibit tumor growth (Farkona, Diamandis, & Blasutig, 2016). For instance, 

blocking immune checkpoints which cancer cells employ to activate immune-

inhibitory pathways (Pardoll & Topalian, 1998). One of these is the cytotoxic T 

lymphocyte-associated protein-4 (CTLA-4), a receptor that down-regulates T cell 

activation upon binding one of its ligands, CD80 or CD86. By administering mAbs 

against CTLA-4, cancer cells can no longer attach to the immune checkpoint and 

anti-cancer T cell responses are fostered (Leach, Krummel, & Allison, 1996; Ribas 

et al., 2016). Indeed, clinical trials revealed promising results for melanoma 

patients with metastatic disease (Hodi et al., 2010) and led to the approval by the 

Food and Drug Administration (FDA) in 2011 (Farkona et al., 2016). Another 

checkpoint molecule is the programmed cell death protein-1 (PD-1) receptor, 

which is also expressed on T cells and inhibits proliferation, cytokine release, as 
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well as reduces their cytotoxic properties upon binding (Ishida, Agata, Shibahara, 

& Honjo, 1992; Keir, Butte, Freeman, & Sharpe, 2008). The most prominent ligand 

for PD-1 is PD-L1 which can be found on healthy, but also on cancer cells. 

Inhibiting the interaction of PD-1 and PD-L1 was shown to enhance T cell function 

and, thereby, increase antitumor activity of these immune cells (Topalian et al., 

2012). Several mAbs targeting PD-1 and PD-L1 have already been approved by 

the FDA after successful clinical trials. Recent studies also revealed other potential 

pathways such as lymphocyte activation gene 3 (Triebel et al., 1990) or the T cell 

immunoglobulin and mucin domain-containing 3 protein (Sakuishi et al., 2010), 

that could evolve as future therapeutic targets. Apart from the immune checkpoint 

inhibitors, another promising approach aiming to train the immune system to attack 

cancer, is the chimeric antigen receptor (CAR) T cell therapy. It involves isolating 

T cells from the patient, equipping these isolated immune cells with man-made 

antigen receptors that target the tumor, and transferring the improved T cells back 

into the patient (Almåsbak, Aarvak, & Vemuri, 2016; Farkona et al., 2016). 

Especially when it comes to hematologic cancers, this approach has shown very 

encouraging results (Chavez, Bachmeier, & Kharfan-Dabaja, 2019). Cancer 

immunotherapy also involves the use of monoclonal antibodies in order to target 

cancer-specific antigens, or of non-specific adjuvants in order to boost the immune 

system in general (Circelli, Tornesello, Buonaguro, & Buonaguro, 2017; Weiner, 

Surana, & Wang, 2010). Moreover, the development of cancer vaccines has been 

another immunotherapeutic strategy. This approach aims to initiate the process of 

activating the immune system through administering tumor antigens 

(Yaddanapudi, Mitchell, & Eaton, 2013). Despite all these advances, further 
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progress still needs to be made in this area. In order to continue this progress, it is 

of utter importance to understand how the immune system works. 

 

1.4 The immune system 

In a world full of pathogenic as well as non-pathogenic threats to the homeostasis 

of our bodies, the immune system is essential to ensure our wellbeing. Being a 

highly conserved system among many species, highlights once more its 

importance for our survival. Consequently, dysfunctions of the immune system can 

oppose a severe threat to our health: whereas overactivity can lead to allergies or 

autoimmune diseases, underactivity causes the body to be susceptible to 

infections or even the development of tumors (Parkin & Cohen, 2001). Hence, 

understanding the underlying mechanisms of immune responses is of great 

importance to be able to combat its dysfunctions.  

Historically, the immune system is divided into two parts: the innate and the 

adaptive immune system (Medzhitov & Janeway, 2000). 

 

1.4.1 The adaptive immune system 

Comparing the two parts of the immune system, the adaptive immune system 

represents the more fine-tuned immune response, meaning it operates with a 

small number of cells that possess high specificity for an individual threat (Bonilla 

& Oettgen, 2010; Chaplin, 2010). These immune responses are performed by T 

and B lymphocytes that are equipped with antigen specific receptors. Antigen 

presenting cells, such as macrophages and dendritic cells, phagocytose 
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pathogens and present small pieces on major histocompatibility complex (MHC) 

molecules on their surface. Subsequently, T and B lymphocytes can bind these via 

their specific receptors and thus, become activated. These cells against a specific 

antigen are able to persist within the body for the entire life which creates an 

immune memory that can be reactivated after another encounter with the target 

antigen and consequently, provide a rapid response when necessary (Bonilla & 

Oettgen, 2010). After developing in the bone marrow from hematopoietic stem 

cells that give rise to their lymphoid progenitor, T cells mature in the thymus and 

can be differentiated into the two types: cytotoxic CD8-positive (CD8+) T cells, with 

the primary function to eliminate infected cells, and CD4-positive (CD4+) T cells 

which are mainly responsible for the regulation of cellular and humoral immune 

responses (Chaplin, 2010; Cooper & Alder, 2006). CD4+ T cells can further be 

divided into T-helper (TH) cells and regulatory (Treg) T cells (Bonilla & Oettgen, 

2010). B lymphocytes are also developed from the lymphoid progenitor in the bone 

marrow. After activation, naive B cells can either develop into effector cells or 

plasma cells (Pieper, Grimbacher, & Eibel, 2013). Through becoming plasma cells, 

they are responsible for the humoral part of the adaptive immunity by producing 

and secreting antibodies (LeBien & Tedder, 2008). Antibodies can bind to their 

respective antigen, neutralize it, activate the complement system, and thereby, 

recruit more phagocytosing cells (Forthal, 2014).  

As both cell types are depending on the exposure to antigen presenting cells from 

the innate immune system and can also influence the innate response by 

secreting cytokines, it becomes apparent that the separation between the two 

immune responses is rather historical than just functional. 
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1.4.2 The innate immune system 

The innate immune system represents the body`s first line of defense against 

potential threats and provides a rapid, yet more unspecific response (Medzhitov & 

Janeway, 2000). In addition to physical barriers or defense mechanisms such as 

saliva or gastric acid, the innate immune system has to determine what represents 

a threat to the homeostasis in order to protect the body. Therefore, three ways of 

immune recognition have been proposed (Medzhitov & Janeway, 2002). For 

example, the host is able to determine “microbial non-self” by binding conserved 

microbial products only produced by microorganisms which are not part of the 

body. They are referred to as pathogen-associated molecular patterns, called 

PAMPs (Mogensen, 2009). Moreover, “missing self” is identified by applying 

markers that are always part of the “normal self”, which are unique for the host and 

not part of microorganisms. Several studies revealed that the immune system 

eliminates cells that do not express higher levels of the MHC class I protein. 

Consequently, the concept of missing self was introduced. MHC class I is 

expressed on all nucleated cells and only downregulated by viral infection or 

cellular damage, hence, serving as an fundamental marker for self-recognition 

(Ljunggren & Kärre, 1990). In order to detect “induced and altered self” the host 

relies on certain markers that are released upon infection or cellular damage, so 

called damage-associated molecular patterns (DAMPs) (Bianchi, 2007; Matzinger, 

2002). These three mechanisms are the door opener to activating the innate 

immune response. 
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1.4.2.1 Pathogen-associated molecular patterns, Damage-associated 

molecular patterns and their pattern-recognition receptors  

In order to recognize these structures and distinguish PAMPs as well as DAMPs, 

the host immune system has a set of receptors, called the pattern-recognition 

receptors (PRR). These receptors can either be membrane-associated, inside the 

cell, or present in a secreted form. Consequently, several different types of PRR 

can be distinguished: transmembrane toll-like receptors (TLR), cytosolic receptors 

such as nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) or 

retinoic acid inducible gene-I like receptors (RLR), and the secreted PRR (A. 

Iwasaki & Medzhitov, 2010). 

In total, 11 human TLRs and 13 TLRs in mice have been identified so far (X. 

Zhang & Mosser, 2008). TLRs located on the cell surface such as TLR4, TLR1 

and 2, TLR6, and TLR5 largely recognize PAMPs on the surface of microbes, 

whereas endosomal TLRs such as TLR3, TLR7, TLR8, and TLR9 recognize 

microbial nucleic acids, double-stranded (ds) (Srikrishna & Freeze), ribonucleic 

acid (RNA), single-stranded (ss) RNA, and dsDNA (Takeda & Akira, 2005). 

Examples for PAMPs expressed on the surface of pathogens include 

lipopolysaccharides (LPS) of gram-negative bacteria or peptidoglycan of gram-

negative and gram-positive bacteria (Mogensen, 2009). These receptors are 

mainly found on macrophages and dendritic cells but also on neutrophils, 

eosinophils, and epithelial cells (Chaplin, 2010; Akiko Iwasaki & Medzhitov, 2004). 

Cytosolic TLRs have been shown to detect viral proteins (Pichlmair & Reis e 

Sousa, 2007). Since the NLRs are cytosolic as well, they also bind soluble 

intracellular ligands. There are over 20 NLR encoding genes, all containing the 

following three domains: the C-terminal leucine-rich repeat (LRR) domain which is 
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responsible for binding microbial patterns, the NOD domain that is used to form 

multimeric complexes, and the N-terminal effector domain (Kanneganti, Lamkanfi, 

& Núñez, 2007). The NLRs are all able to sense pathogens but also recognize 

DAMPs released from injured or stressed tissue (Gallucci & Matzinger, 2001; 

Martinon, Mayor, & Tschopp, 2009). These DAMPs are molecules that are 

chemically completely unrelated, however, are all potent triggers of sterile 

inflammation (Hernandez, Huebener, & Schwabe, 2016). The secreted PRR are 

pattern-recognition proteins that contribute to initiating an immune response by 

mediating opsonization and activating the complement system: For instance, 

Dectin-1 can be activated through components of yeast. Collectins have the ability 

to recognize microbial carbohydrates and consequently, opsonize the microbe for 

phagocytosis. Pentraxins and Ficolins also recognize PAMPs and activate 

complement system (Bottazzi, Doni, Garlanda, & Mantovani, 2010). 

 

1.4.2.2 The innate immune response 

Once the host system has sensed danger, either by the binding of PAMPs or 

DAMPs to PRR, an inflammatory response is triggered, resulting in the recruitment 

of immune cells. The innate immune system comprises dendritic cells, mast cells, 

natural killer cells, as well as phagocytes such as macrophages, monocytes, and 

neutrophils (Chaplin, 2010). Together with eosinophils and basophils, neutrophils 

also belong to the group of polymorphonuclear leukocytes or granulocytes. Hence, 

these cells do not only display a varying shape of their nucleus but also contain 

antimicrobial granules in their cytoplasm (Geering, Stoeckle, Conus, & Simon, 

2013). Regarding the timescale of the immune response, neutrophils are recruited 
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to the site of infection first. Next, monocytes reach the target destination. All of 

these cells are highly phagocytic and therefore play an important role in the 

clearance of pathogens (S. Nourshargh & Alon, 2014; Zuchtriegel et al., 2015). 

 

1.4.2.2.1 The leukocyte recruitment cascade 

In order to get to sites of inflammation, leukocytes follow a distinct cascade of 

events which is referred to as the leukocyte adhesion cascade (Ley, Laudanna, 

Cybulsky, & Nourshargh, 2007) (Fig. 1.1). First, these immune cells are captured 

and roll on the luminal surface of postcapillary venular vessel walls (S. Nourshargh 

& Alon, 2014; Sperandio et al., 2003). This weak adhesive interaction is mostly 

mediated through a family of transmembrane glycoproteins: the selectins. L-

selectin/CD62L is known to be expressed on leukocytes, whereas E-selectin is 

found on endothelial cells and P-selectin/CD62P is expressed on activated 

endothelial cells and platelets (Kansas, 1996). All these selectins interact with P-

selectin glycoprotein ligand 1 (PSGL-1) (McEver & Cummings, 1997; Sperandio, 

2006), a ligand expressed on leukocytes and other cells. Hence, endothelial cells 

capture circulating leukocytes via interaction of E- and P-selectin with PSGL-1, 

despite constant blood flow. Several studies revealed that the shear stress arising 

from blood flow is even required for successful capturing of leukocytes (Lawrence, 

Kansas, Kunkel, & Ley, 1997). Furthermore, E-selectin/CD62E was also shown to 

bind to glycosylated CD44 and E-selectin ligand-1 (ESL-1) (Hidalgo, Peired, Wild, 

Vestweber, & Frenette, 2007). The binding of L-selectin to PSGL-1 results in 

leukocyte-leukocyte interactions, leading to secondary leukocyte capturing by 

already adhesive immune cells. Apart from their role in capturing and rolling, 
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studies revealed selectins also activate immune cells (Zarbock & Ley, 2009). 

Subsequently, this first weak adhesion is further strengthened by inflammatory 

cytokines that activate endothelial cells and thereby, cause an upregulation in 

adhesion molecules as well as chemokines and lipid chemoattractants (Campbell, 

Qin, Bacon, Mackay, & Butcher, 1996). These chemokines and chemoattractants 

are very strong activators of integrins - the main molecules responsible for the firm 

intravascular adherence of leukocytes. Inside-out signaling pathways from 

chemokines binding to chemokine receptors, result in switching their confirmation 

from low-affinity to extended-intermediate and finally high-affinity conformation 

with its open ligand-binding pocket (Arnaout, Mahalingam, & Xiong, 2005). This, 

for instance, allows the β2 integrins LFA-1/CD11a and Mac-1/CD11b, expressed 

on leukocytes, to bind to ICAM-1/CD54 or ICAM-2/CD102 on endothelial cells. The 

β1 integrin VLA-4/CD49d can bind to VCAM-1/CD106 both facilitating firm 

adhesion of the leukocytes to the endothelium (Ley et al., 2007). Moreover, it has 

been shown that further downstream this interaction activates the non-receptor 

tyrosine kinase Syk which has been shown to play an important role for neutrophil 

activation (Mócsai, Ruland, & Tybulewicz, 2010; Schymeinsky, Then, & Walzog, 

2005). Subsequently, leukocytes are crawling along the endothelial surface to find 

appropriate sites of transmigration. Guided by adherent platelets (Zuchtriegel et al. 

PLOS Biol 2016), leukocytes then transmigrate either via the transcellular route 

(roughly 10%), directly through the cell, or the paracellular pathway (roughly 90%) 

through endothelial-cell junctions. However, the route of transmigration seems to 

be dependent of the type of the underlying tissue, therefore, percentages vary 

(Maas, Soehnlein, & Viola, 2018; Phillipson et al., 2006; Woodfin et al., 2011). In 

order to arrive in the inflamed tissue, three different barriers have to be crossed: 
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Figure 1.1: A schematic overview of the leukocyte adhesion cascade. First, leukocytes roll on 

the endothelial surface mediated by members of the family of selectins, until they firmly adhere via 

interactions of members of the immunoglobulin superfamily with integrins. Next, leukocytes crawl 

along the endothelium in order to find appropriate sites for transmigration that allow them to enter 

the interstitium where they can finally resolve the inflammation. 

 

 

first the endothelial cells (passage time 2-5 min) guided by adhesion and signaling 

molecules such as JAM-A, PECAM-1, CD99, CD99L2, and ESAM (Bixel et al., 

2010; Muller, Weigl, Deng, & Phillips, 1993; Sussan Nourshargh, Krombach, & 

Dejana, 2006; Woodfin et al., 2007), second the endothelial-cell basement 

membrane, mainly consisting of collagen type IV and laminins (passage time 5-

15min), and finally the pericyte sheath. Once leukocytes have overcome that 

barrier, they move through the interstitium along a chemokine gradient to their 

target destination (S. Nourshargh, Hordijk, & Sixt, 2010). 

 

1.5 Neutrophil functions in acute inflammatory conditions 

The importance of neutrophils for resolving inflammation and maintaining 

homeostasis (Arandjelovic & Ravichandran, 2015) also becomes evident when 

looking at the number of these leukocytes in the body: in humans, 50-70 % of the 



25 

 

circulating leukocytes are neutrophils, and up to 2x1011 new neutrophils are 

produced daily under homeostatic conditions. Under inflammatory conditions these 

numbers can even raise higher (Mayadas, Cullere, & Lowell, 2014). Neutrophils 

develop from the myeloid precursor in the bone marrow (Borregaard, 2010) and 

their continuous production is ensured by the granulocyte-colony stimulating factor 

(G-CSF) (Lieschke et al., 1994). These immune cells play a critical role in the 

clearance of pathogens, with their phagocytic capabilities that allow them to 

internalize and destroy pathogens (Kennedy & DeLeo, 2009), and by releasing 

reactive oxygen species or antimicrobial proteins such as cathepsins or defensins 

(Häger, Cowland, & Borregaard, 2010). Another prominent mechanism how 

pathogens are eliminated by neutrophils is through the release of neutrophil 

extracellular traps (NETs). These traps mainly consist of histones as well as 

antimicrobial proteins and enzymes, such as neutrophil elastase (NE) (Brinkmann 

et al., 2004). Therefore, their main function is not only to capture pathogens and 

keep them from spreading, it is also to eliminate those germs (Kolaczkowska & 

Kubes, 2013). More recent findings revealed neutrophils can also take part in 

immunoregulatory functions: Activated neutrophils are capable of expressing and 

releasing cytokines, thereby influencing the recruitment of other immune cells 

(Cassatella, 1999). 

 

1.6 Neutrophil functions in tumors 

As described earlier, neutrophils are important for the clearance of pathogens and 

for the re-establishment of the body’s homeostasis under acute inflammatory 

conditions. However, under chronic inflammatory conditions neutrophil functions 
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can differ a fair bit (Soehnlein, Steffens, Hidalgo, & Weber, 2017). As tumors are 

often described as “wounds that do not heal”, this is also the case when it comes 

to malignancies (Dvorak, 1986). Neutrophils have been shown to be present in 

various types of solid tumors and their microenvironment (Jensen et al., 2012; Rao 

et al., 2012; Sokratis Trellakis et al., 2011). Whereas early studies described 

tumor-associated neutrophils as bystanders (Uribe-Querol & Rosales, 2015), 

several studies linked increased neutrophil numbers in blood and tumors to a poor 

outcome for the patients (Gentles et al., 2015; Shen et al., 2014; S. Trellakis et al., 

2011). These findings suggested a prognostic function of the neutrophil-to-

lymphocyte ratio in tumors and blood (Templeton et al., 2014). Thus, it has 

become apparent that neutrophils must display various functions when present in 

tumors or their environment (Fig. 1.2). For instance, by releasing large amounts of 

reactive oxygen species (ROS) or enzymes, neutrophils can cause DNA damage 

within epithelial cells and thus, help initiate tumor development (Antonio et al., 

2015; Knaapen, Güngör, Schins, Borm, & Van Schooten, 2006). Moreover, 

neutrophils release NE. By entering tumor cells, this serine protease has the ability 

to downregulate the insulin receptor subrate-1 (IRS-1), a negative regulator of 

phosphoinositide 3-kinase (PI3K). Hence, this leads to the activation of PI3K, 

resulting in increased tumor cell proliferation (Houghton et al., 2010). Furthermore 

tumor-associated neutrophils are large sources of matrix metalloproteinase 9 

(MMP9) (Coussens, Tinkle, Hanahan, & Werb, 2000), a factor well known for its 

role in tissue repair and regeneration (LeBert et al., 2015). A study by Bekes et al. 

revealed, neutrophils present within the tumor microenvironment produce MMP9, 

which contributes not only to angiogenesis but also tumor progression and 

metastasis (Bekes et al., 2011). In addition, by remodeling the extracellular matrix 
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(ECM), MMP9 can cause the release of vascular endothelial growth factor 

(VEGF).Hence, this further supports tumor angiogenesis as this factor was shown 

to induce endothelial cell proliferation and tubule formation in vitro (Bergers et al., 

2000; Nozawa, Chiu, & Hanahan, 2006). As it has also been revealed that VEGF 

has the ability to recruit more MMP9 rich neutrophils (Christoffersson et al., 2012), 

this can become a vicious cycle. In addition, tumor-associated neutrophils are able 

to directly release their intracellularly stored VEGF upon tumor necrosis factor 

(TNF) stimulation (Gaudry et al., 1997).  

Neutrophils can also contribute to tumor immunity by orchestrating the activity of 

other immune cells. For example by releasing Arginase-1 (Arg-1), neutrophils are 

capable of inhibiting T cell function (Dumitru, Moses, Trellakis, Lang, & Brandau, 

2012). Hence, depleting neutrophils in tumor-bearing mice lead to increased CD8+ 

T cell numbers in malignant tumors and, consequently, reduced tumor growth 

(Fridlender et al., 2009).  
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Figure 1.2: Neutrophil function within tumor development and progression. By releasing ROS 

or proteases neutrophils can cause damage to endothelial cells and thus, support carcinogenesis. 

The release of NE has been shown to enhance tumor cell proliferation. Moreover, neutrophils 

contain large amounts of MMP9, which can not only increase tumor progression and metastasis, 

but also lead to remodeling the ECM thereby causing the release of VEGF. This factor has the 

ability to support tumor angiogenesis. By releasing Arg-1, neutrophils can inhibit CD8+ T cell 

responses. (adapted by (Coffelt, Wellenstein, & de Visser, 2016)). 

 

 

 

In contrast to these findings, other studies suggested neutrophils can also engage 

in an anti-tumor role by promoting tumor cell clearance and by activating the 

immune system to combat the tumor (Eruslanov et al., 2014; Mantovani, 2018). 

Based on these contrasting findings, a separation of tumor-associated neutrophils 

into two groups has been proposed: the “N1” phenotype describes anti-

tumorigenic neutrophils and the “N2” phenotype refers to pro-tumorigenic 
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Table 1.1: Molecules associated with the N1 and N2 phenotype of neutrophils. The 

expression of several molecules differs between the N1 (anti-tumorigenic) and N2 (pro-

tumorigenic) phenotype of neutrophils. The N2 neutrophils show high expression levels of Arg-1, 

MMP9, or VEGF. In contrast, N1 neutrophils exhibit low expression levels of these molecules. 

neutrophils (Fridlender et al., 2009). These phenotypes can be distinguished by 

their expression levels of several molecules:  

N1 (anti-tumorigenic) N2 (pro-tumorigenic) 

Arg-1 low Arg-1 high 

MMP9 low MMP9 high 

VEGF low VEGF high 

C-C motif chemokines low C-C motif chemokines high 

 

The phenomenon of cells changing phenotypes under different circumstances 

such as chronic inflammation or tumors is still raising a lot of questions. It has 

been proposed that tumor-derived factors can play a role in the phenotypic switch 

from protecting neutrophils under acute inflammatory conditions to tumor-

supporting neutrophils (Powell & Huttenlocher, 2016). Furthermore, a recent study 

revealed blocking transforming growth factor-beta (TGF-β) in the tumor 
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microenvironment changes the pro-tumor “N2” neutrophils to the anti-tumor “N1” 

phenotype (Fridlender et al., 2009).  

 

1.6.1 Recruitment of neutrophils to tumors 

How neutrophils are recruited to tumors is still under debate. It is likely that the 

tumor and its microenvironment release cues that actively contribute to the 

recruitment of neutrophils (Powell & Huttenlocher, 2016). For instance, these 

signals can be chemokines and cytokines, such as interleukin (IL) CXCL8/IL-8 

(Xie, 2001). By expressing the receptors CXCR1/IL-8RA and CXCR2/IL-8RB, 

neutrophils can bind these cytokines and become activated (Luan et al., 1997; 

McDonald et al., 2010). Recent studies also revealed that by blocking CXCR2, 

myeloid leukocyte recruitment into the tumor was impaired which increased the 

efficacy of chemotherapy in breast cancer models (Acharyya et al., 2012). This 

further hints that interfering with neutrophil recruitment might be a potent 

therapeutic approach. Moreover, targeting cytokines instead of their receptors has 

already been suggested as a potential treatment option (Bekes et al., 2011) as IL-

8 was shown to be overexpressed in several carcinomas (Xie, 2001). However, 

this cytokine-receptor axis is most likely not the only pathway of neutrophil 

recruitment. Moreover, cytokines such as IL-1 or IL-6 are secreted and have 

already been implicated in supporting carcinogenesis (Ben-Neriah & Karin, 2011; 

Grivennikov, Greten, & Karin, 2010). It has also been proposed that tumors 

release DAMPs, as their high metabolism causes a lot of necrotic tissue and 

debris (Kreuzaler & Watson, 2012). For instance, these can be heat shock 

proteins, adenosine triphosphate (ATP), s100 proteins, uric acid, or mediators 



31 

 

such as high-mobility group box 1 (HMGB1). As mentioned earlier, these DAMPs 

can represent a potent trigger for sterile inflammation. Being constantly released 

by the tumor and its environment, this can cause a chronic state of inflammation, 

which has the ability to support tumor progression (Hernandez et al., 2016). By the 

binding of DAMPs to PRR, activation of inflammatory pathways will take place, 

resulting in the recruitment of inflammatory cells. It should also be mentioned that 

several studies revealed DAMPs are released during anti-tumor therapy 

(Srikrishna & Freeze, 2009), however, not leading to tumor progression, but 

causing a reinforcing antitumor immune response (Hernandez et al., 2016). 

 

1.7 Aged neutrophils 

Until not too long ago, neutrophils were thought to be relatively short lived cells 

that only remain in the circulation for a couple of hours. However, a more recent 

study revealed that human neutrophils can stay in the circulation for up to 5.4 days 

(Pillay et al., 2010). Furthermore, their expected shorter life span also led to the 

conclusion that neutrophils represent a homogenous cell population, once 

released from the bone marrow (Nicolas-Avila, Adrover, & Hidalgo, 2017). 

However, this view is rapidly changing over the past years as different subsets of 

neutrophils have now been described (Silvestre-Roig, Hidalgo, & Soehnlein, 

2016). For instance, several studies revealed that neutrophils undergo phenotypic 

changes during their time in the circulation, a process that is referred to as the 

“biological ageing” of neutrophils (J. M. Adrover, Nicolas-Avila, & Hidalgo, 2016). 

Once neutrophils are released from the bone marrow they are known to express 

high levels of CXCR2, L-selectin, and Ly6G. Several ex vivo as well as in vivo 
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Figure 1.3: Schematic overview of the neutrophil life cycle and their fate in inflammation. 

When non-aged neutrophils leave the bone marrow, they express high levels of CXCR2 and low 

levels of CXCR4 on their surface. However, during their time in the circulation neutrophils undergo 

phenotypic changes associated with an upregulation of the surface molecules CD11b, ICAM-

1/CD54, TLR4, and CXCR4 while downregulating surface expression of CXCR2. This process is 

referred to as biological ageing. Under steady state conditions, these aged neutrophils are 

recruited back in the bone marrow (BM) and eliminated via BM macrophages. In contrast, under 

inflammatory conditions these immune cells are the first immune cells recruited to the site of injury 

or infection. 

studies revealed that over time the expression levels of several molecules such as 

CXCR4/CD184 (Martin et al., 2003), CD11b, CD49d (J. M. Adrover et al., 

2016),TLR4, ICAM-1/CD54, and CD45 (D. Zhang et al., 2015) increases, whereas 

expression levels of CXCR2 (Eash, Means, White, & Link, 2009), L-selectin 

(Casanova-Acebes et al., 2013), and Ly6G (D. Zhang et al., 2015) were shown to 

decrease (Fig. 1.3).  
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Figure 1.4: Schematic overview of factors driving the biological ageing process in 

neutrophils. Binding of CXCL2 to CXCR2 induces the biological ageing process; binding of 

CXCL12 to CXCR4 antagonizes this process (adapted from (J. M. Adrover et al., 2019)).  

Regarding the factors that drive this biological ageing process in neutrophils, 

several different theories have been proposed: as this process begins once the 

cells are released into the circulation, it is likely to assume that a factor within the 

blood plasma is able to induce it. However, no specific factor could be determined 

just yet (J. M. Adrover et al., 2016). Moreover, a publication by Frenette’s group 

discussed the influences of the gut microbiota on the ageing of neutrophils. Germ-

free mice showed significantly reduced numbers of aged neutrophils, a phenotype 

that could be partly restored by administering bacteria-derived PRR agonists (D. 

Zhang et al., 2015). A very recent publication revealed that binding of neutrophil-

released CXCL2 to CXCR2 actually facilitates the ageing process in an autocrine 

manner, whereas binding of the ligand CXCL12 to its receptor CXCR4 

antagonizes it (J. M. Adrover et al., 2019). 

 

Studies regarding the function of aged neutrophils revealed that aged neutrophils, 

characterized through lower L-selectin expression, show more active β2 integrins, 

release more ROS and are more likely to form NETs (Brinkmann et al., 2004). 
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Furthermore, another study suggested that aged neutrophils serve as first 

responders during acute inflammation, further hinting towards aged neutrophils 

being highly reactive immune cells (Uhl et al., 2016). The fact that these cells 

seem to be aggressive immune cells also highlights the importance of a clearing 

mechanism in order to protect the circulation: by upregulating CXCR4 neutrophils 

can home back into the bone marrow, where they are cleared by bone marrow 

macrophages (Martin et al., 2003). Neutrophils that already migrated into tissues 

usually undergo apoptosis and are phagocytosed by resident tissue macrophages. 

This process is known to influence neutrophil granulopoesis via a negative 

feedback loop through IL-23 and IL-17, in order to ensure constant levels of 

neutrophils within the circulation (Stark et al., 2005). The role of aged neutrophils 

in chronic inflammatory conditions such as cancer, however, still raises a lot of 

questions. A very recent publication already pointed to the fact that neutrophil 

maturity may correlate with the complexity of neutrophil functions in cancer, and 

suggests targeting different stages of maturation may be a potential therapeutic 

approach (Mackey, Coffelt, & Carlin, 2019). 

 

1.8 The inflammasomes 

Inflammasomes represent a group of multimeric intracellular protein complexes, 

acting as signaling platforms upon detection of pathogenic or sterile stressors. The 

term “inflammasome” was first used by Tschopp and his group in 2002, describing 

a complex that regulated the activity of inflammatory caspases (Martinon et al., 

2009). Their main components are a sensor molecule, an adaptor protein called 

ASC (apoptosis-associated speck-like protein containing a CARD) and the 
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caspase-1. Several different types of inflammasomes can be distinguished, based 

on their sensor molecule, e.g. absent in melanoma 2 (AIM2), NLR family pyrin 

domain-containing 1 (NLRP1), NLR family pyrin domain-containing 3 (NLRP3) and 

NLR family CARD domain-containing protein 4 (NLRC4). Whereas NLRP1, 

NLRP3, and NLRC4 have a NLR sensor molecule, AIM2 has a DNA binding HIN 

domain (Latz, Xiao, & Stutz, 2013; Ozaki, Campbell, & Doyle, 2015).  

 

1.8.1 The NLRP3 inflammasome 

The NLRP3 inflammasome is one of the best characterized types of 

inflammasomes. As mentioned above, it consists of a sensor molecule that 

belongs to the NLR family, which can be further divided into an N-terminal effector 

domain, a central NACHT domain and a carboxy terminal, containing LRR (Ting et 

al., 2008). Once a threat is present within the cell, the usually auto-repressed 

NACHT domain is exposed. This causes the oligomerization of NLRP3 and ASC, 

which contains the caspase activation and recruitment (CARD) domain. 

Subsequently, the pro-caspase-1 is recruited. Next, CARD brings the monomers 

of pro-caspase-1 into close proximity which elicits the self-cleavage of caspase-1 

and creates its active form, resulting in proteolytically activating IL-1ß and IL-18 

(Latz et al., 2013; Tschopp & Schroder, 2010). The release of IL-1ß leads to the 

recruitment of innate immune cells, whereas IL-18 is important for the release of 

interferon-gamma and supports the activity of natural killer cells and T cells 

(Dinarello, 2006; He, Hara, & Núñez, 2016). 
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Figure 1.5: NLRP3 inflammasome complex formation. Once the cell is presented with a 

pathogen- or damage-associated threat, the auto-repression protecting the NLRP3 domains is 

removed. This leads to the oligomerization of NLRP3 and induces the recruitment of ASC, resulting 

in the activation of the caspse-1 and the secretion of the inflammatory cytokines IL-18 and IL-1β 

(adapted from (Tschopp & Schroder, 2010)). 

 

So far, several different types of immune cells are known to express the NLRP3 

inflammasome: macrophages, dendritic cells, neutrophils in the spleen and 

monocytes (Jo, Kim, Shin, & Sasakawa, 2016). In order to activate the NLRP3 

inflammasome, a two-step process has been proposed. The first step is a priming 

process, where components such as LPS bind to TLRs. This upregulates the 

nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) pathway 

and subsequently stimulates the transcription of NLRP3 inflammasome 

components (Bauernfeind et al., 2009; Franchi, Eigenbrod, & Núñez, 2009). For 

the second step of activation, three different possible ways have been described: 
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1) K+ efflux through a pore that is formed upon ATP binding to the P2X7 

receptor (Ketelut-Carneiro et al., 2015; Schmid-Burgk et al., 2015)  

2) Mitochondrial dysfunction that results in the production of ROS and the 

release of mitochondrial DNA into the cytosol (Lamkanfi & Dixit, 2014) 

3) Lysosomal rupture through the phagocytosis of particles, such as silica or 

Alum crystals, that results in the release of lysosomal proteases and 

cathepsin-B (Halle et al., 2008; Hornung et al., 2008) 

Activation of the NLRP3 inflammasome has been shown to be involved in many 

different pathologies. Therefore, deeper understanding of its mechanisms is 

crucial and could allow the development of novel therapeutics (Tschopp & 

Schroder, 2010). 

 

1.8.2 The NLRP3 inflammasome in tumors 

Persistent inflammation has been described to support carcinogenesis and tumor 

progression. Hence, it is not surprising that inflammasomes have been revealed to 

be abnormally expressed and activated in various types of tumors (H. Wang et al., 

2018). Especially, activation of the NLRP3 inflammasome has been subject to 

many studies. Some studies point to a protective function of inflammasome 

activation when it comes to an immune response against the tumor (Gasparoto et 

al., 2014). However, most studies revealed that the NLRP3 inflammasome 

contributes to tumor initiation, growth, as well as metastasis (Bruchard et al., 2012; 

Huang et al., 2017; H. Wang et al., 2018). Moreover, is was shown that all 

inflammasome components, such as NLRP3, caspase-1, as well as IL-1ß and IL-

18 are highly expressed in head and neck squamous cell carcinoma (HNSCC) cell 



38 

 

lines as well as a mouse HNSCC model (Huang et al., 2017). In breast cancer, 

elevated expression levels of IL-1ß have been shown to be associated with 

carcinogenesis (Jin et al., 1997). Overall, these findings point to the NLRP3 

inflammasome being an emerging target in tumor development and progression. 

However, with contrasting results its role seems to be complex. 
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2 Objective 

According to the World Health Organization, cancer is the second leading cause of 

death worldwide accounting for the passing of 9.6 million people in 2018 (WHO, 

2018b). Until today, treatment options are still limited. Thus, it is of great 

importance to further uncover mechanisms tumors employ to progress, allowing 

the identification of future therapeutic targets. As neutrophils have been shown to 

play a critical role in tumor initiation and progression (see 1.2.1), and their 

presence has even been suggested as a prognostic value, targeting these immune 

cells might represent a promising strategy. 

Therefore, the aim of the present studies was to unravel i) what causes the 

recruitment of neutrophils to the tumor, ii) what are the underlying mechanisms, 

and iii) what exactly is their phenotype and function, once present in the tumor and 

its microenvironment.   
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3 Material and Methods 

3.1 Ethics 

All following animal experiments were conducted from 2016 to 2019 at the Walter-

Brendel Centre of Experimental Medicine of the LMU München (Munich, 

Germany), after approval by the local governmental authorities (“Regierung von 

Oberbayern”, 02-16-17, 02-17-68 and Reichel 14) along their guidelines to ensure 

animal welfare. 

 

3.2 Animals 

For the experiments different mouse strains, purchased by Charles River 

(Sulzfeld, Germany) at the age of 6 to 8 weeks and weighing between 15-18 g, 

were used. Experiments with a mouse squamous cell carcinoma cell line (SCC 

VII) were conducted with male C3H/HeNCrl mice. For analyses with a mouse 

mammary carcinoma cell line (4T1), female BALB/cJ mice were used. All 

remaining experiments were performed with male C57BL/6NCrl mice. Animals 

were housed in the Walter Brendel Centre of Experimental Medicine of LMU 

München under standard conditions (22 ± 2 °C, 30 – 60 % humidity, 12 h light/dark 

cycle, lights on at 7 am) in cages of 3, with access to food and water ad libitum. 

 

3.3 Anesthesia 

During all experiments and surgical procedures, mice were anesthetized using a 

mixture of ketamine (100 mg/kg, zoetis, Parsippany, New Jersey, USA) and 
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xylazine (10 mg/kg, Bayer, Leverkusen, Germany) diluted in saline (Fresenius 

Kabi, Bad Homburg vor der Höhe, Germany) at a ratio of 1.5:0.5:7. Anesthesia 

was administered via intraperitoneal (i.p.) injection. Constant body temperature of 

mice was ensured by using heating plates and heating lamps. 

 

3.4 Cell lines 

In order to investigate leukocyte trafficking to tumors, the mouse head and neck 

squamous cell carcinoma cell line SCC VII and the mouse mammary carcinoma 

cell line 4T1 were obtained from Kirsten Lauber (Department of Radiotherapy and 

Radiation Oncology, LMU München). Tumor cells were cultured in RPMI (Thermo 

Fisher Scientific, Waltham, Massachusetts, USA) media, supplemented with 10 % 

FBS (Biochrom, Berlin, Germany) and 1 % HEPES (PromoCell, Heidelberg, 

Germany) at 37 °C and 5 % CO2. Furthermore, mouse brain endothelial cells 

(bEnd.3) were purchased from ATCC (Manassas, Virginia, USA) and cultured in 

DMEM (ATCC) supplemented with 10 % FBS at 37 °C and 5 % CO2. 

 

3.4.1 Thawing of cells 

Cryovials (Thermo Fisher Scientific) containing the different cell lines were kept in 

liquid nitrogen for their long-term storage. In order to culture cells, vials were 

thawed and diluted in 10 ml of the appropriate medium. After transferring the 

suspension in cell culture flasks (Corning, Corning, New York, USA), cells were 

cultured at 37 °C and 5 % CO2. Medium was changed the following day. 
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3.4.2 Splitting of cells 

In order to split the cells, medium was removed and cells were washed with 10 ml 

phosphate buffered saline (PBS). Next, 2 ml of trypsin (PAN-Biotech, Aidenbach, 

Germany) were added to the flask and incubation at 37 °C for approximately 5 min 

followed, until complete detachment of all cells. After resuspending the cell 

suspension in 8 ml of medium, cells were collected in a Falcon tube and 

centrifuged. Subsequently, cells were either diluted 1:10 in a new flask or used for 

experiments. 

 

3.4.3 Determination of cell numbers 

In order to determine numbers of cultured cells, 50 µl of cell suspension were 

diluted with trypan blue solution (Sigma Aldrich, St. Louis, Missouri, USA) at a ratio 

of 1:1, which allows distinguishing live and dead cells. Next, the suspension was 

placed in a Neubauer cell counting chamber (0.1 mm depth, Laboroptik, Lancing, 

UK). The number of live cells was calculated by using the following equation: 

Number of cells/ml = mean x dilution factor (2) x area (104)  

 

3.5 Animal models 

3.5.1 Orthotopic tumor models 

In order to study leukocyte trafficking to solid tumors of SCC VII (floor of mouth) 

and 4T1 (breast) cancer cells, an orthotopic mouse model was established.  
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Figure 2.1: Experimental protocol to analyze leukocyte trafficking to solid tumors. First, 

tumor cells or saline were injected in an orthotopic manner. On day 14 (D14) tumor and blood 

samples were collected and analyzed by multi-channel flow cytometry. In selected experiments, the 

relative age of neutrophils was determined after application (i.v.) of BrdU on day 11 (D11), 72 h 

prior to multi-channel flow cytometry analysis. 

3.5.1.1 Experimental design and groups 

In a first set of experiments, the different subsets of leukocytes in the tumors were 

characterized. In addition, neutrophils in the blood of tumor-bearing mice with a 

special regard to the relative age of neutrophils, were analyzed according to the 

following protocol: 

 

Experiments were repeated in neutropenic mice. For this purpose, tumor-bearing 

mice were treated continuously for one week with a neutrophil-depleting anti-Ly6G 

mAb (100 µg, clone 1A8, BioXCell, Lebanon, New Hampshire, USA) via tail vein 

injections every 48 h, starting at the day of tumor cell injection:  
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Figure 2.2: Experimental protocol to analyze leukocyte subsets present in solid tumors after 

neutrophil depletion. Tumor cells or saline were injected in an orthotopic manner. On day 7 (D7) 

after tumor cell injection, tumor and blood samples were collected and analyzed by multi-channel 

flow cytometry. In order to deplete neutrophils in tumor-bearing mice, i.v. injections of anti-Ly6G 

mAb were performed every 48 h according to previously published protocols. 

Figure 2.3: Experimental protocol to analyze leukocyte subsets in solid tumors after 

treatment with inhibitors or antagonists. After injecting tumor cells or saline (orthotopically), 

samples were collected on day 14 (D14) and analyzed by multi-channel flow cytometry. I.p. 

injections of a NLRP3 inflammasome inhibitor were performed on day 0 (D0), day 1 (D1), day 3 

(D3), day 6 (D6), and day 8 (D8), a CXCR4 inhibitor every 48 h, and a CXCR2 inhibitor every day 

according to previously published protocols. 

 

In another set of experiments, the presence of aged neutrophils in tumors were 

analyzed after treatment with a NLRP3 inflammasome inhibitor (MCC950; 10 

mg/kg, InvivoGen, San Diego, California, USA), a CXCR4 inhibitor (AMD 3100, 5 

µg/kg, Tocris, Bristol, England), or a CXCR2 inhibitor (SB 225002, 5 mg/kg, 

Tocris) in the following manner: 
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3.5.1.2 Tumor cell injection 

Tumor cells (at a concentration of 2 x 105 cells/20 µl) were injected in an orthotopic 

manner: SCC VII tumor cells subcutaneously into the floor of the mouth of 

C3H/HeNCrl mice and 4T1 tumor cells subcutaneously into the left chest of 

BALB/cJ mice. Control mice received saline injections. 

 

3.5.1.3 Tissue sample preparation 

Two weeks after tumor cell injection, tumor tissue and blood were harvested. 

Anesthetized mice were sacrificed by dislocation of the neck. Next, whole blood 

was taken from the vena cava by opening the peritoneal cavity and exposing the 

vessel. Using a 20 G cannula (Becton Dickinson, Franklin Lakes, New Jersey, 

USA), the vein was punctured and blood was carefully taken with a syringe 

containing 10 µl heparin (25000 i.E, ratiopharm, Ulm, Germany). Tumors were 

excised and weighed, before homogenizing in 15 ml of saline. By pouring the 

homogenized tissue through a cell strainer (Corning, 70 µm), a single cell 

suspension was obtained and collected in a 50 ml Falcon tube (Corning). After 

centrifugation at 1500 rpm for 5 min (Rotina 35R, Hettich, Kirchlengern, Germany) 

at room temperature (RT), each cell pellet from the tumor was resuspended in 500 

µl of PBS. Using 50 µl of the samples, the overall leukocyte count was determined 

with the ProCyte Hematology analyzer (IDEXX, Westbrook, Maine, USA). 

Subsequently, 100 µl of each anticoagulated blood and tumor sample was placed 

in a FACS tube (Corning) and immunostained with antibodies directed against 

CD45 APC-Cy7 (BD Bioscience, San Jose, California, USA), CD11b FITC (BD 

Bioscience), or CD11b PerCp-Cy5 (eBioscience, SanDiego, California, USA), Gr-1 
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PE (eBioscience), F4/80 efluor450 (eBioscience), and CXCR4 APC (Biolegend, 

San Diego, California, USA) for 30 min on ice. In selected experiments, T 

lymphocytes were identified by anti-CD8a PE-Cy7 mAb (eBioscience) and anti-

CD4 AF700 mAb (eBioscience). Subsequently, erythrocytes were lysed with 1 ml 

of lysing solution (BD FACS Lysing solution, BD Bioscience) diluted in Aqua inj. 

(B.Braun, Melsungen, Germany) 1:10 for 10 min at RT. After washing with PBS 

twice, samples were resuspended in 200 µl PBS and analyzed via multi-channel 

flow cytometry. 

 

3.5.1.3.1 Differentiation between aged and non-aged neutrophils 

To determine the relative age of neutrophils, a pulse labelling technique with 5-

Bromdesoxyuridin (BrdU, FITC BrdU Flow kit, BD Bioscience) was used according 

to previously published protocols (Uhl et al., 2016). BrdU is a thymidine analogue 

incorporated into DNA during its replication. By denaturing DNA, incorporated 

BrdU is accessible for staining and hence, for its detection. Consequently, non-

aged neutrophils released from the bone marrow appear BrdUpositive, whereas 

(more) aged (circulating) neutrophils are BrdUnegative when analyzed by flow 

cytometry. Therefore, 72 h prior to the experiment mice received a single 

intravenous (i.v.) injection via the tail vein (2.5 mg/kg) in order to label neutrophil 

precursors in the bone marrow. Next, tissue and blood was prepared and 

immunostained as described previously in 3.5.1.3. Subsequently, the BrdU 

protocol followed according to the manufacturer description in the BrdU Flow kit. 

Briefly, samples were washed with 1 ml PBS (1500 rpm, 5 min, RT). 

Subsequently, a first fixation step followed with a 100 µl of Cytofix/Cytoperm buffer 
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for 15 min at RT. After washing the samples with 1 ml of the previously prepared 1 

x BD Perm and wash buffer, another permeabilization step with 100 µl of the 

Cytoperm buffer plus followed for 10 min on ice. Next, cells were washed in 1 x BD 

Perm and wash buffer again, before refixation in another 100 µl of BD 

Cytoperm/Cytofix buffer for 5 min on ice was performed. Another washing step in 1 

x BD Perm and wash buffer followed, before samples were treated with 100 µl of 

DNAse (300 µg/ml) for 1 h at 37 °C in order to make the incorporated BrdU 

accessible. Next, cells were washed in 1 x BD Perm and wash buffer again and 

finally incubation with the antibody directed against BrdU (50 µl of the 1:50 diluted 

antibody) for 20 min at RT followed. After another last washing step cells were 

resuspended in 200 µl and measured via multichannel flow cytometry. 

 

3.5.2 Heterotopic tumor models 

In order to analyze neutrophil responses in the tumor and its microenvironment, a 

heterotopic tumor model was established in the mouse ear, enabling in vivo 

microscopy (IVM) analyses.  

 

3.5.2.1 Experimental design and groups 

In a first set of experiments, neutrophil trafficking to the tumor and its 

microenvironment in tumor-bearing mice was assessed according to the following 

protocol: 



48 

 

Figure 2.4: Experimental protocol for intravital imaging of the tumor and its 

microenvironment. Tumor cells or saline were injected into the left mouse ear. In vivo microscopy 

(IVM) was performed on day 3 (D3) and day 7 (D7). 

Figure 2.5: Experimental protocol for in vivo imaging of the tumor and its 

microenvironment. Tumor cells or saline were injected into the left mouse ear. In vivo microscopy 

(IVM) was performed on day 3 (D3) and day 7 (D7) directly after treatment with the NLRP3 

inflammasome inhibitor via i.p. injections on day 0 (D0), day 1 (D1), D3 and day 6 (D6). 

 

 

Next, neutrophil responses in tumor-bearing mice treated with the NLRP3 

inflammasome inhibitor MCC950 (10 mg/kg) were investigated.  

 

To directly analyze intravascular interactions of aged and non-aged neutrophils in 

the tumor and its microenvironment, adoptive cell transfer experiments were 

conducted according to previously published protocols (see 3.5.2.4) (Uhl et al., 

2016). 
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Figure 2.6: Experimental protocol for adoptive cell transfers. Neutrophils were isolated from 

either anti-P- and anti-E-selectin treated, or isotype control antibody-treated WT donor mice. After 

immunostaining the cells with anti-Ly6G mAb, neutrophils were injected i.v. into tumor-bearing 

mice on D7, before IVM was performed. 

 

Moreover, the tumor imaging ear model was used to investigate angiogenesis in 

the tumor and its microenvironment in neutrophil-depleted tumor-bearing mice 

(see 3.5.1.1) and vehicle-treated tumor-bearing mice on day 7 after tumor 

cell/vehicle injection. 

 

3.5.2.2 Tumor cell injection 

Anesthetized mice were placed on a custom-made microscopy stage and their left 

outer ear was fixed onto a stack of glass slides with silicone (Kurt Obermeier 

GmbH & Co. KG, Bad Berleburg, Germany). In order to apply tumor cells, a 

polystyrene catheter (Smiths Medical, Ashford, UK) prepared with a 30 G cannula 

(B.Braun) was used. After disinfecting the ear (Bacilol, Hartmann, Heidenheim, 

Germany) the tumor cells were injected into the subcutaneous layer of the left 

outer ear, in a concentration of 2 x 105 cells/20 µl. Control mice received saline 

injections.  
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3.5.2.3 In vivo ear imaging 

Neutrophil responses in the tumor and peri-tumoral microvasculature were 

visualized using anti-Ly6G PE mAb (BD Bioscience). For injecting the antibody, a 

polystyrene catheter prepared with a 30 G cannula was used. Mice received 

anesthesia and were fixed onto a microscopy stage. Subsequently, the animal’s 

tail was disinfected and the antibody was injected into the tail vain in a total 

volume of 100 µl. For analyzing the vessel network in the tumor and its 

microenvironment, mice received an i.v. injection of FITC Dextran (150 kDa, 50 µl, 

Sigma Aldrich) in the same manner. 

Finally, the outer ear of mice was placed on a custom-made microscopy stage and 

lightly fixed with silicone gel. By adding ultrasound gel (SONOSID®, Asid Bonz, 

Herrenberg, Germany) on top of the ear, imaging of postcapillary venules or the 

architecture of the microvasculature followed.  

 

3.5.2.4 Adoptive cell transfer experiments 

To analyze intravascular interactions of aged and non-aged neutrophils in the 

tumor and its microenvironment, adoptive cell transfer experiments were 

performed. In order to obtain aged neutrophils, wildtype (WT) donor mice were 

treated with anti-E-selectin (50 µg, BD Bioscience) and anti-P-selectin (50 µg, 

Biolegend) mAbs i.v. 48 h and 24 h before the cell transfer experiments via tail 

vein injection. This inhibits the recruitment of aged neutrophils back to bone 

marrow, liver, and spleen, thus leading to the enrichment of aged neutrophils in 

the circulation. WT donor mice used for the transfer of non-aged neutrophils, 

received saline injections. Subsequently, blood was taken from the vena cava as 



51 

 

Figure 2.7: Experimental protocol for IVM of the M. cremaster. Alum crystals or saline were 

injected into the scrotum of WT mice. 3 h or 6 h later, the surgical preparation of the M. cremaster 

and in vivo microscopy (IVM) followed. 

 

described before (see 3.5.1.3) and incubated with HetaSep (STEMCELL 

Technologies, Vancouver, Canada) in a ratio of 1:5 for 5 min at 37 °C. By red 

blood cell aggregation and sedimentation, samples were cleared from red blood 

cells. Next, neutrophils were stained with anti-Ly6G PE (BD Bioscience) for 20 min 

at RT. After washing the cells with PBS, i.v. injection into the receiving tumor-

bearing mice followed, 30 min before in vivo ear imaging was performed. 

 

3.5.3 M. Cremaster assay 

The cremaster muscle represents a well-established model to investigate the 

different steps of leukocyte recruitment. 

 

3.5.3.1 Experimental design and groups 

This model was used to investigate the effects of NLRP3 inflammasome activation 

on leukocyte recruitment at different time points. 
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3.5.3.2 Intrascrotal stimulation 

In order to stimulate activation of the NLRP3 inflammasome, 10 µg of Alum 

crystals (InvivoGen) diluted in a total volume of 350 µl saline, were injected into 

the scrotum of C57BL/6NCrl mice using a 30 G cannula, followed by incubation for 

3 h or 6 h. Control mice received saline injections.  

 

3.5.3.3 Surgical preparation of the intra-arterial catheter and the cremaster 

muscle 

The preparation of the mouse cremaster muscle was performed under a surgical 

microscope (M651, Leica, Wetzlar, Germany) similar to the previous description by 

Baez (Baez, 1973), with minor adjustments. In order to allow administration of 

antibodies, a catheter was placed into the femoral artery in a retrograde manner. 

Through a ventral incision, the scrotum was opened and the right cremaster 

muscle was exteriorized. Connective tissue around the cremaster muscle was 

carefully removed. Next, the muscle was cut and opened ventrally to allow 

spreading over a pedestal in a plexiglas tray of a custom-made microscopy stage. 

To enhance visibility of the fluorescence-labeled antibodies, the pedestal 

contained a black coverslip. After detaching the epididymis and testicle, they were 

placed back into the abdominal cavity. Careful electrocautery was used to stop 

any bleeding along the edges of the cremaster muscle. Throughout surgical 

preparation and in vivo microscopy, the muscle was continuously superfused with 

warm buffered saline. In order to visualize the leukocytes of interest, cells were 

immunostained with anti-Gr-1 PE, anti-CD115 AF594 mAbs (Biolegend). 

Subsequently, IVM of postcapillary venules followed. After IVM, blood was taken 
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Figure 2.8: Experimental protocol for the peritonitis assay. The different stimuli or saline were 

injected i.p. into WT mice. 6 h later, a peritoneal lavage was performed and samples were analyzed 

by flow cytometry. 

 

from the vena cava as described in 3.5.1.3 and systemic leukocyte counts were 

determined using a ProCyte Hematology analyzer. 

 

3.5.4 Peritonitis assay 

The peritonitis assay represents a well-established model to assess leukocyte 

recruitment to the peritoneal cavity after i.p. injection of various stimuli. 

 

3.5.4.1 Experimental design and groups 

In a first set of experiments, the leukocyte-recruiting properties of DAMPs such as 

HMGB1 (Biolegend), s100A8/A9 (Biolegend), or monosodium urate (MSU) 

crystals (InvivoGen) were investigated. Furthermore, the effect of the different 

inflammasome-activating substances on leukocyte recruitment such as poly (da:dt) 

(InvivoGen), flagellin (FLA-ST, InvivoGen), muramyl dipeptide (MDP, InvivoGen), 

or Alum crystals was assessed with the peritonitis model in the following manner: 
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3.5.4.2 Induction through intraperitoneal injection 

Stimuli were injected into the peritoneal cavity of WT mice using a 30 G cannula, 

in a total volume of 400 µl, diluted with saline: HMGB1 in a concentration of 1 

µg/ml, s100A8/A9 in 1 µg/ml and MSU in a concentration of 10 µg/ml. The 

inflammasome-activating substances were injected in the following concentrations: 

poly da:dt 10 µg/ml, FLA-ST in 10 µg/ml, and MDP or Alum crystals in 10 µg/ml 

saline. Control mice received saline injections.  

 

3.5.4.2.1 Sample preparation 

Anesthetized mice were sacrificed 6 h after i.p. injection of the stimuli, by 

dislocation of the neck. Using a 30 G cannula, 10 ml of cold PBS were injected 

into the right side of the mouse’s peritoneum. Next, their peritoneal cavity was 

washed by inserting a butterfly cannula (14G OPTIVA®, Smiths Medical) into the 

left side of mouse peritoneum. In total, 10 ml of peritoneal fluid was collected in a 

15 ml Falcon tube. Next, samples were centrifuged for 5 min at 1500 rpm at RT, 

supernatants were discarded and the pellets were resuspended in 500 µl of PBS. 

Using 50 µl of the cell suspension, the overall leukocyte count of the peritoneal 

lavage fluid was analyzed with a ProCyte Hematology analyzer. Of each sample, 

100 µl were placed into FACS tubes and cells were immunostained with antibodies 

directed against CD45 (APC-Cy7), CD11b (FITC), Gr-1 (PE), F4/80 (eFluor450) 

and CXCR4 (APC) for 30 min on ice. After lysing erythrocytes with 1 ml of lysing 

solution, followed by two washing steps with PBS, samples were resuspended in 

200 µl PBS and analyzed using a multi-channel flow cytometer. 
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3.5.4.2.2 Differentiation between aged and non-aged neutrophils 

The relative chronological age of neutrophils recruited to the peritoneal cavity upon 

NLRP3 inflammasome activation was analyzed using a pulse labeling technique 

with 5-BrdU. First, samples were prepared as described previously (see 3.5.4.2.1), 

then cells were immunostained with the following antibodies: anti-CD45 APC-Cy7, 

anti-CD11b PerCp-Cy5, anti-Gr-1 PE, anti-F4/80 eFluor450, and anti-CXCR4 

APC. Afterwards, the BrdU Flow kit protocol followed, as described in 3.5.1.3.1. 

 

3.6 Flow cytometry 

Employing multi-channel flow cytometry (Gallios, Beckman Coulter Inc, Brea, 

California, USA), myeloid leukocytes were identified by their expression of CD45 

and CD11b. Using Gr-1 and F4/80, these cells were further distinguished into 

neutrophils (Gr-1high, F4/80low) classical monocytes (Gr-1high, F4/80high), and non-

classical monocytes (Gr-1low, F4/80high). Neutrophils were further differentiated into 

BrdUpositive CXCR4low (non-aged) and BrdUnegative CXCR4high cells (aged). 

Lymphoid leukocytes such as T cells were identified as CD11blow and CD4positive or 

CD8apositive. All results were quantified by using the FlowJo software (Treestar, 

Ashland, Oregon, USA). 

 

3.7 In vivo microscopy 

In vivo microscopy was performed using an AxioTech-Vario 100 Microscope 

(Zeiss MicroImaging GmbH, Goettingen, Germany), equipped with a Colibiri LED 

light source (Zeiss MicroImaging GmbH) for fluorescence epi-illumination 
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microscopy. All images were taken using a 40x water immersion lens (0.5 NA, 

Zeiss MicroImaging Gmbh). Images of the architecture of the analyzed 

microvasculature were obtained with a 10x water immersion lens. Microscopy 

videos were obtained by an AxioCam Hsm digital camera, and processed with the 

AxioVision 4.6 software (Zeiss MicroImaging GmbH). 

Analysis of the in vivo microscopy videos was performed by using the imaging 

software Fiji (Schindelin et al., 2012). In the heterotopic tumor model, neutrophils 

were identified as Ly6Gpositive cells. In the cremaster muscle assay, neutrophils 

were identified as Gr-1postive CD115negative cells, classical monocytes as Gr-1positive 

CD115positve cells, and non-classical monocytes as Gr-1negative CD115positve cells. 

Leukocytes moving slower than the associated blood flow were defined as rolling 

leukocytes and quantified for 60 s per venule. For firmly adherent leukocytes, a 

threshold for resting in the associated blood flow for >30 s, was determined and 

counted on the luminal surface per 100 μm vessel length. Microcirculatory 

parameters such as diameter and length of the vessel were determined in Fiji. 

The microvascular architecture in tumor and its environment was analyzed by 

using the Skeleton plugin of Fiji. Briefly, the plugin is able to create skeletonized 

maps of the vessel network which allows determination of the number of branches 

per high power field, the number of junctions per high power field as well as the 

average branch length. The vessel density was determined as the number of 

branches multiplied with the average branch length and divided by the area of the 

high power field.  
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3.8 Tumorigenicity of neutrophils 

To characterize the phenotype of neutrophils after NLRP3 inflammasome 

activation, a peritonitis assay was performed as described previously (see 3.5.4). 

Antibody staining, depending on the fluorescence label of each N1/N2 marker 

followed in the according manner:  

PE - labeled marker FITC - labeled marker Non - labeled marker 

anti-CD45 APC-Cy7 anti-CD45 APC-Cy7 anti-CD45 APC-Cy7 

anti-CD11b PerCp-Cy5 anti-CD11b PerCp-Cy5 anti-CD11b PerCp-Cy5 

anti-Gr-1 AF488 anti-Gr-1 PE anti-Gr-1 PE 

anti-F4/80 eFluor450 anti-F4/80 eFluor450 anti-F4/80 eFluor450 

anti-CXCR4 APC anti-CXCR4 APC anti-CXCR4 APC 

 

Subsequently, further immunostaining of each sample with an antibody either 

directed against NE (rat, R&D Systems, Minneapolis, Minnesota, USA), MMP9 

FITC (StressMarq Biosciences, Victoria, Canada), VEGF FITC (Novus Biologicals, 

Centennial, Colorado, USA), CCL5 PE (Biolegend), CCL3 PE (eBioscience), or 

Arg-1 PE (R&D Systems) was performed for 30 min on ice. For the unlabeled NE 

antibody, a secondary antibody (goat anti-rat AF488, Thermo Fisher Scientific) 

followed for 20 min at RT before continuing the regular protocol of lysing 

Table 2.1: Experimental protocol for immunostaining according the different surface 

markers.  
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erythrocytes and washing the samples. After resuspending the samples in 200 µl 

PBS, expression levels of the molecules were measured on neutrophils via flow 

cytometry. 

 

3.9 Activation of neutrophils 

3.9.1 Analysis of integrin expression on neutrophils in the blood 

As a parameter for neutrophil activation, surface expression of the integrins 

CD11a, CD11b, and CD49d was assessed in murine neutrophils after NLRP3 

inflammasome activation by flow cytometry. To this end, whole blood was 

harvested from WT C57BL/6NCrl mice as described above (see 3.5.1.3). In each 

FACS tube, 100 µl of anticoagulated blood sample were placed and incubated for 

30 min at 37 °C either with Alum crystals (10 µg), TNF (100 ng, R&D Systems), or 

PBS as negative control. After washing the samples twice with PBS, cells were 

labeled with antibodies directed against CD45 APC-Cy7, CD11b PerCp-Cy5, Gr-1 

PE, F4/80 eFluor 450, CXCR4 APC, and CD11a (FITC, eBioscience) or CD49d 

(FITC, eBioscience). Erythrocytes were lysed using lysing solution as described 

before. Finally, after another washing step with PBS, samples were resuspended 

in 200 µl PBS and integrin expression was measured by flow cytometry. 

 

3.9.2 Analysis of ICAM-1/CD54-Fc binding properties of neutrophils 

As a measure of conformational changes of β2 integrins, binding of ICAM-1/CD54-

Fc to neutrophils was assessed. For this purpose, blood was carefully taken from 

the vena cava as described previously (see 3.5.1.3). Subsequently, 50 µl of each 
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anticoagulated blood sample were placed into FACS tubes and suspended in 50 µl 

of Hanks balanced salt solution containing 1 mM CaCl2 and MgCl2 (Life 

Technologies, Carlsbad, California, USA). Next, incubation with the according 

stimuli, either phorbol-12-myristat-13-acetat (PMA, 50 ng/ml, Sigma Aldrich) as a 

positive control, Alum crystals (10 µg), or PBS as a negative control followed for 

30 min at 37 °C, before adding ICAM-1/CD54-Fc (10 μg/ml, R&D Systems) and 

PE-conjugated anti-human IgG1 (Fc-specific, Southern Biotechnology, 

Birmingham, Alabama, USA). Samples were incubated for 5 min at 37 °C. After 

immunostaining the cells with fluorescence-labeled antibodies directed against 

CD45 (APC-Cy7), CD11b (FITC), F4/80 (eFluor450), Gr-1 (AF700), and CXCR4 

(APC; (eBioscience), samples were washed, resuspended in 200 µl PBS and 

finally, ICAM-1/CD54-Fc binding to neutrophils was measured via flow cytometry. 

 

3.10 Activation of endothelial cells 

To measure activation of endothelial cells, bEnd.3 microvascular endothelial cells 

were seeded into 12 well plates (200 000 cells/well). The following day, cells were 

stimulated with either Alum crystals (10 µg/ml), TNF (100 ng/ml) as a positive 

control, or PBS as a negative control. After 4 h at 37 °C cells were harvested by 

placing 100 µl of trypsin into each well for 5 min at 37 °C. Next, 1 ml of medium 

was added and the cell suspension was transferred into FACS tubes. After 

centrifugation at 1500 rpm for 5 min, supernatant was discarded and cells were 

resuspended in 100 µl of PBS. Next, cells were labeled with antibodies directed 

against ICAM-1/CD54 (AF488, Biolegend), VCAM-1/CD106 (Pacific blue, 

Biolegend), E-selectin/CD62E (PE, BD Bioscience) and P-selectin/CD62P (APC, 
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Biolegend) for 30 min on ice. After fixing the cells by using lysing solution, samples 

were washed and resuspended in 200 µl PBS. Finally, expression levels of the 

target proteins were measured by flow cytometry. 

The same protocol was used to assess the effects of DAMPs on endothelial cell 

activation. Here, cells were incubated with HMGB1 (1 µg/ml), S100A8/A9 (1 

µg/ml), or MSU crystals (10 µg/ml). 

 

3.11 Immunohistochemistry and confocal microscopy 

3.11.1 Analysis of ICAM-1/CD54 and VCAM-1/CD106 expression in 

cremasteric venules 

In order to investigate the effect of NLRP3 inflammasome activation on the 

expression of ICAM-1/CD54 and VCAM-1/CD106 in cremasteric postcapillary 

venules, mouse cremaster muscles were prepared as described previously (see 

3.6.3) and subsequently detached from the mouse 6 h after intrascrotal (i.s.) 

injection of Alum crystals or saline. In a next step, cremaster muscles were fixed in 

4 % paraformaldehyde for 10 min at RT. After washing the tissue twice in PBS, 

blocking and permeabilization, using 2 % bovine serum albumin (BSA) in PBS with 

0.001 % Triton X-100 for 1.5 h at RT followed. Next, immunostaining of the whole 

mounts with anti-CD31/PECAM AF647 (1:100, Biolegend) and anti-ICAM-1/CD54 

(1:100, rat, Biolegend) or anti-VCAM-1/CD106 (1:100, rat, Biolegend) in blocking 

solution at 4 ° C over night, was performed. After two washing steps in PBS, 

secondary staining with goat anti-rat AF488 antibody (Invitrogen, Carlsbad, 

California, USA) in 2 % BSA in PBS followed, for 2 h at RT. Subsequently, the 
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immunostained tissues were washed in PBS twice more before mounting them in 

PermaFluor (Thermo Fisher Scientific) on glass slides.  

 

3.11.2 Visualizing neutrophils in tumor sections 

Tumors were excised from tumor-bearing mice, embedded in tissue tek (Sakura, 

Alphen am Rhein, Netherlands) and stored at -80 °C. Subsequently, sections were 

cut at 20 µm using a cryostat (Thermo Fisher Scientific) and mounted onto glass 

slides (Thermo Fisher Scientific). After fixing the sections with 4 % formaldehyde 

(Microcos, Garching, Germany) for 10 min at RT, slides were washed in PBS for 

10 min at RT. By incubating the slides in 2 % BSA in PBS with 0.001 % Triton-X-

100 (Sigma Aldrich) for 1.5 h at RT, tumor sections were blocked and 

permeabilized. Next, immunostaining with anti-CD31 AF647 (1:100) and anti-Ly6G 

(1:50), in blocking solution at 4 °C over night, followed. After washing the slides in 

PBS twice, sections were mounted with PermaFluor and slides were stored at 4 

°C.  

 

3.11.2.1 Confocal microscopy and its analysis  

Using a Leica SP8 confocal laser-scanning microscope (Leica) with an oil-

immersion lens (Leica; 40x; NA 1.40), confocal z-stacks (z-spacing 1 μm) of 

postcapillary venules were acquired. In cremasteric tissue whole mounts, the 

fluorescence signal was analyzed using the software Fiji (Schindelin et al., 2012). 

Briefly, confocal microscopy images were merged and z-stacks combined. Using 

the ROI manager software tool, three regions of interest were placed in 
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postcapillary venules of interest as well as in the perivascular space to allow for 

background signal subtraction. 

 

3.12 Assessment of tumor development  

In order to determine the effect of neutrophil depletion on the progression of 

already existing tumors, C3H/HeNCrl as well as BALB/cJ mice received tumor 

cells in a concentration of 2 x 105 cells/20 µl into the outer leg, which allowed easy 

access for continuous measurements of the tumor size on a daily basis using a 

caliper (Hoffmann Group, Munich, Germany). On day 7 after tumor cell injection, 

mice were randomly assigned into two groups. One group received treatment with 

the anti-Ly6G mAb (100 µg) every 48 h, resulting in the depletion of neutrophils. 

The other group received vehicle treatment. After another 7 days of daily 

measurements, mice were sacrificed. 

 

3.13 Cell proliferation assay 

Tumor cells were seeded on a 96-well plate (5000 cells/well). The next day, 

medium was changed and cells were treated with either Alum crystals (10 

µg/100µl), a NLRP3 inflammasome inhibitor (10 µM), a CXCR2 inhibitor, or a 

CXCR4 inhibitor (125 µg/100 µl) for 24 h at 37 °C. Subsequently, medium was 

replaced by serum free media and the MTT Assay was performed according to the 

manufacturer’s protocol (Abcam, Cambridge, UK). First, MTT reagent was added 

for 3 h at 37 °C. In a next step, MTT solvent was also added to the wells. After 

placing the plate on an orbital shaker for 15 min, the absorbance was measured at 
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a wavelength of 590 nm in a microplate reader (Tecan, Männedorf, Switzerland). 

Cell proliferation was determined as the percentage of change in comparison to 

the negative control after background subtraction. 

 

3.13.1 Investigating the effect of tumor-primed neutrophils on cell 

proliferation 

Furthermore, the effect of tumor-primed neutrophils on tumor cell proliferation as 

well as on endothelial cell proliferation was investigated. In order to obtain tumor-

primed neutrophils, tumor-bearing mice were sacrificed two weeks after tumor cell 

injection. Subsequently, neutrophils were isolated either from tumor-bearing mice 

or tumor-free WT mice with the EasySep™ Mouse Neutrophil Enrichment Kit 

(STEMCELL Technologies) according to the manufacturer’s protocol. Briefly, 

whole blood was taken from the vena cava as described previously (see 3.5.1.3) 

and placed into a FACS tube, before incubating it with HetaSep at a ratio of 1:5 for 

5 min at 37 °C. In a next step, 50 µl/ml of rat serum as well as 50 µl/ml of 

neutrophil enrichment cocktail were added to the leukocyte suspension. After 

incubating the samples for 15 min at 4 °C cells were washed in 1 ml PBS and 

centrifuged for 10 min at 300 g. After discarding the supernatant, pellets were 

resuspended in 500 µl of the respective media used for the cells receiving the 

neutrophil treatment. Next, the biotin selection cocktail was added (50 µl/ml) for 

another 15 min at 4 °C. After vortexing the magnetic particles for 30 s, particles 

were added to the samples and incubated for 10 min at 4 °C. Finally, tubes were 

placed into the STEMCELL magnet for 3 min at RT and the samples were poured 

into a new tube. After placing the isolated neutrophils into 6-well plates and 
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incubation at 37 °C over night, supernatants were collected and subsequently 

added onto the cell-cultured tumor or endothelial cells. In addition to the 

supernatants, some wells were also treated with a NE-inhibitor (1mg/ml). After 

incubation for 24 h at 37 °C, the MTT Assay was performed as described above 

(see 3.13). 

 

3.14 Endothelial cell migration 

In order to investigate the effect of tumor-primed neutrophils on endothelial cell 

migration, a scratch assay was performed. For this purpose, tumor-primed 

neutrophils were isolated from the peripheral blood of tumor-bearing mice using 

the EasySep™ Mouse Neutrophil Enrichment Kit, and placed into a 6-well plate 

and cultured at 37 °C over night. The same day, endothelial cells were seeded 

onto 6-well plates (500 000 cells/well). On the following day, a “scratch” was 

created in the confluent endothelial cell monolayer. After washing the cells, 

supernatants from cultured tumor-primed or control neutrophils (isolated from the 

peripheral blood of tumor-free mice) were added to the cultured endothelial cells. 

After 24 h the number of migrated cells into the scratch was assessed and 

normalized to the controls.  

 

3.15 Multiplex immunoassays 

In order to determine cytokine concentrations in SCC VII and 4T1 tumor cell 

supernatants, homogenized tumors, and serum samples, a Bio-Plex chemokine 

assay on a Bio-Plex 200 system, was performed in Kirsten Lauber’s laboratory 
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(Department of Radiotherapy and Radiation Oncology, LMU München) according 

to the manufacturer’s protocol (Bio-Rad Laboratories, Munich, Germany). 

 

3.16 ELISA 

3.16.1 HMGB1 

In order to measure HMGB1 concentrations in SCC VII and 4T1 cell culture 

supernatants, ELISA analysis was performed in Kirsten Lauber’s laboratory 

(Department of Radiotherapy and Radiation Oncology, LMU München) according 

to the manufacturer’s protocol (IBL International, Hamburg, Germany). 

 

3.16.2 S100A8/A9 

For the investigation of S100A8/A9 concentrations in tumor cell culture 

supernatants, a sandwich ELISA system, developed and performed in Thomas 

Vogl’s laboratory (Department of Immunology, Westfälische Wilhelms-Universität 

Münster), was employed as described previously (Vogl et al., 2014).  

 

3.17 MSU measurements 

Concentrations of uric acid with SCC VII and 4T1 cell culture supernatants were 

determined by Lesca Holdt’s department (Department of Laboratory Medicine, 

LMU München) employing a COBAS 8000 modular analyzer (Roche, Mannheim, 

Germany). 

 



66 

 

3.18 TLR2 and 4 activity assay 

In cooperation with Kirsten Lauber’s laboratory (Department of Radiotherapy and 

Radiation Oncology, LMU München), TLR2 and TLR4 receptor activity after 

stimulation with SCC VII and 4T1 cell culture supernatants was measured as 

described previously (Krombach et al., 2019). 

 

3.19 Statistics 

All data was analyzed using the statistical software GraphPad PRISM (GraphPad 

Software, San Diego, California, USA).The unpaired student’s t-test was used for 

the comparison of two groups. For the estimation of stochastic probability of more 

than two groups, a one-way ANOVA followed by Dunnett’s or Tukey’s posthoc test 

was performed. All data is presented as mean ± standard error of the mean 

(McKaig et al.). Statistical significance was accepted at p-Values < 0.05. 
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Figure 3.1: Quantification of cytokines in SCC VII and 4T1 cell culture supernatants as well 

as solid tumors. Data are shown as heatmaps; n=5 per group. 

 

4 Results 

4.1 Cytokines in supernatants of cultured tumor cells, solid tumors, 

and serum samples 

To explore the expression profiles of cytokines in cultured tumor cells or derived 

tumor tissue raised in mice, a multiplex immunoassay was performed. Our results 

from cell culture supernatants revealed that SCC VII cells release a larger variety 

of cytokines than 4T1 (Fig. 3.1 A). In the derived tumor tissue, however, these 

distinct expression patterns were no longer present, but cytokine expression 

patterns were in general higher (Fig. 3.1 B). 
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Figure 3.2: Quantification of cytokines in serum samples from SCC VII and 4T1 tumor-

bearing mice and healthy controls. Data are shown as heatmaps; n=5 per group. 

Moreover, we analyzed cytokine and chemokine concentrations in serum samples 

from healthy and tumor-bearing mice. No significant differences between these 

experimental groups were observed (Fig. 3.2). 

 

4.2 Neutrophils in the circulation of tumor-bearing mice 

Using multi-channel flow cytometry, we aimed to investigate the number of 

chronologically aged and non-aged neutrophils in the circulation of healthy control 

and tumor-bearing mice by pulse-labeling with BrdU. In 4T1 tumor-bearing mice, a 

significant increase of aged (BrdUnegative) neutrophils and non-aged (BrdUpositive) 

neutrophils in the peripheral blood was observed as compared to healthy control 

mice. In contrast, SCC VII tumor-bearing mice did not show any significant 

changes in the number of circulating neutrophils compared to controls (Fig. 3.3).  
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Figure 3.3: Quantitative analysis of aged and non-aged neutrophils in the circulation of 

healthy control and tumor-bearing mice. Data are presented as mean±SEM; n=3-9 per group; 

*p<0.05; n.s.=not significant. 

 

 

4.3 CXCR4 expression levels on blood neutrophils in tumor-bearing 

mice 

As a measure for neutrophil biological ageing, the expression of the chemokine 

receptor CXCR4 was determined on the surface of circulating neutrophils in 

healthy control and tumor-bearing mice by multi-channel flow cytometry. In both 

SCC VII and 4T1 tumor-carrying mice, neutrophils showed a significant higher 

expression of CXCR4 as compared to neutrophils in control mice. When 

continuously treating tumor-bearing mice with a CXCR2 inhibitor, this increase of 

CXCR4 on neutrophils was significantly reduced (Fig. 3.4). 
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Figure 3.4: Quantification of CXCR4 expression on neutrophils in the circulation of healthy 

controls and tumor-bearing mice treated with a CXCR2 inhibitor or vehicle. Data are 

presented as mean±SEM; n=3-5 per group; *p<0.05; n.s.=not significant. 

 

 

 

 

4.4 The fate of excessively aged neutrophils in tumor-bearing mice 

4.4.1 Accumulation of aged neutrophils in the peritumoral microvasculature  

In a next set of experiments, we investigated the accumulation of adoptively 

transferred, chronologically aged and non-aged neutrophils in the 

microvasculature of the tumor and of its microenvironment. In both SCC VII and 

4T1 tumor-bearing mice significantly more aged neutrophils accumulated in the 

microvasculature of the tumor and the surrounding microenvironment than non-

aged neutrophils (Fig. 3.5). 
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Figure 3.5: Quantification of the accumulation of adoptively transferred, chronologically 

aged and non-aged neutrophils in SCC VII and 4T1 tumors and their microenvironment. Data 

are presented as mean±SEM; n=6-7 per group; *p<0.05. 

 

 

 

4.4.2 Leukocyte subsets in solid SCC VII and 4T1 tumors 

In further experiments, the composition of different leukocyte subsets in solid SCC 

VII and 4T1 tumors was investigated. Employing multi-channel flow cytometry, 

myeloid leukocytes were identified by their expression of CD45 and CD11b. 

Neutrophils were subsequently characterized as Gr-1high and F4/80negative (Fig. 3.6 

A). This analysis revealed that 18.90 % of all leukocytes in SCC VII tumors were 

myeloid leukocytes and 2.74 % were neutrophils. In the 4T1 tumors, 82.15 % were 

myeloid leukocytes and 13.14 % were neutrophils. Using a metabolic pulse-

labeling technique with BrdU, around 80 % of the neutrophilic granulocytes 

present in the tumors, were BrdUnegative aged neutrophils, whereas only 20 % were 

represented by BrdUpositive non-aged neutrophils in both tumor entities (Fig. 3.6 B).  
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Figure 3.6: Quantitative analysis of the composition of different leukocyte subsets in solid 

SCC VII and 4T1 tumors. Schematic overview of the gating strategy (A). Graphical presentation of 

different leukocyte subsets and the percentage of aged and non-aged neutrophils in the tumors 

(B). Data are presented as mean±SEM; n=3-7 per group; *p<0.05. 

 

 

 

Using immunostaining and confocal microscopy, we aimed to further characterize 

the presence of neutrophils within the tumors. Ly-6Gpositive neutrophils were found 

in the tumor microvasculature (identified by CD31positive endothelial cells) as well as 

in the surrounding tumor tissue (Fig. 3.7).  
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Figure 3.7: Representative confocal microscopy images of SCC VII and 4T1 tumor sections. 

Immunostaining with anti-CD31 and anti-Ly6G (scale bar: 25µm). 

 

 

4.5 The recruitment of aged neutrophils 

4.5.1 The release of DAMPs by tumor cells 

In a next series of experiments, we performed measurements of the DAMPs uric 

acid, s100A8/A9, and HMGB1 known to be released by injured or dying cells. We 

did not detect s100A8/A9 (not shown) in SCC VII or in 4T1 tumor cell 

supernatants. In contrast, uric acid release from 4T1 tumor cells was three times 

higher than in SCC VII tumor cells (Fig. 3.8 A). HMGB1 concentrations were very 

low in SCC VII cell culture supernatants, but significantly higher in 4T1 tumor cell 

supernatants as compared to controls (Fig. 3.8 B). 
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Figure 3.8: Quantitative analysis of uric acid and HMGB1 in SCC VII and 4T1 cell culture 

supernatants. Data are presented as mean±SEM; n=5 per group; *p<0.05; n.s.=not significant. 

 

 

4.5.2 The effect of DAMPs on myeloid leukocyte recruitment 

Using a peritonitis assay, we performed quantitative analysis of leukocyte subsets 

recruited upon stimulation with different DAMPs for 6 h. Injection of s100A8/A9 or 

MSU crystals led to a significantly higher extravasation of neutrophils to the 

peritoneal cavity, as compared to unstimulated controls. I.p. injection of HMGB1 

did not reveal any effect on the recruitment of neutrophils in this model. Whereas 

MSU crystals also caused a significant influx of classical monocytes, s100A8/A9 

led to the recruitment of these cells to a much lesser extent. Again, stimulation 

with HMGB1 did not show any effects on the extravasation of classical monocytes. 

The number of non-classical monocytes was not altered by the injection of any 

stimuli (Fig. 3.9).  
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Figure 3.9: Quantification of leukocyte recruitment to the peritoneal cavity after i.p. 

exposure of DAMPs. Analysis of neutrophils (N), classical monocytes (cMOs), and non-classical 

monocytes (ncMOs) recruited to the peritoneal cavity after injection of s100A8/A9, HMGB1, and 

MSU. Data are presented as mean±SEM; n=6-7 per group; *p<0.05; n.s.=not significant. 

 

 

 

 

4.5.3 The effect of tumor-released mediators on TLR2 and TLR4 activity 

Using TLR2 and TLR4 reporter cells and measuring the activity of secreted 

alkaline phosphatase via a plate reader, we investigated whether SCC VII and 4T1 

tumor cells secrete ligands that can potentially activate these receptors. In these 

experiments, treatment with supernatants from both tumor cell lines did not cause 

an increase in the TLR2 and TLR4 reporter activity. As a positive control, 

treatment with the TLR2 agonist FSL-1, a synthetic diacylated lipoprotein, or the 

TLR4 agonist LPS resulted in enhanced TLR2 or TLR4 activity as compared to 

unstimulated controls (Fig. 3.10).  
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Figure 3.11: Quantification of IL-1β in the peritoneal lavage after stimulation with MSU 

crystals. Data are presented as mean±SEM; n=5 per group; *p<0.05. 

 

Figure 3.10: Quantitative analysis of TLR2 and TLR4 activity in reporter cells after 

stimulation with SCC VII and 4T1 cell culture supernatants. Data are presented as mean±SEM; 

n=5 per group; *p<0.05; n.s.=not significant. 

 

 

 

4.5.4 The effect of MSU on inflammasome activation 

As a measure of inflammasome activation, we quantified IL-1β production after i.p. 

injection of MSU. 6 h after the onset of stimulation, IL-1β levels in the peritoneal 

cavity were significantly increased compared to unstimulated controls (Fig. 3.11).  
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4.5.5 The effect of inflammasome activation on myeloid leukocyte 

recruitment 

The peritonitis assay was also employed to investigate the number of extravasated 

neutrophils as well as classical and non-classical monocytes into the peritoneal 

cavity after injection of different inflammasome stimulating substances. Activating 

the NLRP3 inflammasome by injecting Alum crystals led to a significant increase in 

numbers of neutrophils in the peritoneal cavity as compared to saline injected 

mice. Moreover, NLRP3 inflammasome activation by Alum crystals also caused a 

strong recruitment of classical monocytes, however, to a much lesser degree.  

Activation of the AIM2 inflammasome by injecting poly (da:dt), the NLRC4 

inflammasome with FLA-ST, or stimulating the NLRP1 inflammasome with MDP 

did not cause extravasation of neutrophils or classical monocytes. Moreover, the 

number of non-classical monocytes remained unaffected by all treatments (Fig. 

3.12 A). 

Using a pulse labeling strategy with BrdU, we found that the majority (about 60 %) 

of neutrophils recruited upon NLRP3 inflammasome activation with Alum crystals 

were BrdUnegative aged neutrophils. Only about 40 % of the neutrophils were BrdU 

positive non-aged neutrophils (Fig. 3.12 B).  
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Figure 3.12: Quantification of leukocyte recruitment to the peritoneal cavity after injection of 

inflammasome activating substances. Analysis of neutrophils (N), classical monocytes (cMOs) 

and, non-classical monocytes (ncMOs) recruited to the peritoneal cavity after injection of dA:dT, 

Alum crystals, FLA-ST, or MDP. Data are presented as mean±SEM; n=5-8 per group; *p<0.05; 

n.s.=not significant. 

 

 

 

4.5.6 The effect of NLRP3 inflammasome activation on neutrophils 

4.5.6.1 Integrin expression 

In order to analyze the activation of aged and non-aged neutrophils after exposure 

to NLRP3 inflammasome activating Alum crystals, integrin expression on 

neutrophils was measured by multi-channel flow cytometry. We found that CD11a, 

CD11b, and CD49d expression did not significantly differ between unstimulated 

aged and non-aged neutrophils harvested from the peripheral blood of WT mice. 

Similarly, these integrin expression levels remained unaffected by stimulating the 

NLRP3 inflammasome. However, activating neutrophils through TNF led to a 

significant increase of CD11b, but not of CD11a or CD49d in aged and non-aged 

neutrophils (Fig. 3.13). 
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Figure 3.13: Quantification of integrin expression on aged and non-aged neutrophils. 

Analysis of CD11a, CD11b, and CD49d on neutrophils after stimulation with Alum crystals, TNF, or 

vehicle. Data are presented as mean±SEM; n=3-6 per group; *p<0.05; n.s.=not significant. 

 

 

 

4.5.6.2 ICAM-1/CD54-Fc binding 

As a measure of conformational changes of β2 integrins, the capacity of 

neutrophils to bind ICAM-1/CD54-Fc was analyzed. Using multi-channel flow 

cytometry, we found that aged neutrophils tend to bind more ICAM-1/CD54-Fc 

than non-aged neutrophils. Stimulation with Alum crystals did not alter ICAM-

1/CD54-Fc binding in aged or non-aged neutrophils. However, stimulation with 

PMA as a positive control caused a significant increase in ICAM-1/CD54-Fc 

binding in aged neutrophils and also, to a much lesser degree, in non-aged 

neutrophils (Fig. 3.14).  
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Figure 3.14: Quantitative analysis of ICAM-1/CD54-Fc binding properties of aged and non-

aged neutrophils after stimulation with Alum crystals, PMA, or vehicle. Data are presented as 

mean±SEM; n=3-5 per group; *p<0.05; n.s.=not significant. 

 

 

 

4.5.7 The effect of NLRP3 inflammasome activation on endothelial cells 

To investigate endothelial cell activation after NLRP3 inflammasome stimulation, 

ICAM-1/CD54, VCAM-1/CD106, E-selectin/CD62E, and P-selectin/CD62P 

expression was measured using multi-channel flow cytometry. Whereas treatment 

with Alum crystals did not alter the expression of ICAM-1/CD54, VCAM-1/CD106, 

E-selectin/CD62E, or P-selectin/CD62P on cultured microvascular endothelial 

cells, stimulation with TNF resulted in a significantly enhanced expression of these 

molecules as compared to untreated controls (Fig. 3.15). 
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Figure 3.15: Quantification of the activation of endothelial cells after NLRP3 inflammasome 

stimulation. Analysis of ICAM-1/CD54, VCAM-1/CD106, E-selectin/CD62E, and P-selectin/CD62P 

expression levels on endothelial cells after stimulation with Alum crystals or TNF. Data are 

presented as mean±SEM; n=5-6; *p<0.05; n.s.=not significant. 

 

 

 

4.5.8 The effect of DAMPs on endothelial cells 

In addition, the same protocol was used to assess the potential of different DAMPs 

to activate endothelial cells. Stimulation with s100A8/A9, HMGB1, or MSU did not 

change ICAM-1/CD54, VCAM-1/CD106, E-selectin, or P-selectin expression on 

cultured microvascular endothelial cells as compared to untreated controls (Fig. 

3.16). 
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Figure 3.16: Quantification of the activation of endothelial cells after stimulation with 

DAMPs. Analysis of ICAM-1/CD54, VCAM-1/CD106, E-selectin/CD62E, and P-selectin/CD62P 

expression levels after simulation with s100A8/A9, HMGB1, MSU, or TNF. Data are presented as 

mean±SEM; n=3-5 per group; *p<0.05; n.s.=not significant. 

 

 

 

4.5.9 Cytokine release upon NLRP3 inflammasome activation 

Using multiplex ELISA analysis, we also investigated the cytokine release into the 

peritoneal cavity upon NLRP3 inflammasome activation. In comparison to controls, 

stimulation with MSU led to a significant increase in IL-2, IFNу, CXCL2, and CCL3 

release (Fig. 3.17). 
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Figure 3.17: Quantification of cytokines after NLRP3 inflammasome activation. Analysis of 

cytokines in peritoneal lavage after injecting MSU. Data are presented as mean±SEM; n=5; 

*p<0.05. 

 

 

 

4.5.10 ICAM-1/CD54 and VCAM-1/CD106 expression on cremasteric 

endothelial cells after activation of the NLRP3 inflammasome 

To investigate ICAM-1/CD54 and VCAM-1/CD106 expression on cremasteric 

endothelial cells, we employed confocal microscopy analysis of 

immunohistochemically stained cremasteric tissue whole mounts (Fig. 3.18 A). 

Quantitative analysis revealed an increase in ICAM-1/CD54 expression on 

cremasteric endothelial cells after stimulation with Alum crystals for 6 h as 

compared to saline-injected controls whereas VCAM-1/CD106 expression did not 

change (Fig. 3.18 B). 
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Figure 3.18: Analysis of ICAM-1/CD54 and VCAM-1/CD106 expression on cremasteric 

endothelial cells after NLRP3 inflammasome activation. Representative confocal images of 

postcapillary venules in the M. cremaster immunostained with anti-CD31 and anti-CD54 (scale bar: 

25µm) (A). Quantitative analysis of ICAM-1/CD54 expression on cremasteric postcapillary venules 

(B). Data are presented as mean±SEM; n=3 per group; *p<0.05; n.s.=not significant. 

 

 

4.5.11 Myeloid leukocyte trafficking in the cremaster muscle after NLRP3 

inflammasome activation 

4.5.11.1 Analysis after 3 h and 6 h of stimulation 

Employing the musculus cremaster (M. cremaster) assay, the effect of NLRP3 

inflammasome activation on the recruitment of myeloid leukocytes and their 

interaction with the endothelium was investigated. 3 h and 6 h after i.s. injection of 

Alum crystals, in vivo microscopy of postcapillary venules was performed in order 

to assess intravascular rolling and firm adherence of neutrophils and classical 

monocytes. The number of rolling neutrophils and classical monocytes was not 

altered in comparison to saline-injected control mice. Similarly, intravascular firm 

adherence of neutrophils and classical monocytes was not affected 3 h after 
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Figure 3.19: Analysis of IVM on the cremaster muscle after 3 h and 6 h of stimulation with 

Alum crystals. Representative images of postcapillary venules immunostained with anti-Gr-1 and 

anti-CD115 antibodies (scale bar: 25µm) (A). Quantitative analysis of rolling and firmly adherent 

neutrophils, and classical monocytes (cMOs) (B). Data are presented as mean±SEM; n=3-5 per 

group; *p<0.05; n.s.=not significant. 

 

injection of Alum crystals. However, after 6 h of stimulation, a significant increase 

in numbers of firmly adherent neutrophils, and to a much lesser degree, of 

classical monocytes was observed (Fig. 3.19 B).  
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4.5.12 The effect of NLRP3 inflammasome inhibition on neutrophil trafficking 

in tumors 

Using in vivo microscopy, neutrophil trafficking in the tumor and its 

microenvironment was observed. In SCC VII tumors, intravascular rolling was 

significantly increased as compared to tumor-free mice on day 3, but not on day 7 

after tumor cell injection. In contrast, intravascular firm adherence of neutrophils 

significantly increased on day 7 after tumor cell injection as compared to healthy 

animals (Fig. 3.20). In 4T1 tumors, no significant differences were observed in 

numbers of intravascular rolling neutrophils on day 3 or 7 after tumor cell injection, 

whereas intravascular adherence of neutrophils was significantly higher on day 7 

after tumor cell injection as compared to controls (Fig. 3.20). Treatment with an 

NLRP3 inflammasome inhibitor, these increased neutrophil responses in the tumor 

and its microenvironment were completely abolished. 
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Figure 3.20: In vivo microscopy analysis of neutrophil trafficking in the tumor and its 

microenvironment. Analysis of intravascularly rolling and firmly adherent neutrophils on day 3 

(D3) and day 7 (D7) after tumor cell injection in healthy control animals and vehicle- or NLRP3 

inflammasome inhibitor-treated tumor-carrying mice. Data are presented as mean±SEM; n=4-6 per 

group; *p<0.05; n.s.=not significant. 

 

 

 

4.6 The role of aged neutrophils in tumor progression 

4.6.1 The effect of depleting neutrophils in tumor-bearing mice 

In order to investigate the role of neutrophils for tumor progression in SCC VII and 

4T1 carcinoma, mice were rendered neutropenic by antibody-mediated neutrophil 
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Figure 3.21: Analysis of the effects of neutrophil depletion in tumor-bearing mice. 

Quantification of neutrophils in peripheral blood and the tumor as well as of tumor weight in a priori 

(A) or delayed (B) neutrophil-depleted (mAb Ly6G) or isotype control antibody-treated mice. Data 

are presented as mean±SEM; n=3-11 per group; *p<0.05. 

 

depletion. Multi-channel flow cytometry revealed a significantly reduced number of 

neutrophils in the tumors of a priori neutropenic mice as compared to isotype 

control antibody-treated tumor-carrying mice. Moreover, tumor weight was 

significantly lower in neutrophil-depleted tumor-bearing mice (Fig. 3.21 A). 

Noteworthy, delayed neutrophil depletion starting one week after the induction of 

tumor growth did not significantly alter the tumor size as compared to isotype 

control antibody-treated mice (Fig. 3.21 B). 
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Figure 3.22: Quantitative analysis of tumor weight and tumor development after blocking 

the NLRP3 inflammasome, CXCR2, or CXCR4 in tumor-bearing mice. Graphical presentation 

of the tumor development rate and the average tumor weight, depicted by the size of the circle. 

Tumor-bearing mice were either treated with vehicle, an NLRP3 inhibitor, a CXCR4 inhibitor or a 

CXCR2 inhibitor. Data are presented as mean; n=3-15 per group. 

 

4.6.2 The effect of NLRP3, CXCR4, or CXCR2 inhibitors on tumor weight 

and neutrophil infiltration of tumors 

To explore the role of the NLRP3 inflammasome for tumor progression, tumor 

weight and development rates were assessed in mice treated with the highly 

specific NLRP3 inflammasome inhibitor MCC950. Treatment with this inhibitor 

significantly decreased tumor weight and development rates in both SCC VII and 

4T1 tumor-bearing mice.  

To investigate the effects of directly manipulating the ageing process of circulating 

neutrophils, we inhibited the receptors CXCR4 and CXCR2 in tumor-injected mice. 

Whereas blockade of the chemokine receptor CXCR4 lead to a slight increase in 

the tumor weight, antagonizing the chemokine receptor CXCR2 resulted in a 

significant decrease in tumor weight. The tumor development rate however, was 

not significantly altered by these interventions (Fig. 3.22).  
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Figure 3.23: Quantitative analysis of neutrophil infiltration into tumors after blocking the 

NLRP3 inflammasome, CXCR2 and CXCR4 in tumor-bearing mice. Quantitative analysis of 

aged and non-aged neutrophils in tumors of mice treated with a NLRP3 inhibitor (A), a CXCR2 

inhibitor, or a CXCR4 inhibitor (B). Data are presented as mean±SEM; n=3-5 per group; *p<0.05; 

n.s.=not significant. 

 

 

 

In addition, tumor infiltration of aged and non-aged neutrophils was measured in 

these experiments. Blockade of the NLRP3 inflammasome in SCC VII or 4T1 

tumor-bearing mice, led to a significant reduction in the number of neutrophils in 

the tumor (Fig. 3.23 A). In contrast, treatment with inhibitors of CXCR4 or CXCR2, 

however, did not significantly alter the number of neutrophils in the tumors (Fig. 

3.23 B). 
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Figure 3.24: Quantification of tumor cell proliferation after treatment with Alum crystals, a 

NLRP3 inhibitor, a CXCR4 inhibitor, or a CXCR2 inhibitor. Data are presented as mean±SEM; 

n=3-10 per group; n.s.=not significant. 

 

4.6.3 Direct effects on tumor cell proliferation 

Employing a MTT assay, we sought to analyze the role of the NLRP3 

inflammasome for SCC VII or 4T1 tumor cell proliferation. In our experiments, 

neither activating the NLRP3 inflammasome by Alum crystals, nor inhibiting its 

activation by MCC950, led to any significant changes in SCC VII or 4T1 tumor cell 

proliferation as compared to controls. Similarly, blockade of the chemokine 

receptors CXCR2 or CXCR4 did not affect the proliferation of SCC VII or 4T1 cells 

(Fig. 3.24 A+B). 
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Figure 3.25: Quantitative analysis of the expression of N1 and N2 phenotype-associated 

molecules on aged and non-aged neutrophils. Data are presented as mean±SEM; n=3-11 per 

group. 

 

 

 

4.7 The mechanisms underlying tumor growth mediated by aged 

neutrophils  

4.7.1 Expression of N1 and N2 phenotype-associated molecular markers in 

neutrophils recruited by NLRP3 inflammasome activation 

To further investigate the phenotype of neutrophils recruited to the peritoneal 

cavity after NLRP3 inflammasome activation, several surface markers associated 

with a N1 or N2 phenotype of these immune cells were analyzed by multi-channel 

flow cytometry. Aged neutrophils recruited upon NLRP3 inflammasome activation 

showed higher expression levels of NE, MMP9, CCL5, VEGF, CCL3, and Arg-1 on 

their surface as compared to non-aged neutrophils (Fig. 3.25).  
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Figure 3.26: Quantification of tumor cell proliferation after treatment with supernatants from 

tumor-primed neutrophils. Data are presented as mean±SEM; n=4-10 per group; *p<0.05; 

n.s.=not significant. 

 

4.7.2 The effect of tumor-primed neutrophils on tumor cell proliferation 

The effect of neutrophils isolated from the peripheral blood of tumor-bearing mice 

on tumor cell proliferation was investigated by a MTT assay. Both SCC VII and 

4T1 tumor cells showed a significant increase in their proliferation upon incubation 

with supernatants from tumor-primed neutrophils, either isolated from the blood of 

tumor-bearing C3H/HeNCrl mice (SCC VII tumors) or BALB/cJ mice (4T1 tumors) 

as compared to supernatants from neutrophils isolated from tumor-free control 

animals. This increase in tumor cell proliferation was significantly attenuated upon 

administration of a NE inhibitor (Fig. 3.26). 
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Figure 3.27: Quantification of microvascular endothelial cell proliferation after treatment 

with supernatants from tumor-primed neutrophils. Data are presented as mean±SEM; n=5 per 

group; n.s.=not significant. 

 

4.7.3 The effect of tumor-primed neutrophils on microvascular endothelial 

cell proliferation 

In a next set of experiments, we sought to characterize the effect of tumor-primed 

neutrophils on the proliferation of microvascular endothelial cells. Incubation of 

bEnd.3 microvascular endothelial cells with supernatants from tumor-primed 

neutrophils did not significantly alter their proliferation as compared to 

supernatants from control neutrophils harvested from tumor-free mice (Fig. 3.27). 

 

4.7.4 The effect of tumor-primed on the migration of microvascular 

endothelial cells 

To evaluate the effect of tumor-primed neutrophils on the migration of 

microvascular endothelial cells, a scratch assay was performed. Incubation with 

supernatants from neutrophils isolated from tumor-bearing mice did not 

significantly change the number of microvascular endothelial cells migrating into 
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Figure 3.28: Quantification of microvascular endothelial cell migration after treatment with 

supernatants from tumor-primed neutrophils. Data are presented as mean±SEM; n=5-6 per 

group; n.s.=not significant. 

 

the scratch as compared to supernatants from control neutrophils harvested from 

tumor-free mice (Fig. 3.28). 

 

4.7.5 The effect of neutrophil depletion on the microvascular network of 

tumors  

Moreover, we sought to investigate the effect of neutrophils on the architecture of 

the microvasculature of the tumor and its microenvironment. No alterations in the 

overall vessel density as well as in the number of vessel branches or junctions 

were observed in neutrophil-depleted mice, as compared to isotype control 

antibody-treated mice (Fig. 3.29). 
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Figure 3.29: Quantitative analysis of the vessel density, the number of branches, and the 

number of junctions in neutrophil-depleted tumor-bearing mice (mAb Ly6G). Data are 

presented as mean±SEM; n=4-5 per group; n.s.=not significant. 

 

 

4.7.6 The effect of depleting neutrophils on T cell infiltration into tumors 

Finally, we aimed to investigate the effect of neutrophils on the infiltration of CD4+ 

and CD8+ T cells into tumors. Using antibody-mediated depletion of neutrophils in 

SCC VII or 4T1 tumor-bearing mice, no effect on numbers of CD8+ and CD4+ T 

cells present in tumors were observed as compared to isotype control antibody-

treated mice (Fig. 3.30). 
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Figure 3.30: Quantitative analysis of CD4+ or CD8+ T cells in the tumors of neutrophils-

depleted mice (mAb Ly6G). Data are presented as mean±SEM; n=3-5 per group; n.s.=not 

significant. 
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5 Discussion 

5.1 Material and Methods 

In order to validate our findings, we chose to perform the studies in two different 

types of tumors, the SCC VII head and neck cancer and the 4T1 breast cancer. 

These tumors strongly differ in their immunomodulatory properties. Whereas the 

4T1 has previously been described as a highly immunogenic tumor, the SCC VII is 

considered as poorly immunogenic (Lechner et al., 2013). Hence, mechanisms 

found to be relevant for tumor progression in both types of tumors, have greater 

potential of becoming therapeutic targets.  

The model organism we decided to employ for our investigations was the mouse, 

as the mouse immune system is relatively well characterized. Due to our selection 

of tumors, and the origin of our tumor cells, experiments were performed with two 

different mouse strains: C3H/HeNCrl mice for the investigation of SCC VII tumors 

and BALB/cJ mice for analyzing 4T1 tumors. Both models are syngeneic or 

allograft models, meaning we inject tumor cells that were derived from the same 

genetic background as our mouse strain. Other mouse models that are often used 

to investigate potential cancer therapeutics are xenograft models where human 

cancer cells are transplanted into immunocompromised mice. Altering the immune 

system assures that mice do not reject human cell transplants. The syngeneic 

model, however, does not require these alterations in the immune system. Hence, 

when investigating the influence of the immune system on tumorigenesis or 

examining potential immunotherapies the syngeneic model holds clear advantages 

over the xenograft model. 
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In order to investigate tumor progression we decided to not only employ one 

mouse model, but two.  

We incorporated an orthotopic mouse model, in which we injected tumor cells in 

their usual growth site – the floor of the mouth in case of SCC VII or the chest in 

case of 4T1 cells. This approach enables the investigation of tumor progression 

with the influence of a rather natural tumor microenvironment. In addition, the 

orthotopic model allows the growth of tumors that are easy to dissect. Thereby, 

single cell suspensions for the use of multi-channel flow cytometry analysis could 

be obtained.  

Multi-channel flow cytometry is a widely used laser-based method to analyze the 

expression of cell surface and intracellular molecules and characterize cell types 

within a heterogeneous cell population. The method not only measures size and 

volume of the cells, but also the fluorescence intensity by fluorescent-labeled 

antibodies bound to specific cell-associated molecules. However, depending on 

the type of flow cytometer, and the number of lasers and detectors it is equipped 

with, only a specific number of fluorescent labels can be detected, thus limiting the 

amount of molecules one could measure.  

We also used flow cytometry analysis of orthotopically-grown tumors, from mice 

rendered neutropenic. These analyses gave direct insight on the potential impact 

of neutrophils for tumor progression and the recruitment of immune cells to the 

tumor. Moreover, we were able to investigate the effect of different inhibitors or 

antagonists on tumor development, by using this approach. By employing a pulse-

labeling technique with BrdU, we also had the opportunity to gain insight on the 

relative chronological age of neutrophils that were present in the tumor. BrdU is a 
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thymidine analogue, thus enabling the incorporation into DNA during its 

replication. It is a very well-established approach to detect all proliferating cells 

from time of introduction to tissue fixation (Salic & Mitchison, 2008). Hence, 

BrdUpositive cells are non-aged neutrophils and BrdUnegative cells are aged 

neutrophils. To be able to detect the BrdU, a harsh and long treatment of the 

samples is necessary in order to denature DNA and provide access to BrdU. 

These different steps can possible interfere with expression levels of other surface 

molecules, thereby making appropriate negative controls of great importance to 

avoid false results. However, with BrdU allowing the direct detection of cell 

proliferation, it is a very reliable method, creating stable results.  

The second tumor model we employed is a heterotopic model, in which we 

injected tumor cells into the ear. This approach offers a great opportunity of 

consecutive, non-invasive live imaging of leukocyte-tumor interactions. We used 

this model for in vivo imaging of neutrophil-tumor interactions on various days after 

tumor cell injection under baseline conditions, but also after treating tumor-carrying 

mice with different inhibitors or antagonists. Moreover, we also employed this 

model for adoptive cell transfer experiments which allowed the direct comparison 

between interactions of chronologically aged vs chronologically non-aged 

neutrophils in the tumor and its microenvironment. The heterotopic model also 

enabled us to examine the microvascular architecture in tumor-bearing mice and 

in tumor-bearing mice that were rendered neutropenic, thereby analyzing the 

effect of neutrophils on tumor angiogenesis.  

Furthermore, we combined our tumor models with two additional mouse models: 

the M. cremaster assay and the peritonitis assay. By adding these two models, we 
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were able to investigate molecules of interest from the investigated pathways 

outside of the tumor and its microenvironment. The M. cremaster assay is a very 

well established model for live imaging of leukocyte-endothelial interactions after 

the administration of inflammatory stimuli. Due to the thin nature of the muscle, 

imaging the different steps of the leukocyte adhesion cascade is possible. By 

combing this approach with the use of fluorescence-labeled antibodies, we were 

also able to distinguish distinct immune cell populations and even phenotypes. 

With the use of the peritonitis assay, the recruitment of different leukocyte subsets 

to the peritoneal cavity after administrating various stimuli could be investigated. 

By employing multi-channel flow cytometry, we were able to quantify these 

recruited immune cells. However, this should only be considered a “screening 

assay” as there is no possibility to distinguish between the interactions of certain 

immune cells that may have contributed to their infiltration into the peritoneal 

cavity. 

We also employed multi-channel flow cytometry to quantify leukocyte subsets 

within the tumor, characterize the phenotype of neutrophils, and analyze the 

activation status of neutrophils and endothelial cells. When measuring these 

activity states of cells, one disadvantage of this method is that only stronger shifts 

or upregulations of molecules are detectable. Moreover, as some of these 

experiments were performed ex vivo in blood, or in vitro in cell culture 

experiments, one has to be cautious not to activate the immune cells by the 

process of taking the blood or simply pipetting not carefully enough. In addition, as 

cell culture is an isolated approach, the results do not give any indication on the 

influences from other cells. Hence, we also employed immunohistochemistry of 

cremasteric whole mounts as another way of measuring the activation of 
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endothelial cells, for instance. By combing these methods, it is possible to get a 

more comprehensive understanding. 

To gain more detailed insight on the underlying mechanisms of neutrophils in 

tumor progression, we also employed several other in vitro experiments such as a 

cell proliferation assay or a cell migration assay. The MTT cell proliferation assay 

is a commonly used method to investigate the number of viable cells, based on the 

transformation of yellow MTT((3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium 

Bromide) into blue formazan via mitochondrial enzymes (Sylvester, 2011). Thus, 

we were able to examine the influence of different stimuli and specific molecular 

factors on cell proliferation. In order to explore cell migration we employed a 

scratch assay. By creating a scratch in the monolayer of confluent cells, and 

comparing the cell migration rate into this scratch, the effect of different stimuli 

could be observed. However, it should be noted that in vitro experiments display 

isolated events as there is no environmental influence. Hence, it is best to 

combine these with other in vivo approaches. For instance, a possible approach 

might be to target the molecular factors found in these experiments, in tumor-

bearing mice and measure tumor progression.  

In cooperation with other laboratories, we also employed multiplex analysis and 

ELISA measurements. These methods, especially the multiplex, offer a great 

screening assay for a large variety of cytokines in many different samples.  
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5.2 Results 

Previous studies demonstrated that tumors release a variety of signals that are 

able to influence the tumor microenvironment as well as to manipulate the host’s 

immune response (Coffelt, Wellenstein, & de Visser, 2016; Coussens et al., 2000). 

It has also become apparent that even in earlier stages, cancer is a systemic 

disease rather than a local threat. The potential of tumor-released signals to 

modulate the immune system however, is still not well understood.  

To compare our poorly immunogenic tumor, the SCC VII and the highly 

immunogenic 4T1 tumor, we performed multiplex analysis. Thereby, we 

investigated which signals can be found within cell culture supernatants, solid 

tumors and are released into the systemic circulation. Our data revealed that in 

cell culture supernatants, SCC VII cells release a larger variety of cytokines in 

comparison to 4T1 tumor cells. In contrast, in solid tumors raised from these cells 

in mice, these differences were no longer present. However, 4T1 tumors produced 

higher amounts of cytokines than SCC VII tumors. This might be contributing to 

the higher immunomodulatory properties of 4T1 tumors as compared to SCC VII 

tumors (Lechner et al., 2013). Interestingly, we did not observe any differences 

regarding the concentrations of cytokines in the serum of tumor-bearing mice as 

compared to healthy mice. However, circulating neutrophils might encounter 

higher concentrations of these tumor-derived chemokines only when making their 

way through the tumor and its microenvironment. Moreover, it is possible that the 

tumor-released cytokines are taken up by erythrocytes (Karsten, Breen, & Herbert, 

2018) and presented to circulating neutrophils. Hence, SCC VII and 4T1 tumor 

exhibit common and distinct cytokine expression profiles. 
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To evaluate the numbers of neutrophils present in the systemic circulation of 

tumor-bearing mice, we employed multi-channel flow cytometry. In these 

experiments, we were able to reveal that tumor-bearing mice showed a slight (in 

case of SCC VII) or a strong increase (in case of 4T1) in the number of blood 

neutrophils. This neutrophilia is a previously described phenomenon in various 

types of tumors and has often been described to be associated with a poor clinical 

outcome (Atzpodien & Reitz, 2008; Bellocq et al., 1998; Schmidt et al., 2005).  

A recent publication demonstrated that CXCL2, another ligand for CXCR2, initiates 

the process of neutrophil biological ageing in an autocrine manner (J. M. Adrover 

et al., 2019). Noteworthy, data from the multiplex analysis also revealed that 

concentrations of ligands for CXCR2 were high in tumor cell supernatants as well 

as in tumors itself. We therefore hypothesized that elevated tumor levels of 

CXCR2 ligands in tumor-bearing mice cause circulating neutrophils to age much 

faster than under homeostatic conditions.  

Neutrophils have been shown to acquire higher expression levels of the 

chemokine receptor CXCR4, during their time in the circulation, making CXCR4 an 

ideal marker for aged neutrophils (Eash et al., 2009; Uhl et al., 2016). We found 

that CXCR4 expression was significantly increased on circulating neutrophils in 

tumor-bearing mice as compared to neutrophils in tumor-free control mice. 

Blockade of the ageing-promoting chemokine receptor CXCR2 in tumor-bearing 

mice significantly reduced the expression of CXCR4 on blood neutrophils, 

suggesting that neutrophils in tumor-bearing mice exhibit an excessively aged 

phenotype which is mediated through ligands of CXCR2. Neutrophils in tumor 

patients have been shown to display an extended half-life due to cues released by 
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the tumor microenvironment (Cheretakis, Leung, Sun, Dror, & Glogauer, 2006; 

Sawanobori et al., 2008). With neutrophils spending more time in the circulation, 

this might potentially further support neutrophil ageing.  

 

5.2.1 The fate of excessively ageing neutrophils in cancer 

The time neutrophils spend in the circulation was shown to have a large impact on 

their molecular repertoire, and hence, their function. Ageing neutrophils represent 

highly reactive immune cells that are among the first line of defense when battling 

infections (Uhl et al., 2016). At the same time, this highly reactive phenotype of 

neutrophils can also represent a threat for vascular health under certain conditions 

by promoting microvascular thrombosis (J. M. Adrover et al., 2019). Considering 

that thrombosis has been described as a common complication in tumor patients 

(Sallah, Wan, & Nguyen, 2002), excessively ageing neutrophils in cancer might 

particularly contribute to this phenomenon. The fate of excessively ageing 

neutrophils in cancer, however, is still unclear.  

Employing immunostaining and confocal microscopy on tumor sections, we 

detected neutrophils in SCC VII and 4T1 tumors as well as in the tumor 

microvasculature. The presence of neutrophils in these solid tumors was 

confirmed by multi-channel flow cytometry tumor homogenates. In particular, 

18.90 % of the tumor leukocytes in SCC VII were CD11bpostive myeloid leukocytes, 

and 2.74 % were Ly6Gpositive neutrophils. With 82.15 % of CD11bpositive myeloid 

leukocytes, and 13.14 % Ly6Gpositive neutrophils, levels of these cells in 4T1 tumors 

were a lot higher. Using a pulse labeling technique with BrdU, we further identified 
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that the majority (about 80 %) of neutrophils present in tumors were aged 

neutrophils. 

To confirm these findings, we performed adoptive cell transfer experiments and 

used in vivo microscopy to image interactions between aged and non-aged 

neutrophils in the tumor and its microenvironment. Our data indicate that 

particularly aged neutrophils (isolated from mice exhibiting > 80 % aged 

neutrophils in their circulation upon treatment with blocking anti-P- and E-selectin 

antibodies) accumulate in the microvasculature of the tumor and of its 

microenvironment as compared to non-aged neutrophils isolated from WT mice 

treated with isotype control antibodies (exhibiting < 20 % aged neutrophils). This 

might be explained by previous studies demonstrating increased surface levels of 

integrins such as CD11a, CD11b and CD49d (J. M. Adrover et al., 2016; Uhl et al., 

2016) on aged neutrophils which enable these highly reactive immune cells to 

migrate to sites of inflammation faster. Thus, excessively ageing neutrophils 

preferentially infiltrate malignant tumors. 

 

5.2.2 The recruitment of excessively ageing neutrophils to tumors 

Neutrophil recruitment can be evoked through a variety of stimuli, for instance 

DAMPs released by necrotic or damaged tissue. Previous studies already 

described the release of DAMPs, such as s100A8/A9, HMGB1, or MSU in various 

types of tumors (Hernandez et al., 2016). Thus, we aimed to analyze the amount 

of HMGB1, s100A8/A9, and uric acid in our tumor cells. HMGB1 as well as 

s100A8/A9 concentrations in supernatants from cell-cultured tumor cells were 
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measured using ELISA, whereas uric acid measurements were obtained using a 

COBAS 8000 modular analyzer. 

S100A8/A9 was not detected in the supernatants from our tumor cells, whereas 

HMGB1 was found to be secreted by 4T1 tumor cells and – in very low 

concentrations – by SCC VII tumor cells. Uric acid was detected in supernatants 

from both cell lines. Interestingly, in 4T1 tumor cell supernatants a higher amount 

of uric acid was measured than in SCC VII. Considering that many studies have 

already shown that s100A8/A9 is found in various types of cancer and that it might 

play an important role in tumor progression, (Gebhardt, Németh, Angel, & Hess, 

2006; Salama, Malone, Mihaimeed, & Jones, 2008), our findings seem to be 

surprising at a first glance. However, many positive results of s100A8/A9 might 

originate from phagocytes in tumors, rather from tumor cells themselves, as these 

immune cells have been shown to be a prominent source for s100A8/A9 (Foell, 

Wittkowski, Vogl, & Roth, 2007). In the context of 4T1 tumor cells releasing 

HMGB1 into the supernatant, but not of SCC VII tumor cells, this finding might be 

another hint towards 4T1 being a more immunogenic tumor that displays more 

immunomodulatory potential than SCC VII, through the release of a larger variety 

of DAMPs. Both types of tumors secreting MSU, might contribute to both of the 

tumors immunomodulatory properties, as uric acid is known to be a potent trigger 

for inflammation and immune activation, for instance in active gout (Shi, Mucsi, & 

Ng, 2010). Next, we employed a peritonitis assay in order to investigate the 

potential of DAMPs to induce leukocyte recruitment. Whereas s100A8/A9 as well 

as MSU crystals caused a significant influx of neutrophils and to a lesser degree of 

monocytes, into the peritoneal cavity, HMGB1 did not cause any leukocyte 

recruitment in this assay. In the past, HMGB1 was already thought to be 
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implicated in leukocyte recruitment, however, recent studies revealed pure 

recombinant HMGB1 does not display proinflammatory activity (Bianchi, 2009), 

and that its oxidation status strongly regulates its activity (H. Yang et al., 2012).  

In addition, we also investigated whether the released DAMPs we identified in our 

tumor cell supernatants, have the ability to activate TLR2 or TLR4, the principal 

receptors for HMGB1. Interestingly, treatment with SCC VII and 4T1 cell 

supernatants did not activate either of the receptors, indicating that HMGB1 may 

not be released by our tumor cells in concentrations that result in TLR2 or TLR4 

activation (Yu et al., 2006). This further led us into the conclusion that particularly 

MSU might mediate neutrophil recruitment to tumors.  

DAMPs such as MSU promote inflammatory responses via the activation of 

inflammasomes, an intracellular protein complex facilitating the production of 

inflammatory mediators including IL-1β (Martinon, Pétrilli, Mayor, Tardivel, & 

Tschopp, 2006). Consequently, we hypothesized that activation of inflammasomes 

might regulate the trafficking of excessively ageing neutrophils in cancer to 

malignant tumors. Confirming this hypothesis, administration of MSU crystals led 

to the release of IL-1ß in the peritoneal cavity, indicating inflammasome activity. 

Employing a peritonitis assay, we found that activation of the NLRP3 

inflammasome with Alum crystals, but not of the AIM2 inflammasome with poly 

(da:dt), the NLRC4 inflammasome with FLA-ST, or the NLRP1 inflammasome with 

MDP, led to a significant recruitment of neutrophils and – to a lesser degree of 

classical monocytes to the peritoneal cavity. The majority of neutrophils recruited 

upon NLRP3 inflammasome activation was represented by aged neutrophils as 

indicated by BrdU pulse labeling.  
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To investigate whether activation of the NLRP3 inflammasome causes direct 

effects on neutrophils, integrin expression was analyzed on neutrophils isolated 

from the peripheral blood of WT mice via flow cytometry. No effect of stimulation 

with Alum crystals on the expression levels of CD11a, CD11b, or CD49d on 

neutrophils was observed. Moreover, the ability to bind ICAM-1/CD54-Fc is 

another parameter indicative of conformational changes in β2 integrins, hence, 

neutrophil activation. However, we also did not detect any changes after 

stimulation with Alum crystals. Furthermore, we also aimed to analyze the effects 

of NLRP3 inflammasome activation on endothelial cells by measuring the 

expression levels of ICAM-1/CD54, VCAM-1/CD106, E-selectin, and P-selectin. 

However, stimulation with Alum crystals did not lead to any upregulation of these 

molecules on the surface of cultured microvascular endothelial cells. A recent 

study described that DAMPs do have the potential to activate endothelial cells. In 

this study, however, endothelial cells were not treated by DAMPs directly, but with 

supernatants from tumor cells after radiation (Krombach et al., 2019).  

On the contrary, when we looked at the effect of NLRP3 stimulation with MSU 

crystals on the release of cytokines in an in vivo setting, the peritoneal cavity, we 

detected increased levels of cytokines, likely released from macrophages, such as 

IL-2, IFNу, CXCL2 and CCL3. These findings suggest that it is actually the NLRP3 

inflammasome in macrophages that becomes activated and then facilitates 

neutrophil recruitment by releasing cytokines. This is in line with previous findings 

showing that crystals were phagocytosed by macrophages, incorporated into the 

phagolysosome, and finally lead to lysosomal rupture resulting in activating an 

immune response through releasing cytokines (Hornung et al., 2008). Another 

aspect further confirming this hypothesis is, after injecting Alum crystals into the M. 
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cremaster, cremasteric endothelial cells did show an increase in ICAM-1/CD54, 

whereas cell-cultured microvascular endothelial cells did not show an upregulation 

of this molecule after direct stimulation. In this context, we observed that activation 

of the NLRP3 inflammasome particularly promote intravascular adherence and 

(subsequent) transmigration of neutrophils and – to a lesser degree – of monocyte 

to the perivascular tissue as elicited by in vivo microscopy on the mouse 

cremaster muscle. Hence, in an in vivo setting where macrophages are present, 

endothelial cells become activated through the cytokines released by 

macrophages which in turn facilitates neutrophil recruitment.  

With inflammasomes being such a potent trigger of inflammatory responses, it is 

not too surprising that the involvement of these signaling platforms in various 

pathologies is currently subject to many discussions. Especially, the NLRP3 

inflammasome has been implicated to play a role in tumor progression, however, 

results have been rather contrasting so far. On the one hand, inflammasome loss 

of function has been reported to be associated with enhanced rate and size in 

induced skin carcinogenesis (Gasparoto et al., 2014). On the other hand, 

expression of NLRP3 components and the cytokine IL-1β has been detected in 

oral squamous cell carcinoma tissues, and downregulation of the NLRP3 

expression in oral squamous cell carcinoma tumor cells significantly reduced the 

tumor growth in vivo (H. Wang et al., 2018). 

It should be noted that IL-1ß has recently been shown to stimulate the IL-17-G-

CSF axis (Ueda, Cain, Kuraoka, Kondo, & Kelsoe, 2009), meaning inflammasome 

activation can further support neutrophilia, which in turn is known to support tumor 

progression. Consequently, we aimed to investigate the effect of the NLRP3 
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inflammasome in neutrophil trafficking to malignant tumors. In order to investigate 

this, we established an in vivo ear model that enabled us to continuously image 

neutrophil responses, in the tumor. The number of rolling neutrophils was 

increased in SCC VII but not in 4T1 tumor-bearing mice, whereas significantly 

more neutrophils were adherent in mice injected with both types of tumors. 

Interestingly these increased neutrophil responses were completely abolished 

when we treated tumor-bearing mice with the NLRP3 inflammasome inhibitor 

MCC950. Hence, these data suggest that the NLRP3 inflammasome controls 

neutrophil trafficking to malignant tumors. 

 

5.2.3 The role of excessively ageing neutrophils in tumor progression 

After identifying that excessively ageing neutrophils are recruited to the tumor and 

its microenvironment via the NLRP3 inflammasome, we sought to evaluate the 

role of excessively ageing neutrophils in tumor progression. Consequently, we 

depleted neutrophils in tumor-bearing mice, starting the same day as tumor cell 

injection to ensure the tumor does not have any neutrophils to support tumor 

growth. As expected neutrophils in the blood of tumor-bearing mice as well as in 

malignant tumors were nearly absent. Interestingly, also the tumor weight was 

significantly lower in neutrophil-depleted animals as compared to isotype-treated 

controls. This is in line with previous studies that revealed neutrophil depletion 

results in reduced tumor growth (Jablonska et al., 2010; Jamieson et al., 2012). 

Together with other experimental studies also reporting tumor-supporting 

properties of neutrophils (L. Yang et al., 2004), and the fact that chemotherapy-

induced neutropenia was described to be beneficial for the patient (Di Maio et al., 
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2005), it becomes more and more evident that neutrophils are key players in tumor 

progression. In contrast, when neutrophils were depleted one week after tumor cell 

injection, tumor weight was not affected. Hence, these data suggest that 

neutrophils are in fact important for tumor progression; however, their presence 

seems to be of utter importance for the tumor, especially in the beginning. A recent 

publication revealed that neutrophils from mice with early-stage cancer displayed 

enhanced migratory behavior and showed elevated metabolic activity, in 

comparison to control neutrophils (Patel et al., 2018). This further points towards 

the importance of neutrophils in early tumor disease. 

In order to investigate possible ways to interfere with tumor growth, we employed 

two approaches: we treated tumor-bearing mice with an NLRP3 inhibitor to impair 

neutrophil trafficking or with CXCR4 or CXCR2 inhibitors in order to interfere with 

the neutrophil ageing process. Consequently, tumor weight as well as the tumor 

development rate was assessed. To get a more comprehensive overview, we also 

investigated tumor infiltration of neutrophils, after mice received these different 

treatments by using a flow cytometer. 

Especially inhibiting the NLRP3 inflammasome resulted in a strong decrease in the 

tumor weight and slightly diminished the tumor development rate. Data from the 

multi-channel flow cytometry illustrated that inhibiting the NLRP3 inflammasome 

lead to a significant reduction of neutrophils in the tumor, thus interfering with the 

recruitment of neutrophils. Both of these findings further confirmed that the NLRP3 

inflammasome is a potential therapeutic target with its involvement in neutrophil 

trafficking. 
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Inhibiting CXCR2 also slightly decreased tumor weight, whereas the tumor weight 

in animals treated with a CXCR4 antagonist was slightly increased. Inhibiting 

CXCR2 or CXCR4 however, did not cause any significant alteration in neutrophil 

infiltration into the SCC VII or the 4T1 tumors.  

Since we have shown that CXCR2 binding enhanced the aged phenotype of 

neutrophils, we hypothesized that by inhibiting CXCR2 in tumor-bearing mice, this 

ageing process is interfered with and thereby less reactive tumor-supporting 

neutrophils are generated. As binding of CXCR4 was shown to antagonize the 

ageing process of neutrophils, blocking this receptor leads to a lack of inhibition, 

thereby creating excessively aged, over-reactive neutrophils (J. M. Adrover et al., 

2019). In addition, blocking CXCR4 also inhibits the recruitment of aged 

neutrophils back to the bone marrow, liver, and spleen (Furze & Rankin, 2008), 

hence, leading to an increase of aged neutrophils in the circulation. Thus, the 

tumor has more an even bigger repertoire of excessively ageing neutrophils to 

support its progression. So overall, we conclude that while the NLRP3 

inflammasome is a key regulator in the recruitment of neutrophils, CXCR2 and 

CXCR4 rather regulates the ageing status of neutrophils than the recruitment of 

these immune cells itself. 

CXCR2 has already gotten a lot of attention in the field of cancer therapeutics. In 

contrast to our findings, studies have shown to block neutrophil recruitment via 

antagonizing CXCR2 (Jamieson et al., 2012; G. Wang et al., 2016), although one 

publication demonstrated this recruitment was only transiently reduced and 

rebounded at later time points (Sody et al., 2019). However, other studies also 

confirmed that even though reduction in tumor growth was observed in CXCR2-/- 
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mice, no difference in neutrophil infiltration was observed (Keane, Belperio, Xue, 

Burdick, & Strieter, 2004), thus, further supporting our findings. Hence, the 

chemokine receptor seems to play an important part in shaping the phenotype of 

neutrophils. Accordingly, CXCR2 already is a promising therapeutic target as first 

clinical trial reported positive results in breast cancer patients (Schott et al., 2017).  

 

5.2.4 The mechanisms excessively ageing neutrophils employ to mediate 

tumor growth 

In the final set of experiments, we sought to gain a deeper understanding how 

excessively ageing neutrophils support tumor progression and what mechanisms 

they employ in this context. To this end, expression levels of N1 and N2 

phenotype associated molecules were measured via multi-channel flow cytometry 

on neutrophils recruited by the NLRP3 inflammasome to the peritoneal cavity of 

WT mice. We found that aged neutrophils show higher surface expression levels 

of molecules that were associated with a pro tumorigenic (N2) phenotype of 

neutrophils (Liang & Ferrara, 2016; Powell & Huttenlocher, 2016) including the 

surface expression of NE, MMP-9, VEGF, CCL3, CCL5, and Arg-1 than non-aged 

neutrophils. This is in line with recent observations demonstrating that neutrophils 

progressively degranulate and release their protein content (e.g., NE, MMP-9) 

during ageing in the circulation via a CXCR2-dependent mechanism before being 

ultimately cleared from the bloodstream as ‘exhausted’ neutrophils at the end of 

their life (Adrover et al., 2020). 

By releasing all of these different markers, neutrophils can potentially exhibit 

various functional properties. In our experiments, SCC VII or 4T1 tumor cells 
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exposed to supernatants from tumor-primed, excessively ageing neutrophils, 

tumor cell proliferation was significantly higher as compared to tumor cells 

exposed to supernatants from neutrophils isolated from healthy mice. We also 

added a NE inhibitor when we treated the tumor cells with supernatants from 

tumor-primed neutrophils. This completely diminished the increase in cell 

proliferation. Several studies have already indicated that this cell proliferation 

might be enhanced by secreting NE through downregulating IRS-1, a key regulator 

of PI3K (Houghton et al., 2010). Hence our results confirm the findings from 

previous studies, and clarifying that excessively ageing neutrophils in cancer 

support tumor progression through stimulating tumor cell proliferation by NE. 

Previously, it has been shown that tumor-associated neutrophils have the ability to 

support processes such as angiogenesis (Christoffersson et al., 2012; Massena et 

al., 2015). To this end, we first sought to investigate the effect of tumor-primed 

neutrophils on endothelial cell proliferation and migration. In our experiments, we 

did not observe any effects on endothelial cell proliferation or migration in 

response to supernatants from tumor-primed neutrophils as compared to 

supernatants from control neutrophils. In addition, we also depleted neutrophils in 

tumor-bearing mice and analyzed the microvascular architecture of the tumors. 

We did not observe any differences in the vessel density, the number of branches 

or the number of junctions between neutrophil-depleted and isotype-control 

antibody-treated animals, collectively suggesting that in our models, neutrophils do 

not support tumor angiogenesis. Thus, excessively ageing neutrophils in cancer 

might be a different subpopulation of neutrophils as compared to the previously 

described CD49dhigh VEGFR1high CXCR4high neutrophils that were identified to 

support vascularization of non-vascularized hypoxic tissue (Christoffersson et al., 
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2012; Massena et al., 2015) or the MMP9high VEGFhigh CXCR4high neutrophils that 

promote angiogenesis in experimental melanoma or fibrosarcoma (Jablonska et 

al., 2010). 

Furthermore, we examined the effect of neutrophils on the presence of T cells in 

tumors, as previous studies have shown that by releasing Arg-1, neutrophils have 

the ability to suppress CD8+ T cell recruitment (Rodriguez et al., 2004; Rotondo et 

al., 2009). However, no difference in the numbers of T cells in the tumor, were 

observed when comparing neutrophil-depleted and isotype-treated tumor mice. 

Thus, in our model neutrophils do not show any effect on T cell recruitment. A 

potential reason for this observation might be that the tumors have other pathways 

substituting for the depleted neutrophils, thereby suppressing CD8+ T cell 

infiltration. For instance, also macrophages have been shown to be sources for 

Arg-1 and to be implicated in interfering with T cell function (Rodriguez et al., 

2003). 
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6 Conclusion 

In conclusion, our data unraveled a previously unknown self-sustaining 

mechanism of malignant tumors that promotes excessive biological ageing of 

circulating neutrophils. To this end, tumor-released ligands of the chemokine 

receptor CXCR2 induce a highly reactive, pro-tumorigenic phenotype in these 

immune cells. Concomitantly, tumor-released uric acid activates the NLRP3 

inflammasome in peritumoral macrophages which, in turn, produce inflammatory 

mediators attracting excessively ageing neutrophils to the neoplastic lesions. Here, 

these immune cells stimulate the proliferation of malignant cells by liberating 

neutrophil elastase, which ultimately promotes tumor growth. Counteracting 

excessive neutrophil ageing in cancer (by CXCR2 inhibitors) and/or trafficking to 

malignant tumors (by NLRP3 inflammasome inhibitors) effectively interfered with 

tumor progression and might therefore provide a promising, already feasible 

strategy in cancer therapy.  
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Figure 4.1: Graphical synopsis. A schematic overview on the here identified mechanisms 

underlying neutrophil trafficking in cancer is shown. 
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