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Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.

München,
(Travis H. Thompson)

Dissertation eingereicht am 29.04.2020

1. Gutachter: Prof. Dr. Christian Ochsenfeld

2. Gutachterin: Prof. Dr. Regina de Vivie-Riedle
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Abstract

The properties of chemical systems can be determined computationally by solving the
physical equations that govern them. This typically requires the calculation of a very large
number of molecular integrals that take various forms depending on the approximations
used. Most of these integrals are negligible and avoiding the calculation of negligible
integrals can increase computational efficiency immensely. In this work, novel upper bounds
and screening algorithms are developed for this purpose. These bounds and algorithms are
applicable to a wide range of quantum chemical theories and can be used in combination
with the state-of-the-art integral approximation methods that are at the heart of today’s
most efficient numerical implementations.

A Schwarz-type bound that captures the decay of four-center two-electron integrals due
to the decreased interaction of distant charge distributions is developed and tested in the
context of Hartree-Fock and range-separated density functional theory, and on four-center
integrals over short-range correlation factors that arise in explicitly correlated theories.

An integral partitioning procedure is developed which leads to extremely flexible upper
bounds, integral partition bounds (IPBs), for molecular integrals over any number of elec-
trons, any number of basis function centers, and various combinations of integral operators.
The procedure allows for the inexpensive calculation of rigorous extents for charge distri-
butions within these various contexts. The IPBs are completely separable into two-center
factors, which capture all the sources of asymptotic decay. This allows for the formulation
of scaling-consistent screening algorithms, even for the three- and four-electron integrals
that arise, e.g., within explicitly correlated Møller-Plesset perturbation theory (MP2-F12).

The IPBs are used to increase the efficiency and reliability of semi-numerical tech-
niques for calculation of the exchange matrix in Hartree-Fock and hybrid DFT calcula-
tions, where real space numerical quadrature is used to approximate electron repulsion
integrals. Similarly, a framework for very efficient MP2-F12 working equations based on
optimal combinations of resolution-of-the-indentity, density-fitting, and numerical quadra-
ture approximations are given. They reduce the fifth-order formal scaling of the MP2-F12
method to fourth-order, while drastically reducing the cost of the initially most expensive
terms. The resulting equations involve various types of sparse integral tensors which can
all be treated using IPBs, and asymptotically linear scaling implementations are possible.

Furthermore, a Schwarz bound is developed and implemented for screening the novel
four-center two-electron integrals that arise in the treatment of resonance states using the
method of complex basis functions within non-Hermitian quantum chemistry. This is a
crucial step for increasing the efficiency and reach of the method.
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Chapter 1

Introduction

The ultimate aim of quantum chemistry is to solve the equations of motion governing
chemical systems, allowing for the understanding and prediction of chemical phenomena.
Because of the small size of the atomic nuclei and electrons involved, quantitative accuracy
can only be achieved by a quantum mechanical treatment, in which the state of the system
is described by a wave function Ψ, also known as a state vector. Physical observables are
represented by linear operators whose eigenvectors correspond to possible state vectors.
The eigenvalue of a particular eigenvector is the value of the observable for that state.

In non-relativistic quantum chemistry, the most important operator is the non-relativistic
many-body Hamiltonian Ĥ, which corresponds to the energy of the system. For Ne elec-
trons and Nn nuclei, Ĥ can be written in atomic units as

Ĥ “ ´

Nn
ÿ

A

∆A

2mA

`

Nn
ÿ

A

Nn
ÿ

BąA

ZAZB
rAB

´
1

2

Ne
ÿ

i

∆i ´

Ne
ÿ

i

Nn
ÿ

A

ZA
riA

`

Ne
ÿ

i

Ne
ÿ

jąi

1

rij
, (1.1)

where ∆A and ∆i are the one-particle Laplacians of atoms and electrons, respectively, rAB,
riA, and rij are the distances between particles, and ZA and mA are the nuclear charge and
nuclear mass of nucleus A, respectively. The importance of the Hamiltonian arises from
its role in the equation of motion in quantum mechanics, the time-dependent Schrödinger
equation [1]:

i~
B

Bt
Ψ “ ĤΨ , (1.2)

which allows for stationary states determined by the time-independent eigenvalue equation

ĤΨ “ EΨ . (1.3)

In the widely used Born-Oppenheimer approximation [2], nuclear and electronic motion
are separated and the first and most time consuming step becomes the description of the
electronic structure in a field of fixed positively charged nuclei. The electronic states are
then determined by the equation

ĤΨ “ EΨ , (1.4)
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where the electronic Hamiltonian Ĥ takes the form

Ĥ “

Nn
ÿ

A

Nn
ÿ

BąA

ZAZB
rAB

´
1

2

Ne
ÿ

i

∆i ´

Ne
ÿ

i

Nn
ÿ

A

ZA
riA

`

Ne
ÿ

i

Ne
ÿ

jąi

1

rij
. (1.5)

Despite the simplifications afforded by the Born-Oppenheimer approximation, solving
(1.4) requires computationally demanding numerical procedures for all but one-electron
systems. On the other hand, obtaining accurate approximations to these solutions is
essential to a quantitative theoretical understanding of chemical phenomena and has thus
been the focal point of an extensive amount of scientific research since the early 20th
century. This has led to large advances in approximation techniques which, combined with
massive increases in computational resources, means that today a wide array of chemical
problems can be studied theoretically.

This work is concerned with deterministic computational methods in quantum chem-
istry, which can be grouped into two categories that distinguish between the main object of
interest. In so-called wave function methods, one attempts to construct an accurate model
of the many-body wave function Ψ for the state of interest. Many-body wave functions
are in general complicated, highly-dimensional mathematical objects. They are dependent
on 3Ne spatial coordinates and Ne spin coordinates, which account for the two possible
states of the intrinsic angular momentum of each electron. In addition, the antisymmetry
properties of fermionic states lead to a complex nodal structure.

Alternatively, a large branch of quantum chemistry known as density functional theory
(DFT) aims to describe chemical systems through the ground state electronic density ρ,
which is a particle density defined on R3, and is constructed by integration over all but
the spatial coordinates of one electron of the electronic probability density |Ψ|2. Using the
Hohenberg-Kohn theorems [3], one can reduce the problem of determining the ground state
energy to finding the exchange-correlation functional of ρ that gives the external potential
of a noninteracting system with the same ground state density. Given such a functional,
which must be approximated in practice, the Kohn-Sham equations [4] determine the
optimal one-electron functions for building the electronic density of the non-interacting
system, which can then be used to determine the energy and other properties of the system.

In both wave function and Kohn-Sham DFT approaches, orbitals, i.e., functions repre-
senting one-electron states, play an important role. The orbitals are typically defined as
expansions in a large one-electron basis set, and the determination of electronic energies
requires the calculation of an extremely large number of integrals over such basis functions.
While the integrals themselves can be evaluated quite efficiently, their large numbers can
quickly exhaust the resources of even the most modern supercomputers as the size of the
studied chemical system increases. On the other hand, the inherent sparsity found in
molecular calculations means that a very large proportion of the integrals contribute neg-
ligibly to the final energies. For this reason, integral bounds can be used in combination
with screening algorithms to drastically reduce the computational costs of many quantum
chemical methods. These techniques have a long history in quantum chemistry and have
allowed for the treatment of very large systems.
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The main work of this cumulative thesis is comprised of Publications I-IV, where
integral bounds and screening algorithms are developed and applied in various electronic
structure theories. While this work is motivated by the needs of modern wave function
based methods, the techniques developed are also applicable to hybrid and range-separated
DFT models and applications to theories from both paradigms are presented.

In Chapter 2, a survey of wave function based electronic structure theory is presented
with special attention given to those methods that have motivated the main work. The
central goal of the present work is to allow for efficient and accurate implementations of
so-called explicitly correlated methods [5, 6], which introduce explicit multi-electron inter-
actions not present in traditional excitation-based correlation treatments. These methods
have seen rapid development in the last two decades and have become very effective at
reducing basis set incompleteness errors, which present a difficult problem in traditionally
correlated methods. At the same time, this family of methods introduces complicated
molecular integrals which require new approaches for developing bounds and screening
methods. The R12/F12 explicitly correlated theory [5–8] is discussed in detail, especially
in regards to its application to second order Møller-Plesset perturbation theory (MP2).
Afterwards, approximation techniques for integrals are discussed which can be used to
drastically reduce the computational effort required in quantum chemical calculations.
Their application to explicitly correlated MP2-F12 and the exchange matrix of Hartree-
Fock theory is outlined. A brief introduction to non-Hermitian quantum chemistry is also
given, as this is the subject of Publication III.

In Publication I, a Schwarz-type inequality is introduced that captures the decay of
four-center, two-electron integrals as the distance between electronic charge distributions
increases. This decay is mediated by a two-electron operator which is traditionally the
Coulombic inverse distance operator r´1

12 , but, in explicitly correlated and range-separated
DFT methods, can also be an exponentially decaying function of the inter-electronic dis-
tance r12, leading to much faster distance decay. The inequality is formulated for a large
class of operator functions F pr12q covering all the relevant use cases. One drawback of the
bound is that it does not perform as well for integrals that are negligible due to a combi-
nation of operator decay and small basis function overlap within the charge distributions,
and instead works best when one of these factors dominates. To ameliorate this problem,
an integral estimate is introduced that captures both sources of decay simultaneously, but
is no longer a rigorous upper bound. In practice, the estimate is close enough to an upper
bound that it is still very useful. While these bounds and estimates work well for four-
center two-electron integrals, they are not easily generalized to different number of basis
function centers or multi-electron integrals. On the other hand they turn out to perform
extremely well for the typical operators used in range-separated theories.

Publication II, which can be regarded as the most important and fundamental result
of this work, introduces a completely new integral partitioning procedure that leads to very
general upper bounds for all types of electronic integrals involving any number of electrons
and basis function centers. A hierarchy of bounds is obtained that can be used to formu-
late scaling-consistent screening algorithms with optimal memory space requirements and
time complexity. The screening techniques can be used to treat any integral in explicitly
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correlated methods and thus pave the way for efficient and low-scaling formulations of the
required algorithms. In addition, the generality of the bounds developed here make them
useful beyond the intended application to explicitly correlated methods, and in Publica-
tion IV, they are used to rigorously screen the integrals that arise in the semi-numerical
treatment of Fock exchange. This simplifies the previously used algorithm and allows for
an extremely efficient calculation of the exchange-matrix on graphical processing units
(GPUs).

Publication III is a collaboration with the Jagau group that focuses on the problems
that arise in complex basis function methods, a subset of non-Hermitian quantum chem-
istry. In non-Hermitian quantum chemistry, an unbounded similarity transformation of the
electronic Hamiltonian Ĥ allows one to treat electronic resonance states, i.e., metastable
states with regards to auto-ionization, using the same methods developed for bound states
with only slight modifications. In the method of complex basis functions, the complex
scaling of the Hamiltonian that results from the similarity transformation is approximated
by using a partially complex-scaled one-electron basis set. This introduces new integrals
which could not be treated directly using the screening techniques employed in the corre-
sponding bound state calculations. The integral bound introduced in this work overcomes
the problems associated with the non-Hermiticity of the integral tensor and thus allows
for the application of the usual screening procedures that are essential for treating large
molecular systems.

In Chapter 3, the bounds developed in Publication II are extended to the case of
integrals over local molecular orbitals, which require a numerical, instead of analytical,
calculation for some of the factors involved.

Throughout this work both explicit and implicit summation notation are used. Sum-
mation over indices is implied whenever they appear on only one side of an equation.
“Physicist’s” integral notation [9] is used for molecular integrals over any number of elec-
trons, e.g., for any two real-valued n-electron functions g and h and an n-electron operator
Ô1¨¨¨n,

xg|Ô1¨¨¨n|hy “

ż

dx1 . . .

ż

dxn gpx1, . . . ,xnqÔ1¨¨¨nhpx1, . . . ,xnq ,

and for 2n real-valued one-electron functions g1, . . . , gn, h1, . . . , hn,

xg1 ¨ ¨ ¨ gn|Ô1¨¨¨n|h1 ¨ ¨ ¨hny “

ż

dx1 . . .

ż

dxn g1px1q ¨ ¨ ¨ gnpxnqÔ1¨¨¨nh1px1q ¨ ¨ ¨hnpxnq .

“Chemist’s” integral notation [9] is frequently used for two-electron integrals, e.g., for any
two one-electron functions p and q and a multiplicative two-electron operator Ĝ12,

pp|Ĝ12|qq “

ż

dx1

ż

dx2 ppx1qĜpx1,x2qqpx2q .

This notation is also used for two-electron integrals over complex-scaled basis functions in
Section 2.6, where p and q may be complex valued, but integral notation without implicit
complex-conjugation is used. This is because the complex parts of the basis functions are
generally not complex-conjugated in the method of complex basis functions, since they
originate from analytic continuation and not from the use of a complex wave function [10].



Chapter 2

Theory

2.1 Foundations

The numerical solution of equation (1.4) starts with the explicit definition of an approx-
imate many-body wave function Φ, which is motivated by the underlying physics and
mathematical structure. In non-relativistic electronic structure theory, the one-particle
Hilbert space H is spanned by an orthonormal basis of real square-integrable spin orbitals
φα;α P N. These functions depend on the spatial and spin coordinates x “ pr, ωq of a
single electron and are orthonormal with respect to the scalar product:

xφα|φβy “

ż

φαpx1qφβpx1qdx1 “ δαβ . (2.1)

They are separable in to spatial and spin functions

φα “ ϕαpr1qsαpωq , (2.2)

where sα is one of two possible orthogonal spin functions sα P ts
`, s´u:

ż

s`pωqs`pωqdω “

ż

s´pωqs´pωqdω “ 1 ,

ż

s`pωqs´pωqdω “ 0 . (2.3)

From this one-particle complete basis set (CBS), an orthonormal basis for the space of
Ne-electron wave functions can be constructed as the set of all Slater determinants

Φα1,...,αNe
px1, . . . ,xNeq “

1
?
Ne!

∣∣∣∣∣∣∣∣∣
φα1px1q φα1px2q ¨ ¨ ¨ φα1pxNeq

φα2px1q φα2px2q ¨ ¨ ¨ φα2pxNeq
...

...
. . .

...
φαNe

px1q φαNe
px2q ¨ ¨ ¨ φαNe

pxNeq

∣∣∣∣∣∣∣∣∣ , (2.4)

with α1 ă α2 ă . . . ă αNe . This determinant form results from the restriction to anti-
symmetric elements of the Ne-particle Hilbert space HNe “ b

Ne
i“1H, which is necessary for
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describing the physics of electrons. Thus, any Ne-electron wave function Ψ can be written
as an infinite sum

Ψ “
ÿ

i

ciΦi , (2.5)

where i runs over all the Slater determinants in the complete basis.
In numerical practice, an basis of infinite size cannot be realized and one is restricted to

the use of a finite set. However, the mathematical structure described above still motivates
most approaches. In this setting, the construction of the finite set of spin orbitals becomes
crucial and, in molecular calculations, their spatial parts are typically expanded in a fixed
set of Gaussian basis functions. The use of Gaussians is motivated by a compromise
between capturing the underlying physics and maximizing computational efficiency [11].

2.1.1 Hartree-Fock Theory

In Hartree-Fock (HF) theory, the wave function is approximated as a single Slater de-
terminant ΦHF of Ne spin orbitals φi, i P t1, . . . , Neu. The spatial parts, ϕi, of these
orbitals are typically expanded in a fixed, non-orthogonal, atom-centered Gaussian basis
set χµ, µ P t1, . . . , Nbu, known as atomic orbitals (AOs):

ϕi “
ÿ

µ

Cµiχµ , (2.6)

and the expansion coefficients Cµi are determined through the variational minimization of
the expectation value

EHF “
xΦHF|Ĥ|ΦHFy

xΦHF|ΦHFy
, (2.7)

under the constraint of orthonormality, xφi|φjy “ δij. This results in the canonical HF
equations

f̂φi “ εiφi, f̂ “ t̂` v̂ ` ̂´ k̂ , (2.8)

with the single-particle Fock operator f̂ comprised of the kinetic energy operator t̂, nuclear
attraction operator v̂, and mean-field Coulomb and exchange operators ̂ and k̂:

t̂φipx1q “ ´
1

2
∆r1φipx1q, v̂φipx1q “ ´

Nn
ÿ

A

ZA
φipx1q

r1A

(2.9)

̂φipx1q “ φipx1q

Ne
ÿ

j

ż

|φjpx2q|
2

r12

dx2, k̂φipx1q “

Ne
ÿ

j

φjpx1q

ż

φjpx2qφipx2q

r12

dx2 . (2.10)

In the closed shell Roothan-Hall scheme [12], these non-linear equations are expressed in
the AO basis set leading to the Matrix eigenvalue problem

F 111C 111
“ C 111ε , (2.11)
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where
F 111 “ S´

1
2FS´

1
2 , C 111

“ S
1
2C , (2.12)

S is the overlap matrix with elements Sµν “ xµ|νy, F is the Fock matrix with elements

Fµν “ xµ|f̂ |νy , C is the coefficient matrix made up of the initially unknown expansion

coefficients Cµi, and ε is the diagonal matrix of orbital energies εi. The use of S´
1
2 has

the effect of representing the problem in an orthogonalized AO basis set and is known as
Löwdin orthogonalization [13]. Diagonalization of F 111 leads to a set of Nb spatial orbitals
and corresponding orbital energies. The resulting spin orbitals are called molecular orbitals
(MOs) or HF orbitals. The Ne molecular orbitals with the lowest orbital energies are the
occupied MOs used in the HF Slater determinant ΦHF. Because the operators ̂ and k̂
depend on the occupied MOs, the HF equations are solved iteratively by constructing the
Fock operator from the solutions of the previous iteration, starting with an initial guess,
until some criterion for convergence is met. This iterative procedure is known as the self-
consistent field (SCF) method. If convergence is reached, the occupied MOs provide the
optimal representation of the wave function as a single Slater determinant in the chosen
basis. The remaining virtual MOs are interpreted as one-particle excited states.

2.1.2 Orbital Spaces

Table 2.1: Orbital spaces and notation used in this work

Description Indices Cardinality

Atomic orbital basis (non-orthogonal) µ, ν, λ, σ Nµ “ Nb

HF occupied orbitals i, j, k, l,m Ni “ Ne

HF virtual orbitals a, b, c, d Na

Arbitrary HF orbitals p, q, r, s Np

Complete one-electron basis set (CBS) α, β, γ 8

Approximate CBS-spanning auxiliary set (non-orthogonal) P,Q,R, S NP

Complement of HF space in CBS,
spanptα1uq “ spanptαuqzspanptpuq

α1, β1, γ1 8

Approximate complement-spanning auxiliary set (CABS)
(orthogonal)

p2, q2, r2, s2 Np2

Approximate CBS-spanning auxiliary set (orthogonal)
tp1u “ tpu Y tp2u

p1, q1, r1, s1 Np1

The remaining discussion will rely heavily on the distinction between different sets
of orbitals and their relation to the HF procedure. Table 2.1 serves as a reference for
understanding the notation for the different orbitals and orbital spaces used in this work.

Particularly important for explicitly correlated theories is the distinction between the
space spanned by the HF orbitals and the infinitely dimensional complementary space of
functions outside of this span. This complementary space is spanned exactly by an infinite
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set of orthogonal orbitals tα1u, and approximately by the finite orthogonal complementary
auxiliary basis set (CABS) tp2u, which is constructed to be orthogonal to the set of HF
orbitals tpu [14]. The union of the HF and CABS orbitals tp1u “ tpu Y tp2u thus builds an
orthogonal set of orbitals which approximately spans the complete one-electron space.

2.1.3 Electron Correlation and Correlated Wave Functions

The HF equations (2.8) represent a mean-field treatment that neglects all but the exchange-
type Fermi-correlations between same-spin electrons, which are necessary for an antisym-
metric wave function. The electron-electron Coulomb interactions are treated in an aver-
aged manner, so that the Coulomb repulsion is underestimated in regions of R3Ne where
two (or more) electrons become close. While the HF wave function often represents a qual-
itatively good approximation, an accurate description of the missing Coulomb correlation
is required for quantitative accuracy. Traditionally, and in the following discussion, the
correlation energy is defined as the difference between the exact non-relativistic energy of
the system and the complete basis set HF energy.

Configuration Interaction

A straightforward way to include correlation effects is provided by configuration interaction
(CI) wave functions. A CI wave function is defined as an expansion of Slater determinants
within the orthonormal HF orbitals. Because the HF Slater determinant typically provides
an accurate description of the system, the resulting HF orbitals are seen as an appropri-
ate candidate for a finite Slater determinant expansion. In the case of full configuration
interaction (FCI), all possible determinants are included. The resulting approximate wave
function can be written as

ΦFCI “ p1`
ÿ

ia

cai â
:
aâi `

ÿ

iăj
aăb

cabij â
:
aâiâ

:

bâj `
ÿ

iăjăk
aăbăc

cabcijk â
:
aâiâ

:

bâj â
:
câk ` . . .qΦHF . (2.13)

Here, the indices i, j, . . . and a, b, . . . are used for occupied and virtual MOs respectively.
The annihilation operator âi removes an electron in the state φi from a Slater determinant,
while the creation operator â:a adds an electron in the state φa. The resulting determinants
are known as singly, doubly, triply, etc., excited determinants and all possible excitations
are included. Linear variation can be used to determine the optimal expansion coefficients
(cai , c

ab
ij , c

abc
ijk , . . .) and this results in the best possible approximation of the exact wave

function within the given one-electron basis. In practice, FCI is computationally unfeasible
for all but very small systems, because the number of determinants grows factorially with
the number of spin orbitals [11]. The computational scaling of the method with respect to
the number of electrons can be reduced by restricting the number of allowed excitations,
but this leads to the loss of size consistency [11].
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Second-Order Møller-Plesset Perturbation Theory

Another approach to electronic correlation is to treat the electron-electron interactions
using perturbation theory. In the case of Møller-Plesset perturbation theory, the electronic
Hamiltonian (excluding nuclear repulsions) is written as

Ĥ “ Ĥ0 ` Û , (2.14)

where

Ĥ0 “

Ne
ÿ

i

f̂i, Û “
Ne
ÿ

iăj

1

rij
´

Ne
ÿ

i

`

̂i ´ k̂i
˘

. (2.15)

The unperturbed Hamiltonian Ĥ0 is the sum of the Fock operators for each electron and,
for any Slater determinant Φp1,...,pNe

made up of a subset of HF orbitals φpk , k P t1, . . . , Neu,
one has

Ĥ0Φp1,...,pNe
“ p

Ne
ÿ

k

εpkqΦp1,...,pNe
, (2.16)

which is taken as the zeroth-order (unperturbed) eigenvalue equation, with the ground
state being given by the HF determinant of occupied MOs. The operator Û is treated as a
perturbation to (2.16). A Taylor expansion of the ground state energy and wave function
in the order of the perturbation leads to first-, second-, and higher-order corrections to the
unperturbed ground state energy and wave function, which define approximate solutions
to the full eigenvalue problem. The zeroth-order energy is simply the sum of occupied
orbital energies and adding the first-order energy correction to this sum gives exactly
the HF energy, so that the second-order correction to the energy, EMP2, is the first to
introduce electronic correlation. The first-order correction to the wave function is expanded
approximately in the full set of excited HF determinants and intermediate normalization
[11] leads to the following expression:

EMP2 “
ÿ

p

|xΦHF|Ĥ ´
řNe

k f̂k|Φpy|
2

p
řNe

i εiq ´ Ep
, (2.17)

where p runs over all the excited determinants Φp, with their corresponding zero-order
eigenvalues (sums of orbital energies) denoted as Ep. The second term in the numerator
vanishes in all cases, while the first is only non-zero in the case of double excitations, so
that the expression simplifies to

EMP2 “ ´
1

2

ÿ

ij
ab

|xij|r´1
12 ||aby|

2

εa ` εb ´ εi ´ εj
, (2.18)

where ||aby is an antisymmetrized two-electron state ||aby “ 2´1{2
`

|aby ´ |bay
˘

.
It is noted that the MP2 energy correction can be written as a sum of pair energies

EMP2 “
ř

ij e
MP2
ij , where the definition of eMP2

ij is evident from equation (2.18). In Section
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(2.2.2), the fact that the second-order pair energies eij can also be obtained as the minima
of the variational equations

J2
ijruijs “ xuij|f̂1 ` f̂2 ´ εi ´ εj|uijy ` 2xuij|g12||ijy , (2.19)

is used to introduce explicit correlation to MP2 theory. Here, the J2
ij are the second-

order Hylleraas pair functionals [15], and the uij represent abstract two-electron states.
Variational minimization of J2

ij with respect to uij gives the exact second-order correction
eexact
ij . In the MP2 formalism, eexact

ij is only reached in the limit of a complete basis set,
where the expansion of the first order wave function in the doubly excited determinants
is exact. The standard MP2 pair energies are recovered from the Hylleraas functionals by
using the linear ansatz

|uMP2
ij y “

ÿ

aăb

tabij ||aby , (2.20)

and minimizing the J2
ij with respect to the amplitudes tabij .

Coupled Cluster Theory

The coupled cluster (CC) method is currently the most successful way for accurately treat-
ing electron correlation for systems whose ground state is described well by a single deter-
minant. Similar to CI, the CC wave function is expanded in terms of excited determinants,
but instead of a linear expansion one uses the exponential form

ΦCC “ exppT̂ qΦHF , T̂ “ T̂1 ` T̂2 ` . . . , (2.21)

where the excitation operators

T̂1 “
ÿ

ia

tai â
:
aâi, T̂2 “

ÿ

iăj
aăb

tabij â
:
aâiâ

:

bâj, . . . , (2.22)

also appear, albeit in a linear fashion, in the CI wave function (2.13). The advantage over
CI is that the operator T̂ can be truncated to a given order n, i.e., T̂ « T̂ pnq “

řn
k“1 T̂k,

without sacrificing size consistency, while retaining high accuracy. This is because the trun-
cated wave function still contains all possible excited determinants as a consequence of the
exponential form. The amplitudes of the determinants not included in T̂ are approximated
naturally as sums of products of those that are included, which reduces the computational
cost relative to FCI drastically. One trade-off of the CC formalism is that a variational
optimization is no longer computationally feasible and, instead, equations for optimizing
the amplitudes are obtained by projection of the similarity transformed equation

expp´T̂ pnqqĤ exppT̂ pnqq|ΦHFy “ ECC|ΦHFy , (2.23)

onto the set of excited determinants up to order n. The CC energy is obtained by projection
onto the HF determinant:

E
pnq
CC “ xΦHF| expp´T̂ pnqqĤ exppT̂ pnqq|ΦHFy . (2.24)
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This procedure leads to tractable equations for the amplitudes but the CC energy is no
longer variational and may, therefore, be lower than the exact energy. This drawback is
usually compensated for by the high accuracy of the method.

2.2 Explicit Correlation

2.2.1 Basis Set Incompleteness Errors and Electronic Cusps

The correlated methods presented in Section 2.1.3 all suffer from rather large basis set
incompleteness errors (BSIE) and prohibitively large one-electron basis sets are needed to
reach their full potential. To increase the size of the basis towards completeness, shells of
functions with increasing total angular momenta L are added. The nodes of these functions
give the basis set more flexibility to describe correlation but the convergence for correlated
methods can be shown for atoms to go as OppL ` 1q´3q [16–20], which is rather poor. At
the same time, increasing the size of the basis set causes large increases in computational
cost.

The reason for the slow convergence of the correlated energies with the size of the
basis set has been known for some time. In 1957, Kato [21] was able to characterize the
regularity of exact eigenfunctions of Ĥ, showing that their partial derivatives are singular
at the points where two electrons coalesce, and that the dependence of the wave function
on the inter-electronic distance r12 near the coalescence points is linear. This analysis and
further work [22, 23] led to the formulation of the s- and p-wave cusp conditions, which
state that in regions close to electron coalescence (r12 « 0),

Ψp1q
“

r12

2ps` 1q
Ψp0q

`Opr2
12q , (2.25)

where, s “ 0 for singlet and s “ 1 for triplet states, and Ψp1q is the first order correction
to the zeroth order wave function Ψp0q in a perturbative treatment in which the electron-
electron Coulomb interaction is treated as the perturbation to a bare nucleus Hamiltonian.

The form of the exact electronic cusp for the coalescence of the two electrons of the
helium atom is shown in Figure 2.1, where the slow convergence of CI expansions at the
coalescence point is demonstrated.

This slow convergence of excitation based correlation energies means that chemical ac-
curacy is almost impossible to reach by simply increasing the size of the one-electron basis
set. However, due to the relatively predictable nature of basis set convergence, correlation
energy extrapolation techniques [24–26] can be used in combination with Dunning’s corre-
lation consistent basis sets [27] to obtain near CBS results. Another, often more efficient,
way to reach the CBS limit is to go beyond the restriction to antisymmetric products
of one-electron functions. It is well known that the correlation cusp can be represented
much more efficiently, i.e., with fewer terms, when basis functions are included that depend
inseparably on two electrons. Wave functions that include terms explicitly dependent on
inter-particle distances show much faster convergence with respect to the one-electron basis
set.
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Figure 2.1: Exact angular correlation cusp and convergence of a CI description with basis
sets of increasing maximum total angular momentum nmax. Reprinted with permission
from Ref. [5]. Copyright 2012 American Chemical Society.

2.2.2 Explicitly Correlated Wave Functions

Explicitly correlated wave functions are defined by the inclusion of terms explicitly de-
pendent on electron-electron distances. The first arguments for including such terms were
made by Slater in 1928 [28], whose analysis of the wave function of helium led him to
suggest multiplying the wave function by the factor expp´1

2
r12q in order to account for the

Coulomb singularity at coalescence. Interestingly, this ansatz fulfills Kato’s cusp conditions
for helium exactly, despite the fact that these would only be formulated many years later,
in 1957. The first practical calculations employing explicitly correlated wave functions
were published a year later, in 1929, by Hylleraas [29]. Hylleraas had previously failed to
satisfactorily reproduce experimental results of the ionization potential of the Helium atom
using a CI-type expansion [30], and had discovered that by including odd powers of r12 in
his expansion, he could reduce the discrepancy with experiment to 0.01 eV using only a
very compact six-term wave function. This breakthrough provided strong evidence for the
validity of wave mechanics but proved his method proved difficult to extend to polyatomic,
many-electron systems, where the inclusion of products of inter-electronic distances leads
to highly-dimensional integrals over 3Ne variables.

More tractable, but still highly accurate explicitly correlated methods were then devel-
oped for studying few-electron atoms. One example is the Hylleraas-configuration interac-
tion (Hylleraas-CI) method [31–35], which has been used for one-center systems with up
to ten electrons [36]. In this method the wave function is defined generally as

Ψ “

νmax
ÿ

ν“0

ÿ

n

Cn,ν

Ne
ÿ

iăj

rνijΦn, (2.26)

where n runs over a predetermined set of CI-type Slater determinants tΦnu, typically
νmax “ 1, and the optimal coefficients Cn,ν are determined through variational optimiza-
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tion. The restriction to terms containing only one inter-electronic distance means that
only up to four-electron integrals are required, but the computational cost of the method
remains very high. Another class of explicitly correlated methods is obtained from ex-
ponentially correlated Gaussian (ECG) wave functions [37–41], which employ spherical
Gaussian geminals in a variational ansatz. The wave function takes the form [5]

Ψ “
ÿ

k

ckΦk (2.27)

Φk “ ÂXP̂ expp´
ÿ

iăj

βijkr
2
ijq

Ne
ź

i“1

gikpriq , (2.28)

where Â, X, and P̂ are the Ne-electron antisymmetrizer, spin-function, and symmetry
group projector, respectively. The gik are Cartesian Gaussian basis functions, which are
explicitly correlated through the Gaussian geminals for each electron pair. The use of
Gaussians means that the electronic cusp is not captured exactly, but allows for the ana-
lytical computation of many-electron integrals. Still, the costs remain high, and the main
drawback is the need for non-linear optimization of the geminal exponents.

Also of note is the family of transcorrelated (TC) Hamiltonian methods first proposed by
Boys and Handy [42] and recently revisited in Refs. [43–46]. Here, the explicitly correlated
terms are folded into the Hamiltonian through a similarity transformation of the form:

ĤTC “ e´F ĤeF , F “
ÿ

iăj

fpri, rjq, (2.29)

where f is a two-electron correlation function. The function f can be chosen such that
the transformed Hamiltonian has no singularities, but a drawback is that ĤTC contains
three-electron interactions and is a non-Hermitian operator, so that one must abandon the
traditional variational approach when solving for its eigenfunctions.

The most successful explicitly correlated methods are based on the so-called R12
method introduced by Kutzelnigg and Klopper [7, 8], which introduces explicitly correlated
terms as non-variational corrections. Modern versions of their theory replace the original
linear correlation factor r12 with a more suitable general r12-dependent correlation factor
typically denoted F12. For this reason, these methods will be referred to as F12 methods
in this work, as has become standard practice [5, 6]. A breakthrough in Kutzelnigg and
Klopper’s approach was the realization that resolution-of-the-identity (RI) approximations
(see Section 2.3.1) can be used to reduce the resulting three- and four-electron integrals
to sums of products of two-electron integrals. The application of their work to the MP2
correlation energy is discussed in the following section (2.2.3), with emphasis placed on
the general theory and an RI-free formulation. In Section 2.2.4, the explicitly correlated
correction to coupled cluster theory, which is closely related to the MP2-F12 correction, is
discussed briefly. The manner in which RI is applied to simplify the resulting F12 terms
is discussed in Section 2.5, along with possibilities for reducing the scaling of the method
further.
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2.2.3 Explicitly Correlated Second-Order Møller-Plesset Pertur-
bation Theory

The most straightforward way to introduce Kutzelnigg and Klopper’s R12/F12 method
is within MP2 theory. In MP2-F12 theory, the explicitly correlated terms are introduced
at the level of the first order wave function correction in the Hylleraas pair functional.
Whereas the typical MP2 energy is obtained from the pair functional in equation (2.20),
in the MP2-F12 formulation the following pair functional is used:

|uMP2´F12
ij y “|uMP2

ij y ` |uF12
ij y (2.30)

“
ÿ

aăb

tabij ||aby `
ÿ

xăy

cxyij Q̂12F12||pŜxyxyqy . (2.31)

The explicitly correlated functionals |uF12
ij y are linear expansions of antisymmetrized gem-

inal states F12p|r1 ´ r2|q||xyy, where the geminal generating orbitals, x and y, typically
run over the (active) HF occupied space in ground state calculations. The orthogonality of
the geminal states with respect to the HF occupied space, and with respect to the double
excitations within |uMP2

ij y, is assured by the strong orthogonality operator

Q̂12 “ p1´ ô1qp1´ ô2qp1´ v̂1v̂2q , (2.32)

where ôn and v̂n are the projectors of the n-th electron onto the occupied and virtual HF
spaces, respectively:

ôn gp. . . , rn, . . .q “
ÿ

i

φiprnq
´

ż

φiprnqgp. . . , rn, . . .qdrn

¯

(2.33)

v̂n gp. . . , rn, . . .q “
ÿ

a

φaprnq
´

ż

φaprnqgp. . . , rn, . . .qdrn

¯

. (2.34)

While the projection onto the complement of the doubly occupied space provided by
the term p1´ ô1qp1´ ô2q is necessary for orthogonality to the reference configurations, the
removal of the double excitations through p1´ v̂1v̂2q is used to decouple the MP2 and F12
corrections as much as possible.

The rational generator

Ŝxy “
3

8
`

1

8
P̂xy (2.35)

P̂xyφxpr1, σ1qφypr2, σ2q “ φxpr2, σ1qφypr1, σ2q, (2.36)

which was introduced by Ten-no [47], ensures the simultaneous fulfillment of both the s-
and p-wave coalescence conditions.

The optimization of the MP2-F12 parametrization of the Hylleraas pair functional,
J2
ijru

MP2´F12
ij s, with respect to tabij and cxyij leads to the following weakly coupled amplitude
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equations:

gabij ` f
a
c t
cb
ij ` f

b
dt
ad
ij ´ t

ab
kjf

k
i ´ t

ab
il f

l
j ` C

ab
xyc

xy
ij “ 0 (2.37)

V xy
ij ` C

:xy
ab t

ab
ij `B

xy
vwc

vw
ij ´X

xy
vwc

vw
kj f

k
i ´X

xy
vwc

vw
il f

l
j “ 0 , (2.38)

where v and w are further geminal generating orbitals and the F12 intermediates are defined
as

Bxy
vw “ xpŜxyxyq|F12Q̂12pf̂1 ` f̂2qQ̂12F12||pŜvwvwqy (2.39)

Xxy
vw “ xpŜxyxyq|F12Q̂12F12||pŜvwvwqy (2.40)

V xy
ij “ xpŜxyxyq|F12Q̂12r

´1
12 ||ijy (2.41)

Cab
xy “ xab|pf̂1 ` f̂2qQ̂12F12||pŜxyxyqy (2.42)

gabij “ xab|r
´1
12 ||ijy (2.43)

fpq “ xp|f̂ |qy (2.44)

For the amplitudes that satisfy equations (2.37) and (2.38), the second-order energy
correction is given by

EMP2´F12 “ g:ijab t
ab
ij ` V

:ij
xy c

xy
ij (2.45)

In practice, one usually avoids the need to optimize the geminal amplitudes cxyij by using
the fixed amplitude ansatz [47, 48]:

cxyij “ δixδ
j
y , (2.46)

which fulfils the cusp conditions, gives accurate results, and reduces computational de-
mands drastically [5, 6, 48]. Using canonical orbitals and fixed geminal amplitudes, solving
(2.37) leads to the corresponding optimal double excitation amplitudes

tabij “ ´
gabij ` C

ab
ij

εa ` εb ´ εi ´ εj
. (2.47)

The residual of equation (2.38) then becomes:

Rxy
ij “ V xy

ij ´
C:xyab g

ab
ij ` C

:xy
ab C

ab
ij

εa ` εb ´ εi ´ εj
`Bxy

ij ´X
xy
kj f

k
i ´X

xy
il f

l
j , (2.48)

and the second-order correction is

EMP2´F12 “ g:ijab t
ab
ij ` V

:ij
xy c

xy
ij ` c

:ij
xyR

xy
ij (2.49)

“ g:ijab t
ab
ij ` V

ij
ij `R

ij
ij (2.50)

“ ´
g:ijab g

ab
ij ` 2g:ijab C

ab
ij ` C

:ij
ab C

ab
ij

εa ` εb ´ εi ´ εj
` 2V ij

ij `B
ij
ij ´X

ij
kjf

k
i ´X

ij
il f

l
j . (2.51)
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Two approximations that are often employed in the context of MP2-F12 theory are
the generalized Brillouin condition (GBC), which assumes that the Fock matrix element
between an occupied orbital and any function α1 outside the span of the HF orbital set
vanishes,

fα
1

i « 0 , (2.52)

and the extended Brillouin condition (EBC), which assumes the same for a virtual orbital,

fα
1

a « 0 . (2.53)

While the GBC is typically a much better approximation than the EBC, both become
better as the size of the HF orbital basis set increases.

The EBC is often used to simplify equation (2.51) further, since the elements of Cab
ij

vanish under the EBC, leading to

EEBC
MP2´F12 “ ´

g:ijab g
ab
ij

εa ` εb ´ εi ´ εj
` 2V ij

ij `B
ij
ij ´X

ij
kjf

k
i ´X

ij
il f

l
j . (2.54)

Equation (2.54) represents one of the simplest explicitly correlated corrections for ef-
ficiently approaching complete basis set MP2 results using moderately sized one-electron
basis sets. However, already here, a plethora of new integrals are contained in the F12
intermediates that are not present in traditional quantum chemistry.

Approximation-Free Integrals in MP2-F12

For the sake of completeness, the various two-, three-, and four-electron integrals needed
in an exact evaluation of the fixed-amplitude F12 correction are now given.

The underlying terms within the V , X, and B intermediates take the form

V ijkl “ xij|F12Q̂12r
´1
12 |kly (2.55)

X ij
kl “ xij|F12Q̂12F12|kly (2.56)

Bijkl “ xij|F12Q̂12pf̂1 ` f̂2qQ̂12F12|kly , (2.57)

and, in the fixed amplitude approach, only the diagonal direct-type V ijij , X
ij
mjf

m
i , Bijij , and

diagonal exchange-type V ijji , X
ij
mif

m
j , Bijji terms are needed.

Inserting the definition of Q̂12 gives the following expressions for the direct V and X
terms,

V ijij “FG
ij
ij ` F ij

klG
kl
ij ´ F ij

abG
ab
ij ´ xijk|F12r

´1
23 |kjiy ´ xjik|F12r

´1
23 |kijy (2.58)

X ij
mjf

m
i “

`

FF ij
mj ` F ij

klF
kl
mj ´ F ij

abF
ab
mj ´ xijk|F12F23|kjmy ´ xjik|F12F23|kmjy

˘

fmi , (2.59)
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where

Gpqrs “ xpq|r´1
12 |rsy (2.60)

Fpq
rs “ xpq|F12|rsy (2.61)

FGpqrs “ xpq|F12r
´1
12 |rsy (2.62)

FFpq
rs “ xpq|F12F12|rsy (2.63)

The exchange-type expressions are obtained by exchanging the positions of i and j for V
terms or m and j for X terms in each ket. The last two terms in equations (2.58) and
(2.59) contain three-electron integrals that result from the single projectors ô1 and ô2.

The Bijij and Bijji integrals are by far the most complicated expressions due to the presence

of the Fock operators alongside the projectors in Q̂12. These terms contain novel integrals
over two, three, and four electrons. To derive these integrals, it is first observed that one
only needs to consider expressions coming from the f̂1 operator, since the f̂2 terms can be
related to them by

xij|F12Q̂12f̂2Q̂12F12|ijy “ xji|F12Q̂12f̂1Q̂12F12|jiy , (2.64)

which is obtained by simply switching the electron indices 1 Ø 2 and using the symmetry
of Q̂12 and F12. The operator Q̂12f̂1Q̂12 within Bijij contains the follwing terms:

`f̂1 ´f̂1ô1 ´f̂1ô2 `f̂1ô1ô2 ´f̂1v̂1v̂2

´ô1f̂1 `ô1f̂1ô1 `ô1f̂1ô2 ´ô1f̂1ô1ô2 `ô1f̂1v̂1v̂2

´ô2f̂1 `ô2f̂1ô1 `ô2f̂1ô2 ´ô2f̂1ô1ô2 `ô2f̂1v̂1v̂2

`ô1ô2f̂1 ´ô1ô2f̂1ô1 ´ô1ô2f̂1ô2 `ô1ô2f̂1ô1ô2 ´ô1ô2f̂1v̂1v̂2

´v̂1v̂2f̂1 `v̂1v̂2f̂1ô1 `v̂1v̂2f̂1ô2 ´v̂1v̂2f̂1ô1ô2 `v̂1v̂2f̂1v̂1v̂2

(2.65)

By permutating commuting operators, using the idempotency of projectors, the relations

ônv̂n “ v̂nôn “ ônf̂nv̂n “ v̂nf̂nôn “ 0 , (2.66)

and removing canceling terms in the third and fourth rows, (2.65) simplifies to:

`f̂1 ´f̂1ô1 ´f̂1ô2 `f̂1ô1ô2 ´f̂1v̂1v̂2

´ô1f̂1 `ô1f̂1ô1 `ô1ô2f̂1 ´ô1f̂1ô1ô2 0
0 0 0 0 0
0 0 0 0 0

´v̂1v̂2f̂1 0 0 0 `v̂1f̂1v̂1v̂2

(2.67)

Therefore, Q̂12f̂1Q̂12 can be written as

Q̂12f̂1Q̂12 “f̂1 ´ f̂1ô2 (2.68)

` T̂ p´f̂1ô1 ` f̂1ô1ô2 ´ f̂1v̂1v̂2q (2.69)

` ô1f̂1ô1 ´ ô1f̂1ô1ô2 ` v̂1f̂1v̂1v̂2 , (2.70)
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where the linear operator T̂ adds the transpose, e.g., T̂ f̂1ô1 “ f̂1ô1 ` ô1f̂1. The terms in
(2.70) involve only standard Fock matrix elements and evaluate to

xij|F12ô1f̂1ô1F12|ijy “ xijk|F12F23|ljiyf
l
k (2.71)

xij|F12ô1f̂1ô1ô2F12|ijy “ F ij
lmf

l
kFkm

ij (2.72)

xij|F12v̂1f̂1v̂1v̂2F12|ijy “ F ij
abf

a
c F cb

ij . (2.73)

The rest of the terms contain non-standard Fock matrix elements and they must be split up
into the kinetic energy, nuclear attraction, exchange, and Coulomb operator contributions
for exact evaluation. The terms that lead to at most two-electron integrals evaluate to

xij|F12t̂1F12|ijy “
1

2
xij|p∇1F12 ¨∇1F12q|ijy ´

1

2
xij|F 2

12|p∆iqjy (2.74)

xij|F12v̂1F12|ijy “ ´
ÿ

A

ZAxij|F
2
12r

´1
1A |ijy (2.75)

xij|F12t̂1pô1ô2 ´ v̂1v̂2qF12|ijy “ ´
1

2
xij|F12|p∆kqlyFkl

ij `
1

2
xij|F12|p∆aqbyFab

ij (2.76)

xij|F12v̂1pô1ô2 ´ v̂1v̂2qF12|ijy “ ´
ÿ

A

xij|F12r
´1
1A |klyFkl

ij `
ÿ

A

xij|F12r
´1
1A |abyFab

ij . (2.77)

Up to three-electron integrals result for the follwing terms:

xij|F12̂1F12|ijy “ xijk|F
2
12r

´1
13 |ijky (2.78)

xij|F12k̂1F12|ijy “ xijk|F12F23r
´1
13 |kjiy (2.79)

xij|F12t̂1ô1F12|ijy “ ´
1

2
xijk|F12F23|p∆kqjiy (2.80)

xij|F12v̂1ô1F12|ijy “ ´
ÿ

A

ZAxijk|F12F23r
´1
1A |kjiy (2.81)

xij|F12t̂1ô2F12|ijy “ ´
1

2
xijk|F12∆1F13|ikjy (2.82)

“ ´
1

2
xijk|F12p∆1F13q|ikjy (2.83)

´ xijk|F12∇1F13 ¨ |p∇iqkjy (2.84)

´
1

2
xijk|F12F13|p∆iqkjy (2.85)

xij|F12v̂1ô2F12|ijy “ ´
ÿ

A

ZAxijk|F12F13r
´1
1A |ikjy (2.86)

xij|F12̂1pô1ô2 ´ v̂1v̂2qF12|ijy “ xijm|F12r
´1
13 |klmyFkl

ij ` xijk|F12r
´1
13 |abkyFab

ij (2.87)

xij|F12k̂1pô1ô2 ´ v̂1v̂2qF12|ijy “ xijm|F12r
´1
13 |mlkyFkl

ij ` xijk|F12r
´1
13 |kbayFab

ij . (2.88)



2.2 Explicit Correlation 19

The remaining four terms lead to four-electron integrals

xij|F12̂1ô1F12|ijy “ xijkl|F12F23r
´1
14 |kjily (2.89)

xij|F12k̂1ô1F12|ijy “ xijkl|F12F23r
´1
14 |ljiky (2.90)

xij|F12̂1ô2F12|ijy “ xijkl|F12F13r
´1
14 |ikjly (2.91)

xij|F12k̂1ô2F12|ijy “ xijkl|F12F34r
´1
14 |lkjiy. (2.92)

Many of these integrals also arise in the Hylleraas-CI method and their calculation
within this context has been described in Refs. [49–52] in terms of a linear ansatz F12 “ r12.
Their calculation for general correlation factors is also discussed in Refs. [43, 53–61]. Due
to their high cost, the three- and four-electron integrals are typically approximated in some
form or another, see Section 2.5.

2.2.4 Explicitly Correlated Coupled Cluster Theory

The application of the R12/F12 approach to coupled cluster theory (CC-F12) [62–65]
is achieved by including excitations into explicitly correlated configurations. The wave
function ansatz is given by

ΦCC´F12 “ exppT̂
pnq
CC´F12qΦHF , T̂

pnq
CC´F12 “ R̂ ` T̂1 ` T̂2 ` . . .` T̂n , (2.93)

with the excitation operators T̂1, T̂2, etc., defined as in regular CC theory (see eq. (2.22))
and the explicitly correlated excitation operator R̂ defined as

R̂ “
ÿ

iăj
xăy

cijxyγ̂
xy
ij , (2.94)

where the cijxy are the geminal amplitudes and the γ̂xyij describe two-electron excitations
into orthogonalized geminal configurations:

γ̂xyij |ijy “ Q̂12F12|pŜxyxyqy (2.95)

One proceeds as in regular CC by formulating the similarity transformed Schrödinger
equation

expp´T̂
pnq
CC´F12qĤ exppT̂

pnq
CC´F12q|ΦHFy “ ECC´F12|ΦHFy , (2.96)

and projecting onto conventional singly, doubly, etc., excited determinants, as well as onto
the linear geminal functions produced by γ̂xyij |ΦHFy, leading to equations for determining
the excitation and geminal amplitudes. In practice, the most common choice is n “ 2 so
that the T̂ operator is restricted to single and double excitations (CCSD-F12). In CCSD-
F12 theory, in addition to the V , X, C, and B intermediates needed in MP2-F12 theory,
additional intermediates result that are of similar complexity to the B intermediate. They
can be factorized using the methods in Section 2.3 and screened using the bounds developed
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in Publication II. However, there exist various very good approximations to full CCSD-
F12 that only require the intermediates of MP2-F12 theory [66–71]. As in MP2-F12 theory,
the use of Ten-no’s fixed amplitudes leads to great savings and is standard practice [6],
and the approximate CC-F12 methods show the same scaling with the system size as the
base CC method. In contrast to MP2-F12, the cost of the CC-F12 calculations is not
significantly higher than the base coupled cluster calculation, making the F12 correction in
this context even more attractive. Due to the large overlap between the F12 corrections of
MP2 and CC theories, the methods aimed at reduction of the scaling of the F12 correction
presented in this thesis are also directly applicable to CC-F12 methods.

2.3 Approximations for Reduced Scaling

The overarching goal of quantum chemistry, to accurately characterize and simulate chem-
ical systems of practical interest, requires the development of computational methods that
exhibit low scaling with the size of the system M . M is used here as an abstract measure
that generally corresponds to the number of atoms in a system, but not always to the
number of basis functions used, since the latter may increase without adding more atoms
by simply choosing a larger basis set. However, the scaling with the size of the basis set is
also an important property that can be reduced by the integral factorizations introduced in
this section, but not through integral screening, which relies on increasing spatial distances
between basis functions.

The calculation of the four-electron terms that arise in MP2-F12 theory scales formally
as OpM8q in the AO basis, which is formidable considering that even the formally quartic
scaling of the uncorrelated HF method (Sec. 2.1.1) can become intractable for moderately
sized molecules if integral screening or other approximations are not used. The root prob-
lem of steeply scaling methods is that the size of systems that can be treated increases
unacceptably slowly with increases in either compute time, memory size, or processor num-
ber and speed, so that improvements in computational resources alone cannot be relied
upon to extend the reach of quantum chemistry. To overcome the resulting computa-
tional wall, the scaling of most methods can be reduced by using accurate approximations
and additionally avoiding the calculation of negligible contributions to molecular energies
through integral and density based screening. In many cases, the asymptotic scaling can
be reduced to linear using these methods.

2.3.1 Resolution-of-the-Identity Approximation

The identity operator 1̂ on the space of one-electron functions can be resolved exactly, with
respect to an electron n, by the CBS projector

α̂n gp. . . , rn, . . .q “
ÿ

α

αprnq
´

ż

αprnqgp. . . , rn, . . .qdrn

¯

. (2.97)

In the resolution-of-the-identity approximation (RI) [72–76], α̂n is approximated as the
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projector onto the subspace spanned by a finite, orthonormal set of functions. The most
straightforward way to construct a suitable projector is to orthogonalize a large auxiliary
basis set tP u to obtain an orthogonal set tPou, e.g., through Löwdin orthogonalization [13]:

Poprq “ rS
´ 1

2 s
P
QQprq , (2.98)

where S is the overlap matrix in the auxiliary basis set.
This leads to the approximation

α̂n «
ÿ

Po

|PoqpPo| “
ÿ

PQ

|P qpPQq´1
pQ| , (2.99)

where the shorthand notation pPQq´1 “ rS´1sPQ is used.
For a multiplicative two-electron operator

m : R3
ˆ R3

Ñ r0,8s, pr1, r2q ÞÑ mpr1, r2q , (2.100)

the corresponding two-electron integral

pµν|m|λσq “

ż ż

χµpr1qχνpr1qmpr1, r2qχλpr2qχσpr2qdr1dr2 , (2.101)

can be approximated through insertion of (2.99):

pµν|m|λσq “ pµνα̂1|m|α̂2λσq «
ÿ

PQRS

pµνP qpPQq´1
pQ|m|RqpRSq´1

pSλσq . (2.102)

Given a second two-electron operator n defined analogously to m and known as the RI
metric, one can, starting from tP u, define a new set of functions tPnu as

Pnprq “

ż

P pr1qnpr1, rqdr1, (2.103)

which, for certain n, can also be used as an auxiliary basis set for performing RI [77]. Using
this set (2.102) can be generalized to

pµν|m|λσq «
ÿ

PQRS

pµν|n|P qpP |n|Qq´1
pQ|m|RqpR|n|Sq´1

pS|n|λσq , (2.104)

which has the potential to be more accurate than (2.102). Here again, the shorthand
notation pP |n|Qq´1 is used to refer to elements of the inverse of the matrix with elements
pP |n|Qq.

Through the closely related method of density fitting (DF) [78], one can show that, if
m can be used as the RI metric, then the most accurate approximation of the type (2.104)
is given by setting n “ m, which leads to the most widely used RI expression

pµν|m|λσq «
ÿ

PQ

pµν|m|P qpP |m|Qq´1
pQ|m|λσq . (2.105)
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The form (2.105) is available for all of the two-electron operators that appear in this
work and is the preferred expression from an accuracy standpoint when factorizing two-
electron integrals. However, for slowly decaying operators such as the Coulomb operator
r´1

12 , it has been shown that the overall efficiency of the RI factorization can be increased
by using more quickly decaying RI metrics, see, e.g., Refs. [79, 80]. This increases the
sparsity in the three-center integral tensors of (2.104), which can be used to increase the
speed of numerical implementations at the cost of slight reductions in accuracy.

In the following, the acronym RI is used to denote the insertion of a completeness
relation in the form of (2.99), i.e., with respect to the overlap metric δp|r1 ´ r2|q, and the
basis used to represent the RI will be assumed to be orthogonal. The acronym DF is used
to denote the factorization of a two-electron integral given by the formula (2.105), with
the usual choice of the RI metric being the one that is optimal in the sense of accuracy,
i.e., equation (2.105).

2.3.2 Real Space Numerical Quadrature

An alternative to RI for factorizing molecular integrals is provided by three-dimensional nu-
merical quadrature (QD). QD has a long history of use in density functional theory (DFT)
methods, where analytical integration is usually not feasible. This has led to the develop-
ment of efficient molecular grids [81–86], which consist of a set of three-dimensional points
rg with corresponding weights wg, such that the integration over a function f : R3 Ñ R
(such as the electronic density, or spatial orbitals) can be approximated as

ż

fprqdr «
ÿ

g

wgfprgq , (2.106)

where the accuracy of the approximation depends on the number of grid points Ng and
their positions and weights. In general, the approximation can be made as accurate as
desired by adding more grid points at the price of increased computational demand.

To factorize the molecular integrals that occur in the wave function based methods of
Section 2.1, one can, e.g., set

fpr1q “ χµpr1qχλpr1q

ż

χνpr2qχσpr2qr
´1
12 dr2, (2.107)

in (2.106), which leads to the approximation

pµλ|νσq « wgχ
g
µχ

g
λG

g
νσ , (2.108)

where χgµ “ χµprgq and

Ggνσ “
ż

χνprqχσprq

|r ´ rg|
dr . (2.109)

The one-electron potential integrals Ggνσ can be computed analytically and they are already
required for the calculation of the nuclear electronic attraction term of the fixed nucleus
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Hamiltonian, where instead of the potential at the grid points one needs the potential at
the atomic centers. This type of factorization can be used to greatly reduce the scaling of
molecular energy formulas and is used extensively in Sections 2.4 and 2.5.

2.3.3 Integral Screening

The methods presented in Sections 2.1 and 2.2 expand the wave function using products
of molecular orbitals, which are themselves optimized linear combinations of fixed atomic
orbitals. This leads to the need to calculate different types of interactions between a very
large number of comparatively simple charge distributions. The prototypical interaction
is the two-electron repulsion, which can be broken down into the direct ED and exchange
EX energies:

ED
“ pii|jjq “ PµνJµν , EX

“ pij|ijq “ PµνKµν , (2.110)

where
Jµν “ Pλσpµν|λσq, Kµν “ Pλσpµλ|νσq , (2.111)

are the Coulomb and exchange matrices, respectively, and Pµν is the one-particle density
matrix.

In non-explicitly correlated theories, the electron repulsion integrals (ERIs) pµν|λσq are
the most computationally intensive integrals to calculate and also appear in the greatest
number with a formal scaling of OpN4

µq total integrals. Consequently, significant time and
research has been devoted to improving the speed of their calculation [87–101]. In addition
to the complexity of the ERIs, their large number means that prohibitively large amounts
of computer memory would be required to store their values for reuse in the iterative HF
scheme. This has led to the prevalence of direct SCF methods [102, 103], in which the ERIs
are recalculated on-the-fly in each SCF iteration. In order to reduce the computational
demands of these algorithms, estimates and bounds are used to avoid the exact calculation
of integrals that are approximately zero, i.e., smaller than some given threshold ϑ. Initially,
non-rigorous estimates were employed [102, 104], but they were quickly replaced by the
very efficient and rigorous Schwarz bound [105]:

|pµν|λσq| ď pµν|µνq1{2pλσ|λσq1{2 “ QµνQλσ . (2.112)

This bound is a consequence of the fact that the ERI defines an inner product on the vector
space of one-electron charge distributions [12, 72].

The usefulness of (2.112) derives from the local nature of Gaussian basis functions,
which vanish at infinity and are in the Schwartz space of rapidly decreasing functions [106],
so that as system sizes increase, only a linearly scaling number of significantly overlapping
basis function pairs results, and products of non-overlapping basis functions vanish, as do
integrals over them. This overlap decay is captured within the diagonal integrals pµν|µνq,
which can be used to determine which basis function pairs never contribute, based on the
size of pµν|µνq1{2 alone, and which basis function quartets are negligible, based on the size
of pµν|µνq1{2pλσ|λσq1{2. The integrals pµν|µνq depend on only two basis functions and can
therefore be easily precomputed and stored for use in screening algorithms.
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The overlap decay captured by the Schwarz bound (2.112) reduces the number of asymp-
totically non-negligible integrals to OpN2

µq. Due to the decay of the Coulomb operator r´1
12

at large distances, the number of significant integrals is actually asymptotically linear. This
operator mediated distance decay is not captured by the Schwarz bound, but because r´1

12

decays so slowly with increasing distances, linear scaling would only be seen for systems
significantly larger than can be treated today and the Schwarz bound is usually adequate
in this case. However, in some cases, the operator decay can become very important. The
multipole expansion of r´1

12 can be used to show that for charge distributions with vanishing
low-order multipole moments, the operator decay increases. This is an important aspect
in linear-scaling formulations of correlated theories such as MP2, where transformation
of the charge distributions leads to vanishing monopoles [107]. In addition, single atomic
orbitals have vanishing multipoles up to the order of their total angular momentum, lead-
ing to faster distance decay for the three-center integrals over r´1

12 that occur when using
density fitting [108]. The first bound to successfully address distance decay was developed
by Lambrecht, Doser, and Ochsenfeld [109, 110]. This bound is based directly on the mul-
tipole expansion of r´1

12 , and introduced the concept of charge distribution extents based
on the convergence of the multipole expansion. Later, it was shown that a simpler and
more effective approach could be obtained through a tight estimate [107, 111], which is
not a strict upper bound but retains the extent-based form of the rigorous multipole-based
bound. This so-called QQR estimate is a product of the Schwarz bound factors Qµν , which
capture the overlap decay, and a distance factor R1´p1`mq, where m is the number of van-
ishing leading multipoles in the bra and ket, and R1 is the distance between the two spheres
defined by the charge distribution centers and extents, which are computed in the same
way as in the continuous fast multipole method (CFMM) [112, 113]. The QQR estimate
was shown to work very well and was used later in a more general way to estimate integrals
over the operator erfcp0.11r12q [114]. Here, the distance factor is simply replaced by the
function erfcp0.11R1q, while the Schwarz bound factors and CFMM extents are retained.
In this context, the QQR estimate still performs very well, however, this changes for other
operators as outlined below.

In Publication I, it is shown that the generalized QQR estimate becomes increasingly
inaccurate as the rate of operator decay increases, leading to unacceptable errors for the
very short-ranged operators encountered in explicitly correlated theories. In this same
work, a new Schwarz-type bound is introduced that rigorously and effectively captures
the distance decay of such operators without the use of distribution centers or extents.
While the ability to effectively apply screening methods to explicitly correlated theories
was a breakthrough, some drawbacks of the bound were quickly apparent. For one, it can
only be applied effectively to two-electron four-center integrals and is therefore not useful
in combination with the RI, DF, and QD introduced above, or for explicitly correlated
methods with exact calculation of three- and four-electron integrals. In addition, the bound
can fail to correctly discard integrals that are negligible due to roughly equal contributions
of overlap and distance decay, and instead performs best when either overlap or distance
decay individually lead to negligibility. The latter problem was addressed by introducing a
non-rigorous integral estimate based on the bound in the same publication, but the estimate
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has similar downsides for very-short ranged operators as the QQR estimate. Both problems
are resolved in Publication II, where very general bounds for molecular integrals involving
any number of electrons and all relevant combinations of integral operators are developed.
The ability to treat many-electron integrals makes these bounds especially attractive for
use in highly accurate explicitly correlated approaches such as Hylleraas-CI, where exact
evaluation of many-electron integrals is more common.

The integral partition bounds (IPB’s) developed in Publication II are based on the
intuition gained from the earlier extent-based bounds and estimates, but rely on previously
unused mathematical techniques to ensure formulas that are rigorous and tight for any of
the two-electron operators used in quantum chemistry, and combinations thereof. While
previous extents were determined based on the convergence of the multipole expansion of
r´1

12 , IPB extents are generated in a much more direct fashion by explicitly partitioning the
multi-electron integration space. The fundamental ideas behind the IPB’s are detailed in
the following.

The goal of the bounding procedure is to take advantage of the fast radial decay of the
charge distributions Ωi used to describe one-electron states. This radial decay remains for
the corresponding absolute charge distributions Ωi “ |Ωi| and it is therefore sufficient to
develop bounds for absolute charge distributions.

Given a set of N absolute charge distributions tΩ1, . . . ,ΩNu, one can define distribu-
tion centers tC1, . . . ,CNu. The distribution centers can be chosen arbitrarily, but their
positions have practical consequences for the sizes of the extents and the tightness of the
resulting bounds (see Publication II and Chapter 3). The next step is to partition the
integration spaces around each distribution into core regions – which are balls, centered
at the distribution centers, with variable radii tR1, . . . , RNu – and tail regions, which are
the spaces outside of these balls. A two-dimensional depiction of the partitioning of the
integration space for an absolute charge distribution Ωi is shown in Fig. 2.2.

Ci

Ri

Core
Region

Tail
Region

Figure 2.2: Depiction of the spherical partitioning of an absolute charge distribution Ωi

into core and tail regions.

A depiction of an absolute two-electron integral within the IPB framework is shown in
Fig. 2.3a. Because integrals are linear maps with regards to the integration space, one can
represent a multi-electron integral exactly as the sum of a single integral over core regions
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only, the principal integral, and further auxiliary integrals that have the core region re-
moved for one electron. This exact partitioning into the principal and auxiliary integrals
is shown for an absolute two-electron integral in Fig. 2.3b. For practical reasons, it is ben-
eficial to use, instead of the exact partitioning, an upper bound partitioning that results
in auxiliary integrals that are congruent in the sense that the have the same general form.
This is obtained by adding any missing tail regions to the distributions of the auxiliary
integrals of the exact partitioning. For the general n-electron integral, the resulting parti-
tioning is the sum of the principal integral and n tail integrals describing the interaction
of the tail region of one distribution with the other pn ´ 1q absolute charge distributions
involved. A depiction of this upper bound partitioning for a two-electron integral is shown
in Fig. 2.3c. In practice, the overestimation that occurs through the use of the upper
bound partitioning scheme is insignificant, since the distribution radii are optimized such
that the added tail regions become negligible.

R1 R2

G12

(a)

` `“

Principal
Integral

Auxiliary Integrals

(b)

` `ď

Tail Integrals

(c)

Figure 2.3: (a) Depiction of an absolute two-electron integral involving two absolute charge
distributions interacting through the operator G12. (b) Exact partitioning of absolute two-
electron integral into principal integral and auxiliary integrals. (c) Upper bound partition-
ing of absolute two-electron integral in principal integral and tail integrals.
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A large advantage of the upper bound partitioning is its generality. The partitioning of
an absolute one-electron potential integral, which describes the interaction of a charge dis-
tribution with a point charge, is shown in Fig. 2.4a. In this particular case, the partitioning
is exact. The partitioning for an absolute three-electron integral is shown in Fig. 2.4b.

`“
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`

`

ď `

(b)

Figure 2.4: Depiction of the IPB partitioning procedure for absolute (a) one-electron po-
tential and (b) three-electron interaction integrals.

In the general n-electron case, the tail integrals provide a natural starting point for
the determination of rigorous extents, since they individually depend on the radius of only
one distribution and can be made negligible by increasing this radius, because the charge
distributions vanish at infinity. Given an integral threshold ϑ, if each tail integral in the
partitioning is smaller than ϑ{pn ` 1q, then the the entire integral is insignificant if the
principle integral is also smaller than ϑ{pn`1q. Using the symbol T ik1,¨¨¨kpn´1q

pRiq to denote

the tail integral that describes the interaction of the tail region of Ωi with the charge
distributions Ωk1 , . . . ,Ωkpn´1q

, the condition for determining distribution extents, i.e., the
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Ri that ensure that tail integrals are negligible, is

max
k1,...,kpn´1q

T ik1¨¨¨kpn´1q
pRiq ď ϑ{pn` 1q . (2.113)

This condition leads to rigorous extent equations for each charge distribution, indepen-
dent of all others. The solution of these equations is no trivial task from a mathematical
perspective and is a large part of the work in Publication II, where efficient numerical
procedures are developed for all integral types of interest involving AO based charge distri-
butions. Once the extents have been determined, only the principal integrals over bounded
core regions must be taken into account for screening purposes. The bounded nature of the
integration spaces within the principal integrals makes it possible to estimate them from
above by simple, separable formulas that take both overlap and distance dependence into
account.

2.3.4 Density Screening

For many classes of molecules, the electronic structure itself is a source of sparsity that can
be used to reduce the time-complexity of computational algorithms. While the occupied
molecular orbitals obtained from canonical Hartree-Fock theory are typically spread out
throughout the molecule, the one-particle density matrix P , defined through the expansion
coefficients of the MOs in the AOs, Cµp, as

Pµν “ CµiCνi (2.114)

is often a sparse matrix, where spatially distant atomic orbital pairs correspond to van-
ishing density matrix elements. Taking advantage of this sparsity can lead to early onset
asymptotic linear scaling of expressions such as the exchange matrix.

In Publication II, a variety of screening schemes which take density matrix sparsity
into account are given for the different types of integrals that result in explicitly correlated
and other methods. These schemes can easily be adapted to treat the three-center integrals
and semi-numerical quantities that result from the use of RI, DF, and QD.

Screening the density matrix directly requires the formulation of energy expressions
either partially or completely in the AO basis. While this has the advantage of increased
sparsity, it can lead to inefficiencies for midsize and large basis sets, since the number of
occupied orbitals is then much smaller than the number of AOs. This problem can be
addressed by using localized MOs, which result from unitary transformations of canonical
MOs. When combined with MO based integral bounds, this allows one to retain the low
scaling nature of AO methods, while also reducing the dependence of the expressions on
the size of the basis set. The most efficient localization scheme for large systems is obtained
through Cholesky decomposition of the density matrix [115], which can be performed in a
linear scaling, non-iterative fashion [116, 117]. The result is a lower-triangular coefficient
matrix L such that

P “ LLt, (2.115)
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where L retains the sparsity of the density matrix and defines an orthonormal set of MOs
denoted Cholesky MOs.

In order to take advantage of such localized MOs, it is necessary to find upper bounds
for molecular integrals containing them. In Publication II, the IPB’s are developed for
atomic orbitals, where the equations that arise can be largely calculated analytically. When
dealing with MO-type orbitals, i.e., expansions of AOs, a numerical approach is required to
ensure that the calculated extents and overlap factors lead to tight bounds. The formulas
necessary in these cases are given in Chapter 3.

2.4 Semi-Numerical Hartree-Fock Exchange

The use of numerical quadrature is the basis for the semi-numerical calculation of the
exchange matrix [118–127]

Kµν “ Pλσpµλ|νσq. (2.116)

The calculation of the exchange matrix scales formally as OpM4q, and, while the asymptotic
scaling with the size of the system can be reduced to linear using integral and density based
screening methods [128–130], the increases in computational demands when increasing the
size of the basis set remain high. QD can be used to approximate the exchange matrix
using the following formula:

K̃µν “ Pλσwgχ
g
µχ

g
λG

g
νσ , (2.117)

This expression can be calculated in three steps,

F g
σ “ χgλPλσ (2.118)

Gg
ν “ GgνσF g

σ (2.119)

K̃µν “ wgχ
g
µG

g
ν , (2.120)

each of which scales formally as OpNgN
2
µq. Because K̃µν is not exactly symmetric due to

the asymmetry of the QD factorization, a symmetric approximation of Kµν is obtained
through the use of:

Kµν «
K̃µν ` K̃νµ

2
. (2.121)

The improved formal scaling (OpM3q) of this method, combined with only quadratic
scaling in the size of the basis set, leads to much improved computational efficiency for
large basis sets and/or molecules compared to exchange matrix calculation with analytic
integral evaluation. In addition, screening based on the integrals Ggνσ and density matrix
elements leads to a very efficient, asymptotically linear scaling method. However, bounds
on the values of Ggνσ were initially unavailable. For this reason, heuristic estimates were
used, which, although effective in most cases, have drawbacks in reliability and flexibility
[121, 127]. To remedy this problem, in Publication IV, the general and rigorous bounds
developed in Publication II are applied to the screening of the Ggνσ integrals, leading to a
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rigorous screening procedure. In addition, the improved simplicity of the bounds allows for
an efficient implementation of the screening routines on graphic processing units (GPUs),
leading to further large gains in performance.

2.5 Reduced Scaling MP2-F12

RI Integral Factorization

A big reason for the success of Kutzelnigg and Klopper’s original R12 method [7, 8] was the
use of RI to break down the many-electron integrals into products of two-electron integrals.
For example, inserting equation (2.99) into the three-electron integrals contained in the
V ij
ij intermediate gives the following approximation:

xijk|
F12

r23

|kjiy “ xijk|F12α̂2
1

r23

|kjiy « xij|F12|kPoyxkPo|r
´1
12 |ijy “ F ij

kPo
GkPoij . (2.122)

This is equivalent to first representing the Q̂12 projector as

Q̂12 “ 1´ v̂1v̂2 ` ô1ô2 ´ ô1α̂2 ´ α̂1ô2 , (2.123)

and then resolving α̂n approximately using the finite set tPou.
In the initial work on R12 methods, the finite set used to approximate the CBS was

simply chosen as the MO basis itself [8, 62]. Later, efficiency was improved by employing
a larger auxiliary basis set to construct the RI [131], allowing for better accuracy without
the need to increase the size of the HF orbital basis set. Today, the most popular RI
scheme is Valeev’s complementary auxiliary basis set (CABS) method [14], in which the
RI is performed using the union tp1u of the HF orbitals tpu and the CABS basis set tp2u.
The corresponding projectors are denoted p̂1n, p̂n, and p̂2n, respectively. Using α̂n « p̂1n in
(2.123) leads to the approximation

Q̂12 « 1´ p̂1p̂2 ´ ô1p̂22 ´ p̂21ô2 , (2.124)

and further use of RI in the form of 1 “ p̂11p̂12 gives

Q̂12 « p̂21p̂22 ` v̂1p̂22 ` p̂21v̂2 . (2.125)

In the CABS method, instead of using (2.123) and resolving the complete one-electron space
with an auxiliary basis set, either (2.124) or (2.125) is employed, and one approximately
resolves the projector α̂1n “ α̂n´ p̂n directly using the CABS basis set. The version (2.124)
is used when the unity operator leads to tractable terms, while (2.125), which cannot be
approximated as accurately due to the double RI insertion required for the first term, is
used to avoid the unity operator. The construction of the CABS basis set is detailed in
Ref. [14]. The utility of the CABS method is that more compact formulas are obtained
and errors due to inexact cancellations that could arise in the last three terms of equation
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(2.123) are avoided. Such errors would occur when using an approximation to α̂n that does
not sufficiently span the HF orbital space.

For the V ijij and X ij
mjf

m
i terms, equation (2.124) is used to obtain the working equations

V ijij “ FGijij ´ F ij
kp2G

kp2

ij ´ F ij
p2kG

p2k
ij ´ F ij

pqG
pq
ij (2.126)

X ij
mjf

m
i “

`

FF ij
mj ´ F ij

kp2F
kp2

mj ´ F ij
p2kF

p2k
mj ´ F ij

pqF
pq
mj

˘

fmi . (2.127)

The treatment of the Bijij terms is complicated by the fact that the factorization of the

many-electron terms requires the use of Q̂12 in the form (2.125), and care must be taken
to ensure that the error of the required double RI insertion remains manageable.

Using eq. (2.64) and the expansion (2.67), Bijij can be written exactly as

Bijij “ Aij
ij `Aji

ji ´ Z ij
ij ´ Zji

ji ´ F ij
abC

ab
ij ´ F ji

abC
ab
ji , (2.128)

where

Aij
ij “ xij|F12f̂1Q̂12F12|ijy (2.129)

Z ij
ij “ xij|F12ô1f̂1Q̂12F12|ijy (2.130)

Cabij “ xab|f̂1p1´ v̂1qF12|ijy , (2.131)

Defining P̂12 “ 1´ Q̂12, one can divide Aij
ij into two terms:

Aij
ij “Mij

ij ´N ij
ij “ xij|F12f̂1F12|ijy ´ xij|F12f̂1P̂12F12|ijy . (2.132)

In the so-called approximation C [132, 133], N ij
ij , Z ij

ij , and Cijij are treated exclusively

through RI. For N ij
ij , one uses

P̂12 “ ´p̂1p̂2 ´ ô1p̂22 ´ p̂21ô2 , (2.133)

to obtain

xij|F12f̂1P̂12F12|ijy « xij|F12f̂1|pqyFpq
ij `xij|F12f̂1|kp

2
yFkp2

ij `xij|F12f̂1|p
2kyFp2k

ij . (2.134)

An additional RI insertion of the form α̂1 “ p̂11 leads to

xij|F12α̂1f̂1|pqyFpq
ij « F ij

r1qf
r1

p F
pq
ij (2.135)

xij|F12α̂1f̂1|kp
2
yFkp2

ij « F ij
r1p2f

r1

k F
kp2

ij (2.136)

xij|F12α̂1f̂1|p
2kyFp2k

ij « F ij
r1kf

r1

p2F
p2k
ij . (2.137)

The Z ij
ij and Cabij terms are typically small and vanish in the approximation of the GBC

and EBC, respectively. Z ij
ij is treated using equation (2.125) for Q̂12:

xij|F12ô1f1Q̂12F12|ijy « F ij
kq2f

k
p2F

p2q2

ij ` F ij
kaf

k
p2F

p2a
ij . (2.138)
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For Cabij , one uses 1´ v̂1 « ô1 ` p̂21 to obtain

Cabij « xab|f1pô1 ` p̂21qF12|ijy “ fap2F
p2b
ij . (2.139)

In both (2.138) and (2.139) the identity f ia “ 0 is used.
The remaining terms Mij

ij “ xij|F12f̂1F12|ijy could be factorized as

xij|F12α̂1f̂1α̂1α̂2F12|ijy « F ij
p1q1f

p1

r1F
r1q1

ij , (2.140)

but the error this would introduce has been shown to converge too slowly with the size of
the RI basis set to be useful. Instead, one can use the fact that the operators v̂1 and ̂1
commute with F12 to write

F12f̂1F12 “
1

2

“

rF12, t̂1s, F12

‰

´ F12k̂1F12 `
1

2

`

pf̂1 ` k̂1qF
2
12 ` F

2
12pf̂1 ` k̂1q

˘

, (2.141)

where it is noted that f̂1 ` k̂1 “ t̂1 ` v̂1 ` ̂1.
Using the product rules for the Laplace ∆1 and nabla ∇1 operators one can show that

“

rF12, t̂1s, F12

‰

“ p∇1F12 ¨∇1F12q , (2.142)

which leads to two-electron integrals that can be readily calculated for all relevant forms
of F12.

The last two terms in (2.141) can be treated using a single RI insertion:

xij|pf̂1 ` k̂1qα̂1F
2
12|ijy « pf ` kq

i
p1FF

p1j
ij (2.143)

xij|F 2
12α̂1pf̂1 ` k̂1q|ijy « FF ij

p1jpf ` kq
p1

i . (2.144)

The remaining exchange operator term xij|F12k̂1F12|ijy is typically treated as in (2.140),
because the errors that result for the exchange operator are acceptable [7, 8]:

xij|F12α̂1k̂1α̂1α̂2F12|ijy « F ij
p1q1k

p1

r1F
r1q1

ij , (2.145)

It is noted that these terms partially cancel with the exchange operator parts of the terms
given in equations (2.135)-(2.137), (2.138), and (2.139).

The formulas given here are working equations suitable for a computer implementa-
tion. The main ingredients necessary are the determination of the CABS orbitals, the
calculation of the mixed MO-CABS and CABS-CABS matrix elements of the kinetic en-
ergy, nuclear attraction, exchange and Coulomb operators, and the calculation of the two
electron integrals over the operators r´1

12 , F12, F12r
´1
12 , F 2

12, and p∇1F12 ¨∇1F12q.

Density Fitting

The most costly terms that arise in the RI-factorized F12 correction energy exhibit the
same OpM5q scaling with the system size as the MP2 energy. They are essentially of the
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same form as the numerator in the MP2 energy expression, which is made up of the direct
and exchange terms,

DMP2
ijab “ GijabG

ab
ij , XMP2

ijab “ GijabG
ab
ji , (2.146)

respectively.

The formal fifth order scaling in these expressions comes from the AO to MO transfor-
mation of the four-center integrals – the most expensive step scales formally as OpNiN

4
µq

– and another significant bottleneck is the OpN2
i N

2
a q scaling for the memory required to

store the transformed integrals. These bottlenecks can be reduced by using the density
fitted expressions for the energies

DMP2
ijab « GPiaG̃

Q
P G

Q
jb G

R
iaG̃SRGSjb, XMP2

ijab « GPiaG̃
Q
P G

Q
jb G

R
jaG̃SRGSib , (2.147)

where

GPpq “ ppq|r´1
12 |P q (2.148)

G̃PQ “ rG´1
s
P
Q (2.149)

GPQ “ pP |r´1
12 |Qq . (2.150)

This reduces the memory costs to OpNPNiNaq. If the Laplace transform is used to factorize
the denominator in the MP2 energy expression [134–137], the direct energy can be calcu-
lated in OpN2

PNiNaq steps, i.e., fourth order scaling with the system size, while the scaling
of the exchange energy remains fifth order (OpNPN

2
i N

2
a q), but with a reduced prefactor

compared to no use of DF.

This type of density fitting is also used extensively in the calculation of the F12 cor-
rection, where, e.g., (2.145) becomes in direct and exchange forms, respectively,

F ij
r1q1k

r1

p1F
p1q1

ij « FP
ir1F̃

Q
P F

Q
jq1k

r1

p1FR
ir1F̃S

RFS
jp1 (2.151)

F ij
r1q1k

r1

p1F
p1q1

ji « FP
ir1F̃

Q
P F

Q
jq1k

r1

p1FR
jr1F̃S

RFS
ip1 . (2.152)

Analogous definitions to (2.148)-(2.150) are used here. Again, the memory costs are re-
duced to OpM3q, and the calculation of the direct and exchange energies scale as OpM4q

and OpM5q, respectively. Due to the large number of terms and the need to use large
auxiliary basis sets for both the F12 specific RIs and density fitting of the four-center
two-electron integrals, the F12 correction costs considerably more than the calculation of
the MP2 energy. However, the short ranged nature of the correlation factor means that
considerable gains in efficiency are possible through the screening of negligible integrals.

Numerical Quadrature For MP2-Type Terms

In this section, possibilities are explored for the use of QD, in combination with RI and
DF, for reducing the formal scaling of the MP2-F12 method to OpM4q.
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For an MP2-type term such as F ij
abf

a
c F cb

ij (eq. (2.73)), density fitting already leads to
low prefactor OpM4q scaling in the case of the direct terms. For exchange-type terms, a
combination of DF and QD leads to the decomposition

F ij
abf

a
c F cb

ji « FP
iaF̃

Q
P F

Q
jbf

a
c wgφ

g
jφ

g
cF

g
ib , (2.153)

where

φgj “ φjprgq (2.154)

Fg
ib “ xi|F1g|by , (2.155)

and F1g “ F p|r1 ´ rg|q. The calculation of the integrals Fg
ib scales formally as OpM4q

and is potentially asymptotically linearly scaling when using localized orbitals. The steps
necessary for the calculation of the final energy, with their respective scaling behaviors, are

F Q̃
ia “ FP

iaF̃
Q
P , N2

PNiNa (2.156)

φg9a “ fac φ
g
c , NgN

2
a (2.157)

F̌gQ̃
i “ F Q̃

iaφ
g
9a, NgNPNiNa (2.158)

F̊gQ
b “ FQ

jbφ
g
j , NgNPNiNa (2.159)

F̄g
ib “ F̌gQ̃

i F̊gQ
b , NgNPNiNa (2.160)

wgF̄g
ibF

g
ib, NgNiNa (2.161)

Therefore, the formal scaling is OpM4q with the potential for only needing asymptotically
linear computational time using the bounds in Publication II.

Despite the potential computational savings afforded by expression (2.153), the mem-
ory bottleneck for storing the three-center DF integrals remains. An advantage of the QD
approach is that the grid points are completely independent and do not need to be trans-
formed so that the three-center QD integrals can be computed and used in a batch-wise
manner. This reduced memory footprint is beneficial for the use of high-performance com-
puting architectures such as GPUs, which can offset the increased computational prefactor
that results due to the fact that Ng is typically much larger than the size of an auxiliary
basis set. To fully leverage these advantages a method that strictly uses QD is needed.

The following formulas alleviate the memory bottleneck through two QD integrations.
The resulting expressions scale formally as OpM4q but are expensive due to a quadratic
dependence on the size of the grid and will therefore be most useful for large calculations on
high-performance computers. The direct-type and exchange-type expressions are factorized
according to

F ij
abf

a
c F cb

ij « Fg
iawgφ

g
jφ

g
b l
a
dl
d
cwhφ

h
i φ

h
cFh

jb, F ij
abf

a
c F cb

ji « Fg
iawgφ

g
jφ

g
b l
a
dl
d
cwhφ

h
jφ

h
cFh

ib , (2.162)

where a factorization of the Fock matrix fac “ ladl
d
c is used for symmetry purposes. The
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steps to calculate the energies, with their respective scaling behaviors, are then

φhã “ labφ
h
b , NgN

2
a (2.163)

Fgh
i “ Fg

iaφ
h
ã, N2

gNiNa (2.164)

FX gh
“ Fgh

i φ
h
i , N2

gNi (2.165)

FFgh
“ Fgh

i Fgh
i , N2

gNi (2.166)

XX gh
“ φgiφ

h
i , N2

gNi (2.167)

wgwhFX ghFX gh, N2
g direct (2.168)

wgwhFFghXX gh, N2
g exchange (2.169)

Numerical Quadrature For Three- and Four-Electron Integrals

As shown above, all the contributions to the MP2-F12 energy can be put into the form
of (2.73) through RI factorization, so the QD formulas given so far are enough to formu-
late an OpM4q scaling MP2-F12 theory. However, some terms, particularly three-electron
integrals, can be treated much more efficiently by using QD without first bringing them
into the form of equation (2.73) through RI. In Refs. [47] and [138], the use of QD for
simplifying the three- and four-electron integrals in F12 theory yields very promising re-
sults. In this work, QD is used in a similar fashion, with some differences in the way the
B intermediate is treated, and the scaling of the resulting formulas is discussed.

The three-electron integrals of the V and X intermediates can be effectively factorized
with a single QD integration. One obtains for example

xijk|
F12

r23

|kjiy « wgφ
g
jφ

g
jF

g
ikG

g
ik (2.170)

xijk|
F12

r23

|kijy « wgφ
g
jφ

g
iF

g
ikG

g
jk . (2.171)

These expressions scale very favorably as OpNgN
2
i q, i.e., OpM3q, with the actual bottleneck

coming from the preceding AO to MO transformation of the one-electron three-center
integrals. For the exchange term (2.171), this OpM4q transformation could be avoided
through direct calculation in the AO basis (see eqs. (2.118) and (2.119)). These expressions
are therefore potentially much more efficient than those that result from the usual RI
insertions.

For the B intermediate a combination of RI and QD is the most effective strategy. Here
again, the identity

Q̂12f̂1Q̂12 “f̂1 ´ f̂1ô2 (2.172)

` T̂ p´f̂1ô1 ` f̂1ô1ô2 ´ f̂1v̂1v̂2q (2.173)

` ô1f̂1ô1 ´ ô1f̂1ô1ô2 ` v̂1v̂2f̂1v̂1 , (2.174)

is used.
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The first term in (2.172) can be treated through commutator relations as in equation
(2.141), where the only difficult term that arises is the integral over F12k̂1F12. Instead of
using a triple RI insertion here, a double RI insertion leads to

xij|F12α̂1k̂1α̂1F12|ijy « xijp
1
|F12F23|q

1jiykq
1

p1 , (2.175)

and QD can be used to get the following formulas

xijp1|F12F23|q
1jiykq

1

p1 Ñ wgφ
g
jφ

g
jF

g
iq1F

g
ip1k

q1

p1 , wgφ
g
iφ

g
jF

g
iq1F

g
jp1k

q1

p1 , (2.176)

where here, and in the following, the QD factorization notation

direct integral Ñ QD form (direct), QD form (exchange) ,

is used. These terms scale formally as OpNgN
2
p1Niq and OpNgN

2
p1q, respectively. The

scaling of the exchange-type term decreases quite significantly from OpM5q for the RI+DF
expression to OpM3q. This is very promising, especially considering that this is the most
expensive term in the computation of the MP2-F12 correction using RI+DF.

The second term in (2.172) can be treated in a few ways. One way is to procede as in
eqs. (2.134)-(2.137), which imply a double RI insertion, and treat the resulting MP2-type
terms with QD, DF, or mixed DF-QD. To avoid a double RI insertion, it is necessary to
treat the different operators in f̂1 separately. The three terms that arise from t̂1 (eqs.
(2.83)-(2.85) ) can be treated directly with QD:

xijk|F12p∆1F13q|ikjy Ñ wgφ
g
iφ

g
iF

g
jkp∆Fqgjk, wgφ

g
iφ

g
jF

g
jkp∆Fqgik

´xijk|F12∇1F13 ¨ |p∇iqkjy Ñ wgφ
g
i

`

p∇φqgi ¨ p∇Fqgjk
˘

Fg
jk, wgφ

g
i

`

p∇φqgj ¨ p∇Fqgik
˘

Fg
jk

xijk|F12F13|p∆iqkjy Ñ wgφ
g
i p∆φq

g
iF

g
jkF

g
jk, wgφ

g
i p∆φq

g
jF

g
jkF

g
ik ,

where

p∆Fqgpq “ xp|∆1F1g|qy, p∇Fqgpq “ xp|∇1F1g|qy, (2.177)

p∆φqgi “ p∆φiqprgq, p∇φqgi “ p∇φiqprgq , (2.178)

can be calculated analytically, and ∆1F13 “ ∆3F13 and ∇1F13 “ ´∇3F13 have been used.
The operator ̂1ô2 leads to the four-electron integral of (2.91), which can be treated

with a single QD factorization:

xijkl|F12F13r
´1
14 |ikjly Ñ wgφ

g
iφ

g
iF

g
jkF

g
jkG

g
ll, wgφ

g
iφ

g
jF

g
jkF

g
ikG

g
ll . (2.179)

A single RI insertion before QD factorization is required for the operator v̂1ô2 in order to
avoid the singular behavior of |rg ´ rA|

´1 :

xijk|F12F13α̂1r
´1
1A |ikjy « xijk|F12F13|p

1kjyvp
1

i Ñ wgφ
g
iφ

g
p1F

g
jkF

g
jkv

p1

i , wgφ
g
iφ

g
p1F

g
jkF

g
ikv

p1

j .
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These expressions for the integrals over F12pt̂1 ` v̂1 ` ̂1qô2F12 can all be calculated at
OpM3q cost. The remaining term over k̂1ô2, however, can only be reduced to OpM4q.
Here, a single RI insertion and then QD factorization leads to the formulas

xij|F12α̂1k̂1ô2F12|ijy Ñ F ij
p1lwgφ

g
kφ

g
iF

g
ljG

g
p1k, F ij

p1lwgφ
g
kφ

g
jF

g
liG

g
p1k , (2.180)

which require a further factorization of F ij
p1l through DF or QD.

The rest of the terms from (2.173) and (2.174) are approximated in the following way

T̂ p´f̂1ô1 ` f̂1ô1ô2 ´ f̂1v̂1v̂2q ` ô1f̂1ô1 ´ ô1f̂1ô1ô2 ` v̂1f̂1v̂1v̂2 (2.181)

« T̂ p´α̂1f̂1ô1 ` α̂1f̂1ô1ô2 ´ α̂1f̂1v̂1v̂2q ` ô1f̂1ô1 ´ ô1f̂1ô1ô2 ` v̂1f̂1v̂1v̂2 (2.182)

“ T̂ p´α̂11f̂1ô1 ` α̂
1
1f̂1ô1ô2 ´ α̂

1
1f̂1v̂1v̂2q ´ ô1f̂1ô1 ` ô1f̂1ô1ô2 ´ v̂1f̂1v̂1v̂2 , (2.183)

where v̂1f1ô1 “ ô1f1v̂1 “ 0 is used and at most a single RI insertion is required. The three-
electron integrals that result are treated with QD and the two-electron integrals with DF or
QD. This leads to OpM3q scaling for the terms T̂ α̂11f̂1ô1 and ô1f̂1ô1, and otherwise OpM4q

scaling.
These formulas show that numerical integration can play a large part in reducing the

computational demands of explicitly correlated MP2-F12 theory by both reducing the
scaling of the most expensive terms and reducing the dependence on the RI basis set.
Based on the work in Publication II, tight integral bounds are available for all of the
three- and four-electron integrals and their factorizations with either RI, DF, or QD. This
allows for screening algorithms to further reduce the asymptotic scaling of all the F12
expressions to potentially OpMq or OpM2q, depending on the electronic structure.

2.6 Electronic Resonances and Non-Hermitian Quan-

tum Chemistry

Electronic resonances are metastable electronic states characterized by a finite lifetime.
These states are embedded in the continuous spectrum of the many-body Hamiltonian
and are unstable with respect to ionization or detachment. Because they are part of the
continuum, resonances cannot be described as a single state within Hermitian quantum
mechanics, but are characterized by an increased density of states within the continuous
spectrum [139]. For this reason, the methods presented in Sections 2.1 and 2.2 cannot
be applied directly. A number of alternative methods have been employed to characterize
resonance states, including time-dependent treatments [140–142], stabilization techniques
[143–145], the Stieltjes-Tchebycheff approach [146], methods based on the core-valence
separation approximation [147, 148], or methods based on finding the poles of the scattering
matrix [149].

An elegant route to the characterization of resonance states is provided by non-Hermitian
approaches, in which analytic continuation of the Hamiltonian to the complex plane is em-
ployed. The advantage of these methods is that resonance states are described by a single,
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square integrable wave function. Through analytic continuation, the continuous spectrum
of the Hamiltonian is rotated into the complex plane, and, additionally, discrete complex
eigenvalues of the resulting non-Hermitian Hamiltonian appear [139]. These eigenvalues
are the so-called Siegert energies, whose real and imaginary parts give the positions E and
widths Γ of resonance states, respectively:

E “ E ´ iΓ{2 (2.184)

The square integrability of the resonance eigenfunctions opens the door for the use of
methods analogous to those developed for bound states.

One way to achieve this is to augment the Hamiltonian with a complex absorbing
potential (CAP) [150–152] of the form iηW prq. The CAP is constructed to absorb the
diverging tail of the resonance wave function and the resulting Hamiltonian

Ĥη “ Ĥ ´ iηW prq , (2.185)

is non-Hermitian and its spectrum is purely discrete for finite values of η [150].
Alternatively, complex-scaling (CS) methods [10, 139] can be employed, in which all

coordinates within the Hamiltonian are scaled by a complex number eiθ, which can be
expressed as a similarity transformation of the form [10, 153]:

Ĥθ
“ eiθrpB{BrqĤe´iθrpB{Brq . (2.186)

Because the transformation operator eiθrpB{Brq used here is unbounded (in contrast to,
e.g., the operator expp´T̂ pnqq used in coupled cluster theory, see Section 2.1.3), the spec-
trum of Ĥθ, σpĤθq, is changed compared to that of Ĥ [154]. These changes are illustrated
in Fig. 2.5, which shows the rotation by an angle of 2θ of segments of the continuous spec-
trum around the ionization and detachment energies (thresholds) into the lower half of the
complex plane. Notice that the bound-state energies and thresholds of Ĥ are invariant
under complex scaling.

The mathematical basis for such a transformation is given by the Balslev-Combes theo-
rem [156–158] and its subsequent extensions for resonances in external fields [159–161]. In
the original CS formulation (2.186), the similarity transformation is not compatible with
the Born-Oppenheimer approximation [162, 163]. This is not a problem for atomic sys-
tems [155], but a different approach is required for molecules. In a variant called exterior
complex scaling [162], only the molecular coordinates outside a given radius are complex
scaled. This variant is compatible with the Born-Oppenheimer approximation, but its di-
rect application leads to practical difficulties in the context of electronic structure theory
using Gaussian basis functions.

An alternative and related complex-variable technique that is readily applicable to
molecular systems is the method of complex basis functions, originally proposed by Mc-
Curdy and Rescigno [163]. In this method, the asymptotic effects of CS are described
through a complex-scaling of the exponents of the most diffuse basis functions. The Gaus-
sian basis functions used in such calculations take the form

χµpr,Aq “ NµSµprAq expr´αµe
´2iθµr2

As. (2.187)
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Figure 2.5: The transformation of the spectrum of the Hamiltonian through complex scal-
ing as described by the Balslev-Combes theorem. Adapted from Ref. [155] with permission.
Copyright 2013 AIP.

where Nµ is a normalization constant, A is an atomic center, rA “ r ´ A, and Sµ is a
real polynomial in the components of rA that depends on the angular quantum numbers
of χµ. Each basis function is either strictly real, θµ “ 0, or scaled using a global complex
scaling factor θµ “ θ P R. The mathematical justification for these methods is that,
in the limit of a complete basis set, the scaling r Ñ reiθ of the coordinates within the
Hamiltonian is mathematically equivalent to the scaling r Ñ re´iθ of the coordinates of
the basis functions [139]. This approach had long been restricted to small systems and
small basis sets [164–170] due to the need to calculate non-standard two-electron integrals
over complex basis functions, but renewed interest led to efficient implementations at the
non-Hermitian static exchange (SE) and Hartree-Fock (HF) levels of theory [171, 172].
Extensions to include electron correlation at the second-order Møller-Plesset (MP2) and
coupled cluster singles and doubles (CCSD) levels of theory [173] soon followed, allowing
for accurate descriptions of the resonances of small molecules. Additionally, applications
to atomic and molecular Stark resonances have been detailed in Refs. [174] and [175] for
coupled cluster wave functions and, very recently, the acceleration of the complex basis
function HF and MP2 methods through the use of density fitting has been accomplished
in Refs. [176].

The scaling used within the method of complex basis functions leads to new types of
molecular integrals not present in bound state calculations and the efficient screening of
these integrals is the subject of Publication III. In Ref. [172], it was identified that one
barrier to reaching the efficiency of bound state calculations is the lack of a simple upper
bound on the value of the electron repulsion integrals (ERIs) over complex basis functions.
In bound state calculations, one has the Schwarz bound for screening ERIs over real basis
functions [72, 105]:

|pµν|λσq| ď pµν|µνq1{2pλσ|λσq1{2. (2.188)



40 2. Theory

In complex basis function methods, the bound (2.188) cannot be used directly, because
the ERIs are complex-symmetric and not positive-semidefinite. In Publication III, it is
shown that the proper Schwarz bound in the case of non-Hermitian complex basis function
methods is given by

|pµν|λσq| ď pµ˚ν˚|µνq1{2pλ˚σ˚|λσq1{2. (2.189)

This bound makes the efficient screening methods of bound-state quantum chemistry avail-
able to the non-Hermitian, complex basis function description of molecular resonances.
The resulting improvements in efficiency will be especially useful for the description of
resonance states of large systems, where integral screening becomes vital. Two examples
of areas where the resonances of large systems are important are the study of DNA damage
processes caused by ionizing radiation [177–180] and in plasmonic catalysis [181, 182].



Chapter 3

Integral Partition Bounds for Local
Molecular Orbitals

In Publication II, the integral partition bounds (IPBs) are introduced. The basic struc-
ture of these bounds is largely independent of the type of charge distributions involved,
provided they tend to zero at large distances and are absolutely integrable. Given a set
of such distributions tΩ1, . . . ,ΩNu, with N ě 2 one can choose corresponding centers
tC1, . . . ,CNu. These are points in R3 which can be chosen arbitrarily, but should be close
to the centers of absolute charge to maximize effectiveness of the bounds. The IPB for-
malism then requires the calculation of (or the calculation of a tight upper bound for) the
following overlap factor integrals:

SipRq “
ż

B̄ipRq

|Ωiprq|dr “

ż

ΘRp|r ´Ci|q|Ωiprq|dr (3.1)

VipRq “ max
r1PR3

ż

B̄ipRq

|Ωiprq|

|r ´ r1|
dr “ max

r1PR3

ż

ΘRp|r ´Ci|q
|Ωiprq|

|r ´ r1|
dr . (3.2)

Here, B̄ipRq is the complement (in R3) of a ball centered at Ci of radius R, and ΘR is the
shifted Heaviside step function

ΘRpxq “

#

0 x ă R

1 x ě R
. (3.3)

The closed form calculation of upper bounds for these functions is given in Publication
II in the case of distributions made up of contracted Gaussians (AOs), or contracted
Gaussian products (AO pairs). In this context, it is beneficial to treat the special cases
Si “ Sip0q and Vi “ Vip0q separately, as these integrals are particularly important and
tighter bounds are available than in the general case. In most situations, VipRq is actually
only needed in the special case of R “ 0.
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In the context of distributions made up of local MO (LMO) products some special
considerations are required. In principle, an LMO, φp, is simply a contraction in the AO
basis:

φp “
ÿ

µ

Lµpχµ , (3.4)

where the matrix L is determined, e.g., by an incomplete Cholesky factorization of the
density matrix P . Thus, after choosing centers Cpq for each MO product distribution
φpφq, one could calculate

SpqpRq “
ż

B̄pqpRq

|φpprqφqprq|dr ď
ÿ

µν

|LµpLνq|

ż

B̄pqpRq

|χµprqχνprq|dr , (3.5)

and similarly,

VpqpRq ď
ÿ

µν

|LµpLνq|max
r1PR3

ż

B̄pqpRq

|χµprqχνprq|

|r ´ r1|
dr , (3.6)

which can be calculated from the AO formulas derived in Publication II. The problem
that arises here is that, in contrast to the fixed contracted Gaussian coefficients, taking
the absolute values over the LMO coefficients will generally lead to large overestimates.

3.1 Overlap Factors for LMOs

For the IPB overlap factors over LMOs, one can use numerical quadrature to avoid the
need to take absolute values of the LMO coefficients. We note that this procedure should
also lead to tighter estimates for many of the AO function pairs (L “ 1) as well, since
some of the upper bounds needed for an analytical approach are no longer necessary. The
numerical procedure consists of the following steps:

Step 1: Determining MO centers

MO centers Cpq “ pC
x
pq, C

y
pq, C

z
pqq are determined as the centers of absolute charge:

Ci
pq “

1

Spqp0q

ż

ri|φpprqφqprq|dr, i “ x, y, z (3.7)

where the integrals involved are calculated numerically using QD:

Spqp0q “
ż

|φpprqφqprq|dr « wg|φ
g
pφ

g
q | “ wgFpgFqg, (3.8)

where,
Fpg “ |

ÿ

µ

Lµpχ
g
µ| . (3.9)
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If Spqp0q is negligible based on the integral threshold, then the LMO pair pq can be neglected
entirely and the remaining procedure is only needed for significant LMO pairs.

The remaining integral in (3.7) can be calculated similarly:

ż

ri|φpprqφqprq|dr « wgr
i
gFpgFqg, i “ x, y, z . (3.10)

Step 2: Determining Preliminary Extents

Using the AO product centers Cµν and maximal extents Eµν from Publication II, one
can determine rough overestimates Epq for rigorous extents using:

Epq “ max
µν

|LµpLνq |Sµνąϑ

 

|Cpq ´Cµν | ` Eµν
(

, (3.11)

where ϑ is the integral screening threshold and µν runs over AO pairs that contribute
significantly to φpφq (determined by the criterion under the max in (3.11)).

If extents are needed based on (3.2), equation (3.11) is used with the corresponding
AO extents and Vµν instead of Sµν in the significance criteria.

Step 3: Calculating SpqpRq

For the final calculation of SpqpRq, an atomic grid centered at Cpq is used, which can be
broken down into a spherical (e.g., Lebedev) grid S combined with a chosen radial grid
R, which should integrate on the interval r0,maxpq Epqs. The total atomic grid is then
GA “ R b S, and it is noted that the number of grid points for such a grid is constant
with respect to the size of the system. The integral can then be approximated as

SpqpRq «
ÿ

rPR
RărăEpq

ÿ

gPrbS

wgF
ppqq
pg F ppqqqg , (3.12)

where

F ppqqpg “ |
ÿ

µ

Lµpχ
ppqq
µg |, χppqqµg “ χµprg `Cpqq . (3.13)

Because both SpqpRq and its numerical representation are decreasing in R, one can easily
use (3.12) to find, to a desired numerical precision, the smallest R, i.e., the smallest extent,
such that

SpqpRq ă T , (3.14)

where T is a ϑ-dependent threshold that is given by the general IPB procedure. The easiest
way is to simply increase R incrementally until (3.14) is fulfilled, but more sophisticated
optimization procedures can also be used.
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Step 4: Upper bounds for VpqpRq

If one proceeds for VpqpRq in the same manner as for SpqpRq, the determination of the
maximum would necessitate a numerical global optimization procedure over a complicated
function in three dimensions. To avoid this we use the following upper bound for the charge
distribution:

|φpprqφqprq| ď Ω̃pqp|r ´Cpq|q , (3.15)

where

Ω̃pqprq “ max
xPR3

|x´Cpq |“r

|φppxqφqpxq| . (3.16)

Here, the value of the distribution |φpφq| at a point r is bound by the maximum of the
distribution on the (r-containing) sphere centered at Cpq with radius |r´Cpq|. This leads
to the upper bound

VpqpRq “ max
r1PR3

ż

ΘRp|r ´Cpq|q
|φpprqφqprq|

|r ´ r1|
dr (3.17)

ď max
r1PR3

ż

ΘRp|r ´Cpq|q
Ω̃pqp|r ´Cpq|q

|r ´ r1|
dr . (3.18)

Per construction, the function r Ñ Ω̃pqp|r´Cpq|q is non-negative and spherically sym-
metric around the point Cpq. This is true for ΘRp|r ´Cpq|q as well, and thus also for the
product ΘRp|r ´Cpq|qΩ̃pqp|r ´Cpq|q. In Section 3.2, it is proven that the maximum po-
tential of a non-negative, spherically symmetric function is always obtained at the spherical
center. This allows for the determination of the remaining maximum directly:

max
r1PR3

ż

ΘRp|r ´Cpq|q
Ω̃pqp|r ´Cpq|q

|r ´ r1|
dr “

ż

ΘRp|r ´Cpq|q
Ω̃pqp|r ´Cpq|q

|r ´Cpq|
dr (3.19)

“

ż

ΘRp|r|q
Ω̃pqp|r|q

|r|
dr . (3.20)

The remaining integral can be calculated on the radial grid:

VpqpRq ď
ż

ΘRp|r|q
Ω̃pqp|r|q

|r|
dr (3.21)

“ 4π

ż 8

r“R

r Ω̃pqprqdr (3.22)

« 4π
ÿ

rPR
RărăEpq

wr r Ω̃pqprq , (3.23)
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The function Ω̃pq can be approximated numerically at each grid point r P R as the
maximum

Ω̃pqprq « max
gPrbS

|φpprg `Cpqqφqprg `Cpqq| (3.24)

“ max
gPrbS

F ppqqpg F ppqqqg . (3.25)

Again, both VpqpRq and its numerical bound are decreasing in R and solving

VpqpRq ă T , (3.26)

is straightforward.

3.2 Maximal Coulomb Potential of Non-Negative Ra-

dial Distributions

Here, it is proven that for any integrable, non-negative radial charge distribution ϕ, spher-
ically symmetric around a point C P R3, whose Coulomb potential

Φrϕspxq “

ż

dr
ϕprq

|r ´ x|
, (3.27)

is finite for any x P R3, it holds that

max
xPR3

Φrϕspxq “ ΦrϕspCq , (3.28)

i.e., the Coulomb potential of ϕ takes its maximum at x “ C. This can be seen as follows:
Translating to the center of spherical symmetry, r Ñ r `C, we have

Φrϕspxq “

ż

dr
ϕpr `Cq

|r ´ px´Cq|
. (3.29)

Because the numerator of the integrand is now spherically symmetric with respect to the
origin, Newton’s shell theorem [183, 184] can be applied to obtain

Φrϕspxq “
1

|x´C|

ż

|r|ď|x´C|

drϕpr `Cq `

ż

|r|ą|x´C|

dr
ϕpr `Cq

|r|
. (3.30)

Using t|r| ą |x ´C|u “ R3zt|r| ď |x ´C|u for the integration space of the second term,
one obtains

Φrϕspxq “

ż

dr
ϕpr `Cq

|r|
`

ż

|r|ď|x´C|

dr
´ 1

|x´C|
´

1

|r|

¯

ϕpr `Cq (3.31)

“ ΦrϕspCq `

ż

|r|ď|x´C|

dr
´ 1

|x´C|
´

1

|r|

¯

ϕpr `Cq (3.32)
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The identity (3.32) allows for the calculation of the limit

lim
xÑC

ż

|r|ď|x´C|

dr
´ 1

|x´C|
´

1

|r|

¯

ϕpr `Cq “ lim
xÑC

´

Φrϕspxq ´ ΦrϕspCq
¯

“ 0 . (3.33)

From ϕ ě 0, and because 1
|x´C|

´ 1
|r|
ď 0 follows from |r| ď |x´C|, we conclude that

ż

|r|ď|x´C|

dr
´ 1

|x´C|
´

1

|r|

¯

ϕpr `Cq ď 0 , (3.34)

so that, together with (3.33), one obtains

max
xPR3

ż

|r|ď|x´C|

dr
´ 1

|x´C|
´

1

|r|

¯

ϕpr `Cq “ 0 (3.35)

Taking the maximum over Φrϕspxq thus gives

max
xPR3

Φrϕspxq “ ΦrϕspCq `max
xPR3

ż

|r|ď|x´C|

dr
´ 1

|x´C|
´

1

|r|

¯

ϕpr `Cq (3.36)

“ ΦrϕspCq , (3.37)

which concludes the proof.
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Distance-including rigorous upper bounds and tight estimates
for two-electron integrals over long- and short-range operators

T. H. Thompson and C. Ochsenfeld,
J. Chem. Phys. 147, 144101 (2017).

Abstract:

We introduce both rigorous and non-rigorous distance-dependent integral estimates for
four-center two-electron integrals derived from a distance-including Schwarz-type inequal-
ity. The estimates are even easier to implement than our so far most efficient distance-
dependent estimates [S. A. Maurer et al., J. Chem. Phys. 136, 144107 (2012)] and, in
addition, do not require well-separated charge distributions. They are also applicable to a
wide range of two-electron operators such as those found in explicitly correlated theories
and in short-range hybrid density functionals. For two such operators with exponential
distance decay [e´r12 and erfcp0.11 ¨ r12q{r12], the rigorous bound is shown to be much
tighter than the standard Schwarz estimate with virtually no error penalty. The non-
rigorous estimate gives results very close to an exact screening for these operators and for
the long-range 1{r12 operator, with errors that are completely controllable through the in-
tegral screening threshold. In addition, we present an alternative form of our non-rigorous
bound that is particularly well- suited for improving the PreLinK method [J. Kussmann
and C. Ochsenfeld, J. Chem. Phys. 138, 134114 (2013)] in the context of short-range
exchange calculations.

The following article is reproduced in agreement with its publisher (AIP Publishing LLC)
and can be found online at: https://doi.org/10.1063/1.4994190
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We introduce both rigorous and non-rigorous distance-dependent integral estimates for four-center
two-electron integrals derived from a distance-including Schwarz-type inequality. The estimates are
even easier to implement than our so far most efficient distance-dependent estimates [S. A. Maurer
et al., J. Chem. Phys. 136, 144107 (2012)] and, in addition, do not require well-separated charge-
distributions. They are also applicable to a wide range of two-electron operators such as those found
in explicitly correlated theories and in short-range hybrid density functionals. For two such operators
with exponential distance decay [e−r12 and erfc(0.11 · r12)/r12], the rigorous bound is shown to be
much tighter than the standard Schwarz estimate with virtually no error penalty. The non-rigorous
estimate gives results very close to an exact screening for these operators and for the long-range
1/r12 operator, with errors that are completely controllable through the integral screening threshold.
In addition, we present an alternative form of our non-rigorous bound that is particularly well-
suited for improving the PreLinK method [J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138,
134114 (2013)] in the context of short-range exchange calculations. Published by AIP Publishing.
https://doi.org/10.1063/1.4994190

I. INTRODUCTION

Reducing the computational effort of quantum-chemical
calculations requires taking advantage of the sparse nature of
the interactions involved. This can be done efficiently through
low-cost estimates that allow one to skip the exact calcu-
lation of numerically vanishing contributions. Traditionally,
the development of reliable estimates of the four-center two-
electron integrals over the Coulomb operator 1/r12 has played
an important role in decreasing the storage and computational
requirements. The use of the Schwarz estimate (QQ),

| (µν |λσ) | ≤ (µν |µν)1/2 (λσ |λσ)1/2 = QµνQλσ , (1)

where

(µν |λσ) =
∫ ∫

χµ(r1)χν(r1)χλ(r2)χσ(r2)

r12
dr1dr2, (2)

and { χµ} is a finite set of sufficiently local orbitals (usually
Gaussians), represents the first breakthrough in integral screen-
ing techniques.1,2 It accurately captures the—in the case of
Gaussian basis functions—exponential decay of two-electron
integrals with increasing distances between the centers of χµ
and χν , and χλ and χσ (overlap dependence), while also being
simple and very efficient to calculate.

More recently,3 estimates have been developed that not
only capture the overlap decay but also incorporate the decay
of (2) arising from the behaviour of the Coulomb operator as
the distance between the local charge distributions χµ χν and
χλ χσ becomes large (distance dependence). In this regard,
Maurer et al. showed that a good approximation of the inte-
grals can be even more useful than a strict upper bound and

introduced the QQR estimate3 given by

| (µν |λσ) | ≈



QµνQλσ(R̃λσµν )−1, R̃λσµν > 1

QµνQλσ , R̃λσµν ≤ 1
, (3)

where

R̃λσµν = Rλσµν − extµν − extλσ . (4)

Here, Rλσµν is the distance between the centers of the two charge
distributions χµ χν and χλ χσ , while extµν and extλσ are their
respective numerical extents (precise definitions in terms of
entire shells are given in Ref. 3).

Further advances include the development of tighter esti-
mates for three-center Coulomb integrals4 and the extension
of QQR to the operator erfc(ωr12)/r12

5 used in some den-
sity functional theory (DFT) methods employing short-range
exchange.

In the following, we introduce integral estimates that accu-
rately describe the distance dependence and are applicable to
a wide range of multiplicative, distance-dependent operators,
including those that arise in some modern quantum-chemical
methods, such as explicitly correlated F126,7 and short-range
hybrid DFT methods.8 The expressions are as simple and
easily computable as the Schwarz estimates and are used to
form both rigorous and even tighter non-rigorous estimates. In
addition, they employ a distance-including term that is sim-
pler and more efficient to calculate than that used in QQR
type estimates. We test the estimates for integrals over the
Coulomb operator 1/r12, which we call “long-range” due to
their slow inverse distance decay, and over the operators e−r12

and erfc(0.11 · r12)/r12, which we call “short-range” due to

0021-9606/2017/147(14)/144101/10/$30.00 147, 144101-1 Published by AIP Publishing.
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their exponential distance decay. The operator e−γr12 is impor-
tant in explicitly correlated F12 theory with a true Slater-type
geminal9 and optimal values of γ depend on the basis set but
are typically close to 1.0.10 The operator erfc(0.11 · r12)/r12 is
used in, e.g., the HSE06,11 HSE-3c,12 and N12-SX13 density
functionals.

II. THEORY

The QQ estimate (1) remains applicable when the
Coulomb operator 1/r12 is replaced by any positive-definite
integral kernel, and in the following, we use the integral nota-
tion (µν |λσ) as in (2), but with the Coulomb operator replaced
by some general function G of the inter-electronic distance. For
proof of this statement and of the positive-definiteness of vari-
ous important operators used in quantum chemistry, including
those in this work, see Appendix B. Thus, from now on, the
factor Qµν always depends implicitly on the operator G. In
addition, we consider the generalized QQR estimate of the
form

| (µν |λσ) | ≈



QµνQλσG(R̃λσµν ), 0 < G(R̃λσµν ) < 1

QµνQλσ , otherwise
, (5)

with R̃λσµν as in Eq. (4).

A. A rigorous upper bound for short-range operators

The QQ estimate is the Schwarz inequality on the
space of one-electron charge distributions defined as Ωµν(r1)
= χµ(r1)χν(r1). It is applicable due to the fact that the two-
electron integral over some distance-dependent operator G is
an inner product on this space, as long as G is positive definite.
We show in Appendix A that the integral is also an inner prod-
uct on the space of real continuous two-electron functions, if G
is strictly positive for r12 > 0. The two-electron orbital prod-
ucts Ω̃µν(r1, r2) = χµ(r1)χν(r2) are a subset of this space and
the corresponding Schwarz inequality leads, due to symmetry,
to the following two upper bounds:

| (µν |λσ) | ≤ (µµ|λλ)1/2 (νν |σσ)1/2 = MµλMνσ , (6)

| (µν |λσ) | ≤ (µµ|σσ)1/2 (νν |λλ)1/2 = MµσMνλ. (7)

In contrast to the original QQ estimates, the right-hand sides
of (6) and (7) inherently contain distance dependence, while
lacking any overlap dependence. Equality holds in (6) and
(7) for integrals of type (µµ|νν), i.e., for “perfect” overlap in
forming the charge distributions. We combine the original QQ
estimates (1) and the Schwarz-type inequalities (6) and (7)
into a rigorous distance-including upper bound, the combined
Schwarz bound (CSB),

| (µν |λσ) | ≤ min
(
QµνQλσ , MµλMνσ , MµσMνλ

)
. (8)

For the long-range Coulomb operator, overlap depen-
dence is much more important than distance dependence and
we find that the CSB estimate is no more useful than the
QQ estimate for currently tractable systems. However, for
operators with much stronger distance-decay, such as e−r12

and erfc(0.11 · r12)/r12, we find that that the rigorous CSB
provides a much tighter bound and correctly captures the lin-
ear scaling increase in the number of significant two-electron

integrals already for medium-sized systems. This is in con-
trast to the QQ estimates, which scale quadratically with
system size regardless of the operator, due to the missing
distance-dependence.

Lastly, we note that the CSB estimates are exact for both
(µν |µν)-type and (µµ|νν)-type integrals. This is because the
QQ estimates are exact for the former integral types, while
Eqs. (6) and (7) are exact for the latter, and all three are upper
bounds.

B. Tight estimates for short- and long-range operators

The descriptions provided by the QQ bounds and those in
Eqs. (6) and (7) can be seen as being complementary. While
the QQ estimates describe the overlap dependence at zero dis-
tance, the new bounds provide a description of the distance
dependence at full overlap. This makes it plausible that they
can be combined in a way that captures both properties simul-
taneously and gives a good estimate for most, if not all, of
the two-electron integrals. In order to preserve the exactness
of the estimates for (µν |µν)-type integrals, we developed the
following normalized description of the distance decay:

M̃µλ =
Mµλ

Q1/2
µµ Q1/2

λλ

. (9)

We note that 0 < M̃µλ ≤ 1 and that M̃µλ = 1 if χµ = χλ. This
follows from the QQ estimate of Mµλ,

Mµλ ≤ Q1/2
µµ Q1/2

λλ , (10)

where equality holds if χµ = χλ. The denominator in (9)
depends neither on the overlap nor on the distance but ensures
that the factor M̃µλ gives unity for χµ = χλ so that an estimate
derived by multiplying the QQ bound with this factor will
reduce to the QQ bound for (µν |µν)-type integrals, which is
exact in this case. On the other hand, the distance decay of
the factor Mµλ is included. We use M̃µλ to formulate our non-
rigorous combined Schwarz approximations (CSAs),

| (µν |λσ) | ≈ QµνQλσMµνλσ , (11)

with three different approximations [CSA1, CSA2, and CSA
max (CSAM)] given by the choice of Mµνλσ ,

Mµνλσ =




M̃µλM̃νσ , CSA1
M̃µσM̃νλ, CSA2
max

(
M̃µλM̃νσ , M̃µσM̃νλ

)
, CSAM

. (12)

We note that in addition to 0 < M̃µλ ≤ 1, one also has

0 <
Qµν

Q1/2
µµ Q1/2

νν

≤ 1, (13)

with equality on the right-hand side for χµ = χν , which fol-
lows by estimating Qµν with Eq. (6) [or (7)]. This ensures that
the CSA estimates are also exact for integrals of type (µµ|νν)
because they then reduce to the bound (6), which is exact in
this case.

We note that CSA1 and CSA2 offer more flexibility due
the separated form of Mµνλσ but are slightly less accurate
than CSAM (see Sec. III A). We have found, as one might
expect, that CSA1 and CSA2 perform nearly identically and
we only present results for CSA1.
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The combined Schwarz approximations exhibit many
excellent qualities. For one, they require only diagonal ele-
ments of the integrals themselves. Furthermore, no well-
separatedness condition is required for their application, in
contrast to QQR, and the error incurred in their use is mediated
through only one screening parameter, the integral threshold.
In addition, their use is very inexpensive because the distance
factors M̃µν can be easily precalculated and stored, and only
simple multiplication is needed in the screening step. Lastly,
they lead, in terms of integral shell counts, to a nearly exact
screening, i.e., the neglect of all integral shells with exact
norms below the integral threshold, for all of the operators
we have tested.

C. Incorporation into Coulomb and exchange matrix
screening algorithms

Modern methods allow for the linear-scaling calculation
of both the Coulomb (J) and exchange (K) matrices needed in
Hartree-Fock (HF) theory and hybrid DFT (see, e.g., Ref. 14).
J and K are defined in terms of the density matrix P and the
two-electron integrals as

Jµν =
∑
λσ

Pλσ (µν |λσ) , (14)

Kµν =
∑
λσ

Pλσ (µλ |νσ) , (15)

and traditionally, individual contributions are screened, i.e.,
contributions estimated below a chosen screening threshold
are neglected, via the QQ bound,

|Pλσ (µν |λσ) | ≤ |Pλσ |QµνQλσ , (16)

|Pλσ (µλ |νσ) | ≤ |Pλσ |QµλQνσ . (17)

In the case of the Coulomb matrix, the continuous fast
multipole method (CFMM)15 can be used to partition J into
near-field and far-field contributions based on interaction dis-
tance. The near-field part inherently contains only a linear
scaling number of interactions due to the distance cutoff and it
is calculated using exact integrals, while the formally quadratic
scaling far-field contribution is handled with arbitrary pre-
cision using a highly efficient multipole expansion based
algorithm in a linear scaling fashion. Typically, the near-field
contribution dominates Coulomb matrix calculation times and
integral screening via Eq. (16) is used to reduce the prefactor.

The exchange matrix can be calculated in a linear scaling
fashion for systems with non-vanishing HOMO-LUMO gaps,
such that the density matrix P is sparse.16–18 This is because the
two charge distributions present in exchange terms are coupled
through the density matrix as seen in (17) so that the number of
significant contributions to K scales linearly in this case. Alter-
natively, very recent work19 explores the use of fast multipole
methods for calculating the exchange matrix.

While a naı̈ve screening using Eq. (17) will scale quadrat-
ically with the system size, the LinK method17,18 intro-
duces a prescreening/preordering step preceding the Schwarz
screening that reduces the complexity to linear for sparse P
matrices.

We implement our estimates within the Coulomb near-
field screening and LinK screening algorithms by simply

adding a final screening step in which integrals are neglected
when the estimates,

|Pλσ (µν |λσ) | ≈ |Pλσ |Aµνλσ , (18)

|Pλσ (µλ |νσ) | ≈ |Pλσ |Aµλνσ , (19)

are less than some fixed thresholds ϑj and ϑk , for Coulomb
and exchange contributions, respectively. Here, Aµνλσ repre-
sents one of the approximations to the two-electron integrals
described above. Although one could tailor the prescreening
step to the particular approximation used, we have found that
this has little impact on the efficiency of calculating the exact
exchange matrix, i.e., for two-electron integrals over the 1/r12

operator, to which this work is restricted. This is because the
slow distance-decay allows for only small improvements in
the coarse prescreening step. In addition, the large amount of
non-negligible integrals means that the screening step makes
up a small fraction of the calculation time in this case.

Lastly, we note that while the LinK prescreening algo-
rithm is very efficient on central processing units (CPUs), it is
not suited for use on graphical processing units (GPUs) due to
the complex control flow required. However, the PreLinK pre-
screening method20 allows for linear-scaling through a coarse
preselection of significant K matrix elements before integral
calculation begins using only efficient sparse matrix multipli-
cations. Defining |P| as the matrix of absolute density matrix
elements and Q as the matrix formed from the factors Qµν ,
the approximated matrix of absolute exchange elements |K |′

is given by the simple expression,

|K |′ = Q|P|Q. (20)

Because the CSB, QQR, and CSAM estimates do not separate
into two-index quantities, they cannot be used straightfor-
wardly within the PreLinK method because they do not lead
to an efficient prescreening involving only matrix operations.
On the other hand, the CSA1 estimates lead to a very simple
expression for |K |′,

|K |′ = M̃ ◦
(
Q

(
M̃ ◦ |P|

)
Q

)
, (21)

where ◦ symbolizes the Hadamard matrix product and
M̃ = (M̃µν)µν . Thus, only two Hadamard products and two
matrix multiplications are required, which again can be
performed in a linear-scaling fashion.

We have found that, in terms of speed vs. accuracy, Eq.
(21) performs the same as (20) for the exact exchange calcu-
lations to which this work is restricted. This is not surprising
considering the long-range nature of the 1/r12 operator and that
the PreLinK method is a coarse prescreening. We note however
that for short-range operators, the matrix M̃ will become sparse
for currently tractable systems and we have found Eq. (21) to
perform significantly better than (20) in this case. Additionally,
the sparsity of M̃ means that for both the LinK and PreLinK
methods, linear-scaling will be achievable even for small band-
gap systems with densely populated density matrices. We will
present results for short-range exchange calculations in future
work.

III. COMPUTATIONAL DETAILS AND RESULTS

We compare the performance of the rigorous CSB [Eq.
(8)] estimate and the non-rigorous CSA1 and CSAM [Eqs.
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(11) and (12)] estimates to that of the established QQ [Eq.
(1)] and QQR [Eq. (5)] estimates. For the QQR estimates, we
employ a fixed well-separatedness threshold of 10�1, which
has been shown to give sufficient accuracy.3 As test systems,
we use a subset of the screening benchmark test suite described
in Ref. 3.

In Sec. III A, preliminary results based on statistics
and integral only screenings are given for the long-range
Coulomb operator 1/r12 and the short-range operators e−r12

and erfc(0.11 · r12)/r12. The importance of these operators is
given at the end of Sec. I. We give results for a range of thresh-
olds and also compare estimate performance for a series of
linear alkanes containing up to 160 carbon atoms.

In Sec. III B, we give results for the 1/r12 operator in the
context of Hartree-Fock SCF calculations to demonstrate the
applicability of our estimates in electronic structure theory.

Due to the way in which molecular integrals are cal-
culated, it is advantageous to screen at the level of integral
shell-quartets. We estimate the contribution of a shell-quartet
by taking the maximum norm of our estimates with respect
to entire shells, before combining these shellwise estimates
in the screening step to a final estimate. If a shell-quartet is
deemed non-significant, none of the corresponding integrals
are calculated.

A. Statistics and estimate performance

As a first test, we evaluate the performance of the estimates
through statistics of the ratio

F = Iestimate/Iexact, (22)

where Iestimate and Iexact are the estimated and actual norms of
an integral shell-quartet, respectively. The maximum (Fmax),
minimum (Fmin), average (Fav), and standard deviation [σ(F)]
of F are given for the molecule Amylose16 from the test
suite and the basis sets cc-pVDZ and cc-pVTZ in Tables I
and II, respectively. Due to the way the integrals over the
erfc(0.11 · r12)/r12 operator are calculated as the difference
between the integrals over the 1/r12 and erf(0.11·r12)/r12 oper-
ators, numerical instability occurs for large distances between
charge distributions. Such integrals are calculated as the small
difference between large values. As we show below, this does
not affect the real performance of our estimates when using
a fixed integral threshold; however, it distorts the statistics
of F. To avoid this distortion, we restrict our statistics to
shell-quartets with exact norms larger than 10�12.

For the cc-pVDZ basis set we see, in the case of the
1/r12 operator, only slightly improved statistics with the CSB
versus the QQ estimate. This is expected due to the weak
distance dependence for this operator and we suspect that
most of the improvement comes from (µµ|νν)-type inte-
grals for which CSB is exact while the QQ bounds are strict
overestimates (assuming χµ , χν). The non-rigorous QQR,
CSAM, and CSA1 bounds perform similarly, with signifi-
cantly improved averages, standard deviations, and maximal
overestimates compared to the two rigorous bounds. The two
CSA estimates have slightly improved standard deviations at
a cost of slightly larger errors indicated by lower Fmin values.

In the case of the e−r12 operator, the CSB estimate shows
large improvements to the rather poorly performing QQ bound.

TABLE I. Statistics of the ratio F = Iestimate/Iexact for the molecule
Amylose16, the cc-pVDZ basis set, and the estimates QQ, CSB, QQR, CSAM,
and CSA1. Only shell-quartets with exact norms above 10�12 are included in
the statistics.

cc-pVDZ

Operator Estimates Fav σ(F) Fmin Fmax

QQ 70.38 1.5 × 103 1.000 4.3 × 106

CSB 62.06 954.00 1.000 2.3 × 106

1/r12 QQR 2.27 24.29 0.376 4.6 × 104

CSAM 2.32 17.01 0.161 1.9 × 104

CSA1 2.30 17.01 0.083 1.9 × 104

QQ 1.4 × 106 2.0 × 107 1.000 7.3 × 109

CSB 1.5 × 103 6.0 × 103 1.000 5.1 × 105

e−r12 QQR 12.76 47.45 0.179 1.6 × 104

CSAM 2.39 6.20 0.002 1.3 × 103

CSA1 1.88 4.97 2.4 × 10−4 911.86

QQ 2.0 × 106 4.0 × 107 1.000 3.9 × 1010

CSB 2.0 × 103 7.1 × 103 1.000 5.5 × 105

erfc(0.11·r12)
r12

QQR 5.14 5.49 0.448 741.05

CSAM 1.48 1.30 0.042 132.70
CSA1 1.34 1.22 0.014 125.33

Again, the non-rigorous estimates outperform the rigorous
bounds greatly but come with the cost of underestimates which
are more severe than in the case of the Coulomb operator. The
CSA estimates are significantly better on average than the QQR
estimates but also show much larger underestimates.

The results for the operator erfc(0.11 · r12)/r12 are similar
to those for e−r12 . The non-rigorous estimates however show
improved values in each category with the same general trends
between them.

The results for the cc-pVTZ basis are very similar to
those for the cc-pVDZ basis. The trends stay the same, but all

TABLE II. Statistics of the ratio F = Iestimate/Iexact for the molecule
Amylose16, the cc-pVTZ basis set, and the estimates QQ, CSB, QQR, CSAM,
and CSA1. Only shell-quartets with exact values above 10�12 are included in
the statistics.

cc-pVTZ

Operator Estimates Fav σ(F) Fmin Fmax

QQ 101.54 2.6 × 103 1.000 9.0 × 106

CSB 90.08 2.1 × 103 1.000 9.0 × 106

1/r12 QQR 3.05 43.28 0.337 9.9 × 105

CSAM 3.15 30.06 0.145 3.4 × 104

CSA1 3.12 30.06 0.069 3.4 × 104

QQ 1.5 × 106 1.9 × 107 1.000 7.4 × 109

CSB 1.8 × 103 8.1 × 103 1.000 1.2 × 107

e−r12 QQR 11.05 98.69 0.119 1.0 × 106

CSAM 3.88 19.17 0.001 3.4 × 105

CSA1 2.97 14.74 1.1 × 10−4 2.2 × 105

QQ 2.0 × 106 3.5 × 107 1.000 4.0 × 1010

CSB 2.3 × 103 8.6 × 103 1.000 6.5 × 106

erfc(0.11·r12)
r12

QQR 4.74 20.67 0.306 7.8 × 105

CSAM 1.97 3.84 0.033 1.2 × 105

CSA1 1.77 3.63 0.010 1.2 × 105
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estimates perform slightly worse than with the smaller basis
set.

We also present results regarding the efficiency and accu-
racy of direct integral screenings and compare to an a pos-
teriori exact screening. In these tests, integrals are discarded
when they are estimated to be smaller than a fixed thresh-
old ϑ. In the case of the exact screening, they are discarded
if they truly are smaller than the threshold. As a measure of
the efficiency, we use significant shell-quartet totals, and as a
measure of accuracy, the entrywise 1-norm (W ) of the differ-
ence between the exact two-electron integral tensor {(µν |λσ)}
and the “screened” tensor {(µν |λσ)′} with integrals from
non-significant shell-quartets set to zero,

W =
∑
µνλσ

| (µν |λσ) − (µν |λσ)′ |. (23)

We note that W is just the unsigned sum of all discarded
integral values. Although W will be much larger than the actual
screening error due to error cancellation, it offers a good metric
for comparison with the well-tested estimates QQ and QQR
and with the error involved in an exact screening. We note that
for non-rigorous methods, W will include contributions from
integrals that are larger than the screening threshold; how-
ever, our accuracy metric treats such terms on equal footing
with correctly discarded integrals, making a comparison with
rigorous estimates possible. In almost all cases, the contri-
bution from accurately screened integrals is larger or of the
same order of magnitude as that coming from those discarded
erroneously.

We tested our estimates using various screening thresh-
olds. In Fig. 1, the ratio of the number of significant shell-
quartets NSQ of the most conservative (ϑ = 14) QQ screening
to those of each method/threshold (speedup) and the W val-
ues are plotted against a sequence of increasing screening
thresholdsϑ for all three operators tested. The numbers are cal-
culated using sums of the NSQ and W data from the molecules
Amylose32, Polyethyne128, and (S8)20 from the test suite.

For the 1/r12 operator [Figs. 1(a) and 1(d)], we find no
improvement in efficiency for the rigorous CSB estimate and
no change in accuracy compared to the QQ estimate. In fact,
virtually identical sets of integrals are discarded in both cases.
On the other hand, the non-rigorous estimates, which perform
nearly identically, show significant improvements in efficiency
close to that achieved with an exact screening. This increased
speed is accompanied by an increase in error of more than an
order of magnitude compared to the rigorous bounds. However
the error is virtually identical to that of an exact screening
and is controllable through the screening threshold. The error
increases linearly with increasing ϑ.

In Fig. 1(b), we see that the speedups for the
erfc(0.11 · r12)/r12 operator are much higher than for the 1/r12

operator for all estimates except QQ, for which they are more
or less identical (notice the different scales for the speedup).
Remarkably, the rigorous CSB estimate shows a speedup of
ca. 2.5 already for ϑ = 10−14 with virtually no error increase.
This can only be matched by the QQ estimate by increas-
ing ϑ by six orders of magnitude, which is accompanied by
an increase in error of roughly six orders of magnitude. The
speedup gap between the two rigorous estimates increases with
increasing ϑ, while the errors incurred [see Fig. 1(e)] remain
virtually identical. Therefore, it seems that there can be no
justification for the use of QQ instead of CSB for this oper-
ator. Looking at the non-rigorous estimates, we see speedups
rivaling the exact screening from the CSA estimates with
the QQR estimate discarding considerably less. The gap in
speed between the non-rigorous and rigorous estimates has
widened significantly in comparison to the 1/r12 operator. In
contrast to the speedups, the errors of the screenings decrease
across all estimates compared to the 1/r12 operator, especially
for the QQ, QQR, and CSB estimates. This is notable con-
sidering the fact that many more integrals are discarded for
this operator. One sees as well that the speedup of the CSA
estimates compared to QQR comes at the price of a slight
decrease in accuracy.

FIG. 1. [(a)-(c)] Speedup (relative to QQ estimates with screening threshold ϑ = 10−14) and [(d)-(f)] decadic logarithm of the error measure W [see Eq. (23)]
for the molecular systems Amylose32, Polyethyne128, and (S8)20 for a series of screening thresholds ϑ. The number of significant shell-quartets and the W
values are summed over the three molecules. The rigorous screenings QQ and CSB are compared to the non-rigorous QQR, CSAM, and CSA1 screenings as
well as an a posteriori exact screening for the operators 1/r12 [(a) and (d)], erfc(0.11 · r12)/r12 [(b) and (e)], and e−r12 [(c) and (f)]. Note that while the range of
speedup of the upper plots varies for the different operators, the range of the lower error plots is fixed.
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The results for the e−r12 operator [Figs. 1(c) and 1(f)] are
similar to that for erfc(0.11 · r12)/r12, except that the speedups
are much larger for all but the QQ estimates. Again, we find that
CSB significantly outperforms the QQ estimates in efficiency
with virtually no error penalty. We see the same trends between
the non-rigorous estimates with a wider speed gap between the
CSA and QQR estimates and between CSA1 and CSAM. The
accuracy of the exact screening and rigorous estimates again
increases, for QQR and CSAM it stays about the same, while
the error of CSA1 increases slightly in comparison to the values
for the erfc(0.11 · r12)/r12 operator.

We also evaluated the performance of our estimates with
increasing system size. In Fig. 2, the number of significant
integral shell-quartets NSQ and the W values are given for a
set of linear alkanes ranging from methane to C160H322. Here,
a fixed screening threshold of ϑ = 10−10 is used.

For the 1/r12 operator [Figs. 2(a) and 2(d)], we observe a
quadratic increase in the number of significant shell-quartets
with increasing system size for all estimates and for the
exact screening, as expected. The non-rigorous estimates are
nearly exact in terms of both significant shell-quartets and
error.

For the erfc(0.11 · r12)/r12 and e−r12 operators, we observe
that all estimates except for QQ, including the rigorous CSB,
correctly predict a linear scaling number of significant shell-
quartets. While the CSB has an increased prefactor compared
to the non-rigorous estimates, it shows almost no error increase
compared to the QQ bound. Remarkably, for the largest alkane
(C160H322), the QQ bound predicts 5.14 times as many sig-
nificant shell-quartets as the CSB bound in the case of the
erfc(0.11 · r12)/r12 operator. For the e−r12 operator, this num-
ber increases to 8.09. The non-rigorous bounds are much
closer to the exact screening in terms of significant integral
shells. The CSA estimates are barely distinguishable from the
exact screening, while the QQR estimate discards slightly less
integrals. In terms of the accuracy of the non-rigorous esti-
mates, CSA1 performs the worst in both cases, followed by
CSAM and then QQR. We also note that the errors for all

estimates and operators increase linearly with increasing
system size.

In Sec. III B, we focus on the use of our newly intro-
duced CSA estimates in Hartree-Fock SCF calculations, in
which only the 1/r12 operator is needed. We will publish fur-
ther results on the effectiveness of these estimates for the
erfc(0.11 · r12)/r12, e−r12 , and other operators when integrated
into the corresponding chemical theories in future work. For
now, we point out that in these preliminary results, the errors of
all estimates for the short-range operators erfc(0.11 · r12)/r12

and e−r12 are lower than those seen for the QQR, CSAM, and
CSA1 estimates for the 1/r12 operator. This is encouraging
because, as shown in Ref. 3 for the QQR estimate and as we
show in the following, these estimates can be well utilized in
the efficient calculation of Coulomb and exchange matrices in
SCF calculations of large molecules, while incurring minimal
error. Thus we expect that our new estimates, CSB, CSAM,
and CSA1, will perform very well for these and other operators
when used in the respective theories.

B. Exact exchange SCF calculations

In the following, we present Hartree-Fock SCF calcula-
tions and compare the performance of the QQ bound with
the QQR and our CSAM estimates. All calculations were
run on 12 core CPU servers (2x Intel Xeon CPU E5-2620
@ 2.00 GHz). We use one screening threshold for exchange
matrix integrals (ϑk) and a separate threshold (ϑj) for near-field
Coulomb matrix integrals, which are calculated separately.
Far-field Coulomb-type contributions are calculated using the
CFMM15 method for sufficiently large systems. As an SCF
convergence criterion, the error calculated in the direct inver-
sion of the iterative subspace method (DIIS error) is required
to be below 10�7, unless otherwise noted. The superposition
of atomic densities is used as an initial guess.

We do not present results for the CSB bound because it
performs identically to the QQ bound for the systems we tested.
We expect that, for the 1/r12 operator, CSB will only perform

FIG. 2. [(a)-(c)] Number of significant shell-quartets (NSQ) and [(d)-(f)] decadic logarithm of the error measure W [see Eq. (23)] for a series of linear alkanes
of increasing length, five integral estimates, and the operators 1/r12 [(a) and (d)], erfc(0.11 · r12)/r12 [(b) and (e)], and e−r12 [(c) and (f)]. The screenings were
performed with a threshold of ϑ = 10−10 in all cases. Note that while the range of NSQ in the upper plots varies for the different operators, the range of the
lower error plots is fixed. In (b) and (c), some QQ points are omitted for large n for clarity. For the largest alkane (n = 160), the ratios of significant QQ to CSB
shell-quartets are 5.14 and 8.09 for the erfc(0.11 · r12)/r12 (b) and e−r12 (c) operators, respectively.
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better than the QQ bound for unrealistically large systems. This
is because of the slow distance-decay of the corresponding
two-electron integrals.

1. Threshold dependence

As a first test of our CSA estimates for the Coulomb oper-
ator in the context of HF SCF calculations, we compare their
performance for various screening thresholds. We vary the
exchange screening threshold ϑk , while keeping the Coulomb
matrix threshold ϑj fixed at ϑj = 10−12. In Fig. 3, we plot
the decadic logarithm of the error vs. the computational time
required in the SCF procedure, given as a percentage of the
reference time. Here the molecule DNA2 and the basis set
cc-pVTZ were used. The error is calculated as the absolute
difference between the converged energies of the reference
calculation and the calculation performed with the respective
estimates and thresholds. The exchange screening threshold
varies from 10�9 (top left) to 10�12 (bottom right). The cal-
culation with the QQ bound and ϑk = 10−12 is used as the
reference and is shown as the dotted vertical line at the right of
the plot. It has zero error by definition. Here, we see that the
non-rigorous distance-including estimates perform much bet-
ter than the QQ bound. They offer either improved speed with
little loss of accuracy for a fixed threshold or vastly improved
accuracy with the same calculation speed if used with a more
conservative threshold. The exception is the QQR estimate
with ϑk = 10−9, where four additional iterations are needed
for SCF convergence, leading to no speedup compared to the
QQ bound calculation with the same threshold. (The CSAM
calculation with ϑk = 10−9 requires one additional SCF itera-
tion, which can be attributed to small numerical differences.)
CSAM gives very similar results to QQR with the exception
of the just mentioned better convergence for ϑk = 10−9, caus-
ing it to be much faster with slightly less accuracy in this
case. With ϑk = 10−10, CSAM is only slightly faster than
QQR with a slight loss of accuracy, while for ϑk equal to

FIG. 3. Threshold dependence of the SCF calculations for the system DNA2
and the basis set cc-pVTZ. Errors and SCF calculation times are given for the
estimates QQ, QQR, and CSAM and exchange matrix integral thresholds ϑk
varying from 10�9 (top left) to 10�12 (bottom right), with the combination
QQ/10�12 used as the reference. The Coulomb matrix integrals are screened
with a constant threshold ϑj = 10−12. The error is given as the unsigned
difference between the converged energies of the reference and the respective
estimate/threshold combinations.

10�11 or 10�12, it is slightly faster than QQR with no loss in
accuracy.

2. System and basis set dependence

In the following, we give results for a wide range of chem-
ical systems from the screening test suite and three different
basis sets. For each estimate and system tested, we give errors
and speedups with respect to reference calculations.

Unless otherwise noted, the calculations are per-
formed with Coulomb and exchange integral thresholds of

TABLE III. Errors (E) and speedups (SU) with respect to reference calcula-
tions for HF SCF calculations and the cc-pVDZ basis set. The calculations
are performed with ϑj = ϑk = 10−10 unless noted otherwise. References are
calculated with the QQ estimate and ϑj = ϑk = 10−12.

cc-pVDZ basis set

QQ QQR CSAM

System E (µH) SU E (µH) SU E (µH) SU

Amylose2 �0.02 1.28 �0.02 1.30 �0.05 1.43
Amylose4 �0.04 1.34 �0.06 1.48 �0.12 1.60
Amylose8 �0.09 1.50 �0.13 1.76 �0.26 1.84
Amylose16 �0.19 1.53 �0.27 1.88 �0.54 1.97
Amylose32 �0.39 1.57 �0.57 1.88 �1.16 1.98
Amylose48 �0.60 1.55 �0.86 1.88 �1.74 1.99
Amylose64 �0.80 1.56 �1.14 1.88 �2.32 1.97
Angiotensin �0.10 1.50 �0.12 1.72 �0.19 1.85
Angiotensin dep. �0.10 1.50 �0.12 1.74 �0.18 1.87
Angiotensin zw. �0.10 1.49 �0.13 1.73 �0.18 1.83
CNT20

a
�0.02 1.18 �0.01 1.17 �0.06 1.24

CNT40
a

�0.07 1.28 �0.13 1.33 �0.24 1.41
CNT80

a
�0.22 1.36 �0.31 1.48 �0.44 1.55

CNT(6,3)8
a

�4.18 1.76 �6.70 2.74 �9.35 2.78
Diamond102 �0.20 1.35 �0.37 1.45 �1.70 1.55
DNA1 �0.03 1.29 �0.03 1.39 �0.06 1.48
DNA2 �0.13 1.49 �0.15 1.71 �0.23 1.82
DNA4 �0.33 1.62 �0.41 2.03 �0.56 2.15
DNA8 �0.71 1.79 �0.92 2.46 �1.25 2.57
DNA16 �1.49 1.92 �1.88 2.74 �2.62 2.81
Graphite24 �0.02 1.23 �0.04 1.28 �0.05 1.34
Graphite54 �0.15 1.32 �0.25 1.42 �0.34 1.49
Graphite96 �0.35 1.37 �0.68 1.54 �0.91 1.61
(H2O)68 �0.08 1.74 �0.05 2.19 0.03 2.32
(H2O)142 �0.23 1.88 �0.14 2.59 0.13 2.72
(H2O)285 �0.54 2.10 �0.27 3.04 0.39 3.19
(H2O)569 �1.17 2.30 �0.55 3.55 0.98 3.70
(LiF)32 �0.02 1.13 �0.10 1.18 �0.13 1.20
(LiF)72 0.09 1.19 �0.65 1.25 �0.60 1.29b

Phtalocyanine c. �0.05 1.25 �0.09 1.34 �0.16 1.40
Polyethyne64 �0.02 1.34 �0.02 1.71 �0.07 1.73
Polyethyne128 �0.04 1.44 �0.05 1.91 �0.15 1.92
Polyyne64 0.04 1.14 �0.54 1.30c

�0.05 1.31
Polyyne1024

d 0.67 1.20 �0.01e 1.28c,e 0.74e 1.31e

(S8)5 �0.10 1.37 �0.10 1.53 �0.09 1.66
(S8)20 �0.54 1.66 �0.45 2.19 �0.29 2.36
Triphenylmethyl �0.01 1.23 �0.02 1.28 �0.05 1.34

aConvergence criterion relaxed to DIIS error below 10�6.
bOne less SCF iteration than reference calculation required.
cOne more SCF iteration than reference calculation required.
dConvergence criterion relaxed to DIIS error below 10�5.
eϑj = 10−11, ϑk = 10−12 .
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ϑj = ϑk = 10−10, while the reference calculations are per-
formed with the QQ bound and ϑj = ϑk = 10−12.

In Table III, we give the results for the cc-pVDZ basis
set for a wide range of chemical systems. The errors (E) are
given as differences in converged energies compared to the
reference in microhartree (µH), while the speedups (SU) are
given as the ratios of the sum of Coulomb and exchange matrix
computation times (using the converged density) to that of
the reference. In general, the errors are roughly proportional
to the system size for each estimate. For almost all systems,
the speedups are the lowest with the QQ screening and high-
est using our CSAM. The only exception is for the CNT20

molecule for which QQR is slightly slower than QQ. In some
cases (see footnotes of Table III), the calculations using the
QQR estimate require an additional SCF iteration for con-
vergence, while in one case [(LiF)72] the calculation with
CSAM requires one less iteration than the reference. Typi-
cally, the size of the errors increases when going from QQ
to QQR and from QQR to CSAM. The H2O and S8 clusters
are exceptions to this rule; here, the non-rigorous bounds give
energies closer or just as close to the reference. Most impor-
tantly, we find small absolute errors for all of the estimates
and systems tested. The largest errors occur for the sizeable
CNT(6,3)8 molecule, with absolute errors of 4.18, 6.70, and
9.35 µH with the QQ, QQR, and CSAM estimates, respec-
tively. For all but the largest systems, errors of below 2 µH are
observed.

In Table IV, we present analogous results for the cc-pVTZ
basis set and smaller subset of the test suite. For this larger
basis set, we see increased speedups and typically a larger
gap between QQ and the non-rigorous estimates compared to
the same systems with a smaller cc-pVDZ basis set. There
is almost no speedup gap between QQR and CSAM for this

TABLE IV. Errors (E) and speedups (SU) with respect to reference calcula-
tions for HF SCF calculations and the cc-pVTZ basis set. The calculations
are performed with ϑj = ϑk = 10−10. References are calculated with the QQ
estimate and ϑj = ϑk = 10−12.

cc-pVTZ basis set

QQ QQR CSAM

System E (µH) SU E (µH) SU E (µH) SU

Amylose8 −0.10 1.59 −0.11 2.02 −0.12 2.05
Angiotensin −0.12 1.57 −0.14 1.99a −0.12 2.01a

Angiotensin dep. −0.13 1.59 −0.15 1.98 −0.13 2.01
Angiotensin zw. −0.12 1.60 −0.15 2.01a −0.12 2.03
CNT40

b −0.10 1.33a −0.16 1.44 −0.22 1.49a

Diamond102 −0.31 1.43 −0.99 1.61a −0.97 1.67
DNA2 −0.14 1.54 −0.20 1.89 −0.17 1.92
Graphite54 −0.22 1.34a −0.38 1.51c −1.02 1.54c

(H2O)68 −0.12 1.85 −0.22 2.53 −0.25 2.54
(LiF)32 −0.02 1.18 0.02 1.27 0.02 1.27
Polyyne64 −0.50 1.18 −1.01 1.42 −0.13 1.42
(S8)20 −0.46 1.72 −0.26 2.33 0.38 2.42
Triphenylmethyl −0.02 1.29 −0.04 1.38d −0.06 1.42

aOne more SCF iteration than reference calculation required.
bConvergence criterion relaxed to the DIIS error below 10�6.
cTwo more SCF iterations than reference calculation required.
dOne less SCF iteration than reference calculation required.

TABLE V. Errors (E) and speedups (SU) with respect to reference calcula-
tions for HF SCF calculations and the aug-cc-pVDZ basis set. The calculations
are performed with ϑj = ϑk = 10−12. References are calculated with the QQ
estimate and ϑj = ϑk = 10−14.

aug-cc-pVDZ basis set

QQ QQR CSAM

System E (nH) SU E (nH) SU E (nH) SU

Amylose8 −0.40 1.21 1.40 1.33 −0.20 1.34
Angiotensin −1.50 1.18 −1.80 1.25 1.80 1.29
DNA2 −0.50 1.19 −2.60 1.26 −0.80 1.27
(H2O)68 0.70 1.35 −6.80 1.53 −0.80 1.52
(LiF)32 −0.10 1.06 0.70 1.08 1.00 1.09
Triphenylmethyl −0.20 1.06 −0.30 1.06 −0.10 1.09

basis set and CSAM is only marginally faster in most cases.
Interestingly, the errors incurred using the QQ bound typi-
cally increase using the larger basis set, while those of the
QQR estimate are not significantly different and those of the
CSAM estimate typically decrease. This leads to errors that
are very similar across screening methods. Often the CSAM
gives less error than QQR, while still being slightly faster. The
largest absolute errors are only 1.02 µH (Graphite54, CSAM)
and 1.01 µH (Polyyne64, QQR).

In Table V, we give results for a basis set augmented with
diffuse basis functions, the aug-cc-pVDZ basis set. In this case,
tighter thresholds are required to ensure SCF convergence
regardless of the estimate used and thus we choose Coulomb
and exchange integral thresholds of ϑj = ϑk = 10−12, with ref-
erence calculations using the QQ bound and ϑj = ϑk = 10−14.
Due to the tighter thresholds, the speedups are less than seen
for the previous two basis sets. On the other hand, the errors
are reduced drastically and are now given in nanohartree (nH).
The speedups of the QQR and CSAM estimates are largely
similar, with CSAM marginally faster than QQR for all but
one system [(H2O)68]. CSAM outperforms QQR in accuracy
for all but two systems [angiotensin, (LiF)32].

IV. CONCLUSION AND OUTLOOK

We have presented first results for our newly developed
distance-including rigorous bound CSB and non-rigorous esti-
mates CSA for three different operators [1/r12, erfc(0.11 ·
r12)/r12, and e−r12 ] based on direct integral screenings that
are independent of any quantum-chemical theory. In addi-
tion we have implemented the CSA estimates in the con-
text of Hartree-Fock SCF calculations and shown that they
can be used to speed up integral calculation compared to
both the distance-neutral QQ bound and distance-including
QQR estimates. The errors incurred are, in almost every case,
of the same order of magnitude as for the QQ and QQR
estimates and are controllable through the chosen screening
threshold.

We expect, based on the results in Sec. III A, that the
CSB bound and CSA estimates will perform even better
in comparison to the QQ and QQR estimates for operators
with much stronger distance-decay than the 1/r12 Coulomb
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operator. In fact, one could already consider CSB as the new
default estimate for short-range operators due to its rigorous
nature, ease of implementation, low cost, and vastly supe-
rior performance compared to the QQ bound. On the other
hand, the CSAM estimate has several advantages over the
QQR estimate that become more pronounced for short-range
operators. One of these advantages is the near-exact nature of
the estimate for the short-range operators that we have tested.
Another is the fact that the screening itself can be performed
more efficiently because the distance-including factor is cal-
culated through two multiplications and one logical operation,
whereas in QQR the distance between shell-pairs must be cal-
culated and inserted into an operator function that is relatively
expensive to compute. This extra cost is also more important
for short-range operators because the ratio of screening time
to integral calculation time will naturally go up due to the
much larger numbers of insignificant integrals. Regarding the
CSA1 estimate, it remains to be seen how it will perform when
used in the PreLinK method for short-range exchange DFT
calculations. We will compare it to the QQ bound and other
distance-including PreLinK methods5 in this context in future
work.
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APPENDIX A: PROOF OF EQS. (6) AND (7)

We first prove a more general statement for any pair of
two-electron functions. We denote with E2 the real vector
space of all continuous real-valued functions of the positions
of two-electrons. We consider the two-electron integral with
multiplicative operator G as a map 〈·, ·〉 from the product space
E2 × E2 onto the real numbers,

〈e, f 〉 =
∫ ∫

e(r1, r2)G(r12)f (r1, r2)dr1dr2 , (A1)

where e and f are functions in E2, and show that 〈·, ·〉 defines
an inner product on E2. We assume that G(r12) is positive for
r12 > 0 (positivity property). In order for 〈·, ·〉 to be an inner
product, it must satisfy the following requirements for any
functions e, f, g in E2 and any real number λ:

1. 〈e, f 〉 = 〈f , e〉,
2. 〈λe, f 〉 = λ〈e, f 〉,
3. 〈e + g, f 〉 = 〈e, f 〉 + 〈g, f 〉,
4. 〈e, e〉 ≥ 0,
5. 〈e, e〉 = 0 if and only if e ≡ 0.

The first requirement follows from the fact that G is mul-
tiplicative, while requirements two and three follow from the
linearity of integrals. To show four and five, we note the fact
that the value of the integral (A1) does not change when we
restrict the integration to values of r1 and r2, such that r12 , 0.

Therefore, we have, using the multiplicity and positivity
property of G, that

〈e, e〉 =
∫ ∫

e2(r1, r2)G(r12)dr1dr2 ≥ 0 (A2)

because the integrand is always positive for r12 , 0. This is
requirement four. If e(r1, r2) does not vanish for some pair of
positions (r1, r2), then the continuity of e and the positivity
property of G dictate that 〈e, e〉 > 0 must hold. On the other
hand, if e vanishes for all possible (r1, r2), then 〈e, e〉 must be
zero. These two facts together are requirement five and this
ends the proof that 〈·, ·〉 is an inner product.

Because 〈·, ·〉 is an inner product, the Schwarz inequality
for any two functions e, f in E2 holds,

〈e, f 〉 ≤ 〈e, e〉1/2〈 f , f 〉1/2 , (A3)

with equality if and only if e and f are linearly depen-
dent. Equations (6) and (7) are a direct consequence of (A3)
when e and f are replaced by the corresponding products of
Gaussian basis functions (and Mulliken integral notation is
used).

APPENDIX B: A NOTE ON THE APPLICABILITY
OF THE SCHWARZ INEQUALITY (QQ BOUND)
TO INTEGRALS OVER MULTIPLICATIVE, DISTANCE
BASED OPERATORS

Proofs for the Schwarz inequality for two-electron inte-
grals over the Coulomb operator 1/r12 have appeared in various
forms in the quantum chemical literature1,21,22 and more gen-
eral theorems can be found in mathematical physics textbooks,
see, for example, Refs. 23 and 24. Although the inequality
has been used, as in this work, for two-electron integrals over
other operators,25,26 this has been done without giving explicit
proofs or references to proofs for these cases. We have also
been unable to find explicit proofs elsewhere in the literature.
Thus, in this section, we aim to clarify the applicability of
the Schwarz inequality by giving a simple, sufficient con-
dition for any multiplicative, distance based operator. Our
condition is based on the proof for the Coulomb operator
given in Ref. 22. Further, we show explicitly that this con-
dition is met not only for the operators used in this work but
also for some other important operators in quantum chemical
theories.

Let G be some multiplicative operator depending on the
distance between the positions of two electrons. In order to
show that

| (µν |G|λσ) | ≤ (µν |G|µν)1/2 (λσ |G|λσ)1/2 , (B1)

where

(µν |G|λσ) =
∫ ∫

χµ(r1)χν(r1)G(r1 − r2)

× χλ(r2)χσ(r2)dr1dr2, (B2)

it suffices to show that the integral (µν |G|λσ) defines an inner
product on the space spanned by all the orbital products χµ χν .
For this, the same conditions given in Appendix A, with
e, f, and g replaced by one-electron functions, must be ful-
filled. Again, the first three conditions follow directly from the
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multiplicativity of G and the linearity of the integral. However,
conditions four and five turn out to be slightly more difficult to
show, due to the fact that the integrand on the right-hand side
of the equation,

( f | f ) =
∫ ∫

f (r1)f (r2)G(r1 − r2)dr1dr2, (B3)

is not everywhere positive. Here f is any one-electron function
for which (B3) converges. Assuming G has a well-defined
three-dimensional Fourier transform FG, given by

FG(k) =
1

2π

∫
G(r)e−ik ·rdr, (B4)

we can represent G in terms of its inverse Fourier transform,

G(r) =
∫

FG(k)eik ·rdk. (B5)

Here we write FG as a function of k = |k|, which is possible
because G only depends on r = |r|. This allows us to write (B3)
as

( f | f ) =
∫

FG(k)| f̃ (k)|2dk, (B6)

where

f̃ (k) =
∫

f (r)e−ik ·rdr. (B7)

Thus, whenFG has the positivity property defined in Appendix
A, the same arguments given there apply in this case so that
conditions four and five follow analogously, and the Schwarz
inequality can be used with the operator G. The condition
FG(k) > 0 for k > 0 is, according to Bochner’s theo-
rem,27 equivalent to the statement that G is a positive-definite
function.

It thus suffices to calculate the Fourier transform of G and
check that it is positive for k > 0. This can be done, e.g., using
the following formula of Grafakos and Teschl:28

TABLE VI. Fourier transforms for some important operators in quantum
chemical theories. The parameters γ, ω, and α are positive real numbers.
All transforms are strictly positive for k > 0.

Operator Fourier transform

1/r12
1

2π2k2

e−γr12 γ

π2(k2+γ2)2

e−γr12/r12
1

2π2(k2+γ2)

erf(ωr12)/r12
1

2π2k2 e
− k2

4ω2

erfc(ωr12)/r12
1

2π2k2 (1 − e
− k2

4ω2 )

e−αr2
12 1

8π3/2α3/2 e−
k2
4α

FG(k) = −
1

2πk
d
dk

F̃G(k), (B8)

where F̃G is the one-dimensional Fourier transform given by

F̃G(k) =
1

2π

∫ ∞
−∞

G(r)e−ikrdr. (B9)

Using this equation, we have calculated the Fourier transforms
given in Table VI for a variety of important operators in quan-
tum chemical theories, including those used in this work. In
each case, the transforms are easily seen to fulfill the necessary
conditions and the Schwarz inequality holds for each of these
operators.
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ABSTRACT
We introduce tight upper bounds for a variety of integrals appearing in electronic structure theories. These include electronic
interaction integrals involving any number of electrons and various integral kernels such as the ubiquitous electron repulsion
integrals and the three- and four-electron integrals found in explicitly correlated methods. Our bounds are also applicable to
the one-electron potential integrals that appear in great number in quantum mechanical (QM), mixed quantum and molecular
mechanical (QM/MM), and semi-numerical methods. The bounds are based on a partitioning of the integration space into balls
centered around electronic distributions and their complements. Such a partitioning leads directly to equations for rigorous
extents, which we solve for shell pair distributions containing shells of Gaussian basis functions of arbitrary angular momen-
tum. The extents are the first general rigorous formulation we are aware of, as previous definitions are based on the inverse
distance operator 1/r12 and typically only rigorous for simple spherical Gaussians. We test our bounds for six different integral
kernels found throughout quantum chemistry, including exponential, Gaussian, and complementary error function based forms.
We compare to previously developed estimates on the basis of significant integral counts and their usage in both explicitly corre-
lated second-order Møller-Plesset theory (MP2-F12) and density functional theory calculations employing screened Hartree-Fock
exchange.
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I. INTRODUCTION
The large numbers of integrals that arise in electronic

structure theories pose a difficult challenge for accurate
computations involving large systems. The most demand-
ing cases are interaction integrals between charge distribu-
tions described by basis function pairs, with the prototypical
example being the electronic repulsion integrals (ERIs)

(µν |λσ)C12 =

∫
dr1 Ωµν (r1)

∫
dr2 Ωλσ (r2)C12 , (1)

where C12 = 1/r12 is the Coulomb operator, r12 = |r1 − r2|, and
Ωµν = χµχν is an electronic distribution that is a product of
two basis functions in a basis set {χµ }µ∈B, where B is a finite
set of basis set indices with |B | = M.

Modern theories often require additional forms of such
two-electron integrals in which the multiplicative operator
C12 is replaced by a different function of inter-electronic dis-
tances. Examples of such methods include variants of den-
sity functional theory (DFT), which require the calculation
of screened Hartree-Fock exchange terms1–4 and explicitly
correlated methods employing various correlation factors,5–8
where two-electron integrals result from the insertion of the
resolution of the identity (RI) approximation into the required
many-electron integrals. Table I gives a non-exhaustive list
of some important interaction functions and where they are
found.

In addition, explicitly correlated methods that do not
employ RI require many-electron integrals. The general
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TABLE I. Some important operators in quantum chemical theories. The parameters
γ, ω, and α are positive real numbers.

Operator Theory

e−γr12 Explicitly correlated theories7
e−γr12/r12 Explicitly correlated theories7
erfc(ωr12)/r12 Range-separated DFT1

e−αr
2
12 Range-separated DFT4

explicitly correlated theories6,9–11
1/r12 Ubiquitous

formula for an N-electron integral involving only multiplica-
tive, two-electron operators is given by

(k1 | · · · |kN)
ΠFij =

∫
dr1 Ωk1

. . .

∫
drN ΩkN

N∏
j=1
i<j

Fij. (2)

Here, Fij is the rij-dependent interaction function between
electrons i and j, and Ωki denotes the charge distribution of
electron i, with ki being an index in the set of all distribution
indices D. Usually, the set of distributions is made up of all
basis function products so that |D | = |B × B | = M2, and the
number of integrals represented by (2) scales as M2N, while the
asymptotic scaling of the number of numerically significant
integrals with increasing system size is typically not larger
than quadratic and often linear, due to the local nature of the
basis functions and the decay of the interaction functions with
increasing distances between distributions.

In order to take advantage of this inherent sparsity, it is
necessary to develop simple upper bounds or reliable esti-
mates that take the decay properties of the integrals into
account as best as possible.

The use of the Cauchy-Schwarz inequality,12,13

|(µν |λσ)C12 | ≤ QµνQλσ , Qµν =

√
(µν |µν)C12 , (3)

to screen ERI contributions is essential to efficient calcula-
tions in quantum chemistry. Inequality (3), which also holds
when C12 is replaced with any positive definite function,14
allows for the screening of integrals based on their exponen-
tial decay with increasing distances between the two basis
functions that describe the electronic distributions (overlap
dependence). However, it neglects the operator dependent
decay due to increasing distances between the distributions
themselves (distance dependence). We denote a bound that
captures the asymptotic overlap and distance dependence as
scaling consistent. In the case of the untransformed ERIs, dis-
tance dependence is negligible because of the slow decay of
C12 and (3) can be considered scaling consistent in practice.
However, for most other operators of interest and in the case
of transformed integrals such as those occurring in electron
correlation theories (see, e.g., Ref. 15), the distance decay is
much faster and it becomes essential to take distance depen-
dence into account. Often, it is sufficient to use approximate
formulas that are not strict upper bounds, as long as the
error is still controllable, as shown by Maurer et al.,16 who

introduced the first efficient estimate for the C12 opera-
tor denoted as QQR. A similar non-rigorous estimate with
improved performance for three-center two-electron inte-
grals over C12 was introduced by Hollman et al.17 and non-
rigorous estimates for the short-range erfc(ωr12)/r12 opera-
tor1,18,19 as well as for some operators involved in F12 theory20
have also been formulated. Recently,14 we introduced both
non-rigorous estimates and the rigorous combined Schwarz
bound (CSB) for screening four-center two-electron integrals
over general operators in a way that includes both opera-
tor and distance dependence. The very simple CSB uses a
distance-including Cauchy-Schwarz type inequality combined
with inequality (3) and works well with quickly decaying opera-
tors because it is tightest in the limiting cases of strong overlap
or strong distance decay. However, the generalization of both
the CSB and the Cauchy-Schwarz inequality to many-electron
integrals leads to complicated factors that are less practical
for screening purposes.

Recently, Barca et al.21–23 presented upper bounds for
various operators and three- and four-electron integrals.
Their work is based on bounding primitive basis functions by
spherical bounding Gaussians (SBGs) to get scaling-consistent
bounds at the cost of an integral over spherical Gaussians.
While the tightest bounds achieved in this way are insepara-
ble, a hierarchy of increasingly separable bounds is obtained
using Hölders inequality at the expense of general scaling
consistency.

In this work, we present upper bounds that are tight, sep-
arable, and scaling-consistent. They can be used with a large
variety of integral kernels and are applicable in the many-
electron case. These properties allow the formulation of very
low cost, truly scaling-consistent screening algorithms with
negligible computational and storage requirements.

Our bounds are also easily adapted for use in electronic
potential integrals of the type

(R |µν)F =
∫

drΩµν (r)F( |r − R |), (4)

where F is a general distance function and R is some point
in space. These integrals appear in great number in mixed
quantum and molecular mechanical (QM/MM)24–26 and semi-
numerical methods.27–29 Here as well, the bounds account
for both the overlap dependence in Ωµν and the decay with
increasing distance between R and the center of Ωµν .

This paper is organized as follows: we present the con-
cepts behind our new upper bounds in Sec. II A and give the
rigorous extent equations that result in Sec. II B. The bounds
that result are presented in Secs. II C and II D. In Sec. II E,
we discuss how to take the effects of density coupling into
account during screening, leading in some cases to asymptotic
linear scaling even when the number of significant integrals
is quadratic. In Sec. II F, we give scaling-consistent screening
procedures for two-, three-, and four-electron integrals and
discuss the costs involved.

In Sec. III, we quantify the performance of our bounds
on the basis of significant integral counts for six differ-
ent integral kernels and in the context of two quantum
chemical theories: explicitly correlated MP2-F12 theory, and
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range-separated DFT, where we use the estimates to speed
up the formation of the screened exchange matrix used, e.g.,
in the HSE06 DFT functional.2 The results shown in this work
are based on two-electron integrals; however, we are cur-
rently working on an implementation of the equations for the
exact calculation of three- and four-electron integrals,22,30,31
in order to test our bounds in these cases as well. Because
our bounds generalize very straightforwardly to these cases
and because the decay properties are the same, i.e., largely
dependent on overlap and operator decay, we expect our very
promising results for the two-electron case to carry over to
the many-electron case. In addition, our one-electron inte-
gral bounds are currently being incorporated into our recently
published screening scheme29 for semi-numerical DFT
calculations.

II. THEORY
Our upper bounds are based on the intuition that, due

to the exponential decay of the typical Gaussian basis func-
tions, it should be possible to restrict integration to spheres
that contain all non-negligible contributions, while the sum of
the contributions outside the spheres remains below a given
screening threshold ϑ.

In this work, we are concerned with integral operators
whose kernels are positive, monotonically decreasing func-
tions of the distance between two electrons. We distinguish
between two different classes of such operators: bounded-type
operators, whose kernels are bounded in the limit of zero dis-
tance, and Coulomb-type operators, which are the product of a
bounded-type operator and the Coulomb operator C12. For any
operator Fij, we denote its bounded part as Fbij such that Fij =

Fbij for bounded-type operators and Fij = FbijCij for Coulomb-
type operators. This distinction is made because of the simpli-
fications that arise for bounded-type operators. In particular,
the overlap factors needed for the three- and four-electron
integrals of F12 theory are the same as for the two-electron
case when the correlation factor used is a bounded-type oper-
ator, which is essentially always the case and is assumed in this
work.

A. General ideas
1. Space partitioning

The basic procedure for developing our integral partition
bounds (IPBs) is as follows: for an arbitrary charge distribu-
tion Ωk, k ∈ D, we choose its center Ck and consider the ball

centered at Ck with radius R, which we denote
•

Rk. This ball is
defined by the set equation

•

Rk = {x ∈ R3 : |x − Ck | ≤ R}, (5)

while its complement,
◦

Rk, is given by

◦

Rk = R3
\
•

Rk = {x ∈ R3 : |x − Ck | > R}. (6)

By integrating separately over the ball and its complement, i.e.,
by using the identity

∫
dr Ωk(r) . . . =

∫
•

Rk

drΩk(r) . . . +
∫
◦

Rk

drΩk(r) . . . , (7)

we are able to generate equations for determining R large
enough that the second term in (7) is always negligible. The
equations that arise, which are given in Sec. II B, have very
simple dependence on the operators present and the num-
ber and type of distributions involved so that the proce-
dure can be applied very generically. By solving them, one
obtains maximal extents, Ek, for each distribution and guar-
antees that only the first term of (7) must be taken into
account for screening purposes. Such spatially restricted
terms can be easily bound from above in a scaling-consistent
manner.

A second partitioning can be used to obtain still tighter
bounds. By defining intermediate extents, ek, such that 0 < ek
≤ Ek, we can partition the first term in (7) according to∫

•

Ek

drΩk(r) . . . =
∫
•
ek

drΩk(r) . . . +
∫
•

Ek\
•
ek

drΩk(r) . . . . (8)

With the right choice of ek, this allows for a more accurate
description of the space closest to the center Ck, where most
of the charge is concentrated.

A graphical representation of the spaces that result from
our partitioning procedure for the distribution Ωk is shown in
Fig. 1.

2. Separable bounds
Partitioning leads to integrals of the form

(k1;X1 | · · · |kN;XN)ΠFij =
∫
X1

dr1 Ωk1
. . .

∫
XN

drN ΩkN

N∏
i=1
j<i

Fij, (9)

with integration restricted to subspaces X1, . . . ,XN ⊆ R3. In
Appendix D 2, we derive separable bounds for this integral for
any set of operators.

Here and in the sequel, we assume that N ≥ 2 and that
all operators excepting F12 are bounded-type, while F12 may be
either bounded- or Coulomb-type. When this is the case, the
bounds can be simplified to the following form:

FIG. 1. Representation of the integration spaces used for a distribution Ωk
centered Ck in the xy-plane.
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|(k1;X1 | · · · |kN;XN)ΠFij | ≤ U
X2X1
k1

N∏
j=2

SXj

kj

∏
i<j

DXi ,Xj

ij , (10)

with

UXY
kj =




SY
kj , d(X,Y) ≥ dF12

min

VXY
kj otherwise,

(11)

DXY
ij =




Fij(d(X,Y)), d(X,Y) ≥ d
Fij
min

Fbij(d(X,Y)) otherwise,
(12)

SX
kj = S

X(Ωkj ) =
∫
X
dr |Ωkj (r) |, (13)

VXY
kj = V

XY(Ωkj ) = max
x∈X

∫
Y
dr
|Ωkj (r) |

|r − x |
. (14)

The set distance d(X, Y) ≥ 0 is defined as

d(X,Y) = d(Y,X) = min
x∈X,y∈Y

|x − y | ,

while d
Fij
min is a cutoff distance that is zero for bounded-type

and unity for Coulomb-type Fij.

We note that for any balls
•

R1 and
•

R2, with centers C1 and
C2 and radii R1 and R2, the set distance is given by the simple
formula

d(
•

R1,
•

R2) = max{0, |C1 − C2 | − R1 − R2 }. (15)

B. Extent equations
As shown in Appendix D 1, the maximal extent Ekn for Ωkn

is determined by bounding

I◦knN = (k1 | · · · |kn;
◦

Rkn | · · · |kN)ΠFij , (16)

where the bars over distribution indices indicate integration
over the absolute values of the distributions, and solving the
equation (1 + N)I◦knN = ϑ for Rkn . Applying (10) leads to the
separated form

(N + 1)S
◦

Rkn
kn

HF12
k1

( N∏
j=2
j,n

Skj

) N∏
j=2
i<j

Fbij(0) = ϑ, (17)

where

HF12
k1
=




Sk1
F12 is bounded-type

Vk1
F12 is Coulomb-type,

(18)

Skj = S
R3

kj , and Vk1
= VR3R3

k1
. Taking the maximal values

Ski ≤ Smax = max
i∈D

Si, Vki ≤ Vmax = max
i∈D

Vi

leads to a form that is independent of all other distributions

(N + 1)S
◦

Rkn
kn

HF12
maxSN−2

max

N∏
i,j=1
j<i

Fbij(0) = ϑ. (19)

In practice, one can reduce the size of the extents Ekn
when Ωkn is combined in integrals with distributions that have
small absolute overlap, as evidenced by (17). For this we also
take the minimum valuesSmin andVmin and perform a 10-point
logarithmic interpolation between the values HF12

maxSN−2
max and

HF12
minS

N−2
min , which are typically on the order of unity and ϑN−1,

respectively. For each point p in this interpolation, we solve
(19) with the substitution HF12

maxSN−2
max→p and use the small-

est extents applicable during screening, based on the size of
the overlap factors for the particular distribution combination
being screened.

Intermediate extents ekn are obtained as the smallest radii
such that

S
◦
ekn
kn
≤ αSkn , (20)

with the parameter ϑ � α < 1. In this work, we use a fixed
value of α = 0.1 so that the intermediate extents give the radius
outside of which at most 10% of the absolute charge remains.
In some cases, the ekn determined in this way may be larger
than Ekn , in which case we set ekn = Ekn .

C. Scaling consistent bounds
1. Simple bound: IPB1

The bound that results from the single partitionings

R3
=
•

Eki t
◦

Eki and inequality (10) is

|(k1 | · · · |kN)
ΠFij | ≤ (1 + Np)U

•

Ek2

•

Ek1
k1

N∏
j=2

S
•

Ekj

kj

∏
i<j

D
•

Eki

•

Ekj

ij , (21)

where 0 ≤ Np ≤ N is the number of distributions that have
been partitioned. Np is always equal to N in the last screening
step, but lower values can be used in earlier screening stages
(see Sec. II D).

The overlap factors S
•

Ekj

kj
and V

•

Ek2

•

Ek1
k1

present within (21)

account for the overlap decay. For practical reasons, they are
bound tightly by Skj and Vk1

during screening. The distance

factorsD
•

Eki

•

Ekj

ij account for the distance decay of each operator,
leading to general scaling-consistency.

2. Prescreening bound: IPB0
For distributions formed by basis function pairs, Ωk = Ωµν ,

with centers Cµν and maximal extents Eµν , the numbers of
significant factors Sµν and Vµν scale asymptotically linearly
with small pre-factors and can thus be easily pre-computed.
However, the U and D factors can depend on up to four basis-
functions, making storage costly for large systems, despite
asymptotic linear scaling. To avoid these storage costs and
an expensive quadratic screening loop, we bound these fac-
tors from above using two-index values while retaining scaling
consistency. For the U factors, we use

U
•

Ek2

•

Ek1
k1

≤ Uk1
=




Sk1
F12 is bounded-type

max{Sk1
,Vk1
} F12 is Coulomb-type.
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For the D factors, we define single-function extents

Eµ = max
ν∈O(µ)

{ |Cµν − Cµ | + Eµν }, (22)

where Cµ is the center of χµ and O(µ) is the set of functions
that overlap significantly with χµ . This leads to the inequality

d(
•

Eµν ,Y) ≥ max{d(
•

Eµ ,Y), d(
•

Eν ,Y)} (23)

for any Y ⊆ R3, and accordingly

D
•

EµνY
ij ≤ min{D

•

EµY
ij ,D

•

EνY
ij }. (24)

This allows the formulation of the bound

|(µν1 | · · · |µνN)
ΠFij | ≤ (1 + Np)Uµν1

N∏
j=2

Sµνj
∏
i<j

D
•

Eµi
•

Eνj
ij , (25)

which is not as tight as (21) but separates completely into fac-
tors that are easily pre-computed. It is especially useful for
determining distance based significance lists Fij for short-
ranged operators Fij, allowing for the design of very efficient
screening algorithms that are inherently scaling consistent.

3. Final bound: IPB2
The tightest upper bound results from the partitionings

R3
=
•
eki t Ski t

◦

Eki , where Ski =
•

Eki \
•
eki . The terms containing

◦

Eki are negligible per construction and what remains is a sum
of 2N terms∑

X1=
•
ek1

,Sk1

. . .
∑

XN=
•
ekN ,SkN

|(k1;X1 | · · · |kN;XN)ΠFij |. (26)

Each term is bound using inequality (10). The needed set dis-
tances can be calculated using (15) since, for all relevant Y ⊆

R3, d(Y,Ski ) = d(Y,
•

Eki ). The overlap factors that result are
bound according to

S
•
ekj
kj
≤ Skj V

Xi
•
ekj

kj
≤ Vkj , (27)

S
Skj
kj
≤ αSkj V

XiSkj
kj

≤ V
R3 ◦ekj
kj

. (28)

Here, α is the parameter used to determine the intermediate
extents.

For N = 2 and bounded-type F12, IPB2 becomes

|(k1 | · · · |kN)
ΠFij | ≤ (1 + Np)Sk1

Sk2

[
F12(d(

•
ek1

,
•
ek2

))

+ α
(
F12(d(

•

Ek1
,
•
ek2

)) + F12(d(
•
ek1

,
•

Ek2
))
)

+ α2F12(d(
•

Ek1
,
•

Ek2
)
]
.

In general, the bound can be written as a sum of N + 1 terms
T0, . . ., TN,

|(k1 | · · · |kN)
ΠFij | ≤ (1 + Np)

N∑
i=0

Ti(α), (29)

with each Ti containing (Ni ) sub-terms and having α depen-
dence given by

Ti(α) =O(αi). (30)

These terms are given explicitly for up to N = 4 in the supple-
mentary material.

4. Approximate bound: aIPB
In the limit α → 0, one has eki→Eki , and the terms with

i > 0 in (29) vanish. We have found in the two-electron case
that even with rather large values of α, (29) is dominated by
the T0 term, which contains only the intermediate extents eki .
This has led us to test the approximate upper bound given
by

|(k1 | · · · |kN)
ΠFij | . (1 + Np)U

•
ek2

•
ek1

k1

N∏
j=2

S
•
ekj
kj

∏
i<j

D
•
eki
•
ekj

ij , (31)

which we have found to be very effective. Our results show
that with α = 0.1, for which eki is typically much smaller than
Eki , (31) gives roughly the same error as IPB2 and less error
than previously developed rigorous upper bounds for a given
screening threshold, while being both simpler and tighter than
IPB2.

5. Unit point-charge distributions
The bounds given above are easily applied to integrals

containing point charge distributions. When Ωki is a point
charge at Ri, i.e., Ωki = ΩRi = δ(ri − Ri), one simply defines
CRi = Ri, ERi = eRi = 0, and SRi = 1. These distributions do not
require partitioning, and Np is reduced by one for each point-
charge present. If F12 is Coulomb-type, then some care must
be taken for the distributionsΩk1

andΩk2
because Vki becomes

infinite for a point charge. If only one is a point charge it should
be placed at the position of Ωk2

so that it is not used in the U
factor. This is always possible by switching electron labels 1↔
2 if necessary. If both are point charges, then the integral over
r1 and r2 evaluates to F12(|R1 − R2|), which is used in place of
UX2X1

k1
DX1X2

12 .
The most prominent example of such integrals is one-

electron potential integrals, where one has

|(k1;X1 |R2)F12
| ≤ 2UR3X1

k1
DX1R2

12 . (32)

The set distances are again calculated using (15), with R2 being
interpreted as a ball centered at R2, with zero radius. In the
case of Coulomb-type one-electron potential integrals, the
extent equation,

2V
◦

Rkn Fb12(0) = ϑ, (33)

is used instead of (19) since there is only one distribution
available to bind the Coulomb singularity.
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D. Intermediate bounds
Intermediate bounds are required in preliminary screen-

ing steps, in which only a subset of the N distributions has
been specified. These bounds can be obtained by taking the
maximal possible values over overlap and/or distance factors
in the bounds given above, while a reduction in the value of Np
follows from the formal derivations in Appendix D.

For the overlap factors, one simply uses the maximum
values over all distributions, Smax, Vmax, and

Umax =



Smax F12 is bounded-type

max{Smax,Vmax } F12 is Coulomb-type.

Distance factor bounds are given by

DXiXj

ij ≤ Fbij(0), (34)

and Np is reduced by one for each j for which (34) is used for all
combinations ij. An important example is the one distribution
overlap bound

|(k1 | · · · |kN)
ΠFij | ≤ SknH

F12
maxSN−2

max

N∏
j=2
i<j

Fbij(0) (35)

for any n ∈ {1, . . ., N}, with

HF12
max =




Smax F12 is bounded-type

Vmax F12 is Coulomb-type.

The distribution Ωkn can be neglected completely when the
right-hand side of (35) is less than ϑ, allowing one to setup a
list of significant distributions based on this criterion.

Another important example is the basis-function pair
distance bound

|(k1 | · · · |kN)
ΠFij | ≤ 3D

•

Eµ
•

Eν
nm UmaxSN−1

max

N∏
j=2,i<j

(i,j),(n,m)

Fbij(0), (36)

where 1 ≤ n < m ≤ N and µ,ν ∈ B are contained in kn and
km, respectively. This bound is used to setup distance-based
significance lists for Fnm.

E. Density coupling
The significant number of integrals that contain an

instance of the long ranged Coulomb operator 1/r12 scales
quadratically in practice. However, coupling to the density
matrix P can cause the scaling of the actual number of sig-
nificant energy contributions to be linear for systems with
significant HOMO-LUMO gaps. This allows, e.g., for the linear
scaling calculation of exchange contributions in Hartree-Fock
and Hybrid DFT for such systems.32,33

This coupling can be used to reduce the scaling to lin-
ear for all three- and four-electron integrals of F12 theory,
in both direct and exchange forms. As an example, we con-
sider the direct V3e

D and exchange V3e
X three-electron integral

contributions to the so-called V intermediate energy

V3e
D =

∑
ijk

〈ijk |C12F23 |kji〉 =
∑
µνλσ
ρη

P13
µηP

13
νρP

22
λσ 〈µλρ |C12F23 |νση〉,

(37)

V3e
X =

∑
ijk

〈ijk |C12F23 |kij〉 =
∑
µνλσ
ρη

P12
µσP

23
ληP

13
ρν 〈µλρ |C12F23 |νση〉.

(38)

Here, i, j, and k denote molecular orbitals, F23 is a bounded-
type correlation factor, and superscripts on density matrix
elements highlight which electrons are coupled. Although
the number of significant integrals scales quadratically, the
number of significant energy contributions scales linearly
when density decay is present.

To capture this decay, a final preparatory step involves
calculating Pmax = maxµ∈B |Pµµ |, and creating, for each basis
function µ, a density based significance list Pns(µ) based on
the criterion

|Pµν |PN−1
maxHF12

maxSN−1
max

N∏
i,j=1
j<i

Fbij(0) < ϑ. (39)

The lists Pns(µ) cannot be used directly in algorithms that uti-
lize basis function pair symmetry to only calculate integrals
over pairs |µν) in which µ ≤ ν, which reduces the compu-
tational work by a factor of roughly 2N. Symmetry respect-
ing lists P(µ) are obtained through the procedure given in
Algorithm 1. During integral calculation the scaling-consistent
and intermediate bounds given above are simply multiplied by
the appropriate absolute density matrix elements (or powers
of Pmax) during screening.

F. Screening procedure and costs
For practical reasons, basis functions that share the

same exponents, coefficients, and total angular momenta are
grouped into shells with indices µ̃ ∈ S, and entire sub-tensors
of integrals corresponding to shell-tuplets are bound simulta-
neously. Accordingly, one aims to bound the maximum norm
||·|| over shell-based integral tensors

| |(µ̃1ν̃1 | · · · |µ̃Nν̃N)ΠFij | | = max
µi∈µ̃i ,νi∈ν̃i
i=1,. . .,N

|(µ1ν1 | · · · |µNνN)
ΠFij|.

Algorithm 1. Symmetry respecting density significance lists.

for all µ ∈ B do
for all ν ∈ O(µ) do

for all λ ∈ Pns(ν) do
for all σ ∈ O(λ) do

Add σ to P(µ)
end for

end for
end for

end for
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Our formulas for calculating the factors needed in the
IPBs give values that bound all functions within a shell or
shell-pair automatically. They are calculated once per shell
or shell-pair using the equations in Appendix A and are
directly usable in shell-based bounds, which are obtained
through the substitutions µ→µ̃ for any basis function andB→S
in the bounds and factors defined above. This allows, e.g.,
for the construction of shell-based overlap significance lists
O(µ̃).

For a screening including density coupling, shell-based
bounds are obtained by taking maximum values within shell-
pairs of density matrix elements

Pµ̃ν̃ = max
µ∈µ̃,ν∈ν̃

|Pµν |. (40)

Shell-based lists Pns(µ̃) are obtained by replacing |Pµν | with
Pµ̃ν̃ in (39). Symmetry respecting lists P(µ̃) are obtained with
Algorithm 1 using the shell-pair lists O(µ̃) and Pns(µ̃).

In Secs. II F 1 and II F 2, we give an overview of the
algorithms used for screening integrals over contracted Gaus-
sian shell-pairs; the procedure for single-shell distributions
that occur in density fitted integrals is obtained through sim-
ple modifications. We do not distinguish between Cartesian
and spherical shells at this point; the procedure is the same
and only the values of the overlap factors and extents change
slightly. Additionally, if one wishes to perform a finer screen-
ing of primitive contributions, the bounds given above are
applicable and can be used with smaller primitive overlap fac-
tors and extents. The formulas needed for these various cases
are given in Appendix A.

Algorithm 2. Two-electron integral screening procedure.

for all µ̃ ∈ S do
for all ν̃ ∈ O(µ̃) do

for all λ̃ ∈ F12(ν̃) do

if 3Uµ̃ν̃D
•

Eµ̃
•

Eλ̃
12 Smax < ϑ then Continue

end If
for all σ̃ ∈ O(λ̃) do

Calc Tinit =D
•

Eµ̃ν̃
•

Eλ̃σ̃
12 U

•

Eλ̃σ̃
•

Eµ̃ν̃
µ̃ν̃

if 3Sλ̃σ̃Tinit < ϑ then Continue
end if

Calc T2 = αDSµ̃ν̃Sλ̃σ̃
12 U

•

Eλ̃σ̃Sµ̃ν̃
µ̃ν̃

Calc T1
1 =D

•
eµ̃ν̃

•

Eλ̃σ̃
12 U

•
eλ̃σ̃Sµ̃ν̃
µ̃ν̃

Calc T1
2 = αD

•

Eµ̃ν̃
•
eλ̃σ̃

12 U
•

Eλ̃σ̃
•
eµ̃ν̃

µ̃ν̃

Calc T0 =D
•
eµ̃ν̃

•
eλ̃σ̃

12 U
•
eλ̃σ̃

•
eµ̃ν̃

µ̃ν̃

Tfin = T0 + T1
1 + T1

2 + T2

if 3TfinSλ̃σ̃ ≥ ϑ then
Calculate integral sub-tensor (µ̃ν̃ |F12 |λ̃σ̃)

end if
end for

end for
end for

end for

1. Preparatory work
The first step is calculating Smax for each set of distribu-

tions used. If F12 is of Coulomb-type, Vmax is also required. For
shell-pair distributions, we note that

Smax = max
µ∈B

Sµµ = 1, Vmax = max
µ∈B

Vµµ (41)

due to the Cauchy-Schwarz inequality and the normaliza-
tion of the basis functions. Then, the overlap factors, Sµ̃ν̃
and, if needed, Vµ̃ν̃ and Uµ̃ν̃ , are calculated and, if significant
according to bound (35), the maximal extents Eµ̃ν̃ [solve (19)
or (33) for each interpolation point p], intermediate extents
eµ̃ν̃ [solve (20)], and single-shell extents Eµ̃ [Eq. (22)] are cal-
culated. Significant pairs are stored as overlap significance
lists O(µ̃) containing significant partners ν̃ ≤ µ̃ for each
shell µ̃.

The next preparatory step is the calculation of the shell-

pair distance factors D
•

Eµ̃
•

Eν̃
ij for each short-ranged operator

involved. These values are checked for significance accord-
ing to bound (36), and the linear scaling number of significant
pairs are stored as distance based significance lists Fij(µ̃).

Algorithm 3. V3e
D and V3e

X screening procedure.

for all λ̃ ∈ S do
for all σ̃ ∈ O(λ̃) do

for all ρ̃ ∈ F23(σ̃) do

if 3Sλ̃σ̃D
•

Eλ̃
•

Eρ̃
23 SmaxVmaxP3

max < ϑ then
Continue

end if
for all η̃ ∈ O(ρ̃) do

Calc D23 =D
•

Eλ̃σ̃
•

Eρ̃η̃
23

Pint = max{Pλ̃σ̃ ,Pλ̃η̃ ,Pλ̃ρ̃ ,Pσ̃η̃ ,Pσ̃ ρ̃ }
if 3Sλ̃σ̃Sρ̃η̃D23PintVmaxP2

max < ϑ then
Continue

end if
for all µ̃ ∈ P(η̃) do

for all ν̃ ∈ O(µ̃) do

Calc D12 =D
•

Eµ̃ν̃
•

Eλ̃σ̃
12

Calc Uµ̃ν̃ = U
•

Eλ̃σ̃
•

Eµ̃ν̃
µ̃ν̃

S = 4Uµ̃ν̃Sλ̃σ̃Sρ̃η̃
D = D12D23

PD = P̂µ̃ν̃P̂λ̃σ̃P̂ρ̃η̃ (Pλ̃σ̃Pµ̃ ρ̃Pν̃ η̃ )
PX = P̂µ̃ν̃P̂λ̃σ̃P̂ρ̃η̃ (Pµ̃λ̃Pν̃ ρ̃Pσ̃η̃ )
if SDPD ≥ϑ or SDPX ≥ϑ then

Calculate integral sub-tensor
〈µ̃λ̃ρ̃ |C12F23 |ν̃σ̃η̃〉
Contract with P elements

end if
end for

end for
end for

end for
end for

end for
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If density coupling is to be taken into account, the last
step is to calculate Pmax, setup the simple density decay lists
Pns(µ̃) using (39), and then the symmetry respecting lists P(µ̃)
according to Algorithm 1. The restriction ν̃ ≤ µ̃ for ν̃ ∈ P(µ̃) is
not made here or for the distance based lists in general.

All of these factors and lists are inexpensive to compute,
depend on at most two shells, and require low pre-factor,

FIG. 2. Graphic representations of the three- and four-electron integrals that arise
in F12 theory. Electronic distributions (circles) are coupled through Coulomb inter-
actions (solid lines), the F12 correlation factor (dotted lines), and density elements
(red dashed lines). Scaling consistent loop structures are given for each integral
type.

asymptotic linear scaling storage. The expressions needed are
given in Appendix A. The cost of their calculation is always
negligible and timings demonstrating this are given in the
supplementary material.

2. Integral screening
Using the significance lists described above, it is simple to

iterate through a prescreened set of shell combinations that is
inherently scaling consistent and takes advantage of shell-pair
symmetry. We give the procedure for a general two-electron
integral in Algorithm 2 using the bounds IPB0, IPB1 in inter-
mediate forms, and IPB2 as the final bound. This procedure
scales linearly for short ranged operators and quadratically for
long ranged ones. The procedure for using aIPB is obtained
by neglecting Tinit and the bound containing it and using
Tfin = T0.

In Algorithm 3, we give an outline of the procedure used
for screening the three-electron contributions V3e

D [Eq. (37)]
and V3e

X [Eq. (38)] using only the bounds IPB0 and IPB1 for

brevity. Here we use the maximal permutation operator P̂µ̃ν̃

defined as
P̂µ̃ν̃Xµ̃ν̃ = max{Xµ̃ν̃ ,Xν̃ µ̃ }.

Density coupling is used to reduce the scaling from
quadratic to linear for sparse density matrices. In both direct
and exchange forms, the second and third electrons are cou-
pled by the short-range operator F23 and the first and third
electrons are coupled by at least one density matrix element,
which allows for a common scaling-consistent loop structure
for both terms. We loop over the distributions in the order
2 → 3 → 1 because this leads to the strongest intermediate
bounds for weak density decay.

In Fig. 2, representations of each type of three- and four-
electron integral that arise in F12 theory are given that high-
light the operator and density couplings involved. Scaling-
consistent loop structures are given in a format that details
the loop order and the significance lists used to ensure scal-
ing consistency. The same loop structure is applicable to both
direct and exchange integrals in each case. Type 3A in Fig. 2
corresponds to the terms V3e

D and V3e
X , which are screened

according to Algorithm 3. The other terms are screened anal-
ogously using the given loop structures and the proper inter-
mediate and final bounds. The procedure for a four-electron
integral (Type 4A) is given in detail in the supplementary
material.

III. COMPUTATIONAL DETAILS AND RESULTS
We test our bounds based on their performance in

screening two-electron integrals in various settings. We com-
pare to the distance-independent Schwarz bound (QQ), given
by

| |(µ̃ν̃ |λ̃σ̃)F | | ≤ Qµ̃ν̃Qλ̃σ̃ ,

where Qµ̃ν̃ = maxµ∈µ̃,ν∈ν̃

√
(µν |µν)F, and our recently

developed distance-including combined Schwarz bound
(CSB)14
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| |(µ̃ν̃ |λ̃σ̃)F | | ≤ min{Qµ̃ν̃Qλ̃σ̃ ,Mµ̃λ̃Mν̃ σ̃ ,Mµ̃σ̃Mν̃ λ̃ },

where Mµ̃λ̃ = maxµ∈µ̃,λ∈λ̃

√
(µµ |λλ)F.

We use six different integral operators in our analysis: the
very long ranged Coulomb operator C12, two shorter ranged
operators used in DFT calculations employing screened
Hartree-Fock exchange,2,4 and three very short ranged oper-
ators that are needed in explicitly correlated F12 theories
employing a Slater-type geminal (STG).

We quantify the range of each of these operators by com-
paring the distances, Rmax, at which they fall below the thresh-
old 10−12. The abbreviated names used in this work for each of
the six operators are given in Table II, along with their func-
tional forms and Rmax values. Plots of the operators are shown
in Fig. 3.

We implemented and tested our estimates in the quan-
tum chemistry program package FermiONs++34–36 developed
in our group. The molecular structures used in our tests are
part of our integral screening test suite, which are available
for download online, see Ref. 16.

A. Direct integral screening
In this section, we compare the bounds based on a

screening of the entire tensor of four-center two-electron
integrals. Entire shell-quartets are neglected when the
respective estimates are below the screening threshold. The
number of significant quartets remaining is used to measure
the speedup possible with each estimate, while the accu-
racy is measured by the unsigned sum of discarded integrals,
which we denote W. This allows for the comparison of the
estimates for various operators independent of any particu-
lar theory. We also compare to an a posteriori exact integral
screening in which only integrals are discarded whose exact
shell-quartet-maxima are below the threshold.

As test systems we used linear alkanes (CnH2n+2) of
increasing length up to n = 100. A screening threshold of 10−10

is used for the exact screening. For the other estimates, and
for each different operator, we use thresholds chosen such
that the W errors are the same as for the exact screening for
the largest alkane (the errors for the smaller alkanes are also
roughly equal). This is done to ease comparison of the over-
all effectiveness of each estimate. The decadic logarithms of
the thresholds used in each case are given in Table III. For
all but the long ranged C12 operator, the IPB-type estimates,

TABLE II. Operators used in this work and their Rmax values. Rmax is the distance (in
bohr), after which the operator value falls below 10−12.

Short name Operator Rmax

C12 1/r12 1012

(2G)12 0.27e−0.075r2
12 + 0.18e−0.006r2

12 65.7
E12 0.25 erfc(0.11r12)/r12 42.1
S12 (1/1.2)e−1.2r12 22.9
(SC)12 (1/1.2)e−1.2r12/r12 20.4
S2

12 (1/(1.2)2)e−2.4r12 11.4

FIG. 3. Plots of the six operators listed in Table II.

including aIPB, give smaller W errors and are therefore shifted
to looser thresholds.

The results are given in Fig. 4, where the difference
between the number of significant shell quartets NSQ and the
exact number NExact

SQ is given for each combination of estimate,
operator, and alkane size n. For the C12 operator, there is little
difference between the estimates for all but the largest linear
alkanes, where the IPBs show improvement compared to the
QQ and CSB bounds. The small difference is not surprising due
to the long-ranged nature of the Coulomb operator. As the
range of the operators decreases, we see that the distance-
including bounds significantly outperform the QQ bound. The
best performance is clearly given by aIPB, while the completely
rigorous bound IPB2 performs consistently well and is only
slightly outperformed by CSB for the very short ranged oper-
ator S2

12. It is of note that although aIPB is only an approximate
upper bound, no underestimations were observed in these
calculations.

All of the distance-dependent bounds show the correct
scaling of the number of integrals with increasing n, which is
essentially linear for all but the operator C12. This scaling con-
sistency is evidenced in Table IV, where we give the approxi-
mate scaling exponent λ in the equation NSQ(n) = O(nλ). The

TABLE III. Decadic logarithms of the thresholds that ensure W = Wexact for each
estimate-operator pair in the direct screenings in Fig. 4.

log10(ϑ)

C12 (2G)12 E12 S12 (SC)12 S2
12

QQ −8.78 −9.06 −8.79 −8.83 −8.76 −8.92
CSB −8.78 −9.08 −8.83 −8.87 −8.81 −8.99
IPB0 −9.20 −8.47 −8.12 −7.49 −7.51 −6.98
IPB1 −9.37 −8.63 −8.18 −7.49 −7.51 −6.98
IPB2 −9.37 −8.73 −8.30 −7.54 −7.53 −6.99
aIPB −9.39 −8.35 −8.35 −7.62 −7.60 −7.02
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FIG. 4. Difference between estimated and exact number of significant shell quar-
tets for a series of linear alkanes with one to 100 carbon atoms. The basis set
aug-cc-pVDZ was used, and the individual integral thresholds were chosen such
that for, C100H202, the W errors are the same as for an exact screening with a
threshold of 10−10.

TABLE IV. Significant integral scaling behaviour for each estimate/operator combina-
tion when increasing the number of carbon atoms in a linear alkane from 80 to 100.
The scaling exponents λ are calculated according to Eq. (42).

Scaling exponent λ

C12 (2G)12 E12 S12 (SC)12 S2
12

Exact 1.974 1.132 1.085 1.053 1.048 1.038
QQ 2.036 2.036 2.036 2.034 2.034 2.033
CSB 2.036 1.180 1.113 1.073 1.065 1.048
IPB0 1.947 1.184 1.129 1.099 1.092 1.086
IPB1 1.957 1.166 1.111 1.081 1.074 1.067
IPB2 1.966 1.143 1.092 1.060 1.055 1.049
aIPB 1.967 1.140 1.089 1.056 1.051 1.046

λ values are approximated using the values for the last two
alkanes (n = 80 and n = 100) in Fig. 4,

λ =
ln(NSQ(100)/NSQ(80))

ln(100/80)
. (42)

As expected, the Schwarz estimate does not show the cor-
rect asymptotic scaling behaviour because it lacks distance
dependence.

B. Explicitly correlated MP2-F12 calculations
We tested our bounds and estimates within the context

of the explicitly correlated F12 correction5,37,38 to the second-
order Møller-Plesset correlation energy, which improves the
description of the wave function at electron-electron cusp
regions, significantly accelerating basis set convergence. We
employ a Slater type geminal (STG) correlation factor,7,39
given by the operator S12, and Ten-no’s fixed amplitudes40
within the 3∗C variant41 of the F12 correction. Standard within
the F12 method is the use of resolution of the identity approx-
imations (RI) to break down the formally required three-
and four-electron integrals into sums of products of two-
electron integrals over five different operators. Four of these
are the C12, S12, (SC)12, and S2

12 operators defined in Table II.
The remaining operator is the so-called double commutator
operator, which, for the explicit STG correlation factor, is
just S2

12 multiplied by a constant7 so that only integrals over
the former four operators are needed. We use the CABS+
method of Valeev42 for constructing the RI basis from an aux-
iliary basis set {µ′} and density fitting to further break down
the four-center two-electron integrals into two- and three-
center two-electron integrals, which requires a second auxil-
iary basis set {µ′′}. In total, the following sets of integrals are
needed:

{(µν |λ′′)C12
} {(µν |λ′′)S12

} {(µν |λ′′)S2
12
} {(µν |λ′′)(SC)12 }

{(µν′ |λ′′)C12
} {(µν′ |λ′′)S12

} {(µν′ |λ′′)S2
12
}.

Due to the use of density fitting, integral calculation is
not the most expensive step in the presented calculations.
Hence, speedups in integral computation do not lead to large
decreases in total calculation times here. For this reason,
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we view these results as a proof of concept, which will be
indispensable for some proposed variants of explicitly corre-
lated methods. For example, an efficient implementation of the
completely atomic orbital based F12 correction as proposed
by Hollman et al.43 would be possible using our estimates.
In addition, an explicitly correlated F12 method that for-
goes the usual RI insertions and thus requires large numbers
of three- and four-electron integrals (as considered, e.g., in
Refs. 31, 43, and 44) would greatly benefit from our estimates,
as the vast majority of the arising integrals are expected to be
insignificant.

The CSB bound cannot be used for these calculations
because its formulation for three-center integrals is not
straightforward. Therefore, we compared our new bounds
IPB2 and aIPB to the QQ bound and the non-rigorous
generalized QQR estimate,14,16 which also takes distance-
dependence into account, but uses non-rigorous extents
designed for the Coulomb operator. The bounds IPB0 and IPB1
are used for pre-screening purposes but are always less tight
than IPB2 and are thus not included in these results. We imple-
mented our bounds within the RI-MP2-F12 routines available
in FermiONs++.34–36

Because the bounds perform similarly for the long range
Coulomb operator C12, we give results based on screening of
the integrals over the other three operators. We tested the
three molecular systems shown in Fig. 5 and used a series of
four screening thresholds ϑ from 10−10 to 10−7.

In Table V, we present the screening errors given as the
difference to the F12 correction of the reference (no integral
screening), and the speedups in integral calculation given as
the ratio of the total number of integral quartets of the refer-
ence divided by this number for the respective screenings. All
three molecules were calculated using the aug-cc-pVDZ basis

FIG. 5. Molecules used in MP2-F12 calculations. (a) Adenine-thymine base pair,
(b) β-carotene, and (c) linear alkane (C20H42).

set in the SCF reference calculation and aug-cc-pVDZ-RI for
both auxiliary basis sets.

Our bounds show both significant speedups and reduced
errors compared to the QQ bound. The approximate bound
aIPB outperforms IPB2 in each case, with significantly better

TABLE V. Error in F12 energy correction and speedup (SU) calculated as a number of significant integral quartets of the
reference divided by the respective value for each threshold (ϑ) and estimate. The aug-cc-pVDZ basis set was used in
combination with the aug-cc-pVDZ-RI basis for both required auxiliary basis sets.

QQ IPB2 aIPB QQRa

ϑ Error (H) SU Error (H) SU Error (H) SU Error (H) SU

Adenine-thymine 10−10 2× 10−10 1.09 <10−10 1.50 1× 10−10 1.76 1× 10−6 1.74
base pair 10−9 −7× 10−9 1.16 2× 10−10 1.62 6× 10−10 1.94 3× 10−6 1.93

10−8 1× 10−7 1.23 1× 10−8 1.76 2× 10−8 2.18 2× 10−5 2.16
10−7 9× 10−6 1.33 1× 10−6 1.95 2× 10−6 2.49 6× 10−5 2.46

β-carotene 10−10 −1× 10−10 1.09 <10−10 2.05 4× 10−10 2.49 8× 10−6 2.50
10−9 1× 10−8 1.14 1× 10−9 2.21 −2× 10−10 2.73 1× 10−5 2.74
10−8 5× 10−7 1.21 1× 10−8 2.40 3× 10−8 3.03 3× 10−5 3.03
10−7 4× 10−5 1.29 9× 10−7 2.63 1× 10−6 3.41 4× 10−4 3.41

Linear alkane 10−10 1× 10−9 1.08 1× 10−10 1.54 2× 10−10 1.84 2× 10−7 1.85
C20H42 10−9 2× 10−8 1.13 9× 10−10 1.65 1× 10−9 2.00 3× 10−6 2.01

10−8 3× 10−7 1.19 7× 10−9 1.78 4× 10−9 2.22 3× 10−5 2.21
10−7 4× 10−6 1.26 8× 10−8 1.94 7× 10−8 2.48 4× 10−5 2.48

aDue to increased error and for ease of comparison, the thresholds used in the QQR screening are three orders
of magnitude tighter than those given in the ϑ column.
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speedups and very similar errors. The QQR estimate suffers
from reduced accuracy for these operators and much tighter
thresholds are needed. The error to speedup ratio for QQR is
worse than for both IPB2 and aIPB.

C. Screened Hartree-Fock exchange
In this section, we present the results of DFT calcula-

tions using the HSE06 functional,2 which employs a screened
Hartree-Fock exchange matrix that is calculated using inte-
grals over the E12 operator. We use our estimates to screen
such integrals within the LinK32,33 screening algorithm. This
method allows for linear scaling calculations of the exchange
matrix for systems with sparse density matrices, which is
accomplished by pre-sorting and pre-screening in a way that
takes this sparsity into account.

As an SCF convergence criterion, the error calculated in
the direct inversion of the iterative subspace method (DIIS
error) is required to be below 10−7. A superposition of atomic
densities is used as an initial guess.

In Fig. 6, we plot the errors of the respective screen-
ings against the speedups attained for screening thresholds
increasing from ϑ = 10−11 to ϑ = 10−8 and using the basis set
cc-pVDZ. The system used is a DNA strand of 16 adenine-
thymine base pairs, containing 1052 atoms. Here, IPB2 and
aIPB perform very similarly and again show reduced error
with increased speed compared to the other bounds at each
threshold tested.

In Fig. 7, we show the analogous plot for the aug-cc-
pVDZ basis set and a chain of 16 amylose sugar molecules,
containing 339 atoms. Screening thresholds from ϑ = 10−12 to
ϑ = 10−9 are used here. Tighter thresholds are used because
SCF convergence is more difficult with larger, more diffuse

FIG. 6. Speedup vs. SCF energy error for DFT/HSE06 screened exchange matrix
calculations for a strand of 16 adenine-thymine DNA base pairs using the basis set
cc-pVDZ. Data points correspond to four different screening thresholds from ϑ =
10−11 (bottom left) to ϑ = 10−8 (top right). Error and speedup are calculated with
respect to reference calculation using the QQ bound and ϑ = 10−12. The speedup
is given as the ratio of significant integral quartets when calculating the screened
exchange matrix using the converged density.

FIG. 7. Speedup vs. SCF energy error for DFT/HSE06 screened exchange matrix
calculations for a chain of 16 amylose sugar molecules using the basis set aug-
cc-pVDZ. Data points correspond to four different screening thresholds from ϑ =
10−12 (bottom left) to ϑ = 10−9 (top right). The calculations using the QQ and
CSB bounds did not converge in combination with ϑ = 10−9 so that these data
points are missing. Error and speedup are calculated with respect to reference
calculation using the QQ bound and ϑ = 10−13. The speedup is given as the
ratio of significant integral quartets when calculating the screened exchange matrix
using the converged density.

basis sets. In fact, the calculations using the QQ and CSB
bounds with ϑ = 10−9 do not converge so that these points
are missing from the plot. These calculations converge in

TABLE VI. Error and speedups for DFT/HSE06 calculations of various systems using
our bounds for screening exchange integrals. A screening threshold of ϑ = 10−9

and the basis set cc-pVDZ are used throughout. Errors are given as the difference
of final SCF energy to the reference calculation using the QQ bound with a screen-
ing threshold of 10−12. Speedups are given as the reference number of significant
integral quartets divided by the number for the respective estimate.

QQ CSB IPB2 aIPB

DNA16 Error (µH) 3.21 3.22 1.04 1.04
Speedup 3.64 5.15 6.78 7.15

(H2O)569 Error (µH) 2.72 2.73 1.00 1.00
Speedup 5.19 8.21 12.5 13.4

(S8)20 Error (µH) 1.21 1.22 0.38 0.38
Speedup 3.08 3.81 4.84 5.11

Amylose64 Error (µH) 2.02 2.02 0.81 0.79
Speedup 2.64 3.29 3.82 3.95

Angiotensin Error (µH) 0.25 0.25 0.09 0.09
Speedup 2.40 2.67 3.00 3.10

Angiotensin Error (µH) 0.25 0.25 0.09 0.09
deprotonated Speedup 2.39 2.66 2.98 3.08

β-carotene Error (µH) 0.06 0.06 0.02 0.02
Speedup 1.78 2.62 2.82 2.89

Graphite Error (µH) −0.21 −0.21 0.03 0.05
C96H24 Speedup 1.90 2.00 2.46 2.53

Polyyne Error (µH) 9.13 12.5 0.81 0.76
C1024H2 Speedup 1.85 23.9 24.6 25.1
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combination with IPB2 and aIPB, which again screen a larger
number of integrals while incurring less error.

We tested various other systems from our screening test
suite16 in combination with the cc-pVDZ basis set and a fixed
screening threshold of ϑ = 10−9. These results are given in
Table VI. Here, we see the same general trends with speed
increasing in the order QQ, CSB, IPB2, and aIPB. The IPB2
and aIPB show very similar errors and both produce between
one-third and one-tenth smaller errors than the other two
bounds.

IV. CONCLUSION AND OUTLOOK
We have derived completely rigorous, distance-including,

and scaling consistent upper bounds (IPB0, IPB1, and IPB2).
They can be used for integrals over any number of electrons
and involving a wide range of distance based multiplicative
operators. The bounds are based on a partitioning of the inte-
gration space that allows for the determination of rigorous
extents for neglecting contributions far away from distribu-
tion centers. They can be used in a wide variety of chemical
theories and are particularly well-suited to those involving
short-ranged operators, for example, in explicitly correlated
theories.

We have also introduced an approximate bound, aIPB,
that is almost never an underestimate in practice. The advan-
tage of aIPB over the tightest rigorous bound IPB2 is that
it uses a simplified distance factor and is tighter in gen-
eral, while virtually no error increase is observed. We have
found that both IPB2 and aIPB lead to reduced errors and
higher speedups for a given screening threshold when com-
pared to the Schwarz inequality bound QQ and our previ-
ously developed distance-including combined Schwarz bound
CSB.

The high separability of IPB0 allows one to screen very
efficiently by determining distance-based significance lists,
leading to scaling consistent loop structures. We regard this
as a crucial advantage when developing fast and accurate
methods for large systems.

We expect that the IPB bounds will be useful in many
branches of quantum chemistry due to their generality, sim-
plicity of use, and exceptional tightness. We are currently
working on the development of efficient quantum chemical
methods based on their application.

SUPPLEMENTARY MATERIAL

See supplementary material for further data as indicated
in the text.
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APPENDIX A: EXPRESSIONS FOR GAUSSIAN
BASIS FUNCTIONS

The contracted Gaussian-type orbital (cGTO) basis func-
tions used in practice are given by

χlm
µ (r;A) = Nl

µ

kµ∑
a=1

cµ,aφ
lm
λµ,a

(rA). (A1)

Here, A is the center of the cGTO, l is the angular quantum
number, Nl

µ is the normalization constant, kµ is the degree
of contraction, and rA = r − A. In the case of spherical-
harmonic Gaussians (SHGs), m is an integer with −l ≤ m ≤

l, while for Cartesian Gaussians (CGs) m = (mx, my, mz) is a
three-dimensional vector with mx + my + mz = l. The primitive
Gaussian-type orbital (pGTO) φlm

λµ,a
is defined as

φlm
λµ,a

(r) = Yλµ,a

lm (θ,ϕ) rl exp(−λµ,ar2). (A2)

For SHGs, on has

Yλµ,a

lm (θ,ϕ) = ÃlmP
|m|
l (cos θ)




cos(mϕ) m ≥ 0

sin( |m |ϕ) m < 0,

where Ãlm =

√
2−δm0
(−1)m

√
(l−|m|)!
(l+|m|)! and P|m|l is an associated Legendre

polynomial. For CGs, one has instead

Yλµ,a

lm (θ,ϕ) = Aλµ,a
m (sin θ cosϕ)mx (sin θ sinϕ)my (cos θ)mz ,

with Aλµ,a
m =

∏
s=mx ,my ,mz

√
(2λµ,a)s+1/2

Γ(s+1/2) . In both cases, (A2) can

be bound [see Ref. 45 (SHG) and Ref. 23 (CG)] in a radial,
m-independent manner using the inequality

|Yλµ,a

lm | ≤ Bλµ,a

l =




1 SHG√
(2λµ,a)l+3/2∑2
i=0 Γ(b

l+i
3 c+

1
2 )

CG.
(A3)

The most complicated distributions we are concerned
with are absolute products of cGTOs

|Ωµν | = |χ
lm
µ (r;A)χjk

ν (r;B) |, (A4)

≤ Nl
µN

j
ν

kµ∑
a=1

kν∑
b=1

|cµ,acν,b | |φ
lm
λµ,a

φ
jk
λν,b
|. (A5)

Inequality (A5) is used to bound integrals over cGTOs by
sums of integrals over pGTOs. In the following, we use the
definitions

Iab = 2πBλµ,a

l Bλν,b
j , (A6)

pab = λµ,a + λν,b, (A7)

Kab = exp
(
−
λµ,aλν,b

pab
|AB |2

)
, (A8)

Pab = (λµ,aA + λν,bB)/pab, (A9)

Rab = max(0,R − |Pab − Cµν |). (A10)

The cGTO product center Cµν is defined as
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Cµν = Pmin,

where Pmin is the center Pab of the primitive pair with the
smallest combined exponent pab. This choice is motivated by
the fact that the description of the total distribution at large
radial distances is dominated by this primitive pair, and we
wish to describe this outer region as accurately as possible.

The bounds given below are in terms of integrals over
pGTO pairs. They are combined with (A5) to bound integrals
over pairs of cGTOs. If one wishes to bound primitive contri-
butions individually, tighter primitive bounds are obtained by
neglecting the terms corresponding to all other primitive pairs
in (A5) and letting Rab → R in the inequalities given below.

1. Absolute tail integrals
To calculate extents, one must be able to calculate the

quantities

SR
µν = S

◦

Rµν
µν =

∫
|r−Cµν |>R

|Ωµν (r) |dr,

VR
µν = VR3 ◦Rµν

µν = max
x∈R3

∫
|r−Cµν |>R

|Ωµν (r) |/ |r − x |.

In both cases, we first insert the definition (A1), use inequality
(A5), and bound the resulting integrals over primitive pairs.

In the SHG case, if the two contracted functions share the
same center, i.e., (A = B), or if the charge distribution is formed
by only one basis function (e.g., for density fitted integrals),
integration in spherical coordinates gives

SR(φlm
λµ,a

φ
jk
λν,b

) ≤ M̃l,jIab
Γ( 3+l+j

2 ,pabR2)

2(pab)
3+l+j

2

, (A11)

where Γ is the upper incomplete gamma function, and 0 <

M̃l,j ≤ 4π is a factor that depends only on the two non-
negative integers i and j and bounds the angular part of the
distribution

M̃l,j = max
l≤m≤l
−j≤k≤j

{Mlm,jk },

Mlm,jk =

∫ π

0
dθ sin θ

∫ 2π

0
dϕ |Ylm(θ,ϕ)Yjk(θ,ϕ) |.

The numerically calculated values of M̃l,j for 0 ≤ i, j ≤ 8 are
given in the supplementary material.

In all other cases, we first use the triangle inequality

|rA | ≤ |r − Pab | + |Pab − A |

to get

|rA |l ≤
l∑

t=0

(
l
t

)
|Pab − A |l−t |rPab |

t. (A12)

This bound combined with (A3) and the Gaussian product
theorem46 (GPT) lead to

|φlm
λa

(rA)φjk
λb

(rB) | ≤ IabKab

l∑
t=0

j∑
u=0

Fljtu |rPab |
t+ue

−pabr2
Pab ,

with

Fljtu =
(
l
t

) (
j
u

)
|Pab − A |l−t |Pab − B |j−u.

We use the inclusion

{r : |r − Cµν | > R} ⊆ {r : |r − Pab | > Rab } (A13)

to shift the center of integration to Pab, simplifying integration
and giving

SR(φlm
λµ,a

φ
jk
λν,b

) ≤ IabKab

l∑
t=0

j∑
u=0

Fljtu
Γ( 3+t+u

2 ,pabR2
ab)

(pab)
3+t+u

2

. (A14)

The potential integral requires the additional applica-
tion of Newton’s Shell theorem,47,48 which states that for any
spherically symmetric function S and any r′ ∈ R3,∫

dr
S(r)
|r′ − r |

=
1
|r′ |

∫
|r|≤|r′ |

drS(r) +
∫

|r|> |r′ |

dr
S(r)
|r |

. (A15)

This leads after further analysis to the bound

VR(φlm
λµ,a

φ
jk
λν,b

) ≤ IabKab

l∑
t=0

j∑
u=0

Fljtu
Γ(1+ t+u

2 ,pabR2
ab)

(pab)1+
t+u
2

. (A16)

2. Absolute integrals
It remains to give the equations for the two absolute inte-

gral types Sµν and Vµν . While both can be obtained by let-
ting R → 0 in the bounds for SR

µν and VR
µν , tighter bounds

are achievable. For Sµν in the case of SHGs with A = B, the
bound (A11) with R = 0 is best. For the other cases, the inte-
grals over contracted functions are bound by integrals over
primitive functions as in (A5), which are bound further using
(A3). Afterwards, the Cauchy-Schwarz inequality can be used
to get

S(φlm
λµ,a

φ
jk
λν,b

) ≤
√
S(φl+0

λµ,a
φ
j−0
λν,b

)S(φl−0
λµ,a

φ
j+0
λν,b

), (A17)

V(φlm
λµ,a

φ
jk
λν,b

) ≤
√
V(φl+0

λµ,a
φ
j−0
λν,b

)V(φl−0
λµ,a

φ
j+0
λν,b

), (A18)

where

l± =



l l even

l ± 1 l odd
(A19)

is always a non-negative, even integer and equality holds when
l and j are even. For non-negative and even integers r and s, we
can use the derivative representation φr0

λµ,a
= (−1)r/2∂r/2

λµ,a
φ00
λµ,a

and the GPT to get the following expression:

|φr0
λµ,a

(rA)φs0
λν,b

(rB) | = (−1)
r+s
2 Iab∂

r/2
λµ,a

∂s/2
λν,b

Kab exp(−pabr2
Pab

)

= Iab
r/2∑
t=0

s/2∑
u=0

(−1)t+uErs
tu∂

t
λµ,a

∂uλν,b
exp(−pabr2

Pab
).

The factors Ers
tu, whose efficient recursive calculation is out-

lined in Appendix C, are given by
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Ers
tu = (−1)

r+s
2 −t−u

( r
2
t

) ( s
2
u

)
∂

r
2 −t
λa

∂
s
2 −u
λb

Kab. (A20)

Performing the integration and then carrying out the deriva-
tives give

S(φr0
λµ,a

φs0
λν,b

) = Iab
r/2∑
t=0

s/2∑
u=0

Ers
tu
Γ( 3

2 +t+u)

(pab)
3
2 +t+u

, (A21)

V(φr0
λµ,a

φs0
λν,b

) = Iab
r/2∑
t=0

s/2∑
u=0

Ers
tu
Γ(1+t+u)

(pab)1+t+u
, (A22)

where (A15) is needed in the second case.

APPENDIX B: SOLVING EXTENT EQUATIONS
Here, we discuss our method for solving extent equations

for pairs of cGTO basis functions. Because of the similarity
of the three integral bounds (A14), (A16), and (A11), we discuss
now only the use of (A14) for calculating extents; the other
expressions can be used analogously. Given a target T, which
represents the maximal amount of charge that should be left
outside of the extent to be solved for and depends, for max-
imal extents, on the integral threshold ϑ, we must solve the
following equation:

Nl
µN

j
ν

kµ∑
a=1

kν∑
b=1

|cµ,acν,b |IabKab

l∑
t=0

j∑
u=0

Fljtu
Γ( 3+t+u

2 ,pabR2
ab)

(pab)
3+t+u

2

= T , (B1)

for R. This is done numerically using Newton-Raphson opti-
mization. The needed derivatives of (B1) can be calculated
using

∂

∂R
Γ(x,pabR2

ab)
pxab

=




−2
exp(−pabR2

ab)

R−(2x−1)
ab

Rab > 0

0 Rab = 0.

Because this derivative is never positive, the left side of
(B1) is decreasing in R and, if it less than T for R = 0,
then (B1) has no solution and the cGTO shell-pair can be
neglected.

To obtain an initial guess, we solve a simplified version
of (B1) by only retaining the term corresponding to t = l,
u = j and the smallest exponents λa and λb, with corresponding
coefficients cµ ,min, cν ,min, combined exponent pmin, and factors
Imin and Kmin. The resulting equation is

Γ( 3+l+j
2 ,pminR2)
Γ( 3+l+j

2 )
=

T |cµ,mincν,min |
−1(pmin)

3+l+j
2

IminNl
µN

j
νKminΓ( 3+l+j

2 )
, (B2)

where we divided both sides of the equation by Γ( 3+l+j
2 ) and

isolated the resulting regularized incomplete gamma function
given by Γ(x, y)/Γ(x) on the left hand side.

This allows us to solve for R using routines for inverting
the regularized incomplete gamma function.49 We note that
(B2) gives the exact solution for uncontracted functions on
the same center. If (B2) has a solution, it is typically a very
good guess and Newton-Raphson optimization quickly con-
verges. If (B1) has a solution but (B2) does not, which occurs

when the right hand side of (B2) is larger than unity, then
the extent is quite small and bracketing solvers49 can be used
effectively.

APPENDIX C: CALCULATION OF Ers
tu FACTORS

For fixed λa, λb, and AB = |A − B|, we write Ers
tu as

Ers
tu =

( r
2
t

) ( s
2
u

)
Θ

r
2 −t,

s
2 −u , (C1)

where we define

Θ
kl = (−1)k+l∂ka∂

l
be
−
λaλb
λa+λb

AB2

. (C2)

For k = l = 0, we simply have

Θ
00 = e−µabAB

2
= Kab. (C3)

Using the general Leibniz formula for derivatives, one obtains
the recursion formulas

Θ
k(l+1) = AB2

k∑
p=0

l∑
q=0

(
k
p

) (
l
q

)
Θ

(k−p)(l−q)
[
(−1)p+q∂

p
λa
∂
q
λb

λ2
a

(λa + λb)2

]
,

(C4)

Θ
(k+1)l = AB2

k∑
p=0

l∑
q=0

(
k
p

) (
l
q

)
Θ

(k−p)(l−q)

(−1)p+q∂

p
λa
∂
q
λb

λ2
b

(λa + λb)2


.

(C5)

The remaining derivatives are given by

(−1)p+q∂
p
λa
∂
q
λb

λ2
a

(λa + λb)2
=

1
(λa + λb)p+q

min(p,2)∑
i=0

(
p
i

)
(−1)i

×
(p + q − i + 1)!
(λa + λb)2−i

∂iλa
λ2
a, (C6)

(−1)p+q∂
p
λa
∂
q
λb

λ2
b

(λa + λb)2
=

1
(λa + λb)p+q

min(q,2)∑
i=0

(
q
i

)
(−1)i

×
(p + q − i + 1)!
(λa + λb)2−i

∂iλb
λ2
b . (C7)

APPENDIX D: INTEGRAL BOUNDS
We bound the absolute value of the generalized N-

electron integral (k1;X1 | · · · |kN;XN)ΠFij using the elementary
inequality

|(k1;X1 | · · · |kN;XN)ΠFij | ≤ (k1;X1 | · · · |kN;XN)ΠFij ,

where bars over distribution indices indicate integration over
the corresponding absolute distribution Ωkn

= |Ωkn |.

1. Partition bounds
As in Sec. II A 1, we consider a set of charge distribu-

tions Ωk, k ∈ D, with centers Ck and partitionings of three-

dimensional space into balls,
•

Rk, centered at Ck with radius Rk,

and their complements
◦

Rk such that
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∫
dr Ωk(r) . . . =

∫
•

Rk

drΩk(r) . . . +
∫
◦

Rk

drΩk(r) . . . . (D1)

We define N = {1, . . . ,N} as the set of electronic indices.
We denote with P(N) the set of all subsets of N. Each subset
I ∈ P(N) is characterised by its cardinality 0 ≤ |I | ≤ N and
the particular set of indices I = {i1, . . . , i|I| }, which we assume
to be in ascending order.

We define, for any n ∈ N, the shorthand notation

(k1 | · · · |kn
•
| · · · |kN)ΠFij = (k1 | · · · |kn;

•

Rkn | · · · |kN)ΠFij ,

(k1 | · · · |kn
◦
| · · · |kN)ΠFij = (k1 | · · · |kn;

◦

Rkn | · · · |kN)ΠFij .

We choose a subset of indices I ∈ P(N) and partition the
integral over |Ωki1

|, giving

(k1 | · · · |kN)ΠFij = (k1 | · · · |ki1
•

| · · · |kN)ΠFij

+ (k1 | · · · |ki1
◦

| · · · |kN)ΠFij . (D2)

We then partition |Ωki2
| in the first term in (D2),

(k1 | · · · |ki1
•

| · · · |kN)ΠFij = (k1 | · · · |ki1
•

|ki2
•

| · · · |kN)ΠFij

+ (k1 | · · · |ki1
•

|ki2
◦

| · · · |kN)ΠFij , (D3)

and bound the resulting second term

(k1 | · · · |ki1
•

|ki2
◦

| · · · |kN)ΠFij ≤ (k1 | · · · |ki2
◦

| · · · |kN)ΠFij . (D4)

The notation used here highlights the integration spaces used
for the distributions in the middle but is meant to make no
restrictions on their positions within the integral. In particular,
there may be indices between i1 and i2 for which the corre-
sponding distributions have not been partitioned. Inequality
(D4) is used to obtain a term that depends on the radius Rki2

only and is very tight when
•

Rki1
contains most of the absolute

charge of Ωki1
.

The partitioning and bounding procedure of Eqs. (D3) and
(D4) is repeated successively for the remaining indices in I
leading to the following result:

(k1 | · · · |kN)ΠFij ≤ (k1 | · · · |ki1
•

| · |ki|I|
•

| · · · |kN)ΠFij

+
|I|∑
n=1

(k1 | · · · |kin
◦

| · · · |kN)ΠFij (D5)

= I•IN +
|I|∑
n=1

I◦kinN , (D6)

where the notation |ki1
•

| · |ki|I|
•

| implies the partitioning of all

indices in I. If each term in (D6) is less than ϑ/( |I | + 1), it fol-
lows that (k1 | · · · |kN)ΠFij ≤ ϑ and the integral can be neglected.

An important special case of (D6) occurs for I = N, |I | = N,
giving the fully partitioned form

(k1 | · · · |kN)ΠFij ≤ (k1
•

| · · · |kN
•

)ΠFij +
N∑
n=1

(k1 | · · · |kn
◦
| · · · |kN)ΠFij

(D7)

= I•N +
N∑
n=1

I◦knN . (D8)

This form is used for determining radii Rkn such that the
tail integrals I◦knN are less than (ϑ/(N + 1)) or equivalently such

that ((N+1)I◦knN ≤ ϑ). This results in maximal extents Ekn for each
distribution. Because |I | ≤ N, these extents also ensure that
the tail integrals are negligible in the more general bound (D6).
They are then used in the principle integrals I•IN , which can be
bound straightforwardly in a distant-dependent manner due
to the restriction to finite balls around the distribution cen-
ters. The different forms of I lead to the final and intermediate
bounds of Secs. II C and II D.

2. Separable bounds
The principle and tail integrals given above are not sepa-

rable and are difficult to compute directly. Here we present
our ansatz for obtaining separable bounds containing easily
computable factors. This procedure is independent of the par-
titioning, and it is the combination of the two that gives an
efficient and scaling-consistent bound.

We write the integral (k1;X1 | · · · |kN;XN)ΠFij over the gen-
eral spaces X1, . . ., XN in the following form:∫

X1

dr1 |Ωk1
|

∫
X2

dr2 |Ωk2
|F12 . . .

∫
XN

drN |ΩkN |
∏
j<N

FjN. (D9)

With the shorthand notation (r)i = (r1, . . ., ri), we define
the function

UXm
km

(
(r)m−1

)
=

∫
Xm

drm |Ωkm |
∏
j<m

Fjm( |rj − rm |). (D10)

The restriction of this function to Xm−1 = X1 × · · · × Xm−1 is
bound from above by the general maximal potential integral

UXm
km

���Xm−1
≤ max

(r)m−1∈Xm−1

UXm
km

(
(r)m−1

)
= ŨXm ;Xm−1

km
.

Inserting this bound successively into (D9) gives the inequality

(k1;X1 | · · · |kN;XN)ΠFij ≤
N∏
i=1

ŨXi ;Xi−1
ki

, (D11)

which is a product of terms that depend only on a single distri-
bution directly, with parametric dependence on the integra-
tion spaces of the other distributions. We note that it is always
possible to simplify ŨXm ;Xm−1

km
further by taking maxima over rm

for each Fjm to get
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ŨXm ;Xm−1
km

≤ SXm
km

∏
j<m

max
rm∈Xm
rj∈Xj

Fjm( |rj − rm |) (D12)

= SXm
km

∏
j<m

Fjm(d(Xj,Xm)) , (D13)

where SXm
km
= ∫Xm

dr |Ωkm |. This is a significant simplification
because d(Xj, Xm) is always straightforward to calculate for
the sets used in practice. However, for unbounded Fjm and
overlapping Xj and Xm, one has

Fjm(d(Xj,Xm)) = Fjm(0) = ∞. (D14)

For each j where this is the case, we take the corresponding
maximum over rm only for the bounded part of the operator
Fbjm in order to obtain a practically useful bound.

If we restrict our formulation to the case that all Fij
are bounded-type, except for F12, which may be bounded
or Coulomb-type, then we can safely use (D13) for all terms
except ŨX2 ;X1

k2
where we use the following inequality instead:

ŨX2 ;X1
k2

≤ UX1 ,X2
k2

DX1 ,X2
12 . (D15)

These factors are defined in Sec. II A 2. The result is the bound

(k1;X1 | · · · |kN;XN)ΠFij ≤ S
X1
k1
UX1X2

k2
DX1 ,X2

12

N∏
j=3

SXj

kj

∏
i<j

DXi ,Xj

ij (D16)

= UX2X1
k1

N∏
j=2

SXj

kj

∏
i<j

DXi ,Xj

ij . (D17)

The second form is obtained by exchanging electronic indices
1 ↔ 2 and using the symmetry of DX1 ,X2

12 . Applying (D17) to the
integrals I◦knN , I•IN and those that result from the partitionings
•

Eki =
•
eki t Ski lead to the extent equations, the IPB1, and the

IPB2 bounds, respectively.
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I. IPB2 TERMS

The IPB2 bound is given by
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as early as possible in the loop structure. For the integral types 3A and 3B of the main paper, F13 = 1, and the D13

factors are not needed. The T i terms in the general case are:
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For N = 4 one needs
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where in the F12 integral types 4A, 4B, and 4C, only three of the six operators are present and only the D factors
corresponding to these are needed.

The T i terms are in the general case:
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In practice, the terms are simpler due to the fact that three of the six D factors are equal to unity in each term.

II. SCREENING PROCEDURE FOR A FOUR-ELECTRON INTEGRAL

Here we present the screening algorithm for the four-electron integral type 4A from the main paper. The energies
that correspond to these terms are
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Here, C12 is the Coulomb potential and F23 and F14 are bounded-type correlation factors. The procedure for screening
the integrals using IPB0 and IPB1 is given in Algorithm 1 below.
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Algorithm 1 E4A
D and E4A

X screening procedure

for all λ̃ ∈ S do

for all σ̃ ∈ O(λ̃) do
for all ρ̃ ∈ F23(σ̃) do

if 3Sλ̃σ̃D
•

Eλ̃

•

E ρ̃

23
F14(0)S

2
maxVmaxP

4
max < ϑ then

Continue
end if

for all η̃ ∈ O(ρ̃) do

Calc D23 = D
•

Eλ̃σ̃

•

Eρ̃η̃

23

if 3Sλ̃σ̃Sρ̃η̃D23F14(0)SmaxVmaxP
4
max < ϑ then

Continue
end if

for all µ̃ ∈ P(σ̃) do
for all ν̃ ∈ O(µ̃) do

Calc D12 = D
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Eµ̃ν̃

•

Eλ̃σ̃

12
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if 4Uµ̃ν̃Sλ̃σ̃Sρ̃η̃D12D23F14(0)PintSmaxP
2
max < ϑ then

Continue
end if

for all δ̃ ∈ F14(µ̃) do
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for all ζ̃ ∈ O(δ̃) do
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14

PX = P̂µ̃ν̃P̂λ̃σ̃P̂ρ̃η̃P̂ρ̃η̃(Pµ̃σ̃Pλ̃ν̃Pρ̃ζ̃Pδ̃η̃)

PD = P̂µ̃ν̃P̂λ̃σ̃P̂ρ̃η̃P̂ρ̃η̃(Pµ̃σ̃Pρ̃ν̃Pλ̃ζ̃Pδ̃η̃)

Pfin = max{PX , PD}
if 5Uµ̃ν̃Sλ̃σ̃Sρ̃η̃Sδ̃ζ̃D12D23D14Pfin ≥ ϑ then

Calculate integral sub-tensor 〈µ̃λ̃ρ̃δ̃|C12F23F14|ν̃σ̃η̃ζ̃〉
Contract with P elements

end if

end for

end for

end for

end for

end for

end for

end for

end for

III. COST OF PRE-FACTOR CALCULATION

In Table I we compare the timings for IPB pre-factor and Schwarz inequality (QQ) pre-factor calculation. The
timings were performed on a single node containing two Intel E5-2667 CPU’s (2*8 cores) for strands of adenine-
thymine DNA base pairs of increasing length with the cc-pVDZ basis set. The times are also given as percentages of
the time needed for one exchange matrix build using the converged density matrix of the respective system. Here we
see that IPB pre-factor calculation time, which is dominated by the solution of the extent equations, is only slightly
more costly than that of the Schwarz factors in absolute terms. Pre-factor calculation time is negligible in both cases
and the slight increase for the IPB’s is compensated for many times over by the savings seen in integral calculation,
which are detailed in the main paper.
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TABLE I: Pre-factor calculation times in seconds for strands of DNA base pairs with cc-pVDZ basis set. The times
are also given as percentages of the time needed for one exchange matrix build (%K) using a QQ screening and

ϑ = 10−9.

Prefactor Calculation Times
QQ IPB2

Base No. of Absolute
%K

Absolute
%K

pairs atoms Time (s) Time (s)

1 62 0.09 0.4% 0.3 1.8%
2 128 0.3 0.2% 0.9 0.8%
4 260 0.6 0.1% 2.1 0.4%
8 524 1.3 0.07% 4.6 0.2%
16 1052 2.6 0.07% 9.6 0.2%

IV. SPHERICAL INTEGRAL FACTORS M̃l,j

The M̃l,j values given in Table II were calculated using the computational software Wolfram Mathematica [1].

TABLE II: Numerically calculated values of M̃l,j

l\j 0 1 2 3 4 5 6 7 8
0 12.56637
1 6.283185 4.188790
2 4.836774 2.720699 2.513274
3 4.084063 2.336123 1.756204 1.795196
4 3.601415 1.985678 1.576410 1.298730 1.396263
5 3.257724 1.831955 1.433464 1.184905 1.030835 1.142397
6 2.997066 1.659836 1.287233 1.108474 0.948599 0.854958 0.9666439
7 2.790302 1.561038 1.177159 1.033207 0.890517 0.797688 0.7313304 0.8377580
8 2.621252 1.454301 1.127299 0.949797 0.854748 0.752337 0.6883817 0.6389458 0.7391983

[1] Wolfram Research, Inc., Mathematica, Version 10.2, Champaign, IL (2015).
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I. INTRODUCTION
Electronic resonances are metastable states embedded in the

continuum. Such states are involved in a variety of chemical
processes where unbound electrons occur.1,2 For example, reso-
nances are important in the chemistry of molecules exposed to
electric and electromagnetic fields with strengths comparable with
the intermolecular forces. These occur, for example, in molecular
high-harmonic generation,3 laser-induced electron diffraction,4 and
Coulomb explosion.5

An elegant description of such states can be achieved
using complex-coordinate methods1,6 in which the coordinates
of the Hamiltonian are rotated into the complex-plane through
an unbounded similarity transformation. The resulting Hamil-
tonian is no longer Hermitian, its eigenfunctions are square
integrable and provide a mathematically rigorous description
of the resonance states. The corresponding eigenvalues are
the so-called Siegert energies,2,6,7 whose real and imaginary
parts give the positions E and widths Γ of resonance states,
respectively,

E = E − iΓ/2. (1)

The use of this unbounded similarity transformation is gen-
erally known as complex scaling (CS), and its main advantage is
that it allows one to apply the efficient quantum-chemical meth-
ods developed for bound states to resonances. The mathematical
basis for CS is provided by the Balslev-Combes theorem8–10 and its
subsequent extensions for resonances in external fields.11–13 A prob-
lem that arises, however, is that the original CS formulation is not
compatible with the Born-Oppenheimer approximation,14,15 which
initially limited applications to atoms.16 A mathematically rigor-
ous unification of CS with the Born-Oppenheimer picture is given
by exterior complex scaling,14 where only the coordinates outside
a given radius are complex scaled, but its direct application is not
practical in the context of electronic-structure theory using Gaussian
basis functions.

One suggestion to overcome the practical difficulties involved
was proposed by McCurdy and Rescigno,15 who noted that the
important asymptotic effects of CS could be captured by complex-
scaling the exponents of the most diffuse basis functions. The
Gaussian basis functions used in such calculations take the form

χμ(r,A) = NμSμ(rA) exp[−αμe−2iθμr2
A], (2)

J. Chem. Phys. 151, 184104 (2019); doi: 10.1063/1.5123541 151, 184104-1
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where Nμ is a normalization constant, A is an atomic center,
rA = r − A, and Sμ is a real polynomial in the components of rA that
depends on the angular quantum numbers of χμ. Each basis func-
tion is either strictly real, θμ = 0, or scaled using a global complex
scaling factor θμ = θ ∈ R. We note that the use of complex θ has been
explored in the context of the closely related approach of analytic
continuation of the Hamiltonian matrix elements.17

The method of complex basis functions had been restricted
to small systems18–24 due to the need for calculating nonstandard
two-electron integrals over complex basis functions. Recently, how-
ever, renewed interest has led to efficient implementations of com-
plex basis function methods in the non-Hermitian Hartree-Fock
(HF) and static exchange (SE) approximations.25,26 This allowed the
application of the method to resonances of medium-size polyatomic
molecules for the first time. This implementation was then extended
to include electron correlation at the second-order Møller-Plesset
(MP2) and coupled-cluster singles and doubles (CCSD) levels of the-
ory,27 allowing for accurate descriptions of the resonances of small
molecules.

In Ref. 26, it has been identified that one barrier to reaching the
efficiency of bound-state calculations is the lack of a simple upper
bound on the value of the electron-repulsion integrals (ERIs) over
complex basis functions. In bound-state calculations, a key step for
efficiency was the introduction of the Schwarz bound for screening
ERIs over real basis functions,28,29 which in Mulliken notation takes
the form

∣(μν∣λσ)∣ ≤ (μν∣μν)1/2
(λσ∣λσ)1/2. (3)

This already reduces the asymptotic scaling of the integral work
involved from quartic to quadratic and, in combination with den-
sity matrix screening methods for the exchange part, can even lead
to linear scaling.30–32

The application of the Schwarz bound to complex-valued
electron-repulsion integrals is straightforward as long as they con-
form to a true inner product. Such integrals arise, for example, when
describing finite magnetic fields by means of London orbitals33,34

or when working with a mixed basis set of Gaussian functions and
plane waves.35–38 The use of the latter type of basis is appropriate, for
example, for describing electron-molecule scattering.36,39

However, in complex basis function methods for molecu-
lar electronic resonances that are the subject of this article, the
bound (3) cannot be used directly because the ERIs are not
positive semidefinite. Here, we show that a simple and effective
Schwarz-type bound is nevertheless available and can be used anal-
ogously to (3), making the efficient screening methods of Hermitian
quantum chemistry available to the non-Hermitian, complex
basis function case, and eliminating this barrier to large-scale
calculations.

In this work, we present results pertaining to the application
of the new Schwarz bound to Stark resonances, which are induced
by a static electric field. The application of the method of complex
basis functions to atomic and molecular Stark resonances was first
detailed in Refs. 40 and 41 for coupled-cluster wave functions. Very
recently, an implementation at the resolution-of-the-identity MP2
level of theory has been reported.42 Here, we focus on the complex
basis function HF part and use the Schwarz bound to screen the
complex ERIs required.

II. THEORY
A. Non-Hermitian SCF with complex basis functions

The working equations for non-Hermitian self-consistent field
(SCF) methods employing complex basis functions are of essentially
the same form as their bound-state counterparts. Details of exact for-
mulations can be found in Refs. 19, 20, 25, and 26. Here, we focus
on how the features of the theory affect the two-electron integrals
involved.

The goal of non-Hermitian SCF methods is to find a stationary
solution of the complex energy functional,43,44

E[Ψ̃] =
⟨Ψ̃∣Ĥ∣Ψ̃⟩c
⟨Ψ̃∣Ψ̃⟩c

, (4)

where ⟨⋅|⋅⟩c denotes the c-product,45 in which the bra is not complex-
conjugated, Ĥ is the many-body Hamiltonian, and Ψ̃ is a com-
plex trial wave function for which ⟨Ψ̃∣Ψ̃⟩c <∞. Ψ̃ is approximated
as a Slater-determinant of complex molecular orbitals which are
expanded in a basis of atomic orbitals of the form (2). Thus, anal-
ogous to the case of a real trial wave function, non-Hermitian SCF
is an iterative orbital optimization procedure, with an added depen-
dency on the global complex scaling angle 0 < θ < π/4, which is con-
tained completely in the one-electron basis. For an exact solution,
the corresponding Siegert energy is independent of θ above the crit-
ical value θc required for square integrability.6 However, this is not
the case in an incomplete basis set, and it is necessary to determine
the optimal value θopt for a particular system and basis set, which is
given as a stationary point along a calculated θ-trajectory.43,46 The
use of the c-product leads to complex ERIs of the form

(μν∣λσ) = ∫ dr1χμ(r1)χν(r1)∫ dr2 χλ(r2)χσ(r2) r−1
12

∶= C(μν, λσ) ∈ C, (5)

where r12 = |r1 − r2|. The number of such integrals scales quarti-
cally with the size of the basis set and their calculation forms a large
portion of the work to be done. The algorithms for their evaluation
are similar to the case of real basis functions and require the evalua-
tion of the complex version of the Boys function.26 As we show in
Sec. II C, the magnitudes of the complex ERIs are increasing on
the interval θ ∈ [0, π/4] so that the value of θ has an impact on the
number of integrals which can be neglected.

B. Schwarz bound for complex ERIs
The mapping C defined in Eq. (5) assigns a complex energy to

two complex one-electron functions. We denote the map describ-
ing the real ERIs of bound-state calculations as R, and it is just the
restriction of C to real functions. Thus, for any real one-electron
functions, f and g, we have

C( f , g) = R( f , g) = ∫ dr1f (r1)∫ dr2 g(r2) r−1
12 ∈ R. (6)

It is clear that R is a symmetric bilinear form, and one can also show
that it is positive semidefinite,28,47,48 i.e., R( f , f ) ≥ 0 for any real
f. Thus, all conditions are met for employing the Cauchy-Schwarz
inequality,

∣R( f , g)∣2 ≤ R( f , f )R(g, g). (7)

J. Chem. Phys. 151, 184104 (2019); doi: 10.1063/1.5123541 151, 184104-2
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This is just a reformulation of bound (3), which is of great impor-
tance in quantum chemistry, as it provides an inexpensive and sim-
ple test for determining a priori if an ERI, or class of ERIs, can be
neglected. Integral screening techniques based on inequality (7) take
advantage of the inherent sparsity in molecular calculations and lead
to great computational savings.29,49

In contrast, the map C is not a positive semidefinite Hermitian
form and thus does not fulfill the complex version of inequality (7).
For this reason, the efficient screening techniques developed on the
basis of the Schwarz bound have, until now, evaded use in complex
basis function methods.26 However, we now show that one can relate
C to a map C∗ which is Hermitian and positive semidefinite, giving
access to a complex Schwarz bound that can be employed in non-
Hermitian complex basis function methods.

We define C∗ as the following Hermitian generalization of R
for complex functions:

C
∗
(z,w) = ∫ dr1z∗(r1)∫ dr2 w(r2) r−1

12 . (8)

The restriction of C∗ to real functions again coincides with R, i.e.,
C∗( f , g) = R( f , g) for real f and g, which allows us to deduce the
positive semidefiniteness of C∗ from the real case,

C
∗
(z, z) = R(Re(z),Re(z)) + iR(Re(z), Im(z))

− iR(Im(z),Re(z)) − i2 R(Im(z), Im(z)) (9)
= R(Re(z),Re(z)) + R(Im(z), Im(z)) ≥ 0, (10)

where we have written z as a sum of real and imaginary parts,
z = Re(z) + iIm(z), which are real functions. Accordingly, C∗ fulfills
the Cauchy-Schwarz inequality,

∣C
∗
(z,w)∣2 ≤ C∗(z, z)C∗(w,w), (11)

in analogy to the real case. In addition, from Eq. (10), we con-
clude that C∗(z, z) = C∗(z∗, z∗), and using the trivial relation
C(z,w) = C∗(z∗,w), we obtain the bound

∣C(z,w)∣2 = ∣C∗(z∗,w)∣2 ≤ C∗(z∗, z∗)C∗(w,w)

= C
∗
(z, z)C∗(w,w) = C(z∗, z)C(w∗,w). (12)

Thus, in computational practice, the real, non-negative diago-
nals of the map C∗ can be used to bound the norms of the complex
ERIs from above. For integrals over products of complex scaled basis
functions, the bound takes the form

∣(μν∣λσ)∣ ≤ (μ∗ν∗∣μν)1/2
(λ∗σ∗∣λσ)1/2, (13)

in direct analogy to Eq. (3).
The integrals (μ∗ν∗|μν) are not required in the non-Hermitian

SCF calculation itself but can be precomputed using the same
machinery used for the regular complex ERIs. The complex conju-
gates are given by

χ∗μ (r,A) = NμSμ(rA) exp[−αμe+2iθμr2
A] (14)

so that the estimates are calculated by simply substituting θμ with its
negative in the bra.

C. Theta dependence
The complex ERIs depend on the parameter θ, and calcula-

tions are usually performed for a range of θ values. For screen-
ing purposes, the dependence of the magnitudes of the ERIs on θ
is important, and here, we take a closer look at this dependence
analytically.

The magnitude of a product of normalized, complex-scaled
basis functions is given by

∣χμ(r,A)χν(r,B)∣

= ∣Sμ(rA)Sν(rB)∣ exp[−(αμ cos 2θμr2
A + αν cos 2θνr2

B)], (15)

where we have used Euler’s formula and the fact that |eix| = 1 for any
real-valued x. The polynomial functions in Eq. (15) can be bound50

according to

∣Sμ(rA)∣ ≤ Cμ∣rA∣Lμ , (16)

with a constant Cμ and total angular momentum Lμ. Defining
Cμν
λσ = CμCνCλCσ , this leads to the following estimate for the

magnitude of the complex-scaled ERI:

∣(μν∣λσ)∣ ≤ Cμν
λσ ∫ dr1 ∫ dr2r−1

12 ∣r1A∣
Lμ ∣r1B∣Lν ∣r2C∣Lλ ∣r2D∣Lσ

× e−(αμ cos 2θμr2
1A+αν cos 2θνr2

1B+αλ cos 2θλr2
2C+ασ cos 2θσr2

2D). (17)

This estimate includes the important radial decay effects inherent
to integrals over Gaussian basis functions, which tend to zero expo-
nentially at distances far from the Gaussian centers. This decay is
responsible for the convergence of the integral which would other-
wise become infinite in the limits αμ + αν→ 0 or αλ + ασ → 0. For scal-
ing parameters larger than zero, the cosine terms cause a decrease
in the effective Gaussian exponents, leading to more diffuse func-
tions. The integrand in (17) strictly increases as the complex-scaling
parameters increase. Accordingly, the magnitudes of integrals con-
taining complex-scaled basis functions increase with the global
parameter θ, so that the number of significant integrals increases
and fewer integrals can be screened. The strictly real integrals are,
of course, not affected by increases in θ, and the effect of larger θ
values becomes more influential as the number of complex-scaled
functions in the integral increases.

Due to the symmetry of the cosine function, the estimate (17)
is unchanged for a complex-conjugated bra, i.e., for the integral
(μ∗ν∗|λσ). For this reason, the θ-dependence is contained in the
Schwarz estimate (12), and it performs similarly in terms of percent-
ages of insignificant integrals screened over the complete range of
θ values and integral types. This is demonstrated in the numerical
results below.

III. COMPUTATIONAL DETAILS
We have implemented the integral screening routines based

on Eq. (13) into a development version of the Q-Chem program
package,51 building on the implementation presented by White,
Head-Gordon, and McCurdy in Ref. 26.

In order to test the performance of our generalized Schwarz
inequality for complex basis functions, we examine the ionization
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of the 2-pyridoxine 2-aminopyridine (2p2a) complex (Fig. 1) from
the S22 benchmark set52 in a static electric field. At a large enough
field strength F, the ground state of the neutral molecule becomes
metastable with respect to electron detachment, and no bound states
exist.

The complex energies are calculated at the HF level of theory for
varying distances between the 2-pyridoxine and 2-aminopyridine
units in order to test the performance of the screening at various
degrees of integral tensor sparsity. The distance is varied by trans-
lating all atoms of the 2-pyridoxine molecule in positive x direction.
The degree of translation is denoted Δx and is given in Å. The xyz
coordinates of the reference geometry, Δx = 0 Å, are available for
download online.53

Electron correlation has been shown to have a large impact on
the calculated ionization rates41 so that the numbers presented here
do not necessarily provide a qualitatively correct description of the
strong-field ionization of the 2p2a complex. This inherent inaccu-
racy in the mean-field treatment does not present a problem for this
work, as we are concerned here with the general effectiveness of our
integral screening, and the calculations presented are always the first
step toward more accurate correlated calculations.

The electric field is applied in the positive z direction at a
field strength of F = 0.03 a.u. The non-Hermitian SCF energies are
corrected according to the following formula from Ref. 40:

Ecorr(F, θ) = E(F, θ) − E(F = 0, θ) + E(F = 0, θ = 0). (18)

This correction accounts for finite-basis effects, which result in a
nonzero imaginary part of the bound-state energy even without the
presence of an electric field (F = 0). We have performed calculations
with a range of θ values between 0○and 30○, with a step size of 1○.
Optimal values θopt are determined as the value at which the numer-
ically calculated derivative |dEcorr/dθ| obtains its minimum in this
range.

All calculations are performed with aug-cc-pVDZ54–56 as the
unscaled (θμ = 0) basis set. This set is augmented with 3 dif-
fuse complex-scaled shells (θμ = θ) for each atom and shell type
(+3s3p3d) such that the most diffuse unscaled shell and the 3 addi-
tional shells form an even-tempered set with a spacing of 2.0. This
procedure for constructing the complex basis set is outlined in
Refs. 26 and 41 and is common for the treatment of electronic
resonances based on the method of complex basis functions.

As an SCF convergence criterion, the error in the direct inver-
sion of the iterative subspace (DIIS) method of Pulay57,58 is required

FIG. 1. 2-pyridoxine 2-aminopyridine (2p2a) complex in the xy-plane.

to be below 10−8 for both non-Hermitian HF and preceding HF
calculations.

IV. RESULTS
A. Screening threshold dependence

As in the case of real ERIs, a screening threshold ζ is used
to strike a balance between screening accuracy and efficiency. We
tested the threshold dependence of the screening for the 2p2a com-
plex with Δx = 6 Å, which is chosen because it contains a wide
range of distances between basis function centers. A reference value
is obtained using the very tight threshold ζ = 10−14. In Table I, the
optimal θ values and differences in the real and imaginary parts of
the energies are given for thresholds down to ζ = 10−9. For ζ = 10−8,
the non-Hermitian SCF no longer converges, which is to be expected
with the SCF convergence criterion used (see Sec. III). Integrals are
screened in a shellwise manner; i.e., basis functions are grouped
into shells with the same exponent and total angular momentum
and the maximum estimate for the integrals within a shell-quartet
is used to determine if the entire shell-quartet can be neglected or
not. We give the percentages of shell-quartets that were screened
(% Screened) and the percentages of shell-quartets that were not
screened and whose magnitudes were determined to be less than the
integral threshold after exact calculation (% Missed). In both cases,
the percentages are calculated with respect to the formal number of
shell-pair combinations,

TABLE I. Comparison of non-Hermitian HF calculations on the 2p2a complex (Δx = 6 Å) for various screening thresholds ζ.
In the first row, the reference energies Re(E) and Im(E) are given, while the remaining rows show differences to the reference
values for looser thresholds.

ζ θopt (deg) Re(E) (a.u.) Im(E) (a.u.) % Screened % Missed

1 × 10−14 6.0 −623.431 352 234 9 −0.000 239 962 7 15.54 0.29
1 × 10−13 6.0 −3.1 × 10−12 −5.5 × 10−12 15.98 0.46
1 × 10−12 6.0 −5.2 × 10−11 2.2 × 10−11 16.74 0.68
1 × 10−11 6.0 4.6 × 10−9 −1.1 × 10−9 17.96 0.89
1 × 10−10 6.0 7.7 × 10−9 −1.4 × 10−8 19.66 1.09
1 × 10−9 6.0 −2.8 × 10−7 2.8 × 10−8 21.87 1.33
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TABLE II. Comparison of non-Hermitian HF calculations on the 2p2a complex using a screening threshold of ζ = 10−11 with reference calculations using ζ = 10−14 for various
values of Δx.

Δx θref
opt (deg) θopt (deg) Re(E) (Error) (a.u.) Im(E) (Error) (a.u.) % Screened % Missed

0 6.0 6.0 −623.452 100 1(2.1×10−10
) −0.000 219 8(−1.1×10−10

) 3.66 0.42
3 9.0 9.0 −623.432 584 8(1.6×10−10

) −0.000 224 9(4.3×10−10
) 9.93 0.63

6 6.0 6.0 −623.431 352 2(4.6×10−9
) −0.000 240 0(−1.1×10−9

) 17.96 0.89
9 6.0 6.0 −623.431 200 2(7.7×10−10

) −0.000 239 4(6.5×10−10
) 27.42 1.05

12 6.0 6.0 −623.431 187 2(−2.8×10−9
) −0.000 242 5(2.2×10−10

) 36.86 1.21
15 6.0 6.0 −623.431 175 2(3.9×10−9

) −0.000 245 0(−8.4×10−10
) 45.68 1.11

18 6.0 6.0 −623.431 192 6(3.2×10−9
) −0.000 246 5(1.9×10−9

) 52.59 1.03
21 9.0 9.0 −623.431 123 6(3.3×10−9

) −0.000 267 3(−2.7×10−10
) 57.29 0.93

⎛

⎝

Ns + N2
s

2
⎞

⎠

2

, (19)

where Ns is the total number of shells. For the present system, this
corresponds to a total of just over 4 ⋅ 109 shell-quartets. As expected,
more integrals are screened with looser thresholds, while the mag-
nitudes of the deviations from the reference also increases. Encour-
aging is the fact that the optimal value for θ remains the same for
all thresholds, and the errors in the real and imaginary parts of the
energies are always less than 10−6 a.u.

B. Δx and θ dependence
In order to test the performance of the Schwarz screening for

a variety of Δx and θ values, we used a fixed threshold of ζ = 10−11

and calculated errors compared with corresponding reference cal-
culations using ζ = 10−14. In Table II, the optimal θ values of the
reference and test calculations are given for each Δx value tested,
along with the deviations to the reference in the complex ener-
gies. The screening performance metrics % Screened and % Missed
defined above are also listed. The optimal θ values are always the
same as for the reference, and the errors are low in each case. As
expected, the number of integrals that can be screened increases dra-
matically with the distance between the monomers, as the overlap
in the basis functions diminishes. The small % Missed values are a
testament to the quality of the Schwarz estimate for the complex ERI
tensor.

In Fig. 2, the errors induced by the screening for all Δx and θ
values are given in more detail. The errors tend to be slightly higher
for larger separations between the monomers, which is expected due
to the larger number of integrals screened. More interestingly, we
see that the errors tend to increase with the value of θ despite the
fact that fewer integrals are screened as θ increases. This is most
likely due to the increased diffuseness of the complex scaled func-
tions for larger θ values (see Sec. II C), which generally increases the
magnitude of the integrals, also those that are discarded. This means
that the discarded integrals are on average closer to the screen-
ing threshold in magnitude. While the errors remain acceptable,
it makes sense to consider using tighter screening thresholds as θ
increases.

In Fig. 3, the screening metrics for all Δx and θ values are
shown. As expected, the number of integrals screened is higher for
larger separations and smaller θ values. The low % Missed values
show that the inequality performs quite well over these ranges of
values.

C. Performance for different integral classes
When using complex-scaled basis functions, the arising inte-

grals can be divided into six different classes depending on the
number of complex-scaled functions in both bra and ket. For a
pair of shells, one can distinguish between the number of complex-
scaled shells present NC

∈ {0, 1, 2}. This leads to nine categories of
shell-quartets NC

B -NC
K based on the number of complex-scaled shells

FIG. 2. Errors in the real and imaginary
parts of the non-Hermitian HF energies
for various Δx and θ values. A screening
threshold of ζ = 10−11 is used, and errors
are given with respect to the references
with ζ = 10−14.
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FIG. 3. Percentages of screened integrals (% Screened) and unscreened integrals
that were actually negligible (% Missed) for various Δx and θ values. A screening
threshold of ζ = 10−11 is used.

in the bra NC
B and ket NC

K . For example, the category 2-1 contains
integrals with two complex functions in the bra and one in the ket.
Due to symmetry, three of these categories are redundant and the six
classes given in Table III result.

Because the complex-scaled functions are in general much
more diffuse and become even more diffuse as θ increases, it is inter-
esting to study the effects of the Schwarz screening for each class
separately. In Fig. 4, screening performance data are given for each
of the integral classes. In addition to the % Screened and % Missed
metrics, the integrals that were not screened are broken down into
percentages for each class. As expected from our analysis in Sec. II C,
the more complex-scaled shells are present, the less screening is pos-
sible. As θ increases, the percentages of screened integrals decrease
for all classes, except 0:0, because these completely real integrals are
unaffected by θ. In the % Missed category, it is apparent that the
screening performs worse when mixed real/complex shell-pairs are
present. This may be due to an increased importance in operator-
based distance decay for such shell-pairs, which will tend to be

TABLE III. Unique integral classes based on the numbers of complex-scaled shells.
The number of shell-quartets is given for the 2p2a test system described in Sec. III.

Integral Included No. of % of
class categories shell-quartets total

0:0 0-0 196 784 784 4.7
1:0 1-0, 0-1 899 587 584 21.5
2:0 2-0, 0-2 519 821 568 12.5
1:1 1-1 1 028 100 096 24.6
2:1 2-1, 1-2 1 188 163 584 28.5
2:2 2-2 343 286 784 8.2

FIG. 4. Percentages of screened integrals (% Screened), percentages of
unscreened integrals that were actually negligible (% Missed), and percentages
that each integral class makes up in the unscreened integrals (% of all unscreened)
for the six classes of integrals (see discussion in Sec. IV C) and various θ values.
A screening threshold of ζ = 10−11 is used and Δx = 15 Å.

mostly described by the much less diffuse real function. For such
integrals, a distance-dependent treatment48,50,59 may be warranted,
although for SCF calculations with the Coulomb operator 1/r12 used
here, the performance of the Schwarz inequality is still quite good.
The percentage of all unscreened data given at the bottom of Fig. 4
show that because the integrals containing fewer complex-scaled
functions are more often negligible, the use of an efficient screen-
ing shifts the class percentages to those classes containing more
complex functions (compare with the formal class percentages in
Table III). This indicates that increasing the efficiency of the calcu-
lation of complex-scaled integrals should be an important goal of
future work.

V. CONCLUSION AND OUTLOOK
We have presented an extension of the Schwarz bound that is

applicable to complex basis functions that appear in non-Hermitian
extensions of quantum mechanics to treat electronic resonances. We
have implemented a screening procedure based on this bound and
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shown that it performs well when used to screen the complex ERIs
with various distances between basis function centers and various
values of the complex-scaling parameter θ.

In future work, we anticipate that the combination of this
bound with density-matrix based screening techniques will afford
the reduction of the asymptotic scaling of the integral work in non-
Hermitian SCF methods that employ complex-scaled basis functions
to linear, as has already been accomplished for the correspond-
ing bound-state methods.30–32,49 Such developments will become
increasingly important for transforming the ideas of non-Hermitian
quantum mechanics2 into electronic-structure methods1 suitable for
the treatment of resonances in large systems.
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ABSTRACT: We present a highly efficient and asymptotically linear-scaling
graphic processing unit accelerated seminumerical exact-exchange method (sn-
LinK). We go beyond our previous central processing unit-based method
(Laqua, H.; Kussmann, J.; Ochsenfeld, C. J. Chem. Theory Comput. 2018, 14,
3451−3458) by employing our recently developed integral bounds (Thompson,
T. H.; Ochsenfeld, C. J. Chem. Phys. 2019, 150, 044101) and high-accuracy
numerical integration grid (Laqua, H.; Kussmann, J.; Ochsenfeld, C. J. Chem.
Phys. 2018, 149, 204111). The accuracy is assessed for several established test
sets, providing errors significantly below 1mEh for the smallest grid. Moreover, a comprehensive performance analysis for large
molecules between 62 and 1347 atoms is provided, revealing the outstanding performance of our method, in particular, for large
basis sets such as the polarized quadruple-zeta level with diffuse functions.

1. INTRODUCTION

During the last 15 years, graphic processing units (GPUs) have
gained increasing interest within the quantum chemistry
community, focusing, in particular, on the evaluation of 4-
center-2-electron (4c-2e) integrals, which represent the major
bottleneck in most Hartree−Fock and Kohn−Sham calcu-
lations.1−15 Since, for Hartree−Fock (HF) and hybrid density
functional theory (DFT) calculations, the mandatory compu-
tation of exact (Fock-like) exchange matrices is particularly
expensive, efficient and linear-scaling implementations have
been developed since the late 1990s16−21 including recent
developments.7,9 However, for larger molecules and partic-
ularly in combination with larger basis sets (i.e., triple-ζ or
larger), resolution-of-the-identity (RI)22,23 or seminumerical
methods, that is, grid-based methods employing 3-center-1-
electron (3c-1e) integrals,24−46 are possibly more efficient due
to their superior O(Nbas

2 ) formal scaling compared to the
formal O(Nbas

4 ) scaling of the conventional 4c-2e integral-based
methods.
As we demonstrated recently,44 seminumerical exchange

methods can, in contrast to the asymptotically O(M3) scaling
RI-K method,22,23 be implemented in an asymptotically linear-
scaling fashion. This is an increasingly important property
since modern computer hardware now allows for the routine
calculation of multiple thousand atoms on conventional server
nodes or workstations. In addition, seminumerical methods
may directly be employed to compute the exact-exchange part
of local hybrid functionals, which represent a very promising
new class of functionals due to their higher variability and
therefore more general applicability.47−58 Indeed, the prospects
of these new functionals have been the major motivation for
many recently developed seminumerical methods.38−40,42−46

In this publication, we present a reformulation of our
previous method44 that allows for an efficient and highly
performant GPU implementation. These changes include the
use of our recently developed generalized integral bounds59

and our improved molecular grids.60−62 Not only were these
new techniques necessary for a performant GPU implementa-
tion but they are also applied to our existing central processing
unit (CPU) implementation, in this way, further improving its
performance as well, especially if run on modern CPUs, which
provide an ever-increasing support for single-instruction-
multiple-data (SIMD) vector instructions. Particularly, the
batch-wise integral selection, which we pioneered in our
previous work44 and refined in this work, is essential for a
highly efficient and performant implementation on SIMD
computer architectures, such as GPUs and modern CPUs.
That is, our new method exploits the superior computing
performance of SIMD computer architectures while maintain-
ing the asymptotic linear-scaling behavior of our previous
work.
The paper is organized as follows: we begin with a brief

review of the theory underlying the seminumerical method in
Section 2.1, followed by the description of our revised integral
screening in Sections 2.2 and 2.3, and our newly developed
prescreening method in Section 2.4. Subsequently, we provide
an outline of our GPU implementation for the Compute
Unified Device Architecture (CUDA)63 and the Open
Computing Language (OpenCL)64,65 frameworks in Section
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3, focusing on the particular techniques employed to maximize
performance. Finally, we assess our new accelerated semi-
numerical exchange method, denoted as sn-LinK, in terms of
the accuracy of the numerical integration in Section 5.1 and in
terms of performance in Sections 5.2.1 to 5.2.5. For simplicity,
we restrict the discussion within this paper to the computation
of Fock exchange within the Hartree−Fock theory, noting that
the application to global and local hybrid DFT is
straightforward.

2. THEORY
2.1. Seminumerical Exchange Matrix. The exchange

matrix is given in the atomic orbital (AO) basis as

∑ μσ νλ= |μν
λσ

λσK P ( )
(1)

where μ, ν, λ, and σ represent AO basis function indices, and
the 4-center-2-electron integral (μσ | νλ) is defined as

∫∫μσ νλ χ χ χ χ| =
| − |μ σ ν λ d dr r
r r

r r r r( ) ( ) ( )
1

( ) ( )1 1
1 2

2 2 1 2

(2)

Within the seminumerical ansatz, the integration over one of
the coordinates (r1 or r2) is performed analytically, and the
other one is performed numerically by employing discrete grid
points with coordinates rg and weights wg. To preserve all the
symmetries within the integral tensor, this decomposition is
performed symmetrically over both coordinates r1 and r2,
leading to

∫
∫

∑

∑

μσ νλ χ χ
χ χ

χ χ
χ χ

| ≈
| − |
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ν λ
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(3)

Inserting eq 3 into the definition of the exchange matrix (eq
1) yields

∫∑ ∑ χ
χ χ

χ≈
| − |

+μν
λσ

μ
ν λ

λσ σ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
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K w d Pr
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r r
r r

1
2

( )
( ) ( )

( ) transpose
g

g g
g

g

(4)

where the transpose is the result of the symmetric integral
decomposition in eq 3 in combination with the symmetry of
the ground-state density matrix Pμν = Pνμ.
The exchange matrix may thus be computed in three

consecutive steps

∑ χ=λ
σ

σ λσF Pr( )g g
(5)

∑=ν
λ

νλ λG w A Fg g g g
(6)

∑ χ=μν μ νK Gr( )
g

g g
(7)

where Aνλg denotes 3-center-1-electron integrals of the form

∫ χ χ
=

| − |νλ
ν λA

r r

r r
r

( ) ( )
dg

g (8)

The integrals Aνλg are evaluated on-the-fly using optimized
automatically generated Obara−Saika66,67 recursions for the
different l-quantum number combinations. The so-obtained
exchange matrix K is subsequently symmetrized as

= +μν μν νμK K K
1
2

( )symm
(9)

to account for the transpose in eq 4.
2.2. Integral Screening. The integral screening of our

previous method44 targeted only the exchange energy, that is,
significant integrals were selected solely based on their
contribution to the exchange energy

∑ε χ χ=

= | |

νλ
μσ

μ μν νλ λσ σ

ν νλ λ

w P A P

w F A w F

r r( ) ( )g
E

g g g g

g g g g g
1/2 1/2

(10)

This is a simple and symmetrical expression, which provides
the tightest screening possible if one is only interested in
energies.
However, during the self-consistent field (SCF) iterations, a

high accuracy in the exchange potential matrix is also desirable,
in particular if larger basis sets are employed. In analogy to the
conventional (4c-2e integral-based) LinK method,20 we
revised our scheme to also include contributions to the
exchange matrix K into the screening

∑

∑

∑

ε χ χ

χ χ

χ

= | | | || || || |

| || || || |

≤ | | | | | | | | | |

νλ
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μ μν νλ σ
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r

max ( ) ( ) ,

( ) ( )

max ( , ) ( )

g
K

g g g g

g g g

g g g g g
(11)

In our new implementation, a 3c-1e integral Aνλg is labeled as
significant if it is significant by either eq 10 or 11, that is

ε ε≥ ϑ ∨ ≥ ϑνλ νλg
E

E g
K

K (12)

employing two different thresholds ϑE and ϑK for each
criterion. Since, during the SCF, both the exchange matrix
and the exchange energy are of interest, we employ both eqs 10
and 11 for the screening during the SCF, whereas for the final
energy calculation (which is typically performed on a larger
grid), we screen only for the energy (eq 10). A similar
optimization was also described in ref 36.
In order for the screening to be efficient, not every integral is

inspected individually; instead, a whole batch of spatially
adjacent grid points is considered at once, which reduces the
screening overhead to an insignificant amount (<5% of the
total cost of the integral evaluation). For this purpose, the
maximum contribution within a whole batch b of points has to
be estimated, that is
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T h e n e c e s s a r y q u a n t i t i e s | |ν
∈

w Fmax( )
g b

g g
1/2 a n d

χ| |∑ | |μ μ∈
( )w rmax ( )

g b
g g
1/2 are trivially precomputed from F and

χμ(rg), and a rigorous upper bound for the integral | |νλ
∈

Amax( )
g b

g

is obtained as a special case of our recently developed partition
bounds for many classes of electronic integrals.59 This bound is
briefly described below.
2.3. Integral Bounds for 3c-1e Integrals. In ref 59, two

different rigorous bounds result for |Aνλg|. A distance-
dependent bound that captures the Coulomb decay of far
away grid points can be formulated by calculating rigorous
centers and extents for each shell pair. The resulting bounds
are very tight but also necessarily batch-dependent.
A simpler bound that is independent of rg, and therefore also

batch-independent, is given by

∫ χ χ
| | ≤

| |
| − |

=νλ
ν λ

νλ
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i

k
jjjjjj

y

{
zzzzzzA d

r r

r r
rmax ( ) max

( ) ( )
g b

g
grg

3
(15)

The batch independency of 15 allows to decrease the
complexity of the screening algorithm because it only relies on
precomputable shell-pair quantities. This is particularly useful
for a high-performance GPU implementation, where algorithm
complexity should be kept to a minimum. The equation
necessary to compute νλ is given in Appendix A of ref 59. In
short, we bound νλ by simpler integrals over spherically
symmetric functions and use the fact that for any function S
that is spherically symmetric with respect to a point p, one can
show that

∫ ∫| |
| − |

= | |
| − |∈

i

k
jjjjjj

y
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zzzzzz

S
d

S
d

r
r r

r
r

p r
rmax

( ) ( )

grg
3

(16)

i.e., the maximum is always achieved at the spherical center.
In contrast to our previous screening scheme,44 our new

screening employing (eq 15) is completely rigorous and
requires only a few multiplications for each grid batch and shell
pair instead of a full integral evaluation, which better suits the
parallel architecture of GPUs. In our sn-LinK method, this
screening is performed in a hierarchical way, that is, a set of
significant shell pairs is first selected for a large batch (typically
around 10,000 to 20,000 grid points) on the CPU and
subsequently a tighter selection for sub-batches of 64 grid
points is made on-the-fly on the GPU.
This batch-wise integral selection is essential for both an

efficient CPU and, to even greater extent, an efficient GPU

implementation since it does not interfere with single-
instruction-multiple-data (SIMD) vector instructions because
identical branching within one sub-batch is guaranteed.

2.4. Prescreening. Having determined a tight screening
for 3c-1e integrals (i.e., the shell pairs νλ involved in eq 6), we
now consider the screening of the set of indices μ/σ and ν/λ to
also guarantee the asymptotic linear-scaling evaluation of eqs 5
and 7.
For each given batch of grid points, the set containing all the

significant basis function indices μ is identical to the set
containing the indices σ. These sets, which we refer to as {μ},
are determined solely by the extent of the AO basis functions,
that is, only functions χμ with a significant basis function value
within a given batch are labeled significant. Due to the
exponential decay of Gaussian-type AO basis functions, the
size of the set {μ} is asymptotically constant for any given grid
batch.
Analogously, the sets of significant basis function indices ν

are also identical to the sets containing the indices λ. However,
these sets (denoted as {ν}) cannot be determined by the basis
function extents since they couple indirectly via {μ} and the
density matrix element Pμν or, equivalently, by the extent of the
exchange hole. Therefore, depending on the electronic
structure of the system, a variable amount of basis function
shells need to be considered in {ν}.
For this preselection, we simply select all the significant shell

pairs νλ by eq 13 or 14 and subsequently select the set of all
shells that contribute to at least one of these shell pairs since all
other shells do not contribute to the exchange matrix at all
because all of their contributions would be screened out by the
integral screening later anyhow. This method thus introduces
no additional error and is sufficient to ensure asymptotic linear
scaling (and constant memory scaling) since only a constant
amount of shell pairs νλ are significant for each batch. That is,
all batch-wise quantities are of asymptotically constant size,
resulting in a constant workload per batch and therefore in an
overall linear scaling since the amount of grid batches scales
linearly with the system size.
One complication arises from the fact that the intermediate

quantity F is required for the preselection, while the set {ν}
needs to be known prior to the computation of F, since {ν} is
just the set of significant entries in F. Therefore, an upper
bound for the absolute value of F that can be computed at low
cost prior to the computation of F is required. For this
quantity, we choose the batch-wise maximum of F, that is
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(17)

Therefore, an upper bound for F can be obtained by only
one matrix-vector multiplication of |P| with χ| |σ∈

w rmax( ( ) )
g b

g g
1/2

for each batch.

3. IMPLEMENTATION
We implemented the above described sn-LinK method within
our C++-based FermiONs++ program,7,9 revising our CPU-
based local hybrid implementation described in ref 44. Our
implementation for the AMD GPUs is based on OpenCL,64

whereas our NVIDIA GPU implementation employs CUDA63
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since we found OpenCL to be less performant on NVIDIA
GPUs. All steps are performed exclusively with double
precision (fp64) to obtain reliable results and to allow for
tight convergence even with large basis sets.
In contrast to the analytical integral-direct method, which

consists of only one compute-intensive step, the seminumerical
implementation contains multiple bottlenecks, that is, the three
steps of eqs 5−7 and the evaluation of the basis function values
χμ(rg). Therefore, all these steps have to be performed on the
GPU to minimize bottlenecks from the CPU and the CPU-
GPU data transfer. Additionally, we decided to use multiple
concurrent streams of instructions on each GPU, which allows
for the data transfer of one stream to be performed
concurrently with GPU kernel execution of another stream,
maximizing the utilization of the available hardware in this way.
3.1. GPU Implementation. The sn-LinK algorithm

operates on grid batches of typically 10 000 to 20 000 grid
points on GPUs and typically 512 points per batch on CPUs.
We found 256 points per AMD compute unit (CU) or
NVIDIA streaming multiprocessor (SM) to be optimal,
totaling 15,360 points for the AMD Radeon VII GPU and
20,480 points for the NVIDIA GV100. In contrast to our
previous implementation,44 we adapted our Hilbert curve-
based sub-batching scheme (see Section 3.3 of ref 44) to also
generate the large grid batches. The main advantage of the new
approach is the fixed size of grid points per batch, that is, every
grid batch except the very last one contains exactly the same
amount of points, which ensures optimal utilization of the
parallel compute capabilities of the GPUs.

In our GPU implementation (see Algorithm 1), we primarily
parallelize over these large grid batches, employing multiple
parallel host threads, each of which maps to one device stream,
which we implemented using CUDA streams and OpenCL
command queues. For maximum performance, we found two
or three parallel streams per device to be optimal (see also
Section 5.2.3), allowing for concurrent CPU execution, GPU
execution, and CPU-GPU data transfer, maximizing hardware
utilization in this way. This strategy requires the pre-allocation
of GPU memory since allocation of device memory forces
stream synchronization.
For a small system (up to ∼200 atoms), the evaluation of

the 3c-1e integrals in eq 6 is by far the slowest step, amounting
to over 90% of the computation time, whereas for larger
systems, the matrix multiplications of eqs 5 and 7 become
comparatively more expensive, for example, for the system over
1000 atoms, the integral evaluation amounts to less than 50%
of the total computation time. In contrast to the Intel Xeon Phi
implementation presented in ref 43, we therefore decided to
implement all four compute-intensive steps, that is, the

computation of the basis functions χμ(r) and the evaluation
of eqs 5−7 on the GPU, thereby also reducing the amount of
CPU-GPU memory transfer.
To achieve asymptotic linear scaling of the implementation

while still utilizing the high performance of dense matrix
algebra routines provided by basic linear algebra subroutines
(BLAS-3) libraries (i.e., Intel MKL for CPUs, cuBLAS for
NVIDIA GPUs, and clBLAS for AMD GPUs), we employ
dense batch-local submatrices of asymptotically constant size
for P and K, containing only entries for the significant basis
functions within the current batch, determined by the
preselection algorithm outlined in Section 2.4, thereby also
guaranteeing asymptotically constant GPU memory require-
ments.

3.2. Implementation of the 3c-1e Integrals. The
prescreening of Section 2.4 also provides an asymptotically
constant-sized set of shell pairs for each batch, which is further
refined on the CPU using the integral selection methods
described in Sections 2.2 and 2.3. The shell-pair data is then
copied to the GPU, where all the significant 3c-1e integrals Aνλg
for the respective batch are subsequently computed and
directly multiplied with Fλg to form Gνg according to eq 6 (see
Algorithm 2), performing on-the-fly integral screening on the
sub-batch level.
The performance of GPUs relies heavily on single-

instruction-mutliple-data (SIMD) vector operations, that is,
32 or 64 parallel threads are collected within one “warp”
(NVIDIA) or “wavefront” (AMD), respectively. Since
branching within a warp necessitates the evaluation of both
branches, such warp-level branching has to be avoided for a
highly performant code, which is particularly problematic if
combined with integral screening. However, our sub-batch
implementation of ref 44 provides spatially local sub-batches
with exactly the same number of grid points. Therefore, we
choose sub-batches of exactly 64 points, which perfectly maps
to the warp/wavefront size of current GPUs. We thus perform
the tightest level of integral screening (employing eqs 13 and
14) for 64 points at once, thereby minimizing the screening
overhead and ensuring identical branching within each warp/
wavefront.

For our GPU implementation, we employ the same
computer-optimized Obara−Saika66,67 recursions as for the
CPU code, that is, our CUDA, OpenCL, and CPU
implementations share the same input file for the integral
kernels. This reuse of the 3c-1e integral code simplifies the
GPU implementation significantly, an important advantage
compared to the analytical 4c-2e integral-based methods (see,
e.g., refs7,11), where considerable modifications have to be
made to obtain an efficient and performant code. Since the
integral kernels are parallelized solely over the grid point
within each batch, there is no need for communication
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between different threads. This also considerably simplifies the
GPU implementation because neither shared memory nor
explicit synchronization have to be utilized.
The optimized recurrence relations were generated by

application of common sub-expression elimination (CSE)
(implemented in the SymPy Python package68) to the unrolled
Obara−Saika recursions for each specific l-quantum number
combination. Moreover, we found that for most practical
applications, Head-Gordon−Pople-like (HGP)69 shifts on the
contracted level do not provide speedups for 3c-1e integrals in
practice since the recursions are only relevant for larger l-
quantum number combinations, but basis functions with l-
quantum numbers larger than 1 (d functions or higher) rarely
contain more than one primitive Gaussian. Therefore, we
decided not to perform any HGP-like contracted recursion
steps.
To avoid the transformation between pure and Cartesian

integrals, we perform the whole sn-LinK algorithm with
Cartesian basis functions, that is, we initially transform the
density matrix into the Cartesian basis, then perform the whole
sn-LinK algorithm in the Cartesian basis, and finally transform
the exchange matrix back to the pure basis. Analogously, we
also multiply the non-axial normalization factors, which are
needed to ensure normalization of the non-axial basis functions
(e.g., dxy), onto the initial density matrix and onto the final
exchange matrix, thereby avoiding the necessity to multiply
these factors within the integral code.

4. COMPUTATIONAL DETAILS
To provide a fair comparison between GPU and CPU codes,
all possible optimization options were enabled for both the
CPU and GPU integral codes. The CPU kernels are compiled
with the Intel C++ compiler (ICPC) version 19.0.170 with the
“-Ofast”, “-march = native”, options, to enable autovectoriza-
tion of our integral code using the AVX2 instruction set
extensions. We have also tested GCC71 and Clang72 but found
that the Intel C++ compiler provides significantly better
performance (up to a factor of two) due to better optimization
heuristics, more aggressive autovectorization, and more
advanced instruction reordering. The 3c-1e CPU integral
kernels benefit particularly from these optimization because
parallelization over the grid index is well suited for SIMD
vectorization, whereas for the 4c-2e integral kernels, vectoriza-
tion is hindered by the heterogeneity of the shell pairs (i.e.,
different amounts of primitive Gaussians), the branching
associated with LinK,20 and the need for more local storage.
The CUDA kernels were compiled with NVCC-10.0

(CUDA-10.0)63 with “-O3” and “-use_fast_math” using
GCC-7.1 as the host compiler. The OpenCL kernels were
precompiled with amdgpu-pro-19.2065 employing the “-O3”,
“-cl-mad-enable”, “-cl-finite-math-only”, and “-cl-no-signed-
zeros” options. The CPU timings are performed on one server
node with 2 Intel Xeon Silver 4216 CPUs comprising 32 cores
at 2.1 GHz providing a performance of 1.075 × 1012 floating-
point operations (FLOPs) per second (1.075 TFLOPs/s). The
GPU timings are performed on the NVIDIA-GV100 GPU
(8.33 TFLOPs/s) and the Radeon VII (3.36 TFLOPs/s). The
geometries of the molecules73 employed in this work are
available online at http://www.cup.lmu.de/pc/ochsenfeld/
download/.
Throughout this work, we employ our recently developed

grids defined in the appendix of ref 62 and briefly summarized
in Table 1. All presented timings are given for one full

exchange matrix build employing a converged density matrix
and the smaller (SCF) grid of the multigrids defined in Table
1, in this way, representing a typical SCF step without
incremental Fock builds. Note that molecular grids typically
contain about 10 to 30% less grid points than the atomic grids
defined in Table 1 due to the erasure of grid points with zero
weights, a consequence of our modification to Becke’s
molecular partitioning scheme60 (see also discussion in ref 62).
The timings of the conventional (4c-2e integral-based) code

exclude the preLinK7 preselection, since in the current version
of our FermiONs++ program,7,9 the two matrix multiplications
within the preLinK algorithm are performed on the CPU using
dense matrix algebra, adding a significant overhead for large
systems. However, the sn-LinK timings comprise every step
needed for exchange matrix formation, including the
preselection.
For all sn-LinK calculations, we choose the screening

thresholds ϑK = 1.0 × 10−7 and ϑE = 1.0 × 10−10 during the
SCF and ϑE = 1.0 × 10−11 for final energy calculation. These
thresholds provide screening errors smaller than 1nEh per basis
function for all tested systems, which is consistent with our
default threshold for the analytical 4c-2e integrals (10−10).
Although significantly looser thresholds could probably be
used for most applications, we wanted to provide a very safe
default in terms of numerical stability and encourage the user
to fine tune these parameters for the specific system of interest
to obtain even better performance than presented here.

5. RESULTS AND DISCUSSION
5.1. Accuracy of the Numerical Integration Grids. We

begin the analysis of the sn-LinK method by investigating the
errors caused by the numerical integration. In Table 2, we
investigate the grid-induced errors in the Hartree−Fock energy
and the indirectly induced errors in the MP2 energy, caused by
the errors in the converged density matrix and serving as a
measure for the accuracy of the density matrix. We employ the
G2 test set74 (atomization energies of small molecules), the
S22x5 test set75 (noncovalently bound small dimers), and the
L7 test set76 (7 noncovalently bound dimers with up to 101
atoms) in combination with the def2-TZVP basis set.77

Even for our smallest grid “gm3”, all errors are significantly
below 1mEh and are therefore considered insignificant
compared to typical errors from methods and basis sets.
Moreover, these errors rapidly decrease with larger grids, and
the “gm5” grid provides numerical accuracy up to a few μEh.
Interestingly, the Hartree−Fock errors agree well with the
observation we made in ref 62 about the grid errors of the
Perdew−Burke−Ernzerhof (PBE)78 functional despite the use
of a very different energy functional.
If only single-point energies are of interest, “gm3” should be

the best choice for maximum efficiency, whereas if energy

Table 1. Specification of the Grids Employed in the Present
Work Given as “nrad/nang (Number of Points per C Atom)”a

grid SCF grid final grid

“gm3” 35/110 (2586) 50/302 (9564)
“gm4” 40/194 (5056) 55/434 (15526)
“gm5” 50/302 (9564) 60/590 (21330)

aWithin the SCF, a coarser grid (denoted as SCF grid) was employed
and a finer grid was used for the final energy calculation (denoted as
final grid). Grids have been pruned, that is, less angular points are
employed for the inner radial shells of each atom.
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derivatives (forces and vibrational frequencies) are inves-
tigated, we recommend to default to the finer “gm5” grid for
the higher numerical stability. Note that much smaller grids
have been recommended in the works of Neese et al.36 and
Friesner and co-workers.27,28,33,79 However, we advise caution
for the use of small grid especially when computing molecular
properties and recommend to carefully test the influence of the
grid on the specific quantity of interest prior to any application.
In contrast to our method, analytical corrections to the

seminumerical exchange matrix are added within the approach
of ref 36 and to even greater extent within the approach of
refs,27,28,33,79 that is, some selected 4c-2e integrals are
computed analytically to reduce the grid error. In particular,
Neese et al.36 proposed to only employ one-center corrections,
that is, all integrals where all four basis functions reside at the
same atom are computed analytically. We tested this approach
but found no improvement at all since our grids integrate every
atom-centered function pair virtually exactly. The grid errors
thus arise solely from non atom-centered function pairs, where
the two different functions reside on different atoms and are
therefore not considered within the one-center corrections.
5.2. Performance Analysis. In the following, the

performance of sn-LinK is assessed in terms of asymptotic
scaling behavior (Section 5.2.1), floating-point performance
(Section 5.2.2), multistream GPU performance (Section
5.2.3), and multi-GPU performance (Section 5.2.4). Finally,
we give a comparison with the 4c-2e-based preLinK
method7,20 on both CPUs and GPUs in Section 5.2.5.
5.2.1. Scaling with Respect to the System Size. Although

the evaluation of eqs 5 to 7 formally scales as O(M3) with
respect to the system size (more specifically O(NgridNbas

2 )),
exploitation of the locality of the Gaussian basis functions and
of the locality of the exchange interaction for systems with
nonzero HOMO−LUMO gaps should result in an asymptotic
O(M) scaling, if the screening techniques described in Sections

2.2 to 2.4 are employed. That is, sn-LinK is asymptotically
linear scaling by construction. For most practical systems,
however, the observed scaling lies somewhere between the
formal O(M3) and the asymptotic O(M) scaling.
In Figure 1, we investigate the scaling behavior for linear

alkanes, separated into the 3c-1e integral part required for the
evaluation of eq 6 and the matrix multiplication (BLAS-3)
steps of eqs 5 and 7.
In all cases, almost linear scaling is reached for the largest

fragments. Unsurprisingly, with larger and more diffuse basis
sets, linear scaling is reached later (i.e., for larger fragments)
since the selection schemes of Sections 2.2 and 2.4 exploit the
locality of the Gaussian basis functions. Interestingly, the 3c-1e
integral part reaches linear scaling faster than the BLAS-3 steps.
This is a consequence of different screening techniques
employed for these two steps, that is, the preselection scheme
of Section 2.4 compared to the integral selection scheme of
Section 2.4, where the latter is tighter (individual contributions
are overestimated to a lesser extent).
Although linear alkane chains are a valuable model system to

analyze the asymptotic scaling behavior, more globular systems
are of interest for many practical applications. Therefore, a
more detailed efficiency analysis of our sn-LinK method is
given for adenine-thymine DNA fragments in Figure 2 and for
spherical water clusters in Figure 3.
Here, all the observations discussed above for linear alkanes

are still valid. That is, the integrals reach linear scaling faster
than the BLAS-3 steps, and the asymptotically linear scaling is
reached later for larger basis sets. Indeed, the linear-scaling
onset for def2-TZVP is so late that even the largest fragment of
(DNA)16 still scales quadratically. Such a late onset of linear
scaling has also been observed by ref 36. In contrast to our
previous work,44 sn-LinK (present work) selects significant
shells and shell pairs according to their contributions to the
exchange potential matrix instead of the exchange energy. This
results in a later onset of linear scaling but provides better SCF
convergence, particularly for larger basis sets.
Moreover, due to the heterogeneity of GPU computing, the

total execution time within sn-LinK also contains a
considerable amount of noncompute steps, for example,
CPU-GPU data transfer and memory management, as
illustrated for (DNA)16/TZVP in Figure 4. The performance
impact of these other steps can, however, be significantly
reduced by employing multiple streams per GPU since the
different steps do not compete for the same computational
resources (see also Section 5.2.3). Moreover, the high cost of
these other steps necessitates the use of rather large grid
batches and prohibits the use of block-sparse matrix multi-
plications to accelerate the BLAS-3 steps since the manage-
ment steps would dominate the computation time otherwise.
The larger grid batches also contribute to a later onset of linear
scaling within the BLAS-3 steps.
In summary, although sn-LinK scales linearly by con-

struction, perfect O(M) scaling is only archived for the largest
systems and smaller basis sets. This is the expected behavior
since the selection schemes within sn-LinK exploit the locality
of the basis functions and of the electronic structure.

5.2.2. FLOP Utilization of the 3c-1e Integral Kernels. Since
the 3c-1e integrals still represent the most time-consuming
step in the seminumerical exchange build, we put significant
effort into its optimization. In particular, the batch-wise
integral screening described in Section 2.2 allows for SIMD
parallelization resulting in comparatively high utilization of the

Table 2. Grid-Induced Errors in the Absolute Hartree−Fock
(HF) Energy and the Absolute MP2 Correlation Energy
(G2 Test Set) or the Respective Interaction Energies (S22x5
and L7 Test Sets) Referenced to the Analytical (4c-2e
Integral-Based) Method Employing the def2-TZVP Basis
Seta

HF MP2

test set deviation gm3 gm4 gm5 gm3 gm4 gm5

G2 MaxD 20.0 7.0 2.0 69.1 12.2 2.1
MAD 2.3 0.7 0.2 6.0 1.2 0.1

S22
(0.9x)

MaxD 84.5 20.2 5.9 178.2 39.6 5.2
MAD 18.8 4.5 1.3 31.4 9.6 1.9

S22
(1.0x)

MaxD 47.8 17.0 7.1 176.8 43.2 3.7
MAD 15.1 3.7 1.3 31.9 9.9 1.5

S22
(1.2x)

MaxD 57.4 13.8 4.9 66.2 46.7 3.4
MAD 16.6 4.6 1.2 32.5 9.7 1.1

S22
(1.5x)

MaxD 63.0 18.9 4.1 154.6 49.3 4.5
MAD 12.7 3.8 0.9 34.8 10.5 1.2

S22
(2.0x)

MaxD 80.3 16.9 3.0 117.6 51.0 5.2
MAD 13.6 3.7 0.8 30.8 10.9 1.2

L7 MaxD 165.3 42.4 21.3 489.9 119.1 25.2
MAD 20.2 24.3 5.0 147.7 28.6 7.4

aThe errors in the MP2 energy are only due to the errors in the
converged density matrix. The seminumerical integration was only
used for the exchange matrix formation within the SCF but not within
the MP2 calculation.
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theoretical floating-point performance, as presented in Table 3.
An outline how the FLOP counts were obtained is contained
within the Supporting Information.
To provide some context, the best dense linear algebra

libraries achieve about 70 to 80% FLOP utilization, the
GAMESS program package80,81 was reported13 to provide 0.51
to 1.4 GFLOPs/s (6 to 17.5% utilization) on CPUs, and GPU
implementations for 4c-2e integrals were reported to provide
10 to 30 GFLOPs/s (13 to 39% utilization)13 in double
precision and up to 80 GFLOPs/s (6% utilization)6 in single
precision. Although the theoretical FLOP performance of
processors grows exponentially due to ongoing developments
in microarchitectures, it becomes increasingly difficult to utilize
their full potential since other bottlenecks (cache, memory
latency, and bandwidth) dominate in many cases. In this
context, the FLOP performance of our 3c-1e integral kernels
(230 to 330 GFLOPs/s; 22 to 32% utilization on CPUs and up
to 1040 GFLOPs/s; 11 to 16% utilization on GPUs) is very
promising.
5.2.3. Multiple Streams on One GPU. In all of the above

performance analysis, only one stream per GPU was utilized to
time the different steps separately. However, employing more
than one stream per GPU should provide some additional
speedup since CPU workloads, GPU workloads, and CPU-

GPU data transfer allocate different resources and can
therefore be performed concurrently. That is, one stream
can, for example, transfer data to the GPU, while another
stream performs GPU calculations at the same time, thus
optimizing the total device utilization (see also discussion in
Section 3). The performance gains of this optimization are
presented in Table 4.
Compared to the single-streamed evaluation, speedups of up

to 50% can be achieved with multiple streams, where the
majority of this speedup is already achieved with two streams
per GPU. However, the memory use of each GPU scales
proportionally with the amount of employed streams, and we
therefore decided to employ three streams per GPU as a
sensible compromise between performance and GPU memory
usage.

5.2.4. Multi-GPU Scaling. Since many high-performance-
computing (HPC) servers or workstation are available with up
to 16 GPUs per node, the parallel scaling with an increasing
amount of GPUs is also of high interest, particularly if
employing comparatively inexpensive GPUs like the AMD
Radeon VII. We therefore present the multi-GPU scaling of
our sn-LinK code in Table 5, activating one, two, or four AMD
Radeon VII GPUs.

Figure 1. (a−c) Total program execution time and individual execution times for 3c-1e integrals (eq 6) and for the two BLAS-3 steps (eqs 5 and 7)
within one exchange build for linear alkanes on one NVIDIA GV100 GPU with one CUDA stream given as a double logarithmic plot. The colored
numbers correspond to the scaling with respect to the preceding fragment.
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We indeed observe very favorable parallel scaling (3.5× to
4.4× speedups for 4 GPUs), particularly considering that the
available CPU resources and memory bandwidth need to be
shared between four devices. The over 100% parallel efficiency
for (DNA)4/TZVP/“gm5” is a consequence of a particular
fortunate workload distribution, that is, all 12 streams finished
at very similar times. Such timing fluctuations are typical within
such a highly parallel setup because the number of work
batches per stream is very small, for example, for (DNA)4/
“gm3”, there are only 40 grid batches in total, which needs to
be split between a total of 12 streams if all four GPUs are
utilized.
5.2.5. Comparison with PreLinK. In Table 6, we compare

the CPU and GPU performance of the 3c-1e integral-based sn-
LinK method of the present work with the analytical (4c-2e
integral-based) preLinK method7 employing 32 CPU cores, 4
Radeon VII GPUs, or 1 NVIDIA GV100 GPU. In this
comparison, preLinK typifies all other 4c-2e integral-based
methods for Fock exchange, as implemented in most quantum
chemistry programs, and allows for a consistent comparison
within the same program on both CPUs and GPUs.
The sn-LinK method outperforms the analytical method in

most tested applications on CPUs and, to even greater extent,
on GPUs. The performance gains from sn-LinK compared to

the analytical method are most significant for larger systems
and larger basis sets (e.g., factor 17 (14.7 s vs 252 s) for
(DNA)4/def2-TZVP/“gm3”) due to the superior basis set
scaling (O(Nbas

2 )) of sn-LinK compared to preLinK (O(Nbas
4 )).

Moreover, the seminumerical code provides better CPU →
GPU speedups (up to a factor of 9.5 on four AMD Radeon VII
GPUs and a factor of 5.5 on one NVIDIA GV100 GPU) than
the analytical code (up to 4.6 on four Radeon VII and 3.8 on
one GV100). The better speedups are a direct consequence of
the reduced local storage requirements of the 3c-1e integral
code compared to the 4c-2e code, resulting in a significantly
better utilization of the GPU’s floating-point compute units.
In summary, the sn-LinK methods transfer particularly well

to GPUs and therefore enable the routine computation of large
molecules containing hundreds of atoms and large basis sets.
This represents a substantial improvement over existing
seminumerical methods, for example, for the fullerene C240/
cc-PVTZ, our sn-LinK method is close to 100 times faster than
the seminumerical Intel Xeon Phi-based implementation of ref
43 (30.5 s vs 2970 s). In addition, our sn-LinK method allows
for routine calculation for hundreds of atoms and augmented
quadruple-ζ basis sets, (e.g., one exchange build for (DNA)4/
def2-QZVPPD/“gm3” takes only 257 s), which is of particular
interest in combination with post-Hartree−Fock correlation

Figure 2. (a−c) Total program execution time and individual execution times for 3c-1e integrals (eq 6) and for the two BLAS-3 steps (eqs. 5 and
7) within one exchange build for adenine-thymine DNA fragments on one NVIDIA GV100 GPU with one CUDA stream given as a double
logarithmic plot. The colored numbers correspond to the scaling with respect to the preceding fragment.
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methods, which typically require large basis set for accurate
results.
Furthermore, calculations employing basis functions with

very high angular momentum (e.g., g-functions) are very
challenging for 4c-2e-based GPU implementations since the
high complexity of the high-l-quantum number kernels (e.g.,
our (gg|gg) kernel contains over 100,000 lines of code) can
lead to numerical instabilities of our present GPU code. The
extent of this problem depends on the specific GPU in use and
has also been reported by other groups.6 Our sn-LinK method,
however, does not suffer from these issues because the 3c-1e
integrals are much simpler to evaluate.

6. CONCLUSIONS AND OUTLOOK

Within the present work, we described a new, highly efficient
seminumerical exchange method, denoted as sn-LinK, and
outlined its implementation for graphic processing units. After
validating the accuracy of the numerical integration, we
compared the performance of this new method with our
conventional (4c-2e integral-based) preLinK method7 and
found outstanding performance improvements, especially for
larger basis sets. Moreover, we showed that the sn-LinK
algorithm benefits particularly well from GPU acceleration due
to the lower local storage requirements of the 3c-1e integral

Figure 3. (a−c) Total program execution time and individual execution times for 3c-1e integrals (eq 6) and for the two BLAS-3 steps (eqs. 5 and
7) within one exchange build for spherical water clusters on one NVIDIA GV100 GPU with one CUDA stream given as a double logarithmic plot.
The colored numbers correspond to the scaling with respect to the preceding fragment.

Figure 4. Breakdown of the total execution time of one exchange
build for (DNA)16/TZVP into different lines of Algorithm 1.

Table 3. Number of Floating-Point Operations Necessary
for the Evaluation of All 3c-1e Integrals (with Batch-Wise
Integral Selection Activated) for One Exchange Build for
(DNA)4 and Floating-Point Performance of the Integral
Code Given as GFLOPs/s (Utilization of the Theoretical
FLOP Performance in Parentheses)

basis #GFLOPs CPU GV100 R. VII

STO-3G 700 330 (30.7%) 1040 (15.5%) 426 (12.8%)
def2-SVP 2780 239 (22.2%) 750 (11.2%) 429 (12.9%)
def2-TZVP 16,100 234 (21.8%) 932 (13.9%) 470 (14.1%)
def2-
QZVPPD

199,000 257 (23.9%) 797 (11.9%)
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kernels compared to the 4c-2e kernels that are required within
conventional implementations. Furthermore, we could verify
the asymptotic linear-scaling behavior of our implementation
for linear alkanes, DNA fragments, and spherical water clusters
for small basis sets. For the larger def2-TZVP basis sets, the
onset for linear scaling is so late that it was only observed for
large linear alkanes and water clusters.
Although the focus of the present work was solely on single-

point calculations, seminumerical methods are particularly
efficient for computing molecular forces since no integral

derivatives need to be evaluated.29,36 Moreover, the extension
of the sn-LinK algorithm to local hybrid functionals is
straightforward in principle, however, requiring quite some
additional implementation effort to merge the CPU-based
DFT code with the GPU-based sn-LinK code. Thus, our,
herein, presented sn-LinK algorithm also facilitates future
developments of local hybrid functionals, which used to be
restrained by their high computational cost. These two
extensions are currently under development and will be
discussed in future work.
Finally, we want to emphasize the applicability of the

seminumerical/pseudospectral method to other molecular
properties31,32,82,83 and post-Hartree−Fock correlation meth-
ods84 as well as the conceptional similarities to the tensor
hypercontraction (THC) framework.85
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Table 4. Time in Seconds for One Exchange Build Using One to Four Streams on One GPU Employing the “gm3” Grid

GV100 R. VII

system basis streams 1 2 3 4 1 2 3 4

(DNA)1 def2-SVP 0.36 0.29 0.26 0.27 0.85 0.68 0.79 0.98
(DNA)1 def2-TZVP 1.36 1.11 0.98 1.10 3.01 2.73 2.38 2.85
(DNA)4 def2-SVP 7.4 5.5 5.3 5.0 15.1 11.3 10.9 10.5
(DNA)4 def2-TZVP 33.8 27.4 25.4 25.2 64.3 52.9 50.7 49.8

Table 5. Multi-GPU Scaling Employing One, Two, and Four
Radeon VII GPUs within One Nodea

system basis grid 1 GPU 2 GPUs 4 GPUs

(DNA)4 def2-SVP “gm3” 10.9 5.4 (2.0) 3.0 (3.6)
(DNA)4 def2-TZVP “gm3” 50.7 26.0 (1.9) 14.7 (3.5)
(DNA)4 def2-SVP “gm5” 27.3 13.9 (1.9) 6.3 (4.4)
(DNA)4 def2-TZVP “gm5” 143.3 73.2 (2.0) 37.9 (3.8)

aTimings are given in seconds for one exchange matrix build,
employing a converged density matrix using the smaller (SCF) grid
from Table 1. Speedup compared to 1 GPU in parentheses.

Table 6. Timings in Seconds for CPU (32 Cores/64 Threads@2.10 GHz) and GPU Codes Run on either Four AMD Radeon
VII (4× R. VII) or One NVIDIA GV100 (GV100) Using sn-LinK (Denoted as “sn-LinK@gm3”/“sn-LinK@gm5”) as
Compared to the preLinK Method of Ref 7 (Denoted as “preLinK”)a

system basis method #BFs CPU 4× R. VII GV100

(DNA)1 def2-SVP “sn-LinK@gm3” 660 0.8 0.3 (2.4) 0.4 (2.0)
(DNA)1 def2-SVP “sn-LinK@gm5” 660 2.5 0.6 (4.2) 0.8 (3.2)
(DNA)1 def2-SVP “preLinK” 660 1.7 1.0 (1.8) 1.2 (1.5)
(DNA)1 def2-TZVP “sn-LinK@gm3” 1422 3.6 1.0 (3.7) 1.2 (3.0)
(DNA)1 def2-TZVP “sn-LinK@gm5” 1422 11.0 2.4 (4.7) 3.1 (3.6)
(DNA)1 def2-TZVP “preLinK” 1422 29.6 10.4 (2.8) 15.6 (1.9)
(DNA)1 def2-QZVPPD “sn-LinK@gm3” 3815 30.0 8.1 (3.7) 10.5 (2.9)
(DNA)1 def2-QZVPPD “sn-LinK@gm5” 3815 99.6 21.5 (4.6) 32.5 (3.1)
(DNA)1 def2-QZVPPD “preLinK” 3815 2035 − −
(DNA)4 def2-SVP “sn-LinK@gm3” 2904 17.6 3.0 (5.9) 5.8 (3.1)
(DNA)4 def2-SVP “sn-LinK@gm5” 2904 59.3 6.3 (9.5) 14.4 (4.1)
(DNA)4 def2-SVP “preLinK” 2904 54.2 18.5 (2.9) 23.2 (2.3)
(DNA)4 def2-TZVP “sn-LinK@gm3” 6336 139.5 14.7 (9.5) 27.2 (5.1)
(DNA)4 def2-TZVP “sn-LinK@gm5” 6336 316.3 37.9 (8.3) 75.3 (4.2)
(DNA)4 def2-TZVP “preLinK” 6336 1038.8 252.2 (4.1) 419.9 (2.5)
(DNA)4 def2-QZVPPD “sn-LinK@gm3” 16,574 1334 257.4 (5.2) 307.8 (4.3)
(DNA)4 def2-QZVPPD “sn-LinK@gm5” 16,574 5119 814.6 (6.3) 924.2 (5.5)
(DNA)4 def2-QZVPPD “preLinK” 16,574 101,250 − −
C240 cc-pVDZ “sn-LinK@gm3” 3600 49.9 6.6 (7.6) 12.2 (4.1)
C240 cc-pVDZ “sn-LinK@gm5” 3600 168.8 19.4 (8.7) 38.6 (4.4)
C240 cc-pVDZ “preLinK” 3600 411.4 162.1 (2.5) 215.6 (1.9)
C240 cc-pVTZ “sn-LinK@gm3” 8400 207.0 30.5 (6.8) 55.0 (3.8)
C240 cc-pVTZ “sn-LinK@gm5” 8400 678.6 86.8 (7.8) 170.4 (4.0)
C240 cc-pVTZ “preLinK” 8400 6294 1365 (4.6) 1660 (3.8)

aTimings are given for one exchange matrix build, employing a converged density matrix using the smaller (SCF) grid from Table 1. For context,
the number of Cartesian basis functions (#BFs) is given for each system, and the CPU → GPU speedups are given in parentheses.
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Chapter 5

Conclusions and Outlook

The integral bounds developed in this thesis are applicable to a wide range of quantum
chemical theories and can be used in combination with the best approximations currently
available for reducing the computational time scaling of numerical implementations. The
integral partition bounds can be used to reduce the complexity of explicitly correlated
methods, which offer the best way to get very close to complete basis set results by direct
treatment of the short-range cusp behavior of the wave function. Due to the near universal
form of correlation cusps, very few parameters are needed to describe them accurately, and
instead, the high dimensional integrals that arise are the main computational challenge. At
the same time, the very short-ranged nature of the cusps means that the integrals within
modern explicitly correlated methods exhibit a level of sparsity that particularly lend them
to accelerated calculation through integral screening. This work details several working
equations for the F12 correction to the MP2 energy, all of which can be calculated with
asymptotic linear scaling cost through the application of the integral partition bounds if
the electronic structure of the system is sufficiently local. The most promising formulations
are those that use three-dimensional numerical quadrature to factorize two-, three-, and
four-electron integrals, since this reduces the formal scaling of the method in addition to
drastic reductions in memory requirements. At the same time, such formulations lend
themselves to high performance, highly parallel computing architectures such as graphical
processing units (GPUs). In this work, the integral partition bounds have been shown to
be quite effective for carrying out semi-numerical exact exchange matrix calculations on
GPUs.

The bounds and formulas developed here for the MP2-F12 method will be similarly
effective for accelerating other explicitly correlated methods. In areas such as the explicitly
correlated random phase approximation (RPA) [185–187], explicitly correlated coupled
cluster theories [62–71, 188, 189], explicitly correlated multi-reference calculations [190–
194], and highly accurate explicitly correlated methods such as Hylleraas-CI [31–35], the
same or similar expressions are needed.

The Schwarz-type bound developed for the complex basis function method in non-
Hermitian quantum chemistry solves a scaling problem that will become increasingly im-
portant as the method matures and its reach extends to molecular resonances of large
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systems. The techniques used for the formulation of this bound should also be important
when extending other types of integral bounds, such as the integral partition bounds devel-
oped in this work, to the complex-symmetric, non-Hermitian integral tensors that arise in
complex basis function methods. Such developments would be especially useful for explic-
itly correlated versions of complex basis function methods, which would have considerable
merit considering the large basis sets that are often required [174]. Numerical quadrature
combined with screening based on the integral partition bounds could also deliver similarly
large performance boosts for complex basis function methods, and this is an opportunity
for further research.
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[154] P.O. Löwdin. volume 19 of Adv. Quantum Chem. Academic Press (1988), pages
87–138.

[155] K.B. Bravaya, D. Zuev, E. Epifanovsky and A.I. Krylov, J. Chem. Phys. 138 (2013),
124106.

[156] E. Balslev and J.M. Combes, Commun. Math. Phys. 22 (1971), 280.

[157] J. Aguilar and J.M. Combes, Commun. Math. Phys. 22 (1971), 269.

[158] B. Simon, Commun. Math. Phys. 27 (1972), 1.

[159] I.W. Herbst and B. Simon, Phys. Rev. Lett. 41 (1978), 67.

[160] I.W. Herbst, Commun. Math. Phys. 64 (1979), 279.

[161] I.W. Herbst and B. Simon, Commun. Math. Phys. 80 (1981), 181.

[162] B. Simon, Phy. Lett. A 71 (1979), 211.

[163] C.W. McCurdy and T.N. Rescigno, Phys. Rev. Lett. 41 (1978), 1364.

[164] T.N. Rescigno, A.E. Orel and C.W. McCurdy, J. Chem. Phys. 73 (1980), 6347.

[165] C.W. McCurdy, T.N. Rescigno, E.R. Davidson and J.G. Lauderdale, J. Chem. Phys.
73 (1980), 3268.
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