
Scalable Statistical Learning for

Relation Prediction on Structured Data

Yi Huang

München 2020

Scalable Statistical Learning for

Relation Prediction on Structured Data

Yi Huang

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Yi Huang

aus Xinjiang, China

München, den 18.03.2020

Erstgutachter: Prof. Dr. Volker Tresp

Zweitgutachter: Professor Ning Zhong PhD

Tag der mündlichen Prüfung: 15.06.2020

Huang, Yi

München, 18.03.2020 Yi Huang

vi

Contents

Abstract xv

Zusammenfassung xvii

Acknowledgment xix

1 Introduction 1

1.1 Motivation . 1

1.2 Relational Knowledge Bases . 3

1.2.1 Semantic Web . 3

1.2.2 Linked Open Data . 5

1.2.3 Ontological Background Knowledge 5

1.3 Statistical Learning for Relation Prediction 7

1.3.1 Statistical Relational Learning . 7

1.3.2 Relational Graphical Models . 8

1.3.3 Inductive Logic Programming . 13

1.3.4 Tensor Decompositions . 15

1.3.5 Remarks . 16

1.4 Structure of the Thesis . 18

1.5 Contributions of the Thesis . 19

2 Learning with the Statistical Unit Node Set (SUNS) 23

2.1 The Approach . 24

2.1.1 Definition of Statistical Setting . 24

2.1.2 Random Variables . 25

2.1.3 Non-Random Covariates . 26

2.1.4 Formal Definition of Statistical Setting 27

2.1.5 Multivariate Prediction Model: Reduced-Rank Penalized Regression 29

viii CONTENTS

2.1.6 Transduction and Induction . 32

2.2 Empirical Study: Friendship Prediction . 33

2.2.1 Data Set and Experimental Setup 33

2.2.2 Results . 37

2.3 Remarks . 41

3 Kernel SUNS 43

3.1 The Nyström Approximation . 44

3.2 Kernel SUNS . 45

3.3 Experiments . 47

3.3.1 Scalability . 47

3.4 Remarks . 48

4 R-Model 51

4.1 Object-Oriented Sampling Assumption . 51

4.2 Relation-Oriented Sampling Assumption 52

4.3 An Example Illustrating R-Model . 54

4.3.1 A Social Network . 54

4.3.2 Modeling User-Movie Events . 55

4.3.3 Adding Last Movie Watched . 56

4.3.4 Adding Time of the Event . 57

4.4 Empirical Study 1 . 57

4.5 Empirical Study 2 . 60

4.5.1 Methodology . 61

4.5.2 Results . 61

4.6 Remarks . 64

5 Applications 65

5.1 Stream Reasoning for Semantic Social Media Analysis 66

5.1.1 Stream Reasoning . 66

5.1.2 Empirical Study . 68

5.1.3 Evaluation . 72

5.2 Life Science: Disease-Gene Prioritization 74

5.2.1 The Problem . 74

5.2.2 Empirical Study . 75

5.3 Location-based Personalized Recommendation 81

CONTENTS ix

5.3.1 The BOTTARI Mobile Application 82

5.3.2 Data and Ontology . 83

5.3.3 Empirical Study . 87

6 Conclusions and Future Work 93

Appendices 97

x CONTENTS

List of Figures

1.1 Example of an RDF graph . 4

2.1 Sketch of statistical unit node set . 28

2.2 Entity-relationship diagram of the LJ-FOAF domain 33

2.3 Evaluated sampling strategies . 35

2.4 Comparison between different algorithms for settings 1, 2, 5, 6 37

2.5 Comparison between different algorithms for settings 3, 4, 7, 8 39

3.1 The time complexity of the kernel model 49

4.1 Object-oriented vs. relation-oriented sampling assumption 53

4.2 A graphical model for the dependencies between users U and movies M . . 56

4.3 Integrate additional information . 57

4.4 Experimental results without regularization 58

4.5 Experimental results with regularization 58

4.6 Experimental results by averaging individual models 60

4.7 HitRatio values . 62

4.8 The nDCG scores for different factorization dimensions 63

5.1 Architecture of the stream reasoning . 69

5.2 Entity relationship diagram of the social media data 70

5.3 Accuracy of top-N movie recommendations 73

5.4 Bio2RDF databases and connections . 77

5.5 Genes vs. diseases as statistical units . 79

5.6 Averaging the gene and disease models . 80

5.7 Dataset statistics . 84

5.8 Ontology modelling of the data. 86

5.9 Evaluation in Setting 1 . 89

xii LIST OF FIGURES

5.10 Evaluation in Setting 2 . 90

List of Tables

2.1 Data statistics in the different experimental settings 38

2.2 NDCG scores averaged cross over the samples 38

5.1 Statistics of the data set . 85

5.2 Number of ratings in different time frames 85

5.3 Comparisons with Trip Advisor and Rough Guide 91

xiv LIST OF TABLES

Abstract

Relation prediction seeks to predict unknown but potentially true relations by revealing

missing relations in available data, by predicting future events based on historical data, and

by making predicted relations retrievable by query. The approach developed in this thesis

can be used for a wide variety of purposes, including to predict likely new friends on social

networks, attractive points of interest for an individual visiting an unfamiliar city, and

associations between genes and particular diseases. In recent years, relation prediction has

attracted significant interest in both research and application domains, partially due to the

increasing volume of published structured data and background knowledge. In the Linked

Open Data initiative of the Semantic Web, for instance, entities are uniquely identified

such that the published information can be integrated into applications and services, and

the rapid increase in the availability of such structured data creates excellent opportunities

as well as challenges for relation prediction.

This thesis focuses on the prediction of potential relations by exploiting regularities in

data using statistical relational learning algorithms and applying these methods to rela-

tional knowledge bases, in particular in Linked Open Data in particular. We review repre-

sentative statistical relational learning approaches, e.g., Inductive Logic Programming and

Probabilistic Relational Models. While logic-based reasoning can infer and include new

relations via deduction by using ontologies, machine learning can be exploited to predict

new relations (with some degree of certainty) via induction, purely based on the data. Be-

cause the application of machine learning approaches to relation prediction usually requires

handling large datasets, we also discuss the scalability of machine learning as a solution

to relation prediction, as well as the significant challenge posed by incomplete relational

data (such as social network data, which is often much more extensive for some users than

others).

The main contribution of this thesis is to develop a learning framework called the Sta-

tistical Unit Node Set (SUNS) and to propose a multivariate prediction approach used in

the framework. We argue that multivariate prediction approaches are most suitable for

xvi Abstract

dealing with large, sparse data matrices. According to the characteristics and intended ap-

plication of the data, the approach can be extended in different ways. We discuss and test

two extensions of the approach–kernelization and a probabilistic method of handling com-

plex n-ary relationships–in empirical studies based on real-world data sets. Additionally,

this thesis contributes to the field of relation prediction by applying the SUNS framework

to various domains. We focus on three applications:

1. In social network analysis, we present a combined approach of inductive and deductive

reasoning for recommending movies to users.

2. In the life sciences, we address the disease gene prioritization problem.

3. In the recommendation system, we describe and investigate the back-end of a mobile

app called BOTTARI, which provides personalized location-based recommendations

of restaurants.

Zusammenfassung

Die Beziehungsvorhersage strebt an, unbekannte aber potenziell wahre Beziehungen vorherzusagen,

indem fehlende Relationen in verfügbaren Daten aufgedeckt, zukünftige Ereignisse auf

der Grundlage historischer Daten prognostiziert und vorhergesagte Relationen durch An-

fragen abrufbar gemacht werden. Der in dieser Arbeit entwickelte Ansatz lässt sich für

eine Vielzahl von Zwecken einschließlich der Vorhersage wahrscheinlicher neuer Freunde in

sozialen Netzen, der Empfehlung attraktiver Sehenswürdigkeiten für Touristen in frem-

den Städten und der Priorisierung möglicher Assoziationen zwischen Genen und bes-

timmten Krankheiten, verwenden. In den letzten Jahren hat die Beziehungsvorhersage

sowohl in Forschungs- als auch in Anwendungsbereichen eine enorme Aufmerksamkeit er-

regt, aufgrund des Zuwachses veröffentlichter strukturierter Daten und von Hintergrund-

wissen. In der Linked Open Data-Initiative des Semantischen Web werden beispielsweise

Entitäten eindeutig identifiziert, sodass die veröffentlichten Informationen in Anwendun-

gen und Dienste integriert werden können. Diese rapide Erhöhung der Verfügbarkeit

strukturierter Daten bietet hervorragende Gelegenheiten sowie Herausforderungen für die

Beziehungsvorhersage.

Diese Arbeit fokussiert sich auf die Vorhersage potenzieller Beziehungen durch Aus-

nutzung von Regelmäßigkeiten in Daten unter der Verwendung statistischer relationaler

Lernalgorithmen und durch Einsatz dieser Methoden in relationale Wissensbasen, insbeson-

dere in den Linked Open Daten. Wir geben einen Überblick über repräsentative statistis-

che relationale Lernansätze, z.B. die Induktive Logikprogrammierung und Probabilistische

Relationale Modelle. Während das logikbasierte Reasoning neue Beziehungen unter der

Nutzung von Ontologien ableiten und diese einbeziehen kann, kann maschinelles Lernen

neue Beziehungen (mit gewisser Wahrscheinlichkeit) durch Induktion ausschließlich auf der

Basis der vorliegenden Daten vorhersagen. Da die Verarbeitung von massiven Datenmen-

gen in der Regel erforderlich ist, wenn maschinelle Lernmethoden in die Beziehungsvorher-

sage eingesetzt werden, diskutieren wir auch die Skalierbarkeit des maschinellen Lernens

sowie die erhebliche Herausforderung, die sich aus unvollständigen relationalen Daten ergibt

xviii Zusammenfassung

(z. B. Daten aus sozialen Netzen, die oft für manche Benutzer wesentlich umfangreicher

sind als für Anderen).

Der Hauptbeitrag der vorliegenden Arbeit besteht darin, ein Lernframework namens

Statistical Unit Node Set (SUNS) zu entwickeln und einen im Framework angewende-

ten multivariaten Prädiktionsansatz einzubringen. Wir argumentieren, dass multivariate

Vorhersageansätze am besten für die Bearbeitung von großen und dünnbesetzten Daten-

matrizen geeignet sind. Je nach den Eigenschaften und der beabsichtigten Anwendung der

Daten kann der Ansatz auf verschiedene Weise erweitert werden. In empirischen Studien

werden zwei Erweiterungen des Ansatzes–ein kernelisierter Ansatz sowie ein probabilistis-

cher Ansatz zur Behandlung komplexer n-stelliger Beziehungen– diskutiert und auf realen

Datensätzen untersucht. Ein weiterer Beitrag dieser Arbeit ist die Anwendung des SUNS

Frameworks auf verschiedene Bereiche. Wir konzentrieren uns auf drei Anwendungen:

1. In der Analyse sozialer Netze stellen wir einen kombinierten Ansatz von induktivem

und deduktivem Reasoning vor, um Benutzern Filme zu empfehlen.

2. In den Biowissenschaften befassen wir uns mit dem Problem der Priorisierung von

Krankheitsgenen.

3. In den Empfehlungssystemen beschreiben und untersuchen wir das Backend einer mo-

bilen App “BOTTARI”, das personalisierte ortsbezogene Empfehlungen von Restau-

rants bietet.

Acknowledgment

First and foremost, I owe my deepest gratitude to Prof. Dr. Volker Tresp, who has played

a particularly significant role in my intellectual development. Prof. Dr. Tresp introduced

me to the field of statistical machine learning, and his enthusiasm, incisive thoughts, open-

mindedness, and humor made my research a memorable and joyful journey. One could not

wish for a better or friendlier supervisor.

I am especially thankful to Prof. Zhong Ning as well, who kindly agreed to allocate

some of his time to supervising my thesis despite the significant demands of his research

and teaching work. I would also like to thank Prof. Dr. Andreas Butz for being the

president of my promotion committee.

I would like to express my gratitude to Prof. Dr. Hans-Peter Kriegel. He has supported

me throughout my thesis with his patience, encouragement, and constructive suggestions.

He supervised my Diploma thesis and introduced me to the Machine Learning research

group led by Prof. Dr. Volker Tresp at Siemens AG. I was impressed by his meticulous

scholarship and academic guidance.

I am additionally grateful to Dr. Michael May, the leader of the Technology Field

Business Analytics and Monitoring at Siemens AG, and Dr. Ulli Waltinger, the leader of

the Machine Intelligence Research Group at Siemens AG, for their constant support to

both my scientific research and my career plan.

This thesis would not have been possible without the support of many other individuals.

I would like to thank, including Dr. Kai Yu, Dr. Shipeng Yu, Prof. Dr. Achim Rettinger,

Dr. Markus Bundschus, Dr. Maximilian Nickel, PhD Emanuele Della Valle, Irene Celino,

Hendrik Wermser, and Dr. Xueyan Jiang.

My special thanks go to the staff of the Institute of Informatics of the Ludwig Max-

imilian University of Munich and my colleagues at Siemens AG (Corporate Technology,

Munich) who provided a welcoming environment in which to pursue my work. I also ac-

knowledge funding by the German Federal Ministry of Economy and Technology (BMWi)

under the THESEUS project and by the EU FP 7 under the Integrated Project LarKC.

xx Acknowledgment

Finally, I am grateful to my parents and my wife for their patience and love. Without

them, this work never would have begun.

Chapter 1

Introduction

1.1 Motivation

The Semantic Web structures, annotates, and renders the World Wide Web. A remark-

able deal of development has occurred around the Linked Open Data (LOD) initiative,

where the term Linked Data describes a method of exposing, sharing, and connecting data

via dereferenceable Unique Resource Identifiers (URIs) on the Web. Typically, existing

structured and unstructured data sources are published in the Semantic Web in the form

of Resource Description Frameworks (RDFs), where statements are expressed as simple

subject-property-object (s, p, o) triples and are graphically displayed as a directed labeled

link between a node representing the subject and a node representing the object (Fig-

ure 1.1). In the LOD cloud, data sources are interlinked with other data sources. In recent

years, the Knowledge Graph has rapidly developed in this field and plays an increasing

important role in industrial applications.

In some research work and applications, subsets of the LOD cloud are retrieved from

repositories, and some form of logical reasoning is applied to materialize implicit triples.

The number of inferred triples is typically on the order of the number of explicit triples,

but it is assumed that there exist a vast number of additional real triples that are neither

known as facts nor able to be derived by logical reasoning. This assumption concerns both

triples within contributing data sources, such as DBpedia1, and triples describing interlinks

between contributing data sources.

The goal of the thesis is to predict relations in structured datasets by using statistical

machine learning approaches and exploiting regularities of the datasets. In order to do

so, we must take into account the nature of the data in the LOD cloud, which has been

1http://dbpedia.org/

2 1. Introduction

dynamically evolving and is now quite noisy. As a result, an approach that focuses on

flexibility and ease of use is preferable to highly sophisticated approaches that can only be

applied by machine learning experts. Reasonable requirements for such approaches are as

follows.

• The use of machine learning approaches should require a minimum of user interven-

tion.

• Learning algorithms should scale well with the size of the Semantic Web.

• The relations (triples) and their probabilities predicted by machine learning ap-

proaches should be easily queried.2

• Learning approaches should be suitable to the characteristics of the LOD data: high

sparsity (e.g., only small numbers of users who are friends in a social network) and

missing information (e.g., certain users chose not to reveal private information).

Many algorithms have been proposed in the past for relation prediction in the Semantic

Web, including several based on recent work in statistical relational learning (see [96] for

an overview). One family of approaches apply a global probabilistic model to a segment

of a Semantic Web knowledge-base and is able to predict the probability of statements

in the domain (examples are [33, 27, 106, 52]). In these approaches, the states of prob-

abilistic nodes in a graphical model represent the truth values of statements. Although

these approaches are attractive, the sheer size of the Semantic Web and the vast number

of potentially true statements it contains reduce the utility of such approaches in many

large-scale applications. The second family of approaches consists of conditional models

that define a classification problem and attempt to derive appropriate relational features

that can be used by predicting a target class. These approaches include Inductive Logic

Programming (ILP) [83, 75] and propositionalized ILP (pILP) approaches [23, 64]. Since

the size of the data samples can be controlled, ILP and pILP easily achieve scalability, but

conditional models have problems with missing data. The approach to relation prediction

that we propose in this thesis aims to combine the advantages of both of these families of

approaches and meet all above mentioned requirements.

2SPARQL is a standard for querying RDF-specific information and for displaying query results.

1.2 Relational Knowledge Bases 3

1.2 Relational Knowledge Bases

Data can be categorized into two classes: structured data, e.g., relational databases, and

unstructured data, e.g., texts and images.3 Traditionally, structured data is stored, pro-

cessed, and analyzed in files or database systems. For instance, Knowledge Discovery in

Databases (KDD) analyzes database systems in order to discern trends, patterns, and rules

in the data they contain. Our machine learning approaches for relation prediction apply

to structured data as well—however, unlike KDD, our approach addresses structured and

semantically annotated data published on the Web rather than in databases.

This section describes the standard data model in the Semantic Web (the Resource De-

scription Framework), presents SPARQL Protocol and RDF Query Language (SPARQL),

an RDF query language containing aggregation functions that are needed by our approach,

briefly introduces the Linked Open Data we use in empirical studies in this thesis as well

as the real applications in Chapter 5, and explains Web Ontology Language (OWL), Rule

Markup Language and the reasoning tasks our approach performs on the relational knowl-

edge bases the Semantic Web contains.

1.2.1 Semantic Web

RDF: A Data Model for the SW

The recommended data model for the Semantic Web (SW) is the Resource Description

Framework (RDF). The RDF was developed to represent information about resources

on the WWW (e.g., metadata and annotations) where a resource is understood to be a

thing that can be uniquely identified via a uniform resource identifier (URI). The basic

statement expressing a fact observed is a triple of the form (subject, property, property

value) or, equivalently, (subject, predicate, object). A triple can be described graphically

as a directed arc, labeled by the property (predicate) and pointing from the subject node

to the property value node. A complete database (triple store) can then be displayed as a

directed graph (see the example in Figure 1.1).

RDF Schema (RDFS) and various dialects of OWL (Ontology Web Language) can be

used to encode semantic constraints. Concepts and simple relationships between concepts

are defined in RDFS, while OWL ontologies build on RDFs/RDFSs and improve expres-

siveness. More details on SW standards can be found in [2, 40].

3Besides structured data and unstructured data, some data is semi-structured such as XML (eXtensible

Markup Language) or weakly structured. Those types of data are outside of the scope of this thesis.

4 1. Introduction

Figure 1.1: Example of an RDF graph displaying a social friendship network in which

the income of a person is an attribute. Circular nodes and triples represent resources,

and triples are represented by labeled directed links from a subject node to an object

node. The diamond-shaped nodes stand for random variables that are in state one if the

corresponding triples exist. Nodes representing statistical units (here: Persons) have a

darker rim.

The Query Language SPARQL

SPARQL is a standard language for querying RDF-specific information and for displaying

the results. A SPARQL query searches for subgraphs as its primary function, but it can

also formulate more expressive query patterns, apply filters, and format the output. A

SPARQL query must contain a PREFIX statement for specifying the namespace, a SELECT

statement that determines the output pattern (typically a table of variable bindings) and

a WHERE statement that specifies the searchable graph pattern and that might contain vari-

ables. More complex queries are possible via grouping, optional patterns, and alternative

patterns. Filters can be used to restrict the search pattern further. Filters might in-

clude numerical comparisons (<,>,=), special operators (e.g., for strings and data time),

Boolean operators, and arithmetic operations. The output format can be modified via

CONSTRUCT, DESCRIBE and ASK. With CONSTRUCT the output can be formatted as an RDF

document. MODIFY can be used to manipulate the output pattern. The keywords ORDER BY,

DISTINCT can be used to reduce redundancy in the result set. Importantly, SPARQL in-

herently supports aggregation functions such as count, sum, avg, max, and min. (Details

on https://www.w3.org/TR/rdf-sparql-query/)

1.2 Relational Knowledge Bases 5

1.2.2 Linked Open Data

The Linked Open Data (LOD) initiative is the most significant component of the Semantic

Web. The term Linked Data describes a method of exposing, sharing, and connecting

data via dereferenceable Unique Resource Identifiers (URIs) on the Web. Typically, exist-

ing structured and unstructured data sources are published to the Semantic Web in the

form of RDF, and data sources are interlinked with other data sources in the LOD cloud

(https://lod-cloud.net/). Subsets of the LOD cloud are retrieved into repositories, and

some form of logical reasoning is applied to materialize implicit triples (cf. Section 1.2.3).

1.2.3 Ontological Background Knowledge

Ontologies build on RDFs/RDFSs and add expressiveness. W3C developed standards for

the Web Ontology Language (OWL), which comes in three dialects or profiles, the most

expressive of which is OWL Full, which is a true superset of RDFS. A full inference proce-

dure for OWL Full is not implementable with simple rule engines [38]. Some applications

requiring OWL Full might build an application-specific reasoner instead of using a general

one. OWL Full includes OWL Description Language (OWL DL), and OWL DL includes

OWL Lite. Both OWL DL and OWL Lite are decidable but are not true supersets of

RDFS.

In OWL, one can state that classes are equivalent or disjointed, and instances of which

are identical or different, respectively. The behavior of properties can be classified into dif-

ferent types, such as symmetric, transitive, functional, or inverse functional (e.g., teaches

is the inverse of isTaughtby). In RDFS, concepts are named, while OWL allows the

user to construct classes by enumerating their content (explicitly stating its members),

through forming intersections, unions, and complements of classes. Also, classes can be

defined via property restrictions. For example, the constraints that (1) first-year courses

must be taught by professors, (2) mathematics courses are taught by David Billington,

(3) all academic staff members must at least teach one undergraduate course, can all

be expressed in OWL using the constructs owl:allValuesFrom (∀), owl:hasValue, and

owl:someValuesfrom (∃). Furthermore, cardinality constraints can be formulated by using

owl:maxCardinality and owl:minCardinality: for instance, a course must be taught by

someone; a department must have at least ten and at most 30 members (Examples from [2]).

The fact that both instances and ontologies can be joined by simply joining the correspond-

ing graphs makes OWL very attractive: the only real thing is the (RDF-)graph [38].

In some semantic-poor applications, ontologies have only relevance in terms of the

6 1. Introduction

definition of classes and properties. Conversely, in some semantic-rich domains, such as

bioinformatics, medical informatics and some industrial applications [80], sophisticated

ontologies have already been developed [38].

Reasoning

An ontology formulates logical statements that can be used for analyzing data consistency

and for deriving new implicit statements concerning instances and concepts. Including

implicit statements into SPARQL makes querying more powerful. Inferred closure consists

of the extension of a knowledge base on the Semantic Web, along with all the implicit

statements, that could be inferred from it, using enforced semantics [55]. In the materi-

alization strategy, after each update to the knowledge base, the repository assures that

the inferred closure is computed, updated, and made available for query evaluation or

retrieval. As a reasoning strategy, total materialization is utilized by several popular Se-

mantic Web repositories, including some of the standard configurations of Sesame and

Jena (https://jena.apache.org/). Total materialization denotes the calculation of all im-

plicit triples at loading time, which might be preferred if query response time is critical [55].

Note, that total materialization is only feasible in some restricted ontologies.

In this thesis, we consider relation prediction as probabilistic materialization, i.e., the

materialization of statements weighted by their estimated probabilities. In the following,

we will assume that logical materialization has been performed before probabilistic mate-

rialization such that the statements that can logically be inferred are available for relation

prediction.

Rules

RuleML (Rule Markup Language) is a rule language formulated in XML and based on

datalog, a function-free fragment of Horn clausal logic. RuleML allows the formulation of if-

then-type rules. Both RuleML and OWL DL are different subsets of first-order logic (FOL).

SWRL (Semantic Web Rule Language)4 is a proposal for a Semantic Web rule language

combining sublanguages of OWL (OWL DL and Lite) with those of the Rule Markup

Language (Unary/Binary Datalog). Datalog clauses are essential for modeling background

knowledge in cases where DL might be inappropriate in many industrial applications.

4https://www.w3.org/Submission/SWRL/

1.3 Statistical Learning for Relation Prediction 7

1.3 Statistical Learning for Relation Prediction

1.3.1 Statistical Relational Learning

Global Probabilistic Models

There are several approaches for learning in relational domains, including approaches in

which a global probabilistic model in the form of a probabilistic graphical model is learned,

e.g., [33, 27, 106, 52]. The state of a probabilistic node in these models corresponds to the

truth value of the corresponding atomic statement.5 Formally, let X(s,p,o) = 1 mean the

statement (s, p, o) is true; otherwise, let X(s,p,o) = 0. The most natural quantity that could

be defined as a statement probability is

P (X(s,p,o) = 1|KB),

which is the marginal probability of X(s,p,o) given the information in the Semantic Web

knowledge base (KB). The probability can be decomposed as

P (X(s,p,o)|KB) =
∑
{XU}

P (X(s,p,o), {XU}|KB)

where {XU} stands for the set of all statements whose truth values are unknown. Certainly,

simplifications can be applied such that this sum can be calculated (approximately) for

relatively large networks (e.g., [27]), but it needs to be shown that Web-size scalability is

feasible. A great advantage of this approach is that it is resilient when faced with missing

information, meaning that it can handle arbitrary patterns of missing information.

Conditional Models

A second family of approaches includes the traditional approaches from ILP [83, 75, 58, 23,

64] and a number of related statistical approaches [96, 82]. Typically, in such approaches,

a classification problem is stated. For example, the task might be to assign an entity to an

ontological class or to predict a particular property of an entity (e.g., the high income of

a person). Here we assume that the target class corresponds to a node X(s,p,o). Learning

consists of generating relational features that are good predictors for the target class. For

example, one might be able to predict income from the number of rooms in a person’s

house or the income of the person’s friends. The relational features are calculated from

5A probabilistic node is simply the graphical representation of a random variable, representing in our

case the truth value of a basic statement or triple. Not to be confused with a node in an RDF-graph.

8 1. Introduction

nodes in the neighborhood of the entity of interest. The nodes that render the target class

independent of the remaining probabilistic nodes form the Markov blanket MB(s,p,o) such

that

P (X(s,p,o))|KB) ≈ P (X(s,p,o)|MB(s,p,o)).

In the situations we are considering, this approach is difficult to apply due to a large number

of statements with unknown truth values. ILP solves the problem of unknown truth values

by merely making a closed-world assumption (thus there are no missing truth values in

the Markov blanket), which is not appropriate in the context of the SW.6 Due to the

closed-world assumption, data points derived from Markov blanket models are independent,

and the number of instances in the training set is under the control of the user, thus

guaranteeing scalability.

Discussion

In conclusion, a global model can more easily deal with missing information but might

not scale well, whereas conditional models scale better but have problems with missing

information. Thus we pursue a model that attempts to combine the advantages of both

approaches by being able to handle missing data and by being scalable. In addition, the

approach should be able to deal well with sparse data. In the next chapter, we define a

general statistical setting for learning approaches, including the statistical unit, population,

and sample. We discuss suitable algorithms for this setting and propose a model based

on the statistical unit node set. Using such models, one can predict potential relations

not only within the sample (through transduction) but also for statistical units outside the

sample in the population (via induction). The learned probabilistic relations can be stored

subsequently in the Semantic Web knowledge-base as weighted triples through certain

techniques, e.g., reification.

1.3.2 Relational Graphical Models

The probability distribution in a directed RGM, i.e., a relational Bayesian model, can be

written as

P (~U = ~u) =
∏
U∈~U

P (U |par(U)).

U is represented as a node in a Bayesian network and arcs point from all parent nodes

par(U) to the node U . One partitions all elements of ~U into node-classes, and each U

6A discussion on open-world and closed-world reasoning for the SW can be found in [34].

1.3 Statistical Learning for Relation Prediction 9

belongs to precisely one node-class. The key property of all U in the same node-class is

that their local distributions are identical, which means that P (U |par(U)) is the same

for all nodes within a node-class and can be described by a truth-table or more complex

representations such as decision trees. For example, all nodes representing the IQ scores of

students in a university might form a node class, all nodes representing the difficulties of

university courses might form another node-class, while the nodes representing the grades

of students in courses might form a third.

Probabilistic Relational Models

PRMs were one of the first published RGMs and attracted the interest of the statistical

machine learning community [57, 33]. PRMs combine a frame-based logical representation

with probabilistic semantics based on directed graphical models. The nodes in a PRM

model the probability distribution of object attributes, whereas the relationships between

objects are assumed to be known. Naturally, this assumption simplifies the model substan-

tially. In the context of the SW, object attributes would primarily correspond to object-

to-literal statements. In subsequent papers, PRMs have been extended to consider cases

where the relationships between objects (in the context of the SW, these would roughly be

object-to-object statements) are unknown, which involve a type of uncertainty referred to

as structural uncertainty in the PRM framework [33]. More straightforward cases, where

one of the objects in a statement is known, while the partner object is unknown, display

reference uncertainty. In cases of reference uncertainty, the number of potentially true

statements is assumed to be known, which means that only an equivalent number of ran-

dom nodes need to be introduced. The second form of structural uncertainty found in the

PRM framework is existence uncertainty, where binary random variables are introduced,

representing the truth values of relationships between objects.

For some PRMs, regularities in the PRM structure can be exploited (encapsulation),

and exact inference is possible. Large PRMs require approximate inference through meth-

ods such as loopy belief propagation. Learning in PRMs is likelihood-based or based on

empirical Bayesian learning. Structural learning typically uses a greedy search strategy,

where one needs to guarantee that the ground Bayesian network does not contain directed

loops.

More Directed RGMs

A Bayesian logic program is defined as a set of Bayesian clauses [53]. A Bayesian clause

specifies the conditional probability distribution of a random variable given its parents on a

template level, i.e., in a node-class. A special feature of Bayesian logic programs is that, for

10 1. Introduction

a given random variable, several such conditional probability distributions might be given.

As an example, bt(X) | mc(X) and bt(X) | pc(X) specify the probability distribution for

blood type given the two different dispositions mc(X) and pc(X). The truth value for bt(X) |
mc(X), pc(X) can then be calculated based on various combination rules (e.g., noisy-or). In

a Bayesian logic program, for each clause, there is one conditional probability distribution

and for each Bayesian predicate (i.e., node-class) there is one combination rule. Relational

Bayesian networks [47] are related to Bayesian logic programs and use probability formulae

for specifying conditional probabilities. Relational dependency networks [78] also belong

to the family of directed RGMs and use decision trees to learn the dependency of a node

given its Markov blanket.

Markov Logic Networks

The probability distribution of an undirected graphical model or Markov network can be

written as

P (~U = ~u) =
1

Z

∏
k

gk(uk)

where gk(.) is a potential function, uk is the state of the k-th clique and Z is the partition

function normalizing the distribution. A more convenient log-linear representation of the

form

P (~U = ~u) =
1

Z
exp

∑
k

wkfk(uk)

is often preferred, where the feature functions fk can be any real-valued function and where

wi ∈ R.

We will discuss two major approaches that use this representation: Markov logic net-

works and relational Markov models.

Let Fi be a formula in first-order logic and let wi ∈ R be a weight attached to each

formula. Then a MLN L is defined as a set of pairs (Fi, wi) [89] [27]. One introduces a

binary node for each possible grounding of each predicate appearing in L (in the context of

the SW, we would introduce a node for each possible statement), given a set of constants

c1, . . . , c|C|. The state of the node is equal to 1 if the ground atom/statement is true, and

0 otherwise (for an N-ary predicate, there are |C|N such nodes). A grounding of a formula

is an assignment of constants to the variables in the formula (considering formulas that

are universally quantified). If a formula contains N variables, then there are |C|N such

assignments. The nodes in the Markov network ML,C are the grounded predicates. Besides,

the MLN contains one feature for each possible grounding of each formula Fi in L. The

value of this feature is 1 if the ground formula is true, and 0 otherwise. wi is the weight

1.3 Statistical Learning for Relation Prediction 11

associated with Fi in L. A Markov network ML,C is a grounded Markov logic network of

L with

P (~U = ~u) =
1

Z
exp

(∑
i

wini(~u)

)
where ni(~u) is the number of formula groundings that are true for Fi. MLN makes the

unique names assumption, the domain closure assumption and the known function assump-

tion, but all of these assumptions can be relaxed.

An MLN puts weights on formulas: the larger the weight, the higher the confidence

that the formula is true. When all weights are equal and become infinite, one enforces the

formulas strictly, and all worlds that agree with the formulas have the same probability.

The simplest form of inference concerns the prediction of the truth value of a grounded

predicate given the truth values of other grounded predicates (conjunction of predicates)

for which the authors of [89] present an efficient algorithm. In the first phase, the minimal

subset of the ground Markov network that is required to calculate the conditional proba-

bility is returned. This subset must be small since, in the worst case, an inference could

involve all nodes. In the second phase, Gibbs sampling is used to perform inference on this

reduced network.

Learning consists of estimating the wi. In learning, MLN makes a closed-world assump-

tion and employs a pseudo-likelihood cost function, which is the product of the probabilities

of each node given its Markov blanket. Optimization is performed using a limited memory

BFGS algorithm.

Finally, there is the issue of structural learning, which, in this context, defines the

employed first-order formulae. Some formulae are typically defined by a domain expert a

priori. Additional formulae can be learned by directly optimizing the pseudo-likelihood

cost function or by using ILP algorithms. For the latter, in [89], the authors use CLAU-

DIAN [24], which can learn arbitrary first-order clauses (not just Horn clauses, as with

many other ILP approaches).

Latent Class RGMs

The infinite hidden relational model (IHRM) [106] presented here is a directed RGM (i.e., a

relational Bayesian model) with latent variables.7 The IHRM is formed as follows. First, we

partition all objects into classes K1, ...K|K|, using, for example, ontological class informa-

tion. For each object in each class, we introduce a statement (Object, hasHiddenState, H).

If Object belongs to class Ki, then H ∈ {1, . . . , NKi
}, i.e., the number of states of H is

7Kemp et al. [52] presented an almost identical model independently.

12 1. Introduction

class-dependent. As before, we introduce a random variable or node U for each potentially

true basic statement (grounded atom). Let ZObject denote the random variables that in-

volve Object and H. ZObject is a latent variable or latent node since the true state of H is

unknown. ZObject = j stands for the statement that (Object, hasHiddenState, j).

We now define a Bayesian network where the nodes ZObject have no parents, and the

parents of the nodes for all other statements are the latent variables of the objects appearing

in the statement. In other words, if U stands for the fact that (Object1, property,Object2)

is true, then there are arcs from ZObject1 and ZObject2 to U . The object-classes of the objects

in a statement together with the property define a node-class for U . If the property value

is a literal, then the only parent of U is ZObject1 .

In the IHRM we allow the number of states in each latent node to be infinite and use

the formalism of Dirichlet process mixture models. During inference, only a small number

of the infinite states are occupied, leading to a clustering solution where the number of

states in the latent variables NCi
is automatically determined.

Since the dependency structure in the ground Bayesian network is local, it might seem

that only local information influences prediction. This impression is incorrect, since, in the

ground Bayesian network, common children U with evidence lead to interactions between

the parent latent variables. Thus information can propagate in the network of latent vari-

ables. Training is based on various forms of Gibbs sampling (e.g., the Chinese restaurant

process) or mean-field approximations. Training only needs to consider random variables U

corresponding to statements that received evidence, e.g., statements that are either known

to be true or known not to be true; random variables that correspond to statements with

unknown truth value (i.e., without evidence) can be ignored entirely.

IHRM has several key advantages. First, no structural learning is required, since the

directed arcs in the ground Bayesian network are directly given by the structure of the

SW graph. Second, the IHRM model can be thought of as an infinite relational mixture

model, realizing hierarchical Bayesian modeling. Third, the mixture model allows a cluster

analysis providing insight into the relational domain.

The IHRM has been applied to recommender systems in medical domains and for gene

function prediction, and it was the first relational model applied to trust learning [88].

In [86], the authors showed how ontological class information can be integrated into the

IHRM.

1.3 Statistical Learning for Relation Prediction 13

1.3.3 Inductive Logic Programming

Inductive logic programming (ILP) encompasses various approaches that attempt to learn

logical clauses. In light of the discussion in the last section, ILP uses logical (binary)

features derived from logical expressions, typically conjunctions of (negated) atoms. Recent

extensions on probabilistic ILP have also address uncertain domains.

ILP Overview

This section is on “strong” ILP, which covers the majority of ILP approaches and con-

cerns classification of statistical units and on predicate definition8. Strong ILP performs

modeling in relational domains that are somewhat related to the approach discussed in the

previous section. Let us consider FOIL (First Order Inductive Learner) as a representative

example [83]. The outcome of FOIL is a set of definite clauses (a particular if-then rule)

with the same head (then-part).

Here is an example (modified from [29]). Let the statistical unit be a customer with

ID CID. VC = 1 indicates that someone is a valuable customer, GC = 1 indicates that

someone owns a golden credit card and SB = 1 indicates that someone would buy a

sailboat. The first rule that FOIL might have learned is that a person is interested in

buying a sailboat if this person owns a gold card. The second rule indicates that a person

would buy a sailboat if this person is older than 30 and has at least once made a credit

card purchase of more than 100 Euro:

sailBoat(CID, SB = 1) ← customer(CID,GC = 1) (1.1)

sailBoat(CID, SB = 1) ← customer(CID, Age)

∧ purchase(CID, PID, Value, PM)

∧ PM = credit-card ∧ Value > 100 ∧ Age > 30.

In rule learning, FOIL uses a covering paradigm, and derives the first rule to correctly

predict as many positive examples as possible (covering) with a minimum number of false

positives. Subsequent rules then try to cover the remaining positive examples. The head

of a rule (then-part) is a predicate, and the body (the if-part) is a product of (negated)

atoms containing constants and variables.9 Naturally, there are many variants of FOIL.

FOIL uses a top-down search strategy for refining rule bodies, whereas PROGOL [74] uses

a bottom-up strategy and GOLEM [75] uses a combined strategy. Furthermore, FOIL

8A predicate definition is a set of program clauses with the same predicate symbol in their heads.
9FOIL learning is called learning from entailment in ILP terminology.

14 1. Introduction

uses a conjunction of atoms and negated atoms in the body, whereas other approaches

use PROLOG constructs. The community typically discusses these different approaches

in terms of language bias (which rules the language can express), search bias (which rules

can be found) and validation bias (when validation tells the user to stop refining a rule).

An advantage of ILP is that non-grounded background knowledge also can be taken into

account (typically in the form of a set of definite clauses that might be part of an ontology).

Given the discussion in the last section, the statistical unit corresponds to a customer,

and FOIL introduces a binary target feature (1) for the target predicate sailBoat(CID,

SB). The second feature (2) is one if the customer owns a golden credit card and zero

otherwise. Then a view is generated with attribute CID. A CID is entered in that view

each time the person makes a credit card purchase of more then 100 Euro, but only if that

person is more than 30 years old. The third feature (3) is binary and is equal to one if

the CID is present in the view at least once and zero otherwise. FOIL then applies an

elementary combination rule: if the feature (2) or feature (3) equal to one for a customer,

then the target feature (1) is true.

Propositionalization, Upgrading, and Lifting

ILP approaches like FOIL can be decomposed into the generation of binary features (based

on rule bodies) and a logical combination, which in the case of FOIL, is quite simple. As

stated before, ILP approaches contain a sophisticated search strategy for defining optimal

rule bodies. In contrast, if the generation of rule bodies is performed as a preprocess-

ing step, the process is referred to as propositionalization [58]. Binary features are often

collected through simple joins of all possible attributes. An early approach to proposi-

tionalization is LINUS [64]. Instead of using the simple FOIL combination rule, other

feature-based learners are often used. Although it has been proven that propositionaliza-

tion is inefficient in some special cases [23], propositionalization has produced excellent

results.

The inverse process to propositionalization is called upgrading (or lifting) [102] and

turns a propositional feature-based learner into an ILP learner. The main difference be-

tween upgrading and propositionalization is that the former optimizes features concerning

the performance of the overall system. In practice, many strong ILP systems can be in-

terpreted as upgraded propositional learners: FOIL is an upgrade of the propositional

rule-induction program CN2, and PROGOL can be viewed as upgrading the AQ approach

to rule induction. Additional upgraded systems include Inductive Classification Logic

(ICL [25]) which uses classification rules, TILDE [13] and S-CART, which use classifica-

1.3 Statistical Learning for Relation Prediction 15

tion trees, and RIBL [31], which uses nearest neighbor classifiers. nFOIL [61] combines

FOIL with a Naive Bayes (NB) classifier by changing the scoring function and by introduc-

ing probabilistic covering. nFoil was able to outperform FOIL and propositionalized NB on

standard ILP problems. kFoil [60] is another variant that derives kernels from FOIL-based

features.

Discussion

ILP algorithms can easily be applied to the SW if we identify atoms with basic statements.

ILP fits well into the deterministic framework of the SW. In many ways, statistical SW

learning is related to ILP’s propositionalization; the main difference is the principled sta-

tistical framework of the former. Thus most of the discussion on scalability carries over

to ILP’s propositionalization. When ILP’s complex search strategy for defining optimal

rule bodies is applied, training time increases but remains proportional to the number of

samples. An interesting new aspect of ILP is that it produces definite clauses that can

be integrated–possibly with some restrictions–into the Semantic Web Rule Language. ILP

approaches that consider learning with description logic (and clauses) are described, for

example, in [20, 90, 67, 69, 70, 68]. An empirical study can be found in [30].

1.3.4 Tensor Decompositions

A tensor is a multidimensional array, also called an N-way array. Tensor decompositions

refer to the factorization of tensors. A survey on tensor decompositions and applications is

provided in [56]. In the areas of signal processing, data mining and graph analysis, tensor

decompositions of higher-order tensors (i.e., N ≥ 3) are commonly used. In this thesis, we

primarily focus on two-way tensors, i.e., matrices and matrix decompositions. However, if

one needs to handle relationships with more than two many-state variables, higher-order

tensor decompositions can be applied for relation prediction.

TransE

TransE [14] models relationships by interpreting them as translations operating on low-

dimensional embeddings of entities. The basic idea of TransE is that given a set of (s, p, o)

triples, the relationship p between two entities s and o is considered as a translation of

the embeddings. If a triple (s, p, o) holds, o should be the nearest neighbor of s+ p in the

entity embedding space, while they should be far away otherwise. The model reduces the

number of parameters and scales up to large knowledge bases. TransE focuses on two-way

16 1. Introduction

interactions, and it can fail when modeling data where three-way dependencies between s,

p and o are crucial.

RESCAL

Unlike TransE, RESCAL [79] is a model based on a three-way tensor decomposition. The

model performs collective learning by learning latent representations of entities and latent

representations of the relationships. RESCAL is designed to encode the inherent structure

of binary relational data and is thus equivalent to a Tucker-2 decomposition [101].

DistMult

Another family of approaches learns embeddings of entities from neural networks and

model relations as bilinear (or linear) mapping functions. For instance, NTNs (Neural

Tensor Networks) [92] and DistMult belong to this family. In [107], DistMult refers to a

special case of the basic bilinear scoring function, where the relation matrix is diagonal.

The model uses weighted element-wise multiplication for modeling entity relations. Note

that DistMult is limited to modeling symmetric relations due to Canonical Polyadic (CP)

decomposition.

ComplEx

ComplEx [100] learns the embeddings of entities and relations by using vectors with com-

plex values. It can model both symmetric and asymmetric relations thanks to the nature of

the complex inner product. The model can be considered a valuable extension of DistMult,

as its complex embeddings allow it to avoid DistMult’s limitation to symmetric relations.

1.3.5 Remarks

The approaches described in Section 1.3.3 aim to describe the logical dependencies be-

tween features derived from SW data. In contrast, the matrix decomposition approach

described in Section 1.3.4 and the relational graphical models (RGMs) also addressed in

Section 1.3.2 predict the truth values of all basis statements (RDF-triples) in the SW. Un-

like the matrix decomposition techniques, RGMs are probabilistic models where statements

are represented by random variables. RGMs can be thought of as upgraded versions of

regular graphical models, e.g., Bayesian networks, Markov networks, dependency networks,

and latent variable models. RGMs have been developed in the context of frame-based log-

ical representations, relational data models, plate models, entity-relationship models, and

1.3 Statistical Learning for Relation Prediction 17

first-order logic. Here, we attempt to relate the basic ideas of the different approaches to

the SW framework.

The work on inductive databases in [85] pursues similar goals but is focused on the less-

problematic data situation in relational databases. In [54], the authors describe SPARQL-

ML, a framework for adding data mining support to SPARQL. SPARQL-ML was inspired

by Microsoft’s Data Mining Extension (DMX). In SPARQL-ML, a particular ontology

for specifying the machine learning experiment is developed. The SRL methods in [54]

are ILP-type approaches based on a closed-world assumption (Relational Bayes Classi-

fier (RBC) and Relational Probabilistic Trees (RPT)). Those methods contrast with the

work presented in this thesis, which maintains an open-world assumption that is more

appropriate in the context of the SW. In our work, both model training and statement

prediction also can be performed off-line if desired. In the case of off-line, inferred triples

with their associated certainty values can be stored, e.g., in a triple store, enabling fast

query execution.

Unsupervised approaches (examples of which are suitable for the relational SW do-

main can be found in [33, 27, 106, 52]) are flexible and interpretable, and they provide a

probability distribution over a relational domain. Although unsupervised approaches are

quite attractive, we fear that the sheer size of the SW and the vast number of potentially

true statements it contains make such approaches inappropriate for Web-scale applications.

Supervised learning, where a model is trained to make a prediction concerning a single ran-

dom variable, typically shows better predictive performance and better scalability. Typical

examples of supervised learning include many ILP approaches [83, 75] and propositional-

ized ILP approaches [23, 64]. Multivariate prediction generalizes supervised learning to

predict several variables jointly, conditioned on given inputs. The improved predictive per-

formance of multivariate prediction in comparison to simple supervised learning has been

attributed to the sharing of statistical strength between multiple tasks, i.e., data is used

more efficiently (see [99] and citations therein for a review). Due to the large degree of

sparsity of relationship data in the SW, we expect that multivariate prediction holds great

promise for SW learning, and we will apply it in this thesis. There have been a number of

publications on learning with SW data, e.g., [11, 35, 93, 21, 68]. Our focus is on machine

learning approaches that permit the derivation of probabilistic statements.

RGMs have been developed in the context of frame-based logical representations, re-

lational data models, plate models, entity-relationship models, and first-order logic, but

RGMs’ main ideas (including Bayesian networks of node-classes and introduction of latent

variables) can easily be adapted to the SW data model. One can distinguish two cases

of adoption. In the first case, an RGM learns a joint probabilistic model over the full

18 1. Introduction

SW or a segment of the SW. This case might be the most elegant approach since there

is only one (SW-) world, and the dependencies between variables are truthfully modeled.

The drawback of the first case is that the computational cost scales with the number of

statements whose truth value is known or perhaps even with the number of all potentially

true statements. In the second case, the sampling approach described in this thesis might

prove more appropriate for large-scale applications. As an example, consider that the sta-

tistical unit is a student. Under these circumstances, a data point would not correspond

to a set of features but rather to a local subgraph anchored at the statistical unit, i.e.,

the student. As before sampling would make the training time essentially independent of

SW size. Ontological background knowledge can be integrated into machine learning, as

discussed in this section. First, one can employ complete or partial materialization, which

would derive statements from reasoning before training. Second, an ontological subgraph

can be included in the subgraph of a statistical unit [86]. Also, note that the MLN might

be particularly suitable to exploit ontological background information: ontologies can for-

mulate some of the first-order formulas that are the basis for the features in the MLN.

PRMs have been extended to learn class hierarchies (PRM-CH), which can be a basis for

ontology learning.

RGM approaches typically make an open-world assumption.10 Corresponding random

variables are assumed to be missing at random, such that RGM approaches include an

inherent mechanism to deal with missing data. If the assumption of data missing at

random is not justified, more complex missing-data models need to be applied. As before,

based on the estimated probabilities, weighted RDF-triples can be generated and added to

the SW.

1.4 Structure of the Thesis

This chapter describes the standard data model in the Semantic Web and explains the rea-

soning tasks performed on its relational knowledge bases. Additionally, it reviews related

work in the field of statistical learning for relation prediction.

Chapter 2 introduces a generic statistical framework, the Statistic Unit Node Set (SUNS),

where any machine learning approach can be applied, and proposes a novel multivariate

model for relation prediction–Reduced-Rank Penalized Regression (RRPP)–that is robust,

insensitive to model-specific parameters and capable of efficiently dealing with missing in-

formation. We tested the model on a social network data set to predict friendship between

10There are some exceptions, e.g., MLNs make a closed-world assumption during training.

1.5 Contributions of the Thesis 19

persons, both in transductive and inductive settings.

Chapter 3 proposes a general kernel approach to SUNS. It utilizes the Nyström ap-

proximation technique to reduce the complexity of kernel computations. The chapter also

discusses the scalability of this approach. The RRPP model presented in Chapter 2 can

be considered as a special case of the kernel approach. We evaluate this approach using a

data set from DBpedia.

Chapter 4 introduces a probabilistic model (the R-model) that relies on a relation-

oriented sampling assumption and can handle n-ary relationships in a probabilistic man-

ner. We apply the model to a social network with the aim of movie recommendations

and explain how the model integrates contextual information to improve the quality of

recommendations.

Chapter 5 describes the application of the SUNS approach to three real-world use

cases: social media analysis, disease gene prioritization in life sciences, and a location-

based personalized recommendation engine.

1.5 Contributions of the Thesis

All significant contributions of this thesis have been published in the following proceedings

of conferences and journals:

1. [43] Yi Huang, Volker Tresp, Markus Bundschus, and Achim Rettinger. Scalable

relational learning for sparse and incomplete domains. In International Workshop on

Statistical Relational Learning (SRL 2009), 2009

I established the fundamental idea towards the SUNS framework.

2. [46] Yi Huang, Volker Tresp, and Hans peter Kriegel. Multivariate prediction for

learning in relational graphs. In NIPS 2009 Workshop: Analyzing Networks and

Learning With Graphs, 2009

I formally defined the SUNS framework, introduced the RRPP model, and conducted

the experiments. My contributions in [46] are described in Chapter 2.

3. [41] Yi Huang, Markus Bundschus, Volker Tresp, Achim Rettinger, and Hans-Peter

Kriegel. Multivariate prediction for learning on the Semantic Web. In Proceedings

of the 20th International Conference on Inductive Logic Programming (ILP), 2010

I extended the SUNS framework and investigated different sampling strategies in the

experiments. Chapter 2 covers my contributions in [41].

20 1. Introduction

4. [42] Yi Huang, Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A scalable

kernel approach to learning in semantic graphs with applications to linked data. In

1st Workshop on Mining the Future Internet, 2010

I introduced the kernel SUNS which is described in Chapter 3.

5. [45] Yi Huang, Volker Tresp, Maximilian Nickel, Achim Rettinger, and Hans-Peter

Kriegel. A scalable approach for statistical learning in semantic graphs. Semantic

Web Journal, 5(1):5–22, 2014

I refined the kernel SUNS and applied it to the disease gene prioritization problem

which is the application described in Section 5.2.

6. [98] Volker Tresp, Yi Huang, Xueyan Jiang, and Achim Rettinger. Graphical mod-

els for relations - modeling relational context. In KDIR 2011 - Proceedings of the

International Conference on Knowledge Discovery and Information Retrieval, Paris,

France, 26-29 October, 2011, pages 114–120, 2011

I was co-creator of the R-model presented in [98] and I accomplished all empirical

studies which are described in Chapter 4.

7. [7] Davide Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, Yi Huang,

Volker Tresp, Achim Rettinger, and Hendrik Wermser. Deductive and inductive

stream reasoning for semantic social media analytics. IEEE Intelligent Systems, 99,

2010

I introduced inductive stream reasoning and conducted the evaluation on an appli-

cation of semantic social media analysis that is described in Section 5.1.

8. [5] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle, Yi Huang,

Tony Kyung-il Lee, Seon-Ho Kim, and Volker Tresp. BOTTARI: an augmented re-

ality mobile application to deliver personalized and location-based recommendations

by continuous analysis of social media streams. Journal of Web Semantics, 16:33–41,

2012

I detailed the inductive stream reasoner in a location-based personalized recommen-

dation engine which is the application described in Section 5.3, contributed to data

collection, and achieved all experiments except for the test on the PUSH segment.

9. [6] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle, Yi Huang,

Tony Kyung-il Lee, Seon-Ho Kim, and Volker Tresp. Reality mining on micropost

1.5 Contributions of the Thesis 21

streams - deductive and inductive reasoning for personalized and location-based rec-

ommendations. Semantic Web Journal, 5(5):341–356, 2014

I designed the architecture of inductive stream reasoning, contributed to data collec-

tion, and carried out the experiments for the personalized recommendation engine.

Section 5.3 describes my contributions in [6].

I am the first author and primary writer of publications 1-5. Publications 7-9 are joint

works, mainly between Siemens and CEFRIEL11.

11CEFRIEL is a digital innovation center located in Milano, Italy. https://www.cefriel.com/en/home

22 1. Introduction

Chapter 2

Learning with the Statistical Unit

Node Set (SUNS)

A knowledge base mirrors a particular domain in the real world. Facebook’s social network

data, for instance, reflects friendships and other relations among real persons. However, on

the one hand, many ties that exist in the real world might be unknown in the knowledge

base, and on the other hand, numerous relations do not exist by now but potentially would

become real in the future. For example, an average Facebook user may obtain a list of

users’ accounts recommended that are not connected to her account yet, some of which

are of her friends, whereas the others are foreign to her in real life, but she likely sends a

friend request to them. In this recommendation process, many features of her account are

taken into account, including her properties, e.g., age, gender, and the city she lives, her

interests registered, and her behavior on Facebook.

Similar scenarios occur in many other research and application domains. Detecting and

predicting missing ties of interest constitutes a significant challenge for relation prediction,

which can be considered an attempt to complete an incomplete knowledge base (or supple-

ment a relational graph, if one adopts the graphical model point of view). In this chapter,

we introduce our learning approach, which relies on the statistical unit node set and thus

is named the Statistical Unit Node Set (SUNS). It is a generally defined framework where

any statistical learning algorithm, including matrix factorization-based algorithms, can be

applied.

In Section 1.3, we reviewed global and conditional learning approaches that are suitable

for relation prediction. Global models can efficiently deal with missing information, but

might not scale well, while conditional models scale better, but encounter difficulties when

faced with missing data. We propose SUNS as an approach that attempts to combine

24 2. Learning with the Statistical Unit Node Set (SUNS)

global models’ ability to handle missing data with the scalability of conditional models,

thus maintaining the advantages of both methods, while simultaneously dealing effectively

with highly sparse data.

The main contributions of this chapter are published in:

1. [43] Yi Huang, Volker Tresp, Markus Bundschus, and Achim Rettinger. Scalable

relational learning for sparse and incomplete domains. In International Workshop on

Statistical Relational Learning (SRL 2009), 2009

2. [46] Yi Huang, Volker Tresp, and Hans peter Kriegel. Multivariate prediction for

learning in relational graphs. In NIPS 2009 Workshop: Analyzing Networks and

Learning With Graphs, 2009

3. [41] Yi Huang, Markus Bundschus, Volker Tresp, Achim Rettinger, and Hans-Peter

Kriegel. Multivariate prediction for learning on the Semantic Web. In Proceedings

of the 20th International Conference on Inductive Logic Programming (ILP), 2010

This chapter is based on these publications but is mostly rewritten. Section 2.1.5

explains the RRPP model in more details than [46]. Moreover, Section 2.2 extends the

empirical study by adding four further settings 5-8 that are novel and have not been

published yet. The experiments in [43] are not included in this thesis.

This chapter is structured as follows. First, we introduce the approach SUNS in two

parts: One part is the definition of a general statistical setting, and the other is a novel

multivariate prediction model. Then, we investigate SUNS on a data set gathered from a

social network. In the end, we conclude the chapter with some discussions and remarks

about the approach.

2.1 The Approach

2.1.1 Definition of Statistical Setting

In a relational domain, the issue of a probability distribution is somewhat troublesome.

Considering a set of physicians and patients, let Q be the quality of a physician and assume

that half of the physicians are highly competent, while half are not. If we randomly

sample physicians sufficient times, the number of the skilled physicians and the poorly

competent ones should be nearly equal P (Q = Good) ≈ P (Q = Bad) ≈ 0.5. However,

patients might prefer to visit good physicians. Thus, if we sample patients, we might

obtain another probability distribution of physicians, for instance, P (Q = Good) = 0.7,

2.1 The Approach 25

meaning that 70% of the physicians whom the sampled patients have visited are good.

Thereby we can conclude that in relational domains, the interpretation of a probability

distribution is determined by the sampling process. More precisely, the definition of a

proper statistical setting is crucial, including the definition of the statistical units, the

population, the sampling procedure as well as associated features.

• A statistical unit is an entity or instance of a certain type, e.g., person. Statistical

units are the source of the variables or features of interest.

• A population is a set of statistical units under consideration. A population might

be defined in various ways. For example, it might include all persons living in a

particular country or all-female students studying at a particular university.

• A sample is a subset of the population. In a statistical analysis, only a sample is

made available for investigation. In the experimental section, we will explore various

sampling strategies. Random sampling is a typical approach, as in the previous

example of physicians. Based on the sample, a data matrix is generated where the

statistical units define the rows.

• Features are the common properties of the sampled statistical units. They define the

columns of the data matrix.

In the following two sections, we informally explain how the features–random variables

and non-random covariates–are generated.

2.1.2 Random Variables

In Section 1.2 we described the Semantic Web where relational knowledge bases are pub-

lished, shared, exchanged, and widely exploited. We also learned that knowledge bases in

the Semantic Web are represented as RDF graphs, or a collection of RDF triples in the

form of (s,p,o) where subject s and object o are related via predicate p. We now introduce

for each actual or potential triple a triple node drawn as a diamond-shaped node in Fig-

ure 1.1. A triple node is in state one (true) if the triple is known to exist and is in state

zero (false) if the triple is known not to exist. Graphically, one only draws the triple nodes

in state one, i.e., the existing triples.

In the following, we now associate triples with statistical units, with the aim of as-

signing a triple to a statistical unit if the statistical unit appears in the triple. Let us

consider the statistical unit Jane. Based on the triples she is participating in, we obtain

26 2. Learning with the Statistical Unit Node Set (SUNS)

three expressions (?personA, rdf:type, Person), (Joe, knows, ?personA), and (?personA,

hasIncome, High) where ?personA is a variable representing any statistical unit. These

expressions form the random variables and define columns in the data matrix.1 By consid-

ering the remaining statistical units Jack and Joe we additionally generate the expressions

(?personA, knows, Joe), (Jack, knows, ?personA), and (?personA, knows, Jane). We will

not add (Jane, knows, ?personA) since Jane considers no one in the knowledge base to be

her friend. We iterate this procedure for all statistical units in the sample and add new

expressions (i.e., columns in the data matrix) if necessary. Note that expressions that are

not present in the sample will not be considered. Also, expressions that are rarely true

(i.e., associated with very few statistical units) are removed, since no meaningful statistics

can be derived from uncommon occurrences.

In [97], the triples associated with a statistical unit were denoted as a statistical unit

node set (SUNS). The matrix formed with n statistical units as rows and the random

variables as columns is denoted as Y .

2.1.3 Non-Random Covariates

The features we have derived so far represent truth values of actual or potential triples.

Those triples are treated as random variables in our analysis. If a machine learning algo-

rithm predicts that a triple is very likely, we can enter this triple in the knowledge base

from which the triples are retrieved, and add columns that provide additional information,

but are treated as covariates or fixed features.

First, we derive a type of generalized relations from the sample. More precisely, we

consider the expressions derived in the last section and replace constants with variables.

For example, from (?personA, knows, Jane) we derive (?personA, knows, ?personB) and

count how often this expression is true for a statistical unit ?personA. In the example, we

count the number of friends of person ?personA.

Second, we consider expressions aggregated by examining triples outside of a statistical

unit node set. The example contains a binary triple (?personA, knows, Jane). If Jane is

part of another binary triple, saying (?personA, hasIncome, High), then we replace Jane

with a variable personB, form a composite expression (?personA, knows, ?personB) ∧
(?personB, hasIncome, High), and count how many rich friends a person has. It is possible

to derive many kinds of additional features in different ways, but so far, we have restricted

ourselves to these two types. The matrix formed with n statistical units as rows and fixed

1Don’t confuse a random variable representing the truth value of a statement with a variable in a triple,

representing an object.

2.1 The Approach 27

features as columns is denoted as X.

After constructing the data matrix, we prune away columns in X and in Y which

have ones in fewer than ε percent of all rows, where ε is a small number, because, as

discussed previously, no meaningful statistical analysis is possible for those features. Note

that by applying this pruning, we usually can reduce an exponential number of features to

a reasonably small number.

2.1.4 Formal Definition of Statistical Setting

Let U = {ui}ni=1 be the set of statistical units in the sample under consideration. First,

we define a statistical node set SUNSui for statistical unit ui to include all triple nodes

that correspond to all actual and potential triples in which u participates either as the

subject or as the object. In the process, we must apply a restriction: if there is a triple

between the statistical units ui, uj ∈ U of the form (ui, p, uj), then the triple is a member

of SUNSui but not a member of SUNSuj . Otherwise, the same triple node would appear in

two different node sets, which would make the two sets highly dependent. In Figure 2.1,

{ai} belongs to statistic unit A, but not to B.

The resulting data matrix contains one row for each statistical unit, and we now define

its features as follows.

1. Let (p, o) be a pair, such that a triple of form (u, p, o) is in the knowledge base (KB),

for at least one u ∈ U . For each distinct (p, o), a column is generated in the data

matrix. The entry in the data matrix for statistical unit u and pair (p, o) is equal to

one if the triple (u, p, o) exists in the KB, and is zero otherwise.

2. In addition, we generate a column for each distinct p. The entry in the data matrix

for statistical unit u and property (predicate) p is equal to one if the triple (u, p, o)

exists for at least one o in the KB, and is zero otherwise.

3. Let (s, p) be a pair, such that a triple of the form (s, p, u) is in the KB for at least

one u ∈ U . For each distinct (s, p), we generate a column in the data matrix. The

entry in the data matrix for statistical unit u and pair (s, p) is equal to one if the

triple (s, p, u) exists in the KB, and is zero otherwise.

4. In addition, we generate a column for each distinct p. The entry in the data matrix

for statistical unit u and property p is equal to one if the triple (s, p, u) exists for at

least one s in the KB, and is zero otherwise.

28 2. Learning with the Statistical Unit Node Set (SUNS)

Figure 2.1: Left: An RDF-graph fragment with two statistical units A and B. {ai} are

triples assigned to A and {bi} are triples assigned to B. Dashed lines indicate triples that

are not in the knowledge base. Right top: The probabilistic nodes in the circle form the

SUNS for a statistical unit A and are modeled jointly. Information from triples not in a

SUNS (here, the states of the probabilistic nodes {Xbi}) are considered to be input features

of A. Right bottom: The probabilistic nodes in the circle form the SUNS for a statistical

unit B and are modeled jointly. Information from triples not in a SUNS (here, the states

of the probabilistic nodes {Xai}) are considered to be input features of B.

Due to the restriction mentioned above, if there are triples between the statistical units

of the form (ui, p, uj) with ui, uj ∈ U , we remove the columns for uj where a statistical

unit uj acts as an object. This guarantees that a particular expression appears only

once in the data matrix.2 Note that because of this restriction, the resulting number of

columns is smaller than we described in Sections 2.1.2 and 2.1.3. The example in Figure 1.1

illustrates that the expressions (Joe, knows, ?personA) and (Jack, knows, ?personA) have

to be removed. Since fixed covariates are generated similarly, we do not repeatedly describe

its generation process.

Once the data matrix is generated, one can predict potential relations not only in

the sample through transduction but also for all other statistical units in the population

through an inductive process. In the experiment section, we will describe these two settings

(i.e., transduction and induction) more precisely.

2This is not the only possible way to generate a data matrix, but an important feature is that only

triple nodes within a SUNS, are evaluated.

2.1 The Approach 29

2.1.5 Multivariate Prediction Model: Reduced-Rank Penalized

Regression

In previous sections, we proposed a statistical setting where the statistical unit node set

(SUNS) is defined mainly based on local neighborhoods of statistical units. By adding

aggregated information derived from the neighborhood, homophily can be modeled as

well. For instance, the income of a person can be predicted by the average income of this

person’s friends.

As we will see in our experiments, data matrices representing samples from knowledge

bases are typically high-dimensional and sparse. Multivariate prediction approaches have

been most successful [99] at exploiting this type of matrix. In a multivariate prediction

model, all outputs (i.e., the random variables) are predicted jointly such that statistical

strength can be shared between outputs. This is the case because some or all model

parameters are sensitive to all outputs, which improve the estimates of those parameters.3

Theoretically, any learning algorithm can be applied in this statistical setting, but we focus

on multivariate prediction algorithms in particular.

Traditionally, regression problems involve inputs X = [x1; ...;xn] ⊂ Rn×m and corre-

sponding outputs y = [y1; ...; yn], the states of the target variable var. X is a n-by-m data

matrix, and y is a column vector with n rows. yi is estimated based on each row vector

xi = (xi,1, ..., xi,m) ∈ X. In our case, yi ∈ [0, 1] represents the probability of the state being

true, i.e., yi = P (var = true|xi), and we start with a classical linear regression assuming a

linear dependence between yi and xi

yi = f(xi) = xiw
> + εi (2.1)

where w is a vector of weights and εi ∼ N(0, σ2) is the noise or error which is normal

distributed with mean 0 and variance σ2. For all inputs X and all outputs y, we rewrite

Equation (2.1) as

y = f(x) = Xw> + ε (2.2)

The goal is to learn such a ŵ that the estimated outputs ŷ = Xw> approximate the

actual outputs y as much as possible, thereby minimizing error ε.

ŵ = argmin
w
{`(y, ŷ)} (2.3)

3Although the completion is applied to the entire matrix, only zeros —representing triples with unknown

truth values— are overwritten.

30 2. Learning with the Statistical Unit Node Set (SUNS)

When we assume that the input data is independent and identically distributed, and

when we apply the least square cost function, we obtain

`(y, ŷ) =
n∑
i=1

(yi − xiw>)2 = (y −Xw>)>(y −Xw>) (2.4)

We find the gradient vector by calculating the derivative of ` with respect to w. That

results in the equation.

ŵ = (X>X)−1X>y (2.5)

Applying a regularized linear regression model adds a regularization term ‖w‖ in order

to avoid overfitting problem, and results in

ŵ = argmin
w
{−`(y, ŷ) + λ‖w‖} (2.6)

where ‖ · ‖ is the L2-norm and λ makes a tradeoff between the error and the complexity of

the model. Equation (2.5) is extended as

ŵ = (X>X + λI)−1X>y (2.7)

After training we multiply ŵ by X to approximate y (analogously one multiplies ŵ

with a new data set Xnew to predict states of the target variable ŷnew).

y ≈ ŷ = X(X>X + λI)−1X>y (2.8)

In the statistical setting defined above there are multiple outputs Y , i.e., the random

variables. Y is a n-by-l matrix containing n rows and l columns. Based on an input vector

xi the outputs yi,j for j = 1, .., l are predicted. We estimate the states of all variables and,

analogously to Equation (2.5), we learn a l-by-m weighting matrix Ŵ = [ŵ1; ..; ŵl].

Ŵ = (X>X + λI)−1X>Y (2.9)

Then we approximate Y in the same way we have done in Equation (2.8)

Y ≈ Ŷ = X(X>X + λI)−1X>Y (2.10)

Unlike Equation (2.8), Equation (2.10) learns the parameter matrix Ŵ by trying to fit

all outputs jointly rather than independently.

The aim of our multivariate algorithm is to consider inputs together with outputs

when learning Ŵ . In other words, Ŵ must be learned to fit not only Y , but also X. As a

2.1 The Approach 31

byproduct, we can approximate X as well. We define D = [XY] concatenating X and Y

column-wise, then we replace both X and Y in Equations 2.9 and 2.10 by D.

Ŵ = (D>D + λI)−1D>D (2.11)

D ≈ D̂ = D(D>D + λI)−1D>D (2.12)

We introduce a novel multivariate prediction model that we call Reduced-Rank Penal-

ized Regression (RRPP). First, we apply Singular Value Decomposition to D.

D = USV > (2.13)

U and V are left and right singular vectors, respectively. U is a n× n matrix and V is

a m ×m matrix. Note that both U and V are orthogonal and quadratic. S is an n ×m
matrix containing positive numbers on the diagonal, i.e., the singular values of D, and

zeros somewhere else. From this, we can derive the following equations.

D>D = V S2V > (2.14)

U = DV S−1 (2.15)

V > = U>DS−1 (2.16)

Then, by replacing replace D and D>D in Equation (2.12), we arrive at

D̂ = USV >(V S2V > + λI)−1V S2V >

= USV >(V (S2 + λI)V >)−1V S2V >

= USV >(V >)−1(S2 + λI)−1(V)−1V S2V >

= Udiag(
s3

s2 + λ
)V >

(2.17)

where diag(·) stands for the diagonal elements (i.e., the singular values) in S.

Finally, we obtain the approximation D̂ by taking only the r largest singular values

and the r corresponding singular vectors denoted as Ur and Vr, where r � rank(D) ≤
min(n,m).

D̂ = Urdiagr(
s3

s2 + λ
)V >r (2.18)

32 2. Learning with the Statistical Unit Node Set (SUNS)

Note that the rank of D̂ is reduced to ≤ r, and the number of the singular values in

diagr is also reduced to r.

2.1.6 Transduction and Induction

In this process, both Ur and Vr might not necessarily be held in memory. Instead, Vr alone

might be used to make predictions in the primal form derived from Equation (2.15).

D̂ = DVrdiagr(
s2

s2 + λ
)V >r (2.19)

Alternatively, we might use only Ur in the dual form derived from Equation (2.16).

D̂ = Urdiagr(
s2

s2 + λ
)U>r D (2.20)

It is important to note that the original data D is usually a large but very sparse

matrix. In contrast, D̂ is a dense matrix where previously missing entries are fulfilled

by the estimated likelihoods of these entries being true. For the same reason, it is not

necessary in practice–and indeed it is sometimes even impossible–to hold D̂ in memory.

Instead, we could approximate the data vectors in D̂ one by one, 4 rather than all of the

data in one step, as in Equation (2.18). Using the primal form, approximations for one

data vector di = [xiyi] can be made as follows:

d̂i = diVrdiagr(
s2

s2 + λ
)V >r (2.21)

So far, we have discussed how to learn Ŵ from data D and how to make the approx-

imations D̂. That process can be understood as a means of filling in missing facts in a

sample by transferring knowledge–in this case, Ŵ–learned from the known facts the very

same sample. That process, therefore, constitutes a form of transduction (also mentioned

in Section 2.1.4). Alternatively, when applying Ŵ onto a new data vector dnew outside of

the sample (but in the population), just as traditional predictive models do, the process is

one of induction, and the primal form of this inductive process is formulated as follows:

d̂new = dnewVrdiagr(
s2

s2 + λ
)V >r (2.22)

4The block-wise approximation is certainly also applicable.

2.2 Empirical Study: Friendship Prediction 33

Figure 2.2: Entity-relationship diagram of the LJ-FOAF domain

where dnew is a row vector. Analogously, the dual form is derived by using Equation (2.16)

d̂new = dnew(U>r DS
−1)>diagr(

s2

s2 + λ
)U>r DS

−1

= dnewD
>Urdiagr(

1

s2 + λ
)U>r D

(2.23)

Equation (2.11) shows that Ŵ is a m ×m dense matrix and requires memory of size

m2. For any m > 100.000, Ŵ hardly fits into memory. The primal form and the dual form

reduce the memory complexity and allow us to make predictions efficiently, and also to

efficiently persist Ŵ if necessary, because Ur is a n × r matrix, Vr is a r ×m matrix and

r is usually a reasonably small constant, for instance, r = 50. Using Ur or Vr, the demand

for memory is linearly dependent on n or m respectively. The choice between the primal

form and the dual form should be made according to the dimensions of the data matrix D,

more precisely, in case n � m, the dual form performs more efficiently than the primal,

while m� n, the primal form is preferred.

2.2 Empirical Study: Friendship Prediction

2.2.1 Data Set and Experimental Setup

Evaluation Procedure and Evaluation Measure

In this study, the task is to predict a person’s potential friends, i.e., knows statements. For

each person in the data set, we randomly selected one knows friendship statement to use as

34 2. Learning with the Statistical Unit Node Set (SUNS)

a test statement, setting the corresponding matrix entry to zero in order for it to be treated

as unknown. In the test phase, we then predict the probability of all unknown friendship

entries, including the (zeroed) entry of the test statement, which should, in principle, be

assigned a higher likelihood of being true than other unknown friendship entries in the

data set.

We use the normalized discounted cumulative gain (NDCG) method (described in Ap-

pendix 6) to evaluate a ranking of predictions generated by approaches we evaluate. These

NDCG scores are averaged over all random variables for comparison. The better an al-

gorithm, the higher the NDCG scores, and the higher the test statement is placed in the

ranking of predictions.

Data Set

Our friendship prediction experiments were carried out using a friend-of-a-friend (FOAF)

data. The purpose of the FOAF project [16] is to create a web of machine-readable pages

describing people, their relationships, and people’s activities and interests, using W3C’s

RDF technology. The FOAF ontology is based on RDFS/OWL and is formally specified

in the FOAF Vocabulary Specification 0.915.

We gathered our FOAF data set from user profiles of the community website LiveJour-

nal.com6. The extracted entities and relations between them are shown in Figure 2.2. In

total, we collected data comprising 32,062 persons and their related attributes. An initial

pruning step removed persons with very few connections to others, as well as especially

rare attributes. Table 2.1 lists the number of different individuals (top rows) and their

known instantiated relations (bottom rows) in the full triple set, in the pruned triple set,

and in triples sets in different experimental settings(explained below). After pruning, the

resulting data matrix contained 14,425 rows (persons) and 15,206 columns. Among those

columns, 14,425 one values (friendship attributes) refer to the property knows. The re-

maining 781 columns (general attributes) refer to general information about age, location,

number of blog posts, the school an individual attended, his or her online chat account,

and interests.

Algorithms

We create a random ranking for all unknown triples, denoted as Baseline, in which every

unknown triple is assigned a randomly generated probability. Additionally, we assume

5http://xmlns.com/foaf/spec/
6http://www.livejournal.com/bots/

2.2 Empirical Study: Friendship Prediction 35

setting 1 setting 2 setting 3 setting 4

Figure 2.3: Evaluated sampling strategies

that the friends of friends of a particular person might be his or her friends as well. That

assumption leads to another baseline method, denoted as FOF, d=2, meaning second-

degree friendship. From the RDF graph point of view, we propagate the knows relation

one step further alongside existing knows edges.

In addition to our RRPP approach, we investigate three state-of-the-art multivariate

prediction approaches: singular value decomposition (SVD), non-negative matrix factor-

ization (NNMF) [65], and latent Dirichlet allocation (LDA) [12]. All of these approaches

estimate unknown matrix entries via a low-rank matrix approximation. NNMF performs

a decomposition under the constraint that all entries in the factorized matrices are non-

negative. LDA is a generative topic model and decomposes the data matrix based on a

Bayesian treatment. After matrix completion, entries are interpreted as the likelihoods

with which the corresponding triples might be true, and we focus on those entries which

previously were zeros.

Data Retrieval and Sampling Strategies

In our experiments, we evaluated the generalization capabilities of the multivariate pre-

diction learning algorithms mentioned above, using eight different settings. The first four

settings are illustrated in Figure 2.3, in which a cloud symbolizes the part of the Web that

can easily be accessed (in our case, the data set given in Table 2.1). Crosses represent

persons who are known during the training phase (the training set), and circles represent

persons whose knows relations need to be predicted.

Setting 1 describes a case where the depicted part of the knowledge base is randomly

accessible, meaning that all instances can be queried directly from triple stores. Sta-

tistical units in the training sample are randomly sampled, and statements for other

randomly selected statistical units are predicted for testing (inductive setting). In

this setting, persons are rarely connected by the knows relations. The knows relation

36 2. Learning with the Statistical Unit Node Set (SUNS)

in the training set and test set is very sparse (0.18%).

Setting 2 also illustrates a case where statistical units in the sample are randomly se-

lected, but this time the truth values of statements concerning the statistical units in

the training sample are predicted (transductive setting). Some instances of the knows

relation of the selected statistical units are withheld from the training sample and

used for prediction. Compared to setting 1, predictions should be more comfortable

in this setting, since the statistics for training and prediction match perfectly.

Setting 3 assumes that the Web address of one user (i.e., one statistical unit) is known.

Starting from this random user, we identified other users connected by the knows

relation by breadth-first crawling, who are then added to the training set. The

test set is constituted by continuing this crawling (inductive setting). In this way,

all person profiles are fully connected, whether directly or indirectly. The training

profiles show higher connectivity (1.02%) than the test profiles (0.44%). In this

situation, generalization can be expected to be more effective than in settings 1 and

2 since local properties are more consistent than global ones.

Setting 4 combines settings 2 and 3. In this setting, truth values of statements concern-

ing the statistical units in the training sample are predicted (transductive setting).

Instances of the knows relation are withheld from training and used for prediction.

Settings 5-8 use the same sets of statistical units as settings 1-4, respectively. However,

whereas the data matrices of settings 1-4 only contain friendship relations to per-

sons within the sample, friendship relations in settings 5-8 are associated with any

person in the population, which may include some individuals outside of the sample.

In settings 5-8, we remove users’ friends (friendship attributes) who are known by

less than ten users (statistical units). As a result, these settings’ data matrices are

denser when compared to the matrices in settings 1-4. The concrete numbers of sta-

tistical units and friendship attributes are shown in Person (row) and Person (col)

respectively in Table 2.1.

In settings 1 and 2, we randomly sampled 2,000 persons to generate a training set. In

setting 1, we again randomly sampled 2,000 other persons for the test set. In setting 3,

4,000 persons were sampled, the first half of which was used for training and the second

half for testing. Setting 4 required only those 2,000 persons in the training set in setting 3.

In settings 5-8, we followed the same sampling strategies as in settings 1-4, respectively, but

then extracted all users known by the sampled users in order to define a set of friendship

2.2 Empirical Study: Friendship Prediction 37

(a) (c)

(b) (d)

Figure 2.4: Comparison between different algorithms. NDCG all is plotted against the

number of latent variables: (a)-(d) for settings 1, 2, 5, and 6 respectively.

attributes. In each case, the sampling was repeated five times, such that error bars could

be derived. Table 2.1 reports details of the samples (training set and, if applicable, test

set).

2.2.2 Results

The two baseline methods and the four multivariate prediction approaches proposed in Sec-

tion 2.1.5 were applied to the training set, repeating the evaluation procedure described

above ten times for each sample. Since NNMF is only applicable in a transductive setting,

it was not evaluated in settings 2, 4, 6, and 8. The FOF, d=2 was not applied in settings

38 2. Learning with the Statistical Unit Node Set (SUNS)
fu
ll

p
ru

n
ed

settin
g
1

settin
g
2

settin
g
3

settin
g
4

settin
g
5

settin
g
6

settin
g
7

settin
g
8

tra
in
in
g

test
tra

in
in
g

test
tra

in
in
g

test
tra

in
in
g

test

C
o
n
cep

t
P
er
so
n
(ro

w
)

3
2
,0
6
2

1
4
,4
2
5

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

#
In
d
iv
i.

P
er
so
n
(co

l)
-

-
2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

1
,1
2
2

1
,1
2
2

1
,1
2
2

1
,2
9
7

1
,2
9
7

1
,2
9
7

L
o
ca
tio
n

5
,6
7
3

3
2
0

3
2
0

3
2
0

3
2
0

3
2
0

3
2
0

3
2
0

3
2
0

3
2
0

3
2
0

3
2
0

3
2
0

3
2
0

S
ch
o
o
l

1
5
,7
4
4

3
2
9

3
2
9

3
2
9

3
2
9

3
2
9

3
2
9

3
2
9

3
2
9

3
2
9

3
2
9

3
2
9

3
2
9

3
2
9

I
n
ter
est

4
,6
9
5

1
1
8

1
1
8

1
1
8

1
1
8

1
1
8

1
1
8

1
1
8

1
1
8

1
1
8

1
1
8

1
1
8

1
1
8

1
1
8

O
n
.C
h
a
tA
cc.

5
5

5
5

5
5

5
5

5
5

5
5

5
5

D
a
te

4
4

4
4

4
4

4
4

4
4

4
4

4
4

#
B
lo
g
P
o
sts

5
5

5
5

5
5

5
5

5
5

5
5

5
5

R
o
le

kn
o
w
s

5
3
0
,8
3
1

3
8
6
,3
2
7

7
,3
1
1

7
,3
3
9

7
,3
3
9

4
0
,7
8
6

1
7
,6
1
3

4
0
,7
8
6

1
4
,9
0
9

1
6
,8
6
9

1
6
,8
6
9

4
1
,7
0
5

1
8
,5
9
5

4
1
,7
0
5

#
In
st.

(sp
a
r
sity

)
0
.0
5
%

0
.1
9
%

0
.1
8
%

0
.1
8
%

0
.1
8
%

1
.0
2
%

0
.4
4
%

1
.0
2
%

0
.6
6
%

0
.7
5
%

0
.7
5
%

1
.6
1
%

0
.7
2
%

1
.6
1
%

r
esid

en
ce

2
4
,3
6
8

7
,9
6
4

1
,1
2
2

1
,1
0
6

1
,1
0
6

1
,1
7
2

1
,2
1
7

1
,1
7
2

1
,1
2
2

1
,1
0
6

1
,1
0
6

1
,1
7
2

1
,2
1
7

1
,1
7
2

a
tten

d
s

3
1
,5
0
7

5
,0
8
8

6
7
6

7
4
7

7
4
7

7
1
8

7
4
9

7
1
8

6
7
6

7
4
7

7
4
7

7
1
8

7
4
9

7
1
8

h
a
s

9
,6
1
6

1
,6
5
9

2
0
6

2
4
6

2
4
6

2
1
6

2
0
8

2
1
6

2
0
6

2
4
6

2
4
6

2
1
6

2
0
8

2
1
6

h
o
ld
s

1
9
,0
2
1

8
,3
1
9

1
,1
3
4

1
,0
8
7

1
,0
8
7

1
,1
6
8

1
,0
7
5

1
,1
6
8

1
,1
3
4

1
,0
8
7

1
,0
8
7

1
,1
6
8

1
,0
7
5

1
,1
6
8

d
a
teO

f
B
ir
th

1
0
,0
4
0

5
,2
8
7

7
7
7

7
1
5

7
1
5

7
7
9

7
8
4

7
7
9

7
7
7

7
1
5

7
1
5

7
7
9

7
8
4

7
7
9

p
o
sted

3
1
,9
5
9

1
4
,3
6
9

1
,9
9
3

1
,9
9
2

1
,9
9
2

1
,9
9
4

1
,9
9
1

1
,9
9
4

1
,9
9
3

1
,9
9
2

1
,9
9
2

1
,9
9
4

1
,9
9
1

1
,9
9
4

T
ab

le
2.1:

N
u
m

b
er

of
in

d
iv

id
u
als

an
d

n
u
m

b
er

of
in

stan
tiated

relation
s

in
th

e
origin

al
d
ata

set
an

d
in

th
e

p
ru

n
ed

d
ata

set

(see
tex

t)
as

w
ell

as
th

e
statistics

ab
ou

t
th

e
d
iff

eren
t

ex
p

erim
en

tal
settin

gs

M
eth

o
d

settin
g
1

settin
g
2

settin
g
3

settin
g
4

settin
g
5

settin
g
6

settin
g
7

settin
g
8

B
a
selin

e
0
.1
0
9
2
±

0
.0
0
0
3

0
.1
0
9
2
±

0
.0
0
0
3

0
.1
0
9
4
±

0
.0
0
0
1

0
.1
0
9
4
±

0
.0
0
0
1

0
.1
2
1
3
±

0
.0
0
0
5

0
.1
2
1
3
±

0
.0
0
0
5

0
.1
2
1
6
±

0
.0
0
4
2

0
.1
2
1
6
±

0
.0
0
4
2

F
O
F
,d

=
2

0
.2
1
4
6
±

0
.0
0
9
5

0
.2
1
4
6
±

0
.0
0
9
5

0
.1
4
9
5
±

0
.0
0
7
7

0
.1
4
9
5
±

0
.0
0
7
7

N
a
N

N
a
N

N
a
N

N
a
N

N
N
M
F

N
a
N

0
.2
0
2
1
±

0
.0
0
5
8

N
a
N

0
.2
9
8
3
±

0
.0
1
9
7

N
a
N

0
.2
8
6
4
±

0
.0
0
6
7

N
a
N

0
.3
2
1
7
±

0
.0
4
0
3

r
=
1
0
0

r
=
1
5
0

r
=
1
5
0

r
=
1
0
0

S
V
D

0
.2
1
7
4
±

0
.0
0
6
1

0
.2
3
2
5
±

0
.0
0
7
4

0
.2
0
8
5
±

0
.0
1
4
7

0
.3
0
2
7
±

0
.0
1
7
9

0
.2
6
8
8
±

0
.0
0
4
4

0
.3
1
7
6
±

0
.0
0
9
2

0
.2
4
0
7
±

0
.0
4
1
3

0
.3
4
1
1
±

0
.0
1
7
9

r
=
1
5
0

r
=
1
0
0

r
=
2
0
0

r
=
1
0
0

r
=
1
5
0

r
=
1
5
0

r
=
1
0
0

r
=
5
0

L
D
A

0
.2
5
1
4
±

0
.0
0
4
9

0
.2
9
8
8
±

0
.0
0
5
7

0
.2
2
8
8
±

0
.0
1
2
3

0
.3
3
7
4
±

0
.0
1
1
7

0
.2
6
4
0
±

0
.0
0
2
2

0
.3
3
5
9
±

0
.0
0
7
9

0
.2
3
3
1
±

0
.0
1
4
3

0
.3
4
7
0
±

0
.0
3
7
2

r
=
2
0
0

r
=
2
0
0

r
=
2
0
0

r
=
2
0
0

r
=
1
5
0

r
=
2
0
0

r
=
1
5
0

r
=
2
0
0

R
R
P
P

0
.2
4
8
3
±

0
.0
0
1
8

0
.2
7
4
9
±

0
.0
0
3
7

0
.2
2
5
2
±

0
.0
0
4
9

0
.3
3
1
5
±

0
.0
1
0
9

0
.2
9
5
6
±

0
.0
0
1
9

0
.3
5
8
2
±

0
.0
0
4
9

0
.2
6
0
7
±

0
.0
0
8
8

0
.3
5
9
1
±

0
.0
2
3
7

r
=
4
0
0

r
=
4
0
0

r
=
4
0
0

r
=
4
0
0

r
=
4
0
0

r
=
4
0
0

r
=
4
0
0

r
=
4
0
0

T
ab

le
2.2:

B
est

N
D

C
G

all
averaged

cross
over

th
e

sam
p
les

w
ith

95%
con

fi
d
en

ce
in

terval
w

h
ere

r
stan

d
s

for
th

e
n
u
m

b
er

of
laten

t
variab

les

2.2 Empirical Study: Friendship Prediction 39

(a) (c)

(b) (d)

Figure 2.5: Continue Figure 2.4: (a)-(d) for settings 3, 4, 7, and 8 respectively.

5-8, because it was impossible for many users to access the friends of their friends outside

of the generated sample. Consequently, for the algorithms in those settings, no results were

reported in the figures or in Table 2.2 (i.e., NaN).

Figures 2.4 and 2.5 show the experimental results achieved on our FOAF data set.

The error bars indicate 95% confidence intervals based on the standard error of the mean

over the samples. The NDCG all scores of the algorithms against the number of latent

variables are plotted in Figure 2.4 for inductive settings 1, 2, 5, and 6, and in Figure 2.5

for transductive settings 3, 4, 7, and 8. The best NDCG all scores of all algorithms in

different settings are recorded in Table 2.2, where r indicates the number of latent variables

achieving the best scores.

40 2. Learning with the Statistical Unit Node Set (SUNS)

First, we observe that the experimental results in settings 5-8 are remarkably better

than those in settings 1-4. This can be attributed to the fact that, in settings 5-8, loosely

connected friends were pruned, and consequently, a more dense friendship network was

established.

Additionally, all multivariate prediction algorithms outperform the baseline algorithms

in all settings except for NNMF and SVD, which are only slightly better than FOF, d=2

in settings 1 and 2.

Furthermore, we observe that LDA and RRPP outperform NNMF and SVD in each

setting, and that they are not sensitive to the number of latent variables so long as that

number is reasonably large. For instance, LDA reaches its best NDCG score with r = 150

latent variables in setting 4, and its performance does not deteriorate when the number of

latent factors increases. RRPP’s score also increases with the number of latent variables,

over the range of such numbers our experiments contained. In contrast, NNMF and SVD

are sensitive to the number of latent variables.

Comparing the results across different settings, we can also observe that the multivariate

prediction approaches perform best in setting 4, followed by setting 2, then setting 1, and

perform worst in setting 3. A similar result can be seen in settings 5-8 as well. By way

of comparison, the random guess baseline achieves (almost) the same score in all settings.

The multivariate approaches’ higher scores in settings 4 and 8 suggest that, in general, a

link-following sampling strategy performs better than random sampling. Similar results in

statistical comparisons between random and link-following sampling have been obtained

in other works, e.g., [77].

Finally, we note that prediction performance in setting 1 is only slightly worse than

that in setting 2, while prediction performance in setting 4 is significantly better than in

setting 3. The same phenomenon occurs in settings 5-8. We attribute this to the fact that,

in settings 3 and 7, the density of friendship relations in the training set and test set are

very different. In Table 2.1, it is apparent, for instance, that the knows relations in the

training data set (1.02%) used in setting 3 are significantly more dense than in the test

data set (0.44%). Intuitively, it would seem that the people in the training set know each

other quite well, whereas the people in the test set know the people in the training set less

well.

2.3 Remarks 41

2.3 Remarks

In this chapter, we first introduced a well-defined statistical setting–SUNS–where data

matrices can be generated in a methodical way, including random variables and fixed

covariates based on the neighborhoods of statistical units. We then proposed a novel

multivariate algorithm for relation prediction, RRPP, which has two primary advantages

over other approaches: first, it can efficiently learn a global model that exploits all features

of statistical units and handles missing values naturally; second, the algorithm combines

regularization and low-rank matrix factorization, which makes it generalizable to statistical

units inside and outside of a sample. In our experiments, we tested the new algorithm

on a social network data set to predict friendship between persons in both transductive

and inductive settings. Compared to other benchmark methods, RRPP demonstrated

promising predictive performance and proved to be highly generalizable. In contrast, other

approaches based on single predictions, such as SVMs, failed to perform as well as our

baseline approaches, and were not reported as a result.

Our algorithm has two parameters: 1) the reduced rank r of data matrices and 2) the

tradeoff λ between regularization and error. In general, both parameters can be tuned

through cross-validation. However, heuristically, one might possibly set r to a reason-

ably large number, since PPRR is not sensitive to r thanks to its strong generalizability,

and choose a λ value proportional to the largest singular value of the data D. In our

experiments, LDA also outperformed SVD and NNMF. LDA’s superior performance can

be explained by the fact that LDA is based on a Bayesian treatment. Consequently, we

would recommend RRPP or LDA as default methods due to their insensitivity to precise

parameter tuning.

Our proposed approach can be extended in many ways, including by allowing the user

to specify additional parameters in the learning process, if desired, along the lines of the

extensions described in [54]. Our approach might also be extended in connection with

ontological background knowledge. So far, ontological background knowledge was taken

into consideration only by including logically inferred statements into learning.

Finally, learned probabilistic statements generated by our algorithm can be queried in

order to provide recommendations. The following SPARQL query illustrates a search for

LiveJournal users who live in Munich and might want to be Trelena’s friend:

42 2. Learning with the Statistical Unit Node Set (SUNS)

1 PREFIX ya: http :// blogs.yandex.ru/schema/foaf/

2 PREFIX foaf: http :// xmlns.com/foaf /0.1/

3 PREFIX dc: http :// purl.org/dc/elements /1.1/

4 SELECT DISTINCT ?person

5 WHERE { ?person ya:located ?city .

6 ?person foaf:knows <http :// trelana.livejournal.com/trelana >

7 WITH PROB ?prob .

8 FILTER REGEX(?city , "Munich") .

9 }

10 ORDER BY DESC(?prob)

Listing 2.1: The query includes the predicted knows triples for Trelena and rates them by

predicted probability.

Chapter 3

Kernel SUNS

The relationship between kernels and graphs has been the subject of a great deal of aca-

demic study. Graph kernels evaluate the similarity between graphs and can be classified

into three types: 1) graph kernels based on walks and paths, 2) graph kernels based on

limited-size subgraphs, and 3) graph kernels based on subtree patterns [103, 32]. Link

prediction on graphs is closely related to semi-supervised learning as surveyed in [109],

where the goal is to predict unknown node labels based on known labels in a graph. Ker-

nels for semi-supervised learning have, for example, been defined based on the spectrum

of the Graph-Laplacian. Link prediction approaches based on the Gaussian process are

presented in [108, 105], and link prediction in relational graphs also has been studied by

the relational learning and ILP communities [95, 76, 60]. Kernels for semantically rich

domains have been developed by [22] as well.

Most of the kernel approaches discussed in those works cannot easily be applied to the

rich semantic domains considered in this thesis. Many approaches have been developed to

address a single object type and a single relation type, and the experimental results of the

semantic kernels described in [22] are quite limited. In contrast, we have applied our SUNS

approach to problems in multi-relational domains in which thousands of potential links are

predicted based on hundreds of thousands of features for each of many graph nodes.

The main contributions of this chapter are published in:

1. [42] Yi Huang, Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A scalable

kernel approach to learning in semantic graphs with applications to linked data. In

1st Workshop on Mining the Future Internet, 2010

2. [45] Yi Huang, Volker Tresp, Maximilian Nickel, Achim Rettinger, and Hans-Peter

Kriegel. A scalable approach for statistical learning in semantic graphs. Semantic

44 3. Kernel SUNS

Web Journal, 5(1):5–22, 2014

This chapter is based on the publications above but is rewritten to a large extent. The

experiments in [42] were not carried out by me and therefore they are not included in this

thesis.

3.1 The Nyström Approximation

We now assume that for any two instances i and j in the population a kernel ki,j is defined.

A subset of the population of size n, i.e., the sample, defines the training set D. Let K be

the n×n kernel matrix (i.e., Gram matrix) for the training instances. In many applications,

n can be very large, and following [104], we therefore use the Nyström approximation to

scale up kernel computations to large data sets.

The Nyström approximation is based on an approximation to eigenfunctions and starts

with the eigendecomposition of the kernel matrix

K = UDU> (3.1)

where K is symmetric, U is orthonormal, and D is a diagonal matrix with the descending

eigenvalues. The Nyström approximation to the kernel for two arbitrary instances i and j

can be written as

ki,j ≈ k>.,i Ur diagr (1/dl) U
>
r k.,j (3.2)

where diagr (1/dl) is a diagonal matrix containing the inverse of the r leading eigenvalues

of D and where Ur contains the corresponding r columns of U1. Here, k.,i is a column

vector of kernels between instance i and the training instances and the same applies also

to k.,j.

Following this process reveals two special cases of interest. First, the vector of approx-

imate kernels between a statistical unit i and all units in the training data can be written

as

k.,i ≈ UrU
>
r k.,i (3.3)

and the matrix of approximate kernels between all pairs of units in the training data is

K ≈ Ur diagr (dl)U
>
r (3.4)

1Based on this approximation the rank of any kernel matrix is less than or equal to r ≤ n.

3.2 Kernel SUNS 45

These modified kernels can now be used in kernel approaches such as SVM learning or

Gaussian process learning. On the one hand, if r � n, the reduced-rank approximation

Equation (3.4) can greatly reduce the computational requirements. 2. On the other hand,

using the Nyström m method allows us to select a smaller subset of D to approximate the

kernel computations. While the selection strategy used in this method has been the subject

of some recent work, it is outside the scope of the thesis. The resulting computational

complexity is reduced to O(m2n) [104], where n is the number of the instances, and m is

the size of the selected subset (usually r ≤ m� n).

3.2 Kernel SUNS

So far, our discussion has been quite general, and the Nyström approximation can be used

for any kernel defined between instances in the population. As discussed at the beginning

of this chapter, there are several applicable kernels defined for nodes in a graph, but most

are not directly applicable to the rich domain of semantic graphs with many different node

and relation types. One notable exception is [22], which defines kernels that exploit rich

ontological background knowledge.

In [96], we present the kernels that can be used in the SUNS framework. As described

in the previous chapter, the random variables represent the likelihood of links where the

statistical unit is the subject or the object, while covariates form additional features, e.g.,

aggregated information. Although those features are explicitly calculated, a kernel ap-

proach is nevertheless preferable since, in the applications we are considering, the number

of the features can be quite large, whereas the size of the sample n can be controlled more

easily.

Following the notations used in Chapter 2, let us assume that we have a training data

set D ⊂ Rn×(m+l) containing n instances. An instance i consists of m inputs or covariates

xi = (xi,1, . . . , xi,m) and l targets or random variables yi = (yi,1, . . . , yi,l). Let us also

assume that the goal is to learn a model W that is able to predict yi in the form of

yi ≈ ŷi = k(·, i)>W (cf. Equation (2.1)), where W is an n× l weight matrix and k(·, i) is

the kernel vector of the instance.

As described in Section 2.1.5, a regularized least squares cost function can be formulated

as

`(Y, Ŷ) = Tr((Y −KW)(Y −KW)>) + λTr(W>KW) (3.5)

2We use the Nyström approximation slightly differently from [104]. There, Equation (3.1) is used on a

submatrix of K and Equation (3.4) is then used to approximate K.

46 3. Kernel SUNS

where Tr(·) is the trace of a matrix and Y = (y1, . . . , yn)> are the targets of the instances

in D. If we use the Nyström approximation for the kernel computations, we obtain the

least squares solution for the weight matrix.

Ŵls = (K>K + λK)−1K>Y

≈ Ur diagr

(
1

dl + λ

)
U>r Y

(3.6)

The prediction for the training data (i.e., smoothing or transduction) is carried out

Ŷ = KŴls

≈ Ur diagr

(
dl

dl + λ

)
U>r Y

(3.7)

and, in general, a prediction for any instance not included in the training set (i.e. induc-

tion), can be made

ŷi = k(·, i)>Ŵls (3.8)

Let us consider some individual kernels. If a kernel is defined as an inner product of the

covariates kxi,j = 〈φ(xi), φ(xj)〉 , where φ is a feature mapping that maps instances from the

original feature space into a reproducing kernel Hilbert space, then in the case of the linear

kernel, the Nyström approximation is equivalent to the regularized PCA regression in that

covariate space. Another kernel is kyi,j = 〈φ(yi), φ(yj)〉 In this case, the approximation is

equivalent to the regularized matrix reconstruction obtained by using kernel PCA, which is

often used in collaborative filtering. In the latter case, the low-rank Nyström approximation

is not only required in order to obtain a scalable solution but also necessary in order to

obtain accurate predictions at all: with λ → 0 and r = n we would obtain the trivial

solutions Ŷ = Y . Finally, with kzi,j = 〈φ(zi), φ(zj)〉 where zk = (αx>k , y
>
k)> and k = {i, j}

we obtain the reduced-rank penalized kernel regression algorithm utilized by the SUNS

framework [41]. Here, α is a positive weighting factor balancing the influence of the two

information sources.

It is worth noting that, compared to RRPP introduced in Section 2.1.5, the kernel

approach defined in this chapter is capable of modeling non-linear dependencies among

covariates and random variables. Moreover, although the formulae of the kernel SUNS look

similar to those in Section 2.1.5, here, U are the eigenvectors of Gram matrix K = DD>

and dl are the eigenvalues of K, i.e., the squares of the singular values s of D. When

computing K, the Nyström method allows us to control the size of the selected instances

easily.

3.3 Experiments 47

3.3 Experiments

We evaluated the kernel approach on a data set gathered from DBpedia [4], which is

based on information extracted from Wikipedia. The task was to predict the political

party of the members of the German Bundestag. The instances in the data set were the

German politicians, while the features included German political parties, the politicians’

age and birthplace, and other relevant features extracted from textual information. In

our experiments, we used the Pearson Correlation on the disambiguated original data as

a baseline and investigated the kernel PPRR during more and more information being

added. We observed that performance increased as more information was exploited, and

that the approach’s prediction quality peaked when using all information. Additionally,

we discovered that a proper value of the parameter α could improve the performance of

the approach. For more details, see [42].

3.3.1 Scalability

In the relational domains we are modeling, the training data X are very sparse, and the

reduced-rank matrix reconstruction can be calculated efficiently. Given a sparse random

N ×M matrix X, we might first construct the kernel matrix via K = XXT and then

use sparse SVD to obtain Ur. Figure 3.1 shows experimental results of this approach.

The graph at top left shows computational time for the SVD as a function of N (dashed

red line) and illustrates an approximately linear dependency related to the fact that the

number of rows of U is N as well. In this experiment, r = 50, M = 106, and the number

of nonzero entries in X is p = 106. The top right graph shows computation time for

the SVD as a function of M (dashed red line). Here, using p = 106, N = 105, and

r = 50, computation time decreases as M increases, because K becomes less dense. The

bottom left shows an approximately quadratic dependency of the computational time for

the SVD on p (M = 106, N = 105, r = 50) (dashed red line). Note that the last data

point in the plot is a system with p = 107 that requires only 10 minutes of computation.

Finally, the bottom right graph shows the dependency of the SVD’s computational time

on r (M = 106, N = 105, p = 106) (dashed red line). A tenfold increase in r results

in an approximately tenfold increase in computational cost. Each of the four graphs also

shows the computational time (blue line) for calculating K = XXT , which is negligible

in comparison. A prediction for a new instance (i.e., a new row in X) can efficiently be

calculated using Equation (3.8).

It is worth noting that for a sizable matrix with 105 rows, 106 columns, 107 nonzero

48 3. Kernel SUNS

elements, and a rank of r = 50, the computation takes only approximately 10 minutes

on a standard laptop. For kernel matrices where K = XXT becomes dense, one might

employ the Nyström approximation technique described in Section 3.1, which reduces the

time complexity to O(nm2), where n is the number of the rows and m � n is the size of

the selected subset of the rows.

3.4 Remarks

In this chapter, we discussed kernel SUNS as a general kernel approach using the Nyström

approximation. We demonstrated that the scalability of the overall approach can be guar-

anteed by controlling both the number of instances considered in the kernel computations

and the rank of matrix decomposition. In addition, we showed that it is possible to control

the number of local features used to derive the kernel. The approach SUNS presented in

Chapter 2 is a special case of the kernel SUNS.

We applied the approach to DBpedia, which is a vast and rich semantic knowledge

base. At the time of our experiments, it contained approximately 3.4 million concepts, and

now (as of the 2016-10 release) consists of 13 billion pieces of information (RDF triples).

Both the quantity and the quality of DBpedia continue to improve, and we believe that

the general kernel approach can be utilized in many applications and can open additional

avenues of research on this knowledge base in the future.

3.4 Remarks 49

Figure 3.1: The time complexity of the kernel model

50 3. Kernel SUNS

Chapter 4

R-Model

In this chapter, we introduce a probabilistic model that relies on a relation-oriented sam-

pling assumption and enables the handling of more complex relationships in a probabilistic

manner. Rather than a single entity type (such as a person, patient, or politician), by

using this probabilistic model in the SUNS framework, it becomes possible to easily model

relationships to which multiple entity types participate and also to model contextual infor-

mation as necessary. By way of introduction, we describe the traditional object-oriented

sampling model discussed in the previous chapters. We then present our relation-oriented

sampling model, which we call the R-model, and illustrate it using a concrete example.

Finally, we evaluate the R-model’s effectiveness.

The main contributions of this chapter are published in:

1. [98] Volker Tresp, Yi Huang, Xueyan Jiang, and Achim Rettinger. Graphical mod-

els for relations - modeling relational context. In KDIR 2011 - Proceedings of the

International Conference on Knowledge Discovery and Information Retrieval, Paris,

France, 26-29 October, 2011, pages 114–120, 2011

In this publication, I co-created the R-model and accomplished all empirical studies. This

chapter is based on [98] but is rewritten.

4.1 Object-Oriented Sampling Assumption

Traditionally, statistical units (i.e., data points) are associated with objects, and statistical

models describe the statistical dependencies between attributes of those objects. A typical

example in the medical domain might involve analyzing the dependencies between the

attributes of a patient population by using a Bayesian network. Applying the SUNS

52 4. R-Model

framework to this example, a data matrix can be generated in a methodical way wherein

rows are defined by unique identifiers belonging to individual patients and their attributes

form the columns. In a case like this, a fundamental task is to predict whether a new patient

would come from the same population (density estimation), or what value a variable has

to assume to be such that the likelihood that the patient belongs to the same population

is maximized (predictive modeling).

This approach is commonly used for modeling relational domains as well. For instance,

one might analyze the preferences of a population of U users based on their properties

and their known preferences for I items1, e.g., buy(User, Item). In this scenario, users’

preferences are essentially treated as properties of the users as well (Figure 4.1, Left). In

[15], authors describe a Bayesian network where each item is represented by a binary node

xi and the state of the node–(xi = 1) or (xi = 0)–indicates whether a user has purchased

a given item. The Bayesian network then estimates a joint probability of all items.

P̂ (x1, . . . , xI). (4.1)

In the SUNS framework, estimating this probability can be viewed as a predictive task:

For a user u, the estimated probability is proportional to the variable values predicted by

using the kernel approaches in the last chapter, namely P̂u(x1, . . . , xI) ∝ ŷu = k>(·, u)Ŵ

(cf. Equation (3.8)).

These models raise the non-trivial problem of distinguishing between unknown relations

and relations that are known not to exist. For example, in the Bayesian networks in [15]

and the Dependency Networks in [37], missing relations are treated as not-to-exist, whereas

in [57, 106, 27, 33], Gibbs sampling and loopy belief propagation are used for dealing with

missing relations as unknown.

4.2 Relation-Oriented Sampling Assumption

Rather than defining an entity as a statistical unit, if we define now an observed relation as

a statistical unit instead–a tuple describing a relation or an event between two objects, for

instance (Figure 4.1, Right)–then the population consists of all true events, and any sample

taken from that population is a subset of those true events. Thus, whereas we assumed in

the previous section that either users or items define the rows in the data matrix, here we

assume that each observed instantiated relation defines a row.

1U and I are the number of users and the number of items respectively.

4.2 Relation-Oriented Sampling Assumption 53

Figure 4.1: Left: In traditional statistical point of view, each row is defined by a user,

the columns represent various items, and a one indicates that a user has purchased a

given item. Right: Each row is defined by an event user-buys-item, which is the sampling

assumption introduced in this thesis.

In the relationship buy(User, Item), which has two attributes User and Item, a relation-

oriented sampling assumption would lead to a data matrix containing two columns encoding

the user and the item respectively, and the model below would estimate the probability of

a buy relation between a particular user u and a particular item i.

P̂ (auser = u, aitem = i). (4.2)

Note that whereas Equation (4.1) estimates a joint probability distribution over I binary

variables, this equation describes a multinomial probabilistic model with two variables

User and Item which have U and I states respectively.

Given that the relationship modeled using this equation is now generalized from two

to 2 < A ∈ N attributes, all attributes are now informative with respect to determining

the existence of a relation. The equation needs to extend to evaluate P (a1, . . . , aA), i.e.,

the probability that a new relation instance with attributes a1, . . . , aA is likely to exist.

Alternatively, it might be interesting to predict the most likely value of one of the attributes

given other attributes, such as P (a1|a2, . . . , aA). For instance, the probability of an item

a1 given a user a2 and given contextual information a3, . . . , aA, meaning the probability of

a user a2 having purchased an item a1 in contexts of a3, . . . , aA.

In object-to-object relationships, variables typically contain many states and a contin-

gency table involving all variables may be very sparse, i.e., may include a large number of

zeros or values near to zero. Graphical models have been proven to be quite effective at

handling high-dimensional data [63], and we, therefore, apply them in this thesis as well.

As discussed earlier, we apply graphical models in a relation-oriented SUNS framework

where relations constitute instances and where we are concerned with one relationship in-

stead of a whole network of entity types and their relationships. For our purposes, Bayesian

54 4. R-Model

networks and decomposable models are most suitable for defining such a framework. In a

Bayesian network, the probability distribution factors as

P (a1, . . . , aA) =
A∏
i=1

P (ai|par(ai))

=
A∏
i=1

P (ai,par(ai))

P (par(ai))
.

(4.3)

Typically a Bayesian network is depicted as a directed graphical model without directed

loops. In this model, par(ai) denotes the direct parents of ai.

Given a Bayesian network structure, the task ofEquation (4.3) is to model P (ai|par(ai)),

or equivalently, P (ai,par(ai)) for each attribute ai. In cases where variables have many

possible states, matrix and tensor completion methods have been successful at dealing

with missing values in the past, and we also make use of those methods in our R-model as

described in the following section.

4.3 An Example Illustrating R-Model

4.3.1 A Social Network

GetGlue (http://getglue.com) 2 is a social network where users connect with one another

and share Web navigation experiences. GetGlue uses semantic recognition techniques to

identify entities such as books, movies, and other similar topics and publishes these entities

in the form of data streams. Users can read the streams and receive recommendations on

an exciting discussion of entities from their friends. Both the social network’s data and the

real-time streams it generates are accessible via Web APIs. Users and their relationships

with others are described by well-known Semantic Web terminologies, such as user names

and the knows relationship defined by Friend of a Friend (FOAF) terms, and the follows

relationship is recognized by the Semantically Interlinked Online Communities (SIOC)
3. Objects in the social network data represent real-world entities with a name and a

category, such as movies or books, and resources represent information sources describing

those objects, such as web pages about a particular movie or book.

We explain R-Model based on an example: recommending movies to users in GetGlue.

The recommendation task is essentially a probability density estimation problem since we

estimate the probability that an unknown user-movie pair belongs to the population.

2GetClue changed its name to tvtag in 2014, and one year later, it was dissolved.
3http://sioc-project.org/

4.3 An Example Illustrating R-Model 55

4.3.2 Modeling User-Movie Events

For recommending movies to users in GetGlue, we model the event that a user watches a

movie, and that we call user-movie events in this section. A graphical model consists of

two attributes: the user and the movie (Figure 4.2). Known user-movie events define the

rows in the data matrix, and the columns consist of two variables with as many states as

the number of users and movies, respectively. A contingency table C is then constructed

where the two categorical variables are user and movie. Each entry in the table cu,m counts

how often user u has watched movie m and represents a random sampled event from the

population. By dividing the entries by the overall count of the user-movie events, we can

interpret the entries as estimates for the probabilities of observing user-movie pairs under

this sampling assumption, i.e., as a maximum likelihood estimate of P (u,m). Since this

matrix will contain many zero entries, the maximum likelihood estimates are notoriously

unreliable. Following common practice, we smooth the matrix using a matrix factorization

approach and perform an eigenvalue decomposition of the Gram matrix of the contingency

table CCT = UDUT to obtain a low-rank approximation of C [44]

Ĉ = Ur diagr

(
dl

dl + λ

)
U>r C (4.4)

where diagr

(
dl

dl+λ

)
is a diagonal matrix containing the r leading eigenvalues in C and

where Ur contains the corresponding r columns of U . λ is a regularization parameter. After

proper normalization of Ĉ, the entries can be interpreted as P̂ (u,m), i.e., an estimate of

the probability of observing the relation that user u watches movie m. 4 Recommendations

for users can now be derived from P̂ (u,m).

It is worth noting that matrix completion is an active area of research, and many other

matrix completion methods are applicable to this model as well.

Compared to Equation (3.7) in the previous chapter, the target variables Y in Equa-

tion (3.7) are replaced by the (normalized) contingency table C. The former contains

binary entries indicating whether the state of a variable is true or false, while the lat-

ter contains ordinal entries signifying the probability that an event is sampled from the

population. In recommendation systems, such a probabilistic model is intuitively more

suitable, since user preferences are usually represented as ratings and can trigger events

like watch-movie and buy-good repeatedly.

4The normalization takes care that all entries are non-zero and are smaller than one. Incidentally,

this step turns out to be unnecessary in the regularized reconstruction, since after matrix completion, all

entries already obeyed these constraints. A second step ensures that the sum over matrix entries is equal

56 4. R-Model

Figure 4.2: A graphical model for the dependencies between users U and movies M .

4.3.3 Adding Last Movie Watched

Indeed, the user-watches-movie process involves a sequential character that the model in

Figure 4.2 so far cannot capture. If we consider the last movie that a user has watched

as additional information [87], we then obtain a truly ternary relationship watches(u,m,l)

consisting of user, movie and last movie l watched by the user. The approach to modeling

watches(u,m,l) followed in [87] considers a three-way contingency table and applies tensor

factorization as a means of tensor smoothing. [87] argues additionally that general tensor

factorization, such as PARAFAC or Tucker [56], are too difficult to apply in such a situation

where the contingency table is very sparse and suggests that a simplified additive model is

applied instead. In our approach, we propose that a graphical model, which we illustrate

in Figure 4.3 (left). 5 The model indicates that 1) the last movie watched by a user

directly influences the next movie that the user watches, and 2) given the movie, the

last movie watched and the user are independent. The advantage lies in that we do not

need to re-adapt the user-movie model but can independently model the movie-last-movie

dependency. Our model calculates empirical probabilities of movie-last-movie pairs based

on the contingency table, smooths the table using matrix factorization, and obtains P̂ (m, l).

We then combine both models in the form of

P̂ (u,m, l) =
P̂ (u,par(u))

P̂ (par(u))
· P̂ (m,par(m))

P̂ (par(m))
· P̂ (l,par(l))

P̂ (par(l))

=
P̂ (u,m)

P̂ (m)
· P̂ (m, l)

P̂ (l)
· P̂ (l)

=
P̂ (u,m)P̂ (m, l)

P̂ (m)

(4.5)

In contrast to [87], we obtain a product of local models rather than a sum.

to one.
5A link from the last movie to the movie might appear more plausible. If one changes the direction of

this link, the link between user and movie would need to point from movie to user, such that no collider

(more than one link pointing to the same node) appears. With a collider one would need to use a tensor

model as a local model.

4.4 Empirical Study 1 57

Figure 4.3: Left: As additional information, the last movie, which the user has watched,

is added. Right: The month when the user watches the movie is added.

4.3.4 Adding Time of the Event

As we know, movies’ popularity changes over time, and a movie rated highly by audiences

during one timeframe may decline in popularity later. Consequently, information about

when users watched a movie (t, or time when the movie was seen) may be influential in

determining which movies other users are likely to see6. The graphical model in Figure 4.3

(left) is extended by adding the time of watching in units of the month to handle with the

quaternary relationship watches(u,m,l,t). The graphical model is sketched in Figure 4.3

(right). We form an empirical estimate based on the month-of-watching contingency table

and obtain P̂ (m, t), then combine the three models as follows.

P̂ (u,m, l, t) =
P̂ (u,m)P̂ (m, l)P̂ (m, t)

(P̂ (m))2
(4.6)

4.4 Empirical Study 1

For evaluation, we gathered 9707 movies watched by 3076 users in a timeframe of 44

months, resulting in a user-movie contingency table and a last-movie-movie contingency

table with sparsities of 1.8% non-zero entries and 1.21% non-zero entries, respectively. For

each user in our sample, we randomly withheld one movie the user reported having watched

in order to test and evaluate the predictive ability of the following models:

Friendship: A baseline model that recommends to a user movies that her friends have

watched. This scenario is typical in social networks and operates according to the

assumption that friends are likely to have common interests and like to share their

experiences with friends.

6Also, a movie can only be watched after its release.

58 4. R-Model

Figure 4.4: Experimental results on GetGlue data without regularization. Models’ NDCG

scores are plotted as a function of the rank r in the matrix completion.

Figure 4.5: The results of the same models as in Figure 4.4, but with the regularization

(λ > 0).

4.4 Empirical Study 1 59

Movie-Time (MT): Another baseline model that recommends movies based only on

the time (defined as a month) at which the movie was seen by other users. The

same recommendations are made for every user in each particular month. These

recommendations can be viewed as indications of which movies were most popular

recently.

LastMovie-Movie (LM)): A model capturing only the dependency between the last

movie a user watched and the next one to watch. This sequential effect can be

observed in many movie series such as Star Wars and The Avengers.

User-Movie (UM)): The basic R-model estimating P̂ (u,m).

UM+LM: The combined R-model estimating P̂ (u,m, l).

UM+LM+MT: The combined R-model estimating P̂ (u,m, l, t).

In Figure 4.4 and Figure 4.5 we plot NDCG scores [48] (described in Appendix 6) as a

function of the rank r in the matrix approximation. All experiments were run with 5-fold

cross-validation such that an error bar can be displayed. Figure 4.4 shows the results of

the models without regularization (λ = 0), while Figure 4.5 presents the results of the

regularized models (λ > 0). The baseline Friendship performed worst. MT was more

effective, but worked only in cases where movie recommendations matched the overall

popularity of a movie in a given month. The performance of both baselines was independent

of the regularization.

By contrast, the regularized models showed much better performance. LM recom-

mended movies based on information about the movies that users watched most recently.

This model addressed only the Markov chain property of the event of watching movies.

Because LM performed worse than UM, which is based on the classical user-movie model,

we can conclude that user preferences are more informative than sequential information in

the data. When combining both sources of information in UM + LM, predictive perfor-

mance improved markedly. Finally, the superior performance achieved by combining all

three models in UM + LM + MT in addition to the months during which users watched

various movies confirms the benefits of the R-model.

We also investigated how a simple average of the probabilities of the individual models

would perform. Figure 4.6 shows that combining the models using a simple average did

slightly improve the quality of recommendations, but the improvement was not comparable

with the results obtained by using R-model at all.

60 4. R-Model

Figure 4.6: The figure shows the results obtained by simply averaging the estimated prob-

abilities generated by each individual models.

4.5 Empirical Study 2

Based on the same data set, we tested the R-model in two additional scenarios. In the first

or the most recent movie scenario, the movie a user watched most recently withdrew and

assumed to be unknown. In the testing, we judged how likely this movie is recommended

to watch next. This scenario corresponds to a traditional approach to recommending

movies to watch next based on the series of movies a user watched before. In the second

or the random movie scenario, we randomly dropped one movie out and used it as test

data for each user, exactly like we have done in the first empirical study. This setting

corresponds more closely to traditional collaborative filtering tasks, where contextual in-

formation, meaning here sequential effect, is not considered. In both scenarios, movies a

user already watched are not recommended again to the same user. Repeated recommen-

dations might be handled differently in other applications, as in e-commerce applications

where might reasonably wish to buy the same item(s) more than one time. In the random

movie scenario, we repeated the experiment 5 times such that error bars can be produced

(see figures below).

4.5 Empirical Study 2 61

4.5.1 Methodology

We introduce an additional baseline most popular.

most popular: A baseline model recommending the same list of movies to every user.

The list presents movies in descending order of popularity, with the most frequently

watched appearing at the top.

In the experiments of the second empirical study, we used two methods to evaluate

the quality of recommendations. First, a model generated a recommended list of k items

for each user. If the test item–the most recently watched movie in the most recent movie

scenario and a random movie in the random movie scenario–appears in the recommended

list, then for that user, we consider the recommendation successful. The ratio of successful

recommendations to total recommendations is called the HitRatio. Mathematically, the

HitRatio is defined as

HitRatio(k) =
1

|U |
∑
u∈U

δ(Tu ∈ Rk),

where δ is the indicator function, Tu is the user’s test item, Rk are the top k recommended

items which in our case are the last movie watched and the month of watching.

Secondly, we applied normalized discounted cumulative gain (nDCG) to evaluate the

quality of the recommendations (described in Appendix 6).

Each of these evaluation measures focuses on different aspects of the ranking of recom-

mendations. NDCG emphasizes the top positions in the list of ranked items. Due to the

log function on the position k, when the position of a test item is lifted from the second

position to the first one, its nDCG score increases much more than when its position is

raised from 100 to 99. In contrast, HitRatio gives equal weight to all positions in the

ranking list, although it can be made to focus only on the top k items in the ranking list

by specifying k.

4.5.2 Results

In this section, we report the results of the models UM, UM + LM + MT and the baseline

most popular.

Figure 4.7 (a) and (b) show the HitRatio values for the top 10 movies recommended by

the models in the newest movie scenario and the random movie scenario respectively. We

ran each of the models with factorization dimensions 10, 50, 100, 200, 400 and 1000. Again,

for the random movie scenario we also report the standard error in Figure 4.7 (b).

62 4. R-Model

(a) (b)

(c) (d)

Figure 4.7: Top: (a) and (b) report the HitRatio for a recommended list of top k = 10

movies vs. the factorization dimension. Bottom: (c) and (d) report the HitRatio for

different values of k with the factorization dimension fixed at 400. Left: (a) and (c) plot

HitRatio values in the newest movie setting. Right: (b) and (d) plot HitRatio values in

the random movie setting with error bars showing the standard error.

4.5 Empirical Study 2 63

Figure 4.8: The nDCG scores at top 4000 recommended movies for different factorization

dimensions. Left: The random movie setting. Right: The newest movie setting.

These figures show that the combined model UM+LM+MT was significantly better

than UM after the month of watching and sequence contextual information was taken into

account. In particular, it performed well in the random movie scenario, where it correctly

recommended the test movie to nearly 28% of the users at r = 400.

Figure 4.7 (c) and (d) show the HitRatio values of the tested models against different

values of k with fixed r equal to 400. The figures show that for small values of k up to 100

UM+LM+MT was the most effective model, followed by UM. Neither model produced

results comparable to those of the baseline. For large values of k (500 and 1000), we

observed that UM ’s performance reached and then overtook that of UM + LM + MT. In

the random movie scenario, the HitRatio values of the most popular baseline became the

most accurate model when k was larger than 500. This phenomenon indicates that many

users in the data set prefer the most popular movies to a certain extent, despite their other

preferences.

Figure 4.8 Left and Right show nDCG scores achieved in the newest movie scenario

and the random movie scenario respectively. The results are again plotted against values

of r from 10 to 1000. The most popular baseline generated the worst scores, whereas

the R-model UM performed much better, and the combined model with all contextual

information produced the overall best results.

64 4. R-Model

4.6 Remarks

In this chapter, we described a novel probabilistic model, or R-model, in which we define

statistical units by object-to-object relationships. We applied the model to social network

data with the goal of recommending movies to users, and we explained how contextual in-

formation could be integrated into the R-model in a probabilistic way in order to improve

the quality of recommendations. Our work demonstrated the advantages of the R-model’s

modularity, which allows us to model domains with complex relationships and many vari-

ables, including information (such as the last movie watched by a user) that would be

difficult or impossible to encode by most other relational learning approaches.

The work we described in this chapter could be extended in at least two ways. First,

instead of the regularized matrix factorization we used for approximating the local prob-

ability distributions, any other available matrix completion approach could be used as

well [17], for instance, the kernel RRPP approach described in the last section, if the num-

ber of entities in the training data grows beyond a few thousand. Secondly, in cases where

local interactions between more than two many-state variables need to be modeled, one

could employ the tensor factorization technique in [56] for the local models.

Based on the experimental results of our empirical studies, several observations can

be made. First, the basic R-model UM significantly outperformed the baseline models,

including the most popular movies baseline approach in the second empirical study as well

as recommendations based on the friend-of-a-friend relationship in the first empirical study.

Second, modeling contextual information greatly improved the quality of recommendations,

when compared to approaches that considered only the user-movie relationship. This result

confirms the main advantage of the model presented in this chapter.

Third, the R-model is particularly suitable for recommendation tasks that emphasize

the quality of the top-ranked items. Its advantage stems from the matrix factorization

technique, which tends to model more popular items and such users who watched an

enormous amount of movies and can be viewed as opinion leaders. Both items’ popularity

and opinion leaders strongly affect the behavior of the whole community in social networks

and recommendation systems. Forth, the R-model is robust and insensitive to the number

of latent variables. The property can be explained by the fact that, in contrast to other

matrix factorization approaches such as SVD, the R-model is regularized. As a result,

the R-model easy to use, even by people without machine learning expertise. Fifth, the

R-model is efficient and capable of scaling up to large data sets, as illustrated by the fact

that we successfully carried out all of our experiments on a standard laptop. For additional

discussion of the issue of the scalability, see Section 3.3.1.

Chapter 5

Applications

This chapter describes the application of the SUNS approach to three real-world use cases:

social media analysis, disease gene prioritization in life sciences, and a location-based per-

sonalized recommendation engine.

The main contributions of this chapter are published in:

1. [7] Davide Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, Yi Huang,

Volker Tresp, Achim Rettinger, and Hendrik Wermser. Deductive and inductive

stream reasoning for semantic social media analytics. IEEE Intelligent Systems, 99,

2010

2. [5] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle, Yi Huang,

Tony Kyung-il Lee, Seon-Ho Kim, and Volker Tresp. BOTTARI: an augmented re-

ality mobile application to deliver personalized and location-based recommendations

by continuous analysis of social media streams. Journal of Web Semantics, 16:33–41,

2012

3. [6] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle, Yi Huang,

Tony Kyung-il Lee, Seon-Ho Kim, and Volker Tresp. Reality mining on micropost

streams - deductive and inductive reasoning for personalized and location-based rec-

ommendations. Semantic Web Journal, 5(5):341–356, 2014

4. [45] Yi Huang, Volker Tresp, Maximilian Nickel, Achim Rettinger, and Hans-Peter

Kriegel. A scalable approach for statistical learning in semantic graphs. Semantic

Web Journal, 5(1):5–22, 2014

These publications are joint works, mainly between Siemens and CEFRIEL, for which

I was the main contributor from the side of Siemens. In these papers, I wrote the sections

66 5. Applications

related to inductive stream reasoning and conducted the associated experiments. This

chapter is based on these publications but is mostly rewritten.

5.1 Stream Reasoning for Semantic Social Media Anal-

ysis

In social networks, users publish data (often in the form of a stream) from nearly any

place and at any time. In combination with the rich background knowledge offered by

social networks, the availability of data published continuously by users enables real-time

reasoning tasks that produce valuable information for diverse purposes. Determining the

hottest topics discussed on Twitter right now or the movies one’s friends are likely to

watch next on Netflix are two examples. To perform reasoning tasks like those, one needs

to connect data stream processing technologies with reasoning methods.

Stream processing has been studied by both the database and data mining communi-

ties. Data Stream Management Systems (DSMS) are available on the market, and DSMS

features appear in major database products, such as Oracle and DB2. DSMS are designed

to process real-time parallel queries of potentially bursty data, but they cannot perform

reasoning tasks as complex as those mentioned above.

Online stream mining has been applied in many contexts and for different purposes,

including intrusion detection in computer network traffic, recommendation generation in

Web searches, and automated real-time decision making using sensor data. These applica-

tions represent a paradigm shift in information processing techniques, since data streams

are processed on the fly without being stored, and processing units produce their results

without explicit invocation. However, little work has been done on applying machine

learning to data streams as rich and structured as those we have considered here.

In this section, we briefly describe Stream Reasoning. Then, we introduce an ad-

vanced reasoning approach that combines deductive and inductive stream reasoning and

uses SUNS as an inductive stream reasoning method, applying this approach to semantic

social network data. Finally, we discuss the results of this application.

5.1.1 Stream Reasoning

Introduced in [26], Stream Reasoning is a technique that enables data streams to be merged

with rich background knowledge. Stream Reasoning addresses a well-known challenge of

extending reasoning methods to support changing knowledge. The reasoning methods can

5.1 Stream Reasoning for Semantic Social Media Analysis 67

be categorized into two classes: deductive reasoning and inductive reasoning. Deductive

approaches to stream reasoning utilize various methods to revise beliefs based on recent

information, while inductive approaches support online data analysis, based on extensive

research in data mining and machine learning.

The combination of deductive and inductive stream reasoning extends the notion of

stream reasoning, which involves supporting numerous concurrent decision processes by

reasoning in real time on large and potentially noisy data streams. Stream Reasoning

involves three key concepts related to stream processing:

Streams: Data streams are unbounded sequences of time-varying data elements that

form a continuous flow of information. Recent elements are more relevant than old

ones because they describe the current state of a dynamic system. Because RDF

is the data interchange format for reasoners, RDF streams are typically the fuel for

stream reasoning. We define RDF streams as ordered sequences of pairs, composed

of RDF triples and their timestamps Ti:

[. . . , (〈si, pi, oi〉, Ti), (〈si+1, pi+1, oi+1〉, Ti+1), . . .]

Timestamps are annotations of RDF triples. They are monotonically nondecreasing

in the stream (Ti ≤ Ti+1), and adjacent triples can have the same timestamp if they

occur at the same time.

Windows: Traditional reasoning problems assume that all available information should

be considered when trying to solve a problem. By contrast, stream reasoning restricts

processing to a specific window of concern, focusing on a subset of recent statements

in the stream, and ignoring previous statements. However, the cumulative effect of

windows processed in the past and present windows can be taken into account.

Continuous processing: The reasoning tasks performed by traditional reasoning ap-

proaches have well-defined beginnings and endings corresponding to the times at

which the reasoner is given a task and delivers results, respectively. Stream reason-

ing instead operates according to a continuous model, where tasks are registered and

continuously evaluated against streaming data.

In the rest of this section, we focus primarily on inductive stream reasoning and on the

following challenges faced by that approach:

• processing a large amount of information in a given time window,

68 5. Applications

• the structured multi-relational nature of data,

• the sparsity of typically high-dimensional data, and

• the fact that data are often incomplete.

Figure 5.1 shows the architecture of a stream reasoner consisting of a set of specialized

components. The selector component extracts relevant data from input stream sources by

exploiting DSMS’s window-processing functionality. Content from a given window is then

fed into the next component abstracter component, which transforms fine-grained data

streams into aggregated events and produces RDF streams as output. The deductive rea-

soner consists of a SPARQL 1 engine in which C-SPARQL 2 queries are directly registered.

The results of this step can be used immediately, or they can be further exploited by two

additional workstreams, both consisting of an abstracter and an inductive reasoner. One

workstream captures long-term patterns, such as common interests of users or correlations

among events, while the other models short-term trends, similar to the hype cycle. The

Hype Matrix is populated with the content of the current window, whereas the long-term

matrix is relatively stable and updated progressively over time. The two inductive reason-

ers infer new statements with probabilities, which can be queried using an extended version

of SPARQL, as we demonstrated at the end of Chapter 2. This setup can be extended by

arbitrarily combining and iterating the deductive and inductive reasoners. For example,

it might be helpful to feed the inferences of the inductive reasoner back to the deductive

reasoner to deduce further knowledge.

5.1.2 Empirical Study

Experimental Data

We applied the stream reasoner whose architecture we described in the last section to data

from the social network GetGlue (http://getglue.com). Figure 5.2 outlines the entities and

relationships in the data used in our experiments. The area shaped in turquoise represents

background knowledge (described in Section 4.3) where users are connected via knows

and follows relationships, and resources describe objects in the real world, e.g., microblogs

about movies. We assume that background knowledge is stable over a relatively long period

in comparison with the size of a window, but we allow updates to that stable information

1SPARQL stands for SPARQL Protocol and RDF Query Language.
2Continuous SPARQL (C-SPARQL) is a SPARQL extension for expressing continuous queries over

RDF graphs and RDF streams. [8]

5.1 Stream Reasoning for Semantic Social Media Analysis 69

Figure 5.1: Architecture of a stream reasoner as a set of specialized components. We

applied deductive and inductive stream reasoner to social media analysis.

so long as they do not interfere with window processing. The area shaped yellow in the

figure represents available streaming information that records interactions between users

and resources (transitively, between users and objects). The accesses, likes, and dislikes

relationships represent interactions occurring when users access3 resources and express their

opinions about them, respectively. We refer to the vocabulary of these relationships with

the prefix sd. Each interaction of a user U with a resource R generates a triple of the form

〈U, sd:accesses, R〉. A subset of selected interactions expressing opinions generates triples

of the form 〈U, sd:likes, R〉 or 〈U, sd:dislikes,R〉. List 5.1 shows examples of possible

triples.

1 (<:Giulia , sd:accesses , :Avatar >, 2010 -02 -12 T13 :18:05)

2 (<:John , sd:accesses , :Twilight >, 2010 -02 -12 T13 :36:23)

3 (<:Giulia , sd:likes , :Avatar >, 2010 -02 -12 T13 :42:07)

Listing 5.1: Examples of triples generated when users interact with resources.

To gather a data set for the evaluation, we performed a predefined C-SPARQL query

on GetGlue data to extract RDF streams whose timestamps fall between 19 February and

22 April 2010. We then selected 245,860 interactions generated by 2,457 users. Finally,

we applied the SUNS framework to transcode the RDF streams into a data matrix. The

transformation process is described in the next section. In particular, we examined the

interactions of the “user likes movie” relationship. This segment of the data matrix was

3An access can refer to different events such as create, read, and retweet, including likes and dislikes.

70 5. Applications

Figure 5.2: Entities and relationships in our experiments. The UML diagram shows that

objects represent real-world entities and resources represent information.

extremely sparse, with only 0.002 percent non-zero elements. To make our evaluations

statistically significant, we removed users with few interactions and items evaluated less

than five times. After that pruning step, the resulting sub-matrix consisted of 1,455 users

and 7,724 features, with a sparsity of 0.02 percent. The items with the most user ratings

were 2,467 “liked movies”, followed by 1,378 “liked music” items, 1.241 “liked recording

artists”, 592 “liked movie stars”, 592 “liked T.V. shows”, and 579 “liked video games”.

The remaining 18 items in the sub-matrix were each mentioned less than 250 times.

Inductive Reasoners

We applied the SUNS framework to the semantic data streams in the yellow area in Fig-

ure 5.2 as an inductive reasoner first by defining the statistical unit, population, sampling

procedure, and features of the population. A statistical unit is an object of a certain

type, such as a user. A population is the set of statistical units under consideration. In

our experiments, we defined Glue social network users as the population. We sampled a

subset of the users to train models. Then, based on the sample, SUNS constructed data

matrices by associating RDF triples with corresponding statistical units and transforming

them into the matrices (details in Section 2.1). The sampled users define the rows in the

matrices, and their features derived from the associated RDF graph define the columns,

such as movies and music they have liked. The entries in the matrices are binary and refer

5.1 Stream Reasoning for Semantic Social Media Analysis 71

to the existence of triples. An entry is one when the corresponding triple exists and zero

otherwise. Given rows representing users and columns representing movies that the users

like, for instance, a one in the (i, j) entry indicates that the i-th user has rated the j-th

movie as liked. Otherwise, the user did not rate that movie, and thereby it is unknown

whether the user likes it.

After data matrices were constructed, we evaluated two multivariate machine learn-

ing models: Singular Value Decomposition (SVD) and the RRPP model introduced in

Section 2.1.5. The approaches estimated unknown matrix entries via a low-rank matrix

approximation. Note that RRPP can be implemented through regularized low-rank SVD.

The matrices were reconstructed by replacing zero entries with the estimated probabilities

that the corresponding triples would be true.

In the following example, an ad-hoc query seeks information on which movies the user

Guilia would probably like, even if she has not seen them yet, and the system uses the most

recent window in the stream to predict the probability that she would like those movies

(see List 5.2).

1 SELECT ?movie ?prob FROM STREAM

2 <http :// streamingsocialdata.org/interactions >

3 [RANGE 30m STEP 5m]

4 WHERE { :Giulia sd:likes ?movie . WITH PROB ?prob

5 ?movie a yago_Movie .

6 FILTER (?prob > 0 && ?prob < 1)

7 } ORDER BY DESC(?prob)

Listing 5.2: A C-SPARQL query

1 (: WutheringHeightsTvMovie , 0.8347)

2 (:StarWars , 0.5693)

Listing 5.3: The results of the query

At line 4 in List 5.2, the keyword WITH PROB extends SPARQL by enabling it to query

statements with probabilities. The variable ?prob assumes the value one for the movies

she has liked and values between zero and one representing the estimated probability of

movies that she might like and probably watch next. The clause ORDER BY sorts movies

by their probabilities in decreasing order. The results are a sorted list of pairs consisting

of a movie title and predicted likelihood (see List 5.3).

72 5. Applications

5.1.3 Evaluation

To demonstrate the effectiveness of stream reasoning for social media analysis, we used

the accuracy of top-N movie recommendations as the evaluation metric. The evaluation

consisted of two parts. First, we compared diverse inductive reasoning approaches with

conventional recommendation methods, some of which were performed by deductive stream

reasoning. In this part, we applied four conventional recommendation methods as baselines:

MostLiked: a method that recommends a list of the overall most-liked movies to all

users; the list is generated by running a registered C-SPARQL query (see List 5.4).

FriendLiked: a method that recommends movies to users based on the most-liked movies

of their friends, which are also obtained by executing a registered C-SPARQL query

(not shown).

UserKNN: a method that delivers recommendations using k-nearest neighbor (kNN)

regression based on the cosine similarity of users [66].

ItemKNN: a method that proposes recommendations using k-nearest neighbor (kNN)

regression based on the cosine similarity of items.

1 REGISTER STREAM MostLiked COMPUTED EVERY 1d AS

2 SELECT ?movie (COUNT (?user) AS ?noOfUser)

3 FROM STREAM <http :// streamingsocialdata.org/interactions >

4 [RANGE XX STEP XX]

5 WHERE { ?movie a yago_Movie .

6 ?user sd:likes ?movie .

7 }

8 GROUP BY ?movie

9 ORDER BY DESC(? nrOfUser)

Listing 5.4: A simple registered C-SPARQL query. This query returns a global list of liked

movies.

We carefully tuned the parameters of each method using cross-validation. Figure 5.3

(a) shows the evaluation results: the percentage of truly liked movies in the top N rec-

ommendations where N = 10, 20, 30, 40, and 50. SVD and RRPP (denoted as Regularized

SVD) outperformed all baseline methods. As expected, RRPP performed much better

than any other method. It was robust and insensitive to its parameters. Second, both

5.1 Stream Reasoning for Semantic Social Media Analysis 73

(a) (b)

Figure 5.3: Accuracy of top-N movie recommendations. (a) Inductive stream reasoning

and deductive stream reasoning separately. (b) Inductive and deductive stream reasoning

combined.

Item kNN and User kNN curves are also above the baselines, suggesting that users and

items share some common regularities. For example, users who like the same actors are

likely to watch movies featuring them. Of course, SVD and RRPP exploited such common

regularities as well. Third, the two baseline methods MostLiked and FriendLiked almost

completely overlapped, perhaps because most users tend to watch select movies based on

their general popularity rather than their friends’ preferences.

In the second part of our empirical study, we experimented with combining the output

produced by the deductive and the inductive reasoners. In this scenario, the inductive rea-

soner modeled long-term user preferences and was trained only on data more than 30 days

old, reflecting the reasonable assumption that the long-term model should be updated only

at larger intervals because required computations can be quite costly if we avoid subsam-

pling. The deductive reasoner contributed predictions in the form of most liked by all users,

which aggregates recent recommendations to capture short-term trends. Strictly speaking,

the deductive reasoner utilizes an inductive process, but the querying language C-SPARQL

inherently supports aggregation. Figure 5.3 (b) clearly shows that the combination of the

long-term inductive model and the “most liked” deductive model outperformed each model

when considered separately. Note that the short-term trends identified in our experiment

could have been predicted by multivariate analysis. In practice, for a given use case, it is

flexible in choosing deductive and inductive reasoners. Experiments with more sophisti-

cated hype cycle models and exploring different combination schemes will be investigated

74 5. Applications

in future work.

5.2 Life Science: Disease-Gene Prioritization

Life science data constitutes a significant part of the Linked Open Data cloud. To a large

extent, these data have been extracted from well-maintained databases, and the quality

of the data is relatively high as a result. We apply the SUNS framework to an essential

problem in life science: disease-gene prioritization.

5.2.1 The Problem

Disease genes are genes that either cause or are associated with particular diseases. More

than 2,500 disease genes have been discovered to date, but the relationship between genes

and disease is quite complicated since most diseases are polygenic and exhibit different

clinical phenotypes. High-throughput genome-wide experimental techniques such as link-

age analysis and gene expression profiling typically identify hundreds of candidate genes

potentially involved in a given disease, and it remains challenging to identify true disease

genes among them: genes often perform multiple functions, and mutational analyses of

a particular gene can reveal dozens of mutational sites that associate different phenotype

with diseases like cancer [51]. Analyzing the gene-disease relationship becomes even more

complicated when considering environmental and physiological factors, as well as exogenous

agents like viruses and bacteria.

Due to the complexity of associating genes with diseases, in many applications, includ-

ing medical diagnosis, prognosis, and personalized treatment of diseases, it is crucial for

researchers to be able to rank genes according to their (estimated) relevance to a given

disease. In recent years, a number of tools have been developed for this purpose, such

as ToppGene [18] and similar approaches that use feature-based measures of similarity

between genes to discover unknown disease genes by making generalizations about known

ones. Kann [51] reviews the advances in the field of translational bioinformatics, focusing

on advances in computational techniques of searching for and classifying disease genes, as

machine learning methods such as decision trees and similarity-based methods are mainly

used. For example, PhenoPred generates a similarity score that represents the chance that

a gene-disease association is real [84]. In the following section, we will compare SUNS

with the ToppGene Suite, which is one of the state-of-the-art approaches to disease gene

prioritization with an easy-to-use interface [18], and which relies on a fuzzy measure of

similarity between genes.

5.2 Life Science: Disease-Gene Prioritization 75

Certain properties of disease genes differentiate them from all others, and those prop-

erties have been exploited by computational tools that prioritize disease gene candidates

identified by laboratory experiments. All current tools are based on the integration of

different properties, including:

• gene function: disease genes are expected to share common functional properties,

• pathways: disease genes likely share common pathways,

• gene expression: disease genes are thought to be co-expressed,

• gene regulation: genes within the same gene-regulation network are expected to affect

similar diseases

• sequence properties and

• protein interaction: disease genes are often highly connected with other genes from

the same disease.

The quantity and quality of data generated by laboratory experiments is a major lim-

itation of existing disease gene prioritization techniques. For instance, methods of pri-

oritization based on protein-protein interactions suffer from incomplete and low-quality

data currently available on protein interaction networks in mammals. Disease mapping

information used to train and evaluate computational methods introduces additional un-

certainty, because the resolution of that information varies greatly, and its use leads to a

large number of false-positive associations between genes and diseases.

5.2.2 Empirical Study

Gene-Disease Data

A great benefit of LOD data is the ease with which the data required for our empirical study,

i.e., gene-disease relationships, gene attributes, and disease attributes, can be extracted.

In our empirical study, we exploited manually-curated and well-maintained databases of

gene-disease relationships. More specifically, we used OMIM [36], UniProt [3], PharmGKB

[39] and CTD [73]. All of these databases except UniProt use Entrez Gene [71] identifiers

for genes, and the mapping of UniProt to Entrez Gene is complete enough that it was

possible to use only Entrez Gene identifiers as the vocabulary of genes. By contrast, data

on diseases were much less standardized. Some of the databases selected for our study

76 5. Applications

use OMIM terms, while others use MeSH. The mapping of OMIM terms to MeSH terms

for diseases (or vice versa) is non-trivial and the subject of ongoing research (e.g., [59]).

For this reason, we utilized only data with MeSH identifiers in our experiments. After

extracting gene-disease relations from the databases, we stored them as triples of the form

(<Entrez Gene ID>, siemens:related_to, <MeSH ID>) in an RDF triple store.

In the next step, we retrieved data on gene attributes from Bio2RDF [10] and linked

life data (LLD)4 in particular. Bio2RDF and LLD are two projects from the Semantic Web

and Linked Data communities that integrate various bioinformatics databases and publish

this information in the form of RDF triples. Bio2RDF Release 3 (July 2014) 5 contained

roughly 11 billion triples across 35 datasets. Figure 5.4 shows the various databases and

how they are connected.

In Bio2RDF, resources are accessible via a REST-like interface and identified by nor-

malized URIs of the form http://bio2rdf.org/<namespace:id>. For each Entrez Gene ID,

we, therefore, queried Bio2RDF using appropriate identifiers and retrieved all available

information as RDF triples. In this way, we were able to derive attributes of protein in-

teractions by using data from BioGRID[94] and HPRD [81], information on gene function

using Gene Ontology annotations [10], and information on gene pathways from Pathway

Commons, UniProt, [3] and Reactome [49]. Additionally, we included information about

proteins from CDD [72] as well as PubMed co-citations. Gene lengths ware added in a

postprocessing step as a normalized continuous attribute. As a result, we were able to

retrieve most of the attributes identified in [50] as important for gene-disease prioritization

by making a single request to Bio2RDF and performing one postprocessing step for any

given gene in the gene-disease relation graph.

Finally, we gathered data for disease attributes. As mentioned above, we used only

MeSH terms for diseases for gene-disease relationship prediction in our experiments. Dis-

ease attributes are neither easily accessible nor readily available in any RDF format. We

crawled the MeSH tree structure of diseases via the MeSH Browser6, then split node num-

bers according to the levels of the MeSH hierarchy from the top level to the leaves. For

instance, the disease “Abetalipoproteinemia” (mesh:D000012) is located in three nodes

in the hierarchy, one of which is C16.320.565. From this, we define the attributes C16,

C16.320, and C16.320.565. In this way, we obtained in total 4,389 attributes for 1,138

diseases arranged in a 10-level hierarchy.

The gene-disease data set is available at

4http://linkedlifedata.com
5https://github.com/bio2rdf/bio2rdf-scripts/wiki
6https://meshb.nlm.nih.gov/search

5.2 Life Science: Disease-Gene Prioritization 77

Figure 5.4: Bio2RDF databases and connections.

(Source http://bio2rdf.blogspot.com/2008/)

78 5. Applications

http://www.dbs.ifi.lmu.de/~huang/index.html#datasets.

The Data Matrices

We compared the results we obtained from in two experiments.

In the first experiment, genes were treated as statistical units. The resulting data

matrix consisted of two parts Y and XG. The submatrix Y was a N ×M matrix where N

genes form the rows, and the columns represent the M diseases. In Y , an element yi,j is

equaled one if it is known that gene i affects disease j and zero otherwise. The submatrix

XG contained the attributes of the genes.

Using that data matrix, we explored 3,820 genes and 3,102 diseases, of which 1,138

corresponded MeSH terms. Y was very sparse and contained only 0.07% ones, while the

MeSH part of Y had 0.13% ones. Originally, we obtained almost a million attributes. This

number was reduced to somewhat fewer than 100,000 after culling attributes associated

with only one single gene. XG was also very sparse, containing 0.13% ones.

In the second experiment, diseases were treated as statistical units, and the resulting

data matrix consisted of two submatrices Y > and XD. XD contained 4.389 attributes of

the diseases. Only 0.28% of the entries in XD were ones.

Evaluation

In our experiments, we hid a known gene-disease relation for each gene we evaluated,

treated this relation as unknown by setting the entry to zero. We then applied the kernel-

ized SUNS approach in order to predict the likelihood of all unknown gene-disease relations

being true. Finally, we evaluated the validity of the predictions our approach made for

the real gene-disease relations we removed from the data by using an nDCG@n score with

n = 10 (described in Appendix 6). We repeated the procedure five times in order to

produce error bars and mean values.

Figure 5.5 (a) and (b) show the nDCG score against rank r for the SUNS models

applied to the gene data set and disease data set, respectively. In both experiments, pure

attribute-based predictive models Attribute(A) (only using XG, resp. XD for the kernel

computations, equivalent to regularized PCA regression in the covariate space described

in Section 3.2) produced the worst results. Models using Y for the kernel Relation(R)

(equivalent to regularized matrix reconstruction utilizing kernel PCA) performed much

better. When both Y and XG, resp. XD were exploited through the A+R approach

(kernel RRPP) and when using the weighting parameter α = 1 (meaning that the two

sources-the relations and attributes-were equally considered), the results were suboptimal,

http://www.dbs.ifi.lmu.de/~huang/index.html#datasets

5.2 Life Science: Disease-Gene Prioritization 79

5 50 100 500
0

0.05

0.1

0.15

0.2

0.25

Number of latent variables

nD
C

G
@

10

Relation(R)
A+R
Attribute(A)
Weighted A+R

5 50 100 500
0

0.05

0.1

0.15

0.2

0.25

Number of latent variables

nD
C

G
@

10

Relation(R)
A+R
Attribute(A)
Weighted A+R

(a) gene data set (b) disease data set

Figure 5.5: (a) The nDCG@10 score against rank r for the models where genes served

as statistical units. The bottom (blue, Attribute(A)) line shows the performance of the

model using only XG for the kernel and the second line from the top (red, Relation(R))

shows the performance of the model using Y for the kernel. We can see that the gene-

disease relations served as a better predictor. The RRPP model with α = 1 (second line

from bottom, green, A+R) performed worse than the relation-based model. The RRPP

SUNS model with a tuned α = 0.1 gave the best results. (b) The results of the models

where diseases served as the statistical units. At high rank r the attributes were quite

informative. The RRPP model with α = 0.5 gave the best results, when rank r exceeded

50.

80 5. Applications

5 50 100 500
0

0.05

0.1

0.15

0.2

0.25

Number of latent variables

nD
C

G
@

10

Disease
Gene
Both

5 50 100 500
0

0.05

0.1

0.15

0.2

0.25

Number of latent variables

nD
C

G
@

10

Disease
Gene
Both

(a) attribute only (b) attribute and relationship

Figure 5.6: (a) The nDCG@10 score against rank r for the multi-population models with

equal weights and the models using only attributes XG, resp. XG for calculating the kernel.

The results demonstrate that the multi-population model gave the best results. (b) The

results of the RRPP models. The multi-population model again achieved the best results

overall.

5.3 Location-based Personalized Recommendation 81

since the attributes describing genes resp. diseases were dominant due to their greater

number. Weighted A+R, which carefully tuned α achieved the best performance. In the

first experiment, the best results were obtained using α = 0.1, and in the second experiment

by using α = 0.5. RRPP with a properly tuned α demonstrated similar performance in

both experiments. Figure 5.6 (a) shows the nDCG score against rank r for the multi-

population SUNS models in which the predictions of both models were simply averaged.

In Figure 5.6 (b), RRPP gave the overall best performance by just averaging predictions

when it exploited both gene-diseases relations and the attributes of genes and diseases.7

Additionally, we compared SUNS with ToppGene in connection with four diseases:

Autistic Disorder, Psoriasis, Hypertension, and AIDS. We followed the same evaluation

procedure as described in [19] and [1]. For each disease, in addition to related genes, we

selected 99 unrelated genes at random. We performed leave-one-out validation: in each

run, we treated a truly related gene as unrelated, the target gene, and prioritize it together

with those 99 unrelated. On the one hand, we applied SUNS to the data in order to

prioritize unrelated genes (including 99 unrelated genes and the target one), and on the

other hand, we submitted all training and test data through the ToppGene web interface8

and recorded the resulting prioritization of those genes. Finally, we evaluated the quality

of each method’s prioritization according to the frequency at which they ranked target

genes above a given threshold, e.g., among the top 5%, 10%, and 20% of the results.

The predictions generated by SUNS were superior to ToppGene in most cases, and for a

higher threshold, ToppGene tended to be reliable. We believe that these results are quite

promising, especially in light of the fact that the weights given to various different attributes

were carefully adjusted in ToppGene, whereas SUNS weighted all attributes equally. We

believe that our SUNS approach can realize even better performance by carefully tuning

the weights of attributes.

5.3 Location-based Personalized Recommendation

The rapid growth in the publication of personal opinions through microblogging venues

such as Twitter has supported the creation of novel, emerging social and commercial ser-

vices in recent years. In augmented reality (AR) applications such as BOTTARI, for

instance, the information generated by microblogging makes it possible to leverage the

7We did not observe any improvement when varying a weight factor between the models, compared to

a simple average.
8http://toppgene.cchmc.org/prioritization.jsp

82 5. Applications

(temporally weighted) opinions of a user’s community in order to provide her with per-

sonalized, localized recommendations for points of interest (POIs) she might wish to visit.

The technological basis for BOTTARI’s recommendations is the LarKC platform [62], a

highly scalable platform for rapid prototyping and development of Semantic Web applica-

tions, and a recommendation engine relying on LarKC’s deductive and inductive stream

reasoning.

In this section, we describe the use of SUNS. We evaluate the quality of recommenda-

tions on POIs based on tweets spanning a three-year period and pertaining to 319 restau-

rants located in the Insadong district of Seoul, a popular 2 km2 tourist area within the

South Korean capital.

5.3.1 The BOTTARI Mobile Application

BOTTARI9 is an augmented reality (AR) application on Android that draws the user’s

attention to points of interest (POIs) in the user’s current vicinity, and particularly to

restaurants and dining establishments. Rather than simply showing nearby businesses,

BOTTARI provides personalized recommendations based on the local context and ratings

of the POIs derived by the analysis of microblogs. Recommendations are made using a

combination of inductive and deductive stream reasoning techniques, and when a user

selects a particular POI, the application reveals detailed information about it, including

its reputation. A video demonstration of BOTTARI’s mobile application running on a

mobile phone and a tablet is available on YouTube 10.

The application offers four types of recommendations:

• for me gives personalized recommendations suggested by large-scale mobile search

studies like [91, 28];

• popular bases its recommendations on POI ratings from the last 3 years extracted

from microblogs;

• emerging focuses on ratings from the last month; and

• interesting returns POIs based on a category of interest to the user, e.g., sites or

establishments “for tourists”.

9In the Korean language, “bottari” is a cloth bundle that carries a person’s belongings while traveling.
10A video of BOTTARI is available on YouTube at http://www.youtube.com/watch?v=c1FmZUz5BOo.

5.3 Location-based Personalized Recommendation 83

For the purposes of this thesis, we will focus here exclusively on BOTTARI’s recom-

mendation engine, and more particularly, on the application of SUNS to for me recommen-

dations. Other components of the application, such as its stream crawler, opinion miner,

and geospatial knowledge base, lie outside the scope of our work.

5.3.2 Data and Ontology

As mentioned above, BOTTARI’s recommendations to its users are based on the analysis

of microblogs published in Korea. In this section, we describe the data and ontology used

in the application.

The Insadong area is a two-square-kilometer district in Seoul with a high density of

restaurants. BOTTARI’s data on 319 of the restaurants in this area were collected from

Yelp11, PoiFriend12, Yahoo! Local13, TrueLocal14, Korean restaurant Web sites and sev-

eral Korean portals. The resulting high-quality, geo-referenced knowledge base describes

each restaurant using 44 attributes, such as name, images, position, address, ambiance,

specialties, and categories.

The restaurants’ reputations and customer ratings were gathered from 200 million re-

lated tweets via Twitter’s API over the course of 3 years, from February 4, 2008, to

November 23, 2010 (1,023 days). After applying the opinion mining technique, tweets not

expressing an opinion on any POI were discarded, and 110,000 tweets produced by more

than 31,000 users were kept (see Table 5.1 for statistics of the collected data set).

The temporal distribution of tweets is shown in Figure 5.7(c). Most tweets (85%) were

collected in the final six months of the three-year period. Concrete numbers of tweets in

different time frames are shown in Table 5.2. The exponential growth in the number of

tweets over time is due to different reasons: a) the tweets from 2008 were collected one

year later, in 2009, and it was difficult to gather those messages because of the “oblivion”

in Twitter stores; b) the usage of Twitter became mainstream in Korea only in 2009; and

finally, c) the crawling algorithm was changed and improved in April 2010.

In addition to the number of entities, i.e., users and POIs, Table 5.1 also shows the

numbers of positive, negative, and neutral ratings applied to all POIs. Based on these

statistics, we can see that the data set possesses the following characteristics:

• High sparsity : Only 1.42% of POIs were rated per user. When sparsity is defined as

11Cf. http://www.yelp.com/.
12Cf. http://www.poifriend.com/.
13Cf. http://local.yahoo.com/.
14Cf. http://www.truelocal.com.au/.

http://www.yelp.com/
http://www.poifriend.com/
http://local.yahoo.com/
http://www.truelocal.com.au/

84 5. Applications

(a) (b)

(c)

Figure 5.7: Dataset statistics: (a) positive ratings by POIs, (b) positive ratings by users

and (c) distribution of tweets over time.

5.3 Location-based Personalized Recommendation 85

Type #POI #User Sparsity

#Ratings Positive 19,045 213 12,863 99.30%

Negative 14,404 181 10,448 99.24%

Neutral 75,941 245 28,056 98.90%

Total 109,390 245 31,369 98.58%

Table 5.1: Statistics of the data set showing the number of positive, negative, and neutral

ratings respectively and the number of users and restaurants involved rated in each way.

For instance, 10,448 users gave 14,404 negative ratings of181 POIs, and the data matrix

representing these negative ratings therefore is a 10,448-by-181 matrix where 14,404 entries

are non-zero, and the remaining 99.24% entries are zeros (sparsity).

Nr. of ratings %

Last day 188 0.17

Last 2 days 703 0.64

Last 7 days 5,057 4.62

Last 30 days 27,049 24.73

Last 90 days 65,600 70.01

Last 180 days 93,696 85.65

Total 109,389 100.00

Table 5.2: Number of ratings in different time frames

86 5. Applications

Figure 5.8: Ontology modelling of the data.

sparsity = 1− #Ratings
#POIs×#Users , the sparsity of positive ratings is higher than 99.3%,

• Incompleteness : While some POIs have neither positive nor negative ratings, a great

number of users provided neither positive nor negative ratings. For example, only

41% of users rated at least one POI positively.

• Multiple ratings : A user can rate a particular POI several times expressing different

opinions each time. In our experiments, positive, negative, and neutral ratings are

represented as separate statements positive(u, p), negative(u, p) and neutral(u, p).

The statement positive(u, p) = 1 means that at least one positive rating was given by

user u on POI p. If there is no positive rating of user u for POI p, positive(u, p) = 0.

The same approach is applied to negative(u, p) and neutral(u, p).

In addition to the temporal distribution shown in Figure 5.7(c), we gathered statistics

on ratings across users and POIs in order to better understand the data distribution. The

distribution of positive ratings over POIs and users, plotted in Figure 5.7(a) and (b),

respectively, is of particular interest. On average, each user gave 1.5 positive ratings, and

89 users rated POIs positively. 31 POIs received more than 200 positive ratings. Those

POIs can be considered the most liked or most popular.

5.3 Location-based Personalized Recommendation 87

The attributes of POIs and microblogs were first converted into RDF triples and RDF

streams, respectively. These RDF-ized data were modeled according to the ontology repre-

sented in Figure 5.8. The BOTTARI Ontology is an extension of Semantically-Interlinked

Online Communities (SIOC) [8] – a commonly used vocabulary for expressing the user-

generated content of an online community. BOTTARI’s ontology takes from SIOC the

relation between Twitter users and their tweets and enriches it by further describing the

relation between a tweet and its topic (i.e., the POI cited in the tweet15). The ontology

adds the opinion expressed by the user about the topic through the twd:talksAbout property

– and its sub-properties for positive, negative, and neutral opinions.

An example of an RDF stream in BOTTARI is given in List 5.5. Each RDF triple uses

the ontology described above and is annotated with the tweet’s timestamp. The notation

used here is defined in [9].

1 (<:userID twd:posts :tweetID >, 2011 -10 -12 T13 :34:41)

2 (<:tweetID twd:talksAboutPositively :poiID >, 2011 -10 -12 T13 :34:41)

Listing 5.5: An example of an RDF stream.

The geographical information of the ontology is introduced by modeling the POIs as

spatial things (according to the WGS84 vocabulary16) and enriching them with information

in additional categories, such as an “ambiance” category describing the atmosphere of the

restaurant and the dynamic count of positive, negative, and neutral ratings of POIs.

5.3.3 Empirical Study

Using the data set described in Section 5.3.2, we tested the personalized recommendation

engine for me which was based on SUNS . The goal of the study was to evaluate the quality

of recommendations made by SUNS in comparison with the quality of recommendations

made by some baseline methods.

Methodology

Our evaluation involved first establishing three baselines:

• random guess (Random): recommends a list of restaurants sorted by random order.

15Only very few tweets talk about more than one POIs.
16Cf. http://www.w3.org/2003/01/geo/.

88 5. Applications

• k-nearest neighbor (KNNItem): recommends a list of similar restaurants. Let P be

the number of POIs and U be the number of users. For the baseline KNNItem, we

used the cosine similarity measure on POIs defined as similarity(pi, pj) =
〈pi,pj〉
‖pi‖∗‖pj‖ ,

where pi and pj represent the vectors of ratings of the i-th and the j-th POIs given

by all users for i, j ∈ {1, . . . , P}, and where 〈·, ·〉 is the scalar product of two vectors

and ‖ · ‖ is the 2-norm of a vector. We set k to the total number of the POIs.

• most liked items (MostLiked): by means of a predefined SPARQL query, takes all

positive ratings in the total three-year period into account to recommend the most

positively rated POIs to every user.

First, we compared the performance of Suns with the baseline methods. We then

examined the performance of the combination of both inductive and deductive stream

reasoning, i.e., Suns and MostLiked using two evaluation methods:

• Normalized discounted cumulative gain (nDCG) (described in Appendix 6) In our

experiments, we evaluated ranked lists of POIs and reported nDCG@all scores. In

each run, there was only one POI for testing for each user. An NDCG score of one

means that the test POI is ranked first in the list of POIs, while a low nDCG value

near to zero indicates that the test POI falls at the bottom of the list.

• Accuracy at the top N POIs Acc@N = |TPN |, where TPN are true positives in the

top N recommendations. In our case, since we have just one test data point per user,

Acc@N is equal to either one or zero.

For both evaluation measures, we averaged the scores across all ranking lists (one list

per user).

Settings

We performed our evaluation in two different settings:

• Setting 1: We randomly removed one positive rating for each user and treated it as a

test data point. We trained the models using the remaining ratings, then estimated

the ratings of the test data points. This setting corresponds to the common method

of splitting the data into training and test subsets. We repeated this data split five

times.

5.3 Location-based Personalized Recommendation 89

Figure 5.9: Evaluation in Setting 1: nDCG scores (left) and accuracy values at top N

(right).

• Setting 2: We hid the newest rating for each user as test data. As a new baseline,

TimeWindow was introduced, which corresponds to MostLiked applied to different

time frames: 1 day, 2 days, 7 days, 30 days, 90 days, and 180 days17. For each time

frame, we removed the corresponding older ratings. Table 5.2 shows the number of

ratings that remained for training.

We implemented the baselines, Suns and the evaluation methods in Matlab using a

laptop with a 2.1GHz CPU and 3.24 GB of RAM running Windows XP, which corresponds

to a 50e/month share in a cloud environment18.

Results

Figure 5.9 shows the results obtained in Setting 1. On the left, the nDCG scores of the

tested methods are plotted against the number of latent variables. Since the baselines

are independent of this number, they produced three horizontal lines each for Random,

MostLiked, and KNNItem. We evaluated Suns with 20, 50, 100, 150 and 200 latent

variables. As expected, Random performed worst. MostLiked proved slightly more

effective than KNNItem. Its superior performance may be due to the “bandwagon effect”19

that exists in many social communities. Suns significantly outperformed all baselines when

17This baseline was evaluated using the network of C-SPARQL queries in continuous execution.
18The calculation of the cost per month was done using https://www.gandi.net/hosting/vps
19Bandwagon effect is a form of groupthink known in behavioral science and also a common phenomenon

in the daily life: People follow majorities without caring for evidence and their individual preferences.

90 5. Applications

Figure 5.10: Evaluation in Setting 2: nDCG scores (left) and accuracy values at top 10

(right).

the number of latent variables exceeded 100, and the best ranking overall was produced

by the combination of both Suns and MostLiked. These results confirm the idea that

a combined approach of deductive and inductive stream reasoning is more effective than

other methods. Figure 5.9 shows the accuracy of the top N POIs at right, where N =

{5, 10, 15, 20, 25, 30}. Note that the error bars are so small that they lie within the shapes

representing the methods.

In Setting 2, as mentioned previously, we varied the size of the time window from 1 to

180 days. Figure 5.10 plots the nDCG scores on the left and the accuracy at the top 10 on

the right. Naturally, only TimeWindow is sensitive to the time window, and it approaches

the performance of MostLiked at and above a time window of 90 days. This suggests

that using data from a 90-day window is nearly as effective as using the full historical data.

We additionally evaluated the recommendations given by Rough Guide and Trip Ad-

visor. Table 5.3 shows that these two experts and the combination of them performed as

poorly as the random guess baseline and were not comparable with Suns at all.

In our evaluations, Suns demonstrated excellent scalability. The training process took

approximately 86 seconds with 200 latent variables, and the recommendation of POIs cost

on average less than five milliseconds of computational time per user (see discussion on

scalability in Section 3.3.1). In addition, we observed that Suns was robust and insensitive

to the number of latent variables. Its robustness can be explained by the fact that Suns

is regularized, in contrast to other matrix factorization methods such as Singular Value

Decomposition (SVD). Regularization can simplify the use of Suns, particularly for users

5.3 Location-based Personalized Recommendation 91

Trip Rough Comb Random Suns

Setting 1

NDCG@5 0.0087 0.0149 0.0197 0.0134 0,3300

Acc@5 (%) 0.99 1.81 2.53 2.55 40.58

Setting 2

NDCG@5 0.0072 0.0152 0.0190 0.0136 0.3265

Acc@5 (%) 0.77 1.81 2.55 2.55 40.67

Table 5.3: Comparisons of Trip Advisor (Trip), Rough Guide (Rough) and their combina-

tion (Comb) with random guess and Suns according to nDCG score and accuracy.

with limited expertise in machine learning.

92 5. Applications

Chapter 6

Conclusions and Future Work

The aim of this thesis was to study the prediction of unknown but potentially true relations

by using statistical relational learning and exploiting the regularities of the structured data.

We began by describing the Semantic Web and its standard RDF data model. As we

noted, the increasing volume of data in knowledge bases such as the Linked Open Data

initiative and the Knowledge Graph offers exciting possibilities and challenges for machine

learning algorithms, including the vitally important issue of scalability.

We then discussed ontology-based transductive reasoning, which can be used to infer

implicit statements, and reviewed related work in various areas, including statistical learn-

ing, Inductive Logic Programming, Relational Graphical Models, and matrix factorization-

based learning approaches. In the area of statistical learning, a global model can efficiently

deal with missing information but might not be scalable, while conditional models scale

better but encounter difficulties when faced with missing information. As a result of our

investigation, we set out to develop a model combining global models’ ability to handle

missing data and conditional models’ scalability.

To that end, we introduced a well-defined statistical framework, which we call Statis-

tic Unit Node Set (SUNS), capable of systematically generating data matrices, including

random variables and fixed covariates based on statistical units’ neighborhoods. We then

proposed Reduced Rank Penalized Regression (RRPP), a novel multivariate algorithm for

relation prediction. RRPP has two advantages over other algorithms: first, it can effi-

ciently learn a global model exploiting all features of data and handle with missing values

naturally; second, the algorithm combines regularization and low-rank matrix factoriza-

tion, which makes it generalizable to statistical units inside and outside of a given sample.

In our experiments, this new algorithm was evaluated using a social network data set to

predict friendship between persons in both a transductive setting and an inductive set-

94 6. Conclusions and Future Work

ting. Compared to other benchmark methods, RRPP demonstrated promising predictive

performance and a high capability of generalization.

We then extended SUNS to become a general kernel approach using the Nyström ap-

proximation and demonstrated the scalability of the overall approach, which is guaranteed

by the ability to control the number of instances considered in the kernel computations

as well as the rank of matrix decomposition. Moreover, as we noted, one can control the

number of local features used to derive the kernel. This kernelized approach was then

applied to DBpedia, a vast and rich semantic knowledge base, presently consisting of at

least 13 billion pieces of information (RDF triples).

Based on SUNS, we established the R-model, a probabilistic model in which statistical

units are defined by object-to-object relationships. By applying this model to a movie rec-

ommendation system in a social network, this thesis explained how contextual information

could be leveraged in a probabilistic way in order to improve the quality of recommenda-

tions. The example of movie recommendations illustrated a significant advantage of our

model: namely, its modularity, which allows modeling of domains with complex relation-

ships and many variables. The probabilistic model utilized regularized matrix factorization

to approximate the local probability distributions. In future work, our approach could be

extended to model local interactions between more than two many-state variables by em-

ploying the tensor factorization technique [56] for local models. Our experimental results

also illustrated R-model’s robustness and insensitivity to parameters. These properties

can be explained by the fact that in contrast to other matrix factorization approaches such

as SVD, the R-model is regularized. As a result, the R-model is relatively easier to use,

particularly by those with limited machine learning expertise.

Finally, this thesis described the application of the SUNS approach to three real use

cases: semantic social media analysis, disease gene prioritization in the life sciences, and

a location-based personalized recommendation system in a mobile app. In the first use

case, we introduced an advanced reasoning approach combining deductive and inductive

stream reasoning where SUNS served as an inductive stream reasoning method. The in-

ductive reasoner modeled long-term user preferences, while the deductive reasoner made

predictions in the form of “most liked” by capturing short-term trends. The experimental

results of our investigation of semantic social media analysis showed that the combination

of an inductive model and a deductive model outperformed both considered separately. In

our analysis of the disease gene prioritization use case, we gathered three data sets: one

representing gene-disease relations, one describing attributes of genes, and one containing

attributes of diseases from the LOD cloud. We applied the R-model to model those data

sets jointly and compared our results with those obtained using ToppGene. The R-model

95

achieved promising results and was superior to ToppGene in most cases. In the last use

case, we integrated SUNS into an AR application providing personalized and location-based

recommendations of points of interest (POIs) based on the opinions of social communities.

The data sets, in this case, consisted of information collected from various social media

networks, including microblogs expressing opinions about restaurants located in a popu-

lar tourist area in Seoul. In our empirical study, SUNS demonstrated high accuracy in

recommending POIs and excellent scalability. As a point of comparison, we additionally

investigated recommendations given by Rough Guide and Trip Advisor and discovered that

those recommendations were of bad quality and not comparable with SUNS.

In the future, we believe that the models presented in this thesis can be extended in

many ways. As part of our ongoing work in that respect, we will explore additional ways

of using SUNS to exploit ontological background information to improve the quality of

the results generated by SUNS through various means, such as structuring the learning

matrix. Finally, we believe furthermore that our models will be valuable to many other

applications in diverse domains and that they open promising new avenues of research on

relational learning with large knowledge bases.

96 6. Conclusions and Future Work

Appendices

NDCG

Normalized discounted cumulative gain (nDCG) [48] calculated by summing over all the

gains in the rank list R with a log discount factor as

NDCG(R) = Z
∑
k

2r(k) − 1

log(1 + k)
,

where r(k) denotes the target label for the k-th ranked item in R, and r is chosen such

that a perfect ranking obtains value one. To focus more on the top-ranked items, one often

considers nDCG@n, which only counts the top n items in the rank list.

NDCG is a standard measure in information retrieval and is used to evaluate the quality

of the returned ranked results for a given query. It especially emphasizes the very top

positions in R due to the log function on the position k, which means that the nDCG score

increases when the position of a test item is lifted from the second position to the first one,

much more than when its position is improved from 100 to 99.

100

Bibliography

[1] Stein Aerts, Diether Lambrechts, Sunit Maity, Peter Van Loo, Bert Coessens, Fred-

erik De Smet, Leon-Charles Tranchevent, Bart De Moor, Peter Marynen, Bassem

Hassan, Peter Carmeliet, and Yves Moreau. Gene prioritization through genomic

data fusion. Nature Biotechnology, 24(5):544, 537, May 2006.

[2] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT

Press, 2004.

[3] R. Apweiler, A. Bairoch, C. H Wu, W. C Barker, B. Boeckmann, S. Ferro,

E. Gasteiger, H. Huang, R. Lopez, M. Magrane, et al. UniProt: the universal protein

knowledgebase. Nucleic acids research, 32(Database Issue):D115, 2004.

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia:

A nucleus for a web of open data. The Semantic Web, 2008.

[5] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle, Yi Huang,

Tony Kyung-il Lee, Seon-Ho Kim, and Volker Tresp. BOTTARI: an augmented re-

ality mobile application to deliver personalized and location-based recommendations

by continuous analysis of social media streams. Journal of Web Semantics, 16:33–41,

2012.

[6] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle, Yi Huang,

Tony Kyung-il Lee, Seon-Ho Kim, and Volker Tresp. Reality mining on microp-

ost streams - deductive and inductive reasoning for personalized and location-based

recommendations. Semantic Web Journal, 5(5):341–356, 2014.

[7] Davide Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, Yi Huang,

Volker Tresp, Achim Rettinger, and Hendrik Wermser. Deductive and inductive

stream reasoning for semantic social media analytics. IEEE Intelligent Systems, 99,

2010.

102 BIBLIOGRAPHY

[8] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Grossniklaus.

An execution environment for C-SPARQL queries. In EDBT 2010, 13th International

Conference on Extending Database Technology, Lausanne, Switzerland, March 22-26,

2010, Proceedings, pages 441–452, 2010.

[9] Davide Francesco Barbieri and Emanuele Della Valle. A proposal for publishing

data streams as linked data - A position paper. In Proceedings of the WWW2010

Workshop on Linked Data on the Web, LDOW 2010, Raleigh, USA, April 27, 2010,

2010.

[10] F. Belleau, M. A Nolin, N. Tourigny, P. Rigault, and J. Morissette. Bio2RDF:

towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical

Informatics, 41(5), 2008.

[11] Bettina Berendt, Andreas Hotho, and Gerd Stumme. Towards Semantic Web min-

ing. In ISWC ’02: Proceedings of the First International Semantic Web Conference.

Springer-Verlag, 2002.

[12] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.

Journal of Machine Learning Research, 3, 2003.

[13] Hendrik Blockeel and L. De Raedt. Top-down induction of first-order logical decision

trees. Artificial Intelligence, 101(1-2), 1998.

[14] Antoine Bordes, Nicolas Usunier, Alberto Garćıa-Durán, Jason Weston, and Oksana

Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances

in Neural Information Processing Systems 26: 27th Annual Conference on Neural

Information Processing Systems 2013. Proceedings of a meeting held December 5-8,

2013, Lake Tahoe, Nevada, United States., pages 2787–2795, 2013.

[15] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In Uncertainty in Artificial Intelligence, 1998.

[16] Dan Brickley and Libby Miller. The Friend of a Friend (FOAF) project.

http://www.foaf-project.org/, 2014.

[17] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex

optimization. Computing Research Repository - CORR, 2008.

BIBLIOGRAPHY 103

[18] Jing Chen, Eric E. Bardes, Bruce J. Aronow, and Anil G. Jegga. ToppGene suite

for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids

Research, 37, 2009.

[19] Jing Chen, Huan Xu, Bruce Aronow, and Anil Jegga. Improved human disease

candidate gene prioritization using mouse phenotype. BMC Bioinformatics, 8(1):392,

2007.

[20] William W. Cohen and Haym Hirsh. Learning the CLASSIC description logic: The-

oretical and experimental results. In Principles of Knowledge Representation and

Reasoning: Proceedings of the Fourth International Conference (KR94), 1994.

[21] Claudia d’Amato. Similarity-based Learning Methods for the Semantic Web. PhD

thesis, University of Bari, 2007.

[22] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. Non-parametric statistical

learning methods for inductive classifiers in semantic knowledge bases. In Proceedings

of the IEEE International Conference on Semantic Computing - ICSC 2008, 2008.

[23] L. De Raedt. Attribute-value learning versus inductive logic programming: The

missing links (extended abstract). In ILP ’98: Proceedings of the 8th International

Workshop on Inductive Logic Programming. Springer-Verlag, 1998.

[24] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26, 1997.

[25] L. De Raedt and Wim. Van Laer. Inductive constraint logic. In ALT ’95: Proceedings

of the 6th International Conference on Algorithmic Learning Theory, 1995.

[26] Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel. It’s

a streaming world! reasoning upon rapidly changing information. IEEE Intelligent

Systems, 24(6):83–89, 2009.

[27] P. Domingos and M. Richardson. Markov logic: A unifying framework for statistical

relational learning. In L. Getoor and B. Taskar, editors, Introduction to Statistical

Relational Learning. MIT Press, 2007.

[28] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A large-scale evaluation and analysis

of personalized search strategies. In WWW, pages 581–590, 2007.

[29] S. Džeroski. Inductive logic programming in a nutshell. In L. Getoor and B. Taskar,

editors, Introduction to Statistical Relational Learning. MIT Press, 2007.

104 BIBLIOGRAPHY

[30] P. Edwards, G. Grimnes, and A. Preece. An empirical investigation of learning from

the Semantic Web. In ECML/PKDD, Semantic Web Mining Workshop, 2002.

[31] Werner Emde and Dietrich Wettschereck. Relational instance based learning. In

Lorenza Saitta, editor, Machine Learning - Proceedings 13th International Conference

on Machine Learning, 1996.

[32] T. Gärtner, J.W. Lloyd, and P.A. Flach. Kernels and distances for structured data.

Machine Learning, 57(3), 2004.

[33] L. Getoor, N. Friedman, D. Koller, A. Pferrer, and B. Taskar. Probabilistic relational

models. In L. Getoor and B. Taskar, editors, Introduction to Statistical Relational

Learning. MIT Press, 2007.

[34] Stephan Grimm and Boris Motik. Closed world reasoning in the semantic web

through epistemic operators. In OWLED, 2005.

[35] Marko Grobelnik and Dunja Mladenic. Automated knowledge discovery in advanced

knowledge management. Library Hi Tech News incorporating Online and CD Notes,

9(5), 2005.

[36] A. Hamosh, A. F Scott, J. S Amberger, C. A Bocchini, and V. A McKusick. Online

mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic

disorders. Nucleic acids research, 33(Database Issue):D514, 2005.

[37] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounth-

waite, and Carl Myers Kadie. Dependency networks for inference, collaborative

filtering, and data visualization. Journal of Machine Learning Research, 2000.

[38] Ivan Herman. Tutorial on the Semantic Web. W3C,

http://www.w3.org/People/Ivan/CorePresentations/SWTutorial/Slides.pdf, 2002.

[39] M. Hewett, D. E Oliver, D. L Rubin, K. L Easton, J. M Stuart, R. B Altman,

and T. E Klein. PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids

Research, 30(1):163, 2002.

[40] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, and York Sure. Semantic Web.

Springer, 2008.

BIBLIOGRAPHY 105

[41] Yi Huang, Markus Bundschus, Volker Tresp, Achim Rettinger, and Hans-Peter

Kriegel. Multivariate prediction for learning on the Semantic Web. In Proceed-

ings of the 20th International Conference on Inductive Logic Programming (ILP),

2010.

[42] Yi Huang, Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A scalable

kernel approach to learning in semantic graphs with applications to linked data. In

1st Workshop on Mining the Future Internet, 2010.

[43] Yi Huang, Volker Tresp, Markus Bundschus, and Achim Rettinger. Scalable rela-

tional learning for sparse and incomplete domains. In International Workshop on

Statistical Relational Learning (SRL 2009), 2009.

[44] Yi Huang, Volker Tresp, Markus Bundschus, Achim Rettinger, and Hans-Peter

Kriegel. Multivariate structured prediction for learning on the semantic web. In

Proceedings of the 20th International Conference on Inductive Logic Programming

(ILP), 2010.

[45] Yi Huang, Volker Tresp, Maximilian Nickel, Achim Rettinger, and Hans-Peter

Kriegel. A scalable approach for statistical learning in semantic graphs. Seman-

tic Web Journal, 5(1):5–22, 2014.

[46] Yi Huang, Volker Tresp, and Hans peter Kriegel. Multivariate prediction for learning

in relational graphs. In NIPS 2009 Workshop: Analyzing Networks and Learning

With Graphs, 2009.

[47] Manfred Jaeger. Relational bayesian networks. In Proceedings of the 13th Conference

on Uncertainty in Artificial Intelligence (UAI), 1997.

[48] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant

documents. In Proceedings of the International ACM SIGIR Conference on Research

and Development in Information Retrieval, 2000.

[49] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt, B. De Bono,

B. Jassal, G. R. Gopinath, G. R. Wu, L. Matthews, et al. Reactome: a knowledgebase

of biological pathways. Nucleic acids research, 33(Database Issue):D428, 2005.

[50] M. G Kann. Advances in translational bioinformatics: computational approaches for

the hunting of disease genes. Briefings in Bioinformatics, 11(1):96, 2010.

106 BIBLIOGRAPHY

[51] Maricel G. Kann. Advances in translational bioinformatics: computational ap-

proaches for the hunting of disease genes. Briefing in Bioinformatics, 11, 2010.

[52] Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths, Takeshi Yamada, and

Naonori Ueda. Learning systems of concepts with an infinite relational model. In

Proceedings of the National Conference on Artificial Intelligence (AAAI), 2006.

[53] Kristian Kersting and L. De Raedt. Bayesian logic programs. Technical report,

Albert-Ludwigs University at Freiburg, 2001.

[54] Christoph Kiefer, Abraham Bernstein, and André Locher. Adding data mining sup-

port to SPARQL via statistical relational learning methods. In Extended Semantic

Web Conference 2008. Springer-Verlag, 2008.

[55] Atanas Kiryakov. Measurable targets for scalable reasoning. Ontotext Technology

White Paper, 2007.

[56] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.

SIAM Review, 2009.

[57] Daphne Koller and Avi Pfeffer. Probabilistic frame-based systems. In Proceedings of

the National Conference on Artificial Intelligence (AAAI), 1998.

[58] S. Kramer, N. Lavrac, and P. Flach. From propositional to relational data mining. In

S. Džeroski and L. Lavrac, editors, Relational Data Mining. Springer-Verlag, 2001.

[59] Isaac Kunz, Ming-Chin Lin, and Lewis Frey. Metadata mapping and reuse in cabig.

BMC Bioinformatics, 10 Suppl 2:S4, 2009.

[60] N. Landwehr, A. Passerini, L. De Raedt, and Paolo Frasconi. kFOIL: Learning simple

relational kernels. In Proceedings of the National Conference on Artificial Intelligence

(AAAI), 2006.

[61] Niels Landwehr, Kristian Kersting, and L. De Raedt. nFOIL: Integrating näıve bayes

and FOIL. In M. Veloso and S. Kambhampati, editors, Proceedings of the Twentieth

National Conference on Artificial Intelligence (AAAI-05), 2005.

[62] LarKC. The large Knowledge Collider. EU FP 7 Large-Scale Integrating Project,

http://www.larkc.eu/, 2008.

[63] Steffen L. Lauritzen. Graphical Models. Oxford Statistical Science Series, 1996.

BIBLIOGRAPHY 107

[64] Nada Lavrač, Sašo Džeroski, and Marko Grobelnik. Learning nonrecursive definitions

of relations with LINUS. In EWSL-91: Proceedings of the European Working Session

on Machine Learning, 1991.

[65] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative

matrix factorization. Nature, 1999.

[66] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-

to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80, January 2003.

[67] Francesca A. Lisi. Principles of inductive reasoning on the Semantic Web: A frame-

work for learning in AL-Log. In F. Fages and S. Soliman, editors, Principles and

Practice of Semantic Web Reasoning, Series: Lecture Notes in Computer Science,

2005.

[68] Francesca A. Lisi. The challenges of the Semantic Web to machine learning and data

mining. In Tutorial at ECML 2006, 2006.

[69] Francesca A. Lisi. A methodology for building Semantic Web mining systems. In

The 16th International Symposium on Methodologies for Intelligent Systems, 2006.

[70] Francesca A. Lisi. Practice of inductive reasoning on the Semantic Web: A system

for Semantic Web mining. In Principles and Practice of Semantic Web Reasoning,

4th International Workshop, PPSWR 2006, 2006.

[71] D. Maglott, J. Ostell, K. D Pruitt, and T. Tatusova. Entrez gene: gene-centered

information at NCBI. Nucleic acids research, 2006.

[72] A. Marchler-Bauer, J. B Anderson, P. F Cherukuri, C. DeWeese-Scott, L. Y Geer,

M. Gwadz, S. He, D. I Hurwitz, J. D Jackson, Z. Ke, et al. CDD: a conserved domain

database for protein classification. Nucleic acids research, 33(Database Issue):D192,

2005.

[73] CJ Mattingly, MC Rosenstein, GT Colby, JN Forrest Jr, and JL Boyer. The com-

parative toxicogenomics database (CTD): a resource for comparative toxicological

studies. Journal of Experimental Zoology. Part A, Comparative Experimental Biol-

ogy, 305(9):689, 2006.

[74] S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special

issue on Inductive Logic Programming, 13(3-4), 1995.

108 BIBLIOGRAPHY

[75] S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of

the 1st Conference on Algorithmic Learning Theory. Ohmsma, Tokyo, 1990.

[76] Stephen Muggleton, Huma Lodhi, Ata Amini, and Michael J. E. Sternberg. Support

vector inductive logic programming. In Achim Hoffmann, Hiroshi Motoda, and To-

bias Scheffer, editors, Proceedings of the 8th International Conference on Discovery

Science, volume 3735 of LNCS. Springer, 2005.

[77] Jennifer Neville, Brian Gallagher, and Tina Eliassi-Rad. Evaluating statistical tests

for within-network classifiers of relational data. In Proceedings of the Fourth IEEE

International Conference on Data Mining, 2009.

[78] Jennifer Neville and David Jensen. Dependency networks for relational data. In

Proceedings of the IEEE International Conference on Data Mining, 2004.

[79] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for

collective learning on multi-relational data. In Proceedings of the 28th International

Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28

- July 2, 2011, pages 809–816, 2011.

[80] Ontoprise. Neue Version des von Ontoprise entwickelten Ratgebersystems beschleu-

nigt die Roboterwartung. Ontoprise Pressemitteilung, 2007.

[81] S. Peri, J. D Navarro, T. Z Kristiansen, R. Amanchy, V. Surendranath,

B. Muthusamy, T. K. B. Gandhi, K. N. Chandrika, N. Deshpande, S. Suresh, et al.

Human protein reference database as a discovery resource for proteomics. Nucleic

acids research, 32(Database Issue):D497, 2004.

[82] A. Popescul and L. H Ungar. Feature generation and selection in multi-relational

statistical learning. In L. Getoor and B. Taskar, editors, Introduction to Statistical

Relational Learning. MIT Press, 2007.

[83] J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3),

1990.

[84] Predrag Radivojac, Kang Peng, Wyatt T. Clark, Brandon J. Peters, Amrita Mohan,

Sean M. Boyle, and Sean D. Mooney. An integrated approach to inferring gene-

disease associations in humans. Proteins, 72, 2008.

BIBLIOGRAPHY 109

[85] Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila. A theory of

inductive query answering. In Proceedings of the IEEE International Conference on

Data Mining, 2002.

[86] S. Reckow and V. Tresp. Integrating ontological prior knowledge into relational

learning. Technical report, Siemens, 2007.

[87] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing

personalized markov chains for next-basket recommendation. In World Wide Web

Conference, 2010.

[88] A. Rettinger, M. Nickles, and V. Tresp. A statistical relational model for trust

learning. In Proceeding of 7th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2008), 2008.

[89] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learn-

ing, 62(1-2), 2006.

[90] Celine Rouveirol and Veronique Ventos. Towards learning in CARIN-ALN. In Inter-

national Workshop on Inductive Logic Programming, 2000.

[91] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Context-sensitive information re-

trieval using implicit feedback. In SIGIR, pages 43–50, 2005.

[92] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Rea-

soning with neural tensor networks for knowledge base completion. In Christopher

J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors,

NIPS, pages 926–934, 2013.

[93] Steffen Staab and Andreas Hotho. Machine learning and the Semantic Web. In

ICML 2005 tutorial, 2005.

[94] C. Stark, B. J Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Ty-

ers. BioGRID: a general repository for interaction datasets. Nucleic acids research,

34(Database Issue):D535, 2006.

[95] Benjamin Taskar, Ming Fai Wong, Pieter Abbeel, and Daphne Koller. Link prediction

in relational data. In Proceedings of Advances in Neural Information Processing

Systems, 2003.

110 BIBLIOGRAPHY

[96] Volker Tresp, Markus Bundschus, Achim Rettinger, and Yi Huang. Uncertainty Rea-

soning for the Semantic Web I, chapter Towards Machine Learning on the Semantic

Web. Lecture Notes in AI, Springer, 2008.

[97] Volker Tresp, Yi Huang, Markus Bundschus, and Achim Rettinger. Materializing

and querying learned knowledge. In Proceedings of the First ESWC Workshop on

Inductive Reasoning and Machine Learning on the Semantic Web, 2009.

[98] Volker Tresp, Yi Huang, Xueyan Jiang, and Achim Rettinger. Graphical models for

relations - modeling relational context. In KDIR 2011 - Proceedings of the Interna-

tional Conference on Knowledge Discovery and Information Retrieval, Paris, France,

26-29 October, 2011, pages 114–120, 2011.

[99] Volker Tresp and Kai Yu. Learning with dependencies between several response

variables. In Tutorial at the International Conference on Machine Learning, 2009.

[100] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. Complex embeddings for simple link prediction. In Proceedings of the

33nd International Conference on Machine Learning, ICML 2016, New York City,

NY, USA, June 19-24, 2016, pages 2071–2080, 2016.

[101] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychome-

trika, 31:279–311, 1966c.

[102] W. Van Laer and L. De Raedt. How to upgrade propositional learners to first order

logic: A case study. In Machine Learning and Its Applications, Advanced Lectures,

2001.

[103] S. V. N. Vishwanathan, Nic Schraudolph, Risi Imre Kondor, and Karsten Borgwardt.

Graph kernels. Journal of Machine Learning Research - JMLR, 2008.

[104] Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to speed

up kernel machines. In Advances in Neural Information Processing Systems 13, 2001.

[105] Zhao Xu, Kristian Kersting, and Volker Tresp. Multi-relational learning with gaus-

sian processes. In Proceedings of the 21st International Joint Conference on Artificial

Intelligence (IJCAI-09), 2009.

[106] Zhao Xu, Volker Tresp, Kai Yu, and Hans-Peter Kriegel. Infinite hidden relational

models. In Proceedings of the Conference on Uncertainty in Artificial Intelligence

(UAI), 2006.

111

[107] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding

entities and relations for learning and inference in knowledge bases. In 3rd Interna-

tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

[108] Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, and Zhao Xu. Stochastic relational

models for discriminative link prediction. In Proceedings of Advances in Neural In-

formation Processing Systems, 2006.

[109] Xiaojin Zhu. Semi-supervised learning literature survey. Technical report, Computer

Sciences TR 1530 University of Wisconsin Madison, 2006.

112

	Abstract
	Zusammenfassung
	Acknowledgment
	Introduction
	Motivation
	Relational Knowledge Bases
	Semantic Web
	Linked Open Data
	Ontological Background Knowledge

	Statistical Learning for Relation Prediction
	Statistical Relational Learning
	Relational Graphical Models
	Inductive Logic Programming
	Tensor Decompositions
	Remarks

	Structure of the Thesis
	Contributions of the Thesis

	Learning with the Statistical Unit Node Set (SUNS)
	The Approach
	Definition of Statistical Setting
	Random Variables
	Non-Random Covariates
	Formal Definition of Statistical Setting
	Multivariate Prediction Model: Reduced-Rank Penalized Regression
	Transduction and Induction

	Empirical Study: Friendship Prediction
	Data Set and Experimental Setup
	Results

	Remarks

	Kernel SUNS
	The Nyström Approximation
	Kernel SUNS
	Experiments
	Scalability

	Remarks

	R-Model
	Object-Oriented Sampling Assumption
	Relation-Oriented Sampling Assumption
	An Example Illustrating R-Model
	A Social Network
	Modeling User-Movie Events
	Adding Last Movie Watched
	Adding Time of the Event

	Empirical Study 1
	Empirical Study 2
	Methodology
	Results

	Remarks

	Applications
	Stream Reasoning for Semantic Social Media Analysis
	Stream Reasoning
	Empirical Study
	Evaluation

	Life Science: Disease-Gene Prioritization
	The Problem
	Empirical Study

	Location-based Personalized Recommendation
	The BOTTARI Mobile Application
	Data and Ontology
	Empirical Study

	Conclusions and Future Work
	Appendices

