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ABSTRACT 

Traditionally the Edinger-Westphal nucleus (EW) was considered as the location of 

preganglionic neurons of the ciliary ganglion (CG) to mediate pupillary constriction and 

lens accommodation, but was recently shown to refer to two different functional cell 

groups. Accordingly, a new nomenclature was introduced: In human the 

cytoarchitecturally defined EW consists of centrally projecting urocortin-positive 

neurons, which are involved in stress related function, regulation of alcohol and food 

consumption, is now termed EWcp. In contrast, the preganglionic neurons of the CG 

are found as an inconspicuous group of cholinergic neurons dorsally, which is now 

termed EWpg (Kozicz et al. 2011).  

In this study the complete population and distribution of cholinergic preganglionic 

neurons was investigated by immunolabelling for choline acetyltransferase and 

delineated from urocortin-positive neurons.  

Brainstem tissue from five human cases was immersion-fixed in 4% paraform aldehyde 

and blocks of the midbrain were embedded in paraffin.  

Series of adjacent transverse midbrain sections through the whole extent of the 

oculomotor nucleus complex were immunostained for either choline acetyltransferase 

(ChAT), urocortin (UCN) or non-phosphorylated neurofilament (NP-NF). The 

distribution of ChAT-positive preganglionic neurons and UCN-positive central 

projecting neurons was plotted. Preganglionic neurons were delineated from 

motoneurons of multiply-innervated muscle fibers of extraocular muscles by their 

additional expression of NP-NF-immunoreactivity.  

In accordance to previous studies preganglionic neurons were found dorsally to EWcp 

as an inconspicuous group throughout the length of the rostral half of the oculomotor 

nucleus. In addition another small group of putative preganglionic neurons was found 

ventral to the oculomotor nucleus not previously described. At rostral planes, UCN-

positive and preganglionic neurons are found intermingled within the anteromedian 

nucleus.   

The findings of this study may serve as basis for pathological post-mortem studies of 

neurodegenerative diseases affecting the pupillary system as suspected for 

Alzheimer’s disease.  
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ZUSAMMENFASSUNG 

Traditionell wird der Edinger-Westphal-Kern (EW) als Sitz der parasympathischen 

präganglionären Neurone des Ciliarganglions zur Vermittlung der Pupillenkonstriktion 

und Akkommodation der Linse angesehen. Kürzlich wurde jedoch gezeigt, dass dieser 

Kern sich auf zwei verschiedene funktionelle Zellgruppen bezieht. Dementsprechend 

wurde eine neue Nomenklatur eingeführt: Im Menschen besteht der 

zytoarchitektonisch definierte EW aus zentral projizierenden Urocortin-positiven 

Neuronen, die an der Stressfunktion und der Anpassung an Alkoholkonsum sowie dem 

Essverhalten beteiligt sind, somit wurde dieser EWcp genannt. Im Gegensatz dazu 

finden sich die präganglionären Neurone des Ciliarganglions als eine unauffällige 

Gruppe von cholinergen Neuronen dorsal davon, die nun EWpg genannt wird (Kozicz 

et al. 2011).  

In dieser Studie wurde mittels immunhistochemischer Färbung  für 

Cholinacetyltransferase die vollständige Population und Verteilung von cholinergen 

präganglionären Neuronen untersucht und von Urocortin-positiven Neuronen 

abgegrenzt. 

Menschliches Hirnstammgewebe von fünf Fällen wurde in 4% Paraformaldehyd fixiert 

und Blöcke des Mittelhirns wurden in Paraffin eingebettet. 

Serien benachbarter transversaler Mittelhirnschnitte durch den gesamten Bereich des 

Okulomotoriuskern-Komplexes wurden entweder für Cholinacetyltransferase (ChAT), 

Urocortin (UCN) oder nicht-phosphoryliertes Neurofilament (NP-NF) immungefärbt. 

Die Verteilung von ChAT-positiven präganglionären Neuronen und UCN-positiven 

zentral projizierenden Neuronen wurde geplottet. Anhand ihrer zusätzlichen 

Expression von NP-NF-Immunreaktivität, konnten die präganglionären Neuronen von 

Motoneuronen der multipel-innervierten Muskelfasern der äußeren Augenmuskeln 

abgegrenzt werden.  

In Übereinstimmung mit früheren Studien wurden präganglionäre Neurone als 

unauffällige Gruppe dorsal zu Ewcp, über die gesamte Länge der rostralen Hälfte des 

Okulomotoriuskerns gefunden. Daneben wurde eine weitere kleine Gruppe von 

mutmaßlichen präganglionären Neuronen ventral des Okulomotoriuskernes lokalisiert, 

die zuvor nicht beschrieben wurde. In rostralen Ebenen fanden sich UCN-positive und 

präganglionäre Neuronen im Anteromedianen Kern miteinander gemischt. 
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Die Ergebnisse dieser Studie können als Grundlage für pathologische postmortem 

Studien im Zusammenhang mit neurodegenerativen Erkrankungen die das 

Pupillensystem beeinflussen, wie im Fall von der Alzheimer-Krankheit vermutet, 

dienen. 
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I. INTRODUCTION 

I.1. Anatomy and function of the inner eye muscles  

Two important functions are subserved by the inner eye muscles: the pupillary light 

reflex and the lens accommodation. These are controlled by the autonomic nervous 

system (McDougal and Gamlin, 2015). In this study the focus is pointed on the 

parasympathetic function of the intrinsic muscles of the eye: the iris sphincter and the 

ciliary muscle (accommodative apparatus), and their control by the Edinger-Westphal 

nucleus in the mesencephalon (Kardon, 2005).  

I.1.1. The iris sphincter muscle 

The iris sphincter muscle is part of the iris and is responsible for pupillary constriction 

(myosis), thus contributing to the pupillary light reflex with its major function: to 

maximize visual perception while optimizing retinal illumination (Wilhelm, 2011).  

The iris consists of a peripheral ciliary portion and a central pupillary zone, with a 

collarette between those two zones. The sphincter muscle is located at the pupillary 

end of the iris and it is concentrically arranged, which means the muscle cells are 

orientated parallel to the pupillary margin. Farther to the cilliary zone it is bound to a 

connective tissue that continues to the iris dilator muscle. The dilator muscle is 

embedded in the anterior epithelium, which is composed of unique myoepithelial cells. 

The muscle cells are orientated radially from the iris root to the pupillary border and 

their contraction causes pupil dilation (mydriasis) (Kardon, 2005; see Figures 1 and 2). 

I.1.2. The ciliary muscle 

When visual fixation is shifted from a far object to a near one, the ciliary muscle 

modulates the shape of the lens to obtain a clear image of the near object. This reaction 

is termed accommodation and is part of the near response together with the pupillary 

constriction and the convergence of the eyes (McDougal and Gamlin, 2015). 

This muscle is located in the ciliary body which encircles the anterior inner surface of 

the eye as a belt and is continuous with the iris anteriorly, while posteriorly it continues 

with the choroid and with the overlying peripheral retina at the ora serrata (Figure 1). 

The ciliary muscle is subdivided in pars plana and pars plicata, both containing three 

layers: unpigmented ciliary epithelium, pigmented ciliary epithelium and the stroma 

with the ciliary muscle, which consists of circular, radial, and longitudinal muscle fiber 

orientations (Figure 2). 
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Figure 1. Schematic drawing of a sagittal section through the eyeball showing the anatomical 

structures relevant for this study. 

 

 

  Figure 2. Anatomical scheme of a detailed view of Figure 1 (rectangle). 
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I.2. Innervation of the inner eye muscles 

The smooth muscle cells of the inner eye muscles are innervated by nerve fibres of 

the autonomic nervous system, which consists of two components: the sympathetic 

and the parasympathetic system (for review see Gibbins, 2012). Unlike the 

somatoefferent motoaxons that directly innervate skeletal muscle fibres, the autonomic 

efferents consist of a two neuron chain:   

- preganglionic neurons with origin in the CNS, in the visceral efferent nuclei of 

cranial nerves (i.e., parasympathetic) or in the lateral horn of the thoracal spinal 

cord (i.e., sympathetic). 

- postganglionic neurons with origin in one of the ganglia outside of the CNS. 

Preganglionic neurons, both parasympathetic and sympathetic use acetylcholine as a 

neurotransmitter. This substance is also expressed  by the postganglionic 

parasympathetic neurons, while, with some exceptions, the sympathetic 

postganglionic neurons mainly contain the catecholamine norepinephrine 

(Nieuwenhuys, 1985). 

The iris sphincter muscle has at least 20 segments, each innervated in series by 

separate branches of parasympathetic postganglionic nerves from the ciliary ganglion, 

whereas the iris dilator muscle is innervated by sympathetic nerve fibres. The ciliary 

muscle is activated primarily by the mesencephalic, parasympathetic outflow but is 

also influenced by cervical sympathetic outflow (Kardon, 2005). 

Since the present study addresses the organization of the preganglionic neurons in the 

Edinger-Westphal nucleus, only the parasympathetic innervation of the inner muscles 

is described in the following sections, referring to the EWpg (preganglionic neurons) 

and the CG (postganglionic neurons).  

Parasympathetic pathways related to EW nucleus control pupillary constriction and 

lens accommodation (Gibbins, 2012). Two ocular reflexes are related to pupillary 

constriction: the pupillary light reflex and the pupillary near response reflex, the last 

one being additionaly related to accommodation and convergence (McDougal and 

Gamlin, 2015).   

The postganglionic neurons of these pathways are located in the CG. Their 

preganglionic impulses are carried from the EWpg in the midbrain and synapse within 

the CG via the oculomotor nerve (NIII) (Wilhelm, 2011). The CG is an irregular 

structure, which is located in the orbital fat behind the ophthalmic globe (Gibbins, 
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2012). The axons of the postganglionic neurons exit the CG and travel via the short 

ciliary nerves towards the ocular globe to innervate the iris sphincter and the ciliary 

muscle (see Figures 3 and 4). This is the common efferent pathway for both reflexes 

mentioned above.  

The afferent pathway of the pupillary light reflex carries impulses from the retinal cells 

to the pretectal area in the dorsal midbrain via the optic nerve (NII). From the pretectum 

the signal reach the EWpg (Wilhelm, 2011). The afferent inputs of the pupillary near 

response are more complex and involve the visual pathway in the interplay with 

accommodation (for review see McDougal and Gamlin, 2015). However, these two 

reflexes intersect at the EWpg and it is generally accepted that the neurons within 

EWpg drive the pupillary light reflex and the pupillary near reflex, including the lens 

accommodation (McDougal and Gamlin, 2015).  

 

 

 

Figure 3. Schematic drawing of a sagittal view of the human brainstem showing the cutting 

plane for Figure 4. 
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Figure 4. Transverse Nissl-stained section of the oculomotor nucleus complex to demonstrate 

the cytoarchitecture of functional cell groups of the Edinger-Westphal nucleus (EW) with 

preganglionic neurons (EWpg) and central projecting neurons (EWcp). With permission from 

Karger. Adopted from Olszewski, J. (Montreal, QC) and Baxter, D. (Montreal, QC), 

Cytoarchitecture of the Human Brain Stem, 2nd unchanged edition 1982. Copyright 

S. Karger AG, Basel (page 97, modified Figure 4). 

  

I.3. Motoneurons of extraocular muscles 

The motor innervation of the extraocular muscles is controlled by three nuclei areas in 

the brainstem. The motoneurons of the lateral rectus muscle (LR) are located in the 

abducens nucleus (nVI), those of the superior oblique muscle (SO) in the trochlear 

nucleus (nIV) and those of all the other extraocular muscles lie in the oculomotor 

nucleus (nIII)  (Sharpe and Wong, 2005).  

Extraocular muscles present an abundance of different muscle fibre types, which can 

be divided in two main groups by their innervation pattern (Spencer and Porter, 2006): 

twitch muscle fibers innervated by a single en-plaque nerve ending (SIF) and non-

twitch muscle fibers targeted by multiple small en-grappe endings along the whole 

muscle fiber extent (MIF). In accordance with that, two types of motoneurons can be 

distinguished. These motoneurons differ in their location (Büttner-Ennever et al., 



 

 

 16 

2001), their afferent input (Wasicky et al., 2004) and their histochemical properties 

(Eberhorn et al., 2005). Whereas SIF-motoneurons are located within the boundaries 

of the oculomotor (nIII), trochlear (nIV) and abducens (nVI) nuclei and express non-

phosphorylated neurofilaments (NP-NF), MIF-motoneurons lie in the periphery of the 

motonuclei and lack NP-NF (Eberhorn et al., 2005).  

The SIF motoneurons may generate the eye movement, while the MIF motoneurons 

are thought to play a role in controlling the tension in the extraocular muscle during 

vergence and eye alignment during fixation (Büttner-Ennever, 2006; Büttner-Ennever 

and Horn, 2014).  

I.4. Oculomotor nucleus complex 

The oculomotor nucleus complex with its perioculomotor region is composed of 

cytoarchitecturally and functionally different cell groups containing somatic and visceral 

nuclei (Parent, 1996). The nuclei nIII, CCN, NP, EWpg and part of AM consist of 

cholinergic motoneurons, innervating extraocular and inner eye muscles and also the 

levator palpebrae, being related to external stimuli. Whereas the nuclei EWcp and part 

of AM contain peptidergic non-motor neurons projecting centrally and being linked to 

internal stimuli (e.g. stress) (Kozicz et al., 2011).  

The oculomotor nucleus (nIII) constitutes the major component of the oculomotor 

nucleus complex. It contains subgroups of motoneurons supplying 4 extraocular eye 

muscles: the contralateral superior rectus (SR), the ipsilateral medial rectus (MR), 

inferior rectus (IR) and inferior oblique (IO). Their axons travel to the orbit in the 

oculomotor nerve (NIII) (Che Ngwa et al., 2014).  

At caudal level of nIII the caudal central nucleus (CCN) is located between the two 

parts of this nucleus at the midline. It supplies the two levator palpebrae superioris 

muscles which raise both eye lids via the oculomotor nerve (Büttner-Ennever and 

Horn, 2004).  

Also between the two parts of nIII,  but farther rostrally the nucleus of Perlia (NP) can 

be found. This nucleus is present in 80% of humans and its degree of development 

varies from individual to individual (Tsuchida, 1906). The function of NP is not known 

yet, but based on histochemical and morphological properties, its neurons are 

presumed twitch-motoneurons that supply SIFs within extraocular muscles (Horn et 

al., 2008; Che Ngwa et al., 2014). Che Ngwa et al., 2014 brings a new point in, 

suggesting a Calretinin (CR) input to this subgroup and presuming the NP may 
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represent superior rectus muscle SIF motoneurons that were separated from the 

adjacent main nIII by dorsoventrally travelling axons, being involved in upgaze. 

Also part of the perioculomotor region are the cholinergic MIF motoneurons, which 

lack NP-NF and were described around the dorsomedial and ventral border of the nIII 

in human (Horn et al., 2008), but a precise localization and extension is yet unknown.  

Dorsally, dorsomedially and ventrally the nIII is embraced by the traditional Edinger-

Westphal nucleus, which forms a cytoarchitectural entity (Olszewski and Baxter’s, 

1982). This cell group of small densely packed neurons has been considered as the 

preganglionic neurons of the ciliary ganglion for more than 100 years. After the 

discovery of the neuropeptide urocortin and the description of its localization in the EW 

(Vaughan et al., 1995), systematic investigations in different species did reveal the 

dilemma that the cytoarchitecturally defined EW refers to two functionally distinct cell 

groups across species: cholinergic preganglionic neurons that project into the 

periphery via the ciliary ganglion and mediate pupillary constriction and 

accommodation of the lens, and peptidergic neurons that project to other centers within 

the brain and play a role in adaptation to stress, eating habits and alcohol consumption 

(Kozicz et al., 2011). It was also found that the EW in human express immunoreactivity 

for urocortin and not for the expected transmitter acetylcholine (Ryabinin et al., 2005; 

Horn et al., 2008).  

Considering the cytoarchitecture, histochemistry and function of different cell groups 

within the perioculomotor area, a new more specific nomenclature for functional cell 

groups was introduced. This includes the parasympathetic preganglionic neurons, now 

termed EWpg and the UCN-positive centrally projecting neurons, newly termed EWcp 

(Kozicz et al., 2011).  

In order to perform correlated clinico-anatomical post mortem studies of clinical cases 

with neurodegenerative diseases affecting pupillary response, the exact location, 

extent and delineation from other adjacent cell groups is crucial.   
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I.5. Aim of the study 

Based on the recent discover, that the preganglionic parasympathetic neurons for pupil 

constriction and lens accommodation are not located in the classical cytoarchitecturally 

defined EW in human, but are located dorsally as an inconspicuous cell group, which 

was not systematically investigated, the present thesis addresses the following 

questions: 

1. What is the distribution of the complete population of cholinergic preganglionic 

parasympathetic neurons in human? Is there a compact portion of putative 

preganglionic neurons along its caudorostral extension forming the homologue of the 

EWpg in monkey? 

2. What is the spatial relationship between preganglionic neurons of the EWpg and the 

peptidergic neurons of the EWcp throughout the mesencephalon? 

For delineation, series of neighbouring transverse paraffin brainstem sections from 

human control cases were stained with immunoperoxidase methods for the 

visualization of either ChAT or UCN. For the discrimination between MIF motoneurons 

in the periphery of nIII and putative preganglionic neurons, additional neighbouring 

sections were immunostained for NP-NF, which is expressed in preganglionic neurons 

(as SIF-motoneurons), but not MIF motoneurons (Horn et al., 2008).  
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II. MATERIAL AND METHODS 

II.1. Cases  

To investigate the exact topographical location and the complete extent of the EWpg 

in human, paraffin-embedded midbrain sections of five post mortem human control 

cases were used. The cases were obtained 24-72 h after death through the Reference 

Center for Neurodegenerative Disorders of the Ludwig-Maximilians University with 

written consent from next of kin, who confirmed the wishes at time of death. The Local 

Research Ethics Committees approved all procedures. The study is in accordance with 

the ethical standards laid down in the Declaration of Helsinki, 1964.  

The age of the donors ranged from 62-75 years and they had not suffered from any 

neurological diseases. The stage I pathology for Alzheimer’s disease ist still 

considered as control, since no clinical symptoms are evident in this stage. 

Case 1 was a 67-year-old male with rectal cancer, who died of heart failure and, whose 

neuropathological examination showed old infarcts in the right occipital and frontal 

lobe.  

Case 2 was a 75-year-old male with arteriosclerosis, who died of cardiac infarction. 

Case 3 was a 71-year-old male, who died of multiple organ failure due to  cardiogenic 

shock, suffering from congestive heart failure and acute bronchopneumonia. The 

neuropathological examination demonstrated considerable arteriosclerosis with mild 

stenosis of brainstem vessels and mild frontal and temporal lobe atrophy. 

Case 4  was a 75-year-old female, who died of septic shock due to pneumonia. The 

neuropathological examination demonstrated subcortical arteriosclerotic 

encephalopahthy, an old, small infarction in the occipital white matter, considerable 

arteriosclerosis of the cerebral vessels and stage I Alzheimer. 

Case 5 was a 62-year-old male who died of hepatic metastatic pancreatic cancer. 

There were no brain metastases or an hepatic encephalopathy. The neuropathological 

examination revealed small old hemorrhages in the adenohypophysis, arteriosclerosis 

and stage I Alzheimer. 
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Table 1. Human post-mortem paraffin cases used in the study. 

 

II.2. Preparing the sections 

The tissue was immersion-fixed in 4% paraform aldehyde for 7-10 days. Blocks of the 

midbrain were embedded in paraffin and transversal sections (different cutting angles, 

Case 4 with an almost horizontally cutting plane) of 10 µm thickness from Case 1 and 

serial sections of 7 µm and 10 µm respectively of 5 µm, 10 µm and 20 µm thickness 

were cut from Case 2 respectively Case 3, 4 and 5. The sections were then mounted 

on superfrost and gelatine slides. 

 

II.3. Staining 

II.3.1. Nissl-staining 

Nissl stains the rRNA in the ribosoms of neurons and in the surrounding glial cells in a 

purple colour.  

Approximately every 20th transverse paraffin section of immersion-fixed (4% paraform 

aldehyde) human brainstems were Nissl-stained (named after the german 

neuropathologist Franz Nissl, who worked in the Department of Anatomy of the Ludwig 

Maximilians University in Munich), using 0.5% cresyl violet to create an overview of the 

cytoarchitecture.                                                                                                                

II.3.2. Immunostaining 

Neighbouring sections to the Nissl-stained ones were immmunostained with antibodies 

against Cholineacetyltransferase (ChAT), urocortin (UCN) and non-phosphorylated 

neurofilaments (NP-NF). Detection of the primary antibody was revealed by 

Case Age,Gender Cause of death Post-mortem 

delay (hours) 

Fixation duration 

(days) 

1 67, male Cardiogenic 

shock 

24 10 

2 75, male Cardiac infarction 72 10 

3 71, male Cardiogenic 

shock 

24 7 

4 75, female Septic shock 24 2 

5 62, male Pacreatic cancer 24 6 
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biotinylated secondary antibody and extravidin-peroxidase with a subsequent reaction 

of DAB and H2O2 (see staining protocols).  

Immunolabelling for ChAT and NP-NF was used to outline the EWpg motoneurons and 

to distinguish them from the MIF motoneurons, as the UCN-immunoreactivity was used 

to delineate the EWcp. 

II.3.2.1. Antibodies 

Cholineacetyltransferase (ChAT) 

Detection of the cholinergic motoneurons was revealed with a polyclonal ChAT 

antibody raised in goat (AB144P; Chemicon) against the whole enzyme isolated from 

human placenta, which is identical to the brain enzyme (Bruce et al.,1985). The 

antibody was previously used in the paper Horn et al. 2008. 

Urocortin (UCN) 

Peptidergic, urocortin containing neurons were identified with a polyclonal antibody (U-

4757; Sigma, Taufkirchen, Germany), which was raised in rabbit using a synthetic 

peptide corresponding to the C-terminus of human UCN (amino acids 25–40 with N-

terminally added lysine). The pattern of immunostaining is identical to that in other 

descriptions (Vasconcelos et al., 2003; Horn et al., 2008). 

Non-phosphorylated neurofilaments (NP-NF) 

For the detection of non-phosphorylated neurofilaments, a mouse monoclonal antibody 

(IgG1) was used, supplied as a high-titer mouse ascites fluid. The antibody was raised 

against homogenized hypothalami recovered from Fischer 344 rats (Sternberger et 

al.,1982). It reacts with a nonphosphorylated epitope of neurofilament H. This antibody 

was used in previous studies (Sternberger and Sternberger, 1983; Horn et al., 2008). 

 

II.4. Immunoperoxidase procedure 

After deparaffinization in Xylene, rehydratation in decreasing concentrations of alcohol 

(100%, 96%, 90% and 70%) and being shortly rinsed in distilled water, the brainstem 

sections were boiled in 0.01 M sodium citrate buffer pH 8.5 - 9 in a water bath at 80°C 

for 15 minutes (Jiao et al., 1999). Then, for another 15 minutes incubated at room 

temperature, before being washed in 0.1 M Tris-Buffered-Saline (TBS; pH 7.6) and 

treated with 1% H2O2 in 0.1 M TBS for 30 minutes to eliminate endogenous peroxidase 

activity causing background staining. Next, the sections were washed again with TBS, 

http://onlinelibrary.wiley.com/doi/10.1002/cne.21598/full#bib9
http://onlinelibrary.wiley.com/doi/10.1002/cne.21598/full#bib106
http://onlinelibrary.wiley.com/doi/10.1002/cne.21598/full#bib97
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before preincubating with 5% normal goat serum (for UCN), normal rabbit serum (for 

ChAT), or normal horse serum (for NP-NF) in 0.3% Triton in 0.1 M TBS for 1 hour at 

room temperature. After this, the brainstems were treated either with rabbit anti-UCN 

(1:6,000), goat anti-ChAT (1:50) or mouse anti-NP-NF (1:5,000) and incubated at 4 °C 

for 48 hours. After being washed in 0.1 M TBS, the sections were incubated in either 

biotinylated goat anti-rabbit IgG (1:200), biotinylated rabbit anti-goat (1:200), or 

biotinylated horse anti-mouse IgG (1:200) at room temperature for 1 hour, followed by 

three washes in 0.1 M TBS and a 1-hour incubation in extravidin-peroxidase (1:1,000; 

Sigma) at room temperature. After two washes in 0.1 M TBS pH 7,4 and one wash in 

0.05 M TBS pH 7,6 the antigenic sites were visualized by a reaction of 0.025% 

diaminobenzidine and 0.015% H2O2 in 0.05 M TBS pH 7,6 for 10 minutes. After 

completion of the chromogen reaction, the sections were washed three times in TBS 

and briefly rinsed in distilled water, air dried, dehydrated in increasing concentrations 

of alcohol (70%, 90%, 96% and 100%) and in Xylene and coverslipped in Depex 

(Serva, Heidelberg, Germany). 

Sources and Dilutions of the antibodies used in the study 

 

 

 

Table 2 and 3. Overview of the primary and secondary antibodies, sources, and dilutions used 

for immunoperoxidase labelling. 

 

Primary antibody Manufacturer and Cat. No. Dilution 

Polyclonal  goat anti - Choline 

Acetyltransferase / Gt - ChAT 

Chemicon, AB-144P 1:50 

Polyclonal rabbit anti - Urocortin / Rb-Urn Sigma, U-4757 1:6000 

Monoclonal mouse anti - Neurofilament H 

Non-Phosphorylated / Ms-SMI32P 

Sternberger, SMI-32P 1:5000 

Secondary biotinylated antibody Manufacturer and Cat. No. Dilution 

Rabbit anti-goat Vector, BA-5000 1:200 

Goat anti-rabbit Vector, BA-1000 1:200 

Horse anti-mouse Vector, BA-2001 1:200 
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II.5. Analysis of stained sections  

Immuno- and Nissl-stained histological sections were scanned with a slide scanner 

(Mirax Midi, Zeiss) at 20x magnification. The digitized images were then evaluated and 

processed on the computer screen with the Panoramic Viewer software (version 

number 1.15.2). Overview and detailed photographs were taken from the digitized 

images using this software.  

For plotting, low magnification photographs of the sections were taken with a digital 

camera (MBF Bioscience, Imaging Q38232) mounted on a light microscope (Zeiss, 

Axioplan). The digitized images were stored on a computer and then analysed using 

an image editing program (Adobe Photoshop Software 6.0.). The sharpness, the 

contrast and the brightness were adjusted until the image on the computer screen 

corresponded exactly to the image seen through the microscope. 

In neighbouring sections the ChAT- and UCN-positive neurons in the perioculomotor 

area and within AM were plotted using a drawing software (CorelDraw version 11.0, 

Corel Coperation, 2002). The same drawing software was used for the preparation of 

all schemes as well as for the layout and labelling of the figures.  
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III. RESULTS  

III.1. Cytoarchitecture of the oculomotor nucleus complex in human 

The oculomotor nucleus (nIII) is located in the tegmentum of the midbrain, ventral to 

the gray matter and the cerebral aqueduct at the level of the superior colliculus. It 

extends from the rostral pole of the trochlear nucleus (nIV) to the unpaired portion of 

the nucleus of Edinger-Westphal, the anteromedian nucleus (AM) (Olszewski and 

Baxter’s, 1982), a average distance of approximately 3 mm (see Table 5). 

On cross-sections at caudal levels of the nIII the unpaired caudal central nucleus 

(CCN) overlies the paired nIII at the midline (Figure 5A,B). The motoneurons of CCN 

are similar, but smaller than those of nIII. Farther rostrally at mid-levels of nIII the 

unpaired nucleus of Perlia (NP) appears at the midline between the two nIII (Figure 

5C). The charachteristics of the NP-cells are similar to those in nIII featuring prominent 

Nissl-bodies, but are smaller and spindle-shaped neurons (Büttner-Ennever and Horn, 

2014).  

Dorsal, dorsomedial and ventral to nIII the components of the cytoarchitecturally 

outlined Edinger-Westphal nucleus (EW) (Olszewski and Baxter’s, 1982), which 

corresponds to the central-projecting EW (EWcp) (Kozicz et al., 2011), can be 

delineated (Figure 5B,C,D,E). Coming from caudal, at the level of the rostral end of 

CCN, in close proximity to the dorsal border of both nIII, the EWcp appears (Figure 

5B). At mid-levels, the EWcp appears as two separate groups, a lateral (Figure 5B) 

and a medial part (Figure 5C). Up to the rostral end of the nIII, the main nuclei are 

comprised by the EWcp, appearing as a conspicuous group dorsally with a small 

ventral prolongation (Figure 5D). 

The two parts of EWcp merge at more rostral levels and extend into the area of the 

anteromedian nucleus (AM) (Figure 5E,F). At levels rostral to nIII only the small cells 

of the AM are visible (Figure 5F). These neurons have a similar morphology to those 

of the EWcp as they form a rostral extension of this nucleus.  

In Nissl-staining, no compact cell group representing preganglionic neurons of the 

EWpg is visible. At close inspection some larger neurons with a motoneuron-like 

morphology (Figure 6A) are found scattered dorsal to nIII, which could represent the 

EWpg.   
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Figure 5. For orientation and demonstration of the cytoarchitecture, 

this figure shows a series of Nissl-stained transverse sections through 

the oculomotor nucleus complex from caudal to rostral to create an 

overview of the perioculomotor cell groups and their topographical 

relation. 
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III.2. Delineation of EWpg and EWcp by ChAT- and UCN-immunostaining 

Using immunohistochemical markers such as ChAT and UCN, the perioculomotor cell 

groups of interest could be identified and distinguished from each other and from nIII 

by differences in their histochemical properties and their morphology (see Figure 6 and 

Table 4). Parasympathetic preganglionic neurons of the EWpg are ChAT-positive 

(Figure 6A,B), neurons in the EWcp are UCN-positive and show densly packed UCN-

positive granules in their cell bodies (Figure 6C,D). The ChAT-positive motoneurons of 

extraocular muscles in nIII have a similar morphology to the preganglionic neurons in 

the EWpg, but the neurons within EWpg are smaller (compare Figures 6A,B with 6E,F). 

Further more the ChAT-positive, plump neurons within EWpg and nIII are relative 

isolated (Figure 6A,B,E,F) compared to the UCN-positive neurons within EWcp, which 

are densly grouped and have a more oval shape (Figure 6C,D). 

The UCN-positive neurons, specifically labelled the neurons within the EWcp (Figure 

7A,B; 9A,B) and AM (Figure 11A,B) as seen in Nissl-stainings. This includes a large 

group dorsal to the ChAT-positive neurons of nIII and a small group ventral to nIII 

(Figure 7B; 9B), as also the peptidergic neurons within AM (Figure 11B).  

Neighbouring sections to the UCN-labelled sections, immunostained for ChAT, show 

some cholinergic neurons scattered within the perioculomotor region (Figure 7C; 9C) 

and also intermixed with the peptidergic neurons within the AM (Figure 11C). 

These ChAT-positive neurons cannot be assigned to a cytoarchitectural entity in Nissl-

stained sections and could represent parasympathetic preganglionic motoneurons of 

the ciliary ganglion (EWpg) or MIF motoneurons. 

 



 

 

 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Detailed views of the morphology and immunostaining of the EWpg-, EWcp-group 

and of the nIII. Both, the motoneurons within nIII (E, F) and the preganglionic neurons in 

EWpg (A, B) contain prominent, clear Nissl bodies, express ChAT-immunoreactivity and the 

individual neurons are relative isolated (compare A, B and E, F). In contrast, the densly 

arranged neurons in the EWcp have a prominent nucleus and the Nissl-substance is packed 

in clumps near the periphery of the somata (C). The EWcp neurons are not cholinergic, but 

express UCN (D). 
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III.3. Delineation of EWpg from MIF motoneurons by NP-NF-immunostaining 

As the cholinergic neurons of the EWpg, the MIF motoneurons are also located in the 

perioculomotor region. These two groups can be distinguished from each other by NP-

NF-immunostaining, which is expressed in EWpg neurons, but not in MIF motoneurons 

(see Table 4) (Horn et al., 2008). Therefore neighbouring sections stained for either 

ChAT or NP-NF were analysed for colabelling to identify the EWpg neurons.  

Besides the classical cholinergic motoneurons of extraocular muscles within nIII, 

additional cholinergic cell groups were found dorsal to the UCN-positive neurons of the 

EWcp (Figure 7C; 9C),at the midline between both nIII (Figure 9C) and ventral to the 

ventral UCN-positive group of EWcp (Figure 7C; 9C). The close inspection of all these 

peripheral ChAT-positive neurons for the expression of NP-NF in adjacent sections 

revealed that all ChAT-positive neurons dorsal to the UCN-positive neurons of the 

EWcp were NP-NF-positive and therefore considered as preganglionic neurons of the 

EWpg (Figures 7A,C,D; 8A,B; 9A,C,D; 10). In addition, the cholinergic neurons within 

the cell group ventral to the ventral extension of the UCN-positive EWcp group (Figure 

7C,D; 8C,D; 9A,C,D; 10) also express NP-NF-immunoreactivity, and are therefore 

considered as preganglionic neurons.  

The group of smaller ChAT-positive neurons between the nIII and at the dorsomedial 

border of nIII did not express NP-NF-immunoreactivity (Figure 7C and 9C arrows), and 

were therefore considered as MIF motoneurons. 

At rostral levels ventral to nIII the UCN- and ChAT-immunoreactive neurons appear 

intermingled within the cytoarchitecturally outlined AM (Figure 11A,B,C). The close 

analysis of the cholinergic neurons in adjacent sections stained for NP-NF revealed 

that these represent putative preganglionic neurons as well (Figure 11C,D; 12A,B).  

 

 

 

Table 4. An overview of the markers expressed by the different cell groups within the 

oculomotor nucleus complex. 

 

 

 

Stain EWpg EWcp nIII MIF 

ChAT + - + + 

UCN - + - - 

NP-NF + - + - 
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Figure 7. Photographs of neighbouring sections (asterisks in corresponding 

blood vessels are serving as landmarks) at a rostral level of nIII, corresponding 

to Figure 14 plane E and stained for Nissl, UCN, ChAT and NP-NF to show the 

cytoarchitecture (A) and the delineation of EWpg from EWcp (B,C) and MIF 

neurons (C,D). Extraocular muscle motoneurons within nIII and inner eye 

muscle preganglionic neurons within EWpg are ChAT- (C) and NP-NF-positive 

(D), MIF motoneurons are ChAT-positive and lack NP-NF (see arrow in C), 

neurons of the EWcp are UCN-positve and lack ChAT and NP-NF (B). The 

squares in C and D mark detailed views of the dorsal and ventral group of EWpg 

seen in Figure 8. 
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Figure 8. Detailed views of EWpg dorsal group (A,B) and ventral group (C,D) from 

Figure 7C and D (rectangles), showing double labelled neurons (arrows) for ChAT 

(A,C) and NP-NF (B,D) in adjacent sections (sections B and D are 10 μm caudal 

to A and C). For clarity corresponding blood vessels are taged by asterisks in the 

respective photograph pairs (A and B; C and D). Supplementary immunoreactivity 

for NP-NF assures that these neurons are representing preganglionic neurons of 

the ciliary ganglion and not MIF motoneurons. 
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Figure 9. Photographs of neighbouring sections (asterisks in corresponding 

blood vessels are serving as landmarks) farther rostral to the sections in Figure 

7, corresponding to Figure 13 plane E, stained for Nissl, UCN, ChAT and NP-NF 

to show the cytoarchitecture (A) and the delineation of EWpg from EWcp (B,C) 

and MIF neurons (C,D). Extraocular muscle motoneurons within nIII and inner 

eye muscle preganglionic neurons within EWpg are ChAT- (C) and NP-NF-

positive (D), neurons of the EWcp are UCN-positve and lack ChAT and NP-NF 

(B).  

ChAT-positive, NP-NF-negative neurons in the immediate vicinity of the 

dorsomedial border of nIII (see arrows in C) may represent neurons of the MIF 

group.  

 

 

 

 

EWcp appearing as a conspicuous group dorsally with a small ventral 
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Figure 10. Photograph of a transverse section through the oculomotor  nucleus 

complex at rostral level of nIII, immunostained for NP-NF and counterstained for 

Nissl to illustrate the dorsal and the ventral EWpg group. The strong NP-NF-

immunoreactivity support the assumption that these neurons represent the 

preganglionic neurons - EWpg. 
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Figure 11. Photographs of neighbouring sections (asterisks in corresponding 

blood vessels are serving as landmarks) farther rostral then nIII, at the AM level, 

stained for Nissl, UCN, ChAT and NP-NF to show the cytoarchitecture (A) and 

the exact content of the AM. The sections illustrate UCN-positive neurons (B) 

intermingled with ChAT- (C) and NP-NF-positive (D) neurons and demonstrate 

that the cholinergic neurons within AM are representing parasympathetic 

preganglionic neurons of the ciliary ganglion. 

The squares in C and D mark detailed views of the neurons within AM seen in 

Figure 12. 
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Figure 12. Detailed views of AM from Figure 11C and D (rectangles), showing 

double labelled neurons (arrows) for ChAT (A) und NP-NF (B) in adjacent 

sections (section A is 5 μm caudal to B). For clarity corresponding blood vessels 

are taged by asterisks. Supplementary immunoreactivity for NP-NF assures that 

the cholinergic neurons within AM are representing preganglionic neurons of the 

ciliary ganglion. 

 

 

 



 

 

 35 

III.4. Complete population of the preganglionic neurons of EWpg in human 

Using the above described characteristics for each functional cell type, the complete 

distribution of preganglionic neurons in the EWpg in relation to the UCN-positive 

neurons of the EWcp was determined by plotting the different cell types at several 

transverse planes from caudal to rostral (Figures 13 and 14).  

Coming from caudal the first individual ChAT-positive neurons of EWpg appear dorsal 

to EWcp at mid-level of the nIII, when the CCN is about to disappear at its rostral end 

(Figure 14B). This is better seen in Case 2, wherease in Case 1 the cutting angle was 

different, and did not hit the CCN (see sagittal views of the oculomotor nucleus complex 

in Figures 13 and 14). Towards rostral levels, the ChAT-positive neurons of EWpg 

extend as an inconspicuous group over the whole extent of the underlying EWcp 

(Figure 13B-E and 14B-F). The scattered cholinergic putative preganglionic neurons 

lie always dorsal to the UCN-positive neurons of the EWcp. But at levels through the 

rostral half of nIII, the neurons within EWpg are also found ventral to the ventral 

extension of the UCN-positive neurons within EWcp, as an additional consistent small 

group of cholinergic neurons (Figure 13D,E; 14E,F).  

At the rostral pole of nIII, the cholinergic EWpg neurons intermingle with the UCN-

positive neurons and are assigned to the anteromedian nucleus (AM), but are also 

spilled out dorsally to the boundaries of this nucleus (Figure 13F and 14G). The AM 

appears as two dorsoventrally oriented cell columns on either side of the midline, which 

merge to an unpaired column more rostrally (Figure 13F and 14G).  

The UCN-positive neurons are confined to the EWcp and AM nuclei as described 

above but are also spilled outside their borders (Figure 13A-F; 14A-G).  

The EWpg extends over a caudo-rostral average distance of approximately 2 mm (see 

Table 5). 

Case EWpg nIII 

1 1900 μm 2740 μm 

2 2352 μm 3248 μm 

3 2320 μm 3000 μm 

4 1200 μm 1800 μm 

5 2000 μm 3200 μm 
 

Table 5. Validation of the extension of EWpg – analysing ChAT and UCN sections from caudal 

to rostral levels and notating the number of the slide at caudal level starting with the first 

apearence of cholinergic motoneurons located behind the urocortin-positive neurons. At rostral 
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level the EWcp and EWpg are intermingled to AM, here notating the slide number where there 

are almost no cholinergic motoneurons to see.  

Validation of the extension of nIII – analysing Nissl and ChAT sections from caudal to rostral 

levels and notating the number of the slide where nIII first appears at caudal levels and the 

number of the slide where it disappears at rostral levels. 

The variable results rely on the different cutting angle throughout the cases and the 

fragmentary Case 1 (i.e. Case 4 is almost horizontally cut, Case 1 ends at caudal level at slide 

number 529 where nIII can be still seen, so nIII should be larger in Case 1).  
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Figure 13 and 14. Schematic drawings of sagittal views of the oculomotor nucleus complex, 

showing transverse cutting planes from caudal to rostral with the distribution of UCN- and 

ChAT-positive EW neurons. Each dot represents a labelled cell for either ChAT (red) or UCN 

(green). The ChAT-positive motoneurons of nIII were not plotted, only the boundaries of this 

nucleus were drawn.  
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Figure 14. 
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IV. DISCUSSION 

IV.1. Edinger-Westphal nucleus 

Because of discrepancy along species the term EW was kept for illustrations, found on 

the nucleus defined by its cytoarchitecture in Nissl-stainings (Olszewski and Baxter’s, 

1982), but it was augmented by the suffixes “pg” referring to preganglionic, i.e. EWpg 

and “cp” for central projecting, i.e. EWcp to point out the main population that it consists 

of (Kozicz et al., 2011). 

However in human, unlike in monkey and bird, where the preganglionic neurons of the 

ciliary ganglion are located within the circumscribed EW, the preganglionic 

motoneurons are located outside the borders of the Edinger-Westphal nucleus, 

whereas the neurons within this nucleus are peptidergic, expressing urocortin-1 

(Ryabinin et al., 2005; Horn et al., 2008, 2009). There are many different types of 

urocortin (Ryabinin et al., 2005), in the following it is about urocortin-1, which for the 

abbreviation UCN will be used for simplicity. UCN is an endogenous ligand for the 

corticotrophin-releasing factor receptors CRF-1 and CRF-2, and it is involved in the 

regulation of many behaviors, including anxiety, food intake, alcohol consumption and 

stress (Gaszner et al., 2004; Pan.W. and A.J.Kastin., 2008; Giardino et al., 2011; Xu 

et al., 2012). The UCN-positive EW lacks cholinergic markers, which is seen as 

evidence that it does not contain preganglionic neurons of the ciliary ganglion 

(Ryabinin et al., 2005; Horn et al., 2008, 2009).  

But where exactly are the parasympathetic preganglionic neurons responsible for 

pupillary constriction and lens accommodation located in human?  

Ryabinin et al., 2005 suggested that the EWpg population consists of a compact group 

of ChAT-positive neurons within the dorsomedial nIII. Horn et al., 2008 controversed 

Ryabinins suggestion, commenting that this group shows more of the features of 

extraocular motoneurons and may represent the B-group of medial rectus 

motoneurons (Büttner-Ennever and Akert, 1981; Büttner-Ennever, 2006). They 

proposed a consistent group of ChAT-positive neurons located dorsally to the UCN-

positive neurons, to be related to the EWpg. These were considered the preganglionic 

neurons of the ciliary ganglion, based on their similar morphology and histochemical 

properties with those in monkey (Horn et al., 2008). 
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IV.2. Complete extent of the EWpg-population 

For the first time, the precise localization and the complete extent of the preganglionic 

motoneurons of the ciliary ganglion was assessed in human, based on staining 

characteristics similar to those observed in monkey, namely the presence of ChAT- 

and NP-NF-positive neurons without perineuronal nets (Horn et al., 2008). 

Related to lesion and tracing studies in monkey the preganglionic motoneurons 

supplying the ciliary ganglion are located in the Edinger-Westphal nucleus (Warwick, 

1954), this being certified by latest studies (Ostrin and Glasser, 2007; May et al., 2008; 

McDougal and Gamlin, 2015). This nucleus was termed according to its first 

descriptors Edinger (1885) and Westphal (1887), who are credited with the discovery 

of paired cell groups of small cells, dorsomedial to the main oculomotor nucleus, based 

on human studies. Olszewski and Baxter (1982) defined this nucleus in Nissl-stained 

sections as a circumscribed cell group dorsomedial to the oculomotor nucleus (nIII) 

with a ventral extension.  Perlia (1889) confirmed these findings, describing in addition 

a median group of similar small nerve cells, the antero-median nucleus (AM), situated 

at the rostral end of the nIII. The AM is considered as a rostral prolongation of the 

traditional EW by some authors (Brouwer, 1918; le Gros Clark, 1926; Adler, 1933), 

because of the presence of preganglionic neurons of the ciliary ganglion and the similar 

cytomorphology (Warwick, 1954). But there is insufficient evidence of the real cellular 

content of the AM in human (Horn et al., 2008). 

Surprisingly, the originally suspected function of the nucleus Edinger-Westphal was 

never further questioned, even if researchers, such as Olszewski and Baxter (1982) 

stated that the evidence for the role of EW in pupillary constriction and accommodation 

is scanty. This, presumably also because in non-human primates the preganglionic 

neurons are actually located in the traditionally EW, as shown by tracer experiments 

(May et al., 2008b). But only in some species, such as monkey (Akert et al., 1980; 

Burde and Loewy, 1980; Sun and May, 1993) or bird (Gamlin and Reiner, 1991; Reiner 

et al., 1991; Cavani et al., 2003), the cytoarchitecturally delineated EW really contains 

the preganglionic neurons.  

In contrast to monkey, where the preganglionic neurons of the ciliary ganglion are 

confined to the traditional cytoarchitecturally defined EW (May et al., 2008a; Horn et 

al., 2008), in human the EWpg motoneurons lie scattered along the dorsal and the 

ventral aspect of the EWcp respectively nIII, but do not form a clearly delineated 
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nucleus. Moreover the EWpg is not subdivided, it forms a unitary caudorostral 

population of dispersed motoneurons, but it extends within the AM and dorsal to it.  

This findings are consistent with observations in previous studies which described the 

EWpg population dorsal to the EWcp (Horn et al., 2008, Horn et al., 2009; Kozicz et 

al., 2011). Also in accordance with the results of the present study is the suggestion of 

Horn and colleagues (2008) that the cholinergic population within the human AM most 

likely represent preganglionic neurons.  

Furthermore the present study revealed another small group of ChAT-positive neurons 

ventral to EWcp respectively nIII, which was not described before. Since these neurons 

show an additional expression of NP-NF, they do not represent MIF motoneurons 

(Horn et al., 2008) and therefore are here considered part of the EWpg population. 

Previous studies in cat have shown a similar distribution of preganglionic neurons, 

dispersing dorsal and ventral to nIII (Erichsen and May, 2002; May et al., 2008a).  

At caudorostral levels of the nIII the cholinergic neurons of the EWpg are clearly 

separated from the adjacent UCN-positive neurons of the EWcp, but rostral to nIII, both 

populations are intermingled, the part usually assigned to as AM.  

An extension of the EWpg neurons within the AM was also seen in monkey and cat 

(May et al., 2008a). But in the AM of monkey the preganglionic neurons were 

concentrated in the medial part and enveloped by the UCN-positive neurons (May et 

al., 2008a). In the cat, the EWpg neurons were found in the AM together with UCN-

positive neurons, but also extended lateral and dorsal to this nucleus (May et al., 

2008a). In the AM of man, the populations of ChAT- and UCN-positive neurons exhibit 

a complete territorial overlap.   

 

IV.3. EWpg and EWcp different cell populations with common inputs?  

The separation of neurons of the EWcp and EWpg at caudal planes and the mixing of 

both populations at rostral planes seem to be a general feature in all vertebrate species 

(Vasconceos et al., 2003; Weitemier et al., 2005; Horn et al, 2008; May et al., 2008a). 

This distribution pattern could indicate different inputs to both populations at caudal 

planes. This has been shown for afferent inputs from the central mesencephalic 

reticular formation (cMRF), that target primarily the preganglionic neurons, but not the 

UCN-positive neurons of the EWcp (May et al., 2016). Since the cMRF also targets 

medial rectus motoneurons active during vergence, this input may control the near triad 
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(Bohlen et al., 2016). On the other hand at rostral planes in the anteromedian nucleus, 

UCN-positive and cholinergic preganglionic neurons may receive afferents from a 

common source. A strong input to preganglionic neurons in the EWpg and 

anteromedian nucleus was found to derive from orexinergic neurons in the 

hypothalamus, which may control the accommodation and the pupillary system during 

wakefulness (Schreyer et al., 2009). It is not clear whether orexinergic neurons target 

only preganglionic neurons, since the UCN-positive neurons were not investigated 

(Schreyer et al., 2009).    

Bakes and colleagues (1990) affirm in their study where they see diminished miotic 

responses to light in anxious patients that “a possible explanation for the attenuation 

of the light reflex in anxious patients may lie in the influence of higher centres on the 

Edinger-Westphal nucleus”, suggesting that the findings may be consistent with a 

tonically enhanced level of supranuclear inhibition of the Edinger-Westphal nucleus. 

Knowing that the EWcp is related to stress-, depression- and anxiety-like behavior 

(Kozicz et al, 2011) and that according to the present findings its neurons are 

intermingled with the preganglionic neurons within the AM, it is more likely that these 

different populations share inputs and that this is one reason for diminished miotic 

responses to light in anxious patients. Moreover, several studies indicate that changes 

in pupillary response are related to psychiatric diseases, such as anxiety, major 

depressive disorder and related mood disorders (Fiedorowicz et al., 2012; Roecklein 

et al., 2013; Graur and Siegle, 2013; Laurenzo et al., 2016).  

Put on the fact that the EWcp plays a role in alcohol- and addictive drugs-consumption 

and several studies are discussing a diminished pupillary light reflex in this cases 

(Lobato et al., 2013; Hall and Chilcott, 2018), the presumption of an interaction 

between preganglionic neurons mediating pupillary constriction and the UCN-positive 

neurons within AM sounds plausible and should be entertained in further studies. 

Another finding that also steers in this direction, not only correlated to the pupillary 

response but also to the lens accommodation, is a finding by Campbell and his 

colleagues (2001), who affirm that chronic alcohol use can adversely affect subjective 

static accommodation and also cause slight mydriasis. So, if we assume that the 

pupillary and ciliary components of the human Edinger-Westphal nucleus are similar 

to those in cat, namely the rostral portion of the preganglionic population of the ciliary 

ganglion within and around AM is related to pupil constriction, as more caudal 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161673/#R6
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populations are responsible for lens accommodation (Erichsen and May, 2002), then 

this suggests that there might be a common input also at caudal levels where EWpg 

and EWcp population are segregated and do not intermix.  

 

IV.4. EWpg, EWcp and neurodegenerative diseases 

Findings that suggested that the traditional defined EW shows noticeable degenerative 

changes in Alzheimer patients have led researchers to the conclusion that the pupil 

reflex should be tested for its ability to detect early signs of this degenerative disease 

(Scinto et al. 1991; Scinto et al. 2001).  

But this was obviously an erroneous deduction since the population of neurons that 

was apparently a preferential target for early tau-load in Alzheimer’s disease (Rüb et 

al., 2001), was actually part of the EWcp, not EWpg. But the fact that the EWcp 

contains peptidergic neurons that are involved in various functions and habits, such as 

anxiety and stress responses or regulation of alcohol and food consumption (Ryabinin 

et al., 2007; Kozicz et al. 2007; Kozicz et al. 2011) may then explain psychiatric 

syndromes, such as mood swings or depression in Alzheimer's patients (Swaab et al., 

2005; Magri et al., 2006; Ryabinin et al., 2012).  

Despite the earlier erroneous assumption, pupillary responses are more and more 

used as biomarkers in neurological diseases such as Alzheimer’s disease. The early 

detection of this disease would allow prompt interventions and a chance to preserve a 

salubrious brain function (Bittner et al., 2014; Frost et al., 2013a; Frost et al., 2013b). 

This indicates again that there must be some common input or that the damage to the 

EWcp population may also somehow affect the parasympathetic fibers arising from the 

EWpg. Therefore it would be interesting to see, if there is also a damage to the UCN-

positive neurons within AM and if so, if the tau-pathology also affects the cholinergic 

neurons, or whether the changes to pupillary response are due to the involvement of 

a central cholinergic deficit (Fotiou et al., 2009). 

V. CONCLUSION  

In summary this study provides a full anatomical description of the exact localization 

and the complete extent of the EWpg in human.  

The inconspicuous cell group of the EWpg extends from mid-level of nIII and overtops 

it rostrally to continue within the AM, intermingling with the compact, UCN-positive 
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neuron population of the EWcp, a caudorostral extension of approximately 2 mm. 

EWpg forms a unitary caudorostral population, in which numerous ChAT- and NP-NF-

labelled neurons are scattered dorsal and ventral to the EWcp respectively nIII, with 

the exception that rostral to nIII it extends into the AM and has occasional outliers 

dorsal to this nucleus. 

The dispersed neurons of the EWpg terminate within the AM, but the UCN-population 

extends farther rostrally, and its complete extension remains to be evaluated by 

upcoming reviews. Also the size of preganglionic neuron populations mediating 

pupillary response and lens accommodation remains to be studied.  

Besides, even though the EWpg and EWcp populations show different distribution 

patterns, they may have considerable overlap in their dendritic fields and some overlap 

in their somatic distribution. The possibility that these distinct populations share inputs 

and maybe even a grade of common function must be considered in the future (May 

et al., 2008a). Moreover, the degree of coexpression of ChAT- and UCN-positive 

neurons within the AM remains to be explored. 

Since in neurodegenerative diseases, such as Alzheimer, the neurons of the EWcp 

are a prefered target of tau-pathology, but not the preganglionic neurons of EWpg as 

anticipated earlier, upcoming reviews of Alzheimer patients regarding the tau-

pathology observed in the EWcp, should consider that the preganglionic neurons are 

not situated within this nucleus, instead they can be found dorsal and ventral adjacent 

to it.  

Since the number of research groups studying change in pupil responses related to 

different diseases is increasing, as is the number of publications, the accurate 

knowledge about the location of pupil circuitry helps to interprete clinical findings or the 

topological diagnosis. So in clinical disorders, changes in accommodation and pupil 

size can now be correlated with the appropriate functional cell group in its complete 

extension. 

In conclusion the present study provides the neuroanatomical basis for clinico-

pathological post-mortem analysis addressing the EWpg in cases with pupillary or 

accommodation dysfunction. 
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Attachment to materials and methods 

Nissl-staining 

Colour solution: - 0.5% cresyl violet Bayer Leverkusen + 100 ml distilled water pH 

7,4 

*Deparaffinization and rehydration  

 - 15 min. in Xylene 
- 15 min. in fresh Xylene 

  
- 10 min. in 100% alcohol 

 - 10 min. in 96% alcohol 
 - 10 min. in 90% alcohol 
 - 10 min. in 70% alcohol 
 

- rinse shortly in distilled water   

*Colour 

- 0.5% cresyl violet solution for 5 - 10 min. 

- sections shortly washed in distilled water 

*Dehydration 

- 5 min. in 70% alcohol 
 - 5 min. in 90% alcohol 
 - 5 min. in 96% alcohol 
 - 5 min. in 100% alcohol 

 
- 15 min. in Xylene 
- 15 min. in fresh Xylene 

  
*Coverslip 
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Immunostaining for choline acetyltransferase - ChAT  

Antibody: 
 
Polyclonal goat anti-choline Acetyltransferase = Chemicon, AB144P (-20°C) 
 
Instructions: 

Day 1.  

*Pretreatment: 

*Deparaffinization and rehydration of the sections 

 - 15 min. in Xylene 
- 15 min. in fresh Xylene 

  
- 10 min. in 100% alcohol 

 - 10 min. in 96% alcohol 
 - 10 min. in 90% alcohol 
 - 10 min. in 70% alcohol 
  

- rinse shortly in distilled water   
 
Water bath (80°C) for antigen retrieval in formalin-fixed paraffin sections (Jiao 
et al., 1999) 
 
Midbrain sections were incubated for 15 minutes in 0.01 M sodium citrate buffer pH 

8.5 – 9 (sodium citrate [tribasic: dihydrate] (C6H5Na3O7.2H2O) 2,94g in 900 ml 

distilled water and titrated with 0.1M sodium hydroxide (2M NaOH : 8g NaOH dissolved 

in 200 ml distilled water) to a pH of pH 8.5 – 9 and filled up to 1000 ml distilled water), 

whose temperature (80°C) was maintained by a surrounding water-bath. The water 

bath was heated in a conventional oven and the temperature (+80°C) was monitored 

with a thermometer. After heating treatment the sections were cooled to room 

temperature (RT) before continuing the next steps. 

 
* 0,01M sodium citrate buffer  pH 8,5........................15 min in water bath at +80°C  

 
(water bath at 80°C turned on 30 min. beforehand, solution in special plastic cuvette)  
 
* cool down in citrate buffer.............................................................15 min at RT 
 
* 1x 0,1M TBS pH 7,6................................................................................5  min 

* 2x 0,1M TBS pH 7,6................................................................................5  min 
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* Suppression of endogenous peroxidase activity....................................30 min 
    

1% H2O2 in 0,1M TBS  
 
* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 
 
* Preincubation.......................................................................................1h at RT  
   

[5% Normal Rabbit Serum + 0,3% Triton in 0,1M TBS pH 7,4] 
           
* Primary antibody:…......................................................................48 h at 4°C 
     

goat anti-ChAT 1:50 
 
  [in 5% Normal Rabbit Serum + 0,3% Triton in 0,1M TBS pH 7,4]   
 
Day 2. 
  
* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 
 
* Biotinylated secondary antibody:.........................................................1h at RT 

  
biot. Rabbit anti-Goat  1:200   
 

[in 0,1M TBS + 2% bovine serum albumin (TBS-RSA)] 
      

* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 
 
* EAP - extravidin peroxidase - prepared 30 min before usage.............1h at RT 

  
 EAP = Extravidin-Peroxidase 1:1000  
 
[in 0,1M TBS + 2% bovine serum albumin (TBS-RSA)] 
   

* 2 x 0,1M TBS pH 7,4..........................................................................je 10 min 
 
* 1x 0,05M TBS pH 7,6…..........................................................................10 min 
 
*DAB reaction: .............. no direct light radiation on the sections.............10 min 
 

 0,025% DAB + 0,015% H2O2 in 0,05M TBS pH 7,6 

 
Solution A = 40 mg ammonium nickel in 20ml 0,05M TBS pH 7,6 to be 

optimally filtered 
 

Solution B =  0,025% DAB = 0,5 ml von 1% DAB – stock solution in solution 
A 

 
End-solution C = 10 µl  30% H2O2 in solution B  
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* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 

* Distilled water...........………………………………....….……………………5 min 

* Allow to dry 

* In series of alcohol 70, 90, 96, 100%..........................................each for 5 min 

* 3x Xylene…………….........………...…………....2x for 5 min und 1x for 15 min 

* Coverslip 

Immunostaining for non-phosphorylated neurofilaments  – NP-NF  

Antibody: 

Monoclonal mouse anti - non-phosphorylated neurofilaments = Sternberger 
Monoclonas Incorporated; Cat. Nr. SMI 32 (-20°C) 
 
Instructions: 

Day 1.  

 
*Pretreatment: 

*Deparaffinization and rehydration of the sections 

 - 15 min. in Xylene 
- 15 min. in fresh Xylene 

  
- 10 min. in 100% alcohol 

 - 10 min. in 96% alcohol 
 - 10 min. in 90% alcohol 
 - 10 min. in 70% alcohol 
  

- rinse shortly in distilled water   
 
Water bath (80°C) for antigen retrieval in formalin-fixed paraffin sections 
 
Midbrain sections were incubated for 15 minutes in 0.01 M sodium citrate buffer pH 

8.5 – 9 (sodium citrate [tribasic: dihydrate] (C6H5Na3O7.2H2O) 2,94g in 900 ml 

distilled water and titrated with 0.1M sodium hydroxide (2M NaOH : 8g NaOH dissolved 

in 200 ml distilled water) to a pH of pH 8.5 – 9 and filled up to 1000 ml distilled water), 

whose temperature (80°C) was maintained by a surrounding water-bath. The water 

bath was heated in a conventional oven and the temperature (+80°C) was monitored 



 

 

 55 

with a thermometer. After heating treatment the sections were cooled to room 

temperature (RT) before continuing the next steps. 

 
* 0,01M sodium citrate buffer  pH 8,5................15 min in water bath at +80°C  

 
(water bath at 80°C turned on 30 min. beforehand, solution in special plastic cuvette)  
 
* cool down in citrate buffer.............................................................15 min at RT 
 
* 1x 0,1M TBS pH 7,6................................................................................5  min 
 
* 2x 0,1M TBS pH 7,6................................................................................5  min 
 
* Suppression of endogenous peroxidase activity....................................30 min 

    
1% H2O2 in 0,1M TBS  

 
* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 
 
* Preincubation.......................................................................................1h at RT  
   

[5% Normal Horse Serum + 0,3% Triton in 0,1M TBS pH 7,4] 
           
* Primary antibody:…......................................................................48 h at 4°C 
     

mouse anti-SMI-32  1:5000  
 
  [in 5% Normal Horse Serum + 0,3% Triton in 0,1M TBS pH 7,4]   
Day 2. 
  
* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 
 
* Biotinylated secondary antibody:.........................................................1h at RT 

  
biot. Horse anti-Mouse  1:200   
 

[in 0,1M TBS + 2% bovine serum albumin (TBS-RSA)]  
    

* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 
 
* EAP - extravidin peroxidase - prepared 30 min before usage.............1h at RT 

 
EAP = Extravidin-Peroxidase 1:1000  

 
[in 0,1M TBS + 2% bovine serum albumin (TBS-RSA)] 

   
* 2 x 0,1M TBS pH 7,4...........................................................................je 10 min 
 
* 1x 0,05M TBS pH 7,6…..........................................................................10 min 
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*DAB reaction: ............. no direct light radiation on the sections..............10 min 
 

 0,025% DAB + 0,015% H2O2 in 0,05M TBS pH 7,6 

 
Solution A = 40 mg ammonium nickel in 20ml 0,05M TBS pH 7,6 to be 

optimally filtered 
 

Solution B =  0,025% DAB = 0,5 ml von 1% DAB – stock solution in solution 
A 

 
End-solution C = 10 µl  30% H2O2 in solution B  

 
* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 

* Distilled water...........…………………………………….……………………5 min 

* Allow to dry 

* In series of alcohol 70, 90, 96, 100%..........................................each for 5 min 

* 3x Xylene…………….....…………...…………....2x for 5 min und 1x for 15 min 

* Coverslip 

Immunostaining for urocortin  – UCN 

Antibody: 

Polyclonal rabbit anti-urocortin = Sigma; U-4757 (not aliquoted and stored at 4°C) 
 
Instructions: 

Day 1.  

*Pretreatment: 

*Deparaffinization and rehydration of  the sections 

 - 15 min. in Xylene 
- 15 min. in fresh Xylene 

  
- 10 min. in 100% alcohol 

 - 10 min. in 96% alcohol 
 - 10 min. in 90% alcohol 
 - 10 min. in 70% alcohol 
  

- rinse shortly in distilled water   
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Water bath (80°C) for antigen retrieval in formalin-fixed paraffin sections 
 
Midbrain sections were incubated for 15 minutes in 0.01 M sodium citrate buffer pH 

8.5 – 9 (sodium citrate [tribasic: dihydrate] (C6H5Na3O7.2H2O) 2,94g in 900 ml 

distilled water and titrated with 0.1M sodium hydroxide (2M NaOH : 8g NaOH dissolved 

in 200 ml distilled water) to a pH of pH 8.5 – 9 and filled up to 1000 ml distilled water), 

whose temperature (80°C) was maintained by a surrounding water-bath. The water 

bath was heated in a conventional oven and the temperature (+80°C) was monitored 

with a thermometer. After heating treatment the sections were cooled to room 

temperature (RT) before continuing the next steps. 

 
* 0,01M sodium citrate buffer  pH 8,5................15 min in water bath at +80°C  

 
(water bath at 80°C turned on 30 min. beforehand, solution in special plastic cuvette)  
 
* cool down in citrate buffer.............................................................15 min at RT 
 
* 1x 0,1M TBS pH 7,6................................................................................5  min 
 
* 2x 0,1M TBS pH 7,6................................................................................5  min 
 
* Suppression of endogenous peroxidase activity....................................30 min 

    
1% H2O2 in 0,1M TBS  

 
* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 
 
* Preincubation.......................................................................................1h at RT  
   

[5% Normal Goat Serum + 0,3% Triton in 0,1M TBS pH 7,4] 
           
* Primary antibody:…......................................................................48 h at 4°C 
     

rabbit anti-Urn 1:6000 
  

[in 5% Normal Goat Serum + 0,3% Triton in 0,1M TBS pH 7,4]   
 
Day 2. 
  
* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 
 
* Biotinylated secondary antibody:.........................................................1h at RT 

  
biot. Goat anti-Rabbit 1:200   
 

[in 0,1M TBS + 2% bovine serum albumin (TBS-RSA)] 
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* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 
 
* EAP - extravidin peroxidase - prepared 30 min before usage.............1h at RT 

  
 EAP = Extravidin-Peroxidase 1:1000  
 
[in 0,1M TBS + 2% bovine serum albumin (TBS-RSA)] 
   

* 2 x 0,1M TBS pH 7,4...........................................................................je 10 min 
 
* 1x 0,05M TBS pH 7,6…..........................................................................10 min 
 
*DAB reaction: ............... no direct light radiation on the sections............10 min 
 

0,025% DAB + 0,015% H2O2 in 0,05M TBS pH 7,6 

 

Solution A = 40 mg ammonium nickel in 20ml 0,05M TBS pH 7,6 to be 

optimally filtered 

Solution B =  0,025% DAB = 0,5 ml von 1% DAB – stock solution in solution 
A 

 
End-solution C = 10 µl  30% H2O2 in solution B  

 
* 3x 0,1M TBS pH 7,4.................................................................each for 10 min 

* Distilled water...........…………………………………….……………………5 min 

* Allow to dry 

* In series of alcohol 70, 90, 96, 100%..........................................each for 5 min 

* 3x Xylene……………………………….………....2x for 5 min und 1x for 15 min 

* Coverslip 
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