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Summary 

The intense research of the last decades in the field of flood monitoring has shown that microwave 

sensors provide valuable information about the spatial and temporal flood extent. The new 

generation of satellites, such as the Sentinel-1 (S-1) constellation, provide a unique, temporally 

high-resolution detection of the earth's surface and its environmental changes. This opens up new 

possibilities for accurate and rapid flood monitoring that can support operational applications. Due 

to the observation of the earth's surface from space, large-scale flood events and their spatio-

temporal changes can be monitored. This requires the adaptation of existing or the development of 

new algorithms, which on the one hand enable precise and computationally efficient flood 

detection and on the other hand can process a large amounts of data. 

In order to capture the entire extent of the flood area, it is essential to detect temporary flooded 

vegetation (TFV) areas in addition to the open water areas. The disregard of temporary flooded 

vegetation areas can lead to severe underestimation of the extent and volume of the flood. Under 

certain system and environmental conditions, Synthetic Aperture Radar (SAR) can be utilized to 

extract information from under the vegetation cover. Due to multiple backscattering of the SAR 

signal between the water surface and the vegetation, the flooded vegetation areas are mostly 

characterized by increased backscatter values. Using this information in combination with a 

continuous monitoring of the earth's surface by the S-1 satellites, characteristic time series-based 

patterns for temporary flooded vegetation can be identified. This combination of information 

provides the foundation for the time series approach presented here. 

This work provides a comprehensive overview of the relevant sensor and environmental 

parameters and their impact on the SAR signal regarding temporary open water (TOW) and TFV 

areas. In addition, existing methods for the derivation of flooded vegetation are reviewed and their 

benefits, limitations, methodological trends and potential research needs for this area are identified 

and assessed. The focus of the work lies in the development of a SAR and time series-based 

approach for the improved extraction of flooded areas by the supplementation of TFV and on the 

provision of a precise and rapid method for the detection of the entire flood extent. 

The approach developed in this thesis allows for the precise extraction of large-scale flood areas 

using dual-polarized C-band time series data and additional information such as topography and 

urban areas. The time series features include the characteristic variations (decrease and/or 

increase of backscatter values) on the flood date for the flood-related classes compared to the 

whole time series. These features are generated individually for each available polarization (VV, 

VH) and their ratios (VV/VH, VV-VH, VV+VV). The generation of the time series features was 

performed by Z-transform for each image element, taking into account the backscatter values on 

the flood date and the mean value and standard deviation of the backscatter values from the non-

flood dates. This allowed the comparison of backscatter intensity changes between the image 

elements. The time series features constitute the foundation for the hierarchical threshold method 

for deriving flood-related classes. Using the Random Forest algorithm, the importance of the time 

series data for the individual flood-related classes was analyzed and evaluated. The results showed 

that the dual-polarized time series features are particularly relevant for the derivation of TFV. 

However, this may differ depending on the vegetation type and other environmental conditions. 

The analyses based on S-1 data in Namibia, Greece/Turkey and China during large-scale floods 

show the effectiveness of the method presented here in terms of classification accuracy. The 
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supplementary integration of temporary flooded vegetation areas and the use of additional 

information resulted in a significant improvement in the detection of the entire flood extent. It 

could be shown that a comparably high classification accuracy (~ 80%) was achieved for the flood 

extent in each of study areas. The transferability of the approach due to the application of a single 

time series feature regarding the derivation of open water areas could be confirmed for all study 

areas. Considering the seasonal component by using time series data, the seasonal variability of the 

backscatter signal for vegetation can be detected. This allows for an improved differentiation 

between flooded and non-flooded vegetation areas. Simultaneously, changes in the backscatter 

signal can be assigned to changes in the environmental conditions, since on the one hand a time 

series of the same image element is considered and on the other hand the sensor parameters do 

not change due to the same acquisition geometry. Overall, the proposed time series approach 

allows for a considerable improvement in the derivation of the entire flood extent by 

supplementing the TOW areas with the TFV areas. 
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Zusammenfassung 

Die intensive Forschung der letzten Jahrzehnte in dem Bereich Hochwassermonitoring hat gezeigt, 

dass mit Hilfe von Mikrowellensensoren wertvolle Informationen über die 

Hochwasserausdehnung abgeleitet werden können. Die neuen Satelliten-Generationen, wie die S-

1 Konstellation, ermöglichen heutzutage eine in dieser Form neue, zeitlich hoch aufgelöste 

Erfassung der Erdoberfläche und deren Umweltveränderungen. Dadurch eröffnen sich neue 

Möglichkeiten für eine genaue und schnelle Hochwasserüberwachung, die den operationellen 

Einsatz unterstützen können. Durch die Erfassung der Erdoberfläche aus dem Weltall können unter 

anderem großflächige Hochwasserereignisse und ihre räumlich-zeitliche Veränderung beobachtet 

werden. Dies erfordert die Anpassung bestehender oder die Entwicklung neuer Algorithmen, 

welche zum einen eine präzise und rechnerisch effiziente Hochwassererkennung ermöglichen und 

zum anderen große Datenmenge verarbeiten können.  

Um die Gesamtausdehnung der Hochwasserfläche vollständig zu erfassen ist neben den offenen 

Wasserflächen die Detektion von temporär unterfluteten Vegetation (TUV) erforderlich. Die 

Nichtberücksichtigung der unterfluteten Vegetationsflächen kann zu gravierenden 

Unterschätzungen des Hochwasserausmaßes und -volumens führen. Unter bestimmten System- 

und Umweltbedingungen kann das Synthetic Aperture Radar (SAR) eingesetzt werden, um 

Informationen unter der Vegetationsdecke zu extrahieren. Aufgrund von Mehrfachrückstreuungen 

des SAR-Signals zwischen der Wasserfläche und der Vegetation sind die unterfluteten 

Vegetationsflächen meist durch erhöhte Rückstreuwerte charakterisiert. Mit Hilfe dieser 

Information in Kombination mit einer zeitlich hochaufgelösten Erfassung der Erdoberfläche durch 

die S-1 Satelliten können charakteristische, zeitserienbasierte Muster für TUV identifiziert werden. 

Diese Verknüpfung von Information dient als Grundlage für den hier vorgestellten 

Zeitserienansatz. 

Arbeit gibt einen umfangreichen Überblick über die relevanten Sensor- und Umweltparameter 

sowie ihre Auswirkung auf das SAR-Signal in Bezug auf offene Wasserflächen und unterflutete 

Vegetationsflächen. Zusätzlich werden bereits bestehenden Methoden für die Ableitung von 

unterfluteter Vegetation untersucht und deren Nutzen, Limitierungen, methodische Trends und 

der potenzielle Forschungsbedarfs für diesen Bereich aufgezeigt und bewertet. Der Schwerpunkt 

der Arbeit liegt auf der Entwicklung eines zeitserienbasierten SAR Ansatzes zur verbesserten 

Ableitung von Überschwemmungsflächen durch die Ergänzung von TUV und auf der zur Verfügung 

stellen einer präzisen und schnellen Methode für Detektion des gesamten Überflutungsausmaßes.  

Der in der vorliegenden Arbeit entwickelte Ansatz ermöglicht die präzise Ableitung von 

großflächigen Überschwemmungsgebieten auf der Grundlage von dual-polarisierten C-Band 

Zeitseriendaten und Zusatzinformationen, wie der Topographie und urbanen Flächen. Zu diesem 

Zweck wurden mehrere Zeitserienfeatures entwickelt. Die Zeitreihenmerkmale beinhalten die 

charakteristischen Variationen (Abfall und/oder Anstieg der Rückstreuwerte) für die 

hochwasserrelevanten Klassen zum Hochwasserzeitpunkt im Vergleich zu der gesamten Zeitreihe. 

Die Zeitserienmerkmale werden für jede verfügbare Polarisation (VV, VH) und deren Verhältnisse 

(VV/VH, VV-VH, VV-VH, VV+VV) individuell generiert. Die Generierung der Zeitreihenmerkmale 

erfolgte mittels Z-Transformation für jedes Bildelement unter Berücksichtigung der 

Rückstreuungswerte zum Hochwasserzeitpunkt und des Mittelwerts und der Standardabweichung 

der Rückstreuungswerte von Nicht-Hochwasserzeitpunkten. Dies ermöglichte die Vergleichbarkeit 

von Rückstreuintensitätsänderungen zwischen den Bildelementen. Die Zeitserienfeatures 
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fungieren als Grundlage für die hierarchische Schwellenwertmethode, durch die die flutbedingten 

Klassen abgeleitet werden. Mit Hilfe des Random Forest Algorithmus wurde die Relevanz der 

Zeitseriendaten für die individuellen flutbedingten Klassen untersucht und bewertet. Die 

Ergebnisse zeigten, dass vor allem die dualpolarisierte Zeitserienfeatures für die Ableitung von 

TUV relevant sind. Dies kann sich aber in Abhängigkeit von des Vegetationstyps und weiterer 

Umweltbedingungen unterscheiden. 

Die Untersuchungen auf der Grundlage von S-1 Daten in Namibia, Griechenland/Türkei und China 

während großräumiger Überschwemmungen zeigen die Wirksamkeit der präsentierten Methode 

in Bezug auf Klassifikationsgenauigkeit. Die ergänzende Integration von TUV und der Einsatz von 

zusätzlichen Informationen, führten zu einer deutlichen Verbesserung in der Detektion der 

gesamten Hochwasserausdehnung. Es konnte gezeigt werden, dass in allen Untersuchungsgebieten 

eine vergleichsweise hohe Klassifikationsgenauigkeit (ca. 80 %) für die Hochwasserflächen 

erreicht wurde. Die Übertragbarkeit des Ansatzes durch die Verwendung eines einzigen 

Zeitserienfeatures bezüglich der Ableitung von offenen Wasserflächen konnte aber für alle 

Untersuchungsgebiete bestätigt werden. Unter Berücksichtigung der saisonalen Komponente 

durch den Einsatz von Zeitseriendaten kann die saisonale Variabilität des Rückstreusignals für 

Vegetation erfasst werden. Dies ermöglicht eine verbesserte Unterscheidung zwischen gefluteten 

und nicht gefluteten Vegetationsbereichen. Gleichzeitig können Veränderungen des 

Rückstreusignals Veränderungen in den Umweltbedingungen zugeordnet werden, da zum einen 

eine Zeitreihe desselben Bildelements betrachtet wird und zum anderen die Sensorparameter 

aufgrund der gleichen Aufnahmegeometrie sich nicht verändern. Insgesamt ermöglicht der in 

dieser Arbeit vorgestellte Zeitserienansatz eine erhebliche Verbesserung in der Ableitung der 

gesamten Hochwasserausdehnung durch die Ergänzung der temporären offenen Wasserflächen 

mit TUV.  
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1   Introduction 

The growing demand for information regarding the characteristics of flood events is a 

fundamental motivation for ongoing research in various fields. The frequent and widespread 

occurrence of floods worldwide causes high economic costs and also significant social and 

environmental impact. Especially for various institutions such as aid organisations, first 

rescuers, crisis management authorities, insurance companies or environmental agencies, 

precise and timely information on the extent of the floods is essential for providing a foundation 

for their decisions and actions. Besides, temporary open water, temporary flooded vegetation 

(TFV) is an important component for the detection of the entire inundation area. TFV can be 

described as areas in which water bodies occur temporary beneath vegetation. Thereby, an 

important characteristic of TFV is that the vegetation is not completely covered by water.  

In this thesis, temporary flooded vegetation areas are considered as an essential part of flood 

detection. Floods are natural events that regularly occur at certain times of the year, depending 

on the discharge regime. The causes of flooding are mostly continuous, extensive, large-scale 

precipitation, often in combination with snowmelt (Vormoor et al. 2015). In addition, high 

waves in coastal zones can be a natural cause of flood events. However, human intervention (e.g. 

straightening of the river banks, large-area sealing and compaction of the soil, intensified land 

use and forestry) in the water system is also a strong driver for the occurrence of flood events 

(Bronstert 2003, Kundzewicz et al. 2018). Whether natural or anthropogenic, flood events are 

highly variable in space and time. A snapshot is mostly insufficient to obtain a comprehensive 

understanding of the hydrological process. The integration of the spatio-temporal component 

along with TFV is essential for gaining an understanding of the dynamics of flood events and for 

improving flood detection. 

1.1 Relevance of TFV 

In the context of flood detection, the relevance of TFVs can be particularly well demonstrated 

by the diversity of the affected fields and the intensity with which they are affected. The 

disregard of these areas has immense consequences from a hydrological, ecological and 

economic point of view.  The duration, frequency, intensity and magnitude of flood events 

influence the intensity of the impacts.  

According to CRED and UNISDR (2019), flood events in 2018 affected significantly more people 

than in any other year of the 21st century (UNISDR 2019). Floods are not only one of the most 

widespread natural disasters, which regularly involve human and economic losses, but also the 

most frequent disaster type in comparison to other natural hazards (Figure 1). In 2018, ~38.6% 

of all natural disasters worldwide were caused by flood events (EMDAT 2019). In the 

agricultural sector, the impacts can be particularly disastrous, as crop failures can not only cause 

economic damage to the farmers, but can also result in famine (FAO 2011). Figure 2 shows how 

devastating the impact of a flood event can be on agricultural areas.  
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Figure 1: Global reported natural disasters including Floods (Ritchie and Roser 2019). 

Additionally, the inundation of agricultural areas leads to the contamination of the water 

catchment area with nutrients, heavy metal pollutants and pesticides (Ciszewski and Grygar 

2016, Hafeez et al. 2019). The consequences are changes in water quality and species diversity. 

The worst case scenario is eutrophication of water bodies (Ansari and Gill 2014, OECD 2017). 

Flooding near the coast can lead to degradation of soils and may result in plant species changes 

due to saltwater or brackish water (Tully et al. 2019). In addition to agricultural areas, forested 

areas can also be flooded. A special form of forests, which are located on river banks and are 

regularly/seasonally flooded, are floodplain forests (Figure 3). 

 
Figure 2: Flood August 2002 of the Elbe river with a dyke breach, Germany  

© André Künzelmann/UFZ (Arnhold 2008). 
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Floodplain forests have a high biodiversity and species diversity and represent an essential 

component for flood protection. The water flowing over the riverbank can spread into floodplain 

forests and be stored in the soil and vegetation (Junk 1997, Klimo and Hager 2001, Machar et al. 

2019). Other man-made flood protection structures, such as dykes, can increase flood protection 

in combination with floodplain forests (Damm 2013, Gergel et al. 2002, Kryspin-Watson et al. 

2017). This can reduce the probability of a dyke failure (Figure 2).  

In the future it is expected that the magnitude and frequency of flood hazards will increase due 

to climate change (IPPC 2013, Rao et al. 2014, Schädler et al. 2012, Thistlethwaite et al. 2018). 

Flood hazard will probably increase due to the rising number of heavy and extreme precipitation 

events arising in many regions (Kundzewicz et al. 2018). A significant part of the increase in 

flood hazards can be attributed to non-climatic anthropogenic impacts. These include land-use 

changes such as urbanization, deforestation, removal of floodplains and wetlands, and river 

regulation (Stefanidis and Stathis 2013). This results in a reduction in infiltration capacity and 

water storage and an increase in runoff. Reasons for the intensification of flood events are, on 

the one hand, natural causes, such as snow melting in connection with heavy rainfall. On the 

other hand, humans and their interventions into the water system increase the probability of 

flood events (Zischg et al. 2018). 

The increased occurrence of flood events will also have a greater impact on vegetation areas. 

The changes will take place mainly in shoreline areas (Garssen et al. 2017). The changes will 

mainly take place in riparian areas and will affect bio- and species diversity due to the possible 

degradation of soils or the formation of new habitats. In addition, an increased frequency of crop 

failures and thus higher economic damage is to be expected (IPPC 2012). Flood protection 

measures will have to be reevaluated and adapted for the future. Therefore, it will be important 

and necessary in the future to assess and detect the frequency, magnitude, duration and extent 

of flood events as precisely and quickly as possible. This work contributes to an improved flood 

detection by the implementation of a spatio-temporal component and the inclusion of TFV areas. 

 
Figure 3: Floodplain forest in Germany © Stefan Ellermann (LAU) (Natura 2000, 2019). 
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1.2 Potential of SAR and time series data for detection and 

extraction of the TFV  

Spaceborne remote sensing is a potential instrument for the acquisition of the entire flood 

extent, which allows for the monitoring of large areas of the earth's surface. Since the use of 

optical sensors during flood situations is often severely restricted by cloud cover, images taken 

with microwave satellites are mostly used as a basis for operational flood detection due to their 

independency towards weather and daylight. Therefore, this work focuses on microwave 

remote sensing. Due to the characteristics of microwave radiation to penetrate into a medium 

in dependence of the wavelength, microwave-based systems (radar, synthetic aperture radar 

(SAR)) are suitable for the detection of standing water surfaces beneath the vegetation. This is 

achieved by the capability of the radar signal to penetrate the vegetation canopy and the 

interaction between the water surface and the lower areas of the vegetation. The latter can lead 

to a strong backscatter signal, which is higher than under normal hydrological conditions (e.g. 

(Richards et al. 1987, Townsend 2001). Despite the advantage regarding the detection of TFV 

by SAR data, the interpretation of the backscatter signal from TFV is not always straightforward 

because the interaction between system parameters and environmental conditions strongly 

influences the backscatter signal. Therefore, essential statistical and on-site knowledge is 

required in order to obtain accurate results. 

Studies about the derivation of flood extent have grown steadily over the last decades (Brown 

et al. 2016, Clement et al. 2017, Dellepiane et al. 2000, Schlaffer et al. 2015, Smith 1994). 

However, there are only a small number of studies including the TFV area for flood monitoring 

purposes (Long et al. 2014, Martinis et al. 2015, Pierdicca et al. 2008, Pulvirenti et al. 2010, 

Pulvirenti et al. 2016, Zhao et al. 2014). This is primarily due to the limited availability of 

appropriate SAR data. Despite the numerous operating microwave sensors, the availability of 

the regularly acquired spaceborne microwave data is restricted. Therefore, the majority of the 

analyzed studies used a single image or two images with flooded and non-flooded conditions. 

However, the lack of information about the normal conditions of the environment and the 

requirement of manual intervention can limit the reliability of results of the flood extent. With 

the launched C-band S-1 satellite missiona new age of flood monitoring was initiated due to the 

availability of high temporal resolution data with a revisit frequency of up to six days. The 

regularity of the data acquisition over a longer period provides information about different 

seasonal conditions of the vegetation and the corresponding backscatter signal.  

The opportunity to include seasonal or annual fluctuations of backscatter using the free of 

charge short revisit SAR time series data provide an opportunity to extract TFV and to improve 

flood detection. However, the focus on the multi-temporal changes regarding TFV adds a new 

level of complexity. Therefore, an in-depth analysis is required to exhibit the effects and changes 

on the backscatter signal over time and during a flood event. To understand the effects regarding 

TFV, the analysis of the multi-temporal characteristics and pattern of S-1 data is crucial. Besides 

the SAR data, the integration of other data can be useful for obtaining an accurate extent of the 

flood. Topographical data, optical data or specific layers obtained from this data can be 

combined for a comprehensive analysis of inundation events and the extraction of special areas, 

such as TFV.  

Depending on the different tasks, the availability of SAR data, the polarization modes, the phase 

information and the spatial or temporal resolution, various algorithms were applied to the 
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different applications and thus inconsistency exists in the methods for the derivation of TFV 

(Tsyganskaya et al. 2018b). Furthermore, there are a small number of papers in the literature 

dealing with the automatic and rapid flood extraction from SAR data for operational use (e.g. 

Martinis et al. 2009, Martinis and Twele 2010, Matgen et al. 2011, Pulvirenti et al. 2011, 

Pulvirenti et al. 2012, Schumann et al. 2009). Due to its complexity, TFV is barely included in 

flood detection approaches, as its transferability to different study areas is limited. Whenever 

TFV was incorporated into a method, single image and change detection approaches were 

mainly applied (Long et al. 2014, Martinis et al. 2015, Pierdicca et al. 2008, Pulvirenti et al. 2010, 

Pulvirenti et al. 2016, Zhao et al. 2014). Very few studies have attempted to detect the 

hydrological dynamics of flood events using time series data (Martinez and Le Toan 2007, 

Pulvirenti et al. 2011a, Pulvirenti et al. 2012). Schlaffer et al. (2016) showed that based on a 

multi-temporal image stack and using a harmonic model, the classification of wetland classes 

can be achieved. This method shows the potential for the detection of TFV integrating temporal 

and spatial variability. The use of frequently multi-temporal acquired S-1 data provide a 

potential foundation for the development of a SAR based time series approach for the extraction 

of TFV and improved flood detection. By incorporating seasonal or annual variations in 

vegetation, the complexity of the TFV can be considered. However, the processing and analysis 

of SAR time series data constitutes a challenge due to the large amounts of data. This requires 

the development of an adapted algorithm allowing for the processing of dual-polarized SAR time 

series data. 

1.3 Scientific objectives 

As shown in the previous Section 1.1, the detection of temporary flooded vegetation (TFV) is a 

key component in many applications. However, at the current stage, the causes, states, impact 

and implications of TFV are not sufficiently well characterized or understood. Furthermore, TFV 

is not adequately considered in the current flood mapping products, as the focus mostly lies on 

the extraction of temporary open water (TOW). Due to the lack of an appropriate data 

foundation in the past, an adequate extraction of TFV areas is still underrepresented and widely 

neglected. As the occurrence of TFV is a dynamic process, characterized by a spatio-temporal 

variability, it is important to take into account and fully understand the drivers of this dynamic. 

The use of SAR time series data has great potential for the detection and interpretation of TFV, 

since the spatial and temporal variability can be considered (Section 1.2). Based on these 

considerations, this thesis defines the following scientific objectives: 

 
• Evaluation of the state of the art methods by providing an overview and comparison of 

the data sets and classification algorithms with their advantages, limitations and 

possible trends regarding the extraction of TFV. 

• Analysis and evaluation of multitemporal characteristics and patterns regarding the 

backscatter signal for flood related classes, such as TOW and TFV. 

• Establishing the comparability between the TFV backscatter values of the image 

elements and simplifying the complexity of multitemporal characteristics and patterns 

of flood-relevant classes by developing polarization-dependent time series features.  

• Development, assessment and validation of a new SAR time series-based method for 

comprehensive and rapid mapping of entire flood extents using developed time series 
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features with a focus on the increased quality of maps for flood detection by including 

TFV. 

• Demonstration of the transferability and the robustness of the methodology by 

analyzing the impact of time series data and different polarization for various TFV types 

in different study areas.  

 

Based on the aforementioned scientific objectives, the following research questions have been 

formulated: 

 

• Research question 1: Does the comparison of the state of the art of the method provide an 

identification of trends regarding the SAR based classification algorithms for the 

extraction of TFV?  

• Research question 2: Are the multitemporal characteristics and patterns of the SAR time 

series data suitable for identifying flood-related classes (TOW and TFV)? 

• Research question 3: Do the operational dual-polarized SAR systems have the potential to 

provide time series features for the derivation of flood related classes (TOW and TVF)? 

• Research question 4: Are dual-polarized Sentinel-1 time series data suitable for the 

development of a robust classification approach for TFV extraction and improved flood 

detection?  

• Research question 5: Can the SAR time series approach be transferred to different study 

areas and vegetation types using a single time series feature for the extraction of TFV and 

thus be applied operationally?  

1.4   Structure of the thesis 

In Chapter 2 the basic principles of microwave remote sensing are presented. The focus lies on 

the characteristics of SAR data. Furthermore, an overview of the S-1 sensors is provided, the 

data of which is predominantly applied in this thesis. 

Interactions of microwave signal with open water surfaces and water bodies covered by 

vegetation are described in Chapter 3. Besides an explanation about the backscatter behavior of 

radar waves in general, the particular characteristics of radar reflectance from open water 

surfaces and flooded vegetation are also discussed.  

In Chapter 4 an overview about the state of the art regarding SAR-based derivation of flooded 

vegetation and the developed time series approach for the extraction of TFV with the 

corresponding results are presented by three scientific peer-reviewed publications. 

Section 4.1 presents the first paper reviewing the characteristics and approaches of SAR-based 

detection of flooded vegetation. In addition, a comprehensive review of sensor- and object 

parameters and their effects on the SAR signal regarding the detection of flooded vegetation is 

provided. Furthermore, an overview of the data sets used and the state of the art for the applied 

algorithms for the extraction of flooded vegetation is provided in the same publication, revealing 

their benefits, limitations, methodological trends, and pointing out the potential research needs 

for this field. 

In Section 4.2 a SAR time series approach based on S-1 C-band data is proposed. For the 

detection of the entire flood extent with the focus on TFV, the developed method combines dual-

polarized time series data with ancillary information. Based on the findings about 
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multitemporal characteristics and patterns (decrease and/or increase of the backscatter values 

on the flood date), which indicate flood-related classes, time series features are derived. The 

time series features were generated for each polarization and polarization combination by 

performing a Z-transform over the time series for each image element. Thereby, a comparison 

of the backscatter intensity change for the SAR signal between the pixels could be achieved. The 

capabilities of the method are demonstrated for a flood event in Namibia that occurred in 2017. 

Analyses regarding the impact of time series characteristics on the identification of flood related 

classes and the transferability of the SAR time series approach are described in Section 4.3. An 

analysis was carried out based on two independent study areas in Greece/Turkey and China 

containing different vegetation types, such as high grassland and forested areas. In order to 

demonstrate the transferability and the potential of the SAR time series approach for 

operational use, time series features are compared simultaneously with respect to their 

suitability for the extraction of TFV for all study areas. 

The thesis concludes in Chapter 5 with an evaluation of the developed approach and discusses 

improvement opportunities as well as an outlook for future analysis and synergetic use of SAR 

data.  

2   Theoretical basics 

2.1   Physical fundamentals 

The visualisation of the earth's surface in aerial and satellite images is defined by the properties 

of the sensor in capturing the electromagnetic radiation that reaches the sensor during the 

acquisition. The electromagnetic radiation serves as an information medium between the 

observed object and the remote sensing sensor, which propagates as a harmonic wave with the 

speed of light. The wave is detected as reflected or emitted radiation from the observed object 

and contains information about its properties.  

The electromagnetic radiation is represented in the electromagnetic spectrum. The entire 

spectrum is divided into different areas, according to the origin and the effect of the radiations, 

which fuse into each other without sharp boundaries. The different wavelength ranges, their 

names, their transmissivity through the atmosphere and the most relevant recording methods 

are shown in Figure 4. The electromagnetic radiation is characterized by the wavelength ɉ and 

the frequency f (Lillesand et al. 2008). In comparison to the visible light ȋabout Ͳ.4 to Ͳ. ɊmȌ, 
which can be detected by optical sensors, the microwave radiation range is about between 1 

mm and 1 m, which can be detected by radar methods. The detection of natural electromagnetic 

radiation (solar radiation reflected from the earth's surface as well as heat radiation emitted 

from the earth's surface itself) is called passive remote sensing, whereby artificially generated 

radiation, e.g. by radar, is referred to as active remote sensing (Ulaby and Long 2015). 
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Figure 4: The electromagnetic spectrum and the acquisition ranges of different sensors  

based on Albertz 2007. 

2.2   Basic principles of imaging radar systems 

In this work, data and methods of radar remote sensing were applied. Radar (radio detection 

and ranging) is an active remote sensing method which uses the spectral range of microwaves. 

Data acquisition using a radar sensor is largely daylight- and weather-independent, providing a 

continuous temporal resolution in dependence on the orbit of the sensor. In addition, the 

complex calibration and correction procedures for the reduction of atmospheric influences are 

no longer necessary(Richards 2009).   

Radar detection of the earth's surface is achieved by emitting microwave pulses at the pulse 

repetition frequency (PRF) and by measuring the amount of energy or transit time reflected 

back to the sensor by an antenna(Lillesand et al. 2008, Woodhouse 2006).The backscattering 

properties are influenced by sensor-specific system parameters and the object properties. 

Operational principle and properties of Synthetic Aperture Radar (SAR) 

Radar remote sensing systems can be categorized into non-imaging and imaging systems. Non-

imaging systems include, for example, radar altimeters for determining heights on the land 

surface. Imaging systems are e.g. the Side Looking Airborne Radar (SLAR) or the Synthetic 

Aperture Radar (SAR) (Woodhouse 2006). Imaging radar systems provide a two-dimensional image of the Earthǯs surface after digital processing (Hein 2004). 

For the remote sensing of the earth's surface from space, sensors are generally applied, which 

use the Synthetic Aperture Radar (SAR) acquisition technique. The scanning process of the 

earth's surface is carried out in a side-looking manner and perpendicular to the flight direction 

(Figure 5), since the radar is a distance measuring method that uses the double travel time of 

the microwave to spatially separate the received signals. Under optimal conditions, the sensor 

moves in a straight line over a landscape and sends an impulse at fixed intervals, which 

irradiates the area. Due to the relationship between antenna length and radiation 

characteristics, i.e. primarily the antenna beam width, the geometric resolution of e.g. the SLAR 
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with real aperture is limited (Lillesand et al. 2008).In comparison, SAR systems have a short 

antenna, but simulate a long antenna using the appropriate acquisition and processing 

technology (Woodhouse 2006).This method is based on the Doppler effect, which is used to 

generate a virtual antenna length that is a multiple larger than the physical antenna 

(Lillesand et al. 2008). During the overflight, the same object is repeatedly illuminated by the 

successive radar pulses. Thereby, the radar signal contributes several times to the received 

signals, which are correlated in a complex way. During signal processing, however, the data is 

treated as if it came from individual parts of a very long antenna. This reduces the effective radar 

beam width and achieves a higher resolution in flight direction (azimuth direction) in the radar 

image compared to a real beam width of the antenna.  

 
Figure 5: Imaging geometry of a space-based SAR sensor. 

Resolution in range and in azimuth 

A SAR system is characterized by its resolution in range (across-track) and azimuth (along-

track). The range resolution can be described by the slant range or by the ground range 

resolution. In order to distinguish two object points in the slant range, their signals must be 

spatially separable from each other. For this purpose, their transit times (t1 and t2) must differ 

from each other by at least the length of the pulse length t(|t2- t1| ≥τ). Thus, the resolution 

(Figure 6) at slant range for Real Aperture Radar (RAR) and SAR is calculated with c for the 

speed of light and pulse duration τ (Woodhouse 2006): 
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௦ݎ  = ∗τଶ       (1) 

 By projecting the slant range resolution with the angle of incidence θi on the ground, the 

resolution in ground range resolution can be obtained (Wooshouse 2006): 

𝑔ݎ  = ∗ τଶ௦𝑖θi      (2) 

 
The slant range resolution remains constant, independent of the range. However, in ground 

range coordinates, the ground resolution depends on the angle of incidence. The crucial 

parameter for ground range resolution is not the height of the sensor above the ground, but the 

length of the pulse duration τ.  

Therefore, reducing the pulse duration increases the resolution in the range direction. The pulse 

duration τ cannot be reduced arbitrarily in practice, since the energy to be sent increases with 

a shortening. The amount of energy is limited by the hardware. Technically, this is achieved by 

sending a much more extended, linear frequency-modulated signal instead of a short pulse. This 

signal is called chirp. After receiving this signal, it is converted into an equivalent short signal by 

the matched filter approach (Woodhouse 2006).  

 
Figure 6: Resolution in slant range and ground range. 

The azimuth resolution (ra) along the flight direction (along-track) corresponds with traditional 

RAR approximately to the width of the footprint in flight direction. Using the RAR system, a 

ground point is only acquired once. Therefore, two objects can only be distinguished if they are 

not in the same footprint. The azimuth resolution depends on the beam width of the antenna 

footprint 𝜑 (Figure 7), which is defined by the ratio between the wavelength ɉ of the transmitted 

pulses and the physical antenna length L: 𝜑 = 𝜆𝐿      (3) 

With this beam width, the geometric resolution of RAR results for a defined distance R on the 

ground to: 
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𝑎,ோ𝐴ோݎ = 𝑅 ∗ 𝜑 ≈ ோ∗ 𝜆𝐿       (4) 

 
Using a RAR system on a satellite would require a very large antenna for adequate beam width 

resolution. However, the antenna size is limited by the sensor carrier. The SAR principle 

significantly improves the azimuth resolution by artificially extending the antenna. Thereby the 

PRF is increased so that an object is illuminated almost continuously (Figure 7). The SAR system 

emits the waves with a large antenna beam width, which means that individual objects are 

detected several times during the flight. For SAR, the maximum resolution in azimuth radefined 

by: ݎ𝑎,ௌ𝐴ோ = 𝐿ଶ     (5) 

Since the azimuth resolution of SAR is determined by the length L of the half antenna, it is 

independent of the distance and wavelength. There are several approaches for the synthesis of 

the synthetic aperture and the merging of the individual images (Klausing and Holpp 2010). One 

approach is based on the Doppler effect. The Doppler effect takes advantage of the fact that every 

object on the Earth's surface is detected several times during a flight with a wide beam. Coherent 

characteristics of the signals as well as the known temporal pulse send and receiving sequences 

allow a subsequent phase-corrected processing, since the different single echoes of a ground 

objects can be separated by the Doppler frequencies of the backscattered signals (Raney 1998). 

The effective antenna length increases with increasing range, as targets on the ground are 

viewed more often in the far range than in the rear range. In Figure 7 point A is sampled less 

frequently compared to points B and C. Point C is most frequently scanned by the antenna beam 

width. Therefore, the ground range resolution increases with increasing distance from the 

sensor in range direction (Lillesand et al. 2015).  

 
Figure 7: Acquisition principle of a SAR sensor. 
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Radar equation and backscatter coefficient 

The received and recorded power (Pr) at the antenna of a SAR system can be transformed into 

a two-dimensional image (Bamler and Schättler 1993, Curlander and MacDonough 1991, 

Moreira et al. 2013). The power depends on the sensor and scattering properties of the 

illuminated object. Both variables influence the backscatter signal and can be described 

mathematically by the radar equation (Ulaby and Long 2015): 𝑃 = 𝑃𝑡𝐺మ𝜆మσሺସπሻయோర       (6) 

where Pt is s the emitted power, G is the antenna gain, ɉ the wavelength, R the distance to the target and σ represents the radar backscatter cross section. 
The radar cross-section σ[m2] is the backscattering of a discrete objects. This is a function of the 

scattering properties or the reflection behavior of the target object on the earth's surface. For 

the characterization of distributed targets in the context of Earth observation, the radar backscatter coefficient σ0 (normalized radar cross-section (NCS) or sigma naught) is used 

(Woodhouse 2006): σ0 = σ𝐴 [మమ]      (7) 

 

where A is the area over which the measurement is made. σ0 is usually expressed 

logarithmically in decibel [dB]. For the description of imaging radar products, this parameter is 

best suited to accurately estimate the normalized cross-sectional values for a given pixel. The 

radar backscattering coefficient describes the scattering characteristics of an object (Hein 

2004). 

Speckle effect 

A characteristic of radar images are the granular image structures, which also occur in 

homogeneous surfaces - the so-called speckle effect (Lillesand et al. 2015, Woodhouse 

2006). The occurrence of speckle is physically caused by a monochromatic imaging system, 

due to the fact that the emitted coherent radiation is scattered differently at the objects 

within the image pixel and reflected in different phases. Due to the backscatter at countless 

particles (distributed target) on the ground, the individual waves overlap coherently and 

thus interfere with each other. The recorded signal is thus a combination of different 

individual signals with different phases (Raney 1998). Due to the speckle effect, the 

backscatter intensity of a pixel is only slightly correlated with the physical conditions on the 

ground. As a result, homogeneous surfaces are not homogeneously imaged, but appear 

rather granular in the image. 

Speckle can be reduced by various digital image processing techniques, e.g. speckle filtering, 

which is crucial for adequate estimation of the backscattering coefficient σ0. Mostly, efforts 

are made to reduce the influence of speckle by averaging the intensity and phase 

information pixel by pixel. This can be achieved by so-called multi-look procedures during 

SAR acquisition and processing. Thereby, the subdivision of the synthetic aperture into 
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several independent apertures (single looks) allows the detection of a terrain object by 

multiple acquisitions, which are averaged to produce multi-looked image.This method 

reduces the geometric resolution of the individual looks (Bähr and Vögtle 1998). For the 

reduction of the speckle effect different filter methods are used (e.g. Frost et al. 1982, Lee 

1981, Lee and Pottier 2009).   

Geometric effects (Layover, Shadowing and foreshortening) 

Using the SAR system, objects can only be distinguished if the reflected pulses arrive at the 

sensor with a time delay. A resolution depending on the angle of incidence, as it is usual with 

optical sensors, is not possible without a side looking antenna. Therefore, the SAR sensor can 

never look down vertically (nadir), but has to look at the area diagonally from the side (side-

looking). This results in some effects that complicate the interpretation of a radar image. Figure 

8 shows schematically the predominantly occurring geometric effects in a SAR system. Slopes 

that face the sensor cause a shift from elevated terrain to the sensor. The side facing sensor 

shrinks to a fragment of its actual length. This effect is called foreshortening. Thereby, the energy 

of many scatters is compressed within few image pixels and the surface, which is directed 

towards the sensor, appears bright in the SAR image. Layover is an extreme form of the 

foreshortening effect, where the signal from the top of an object (mountain, building) reaches 

the sensor before that of the base. Areas facing away from the sensor or located behind steep 

walls or human buildings are not illuminated. Consequently, the objects hidden behind cannot 

be displayed because no backscatter return is therefore received from that shadow region 

(Ulaby and Long 2015). 

 
Figure 8: Geometric and radiometric relief distortions. 

As long as the landscape is quite flat, the distortions are hardly noticeable. However, if the 

landscape has a strong relief, whether natural or man-made, the distortions occur (Woodhouse 

2006). 

The Foreshortening effect can be compensated with the help of an elevation model (Bayanudin 

and Jatmiko 2016). The finer the resolution of the elevation model used, the more detailed the 

geometric effects can be modeled. Layover can only be decomposed in exceptional cases if the 

signatures of the overlapping objects are known. However, a shadow cannot be removed 

mathematically due to a lack of information. In order to fill these gaps with image material, 

further acquisitions from other angles are required. 
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System specific imaging parameters (wavelength, polarization, incidence angle) 

The representation of the earth's surface in radar images depends on the interaction of various 

individual factors. These are on the one hand the parameters of the acquisition system and on 

the other hand parameters of the terrain surface. The system parameters (sensor parameters) 

include the wavelength and frequency of the transmitted radiation, the polarization and the 

incidence angle (Ulaby and Long 2015). 

In radar remote sensing, the wavelength [cm] or frequency range [GHz] between 0.75 cm and 

100.0 cm or 40.0 GHz and 0.3 GHz is used. Above a wavelength of approx. 2 cm, microwave 

radiation can penetrate the atmosphere almost unaffected, even in cloudy conditions. Only 

strong rain events can affect the transmissivity of the radar signal up to a wavelength of approx. 

4 cm. The wavelength determines the percentage of different types of scattering on certain 

object surfaces as well as the penetration depth of the waves and the signal attenuation in 

media such as vegetation or soil (Ulaby and Long 2015). In general, radar signals of lower 

frequencies are characterized by a higher capacity to penetrate media. Therefore, C-band 

and X-band SAR are preferred for the analysis of surface structures, while L-band SAR is 

preferred for the detection of structures below the surface (Lillesand et al. 2015). 

The polarization of an electromagnetic wave is defined by the direction of the electric field 

(Bhatta 2011). Radar systems have the ability to transmit and receive electromagnetic 

waves in vertical (V) and horizontal (H) polarization planes. Like-polarised systems 

transmit and receive in the same polarization (VV and HH). The cross-polarised systems 

transmit in horizontal or vertical planes and receive the signals in the other plane (VH and 

HV) (Bhatta 2011, Lillesand et al. 2015). Radar systems can be equipped with single, 

multiple or fully polarized systems. A single polarized system captures information only in 

one transmitted and received polarization combination, while a multiple system allows to 

combine different channels. A fully polarized system is defined as a system in which the 

polarimetric phase information is stored in addition to the backscatter intensity. It allows 

the complete description of the scattering behavior of a terrain object by measuring a 

complex scattering matrix containing the scattering mechanisms and the scattering 

heterogeneity. The basics of polarimetry and its possible applications are discussed in Ulaby 

et al. (2015) and in Lee and Pottier (2009). Depending on the object properties, such as 

characteristic geometrical shape, different polarized radar beams are scattered differently 

and thus show different backscattering behavior.  The incidence angle θi is another relevant sensor parameter which is located between the 

nadir and the incident radar beam (Figure 5). This is supplemented by the depression angle θd at 90°. While the incidence angle is defined for a plane earth, the local incidence angle θloc 

takes the local terrain slope into account (Figure 9). This is defined as the angle between the radar beam and the surface normal. Since θloc depends on the orientation and slope of the 

terrain surface as well as on the incidence angle, it can be regarded as a system parameter 

as well as an object parameter. In addition, the interaction between the target and the 

electromagnetic (EM) wave depends on the incidence angle. The sensitivity of the signal to 

surface roughness or the contribution of the vegetation crown to the radar signal increases 

with the angle of incidence (Townsend 2001). 
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Figure 9: Local imaging geometry. 

Object-specific parameters 

Due to the interaction of radar radiation with objects on the earth's surface, various object-

specific parameters influence the backscatter coefficient. The backscatter information can then 

be used to draw conclusions about certain properties of the surfaces analyzed. Besides the 

system parameters, the roughness characteristic and the dielectric properties of the object 

are significant. 

Roughness characteristics is one of the dominant factors influencing the visual representation 

of a feature on radar images. In this context, roughness means the smoothness of the target in 

terms of wavelength and incidence angle (Lewis et al. 1998, Woodhouse 2006). At different 

frequencies and at different incidence angles the same surface shows different roughness. 

When a smooth surface is hit by radiation, it is reflected away from the sensor by Snell's law 

(Figure 10). As a result, it tends to appear very dark in radar images. With increasing roughness, 

the proportion of diffuse scattering is greater. The incident energy is scattered in all directions 

and a significant part is returned to the sensor. With increasing roughness of a surface, the 

scattered element increases, while the reflected element of the signal decreases (Figure 10). 

With a very rough (Lambertian) surface, the energy is evenly scattered in all directions (Ulaby 

and Long 2015). In addition to the roughness itself, the wavelength (ɉ) and the incidence angle 

(θi) or the local incidence angle (θloc) determine the intensity of backscattering to the sensor. 

 
Figure 10: Radar reflection at a) smooth, b) moderately roughened and c) strongly roughened surfaces 

modified after Lillesand et al. (2015). 

The Rayleigh criterion describes the relationship between these parameters and also allows to 

verify whether a surface is rough at a given wavelength and incidence angle. The Rayleigh 

criterion is expressed as follows: 
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ݏ > λ8௦θ𝑙𝑜𝑐      (8) 

where s is the mean square height of the surface variations.  

For natural surfaces, the Rayleigh criterion is often not strict enough, since the surfaces have a 

roughness spectrum similar to the wavelength, which leads to more frequent scattering. A 

stricter criterion, such as the Fraunhofer criterion proposed by Ulaby and Long (2015), is 

required:  ݏ > λଷଶ௦θ𝑙𝑜𝑐     (9) 

According to Rayleigh and the Fraunhofer criteria, a surface is rough once the phase difference 

ΔФ between two reflected waves is greater than π/2radiant or π/8 radiant (Woodhouse 2006).  

The scattering and absorption of radar radiation through a medium is strongly dependent on its 

dielectric properties. These are described by a complex dielectric constant ε, which is a measure 

for the interaction of electromagnetic radiation with a material and for the polarizability of the 

media, respectively (Raney 1998). It is mathematically described by a real component ε'' and 

an imaginary or image component ε''. The real component defines the degree of reflection at the 

transition of the radiation beams from one medium to another. The imaginary component 

represents the loss factor and describes the attenuation of the signal in the respective medium. 

The greater the contrast between the dielectric constants ε of two media, the stronger is the 

interaction of electromagnetic waves at the boundary between the two media and thus the radar 

backscattering (Bayer and Winter 1990). For the microwave range, most natural dry 

materials have a low value of ε΄ between 3 and 8, while the dielectric constant of e.g. water 

is very high (ε΄ = 80). Therefore materials with increased water content, but also metals, 

have a much higher dielectric constant (Lillesand et al. 2015, Ulaby and Long 2015). The 

dielectric properties of natural media are essentially determined by their water content 

(Dobson et al. 1995). This means that variations in soil moisture and plant water content have 

an effect on the dielectric properties and backscattering properties of these area. The dielectric 

constant of the soil depends not only on the soil moisture but also on the soil type and the 

frequency of the radar radiation (Ulaby and Long 2015). In general, the greater the roughness 

and the dielectric constant of the detected object, the stronger the radar backscatter signal 

(Kiage et al. 2005). 

2.3   Sentinel-1 

For this work spaceborne C-band (5.405 GHz) SAR data of the S-1 sensor were primarily used, 

which belongs to the Sentinel satellite series. These are Earth observation satellites of the 

Copernicus Program (formerly Global Monitoring for Environment and Security (GMES)) of 

European Space Agency (ESA)(Copernicus 2018). The S-1 mission is designed as a two-satellite 

constellation (Sentinel-1A and Sentinel-1B). The two satellites were launched on 3 April 2014 

and 25 April 2016 respectively (ESA 2018b). Thereby, the two identical satellites operate in a 

near-polar, sun-synchronous orbit plane with 180° orbital phasing difference and at an altitude 

of almost 700 km. A single S-1 satellite is potentially able to map the global landmasses in the 
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Interferometric Wide Swath Mode (IW) once every 12 days, in a single pass (ascending or 

descending). The configuration of two satellites optimizes coverage and provides a global 

revision time of only six days. The Sentinel constellation is a dual polarised SAR system that also 

preserves the phase information. The acquisition can be performed in single polarization (HH 

or VV) mode as well as dual polarization (HH+HV or VV+VH) modes. The S-1 data is available 

free of charge and can be downloaded via the Sentinel Data Hub (ESA 2018a). S-1 data products 

acquired in Stripmap Mode (SM), IW mode, Extra Wide Swath Mode (EW), and Wave Mode (WV) 

(Table 1). SM mode is only used for extraordinary situations such as emergency management or 

for the detection of small islands. The monitoring of large-scale coastal areas, including shipping, 

oil spills and sea ice, is primarily carried out in EW mode. The IW and the WV modes allow 

conflict-free global coverage of the earth's surface via land with VV+VH and via open ocean with 

VV polarization respectively. Doppler centroid estimated, single look complex focused S-1 data 

are used in this work, additionally including image post-processing step for generation of the 

products Single Look Complex (SLC) and Ground Range Detected (GRD). While the SLC products 

(Table 2Fehler! Verweisquelle konnte nicht gefunden werden.) preserve the phase 

information and maintain the natural pixel spacing, the GRD products (Table 3) contain only the 

detected amplitude and are multi-looked to reduce the effects of speckle (ESA 2018b). 

Table 1: Characteristics of SM, IW and EW modes. 

 SM IW EW 
Scene width 80 km 250 km 410 km 
Incidence angle range 
(full performance) 

18.3° - 46.8° 29.1° - 46.0° 
 

21.6° - 25.1° 
34.8° - 38.0° 

Polarization Dual HH+HV, VV+VH 
Single HH, VV 

Dual HH+HV, VV+VH 
Single HH, VV 

Single HH, VV  

Table 2: Acquisition resolution Level-1 SLC. 

Mode Resolution (rg x az) Pixel spacing (rg x az) 
SM 1.7 x 4.3 m to 3.6 x 4.9 m 1.5 x 3.6 m to 3.1 x 4.1 m 
IW 2.7 x 22.0 m to 3.5 x 22.0 m 2.3 x 14.1 m 
EW 7.9 x 43.0 m to 15.0 x 43.0 m 5.9 x 19.9 m 

Table 3: High resolution Level-1 GRD. 

Mode Resolution (rg x az) Pixel spacing (rg x az) 
SM 23x23 m 10x10 m 
IW 20x22 m 10x10 m 
EW 50x50 m 25x25 m 

3   Interactions between SAR signal and 

open and vegetation covered water bodies 

3.1   Backscatter behavior of radar waves 

The total radiation captured by the sensor is the sum of the various complex scattering 

processes, which are dependent on the system and object parameters (Section 2.2) These 
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contribute differently to the backscatter coefficient (Figure 11). Two scattering mechanisms are 

distinguished in the interaction of radiation at the surface. The first is surface scattering, which 

takes place at the boundary layer of two media with different homogeneous dielectric properties 

(Ulaby and Long 2015). Thereby, the microwaves are partly absorbed and reflected (specular 

reflection) or diffusely scattered (diffuse surface scattering) depending on the properties of 

the lower medium. The second main scattering mechanism is volume scattering, which occurs 

in dielectrically inhomogeneous media, into which microwave radiation can penetrate. This is 

particularly the case for vegetation (diffuse volume scattering). A special case of surface 

scattering is corner reflection (double bounce), which occurs when a wave hits two flat 

surfaces at a 90° angle to each other. Thereby, the emitted radiation is reflected back to the radar 

sensor, which leads to a high backscatter value (Woodhouse 2006). These double or multiple 

specular reflections occur, for example, between the ground/water surface and tree 

trunks/vegetation stems or between streets and houses. 

 
Figure 11: Scattering mechanisms between microwaves and the land surface: a). specular reflection, b) diffuse 

surface scattering, c) corner reflection (double bounce), d). diffuse volume scattering. 

3.2   Open water 

The ideal condition for detecting open inland water surfaces is when the water surface is 

smoother than the surrounding land surface in terms of wavelength and incidence angle. The 

smooth open water surface (Figure 10) with a high dielectric constant can easily be detected 

by the radar data, as it acts like a specular reflector reflecting the radar energy away from the 

sensor (Ulaby and Long 2015). As a result, only a very small portion of the signal returns, 

resulting in relatively dark pixels in the radar image. These provide a strong contrast to the 

rougher land surfaces/non-water surfaces, which are dominated by diffuse scattering and have 

higher backscattering values. With increasing incidence angle, the contrast between land and 

water increases, as steep angles imply low backscatter values (Mouginis 2017). With longer 

wavelengths, the sensitivity to diffuse scattering decreases and objects on land can appear 

smoother, increasing the probability of confusion between land and water surfaces. 

Furthermore, increased surface roughness of the water due to waves or precipitation reduces 

the ability to distinguish between water and land surfaces. An increasing roughness causes a 

higher backscatter signal and thus an increased backscatter intensity.  
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3.3   Temporary flooded vegetation 

The signal backscatter from the TFV is very complex and depends strongly on the wavelength, 

polarizations, incidence angle, roughness, dielectric constant of the vegetation and the ground 

surface. The main advantage of SAR technology is the ability to detect TFV due to its capability 

to penetrate the vegetation canopy depending on the wavelength and its sensitivity to smooth 

water underneath the vegetation. The presence of water underneath vegetated areas can induce 

a significant increase of backscatter values due to the double- or multi-bounce interaction 

between the specularly reflecting water surface and vertical structures of the vegetation, such 

as trunks and stems (Figure 12) (Moser et al. 2016, Pulvirenti et al. 2011a, Pulvirenti et al. 2012). 

The interaction of the sensor and environmental parameters can be described by theoretical 

scattering models. According to Bourgeau-Chavez et al. (1997) and Ulaby et al. (2015) the total 

radar backscattering coefficient (σ0,h) of wetlands, dominated by herbaceous vegetation, can be 

simplified by a two-layer model (canopy and surface layer): σ0,ℎ = σ0,+𝜏ଶሺσ0,௦ + σ0,ሻ      (10) 

where 
 
 σ0,c is the canopy backscatter coefficient (volume scattering); 
 τc is the transmission coefficient of the vegetation canopy; 
 σ0,s is the ground surface backscatter coefficient (surface scattering); σ0,m is the multi-path backscatter coefficient between the ground and the vegetation (multi-

bounce scattering). 
 

For a forest or woody dominated landscape, a three-layer model (canopy, trunk and surface 

layer) can be used. The total backscatter coefficient from woody vegetation is expressed as 

(Kasischke and Bourgeau-Chavez 1997, Townsend 2002, Wang et al. 1995): 

 σ0,𝑤 = σ0,+𝜏ଶ𝜏ଶ௧ሺσ0,௦ + σ0, + σ0,௧ + σ0,ௗሻ     (11) 
 

where σ0,c is the canopy backscatter coefficient (volume scattering); 
 τc is the transmission coefficient of the vegetation canopy; τt is the transmission coefficient of the vegetation canopy; 
 σ0,s is the ground surface backscatter coefficient (surface scattering); σ0,m is the multi-path backscatter coefficient between the ground and the vegetation  

(multi-bounce scattering); σ0,t is the backscatter coefficient from the trunk layer (surface scattering); σ0,d is the double-bounce backscatter coefficient between surface and tree trunk  
(double-bounce scattering). 

The elements of the two-layer and three-layer model are shown in Figure 12. Overall, the 

backscatter from vegetation include the scattering from the canopy as well as the soil surface. 

The backscatter of the vegetation canopy is dominated by volume scattering, as it contains many 

individual scatterers in the form of leaves, needles and branches. In addition, the contribution 

involves the interactions from both the soil and the canopy as multiple- or double-bounce 

scattering. 

The condition of the ground layer is relevant for the detection of flooded vegetation. During 

standing water condition, the roughness of the ground decreases and the radiation is reflected 
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away from the sensor because of the specular smooth water surface. If this reflected radiation 

hits vertical structures such as stems or tree trunks, this can lead to multi- or double bounce 

scattering and thus to an increase in the backscattering values, which suggests the presence of 

water underneath the vegetation. The ability to detect flood under the vegetation depends on 

the transmittance ȋτc and τt) of microwave energy through the canopy layer and also on the 

canopy layer itself. In general, it should be noted that the factors leaf sizes, its shape and 

orientation, spatial variations in tree heights, density, basal area and species composition can 

cause significant spatial differences in the ability to detect inundation underneath the vegetation 

(Townsend 2002). In addition, the transmittance depends strongly on the sensor parameters, 

such as wavelength, polarization and incidence angle. The effects of sensor characteristics, 

environmental conditions, and their interactions on the SAR signal regarding flooded vegetation 

are described in detail in Section 4.1. 

 
Figure 12: The elements of the two-layer and three-layer model with sources of scattering for non-woody 
vegetation and woody vegetation, respectively (modified after Kasischke and Bourgeau-Chavez (1997)). 
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4   Scientific publications 

This work is a collection of research results obtained in recent years regarding the temporary 

flooded vegetation, which were published in several papers. The synthesis is carried out to 

answer the research questions described in the previous section. The work consists of three 

papers which have been published in relevant journals. Two of these papers were published in 

international peer-review journals, while a further paper was submitted to a peer-review 

journal and is currently under review. The first paper allows to situate the work within the 

research context, shows the potential and limitation of SAR time series data for flood detection 

with the focus on the derivation of TFV and points out the of future research needs. The second 

paper presents the new methodology for flood area detection with a focus on TFV based on dual-

polarized S-1 C-band time series data and ancillary information. The method is applied to an 

example study area. The last paper examines the transferability of the developed approach to 

other study areas and different TFV types.  

4.1   Paper I: SAR-based Detection of Flooded Vegetation – A 

Review of Characteristics and Approaches 

Tsyganskaya, V., Martinis S., Marzahn P., and Ludwig. R. 2018. 'SAR-based detection of flooded 

vegetation – a review of characteristics and approaches'. In: International Journal of Remote 

Sensing. 39 (8). 2255–2293. 

For a fundamental understanding of the influence of sensor- and object parameters on the 

backscatter coefficient regarding the flooded vegetation, a comprehensive review about the 

effects of sensor characteristics, environmental conditions, and their interactions on the SAR 

signal for the identification of flooded vegetation are described in Paper I. Furthermore, an 

overview of the state of the art in relation to the data sets and algorithms for the extraction of 

flooded vegetation is provided in the same publication showing their benefits, limitations and 

methodological trends. Above all, this paper gives the state of the art of the used SAR data sets 

and approaches regarding the detection of flooded vegetation and points out the potential 

research needs in this field.  

 

Author’s contributions: All authors contributed to the concept of the study, while all research, 

information collection, analysis and evaluation were performed by V. Tsyganskaya. The first 

version of the manuscript was written by V. Tsyganskaya, while all authors contributed with 

valuable input and expertise to the final document. 

Status: published 

Journal: International Journal of Remote Sensing (Taylor & Francis) 
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ABSTRACT

The ability of synthetic aperture radar (SAR) to detect flooded
vegetation (FV) (the temporary or permanent occurrence of water-
bodies underneath vegetated areas) offers a great benefit in the
research fields of flood and wetland monitoring. The growing
demand for near real-time information in flood monitoring and
an increased awareness of the importance of wetland ecosystems
are strong drivers for the ongoing research in these fields, where
FV constitutes an essential part. This study reviewed 128 publica-
tions summarizing the knowledge about the relationships
between the SAR parameters and the environmental conditions
for the detection of FV. An advanced review of 83 studies was
carried out to gain insights about applied classification techniques
and SAR data for the extraction of FV. Although some trends
emerged about which wavelengths, polarisations, or incidence
angles to use, there is variation in the application of different
classification techniques or using SAR-derived information
depending on the data sets and the study area. Notable through-
out the analysed articles is the growing demand for unsupervised
and computationally efficient methods of higher accuracy for the
extraction of FV. Based on the advances in SAR with regard to
spatial and temporal resolution, the development of robust
approaches for the extraction of FV from various and complex
environments has to be further pursued.
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1. Introduction

Detection and extraction of flooded vegetation (FV) is of particular importance for two
application fields: wetland and flood monitoring. Wetlands comprise open water areas,
as well as different types of FV (e.g. emerging woody, herbaceous vegetation) (White
et al. 2015), which can be permanently or seasonally flooded. Wetlands are important
ecosystems providing many essential services, such as flood control, sediment storage,
wildlife habitat, filtering of contaminants, recreation, aesthetic value, and others
(Millennium Ecosystem Assessment 2005). Despite these benefits, wetlands have been
extensively converted to agriculture areas worldwide (Asselen et al. 2013) and
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furthermore are endangered by climate change (Erwin 2009). Continuous monitoring of
changes in wetlands contributes to their protection.

In comparison to wetland monitoring, detecting FV for flood monitoring is a relatively
young field. Besides the detection of open waterbodies, the focus lies on the extraction of
FV. The availability of detailed near real-time information about the extent of inundation
areas at large scales is a significant data source for many institutions, such as humanitarian
relief organizations, decision makers for crisis management or insurance companies. In
contrast to open flood surfaces, there is little research on the detection of flooded areas
underneath vegetation. However, the disregard of FV can lead to an underestimation of
the extent of an inundation, which may lead to higher risk to human lives and damage of
their properties. Furthermore, flood affects agricultural areas worldwide, entailing enor-
mous economic losses (Trujillo 2015). These possible impacts show the importance to
continue the investigations in the field of FV as a part of wetland detection and flood
monitoring.

The terminology and definition of FV vary from survey to survey, depending on its
scope and study area. Terms such as partially submerged vegetation (Martinis und Rieke
2015) or FV (e.g. Pierdicca et al. 2008; Pulvirenti et al. 2013; Pulvirenti et al. 2016; Martinez
und Le Toan 2007; Martinis und Twele 2010) can be found in the corresponding literature.
The designation FV is used to describe unspecified types of FV or as an umbrella term for
different vegetation types (e.g. standing water underneath forested or in between agri-
cultural areas) (Betbeder et al. 2014; Schlaffer et al. 2016). In the scope of this review, the
term FV describes the temporary or permanent occurrence of a water surface beneath a
vegetation canopy; however, it does not consider vegetation areas, which are completely
covered by water. In agricultural or herbaceous areas, the leaves or stems of the plants
visibly emerge above the water surface. In forests or tree stands, standing water can occur
underneath the vegetation canopy during flood conditions. FV summarizes different terms
related to the aforementioned definition used in the reviewed literature.

Synthetic aperture radar (SAR) is a well-known and well-established tool for the
extraction of FV from space due to numerous advantages. In comparison to optical
sensors, the SAR systems use longer wavelengths of the electromagnetic spectrum,
allowing cloud penetration and therefore weather independent image acquisition.
Furthermore, SAR systems are active sensors, transmitting and receiving their own
electromagnetic impulses, which allows operations independent of daylight (Klemas
2013; Betbeder et al. 2014). A relatively high energy supply is required for SAR observa-
tions, which can be a restricting factor for the availability of SAR time series data and
even for the acquisition of single images in some regions in the world. However, the
recently launched C-band Sentinel-1 and L-band ALOS-2 satellite missions may now
overcome this limitation and therefore provide a possibility for continuous monitoring
of ground features and their changes over time with short revisit times (White et al.
2015). The main advantage of SAR technology, however, is the ability to detect FV due
to its capability to penetrate the vegetation canopy to a certain extent depending on
the wavelength and its sensitivity to water underneath the vegetation. SAR backscatter
intensity (BI) values can significantly increase during the presence of water underneath
vegetated areas due to the double- or multi-bounce interaction between the specularly
reflecting water surface and vertical structures of the vegetation, such as trunks and
stems (Moser et al. 2016; Pulvirenti et al. 2013; Pulvirenti et al. 2011a).
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While there are clear advantages of SAR data regarding the detection of FV, there
are a number of challenges regarding SAR image analysis and its interpretation, as
well as limitations, particularly for FV mapping. Speckle, which is inherent to all SAR
imagery, may lead to uncertainties in measurements and may consequently result in
a decrease of the classification accuracy. This effect can be mitigated using spatial or
temporal speckle filters (Lopes, Touzi, and Nezry 1990; Quegan und Yu 2001). Further
limitations appear in hilly regions due to geometric and radiometric effects (e.g.
foreshortening and layover) occurring in side-looking systems such as SAR (White
et al. 2015). These effects increase with small look angles and steep slopes. A
correction of these effects has to be applied to reduce their influence.
Furthermore, the enhancement caused by double-bounce, as discussed before, is
not always detectable depending on the environmental parameters (e.g. above-
ground biomass) and sensor characteristics (e.g. wavelength). Finally, backscatter
intensities of FV can be similar to the backscatter intensities of urban areas and
bare soil areas with high-moisture content. This can result in confusion with FV and
misclassification (Chapman et al. 2015; Pulvirenti et al. 2016). In summary, dealing
with SAR data can be a challenging task; however, it also constitutes a great
opportunity for the mapping of FV due to the aforementioned advantages, if the
complexity of these data is well understood.

Overviews and reviews about the potential and capability of SAR systems for the
detection of FV have been provided in the research fields of wetland and flood monitoring.
These reports summarize the knowledge about the relationships between the sensor
parameters (wavelength, polarisation, incidence angle) and environmental conditions (e.g.
vegetation type, phenology of plants, soil moisture). Useful status reports have been
provided by Hess, Melack, and Simonett (1990), Hall (1996), Schmullius and Evans (1997),
Henderson and Lewis (2008), and Silva e al. (2008). Analysis and classification methods for
the detection of FV have been summarized by Henderson and Lewis (2008). In addition,
there have been more recent reviews briefly and fragmentarily discussing the detection of
FV, as part of a more general overview (White et al. 2015) or in a context of a specific topic,
such as object-based analysis in wetlands (Dronova 2015) or sensing of mangrove ecosys-
tems (Kuenzer et al. 2011), emergent and submerged wetlands (Klemas 2013), and flood
inundation with microwaves (Schumann und Moller 2015).

The technical progress of SAR systems and the advances in computer technology
have led to an intensive effort to develop suitable algorithms for the extraction of FV
from SAR imagery over the last decades. Furthermore, the growing demand for near
real-time information in flood monitoring and an increased awareness of the importance
of wetland ecosystems are strong drivers for ongoing research in these fields, where FV
constitutes an essential part. This article aims to provide a comprehensive and current
status of the possibilities regarding the detection and extraction of FV for both flood and
wetland monitoring. The following objectives are addressed,

● to give an overview of sensor characteristics and environmental conditions and
their effects on the SAR signal regarding the detection of FV,

● to review the current state of the art of the classification algorithms applied to
various SAR data sets for the extraction of FV, and

● to demonstrate benefits and limitations of existing methods.
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The article is composed of five sections. Section 2 describes the literature selection on
which the analyses are based. Section 3 provides an overview of the knowledge about
the relationship between SAR parameters (e.g. wavelength, polarisation, incidence
angle) and environmental parameters (e.g. aboveground biomass, water level) related
to FV. Section 4 addresses various SAR data sets, the specifications of the classification
algorithms including their different tasks and their respective benefits and limitations.
Section 5 summarizes and concludes the aforementioned findings and illustrates future
trends as well as needs for improved extraction of FV.

2. Methodology

For identification of relevant publications, a combination of key terms linked to FV, their
synonyms, and related terms (Table 1) were applied as structured queries for the period
from 1 January 1985 to 26 July 2016 using Web of Science (http://apps.webofknowledge.
com/) as a search engine. An initial gross selection of 547 results was determined after the
search restriction to articles and reviews. Further selection was conducted based on the
abstract of these articles. Studies were excluded where key terms were present, but that
did not refer to any form of radar data application as data source alone or in combination
with other information (e.g. optical data, elevation) for the analysis or/and detection of the
temporal or permanent occurrence beneath vegetated areas. Studies that did not address
any form of FV, e.g. studies on vegetation only or addressing open water alone, were also
excluded. The resulting set of studies containing 128 articles (Appendix 1) was then used
to give an overview about effects on the SAR signal by sensor characteristics (wavelength,
polarisation, incidence angle), environmental parameters (e.g. aboveground biomass, soil
moisture, water depth), and their interaction.

An advanced selection was performed for the identification of studies, which applied
classification algorithms for the extraction of FV. Based on this search, 83 studies were
determined, published in the period from 1994 to July 2016 (Table 2). This new set of
articles provides an overview of the diversity of applied data sets and classification algo-
rithms aiming at the extraction of FV. The data sets include various SAR-derived informa-
tion (BI, polarimetric parameters [PPs], and interferometric coherence [IC]). Furthermore,
the classification algorithms differ regarding the level of classification (pixel or segment
based) and the temporal frequency of the applied SAR data, which is investigated by
categorizing the studies into single date, change detection, order-independent multi-date,
and time series approaches. The identified classification algorithms are categorized into
various groups to demonstrate the diversity of applied methods, their number of occur-
rences in the studies, and their requirements for preliminary information, such as training
samples (supervised or unsupervised approaches). Their benefits and limitations are

Table 1. Search key words applied to select studies for this review and the initial number of results
for each combination of key words.

Key words (topics)
Number of
results

Number of results (articles
and reviews)

(radar OR microwave* OR SAR*) AND (flood* OR inundat*) AND (‘flooded
vegetation’ OR forest* OR agricultur*) AND (classif* OR mapp* OR extract*)

265 186

(radar OR microwave* OR SAR*) AND wetland* AND
(classif* OR mapp* OR extract*)

483 361

2258 V. TSYGANSKAYA ET AL.

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



T
a
b
le

2
.
Ei
g
h
ty
-t
h
re
e
se
le
ct
ed

SA
R
re
m
o
te
-s
en
si
n
g
st
u
d
ie
s
o
f
FV
.

St
u
d
y

ID
R
ef
er
en
ce

Se
n
so
r

W
av
el
en
g
th

P
o
la
ri
za
ti
o
n

In
ci
d
en
ce

an
g
le

P
FV

ty
p
es

Lo
ca
ti
o
n

1
A
lle
n
,
W
an
g
,
an
d
G
o
re

(2
0
1
3
)

A
LO

S
P
A
LS
A
R

L
H
H
,
H
V

U
n
sp
ec
ifi
ed

W
et
la
n
d

C
ar
o
lin
a,
U
SA

2
A
rn
es
en

et
al
.
( 2
0
1
3
)

A
LO

S
P
A
LS
A
R

L
H
H

2
8
°–
3
5
°

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

3
A
u
g
u
st
ei
jn

an
d
W
ar
re
n
d
er

(1
9
9
8
)

A
ir
b
o
rn
e
Im
ag
in
g
R
ad
ar

SA
R

C
,
L,
P

H
H
,
H
V
,

H
V
,
V
V

2
1
°–
3
4
°

Fo
re
st
ed

w
et
la
n
d
s

M
ar
yl
an
d
,
C
an
ad
a

4
B
ag
h
d
ad
i
et
.
al
.
(2
0
0
1
)

A
ir
b
o
rn
e
(S
A
R
-5
8
0
)
ER
S-
2
;
R
A
D
A
R
SA

T-
1

C
H
H
,
H
V
,

H
V
,
V
V

1
0
°–
6
0
°

W
et
la
n
d

O
n
ta
ri
o
,
C
an
ad
a

5
B
et
b
ed
er

et
al
.
( 2
0
1
4
)

Te
rr
aS
A
R
-X

X
H
H
,
V
V

3
7
°

Fo
re
st
ed

w
et
la
n
d
s

Fr
an
ce
,
Eu
ro
p
e

6
B
et
b
ed
er

et
al
.
(2
0
1
5
)

Te
rr
aS
A
R
-X

X
H
H
,V
V

3
7
°

W
et
la
n
d

Fr
an
ce
,
Eu
ro
p
e

7
B
ia
n
et

al
.
( 2
0
1
6
)

A
LO

S
P
A
LS
A
R

L
H
H
,
H
V

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

fo
re
st

C
h
an
g
ch
u
n
,
C
h
in
a

8
B
o
u
rg
ea
u
-C
h
av
ez

et
al
.
(2
0
0
1
)

Sh
u
tt
le

Im
ag
in
g
R
ad
ar
-C
,
ER
S-
1
,
R
A
D
A
R
SA

T-
1
,

JE
R
S-
1
,
EN

V
IS
A
T
A
SA

R
,
R
A
D
A
R
SA

T-
2

L,
C

H
H
,
H
V
,

H
V
,
V
V

2
5
°

Fo
re
st
ed

w
et
la
n
d
s

V
ir
g
in
ia
,
U
SA

9
B
o
u
rg
ea
u
-C
h
av
ez

et
al
.
( 2
0
0
9
)

JE
R
S-
1
,
R
A
D
A
R
SA

T-
1
,

ER
S-
1
,
P
A
LS
A
R

L,
C

H
H
,
V
V
,
H
V

3
5
°,
2
3
°,
4
7
°

W
et
la
n
d
,
fl
o
o
d
ed

fo
re
st

G
re
at
e
La
ke
s,
C
an
ad
a

1
0

B
o
u
rg
ea
u
-C
h
av
ez

et
al
.
(2
0
1
6
)

A
LO

S
P
A
LS
A
R
,
R
A
D
A
R
SA

T-
2

L,
C

H
H

3
4
°,
4
2
°,
1
9
°,
2
4
°

Fo
re
st
ed

w
et
la
n
d
s

M
ic
h
ig
an
,
U
SA

1
1

B
o
u
ve
t
an
d
Le

To
an

(2
0
1
1
)

EN
V
IS
A
T

C
H
H

1
7
°–
4
2
°

R
ic
e
p
ad
d
ie
s

V
ie
tn
am

,
A
si
an

1
2

B
ri
sc
o
et

al
.
( 2
0
1
1
)

A
ir
b
o
rn
e
(S
A
R
-5
8
0
),
Si
m
u
la
te
d
R
A
D
A
R
SA

T-
2

C
H
H
,
H
V
,

H
V
,
V
V

4
5
°–
6
0
°

W
et
la
n
d

M
an
it
o
b
a,
C
an
ad
a

1
3

B
ri
sc
o
et

al
.
(2
0
1
3
b
)

R
A
D
A
R
SA

T-
2

C
H
H
,
H
V
,

H
V
,
V
V

2
6
°,
3
6
°,
4
1
°

R
ic
e,
W
et
la
n
d

C
h
in
a,
A
si
an

1
4

B
w
an
g
o
y
et

al
.
(2
0
1
0
)

JE
R
S-
1

L
H
H

3
7
°

W
et
la
n
d

C
o
n
g
o
,
A
fr
ic
a

1
5

C
az
al
s
et

al
.
( 2
0
1
6
)

Se
n
ti
n
el
-1

C
V
V
,
V
H

3
6
°–
4
2
°

Fl
o
o
d
ed

ve
g
et
at
io
n

Fr
en
ch
,
Eu
ro
p
e

1
6

C
h
ap
m
an

et
al
.
(2
0
1
5
)

A
LO

S
P
A
LS
A
R

L
H
H

3
5
°

Fl
o
o
d
ed

ve
g
et
at
io
n

So
u
th

A
m
er
ic
a

1
7

C
h
en

et
al
.
(2
0
1
4
)

A
LO

S
P
A
LS
A
R

L
H
H
,
H
V
,

V
H
,
V
V

2
4
°

W
et
la
n
d

Y
an
ch
en
g
,
C
h
in
a

1
8

C
o
rc
o
ra
n
et

al
.
(2
0
1
2
)

R
A
D
A
R
SA

T-
2

C
H
H
,
H
V
,

V
H
,
V
V

2
6
°,
2
8
°

W
et
la
n
d

M
in
n
es
o
ta
,
U
SA

1
9

C
o
rd
ei
ro

an
d
R
o
ss
et
ti
( 2
0
1
5
)

A
LO

S
P
A
LS
A
R

L
H
H
,
V
H

U
n
sp
ec
ifi
ed

W
et
la
n
d

B
ra
zi
l,
So
u
th

A
m
er
ic
a

2
0

C
o
st
a
et

al
.
( 1
9
9
7
)

R
A
D
A
R
SA

T-
1
,
JE
R
S-
1

C
,
L

H
H

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

2
1

C
o
st
a
et

al
.
(2
0
0
2
)

R
A
D
A
R
SA

T-
1
,
JE
R
S-
1

C
,
L

H
H

4
3
°;
3
5
°

Fl
o
o
d
ed

fo
re
st

B
ra
zi
lia
n
,
So
u
th

A
m
er
ic
a

2
2

C
o
st
a
( 2
0
0
4
)

R
A
D
A
R
SA

T-
1
,
JE
R
S-
1

C
,
L

H
H

4
3
°,
3
5
°

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

2
3

C
o
st
a
an
d
Te
lm
er

(2
0
0
6
)

R
A
D
A
R
SA

T-
1
,
JE
R
S-
1

C
,
L

H
H

2
5
°,
5
0
°,
3
5
°

W
et
la
n
d

B
ra
zi
lia
n
,
So
u
th

A
m
er
ic
a

2
4

C
re
m
o
n
,
R
o
ss
et
ti
,
D
ilc
e,
an
d

Z
an
i
(2
0
1
4
)

A
LO

S
P
A
LS
A
R

L
H
H
,
H
V

3
7
°–
4
1
°

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

2
5

D
e
G
ra
n
d
i
et

al
.
(2
0
0
0
)

ER
S-
1

C
V
V

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

fo
re
st

C
en
tr
al
A
fr
ic
a

(C
o
n
ti
n
u
ed

)

INTERNATIONAL JOURNAL OF REMOTE SENSING 2259

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



T
a
b
le

2
.
(C
o
n
ti
n
u
ed
).

St
u
d
y

ID
R
ef
er
en
ce

Se
n
so
r

W
av
el
en
g
th

P
o
la
ri
za
ti
o
n

In
ci
d
en
ce

an
g
le

P
FV

ty
p
es

Lo
ca
ti
o
n

2
6

D
w
iv
ed
i,
R
ao
,
an
d

B
h
at
ta
ch
ar
ya

( 1
9
9
9
)

ER
S-
1

C
V
V

U
n
sp
ec
ifi
ed

W
et
la
n
d

B
an
g
la
d
es
h
,
A
si
an

2
7

Ev
an
s
et

al
.
( 2
0
1
0
)

R
A
D
A
R
SA

T-
2
,
A
LO

S
(P
A
LS
A
R
)

C
,
L

H
H
,
H
V

1
8
°–
4
3
°,
2
0
°–
4
1
°

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

2
8

Ev
an
s
an
d
C
o
st
a
(2
0
1
3
)

A
LO

S
P
A
LS
A
R
,
R
A
D
A
R
SA

T-
2
,
EN

V
IS
A
T
A
SA

R
L,
C

H
H
,
H
V

3
4
°–
3
9
°

W
et
la
n
d

B
ra
zi
l,
So
u
th

A
m
er
ic
a

2
9

Ev
an
s
et

al
.
(2
0
1
4
)

R
ad
ar
sa
t-
2
,
A
LO

S
P
A
LS
A
R

C
,
L

H
H
,
H
V

3
4
°

W
et
la
n
d

B
ra
zi
l,
So
u
th

A
m
er
ic
a

3
0

Fe
rr
ei
ra
-F
er
re
ir
a
et

al
.
(2
0
1
5
)

A
LO

S
P
A
LS
A
R

L
H
H
,
H
V

3
9
°

Fl
o
o
d
ed

ve
g
et
at
io
n

B
ra
zi
l,
So
u
th

A
m
er
ic
a

3
1

Fr
ap
p
ar
t
et

al
.
( 2
0
0
5
)

JE
R
S-
1

L
H
H

–
Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

3
2

Fu
rt
ad
o
,
Si
lv
a,
an
d
N
o
vo

(2
0
1
6
)

R
A
D
A
R
SA

T-
2

C
H
H
,
H
V
,

H
V
,
V
V

2
5
°,
3
5
°,
4
5
°

W
et
la
n
d

B
ra
zi
l,
So
u
th

A
m
er
ic
a

3
3

G
al
la
n
t
et

al
.
( 2
0
1
4
)

R
A
D
A
R
SA

T-
2

C
H
H
,
H
V
,

H
V
,
V
V

2
0
°–
3
3
°

Fl
o
o
d
ed

ve
g
et
at
io
n

M
in
n
es
o
ta
,
U
SA

3
4

G
re
n
ie
r
et

al
.
( 2
0
0
7
)

R
A
D
A
R
SA

T-
1

C
H
H

2
0
°–
4
9
°

W
et
la
n
d

Q
u
eb
ec
,
C
an
ad
a

3
5

H
ei
n
e,
Ja
g
d
h
u
b
er
,
an
d
It
ze
ro
tt

(2
0
1
6
)

Te
rr
aS
A
R
-X

X
H
H
,
V
V

3
8
°–
4
2
°

Fl
o
o
d
ed

ve
g
et
at
io
n

G
er
m
an
y,
Eu
ro
p
e

3
6

H
es
s
( 2
0
0
3
)

JE
R
S-
1

L
H
H

3
4
°–
4
3
°

Fl
o
o
d
ed

fo
re
st
,

W
et
la
n
d

B
ra
zi
l,
So
u
th

A
m
er
ic
a

3
7

H
es
s
et

al
.
(2
0
1
5
)

JE
R
S-
1

L
H
H

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

3
8

H
id
ay
at

et
al
.
(2
0
1
2
)

A
LO

S
P
A
LS
A
R

L
H
H

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

fo
re
st

In
d
o
n
es
ia
n
,
A
si
an

3
9

K
ar
sz
en
b
au
m
,
et

al
.
( 2
0
0
0
)

R
A
D
A
R
SA

T-
1
,
ER
S-
2

C
H
H
,
V
V

2
0
°–
4
6
°

W
et
la
n
d

A
rg
en
ti
n
a,
So
u
th

A
m
er
ic
a

4
0

Li
an
d
C
h
en

(2
0
0
5
)

R
A
D
A
R
SA

T-
1

C
H
H

4
5
°

W
et
la
n
d

O
n
ta
ri
o
,
C
an
ad
a

4
1

Le
e
et

al
.
( 2
0
1
5
)

A
LO

S
P
A
LS
A
R

L
U
n
sp
ec
ifi
ed

U
n
sp
ec
ifi
ed

W
et
la
n
d
,

fl
o
o
d
ed

fo
re
st

C
o
n
g
o
,

A
fr
ic
a

4
2

Lo
n
g
,
Fa
to
yi
n
b
o
,
an
d
P
o
lic
el
li

(2
0
1
4
)

EN
V
IS
A
T
A
SA

R
,
R
A
D
A
R
SA

T-
2

C
H
H

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

ve
g
et
at
io
n

N
am

ib
ia
,
A
fr
ic
a

4
3

M
ai
lla
rd
,
A
le
n
ca
r-
Si
lv
a,
an
d

C
la
u
si
(2
0
0
8
)

R
A
D
A
R
SA

T-
1

C
H
H

2
4
°–
3
1
°,
4
1
°–
4
6
°

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

4
4

M
ar
ti
n
ez

an
d
To
an

( 2
0
0
7
)

JE
R
S-
1

L
H
H

3
4
°–
4
3
°

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

4
5

M
ar
ti
n
is
an
d
Tw

el
e
(2
0
1
0
)

Te
rr
aS
A
R
-X

X
H
H

2
7
°–
3
6
°

Fl
o
o
d
ed

sh
ru
b
s
an
d

g
ra
ss
la
n
d

N
am

ib
ia
,
A
fr
ic
a

4
6

M
ar
ti
-C
ar
d
o
n
a
et

al
.
(2
0
1
3
)

EN
V
IS
A
T
A
SA

R
C

H
H
,
V
V

1
9
°–
4
5
°

Fl
o
o
d
ed

ve
g
et
at
io
n

Sp
ai
n
,
Eu
ro
p
e

4
7

M
ay
au
x
et

al
.
( 2
0
0
2
)

ER
S,
JE
R
S-
1

L,
C

V
V
,
H
H

1
9
°–
2
6
°,

3
7
°–
4
2
°

Fl
o
o
d
ed

fo
re
st

C
o
n
g
o
,
A
fr
ic
a

4
8

M
el
ac
k
an
d
W
an
g
(1
9
9
8
)

JE
R
S-
1

L
H
H

3
5
°

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

4
9

M
ir
an
d
a,
Fo
n
se
ca
,
an
d
C
ar
r

( 1
9
9
8
)

JE
R
S-
1

L
H
H

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

(C
o
n
ti
n
u
ed

)

2260 V. TSYGANSKAYA ET AL.

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



T
a
b
le

2
.
(C
o
n
ti
n
u
ed
).

St
u
d
y

ID
R
ef
er
en
ce

Se
n
so
r

W
av
el
en
g
th

P
o
la
ri
za
ti
o
n

In
ci
d
en
ce

an
g
le

P
FV

ty
p
es

Lo
ca
ti
o
n

5
0

M
o
ra
n
d
ei
ra

et
al
.
( 2
0
1
6
)

R
A
D
A
R
SA

T-
2

C
H
H
,
H
V
,

H
V
,
V
V

4
2
°–
4
4
°,

2
6
°–
2
8
°

W
et
la
n
d

P
ar
ag
u
ay
,
So
u
th

A
m
er
ic
a

5
1

M
o
se
r
et

al
.
( 2
0
1
6
)

Te
rr
aS
A
R
-X

X
H
H
,
V
V

2
7
°–
2
8
°

W
et
la
n
d

B
u
rk
in
a
Fa
so
,

A
fr
ic
a

5
2

M
w
it
a
et

al
.
(2
0
1
2
)

A
LO

S
P
A
LS
A
R
,
EN

V
IS
A
T
A
SA

R
L,
C

H
H
,
H
V
,
H
V
,

V
V
;
H
H
,
H
V

U
n
sp
ec
ifi
ed

W
et
la
n
d

K
en
ya
,
A
fr
ic
a

5
3

N
a
et

al
.
( 2
0
1
3
)

EN
V
IS
A
T
A
SA

R
C

H
H
,
H
V

1
9
°–
2
7
°

W
et
la
n
d

H
ei
lo
n
g
jia
n
g
,
C
h
in
a

5
4

N
a
et

al
.
(2
0
1
5
)

R
A
D
A
R
SA

T-
2

C
H
H
,
H
V

2
6
–
3
1
°

Fo
re
st
ed

w
et
la
n
d
s

H
ei
lo
n
g
jia
n
g
,

C
h
in
a

5
5

P
ie
rd
ic
ca

et
al
.
( 2
0
0
8
)

ER
S-
1

C
V
V

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

w
o
o
d
la
n
d

an
d
g
ra
ss
la
n
d

It
al
y,
Eu
ro
p
e

5
6

P
is
to
le
si
,
N
i-
M
ei
st
er
,
an
d

M
cD

o
n
al
d
( 2
0
1
5
)

A
LO

S
P
A
LS
A
R

L
H
H
,
H
V

3
4
°

Fl
o
o
d
ed

fo
re
st

N
ew

Y
o
rk
,
U
SA

5
7

P
o
d
es
t
an
d
Sa
at
ch
i
(2
0
0
2
)

JE
R
S-
1

L
H
H

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

ve
g
et
at
io
n

B
ra
zi
l,
So
u
th

A
m
er
ic
a

5
8

P
o
p
e,
R
ey
-B
en
ay
as
,
an
d
P
ar
is

( 1
9
9
4
)

A
IR
SA

R
C
,
L,
P

H
H
,
H
V
,

H
V
,
V
V

3
5
°–
5
0
°

W
et
la
n
d

B
el
iz
e,
C
en
tr
al

A
m
er
ic
a

5
9

P
o
p
e,
R
ej
m
an
ko
va
,
an
d
P
ar
is

(2
0
0
1
)

En
d
ea
vo
u
r
(S
IR
-C
)

C
,
L

H
H
,
H
V
,

H
V
,
V
V

2
6
°

W
et
la
n
d
,
fl
o
o
d
ed

fo
re
st

M
ex
ic
o
,
N
o
rt
h

A
m
er
ic
a

6
0

P
u
lv
ir
en
ti
,
P
ie
rd
ic
ca
,
an
d
C
h
in
i

( 2
0
1
0
)

C
O
SM

O
-S
ky
M
ed

X
H
H

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

fo
re
st

M
ya
n
m
ar
,
A
si
an

6
1

P
u
lv
ir
en
ti
et

al
.
(2
0
1
1
a)

C
O
SM

O
-S
ky
M
ed

X
H
H

2
6
°–
5
1
°

Fl
o
o
d
ed

ag
ri
cu
lt
u
re

It
al
y,
Eu
ro
p
e

6
2

P
u
lv
ir
en
ti
et

al
.
( 2
0
1
1
b
)

C
O
SM

O
-S
ky
M
ed

X
H
H

3
5
°;
2
2
°

Fl
o
o
d
ed

ag
ri
cu
lt
u
re
,

fl
o
o
d
ed

fo
re
st

A
lb
an
ia
,
Eu
ro
p
a

6
3

P
u
lv
ir
en
ti
et

al
.
(2
0
1
3
)

C
O
SM

O
-S
ky
M
ed

X
H
H

2
9
°–
4
7
°

Fl
o
o
d
ed

ag
ri
cu
lt
u
re
,

fl
o
o
d
ed

fo
re
st

It
al
y,
Eu
ro
p
e

6
4

P
u
lv
ir
en
ti
et

al
.
(2
0
1
6
)

C
O
SM

O
-S
ky
M
ed

X
H
H

3
4
°,
4
0
°

Fl
o
o
d
ed

ag
ri
cu
lt
u
re

It
al
y,
Eu
ro
p
e

6
5

R
eb
el
o
,
Se
n
ay
,
an
d
M
cC
ar
tn
ey

(2
0
1
2
)

A
LO

S
P
A
LS
A
R

L
H
H

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

ve
g
et
at
io
n

So
u
th

Su
d
an
,
A
fr
ic
a

6
6

R
o
b
er
ts
o
n
,
K
in
g
,
an
d
D
av
ie
s

(2
0
1
5
)

R
A
D
A
R
SA

T-
2

C
H
H
,
H
V
,

H
V
,
V
V

1
8
°–
4
8
°

W
et
la
n
d

O
n
ta
ri
o
,
C
an
ad
a

6
7

R
o
d
ri
g
u
es

an
d
So
u
za
-F
ilh
o

( 2
0
1
1
)

R
A
D
A
R
SA

T-
2

C
H
H

2
0
°–
3
1
°

Fl
o
o
d
ed

tr
o
p
ic
al

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

6
8

Sc
h
la
ff
er

et
al
.
(2
0
1
6
)

EN
V
IS
A
T
A
SA

R
C

H
H

1
5
°–
4
5
°

W
et
la
n
d

Z
am

b
ia
,
A
fr
ic
a

6
9

Si
m
ar
d
,
Sa
at
ch
i,
an
d
D
e

G
ra
n
d
i
(2
0
0
0
)

JE
R
S-
1

L
H
H

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

tr
o
p
ic
al

fo
re
st
s

G
ab
u
n
,
A
fr
ic
a

7
0

Si
m
ar
d
et

al
.
(2
0
0
2
)

JE
R
S-
1
,
ER
S-
1

L,
C

H
H
,
V
V

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

ve
g
et
at
io
n

C
en
tr
al
A
fr
ic
a

(C
o
n
ti
n
u
ed

)

INTERNATIONAL JOURNAL OF REMOTE SENSING 2261

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



T
a
b
le

2
.
(C
o
n
ti
n
u
ed
).

St
u
d
y

ID
R
ef
er
en
ce

Se
n
so
r

W
av
el
en
g
th

P
o
la
ri
za
ti
o
n

In
ci
d
en
ce

an
g
le

P
FV

ty
p
es

Lo
ca
ti
o
n

7
1

So
u
za
-F
ilh
o
et

al
.
( 2
0
1
1
)

SA
R
R
9
9
B
se
n
so
r
o
f
th
e
A
m
az
o
n
Su
rv
ei
lla
n
ce

Sy
st
em

L
H
H
,
V
V
,
V
H

4
5
°–
5
3
°

Fl
o
o
d
ed

tr
o
p
ic
al

fo
re
st

B
ra
zi
l,
So
u
th

A
m
er
ic
a

7
2

To
w
n
se
n
d
( 2
0
0
1
)

R
A
D
A
R
SA

T-
1

C
H
H

2
3
°–
4
4
°

Fl
o
o
d
ed

fo
re
st

C
ar
o
lin
a,
U
SA

7
3

To
w
n
se
n
d
(2
0
0
2
)

R
A
D
A
R
SA

T-
1
,
ER
S-
1

C
H
H
,
V
V

2
3
°

Fl
o
o
d
ed

fo
re
st

C
ar
o
lin
a,
U
SA

7
4

Tö
yr
ä,
P
ie
tr
o
n
ir
o
,
an
d
M
ar
tz

(2
0
0
1
)

R
A
D
A
R
SA

T-
1

C
H
H

2
4
°–
4
7
°

Fl
o
o
d
ed

ve
g
et
at
io
n

A
lb
er
ta
,
C
an
ad
a

7
5

Tö
yr
ä
et

al
.
( 2
0
0
2
)

R
A
D
A
R
SA

T-
1

C
H
H

2
4
°–
4
6
°

Fl
o
o
d
ed

ve
g
et
at
io
n

A
lb
er
ta
,
C
an
ad
a

7
6

V
o
o
rm

an
si
k
et

al
.
(2
0
1
4
)

Te
rr
aS
A
R
-X
,

EN
V
IS
A
T
A
SA

R
X
,
C

H
H

4
2
°,
2
4
°

Fl
o
o
d
ed

fo
re
st

Es
to
n
ia
,
Eu
ro
p
e

7
7

W
an
g
et

al
.
(1
9
9
8
)

ER
S-
1

C
V
V

2
3
°

W
et
la
n
d

O
n
ta
ri
o
,
C
an
ad
a

7
8

W
an
g
( 2
0
0
4
)

JE
R
S-
1

L
H
H

U
n
sp
ec
ifi
ed

W
et
la
n
d
,
fl
o
o
d
ed

fo
re
st

C
ar
o
lin
a,
U
SA

7
9

W
ar
d
et

al
.
( 2
0
1
4
)

A
LO

S
P
A
LS
A
R

L
H
H
,
H
V

U
n
sp
ec
ifi
ed

Fl
o
o
d
ed

fo
re
st

C
ar
o
lin
a,
U
SA

8
0

W
es
tr
a
(2
0
1
0
)

EN
V
IS
A
T
A
SA

R
C

H
H
,
H
V
,

H
V
,
V
V

1
9
°–
3
6
°

W
et
la
n
d

C
am

er
o
o
n
,
A
fr
ic
a

8
1

W
h
it
co
m
b
et

al
.
( 2
0
0
9
)

JE
R
S-
1

L
H
H

3
5
°

W
et
la
n
d

A
la
sk
a,
U
SA

8
2

Z
h
ao

et
al
.
(2
0
1
4
)

R
A
D
A
R
SA

T-
2

C
H
H
,
H
V
,
H
V
,

V
V

3
7
°–
3
9
°

Fl
o
o
d
ed

fo
re
st

N
o
rt
h
er
n
In
n
er

M
o
n
g
o
lia
,
C
h
in
a

8
3

Z
h
an
g
et

al
.
(2
0
1
5
)

A
LO

S
P
A
LS
A
R
,
EN

V
IS
A
T
A
SA

R
L,
C

H
H
,
H
V

3
4
°

W
et
la
n
d

Li
ao
n
in
g
,
C
h
in
a

2262 V. TSYGANSKAYA ET AL.

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



summarized to promote the identification of methodological trends in the last decades
and opportunities for further research on mapping FV.

3. Effects of sensor characteristics, environmental conditions, and their

interactions on the SAR signal

The representation of FV in SAR images can vary and may be difficult to interpret
because of complex interactions between SAR characteristics (wavelength, geometric
resolution, polarisation, incidence angle) and environmental conditions (e.g. vegetation
type, phenology of plants, soil moisture, water depth) (Hess, Melack, and Simonett 1990;
Schumann and Moller 2015; Melack und Hess 2010). These different parameters can
strongly influence the backscatter values and affect the ability to discriminate features
on the ground surface, such as FV. Therefore, it is essential to identify sensor character-
istics which can provide an appropriate basis for the development of methods aimed at
the extraction of FV. This section is intended to show a further overview, supplemented
by current findings about the relationship of sensor characteristics and environmental
conditions having a positive effect on the detection of FV.

3.1. Wavelength

The backscatter values for FV vary as a function, amongst others, of radar wavelength
depending on the vegetation density and structure, flood conditions, and soil moisture
(Lang, Townsend, and Kasischke 2008).

Generally, the longer the wavelength, the higher the capability of the SAR signal to
penetrate the vegetation canopy (Wang 2002; Hess 2003). Numerous studies concluded
that L-band is suited to detect inundations beneath forested canopy and should be the
preferred wavelength for this purpose (Hess, Melack, and Simonett 1990; Hess 2003;
Betbeder et al. 2014). Le Toan et al. (1997), and Wang (2004) remarked, however, that
the capability of L-band and also of other bands to penetrate some forested areas can
be reduced or are even non-existent depending on the vegetation density, the gaps
between or the height of the vegetation (see Section 3.4).

In comparison to L-band, the ability of shorter wavelengths, such as C-band, or
X-band, to penetrate vegetation canopy is reduced (Costa et al. 2002; Hess 2003).
Although the penetration of the C-band is limited, an increase in the backscatter values
for FV was exhibited, during leaf-off as well as leaf-on conditions (Lang und Kasischke
2008; Townsend 2001), in dependency of the available polarisation (Townsend 2002).
Zhang et al. (2016) showed that C-band is more useful at the initial growth stages if the
density of the vegetation is low. Also, C-band data has the potential to detect paddy rice
cultivation (Brisco et al. 2013b; Le Toan et al. 1997) and herbaceous wetlands (Grings
et al. 2008).

X-band sensors (e.g. TerraSAR-X) produce detailed information due to their high
resolution within the centimetre range (Airbus Defence and Space 2016). In general,
the penetration of dense canopy by X-band is limited as a result of high interference
with leaves, where backscatter is dominated by volume scattering (Voormansik et al.
2014). However, Martinis and Rieke (2015) and Voormansik et al. (2014) showed the
potential of X-band to identify FV for sparse vegetation or during leaf-off conditions. In
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this case, the transmissivity of the canopy is increased due to gaps in the canopy or no
biomass at all and the contribution of double-bounce (interaction between water and
tree trunks or branches) dominates the volume scattering. Some other studies demon-
strated the ability of X-band to map FV in wetlands (Moser et al. 2016), in flooded
marshland (Horritt 2003), and in olive groves (Pulvirenti et al. 2013).

Bourgeau-Chavez et al. (2001) underlined the importance of multi-frequency SAR data
for consistent wetland mapping. In their study, the applied wavelengths complement
their capability for the discrimination of flood underneath different vegetation types.
While C-band was used to discriminate herbaceous vegetation from dry upland, the
L-band was found best suitable to differentiate between flooded and non-flooded forest
(Hess and Melack 2003; Zhang et al. 2016). Multi-frequency SAR data were also found
useful to map flooding in wetland areas by Evans et al. (2010).

3.2. Polarisation

Polarisation describes the orientation of the electromagnetic field vector with respect to
its direction of propagation of a SAR system, which can be horizontal (H) or vertical (V)
for a single channel. The signal of a SAR system can be transmitted and received, co-
polarised (HH or VV), and cross-polarised (HV or VH). Some advanced SAR systems are
able to transmit and receive the signal in dual-polarised mode (HH and VV, HH and HV,
VV and HV) and in all levels (HH, VV, HV, and VH). Dual- and fully polarimetric sensors are
able to identify different scattering mechanisms, which are characteristic for different
land-cover types (Lewis, Henderson, and Holcomb 1998; White et al. 2015).

Townsend (2002), Bourgeau-Chavez et al. (2001), Karszenbaum et al. (2000), Lang and
Kasischke (2008), and Sang et al. (2014) suggested the use of HH polarisation in mapping
flooded forests in comparison to VV polarisation relating to the orientation of the SAR
signal for single-polarised data. This is due to the fact that the contribution of double-
bounce scattering from the trunk-ground interaction is smaller at VV than at HH (Wang
et al. 1995). In general, HH polarisation penetrates the vegetation canopy better than VV
and, when striking the water surface, it is more strongly reflected in comparison to VV
polarisation (Pierdicca et al. 2013). While the co-polarised backscatter is more sensitive
to the double bounce, the cross-polarised one is more sensitive to volume scattering
because of its depolarising characteristics (Marti-Cardona et al. 2010). Consequently, the
backscatter increase due to FV is expected to be more detectable in co-polarised than in
cross-polarised data (Hess, Melack, and Simonett 1990). Nevertheless, the combination
of co- and cross-polarised data may improve the identification of FV as the double
bounce allows a better discrimination between different FV types (Zhao et al. 2014).

Single-polarised SAR data are able to identify FV due to an increase in backscatter
values in comparison to other land-cover types. These data are often used due to its
greater coverage and higher spatial resolution in comparison to dual- or quad-polarised
SAR data. The source of this increase in backscatter values is assumed to be the fact that
vegetation under flood conditions can act as corner reflectors causing double-bounce
effects (Moser et al. 2016; Pulvirenti et al. 2013). The individual backscatter mechanisms,
such as double bounce, cannot be identified in single-polarised images. However, single-
polarised data, which provide BI, may increase during flood conditions (Betbeder et al.
2014). Some objects (e.g. urban structures, ploughed bare soils) may cause similar
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backscatter intensities as FV. The similarity of SAR backscatter only constitutes a critical
issue when analysing single-polarised images (Schumann and Moller 2015; Martinis and
Rieke 2015; Pulvirenti et al. 2016). The use of ancillary data (e.g. land-cover map, optical
data) may reduce the confusion between the aforementioned objects by exclusion of
non-vegetated features. In the past, studies increasingly used single-polarised data for
the detection of different FV types, such as forested wetlands (Bourgeau-Chavez et al.
2001; Pistolesi, Ni-Meister, and McDonald 2015), marshland (Horritt 2003), as well as
agricultural areas (Pulvirenti et al. 2011b; Kasischke et al. 2003).

Single-polarised SAR data only provide BI and, according to White et al. (2015) and
Betbeder et al. (2014), are not quite efficient enough to detect FV due to the restricted
information content about backscatter mechanism such as the double-bounce effect.
SAR systems with multi-polarised SAR data (dual-polarised and fully polarised) have
significant advantages in comparison to single-polarised SAR data, providing more
information about the presence of water underneath the vegetation canopy (Souza-
Filho et al. 2011).

Dual-polarised SAR data are generally used to produce ratios between two polarisation
types. Brisco et al. (2011) mentioned that polarisation ratios using horizontal polarisation
are appropriate for mapping FV for a generalized land-cover map. Furthermore, Mougin
et al. (1999) and the aforementioned study indicate the suitability of the HH/HV ratio in
separating FV from uplands. According to Le Toan et al. (1997) and Wang (2004), the ratio
between HH and VV is higher for FV than that of most other land-cover classes, because
the vertical polarised wave is more attenuated than the horizontally polarised one.
Schmitt et al. (2012) designed an approach to identify FV by applying dual-polarised
(HH-VV) data to distinguish between agricultural areas and swamp forest in wetlands. A
recently developed approach that enables the extraction of FV by the decomposition of
dual-polarised data was presented by Moser et al. (2016). The techniques for decomposi-
tion of dual-polarised SAR data are quite young; however, according to aforementioned
studies, they produced promising results (see Section 4.1.2).

More known and common is the application of quad-polarised SAR data. The quad-
polarised data have smaller area coverage in comparison to single- and dual-polarised SAR
data. This can represent a drawback due to an inadequate coverage of the area of interest,
depending on the study task. However, the quad-polarised data allow the application of
polarimetric decomposition, which separates SAR signals into different scattering mechan-
isms: volume, single-bounce (on specular or rough surface), and dihedral scattering
(double-bounce). The volume scattering mechanism represents multiple scatterings and
can be found over forested and agricultural areas, where the SAR signal is diffusely
backscattered by tree crowns or vegetation canopy. In case of single-bounce scattering
on specular surfaces, the most of the SAR energy is reflected away from sensor. For
example, these are flat open water surfaces, which often appear dark in a SAR image
(Ulaby, Fung, and Moore 1986). Double- or multi-bounce scattering occurs between a
specularly reflecting water surface and vertical structures of the vegetation, such as trunks
and stems (Moser et al. 2016; Pulvirenti et al. 2013; Pulvirenti et al. 2011a). This scattering
mechanism represents a key component for the detection of FV using SAR data.

The identification of scattering mechanisms enables the distinction of different cover
types and environmental conditions, such as flood. The most frequent application of
quad-polarised SAR data and decomposition techniques for detection of FV can be
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found in the field of wetland monitoring due to the capability of this data to distinguish
flooded and non-flooded conditions, as well as individual FV types, such as marshes and
wooded wetlands or rushes (Robertson, King, and Davies 2015; Gallant et al. 2014; Schmitt
und Brisco 2013; Morandeira et al. 2016; Betbeder et al. 2014). The individual decomposi-
tion techniques and their successes for the extraction of FV are described in Section 4.1.2.

3.3. Incidence angle

The utility of SAR data to detect FV is significantly influenced by the incident angle. It is
defined as the angle between an imaginary line perpendicular to the Earth’s surface and
the radar signal. Depending on the satellite sensor, the incidence angles range between
10° and 65°. Thereby, the larger incidence angles are declared as shallow and the smaller
angles are termed steep. Several studies, focused on the vegetation type forest, address
an appropriate incidence angle for the differentiation between flooded and non-FV
(Richards, Woodgate, and Skidmore 1987; Bourgeau-Chavez et al. 2001; Lang,
Townsend, and Kasischke 2008). Previous investigations indicated that steeper incidence
angles are preferential for the distinction of non-flooded and flooded forest (Kandus
et al. 2001; Bourgeau-Chavez et al. 2001; Hess, Melack, and Simonett 1990; Richards,
Woodgate, and Skidmore 1987; Costa et al. 2002). This circumstance can be explained by
the SAR signal having a shorter path through the crown layer at steeper angles. As a
result, the transmissivity of the vegetation canopy for SAR energy is increased. This leads
to a potential increase in interaction between the surface water on the ground and the
tree trunks. Shallow incidence angle signals are more influenced by the crown layer,
resulting in increased volume scattering (Lang, Townsend, and Kasischke 2008; Hess
2003; Townsend 2001; Costa et al. 2002). According to the results of Lang, Townsend,
and Kasischke (2008), the ability to detect waterbodies underneath forested areas did
not decline as strongly as expected with increasing incidence angles, and less than
expected at steeper incidence angles, in comparison to previous findings in the litera-
ture. Lang, Townsend, and Kasischke (2008) also mentioned that the angular signatures
varied between different forest types and the capability to detect flooded forest is
similar during the leaf-off and leaf-on conditions.

The backscatter signature of a target in two different images, acquired under similar
environmental conditions, can vary in dependency of different incidence angles of these
images. Depending on the task, the changes in backscatter due to different incidence
angles have to be considered. For instance, Pulvirenti et al. (2011a) applied a simplified
cosine model (Ulaby und Dobson 1989) assuming that the variation of backscatter can
be approximated by cosine-squared function depending on the incidence angle itself.
However, the use of multi-incident angle SAR images does not necessarily constitute a
drawback. The results of Kandus et al. (2001) indicated that combinations of images with
different incidence angles can improve the discrimination of different FV types in wet-
lands. In addition, Lang, Townsend, and Kasischke (2008) pointed out the benefits of
multi-incident angle imagery for monitoring flood extent under forest canopies.
Henderson and Lewis (2008) remarked that dense forest canopy can be appropriately
detected by the combination of L-band, HH polarisation, and low-to-moderate incidence
angle imagery. However, low incident angle in C-band and HH or VV polarised data is
also suitable for a sparse canopy layer.
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3.4. Environmental conditions

Besides sensor characteristics, the backscatter signature of FV is strongly affected by the
environmental conditions and their characteristics, such as vegetative biomass over the
ground/water (vegetation type, phenology of plants), soil moisture, and water depth.
Several theoretical microwave scattering models can be found in the literature, which
describe the interaction between the SAR transmitted microwave energy and vegetation
or FV on the ground (Kasischke and Bourgeau-Chavez 1997; Wang et al. 1995). Low
vegetation (low/moderate stage of growth) and high vegetation (e.g. deciduous forests,
coniferous forests) are often considered separately in the literature (e.g. Pulvirenti et al.
2011b), because of the different effects that vegetation structure and density have on
the signal intensity.

Vegetative aboveground biomass has been found to have a great influence on the
scattering of FV (Pope et al. 1997). The biomass is described in various studies as canopy or
crop density (e.g. Dwivedi, Rao, and Bhattacharya 1999; Grings et al. 2008) or as a
combination between leafs and stems (Kasischke et al. 2003). Le Toan et al. (1997), Pope
et al. (1997), Mougin et al. (1999), Sang et al. (2014), and Yu and Satschi (2016) found that
SAR backscatter is increasing as a function of biomass and they determined saturation
points at which water beneath the canopy cannot be detected any longer. The saturation
point can shift depending on sensor characteristics (wavelengths, incidence angle, and
polarisation) and environmental parameter (e.g. aboveground biomass) (Yu und Saatchi
2016; Sang et al. 2014). Before the saturation point (lower level of biomass), the transmis-
sivity of the microwaves radiation through the vegetation canopy is possible due to the
small size and density of scattering elements. If the saturation point is reached, the volume
scattering from the canopy completely superimposes the contribution of double bounce
from the interaction between the water surface and vertical vegetation structure (e.g. tree
trunk, stems volume) (Costa et al. 2002; Kasischke et al. 2003; Aziz und White 2003).
Consequently, the phenology of plants or leaf-on/leaf-off conditions highly affect the
detection of FV depending on the sensor characteristics.

Beside the aboveground biomass, the contribution of the ground is another impor-
tant environmental parameter influencing the backscatter signal of FV. Kasischke et al.
(2003) showed an increase in backscatter through all biomass levels as soil moisture
increases, provided that the transmissivity of the biomass still exists (the saturation point
is not exceeded). In case of low soil moisture, as biomass increases, there is an increase
due to volume scattering from the canopy; however, there is a little or no contribution
from multi-interaction scattering. When the surface is flooded, there is no contribution
of energy from the ground surface and the backscatter signal is dominated by the
double-bounce scattering and the volume scattering from the vegetation canopy
(Kwoun und Lu 2009).

Pulvirenti et al. (2011a) investigated that the water depth fluctuations significantly
influence the backscatter intensities in FV areas due to the predominance of scattering
mechanisms for agricultural and herbaceous vegetation. Depending on the height of the
vegetation and the water depth, the double-bounce scattering can become a predomi-
nant effect and cause the increase in backscatter, while the volume scattering becomes
subordinate (Bourgeau-Chavez et al. 2001; Bourgeau-Chavez, Kasischke, and Smith 1997;
Grings et al. 2006; Kiage et al. 2005; Sang et al. 2014). If the emerging part of the plants
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becomes too small, no considerable double-bounce scattering can be produced and the
backscatter would not increase (Pulvirenti et al. 2011a). Consequently, the combination
of sensor parameters and the knowledge concerning environmental properties and
conditions is a crucial point for the extraction of FV.

4. Overview of methods and their data sets for the extraction of FV

Based on 83 selected studies, an overview of the diversity of applied data sets and
classification algorithms aiming at the extraction of FV is given in this section.
Furthermore, the classification algorithms are categorized and analysed based on the
level of classification (pixel- or segment-based) and the temporal frequency of the
applied SAR data. A list of the studies is provided in Table 2. Each of these studies
includes a unique ID, which serves as a reference within this section.

4.1. SAR-derived information for image classification

For the extraction of FV various SAR-derived image, information were used in the studies
comprising BI, PPs as well as IC. The number of occurrences of the SAR-derived
information in the analysed studies is demonstrated in Figure 1.

4.1.1. Backscatter intensity

The BI for each pixel in a SAR image represents the basic SAR-derived information and
the proportion of the SAR signal backscattered from the objects on the ground,
depending on sensor characteristics (polarisation, frequency, incidence angle, and reso-
lution) and environmental conditions of a target (e.g. size, shape, orientation, and
moisture content). The BI values are often converted to a normalized radar cross section
or backscattering coefficient, which is measured in decibel (dB) units (Henderson und
Lewis 2008). Figure 1 shows that the majority of studies (69 of 83) used BI for the
classifications of FV vegetation (ID 1–12, 14–16, 19–31, 34, 36–49, 52–63, 65, 67–81).

Figure 1. SAR-related information on which classifications were conducted and their number of
occurrences for the extraction of FV in the selected studies.
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4.1.2. Polarimetric parameters

The advancement of satellite systems in the recent years enables the acquisition of fully
polarimetric data, transmitting and receiving the SAR signal in all four planes (HH, VV,
HV, and VH). By preserving the phase information, the fully polarimetric data allow the
decomposition of the SAR signal into the following three scattering mechanisms: single
bounce (on specular or rough surface), volume and dihedral scattering (double-bounce)
(see Section 3.2). The scattering mechanisms represent an example of PP, which are
applied as extended SAR-derived information for the detection of FV. The identification
of scattering mechanisms constitutes a great benefit for the extraction of FV in contrast
to the single usage of BI. FV does not always have a clear BI signal that can be easily
detected. For example high soil moisture conditions can cause similar backscatter values
as FV. A significant challenge to differentiate both of these targets arises in the case of
the application of BI on its own. The usage of PP can overcome this lack of information
by providing different scattering mechanisms and consequently making it easier to
separate FV types from upland areas (White et al. 2014; Heine, Jagdhuber, and Itzerott
2016) (Martinez and Le Toan 2007; Pulvirenti et al. 2011a; Pulvirenti et al. 2016; Wang
und Davis 1997).

For the extraction of PP, various polarimetric decomposition methods have been
developed. Usually, the polarimetric decompositions apply fully polarimetric SAR data
(quad-pol data) for the extraction of FV. For the separation between FV and other areas,
various decompositions (model-based and eigenvalue-based) were applied during the
studies. Examples for model-based decompositions are the Freeman–Durden decom-
position (ID 13, 18, 32, 33) and the Yamaguchi four-component decomposition (ID 17,
32, 82). These physically based models decompose the backscatter response from each
pixel into three scattering mechanisms: volume scattering, double-bounce scattering
(diplane scattering), and surface or single-bounce scattering using a Freeman–Durden
decomposition (Brisco et al. 2011; Corcoran et al. 2012; Furtado, Silva, and Novo 2016;
Gallant et al. 2014) and an additional fourth component (helical scattering) using the
Yamaguchi four-component decomposition (Koch et al. 2012; Chen et al. 2014; Furtado,
Silva, and Novo 2016; Zhao et al. 2014; Lee und Pottier 2009). One disadvantage of these
models is the assumption of the objects symmetry, although most objects on the
ground do not follow symmetrical orientation in consequence of their structure (Brisco
et al. 2013b). However, these decompositions can be used to detect FV as two poten-
tially perpendicular planes which act as a corner reflector in the presence of water
(double-bounce scattering). The decomposition of the SAR signal into three- or four-
channel images allows an easy comparison of the outputs.

An example for a decomposition based on eigenvectors is the Cloude–Pottier decom-
position (Brisco et al. 2011; Chen et al. 2014; Corcoran et al. 2012; Zhao et al. 2014),
which is used by further six studies (ID 13, 17, 18, 35, 50, 82). A further eigenvector-based
decomposition for the derivation of PP is the Touzi incoherent decomposition (Touzi,
Deschamps, and Rother 2007, 2009; Furtado, Silva, and Novo 2016; Patel, Srivastava, and
Navalgund 2009), which is applied in three studies (ID 13, 17, 32). The eigenvalue-based
decompositions use a coherency matrix to obtain eigenvectors and eigenvalues.
Thereby, the physical scattering mechanisms are characterized by the eigenvectors
and their strength (degree of randomness) is quantified by the eigenvalues (Cloude
und Pottier 1997). PPs are important as they are often specific to one scattering type and
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thus improve the classification of specific classes, such as FV (Heine, Jagdhuber, and
Itzerott 2016).

The most common polarimetric decompositions can only be derived from fully
polarised (quad-polarised) SAR data. However, the availability of quad-pol data is more
limited (Moser et al. 2016; Schmitt et al. 2012). There are few decomposition approaches
applicable for quad- and dual-polarised data. One of them is the method of normalized
Kennaugh elements, which is adapted for any wavelength (Moser et al. 2016; Schmitt,
Wendleder, and Hinz 2015) and also for all SAR sensors (ID 51). By retaining the phase
information of dual-polarised data, the Kennaugh elements enable the interpretation of
physical surface and double-bounce scattering mechanisms (Schmitt et al. 2012). In
addition, the Shannon entropy (SE), which represents an eigenvector decomposition
(Lee and Pottier 2009), can cope with dual-polarised data, too (ID 5, 6).

The compact polarimetric (CP) SAR system is configured to transmit only one polar-
isation, while two linear polarisations, horizontal and vertical, are received. This techni-
que enables the creation of pseudo quad-pol data from a dual-polarised SAR system
(Brisco et al. 2013b; Dabboor et al. 2015; Nord et al. 2009). An important requirement of
CP is the maintenance of the relative phase between two received polarisations, which is
necessary to construct CP images. The reason for the application of CP are the benefits
of quad-pol data, such as improved classification through increased information content,
while its drawbacks, such as reduced area coverage, are being avoided (Brisco et al.
2013b). Within this technique, m-delta decomposition is a suitable method to decom-
pose the CP data. It is comparable to the Freeman–Durden decomposition. The simu-
lated CP was investigated by Brisco et al. (2013b) using the m-delta decomposition for
FV classification in wetland areas (ID 8).

Decompositions allow the extraction of physical information (backscatter mechan-
isms), but they do not represent a classification approach on their own. In the
literature, the classification of decompositions for FV was mostly performed by
machine-learning techniques (e.g. Support Vector Machine (ID 5, 6, 13), random forest
classification (ID 18, 32, 35, 66, 82)), followed by distance-based classification methods
(e.g. maximum likelihood classification (ID 13, 51), k-nearest-neighbour classification
(KNNC) (ID 5, 17). However, also a few decision tree classifiers (ID 5, 17), two Wishard
classifications (ID 17, 50), a single manual thresholding approach (MTA) (ID 33), and a
single ISODATA clustering technique (ID 59) were performed based on decomposed
SAR data.

Only, 12 studies performed a classification applying PP (ID 5, 6, 13, 17, 18, 32, 33, 35, 50,
51, 66, 82) (Figure 1). Several reasons for this uneven distribution can be assumed: (1) The
application of PP requires dual- or quad-polarised data, in which the phase information is
maintained. The advance in satellite systems during the last couple of years enables the
extraction and application of the polarimetric information. (2) Based on different SAR
sensors, the advanced polarisation modes might not always be available. In comparison
to single-polarised data, reduced area coverage and resolution limit the usage of dual- or
quad-polarised data. As a consequence, the application of polarimetric analysis for FV is
restricted in comparison to the usage of BI values. (3) The preprocessing effort for BI is
significantly lower in comparison to the derivation of PP (Betbeder et al. 2014; Morandeira
et al. 2016; Robertson, King, and Davies 2015). (4) The interpretation of PP is likely to be
more time consuming (e. g. interpretation of Pauli-Decomposition).
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Figure 1 shows that exclusively PPs were applied in six different studies (ID 6, 13,
17, 18, 33, 50). Seven further studies used BI along with PP (ID 5, 32, 35, 51, 59, 66,
82). Thereby, the latter is used either as supplementary information to achieve
higher accuracy for FV or as a comparison to BI-based results. Some of these
studies performed comparisons of the accuracies for FV, which are described in
the following. The application of BI only (HH, VV, HH/VV) resulted in poor kappa
values (0.48, 0.33, 0.13) as reported by Betbeder et al. (2014). An improvement was
reached using SE (kappa: 0.85) showing an accuracy of 90% PA (producer’s accu-
racy) and 75% UA (user’s accuracy) for FV. Furtado, Silva, and Novo (2016) reported
that flooded forest had a 30–40% increase in PA and UA when polarimetric
descriptors were used instead of only BI. The highest accuracy, therefore, is situated
at 79% PA and 95% UA. Moser et al. (2016) demonstrated an increase in the PA
(90%) and UA (90%) accuracy for FV extracted by PPs in comparison to the PA
(79%) und UA (87%) based on BI. In addition, Robertson et al. (2016) applied BI and
Cloude–Pottier decomposition for the extraction of FV showing that the UA (83%)
and PA (67%) based on the BI are similar to the PA (80%) and UA (68%) based on
Cloude–Pottier results. Overall, the application of PP constitutes an improvement of
the accuracy for FV in comparison to results only achieved by using BI.

4.1.3. Interferometric coherence

A useful technique for the identification of FV constitutes the SAR interferometry
through the usage of the IC, computable from two interferometric SAR images. The
application of interferometric SAR technology is relatively new in the research field of
the extraction of FV and limited based on several requirements of certain conditions,
such as maintained phase information in the SAR data or a short temporal baseline
between an interferometric pair (Pulvirenti et al. 2016). Recently published studies used
IC information alone (ID 83) and in combination with the BI (ID 64) for the extraction of
FV (Figure 1). The coherence might help differentiating between vegetation and bare
soil areas, where the latter has considerably higher coherency values. Consequently, the
coherence may replace the application of ancillary information, such as optical data or
land-cover information, which is often used to separate between various objects with
similar BI. The combination of both, BI values and associated phase coherence, enables
the discrimination of non-flooded and FV (Alsdorf et al. 2000; Alsdorf, Smith, and Melack
2001; Kwoun and Zhong 2009; Oliver-Cabrera und Wdowinski 2016; Xie et al. 2013;
Zhang et al. 2015).

4.2. Specification and comparison of applied classification techniques

Based on 83 studies, a comprehensive review of the classification techniques applied for
the extraction of FV was conducted. The algorithms are placed in categories, due to their
similarity towards each other and in regard to their application fields. Thereby, the
number of the applied approaches can exceed the number of the analysed studies as
a single study can implement more than one of these approaches (overall 101 classifica-
tion algorithms in 83 studies).

These classification techniques can be categorized into supervised and unsupervised
classification techniques (Figure 2). In general, supervised classification uses reference
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classes obtained from training samples (reference data) to classify the image elements
(Richards 2012). The majority of the performed classification algorithms in each study are
supervised (89 studies). The number of occurrences of unsupervised techniques for the
extraction of FV in the studies is comparatively low (12 studies). Furthermore, unsuper-
vised classification algorithms are mostly applied as a part of a processing chain, which
additionally includes a supervised classification algorithm or manual interaction steps.

The range of classification algorithms applied for the extraction of FV is diverse
(Figure 2). The distance-based classification methods constitute the majority of the
applied classification algorithms amongst the analysed studies (28 of 83). Whereby,
algorithms are categorized as distance-based because they are using simple distance
functions. Figure 3 shows the number of occurrences for distance-based classifications.
Maximum likelihood classification (MLC) was identified as one of the most common
classification techniques within the distance-based methods (15 of 29) applied for the
extraction of FV (ID 8, 9, 12, 13, 23, 25, 49, 51, 53, 56, 57, 67, 71, 77, 80). The supervised
KNNC was applied four times for the extraction of FV (ID 5, 17, 54, 80). A parallelepiped
classification is one of the distance-based classification methods and was used in three
studies (ID 26, 44, 49). Three of the distance-based classifications used the Mahalanobis
distance (ID 43, 74, 75). Other two studies applied the Bhattacharyya distance (ID 20, 21,
22). Due to their simplicity, availability, and statistical transparency (no black box), these
algorithms are popular tools not only for classification in general but also for detecting
FV. Furthermore, they can be easily adapted to other study sites or data sets (Martinez
and Le Toan 2007). Especially MLC and KNNC are often used as a reference for the
performance of newly developed algorithms (Bourgeau-Chavez et al. 2001; Brisco et al.

Figure 2. Supervised and unsupervised classification techniques and their number of occurrences for
the extraction of FV in the selected studies.
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2013b). However, Na et al. (2015) remarked that MLC and KNNC are in general not
suitable for the analysis of high dimensional data, which can constitute a drawback for
the extraction of FV.

The second most common approach used in the reviewed studies (25 of 83) is the
decision tree/rule-based classification (Figure 2), which includes decision tree classifica-
tion (DTC) and hierarchical rule-based classification (HRBC).

Figure 4 shows the number of occurrences of both approaches, where the majority of
studies (20) applied DTC for the extraction of FV (ID 2, 4, 5, 7, 9, 14, 17, 19, 40, 42, 44, 48,
52, 60, 69, 70, 72, 73, 78, 79). A decision tree classifier is well adapted for SAR image
classification, because it does not assume a special probability density distribution of the
given input data (Baghdadi et al. 2001; Hess et al. 1995). This algorithm is based on
hierarchical rules representing thresholds used to iteratively split data in more homoge-
neous groups (Richards 2012), which can be easily refined after iterations (Martinez and Le
Toan 2007). The automatic boundary definition constitutes an advantage because manu-
ally determining thresholds, especially for separation of FV to other classes, can be a
complex process. A further advantage of decision trees is their flexibility and robustness
regarding nonlinear and noisy relations among input features (Townsend 2002; Friedl und
Brodley 1997; Na et al. 2015). This is a benefit for the detection of FV, because of the

Figure 3. Categorization of distance-based classifications and their number of occurrences for the
extraction of FV in the selected studies.

Figure 4. Decision tree and hierarchical rule-based classifications and their number of occurrences
for the extraction of FV in the selected studies.
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diversity of the applied input data for its extraction. Additionally, DTC requires less time for
training in comparison to machine-learning algorithms (e.g. artificial neural networks
[ANNs], Support Vector Machine) (Na et al. 2015).

Three studies used the HRBC for the extraction of FV (ID 27, 28, 29, 37, 47), in which
the classification rules are designed by users based on their knowledge and expertise
and can be iteratively changed depending on the results of the classification process.
Therefore, specific characteristics of FV can be systematically integrated into the rule set.
The transparency of this approach ensures that this knowledge can be used as basis for
further studies and decisions. Furthermore, HRBC allows adding new rules or data sets
without altering the predefined rules, while distance-based methods, such as MLC, may
change all classes’ rules due to additionally added information (Evans et al. 2010).

Several studies (15 of 83) used machine-learning techniques for the extraction of FV
(Figure 2). Figure 5 shows various machine-learning techniques which were applied in
the reviewed studies and their number of occurrences.

The majority of these techniques (11 of 15) is represented by the Random forest
classification (RFC) (ID 10, 18, 24, 32, 35, 46, 53, 54, 66, 81, 82). RFC is an ensemble
classifier containing multiple decision trees and consequently, the aforementioned
advantages of DTC also shared by RFC. By averaging multiple decision trees, the usual
overfitting of each decision tree can be reduced (Richards 2012). This algorithm effi-
ciently determines the contribution of diverse information to a classification. However,
the application of different information types without the understanding of the true
relations within this information can also constitute a disadvantage. For instance, SAR
data can be rated less important due to a better correlation of optical data with other
features for the extraction of FV. In this particular case, RDF may ignore the context and
set the priority to the highest correlated data. Furthermore, a large set of reference data
is needed to mitigate misclassification caused by natural variability within FV (Robertson,
King, and Davies 2015).

Support Vector Machine (SVM) classification, which is used in three studies (ID 5, 6,
13), aims to separate two different classes by determining the maximum-margin hyper-
planes for a given training set. SVMs are intended for the determination of the best
linear separation between two categories within a new feature space. Moreover, the
SVM classification is suitable for high-dimensional data even though limited training
data are available (Richards 2012), which is often the case when working with FV.

Figure 5. Machine-learning techniques and their number of occurrences for the extraction of FV in
the selected studies.
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A single study (ID 3) applied ANNs. This machine-learning algorithm is inspired by the
neural structure of the human brain (Richards 2012). A huge disadvantage of this
method is the fact that a large sample set is required to provide an effective training
of the model. This in return could result in a high computation time. Nevertheless, ANN
has demonstrated several advantages for image classification. Various heterogeneous
data sources (e.g. temperature, SAR intensities, soil moisture level) can be combined as
input. In addition, the algorithm works without any assumption about the distribution of
the data (Augusteijn und Warrender 1998). As discussed above, both advantages are
beneficial for the extraction of FV.

A fuzzy logic-based approach was applied in five studies (ID 34, 45, 55, 62, 63) to deal
with the ambiguities of the SAR signature and to integrate different sources of informa-
tion, such as SAR BI, elevation distance to open flood areas, and neighbourhood
relationships between pixels. This constitutes an advantage regarding the extraction of
FV. In classical set theory, an element may or may not belong to a set, as against in a
fuzzy set, where all elements have different degrees of membership (Buckley und Eslami
2002). The selection of an appropriate membership function to build up a fuzzy set is
subjective and it depends on the task and the available data. It can be challenging to
locate FV in transition zones between open water and upland in SAR images due to their
variations over the time (Wang 2004). Fuzzy logic has the ability to overcome these
uncertainties by describing the increase of backscatter induced by FV using membership
functions without crisp thresholds.

Another supervised method for the extraction of FV is the MTA used in 13 studies (ID
11, 15, 16, 30, 31, 33, 38, 39, 41, 64, 65, 76, 83). Defining the threshold value is a crucial
point as environmental and sensor parameters show strong mutual dependencies. The
threshold for FV has to be individually determined for each study area and is therefore
non-transferable towards other regions. However, this method provides the ability to
separate between FV and other classes quickly and without much effort, for example
using histogram thresholding (ID 42, 76).

In contrast, Otsu’s (Otsu 1979) and Kittler and Illingworth’s (Kittler und Illingworth
1986) thresholding methods represent unsupervised classification techniques which
automatically perform histogram shape-based thresholding (ID 45, 62, 63). A fast classi-
fication of clearly separable classes and therefore the creation of a quick overview of the
existing classes are great benefits of automatic thresholding techniques. However, the
separation between FV and non-FV is challenging due to the wide range of values within
both categories that may lead to overlapping histograms. Therefore, the automatic
thresholding technique is usually only applied as part of a processing chain for the
extraction of FV.

Markov random fields (MRFs) are commonly used as part of an image classification
processes and include various types of contextual information (e.g. spatial, hierarchical,
and temporal). The knowledge about the dependencies between neighboured pixels
reveals the connections within the data providing a more appropriate basis for image
classification in contrast to the consideration of isolated pixels (Li 2001). This helps to
overcome challenges regarding the heterogeneity and phenological changes within FV
classes. Martinis and Twele (2010) and Maillard, Alencar-Silva, and Clausi (2008) adapted
MRFs within a process chain for the classification of FV among other classes (ID 43, 45).
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Amongst the vast number of classification approaches to extract FV from SAR data,
image clustering was used in seven studies (ID 1, 36, 52, 58, 59, 61, 68). The number of
occurrences of different image clustering techniques in the reviewed studies is demon-
strated in Figure 6. Image clustering is used to identify relationships within the data
without any previous information (trainings sets) by dividing image elements into groups
containing same or similar properties (spatial and/or temporal). Image clustering leads to a
reduction of the elements to be studied and therefore provides an appropriate basis for
further analysis. Furthermore, grouping of elements constitutes an advantage for the
extraction of FV by means of SAR data, because speckle noise can be compensated and
variation within FV as well as phenological changes can be considered.

k-Means (ID 61), k-medoids (ID 68), and ISODATA (ID 1, 52, 58, 59) are iterative,
non-hierarchical clustering techniques of similar design. While k-means uses centroids
for the determination of cluster centres, k-medoids uses medoids, which makes this
algorithm more stable towards outliers. Both algorithms calculate a predefined num-
ber of clusters, even though fewer clusters might describe the data more accurately
(Park und Jun 2009; Richards 2012). This disadvantage is overcome by ISODATA,
which automatically merges similar clusters and splits clusters with large standard
deviation during the iteration process. An iterative clustering algorithm based on the
Mahalanobis distance was performed by Hess (2003) for the extraction of flooded
forest and wetland types (ID 36).

Wishart H/α and H/A/α unsupervised classifications were performed by two studies
(ID 17, 50). These algorithms, especially designed for decomposed SAR data, require PP,
which can be obtained by decomposition (see Section 4.1.2) of dual- or quad-polarised
SAR data. Morandeira et al. (2016) applied these classifications to increase expertise on
the backscatter response of herbaceous wetlands (ID 50).

A few studies provided a comparison of the accuracies of the results for different
classification approaches, which were implemented based on the same constellation of
data sets for each study. In order to give an idea of the range of performance statistics
and to demonstrate the accuracies for various algorithms, the corresponding accuracies
are summarized in the following. Chen et al. (2014) compared the accuracies of the
results for wetland vegetation of three different classification approaches: Wishard

Figure 6. Image clustering techniques and their number of occurrences for the extraction of FV in
the selected studies.
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classification (PA: 95%, UA: 73%), KNNC (PA: 94%, UA: 78%), DTC (PA: 94%, UA: 80%).
Whereby, DTC results in slightly better UA and similar or slightly worse PA compared to
both others. Betbeder et al. (2014) used only the kappa index to indicate the accuracy
for a study side including FV with different classification algorithm (KNNC: 0.74, DTC:
0.66, SVM using a Gaussian kernel: 0.85). The UA: 75%, PA: 90%, OA: 85% for FV were
only demonstrated for SVM classifier. Na et al. (2015) showed that the results of forested
and herbaceous wetlands extracted by RFC (UA: 81%, PA: 83%) outperform the results of
KNNC (UA: 65%, PA: 35%).

4.3. Pixel- and segment-based image classifications

The classification techniques can be categorized in pixel- and segment based. In the
traditional pixel-based method, each pixel of an image is classified separately, disregard-
ing any neighbourhood relationships. By contrast, the segment-based image classifica-
tion approach uses segmentation techniques to group the pixels according to their
properties, such as spectral values, grey scales, texture features, or other characteristics
(Mishra et al. 2016). Thereafter, the resulting segments can be classified into different
land-cover features depending on the task.

Although the pixel-based approach is the most commonly used method for the
extraction of FV, it may not be suitable to map heterogeneous features, such as FV, if
the spatial resolution of the SAR data is finer than the objects on the ground. In this
case, textural features can provide information corresponding more to FV objects and
result in higher classification accuracy (Pulvirenti et al. 2011a). In contrast to pixel-based
approaches, segments constitute an intuitive depiction of physical objects on the
ground and allow the identification of semantic relationships. The identification of
segments or regions of similar backscatter values enables these approaches to overcome
the speckle noise (Hess 2003; Pulvirenti et al. 2011a). Segments are characterized by
their spectral values or grey values, texture, shape, size, their neighbourhood relations,
and other properties. For the extraction of FV, the texture is the most often used feature
to perform a segmentation of image elements. The texture features enhance angular
structures (e.g. edges) and provide information about the surfaces heterogeneity (Mishra
et al. 2016). Different data sources can be combined by segments rather than by pixels
due to their independence of spatial or spectral resolution (Evans et al. 2010).

In the literature, several segmentation techniques were applied to group the image
elements for the extraction of FV. One of the well-known and commonly used segmen-
tation techniques is the multiresolution segmentation. The pairwise comparison of pixel
neighbours aims to minimize the heterogeneity of the resulting objects. The segmenta-
tion parameters of multiresolution segmentation have to be defined by the user, based
on their knowledge and expertise, depending on the specific task. However, there is no
consistent method to define the most appropriate segmentation parameter. Therefore,
empirical investigations based on previous studies is necessary (Na et al. 2015;
Robertson, King, and Davies 2015). Further techniques, such as Mallat’s discrete wavelet
transform (ID 69, 70) or Markov Random Fields (ID 43, 45), were used as a segmentation
step. Commonly, the segmentation step is followed by the classification of the obtained
segments applying a DTC (ID 2, 17, 19, 52, 69, 79) or a hierarchical rule-based approach
(ID 27, 28, 29, 37).
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Figure 7 shows the distribution of studies using either pixel- or segment-based
classification. The majority of studies (58 of 83) applied the classification at the pixel-
based scale (ID 1, 2–16, 18, 23–26, 31, 33, 35, 36, 38–42, 44, 47–51, 53–56, 58–60, 62, 64,
65, 67, 68, 70–83). The segment-based classification was performed in 23 studies (ID 2,
17, 19–22, 27–30, 32, 34, 37, 43, 45, 46, 52, 57, 61, 63, 66, 69, 79).

Three of these studies used both, pixel and segment level, to provide a comparison
between the classification accuracy of the classification results (ID 17, 54, 80). A slight
increase in the accuracy for FV in wetland areas was shown by Chen et al. (2014), by the
application of an object-based approach (UA: 94%, PA: 81%) in comparison to a pixel-
based approach (UA: 92%, PA: 77%). Na et al. (2015) demonstrated that the object-based
classification (UA: 81%, PA: 83%) exceeds the pixel-based classification (UA: 67%, PA: 67%)
for FV with the corresponding kappa index increasing from 0.7 to 0.8 (ID 54). Westra et al.
(2010) presented the comparison between kappa values for pixel- (0.86) and for segment-
based (0.83) approaches, which were carried out with different classification algorithms
(MLC and KNNC). This may be the explanation for a decrease in kappa, which might not
be affected by the application of pixel- and segment-based approaches. Therefore, these
results are not comparable. Overall, the presumption can be made that the trend is
towards segment-based approaches due to their higher accuracies.

4.4. Approaches depending on the number of applied images in combination

with SAR-derived information

For the detection of FV, the aforementioned algorithms were applied on SAR data sets
with a different number of images. Depending on the available number of SAR images,
the selected studies can be categorized into four different approaches: single date,
change detection, order-independent multi-date, and time-series approach (Figure 8),
where more than one approach can occur in a single study. Furthermore, each category
contains different SAR-derived information (BI, PP, and IC or their combination) (Section
4.3). There is a huge difference in the amount of the studies that performed a single date
approach in comparison to those that performed multi-date approaches (change detec-
tion, order-independent multi-date, and time-series approach) using more than one
image (52 vs 14, 52 vs 11, 52 vs six studies, respectively).

For the detection of FV, the single-date approach is a common method, in which the
information of only one image for a current situation on the ground is considered. Despite
these restrictions, the single-date approach is applied in 52 studies (ID 2–4, 12–14, 16, 17,

Figure 7. Pixel- and segment-based classification techniques and their number of occurrences for
the extraction of FV in the selected studies.
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19–30, 32, 34, 35, 37, 40, 41, 43, 46, 48–50, 52–54, 56–58, 65–67, 70–76, 78–82). Land-cover
maps, digital elevation models, or optical data are often used as auxiliary information to
complement a single SAR date and to overcome the similarity within the BI as well as to
improve the separability between FV and other classes (e.g. ID 27, 54, 72, 76). The more
advanced SAR systems enable the acquisition of dual- or quad-polarised data providing
extended information content in comparison to single-polarised data. In this case, ratios of
the available polarisations or PP can be applied still considering only a single date. Despite
this advantage, three of 52 single date approaches used PP to extract FV (ID 12, 13, 50) and
four of 52 single-date approaches used both BI and PP (ID 32, 35, 66, 82). A single date only
represents a snapshot of a current situations status and is therefore insufficient to detect
potential changes over time.

The application of images acquired at multiple dates (two or more) may reveal the
location and the extent of FV depending on the condition of their acquisition.

The reviewed studies using multiple dates can be categorized into change detection
approach, order-independent multi-date approach, and time-series approach.

The change detection approach usually uses two images, acquired under dry and wet
conditions, which enables to consider changes between two dates. Thereby, a change
image is calculated based on the BI by the subtraction of each corresponding image
element (pixel) in both images (Schumann, Di Baldassarre, and Bates 2009). The tem-
poral change is often measured by the ratio of backscatter intensities between two
dates rather than by the difference of intensities (Bouvet und Le Toan 2011). This
difference between absolute backscatter intensities produces larger classification errors
in regions with high backscatter than in regions with low backscatter. The ratio only
depends on the relative change between two dates in SAR imagery and does not
depend on the intensity level of the pixels (Rignot und van Zyl 1993). Fourteen studies
demonstrated the applicability of the change detection approach for the extraction of

Figure 8. Summary of temporal frequency-related approaches combined with SAR-related information.
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FV (ID 7, 10, 11, 31, 33, 39, 42, 45, 55, 60, 62, 64, 69, 77). Despite the advantage to detect
changes between two images, the application of a change detection approach usually
requires manual intervention for the selection of appropriate images. This selection of a
scene acquired under dry conditions is critical because of the high variability in back-
scatter for FV depending on the environmental conditions (see Section 3.4). In addition
to BI, the change detection approach was conducted based on PP (ID 33) and on the
combination of BI values with IC information (ID 64).

Several studies applied multi-temporal information without the direct consideration of
changes between dates in advance (ID 8, 9, 18, 36, 44, 47, 59, 83), whereby two or more
acquisition dates were taken into account. In this review, these methods are summarized as
order-independent multi-date approach. This approach allows the integration of different
acquisition dates without knowledge about their temporal sequence. Nevertheless, it is
common to integrate data from various seasons (e.g. dry and wet). Especially in the field of
wetland monitoring, this approach is very popular, because different types of FV can occur
during different seasons. Typical classification algorithms used in this approach are decision
tree, random forest, or Support Vector Machine. Because additional information can easily
be integrated, the information of PP (ID 5, 6, 18) and of IC (ID 83) were increasingly applied
compared to the other three approaches discussed in this section.

The time series approach may be an appropriate solution allowing a sequential
extraction of changes over time for the investigation of FV, considering seasonal or
annual fluctuations of the individual vegetation types. Similar to the order-independent
multi-date approach, the time series approach enables the improvement of the relia-
bility for mapping FV areas as a consequence of multiple observations of the same area.
Furthermore, the flood evolution in FV areas within an inundation event can be ana-
lysed. More details can be extracted by the shape of temporal profiles, which consider
the effects of phenology and flooding and consequently enable a superior separation
between FV and other classes (Betbeder et al. 2014). Overall, six studies performed the
time series approach for extraction of FV. Thereby, five studies are based on BI values (ID
15, 38, 61, 63, 68); however, only one used PP as a foundation information (ID 51).
Depending on the available number of SAR images, the information content can
significantly increase. Martinez and Le Toan (2007) remarked that the improvement of
FV accuracy depends not only on the higher number of scenes but also on the regularity
of data acquisition. The complexity of analysis and processing of SAR data can consider-
ably increase with the number of available images causing challenges in the extraction
of the required information. The per-pixel analysis of backscatter time series can be CPU
intensive and time consuming. In case of flood monitoring, where near real-time
information is required, these characteristics may constitute a drawback. Nevertheless,
several studies show benefits of the application of a time series approach. Pulvirenti
et al. (2011a) demonstrated flood evolution mapping within FV by defining multi-
temporal FV classes containing different stages of flood duration. Thereby, the definition
of the classes was performed using multi-temporal profiles. For the extraction of the
dynamics of FV, Moser et al. (2016) performed a multi-temporal classification on a stack
of time-series data. Hidayat et al. (2012) calculated range, mean change, and standard
deviation images using the temporal information from 20 SAR scenes. Schlaffer et al.
(2016) recently introduced a harmonic model approach suitable for ENVISAT
(Environmental Satellite) ASAR (advanced SAR) time-series data. This approach is
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appropriate for modelling seasonal backscatter value patterns induced by different
dynamics in wetlands, among others the flood evolution in vegetated areas. The
harmonic model approach requires a time-series length of at least one seasonal cycle
for clear classification of permanent or seasonal FV. This method represents an advanced
time series approach contributing to a more automatic extraction of FV.

A comparison of the accuracy between the single image and multi-temporal approach
is provided in a few of the reviewed studies and is described in the following. Wang et al.
(1998) compared the accuracy of a single-date (51% correctly classified pixels) wetland
classification with different combination of dates (72–85% correctly classified pixels)
showing a clear improvement with higher temporal resolution. Furtado, Silva, and Novo
(2016) demonstrated that the use of dual-season imagery in comparison to a single image
brought the largest improvements in accuracies for flooded forest, among other classes.
PA increased from 49% to 79% and UA increased from 64% to 95%, respectively. Despite
the low accuracy performance reported by Heine, Jagdhuber, and Itzerott (2016), the best
accuracy acquired from single-date classification (36% correctly classified proportion) was
improved using multi-temporal data (45% correctly classified proportion). Zhao et al.
(2014) showed that the accuracy classification of FV is improved by using multi date
(PA: 97%, UA: 99%) in respect to single dates (PA: 80–92%, UA: 80–95%). Overall, an
increase in accuracy using multi-date data instead of single images is reported, which can
be explained by the increased information content including the seasonal stages of the
plants. Thereby, the selection of specific dates constitutes the decisive factor and not
necessarily their increased number Martinez and Le Toan (2007).

5. Conclusion

This review provides the current state of the art regarding the detection and extraction
of FV based on 128 studies. An overview of the interaction between sensor character-
istics and environmental conditions, and their effects on the SAR signal, is given. In
addition, various SAR data sets and classification algorithms, as well as their benefits and
limitations for the extraction of FV, are described.

As reported in earlier research reviews, longer wavelengths are still suggested for the
detection of flooded forests. However, L-band and C-band can be used, both combined or
individually, to separate between flooded forest, flooded herbaceous vegetation, and dry land
classes. Current research also demonstrates the ability of X-band to detect FV in case of low
biomass or leaf-off conditions. For thedetectionof FV, HH is preferredover VV and co-polarised
in general over cross-polarised data. However, both are applied to discriminate between
different FV types. Inhomogeneous statements were given about the application of polarisa-
tion ratios. Nevertheless, multi-polarised data were found to be valuable due to enhanced
information content in comparison to single polarised data. Steeper incidence angles are still
preferred over shallow ones. However, a few studies suggest that the detection of flood
beneath forests with increasing incident angles is less limited than expected.

Besides sensor characteristics, the backscatter signature of FV is strongly affected by the
environmental conditions and their characteristics. It was shown that the amount of the
aboveground biomass is critical for the detection of FV. Therefore, saturation points of the
SAR signal were determined, where the biomass increases and the water underneath the
vegetation can no longer be detected. It was established that the location of the saturation
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point is strongly influenced by sensor characteristics and depends on the vegetation type.
Furthermore, advanced analysis of the relation between the water depth and the height of
the plants has been conducted and their importance for the detection of flood in agricul-
tural and herbaceous areas has been emphasized in several studies.

With technological advances, an increase in the variety of SAR data sets and classi-
fication algorithms has taken. BI using different polarisations is a proved basis for the
extraction of FV. However, the application of PPs based on quad- or even dual-polarised
SAR data leads to promising results. This is because of their increased information
content and their ability to describe physical objects. Depending on the SAR data,
various decomposition techniques were introduced for the extraction of PPs. In parti-
cular, the decomposition of dual-polarised data, which constitutes a compromise
between information content, calculation complexity, and general availability, will pro-
vide a valuable foundation for future studies (Moser et al. 2016; Schmitt et al. 2012). IC is
comparatively novel SAR-derived information which, although limited by its demanding
requirements, can be beneficial as complementary information for BI (Pulvirenti et al.
2016) and reduce the need for external data (Chini et al. 2016).

The reviewed studies show some inconsistency in the application of classification
algorithms used for the extraction of FV. This can be explained by the wide variety of the
underlying data, which is often depending on the specific task but is mostly restricted by
its availability. Thereby, the comparability of the results can be inhibited. A wide range
of different classification techniques were applied in the studies, spanning from basic
thresholding approaches to more complex algorithms like machine learning. A selection
of a suitable algorithm for a certain task can be crucial for a successful classification and
strongly depends on the applied data. With the increasing availability of data, due to a
more continuous acquisition by SAR systems, such as Sentinel-1, current and prospective
algorithms need to be examined in regards to their usability to extract FV. Although an
increased utilization of the random forest algorithm can be noticed for wetland obser-
vations, no general trend was identified for the extraction of FV from SAR data. Even
though unsupervised algorithms are applied within multiple process chains, still no
completely unsupervised method exists that focuses on the extraction of FV.

The use of segmentation leads to more reliable results than pixel-based approaches,
because it is less prone to speckle noise. Furthermore, segment-based approaches appear
to be valuable alternatives, providing a depiction of real objects on the ground, mitigating
the increasing heterogeneity of classes in high-resolution satellite imagery. Because of its
potential, the segment-based approach should be more utilized for the detection of FV.

Single-image approaches are still preferred and are mostly used in combination with
ancillary data, such as optical or elevation information, to describe land-cover types containing
FV. The usage of multi-date SAR data sets seems to be attractive for wetland monitoring
because it includes seasonal information. The comparisons between single and multi-date
approaches within studies show an improvement in classification results. Short revisit times
and systematic data acquisitions by satellite missions, such as Sentinel-1 (Aulard-Macler 2011)
and Tandem-L (German Aerospace Center 2017), pave the way for the application of time
series approaches which are already implemented, especially for flood monitoring (Schlaffer
et al. 2016). Continuing efforts in the analysis of long-term profiles would expand the under-
standing about the seasonal and annual variability and enable the development of fully
automated and potentially transferable processes for the extraction of FV.

2282 V. TSYGANSKAYA ET AL.

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Sandro Martinis http://orcid.org/0000-0002-6400-361X

References

Airbus Defence and Space. 2016. “TerraSAR-X Documentation.” Online verfügbar unter. Accessed
25 October 2017. http://www.intelligence-airbusds.com/en/228-terrasar-x-technical-documents.

Allen, T., Y. Wang, and B. Gore. 2013. “Coastal Wetland Mapping Combining Multi-Date SAR and
LiDAR.” Geocarto International 28 (7): 616–631. doi:10.1080/10106049.2013.768297.

Alsdorf, D. E., J. M. Melack, T. Dunne, L. A. K. Mertes, L. L. Hess, and L. C. Smith. 2000.
“Interferometric Radar Measurements of Water Level Changes on the Amazon Flood Plain.”
Nature 404 (6774): 174–177. doi:10.1038/35004560.

Alsdorf, D. E., L. C. Smith, and J. M. Melack. 2001. “Amazon Floodplain Water Level Changes
Measured with Interferometric SIR-C Radar.” IEEE Transactions Geoscience Remote Sensing 39
(2): 423–431. doi:10.1109/36.905250.

Arnesen, A. S., T. S. F. Silva, L. L. Hess, E. M. L. M. Novo, C. M. Rudorff, B. D. Chapman, and K. C. McDonald.
2013. “Monitoring Flood Extent in the Lower Amazon River Floodplain Using ALOS/PALSAR
ScanSAR Images.” Remote Sensing of Environment 130: 51–61. doi:10.1016/j.rse.2012.10.035.

Asselen, S., P. H. Verburg, J. E. Vermaat, and J. H. Janse. 2013. “Drivers of Wetland Conversion: A
Global Meta-Analysis.” PloS One 8 (11): 1–13. doi:10.1371/journal.pone.0081292.

Augusteijn, M. F., and C. E. Warrender. 1998. “Wetland Classification Using Optical and Radar Data
and Neural Network Classification.” International Journal of Remote Sensing 19 (8): 1545–1560.
doi:10.1080/014311698215342.

Aulard-Macler, M. 2011. Sentinel-1 Product Definition, MDA Technical Note Ref. S1-RS-MDA-52–7440.

MacDonald. Richmond, Canada: Dettwiler and Associates (MDA).
Aziz, H. K., and K. White. 2003. “Using Mimics to Model L-Band SAR Mackscatter from a Peat

Swamp Forest.” Journal of Tropical Forest Science 15 (4): 546–556.
Baghdadi, N., M. Bernier, R. Gauthier, and I. Neeson. 2001. “Evaluation of C-Band SAR Data for Wetlands

Mapping.” International Journal of Remote Sensing 22 (1): 71–88. doi:10.1080/014311601750038857.
Betbeder, J., S. Rapinel, S. Corgne, E. Pottier, and L. Hubert-Moy. 2015. “TerraSAR-X Dual-Pol Time-

Series for Mapping of Wetland Vegetation.” ISPRS Journal of Photogrammetry and Remote

Sensing 107: 90–98. doi:10.1016/j.isprsjprs.2015.05.001.
Betbeder, J., S. Rapinel, T. Corpetti, E. Pottier, S. Corgne, and L. Hubert-Moy. 2014. “Multitemporal

Classification of TerraSAR-X Data for Wetland Vegetation Mapping.” Journal Applications Remote

Sens 8 (1): 83648. doi:10.1117/1.JRS.8.083648.
Bian, H., T. Yan, Z. Zhang, C. He, and L. Sheng. 2016. “MappingDeciduous Broad-Leaved Forested Swamps

UsingALOS/PalsarData.”ChineseGeographic Sciences26 (3): 352–365. doi:10.1007/s11769-016-0805-2.
Bourgeau-Chavez, L., Y. Lee, M. Battaglia, S. Endres, Z. Laubach, and K. Scarbrough. 2016.

“Identification of Woodland Vernal Pools with Seasonal Change PALSAR Data for Habitat
Conservation.” Remote Sensing 8 (6): 490. doi:10.3390/rs8060490.

Bourgeau-Chavez, L. L., E. S. Kasischke, and K. Smith. 1997. “Using Satellite Radar Imagery to
Monitor Flood Conditions in Wetland Ecoystems of Southern Florida.” In Proc. SPIE 2959, Remote

Sensing of Vegetation and Sea, edited by G. Cecchi, G. D’Urso, E. T. Engman, and P. Gudmandsen,
Taormina, Italy, 139–148.

Bourgeau-Chavez, L. L., E. S. Kasischke, S. M. Brunzell, J. P. Mudd, K. B. Smith, and A. L. Frick. 2001.
“Analysis of Space-Borne SAR Data for Wetland Mapping in Virginia Riparian Ecosystems.”
International Journal of Remote Sensing 22 (18): 3665–3687. doi:10.1080/01431160010029174.

INTERNATIONAL JOURNAL OF REMOTE SENSING 2283

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Bourgeau-Chavez, L. L., K. Riordan, B. Richard, N. Miller, and M. Nowels. 2009. “Improving Wetland
Characterization with Multi-Sensor, Multi-Temporal SAR and Optical/Infrared Data Fusion.” In
Advances in Geoscience and Remote Sensing, edited by G. Jedlovec. Vukovar: Croatia: In-Teh.

Bouvet, A., and T. Le Toan. 2011. “Use of ENVISAT/ASAR Wide-Swath Data for Timely Rice Fields
Mapping in the Mekong River Delta.” Remote Sensing of Environment 115 (4): 1090–1101.
doi:10.1016/j.rse.2010.12.014.

Brisco, B., A. Schmitt, K. Murnaghan, S. Kaya, and A. Roth. 2013a. “SAR Polarimetric Change
Detection for Flooded Vegetation.” International Journal of Digital Earth 6 (2): 103–114.
doi:10.1080/17538947.2011.608813.

Brisco, B., L. Kun, B. Tedford, F. Charbonneau, S. Yun, and K. Murnaghan. 2013b. “Compact
Polarimetry Assessment for Rice and Wetland Mapping.” International Journal of Remote

Sensing 34 (6): 1949–1964. doi:10.1080/01431161.2012.730156.
Brisco, B., M. Kapfer, T. Hirose, B. Tedford, and J. Liu. 2011. “Evaluation of C-Band Polarization

Diversity and Polarimetry for Wetland Mapping.” Canadian Journal of Remote Sensing 37 (1): 82–
92. doi:10.5589/m11-017.

Brisco, B., R. Touzi, J. J. van der Sanden, F. Charbonneau, T. J. Pultz, and M. D’Iorio. 2008. “Water
Resource Applications with RADARSAT-2? A Preview.” International Journal of Digital Earth 1 (1):
130–147. doi:10.1080/17538940701782577.

Brown, I., S. Mwansasu, and L.-O. Westerberg. 2016. “L-Band Polarimetric Target Decomposition of
Mangroves of the Rufiji Delta, Tanzania.” Remote Sensing 8 (2): 140. doi:10.3390/rs8020140.

Buckley, J. J., and E. Eslami. 2002. An Introduction to Fuzzy Logic and Fuzzy Sets. Heidelberg:
Physica-Verlag (Advances in soft computing).

Bwangoy, J.-R. B., M. C. Hansen, D. P. Roy, G. de Grandi, and C. O. Justice. 2010. “Wetland Mapping
in the Congo Basin Using Optical and Radar Remotely Sensed Data and Derived Topographical
Indices.” Remote Sensing of Environment 114 (1): 73–86. doi:10.1016/j.rse.2009.08.004.

Cazals, C., S. Rapinel, P.-L. Frison, A. Bonis, G. Mercier, C. Mallet, S. Corgne, and J.-P. Rudant. 2016.
“Mapping and Characterization of Hydrological Dynamics in a Coastal Marsh Using High
Temporal Resolution Sentinel-1A Images.” Remote Sensing 8 (7): 570. doi:10.3390/rs8070570.

Chapman, B., K. McDonald, M. Shimada, A. Rosenqvist, R. Schroeder, and L. Hess. 2015. “Mapping
Regional Inundation with Spaceborne L-Band SAR.” Remote Sensing 7 (5): 5440–5470.
doi:10.3390/rs70505440.

Chen, Y., H. Xiufeng, J. Wang, and R. Xiao. 2014. “The Influence of Polarimetric Parameters and an
Object-Based Approach on Land Cover Classification in Coastal Wetlands.” Remote Sensing 6
(12): 12575–12592. doi:10.3390/rs61212575.

Chini, M., A. Papastergios, L. Pulvirenti, N. Pierdicca, P. Matgen, and I. Parcharidis. 2016. “SAR
Coherence and Polarimetric Information for Improving Flood Mapping. In: 2016 IEEE
International Geoscience & Remote Sensing Symposium.” In Proceedings IGARSS 2016-2016

IEEE International Geoscience and Remote Sensing Symposium. Beijing, China, July 10-15, 2016,
7577–7580. Piscataway, NJ: IEEE.

Cloude, S. R., and E. Pottier. 1997. “An Entropy Based Classification Scheme for Land Applications of
Polarimetric SAR.” IEEE Transactions Geoscience Remote Sensing 35 (1): 68–78. doi:10.1109/36.551935.

Corcoran, J., J. Knight, B. Brisco, S. Kaya, A. Cull, and K. Murnaghan. 2012. “The Integration of
Optical, Topographic, and Radar Data for Wetland Mapping in Northern Minnesota.” Canadian
Journal of Remote Sensing 37 (5): 564–582. doi:10.5589/m11-067.

Cordeiro, C. L. D. O., and D. D. F. Rossetti. 2015. “Mapping Vegetation in a Late Quaternary
Landform of the Amazonian Wetlands Using Object-Based Image Analysis and Decision Tree
Classification.” International Journal of Remote Sensing 36 (13): 3397–3422. doi:10.1080/
01431161.2015.1060644.

Costa, F., M. Novo, E. Mantovani, V. Ballester, and F. Ahern. 1997. “Classification of Floodplain
Habitats (Lago Grande, Brazilian Amazon) with RADARSAT and JERS-1 Data.” Presented ai
GER’97 Conference, Ottawa, Canada, May 1997.

Costa, M. P. F. 2004. “Use of SAR Satellites for Mapping Zonation of Vegetation Communities in the
Amazon Floodplain.” International Journal of Remote Sensing 25 (10): 1817–1835. doi:10.1080/
0143116031000116985.

2284 V. TSYGANSKAYA ET AL.

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Costa, M. P. F., and K. H. Telmer. 2006. “Utilizing SAR Imagery and Aquatic Vegetation to Map Fresh
and Brackish Lakes in the Brazilian Pantanal Wetland.” Remote Sensing of Environment 105 (3):
204–213. doi:10.1016/j.rse.2006.06.014.

Costa,M. P. F., O. Niemann, E. Novo, and F. Ahern. 2002. “Biophysical Properties andMappingof Aquatic
Vegetation during the Hydrological Cycle of the Amazon Floodplain Using JERS-1 and Radarsat.”
International Journal of Remote Sensing 23 (7): 1401–1426. doi:10.1080/01431160110092957.

Cremon, É., D. F. Rossetti, Dilce, and H. Zani. 2014. “Classification of Vegetation over a Residual
Megafan Landform in the Amazonian Lowland Based on Optical and SAR Imagery.” Remote

Sensing 6 (11): 10931–10946. doi:10.3390/rs61110931.
Dabboor, M., L. White, B. Brisco, and F. Charbonneau. 2015. “Change Detection with Compact

Polarimetric SAR for Monitoring Wetlands.” Canadian Journal of Remote Sensing 41 (5): 408–417.
doi:10.1080/07038992.2015.1104634.

de Grandi, G. F., P. Mayaux, J. P. Malingreau, A. Rosenqvist, S. Saatchi, and M. Simard. 2000. “New
Perspectives on Global Ecosystems from Wide-Area Radar Mosaics: Flooded Forest Mapping in
the Tropics.” International Journal of Remote Sensing 21 (6–7): 1235–1249. doi:10.1080/
014311600210155.

Dronova, I. 2015. “Object-Based Image Analysis in Wetland Research: A Review.” Remote Sensing 7
(5): 6380–6413. doi:10.3390/rs70506380.

Dwivedi, R. S., B. R. M. Rao, and S. Bhattacharya. 1999. “Mapping Wetlands of the Sundaban Delta
and It’s Environs Using ERS-1 SAR Data.” International Journal of Remote Sensing 20 (11): 2235–
2247. doi:10.1080/014311699212227.

Erwin, K. L. 2009. “Wetlands and Global Climate Change. The Role of Wetland Restoration in a
Changing World.” Wetlands Ecology Manage 17 (1): 71–84. doi:10.1007/s11273-008-9119-1.

Evans, T. L., and M. Costa. 2013. “Landcover Classification of the Lower Nhecolândia Subregion of
the Brazilian Pantanal Wetlands Using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR Imagery.”
Remote Sensing of Environment 128: 118–137. doi:10.1016/j.rse.2012.09.022.

Evans, T. L., M. Costa, K. Telmer, and T. S. F. Silva. 2010. “Using ALOS/PALSAR and RADARSAT-2 to
Map Land Cover and Seasonal Inundation in the Brazilian Pantanal.” IEEE Journal Sel Topics

Applications Earth Observations Remote Sensing 3 (4): 560–575. doi:10.1109/
JSTARS.2010.2089042.

Evans, T. L., M. Costa, W. M. Tomas, and A. R. Camilo. 2014. “Large-Scale Habitat Mapping of the
Brazilian Pantanal Wetland. A Synthetic Aperture Radar Approach.” Remote Sensing of

Environment 155: 89–108. doi:10.1016/j.rse.2013.08.051.
Ferreira-Ferreira, J., T. S. F. Silva, A. S. Streher, A. G. Affonso, A. Furtado, F. de Luiz, B. R. Forsberg,

et al. 2015. “Combining ALOS/PALSAR Derived Vegetation Structure and Inundation Patterns to
Characterize Major Vegetation Types in the Mamirau? Sustainable Development Reserve,
Central Amazon Floodplain, Brazil.” Wetlands Ecology Manage 23 (1): 41–59. doi:10.1007/
s11273-014-9359-1.

Frappart, F., F. Seyler, J.-M. Martinez, J. G. León, and A. Cazenave. 2005. “Floodplain Water Storage
in the Negro River Basin Estimated from Microwave Remote Sensing of Inundation Area and
Water Levels.” Remote Sensing of Environment 99 (4): 387–399. doi:10.1016/j.rse.2005.08.016.

Friedl, M. A., and C. E. Brodley. 1997. “Decision Tree Classification of Land Cover from Remotely Sensed
Data.” Remote Sensing of Environment 61 (3): 399–409. doi:10.1016/S0034-4257(97)00049-7.

Furtado, L. F. D. A., T. S. F. Silva, and E. M. L. D. M. Novo. 2016. “Dual-Season and Full-Polarimetric C
Band SAR Assessment for Vegetation Mapping in the Amazon várzea Wetlands.” Remote Sensing

of Environment 174: 212–222. doi:10.1016/j.rse.2015.12.013.
Gallant, A., S. Kaya, L. White, B. Brisco, M. Roth, W. Sadinski, and J. Rover. 2014. “Detecting

Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic
Aperture Radar (SAR) Data.” Water 6 (3): 694–722. doi:10.3390/w6030694.

German Aerospace Center. 2017. “Tandem-L. Satellite Mission Proposal for Monitoring Dynamic
Processes on the Earth’s Surface. Cologne. Online Verfügbar Unter.” Accessed 27 August 2017.
www.dlr.de/hr/en/Portaldata/32/Resources/dokumente/tdml/Tandem-L_Brochure_2017-05.pdf.

Grenier, M., A.-M. Demers, S. Labrecque, M. Benoit, R. A. Fournier, and B. Drolet. 2007. “An Object-
Based Method to Map Wetland Using RADARSAT-1 and Landsat ETM Images. Test Case on Two

INTERNATIONAL JOURNAL OF REMOTE SENSING 2285

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Sites in Quebec, Canada.” Canadian Journal of Remote Sensing 33 (sup1): S28–S45. doi:10.5589/
m07-048.

Grings, F. M., P. Ferrazzoli, H. Karszenbaum, M. Salvia, P. Kandus, J. C. Jacobo-Berlles, and P. Perna.
2008. “Model Investigation about the Potential of C Band SAR in Herbaceous Wetlands Flood
Monitoring.” International Journal of Remote Sensing 29 (17–18): 5361–5372. doi:10.1080/
01431160802036409.

Grings, F. M., P. Ferrazzoli, J. C. Jacobo-Berlles, H. Karszenbaum, J. Tiffenberg, P. Pratolongo, and P.
Kandus. 2006. “Monitoring Flood Condition in Marshes Using EM Models and Envisat ASAR
Observations.” IEEE Transactions Geoscience Remote Sensing 44 (4): 936–942. doi:10.1109/
TGRS.2005.863482.

Hall, D. K. 1996. “Remote Sensing Applications to Hydrology; Imaging Radar.” Hydrological Sciences
Journal 41 (4): 609–624. doi:10.1080/02626669609491528.

Heine, I., T. Jagdhuber, and S. Itzerott. 2016. “Classification and Monitoring of Reed Belts Using
Dual-Polarimetric TerraSAR-X Time Series.” Remote Sensing 8 (7): 552. doi:10.3390/rs8070552.

Henderson, F. M., and A. J. Lewis. 2008. “Radar Detection of Wetland Ecosystems: A Review.”
International Journal of Remote Sensing 29 (20): 5809–5835. doi:10.1080/01431160801958405.

Hess, L. L. 2003. “Dual-Season Mapping of Wetland Inundation and Vegetation for the Central
Amazon Basin.” Remote Sensing of Environment 87 (4): 404–428. doi:10.1016/j.rse.2003.04.001.

Hess, L. L., J. M. Melack, A. G. Affonso, C. Barbosa, M. Gastil-Buhl, and E. M. L. M. Novo. 2015.
“Wetlands of the Lowland Amazon Basin. Extent, Vegetative Cover, and Dual-Season Inundated
Area as Mapped with JERS-1 Synthetic Aperture Radar.” Wetlands 35 (4): 745–756. doi:10.1007/
s13157-015-0666-y.

Hess, L. L., J. M. Melack, and D. S. Simonett. 1990. “Radar Detection of Flooding beneath the Forest
Canopy. A Review.” International Journal of Remote Sensing 11 (7): 1313–1325. doi:10.1080/
01431169008955095.

Hess, L. L., and J. M. Melack. 2003. “Remote Sensing of Vegetation and Flooding on Magela Creek
Floodplain (Northern Territory, Australia) with the SIR-C Synthetic Aperture Radar.” In Aquatic

Biodiversity, edited by K. Martens, 65–82. Dordrecht: Springer Netherlands.
Hess, L. L., J. M. Melack, S. Filoso, and Y. Wang. 1995. “Delineation of Inundated Area and

Vegetation along the Amazon Floodplain with the SIR-C Synthetic Aperture Radar.” IEEE

Transactions Geoscience Remote Sensing 33 (4): 896–904. doi:10.1109/36.406675.
Hidayat, H., D. H. Hoekman, M. A. M. Vissers, and A. J. F. Hoitink. 2012. “Flood Occurrence Mapping

of the Middle Mahakam Lowland Area Using Satellite Radar.” Hydrology Earth Systems Sciences

16 (7): 1805–1816. doi:10.5194/hess-16-1805-2012.
Horritt, M. 2003. “Waterline Mapping in Flooded Vegetation from Airborne SAR Imagery.” Remote

Sensing of Environment 85 (3): 271–281. doi:10.1016/S0034-4257(03)00006-3.
Imhoff, M., M. Story, C. Vermillion, F. Khan, and F. Polcyn. 1986. “Forest Canopy Characterization

and Vegetation Penetration Assessment with Space-Borne Radar.” IEEE Transactions Geoscience

Remote Sensing GE-24 (4): 535–542. doi:10.1109/TGRS.1986.289668.
Kandus, P., H. Karszenbaum, T. Pultz, G. Parmuchi, and J. Bava. 2001. “Influence of Flood Conditions

and Vegetation Status on the Radar Backscatter of Wetland Ecosystems.” Canadian Journal of

Remote Sensing 27 (6): 651–662. doi:10.1080/07038992.2001.10854907.
Karszenbaum, H., P. Kandus, J. M. Martinez, T. Le Toan, J. Tiffenberg, and G. Parmuchi. 2000. ERS-2,

Radarsat SAR Backscattering Characteristics of the Parana River Delta Wetland, Argentina.
Argentina: Special Publication SP-461.

Kasischke, E. S., K. B. Smith, L. L. Bourgeau-Chavez, E. A. Romanowicz, S. Brunzell, and C. J.
Richardson. 2003. “Effects of Seasonal Hydrologic Patterns in South Florida Wetlands on Radar
Backscatter Measured from ERS-2 SAR Imagery.” Remote Sensing of Environment 88 (4): 423–441.
doi:10.1016/j.rse.2003.08.016.

Kasischke, E. S., and L. L. Bourgeau-Chavez. 1997. “Monitoring South Florida Wetlands Using ERS-1
SAR Imagery.” Photogrammetric Engineering & Remote Sensing 63 (3): 281–291.

Kiage, L. M., N. D. Walker, S. Balasubramanian, A. Babin, and J. Barras. 2005. “Applications of
Radarsat? 1 Synthetic Aperture Radar Imagery to Assess Hurricane?Related Flooding of Coastal

2286 V. TSYGANSKAYA ET AL.

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Louisiana.” International Journal of Remote Sensing 26 (24): 5359–5380. doi:10.1080/
01431160500442438.

Kittler, J., and J. Illingworth. 1986. “Minimum Error Thresholding.” Pattern Recognition 19 (1): 41–47.
doi:10.1016/0031-3203(86)90030-0.

Klemas, V. 2013. “Remote Sensing of Emergent and Submerged Wetlands: An Overview.”
International Journal of Remote Sensing 34 (18): 6286–6320. doi:10.1080/
01431161.2013.800656.

Koch, M., T. Schmid, M. Reyes, and J. Gumuzzio. 2012. “Evaluating Full Polarimetric C- and L-Band
Data for Mapping Wetland Conditions in a Semi-Arid Environment in Central Spain.” IEEE Journal
Sel Topics Applications Earth Observations Remote Sensing 5 (3): 1033–1044. doi:10.1109/
JSTARS.2012.2202091.

Kuenzer, C., A. Bluemel, S. Gebhardt, T. V. Quoc, and S. Dech. 2011. “Remote Sensing of Mangrove
Ecosystems. A Review.” Remote Sensing 3 (12): 878–928. doi:10.3390/rs3050878.

Kwoun, O.-I., and L. Zhong. 2009. “Multi-Temporal RADARSAT-1 and ERS Backscattering Signatures
of Coastal Wetlands in Southeastern Louisiana.” Photogramm Eng Remote Sensing 75 (5): 607–
617. doi:10.14358/PERS.75.5.607.

Lang, M. W., and E. S. Kasischke. 2008. “Using C-Band Synthetic Aperture Radar Data to Monitor
Forested Wetland Hydrology in Maryland’s Coastal Plain, USA.” IEEE Transactions Geoscience

Remote Sensing 46 (2): 535–546. doi:10.1109/TGRS.2007.909950.
Lang, M. W., E. S. Kasischke, S. D. Prince, and K. W. Pittman. 2008. “Assessment of C-Band Synthetic

Aperture Radar Data for Mapping andMonitoring Coastal Plain ForestedWetlands in theMid-Atlantic
Region, U.S.A.” Remote Sensing of Environment 112 (11): 4120–4130. doi:10.1016/j.rse.2007.08.026.

Lang, M. W., P. A. Townsend, and E. S. Kasischke. 2008. “Influence of Incidence Angle on Detecting
Flooded Forests Using C-HH Synthetic Aperture Radar Data.” Remote Sensing of Environment 112
(10): 3898–3907. doi:10.1016/j.rse.2008.06.013.

Le Toan, T., F. Ribbes, L.-F. Wang, N. Floury, K.-H. Ding, J. A. Kong, M. Fujita, and T. Kurosu. 1997.
“Rice Crop Mapping and Monitoring Using ERS-1 Data Based on Experiment and Modeling
Results.” IEEE Transactions Geoscience Remote Sensing 35 (1): 41–56. doi:10.1109/36.551933.

Lee, H., T. Yuan, H. C. Jung, and E. Beighley. 2015. “Mapping Wetland Water Depths over the
Central Congo Basin Using PALSAR ScanSAR, Envisat Altimetry, and MODIS VCF Data.” Remote

Sensing of Environment 159: 70–79. doi:10.1016/j.rse.2014.11.030.
Lee, J.-S., and E. Pottier. 2009. Polarimetric Radar Imaging. From Basics to Applications. Boca Raton:

CRC Press (Optical science and engineering, 142).
Lewis, A. J., F. M. Henderson, and D. Holcomb. 1998. “Radar Fundamentals: The Geoscience

Perspective.” In Principles and Applications of Imaging Radar, 3rd ed. Vol. 2 edited by F. M.
Henderson and A. J. Lewis, 131–181. New York: J. Wiley. (Manual of remote sensing).

Li, J., andW. Chen. 2005. “ARule-BasedMethod forMapping Canada’sWetlands UsingOptical, Radar and
DEM Data.” International Journal of Remote Sensing 26 (22): 5051–5069. doi:10.1080/
01431160500166516.

Li, S. Z. 2001. Markov Random Field Modeling in Image Analysis. Tokyo: Springer Japan (Computer
Science Workbench).

Long, S., T. E. Fatoyinbo, and F. Policelli. 2014. “Flood Extent Mapping for Namibia Using Change
Detection and Thresholding with SAR.” Environment Researcher Letters 9 (3): 1–9. doi:10.1088/1748-
9326/9/3/035002.

Lopes, A., R. Touzi, and E. Nezry. 1990. “Adaptive Speckle Filters and Scene Heterogeneity.” IEEE
Transactions Geoscience Remote Sensing 28 (6): 992–1000. doi:10.1109/36.62623.

Lu, Z., and O.-I. Kwoun. 2008. “Radarsat-1 and ERS InSAR Analysis over Southeastern Coastal
Louisiana. Implications for Mapping Water-Level Changes beneath Swamp Forests.” IEEE

Transactions Geoscience Remote Sensing 46 (8): 2167–2184. doi:10.1109/TGRS.2008.917271.
Maillard, P., T. Alencar-Silva, and D. A. Clausi. 2008. “An Evaluation of Radarsat-1 and ASTER Data for

MappingVeredas (PalmSwamps).” Sensors (Basel, Switzerland)8 (9): 6055–6076. doi:10.3390/s8096055.
Marti-Cardona, B., C. Lopez-Martinez, J. Dolz-Ripolles, and E. Bladè-Castellet. 2010. “ASAR Polarimetric,

Multi-Incidence Angle and Multitemporal Characterization of Doñana Wetlands for Flood Extent
Monitoring.” Remote Sensing of Environment 114 (11): 2802–2815. doi:10.1016/j.rse.2010.06.015.

INTERNATIONAL JOURNAL OF REMOTE SENSING 2287

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Marti-Cardona, B., J. Dolz-Ripolles, and C. Lopez-Martinez. 2013. “Wetland Inundation Monitoring
by the Synergistic Use of ENVISAT/ASAR Imagery and Ancilliary Spatial Data.” Remote Sensing of

Environment 139: 171–184. doi:10.1016/j.rse.2013.07.028.
Martinez, J., and T. Le Toan. 2007. “Mapping of Flood Dynamics and Spatial Distribution of

Vegetation in the Amazon Floodplain Using Multitemporal SAR Data.” Remote Sensing of

Environment 108 (3): 209–223. doi:10.1016/j.rse.2006.11.012.
Martinis, S., and A. Twele. 2010. “A Hierarchical Spatio-Temporal Markov Model for Improved Flood

Mapping Using Multi-Temporal X-Band SAR Data.” Remote Sensing 2 (9): 2240–2258. doi:10.3390/
rs2092240.

Martinis, S., and C. Rieke. 2015. “Backscatter Analysis Using Multi-Temporal and Multi-Frequency
SAR Data in the Context of Flood Mapping at River Saale, Germany.” Remote Sensing 7 (6): 7732–
7752. doi:10.3390/rs70607732.

Mayaux, P., G. F. de Grandi, Y. Rauste, M. Simard, and S. Saatchi. 2002. “Large-Scale Vegetation Maps
Derived from the Combined L-Band GRFM and C-Band CAMP Wide Area Radar Mosaics of Central
Africa.” International Journal of Remote Sensing 23 (7): 1261–1282. doi:10.1080/01431160110092894.

Melack, J. M., and L. L. Hess. 2010. “Remote Sensing of the Distributions and Extent of Wetlands in
the Amazon Basin.” In Amazonian Flodplain Forests: Ecophysiology, Ecology, Biodiversity and

Sustainable Management: Ecological Studies, edited by W. J. Junk, M. Piedade, F. Wittmann, P.
Parolin, and J. Schöngart, 43–59, Netherlands: Springer.

Melack, J. M., and Y. Wang. 1998. “Delineation of Flooded Area and Flooded Vegetation in Balbina
Reservoir (Amazonas, Brazil) with Synthetic Aperture Radar.” Erhandlungen - Internationale

Vereinigung Fur Theoretische Und Angewandte Limnologie 26: 2374–2377.
Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-Being: Synthesis. Washington, DC:

Island Press.
Miranda, F. P., L. E. N. Fonseca, and J. R. Carr. 1998. “Semivariogram Textural Classification of JERS-1

(Fuyo-1) SAR Data Obtained over a Flooded Area of the Amazon Rainforest.” International

Journal of Remote Sensing 19 (3): 549–556. doi:10.1080/014311698216170.
Mishra, D. R., S. Ghosh, C. Hladik, J. L. O’Connell, and H. J. Cho. 2016. “Wetland Mapping Methods

and Techniques Using Multisensor, Multiresolution Remote Sensing: Successes and Challenges.”
In Remote Sensing of Water Resources, Disasters, and Urban Studies, edited by P. S. Thenkabail,
191–220. Boca Raton: CRC Press (Remote sensing handbook).

Morandeira, N., F. Grings, C. Facchinetti, and P. Kandus. 2016. “Mapping Plant Functional Types in
Floodplain Wetlands. An Analysis of C-Band Polarimetric SAR Data from RADARSAT-2.” Remote

Sensing 8 (3): 174. doi:10.3390/rs8030174.
Moser, L., A. Schmitt, A. Wendleder, and A. Roth. 2016. “Monitoring of the Lac Bam Wetland Extent

Using Dual-Polarized X-Band SAR Data.” Remote Sensing 8 (4): 302. doi:10.3390/rs8040302.
Mougin, E., C. Proisy, G. Marty, F. Fromard, H. Puig, J. L. Betoulle, and J. P. Rudant. 1999.

“Multifrequency and Multipolarization Radar Backscattering from Mangrove Forests.” IEEE

Transactions Geoscience Remote Sensing 37 (1): 94–102. doi:10.1109/36.739128.
Mwita, E., G. Menz, S. Misana, and P. Nienkemper. 2012. “Detection of Small Wetlands with Multi

Sensor Data in East Africa.” ARS 01 (03): 64–73. doi:10.4236/ars.2012.13007.
Na, X., S. Zang, L. Liu, and M. Li. 2013. “Wetland Mapping in the Zhalong National Natural Reserve,

China, Using Optical and Radar Imagery and Topographical Data.” Journal Applications Remote

Sens 7 (1): 73554. doi:10.1117/1.JRS.7.073554.
Na, X. D., S. Y. Zang, C. S. Wu, and W. L. Li. 2015. “Mapping Forested Wetlands in the Great Zhan River

Basin through Integrating Optical, Radar, and Topographical Data Classification Techniques.”
Environmental Monitoring and Assessment 187 (11): 696. doi:10.1007/s10661-015-4914-7.

Nord, M. E., T. L. Ainsworth, J.-S. Lee, and N. J. S. Stacy. 2009. “Comparison of Compact Polarimetric
Synthetic Aperture Radar Modes.” IEEE Transactions Geoscience Remote Sensing 47 (1): 174–188.
doi:10.1109/TGRS.2008.2000925.

Oliver-Cabrera, T., and S. Wdowinski. 2016. “InSAR-Based Mapping of Tidal Inundation Extent and
Amplitude in Louisiana Coastal Wetlands.” Remote Sensing 8 (5): 393. doi:10.3390/rs8050393.

Otsu, N. 1979. “A Threshold Selection Method from Gray-Level Histograms.” IEEE Transactions on

Systems, Man, and Cybernetics 9: 62–66. doi:10.1109/TSMC.1979.4310076.

2288 V. TSYGANSKAYA ET AL.

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Park, H.-S., and C.-H. Jun. 2009. “A Simple and Fast Algorithm for K-Medoids Clustering.” Expert
Systems with Applications 36 (2): 3336–3341. doi:10.1016/j.eswa.2008.01.039.

Patel, P., H. Srivastava, and R. Navalgund. 2009. “Use of Synthetic Aperture Radar Polarimetry to
Characterize Wetland Targets of Keoladeo National Park, Bharatpur, India.” Current Science 97 (4):
529–537.

Pierdicca, N., L. Pulvirenti, M. Chini, L. Guerriero, and L. Candela. 2013. “Observing Floods from
Space: Experience Gained from COSMO-SkyMed Observations.” Acta Astronautica 84: 122–133.
doi:10.1016/j.actaastro.2012.10.034.

Pierdicca, N., M. Chini, L. Pulvirenti, and F. Macina. 2008. “Integrating Physical and Topographic
Information into a Fuzzy Scheme to Map Flooded Area by SAR.” Sensors 8 (7): 4151–4164.
doi:10.3390/s8074151.

Pistolesi, L. I., W. Ni-Meister, and K. C. McDonald. 2015. “Mapping Wetlands in the Hudson Highlands
Ecoregion with ALOS PALSAR. An Effort to Identify Potential Swamp Forest Habitat for Golden-
Winged Warblers.” Wetlands Ecology Manage 23 (1): 95–112. doi:10.1007/s11273-014-9381-3.

Podest, E., and S. Saatchi. 2002. “Application of Multiscale Texture in Classifying JERS-1 Radar Data over
Tropical Vegetation.” International Journal of Remote Sensing 23 (7): 1487–1506. doi:10.1080/
01431160110093000.

Pope, K. O., E. Rejmankova, and J. F. Paris. 2001. “Spaceborne Imaging radar-C (SIR-C) Observations
of Groundwater Discharge and Wetlands Associated with the Chicxulub Impact Crater,
Northwestern Yucatan Peninsula, Mexico.” Geological Society of America Bulletin 113 (3): 403–
416. doi:10.1130/0016-7606(2001)113<0403:SIRCSC>2.0.CO;2.

Pope, K. O., E. Rejmankova, J. F. Paris, and R. Woodruff. 1997. “Detecting Seasonal Flooding Cycles
in Marshes of the Yucatan Peninsula with SIR-C Polarimetric Radar Imagery.” Remote Sensing of

Environment 59 (2): 157–166. doi:10.1016/S0034-4257(96)00151-4.
Pope, K. O., J. M. Rey-Benayas, and J. F. Paris. 1994. “Radar Remote Sensing of Forest and Wetland

Ecosystems in the Central American Tropics.” Remote Sensing of Environment 48 (2): 205–219.
doi: 10.1016/0034-4257(94)90142-2.

Pulvirenti, L., M. Chini, N. Pierdicca, and G. Boni. 2016. “Use of SAR Data for Detecting Floodwater
in Urban and Agricultural Areas: The Role of the Interferometric Coherence.” IEEE Transactions

Geoscience Remote Sensing 54 (3): 1532–1544. doi:10.1109/TGRS.2015.2482001.
Pulvirenti, L., M. Chini, N. Pierdicca, L. Guerriero, and P. Ferrazzoli. 2011a. “Flood Monitoring Using

Multi-Temporal COSMO-SkyMed Data. Image Segmentation and Signature Interpretation.”
Remote Sensing of Environment 115 (4): 990–1002. doi:10.1016/j.rse.2010.12.002.

Pulvirenti, L., N. Pierdicca, and M. Chini. 2010. “Analysis of Cosmo-SkyMed Observations of the
2008 Flood in Myanmar.” ItJRS 79–90. doi:10.5721/ItJRS20104217.

Pulvirenti, L., N. Pierdicca, M. Chini, and L. Guerriero. 2011b. “An Algorithm for Operational Flood
Mapping from Synthetic Aperture Radar (SAR) Data Using Fuzzy Logic.” Natural Hazards Earth
Systems Sciences 11 (2): 529–540. doi:10.5194/nhess-11-529-2011.

Pulvirenti, L., N. Pierdicca, M. Chini, and L. Guerriero. 2013. “Monitoring Flood Evolution in Vegetated
Areas Using COSMO-SkyMed Data: The Tuscany 2009 Case Study.” IEEE Journal Sel Topics

Applications Earth Observations Remote Sensing 6 (4): 1807–1816. doi:10.1109/JSTARS.2012.2219509.
Quegan, S., and J. Yu. 2001. “Filtering of Multichannel SAR Images.” IEEE Transactions Geoscience

Remote Sensing 39 (11): 2373–2379. doi:10.1109/36.964973.
Rebelo, L.-M., G. B. Senay, and M. P. McCartney. 2012. “Flood Pulsing in the Sudd Wetland: Analysis of

Seasonal Variations in Inundation and Evaporation in South Sudan.” Earth Interact 16 (1): 1–19.
doi:10.1175/2011EI382.1.

Richards, J. A. 2012. Remote Sensing Digital Image Analysis. An Introduction. 5th ed. Berlin, New
York: Springer.

Richards, J. A., P. W. Woodgate, and A. K. Skidmore. 1987. “An Explanation of Enhanced Radar
Backscattering from Flooded Forests.” International Journal of Remote Sensing 8 (7): 1093–1100.
doi:10.1080/01431168708954756.

Rignot, E. J. M., and J. J. van Zyl. 1993. “Change Detection Techniques for ERS-1 SAR Data.” IEEE
Transactions Geoscience Remote Sensing 31 (4): 896–906. doi:10.1109/36.239913.

INTERNATIONAL JOURNAL OF REMOTE SENSING 2289

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Robertson, L. D., D. J. King, and C. Davies. 2015. “Object-Based Image Analysis of Optical and Radar
Variables for Wetland Evaluation.” International Journal of Remote Sensing 36 (23): 5811–5841.
doi:10.1080/01431161.2015.1109727.

Rodrigues, S. W. P., and P. W. M. Souza-Filho. 2011. “Use of Multi-Sensor Data to Identify and Map
Tropical Coastal Wetlands in the Amazon of Northern Brazil.” Wetlands 31 (1): 11–23.
doi:10.1007/s13157-010-0135-6.

Rosenqvist, A., C. M. Finlayson, J. Lowry, and D. Taylor. 2007. “The Potential of Long-Wavelength
Satellite-Borne Radar to Support Implementation of the Ramsar Wetlands Convention.” Aquatic
Conservatin: Marine. Freshwater Ecosystem 17 (3): 229–244. doi:10.1002/aqc.835.

Sang, H., J. Zhang, H. Lin, and L. Zhai. 2014. “Multi-Polarization ASAR Backscattering from Herbaceous
Wetlands in Poyang Lake Region, China.” Remote Sensing 6 (5): 4621–4646. doi:10.3390/rs6054621.

Schlaffer, S., M. Chini, D. Dettmering, and W. Wagner. 2016. “Mapping Wetlands in Zambia Using
Seasonal Backscatter Signatures Derived from ENVISAT ASAR Time Series.” Remote Sensing 8: 5.
doi:10.3390/rs8050402.

Schmitt, A., A. Wendleder, and S. Hinz. 2015. “The Kennaugh Element Framework for Multi-Scale,
Multi-Polarized, Multi-Temporal and Multi-Frequency SAR Image Preparation.” ISPRS Journal of

Photogrammetry and Remote Sensing 102: 122–139. doi:10.1016/j.isprsjprs.2015.01.007.
Schmitt, A., and B. Brisco. 2013. “Wetland Monitoring Using the Curvelet-Based Change Detection

Method on Polarimetric SAR Imagery.” Water 5 (3): 1036–1051. doi:10.3390/w5031036.
Schmitt, A., B. Wessel, and A. Roth. 2010. “Curvelet-Based Change Detection on SAR Images for

Natural Disaster Mapping.” Photogrammetrie-Fernerkundung-Geoinformation 2010 (6): 463–474.
doi:10.1127/1432-8364/2010/0068.

Schmitt, A., T. Leichtle, M. Huber, and A. Roth. 2012. “On the Use of Dual-Co-Polarized TerraSAR-X
Data for Wetland Monitoring.” International Archives Photogramm Remote Sens Spatial

Information Sciences XXXIX-B7: 341–344. doi:10.5194/isprsarchives-XXXIX-B7-341-2012.
Schmullius, C. C., and D. L. Evans. 1997. “Review Article Synthetic Aperture Radar (SAR) Frequency

and Polarization Requirements for Applications in Ecology, Geology, Hydrology, and
Oceanography: A Tabular Status Quo after SIR-C/X-SAR.” International Journal of Remote

Sensing 18 (13): 2713–2722. doi:10.1080/014311697217297.
Schumann, G., G. Di Baldassarre, and P. D. Bates. 2009. “The Utility of Spaceborne Radar to Render

Flood Inundation Maps Based on Multialgorithm Ensembles.” IEEE Transactions Geoscience

Remote Sensing 47 (8): 2801–2807. doi:10.1109/TGRS.2009.2017937.
Schumann, G. J.-P., and D. K. Moller. 2015. “Microwave Remote Sensing of Flood Inundation.”

Physics and Chemistry of the Earth, Parts A/B/C 83-84: 84–95. doi:10.1016/j.pce.2015.05.002.
Silva, T. S., F. Costa, P. F. Maycira, J. M. Melack, and E. M. L. M. Novo. 2008. “Remote Sensing of

Aquatic Vegetation: Theory and Applications.” Environmental Monitoring and Assessment 140 (1–
3): 131–145. doi:10.1007/s10661-007-9855-3.

Simard, M., G. de Grandi, S. Saatchi, and P. Mayaux. 2002. “Mapping Tropical Coastal Vegetation
Using JERS-1 and ERS-1 Radar Data with a Decision Tree Classifier.” International Journal of

Remote Sensing 23 (7): 1461–1474. doi:10.1080/01431160110092984.
Simard, M., S. S. Saatchi, and G. de Grandi. 2000. “The Use of Decision Tree and Multiscale Texture

for Classification of JERS-1 SAR Data over Tropical Forest.” IEEE Transactions Geoscience Remote

Sensing 38 (5): 2310–2321. doi:10.1109/36.868888.
Souza-Filho, P. W. M., W. R. Paradella, S. W. P. Rodrigues, F. R. Costa, J. C. Mura, and F. D. Gonçalves.

2011. “Discrimination of Coastal Wetland Environments in the Amazon Region Based on Multi-
Polarized L-Band Airborne Synthetic Aperture Radar Imagery.” Estuarine, Coastal and Shelf

Science 95 (1): 88–98. doi:10.1016/j.ecss.2011.08.011.
Touzi, R., A. Deschamps, and G. Rother. 2007. “Wetland Characterization Using Polarimetric RADARSAT-2

Capability.” Canadian Journal of Remote Sensing 33: S56–S67. doi:10.5589/m07-047.
Touzi, R., A. Deschamps, and G. Rother. 2009. “Phase of Target Scattering for Wetland

Characterization Using Polarimetric C-Band SAR.” IEEE Transactions Geoscience Remote Sensing

47 (9): 3241–3261. doi:10.1109/TGRS.2009.2018626.
Townsend, P. A. 2001. “Mapping Seasonal Flooding in Forested Wetlands Using Multi-Temporal

Radarsat SAR.” Photogrammetric Engineering & Remmote Sensing 67 (7): 857–864.

2290 V. TSYGANSKAYA ET AL.

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Townsend, P. A. 2002. “Relationships between Forest Structure and the Detection of Flood
Inundation in Forested Wetlands Using C-Band SAR.” International Journal of Remote Sensing

23 (3): 443–460. doi:10.1080/01431160010014738.
Töyrä, J., A. Pietroniro, and L. W. Martz. 2001. “Multisensor Hydrologic Assessment of a Freshwater

Wetland.” Remote Sensing of Environment 75 (2): 162–173. doi:10.1016/S0034-4257(00)00164-4.
Töyrä, J., A. Pietroniro, L. W. Martz, and T. D. Prowse. 2002. “A Multi-Sensor Approach to Wetland

Flood Monitoring.” Hydrology Processing 16 (8): 1569–1581. doi:10.1002/hyp.1021.
Trujillo, M. 2015. “The impact of disasters on agriculture and food security.” Rome, Italy: Food and

Agriculture Organization of the United Nations
Ulaby, F. T., A. K. Fung, and R. K. Moore. 1986. Microwave Remote Sensing: Active and Passiv. Volume II:

Radar Remote Sensing and Surface Scattering and Emission Theory. Norwood, MA: Artech House
(Remote sensing).

Ulaby, F. T., and M. C. Dobson. 1989. Handbook of Radar Scattering Statistics for Terrain. Norwood,
MA: Artech House (The Artech House remote sensing library).

Voormansik, K., J. Praks, O. Antropov, J. Jagomagi, and K. Zalite. 2014. “Flood Mapping with
TerraSAR-X in Forested Regions in Estonia.” IEEE Journal Sel Topics Applications Earth

Observations Remote Sensing 7 (2): 562–577. doi:10.1109/JSTARS.2013.2283340.
Wang, J., J. Shang, B. Brisco, and R. J. Brown. 1998. “Evaluation of Multidate ERS-1 and Multispectral

Landsat Imagery for Wetland Detection in Southern Ontario.” Canadian Journal of Remote

Sensing 24 (1): 60–68. doi:10.1080/07038992.1998.10874692.
Wang, Y. 2002. “Mapping Extent of Floods. What We Have Learned and How We Can Do Better.”

Natural Hazards Reviews 3 (2): 68–73. doi:10.1061/(ASCE)1527-6988(2002)3:2(68).
Wang, Y. 2004. “Seasonal Change in the Extent of Inundation on Floodplains Detected by JERS-1

Synthetic Aperture Radar Data.” International Journal of Remote Sensing 25 (13): 2497–2508.
doi:10.1080/01431160310001619562.

Wang, Y., and F. W. Davis. 1997. “Decomposition of Polarimetric Synthetic Aperture Radar
Backscatter from Upland and Flooded Forests.” International Journal of Remote Sensing 18 (6):
1319–1332. doi:10.1080/014311697218449.

Wang, Y., L. L. Hess, S. Filoso, and J. M. Melack. 1995. “Understanding the Radar Backscattering
from Flooded and Nonflooded Amazonian Forests. Results from Canopy Backscatter Modeling.”
Remote Sensing of Environment 54 (3): 324–332. doi:10.1016/0034-4257(95)00140-9.

Ward, D. P., A. Petty, S. A. Setterfield, M. M. Douglas, K. Ferdinands, S. K. Hamilton, and S. Phinn.
2014. “Floodplain Inundation and Vegetation Dynamics in the Alligator Rivers Region (Kakadu)
of Northern Australia Assessed Using Optical and Radar Remote Sensing.” Remote Sensing of

Environment 147: 43–55. doi:10.1016/j.rse.2014.02.009.
Wdowinski, S., W. Kim, F. Amelung, and T. Dixon. 2006. Wetland InSAR: A New Space-Based

Hydrological Monitoring Tool of Wetlands Surface Water Level Changes, SP–634. Frescati, Italy:
European Space Agency, (Special Publication) ESA SP.

Westra, T. 2010. “Optimal Envisat Advanced Synthetic Aperture Radar Image Parameters for
Mapping and Monitoring Sahelian Floodplains.” Journal Applications Remote Sens 4 (1): 43511.
doi:10.1117/1.3368722.

Whitcomb, J., M. Moghaddam, K. McDonald, J. Kellndorfer, and E. Podest. 2009. “Mapping
Vegetated Wetlands of Alaska Using L-Band Radar Satellite Imagery.” Canadian Journal of

Remote Sensing 35 (1): 54–72. doi:10.5589/m08-080.
White, L., B. Brisco, M. Dabboor, A. Schmitt, and A. Pratt. 2015. “A Collection of SAR Methodologies

for Monitoring Wetlands.” Remote Sensing 7 (6): 7615–7645. doi:10.3390/rs70607615.
White, L., B. Brisco, M. Pregitzer, B. Tedford, and L. Boychuk. 2014. “RADARSAT-2 BeamMode Selection for

Surface Water and Flooded Vegetation Mapping.” Canadian Journal of Remote Sensing 40: 135–151.
Xie, C., Y. Shao, X. Ji, Z. Wan, and L. Fang. 2013. “Analysis of ALOS PALSAR InSAR Data for Mapping

Water Level Changes in Yellow River Delta Wetlands.” International Journal of Remote Sensing 34
(6): 2047–2056. doi:10.1080/01431161.2012.731541.

Yu, Y., and S. Saatchi. 2016. “Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of
Global Forests.” Remote Sensing 8 (6): 522. doi:10.3390/rs8060522.

INTERNATIONAL JOURNAL OF REMOTE SENSING 2291

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



Zhang, M., L. Zhen, B. Tian, J. Zhou, and P. Tang. 2016. “The Backscattering Characteristics of
Wetland Vegetation and Water-Level Changes Detection Using Multi-Mode SAR. A Case Study.”
International Journal of Applied Earth Observation and Geoinformation 45: 1–13. doi:10.1016/j.
jag.2015.10.001.

Zhang, M., Z. Li, B. Tian, J. Zhou, and J. Zeng. 2015. “A Method for Monitoring Hydrological
Conditions beneath Herbaceous Wetlands Using Multi-Temporal ALOS PALSAR Coherence
Data.” International Archives Photogramm Remote Sensing Spatial Information Sciences XL-7/
W4: 221–226. doi:10.5194/isprsarchives-XL-7-W4-221-2015.

Zhao, L., J. Yang, L. Pingxiang, and L. Zhang. 2014. “Seasonal Inundation Monitoring and
Vegetation Pattern Mapping of the Erguna Floodplain by Means of a RADARSAT-2 Fully
Polarimetric Time Series.” Remote Sensing of Environment 152: 426–440. doi:10.1016/j.
rse.2014.06.026.

Appendix 1.

1 Allen, Wang, and Gore (2013) 31 Cremon, Rossetti, Dilce,
and Zani (2014)

61 Lee et al. (2015)

2 Alsdorf et al. (2000) 32 Dabboor et al. (2015) 62 Le Toan et al. (1997)
3 Alsdorf, Smith, and Melack

(2001)
33 De Grandi et al. (2000) 63 Li and Chen (2005)

4 Arnesen et al. (2013) 34 Dwivedi, Rao, and
Bhattacharya (1999)

64 Long, Fatoyinbo, and Policelli (2014)

5 Augusteijn and Warrender
(1998)

35 Evans et al. (2010) 65 Lu and Kwoun (2008)

6 Aziz and White (2003) 36 Evans and Costa (2013) 66 Maillard, Alencar-Silva, and Clausi (2008)
7 Baghdadi et al. (2001) 37 Evans et al. (2014) 67 Marti-Cardona et al. (2010)
8 Betbeder et al. (2014) 38 Ferreira-Ferreira et al.

(2015)
68 Marti-CardoMarti-Cardona, Dolz-Ripolles,

and Lopez-Martinez (2013)
9 Betbeder et al. (2015) 39 Frappart et al. (2005) 69 Martinez and Le Toan (2007)
10 Bian et al. (2016) 40 Furtado, Silva, and Novo

(2016)
70 Martinis and Twele (2010)

11 Bourgeau-Chavez, Kasischke,
and Smith (1997)

41 Gallant et al. (2014) 71 Martinis and Rieke (2015)

12 Bourgeau-Chavez et al. (2001) 42 Grenier et al. (2007) 72 Mayaux et al. (2002)
13 Bourgeau-Chavez et al. (2009) 43 Grings et al. (2006) 73 Melack and Wang (1998)
14 Bourgeau-Chavez et al. (2016) 44 Grings et al. (2008) 74 Miranda, Fonseca, and Carr (1998)
15 (Bouvet and Le Toan 2011) 45 Heine, Jagdhuber, and

Itzerott (2016)
75 Morandeira et al. (2016)

16 Brisco et al. (2008) 46 Hess et al. (1995) 76 Moser et al. (2016)
17 Brisco et al. (2011) 47 Hess and Melack (2003) 77 Mougin et al. (1999)
18 Brisco et al. (2013a) 48 Hess et al. (2003) 78 Mwita et al. (2012)
19 Brisco et al. (2013b) 49 Hess et al. (2015) 79 Na et al. (2013)
20 Brown, Mwansasu, and

Westerberg (2016)
50 Hidayat et al. (2012) 80 Na et al. (2015)

21 Bwangoy et al. (2010) 51 Horritt (2003) 81 Oliver-Cabrera and Wdowinski (2016)
22 Cazals et al. (2016) 52 Imhoff et al. (1986) 82 Patel, Srivastava, and Navalgund (2009)
23 Chapman et al. (2015) 53 Kandus et al. (2001) 83 Pierdicca et al. (2008)
24 Chen et al. (2014) 54 Karszenbaum et al.

(2000)
84 Pierdicca et al. (2013)

25 Corcoran et al. (2012) 55 Kasischke and Bourgeau-
Chavez (1997)

85 Pistolesi, Ni-Meister, and McDonald (2015)

26 Cordeiro and Rossetti (2015) 56 Kasischke et al. (2003) 86 Podest and Saatchi (2002)
27 Costa et al. (1997) 57 Kiage et al. (2005) 87 Pope, Rey-Benayas, and Paris (1994)
28 Costa et al. (2002) 58 Kwoun and Lu (2009) 88 Pope et al. (1997)
29 Costa (2004) 59 Lang and Kasischke

(2008)
89 Pope, Rejmankova, and Paris (2001)

30 Costa and Telmer (2006) 60 Lang et al. (2008) 90 Pulvirenti, Pierdicca, and Chini (2010)

(Continued )

2292 V. TSYGANSKAYA ET AL.

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



(Continued).

91 Pulvirenti et al. (2011a) 110 Townsend (2002)
92 Pulvirenti et al. (2011b) 111 Töyra et al. (2001)
93 Pulvirenti et al. (2013) 112 Töyra et al. (2002)
94 Pulvirenti et al. (2016) 113 Voormansik et al. (2014)
95 Rebelo, Senay, and McCartney

(2012)
114 Wang et al. (1995)

96 Richards et al. (1987) 115 Wang and Davis (1997)
97 Robertson, King, and Davies (2015) 116 Wang et al. (1998)
98 Rodrigues and Souza-Filho (2011) 117 Wang (2002)
99 Rosenqvist et al. (2007) 118 Wang (2004)
100 Sang et al. (2014) 119 Ward et al. (2014)
101 Schlaffer et al. (2016) 120 Wdowinski et al. (2006)
102 Schmitt, Wessel, and Roth (2010) 121 Westra (2010)
103 Schmitt and Brisco (2013) 122 Whitcomb et al. (2009)
104 Simard, Saatchi, and De Grandi

(2000)
123 White et al. (2014)

105 Simard et al. (2002) 124 Xie et al. (2013)
106 Souza-Filho et al. (2011) 125 Yu and Saatchi (2016)
107 Touzi, Deschamps, and Rother

(2007)
126 Zhang et al. (2015)

108 Touzi, Deschamps, and Rother
(2009)

127 Zhang et al. (2016)

109 Townsend (2001) 128 Zhao et al. (2014)

List of studies (128 articles) analysed in this review.
The IDs in Appendix 1 do not correspond to the study IDs in Table 2.

INTERNATIONAL JOURNAL OF REMOTE SENSING 2293

D
o
w

n
lo

ad
ed

 b
y
 [

8
9
.1

5
.1

4
5
.1

1
6
] 

at
 1

2
:1

2
 1

3
 J

an
u
ar

y
 2

0
1
8
 



4   Scientific publications 

 

62 

 

4.2   Paper II: Detection of Temporary Flooded Vegetation 

using Sentinel-1 Time Series Data 

Tsyganskaya, V., Martinis S., Marzahn P., and Ludwig. R. 2018. 'Detection of Temporary Flooded 

Vegetation Using Sentinel-1 Time Series Data. Remote Sens'. Volume 8, pp. 1286 

As a consequence of the high variability and low availability of the data sets and the resulting 

large range of different approaches for the derivation of TFV in Paper I, a novel method using 

globally and frequently available data sets of S-1 was developed. Paper II presents SAR time 

series approach based on S-1 C-band data, which integrates dual-polarized time series data and 

an ancillary information for the enhanced detection of the entire flood extent with the focus on 

TFV. The analysis of C-band time series data showed that certain multitemporal characteristics 

and patterns (increase and decrease during the flood period) are indicative for flood related 

classes, such as open water and TFV. Based on these findings, time series features were 

determined using VV, VH and their combinations. To ensure the comparability of the backscatter 

values of the vegetation for each image element and thus the independency of the different 

phenological development, a normalisation of backscatter values by Z-transform over the time 

series was implemented. The developed approach was used to map a flood event that occurred 

in spring 2017 in Namibia containing flooded high grass land as a temporary flooded vegetation 

area. Results indicate reliable classification and demonstrate that the inclusion of TFV enhance 

the extraction of flood extent.  
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the manuscript. 
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Abstract: The C-band Sentinel-1 satellite constellation enables the continuous monitoring of the

Earth’s surface within short revisit times. Thus, it provides Synthetic Aperture Radar (SAR) time

series data that can be used to detect changes over time regardless of daylight or weather conditions.

Within this study, a time series classification approach is developed for the extraction of the flood

extent with a focus on temporary flooded vegetation (TFV). This method is based on Sentinel-1

data, as well as auxiliary land cover information, and combines a pixel-based and an object-oriented

approach. Multi-temporal characteristics and patterns are applied to generate novel times series

features, which represent a basis for the developed approach. The method is tested on a study area in

Namibia characterized by a large flood event in April 2017. Sentinel-1 times series were used for the

period between September 2016 and July 2017. It is shown that the supplement of TFV areas to the

temporary open water areas prevents the underestimation of the flood area, allowing the derivation

of the entire flood extent. Furthermore, a quantitative evaluation of the generated flood mask was

carried out using optical Sentinel-2 images, whereby it was shown that overall accuracy increased by

27% after the inclusion of the TFV.

Keywords: temporary flooded vegetation (TFV); SAR; Sentinel-1; time series data; classification;

flood mapping

1. Introduction

Flooding affects societies, economies, and ecosystems worldwide and can have a devastating

impacts. For the development of flood risk mitigation plans or disaster relief services, information

about the flood extent in affected regions is an important information source for many institutions

involved in crisis management, such as relief organizations, governmental authorities, and insurance

companies [1,2].

Numerous current studies focus on flood mapping using various algorithms that enable the

detection of temporary open water [3–5]. Besides these areas, the extraction of temporary flooded

vegetation (TFV) areas is essential for mapping the entire flood extent. TFV can be described as areas

where water bodies occur temporarily underneath vegetation [6]. The disregard of these areas can lead

to an underestimation of the whole flood extent. Ground-based observations or aerial vehicles are not

always sufficient for the mapping of large-scale floods due to weather conditions, technical limitations,

or high risks. Satellite remote sensing data, especially Synthetic Aperture Radar (SAR), allows one

to overcome these challenges and covers an extensive area of the Earth’s surface for a near-real time

detection of large-scale flood events independent of daylight and weather conditions [7,8] and is

suitable for the detection of water underneath the vegetation areas.
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Smooth open water surfaces act as specular reflectors and are therefore characterized by low SAR

backscatter values. These areas can be well differentiated from non-water regions showing higher

backscatter values. In comparison, TFV shows highly complex backscatter behaviour, due to double-

or multi-bounce interactions between the smooth open water surfaces and the vertical structures of

the vegetation, such as trunks or stems. During the presence of water underneath vegetated areas,

the SAR backscatter intensity values can significantly increase [9–11].

SAR-based techniques for the detection of TFV include simple approaches like manual

thresholding [12,13] or automatic thresholding [11,14,15], distance-based classification methods [16,17],

clustering algorithms [18,19], decision tree [7,20], or rule-based classification [21,22]. Furthermore,

more advanced approaches based on machine learning [23–25], fuzzy logic [11,26], Markov Random Field

modelling [14], or wishart classifications [27–29] are applied in dependency on the task, the availability

of polarization modes, and phase information, as well as spatial or temporal resolution [6].

For the extraction of TFV, most of the approaches focus on a single-image, which represents only

a snapshot of a current flood situation [12,30,31]. Other classification approaches use change detection

techniques for the extraction of TFV, which allow one to detect potential changes in backscatter

intensities [25,26,32–35]. Thereby, the selection of the scenes acquired under dry and flood conditions

highly influences the classification results. Furthermore, the increase of backscatter intensities, which is

induced by TFV, may not clearly be separable from backscatter intensities from dry vegetation

depending on its phenological stage [36]. Time series approaches can be more appropriate for the

extraction of flood related classes by allowing the inclusion of seasonal or annual fluctuations of the

backscatter. Furthermore, as a consequence of multiple observations of the same area, multi-temporal

data can enable an improvement of the reliability for mapping TFV areas. The shape of multi-temporal

radar backscatter profiles can be used to derive multi-temporal features enabling a more detailed

extraction of flood-related classes [6,7]. Only few studies address the detection of TFV based on

multi-temporal satellite imagery, which either depends on the chronological order and regularity

of satellite images [19,37] or the use of a limited amount of SAR time steps [11,34]. Furthermore,

the application of multi-temporal approaches is limited due to the low availability of respective SAR

data in the past. SAR systematic and long-term data acquisition within short revisit times by satellite

missions such as Sentinel-1 finally enables the usage of multi-temporal data.

Although the pixel-based approach is the most commonly used method for the extraction

of TFV [6], object-based approaches are emerging as an effective method for complex image

classification [18,30,38,39]. On the one hand side, the objects are suitable to map heterogeneous

classes, such as TFV, if the spatial resolution of the SAR data is higher than the objects on the

ground [6]. On the other hand, the grouping of pixels to objects with similar backscatter values in

SAR images allows one to reduce speckle noise [10,40]. Furthermore, objects enable the consideration

of semantic or spatial contextual relationships, which helps to cope with heterogeneous feature such

as TFV [6,11]. Several segmentation techniques, which group pixels into meaningful or perceptual

regions (objects) for the extraction of TFV, can be found in the literature, including multiresolution

segmentation [24,41], Mallat’s discrete wavelet transform [42], Markov Random Fields [14,43],

and clustering approaches [10,11]. The combination of segmentation techniques with SAR time-series

data can be used to discover multi-temporal characteristics and patterns, allowing for the extraction of

useful information from enormous and complex data sets [44] and empowering the derivation of time

series features with the advantages of an object-based approach.

In contrast to methods for the extraction of open water surfaces for flood detection [4,45,46],

there is little research for the detection of the entire flood extent comprising TFV besides open water

areas [11,25,29]. An example for automatic flood detection of open water in near-real time (NRT) by

Sentinel-1 data is given by Twele et al. [47]. In the framework of the Center for Satellite Based Crisis

Information (ZKI) located at the German Aerospace Center (DLR), this method is designed to provide

a fully automatic web-based Sentinel-1 Flood Service (S-1FS) for rapid provision of open flood extent

information for humanitarian relief activities and civil security issues worldwide [48,49]. This S-1FS is
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aimed to be extended and improved by the addition of TFV areas, which are derived by the developed

time series approach within this paper.

This article introduces a time series approach for the derivation of an entire flood extent with

a focus on the extraction of temporary open water (TOW) and temporary flooded vegetation (TFV)

using multi-temporal S-1 imagery. The objectives of this work are:

1. To investigate the characteristics and patterns of SAR time series data and to show their potential

regarding the detection of TOW and TFV;

2. To derive time series features, which are used as a basis for a time series approach focusing on

the detection of TOW and TFV;

3. To classify the entire flood extent, including TOW and TFV in the analysed study area;

4. To improve the results of external approach DLR’s S-1FS [47] by supplementing temporary open

water by TFV areas.

2. Materials

2.1. Study Area

The study area is located in the Caprivi Strip in the north-eastern part of Namibia, bordered

by the countries Zambia, Zimbabwe, and Botswana (Figure 1). The focus is on the Chobe-Sambesi

flood plain, which is formed by the Zambezi and Chobe river and is influenced by seasonal floods in

March and April [33,50]. Large areas of high grasslands dominate the landscape [51]. During flooding,

the area is therefore characterized not only by TOW areas but also by extensive TFV areas. The extent

of the study area is indicated by the red rectangle in Figure 1.
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2.2. Data Sets

A time series of 25 Sentinel-1 (S-1) B images with identical orbit configuration (same image

geometry) was used to derive the flood-related classes. The Sentinel-1 mission consists of two satellites

(Sentinel-1A/B) equipped by C-band (wavelengths [λ] = 5.6 cm) sensors that allow one to monitor

the Earth’s surface at a repeat frequency of six days. The characteristics of the used images and the

acquisition dates are listed in Table 1. Only images with an interval of 12 days could be used for the

study area in the analysed period, since only one sensor (Sentinel-1 B) provided both polarizations

VV and VH of the Interferometric Wide Swath (IW) mode and was already processed by ESA as

Ground Range Detected High Resolution (GRDH) products. The flood event was covered by three

S-1 images, whereby the scene acquired on 6th of April 2017 was used as a flood image for further

analysis and classification. This flood scene is chosen due to the temporal proximity of the reference
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data. The validation of the developed approach was carried out on the basis of a 27 km2 large extent in

the study area. Figure 2b shows the validation extent of the preprocessed S-1 image at the flooding

event (6 April 2017) for VV polarization. The generation of the reference data was carried out by visual

interpretation and manual digitalisation of a high-resolution optical Sentinel-2 (S-2) image, which was

recorded on 8 April 2017. When the backscatter image and optical data were compered, no changes in

the flood extent could be observed within the span of two days. The digitised reference mask is shown

in Figure 2b.

Table 1. Characteristics and acquisition dates of the used S-1 satellite data. S-1 scenes are acquired

under the same orbit conditions. The scene acquired on 6 April 2017 was used within this study as

flood event image.

Characteristics of the Used Sentinel-1 Data No. Date No. Date

Wavelength 5.6 cm 1 2 September 2016 14 17 February 2017
Mode Interferometric Wide Swath (IW) 2 26 September 2016 15 1 March 2017

Polarization VV, VH 3 08 October 2016 16 13 March 2017
Frequency C-Band (GHz) 4 20 October 2016 17 25 March 2017

Resolution
20 × 22 m (ground range and

azimuth)
5 1 November 2016 18 6 April 2017
6 13 November 2016 19 18 April 2017

Pixel spacing 10 × 10 m 7 25 November 2016 20 30 April 2017
Inc. angle 30.4◦–46.2◦ 8 7 December 2016 21 12 May 2017

Pass direction Ascending 9 19 December 2016 22 24 May 2017
Relative orbit 116 10 31 December 2016 23 5 June 2017

Product level
Level-1 (Ground Range Detected

High Resolution (GRDH))
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Figure 2. Validation extent of the preprocessed S-1 image at the flood event (6 April 2017) for VV

polarization (a). Digitized validation mask based on S-2 data (8 April 2017) (b).

Urban areas and TFV are both characterized by strong double-bounce and multiple scattering

effects. This makes their separation considerably more difficult. For the identification of urban areas,

the Global Urban Footprint (GUF) was therefore used as additional information, which was derived

on the basis of TerraSAR-X and TanDEM-X SAR data [52]. The spatial resolution of the GUF is

0.4 arcseconds (~12 m). Figure 3a shows the GUF for the study area. In the developed approach,

the GUF layer is used as the exclusion layer. Since the focus of the study is on the derivation of

TFV areas, urban areas are excluded from the analysis regarding flood and are not considered in

the methodology.

All regions that lie below an elevation of 20 m above the nearest water network were defined as

flood-prone in order to prevent misclassifications in elevated areas. For this purpose, the ‘Height above
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nearest drainage’ (HAND) index [53] has been integrated as binary mask to exclude areas above the

mentioned threshold of 20 m before classification [47]. The HAND index with about 90 m resolution

is based on the height and flow direction information provided by the product “Hydrosheds” [54].

Figure 3b shows the HAND mask for the study area in Namibia.

The separation between permanent open water surfaces and TOW areas was done by the use

of SRTM Water Body Data (SWBD), which was applied as a permanent water mask. This product

was created by the National Geospatial Intelligence Agency (NGA) [55] on the basis of data from

the Shuttle Radar Topography Mission (SRTM30), which took place in February 2000, and it is freely

available as a vector data set. SWBD was chosen for its resolution and global availability of SRTM data.

Figure 3c shows the SWBD mask for the study area.
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Figure 3. Additional information in the study area Namibia. Global Urban Footprint (GUF) (a),

exclusion mask (threshold 20 m) of the height above nearest drainage (HAND) index (b), SRTM Water

Body Data (SWBD) (c).

3. Methods

The process chain (Figure 4) of the time series approach for the derivation of the flood related

classes consists of pixel- (deep orange arrow) and segment-based (bright orange arrows) parts.

The pixel-based steps include the generation of time series features and their normalisation based

on VV- and VH-polarisation layer stacks (see Section 3.2). Simultaneously, the object generation

takes place using a clustering approach based on the combination of the VV and VH time series

layer stacks (see Section 3.3). In the next step, normalised time series features are combined with

the generated cluster image to produce cluster-based time series features. The features are the basis

for a thresholding approach (see Section 3.4) that enables the derivation of TOW and TFV. It can be

performed using pixel-based or object-based time series features, while the latter also requires the

generation of pixel-based normalized time series features. The exclusion layers, including the GUF and

the HAND index, allow one to mask out urban areas and to consider topographical information before

the extraction of times series features and the generation of objects is performed. The preprocessing is

not shown in Figure 4; however, it is essential for the creation of time series stacks. The implemented

preprocessing steps are described in Section 3.1.
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3.1. Image Preprocessing

An automated preprocessing for all used S-1 images is performed in a Python script using SNAP

Toolbox (version 4.0.0) [56] components. It includes the radiometric calibration to sigma naught,

a range Doppler terrain correction by using the SRTM digital terrain model [57], the co-registration of

the individual data, and speckle filtering. The coregistration of the images is necessary to perform an

analysis based on time series data. It is essential that the images match in their position with pixel

accuracy, otherwise the backscatter values over time could lead to a distorted picture of the desired

classes. The spatial refined Lee filter with a window size of 7 × 7 were used to reduce the noise

in the SAR data [58,59]. This filter allows the preservation of the structure in the image by filtering

homogeneous surfaces and preserving edges, as well as flood-related temporal characteristics and

patterns. These preprocessing steps were carried out for both polarizations VV and VH, resulting in

two independent time series. The result is a multi-temporal layer stack for each polarization.

3.2. Derivation of Time Series Features

On the basis of the preprocessed SAR time series data, an analysis of the multi-temporal profiles

was carried out to determine the characteristics and patterns of the flood-related classes (TOW and

TFV) (see Section 4.1). Accordingly, the decrease and/or increase of the backscatter values in the SAR

time series data at the analysed date of the flood event for each polarization and polarization ratio

is essential information, which can be used to derive TOW and TFV. The extraction of flood-relevant

time series characteristics is based on these multi-temporal characteristics and patterns.

The backscatter values are influenced by different environmental conditions, whereby the intensity

of the backscatter decrease or increase can vary within the desired classes. Influencing conditions such

as varying land-cover classes, wind, water depth, or heterogeneity of the different vegetation types

and their phenological stages can cause these variations [18,60,61]. Therefore, it is not always possible

to compare the increase or decrease of the absolute backscatter values over time. In order to ensure the

comparability, absolute backscatter values at the analysed date of the flood event were normalized

over the time series for each pixel. This is achieved by the Z-transform of backscatter values and has

been implemented by the following formula:

Z = (x − µ)/σ (1)

Hereby, x corresponds to backscatter values for the analysed date at the flood event, µ represents

the mean and σ the standard deviation of the backscatter values of a pixel over the time series.

The transformed backscatter values allow spatial comparability of the data and are referred to
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hereinafter as Z-Score images. Because of the normalized description of the decrease or increase

of the backscatter values, and the Z-Score in connection with the respective polarizations, their ratio

(VV/VH) and their combinations (VV + VH, VV-VH) represent the essential time series features for

the derivation of TOW and TFV. Mean value, median, and the standard deviation over the time series

are considered as auxiliary information for the calculation of the Z-Score or as additional information

in the later classification.

A quantitative analysis of the time series features was carried out using the Random Forest (RF)

method to investigate the potential of those to derive the TOW and TFV. Therefore, training data for

two flood-related classes and a third class representing Dry Land areas were defined based on the

reference data and analysed by RF. RF is an ensemble learning method based on the construction

of a large number of decision trees using training data. The RF classifier is relatively robust against

outliers and noise, which is important for spatially variable SAR data [62]. Besides performing a

supervised classification, the application of RF algorithm allows one to derive the importance of

different features. By determining their importance, one can identify which time series feature has the

highest contribution to the classification results or is most reliable for the derivation of TOW and/or

TFV. In addition, RF was used to analyse whether a single time series characteristic or combination of

time series characteristics, and which one, allows for high classification accuracy for the two searched

classes. As a result, redundant information is sorted out, and the information essential for classification

is identified.

3.3. Clustering Approach for Segment Generation

The derivation of the TOW and TFV was done based on both pixels and segments. Among other

advantages, such as a reduction of speckle, the usage of segments allows for the reduction of intra-class

variability, which can be caused by the high spatial level of detail of the S-1 data. Clustering represents

a common method to perform image segmentation under consideration of multi-spectral and

multi-temporal data [63]. Cluster algorithms have already been used as segmentation methods

for the derivation of TFV [64–66]. The grouping of pixels into segments was implemented for the

study area using a k-means cluster algorithm. k-means is an iterative, unsupervised method that

assigns each pixel to a cluster using the minimum distance. This technique is widely used due to

its simple implementation. In addition, k-means produces relatively high-quality clusters with low

computational effort [67–69].

Segmentation by k-means was carried out in several steps. First, multi-temporal clustering

was performed. Therefore, a SAR time series data stack, containing the VV and VH polarizations,

is used. This allows one to integrate the temporal component and both polarizations for the

generation of clusters. Second, a spatial component was integrated by means of spatial clustering

based on the multi-polarised SAR image at the analysed date of the flood event. In order to

combine the multi-temporal and spatial information, both cluster images, multi-temporal and spatial,

were intersected with each other.

In contrast to other segmentation methods such as multiresolution segmentation [24,41], k-means

clustering requires the definition of only a single parameter: the number of clusters. In order to

determine this parameter for both the multi-temporal cluster and spatial cluster image, a range for the

number of clusters between 5 and 100 has been defined. Thereafter, all possible combinations of the

number of clusters for multi-temporal and spatial clustering were performed. Although all possible

combinations for the defined areas were tested, it turned out that the combination of 10 multi-temporal

clusters and 5 spatial clusters was the best cluster number combination in terms of classification

accuracy and computation efficiency. Finally, the combined clusters were examined for their spatial

independence and split into their spatially connected segments. The resulting segmented image was

used beside the pixel image as a basis for the classification of TOW and TFV.
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3.4. Hierarchical Thresholding Approach

The last step in the classification process chain (Figure 4) is the hierarchical thresholding

approach, which is divided into three consecutive steps. First of all, the permanent open water

surfaces are identified using the SWBD mask (see Section 2) and excluded from further analysis.

In addition, GUF and HAND masks (see Section 2) were used as exclusion layers before the next

step. The other two steps are based on the remaining unclassified image elements using the derived

time series features (see Section 3.2). The threshold values for the corresponding time series features

are automatically generated by a decision tree classifier [62] using reference-based training data

(see Section 3.2). The automatic threshold definition represents a great advantage, since manually

determining thresholds, especially for separation of TFV to other classes, can be a complex process [6].

With the aid of the aforementioned time series features and corresponding threshold values, the class

TOW was derived firstly. Equivalent to TOW, the remaining unclassified image elements were

separated into TFV and Dry Land in the last step.

4. Results

4.1. Multi-Temporal Characteristics and Patterns of Backscatter Intensities

The analysis of multi-temporal characteristics and patterns was performed based on preprocessed

SAR time series data (see Section 3.1). For this purpose, pixels of the time series layer stacks were

combined into objects using clustering methods (see Section 3.3). Objects are less susceptible to noise

than pixels, and they can be used to create spatial contextual time series profiles, which allow one to

derive object-related characteristics and patterns. Examples of object-based time series profiles for

TOW and TFV, which were identified from the training data set acquired on 8 April 2017, are shown

in Figures 5 and 6. These objects contain 1148 pixels for TOW and 1054 pixels for TFV, respectively.

The box plots represent a range of the backscatter values within the segment for each date. The time

series are shown for the two single polarizations VV (Figures 5a and 6a), VH (Figures 5b and 6b),

and their ratio VV/VH (Figures 5c and 6c) for the same segment. In addition, the multi-temporal

behaviour of the NDVI and NDWI values for the same time-period is displayed in Figures 5d and 6d

and in Figures 5e and 6e, which serve as a comparison to the SAR time series data. These ratios are not

integrated in the methodology as a data set. The analysed flood event image (6 April 2017) is indicated

by a blue bar.

Figure 5 shows the multi-temporal characteristics and patterns of the backscatter values for TOW.

Compared to all other dates in the time series, a significant decrease of the backscatter values can be

observed at the analysed date during the flood event (blue bar) (Figure 5a,b). The ratio of the two

polarizations (Figure 5c) shows no change at the analysed date of the flood event. This indicates a

similar or equal change in both polarizations. As a comparison to the SAR time series data, NDVI values

were used, which were derived from the S-2 data sets. Despite the cloud-related data gap between

November 2016 and March 2017, there is a comparable reduction in the NDVI values for the analysed

date at the flood event. In combination with the decrease of the backscatter values, this confirms the

occurrence of water at the analysed date. In addition, the NDWI shows an increase in the values at the

date of flooding, which indicates the occurrence of water.
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Figure 5. Multi-temporal behaviour of the backscatter intensity for TOW areas for VV (a), VH (b),
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Figure 6 shows an example of multi-temporal characteristics and patterns for TFV areas. Compared

to TOW, TFV is characterized by an increase in the backscatter values at the analysed date in VV

polarization. In contrast to the increase of the backscatter values in VV polarisation, a decrease of the

backscatter values occurs in VH polarisation during the flood event (Figure 6b). The ratio between

these two polarizations shows an increase for TFV at the analysed date (Figure 6c). As a comparison

to the SAR time series data, NDVI values for TFV were derived from the S-2 data and are displayed

for the same period (Figure 6d). At the analysed date, there is only a very slight change in the NDVI

values. In addition, NDWI shows a slight increase in values, which indicates the occurrence of water in

the vegetated areas. Nevertheless, the NDWI values remain in the negative range, and it seems that

there are no open water areas but a mixture of standing water and vegetation. Accordingly, it can be

confirmed that the increase in backscatter values in VV polarization is caused by flooding and not by

any phenological changes. Overall, the increase in backscatter values for TFV in VV polarization is

significantly lower compared to the decrease in the backscatter values for TOW areas.
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Figure 6. Multi-temporal behaviour of the backscatter intensity for TFV areas for VV (a), VH (b),

the ratio VV/VH (c), NDVI values (d), and NDWI values (e). The blue bars mark the analysed date at

the flood event.
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4.2. Relevant Time Series Features

Relevant time series features were determined for the derivation of the flood-related classes based

on trainings data, which were taken from the reference data. The total number of training pixels for

each of the three classes is 15,559 (TOW), 15,563 (TFV), and 11,550 (Dry Land). The importance of

time series features for each class was implemented by RF (see Section 3.2). The analysed time series

features include Z-Score for the VV and VH polarizations, Z-Score for the ratio between VV and VH,

and two Z-Score combinations VV + VH and VV-VH.

The training data were used to visualize the distribution and separability of the classes with

respect to the derived time series features in a histogram. Figure 7 shows histogram distributions of the

training data for each aforementioned class and time series feature. The separability between the TOW

and other classes is clearly recognizable for Z-Score VV and Z-Score VV + VH. The overlap between

the histograms of the classes TOW and Dry Land is strongly pronounced for Z-Score VV + VH and

Z-Score VV/VH. In addition, there is an overlap to TFV by using Z-Score VH. The separability of TFV

from other classes can be observed for Z-Score VV, Z-Score VV-VH, and Z-Score VV/VH. In particular,

Z-Score VV/VH appears as a suitable time series feature to distinguish the TFV from other classes.Remote Sens x FOR PEER REVIEW of
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The RF algorithm was used to quantify the importance of time series features for the TOW and

TFV classes (see Section 3.2). Thereby, the contribution of each time series feature was determined for
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the derivation of the respective desired classes. Taking into account the training data, 2000 estimators

and a maximum tree depth of 500 were defined to identify the importance. These parameters were

used to exclude randomness from the results. Figure 8 shows the importance of time series features

for the classes TOW and TFV. It can be observed that for TOW, Z-Score VV, and Z-Score VV + VH,

there are time series features with the highest contributions of 34.9% and 34.4%, respectively. The time

series feature with the highest contribution (43.1%) for the TFV class is Z-Score VV/VH.
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The time series feature with the highest contribution does not necessarily represent the highest

possible classification accuracy. Therefore, it is analysed whether a single feature or a combination of

multiple features would result in the highest possible classification accuracy for the respective desired

class. For this purpose, a Random Forest classification was performed based on aforementioned

training data. The use of the time series features with the highest contribution and the two highest

contributions for the classification resulted in an overall accuracy (OA) of approximately 98.0% for

the TOW class. In comparison, the combination of all time series features resulted in only 93.1%.

Equivalent for the TFV class, the time series feature with the highest contribution achieved an OA of

98.2%, whereby the combination of two or all of the time series features resulted in lower accuracy

(97.5% and 96.2%).

RF algorithm’s importance shows that Z-Score VV represents the most reliable time series feature

and the feature with the highest contribution for the extraction of the TOW. For the extraction of the

TFV, Z-Score VV/VH represents the most reliable time series feature and the feature with the highest

contribution. The analysis of the OA with the RF algorithm also showed that the combination of all

time series features is less accurate than the classification accuracy based on the time series feature

with the highest contribution for the classes TOW and TFV. Based on these findings, the time series

features Z-Score VV and Z-Score VV/VH were used to derive classes TOW and TFV by means of the

time series approach.

4.3. Classification Results

The classification of the S-1 image (6 April 2017) at the date of the flood event was performed

based on a S-1 time series layer stack for the period between 2 September 2016 and 23 July 2017.

Validation of the classification was performed using the S-2-based reference flood mask.

Figure 9a shows the pixel-based classification result of the time series approach for the investigated

area in Namibia, which includes the classes permanent open water, TOW, TFV, and Dry Land,

while Figure 9b represents the object-based classification result. For visual comparison, the validation

mask is shown in Figure 2b. A visual comparison of the two classification images with the validation

mask reveals the clear similarity of the area extent for each class. As expected, the pixel-based

classification appears to be slightly noisier in comparison to the object-based classification.



Remote Sens. 2018, 10, 1286 12 of 23

Figure 10 shows the intersection between the validation data and the results based on pixel-based

(a) and object-based (b) classification, respectively. Areas of correspondence, as well as misclassified

areas, can be shown by this intersection. The orange areas, which are marked as TFV in the

classification, however, representing Dry Land in the validation data, can be visually identified

as largest misclassification areas. Another significant misclassification can be identified by yellow

areas. These areas represent the Dry Land class in the classification image and the TFV class in the

validation data, and are slightly larger in the pixel-based classification compared to the object-based

classification. Recognisable are also bright blue areas, which can be found at the transect zone between

Dry Land and TOW. While these areas represent Dry Land in the reference data, they are classified

as TOW. The visual comparison between pixel and object-based classification shows that the extent

of bright blue areas in both classifications is similar; this is also the case for all other remaining small

misclassified areas. A further difference between pixel- and object-based classification can be observed

in the red areas, which represent Dry Land in the classification and TOW in the validation data. Overall,

the comparison between pixel- and object-based classification shows that fewer misclassified areas

occur in the object-based classification.
Remote Sens x FOR PEER REVIEW of

Figure Pixel-b sed classific tion result ( ) nd object-b sed classification result (b) for the study

rea in N mibia

Figure Are s of correspondence nd misclassific tions for the classes TOW, TFV, nd Dry L nd

using pixel-b sed ( ) nd object-b sed (b) classification which re gener ted by the intersection of

the classific tions nd the v lidation dat

The quantification of the classification ccuracy of TO TFV nd Dry L nd w s performed

using OA, producer ccuracy (PA) user ccur cy (UA) nd K pp index (K) The ccur cies for 

pixel-b sed nd object-b sed cl ssification re shown in Figure The ccuracy values (UA nd PA) 

for the TOW cl ss re % nd % for pixel-b sed cl ssification nd % (UA) nd % (PA)

for object-b sed cl ssification respectively. In comp rison the ccur cy of the cl ss TFV is lower,

with % (UA) nd % (PA) for pixel-b sed cl ssification nd % (UA) nd % (PA) for

object-based cl ssification For the cl ss Dry L nd the UA nd PA re % nd % for the pixel-

based cl ssification For the object-b sed cl ssification these re % (UA) nd % (PA)

respectively. The improvement w s m inly chieved in the UA re for TFV by % nd PA for Dry 

L nd by %. Over ll the OA of object-based cl ssific tion is bout % higher compared to pixel-

based cl ssification The K pp index is lso higher for the object-b sed cl ssification In

ddition confidence interval was calcul ted for each of the ccur cy values [ ] For the pixel-based

Figure 9. Pixel-based classification result (a) and object-based classification result (b) for the study area

in Namibia.

Figure 10. Areas of correspondence and misclassifications for the classes TOW, TFV, and Dry Land

using pixel-based (a) and object-based (b) classification, which are generated by the intersection of the

classifications and the validation data.
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The quantification of the classification accuracy of TOW, TFV, and Dry Land was performed using

OA, producer accuracy (PA), user accuracy (UA), and Kappa index (K). The accuracies for pixel-based

and object-based classification are shown in Figure 11. The accuracy values (UA and PA) for the TOW

class are 85.1% and 82.6% for pixel-based classification, and 85.8% (UA) and 85.5% (PA) for object-based

classification, respectively. In comparison, the accuracy of the class TFV is lower, with 67.9% (UA) and

86.32% (PA) for pixel-based classification, and 76.1% (UA) and 91.2% (PA) for object-based classification.

For the class Dry Land, the UA and PA are 74.8% and 59.0% for the pixel-based classification. For the

object-based classification, these are 80.8% (UA) and 67.0% (PA), respectively. The improvement was

mainly achieved in the UA area for TFV by 8.1% and PA for Dry Land by 8.0%. Overall, the OA of

object-based classification is about 5.0% higher compared to pixel-based classification. The Kappa

index is also 0.08 higher for the object-based classification. In addition, a confidence interval was

calculated for each of the accuracy values [70]. For the pixel-based classification, the largest confidence

interval lies at 0.38% for dry land producer accuracy. For object-based classification, the largest

confidence interval is 0.37% for the same class and accuracy.
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Figure 11. Accuracy assessment results for pixel- and object-based classification, which are generated

by means of the time series approach.

In addition to the classification of the validation extent, the classification for the entire study

area was generated based on the same time series characteristics and the corresponding threshold

values for the classes TOW and TFV. Figure 12a shows the pixel-based classification and Figure 12b the

object-based classification. A difference between both classifications can be observed. In particular,

the Dry Land areas of the pixel-based classification appear to be noisier in comparison to the Dry Land

areas of the object-based classification and show slightly higher overestimation for all areas, especially

for Dry Land. Both figures show that the disregard of the TFV areas would result in an enormous

underestimation of the flood extent.
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4.4. Improvement of the Sentinel-1 Flood Service

Figure 13a shows the classification result of the S-1FS (see Section 1) for the validation area

in Namibia, which initially only contains the open flood water areas [47]. For the extension and

improvement of the S-1FS, the open flood areas were supplemented by TOW and TFV of the time

series approach, in order to detect the entire flood extent. The object-based classification result was used

as a supplement, since higher accuracy could be achieved compared to pixel-based classification results.

An accuracy assessment was carried out for both the classification results of the S-1FS and the

supplemented classification results of the S-1FS. The classes TFV and TOW, both in the validation

data and in the supplemented classification of the S-1FS, were combined into a single class: flood.

This represents the entire flood extent. The modified reference data is shown in Figure 13d. The merging

of the classes of TOW and TFV provides a more comprehensive coverage of the flood extent in the

reference data compared to the results of the S-1FS (Figure 13a). Figure 13b shows the classification

result of the S-1FS, which are supplemented by TOW, and Figure 13c represents the S-1FS classification
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result simultaneously supplemented by TOW and TFV of the time series approach. The validation of

the S-1FS and the two supplemented S-1FS classification results were performed using OA, PA, UA,

and Kappa Index (Figure 14). A significant improvement in classification accuracy is observed for

PA Flood and UA Dry Land, which are 57.1% and 31.0%, respectively. This improvement is mainly

achieved by supplementing the S-1FS classification results with the TFV surfaces. Thereby, the OA

increases by 27.0% and the Kappa coefficient increases from 0.24 to 0.69.

4.5. Number of Images

Besides the sensor characteristics and environmental conditions, the number of images used for

the developed time series approach is another important element that can influence the accuracy of

the classification result. 25 S-1 images were used to derive flood-related classes for the study area

in Namibia. The time series was used to obtain the statistical multi-temporal distribution of the

backscatter values for the flood-related classes (see Section 3.2). For this purpose, it was analysed

whether a lower number of images in the time series has an effect on the classification results. In each

time series, fewer images were used starting with the original classification of 24 images decreasing

in increments of 1, whereby the analysed flood date image was included in each classification run.

Figure 15 shows the OAs and Kappa coefficients for 24 classification results, each based on time series

with a different number of applied images. In addition, a confidence interval was calculated for each

AO. The use of a single image, together with the image taken at the time of the flood results in the

lowest accuracy. The same classification resulted in the largest confidence interval 0.19%. Overall, it can

be observed that the fewer images are used in the time series, the lower is the OA and Kappa coefficient.
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5. Discussion

5.1. Multi-Temporal Characteristics and Time Series Features

The analysed characteristics and patters of SAR time series data clearly show a decrease in

backscatter values for TOW and an increase in backscatter values for TFV at the analysed date of the

flood event (Figures 5 and 6). Thereby, the decrease indicates the occurrence of open water surfaces,

which are characterized by low backscatter values, in which the emitted sensor energy is reflected

away by the specular water surface [71]. The increase can be explained by the double- or multi-bounce

interactions between the specular water surface and the vertical structures of the vegetation [9–11].

In many previous studies, similar behaviour of the backscatter values for the classes TOW and TFV is

described [11,20,25]. These characteristics and patters in backscatter values are a prerequisite for the

detection of the flood-related classes. The length of the decrease or increase of the backscatter values

depends on the duration of the flood, the spatial extent, and the revisit time of the satellite.

It should also be noted that backscatter values can be strongly influenced by the environmental

conditions (see Section 4.2). For example, wind or heavy rainfall can roughen the water surface and

reduce or even erase the typical decrease in backscatter values during the flood event [4,9]. The increase

in backscatter at the date of the flood can also be strongly influenced by the interaction between sensor
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characteristics (wavelength, angle of incidence, and polarisation) [6] and environmental conditions,

such as aboveground biomass [72–74] or the relation between water level and plant height [10].

Such external environmental conditions can have a limiting impact on the methodology presented here.

In previous studies, absolute backscatter values are applied for the extraction of flood-related

classes [10,37]. This can lead to underestimation or overestimation of the TFV areas and limits the

use of the method. These disadvantages can be compensated by the normalisation of backscatter

values over the time series, which ensure the comparability of the increase or decrease in backscatter

values for each image element independent of the different types of phenological development of the

vegetation. Moreover, the developed method enables simple management of SAR time series data

without the use of extensive methods to describe the seasonality or the typical vegetation conditions.

In comparison to other studies [19,37], which are based on the dependency of the sequential dates order

of the multi-temporal SAR data, the technique presented in this paper can deal with non-sequential

or irregular times series data. Sentinel-1 scenes acquired within a period of two years, which are

containing the flood event, the flood event made it possible to distinguish the natural range of variation

for the analysed vegetation from the changes induced by a flood event.

The decrease and the increase of the backscatter values in SAR time series data were used for

the extraction of time series features. Therefore, not only the polarizations VV and VH were applied,

but also their combination. By combining polarizations, the effects, such as different sensitivities

of the polarisations to objects, can also be intensified, e.g., by mathematically induced stretching of

the data [75–77]. The intensity of the amplification was quantified using the RF method (Figure 8).

For the extraction of TOW, Z-Score VV was determined by a RF classifier as the most reliable time

series feature, having the highest contribution in comparison to the VH based time series features.

While this finding matches the results of other studies [4,47], some studies [25,37] prefer VH as a basis

for the classification. This ambivalence can probably be explained by different sensor characteristics

and environmental conditions in the studies.

The time series feature Z-Score VV/VH proved to be most suitable for the derivation of TFV.

This can be explained by the different sensitivity of VV and VH for backscattering mechanisms [78],

which causes the backscatter values to increase for VV and decrease for VH. In case of TFV, the increase

of the backscatter values can usually be detected by VV polarization due to the double-bounce effect.

The double-bounce effect cannot be detected due to the depolarizing property of VH polarization,

and the increase of the backscatter values is not expected in VH. Because of the difference or ratio

between these two polarisations, the increase in VV is intensified, allowing a more effective derivation

of TFV compared to a simple use of VV polarisation.

In the example of Namibia, VV seems to be influenced by the double-bounce-effect indicating the

occurrence of TFV [60,79], whereby VH is not influenced by the interaction between water surface and

vegetation. Instead, VH is dominated by the specular reflection because of flooded soil in between the

vegetation, which consequently results in a decrease in backscatter values. According to the difference

in the backscatter between VV and VH for the analysed flood date, the time series feature Z-Score

VV/VH was successfully used for the extraction of the TFV.

5.2. Classification Results

The comparison of the time series approach results with the reference mask provides good

correspondence of 75.0% (OA, pixel-based) and 80.5% (OA, object-based) for the whole flood

extent, comprising both classes TOW and TFV. Cazals et al. [37] achieved a similar OA (82.0%)

using backscatter intensities of S-1 time series data for the detection of flooded areas, comprising

TOW and TFV. However, a sequential time series is necessary for this method. Furthermore,

the comparability of the validation results is limited by the differences between the study areas,

including the vegetation types, the sizes of the individual classes, and the ratio in size between these

classes and environmental conditions.
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In the following, the classification results are discussed in comparison to the validation image

(Figure 10). It can be observed that the areas of the correctly classified classes (TOW = blue, TFV = green,

Dry Land = brown) predominate; however, misclassifications are present. The misclassifications occur

mostly for TFV in the classification image, which is marked as Dry Land in the validation image.

Indeed, in these areas the VV and VH polarisations of the time series features Z-Score VV/VH

have a significant difference during the flood event and are therefore classified as TFV. Nevertheless,

these areas are marked as Dry Land in the validation image. This contradiction can be explained by

the fact that the interpretation of optical data in relation to TFV is challenging, and water under the

vegetation cover cannot always be clearly identified in the validation image. In addition, the temporal

shift between the flood image (6 April 2017) and the validation image (8 April 2017) might also be

a reason for the aforementioned misclassifications. Even so, no change in the flood extend could be

observed; a receding flood extent (Figure 5) until the date of the S-2 acquisition could be possible.

Thus, misclassified areas can indeed represent Dry Land; however, they can also constitute TFV

areas in the S-1 flood image. Another significant misclassification is represented by yellow areas.

For these areas, the interaction between water surfaces and vegetation may not be strong enough

to cause an increase in the backscatter values in VV polarisation [10,80,81]. Accordingly, there is

no increase in the Z-Score VV/VH time series feature, so these areas were classified as Dry Land.

The light blue areas represent confusion between TOW in the classification results and Dry Land in the

validation image. These misclassifications may be caused by an insufficient decrease of the backscatter

values in the VV polarisation at the analysed date of the flood event, which could not be detected

by the generated threshold value. The transitional zones between TOW and dry areas have always

been challenging to detect [82], because of the rapidly changing conditions during the flood event.

Despite the misclassifications, the results show that for TOW 85.8% (UA) and 85.5% (PA) and for TFV

76.1% (UA) and 91.2% (PA) could be achieved.

In addition, it was shown that the object-based classification compared to pixel-based classification

can help to detect more precisely the areas affected by flood. This can be explained by the fact that

the heterogeneity of the TFV in S-1 imagery is reduced by grouping pixels into objects providing a

depiction of real objects on the ground. In the TOW area, misclassifications to Dry Land could also be

partially reduced. They may have been caused by environmental conditions such as wind, which only

affected a few pixels in an object. It also seems that speckle in the SAR data could also be reduced

by using objects for classification (Figure 10). However, it should be noted that an additional step to

calculate objects must be performed. The results of previous studies also confirm that object-based

classification reaches higher accuracies in comparison to pixel-based classifications [27,41].

The validation of the S-1FS results, which were supplemented with the results of the developed

SAR time series approach, show that this addition led to an improvement in the classification results

of the S-1FS. Although the results of the fully automatic near-real time S-1FS have been significantly

improved, it should be noted that the developed SAR time series approach requires training data for the

initialization, and that several images (time series) are used to derive the TFV. Thereby, preprocessing

is more time-consuming compared to the S-1FS and depends on the number of images used in the time

series, the classification basis applied (pixel- or object-based), and the duration for the extraction of

training data by an expert. Apart from the above-mentioned steps, the actual classification process only

takes a few seconds. A minimum number of data sets in the time series depends on the duration of the

flood and the number of S-1 images that have been acquired during the flood. The less non-flooded

dates used in the time series, the lower the classification accuracy. If available, it is recommended to

include at least one vegetation cycle in order to consider the entire seasonality or phenology. Thus,

the statistical distribution of the backscatter values over the entire vegetation cycle is considered [19].

Considering the above-mentioned prerequisite for the SAR time series approach, it was possible to

achieve a significant improvement in classification accuracy of S-1FS for PA Flood and UA Dry Land.

This was accomplished by supplementing the TOW of S-1FV with the TFV areas (Figure 13).
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6. Conclusions

While most methods are aimed at the detection of temporary open water (TOW) areas, the

developed method especially focuses on the detection of temporarily flooded vegetation (TFV),

which allows the detection of flood areas without underestimating the flood extent. The developed

method is based on Sentinel-1 C-band time series data and on additional information taking into

account backscatter intensity, permanent water, and topographical and urban information, and uses a

hierarchical thresholding approach to combine this information. This approach was used to map a

flood event that occurred in spring 2017 in the Chobe-Sambesi flood plain in Namibia.

Normalized time series features were derived based on VV and VH polarisation and their

combinations. The time series feature using VV polarisation performed better for the derivation of

TOW than the composite of the derived time series features together. The time series feature using

the ratio between VV and VH performed best for the derivation of TFV. This demonstrated that both

polarizations, and especially their combination, are relevant for the detection of TFV. The classification

results showed that the developed SAR time series approach is well suited to map flood in vegetated

areas. By supplementing the TOW with the TFV areas, the accuracy of the classification results was

significantly improved, and the entire flood extent could be detected. This highlights the importance

of the extraction of TFV areas besides TOW for floodplain monitoring.

In the developed approach, the urban areas were not included; however, those will be integrated

in the future as a refinement of the methodology. The developed method can be used to monitor

future long-term flooding and flood dynamics. Furthermore, the classification results can serve as

supplement information in the evaluation of ground observations or as inputs to hydrological models.

In combination with the method developed here, the growing Sentinel-1 archive will be used in the

future to analyse different TFV types aiming at the continued improvement of the derivation of the

entire inundation area during flood events.
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4.3   Paper III: Flood Monitoring in Vegetated Areas Using 

Multitemporal Sentinel-1 data: Impact of Time Series 

Features 

Tsyganskaya V., Martinis S., and Marzahn P. 2018. 'Flood monitoring in vegetated areas using 

multitemporal Sentinel-1 data: Impact of time series features'. 

Paper III addresses the transferability of the developed approach in Paper II for further study 

areas and different vegetation types. Based on two independent study areas in Greece/Turkey 

and China containing different vegetation types, such as high grassland and forested areas, are 

analyzed. The results confirm the findings of Paper II regarding the used time series features in 

both studies. However, it was also shown that for the detection of different TFV types, such as 

high grassland and forests, different time series features are relevant. Besides vegetation types, 

other factors such as environmental conditions also have a strong influence on the radar signal. 

This study shows the limitations of the transferability for the developed method due to different 

vegetation types occurring in flood affected areas. Nevertheless, the visualization and 

quantification of the results demonstrates that TFV can be reliably extracted with the proposed 

approach in different study areas. This study laid a cornerstone for a global, automatic and 

improved flood detection including TFV areas based on S-1 time series data. 

Author’s contributions: The concept of this study was developed by V. Tsyganskaya, P. 

Marzahn, and Sandro Martinis, while V. Tsyganskaya was responsible for the implementation, 

which included the preparation of data, generation and validation of flood classification maps, 

and methodological comparison of relevant features and their discussion. 
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Abstract: Synthetic Aperture Radar (SAR) is particularly suitable for large-scale mapping of

inundations, as this tool allows data acquisition regardless of illumination and weather conditions.

Precise information about the flood extent is an essential foundation for local relief workers,

decision-makers from crisis management authorities or insurance companies. In order to capture the

full extent of the flood, open water and especially temporary flooded vegetation (TFV) areas have to

be considered. The Sentinel-1 (S-1) satellite constellation enables the continuous monitoring of the

earths surface with a short revisit time. In particular, the ability of S-1 data to penetrate the vegetation

provides information about water areas underneath the vegetation. Different TFV types, such as high

grassland/reed and forested areas, from independent study areas were analyzed to show both the

potential and limitations of a developed SAR time series classification approach using S-1 data. In

particular, the time series feature that would be most suitable for the extraction of the TFV for all

study areas was investigated in order to demonstrate the potential of the time series approaches for

transferability and thus for operational use. It is shown that the result is strongly influenced by the TFV

type and by other environmental conditions. A quantitative evaluation of the generated inundation

maps for the individual study areas is carried out by optical imagery. It shows that analyzed study

areas have obtained Producer’s/User’s accuracy values for TFV between 28% and 90%/77% and 97%

for pixel-based classification and between 6% and 91%/74% and 92% for object-based classification

depending on the time series feature used. The analysis of the transferability for the time series

approach showed that the time series feature based on VV (vertical/vertical) polarization is particularly

suitable for deriving TFV types for different study areas and based on pixel elements is recommended

for operational use.

Keywords: flood mapping; temporary flooded vegetation (TFV); Sentinel-1; time series data; Synthetic

Aperture Radar (SAR)

1. Introduction

Flood events are the most frequent and widespread natural hazards worldwide and can have

devastating economic, social, and environmental impacts [1,2]. Precise and timely information

on the extent of flooding is therefore essential for various institutions such as relief organizations,

decision-makers of crisis management authorities or insurance companies [3].

Satellite Synthetic Aperture Radar (SAR) is particularly suitable for flood mapping, as this tool

supports the large-scale, cross-border detection of the affected area independent of illumination and

weather conditions [4–6]. The decisive advantage, however, is that in addition to open water surfaces,
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temporary flooded vegetation (TFV) can also be detected in dependency of system and environmental

parameters [7]. TFV are areas where water bodies temporarily occur underneath the vegetation [8]. To

avoid underestimations of the flooding, the derivation of both classes is essential to cover the entire

flood extent.

Smooth open water is characterized by low SAR backscatter values due to its specular surface. In

comparison, TFV shows a significant increase in backscatter, especially in the VV (vertical/vertical)

polarization, which is caused by the complex double- or multi-bounce interaction between smooth

open water surfaces and the structure of vegetation (e.g., tree trunks, stems) [8–10].

Most approaches are based on the backscatter intensity allowing the detection of TFV by the

identification of increased backscatter values compared to other objects (e.g., [4,11–15]). Others

utilize polarimetric decomposition and/or interferometric SAR (InSAR) coherence [7,16–19] to reduce

confusion with urban areas or to minimize the misclassification of shadowed regions as non-flooded

vegetation. Polarimetric decompositions, such as Freeman–Durden, Yamaguchi four-component,

Cloude–Pottier, or m-chi decompositions, have all been demonstrated to be suitable for the extraction

of TFV [7,20–28]. However, the availability of full polarimetric data is often limited regarding the

extent and temporal coverage.

In the literature, various methods for deriving the flood extent based on SAR data can be

found depending on the task, polarization modes, phase information, as well as spatial or temporal

resolution of the satellite sensor [29]. Some of them include, for example, visual interpretation [30],

histogram thresholding approaches [31,32], image texture-based methods [33], Markov Random Field

modeling [34], or Wishart classifications [17,35,36], which are mostly applied on single images. Change

detection techniques in combination with algorithms, such as manual or automatic thresholding [21,37]

and fuzzy logic [38,39], allow the extraction of potential changes between two images acquired under

dry and flood conditions. Change detection methods are often carried out by using absolute backscatter

values [40], which do not consider the chance intensity of backscatter values within vegetation. This

can lead to classification errors in regions with high vegetation growth variability or with different

vegetation types.

A few advanced techniques, among other machine learning techniques [11], decision tree [41], or

rule-based classification [13,42] use satellite time series [4,40,43–47] or multi-dates [11,38,48–52], which

allow the inclusion of multi-temporal, -polarized or/and ancillary information for the extraction of

temporary open water (TOW) and TFV classes. Thereby, seasonal or annual fluctuations of backscatter

and multiple observations of the same area can be used to improve the reliability of mapping the

flood extent or even the flood dynamics [43]. Moreover, the use of multitemporal approaches has been

in the past limited due to the low availability of corresponding SAR data. However, since October

2014, the Sentinel-1 (S-1) satellite constellation has continuously and systematically captured the earths

surface with C-band SAR data at short repetition time, enabling the use of SAR multi-temporal data for

systematic and operational flood monitoring. Using this data source, Tsyganskaya et al., [8] recently

showed a time series approach for the detection of TFV.

This study aims to show the potential of the SAR time series approach proposed in Tsyganskaya

et al., [8] regarding the extraction of the entire flood extent with the focus on TFV for two independent

study areas in Greece/Turkey and China. The main focus of the study is to demonstrate the impact of

the time series features on the classification results and to show their potential for operational use. The

objectives in detail are as follows:

• to investigate the relevance of polarization and time series features for the derivation of TFV with

respect to vegetation types in both study areas;

• to examine if the relevant time series features for the analyzed study areas correspond to the

relevant time series features of the previous study area (Namibia) in [8], despite the occurrence of

different vegetation types and
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• to identify a single time series feature that is relevant for the extraction of different TFV types and

for all study areas in order to demonstrate the potential for the transferability and operational use

of this time series approach.

2. Materials and Methods

2.1. Study Areas and Available Data Sets: Greece/Turkey and China

Besides the study area in Namibia described in [8], two further study areas with different vegetation

types were used for the impact analysis of time series features for the extraction of TFV. Compared

to [8] and to each other, both study areas have different vegetation types, which are described in this

section. One of the study areas is part of the Evros catchment, located at the border between Greece

and Turkey (Figure 1a) is one of the study areas.
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Figure 1. Overview map with the location of the study area (red rectangle) in Greece/Turkey (a). Study

area in Greece/Turkey (Satellite data: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus

DS, USDA, USGS, AeroGRID, IGN, and the GIS Use Community) (b). The red rectangles represent

the reference mask extents for northern (c), and southern (d) areas. The reference masks based on

World-View 2 data (March 11, 2015) (c) and RapidEye (April 4, 2015) data (d).

With a length of 515 km and a basin of about 52,900 km2, the Evros river represents the second

largest river in Eastern Europe. The period of highest discharge usually occurs between December and

April. Several severe, large-scale floods frequently hit the catchment area, particularly in the southern

part. The focus of the study lies on a flood event in spring 2015. The flood-affected areas consisted of

farmland and forested areas where the water remained for over several weeks. For the analysis and

classification, a time series of 60 dual-polarized S-1 scenes was used, which were acquired under the

same orbital conditions between October 2014 and December 2016 (Table 1). Five S-1 images covered

the flood event. Figure 1b shows the extent of the northern and southern areas of interest, where two
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scenes, acquired on March 12, 2015 and April 5, 2015 were considered for classification as flood event

images due to their temporal proximity to reference data for the two different areas. The northern area

is dominated by TFV consisting of deciduous forest, whereby the majority of agricultural fields are

entirely inundated during the flood event. In the southern part of the study area, TFV occurs mostly in

high grassland areas.

Table 1. Acquisition dates of the Sentinel (S-1) satellite data used for Greece/Turkey. The scenes

acquired on March 12, 2015 and April 5, 2015 (highlighted with blue background) were used as flood

event images for two different parts (northern and southern) of the Greece/Turkey study area.

No Date No Date No Date No Date

1 October 19,
2014

16 June 16,
2015

31 January 6,
2016

46 July 16,
2016

2 October 31,
2014

17 June 28,
2015

32 January 18,
2016

47 July
28,2016

3 November
24, 2014

18 July 10,
2015

33 January 30,
2016

48 August 9,
2016

4 December
6, 2014

19 July 22,
2015

34 February
11, 2016

49 August 21,
2016

5 December
18, 2014

20 August 15,
2015

35 February
23, 2016

50 September
2, 2016

6 December
30, 2014

21 August 27,
2015

36 March 6,
2016

51 September
14, 2016

7 January 11,
2015

22 September
8, 2015

37 March 18,
2016

52 September
26, 2016

8 February 4,
2015

23 September
20, 2015

38 March 30,
2016

53 October 2,
2016

9 February
16, 2015

24 October 2,
2015

39 April 11,
2016

54 October 14,
2016

10 March 12,
2015

25 October 14,
2015

40 April 23,
2016

55 October 26,
2016

11 March 24,
2015

26 October 26,
2015

41 May 5,
2016

56 November
7, 2016

12 April 5,
2015

27 November
19, 2015

42 May 17,
2016

57 November
19, 2016

13 April 17,
2015

28 December
1, 2015

43 May 29,
2016

58 December
1, 2016

14 May 11,
2015

29 December
13, 2015

44 June
10,2016

59 December
13, 2016

15 June 4,
2015

30 December
25, 2015

45 July 4,
2016

60 December
25, 2016

Validation of the classification was performed based on two reference masks (Figure 1c,d). The

generation of the reference data was carried out by visual interpretation and manual digitalization of

high-resolution optical WorldView-2 (Figure 2) and RapidEye (Figure 3) images, acquired on March 11,

2015 and April 4, 2015, respectively. Although the radar data and the optical image have a temporal

shift of one and two days respectively, no changes in the flood extent could be observed.



Water 2019, 11, 1938 5 of 23
Water , x FOR PEER REVIEW 5 of

 

 

Figure 2. High-resolution false-color (NIR (near infrared), green, blue) WorldView2 image (March 11, 

2015) (© European Space Imaging/DigitalGlobe) for northern Greece/Turkey containing temporary 

flooded vegetation (TFV) ( ), temporary open water (TOW) (b), and dry land (DL) (c). 

Figure 3. High-resolution false-color (NIR, green, blue) RapidEye image (April 04, 2015). (© Planet

Labs Inc.) for southern Greece/Turkey containing TOW ( ), DL (b)  and TFV (c). 

The second test case is the Dong Ting L ke, which is the second largest lake in China  located in 

the Hun n Province (Figure 4 )  It is flood-basin of the Yangt e River and thus varies seasonally in

size. During the annual floods, it c n expand to 91 km² three times its size compared to the dry

season. A flood event in summer 2017 (Figure 4b) w s chosen. For this study,  dual-polarized S-1

scenes were used, which were cquired between October 201 nd February 2018 (T ble ). The scene 

acquired on June is characterized by the l rgest flood extent  In addition, the selection of the

analy ed flood image is c rried out due to the temporal proximity to the reference data. Comparable

to the study area in Greece/Turkey, the generation of the reference flood mask w s c rried out using 

a high-resolution optical Sentinel- (S-2) image (Figure 5), which w s acquired on June 2 (Table

2). For the deriv tion of the reference m sk ll b nds with a resolution of 1  m and their combinations

of the S-2 scene were used The reference extent and the digitalized reference m sk is shown in Figure

4c. No changes in flood extent were observed between the analyzed flood image and the optic l scene. 

Figure 2. High-resolution false-color (NIR (near infrared), green, blue) WorldView2 image (March 11,

2015) (© European Space Imaging/DigitalGlobe) for northern Greece/Turkey containing temporary

flooded vegetation (TFV) (a), temporary open water (TOW) (b), and dry land (DL) (c).

Water , x FOR PEER REVIEW 5 of

 

Figure 2. High-resolution false-color (NIR (near infrared), green, blue) WorldView2 image (March 11, 

2015) (© European Space Imaging/DigitalGlobe) for northern Greece/Turkey containing temporary 

flooded vegetation (TFV) ( ), temporary open water (TOW) (b), and dry land (DL) (c). 

 

Figure 3. High-resolution false-color (NIR, green, blue) RapidEye image (April 04, 2015). (© Planet

Labs Inc.) for southern Greece/Turkey containing TOW ( ), DL (b)  and TFV (c). 

The second test case is the Dong Ting L ke, which is the second largest lake in China  located in 

the Hun n Province (Figure 4 )  It is flood-basin of the Yangt e River and thus varies seasonally in

size. During the annual floods, it c n expand to 91 km² three times its size compared to the dry

season. A flood event in summer 2017 (Figure 4b) w s chosen. For this study,  dual-polarized S-1

scenes were used, which were cquired between October 201 nd February 2018 (T ble ). The scene 

acquired on June is characterized by the l rgest flood extent  In addition, the selection of the

analy ed flood image is c rried out due to the temporal proximity to the reference data. Comparable

to the study area in Greece/Turkey, the generation of the reference flood mask w s c rried out using 

a high-resolution optical Sentinel- (S-2) image (Figure 5), which w s acquired on June 2 (Table

2). For the deriv tion of the reference m sk ll b nds with a resolution of 1  m and their combinations

of the S-2 scene were used The reference extent and the digitalized reference m sk is shown in Figure

4c. No changes in flood extent were observed between the analyzed flood image and the optic l scene. 

Figure 3. High-resolution false-color (NIR, green, blue) RapidEye image (April 04, 2015). (© Planet

Labs Inc.) for southern Greece/Turkey containing TOW (a), DL (b), and TFV (c).

The second test case is the Dong Ting Lake, which is the second largest lake in China, located in

the Hunan Province (Figure 4a). It is a flood-basin of the Yangtze River and thus varies seasonally in

size. During the annual floods, it can expand to 2691 km2 three times its size compared to the dry

season. A flood event in summer 2017 (Figure 4b) was chosen. For this study, 38 dual-polarized S-1

scenes were used, which were acquired between October 2016 and February 2018 (Table 2). The scene

acquired on June 28, 2017 is characterized by the largest flood extent. In addition, the selection of the

analyzed flood image is carried out due to the temporal proximity to the reference data. Comparable

to the study area in Greece/Turkey, the generation of the reference flood mask was carried out using a

high-resolution optical Sentinel-2 (S-2) image (Figure 5), which was acquired on June 27, 2017 (Table 2).

For the derivation of the reference mask, all bands with a resolution of 10 m and their combinations of

the S-2 scene were used. The reference extent and the digitalized reference mask is shown in Figure 4c.

No changes in flood extent were observed between the analyzed flood image and the optical scene.
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Table 2. Acquisitions dates of the S-1 satellite data used for China. The scene acquired on June 28, 2017

(highlighted with blue background) was used within this study as a flood event image.

No Date No Date No Date No Date

1 October 19,
2016

11 February
16, 2017

21 July 10,
2017

31 November
19, 2017

2 October 31,
2016

12 February
28, 2017

22 July 22,
2017

32 December
1, 2017

3 November
12, 2016

13 March 12,
2017

23 August 3,
2017

33 December
13, 2017

4 November
24, 2016

14 March 24,
2017

24 August 15,
2017

34 December
25, 2017

5 December
6, 2016

15 April 5,
2017

25 August 27,
2017

35 January 6,
2018

6 December
18, 2016

16 April 17,
2017

26 September
8, 2017

36 January 30,
2018

7 December
30, 2016

17 April 29,
2017

27 October 2,
2017

37 February
11, 2018

8 January 11,
2017

18 June 11,
2017

28 October 14,
2017

38 February
23, 2018

9 January 23,
2017

19 June 4,
2017

29 October 26,
2017

10 February 4,
2017

20 June 28,
2017

30 November
7, 2017
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Greece/Turkey containing DL (a), TFV (b) and TOW (c).

According to the ESA (European Space Agency) acquisition plan for S-1 constellation,

dual-polarized images of the S-1A with an interval of 12 days were available for the study areas and

the analyzed acquisition period. These data sets are processed and provided by ESA as Ground Range

Detected High Resolution (GRDH) products. According to [8], an automated preprocessing of the time

series data for both areas and both polarizations VV and VH (vertical/horizontal) was carried out in

several steps. The characteristics of all used S-1 data are listed in Table 3.

Table 3. Characteristics of the S-1 data used.

Sensor Properties Values

Wavelength Mode Interferometric Wide Swath (IW)
Polarization VV − VH
Frequency C-band (GHz)
Resolution 20 × 22 m (az. × gr. range)

Pixel spacing 10 × 10 m (az. × gr. range)
Inc. angle 30.5◦–46.3◦

Orbit Ascending
Product-level Level-1 (Ground Range Detected High Resolution

(GRDH))

In addition to the satellite data, ancillary information was used to avoid misclassification of the

desired flood-related classes [8] in both study areas. Initially, permanent open water (POW) surfaces

were identified by the 30 m SRTM Water Body Data (SWBD) [53]. Besides POW, information regarding

urban areas and topography was integrated by using the Global Urban Footprint (GUF) and Height

Above Nearest Drainage (HAND) index. Urban areas, as well as TFV, are characterized by strong

double- and multiple-bounce backscattering effects. Therefore, the GUF [54] mask is used to identify

and exclude urban areas. In order to prevent misclassifications in elevated areas, the HAND index [55]

was used to identify and exclude areas with an elevation of greater than 20 m above the nearest water

network [56].
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2.2. Methodology

The foundation for the analysis of the impact of time series features on the flood extent derivation

is the SAR time series approach [8]. This method provides the opportunity to generate flood maps

including the classes TOW, TFV and Dry Land (DL) based on different time series features. The main

steps of the classification process for the generation of the flood maps are summarized below.

The S-1 time series data presented in Section 2.1 provide a foundation for the generation of

two independent multi-temporal layer stacks for each polarization and for each study area via an

image preprocessing step. In addition, three further multitemporal stacks are generated, including

the combinations of polarization (VV + VH, VV − VH, VV/VH). The ratio between VV and VH was

calculated by using linear units, whereby for the elimination of outliers (e.g., due to speckle) only the

values within the 5th and 95th percentiles were considered.

Based on findings about characteristics and patterns for TOW and TFV [8], the time series features

were determined using the z-transform of the backscatter values for each pixel over the time series

and for the available multi-temporal layer stack. The z-transform allows the normalization of the

backscatter values over the time series and ensures that the image elements of the analyzed flood scene

are comparable with each other when considering the individual seasonal fluctuation of vegetation.

The normalized time series features are termed as Z-Score. In relation to the polarizations, the time

series features are Z-Score VV, Z-Score VH, the combination of polarization, Z-Score VV + VH, Z-Score

VV − VH and the ratio Z-Score VV/VH, which represent the foundation for the derivation of TOW

and TFV [8]. Based on training data, two time series features with the highest contribution for the

derivation of the desired classes (TOW and TFV) were identified for each study area by using Random

Forest Algorithm. These features were used in the last step of the classification approach.

The classification of the flood-related classes was carried out based on pixels and objects. The

K-means clustering algorithm [57] was applied for the generation of clusters using SAR time series data

and the analyzed flood image. The resulting multitemporal and spatial cluster images were intersected

with each other to combine multi-temporal and spatial information. The time series features, which

are based on pixels, were merged with the segmented image by averaging the corresponding values

within each object.

The hierarchical thresholding approach is the last step in the classification process chain, which

allows a successive derivation of the desired classes based on the image elements (pixels or segments).

First of all, the permanent water surfaces are identified by the SWBD mask (see Section 2.1). On the

remaining image elements, the TOW, TFV and Dry Land (DL) are then derived consecutively using the

relevant time series features. The corresponding thresholds were determined automatically using the

decision tree classifier and the above-mentioned training data. For further details and an in-depth

explanation see [8]. The implementation of the entire approach was done in Python. The quantification

of the classification accuracy of TOW, TFV, and DL was carried out using overall accuracy (OA),

producer accuracy (PA), user accuracy (UA), and kappa index (K).

In order to investigate the impact of time series features for the derivation of TFV and to show

the potential of time series features for the transferability to different study areas and thus for the

operational use, a statistical comparison of the classification accuracies based on different study areas

and TFV types was performed. Thereby, a single time series feature was searched for, which allows the

extraction of different types of TFV with high accuracy for all study areas. Besides the study areas

described in Section 2.1, the study area in Namibia, which was analyzed in Tsyganskaya et al., [8], was

also used for the investigation.

In order to identify a single time series feature, which can then be used for all study areas, the

mean value and the coefficient of variation (CV) were determined based on user accuracy (UA) and

producer accuracy (PA) for each time series feature. The mean value represents the total accuracy

for the TFV classification of all study areas and for each time series feature. The higher the mean

value, the more relevant is the time series feature for all study areas. In addition, the CV was used

to quantify the variance of the data relative to the mean. The variance of the values is particularly
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relevant with regard to the outliers in UA and PA. The lower the CV, the lower the distance/scatter

between the classification accuracies of the study areas for a time series feature and the more relevant

is a time series feature for all study areas and thus for their transferability. Thus, the two statistical

quantities allow the comparison between the classification results and the time series features for all

study areas simultaneously.

3. Results and Discussion

3.1. Level of Contribution of the Time Series Features

Based on the knowledge about the characteristics and patterns of the time series data for the

two polarizations and their combinations, time series features were derived [8]. Using training data

for each of the study areas, those features were examined for their relevance to the extraction of the

desired classes, TOW and TFV. For this purpose, similarly large training data sets were derived from

optical images for the three classes TOW, TFV, and DL and for each of the study areas. Using Random

Forest Algorithm, it was identified which time series features provide the highest contribution to

the classification results and are, therefore, most relevant for the derivation of flood-related classes.

Furthermore, it was examined whether a single time series feature or a combination of time series

features enables the highest classification accuracy for the two desired classes. As a result, redundant

information can be sorted out and the information required for classification identified.

Tables 4 and 5 show the level of contribution of the analyzed time series features for the derivation

of the above-mentioned classes and the three study areas. Z-Score VV + VH represents the time series

feature with the highest contribution for TOW for all study areas (Table 5). This can be explained by

the fact that for both VV and VH polarizations the backscatter values decrease at the analyzed date of

the flood [8]. An example of the backscatter value decrease in VV and VH is shown in Figure 6, which

was created for a TOW segment from the validation data. Z-Score VV + VH combines both sources of

information, whereby the decrease of the backscatter values is intensified. Figure 2b shows the enlarged

view of the high-resolution WorldView2 image, demonstrating the presence of the corresponding

TOW at the analyzed flood date. Further examples of TOW and the analyzed extent of study areas

in southern Greece/Turkey and China are demonstrated in Figures 3a and 5c. In addition to both

polarizations, the multi-temporal behavior of the Normalized Difference Vegetation Index (NDVI)

values for the same time-period is displayed in Figure 6 serving as a comparison to the SAR time

series data. NDVI values were derived from the LANSAT 8 data sets. Despite the cloud-related data

gap for 2014, the beginning of 2015 and the beginning of 2016, a strong decrease in the NDVI values

for the analyzed date of the flood event can be observed. In combination with the decrease of the

backscatter values, this confirms the occurrence of water at the analyzed date. For the classification of

TFV, different time series features with the highest contribution or relevance can be identified for the

individual study areas. The differences can be attributed to the different types of vegetation and the

different environmental conditions in the study areas.

Table 4. Random forest importance analysis of the time series features for TOW and individual study areas.

The rows highlighted in blue represent the time series features with the highest contribution (importance).

Southern
Greece/Turkey (%)

Northern
Greece/Turkey (%)

China (%)

Z-Score VV 35.64 29.26 31.35
Z-Score VH 15.51 23.07 24.61

Z-Score VV + VH 39.44 35.3 33.37
Z-Score VV – VH 5.91 7.33 3.87
Z-Score VV/VH 3.51 5.08 6.81
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Table 5. Random forest importance analysis of the time series features for TFV and individual study

areas. The rows highlighted in green represent the time series features with the highest contribution

(importance).

Southern
Greece/Turkey (%)

Northern
Greece/Turkey (%)

China (%)

Z-Score VV 32.61 28.39 33.21
Z-Score VH 2.79 11.30 17.32

Z-Score VV + VH 18.66 21.53 33.84
Z-Score VV – VH 41.57 16.37 8.56
Z-Score VV/VH 4.38 22.41 7.10Water , x FOR PEER REVIEW 10 of
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Figure 6. Multitemporal behavior of the backscatter intensity for TOW areas for VV (decibel (dB)), VH

(dB), VV/VH (linear scale), and Normalized Difference Vegetation Index (NDVI) values in northern

Greece/Turkey. The blue bars mark the analyzed date at the flood event.

For the study area in southern Greece/Turkey, the Z-Score VV − VH is the most relevant time series

feature for the derivation of TFV (Table 5). This can be explained by the strong difference between the

polarizations VV and VH (Figure 7). Thereby, VV polarization shows a strong increase at the flood

date compared to the rest of the time series and VH polarization shows low or almost no increase at

the flood date.
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VV/VH (linear scale), and NDVI values in southern Greece/Turkey. The blue bars mark the analyzed

date at the flood event.

The different behavior of both polarizations can be explained by the different sensitivity of VV

and VH to specific backscattering mechanisms, which caused an increased difference in the backscatter

values between the two polarizations at the analyzed date of the flood. In comparison, the difference

between the polarizations for the dry dates shows a smaller variability. The different sensitivity is on

the one hand due to the fact that the double-bounce effect occurs more strongly in the VV polarization

and leads to the backscatter. On the other hand, backscatter is in general lower for cross-polarization

(HV or VH), as no ideal corner reflectors can be produced due to their depolarizing properties [5,58,59].

As a result, it is reported that the increase of the backscatter values by TFV can be more reliably

detectable by co-polarized data than by cross-polarized data [60]. However, the combination of co- and

cross-polarized data can improve the identification of TFV [26]. The NDVI values in Figure 7 confirm

that the increase in VV polarization was not caused by seasonal or other changes in vegetation, but is

flood-related, as no sudden increase in NDVI values could be identified at the flood date.

For the study area in northern Greece/Turkey, Z-Score VV is the most relevant feature (Table 5).

As previously mentioned in Section 2.1, this study area is dominated by deciduous forest (Figure 2a),

which was under leaf-on conditions at the date of the flood. It should be noted that the penetration

of the forest canopy may be restricted by C-band and environmental parameters (e.g., aboveground

biomass) [61,62]. Yu and Satschi [63] reported that the SAR backscatter values increase depending on

the biomass and that the soil signal can no longer be detected if a certain degree of saturation has been

reached. Thereby, the volume scattering from the canopy completely superimposes the contribution

of the double bounce effects from the interaction between the water surface and vertical vegetation

structure and TFV can no longer be identified. Therefore, there is hardly any signal difference between

VV and VH at the flood date (Figure 8), which is confirmed by the low importance of Z-Score VV −

VH. Compared to that the small increase in importance of the VV/VH can be explained by a small

proportion of TFV in the forested areas due to limited penetration into the forest crown, as described
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above. In the case of northern Greece/Turkey the importance increases, because the outliers were

eliminated by using the Z-Score VV/VH feature. For southern Greece/Turkey on the contrary, using the

Z-Score VV/VH the outlier reduction caused also an elimination of extreme values caused by TFV. This

led to a drop of the importance in VV/VH in comparison to the Z-Score VV − VH. Regarding the most

relevant time series feature Z-Score VV for the northern Greece/Turkey study area, it is assumed that

the backscatter in VV polarization is dominated by the contribution of the forest canopy and moreover

the volume scattering represents the main scattering mechanism. Due to the sensitivity of the VV

polarization for the double bounce effect, however, a slight increase in the backscattering values at the

flood date was detected, which can indicate TFV (Figure 8). The NDVI values were derived from the

LANDSAT 8 data and show that the slight increase of the backscatter values in both polarizations at

the date of flood can be attributed to the flood event and not to any change in vegetation.
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For the study area in China, Z-Score VV + VH represents the most relevant time series feature

for the derivation of the TFV (Table 5). The time series feature indicates that in both polarizations an

increase of the backscatter values has occurred at the analyzed date of the flood. This can be confirmed

in Figure 9. Both polarizations increase at the analyzed flood date, whereas the stronger increase

can be observed in VV polarization. The sum of the two polarizations intensifies the increase of the

backscatter values at the same date. Although only a few cloud-free optical Sentinel-2 images are

available that cover the study area in China for the analyzed time period, it can be observed that there

is no increase in the NDVI values at the analyzed flood date (Figure 9). This leads to the deduction

that the increase in SAR time series data is not related to phenological changes. Figure 5b shows a

high-resolution Sentinel-2 image demonstrating the presence of the corresponding TFV area at the

analyzed flood date.
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Since the TFV type is high grassland and reed (Figure 5b) [64], which is similar to the structure of

some crops (rice, wheat), it is assumed that the vegetation can be penetrated by the C-band data [10,65].

Therefore, it is expected that the increase in backscatter values will occur at the time of the flood

in the VV polarization due to their sensitivity to the double impact effect. However, the increase

in VH polarization cannot be confirmed by the depolarizing property mentioned above. Instead,

the latter increase is a result of the combination of environmental parameters. The contribution of

the soil under the vegetation plays a decisive role in this process. Due to of possible unevenness

of the soil (microtopography) and the low water level, it is possible that a part of the soil surface

beneath the vegetation was only partially flooded. In the flood-free areas underneath the vegetation,

the soil moisture may have increased at the date of the flood compared to non-flooded conditions.

Simultaneously, water could have accumulated in the sinks, which could also lead to standing water

beneath vegetation in the same region. Due to different sensitivities of VV and VH to the respective

conditions, the latter can dominate the respective polarization. The analyses from the literature confirm

that an increase in soil moisture in both VV and VH causes an increase in the backscatter values and

can be detected by the sensor depending on the biomass amount [66,67]. The TFV, which is represented

by the double-bounce effect, can only be detected by VV polarization, as the depolarizing property of

VH polarization does not allow sensitivity to double-bounce [68]. The mixture of these two cases by

micro topographical differences explains the increase not only of backscatter values for VV, but also for

VH and, thus, the relevance of Z-Score VV + VH for the derivation of TFV in the study area of China.

A comparison of the relevant time series features with the results of the study of Tsyganskaya

et al., [8] shows that for the class TOW, Z-Score VV + VH is also one of the time series features with

the highest contribution. For TFV, the most relevant time series characteristic (Z-Score VV − VH)

is confirmed only for the study area in the southern area of interest of Greece/Turkey. In the other
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two example areas, the algorithm determined different relevant time series features due to different

environmental conditions (e.g., vegetation type, topography, soil moisture) and their interaction.

Based on a previous analysis in Tsyganskaya et al., [8], the time series feature with the highest

contribution can achieve a higher classification accuracy compared to the combination of all time

series features. Therefore, a single time series feature with the highest contribution was used for the

classification for deriving the desired classes. This identification step is performed automatically by

the algorithm using training data. Moreover, these examples show that the use of both polarizations is

relevant for the derivation of flooded areas.

3.2. Classification Results

The classification of the study area in southern Greece/Turkey was carried out based on the S-1

time series stack (October 19, 2014–December 25, 2016) containing the flood image (April 4, 2015). This

classification was validated using the S-2-based reference mask (April 5, 2015). Figure 10a shows the

pixel-based classification result of the time series approach, which comprises the classes POW, TOW,

TFV, and DL, while Figure 10b shows the object-based classification result. For visual comparison, the

validation mask is shown in Figure 1d. It is noticeable that the areas of the classes TOW, TFV, and

DL contain more small structures of the other classes in the pixel-based classification compared to

the object-based classification. The usage of objects reduces this noise; however, it also can lead to

the loss of details and thus information. In general, the use of pixel- or object-based classification

depends strongly on the kind of the landscape under investigation. In the case of flooding in vegetated

areas, a single, isolated pixel could contain water ponds and so differ from its neighboring pixels. Due

to limited visibility in optical data, these areas could not be identified during the generation of the

validation mask.
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Figure 10. Pixel-based classification result (a), object-based classification result (b) for the study area in

southern Greece/Turkey.

For the study area in northern Greece/Turkey, the classification is based on the S-1 time series

stack (October 19, 2014–December 25, 2016), with the flood image being acquired on March 12, 2015.

Validation of this classification was performed using the S-2-based reference mask (March 15, 2015).

Figure 11a shows the pixel-based classification result for the study area of northern Greece/Turkey,

which comprises the classes POW, TOW, TFV, and DL, while Figure 11b shows the object-based

classification result. Compared to the validation mask (Figure 1c), both pixel- and object-based

classification show only a low representativity of the class TFV. This can be explained by the low

penetration of the vegetation (deciduous forest (Figure 2a)) by the C-band data, which is reduced

in this case [8]. In addition, occasional TFV areas in the classification can be identified in DL of the

validation mask, especially in the pixel-based classification. These could be small areas of water (ponds

or temporary water accumulations). In combination with vertical structures of the agricultural areas or

grassland, the double bounce effect can also be produced resulting in an increase in the backscatter

values at the date of the flood. These areas were also classified as TFV, though they could not, however,

be identified during the generation of the validation mask due to limited visibility in optical data.
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Figure 12. Pixel-based classification result (a), object-based classification result (b) and validation mask

(c) for the study area in China.

The comparison between the classification results and the validation mask reveals the occurrence

of TOW in DL. DL also occurs between the permanent water surfaces and the TOW areas. On the one

hand, the confusion between these two classes can arise due to small areas of water occurring in the

agricultural areas. On the other hand, the duration of a flood event can lead to an accumulation of

S-1 images, containing the inundation and a decrease of images without flooding. This can cause a

higher fluctuation range and a lower mean value when generating the time series features, which in

particular can lead to confusion with DL, as the areas between permanent water and TOW demonstrate.

The combination of these two conditions makes the above-mentioned confusions between the classes

possible. Therefore, the use of a time series with at least one vegetation cycle is recommended, as
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the statistical range of the backscatter values of the vegetation stages is detected and thus sufficiently

represented [8].

The accuracy values for the pixel-based and object-based classifications for the respective study

areas are shown in Table 6. The OA for all study areas ranges between 80% and 87%. In comparison,

in [8] the authors achieved a similar or even slightly lower OA for the pixel-based (75%) and object-based

(82%) classification. The accuracy assessment for the study area in northern Greece/Turkey shows high

values for the TOW class but strong misclassifications for TFV (PA: 28% for pixel-based and 6% for

object-based) and DL (UA: 57% for pixel-based and 53% for object-based). This indicates a significant

confusion between these two classes and can be explained by different environmental conditions (see

Section 3.1). The accuracy values show no significant difference between pixel-based and object-based

classification, except for the PA values of TFV. When applying object-based classification, it should be

noted that the small-scale flood areas could be generalized by merging the pixels to objects. However,

object-based classification can help to exclude pixels which can be confused with a flood-related

increase in values due to dominant environmental conditions, such as soil moisture, topography, or

surface roughness, which can cause a small-scale increase or decrease in the backscatter. In addition,

objects are less susceptible to speckle noise than pixels [29].

Table 6. Accuracy assessment for the pixel- and object-based classification for the individual study

areas. Overall accuracy (OA) in %, Producer accuracy (PA) in %, User accuracy (UA) in %, and Kappa

index (K).

Southern Greece/Turkey
(%)

Northern Greece/Turkey
(%)

China (%)

Pixel-based Object-based Pixel-based Object-based Pixel-based Object-based

DL—UA 76.64 77.62 56.65 53.25 85.26 87.66
TOW—UA 86.53 86.87 97.58 98.23 79.73 85.65
TFV—UA 90.37 92.17 76.83 73.86 78.28 83.01
DL—PA 77.86 79.61 91.67 96.60 69.89 78.95
TOW—PA 85.94 86.38 91.02 91.67 90.47 91.14
TFV—PA 89.52 90.09 28.18 6.32 90.09 91.23

OA 84.26 85.17 81.47 79.59 81.37 85.84
Kappa 0.76 0.78 0.66 0.63 0.71 0.78

3.3. Time Series Features—Transferability Analysis

For the transferability analysis of the classification approach, several pixel-based and object-based

classification runs were carried out for each study area and its subareas using the individual time

series features. For each run, the most relevant time series feature (Z-Score VV + VH) was used for

the derivation of TOW (Section 3.1). Simultaneously, each time series feature was used in each study

area to derive the TFV, so that 20 pixel-based and 20 object-based classification products could be

generated. For each result, an accuracy assessment was performed. Since the analysis of the different

time series features refers to the TFV, the PA and UA of TFV were selected as indicators to represent

the classification accuracy of the TFV. The accuracy values PA and UA for the individual study areas

and the five analyzed time series features for pixel-based classification are shown in Table 7 and for

object-based classification in Table 8. The relevant time series features that were identified by the

Random Forest Algorithm (Section 3.1) are highlighted in dark green for the respective study areas

for the PA and UA values. These tables show that different time series features are relevant for the

individual study areas. The low PA values seen for northern Greece in both tables can be explained by

the specific TFV type that dominates this study area, namely flooded forest areas. In this case, the

penetration of the forest crown is limited by C-band data, whereby the water under the vegetation can

only be partially detected.
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Table 7. The accuracy values PA and UA of the pixel-based classification for the individual study

areas as a function of the five analyzed time series features. The relevant time series features for

the individual study areas, which were identified by the Random Forest Algorithm (Section 3.1) and

corresponding PA and UA values are highlighted in dark green. Optimum of statistical variables (mean

value of UA / PA and coefficient of variables) for time series features is highlighted in light green.

Z-Score VV Z-Score VH Z-Score VV +
VH

Z-Score VV −
VH

Z-Score VV/VH

UA PA UA PA UA PA UA PA UA PA

Namibia 88.72 78.43 47.11 90.52 85.64 82.38 92.62 69.96 67.90 86.32
China 82.26 92.65 51.26 99.30 78.28 90.09 52.37 99.24 44.46 99.50

North Greece 76.83 28.18 50.34 0.81 65.85 3.26 37.10 4.71 68.58 56.72
South Greece 96.10 77.17 35.25 42.22 94.89 53.17 90.37 89.52 60.85 93.48

Mean values of
UA and PA

77.54 52.10 69.18 65.74 72.23

Coefficient of
variance

0.22 0.41 0.36 0.47 0.18

Table 8. The accuracy values PA and UA of the object-based classification for the individual study

areas as a function of the five analyzed time series features. The relevant time series features for

the individual study areas, which were identified by the Random Forest Algorithm (Section 3.1) and

corresponding PA and UA values are highlighted in dark green. Optimum of statistical variables (mean

value of UA / PA and coefficient of variables) for time series features is highlighted in light green.

Z-Score VV Z-Score VH Z-Score VV +
VH

Z-Score VV −
VH

Z-Score VV/VH

UA PA UA PA UA PA UA PA UA PA

Namibia 84.05 80.71 49.26 17.47 84.37 5.99 54.93 89.29 76.1 91.2
China 82.38 92.65 62.51 92.46 83.01 91.23 66.68 97.06 42.86 97.86

North Greece 73.86 6.32 50.35 0.82 65.99 3.29 48.61 2.92 68.75 57.22
South Greece 97.05 87.81 26.90 31.64 98.52 75.19 92.17 90.09 65.20 92.74

Mean values of
UA and PA

75.57 41.43 63.44 67.72 73.99

Coefficient of
variance

0.31 0.62 0.52 0.40 0.19

As described in the methodology, two quantities, mean value and CV, were derived based on the

UA and PA values to provide a foundation for the identification of a single robust time series feature

for the derivation of TFV types and for all study areas. If a time series feature reaches a high mean

value compared to other time series features and shows at the same time the smallest CV, it is relevant

for all study areas. Considering Tables 7 and 8, it is not apparent which time series feature would

be suitable since the two statistical variables achieve the optimum at different time series features

(highlighted in light green). The Z-Score VV shows the highest mean value (77.54%) for pixel-based

classification and (75.57%) for object-based classification compared to other time series features, but

Z-Score VV/VH shows the lowest CV value (0.18) for pixel-based and (0.19) for object-based.

For a distinct identification of the most relevant time series feature, the two statistical variables

have to be considered simultaneously. In Figure 13, the two quantities are plotted on two different

axes. The larger the mean value and the smaller the CV, the more suitable is a time series feature for

the extraction of TFV for all study areas. The lower right corner of the diagram is thus the point that

represents the optimum between both statistical quantities. The closer a time series feature lies to this

optimum, the more relevant is the time series feature for all study areas.
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Compared to other time series features, Z-Score VV is the shortest regarding the distance between

the optimum and the time series feature for pixel-based classification (Figure 13). Thus, this time series

feature seems to be the most relevant for the operational derivation of the class TFV, when using pixels

as a foundation. The relevance of Z-Score VV is due to the fact that VV polarization is more influenced

by the double-bounce effect indicating the presence of TFV. In comparison, VH is more influenced by

different environment conditions and may change for different TFV types and study areas (Section 3.1).

The distances of the Z-Score VV/VH to the optimal point differ from the distance between the Z-Score

VV and optimal point only slightly. This shows that VH polarization also has an influence on the

classification results and can be important in combination with VV polarization provided that the

environmental conditions in the analyzed study area are known and characterized.

This relevance is also shown in Figure 14, where the relevant feature based on objects is the

Z-Score VV/VH, which contains both polarizations. Based on the findings in Section 3.1, which show

that the increase in the VV time series at the date of the flood for TFV is more significant compared to

the VH time series because the VH signal is influenced more by environmental conditions than by TFV,

the Z-Score VV feature based on pixel elements is recommended for operational use. In addition, the

mean value of UA and PA for the pixel-based classification for the Z-Score VV time series feature is

highest (77.54%) compared to all other mean values of UA and PA. The combination of Z-Score VV +

VH and Z-Score VV/VH based on pixel elements is recommended for operative use for extraction of the

TOW and TFV, respectively. When no feature importance has to be calculated during the classification

and the pre-processing of the S-1 data [8] has already taken place, the classification process takes

between 1 and 5 minutes, depending on the available computing performance and the extent of the

study area. The maximum extent that was analyzed is one-third of S-1 GRD images. By specifying the

time series features the user, interaction is omitted and apart from the initialization of the algorithm

the classification can be performed automatically. For the optimization and extension of the approach

regarding different TFV types, further research in other study areas will be beneficial.
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4. Conclusions

The results of the study areas in northern and southern Greece/Turkey and in China show the

potential of the method presented in Tsyganskaya et al., [8] using S-1 time series data to extract the

total flood extent considering both temporary open water (TOW) and temporary flooded vegetation

(TFV). In particular, different types of TFV were analyzed. The individual flood extent was determined

by time series features, which represent the characteristics of both classes.

This study confirms the results of the study of Tsyganskaya et al., [8], showing that the Z-Score

VV+VH, which was derived based on the characteristics mentioned above, is the most relevant time

series feature for the extraction of the TOW areas in all study areas. For the derivation of TFV, three

different time series features were determined by the algorithm for individual study areas. This can be

explained by the complex structure of the vegetation, the various analyzed vegetation types, and the

dependency of the TFV on environmental conditions (e.g., vegetation type, soil moisture, topography),

which differ in all study areas. Nevertheless, in the results for all study areas OA values reached

between 80% and 87%, which were slightly higher even compared to the results in [8]. For the study

area in northern Greece, the TFV areas could only partially be derived based on the C-band data due to

the presence of forested vegetation, which reduces the penetration of the SAR signal. In both other

study areas, TFV in high grassland/reed was successfully classified.

The potential of the time series approach for transferability as a prerequisite for operational use

was analyzed by comparing time series features with respect to their suitability for the derivation

of TFV for all study areas simultaneously. For the comparison, statistical quantities were derived

from the classification accuracies PA and UA of the TFV. For TFV, Z-Score VV, or Z-Score VV/VH

appear to be the most relevant time series feature for pixel-based and object-based classification,

respectively. Nevertheless, Z-Score VV is recommended for operational use based on pixel elements

for the extraction of TFV as this allows improved differentiation to non-flood dates due to the more

significant increase in the VV time series for TFV at the date of the flood compared to the VH time

series. The Z-Score VV + VH is recommended for the extraction of TOW surfaces, because of the

unanimity regarding the feature importance calculation for all study areas (Section 3.1). Since the time

series features have been defined and no feature importance needs to be calculated, the user interaction

is reduced to the initialization of the classification process and the computation time decreases.
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Overall, the approach can be used for irregularly occurring flood events, as well as for irregularly

acquired S-1 images. It is flexible for individual applications depending on the vegetation and takes

account of the seasonal changes by the use of multitemporal data. The presented SAR time series

approach lays the cornerstone for automatic flood detection on a global scale, allowing the detection of

the entire flood extent by supplementing the TOW with TFV areas.
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5   Conclusion and outlook 

This thesis focuses on the extraction of TFV areas for improved flood detection. As a foundation 

the new generation of dual polarized C-Band satellites, such as the dual polarized S-1 

constellation, with high revisit frequencies is applied. The increased availability of SAR imagery 

and the use of C-band data provide a foundation for frequent and accurate large-scale flood 

monitoring. Furthermore, the possibility of detecting and extracting flooded areas even under 

the vegetation is growing. The major goal of this thesis is to develop a SAR times series-based 

approach for the extraction of TFV and improved and transferable flood extent derivation using 

a new generation of temporally and spatially high-resolution C-band SAR satellite data. The 

publications present the steps performed, the challenges emerging from this as well as the final 

results and their critical discussion. The key findings of this work are summarized in the 

following conclusion along with the research questions presented in Section 1.3. 

 

Research question 1: Does the comparison of the state of the art of the method provide an 

identification of the trends regarding the SAR-based classification algorithms for the extraction of 

TFV?  

 

The comparison of the state-of-the-art method revealed some inconsistencies in the application 

of classification algorithms for the extraction of TFV. It can be explained by the wide variety of 

the applied data, which often depends on the individual task, but is mostly limited by its 

availability. A large variety of different classification techniques were applied in the investigated 

studies, ranging from simple threshold approaches to more complex algorithms such as machine 

learning. Single image approaches are still preferred and mostly applied in combination with 

additional data, such as optical or elevation information, to describe TFV and other ground cover 

types (Tsyganskaya et al. 2018b). Significantly fewer studies apply change detection techniques, 

which requires manual intervention for the selection of an image acquired under dry conditions. 

The selection of an image with dry conditions for a change detection approach is crucial because 

it has an impact on the differentiability to an image indicating flood conditions and thus whether 

the selected image provides a suitable foundation for flood detection. 

Although the comparison of the state of the art of the methods in Tsyganskaya et al. (2018b) 

shows a low application of studies with multi-date or time series SAR data, the use of such data 

is promising, because these data include the information about the seasonal changes of the 

backscatter signal regarding the vegetation. SAR time series data provide the opportunity to 

distinguish seasonal fluctuations from flood-related outliers over the given timeframe. The use 

of multitemporal SAR data in combination with the increasing availability of data, short revisit 

times and systematic data acquisition by satellite missions, such as Sentinel-1, paves the way for 

the application of SAR time series approaches. 

Overall, the overview of the state of the art in relation to the data sets and algorithms available 

in the future for the extraction of TFV showed a methodological trend towards a SAR time series 

approach. The comparably low use of SAR time series data and only few existing SAR time series 

approaches for the detection of TFV show the potential need for research in this area. Continuing 

efforts in the analysis of long-term profiles will increase understanding about the seasonal and 

annual variability and enable the development of potentially transferable and operationally 
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usable approaches for the extraction of TFV and for the improved flood detection (Section 4.2 

and 4.3). 

 

Research question 2: Are the multitemporal characteristics and patterns of the SAR time series 

data suitable for identifying flood-related classes (TOW and TFV)? 

 

The analysis of dual-polarized C-band time series data revealed specific multitemporal 

characteristics and patterns (decrease and increase of backscatter values during the flood 

period), which are indicative of flood related classes, such as temporary open water (TOW) and 

temporary flooded vegetation (TFV). The multi-temporal behavior of the flood-related classes 

has been analyzed for the two single polarizations (VV, VH) and their ratio VV/VH. A significant 

decrease of the backscatter values for TOW could be identified for both polarizations on the 

analyzed time period during the flood event. The ratio of these two polarizations shows no 

change at the analyzed date of the flood event, which indicates a simultaneous and similar 

change in both polarizations during the flood event. On the contrary, TFV is characterized by an 

increase in the backscatter values on the analyzed flood date in VV polarization (Tsyganskaya 

et al. 2018a). This increase can be explained by the double- or multi-bounce interactions 

between the specular water surface and the vertical structures of the vegetation (Moser et al. 

2016, Pulvirenti et al. 2011b, Pulvirenti et al. 2012). Compared to VV polarization, VH 

polarization shows a decrease of the backscatter value for TFV. Due to the depolarizing property 

of VH polarization, the double-bounce effect cannot be detected and the increase in 

backscattering values is not expected in VH (Henderson and Lewis 1998, Marti-Cardona et al. 

2010, Martinis and Rieke 2015). The backscatter value of the polarization ratio increases at the 

time of flood, because of the aforementioned different behavior between VV and VH 

(Tsyganskaya et al. 2018a). 

To ensure that the decrease or increase of the backscatter signal is not related to phenological 

or other influences, but rather corresponds to the flood-related changes, the multi-time 

behavior of the NDVI and NDWI ratios, derived from optical images, was included in the analysis. 

The use of characteristics and patterns allows for the integration of seasonal changes and thus 

the identification of the variation of the backscatter values for the non-flooded condition. The 

consideration of this information leads to improved differentiability between the backscatter 

values on the flood date and the backscatter values acquired under dry conditions. 

 

Research question 3: Do the operational dual-polarized SAR systems have the potential to 

provide time series features for the derivation of flood related classes (TOW and TVF)? 

 

Based on multitemporal characteristics and patterns, time series features were determined 

using VV, VH and their combinations. To ensure the comparability of the changes for each image 

element and thus the independency of the different phenological developments of the 

vegetation or other local environmental influences, the normalization of backscatter values over 

the time series for each image element was implemented. For this purpose, the time series 

features were developed using each of the polarizations (VV, VH) and their combinations 

(VV/VH, VV-VH, VV+VV) individually (Tsyganskaya et al. 2018a). Considering the backscatter 

values on the flood date and the mean value and standard deviation of the backscatter values 

from the non-flood dates, the generation of the time series features was performed by Z-

transform for each image element. When calculating the time series features, this irregularity of 
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the data, such as gaps, is not necessary, assuming the decrease or increase during the flood time 

is present.   

The time series features were generated for four independent study areas. In order to reduce 

the redundant information and thus the application complexity, time series features were 

identified for each individual study area regarding their informational relevance for the 

identification of flood-related classes. The identification was implemented by applying the 

Random Forest Algorithm based on the study area-related training data. With this method, 

relevant time series features for the extraction of flood-related classes (TOW and TFV) could be 

identified using dual-polarized SAR data.  

For TOW, a single time series feature based on the polarization combination VV+VH was 

independently identified for each study area. However, different time series features for TFV 

were identified for different study areas containing the relevant information for differentiation 

in to other classes. The time series features based on the polarization ratio VV/VH, polarization 

combination VV-VH, polarization VV and polarization combination VV+VH were identified for 

the study areas Namibia, Southern Greece/Turkey, Northern Greece/Turkey and China, 

respectively. This can be attributed to the complexity of the TFV vegetation and the strong 

influence of the environmental conditions (vegetation types, water level, topography 

(Tsyganskaya et al. 2018b) in each of the analyzed study areas having a strong influence on the 

radar signal (Tsyganskaya et al. 2019).  

 

Research question 4: Are dual-polarized Sentinel-1 time series data suitable for the 

development of a robust classification approach for TFV extraction and improved flood detection? 

 

Utilizing the time series features with the highest contribution for TOW and TFV for each of the 

study areas, a supervised hierarchical threshold-based method was applied to the derivation of 

the flood extent. The approach developed here was used to map large-scale flood events that 

occurred in Namibia, at the border between Greece and Turkey and in China containing TFV 

areas. The results indicate a reliable classification with an overall accuracy between of 75.0% 

and 84.3% for a pixel-based and 80.5% and 87.3 % for an object-based approach and refer to 

the flood extent assessment for the individual study areas with individual time series features 

(Tsyganskaya et al. 2018a, Tsyganskaya et al. 2019). In addition, it was demonstrated that the 

inclusion of TFV enhances the extraction of an entire flood extent by 27.0%. In addition, the 

Kappa coefficient increased from 0.24 to 0.69. Overall, the classification results show that the 

dual-polarized Sentinel-1 time series approach allows for a reliable extraction of the TFV area 

and thus improved flood detection.  

Since the approach developed here is based on the information about the increase and decrease 

of backscatter values observed in the time series during the flood period, it is essential that the 

number of images capturing flood conditions does not exceed the number images capturing non-

flood conditions. Periodically occurring events within an investigated period can also reduce the 

intensity of the changes during the flood event. This may affect the differentiability, especially 

between classes TFV and dry land, as the increase in time series data for TFV is not as 

pronounced as the decrease for TOW. Furthermore, the use of a time series with at least one 

vegetation cycle is recommended, as the statistical range of the backscatter values of the 

vegetation stages is detected and thus sufficiently represented (Tsyganskaya et al. 2018a). 

Nevertheless, the application is particularly suitable for the derivation of flood extent in relation 

to extreme events, since the SAR time series approach is based on the indirect identification of 

outliers. 
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The robustness of the time series approach is achieved by integrating a variety of ancillary 

information, such as the distribution of permanent water and urban areas, as well as 

information about the topography. On the one hand, this information allows for the preventive 

avoidance of confusion between permanent water surfaces and TOW areas, while on the other 

hand the prevention of water-lookalikes, such as shadows in mountainous areas. In addition, the 

identification of urban areas helps to prevent lookalikes to TFV, since they are characterized by 

strong double-bounce and multiple scattering effects. Since the focus of the study is on the 

derivation of TFV areas and a high probability of confusion of backscatter values between 

flooded urban areas and TFV exists, and the derivation of floodplains in urban areas is a highly 

complex issue, these areas are excluded in the methodology. Nevertheless, flood mapping in 

urban areas is of great importance, as most fatalities and economic losses occur during floods in 

urban areas and should be addressed in an independent research project in the future. 

 

Research question 5: Can the SAR time series approach be transferred to different study areas 

and vegetation types using a single time series feature for the extraction of TFV and thus be applied 

operationally?  

 

In order to answer this research question, a comparison of the time series features based on 

statistical values was carried out for all study areas. This method is applied to the transferability 

analysis of the SAR times series approach, allowing for the identification of a single time series 

feature, which can be used for the derivation of the TFV types for all study areas simultaneously. 

Thereby, the potential of the SAR time series approach for operational use was demonstrated. 

The analysis is carried out based on accuracy values, obtained by multiple runs of the SAR time 

series approach with each of the time series features for the study areas in Namibia, in 

Greece/Turkey and in China containing different vegetation types, such as high grassland and 

forested areas. The visualization and quantification of the time series features comparison 

demonstrates that Z-Score VV + VH and Z-Score VV are recommended for the operational use 

for the derivation of the TOW and TFV for analyzed study areas, respectively. Because no feature 

importance has to be calculated during the classification process, the calculation time decreases 

significantly. In addition, the user interaction is reduced to the initialization of the classification 

process, since the time series features have already been defined. 

 

With the upcoming new spaceborne SAR sensor operating at L-band, such as TanDEM-L 

(German Aerospace Center 2017), new opportunities for the synergetic use of C-band und L-

band data will arise. In combination with the short revisit time of TanDEM-L, the proposed time 

series approach could be initially transferred and adapted to the L-band data. Since the SAR 

signal in the C- and L-band has different penetration depths into vegetation crowns, better 

results for the derivation of the TFV in forest areas, as already observed in previous studies 

based on other L-band SAR satellite data (Hess et al. 1990) using TanDEM-L data, can be 

expected. 

 

The achievements of this thesis provide a pathway for the future flood monitoring with the focus 

on TFV providing an enhanced derivation of flood extent from S-1 time series C-band data 

worldwide. It has been shown that the flood extent can be extracted more precisely due to the 

new component the TFV.  
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