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S U M M A R Y

The perception of visual motion is a core task to be solved by the visual
system of any sighted animal. Visual motion is the displacement of an image
or parts of an image that is perceived by an observer. It implies physical
movement, whether it be ego-motion, the motion of an object or another
behaving organism in vicinity. The specific composition of local motion cues
over a scene, so-called optic flow, indicates the direction and speed of ego-
motion or rotations around different body-axes. Motion parallax, relative
velocity differences between objects, can be used to determine distances.
And expanding flow-fields can warn an animal about an imminent collision
or the approach of a predator. No matter how complex the behavioral
repertoire of a given species may be, the correct interpretation of visual
motion is fundamental to the successful execution of locomotion, flight
maneuvers, escape responses, mating rituals and many more.

In visual neuroscience, elementary motion detection is a classical problem
of neural computation, i.e. the way neural circuits extract meaningful
information from sensory input. The displacement of a visual object over
time leads to spatio-temporal correlations in the incoming light intensity
at the retina, which is the basic sensory gateway for optic signals in most
animals. It is not trivial how these spatio-temporal correlations could
be exploited by the successive neuronal circuitry in order to generate the
percept of motion. Yet, it is a clean-cut problem that can be posed in a
quantitative manner. As such it lends itself particularly well not only to
mathematical and computational exploration, but also to biological circuit
analysis.

The insect visual system has long served as a model system for gaining
insight into this question. One reason is that insects show a largely stereo-
typical behavior to the presentation of visual motion. Flies, for example,
always turn with the direction of motion when confronted with a moving
image. This so-called optomotor response has been reproducibly shown in
various insect species. It is believed to serve as a compensatory reflex to
stabilize image velocity on the retina during flight or locomotion in order
to counteract external disturbance, such as a wind gust. In addition, early
electrophysiology studies discovered the existence of wide-field direction
selective neurons in the fly visual system that are the output of the animal’s
motion vision circuitry. Based on thorough analysis of both behaviour and
neurophysiological findings, hypotheses about the nature of the mechanism
of elementary motion detection could be made and circuit models could
be formulated. With the advent of genetic methodology primarily in the
fruit fly Drosophila melanogaster, new methods for measuring neuronal activ-
ity with sub-cellular resolution as well as circuit manipulation tools have
emerged. With these tools at hand it seems finally within reach to test the
proposed circuit models directly and to pinpoint the biological counterparts
of their algorithmic structure.
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During my doctoral studies, I applied some of these tools to create a
more complete picture of the individual steps of signal processing occur-
ring between the retina and the first direction selective cells in Drosophila
melanogaster, so-called T4 and T5 cells. These insights do not only shed light
on the cellular implementation of elementary motion detection, they also
address questions about which computational strategies the visual system
adopts in order to adapt to the requirement of robustness when confronted
with complex natural environments far from laboratory conditions. Finally,
in the context of Drosophila mating behavior, I also investigated neural
algorithms relying on an established motion vision system to enable higher
visual feature extraction such as figure-ground discrimination.

My findings are presented chronologically in the cumulative thesis at
hand. Three of the four manuscripts presented in this thesis were published
in peer-reviewed journals and the fourth one is currently subject to peer-
review.

In the first study, we systematically mapped all columnar presynaptic
partners to T4 and T5 cells in order to describe their spatial and tem-
poral filtering characteristics. Previously, electron-microscopy studies had
revealed the presynaptic partner cells of T4 and T5 cells. Other studies
had partially described filtering properties of some of those input cells,
but using different methods and varying stimuli. We provided a complete
and consistent description of all spatial receptive fields and the temporal
filter bank formed by those neurons. We found them to be ideally suited
to implement temporally asymmetric filtering, a crucial element of compu-
tational motion detector models. From that we could deduce a probable
anatomical arrangement of those cells along the T4 dendrite, which has
now proved correct. By pharmacological intervention, we could show that
behavioral state modulation acts already on the inputs of T4, demonstrating
impressively the ecological need for adaptive neuronal circuitry already in
the early visual system.

In the second study, we investigated how basic visual cues are relayed and
further processed for use in complex behaviors. Specifically, we identified a
neuronal pathway that enables male fruit flies to closely track and follow a
possible mating partner during their courtship ritual. We could show that
LC10 neurons relay visual evidence about the presence of small passing
objects to the central brain of the fruit fly, possibly towards the courtship
circuitry. Intriguingly, their selectivity for small moving targets arises
from detecting motion discontinuities between neighboring areas in visual
space. This work underlined the fundamental necessity for establishing
fully functional motion vision in the early visual system for extraction of
behaviorally relevant visual information.

The third study advanced towards a more realistic understanding of
the processing cascades in the motion vision circuitry considering also the
molecular aspects of neuronal signaling. First, the study confirmed the
glutamatergic identity of Mi9 cells, one of the T4 input neurons. Second,
while in the first study we only described calcium response properties, here
we applied the recently developed glutamate-sensor iGluSnFR to observe
directly the transmitter release of glutamatergic neurons. Due to its fast
kinetics, we could confirm for Mi9 the temporal filtering properties that we



were only able to assess indirectly by deconvolution from calcium signals in
the first study.

Finally, we set out to complete our picture of image processing in fly
motion vision regarding non-linear, adaptive phenomena. A drawback of
correlation-type motion detectors as encountered in the fly is that they are
very contrast-dependent. This makes them unreliable as velocity estimators
when confronted with the complexity of natural imagery. Surprisingly, in
the last study we were able to demonstrate that this is not the case in
the biological system. Using calcium imaging, we probed the circuit for
classical mechanisms of gain control. Indeed, presynaptic of T4 and T5, we
found evidence for divisive normalization, a widespread phenomenon for
gain control, well described in mammals as well as other sensory modalities
throughout the brain. Via blocking experiments, we could identify feedback-
loops within the circuit as the implementation of this mechanism. Using
an unbiased modeling approach by harnessing convolution neural network
technology, we could delineate general computational principles substantial
for robust motion vision. These considerations nicely paralleled our neuro-
physiological findings in the fly visual system.

Taken together, the findings presented in this thesis broaden our knowl-
edge of the fly motion vision circuitry and deepen our understanding of the
computational solutions nature has equipped the brain with.
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1 I N T R O D U C T I O N

Among all senses, vision is a particularly complex function that is carried
out by our brains. At any moment in time, visual information streams
in through our eyes and has to be structured and decoded correctly by
the subsequent neuronal circuitry. Given specific patterns of illumination
or distribution of light intensities across our retina, our brain manages to
decipher relevant information and recognize objects, faces, interpret colors,
detect moving objects, identify their direction and many more. We are not
aware of this constant process because we are only confronted with the
results of these ongoing computations: our perception.

Besides humans, the vast majority of animals relies on vision to guide
behavior and thus increase their chances of survival. In this thesis, I study
visual processing in the context of motion vision in the fruit fly, Drosophila
melanogaster, as a model organism. Although natural habitats, anatomy, and
evolutionary specification can vary drastically among species, any visual
processing system, even an artificial one, faces the same challenges imposed
by the structural and statistical properties inherent to natural images (Si-
moncelli and Olshausen, 2001). From a computational perspective, therefore,
algorithmic solutions to general problems of visual information processing
often show astonishing analogies (Carandini and Heeger, 2011; Borst and
Helmstaedter, 2015).

The fruit fly lends itself particularly well to the investigation of motion
processing circuits. First, this is due to its stereotypical behavior which
allows for a reliable read-out of motor reflexes that are guided by visual
motion. Second, unraveling the architecture and understanding the function
of a neural circuit seems more feasible in a fly brain which contains orders
of magnitude fewer neurons than most vertebrate model organisms. Finally,
the availability of an immense range of cell-targeted genetic manipulation
tools combined with neurophysiology, imaging techniques and behavioral
analysis offers a compelling toolbox and unparalleled opportunities for
circuit analysis on a cellular level.

In the following, I will provide the background for the articles presented
in the main part of this thesis. I will begin by covering theoretical aspects of
visual and motion processing in general, provide a summary of state-of-the
art research in the fly visual system and finally introduce the experimental
techniques which have been used in this work.

1.1 visual processing

What is vision? Biological visual systems have evolved to allow an organ-
ism to detect light signals and to extract information about the environment.
The fact that optical signals are made of light which is emitted or reflected by
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2 introduction

a b

Figure 1: Shading Illusions|a, The objects appear as convex because the brain
assumes that light usually comes from above. b, If the shading is reversed, objects
appear as concave. Graphics adapted from Ramachandran (1988).

surrounding objects means that they contain information about the position,
size, type and many other features of these objects. In other words, structure
and regularity in the physical world entails structure and regularity in
optical images of that world. Visual systems have been designed to process
these images and to recover that structure from them.

In vision research, the visual system is viewed not as a general image
processing machine but as a system that is very well adapted to the partic-
ular problem of processing sequences of natural images. In the course of
evolution, the brain has acquired an enormous amount of prior information
about what kind of data it can expect to receive from its sensory input
organs. An instructive example for this are shading illusions as depicted
in Figure 1. While objects appear as convex circular bumps when they are
shaded brighter at the top than at the bottom, they seem to be concave
when the shading is reversed. Our brain makes an inference about the
three-dimensionality of these objects based on the direction of this shading
gradient and under the assumption that, if there is no other obvious light
source present, light usually comes from above.

The idea that our visual system uses prior information about the natu-
ral world has been first put forward by von Helmholtz (1867) under the
term "unconscious inference" in the context of such optical illusions. We
can find that idea again in generative models of perception (Dayan et al.,
1995) which suggest that what the visual system does is trying to match
its observations with an internal model of the world. More specifically,
it can also be applied to build a theory for understanding early visual
processing, as for example in the mammalian retina or in the Drosophila
visual system. Normative theories like redundancy reduction or efficient
coding (Attneave, 1954; Barlow, 1961) try to transcend descriptive models
of neuronal processing. They are able to link the functional properties of
early visual neurons to general coding principles and the requirement for
an optimized neural representation of naturalistic stimuli in the brain.

In the following, I will focus on some aspects of these theories and
illustrate how general statistical properties of natural input stimuli are
reflected in mechanisms of neural processing.
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1.1.1 Natural images

Image formation in any visual system, whether a biological or an artificial
one, is based on light projection. The result is a two-dimensional image
of the physical world. Obviously, the images produced by observing the
natural world are countless and as diverse as nature itself. It may therefore
come as a surprise that the set of all possible natural images is actually
by far smaller than the set of possible images in general. Just consider a
grayscale image patch of 100x100 pixels with each 256 possible intensity
values. The set of all possible images then comprises 25610,000 images since
each pixel’s intensity value can be chosen independently from its neighbor.
This is an immense number. However, many of those randomly generated
images will appear simply as fuzzy and noisy image patches without any
meaningful structure to our eyes. In contrast to that, natural images possess
many obvious structural elements such as edges, gradients, textured areas
and so on. Despite their diversity, natural images therefore share certain
fundamental features that are statistical characteristics of the class of natural
images. A description of a few of the main statistical properties of natural
scenes is given in the following.

Luminance and contrast

The first order statistic of natural images is the distribution of individual
pixel intensity values across the set of natural scenes. Early work has
consistently confirmed that this local luminance distribution is positively
skewed (Figure 2a,b) (van der Schaaf and van Hateren, 1996; Brady and
Field, 2000; Geisler, 2008). This means that there are more pixels which are
darker than the average luminance, but there are a few pixels that are a lot
brighter than one would expect from a Gaussian distribution with the same
standard deviation. This distribution becomes symmetric after a logarithmic
transform of the image.

The contrast of an image is not rigorously defined. For artificial stimuli
like gratings or bars, one might use the Michelson or the Weber contrast
which are ratio-metric measures derived from minimum and maximum
intensity values. For natural scenes, it makes more sense to look at the
root mean square contrast, i.e. the standard deviation, of pixel intensities
in a local patch (Figure 2c). Contrast is then a measure of local intensity
variance which is also positively skewed. Contrast and luminance are largely
statistically independent, although they correlate over small distances and in
sky regions where luminance is generally high and contrast is generally low
(Frazor and Geisler, 2006; Geisler, 2008).

Spatial structure and power spectrum

The second order statistics of natural images take into account pairwise
correlations between pixels. Such correlations can be characterized using the
autocorrelation function or the power spectrum. Power spectra of natural
images typically follow an exponential power law 1/fn with an exponent
n ≈ 2.0 (Figure 2d) (Field, 1987; Ruderman, 1994). This means that low
spatial frequency components, i.e. long spatial wavelengths corresponding
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a b

c d

Figure 2: Natural image statistics|a, Representative natural image patch. b,
Histogram of pixel intensities over 1000 natural images. The intensity distribution
of natural images is strongly skewed towards brighter than average intensity (green
dashed line). c, Local contrast map for the image patch in a, estimated by taking the
root-mean-square contrast in a 50x50 pixel sliding window. d, Power spectrum of
100 natural images (gray lines, black line indicates the mean) on double-logarithmic
axes. Green line shows a power law with exponent −2.2 for reference. Images taken
from van Hateren and van der Schaaf (1998).

to luminance changes over large distances, dominate natural images. Scaling
the argument of a power law function gives a power law function with the
same exponent. Hence, this is another way of saying that natural scenes are
scale invariant. Scale invariance means that zooming in or zooming out of an
image does not change the statistical properties of that image. Efforts trying
to provide an explanation for these self-similar properties have argued that
natural images are in general composed of many statistically independent
objects of different sizes which are placed at different distances and this does
not depend on the position of the observer (Ruderman, 1997).

Another consequence of the exponential power-law is that the autocorre-
lation function of natural scenes is also an exponential. Thus, neighbouring
pixels in natural images tend to have more similar values the closer they are
to each other. This intuitively makes sense because the probability is high
that neighbouring pixels belong to the same object or structure.

A closer analysis of the two-dimensional power spectrum of natural scenes
also reveals some statistical anisotropies. In general, there are two peaks in
the power spectrum for image components oriented along the horizontal or
vertical axis of the image. This is because the horizon or vertical structures
like tree branches or grass tend to be dominant in most natural image
datasets (van der Schaaf and van Hateren, 1996; Dyakova and Nordström,
2017). For the purpose of this thesis, however, such detailed description of
natural image statistics will not be relevant.
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a b

c d

Figure 3: Phase hybrid images|a,b, Original natural image patches. c,d, Cor-
responding hybrid images with the same phase spectra, but amplitude spectra
swapped. Images taken from van Hateren and van der Schaaf (1998).

Higher-order statistics

The statistical properties of natural images are far more complex than
what can be captured by examination of first and second order features.
Above, we have considered only the intensity distribution and the power
spectrum. A large part of the relevant image content of natural scenes,
however, is contained in the phase spectrum. This becomes clear from
looking at hybrid images where the amplitude spectra of two images have
been swapped in Fourier space, but the phase spectra are not manipulated
(Figure 3). Although hybrid images seem heavily distorted, we are still able
to identify the same object boundaries and the image content appears to be
unchanged to our eyes (Tadmor and Tolhurst, 1993). This must be due to the
information contained in the phase spectra.

Observations like these can by explained by higher-order statistical fea-
tures, an example of which is co-occurrence of edges of similar orientations.
It has been shown that there is an increased probability of finding similarly
oriented edges in the vicinity of a given edge because contours in natural
images tend to be elongated and parallel structures tend to be located close
to each other (Geisler et al., 2001).

Even uncorrelated image features can still be statistically dependent on
each other. Schwartz and Simoncelli (2001) showed that the response
strength of a local edge filter is correlated to the variance of a differently
oriented edge filter with uncorrelated output. This is related to the finding
that also local contrast, i.e. local variance, seems to be scale invariant and
thus spatially correlated (Ruderman, 1994). More intuitively, just as the
spatial extent of objects and other structures in natural images leads to
correlations between neighbouring pixels, also image textures with similar
contrast seem to occupy extended regions in visual space which results in
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correlations of local contrast. Instead of intensity, the statistical dependence
here affects the variance of pixel intensity in a given area. This kind of
higher-order statistics regarding local contrast has strong implications for
cortical and retinal processing, as we will see.

1.1.2 Redundancy reduction

As pointed out above, natural scenes exhibit strong spatial correlations
(see Section 1.1.1). Therefore, knowledge about the intensity of an arbitrary
pixel in a natural image implies some knowledge about the intensity of close-
by pixels: although this does not have to be the case, chances are high
that they have very similar intensities. In information theoretic terms this
means that a pixel-based representation of natural images is a redundant
representation (Shannon, 1949). It follows that one can store all image
information without explicitly coding for the absolute intensity of each pixel
because it is possible to infer some information from neighboring pixels. In
theory, we could find a more efficient representation and compress the image
by taking advantage of what we know about pairwise pixel correlations.

The notion that the visual system aims to reduce the redundancy of
natural images in order to find a more efficient neural representation was
originally proposed by Attneave (1954). Similarly, the efficient coding hypoth-
esis by Barlow (1961) states that it is a central goal of all sensory coding
to minimize the amount of nervous activity required to represent sensory
information.

Without further formalizing these concepts in mathematical terms, in
the following I will outline how the autocorrelation of natural images is
exploited by early visual processing mechanisms in order to reduce the
redundancy of natural images. The efficient coding hypothesis leads to
the prediction of optimal local processing filters for natural scenes. These
predicted filters strongly resemble linear receptive fields of early visual
interneurons found in the mammalian retina, but also in the fly lamina.
As we will see in Manuscript 1 in the main part of this thesis, this is also
reflected in the spatial filtering characteristics of neurons in the fly medulla.
In the following, I will introduce the concept of a receptive field and delineate
how the spatial structure of receptive fields in early vision can be linked to
the principle of redundancy reduction.

Receptive fields

The spatial receptive field of a visual neuron is quite generally defined as
the area in visual space, in which the activity of that neuron can be modified
by visual stimuli. This definition can be extended in the temporal domain
to the time window in the past when presentation of visual stimuli within
the spatial receptive field had an impact on the instantaneous activity of the
neuron.

Classically, the spatial receptive field of a neuron was investigated by
means of flashing light stimuli at different positions, or by other types
of stimulus protocols correlating local luminance changes with neuronal
activity. While originally the concept of a receptive field was defined by



1.1 visual processing 7

a

b

Figure 4: Spatial receptive fields|a, Schematics of a center-surround antagonis-
tic receptive field (left) and corresponding receptive field measurement from an
LGN neuron (right). b, Schematics of orientation-selective edge filter (left) and
corresponding receptive field measurement from a V1 simple cell (right). Graphics
adapted from Lindeberg (2013) / CC BY.

observing only positive correlations between illumination of a certain area in
visual space and neuronal discharges (Hartline, 1940), it was soon acknowl-
edged that receptive fields can have excitatory and inhibitory subregions
(Kuffler, 1953; Hubel and Wiesel, 1959). We call them ON-subregions, when
raising light intensity in that area increases neuronal activity and reducing
light intensity decreases activity, and vice versa for OFF-subregions. The
summation field that results from the specific spatial composition of such
ON- and OFF-subregions is called the linear receptive field of a neuron
(Figure 4).

Spatial receptive fields can take on arbitrarily complex shapes. Often,
specific receptive field characteristics can be attributed to a class of neurons
in the brain. Since in visual systems most neuronal structures represent
visual space in a retinotopic way, the underlying computational operation
that is implemented by a class of neurons with a characteristical receptive
field can be interpreted as a convolution of the stimulus with a spatial
filter. The filter kernel is given by the linear receptive field. For example,
neurons in the laterate geniculate nucleus (LGN) in cats and primates possess
approximately symmetrical center-surround receptive field configurations
which are characterized by a center region (ON or OFF) that is suppressed
by an antagonistic surround region of the opposite polarity (Figure 4a)
(DeAngelis et al., 1995; Bonin et al., 2005). The image processing operation
implemented by such receptive field configurations corresponds to high-
pass filtering or an approximation of the spatial derivative of an image.
Neurons with such receptive fields respond strongly if the difference in
stimulus intensity between center and surround regions is large. In other
words, they carry information about local contrast rather than absolute local
light intensity. A different class of neurons, simple cells in the cortical area
V1, possess elongated spatial receptive fields with parallel ON- and OFF-
subregions (Figure 4b) (DeAngelis et al., 1995; Lindeberg, 2013). Due to their

https://creativecommons.org/licenses/by/2.0/
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specific spatial structure they act as local edge filters that respond selectively
to correspondingly oriented image contours.

However, neurons can implement much more complex computations
than simple linear image filtering. For example, they can be subject to
non-linear modulation by higher-order stimulus features (Carandini and
Heeger, 2011) or they can perform inherently non-linear operations such
as motion detection (Borst and Helmstaedter, 2015). In such cases, it is not
as straightforward to depict the spatial receptive field as a summation field
of spatially separable ON- and OFF-subregions. We then must return to
the original definition which defines the spatial receptive field merely as the
area in which suitable stimuli can modify the activity of a neuron.

Decorrelation and whitening

Having established the term of a receptive field, we now return to the
idea of efficient coding of natural images. I have mentioned above that,
in information theoretic terms, spatial correlations between nearby pixels
in natural scenes represent a source of redundancy. A more efficient
representation of natural images would contain all image information but
without coding for this redundant part. One way to reduce redundancy
would therefore be to find a way to decorrelate the data, i.e. to reduce the
spatial correlations of natural scenes.

The whitening theory proposes that early visual neurons perform this
decorrelation by spatial filtering. The power spectrum is related to the
autocorrelation function via the Fourier transform. Since the autocorrelation
of an uncorrelated signal is a delta function, which has a flat power spec-
trum in Fourier space, decorrelating of a signal means flattening its power
spectrum, one says also whitening. Mathematically, whitening of a dataset
can be performed using principal component analysis (PCA).

Principal-component analysis

PCA is a statistical method that is used to find a transformation for a multi-
dimensional dataset of possibly correlated observations that changes it into
a linearly uncorrelated dataset. This method relies on finding the so-called
principal components which are a set of uncorrelated features that are aligned
with the directions of highest variance in the dataset. Because these principal
components explain most of the variance in the data, they are also the most
informative directions in data space. Expressing the dataset as a linear
superposition of these by definition uncorrelated features is therefore a more
efficient representation. More mathematical details of PCA are presented
in Pearsons’ original article (Pearson, 1901) or in standard textbooks about
statistics or data science as well as about visual processing (Hyvärinen et al.,
2009).

Zero-phase whitening filters

How can we apply PCA to natural images? This is straightforward by
expressing an image as an n-dimensional vector with n equal to the number
of pixels per image. Applying the PCA algorithm to a dataset of such vectors
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a

b c

d

Figure 5: Decorrelation of natural scenes|a, Example 20x20 pixel image patches
from natural scenes. b, The first 20 principal components of a dataset of such
natural image patches. Ordered by variance explained, decreasing from left to
right and top to bottom. c, 20 example ZCA filters in retinotopical order. d,
Applying ZCA whitening to the original image patches yields whitened images
with zero phase-shift. They appear like differentiated versions of the original
images, where large deviations from medium gray occur only at positions of large
intensity changes, i.e. high contrast, in the original picture. PCA and ZCA were
trained on 20,000 logarithmically compressed randomly chosen image patches from
the image database by van Hateren and van der Schaaf (1998).

yields the principal components, ordered by the amount of variance they
are able to explain. When performed on a large enough database of natural
images, the first principal components look like whole-field sinusoids with
larger wavelengths first and then increasingly fine-grained as the variance ex-
plained by the component keeps decreasing (Figure 5a,b). This makes sense,
since the 1/f2 power spectral density tells us that small image frequencies,
i.e. large spatial wavelengths, dominate natural images. Therefore, PCA
performs a kind of frequency analysis of the dataset (Hancock et al., 1992).
Building an image representation based on linear superposition of these
principal components, is not very sensitive to the information contained in
the phase spectrum because of the large spatial extension of these features.
As we have seen however, the phase spectrum carries a lot of perceptually
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relevant information, e.g. about the location of object boundaries and edges
(Figure 3).

PCA is not the only whitening transformation that exists. In fact, it
can be shown that PCA is just one of an infinite number of whitening
transformations that can be constructed. We can constrain this number by
demanding that the transformation be symmetrical, i.e. that the resulting
features are local and produce no phase offset when used as spatial fil-
ters. This solution is also called zero-phase component analysis (ZCA) (Bell
and Sejnowski, 1997). The resulting components are spatially symmetrical
filters that have a center-surround antagonistic structure (Figure 5c). They
are spatial high-pass filters that attenuate low frequencies and let higher
frequencies pass, thereby flattening the power spectrum of natural scenes.
Applying these filters to natural images produces essentially differentiated
versions of the originals where large positive or negative deviations from
zero indicate large differences between neighboring pixel intensities in the
original image (Figure 5d). Thus, this is a representation of local contrast
instead of absolute pixel intensity. Here, the spatial correlations between
neighboring pixels in the original image have been filtered out.

Physiological evidence for whitening

Spatial center-surround filters like those constructed above from a theoret-
ical point of view have often been described in the early visual pathway of
different model organisms. Early studies have discovered center-surround
receptive fields in the mammalian as well as non-mammalian retina (Kuffler,
1953; Barlow, 1953; Rodieck, 1965). Neurons in the lateral geniculate nucleus
(LGN), one level higher up in the mammalian visual processing hierarchy,
have been found to possess such receptive field structure as well (DeAngelis
et al., 1995; Bonin et al., 2005). Center-surround filtering has been described
also in large monopolar cells in the early visual system of evolutionary distant
flies (Dubs, 1982; Srinivasan et al., 1982). Similar observations have been
made in crickets (Honegger, 1980). Overall, these findings suggest that
symmetrical antagonistic filtering is indeed a wide-spread functional motif
in visual processing across phyla. In Manuscript 1, we will extensively map
receptive fields in the fly medulla yielding similar results.

Another type of whitening transform, independent component analysis (ICA),
requires the outputs not only to be decorrelated but also to be statistically
independent. Applying ICA to natural images yields filters which are
semi-local edge detectors and resemble spatial receptive fields of simple cells
found in visual cortex (Bell and Sejnowski, 1997).

Do neurons that have been attributed with center-surround spatial re-
ceptive fields indeed perform decorrelation of real-world input stimuli?
The abundant evidence for such receptive fields in early vision is not a
direct proof that this mechanism actually increases the coding efficiency
of neurons when confronted with naturalistic input signals. This is a
difficult question, since we do not know for which task specifically these
neurons have been optimized. Viewing static natural images on a screen is
a simplification of the complex nature of real-world sensory input that is
generated during animal behavior in a dynamic and constantly changing
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environment. One study tried to address this issue by showing natural
movies to cats while performing electrophysiological recordings in LGN
(Dan et al., 1996). Indeed, they found power spectra of LGN responses to
be essentially white, thus confirming the whitening theory. In flies, some
studies have predicted the spatio-temporal receptive field structure of large
monopolar cells from the efficient coding point of view (Srinivasan et al.,
1982; van Hateren, 1992a,b). In fly vision, studies are often put in the
context of motion vision which places major relevance also on the temporal
filtering characteristics of those neurons, such as biphasic responses with
temporal inhibition. In salamander retina, another study confirmed that
naturalistic stimuli decorrelate responses of retinal ganglion cells, though
they also found that most of this effect can actually not be attributed to
linear filtering properties, but to additional non-linear mechanisms (Pitkow
and Meister, 2012). However, efficient coding is a general hypothesis which
is not restricted to exclusively linear computations. The next section will
introduce an important non-linear phenomenon in visual processing.

1.1.3 Contrast normalization

Above, we have seen how the 1/f2 power spectrum of natural scenes (see
Section 1.1.1) and the hypothesis that visual processing has been adapted to
such input statistics in order to optimize its coding strategy, have led to the
prediction of center-surround antagonistic receptive fields (see Section 1.1.2).
But natural scenes show much more statistical structure than is captured by
the second-order statistics, i.e. the power spectrum. One particular aspect
is that higher-order features, such as pixel variance or contrast, are subject
to statistical fluctuations as well (Ruderman, 1994; Schwartz and Simoncelli,
2001). Contrast fluctuations in natural images also show spatial correlations.
For example, sky areas are low-contrast regions which often cover large parts
of an image. Other image regions might contain textures which are rich in
contrast, for example tree branches against the sky, or also medium contrast
regimes, like grassy areas. Additionally, different illumination conditions
can have a drastic impact on the contrast of natural visual environments.
For instance, objects’ boundaries are usually much more pronounced under
direct daylight illumination than under dim light conditions.

Divisive normalization

Neurons have a limited dynamic range that is set by biophysical prop-
erties. The magnitude of contrast fluctuations in natural scenes, however,
can be large and strongly depends on the position in an image and on
current lighting conditions. Hence, contrast gain adaptation is a widespread
phenomenon in the visual system. Gain control mechanisms dynamically
set the input range of a neuron to the range of expected input signals.
One way to obtain such estimation for the current input range is to assess
the stimulus variance based on its history. This is exploited by temporal
gain control mechanisms, commonly found in early visual processing in
the retina (Baccus and Meister, 2002; Demb, 2008) and also in the fly (van
Hateren, 1997; Harris et al., 2000). In order to avoid long integration times,
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Figure 6: Contrast normalization in primary visual cortex |a, Contrast normal-
ization transforms local contrast into normalized contrast by means of division by
an estimate of surround contrast. Surround contrast is estimated by a computation
approximating the standard deviation (sd) of the stimulus in a surrounding area of
visual space. b, Responses of a visual cortex neuron to gratings within a central
disk surrounded by an annulus of different contrast. Symbols indicate data, black
lines are fits of a divisive normalization model. High surround contrast suppresses
responses to the center disk. This leads to a shift of local contrast tuning curves
towards higher contrasts, effectively modulating contrast sensitivity for the driving
stimulus in the center. Graphics taken from Carandini and Heeger (2011).

however, the visual system also employs strategies to estimate local contrast
in the spatial domain. In divisive contrast normalization, the response of a
neuron is effectively divided by an estimate of surround contrast which is
formed by a pooling mechanism that spatially integrates rectified or squared
local contrast-sensitive units (Figure 6a). The suppressive signal generated
by such spatial integration mechanism is closely related to the root-mean-
square contrast of an image patch. This kind of gain control has been
abundantly described in vertebrate visual processing (Carandini and Heeger,
2011). On an algorithmic level, contrast normalization can be described by
the following equation:

R =

∑
iwiCi

k+
√∑

k αkCk
2

Here, the weights wi define the linear spatial receptive field of a neuron
and the Ci are the input signals, which is local contrast here. After image pre-
processing (e.g. through whitening filters), input signals correspond to local
contrast rather than local luminance. This linear response is then divided by
an estimate of root-mean-square contrast in the surround computed over a
separate spatial summation field defined by the weights αk. The constant k
prevents division by zero.

This equation predicts contrast sensitivity to depend on the surround con-
trast of a locally contrast-sensitive neuron (Figure 6b). Baseline sensitivity is
set by the constant k which determines the half-saturation threshold of the
neuron. As the contrast in the surround is increased, the suppressive field αk

is stimulated which reduces the gain for the driving stimulus in the center of
the linear receptive field. On a logarithmic axis, this is as if contrast tunings
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Figure 7: Contrast normalization as image processing operation |a, Original
gamma-corrected picture, taken from van Hateren and van der Schaaf (1998). b,
Image after linear center-surround filtering by a difference of Gaussians filter. Bright
and dark pixels now indicate strong local ON- or OFF-contrast, respectively. Large
areas of the image have relatively low contrast while clear contours are mostly
located along the horizon. c, Average local contrast estimated by the root-mean-
square contrast in a Gaussian window of the same width as the surround of the
linear filter. d, Image after local contrast normalization by division of the local
contrast representation in b through average local contrast as calculated in c plus
a small constant. Edges and contours are now clearly visible across the whole
image. This representation does not indicate local contrast anymore, but a form of
normalized contrast.

are shifted horizontally towards higher contrasts. The contrast sensitivity
of the neuron is thus dynamically adjusted to encode the range of contrast
values that is expected from the estimated average contrast in the vicinity of
the receptive field center.

Similarly to how linear center-surround filtering transforms local lumi-
nance into local contrast, contrast normalization transforms local contrast
into a relative measure of local contrast, normalized to the average contrast
in the surround. From an information theoretic point of view this reduces
contrast correlations in natural scenes, further improving the coding effi-
ciency of the neural representation of natural scenes (Brady and Field, 2000;
Schwartz and Simoncelli, 2001; Wainwright et al., 2002). More intuitively, the
operation to some degree equalizes the contrast variability across an image
(Figure 7). Contrast normalization is suppressive in high contrast regions
and amplifies signals in low contrast regions which overall leads to a more
uniform representation of local contrast. This enhances the detectability
of object boundaries and contours across the image regardless of the local
contrast conditions in each subregion.
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Apart from that, normalization as a neuronal computation has been sug-
gested to fulfill multiple functions in sensory processing, such as adjustment
of neural sensitivities, but also inducing invariance of neural representations
with respect to uninformative stimulus dimensions, improving stimulus
discriminability and more (Carandini and Heeger, 2011).

Physiological evidence for contrast normalization

Contrast normalization and related phenomena have been investigated
extensively in the cortex (Heeger, 1992; DeAngelis et al., 1992; Carandini
et al., 1997; Carandini and Heeger, 2011). In addition, it has been shown
to act throughout the mammalian visual processing hierarchy, in the LGN
(Freeman et al., 2002; Solomon et al., 2004; Bonin et al., 2005) as well
as in the retina (Shapley and Victor, 1978; Demb, 2008). Although we
introduced normalization here in the context of visual processing, the same
computation has been described in other sensory modalities. These include
for example auditory processing in the ferret (Rabinowitz et al., 2011) and
the fly olfactory system (Olsen et al., 2010), where it has been shown to be
beneficial in terms of coding efficiency (Luo et al., 2010). Normalization
has therefore been suggested to serve as a so-called canonical computation
(Carandini and Heeger, 2011) that is repeatedly applied across different
brain regions, modalities and species to solve similar problems in a variety
of contexts. In this thesis, I will complement this body of work and
present evidence for contrast normalization in the Drosophila visual system
where it is critical for robust motion vision in natural environments (see
Manuscript 4).

1.1.4 Motion detection

Above, we have seen how the input statistics of natural stimuli are ex-
ploited by computational mechanisms of the visual system (see Section 1.1.2
and Section 1.1.3). However, we only looked at static natural input stimuli
without really considering the fact that real-world visual input is, of course,
subject to constant change. Most of the changes that take place in our
environment are due to motion of other objects or self-induced ego-motion.
In physics, motion is defined as the displacement of a body in a given
time interval. Consequently, motion of an object is reflected in a temporal
displacement of its visual appearance on our retina. Object detection
takes place at higher-level stages of visual processing, while at the level
of the retina visual objects are not yet clearly defined entities in the neural
representation. Since detecting the direction of motion is, however, such a
critical task for an animal to react quickly and without delay to changes in
its immediate environment, visual systems have come up with solutions for
motion detection based on retinal input directly. The goal of this section
is to introduce some basic computational principles that guide elementary
motion detection in neural networks.
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Figure 8: Two-arm models of motion detection|a, Hassenstein-Reichardt-type
half-detector. Signals are non-linearly enhanced (here by multiplication), when
a stimulus moves in the preferred direction (PD). Stimuli traveling in the null
direction (ND) elicit no or only small responses. b, Barlow-Levick-type half-detector.
Signals are non-linearly suppressed (here by division), when a stimulus moves in
the ND. Stimuli moving in PD are not suppressed, so PD responses are larger
than ND responses. c, Full Hassenstein-Reichardt-detector. Subtraction of two
mirror symmetric half-detectors gives positive responses to PD motion and negative
responses to ND motion.

Hassenstein-Reichardt detectors

From a theoretical point of view, visual motion is reflected in spatio-
temporal correlations of the visual input. The image of a moving object
which is detected at a given position on the retina will elicit responses in
spatially offset photoreceptors some time interval later. A neuron is called
direction-selective when it can detect the direction of these spatio-temporal
correlations, i.e. when it responds to motion in one direction but not (or less)
to motion in the other direction. This defines some minimum requirements
that are necessary for elementary motion detection (Borst and Egelhaaf,
1989):

1. Spatial offset
At least two spatially offset inputs are required to detect motion.
Observing a single point in space is not informative about motion in
any direction.

2. Temporal asymmetry
The input channels have to be asymmetric in their temporal filtering
properties. If the detector was symmetric, its mirror-image would
produce the same output signal. Hence, the detector could not respond
in a direction selective way.

3. Non-linear interaction
The input channels need to interact in a non-linear way. Otherwise, the
time averaged output signal would be the same for opposite directions
of motion.

If we consider the case of motion detection from two spatially offset
input channels, this leads to the distinction of two alternative mechanisms
of motion detection: First, based on behavioral studies on the snout wee-
vil Chlorophanus viridis, a mechanism involving multiplicative interaction
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between the two input channels was suggested, the so-called Hassenstein-
Reichardt (HR) detector (Hassenstein, 1951; Hassenstein and Reichardt, 1956).
Here, the channel that is stimulated first when a motion stimulus passes
in the detector’s preferred direction (PD) has a longer transmission time
constant in comparison to the other channel (Figure 8a). This compensates
for the time that the stimulus takes to bridge the spatial distance to the
second channel and thus leads to a temporal overlap of both signals at the
multiplication stage. Here, the two signals interact non-linearly which leads
to an overall strong output response. If the stimulus travels in the opposite,
the null direction (ND), the signals have less of a temporal overlap and so
less interaction energy is released. The direction selectivity of this type of
detector is therefore based on an enhancing non-linearity which amplifies
responses to PD stimuli. This model is called a full HR detector if two
such mirror-symmetric subunits are subtracted from each other (Figure 8c).
Adding the subtraction stage leads to direction-opponent responses: full
HR detectors produce positive output signals for PD stimuli and negative
output for ND stimuli. Such fully symmetric HR models have successfully
been applied to explain behavioral responses of flies and other invertebrates
(Hassenstein and Reichardt, 1956; von Fermi and Richardt, 1963; Götz, 1964)
as well as to account for electrophysiological findings in motion-selective
neurons in the fly (Haag et al., 2004; Joesch et al., 2008; Borst et al., 2010).

Barlow-Levick detectors

While non-linear interaction is a prerequisite for motion detection, the
exact nature of the non-linearity can be very different from the HR detector.
An alternative model, the so-called Barlow-Levick (BL) detector replaces
the multiplicative stage of the HR detector with a suppressive non-linearity.
While originally this suppression was modelled as asymmetric inhibition in
order to account for direction-selectivity of retinal ganglion cells in the rabbit
retina (Barlow and Levick, 1965), here I depict it as a divisive interaction in
order to accentuate the discrepancy between the two models (Figure 8b). In
the BL detector, the temporally delayed arm is the second arm of model.
That way, temporal overlap is maximized for stimuli moving in the ND.
As a consequence, a strong suppressive interaction takes place and renders
responses to ND stimuli small. On the contrary, if the stimulus travels in
PD, the signal that is elicited in the first receptor can pass without being
suppressed by the second channel because the signal from the second arm
arrives "too late". Hence, direction selectivity in the BL detector relies
on suppression of ND stimuli. These two opposite mechanism of motion
detection are often referred to as PD enhancement and ND suppression.

Hybrid detectors

Although historically, the HR detector and the BL detector have been
treated as mutually exclusive alternatives, recent findings in Drosophila sug-
gest that both mechanisms could actually be implemented simultaneously
on the dendrites of direction-selective T4 and T5 cells (Haag et al., 2016).
Conceptually, this can be represented by fusing the two detector subunits,
one implementing PD enhancement and one based on ND suppression,
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Figure 9: Three-arm hybrid detector for motion detection| Combining HR-type
and BL-type motion half-detectors into one detector with three input channels
yields an elementary motion detector with increased direction selectivity.

with the same preferred direction into one motion detector that gets input
from three channels (Figure 9). This three-arm hybrid detector combines the
two mechanisms to generate a more direction-selective signal. It has been
suggested to account for the high degree of direction selectivity observed
in T4 and T5 cells in the fly (Haag et al., 2016). This kind of redundant
implementation of complementary algorithmic solutions is often observed in
neurobiology. In fact, there is also evidence that both, asymmetric excitation
as well as asymmetric inhibition, play a role in motion processing circuits
in the vertebrate retina (Briggman et al., 2011; Baden et al., 2013; Ding et al.,
2016; Vlasits et al., 2016; Mauss et al., 2017).

Other motion detectors

The models of motion detection discussed above are also called correlation-
type motion detectors because they are based on the extraction of spatio-
temporal correlations from an array of visual input signals. Responses of
such correlation-type models depend not only on temporal but also on
spatial properties of the input stimulus. When stimulated with sinusoids,
they are tuned to the contrast frequency of the stimulus rather than its
absolute velocity (Egelhaaf et al., 1989; Srinivasan et al., 1999). However,
when stimulated with a mix of spatial scales such as pervasive in natural
scenes, they show velocity dependence (Dror et al., 2001).

Another computational approach, the gradient detector, which was origi-
nally proposed in the context of machine vision (Limb and Murphy, 1975;
Fennema and Thompson, 1979), tries to overcome this pattern dependence.
In the gradient detector model, local stimulus velocity is estimated by
calculating not only the temporal gradient dI

dt of the input signal but also
the spatial gradient dI

dx . Since the temporal gradient can also be expressed
as the product of velocity v and the spatial gradient,

dI

dt
= v · dI

dx

it follows that

v =
dI

dt
÷ dI

dx
=
dx

dt

Hence, stimulus velocity is given as the ratio between the two gradients,
independently of the spatial structure of the stimulus. Although this might
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seem beneficial in many contexts, is has been argued that gradient detectors
might be disadvantaged in comparison to correlation-type detectors when
confronted with noisy signaling conditions (Potters and Bialek, 1994; Borst,
2007).

Another type of motion detection model that is frequently employed in
vertebrate vision and human psychophysics is the so-called motion energy
model (van Santen and Sperling, 1984; Adelson and Bergen, 1985). In models
of this type, direction selectivity is generated by convolution of a space-
time representation of the stimulus with a spatio-temporally tilted linear
filter and subsequent thresholding, squaring or another type of non-linearity.
However, it can be proven that the output of the motion energy model is
equivalent to the output of the HR detector, despite their different internal
structures (van Santen and Sperling, 1985).

It is important to note, that the models that have been discussed above are
representations of the algorithmic structure of an elementary motion detec-
tion system. There are numerous ways how their individual computational
steps could be implemented in a biological system at a biophysical, molec-
ular or network level. Mapping algorithmic elements of motion detector
models onto precise neuronal mechanisms in the brain of Drosophila is an
ongoing research, part of which is presented in this thesis. Manuscript 1 will
shed light on how asymmetric temporal filtering might be implemented via
the differential temporal tunings of input neurons onto direction-selective
T4 and T5 neurons. In the following chapter, I will outline anatomical
and biological aspects of the visual system of the fruit fly and explain how
motion processing circuits can be investigated within this model system.
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1.2 visual neuroscience in the fly

The great appeal of using Drosophila melanogaster as a model organism for
motion vision research comes from an exceptionally powerful combination
of experimental tools available. First, fruit flies respond in a stereotypical
way to external stimuli which allows for a reliable read-out of motion-
guided motor reflexes. Second, detailed circuit mapping is made possible
by the manifold neurogenetic toolbox in Drosophila which enables targeted
manipulation of neuronal mechanisms at a cellular level. Finally, the relative
simplicity of the fly nervous system in contrast to the vertebrate brain makes
it more feasible to identify and link neural circuits, in some cases even
single neurons, to ecologically relevant behaviors. This chapter will give
an overview of the state-of-the art research on motion processing in the fly
and introduce the experimental techniques that have been applied in the
projects presented in the main part of this thesis.

1.2.1 Motion-guided behaviour in the fly

The ultimate goal of systems neuroscience is to map circuits to functions
and to explain how sensory input is processed in order to initiate an
appropriate behavioral response. Drosophila exhibits a wide range of mostly
stereotyped behaviors, a detailed study of which can help gain insight into
sensory processing in the brain and often is the starting point for further
efforts in circuit mapping. In this section, I will motivate research on
motion processing pathways by giving a range of examples where motion
detection is the foundation for the implementation of more complex and
vitally important fruit fly behaviors.

Optomotor response

When confronted with full-field horizontal motion stimuli, walking or
tethered flying flies try to turn with the direction of motion, a reflex that is
called the optomotor response (Götz, 1964; Götz et al., 1979; Borst et al., 2010).
The optomotor response is believed to serve as a compensatory reflex to
stabilize gaze and course control during flight or walking (Götz, 1968; Borst,
2014). Because flies are lightweight animals, an external perturbation, such
as a wind gust, can easily bring them off track. From the perspective of the
fly, such perturbation would be reflected in an unexpected drift of its visual
environment, i.e. in full-field motion, in the opposite direction. Turning in
the same direction as the visual drift in order to stabilize the image on the
retina therefore means counter-acting the perturbation. Thus, the optomotor
response is a critical reflex to maintain stability during directed walking or
flight maneuvers.

Historically, detailed observation of optomotor behavior in the snout wee-
vil Chlorophanus viridis, as well as in a variety of other invertebrates, led to the
proposal of the first algorithmic model of motion detection, the Hassenstein-
Reichardt detector (Hassenstein, 1951; Hassenstein and Reichardt, 1956; von
Fermi and Richardt, 1963; Götz, 1964). In the original study, the snout
beetle was placed in a Y-maze and forced to make a decision between left
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a b

Figure 10: Experimental analysis of optomotor responses| a, Snout beetle walking
on a Y-maze as used in early studies on optomotor behaviour (Hassenstein, 1951). b,
Tethered walking Drosophila on an air-cushioned styrofoam ball, tracked by cameras
and various sensors. On the computer screens surrounding the animal, arbitrary
visual stimuli can be presented. This is the experimental set-up that has been used
for behavioral experiments in this thesis. Photo by R. Schorner, reprinted with
permission.

and right while being visually exposed to a moving background pattern
(Figure 10a). With the advance of technology, in nowadays behavioral
experiments with Drosophila melanogaster the tethered animal is placed on a
treadmill and each of its movements elicited in response to external stimuli
is precisely tracked and recorded (Figure 10b). This enables a more thorough
and quantitative analysis of behavior. Comparison of behavioral responses
following defined input stimulation with computer simulations of the fly
motion vision circuitry has led to detailed insights into the mechanisms
of motion detection in the fly (Borst et al., 2010). With the help of these
techniques and in combination with neurogenetic manipulation of individ-
ual cell types and neurophysiological experiments, the neural substrate of
motion detection in the fruit fly has been mapped to a great extent (see
Section 1.2.2). Although many open questions remain, understanding of
the fly motion vision circuitry has reached a point where closing the loop
between sensory input and behavioral output seems at least within reach.

Collision-avoidance and landing response

While course control certainly represents one of the most important tasks
for a flying animal, it is worth pointing out the diversity of other behaviors
that rely on the establishment of accurate motion vision. One such example
is the response to expanding objects, also called looming stimuli. It has been
shown that presentation of such stimuli either leads to collision-avoidance or
to landing responses in Drosophila (Tammero and Dickinson, 2002; Muijres
et al., 2014). In collision-avoidance, the behavioral response of the fly can
be clearly identified as an attempt to steer away from a looming object. A
landing response is characterized by an extension of the legs as if the fly is
approaching a surface and expects to be able to land. The contrast between
the potential outcomes of these two qualitatively very different behaviors
renders this choice a task quite critical for the survival of the animal. Which
behavior is triggered in the experiment has been shown to depend on the
exact position as well as on the velocity of the expanding stimulus (Tammero
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and Dickinson, 2002). This indicates that the precise analysis of the pattern
of motion cues within the visual field is a precondition for such behavioral
choices. Indeed, it has been shown that collision-avoidance and landing
responses in Drosophila depend on direction-selective cells in the fruit fly
(Schilling and Borst, 2015).

Conspecific tracking during male courtship behaviour

Another example of motion-guided behaviour is the ability to identify
small moving objects in cluttered natural environments. Male flies track and
closely pursuit potential mating partners during their courtship ritual (Land
and Collett, 1974; Hall, 1994). Attraction to visual objects has been shown to
depend on the exact shape and geometry of an object and therefore certainly
also involves detection of visual features other than motion (Maimon et al.,
2008; Robie et al., 2010). Additionally, in the context of mating behavior,
olfaction might play a role more important than vision for identification of
the species and the sex of a potential mate (Dweck et al., 2015). However, it
has been argued that the ability of male flies to closely follow a female fly
at small distances and to chase her at high speeds involves a class of male-
specific neurons which have been reported to selectively respond to small
object motion in several fly species (Gilbert and Strausfeld, 1991; Nordström
et al., 2006; Trischler, 2010). In Manuscript 2 of this thesis, we investigated
a class of visual projection neurons in the male fruit fly which might relay
visual information about the position of a female fly to the central brain
by taking advantage of figure-ground discrimination through detection of
relative motion (Egelhaaf, 1985).

1.2.2 Fly visual system

The fly nervous system comprises the brain and the ventral nerve cord
which is located in the thorax and the abdomen of the animal. The estimated
number of cells in the brain of Drosophila has an order of magnitude of
100,000 (Simpson, 2009). The two optic lobes, which reside laterally on each
side of the brain, make up about 15,000 cells each (Figure 11a). Looking
at these proportions it becomes already clear that the visual sense must
be of major importance for Drosophila if such large amounts of its nervous
infrastructure are dedicated to visual processing.

The optic lobes of the fly consist of four different neuropiles which are
called lamina, medulla, lobula and lobula plate (Figure 11b). These neuropiles
are structured as a hexagonally distributed array of neural cartridges which
mirrors the hexagonal packing of photoreceptive units in the retina. Each
neural cartridge consists of various cell-types which are so densely packed
in Drosophila that their cell bodies are pushed to the periphery of the brain
in order to create more space for the neuropile (Figure 11c). Early efforts
to map all the different cell-types in the fly optic lobe have identified a
range of columnar cells but also some wide-field neurons which span several
columns (Fischbach and Dittrich, 1989). Each columnar cell-type is repeated
per column and thus forms a retinotopic array of neurons over the whole
neuropile where each neuron processes retinal information from one point in
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visual space. Before introducing the relevant cell-types of the motion vision
circuitry, it is worth considering how light-sensitive signals are generated in
the first place in the retina.

Retina

Phototransduction – the process of converting light signals impinging on
a photoreceptor into electrochemical output signals – takes place in the so-
called rhabdomeres in the fly retina (reviewed in Montell (1999); Hardie
and Juusola (2015)). The compound eye of Drosophila consists of around
800 ommatidia. In each ommatidium, light is focused through a lens onto
the microvilli in the rhabdomere, which contain the light-sensitive receptor
protein rhodopsin. Through photoisomerization, this protein undergoes a
series of conformational changes upon incidence of light which ultimately
transforms rhodopsin into metarhodopsin. This in turn leads to the acti-
vation of a G-protein coupled second messenger cascade and eventually to
activation of the phospholipase C. Through mechanisms that still remain
controversial (Montell, 1999; Hardie and Juusola, 2015), this leads to opening
of the two Ca2+-permeable channels TRP and TRPL. The resulting influx of
cations leads to depolarization of the cell. Interestingly, while Drosophila
photoreceptors are activated through light, phototransduction in the verte-
brate retina triggers hyperpolarization of the photoreceptors, so they have
sign-reversed responses (Yau and Hardie, 2009). Another distinction is that
phototransduction in fly photoreceptors works extremely fast. While human
cone photoreceptors cannot resolve temporal frequencies beyond 60 Hz
(Hecht and Shlaer, 1936), flicker fusion frequencies between 100-200 Hz have
been reported for Drosophila (Cosens and Spatz, 1978; Miall, 1978).

In fruit flies, each ommatidium possesses seven rhabdomeres. R1–6 ex-
press Rhodopsin 1 which is light-sensitive across most of the visual spectrum
of Drosophila covering wavelengths from below 300 nm up to 600 nm. While
R1–6 feed into the motion vision pathway, R7 and R8 give input to a separate
color vision system (Yamaguchi et al., 2008). They are arranged such that
R1–6 surround R7 and R8, which sit on top of each other in the center of
the ommatidium. Because they are spatially displaced, the rhabdomeres
receive light from slightly different visual angles according to the lens optics.
However, the specific geometry of their arrangement is such that the visual
angle of each rhabdomere matches exactly that of another rhabdomere in
an adjacent ommatidium. Thus, there are seven rhabdomeres from seven
different ommatidia that receive light from the same direction in visual space.
These seven rhabdomeres then send their axons to the same neural cartridge
in the lamina, which is an intriguing example of neural wiring specificity. By
taking advantage of this design, called neural superposition (Kirschfeld, 1967),
signals from seven ommatidia are pooled in one lamina cartridge leading to
an increase of sensitivity but without a sacrifice in spatial resolution. The
neural superposition eye has evolved in Dipterans, “true flies”, which rely
heavily on vision also under dim light conditions. Other arthropod species
may be equipped with other types of compound eyes, such as the apposition
eye, which requires bright daylight conditions, or the optical superposition
eye, which has evolved for nocturnal animals, for example, moths.
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Figure 11: Fly visual system and motion vision circuitry | a, Drosophila head with
a schematic of the brain. Anatomical brain structures are highlighted in different
colors. Optic lobes are shown in bright red. Adapted from illustration courtesy
of Kei Ito, Sheena Brown and Nicholas J. Strausfeld. b, Schematic of the fly optic
lobe. Three lobula plate tangential cells are depicted in the lobula plate. Illustration
from Borst (2014). c, Overview of the fly motion vision circuitry. Anatomically
correct representations of relevant columnar cell types are shown in different colors.
Lamina cells are colored in gray, ON-pathway cells in red and OFF-pathway cells in
blue. LPi cells not shown. The four layers of the lobula plate are highlighted in color
according to their preferred direction of motion (front-to-back (FTB): green, back-to-
front (BTF): red, up: yellow, down: purple). Graphics adapted from Fischbach and
Dittrich (1989).

Lobula plate tangential cells

The large lobula plate tangential cells (LPTC) (Figure 11b) are thought of as
a read-out of the fly motion vision system (Borst et al., 2010). A subclass
of LPTCs, the so-called horizontal system (HS) cells, depolarize in response to
wide-field horizontal motion in front-to-back direction and hyperpolarize for
the other direction. There is evidence that horizontal optomotor turning in
tethered flies is controlled or triggered by HS cells (Hausen and Wehrhahn,
1983; Haikala et al., 2013; Fujiwara et al., 2017). Therefore, HS cell recordings
are often shown together with behavioral responses. However, if visual
motion induced by self-motion elicited responses in HS cells, the resulting
optomotor response would counteract the direction of self-motion and hence
force the fly to return to a straight direction of heading undermining any
attempt at “voluntary” turning. If HS cells were to guide motor signals, they
should therefore also implement an efference copy, a signal that effectively
subtracts visual response contributions that are due to self-motion. Indeed,
there is first evidence that HS cells not only code for visual motion but
also receive suppressive signals during self-induced “voluntary” turns in
tethered flight (Kim et al. (2015, 2017); but see Fujiwara et al. (2017)).

The horizontal system is complemented by the vertical system (VS) cells
which respond more strongly to vertical than to horizontal motion. However,
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closer investigation revealed that VS cells are in fact selective for complex
rotational optic flow fields around various body axes which renders them
ideally suited for course control during acrobatic flight maneuvers (Krapp
and Hengstenberg, 1996; Franz and Krapp, 2000; Weber et al., 2010; Borst,
2014). How do these cells acquire such complex response properties?

Lobula plate - a functional map of visual motion

LPTCs possess widely arborized dendritic trees in the lobula plate where
they form synaptic connections with bushy T4 and T5 cells, as well as lobula
plate intrinsic (LPi) cells (Figure 11c). T4 and T5 cells as well respond to
visual motion and have locally restricted receptive fields (Maisak et al., 2013).
There are four subtypes of each T4 and T5 neurons, called T4a–d and T5a–d.
Each subtype sends their axon terminals to one of the four layers of the
lobula plate, respectively. While T4/T5-neurons arborizing in layer 1 of the
lobula plate selectively respond to front-to-back motion, neurons in layer 2

respond to the opposite direction of motion (Maisak et al., 2013; Fisher
et al., 2015b). The same is true for layers 3 and 4, but regarding upward
and downward motion. Overall, T4 and T5 cells form a complete map for
local motion cues spanning the entire visual field of the fly. The lobula
plate is therefore an outstanding example for brain tissue organization into
functional maps. Why does the fly need two cell types for this? It has
been shown that T4 and T5 cells respond selectively only for motion of
bright edges and dark edges respectively (Maisak et al., 2013). The separate
processing of ON and OFF features is a general property of visual processing
that seems to be shared across species (Borst and Helmstaedter, 2015).

LPi neurons are inhibitory cells that locally pool T4 and T5 signals and
inhibit LPTCs when a stimulus moves in the null direction of the cell (Mauss
et al., 2014, 2015). They correspond to the subtractive stage in a fully
symmetrical Hassenstein-Reichardt motion detector (see Section 1.1.4 and
Figure 8) (Borst et al., 2010). Overall, such fully symmetrical correlation-
type motion detectors account exceptionally well for a wide range of exper-
imentally observed LPTC response characteristics (Borst and Egelhaaf, 1989;
Borst et al., 2010). Complex rotational flow field selectivity, as described
in VS cells, can be explained by the anatomy of their dendritic trees which
selectively pick up signals from excitatory and inhibitory locally direction
selective units, from T4/T5 and LPi cells respectively, in an appropriate way
across all four lobula plate layers (Hopp et al., 2014).

However, measuring signals from LPTCs cannot reveal how direction
selectivity emerges in T4 and T5 cells in the first place. This is because the
subtractive stage in a full Hassenstein-Reichardt detector yields a difference
signal between opposed motion half-detectors, which prohibits a read-out
of the absolute signal amplitudes in the half-detectors (Haag et al., 2016).
Whether direction selectivity is due to preferred direction enhancement or null
direction suppression can therefore not be assessed at the level of LPTCs. The
emergence of direction selectivity can be pinpointed to the dendrites of T4

and T5 cells which thus represent the non-linear interaction stage of a motion
half-detector (see Figure 8) (Maisak et al., 2013; Fisher et al., 2015b).
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Figure 12: Schematic of the fly motion vision pathway | Lamina neurons L1–5

(green) provide input signals to the fly motion vision circuitry. Signals are then split
into an ON- and an OFF-pathway of motion vision. In the medulla, the ON-pathway
comprises Mi1, Tm3, Mi4 and Mi9 cells (red). In the OFF-pathway, Tm1, Tm2,
Tm4 and Tm9 cells (blue) are found in the medulla. Finally, direction selectivity
emerges in T4 (red) and T5 (blue) cells which respond to bright or dark moving
edges, respectively.

How then do T4 and T5 cells become direction selective in the first place?
Before addressing this question, it is instructive to provide a short overview
of synaptic partners and the motion vision circuitry presynaptic to T4 and
T5.

Motion vision pathway in lamina and medulla

In the lamina, large monopolar cells L1, L2 and L3 pick up signals
from R1–6 via histaminergic synapses (Figure 11c, Figure 12) (Hardie, 1989).
Although the lamina consists of an intricate network involving monopolar
cells, photoreceptor terminals, amacrine cells and other neurons, I will focus
here only on the most important connections that presumably give direct
input to motion processing channels. There are two other monopolar cells,
L4 and L5 which receive input from L2 and L1, although L4 also makes
direct connections with R6 (Rivera-Alba et al., 2011; Takemura et al., 2013).
L1 and L2 are the two main inputs to the ON- and OFF-pathway of motion
vision, respectively (Joesch et al., 2010; Clark et al., 2011). However, both
neurons respond transiently to OFF stimuli (Reiff et al., 2010; Clark et al.,
2011; Freifeld et al., 2013). This is readily explained by electrical coupling
of L1 and L2 through gap junctions (Joesch et al., 2010) and the OFF-
polarity of the presynaptic photoreceptors in Drosophila (see above). The
ON-OFF split only emerges at their synapses: While L2 is purely cholinergic
and forms sign-conserving synapses with its postsynaptic partners in the
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medulla (Takemura et al., 2011), L1 releases glutamate which can act as
an inhibitory neurotransmitter in invertebrates via glutamate-gated chloride
channels (Liu and Wilson, 2013; Mauss et al., 2014).

L1’s main postsynaptic targets in the medulla are the columnar neurons
Mi1 and Tm3 (Takemura et al., 2013). Recordings from these neurons
suggest that the L1 synapse must indeed be sign-inverting, since both
Mi1 and Tm3 depolarize transiently to global and local ON flicker stimuli
(Strother et al., 2014; Behnia et al., 2014; Yang et al., 2016). With respect to
the number of synapses, Mi1 and Tm3 are major synaptic input partners to
direction selective T4 cells (Takemura et al., 2013).

In the OFF-pathway, L2 axon terminals form synaptic contact with Tm1,
Tm2 and Tm4 cells in the medulla (Figure 11c, Figure 12) (Takemura et al.,
2011, 2013). All three cells respond with transient depolarization when
presented with OFF stimuli (Meier et al., 2014; Behnia et al., 2014; Serbe
et al., 2016; Yang et al., 2016). Ultrastructural investigation using electron
microscopy found that all three cells provide strong input to T5 neurons, as
does also the medulla neuron Tm9 (Shinomiya et al., 2014). In contrast to the
other three OFF-pathway neurons, Tm9 has tonic response properties and
exhibits sustained depolarization upon presentation of OFF-flicker stimuli
(Fisher et al., 2015a; Serbe et al., 2016). This property is most likely inherited
from its main input partner L3 (Silies et al., 2013). Controversially, while
Serbe et al. (2016) found Tm1, Tm2, Tm4 and Tm9 to possess local receptive
fields and be suppressed by wide-field stimuli, Tm9 has been described as a
wide-field neuron in a different study (Fisher et al., 2015a).

All aforementioned input neurons to T4 (Mi1 and Tm3) and T5 (Tm1,
Tm2, Tm4 and Tm9) have been reported to respond independently of the
direction of a moving stimulus (Behnia et al., 2014; Meier et al., 2014; Serbe
et al., 2016). Calcium imaging experiments revealed that the first direction
selective stage in this cascade of visual signal processing are the dendrites
of T4 and T5 cells (Maisak et al., 2013; Fisher et al., 2015b).

Only recently, new electron-microscopic circuit reconstructions have indi-
cated that two other medulla neurons, Mi4 and Mi9, synapse onto T4 den-
drites (Louis Scheffer, Janelia Research Campus, personal communication).
It will be interesting to investigate the functional properties of those new cell
types and their relevance for motion detection in the ON-pathway.

Elementary motion detection in T4/T5 neurons

Basic models of motion detection require at least two spatially offset input
channels and an asymmetry regarding their temporal filtering properties.
Direction selectivity then emerges from non-linear interactions between the
input channels either leading to preferred direction (PD) enhancement in the
Hassenstein-Reichardt (HR) detector, or to null direction (ND) suppression in
the Barlow-Levick (BL) detector (see Figure 8).

One way to experimentally distinguish between those two models of
motion detection are apparent motion stimuli. Here, a moving stimulus
is discretized into a sequence of adjacent bars or squares. Presentation
of these in the correct temporal sequence resembles a motion stimulus
and can therefore elicit direction selective responses. On the other hand,
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inordinate flashing of the individual bars or squares in a randomized fashion
does not trigger direction selective responses and permits assessment of a
linearly expected response as the sum of the individual flicker responses.
If the response to the apparent motion stimulus in PD is higher than the
linear expectation, the interaction is supra-linear, which is a hallmark of PD
enhancement. If the linear expectation is larger than the response to ND
apparent motion, then the response is sub-linear, which is indicative of ND
suppression.

In T4 cells, a supra-linear response component could be detected using
apparent motion stimuli in calcium imaging (Fisher et al., 2015b). It has
been argued that Mi1 and Tm3 implement the two input channels of an HR
detector based on a small timing difference between their impulse responses
as measured in whole-cell recordings (Behnia et al., 2014). T4 dendrites
indeed receive spatially offset input from Mi1 and Tm3 cells (Takemura
et al., 2013). However, their spatial arrangement does not match their timing
difference in an HR-like scheme of motion detection. Additionally, the
reported spatial and temporal offsets between Mi1 and Tm3 are both so
small that even mild deviations from the reported average values would
cause the motion detector to break down. The hypothesis that Mi1 and Tm3

constitute the only and defining input channels to an HR detector has been
rejected by means of blocking experiments which showed that ON motion
responses in the fly are abolished when blocking Mi1 but remain partly
intact when blocking Tm3 cells (Ammer et al., 2015).

Similarly in the OFF-pathway, an HR detector was proposed based on a
time lag between Tm1 and Tm2 and supra-linear response properties in T5

dendrites (Behnia et al., 2014; Fisher et al., 2015b). Also here, the latency
between Tm1 and Tm2 was found to amount to only 13 ms, which is rather
small (Behnia et al., 2014). Electron microscopy based circuit reconstructions
confirmed a corresponding displacement between Tm1 and Tm2 synapses
on the T5 dendrite as well as between Tm9 and Tm2 (Shinomiya et al., 2014).
In fact, Tm9 and Tm2 would be ideally suited to implement asymmetric
temporal filtering in an HR detector due to their vastly different temporal
filter characteristics (Serbe et al., 2016). However, blocking experiments
again failed to yield a clear resolution of the question since neither single-cell
blocks of Tm1, Tm2, Tm4 or Tm9 nor combinatorial blocks could completely
impair responses in HS cells or motion guided behaviour (Serbe et al.,
2016). Therefore, it seems likely that more elaborate computations involving
interactions between more than two input channels take place on either T4

and T5 cell dendrites.
A recent study measured calcium responses in T4 cells to apparent motion

stimuli using a new telescopic stimulation device that can target light stimuli
precisely onto the neural cartridges in a neural superposition eye (Haag
et al., 2016). By varying the position of the apparent motion stimulus
within the T4 receptive field, Haag et al. (2016) found evidence for both an
enhancing but also a suppressive non-linearity. In fact, there seem to exist
two spatially segregated regimes of PD enhancement and ND suppression
along the receptive field of a T4 cell. These findings led to the proposal of
the three-arm hybrid detector that combines both types of non-linearity and
thus achieves higher direction selectivity (see Figure 9). Another study used
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white noise stimuli to map the linear receptive field structure of T4 and T5

cells and found spatiotemporally tilted receptive fields (Leong et al., 2016).
Based on this, the study argues as well that direction selectivity emerges
from a combination of both mechanisms in both ON- and OFF-pathways
of motion vision. Finally, a third study went one step further and mapped
not only first-order linear but also second-order receptive fields of T4 and
T5 (Salazar-Gatzimas et al., 2016). They verified their results using a newly
developed correlated noise stimulus to obtain T4 and T5 calcium responses
for different types of pairwise pixel correlations. For both cell types, they
argue for a linear-nonlinear model of motion detection which resembles an
HR detector with a static nonlinearity instead of a multiplication. However,
they do not consider the possibility of a hybrid detector in their publication.
While PD enhancement is clearly more pronounced in their experiments,
some of their observations could be due to ND suppression and would
certainly have to be re-evaluated with respect to the new hybrid detector
scheme. Overall, there is increasing evidence that the direction selectivity
of T4 and T5 dendrites could indeed emerge through a combination of both
mechanisms for both cell types. Future studies will have to address these
questions in further detail and involve additional experimental tools like
electrophysiology or voltage imaging.

1.2.3 Drosophila neurogenetic toolbox

History of research on Drosophila melanogaster dates back to more than
100 years ago (Morgan, 1910; Bellen et al., 2010). In this time span, an
enormous amount of knowledge about the fruit fly has been collected
in the fields of developmental biology, neuroscience, genetics and more.
Specifically in genetics research, Drosophila has a long historical record as
a model organism. The resulting advance of genetic engineering methods
for the fruit fly has boosted research progress in other areas, one of them
being neuroscience. With modern techniques it is feasible to generate
thousands of genetically modified fly strains, each of them with a different
insertion that can be used to target subsets of neurons throughout the whole
brain of Drosophila (Pfeiffer et al., 2008). This facilitates fly neuroscience
in unprecedented ways: nowadays, Drosophila neuroscientists have large
“libraries” of modified transgenic fly strains at their disposal, each one with
unique insertions, that only need to be crossed in appropriate ways in order
to drive expression of a multitude of available effector tools in a target cell
population. The short life cycle of Drosophila and the ease of culturing and
maintaining large numbers of fly strains do their part to shorten the time
span between hypothesis and experiment, which greatly contributes to the
efficacy of Drosophila neuroscience.

Targeted gene expression

Manipulation of individual neurons is a prerequisite for neural circuit
analysis. In order to target expression of arbitrary genes to specific neurons
in Drosophila, binary expression systems such as the Gal4/UAS or the
LexA/lexAop system have been developed (Venken et al., 2011). Binary
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Figure 13: Crossing scheme for the Gal4-UAS system | In the parental F0 genera-
tion, a driver fly line is crossed to an effector line (top). Expression of the effector
protein is triggered in F1 generation flies through binding of the Gal4 protein to
UAS (bottom).

expression systems rely on patterned expression of a driver gene which
activates expression of an effector gene, that can be any gene of interest.
Depending on the insertion site in the genome, the expression pattern of
the driver is controlled by endogenous enhancers that determine the neural
expression pattern of the driver line. In other words, the driver line dictates
the where while the effector line specifies what will be expressed.

In the Gal4/UAS system, the yeast transcription factor Gal4 binds to a
specific sequence of 17 basepairs which is called the Upstream Activating
Sequence (UAS) (Brand and Perrimon, 1993). UAS controls expression of the
neighboring effector gene. Because the exogenous Gal4 protein lacks any
endogenous targets in Drosophila, it will only activate sequences under the
control of UAS and not interfere with endogenous gene expression. The
expression of the effector is therefore confined to the expression pattern of
the Gal4 protein.

In practice, targeted gene expression using the Gal4/UAS-system can eas-
ily be accomplished by crossing an appropriate driver fly line with a specific
effector line (Figure 13). The subsequent generation of flies inherits both, the
driver as well as the effector gene, which triggers selective expression of the
chosen effector protein.

Large numbers of Gal4 lines have been created by random insertions
through injection of a vector containing transposable P-elements into the
embryo of a fly, e.g. by Hayashi et al. (2002). The lack of control with this
method over the specific insertion site, however, often results in relatively
broad expression patterns including several types of neurons. This therefore
renders targeted manipulation of specific neurons challenging. To overcome
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these limitations, site-specific integration of plasmids expressing the Gal4
protein using the Φ31 integrase is achieved in more recent approaches to
transgenesis of driver lines (Venken et al., 2011). Using these methods,
expression levels as well as the specificity of driver lines could be improved
and libraries comprising several thousands of fly strains have been generated
for neuroscientific purposes (Pfeiffer et al., 2008; Jenett et al., 2012).

Still, binary drivers often lack the degree of specificity which would
be essential for the conduct of clear and conclusive experiments when
manipulating neural circuits. For this reason, intersectional strategies like
the split-Gal4 system have been developed (Luan et al., 2006). Here, the
Gal4 protein is split into an AD and a DBD domain which are expressed
independently from each other by using different driver lines. Neither
domain is functional on its own. However, transcription of the effector
gene through Gal4 will be activated exclusively in those cells where the
expression patterns of both driver lines overlap and a functional Gal4 protein
can be reconstituted by fusion of the two domains. In another intersectional
strategy which is frequently used, the expression of Gal4 is suppressed by
independent expression of the protein Gal80 (Lee and Luo, 1999).

With these tools available, targeted manipulation of selected cell types is
feasible for most neurons in the Drosophila motion vision pathway and ex-
pression of distinct effectors enables precise circuit mapping and functional
analysis. In the following, I will introduce a few of the most common effector
proteins, with focus on those that have been used in my doctoral projects.

Visualization

Targeted expression of a fluorescent dye in a neuron makes its anatomy
visible under a fluorescence microscope. In 2008, Osamu Shimomura,
Martin Chalfie and Roger Tsien received the Nobel Prize in Chemistry
for the discovery and development of the green fluorescent protein (GFP)
(Chalfie et al., 1994). GFP is a protein which is endogenously expressed
in jellyfish and that emits green light of about 500 nm wavelength when
activated by shorter wavelength excitation light close to the UV spectrum.
Since its discovery, GFP has been used extensively in neuroscience and
other areas as a fluorescent marker for cell visualization. Apart from GFP,
fluorescent markers with emission spectra at many different wavelengths
have been developed and are constantly subject to improvement through
genetic engineering (Shaner et al., 2004). Labelling neurons with transgenic
fluorescent dyes allows for visualization of structural and anatomical details.

Functional imaging

Another advantage of labelling neurons with fluorescent proteins is that it
makes non-invasive imaging of the targeted cell population in vivo possible.
Genetically encoded calcium indicators (GECI) have been developed to take full
advantage of this and enable optical read-out of neuronal activity (Mank
and Griesbeck, 2008). GECIs are mutants of auto-fluorescent proteins, such
as GFP, that have been modified so as to change their fluorescent properties
depending on the concentration of Ca2+ ions in the cell. Depolarization of
a neuron causes voltage-gated calcium channels in the cell membrane to



1.2 visual neuroscience in the fly 31

open. The resulting influx of Ca2+ ions increases the intracellular calcium
concentration which can be read out through GECIs. Calcium is hence
coupled to membrane voltage and can therefore be used as a proxy for
neuronal activity.

For the calcium indicator GCaMP, the GFP protein has been fused to
an M13 peptide and the calcium-binding protein calmodulin. Binding of
calcium to the calmodulin domain induces conformational changes in this
construct which in turn promotes deprotonation of the chromophore and
thus leads to brighter fluorescence. There is a couple of limitations one
should be aware of when using GCaMP or other GECIs as a proxy for
membrane voltage: First, a GECI binds to calcium and therefore also acts as
a calcium buffer, which changes the concentration of free cytosolic calcium.
If the concentration of calcium indicator is too high, it might significantly
alter calcium dynamics in the cell and nonlinearly perturb the system
(Borst and Abarbanel, 2007). Second, calcium channels inactivate when the
cell hyperpolarizes which effectively leads to half-wave rectification in the
voltage-to-calcium transformation. Third, calcium binding to the indicator
protein has limited forward and backward rate constants which reduces the
temporal precision of the signal. Even for the presumably fastest version,
GCaMP6f, decay time constants between 200–400 ms have been reported
(Chen et al., 2013).

In Manuscript 3 of this thesis, we try to overcome the problem of slow
calcium indicator dynamics by using the glutamate sensor iGluSnFR which
reports synaptic activity by changing its fluorescence depending on the glu-
tamate concentration (Marvin et al., 2013). The decay rate of the iGluSnFR
protein is a lot faster than that of GCaMP and therefore it induces fewer
temporal distortions. In addition, it might be beneficial to measure synaptic
release of a neurotransmitter directly rather than calcium concentration or
membrane voltage. Ultimately, the amount of neurotransmitter released into
the synapse is the actual signal that is received by postsynaptic neurons.
However, this technique is obviously limited to glutamatergic neurons, e.g.
L1 neurons in the fly motion vision circuitry.

Efforts are also going into the design of voltage indicators that can report
the membrane voltage of a cell directly. Such proteins usually consist of
a transmembrane voltage sensing domain fused to a reporter fluorescent
protein (Lin and Schnitzer, 2016). Although voltage indicators have been
successfully applied in the fly, their signal-to-noise ratio is still relatively
low so that many repetitions of the same stimulus are necessary in order to
obtain clear results (Yang et al., 2016). Additionally, voltage indicators still
suffer from fast photobleaching, a phenomenon that affects all fluorescent
dyes but is in practice much less severe for, e.g., GCaMP6 (Chen et al., 2013).

Activation tools

In order to interrogate a circuit, activation or silencing of selected neurons
might be necessary. Several effector tools have been developed for this
purpose. Neuronal activation can for example be achieved by expressing
the temperature gated cation channel dTRPA1 in the cells of interest (Berni
et al., 2010). dTRPA1 is a channel which is innately involved in thermo-
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tactic behavior in Drosophila due to its temperature sensitive conductance
(Rosenzweig et al., 2005; Hamada et al., 2008). Temperatures above 25

◦

lead to opening of the channel and thus strong depolarization of the neuron.
This is reversible by decreasing the temperature again. Artificially driving
expression of dTRPA1 via binary expression systems therefore gives the
experimenter a tool that allows them to control membrane voltage and
activate specific neurons by setting the temperature. Temperature control,
however, is a relatively slow process which is why dTRPA1 channels are not
well suited for instantaneous activation of neurons.

Optogenetic activation tools promise higher temporal precision instead.
For example, the ATP-gated ionotropic purinoceptor P2X2 can be activated
via photo-stimulated release of caged ATP (Lima and Miesenböck, 2005).
Even more potential lies in intrinsically light-activatable channel proteins.
Channelrhodopsin is a light-gated ion channel that is innately involved
in phototaxis behaviour of a species of algae (Harz and Hegemann, 1991).
Transgenic efforts have successfully established this protein as a photo-
activatable on-switch for neurons (Boyden et al., 2005; Nagel et al., 2005).
Channelrhodopsins are typically excitable with blue light in a spectrum
of wavelengths of approximately 450–490 nm. Such short wavelengths are
usually limited in their penetration depth of neural tissue, which is why
invasive methods such as light delivery via implanted light guides often
remain necessary. In the visual system of Drosophila specifically, there is the
additional caveat for possible cross-talk between optogenetic stimulation and
the visual system of the fly due to the close distance of the fly photoreceptors
which are sensitive to light in this spectrum. Therefore, red-shifted variants
of the channelrhodopsin protein have been generated, such as the red-
activatable channelrhodopsin ReaChR (Lin et al., 2013) or the even farther
red-shifted Chrimson (Klapoetke et al., 2014). Such red-sensitive agents have
deeper penetration depths and in Drosophila, they allow for non-invasive
delivery of optogenetic stimuli through the cuticle while minimizing in-
terference with the fly visual system (Bath et al., 2014). With these tools,
millisecond-timescale control of neuronal activity through optical triggers
becomes possible. While spatial control over the elicited pattern of neural
activation is mostly still carried out by genetic means through targeted
expression of the optogenetic agent, new stimulation strategies are being
explored with respect to shaping the light path so as to gain precise spatial
control over the delivery of the optogenetic stimulus, e.g. by employing
holographic techniques (Reutsky-Gefen et al., 2013).

Silencing tools

For silencing experiments, two main strategies are worth considering. One
way is to block synaptic output by using effectors which interfere with
synaptic mechanisms. One such agent is shibirets1, a temperature-sensitive
allele of the protein dynamin which is essential for recycling of synaptic
vesicles in Drosophila (Kosaka and Ikeda, 1983; Kitamoto, 2001). Close to
room temperature, the protein functions normally but it becomes defective
at higher temperatures (>29

◦). In the latter case, it leads to gradual (≈ 1 min)
depletion of synaptic vesicles and thus to inhibition of synaptic output.
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Decreasing the temperature reverses this effect again. Thus, shibirets1 to-
gether with genetically targeted expression gives researchers the possibility
to silence selected neurons with mild temporal precision. Another way to
block synaptic release is the tetanus toxin light chain TNT (Sweeney et al.,
1995). Tetanus toxin is a powerful neurotoxin which cleaves the synaptic
protein synaptobrevin that is involved in vesicle release. Expressing TNT in
a neuron therefore abolishes synaptic transmission, an effect which is not
reversible. However, TNT does not interfere with the electrophysiology of a
cell, which is why it is still possible to measure voltage or calcium signals
from TNT-targeted neurons.

Instead of disrupting synaptic mechanisms, “electrical” silencing of neu-
rons can be achieved by hyperpolarizing them. Overexpression of the
inwardly rectifying potassium channel Kir2.1 constantly hyperpolarizes
targeted neurons and thus suppresses their excitability (Johns et al., 1999;
Baines et al., 2001).

Similarly to the methods mentioned above, also here the development
of optogenetics has endowed neuroscientists with new effector tools that
can be optically triggered and thus enable neuronal silencing with high
temporal precision. The Natromonomas pharaonis halorhodopsin is a light-
gated chloride ion pump which triggers hyperpolarization when overex-
pressed in a neuron and activated with light near 590 nm wavelength (Zhang
et al., 2007). Recently, more sensitive effectors, like the light-gated anion
channels GtACR1 and GtACR2, have been derived from the cryptophyte
alga Guillardia theta (Govorunova et al., 2015). Combination of different
optogenetic tools with distinct excitation spectra and opposing effects on
the membrane voltage can be used for multimodal all-optical control over
activation and silencing experiments (Zhang et al., 2007).

1.2.4 Physiological techniques

Neurons encode and process information in the form of electrical signals.
Membrane potential is the difference in the electric potential between inside
and outside of a neuron. A minute balance of the concentration gradients
of different ions, amongst others involving sodium, potassium and chloride,
establishes an electrical gradient which can be controlled through opening
and closing of specific ion channels. But how can we measure these
signals in vivo? This section summarizes some of the experimental methods
for assessment of the membrane voltage and live monitoring of neuronal
signals.

Electrophysiology

Electrophysiological methods measure electrical activity of a neuron di-
rectly by placing electrodes into the neural tissue. Extracellular recordings
are used to detect spiking activity from outside of a cell. This is possible be-
cause an electrode which is brought only in the vicinity of a spiking neuron
is still susceptible to the strong depolarization during an action potential,
even though signal amplitude might be reduced depending on distance. In
the fly visual system, however, not all neurons show spiking activity and
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a lot of information is conveyed by graded changes of membrane potential
(Haag and Borst, 1998). In order to measure membrane voltage more directly,
intracellular recordings are necessary. Sharp electrode recordings have been
used for functional characterization of HS and VS cells in the lobula plate of
large flies like Calliphora (Hausen, 1976; Krapp et al., 1998). Here, neurons are
penetrated using sharp micropipettes with a fine pore at the tip. Through the
pore the intracellular fluid is in contact with the solution inside of the pipette
where an electrode is placed. This enables measurement of transmembrane
voltage with high precision. Sharp electrode recordings, however, are hard
to obtain for small neurons of the size as we find in Drosophila. Patch-
clamp recordings have turned out be the more successful approach here
(Sakmann and Neher, 1984). In order to patch-clamp a neuron, a slightly
larger microelectrode is placed next to the cell body and by gentle suction
a patch of the cell membrane is drawn into the tip of the electrode. This
leads to formation of a so-called giga-ohm seal between the cell membrane
and the tip of the glass pipette. Upon application of more suction, the
membrane patch in the pipette can be detached. Because the electrode stays
sealed to the rest of the cell body, this leads to very stable low-impedance
electrical access to the cell interior. Recording from LPTCs in Drosophila
have established fundamental insights into fly motion processing using in
vivo patch-clamp recordings (Joesch et al., 2008).

Two-photon imaging

Electrophysiology measures the relevant quantity, membrane voltage, di-
rectly and with high temporal precision but has the great disadvantage that
it is an invasive method. An additional drawback to intracellular recordings
is that they are usually restricted to one neuron, although double patch-
clamp recordings might be feasible (Haag and Borst, 2001). Finally, while
it is possible to record from LPTCs in the Drosophila visual system, estab-
lishing electrophysiological access is extremely challenging for even smaller
neurons such as the ones found in the lamina or the medulla. Moreover,
neuronal cell bodies in Drosophila reside at the periphery of the brain which
means that somatic signals might not be a faithful representation of the true
dendritic or axonal signals due to the long cable length between soma and
axons or dendrites. Therefore, in Drosophila neuroscience, calcium imaging
is the method of choice in many cases. Imaging is minimally invasive
and permits access to sub-cellular structures such as dendrites or axons
and simultaneous recordings of several targets. How are calcium signals
measured?

Fluorescence requires excitation by light with an appropriate wavelength.
For GFP-derived GECIs like GCaMP, the peak of the emission spectrum
lies at a wavelength of around 520 nm while absorption is maximal for
slightly shorter wavelengths of approximately 480 nm. At this wavelength,
penetration depth into neural tissue is not very large and visual artifacts due
to photoreceptor stimulation can be triggered by the excitation light beam.
Fluorescence relies on excitation of the fluorophore by an impinging photon
containing enough energy to elevate the molecule into an excited singlet or
triplet state. Relaxation of the fluorophore then releases that energy in form
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of a photon with longer wavelength. Crucially, the fluorophore can also be
excited by two photons carrying half of the energy each (Göppert-Mayer,
1931). Since half of the energy implies twice the wavelength, this means that
it is possible to use near-infrared light of about 920 nm wavelength to excite
GFP or GCaMP. Infrared light penetrates deeper into the tissue and has the
advantage that it does not interfere with the visual system. For these reasons,
combined confocal laser scanning microscopy and two-photon excitation has
become the standard in the field for calcium imaging experiments (Denk
et al., 1990).

1.3 concluding remarks

Although the motion vision system in Drosophila has been described in
great detail, it still remains elusive how exactly direction selectivity emerges
on T4/T5-dendrites. Before I started my doctoral work, functional descrip-
tions of the known synaptic input elements to T4 and T5 cells had been
made publicly available and several studies argued for the implementation
of an HR-like scheme of motion detection. However, a number of blocking
experiments unveiled conflicting evidence regarding that model. Recently,
several studies have concluded that a more complex implementation of ele-
mentary motion detection might resolve these questions, moving the three-
arm hybrid detector model into the focus of attention. In order to address
the question of how such a model could be implemented in the fruit fly, it is
necessary to know the functional processing properties of all neurons which
are possibly involved. However, functional characterization of T4/T5-input
elements has been performed in different studies using various methods
and for distinct subsets of neurons. My first project was therefore a more
systematic approach to comprehensively map the processing properties of
all input elements including the cell types Mi4 and Mi9, which had not been
functionally described before.

In the course of my doctoral work, more questions related to motion
processing in the fly came up: Which neurotransmitters are involved in the
computations of this system and how do our functional descriptions relate
to neurotransmitter signaling? But also questions regarding the subsequent
processing of motion information: How can the fly take advantage of its
elaborate motion vision system to detect and track moving visual objects
in cluttered natural environments? Finally, we asked how motion vision
can be robust at all in the face of the immense amount of variability that is
pervasive in natural environments. While our models of motion detection
work reasonably well for artificial stimuli and capture many features of
motion-guided behavioral responses in the fly, they tend to have unstable
performance when stimulated using more naturalistic stimuli.

The findings that me and my collaborators made were published in
three peer reviewed articles and yielded one additional manuscript that is
currently submitted to a peer-reviewed journal. In the following chapter, all
manuscripts are presented in a chronological order.





2 P U B L I C AT I O N S

2.1 the temporal tuning of the Drosophila
motion detectors is determined by the
dynamics of their input elements

summary This study mapped the spatiotemporal receptive fields of Mi1,
Tm3, Mi4, Mi9 in the ON-pathway and Tm1, Tm2, Tm3 and Tm9 in the
OFF-pathway using stochastic stimuli and reverse correlation.

Input neurons to T4 and T5 had been functionally described before,
but not all of them in a single and comprehensive study. The response
properties of T4 input neurons Mi4 and Mi9 had not been measured before.
Using two-photon imaging, we recorded calcium responses of these neurons
to white noise stimuli and performed reverse correlation analysis to obtain
their spatiotemporal receptive fields. While Mi1, Tm3, Tm1, Tm2 and
Tm4 showed temporal band-pass characteristics, Mi4, Mi9 and Tm9 had
low-pass filter characteristics. In the spatial domain, band-pass cells, with
the exception of Tm3, showed moderate surround antagonism. Low-pass
filter cells Mi4, Mi9 and Tm9, however, had a strong antagonistic surround.
All neurons exhibited faster response kinetics upon pharmacological
application of chlordimeform, an octopamine agonist which has been used
before to mimic behavioral state modulation in flies. Finally, we assessed
the direction selectivity of a three-arm motion detector model with different
configurations of input cell on the arms of the detector. Our simulations
suggested that low-pass filter cells Mi4, Mi9 and Tm9 should be placed on
the lateral arms of a three-arm detector to maximize the direction selectivity
of the model.

This article was published in Current Biology in April 2017 (Arenz et al.,
2017).

authors Alexander Arenz, Michael S. Drews (co-first author), Florian G.
Richter, Georg Ammer and Alexander Borst
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elements. F.G.R. performed and analyzed the experiments describing the
ON-pathway neurons. G.A. performed and analyzed the patch-clamp
recordings from lobula plate tangential cells. M.S.D. performed the com-
puter simulations. A.A. wrote the manuscript with the help of all authors.
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SUMMARY

Detecting the direction of motion contained in the
visual scene is crucial for many behaviors. However,
because single photoreceptors only signal local
luminance changes, motion detection requires a
comparison of signals from neighboring photorecep-
tors across time in downstream neuronal circuits. For
signals to coincide on readout neurons that thus
become motion and direction selective, different
input lines need to be delayed with respect to each
other. Classical models of motion detection rely on
non-linear interactions between two inputs after
different temporal filtering. However, recent studies
have suggested the requirement for at least three,
not only two, input signals. Here, we comprehen-
sively characterize the spatiotemporal response
properties of all columnar input elements to the
elementary motion detectors in the fruit fly, T4 and
T5 cells, via two-photon calcium imaging. Between
these input neurons, we find large differences in tem-
poral dynamics. Based on this, computer simulations
show that only a small subset of possible arrange-
ments of these input elements maps onto a recently
proposed algorithmic three-input model in a way
that generates a highly direction-selective motion
detector, suggesting plausible network architec-
tures. Moreover, modulating the motion detection
system by octopamine-receptor activation, we find
the temporal tuning of T4 and T5 cells to be shifted
toward higher frequencies, and this shift can be fully
explained by the concomitant speeding of the input
elements.

INTRODUCTION

The detection of visual motion arising from ego-motion is crucial

for course stabilization in flies [1]. Sets of large tangential cells in

the lobula plate of the fly optic lobe respond selectively to the

optic flow resulting from whole-body rotation around different

axes. As single photoreceptors respond to local luminance

changes in a non-direction-selective way, the intervening cir-

cuitry of the optic lobe [2–5] (Figure 1) must serve to extract

the feature of visual motion by spatiotemporal comparison of

the responses of neighboring photoreceptors.

Two competing algorithmic models of motion detectors have

been proposed (Figure 1A). Both models rely on asymmetric

temporal filtering of two input signals that are then fed into a

non-linearity. They differ by the type of non-linearity employed

and the location of the delay filter. In the Barlow-Levick (BL) de-

tector (Figure 1Aii) [6], the delay is located on the preferred side

and the non-linearity is inhibitory, leading to a suppression of sig-

nals moving in the null direction (ND). In the Hassenstein-Reich-

ardt (HR) detector (Figure 1Ai) [7], the delay is located on the null

side and the non-linearity is excitatory, leading to an enhance-

ment of signals moving in the preferred direction (PD). In the

full HR detector (Figure 1Aiii), two of those subunits, or half-

detectors, are arranged in a mirror-symmetric fashion and sub-

tracted from each other to yield a fully opponent detector (for

review, see [8]).

How do the proposed elements of these algorithmic models

map onto the neural circuits of the fly, and how does direction

selectivity arise? The fly optic lobe consists of four neuropils

downstream of the retina: the lamina, medulla, lobula, and lobula

plate (Figure 1B). Photoreceptors synapse onto lamina monopo-

lar cells. These lamina cells feed into two separate pathways en-

coding for different contrast polarities [9–11]: the ON pathway

encodes brightness increments, and the OFF pathway encodes

brightness decrements. In each pathway, the direction of visual

motion is computed separately [12, 13]. In both pathways, lam-

ina neurons connect onto a distinct set of medulla neurons. In

the ON pathway, these medulla neurons have axon terminals in

layer 10 of the medulla, where they overlap with the dendrites

of T4 neurons [4]. In the OFF pathway, transmedulla neurons

project to the lobula, where they synapse onto the dendrites of

T5 neurons [5]. T4 and T5 neurons each fall into four subclasses,

which respond selectively to visual motion in one of the four car-

dinal directions (front-to-back, back-to-front, up, and down) and

project their axons according to this preference to one of the four

layers of the lobula plate [14]. There, T4 and T5 cells converge

and provide direct excitatory cholinergic input onto wide-field

lobula plate tangential cells [15]. In addition, T4 and T5 cells syn-

apse onto lobula plate intrinsic (LPi) neurons, which in turn inhibit

tangential cells in the adjacent, oppositely tuned layer [16], mak-

ing tangential cells fully motion opponent. Hence, T4 and T5

Current Biology 27, 929–944, April 3, 2017 ª 2017 Elsevier Ltd. 929
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neuronswould represent the half-detector units of the fully oppo-

nent motion detector model just before the subtraction stage.

Although the HR detector describes the responses of lobula

plate tangential cells well, the responses of T4 and T5 neurons

are more directionally selective than would be expected for the

half-detectors of the HR model [14, 17].

In the ON pathway, medulla intrinsic neuron 1 (Mi1) and trans-

medullary neuron 3 (Tm3) were originally suggested as the main

inputs onto T4 neurons from electron-microscopic reconstruc-

tions [4]. These data showed a small spatial offset of about a fifth

of a column, about 1� in visual space, betweenMi1 and Tm3 syn-

apsing onto the same T4 neuron, with Tm3 located toward the

null side of the T4 neuron. Based on this spatial offset, two

possible implementations of the motion detector were sug-

gested: a HR correlator with Tm3, or a BL detector with Mi1,

as the delayed arm. Subsequent patch-clamp recordings

showed a small temporal delay of �20 ms for Mi1 with regard

to Tm3, as well as a similar temporal offset of Tm1 with respect

to Tm2 in the OFF pathway [18]. This led to the suggestion of HR

correlator implementations withMi1 and Tm1 as the delayed and

Tm3 and Tm2 as the direct arms in the ON and the OFF pathway,

respectively [18, 19].

However, new findings from several recent studies question

this model. First, new electron-microscopic circuit reconstruc-

tions show additional synaptic input from Mi4 and Mi9 cells onto

T4 cells (Lou Scheffer, personal communication; https://web.

archive.org/web/20150218101857/http://emanalysis.janelia.org/

flyem_tables.php), and from the transmedulla neurons Tm4 and

Tm9 onto T5 cells [5]. Second, when all four input cell types in

the OFF pathway were considered, large differences in their tem-

poral response kinetics to flashes of dark bars were revealed [20].

Whereas Tm1, Tm2, and Tm4 respond like band-pass filters with

different time constants, Tm9has the response characteristic of a

pure low-pass filter, together forming a filter bank that lends itself

well to the construction of motion detectors. Third, whereas

blocking the synaptic output of Mi1 severely reduces responses

of tangential cells to moving ON edges, blocking Tm3 output

only affects responses to edges moving at higher angular veloc-

ities but leaves responses to lower velocities unchanged [21].

This again argues against Tm3 being one of the two arms of the

motion detector under all conditions. Similarly, in the OFF

pathway, all four cell typeswere shown to contribute to the detec-

tion of moving OFF edges. Blocking their synaptic output

decreased the responses of downstream tangential cells and

reduced the optomotor response to OFF edges [20]. However,

no blocks of single cell types or of two types in combination

fully abolished the responses to dark edges, suggesting either

redundancy or a more complicated implementation than previ-

ously suggested. Fourth, recent experiments based on the

sequential stimulation of individual laminar cartridges revealed

that the elementary motion detectors in the ON pathway, T4

neurons, implement ND suppression [17] in addition to PD

enhancement [22] (Figure 1Aiv). Spatiotemporal receptive fields

of T5 neurons are consistent with a similar model in the OFF

pathway [23]. This more elaborate motion detector implementa-

tion could explain the high direction selectivity. However, in

contrast to both HR and BL detectors, it relies on at least three

input elements.

Taken together, in both pathways, evidence mounts for a neu-

ral implementation that is more complicated than either the BL or

the HR model alone, and there is a multitude of combinations

possible to place the known columnar input elements into the

proposed algorithmic three-arm model of the Drosophilamotion

detectors.

In order to dissect the roles and contributions of individual

cell types, it would be helpful to modify their temporal response

dynamics and observe the effect on the downstream motion

detectors. One remarkable property of tangential cells is that

their velocity tuning is not fixed but dependent on the behav-

ioral state of the fly, as has been observed in Drosophila and

Lucilia. In walking [24] as well as in tethered flying flies

[25, 26], the temporal-frequency tuning shifts toward higher fre-

quencies, corresponding to higher velocities, potentially match-

ing the expected change of the stimulus statistics from resting

to active locomotion. The behavioral effect can be mimicked in

resting flies by pharmacological activation of octopamine re-

ceptors with octopamine [26] or the octopamine agonist

chlordimeform (CDM) [25, 27]. The physiological source of

this neuromodulation is octopaminergic neurons that project

to the medulla, lobula, and lobula plate [28, 29]. They become

activated during flight and are both necessary and sufficient for

the increase in responses to higher temporal frequencies [26].

Importantly, this change in the temporal tuning could be repro-

duced in computer simulations by decreasing the low-pass

filter time constant in the HR detector [25], indicating that iden-

tifying the input elements that change their kinetics under

octopamine activation might help to pinpoint their functional

roles in the detector.

Figure 1. Theoretical Models for Visual Motion Detection and the Underlying Neuronal Circuitry
(A) Algorithmic models of motion detectors based on variations of a common theme of spatiotemporal correlations of local luminance changes detected by

photoreceptors. (Ai) In the Hassenstein-Reichardt (HR) correlator (of which a half-detector is shown here), a delay (t) on the first of two arms activated bymotion in

the preferred direction (PD) causes coincidence of the two signals from neighboring photoreceptors (separated by an angle, Df). A multiplicative non-linearity

results in a PD enhancement. (Aii) In the Barlow-Levick (BL) detector the delay is located on the opposite arm, and the non-linearity is suppressive/inhibitory,

causing a null-direction (ND) suppression. (Aiii) In the full HR correlator, two mirror symmetric subunits from (Ai) are subtracted, resulting in a fully opponent

detector, which not only depolarizes in PD but also hyperpolarizes in ND. (Aiv) A recently proposed model, based on the responses of T4 neurons to apparent

motion stimuli, combines PD enhancement and ND suppression along the PD axis.

(B) Schematic of the circuitry of the Drosophila optic lobe showing neuron classes suggested to be involved in visual motion detection. Local luminance changes

are detected by photoreceptors in the retina and relayed via lamina monopolar neurons (classes L1–L5) and medulla neurons (Mi1, Tm3, Mi4, Mi9, Tm1, Tm2,

Tm4, and Tm9) to T4 and T5 neurons. The latter are the first neurons in the visual pathway that respond selectively to motion. Both T4 and T5 form four subtypes

that respond to one of the cardinal directions and project accordingly to the four layers of the lobula plate, thus forming a map of visual motion directions. In the

lobula plate, they synapse onto large-field tangential cells (horizontal system [HS] and vertical system [VS] cells), as well as onto lobula plate intrinsic (LPi) cells

that in turn form inhibitory synapses onto tangential cells in the adjacent layer of opposite PD. This inhibition corresponds to the subtraction stage in the full HR

correlator (Aiii) and endows lobula plate tangential cells with full motion opponency.
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Figure 2. Response Properties of the ON- and OFF-Pathway Medulla Columnar Elements

(A) Two-photon calcium imaging of immobilized flies.

(B) Schematic of vertical (left) and horizontal (right) white-noise stimulus illustrated by three frames.

(C) Terminals of Tm2 neurons expressing the genetically encoded calcium indicator GCaMP6f. Regions of interest (ROIs) for the analysis of calcium indicator

fluorescence changes encompass single terminals.

(D) Average aligned spatiotemporal receptive field of all Tm2 cells from (C) for a white-noise stimulus consisting of vertical bars. Along the vertical axis, the center-

surround structure of the OFF-center receptive field is visible in the heat color code (vertical dashed line at the time of the peak of the response). The section along

the time axis through the receptive field center reveals the temporal response kernel.

(E–H) Receptive fields of Mi1 (E), Tm3 (F), Mi4 (G), and Mi9 (H) for vertical (upper left) and horizontal (lower right) white-noise bar stimulation. From these, the two-

dimensional receptive fields were constructed as a two-dimensional difference of Gaussians (Supplemental Experimental Procedures).

(I) Temporal kernels resulting from the reverse correlation of the calcium response with the white-noise stimulus for Mi1, Tm3, Mi4, and Mi9.

(J) Temporal kernels in frequency-space (constructed from the temporal kernels in (I) revealing Mi1 and Tm3 as band-pass filters and Mi4 and Mi9 as

low-pass filters. (For the measurements of the spatial receptive fields: Mi1: N = 5 flies, n = 35 cells; Tm3: N = 6, n = 37; Mi4: N = 5, n = 33; Mi9: N = 7,

n = 29. For the determination of the temporal kernels twice as many measurements, from the horizontal and vertical one-dimensional noise stimulus, could

be used.)

(legend continued on next page)
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In this study, we comprehensively characterize the spatiotem-

poral response profiles of all known columnar input elements of

both the ON and OFF motion detectors in the fruit fly Drosophila

melanogaster and take advantage of the motion detectors’

state-dependent tuning characteristics. Using computer simula-

tions, we test which combinations of input elements result in the

observed properties of T4 and T5 neurons and thereby narrow

down their possible cellular implementation. In particular, we

address the question of whether the response dynamics of the

input elements are sufficient to yield realistic motion detectors,

or whether additional mechanisms on the synaptic or dendritic

level are required to further modify the dynamics of the input

signals.

RESULTS

Characterization of the Columnar Input Neurons to
T4 Cells
The functional role of the input neurons to the elementary motion

detectors and their correspondence to elements of any detector

model depend crucially on their spatiotemporal response char-

acteristics. For this reason, we characterized the spatial extent

of the receptive fields as well as the response dynamics of all pu-

tative input elements to the T4 and T5 cells: Mi1, Tm3, Mi4, and

Mi9 in the ON pathway, and Tm1, Tm2, Tm4, and Tm9 in the OFF

pathway. Expressing the genetically encoded calcium indicator

GCaMP6f [30] with cell-type-specific Gal4-driver lines, we

imaged calcium signals in single terminals in layer 10 of the

medulla or the proximal lobula for the ON- and OFF-pathway

elements, respectively.

To precisely map the receptive fields of the input elements, we

used a one-dimensional white-noise stimulus consisting of 2.8�

wide horizontal or vertical bars covering the full extent of the

arena (Figures 2A–2D; Figure S1; Supplemental Experimental

Procedures). The spatiotemporal receptive fields were then

determined from the neuron’s calcium response by reverse

correlation. The spatial components of these are the one-dimen-

sional horizontal and vertical projections of the underlying two-

dimensional spatial receptive field of the cell. In all cases, they

strongly resembled a difference of Gaussians (DOG; also called

a ‘‘Mexican hat’’). Because they were similar for both the hori-

zontal and vertical dimensions, we fitted a two-dimensional

DOG to reconstruct two-dimensional spatial receptive fields

(Figures 2E–2H and 2K–2N). The temporal component of the

spatiotemporal receptive field reflects the temporal filtering

properties of the neuron (impulse response). The extracted tem-

poral filters were validated by predicting held-out test sequences

of neuronal responses from the stimulus for two example neuron

types (Mi1 and Tm9) (Figure S2; see Supplemental Experimental

Procedures).

All four cell types in the ON pathway, Mi1, Tm3, Mi4, and Mi9,

showed locally confined receptive fields that appeared isotropic

in the horizontal and vertical dimensions (Figures 2E–2H). Mi1,

Mi4, and Mi9 cells revealed a receptive field center with a half-

width diameter of approximately 6�–7�, corresponding to about

one optical column. In contrast, the receptive field center of

Tm3 was substantially larger, with a half-width diameter of about

12�. Mi4 andMi9, and to a lesser degreeMi1, also revealed a sig-

nificant antagonistic surround, giving them spatial band-pass

characteristics. This antagonistic surround had a half-width

diameter of approximately 20� for both Mi4 and Mi9 (Table S1).

Because the area and thus the volume under the curve are pro-

portional to the square of the radius, the amplitude ratio of sur-

round to center should equal the inverse of the ratio of the

squares of their half-widths for the center and the antagonistic

surround to cancel perfectly. Notably, this relation is fulfilled for

both low-pass elements, and the integrals of their surrounds

perfectly match their respective centers, thus predicting no re-

sponses to wide-field flicker stimuli. At the same time, the spatial

band-pass filter enhances responses to edges within the visual

scene. In the case of Mi1, the integral of the surround reached

about 50% of the one of the center. For Tm3, surround inhibition

was completely absent, such that those cells have a pure low-

pass characteristic in the spatial domain.

The temporal component of the spatiotemporal receptive field

centers yielded the impulse responses, which reflect the tempo-

ral filtering properties of the respective cell type. Mi1 and Tm3

showed band-pass filter characteristics, as can be seen in their

biphasic impulse responses (Figure 2I) and in their response

spectra (Figure 2J). In contrast, Mi4 and Mi9 appeared as pure

low-pass filters (Figures 2I and 2J). Surprisingly, and in contrast

to the other elements of the ON pathway, Mi9 showed the in-

verse contrast preference, with an increased calcium response

to darkening in its receptive field center (OFF response). How-

ever, apart from the polarity, the time course and filter character-

istics of Mi9 were very similar to those of Mi4 (Figures 2I and 2J).

Thus, the four ON-pathway elements can essentially be grouped

into two classes: two fast-transient cells (Mi1 and Tm3) and two

slow-sustained cells (Mi4 and Mi9). Within each class, the cells’

impulse responses revealed only small differences.

Characterization of the Columnar Input Neurons to
T5 Cells
We next performed analogous experiments on the OFF-pathway

elements Tm1, Tm2, Tm4, and Tm9. Mirroring the situation in the

ON pathway, all four neurons of the OFF pathway had locally

confined isotropic receptive fields (Figures 2K–2N). In agreement

with previous reports [18, 20], they were all excited by luminance

decrements. Accordingly, they revealed an OFF receptive field

center. The receptive fields of all four cells also had an antago-

nistic surround component, giving them a spatial band-pass

characteristic. In contrast toMi4 andMi9, however, the surround

inhibition, with respect to the center, was weaker, which should

render themmore responsive to wide-field flicker. As a parallel to

the ON-pathway elements, three of the neurons, Tm1, Tm2, and

Tm9, showed a receptive field center with a half-width diameter

of about 7�, whereas one element, Tm4, had a larger receptive

field center, with a half-width diameter of approximately 10�.

(K–P) Characterization of the inputs to T5 cells in the OFF pathway. Spatial receptive fields of Tm1 (K), Tm2 (L), Tm4 (M), and Tm9 (N). Temporal kernels in the

time (O) and frequency domain (P) for the four input elements in the OFF pathway. (Tm1: N = 8 flies, n = 71 cells; Tm2: N = 9, n = 93; Tm4: N = 5, n = 35;

Tm9: N = 5, n = 32.)

Graphs depict the mean. Shaded areas around the line, where displayed, represent ±SEM. See also Figures S1 and S2 and Tables S1 and S2.
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The half-width of the antagonistic surround amounted to about

25� for Tm1, Tm2, and Tm9 and to 35� for Tm4 (Table S2). As

forMi1, and in contrast toMi4 andMi9, the antagonistic surround

strength for all OFF input elements reached about 50% of the

center, as calculated above on the basis of the amplitude and

half-width ratios.

As for the ON-pathway elements, we assessed the temporal

filter dynamics by measuring the impulse responses within the

receptive field centers (Figures 2O and 2P). This revealed a clear

band-pass characteristic for Tm1, Tm2, and Tm4 with rather

short low-pass time constants of about 100–270 ms. In contrast,

the impulse response of Tm9 reflected a pure low-pass filter with

amuch longer time constant of about 500ms.Within the group of

band-pass filters, Tm1, Tm2, and Tm4 responses have different

time courses (Figure 2O) and response spectra (Figure 2P),

corroborating a previous study [20]. Thus, as a striking difference

from the ON-pathway elements, where two fast and two slow

cells are found, the OFF pathway comprises three fast and

only one slow cell.

Application of the Octopamine Agonist CDM Changes
the Temporal Frequency Tuning of T4 and T5 Cells
It has previously been shown that activation of the octopamine

system modulates the temporal-frequency tuning of lobula plate

tangential cells [25, 26]. This effect could be implemented

directly at the level of the tangential cells, or indirectly, by modi-

fying the temporal tuning properties of its presynaptic input neu-

rons, i.e., the T4/T5 cells. The latter case would give a handle to

manipulate the elementary motion detectors and potentially

allow narrowing down of their cellular implementation.

We first confirmed that the activation of the octopamine sys-

tem with the octopamine agonist CDM [31] at a concentration

of 20 mM [25] shifts the temporal tuning of tangential cells in

the lobula plate of immobilized Drosophila to higher frequencies

(Figure S3), corroborating earlier findings using octopamine [26].

Next we focused on T4 and T5 neurons. We performed two-

photon Ca2+ imaging in Drosophila expressing the genetically

encoded calcium indicator GCaMP6m in the subset of T4/T5

neurons that are upwardmotion selective and project their axons

to layer 3 of the lobula plate (T4c/T5c) (Figure 3A). Visual stimu-

lation was presented on a semi-cylindrical LED arena and

consisted of full-contrast square-wave gratings with a spatial

wavelength of 24�, moving at 12 different velocities ranging

from 1.2�/s to 480�/s, corresponding to temporal frequencies

from 0.05 to 20 Hz, in PD and ND. Responses of T4 and T5 neu-

rons were quantified as relative change of fluorescence (DF/F)

amplitudes within small regions of interest in lobula plate layer 3

(example traces in Figure 3B). We found a temporal-frequency

optimum of 1 Hz formotion in PD (Figure 3C, black traces). Appli-

cation of CDM shifted the temporal-frequency optimum from

1 Hz in control to about 2.5 Hz (Figure 3C, magenta traces).

Recording Ca2+ signals from the dendrites of either T4 or T5

cells, we found that T4 and T5 cells, considered separately, ex-

hibited a similar temporal-frequency tuning, under control condi-

tions as well as after application of CDM, and a similar shift in

their tuning with CDM (Figures 3D and 3E).

In order to distinguish changes in the response to isolated

motion stimuli from changes in the temporal integration of peri-

odic signals, we also tested the velocity tuning of T4 and T5 neu-

rons to moving edges. For this, we presented bright and dark

edges of full contrast moving at different speeds ranging from

3�/s to 300�/s in PD (Figures 3F and 3G). Corroborating previous

results [14], T4 neurons responded selectively to bright edges,

whereas T5 neurons were found to be selective for motion of

dark edges. Measuring the calcium responses in the axon termi-

nals in the lobula plate, we found that under control conditions

the responses were highest to edges moving at the slowest

velocity of 3�/s for both ON and OFF edges, i.e., T4 and T5 neu-

rons, respectively (Figures 3F and 3G, black traces). Aswas seen

for the grating stimuli above, application of CDM shifted the

optimal stimulus condition to higher velocities of 12�/s (Figures

3F and 3G, magenta traces).

Therefore, the shift of the temporal tuning properties of lobula

plate tangential cells during flight or mimicked by the application

of octopamine-receptor agonists (Figure S3 [25, 26]) is already

present at the level of the T4 and T5 cells, thus affecting the tun-

ing of the elementary motion detectors.

Octopamine-Receptor Activation Speeds the Input
Elements of T4 and T5 Cells
Different possible mechanisms could explain this shift of tempo-

ral tuning in T4/T5 cells. On the one hand, octopamine signaling

could affect the synaptic inputs onto T4 and T5 neurons by

changing the kinetics of neurotransmitter receptors or the den-

dritic integration of those signals in T4/T5 neurons. Different

input elements with different response kinetics could differen-

tially contribute to the postsynaptic signals in different states

through changes in their response amplitude or via their synaptic

weight. On the other hand, the kinetics of some or all input ele-

ments could speed up. We set out to test the latter hypothesis,

i.e., that the response characteristics and tuning of the elemen-

tary motion detectors result directly from the temporal dynamics

of the respective input elements.

For this, we characterized the spatiotemporal receptive fields

of all input elements in both the ON and OFF pathways after acti-

vation of the octopamine system with CDM and compared them

to control conditions. Application of CDM left the spatial recep-

tive fields of all four input neurons in the ON pathway unaffected

(Figure 4A). However, it accelerated the response kinetics of all

four cell types to different degrees, with much stronger effects

on the fast band-pass elements Mi1 and Tm3 than on the slow

low-pass filters Mi4 and Mi9 (Figures 4B and 4C, magenta

traces; Figures S4A, S5Ai, and S5Bi). As for control conditions,

response kinetics of Mi1 and Tm3, as well as of Mi4 and Mi9,

remained similar to each other after addition of CDM. In the

OFF pathway, the results were very similar. The spatial receptive

fields appeared unchanged by CDM for any of the columnar

input neurons (Figure 4D). However, in the temporal domain,

addition of CDM to the bath sped up the impulse responses

significantly (Figures 4E and 4F, magenta traces; Figures S4B,

S6Ai, and S6Bi), as was seen in the ON-pathway band-pass

elements.

Computer Simulations Based on the Input Elements’
Temporal Filters Suggest Candidate Motion Detectors
The input elements to the motion-detecting neurons T4 and T5

can be roughly grouped into two classes: temporal low-pass

filters with large time constants, and band-pass filters with
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Figure 3. Application of CDM Shifts the Temporal-Frequency and Velocity Tunings of T4/T5 Cells to Higher Velocities
(A) T4/T5 neurons of the upward motion-selective subtype ‘‘c’’ projecting their axons to layer 3 of the lobula plate, expressing the genetically encoded calcium

indicator GCaMP6m. The circles mark ROIs in the lobula plate; the red circle corresponds to the example calcium traces in (B).

(B) Example of calcium responses (fluorescence changes) in the axon terminals of T4/T5 cells in response to square-wave gratings moving at temporal fre-

quencies of 1 Hz (Bi) and 5 Hz (Bii) in control (black) and after application of CDM (magenta).

(C) Population average of responses of T4/T5 axon terminals to square-wave gratings moving in the PD (up). Application of CDM leads to a shift of the temporal

tuning optimum (Ncont = 36 flies, ncont = 80 ROIs; N/nCDM = 15/39).

(D and E) Characterization of the temporal-frequency tuning in T4 (D) and T5 dendrites (E). As observed for the axon terminals, application of CDM (magenta) shifts

the temporal-frequency tunings of both T4 and T5 cells to higher frequencies, as compared to control (black) (T4: Ncont = 27 flies, ncont = 52 ROIs, N/nCDM = 9/14;

T5: N/ncont = 18/27, N/nCDM = 7/9).

(F and G) Population average of responses of T4 and T5 axon terminals in the lobula plate to bright (F; T4) and dark edges (G; T5), moving at different velocities, in

control (black) and after application of CDM (magenta) (Ncont = 9 flies, ncont_T4 = 21, ncont_T5 = 37 ROIs; NCDM = 6, nCDM_T4 = 16, nCDM_T5 = 17).

Graphs depict the mean. Shaded areas around the line represent ±SEM. See also Figure S3.
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significantly shorter time constants. We used the above-deter-

mined spatial receptive fields and response kinetics of the input

elements and asked whether these could predict the responses

of their postsynaptic targets, the elementary motion detector

T4/T5 cells, without the necessity of additional filters or delays

implemented either at the level of the synapses between the in-

puts and the T4/T5 cells or within the dendrites of the T4/T5 cells

itself. In addition, we asked whether the observed shift in the

temporal tuning in T4/T5 cells after application of the octopamine

agonist CDM could be fully explained by the change of filter

properties of the respective input neurons.

AlthoughGCaMP6f has relatively fast kinetics when compared

with other calcium indicators, it still possesses a decay time con-

stant on the order of hundreds of milliseconds [30, 32]—long

enough to significantly prolong the calcium signals of cells that

have temporal dynamics on the same order of magnitude. In

order to correct for this temporal filtering by the calcium indicator

itself, we deconvolved the impulse responses in the frequency

domain with a GCaMP6f low-pass filter (Figures S5 and S6).

These corrected spectra were used as an approximation of the

underlying filter properties of the input cells by fitting first-order

filters to the average corrected frequency responses (Tables

S1 and S2). We then used these values as well as the spatial filter

characteristics in our computer simulations of a motion detector.

Because the synaptic transmitters and postsynaptic receptors,

and therefore the sign of the synaptic inputs, are not known,

we decided not to make any assumptions about the sign of the

synapses and ignored the response polarities of the determined

receptive fields in our simulations.

Our simulations were based on a motion detector that com-

bines PD enhancement and ND suppression, resembling a

hybrid of a HR half-detector and a BL detector, as described

in Haag et al. [17] (Figure 1Aiv). In this detector, three inputs

with receptive fields offset by 5� each along the PD axis are

processed such that an enhancing input A on the null side

(left) forms a multiplicative non-linearity with the central,

direct input (B), whereas a suppressing input (C) on the

preferred side (right) implements a divisive non-linearity. The

response of this detector equals the product of the input sig-

nals on the enhancing and the direct arm, divided by the signal

from the suppressing arm (see the Supplemental Experimental

Procedures).

There are 24 possible permutations that map the four input

elements of each pathway onto the three positions of this detec-

tor, each one resulting in a detector with different tuning proper-

ties. Without making any further assumptions, we askedwhether

some of these combinations would yield more direction-selec-

tive motion detectors than others. Each simulated detector

was tested with moving square-wave gratings, and the re-

sponses were quantified in three ways (Figure 5A): (1) To assess

how well the particular detector model discriminates between

motion along PD and ND across velocities, we simulated

square-wave gratings moving in PD and ND at different speeds

covering more than three orders of magnitude. From the simu-

lated responses, we calculated a direction selectivity index

(DSI) as the relative difference between PD and ND responses,

averaged over all grating velocities/temporal frequencies.

(2) To judge the frequency tuning, we determined the temporal

frequency evoking the maximum response in PD (temporal-fre-

quency optimum, fopt). (3) To characterize the direction tuning

beyond PD and ND, emphasizing tuning sharpness, we simu-

lated gratings moving in 12 equally spaced directions at the

fopt of each detector, as determined above. From those simu-

lated responses, the normalized length of the tuning vector

(Ldir) was calculated [33]. This tuning vector length of the

hybrid detector was furthermore compared with the ones of

the constituting HR and BL modules (Figures 1Ai and 1Aii,

respectively).

In general, detectors with the low-pass filters Mi4 and Mi9 on

both the outer enhancing and suppressing arms, flanking one of

the band-pass elements Mi1 or Tm3, performed extremely well:

they showed a rather high degree of direction selectivity and

tuning sharpness (Figure 5B), in good agreement with the

experimental data from T4 cells (compare with [14]), and their

temporal-frequency optimum matched that of T4 cells as well

(Figure 5B, right; compare with Figures 3C and 3D).

In addition, most combinations with one central low-pass

neuron, Mi4, or, particularly, Mi9, flanked by the two band-

pass elements Mi1 and Tm3, also achieved high direction-

selectivity values. The PD (see arrows in Figure 5B, left) of these

detectors is inverted as a consequence of the position of the

delay in the HR and BL sub-modules. However, when consid-

ering both sub-modules separately (blue and red bars, respec-

tively, in Figure 5B, right), the BL alone showed very low tuning

sharpness (Ldir) and thus contributed little to the hybrid detector.

This affects the tuning specificity of the hybrid detector, as

can be seen when comparing, for example, Tm3xMi9/Mi1 with

Mi9xTm3/Mi4. Both detectors are built on the same HR detector

(using the same cells), but the one that employs Mi4 for the

BL part of the model has a higher tuning sharpness. The same

is true for all other pairs of this kind: given one pair of cells for

the HRmodule, the implementation that places two low-pass fil-

ters on the outer arms of the detector always has the sharper

tuning.

Figure 4. Activation of Octopamine Receptors Accelerates the Temporal Filters of the ON- and OFF-Pathway Medulla Columnar Elements

(A) Spatial receptive fields of Mi1 (Ai), Tm3 (Aii), Mi4 (Aiii), and Mi9 (Aiv) for vertical (upper left) and horizontal (lower right) white-noise bar stimulation under control

conditions (black traces) and after application of CDM (magenta traces and two-dimensional receptive fields).

(B) Temporal kernels for Mi1 (Bi), Tm3 (Bii), Mi4 (Biii), and Mi9 (Biv) revealing the faster time course after application of CDM (magenta) as compared to control

(black).

(C) Temporal kernels in frequency-space, constructed from the temporal kernels in (B). Application of CDM (magenta) leads to a shift of the center frequency of the

band-pass filters as compared to control (black). (For themeasurements of the spatial receptive fields [controls are as in Figure 2]: Mi1: NCDM = 5, nCDM = 31; Tm3:

N/nCDM = 6/34; Mi4: N/nCDM = 5/38; Mi9: N/nCDM = 7/37. Again, the temporal kernel results determined from the horizontal and vertical one-dimensional noise

stimuli were pooled, resulting in twice as many measurements.)

(D–F) Analogous to (A)–(C), the spatial receptive fields (Di–Div), temporal kernels (Ei–Eiv), and frequency spectra (Fi–Fiv) of the OFF-pathway elements Tm1, Tm2,

Tm4, and Tm9. (Controls are as in Figure 2; Tm1: CDM: NCDM = 8, nCDM = 67; Tm2: N/nCDM = 9/93; Tm4: N/nCDM = 5/28; Tm9: N/nCDM = 5/42.)

Graphs depict the mean. Shaded areas around the line represent ±SEM. See also Figure S4 and Tables S1 and S2.
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Figure 5. Computer Simulations of Elementary Motion Detectors

(A) Left: schematic of a three-arm detector combining a multiplicative PD enhancement and a divisive ND suppression. The positions of the enhancing (‘‘A’’),

central (‘‘B’’), and suppressing (‘‘C’’) input can be occupied by any but different input elements. Those input elements are described by their temporal filtering

characteristics, implemented as a band-pass (BP) and low-pass filter (LP) with subsequent rectification. The receptive fields of the three inputs are offset by 5�

each. The simulated detectors are stimulated with square-wave gratings moving at different temporal frequencies in PD and ND. Middle: the direction selectivity

(legend continued on next page)
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Similarly, detectors that incorporated twoelementswith similar

temporal responseproperties (suchasMi1andTm3)on twoadja-

cent positions tended to perform worse, especially with respect

to the Ldir value, indicating poor tuning sharpness. This can be

easily explained by the fact that both the HR and BL modules of

the hybrid detector rely on temporal differences in their respec-

tive two input arms. Inputs with more similar kinetics thus render

the corresponding module less effective in creating direction

selectivity. In fact, the best detectors were those where both

halves showedhighdirection selectivities on their own (Figure 5B,

right), provided the PDs of both modules were aligned.

Interestingly, almost all combinations showed a shift in their

tuning toward higher temporal-frequency optima by about a fac-

tor of 2 when the filter properties after application of the octop-

amine agonist CDM were used, matching the experimental

data. As a control that the direction selectivities in our simula-

tions were not dependent on the used deconvolution filter, we

repeated the simulations with the raw temporal kernels derived

from the calcium responses. The same arrangements of input

elements led to the motion detectors with the highest direc-

tion-selectivity values (Figure 5C), consistent with the notion

that it is the relative filter properties that are crucial. Deconvolu-

tion merely changes the temporal frequency of the visual stim-

ulus that leads to the maximum response (Figure 5D).

In the above simulations, we followed an unbiased approach

with all inputs separated by 5�, thus having receptive fields

arising from neighboring neuro-ommatidia. However, electron-

microscopic reconstructions have shown a spatial offset be-

tween Tm3 and Mi1 cells projecting to the same T4 cell of about

1� in this order along the PD of the postsynaptic T4 cell [4]. The

smaller spatial offset could counterbalance the small differences

in temporal kinetics between these cells. Repeating the above

simulations of the three-arm detector under these constraints

still resulted in poorly direction-selective detectors for these

combinations, with Ldir values of 0.38 (for Mi9xTm3/Mi1, as

compared to 0.41 for a 5� offset) or less. In fact, when consid-

ering only a simple two-arm detector (HR or BL type), any detec-

tor that consisted of Tm3 and Mi1 with a spatial offset of 1�

resulted in Ldir values of less than 0.06 for both types of detectors

(in comparison to 0.13 for a 5� offset).
Although the evidence is weaker for the structure of themotion

detector implementation in T5, we constructed analogous mo-

tion detectors for the OFF pathway with the measured receptive

fields and response kinetics of the columnar inputs onto T5 neu-

rons (Figure 5E). In contrast to the ON pathway, only one out of

the four input elements, Tm9, constitutes a low-pass filter,

whereas the other three, Tm1, Tm2, and Tm4, exhibit band-

pass characteristics. Most input element combinations resulted

in motion detectors with low direction selectivity. Notably, the

highest direction selectivity resulted from detectors with the

low-pass filter Tm9 on the suppressing arm. Naturally, detectors

with the fastest input (principally Tm2) in the central position

flanked by two slower elements achieved higher direction selec-

tivities, as with this arrangement the PDs of the HR and BL sub-

units are aligned. Arrangements with the sole low-pass filter,

Tm9, in the central position resulted in detectors with poor direc-

tional tuning, both measured as DSI across all frequencies and

Ldir, resulting from a virtually ineffective BL half (Figure 5E, right).

Interestingly, combinations with the band-pass filters Tm1 and

Tm4 constituting either half of the detector tended to perform

comparatively poorly—and sometimes even showed a complete

breakdown of direction selectivity—in at least one of the simu-

lated physiological states. This can be explained by the fact

that the small differences in the temporal response kinetics of

these neurons were not stable between control and under

CDM (Figure S6). As was seen for the ON pathway, using the

spatiotemporal filters extracted under CDM in the simulations

led to an increase of the temporal-frequency optimum by about

a factor of 2 across all detectors (Figure 5E, middle, magenta

dots). Again, the simulations were robust to the deconvolution

applied to account for the filtering by the calcium indicator (Fig-

ure 5F). The best arrangements were the same irrespective of

whether the raw or deconvolved filters were used, and only the

temporal-frequency optimum was affected (Figure 5G).

Taken together, we find distinctly different response kinetics of

the input elements in both the ON and the OFF pathway, from

band-pass filters to pure low-pass filters. These map naturally

onto hybrid elementary motion detectors implementing PD

enhancement and ND suppression. The best-performing detec-

tors arise when the fastest element occupies the central arm,

flanked by slower inputs on the enhancing and suppressing

arms. In the ON pathway, two low-pass inputs, Mi4 and Mi9,

are found to fill this role. In the OFF pathway, the single low-

pass element, Tm9, appears to be best positioned on the sup-

pressing arm to achieve the highest direction selectivity.

DISCUSSION

To understand howmotion detection is implemented on the den-

drites of T4 and T5 cells, we describe in this study the response

of the detector is assessed across all temporal frequencies based on the area under the temporal-frequency tuning curves in PD and ND as the direction

selectivity index: DSI = (SPD� SND) / (SPD + SND). The dotted line indicates the temporal-frequency optimum (fopt) for responses in PD. Right: illustration of the

normalized tuning vector length (Ldir) as ameasure for direction selectivity and tuning sharpness. Ldir is calculated as the vector sum of all responses according to

the direction of stimulus motion, normalized to the sum of all response vector lengths.

(B–D) Characterization of the simulated motion detectors for the ON pathway.

(B) Direction selectivity (left), temporal-frequency optimum (middle), and normalized tuning vector length (right) for all possible permutations of the four

ON-pathway input elements on the three positions of the simulated detector. The magenta dots indicate the effect of CDM application on direction selectivity

and temporal-frequency tuning resulting from the accelerated temporal filters of the input elements. Arrows indicate the PD with respect to the corresponding

cell arrangements. For the tuning vector length, the hybrid detectors (black open bars) were compared to their constituting HR (‘‘AxB’’; blue) and BL modules

(‘‘B/C’’; red).

(C and D) Direction-selectivity indices (C) and temporal-frequency optima (D) of all detectors based on the deconvolved filter kernels as shown in (B) plotted

against the detectors based on the raw calcium kernels.

(E–G) Same as (B)–(D) but for the OFF pathway.

See also Figures S5 and S6.
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properties of the elementary motion detectors in Drosophila, the

T4 and T5 neurons, as well as all of their known columnar synap-

tic input neurons, under two different tuning regimes. With this

comprehensive characterization, we are able to narrow down

the cellular implementation of the motion detectors and suggest

probable wiring diagrams.

All of these input elements possess spatially restricted recep-

tive fields with centers spanning one to two ommatidia. All, with

the exception of the ON-pathway band-pass neuron Tm3, have

pronounced antagonistic surrounds. Particularly for the low-

pass filter elements Mi4 and Mi9, the strong antagonistic sur-

round fully counterbalances the excitatory center. This should

not only eliminate sensitivity to large-field flicker stimuli but

more importantly curtail the otherwise tonic responses of pure

low-pass filters to moving edges, and thus strongly improve

direction selectivity. The locally confined receptive fields are in

agreement with previous studies [18, 20, 34] but in contradiction

to [35], which described Tm9 as a wide-field neuron. In both

pathways, one neuron shows a larger receptive field (Tm3 in

theONpathway, and Tm4 in theOFF pathway). The larger recep-

tive field sizes of Tm3 [18] and Tm4 neurons are consistent with

the multi-columnar input these neurons receive based on elec-

tron-microscopic reconstructions [4, 5].

All elements of the OFF pathway respond to light OFF in the

center of their receptive fields, consistent with [20]. In the ON

pathway, Mi1, Tm3 [18], and Mi4 analogously show an ON-

center response. Mi9, however, despite being an element in

the ON pathway, responds positively to OFF stimuli. This could

suggest a sign reversal through an inhibitory synapse onto T4.

However, it is not known what neurotransmitter is released by

Mi9, and thus whether it excites or inhibits T4 neurons.

Within each of the two pathways, we find a diversity of tempo-

ral filter characteristics from fast band-pass filters to pure low-

pass filters with slow-sustained responses. These differences

in temporal dynamics make them ideal components for motion

detection without the need of postulating further processing by

slow synaptic signaling or electrotonic filtering within the den-

drites of T4 and T5 cells. Where the response kinetics of these

cells have been previously described, our data are consistent.

In particular, Mi1, Tm3, Tm1, Tm2, and Tm4 have previously

been shown to respond transiently to sustained stimuli, i.e., to

possess band-pass characteristics [18, 20, 34]. Tm3 appears

faster than Mi1 [18] (but see [36]), and Tm2 faster than Tm1

[18, 20, 36]. However, these temporal differences are often

very small. On the other hand, Tm9 in the OFF pathway has

been described as a low-pass filter [20, 35], which matches

our results. In the ON pathway, we find that the previously un-

characterized cell types Mi4 and Mi9 also show pure temporal

low-pass response characteristics. Thus, in both pathways,

input elementswith slow-sustained and fast-transient responses

are found, which then converge onto the dendrites of T4 and T5

cells, respectively. Yet the relative distribution differs. In the ON

pathway, two input elements show pure low-pass characteris-

tics (Mi4 andMi9), whereas in the OFF pathway, Tm9 constitutes

the only pure low-pass filter. Two of the three input elements that

constitute pure low-pass filters, namelyMi9 in theON and Tm9 in

the OFF pathway, receive their lamina input primarily from the

lamina monopolar neuron L3 [37]. As L3 has been shown to

respond in a slower and more sustained fashion [38] than,

e.g., the transient L2 [10, 11], this could explain the low-pass

characteristics of Mi9 and Tm9. L3, like all lamina neurons,

responds positively to light decrements, and it releases the

excitatory neurotransmitter acetylcholine, explaining the OFF

response of Tm9 and Mi9. The response dynamics of Mi4 are

likely to be heavily shaped by the strong reciprocal connections

with Mi9 [37]. These reciprocal connections, and thus likely the

cells themselves, would have to be inhibitory, as these cells

show opposite response polarities.

Based on the spatial receptive fields and response kinetics,

we could ask which input neurons could play which role in the

motion detector. Previous computer simulations based on the

measured dynamics of Tm cells in the OFF pathway have shown

that most combinations of two elements result in classical (full)

HR detectors with similar temporal tuning optima roughly match-

ing the tuning of tangential cells [20]. In that study, only the com-

bination of Tm2 and Tm4 could be excluded, as their filter time

constants were too similar to each other to result in a functioning

detector. However, subtraction of oppositely tuned half-detec-

tors not only leads to motion opponency but increases direction

selectivity of otherwise poorly tuned half-detectors. Conse-

quently, the tuning of lobula plate tangential cells represents a

rather indirect readout. By comparing simulations of the half-

detector stage with recordings from T4 and T5 neurons, we

can exclude the majority of possible combinations of input ele-

ments based on their temporal-frequency optimumor directional

selectivity (see below).

Based on visual stimulation of single individual columns, T4

neurons have recently been shown to implement both PD

enhancement and ND suppression [17]. The receptive fields of

these interactions are spatially offset along the PD axis in this

order. The corresponding hybrid of an HR half-detector and a

BL detector requires a minimum of three columnar inputs:

a fast central input, flanked by two outer inputs providing signals

that are delayed relative to the central one.

In our computer simulations for the ON pathway (Figure 5),

the majority of detectors with the highest direction selectivity

fall into two groups: (1) the two low-pass filter elements Mi4

and Mi9 on the outer enhancing and suppressing arms, and

either of the fast band-pass elements Mi1 and Tm3 on the cen-

tral arm, matching the above layout, and (2) the inverted

arrangement, with one central low-pass filter, flanked by the

band-pass filter elements Mi1 and Tm3. This also resulted in

an inverted PD.

In the latter case, however, the BL subunit considered alone

contributed very little to the directional tuning (Figure 5B, right),

as the low-pass-filtered central excitatory input tends to outlast

the corresponding suppression from the band-pass outer arm.

This reduces the tuning sharpness of these detectors. Further-

more, this implementation does not match the arrangement of

PD-enhancement and ND-suppression receptive fields along

the PD in this order found for T4 cells [17]. Additionally, this

arrangement would require Mi1 and Tm3 on the outer arms of

the model, which is in stark contrast to their reported 1� spatial
offset [4].

Among the more direction-selective detectors was also one

combination with Tm3 on the central andMi1 on the suppressing

arm. However, the resulting BL subunit considered alone shows

very poor directional tuning, and the direction selectivity arises
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virtually exclusively from the HR subunit. Even taking the

reported small anatomical offset of about 1� between these cells

into account [4] did not compensate for the small temporal differ-

ences but actually resulted in even worse directional tuning. This

indicates that sizable differences not only in the temporal but

also in the spatial domain are a prerequisite for direction selec-

tivity. Similar considerations are true for all combinations that

place neurons with similar response kinetics on neighboring

arms. In general, the most effective hybrid detectors result

from combinations of cells that are arranged such that the

respective HR and BL sub-detectors are as direction selective

as possible and aligned in their PD.

For detectors where two low-pass filters flank a central band-

pass filter element, bothMi1 and Tm3 seem feasible to fill the role

of the latter. However, a previous study blocking the synaptic

output of Tm3 found an effect on the response of tangential cells

to moving ON edges only at high but not at low to moderate

velocities [21]. Hence, although we do not exclude a functional

role for Tm3 in ON motion detection, this finding argues against

Tm3 as the (sole) central arm of the detector in the ON pathway,

as the interference especially with the central arm should fully

abolish the detection of motion.

Taken together, an implementation of the ON elementary

motion detector as depicted in Figure 6 seems most likely: Mi1

as the fast central input, flanked by the low-pass elements Mi4

and Mi9 constituting the suppressing and enhancing arm in

either order. Depending on the location, these neurons need to

be either both excitatory or both inhibitory to accommodate their

respective response polarity and fulfill the required role of

enhancing and suppressing input. Considering their opposite

polarity and reciprocal connection, it is more likely that both

neurons are inhibitory. This would place Mi9 on the enhancing

arm (‘‘A’’ in Figure 6A), and Mi4 on the suppressing arm (‘‘C’’ in

Figure 6A). Importantly, with the observed range of temporal

response characteristics in the input elements, it is not

necessary to postulate further delays at the synaptic or dendritic

level.

In the OFF pathway, the algorithmic structure of motion detec-

tion is less clear. On the one hand, spatiotemporal receptive field

measurements of T5 neurons reveal excitatory and inhibitory

sub-fields that are offset along the PD axis and appropriately

tilted in space and time to support PD enhancement and ND

suppression [23]. This would suggest a similar architecture as

for T4. On the other hand, other studies have only reported PD

enhancement for T5 [22, 39]. Nevertheless, we performed anal-

ogous simulations based on the measured T5 input kinetics

and receptive fields assuming a similar detector architecture.

The two detectors with the highest direction selectivity incorpo-

rated the low-pass filter, Tm9, into their suppressing arm (Fig-

ure 5E). Lacking a second pure low-pass filter input in the OFF

pathway, the central and enhancing arms were occupied with

band-pass filters. Because the PDs of PD enhancement and

ND suppression need to be aligned, the fastest element of the

combination, principally Tm2, must be located in the central

position. This is also illustrated by the two worst combinations

(Figure 5E, right), where even though the BL module on its own

performs quite well, the oppositely oriented HRmodule destroys

the direction selectivity of the hybrid detector. As above, hybrid

detectors with the low-pass filter, Tm9, on the central arm

perform poorly, as the constituting BL half contributes little to di-

rection selectivity in those combinations (Figure 5E, right;

e.g., Tm2xTm9/Tm4).

According to our simulations, and if the structure for T5 resem-

bles the hybrid detector proposed for T4, the arrangement of a

central Tm2, flanked on the null side by an enhancing Tm1 and

on the preferred side by a suppressing Tm9 input, achieves by

far the best direction selectivity. This implementation would pre-

dict inhibitory/suppressing input from Tm9 onto T5, which could

be experimentally tested. Consistent with this arrangement, out

of all four T5 columnar inputs, blocking the synaptic output from

Tm4 cells results in the lowest reduction in OFF-edge responses

in tangential cells [20]. Nevertheless, those blocking experiments

indicate that Tm4 plays a role in the detector that awaits

resolving.

A B Figure 6. Proposed Implementation of the

Elementary Motion Detectors in the ON

Pathway

(A) T4 neurons implement both PD enhancement

and ND suppression with receptive fields offset in

this order along the PD axis. This requires one

central fast arm being flanked by two delayed or

stronger low-pass-filtered inputs. The relatively

fast kinetics of Mi1 or Tm3 would suggest either or

both for the central input. Mi4 and Mi9, on the

other hand, show pure low-pass characteristics in

their temporal kernels fitting the requirements of

the two outer arms. The signs of both outer-arm

synapses depend on the arrangement of Mi4 and

Mi9 to accommodate their respective response

polarity andmatch them to the required enhancing

and suppressive inputs.

(B) Simulated detector responses for gratings

moving across the visual field in 12 different

directions, separated from each other by 30�. Top:
directional tuning for the two sub-modules of this

detector. Top left: the pure HR (half) detector Mi9xMi1 shows some direction selectivity but has a low tuning sharpness. Top right: the pure BL detector Mi1/Mi4

shows a substantial response in the ND direction (180�). Bottom: directional tuning for the hybrid detectorMi9xMi1/Mi4. This hybrid detector is very sharply tuned

to rightward motion (left), whereas its direction selectivity remains high across stimulus frequencies (right).
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In this study, we have shown that the activation of the octop-

amine system by CDM shifts the temporal-frequency and veloc-

ity tuning of T4 and T5 neurons to higher temporal frequencies/

velocities, mirroring the temporal tuning shift in tangential cells

of the lobula plate observed under active locomotion or octopa-

minergic activation [24–27]. At the level of T4 and T5 neurons,

we find a temporal-frequency optimum of about 1–1.5 Hz for

moving gratings under control conditions, corroborating previ-

ous studies [14, 17, 22]. Application of CDM shifts the tempo-

ral-frequency optimum to 2.5 Hz. T4 and T5 cells show a velocity

optimum for moving edges at 3�/s or lower under control condi-

tions, which shifts to about 12�/s under CDM. The much higher

velocity optimum observed in tangential cells [40] results from

the summation of synaptic inputs from the larger number of T4

and T5 neurons swept by the edge during the same time interval

at higher velocities.

In parallel to the temporal-frequency tuning shift in T4 and T5

neurons, the temporal response properties of the input elements,

in particular of the band-pass filter elements, accelerate. Indeed,

the shift in the tuning of T4 and T5 neurons (Figure 3) can be fully

accounted for by the speeding of their input elements (Figures 4

and 5). This further supports the hypothesis that the temporal

kinetics of the input elements alone, without any further filtering

at the synaptic or T4/T5 dendritic levels, represent the delay

stage of the elementary motion detectors.

Interestingly, we observe that whereas the order of input

elements with respect to their filter characteristics generally re-

mained the same under CDM, Tm1 became faster than Tm4 (Fig-

ure S6). As a consequence, simulated motion detectors using

combinations that relied on temporal differences between these

two cell types suffered a strong reduction or complete break-

down of direction selectivity under CDM (Figure 5). Considering

cell-to-cell variability and such changes under different physio-

logical conditions, detectors relying on small differences in the

dynamics of their input elements [18, 39] will not be robust.

Octopaminergic neurons broadly innervate the optic lobes,

specifically the medulla, lobula, and lobula plate [26, 28, 29].

They activate during flight and are necessary and sufficient for

the observed change in the temporal tuning profile of tangential

cells [26]. Although the molecular and cellular mechanisms of

action on themedulla neurons and T4/T5 cells, aswell as the pre-

cise physiological activation of the octopamine system, are

beyond the scope of this study, a few points are worth noting.

Four different types of octopamine receptors exist in Drosophila

that are all G protein-coupled receptors but act via different

pathways and thus will have different effects [41, 42]. Of those

four types, only the octopamine receptors Oamb and to a lesser

degree Oct1bR appear to be expressed in the optic lobes [42].

The expression pattern of these octopamine receptors is not

known at the cellular level. Considering that all input elements

in both the ON and the OFF pathway are accelerated in their

responses, albeit to different degrees, it is entirely possible

that those changes are indirect and inherited from neurons in

the lamina or even the retina. For example, an accelerated

response in L1 and L2, and to a smaller degree in L3, could

explain the observed response changes in the medulla neurons

described here. So far, octopaminergic neurons have not been

shown to innervate the retina and lamina directly [26, 28, 29],

yet octopamine might nevertheless directly or indirectly affect

photoreceptors or lamina neurons. For example, lamina wide-

field neurons, projecting from the medulla back into the lamina

and forming synaptic inputs to lamina neurons [43], are modu-

lated by the behavioral state and octopamine signaling [44].

Although it cannot be excluded that octopamine acts at multiple

levels, including on T4/T5 neurons directly, we have shown that

the observed tuning shift in T4/T5 neurons can be fully ac-

counted for by the changes in the temporal dynamics of their

input elements.

Pharmacological activation, like any optogenetic or other

exogenous activation of the octopamine system, is unlikely to

capture all subtleties of the physiological changes during active

locomotion, yet it can serve as a tool to manipulate the tuning of

the visual motion detection system. At the same time, consid-

ering the match between pharmacological manipulation and

physiological state changes observed at the level of lobula plate

tangential cells [24–26], it is highly likely that the speeding of the

filter characteristics in the medulla neurons described here is

relevant under physiological conditions.

We have shown that it is possible to construct a hybrid HR/BL

detector (as proposed in [17]) with the measured filters for the

cellular elements for both the ON and the OFF pathway across

different network states. From these, we can predict anatomical

arrangements that would give rise to the observed response

characteristics of the elementary motion detectors. Although

we cannot rule out additional synaptic or dendritic filter mecha-

nisms, we show that the temporal dynamics of the input ele-

ments alone are sufficient to explain the response properties of

the elementarymotion detectors across different tuning regimes.

Future studies using the genetic toolbox ofDrosophila to activate

or block individual input neurons and studying the effects on

visual responses in the T4 and T5 cells, as well as neurotrans-

mitter and receptor expression pattern analyses and electron-

microscopic reconstructions of the wiring, will be required to

verify and further confine the proposed circuitry.

EXPERIMENTAL PROCEDURES

Experimental procedures are described in detail in the Supplemental Experi-

mental Procedures.
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Figure	S1.	Related	to	Figure	2.	Example	acquisition	of	spatiotemporal	receptive	fields	via	
stochastic	stimulation	and	reverse	correlation	of	calcium	signals	for	the	neurons	Tm9	and	
Mi4.		
(A)	 2-photon	 image	 from	 a	 fly	 expressing	 GCaMP6f	 in	 Tm9	 axon	 terminals	 in	 the	 lobula.	
Highlighted	 in	color	are	seven	manually	drawn	regions	of	 interest	 (ROIs)	around	 individual	
terminals	from	neighboring	columns.		
(B)	Snapshot	of	one	frame	of	the	one-dimensional	horizontal	noise	stimulus.		
(C)	Calcium	trace	from	a	single	ROI	in	response	to	10	minutes	of	white	noise	stimulation.		
(D)	Spatiotemporal	receptive	fields	obtained	by	reverse	correlation	of	the	calcium	signals	in	
each	ROI	with	the	stimulus.		
(E)	Cross-sections	through	the	receptive	fields	along	the	space	axis	reflecting	the	retinotopic	
organisation	of	the	lobula.		
(F)	Cross-sections	through	the	receptive	fields	along	the	temporal	axis	revealing	the	low-pass	
characteristics	of	Tm9.		
(G-J)	Same	for	Mi4.	
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Figure S2. Related to Figure 2. Prediction of calcium responses in Tm9 and Mi1 terminals 
from the linear spatiotemporal receptive �elds.
(A) Schematic of the model. The linear prediction of individual axon terminal responses (of Tm9 
or Mi1) to a white noise stimulus is given by the convolution of the stimulus with the respective 
spatio-temporal receptive �eld of the cell. A linear-nonlinear model (LN) is built by remapping 
the output of the linear prediction with a static nonlinearity. 
(Bi) Actual response of an exemplary Tm9 axon terminal (black) and the prediction of the LN 
model (red). (Bii) Scatter plot of the linear prediction against the actual response for all cells 
recorded. The static nonlinearity (red) is obtained by averaging the point cloud within discrete 
bins along the x-axis for each axon terminal. (Biii) Coe�cient of determination for the linear 
model (L, black) and the linear-nonlinear model (LN, red). The linear model prediction alone 
accounted for 60% and the LN model for 62% of the response variance. Circles represent meas-
urements of individual terminals, the bar shows the standard deviation and the mean among all 
cells measured (N = 4, n = 22). 
(C) Same as in (B), but for Mi1 (N = 4, n = 78). The L model alone accounted for 59% and the LN 
model for 61% of the response variance. 
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Figure S3. Related to Figure 3. Temporal frequency tunings of lobula plate tangential 
cells change with the application of the octopamine agonist CDM. 
(A) Voltage responses of HS and VS tangential cells in the lobula plate (population average, N 
= 15 �ies, n=15 cells) to square-wave gratings moving in the preferred or null direction in 
control (black) and after application of CDM (magenta) for gratings moving at a temporal 
frequency of 1 Hz (left) or 5 Hz (right). The period of motion of the grating is indicated by the 
grey-shaded region. 
(B) Average voltage responses over the stimulation period for square-wave gratings at di�er-
ent temporal frequencies. Responses, measured as average voltage de�ections over the 
whole stimulus period, peaked at 0.5 Hz in both the preferred (as maximum average depolari-
zation) and null (as maximum average hyperpolarization) direction. Application of the octo-
pamine agonist chlordimeform (CDM; magenta) at a �nal concentration of 20 µM resulted in 
increased responses to higher temporal frequencies from 2-20 Hz.



control vs CDM

control vs CDM

Ai

Aii

Aiii

Aiv

Ci

Cii

Ciii

Civ

B

61



Figure	S4.	Related	to	Figure	2	and	4.		Analysis	of	the	temporal	filters	of	the	inputs	to	T4	and	
T5.		
(A)	T4	inputs.	We	quantified	the	shape	of	the	temporal	filters,	as	well	as	their	change	after	
application	of	CDM,	by	three	measures	(B):	the	time-to-peak	for	the	first	peak	(t(1)peak,	(Ai))	
and,	for	the	biphasic	filter	kernels	of	band-pass	filters,	to	the	second	peak	(t(2)peak,	(Aii)),	as	
well	as	the	full-width	at	half-maximum	for	the	first	peak	(wpeak,	(Aiii))	of	the	temporal	kernel.	
Measurements	after	application	of	CDM	are	presented	 in	a	darker	color	shade	 (right	bars)	
than	 for	 the	 control	 condition	 (left	 bars)	 of	 the	 respective	 cell.	 Statistical	 comparisons	
between	control	and	CDM	condition	(based	on	a	paired	t-test)	are	shown	in	(Aiv),	highlighted	
in	red	color	when	statistical	significance	is	observed	(with	a	gradient	in	the	red	nuance	from	
light	to	dark	red	indicating	p	values	of	p<0.05,	p<0.01	and	p<0.001).		
(C)	Same,	for	T5	inputs.	
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Figure S5. Related to Figure 5. Model �tting on the frequency spectra of the ON pathway 
elements. 
(Ai) Frequency spectrum derived from calcium imaging experiments for the ON pathway columnar 
neurons Mi1, Tm3, Mi4, Mi9. (Aii) Frequency spectrum after deconvolution with a low-pass �lter repre-
senting the dynamics of the calcium indicator GCaMP6f. Dashed lines represent the �tted frequency 
responses of 1st order band-pass or low-pass �lters. 
(Bi, Bii) Like (Ai, Aii), for the spectra determined from the recordings after application of CDM.
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Figure S6. Related to Figure 5. Model �tting on the temporal �lter frequency spectra of the OFF 
pathway elements. 
(Ai) Measured frequency spectra based on calcium imaging experiments for the OFF pathway 
elements Tm1, Tm2, Tm4 and Tm9. (Aii) Frequency spectra after deconvolution with a �lter describing 
the dynamics of the calcium indicator. Dashed lines represent the �tted frequency responses of 1st 
order band-pass or low-pass �lters. 
(Bi, Bii) Same as (Ai, Aii), after application of CDM.
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Table S1. Related to Figure 2 and 4. Spatio-temporal response properties of T4 input cells. 
Numerical parameters derived from the model �ts to the temporal and the spatial components of the spatio-temporal 
receptive �elds obtained from reverse correlation for the ON-pathway neurons. 
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Table S2. Related to Figure 2 and 4. Spatio-temporal response properties of T5 input cells. 
Numerical parameters derived from the model �ts to the temporal and the spatial components of the spatio-temporal 
receptive �elds obtained from reverse correlation for the OFF-pathway neurons. 
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Supplemental Experimental Procedures 

Flies/preparation 

Flies were raised and kept on standard cornmeal-agar medium on a 12 hour light/12 hour dark 
cycle at 25°C and 60% humidity. For patch-clamp recordings from tangential cells, Canton S 
flies were used. For calcium imaging experiments, the genetically-encoded calcium indicators 
GCaMP6f or GCaMP6m [S1] were expressed using the Gal4/UAS- or LexA/lexAop-system in 
cell-type specific driver lines, resulting in the following genotypes:  

Short name Genotype 
Mi1>GC6f w-; R19F01-AD/UAS-GCaMP6f; R71D01-DBD/UAS-GCaMP6f 
Tm3>GC6f w-; UAS-GCaMP6f; R13E12-Gal4 
Mi4>GC6f w-; R48A07-AD/UAS-GCaMP6f; R13F11-DBD/UAS-GCaMP6f 
Mi9>GC6f w-; R48A07-AD/UAS-GCaMP6f; VT046779-DBD/UAS-GCaMP6f 
Tm1>GC6f w-; UAS-GCaMP6f; VT12717-Gal4 
Tm2>GC6f w-; UAS-GCaMP6f; VT12282-Gal4 
Tm4>GC6f w-; UAS-GCaMP6f; R35H01-Gal4 
Tm9>GC6f w-; UAS-GCaMP6f; VT65303-Gal4 
T4/T5>GC6m w-; Sp/CyO ; VT50384-lexA, lexAop-GCaMP6m/TM6b 

The transgenic fly lines driving split-Gal4 expression in the medulla neurons Mi1, Mi4 and 
Mi9, respectively, were generated and will be described in [S2] (with the Mi1 driver line 
corresponding to their transgenic fly line SS00809, Mi4 to SS01019, and Mi9 to SS02432). 

For electrophysiological and calcium imaging experiments, flies were prepared as previously 
described  [S3, S4]. Briefly, flies were anaesthetized on ice or with CO2, fixed with their backs, 
legs and wings to a Plexiglas holder with the back of the head exposed to a recording chamber 
filled with fly external solution. The cuticula at the back of the head on one side was cut away 
with a fine hypodermic needle and removed together with muscles and air sacks covering the 
underlying optic lobe. To gain access to tangential cells for electrophysiological recordings, the 
neurolemma covering the brain was partially digested by applying 0.5mg/ml collagenase IV 
(Gibco) with a glass electrode to the brain until the tangential cell somata were exposed. Where 
indicated, the octopamine agonist chlordimeform (CDM, Sigma Aldrich) was added as a 2mM 
stock solution (in external solution) directly to the bath to yield a final concentration of 20 µM. 
Diffusion was allowed for 15 min before recordings recommenced. 

Patch-clamp recordings from vertical and horizontal system tangential cells were performed 
as previously described [S4]. 

2-Photon calcium imaging 

Calcium imaging was performed on custom-built 2-photon microscopes as previously 
described [S3] controlled with the ScanImage software in Matlab [S5]. Acquisition rates were 
between 3.8 and 15 Hz, image resolution between 64x64 and 128x128 pixels. Before starting 
the acquisition, we verified that the receptive fields of the cells were located on the stimulus 
arena by showing a search stimulus consisting of moving gratings. 
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Visual stimulation 

For the study of visual responses of lobula plate tangential cells and T4/T5 neurons, visual 
stimuli were presented on an LED arena, based on a design by [S6], covering approximately 
180° in azimuth and 90° in elevation. Stimuli covered the whole extent of the arena and were 
presented at full contrast. Square-wave gratings had a spatial wavelength of 24°, and moved 
with velocities of 1.2-480°/s in the preferred and null direction, corresponding to temporal 
frequencies ranging from 0.05 to 20°/s. Single stimulation periods of moving gratings lasted 
for 3.8 s, separated by periods of 5 s where the grating remained stationary. For the edge 
velocity tuning, bright or dark edges of full contrast were presented, moving at velocities of 3 
to 300 °/s in the preferred (up) and null direction (down) of T4c/T5c neurons, separated by 6 s. 
All stimuli were presented in a pseudo-random order with 3-5 repetitions per stimulus. 

The spatio-temporal response properties of the Mi and Tm columnar input elements were 
determined on a custom-built projector-based arena that allowed for greater stimulus 
flexibility. Stimuli were projected with 2 commercial micro-projectors (TI DLP Lightcrafter 
3000) onto the back of an opaque cylindrical screen covering 180° in azimuth and 105° in 
elevation of the fly’s visual field. The projectors were programmed to use only the green LED 
(OSRAM L CG H9RN) which emits light between 500nm to 600nm wavelength. This 
increased the refresh rate from 60 to 180 Hz (at 8 bit color depth). To prevent overlap between 
the spectra of the GCaMP signal and the arena light, we placed two long-pass filters (Thorlabs 
FEL0550 and FGL550) in front of each projector restricting the stimulus light to wavelengths 
above 550nm. A band-pass filter in front of the photomultiplier (Brightline 520/35) allowed 
only the portion of the light within the GCaMP emission spectrum to be detected. Additional 
shielding of stray light from the arena with black foil effectively suppressed any leak of the 
arena light into the photomultiplier signal. The maximum luminance achieved by our 
stimulation system is 276 ± 48 cd m$. For all stimuli used here, we set the medium brightness 
to a 8-bit grayscale value of 50, which corresponds to a medium luminance of 55 ± 11	 cd m$. 

Stimuli were rendered using a custom written software in Python 2.7. To account for the 
curvature of the arena screen, our software pre-distorts the generated images such that the 
projected image appears as a regular grating on the screen. For that, the software takes 
advantage of functions from Panda3D, a framework for 3D rendering for Python. 
 
 
Gaussian noise stimulus 
 
To generate the horizontal white noise stimulus, we partitioned the cylindrical screen into 64 
bars, so that each bar covered an angle of approximately 2.8° in azimuth. For each bar, samples 
were drawn at a frame rate of 60 Hz from a Gaussian distribution, so that the standard deviation 
was at 25% contrast around a mean intensity value of 50 on the 8-bit grayscale of the display 
devices. We then filtered the random samples for each bar with a Gaussian filter with a standard 
deviation of 5 Hz in the frequency domain which leads to a stimulus auto-correlation function 
that is a Gaussian with approximately 45ms standard deviation. Since the calcium indicator 
dynamics of GCaMP and the data acquisition frame rate (12 Hz in this case) place a lower 
bound on the temporal precision of the signal we can extract from calcium imaging 
experiments, we restricted the frequency content of the stimulus in this way to the relevant 
domain. The whole stimulus sequence was 10 minutes long and was exported as a video file in 
H.264 format with lossless compression. For the vertical noise the same stimulus was rotated 
by 90° and scaled such that 54 bars covered the height of the screen, accounting for the aspect 
ratio of the screen being approximately 1.2. 



Data acquisition and analysis 

Data analysis was performed offline using custom-written routines in Matlab and Python 2.7 
(with the SciPy and OpenCV-Python Libraries).  

For the electrophysiological experiments, baseline-subtracted voltage responses of tangential 
cells were averaged across trials, and the response to gratings was quantified as the average 
voltage over the whole period of the respective stimulus presentation. Preferred direction was 
front-to-back for HS and down for VS cells, null direction the corresponding opposite direction. 
For Suppl. Figure S3 voltage responses over the individual stimuli were averaged across all 
cells. 

Calcium imaging: Images were automatically registered using vertical and horizontal 
translations to correct for the movement of the brain. Fluorescence changes (ΔF/F values) were 
then calculated by dividing every registered frame by the average of the registered first 5 images 
of the recording. Regions of interest (ROIs) were selected on the average raw image by hand: 
in layer 10 of the medulla for the ON, in the lobula for the OFF pathway elements, outlining 
single terminals. For T4 and T5 neurons, ROIs were routinely chosen in the lobula plate, 
encompassing small regions with single to few axon terminals, or selected to cover single 
neurites between medulla or lobula and lobula plate. For Figure 3D&E, ROIs were drawn in 
the medulla for T4 and in the lobula for T5 neurons to separate those 2 cell types. Averaging 
the fluorescence change over this ROI in space resulted in a ΔF/F time course. Neuronal 
responses were quantified as the maximum ΔF/F value over the stimulation period plus the 
subsequent 0.5 s, subtracted by the average of the baseline period covering the 2 frames before 
the respective stimulus onset. To average across cells/ROIs, responses were first normalized to 
the maximum response of each ROI to the corresponding stimulus set. For edges, normalization 
was performed separately to ON and OFF stimuli to take any selection bias for T4 or T5 cells 
within the ROI into account. 

White noise reverse-correlation 

For the input elements, spatio-temporal receptive fields were calculated following standard 
reverse-correlation methods (Figure S1) [S7, S8]. First, the mean value was subtracted from the 
raw signals of single ROIs by using a low-pass filtered version of the signal (Gaussian filter 
with 120 seconds standard deviation) as a baseline for a ΔF/F-like representation of the signal. 
This effectively removed slow baseline fluctuations caused by bleaching and very slow changes 
in the average calcium level from the signals.  
We then calculated the stimulus-response reverse correlation function 
 

𝐾 𝑥, 𝜏 = 	 𝑑𝑡	𝑆 𝑥, 𝑡 − 𝜏 ∙ 𝑅(𝑡)
6

7
 

 
where S denotes the stimulus and R the response of the neuron. 
 
The resulting spatiotemporal fields were normalized in z-score and as a quality control only 
receptive fields with peak amplitudes above 10 standard deviations from the mean were taken 
for further analysis (for Mi9 the threshold was lowered to 7). Cross-sections through the 
receptive fields along the space axis were fit with a Gaussian function to determine the position 
of the peak.  
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Since one imaging frame is built up continuously over one sample time, ROIs lying at different 
y-coordinates in the image will in fact be imaged at slightly different times. Since the stimulus 
is presented at a higher frame rate of 60 Hz, this leads to a notable peak shift between the 
impulse responses of different ROIs. We corrected for this by translating the spatiotemporal 
receptive field of each ROI by a) the time difference between the start of a frame and the 
effective sampling point estimated by the y-coordinate of the center of mass of the respective 
ROI and b) the start time of the white noise stimulus within the very first frame acquired during 
stimulation.  
 
Spatio-temporal receptive fields resulting from different ROIs (that were retinotopically 
shifted) were then centered about each other to generate a mean receptive field. To ensure 
receptive fields of input elements were fully covered, cells with a receptive field center less 
than 10 pixels (28º) from the edge of the arena were excluded. 
 
Frozen noise 

Filter kernels were validated by testing their ability to predict the neuronal responses from the 
stimulus. For this, neurons were again stimulated with a white-noise stimulus, only this time 
part of the stimulus consisted of 15 repetitions (each 30 seconds long) of a white-noise sequence 
(‘frozen noise’) to eliminate noise in the neuronal responses. As above, spatio-temporal filter 
kernels were then reconstructed from responses to single repetition stimulus sequences (20 
minutes long). Analogously to above, only receptive fields with a peak higher than 20 standard 
deviations were included for further analysis. Subsequently the averaged response during the 
held-out test portion of the stimulus was predicted for each recorded cell individually. Linear 
predictions were obtained by convolution of the spatio-temporal filter kernels with the frozen 
noise stimulus along the time axis. Filter kernels were thresholded versions of the spatio-
temporal receptive fields (all values below 5% of the peak amplitude as well as regions further 
away than 15° from the receptive field center were set to zero). Both, the predicted response 
trace and the actual mean response to the frozen noise stimulus, were normalized in z-score in 
order to make different cells with varying calcium indicator expression levels and therefore 
different absolute signal values comparable. The static nonlinearity for the LN model was 
estimated for each cell by averaging all values from the actual mean response corresponding to 
values of the predicted response within bins of size 0.5 from -2.5 to +2.5 z-score (see scatter 
plots Bii and Cii in Suppl. Figure S2). Prediction accuracy of the linear filter was assessed 
through the correlation of the predicted versus actual response of the neuron [S9].  

Spatial receptive field model 
 
The one-dimensional spatial receptive fields (Figure 2 E-H and K-N, top and right) are cross-
sections through the peak of the spatiotemporal receptive fields along the space axis and are 
averaged over the 12 samples (200ms) around the peak. For almost all columnar neurons 
measured we found a small-field, antagonistic center-surround organization of the spatial 
receptive field using both the horizontal and the vertical white noise stimulus.  
 
 
Mathematically, receptive fields of this kind can be described as a difference of Gaussians 
 

𝑅𝐹9:(𝜑) = 𝑒
= >?
$@ABC? − 𝐴EFG ∙ 𝑒

= >?

$@HIJ? 
 



without loss of generality for the horizontal one-dimensional receptive field along the azimuth 
ϕ. Here, 𝜎LFM and 𝜎NOE are the standard deviations of center and surround, respectively, and 
𝐴EFG = 	𝐴NOE/𝐴LFM denotes the relative strength of the surround in relation to the amplitude of 
the center Gaussian (which is normalized to 1).  
 
To reconstruct a two-dimensional receptive field from the measured one-dimensional 
projections, we chose the same mathematical approach as above, only in 2D: 
 

𝑅𝐹$:(𝜑, 𝜗) = 𝑒
=	

>?RS?

$@ABC? − 𝐴EFG ∙ 𝑒
=	

>?RS?

$@HIJ?  
 
For simplicity, throughout the analysis we used the small-angle approximation tan 𝜗 ≈ 𝜗 for 
the vertical axis or the elevation 𝜗 even if receptive fields span angles larger than 5°. Thus, we 
neglected perspective distortions induced by the arena screen not being spherical, but 
cylindrical. Accounting for additional distortions induced by the relative displacement of the 
fly’s body in relation to the elevation of the receptive field on the arena would require even 
more detailed mathematical description, yet we did not observe any severe irregularities in the 
spatial receptive fields. 

It is important to note that receptive field estimation via a one-dimensional stimulus as 
performed here yields in fact a projection of the underlying two-dimensional spatial receptive 
field: 

𝑅𝐹9:(𝜑) = 𝑅𝐹$: 𝜑, 𝜗 𝑑𝜗
X

=X
 

 
Hence, we fitted the above function 𝑅𝐹$:(𝜑, 𝜗) such that its projections along the horizontal 
and vertical axis would agree with the given one-dimensional receptive field projections 
measured via reverse correlation. The fitting procedure was implemented using standard least-
square algorithms (SciPy 0.16.1). The resulting values for 𝐴EFG, 𝜎LFM and 𝜎NOE and the 
corresponding coefficients of the fit are given in Table S1 and S2 for each neuron type. 

Temporal filter model 
 
The time-reversed impulse responses shown in Figure 2&4 are cross-sections through the center 
of the spatiotemporal receptive fields along the time axis and are averaged over the three center 
pixels. For the frequency domain representations in Figure 2&4, impulse responses were 
Fourier-transformed, averaged, and the resulting amplitude spectrum (absolute value) was 
divided by the power spectrum of the stimulus for frequencies below 5.5 Hz (below the Nyquist 
frequency). This is equivalent to deconvolving the impulse response with the stimulus auto-
correlation and thereby correcting for non-white input signals [S7]. All frequency-space-
representations are plotted on a double logarithmic scale expressing all signal gains in decibel 
according to convention in filter theory. 
 
The complicated relationships between calcium, calcium indicator, voltage and 
neurotransmitter release of a cell render it impossible to precisely characterize each of these 
aspects having access to only the calcium indicator fluorescence as a read-out. However, we 
can assume under certain conditions that the calcium indicator itself essentially acts as a simple 
low-pass filter on the calcium signal  [S10], which is a kind of distortion that we are able to 
correct for by applying deconvolution.  
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GCaMP6f is designed to have especially fast kinetics. However, we can find decay constants 
in the order of several hundreds milliseconds that vary depending on the system under 
observation [S1]. As an approximation we chose a time constant of 350 ms for a plausible low-
pass filter that distorted the calcium signals in our system, which lies in the range of reported 
decay constants for GCaMP6f [S1, S11]. 
 
We corrected the frequency domain representations of the temporal filters of all cells by 
dividing the spectra with the frequency response of a 1st order low-pass filter with this time 
constant. Since this was restricted to frequencies below the Nyquist frequency, we did not have 
to apply additional techniques to avoid the impact of poor signal-to-noise ratios at higher 
frequencies.  
 
For quantitative description and further simulations, we sought to describe the response 
characteristic of each cell under each condition with a simplified model that catches the main 
properties. For that, we fitted simple 1st order filters to the corrected frequency responses of all 
cells. We did this separately for each condition, i.e. for control and CDM condition and for the 
raw filters (corrected by the stimulus power spectrum only) and the deconvolved filters 
(corrected by the GCaMP filter) respectively. 
 
In particular, we approximated Mi1, Tm3, Tm1, Tm2 and Tm4 as band-pass filters and fitted a 
band-pass model consisting of a 1st order high-pass and a 1st order low-pass filter to the 
frequency responses (Figures S5, S6). The band-pass model was parametrized by a 
multiplicative amplitude and the two time constants of the filters. Parameters were optimized 
using a standard implementation of the Levenberg-Marquardt algorithm (SciPy). Similarly, 
Mi4, Mi9 and Tm9 frequency responses were fit using a 1st order low-pass filter model. 

 

Computational modeling 

Neural simulations (Figure 5 and 6) were based on a motion detector that combines preferred-
direction enhancement and null-direction suppression, resembling a hybrid of a Hassenstein-
Reichardt half-detector and a Barlow-Levick detector, as suggested in [S12].  

Stimuli were simulated in a 2-dimensional space covering 90° in both azimuth and elevation 
with 1° resolution. Each hypothetical motion (half-)detector had three neighboring input lines 
(termed A, B and C) which were offset by 5° from each other along the horizontal axis (for 
simplicity). Each input line consisted of a spatial and a temporal filter that was applied to the 
stimulus before further processing. The spatial filter was modeled as a 2D convolution with a 
Mexican hat filter kernel using the above definition (see “Spatial receptive field model”) and 
the fitted parameters from table S1 and S2. The temporal filter consisted of either a 1st order 
band-pass or as a 1st order low-pass filter with the time constants from the table correspondingly. 
Subsequent rectification simulated the polarity selectivity of the input lines to the downstream 
motion detector. To implement the nonlinear interaction between the three input lines in the 
most simplified, we modelled the nonlinear action as	𝐴 ∙ 𝐵/(𝐶 + 0.1) involving only one free 
parameter to avoid division by zero. 270 of these elementary motion detectors were arranged 
on a 2-dimensional grid, separated by 5° from each other.  
To evaluate the performance and tuning of the simulated detectors across stimulus frequencies, 
we measured the mean response of the simulated (half-)detectors to moving gratings at different 
speeds. Vertically oriented square wave gratings of 24° wavelength were swept over the 
detector array with 50 different velocities corresponding to 50 different contrast frequencies 



logarithmically spaced between 0.01 Hz and 20 Hz. The gratings moved for 5s to the right 
followed by a pause of 0.5s and 5s of motion in the opposite direction. The time step for all 
simulations was 10 ms. The direction of the stimulus that elicited the strongest response across 
all frequencies was termed the preferred direction (PD) of the respective motion detector. 
Consequently, the other direction was the null direction (ND). 
The direction selectivity of the resulting tuning curve was evaluated by defining a direction 
selectivity index (DSI) 
 

𝐷𝑆𝐼 = 	
𝑃𝐷 − 𝑁𝐷
𝑃𝐷 + 𝑁𝐷 

 
where the sum goes over all frequencies simulated. This definition produces DSI values 
between 0 and 1, where 1 means perfect, and 0 means no direction selectivity. Secondly, the 
optimal frequency 𝑓cde was defined as the stimulus frequency that elicited the strongest 
response in PD direction.  
The above measure only quantifies the response difference between the two opposing directions 
of motion along the main axis of the detector. However, it cannot distinguish between detectors 
that differ in their response properties to intermediate directions of motion. Hence, we 
additionally assessed the directional tuning specificity of each detector by measuring its 
response to differently oriented moving gratings. We stimulated the model with square wave 
gratings of 24° wavelength, rotated by different angles from 0° to 360° in steps of 30°, and 
measured the mean response of the detector array at the optimal frequency  𝑓cde, as determined 
above. From the corresponding simulated responses, the direction selectivity was quantified as 
the length of the normalized response vector:  
 

𝐿ghE =
𝑣(𝜑)>

𝑣(𝜑)>
 

 
where 𝑣(𝜑) is a vector proportionally scaled with the mean detector response and pointing in 
the corresponding stimulus direction of motion given by the rotation angle 𝜑 of the stimulus. 
This quantity 𝐿ghE has been suggested as a robust measure of direction selectivity that includes 
both relative response magnitude and tuning width of a direction selective neuron [S13]. 
For the bar plots in Figure 5B&E (right column) the simulations were repeated also for all 
possible implementations of a two-arm detector whose nonlinear interaction was either 
modelled as 𝐴 ∙ 𝐵 for a classical Hassenstein-Reichardt-(half-)detector or as 𝐵/(𝐶 + 0.1) for a 
Barlow-Levick-detector.  
All simulations were performed using Python 2.7. 
 
 
Statistics 
 
Throughout this article, values are reported as mean ± standard error (SEM). In order to quantify 
the significance of the effect of CDM application on the temporal response characteristics of 
the medulla cells, we defined three different measures for the impulse responses: a) the time to 
the first peak 𝑡dFjk

(9)  is the time between the onset of the impulse response (defined as the time 
when it has reached 15% of its maximum value) and the time when it has reached its maximum 
value; b) the time to the second peak 𝑡dFjk

($)  is similarly defined as the time between the onset of 
the impulse response and the peak of the subsequent undershoot or overshoot, which is defined 
only for the band-pass filters; c) lastly, we defined a peak width wpeak as the width of the first 
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peak at half maximum. We quantified these values for each fly and tested the change between 
control and CDM condition for significance using a paired t-test.  
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2.2 visual projection neurons mediating
directed courtship in Drosophila

summary This study investigates a class of visual projection neurons,
LC10, that is dedicated to guiding directed courtship behavior in male
Drosophila.

First, we used the the custom-written automated tracking software
MateBook to analyze courtship behavior of freely moving flies in a small
arena. These experiments established that male fruit flies rely heavily on
visual cues to perform directed courtship. We then identified the visual
projection neuron LC10 as a candidate cell type to relay visual input
signals that are relevant for courtship behavior to the central brain. Using
a virtual reality set-up, we could show that LC10 neurons are required
for tracking of small visual objects: Blocking the output of these neurons
significantly impaired the ability of male flies to follow a virtual bead. Next,
calcium imaging experiments in LC10 revealed that these neurons have a
preference for moving figures of behaviorally relevant sizes and speeds,
while large field motion stimuli suppressed the neuronal activity. By using
a stochastic motion noise stimulus, we found that these response properties
are implemented through a motion-based center surround mechanism.
Finally, unilateral optogenetic activation of LC10 neurons elicited ipsilateral
turning and wing extensions, a behavior which is characteristic for directed
courtship in male Drosophila. We concluded that LC10 neurons relay visual
information about potential mating partners to the male courtship circuitry
and thus visually guide directed courtship behavior in male fruit flies.

This article was published in Cell in July 2018 (Ribeiro et al., 2018). It
was highlighted in Nojima et al. (2018).
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SUMMARY

Many animals rely on vision to detect, locate, and
track moving objects. In Drosophila courtship, males
primarily use visual cues to orient toward and follow
females and to select the ipsilateral wing for court-
ship song. Here, we show that the LC10 visual pro-
jection neurons convey essential visual information
during courtship. Males with LC10 neurons silenced
are unable to orient toward or maintain proximity to
the female and do not predominantly use the ipsilat-
eral wing when singing. LC10 neurons preferentially
respond to small moving objects using an antago-
nistic motion-based center-surround mechanism.
Unilateral activation of LC10 neurons recapitulates
the orienting and ipsilateral wing extension normally
elicited by females, and the potency with which LC10
induces wing extension is enhanced in a state of
courtship arousal controlled by male-specific P1
neurons. These data suggest that LC10 is a major
pathway relaying visual input to the courtship circuits
in the male brain.

INTRODUCTION

Visual detection and localization of moving targets are essential

tasks in the life of many animals. For example, a raptor hunting

prey (Nikonov et al., 2006), a zebrafish larva capturing paramecia

(Budick and O’Malley, 2000), or a housefly chasing a conspecific

(Land and Collet, 1974) all use visual cues to adjust their motor

output to the movements of their target with sub-second preci-

sion. In several systems, the neural circuits involved in detection,

location, and tracking of moving targets are beginning to be

explored. For example, in large flies, visual neurons projecting

to the central brain detect small visual objects and are proposed

to aid in object tracking (Gilbert and Strausfeld, 1991; Nordström

et al., 2006; Trischler et al., 2007). Similarly, in zebrafish larvae,

one relay station receiving inputs from the retina and the optic

tectum has been implicated in prey capture (Del Bene et al.,

2010; Gahtan et al., 2005). Nonetheless, how vision guides the

tracking of a potential mate or prey is still poorly understood.

Here, we investigate visual tracking in fruit flies.

Drosophila melanogaster males display an intricate courtship

ritual composed of stereotypic actions performed in a variable

sequence. These courtship actions include extension and vibra-

tion of a single wing to produce courtship song, orienting toward

the female, following, tapping, licking, attempted copulation,

and copulation (Hall, 1994). Olfactory and gustatory cues signal

the species, gender, and receptivity of a potential mate and are

thought to influence the male’s decision to initiate courtship

(Dweck et al., 2015; Kurtovic et al., 2007; Lu et al., 2012; Thistle

et al., 2012; Toda et al., 2012). Vision affects courtship success

(Krstic et al., 2009; Markow, 1987; Markow and Hanson, 1981;

Markow and Manning, 1980) and may also contribute to court-

ship initiation (Agrawal et al., 2014), but more generally is thought

to control the timing and execution of specific actions (Cook,

1979, 1980; Sakai et al., 1997). In particular, vision has been pro-

posed to be essential for the male to effectively chase the female

(Cook, 1979, 1980) and to extend the wing closest to the female

when singing (Kohatsu and Yamamoto, 2015; Pan et al., 2012);

that is, to direct his courtship displays toward the target. Visual

cues may also be used to assess the distance to the female,

and to accordingly modulate the amplitude of song pulses

(Coen et al., 2016).

Visual input consists of a two-dimensional array of light inten-

sities varying across space and time. Several computational

steps are needed to extract visual features such as wide-field

motion, small visual objects, and looming objects (Borst,

2014). In vertebrates, visual features are relayed to the central

brain by retinal ganglion cells, which connect the plexiform layers

in the retina with several regions in the central brain (Dhande

et al., 2015). Several classes of retinal ganglion cells exist,

each presenting a different response profile to such visual fea-

tures (Baden et al., 2016). These include direction-selective

and non-selective cells that sense either local or global motion

(Baden et al., 2016; Dhande et al., 2015). The invertebrate ana-

logs of the vertebrate retinal ganglion cells are the visual projec-

tion neurons, which connect the neuropils of the optic lobe to the

central brain. Many visual projection neurons have been charac-

terized in larger flies. For example, male hoverflies, blowflies,

fleshflies, houseflies, and hawkmoths pursue their mates in flight

(Land and Collet, 1974; Olberg et al., 2000), and in each of these

species visual projection neurons have been identified that
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detect small targets with angular sizes and speeds matching

those of conspecifics (Collet, 1972; Gilbert and Strausfeld,

1991; Nordström et al., 2006; Trischler et al., 2007). Many of

these visual projection neurons are sexually dimorphic and

receive visual input from the acute zone, a specialized area in

the male retina with high visual acuity. Functional characteriza-

tion of visual neurons during behavior is difficult in these sys-

tems, however, and if and how these neurons convey visual

cues during mate pursuit remains an open question.

Recently, studies inDrosophila have begun to define the many

distinct classes of visual projection neurons and link their detec-

tion of specific visual features with behavioral output (Haikala

et al., 2013; Kim et al., 2017; von Reyn et al., 2017; Wu et al.,

2016). Many classes of visual projection neurons have been

described based on the optic lobe neuropils they innervate and

the optic glomeruli they target in the lateral protocerebrum of

the central brain (Otsuna and Ito, 2006; Wu et al., 2016). Large

tangential cells projecting from the lobula plate sense large field

optic flow and are thought to regulate flight stabilization (Joesch

et al., 2008; Kim et al., 2017; Maimon et al., 2010). Lobula

columnar (LC) neurons of various subtypes tile the lobula neuropil

(Otsuna and Ito, 2006; Wu et al., 2016), some of which have been

assigned functional roles. LC6 and LC16 neurons sense looming

stimuli and when artificially activated elicit escape, by jumping or

backward walking respectively (Wu et al., 2016). LC11 neurons

specifically sense small dark objects (smaller than 10�) (Kelesx
and Frye, 2017) but have not yet been shown to function in target

tracking. Indeed, unlike larger flies, fruit flies court on food sub-

strates at short distances from the target, at which conspecifics

are more likely to subtend large angular sizes (above 20�) on
the male retina, outside the size range sensed by LC11.

We hypothesized that courtship-relevant visual information

might be conveyed by a different subset of visual projection neu-

rons and set out to identify and characterize these neurons. We

present evidence that the LC10 class of visual projection neu-

rons responds to moving targets that have angular sizes and

speeds matching those of the female during courtship, and

that their activity is both necessary and sufficient for visually

guided aspects of male courtship behavior. Our work clarifies

the contributions of visual input to male courtship behavior in

Drosophila and provides a causal link between a major visual

pathway and directed courtship.

RESULTS

Automated Video Analysis Defines the Role of Motion
Vision in Directed Courtship
We developed the MateBook software to automate the analysis

of courtship videos (Figure S1; STAR Methods). MateBook uses

machine vision techniques to track the trajectories and wing po-

sitions of each of two flies in circular chambers and derive a num-

ber of fly-specific and pairwise attributes for each video frame

(Table S1). Specific courtship actions are detected by applying

user-defined classifiers. A challenge in the automated analysis

of courtship is the high frequency of occlusions, in which the

initial image segmentation yields only a single merged object.

This makes it difficult to assign wings to individual flies during

occlusions, and to maintain individual fly identities across occlu-

sions. MateBook only reports wing positions during those occlu-

sions in which the merged object can reliably be resolved into

two flies. To assign fly identities across occlusions, MateBook

relies on the distinct sizes of the two flies (females are typically

larger than males) and an estimate of the more likely trajectories

through the occlusion. Its accuracy in resolving occlusions de-

pends on the assay and video format. For all the assays reported

here, we used chambers of 18 mm diameter and acquired video

recordings at 25 Hz. In a test set of 15manually annotated videos

of wild-type males courting wild-type females, 3,140 (96%) of

3,275 occlusions were correctly resolved. Because identity

assignment relies on size differences that are detectable in

non-occluded frames, misassignments are generally confined

to shorter sequences between two occlusions and not propa-

gated through the entire video. Importantly, the courtship statis-

tics reported by MateBook for this test set of videos were

indistinguishable between the datasets generated using auto-

mated or manual identity assignments (Figures 1A, 1B, 1F,

S2A, and S2H). Accordingly, we relied exclusively on fully auto-

mated video analysis by MateBook for all data reported here.

We usedMateBook to reexamine the role of vision in courtship

behavior, assessing males that were completely blind (ort mu-

tants, which lack the ionotropic histamine-gated chloride chan-

nel required in lamina monopolar cells for neurotransmission

from all photoreceptor cells R1-R8) (Bulthoff, 1982), lack visual

input from photoreceptors R1 to R6 (ninaE mutants, which lack

Rhodopsin1 (Rh1) in photoreceptors R1–R6) (Scavarda et al.,

1983), or motion-blind due to expression of tetanus toxin light

chain (TNT) (Sweeney et al., 1995) in the elementary motion-de-

tecting neurons T4 and T5 (‘‘T4T5 block’’ flies) (Schnell et al.,

2012). The most pronounced courtship deficit in each of these

visually impaired males was a dramatic reduction in their ability

to orient toward and remain close to the female (Figures

1C–1E, 1G–1I, S2B, and S2C), and hence less frequent detection

of following, courting, and copulation events (Figures S1C–S1E

and S1H–S1J). For wild-type control males, the distributions of

the angle toward and the distance from the female were highly

biased to small values (but not zero, due to the curvature of

the chambers and the fly body length, respectively; Figure 1B).

In contrast, for the completely blind ort males, no such bias

was observed and the distributions of the angles and distances

to the female were indistinguishable from those obtained from

data in which the female positions were shuffled (Figure 1C).

R1–R6-blind ninaEmales were only marginally better at orienting

and following than ort males (Figure 1D); T4T5-block males did

show some bias for low angles and distances, yet still well below

the level observed with control males (Figures 1E and S2B).

Despite the severe reduction in orienting and following by each

of these visually impairedmales, the frequency of wing extension

was only mildly affected, if at all (Figure S1I). Males preferentially

sing by vibrating the wing that is oriented toward the female (Ko-

hatsu and Yamamoto, 2015; Pan et al., 2012), as we confirmed in

our analysis of wild-type males by plotting the distribution of the

female’s position when a wing is extended (Figure 1F), and by

computing a wing choice index ([ipsilateral – contralateral

wing extensions]/total wing extensions; Figure 1F). This ipsilat-

eral bias is lost in ort and ninaE mutants and T4T5-block

flies (Figures 1G–1I). We conclude that vision, and in particular
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Figure 1. Visual Input Mediates Directed Courtship

(A) Angle q and distance from male to female.

(B–E) Probability density functions of the absolute angle q and distance for single-pair courtship assay between males of the indicated genotype and Canton S

females, for real (blue) and shuffled (gray) data. (B)Canton Smales, n = 93. (C) ort1 males, n = 57. (D) ninaEP332 males, n = 108. (E) T4T5 block (SS324>TNT) males,

n = 23.

(F–I) Heatmap for the position of the female relative to the male for every frame in which the male extends a wing. The wing choice index is indicated below the

heatmap (STARMethods; mean ± SEM). (F)Canton Smales, n = 93. (G) ort1 males, n = 57. (H) ninaEP332 males, n = 108. (I) T4T5 block (SS324>TNT) males, n = 23.

See also Figures S1 and S2 and Tables S1 and S2.
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Figure 2. LC10 Visual Projection Neurons Are Required for Directed Courtship

(A–C) Expression pattern of LC10-SS1 (A and B) and LC10-SS2 (C) visualized with mCD8-Tomato reporter and anti-RFP (green), counterstained with anti-Brp

(magenta) to label all synapses. (A and C) Anterior view of the brain. (B) Slice of the optic lobe at the level of the lobula. There are 128.4 ± 2.5 (mean ± SEM) LC10

cells, n = 6 for the LC10-SS1 driver. Scale bar, 50 mm.

(D) Lobula arborizations of a single cell in LC10-SS1 labeled using the multi-color flip out (Nern et al., 2015) and visualized with anti-FLAG (green) and anti-Brp

(magenta) antibodies. Scale bar, 10 mm.

(E–H) Probability density functions of the absolute angle q and distance for single-pair courtship assay between males of the indicated genotypes and Canton S

females for real (blue) and shuffled (gray) data. (E) LC10-SS1 > IMPTNT-Q (inactive TNT); n = 19. (F) LC10-SS1 > TNT; n = 27. (G) LC10-SS2 > TNT; n = 100.

(H) LC10-SS3 > TNT; n = 30.

(legend continued on next page)
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Rh1-dependent vision, is essential for males to direct their loco-

motion and wing extensions toward the female during courtship.

Visual Projection Neurons Required for Directed
Courtship
We searched for visual projection neurons that might relay court-

ship-relevant visual features from the optic lobes to the central

brain. Reasoning that such neurons, like many involved in court-

ship behavior, might express the fruitless (fru) gene (Kimura et al.,

2008), we initially focused on fru+ visual projection neurons by

screening for courtship deficits in flies in which TNT was ex-

pressed in cells co-labeled by fru-FLP and various VT enhancer

GAL4 lines that were known to target visual projection neurons

(Tirian and Dickson, 2017). Four positive lines were identified

(VT043656, VT040012, VT047880, VT002224), each of which,

when combined with fru-FLP labeled 15–30 neurons that con-

nect the lobula and the anterior optic tubercle (AOTu) (Fig-

ure S3A). These cells appeared to be a subset of the neuronal

class that was previously described as Lv1+Ld (Kimura et al.,

2008) or LC10 (Aptekar et al., 2015; Otsuna and Ito, 2006; Wu

et al., 2016) cells; we use the latter designation here. We used

the split-GAL4 technique (Luan et al., 2006; Pfeiffer et al.,

2010) to derive three independent driver lines specific for the

LC10 cells, which we refer to as LC10-SS1, LC10-SS2, and

LC10-SS3 (Figures 2A–2C and S3B; Table S2). They each

label �100 cells per hemisphere.

A strong reduction in directed courtship was observed when

we expressed TNT with any of these three drivers (Figures 2E–

2L, S1F, and S1G). These LC10-silenced males were impaired

in their ability to orient toward and remain close to the female

during courtship (Figures 2E–2H and S2C–S2E). When they

sang, they did sowithout any bias for the ipsilateral wing (Figures

2I–2L and S2J–S2L). These deficits are most likely due to a diffi-

culty in locating the female, not a reduced motivation to court,

since males with silenced LC10 neurons vigorously courted fe-

males immobilized by decapitation (Figures S3E–S3H).

Four LC10 subtypes have been defined, based on their distinc-

tive dendritic arborizations in the lobula (Wu et al., 2016). LC10-

SS1 mostly labels the LC10a subtype, which arborizes in lobula

layers 3 to 5 with lateral extensions in layers 4 and 5B (>30 cells

for SS1, Figures 2D and S3C). Most cells labeled by LC10-SS2

and LC10-SS3 also appear to belong to the LC10a subtype,

withsomeadditional cellswitharborizationsspanning largerareas

of the lobula, likely of LC10b subtype (data not shown) (Wu et al.,

2016). We also found that�60% of the cells labeled in LC10-SS1

co-express fru-LexA (Figure S3D) (Mellert et al., 2010), suggesting

that our initial intersections with fru-FLP likely targeted these fru+

LC10a neurons. The common silencing phenotype observed us-

ing each of these intersectional strategies thusmost likely reflects

the function of fru+ LC10a neurons, although we cannot exclude

an additional contribution from either fru� LC10a neurons or

LC10b neurons (Figure S4). We could not detect any sex differ-

ences in the morphology of LC10 neurons. To test for possible

functional differences, we genetically feminized them using

LC10-SS1 or LC10-SS2 to drive a UAS-tra transgene (Billeter

et al., 2006; Boggs et al., 1987; Ferveur et al., 1995). Males with

feminized LC10 neurons tracked and courted females just as

well as control males did (Figures S3I–S3Q).

LC10 Neurons Are Required for Visual Object Tracking
Neural processing within the optic lobe is thought to extract rele-

vant visual features from the spatial array of retinal inputs, which

are delivered to the central brain by visual projection neurons. To

determine which visual features might be relayed by LC10 neu-

rons, we probed the responses of LC10-silenced flies to a range

of specific visual stimuli. Tethered males were placed on an air-

suspended ball, gently warmed to instigate robust walking, and

presented with visual stimuli displayed on three computer

screens placed around the fly (Bahl et al., 2013; Seelig et al.,

2010). In this set up, LC10-silencedmales were indistinguishable

from controls in their ability to turn in the same direction as a

rotating full-field grating (Figures 3A, 3B, S5A, and S5B) or a

long lean bar sweeping the screen in open loop (Figures 3C–3F

and S5C–S5F). In a closed-loop setting, they also fixated the

bar just as well as control males (Figures S5G and S5H). LC10

neurons are thus dispensable for the optomotor response and

for long bar fixation.

Small bars did not elicit a strong turning response in open loop,

possibly due to the uncoupling of visual and proprioceptive infor-

mation in the open-loop configuration (Fujiwara et al., 2017). We

therefore tested responses to smaller objects in a closed-loop

configuration. We developed a three-dimensional closed loop

stimulus consisting of a virtual cylinder in which a rectangular

fly-sized virtual object moves around a circle of 25 mm diameter

at a constant speed of 7.85 mm/s, within the speed range of fe-

males in a courtship arena (Figure 3G). The position, size, and

speed of this virtual object were adjusted according to themale’s

locomotion within the virtual cylinder. Wild-type and control

males tracked a dark virtual object, keeping it centered and in

close virtual distance (Figures 3H, 3I, and S5I–S5L). Curiously,

control males also tracked a bright virtual object but aimed for

its edges, resulting in high probabilities of the bright virtual object

being kept close but both central and lateral to the male (Figures

3L, 3M, and S5M–S5P). In contrast, LC10-block males did not

track either dark or bright virtual moving objects (Figures 3J,

3K, 3N, and 3O). The overall locomotion of LC10-block males

was indistinguishable from control males when presented with

an invisible virtual object (Figures 3P–3S and S5Q–S5T), as

were the distributions of translational and rotational speeds

across tests (Figures S5U and S5V).We conclude that LC10 neu-

rons are specifically required to track the virtual object.

Functional Imaging of LC10 Neurons Reveals a
Preference for Visual Figures
Amoving virtual object presents a number of different visual fea-

tures, such as its motion, angular size, or angular position. We

(I–L) Heatmap of the position of the female relative to the male for every frame in which the male extends a wing. The wing choice index is indicated below

the heatmap (STAR Methods; mean ± SEM). (I) LC10-SS1 > IMPTNT-Q (inactive TNT); n = 19. (J) LC10-SS1 > TNT; n = 27. (K) LC10-SS2 > TNT; n = 100.

(L) LC10-SS3 > TNT; n = 30.

See also Figures S1, S2, S3, and S4 and Tables S1 and S2.
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(A, C, and E) Visual stimuli presented in open loop to the tethered male walking on an air-suspended ball. (A) Vertical gratings with wavelength of 20� at 20�/s.
(C and E) Vertical 10� bright (C) or dark (E) bar at 60�/s.
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counter-clockwise (red) motion; gray shade indicates time of motion. SS1 control: LC10-SS1 > IMPTNT-Q, n = 5; SS1 block: LC10-SS1 > TNT, n = 9; SS2 control:

LC10-SS2 > IMPTNT-Q, n = 11; SS2 block: LC10-SS2 > TNT, n = 7.

(legend continued on next page)
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performed functional imaging to determine the visual features

that activate LC10 neurons. Immobilized males expressing the

calcium indicator GCaMP6m under control of the LC10-SS1

line were presented with visual stimuli while their calcium re-

sponses were recorded with a 2-photon microscope (Chen

et al., 2013; Maisak et al., 2013). To avoid mixing calcium re-

sponses from multiple cells in the same trace, we selected re-

gions of interest that included only a single punctumwithin either

the lobula or the AOTu (Figures 4A and 4B).

LC10 neurons responded more strongly to moving visual fig-

ures, suchasa squareor longbar (Figures4C–4F), than to full-field

stimuli, such as gratings that moved vertically or horizontally (Fig-

ures 4G and 4H) (Aptekar et al., 2015). LC10 calcium responses

were similarly strong for square bars of either contrast, but mark-

edly stronger for bright long bars than for dark long bars. For the

visual figures, the direction of movement had only a modest

impact on the calcium response (Figure 4I). No response was

observed with flickering gratings (Figure 4J), but, surprisingly,

OFF full-field flicker elicited a detectable but slow increase in the

calcium signal in LC10 neurons, most notably in their dendrites

(Figure 4K). Both bright and dark looming discs elicited a calcium

response in LC10 neurons, with rapidly looming stimuli eliciting

much faster transients than slowly looming stimuli (Figures 4L–

4O). Responses of LC10 neurons in females were qualitatively

and quantitatively similar to their responses in males (Figures

S6D–S6O). In summary, LC10 neurons respond more strongly to

various moving objects than they do to full-field motion stimuli.

A Motion-Based Center-Surround Mechanism for
Figure Detection by LC10 Neurons
LC10 terminals are retinotopically arranged in the AOTu (Wu

et al., 2016), suggesting that LC10 neurons might provide posi-

tional information of moving objects. If so, we would expect

that LC10 dendrites collect visual information from a limited

areawithin the visual field. To determine the LC10 receptive field,

we presented random white noise patterns of 5� by 5� squares

covering the entire stimulus arena (Figure 5A). This motionless

white noise stimulus led to small calcium transients in the

LC10 arborizations in the lobula, indicating that LC10 neurons

respond to local luminosity changes. Cross-correlation between

the time series of random checkered patterns and LC10 calcium

responses yielded a local OFF-selective receptive field spanning

an area of �25� (Figure 5B).

Because the calcium transients evoked by local flicker were

much smaller than those elicited by moving bars, we reasoned

that other local visual features might contribute to figure detec-

tion by LC10 neurons. Naturalistic visual scenes as well as artifi-

cial visual stimuli contain many local edges—the sharp, moving

borders between two areas of the visual scene with opposing

contrasts. By presenting single full-field moving edges with

opposing contrasts, we determined that LC10 neurons are

indeed sensitive to edges. These stimuli triggered sharp but

low calcium transients in the LC10 dendrites and axon terminals

(Figure S6A), without a clear preference for direction (Figures

S6B and S6C). In LC10 dendrites, dark edges elicited a low

and slowly decaying calcium transient whereas bright edges eli-

cited a strong and rapidly decaying response. Importantly, cal-

cium transients evoked by moving edges were stronger than

those evoked by local flicker, suggesting that edge motion con-

stitutes an important input to LC10 neurons.

Howmight LC10 neurons detect small objects? A plausible hy-

pothesis is that LC10 neurons might be part of a system that dis-

criminates moving objects from the background by sensing local

motion cues that differ from the global motion of the visual scene.

Thehallmarkof suchmechanismwouldbea receptive field selec-

tive to motion at one spot but inhibited by motion around that

spot, i.e., a motion-based antagonistic center-surround configu-

ration of the receptive field (Reichardt and Poggio, 1976). To test

this, we presented a motion noise stimulus consisting of 10 sine

gratings with a wavelength of 20�, moving independently within

10 stripes at different elevations in the visual arena (Figure 5C).

Each grating followed a random velocity profile with a mode of

20�/s (Figures 5D and 5E), creating a stimulus with stochastic ve-

locitywithin each stripe anduncorrelatedmotion between stripes

(Figure 5F). Calcium transients recorded in isolated puncta in

LC10 arborizations were positively correlated with the speed at

the center of the receptive field at a specific elevation (red in Fig-

ures5G,S6P, andS6Q),with amilder inverse correlation in neigh-

boring elevations (blue in Figures 5G and S6Q). The observed

temporal component of the receptive field was slower than the

stimulus autocorrelation, indicating that the speed of the motion

noise stimulus did not distort our estimation of the temporal

component (Figures 5H, S6R, andS6U–S6Z). The spatial compo-

nent of this motion-based receptive field presents a local antag-

onistic center-surround configuration, with a high correlation to

speed in the center and a lower and inverse correlation in the sur-

round (Figures 5I, S6S, andS6T).Weconclude that LC10neurons

arepreferentially sensitive to visual figuresdue toamotion-based

center surround component in their response. The observed low

calcium responses to longdark bars are in agreementwith such a

mechanism. The strongcalcium responses to longbright bars are

not, possibly indicating that the motion-based center surround

observed in LC10 neurons relies on motion in the OFF channel.

LC10 Neurons Are Tuned to Visual Figures with
Behaviorally Relevant Sizes and Speeds
We calculated the projection of the ellipse that MateBook fitted

to the female onto the male retina for every frame across a total

of 6 min of courtship between wild-type males and females. The

computed azimuthal angular size of the female ranged from 10�

to 140�, with a peak at around 80� that was clearly distinct from

shuffled data (Figures 6A and 6B) and reflects the male’s ten-

dency to maintain close proximity to the female. Angular speeds

were consistently lower than 70�/s, with a slightly wider range in

(G) Virtual cylinder arena and virtual moving object.

(H, L, and P) The three-dimensional virtual object was either dark (H), bright (L), or invisible (P).

(I–S) Heatmaps of probability density function for the position of the dark (I–K), bright (M–O), or invisible (Q–S) object relative to the male center. (I, M, and Q)

SS1>IMPTNT-Q; n = 9. (J, N, and R) SS1>TNT; n = 7. (K, O, and S) SS2>TNT; n = 7.

See also Figure S5 and Table S2.
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the observed data compared to shuffled data (Figures 6A and

6B). These tendencies to larger angular sizes and a wider range

of angular speeds were even more pronounced in frames classi-

fied as courtship (Figure 6C). To assess whether LC10 neurons

might be tuned to the visual cues presented by a female during

courtship, we examined their calcium responses to short bright

bars ranging in angular size from 10� to 80�, moving at absolute

angular speeds of up to 550�/s. We found that LC10 neurons are
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Figure 4. LC10 Neurons Are Sensitive to Small, Moving Visual Objects

(A and B) Single two-photon confocal planes in the lobula (A) and AOTu (B) of an LC10-SS1>GCaMP6mmale. Circles indicate individual regions of interest (ROIs)

selected for quantification of calcium responses.

(C–H) Visual stimuli (top) and calcium responses (shown as mean ± SEM) in LC10 processes in the lobula (middle) and AOTu (bottom). Bright (C) or dark (D) 20�

square with progressive or regressive motion with absolute velocity 70�/s. (C) Lobula: n = 122 ROIs in 12 flies; AOTu: 10 ROIs in 2 flies. (D) Lobula: n = 39 ROIs in

4 flies; AOTu: 17 ROIs in 3 flies. Bright (E) or dark (F) 10� bar moving at 50�/s. Vertical (G) or horizontal (H) gratings with wavelength of 20� moving at 20�/s. Data
shown in (E)–(H) were acquired from the same samples: lobula: n = 46 ROIs in 4 flies; AOTu: 31 ROIs in 5 flies.

(I) Direction selectivity index (STAR Methods) shown for 30� square bright bar and 10� long bright bar; boxplot shows the median, upper, and lower quartiles.

(J) Counterphase flicker with wavelength of 20� and apparent motion of 20�/s. Data acquired on the same samples as (E)–(H).

(K) Full-field flicker in which fully bright (ON) alternated with fully dark (OFF) visual arena every 3 s; lobula: n = 29 ROIs in 5 flies; AOTu: n = 12 in 4 flies.

(L–O) Bright (L and M) or dark (N and O) looming spheres centered on the receptive field of the cells, with initial angular size of 10� and expanding to full arena at a

speed of either 10�/s (L and N) or 2�/s (M and O). Lobula: n = 119 ROIs in 10 flies; AOTu: 20 ROIs in 3 flies.

See also Figure S6 and Table S2.
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broadly tuned with respect to size but more narrowly tuned with

respect to speed, with a preference for stimuli moving in either

direction at 150�/s or less (Figures 6D–6F). LC10 neurons are

thus broadly tuned to moving figures across a range of angular

sizes and speeds that match those a female is likely to present

during courtship behavior.

Activation of LC10 Neurons Elicits Directed Courtship
Actions that Are Enhanced in a P1-Induced State of
Arousal
The data presented thus far indicate that LC10 neurons are likely

to be intermittently activated during courtship, depending on the

location and movement of the female, and their activity is neces-

sary for the male to turn toward and follow the female and to

preferentially use the ipsilateral wing to sing. If LC10 neurons

represent the relative position of the female, then unilateral acti-

vation of LC10 neurons in an isolatedmale should be sufficient to

trigger ipsilateral turning and wing extension. We tested this by

stochastically expressing the optogenetic activator CsChrimson

in subsets of LC10 neurons using the LC10-SS1 driver (STAR

Methods) (Klapoetke et al., 2014; Wu et al., 2016). Individual

males were placed in a courtship arena illuminated with weak

blue light to monitor any behavioral response and exposed to a

0.5-s, 2-s, or 10-s pulse of 627 nm light to activate CsChrimson.
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Figure 5. LC10 Neurons Present a Motion-Based Center Surround

(A) White noise stimulus with random checkered patterns of bright and dark 5� by 5� squares covering the entire visual arena changed every 3 s.

(B) Correlation of calcium transients in the LC10 lobula arborizations (LC10-SS1>GCaMP6m) with brightness levels of white noise stimulus (n = 4 flies).

(C–F) Statistical characteristics of the motion noise stimulus. (C) Snapshot of the visual arena. (D) Probability distribution of phase velocity. (E) Temporal profile of

velocity and phase velocity for one elevation. (F) Velocity profile over a 10-s period for each elevation.

(G) Correlation of calcium transients observed in LC10 arborizations with spatiotemporal velocity profiles. The mean of aligned spatiotemporal profiles is shown,

n = 28 ROIs in 5 flies.

(H) The temporal receptive field and the peak-aligned stimulus autocorrelation as a function of time.

(I) The spatial receptive field as a function of relative elevation.

See also Figure S6 and Table S2.
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Subsequently, their brains were dissected to determine post hoc

whether CsChrimson was expressed in LC10 neurons, and if so,

on which side (Figures S7A and S7B). Males in which LC10

neurons were found to have been unilaterally activated turned

ipsilaterally without any noticeable increase in forward velocity

(Figures 7A–7D and S7C). A similar unilateral turn was observed

inmales in which CsChrimsonwas expressed bilaterally but acti-

vated unilaterally by focal stimulation on the ball set up (Figures

S7D–S7F). The longer 10-s light pulses also elicited brief wing

extensions (lasting 120–240 ms), which were, as predicted,

strongly biased to the ipsilateral side (Figure 7E). Thus, in isolated

males, unilateral activation of LC10 neurons elicits the samemo-

tor responses—ipsilateral turning and wing extension—that are

lost when LC10-silenced males court females.

LC10 neurons are functionally monomorphic yet contribute to

a male-specific behavior, suggesting that visual information

conveyed through LC10 is processed in a sex-specific manner

in the brain. A set of brain neurons that might influence such

dimorphic processing are the male-specific P1 cells (Kimura

et al., 2008), the activity of which is both necessary and sufficient

for robust courtship behavior (Kohatsu et al., 2011; Pan et al.,

2012; von Philipsborn et al., 2011). Notably, acute activation of

P1 neurons elicits courtship that persists for many minutes

after the activating stimulus, suggesting that P1 activation

induces a lasting state of courtship arousal (Bath et al., 2014;

Inagaki et al., 2014). We hypothesized that the ability of LC10

activation to elicit courtship actions might be modulated by

this P1-induced state of arousal.

We identified an LC10-LexA line that drives expression almost

exclusively in LC10 neurons (Figures S7G and S7H), allowing us

to test this prediction using a P1-GAL4 driver (von Philipsborn

et al., 2011) to induce the arousal state. Bilateral optogenetic

activation of all LC10 neurons using either the LC10-SS2 GAL4

driver or the LC10-LexA driver induced single wing extensions

at similar frequencies (Figure 7G), slightly below the frequency

with which they had occurred upon unilateral activation (Fig-

ure 7E). We did not observe any turning in these experiments,

presumably due to the bilateral activation, nor the ‘‘reaching’’

phenotype that has previously been reported to result from

LC10 activation (Wu et al., 2016; reaching was however
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Figure 6. LC10 Neurons Are Sensitive to Objects with Naturalistic Angular Sizes and Speeds

(A–D) Heatmap of distribution of azimuthal angular sizes and speeds the female subtends on the male retina during single-pair courtship assays (n = 93 Canton S

males paired with Canton S females). (A) Shuffled male-female pairs. (B–D) Unshuffled data for all frames excluding copulation (B and D), or all frames in which

MateBook detected orienting, following, or wing extension (C). In (D), data are rebinned according to the angular sizes and speeds tested in functional imaging

(E and F) such that each bin contains the tested angular size or speed ±10�.
(E and F) Average maximum normalized calcium responses in LC10 processes in the lobula (E, n = 46 ROIs in 6 flies) and AOTu (F, n = 37 ROIs in 4 flies) in

LC10-SS1>GCaMP6m males to moving bright bars of various speeds and sizes.

See also Table S2.
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observed when males were tested in groups, as in this previous

report). These males are not expected to be in a state of court-

ship arousal. To induce this state, we pre-activated P1 cells ther-

mogenetically using TrpA1 by heating flies to 31�C for 2 min, just

prior to the series of light pulses used for optogenetic activation

of LC10 neurons. As predicted, P1 pre-activation greatly

enhanced the frequency of LC10-induced wing extensions (Fig-

ures 7F and 7G). These observations are consistent with the view

that, in aroused males, visual information conveyed via LC10

cells is channeled toward the brain circuits that control courtship

song.

DISCUSSION

Our work has identified the LC10 visual projection neurons as

a major visual pathway mediating directed courtship in

Drosophila males. LC10 neurons are broadly tuned to moving

objects, which they detect via an antagonistic center-surround

mechanism. If LC10 neurons are silenced, males are less able

to track the female and select the ipsilateral wing to sing.

Conversely, if LC10 neurons are unilaterally activated, isolated

males turn ipsilaterally and extend the ipsilateral wing. The fre-

quency of wing extensions is significantly enhanced if males
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Figure 7. LC10 Activation Elicits Ipsilateral Turning and Short Wing Extensions that Are Potentiated by Pre-activation of P1 Neurons

(A–D)Walking and relative turning speeds of males with unilateral expression (n = 4) or no expression (n = 19) of CsChrimson in LC10 neurons upon 2 s (A and B) or

10 s (C and D) of LED stimulation (LC10-SS1>FRT-STOP-FRT-CsChrimson). Positive turning speed means turning to the side of stimulation, shown as

mean ± SEM.

(E) Number of short wing extensions elicited by 10 s pulses inmales with unilateral (n = 4) or no expression (n = 19) of CsChrimson in LC10 neurons ofmales shown

in (A-D). **p < 0.01, ns p > 0.05, Student’s t test with Bonferroni correction.

(F) Raster plots of wing extensions per male. Red shades indicate 10-s pulses of stimulation with red LEDs. Grey shade indicates the end of 2 min incubation at

31�C in a dark chamber. Wing extensions were scored immediately thereafter. Vertical line at t = 0.

(G) The average number of wing extensions per 10-s pulse of LED light for the data represented in F, shown as mean ± SEM. ***p < 0.001, ns p > 0.05, Student’s

t test with Bonferroni correction.

See also Figure S7 and Table S2.
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are placed into a state of arousal via pre-activation of the male-

specific P1 neurons. LC10 neurons are morphologically and

functionally similar in males and females, but the processing

of their inputs in the brain is evidently both sex-specific and

state-dependent. This processing likely also uses positional

information encoded in the spatial pattern of LC10 activity to

control the laterality of motor output.

The Role of LC10 Visual Projection Neurons in Directing
Sex-Specific and State-Dependent Courtship Actions
Upon encountering another fly, a Drosophila male decides

whether or not to court based on long range olfactory cues (Datta

et al., 2008; Dweck et al., 2015; Kurtovic et al., 2007) and short

range gustatory cues (Billeter et al., 2009; Lu et al., 2012; Thistle

et al., 2012; Toda et al., 2012). These chemosensory cues are

thought to signal the target’s species, gender and receptivity.

The role of vision in courtship initiation has been less clear. An

earlier suggestion that flies might discriminate genders by visual

assessment of body pigmentation (Kopp et al., 2000) would

seem to be contradicted by the results of experiments that

have manipulated pheromone profiles and clearly demonstrated

that courtship initiation tracks with the pheromone profile, not

the body pigmentation, of the target (Billeter et al., 2009; Demir

and Dickson, 2005; Ferveur et al., 1997). Consistent with the

view that visual cues have little bearing on the initial decision

to court in our courtship chambers, we have shown here that

blind males present wing extension frequencies similar to those

of visually intact males. Nonetheless, an inanimate moving ob-

ject the size of another fly can elicit courtship from a male

(Agrawal et al., 2014), and unilateral activation of LC10 neurons

in isolated males can induce ipsilateral wing extensions, albeit

at a relatively low frequency. Thus, males might preferentially

initiate courtship in response to chemical cues, as these more

reliably signal gender and species identity, but in the absence

of any chemosensory information can still be aroused, albeit

less potently and specifically, by the visual detection of a fly-

size moving object.

The chemosensory cues that trigger courtship are believed to

activate themale-specific P1 neurons (Clowney et al., 2015; Kall-

man et al., 2015; Kohatsu et al., 2011), which induce a persistent

state of courtship arousal (Poehlmann et al., 2014; Inagaki et al.,

2014). In this state, visual tracking and directed wing extension

are greatly enhanced. For example, either exposing the male

foreleg to female contact pheromones (Kohatsu et al., 2011),

or directly activating P1 neurons using optogenetics (Kohatsu

and Yamamoto, 2015), stimulates amale to track amoving visual

target. Similarly, an inanimate moving object is much more

potent in eliciting courtship from a male if it is perfumed with fe-

male pheromones (Agrawal et al., 2014). Our data suggest that

these conditional courtship actions are due to the sex-specific

and state-dependent processing of visual information provided

by LC10 neurons.

In larger flies, several classes of visual projection neurons

have been proposed to function in the context of courtship pur-

suits performed by males during flight (Gilbert and Strausfeld,

1991; Nordström et al., 2006, 2008; Trischler et al., 2007). Typi-

cally, these small target feature neurons are sexually dimorphic

and narrowly tuned to rather small, dark bars or spots and, in

some cases, display directional selectivity. In contrast,

Drosophila LC10 neurons are present in both sexes (Kimura

et al., 2008; Wu et al., 2016) and are sensitive to bars with

opposing contrasts and a broad range of angular sizes and

speeds. Although they express fru, we have not noted any

anatomical or functional differences between the sexes. The

fru+ DA1 class of olfactory projection neurons that respond to

the pheromone cis-vaccenyl acetate are similarly functionally

monomorphic (Datta et al., 2008), but connect to distinct post-

synaptic neurons in males and females (Kohl et al., 2013). This

dimorphic connectivity is controlled by fru and likely contributes

to the distinct behavioral responses of males and females to

cis-vaccenyl acetate. The more compact termini of the LC10 vi-

sual projection neurons in the AOTu, together with the lack of

any knowledge of their postsynaptic targets, makes it difficult

at this point to discern whether fru instructs similar dimorphic

connectivity downstream of LC10 neurons, but we speculate

that this is likely to be the case.

While LC10 neurons do not appear to be the Drosophila an-

alogs of the highly selective small target feature neurons of

these larger flies, it remains possible that some other class of

visual projection neurons fulfills this role in Drosophila. Perhaps

the closest analog to these cells in Drosophila are the LC11

neurons, which, although not sexually dimorphic, are tuned to

smaller objects than LC10 neurons and might therefore be

more important in long range courtship initiation (Kelesx and

Frye, 2017). It is, however, also possible that the sexually

dimorphic small target feature detection neurons of larger flies

are a unique specialization associated with the challenge of

relying primarily on visual cues for species and gender identifi-

cation during flight—tasks for which Drosophila relies more on

chemical than visual cues.

Extracting and Using the Visual Information Encoded by
LC10 Neurons
A courting male detects the female as a moving object superim-

posed on a visual scene that itself may be moving on the retina

due to the male’s own locomotion. Our work suggests that

LC10 neurons rely on a motion-based center surround to detect

small objects against the visual background. In this mechanism,

an LC10 cell is activated by the detection of movement within its

receptive field but inhibited by movement just outside this field.

How might the information provided by LC10 neurons be

used by circuits in the central brain to orient courtship behavior

toward the female? In principle, three different types of algo-

rithm might be employed to locate the female. First, the lateral-

ity of the target could be determined by comparing activities of

left and right LC10 neurons. Second, because the LC10 termini

are arranged topographically in the AOTu (Wu et al., 2016) and

exhibit small receptive fields, they can also convey the precise

angle toward the female. Third, the speed and direction of

movement could be computed from the temporal pattern of

LC10 activity across the topographic array of their termini in

the AOTu, allowing downstream brain circuits to predict the fe-

male’s future position. For ipsilateral wing extension, the first

and simplest algorithm would suffice. An orienting turn, how-

ever, would likely involve the computation of a turning angle

from the female’s position and movement. Additionally, the
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number of LC10 cells activated might also be used to estimate

the distance to the female, which would determine the ampli-

tude of any song produced, and whether or not the orienting

turn is accompanied by an increase in forward locomotion.

In summary, our findings establish a link between visual

feature detection and specific motor responses, identifying the

LC10 visual projection neurons as moving object detectors

used for directed courtship. This work paves the way for a

detailed investigation of the neural circuits and computations

that extract these visual features and use them in a sex-specific

and state-dependent manner. Our functional characterization of

LC10 visual projection neurons thus represents a critical first

step in elucidating the neural processing that underlies a para-

digmatic visuomotor transformation.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Barry J.

Dickson (dicksonb@janelia.hhmi.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Several lines of the fruit flyDrosophila melanogasterwere used in this study and are listed in Table S2 and Key Resources Table. Flies

were raised in vials containing standard cornmeal-agar medium supplemented with baker’s yeast and incubated at 25�C with 60%

humidity and 12h bright light/dark cycle throughout development and adulthood. Males were the subject of interest in all experi-

ments, with the exception of functional imaging in Figures S6D–S6O. In this case, females were treated similarly tomales (see below).

For single-pair courtship behavior assays (Figures 1, 2, 6, S1, S2, S3, S5, and S6), males were collected as virgins (i.e., 2 to 8 hours

post-eclosion), reared in isolation and aged until 7 to 9 days old. Wild-type females used in the assay were collected as virgins, group

housed and aged to 2 to 5 days old. Courtship assays were carried out within 3 hours after onset of light or before onset of darkness,

respecting fly circadian peaks of activity. For experiments on the ball set up (Figures 3 and S5), males were group housed with other

males and females of the same genotype and aged to 6 to 7 days old. Males used in functional imaging (Figures 4, 5, 6, and S6) were

either group housed with females of the same genotype or reared in isolation and aged to 9 to 11 days old. Since no appreciable

differences between group housed and isolated males were observed, the data from both conditions were pooled and analyzed

together. For artificial activation experiments (Figures 7 and S7) males were group housed with other males of the same genotype

and reared until 6 to 12 days old. For stochastic activation experiments (Figures 7 and S7), flies were heat-shocked at 1st-instar larva

stage at 37�C for 15 min to 30 min, then returned to 25�C. For stochastic and full expression activation experiments, artificial acti-

vation relied on expression of CsChrimson, a rhodopsin-like cation channel activated by red light (Klapoetke et al., 2014). all-trans

retinal (30mg/ml) was added to approx. 40ul yeast paste which replaced baker’s yeast in otherwise unaltered fly food. Males

were transferred to fresh all-trans retinal food vials every two days during adulthood and aged until 6 to 8 days old for stochastic

expression and 8 to 12 days for full expression. Starting from adulthood, males were also reared under blue light until test day,

with other incubation conditions unaltered. Males were incubated for 2 min at 31�C in order to achieve acute activation of P1 neurons

in Figures 7F and 7G with NP2361-GAL4; light stimulation of LC10 neurons was performed after this incubation period, at 25�C.

METHOD DETAILS

Fly Genetics
The split lines LC10-SS1, LC10-SS2 and LC10-SS3 lines expressing in LC10 neurons were based on an initial behavioral screen in

which VT-GAL4 lines expressing in fruitless-positive visual projection neurons (T. Liu and B.J.D., unpublished observations) (Tirian

and Dickson, 2017) were tested in single-pair courtship assays. The respective split-halves were generated by cloning the corre-

sponding tiles into vectors containing either GAL4 split half (Pfeiffer et al., 2010) and further tested for expression in LC10 neurons.

Other flies used in this study include: Canton S; ninaE7 mutants (Scavarda et al., 1983; BL2103); ort1 mutants (Bulthoff, 1982;

BL1133); UAS-TNT (Sweeney et al., 1995); UAS-CD8:GFP (Lee and Luo, 1999); UAS-CD8-tdTomato (Toda et al., 2012); UAS-

GCaMP6m in attP40 (Chen et al., 2013); UAS-CsChrimson-Venus in attP18 (Klapoetke et al., 2014); UAS-MCFO (Nern et al.,

2015); UAS-FRT-stop-FRT-CsChrimson-Venus in attP18, hsFlp2:PEST in attP3 and the LC10 lines OL19B, OL20B, OL22B,

OL23B, SS3822, SS2669 and SS2681 (Wu et al., 2016); UAS-tra (Ferveur et al., 1995); NP2631-GAL4, UAS > stop > TrpA1:myc

and UAS > stop > CD8:GFP (von Philipsborn et al., 2011); fruFLP (Yu et al., 2010); w, LexAop-CsChrimson:Venus at attP18 was a

generous gift from Gerald Rubin. The complete genotypes used in each figure are listed in Table S2.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Drosophila: w; VT040747.p65ADZp; R72C08.ZpGAL4DBD Wu et al., 2016 N/A

Drosophila: w; R22H02.p65ADZp; R20G06.ZpGAL4DBD Wu et al., 2016 N/A

Drosophila: +; UAS-tra; + Ferveur et al., 1995 N/A

Software and Algorithms

MateBook this study https://github.com/Dicksonlab/MateBook

custom-written software using Python 2.7 this study https://github.com/Dicksonlab/MateBook

ScanImage Pologruto et al., 2003 N/A

Cell 174, 607–621.e1–e7, July 26, 2018 e2



Courtship Behavior
To test courtship behavior, a naive male (reared in isolation) was paired with a virgin female inside a chamber measuring 18mm in

diameter and 4mm in height, with a removable strip separating the chamber in two halves, in which each fly awaited the start of

the assay. A single plate containing eight such chambers was placed roughly 20 cm under JVC HD video camera and illuminated

with abundant bright light. The assay was initiated by removing the strip between male and female and was video-recorded with

a resolution of 1440x1080 (16:9) at 25 fps for 10 min. Videos were acquired in the .MTS file format, without rendering, tracked

with a custom software called MateBook (see below) and behavior classifiers as well as locomotion parameters were used for

data analysis.

Automatic video tracking with MateBook
To quantify male and female movements as well as courtship steps objectively, we employed a video-tracking software called

MateBook, which fits an ellipse to the segmented image of each fly and provides XY coordinates of the ellipse center and head

position throughout the video. Gender identity was correctly attributed based on size difference (see Figure S1), since females

are typically slightly larger thanmales. Its accuracy in resolving occlusions depends on the assay and video format. For all the assays

reported here, we used chambers of 18mm diameter and acquired video recordings at 25 fps. The courtship steps were identified

with the help of classifiers based on Dankert et al. (2009):

d Circling: the male keeps a minimum distance of 2 mm while walking sideways with a minimum speed of 3mm/s around the

female; persistence is 0.5 s.

d Copulating: occlusion persisting for at least 45 s.

d Following: the male keeps distance to the female between 2 and 5mm, with maximum change of 2mm/s, while directly behind

the female (absolute angle theta not larger than 30�), while both flies are walkingwith aminimum speed of 2mm/s; persistence is

1.0 s.

d Orienting: the male keeps the female in front (maximum absolute angle theta not larger than 60�) while walking at maximum

1mm/s; persistence is 1.0 s.

d Wing extension: the angle formed by the major axis of the ellipse fitted to the body and the line through the center of the ellipse

and the tip of the wing exceeds 30�; persistence is 0.5 s.

Behavior upon presentation of isolated visual input with the fly-on-ball assay
To test male locomotion responses to specific visual stimuli isolated from chemosensory input, we used the fly-on-ball assay (Bahl

et al., 2013; Buchner, 1976; Seelig et al., 2010). A spot of UV glue was applied to the top of the head and anterior thorax of a cold

anesthetized male and a metal tether was carefully placed on the glue spot such that it united the head to the thorax. Blue light

was applied for 5 s to curate the glue. Next, the wings of the male were glued to the tether to prevent flight from occurring during

the assay. After 10 min recovery, the tethered male was then mounted on top of a 6mm foam sphere smoothly suspended by air

flowing from a sphere holder. The air was slowly heated to 34�C during the first 10 min of each experiment (Bahl et al., 2013).

Two optical tracking sensors were used to track the movement of the sphere from which fly locomotion was computed (Bahl

et al., 2013). The visual stimuli were on 3 LCD screens placed around the fly, forming a visual arena that covered 135� azimuth

and 57� elevation of the fly visual field and were designed with Pandas 3D and Python 2.7. The visual stimuli where:

d Open loop grating: whole field grating with a spatial wavelength of 20�, 60%Weber contrast moving at 20�/s for 2 s per 7 s trial

was presented in open loop (Bahl et al., 2013).

d Open loop long bar: a long, vertical bar measuring 10� wide and spanning the elevation of the visual arena was moved at 60�/s,
counter-clockwise or clockwise, starting from �60� (counter-clockwise) or 60� (clockwise) azimuthal position at Weber

contrast of 100% for dark bar and 70% for bright bar. Each trial lasted 7 s.

The open loop grating and the open loop long bar, each in two directions, were presented in the same session to each fly. Together,

each fly was exposed to 40 combinations of open loop stimuli with a stable temperature of 34�C – and thus constant walking - in the

last 20 trials, which were used for analysis.

d Virtual cylinder with 3D bead: a virtual cylinder with 10cm height and 5cm radius was generated and linedwith horizontal stripes

bearing 20% Weber contrast. A virtual bead was placed inside this cylinder by creating an additional elliptic cylinder with half

axes 0.25cm and 0.35cm and 0.25cm height. The virtual bead was made to describe a circle with a radius of 2.5cm at 0.05Hz

(i.e., forward speed of 7.85mm/s) and was presented moving either in clockwise or counter-clockwise direction. At the start of

each 60 s trial the male was randomly placed at any position in this virtual cylinder and the image presented on the visual arena

was that of a camera located at the same XY coordinated as the center of the male. The cylinder walls were infinitively far away

and the virtual bead wasmade to disappear from the screen if the male is close enough to touch the bead. The virtual bead was

presented at two opposing contrasts with Weber contrast of 125%. In a third condition, the bead was made invisible such

that distance and angle male to bead were still measured, but the male never visualized the bead. Each trial lasted 60 s.
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Combinations of dark and bright beads, each in two directions, together with invisible bead lasted 180 s and were presented to

the same fly for a total of fifteen times of which the last 12 (temperature stably at 34�C) were used for data analysis.

d Closed loop long bar: a single black 10� wide and 114� long bar was presented in closed loop exactly as in Bahl et al., 2013.

Unilateral activation using spatially restricted light
A tethered male placed on an air-suspended ball was exposed to a dark visual arena and to a 0.9mm diameter laser spot from a

635nm laser (LDM635/5LJM fromRoithner LaserTechnik) placed roughly 30cm above the tetheredmale. The laser spot was touching

the tip of either the left or right eye such that when light intensity was increased during stimulation, only half of the head was illumi-

nated. ‘Laser on’ trials consisted of 10 s with 635nm laser coming on for 0.5 s with a light intensity of 32 mW/mm2 and alternated with

same duration ‘laser off’ trials. Twenty such trials per fly were used for data analysis.

Artificial activation
To obtain unilateral expression of CsChrimson in LC10 neurons we used stochastic activation based on a heat shock promotor

driving the flipase Flp2:PEST stochastically to remove a stop cassette that prevented expression of CsChrimson (Wu et al., 2016).

Flies were heat shocked at 37�C for 15 or 30 min at the first larva stage, otherwise raised at 25�C. Single adult males LC10-SS1 >

FRT-dSTOP-FRT-CsChrimson:Venus, hs-Flp2:PEST, aged 6 to 8 days old, were placed in the same chambers used for courtship

assays. The chambers were illuminated with blue light from below and video recorded with JVC HD cameras equipped with a red

filter to reduce overexposure to red light during stimulation in the video. Activation trials consisted of red LED light of intensity

3.8mW/cm2 for 0.5, 2, or 10 s, repeated five times. An extra blue LED light located to the side of the chamber turned on with red

LEDs and allowed matching of the behavioral data with stimulation trials. Video recording and data analysis was similar to above

with the exception that wing behavior was scored manually in which the scorer was blind to the genotype. The expression of

CsChrimson in LC10 neurons was determined after the activation assay with dissection of the brain of each male. The expression

pattern (no expression, unilateral and bilateral) was used to pool data from same expression flies for further analysis.

Activation of all LC10 neurons with LC10-SS2 or LC10-lexA was performed in the same set up with the specified genotypes

(see Table S2). Activation of P1 neurons was achieved by incubating males NP2361-GAL4>UAS-TrpA1 at 31�C for 2 min.

Immunohistochemistry
Staining of the fly brain and ventral nerve chord was performed as previously described (Yu et al., 2010). Briefly brains and ventral

nerve chords from 5 to 7 days old group-housed males were dissected in phosphate buffered saline (PBS; Figures 2A, 2B, and S3B)

or in Schneider’s insectmedia (all other figures) and fixed in 4%paraformaldehyde for 25 to 45min at room temperature (approx. 21 to

22�C). The brains were washed three times in 5 to 10min washes in PBST (PBS with 0.5% Triton X-100) followed by blocking in 10%

normal goat serum in PBST for 2hrs at room temperature or overnight at 4�C. The primary and secondary antibodies were diluted in

5% normal goat serum in PBST and were incubated for 48 to 72h at 4�C. Several 15min washes in PBST at room temperature were

performed between primary and secondary antibodies and before mounting the slide. Vectashield was used as the mounting media.

Brains and ventral nerve chords were imaged using a Zeiss LSM 510 with a 25x oil immersion objective (Zeiss Multi Immersion Plan

NeoFluar 25x/0.8) or a Leica SP5 with a 20x oil immersion objective (Leica Immersion 20x/0.7). See Key Resources Table for a list of

antibodies used.

2-Photon calcium imaging
Calcium responses of LC10 neurons were recorded in w- (Figures 4, 5, 6, and S6) and w+ (Figure S6) backgrounds. The eye color of

LC10-SS1>GCaMP6mmales was similar inw- andw+ backgrounds (Figure S6P) as was the motion-based center surround (Figures

5 and S6). Flies were prepared as in Arenz et al. (2017). Briefly, a cold anesthetized fly was attached to a plastic column by the thorax

with UV glue. The legs were spread out and glued to the same column with bee’s wax. The head was bent ventrally such that the

proboscis touched the thorax ventrally between the forelegs andmidlegs and glued in this position with bee’s wax, with care to leave

the eyes and area in front of eyes free of wax. The columnwasmounted on an aluminum foil container, in turn built on a holder mount-

able on the top of the visual arena. The aluminum container was filled with Ringer solution (103mMNaCl, 3mMKCl, 5mM TES, 10mM

trehalose, 10mM glucose, 3-7mM sucrose, 26mM NaHCO3, 1mM NaH2PO4, 1.5 CaCl2 and 4mM MgCl2, pH 7.3 to 7.35, 280-

290mOsmol/Kg) (Mauss et al., 2014). A hole was cut in the dorsal cuticle behind the eye, trachea and fat body were removed.

The fly preparation was checked for presence of pumping in the trachea (over roughly 80% of preparations) and mounted on the

visual arena.

We used a custom-built 2-photon microscope (Maisak et al., 2013), and the ScanImage software (Pologruto et al., 2003) for im-

aging and acquisition of calcium signals. Images were acquired at a resolution of 128x128 or 128x64 pixels and at a frame rate of

5.96 or 11.89 Hz, depending on the stimulus, as described below. A second channel was used to receive a trigger signal from the

stimulus arena that marked the starting time point of each stimulus and hence allowed for synchronization of the signals with the stim-

uli shown.

Visual stimuli were presented on a custom-built projector based arena (Arenz et al., 2017). Briefly, two commercial micro-projec-

tors were used to render the stimuli on an opaque, cylindrical rear projection screen that covered 180� in azimuth and approximately
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105� in elevation of the visual field of the fly. The fly was placed in the center of that cylinder. Stimuli were shown using only the green

LED (OSRAM LCGH9RN) covering wavelengths between 500nm and 600nm andwith an image refresh rate of 180Hz. Themaximum

luminance of the arena is 276 ± 48 cd/m2 if the whole screen is set to white (i.e., a grayscale value of 255). Stimuli were programmed

using Python 2.7 and Panda3D, an open source 3D rendering framework for Python and C++ users. Custom written software pre-

distorted the images such that the projected images appeared regularly on the curved arena screen.

Stimuli: For gratings, moving long or short bars, counter phase flickers, full-field flickers and edges, a texture covering the respec-

tive spatial parameters of the stimulus was placed on a virtual cylinder whose imagewas then projected onto the real cylindrical arena

screen. Bright features in the stimuli had an intensity of 150 out of 255 grayscale values, and for dark features an intensity value of 25

was used. For looming spheres, the stimulus consisted of the image of a virtual sphere actually approaching the camera with a given

constant velocity. This is equivalent to looming stimuli in which the size of the outline of a sphere is increased proportionally to the

inverse tangent of the ratio between radius and distance of the sphere. The sphere had an initial size of 11.4� and approached within

either 5 or 25 s. The image acquisition frame rate was 5.96 Hz.

For the motionless white noise, a randomly generated binary image of black and white squares covering 5� in azimuth and corre-

spondingly in elevation was projected onto the arena screen and changed every 3 s. During each stimulus presentation 300 random

images were shown.

For the motion noise stimulus, a pre-rendered video file (exported in H.264 format with lossless compression and 60Hz frame rate)

was generated for later presentation on the arena screen. The screen was parted in 10 stripes and in each stripe a sine wave grating

with 20� spatial wavelength, random initial phase and intensity scaling between 0 and 100 on the 8-bit grayscale value of the display

was shown (Figure 5C). The expected result from a stimulus-response reverse correlation with such a stochastic motion stimulus

would be zero for motion-selective neurons without direction selectivity, as is the case for LC10 neurons. We therefore restricted

the velocities of the gratings to be front-to-back (progressive) in order to avoid averaging out correlations with the stimulus velocity

due to this nonlinearity of the LC10 response. After stimulus onset, these 10 sine wave gratings moved all to one direction (front-to-

back) but following a randomly generated velocity profile independently from each other. This velocity profile was generated before

by generating normally distributed random numbers for each frame of the video, setting the variance of the distribution to 2 cycles/s

and themean value to 0.5 cycles/s. The resulting array was low-pass filteredwith aGaussianwindow so as to smooth out frequencies

above 5Hz. This low-pass filtered random tracewas taken as a velocity profile to control the phase velocity of the sine wave grating at

each time point (Figures 5D–5F). The mean of the phase velocity distribution, 0.5 Hz, corresponds for a 20� wavelength grating to an

absolute velocity of 10�/s. Velocity values below zerowere not allowed. Thewhole stimuluswas 10minutes long. Formotion noise the

image acquisition frame rate was 11.89 Hz whereas for other stimuli we used 5.96 Hz.

To test whether the temporal properties of the motion noise stimulus (phase velocities of the sine waves restricted below approx-

imately 2 cycles/s) had a severe impact on our estimate of the neuron’s temporal filtering properties, we performed a Wiener decon-

volution on the data. To this end, the temporal component of the stimulus-response cross-correlation function was taken as the

cross-section through the peak of the spatiotemporal cross-correlation function. We then calculated the Fourier-transform of the

temporal component and estimated a frequency-dependent noise function using the standard deviation of that function over flies.

We then applied a standard Wiener deconvolution algorithm to remove the impact of the non-white power-spectrum of our stimulus

on our measurement (Figures S6U–S6Z).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of MateBook data for behavior assays in an open arena
MateBook was set to track two flies for single-pair courtship assay and provides parameters on a per frame and per fly-pair basis,

which were uploaded into Python2.7 for further processing. To plot distance, angle q and relative position distributions, frames iden-

tified as misssegmented (mseg), occlusion (occ) or copulation (cop) by MateBook were removed from further analysis. For distance

and angle q distributions, a probability density function was calculated per fly and averaged over flies. For female relative position

heatmaps, all frames identified by MateBook as male extending a single wing (we [0]) were compiled. MateBook also provided clas-

sification of behavior on a per frame and per fly-pair basis using classifiers partially based on Dankert et al., 2009 but further refined

(see above). Behavioral raster plots (Figures S1 and S3) represented as ethograms relied on the per frame, per fly-pair classifier in-

formation with the hierarchy: orienting > following > wing extension > circling > copulation.

With the exception of wing choice and copulation, indices were calculated per fly-pair as:

behavior index= number of frames with behavior=total number of frames till copulation of end of movie � 100:

To compare following, orienting or wing extension indices across genotypes, P values were calculated using the Student’s t test with

Bonferroni correction.

The copulation index was calculated as:

Copulation index= number of pairs copulating at the end of 10 min=total number of pairs tested � 100:

To compare copulation indices across genotypes, P values were calculated with Fisher’s exact test with Bonferroni correction.
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A frame with single wing extension (we) was considered ipsilateral if the angle q male to female was between �15� and 90� if the
extended wing was the right wing and between�90� and 15� if the extended wing was the left wing (where a positive angle qmeans

right side). The wing extension was considered contralateral in if angle qwas outside this interval. To quantify the wing bias for single

wing extensions (WE in formula), a wing choice index was computed per fly:

wing choice index =
number of frames ipsilateral WE� number of frames contralateral WE

number of frames ipsilateral WE+ number of frames contralateral WE
:

The angle the female subtended on the male retina, i.e., angular size in the azimuth, was computed as the projection of an ellipsoid

body, with major andminor axis based on the ellipse fitted on the female, onto the point with the XY coordinates of the male head per

frame. In other words, the angular size of the female was the angle of the triangle vertex that sits on themale head XY coordinates. The

triangle was drawn from the lines connecting themale head XY coordinates with the two points at the limits of the ellipse. The location

of these two poins on the ellipse was determined by the projection of the ellipsoid body onto the XY coordinates of the male head.

For analysis of open arena artificial activation assays, MateBook was set to track one fly per arena. Frames labeled as missseg-

mented (mseg) were infrequent and were not removed. Frames with stimulus light on were acquired from a blue LED located laterally

to the chambers which turned on with red light. Speed traces were plotted starting 10 s before the onset of red stimulus light (spaced

every 30 or 60 s) and speed data per trial were pooled and averaged per fly and then averaged over all flies with the same genotype

and expression. Because the base light that backlit the arena in activation assays was dim and because isolated males tended to

spend time grooming their wings, wing behavior had to bemanually scored (data in Figures 7E–7G). This scoring was blind to expres-

sion pattern (Figure 7E) or genotype (Figures 7F and 7G). The frequency of wing extensions were compared across genotypes by

calculating P values using the Student’s t test with Bonferroni correction.

Analysis of locomotion in assays with tethered males walking on a suspended ball
Over all behavioral tests on the ball set up,maleswere discarded if the average forward speed over all trials at 34�Cwas below 3mm/s

or the average absolute rotational speedwas higher than 30�/s. Forward and rotational speeds, as well as angle and distancemale to

beadwhen applicable (virtual cylinder with 3Dbead and closed loop long bar), were first averaged over same-type trials and then over

flies preserving trial structure. For tests with the virtual cylinder and 3D bead, for each frame the position of the 3D virtual bead relative

to themalewas computed from the distance and anglemale to the bead using the cosine forDY and sine forDX. Frames of same type

trials were concatenated over all flies and used to plot the heatmaps in Figures 3H–3S and S5J–S5T.

Analysis of 2-Photon calcium imaging
All data analysis was performed using custom-written software using Python 2.7 and taking advantage of the Python libraries SciPy

0.16.1, OpenCV 2.4.8 and NumPy 1.10.2. Artifacts originating from the movement of the sample while imaging were corrected for by

automatically registering the calcium imaging stacks across time. With the exception of calcium responses to noise stimuli, changes

in GCaMP6m fluorescence were analyzed as follows: regions of interest were selected based on signal correlation over time of each

pixel with its six neighboring pixels and a threshold (Portugues et al., 2014) or weremanually drawn on single punctae present in LC10

dendrites in the lobula or terminals in the anterior optic tubercle (AOTu).

Over all calcium imaging sessions, a single bright square-bar 20� was presentedmoving at 70�/s at several elevations to determine

the preferred elevation of the current preparation. Several stimuli were combined into protocols in a pseudo-random order and pre-

sented three times per acquisition. The baseline calcium response F0 was the average of GCaMP fluorescence measured in the 15

frames prior to onset of the first stimulus in the acquisition. DF/F0 was computed and normalized per ROI over each acquisition. Trig-

gers were then used to group the repetitions per stimulus and average them per fly and subsequently over flies.

For motionless white noise and motion noise, first a ‘‘dynamic mean signal’’ was calculated by low-pass filtering the signal during

stimulus presentation with a Gaussian window of 120 s standard deviation. The resulting trace was subtracted from the signal to re-

move the offset and slow baseline fluctuations from the signal. Then the stimulus-response reverse correlation function was calcu-

lated. For motionless white noise, the signal was parted in 300 bins, according to the time frame (3 s long) of the presentation of each

of the 300 presented random images. The mean response Rn was calculated for each of these bins frames. Then, the stimulus-

response correlation function is given by

Kðx; yÞ=
X
n

Snðx; yÞ,Rn;

where Snðx; yÞ denotes the stimulus (depending on both spatial dimensions). The resulting weighted average Kðx; yÞ corresponds to
the spatial correlation of the signal with this static white noise stimulus, i.e., the spatial receptive field (as estimated by this stimulus).

When reverse correlation yielded defined and visible spatial receptive fields, the receptive field centers were determined by fitting a

Gaussian to each of the cross-sections through the peak along both space axes. Then, all spatial receptive fields obtained were

shifted upon each other and after normalization to the peak a mean spatial receptive field across all acquisitions was calculated

(see Figure 5D).
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For motion noise, the reverse correlation was continuous in time. This stimulus is 1-dimensional and given by the random velocity

profile vðy; tÞ (depending on the vertical coordinate y and time t) that controlled the motion of each of the 10 sine wave gratings. Here,

the stimulus-response reverse correlation function is

Kðy; tÞ=
ZT

0

dt vðy; t � tÞ,RðtÞ:

The result is a spatio-temporal receptive field, that indicates the correlation of the signal with the velocity of each of the 10 gratings.

The spatio-temporal receptive fields were normalized in z-score and only receptive fields with peak amplitudes above 7 standard

deviations from the mean were taken (to avoid noise artifacts). Spatio-temporal receptive fields from different acquisitions and

ROI’s were peak-aligned and a mean spatio-temporal receptive field was calculated (Figures 5G–5I).

DATA AND SOFTWARE AVAILABILITY

MateBook software together with instructions for the user and the developer are available through GitHub, together with the Custom-

written software using Python 2.7 used to analyze MateBook data: https://github.com/Dicksonlab/MateBook
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Supplemental Figures

Figure S1. MateBook Software for Automated Analysis of Courtship Behavior, Related to Figures 1 and 2

(A) Snapshot of the graphical user interface (GUI) for MateBook software at the arena tab. This tab displays the current video frame (left, green vertical line in time

series at bottom) and the frame immediately after the last occlusion (right), and a time series of two selected attributes for themale (blue) and female (pink; here the

distance [dcc] and angle q [theta] to the other fly).

(B) Examples of non-occluded (left) and occluded (right) video frames. Individual bodies and wings are segmented only in non-occluded frames.

(legend continued on next page)



(C–E) Automatically-generated ethograms for single-pair courtship assays between amale of the indicated genotype and aCanton S female. Each line represents

a single assay. n = 50 for each genotype.

(F) Ethograms for LC10 block and control males paired withCanton S females. SS1 control (LC10-SS1 > IMPTNTQ), n = 13; SS3 control (LC10-SS3 > IMPTNTQ),

n = 13; SS2 block, (LC10-SS2 > TNT), n = 46; SS3 block (LC10-SS3>TNT), n = 21; SS1 block (LC10-SS1 > TNT), n = 21.

(G) Courtship events detected by MateBook.

(H, I, K, L) Courtship parameters derived byMateBook for the assays shown in (C–F) plus parental control lines, with genotypes indicated. Data are mean ± s.e.m.

***p < 0.001, *p < 0.05, n.s p > 0.05 for comparison with control (Canton S, UAS-TNT or UAS-IMPTNT-Q) males, Student’s t test with Bonferroni correction.

(J and M) Percentage of males copulating in assays shown in (C-F) plus parental control lines, respectively. ***p < 0.0001 for comparison with Canton S (J) or

control (J, M) males, Fisher’s exact test with Bonferroni correction.
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Figure S2. Visual Input Mediates Directed Courtship, Related to Figures 1 and 2

(A–G) Probability density functions of the absolute angle q (left) and distance (right) for single-pair courtship assay between males of the indicated genotype and

Canton S females, for actual (blue) and shuffled (gray) data. Data are mean ± SEM.

(H–N) Heatmap of probability density function for position of female relative to the male ellipse center for every frame in which the male extends a wing.

(A and H) MateBook derived data for Canton S flies after manually correcting identity assignments across occlusions, n = 93. Compare to data from the

uncorrected videos shown in Figures 1B and 1F.

(B and I) T4T5 control (SS324>IMPTNT-Q) males, n = 12.

(C and J) UAS-TNT parental line (UAS-TNT/+) males, n = 27.

(D and K) SS2 > TNTin (LC10-SS2>IMPTNT-Q) males, n = 40.

(E and L) SS3 > TNTin (LC10-SS3>IMPTNT-Q) males, n = 18.

(F and M) OL15B control (OL15B/+) males, n = 25.

(G and N) OL15B block (OL15B>TNT) males, n = 16.
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Figure S3. LC10 Neurons Do Not Affect Courtship Arousal and Are Functionally Monomorphic, Related to Figure 2

(A and B) Confocal images of brain and ventral nerve cord of 5-7d-old males from VT043656-GAL4, LC10-SS1, LC10-SS2 and LC10-SS3 > mCD8:Tomato

labeled with anti-RFP (shown in green) and anti-Brp (magenta) antibodies. Scale bars are 50 mm.

(legend continued on next page)
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(C) Single cells in LC10-SS1 males visualized using the multi-color flip-out technique (Nern et al., 2015), labeled with antibodies against FLAG (green) and Brp

(magenta) or FLAG alone (middle panel). Scale bars are 25 mm.

(D) Confocal image of brain of LC10-SS1 > RFP, fru-LexA > lamin:GFPmale labeled with anti-RFP (red) and GFP (green), and counterstained with anti-Brp (blue).

61.13 ± 0.39% (mean ± s.e.m.) of LC10 neurons expressing SS1 are co-labeled with fru-LexA in males aged 5-7 days old. Scale bar is 10 mm.

(E) Snapshot of courtship arena showing one test male and a decapitated female.

(F) Ethograms for males of the indicated genotypes paired with decapitated Canton S females. SS1 control (LC10-SS1>IMPTNT-Q), n = 8; SS1 block

(LC10-SS1>TNT), n = 4; SS2 control (LC10-SS2>IMPTNT-Q), n = 12; SS2 block (LC10-SS2>TNT), n = 11.

(G and H) Orienting and wing extension indices derived from courtship assays shown in (F). Data are mean ± SEM.

(I–Q) Courtship data for males with feminized LC10 neurons. Control UAS-tramales, n = 16; LC10 -SS1 > tramales, n = 22; LC10 -SS2 > tramales, n = 12. (I–K)

Probability density functions of the absolute angle q (left) and distance (right) for single-pair courtship assay betweenmales of the indicated genotype and Canton

S females, for actual (blue) and shuffled (gray) data. Data are mean ± SEM. (L–N) Heatmap of probability density function for position of female relative to the male

ellipse center for every frame in which the male extends a wing. (O–Q) Following (O), wing extension (P) and copulation (Q) indices. (O and P) Data are

mean ± SEM.
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Figure S4. Courtship Behavior for Split-GAL4 Lines Differentially Expressed in LC10 Subtypes, Related to Figure 2

(A–H) Probability density functions for angle q (left) and distance (right) from male to female, as shown as in Figure 1. Data are mean ± SEM. (A) TNTe control

(UAS-TNT/+), n = 16. (B) SS3822>TNT, n = 13. (C)OL19B>TNT, n = 12. (D)OL23B>TNT, n = 6. (E)OL20B>TNT, n = 14. (F) SS2669>TNT, n = 16. (G)OL22B>TNT,

n = 4. (H) SS2681>TNT, n = 10.

(I and J) MateBook derived following (I) and wing extension (J) indices for males of the indicated genotypes paired with Canton S males. LC10 split-GAL4 are as

reported in (Wu et al., 2016). *p < 0.05, n.s p > 0.05 for comparison with control (TNT parental line) males, Student’s t test with Bonferroni correction. Data are

mean ± SEM.
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Figure S5. Behavioral Responses of Tethered Males to Visual Stimuli, Related to Figure 3

(A, C, and E) Schematics showing the visual stimuli presented in open loop to the tethered male walking on an air-suspended ball. (A) Vertical gratings with

wavelength of 20� moving for 2 s at 20�/s. (C and E) Vertical 10� bright (C) or dark (E) bar sweeping at 60�/s; as in Figure 3.

(B, D, and F) Turning speed over time in response to visual stimuli shown in (A, C and E), respectively. Data are mean ± s.e.m. responses to clockwise (blue) or

counter-clockwise (red) motion. Canton S, n = 7; TNT parental line (UAS-TNT/+), n = 9; SS1/+ (LC10-SS1/+), n = 6. Data are mean ± SEM.

(G) Schematic of vertical 10� dark bar presented in closed loop.

(H) Probability density functions of bar position relative to the male for SS1 control (LC10-SS1/+), n = 9; SS1 block (LC10-SS1>TNT), n = 7. Data are mean ± SEM.

(legend continued on next page)



(I, M, andQ) The 3-dimensional virtual object was either dark (I), bright (M), or invisible (Q). The latter controls for the reaction of themale to the virtual cylinder itself.

As in Figure 3.

(J–T) Heatmaps of probability density function for the position of the dark (J-L), bright (N-P) or invisible (R-T) object relative to the male center.

(J, N, and R) Canton S, n = 7.

(K, O, and S) UAS-TNT/+ (UAS-TNT/+), n = 9.

(L, P, and T) SS1/+ (LC10-SS1/+), n = 10.

(U and V) Distribution of walking(top) and turning (bottom) speeds of tethered males of indicated genotypes on the air-suspended ball. Data shown here are from

same males as (J-T), and the corresponding males in Figures 3I–3S. Data are mean ± SEM.
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Figure S6. Calcium Responses of LC10 Neurons to ON and OFF Edges in Males, to Test-Stimuli in Females, and to Motion-Noise Stimulus in

w+ Background, Related to Figures 4 and 5

(A) Schematic of stimuli presented during the periods indicated by shading in calcium response traces for LC10 processes in the lobula (middle) and AOTu

(bottom; LC10-SS1>GCaMP6m). Data are mean ± s.e.m., n = 68 ROIs in 6 flies for lobula, 24 ROIs in 4 flies for AOTu.

(B) Direction selectivity index (DSI) for progressive and regressive motion. Rprog indicates maximum responses to progressive motion; Rreg indicates maximum

responses to regressive motion.

(C) Direction selectivity index for upward and downward motion. Rup indicates maximum responses to upward motion; Rdown indicates maximum responses to

downward motion.

(D–O) Schematic of visual stimuli (top) and calcium responses in LC10 processes in the lobula of female flies (LC10-SS1>GCaMP6m). Stimuli as in Figure 4. Data

are mean ± s.e.m., acquired from n = 55 ROIs in 4 females SS1 > GCaMP6m flies.

(P) Eye color in w+ and w- background of genotypes used for imaging.

(Q) Correlation of calcium transients observed in LC10 arborizations inw+ backgroundmales with spatiotemporal velocity profiles and the same visual stimuli as in

Figures 5C–5F. The mean of aligned spatiotemporal profiles is presented; n = 97 ROIs in 5 flies.

(R) The temporal receptive field and the stimulus autocorrelation as a function of time for data in Q.

(S) The spatial receptive field as a function of relative elevation for data in Q.

(T) Comparison between spatial profiles measured in w+ (this figure) and w- (Figures 5G–5I) backgrounds. n.s., p > 0.05. (R, S, and T) Data are mean ± SEM.

(U and V) Normalized power spectra of the temporal component of the stimulus-response cross-correlation function (red), with Wiener deconvolution (blue) with

the stimulus power spectrum (black) for measurements in w+ (U) and w- (V) backgrounds.

(X and Z) The temporal receptive field (blue and red lines) plotted with the stimulus autocorrelation (black), not peak-aligned. The normalized stimulus response

cross-correlation (red) was deconvolved withWiener deconvolution (blue) with the stimulus auto-correlation function (black) forw+ (H) andw- (I) backgrounds. The

Wiener deconvolution compensates for the blur of the data caused by the stimulus auto-correlation, but not by the calcium indicator (GCaMP6m). This de-

convolution results in very similar time course of the estimated temporal filtering properties of LC10 neurons. The noise in the measured calcium transients at

higher frequencies is enhanced by the deconvolution producing high frequency ripples in the time domain.
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Figure S7. Unilateral Activation of LC10 Elicits Ipsilateral Turning, Related to Figure 7

(A) Schematic of the open arena, in which the red LED light stimulation was provided below the arena.

(B) Stochastic activation of LC10 with LC10-SS1 > FRT-stop-FRT-CsChrimson:Venus. Examples of brains with no expression (n = 19) and unilateral expression

(n = 4) in LC10 neurons.

(C) Walking and relative turning speeds during a 0.5 s red LED stimulation. Data are mean ± SEM.

(D) Schematic showing unilateral activation performed with spatially restricted laser spot on a tethered male walking on an air suspended ball.

(E and F) Walking and relative turning speeds during 0.5 s exposure to spatially restricted laser spot to one side of the head. Positive relative turning indicates

turning toward the stimulated side. Control (CsChrimson:Venus/+), n = 8; SS1 > CsChrimson:Venus (LC10-SS1 > CsChrimson:Venus), n = 11 males. Data are

mean ± SEM.

(G) Confocal image of brain of 5-7d-old males from LC10-lexA > myr::GFP labeled with anti-GFP (green). Scale bar is 50mm.

(H) Confocal image of brain of 5-7d-old males from LC10-lexA, P1-GAL4 > TrpA1:myc labeled with anti-myc (green). Scale bar is 50mm.



2.3 glutamate signaling in the fly visual system

summary This study uses the glutamate indicator iGluSnFR for functional
characterization of glutamatergic neurons in the fly motion vision circuitry.

In Manuscript 1, we used the calcium indicator GCaMP6f to map
response properties of input neurons to T4 and T5 cell. However, it is
known that this calcium indicator possesses relatively slow kinetics with a
decay time constant around 200–400ms. The glutamate sensor iGluSnFR has
a much shorter decay time constant and therefore represents an alternative
to calcium imaging for glutamatergic neurons. In this study, we first
showed using immunolabeling techniques that the vesicular glutamate
transporter VGlut co-localizes with axon terminals of L1, Mi9 and LPi
neurons. We then expressed the fast glutamate indicator iGluSnFR in
these cell types and confirmed that this glutamate sensor can be used for
two-photon imaging in Drosophila. Using glutamate signals as a read-out,
we mapped spatiotemporal receptive fields of L1 and Mi9 cells. Our
results matched previous descriptions of the functional properties of these
neurons. Importantly, we could obtain a more precise quantification of the
low-pass filter time constant of Mi9 cells, which we had only estimated by
deconvolution of calcium signals in Manuscript 1. Finally, we could gather
evidence that LPi neurons are also direction selective in their glutamate
responses. Overall, we described the response dynamics of L1, Mi9 and LPi
neurons with much higher temporal precision than before and found that
iGluSnFR is a suitable tool for functional imaging in Drosophila.

This article was published in iScience in September 2018 (Richter et al.,
2018).

authors Florian G. Richter, Sandra Fendl (co-first author), Jürgen Haag,
Michael S. Drews & Alexander Borst

contributions F.G.R., S.F., and A.B. conceived the study and designed
the experiments. F.G.R. conducted and analyzed the imaging experiments
for Mi9 and L1. S.F. performed and analyzed all stainings. J.H. performed
and analyzed the LPi experiments. M.S.D. performed data analysis and
model fitting of the receptive fields. F.G.R. wrote the manuscript with the
help of all authors.
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Article

Glutamate Signaling
in the Fly Visual System
Florian G. Richter,1,2,* Sandra Fendl,1,2 Jürgen Haag,1 Michael S. Drews,1 and Alexander Borst1,3,*

SUMMARY

For a proper understanding of neural circuit function, it is important to know which signals neurons

relay to their downstream partners. Calcium imaging with genetically encoded calcium sensors like

GCaMP has become the default approach for mapping these responses. Howwell such measurements

represent the true neurotransmitter output of any given cell, however, remains unclear. Here, we

demonstrate the viability of the glutamate sensor iGluSnFR for 2-photon in vivo imaging inDrosophila

melanogaster and prove its usefulness for estimating spatiotemporal receptive fields in the visual sys-

tem. We compare the results obtained with iGluSnFR with the ones obtained with GCaMP6f and find

that the spatial aspects of the receptive fields are preserved between indicators. In the temporal

domain, however, measurements obtained with iGluSnFR reveal the underlying response properties

to be much faster than those acquired with GCaMP6f. Our approach thus offers a more accurate

description of glutamatergic neurons in the fruit fly.

INTRODUCTION

To understand how neural circuits operate and carry out certain computations, it is essential to observe the

signals that are transmitted from cell to cell. Synaptic transmission via chemical synapses proceeds in four

major stages: (1) Depolarization in the presynapse opens voltage-gated calcium channels. (2) The resulting

calcium influx leads to the fusion of transmitter-filled vesicles and the presynaptic membrane. (3) Trans-

mitter molecules are released into the synaptic cleft where they diffuse and bind receptors in the postsyn-

aptic membrane. (4) The subsequent activation of these receptors leads to opening or closing of ion

channels, either directly or indirectly, with the resulting ion flux ultimately changing the postsynaptic mem-

brane conductance and potential (reviewed in [Di Maio, 2008]). This fundamental signaling cascade, from

electric potential to calcium to transmitter release to postsynaptic electric potential, orchestrates compu-

tation within any neuronal circuit.

For monitoring voltage changes, electrophysiology is the default approach. Here, direct observations of

both de- and hyperpolarization in pre- or postsynaptic cells are possible. Due to the position or size of

many neurons, however, direct single-cell recordings are often not feasible and have to be replaced by in-

direct extracellular recordings or optical imaging. Only recently genetically encoded voltage indicators

(GEVIs) have emerged as powerful tools for recording neuronal activity (Cao et al., 2013; Jin et al., 2012;

St-Pierre et al., 2014; Tsutsui et al., 2013; Yang et al., 2016). Experiments with optical voltage indicators

such as ASAP2f that are compatible with 2-photon imaging, however, remain challenging due to weak

signal-to-noise ratio (Yang et al., 2016). The fluorescence level of genetically encoded calcium indicators

(GECIs) is thought to correlate with transmitter release and is therefore suitable for identifying the crucial

signal to the postsynaptic cell (Zucker, 1993). Although GECIs are being improved continuously and some

variants were designed to have especially fast kinetics (e.g., GCaMP6f [Chen et al., 2013]), temporal reso-

lution is still limited due to calcium buffering (Borst and Abarbanel, 2007). This usually leads to decay

constants in the order of several hundreds of milliseconds that vary depending on the system under obser-

vation (Arenz et al., 2017; Chen et al., 2013). For glutamatergic neurons, a tool to potentially overcome

these limitations is the recently developed fast glutamate sensor iGluSnFR (Marvin et al., 2013).

Visual motion detection is a canonical example for computation in neural microcircuits. Prevalent models

posit that, in both mammalian retina and fly visual system, local direction selectivity emerges from the

nonlinear interaction between precisely tuned spatiotemporal filters (Barlow and Levick, 1965; Von Hassen-

stein and Reichardt, 1956). Recent work in connectomics on the visual system of Drosophila melanogaster

has revealed this computation to be implemented by a circuit that consists of only a few dozen individual

cells (Takemura et al., 2017). The optic lobe is the largest neuropil in the fruit fly’s brain and consists of the
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four consecutive neuropils: lamina, medulla, lobula, and lobula plate (Figure 1). Lamina monopolar cells L1

and L2, among others, receive direct photoreceptor input and feed into two parallel pathways (Bausenwein

et al., 1992; Bausenwein and Fischbach, 1992; Borst, 2014; Clark et al., 2011; Joesch et al., 2010; Rister et al.,

2007; Shinomiya et al., 2014; Silies et al., 2013; Takemura et al., 2017; Tuthill et al., 2013). The ON pathway

processes the motion of light increments, whereas the OFF pathway processes the motion of light decre-

ments only (Eichner et al., 2011; Joesch et al., 2013, 2010). Among the medulla interneurons that connect

the lamina cells to direction-selective T4 and T5 neurons (Maisak et al., 2013; Takemura et al., 2017), we find

the glutamatergic cell Mi9 that has been characterized with a receptive field responsive toOFF in the center

and an antagonistic ON surround (Arenz et al., 2017; Strother et al., 2017). T4 and T5 neurons each come in

four subtypes, tuned to one of the four cardinal directions, and project, according to their preferred direc-

tion, to one of the four layers in the lobula plate. Here, T4 and T5 cells make excitatory cholinergic connec-

tions onto the dendrites of large tangential cells as well as onto inhibitory lobula plate interneurons (LPis).

These neurons in turn inhibit large field tangential cells in the adjacent layer during null direction motion

and thus increase their flow-field selectivity (Hausen et al., 1980; Hopp et al., 2014; Schnell et al., 2010; Scott

et al., 2002; Wasserman et al., 2015). To provide this inhibition, LPis release glutamate onto the glutamate

Figure 1. Schematic of the Drosophila Optic Lobe

Schematic of theDrosophila optic lobe with glutamatergic cell types in the motion vision pathway. The three cell types are

not directly connected to each other but play an import role in the circuit. For the sake of simplicity, postsynaptic partners

of the glutamatergic neurons are not displayed but can be reviewed inMauss et al. (2015) and Takemura et al. (2011, 2017).

Colored layers indicate area where we imaged glutamate release of the respective cell type.
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Figure 2. Vesicular Glutamate Transporter VGlut Localizes to Axon Terminals of L1, Mi9, and LPi4-3 Neurons

Indicating their Glutamatergic Phenotype

(A–C) Upper rows show overviews of optic lobes with L1 (A), Mi9 (B), and LPi4-3 (C) labeled with myr::GFP (green),

background staining against bruchpilot brp (gray), and anti-VGlut staining (magenta). In the lower rows higher

magnifications of axon terminals of L1, Mi9, and LPi4-3 neurons are depicted (sections marked with white boxes in

overview images).
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receptor GluCla, which is an inhibitory glutamate receptor only found in invertebrates (Liu and Wilson,

2013; Mauss et al., 2015, 2014).

The exact biophysical mechanisms by which T4 and T5 become direction selective remain unclear. To un-

derstand on a cell-by-cell level how direction selectivity is achieved, precise measurements of the signals

transmitted between neurons are crucial. In this study, we focus on the final stage of the synaptic signaling

cascade, i.e., transmitter release. First, we confirm the neurotransmitter phenotype of all known glutama-

tergic cell types (L1, Mi9, LPi) in the Drosophila motion vision pathway. Second, using the recently

developed fast glutamate sensor iGluSnFR (Marvin et al., 2013), we comprehensively characterize their

spatiotemporal response profiles and compare them with the ones obtained expressing the genetically

encoded calcium indicator GCaMP6f (Chen et al., 2013).

RESULTS

The Vesicular Glutamate Transporter VGlut Localizes to Axon Terminals of L1, Mi9, and LPi4-

3 Neurons

VGlut or DVGLUT (CG9887) is the only vesicular glutamate transporter known in Drosophila. VGlut is

located in the vesicle membrane of glutamatergic neurons where it fills the synaptic vesicles with gluta-

mate. The protein localizes to presynaptic terminals of all known glutamatergic neuromuscular junctions

(NMJs) as well as to synapses throughout the CNS neuropil in Drosophila (Daniels, 2004). Hence, VGlut

is the most commonly used marker for glutamatergic neurons. Several antibodies have been raised against

VGlut to identify glutamatergic neurons in the nervous system of the fruit fly (Daniels, 2004; Mahr and

Aberle, 2006).

Recent studies revealed the glutamatergic phenotype of L1, Mi9, and LPi neurons—each of them a crucial

element of the motion vision pathway of the fruit fly (Joesch et al., 2010; Kolodziejczyk et al., 2008; Mauss

et al., 2015; Takemura et al., 2017, 2011). The somata of these cell types showed positive immunoreactivity

against the VGlut antibody, which was raised against a C-terminal peptide—CQMPSYDPQGYQQQ

(Daniels, 2004). Interestingly, this antibody labeled mainly cell bodies of designated neurons. Since it is

known that the vesicular glutamate transporter VGlut is localized to axon terminals, we investigated the

glutamatergic transmitter phenotype of L1, Mi9, and LPi4-3 in more detail. We used a different anti-VGlut

antibody (Mahr and Aberle, 2006), which only labels neuronal arborizations in the optic lobe neuropil and

no somata. In general, the VGlut protein is highly abundant throughout all four neuropils of the optic lobe

(Figure 2).

The axon terminals of L1 neurons show clear overlap with the anti-VGlut signal in layer M1 and M5 of the

medulla (Figure 2A). The vesicular glutamate transporter VGlut resides at the presynaptic sites of L1 neu-

rons, which indicates their glutamatergic phenotype. In layer M10 of the medulla, the same is found for Mi9

neurons: VGlut staining in this layer is co-localized with GFP-labeled Mi9 axon terminals (Figure 2B). This

suggests that Mi9 neurons are glutamatergic and that they are the only source of glutamate in layer

M10 of the medulla. Furthermore, we found an overlapping signal of LPi4-3 terminals in layer 3 of the lobula

plate and anti-VGlut staining (Figure 2C). This confirms recent findings (Mauss et al., 2015) that described

LPi neurons as glutamatergic, being presynaptic only in one of the two layers where it arborizes.

In summary, we could show that the protein VGlut localizes to axon terminals of the glutamatergic neurons

L1, Mi9, and LPi4-3.

Faster Sensor Kinetics Enable More Precise Characterization of Visual Interneurons

One commonly used approach to characterize a sensory neuron is to find its preferred stimulus. This can be

achieved by using a white noise input and cross-correlating the resulting output with the input (Dayan and

Figure 2. Continued

(A) L1 axon terminals in medulla layers 1 and 5 show overlapping signal with anti-VGlut staining.

(B) VGlut protein co-localizes with Mi9 axons in layer 10 of the medulla.

(C) Lobula plate intrinsic neurons LPi4-3 have their dendrites in layer 4 and project their terminals to layer 3. Labeled with

arrowheads are LPi boutons in layer 3 showing overlapping signal with anti-VGlut staining. Shown here are single planes

of confocal stacks. Scale bar for overview of optic lobes is 20 mm. For higher magnification close-ups the scale is 5 mm.

White dashed lines in the lower panel are manually drawn and indicate layers of the lobula plate.
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Abbott, 2013; French, 1976; Ringach and Shapley, 2004), which yields the linear spatiotemporal receptive

field as a result (e.g., Figures 3D and 3E, upper panel). The receptive field of a neuron is defined as the loca-

tion of a stimulus in space and the time relative to its occurrence in which the neuron’s response is modu-

lated by the stimulus. The receptive field also describes the specific filtering properties of a system, in space

as well as in time. Here, we use simple first-order low-pass, high-pass, or band-pass filters to quantify these

filtering properties using the measured receptive fields. A low-pass filter only allows low frequencies to

pass and attenuates high frequencies. Conversely, a high-pass filter attenuates low frequencies and allows

high frequencies to pass. A band-pass filter is a combination of a high-pass and a low-pass filter in series,

allowing signals within a certain frequency band to pass and attenuating all others (Cruse, 1996). In a linear

system, the filters characterized this way are equivalent to the neurons’ impulse responses. The temporal

impulse response reveals critical aspects of the cellular response kinetics (Dayan and Abbott, 2013; Ringach

and Shapley, 2004).

For this reason, we characterized the spatial extent of the receptive fields as well as the response dynamics

of all known glutamatergic cells in the motion vision circuit of Drosophila L1, Mi9, and LPi4-3. Expressing

either the fast version of the genetically encoded calcium indicator GCaMP6f (Chen et al., 2013) or the

fast glutamate-sensing reporter iGluSnFR (Marvin et al., 2013) with cell-type-specific Gal4 driver lines,

we imaged glutamate and calcium signals in single axon terminals (Figure 3C). To precisely map the recep-

tive fields of these cells, we used a one-dimensional white noise stimulus consisting of 2.8� wide vertical

bars covering the full extent of the arena (180�, Figure 3B, see also Methods). The spatiotemporal receptive

fields were then determined from the neuron’s calcium or glutamate response by reverse correlation. Cross

sections through the peak of the spatiotemporal receptive fields along the space axis therefore yield the

one-dimensional spatial receptive fields depicted in Figures 3D and 3E. Cross sections along the time

axis yield the temporal filtering properties of the neuron (Chichilnisky, 2001; Dayan and Abbott, 2013;

French, 1976; Ringach, 2004).

To calculate the spatial extent of the cells’ receptive field, we fitted a Mexican hat function (also called dif-

ference of Gaussians) that best resembled the center-surround structure of the estimated spatial receptive

fields. Both neurons show a small confined center of �7� for Mi9 and 9–11� for L1. The full width at half

maximum of the surround is about 40–50� for L1 and 20–30� for Mi9. Considering the uncertainty of the

fitted model parameters, these values are similar and lie in the same order of magnitude when comparing

results from imaging with both sensors. In addition, testing the raw data of both conditions against each

other we find no significant difference (see Figures S2A and S2B, p value > 0.5, Welch’s t test) of spatial

receptive fields neither for L1 nor for Mi9. Both neurons show a small confined center of �7� for Mi9 and

9–11� for L1. The size of the surround has the same order of magnitude for both sensors, 40–50� for L1

and 20–30� for Mi9. This is within the range of uncertainty that the fit is subject to. Testing the raw data

of both conditions against each other for the two cell types, however, does not yield a significant difference

(see Figures S2A and S2B, right panel).

For a reliable estimation of the time constants of the temporal responses, we transferred the impulse

responses of L1 and Mi9 into frequency space and fitted either a first-order low-pass or a first-order

band-pass filter to the neurons’ responses (see Figures S1C and S1D). For L1, we find that the data

are best represented by a band-pass filter. The filter derived from the iGluSnFR signal has a low-pass

time constant of 70 ms and a high-pass time constant of about 400 ms (see Figure S1A). The time con-

stants derived from the GCaMP6f signal are significantly larger with low-pass and high-pass time con-

stants of 350 and about 1,180 ms, respectively. For Mi9, we find that the temporal properties are best

described by a low-pass filter. The estimated time constant of the Mi9 temporal kernel (Figure 3D, lower

Figure 3. Response Properties of the ON Pathway Columnar Elements L1 and Mi9

(A) Experimental setup: Fly tethered to a plastic holder under the 2-photon microscope looking onto the stimulus arena (see also Transparent Methods).

(B) Schematic of three frames of the white noise stimulus consisting of 64 horizontal bars.

(C) Example of 2-photon image of L1 expressing iGluSnFR. In purple are manually drawn region of interest ROIs.

(D) Left: Schematic of the Drosophila optic lobe. The cell type related to the right panel is highlighted. Right upper panel: Averaged aligned

spatiotemporal receptive fields after reverse correlation of L1 expressing either the glutamate indicator iGluSnFR (5 flies and 66 cells) or GCaMP6f (5 flies

and 60 cells). Cross sections along space and time axes result in receptive fields in right lower panel. Spatial receptive fields do not differ significantly for

both indicators. Temporal kernels differ substantially. Impulse responses are shorter for iGluSnFR than for GCaMP6f. Shaded areas indicate a confidence

interval of 95%.

(E) Same as (D) only for Mi9 (with iGluSnFR: 5 flies, 26 cells; with GCaMP6f: 5 flies, 50 cells).
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left) is 75 ms when measured with iGluSnFR compared with about 610 ms when measured with GCaMP6f

(see Figure S1B).

For both cell types, the temporal kernel of the calcium response can be derived by low-pass filtering the

faster glutamate signal. This is because the kinetics of the calcium sensor can be approximated by a

low-pass filter when the intracellular calcium concentration is small compared to the KD value of the indi-

cator (Borst and Abarbanel, 2007). For both cells, i.e., L1 and Mi9, we can fit the glutamatergic signal to the

calcium signal by filtering it with a low-pass filter with a time constant of 360 ms (see Figures S2A and S2B,

left panel). LPis, as motion-selective neurons, are not suitable for white noise analysis. To characterize the

response properties of the LPi4-3 (Figure 4A), we first stimulated single ommatidia with local flicker stimuli

that were placed precisely onto the lattice of the fly’s eye via a custom-built telescopic device (see Trans-

parent Methods and [Haag et al., 2017, 2016]). LPi4-3 cells responded to the individual pulses with different

amplitudes, depending on the position of the stimulus (Figure 4C). The maximum response (Figure 4B,

black center) of a recorded neuron was then set as the receptive field’s center. All other responses to adja-

cent stimulation are normalized accordingly. Single flicker stimulations in the center of the receptive field

show different time courses (Figure 4C) when using the two different indicators. The onset of the calcium

response is much slower when compared with the glutamate response. In fact, whereas the glutamate

signal shows a short transient peak response and then plateaus after �500ms, the calcium signal does

not resolve any similar details in the time course of the response. The calcium signal decays back to

zero in approximately 2 s after stimulus offset, whereas the glutamatergic signals are back at the baseline

level in less than 200 ms. This loss-of-response features can be explained by the characteristics of the

A B

DC

Figure 4. Response Properties of the Direction Selective Lobula Plate Interneuron LPi4-3

(A) Schematic of the Drosophila optic lobe with LPi4-3 highlighted.

(B) Comparison of spatial receptive field size of LPi4-3 cells recorded with iGluSnFR (left, n = 24 cells from 7 flies) or

GCaMP6f (right, n = 14 cells from 5 flies). The responses of individual cells to flicker stimuli presented at 19 different

columnar positions were averaged after alignment to the maximum (in black) and normalization. d, Dorsal; v, ventral;

l, lateral; f, frontal.

(C) Time course of LPi4-3 response upon local flicker stimulation. The decay of the signal is faster for iGluSnFR response.

(D) LPi4-3 expressing iGluSnFR show glutamatergic direction selective responses (n = 8 cells from 5 flies). Five consecutive

flicker stimuli were shown along the preferred (downward) or null (upward) direction of the neuron, acting as apparent

motion. Shaded areas indicate mean G SEM.
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calcium indicator, which acts as a low-pass filter (Borst and Abarbanel, 2007). Low-pass filtering the gluta-

mate response (t = 446 ms, Figure S2C) results in a similar slope and decay as the calcium response. We

also asked if the glutamatergic signal of the LPis is indeed direction selective as expected from Mauss

et al. (2015). To asses this question we tested LPi4-3 cells with five light pulses of 472ms duration positioned

along the dorsoventral axis of the eye. When stimulated sequentially from dorsal to ventral (Figure 4D), the

cell responded more strongly (PD, red line) than when we showed the same stimulus in the opposite direc-

tion (ND, black line, paired sample t test, p value < 0.01). We therefore conclude that the sensor is indeed

also suitable for resolving glutamatergic direction-selective signals.

DISCUSSION

In this study we showed that all three investigated cell types (L1, Mi9, LPi4-3) express the vesicular trans-

porter for glutamate, VGlut, in their axon terminals (Figure 2). To our knowledge, L1, Mi9, and LPi are

the only glutamatergic cells in theDrosophilamotion vision circuit. Two studies using either antibody stain-

ings (Kolodziejczyk et al., 2008) a Flp-out analysis of the dvGlutCNSIII-Gal4 driver line (heat-shock inducible

flipase excises stop-cassette upstream of mCD8-GFP to label only a few cells) (Raghu and Borst, 2011)

found L2 cells to be glutamatergic. However, a recent RNA sequencing study that characterized gene

expression patterns of more than 60 different cell types of the optic lobe could not confirm the expression

of VGlut in L2 (Davis et al., 2018). Although they could identify other cell types like Dm cells, Lai, PB_1, Tm29,

and TmY5a as glutamatergic due to their expression of VGlut, none of the other cells in the motion vision

circuit (besides L1, Mi9, and LPi) seem to express VGlut. The role of Dm, Lai, PB, Tm29, and TmY5a cells in

general and their potential contribution to motion vision in the fly brain are not known to date.

We also demonstrated that the spatial receptive fields measured with the glutamate sensor iGluSnFR are

almost identical to the ones measured with the calcium sensor GCaMP6f (Figures 3 and 4). Both neurons

possess a local OFF center receptive field with a differently strong antagonistic ON surround. Surround in-

hibition is a phenomenon frequently found in the early processing stages in visual systems: Bipolar and gan-

glion cells of the mammalian retina possess receptive fields with an antagonistic center-surround structure

(reviewed in Shapley and Lennie, 1985), and first-order interneurons of the insect compound eye share this

feature as well (Srinivasan et al., 1982). Functionally, a neuron with a center-surround antagonism acts as a

spatial band-pass filter, enhancing the neuron’s responses to edges over full field illuminations. Such band-

pass filtering reduces redundancy in natural images (Srinivasan et al., 1982). We find such spatial band-pass

characteristics for both cell types, L1 andMi9. Basedon their spatial receptive fields, wepredict, for instance,

no response of Mi9 to wide field dark flashes since the integral of the spatial receptive field is close to zero.

In the time domain, however, the glutamate signal turned out to be much faster than the calcium signal

derived from the same cells. Due to their small size, many visual interneurons in the fly brain are inaccessible

to electrophysiological recordings, so only a few direct recordings have been reported (Behnia et al., 2014;

Gruntman et al., 2018; Juusola et al., 2016). Since data from voltage recordings from L1, Mi9, and LPi are not

available so far, a direct comparison with the time constant estimated here is not possible. Simulation

studies predicted time constants between 50 and 100 ms for the delayed input to the fly motion-detecting

neurons (Eichner et al., 2011; Leonhardt et al., 2016). Since Mi9 is thought to provide this signal to T4 cells,

the elementary motion-sensing neurons in the ON pathway, the low-pass time constant of 75 ms estimated

here matches this prediction well. In addition, a previous study determined the low-pass time constant for

Mi9 to be around 550ms from calcium imaging experiments. A deconvolution of the filter with an estimated

GCaMP kernel led to a resulting time constant of 63 ms (Arenz et al., 2017). This result again is in line with

the time constants of the Mi9-iGluSnFR of 75 ms reported here.

In the mammalian CNS, glutamate is the most abundant and major excitatory transmitter (Meldrum, 2000;

Traynelis et al., 2010). Glutamate binds to two types of receptors: metabotropic (mGluRs) and ionotropic

glutamate receptors (iGluRs). iGluRs can be divided into N-methyl-D-aspartate (NMDA) and non-NMDA

receptors (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and kainate receptors) accord-

ing to their response to agonist molecules NMDA and AMPA (Mosbacher et al., 1994). Analysis of the

Drosophila genome annotated 14 iGluRs genes, which show sequence similarities with vertebrate

AMPA, kainite, and NMDA receptors (Littleton and Ganetzky, 2000). However, the kainite receptor

DKaiR1D and the AMPA receptor DGluR1A have different agonist/antagonist selectivity from the verte-

brate’s pharmacology-based classification (Li et al., 2016). Furthermore, invertebrates like Drosophila

melanogaster possess a third type of iGluR, the so-called glutamate-gated chloride channel GluCla, which
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is inhibitory (Cully et al., 1996; Liu and Wilson, 2013). Glutamate can also act on metabotropic glutamate

receptors, which signal via slower G-protein-coupled pathways. In mammals, eight mGluRs have been

described (Conn and Pin, 1997). In contrast, the Drosophila genome encodes only one functional mGluR

(DmGluRA), which is expressed at the glutamatergic NMJ localized in the presynaptic boutons (Bogdanik

et al., 2004). Regarding the broad range of glutamate receptors in Drosophila, glutamate can act as a fast,

slow, excitatory, or inhibitory transmitter (Li et al., 2016; Liu and Wilson, 2013; Mauss et al., 2015).

This gives rise to interesting speculations about the respective role of glutamate for each of the cell types

investigated. In the case of the LPis, glutamate binds to the inhibitory glutamate receptor GluCla on the

dendrites of large-field tangential cells, inhibiting them during null direction motion and, thus, enhancing

their flow-field selectivity (Mauss et al., 2015). In the case of L1, the glutamatergic output signal seems to be

key for the sign inversion of L1’s OFF response in the ON pathway. This is because all Drosophila photore-

ceptors (R1-R8) depolarize upon illumination and release histamine onto lamina neurons, which results in

the opening of chloride channels (Hardie, 1989; Hardie and Raghu, 2001). Therefore, lamina monopolar

cells transiently hyperpolarize upon illumination onset and respond with a rebound excitation at illumina-

tion offset (Laughlin et al., 1987). L1 and L2 neurons respond in an identical way (Joesch et al., 2010). L1

possess an OFF receptive field center (Figure 3D) and therefore depolarizes to OFF stimuli, in contrast

to its described downstream synaptic partners, which depolarize to ON stimuli (Arenz et al., 2017; Behnia

et al., 2014; Strother et al., 2017; Yang et al., 2016). Hence, an inversion of the signmust occur at the synapse

of L1 and its downstream partners. Since L1 is glutamatergic and GluCla is the only inhibitory receptor

described inDrosophila, the glutamatergic signal is likely to be responsible for this sign inversion. Whether

the downstream partners of L1 indeed express GluCla, however, is beyond the scope of this study and

awaits further investigation. The hypothesis outlined above suggests that the mechanism by which a com-

mon photoreceptor input signal is split into anONand anOFF pathway in invertebrates is different from the

one in the mammalian retina where glutamatergic photoreceptors hyperpolarize in response to light. This

signal is directly transmitted, i.e., without sign inversion, by ionotropic glutamate receptors expressed on

the dendrites of OFF bipolar cells (Euler et al., 2014) and sign inverted by metabotropic glutamate recep-

tors expressed on the dendrites of ON bipolar cells (Masu et al., 1995). In case of Mi9, the functional inter-

pretation of an inhibitory glutamatergic signal is less intuitive. Mi9 directly contacts the dendrites of T4 cells,

the first direction-selective neurons in the ON pathway (Takemura et al., 2017). Given the OFF response of

Mi9 cells (Figure 3D), T4 cells are expected to be inhibited in darkness via theMi9-T4 synapse. AmovingON

edge would inhibit Mi9 followed by a closure of chloride channels and, thus, an increased input resistance

in postsynaptic T4 cells, resulting in an amplification of a subsequently delivered excitatory input signal.

Computer simulations have shown that such a two-fold signal inversion can indeed form the biophysical

basis of preferred direction enhancement underlying direction selectivity in T4 cells (Borst, 2018).

Taken together our results could demonstrate the functionality of the fast glutamate reporter iGluSnFR in

glutamatergic neurons of the fruit fly Drosophila melanogaster. It allowed for a more faithful description of

important elements of the motion vision pathway, in particular with respect to their temporal response

properties.

Limitations of the Study

Since iGluSnFR is anchored to the outer side of the plasma membrane, it senses extracellular glutamate

that is present in the synaptic cleft. In addition, the iGluSnFR signal is affected by spillover and diffusion

to iGluSnFR molecules outside the cleft. Thus, the iGluSnFR signal should present an upper limit to the

‘‘real’’ time course, i.e., the one of glutamate in the synaptic cleft as seen by the postsynaptic receptors.

For the same reason, one might record an iGluSnFR signal even if the indicator is expressed on a neuron

that is not glutamatergic or does not receive glutamatergic input, but ramifies within the same volume

where glutamate is being released from other cells.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods and two figures and can be found with this article

online at https://doi.org/10.1016/j.isci.2018.08.019.
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Figure S1. Model fits to L1 and Mi9 data, related to Fig 3 
(A)  Parameters to quantitatively describe the receptive field characteristics of L1 recorded either 
with GCaMP6f (left column) or iGluSnFR (right column). First two parameters describe temporal 
components of the receptive field, last three parameters describe those of the spatial component.  
(B) Same as (A) only for Mi9. Description of highpass characteristics is missing, since Mi9 is best 
described by a pure low-pass. 
(C) Impulse responses from Figure 3 D-E plotted in frequency space. Black dashed lines mark the fit 
of a 1st order band-pass filter (for time constants see table (A). 
(D) Same as (C) only for Mi9. Black dashed lines mark the fit of a 1st order low-pass filter. 
(E)+(F) Spatial receptive fields from Figure 3 D-E. Data are fitted with a Mexican hat function that 
captures both, the excitatory center as well as the inhibitory surround of these receptive fields. cen 
= center, sur = surround, LP = low-pass, HP = high-pass, A = amplitude, τ = time constant, FHWM = 
full width at half maximum. 



 

 
 
Figure S2. GCaMP data resembles low-pass filtered iGluSnFR data, related to Fig 3 and 4 
(A) Low-pass filtering of the Mi9 impulse response measured with iGluSnFR with a time constant 
of 360 ms (grey) shows the best fit with the impulse response measured with GCaMP6f (left panel). 
Spatial receptive fields (right panel) are not significantly different from each other, when measured 
with the two different sensors. 
(B) Same as (A) for L1 
(C) Low-pass filtering of the LPi4-3 > iGluSnFR response to local flicker with a time constant of 446 
ms (grey) shows the best fit to response measured with GCaMP6f (orange). 
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Transparent Methods 
 
 

Flies/preparation 
 

Flies were raised and kept on standard cornmeal-agar medium on a 12 hour light/12 hour 
dark cycle at 25°C and 60% humidity. For imaging experiments, the genetically-encoded 
calcium indicators GCaMP6f or the genetically encoded glutamate sensor iGluSnFR (Chen 
et al., 2013; Marvin et al., 2013) were expressed using the Gal4-UAS system in cell-type 
specific Gal4 fly lines, resulting in the following genotypes: 
 
Genotypes: 
 
L1>GC6f:   w+; R48A08-AD/UAS-GCaMP6f; R66A01-DBD/UAS-GCaMP6f 
L1>iGluSnFR:  w+; R48A08-AD/+; R66A01-DBD/UAS-iGluSnFR (BL59611, AV184) 
Mi9>GC6f:  w+; R48A07-AD/UAS-GCaMP6f; VT046779-DBD/UAS-GCaMP6f 
Mi9>iGluSnFR: w+; R48A07-AD/+; VT046779-DBD/UAS-iGluSnFR (BL59611, AV184) 
LPi>GC6f:   w+; +/UAS-GCaMP6f; R38G02-Gal4/UAS-GCaMP6f 
LPi>iGluSnFR:  w+; +; R38G02-Gal4/UAS-iGluSnFR (BL59611, AV184) 
 
For immunohistochemical stainings in Figure 2: 
 
L1>myr::GFP:  w-; R48A08-AD/UAS-myr::GFP; R66A01-DBD/+ 
Mi9>myr::GFP:  w-; R48A07-AD/ UAS-myr::GFP; VT046779-DBD/+ 
LPi4-3>myr::GFP:  w-; UAS-myr::GFP/+; R38G02-Gal4/+ 
 
 
The transgenic fly lines driving split-Gal4 expression in the lamina neuron L1 were generated 
and described in (Tuthill et al., 2013). Mi9 in (Strother et al., 2017) and the one of LPi’s in 
(Mauss et al., 2015). For calcium and glutamate imaging experiments, flies were prepared 
as previously described (Maisak et al., 2013; Strother et al., 2017). Briefly, flies were 
anaesthetized on ice, fixed with their backs, legs and wings to a Plexiglas holder with the 
back of the head exposed to a recording chamber filled with fly external solution. The cuticle 
at the back of the head on one side was cut away with a fine hypodermic needle and 
removed together with muscles and air sacks covering the underlying optic lobe. 
 
 

Data acquisition and analysis: 
 
Data analysis was performed offline using custom-written routines in Matlab and Python 2.7 
(with the SciPy and OpenCV-Python Libraries). 
 
 

2-photon imaging:  
 
Imaging was performed on custom-built 2-photon microscopes as previously described 
(Maisak et al., 2013) and controlled with the ScanImage software in Matlab (Pologruto et al., 
2003). Acquisition rates were between 15 (for LPi experiments) and 23.67 Hz (for L1 and 
Mi9 experiments), image resolution between 64x64 and 128x32 pixels (for L1 and Mi9 
experiments). Before starting the acquisition, we verified that the receptive fields of the cells 
were located on the stimulus arena by showing a search stimulus consisting of moving 
gratings. 



 

Calcium imaging was performed as previously described in (Arenz et al., 2017). In brief: 
Images were automatically registered using horizontal and vertical translations to correct for 
the movement of the brain. Fluorescence changes (ΔF/F values) were then calculated using 
a standard baseline algorithm (Jia et al., 2011). Regions of interest (ROIs) were drawn on 
the average raw image by hand in the medulla layer M1 for L1 and in layer M10 for Mi9. For 
LPi neurons, ROIs were routinely chosen in the lobula plate, encompassing small regions 
with single to few axon terminals. Averaging the fluorescence change over this ROI in space 
resulted in a ΔF/F time course. Glutamate imaging was performed with the same settings 
as the calcium imaging experiments. 
 

Visual stimulation for L1 and Mi9 experiments 
 
The spatiotemporal response properties of the L1 and Mi9 columnar input elements were 
determined on a custom-built projector-based arena, as previously described in (Arenz et 
al., 2017). Stimuli were projected with 2 commercial micro-projectors (TI DLP Lightcrafter 
3000) onto the back of an opaque cylindrical screen covering 180 ° in azimuth and 105 ° in 
elevation of the fly’s visual field. The projectors refresh rate is 180 Hz (at 8 bit color depth). 
For all stimuli used here, we set the medium brightness to a 8-bit grayscale value of 50, 
which corresponds to a medium luminance of 55 ± 11 cd/m2. Stimuli were rendered using a 
custom written software in Python 2.7.  
 

Visual stimulation for LPi4-3 experiments with telescope 
 
This technique has been previously described in (Haag et al., 2016). In brief: Antidromic 
illumination of the fly’s head visualizes the hexagonal structure of the optical axes of the 
ommatidia (Franceschini, 1975; Schuling et al., 1989). Visual stimuli are generated on the 
AMOLED display (800x600 pixels, pixel size 15x15 mm, maximal luminance > 1500 cd/m2; 
lambda = 530 nm; refresh rate 85 Hz) (SVGA050SG, Olightek). This allows to precisely 
position the stimuli onto single lamina cartriges. In order to prevent stimulus light from 
entering the photomultiplier of the two-photon micro-scope, light generated by the AMOLED 
display was filtered with a long-pass filter (514 LP, T: 529.4– 900 nm, AHF). The AMOLED 
display was controlled with MATLAB and the psychophysics toolbox (V3.0.11;(Brainard, 
1997)). 
 

White noise reverse-correlation 
 
The analysis of spatial receptive fields was previously described in (Arenz et al., 2017). For 
the input elements, spatiotemporal receptive fields were calculated following standard 
reverse-correlation methods (Dayan and Abbott, 2013; French, 1976). First, the mean value 
was subtracted from the raw signals of single ROIs by using a low-pass filtered version of 
the signal (Gaussian filter with 120 seconds standard deviation) as a baseline for a ΔF/F-
like representation of the signal. 
The stimulus-response reverse correlation function was calculated as: 
 

𝐾(𝑥, 𝜏) =  ∫ 𝑑𝑡 𝑆(𝑥, 𝑡 − 𝜏) ∙ 𝑅(𝑡)
𝑇

0

 

 
with S for the stimulus and R for the response of the neuron. The resulting spatiotemporal fields 
were normalized in z-score. Only receptive fields with peak amplitudes above 10 standard 
deviations from the mean were taken for further analysis (for Mi9-GCaMP6f the threshold 
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was lowered to 7). Cross-sections through the receptive fields along the space axis were fit 
with a Gaussian function to determine the position of the peak (Suppl. Fig. 1 E-F).  
 

Gaussian noise stimulus 
 
The same stimulus was used in (Arenz et al., 2017). In brief: The stimulus consisted of 64 
vertical bars covering an angle of 180° in total. The intensity of each bar fluctuated randomly 
around a mean intensity of 50 on the 8-bit grayscale of the display. The intensities were 
drawn from a Gaussian distribution with a standard deviation of 25% contrast. In time, the 
stimulus was low-pass filtered with a Gaussian window with approximately 22ms standard 
deviation, which restricted the frequency content of the stimulus to frequencies below 10Hz. 
For Mi9-GCaMP6f imaging, similarly, the time window was 45ms long, covering frequencies 
until up to 5Hz. 
 

Spatial receptive field 
 
The analysis of spatial receptive fields was previously described in (Arenz et al., 2017). In 
brief: One-dimensional spatial receptive fields are cross-sections through the peak of the 
spatiotemporal receptive fields along the space axis and are averaged over the 12 samples 
(200ms) around the peak. For both L1 and Mi9 we found a small-field, antagonistic center-
surround organization of the spatial receptive field using the vertical white noise stimulus. 
The black dashed lines in Suppl. Fig 1 represents a Mexican hat function (Difference of 
Gaussian). Mathematically such a function can be described as follows:  
 

𝑅𝐹1𝐷(𝜑) = 𝑒
−

1
2

𝜑2

𝜎𝑐𝑒𝑛
2 − 𝐴𝑟𝑒𝑙 ∙ 𝑒

−
1
2

𝜑2

𝜎𝑠𝑢𝑟
2
 

 

with  as azimuth, 𝜎𝑐𝑒𝑛 and 𝜎𝑠𝑢𝑟 as the standard deviations of center and surround, 
respectively, and 𝐴𝑟𝑒𝑙 =  𝐴𝑠𝑢𝑟/𝐴𝑐𝑒𝑛 the relative strength of the surround in relation to the 
amplitude of the center Gaussian (which is normalized to 1).  
 

Temporal receptive field 
 
The analysis of temporal receptive fields was previously described in (Arenz et al., 2017). In 
brief: The time-reversed impulse responses shown in Figure 3 are cross-sections through 
the center of the spatiotemporal receptive fields along the time axis and are averaged over 
the three center pixels. For the determination of the time constants (tau), we sought to 
describe the response characteristic of each cell with a simplified model that catches the 
main properties. For that, we fitted simple 1stst order filters (e.g. 1st order low-pass for Mi9; 1st

 

order bandpass for L1) to the impulse responses of all cells.  
The model fit in Suppl. Fig 2 (grey lines) was performed by low-pass filtering the measured 
iGluSnFR response of each neuron type (L1, Mi9, LPi) with a 1st order low-pass filter and 
optimizing the time-constant such that the difference between the low-pass filtered signal 
and the measured calcium response of the neurons was minimal. The fitting procedure was 
implemented using standard least square algorithms (SciPy 0.19). 
 

Immunohistochemistry 
 
Fly brains were dissected in ice-cold 0.3% PBST and fixed in 4% PFA in 0.3% PBST for 25 
min at room temperature. Subsequently, brains were washed 4-5 times in 0.3% PBST and 
blocked in 10% normal goat serum (NGS) in 0.3% PBST for 1 hour at room temperature. 
Primary antibodies used were mouse anti-bruchpilot brp (nc82, Developmental Studies 



 

Hybridoma Bank, 1:20) and rabbit anti-VGlut (courtesy of H. Aberle, 1:500). Secondary 
antibodies used were: goat anti-mouse ATTO 647N (Rockland, 1:300) and goat anti-rabbit 
Alexa Fluor 568 (Life Technologies, 1:300). Myr::GFP-labeled cells were imaged natively 
without antibody staining. 5% NGS was added to all antibody solutions and both primary 
and secondary antibodies were incubated for at least 48 hours at 4°C.  
Brains were mounted in Vectashield Antifade Mounting Medium (Vector Laboratories) and 
imaged on a Leica TCS SP8 confocal microscope.  
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2.4 dynamic signal compression for robust
motion vision in flies

summary This study is dedicated to the investigation of non-linear
contrast tuning properties in the fly motion vision circuitry and shows
that divisive contrast gain control in medulla neurons is crucial for robust
motion processing of naturalistic input stimuli.

In previous studies, we had investigated motion processing pathways
in the fly by use of artificial stimuli with constant contrast. However, it is
known that standard models of motion detection are extremely vulnerable to
the contrast fluctuations inherent to natural input stimuli. In this study, we
first established that flies robustly perform velocity estimation from moving
natural scenes regardless of the particular visual statistics of the stimulus.
We then used behavioral experiments to show that flies take advantage of a
spatial contrast gain control mechanism to adjust the contrast sensitivity of
motion processing pathways to the prevailing contrast of the visual scene.
Extensive calcium imaging experiments across all columnar cell types in
the fly motion vision circuitry revealed that contrast gain control emerges
in a subset of medulla neurons. Specifically, transient band-pass filter
units seem to implement a kind of contrast gain control that resembles the
mechanism of divisive normalization, which has been previously described
in the vertebrate visual system. Using blocking experiments, we could
show that this mechanism partially originates from feedback connections of
transient medulla neurons onto themselves. Finally, we built a convolutional
network model of the fly motion vision circuitry to show that a motion
vision system equipped with this kind of dynamic gain control is superior
to other types of non-linear signal preprocessing at estimating scene velocity
from naturalistic input stimuli and achieves fly-like performance at this task.

This manuscript is currently submitted to a peer-reviewed journal.
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Biological and artificial sensory systems need to reliably ex-
tract information from highly variable natural signals1, 2. Flies,
for instance, use optic flow to guide their course3 and are re-
markably adept at estimating image velocity regardless of vi-
sual statistics in any given environment4, 5. It remains unclear,
however, how this robustness is achieved. Current models of fly
motion detection explain responses to artificial stimuli in great
detail but are vulnerable to the extreme contrast fluctuations
pervasive in realistic images. Here, we demonstrate that the
Drosophila visual system reduces input variability by continu-
ously adjusting its sensitivity to current contrast conditions. We
comprehensively map functional properties of neurons in the
motion detection circuit and find that local responses are non-
linearly compressed by a signal that estimates surround con-
trast. The compressive signal is fast, integrates spatially, and
derives from neural feedback. This mechanism resembles divi-
sive normalization as commonly found in vertebrate visual pro-
cessing6, 7, emphasizing that evolutionarily distant neural sys-
tems often converge on similar algorithmic solutions. We train
fly-like convolutional neural networks8 on estimating the veloc-
ity of natural stimuli and show that introducing dynamic signal
compression closes the performance gap between model and or-
ganism. This may provide a building block for the efficient im-
plementation of low-power machine vision systems. Overall, our
work represents a mechanistic end-to-end account of how neu-
ral systems attain the robustness required to carry out behav-
iorally relevant tasks in challenging real-world environments.

Correspondence: leonhardt@neuro.mpg.de, drews@neuro.mpg.de

To rigorously assess the robustness of Drosophila motion
processing we took advantage of a widespread visual reflex,
the optomotor response. Flies react to whole-field retinal
motion by turning in the same direction as their surround
which allows them to maintain a straight path under per-
turbations3. For this reflex to work effectively, flies need
to respond reliably and independently of the particular vi-
sual statistics of their environment. We measured walking
responses to a diverse set of moving naturalistic panoramas
on a treadmill setup (Fig. 1a). Fly turning was highly con-
sistent across images and velocity tuning curves showed vir-
tually no variation over different scenes, matching previous
findings4 (Fig. 1b, Fig. S1a–c). To quantify reliability at the
neural level, we recorded the membrane potential of motion-
sensitive lobula plate tangential cells (LPTC) which detect
optic flow fields corresponding to yaw rotation and control
turning3 (Fig. 1c). LPTCs pool the output of a retinotopic
map of locally motion-sensitive cell types T4 and T5 that

Figure 1. Flies respond more robustly to natural scene variability than pre-
dicted by correlation-based motion detectors. a, Illustration of behavioral set-
up. Tethered wild-type Drosophila were stimulated with translating natural images.
b, Left, turning responses for images moving at 80◦s−1 (N=16 flies). Each color in-
dicates a distinct scene. Images moved during gray-shaded period. Right, velocity
tuning curves for all measured scenes (averaged between 0 and 1s after motion on-
set). c, Illustration of fly visual system. Photoreceptor signals are processed in five
retinotopically arranged neuropils. Wide-field lobula plate tangential cells (LPTC)
respond to particular optic flow fields. d, Left, membrane potential of horizontal
system LPTCs in response to images moving at 20◦s−1 (N=11 cells from 9 flies).
Right, velocity tuning curves (averaged between 0 and 3s after motion onset). e,
Schematic of an individual correlation-based elementary motion detector (EMD; τ
denotes delay line, X multiplication, – subtraction). f, Left, responses of an array of
EMDs to stimulation with natural images moving at 20◦s−1. Right, velocity tuning
curves of EMD array (evaluated like LPTC output). Note that in contrast to ex-
periments, mean responses were averaged across many different starting phases.
Shaded areas around curves in b,d indicate bootstrapped 68% confidence intervals.

are sensitive to ON and OFF motion9, respectively, and nec-
essary for the optomotor response4, 10. Voltage was tuned
to scene velocity but again exhibited little image-dependent
variation and additionally proved highly stable across time,
consistent with earlier work in hoverflies5 (Fig. 1d).

Fly motion responses are well explained by correlation-based
detector models that rely on multiplication of spatially adja-
cent, asymmetrically filtered luminance signals3, 11 (Fig. 1e).
These elementary motion detectors (EMD) account for sub-
tle features of optomotor responses, LPTCs, and T4/T5 cells
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such as pattern dependency of velocity tuning, reverse-phi
sensitivity, or velocity gain adaptation3, 12, 13. We tested the
robustness of EMDs on the same set of stimuli as in behav-
ior and electrophysiology. As anticipated from similar stud-
ies4, 14, 15, 16, responses were remarkably unreliable across
time and images (Fig. 1f). EMD output strongly depends
on local contrast as defined by the average difference be-
tween light and dark11. However, contrast within natural
images varies substantially2. Correlation-based models in-
variably confound velocity with contrast and consequently,
output from individual EMDs is sparse and fluctuates heav-
ily under naturalistic conditions (Fig. S1d–f). This stands in
stark contrast to the observed robustness of motion responses
and leads to the central question: How does the fly visual
system compensate for natural contrast variability?

Various general mechanisms for adaptation to naturalistic
signals have been described in the fly visual system including
gain control in photoreceptors or LPTCs17, 18, 19, redundancy
reduction through lateral inhibition20, subtractive enhance-
ment of flow field selectivity3, and tailoring of processing to
fundamental natural scene statistics4, 14. However, none ef-
fectively addresses the problem of contrast fluctuations.

We designed an optomotor stimulus to establish whether
Drosophila dynamically adapt the sensitivity of motion-
induced turning to image contrast, which could serve to nor-
malize variation within natural scenes. The stimulus segre-
gates the visual field into a background pattern containing
random luminance fluctuations at a controlled contrast level
and a random foreground pattern whose motion triggers turn-
ing (Fig. 2a). We confirmed that background produced no net
activity in EMDs (Fig. 2b). At zero background contrast,
foreground motion induced a reliable optomotor response
(Fig. 2c). Turning was fully suppressed at maximum back-
ground contrast, proving that turning gain is controlled by
surround contrast. Average field luminance was constant for
all conditions, so linear processing could not account for the
phenomenon. A full measurement of contrast tuning curves
for foreground motion revealed a smooth shift of the dynamic
range of the optomotor response toward surround contrast
(Fig. 2d,e).

To efficiently map features of contrast gain control in a single
stimulus condition, we sinusoidally modulated background
contrast over time which resulted in oscillations around mean
turning (Fig. 2f). Whenever background contrast was high,
syndirectional rotation in response to motion was transiently
suppressed. Evaluating oscillation amplitude thus allowed a
read-out of the level of contrast-induced gain adjustment. We
determined the spatial scale by varying spacing between fore-
and background. Modulation fell with distance and dropped
to baseline at approximately 40◦ of separation, so con-
trast estimation was non-local but spatially limited (Fig. 2g,
Fig. S2a,b). When we varied oscillation frequency, suppres-
sion followed contrast changes up to fast time scales beyond
3 Hz (Fig. 2h, Fig. S2c–f). However, modulation decreased
at lower frequencies than for equivalent foreground oscilla-
tions which is indicative of temporal integration. Silencing
T4 and T5 cells abolished all contrast-guided oscillatory turn-

Figure 2. Sensitivity of Drosophila optomotor response is controlled by sur-
round contrast. a, Experimental set-up. Visual display is separated into two areas
whose contrast can be set independently. b, Bottom, space-time plot of base stim-
ulus. Foreground pattern moved during time span indicated by dashed lines; back-
ground is dynamic but contains no coherent motion. Top, time-averaged response
of EMD array along azimuth. Only foreground produced net activity. c, Turning
responses for extreme background contrast conditions (N=16 wild-type flies). Gray-
shaded area indicates motion. d, Mean rotation (averaged between 0 and 1s after
stimulus onset) as function of foreground contrast for two background conditions
(N=16). e, Heatmap of mean rotation for multiple background conditions. With
increasing background contrast optomotor sensitivity shifted rightward (N=16). f,
Stimulus for mapping magnitude of sensitivity shift (N=16). Left, baseline turn-
ing response in the absence of background contrast (foreground contrast 25%).
Right, turning response for sinusoidal change in background contrast. During high-
contrast phase, optomotor response was suppressed; turning modulation allowed
read-out of background-induced changes in gain. g, Turning response modulation
as a function of spacing between motion stimulus and background (N=16). Gray-
shaded bar indicates 68% confidence interval around baseline modulation in the
absence of background. h, Turning response modulation as a function of carrier
frequency for either foreground (N=13) or background (N=13). Shaded area around
curves indicates bootstrapped 68% confidence interval.

ing (Fig. S2g–i), suggesting that contrast adaptation is not
mediated by a system parallel to motion detection10. Our
experiments thus point to a rapid, spatially distributed gain
control mechanism that emerges in early visual processing.
We next used two-photon calcium imaging to locate the neu-
ral origin of contrast adaptation. Fly motion vision circuitry
is arranged in cartridges processing visual input retinotopi-
cally. In various combinations, lamina cells L1–5 feed into at
least four medulla cell types per ON and OFF pathway3, 21.
Medulla units fall into two classes characterized either by
transient temporal filtering and moderate center-surround an-
tagonism in their spatial receptive field (Mi1, Tm3 for ON;
Tm1, Tm2, and Tm4 for OFF) or by tonic responses and
strong antagonistic surround (Mi4 and Mi9 for ON; Tm9 for
OFF)22. T4 and T5 cells then compute direction by compar-
ing medulla signals with different dynamics across neighbor-
ing cartridges3, 9, 21. Here, we additionally estimated linear
receptive fields for L1–5 using stochastic stimuli as before22
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Figure 3. Contrast normalization emerges in transient medulla neurons. a, Schematic of experimental procedure: 1. White noise stimulus. 2. Receptive field
reconstruction from single neuron calcium signals. 3. Drifting grating with different contrasts in foreground and background. b, Two-photon image of L1 axon terminals
expressing GCaMP6f. Green line indicates example region of interest. c, Experimental protocol. Darker color shade corresponds to higher background contrast as used in
panels g–u. Zero background contrast condition is shown in black. d,e, Average calcium responses of L1 and Tm3 for fixed foreground and various background contrasts.
f, Schematic of the motion circuit including all neurons measured. g–k, Contrast tuning curves measured as amplitude of calcium signals at stimulus frequency for L1–L5.
Shaded areas show bootstrapped 68% confidence intervals around the mean (L1: 21/7 cells/flies, L2: 26/8, L3: 23/6, L4: 19/6, L5: 18/9). l–p, Contrast tuning curves for ON
pathway neurons (Mi1: 20/5, Tm3: 21/8, Mi4: 20/13, Mi9: 21/9, T4: 23/10). q–u, Contrast tuning curves for OFF pathway neurons. (Tm1: 21/7, Tm2: 20/6, Tm4: 20/13, Tm9:
19/6, T5: 21/9) v, Illustration of divisive normalization model for tuning curves. Increasing background contrast cbg shifts the sigmoidal tuning curve from baseline sensitivity
c50 to higher contrasts. w, Example fit of model for Tm1. x, Normalization index for all neurons shown as median with 68% bootstrapped confidence intervals. Transient
medulla neurons Mi1, Tm3, Tm1, Tm2, and Tm4 as well as T4/T5 exhibited strongest degree of normalization.

(Fig. S3a–t). Consistent with previous functional work13, 23,
spatiotemporal filters grouped into tonic (L3) or transient
units (L1, L2, L4, and L5) like in the medulla.
To precisely map context-dependent changes in contrast sen-
sitivity for these cell types, we targeted visual stimuli to in-
dividual neurons by determining receptive field coordinates
of single axon terminals through a combination of stochastic
stimuli and online reverse-correlation (Fig. 3a,b; see Meth-
ods). Analogously to behavioral experiments, we then pre-
sented drifting sine gratings with independently controlled
contrast in foreground (as defined by a 25◦ circular window
centered on the receptive field) and background (Fig. 3c). At
fixed foreground contrast, L1 activity followed local grating
luminance regardless of background (Fig. 3d). Responses in
downstream synaptic partner Tm3, however, showed the sig-
nature of gain control as signal amplitude was increasingly
suppressed by growing surround contrast (Fig. 3e).
We evaluated calcium modulation at the stimulus frequency
to obtain contrast response curves for all columnar cell types
and T4/T5 cells (Fig. 3f). Lamina units tracked foreground
contrast approximately linearly but were weakly if at all mod-
ulated by the surround except for a vertical shift at low lev-

els, likely due to background leaking into the receptive fields
(Fig. 3g–k, Fig. S4). In the medulla (Fig. 3l–u), tonic Mi4,
Mi9, and Tm9 showed similar tuning as L1–5 and again little
surround-dependency. For all transient cells (Mi1 and Tm3
for ON; Tm1, Tm2, and Tm4 for OFF), however, tuning
deviated from linearity and increasing background contrast
had a strongly suppressive effect. Curves were shifted right-
ward on the logarithmic axis which corresponds to divisive
stretching in linear contrast space. Sensitivity to foreground
contrast was generally higher in ON than in OFF units. Im-
portantly, preferred direction responses in T4 and T5 were
strongly background-dependent (Fig. 3p,u) even though not
all their medulla inputs are subject to gain control.
To quantify tuning curves in detail, we fit a closed-form
model based on a common neural computation, divisive nor-
malization (Fig. 3v; see Methods). Here, responses are ef-
fectively divided by an inhibitory signal that estimates sur-
round contrast as the average activity of a pool of nearby neu-
rons6, 7. Divisive normalization thus compresses signals of
varying contrast into a fixed range by dynamically adjusting
gain to current conditions1, 6. The model accurately repro-
duced tuning curves for each cell type (Fig. 3w, Table S2).
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Figure 4. Neural contrast normalization relies on rapid feedback from a pool of transient units. a, Polar plot of response amplitude for different directions of
background motion. Black dashed line represents reference measured with background contrast of 0%. For each neuron, foreground contrast was chosen to maximize
possible background suppression (Mi1: 16%, Tm3: 32%, Tm1: 64%, Tm2: 100%). b, Responses for different background contrast frequencies, revealing transient tuning
of suppression. c, Suppression strength increased with outer diameter of background annulus (Mi1: 21/9 cells/flies, Tm3: 20/6, Tm1: 18/6, Tm2: 21/4 in a–c). d, Top left,
x-y and x-t plots of contrast-step stimulus for Tm3 (ON center). Background contrast frequency was 3 Hz. Center left, velocity function vbg(t) of background and intensity
function Icen(t) of center pulse. Bottom left, mean responses of Tm3 for different time intervals ∆t. Right, mean peak amplitude for Tm3 and Tm2 (Tm3: 19/6, Tm2: 20/5).
e, Schematic of feedforward and feedback model for surround suppression. f, Mean responses of Tm3 for TNT block (red) and TNTin controls at background frequency 16
Hz (black; dashed line indicates reference response and solid line the response at full background contrast). g, Left, frequency tuning for block experiments (as in b). Right,
average amplitude over all frequencies was higher for Tm3 block flies (Tm3 block: 21/5, Tm3 control: 20/5; Mann-Whitney U: 8, ***P<0.001). h, Blocking results for Tm2 (as
in g; Tm2 block: 20/5, Tm2 control: 25/6; Mann-Whitney U: 17, ***P<0.001). i, Left, foreground contrast tuning for block experiments at 0 and 100% background contrast.
Right, contrast sensitivity as measured by semi-saturation constant c50 was increased for Tm3 block flies (Mann-Whitney U: 39, ***P<0.001). j, Blocking results for Tm2 (as
in i; Mann-Whitney U: 239, NS P=0.49). Semi-saturation constant at 0% background contrast did not change for Tm2 block flies. Shaded areas show bootstrapped 68%
confidence intervals around the mean. Error bars show bootstrapped 68% confidence intervals around the median.

Critically, it accounted for vertical shifts through linear back-
ground leakage as well as sigmoidal tuning curves and
context-dependent changes in contrast sensitivity through the
divisive term. We computed a normalization index from es-
timated model parameters that quantified the factor by which
tuning curves would shift when background contrast was in-
creased from 0% to 100% (see Methods). The index was sub-
stantially higher in transient medulla cells (Mi1, Tm3, Tm1,
Tm2, and Tm4) and direction-selective T4/T5 cells than in
L1–5 or tonic medulla units (Mi4, Mi9, and Tm9; Fig. 3x).
Curiously, L2 and L5 exhibited mildly elevated normaliza-
tion indices which may be due to particular connectivity with
parallel neurons3 or the proposed complex receptive field
structure of L224.

Thus, fly contrast gain control appeared to be based on divi-
sive normalization that predominantly originates in medulla
units with transient response dynamics. We focused on these
neurons to investigate the mechanism in detail. Responses in

Mi1, Tm1, Tm2, and Tm3 were equally suppressed for all
background grating directions relative to a reference stimu-
lus with zero contrast (Fig. 4a). Contrast frequency tunings
for suppression resembled band-pass filters with a peak at 2
Hz (Fig. 4b). Crucially, static backgrounds did not have a
suppressive effect. Both isotropy and frequency tunings were
strikingly similar to filter properties of transient lamina and
medulla units (Fig. S3u,v). Suppression steadily increased
with the outer diameter of an annulus containing the back-
ground pattern, which again indicated an extended integra-
tion area (Fig. 4c). Spatiotemporal features of neural gain
control thus matched our findings from behavior (Fig. 2).

To determine the temporal scale of normalization, we de-
signed a contrast-step stimulus in which the foreground was
replaced by a single light pulse matching each cell’s polarity
(Fig. 4d). By varying time between background grating onset
and pulse, we scanned the temporal profile of the suppressive
signal. For the tested neurons Tm3 and Tm2, we found virtu-
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ally immediate response reduction within a measurement pre-
cision of 50ms. We observed transient ringing of suppression
strength at the background frequency. Ringing was stronger
when the grating was present before motion onset compared
to when it was masked. A similar effect has been described in
LPTCs11 where it results from neural integration of multiple
transient, out-of-phase inputs. In sum, these findings suggest
that surround suppression derives from a pool of direction-
agnostic transient neurons. We built a time-resolved, data-
driven model to determine whether a mechanism that pools
transient units across space to divisively suppress local re-
sponses could reproduce our findings. The model faithfully
predicted direction, frequency, and size tunings as well as
contrast-step ringing, T4/T5 responses, and LPTC output for
our behavioral stimuli (Fig. S5a–k).

Spatial pooling, however, could occur over either feedfor-
ward signals from the lamina or feedback from the medulla
(Fig. 4e). In vertebrate systems it has proven difficult to dis-
tinguish the two6. Fly transient units in lamina or medulla
have similar temporal properties (Fig. S3u,v) and both im-
plementations produce equivalent steady-state output7, so
we used genetic silencing to pinpoint the source. We co-
expressed a calcium indicator and the tetanus toxin light
chain (TNT; see Methods) in different cell types, blocking
synaptic output and thus feedback from the entire neuron ar-
ray but leaving feedforward input and calcium signals intact.
Compared to controls with inactive TNT, we observed signif-
icantly reduced suppression across background frequencies
for ON cells Mi1 and Tm3 as well as OFF-sensitive Tm2 but
not Tm1 (Fig. 4f,g,h and Fig. S6a,b). In Mi1 and Tm3, base-
line contrast sensitivity as measured by the semi-saturation
constant of model fits was significantly increased (Fig. 4i and
Fig. S6c), suggesting that cells were disinhibited due to re-
duced pool signal. For Tm2, linear background contribution
at low foreground contrasts increased whereas high contrast
responses were less suppressed by the surround (Fig. 4j). In
the fly, contrast normalization is therefore at least partially
based on feedback from a combination of medulla neurons.

Does this type of response normalization account for the ro-
bustness of fly motion detection? Previous work on EMDs
and natural scenes has exploited compressive transforms but
did so heuristically or without surround-dependent gain con-
trol15, 16. We evaluated natural image responses in the data-
driven LPTC model and found moderate reduction of cross-
image variability compared to a model with bypassed nor-
malization (Fig. S5l–n). However, post-hoc ablation may
specifically disadvantage the simpler model. To investi-
gate performance limits in a principled way, we pursued a
task-driven approach. Recent progress in deep artificial net-
works has made it feasible to use image-processing models
of neural systems for rigorously assessing performance on
real-world problems8, 25. EMD-like architectures are con-
cisely expressed as multi-layer convolutional networks8 and
fully differentiable, rendering them amenable to optimization
methods like gradient descent. We designed a fly-like neural
network and independently trained possible types of contrast
processing such that each model class could optimally adapt

Figure 5. Contrast normalization enhances robustness to natural scene vari-
ability. a, Schematic of single convolutional input filter. Motion stimuli are sequen-
tially processed by a spatial 3 x 3 x 1 (azimuth, elevation, time) and a temporal 1 x 1
x 30 filter. Through a transfer function, the signal is combined with a normalization
signal generated by a 11 x 11 x 1 convolution operating on full-wave rectified input
signal. The output of two distinct channels is processed analogously to multiplica-
tive EMDs. b, Input-output relationships for linear, static, and dynamic models. In
the dynamic model, response sensitivity is a function of normalization field activity.
c, Training mean squared error (MSE) for two example models during stochastic
gradient descent. d, Spatial and temporal receptive fields for the two channels of
typical dynamic model. Depicted are normalized filter weights. e, Spatial receptive
field of normalization pool for the model from d. f, Model output for individual images
moving at 20◦s−1 during gray-shaded period. Gray line indicates target velocity.
Left, example model without non-linearity. Right, example model with dynamic non-
linearity. g, Velocity tuning curves of example dynamic model for individual images
(averaged between 0 and 3s after motion onset). Gray line indicates true veloc-
ity. h, Mean performance of trained models on held-out test set, estimated as root
mean square error (RMSE; N=22/23/16 for linear/static/dynamic; *P<0.001, t=9.01,
Student’s t-test with assumed equal variance; only difference between static and
dynamic was tested). Error bars indicate bootstrapped 68% confidence intervals.

to a specific, behaviorally relevant task.
All models featured linear, spatiotemporally separable in-
put convolutions (Fig. 5a). We evaluated three alternatives
for contrast transformation: a linear stage where output was
transmitted unchanged, a statically compressive stage that
limited signal range independently of context, and a dynamic
compression stage with adaptive gain depending on the out-
put of a contrast-sensitive surround filter (Fig. 5a,b; see
Methods). Resulting output from two distinct channels was
then processed according to a multiplicative EMD scheme.
Through backpropagation and stochastic gradient descent,
models were trained to estimate the true velocity of natural
images translating at random speeds. All models success-
fully learned the task on the training set (Fig. 5c). We initial-
ized convolutions randomly but after training observed antag-
onistic spatial filters and transient temporal filters where one
channel was phase-delayed with respect to the other (Fig. 5d,
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Fig. S7a–c). Models thus made extensive use of redundancy
reduction through center-surround configurations20 and dis-
covered the EMD strategy of delay-and-compare11. Nor-
malization fields for the dynamic model spanned approxi-
mately 30◦ in azimuth and invariably excluded information
from the center of the filter (Fig. 5e). Interestingly, dy-
namic models exploited normalization in both channels and
switched normalization strategies during training, transition-
ing from purely static to purely context-dependent compres-
sion (Fig. S7d,e). Overall, normalized networks acquired
representations that matched filtering and gain control prop-
erties of the fly medulla.

When tested on previous experimental stimuli (Fig. 1), lin-
ear models exhibited improved velocity tuning curves com-
pared to a standard EMD (Fig. 1f and Fig. 5f, Fig. S5f)
but estimates still varied substantially across time. Dynamic
models, on the other hand, proved extremely robust at ex-
tracting scene motion across time, images, and velocities
(Fig. 5f,g). We compared average estimation error on a held-
out test set and found both types of non-linear compression to
vastly outperform the linear stage (Fig. 5h). The performance
of static compression indicates that simple response satura-
tion already enhances robustness to contrast fluctuations in
natural scenes. However, fly-like context-sensitivity consis-
tently decreased test error over the static non-linearity (er-
ror reduction 22.0–29.2%; bootstrapped 95% CI). Finally, we
benchmarked generalization on a fully independent image set
(Fig. S7g) where linear models failed catastrophically while
both compressive stages retained performance. This was par-
ticularly pronounced when testing images with high dynamic
range (see Methods). Critically, on all datasets dynamic com-
pression resulted in substantial error reduction with respect to
both linear transfer and static compression.

In summary, our work represents the first demonstration that
divisive contrast normalization occurs in the fly visual sys-
tem and offers a comprehensive look at non-linear response
properties in a virtually complete motion vision circuit. Nor-
malization has been described as a generic mechanism for
removing higher-order correlations from natural signals1, 26.
Here, we close the loop between neural mechanism and an
ecologically critical behavior, the optomotor response, and
demonstrate how contrast gain control renders motion detec-
tion resilient to challenges imposed by natural scene statis-
tics. Our convolutional network solves the task of estimating
velocity across diverse environments and at little computa-
tional cost, particularly compared to standard optic flow al-
gorithms. Present findings may thus aid the design of low-
power, low-latency machine vision systems suitable for au-
tonomous vehicles27. Gain control in the Drosophila op-
tic lobe bears striking resemblance to normalization in other
modalities like the fly olfactory system28 or mammalian audi-
tory cortex29 as well as processing in vertebrate visual areas
from retina to V16. The tuning of non-linear surround sup-
pression in lateral geniculate nucleus, in particular, matches
that of transient units in the fly medulla30. This provides fur-
ther proof for evolutionary convergence on canonical algo-
rithms6.
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Figure S1. Behavioral, neural, and model responses to natural scenes (related to Fig. 1). a, Turning responses for 8 images (indicated by trace color) and 5 velocities
(indicated by panel title; N=16 wild-type flies; data as in Fig. 1b). Gray shaded area indicates duration of motion stimulus. a, Membrane potential for 6 images and 5 velocities
(N=11 HS cells from 9 flies; data as in Fig. 1d). c, Output of model LPTC for same images and velocities as b (data as in Fig. 1f). d, Natural image patch as seen through the
field of view of model LPTC. e, Estimate of local contrast in natural image patch. RMS contrast was estimated by filtering the image with a Gaussian (σ = 0.5◦), subtracting
the filtered image from the original, squaring the mean-subtracted image, filtering it with a Gaussian (σ = 0.5◦), and taking the square root. f, Spatially reconstructed output
of simulated LPTC for same image patch as before, plotted as the square root of the time-averaged response. A horizontally motion-sensitive LPTC was constructed using
the same parameters as in c (see Methods) with the exception of more fine-grained sampling at exactly the image resolution. The depicted panorama was moved for 16s at
a velocity of 22.5◦s−1, resulting in a single complete rotation. Responses at each pixel location were then averaged across the full stimulus period. This demonstrates that
the response of the EMD array depends strongly on squared local image contrast.
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Figure S2. Detailed behavioral responses to contrast stimuli (related to Fig. 2). a, Illustration of spatial oscillation experiment. Background was restricted to 10◦ wide
stripes flanking the foreground motion stimulus at the spacing indicated by red arrow. Dashed lines indicate period during which foreground pattern moved at 50◦s−1. This
arrangement was repeated at plus and minus 90◦ from the frontal axis of the fly; 0◦ in this plot indicates the center of the foreground. b, Contrast traces and turning responses
for five spacing conditions (indicated above each panel). Top, instantaneous contrast (25% in foreground, oscillating at 1 Hz in background). Bottom, turning response of the
fly (N=16 wild-type flies). Modulation was reduced as spacing between foreground and background increased. c, Illustration of temporal foreground modulation stimulus at 1
Hz frequency. d, Contrast traces and turning responses for five foreground oscillation frequencies (N=13; background contrast was 0%). Modulation decreased as frequency
increased. e, Illustration of temporal background modulation stimulus at 1 Hz frequency. f, Contrast traces and turning responses for five background oscillation frequencies
(N=13; foreground contrast was 25%). Modulation again decreased with frequency. g, Left, comparison of turning responses between wild-type flies and flies in which T4/T5
cells were silenced using TNT (see Methods; N=16/14 for WT/block flies). Right, turning responses averaged between 0 and 6s following motion onset. Syndirectional turning
was abolished in T4/T5-silenced flies. h, Average forward speed throughout full experiment. T4/T5 block flies did not exhibit locomotion deficiencies. i, Comparison of spatial
oscillation tuning. T4/T5 block flies did not show modulation at the contrast oscillation frequency of 1 Hz and a generally increased level of baseline fluctuation.
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Figure S3. Lamina and T4/T5 receptive field mapping. a–e, Averaged 2D spatial receptive fields (RF) of L1–L5 from reverse correlation using white noise stimulation
(L1: 21/7 cells/flies, L2: 34/5, L3: 34/5, L4: 17/6, L5: 18/9). f–j, 1D projection (averaged over all orientations) of the RFs in a–e. All cell types possessed linear RFs with
antagonistic center-surround structure. k–o, Temporal RFs measured in the center of the spatial RFs. p–t, Frequency-space representations of temporal RFs. u, Frequency
representations of lamina transient/band-pass cells (all lamina cells except for L3) after deconvolution with a putative linear GCaMP6f low-pass filter with time constant 350ms
as performed previously22. v, Deconvolved frequency responses of medulla bandpass filter cells (replotted from previous work22). w, Spatial integral of the 2D RFs in a–e.
For L3, the strong antagonistic ON surround exactly counterbalanced the OFF center contribution. x, x-y plot of the stochastic motion noise stimulus used for localizing T4/T5
RFs. y, Example RF of a T4 cell from reverse correlation with the motion noise stimulus. z, Average responses of T4/T5 to 25◦ windowed drifting gratings probing different
positions around the estimated RF center. This validated the RF coordinates obtained from the stochastic motion noise stimulus. All data are shown as mean ± s.d.
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Figure S4. Raw calcium responses for basic contrast stimuli (related to Fig. 3). a, Shown is only a subset of the data evaluated in Fig. 3. Background contrast of
0% is indicated by black lines, background contrast of 100% is depicted in magenta. Responses are shown only for 3 out of 7 foreground contrasts. b–p, Average calcium
responses of all neurons to combinations of different foreground and background contrasts.
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Figure S5. Data-driven functional model of normalization circuit. a, Illustration of signal cascade for data-driven cell model (see Methods for details). Filter elements are
sketched for an ON band-pass cell with normalization. b–d, Contrast tuning curves for three model cells, estimated using the same protocol as during calcium imaging (FG
= foreground, BG = background). Top, empirical data for L3, Mi1, and Mi9 (see Fig. 3). Inset depicts a single frame from stimulus centered on recorded cell with background
contrast 25% and foreground contrast 100%. Bottom, tuning curves from models manually tuned to resemble their empirical counterparts (see Methods for parameters).
e, Responses of normalized ON band-pass cell model to orientation tuning stimulus (see Fig. 4a; dashed line marks reference stimulus without background). Stimuli and
evaluation were exactly matched to the experiment. f, Responses of the same model to background frequency tuning experiment (see Fig. 4b; dashed line marks reference
stimulus without background). g, Responses of the same model to background size stimulus (see Fig. 4c; dashed line marks reference stimulus without background).
h, Responses of the same model to contrast-step protocol (see Fig. 4d). i, Illustration of T4 or T5 model. Signals from a strongly normalized band-pass and a weakly
normalized low-pass unit covering adjacent areas of the visual field are multiplied, yielding a direction-selective signal. j–m, Top, responses from motion detector models with
normalization. Bottom, responses from motion detector models in which normalization was switched off for both input arms. j, Foreground contrast tuning for simulated T4
cell (see Fig. 3). k, Responses to behavioral contrast stimulus for a LPTC model composed of T4 and T5 models (see Methods). l, Responses to various natural scenes
moving at 20◦s−1 (modelled and evaluated as in Fig. 1). m, Velocity tuning curves for natural scenes (modelled and evaluated as in Fig. 1). n, Coefficient of variation across
images for individual image velocities (derived from velocity tuning curves in m and Fig. 1f; see Methods for details). A model including input normalization outperformed the
linear model and approximated the variability of LPTC responses.
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Figure S6. Additional silencing data for contrast tuning experiment (related to Fig. 4). a, Left, frequency tuning of suppression as in Fig. 4b,g,h. Black dashed
line represents reference stimulus with background contrast of 0%. Right, average amplitude over all frequencies was higher for Mi1 block flies which indicates reduced
suppression (Mi1 block: 20/5 cells/flies, Mi1 control: 21/6; Mann-Whitney U: 143, *P=0.04). b, Tm1 data as in a. There was no significant effect when blocking Tm1 cells
(Tm1 block: 20/5, Tm1 control: 19/5; Mann-Whitney U: 169, NS P=0.28). c, Left, foreground contrast tuning for 0 (dashed line) and 100% (solid line) background contrast
as in Fig. 4i,j. Right, contrast sensitivity as measured by semi-saturation constant c50 of model fit to data was increased for Mi1 block flies (Mann-Whitney U: 128, *P=0.02).
d, Tm1 data as in c. There was no significant effect when blocking Tm1 cells (Mann-Whitney U: 158, NS P=0.19). Error bars show bootstrapped 68% confidence intervals
around the median.
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Figure S7. Detailed receptive fields and performance data for task-driven model (related to Fig. 5). a–c, Receptive fields and temporal filters for 16 models of each
non-linearity configuration (a, linear; b, static; c, dynamic). Models were sorted by test set error (increasing from left to right). Each pair of spatial and temporal filters was
normalized to the maximum absolute weight across both channels (SF = spatial filter, TF = temporal filter, NF = normalization filter). Axis limits are the same as in Fig. 5.
d, Values of sensitivity parameter c for all static (N=23) and dynamic (N=16) normalization models. e, Evolution of weights for a single dynamic model. Both curves were
independently normalized to their maximum across epochs. Pool contribution was quantified as the sum of weights across both 11 x 11 x 1 normalization filters. f, Velocity
tuning curves of best-performing linear model for various images (analogously to Fig. 5g). Gray curve indicates true scene velocity on logarithmic axis. g, Quantification of
average model performance for all tested data sets (analogously to Fig. 5h; LDR = low dynamic range, HDR = high dynamic range). See Methods for details on how data sets
were generated. Note that performance is plotted on a logarithmic axis. N=22/23/16 for linear/static/dynamic; *P<0.001; t=9.01/7.51/7.72 for set A/set B (LDR)/set B (HDR);
Student’s t-test with assumed equal variance; only difference between static and dynamic was tested.
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Short name Full genotype Used in
WT w+/w+; +/+; +/+ Fig. 1, Fig. 2
T4/T5 block w+/w-; R59E08-AD/UAS-TNT; R42F06-DBD/+ Fig. S2
L1-GCaMP6f w+/w-; VT027316-AD/UAS-GCaMP6f; R40F12-DBD/UAS-GCaMP6f Fig. 3, Fig. S3, Fig. S4
L2-GCaMP6f w+/w-; R53G02-AD/UAS-GCaMP6f; R29G11-DBD/UAS-GCaMP6f Fig. 3, Fig. S3, Fig. S4
L3-GCaMP6f w+/w-; R59A05-AD/UAS-GCaMP6f; R57H07-DBD/UAS-GCaMP6f Fig. 3, Fig. S3, Fig. S4
L4-GCaMP6f w+/w-; R20A03-AD/UAS-GCaMP6f; R31C06-DBD/UAS-GCaMP6f Fig. 3, Fig. S3, Fig. S4
L5-GCaMP6f w+/w-; R21A05-AD/UAS-GCaMP6f; R31H09-DBD/UAS-GCaMP6f Fig. 3, Fig. S3, Fig. S4
Mi1-GCaMP6f w+/w-; R19F01-AD/UAS-GCaMP6f; R71D01-DBD/UAS-GCaMP6f Fig. 3, Fig. S4, Fig. S4
Mi4-GCaMP6f w+/w-; R48A07-AD/UAS-GCaMP6f; R13F11-DBD/UAS-GCaMP6f Fig. 3, Fig. S4
Mi9-GCaMP6f w+/w-; R48A07-AD/UAS-GCaMP6f; VT046779-DBD/UAS-GCaMP6f Fig. 3, Fig. S4
Tm1-GCaMP6f w+/w-; R41G07-AD/UAS-GCaMP6f; R47G01-DBD/UAS-GCaMP6f Fig. 3, Fig. S4, Fig. S4
Tm2-GCaMP6f w+/w-; +/UAS-GCaMP6f; VT12282/UAS-GCaMP6f Fig. 3, Fig. 4a-c, Fig. S4
Tm2split-GCaMP6f w+/w-; R28D05-AD/UAS-GCaMP6f; R82F12-DBD/UAS-GCaMP6f Fig. 4d
Tm4-GCaMP6f w+/w-; +/UAS-GCaMP6f; R35H01/UAS-GCaMP6f Fig. 3, Fig. S4
Tm9-GCaMP6f w+/w-; +/UAS-GCaMP6f; VT65303/UAS-GCaMP6f Fig. 3, Fig. S4
T4-GCaMP6f w+/w-; VT16255-AD/UAS-GCaMP6f; VT12314-DBD/UAS-GCaMP6f Fig. 3, Fig. S3, Fig. S4
T5-GCaMP6f w+/w-; VT13975-AD/UAS-GCaMP6f; R42H07-DBD/UAS-GCaMP6f Fig. 3, Fig. S3, Fig. S4
Mi1-GCaMP6f,
TNT-E

w+/w-; R19F01-AD/UAS-TNT-E; R71D01-DBD/UAS-GCaMP6f Fig. S6

Mi1-GCaMP6f,
TNTin

w+/w-; R19F01-AD/UAS-TNTin; R71D01-DBD/UAS-GCaMP6f Fig. S6

Tm3-GCaMP6f,
TNT-E

w+/w-; R13E12-AD/UAS-TNT-E; R59C10-DBD/UAS-GCaMP6f Fig. 4

Tm3-GCaMP6f,
TNTin

w+/w-; R13E12-AD/UAS-TNTin; R59C10-DBD/UAS-GCaMP6f Fig. 4

Tm1-GCaMP6f,
TNT-E

w+/w-; R41G07-AD/UAS-TNT-E; R47G01-DBD/UAS-GCaMP6f Fig. S6

Tm1-GCaMP6f,
TNTin

w+/w-; R41G07-AD/UAS-TNTin; R47G01-DBD/UAS-GCaMP6f Fig. S6

Tm2split-GCaMP6f,
TNT-E

w+/w-; R28D05-AD/UAS-TNT-E; R82F12-DBD/UAS-GCaMP6f Fig. 4

Tm2split-GCaMP6f,
TNTin

w+/w-; R28D05-AD/UAS-TNTin; R82F12-DBD/UAS-GCaMP6f Fig. 4

Table S1. Genotypes and abbreviations
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Cell
type

Lfg Lbg p c50 wpool q Norm.
index

R2
DivisiveNorm R2

linear

L1 1.47 0.07 1.10 0.53 0.22 0.97 0.42 98.39 ± 0.10 92.55 ± 0.14
L2 1.10 0.05 1.37 0.23 0.36 0.77 1.58 99.29 ± 0.03 85.17 ± 0.13
L3 1.68 0.16 1.46 1.00 0.00 1.27 0.00 95.90 ± 0.08 97.17 ± 0.07
L4 1.41 0.12 1.23 0.53 0.32 1.09 0.61 98.94 ± 0.04 93.71 ± 0.07
L5 1.04 0.05 1.29 0.14 0.19 1.10 1.36 94.51 ± 0.23 69.34 ± 0.24
Mi1 1.03 0.03 1.21 0.06 0.25 1.05 4.33 97.37 ± 0.14 56.26 ± 0.41
Mi4 1.61 0.33 0.90 1.00 0.31 5.92 0.31 90.08 ± 0.26 87.50 ± 0.35
Mi9 1.69 0.23 0.99 1.00 0.40 2.87 0.40 92.40 ± 0.24 89.61 ± 0.32
T4 0.96 0.01 2.47 0.11 0.49 0.74 4.45 96.78 ± 0.15 74.17 ± 0.35
T5 1.08 0.07 1.97 0.26 1.17 0.92 4.55 97.02 ± 0.13 77.27 ± 0.27
Tm1 0.98 0.09 1.87 0.18 0.86 0.71 4.75 97.53 ± 0.11 78.67 ± 0.29
Tm2 1.08 0.17 1.36 0.20 1.14 0.91 5.76 97.58 ± 0.08 73.09 ± 0.32
Tm3 1.02 0.01 1.97 0.16 0.53 0.72 3.39 97.97 ± 0.12 82.33 ± 0.20
Tm4 1.06 0.11 2.33 0.40 1.44 0.81 3.61 96.77 ± 0.16 76.96 ± 0.37
Tm9 1.83 0.50 0.92 0.98 1.01 1.65 1.03 96.37 ± 0.14 87.42 ± 0.25

Table S2. Fits for divisive normalization model (related to Fig. 3)

16



Methods
Flies and genetics. Drosophila melanogaster were kept on a 12 h light/12 h dark cycle at 25◦C and 60% humidity on standard
cornmeal-agar medium. Genetic expression of effectors was targeted through the Gal4-UAS system31. Resulting genotypes
and their shorthands are listed in Table S1.
Unless stated otherwise, locomotion and tangential cell responses were recorded in wild-type Canton S flies 1 to 5 days after
eclosion (Fig. 1 and Fig. 2). We used the genetically encoded calcium indicator GCaMP6f32 to determine the functional
properties of individual cell types (Fig. 3 and Fig. 4). Throughout silencing experiments (Fig. 4, Fig. S2 and Fig. S5), we
expressed tetanus toxin light chain (TNT) or an inactive version (TNTin) in the cell type of interest33. For calcium imaging
experiments involving silencing (Fig. 4 and Fig. S6), one day old flies were collected and put on 29◦C for 3 days to boost
expression of TNT or TNTin.

Natural image sets. For electrophysiology, behavioral, and modelling experiments, we used images from a published set of 20
natural panoramic scenes16 termed data set A. All images were independently processed as follows: We averaged across color
channels and downsampled the scene to a resolution of 1,600 x 320 pixels (covering 360◦ sampled at 0.225 pixels per degree
along the azimuth) using linear interpolation. To be able to render 12 bit images on conventional screens with 8 bits of dynamic
range, we first performed standard gamma correction by raising raw pixel values to a power of 0.45 and then clipped the top
percent of pixel intensities. The resulting image was scaled to fill the range between 0 and 255. For optomotor experiments
(Fig. 1), we selected a subset of 8 images that covered different types of terrain. From this set, we again selected a subset of
6 images to determine tangential cell responses. We used all 20 images to build the convolutional network (Fig. 5), randomly
assigning 15 scenes to the training and 5 to the test set. Finally, we validated the trained convolutional model with images
from an independent panoramic scene collection34 consisting of 421 images (Fig. S7f). These scenes were kept at their native
resolution of 927 x 251 pixels (corresponding to an azimuthal sampling rate of 0.39 pixels per degree) and processed as above,
yielding data set B. We then generated two test sets: One had gamma correction applied to limit the images’ bit depth (“low
dynamic range” or LDR) and the other one was left at 12 bit depth to produce a data set with high dynamic range (HDR).

Behavioral experiments.

Locomotion recording. Experiments on the treadmill setup were conducted as described before4, 10, 35. Briefly, we tethered flies
to a thin metal rod and placed them on air-cushioned polyurethane balls whose movement was tracked at 4 kHz, allowing for
direct read-out of rotational motion along all three axes. Temperature within the vicinity of the fly was 25◦C at the start of
each experiment. Using a closed-loop thermoregulation system, we linearly increased it to 34◦C within 15 min to encourage
locomotion.

Visual stimuli. We used three identically calibrated computer screens that were placed in a rectangle surrounding the fly. To
simulate a cylindrical display, all stimuli were rendered onto a virtual cylinder and distorted accordingly before projection onto
screens. Our setup covered approximately 270◦ in azimuth and 120◦ in elevation of the visual field. All stimuli were displayed
at 144 Hz and at a spatial resolution greatly exceeding that of the fly eye. Screens had a maximum luminance of approximately
100 cd m-2 and a luminance depth of 8 bit; for all descriptions below, we assume pixel brightness to range from 0 to a maximum
of 1. Patterns were generated in real-time and programmed in Python 2.7 using the game engine Panda3D.
We measured velocity tuning curves (Fig. 1) for 8 distinct natural images at 6 logarithmically spaced velocities ranging from 5
to 1,280◦s−1. Initial image phase was randomized on each trial. Scenes were displayed at their native gamma-corrected mean
luminance and contrast (see above). On each trial images stood still for 1.5s, then were rotated at the chosen velocity for 0.5s,
and remained fixed for another 1.5s.
The optomotor contrast stimulus separated the visual field into two areas (see Fig. 2a and Fig. S2). For the so-called background,
we tiled the visual field with pixels of size 5◦ x 5◦. At each pixel location we drew a temporal frequency f from a normal
distribution (µ = 0 Hz, σ = 1 Hz) and a starting phase λ from a uniform distribution covering 0 to 360◦. Instantaneous luminance
of each pixel i was then determined by a random sinusoid of the form

Ii(t) = 0.5 + 0.5 · cbg ·g(sin(2πfit+λi))

where the experimental parameter cbg runs from 0 to 100% and controls the effective contrast of the background. To increase
average contrast in the visual field, we applied the compressive transform

g(x) =
√

1 +α2

1 +α2x2

where α = 5 determined the degree of curve flattening. Using this method, we generated stochastic and dynamic visual input
at a controllable contrast level without introducing coherent motion (see Fig. 2b).
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The so-called foreground delivered a coherent motion stimulus driving the optomotor response. It consisted of two vertical
stripes that were placed at plus and minus 90◦ from the frontal axis of the fly, each spanning 20◦ in azimuth and the full screen
elevation. We again tiled each stripe with pixels covering an area of approximately 5◦ x 5◦. For each pixel i, luminance was
fixed over time and determined by

Ii(t) = 0.5 + 0.5 · cfg ·g(sin(λi))

where the experimental parameter cfg controls the effective motion contrast and λ was independently drawn from a uniform
distribution covering 0 to 360◦. The pixelated noise pattern smoothly wrapped around the azimuthal borders when moving.
Note that for all instantiations of the stimulus, mean luminance across the visual field was 0.5.
For the basic contrast tuning experiment (Fig. 2a–e; see Supplementary Video 1), we exhaustively measured combinations of
logarithmically spaced values for cfg (1.6, 3.1, 6.3, 12.5, 25, 50, and 100%) and cbg (0, 25, 50, and 100%). At the beginning
of each trial we simultaneously presented the dynamic background and the static foreground pattern. Between 1.5 and 2.0s
following stimulus onset, the foreground pattern moved at a fixed velocity of 50◦s−1. For oscillation experiments (Fig. 2f–h),
the motion period was extended to 6 s. While the foreground pattern was moving, we sinusoidally modulated the contrast of
either fore- or background between 0 and 100% around a mean value of 50% and at the specified temporal frequency (see
Fig. 2f, Fig. S2a,c,e, and Supplementary Video 2). When mapping the spatial extent of the contrast-induced modulation, we set
the modulation frequency to 1 Hz and restricted the background pattern to two stripes of 10◦ width flanking each foreground
pattern (see Fig. S2a and Supplementary Video 3). The spacing (0, 5, 10, 15, 20, 25, 30, 40, or 50◦) determined the distance
between foreground and background. In this experiment, we additionally measured a zero-contrast background condition to
obtain an appropriate modulation baseline. Here, the motion stimulus had a contrast of 25% and luminance in the rest of the
field was set to a uniform 0.5. For the temporal experiments, we measured oscillation frequencies of 0.5, 0.75, 1, 1.5, 2, 3, 4, 6,
8, and 10 Hz (Fig. 2h). Background contrast was zero when measuring foreground tuning; for background tuning, foreground
contrast was set to 25%.
All stimulus patterns were displayed twice throughout optomotor experiments, once in clockwise and once in counterclockwise
direction of motion. We recorded multiple trials to obtain robust turning responses for each fly (15 trials for natural image
stimuli, 20 for contrast tuning, 25 for oscillation stimuli). Presentation order was shuffled across conditions within any trial to
mitigate adaptation effects. Individual experiments lasted between 60 and 120 min.

Data evaluation. To ensure data quality, we excluded all flies whose average forward velocity during the experiment was below
0.25 cms−1 and whose average turning tendency was either slowly drifting or far from 0◦s−1. Fewer than 20% of all experi-
ments failed these criteria. Measurements of ball movement were downsampled via linear interpolation for further processing
(to 50 Hz for natural image stimuli, Fig. 1; 20 Hz for contrast tuning, Fig. 2; 100 Hz for oscillation stimuli, Fig. 2). Trials were
averaged.
Responses for clockwise and counterclockwise motion were subtracted and divided by two to minimize residual deviations from
straight forward walking. Traces for natural image and contrast tuning stimuli were filtered using a first-order low-pass with a
time constant of 100ms. For the contrast oscillation experiments, we evaluated modulation at the relevant carrier frequency by
calculating the zero-padded Fourier Transform of the turning trace and averaging the amplitude spectrum in a window of width
0.2 Hz centered on the target frequency. These values were normalized per experiment such that the modulation peak after
averaging was 100%. We applied a Savitzky-Golay filter (window length 11 samples, 5th order polynomial) before plotting
traces from oscillation experiments; this did not affect analysis.
All analysis for behavioral experiments was performed in custom-written software using Python 3.6, NumPy 1.15, and SciPy
1.1.

Electrophysiology.

Procedure. Our patch-clamp recordings from tangential cells followed established protocols36. Cell bodies of horizontal system
(HS) units were targeted visually through a microscope. We confirmed their preferred direction by stimulation with oriented
moving sine wave gratings before each experiment.

Visual stimulus. Visual stimulation was delivered using a cylindrical projector-based arena as previously described22. Briefly,
the screen of the arena covered a viewing angle of the fly of 180◦ in azimuth and 105◦ in elevation. Stimuli were generated at a
framerate of 180 Hz using green light spanning approximately 500 nm to 600 nm in wavelength. The maximum luminance this
arena achieved was 276±48cd m-2 (mean±s.d. across devices). All visual stimuli were rendered using custom software written
in Python 2.7 and the Panda3D framework. Membrane potential was recorded using custom software written in MATLAB
(MathWorks, MA).
We measured tuning curves for 6 distinct natural image panoramas at 9 logarithmically spaced velocities ranging from 2.5
to 640◦s−1 (Fig. 1). On each presentation, the scene was displayed at a fixed phase, stayed still for 1 s, and then rotated
horizontally for 3s at the chosen constant velocity. Image movement was always in the preferred direction of the HS unit.
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We showed images at their native gamma-corrected mean luminance and contrast (see above). Each condition was repeated 5
times. Conditions and trials were randomly interleaved to exclude adaptation effects along any stimulus dimension.

Data evaluation. Voltage data were digitized at 1,000 Hz. To account for slow drift in potential, we subtracted the average
voltage in a 1s window before stimulus onset from each trace per stimulus condition and trial. Signals were then low-pass
filtered (8th order Chebyshev Type 1) and resampled at 100 Hz. Finally, we averaged cell responses across trials. Cells whose
mean depolarization during full-contrast sine grating presentation in preferred direction remained below 5mV were discarded
before further analysis. All analysis for electrophysiological experiments was performed in custom-written software using
Python 3.6, NumPy 1.15, and SciPy 1.1.

Calcium Imaging.

Procedure. Calcium imaging experiments were performed using custom-built two-photon microscopes as described before22.
The imaging acquisition rate was 11.8 Hz for all experiments, or 23.7 Hz for the experiment in Fig. 4d, with imaging resolutions
ranging from 32 x 32 to 64 x 128 pixels. Image acquisition was controlled using the ScanImage software (version 3.8)37. We
prepared flies as previously described9, 22. Briefly, Drosophila were anesthetized on ice and glued onto a plexiglas holder with
the back of their head exposed to a perfusion chamber filled with Ringer’s solution. Then the cuticula was surgically opened to
allow optical access.

Visual stimuli. Stimuli were presented using the same projector system as in electrophysiological experiments, with additional
long-pass filters (cut-off wavelength of 550 nm) in front of projectors to spectrally separate visual stimulation from GCaMP
fluorescence signals.
To identify receptive field (RF) positions of individual neurons, white noise stimuli of 3 min length were used (except for T4/T5
cells, see below). The stimuli were pre-rendered at 60 Hz and generated as previously described22. Briefly, the spatial resolution
of all white noise stimuli was 2.8◦ of visual angle corresponding to 64 pixels across the 180◦ screen. For all lamina cells, the
same stimulus was used in order to provide a systematic description of their spatiotemporal filtering properties (Fig. S3). This
stimulus had a Gaussian autocorrelation with a standard deviation of approximately 45ms in time and a contrast of 25% around
a mean intensity value of 50 on an 8 bit grayscale. For some cell types, variants of this stimulus with higher contrast or longer
time constants were used if necessary to reliably locate their RFs on the arena. Specifically, we mapped RFs for Tm4, Mi4, Mi9
and Tm9 with a binary stimulus at 100% contrast and a temporal cut-off frequency of 1 Hz. For Mi9, we chose a 1D version of
this stimulus, consisting of horizontal (1.5 min) and vertical bars (1.5 min) instead of pixels.
For T4/T5, we relied on a novel stochastic motion noise stimulus to determine RF coordinates. First, we determined the
preferred direction of a ROI using drifting gratings. Then we displayed a stimulus consisting of 20 randomly distributed
15◦ wide circular windows. Inside of each window, a 30◦ wavelength sine grating drifted at 30◦s−1 in the preferred direction
(Fig. S3x). The positions of these 20 windows were changed and randomly chosen every second over 4 min. Reverse correlation
of T4/T5 responses with the area covered by those windows at a given time point yielded motion-sensitive RFs which were fit
with a Gaussian to determine center coordinates (Fig. S3y). These were verified by presenting 25◦ windows containing full
contrast drifting gratings at the estimated RF center and 6 hexagonally distributed positions around the center. Cells responded
only to the grating in the RF center (Fig. S3z).
For the experiments shown in Fig. 3, a 25◦ circular window around the RF center of a cell defined the foreground whereas the
rest of the screen was defined as background. A drifting sine grating with 30◦ wavelength and a velocity of 30◦s−1 was shown,
starting with medium gray at the center of the RF and moving for 4 seconds after stimulus onset (see Supplementary Video 4).
The contrast of the grating was varied independently between background and foreground. A stimulus matrix of 7 foreground
contrasts (1.6, 4, 8, 16, 32, 64 and 100%) and 6 background contrasts (0, 8, 16, 32, 64 and 100%) at a constant mean luminance
of 0.5 was presented.
For the experiments shown in Fig. 4a–c (see Supplementary Videos 5–7), the foreground contrast was chosen depending on
the cell type as the point where the suppression elicited by 100% background contrast (as measured in Fig. 3) would be
greatest. This was 16% for Mi1, 32% for Tm1, 100% for Tm2 and 64% for Tm3. The background had 100% contrast and 30◦

wavelength. We varied either its direction, its velocity (0, 0.25, 0.5, 1, 2, 4, 8, 16, 32 or 64◦s−1), or restricted its presentation
to an annulus with changing outer diameter. A reference condition with 0% background contrast was added to the stimulus
protocol.
For the contrast-step stimulus experiments shown in Fig. 4d (see Supplementary Videos 8–9), the background grating had 30◦

spatial wavelength, drifted with 90◦s−1 after motion onset and its initial phase was randomized. For Tm2 it had full contrast,
for Tm3 44% contrast. The 25◦ foreground window was 50% gray and we placed a 5◦ wide dot in the center. For Tm3, the
dot was initially black and set to white for a duration of 50ms at a given time interval after motion onset of the background
grating. For Tm2, the dot was initially white and then set to black. The time interval was varied in steps of 50ms from –250ms
to 500ms and then in steps of 100ms. Negative values indicate that the surround grating started to move after the dot changed
its intensity. Additional time intervals were –500ms and –1s. The block experiments in Fig. 4f–j and Fig. S6 were performed
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with the same frequency tuning stimuli as before (Fig. 4b). For the contrast tunings, the same stimuli as in Fig. 3 were used but
with background contrast of either 0 or 100% only.
All stimuli were repeated three times in randomized condition order to prevent adaptation to any stimulus features.

Data evaluation. Calcium imaging stacks were registered in order to correct for translational movement artifacts of brain tissue
using custom-written software. Responses of individual neurons were extracted by manually selecting small regions of interests
(ROI) encompassing individual anatomical structures. For T4 and T5 these corresponded to single or few axon terminals; for
Mi and Tm cells, individual axon terminals could be identified clearly through visual inspection. For ON pathway medulla
cells, signals were measured in layer 10 of the medulla, for OFF pathway medulla cells in layer 1 of the lobula. For lamina cells
L1–5, signals were measured at axon terminals in corresponding layers 1–5 in the medulla. For T4/T5, signals were recorded
in the lobula plate.
To reconstruct RFs, calcium signals were mean subtracted and reverse-correlated with the stimulus as previously described22.
1D Gaussians were fit to horizontal and vertical cross-sections of spatial receptive fields to obtain precise RF coordinates. For
lamina cells (Fig. S3), all reconstructed RFs were peak-aligned and analysed as previously22. For 1D projections of spatial
RFs (Fig. S3f–j), an average of 1D projections of 2D RFs along 3600 evenly distributed projection angles between 0◦ and
360s−1 was calculated. This enhanced the visibility of the center-surround structure but neglected possible anisotropies in the
spatial structure of RFs24. For impulse responses (Fig. S3k–o) the temporal receptive field of the 9 center pixels was averaged;
frequency responses (Fig. S3p–t) are the Fourier-transformed impulse responses. Deconvolution (Fig. S3u) was performed by
dividing the frequency spectra with the frequency response of a 1st order low-pass filter with time-constant 350ms as a proxy
for calcium indicator dynamics22, 38.
Relative fluorescence changes (∆F/F ) from raw calcium traces were obtained by adapting an automatic baseline detection
algorithm39. Briefly, raw data were first smoothed with a Gaussian window (full-width at half maximum, FWHM = 1s). Then,
minima within a 90s long sliding window were extracted and the resulting trace smoothed with a Gaussian window (FWHM =
4min). The result was used as a dynamic baseline F0 and ∆F/F values were computed as ∆F/F = (F −F0)/F0.
For further evaluation only recordings with good signal-to-noise ratio (SNR) were taken. The criterion was that the standard
deviation of the mean signal averaged over trials had to be at least 120% of the mean standard deviation over trials. This
criterion filtered out cells with an inter-trial variance larger than the typical cell response (caused by movement artifacts or
photobleaching). In addition, the standard deviation of the mean signal had to be larger than 25% ∆F/F . On average, 90%
of all cells measured passed these criteria with slight variations due to different levels of GCaMP expression depending on the
genotype.
For experiments with drifting gratings, the driving foreground contrast frequency was 1 Hz. For these experiments, we evaluated
the amplitude of the 1 Hz component of the signal. This was achieved by computing the Fourier coefficient at that frequency,
using the equation

F =
∣∣∣ 1
T

∫ T

0
dts(t)e−2πi·1Hz·t

∣∣∣

where s(t) denotes the signal and T the stimulation time. For experiments in Fig. 4d, we evaluated the peak response of the
calcium signal.
Amplitudes were averaged over trials and normalized to the maximum, then averaged over cells and normalized to the maxi-
mum. For Fig. 4a–c,g,i and Fig. S6a,b, amplitudes were normalized to the response amplitude for the reference stimulus.

Modeling.

Natural motion stimuli. To evaluate the performance of our models under naturalistic conditions, we generated a synthetic set
of motion sequences that closely mimicked the experimental stimuli described above. For each sequence we translated 360◦

images at a fixed horizontal velocity through a virtual window spanning 100◦ in azimuth. Given their panoramic nature, scenes
wrapped around seamlessly at each border. Movies were generated at a time resolution of 100 Hz. To reduce jitter for small
velocities, we linearly interpolated non-integer pixel shifts. Fly eye optics were simulated ahead of time. We blurred each
frame with a Gaussian filter (full width at half-maximum of 4◦) to approximate the acceptance angle of each photoreceptor11

and then sampled individual signals from a rectangular grid with isotropic spacing of 4◦ (yielding 23 x 17 receptor signals per
frame for data set A and 23 x 23 for data set B, as described above).
For the comparison in Fig. 1, we modelled the exact stimulus parameters of the electrophysiological experiment including
an approximation of the image’s starting phase on the arena. We generated sequences for our convolutional detector models
(Fig. 5) as follows: The set of 20 panoramic images was randomly split into a training group consisting of 15 scenes and a test
group consisting of 5 scenes. For each sequence, a random image was drawn from the appropriate set. The stimulus lasted 5 s.
Between 1 and 4 s, scene velocity stepped from zero to a fixed value drawn from a Gaussian distribution with s.d.= 100◦s−1.
The initial window phase followed a uniform distribution spanning 360◦. To further augment the data set, we flipped the
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underlying image along the horizontal and vertical axes with a probability of 50%. We generated 8,192 such sequences for the
training set and 512 for the test set.

Experimental stimuli. For all modelling experiments in Fig. S5, we replicated the experimental protocols described above as
precisely as feasible. All stimuli were projected onto a field of view that spanned 120◦ in azimuth and 90◦ in elevation at a
spatial resolution of 1◦ for calcium imaging experiments and 0.5◦ for behavioral experiments. Frames were then blurred and
sampled as described for natural image stimuli. Brightness values for all stimuli ran from 0 to 1 and we fixed the mean level
for contrast stimuli at 0.5. For calcium imaging stimuli, we always placed the foreground disk at the center of the field of view.
Patterns were rendered and processed at 100 Hz.
Tuning curves for the basic contrast experiment (Fig. S5b–d), the frequency experiment (Fig. S5f), and the background diameter
experiment (Fig. S5g) were estimated from a single trial per parameter setting. For the background orientation experiment
(Fig. S5e) and the step interval experiment (Fig. S5h) we averaged 100 trials with randomized background pattern phases to
approximate the experimental phase stochasticity that results from individual cell receptive fields being located in different
parts of the visual field. We averaged 200 trials for the behavioral stimuli (Fig. S5k) to account for the intrinsic stochasticity of
the stimulus and to generate reliable model responses. Throughout Fig. S5, we calculated point estimates for all tuning curves
exactly as described for the behavioral and calcium data.

Tuning curve normalization model. The analytical model for divisive normalization (Fig. 3v–x) resembles previous formulations
in the literature7, 40, 41. The steady-state response R of a neuron is given by

R(cfg, cbg) =
Lfgc

p
fg +Lbgc

p
bg

cp50 + cpfg +Sp

where cfg and cbg are foreground and background contrast and Lfg and Lbg are weight factors defining the respective amount
of linear contribution of foreground and background to the response. The semi-saturation constant c50 determines the contrast
at which the cell responds with 50% strength and the parameter p defines the steepness of the saturation curve.
The normalization term

S = wpool · cqbg
gives the amount of divisive surround suppression which is proportional to background contrast to a power of q, which accounts
for possible non-linear scaling behaviour, with a proportionality weight constant wpool . In this model, the normalization index
wpool/c50 quantifies how much the sigmoidal tuning curve shifts to the right when cbg is increased from 0 to 1 (full contrast),
in relation to the semi-saturation constant. It thus describes the fold decrease in contrast sensitivity between no background
contrast and full background contrast.
For evaluation of the normalization index (Fig. 3x), this model was fit individually for each cell. Parameter fits to the average
tuning curve per cell type are listed in Table S2. Since tuning curves from individual cells are subject to measuring inaccuracies,
we cross-validated fit quality. We optimized model parameters for the average tuning curve of 50% of all measured cells per
type and evaluated variance explained for the other 50%. This was repeated 100 times with shuffled training and validation
sets. For all cell types, cross-validated variance explained was more than 90% (see R2

DivisiveNorm in Table S2). When we
repeated this procedure with a fully linear model

R(cfg, cbg) = Lfgcfg +Lbgcbg

variance explained dropped substantially for all units except L3 (see R2
linear in Table S2).

This analysis was implemented using Python 2.7 and NumPy 1.11.3. Optimization of model parameters was performed using
the L-BFGS-B algorithm in SciPy 0.19.0.

Data-driven detector model. The reference model in Fig. 1 was based on a standard implementation of the Reichardt-type
correlational motion detector11. Briefly, all receptor signals of the two-dimensional input grid (see above) were filtered with
a first-order high-pass (τ = 150ms). We then multiplied each local signal with the delayed horizontal neighbor (first-order
low-pass, τ = 50ms). This was done twice in a mirror-symmetrical fashion and resulting output was subtracted. Finally, we
summed across all local detectors to derive a model of tangential cell output. For the illustration in Fig. S1f, we simulated
the receptor array at the full image resolution without blurring. These models were implemented in Python 3.6 using PyTorch
0.4.1.
We simulated time-resolved cell models for three basic response types: a purely linear low-pass unit (modelled after L3;
Fig. S5b), a strongly normalized band-pass unit (modelled after Mi1; Fig. S5c), and a weakly normalized low-pass unit (mod-
elled after Mi9; Fig. S5d). We hand-tuned parameters based on our and previous work22 to qualitatively match response
properties of the corresponding cell. Models were implemented as signal processing cascades (see Fig. S5a). First, signals
at each location in the field of view were filtered with a spatial difference of Gaussians kernel that had a central full-width at
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half-maximum (FWHM) of 6◦ and a FWHM of 20◦ in the surround. In accordance with results from receptive field mapping
(Fig. S3), the weight ratio between surround and center was 100% for low-pass units and 50% for the band-pass model. Full-
field flashes would thus produce no activation in low-pass units. This was followed by first-order temporal filters: a single
low-pass filter for low-pass units (τ = 80ms) or serial low- (τ = 50ms) and high-pass filters (τ = 150ms) for band-pass units.
We then left the signal as is for ON cells or sign-inverted it for OFF cells and half-wave rectified the output by setting all
negative values to zero.
For normalized cell models, we calculated local input Pi from the normalization field by pooling across rectified signals xi
with a Gaussian kernel (FWHM = 30◦). Final output was then calculated using the divisive normalization equation

f(xi) = xpi
cp50 +xpi + (wpoolPi)p

where i indexes across points in space and time, c50 determines baseline sensitivity, exponent p regulates the static response
non-linearity, and wpool adjusts sensitivity to the normalization field signal. We manually tuned normalization parameters for
the band-pass (c50 = 0.012, p = 1.3, wpool = 1.5) and the low-pass cell (c50 = 0.12, p = 1.1, wpool = 3.0) to match critical
features of the empirical contrast tuning curves (Fig. S5c,d).
To generate simulated T4 responses (Fig. S5i,j), we multiplied the output of spatially adjacent low- and band-pass units. For
the linear reference model we bypassed the final normalization step in both arms of the detector. We built the LPTC model
(Fig. S5k) as a spatial array of T4 and T5 cells covering the full field of view, analogously to the previously described two-
quadrant detector42. For the T5 model, we used two OFF-sensitive input units with identical parameters as for ON cells. Output
from syndirectionally tuned T4 and T5 motion detectors was summed and subtracted from a mirror-symmetric, oppositely tuned
array to produce LPTC model output. The same model was used to simulate natural scene responses (Fig. S5l–n). All models
in Fig. S5 were implemented using Python 3.6 and NumPy 1.15.
To quantify the robustness of velocity tunings for models and LPTCs (Fig. S5n), we calculated per-velocity coefficients of
variation as the ratio between response standard deviation across images and response mean across images. For neural data, we
used cell-averaged mean potential to estimate these parameters.

Task-driven detector model. We implemented the trained detector model as a four-layer convolutional neural network consisting
of linear input filters, a normalization stage, local multiplication, and linear spatial summation. In contrast to typical deep
architectures used for object recognition, this network processed three-dimensional inputs spanning two dimensions of space
as well as time.
First, receptor signals of shape 23 x 17 x 500 or 23 x 23 x 500 (azimuth, elevation, time), depending on the data set, were
processed in two independent convolutional channels. The convolutions were temporally causal and spatiotemporally separa-
ble. Each of the channels was composed of a 3 x 3 x 1 spatial filter (covering 3 simulated receptors in azimuth and elevation)
followed by a temporal filter of shape 1 x 1x 30 (corresponding to 300ms at the chosen time resolution of 100 Hz). Convolu-
tions had no bias parameter. In contrast to standard Reichardt detectors, each filter weight was allowed to vary freely during
optimization.
Second, we passed local output signals xi (where i indexes points in space and time) through one of three types of local
normalization: a simple pass-through (termed “linear”)

f(xi) = xi

a static and contrast-independent compression stage (termed “static”)

f(xi) = tanh(xi/c)

where the trained parameter c determines the sensitivity of the saturating function, or an adaptive saturation stage (termed
“dynamic”)

f(xi) = tanh(xi/(c+Pi))

where c again determines the baseline sensitivity and Pi is the instantaneous output of a 11 x 11 x 1 spatial filter (centered on the
location of xi and operating on full-wave rectified output signals

∣∣xi
∣∣; see Fig. 5a). This models the fast and spatially distributed

normalization we observed during experiments. We chose the hyperbolic tangent because it generalizes to positive and negative
input values, the transformation closely resembles the normalization model described above, and it is more commonly used in
the field of deep learning. Spatiotemporal filters were optimized independently for each of the two channels while the sensitivity
parameter c was shared.
Third, we then combined signals from both channels in a EMD-type scheme where adjacent signals were multiplied and output
from two mirror-symmetric pairs was subtracted. This stage was parameter-free. Finally, resulting signals were summed across
space and multiplied by a trained scalar amplification factor to generate the final time-resolved output of the model. The base
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model without normalization had 79 trainable parameters; static normalization added one parameter and dynamic normalization
another 242.
We trained each model architecture to estimate the true velocity of translation stimuli using automatic differentiation, back-
propagation, and stochastic gradient descent. The loss function we applied was the mean squared error (MSE) between model
output and current velocity of the scene. Weights were updated using the Adam optimizer43, with parameters set to standard
values (β1 = 0.9, β2 = 0.999, ε= 10−8). Models were trained over 800 epochs with a batch size of 128; no early stopping was
used. We set the initial learning rate to 0.025 and divided it by a factor of 4 after 400, 500, and 600 steps. Input convolutional
layers were initialized to random values drawn from a uniform distribution. For the pooling receptive field, we initialized each
weight with 0.0001 and the sensitivity factor c with 1.0. Static sensitivity as well as pooling weights were constrained to be
positive. In the dynamic normalization model, we applied a L2 penalty of 400.0 to the spatial weights of the pooling stage.
Hyperparameters were determined in preliminary experiments with an independent image set. We optimized each architecture
16 to 23 times with different random number generator seeds to assess reliability and did not select models post hoc.
We implemented all architectures in Python 3.6 using PyTorch 0.4.1 for automatic differentiation. Depending on model type, a
single optimization run took between 6 and 14 hours on an NVIDIA Titan Xp GPU.

Statistics. Unless indicated otherwise, error bars show bootstrapped 68% confidence intervals around the mean (estimated as
corresponding distribution percentiles after resampling the data 1,000 times). All statistical tests were two-tailed. Normality of
data distributions was assessed visually but not tested formally. Sample sizes were not based on power analysis but predeter-
mined in line with standards in the field. We did not blind experimenters to genotypes or conditions during data gathering and
analysis.

Code availability. Code for analysis and modelling is available upon request to the authors.

Data availability. Data from behavior, physiology, and modelling are available upon request to the authors.
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3 D I S C U S S I O N

Drosophila melanogaster is an appealing model organism for the investiga-
tion of motion vision circuits. This is not only due to the fact that fruit
flies show reliable and stereotypical motor reflexes in response to visual
motion but also because the availability of a diverse neurogenetic toolset for
circuit manipulation offers unparalleled opportunities to bring theoretical
and computational approaches directly to the test bench for experimental
verification.

For this thesis, I and my collaborators have applied some of these methods
to several previously unsolved problems.

First, we systematically mapped the functional properties of all previously
known input neurons to T4 and T5 cells using the same stimulus. Some of
the inputs had been described before, but only subsets of them and investi-
gated by means of different methods and stimuli. The medulla neurons Mi4
and Mi9 had not been functionally characterized before I started working
on my doctoral projects. Using computer simulations, we could show that
Mi4 and Mi9 would be ideally suited to constitute the two delayed arms of
a three-arm hybrid motion detector scheme due to their distinct temporal
filtering characteristics.

Furthermore, we looked at glutamate signaling properties in the fly
motion vision circuitry. We confirmed the glutamatergic identity of Mi9
neurons. By using a glutamate indicator which has markedly faster kinetics
than common calcium indicators we could measure temporal processing
properties of this cell type with significantly higher precision. The results
were in line with our predictions from the first study which were based only
on post-hoc deconvolution of calcium responses with a putative calcium
indicator kernel.

In another study, we showed that a class of visual projections neurons,
LC10, computes relative motion in order to relay positional information
about conspecific flies and possible mating partners to courtship circuits in
the male brain. This is a compelling example of how local motion cues can
be exploited for extraction of more complex visual features.

Finally, we showed that input neurons to T4 and T5 adapt their dynamic
range to the prevailing contrast level of the stimulus. Implementation of a
contrast adaptation stage renders models of the fly motion vision circuitry
robust to the natural contrast fluctuations pervasive in natural images. The
mechanism resembles divisive contrast normalization, a neural computation
which has been described abundantly in the vertebrate visual system. This
is the first demonstration of contrast normalization in the invertebrate visual
system and hence provides another example for evolutionary convergence
in neural networks. Our findings represent an important step towards
understanding robust motion processing of realistic inputs.
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160 discussion

Most of the calcium imaging and electrophysiology experiments described
in this thesis have been conducted in tethered fruit flies placed in a cylin-
drical projector-based stimulation arena for display of visual stimuli. The
design of this stimulation arena, in a way that it can be replicated for stan-
dardization of visual stimuli across experimental set-ups, was a major part of
my doctoral work. Additionally, I programmed a suitable software front-end
for control and design of visual stimuli as well as for synchronization of the
experimental data with the stimulus timing and subsequent data analysis.

Here, I will discuss the scientific implications of the work that has been
presented in this thesis in light of more recent research published after
I started my doctoral work. Moreover, this chapter will also provide a
short summary about function, advantages and limitations of the new visual
stimulation system.

3.1 the emergence of direction selectivity

3.1.1 Non-linear interactions

Standard models used to explain the emergence of direction selectivity
have been based on either an enhancing or a suppressive non-linear in-
teraction between two spatially offset input arms with distinct temporal
processing properties (see Figure 8). As elaborated above (see Section 1.2.2),
calcium imaging experiments in T4 led to the proposal of the hybrid detector
which combines both types of non-linear interactions into a three-arm model
of motion detection (see Figure 9) (Haag et al., 2016; Leong et al., 2016).
Recently published electrophysiological recordings of T4 cells in response to
apparent motion stimuli, however, did not find an enhancing non-linearity
in T4 voltage signals and thus argued for pure inhibitory interactions to
account for direction selectivity (Gruntman et al., 2018). The difference
between those studies could, however, be attributed to the size of the
stimulus used. In a follow-up study, Haag et al. (2017) titrated the size-
dependence of preferred direction enhancement in T4 and found significant
supra-linear interactions only for stimuli larger than about 4-5◦. Since
Gruntman et al. (2018) used only ~2◦ wide bars, this might explain why
they did not observe preferred direction enhancement in T4. Another pos-
sibility is that the non-linear enhancement clearly seen in calcium imaging
experiments originates from non-linear transformation of voltage to calcium
signals. Since calcium concentration is directly related to neurotransmitter
release in a synapse, non-linearities in this transformation might indeed be
of physiological relevance for the effective output signal of T4 cells.

In the OFF-pathway, similar experiments have now been conducted and
have confirmed the co-occurrence of preferred direction (PD) enhancement
and null direction (ND) suppression in calcium signals also for T5 cells
(Haag et al., 2017). Another study used a voltage indicator in order to
measure T5 responses to stationary and moving sinusoidal gratings, a
stimulus protocol which allows for linear systems analysis in a similar way
as with apparent motion stimuli (Wienecke et al., 2018). This study found
voltage responses in T5 to be completely described by a linear model based
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on a spatiotemporally tilted linear receptive field and attributed all non-
linearities to the voltage-to-calcium transformation. Gruntman et al. (2018)
pointed out that bilobed and tilted spatiotemporal receptive fields need
not necessarily result from a hybrid mechanism, but can also result from
asymmetric inhibition of an excitatory subfield alone. On the other hand,
these options are not mutually exclusive: lateral excitatory inputs could still
add to the excitatory subfield in order to shape the space-time orientation
of the receptive field and thus increase direction selectivity. However, it
is not yet clear if such linear-nonlinear model would be able to account
quantitatively for all observed T5 response properties at the same time.
Electrophysiological recordings in T4 have clearly argued for intrinsic non-
linearities already at the level of membrane voltage at least regarding ND
suppression. Similar experiments need to be performed in T5 in order to
address the uncertainties regarding the nature of non-linear interactions in
these cells.

Ultimately, in order to fully understand the emergence of direction selec-
tivity in T4 and T5, one has to consider also the biophysical and anatomical
constraints that are put on our models of motion detection. Does the
anatomical arrangement of input neurons match their temporal filtering
properties according to models of motion detection? Which neurotransmit-
ters are released by the input elements? How does activation or silencing of
these inputs affect T4 and T5 neurons? Only these questions can eventually
pinpoint the exact mechanism of how direction selectivity emerges on T4

and T5 dendrites.

3.1.2 Spatiotemporal receptive fields of the input cells

Asymmetric temporal filtering of spatially offset input signals is a consti-
tuting element of motion detector models. While it has been proposed that
temporal delays could be implemented via slow receptors on T5 dendrites
(Shinomiya et al., 2014), most studies on fly motion detection have argued
for an implementation through intrinsically different temporal filtering prop-
erties of the input neurons to T4 and T5 (Behnia et al., 2014; Serbe et al., 2016;
Strother et al., 2017). The two possibilities are not mutually exclusive, but
further insights into the synaptic mechanisms between presynaptic partners
and T4 and T5 are necessary. In contrast, a lot is known about the functional
properties of the input elements.

Before I started my doctoral work, functional characterization had already
been performed for subsets of input neurons, but using different methods
and stimuli. In the ON-pathway, spatial and temporal filtering properties of
Mi1 and Tm3 cells had been measured using electrophysiology and white
noise stimuli (Behnia et al., 2014) as well as using voltage imaging and full
field flicker stimuli (Yang et al., 2016). However, Mi4 and Mi9 neurons
had not been functionally described before. In the T5-pathway, Meier et al.
(2014) and Serbe et al. (2016) had characterized Tm1, Tm2, Tm4 and Tm9

in calcium imaging experiments using flickering local bars of different sizes
and durations. While they found all of these cell types to possess local
receptive fields with inhibitory surrounds, Fisher et al. (2015a) described
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Tm9 as a wide-field neuron using stochastic stimuli. Electrophysiological
studies had been conducted for Tm1 and Tm2 using white noise (Behnia
et al., 2014) as well as voltage imaging experiments using large field flicker
(Yang et al., 2016).

Although most of these studies are in qualitative agreement, it is hard to
compare results quantitatively due to the specific drawbacks of each method.
Limited temporal resolution and intrinsic non-linearities of calcium and
voltage indicators inevitably lead to distortions in imaging experiments. On
the other hand, electrophysiology might not reflect the underlying axonal
responses because of the large distance between axons and cell bodies in
Drosophila. The use of different stimuli is another source of uncertainty: Non-
linear cell properties will be reflected in step responses to flicker stimuli but
not in receptive field reconstructions from stochastic stimuli since reverse
correlation extracts only linear response components. Additionally, neural
adaptation processes such as adjustment of luminance sensitivity or contrast
gain control might lead to differentially adapted cells for different stimuli.
Overall, in order to build realistic circuits models involving all cell types,
there was the need for a dataset comprising a functional characterization of
all input neurons assessed on equal grounds.

In Manuscript 1, we followed a systematic approach for mapping the
spatiotemporal receptive fields of all previously known input neurons to
T4 (Mi1, Tm3, Mi4, Mi9) and T5 (Tm1, Tm2, Tm4, Tm9) using calcium
imaging and white noise stimuli. We find local receptive fields for all
neurons, confirming earlier results (Behnia et al., 2014; Serbe et al., 2016) but
in contrast to Fisher et al. (2015a) regarding Tm9. Interestingly, all neurons
except of Tm3 show pronounced center-surround antagonism in their spatial
receptive fields. With respect to their temporal processing properties, they
seem to subdivide in two main classes: While Mi1, Tm3, Tm1, Tm2 and
Tm4 have transient band-pass filter characteristics, Mi4, Mi9 and Tm9 exhibit
low-pass filter properties. Differences among the elements of one class, e.g.
between band-pass filter neurons Mi1 and Tm3, are minute in comparison
with differences between these two distinctive main classes.

Intriguingly, low-pass elements seem to possess a stronger spatial sur-
round, virtually cancelling out the center completely. Similar results have
been obtained in more recent studies by measuring step responses to
flashing local discs or bars (Strother et al., 2017; Salazar-Gatzimas et al.,
2018). It will be interesting to investigate within the framework of predictive
coding and redundancy reduction whether for these cell types the lack of
temporal antagonism due to their low-pass characteristics is related to an
enhancement of spatial antagonism.

The polarities of the receptive fields match the assignment of cell types to
either ON- or OFF-pathway, with the exception of Mi9 which possesses an
OFF-center. We found Mi9 axon terminals to co-localize with the vesicular
glutamate transporter VGlut indicating its glutamatergic phenotype (see
Manuscript 3). Sign-inversion through glutamate-gated ion channels could
therefore render Mi9 effectively an ON-cell. The polarity of Mi9 could
then be explained by reciprocal inhibitory connections between Mi4 and
Mi9 (Takemura et al., 2013). Indeed, a recent connectomics study revealed
the GABAergic identity of Mi4 as well as confirmed Mi9 to express VGlut
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and its reciprocal connectivity with Mi4 (Takemura et al., 2017). Although
the polarity of Mi9 can be explained in light of these findings, the specific
functional advantage of such sign-inversion remains intriguing.

3.1.3 Anatomical arrangement of the input elements

Do the functional characteristics of the input elements map onto models
of motion detection with respect to their anatomical arrangement along T4

or T5 dendrites?
Under the premise of a three-arm hybrid detector of motion detection, we

tested the direction selectivity of different anatomical arrangements of input
elements for both ON- and OFF-pathway (see Manuscript 1). Our computer
models were agnostic to the sign of the synapses because neurotransmitter
information was not yet available at that time. For T4, our simulations
predicted that primarily configurations with low-pass filters, e.g. either Mi4
or Mi9 on the lateral arms of a three-arm detector would result in a high
degree of direction selectivity. For T5, we found that placing the low-pass
filter Tm9 on the suppressive side and Tm2, which is mildly faster than Tm1

and Tm4, in the center resulted in a high direction selectivity index.
Overall, we note that maximizing the difference of temporal filtering prop-

erties between neighboring input channels leads to high direction selectivity
of simulated motion detectors. This is in stark contrast to previous studies
which argued for two arm models of motion detection despite only small
temporal delays between the input channels (Takemura et al., 2013; Behnia
et al., 2014). None of these studies, however, addressed the requirement of
high directional selectivity already at the level of the half-detector before the
subtraction stage (see Figure 8). Measuring the model output after subtrac-
tion of two mirror symmetric half-detectors always yields highly direction
selective responses regardless of the performance of the half-detectors (Haag
et al., 2016).

Are our predictions supported by the actual connectivity in the fly
medulla? Previous electron microscopic reconstructions comprised too small
volumes to reliably map cross-column connections or trace the identity of
neurons through the internal optic chiasma (Takemura et al., 2013; Shi-
nomiya et al., 2014). In order to overcome these issues, recent electron
microscopy studies have reconstructed larger volumes and hence provided
a more complete connectivity matrix of the motion vision pathway in
Drosophila (Takemura et al., 2017; Shinomiya et al., 2019).

These efforts have revealed that input synapses of different cell types
are highly segregated along the T4 dendrite and provide spatially offset
input signals from neighboring columns. While Mi9 synapses cluster on
the tips of the dendrite, Mi1 synapses accumulate in the center region
and Mi4 synapses are mostly found towards the base of the dendrite (see
Figure 14 a). This is in line with our theoretical considerations that Mi9 or
Mi4 should be placed laterally in a three-arm detector. Additionally, the
reconstructions have shown input synapses from C3 and CT1 cells onto the
base of the T4 dendrite. Intriguingly, they also found synaptic connections
from neighboring T4 cells of the same subtype onto the tips of the dendrite.
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Figure 14: Spatial arrangement of synaptic connections on T4 and T5 dendrites|a,
Schematic of the spatial distribution of input synapses along the T4 dendrite. The
dendrite is partitioned into three compartments (dashed lines). b, Same as in a, for
the T5 dendrite. c, Schematic of a possible implementation of a three-arm hybrid
detector for both pathways, as inspired by the input synapse spatial distributions
found on T4 and T5 dendrites. Graphics taken from Shinomiya et al. (2019) / CC
BY.

For T5 cells, clustering of Tm9 synapses on the tips of T5 dendrites
has been confirmed, as previously described (Shinomiya et al., 2014, 2019).
However, Tm1 synapses were shown to aggregate together with Tm2 and
Tm4 synapses in the central compartment of the dendrite. Additionally, and
in analogy to T4 cells, Shinomiya et al. (2019) found reciprocal CT1 synapses
on the base of the T5 dendrite and input from syndirectional T5 cells on the
tips of the dendrite (see Figure 14 b). This arrangement is not in agreement
with our predicted configuration from computer simulations because here
Tm9 was placed on the position of the suppressive arm corresponding to the
base of the dendrite. However, the finding of Tm9 synapses on the tips of
the dendrite conforms with our notion that temporally differentially tuned
inputs should be placed on separate arms of the detector. CT1 was not yet
known to be a prominent synaptic input partner cell to T5 at the time of our
first study.

Overall, the anatomical arrangement of input neurons along T4 and
T5 dendrites matches their expected distribution in a three-arm model of
motion detection (see Figure 14c). However, a functional description of
CT1 (see next section) and C3 cells is necessary in order to test if these
cell types fit into the scheme as well. In addition, the model postulates quite
specifically the sign of the respective synaptic connections. The next section
will provide an overview over recent insights into synaptic and molecular
aspects of this circuit.

3.1.4 Synaptic mechanisms of motion detection

ON-pathway

As indicated above, immunolabeling and transcriptomics experiments
suggest that Mi9 uses glutamate as a neurotransmitter (see Manuscript 3)
(Takemura et al., 2017; Davis et al., 2018). Sign-inversion at the Mi9-T4

https://creativecommons.org/licenses/by/4.0/
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synapse could therefore switch the effective polarity of Mi9 postsynaptic
signals. Such sign-inverting synapse would require the presence of a
glutamate gated chloride channel in T4. Indeed, there is increasing evidence
that T4 neurons express GluClα channels (S. Fendl, personal communication)
(Pankova and Borst, 2016; Davis et al., 2018). GluClα has been found to me-
diate glutamatergic inhibition in Drosophila and other invertebrates (Cleland,
1996; Liu and Wilson, 2013; Mauss et al., 2014, 2015). An implementation of
preferred direction enhancement through release from inhibition instead of
simple excitation has been suggested to lead to non-linear signal amplifica-
tion of subsequent excitatory signals by increasing the input resistance in a
passive membrane model of a three arm detector (Borst, 2018).

In the central column, T4 is predominantly contacted by Mi1 and Tm3

cells, which have been shown to provide cholinergic excitatory input
(Pankova and Borst, 2017; Takemura et al., 2017). This fits well into a
three-arm hybrid model of motion detection.

Finally, immunolabeling results suggest that ND suppression in T4 could
be implemented through GABAergic inhibition from Mi4 synapses at the
base of the dendrite (Takemura et al., 2017). Additional suppression might
come from GABAergic CT1 neurons (Takemura et al., 2017). CT1 is a giant
tangential cell that sends it neurites to every column of the lobula and of the
medulla. Only recently, it has been shown that this cell type exhibits such
a high degree of compartmentalization that each neurite terminal can be
seen as an independent computational compartment. Individual terminals
possess distinct and local receptive fields, even though all of them belong
to the same CT1 cell (Meier and Borst, 2019). Intriguingly, CT1 receptive
fields in the medulla are ON-selective while they have OFF-polarity in the
lobula. This renders CT1 a good candidate for null direction suppression
via synaptic inhibition in both T4 and T5 cells. In addition, C3 cells provide
GABAergic inhibition on the same side of the T4 dendrite (Kolodziejczyk
et al., 2008; Takemura et al., 2017). A functional characterization of this cell
type is still missing.

The anatomical arrangement of input cells corresponds conceptually well
to a three-arm model of motion detection. Yet, direct proof for the validity
of this model would have to come from activation or silencing experiments.
Blocking synaptic output of Mi1 or Tm3 cells using genetically targeted
expression of shibirets1 leads to disruption of drifting grating and edge
responses in T4 cells and of optomotor behaviour (Strother et al., 2017).
This resembles previous findings of Ammer et al. (2015) and matches
expectations since blocking the central arm of the detector should heavily
impair its function. However, silencing Mi4 or Mi9 did not diminish
direction selective responses in T4, but had modulatory effects on temporal
tunings (Strother et al., 2017). Blocking T4-T4 synaptic connections did
not have discernible effects on T4 direction selectivity (Haag et al., 2016).
Besides ineffective silencing tools, a possible explanation for this lack of a
blocking effect for these cell types might be the fact that excitation as well
as inhibition are implemented redundantly by more than one cell type on
either side of the T4 dendrite. To address this possibility, future experiments
should also test for combinatorial blocks of different cell types. Another
problem is that blocking only one side of the detector is not expected to lead
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to complete abolishment of T4 responses but only to partially decreased
direction selectivity. The use of apparent motion stimuli instead of gratings
or edges in blocking experiments might therefore be more instructive here.
Recording responses to apparent motion in T4 while blocking specific input
cell types could distinguish between effects on only supra-linear or sub-
linear response components in T4.

Another experimental approach is to activate combinations of input cell
types in order to pinpoint pairs of neurons which interact non-linearly on
the T4 dendrite. Strother et al. (2017) optogenetically activated combinations
of either Mi1 or Tm3 together with Mi1, Tm3, Mi4 or Mi9 cells using the red-
shifted channelrhodopsin Chrimson. They observed substantial supra-linear
integration of Mi1 and Tm3 signals in T4 calcium responses. Since a motion
detector based on only these two cell types has already been ruled out by
anatomical analysis, the observed non-linear interactions are likely due to
other intracellular mechanisms or to the voltage-to-calcium transformation.
Activating either Mi4 or Mi9 together with Mi1 or Tm3 did not lead to supra-
linear responses which is expected if Mi4 and Mi9 are inhibitory. In order to
test for supra-linear interactions between Mi9 and Mi1 or Tm3, one would
have to hyperpolarize Mi9 but depolarize the other cell type which might be
possible by appropriate choice of spectrally separable optogenetic agents.

OFF-pathway

In the OFF-pathway, central excitation seems to be provided by Tm1,
Tm2 and Tm4 which all have been characterized as cholinergic neurons
(see Figure 14b,c) (Takemura et al., 2011; Shinomiya et al., 2014). PD
enhancement might be implemented through cholinergic Tm9 cells which
provide input from the neighboring column (Shinomiya et al., 2014). Thus,
sign-inversion as in the ON-pathway is not necessary here. Supra-linear
interactions between Tm9 and the central inputs could then be due to
voltage-gated ion channels. Alternatively, central inputs could be modulated
by a ligand-gated ionotropic receptor under control of a second messenger
cascade downstream of a G-coupled receptor between Tm9 and T5. Instead
of a G-coupled receptor, another possibility is that ligand-gated calcium
channels could regulate the sensitivity of receptors for central input signals.

Single cell blocks of Tm1, Tm2 or Tm4 did not have strong deteriorating
effects on LPTC responses to OFF-edges (Serbe et al., 2016). This can be
readily explained by their redundant function in the center of the motion
detector. Silencing of Tm9 partially reduced LPTC responses and strongly
diminished T5 calcium responses arguing for an important role of Tm9 in
OFF-edge motion detection (Fisher et al., 2015a; Serbe et al., 2016). This is
accompanied by combinatorial block results which show that double cell
blocks involving only Tm1, Tm2 or Tm4 cells only moderately impairs
OFF-edge LPTC responses, while combinations also involving Tm9 have
the strongest effect (Serbe et al., 2016). Similar experiments need to be
performed using T5 calcium or voltage signals as a read-out.

With synapses located at the base of the T5-dendrite, CT1 could provide
inhibition for ND suppression which is in line with the OFF-polarity of CT1

terminals in the lobula (Meier and Borst, 2019). There is no other inhibitory
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cell type with a similar spatial synapse distribution along T5 dendrites.
Therefore, it is expected that blocking CT1 should effectively abolish ND
suppression in T5.

Optogenetic activation experiments have not yet been conducted in the
OFF-pathway.

Outlook

While the anatomical arrangement of input cells and their neurotransmit-
ter profiles strongly speak in favor of a three-arm hybrid mechanism in both
pathways, it is not yet clear which specific biophysical mechanisms lead
to non-linear interactions between the input channels. It has been shown
that ND suppression can result from inhibition in a passive conductance-
based model of the T4 dendrite (Gruntman et al., 2018). Importantly, the
morphology of the dendrite does not seem to play a substantial role other
than collecting inputs from several columns in this model. Borst (2018)
pointed out that ND suppression could be implemented either through
shunting inhibition or via direct inhibition followed by a threshold function
such as that of a calcium channel. The exact nature of the interaction
depends on the magnitude of the inhibitory conductance change in relation
to the leak conductance of the cell. In the same study, it has been suggested
that PD enhancement on the other side of the T4 dendrite could result
from supra-linear interactions following a release from inhibition upon
deactivation of Mi9 by an ON-stimulus. This requires that Mi9 is constantly
inhibiting T4 in the absence of an ON-stimulus. Evidence for that could
be obtained from glutamate imaging or electrophysiological experiments.
In the OFF-pathway, Wienecke et al. (2018) argue that all non-linearities
are due to the voltage-to-calcium transformation. While this is entirely
possible, the study did not build an explicit model for this transformation
from voltage recordings to calcium data. Ultimately, a complete electrophys-
iological characterization of T4 and T5 cells comprising membrane voltage
dynamics but also changes in the excitatory and inhibitory conductances
upon presentation of a diverse set of stimuli will be necessary in order to
fully address these questions and to gain deeper insight into the biophysical
mechanisms of motion detection.

3.1.5 Behavioral state modulation

Flies adapt their visual processing properties depending on their current
behavioral state. For example, response gain of HS cells is increased
in walking flies, and their temporal frequency tuning is shifted towards
higher frequencies when compared to stationary flies (Chiappe et al., 2010).
This adjustment of tuning curves could serve to better match the expected
stimulus statistics of visual input signals during active locomotion. Similarly,
VS cells in Drosophila exhibit higher gain during tethered flight (Maimon
et al., 2010). Furthermore, it has been shown that active flight boosts the
responses of wide-field horizontal motion selective H1 cells at high velocities
in tethered flying Lucilia (Jung et al., 2011). This effect can be reproduced by
a reduction of the time constant in models of motion detection depending
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on the behavioral state. Pharmacologically, the effect can be mimicked by
applying the octopamine agonist chlordimeform (CDM) to the brain of the
fly. In a similar way, a boost of VS cell responses can be triggered by
activation of octopaminergic neurons using the temperature sensitive cation
channel dTrpA1 (Suver et al., 2012). Octopaminergic neurons have been
suggested to be involved in diverse modulatory functions across the whole
nervous system of the fly (Sinakevitch and Strausfeld, 2006; Busch et al.,
2009). In the optic lobe, specifically, it has been shown that octopaminergic
neurons are active during flight (Suver et al., 2012). It is therefore believed
that state-dependent modulation of motion detection circuits in the fly is
mediated by the octopaminergic system.

In Manuscript 1, we showed that behavioral state modulation acts already
on early visual neurons in Drosophila. First, we found that T4 and T5

neurons shift their velocity tunings towards higher velocities upon pharma-
cological intervention using CDM. Second, we scanned the spatiotemporal
receptive fields of T4/T5-presynaptic medulla neurons after application of
CDM. While spatial receptive fields remained identical, temporal processing
properties of all cell types significantly increased in speed. This effect was
particularly pronounced for the band-pass filter elements Mi1, Tm3, Tm1,
Tm2 and Tm4, but also moderately affected low-pass filter cells Mi4, Mi9
and Tm9. A recent study confirmed these findings in the ON-pathway
(Strother et al., 2018). This study could replicate the effect not only by
pharmacological intervention, but also relate it to the state of locomotion
of the fly. Intriguingly, behavioral state modulation is exceedingly strong in
Mi4 cells. Using optogenetics in a presynaptic lamina neuron, L5, Strother
et al. (2018) could show that application of CDM increases the excitability
of Mi4 cells substantially, thereby demonstrating a possible physiological
mechanism for behavioral state modulation.

In total, these findings corroborate the original suggestion by Jung et al.
(2011) that velocity tunings of motion sensitive neurons in the fly can be
adjusted by means of adaptive temporal processing properties in visual
neurons presynaptic of T4 and T5 cells. The modulatory control over these
neurons is exercised through the octopaminergic system in dependence on
the behavioral state of the animal. Of course, it cannot be excluded that state-
dependent modulation acts on different levels of the motion vision circuit at
the same time. It will be interesting to dissect the exact mechanisms of
how octopaminergic signaling can modulate temporal processing features
of visual interneurons in more detail.

3.2 contrast normalization

3.2.1 Adaptation and non-linear preprocessing

A large part of my doctoral work was dedicated to the detailed description
of linear spatiotemporal filter properties of input neurons to T4 and T5

cells (see Manuscript 1 and Manuscript 3). I then used these insights to
test possible circuit implementations of motion detection, thereby basing
my computer simulations on purely linear input filters. This approach
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was viable, because in this work we investigated mechanisms of motion
detection exclusively by use of artificial stimuli with full contrast. However,
models of motion detection with linear input channels are known to have
poor performance at estimating motion from naturalistic signals (Dror et al.,
2001; Brinkworth and O’Carroll, 2009; Fitzgerald and Clark, 2015; Leonhardt
et al., 2016). This is because correlation-type motion detectors are prone
to confuse image contrast with scene velocity. For example, in a model
like the Hassenstein-Reichhardt detector, the output depends on the tem-
poral overlap of the two asymmetrically filtered input signals as well as
on their contrast in a quadratic way due to the multiplicative interaction
(see Section 1.1.4). Natural images are highly variable and exhibit strong
local contrast fluctuations (Geisler, 2008). As a result, correlation-based
motion detectors without appropriate signal preprocessing will reflect this
variability.

On a purely computational level, this issue can be partially addressed
by introducing non-linear preprocessing stages into the models. Com-
pressive non-linearities and response saturation, local motion adaptation,
exploitation of ON/OFF-asymmetries or combinations of these have success-
fully been applied in models of motion detection to improve performance
with naturalistic input signals (Dror et al., 2001; Shoemaker et al., 2005;
Brinkworth and O’Carroll, 2009; Fitzgerald and Clark, 2015; Leonhardt et al.,
2016). Saturation in the input lines can also account for the robustness of HS
cell responses given synthetic stimuli superimposed with random pixel noise
(Suzuki et al., 2015). However, these approaches study the problem only
from a theoretical perspective without pinpointing corresponding biological
mechanisms, with the exception of the study by Leonhardt et al. (2016)
where ON/OFF-asymmetries in temporal signal processing have success-
fully been verified in the fly motion vision pathway.

In the biological system, various mechanisms of adaptation to natural
scene statistics have been suggested which help alleviate this problem. Gain
control in fly photoreceptors is essential in order to map the large range
of intensities in natural environments onto the limited dynamic range of
neurons (van Hateren, 1997). Center-surround receptive fields and tem-
poral inhibition in lamina monopolar cells reduce redundancy and elimi-
nate neighboring pixel correlations inherent to natural scenes (Srinivasan
et al., 1982). Finally, as mentioned above, ON- and OFF-channels in fly
motion vision are differentially tuned in order to exploit natural ON/OFF-
asymmetries (Leonhardt et al., 2016). However, none of these mechanisms
addresses specifically the strong contrast fluctuations across and within
natural scenes, to which correlation-type motion detectors are particularly
vulnerable.

3.2.2 Gain control in the fly

In Manuscript 4, we described a mechanism for contrast gain control
which acts in the medulla of the fly visual system. This mechanism
suppresses neuronal responses to local contrast divisively in dependence
of the average scene contrast, estimated over a spatially extended area in
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visual space. Thus, the mechanism effectively normalizes responses to the
prevailing average contrast of the stimulus. Contrast normalization is found
only in a subset of neurons in the medulla (Mi1, Tm1, Tm2, Tm3, Tm4)
and is inherited by T4 and T5 direction selective cells. Intriguingly, this
subset comprises all transient cells in the medulla but excludes tonic low-
pass filter elements Mi4, Mi9 and Tm9. Lamina neurons L1–5 are not subject
to contrast normalization. Therefore, contrast normalization emerges in the
medulla. The effect of normalization is reflected in optomotor behavior of
tethered flies and thus it has behavioral relevance.

Using a task-driven modelling approach exploiting fully differentiable
convolutional neural networks, we compared different strategies of signal
preprocessing. First and in agreement with previous studies, we find that
any kind of static signal compression already improves the performance
of motion detector models with naturalistic input stimuli over linear trans-
mission of input signals. However, dynamic contrast gain adaptation, as
we find in the fly, is superior to a static non-linearity in the input lines
and closes the performance gap between the fly and the model. Our
work represents therefore an important step towards understanding robust
sensory processing of natural input signals with respect to motion vision in
the fly.

The described mechanism closely resembles divisive normalization, as it
is known from e.g. cortical processing, the LGN and also the fly olfactory
system (Olsen et al., 2010; Carandini and Heeger, 2011). To my knowledge,
this is the first demonstration of such mechanism in the fly visual system.
Moreover, we provide a comprehensive characterization of neuronal contrast
tunings throughout the whole motion vision circuitry. Our findings will
therefore have an impact on research regarding the mechanism of direction
selectivity in the fly. For example, since early studies it has been argued that
the contrast dependency of direction-selective cells should be determined by
the mechanism of motion detection in the fly (Poggio and Reichardt, 1976).
Our study shows that the contrast tunings of T4 and T5 cells are mainly
given by their input elements and that they inherit gain control properties
from their inputs.

Mechanisms of gain control in the fly visual system have been described
earlier. For example, H1 neurons in Lucilia adapt strongly over time to
moving stimuli (Maddess et al., 1985). Interestingly, electrophysiological
recordings from HS cells in the dronefly revealed later that this type of
motion adaptation is mediated by a change in the contrast sensitivity of the
system (Harris et al., 2000). This contrast gain control depends on motion,
but is insensitive to the direction of the stimulus. In that, it resembles our
characterization of the normalization signal in the fly medulla, which is
independent of the direction of background motion. However, we describe
a gain control signal that is elicited by dynamic contrast and not necessarily
by motion. Moreover, the adaptation described by Harris et al. (2000) acts in
the temporal domain and is induced through prolonged presentation of an
adapting stimulus over several seconds. In contrast, normalization in the fly
medulla depends on a spatial assessment of average contrast in the vicinity
of the receptive field and acts within tens of milliseconds or faster.
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A spatial gain control mechanism in the fly has been suggested after
measurements of optomotor behavior in Calliphora, which showed that the
magnitude of the optomotor response is invariant to the size of an oscillating
figure (Reichardt et al., 1983). Such size-invariance can be explained by
a divisive gain control mechanism that normalizes the response to the
average motion content of the scene. Similarly, size-invariant tunings for
windowed motion stimuli have also been reported for HS and VS cells in
large flies (Hausen, 1982; Egelhaaf, 1985; Haag et al., 1992). To explain these
phenomena, originally, Reichardt et al. (1983) proposed a binocular pool cell
mechanism that averages the activity of all elementary motion detectors and
in turn provides shunting inhibition to each of them. This is conceptually
close to our suggested mechanism of contrast normalization, but differs
in that it only accounts for contrast gain control of motion-selective and
downstream neurons. Gain control of this type, in these early studies
also often referred to as motion adaptation, was later attributed to non-linear
dendritic integration mechanisms in LPTCs (Borst et al., 1995; Weber et al.,
2010). It is important to note that such models predict gain control to
depend primarily on visual motion, even if the gain control signal could be
independent of the specific direction of motion because the pool mechanism
isotropically averages direction selective units with all preferred directions.
This is in contrast to our findings which show that the optomotor response
in Drosophila is subject to gain control also for spatiotemporally uncorrelated
contrast fluctuations.

Borst et al. (2005) pointed out that HR detectors exhibit intrinsic gain
control properties emerging from the fundamental non-linearity of the sys-
tem. This leads to an adaptive velocity gain reduction of the system, which
depends on the amplitude of velocity fluctuations in the input stimulus.
Again, this form of gain control is dependent on intrinsic spatiotemporal
correlations of the stimulus and is not controlled by the average contrast of
the stimulus.

A gain control mechanism based on spatial assessment of average scene
contrast has not been described in the fly before our study. It will be interest-
ing to reassess previous findings of gain control in fly motion processing and
investigate more in detail to which degree contrast normalization already
in the medulla could provide an explanation for these phenomena. For
instance, non-linear spatial integration of motion cues, as observed in LPTCs,
could also results from a network model with normalized medulla neurons.
However, this does not exclude that non-linear dendritic integration, as
proposed by Borst et al. (1995), contributes to the phenomenon as well, if
excitatory and inhibitory conductances are comparable in magnitude to the
leak conductance of the cell. To quantify the relative contribution of each
mechanism, precise measurements of the synaptic and leak conductances of
LPTCs in Drosophila are necessary.

3.2.3 Comparison with vertebrate vision

Our work gives an example for why it is of great advantage to preprocess
signals using response normalization prior to extraction of higher-order
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features, such as the direction of motion in T4 and T5 cells in our case.
This mechanism is known from vertebrate visual processing, and contrast
normalization in the fly shares many attributes with normalization in the
cortex or LGN, but there are also significant points in which they differ.

Broadly speaking, in vertebrate vision there is a distinction between
surround suppression and cross-orientation suppression. Surround suppression
is a form of divisive modulation in simple or complex cells in V1, which
can be elicited by stimuli outside of the classical receptive field (Cavanaugh
et al., 2002a,b). It is maximal when the suppressive stimulus has the
same orientation as the preferred orientation of the cell (Cavanaugh et al.,
2002b; Carandini and Heeger, 2011). In contrast to that, cross-orientation
suppression mainly originates from within the classical receptive field but
is largely independent of the orientation of the stimulus (DeAngelis et al.,
1992; Carandini et al., 1997; Carandini and Heeger, 2011). Similarly, neurons
in the LGN have been shown to be modulated by a suppressive signal that
is independent of orientation and originates from a summation field mainly
within the classical receptive field (Bonin et al., 2005).

As in the fly, divisive suppression in the LGN is thought to originate from
a pool mechanism that computes the standard deviation of the input signals
as an estimate for average contrast. In fact, the suppressive signal in the LGN
has been shown to be rigorously coupled to the root-mean-square contrast
of the stimulus (Bonin et al., 2006). As in the fly, the suppressive signal in the
LGN is direction independent (Bonin et al., 2005). In both systems, temporal
frequency tunings are band-pass. In the LGN, the suppressive signal is
broadly tuned to temporal frequency but exhibits a peak at around 10-20 Hz.
In the fly, peak suppression lies at around 2 Hz which is substantially lower
than in the LGN. Furthermore, divisive suppression in the fly is not effective
for static stimuli. A major difference between the two systems is that contrast
normalization in the fly medulla originates from spatial integration of an
area significantly larger than the classical receptive field of a typical medulla
neuron, which is in contrast to the LGN where it is constrained to the area
of the classical receptive field of an LGN neuron.

What is the functional significance of response normalization in vertebrate
visual processing? In early studies, divisive contrast gain control has been
linked to dynamic range compression, serving to map the wide range of
contrasts encountered in natural environments onto the limited coding range
of neurons (Heeger, 1992). In early visual processing, such as in the retina,
the main rationale for contrast gain adaptation is dynamic sensitivity adjust-
ment (Shapley and Victor, 1978; Baccus and Meister, 2002). As pointed out
in the introduction, contrast normalization has also been suggested as a way
to reduce statistical redundancy of naturalistic input stimuli and to increase
the efficiency of their neural representations (Schwartz and Simoncelli, 2001).
In the cortex, it has been shown that normalization can perform a winner-
take-all computation between concurrent stimuli in a population of neurons
(Busse et al., 2009). Overall, there are various proposals for the role of
normalization in vertebrate visual processing, most of which are related
to general coding principles (Carandini and Heeger, 2011), and it is also
possible that the mechanism fulfills several functions at the same time.
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In our study in the Drosophila visual system, we were able to relate the
function of contrast normalization directly to a behavioral task which is
critical for the survival of the animal: the precise and reliable estimation
of velocities from moving natural images. Contrast normalization as a
strategy for signal preprocessing in the medulla allowed our model of the fly
motion vision circuitry to achieve fly-like performance at this task. Hence,
contrast normalization plays a critical role to render motion processing
pathways in the fly invariant to the statistical fluctuations of contrast in
natural environments.

There is not much known about the neural mechanisms that implement
contrast gain control in the cortex. Measurements of the precise onset
and offset dynamics of suppression in V1 revealed that cross-orientation
suppression is significantly faster than surround suppression (Bair et al.,
2003; Smith et al., 2006). This might indicate that cross-orientation sup-
pression is mediated via feedforward connections. Freeman et al. (2002)
suggested synaptic depression at the thalamocortical synapse as a candidate
mechanism for cross-orientation suppression. However, a later study argued
that the suppressive signal is too rapid for synaptic depression and might
instead be due to nonlinear properties of LGN neurons or other upstream
processes (Li et al., 2006). Similarly, it was proposed that also LGN divisive
suppression might be inherited by upstream retinal properties and only be
further enhanced in the thalamus (Bonin et al., 2005). However, the relative
contributions of each of the processing stages are not clear. In the retina, fast
adaptation in the receptive field center is thought to originate from synaptic
mechanisms in bipolar cells (Demb, 2008). There is also a form of contrast
gain control driven by remote stimulation far from the receptive field center
of retinal ganglion cells. This adaptation is mediated by synaptic inhibition
from long-range amacrine cells at the bipolar cell terminal (Demb, 2008).
Our findings suggest the existence of a similar wide-field amacrine cell in
the fly medulla that pools local responses over several columns in order to
estimate average contrast in a part of the visual scene.

3.2.4 Future experiments

While we have described basic tuning properties of contrast-dependent
suppression in the fly, there are still many open questions regarding the
implementation of this mechanism.

Through blocking experiments, we could show that the suppressive signal
partially originates from feedback connections projecting from medulla
neurons back onto themselves. However, we tested only the possibility of a
“private pool”, i.e. direct feedback suppression on a given cell type through
a pool comprising the same cell type. This was mainly due to experimental
constraints, so it is entirely possible that in fact there is a “public pool” that
comprises several cell types and is shared among several cell types. For
example, silencing Tm1 had almost no effects on Tm1 responses suggesting
that the suppressive signal that modulates Tm1 originates from other cell
types. On the other hand, blocking Tm2 led to an almost complete loss
of contrast-dependent response modulation in Tm2. Future experiments
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should therefore test if silencing Tm2 also affects the strength of contrast
gain control in other cell types. In general, there could be one or more
pool cells, each integrating signals from one or more subtypes of medulla
cells. Only a systematic approach scanning all combinations of silencing
and imaging different cell types across all medulla cells can shed light on the
underlying composition of the respective normalization signals. Specifically,
it will be interesting to see if ON- and OFF-pathway cells share common
sources of suppression or if they are functionally completely separated in
this regard. There is evidence that contrast gain adaptation is asymmetric
between ON- and OFF-channels in the retina (Chander and Chichilnisky,
2001; Zaghloul et al., 2005). In addition, we found generally different
baseline contrast sensitivities between ON- and OFF-pathway elements in
the fly, which suggests the possibility that normalization might be split into
an ON- and an OFF-system.

The suppressive gain control signal that we describe is sensitive to dy-
namic contrast, has temporal band-pass tuning but is not direction selective.
We found that a pool cell mechanism averaging appropriate columnar
neurons that are not direction selective and exhibit temporal band-pass prop-
erties accounts well for these observations. Therefore, measuring the spatial
frequency tuning of the suppressive signal should also reflect the spatial
filtering characteristics of the input cells to the pool. Since most medulla
neurons possess spatially antagonistic receptive fields with varying strength
of surround suppression, I would predict a mild band-pass spatial frequency
tuning for the normalization signal. The direction independence of the
suppressive signal could in principle also result from a well-balanced pool
of T4 and T5 cells including all four subtypes. To exclude this possibility, it
should be confirmed that divisive suppression in medulla cells is indeed
independent of motion. This could be achieved by using uncorrelated
fluctuations as a background stimulus, similar to our behavioral stimulus,
or by testing if blocking T4 or T5 cells affects normalization strength in the
medulla.

Furthermore, it will be interesting to learn more about the dynamics of
contrast normalization in the fly. The contrast-step protocol used in our
experiments sampled the strength of suppression only every 50 ms at most.
While this allowed us to resolve transient ringing after step onset in the
suppressive signal, this temporal precision is too low to exactly quantify
the short onset time constant of the suppression. Onset latency of cross-
orientation suppression in the cortex was found to lie between 20–80ms
(Smith et al., 2006). Therefore, a similar experiment should be repeated
with significantly smaller time steps to characterize onset dynamics better.
Additionally, it would be interesting to scan also the offset dynamics of
contrast-dependent suppression with a similar stimulus protocol.

One question that we did not resolve in our study is whether surround
suppression indeed acts in a divisive way also for the OFF-pathway elements
Tm1, Tm2 and Tm4. In divisive contrast normalization, contrast gain is
regulated such that local contrast tuning curves are shifted horizontally on a
logarithmic axis, e.g. as observed for Mi1 and Tm3 cells in our dataset. For
the OFF-pathway elements, however, responses did not yet saturate even
for the highest contrast in our stimulus protocol. Therefore, it is impossible
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to say if the effect of suppression by surround contrast is a horizontal or a
vertical shift of the tuning curves. In cases like these, alternative models such
as, for example, subtractive suppression can be fit equally well (Cavanaugh
et al., 2002a). Using a more efficient driving stimulus in the center of the
receptive field, e.g. local intensity steps, might lead to response saturation
for these cell types and resolve this issue.

Finally, our study opens the field for circuit mapping in order to pinpoint
the neuronal mechanisms of contrast normalization. Our data suggests
the existence of a pool cell that computes average contrast over an area of
approximately 50-70

◦ in visual space. This putative neuron should therefore
span its dendritic tree over approximately ten columns, although coupling
between neighbouring cells could reduce the necessary diameter of the
dendritic arbor. If we assume that the suppressive signal is not further
relayed via another interneuron we can narrow down speculations about the
morphology of that putative wide-field cell. For the ON-pathway, the neuron
should reside completely within the medulla with its dendrites likely in layer
M10 in order to make synaptic contact with Mi1 and Tm3 axon terminals.
Feedback inhibition could be provided by sending neurites back to more
distal medulla layers where Mi1 and Tm3 possess stratifications, but could
also be exercised directly within layer M10. For OFF-pathway cells, axon
terminals are located in the lobula, so the pool cell could be a lobula neuron.
However, all normalized OFF-cells also have stratifications in at least two
layers of the medulla. Hence, wide-field neurons in the medulla are also
possible candidates for OFF-pathway normalization.

A number of wide-field amacrine cells in the fly optic lobe match such
anatomical profile (Fischbach and Dittrich, 1989). Distal medulla (Dm)
neurons are found in layer 1–6 of the medulla and span several columns.
In addition to that, proximal medulla (Pm) neurons possess large dendritic
arbors in layers M9 and M10 of the medulla and seem to perform local
computations only there. For many of these cell types, Gal4-driver lines
have already been made available (Nern et al., 2015; Davis et al., 2018).
Transsynaptic mapping using the anterograde circuit tracing tool trans-Tango
(Talay et al., 2017) under control of the UAS promoter might be a viable test
for connectivity between candidate amacrine cells and normalized medulla
neurons. Another approach would be to trace postsynaptic partners of
normalized medulla neurons using electron microscopy. Existing datasets
might contain some of the relevant connections already. However, the recon-
structed volumes could be too small to allow for reliable identification of
such large-field amacrine cells (Takemura et al., 2017; Shinomiya et al., 2019).
Acquisition of new electron microscopy datasets and reconstruction of the
anatomical structures contained in such volumes are large-scale projects that
require joint efforts of a big research team. Ongoing connectomics projects
of such kind are constantly improving the quality and the completeness
of anatomical reconstructions of the Drosophila brain (see Janelia FlyEM
Project). Therefore, it might be possible already in the near future to look for
wide-field amacrine cells postsynaptic to normalized medulla neurons in a
complete connectome of the fly optic lobe.

After identification of possible candidate neurons that implement the
mechanism, ultimate proof for the validity of this “pool-cell hypothesis”

https://www.janelia.org/project-team/flyem
https://www.janelia.org/project-team/flyem


176 discussion

will require silencing or activation experiments. The prediction of our
model is that blocking the output of such pool cell would lead to linearity
of postsynaptic medulla neurons so that they respond independently of
background contrast. Activation experiments could have two outcomes:
either the resulting suppressive signal is so strong that affected medulla cells
become dysfunctional; or the suppressive signal would stay at an elevated
maximum level, though not strong enough to completely suppress responses
in postsynaptic neurons. In the latter case, I would expect smaller but
also linear responses in the affected medulla neurons, since, as in blocking
experiments, the context-dependency induced by surround suppression
would be lost.

3.3 projector-based arena

Visual information processing is investigated by precise analysis of the
output of a neural system given a certain input stimulus. Often, the
assessment of the output of a system is heavily constrained by the availability
and the accuracy of the experimental tools and techniques. Therefore, it is
of utmost importance to minimize technical constraints when it comes to
design of input stimuli. It was a crucial part of my doctoral work to design
a visual stimulation system for experiments with fruit flies that allows for
display of arbitrary stimuli with high spatial as well as temporal precision.
The goal was to provide researchers with maximal control over the input
stimulus during calcium imaging or electrophysiology experiments. In
the following, advantages and limitations of my technical approach to the
design of a projector-based stimulation arena for fruit flies will be outlined.

3.3.1 Visual stimulation for fruit flies

When building a visual stimulation device for flies one has to consider
the specific requirements that are imposed by the biology of fly vision. For
compound eyes, spatial resolution lies in the range of the divergence angle of
neighboring photoreceptors, which is around 4.6◦ for Drosophila (Götz, 1964).
Since this is a relatively poor spatial resolution compared to human vision,
there is no need for use of high-resolution displays when stimulating fruit
flies visually. In contrast to that, flies can resolve much finer temporal detail
than humans. As pointed out above (see Section 1.2.2), fly photoreceptors
can resolve temporal changes up to frequencies between 100-200 Hz. Since
this lies beyond the refresh rate of most commercial displays, it poses one of
the major challenges for visual stimulation systems for flies.

In early experiments, patterned cylinders were mechanically rotated
around the fly to generate whole-field motion stimuli (Reichardt, 1961; Götz,
1964). While this approach does not face the problem of limited refresh
rates, since it does not involve electronic displays, it is very constrained with
respect to stimulus design.

To overcome this problem, LED-based stimulation arenas have been de-
veloped and used extensively in the field of fly motion vision (Reiser and
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Figure 15: Projector-based arena design | a, 3D model of the arena design. Green
shaded areas indicate light paths from the projectors to the rear projection screen.
Graphics courtesy of S. Prech. b, Photo of the arena installed in an electrophysiology
setup. c, Spectrum of the arena light. Light green shaded area shows spectrum
without long-pass filters. Green solid line shows spectrum after long-pass filtering
at 550 nm as used for calcium imaging, normalized to the peak of the light green
area in the corresponding part of the spectrum. Blue solid line indicates GCaMP6f
emission spectrum (data obtained from Harris Lab (2019)). Gray shaded area
indicates the spectral window for detection of fluorescence signals (transmission
window of a Semrock FF01-520/35 filter).

Dickinson, 2008; Joesch et al., 2008). These arenas consist of modular LED
array panels which are arranged in a cylindrical fashion to maximize cover-
age of the fly visual field. Stimulation patterns are usually pre-rendered and
uploaded onto the arena control board which is operated via PC. The size of
the individual LEDs amounts up to a few degrees of viewing angle, which is
enough considering fly spatial resolution limits. These stimulation systems
can operate at refresh rates between 400-500 Hz, restricted only by the data
transmission rate between the display controller and the LED panels (Reiser
and Dickinson, 2008; Joesch et al., 2008). This is ideal for stimulation of fly
photoreceptors and offers elegant ways to prevent bleed-through of visual
stimuli into fluorescence signals during calcium imaging experiments by
interleaving image acquisition and stimulus display. A drawback, however,
is the necessity to pre-render stimuli. This can be impractical and forbids
customization of stimuli during the experiment. In order to address this
issue, I chose an approach which would allow for live-rendering of stimuli
and therefore would give the experimenter full control over the visual
stimulus during an experiment.

3.3.2 Design of the projector-based arena

To design a new stimulation arena for flies, I took advantage of micro-
projector technology. The arena consists of a cylindrical aluminium frame on
which a rear-projection foil is mounted (Figure 15a,b). The foil material was
chosen such as to guarantee high transmittance and isotropy of scattered
light (type EVEN by Gerriets GmbH). Scattering isotropy is of particular
importance here because the incidence angle of the light beam from the pro-
jector depends heavily on the position on the screen. Two micro-projectors
were placed on aluminium stages such that their projected images appeared
exactly on the two halves of the cylindrical rear-projection screen. This light



178 discussion

path was established via two additional mirrors below the projectors to allow
for a more compact design.

The micro-projector that is installed in the system is the DLP LightCrafter
3000 by Texas Instruments. This projector relies on a digital micromirror
device that consists of an array of 608 x 684 micromirrors, each one cor-
responding to one pixel in the projected image. The light intensity in
each pixel is controlled through rapid tilting of the corresponding mirror
which effectively sets the illumination time of each pixel individually. In
RGB mode, projectors of this type present the three color channels of an
image temporally interleaved. We modified the projectors to use only the
green LED for all color channels which permits reassignment of each color
channel as an additional temporal frame effectively increasing the frame rate
from 60 Hz to 180 Hz. Separation of green stimulus light from fluorescence
signals in calcium imaging applications is implemented by placing long-pass
filters with a cutoff at 550 nm in front of the projectors. The resulting spectral
distribution of the arena light is shown in Figure 15c.

Without modifications, projecting an image like this onto a curved screen
would induce severe image distortions. Therefore, projected images are pre-
distorted before display. This is achieved by taking advantage of GPU-based
rendering: Replicating the geometry of the arena in a virtual model allows
to generate a view of the virtual arena screen from the point in space where
the projector is placed. The image taken under this perspective accounts for
all distortions due to the geometry of the set-up. Re-projecting this image
back onto the real arena screen results in regular display of the stimulus
which is set as a texture on the virtual arena screen.

Stimuli are live-rendered on the GPU of the control computer. This
approach facilitates parametrization of stimuli, offers maximum flexibility
in stimulus design and, in principle, also enables closed-loop and interactive
user-controlled stimuli.

3.3.3 Light diffusion properties of the arena

Any image projection system is based on scattering of photons on the
screen material. In general, light will be scattered in all directions of space,
more or less isotropically depending on the material. Although this is
intentional because it also includes the direction of the observer, which in
this case is a fly, there will also be light scattered into other regions on
the screen, eventually causing optical artifacts like blur or reflections. This
section provides a short characterization of light diffusion artifacts in the
arena.

In order to measure light intensity in a point-like area on the screen,
I attached a light guide onto the screen surface and connected it on the
other side to a photodiode (Figure 16a). The resulting photocurrent is
proportional to and a direct read-out of the screen light intensity at the
position of the light guide. For confirmation, I reconstructed the receptive
field of the light guide using white noise analysis. When using a white
noise stimulus that tiled the screen into 128 pixels along the horizontal axis,
I obtained a small circular receptive field exactly at the position of the light
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Figure 16: Photodiode measurements of local luminance | a, Schematic of the
arena with light guide attached to the screen. Using a photodiode, the intensity of
the light transmitted through the light guide is measured. b, Receptive field of the
light guide using a white noise stimulus with 128 pixels along the horizontal axis.
c, Receptive field of the light guide using a white noise stimulus partitioning the
screen into 6 patches along the horizontal axis. The cross marks the receptive field
position from the 128 pixels white noise. d, Schematic of light scattering within the
arena. Light intensity at a given point in the arena is the sum of direct illumination
and stray light from other areas on the screen. e, Edge response of the photodiode
to ON (red) and OFF (blue) edges. f, Horizontal cross-sections through the receptive
field from the pixels (black line) and the patches white noise (red bars). g, Schematic
of the stimulus. A local foreground window (FG) is set to a different light intensity
than the background (BG). The background signal leaks into the foreground due
to light diffusion. h, Actual light intensity in the foreground versus set foreground
intensity, for black background (black dots), white background (green dots), and
background intensity equal to foreground intensity (blue dots). Data shown for
a 25

◦ diameter of the foreground window. Dashed lines show model fit. i,
Background contribution p from the model fit in dependence of the diameter of
the foreground window.

guide (Figure 16b). However, when partitioning the screen into 6 large
patches along the horizontal, I observed significant correlations between
photocurrent and light intensity not only locally but also from remote areas
on the screen (Figure 16c,f). The reason for that could be stray light which is
not detected by the analysis with the pixel noise stimulus because significant
deviations from average intensity over large areas are extremely unlikely for
such fine-grained noise stimuli. When considering the geometry of the arena,
it becomes clear how light diffusion can modify the local light intensity at a
spot: Due to the cylindrical shape of the screen, the light intensity at a given
point is, in fact, the sum of direct illumination from the projectors and stray
light contributions from neighboring points on both halves of the cylinder
(Figure 16d). To demonstrate this more clearly, I measured the edge response
of the photodiode. When moving light or dark edges horizontally across the
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screen, responses are smoothed out considerably over large distances due to
light diffusion (Figure 16e).

To quantify the amount of stray light leakage into local signals, I varied
light intensity in the foreground, defined by a circular window around the
light guide position, independently from the background, defined as the
rest of the arena (Figure 16g). As expected, local luminance depended
linearly on the set foreground light intensity, but there was a constant offset
to the curve with background at maximum intensity compared to when
the background was black (Figure 16h). When foreground and background
intensity were stepped up together, measured light intensities lied along
a diagonal connecting these two conditions. I fit a model to these curves
assuming that stray light contributes linearly to local luminance. Specifically,
I fit the equation

y = xfg · (1− p) + xbg · p
where y is the measured local luminance, xfg is the set foreground inten-
sity, xbg the set background intensity, and p the percentage to which the
background contributes to local luminance through light diffusion. This
linear model accounts well for the observed double-dependency of local
luminance on set foreground and background intensity (Figure 16h). I
repeated this experiment for different diameters of the foreground window
and fit the model parameter p independently for each condition (Figure 16i).
While for a diameter of 5

◦ stray light accounts for more than 50% of the
signal amplitude, this contribution drops rapidly with increasing diameter.
Nonetheless, light diffusion contributes substantially to local light intensity
even for large diameters.

In practice, this means that light diffusion in the arena should be taken
into account when designing new stimuli and for the interpretation of
experimental results. As a first approximation, it is safe to assume that
for most stimuli light scattering will lead to a constant offset of the set light
intensity in each pixel by some value according to the average luminance
over the whole screen. In general, this will result in a net decrease of image
contrast. Fine spatial structures of the stimulus might be blurred out because
light diffusion is more severe over small distances. Since light scattering is a
physical process that is hard to control, these are the limitations that should
be considered for virtually all display systems to some degree.

One important point to take into account are adaptation processes in the
early visual system that could induce non-linear distortions to neuronal
responses. For example, an increase in light intensity due to stray light
originating from an approaching bright edge might already be registered
as a strong change in stimulus contrast by dark-adapted photoreceptors. A
subsequent neuron might enhance these signals and respond strongly to
the scattered light although the actual edge has not yet even passed the
receptive field of the cell. Setting a background intensity which is not zero
as a baseline for dark regions of the stimulus might help to alleviate effects
like these and to linearize neuronal responses. On the other hand, effective
contrast could also be intentionally boosted for local stimuli by setting the
background intensity to zero. The experimenter should always be aware of
these processes and take them into account when tailoring visual stimuli for
a given scientific question.
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3.4 concluding remarks

Taken together, the work that I presented in this cumulative dissertation
advanced our knowledge about motion processing in the fly in several
important directions. First, we systematically mapped the functional char-
acteristics of the majority of synaptic input neurons to T4 and T5 cells
and hence provided a rich resource for future computational approaches
in the field. Second, we discovered that behavioral state modulation acts
already in the early visual system in the fly. Third, we addressed related
questions about how motion cues can be further processed in order to
enable visually guided tracking of conspecific flies during male courtship
behavior. Finally, we revealed a level of computational complexity of the
early visual system in Drosophila that had not been attributed before to this
seemingly straightforward circuitry. The discovery of feedback mechanisms
that regulate the contrast sensitivity of medulla neurons opens the field to a
wide range of related research questions. Which neurons represent the pool
that computes local contrast? Which neurons feed into this pool? How is the
suppressive mechanism implemented at the synaptic and molecular level?
Are there intrinsic asymmetries between ON- and OFF-pathway regarding
contrast normalization in the fly? It is indeed the very nature of science
that by finding the solution to one problem we discover a whole new set of
questions awaiting an answer in the future.
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