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1. Introduction 

1.1 Traumatic Brain Injury  

1.1.1 Epidemiology  

Traumatic brain injury (TBI) is a cerebral insult with high morbidity and mortality. In past 

decades, TBI imposed a heavy socioeconomic burden on society, leading to relevant public 

health problems due to high rates of permanent disability and high health care costs [1-

4]. There are approximately 69 million people who suffer from TBI each year worldwide. 

The incidence of TBI differs across different countries and regions. In 2015, the World 

Health Organization (WHO) reported the highest incidence rate for the USA/Canada 

(1299/100,000) and the lowest rate for Africa (801/100,000) [5] (Figure 1). In 2013, TBI led 

to 282,000 hospitalizations and 56,000 deaths, which accounted for 30 percent of all 

injury-related deaths in the USA [6]. In Europe, the annual mean incidence rate of TBI was 

reported to be 326 per 100,000 from 1990 to 2014 [7]; the majority of patients are male 

[7] and either below 25 or above 75 years of age [8]. In the US, the main age-groups 

affected by TBI are infants (0 to 4 years; 1591/ 100,000), young adults (15 to 24 years; 

1081/100,000), and the elderly (≥75 years; 2232/100,000 [9]).  
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Figure 1: Map illustrating the occurrence of TBI cases per 100,000 people in the 

worldwide (left). Histogram (upper right) showing the evaluated volume of TBI annually 

across WHO regions. Map (lower right) indicating the occurrence of TBI (cases per 

100,000 people) caused by traffic accidents by WHO region [5] 

1.1.2 Etiology 

The causes of TBI are multifaceted, including falls, accidents, sports injuries, and 

ballistic/military trauma. Falls, responsible for approximately 50% of all cases [10, 11], are 

the major cause of TBI in infants and the elderly with over 13,000 cases every year [12]. 

About one fourth of TBI cases [13] arises from accidents, either by traffic-related injury 

[14] or by blunt trauma to the head [15]. Motor vehicle and traffic-related incidents are 

responsible for most TBI-related deaths [16]. There is an increase in sports-related mild 

TBI cases (ranging from 1.6 to 3.8 million/a) in the USA [17]. Sports-related and violence-

related traumatic brain injury is far more frequent in males than in females [18, 19].  
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1.1.3 Classification  

1.1.3.1 Classification by injury severity – the Glasgow Coma Score 

In order to grade injury severity, TBI can be classified in several ways. The most commonly 

utilized clinical grading system is the Glasgow Coma Scale (GCS) (Figure 2), which 

correlates well with injury severity and outcome [20].  

Behavior Response 

Eye Opening (E) 4 = spontaneous 

3 = to sound 

2 = to pressure 

1 = none 

Verbal Response (V) 5 = orientated 

4 = confused 

3 = words, but not coherent 

2 = sounds, but no words 

1 = none 

Motor Response (M) 

 

 

6 = obeys command 

5 = localizing 

4 = normal flexion 

3 = abnormal flexion 

2 = extension 

1 = none 

 

Figure 2: Glasgow Coma Scale Score (modified according to Teasdale and Jennett) [20] 
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The GCS ranges from 3 to 15 points, 3 being the worst and 15 the best score [21]. GCS 

evaluates three domains: eye response (E, max. 4 points), verbal response (V, max. 5 

points), and motor response (M, max. 6 points). The components of the GCS should be 

recorded individually. A composite score of more than 12 in a TBI patients is classified as 

mild brain injury, the score from 9 to 12 as a moderate injury, and a score of less than 9 

indicates severe brain injury. However, this scoring system has also limitations. For 

example, a fully conscious patient with severe cervical spinal cord injury may be unable to 

perform motor tasks. Also, scoring of eye movements in patients with ocular injury or 

bulbar trauma may not be possible [22]. Age and preexisting conditions and disabilities 

like dementia and/or aphasia can lead to variance in diagnosis and outcome [13, 23, 24]. 

Lastly, GCS cannot be reliably obtained in patients who are sedated and/or intubated.  

1.1.3.2 Patho-anatomic classification 

 Apart from clinical variables, TBI can be graded using radiomorphologic features obtained 

by computed tomography (CT) or magnetic resonance imaging (MRI). This patho-anatomic 

classification takes into account location and patterns of (structural) injury thus helping to 

determine possible treatment strategies. Common features occurring in TBI can be either 

classified as focal lesions such as skull fractures, epidural, subdural, intracerebral 

hematoma, brain contusions and lacerations, or more diffuse injury patterns, called 

“diffuse axonal injury” (DAI) [25]. CT scanning is the most widely available and reliable 

imaging method and therefore the first option for diagnosis of acute TBI in an emergency 

situation in adults. In 1992, the Marshall Score was first introduced as a CT based 

classification system (Figure 3) to describe the severity and predict mortality of TBI [26]. A 

primary disadvantage of the Marshal Score is that patients with multiple injuries cannot 

be clearly classified and that CT scanning is not standardized thereby making unambiguous 

grading difficult [27].  
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Category Definition 

Diffuse injury I  No visible intracranial pathology 

Diffuse injury II Midline shift of 0 to 5 mm;  

basal cisterns remain visible;  

no high or mixed density lesions >25 cm3 

Diffuse injury III (swelling) Midline shift of 0 to 5 mm;  

basal cisterns compressed or completely 

effaced;  

no high or mixed density lesions >25 cm3 

Diffuse injury IV (shift) Midline shift > 5mm;  

no high or mixed density lesions >25 cm3 

Evacuated mass lesion V Any lesion evacuated surgically 

Non-evacuated mass lesion VI High or mixed density lesions >25 cm3; 

not surgically evacuated 

 

Figure 3: Marshall Classification of TBI based on CT scan (modified from Marshall scores) 

[26] 

1.1.3.3 Classification of TBI by injury mechanism 

TBI can be subdivided according to injury mechanism into closed head injury, open head 

injury, and acceleration-deceleration injury. In closed head injury, the dura mater remains 

intact. Still, this type of injury can give rise to long-term physical, cognitive and 

psychological impairments [28, 29]. Open head injury, especially with penetrating injury 

(dislocated skull fracture, penetrated dura mater and meninges) usually results in severe 

and most often permanent tissue damage and, thus, disability.   

1.1.4 Pathophysiology of traumatic brain injury 

The pathophysiology of TBI develops in a two-staged process, primary and secondary 

brain injury. Primary brain injury arises from the mechanical impact hitting the head and 



 11 

develops within seconds. The degree of the primary injury depends solely on the traumatic 

force itself and therefore cannot be influenced by treatment. Following the initial damage, 

a plethora of secondary mechanism occurs that eventually leads to an increase in tissue 

injury. This process starts minutes after trauma and may continue for decades after the 

initial injury [30].  

1.1.4.1 Primary brain injury 

Primary brain injury arises from external forces impacting the head, resulting in disruption 

of anatomic brain structures. Common injury patterns include focal brain contusions, 

diffuse and focal vascular injuries (extradural hemorrhage, subdural hemorrhage, 

subarachnoid hemorrhage, intra-parenchymal, and intra-ventricular hemorrhage) and 

diffuse axonal injury resulting from axonal shearing [31, 32]. 

1.1.4.1.1 Focal brain contusions  

Focal brain contusions are defined as regional abrasions of brain tissue. They commonly 

occur in frontal and temporal lobes and are caused by collision between brain and bony 

structures at the skull base. Clinically, they are often characterized by severe headache, 

varied levels of unconsciousness, and vomiting [33, 34]. Brain contusions are a very 

common injury pattern and are frequently diagnosed after road traffic incidents [35]. On 

a histopathological level, brain contusions reveal a variety of pathological changes, 

including focal brain tissue necrosis and hemorrhage, commonly entailing cortex and 

subcortical white matter [36].  

1.1.4.1.2 Diffuse and focal vascular injuries 

Depending on the vessels injured, TBI may result in extradural, subdural, intra-

parenchymal, or intra-ventricular hematoma as well as subarachnoid hemorrhage. 

Extradural (also called epidural) hematoma is most commonly caused by disruption of a 

meningeal artery, particularly the middle meningeal artery (75%) [37] due to skull fracture 

[38]. Typically, patients suffer from a short-lasting unconsciousness which is followed by 
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a period of consciousness and a secondary deterioration of consciousness [39]. Due to 

their mass effect with consecutive risk of herniation, large epidural hematomas usually 

need to be surgically removed; if treated in time prognosis is usually favorable [40]. In 

subdural hematoma (SDH), blood accumulates between the surface of the arachnoid 

membrane and the inner layer of the dura mater due to the disruption of bridging veins 

[41]. SDH usually presents with severe headache, focal neurological deficits, loss of 

consciousness or coma [42, 43]. SDH occurs in approximately 15% of all head trauma cases 

and is present in up to 30% of fatal TBI cases. Because subdural hematomas may expand 

quickly and unimpededly, quick surgical intervention is usually necessary in order to avoid 

massive intracranial hypertension. However, even with swift intervention morbidity and 

mortality of SDH remain high [44]. 

Traumatic subarachnoid hemorrhage (tSAH) due to vessel rupture between the pial and 

the arachnoid membrane [45] is present in up to 53% of TBI cases and is commonly found 

after road traffic accidents [46]. Greene et al. used CT criteria to grade tSAH. Common 

complications of tSAH are cerebral vasospasm which may lead to infarctions and 

hydrocephalus [47].  

1.1.4.1.3 Diffuse axonal injury  

Diffuse axonal injury (DAI) is a common lesion type in TBI [48]. DAI often results from rapid 

acceleration and deceleration of the brain leading to shearing of axons [49]. DAI 

commonly occurs during high-speed collisions [6]. It can be classified in three grades 

according to location, extent, and severity of white matter changes/ injuries [50]. In DAI, 

mechanical forces disrupt the cytoskeleton of axons, thus leading to axonal proteolysis 

and swelling [51] which may result in dysfunction of neuronal interconnection [52].  

The diagnosis of DAI is based on CT or MRI scans and the clinical presentation of the 

patient. Most common clinical symptoms of DAI include headache, dizziness, and nausea. 

DAI is often the explanation why a patient is unconscious even though the CT scan does 
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not reveal gross pathology. Severe DAI can lead to loss of consciousness [53] and may 

result in long-term functional impairments [54].  

1.1.4.2 Secondary brain injury 

Secondary injury occurs minutes up to several years after the primary injury [55, 56] and 

involves complex cellular, molecular and vascular mechanisms, including cerebral edema, 

impaired cerebral metabolism, alterations of cerebral blood flow and autoregulation, free 

radical formation, excitotoxicity, and neuroinflammation, just to name a few [57]. 

1.1.4.2.1 Acute Secondary Brain Injury 

1.1.4.2.1.1 Oxidative stress 

Oxidative stress is defined as an imbalance between antioxidant defense mechanisms and 

the production of reactive oxygen species (ROS). Reactive oxygen species include 

peroxides, superoxide, hydroxyl radicals, and singlet oxygen [58], and play a crucial role in 

acute secondary brain injury [59, 60].  

Hypoxia after TBI leads to acidosis which in turn activates pH-dependent calcium channels, 

resulting in increased production of ROS/reactive nitrogen species (RNS) and a massive 

activation of phospholipases [61]. Also, ruptured red blood cells (RBC) after TBI may 

induce ROS formation [62] as the massive release of free hemoglobin and degraded 

hemoglobin releases iron, which catalyzes ROS production [63]. 

Under physiological conditions, formation of ROS and free radicals is prevented through 

antioxidative systems (e.g. glutamine, glutathione) [64, 65]. In experimental TBI, an 

increase of hydroxyl radicals and superoxide anions is observed in the acute phase post-

injury. These harmful molecules impair the mitochondrial electron transport chain (ETC) 

thereby decreasing the production of ATP and finally leading to necrotic or apoptotic cell 

death [66]. 
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1.1.4.2.1.2 Excitotoxicity 

Excitotoxicity mediated by N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy5-

methyl-4-isoxazole-propionic acid (AMPA) glutamate receptors [67] plays a pivotal role in 

secondary brain injury after TBI. Elevated extracellular glutamate activates NMDA 

receptors thereby triggering an influx of sodium and calcium ions into neurons. High 

cytosolic calcium concentrations in turn activate a variety of pathological mechanisms 

which finally result in injury of the cytoskeleton, DNA lysis, and ultimately necrosis and 

apoptosis [68]. The most important factor triggered by excess glutamate in neurons is an 

increase in intracellular calcium [69]. Calcium overload eventually impedes mitochondrial 

function. The over-activation of the calcium-dependent mitochondrial permeability 

transition pore (mPTP) disrupts the membrane potential of mitochondria thus disabling 

ATP production [66, 70].  

1.1.4.2.1.3 Inflammatory responses  

At the moment of brain injury, danger-associated molecular patterns (DAMPs) and 

alarmins are released into the extracellular space where they can then be recognized by 

pattern recognition receptors (PRRs) and cytokine receptors on resident cells of the 

central nervous system (CNS). This process stimulates the local production of cytokines 

and chemokines, for example, Interleukin (IL)-1ß, 6,12, and 18, tumor necrosis factor 

alpha (TNF-α), and Interferon-gamma (IFN-γ), that are involved in coordinating the 

activation, expansion, and recruitment of leukocytes in the injury region. As the first 

reactor of inflammatory response after injury, neutrophils arrive within a few hours into 

the sub-arachnoid and perivascular space surrounding the primary damage/contusion, 

then enter the brain parenchyma as early as 24 h after injury [71-75]. The peak of 

neutrophils accumulation appears within the first day and decreases dramatically from 

days 3 to 5 post-injury [76, 77]. The main function of neutrophils seems to be the cleaning 

up the cellular debris and damaged cells in the injured region.  However, the exact 

functional relevance of neutrophils post-TBI is inconclusive. A study [78] reports that 
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neutrophils associated with BBB breakdown and neurodegeneration, but neutrophils do 

not seem to contribute to posttraumatic blood brain barrier (BBB) disruption as 

pharmacological depletion did not affect BBB damage [79]. Similarly, another study found 

neutrophil depletion by an anti-Gr-1 antibody reduced edema formation, microglia 

activation, and activated caspase-3-positive cells 24 h after controlled cortical injury, but 

did not affect BBB leakage [80]. Blocking CD11d, a marker of neutrophils, improved 

behavioral outcome after mild experimental TBI [81]. In a CCI model using neutrophil 

elastase (NE) knockout mice, Semple et al. found significantly decreased brain edema 

formation as well as a reduction of apoptotic neurons in the hippocampus 24 h after injury. 

However, NE deficiency did not translate into long-term neuroprotection since it did not 

ameliorate cortical or hippocampal damage two months post-injury. These results 

indicate that NE activity contributes to brain edema and early neurodegeneration, but fail 

to protect against long-term secondary injury after brain injury [82]. 

Microglia play a pivotal role in the inflammatory response after TBI. Microglia are the first 

cells responding to brain injury by extending their process towards the injury site within 

minutes after TBI [83]. When activated, microglia produce pro- and anti-inflammatory 

factors that result in the recruitment of resident and peripheral cells. The role of microglia 

in posttraumatic brain damage is often controversial and a lot of studies even suggest that 

they may be neurotoxic [84]. P38α MAPK regulates the changes in microglia morphology 

and facilitates the production of pro-inflammatory cytokine from activated microglia [85]. 

Activated microglia increase expression of IL-1β, CD14, and arginase 24 hours post-trauma 

[86]. Activation of microglia releases a range of inflammatory triggers, including cytokines 

(such as IL-1b, TNF-a), metalloproteinase, and reactive oxygen species [87, 88]. The 

reduction of gap-junction proteins from 6 hours to 4 days after TBI and subsequent edema 

formation is mediated by microglial activation and chemotaxis [89]. However, microglia 

may also play neuroprotective roles in the CNS by removing cell debris and maintaining 

the integrity of the BBB and the glial limitans [90, 91]. Neurotrophins released by microglia 
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are involved in the reconstruction of the nervous system after injury [92]. Reduction of 

microglia exacerbates hippocampal neuron death indicating a neuroprotective role of 

microglia [93]. However, the effect of microglia on the inflammatory response depends 

on their activation state, which is classified into M1 and M2 polarization states. M1 

microglia play a pro-inflammatory role while M2 play an anti-inflammatory role [94]. M1 

microglia are mainly presented from 3 to 7 days after TBI, while the number of M2 

microglia increases from day 5 after experimental TBI [95]. Elevation of M2 microglia 

improves histological and functional outcome in experimental TBI [96]. Chronic activation 

of M2 microglia exert a trophic role in primates after TBI [97]. So far, it is still uncertain 

how microglia contribute to the development of posttraumatic brain damage. 

1.1.4.2.1.4 Cerebral edema  

Two types of cerebral edema [98] have been described: cytotoxic edema, characterized 

by accumulation of intracellular water as a result of cellular damage, and vasogenic edema, 

characterized by accumulation of extracellular water as a result of vascular leakage due to 

disruption of the blood brain barrier [99]. 

In cytotoxic edema, i. e. cellular swelling, water influx into the cell is the result of activation 

of ion-selective channels, such as the Na+/H+ exchanger, the Na+-K+-2Cl– cotransporter 

(NKCC1), and the Na+/HCO3− transporter family, and a subsequent increase in intracellular 

Na+ and K+ [100, 101]. In essence, cytotoxic edema is a physiologic response of astrocytes, 

which try to maintain the homeostasis of the extracellular space in the brain [102-107]. 

Vasogenic edema mainly results from the destruction of the structural integrity of the BBB 

allowing water efflux from the vascular lumen towards the interstitial space [98, 108]. The 

BBB consists of endothelial cells, astrocyte end-feet, pericytes, and tight junctions (TJ) and 

separates the blood from cerebral tissue and interstitial space [109]. After TBI, 

extravasated protein-rich fluid may pass through the disrupted BBB and deposit in the 

extracellular compartment resulting in increases in oncotic pressure which ultimately 
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causes water influx and, subsequently, an increase in brain volume [110]. A variety of 

molecules take part in the secondary disruption of the BBB after mechanical trauma 

thereby aggravating vasogenic edema, for example inflammatory cytokines (tumor 

necrosis factor (TNF), interleukins (IL) 6 ,1β) [83, 111], chemokines (CXCL1 and CXCL2, 

CCL2), inflammatory cells (neutrophil infiltration, microglia) [112, 113], vascular 

endothelial growth factor A (VEGF-A) [114], matrix metalloproteinase (MMP-2, MMP-9), 

and aquaporin 4 (AQP4) [107, 110, 115]. 

1.1.4.2.1.5  Intracranial hypertension 

The average intracranial volume is about 1500 ml, which is mainly composed of brain 

tissue (over 85%), 10% (intravascular) blood, and 5% cerebrospinal fluid [116]. According 

to the Monro-Kellie doctrine, an increase in intracranial volume can be compensated by 

decrease of blood and cerebrospinal fluid volume thus keeping intracranial pressure 

within a physiological limit [117]. However, when an injury induces a volume increase 

(hemorrhage, edema formation) which exceeds a critical limit (>150 ml), these 

compensatory mechanisms fail and ICP may increase exponentially and reduce cerebral 

perfusion. 

Cerebral perfusion mainly depends on two elements: mean arterial pressure (MAP) and 

ICP. The cerebral perfusion pressure (CPP) can therefore be determined as follows: CPP = 

MAP – ICP [118]. 

The typical clinical presentations of intracranial hypertension includes headache, vomiting, 

nausea, and progressive loss of consciousness [119]. If developing over a short period of 

time, severe brain swelling can induce herniation, a life-threatening condition where the 

brain stem is compressed against the tentorium cerebelli and may cause respiratory 

failure [120].  
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1.1.4.2.2 Chronic secondary brain injury 

In the past, clinical and experimental studies concentrated on reducing acute injury 

progression post-TBI. Recently, more and more researchers note that a variety of 

neurodegenerative symptoms may be found in patients in the chronic phase, i. e. years 

and decades after TBI [121-124]. Also, experimental studies demonstrated that moderate, 

severe TBI and repeated mild TBI result in progressive neurodegeneration associated with 

neurological changes [125-127].  

Neurodegeneration after TBI is hypothesized to be linked to chronic inflammation. 

Persistent neuroinflammatory changes, e.g. microglial activation, were found in the cortex 

more than one year after TBI in humans [128]. These changes were associated with 

hippocampal neurodegeneration, and loss of myelin [129, 130]. Activated microglia and 

phagocytic macrophages were observed in the corpus callosum up to 18 years following 

injury, associated with ongoing axonal degeneration and tissue atrophy [30]. Moreover, a 

one-fourth loss of corpus callosum thickness was observed in patients surviving longer 

than one year post-injury indicating white matter atrophy. Noticeably, major 

histocompatibility complex class II (CR3/43), CD68 and NADPH oxidase (NOX2) labeled 

activated microglia were uncovered at lesion boundary at 1 year post-injury; 

neuroinflammatory factors and oxidative stress markers notably increased [83]. An 

increase in translocator protein 18 kDa (TSPO) ligand levels was observed after 

experimental TBI, which probably was in association with highly activated microglia within 

secondary inflammatory response [131]. Using TSPO-Positron emission tomography (PET) 

in patients within years after a brain injury, an increased ligand binding was detected 

diffusely at spots far from the lesion, suggesting chronic inflammatory response [56]. 

Erturk et al. used MRI to demonstrate substantial loss of brain tissue within a few weeks 

after an experimentally closed TBI model. In ensuing months post-TBI, no further 

anatomical damage was detected in MRI. However, a loss of dendritic spine density in the 

contralateral hippocampus was detected after one year, which was associated with 
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progressive neuroinflammation spreading from initial lesion to distant region. 

Heterozygous deletion of CX3CR1 decreased the recruitment of immune cells, 

ameliorated chronic neurodegeneration, and promoted functional prognosis post-trauma 

[132]. Rodgers et al. demonstrated that anti-inflammatory therapy by using the 

phosphodiesterase inhibitor ibudilast one month after an experimental TBI reduced 

chronic anxiety-like behavior and gliosis at six months post-trauma [133]. Delayed 

activation of metabotropic glutamate receptor 5 (mGLuR5) expressed in microglia 

ameliorated inflammatory response, lesion expansion, and improved functional recovery 

up to three months post-injury [134]. These findings indicate that inhibiting chronic 

inflammation may reduce neurodegeneration and thus improve functional and behavioral 

outcome after TBI. 

Apart from inflammation, Tau pathology was also observed in the chronic phase after TBI 

[135]. Under physiologic conditions, Tau is a protein binding to tubulin in order to stabilize 

the microtubule structure of neurons. After TBI, tau may separate from tubulin causing 

phosphorylation of tau, which then is unable to bind to tubulin again [136]. As hyper-

phosphorylated tau is insoluble, accumulation of hyper-phosphorylated tau in the 

intracellular space facilitates the formation of tau oligomers, which eventually form 

neurofilament tangles (NFT) [137, 138]. As NFTs mature and propagate, patients begin to 

present with behavioral symptoms and cognitive impairment [136]. Chronic traumatic 

encephalopathy (CTE), first described as a “punch drunk” syndrome by Martland in 1928 

in boxers [139], is associated with repetitive TBI. It has been shown to occur in athletes 

practicing contact sports such as football and wrestling who suffer frequent and repetitive 

blows to the head [140, 141]. On a pathological level, CTE is characterized by aggregation 

of phosphorylated tau (p-tau) in neurons, astrocytes, and cell processes in perivascular 

spaces within the depths of cortical sulci [142]. Activated microglia can contribute to tau 

accumulation in CTE and could therefore be a potential risk to promote the development 

of CTE [143]. Injection of adeno-associated virus (AAV) vector carrying a gene for an anti-
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pTau antibody into the hippocampus of mice notably reduced p-Tau levels in a CTE mice 

model [144]. But until now, the progression and pathomechanisms of the chronic phase 

after TBI remains to be better understood. 

1.2 The Kallikrein-Kinin-System  

1.2.1 Introduction  

In 1909, Abelous and Bardier first described the Kallikrein-Kinin-System (KKS). They 

reported that the application of human urine transiently decreased the blood pressure in 

dogs [145]. Over the next decades, the single components of the KKS system were 

gradually discovered. In 1930, kallikrein (KLK) was discovered by Heinrich Kraut and Eugen 

Werle [146]. In 1948, Werle et al. renamed the compound kallidin and its precursor 

kallidinogen [147]. Later, Rocha e Silva et. al isolated bradykinin (BK) from snake venom 

[148]. Regoli and his colleagues described the bradykinin B1 receptor (B1R) and the 

bradykinin B2 receptor (B2R) as well as the physiological function of BK and its analog 

desArg9-BK [149]. In 1964, Schachter categorized bradykinin and kallidin as kinins and 

named their precursors kininogens (KNGs) [150]. 

Prekallikrein (PK), has been described to express in liver, testicles, ovaries, the parotid 

gland, esophagus, skin, the respiratory tract, prostate, and breast [151]. It is a serine 

protease with a molecular weight between 85 kDa and 88 kDa [152], which is modified to 

KLK by activated factor XII [153]. KLKs come in two subtypes: plasma (pKLK) and tissue 

(tKLK) kallikrein [153]. PKLK is composed of a heavy chain (53 k Da) and a light chain (33–

36 kDa) [154]. The heavy chain of pKLK binds to high molecular weight kininogen (HMWK), 

while the light chain catalyzes the cleavage of HMWK into bradykinin (BK) [152]. TKLK is 

an acid glycoprotein with a  molecular weight between 24 kDa and 45 kDa [155] which is 

widely expressed in kidney, pancreas, colon, pituitary gland [156], spleen, and the central 

nervous system [152]. TKLK can liberate kallidin from HMWK and low molecular weight 
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kininogen (LMWK) [157]. PKLK catalyzes the conversion of plasminogen into plasmin, 

thereby promoting fibrinolysis [158].  

KNGs including HMWK and LMWK are synthesized in hepatic tissues [159] and occur in 

lung, kidney, neural and cardiac tissues in human and animals [160-162]. HMWK (120 kDa) 

is a E-globulin with a concentration of nearly 80 mg/ml and LMWK (68–75 kDa) is a 

polypeptide with a concentration of approximately 60 mg/ml in human plasma [163]. 

HMWK and LMWK are the precursors of bradykinin and kallidin, respectively [153]. BK, 

kallidin and their carboxy-terminal des-Arg metabolites are termed kinins [164]. BK is a 

peptide composed of nine amino acids and plays a physiological role, e.g. in vasodilation 

and natriuresis [165]. BK has a very short half-life and is rapidly degraded by kininase I, 

kininase II, and neutral endopeptidase (NEP) in plasma [166]. Kallidin is a decapeptide with 

an additional lysine amino acid at the N-terminus in comparison to BK [153]. Kinins bind 

to B1 or B2 receptors, activating signaling cascades to regulate a variety of physiological 

functions, including blood pressure regulation, mitogenesis [167], and nitric oxide (NO) 

synthesis [168]. BK and kallidin specifically bind to B2 receptors and are cleaved by 

kininase I-type into des-Arg9 BK and des-Arg10 kallidin, which are the specific agonists of 

B1 receptors [169].  

Both the B1 and B2 receptors have seven transmembrane structures and belong to the G-

protein coupled receptor family. The human B2R (41 kDa) consists of 359 amino acids and 

B1R (approximately 40 kDa) is composed of 353 amino acids [170]. The B2 receptor is 

ubiquitously expressed in various tissues under physiological conditions, e.g. vascular 

endothelial cells, sensory neurons, smooth muscle cells, and certain leukocyte subtypes 

[171]. The B1 receptor is hardly expressed under physiological conditions but was 

demonstrated to be upregulated under pathological conditions such as sepsis, 

inflammation, or oxidative stress [172]. B2R and B1R are activated by their specific 

agonists (Bradykinin and des-Arg9-Bradykinin, respectively), which are converted from 
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KNGS catalyzed by KLK, initiating various effects, e.g. vasodilation, inflammation, and 

edema formation [169, 173] (Figure 4).  

 

Figure 4: Components and effects of KKS (modified from Albert-Weissenberger) [169] 

1.2.2 Role of the KKS in brain injury 

Application of protinin, an inhibitor of plasma kallikrein [174], led to a reduction of edema 

formation in a cold injury TBI model in rabbits [175]. Trabold et al. reported that the 

concentration of bradykinin in brain tissue significantly increases 2h after controlled 

cortical impact, and then gradually decreases over time. Deficiency of B2 but not B1 

receptors reduces brain edema formation as well as lesion volume and improves 

neurological outcome in a TBI model in mice [176]. However, Hellal et al. demonstrated 

that the B2 receptor mediated a neurotoxic effect after TBI, by exacerbating the 

inflammatory response and neurological deficit in closed head injury in mice [177]. In a 
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weight-drop traumatic brain injury model, pharmacological inhibition and genetic 

elimination of B1R induced neuroprotection by ameliorating the inflammatory response 

and reducing brain edema formation within 7 days after TBI. A B1 receptor deficit reduced 

functional deficits over 7 days after TBI by reduction of axonal damage, astroglia activation 

and release of cytokine [178]. Raslan et al. report that pharmacological inhibition or 

genetic elimination of the B1 receptor reduced lesion volume after TBI by reduction BBB 

disruption and reduced release of inflammatory cells and cytokines in the acute phase of 

TBI in mice [179]. Furthermore, the B1 receptor seems to participate in the mediation of 

memory impairment in the rat hippocampus after experimental TBI [180]. However, 

presently all studies focus on the effects of the KKS in the acute phase after traumatic 

brain injury. Its role in the development of chronic posttraumatic brain damage is so far 

unclear. 

1.3 Acid-sensing ion channels  

1.3.1 Background 

Acid-sensing ion channels (Asic) are proton-gated, voltage-insensitive, cationic channels 

widely expressed in the nervous system, as well as in various subtypes of epithelial and 

immune cells [181, 182]. Asics belong to the degenerin/epithelial sodium channel 

(DEG/ENaC) superfamily [183] which contains Asic 1a, 1b, 2a, 2b, and Asic 4 [181] channel. 

Asic 1a, Asic 2a, and Asic 2b are extensively expressed in both the central (CNS) and the 

peripheral nervous system [184-186], while Asic 1b and Asic 3 are only expressed in the 

peripheral nervous system [187, 188].  

Asics consist of a large extracellular loop surrounded by two transmembrane domains 

(TM1 and TM2) and intracellular N- and C-termini [182, 189]. The functional channel is 

formed by three subunits, either three homomeric Asic or a composition of heteromeric 

Asic subtypes [190, 191]. Different Asic subtypes exhibit different electrophysiological 

properties. The half-maximal activation pH value (pH50) of homomeric Asic 1a channels is 
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between pH 6.2 and 6.8 [192, 193]. Asic 1b has a lower pH50 (5.9) than Asic 1a [194]. When 

activated by acidosis, the Asic 1a channel is permeable to sodium and partially to calcium. 

Given the existing gradients this triggers an ion inward current [182, 195]. Asic 2a and 2b 

are not pivotal for acid-evoked currents [196], but can form heteromeric Asic 1a/2a [196] 

and Asic 2a/3 [197] channels which – when activated by acidosis - induce inward currents, 

eventually effecting physiological and pathological functions.  

Asic 1a channels are highly expressed on postsynaptic membranes of neurons in the 

amygdala, somatosensory cortex, posterior cingular cortex, and hippocampus [198] and 

are involved in synaptic plasticity, learning, memory, and fear conditioning [186, 199]. By 

activation of Asic 1a protons function as  neurotransmitters and mediate neural activity 

and synaptic plasticity in the CNS [200]. Asic 2 is involved in neurosensory 

mechanotransduction of cutaneous afferent fibers [201], e. g. serosal colonic, tension, and 

mucosal types of gastroesophageal afferent fibers [202] as well as in mediating the 

baroreceptor reflex [203] and the pressure-induced constriction of the middle cerebral 

artery [204]. Asic 3 plays a pivotal role in mechanotransduction of neurosensory 

information in the CNS [205]. 

1.3.2 Role of Asic in brain injury 

In a murine cerebral ischemia model, intracerebroventricular injection of a Asic 1a 

inhibitor (PcTx1) and genetic disruption of Asic 1 function reduced infarct volume [206]. 

The inhibition of Asic 1a resulted in neuroprotection with an efficient time window of up 

to 5 hours, persisting for at least 7 days in an ischemia model [207]. Pignataro et al. 

reported that downregulation of Asic 1a expression enhances neuroprotection induced by 

ischemic preconditioning and postconditioning in rats [208]. In a rodent model of 

autoimmune encephalomyelitis (EAE), reduction of functional deficits and axonal 

degeneration was detected in Asic 1 knock-out mice compared to wild-type littermates. 

Tissue acidosis was sufficient to open Asic 1 according to pH recordings from the spinal 

cord. Asic1 deficiency also exhibited protective effects in nerve explants in vitro. Amiloride, 
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a blocker of Asic, likewise exerted neuroprotection in nerve explants and EAE [209]. 

Parkinson's disease (PD) is associated with acidosis. In a 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) induced PD rodent model, Arias et al. showed that amiloride 

contributed to neuronal protection  and preservation of dopaminergic cell bodies in the 

substantia nigra [210]. Benzamil, a drug with a similar activity as amiloride, remarkably 

alleviated huntingtin-polyglutamine (htt-polyQ) aggregation in vitro. Furthermore, in an 

animal model of Huntington's disease (HD), benzamil ameliorated the inhibition of 

ubiquitin-proteasome system (UPS) activity, leading to enhanced degradation of soluble 

htt-polyQ. Blocking the expression of Asic 1a with siRNA also contributed to an 

enhancement of UPS activity and reduction of the htt-polyQ aggregation in the striatum 

[211]. 

After TBI, brain edema results in a pathological ICP increase and subsequent reductions of 

CBF and acidosis. Asic 1a activation by acidosis resulted in depolarization of the neurons 

and an excitatory response (Figure 5) [212, 213]. Yin et al. demonstrated that deficiency 

of Asic 1a and administration of sodium hydrogen carbonate (NaHCO3) in order to elevate 

pH reduced neurodegeneration four days post-TBI. Genetic elimination of Asic 1a reduced 

spatial memory deficits in rats with TBI in the acute phase [214]. Pharmacological 

inhibition and disruption of the Asic 1a gene induced neuroprotection in ischemic brain 

injury in the acute phase [206, 215]. To date, the role of Asic 1a in chronic progression 

after TBI has not been investigated. 
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Figure 5: Activation of Asic 1a after TBI 

1.4 Aim of study 

The present study aims to study the roles of the bradykinin B1 receptor and Asic 1a for 

the development of chronic brain damage after traumatic brain injury. 
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2. Materials and methods  

2.1 Materials 

2.1.1 Equipment 

Axio Imager M2 Microscope (12.5 X) Carl Zeiss Microscopy GmbH (Jena, Germany) 

Control Cortical Impact Device 
(Mouse-Katjuscha 2000) 
 

L. Kopacz (University of Mainz, Germany) 

Cryostat NX70  Thermo Fisher Scientific (Waltham, USA)  

DC Temperature Control System  FHC (Bowdoin, United States)  

High precision drill  Rewatronic Products (Wald Michelbach, 
Germany)  
 

Drill Tip (GD041R, 6mm/ISO, 2.35X70mm)  Braun (Frankfurt am Main, Germany)  

Dumont Forceps (11253-20)  Fine Scientific Tools (Heidelberg, Germany) 

Dumont Laminectomy Forceps (11223-20)  Fine Scientific Tools (Heidelberg, Germany) 

Extra Fine Bonn Scissor (14084-08)  Fine Scientific Tools (Heidelberg, Germany)  

Fume Hood (DS-DG03-1200) Wesemann (Munich, Germany)  

High-resolution Camera (acA1300- 60g 
mNIR)  
 

Basler (Ahrensburg, Germany) 

LED light source (KL2500)  Leica (Wetzlar, Germany)  

Leica M80 Stereomicroscope (1 X) Leica (Wetzlar, Germany)  

Medi HEAT Heater  Peco Services (Brough, UK)  

Micro-needle holder (12001-13) Fine Scientific Tools (Heidelberg, Germany) 

Model 900 Small Animal Stereotaxic 
frame 
 

David KOPF Instruments® (California, USA) 

Nanoscan PET/MRI 3T Mediso Medical Imaging Systems (Budapest, 
Hungary) 
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Perfusion Machine (628159) Leica Biosystems Richmond (Richmond, USA)  

Vibratome (Leica VT 1200s)  Leica (Wetzlar, Germany)  

 

2.1.2 Software 

Axiovision LE 4.8 Carl Zeiss (Oberkochen, Germany) 

EthoVision®XT 7 Noldus Information Technology 
(Wageningen, Netherlands) 
 

InterView™ FUSION - A Mediso Medical Imaging Systems 
(Budapest, Hungary) 
 

Graph pad prism 8.0 GraphPad Software (San Diego, California, 
USA) 
 

Sigma plot 13.0  Systat Software (Chicago, USA) 

ZEN 2012  Carl Zeiss (Oberkochen, Germany)  

 
2.1.3 Consumables 

Bepathen Eye and Nose Ointment Bayer Vital (Leverkusen, Germany)  

Cotton Swab Nobamed Paul Danz (Wetter, Germany) 

Coverslips (24 x 60 mm) Thermo Fisher Scientific (Waltham, 
Massachusetts, USA) 
 

Eukitt Quick-hardening Mounting Medium O. Kindler (Freiburg, Germany)  

Infusion Set B-Braun (Melsungen, Germany) 

Injekt-F Syringe (1ml) BD Biosciences (San Jose, California, USA)  

Prolene Suture (5-0) Ethicon (Somerville, New Jersey, United 
States) 
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Scalpel (No.11) Feather (SEKI-SHI, GIFU, Japan) 

SERAFIT Suture (6-0) Serag Wiessner (Naila, Germany) 

Sugi Sponge Points Kettenbach (Eschenburg, Germany) 

Superfrost Plus Microscope Slides Thermo Fisher Scientific (Waltham, 
Massachusetts, USA) 
 

Surflo Winged Terumo Medical Corporation (Leuven, 
Belgium) 
 

Vasco Nitril Blue Glove (S) B-Braun (Melsungen, Germany) 

 
2.1.4 Chemicals 

3M™ Vetbond™ Tissue Adhesive 3M (Maplewood, Minnesota, USA) 

Agarose  VWR (Ulm, Germany)  

Avidin/Biotin Blocking Kit  Vector laboratories  
(Burlingame, California, USA)  
 

Bovine Serum Albumin  Sigma-Aldrich (Taufkirchen, Germany)  

Buprenorphine (Buprenovet 0.3mg/ml)  Bayer (Leverkusen, Germany)  

Embedding Medium (Eukitt®)  Kindler (Herzogenaurach, Germany) 

Ethanol (EMSURE, ≥99.8%)  Sigma-Aldrich (St. Louis, Missouri, USA)  

Ethylene glycol  Sigma-Aldrich (St. Louis, Missouri, USA)  

Fentanyl (Fentadon 50mg/ml) Albrecht (Munich, Germany) 

Glycerol  Sigma-Aldrich (St. Louis, Missouri, USA)  

Hematoxylin  Sigma-Aldrich (St. Louis, Missouri, USA)  

Isoflurane Isp-Vet  Abbott (Chicago, Illinois, USA)  

Medetomidine  Zoetis (Parsippany-Troy Hills, New Jersey, 
USA)  
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Midazolam  B-Braun (Melsungen, Germany)  

NaCl isotonic solution 0.9%  Fresenius Kabi (Bad Homburg, Germany)  

Paraformaldehyde (4%)  Morphisto (Frankfurt am Main, Germany)  

Phosphate buffer saline (PBS, 10x)  Klinikum Apotheke (Munich, Germany)  

Sucrose  Sigma-Aldrich (St. Louis, Missouri, USA)  

 

2.1.5 Buffers and solutions 

4% Agarose: 

4g                                   Agarose 

100ml                               PBS (1x) 

 

PBS, 1x: 

100ml                               PBS (10x) 

900ml                               Millipore water 

 

Cryoprotection solution: 

250ml                                Glycerin 

250ml                                Ethylenglycol 

500ml                                PBS (1x) 

2.2 Methods 

2.2.1 Experimental animals and husbandry 

8-12 weeks old male and female B1 and Asic1a knock-out mice and their respective wild 

type littermates (body weight 23-30 g) were bred in the animal facility of the Institute for 

Stroke and Dementia Research (Munich, Germany). All health checks and hygiene 

measures were performed according to FELASA guidelines [227]. Animals were housed 

with a 12-hour light/dark cycle and free access to food and water in standard cages (207 
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x 140 x 265 mm, Ehret Life Science Solutions, Freiburg, Germany) before experiments. 

After surgery, each experimental animal was housed separately for seven days to avoid 

fighting. After one week, five same-sex mice were housed in a cage until the end of the 

observation period. All experiments were performed in accordance with the guidelines of 

the animal care institutions of Munich University and approved by the Government of 

Upper Bavaria (protocols number 0-27-15 and 44-17). 

2.2.2 Targeted disruption of the B1 receptor gene 

The cloning of B1-receptor gene used 129/SvJ mice genome as a template. The targeting 

vector contained a neomycin-resistance gene. Flanking the gene is a 1.0-kb genomic 

region upstream of the B1 coding sequence (CDS) and a 7.0-kb region downstream of the 

B1 CDS. The HSV-tk gene was used for negative selection. The NotI digestion was 

performed to linearize the construct before transfecting into E14 –1 embryonic stem cells 

(ESCs) via electroporation. Clones resistant to Gancyclovir and G418 were selected and 

later validated by PCR. Two positive clones were selected to inject into C57BL/6 

blastocysts, giving rise to chimeras whose offspring contains heterozygous locus for the 

targeted mutation [216]. This strain was received from Laboratories’ Fournier in 2003 and 

backcrossed to C57BL/6 for more than 10 generations. Homozygous and heterozygous 

B1R deficient mice and wild-type littermates were generated by mating heterozygote 

breeding pairs. 

2.2.3 Targeted disruption of the Asic 1a gene 

Exon 1 and approximately 400 base pairs of upstream sequence (encoding the first 121 

amino acids of the protein) were replaced with a neomycin resistance cassette in 

(129X1/SvJ x 129S1/Sv) F1-Kitl+-derived R1 embryonic stem (ES) cells. The deleted region 

includes the intracellular N-terminus, the first transmembrane domain, and a portion of 

the extracellular domain [186]. This strain was backcrossed to C57BL/6 mice for more than 

10 generations. Breeding pairs were purchased from Jackson Laboratories in 2015 and 
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homozygous and heterozygous Asic 1a mice and wild type littermates were generated by 

mating heterozygous mice.  

2.2.4 Randomization and blinding  

Mice were randomly assigned to experimental groups by a third party not involved in the 

study; group allocation was revealed only after complete analysis of the data. Surgery, 

behavioral testing, preparation, and evaluation of histological specimens as well as 

(statistical) analysis of results were performed in a blinded fashion. 

2.2.5  Protocol for the assessment of the effect of Bradykinin-1-receptor 

deficiency on chronic posttraumatic brain damage and outcome after 

experimental TBI  

Experimental groups included wild type (WT), heterozygous, and homozygous B1 mice (n 

=12/group). Bodyweight was measured at 3 days before surgery, on the day of surgery, 

and at days 1, 3, 7, 14, 60, 90, 180, 270, and 360 post-trauma. Beam Walk testing was 

performed 3 days before surgery, then on day 1, 3, 7, 14, 60, 90, 180, 270 and 360 after 

CCI. Tail Suspension test, Barnes Maze test and MRI were performed at day 60, 90, 180, 

270 and 360 after CCI. Histological analysis was performed on brains harvested at the end 

of the observation time at 360 days after TBI (Figure 6). 
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Figure 6: Schematic of B1 project design 

2.2.6 Protocol for the assessment of the effect of Asic 1a on chronic 

posttraumatic brain damage and outcome after experimental TBI 

Groups of WT and heterozygous Asic1a knock-out mice were used for brain edema 

measurements 24 h after CCI (sham = 4, TBI = 8). For the Asic 1a-project, WT, heterozygous, 

and homozygous Asic 1a mice (n =12/group) were examined. Bodyweight was determined 

three days before surgery, on surgery day, then at days 1, 3, 7, 14, 60, 90, and 180 post-

TBI. Beam Walk testing was conducted 3 days before surgery, then at days 1, 3, 7, 14, 60, 

90, and 180 after TBI. The tail Suspension test, the Barnes Maze test and MRI scanning 

were performed at days 60, 90, and 180 after TBI. Histological analysis was done with 

brain tissue harvested 180 days post-trauma (Figure 7). 
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Figure 7: Schematic of Asic 1a project design 

2.2.7 Anesthesia and analgesia  

A short isoflurane anesthesia was induced using a Plexiglas chamber (4% isoflurane in a 

30% oxygen/70% air mixture, 30s) and buprenorphine (0.1 mg/kg) was injected 

intraperitoneally 30 minutes before surgery in order to reduce pain memory. For surgery, 

anesthesia was induced in an anesthesia chamber with 3-5% isoflurane in 30% oxygen/ 

70% air mixture, until the blink reflex and pain reflexes were abolished. Anesthesia was 

then continued via a face mask in spontaneously breathing animals at 1-1.5% isoflurane. 

After surgery, buprenorphine (0.1 mg/ kg) was injected every 8 hours for 3 days to reduce 

perioperative pain. For MRI scanning, anesthesia was induced with inhalation of isoflurane 

in 30% oxygen/70% air mixture (4% for 60s and 1-1.5% throughout scanning). For 

transcardial perfusion, animals were terminally anesthetized with medetomidine (0.5 

mg/kg body weight), midazolam (5 mg/kg), and fentanyl (0.05 mg/kg).  



 35 

2.2.8  Experimental traumatic brain injury model– Controlled Cortical Impact (CCI) 

model  

The controlled cortical impact model is a widely used model for experimental TBI, which 

produces a highly standardized cortical contusion. It was first reported in ferrets by James 

W. Lighthall in 1988 [217] and has been translated to other animal species subsequently. 

Our group has more than 15 years of experience with this technique in mice [218]. For the 

model, a custom-built, pressure operated CCI device (Mouse-Katjuscha 2000, L. Kopacz, 

University of Mainz, Germany, Figure 8 A) was used; it has a micrometer tip allowing for 

exact adjustment of impact depth as well as a speed microsensor located at the tip of the 

instrument for exact determination of impact velocity and contact time.  

After induction of anesthesia, mice were placed in the prone position using a stereotaxic 

frame (Model 900 Small Animal Stereotaxic Instrument, David KOPF Instruments®, 

Tujunga, California, USA) and fixed with a nasal clamp (Model 926 Mouse Adaptor, David 

KOPF Instruments®, Tujunga, California, USA). Mice were placed on a feedback-controlled 

heating pad with a rectal temperature probe in order to keep the core body temperature 

at 37°C; eyes were protected from exsiccation by application of ointment. A 2 cm 

longitudinal incision was performed on the scalp and the galea aponeurotica and the 

periosteum were removed. Using an operation microscope, a 5x5 mm craniotomy was 

performed between the right coronal and lambdoid suture (see Figure 8 B for schematic 

drawing) with a high-speed drill (Rewatronik® Products, Wald-Michelbach GmbH, 

Germany; drill head GD890R, diameter 0.6 mm, Aesculap, Tuttlingen, Germany) under 

continuous cooling with physiological saline to avoid heat damage. Careful precautions 

were taken not to damage the dura mater. After partial removal of the skull plate, the 

mouse was positioned under the impact tip of the CCI machine. The impactor stamp was 

carefully placed on the dura mater within the craniotomy. Afterwards, CCI was performed 

with an impact depth of 1 mm, an impact duration of 150 ms, and an impact velocity of 8 

m/s. Immediately after the impact, the skull was resealed and the scalp was sutured. For 
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sham operation, only a craniotomy was performed. After wound closure, isoflurane was 

discontinued and the animal was allowed to wake up. Animals were administered 100% 

oxygen until they fully regained consciousness and motor function. Afterwards, operated 

mice were placed in a heating chamber at 34°C and 55% humidity for one hour in order to 

avoid postoperative hypothermia. After complete recovery, mice were housed separately 

in a standard cage. 

 

Figure 8: (A) Picture of the CCI device used in this study (B) Location of the CCI 

craniotomy 

2.2.9 Body weight 

Body weight, a parameter of general wellbeing, was evaluated daily starting 3 days before 

surgery. After CCI, body weight was measured daily during the first week, then on days 14, 

60, 90, 180, 270, and 360 after surgery using a precision electrical scale (OHAUS®, 

Waagendienst Winkler GmbH, Munich, Germany) with movement correction. 

2.2.10   Behavioral tests 

2.2.10.1   Evaluation of motor function - Beam Walk test  

Using the method detailed above, the CCI model leads to contusional brain injury within 

the right motor cortex which controls motor function of the left side of the body, 

especially the left hind paw. The beam walk test was used to evaluate the motor function 
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and gait changes post-TBI. In previous studies using the CCI-model, it was demonstrated 

that the Beam Walk test was able to detect a dysfunction of strength and fine motor skills 

in a highly sensitive way, also in the chronic phase after trauma, i. e. when fine motor skills 

recovered to a high degree [219]. In order to perform the test, both sides of a wooden 

beam (1 cm width, 100 cm length) were fixed in 1m height, and an escape cube was put 

close to one terminal side of the beam (see Figure 9 for photograph of the setup). Animals 

were then positioned at the starting end of the beam and observed during crossing of the 

beam. Time needed to cross the beam and missteps (or slipping of the hind paw) for the 

left hind paw were then recorded and counted. If a mouse fell off, it received the 

maximum deficit score. If a mouse jumped off the beam, the test was performed again. If 

a mouse was not able to cross the beam within 2 minutes, the test was stopped and the 

animal received the maximum deficit score. The beam walk test was carried out 3 days 

before surgery and on days 1, 3, 7, 14, 60, 90, 180, 270, and 360 post CCI. 

 

Figure 9: Setup of Beam walk 
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2.2.10.2   Evaluation of depression-like behavior – the Tail Suspension test  

The Tail Suspension test is a widely used behavioral test for the evaluation of depression-

like behavior in rodents [220]. For the test, animals are put in a head down position by 

affixing them by the tail. As this is an undesirable position for the animals, they try to avoid 

this position by moving/climbing upwards. It has been previously reported that the time 

spent active correlates to normal impetus and mood whereas immobility was a sign for 

reduced impetus and, thus, depression-like behavior [221, 222]. For the test, tails of the 

animals were placed in Plexiglas cylinders (4 cm length, 1.6 cm outside diameter, 1.2 cm 

inside diameter) in order to avoid immediate reversal of the head-down position. Then 

the tail of the mouse was fixed with tape to a plastic frame in order to suspend the animal 

in the test position (see Figure 10 for a photograph of the setup). The animals´ reaction 

was recorded for three minutes with a high-resolution camera placed in front of the frame. 

The results (calculation of mobility and immobility time) were automatically analyzed by 

software-based video analysis (EthoVision®XT, Noldus Information Technology, 

Wageningen, Netherlands). The test was performed on days 60, 90, 180, 270, and 360 

after TBI. 
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Figure 10: Set-up for the Tail Suspension test 

2.2.10.3   Evaluation of spatial learning and memory behavior – the Barnes Maze 

test  

The Barnes Maze is a well-known test paradigm for the evaluation of spatial learning and 

memory of rodents [223-226]. For performance of the test, a brightly lit circular metal 

platform (diameter 100 cm) with 20 identical holes (diameter 10 cm) equally distributed 

around the perimeter edge was fixed on a table (at 95 cm height) (Figure 11 A) with a high-

resolution camera (4.5 – 12.5 mm, 1: 1.2) installed over the platform to record the activity 

of mice. A closed box (the so-called “home-box” or “home-cage”, dimensions 20 X 5 X 3 

cm) was placed under a specific hole of the platform in order to provide cover from the 

brightly lit open space of the disk. As mice tend to avoid open and brightly lit spaces, they 

usually seek to take cover within the home cage as quickly as possible. For the test, 
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animals were trained to find the home cage for four consecutive days (with one session in 

the morning and one in the afternoon) before the probe day. On the first training day, in 

the morning, a mouse was positioned in the center of the platform under a glass cylinder 

(12 cm diameter, 22 cm height) for 120 seconds. Then, a researcher slowly moved the 

cylinder toward the escape box to show the home-box position to the mouse; afterwards 

the animal was left within the home-box for approximately 20 seconds. After a four to five 

hour long interval, i. e. in the afternoon session, the procedure was repeated, but the 

cylinder was lifted after 10 seconds in order to allow the animal to locate the home-cage 

by itself. If the animal failed to locate the escape box, the trial was stopped after three 

minutes. On the second day, the training procedures were repeated. On training days 

three and four, only the afternoon session was carried out. After a one-day long interval, 

the actual experimental trial was performed in the afternoon (time line depicted in Figure 

11 B). The pre-test training was performed on days 55-58, 85-88, 175-178, 265-268, and 

255-258 post-TBI, the actual testing was carried out on days 60, 90, 180, 270, and 360 

post-TBI, respectively. The distance travelled to reach the home-cage, the time needed to 

reach the home-cage (latency), and the speed with which the home-cage was reached 

were automatically calculated. Furthermore, cumulative images of the mouse trace (heat-

maps) were automatically recorded.  
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Figure 11: (A) Set-up of Barnes Maze (B) Time line of Barnes Maze test 

2.2.11   Evaluation of lesion progression - Magnetic Resonance Image （MRI） 

Lesion size progression after TBI was assessed longitudinally in the same animal using a 3T 

Nanoscan MRI (Mediso Medical Imaging Systems, Hungary) (Figure 12 A). Scanning was 

performed 14, 60, 90, and 180 days following TBI. For this, animals were lightly 

anesthetized using gas-based anesthesia (see chapter 2.2.5). Body temperature of the 

mouse was maintained at 37°C by a water blanket connected to the MRI. A respiratory 

monitoring pad was placed underneath the chest of the mouse to measure respiratory 

rate. A total of 19 coronal slices (0.5 mm each) were acquired for each animal using a T2-

weighted (T2W) sequence. Both hemispheres were manually outlined in 13 serial slices 

(from 2 mm anterior to 4 mm posterior to bregma) of T2W (Figure 12 B) and analyzed by 

an image software (InterView™ FUSION 2, Mediso Medical Imaging Systems, Budapest, 
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Hungary) automatically. Lesion volume was calculated by subtracting the ipsilateral 

hemisphere volume from the contralateral hemisphere volume. 

 

Figure 12: (A) Small Animal Magnetic Resonance Imaging (MRI) (B) Evaluation of 

hemispheres in images from T2W 

2.2.12   Determination of brain edema formation – measurement of brain water 

content 

Brain water content, a parameter for brain edema formation, was measured in each 

hemisphere separately by the wet weight-dry weight method 24h after TBI [227]. After 

sacrifice, the brain of the mouse was carefully removed and hemispheres were separated. 

Olfactory bulb and cerebellum were then removed using a metal brain matrix. The isolated 

hemispheres were weighed directly after preparation (wet weight). Afterwards both 

hemispheres were dried at 100°C for 24 h and, after cooling down to room temperature, 

weighed again in order to obtain the dry weight. The brain water content was then 

calculated in percent of total weight using the following formula: (wet weight-dry 

weight)/wet weight × 100%. 
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2.2.13   Histological analysis post-traumatic brain injury  

2.2.13.1   Perfusion fixation 

After induction of deep anesthesia the heart was exposed. A needle (21G, Safety-

Multifly®-Needle) was inserted into the left ventricle. The mouse was then perfused using 

a pressure-controlled perfusion machine with 30 ml of physiological saline over 2 minutes 

at 120 mmHg, followed by 50 ml of 4% paraformaldehyde (PFA) over 3 minutes at 120 

mmHg. The brain was then carefully dissected and fixed in 4% paraformaldehyde (PFA) at 

4°C for about 24 hours; it then was immersed in PBS for storing. 

2.2.13.2   Nissl staining of brain sections  

After embedding the brains in 4% agarose, 50 µm thick coronal sections were cut with a 

vibratome at a speed of 0.9 mm/s and an amplitude of 0.8 mm. Starting 1000 micrometers 

behind the olfactory bulb, 12-14 sequential coronal sections were collected on glass slides. 

The specimens were then stained according to Nissl using the following protocol:  

2 min             Fix sections with 70% Ethanol Cresyl violet solution 

10-15 min     Rinse shortly with fresh water (2 x) 

2 min             Ethanol 70% 

2 min             Ethanol 96% 

2 min             Ethanol 100% 

2 min             Isopropanol 

5 min             Rotihistol I 

5 min             Rotihistol II 

Afterwards, specimens were sealed using an embedding medium (Eukitt) and stored in a 

dry and dark place until analysis.  
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2.2.14   Histological quantification of post-traumatic brain damage parameters 

2.2.14.1   Analysis of lesion volume 

Nissl stained sections were positioned under the microscope (Zeiss Axio Imager M2, Carl 

Zeiss Microscopy GmbH, Munich, Germany), then digital photos were taken at 12.5 X 

magnification by a camera attached to the microscope. The photos were then analyzed 

using an image analysis software (AxioVision LE 4.8, Carl Zeiss Microscopy GmbH, Munich, 

Germany). The areas of the non-traumatic hemisphere (A) and residual traumatic 

hemisphere (B) were outlined in each slice (Figure 13) and measured using the software. 

The lesion area (C) was calculated according to the following formula: 

Lesion area (C) = A-B 

Then, lesion volume was determined by the following formula:  

Lesion volume =0.5 mm*(C1/2+ C2+…… + Cn/2)  

 
Figure 13: Histological evaluation of lesion volume 
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2.2.14.2   Determination of Hippocampus lesion 

Using the method described above, six slices (0.5 mm interval) from 1.5 mm to 4 mm 

posterior to the bregma were used. The area of the hippocampus of the non-traumatic 

hemisphere (A) and the traumatic hemisphere (B) (Figure 14) were digitally outlined. The 

lesion volume was analyzed as follows:  

Non-traumatic hemisphere hippocampus volume (E) = 0.5mm*(A1/2+ A2+…… + An/2) 

Traumatic hemisphere hippocampus volume (F) = 0.5 mm*(B1/2+ B2+…… + Bn/2) 

Hippocampus volume ratio (ipsilateral / contralateral volume) = F/E*100 

 

 
 

Figure 14: Histological evaluation of hippocampal defect 

2.2.15   Statistical analysis 

Statistical analysis was performed using Sigma plot 13.0 (Systat Software, California, USA). 

Due to a sample size of less than 25 per group, non-parametrical tests were used even 

when data passed the normality test. The Mann–Whitney test was used for two group 

comparisons. Kruskal–Wallis analysis followed by Dunn’s post-hoc test was used for 
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multiple-group comparisons. For correlation between lesion volume from T2w and 

histology, the Pearson test was used. Survival rate was analyzed by Log Rank test. 

Differences between groups were considered significant at P<0.05. All data is expressed 

as mean ± standard deviation. 
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3. Results 

3.1 Effect of Bradykinin-1-receptor knockout on the chronic outcome after 

experimental traumatic brain injury 

3.1.1 Survival rate and changes in body weight after TBI 

One WT, one B1+/-, and two B1-/- mice died during surgery and were excepted from further 

analysis. 11 WT, 11 B1+/-, and 10 B1-/- mice were included in the observation period. After 

surgery, one mouse in the WT group, one B1+/-, and one B1-/- animal died at on the first 

day after CCI. One B1+/- mouse died at 3d and one B1-/- mouse died at 7d. Two more B1-/- 

mice died at 120d. One B1+/- mouse died at 280d, two WT mice died at 330d. In the end 

one B1+/-and one B1-/- animals died at 370d after TBI, all remaining mice (WT group: 8, 

B1+/- group: 7, and B1-/- group: 5) survived until the end of the observatinon period (no 

significant difference, Figure 15 A).  

Before surgery, there was no significant difference in body weight of WT (25.8 ± 3.22 g), 

heterozygous (24.63 ± 2.18 g), or homozygous mice (26 ± 1.89 g). The body weight of all 

traumatized mice dramatically dropped  by nearly 3g on the first day after surgery, then 

recovered within two months and increased gradually up to one year after TBI. At 360 

days after TBI, the body weight of mice was 29.7 ± 2.4 g (WT), 27.6 ± 2.6 g (B1+/-), and 30.1 

± 2.3 g (B1-/-), respectively. There was no significant difference between groups at any time 

point (Figure 15 B), indicating that Bradykinin-1-receptor deficiency does not influence 

general wellbeing after experimental TBI.  
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Figure 15: Survival rate and body weight after TBI. (A) There was no significant difference 

between genotypes (Log Rank analysis). (B) The body weight of mice dropped at the first 

day after CCI (p=0.423), then increased gradually up to 1 year after TBI. There was no 

significant difference between groups at any time point. Mean ± SD, n=5-8.  

3.1.2   Effect of B1 receptor deficiency on the long-term recovery of motor 

function (Beam Walk Test)  

Before CCI, it took 8.8 ± 3.0 s (WT), 9.1 ± 3.6 s (B1+/-), and 10.6 ± 2.1 s (B1-/-) for the mice 

to cross the beam (p=0.483). The crossing time significantly increased after CCI, peaking 

at day one after surgery: In the WT group, time to cross (62.1 ± 43.1 s, p < 0.001 vs baseline) 

tended to be longer compared with B1+/- (53.4 ± 29.8 s, p < 0.001 vs baseline) or B1-/- mice 

(35.44 ± 22.41 s, p = 0.008 vs baseline). However, there was no significant difference 

(p=0.731) between groups. Crossing time then gradually decreased over the first two 

months and reached a plateau (WT: 16.6 ± 4.6 s, B1+/-: 14 ± 3.3 s, and B1-/-: 14.7 ± 5.2 s) 

from 60 days after TBI on. At 360 days after TBI, all animals recovered significantly but 

there was still a significant difference of crossing time compared to the respective pre-

trauma baseline (WT: 20.9 ± 9.4 s, p=0.003 vs baseline; B1+/-: 17.9 ± 10.1 s, p=0.037 vs 

baseline; and B1-/-: 24.4 ± 8.4 s, p=0.019 vs baseline). There was no significant difference 

between the genotypes (Figure 16 A).  
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Before TBI, there were no missteps observed in any group. One day after TBI, animals 

made a very high number of missteps. While the number of missteps in the WT and 

homozygous B1 mice (WT: 23.5 ± 11.2; B1-/-: 24.1 ± 6.8) reached a maximum at day one 

after CCI, the missteps in the heterozygous B1-group peaked at three days after TBI (24.4 

± 6.7, p=0.788); there was, however, no difference between the maximum number of 

missteps between groups. Within the subsequent 360 days the number of missteps 

dropped in all genotypes over time, but remained elevated as compared to baseline in all 

groups indicating that a slight motor deficiency remained long-term. At the end of the 

observation period, the number of missteps in the B1+/- group (8.8 ± 6.5) was slightly lower 

than in the wild type (11.9 ± 5.6) or the B1-/- group (13.6 ± 6.8). Again, there was no 

significant difference between groups (p=0.607) (Figure 16 B). 

 

 

Figure 16: Effect of B1 deficiency on changes of motor function up to one year after TBI. 

(A) Time needed to cross the beam and (B) Number of missteps are significantly elevated 

directly after trauma and recover over time; at one year after CCI, a slight but significant 

impairment of motor function remains compared to pre-trauma values while there was 

no difference between genotypes for both parameters. Mean ± SD, n=5-8. & p < 0.05, B1+/- 

vs baseline; # p < 0.05, B1-/- vs baseline; ** p < 0.01, WT vs baseline; && p < 0.01, B1+/- vs 

baseline; ## p < 0.01, B1-/- vs baseline. 
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3.1.3 Effect of deficiency of B1 receptor on depressive-like behavior after TBI 

Sixty days after TBI, the mobility time assessed in the tail suspension test was 111.9 ± 13.9 

s in the WT group, 117.2 ± 14.8 s in heterozygous B1, and 103.52 ± 21.04 s in homozygous 

B1-deficient mice. While there were some slight fluctuations over time at the time points 

assessed (60, 90, and 180 days after CCI), there never was a significant change of mobility 

time within any group or between genotypes (Figure 17), indicating that the B1 receptor 

does not affect depression-like behavior. 

 

Figure 17: Effect of disruption of B1 receptor on chronic progression of depression-like 

behavior after TBI. Mobility time did not show significant alterations over time. Mean ± 

SD, n=5-8.  

3.1.4 Effect of B1 receptor deficiency on memory function and learning behavior 

after TBI (Barnes Maze test)  

The long-term cognitive function of mice after TBI was assessed by the Barnes Maze test. 

Figure 18 A shows representative heat-map images obtained 360 days after TBI. While 

latency to goal tended to increase over time, there was no significant difference compared 

to baseline nor any difference between genotypes over time (Figure 18 B). The distance 
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to goal decreased within 6 months, then increased up to one year after TBI. There was no 

significant difference between groups at any time (Figure 19 A). The velocity of mice 

increased over time, but still did not reach statistical difference between groups at any 

time point (Figure 19 B).  

 

 

Figure 18: Effect of B1 receptor deficiency on memory and learning behavior after 

experimental TBI. (A) Representative heat maps at 360 days after TBI. (B) Latency to goal 

did not significantly change over time, furthermore there was no significant difference 

between groups. Mean ± SD, n=5-8.  
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Figure 19: Effect of B1 receptor deficiency on distance (A) and velocity to goal (B) in the 

Barnes test. There was no significant difference between groups for both parameters. 

Mean ± SD, n=5-8. 

3.1.5 Effect of B1 receptor deficiency on lesion size and chronic lesion progression 

after TBI 

Lesion size was assessed longitudinally in serial MRI scans at 60, 90, 180, 270 days up to 

one year after CCI. Figure 20 A shows representative T2-weighted axial images obtained 

360 days after TBI. In wild type animals (black bars), lesion volume steadily increased over 

time peaking one year after experimental TBI. Heterozygous B1 animals had significantly 

lower lesion volumes compared to WT mice at all-time points assessed (60 days: 15.6 ± 



 53 

4.9 mm3 vs 24.86 ± 8.97 mm3, p=0.03; 90 days: 16.1 ± 4.3 mm3 vs 23.7 ± 7.3 mm3, p=0.047; 

180 days: 21.7 ± 6.3 mm3 vs 32.5 ± 5.9 mm3, p=0.019; 270 days: 23.9 ± 7.9 mm3 vs 34.2 ± 

6.5 mm3, p=0.041; 360 days: 23.5 ± 8.6 mm3 vs 37.6 ± 5.7 mm3, p=0.004). Lesion volume 

of homozygous B1 mice (60 days: 18.2 ± 5.2 mm3, 90 days: 18.7 ± 5.4 mm3, 180 days: 28.8 

± 6.8 mm3, 270 days: 28.2 ± 8.6 mm3, 360 days: 29.4 ± 7.8 mm3) tended to be lower than 

those of the WT group, but there was no significant difference at any time (Figure 20 B).  

Histological lesion volume assessment (see exemplary Nissl stained slices in Figure 21 A) 

corroborated this finding (Figure 21 B): compared to lesion volume of the WT group (37.3 

± 5.3 mm3), B1+/- animals had significantly lower lesion volumes (28.1 ± 3.9 mm3), while B1 

homozygous mice had only a slight, non-significant reduction (33.6 ± 6.3 mm3, p=0.029, 

B1+/- vs WT).  

Lesion volume as assessed in T2 weighed imaging and by histology correlated significantly 

(Figure 22) indicating that MRI-based lesion volume determination is a valuable and 

accurate method for assessing posttraumatic brain damage in this setup.  

In summary, these results suggest that partial depletion of the B1 receptor in 

heterozygous B1-mice confers significant neuroprotection, but that this effect is lost when 

the B1-receptor was completely abolished.  
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Figure 20: Effect of B1 deficiency on lesion progression as assessed by serial MRI scans 

after TBI. (A) Representative MRI images obtained 360 days after CCI from WT, B1+/-, and 

B1-/- mice, respectively. (B) Lesion volume increased up to one year after TBI. B1+/- animals 

had significantly lower lesion volumes while homozygously deficient mice showed only a 

small reduction by trend. Mean ± SD, n=5-8.  
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Figure 21: Histological assessment of lesion volume over time (A) Representative Nissl 

stained sections from WT, B1+/-, and B1-/- mice at 360 days after CCI, respectively. (B) 

Lesion volume of WT mice was significantly larger than B1+/- at 360 days after TBI. Mean ± 

SD, n=5-8. *p<0.05, **p<0.01.  

 

Figure 22: Lesion volume quantified by histology correlated with that measured by MRI. 

Pearson correlation test. 
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3.1.6 Effect of B1 receptor deficiency on hippocampal damage after TBI 

Hippocampal damage was assessed histomorphometrically in Nissl stained sections 

(ipsilateral/traumatized vs. contralateral/non-traumatized). Representative brain sections 

of the dorsal hippocampus were obtained at 360d after TBI (Figure 23 A). While in WT 

mice, the ipsilateral hippocampus was significantly lesioned (35.1 ± 6.4 % of the 

contralateral side), it was significantly better preserved in B1+/- mice (50.1 ± 10.3%, p 

=0.011). Again, homozygous B1 mice showed some protection (48.2± 13.5 %), but no 

significant difference compared to wild-type littermates (Figure 23 B).  

 

 

 

Figure 23: Effect of B1 receptor deficiency on hippocampal damage after TBI. (A) 

Representative Nissl stained hippocampus sections from WT, B1+/- and B1-/- mice. (B) B1 

heterozygous mice had significantly less hippocampal damage compared to wild-type 

littermate. Mean ± SD, n=5-8. *p<0.05.  
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3.2 Effect of the Asic 1a channel on chronic posttraumatic brain damage and 

outcome after experimental traumatic brain injury 

3.2.1 Survival rate and body weight after TBI 

After CCI, two animals in the WT group, three in the Asic 1a+/-, and three in the Asic 1a-/- 

group died within seven days; in the further course of the experiment, three WT animals, 

two Asic 1a+/-, and one Asic 1a-/- mice died between 180 and 190 days after trauma. There 

was no significant difference between groups (P = 0.613) (Figure 24 A). Before surgery, 

body weight was 27.9 ± 4.1 g in the WT group, 28.2 ± 3.5 in the Asic 1a+/-, and 26.9 ± 3.1 

in the Asic 1a -/- group, respectively, there was no significant difference between groups. 

Body weight of all mice robustly decreased by about 13% at day one after TBI, but there 

was no significant difference among groups; it then recovered back to baseline at the end 

of the observation period. At 180d after CCI, the body weight of mice in the WT group, the 

Asic 1a+/- group, and the Asic 1a-/- group was 28.5 ± 3.5 g, 28.7 ± 3.4 g and 26.6 ± 3.3 g, 

respectively (p = 0.278). There was no difference between genotypes at any time during 

the experiment (Figure 24 B).  

 

 

Figure 24: Survival rate and changes in body weight after TBI in Asic 1a transgenic animals. 

(A) Survival curve (Log Rank analysis). (B) Body weight of all mice dropped early after TBI, 

then recovered up to the end of the observation period. Mean ± SD, n = 9.  
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3.2.2 Effect of the Asic 1a on brain edema formation 24h after TBI  

In sham operated animals, there was no difference in brain water content between 

genotypes. Twenty-four hours after TBI, brain water content of WT animals was 

significantly elevated compared to non-traumatized animals of both groups. Homozygous 

Asic 1a-/- animals (76.8 ± 1.0%) had significantly lower brain water content than WT 

littermates (80.2 ± 3.0%, p=0.04, Asic 1a-/- vs WT) indicating significantly reduced brain 

edema formation (Figure 25).  

 

Figure 25: Effect of Asic 1a deficiency on brain edema formation 24h after TBI. While WT 

mice showed approximately 9% increase in brain water content compared to sham-

operated animals, brain water content in Asic 1a-/- mice was approximately 60% lower 

than that. Mean ± SD, n=4-8. * p<0.05. 

3.2.3 Effect of Asic 1a on long-term recovery of motor function  

Before TBI, all groups managed to cross the beam equally fast (WT: 12.6 ± 5.2 s, Asic 1a+/-: 

14.6 ± 8.7 s, Asic 1a-/-: 11.7 ± 1.2 s). On day one, motor function significantly deteriorated 

compared to pre-trauma values (WT: 95.1 ± 31.2 s, p<0.001 vs baseline; Asic 1a+/-: 95.1 ± 
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33.1 s, p < 0.001 vs baseline; Asic 1a-/-: 73.2 ± 41.7 s, p<0.001 vs baseline). The increase 

was more pronounced in the WT group (95.13 ± 31.26 s) compared to heterozygous (88.33 

± 35.89 s) and homozygous (73.22 ± 42.70 s) Asic 1a animals, but there was no significant 

difference between groups. On days three and seven, crossing times (3d: WT: 70.2 ± 42.7 

s, p<0.001 vs baseline; Asic 1a+/-: 62 ± 41.4 s, p=0.019 vs baseline; Asic 1a-/-: 48.6 ± 32.3 s, 

p=0.005 vs baseline; 7d: WT: 40.2 ± 31.7 s, p=0.004 vs baseline; Asic 1a-/-: 36.7 ± 19.6 s, 

p=0.02 vs baseline) were still significantly longer compared to pre-trauma values. Within 

the first two weeks after TBI, animals´ performance recovered (WT: 23.1 ± 19.7 s; Asic 

1a+/-: 19.6 ± 12.5 s; Asic 1a-/-: 19.3 ± 11.9 s) then stayed stable until the end of the 

observation period, traumatized mice did not recover back to the pre-trauma level. There 

was no difference between groups at any time point (Figure 26 A). Prior to surgery, no 

missteps were observed. Immediately after TBI, the number of missteps (WT: 38 ± 10.1 s, 

p=0.001 vs baseline; Asic 1a+/-: 41.7 ± 6.8 s, p<0.001 vs baseline; Asic 1a-/-: 34.7 ± 5.5 s, 

p<0.001 vs baseline) significantly increased compared to baseline, but did not reach 

statistical significance between groups. From posttraumatic day three on, the mice´s 

performance improved, but did not return to pre-trauma values at the end of the 

observation period (WT: 7.89 ± 4.51, Asic 1a +/-: 9.44 ± 5.94, Asic 1a -/-: 7.89± 4.46), there 

was no significant difference between groups (Figure 26 B).  
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Figure 26: Effect of Asic 1a on long-term recovery of motor function. (A) Time needed to 

cross the beam (B) Number of missteps. &p < 0.05, Asic 1a +/- vs baseline; #p < 0.05, Asic 

1a-/- vs baseline; **p < 0.01, WT vs baseline; &&p < 0.01, Asic 1a+/- vs baseline; ## p < 0.01, 

Asic 1a-/- vs baseline. Mean ± SD, n=9.  

3.2.4 Effect of Asic 1a on depression-like behavior after TBI  

At all-time points assessed, Asic1a-/- animals showed significantly higher mobility times 

than their heterozygous and wild type littermates (60 d: WT: 90.5 ± 26.5 s, Asic 1a+/-: 100.6 

± 23.9 s, Asic 1a-/-: 139.9 ± 18.3 s, p<0.01, Asic 1a-/- vs WT, Asic 1a+/-; 90d: WT: 84.7 ± 13.6 

s, Asic 1a+/-: 89.6 ± 16.1 s, Asic 1a-/-: 120.8 ± 20.5 s, p<0.01, Asic 1a-/- vs WT, Asic 1a+/-; 180d: 

WT: 88.2 ± 21.4 s, Asic 1a+/-: 103.2 ± 14.6 s, Asic 1a-/-: 132.1 ± 16.1 s, p<0.01 ,Asic 1a-/- vs 

WT, Asic 1a+/-), indicating that Asic 1a significantly influences the development of 

neurobehavioral disturbances after TBI (Figure 27). 
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Figure 27: Effect of Asic 1a in depression-like behavior after TBI: Mobility time as assessed 

by the tail suspension test. Mean ± SD, n=9. **p<0.01.  

3.2.5 Effect of Asic 1a on memory and learning behavior cognitive function after 

TBI  

Exemplary heat maps from the WT, the Asic 1a +/-, and the Asic 1a -/- group are presented 

in Figure 28 A. While latency (Figure 28 B) in all groups decreased over time (60 d: WT: 

88.8 ± 70.8 s, Asic 1a+/-: 142.6 ± 45.9 s, Asic 1a-/-: 49.9 ± 59.1 s; 90 d: 48.9 ± 51.1 s, Asic 

1a+/-: 78.8 ± 60.2 s, Asic 1a-/-: 22.4 ± 8.6 s; 180d: WT: 39.9 ± 26.7 s, Asic 1a+/-: 52.4 ± 50.5 s, 

Asic 1a-/-: 18.4 ± 23.4 s), it was significantly shorter in the Asic 1a-/- group compared to 

heterozygous Asic 1a mice and wild type littermates (at 180 days, p=0.026, Asic 1a-/- vs 

WT; p=0.025, Asic 1a-/- vs Asic 1a+/-).  

The distance travelled to reach the home-cage was not different between groups at 60 

(WT: 73.3 ± 67.2 m, Asic 1a+/-: 85.5 ± 58.6 m, Asic 1a-/-: 42.6 ± 33.6 m) and 90 days (WT: 

42.5 ± 23.4 m, Asic 1a+/-: 99.4 ± 99.6 m, Asic 1a-/-: 34.7 ± 15.1 m) after trauma; at the last 

testing session 180 days after CCI, the WT group´s distance (45.09 ± 35.43 m) was 
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significantly longer than in the Asic 1a-/- group (23.17 ± 30.34 m, p=0.048, Asic 1a-/- vs WT) 

(Figure 29 A).  

The velocity to get the home cage slightly fluctuated over time (60 d: WT: 97.9 ± 41.6 cm/s, 

Asic 1a+/- : 67.9 ± 48.1 cm/s, Asic 1a-/- : 117.2 ± 38.2 cm/s; 90 d: 106.5 ± 38.2 cm/s, Asic 

1a+/-: 35 ± 26.6 s, Asic 1a-/-: 154.2 ± 35.9 s; 180d: WT: 112.7 ± 32.8 s, Asic 1a+/-: 86.2 ± 32.6 

s, Asic 1a-/-: 134.7 ± 32.9 s) (Figure 29 B), but there was no statistical difference at any time. 

These results indicate that Asic1a deficiency significantly improves cognitive deficits after 

TBI.  

 

Figure 28: Effect of Asic1a on neurocognitive deficits after TBI. (A) Representative heat 

maps from WT, Asic 1a+/-, and Asic 1a-/- mice at 180d after TBI. (B) Latency to goal. Mean 

± SD, n=9. *p<0.05.  



 63 

 

Figure 29: Effect of Asic 1a on distance and velocity to goal in the Barnes Maze test after 

TBI. (A) Distance to goal. (B) Velocity to goal. Mean ± SD, n=9. *p<0.05. 

3.2.6 Effect of Asic 1a on lesion progression after experimental TBI 

Exemplary images of T2 weight MRI scans from the WT, the Asic 1a+/-, and the Asic 1a-/- 

group obtained at 180d post-TBI are provided in Figure 30 A. In WT animals, lesion volume 

steadily increased over time up to 180 days after TBI (32.3 ± 5.2 mm3, p=0.011, 180 days 

vs 14 days). In Asic 1a transgenic animals, lesion size remained relatively stable, there was 

no obvious lesion progression from day 14 to day 180 after CCI. At later time points (60, 

90, and 180 days after TBI), lesion size of Asic1a transgenic animals was significantly 
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smaller compared to wild-type littermates (60 days: WT: 24.6 ± 8.3 mm3, Asic 1a+/-: 15.2 ± 

4.6 mm3, Asic 1a-/-: 17.4 ± 2.9 mm3, p<0.01, Asic 1a+/- vs WT; p<0.05, Asic 1a-/- vs WT; 90 

days: WT: 26.2 ± 8.1 mm3, Asic 1a+/-: 17.8 ± 5.2 mm3, Asic 1a-/-: 18.2 ± 4.2 mm3, p<0.05, 

Asic1a+/-, Asic 1a-/- vs WT; 180 days: WT: 32.3 ± 5.1 mm3, Asic 1a+/-: 19.2 ± 4.5 mm3, Asic 

1a-/-: 20.4 ± 2.4 mm3, p<0.01, Asic 1a+/-, Asic 1a-/- vs WT). There was, however, no 

difference between homozygous and heterozygous Asic 1a mice (Figure 30 B).  

MRI results were then correlated with histology (obtained at 180 days after TBI). Figure 

31 A contains representative Nissl stained brain sections for each genotype. 

Histomorphologically assessed lesion volume was significantly larger in the WT group 

(37.0± 5.1 mm3) compared to the Asic 1a+/- (26.9 ± 3.3 mm3) and the Asic 1a-/- group (25.8 

± 3.9 mm3, p<0.01, Asic 1a+/-, Asic 1a-/- vs WT ), respectively (Figure 31 B).  

Histopathologically obtained results strongly correlated (r = 0.8266, P < 0.0001, Figure 32) 

with lesion volume measured in MRI indicating the MRI measurements are a reliable way 

to quantify posttraumatic brain damage. This data indicates that Asic1a deficiency 

significantly influences long-term lesion progression after TBI. 
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Figure 30: Effect of Asic1a deficiency on lesion progression after TBI assessed by MRI. (A) 

Representative MRI images from WT, Asic 1a +/-, and Asic 1a -/- mice at 180d post-TBI, 

respectively. (B) Lesion volume over time. Mean ± SD, n=9. *p<0.05, **p<0.01.  
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Figure 31: Lesion volume 180 days after TBI. Mean ± SD, n=6-8. **p<0.01.  

 

Figure 32: Lesion volume quantified by histology strongly correlates with that measured 

by MRI. Pearson correlation test. 
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3.2.7 Effect of Asic 1a on hippocampal damage after TBI 

Figure 33 A shows representative brain sections used for hippocampus evaluation. In the 

WT group, hippocampal volume (26.27 ± 4.04 % of non-traumatized side) was significantly 

more reduced than in the Asic 1a+/- (44.24 ± 13.11 %) and the Asic 1a-/- (45.40 ± 4.82 %) 

group, where the hippocampal region was significantly better preserved (Figure 33 B). The 

reduction of hippocampal damage in the chronic phase after TBI may explain the 

improved performance of Asic1a deficient animals in memory tasks. 

 

 

Figure 33: Effect of Asic 1a in hippocampal damage after TBI. (A) Representative Nissl 

stained section used for evaluation (B) Ratio of ipsilateral versus contralateral 

hippocampus volume. Mean ± SD, n=6-8. *p<0.05.  
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4. Discussion  

4.1 Discussion of methods 

4.1.1 Selection of traumatic brain injury model 

Pathology and pathophysiology in humans is inhomogeneous after traumatic brain injury 

and may result in contusion, DAI, laceration, hemorrhage, or a combination thereof. In the 

past decades, three TBI animal models, namely the weight drop (WD) [228], the fluid 

percussion injury (FPI) [229], and the controlled cortical impact (CCI) model have been 

widely used in experimental studies [230] in order to model and investigate posttraumatic 

brain damage. Every model has advantages and disadvantages. 

In the WD model, TBI is induced by a weight falling from a designated height onto the 

exposed skull with resulting in shearing forces causing brain injury [228, 231]. The injury 

severity is determined through adjustment of dropping height and weight of the mass. 

This model closely mimics clinical TBI and the application of the mechanical force is direct 

and simple [232]. The disadvantages of this model consist in re-hits [233], high mortality, 

and variable severity of brain injury [232]. In the FPI model, diffuse brain injury is induced 

by a fluid driven pendulum applied through a fluid-filled tube positioned over a 

craniotomy in a parasagittal, parietal, or frontal location [234, 235]. In this model, the 

placement of the craniotomy and the fluid pressure determine the pattern of brain injury, 

which – among other things – results in extensive contusions without skull fractures. This 

model causes widespread brain injury with characteristics of DAI and allows for induction 

of scalable lesion size with an acceptable rate of mortality. However, this model should be 

performed carefully, including precise craniotomy (size, position, and shape), accurate 

placement of tube over the opening skull, and complete removal of residual air in the tube. 

If not performed with utmost precaution, extent and type of brain injury is highly variable 

making this model hard to reproduce.  
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The CCI model causes a focal parenchymal contusion caused by the impact of a solid piston 

onto the dura mater through a cranial window [236-238]. The parameters (e.g. impact 

depth, duration, and velocity) of CCI can be accurately controlled to produce a 

reproducible, highly consistent focal brain injury. Adjustment of impact depth and velocity 

allows for variation of TBI severity (mild, moderate and severe), in combination with a low 

mortality. Furthermore, surgery for the CCI model is comparatively easy, making CCI a 

widely applied and accepted model for experimental TBI studies [236, 237, 239]. The 

model was routinely utilized in our laboratory in the past decades [74, 176, 219, 240-243]. 

In this model, the extent of cortical deformation is strongly correlated with histological 

brain damage [244], and neurological outcome [245, 246]. Even though CCI does not 

routinely induce DAI, it creates contusion injury and mimics several key components of 

human pathology after TBI [57], e. g. intracranial hypertension and cerebral 

hyperperfusion. Furthermore, the CCI model has been shown to be suitable for long-term 

investigation of posttraumatic brain damage as it also induces long-term changes 

comparable to those found in humans. Loane et al. reported that progressive lesion and 

persistent inflammatory responses up to one year in a rodent CCI model [247]. Progressive 

lesion expansion, white matter damage, and cognitive dysfunction were related to 

persistent inflammation up to one year in a single CCI model [248]. Xenon improved 

chronic neurological outcome associated with reduction of histological damage and 

chronic inflammatory responses up to 20 months after TBI [249].  Based on these 

characteristics of CCI, the model seemed an adequate choice for the present study. 

4.1.2 Evaluation of posttraumatic brain damage 

Since its introduction, magnetic resonance imaging is widely used in clinical and 

experimental brain research [250-253]. High-resolution MRI allows for exact assessment 

and tracking of anatomical and structural changes and may help to visualize and 

determine a variety of pathological changes [254]. Functional MRI can also detect cerebral 

blood flow changes and changes in lesion volume after TBI at the same time [255]. MRI 
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scanning is a noninvasive and time-saving method to observe brain injury at multiple time 

points in the same animal, giving information about the progression of a lesion over time 

which is not possible using histological methods, i.e. determination of lesion volume in 

histological specimens (e.g. Nissl staining), as this requires terminal tissue sampling. 

Therefore, MRI scanning significantly reduces the number of animals needed for studies 

with multiple time-points. Furthermore, histological assessment requires chemical 

treatment of the specimens with may result in tissue damage, especially in and around 

the contusion where tissue is necrotic and therefore hard to preserve. However, due to 

its low resolution, MRI scanning may be considered imprecise. In the present study we 

therefore correlated the results of lesion volumes obtained by MRI with histopathology at 

one chronic time-point after TBI and found a very high correlation. Therefore, lesion 

volumes determined by MRI seem to be reliable thereby making MRI the method of choice 

for long-term longitudinal studies after TBI.  

4.1.3 Assessment of neurological outcome  

After TBI, humans often present a variety of sequelae, e. g. motor and gait disturbances, 

depressive behavior, and neurocognitive abnormalities [256-258]. Neuropsychiatric 

symptoms are among the main reasons for impairment of quality of life in TBI patients 

and often prevent patients from leading an independent life and returning to their 

previous jobs [259, 260]. However, these symptoms can be challenging to diagnose and 

quantify in patients and even more so in experimental animals. In the present study, we 

decided to focus on three main symptom complexes: long-term changes in motor function 

(Beam walk test), learning and memory performance (Barnes Maze test), and depression-

like behavior (Tail suspension test).  

Various methods to assess motor function in rodents have been described, among them 

the beam walk test, the rotarod test [261], and the grid walking test [262]. The beam walk 

test can be performed in a highly standardized fashion with inexpensive equipment and is 

easily learnable; when combined with video monitoring also the evaluation is 
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standardized and less investigator-dependent, therefore the test is extensively used in 

rodent TBI models [263, 264]. The beam walk test has been validated to be an efficient 

test that was sensitive to the severity of injury, injury lateralization, and pharmacological 

administration in a cohort of TBI models, including CCI and lateral FP in rats and 

acceleration induced injury in mice [265-267]. Then grid walk, a test where animals are 

placed on an elevated metal square grid and their motor performance/missteps are 

recorded with a camera [268], sensibly shows forelimb dysfunction. However, in some 

studies, the beam walk test was more sensitive to hind limb motor deficits [269]. In this 

study, the injury position located in the right motor cortex controlling hind paw function 

on the left. Therefore, we chose the beam walk test for evaluation of motor dysfunction 

after TBI. 

In order to diagnose and assess cognitive function, especially learning and memory deficits, 

the Water Morris Maze test (WMM) [270] and the Barnes Maze (BM) test [271] are 

commonly used. For the WMM, a home-cage platform is positioned in a circular pool filled 

with opaque water; animals then are trained to remember the location of the platform. 

The WMM, introduced by Robert Morris in 1982, was first applied to detect spatial 

memory deficits in rats with hippocampal lesions [272]. Later, the WMM was extensively 

used in order to detect and assess TBI-induced cognitive abnormalities [273, 274]. The BM 

was developed by Dr. Carol Barnes in 1979 [271] as a dry-land alternative to WWM. The 

BM has also been widely applied in experimental TBI [275, 276]. Compared to the MWM, 

animals were shown to have less averseness, anxiety, and stress compared to the MWM 

[271, 277]. Furthermore,  neurochemical changes including serotonergic responses [278] 

were seen during MWM testing and have been shown to influence the results in cognitive 

function tests. In addition, swimming may lead to hypothermia, which may interfere with 

test results [279] and may be especially problematic in the setting of TBI where 

hypothermia was found to be neuroprotective [280]. Therefore, the BW test was chosen 

for assessing cognitive function in the present study.   
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Depression-like behavior is frequently tested using the forced swim test (FST) [281] and 

the tail suspension test [220, 282] in experimental (rodent) studies. In FST, the mouse is 

forced to swim in a cylinder filled with water and recorded by a camera for two minutes. 

Vigorous swimming motions are considered a physiological response, mobility time is 

calculated and recorded; immobility shows a reduced impetus indicating depressive 

behavior [283]. Again, hypothermia can be induced due to contact with water in the FST, 

interfering with the results [284]. The tail suspension test was described as a new model 

for testing anti-depressant drugs in 1985 [220]. In comparison to the FST, in the tail 

suspension test animals are suspended in a frame without induction of hypothermia. The 

experiment is considered less stressful for the animals. Furthermore, more animals can be 

tested simultaneously. In particular, this test is thought to be more sensitive in transgenic 

animals [222]. Therefore, the tail suspension test was used it in present study.  

4.2 Discussion of the results 

4.2.1 Effect of B1R deficiency on chronic post-traumatic brain damage  

Bradykinin plays a crucial role in the acute phase after TBI, but its effect in the chronic 

phase in unclear. In the present study, we investigated the effect of the B1 receptor on 

long-term outcome after experimental TBI. We demonstrated that deficiency of B1R did 

not affect survival rate and body weight after TBI. Also, B1R deficit did not influence motor 

dysfunction, depression-like behavior, and cognitive function in a model of experimental 

traumatic brain injury. However, heterozygous B1R deficiency ameliorated lesion growth 

and hippocampal damage.  

Motor dysfunction is a common sequela after severe traumatic brain injury. In a 

longitudinal study, motor abnormalities, including persistence of abnormal tandem gait, 

was observed up to two years after the TBI in a large number of subjects [285]; motor 

impairment was shown to persist from three months [286] up to five years post-TBI [287]. 

In the present investigation, motor dysfunction reached a peak at day one after TBI, then 
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recovered quickly and reached a plateau within two weeks. However, abnormal motor 

function persisted up to the end of the observation period of one year, which is consistent 

with previous studies [248, 288]. B1 deficiency did not alter the development of motor 

function compared to WT mice. According to previous data of our group, B1 receptor 

deficiency did not notably reduce brain edema in the acute phase [176], which may 

explain this result. Body weight is another parameter that reflects recovery after TBI. Loss 

of body weight results from a decrease of food intake and changes in metabolism [289]; 

in this study, it declined drastically on the first day after TBI and slightly recovered over 

time. This tendency was in accordance with previous investigations using the CCI model 

[248, 290]. B1R deficiency did not affect changes in bodyweight of mice after TBI. Some 

papers report that an increase in bodyweight can worsen motor function in long term 

studies post-TBI [291, 292], but in the present study body weight did not correlate with 

motor function.  

In summary, B1R knockout did not show improvement of motor function or reduction of 

weight loss in the chronic phase after TBI. 

Psychiatric disorders are common complications of traumatic brain injury and may present 

as depression, psychosis, mania and many more [293]. 15 to 33% of patients were 

diagnosed with a major depressive episode after TBI [294, 295]. According to a one-year 

longitudinal study on patients with TBI, about 40% of patients suffered from depression 

[296]. The highest rates of depression in patients with TBI were recorded within the first 

year after TBI [297], but depression onset was observed up to decades post-TBI [298]. In 

experimental TBI, depression-like behavior was noted to occur up to three months after 

brain injury [299-301]. There is little experimental data beyond this time point. In the 

present study, the mobility time declined from 60 days to one year post-TBI indicating that 

depression-like behavior aggravated over time and that three months may be too short 

to fully assess the frequency and severity of depression. Viana at al. found that inhibition 

of the B1 receptor did improve depression-like behavior in stressed mice 24 hours after 
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LPS injection [302] suggesting an involvement of bradykinin/ B1 receptors in the 

development of depression. In the present investigation, a deficit of B1R did not affect 

depressive behavior after experimental traumatic brain injury. The mechanisms of the 

development of depressive behavior in TBI is complicated. Development of depression 

post-TBI maybe is associated with disruption of biogenic amine containing fibers [296], 

furthermore is seems to be associated with grey matter atrophy, e. g. in the left pre-frontal 

cortex [303], the right frontal, left occipital, and left temporal lobes [304]. B1 deficiency 

alone was not sufficient to alter depression-like behavior independently. The B1 receptor 

therefore does not seem to play a major role in the development of depressive behavior 

after TBI. 

Cognitive disorders are frequently diagnosed and may persist long-term in patients with 

traumatic brain injury regardless of injury severity [305-307] in form of – among others - 

attention deficits, memory disorders, and impairment of executive functions [308-311]. 

Cognitive abnormalities were described from three weeks after TBI [312] on. A review 

reported that nearly 50% of patients with penetrating, moderate, and severe TBI 

presented cognitive abnormalities six months and longer post-injury [308]. In several 

experimental studies, cognitive impairments were shown to persist up to one year after 

TBI [313-315]. In line with clinical and previous experimental data, our results indicate that 

cognitive dysfunction of mice persists up to one year after TBI, but was not altered by B1R 

deficiency. Of note, cognitive disorders do not just depend on axonal injury [136]; 

impaired synaptic plasticity and neurotransmitter systems (e.g., cholinergic, and 

catecholamine) may as well play pivotal roles [316]. Blocking of B1R facilitated recovery 

of cognitive deficits in a murine Alzheimer model [317] but while plaque formation is 

described to occur after TBI the pathophysiology most probably is fundamentally different 

to trauma-induced cognitive dysfunction.  

Lesion volume progressively increased over time after TBI, which was in line with previous 

results using the CCI model [247]. Dixon showed that lesion volume at one year almost 
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doubled compared to that measured by histology at three weeks after TBI [318]. In the 

histological analysis 360 days after TBI, the result was similar to that observed with MRI 

at the same time point. The lesion volume assessed by MRI and histology correlated well, 

which is in accordance with the results obtained by Pischiutta et al. [248]. Homozygous 

B1R deficiency did not significantly reduce lesion progression compared to WT mice but 

heterozygous B1R knockout animals slowed smaller lesions from two months up to one 

year after TBI. It was previously reported that inhibition [178] or genetic depletion of the 

B1 receptor [179] confers neuroprotection after traumatic brain injury. Our previous 

results, however, indicate that B1 deficiency did not reduce lesion volume at 24h post-

trauma [176]. Furthermore, lesion volume was only assessed in the acute phase so far, i.e. 

24 hours after injury. In the present study, it was observed up to one year after trauma 

with changes visible only at later stages indicating that partial deficiency of the B1 receptor 

may have an influence long term. Additional studies are needed to further clarify this 

interesting effect. Our results also underline the need for long-term assessments following 

experimental traumatic brain injury.  

In the present study, hippocampal damage was reduced in heterozygous B1 animals. 

Smith showed that hippocampal atrophy was associated with persistent memory 

dysfunction [319]. The changes in the neuronal circuitry of the hippocampus might be the 

neurological substrate of cognitive abnormalities frequently noted after TBI in humans 

[320-322]. Also, cognitive deficits correlated with hippocampal injury in an experimental 

rat model [323]. In the present study, no effect on memory function was detected despite 

reduction of hippocampal atrophy in B1 heterozygous animals. Neuronal loss in the 

hippocampus, however, was not specifically addressed. Furthermore, the Barnes Maze 

test may not be sensitive enough to detect slight differences.  These data indicate that the 

relationship between cognitive function and hippocampus volume is more complex and 

needs further evaluation. 
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4.2.2 Effect of Asic 1a deficiency on chronic post-traumatic brain damage  

In the present study, we investigated the effect of Asic 1a on the long-term outcome in a 

mouse model of traumatic brain injury. We demonstrated that deficiency of Asic 1a 

significantly reduced brain damage in the early phase after CCI. Chronically, it attenuated 

progression of lesion volume up to 6 months and hippocampus loss at 6 months after 

trauma. Furthermore, Asic 1a knockout remarkably ameliorated depressive behavior and 

cognitive dysfunction at 6 months post-TBI, but did not improve motor function. 

Asic 1a is expressed on the postsynaptic membrane in both the central and peripheral 

nervous system [324] and activated by acidosis, resulting in influx of Na+ and Ca2+, 

ultimately inducing neuronal pathology [187]. After TBI, there is an increase in intracranial 

pressure (ICP) [325, 326], which may lead to ischemia; this is usually followed by lactate 

accumulation, causing acidosis and a decrease in pH [327-329]. When Asic 1a is activated 

by acidosis the subsequent influx of Na+ and Ca2+ in the cell causes cytotoxic edema [187], 

it contributes to neuronal apoptosis and necrosis after ischemic stroke [330] and has been 

implied in H2O2-induced cortical neuronal death in vitro [331]. Asic 1a plays an important 

role in the development of posttraumatic brain damage in the acute phase after TBI [214] 

and has been demonstrated to reduce neuronal death in hippocampus early after TBI 

[214], but its effect on the chronic posttraumatic phase has not been investigated.  

In the present study, lesion volume of Asic 1a deficient mice was significantly smaller than 

in the WT group in the chronic phase after TBI; also, hippocampal damage was significantly 

reduced. These changes may help to explain the improvement in cognitive dysfunction 

(see below) as hippocampal damage was shown to be related to the extent of 

hippocampus lesions [323, 332].  

Motor deficit is a common sequel in humans with severe TBI [285]. Severe motor 

dysfunction notably improved within six weeks, however, persisted for years post-trauma 

in human [333]. In experimental TBI models, motor abnormalities improve significantly 
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within three months but persisting deficits were detected one year after TBI [248, 334]. In 

the present study, the motor deficit assessed by beam walk testing peaked on the first day 

after trauma then quickly declined within two weeks and recovered gradually over time 

but did not reach baseline levels in all genotypes. Homozygous Asic 1a mice tended to 

perform slightly better but there was no significant difference among groups. McCarthy 

et al. demonstrated that pharmacological inhibition of Asic 1a improved motor function 

in a model of ischemic stroke [335], indicating Asic 1a may be involved in motor function. 

However, while the pathophysiology of stroke and TBI shares many similarities there are 

also marked differences. In ischemic stroke,  brain injury includes infarct core lesion and 

penumbra, the location of injury is different from TBI, and the lesion develops significantly 

slower than after TBI [336]. 

Humans with TBI frequently present with psychiatric disorders, including depression [337-

339], obsessive-compulsive disorder, and posttraumatic stress disorder [295]. 

Approximately a third of patients show depressive symptoms within the first year after 

TBI [257], in 17% of patients even three to five year after TBI [340]. In experimental studies, 

depression-like behavior was observed in the chronic phase after TBI [341-343]. 

Development of depression was shown to be related to neural disconnection among 

prefrontal cortex, amygdala, hippocampus, basal ganglia, and thalamus [344]. In present 

study, Asic 1a deficient animals had significantly less structural brain damage than wild 

type littermates which may explain the difference in depressive behavior post-trauma on 

the anatomical level. The improvement of posttraumatic depressive behavior observed in 

the present study is in line with previous results indicating that genetic disruption and 

pharmacological inhibition of Asic 1a alleviated depression-like behavior in stressed mice 

[345]. Cognitive disorders (including memory and learning deficits) are also often 

diagnosed in TBI patients [311, 346, 347], starting as early as three weeks after injury [312] 

and persisting chronically in 15% of patients [348]. Cognitive impairment can also be 

reliably detected from two days and up to one year in rodent TBI models [263, 349-351]; 
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it was shown to correlate to structural and functional changes within the white matter 

(e.g., diffuse axonal injury) as well as to alterations in neurotransmitter activity [352, 353]. 

It was previously shown that depletion of Asic in normal mice may impair spatial memory 

and learning [186]. In the present study, however, we did not detect changes between 

Asic 1a and wild type mice during baseline assessment. Yin et al. demonstrated that loss 

of Asic 1a attenuated cognitive impairment associated neuron degeneration five days 

post-injury in a FPI model [214], there is, however, no data on time points beyond the 

acute phase. Homozygous Asic 1a mice performed significantly better in the Barnes Maze 

test indicating reduced long-term cognitive impairments after TBI. In the future, synaptic, 

axonal and neuronal degeneration should be assessed to further characterize the 

potential mechanism of Asic 1a induced cognitive decline after TBI. 

In summary, Asic 1a deficiency significantly attenuated brain edema in the acute phase 

and posttraumatic brain damage (lesion volume and hippocampus damage) in the chronic 

phase post-TBI. This translated into improvement of neurological outcome (depression-

like behavior, cognitive dysfunction), but did not affect motor deficits. Asic 1a therefore 

seems to plays a pivotal role in the development of posttraumatic brain damage and 

neurocognitive and behavioral deficits long-term, which makes Asic 1a a potential 

therapeutic target for the treatment of traumatic brain injury.  
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5. Summary  

5.1 English summary 

Traumatic brain injury is a major public health problem worldwide with high morbidity 

and mortality. So far, little is known about the long-term pathophysiology and the 

mechanisms of chronic posttraumatic brain damage. In addition, there are no specific 

therapies targeting posttraumatic brain damage. The present study aims to detect 

whether bradykinin 1 receptors (B1R) or acid sensing ion channels 1a (Asic 1a) are involved 

in the development of long-term deficits after experimental TBI. B1R and Asic 1a deficient 

mice and their wild type littermates were subjected to experimental TBI by controlled 

cortical impact (CCI) and observed one year and six months post-trauma, respectively. 

Brain edema formation, lesion volume and functional outcome were repeatedly assessed 

longitudinally over time in a strict randomized and blinded manner. Homozygous B1R 

deficiency did not affect posttraumatic brain damage (lesion volume and hippocampus 

damage) or neurological outcome (motor function, depressive behavior, and cognitive 

function) up to one year after TBI. Homozygous Asic 1a deficiency significantly reduced 

brain edema formation in the acute phase and ameliorated depressive behavior and 

cognitive dysfunction up to six months after TBI. Asic 1a transgenic animals were shown 

to have reduced posttraumatic brain damage up to six months post-trauma which 

translated into an improvement of posttraumatic neurocognitive and neurobehavioral 

deficits. Hence, Asic 1a deficiency resulted in neuroprotection after TBI and could be a 

potential target for the treatment of chronic posttraumatic brain damage.  

5.2 Zusammenfassung 

Das Schädel-Hirn-Trauma (SHT) ist weltweit einer der häufigsten Todesursachen im 

Kinder- und jungen Erwachsenenalter; zudem kann ein einmaliges SHT auch noch Jahre 

nach dem eigentlichen Unfall zu progredienten neurokognitiven Beeinträchtigungen 

führen und scheint ein Risikofaktor für die Entwicklung demenzieller Syndrome zu sein. 

Die Pathomechanismen dieser chronischen posttraumatischen Hirnschädigung sind 



 80 

jedoch bisher weitgehend unbekannt, eine spezifische oder kausale Therapie für die im 

chronischen Verlauf zunehmende Schädigung existiert deswegen nicht. Sowohl das 

Kallikrein-Kinin-System mit seinem Haupt-Mediator Bradykinin als auch durch Azidose 

aktivierte Ionen-Kanäle (Acid-sensing ion channels, Asic) spielen in der Frühphase nach 

SHT eine wichtige Rolle bei der Entwicklung der Traumaläsion. Über ihre Bedeutung im 

längerfristigen Verlauf nach SHT ist für beide Entitäten bisher allerdings nichts bekannt. In 

der vorliegenden Arbeit wurde die Rolle des Bradykinin-1-Rezeptors (B1R) und des Acid-

sensing-Ionen-Kanals 1a (Asic 1a) auf die Entwicklung des posttraumatischen 

Hirnschadens bis zu sechs Monate nach experimentellem Schädel-Hirn-Trauma in einem 

transgenen Maus-Modell untersucht. Hierfür wurde das in der Arbeitsgruppe seit langem 

etablierte Controlled Cortical Impact (CCI) - Modell verwendet; transgene Mauslinien für 

den Bradykinin-1-Rezeptor und Asic 1a wurden hiernach bis sechs Monate nach Trauma 

mittels multimodaler funktioneller und neurokognitiver Tests untersucht, die Entwicklung 

des strukturellen Hirnschadens wurde mittels longitudinaler Magnet-Resonanz-

Tomographie (MRT) -Untersuchungen und histologisch gemessen. Alle Experimente 

wurden randomisiert und verblindet durchgeführt. Bradikinin-1-Rezeptor-Defizienz hatte 

keinen Einfluss auf den Allgemeinzustand oder das funktionelle Outcome nach SHT; 

heterozygote B1-R-defiziente Mäuse boten zwar eine Reduktion des mittels MRT und 

Histologie gemessenen strukturellen Hirnschadens, diese geringere Läsion führte jedoch 

zu keiner messbaren Verbesserung depressiver Symptome oder der posttraumatischen 

Gedächtnis- und Orientierungsstörung. Knockout von Asic 1a führte im Gegenteil hierzu 

zu einer signifikanten Reduktion des akuten posttraumatischen Hirnödems (24h nach CCI). 

Im weiteren Verlauf boten ASIC 1a transgene Tiere bessere Leistungen im Barnes-Maze-

Test zur Beurteilung von Lernverhalten und Orientierung sowie weniger ausgeprägtes 

depressives Verhalten. In Bezug auf den posttraumatischen Hirnschaden war sowohl bei 

heterozygoten als auch bei homozygoten Tieren eine signifikant geringere Läsion im 

längerfristigen Verlauf nachweisbar. Hierbei war vor allem die Schädigung im Bereich des 

Hippocampus deutlich geringer ausgeprägt, einer anatomischen Struktur, die vor allem 
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für Gedächtnisprozesse wichtig ist. Während also der Bradykinin-1-Rezeptor für den 

längerfristigen Verlauf des posttraumatischen Hirnschadens keine relevante Rolle zu 

spielen scheint, scheint der Acid-sensing-Ionen-Kanal 1a einen wichtigen Einfluss auf die 

Entwicklung des chronischen Hirnschadens und funktioneller sowie neurokognitiver 

Defizite im längerfristigen Verlauf nach Schädel-Hirn-Trauma zu haben. Asic 1a könnte 

deswegen ein vielversprechender Ansatzpunkt möglicher neuroprotektiver 

Therapiestrategien sein und sollte deswegen weiter untersucht werden.  
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7. List of abbreviations  

AMPA α-Amino-3-Hydroxy5-Methyl-4-Isoxazole-

Propionic Acid 

AQP4 Aquaporin 4 

ASICs    Acid-Sensing Ion Channels  

B1R B1 receptor 

B2R B2 receptor 

BBB Blood Brain Barrier 

CBF Cerebral Blood Flow 

CCI Controlled Cortical Impact  

CPP Cerebral Perfusion Pressure 

CT  Computed Tomography 

CTE Chronic Traumatic Encephalopathy 

DAI  Diffuse Axonal Injury 

DWI Diffusion Weighted Imaging 

GCS                              Glasgow Coma Scale 

ICP Intracranial Cerebral Pressure 

MAP Mean Arterial Pressure 

MMP-2 Matrix Metalloproteinase -2 

MMP-9 Matrix Metalloproteinase -9 

MRI Magnetic Resonance Imaging 

NKCC1 Na+-K+-2Cl– cotransporter 

NFT Neurofilament Tangle 
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NMDA  
 

N-Methyl-D-Aspartic Acid 

PFA Paraformaldehyde  

ROS Reactive Oxygen Species 

SAH                              Subarachnoid Hemorrhage 

SUR1- TRPM4                      Sulfonylurea-Receptor 1 – Transient          
Receptor Potential Member 4 

NaHCO3 Sodium Hydrogen Carbonate 

T2W T2-Weighted 

TBI Traumatic Brain Injury 

tSAH  Traumatic Subarachnoid Hemorrhage  

VEGF-A  Vascular Endothelial Growth Factor A 

WHO                            World Health Organization 

MWM Morris Water Maze 

WT Wild Type 
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