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I. Introduction 

1. Cobalt-Catalyzed Reactions with Functionalized Zinc Reagents 

Transition-metal catalyzed C-C bond forming reactions have considerably shaped the landscape of modern 

synthetic organic chemistry. Their success culminated in 2003 by awarding Richard Heck, Ei-ichi Negishi 

and Akira Suzuki the Nobel prize in chemistry.1 Although the discovery of transition-metal-promoted C-C 

bond formation reactions can be dated back to the end of the 19th century,2 the constant need for highly 

active but also cheap catalytic systems is more relevant than ever. Metal complexes based on palladium 

salts are the most common catalysts for these transformations. Their broad reaction scope and exceptional 

high catalytic activity led to numerous applications in academia but also industry.3 However, major 

drawbacks of palladium-based catalysis are the need of often sophisticated and costly ligands as well as 

the high price of the metal itself.3 Thus, the search for viable alternatives is of huge importance for the 

chemical community. In this context, cobalt salts are of great interest, since their relatively high abundance 

makes them rather inexpensive catalysts.4 The low price combined with a high catalytic activity have 

triggered research towards the usage of cobalt catalysts for several transformations.5  

 

 

                                                           
1 The Nobel Prize in Chemistry 2010. NobelPrize.org. Nobel Media AB 2020. Wed. 11 Mar 2020. 
<https://www.nobelprize.org/prizes/chemistry/2010/summary/>. 
2 a) C. Glaser, Ber. Dtsch. Chem. Ges. 1869, 2, 422-424; b) C. Glaser, Ann. Chem. Pharm. 1870, 154, 137-171; c) A. 
Baeyer, Ber. Dtsch. Chem. Ges. 1882, 15, 50-56; d) F. Ullmann, J. Bielecki, Ber. Dtsch. Chem. Ges. 1901, 34, 2174-2185; 
e) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062-5085. 
3 a) Cross-Coupling Reactions: A Practical Guide, (Ed.: N. Miyaura), Springer, Heidelberg, 2002; b) Metal-Catalyzed 
Cross-Coupling Reactions, Second Edition (Eds.: A. de Meijere, F. Diederich), Wiley-VCH, Weinheim, 2004; c) Modern 
Drug Synthesis (Eds.: J. J. Li, D. S. Johnson), John Wiley & Sons, Hoboken, 2010; d) A. Biffis, P. Centomo, A. Del Zotto, 
M. Zecca, Chem. Rev. 2018, 118Σ ннпфҍннфрΦ 
4 a) H. Pellissier, H. Clavier, Chem. Rev. 2014, 114, 2775-нуноΤ ōύ ·ΦπDΦ [ƛǳΣ /ΦπWΦ ½ƘƻǳΣ 9Φ [ƛƴΣ ·Φπ[Φ IŀƴΣ {Φπ{Φ ½ƘŀƴƎΣ vΦ 
Li, H. Wang, Angew. Chem. Int. Ed. 2018, 57, 13096-13100. 
5 a) H. Shinokubo, K. Oshima, Eur. J. Org. Chem. 2004, 2004, 2081-2091; b) W. Hess, J. Treutwein, G. Hilt, Synthesis 
2008, 22, 3537-3562; c) C. Gosmini, J.-M. Bégouin, A. Moncomble, Chem. Commun. 2008, 3221-3233; d) G. Cahiez, 
A. Moyeux, Chem. Rev. 2010, 110, 1435-1462; e) C. E. I. Knappke, S. Grupe, D. Gärtner, M. Corpet, C. Gosmini, A. J. 
von Wangelin, Chem. Eur. J. 2014, 20, 6828-6842; f) M. S. Hofmayer, J. M. Hammann, F. H. Lutter, P. Knochel, 
Synthesis 2017, 49, 3925-3930; g) Non-Noble Metal Catalysis (Eds.: R. J. M. Klein Gebbink, M.-E. Moret), Wile-VCH, 
Weinheim, 2019; f) C. Dorval, C. Gosmini, Low-valent Cobalt Complexes in C-X Coupling and Related Reactions in 
Cobalt Catalysis in Organic Synthesis (Ed.: M. Hapke, G. Hilt), Wiley-VCH, Weinheim, 2020. 



INTRODUCTION 

_____________________________________________________________________________________________ 

2 

 

Whereas cobalt-catalyzed reactions using organomagnesium reagents have been widely reported,5 a 

growing interest in the application of organozinc reagents as reaction partners became apparent.5f,6 

Zinc organometallics provide some highly advantageous properties. In comparison to the rather ionic 

carbon-metal bond of lithium or magnesium organometallics the carbon-zinc bond has a more covalent 

character, thus enabling the tolerance of a plethora of sensitive functional groups.7 This, in turn, causes a 

comparably low reactivity with a range of electrophiles. However, the low lying p-orbitals of organozinc 

reagents enable a fast transmetalation to transition-metal catalysts, which opens the way for a variety of 

reactions due to the presence of empty d-orbitals at the transition-metal centre.7c Furthermore, the 

comparably low toxicity and constantly increasing commercial availability make zinc reagents a unique 

class of compounds.7 The following part outlines the most common methods for the preparation of 

functionalized organozinc reagents. 

  

                                                           
6 a) J.-M. Bégouin, C. Gosmini, J. Org. Chem. 2009, 74, 3221-3224; b) J. M. Hammann, D. Haas, P. Knochel, Angew. 
Chem. Int. Ed. 2015, 54, 4478-4481; c) D. Haas, J. M. Hammann, F. H. Lutter, P. Knochel, Angew. Chem. Int. Ed. 2016, 
55, 3809-3812; d) L. Thomas, F. H. Lutter, M. S. Hofmayer, K. Karaghiosoff, P. Knochel, Org. Lett. 2018, 20, 2441-2444; 
e) F. Liu, J. Zhong, Y. Zhou, Z. Gao, P. J. Walsh, W. Wang, S. Ma, S. Hou, S. Liu, M. Wang, M. Wang, Q. Bian, Chem. Eur. 
J. 2018, 24, 2059-2064. 
7 a) P. Knochel, R. D. Singer, Chem. Rev. 1993, 93, 2117-2188; b) P. Knochel, N. Millot, A. L. Rodriguez, C. E. Tucker, 
Preparation and Applications of Functionalized Organozinc Compounds in Organic Reactions, Vol. 58 (Ed.: L. E. 
Overman), Wiley, New York, 2001; c) P. Knochel, H. Leuser, L-Z. Gong, S. Perrone, F. F. Kneisel, Polyfunctional Zinc 
Organometallics for Organic Synthesis in Handbook of Functionalized Organometallics, (Ed.: P. Knochel), Wiley-VCH, 
Weinheim, 2005; d) P. Knochel, H. Leuser, L.-Z. Gong, S. Perrone, F. F. Kneisel, Functionalized Organozinc Compounds 
in Patai's Chemistry of Functional Groups: Functionalized Organozinc Compounds Part 1 (Eds.: Z. Rappoport, I. Marek), 
Wiley, Chichester, 2006; e) A. Sidduri, J. Tilley, N. Fotouhi, Synthesis 2014, 46, 430-444; f) D. Haas, J. M. Hammann, 
R. Greiner, P. Knochel, ACS Catal. 2016, 6, 1540-1552; g) A. D. Dilman, V. V. Levin, Tetrahedron Lett. 2016, 57, 3986-
3992; h) A. D. Benischke, M. Ellwart, M. R. Becker, P. Knochel, Synthesis 2016, 48, 1101-1107; i) F. H. Lutter, M. S. 
Hofmayer, J. M. Hammann, V. Malakhov, P. Knochel Generation and Trapping of Functionalized Aryl- and 
Heteroarylmagnesium and -Zinc Compounds in Organic Reactions, Vol. 100 (Ed.: S. E. Denmark), Wiley, New York, 
2019. 
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2. Preparation of Polyfunctional Organozinc Reagents 

2.1 Oxidative Insertion of Zinc Powder 

Organozinc reagents can be obtained via oxidative insertion of zinc powder into a carbon-halide bond. 

However, zinc dust is often covered by an oxide layer, which significantly hampers the reaction. Thus, in 

order to ensure a fast and complete insertion reaction, the surface of the metal has to be activated prior 

to use. Treatment of the metal powder with a combination of trimethylsilyl chloride and 1,2-

dibromoethane enables the preparation of various alkylzinc reagents from the corresponding iodides.7c 

Hence, the reaction of zinc with -̡amino acid derivative 1 proceeded within 15 min affording the 

polyfunctional alkylzinc reagent 2, which underwent a subsequent cross-coupling leading to the alkylated 

arene 3 in 89% yield (Scheme 1). Using DMF as solvent for the generation of 2 was ŎǊǳŎƛŀƭ ǘƻ ŀǾƻƛŘ ʲ-

elimination of the amino group.8 

 

 

Scheme 1: Preparation of a chiral alkylzinc reagent and subsequent palladium-catalyzed cross-coupling. 

 

Alternatively, Riecke found that in situ reduction of ZnCl2 with alkaline metals produces highly active zinc 

(Riecke-zinc). This allows the formation of various zinc organometallics from alkyl iodides and even 

bromides. Also, (hetero)aryl halides are readily transformed into the corresponding zinc reagents.9 A 

convenient alternative is the activation of the zinc surface with lithium chloride, which enables the 

preparation of a variety of alkyl-, alkenyl-, aryl- and heteroarylzinc reagents.10 Mechanistic studies revealed 

that LiCl promotes the solubilization of surface-bound organometallic species, thus enabling the progress 

of the insertion reaction.11 Under these conditions, zinc powder inserted regioselectively into the carbon-

                                                           
8 C. S. Dexter, R. F. W. Jackson, J. Elliott, J. Org. Chem. 1999, 64, 7579-7585. 
9 a) R. D. Riecke, Science 1989, 246, 1260-1264; b) R. D. Rieke, M. V. Hanson, Tetrahedron 1997, 53, 1925-1956. 
10 A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040-6044. 
11 a) C. Feng, D. W. Cunningham, Q. T. Easter, S. A. Blum, J. Am. Chem. Soc. 2016, 138, 11156-11159; b) C. Feng, Q. T. 
Easter, S. A. Blum, Organometallics 2017, 36, 2389-2396. 
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iodine bond of the polyfunctional aryl tosylate 4 leading to the zinc reagent 5. A copper-catalyzed allylation 

afforded the polyfunctional arene 6 in 82% yield (Scheme 2).12 

 

 

Scheme 2: Regioselective zinc insertion and subsequent copper-catalyzed allylation. 

 

Later, it was found that the addition of indium salts further accelerates the insertion reaction. Thus, 

thiophenylzinc reagent 7 was prepared from the corresponding heterocyclic bromide 8 within 2 h in 74% 

yield. Subsequent acylation in the presence of a palladium catalyst led to the unsymmetrical ketone 9 in 

95% yield (Scheme 3).13  

 

 

Scheme 3: Zinc insertion in the presence of indium and lithium salts. 

 

Recently, a nickel-catalyzed generation of various arylzinc reagents from aryl sulfonates was reported. 

Tosylate 10 was treated with zinc powder in the presence of 1,2-dibromoethane, a nickel catalyst and 

diazadiene ligand 11 furnishing the corresponding arylzinc tosylate 12. Trapping reaction with iodine 

afforded aryl iodide 13 in 86% yield (Scheme 4).14 Mechanistically, the authors propose an initial reduction 

                                                           
12 N. Boudet, S. Sase, P. Sinha, C.-Y. Liu, A. Krasovskiy, P. Knochel, J. Am. Chem. Soc. 2007, 129, 12358-12359. 
13 A. D. Benischke, G. Le Corre, P. Knochel, Chem. Eur. J. 2017, 23, 778-782. 
14 P. Klein, V. D. Lechner, T. Schimmel, L. Hintermann, Chem. Eur. J. 2020, 26, 176-180. 
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of the Ni(II) catalyst leading to the corresponding Ni(0) complex, which undergoes an oxidative addition to 

the aryl tosylate. Subsequent in situ transmetalation affords the arylzinc tosylate. 

 

 

Scheme 4: Nickel-catalyzed zinc insertion into aryl sulfonates. 

 

2.2 Transmetalation 

Another approach towards organozinc reagents is their preparation via transmetalation. Lithium or 

magnesium organometallics undergo fast transmetalation with zinc salts, driven by the formation of a 

more covalent and thus thermodynamically more stable carbon-metal bond.7c For example, the 

asymmetric lithiation of N-boc pyrrolidine 14 in the presence of (ҍ)-spartein and subsequent 

transmetalation with ZnCl2 afforded the chiral organozinc reagent 15. A palladium-catalyzed cross-

coupling of 15 with 3-bromo pyridine furnished the arylated pyrrolidine 16 in 60% yield (er = 96:4, 

Scheme 5).15 

 

 

Scheme 5: Asymmetric lithiation of N-Boc pyrrolidine and subsequent cross-coupling of the corresponding zinc reagent. 

 

                                                           
15 K. R. Campos, A. Klapars, J. H. Waldman, P. G. Dormer, C.-Y. Chen, J. Am. Chem. Soc. 2006, 128, 3538-3539. 
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Also, the reaction of magnesium metal with (hetero)aryl halides in the presence of ZnCl2 allowed the 

efficient preparation of various polyfunctional zinc organometallics.16 Later, this method was extended to 

functionalized alkylzinc reagents. Thus, the reaction of ethyl 6-bromohexanoate (17) with a mixture of 

magnesium and ZnCl2 provided 70% of alkylzinc reagent 18 within 2.5 h at 20 °C. Copper-catalyzed 

acylation led to ketone 19 in 70% yield (Scheme 6).17 Remarkably, the related reaction of zinc powder with 

17 in the presence of LiCl proceeded significantly slower furnishing 70% of reagent 18 after 70 h reaction 

time at 50 °C.17  

 

 

Scheme 6: Preparation of an alkylzinc reagent via magnesium insertion followed by in situ transmetalation with ZnCl2. [a] Salts are 

omitted for clarity. 

 

2.3 Halogen/Zinc-Exchange 

Furthermore, functionalized alkyl-, alkenyl-, aryl- and heteroarylzinc reagents can be prepared from the 

corresponding halides via halogen/zinc-exchange using diorganozinc reagents or zincates.18 In general, the 

rate of halogen/metal-exchange reactions is highly dependent on the nature of the carbon-metal bond 

present in the exchange reagent. The more ionic this bond the faster the exchange reaction. Due to the 

covalent character of the carbon-zinc bond an exchange reaction is comparably slow and requires more 

polar solvents or rather forcing reaction conditions.7i Thus, performing an iodine/zinc-exchange reaction 

using alkyl iodide 20 required treatment with an excess Et2Zn at 50 °C. The corresponding dialkylzinc 

reagent 21 was subsequently trapped with 2-cyclohexenone affording the alkylated cyclohexanone 22 in 

83% yield (Scheme 7).19 

                                                           
16 a) F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 6802-6806; b) 
F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel, Chem. Eur. J. 2009, 15, 7192-7202. 
17 T. D. Blümke, F. M. Piller, P. Knochel, Chem. Commun. 2010, 46, 4082-4084. 
18 M. Balkenhohl, P. Knochel, Chem. Eur. J. 2020, DoI: 10.1002/chem.201904794. 
19 M. J. Rozema, A. Sidduri, P. Knochel, J. Org. Chem. 1992, 57, 1956-1958. 
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Scheme 7: Preparation of dialkylzinc reagents via iodine/zinc-exchange using Et2Zn. 

 

Alternatively, highly reactive alkylzincates enable the halogen/zinc-exchange of various aryl iodides. 

However, low reaction temperatures were required to allow the tolerance of sensitive functional groups 

under the reaction conditions.20 In 2004 a mild halogen/zinc-exchange reaction of various (hetero)aryl 

iodides using either iPr2Zn or sBu2Zn was reported displaying an exceptional functional group tolerance. 

The addition of Li(acac) was found to increase the reactivity of the exchange reagent due to in situ 

formation of zincates. Treating polyfunctional aryl iodide 23 with sBu2Zn in the presence of 10 mol% 

Li(acac) for 3 h at room temperature provided the diarylzinc reagent 24. Trapping reaction with Bu3SnCl 

afforded arylstannane 25 in 66% yield (Scheme 8).21 

 

 

Scheme 8: Li(acac)-catalyzed preparation of diorganozinc reagents via iodine/zinc-exchange. 

 

Recently, it was found that the complexation of sBu2Zn with two lithium alkoxides resulted in a highly 

reactive but yet selective exchange reagent, which enables the preparation of di(hetero)aryl zinc reagents 

from various electron-rich as well as -deficient halo arenes. Thus, iodo anitpyrine 26 underwent a fast 

iodine/zinc-exchange leading to 27 within 10 min. A copper-catalyzed allylation furnished the 

                                                           
20 a) Y. Kondo, N. Takazawa, C. Yamazaki, T. Sakamoto, J. Org. Chem. 1994, 59, 4717-4718; b) Y. Kondo, M. Fujinami, 
M. Uchiyama, T. Sakamoto, J. Chem. Soc., Perkin Trans. 1 1997, 799-800; c) Kondo, N. Takazawa, A. Yoshida, T. 
Sakamoto, J. Chem. Soc., Perkin Trans. 1 1995, 1207-1208. 
21 F. F. Kneisel, M. Dochnahl, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 1017-1021. 
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functionalized heterocycle 28 in 74% yield (Scheme 9). Remarkably, the bimetallic exchange reagent 

enabled the first halogen/zinc-exchange reaction using aryl bromides.22 

 

 

Scheme 9: Preparation of a diorganozinc reagent using sBu2Znẗ2LiOR. 

 

2.4 Directed Metalation  

The directed metalation of arenes and heterocycles has proved to be a powerful tool for the selective 

functionalization of various scaffolds.7I,23 Especially, TMP-magnesium or -zinc bases found broad 

application in academic as well as industrial research.23b,c TMP2Znẗ2MgCl2ẗ2LiCl24 and TMPZnClẗLiCl25, 

which are prepared via transmetalation from the corresponding Mg- or Li-amide, are the most common 

reagents for the mild deprotonation of various sensitive substrates. The non-nucleophilic zinc amide 

TMP2Znẗ2MgCl2ẗ2LiCl enabled the selective metalation of 3-formylindole 29 affording the heteroarylzinc 

reagent 30 within 30 min at 25 °C. After a copper-catalyzed allylation, the functionalized indole 31 was 

obtained in 71% yield (Scheme 10).24 

 

 

                                                           
22 M. Balkenhohl, D. S. Ziegler, A. Desaintjean, L. J. Bole, A. R. Kennedy, E. Hevia, P. Knochel, Angew. Chem. Int. Ed. 
2019, 58, 12898-12902. 
23 a) V. Snieckus, Chem. Rev. 1990, 90, 879-933; b) B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel, Angew. Chem. 
Int. Ed. 2011, 50, 9794-9824. b) M. Balkenhohl, P. Knochel, SynOpen 2018, 2, 78-95.  
24 S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7685-7688. 
25 M. Mosrin, P. Knochel, Org. Lett. 2009, 11, 1837-1840. 
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Scheme 10: Directed metalation of an indole derivative using TMP2Znẗ2MgCl2ẗ2LiCl. 

 

Interestingly, the regioselectivity of the metalation of chromone (32) can be adjusted by the composition 

of the metal amide used for the deprotonation. Thus, treating 32 with TMPZnClẗLiCl led to the metalation 

in 3-position (33), whereas TMP2Znẗ2MgCl2ẗ2LiCl afforded the corresponding diheteroarylzinc reagent 34 

in 2-position. This might be explained by the presence of the magnesium salt within the reaction mixture. 

MgCl2 is coordinated by the ketone moiety, thus blocking the preferential coordination-site for the zinc-

amide. Trapping the zinc reagents 33 and 34 with I2 afforded iodo-chromones 35 and 36 in 77 and 80% 

yield, respectively (Scheme 11).26 

 

 

Scheme 11: Regioselective metalation of chromone. 

 

Remarkably, a one-pot late-stage zincation/cross-coupling sequence was reported for the synthesis of the 

PI3K inhibitor GDC-0908 (37). Treating 1,2,4-triazole 38 with TMPZnClẗLiCl in the presence of a palladium 

catalyst and heteroaryl bromide 39 led to the formation of the corresponding cross-coupling product. 

Subsequent benzoyl deprotection afforded GDC-0908 (37) in 83% yield over two steps (Scheme 12).27 

 

                                                           
26 L. Klier, T. Bresser, T. A. Nigst, K. Karaghiosoff, P. Knochel, J. Am. Chem. Soc. 2012, 134, 13584-13587. 
27 H. Zhang, B. X. Li, B. Wong, A. Stumpf, C. G. Sowell, F. Gosselin, J. Org. Chem. 2019, 84, 4796-4802. 
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Scheme 12: Synthesis of GDC-0908 (37) via a late stage zincation/cross-coupling sequence. 

 

Remarkably, organozinc reagents exhibit a high thermal stability enabling the zincation of less activated 

arenes using TMP2Znẗ2MgCl2ẗ2LiCl at elevated temperatures.7i,28 Therefore, N,N-diethylbenzamide (40) 

was treated with the zinc base for 5 h at 120 °C under microwave irradiation yielding 41 in more than 90% 

yield. Remarkably, performing the reaction in an oil bath at the same reaction conditions only afforded 

10-20% of the corresponding organozinc reagent 41. Zincated arene 41 was used in a subsequent 

palladium-catalyzed cross-coupling leading to the arylated benzamide 42 in 85% yield (Scheme 13).29  

 

 

Scheme 13: High-temperature zincation of N,N-diethylbenzamide. 

 

                                                           
28 a) L. Zhu, R. M. Wehmeyer, R. D. Rieke, J. Org. Chem. 1991, 56, 1445-1453; b) M. Mosrin, G. Monzon, T. Bresser, P. 
Knochel, Chem. Commun. 2009, 5615-5617. 
29 S. Wunderlich, P. Knochel, Org. Lett. 2008, 10, 4705-4707. 
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Besides the directed zincation of various arenes and heterocycles, TMP-zinc bases also allow for the 

metalation at benzylic30 or allylic31 positions and the deprotonation of functionalized alkenes.32 The 

metalation in h -position to several electron-withdrawing groups has also been reported.31,33 

Recently, Wang showed that -hmetalated alkyl compounds bearing phosphonate, phosphine oxide, 

sulfonamide or sulfoxide groups undergo a copper-catalyzed cross-coupling with alkenyl iodonium salts. 

Thus, treating phosphonate 43 with TMPZnClẗLiCl afforded the zinc reagent 44, which led after copper-

catalyzed alkenylation using an alkenyl iodonium salt to the ̡ Σʴ-unsaturated phosphonate 45 in 95% yield 

(Scheme 14).34 

 

 

Scheme 14: Metalation of an alkyl phosphonate. 

 

3. Cobalt Catalyzed Cross-Coupling Reactions with Organozinc Reagents  

The relatively high abundance and catalytic activity of cobalt salts combined with easy accessible and mild 

zinc organometallics led to a rising number of publications within this field.5f,6 In the following part, an 

overview on recent developments in cobalt catalyzed Negishi cross-couplings will be given. 

 

                                                           
30 a) S. Duez, A. K. Steib, S. M. Manolikakes, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 7686-7690; b) S. Duez, A. K. 
Steib, P. Knochel, Org. Lett. 2012, 14, 1951-1953; c) A. Castelló-Micó, P. Knochel, Synthesis 2018, 2, 155-169. 
31 S. Duez, S. Bernhardt, J. Heppekausen, F. F. Fleming, P. Knochel, Org. Lett. 2011, 13, 1690-1693. 
32 T. Bresser, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 1914-1917. 
33 a) I. Popov, S. Lindeman, O. Daugulis, J. Am. Chem. Soc. 2011, 133, 9286-9289; b) R. J. Mycka, S. Duez, S. Bernhardt, 
J. Heppekausen, P. Knochel, F. F. Fleming, J. Org. Chem. 2012, 77, 7671-7676; c) T. Knauber, J. Tucker, J. Org. Chem. 
2016, 81, 5636-5648; d) M. E. Dalziel, P. Chen, D. E. Carrera, H. Zhang, F. Gosselin, Org. Lett. 2017, 19, 3446-3449. 
34 C. Liu, Q. Wang, Angew. Chem. Int. Ed. 2018, 57, 4727-4731. 
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3.1 Cobalt-Catalyzed Cross-Couplings of Sp2-Hybridized Organozinc Reagents 

In 2013, Inoue and co-worker developed a protocol for the cobalt-catalyzed arylation of ethyl 

bromodifluoroacetate (46). A catalytic system comprising 5 mol% CoCl2 and 6 mol% Me4DACH (Trans-

N,N,N ΣN -tetramethylcyclohexane-1,2-diamine, 47) enabled the coupling of functionalized arylzinc 

reagents. Thus, various arylated ethyl difluoroacetates such as 48 were obtained at room temperature 

within 18 h (Scheme 15).35  

 

 

Scheme 15: Cobalt-catalyzed cross-coupling of arylzinc reagents with bromo difluoroacetates. 

 

Furthermore, (hetero)aryl zinc reagents generated via directed deprotonation using 

TMP2Znẗ2MgCl2ẗ2LiCl24,36 as a metalation agent were efficiently coupled with various primary and 

secondary alkyl iodides or bromides. Thus, the conversion of ethyl 3-fluorobenzoate (49) to the 

corresponding diarylzinc derivative 50 using TMP2Znẗ2MgCl2ẗ2LiCl followed by the cross-coupling with the 

primary iodide 51 provided the alkylated benzoate 52 in 58% yield. Additionally, the coupling proceeded 

with high diastereoselectivity using the 1,2-disubstituted TBS protected iodohydrin 53 affording 54 in 68% 

yield and dr = 99:1 (Scheme 16).6b 

 

                                                           
35 K. Araki, M. Inoue, Tetrahedron 2013, 69, 3913-3918. 
36 a) M. Mosrin, P. Knochel, Chem. Eur. J. 2009, 15, 1468-1477; b) S. H. Wunderlich, C. J. Rohbogner, A. Unsinn, P. 
Knochel, Org. Process Res. Dev. 2010, 14, 339-345. 
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Scheme 16: Cobalt-catalyzed cross-coupling of diarylzinc 50 with primary and secondary alkyl iodides 51 and 53. 

 

An enantioselective cobalt-catalyzed Negishi cross-coupling was reported by Bian and co-workers. A 

variety of racemic h -bromo esters was coupled with functionalized (hetero)aryl zinc reagents using 

10 mol% CoI2 in combination with the tailored bisoxazolidine ligand 56. Remarkably, the protocol enabled 

the efficient coupling of sterically hindered ortho- arylzinc reagents with h-bromo esters for the first time. 

Thus, the method gives access to a variety of -harylated chiral esters, such as 57-60 (Scheme 17).6e Later, 

this procedure was applied to the enantioselective synthesis of (S)-preclamol.37 

 

 

Scheme 17. Enantioselective cobalt-catalyzed cross-coupling of racemic h-bromo esters. 

                                                           
37 Y. Zhou, C. Liu, L. Wang, L. Han, S. Hou, Q. Bian, J. Zhong, Synlett 2019, 30, 860-862. 
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Recently, Wang et al. reported a cobalt-catalyzed decarboxylative cross-coupling of functionalized 

N-hydroxyphthalimide esters with diaryl-, dialkenyl- and dialkynylzinc reagents. No additional ligand was 

required to obtain various arylated, olefinated and alkynylated alkyl compounds such as 61-65 

(Scheme 18). Remarkably, the use of alkynylzinc pivalates instead of the corresponding dialkylzinc reagent 

led to improved coupling yields in some cases.4b 

 

 

Scheme 18: Cobalt-catalyzed decarboxylative cross-coupling. [a] The corresponding alkynylzinc pivalate was used. 

 

Furthermore, Gosmini described the coupling of substituted arylzinc reagents with 1-chloropyrimidine and 

2-chloropyrazine. Organometallic reagents were formed in situ from the corresponding halide in the 

presence of zinc powder and 10 mol% CoBr2. Subsequent addition of an N-heterocyclic halide to the 

reaction mixture led to products, such as 66 (Scheme 19).6a 

 

 

Scheme 19: Cobalt-catalyzed cross-coupling of 2-chloropyrazine 

 

Later, it was found that the addition of carboxylate salts, such as sodium formate or pivalate have 

beneficial effects on cobalt-catalyzed Csp2-Csp2 cross-couplings. These salts presumably act as ligands for 

the cobalt catalyst thus making the cross-coupling more selective by suppressing side-reactions. Various 
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ortho-activated halides or electron deficient N-heterocycles were coupled with aryl- or heteroarylzinc 

organometallics affording products 67-71 in 61-88% yield (Scheme 20).6c  

 

 

Scheme 20: Cobalt-catalyzed cross-coupling using sodium formate as additive. 

 

These findings led to the development of a cobalt-catalyzed cross-coupling using organozinc pivalates as 

reaction partners. This class of organometallics show a significantly enhanced stability towards moisture 

and air and can be stored as solids under argon at room temperature for several months.38 Remarkably, 

the use of these reagents considerably improved the yield of the coupling. Thus, the reaction of anisylzinc 

pivalate 72 with bromo benzonitrile 73 afforded the biaryl product 74 in 80% yield, whereas the 

corresponding arylzinc chloride 75 led to a significantly lower yield of 41% (Scheme 21). 39 

 

                                                           
38 a) S. Bernhardt, G. Manolikakes, T. Kunz, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 9205-9209; b) C. I. Stathakis, 
S. Bernhardt, V. Quint, P. Knochel, Angew. Chem. Int. Ed. 2012, 51, 9428-9432; c) J. R. Colombe, S. Bernhardt, C. 
Stathakis, S. L. Buchwald, P. Knochel, Org. Lett. 2013, 15, 5754-5757; d) C. I. Stathakis, S. M. Manolikakes, P. Knochel, 
Org. Lett. 2013, 15, 1302-молрΤ Ŝύ !Φ IŜǊƴłƴπDƽƳŜȊΣ 9Φ IŜǊŘΣ 9Φ IŜǾƛa, A. R. Kennedy, P. Knochel, K. Koszinowski, S. 
M. Manolikakes, R. E. Mulvey, C. Schnegelsberg, Angew. Chem. Int. Ed. 2014, 53, 2706-2710; f) S. M. Manolikakes, 
M. Ellwart, C. I. Stathakis, P. Knochel, Chem. Eur. J. 2014, 20, 12289-12297; g) M. Ellwart, P. Knochel, Angew. Chem. 
Int. Ed. 2015, 54, 10662-10665; h) Y.-H. Chen, M. Ellwart, V. Malakhov, P. Knochel, Synthesis 2017, 49, 3215-3223; i) 
Y. H. Chen, C. P. Tüllmann, M. Ellwart, P. Knochel, Angew. Chem. Int. Ed. 2017, 56, 9236-9239; j) Y.-H. Chen, M. Ellwart, 
G. Toupalas, Y. Ebe, P. Knochel, Angew. Chem. Int. Ed. 2017, 56, 4612-4616; k) C. P. Tüllmann, Y.-H. Chen, R. J. 
Schuster, P. Knochel, Org. Lett. 2018, 20, 4601-4605;  
39 J. M. Hammann, F. H. Lutter, D. Haas, P. Knochel, Angew. Chem. Int. Ed. 2017, 56, 1082-1086. 
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Scheme 21: Comparison of arylzinc pivalates and arylzinc chlorides in cobalt-catalyzed cross-couplings. 

 

Furthermore, the combination of cobalt salts and organozinc pivalates expanded the scope of cobalt-

catalyzed Csp2-Csp2 cross-couplings. Thus, meta-substituted halo arenes, sterically hindered metal 

reagents and unactivated heterocyclic halides could be used leading to functionalized coupling products, 

such as 76-78. Also, alkenyl halides and bromo alkynes underwent cobalt-catalyzed cross-couplings with 

arylzinc pivalates leading to stilbene derivative 79 and the arylated alkyne 80 (Scheme 22).39 Later, a 

further extension of the scope and the scalability of the method was reported.5f 

 

 

Scheme 22: Cobalt-catalyzed cross-couplings using aryl- and heteroarylzinc pivalates. [a] reaction was carried out at ҍ40 °C 

 

In addition, functionalized benzylzincs proved to be suitable organometallic reagents for cobalt-catalyzed 

couplings with various ortho- and para-activated aryl and heteroaryl halides giving access to di(hetero)aryl 

methane derivatives.40  

Electron-deficient as well as electron-rich arylzinc reagents could be coupled with a variety of 

functionalized bromo alkynes. Hence, the reaction of the zinc reagent generated from aryl bromide 81 

                                                           
40 A. D. Benischke, I. Knoll, A. Rérat, C. Gosmini, P. Knochel, Chem. Commun. 2016, 52 3171-3174.  
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with functionalized bromo alkyne 82 proceeded smoothly in the presence of 10 mol% CoBr2(phen) 

affording the arylated alkyne 83 in 91% yield (Scheme 23).41 

 

 

Scheme 23: Cobalt-catalyzed coupling of arylzinc reagents with bromoalkynes. 

 

3.2 Cobalt-Catalyzed Cross-Couplings of Sp-Hybridized Organozinc Reagents 

Alkynylzinc pivalates are a versatile class of organometallic reagents, which show a greatly enhanced 

stability towards air and moisture in comparison to the corresponding zinc halide derivatives.42 Cobalt 

catalysis allows their coupling with various aryl and heteroaryl halides in the presence of TMEDA. Thus, 

various pyridine, benzonitrile or benzophenone halides were alkynylated furnishing the products 84-86 in 

up to 95% yield. Furthermore, a steroid derived alkynylzinc pivalate was coupled with 

chlorobenzophenone providing the cross-coupling product 87 in 75% yield (Scheme 24).43  

 

 

Scheme 24: Cobalt-catalyzed cross-couplings of alkynylzinc pivalates with heteroaryl halides. 

                                                           
41 M. Corpet., X.π½. Bai, C. Gosmini, Adv. Synth. Catal. 2014, 356, 2937-2942. 
42 Y.-H. Chen, C. P. Tüllmann, M. Ellwart, P. Knochel, Angew. Chem. Int. Ed. 2017, 56, 9236-9239. 
43 J. M. Hammann, L. Thomas, Y.-H. Chen, D. Haas, P. Knochel, Org. Lett. 2017, 19, 3847-3850. 






















































































































































































































































































































































































































































