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1) Introduction 

1.1 History of human biomonitoring 

 

Human biomonitoring (HBM) of occupational exposures started in the 1890s by 

determining lead in urine and blood samples of factory workers to evaluate critical 

exposure to lead and consequently to prevent an acute lead poisoning [1, 2]. First more 

systematic measurements of chemical exposure in workplaces took place in the 1930s 

by determining lead and benzene metabolites in different biological fluids [3, 4]. Since 

that time, more powerful analytical techniques became available allowing the deter-

mination of lower concentrations of chemical substances in several matrices [5] and 

with higher throughput. With those improvements it was possible to measure lead 

levels in blood samples of the general population of industrialized countries [5, 6] re-

sulting in an alarming outcome of lead levels and the first European “Directive on 

biological screening of the general population for lead” in 1977 [6].  

In the U.S., a first systematic biomonitoring survey was conducted with the “Na-

tional Health and Examination Survey I (NHANES I)” from 1971 to 1974 [7], followed 

by two further  surveys (NHANES II and III) until 1999 [8]. In 1999 the survey became 

a continuous program with changing focus on a variety of health and nutrition meas-

urements with approximately 5,000 participants per year from the whole U.S. [9]. 

The first “German Environmental Survey (GerES)” was carried out in 1985 and 

1986 in Western Germany (GerES I) [10] and also in 1985, the “German Environmental 

Specimen Bank (ESB)” was launched with the aim to collect and archive human and 

environmental samples in order to document trends in exposure to environmental 

pollutants [11]. Since GerES I, four further surveys took place (GerES II-V) and cur-

rently, data are collected for GerES VI, which should be conducted between 2018 and 

2022 [12]. Many other countries like Belgium, France, Russia, Spain, Denmark, and 

Norway also conducted human biomonitoring (HBM) surveys [13]. 
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Since 2017, the “HBM4EU” project is ongoing with the aim to protect human 

health in Europe. The project is supported by the European Environment Agency, the 

European Commission and 28 countries and is coordinated by the German Environ-

ment Agency [14]. This increase in human biomonitoring projects emphasizes the im-

portance and necessity of human biomonitoring in modern industrialized countries. 

 

1.2 Definition and requirements for human biomonitoring 

 

Human biomonitoring can be defined as “a systematic continuous or repetitive 

activity for collection of biological samples for analysis of concentrations of pollu-

tants, metabolites or specific non-adverse biological effect parameters for immediate 

application, with the objective to assess exposure and health risk to exposed subjects, 

comparing the data observed with the reference level and — if necessary — leading to 

corrective actions’’ [15] or as “one method for assessing human exposure to chemicals 

by measuring the chemicals or their metabolites in human tissues or specimens, such 

as blood and urine“ [2].  

Approaches in HBM can be categorized into dose monitoring, biochemical effect 

monitoring and biological effect monitoring. Dose monitoring means the quantifica-

tion of hazardous compounds or their metabolites in biological matrices. Biochemical 

effect monitoring is used to determine reaction products of substances with biological 

molecules such as DNA or proteins. Biological effect monitoring is the investigation 

of early biological effects caused by chemicals, for instance sister chromatid exchange 

rates, micronuclei aberration, enzyme activities [5]. All HBM applications presented 

in this thesis can be categorized as dose monitoring applications (internal exposure, 

cf. Figure 1). 

Human biomonitoring needs to be delimited from ambient monitoring (AM) 

which means “determination of chemical substances in environmental matrices like 

air, water soil, food, etc.” [5]. In contrast to HBM, AM does not consider all possible 
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routes of absorption, and concentrations measured do not represent the internal dose 

taken up [16]. Nevertheless, both approaches are needed to protect humans from the 

exposure of chemicals which are hazardous to health. While AM identifies the source 

of exposure, HBM determines the amount of chemical taken up by an individual.  AM 

and HBM complement each other, but HBM only can assess the dose really taken up 

(internal dose) [5], which is directly related to effects on human health. 

However, some requirements have to be fulfilled in order to conduct HBM stud-

ies. First, a suitable biological matrix, preferably easily accessible and available, needs 

to be found. The analyte concentration in the matrix selected should be able to reflect 

internal exposure and biochemical or biological effects. Furthermore, validated and 

reliable analytical methods, which are kept under control by quality assurance need 

to be available for analysis, and reference and limit values need to be established in 

order to interpret the results [5, 17].   

Figure 1: Classification of ambient and biological monitoring (adapted from Angerer, 2007 [5] and Budnik, 

2009 [18]) 
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1.3  Selection of the biological matrix 

 

Environmental chemicals are primarily entering the human body by ingestion, 

inhalation or dermal absorption [19, 20]. After uptake, a substance can be excreted 

without transformation, excreted after metabolization or stored in tissues or bones 

[13, 19], or undergo a combination of these processes [21]. The physicochemical prop-

erties of a chemical highly affect its metabolism and excretion routes which influence 

the selection of a biological matrix for HBM [13]. For instance, substances, being not 

absorbed from the body are excreted directly in the feces and can be determined in 

blood or feces for a short time after intake only [21]. In contrast, substances with a 

long half-live ranging from several weeks up to years can be measured in blood, adi-

pose tissue, teeth or breast milk [20-22]. Certainly, the selection of biological matrices 

is limited by several additional factors: The xenobiotic analyzed should be determina-

ble in a level and in a biological matrix which are meaningful in terms of systemic 

exposure and health risks [17], sufficient amounts of the sample material should easily 

be accessible and sampling should not cause unacceptable discomfort or health risks 

for the subjects [5]. For these reasons, the most common matrices used in occupa-

tional medicine and human biomonitoring are blood and urine, whereby urine is easier 

accessible [5, 19, 21].  

As the central compartment of the human body, blood is in equilibrium with all 

organs [5, 19, 21]. This enables the determination of persistent chemicals which are 

stored in deposition sites such as adipose tissue, bones or in blood or its compo-

nents [20, 21]. On the contrary to the storage compartments, the recovery of blood 

samples is by far less invasive resulting in higher participation rates in epidemiologi-

cal studies [21]. To ensure specificity for a certain chemical it can be necessary to an-

alyze the original chemical and/or one or more of its metabolite(s) in blood instead of 

a transformation product in another matrices, especially if a given metabolite may 

originate from more than one parent chemical [20]. Determining the parent com-
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pound is also favorable if the chemical itself possesses toxicological relevant proper-

ties [23]. A classical group of synthetic chemicals which are measured in human blood 

samples in order to assess systemic exposure are organochlorine pesticides [2, 13, 17, 

24]. 

Urine is also a very common matrix for HBM, especially for water-soluble chem-

icals and metabolites [19, 25]. The big advantage of urine as biological sample is that 

sample collection is noninvasive while it is continuously accessible in large volumes 

[5]. Large sample volumes can help to determine very low concentrations of chemicals, 

because analytes can be concentrated by evaporating the solvent (after extraction) 

and reconstitution of the analytes in smaller solvent volumes [5]. On the other hand 

urine samples can strongly differ in their compositions and volumes [26]. To overcome 

misinterpretation of analytical data and to take urine dilution into account, different 

approaches to standardize urinary concentrations determined have been estab-

lished[11]. The most common standardization method is to relate analyte concentra-

tions on creatinine assuming that creatinine is constantly excreted into urine [27]. In 

some cases, relating concentrations to the amount of creatinine excreted is not pur-

poseful,  for example, for human exposure measurements of metals like cadmium and 

thallium which significantly affect kidney function and thereby creatinine excretion 

[28, 29]. Alternative methods for standardization of urinary concentrations are spe-

cific gravity [30], conductivity [31], osmolality [32] and total urine volume [33]. Due to 

the easy sampling of urine, this matrix is particularly well suited for studies which 

require repeated sampling [26].  

Another important aspect which must be considered while determining urinary 

metabolites is that xenobiotics are often excreted as conjugates in order to increase 

their water solubility and hence facilitate excretion [34]. Possible conjugates include 

sulfate, glycine and glutathione conjugation, but the major elimination pathway in 

mammals is the conjugation of glucuronic acid to an oxygen, nitrogen, or less often, 

sulfur or carbon atom of the xenobiotic [35]. The glucuronidation reaction is catalyzed 

by glucuronosyltransferases which are located in the endoplasmic reticulum of cells 
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mainly of the liver, but also in other organs, like kidney, intestine, skin, lung, spleen, 

prostate and brain [34, 35]. Drug (metabolite) glucuronidation in humans can be af-

fected by multiple factors, like age, diet, cigarette smoking, diseases, drug therapies, 

ethnicity, genetic and hormonal factors [36] and therefore,  the ratio between uncon-

jugated and glucuronidated xenobiotics varies from individual to individual making it 

necessary to determine the whole amount (free and conjugated) of a compound. To 

capture the whole amount of a compound, glucuronides can be hydrolyzed by β-glu-

curonidases, esterases and serum albumin to give the respective aglycone [35, 37]. 

 

Figure 2: Scheme for the conjugation of an aglycone (R-XH) with glucuronic acid. The acceptor group HX- 

may contain oxygen, nitrogen, sulfur or carbon atoms. The configuration of glucuronic acid is inverted from 

alpha- to beta form during the conjugation reaction (adapted from Kroemer, 1991 [34] and Miners, 

1991 [36]). 

 

Urine as matrix is usually used for non-persistent chemicals such as phenols, 

parabens, phthalates, volatile organic compounds and polycyclic aromatic hydrocar-
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bons  [13], especially if a metabolite of the chemical monitored is responsible for pos-

sible detrimental effects [21]. Due to the big advantages of urine as biological matrix, 

all HBM methods presented in this thesis are based on urine as sample matrix. 

 

1.4 The German Human Biomonitoring Initiative 

 

To improve the knowledge about chemicals taken up from the human organism, 

the German Human Biomonitoring Initiative was started in 2010 [38, 39]. This project 

is a cooperation between the German Federal Ministry for the Environment, Nature 

Conservation and Nuclear Safety (Bundesministerium für Umwelt, Naturschutz und 

nukleare Sicherheit, BMU) and the German Chemical Industry Association (Verband 

der chemischen Industrie, VCI) with the aim to develop novel HBM methods for up to 

50 chemicals within ten years until 2020 [40]. In order to achieve sufficient specificity 

and sensitivity for all analytes, the physical and chemical properties of the respective 

chemical and its metabolites need to be considered. Therefore, every method devel-

opment requires an unique approach, which is demanding and needs time and that is 

why the cooperation was extended until 2025 [41].  

For the selection of chemicals of relevance, a HBM Expert Panel consisting of 

representatives from the Federal Institute for Risk Assessment, the Federal Institute 

for Occupational Safety and Health and the BMU, as well as of experts from chemical 

industry enterprises and from universities and other scientific institutions was 

built [42]. Chemicals of relevance were selected based on their toxicology, their (ex-

pectedly) good bioavailability (health relevance), a high likelihood of consumer expo-

sure (consumer relevance) and non-existence or unsuitability of an existing HBM 

method [40, 42]. While the VCI bears responsibility for method development, the 

BMU, supported by the German Environment Agency (Umweltbundesamt, UBA) is re-

sponsible for the application of the methods in suitable investigations like GerES [40, 

43]. 
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In order to obtain suitable methods, some requirements were imposed on the 

laboratories developing the monitoring methods [42]:  

1. To facilitate sample collection, especially in studies addressing children, the 

method should be developed for urine (non-invasive matrix). 

2. Since the method will be applied to a large number of samples, the method 

should run in fast routine using state of the art techniques. 

3. Sensitivity of the method should allow to evaluate the environmental expo-

sure of the general population even at very low exposure. Therefore, LOQ 

must be well below the LOQ for occupational exposure. In general, a LOQ of 

0.1 µg/L in urine or plasma should be reached. 

4. Application of the method to samples of 30-40 not occupationally exposed 

participants is part of the method development. 

 

Since March 2020, all 50 substances were selected by the HBM expert panel for 

the development of an HBM method. Method development was successfully com-

pleted for 22 chemicals, four method developments had to be aborted, and 17 method 

developments are still in progress (state: October 2019) [44]. Substances selected pos-

sess numerous application fields and are a highly heterogeneous group as displayed 

in Figure 3. 

 

Figure 3: Categorization of the 50 substances selected for the German HBM Initiative 
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The large progress in German HBM in the last decade ensured that the UBA was 

commissioned with the coordination of the first Europe-wide HBM program 

“HBM4EU” which shall help to harmonize and refine HBM within Europe [40]. 
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2) Aims and scope 

 

The amount of chemicals the populations of industrial and developing countries 

are exposed with in their everyday lives is steadily increasing.  From 2002 to 2019, the 

number of chemicals registered in the Chemical Abstract Service Registry was growing 

from 20 million to 156 million chemicals [45]. The development and usage of new 

chemicals for specific application fields supports the improvement of our living stand-

ard, but also leads to an increased exposure of the environment and human beings to 

anthropogenic chemicals. Besides the direct exposition of humans to chemicals, this 

inevitably causes human exposure to pesticides, industrial chemicals, pharmaceuti-

cals and other synthetic chemicals via consumer products or the food chain [42, 45]. 

Numerous of these substances taken up by the human body by inhalation, dermal con-

tact or oral absorption through the food chain or drug ingestion can induce detri-

mental effects [18], therefore the producers and governments have to protect the pop-

ulation and the environment against unwanted effects [42].  

In the present work, human biomonitoring methods were developed for three 

chemicals selected within the German Human Biomonitoring Initiative. The sub-

stances processed in this work possess manifold chemical and physical properties, be-

cause of their different application fields which had to be taken into account during 

method development.  

The first chemical processed in this work was the fragrance 7-hydroxycitronellal 

(CAS number: 107-75-5) which was selected as chemical of interest in 2015 by the 

HBM expert panel. This synthetically manufactured diterpene is frequently used in 

cosmetics, washing and cleaning agents and was shown to cause skin irritation and 

skin sensitization [46]. 

In 2016, the UV filter Uvinul A plus® (CAS number: 302776-68-7) was chosen for 

the development of an HBM method and selected as second chemical within this work. 
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Uvinul A plus® belongs to a widespread class of UV filters possessing a benzophenone 

basic structure being present in many sunscreens and anti-aging products [47]. Alt-

hough it could not be confirmed for Uvinul A plus®, a considerable number of benzo-

phenone based UV filters has been shown to act as endocrine disruptors and affect the 

hormone systems of animals and humans [48].  

The third chemical investigated in this work is ethoxyquin (CAS number: 91-53-

3), which was selected by the HBM expert panel in 2017. Ethoxyquin is often added to 

animal feed, because of its antioxidative properties and is preferred over other anti-

oxidants commercially available because of its low costs of production [49]. This quin-

oline-based antioxidant was shown to induce detrimental effects after acute or 

chronic exposure [49] and some transformation products of ethoxyquin are suspected 

to be carcinogenic [50].  

The chemical structures of the three substances investigated in this work are dis-

played in Figure 4. 

 

Figure 4: Chemical structures of the three substances investigated in this work 
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In order to build up powerful HBM methods, metabolites which could serve as 

suitable biomarkers of exposure had to be identified for every chemical investigated 

and subsequently, HBM methods were optimized to the selected biomarkers and vali-

dated. As most appropriate sample matrix, urine was selected for all three HBM meth-

ods (cf. 1.3  Selection of the biological matrix). Since no information on human me-

tabolism of the chemicals of interest was available, biomarkers were postulated based 

on results of in vitro and/or in vivo experiments and human metabolism was investi-

gated within the frame of method development by orally (and dermally) applying one 

of the three test compounds to five healthy volunteers. Potential biomarkers not com-

mercially available were self-synthesized. Sample preparation included enzymatic hy-

drolysis of conjugated metabolites (cf. 1.3  Selection of the biological matrix), extrac-

tion of the analytes into an organic solvent and concentration of the analytes before 

measurement. Subsequently, analytes were separated from the sample matrix by 

means of ultra high-performance liquid chromatography (UHPLC). UHPLC guaranteed 

a satisfactory separation efficiency for all analytes and was preferred over gas chro-

matography (GC), because GC analysis is limited to volatile compounds and some bi-

omarkers selected were not volatile enough for GC analysis, which is especially hold 

true for polar metabolites even though they were analyzed in their unconjugated 

forms. Detection of the analytes was achieved by coupling the UHPLC system with a 

quadrupole mass spectrometer leading to a selective and sensitive determination of 

the analytes. 

The HBM methods developed, including selection of the biomarkers, sample 

preparation, chromatographic separation and detection were fully validated according 

to FDA guidelines [51, 52]. As a proof of concept, a number of 40 to 58 samples of the 

general population were analyzed with the new HBM methods. 
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3) Development and application of novel human biomonitoring 

methods for chemicals of emerging health relevance 

3.1  Human biomonitoring for 7-hydroxycitronellal 

 

Stoeckelhuber M, Krnac D, Pluym N, Scherer M, Leibold E, Scherer G. A validated UPLC–MS/MS 

method for biomonitoring the exposure to the fragrance 7-hydroxycitronellal. Journal of Chromatography B. 

2017;1068-1069 (Supplement C):261-7. 

Stoeckelhuber M, Krnac D, Pluym N, Scherer M, Peschel O, Leibold E, Scherer G. Human metabolism 

and excretion kinetics of the fragrance 7-hydroxycitronellal after a single oral or dermal dosage. Interna-

tional Journal of Hygiene and Environmental Health. 2018;221(2):239-45 

 

7-Hydroxycitronellal (CAS number: 107-75-5) is a synthetic fragrance which can 

be found in a wide variety of consumer products such as cosmetics, washing and clean-

ing agents [53-56]. It is also utilized as flavoring agent for food [55], because it has a 

sweet, floral and lily-type odor [56]. 7-Hydroxycitronellal is manufactured and/or im-

ported in 1,000 – 10,000 tons per year within the EU and is supplied under various 

trade names such as citronellal hydrate, cylclosia, laurinal, laurine or lilyl aldehyde 

[46]. In 2002, the usage of 7-hydroxycitronellal in Europe was estimated 88 tons per 

year with an average percentage of 35 % used in households [56]. In deodorants an 

increase in the generally high occurrence of 7-hydroxycitronellal from 50 % in 1998 

[57] to 70 % in 2007 [54] could be observed. Overall, it could be detected in 10.6 % of 

the consumer products investigated in 2007 [54]. In the same year Buckley et al. de-

termined an occurrence of 17 % of 7-hydroxycitronellal in consumer products in the 

UK, which meant that it was the 8th most frequently labeled fragrance in consumer 

products in the UK at that time [53]. A large survey addressing the occurrence of fra-

grance contact allergens in >5,000 cosmetic products was conducted within the EU 

from 2015 to 2016: The fragrance allergen 7-hydroxycitronellal was labelled at 7.1 % 

of the cosmetic products. The product category most often labelled with 7-hydroxycit-

ronellal were perfumes with 41.2 % [58]. 
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Although the substance is widely used in consumer products, 7-hydroxycitron-

ellal possesses a topical toxicity leading to skin irritation and skin sensitization [46] 

and is listed by the European Commission in regulation EC No 1223/2009 as one of 26 

contact allergens used as fragrance ingredients, which have to be declared on cosmetic 

products [59, 60]. No other harmful effects causing acute toxicity could be found after 

dermal or oral exposure of rabbits or rats. Genotoxicity was also tested in various in 

vitro and in vivo models without any hints on mutagenic activity [46]. The LD50 value 

in rats was found to be higher than 6,400 mg/kg body weight [46] and a “No Observed 

Effect Level” (NOEL) of 250 mg/kg/d was established by The Joint FAO/WHO Expert 

Committee on Food Additives (JECFA) [56]. Following the toxicological findings, the 

International Fragrance Association (IFRA) updated the restriction limits in the fin-

ished product in January 2020 to 0.11-15 % depending on the product category [61]. 

The lowest restriction limit with 0.11 % in the finished product affects deodorants, the 

highest restriction limits were set for hard surface cleaners (15 %) [61, 62]. Levels ob-

served in consumer products vary from 0.015-0.478 % in perfumes [54] and 0.0001-

0.1 % in deodorants [57].  

Even though 7-hydroxycitronellal is a widely used chemical which the major part 

of the general population is exposed with, no data concerning human exposure was 

available until recently and human metabolism of 7-hydroxycitronellal was not eluci-

dated as well. That’s why a human biomonitoring was developed, and human metab-

olism was investigated within the frame of a small metabolism study with five partic-

ipants.  

The metabolism study revealed two urinary metabolites of 7-hydroxycitronellal: 

the reduced form 7-hydroxycitronellol and the corresponding carboxylic acid 7-hy-

droxycitronellylic acid (see Figure 5). The non-metabolized aldehyde could not be de-

termined in any sample. 
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Figure 5: Pathway for the 7-hydroxycitronellal metabolism in humans 

 

Out of these two metabolites, 7-hydroxycitronelllylic acid only was found to be 

a suitable biomarker of exposure for 7-hydroxycitronellal since 7-hydroxycitronellol 

levels were about 1,000 times lower compared to 7-hydroxycitronellylic acid levels. 

Hence, the biomonitoring method was optimized for 7-hydroxycitronellylic acid and 

validated according to guidelines issued by the German Research Foundation 

(Deutsche Forschungsgemeinschaft, DFG) and the US Food and Drug Administration 

(FDA)[51]. The final analytical method is carried out by using stable isotope-labeled 

7-hydroxycitronellylic acid as internal standard (IS) and includes a hydrolysis step of 

possible metabolite conjugates with an enzyme mix of β-glucuronidase and arylsulfa-

tase. Sample cleanup was achieved by liquid-liquid extraction (LLE) of the urine sam-

ples with dichloromethane.  

The validated method was applied to all samples of the metabolism study and 40 

urine samples collected from adult volunteers from the general population. Maximum 

excretion rates were reached after three to five hours after oral administration and 

after ten hours after dermal administration. Skin absorption for 7-hydroxycitronellal 

reduced the amount of urinary excreted 7-hydroxycitronellylic acid within the first 

24 hours after gavage to 9 % after dermal application in comparison to 50 % after oral 

application. From the data of the human metabolism study, a conversion factor was 

calculated in order to estimate the exposure of the general population to 7-hy-
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droxycitronellal from the urinary concentration of 7-hydroxycitronellylic acid deter-

mined. From the samples of 40 volunteers from the general population a daily average 

exposure dose of approximately 93 µg per day could be determined. The metabolite 7-

hydroxycitronellylic could be quantified in all 40 samples proving the suitability of the 

method for future human biomonitoring projects.  
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3.2 Author contributions 

 

The results achieved were published in two journals. The method development 

and validation of the method was published in the Journal of Chromatography B, and 

the human metabolism study including the calculation of toxicokinetic parameters 

were published in the International Journal of Hygiene and Environmental Health. 

 

 Contributions to “A validated UPLC–MS/MS method for biomonitoring the expo-

sure to the fragrance 7-hydroxycitronellal” 

 

Dusan Krnac (chemist) and I developed the analytical method. The validation of 

the human biomonitoring method was carried out by me with the support of Dusan 

Krnac. I collected 40 samples of the general population within the greater Munich area 

and analyzed them according to the method described for the determination of 7-hy-

droxycitronellylic acid. The manuscript was prepared by Prof. Dr. Gerhard Scherer, Dr. 

Max Scherer, Dr. Nikola Plum, Dr. Edgar Leibold (BASF), and me.  

 

Own contribution: 

Development of the human biomonitoring method 40 %  

Validation of the human biomonitoring method 90 %  

Sample collection from the general population 100 %  

Analysis of study samples 100 %  

Submission and revision of publication 1 80 %  
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 Original article: “A validated UPLC–MS/MS method for biomonitoring the expo-

sure to the fragrance 7-hydroxycitronellal” 
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 Contributions to “Human metabolism and excretion kinetics of the fragrance 7-

hydroxycitronellal after a single oral or dermal dosage” 

 

The ethical approval for the metabolism study was obtained by Prof. Dr. Gerhard 

Scherer. The metabolism study was implemented by Prof. Dr. Gerhard Scherer, Dusan 

Krnac and me, Dr. Oliver Peschel led the medical surveillance. I analyzed all samples 

according to the method described for the determination of 7-hydroxycitronellylic 

acid and evaluated all toxicokinetic parameters with the support of Prof. Dr. Gerhard 

Scherer. The manuscript was prepared by Prof. Dr. Gerhard Scherer, Dr. Max Scherer, 

Dr. Nikola Plum, Dr. Edgar Leibold (BASF), and me. 

 

Own contribution: 

Writing application for the ethical approval 0 %  

Implementation of the metabolism study 20 %  

Analysis of study samples 100 %  

Evaluation of toxicokinetic parameters 90 %  

Submission and revision of publication 2 80 %  

 

  



Human biomonitoring for 7-hydroxycitronellal 

31 

 

 Original article: “Human metabolism and excretion kinetics of the fragrance 7-

hydroxycitronellal after a single oral or dermal dosage” 
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3.3  Human biomonitoring for Uvinul A plus® 

 

Stoeckelhuber M, Pluym N, Bracher F, Leibold E, Scherer G, Scherer. A validated UPLC-MS/MS method 

for the determination of urinary metabolites of Uvinul® A plus. Analytical and Bioanalytical Chemistry. 

2019;411:8143-8152. 

Stoeckelhuber M, Scherer M, Peschel O, Leibold E, Bracher F, Scherer G, Pluym N. Human metabolism 

and urinary excretion kinetics of the UV filter Uvinul A plus® after a single oral or dermal dosage. Interna-

tional Journal of Hygiene and Environmental Health. 2020;227 

 

Hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoate (CAS number: 302776-

68-7; DHHB) is a synthetic, organic UV filter available on the market under its trading 

name Uvinul A plus®. It is one of 27 UV filters approved by the European Commission 

allowing cosmetic products to contain a maximum concentration of 10 % (w/w) [63]. 

Furthermore, it is approved for use in Australia, New Zealand, Brazil, Japan and South 

Africa (concentrations up to 10 %) [64, 65]. Since DHHB possesses its maximum of ab-

sorption at 354 nm [64, 66], it is used for protection of the skin against UV-A radiation 

mainly in sunscreens, but also in other cosmetics like anti-aging products [47, 67], and 

over 1000 tons per year are produced within the EU [68].  

From 2006 to 2009, a product survey for cosmetics marketed in Germany was 

conducted. Overall, 4447 cosmetic products were screened for the International No-

menclature of Cosmetic Ingredients (INCI) names of all UV filters approved within the 

EU. The products investigated can be categorized into seven groups: Sunscreens, 

creams, hair styling products, make-ups, nail polishes, cosmetics for the lips, and per-

fumes. DHHB was declared in 1.8 % (80/4447) of all products and in 2.6 % (12/462) of 

the sunscreens investigated. The highest percentage occurrence of DHHB could be 

observed in perfumes with 4.8 % (2/42), however, with a small number of samples. 

DHHB was not declared on any sample in the categories creams, make-ups and nail 

polishes [47]. In a shop survey conducted by the Danish Environmental Protection 

Agency, DHHB was identified in 18.2 % (53/291) by analyzing the list of ingredients of 

the cosmetic products, including 46 sunscreens [67]. Once applied, UV filters can 
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reach waters as a consequence of washing off from the skin [69]: DHHB has already 

been detected in coastal waters from beaches in Gran Canaria in concentrations up to 

229 ng/L [70]. Until now, no DHHB could be detected in seafood commercialized in the 

European Union [71]. 

The median lethal dose after oral dosing of rats with Uvinul A plus® was found to 

be higher than 2000 mg/kg [72]. Although, cases of contact dermatitis could be ob-

served [73], several studies in animals and a human repeated insult patch test with 

10 % DHHB showed no skin-irritating or sensitizing effects [68]. While most of the UV 

filters possessing a benzophenone basic structure, like benzophenones-1-4, are 

known to act as endocrine disruptors primarily influencing the estrogenic and andro-

genic hormone system [48, 74-77], recent studies did not indicate that DHHB influ-

ences the hormone system [67]. 

Varying results concerning the dermal absorption of DHHB were obtained de-

pending on the experimental design. In in vitro experiments with porcine skin [72, 78, 

79] and human skin [80] conducted with Franz diffusion cells, no DHHB could be de-

tected in the receptor fluid indicating that DHHB was not able to permeate through 

the skin. Another in vitro study using Franz diffusion cells and human skin calculated 

an absorption rate of 0.5 % [68]. No in vivo data are available, but in general, in vivo 

absorption rates can be assumed as lower as in in vitro experiments [81, 82]. 

As mentioned above, DHHB is used in many cosmetic products in comparably 

high concentrations and residuals have even been detected in coastal waters, but no 

reliable data concerning human exposure to this chemical are available. In order to 

assess the human exposure to DHHB, the compound was selected for the development 

of a HBM method within the German HBM Initiative including the elucidation of its 

human metabolism as well as the identification of suitable biomarkers of exposure. 

Since the human metabolism of DHHB was unknown, a metabolism study with 

five participants was conducted and three major and four minor urinary metabolites 

of Uvinul A plus® have been identified (see Figure 6). The only metabolite of DHHB 
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previously known from in vivo experiments in rats was 2-[4-(diethylamino)-2-hy-

droxybenzoyl]benzoic acid (DHB), which is formed by simple hydrolysis of the n-hexyl 

ester moiety [68]. 2-[4-(Amino)-2-hydroxybenzoyl]benzoic acid (AHB) and 2-[4-

(ethylamino)-2-hydroxybenzoyl]benzoic acid (EHB) could be identified as urinary me-

tabolites of DHHB for the first time. Furthermore, four minor, additionally hydrox-

ylated species could be determined by means of QTrap® experiments. Indeed, no 

chemical reference standards for the additionally hydroxylated metabolites were 

available and urinary levels were assumed to be approximately 100-fold lower in com-

parison to urinary levels of the major metabolites. The precise location of the addi-

tional hydroxyl moieties could not be clarified, but the fragmentation patterns ob-

served in QTrap® experiments suggest that these moieties are exclusively located in 

the aniline ring. Unchanged DHHB could not be determined in any sample. Thus, the 

four minor metabolites were rated as unsuitable for a HBM of DHHB, because of the 

low amounts detected in the samples of occupational exposed participants and the 

final HBM method was optimized for the three major metabolites AHB, EHB and DHB. 

 

Figure 6: Proposed pathways for the Uvinul A plus® metabolism in humans (R1 = H or ethyl,  R2 = H or ethyl) 

 

All three major metabolites were simultaneously determined by using authentic 

stable isotope-labelled standards (D4-AHB, D5-EHB and D10-DHB). After conjugates of 

the metabolites were enzymatically hydrolysed with β-glucuronidase from E. coli, the 
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analytes were extracted via LLE with ethyl acetate, the organic layer was evaporated 

to dryness and reconstituted in methanol. The extracts were injected into a UPLC-MS-

MS system and AHB, EHB and DHB were determined. The final HBM method was val-

idated according to guidelines issued by the DFG and the FDA [52]. 

All samples derived from the metabolism study and 58 urine samples collected 

from adult volunteers from the general population were analysed according to the val-

idated method. Similar excretion patterns for AHB, EHB and DHB were obtained with 

a maximum excretion after about four to five hours after oral dosing. After 72 h, 54 % 

of the oral dose given was excreted as EHB (33 %), AHB (16 %) and DHB (5 %).  Urinary 

excretion for all three major metabolites after dermal dosing began after approxi-

mately three hours and wave-like excretion patterns with maximum excretion rates 

at 24, 43 and 56 hours could be observed. Overall, less than 0.02 % of the dermal dose 

administered could be determined, resulting in a calculated skin absorption between 

0.003 and 0.02 % for the five subjects. At least one of the three major metabolites of 

DHHB could be determined in 35 % of the 58 samples from non-occupationally ex-

posed participants and an average exposure dose for DHHB between 8.1 and 9.3 µg/d 

was calculated depending on the conversion factor used for calculation. 
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3.4 Author contributions 

 

The research data obtained within this study were summarized in two publica-

tions. The first article comprises the development and validation of the HBM method 

and was published in Analytical and Bioanalytical Chemistry. The second article was 

published in the International Journal of Hygiene and Environmental Health and deals 

with the application of the HBM method to the samples of the metabolism study and 

the calculation of toxicokinetic parameters. 

 

 Contributions to “A validated UPLC-MS/MS method for the determination of 

urinary metabolites of Uvinul® A plus” 

 

The development as well as the validation of the human biomonitoring method 

was conducted by me. I carried out the synthesis of AHB under the supervision of Prof. 

Dr. Franz Bracher. David Schmidl (BSc), who worked as a trainee under my supervision 

and I collected the samples from the general population, and I analyzed all study sam-

ples. The manuscript was prepared by Prof. Dr. Gerhard Scherer, Prof. Dr. Franz 

Bracher, Dr. Max Scherer, Dr. Nikola Plum, Dr. Edgar Leibold (BASF) and me. 

 

Own contribution: 

Development of the human biomonitoring method 100 % 
 

Validation of the human biomonitoring method 100 % 
 

Sample collection from the general population 100 % 
 

Analysis of study samples 100 % 
 

Submission and revision of publication 1 70 % 
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 Original Article: “A validated UPLC-MS/MS method for the determination of 

urinary metabolites of Uvinul® A plus” 
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 Contributions to “Human metabolism and urinary excretion kinetics of the UV 

filter Uvinul A plus® after a single oral or dermal dosage” 

 

The application for ethical approval was written by me and reviewed and sub-

mitted by Prof. Dr. Gerhard Scherer. I set up and conducted the metabolism study, Dr. 

Oliver Peschel led the medical surveillance. All samples obtained from this study were 

analyzed by me and I calculated all toxicokinetic parameters with the support of Prof. 

Dr. Gerhard Scherer. The manuscript was prepared by Prof. Dr. Gerhard Scherer, Prof. 

Dr. Franz Bracher, Dr. Nikola Pluym, Dr. Max Scherer, Dr. Edgar Leibold (BASF) and 

me. 

 

Own contribution: 

Writing application for the ethical approval                                        70 % 
 

Implementation of the metabolism study 90 % 
 

Analysis of study samples 100 % 
 

Evaluation of toxicokinetic parameters 90 % 
 

Submission and revision of publication 2 70 % 
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 Original Article: “Human metabolism and urinary excretion kinetics of the UV 

filter Uvinul A plus® after a single oral or dermal dosage” 
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Human metabolism and urinary excretion kinetics of the UV filter Uvinul A 

plus after a single oral or dermal dosage 

Markus Stoeckelhubera,b, Max Scherera, Oliver Peschelc, Edgar Leiboldd, Franz Bracherb, Gerhard 

Scherera, Nikola Pluyma* 

a ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany 

b Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Buten-

andtstr. 5-13, 81377 Munich, Germany  

c Institut für Rechtsmedizin der Universität München, Nussbaumstr. 26, 80336 Munich, Germany 
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Fig. S1. Time courses of the urinary excretion of DHHB metabolites after oral administration of DHHB 

to subjects 2-5 displayed as A excretion rate in µg/h and B cumulative excretion in µg 
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Fig. S2. Time courses of the urinary excretion of DHHB metabolites after dermal administration of 

DHHB to subjects 2-5 displayed as A excretion rate in µg/h and B cumulative excretion in µg 
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3.5  Human biomonitoring for ethoxyquin 

 

Ethoxyquin (CAS number: 1-53-2; EQ) is a synthetic quinoline-based antioxi-

dant which is widely used as an additive in animal feed and as preservative in dried 

forage crops and spices [49, 83, 84]. In the past, EQ was also used as an anti-scalding 

agent in pears and apples [85], but the authorization within the EU of EQ as pesticide 

was stopped in 2011 [86]. EQ is often preferred over other antioxidants because of its 

low production costs and its high antioxidant capacity [49, 87, 88]. This can be ex-

plained by its high reactivity towards radicals formed during lipid peroxidation [89-

91] inhibiting further oxidation of lipids, stabilizing liposoluble vitamins [49, 92] and 

preventing the self-ignition of fishmeal during shipping and storage [93].  

Despite the fact that the usage of EQ is prohibited nowadays in any food for hu-

man consumption within the EU, residues of EQ and its transformation products could 

be detected in food of animal origin coming from the usage of EQ as animal feed ad-

ditive [84, 94, 95]. Consequently, EQ could be determined in meat, eggs and farmed 

fish [92], but as a result of its high reactivity, higher levels of the transformation prod-

ucts of EQ can be determined in food of animal origin. The main transformation prod-

uct detected in fish is the 1,8’-ethoxyquin dimer (EQDM) which was quantified in 

farmed salmon with up to 1450 µg/kg, while EQ levels up to 167 µg/kg could be deter-

mined [96]. The formation of EQDM in fish feed containing EQ could also be 

proven [83]. Besides EQ and EQDM, two further major transformation products of EQ 

could be identified as 1,2-dihydro-2,2,4-trimethyl-6-quinolinol (O-deethylated EQ; 

6-OH-EQ) and 2,2,4-trimethyl-6(2H)-quinolinone (quinone imine; EQI) in Atlantic 

salmon [90]. Due to the additional usage of EQ as pesticide outside the EU, EQ could 

also be detected in some surface waters of Vietnam in concentrations up to 

0.29 µg/L [97]. 

Oral exposure of different animals including fish and dogs with EQ containing 

feed led to several detrimental effects including weight loss, changes in liver, kidney, 
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alimentary duct and urinary bladder and effects on the immune system [49, 84, 94, 

98]. Further studies reported, that EQ itself is not genotoxic or carcinogenic [50]. No 

data on the toxicology of EQ metabolites are available with the exception of EQDM, 

whose toxicological profile is considered to reflect that of EQ [87, 99]. Although the 

toxicity of EQI has not been investigated yet, structural alerts for mutagenicity, car-

cinogenicity and DNA binding were found in a structure-activity analysis [50]. Because 

of the lack of data on the toxicology of EQ metabolites, especially for EQI, the safety 

of EQ for any target animals, for consumers and for the environment has not yet been 

proven. Thus, the authorization of EQ as a feed additive within the EU was suspended 

by 30th September 2019 with certain exemptions resulting in a step-wise removal of 

EQ from animal feed by 30th June 2020 [100].  

Although residues of EQ have been detected in consumer products and the toxi-

cological profile of EQ and its transformation products is incomplete causing concerns 

regarding animal and human health, no data on human exposure to EQ are available. 

Therefore, the chemical was selected for the development of an HBM method within 

the frame of the German Human Biomonitoring Initiative including the investigation 

of the human metabolism of EQ by a human metabolism study and the selection of 

one or more suitable biomarkers of exposure. 

The human metabolism study revealed the formation of the two urinary metab-

olites 6-OH-EQ and its oxidized form EQI, small amounts of unmetabolized EQ could 

also be determined as displayed in Figure 7. EQDM could not be determined in any 

urine sample.  

 

Figure 7: Pathway for the urinary ethoxyquin metabolism in humans 
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Thus, the HBM method was optimized for EQ and the redox pair 6-OH-EQ/EQI 

with special attention to the stability of the redox-active analytes during sample prep-

aration. In order to prevent unwanted redox reactions of the analytes in the samples, 

ascorbic acid was used as antioxidant [95]. Nevertheless, oxidation of 6-OH-EQ to EQI 

could not be prevented, but further oxidation of EQI to its N-oxide was omitted [101, 

102]. Furthermore, oxidation of 6-OH-EQ to EQI could be observed in the ionization 

chamber of the mass spectrometer, which was also reported by Skaare and Solheim 

[103]. Therefore, the whole amount of 6-OH-EQ in the samples was deliberately oxi-

dized in the course of sample preparation and determined as EQI. After addition of 

ascorbic acid, glucuronidated 6-OH-EQ was enzymatically hydrolyzed with β-glucu-

ronidase from E. coli and subsequently the analytes were extracted by a salt-assisted 

liquid-liquid extraction (SALLE) approach. Due to the removal of water-soluble ascor-

bic acid from the extracts by SALLE, oxidation of 6-OH-EQ to EQI could occur in the 

extracts obtained which were subsequently analyzed by means of UPLC-MS/MS.  

Within method validation conducted following guidelines of DFG and FDA [52], 

stability of EQ in samples prior to sample preparation was found to be low while sta-

bility of EQI, mainly present as glucuronidated 6-OH-EQ in urine samples, was found 

to be sufficient. Therefore, EQI only could be evaluated as suitable biomarker of ex-

posure for EQ.  

The validated method was applied to all urine samples of the human metabolism 

study. EQI is rapidly excreted after oral administration of EQ with a maximum excre-

tion at about 1.3 h and could be quantified in all samples. After 48 h, 28.5 % of the 

total dose of the EQ administered were urinary excreted as 6-OH-EQ and EQI (both 

determined as EQI). Additionally, the validated method was applied to 53 samples 

from volunteers in the greater Munich area. EQI could be quantified in eleven samples 

(20.8 %) with an average concentration of 290 ng/L proving sufficient sensitivity and 

the suitability of the method for the HBM of EQ.  
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 Contributions to “Development of a human biomonitoring method for assessing 

the exposure to ethoxyquin in the general population” 

 

The results of this project including method development and validation and the 

application of the newly developed HBM method to the samples of the human metab-

olism study and the pilot HBM study were summarized in a manuscript which was 

submitted to Archives of Toxicology. 

The development and validation of the human biomonitoring method was con-

ducted by me with the support of my trainees David Schmidl (BSc) and Bernhard Köppl 

(BSc) who both worked under my supervision. I carried out the synthesis of EQI under 

the supervision of Prof. Dr. Franz Bracher. The application for ethical approval was 

submitted by Prof. Dr. Gerhard Scherer and me. Bernhard Köppl and I collected all 

samples from the general population and we analyzed all samples of the human me-

tabolism study and the human biomonitoring pilot study. Dr. Nikola Pluym and I im-

plemented the metabolism study and Dr. Oliver Peschel led the medical surveillance. 

All toxicokinetic parameters were evaluated by me with the help of Prof. Dr. Gerhard 

Scherer. The results of this work were summarized in a manuscript which was submit-

ted to the Journal Archives of Toxicology and was prepared by Prof. Dr. Gerhard 

Scherer, Prof. Dr. Franz Bracher, Dr. Max Scherer, Dr. Nikola Plum, Dr. Edgar Leibold 

(BASF) and me. 

Own contribution: 

Development of the human biomonitoring method 100 % 
 

Validation of the human biomonitoring method 100 % 
 

Writing application for the ethical approval                                        70 % 
 

Sample collection from the general population 100 % 
 

Implementation of the metabolism study 80 %  

Analysis of study samples 90 %  

Evaluation of toxicokinetic parameters 90 %  

Submission of the publication 70 %  
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 Submitted Article: “Development of a human biomonitoring method for assessing 

the exposure to ethoxyquin in the general population” 
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The instrument gases (nitrogen) were set as follows: Curtain gas 50, ion source gas 1 80, ion 

source gas 2 60 and collision gas medium. The ion source was heated to 500 °C, ion spray 

voltage was set to 4000 V, and entrance potential (EP) was set to 10 V for all analytes. All 

analyte-specific parameters for the MRM transitions are summarized in Table 2. 

Quality control samples (QCs) were prepared in three different concentration levels (low, 

medium, high) and two QCs per concentration level were analyzed in every analytical batch

(consisting of up to 100 samples) to ensure data integrity and quality. Quantification of 

samples and QCs was conducted by linear calibration with 1/x weighting. Acceptance criteria 

were fulfilled and the analytical series was regarded as valid if accuracy of the QCs and 

calibrators was within 85 – 115 % and 80 – 120 % for concentrations below three times LOQ. 

Data evaluation and statistics

All toxicokinetic parameters evaluated were calculated with Microsoft Excel Home and 

Business 2013 (Version 15.0, Unterschleißheim, Germany), all statistical analysis were carried 

out with Prism (GraphPad, Version 8.3.1, La Jolla, CA, USA). Linear interpolation between the 

closest urine voiding times was conducted for the calculation of metabolites excreted 3, 6, 12, 

24 and 48 h after application of EQ. After 48 h, urinary excretion of the metabolites was 

assumed to be virtually complete (which is supported by the excretion kinetics over 72 h for 

Subject 1). Urinary elimination constants (kel) and elimination half-lives (t1/2) were calculated 

using the ‘sigma-minus’ method (Klotz 1984), with the total amount excreted (Ae(∞ )) being 

the amount excreted within 48 h. For the back calculation of the human exposure to EQ, a 

conversion factor (CF) was calculated as the ratio between the total dose applied (D in mol) 

and the molar amount of the metabolite excreted within the first 24 h after oral uptake (CF = 

D/AMX24h). In the pilot HBM study with 53 volunteers, non-parametric tests were conducted 

instead of parametric tests to limit the impact of extreme values. Differences between 

subgroups were determined by applying Mann-Whitney U test, coefficients of correlation 

between urinary levels of EQ metabolites were calculated using Spearman’s correlation. P 

values of <0.05 were regarded as statistically significant, values below LOQ were set to LOQ/2.

Results and discussion

Identification of urinary metabolites

The metabolism of ethoxyquin (EQ) was extensively investigated in different animal species

and plants. Skaare and Solheim identified 1,2-dihydro-2,2,4-trimethyl-6-quinolinol (6-OH-EQ), 

its oxidation product 2,2,4-trimethyl-6-quinolinone (EQI) and some minor metabolites in urine 

and faeces of rats dosed with EQ (Skaare and Solheim 1979). Sheep administered an EQ-

containing diet were found to excrete EQ and a not further characterized hydroxylated EQ

metabolite in urine. Deethylation of EQ leading to 6-OH-EQ or oxidation giving EQI was not

observed in this study (Kim et al. 1992). Following metabolism studies in rats and mice 

confirmed the findings of Skaare and Solheim: Deethylation of EQ was found to be the major 

metabolic pathway followed by sulfation or glucuronidation resulting in the corresponding 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Human biomonitoring for ethoxyquin 

79 

 

 



Human biomonitoring for ethoxyquin 

80 

 

 

- 8 -

to EQI during sample preparation. The conversion was proven by preparing analyte-free urine 

samples spiked with 6-OH-EQ: The nominal concentration of the spiked 6-OH-EQ could be 

recovered as EQI while 6-OH-EQ could not be found. 

Even though an increase of EQI levels after enzymatic hydrolysis could be observed, the 

analyte is present in urine as its reduced and glucuronidated form 6-OGlu-EQ which was also 

reported in urine samples of mouse and rat (Burka et al. 1996). After enzymatic hydrolysis, 6-

OH-EQ oxidizes during sample preparation, presumably due to autoxidation (Thorisson et al. 

1992)(see also Fig S5). Therefore, all EQI concentrations reported reflect the whole amount of 

6-OH-EQ (glucuronidated + non-conjugated 6-OH-EQ) and EQI.

In order to enhance analyte concentrations and to obtain cleaner extracts, an extraction step 

was necessary. Because EQI was found to be volatile, solvents could not be removed by 

evaporating them limiting the choice of extraction solvents to those suitable for the 

subsequent chromatographic separation (acetonitrile and ethyl acetate). Three milliliters 

urine extracted with 0.4 mL ethyl acetate yielded the highest analyte concentrations in the 

extracts without noticeably suppressing the MS signals. A mixture of MgSO4 and NaCl, known 

from the QuEChERS sample preparation (Anastassiades et al. 2003; EU Reference Laboratory 

Requiring Single Residue Methods (EURL-SRM) 2016; Plössl et al. 2006) was used in order to 

achieve a sharp separation of the two phases. Improved signal intensities for EQI were

observed by increasing the pH before extraction. Therefore, an aqueous solution of sodium 

hydroxide was added before extraction resulting in precipitation of Mg(OH)2 in the aqueous 

phase and a stable pH of 9.1.

β-Glucuronidase from E. coli and β-glucuronidase/arylsulfatase from H. pomatia were tested 

for enzymatic hydrolysis of possible conjugates. Higher signal intensities for EQI were obtained 

after enzymatic hydrolysis with β-glucuronidase from E. coli in comparison to hydrolysis with 

β-glucuronidase/arylsulfatase from H. pomatia indicating that sulfated conjugates are not 

built to an appreciable extent and that the usage of H. pomatia enzyme leads to a higher signal 

suppression caused by a differing composition of the matrix. To evaluate the ratio between 

conjugated (glucuronidated) and non-conjugated (free) 6-OH-EQ, the three samples of each 

participant with the highest EQI concentrations measured were analyzed twice: Firstly, by 

including the enzymatic hydrolysis with β-glucuronidase from E. coli to capture the total 

amount of 6-OH-EQ and secondly, by omitting the enzymatic hydrolysis, thus assessing the 

unconjugated form of 6-OH-EQ only. Table 1 shows the ratios between the conjugated and 

non-conjugated form of 6-OH-EQ. In all but one participants, 6-OH-EQ is nearly exclusively 

(> 97 %) present as conjugate, presumably as glucuronidated 6-OH-EQ (6-GluO-EQ), in all 

samples investigated before hydrolysis and subsequent oxidation to EQI (cf. Fig S5). Subject 1 

showed a slightly lower glucuronidation ratio of 90 %.

To evaluate the kinetics of the enzymatic hydrolysis, the first urine fraction of Subject 2 voided 

after oral administration of EQ was enzymatically hydrolyzed by applying different incubation 

times. The dependency of free EQ and EQI concentrations on the incubation time are shown 

in Fig. S6. Hydrolysis for EQI appears to be already complete after the first time point (0.5 h). 

To assure a complete hydrolysis, the incubation time was set to 1 h in the final method. 

Efficiency of the enzymatic hydrolysis in sample series was monitored by spiking all samples 
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4) Summary 

 

Due to the progressive development of our society, the amount of chemicals used 

to facilitate our everyday lives is steadily rising with the consequence of an increasing 

exposure of an average person with anthropogenic chemicals, especially in industri-

alized countries. Several chemicals used in our everyday lives can cause detrimental 

effects even though they are authorized by national or international institutions. Det-

rimental effects of a chemical must be evaluated during the authorization process and 

in some cases, concentration limits for products are established in order to ensure 

product safety and to protect human health. But even if concentration limits for prod-

ucts are set, this does not allow a conclusion on the real human exposure of an indi-

vidual to this chemical. Since these data can be accessed via HBM only, HBM was gain-

ing in importance over the last decades resulting in more and more HBM initiatives 

like the German Human Biomonitoring Initiative (Deutsche Human-Biomonitoring 

Initiative; cf. 1.4 The German Human Biomonitoring Initiative) which aims to develop 

HBM methods for up to 50 chemicals with emerging health relevance. 

The aim of this work was to develop HBM methods for the chemicals 7-hy-

droxycitronellal, Uvinul A plus® and ethoxyquin, which were all selected within the 

German Human Biomonitoring Initiative. The first chemical, 7-hydroxycitronellal, is 

frequently used as fragrance in cosmetics and cleaning and washing agents. Uvinul A 

plus® mostly serves as UV filter in sunscreens and anti-aging products, and ethoxyquin 

is an antioxidant frequently found in farmed fish products like salmon.   

At the beginning of this work, human metabolism was unknown for all three 

compounds. That is why human metabolism had to be investigated and suitable bi-

omarkers of exposure had to be identified before optimizing the HBM method. For this 

purpose, five healthy volunteers each were orally administered with one of the chem-

icals, urine voids of the following 48 or 72 h after administration were collected and 

analyzed for possible metabolites. For 7-hydroxycitronellal and Uvinul A plus®, the 
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same five volunteers received an additional dermal dose of the test substance in form 

of a spiked sunscreen in order to depict a real exposure scenario, because these two 

chemicals are mostly used in cosmetics and the main exposure occurs via the skin.  

After selection of suitable metabolites, authentic deuterated internal standards 

were obtained from a contract laboratory, the HBM methods were optimized and val-

idated according to DFG and FDA guidelines. All three HBM methods contain an en-

zymatic hydrolysis step before samples extraction, because urinary metabolites are 

partly present as conjugates, e.g. as glucuronides (cf. 1.3 Selection of the biological 

matrix) and only unconjugated metabolites were determined after sample prepara-

tion. Necessity of an enzymatic hydrolysis was confirmed for all three methods and 

ratios between conjugated and unconjugated forms in high concentrated samples of 

every participant could be calculated. The deconjugated metabolites were extracted 

by using the solvent which was experimentally found to give the highest recovery 

rates. After sample preparation, the sample extracts were analyzed by means of UPLC-

MS/MS.  

UHPLC was used to achieve a satisfactory separation efficiency for the analytes 

and was preferred over GC in all three methods, because with UHPLC non-volatile an-

alytes could be analyzed as well as volatile analytes. Additionally, shorter measuring 

times can be achieved by using UHPLC instead of GC, which is an essential parameter 

for a high throughput method. Positively charged analyte ions were generated by 

means of electrospray ionization, and a selective determination of the analytes was 

achieved by conducting MRM experiments. 

The validated methods were applied to all samples of the respective human me-

tabolism study and to the samples of a small collective not occupationally exposed to 

one of the original chemicals in order to prove the sufficient sensitivity of the methods 

and for a first rough estimation of the biomarker levels to be expected in further stud-

ies. For every original substance, at least one suitable biomarker of exposure could be 
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identified and toxicokinetic parameters such as the amount excreted, maximum ex-

cretion time and elimination half-life and conversion factors were calculated for every 

biomarker. Conversion factors allow to extrapolate from the urinary concentrations 

of one or more biomarkers of exposure to the systemic exposure of an individual with 

a chemical. 

The completed methods are cross-examined regarding their reproducibility in-

cluding basic validation parameters like linearity, accuracy, precision and recovery by 

a second laboratory from the ranks of the scientific working group “Analysis in Bio-

logical Materials” of the DFG. For this purpose, a second laboratory gets instructed 

and if the second laboratory can confirm the feasibility and suitability of the method, 

the method including the results of the cross-examination will be published online in 

open access by the DFG [42, 43] . This procedure was already successfully conducted 

for 7-hydroxycitronellal, the methods for Uvinul A plus® and ethoxyquin are currently 

under revision. 

For the three substances, 7-hydroxycitronellal, Uvinul A plus® and ethoxyquin, 

HBM methods were successfully developed and first estimations for the human expo-

sure with these chemicals could be carried out proving the suitability of the methods 

for the intended use. Indeed, human exposure levels obtained from the pilot studies 

cannot be interpreted as representative values, because of the small number of sam-

ples analyzed and the small collection area (greater Munich area) , but the measure-

ments suggest that a not negligible part of the general population is exposed to these 

chemicals. Therefore, HBM studies with more representative study cohorts and a 

larger number of samples must be conducted.  

For 7-hydroxycitronellal, a first larger HBM study with 329 study samples derived 

from the German Environmental Specimen Bank has already been conducted. The 

method developed within this work could be successfully applied to all study samples 

and a decrease in the human exposure to 7-hydroxycitronellal from the year 2000 to 

2018 in Germany could be observed. This study was also conducted with a view to 
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GerES VI (cf. 1.1 History of human biomonitoring), where even a larger number of 

samples from German adults will be analyzed for 7-hydroxycitronellal levels [104]. 

Presumably, similar approaches will be carried out for Uvinul A plus® and ethoxyquin, 

but at this time, no information on HBM actions for both substances are available. 

HBM values for the three chemicals investigated will be derived from large epi-

demiological studies like GerES by analyzing the samples with the HBM methods de-

veloped. These values will contribute to an improved evaluation of the substances in-

vestigated concerning their effects on human health and responsible authorities will 

be able to adapt concentrations limits in consumer products.  
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5) List of abbreviations 

 

6-OH-EQ  1,2-Dihydro-2,2,4-trimethyl-6-quinolinol 

AHB   2-[4-(Amino)-2-hydroxybenzoyl]benzoic acid 

AM   Ambient monitoring 

BMU German Federal Ministry for the Environment, Nature 

Conservation and Nuclear Safety (Bundesministerium für 

Umwelt, Naturschutz und nukleare Sicherheit) 

DFG  German Research Foundation (Deutsche Forschungsge-

meinschaft) 

DHB   2-[4-(Diethylamino)-2-hydroxybenzoyl]benzoic acid 

DHHB  Hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoate 

(Uvinul A plus®) 

EHB   2-[4-(Ethylamino)-2-hydroxybenzoyl]benzoic acid 

EQ   1,2-Dihydro-6-ethoxy-2,2,4-trimethylquinoline  

    (Ethoxyquin) 

EQDM   1,8’-Ethoxyquin dimer 

EQI   2,2,4-Trimethyl-6(2H)-quinolinone 

FDA   US Food and Drug Administration 

GC   Gas chromatography 

GerES   German Environmental Survey 

HBM   Human biomonitoring 
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IFRA   International Fragrance Association 

INCI    International Nomenclature of Cosmetic Ingredients 

JECFA   The Joint FAO/WHO Expert Committee on Food Additives 

LLE   Liquid-liquid extraction 

LOQ   Low limit of quantification 

MRM   Multiple reaction monitoring 

MS/MS   Tandem mass spectrometry 

NHANES  National Health and Examination Survey 

NOEL   No Observed Effect Level 

SALLE   Salt-assisted liquid-liquid extraction 

UBA   German Environment Agency (Umweltbundesamt) 

U(H)PLC  Ultra (high) performance liquid chromatography 

VCI German Chemical Industry Association (Verband der 

Chemischen Industrie) 

WHO   World Health Organization 
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