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CHAPTER I: Introduction 
 

1 A general overview on protein formulation development 

Protein therapeutics are used against multiple severe diseases.
1,2

 Their success lies in the specificity for 

therapeutic targets, which is rooted in the diversity and the complexity of protein structures. Promising 

candidates have to exhibit desirable biophysical properties that allow for sufficient stability during 

manufacturing, shipping, storage, handling and administration. The most successful biologics, such as 

monoclonal antibody (mAbs) and insulin variants, benefit from extensive literature. Whereas little is known 

for other protein formats. The special challenges a formulation scientist faces include physical and 

chemical heterogeneity and instability, conformational flexibility and the possibility of specific and non-

specific self-association.
3
 Phase separation, opalescence and undesirable rheological properties, can 

result from attractive protein self-interaction. In addition, self-association can trigger formation of protein 

aggregates which come over a broad size range and with at least partial conformational rearrangement. 

Aggregation is considered a major risk factor in terms of drug immunogenicity.
4,5

 The complexity of the 

aggregation process on a molecular level, and the interplay between the molecular structure, association, 

aggregation, unfolding and formulation conditions are far from being fully understood. Furthermore, many 

publications investigating protein aggregation are case-studies concerning individual proteins or a group 

of strictly related proteins, of which the primary sequence or more advanced structural information are in 

most cased not disclosed. Therefore the compilation of a systematic data analysis to reach a good 

understanding of the molecular mechanism behind protein drug aggregation is yet lacking. As a 

consequence, the development of a stable liquid formulation with the typical shelf-life of two or more 

years is often very challenging.
9
 Lyophilization or freeze drying is typically used for biopharmaceuticals to 

overcome instability of labile drug candidates. On the other hand, lyophilized products are not convenient 

to administer as a sterile, ready to use solution and have high manufactory costs.
6,7

 Thus, liquid 

formulation for biologics are typically preferred over lyophilizes as the aqueous solutions are ready to use 

and do not require a rehydration step.
8
  

Although there are different ways to develop a therapeutic protein, most of them share common steps
10,11

, 

i.e. identification of a druggable target; generation of a library of proteins which could bind to that target; 

selection and optimization of lead candidates; formulation development; decision on one biologically 

active, safe and stable protein which will continue to clinical trials. In general, the failure of a drug 

candidate becomes increasingly expensive as the development process advances. For this reason, 

pharmaceutical companies aim to adopt strategies for selecting the most promising molecules at early 

stages.
10,12–14
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The main aim of this thesis was the development of a toolkit for the prediction of protein aggregation in 

early stages. Therefore, the physical stability of proteins in solution is reviewed in the following, with a 

focus on the factors that induce protein aggregation. In order to generate a comprehensive general 

dataset a systematic characterization has to be conducted by extensive screening of therapeutic proteins. 

Such datasets can be investigated by multiple approaches which fall in the field of data mining. Therefore, 

additionally a broad general overview of the most important computational methods for this purpose (e.g. 

machine learning, multivariate data analysis) is given. Finally, a general overview of the most widely 

applied experimental method, light scattering, is given. 

 

2 Proteins´ physical stability in solution 

Proteins are macromolecules and as such they present colloidal properties. Their size is similar to the 

range of forces that exist between them and the scale of diffusive motion of the macromolecules is similar 

to that at which we are aware of changes.
15

 The linear combination of the dispersion force contribution to 

the pair potential with the electrostatic repulsion gave the first comprehensible model framework for the 

stability of colloidal dispersions, the DLVO theory.
16,17

 Similarly, the proximity energy framework can be 

applied to partially understand protein colloidal stability.
18

 In fact, protein colloidal stability is influenced by 

interactions with other molecules (proteins, excipients, preservatives, metal ions, salts, etc.) as well as 

other external factors such as surfaces.
19–21

 Important physical properties such as solubility, viscosity, 

surface interaction and aggregation, are influenced by the colloidal properties of proteins solutions,
19–25

 as 

schematically depicted in Fig. 1 

The colloidal properties of the solution, ultimately defined by the molecular properties of the protein, 

characterize the protein-protein interactions and association. A series of parameters have been 

developed to characterize the colloidal stability of proteins such as preferential interaction parameters and 

excluded volume effects,
26,27

 as well as the second virial coefficient.
19,28,29

 Using these parameters, the 

physical stability of various proteins has been successfully correlated with different formulation 

conditions.
19,30

 Differently to macromolecules and particles, from which classical colloidal theory was 

derived, proteins are naturally folded in a conformation of low free energy, the native state. This may 

correspond to the free energy global minimum or to local minima with extremely slow rate of conversion 

due to high energy barriers towards the absolute minimum. Further, conformation flexibility is an intrinsic 

protein property which is required in nature to exert functions.
32–39

 This property can be rationalized into 

an energy landscape which is defined by both thermodynamic and kinetic properties of a protein.
40

 The 

conformational stability of a protein can be described as the protein´s ability to remain in the monomeric 

native form. Thus, handling and processing of proteins could prompt the formation of conformational 

variants. 
41,42

 These variants differ in molecular properties, including their colloidal stability, and may have 

a higher tendency to aggregate or be more surface active. Furthermore, sparsely populated states of 
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partially folded protein, which have a greater tendency to self-associate, may be an ubiquitous 

intermediate on the road to non-native aggregates.
43

 Such small soluble aggregates may be reversible or 

irreversible.
44

  

 

Figure 1. Schematic illustration of the role of colloidal protein properties in aggregate formation. Re-

adapted from Laue T., 2019.
31

 

 

2.1 Effect of chemical stability on physical stability 

Therapeutic proteins contain multiple functional groups and as such they are prone to various chemical 

reactions.
45

 An in depth understanding of these degradation pathways is necessary in order to stabilize 

proteins. Extensive reviews are available on the chemical instability of mAbs.
46,47 Typical chemical 

changes include i) hydrolytic reactions such as deamidation and proteolysis; ii) N-terminal cyclization 

reactions such as diketopiperazine and pyroglutamic acid formation; iii) oxidation through metal-

catalyzed, photoinduced, and free-radical cascade pathways; iv) condensation reactions, particularly with 

sugars. Among these reactions deamidation 
45,48–53

 and oxidation 
54–61

 are the ones most often connected 

to physical instabilities. Deamidation not only affects charge based interaction but may also lead to 

alteration of the local structure of the peptide chain,
62

 prompting an increase rate of aggregation and/or 

higher conformational instability.
63–67

 Oxidation can produce a wide range of degradation products and 

may decrease the conformational stability.
68–70

 Typically oxidation increases the propensity of proteins to 

aggregate.
69,71–74

 Methionine oxidation has been linked to an increased rate of aggregation
75–78

 but some 

studies have suggested an aggregation inhibition.
76,77

 Currently the link between chemical degradation 

and aggregation is still not well understood. 
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2.2 Assessment of protein solution behavior in early stages 

During early stage formulation development or preformulation for a protein drug candidate the solution 

behavior of the molecule as a function of multiple variables such as pH, ionic strength, and temperature is 

evaluated. This enables to identify significant modalities of instability and forms the basis for strategies to 

minimize such instabilities. Several biophysical assays can be used to assess protein solution behavior in 

early stages with limited sample consumption. For instance, it has been shown that with only 360 µg of 

protein it would be possible to investigate the first apparent temperature of unfolding (Tm) and the onset 

temperature of aggregation (Tagg) in 24 different fomulations.
79

 Furthermore, such methods might also 

individuate complex aggregation behavior.
80

 Nonetheless, as product development move forward the 

application of several methods including accelerated stability studies is necessary for a clear 

understanding of the candidates stability.
79

 This would allow to better define the work space for the 

molecules in study. As usually limited amount of material is available at this stage of the development, 

this work space needs to be explored with robust mathematical methods, i.e. design of experiment (DoE). 

Experiments designed for optimization can be investigated by response surface methodology, which 

explores the relationship between variables. An approximated second-degree polynomial fit, which is an 

approximation including two-ways interaction between variables, is usually preferred as it is easy to 

estimate and apply.  

In parallel with the understanding of the candidate’s solution behavior, the development of stability-

indicating analytical assays is of the highest importance. Due to the complex nature of proteins, generic 

approaches to early stage formulation development may be of limited value. Even mAbs with extensive 

structural similarity may drastically differ in their solution behavior. Thus, candidate-specific biophysical 

and thermodynamic analyses are necessary.  

 

3 Protein aggregation 

Proteins tend to aggregate and this is the most typical and troubling manifestation of protein instability 

during the development of biotherapeutics.
81

 The rate and type of aggregation depends on several factors 

that can be broadly classified as intrinsic (primary, secondary, tertiary or quaternary structure) or extrinsic 

(formulation, processing conditions, etc.).
82

  

As the understanding of aggregation mechanisms and kinetics are of the high importance, it has been 

studied for many decades.
83

 Currently, it is accepted that proteins aggregate through multiple pathways 

but still many aspect are not fully understood. This is partially because in the typical experimental assays 

key intermediates of aggregation cannot be tracked,
84

 which is the key for the development of general 

models and for control of aggregation.
85,86
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3.1 Protein aggregation pathways 

The main aggregation pathways are not mutually exclusive and can be broadly divided into native and 

non-native processes
43,87

 (Fig. 2): i) non-native aggregation through formation of unfolding intermediates 

(pathway NI), ii) native aggregation by protein self-association or chemical bonding (pathway NA), and iii) 

aggregation through chemical degradations (pathway ND or UD). Native proteins in solution are in an 

equilibrium with their unfolding intermediates (pathways NI), which are themselves in equilibrium with the 

completely unfolded states (pathways IU). Significant evidence suggests that under real-time storage of 

therapeutic proteins the sparsely populated unfolded intermediates (state “I” in Fig. 2) prompt the 

aggregation process, where the unfolding is the rate-limiting step.
88 The higher aggregation tendency of 

partially unfolded proteins is due to the exposure of hydrophobic patches and the higher flexibility.
89

 

Proteins in their native state have typically a lower rate of aggregation as the hydrophobic patches are 

either buried or randomly scattered respectively.
81,90

 Further, partially unfolded species may be key 

intermediates even if the observed kinetic constant is not equal to the kinetic of unfolding.
81

 The soluble 

aggregates (state “A” in Fig. 2) can gradually turn into insoluble aggregates as they exceed certain size 

and solubility limits (state “P” in Fig. 2). Depending on the protein and its environment the precipitates can 

be amorphous or ordered structures (e.g. fibrils).
91-93

  

Self-association can be driven by the native state (pathway NA) through electrostatic and hydrophobic 

and van der Waals forces.
94,95

 Association limited aggregation often drives the formation of reversible 

oligomers and irreversible aggregates and/or precipitates.
88,96,97

 An important biophysical parameter to 

characterize the native self-association tendency is the second virial coefficient, B22, which indicates 

whether protein-protein interactions are favored over protein-solvent interactions.
98

 Protein self-

association is mainly related to colloidal stability, while formation of partially unfolded intermediates is 

mainly related to conformational stability. Notably, either conformational or colloidal stability could be 

potentially rate limiting, depending on the solution conditions
95

 and it is often not possible to differentiate 

between the two pathways (i.e. NA vs NI). A general rule of thumb is that the higher the surface charge of 

a protein the lower the tendency to aggregate (to the limit of extreme chemical activity which will drive 

phase separation), regardless of the specific amino acid sequence.
99

 In certain cases it is possible to 

observe direct protein cross-linking, leading to aggregation (pathway NA). Intermolecular disulfide bond 

formation/exchange is the most common process in this regard.
100–103

 



CHAPTER I: Introduction 

 

6 
 

 

Figure 2. Schematic illustration of the major protein aggregation pathways. Re-adapted from Wang 

2010.
82

  

Not surprisingly, surface-exposed cysteines are more prone to form intermolecular disulfide bond 

formation than buried cysteins.
104

 Due to the disulfide exchanges via β - elimination aggregation through 

this process is possible even for proteins without free cysteine on the surface.
105

 Other cross-linking 

pathways leading to protein aggregation include formaldehyde-mediated cross-linking,
106,107

 dityrosine 

formation,
106

 oxidation,
71

 and Maillard reaction.
108,109

 Finally, chemical degradation (pathway ND) is the 

last major aggregation mechanism. Chemical degradations often change the physical properties of a 

protein as described in section 2.1. The processes NI or NA are considered as nucleation steps and will 

be rate limiting in nucleation dependent mechanisms.
88,110-116

 Multiple aggregation pathways can occur for 

a single protein. For example, ovalbumin aggregates were found to be both disulfide bonded (pathway 

ND) and physically linked, i.e. pathway NI and/or NA.
117

 Insulin can form soluble hexamers or insoluble 

fibrils via pathway NA and NI, soluble dimers via cyclic anhydride intermediate or insoluble disulfide-

bonded aggregates via pathway ND.
105,118–121

 IgG2 molecules can form dimers and high-molecular-weight 

(HMW) aggregates with altered secondary and tertiary structures (pathway NI), or form dimers through 

both disulfide and nondisulfide linkage without structural changes (pathway ND).
122

 Furthermore, different 

forms of physical aggregation are possible for a single protein as a function of the environment. For 

example, amyloid fibrils or particulates can be formed respectively under high and low net charge 

environmental conditions.
99

 Therefore, to prevent protein aggregation it is necessary to consider all the 

relevant factors of this process.
123
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3.2 External factors affecting protein aggregation 

As mentioned above, inhibition of protein aggregation requires the understanding of many different 

aspects. In the next section the effect of the main solution factors are reviewed, namely temperature, pH, 

ionic strength, excipients (e.g. small molecules, polymers, surfactants, preservatives, and antioxidants), 

protein concentration. Further, it is important to highlight that the interaction between these factors may 

also play a critical role, which prompt the use of multivariate data analysis to properly characterize protein 

aggregation. Finally, it is worth noting that other factors may result critical in the development of 

commercial products (e.g. metal ions, reducing agents, impurities, organic solvents, container and light).  

 

3.2.1 The effect of the temperature 

Brownian diffusion is the physical principle causing two protein molecules to approach each other, which 

is a necessary step for aggregation. Diffusion is directly proportional to the temperature and higher 

temperature increases the frequency of collision promoting protein aggregation.
102,127–140

 Furthermore, the 

chemical reactivity of the molecules is also a function of the temperature, e.g. for insulin.
121

 The 

conformational stability of a protein can be measured thermodynamically by its unfolding free energy 

change (ΔGunf), which is usually in the range of only 5 to 20 kcal/mol.
128–132

 ΔGunf is a function of 

temperature and can be derived at constant pressure, yielding a negative parabolic curve.
133,134

 The 

maximum of ΔGunf resides in a narrow temperature range and proteins are usually relatively stable in this 

range. If the temperature is outside this range the conformation stability is low, which has the potential to 

promote aggregation. Certain proteins can aggregate easily at slightly elevated temperature due to their 

narrow ΔGunf maximum at room temperature such as insulin
135

 or a therapeutic immunoglobulin.
136

 Not 

surprisingly, increased temperature has a marked effect on thermodynamic stability, hydrophobic 

interaction, protein diffusion and chemical reactivity, leading to aggregation on much shorter timescales. 

Thus, high temperature is a common parameter to be selected for accelerated stability studies, although 

Arrhenius behavior needs to be assumed, which can lead to wrong predictions.
88

 Typically, thermally 

induced aggregation is irreversible,
137–139

 depending on the stage of the process.
44

 At temperatures equal 

to the first unfolding temperature (Tm), ΔGunf is equal to 0, and therefore proteins rapidly aggregate due to 

the exposure of hydrophobic patches.
140

 In fact, thermally induced unfolding is typically concomitant with 

aggregation,
141–146

 and further increase of temperature above Tm can lead to higher aggregation rates.
147–

153
 Temperature may affect the multiple steps of the aggregation (e.g. nucleation and growth) to a 

different degree
154,155

 and change the pathways of aggregation depending on the solution 

conditions.
156,157

 As for high temperature, low temperature is expected to yield thermodynamic protein 

instability due to the negative parabolic shape of ΔGunf=f(T).
158–163

 However, experimental evidence of 

protein denaturation is more challenging to achieve as it is usually observed below 0°C. Different 

approaches have been applied such as high presussures,
164

 cryo-solvents, denaturants, emulsions and 
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super-cooled aqueous solution.
160

 Nevertheless, aggregation rates at low temperature may be reduced 

due to weakened hydrophobic interactions, which may also lead to reversibility of the low-temperature-

induced aggregation.
165–167

 Aggregation at low temperature may be promoted by changes of the physical 

properties of the solution, e.g. due to phase separation or crystallization of excipients or buffers.
168–171

 

Overall, temperature is arguably the most critical factor during the entire development and 

commercialization processes of therapeutic protein. 

 

3.2.2 The effect of pH 

Proteins are amphoteric and the pH exerts a dominating influence on the surface charges distribution of 

proteins.
172

 These charges affect both intramolecular folding interactions and intermolecular protein-

protein interactions, and consequentially aggregation.
173,174

 Thus, aggregation can be dictated by a pH 

effect via altered charge-charge interactions and/or pH-induced protein partial unfolding.
95,175

 For 

example, at extreme pHs the dense charges on the protein surface significantly increase repulsive 

intra/inter-molecular interactions, which leads to partial protein unfolding and potentially increasing 

aggregation rates thanks to the increased hydrophobicity.
176

 The rate of aggregation is often maximal at 

the proteins isoelectric point (pI) due to the low charge-charge repulsion.
173,174

 Nevertheless, for some 

proteins the aggregation rate is lower close to their pI value.
177

 Finally, protein’s chemical stability is also 

affected by the pH, which in turn can lead to protein aggregation. As an instance, asparagine deamidation 

presents complex pH dependent mechanisms.
178

  

Thus, proteins usually show a narrow pH stability optimum, as the solution pH conformational, colloidal 

and chemical stability.
179-181

 In order to properly control protein stability buffering agents are necessary. 

However, protein stability varies also with the buffer system
88,100,139,182

 and its concentration.
100,182–186

 

Interestingly, one of the most commonly used buffer, phosphate buffers, showed an increased 

aggregation rates in several studies.
186,187

 Finally, it is necessary to consider that protein interaction with 

excipients, which affect protein aggregation, may additionally be pH dependent.
188,189

 

 

3.2.3 The effect of ionic strength 

Both positively and negatively charged species can electrostatically interact with proteins, and the type of 

interacting ions can have significant impact on the proteins’ propensity to aggregate. 
190

 Such interactions 

can even dictate a change in the protein conformational state 
191

 or increase the rate of chemically formed 

aggregates.
104

 Increasing the ionic strength reduce intra- and intermolecular charge-charge interactions, 

by electrostatic screening.
18

 This in turn typically leads to increased protein aggregation since mostly 
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repulsive charge-charge interactions counteract with attractive forces.
192–194

 The formed aggregates can 

be reversible or irreversible, native or nonnative. However, if the aggregation is led by short range 

interaction, e.g. dipole-dipole attraction,
18

 the ionic strength screening effect may inhibit the 

aggregation.
141,177,191

 Therefore, a complex relationship between ionic strength and aggregation has to be 

expected for some proteins.
97,135

 Further, different inorganic salts can exert a different effect on 

aggregation, possibly by binding to the protein. In fact, in concentrated salt solution protein solubility 

depends on the cation´s or anion´s position in the Hofmeister series.
195

 This cannot be explained by 

considering salt ions as charged hard spheres and it has been shown that protein-protein interactions in 

solutions are convincingly explained in terms of protein-salt interaction.
196

 

 

3.2.4 The effect of protein concentration 

Protein concentration can mainly affect the aggregation in three ways i) a higher aggregation rate due to 

an increased probability of association,
94,96,139

 ii) a decreased aggregation rate due to mobility reduced by 

crowding,
197

 and iii) precipitation when exceeding reaching the solubility limit. The crowding theory 

suggests that high concentrations should prompt the formation of compact protein structures, while 

favoring both specific associations and nonspecific association.
24,198,199

 The formation of compact 

structures may increase protein stability, whereas an increased association tendency could yield higher 

aggregation rates.
200,201

 More often the balance is in favor of increased aggregation with higher protein 

concentration,
121,150,167,174,180,183,202-213

 as predicted by the mean field lattice model.
214

 Furthermore, 

nucleation could be also prompted when exceeding a certain critical protein concentration.
114

 It is also 

worth notice that if protein oligomers, such as dimers, are less competent in aggregation than the 

monomer, a lower rate of aggregation is to be expected.
215

 

 

3.2.5 The effect of excipients 

Various excipients to control protein aggregation have been investigated. These additives include small 

neutral and charged small molecules, surfactants, preservatives, polymers, and antioxidants.  

A large amount of empirical findings on the effect of weakly interacting molecules will be discussed in the 

following. As pointed out by Timasheff, it is possible to group all this apparently unrelated 

observations.
27,216

 Briefly, cosolvents can be classified as preferentially excluded or preferentially bound. 

This is determined by exchange constant of water and cosolvent molecules to the protein. The difference 

in values between the interactions with two generic state of a protein molecule in equilibrium between, 

e.g. native and unfolded,  state are the one determining the direction in which the cosolvent drives the 
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equilibrium. For example, if a cosolvent preferentially binds less to the unfolded state to a smaller degree 

than in to the folded state, stabilization is to be expected. On the other hand, if a cosolvent is less 

excluded to the protein in the unfolded state, it will act as a denaturant. 

 

3.2.5.1 The effect of small neutral molecules 

Protein stability or aggregation can be profoundly affected by numerous small non-charged molecules,
217

 

major categories of which are sugars and polyols. These normally exert a stabilization effect and inhibit 

protein aggregation by forcing the native state conformation of proteins.
217,218

 For this reason those 

molecules are typically called chemical chaperones and are recognized as osmolytes. The effects have 

been observed even under processing and culturing condition,
217,219

 and it has been shown that sugars 

may suppress aggregation in different phases of the aggregation process.
220

 Their effect on protein 

aggregation usually positively correlates with their concentration.
187,218,221,222

 However, exceptions have 

been observed where sugars/polyols destabilize proteins and promote protein aggregation.
223,224

 

Interestingly, in certain cases excluded solutes (e.g. sugars), which tend to force the native state 

ensemble to its most compact form, protect exposed residues from oxidation by reducing the solvent 

exposed area.
225–227

 

 

3.2.5.2 The effect of small charged molecules 

Small charged molecules may affect protein aggregation,
228

 either via an increase of ionic strength or by 

specific association. Their net effect on protein aggregation depends on their concentration, other 

environmental conditions like pH value and on the protein. A major category includes natural amino acid 

and their derivatives, which may have multiple effects.
229

 Positively charged amino acid (such as histidine, 

lysine and arginine) can inhibit aggregation.
91,187,230–234

 The mechanism of action of arginine has received 

special attention. It has been suggested that arginine i) increases the solubility of protein by weakening 

protein-protein interactions,
231,233

 ii) slows down aggregation through preferential exclusion,
110

 iii) reduces 

aggregation propensity by masking protein hydrophobic surfaces through arginine clusters possessing 

aligned methylene groups.
234

 Similarly, proline has been reported to stabilize proteins.
217,229,235

 However, 

the effect of proline is presumed to be nonspecific involving a combination of unfavorable and favorable 

side-chain interactions.
229,235,236

 Nevertheless, the negative effect of the counter anions such as Cl
-
 can 

overtake the positive effect of amino acids.
237

 Similarly to amino acids, several amine compounds e.g. 

spermidine and imidazole have been shown to inhibit protein aggregation.
238,239

 But both amino acids and 

amines can also trigger aggregation.
232,240,241

 Few organic acids e.g. phytic acid, myristic acid or linoleic 

acid have also been shown to reduce protein aggregation, probably due to a weak anion binding to the 
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protein,
242–244

 while other polyanions e.g. inositol hexaphosphate prompted an increased rate of 

aggregation.
148

 

 

3.2.5.3 The effect of surfactants 

Ionic and nonionic surfactants can protect proteins against aggregation induced by different stresses. 

Surfactants stabilize proteins almost exclusively by preferentially locating at an interface (i.e. precluding 

protein adsorption).
245

 For such reasons nonionic surfactants are very effective to prevent aggregation 

induced by shaking and shearing. Nonionic surfactants, such as polysorbates 20 and 80,
246

 have 

hydrophobic tails, which may cover hydrophobic patches on the protein.
247–249

 This interaction would 

inhibit protein aggregation by preventing hydrophobic protein-protein interaction.
249,250

 For example, 

polysorbate 20 blocks the aggregation of rhGh induced by shaking at a molar ration of 4:1, which is close 

to the binding stoichiometry.
250

 Further, such interaction could increase ΔGunf and therefore increase the 

protein conformational stability.
249

 Nonionic surfactants are known to bind rather weakly to proteins and 

may stabilize proteins by covering the surfaces and effectively hindering the adsorption of proteins.  

The effect on thermally induced aggregation is inconsistent.
251–253

 Various stability studies have 

demonstrated a negative effect of nonionic surfactants on protein stability potentially due to protein 

binding and partial denaturation.
183,194,201,254

  

Ionic surfactants (e.g. sodium dodecyl sulfate) and octanoic acid have a more pronounced effect on 

aggregation than the nonionic type as they can bind rather strongly to both polar and nonpolar groups. 

Similarly to nonionic surfactants the binding can screen aggregation hotspot preventing non-specific 

protein-protein interaction. In addition, the higher charge density arising from bounding surfactant 

molecules could increase the overall protein colloidal stability.
255

 To summarize, ionic surfactants reduce 

protein aggregation
239,253,255–257

 but their strong binding may also induce denaturation and aggregation.
258

 

 

3.2.5.4 The effect of preservatives 

In case of multi-dose systems, preservatives, e.g. benzyl alcohol or phenol, need to be included in the 

formulation. These often contain hydrophobic moieties e.g. aromatic rings and weakly bind to 

proteins.
126,259

 Consequently preservatives may accelerate aggregation
260–263

 and can lead to a 

perturbation of the tertiary structure.
126,261
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3.2.5.5 The effect of polymers 

Polymers may reduce protein aggregation propensity due to surface coverage, preferential exclusion, 

weak binding, steric hindrance of protein–protein interactions, and increased viscosity, limiting protein 

structural movement. Large solution additives, or neutral crowders, can increase the free energy barrier 

for association or disassociation.
264

 Simulation studies showed polymers with adequate hydrophobicity 

may wrap around proteins with surface exposed hydrophobic patches and can thus prevent protein 

aggregation.
90

 This is the case for polyethylene glycols (PEGs).
180,265,266

 On the other hand, as previously 

mentioned, strong hydrophobic interaction may cause denaturation.
90

 Therefore PEGs can positively, 

negatively or not at all affect protein aggregation depending on the experimental condition.
267

 Polyionic 

polymers, e.g. heparin and dextran sulfate, can bind to proteins, positively influencing the aggregation 

propensity.
135,242,265,268,269

 The effect of polyions can strongly depend on pH, which defines the affinities 

and binding mechanism between the two types of macromolecules.
270

 As in the case of neutral polymers, 

if binding is strong, polyions can increase the rate of aggregation.
148,155,270

 Similarly to neutral and 

polyionic polymers, amphoteric polymers like proteins can decrease
180,271–273

 or increase
267,274

 

aggregation of the protein of interest. Some protein can decrease the aggregation propensity of other 

proteins, possibly working as chaperones e.g. heat shock proteins.
275–279

 The mechanism of inhibition 

seems to involve the neutralizing binding of the denatured monomers
275

 or coverage of hydrophobic 

sites.
279

 Protein aggregation can also be effectively inhibited by rationally designed peptides.
280,281

  

 

4 Brief overview on data mining, multivariate data analysis and machine 

learning  

Systematic analysis of large data sets to reach an understanding of the molecular mechanism behind 

protein drug instability has become attractive with the advent of high-throughput techniques and the big 

data era.
79,282

 In the following a brief and broad overview of data mining, multivariate data analysis and 

machine learning is provided. 

Data mining
283

 involves methods at the intersection of machine learning, statistics, and database 

systems. In general terms, data mining is the process of discovering valuable information in large volume 

of data. However, there is an omnipresent gap between large dataset and our understanding of it since 

we are not well-adapted to think in more than a few dimensions at once. Therefore, the development of 

approaches is essential to facilitate integration of multiple variables in order to prompt efficient use of 

experimental data. Any technique that simultaneously analyzes more than two variables may be loosely 

considered multivariate data analysis.
284

 Some of these approaches have been developed only recently 

as they need the computational capacity of modern computers. This encompasses a wide range of 
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techniques. These approaches provide an empirical method for information extraction, regression, or 

classification.  

Machine learning
285

 is a field which makes use of a group of multivariate methods. Machine learning can 

be broadly defined as computational methods using past information available to the learner, i.e. the 

collected data, to improve its performance or to make predictions. In general terms, the most common 

machine leaning algorithms are supervised, unsupervised or semi-supervised, where the data points for 

learning are labeled or unlabeled to make prediction on unseen points. Supervised learning is the most 

common scenario associated with classification, regression, and ranking problems, while clustering and 

dimensionality reduction are examples of unsupervised learning approaches. In supervised learning the 

data is partitioned into training sample, validation and/or test sample. The size of these samples depends 

on the problem at hand. For example, if there are relatively few labeled examples, the size of the training 

set is usually larger than the size of the test data as the learning performance depends on the training 

sample. Then, relevant features (i.e. factors) are associated with the examples. This is critical as useful 

features can guide learning, while poor feature can mislead learning. The feature choice reflects the prior 

knowledge of the algorithms developer about the learning task, which in practice can have a dramatic 

effect on the performance results (critical factors related to protein aggregation were reviewed in the 

previous sections). The selected features are used to train the learning algorithm by tuning its 

hyperparameters i.e. free parameters. Different hypothesis out of the hypothesis set are selected for each 

hyperparameter. The ones leading to the best performance on the validation and/or test set are then 

chosen and used to predict new examples. As machine learning is all about generalization it is crucial to 

evaluate the performance on the validation and/or test set. The trade-off between sample size and model 

complexity plays also a critical role in the generalization power of the developed model. As a rule of 

thumb, the Occam´s razor rule can be applied to select the right model complexity, which states that 

when a series of hypotheses achieve the same prediction, the one with the fewest assumptions should be 

selected. In fact, complex model applied to sample of small size may lead to poor generalization, i.e. 

over-fitting. On the other hand, if the algorithm is too simple its accuracy may be poor, i.e. under-fitting. 

Therefore, the aim is to develop the simplest algorithm possible to achieve an accurate prediction. 

As the quality of a learning algorithm depends on the data used, machine learning is inherently related to 

data analysis and statistics. It is not easy to draw a strict dividing line between statistic and machine 

learning as some analysis techniques derive from statistic and others are more closely associated to 

machine learning. A gross oversimplification would be that statistic has a major emphasis with testing 

hypothesis while machine learning is focused on formulating generalization processes as a search 

through possible hypothesis. 
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4.1 The problem of inferring proteins behavior in solution 

Most multivariate techniques are based on the statistical inference of a population’s values or 

relationships among variables from a randomly drawn sample of that population. Naturally census of the 

entire population makes statistical inference unnecessary. However, it is often impossible to use a 

census, as in the case of therapeutic drug development. Furthermore, often a protein dataset cannot 

represent the whole population as the protein structures included are limited. The central limit theorem,
286

 

CLT, is one of the most used mathematical results in science which relies on large samples, and usually 

we refer at its results as asymptotic. The CLT indicates that if the sample size is sufficiently large, the 

means of samples obtained using a random sampling with replacement are normally distributed with the 

mean and the variance regardless of the population distribution. In reality, however, the lack of a known 

population variance prevents a determination of the probability density distribution. Notably, the Student's 

t-distribution was developed to use a sample variance instead of a population variance.
287

 The 

assumption for the Student's t-test is that samples should be obtained from a normally distributed 

population. The underlying problem of protein samples to infer protein behavior in solution relies on the 

population definition and its normality. We usually assume that a class of proteins, such as mAbs, or 

subclasses such as IgG1s, is the population we are trying to predict from our sample.  

As an example, we can imagine the “protein” population as the world human population, the subset “mAb” 

as the female world population, the subset “IgG1” as the female world population between 18 and 25 

years old. If we try to infer the voting behavior from a random sample of 1000 girls from 18 to 25 year old 

from all over the world we immediately can see the bias: they come from very different social and 

economic backgrounds. Therefore we need to restrict our target population to one “social environment”, 

e.g. Italy. Still prediction will be poor because the social and economic condition of the girls is various. 

Therefore we further need to restrict our target population, e.g. young girls from Southern Italy coming 

from families with medium income. Once we gather a sample representative of the sub-population we 

could predict the voting behavior of such population. In order to understand the Italian complex voting 

behavior, we should collect and infer data for each relevant sub-population. Similarly, in the case of 

protein behavior in solution we may have to restrict the population we are aiming at. This means that 

some of the correlations found in literature will often have a weak statistical meaning as they refer to very 

small subsets of not well determined populations. As an instance, it has been shown that linear 

correlations inferred in literature do not hold when multiple protein and solution conditions are taken into 

consideration.
79
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4.2 Artificial neural networks 

Artificial neural networks
288

 (ANNs) have been applied in pharmaceutical research for many different 

purposes.
289-298

 ANNs are algorithms which grossly attempt to simulate the decision process in the 

networks of neurons of the biological central nervous system. The main advantage of ANNs is that they 

allow solving a wide range of complex problems in a self-organizing manner with a relatively low level of 

programming. Therefore, ANNs are highly suitable to solve problems that are complex, ill-defined, highly 

nonlinear, of many and different variables, and/or stochastic, such as protein aggregation.  

The fundamental unit of a neural network is the neuron, which is its basic information-processing unit. A 

neuron is composed by four elements: the synapses, a summing junction (i.e. linear combiner), an 

activation function and bias (Fig. 3).  

 

Figure 3. Model of a neuron. xn represent the inputs connected to the neuron, k, by the weights, wkn, 

which multiply the corresponding input signal. All the weighted signals are summed by a summing 

junction Σ. An external bias bk can be applied to Σ, to increase or lower the output signal. Finally, Σ is 

connected to an activation function, ψ(*), which limits the amplitude of a signal to the output, yk. Picture 

reproduced from: Gentiluomo, L., et al (2019) – Chapter III.
289
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The synapse is a set of connecting links each characterized by a weight. The neuron processes an 

arriving signal by multiplying it by the synaptic weight, which, differently from the brain, may have a 

negative or positive value. The linear combiner sums up the input signals, weighted by the respective 

synapse of the neuron. The added signal is limited by an activation function. This limits the permissible 

amplitude range of the output signal to some finite value. An external bias is applied to increase or 

decrease the net input to the activation function. The latter may assume different forms, most commonly a 

sigmoidal one. The neurons are then structured accordingly to the learning rules used to design the 

selected type of network. Three different classes of architectures can be differentiated, single-layer 

feedforward networks, multilayer feedforward networks, and recurrent networks. As for other machine 

learning algorithms the ability of ANNs to learn from their environment and to improve their performance 

is of primary importance. The interactive process of learning from the environment prompts adjustments 

of synaptic weights and bias level. A set of well-defined rules for the solution of a learning problem is 

called learning algorithm. 

An important class of ANNs is the multilayer feedforward networks (MFNs). These kinds of networks 

consist of an input layer, one or more hidden layers of computational nodes and an output layer. The 

input signal propagates “forward” from the input to the hidden layers and finally to the out layer. MFNs are 

used to solve complex problems by training them in a supervised manner. A highly popular algorithm 

used for training MFNs known as the “error-back propagation” is based on the error-correction learning 

rule. This learning algorithm consists of a forward and a backward pass through the different layers of the 

network. In the forward pass, the signal is propagated through the network. Subsequently, a set of output 

is produced as the actual response of the network. During the forward pass the synaptic weights of the 

networks are all fixed. Then, in the backward pass, the synaptic weights are all adjusted by subtracting 

the actual response of the network from the desired response to produce an error signal. This error signal 

is then propagated back through the network and the synaptic weights are adjusted to reduce the error in 

a statistical sense. Overall MFNs present three characteristics: i) the neurons have a non-linear smooth 

activation function (e.g. sigmoidal) ii) the network contains one or more layers of hidden neurons that are 

not part of the input or output network iii) the network exhibits a high degree of connectivity. From these 

three characteristics and its ability to learn from experience through training MFNs derive their computing 

powers. A major drawback of MFNs is the presence of nonlinearity, the use of hidden neurons and the 

high connectivity which yield a model with hard theoretical interpretability, often referred to as a “black 

box”. To compensate such drawback, in chapters III and V we applied methods to generated surrogated 

models or “white boxes”. 

 



CHAPTER I: Introduction 

 

17 
 

5 Light scattering techniques and their application to protein characterization 

Various biophysical techniques are employed in the characterization of protein behavior in solution in 

order to guide formulation development. The most common methods include spectroscopic methods e.g. 

second-derivative ultraviolet spectroscopy, circular dichroism, Fourier transform infrared spectroscopy, 

and fluorescence spectroscopy, thermal analysis e.g. differential scanning calorimetry, nano differential 

scanning fluorimetry and size-based analysis e.g. analytical ultracentrifugation and light scattering. Less 

frequently more sophisticated methods include hydrogen–deuterium exchange, mass spectrometry, 

nuclear magnetic resonance spectroscopy, X-ray crystallography, and electron paramagnetic spin 

resonance spectroscopy. As light scattering is a key technology, intensively applied in this thesis, a brief 

overview of this technique is given in the following. 

Light scattering
300

 is a natural phenomenon resulting from the interaction of light with matter related to the 

heterogeneity of the system. If an obstacle, which could be a single electron, an atom, a molecule or a 

solid or liquid particle, encounters an electromagnetic wave of the right wavelength it will generate a 

secondary radiation generated by the oscillatory motion of the incident wave. For example, a neutral 

molecule interacting with the oscillating electric field of light will form a dipole, which, due to the oscillation 

of the incident radiation, oscillates as well. The oscillating dipole becomes a source of new radiation, the 

scattered light. The tendency of the electron cloud of a molecule to be displaced by an external field is 

directly correlated to the ability of such molecule to scatter light. This tendency is called polarizability and 

it is directly proportional to the specific refractive index increment (dn/dc). In addition to the scattering 

phenomenon the excited elementary charges may transform part of the incident light in other forms, like 

thermal energy (i.e. adsorption). As everything is heterogeneous (even pure gases) all media scatter light. 

The theory of light scattering from macromolecular solution developed by Einstein,
301

 Raman,
302

 

Debye,
303

 Zimm
304,305

 and others, represents one of the major successes of chemical physics. 

The phenomenon of light scattering can be classified depending on how we collect and process the data. 

Multiangle static light scattering (MALS), or more generally static light scattering (SLS), refers to 

experiments in which the scattered light intensity is determined at given scattering angles by averaging 

the fluctuating intensity at the same wavelength as the incident light over a long time scale compared with 

the time scale of the intensity fluctuation. SLS yields the apparent weight average molecular mass (Mw), 

the apparent root mean square radius (Rrms), and the apparent second virial coefficient (A2 or B22). 

Dynamic light scattering (DLS) also occurs at the same wavelength as that of the incident light, but the 

fluctuations of the scattered light intensity over extremely short intervals are collected and processed. 

DLS yields the apparent diffusion coefficient (D) and by the Einstein-Stroke relation the apparent 

hydrodynamic radius (Rh), the solution polydispersity, and interaction diffusion parameters (kD). Modern 

instruments allow performing DLS and SLS simultaneously. Many detailed reviews on MALS
300,304,306,307

 

and DLS
308–310

 can be found in literature. Other types of light scattering include Raman scattering, which 
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occurs at a wavelength different from that of the incident light and can provide structural information, and 

phase analysis light scattering (PALS), which allows the determination of the electrophoretic mobility of 

the scattering particles. 

 

5.1 Recent applications of light scattering for protein characterization  

The mass determination of biomolecules and their aggregates in peaks eluting from size exclusion 

chromatography (SEC-MALS)
306

 or field flow fractions (FFF-MALS)
311

 is a common application of light 

scattering. SEC relies on column calibration based on size exclusions standards, which yields an empiric 

correlation between elution time and Mw. Mw calculated by SEC-MALS in turn provides values which are 

free from errors arising from non-sphericity of a protein or protein interaction with the column material. 

SEC-MALS was employed extensively to characterize native and non-native oligomers in several 

landmark studies.
7,312–316

 SEC-MALS is also a primary tool in the investigation of protein aggregation 

kinetics.
87,317–319

 Addition of multiple concentration detectors, e.g. UV and RI, allows the analysis of 

conjugated substances that contain a significant mass fraction of UV and non-UV absorbing material, e.g. 

glycosylated proteins.
320

 Recently the advantages of coupling MALS with different kind of fractionation 

techniques, namely IEX and RP, has been demonstrated.
321,322

 

Batch measurements with both SLS and DLS are used extensively for analysis of proteins in solution.
323-

348
 High-throughput DLS instruments have been developed to facilitate colloidal stability screening with 

low material consumption.
349–351

 Due to the simplicity of use, DLS pitfalls are often underestimated. Care 

in the interpretation of DLS data needs to be taken, especially when the aim is to address protein-protein 

interaction by kD.
352

 Furthermore, the underlying physics of light scattering and the strict mathematical 

assumptions for the quantitative interpretation of multimodal polydisperse samples impose certain 

limitations.
353

 On the other hand, DLS is very sensitive to the presence of aggregates and can be used to 

estimate the aggregate weight fraction. It is also an excellent tool to assess whether a sample is 

monodisperse or has a significant degree of polydispersity. The presence of large aggregates (e.g. 1 µm) 

can result in significant number fluctuation.
354

 Also multiple scattering has to be considered for highly 

concentrated or turbid solutions.
355

 This yields an apparent decrease in apparent size measured by DLS, 

which should not be misinterpreted as protein-protein interactions. Finally, low throughput light scattering 

techniques, such as composition gradient MALS (CG-MALS) allow to quantitatively characterize binding 

affinity and stoichiometry of homo- and hetero- bimolecular protein interactions as a function of solution 

conditions such as pH, ionic strength, and buffer salts.
332,256-376
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AIM AND OUTLINE OF THE THESIS 

 

The main aim of this thesis was the development of a toolkit for the prediction and characterization of 

protein aggregation in early stages of drug product development. In small molecule drug discovery some 

developability rules are widely accepted (e.g. the Lipinski rule of five). In contrast, guiding principles for 

selecting proteins with stability properties which qualify the molecule for drug product development are 

not yet well established. In order to fill this gap an extensive comprehensive experimental and 

computational screening of therapeutic proteins in pharmaceutically relevant formulation was conducted. 

Part of the results of such screenings is covered in Chapter II. In this chapter, we share a study on a 

diverse group of proteins, including their primary sequences, purity data, and computational and 

biophysical characterization at different pH and ionic strengths. This data is the foundation of a tailor-

made database to support biotherapeutic discovery and development in the future.  

Due to the large amount of data produced in the screenings we aimed to explore the datasets with 

different data mining approaches. In Chapter III we developed artificial neural networks (ANNs) to 

compute, ab-priori, relevant biophysical parameters. This approach would address a currently lack of 

accurate computational methods to predict protein stability as a function of the formulation, which in turn 

would allow the screening of thousands of molecules even before expression. In Chapter III, we further 

address the issue of ANNs interpretability by a knowledge transfer process, which was to be developed to 

shine light on the decision making process of this “black-box” by means of surrogate “white-box” models. 

Thanks to the screening and data mining of Chapter II and III a mAb, named PPI-01, showing unusual 

aggregation behavior was individuated. Therefore, in Chapter IV we addressed the reversible native self-

association of this molecule. We investigated PPI-01 in multiple conditions by several orthogonal methods 

to rationalize the self-aggregation behavior. The locus driving self-association of the mAb was 

investigated by additional characterization of mAb digests. The case-study of Chapter IV provides 

insights on the analytical challenges to characterize the reversible self-association of mAbs. More 

importantly, Chapter IV delves deep into the nature of native reversible self-association which has been 

often associated with phase separation, precipitation and high viscosity. 

An important aspect of initial developability assessments of therapeutic proteins is the evaluation of data 

obtained by stressing the candidates under several stressing conditions, i.e. accelerated stability studies, 

which were extensively investigated in Chapter II. However, only real-time stability testing permits the 

selection of the final formulation and protein candidates, and the establishment of the recommended 

storage conditions and shelf life. In order to address the behavior of the protein investigated in Chapters 

II, III and IV under real storage conditions, long term stability studies were executed. Then, in Chapter V 

we applied ANNs algorithms to predict the monomer retention upon real-time storage. The aim was to 
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provide a way to connect accelerated stability studies and other biophysical parameters with the real-time 

aggregation of protein drugs in several pharmaceutically relevant conditions. Further, similarly to Chapter 

III, human friendly surrogate machine learning models were developed.  

Throughout the thesis the physical stability of the investigated molecules were extensively investigated. 

However, protein´s chemical stability is also of pivotal importance in the development of stable products. 

This is especially true when proteins are investigated after long term storage. Therefore, in Chapter VI we 

aimed to develop the coupling of ultra high pressure reverse phase chromatography to multi-angle light 

scattering (RP-UPLC-MALS) as a new tool to investigate the chemical and physical stability of mAbs. The 

different principle of separation used in RP-UPLC-MALS provides an additional critical level of protein 

characterization. 
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Abstract 

Therapeutic protein candidates should exhibit favorable properties that render them suitable to become 

drugs. Nevertheless, there are no well-established guidelines for the efficient selection of proteinaceous 

molecules with desired features during early-stage development. Such guidelines can emerge only from a 

large body of published re-search that employs orthogonal techniques to characterize therapeutic 

proteins in different formulations. In this work, we share a study on a diverse group of proteins, including 

their primary sequences, purity data, and computational and biophysical characterization at different pH 

and ionic strength. We report weak linear correlations between many of the biophysical parameters. We 

suggest that a stability comparison of diverse therapeutic protein candidates should be based on a 

computational and biophysical characterization in multiple formulation conditions, as the latter can largely 

determine whether a protein is above or below a certain stability threshold. We use the presented dataset 

to calculate several stability risk scores obtained with an increasing level of analytical effort and show how 

they correlate with protein aggregation during storage. Our work highlights the importance of developing 

combined risk scores that can be used for early-stage developability assessment. We suggest that such 

scores can have high prediction accuracy only when they are based on protein stability characterization in 

different solution conditions. 

 

Graphical abstract. Advancing therapeutic protein discovery and development through comprehensive 

computational and biophysical characterization 
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1 Introduction 

Protein therapeutics are an essential part of the treatment plan for many patients suffering from severe 

diseases.
1
 Proteins can bind to various drug targets with high specificity and affinity, thus improving both 

therapeutic efficacy and safety profiles compared to small molecule drugs. Alongside these benefits, 

therapeutic proteins also bring drawbacks like high costs and complexity of their discovery, development 

and production.
2
  

Although there are different ways to develop a therapeutic protein, some of the most widely-used 

approaches share common steps,
3,4

 i.e. identification of a druggable target; generation of a library of 

proteins which could bind to that target; selection and optimization of lead candidates; formulation 

development; and decision on one biologically active, safe and stable protein which will continue to 

clinical trials. In general, the failure of a drug candidate becomes increasingly expensive as the 

development process advances. For this reason, pharmaceutical companies aim to adopt strategies for 

selecting the most promising molecules at early stages.
3,5–7

 Such strategies have to identify whether a 

molecule exhibits suitable biological and biophysical properties, i.e. drug-like properties.
8–10

 Contrary to 

small molecule drug discovery where some developability rules are widely accepted (e.g. the Lipinski rule 

of five),
11

 guiding principles for selecting proteins with drug-like properties are not yet well established. 

This gap has stimulated researchers to create rules for protein developability assessment based on 

computational and biophysical characterization.
7,10,12–15

 Although significant progress has been made on 

this topic, published work is currently limited to monoclonal antibodies (mAbs) and disregards the impact 

of formulation conditions on the thresholds of parameters that will flag a molecule as developable or not. 

Biological activity and low toxicity are essential pre-requisites for molecules to be selected for further 

studies. However, protein drug candidates should also exhibit desirable biophysical properties that ensure 

sufficient stability during manufacturing, shipping, storage, handling and administration.
7
 The proper 

assessment of these biophysical properties requires the application of multiple orthogonal methods. 

Historically, most widely used methods for protein characterization required large sample amounts and 

suffered from low throughput, e.g. differential scanning calorimetry or circular dichroism. Since both 

sample amount and time are scarce during early-stage development, different candidates were usually 

compared in only one solution condition with a limited set of biophysical techniques that were considered 

to be predictive for the overall protein stability.
15,16

 With the recent rapid advance in technology, new 

methods have emerged that require miniature sample amounts and can measure hundreds of samples 

per day. However, the most efficient way of how these methods can be combined and the value of the 

measured parameters for selecting promising candidate molecules are still a matter of debate.
12,15,17

 

Furthermore,  most of the published data addressing the biophysical parameters and their predictive 

power for protein stability is based on biomolecules with un-published primary sequences and purity 
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data.
18,19

 That makes the data reproducibility, interpretation and use for follow-up studies difficult for the 

scientific and industrial communities. 

Here, we present a study on 14 diverse therapeutically relevant proteins, including most of the primary 

sequences and purity data. We show work based on computational analysis, as well as biophysical 

characterization and storage stability data of these proteins in 24 conditions with different pH and ionic 

strength. The full dataset will be available for download from a tailor-made database (https://pippi-

data.kemi.dtu.dk/). We use the data to look for linear correlations between different biophysical 

parameters and elucidate whether some of the latter carry similar information that can be used for 

developability assessment of proteins. Next, we emphasize that protein stability largely depends on 

solution conditions. Therefore, a proper assessment of whether a drug candidate molecule is stable, and 

suitable for further development, requires characterization in several formulations at the earliest 

development stages. Such characterization is nowadays possible due to the large increase in the 

throughput of many biophysical assays. Finally, we discuss an early risk assessment approach based on 

stability risk score (SRS) values obtained from datasets of increasing size and show how these scores 

correlate with the amount of aggregates formed after 6-month storage at different temperatures.   

 

2 Material and methods  

2.1 Sample preparation 

Six IgG1 antibodies (PPI-01, PPI-02, PPI-03, PPI-04, PPI-10, PPI-13), one IgG2 (PPI-17), one bispecific 

mAb (PPI-08), and one HSA-neprilysin fusion protein (PPI-18) were provided by AstraZeneca 

(Cambridge, UK). Interferon alpha-2a (PPI-30) was provided from Roche Diagnostics GmbH. 

Recombinant human transferrin
20

 (PPI-44) and Recombumin® native sequence human serum albumin 

(PPI-49) were from Albumedix Ltd. Two lipases (PPI-45 and PPI-46) were from Novozymes A/S. Primary 

protein sequences can be found in Supplementary information – SI 1. The proteins in the bulk solutions 

were dialyzed overnight using Slide-A-Lyzer™ cassettes (Thermo Fisher Scientific, USA) with suitable 

membrane cut-off against excess of 10 mM of histidine/histidine hydrochloride buffer with pH 5.0, 5.5, 6.0, 

6.5, 7.0, 7.5 or against 10 mM of tris(hydroxymethyl)aminomethane/tris(hydroxymethyl)aminomethane 

hydrochloride buffer with pH 8.0 and 9.0. Protein concentration was measured on a Nanodrop 2000 

(Thermo Fisher Scientific, USA) using the respective protein extinction coefficient at 280 nm. In total, the 

proteins were formulated at eight different pH values mentioned above with the presence of 0, 70, or 140 

mM sodium chloride accounting for 24 different formulation conditions for each of the 14 proteins. NaCl 

was added to the samples from a stock solution in the respective buffer. All the materials were of 

analytical or multi-compendial grade from J. T. Baker. After preparation, the formulations were sterile 

filtered with 0.22 μm cellulose acetate filters from VWR International (Germany).  
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2.2 In silico modeling of monoclonal antibodies and estimation of molecular 

descriptors 

The template for modelling is identified using a BLAST search (www.ncbi.nlm.nih.gov/blast/)
21

 against the 

PDB database.
22

 In the case of low query coverage, multiple template sequences were considered. The 

atomic coordinate set corresponding to the crystal structure of the homologue (template) was obtained 

from the PDB database. Sequence alignment of the template and query sequence was generated using 

ClustalW2 (www.ebi.ac.uk/Tools/msa/clustalw2/)
23

 alignment tool. The modeling of the three-dimensional 

structure was performed by Modeller9.19 software.
24

 The quality of the models produced depended on 

the quality of the sequence alignment by ClustalW2 and template structure. In the case of antibodies 

(PPI-01, PPI-02, PPI-03, PPI-10, PPI-13, PPI-17), the generated Fab and Fc structural units were 

subsequently aligned to the full mAb structure with PDB ID 1IGT5
25

 using PyMol6. The aligned Fab and 

Fc parts were then merged using Modeller. Disulphide bonds were added accordingly. No primary 

sequence was available for PPI-04 and PPI-08 and therefore these were not modelled. For PPI-18, a 

model accounting for the orientation of the two fragments was generated based on SAXS data (not 

shown). The fragments were connected using Modeller and disulphide bonds were added where suitable. 

The homology models for PPI-30, PPI-44, PPI-45, PPI-46, and PP-49 were generated using as templates 

PDB entries 4Z5R
26

, 3V83
27

, 5TGL
28

, 1GT6
29

, and 4BKE
30

 respectively, and using the tools mentioned 

above for sequence alignment and model generation. The modelled protein structures were prepared in 

the desired pH environment to account for the right protonation states of residues using Glide. Further, 

prepared structures were energy minimized prior to structure validation to make sure the target protein 

has the least energy conformation without any steric clashes. The protein structure was energy minimized 

using the Glide software. The quality of the modelled structures was checked by examining the extent of 

occurrence of conformations in disallowed regions of the Ramachandran plot using Maestro
31

. In addition, 

Z-score values were calculated using the standalone version of Prosa2003
32

. The generated models have 

an overall negative Z-score indicating a good quality of built structures (Supplementary information - SI 

2).  

The protein homology models and primary sequences were used for computational protein 

characterization. The recently developed Protein-Sol server
33

 was used to study the behaviour of the 

model proteins as a function of pH and ionic strength. Further, the molecular operating environment 

(MOE) software was used to calculate various molecular descriptors. Topographic, thermodynamics and 

structural indices were calculated from ProtDCal.
34

 Aggregation scores of the proteins were calculated 

with the Schrödinger’s Surface Analyzer command-line tool (Schrödinger Inc., USA) using previously 

generated homology models. The tool generates scores based on three different algorithms: AggScore, 

Zyggregator and Aggrescan.
35–37

 Mean scores per residue were calculated for each method and protein. 
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2.3 Dynamic light scattering (DLS) 

DynaPro® II plate reader (Wyatt Technology, USA) was used for the dynamic light scattering 

experiments. The measurements were performed in 1536 LoBase Assay Plates (Aurora Microplates, 

USA) in triplicates using 4 μL of sample sealed with a few μL of silicone oil. The plate was centrifuged for 

1 min at 2000 rpm before placed in the plate reader. Data was collected and processed with the 

DYNAMICS® software V7.8 (Wyatt Technology, USA). The coefficient of self-diffusion, D, and the 

polydispersity index (PDI) were calculated from the obtained autocorrelation functions using cumulant 

analysis. The Stokes-Einstein equation was used to calculate the hydrodynamic radius (Rh) from D. The 

increase in Rh after storage at different temperatures was calculated with the following equation: 

     
    

    

 

where Rh,0 is the hydrodynamic radius before stress and RR,X is the one after stress. The aggregation 

onset temperature (Tagg) was determined using protein at a concentration of 1 mg/mL. A temperature 

ramp of 0.1 °C/min was applied from 25 °C to 80 °C. One measurement included 3 acquisitions of 3 s. 

Tagg was calculated by the DYNAMICS® software V7.8 from the increase in Rh during heating. The 

interaction parameter (kD) was determined at 25 °C from the slope of the protein concentration 

dependence of D studied with at least six dilutions between 1 and 10 mg/mL for each formulation. Every 

measurement was performed with 10 acquisitions of 5 s.  

 

2.4 High throughput fluorimetric analysis of thermal protein unfolding with nanoDSF® 

Samples containing 1 mg/mL protein in the respective formulations were filled in standard nanoDSF 

capillaries (NanoTemper Technologies, Germany). Measurements were performed using the Prometheus 

NT.48 (NanoTemper Technologies, Germany) system that measures the intrinsic protein fluorescence 

intensity at 330 and 350 nm after excitation at 280 nm (±10 nm). A temperature ramp of 1 °C/min was 

applied from 20 to 95 °C. The fluorescence intensity ratio (F350/F330) was plotted against the 

temperature, the onset and inflection points of the unfolding transitions were determined from the first 

derivative of each measurement using the PR.Control software V1.12 (NanoTemper Technologies, 

Germany). The onset temperature of the first unfolding was reported as Ton, int. The inflection points of the 

unfolding transitions were reported as Tm1,int and Tm2,int for the unfolding at lower and higher temperature 

respectively. For proteins with one thermal unfolding, only Ton, int and Tm1,int were reported. 
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2.5 Differential scanning fluorimetry (DSF) 

The DSF measurements were performed using Sypro® Orange as an extrinsically fluorescent dye using 

a previously published procedure.
38

 Briefly, 1 µl of the freshly prepared working solution (1:5000 of stock 

solution in highly purified water) of Sypro® Orange was added and mixed with 20 µl sample in MicroAmp 

optical 96-well reaction plate (Applied Biosystems; USA) in triplicates. The samples consisted of 1 mg/ml 

protein in the respective formulation. A protein-free placebo was also included for each condition and later 

used for background subtraction. A temperature ramp was applied from 20 to 96 °C at a rate of 1 °C/min 

using the qTower 2.2 RT-PCR (Jena Analytik AC; Germany). The Ton,ext and Tm1,ext  were calculated from 

the fluorescence intensity data at 578 nm as described in Supplementary information SI 3. 

 

2.6 Isothermal chemical denaturation (ICD) 

All ICD studies were performed on Unchained Labs HUNK system (Unchained Labs, USA).
39

 Guanidine 

hydrochloride (GuHCl) and urea were used as denaturants. 6 M GuHCl stock solutions were prepared in 

each formulation condition and mixed in different ratios with the formulation buffer by the instrument. 

Protein stock solutions were prepared at 1 mg/ml and diluted 12.5 times by addition to different 

denaturant concentrations. In total, 48-points linear denaturant gradient was automatically generated for 

each condition. The incubation time varied depending on the protein studied. The samples were 

measured using an excitation wavelength of 285 nm and emission intensities were recorded from 300 nm 

to 450 nm. The data analysis was performed using the software Formulator V3.02 (Unchained Labs, 

USA). For the native protein, the fluorescence emission maximum λmax(native) was selected from the 

spectrum of the sample containing no denaturant. For the samples in denaturants, the fluorescence 

emission maximum λmax(den) was determined in a similar way. The ratio λmax(den)/ λmax(native) was plotted 

against denaturant concentration to obtain the chemical denaturation curves. Apparent free energy of 

unfolding (ΔG), Cm and m-values were calculated for the different transitions.
40,41

 Different unfolding 

models (e.g. two-state, three-state) were tested for each protein to find the best fit. For proteins exhibiting 

a three-state unfolding, Cm1, m1 and dG1 were reported for the unfolding at lower denaturant 

concentration, while Cm2, m2 and dG2 were reported for the unfolding at higher denaturant concentration. 

In cases of two-state unfolding, only Cm1, m1 and dG1 were derived. 

 

2.7 PEG-assay 

PEG 8000 was purchased from Alfa Aesar (USA). To save material, 15 different conditions were selected 

for the PEG-assay solubility screen including pH 5.0, 6.0, 7.0, 8.0 and 9.0 with 0, 70 and 140 mM NaCl. 

Proteins were buffer exchanged, formulated and their concentrations measured as described earlier.  
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40 % (w/v) PEG stock solutions were prepared in both the acidic and basic buffer components (with either 

0, 70 or 140 mM NaCl) and titrated to achieve the desired pH as dissolving PEG directly into the buffer 

resulted in a shift in pH. Final sample preparation to 1 mg/mL protein concentration and increasing 

amounts of PEG (0-16 % (w/v)), as well as loading into a clear flat-bottom 96 well plate, was performed 

using a liquid handling system (Freedom-EVO 150, Tecan, Germany). Turbidity was measured using a 

NEPHELOstar Plus plate reader (BMG Labtech, Germany) after an incubation time of 48 hours. Non-

linear regression analysis using a 4-parameter fit equation was performed for the transition region using 

GraphPad Prism version 7.1 (GraphPad Software, USA) to obtain the point of inflection, defined as PEG-

assay turbidity midpoint (PEGTMP). 

 

2.8 Electrophoretic mobility and zeta potential 

Electrophoretic mobility measurements were performed by the Zetasizer Nano ZSP (Malvern, UK). In 

order to extract the most reliable results from this method, which can be buffer ion-specific and of low 

quality at high ionic strength,
42,43

 the screening conditions were changed and the effect of pH alone on the 

zeta potential was investigated. All measurements were performed in triplicate in a 1 mL DTS1070 folded 

capillary cell (Malvern, UK) at 25 °C. Proteins were measured in 25 mM NaCl solution with no buffer 

components added, and pH adjusted dropwise using 0.01 M HCl and 0.1 M NaOH. The relation of the 

electrophoretic mobility to the zeta potential is described by the Henry Equation: 

   
         (  )

  
 

where UE is the electrophoretic mobility, ϵ0 is the permittivity in a vacuum,  εm is the dielectric constant of 

the solvent, ζ is the zeta potential in volts, f(κa) is Henry’s function calculated using the Ohshima 

approximation
44

 and the hydrodynamic radius for each protein and η is the viscosity of water at 25 °C. 

 

2.9 Capillary isoelectric focusing (cIEF) 

Maurice system suitability kit, Maurice pI markers, Maurice cIEF 500 mM arginine, Maurice cIEF 

separation cartridges, 0.5 % methyl cellulose solution and 1 % methyl cellulose solution, were purchased 

from Protein Simple (USA). Pharmalyte pH 3-10 was purchased from GE Healthcare (Germany). Urea 

was obtained from Sigma-Aldrich (USA). Samples were first diluted to a final concentration of 1 mg/mL in 

water. Subsequently, samples were mixed with a solution containing a broad-range ampholyte (pH 3-10), 

methylcellulose 1 %, 500 mM of arginine and appropriate pI markers and pipetted into a 96 well-plate. 

Urea (final concentration of 4 M) was added to solutions containing PPI-49 to reduce self-association.  
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cIEF experiments were run on a MaurICE system (Protein Simple, USA). The separation cartridge was 

loaded with electrolyte solutions (80 mM phosphoric acid in 0.1 % methyl cellulose and 100 mM sodium 

hydroxide in 0.1 % methyl cellulose). Experiments were conducted with a pre-focusing time of 1 minute at 

1500 V, followed by a focusing time of 5 minutes at 3000 V. Data was processed and analyzed using 

Compass Software for ICE (Protein Simple, USA). 

 

2.10 Size exclusion chromatography coupled to multi-angle light scattering (SEC-

MALS) 

Size exclusion chromatography combined with multi-angle light scattering (SEC–MALS) was performed 

using a Vanquish Horizon™ UPLC with a variable wavelength UV detector (Thermo Fischer Scientific, 

USA). The separation was performed with a Superdex 200 Increase 10/300 GL column (GE Healthcare, 

USA). The aqueous mobile phase consisted of 38 mM NaH2PO4, 12 mM Na2HPO4, 150 mM NaCl and 

200 ppm NaN3 at pH 7.4 dissolved in HPLC-grade water. The mobile phase was filtered with Durapore 

VVPP 0.1 m membrane filters (Millipore Corporation, USA). Prior analysis, the samples were centrifuged. 

The autosampler was used to inject 25 or 50 μl in duplicates. The elution of the protein was monitored by 

the UV signal at 280 nm and by a MALS TREOS II detector (Wyatt Technology, USA). In addition, 

differential refractive index detector Optilab T-rEX (Wyatt Technology, USA) was used for concentration 

verification. Data collection and processing were performed using the ASTRA® software V7.1 (Wyatt 

Technology, USA). Three different parameters m25,rec, m40,rec and m50,rec were calculated, which represent 

the monomer mass recovery from the theoretical calculated protein mass in percent after two weeks of 

stress at 25°C, 40 °C and 50 °C respectively. This value also takes into account the loss of monomer that 

can occur due to precipitation or due to the SEC method (e.g. adsorption of the protein on the column 

material). In addition, the mass fraction of the monomer compared to all peaks in the chromatograms is 

shown in percentage as M25, M40 and M50 in the Supplementary Table SI 13.  Thanks to the MALS 

detection, it was also possible to assess the relative amount of small population of aggregates usually not 

visible by normal SEC-UV. The LSA parameter was calculated from the following equation: 

     

        

        
        

        

⁄  

where LSA and UVA represent the light scattering and UV peak area after two weeks at the temperature 

X respectively, the subscript „mon“ indicates the monomer peak area while the subscript „tot“ indicates 

the sum of all defined peak areas. Due to the different sensitivity of the MALS and UV detector, an LSAX 

value lower than one means that a population of aggregates is present. A decrease of LSAX highlights an 
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increase of the light scattering signal which indicates an increase in the percentage of high molecular 

weight species. 

 

2.11 Stress study 

Protein samples with concentration of 1 mg/ml in each respective formulation condition were sterile-

filtered, and 0.2 mL was filled in 0.5 mL sterile non-coated PP Eppendorf tubes. The samples were 

incubated at 4 °C, 25 °C, 40 °C and 50 °C for two weeks, and in a separate study at 4 °C and 25 °C for 6 

months. After storage, the samples were quenched on ice, stored at 4 °C and measured within two 

weeks.  

 

2.12 Response surface methodology (RSM) 

We adopted a design of experiments (DoE) approach and a robust RSM to establish the dependence of 

27 biophysical parameters on pH and NaCl concentration. Using those dependencies, we determined the 

range of optimal formulation conditions based on the desired values of the different parameters. The 

method of ordinary least squares was used in the regression models for data fitting. Both full and reduced 

models, considering the main effects of factors along with two-way interactions, were employed. A 

curvature response was allowed by assessing the quadratic term, also considering two-way interactions. 

The reduced model was obtained using a backward stepwise regression. The F-statistic approach was 

used to perform the effect test, considering a value of 0.05 or less as statistically significant. The fitting 

results are shown in Supplementary information – SI 4. All the results were calculated using the statistical 

software JMP® v 14.0 (SAS Institute Inc., USA), and all the analysis details can be found in the software 

manual.
45

 

 

2.13 Tests for statistical significance of linear correlations 

Pearson’s correlation coefficient R was calculated to determine whether two quantities are linearly 

correlated and to which extent. The outliers in the dataset were detected and eliminated before 

calculating the pairwise correlation. Outlier detection was based on the quartiles as a method, where 

samples outside the outer quartiles ± 1.5 times interquartile distances were removed using MATLAB®.  A 

Student t-test was carried out to test the statistical significance of R. The t-test was performed to 

investigate whether an R between two biophysical parameters will hold in general populations.  
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The null hypothesis of no correlation was tested using the following formula:
46,47

 

           
√   

√    
 

where n is the number of data points used to obtain R, and therefore it is dependent upon the biophysical 

parameters of interests in our study because some biophysical parameters were not measured in all 

conditions due to experimental hurdles (e.g. precipitation). For a given t-value and n, the value of 

cumulative distribution function for Student’s t-distribution is the confidence-level of the t-test and was 

calculated in MATLAB (MathWorks, USA). The selected confidence level for the t-test was 95 % (p-value 

<0.05). The same procedure was applied multiple times for different subsets to assess differences in the 

R values due to the different samples. The data points of the whole dataset are also provided in 

Supplementary information – SI 5. 

 

2.14 Principal component analysis (PCA) 

In order to get a quick overview of all the data collected, a PCA was run with unit-variance scaling of the 

data to let all the parameters influence the model equally (much like calculating the Pearson’s 

correlation). There are several entries in the data table that do not include a number due to reasons 

mentioned above. It was therefore necessary to calculate the PCA solution taking into account these 

missing values through imputation.
48

 This also takes into account the actual unit-variance scaling of the 

data. The data analysis was performed in MATLAB (MathWorks, USA) with in-house codes based on 

well-known algorithms. 

 

3 Results 

3.1 Generating a dataset including computational and biophysical parameters of 

diverse proteins 

The dataset investigated in this study consists of 14 diverse model proteins. Each protein has an 

assigned code made of the “PPI” letters and a number (Table 1). Protein primary sequences, except for 

PPI-04 and PPI-08, are provided in Supplementary information – SI 1. The dataset roughly represents the 

heterogenic group of therapeutic proteins today – mostly mAbs, a bispecific mAb, a fusion protein, a 

cytokine, albumin and enzymes. Some key biophysical properties and the purity of the provided proteins 

were investigated at the start of the study with orthogonal techniques (Table 1). The separations obtained 

with SEC-MALS and cIEF are presented in Supplementary information – SI 6. All proteins show a relative 
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monomer mass fraction ˃ 98 % with two exceptions: PPI-10 contains 96 % monomer and 4 % dimer, 

while PPI-44 contains 85 % monomer and 15 % aggregates. The protein molecular mass from SEC-

MALS matches the theoretical values closely within an experimental error of ±3 %. Two exceptions are 

PPI-30 that shows а deviation of about 13 % and PPI-46 with a difference close to 6 %. We hypothesize 

that these inconsistencies arise from the small protein molecular mass (Mm). Further, the Mm of PPI-30 

showed a concentration dependency, which suggests an effect of the second osmotic virial coefficient in 

the running buffer used for SEC-MALS. Earlier, we reported for PPI-30 that the protein forms weak 

oligomers around pH 7.5 which also supports the theory for strong attractive protein-protein interaction in 

similar conditions.
49

 In addition, we provided the retention time of the monomer peak, which can provide 

further insights on whether non-specific interactions occur with the chromatographic column (Table 1). 

The measured isoelectric points of the main peaks correspond well to the theoretical values calculated 

with Protein-Sol. The main and neighboring peaks detected by cIEF are in most cases within a narrow pH 

range. In addition, we calculated the predicted scale solubility from the amino acid sequences, using the 

Protein-Sol server. The general information and parameters presented in Table 1 are assessed and 

shown for two reasons: i) they provide a good overview of the protein properties in the dataset; and ii) 

they can be a good starting point to explain the results from the biophysical characterization that we 

present below. We then selected a set of computational and biophysical methods that often find 

application in protein drug development to study the stability of the proteins at different pH and ionic 

strength. In general, we aimed to use popular techniques which are often used in published work on the 

characterization of therapeutic proteins. Although this selection might be subjective, it is based on our 

experience and on the availability of the techniques in the consortium. The type of molecular descriptors 

calculated with MOE and ProDCal are summarized in Supplementary information SI 7. The parameters 

from AggScore, Zyggregator and Aggrescan are presented in Supplementary information SI 8. The 

experimental dataset included information on the stability of the 14 proteins in 24 different solution 

conditions, including 8 pH values ranging from 5 to 9 and three concentrations of sodium chloride, 0 mM, 

70 mM and 140 mM, to vary the ionic strength. In general, most of the experimental measurements were 

possible with several exceptions due to formulation issues (for example, precipitation of PPI-30 when 

dialyzed at pH close to 6); insufficient sample amount (for example, to do some of the kD measurements); 

or when the method did not allow measurements of all the 24 formulation conditions (e.g. electrophoretic 

mobility measurements that are performed at specific ionic strength). The full dataset including the mean 

values of measured biophysical parameters can be found in a separate table attached as Supplementary 

information SI 13. Most measurements were run in technical triplicates, except, e.g. for the stress studies 

measured by SEC-MALS and ICD which were run as a single replicate. Selected experiments were also 

repeated in different laboratories. Comparisons between cross-laboratory experiments showed high 

consistency, indicating robustness of the standard operating procedures. In the near future, the expanded 

dataset, including the replicates and most of the raw data, will be available for download via a tailor-made 

database (https://pippi-data.kemi.dtu.dk/).  

https://pippi-data.kemi.dtu.dk/
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Table 1. Calculated and measured properties of the proteins in the presented dataset. Protein 

primary sequences are provided in SI1. 

Protein 
code 

Protein 
type 

Protein-Sol 
Electrophoretic 

mobility 
cIEF Theoretical SEC-MALS 

Predicted 
scale 

solubility 

Calculated 
isoelectric 

point 

Point of zero 
ζ 

Main 
peak 

Peaks 
range 

Calculated 
monomer Mm 

(kDa) 

Measured 
monomer 
Mm (kDa) 

Monomer 
mass 

fraction 
(%) 

Monomer 
retention 
volume 

(mL) 

PPI-01 IgG1 0.366 8.37 6.94 7.2 7.1-7.3 144.8 147.7 99.7 11.8 

PPI-02 IgG1 0.354 9.09 8.21 9.3 9.1-9.4 148.2 147.9 98.3 11,9 

PPI-03 IgG1 0.404 9.4 8.77  9.4 9.1-9.4 144.8 147.1 99.8 12.0 

PPI-04 IgG1 -* -* 8.31 8.95 8.7-9.0 146.2 150.3 99.1 12.1 

PPI-08 
IgG1 + 
scFv 

-* -* 8.90 9.2 8.9-9.4 204.4 206.2 99.7 
12.4 

PPI-10 IgG1 0.378 9.15 8.87 9.2 8.8-9.3 144.2 147.8 96.3 12.0 

PPI-13 IgG1 0.397 9.08 8.26 8.9 8.5-9.0 148.9 150.1 99.4 12.0 

PPI-17 IgG2 0.334 8.89 8.21 9.05 8.7-9.3 145.1 148.4 98.5 12.0 

PPI-18 
HSA-
NEP 

0.431 5.68 5.01 5.6 4.5-6.0 146.7 149.4 98.3 
11.2 

PPI-30 
IFN-
α2a 

0.451 6.19 5.96 6.2 6.0-6.5 19.2 22.0 100 
16.2 

PPI-44 
transfe

rrin 
0.330 7.06 5.85 5.5 4.9-5.8 74.9 76.1 85.1 

13.9 

PPI-45 lipase 0.413 4.95 - † 4.7 4.5-4.9 29.5 29.8 100 16.1 

PPI-46 lipase 0.391 4.99 - † 4.35 4.1-5.1 29 30.8 100 16.0 

PPI-49 rHSA 0.450 6.13 - † 4.9 4.1-5.0 66.4 66.7 98.1 13.6 

*No primary sequence available. †   The electrophoretic mobility measurements could not accurately 

define this 

 

3.2 Linear correlation in the biophysical parameters, and similarities between the 

proteins 

We used the obtained dataset to search for pairwise linear correlations between 27 experimental 

biophysical parameters that are often assessed during protein discovery and development. The Student t-

test was applied to determine the statistical significance of the pairwise correlations evaluated by the 

Pearson`s correlation coefficient R. Figure 1a presents the R values with statistically significant 

correlations between the biophysical parameters at 95 % confidence level (p-values < 0.05) for all 14 

studied proteins.  
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Figure 1. (a) - Pairwise linear correlations between measured biophysical parameters in the entire 

dataset including 14 proteins and 24 different formulation conditions. The strength of these 

correlations was assessed using t-tests. p-values <0.05 are statistically significant at a 95 % confidence 

level. White cells represent no correlation with a p-value higher than 0.05. Blue and red cells express 

negative or positive correlation, respectively. No or weak correlations were observed between most 

biophysical parameters; (b) the PCA score-plot and (c) the corresponding loading plot. The PCA is based 

on all 27 parameters and all 14 proteins in all formulations. The dotted lines refer to the zero-line along 

both axes. (Please note that this is the result from a two-component PCA with imputed missing values). 

 

a

b c
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In general, weak linear correlations exist between some of the investigated biophysical parameters, like 

closely related parameters such as Ton,int and Tm1,int,  or Tm1,int  and Tm1,ex. We also tested the strength of 

the correlations in subsets of proteins in the dataset. For example, the analogous pairwise correlation 

analysis for the subset including only the 8 mAbs, each in 24 solution conditions, is shown in 

Supplementary information SI 9. Also, in SI10 the correlations in other subsets are shown. In general, the 

strength of the correlations observed in Figure 1a can slightly change when only a subset of the proteins 

like the one in SI 9 is selected, but the general trend that weak correlations exist is still present. We did 

not observe significant correlations between single experimental biophysical parameters and the 

molecular descriptors listed in SI 7 (data not shown).  

In addition to the pairwise linear correlation it was decided to perform a PCA on the data to get an 

overview of both the similarities between the 14 different proteins, as well as a different view on the 

similarities between all the 27 parameters measured. As can be seen from Figure 1b most of the proteins 

are gathered around the origin, except for PPI-18 and PPI-45, clearly indicating that these proteins 

behave differently from the remaining proteins. By investigating the loading plot, Figure 1c, it becomes 

evident that this corresponds very well with the results from Figure 1a, e.g. all “T” parameters are 

grouped (indicating a high correlation), with variables such as RR50 and Rh on the opposite side of the 

origin (negative correlated). By inspecting both figures in Figure 1b and 1c it is clear that PPI-18 

especially has high values of m1 and RR40 compared to the other proteins.  

 

3.3 Biophysical parameters that flag proteins as developable or not are largely 

determined by the formulation conditions 

We studied how pH and ionic strength affect the various computational and biophysical parameters often 

used as indicators that a protein has suitable properties for further development. The charge per amino 

acid calculated in silico with the Protein-Sol server greatly depends on the protein structure, pH and ionic 

strength. As an example, the dependency of charge per amino acid residue on pH and ionic strength for 

two antibodies (PPI-01, PPI-03), interferon α2a (PPI-30), and one lipase (PPI-45) are represented in 

Figure 2. The same server can provide similar contour plots for the effect of pH and ionic strength on 

conformational stability. Such computational characterization cannot immediately predict what will be the 

most stable condition for a given protein, but it is very important since it indicates what would be the 

expected trade-off between colloidal and conformational stability at different pH and ionic strength. 

Understanding such trade-offs is critical to determine the overall molecule stability. 

Due to the volume and complexity of the data, response surface methodology (RSM) was applied to 

study how multiple biophysical parameters change as a function of pH and ionic strength. An example of 

two proteins, a bispecific antibody PPI-08 and an IgG1 PPI-03, is presented in Figure 3. The first 
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apparent melting temperature Tm1,int from nanoDSF, the aggregation onset temperature Tagg from DLS, 

the interaction parameter kD and the monomer mass recovery m40,rec after 2-week storage at 40 ⁰C are 

considered in this example. The borders of the contour plots are determined by the following cut-off 

values: Tm1,int > 65 °C, Tagg > 55 °C, kD > 0 mL/g, m40,rec > 80 %.  

Figure 2. Calculated charge per amino acid as a function of pH value and ionic strength for two 

antibodies (PPI-01, PPI-03), interferon α2a (PPI-30) and one lipase (PPI-45). 

The colored zones represent areas where the parameters are below the cut-off values mentioned above. 

Respectively, white areas indicate pH and ionic strength where all the parameters are above the cut-off 

values. Although such cut-off values are subjective and their definition may vary between labs, they are 

often used during developability assessment. In our case, we selected the cut-offs based on our 

experience, as explained in the discussion section below. Interestingly, a formulation “sweet spot” can be 

found for some of the proteins, but not for others. This “sweet spot” represents an area or a value in the 

RSM surfaces where all the selected biophysical parameters are above the defined cut-off values. 

Examples of proteins with a formulation “sweet spot” in our dataset are PPI-03, PPI-13, PPI-17, PPI-44 

and PPI-46 (Figure 3 and SI7). A common practice for selecting developable proteins is that the stability 
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of different candidates is compared in only one formulation condition. Noteworthy, if the proteins in our 

dataset had been assessed in only the commonly used phosphate buffered-saline (similar conditions of 

which are represented by a red square in Figure 3), all molecules but PPI-46 would have failed to be 

classified as developable according to the defined cut-off values.  The arrow (in Figure 3) indicates that 

by using other formulation conditions, PPI-03 will move to a formulation “sweet spot” and actually meets 

all four cut-off criteria that would make it a good candidate for further development. On the other hand, 

PPI-08 presents a satisfactory Tm,int in all the formulation conditions, while Tagg, kD and especially m40,rec 

present critical values. This highlights the importance of a multi-parameter approach. 

Figure 3. Contour plot representing the change of several critical biophysical parameters with pH and salt 

concentration for PPI-08 and PPI-03 - white areas present regions where all four parameters are above 

the defined cut-off value. Areas colored in red, green, blue and yellow represent areas where respectively 

kD, Tagg, Tm,int, and m40,rec are below the cut-off values. The dots highlight which part of the surface comes 

towards the reader, while the lines indicate a curvature of the surface. All the surfaces are superimposed.  

Of course, the example we present is very specific and changing the type of parameters and cut-offs can 

make molecules appear developable or not. However, Figure 3 depicts something very important, which 

is often overlooked during developability assessment, i.e. the formulation conditions largely determine 

whether certain biophysical parameters will be above a certain stability threshold or not. Therefore, a 

proper assessment and comparison of therapeutic protein candidates can only be based on multiple 

parameters obtained in several formulation conditions. Otherwise, we risk a scenario where a generally 

stable molecule is not selected for further development only because it exhibits low stability in one assay 

buffer. 

PPI-08 PPI-03

Tm
Tagg

KD

Tm Tagg

KD

m40,rec

m40,rec
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To tackle this issue and to rank the stability of the proteins based on data from multiple biophysical 

parameters and formulation conditions, one should focus on the existence and area of a formulation 

“sweet spot” area like the one for PPI-03 in Figure 3. We suggest that a larger cumulative “sweet spot” 

area of multiple biophysical properties will correspond to higher intrinsic stability of a protein molecule. 

Such data can be used to determine the “robustness” of the proteins across a broad formulation space, 

which is essential for both lead selection and formulation development. Based on this concept, we 

propose the calculation and use of stability risk values, as explained below. 

 

3.4 Datasets of various size can be used to generate stability risk scores for 

developability assessment  

As shown above, a change in the formulation conditions, like pH and ionic strength, can result in a protein 

appearing suitable or unsuitable for development. Consequently, a more comprehensive characterization 

is required to understand whether a protein exhibits desirable biophysical properties or not. At the same 

time, the biophysical characterization is a trade-off among analytical efforts, time and sample 

consumption. To assess what analytical effort is needed to rank protein drug candidates based on their 

stability accurately, we calculated stability risk scores, ranging from 0 to 1, where higher values indicate a 

higher stability risk. The first stability risk score requires low analytical effort (SRSLAE) and is calculated 

from parameters determined from high-throughput methods that require smaller protein quantities, 

namely Tagg and Tm1,int (Figure 4, green bars). More advanced and labor-intensive characterization, 

including Tagg, Tm, kD and m40,rec , was added to the high-throughput characterization results to obtain a 

stability risk score obtained with medium analytical effort (SRSMAE) (Figure 4, blue bars). Finally, many of 

the parameters measured in this work, namely Tagg, Tm1,int , kD ,ζ , m1, Cm1, PD, m25,rec, m40,rec, m50,rec, 

LSA25, LSA40 and LSA50, were combined to obtain a stability risk score based on high analytical effort 

(SRSHAE) (Figure 4, red bars). 

To calculate the SRSs values, a risk region (i.e the reverse of the formulation “sweet spot”) is defined by a 

series of cut-off parameter values. When the biophysical property value is in the risk region (below or 

above the cut-off value depending on the biophysical property) a value of 1 is assigned to that condition; 

otherwise, 0 is assigned.  This procedure is repeated for all the biophysical properties and formulation 

conditions. Then, the nominal values are grouped, as shown in Figure 4. 

The SRSs are calculated by calculating the mean of each group.  Thus, SRS values between 0 and 1 are 

obtained for each protein as a function of all formulation conditions tested. The experimental SRSs are 

protein-dependent and calculated using multiple parameters assessed in different formulation conditions. 

The selection of the respective cut-off values presented in this work relies on: i) values reported in 

literature, e.g. many marketed antibodies have a Tagg greater than 55 °C;
3
 ii) well-established principles, 
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e.g. highly positive kD indicates high colloidal stability;
50,51

 and iii) informed judgment selection, e.g RR,25 > 

1 indicates the formation of aggregates. Adjusting the cut-off values results in different slices of the 

surface and changes the size of the SRS region. For example, changing the Tagg cut-off from 55 °C to 25 

°C for SRSLAE will result in decreasing the risk values for all proteins.  

 

Figure 4. Stability risk score values for the proteins in the presented dataset. SRScomp, SRSLAE, 

SRSMAE, SRSHAE are represented in black, green, blue and red, respectively. A higher SRS indicates 

an increased risk of stability issues. The asterisk (*) indicates proteins with no primary sequence available 

and therefore without a SRScomp in this study.   

Computational Stability Risk Score
(SRScomp)
• No protein consumed
• Low experimental effort
• Fast
• Method used – Aggrescan, AggScore, 

Zyggregator

• * no primary sequence is available

Low experimental effort Stability Risk Score 
(SRSLAE)
• 360 ug protein consumed to test all 24 formulations
• Moderate experimental effort
• Fast
• Biophysical parameters: Tagg, ,Tm

Medium experimental effort Stability Risk Score
(SRSMAE)
• ≈2 mg protein consumed to test all 24 

formulations
• High experimental effort
• Slow
• Biophysical parameters: Tagg, kD, Tm, 

High experimental effort Stability Risk Score 
(SRSHAE)
• Several hundreds of mg of protein consumed to test all 

24 formulations
• Very High experimental effort
• Very Slow
• Biophysical parameters: Tagg, kD, Tm, ζ  , m1, Cm1, 

PD% , , , LSA25, LSA40, LSA50, RR25, RR40, RR50

SRScomp

SRSLAE

SRSMAE

SRSHAE

*
*
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Shifting the SRSs cut-off to an upper or lower limit, thus forcing the SRSs to 0 or 1 for all proteins, would 

result in a loss of information content. It is therefore important to select the values in an appropriate range 

such that a substantial portion of tested conditions falls on both sides of the threshold. A summary of the 

cut-off values to calculate the presented SRSs is also provided in Supplementary information – SI 12.  

Although the exact definition of the cut-off values for each biophysical parameter will still be a matter of 

discussion, we believe that our suggestion is a pragmatic and good starting point. 

The computational SRS value, SRScomp (Fig. 4, black line), is based on computational work only, and 

calculated using a different approach. The results of the total hydrophobic patch score and the mean 

aggregation tendency from Aggrescan, AggScore and Zyggregator were normalized from 0 to 1 and a 

mean value was calculated. Other variants of the SRScomp were investigated, including a combination of 

several computational parameters and molecular descriptors (e.g. hydrophobicity index) yielding results 

that were generally poorer than the combined SRScomp that we present in this example (data not shown). 

Subsequently, we investigated the correlations between the SRSs values obtained with different 

analytical efforts. Interestingly, the SRScomp correlates well with the SRSLAE (Figure 5).  

 

Figure 5. Linear correlation between the protein rankings based on four stability risk scores. For more 

information regarding the calculation and definition of the different stability risk scores refer to the main 

manuscript text and Figure 4. 
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However, when the size and complexity of the experimental dataset is increased, the correlation with the 

computational risk score decreases. The stability risk score based on the largest amount of experimental 

data (SRSHAE) showed only a weak correlation with SRScomp, but a moderate correlation with the SRSLAE 

and SRSMAE. Also, no or weak correlation among single computational parameters and experimental 

SRSs was observed (data not shown). In general, most of the molecular descriptors calculated from the 

homology models or primary sequences are either weakly or not influenced by pH and ionic strength 

which might explain the low correlation to stability risk scores obtained from characterization in different 

formulation conditions. 

 

3.5 Stability risk scores obtained from larger datasets exhibit better correlation with 

the amount of aggregates formed during storage 

The obtained stability risk scores are validated by correlating the values with the amount of aggregates 

formed during storage for 6 months at 4 and 25 ⁰C. This storage stability data is generated for all proteins 

in four different formulations. The linear correlations between SRSHAE and the percentage of aggregates 

after six months of storage at refrigerated and room temperature are shown in Figure 6.  

This percentage is calculated using the relative UV area of high molecular weight species, after size 

exclusion chromatography (SEC), and corrected for the missing mass from the total column recovery. The 

correction is necessary to adjust for big and/or insoluble aggregates which are filtered out by the column 

or lost by sedimentation before injection. Similar data can be derived from the light scattering area. These 

results demonstrate a strong correlation between the experimental SRSs for physical stability risk 

assessment and the percentage of aggregates formed during storage at temperatures relevant for 

therapeutic proteins. A summary of the correlation coefficients between the SRSs and the percentage of 

aggregation is shown in Figure 7.  

The Pearson’s correlation coefficient is calculated similarly as described earlier. These values were 

averaged over all proteins, formulations and temperatures of stress studied. SRScomp present the lowest 

mean correlation and highest variability. As expected, by increasing the analytical effort the correlations 

become stronger and the predictions more reliable. SRSHAE strongly correlates with protein stability with a 

very low variability, making this value the most robust for protein ranking.  
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Figure 6. Linear correlation between SRSHAE and the percentage of aggregates after 6 months of 

storage at 4 °C (in blue) and 25 °C (in red). A total of four formulations were studied i) 10 mM His at pH 

5 ii) 10 mM His and 140 mM NaCl at pH 5, iii) 10 mM His at pH 6, iv) 10 mM His and 140 mM NaCl at pH 

5. The filled area represents 95% confidence intervals. *PPI-30, PPI-45, PPI-46 were formulated at pH 

7.5 instead of pH 6.5. PPI-45 and PPI-46 were formulated at pH 5.5 instead of pH 5. The pHs were 

selected to include a “good” and a “bad” formulation in a pharmaceutically relevant pH range. 

Interestingly SRSLAE and SRSMAE present similar prediction power which confirms that an early rough 

ranking by using few high throughput biophysical parameters, namely Tagg and Tm1,int, assessed in various 

solution conditions, is possible in cases where sample volume is very limited. Finally, we suggest that, 

based on the SRSs, the proteins can be classified as having a low (SRS < 0.3), medium (0.3 > SRS > 

0.6) or high developability risk (SRS > 0.6). 

 

Stored at 25°C

Stored at 4°C

SRSHAE
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Figure 7.  Averaged Pearson’s correlation coefficient R between SRSs and the percentage of 

aggregates after 6 months of storage at 4 °C and 25 °C. The mean and error bars are calculated as a 

standard variation of the R value between SRSs and the amount of aggregates after 6 months of storage 

over all proteins, formulations and temperatures of stress studied.  

 

4 Discussion 

Therapeutic protein candidates should exhibit a set of desirable biophysical parameters which indicate 

sufficient stability and drug-like properties.
6,8,10,15,52

 These properties are assessed at very early stages 

and serve as the decision basis for which molecules will be selected for further development.
6,53,54

 For 

over two decades, the community has striven to find the most efficient approaches to select proteins with 

drug-like properties. However, generally accepted guidelines that are applicable to the diverse landscape 

of therapeutic proteins have not yet emerged. Defining rules and strategies for this selection can only be 

based on a large body of published research that employs orthogonal techniques to characterize 

therapeutic proteins in different formulations. Although a great progress has been made by several 

landmark studies, work showing the feasibility of certain selection approaches is often based on i) 

SRScomp SRSLAE SRSMAE SRSHAE
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molecules with unknown primary sequences and purity; ii) on protein datasets including only structurally 

similar molecules, e.g. antibodies; and/ or iii) assessment of biophysical parameters in only one 

formulation condition.
5,12,15–17,52

 For example, such studies report correlations among parameters related 

to protein thermal stability, colloidal stability, solubility and viscosity.
55–59

 Another correlation that is often 

reported is the one between the onset temperature of protein unfolding or protein melting temperature 

and the aggregation rate during accelerated stability studies.
17,60

 Although we do not question the 

existence of such correlations in a particular case study, we show here that the relationships between 

some biophysical parameters cannot be generalized for a heterogeneous population of proteins in a 

diverse set of formulation conditions. These findings highlight that “protein stability” cannot be well 

described by using a single biophysical parameter, nor by studying a protein in a single solution condition. 

Probably the biggest advance to understand which features make a protein developable has been made 

for therapeutic monoclonal antibodies. However, the next generation of therapeutic proteins will be more 

diverse, including fusion proteins, enzymes and cytokines, among others. Understanding what exactly 

indicates intrinsic stability of a protein molecule requires that more information on various therapeutically-

relevant proteins, including their primary sequences, purity data, and comprehensive computational and 

biophysical characterization in different solution conditions is made publicly available. 

In this work, we present a dataset which includes comprehensive computational and biophysical stability 

characterization of 14 diverse therapeutically relevant proteins in 24 different formulation conditions. We 

use the data to look for linear pairwise correlations among a variety of biophysical parameters that are 

considered to be indicative for protein stability.  We find linear correlations among some biophysical 

parameters, but not among others. Future work will focus on more complex analyses of the presented 

dataset to find whether the connection between some computational and biophysical parameters can be 

described by more advanced models. For example, we are currently focusing on multivariate data 

analysis, while some machine learning approaches based on the presented data are already published.
61

 

Since the presented biophysical parameters often have a complex non-linear dependence as a function 

of pH and ionic strength, we adopted an RMS approach to describe this behaviour. This allowed us to 

visualize and define boundaries which show whether a biophysical parameter will be above or below a 

certain stability cut-off that will flag a protein with desirable or undesirable features. The RMS 

methodology shows that some proteins in the dataset exhibit a formulation “sweet spot”, i.e. a range of 

pH and ionic strength where all biophysical parameters are above the desired threshold. Interestingly, if 

we perform comparison among different proteins by using only one formulation condition (e.g. having pH 

and ionic strength close to phosphate-buffered saline), we should put a flag on many of the proteins that 

actually have a broad formulation “sweet spot”. This raises the question whether the developability 

assessment of proteins based on assays performed in only one buffer are less reliable than a comparison 

based on data in several formulation conditions. Indeed, studying a protein in different conditions would 
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increase the analytical effort, but thanks to the technological advancement, it is now possible to perform 

developability assessment in dozens of solution conditions with only minimal protein consumption. In this 

paper there is, for example, a study of the thermal unfolding and aggregation of proteins in 24 different 

formulation conditions which consumes only a total of 360 µg of protein (i.e. for nanoDSF and DLS with 

temperature ramp).  

Here, we also present how the multiple parameters can be combined into stability risk scores (SRS). 

These scores are based on the two considerations mentioned above: i) the biophysical parameters carry 

unique information and ii) the formulation condition substantially influences those parameters. The SRSs 

are protein-specific values that are calculated from multiple parameters, assessed for multiple formulation 

conditions. The calculations are simple and only based on critical limits for each parameter. We show how 

these SRS values are related to each other. Interestingly, the computational SRS ranking better 

correlates to the SRS ranking based only on few basic biophysical parameters. However, if the stability 

risk score is based on a larger set of experimental data, the correlations with the computational ranking 

become weaker. This does not mean that the computational characterization is not important since it still 

provided good predictions for the first round of characterization. Also, we have already demonstrated that 

other in silico approaches can be applied to proteins for a structure-based discovery of aggregation 

breaking excipient of PPI-30
62

 or characterization of peptides
63

. In addition, in silico approaches have 

been developed to predict whether certain features in the complementarity-determining regions in mAbs 

can lead to stability problems.
12

 We validate the different SRS values by showing how they correlate with 

the amount of aggregates formed by the different proteins during storage for 6 months at 4 °C and 25 °C. 

Intuitively, an SRS calculated from more biophysical parameters correlates better with the storage stability 

of the proteins, and thus can be used for more reliable prediction of developable candidates. Besides this, 

we expect that a protein having a high SRS calculated from various formulation conditions will be less 

challenging during formulation development. In the near future,  data used in this study will be available 

for download from a tailor-made database (https://pippi-data.kemi.dtu.dk/). This public database will be 

the basis for novel insights into the complex connection between therapeutic protein structure, formulation 

conditions, biophysical properties and storage stability. 

 

 5 Acknowledgments 

This study was funded by a project part of the EU Horizon 2020 Research and Innovation program under 

the Marie Skłodowska-Curie grant agreement No 675074. We thank the whole PIPPI consortium 

(http://www.pippi.kemi.dtu.dk) for the continuous support. The first author thanks Wyatt Technology staff 

members for their many contributions. 

 



CHAPTER II: Advancing therapeutic protein discovery and development through comprehensive 
computational and biophysical characterization 

 

80 
 

6 List of abbreviations 

cIEF – capillary isoelectric focusing; Cm1 – melting denaturant concentration from the first unfolding in 

GuHCl; Cm2 – melting denaturant concentration from the second unfolding in GuHCl; D0 – protein diffusion 

coefficient at infinite dilution; dG1 – apparent Gibbs free energy of the first unfolding in GuHCl; dG2 – 

apparent Gibbs free energy of the second unfolding in GuHCl; DLS – dynamic light scattering; DoE – 

design of experiments; DSF – differential scanning fluorimetry; ICD – isothermal chemical denaturation; 

kD – interaction parameter from DLS; LSA25 – empirical parameter indicating the presence of particles 

determined after 2 weeks at 25 °C; LSA40 – empirical parameter indicating the presence of particles 

determined after 2 weeks at 40 °C; LSA50 – empirical parameter indicating the presence of particles 

determined after 2 weeks at 50 °C; m1 – empirical parameter describing the cooperativity of the first 

unfolding in GuHCl; m2 – empirical parameter describing the cooperativity of the second unfolding in 

GuHCl; M25 – mass fraction of monomer compared to all peaks after 2 weeks at 25 °C; m25,rec – monomer 

mass recovery after 2 weeks at 25 °C; M40 – mass fraction of monomer compared to all peaks after 2 

weeks at 40 °C; m40,rec – monomer mass recovery after 2 weeks at 40 °C; M50 – mass fraction of 

monomer compared to all peaks after 2 weeks at 50 °C; m50,rec – monomer mass recovery after 2 weeks 

at 50 °C; mAb – monoclonal antibody; MOE - molecular operating environment software; nanoDSF® - 

fluorimetric method based on intrinsic protein fluorescence; PD – polydispersity from DLS; PDB – Protein 

Data Bank; PEGTMP – inflection point of the fit to the PEG titration curve; Rh – protein hydrodynamic 

radius at 1 mg/ml from DLS; RR,25 – relative increase in the hydrodynamic radius after 2 weeks at 25 °C; 

RR,40 – relative increase in the hydrodynamic radius after 2 weeks at 40 °C; RR,50 – relative increase in the 

hydrodynamic radius after 2 weeks at 50 °C; RSM – response surface methodology; SEC-MALS – size 

exclusion chromatography coupled to multi-angle light scattering; SRScomp – stability risk score from 

computational parameters; SRSHAE – stability risk score from experimental parameters with high analytical 

effort; SRSLAE – stability risk score from experimental parameters with low analytical effort; SRSMAE – 

stability risk score from experimental parameters with medium analytical effort; Tagg – aggregation onset 

temperature from DLS; Tm1,ex – first apparent melting temperature from DSF with extrinsic dye; Tm1,int – 

first apparent melting temperature from nanoDSF®; Tm2,int – second apparent melting temperature from 

nanoDSF®; Ton,ex – onset of the first thermal protein unfolding from DSF with extrinsic dye; Ton,int – onset 

of the first thermal protein unfolding from nanoDSF®; ζ – zeta potential. 
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Supplementary information – SI 1. Primary sequences of the studied proteins 

____________________________________________________________________________________ 

SI 1.1 PPI-01 (IgG1) 

Heavy chain 

EVQLVQSGAEVKKPGATVKISCKVYGYIFTDYNIYWVRQAPGKGLEWMGLIDPDNGETFYAEKFQGRAT

MTADTSSDRAYMELSSLRFEDTAVYYCATVMGKWIKGGYDYWGRGTLVTVSSASTKGPSVFPLAPSSK

STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN

HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV

KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ

PREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV

DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK  

N-glycosylation site 

Light chain 

QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYDNFNRPSGVPPRFSGSKS

GTSASLAITGLQAEDEADYYCQSYDSPTLTSPFGTGTLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLI

SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK

TVAPTECS 

____________________________________________________________________________________ 

SI 1.2 PPI-02 (IgG1) 

Heavy chain (by peptide digest) 

QVTLRESGPALVKPTQTLTLTCTFSGFSLSTAGMSVGWIRQPPGKALEWLADIWWDDKKHYNPSLKDRL

TISKDTSKNQVVLKVTNMDPADTATYYCARDMIFNFYFDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTS

GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP

SNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN

WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE

PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS

RWQQGNVFSCSVMHEALHNHYTQKSLSLSPG  

N-glycosylation site 
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Light chain (by peptide digest) 

DIQMTQSPSTLSASVGDRVTITCSASSRVGYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSGSGSGTE

FTLTISSLQPDDFATYYCFQGSGYPFTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP

REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN

RGEC 

____________________________________________________________________________________ 

SI 1.3 PPI-03 (IgG1) 

Heavy chain 

QVNLRESGGGLVQPGGSLRLSCAASGFTFGSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGR

FTISRDNSKNSLYLQMNSLRAEDTAVYYCARRSIYGGNYYFDYWGRGTLVTVSSASTKGPSVFPLAPSSK

STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN

HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV

KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ

PREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV

DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK  

N-glycosylation site 

Light chain 

DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTD

FTLTISSLQPEDFATYYCQQSYSTPLTFGGGSKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR

EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR

GEC 

____________________________________________________________________________________ 

SI 1.4 PPI-04 (IgG1) - Sequence not available. 

____________________________________________________________________________________ 

SI 1.5 PPI-08 (Bispecific mAb) - Sequence not available. 

____________________________________________________________________________________ 
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____________________________________________________________________________________ 

SI 1.6 PPI-10 (IgG1) 

Heavy chain 

EVQLLESGGGLVQPGGSLRLSCAASGFTFGNSWMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGR

FTISRDNSKNTLYLQMNSLRAEDTAVYYCTRDLPGIAVAGYWGQGTLVTVSSASTKGPSVFPLAPSSKST

SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK

PSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF

NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP

REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD

KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK  

N-glycosylation site 

Light chain 

DTQMTQSPSTLSASVGDRVTITCRASEGIYHWLAWYQQKPGKAPKLLIYKASSLASGVPSRFSGSGSGT

EFTLTISSLQPDDFATYYCQQYSNYPLTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP

REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN

RGEC 

____________________________________________________________________________________ 

SI 1.7 PPI-13 (IgG1) 

Heavy chain 

QVQLQESGPGLVKPSETLSLTCTVSGGSISADGYYWSWIRQPPGKGLEWIGSLYYSGSTYYNPSLKGRV

TISGDTSKNQFSLKLSSVTAADTAVYYCARTPAYFGQDRTDFFDVWGRGTLVTVSSASTKGPSVFPLAPS

SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN

VNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED

PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKA

KGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS

KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 

N-glycosylation site 
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Light chain 

DIQMTQSPSTLSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKVLIYKASTLESGVPSRFSGSGSGTE

FTLTISSLQPDDFATYYCQQSHHPPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP

REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN

RGEC 

____________________________________________________________________________________ 

SI 1.8 PPI-17 (IgG2) 

Heavy chain (by peptide digest) 

QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMNWIRQAPGKGLEWVSYISSSGSIIYYADSVKGRFTI

SRDNAKNSLYLQMNSLRAEDTAVYYCAREGRIAARGMDVWGQGTTVTVSSASTKGPSVFPLAPCSRST

SESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDH

KPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNW

YVDGVETKPREEQFNSTFREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKGLPAPIEKTISKTKGQPREP

QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKS

RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 

Light chain (by peptide digest) 

DIQMTQSPSSLSASVGDRVTITCRPSQSFSRYINWYQQKPGKAPKLLIYAASSLVGGVPSRFSGSGSGTD

FTLTISSLQPEDFATYYCQQTYSNPPITFGQGTRLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP

REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN

RGEC 

____________________________________________________________________________________ 

SI 1.9 PPI-18 (human serum albumin-neprilysin fusion protein) 

DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQSPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLF

GDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYL

YEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGER

AFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECC

EKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRL

AKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVS

TPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCF

SALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCC

KADDKETCFAEEGKKLVAASQAALGLGGGGSYDDGICKSSDCIKSAARLIQNMDATTEPCTDFFKYAC
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GGWLKRNVIPETSSRYGNFDILRDELEVVLKDVLQEPKTEDIVAVQKAKALYRSCINESAIDSRGGEPLLKL

LPDIYGWPVATENWEQKYGASWTAEKAIAQLNSKYGKKVLINLFVGTDDKNSVNHVIHIDQPRLGLPSRD

YYECTGIYKEACTAYVDFMISVARLIRQEERLPIDENQLALEMNKVMELEKEIANATAKPEDRNDPMLLYN

KMTLAQIQNNFSLEINGKPFSWLNFTNEIMSTVNISITNEEDVVVYAPEYLTKLKPILTKYSARDLQNLMSW

RFIMDLVSSLSRTYKESRNAFRKALYVTTSETATWRRCANYVNGNMENAVGRLYVEAAFAGESKHVVED

LIAQIREVFIQTLDDLTWMDAETKKRAEEKALAIKERIGYPDDIVSNDNKLNNEYLELNYKEDEYFENIIQNL

KFSQSKQLKKLREKVDKDEWISGAAVVNAFYSSGRNQIVFPAGILQPPFFSAQQSNSLNYGGIGMVIGHEI

THGFDDNGRNFNKDGDLVDWWTQQSASNFKEQSQCMVYQYGNFSWDLAGGQHLNGINTLGENIADN

GGLGQAYRAYQNYIKKNGEEKLLPGLDLNHKQLFFLNFAQVWCGTYRPEYAVNSIKTDVHSPKNFRIIGTL

QNSAEFSEAFHCRKNSYMNPEKKCRVW 

GGGG-Linker 

____________________________________________________________________________________ 

SI 1.10 PPI-30 (interferon alfa-2a) 

CDLPQTHSLGSRRTLMLLAQMRKISLFSCLKDRHDFGFPQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKD

SSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAVRKYFQRITLYLKEKKYSPCAWEV

VRAEIMRSFSLSTNLQESLRSKE 

____________________________________________________________________________________ 

SI 1.11 PPI-44 (recombinant human transferrin) 

VPDKTVRWCAVSEHEATKCQSFRDHMKSVIPSDGPSVACVKKASYLDCIRAIAANEADAVTLDAGLVYDA

YLAPNNLKPVVAEFYGSKEDPQTFYYAVAVVKKDSGFQMNQLRGKKSCHTGLGRSAGWNIPIGLLYCDL

PEPRKPLEKAVANFFSGSCAPCADGTDFPQLCQLCPGCGCSTLNQYFGYSGAFKCLKDGAGDVAFVKH

STIFENLANKADRDQYELLCLDNTRKPVDEYKDCHLAQVPSHTVVARSMGGKEDLIWELLNQAQEHFGK

DKSKEFQLFSSPHGKDLLFKDSAHGFLKVPPRMDAKMYLGYEYVTAIRNLREGTCPEAPTDECKPVKWC

ALSHHERLKCDEWSVNSVGKIECVSAETTEDCIAKIMNGEADAMSLDGGFVYIAGKCGLVPVLAENYNKA

DNCEDTPEAGYFAVAVVKKSASDLTWDNLKGKKSCHTAVGRTAGWNIPMGLLYNKINHCRFDEFFSEGC

APGSKKDSSLCKLCMGSGLNLCEPNNKEGYYGYTGAFRCLVEKGDVAFVKHQTVPQNTGGKNPDPWA

KNLNEKDYELLCLDGTRKPVEEYANCHLARAPNHAVVTRKDKEACVHKILRQQQHLFGSNVADCSGNFC

LFRSETKDLLFRDDTVCLAKLHDRNTYEKYLGEEYVKAVGNLRKCSTSSLLEACTFRRP 

____________________________________________________________________________________ 

SI 1.12 PPI-45 (Lipase) 

SIDGGIRAATSQEINELTYYTTLSANSYCRTVIPGATWDCIHCDATEDLKIIKTWSTLIYDTNAMVARGDSEK

TIYIVFRGSSSIRNWIADLTFVPVSYPPVSGTKVHKGFLDSYGEVQNELVATVLDQFKQYPSYKVAVTGHS
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LGGATALLCALDLYQREEGLSSSNLFLYTQGQPRVGNPAFANYVVSTGIPYRRTVNERDIVPHLPPAAFG

FLHAGSEYWITDNSPETVQVCTSDLETSDCSNSIVPFTSVLDHLSYFGINTGLCT 

____________________________________________________________________________________ 

____________________________________________________________________________________ 

SI 1.13 PPI-46 (Lipase) 

EVSQDLFNQFNLFAQYSAAAYCGKNNDAPAGTNITCTGNACPEVEKADATFLYSFEDSGVGDVTGFLAL

DNTNKLIVLSFRGSRSIENWIGNLNFDLKEINDICSGCRGHDGFTSSWRSVADTLRQKVEDAVREHPDYR

VVFTGHSLGGALATVAGADLRGNGYDIDVFSYGAPRVGNRAFAEFLTVQTGGTLYRITHTNDIVPRLPPR

EFGYSHSSPEYWIKSGTLVPVTRNDIVKIEGIDATGGNNQPNIPDIPAHLWYFGLIGTCL 

____________________________________________________________________________________ 

SI 1.14 PPI-49 (human serum albumin) 

MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEV

TEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRL

VRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELR

DEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECAD

DRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVF

LGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFE

QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHE

KTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHK

PKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL 

____________________________________________________________________________________ 
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Table SI 2. Zscore values for the homology model structures  

 

Protein name Amino acids number Zscore 

PPI-01 451 -9.38 

PPI-02 898 -12.66 

PPI-03 902 -11.08 

PPI-10 898 -13.03 

PPI-13 910 -13.44 

PPI-17 892 -12.53 

PPI-18 1289 -12.43 

PPI-30 165 -6.42 

PPI-44 Missing Missing 

PPI-45 269 -6.89 

PPI-46 269 -8.47 

PPI-49 609 -11.25 
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SI 3. Details on the calculation used for extrinsic DSF 

The raw fluorescence intensity data at 578 nm were exported for data processing using Origin 8® SR6 

(OriginLab Corportation; Northampton, MA). Background fluorescence was corrected by subtracting the 

corresponding placebo curves from each sample curve. The melting curves were then differentiated, 

smoothed (polynomial order = 1, number of points = 5), and splined (cubic spline with 99 interpolated 

points between two data points). Peak centers of the resulting first derivative were used as melting 

temperatures. To determine the onset temperature (Ton,ext), the curves were fitted using Origin’s 

Boltzmann function where the local minimum and maximum of the fluorescence transition were used as 

input values. The Ton,ext was calculated using the equation below: 

         
    (    

     

 
  

        (     )
   

)

     

         

with Tm1,ext being the inflection point, dT the slope factor, A1 the lower fluorescence intensity, and A2 the 

upper fluorescence intensity of the sigmoidal curve. Ton,ext resembles twice the distance on the x-scale of 

Tm1,ext, and the point of intersection between the tangents through Tm1,ext and A1.  

For the high throughput screening, all the previous Origin® data processing steps were automated using 

the Open TM script, which applies the LabTalk code function that can be found in the following reference: 

Menzen, T. A. Temperature-Induced Unfolding, Aggregation, and Interaction of Therapeutic Monoclonal 

Antibodies. PhD Thesis, LMU Munich (2014). 
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Figure SI 4. Fitting from the response surface methodology (RSM) 

Note: Each protein is represented with a different color. The R
2
 and the root mean square error (RMSE) 

are calculated from all the datapoints, whose number is showed in the picture (n). 
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Figure SI 5. Multivariate matrixes including all datapoints. (Part 1 of 2) 

Note: Each protein is represented with a different color. The two matrixes are relative to Figure 1 in the 

main manuscript (i.e. outliners are excluded). 
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Figure SI 5. Multivariate matrixes including all datapoints. (Part 2 of 2) 
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Figure SI 6. Separations obtained with cIEF and SEC-MALS for the proteins in the dataset (Part 1 

of 2) 
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Figure SI 6. Separations obtained with cIEF and SEC-MALS for the proteins in the dataset (Part 2 

of 2) 
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Table SI 7. List of the molecular descriptors calculated by MOE and ProDCal (Part 1 of 2) 

Note: The description of the molecular indices can be found in the relative software manual. 

MOE ProtDCal 

pro_app_charge pro_patch_cdr_pos_2 pro_zdipole dGc(F) wPjiH 

pro_asa_hph pro_patch_cdr_pos_3 pro_zeta dGw(F) wPhiS 

pro_asa_hyd pro_patch_cdr_pos_4 pro_zquadrupole Gs(F) wPhil 

pro_asa_vdw pro_patch_cdr_pos_5 pro_patch_neg_3 W(F) Phi 

pro_coeff_280 pro_patch_cdr_pos_n pro_patch_neg_4 HBd LnFD 

pro_coeff_diff pro_patch_hyd pro_patch_neg_5 dGs wCLQ 

pro_coeff_fric pro_patch_hyd_1 pro_patch_neg_n dGw wCTP 

pro_debye pro_patch_hyd_2 pro_patch_pos dGel wSP 

pro_dipole_moment pro_patch_hyd_3 pro_patch_pos_1 dGLJ WNc 

pro_eccen pro_patch_hyd_4 pro_patch_pos_2 dGtor Ap 

pro_helicity pro_patch_hyd_5 pro_patch_pos_3 Gs(U) dA 

pro_henry pro_patch_hyd_n pro_patch_pos_4 Gw(U) dAnp 

pro_hyd_moment pro_patch_ion pro_patch_pos_5 W(U) WNLC 

pro_mass pro_patch_ion_1 pro_patch_pos_n Mw wFLC 

pro_mobility pro_patch_ion_2 pro_pI_3D Ap wR2 

pro_net_charge pro_patch_ion_3 pro_pI_seq Ecl lnFD 

pro_patch_cdr_hyd pro_patch_ion_4 pro_r_gyr HP Pb 

pro_patch_cdr_hyd_1 pro_patch_ion_5 pro_r_solv IP Pa 

pro_patch_cdr_hyd_2 pro_patch_ion_n pro_sed_const ISA Pt 

  pro_volume Pa z1 
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Table SI 7. List of the molecular descriptors calculated by MOE and ProDCal (Part 2 of 2) 

MOE ProtDCal 

pro_patch_cdr_hyd_4 z2 

pro_patch_cdr_hyd_5 z3 

pro_patch_cdr_hyd_n dHf 

pro_patch_cdr_ion Xi 

pro_patch_cdr_ion_1 L1-9 

pro_patch_cdr_ion_2 wRWCO 

pro_patch_cdr_ion_3 wdHBd 

pro_patch_cdr_ion_4 wLCO 

pro_patch_cdr_ion_5 wCo 

pro_patch_cdr_ion_n wFLC 

pro_patch_cdr_neg wPsiH 

pro_patch_cdr_neg_1 wPsiS 

pro_patch_cdr_neg_2 wPSil 

pro_patch_cdr_neg_3 Psi 

pro_patch_cdr_neg_4 wR2 

pro_patch_cdr_neg_5  

pro_patch_cdr_neg_n  

pro_patch_cdr_pos  

pro_patch_cdr_pos_1  

pro_patch_neg_1 
 

pro_patch_neg_2 
 

  



CHAPTER II: Supplementary information 
_____________________________________________________________________________________ 
 

103 
 

Table SI 8.  Parameters from Schrödinger 

Protein 

Total 

hydrophobic 

patch score 

Mean AggScore Mean Aggrescan 
Mean 

Zyggregator 

PPI-01 7511.6 1.14 -0.48 -0.11 

PPI-02 4281.3 0.68 -0.46 -0.11 

PPI-03 5493.3 0.82 -0.48 -0.13 

PPI-10 5074.9 0.86 -0.48 -0.12 

PPI-13 5647 0.78 -0.48 -0.12 

PPI-17 4488.2 0.69 -0.46 -0.11 

PPI-18 8699.9 0.98 -0.41 -0.12 

PPI-30 966 1.35 -0.46 -0.01 

PPI-44 1953.063 0.39 -0.18 -0.56 

PPI-45 1842.4 2.33 -0.39 0.06 

PPI-46 1230.3 1.56 -0.62 -0.08 

PPI-49 4211.6 1.16 -0.42 -0.1 
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Figure SI 9. Pairwise correlations among biophysical parameters in a subset including only mAbs.  

Note: The strength of these correlations was assessed using t-tests. p-values <0.05 are statistically 

significant at a 95 % confidence level. White cells represent 0 correlation of a p-value higher than 0.05. 

Blue and red cells express negative or positive correlation, respectively. No or only weak correlations 

were observed between most biophysical properties. 
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Figures SI 10. Pairwise correlations among biophysical parameters in subsets including different 

proteins. (Part 1 of 9) 

Note: The strength of these correlations was assessed using t-tests. p-values <0.05 are statistically 

significant at a 95% confidence level.  To allow a simpler visualization the cells are colored as showed in 

the legend. Below each figure description the subset restrictions are listed and separated by a comma, 

e.g. mAb, pharmaceutical relevant pH (5-7.5), low ionic strength ( 0 mM NaCl) indicates that the picture 

includes data only of mAb formulated in the pH range of 5-7.5 with no addition of NaCl. 
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Figure SI 10. Pairwise correlations among biophysical parameters in subsets including different 

proteins. (Part 2 of 9). Subset including only mAbs and formulations with pharmaceutical relevant pH 

values (5.0 - 7.5) and high ionic strength (140 mM NaCl): 
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Figure SI 10. Pairwise correlations among biophysical parameters in subsets including different 

proteins. (Part 3 of 9). Subset including only mAbs and formulations with pharmaceutical relevant pH 

values (5.0 - 7.5) and medium ionic strength (70 mM NaCl): 
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Figure SI 10. Pairwise correlations among biophysical parameters in subsets including different 

proteins. (Part 4 of 9). Subset including only mAbs and formulations with pharmaceutical relevant pH 

values (5.0 - 7.5) and low ionic strength (0 mM NaCl): 
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Figure SI 10. Pairwise correlations among biophysical parameters in subsets including different 

proteins. (Part 5 of 9). Subset including only mAbs and formulations with pharmaceutical relevant pH 

values (5.0 - 7.5) with all three levels of ionic strength (0, 70 and 140 mM NaCl): 
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Figure SI 10. Pairwise correlations among biophysical parameters in subsets including different 

proteins. (Part 6 of 9). Subset including all 14 proteins and formulations with pharmaceutical relevant pH 

values (5.0 - 7.5) and high ionic strength (140 mM NaCl): 
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Figure SI 10. Pairwise correlations among biophysical parameters in subsets including different 

proteins. (Part 7 of 9). Subset including all 14 proteins and formulations with pharmaceutical relevant pH 

values (5.0 - 7.5) and medium ionic strength (70 mM NaCl): 
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Figure SI 10. Pairwise correlations among biophysical parameters in subsets including different 

proteins. (Part 8 of 9). Subset including all 14 proteins and formulations with pharmaceutical relevant pH 

values (5.0 - 7.5) and low ionic strength (0 mM NaCl): 
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Figure SI 10. Pairwise correlations among biophysical parameters in subsets including different 

proteins. (Part 9 of 9). Subset including all 14 proteins and formulations with pharmaceutical relevant pH 

values (5.0 - 7.5) with all three levels of ionic strength (0, 70 and 140 mM NaCl): 
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Figure SI 11. Surface profiles of the investigated proteins relative to a reduced subset of several 

biophysical parameters 
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Table SI 12. Cut off values used for the calculation of the different stability risk scores (SRSs) 

 

List of cut off values for the calculation of 

SRSs 

Biophysical properties used in the 

calculation of the SRSs 

Biophysical property Cut off value SRSLAE SRSMAE SRSHAE 

Tagg (°C) < 55 YES YES YES 

Tm1,int (°C) < 65 YES YES YES 

kD (mL/mg) < 0 NO YES YES 

m40,rec  (%) < 80 NO YES YES 

Zpot (mV) < 0 NO NO YES 

m1 < 3 NO NO YES 

Cm1 (M) < 2 NO NO YES 

PD (%) > 15 NO NO YES 

m25,rec (%) < 80 NO NO YES 

m50,rec (%) < 50 NO NO YES 

LSA25 < 0.9 NO NO YES 

LSA40 < 0.9 NO NO YES 

LSA50 < 0.9 NO NO YES 

 

 

SI 13. Biophysical parameters table 

The data is listed in Appendix 2. 
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Abstract 

The development of a new protein drug typically starts with the design, expression and biophysical 

characterization of many different protein constructs. The initially high number of constructs is radically 

reduced to a few candidates that exhibit the desired biological and physicochemical properties. This 

process of protein expression and characterization to find the most promising molecules is both 

expensive and time-consuming. Consequently, many companies adopt and implement philosophies, e.g. 

platforms for protein expression and formulation, computational approaches, machine learning, to save 

resources and facilitate protein drug development. Inspired by this, we propose the use of interpretable 

artificial neuronal networks (ANNs) to predict biophysical properties of therapeutic monoclonal antibodies 

i.e. melting temperature Tm, aggregation onset temperature Tagg, interaction parameter kD as a function of 

pH and salt concentration from the amino acid composition. Our ANNs were trained with typical early-

stage screening datasets achieving high prediction accuracy. By only using the amino acid composition, 

we could keep the ANNs simple which allows for high general applicability, robustness and 

interpretability. Finally, we propose a novel “knowledge transfer” approach, which can be readily applied 

due to the simple algorithm design, to understand how our ANNs come to their conclusions. 

 

Graphical abstract. Application of interpretable artificial neural networks to early monoclonal antibodies 
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1 Introduction 

Therapeutic proteins play a crucial role in the treatment of various diseases.
1-3 

There are currently over 

660 biologics with market approval worldwide. Due to the recent advances in protein engineering, it is 

nowadays possible to fine-tune desirable protein characteristics to find the optimal balance among 

efficacy, safety, stability and manufacturability. The development of a protein drug is an extremely 

complex process involving around 5000 critical steps
4
. During the whole development process the 

stability of a protein drug is a major concern. The choice of the formulation can drastically affect the 

conformational, the colloidal and the chemical stability and all three have to be controlled in the final 

product. The high number of formulation parameters and conditions to be screened requires a significant 

investment of resources and time. In addition, it has been shown that only 8% of the initially investigated 

new drug candidates reach license application.
5 

It is therefore of significant importance to efficiently use 

the limited resources and finally to improve the drug-candidate success rate. Nowadays, high-throughput 

methods are commonly used during the early stage of protein development to select promising 

candidates and their formulations that will be put forward to undergo forced degradation studies and real-

time stability tests.
6-11 

In this work we applied Artificial Neural Networks (ANNs) to the most successful 

class of therapeutic proteins, the monoclonal antibodies (mAbs). ANNs are biologically inspired computer 

programs designed to simulate how an animal brain processes information, gathering knowledge by 

detecting the patterns and relationships through a trial and error procedure. There has lately been an 

increasing interest in ANNs since computers can now process complex shallow ANNs in minutes. The 

speed at which ANNs can be computed and the fact that big databases are readily available makes this 

approach very attractive. In recent years, this method has been applied in the pharmaceutical research 

area for different purposes.
12-19

 Supervised ANNs were used as an alternative to response surface 

methodology
20

 while unsupervised networks are an alternative to principal component analysis. Analysis 

of design of experiments is also possible by ANNs.
21

 The great advantage of ANNs over classical 

statistical modeling is that the former can solve highly non-linear problems often encountered in 

pharmaceutical processes. However, when the complexity of the ANNs has increased, results from ANNs 

become increasingly difficult to interpret. A further drawback of ANNs is that a sufficiently big data set is 

usually required for the learning process.  

Combined, our ANNs models provide a tool that is capable of predicting important biophysical properties 

commonly measured in studying protein physical stability in high throughput, namely the (melting) 

temperature of unfolding, Tm, the diffusion interaction parameter, kD, and the onset temperature of 

aggregation, Tagg. These biophysical properties capture different characteristics which, taken together, 

define significant attributes that can be used to eliminate, or continue with, the development of a 

candidate. Tm values frequently correlate with the aggregation rate in accelerated stability studies.
 22-24 

kD 

is used to characterize nonspecific protein-protein interactions in diluted solutions and is a good indicator 

of the solution viscosity at high protein concentrations.
25

 Furthermore, the rate of aggregation upon 
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heating a protein solution is highly correlated to kD.
26-27 

Since the aggregation needs to be kept to a 

minimum level, Tagg is an important biophysical property. The majority of marketed antibodies have Tagg 

greater than 55°C.
28 

Even though the aforementioned properties alone will not always correlate with long 

term stability studies, their knowledge as a function of basic formulation conditions (i.e. pH and ionic 

strength) allows for a high-throughput way to assess the developability for protein drug candidates in 

high-throughput and with minimal material consumption. This approach is still very labor and time 

intensive. Therefore, in-silico approaches are of high interest, one of them being the use of ANNs.  More 

importantly, our trained models are based on amino acid composition only. This would allow selecting 

among thousands of mAbs sequences with good predicted physical stability. The selected protein could 

then be expressed and purified for going into the next step of the developability assessment.  

As pointed out by Ali Rahimi, a researcher in artificial intelligence at Google, machine learning has 

become a form of alchemy.
29 

Therefore our aim was to avoid black-box algorithms. We designed 

networks that are manageable, and give the user an understanding of their decision-making process. The 

number and complexity of inputs was reduced by the use of the amino acid composition only. This simple 

input layer allowed a simple network design which is, compared to complex networks, more general and 

robust, less prone to overfitting and easier to interpret. As in most cases we achieved accurate 

predictions, we confirmed that this design was suitable for our purpose. To interpret our models we 

design a novel “knowledge transfer” process which leads to interpretable ANNs. Additionally, Partial Least 

Squares Regression (PLS) was performed, and the results were compared with ANNs showing that only 

ANNs achieve accurate predictions. 

 

2 Material and methods 

2.1 Protein and sample preparation 

Five IgG1, namely PPI-1, PPI-2, PPI-3, PPI-10, PPI-13 and one IgG2 named PPI-17, were selected 

based on the availability of the primary sequence, were provided by the PIPPI consortium 

(http://www.pippi.kemi.dtu.dk). The mAbs were dialyzed overnight using 10 kDa Slide-A-Lyzer™ 

cassettes (Thermo Fisher Scientific, USA) against an excess of buffer containing 10 mM Histidine at pH 

5.0, 5.5, 6.0, 6.5, 7.0, 7.5. Similarly, a buffer containing 10 mM tris(hydroxymethyl)aminomethane (Tris) 

was used at pH 8.0 and 9.0. Sodium chloride stock solutions were prepared in the respective buffers and 

diluted to a final concentration of 0, 70 and 140 mM. Protein concentration was measured on a Nanodrop 

2000 (Thermo Fisher Scientific, USA) using the respective extinction coefficients calculated from the 

primary sequence. Reagent chemicals were of analytical grade and were purchased from Sigma Aldrich 

(Germany) or VWR International (Germany). Highly purified water (HPW, Purelab Plus, USF Elga, 

Germany) was used for the preparation of all buffers. Formulations including sodium chloride were 

http://www.pippi.kemi.dtu.dk/
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prepared by mixing mAbs stock solution in the respective buffer with a stock solution of sodium chloride 

dissolved in the same buffer. Finally, the formulations were sterile filtered with 0.22 μm cellulose acetate 

filters from VWR International (Germany). The mAbs’ difference in primary structures was investigated 

using identity and similarity scores as shown in Table SI 1.  

 

2.2 Dynamic light scattering 

Dynamic light scattering was conducted on a DynaPro Plate Reader II (Wyatt Technology, USA) to obtain 

the interaction diffusion parameter, kD, the onset temperature of aggregation, Tagg, and the apparent 

hydrodynamic radius, Rh. 4 μL of each sample per well were pipetted in triplicates into Aurora 1536 

Lobase Assay Plates (Aurora Microplates, USA). The samples were overlayed with Silicone oil and 

centrifuged at 2000 rpm for 1 minute. Data was processed by the DYNAMICS software V7.7 (Wyatt 

Technology, USA). From the relative autocorrelation function, the coefficient of self-diffusion, D, and the 

polydispersity index (PDI) were calculated. Rh, was calculated by means of the Stokes-Einstein equation.  

kD was determined using at least six different concentrations (from 1 to 10 mg/mL) in triplicates for each 

formulation. The samples were filtered using a Millex® 0.22 μm filter from Merk Millipore (USA) and 

equilibrated at 25 °C for 10 minutes in the Plate reader. Each measurement included 20 acquisitions, 

each for a duration of 5 s. kD was determined according to:  

    (      ) 

where D0 denotes the diffusion coefficient of an isolated scattering solute molecule in the solvent and c is 

the protein concentration.  

For the determination of Tagg, the filtered samples at 1 mg/mL were analyzed in duplicates. To achieve 

high throughput while keeping a suitable point density, 48 wells were filled, and a temperature ramp rate 

of 0.1°C/min from 25°C to 80°C was applied. One measurement included 3 acquisitions, each with a 

duration of 3 s. Tagg was calculated by the DYNAMICS software V7.7 onset algorithm from the increase in 

Rh.  

 

2.3 Differential scanning fluorimetry with intrinsic protein fluorescence detection 

(nanoDSF) 

Samples containing 1 mg/mL protein in the respective formulations were filled in standard nanoDSF 

capillaries (NanoTemper Technologies, Germany). Measurements were performed using the Prometheus 

NT.48 (NanoTemper Technologies, Germany) system that measures the intrinsic protein fluorescence 
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intensity change at 330 and 350 nm (after excitation at 280 nm) as a function of temperature. A 

temperature ramp of 1°C/min was used from 20 °C to 95 °C. The fluorescence intensity ratio (F350/F330) 

was plotted against the temperature, and the first apparent melting temperature (Tm) was derived from the 

maximum of the first derivative of each measurement using the PR Control software V1.12 (NanoTemper 

Technologies, Germany).  

 

2.4 Artificial neural networks 

Artificial Neural Networks have been extensively reviewed in the literature, and they have been 

successfully used in the pharmaceutical industry.
12-21, 30-36

 The various applications of ANNs relevant to 

the pharmaceutical field are classification or pattern recognition, prediction and modeling. Theoretical 

details can be found elsewhere.
37

 The network’s fundamental parts are the neurons, also called nodes, 

and their connections. The diagram in Fig. 1 shows the model of a neuron. The neuron is an information-

processing unit, which is constituted of a set of connection links characterized by their weight, wkn, a 

linear combiner, Σ, and an activation function, ψ. An externally applied bias, bk, is used to modify the net 

input received for each neuron in the network. An often used simplified description of the network is the 

architectural graph, depicted in Fig. 2. ANNs solve problems by training, a trial and error process for 

optimizing the synaptic weight values. During the training, the squared error between the estimated and 

the experimental values is minimized by reinforcing the synaptic weights, wkn. ANNs have robust 

performance in dealing with noisy or incomplete data sets, the ability to generalize from input data and a 

high fault tolerance.
38

   

ANNs have a series of known limitations, namely overfitting, chance effects, overtraining, and difficult 

interpretability.
39-41

 The first three limitations were extensively reviewed in the literature and can be 

prevented by using various methodologies. The interpretation of ANNs is not straightforward, and it is still 

an open field of research. Our primary goal was therefore to build an algorithm through which it was 

possible to follow how the networks have come to a particular conclusion. To achieve this, we used the 

simplest input related to the mAbs giving an accurate prediction, namely the amino acid composition. In 

order to comprehend the artificial decision-making procedure a novel “knowledge transfer” process was 

designed, which is described in section 3.7.   
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Figure 1. Model of a neuron. xn represent the inputs connected to the neuron, k, by the weights, wkn, 

which multiply the corresponding input signal. All the weighted signals are summed by a summing 

junction Σ. An external bias bk can be applied to Σ, to increase or lower the output signal. Finally, Σ is 

connected to an activation function, ψ(*), which limits the amplitude of a signal to the output, yk. Picture 

modified from: Neural networks: a comprehensive foundation, S. Haykin.
45

 

Our multilayer feed-forward back-propagation networks present one hidden layer, which is usually 

sufficient to provide adequate predictions even when continuous variables are adopted as units in the 

output layer.
 43-45 

Equation 1 (described by Carpenter
44

) was used to estimate the optimal number of 

neurons in the hidden layer: 

Eq. 01          
(
       

 
        )

(                    )
⁄  

where β, Nhidden, Noutput and Nsample are the determination parameter, the number of hidden units, the 

number of output units and the number of training data pairs, respectively. Overdetermined, 

underdetermined and determined parameters will be reflected by β>1, β<1 and β=1, respectively. The β 

value to adopt depends on the degree of quality of the data set in terms of the degree of independency 

among other factors. Our dataset consisted of 144 instances (24 conditions per protein) for each 

biophysical parameter and seven neurons were estimated to provide a β of 1. In general terms, simpler 
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models are more general and easier to interpret. Since our aim was to have the most general and easiest 

to interpret model possible, we selected the minimum number of neurons, 5, which provided the same 

result as 7 neurons. In Table SI 2 the list of input parameters relative to each model is shown, while in 

Fig. SI 3 an exemplary scheme of the model’s architecture is presented. 

 

 

Figure 2. Signal-flow graph of a fully connected feedforward network with one hidden layer and 

one output layer. The signal-flow graph provides a neat description of the neural networks describing the 

links among the various nodes of the model. Picture adapted from: Neural networks: a comprehensive 

foundation, S. Haykin.
45 

All the input parameters were normalized before the training phase by subtracting the mean and then 

dividing by the standard deviation. The learning rate was selected on a trial and error basis in such a way 

so as to keep the minimum distance between the actual and predicted value. The validation method is 

described in section 4.1. JMPpro® (SAS Institute Inc., USA), MATLAB® (MathWorks, USA) and Weka 

(Waikato University; New Zealand) were used to generate ANNs. These networks yielded highly similar 

results and JMPpro® v.13 was selected for its user-friendly interface and subsequently potentially easier 

implementation in a drug development department.
47
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2.5 Knowledge transfer to explain ANNs results 

In order to understand the decision-making process of our ANN models, a novel knowledge transfer 

process, implying response surface methodology (RSM), was applied by evaluating the weights of the 

trained network to transfer the acquired knowledge of ANNs to linear models. Parameters deemed 

important by the networks were selected and the interpretation of ANNs was then assessed by RSM of 

the linear least square regression of these “leading parameters”. The scheme of this process, named 

“knowledge transfer”, is depicted in Fig. 3.  

 

Figure 3. Scheme of the knowledge transfer procedure. On a trained network, where the arrow 

thickness represents the weight value (i.e. smaller arrow present lower weights), the input parameters 

with the higher impact, in red, are selected. These inputs are used for a least square linear regression 

where the RSM is applied considering only two-way interactions. From the analysis, leading parameters 

are selected and discussed to interpret the network decision-making process. 

None of the hidden nodes in the ANNs’ prediction formulas has a weight close to zero, which means that 

all nodes contribute to the final output. However, around 5% of the weights of the output layer presented 

values which were at least twice the average mean of all the network weights. From these 5% we 

selected the input parameters from the activation functions whose coefficients were at least twice the 

average values.  

We assessed the full model using all the selected “leading parameters” from the networks, and then 

reduced the model to only the terms that were deemed statistically relevant. A curved response was 
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allowed by assessing the quadratic term considering also two-way interactions. The reduced model was 

obtained using a backward stepwise regression. The F-statistic approach was used to perform the effect 

test considering a value of 0.05 or less as statistically significant. All the results were calculated using the 

statistical software JMP® v 13.0 (SAS Institute Inc., Cary, USA)
47

, and all the analysis details can be 

found in the software manual. 

 

3 Result and discussion 

A general flow diagram of our approach is shown in Fig. 4. At first, the power of our ANNs for prediction 

of the biophysical parameters Tm, Tagg and kD at different pH as well as salt concentration was evaluated. 

Only the number of each amino acid species of the proteins was used as protein-related input 

parameters. 

 

 

 

Figure 4. Diagram describing the process applied to achieve an interpretable prediction by ANNs. 

The knowledge transfer process is highlighted in red. The model explanation (dashed green lines) is 

aimed at understanding the overall logic behind the black box. Once trained and validated the 

interpretable ANN can be applied to new mAb candidates, even before cell expression. This allows to 

predict important biophysical parameters (i.e. Tm, kD and Tagg) as a function of pH and salt concentration. 

The primary sequence was not used as an input parameter, neither were other typical molecular 

descriptors included e.g. charge distribution, dipole moments or solvent exposure. However, we are 

currently working together with other members of the PIPPI consortium (http://www.pippi.kemi.dtu.dk) to 
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create a publicly available protein formulation database. Such a database may be used in future to build 

on our findings and to generate more sophisticated deep learning models based on the amino acid 

sequence. We avoided the use of formulation dependent molecular descriptors (e.g. net charge) to 

reduce redundancy, as the formulation is always included as input. Moreover, it has been proven that 

even net charge cannot be accurately calculated.
48 

Further, we investigated a series of molecular indices 

which are only protein dependent, calculated by ProtDCal,
49

 listed in Table SI 6. However, we could not 

find a subset of these indices that would yield an accuracy similar to the number of amino acids. As 

machine learning models describe correlation and not causation - highlighted by George E. P. Box: 

“Essentially, all models are wrong, but some are useful”
50

 - we selected the minimum number of input 

parameters to achieve high accuracy and interpretability. The number of amino acids can easily be 

described by only 20 input values, whereas thousands of inputs are necessary to describe the primary 

sequence (depending on the size of the molecule). This would drastically increase the complexity of the 

algorithms requiring a deep neural network with thousands to millions of data points, which are nowadays 

not publicly available. Such a complex approach makes the algorithm difficult to interpret and 

interpretability was one of our goals. As we managed to reach accurate predictions we found our model 

useful for its purpose: an in-silico tool for the selection of mAbs with predicted high physical stability from 

a vast number of possible candidates, which is interpretable, which is independent from other calculations 

(e.g. solvent exposure), and which can output experimentally accessible biophysical properties in early 

stage (i.e. low volume, high throughput). An additional advantage of a simple design is that such models 

are usually more general and robust.   

In order to gain insight from the ANNs decision making procedure we introduce a novel knowledge 

transfer process (depicted in red in Fig. 4). As the outputs (e.g. Tm) of our models are easily accessible in 

early stage, once the selected candidates are expressed and purified, it is possible to continuously re-

train the network and to double check its validity. One disadvantage of such approach is that it is only 

suitable to predict closely related protein structures to the one used for the training phase, e.g.  IgG1 and 

IgG2.   

 

3.1 Prediction of Tm, Tagg and the sign of kD 

The ability of the model to predict Tm, Tagg and kD from the numbers of each different amino acid in each 

mAb and the formulation conditions (i.e. pH and salt concentration) was cross-validated. Data from two 

mAbs were selected and held back in a validation set during the training phase. Applying the model to the 

validation data allows an unbiased comparison between the predicted and measured values. Thus, the 

estimation of the prediction error for potential new mAb samples is based on the results of the validation 

set. This validation method was deemed superior to the random data splitting. The latter yielded better 

fitting and prediction. However, the model would have experienced all the molecules during the training 
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phase. Therefore, we discarded the random data splitting as our aim was to validate a model capable of 

predict biophysical parameters of unknown mAbs. Using this cross-validation strategy, a total of fifteen 

models were built, each of them based on a different training and validation set,  for each studied 

biophysical property. As the investigated mAbs presented different stability (i.e. different biophysical 

properties values) the point distribution varies depending on the validation mAbs. The models were 

characterized by the name of the withheld proteins (e.g., the model called PPI-1&2 is based on the 

validation data set of PPI-1 and PPI-2, and trained on the PPI-3, PPI-10 , PPI-13 and PPI-17 data). 

In Fig. 5, the predicted Tm, Tagg and the sign of kD of the PPI-3&13 models are shown. Tm and the sign of 

kD were fitted to a very high degree of accuracy. The Tm model presented an R
2
 of 0.98 and a root mean 

squared error (RMSE) of around 0.8°C from the reference Tm while the sign of the kD model was classified 

with no false negative or false positives. The Tagg model presented an R
2
 of 0.94 but with a higher RMSE 

value of around 2°C. The higher error is probably due to the high throughput fashion of the screening, 

which stretched the limit of necessary high data density for the determination of the onset. In other words, 

the input data has higher uncertainty that is reflected in the prediction error. In Figs. SI 4-5 the predicted 

data point from the Tm and Tagg models are presented. 

 

 

Figure 5. Results from PPI-13&3 models.  The predictions of Tm, Tagg and the sign of kD are shown in 

graphs A, B and C respectively. Black dots and numbers represent the training set, while red dots and 

numbers represent the validation set.  

The robustness of the ANNs regressions was evaluated based on R
2
, shown in Fig. 6 (A), and RMSE 

values of the training and validation set. The latter was in the range of ca. 1 °C to 3 °C from the reference 

Tagg or Tm, with no particular trend or direction with respect to the measured values. The robustness of the 

classification problem, the sign of kD, was evaluated on the misclassification rate, shown in Fig. 6 (B).   
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Figure 6. ANN robustness study of ANNs. In graph A, the R
2
 values for the Tm and Tagg models are 

shown. In graph B, the misclassification rate (MR) of the sign of kD models are shown. Blue bars 

represent the validation set while red bars represent the validation set. The models were classified by the 

name of the proteins used for the validation. 

Regarding the Tm models, we observe broad robustness without significant influence of the different 

training sets. The colloidal stability parameters, Tagg and sign of kD, appear to be more sensitive to the 

selected training sets. Two Tagg models show serious deviation in prediction both involving PPI-17 and/or 

PPI-10. These two proteins showed extreme aggregation during temperature ramps, compared to the 

other mAbs. Consequently, the ANNs can easily fit PPI-17 and PPI-10 data, but in order to predict their 

aggregation propensity, the network would require more data representative of this kind of aggregation 

behavior.  

The kD data consists for ca. 70% of negative values. This unbalanced data set is caused by the charge 

screening effect of the added salt that occurs in two-thirds of the formulations and therefore the number of 

positive values is not enough to solve an ANN regression problem. One such occurrence is shown in Fig. 

7 for the PPI-13&3 model, where all the negative values are fit well, while the positive values are not well 

calculated and broadly distributed. Despite this, the sign of kD was always predicted to a high degree of 

accuracy as shown in Fig. 6(B). 

The studies on the robustness allowed us to conclude that well defined and simpler properties, such as 

the temperature of unfolding, are not greatly influenced by the training set. In contrast, the colloidal 

properties need more attention in the selection of the training set.  
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Figure 7. Correlation between experimentally determined and predicted kD values for the PPI-13&3 

model.  

 

3.2 ANNs knowledge transfer 

The scientific community has been investigating the problem of explaining machine learning decision 

models and a comprehensive survey of methods for explaining black box models has been redacted.
51

 In 

order to understand the thought process of our ANNs, a novel knowledge transfer process, depicted in 

Fig. 3, was applied. Fig. 8 shows the results from the RSM relative to Tm, Tagg, kD, while Table 1 

summarizes the effective test statistics which can be used as an indication of the relative impact of the 

parameters. Quadratic terms (e.g. Cys∙Cys) were assessed to model potential curvature in the response. 

These linear models allow to understand the logic of the relative ANNs model and to follow the reasoning 

of the outcomes, i.e. each leading amino acid has a specific role in the physical process related to the 

output parameters. 

The Tm linear model is primarily affected by pH, salt concentration, and the number of tryptophan, 

cysteine and tyrosine residues. Therefore, the main protein related contributors to the unfolding process 

are two hydrophobic amino acids residues and cysteine. It is known that the unfolding process is mainly 

guided by hydrophobic interactions,
52 

while
 
cysteine is involved in disulfide bonds, stabilizing the protein 

structure. Interestingly charged residues are of minor importance.
 

The Tagg linear model is mainly affected by pH, salt concentration, and the number of aspartic acid, 

glutamic acid and methionine residues. Therefore, the main protein related contributors to the 

aggregation process were charged amino acid residues and methionine. It is known that the oxidation of 

R2=0.6

0 RMSE=0.022

1 
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methionine is a critical pathway of aggregation under accelerated thermal stability stress
53

. Moreover, 

methionine oxidation is practically pH independent
54

, which could partially explain the minor impact of pH 

on the models. However, during a temperature ramp, the time of stress is relatively short and hence, the 

oxidation of methionine should have a minor impact. Consequently, during a temperature ramp, charged 

amino acids have а higher impact on the linear model. 

 

Figure 8. Results of Tm, Tagg, kD linear models. The Tm, Tagg, kD results from the network knowledge 

transfer process are shown respectively in graph A, B and C. The 3 graphs are generated by RSM using 

the selected leading parameter. The relative effect test is presented in Table 1. 

The kD linear model is affected by pH, salt concentration, and the number of glutamic acid, histidine, and 

tryptophan residues. Thus, both charged and hydrophobic amino acids are important. kD is used to 

evaluate pairwise protein-protein nonspecific interactions, which can be rationalized by means of the 

DLVO
55,56

 or proximity energy theory
57

. Both theories highlight the fact that protein-protein interactions 

depend heavily on hydrophobic and charged patches on the protein surface. Moreover, histidine plays a 

particular role in protein-protein interactions. This amino acid has a pKa of 6.0 i.e. histidine changes 
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charge state under relevant formulation pH conditions. Therefore histidine doping is a common method in 

engineering stable proteins
58-62

 and the presence of histidine residues can mediate structural transitions 

in binding or folding of the interacting proteins.
63-65

  

Table 1. Effect tests results of the RSM applied to the linear least square regression from the 

knowledge transfer of ANNs’ models. In Fig. 6 the relative graphs are shown. Information on the inputs 

can be found in Table SI 6. The quadratic terms (e.g. Cys∙Cys) and the cross terms (e.g. pH∙Cys) from 

the RSM were selected by reducing the full model using a backward stepwise regression where a value 

of p<0.05 is deemed statistically significant. LogWorth is defined as -log10(p-value). 

Tm Tagg kD 

Input LogWorth Input LogWorth Input LogWorth 

Trp 27.942 Glu 36.173 [NaCl] 11.608 

pH 25.425 Met∙Met 26.675 Glu 9.529 

pH∙Cys 13.701 Met 19.023 Trp 9.151 

pH∙pH 13.256 Asp 6.996 His 8.828 

Cys∙Cys 8.528 pH 6.084 pH 2.490 

Cys 4.024 pH∙pH 4.881   

Tyr∙Tyr 3.813 Asp∙Asp 4.199   

Tyr 3.284 [NaCl] 2.474   

[NaCl] 2.753     

 

Taken together, our ANN knowledge transfer process allows us to interpret the factors behind the 

decision-making process of the ANN when predicting Tm, Tagg the sign of kD. This process provided a 

global explanation of the black box through an interpretable and transparent model. By this, we build trust 

into our approach and are not left with a black box. As an agnostic process can explain unrelated 

algorithm only indifferently, our approach is not to be considered agnostic as it is tied to simple ANNs. 
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3.3 Prediction comparison with partial least square models 

The main reason to apply ANNs comes from their prediction power using data sets with highly non-linear 

relationships. To demonstrate the necessity for a non-linear model, a linear regression analysis using the 

partial least square regression (PLS) method was performed. PLS is probably the strongest competitor of 

ANNs in terms of robustness and predictive power and can be extremely powerful in fitting data and for 

this reason it was compared to ANN. In fact, PLS was the only model we tested capable of fitting the 

dataset. As we aimed to develop an interpretable model, we also tested models usually considered 

readily interpretable (e.g. decision tree) without success. A detailed discussion about modeling 

alternatives can be found in an article by Frank and Friedmann.
66

 The optimal number of latent variables 

was selected based on the minimum of the RMSE of the cross-validation. The same cross-validation 

method was applied as in the ANNs in order to make the models comparable. In Fig. 9 the prediction for 

all the proteins is shown. The results demonstrate that PLS cannot be used for our dataset and we can 

conclude that  ANN is a far better methodology than PLS to construct models that predict the formulation 

behavior of unknown proteins under the conditions that we have used.   

 

 

Figure 9. Results of the validation sets from the PLS model. Tm, Tagg and the sign of kD results are 

shown respectively in graphs A, B and C. The graphs show that the models cannot accurately predict 

protein properties that were not involved in the training set. 

 

4 Conclusions 

ANNs represent an interesting alternative to the classical statistical methodologies when applied to highly 

non-linear data sets that are frequently encountered in the pharmaceutical industry. We successfully 

developed interpretable models for a set of mAbs to predict important biophysical properties as a function 

of pH and salt concentration. In the field of mAbs development, ANNs could be a highly valuable tool to 
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predict important biophysical properties and to support development risk assessment. This approach 

would allow the selection of mAbs with good physicochemical properties already before expression in 

cells. The only information required for our approach is the amino acid composition of each mAb. Due to 

the accuracy of the predictions, there was no reason to increase the complexity of the model since it 

would hamper the interpretability and robustness. Thanks to our design a novel knowledge transfer 

process allows to understand the decision-making process of our algorithm. In contrast, PLS models did 

not work demonstrating that a non-linear algorithm is required to analyze a data set like the one used in 

our study. The knowledge gathered with simpler ANNs can be used to build even more impressive 

systems in the future, to confirm the reliability of ANNs and finally to highlight which factors may impact 

protein stability the most.  

 

5 Acknowledgements 

This study was funded by a project part of the EU Horizon 2020 Research and Innovation program under 

the Marie Skłodowska-Curie grant agreement No 675074. The first author would like to thank 

Nanotemper Technologies GmbH for kindly proving support for the NanoDSF data, SAS Institute for 

proving JMPpro® V 13.0, and the whole PIPPI consortium (http://www.pippi.kemi.dtu.dk) for the 

continuous support offered and for reviewing the manuscript. 

  



CHAPTER III: Application of interpretable artificial neural networks to early monoclonal antibodies 
development 

 

135 
 

6 References 

1.  R. Gong, W. Chen, D.S. Dimitrov, Expression, purification, and characterization of engineered 

antibody CH2 and VH domains, Methods Mol. Biol. 899 (2012) 85–102. 

2. D.S. Dimitrov, Therapeutic antibodies, vaccines and antibodyomes, MAbs 2 (3) (2010) 347–356. 

3. J.G. Elvin, R.G. Couston, C.F. van der Walle, Therapeutic antibodies: market considerations, 

disease targets and bioprocessing, Int. J. Pharm. 440 (1) (2013) 83–98. 

4. H.A. Lagassé, A. Alexaki, V.L. Simhadri, N.H. Katagiri, W. Jankowski, Z.E. Sauna, C. Kimchi-

Sarfaty, Recent advances in (therapeutic protein) drug development, F1000Research 6 (2017) 

113. 

5. US Department of Health and Human Services. Innovation or stagnation: Challenge and 

opportunity on the critical path to new medical products. Available at: http:// wayback.archive-

it.org/7993/20180125032208/https://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathIniti

ative/CriticalPathOpportunitiesReports/ucm077262.htm. Accessed July 3, 2017. 

6.  M.A. Capelle, R. Gurny, T. Arvinte, High throughput screening of protein formulation stability: 

practical considerations, J. Pharm. Biopharm. 65 (2) (2007) 131–148. 

7.  F. He, S. Hogan, R.F. Latypov, L.O. Narhi, V.I. Razinkov, High throughput thermostability 

screening of monoclonal antibody formulations, J. Pharm. Sci. 99 (4) (2010) 1707–1720. 

8.  D.S. Goldberg, S.M. Bishop, A.U. Shah, H.A. Sathish, Formulation development of therapeutic 

monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: 

Role of conformational and colloidal stability, J. Pharm. Sci. 100 (4) (2011) 1306–1315. 

9.  D.S. Goldberg, R.A. Lewus, R. Esfandiary, D.C. Farkas, N. Mody, K.J. Day, P. Mallik, M.B. 

Tracka, S.K. Sealey, H.S. Samra, Utility of high throughput screening techniques to predict 

stability of monoclonal antibody formulations during early stage development, J. Pharm. Sci. 106 

(8) (2017) 1971–1977. 

10.  R. Chaudhuri, Y. Cheng, C.R. Middaugh, D.B. Volkin, High-throughput biophysical analysis of 

protein therapeutics to examine interrelationships between aggregate formation and 

conformational stability, AAPS J. 16 (1) (2014) 48–64. 

 

 



CHAPTER III: Application of interpretable artificial neural networks to early monoclonal antibodies 
development 

 

136 
 

11.  N.R. Maddux, V. Iyer, W. Cheng, A.M. Youssef, S.B. Joshi, D.B. Volkin, J.P. Ralston, G. Winter, 

C.R. Middaugh, High throughput prediction of the long-term stability of pharmaceutical 

macromolecules from short-term multi-instrument spectroscopic data, J. Pharm. Sci. 103 (3) 

(2014) 828–839. 

12.  A.S. Hussain, X.Q. Yu, R.D. Johnson, Application of neural computing in pharmaceutical product 

development, Pharm. Res. 8 (10) (1991) 1248–1252. 

13.  E. Murtoniemi, P. Merkku, P. Kinnunen, K. Leiviskae, J. Yliruusi, Effect of neural network topology 

and training end point in modelling the fluidized bed granulation process, Int. J. Pharm. 110 (2) 

(1994) 101–108. 

14.  M. Gasperlin, L. Tusar, M. Tusar, J. Smid-Korbar, J. Zupan, J. Kristl, Lipophilic semisolid emulsion 

systems: viscoelastic behaviour and prediction of physical stability by neural network modelling, 

Int. J. Pharm. 196 (1) (2000) 37–50. 

15.  K. Takayama, M. Fujikawa, T. Nagai, Artificial neural network as a novel method to optimize 

pharmaceutical formulations, Pharm. Res. 16 (1) (1999) 1–6. 

16.  A.S. Achanta, J.G. Kowalski, C.T. Rhodes, Artificial neural networks: implications for 

pharmaceutical sciences, Drug Dev. Ind. Pharm. 21 (1) (2008) 119–155. 

17.  A.C. King, M. Woods, W. Liu, Z. Lu, D. Gill, M.R. Krebs, High-throughput measurement, 

correlation analysis, and machine-learning predictions for pH and thermal stabilities of Pfizer-

generated antibodies, Protein Sci. 20 (9) (2011) 1546–1557. 

18.  Y. Yang, Z. Ye, Y. Su, Q. Zhao, X. Li, D. Ouyang, Deep learning for in vitro prediction of 

pharmaceutical formulations, Acta Pharm Sin B. 9 (1) (2019 Jan) 177–185. 

19.  Z. Ye, Y. Yang, X. Li, D. Cao, D. Ouyang, An integrated transfer learning and multitask learning 

approach for pharmacokinetic parameter prediction, Mol. Pharm. 16 (2) (2019 Feb 4) 533–541. 

20.  J. Bourquin, H. Schmidli, P. van Hoogevest, H. Leuenberger, Application of artificial neural 

networks (ANN) in the development of solid dosage forms, Pharm. Dev. Technol. 2 (2) (1997) 

111–121. 

21.  A.P. Plumb, R.C. Rowe, P. York, C. Doherty, The effect of experimental design on the modeling of 

a tablet coating formulation using artificial neural networks, Eur. J. Pharm. Sci. 16 (4–5) (2002) 

281–288. 

 



CHAPTER III: Application of interpretable artificial neural networks to early monoclonal antibodies 
development 

 

137 
 

22.  L. Burton, R. Gandhi, G. Duke, M. Paborji, Use of microcalorimetry and its correlation with size 

exclusion chromatography for rapid screening of the physical stability of large pharmaceutical 

proteins in solution, Pharm. Dev. Technol. 12 (3) (2007) 265–273. 

23.  M.L. Brader, T. Estey, S. Bai, R.W. Alston, K.K. Lucas, S. Lantz, P. Landsman, K.M. Maloney, 

Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic 

monoclonal antibodies, Mol. Pharm. 12 (4) (2015) 1005–1017. 

24.  V. Kumar, N. Dixit, L.L. Zhou, W. Fraunhofer, Impact of short range hydrophobic interactions and 

long range electrostatic forces on the aggregation kinetics of a monoclonal antibody and a dual-

variable domain immunoglobulin at low and high concentrations, Int. J. Pharm. 421 (1) (2011) 82–

93. 

25.  M.S. Neergaard, D.S. Kalonia, H. Parshad, A.D. Nielsen, E.H. Møller, M. van de Weert, Viscosity 

of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 

subclass–Prediction of viscosity through protein–protein interaction measurements, Eur. J. Pharm. 

Sci. 49 (3) (2013) 400–410. 

26.  J. Rubin, L. Linden, W.M. Coco, A.S. Bommarius, S.H. Behrens, Salt-induced aggregation of a 

monoclonal human immunoglobulin G1, J. Pharm. Sci. 102 (2) (2013) 377–386. 

27.  J. Rubin, A. Sharma, L. Linden, A.S. Bommarius, S.H. Behrens, Gauging colloidal and thermal 

stability in human IgG1–sugar solutions through diffusivity measurements, J. Phys. Chem. B 118 

(11) (2014) 2803–2809. 

28.  A. Jarasch, H. Koll, J.T. Regula, M. Bader, A. Papadimitriou, H. Kettenberger, Developability 

assessment during the selection of novel therapeutic antibodies, J. Pharm. Sci. 104 (6) (2015) 

1885–1898. 

29.  M. Hutson, Has artificial intelligence become alchemy? Science 360 (6388) (2018) 478. 

30.  A. Ghaffari, H. Abdollahi, M.R. Khoshayand, I.S. Bozchalooi, A. Dadgar, M. Rafiee-Tehrani, 

Performance comparison of neural network training algorithms in modeling of bimodal drug 

delivery, Int. J. Pharm. 327 (1–2) (2006) 126–138. 

31.  A. Hussain, P. Shivanand, R.D. Johnson, Application of neural computing in pharmaceutical 

product development: computer aided formulation design, Drug Dev. Ind. Pharm. 20 (10) (2008) 

1739–1752. 

 

 



CHAPTER III: Application of interpretable artificial neural networks to early monoclonal antibodies 
development 

 

138 
 

32.  E. Murtoniemi, J. Yliruusi, P. Kinnunen, P. Merkku, K. Leiviskae, The advantages by the use of 

neural networks in modelling the fluidized bed granulation process, Int. J. Pharm. 108 (2) (1994) 

155–164. 

33.  S. Agatonovic-Kustrin, R. Beresford, Basic concepts of artificial neural network (ANN) modeling 

and its application in pharmaceutical research, J. Pharm. Biomed. Anal. 22 (5) (2000) 717–727. 

34.  J. Bourquin, H. Schmidli, P. van Hoogevest, H. Leuenberger, Advantages of Artificial Neural 

Networks (ANNs) as alternative modelling technique for data sets showing non-linear relationships 

using data from a galenical study on a solid dosage form, Eur. J. Pharm. Sci. 7 (1) (1998) 5–16. 

35.  Y. Chen, S.S. Thosar, R.A. Forbess, M.S. Kemper, R.L. Rubinovitz, A.J. Shukla, Prediction of drug 

content and hardness of intact tablets using artificial neural network and near-infrared 

spectroscopy, Drug Dev. Ind. Pharm. 27 (7) (2001) 623–631. 

36.  S.S. Haykin, Neural Networks: A Comprehensive Foundation, second ed., Prentice Hall PTR, 

1998. 

37.  D.W. Patterson, Artificial Neural Networks: Theory and Applications, Prentice Hall Asia, 1998. 

38.  D.J. Livingstone, D.T. Manallack, I.V. Tetko, Data modelling with neural networks: advantages and 

limitations, J. Comput. Aided Mol. Des. 11 (2) (1997) 135–142. 

39.  D.T. Manallack, D.J. Livingstone, Artificial neural networks: application and chance effects for 

QSAR data analysis, Med. Chem. Res. 2 (1992) 181–190. 

40.  D.J. Livingstone, D.T. Manallack, Statistics using neural networks: chance effects, J. Med. Chem. 

36 (9) (1993) 1295–1297. 

41.  D.T. Manallack, D.D. Ellis, D.J. Livingstone, Analysis of linear and nonlinear QSAR data using 

neural networks, J. Med. Chem. 37 (22) (1994) 3758–3767. 

42.  R.P. Lippman, An introduction to computing with neural nets, IEEE Assp Mag. 4 (2) (1987) 4–22. 

43.  D.G. Bunds, P.J. Lloyd, A multilayer perceptron netwotk for the diagnosis of low back pain, IEEE 

Int. Conf. Neur. Net 2 (1988) 481–489. 

44.  G. Cybenko, Approximation by superpositions of a sigmoidal function, Math Control Signals Syst. 

2 (4) (1989) 303–314. 

45.  W.C. Carpenter, Understanding Neural network approximations and polynomial approximations 

helps neural network performance, AI Expert March (1995) 31–33. 



CHAPTER III: Application of interpretable artificial neural networks to early monoclonal antibodies 
development 

 

139 
 

46.  A. Lehman, JMP for Basic Univariate and Multivariate Statistics: A Step-By-Step Guide, SAS 

Institute, 2005. 

47.  D.I. Filoti, S.J. Shire, S. Yadav, T.M. Laue, Comparative study of analytical techniques for 

determining protein charge, J. Pharm. Sci. 104 (7) (2015 Jul) 2123–2131. 

48.  Y.B. Ruiz-Blanco, W. Paz, J. Green, Y. Marrero-Ponce, ProtDCal : A program to compute general-

purpose - numerical descriptors for sequences and 3D-structures of proteins, BMC Bioinf. 16 (16) 

(2015) 162. 

49.  G. Box, Science and statistic, J. Am. Stat. Assoc. 05 (791) (1976) 799. 

50.  R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, Pedreschi Dino, A survey of methods 

for explaining black box models, ACM Comput. Surv. (CSUR) 51 (5) (2018) 93. 

51.  C. Pratt, K. Cornely, Essential Biochemistry, third ed., Wiley, 2004. 

52.  W. Vogt, Oxidation of methionyl residues in proteins: tools, targets, and reversal, Free Radic. Biol. 

Med. 18 (1) (1995) 93–105. 

53.  S.C. Devanaboyina, S.M. Lynch, R.J. Ober, S. Ram, D. Kim, A. Puig-Canto, S. Breen, S. 

Kasturirangan, S. Fowler, L. Peng, H. Zhong, L. Jermutus, H. Wu, C. Webster, E.S. Ward, C. Gao, 

The effect of pH dependence of antibody-antigen interactions on subcellular trafficking dynamics, 

MAbs 5 (6) (2013) 851–859. 

54.  J.N. Israelachvili, Intermolecular and Surface Forces, third ed., Elsevier, 2011. 

55.  L. Nicoud, M. Owczarz, P. Arosio, M. Morbidelli, A multiscale view of therapeutic protein 

aggregation: A colloid science perspective, Biotechnol. J. 10 (3) (2015) 367–378. 

56.  T. Laue, Proximity energies: a framework for understanding concentrated solutions, J. Mol. 

Recognit. 25 (3) (2012) 165–173. 

57.  C. Schroeter, R. Guenther, L. Rhiel, S. Becker, L. Toleikis, A. Doerner, J. Becker, A. 

Schoenemann, D. Nasu, B. Neuteboom, H. Kolmar, B. Hock, A generic approach to engineer 

antibody pH-switches using combinatorial histidine scanning libraries and yeast display, MAbs 7 

(1) (2015) 138–151. 

 

 

 



CHAPTER III: Application of interpretable artificial neural networks to early monoclonal antibodies 
development 

 

140 
 

58.  J. Chaparro-Riggers, H. Liang, R.M. DeVay, L. Bai, J.E. Sutton, W. Chen, T. Geng, K. Lindquist, 

M.G. Casas, L.M. Boustany, C.L. Brown, J. Chabot, B. Gomes, P. Garzone, A. Rossi, P. Strop, D. 

Shelton, J. Pons, A. Rajpal, Increasing serum halflife and extending cholesterol lowering in vivo by 

engineering antibody with pHsensitive binding to PCSK9, J. Biol. Chem. 287 (14) (2012) 11090–

11097. 

59.  N. Gera, A.B. Hill, D.P. White, R.G. Carbonell, B.M. Rao, Design of pH sensitive binding proteins 

from the hyperthermophilic Sso7d scaffold, PLoS One 7 (11) (2012) e48928. 

60.  T. Igawa, S. Ishii, T. Tachibana, A. Maeda, Y. Higuchi, S. Shimaoka, C. Moriyama, T. Watanabe, 

R. Takubo, Y. Doi, T. Wakabayashi, A. Hayasaka, S. Kadono, T. Miyazaki, K. Haraya, Y. 

Sekimori, T. Kojima, Y. Nabuchi, Y. Aso, Y. Kawabe, K. Hattori, Antibody recycling by engineered 

pH-dependent antigen binding improves the duration of antigen neutralization, Nat. Biotechnol. 28 

(11) (2010) 1203–1207. 

61.  M.V. Kulkarni, M.C. Tettamanzi, J.W. Murphy, C. Keeler, D.G. Myszka, N.E. Chayen, E.J. Lolis, 

M.E. Hodsdon, Two independent histidines, one in human prolactin and one in its receptor, are 

critical for pH-dependent receptor recognition and activation, J. Biol. Chem. 285 (49) (2010) 

38524–38533. 

62.  K. Maeda, Y. Kato, Y. Sugiyama, pH-dependent receptor/ligand dissociation as a determining 

factor for intracellular sorting of ligands for epidermal growth factor receptors in rat hepatocytes, J. 

Control Release 82 (1) (2002) 71–82. 

63.  D.C. Roopenian, S. Akilesh, FcRn: the neonatal Fc receptor comes of age, Nat. Rev. Immunol. 7 

(9) (2007) 715–725. 

64.  D.B. Tesar, P.J. Bjoerkman, An intracellular traffic jam: Fc receptor-mediated transport of 

immunoglobulin G, Curr. Opin. Struct. Biol. 20 (2) (2010) 226–233 

65.  F.E. Ildiko, J.H. Friedman, A statistical view of some chemometrics regression tools, 

Technometrics 35 (2) (1993) 109–135. 



CHAPTER III: Supplementary information 

 

141 
 

7 Supplementary information  

List of supplementary information 

SI 1. Table of Identity and similarity scores 

SI 2. List of the input parameters with corresponding statistics. 

SI 3. Exemplary picture of applied network architectures. 

SI 4. ANNs’ Tm models results of the 15 different training sets. 

SI 5. ANNs’ Tagg models results of the 15 different training sets. 

SI 6. List of the molecular descriptors calculated by ProDCal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER III: Supplementary information 

 

142 
 

Table SI 1. Table of identity and similarity scores. Identity and similarity scores, respectively in red and 

yellow cells, from the primary sequences of the heavy chains, light chains, and the complete mAb with the 

relative statistics. The similarity is considered as: GAVLI, FYW, CM, ST, KRH, DENQ, P, where the single 

letter represents the standard single letter amino acid code. The identity scores were calculated by the 

Sequence Manipulation Suite (Stothard P (2000) The Sequence Manipulation Suite: JavaScript programs 

for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102-1104). 

Score Legend: Similarity identity 
    

       Heavy Chain (HC) 

PPI-1 100% 15.36% 88.69% 29.94% 17.29% 23.09% 

PPI-2 8.46% 100% 16.70% 14.69% 25.16% 42.15% 

PPI-3 86.25% 10.24% 100% 32.73% 17.73% 29.14% 

PPI-10 18.04% 9.27% 27.39% 100% 16.03% 29.14% 

PPI-13 7.98% 18.48% 8.86% 9.35% 100% 16.14% 

PPI-17 15.47% 37.21% 23.76% 23.31% 11.21% 100% 

 
PPI-1 PPI-2 PPI-3 PPI-10 PPI-13 PPI-17 

Light chain (LC) 

PPI-1 100% 11.73% 13.08% 13.55% 12.61% 11.62% 

PPI-2 8.45% 100% 23.94% 23.00% 23.94% 24.88% 

PPI-3 7.94% 18.30% 100% 94.39% 95.79% 48.59% 

PPI-10 8.41% 18.43% 91.58% 100% 94.85% 44.85% 

PPI-13 7.94% 18.77% 92.05% 93.92% 100% 45.79% 

PPI-17 7.90% 16.43% 44.39% 38.78% 38.78% 100% 

 
PPI-1 PPI-2 PPI-3 PPI-10 PPI-13 PPI-17 

mAb 

PPI-1 100% 14% 51% 22% 15% 17% 

PPI-2 8.46% 100% 20% 19% 25% 34% 

PPI-3 47.10% 14.27% 100% 64% 57% 39% 

PPI-10 13.23% 13.85% 59.49% 100% 55% 37% 

PPI-13 7.96% 18.63% 50.46% 51.64% 100% 31% 

PPI-17 11.69% 26.82% 34.08% 31.05% 25.00% 100% 

 
PPI-1 PPI-2 PPI-3 PPI-10 PPI-13 PPI-17 

       Statistic HC LC mAb HC LC mAb 

Minimum 7.98% 7.90% 7.96% 15% 12% 14% 

Maximum 86.25% 93.92% 59.49% 89% 96% 64% 

Mean 21.02% 34.14% 27.58% 28% 39% 28% 

Std deviation 19% 31% 17% 18% 31% 16% 

Variance 4% 10% 3% 4% 10% 3% 
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Table SI 2. List of the input parameters with corresponding statistics. Input considered as discrete are 

only listed and no statistics are applied. To the right it is highlighted if the input is implemented to predict 

the corresponding protein stability indicator. 

 
Input parameters relative 

to the mAbs       

Amino acid Code Minimum Maximum 
Standard 
deviation 

Variance Mean 

Alanine Ala 64 80 5.62 31.56 69.33 

Cysteine Cys 30 38 2.75 7.56 32.67 

Aspartic acid Asp 52 62 3.54 12.56 54.33 

Glutamic Acid Glu 58 68 3.77 14.22 62.67 

Phenylalanine Phe 38 54 5.22 27.22 45.67 

Glycine Gly 82 98 5.63 31.67 91.00 

Histidine His 18 26 2.75 7.56 23.33 

Isoleucine Ile 28 36 2.52 6.33 31.00 

Lysine Lys 76 96 6.30 39.67 89.00 

Glutamine Glu 88 108 6.26 39.22 97.67 

Methionine Met 8 16 3.06 9.33 12.00 

Asparagine Asn 44 52 2.69 7.22 48.33 

Proline Pro 88 106 5.85 34.22 94.67 

Glutammine Gln 54 66 4.23 17.89 59.67 

Arginine Arg 30 50 6.43 41.33 38.00 

Serine Ser 158 188 10.13 102.67 172.00 

Threonine Thr 98 120 7.61 57.89 109.67 

Valine Val 110 120 3.14 9.89 115.67 

Tryptophan Trp 20 26 2.24 5.00 23.00 

Tyrosine Tyr 52 64 4.27 18.22 58.67 

Input parameters relative 
to the formulation 

List 
     

pH 5, 5.5, 6, 6.5, 7, 7.5, 8, 9 - - - - - 

[NaCl] (mM) 0, 70 , 140 - - - - - 
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Figure SI 3. Exemplary picture of applied network architectures.  The brackets containing the input 

layer represent a complete connection of the input layer with the hidden one (i.e. each input is connected 

with all the neurons of the hidden layer). 
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Figure SI 4. ANNs’ Tm models results of the 15 different training sets.  

 

 
Figure SI 5. ANNs’ Tagg models results of the 15 different training sets. 
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Table SI 6. List of the molecular descriptors calculated by ProDCal. The description of the molecular 
indices can be found in the relative software manual. 
 

ProtDCal  ProtDCal  

dGc(F) wRWCO 

dGw(F) wdHBd 

Gs(F) wLCO 

W(F) wCo 

HBd wFLC 

dGs wPsiH 

dGw wPsiS 

dGel wPSil 

dGLJ Psi 

dGtor wR2 

Gs(U) wPjiH 

Gw(U) wPhiS 

W(U) wPhil 

Mw Phi 

Ap LnFD 

Ecl wCLQ 

HP wCTP 

IP wSP 

ISA WNc 

Pa Ap 

Pb dA 

Pa dAnp 

Pt WNLC 

z1 wFLC 

z2 wR2 

z3 lnFD 

dHf  

Xi  

L1-9  
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Abstract 

The native reversible self-association of monoclonal antibodies has been associated with high viscosity, 

liquid-liquid, and liquid-solid phase separation. We investigated the native reversible self-association of an 

IgG1, which exerts this association even at low protein concentrations, in detail to gain further 

understanding of this phenomenon by extensive characterization of the association as a function of 

multiple factors, namely pH, temperature, salt concentration, and protein concentration. The nature of the 

self-association of the full-length IgG1 as well as the corresponding Fab and Fc fragment was studied by 

viz. size exclusion chromatography combined with multiangle light scattering, batch dynamic and static 

light scattering, analytical ultracentrifugation, small angle X-ray scattering, asymmetric flow field flow 

fractionation coupled with multiangle light scattering, and intrinsic fluorescence. We rationalized the self-

association as a combination of hydrophobic and electrostatic interactions driven by the Fab fragments. 

Finally, we investigated the long-term stability of the IgG1 molecule. The native reversible self-association 

of monoclonal antibodies has been associated with high viscosity, liquid-liquid and liquid-solid phase 

separation. We investigated the native reversible self-association of an IgG1, which exerts this 

association even at low protein concentrations, in detail to gain further understanding of this phenomenon 

by extensive characterization of the association as a function of multiple factors, namely pH, temperature, 

salt concentration and protein concentration. The nature of the self-association of the full-length IgG1 as 

well as the corresponding Fab and Fc fragment was studied by viz. SEC-MALS, DLS, SLS, AUC, SAXS, 

AF4-MALS and intrinsic fluorescence. We rationalized the self-association as a combination of 

hydrophobic and electrostatic interactions driven by the Fab fragments. Finally, we investigated the long-

term stability of the IgG1 molecule. 

 

Graphical abstract. Characterization of native reversible self-association of a monoclonal antibody 
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1 Introduction 

Humanized monoclonal antibodies (mAbs) have become major biopharmaceutical products in the last 

decades for the treatment of cancer and autoimmune diseases,
1-3 

with over 50 of such molecules 

approved for therapeutic use.
4
 The development of therapeutic antibodies is not straightforward, because, 

like other proteins, they are prone to physical instabilities and chemical degradation that need to be 

overcome.
5
 Among these degradation pathways, protein aggregation presents one of the most common 

and troubling challenges. It has been shown that aggregates have reduced activity and potential for 

greater immunogenicity.
6-8 

Moreover, it has been proven that nonnative protein aggregation is at least 

partially the cause of several diseases,
9
 among which there are Alzheimer’s disease, Parkinson disease, 

prion diseases, Huntington’s disease, Down’s syndrome, cataract, and sickle cell disease. Owing to this 

prevalence in pathology and therapeutic protein manufacturing, the study of the kinetics and mechanisms 

of protein aggregation is vital to future treatments. The critical review by Roberts
10

 presents an excellent 

resource on the detailed steps of protein aggregation. In this study, a clear distinction is delineated 

between nonnative and native protein aggregation. Native self-association has been investigated in 

several studies,
11-13 

and hydrophobic intermolecular interactions are considered to be the main driver.
14

 

Native reversible self-association has been associated with unusually high viscosity of concentrated mAb 

solutions in low ionic strength buffers which is one of the greatest challenges when developing protein 

formulations at higher concentrations.
11,15 

It has been shown that the self-association of human myeloma 

protein causes the increase in viscosity through a combination of hydrophobic interactions.
16

 The self-

association of monoclonal serum immunoglobulins has been connected with hyperviscosity syndromes.
17-

19 
However, there are limited numbers of analytical methods that provide information at high protein 

concentrations.
20-22 

This hampers an in depth characterization of the association. In this study, we 

characterized and rationalized the behavior of an IgG1, named PPI-1, which shows native reversible self-

association at low ionic strength. PPI-1 exerts this association even at low protein concentrations, which 

allowed us to apply an extended analytical toolbox. We investigated how pH, salt concentration, protein 

concentration, and temperature impact the degree of oligomerization. Additionally, PPI-1 was digested 

into its Fab and Fc fragments to identify which regions of the mAb are involved in the oligomer formation. 

Previous studies have localized the origin of native self-association in either the Fab and the Fc 

fragments.
11,12 

Accelerated and long-term stability studies were executed to understand the impact of the 

native reversible self-association on protein aggregation upon storage. Thus, this study leads to a better 

understanding of the underlying mechanism of self-association that in turn helps to design antibodies that 

are less prone to association.
23 

 

 



CHAPTER IV: Characterization of native reversible self-association of a monoclonal antibody mediated by 
Fab-Fab interaction 

 

150 
 

2 Material and methods 

2.1 Sample preparation 

The behavior of one IgG1, namely PPI-1, provided by the PIPPI consortium (http://www.pippi.kemi.dtu.dk) 

was characterized. PPI-1 was dialyzed using 10 kDa Slide-A-Lyzer™cassettes (Thermo Fisher Scientific, 

MA) into 10 mM histidine buffer pH 6.0 to obtain a 35 mg/mL solution. Then, PPI-1 was dialyzed into 

10mM histidine buffer pH 5.0, 5.5, 6.5, 7.0, and 7.5. NaCl stock solution in the respective buffer was 

added to reach 0, 70, or 140 mM. Protein concentration was measured on a Nanodrop 2000 (Thermo 

Fisher Scientific) using the extinction coefficient calculated from the primary sequence. All chemicals were 

of analytical grade and were purchased from Sigma Aldrich (Germany) or VWR International (Germany). 

Highly purified water (HPW, Purelab Plus; USF Elga, Germany) was used for the preparation of all 

buffers. Finally, the formulations were sterile filtered with a low protein binding Millex® 0.22 µm filter 

(Merck Millipore, Burlington, MA). 

 

2.2 Preparation and purification of Fab and Fc fragments 

Immobilized Papain (Thermo Fisher Scientific, USA) was used to digest PPI-1 into its Fab and Fc 

fragments. PPI-1 at 20 mg/mL was pipetted into 15 mL glass vial, and the vial was capped with the resin 

separator provided with the kit to remove all the air-liquid interface. The vial was gently rotated by a 

Sunlab rotator SU1100 for 5 h at 37° C. An ÄKTA purifier 10 (GE Healthcare, Sweden) equipped with a 

Pierce Protein A chromatography cartridge (Thermo Fisher Scientific, USA) (column volume, CV = 5 mL) 

was used to separate Fc (and undigested mAb) from the Fab fragments. The binding buffer was 

composed of 100 mM sodium phosphate with 150 mM NaCl at pH 7.2. The column was equilibrated with 

2 column volumes (CV) of binding buffer with a flow of 2 mL/min. Fractions were collected in 15-mL PP 

tubes using a Frac 920 fraction collector (GE Healthcare, Sweden) capturing any unbound species (e.g. 

Fab). The elution buffer was kept at 100% over 7 CV. The eluting protein was collected in 15-mL PP 

tubes using the fraction collector and was immediately neutralized with a 1 M sodium phosphate buffer 

pH 8.5. Ultrafiltration was performed using Vivaspin® tubes with a 10 kDa molecular weight (Mw) cut-off 

PES membrane (Sartorius Stedim Biotech, Germany). Success of the purification was monitored by HP-

SEC (see section 2.4 ). Finally, different formulations of Fab and Fc were prepared as described for the 

mAb in 2.1. 

 

http://www.pippi.kemi.dtu.dk/
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2.3 Long term stability study 

0.2 mL of each protein solution was aliquoted at a concentration of 1 mg/mL and filtered through a 0.22 

um Miller® GV filter (Merck Millipore, USA) under a laminar flow hood into 0.5 mL sterile non-coated PP 

Eppendorf tubes. The samples were incubated at 4 °C, 25 °C, and 40 °C for 6 months.  

 

2.4 Size exclusion chromatography coupled with multi-angle light scattering 

Samples were investigated using size exclusion chromatography combined with multiangle light 

scattering (SEC-MALS). The system consisted of a Vanquish Horizon™ UPLC with a variable wavelength 

UV detector operated at 280 nm (Thermo Fischer Scientific, MA). The temperature controlled 

autosampler was kept at 4°C. The separation was performed with a Superdex 200 increased 10/300 GL 

column. Concentration was determined immediately after the column by a UV detector operated at 

280nm which was followed by a static light scattering (SLS) apparatus, a TREOS II detector (Wyatt 

Technology, USA) followed by additional concentration verification by a differential refractive index 

detector (Optilab T-rEX; Wyatt Technology, USA). Data collection and processing were performed using 

the ASTRA software V7.2 (Wyatt Technology, USA). The mobile phase consisted of 38 mM NaH2PO4, 12 

mM Na2HPO4, 150 mM NaCl, and 200 ppm NaN3 at pH 7.4 and was filtered through Durapore VVPP 0.1 

mm membrane filters (Merck Millipore, USA). The samples were injected at a volume of 25 or 50 μL. 

 

2.5 Asymmetric flow field flow fractionation coupled with multi-angle light scattering 

Asymmetric flow field flow fractionation coupled with multiangle light scattering (AF4-MALS) was used to 

study PPI-1 oligomers using the respective sample formulations as carrier. The system consisted of a 

pump (Agilent 1260 Infinity II, Agilent Technologies, Germany) with an online degasser and a 

temperature-controlled autosampler kept at 4°C. The separation was performed with an AF4 system 

(ECLIPSE; Wyatt Technology, USA) using a short channel with 490 mm spacer and a precut regenerated 

cellulose membrane with 10 kDa cut-off (Wyatt Technology, USA). A focus flow of 1.5 mL/min was 

applied for 2 min before injection. The samples were injected with a flow of 0.2 mL/min maintaining the 

focus flow. Then, the samples were focused at 1.5 mL/min for 5 min. A constant detector flow of 1 mL/min 

was used during the separation process, which included 3 stages: (1) 3 mL/min cross flow, hold constant 

for 20 min; (2) linear ramped flow from 3 to 0.1 mL/min in 10 min; and (3) 0.0 mL/min flow, hold constant 

for 5 min. A TREOS II MALS detector (Wyatt Technology, USA), a variable wavelength detector operated 

at 280 nm (Agilent 1260 Infinity II Agilent Technologies, Germany), and a differential refractive index 

detector, Optilab T-rEX (Wyatt Technology, USA) were connected to the system. Data collection and 

processing were performed using the ASTRA software, V 7.2 (Wyatt Technology, USA). The respective 
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formulation of the sample (e.g., His 10 mM at pH 5) filtered through Durapore VVPP 0.1 mm membrane 

filters (Merck Millipore, USA) was used as aqueous mobile phase. 

 

2.6 Dynamic and static light scattering 

High throughput dynamic light scattering (DLS) and SLS were conducted on a DynaPro® III Plate Reader 

(Wyatt Technology, USA) to obtain the hydrodynamic radius (Rh) and the Mw. Four mL per well of each 

sample, filtered using a Millex®0.22 µm filter (Merck Millipore, USA), were pipetted in triplicates into 

Aurora 1536 Lobase Assay Plates (Aurora Microplates, USA). Wells were sealed with silicone oil and 

then centrifuged at 2000 rpm for 1 min. Data was processed by the DYNAMICS software V 7.8 (Wyatt 

Technology, USA). To calculate the Mw, the plate was calibrated with dextran 35-45 kDa(Sigma Aldrich, 

USA, Lot number: SLBQ5973V). Composition gradient MALS (CG-MALS) and DLS (CG-DLS) were used 

to determine the diffusion interaction parameter (kD) using at least 10 different concentrations (from 1 to 

10 mg/mL) in triplicate. The samples were equilibrated at 25° C for 10 min in the plate reader before any 

measurement. Temperature ramps were conducted at 1 mg/mL. Temperature of aggregation, Tagg, was 

processed by the DYNAMICS software V7.8 onset algorithm from the increase in the total scattering 

intensity. Detailed static and dynamic light scattering studies were conducted on a DynaPro® Nanostar 

(Wyatt Technology, USA). Two microliters of sample were pipetted into a quartz cuvette and sealed 

silicone oil. Measurements were conducted in triplicate. 

 

2.7 Differential scanning fluorimetry 

Differential scanning fluorimetry (DSF) was conducted using the Prometheus NT.48 (NanoTemper 

Technologies, Germany). Samples containing 1 mg/mL protein were filled in nanoDSF capillaries and 

analyzed. A temperature ramp of 1 °C/min from 20 °C to 95 °C was applied. The fluorescence intensity 

ratio (F350/F330) was plotted against the temperature, and the first apparent melting temperature (Tm) 

was derived from the maximum of the first derivative using the PR Control software V1.12 (NanoTemper 

Technologies, Germany). All measurements were performed in triplicate. 

 

2.8 Analytical ultracentrifugation 

Sedimentation velocity experiments were conducted in a Beckman XLI ultracentrifuge (Beckman Coulter 

Inc., USA) at 40,000 rpm at 20°C using the charcoal-filled Epon 12-mm double-sector centerpieces. The 

moving boundary was monitored by repetitive radial scanning at a constant step size of 0.003 cm at 280 
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nm using a UV absorption optical system. Sedimentation velocity data was analyzed, and simulation data 

was created using the software program SEDFIT (National Institutes of Health, USA)
24

 to generate the 

sedimentation coefficient distribution of protein samples. 

 

2.9 Small angle X-ray scattering (SAXS) 

35 mg/mL of PPI-1 in 10 mM histidine buffer at pH 5.0, 5.5, 6.0 and 6.5 without salt was dialyzed over 

three shifts. The dialysate from the final buffer exchange was sterile filtered using a 0.22 um Miller® GV  

filter (Merck, Millipore, USA) and used for sample dilution and buffer measurements. SAXS experiments 

were performed at the ESRF synchrotron, BM29 bioSAXS beamline at Grenoble, France. Measurements 

of pure water were used to get the data on an absolute scale. Buffers were measured both before and 

after each sample and averaged before subtraction. A concentration range from 0.5mg/ml – 17mg/ml was 

measured for each formulation. Data collection parameters are listed in Table SI 1. Calibrations and 

corrections of SAXS data collected at ESRF were carried out by an automated pipeline.
25

 Buffer 

averaging and subsequent subtraction prior to data analyses were performed in Primus.
26

 The ATSAS 

program package version 2.8.4
27

 was used for further data analysis. Primus was also used to perform 

Guinier region analysis and GNOM
28

 was used for pair distribution,  ( )  analysis. The intensity,  ( )  is 

measured as a function of scattering vector            , where    is the wavelength, and    the 

scattering angle. Molecular weight calculations were performed using          ( )       
   where 

   is Avogadro constant,  ( )   is concentration normalized forward scattering and     is the scattering 

contrast per mass.     was calculated using proteins average partial specific volume,              .29
 

 

2.10 Reversed-phase ultra-high-performance liquid chromatography (RP-UPLC) 

Reversed-Phase Ultra-High-Performance liquid chromatography (RP-UPLC) was conducted on an 

ACQUITY UPLC H-Class system (Waters, USA) equipped with a quaternary pump, an autosampler, and 

UV detector operated at 280 nm. The separation was performed with a Acquity BEH-300 C4 (Waters, 

USA). Ten microliters of sample were injected at a concentration of 0.7 mg/mL. Eluent A consisted of 

10% w/v acetonitrile and 0.1% w/v trifluoracetic acid in ultrapure water. Eluent B consisted of 0.1% w/v 

trifluoracetic acid in acetonitrile. The flow rate was 0.2 mL/min. The column oven temperature was set at 

75° C. A preheater was included before the column. A gradient of 25% to 40% eluent B in A in 20 min 

was used. The chromatograms were integrated in Empower V3 (Waters, USA). A mass recovery of 100% 

was always achieved. 
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3 Results 

A full factorial design of experiments was applied to study PPI-1 (pI = 7.9). Response surface 

methodology was then used to study the interactions of the investigated factors. We assessed the full 

model and then reduced it to only the terms that were deemed statistically relevant. A curvature response 

was allowed by assessing the quadratic term considering also two-way interactions. The reduced model 

was obtained using a backward stepwise regression. The F-statistic approach was used to perform the 

effect test considering a value of 0.05 or less as statistically significant. These calculations were 

performed by the statistical software JMP® v 14.0 (SAS Institute Inc., Cary, NC). This approach was not 

successful to quantitatively separate the factors’ effects related to the colloidal stability (e.g., degree of 

oligomerization, kD, Tagg). This is due to an intrinsic nonlinearity of PPI-1 association, which yields to very 

high fit errors and low accuracy and therefore poor interpretability. Hence, we discuss the investigated 

factors separately in sections 4.1-4.4. Differently, the apparent Tm measured by intrinsic DSF (Table SI 2) 

present a good fit with R
2
 and root mean square error (RMSE) of respectively 0.93 and 1.4. The pH 

presents a significant effect on the DSF profile resulting in higher apparent Tm at higher pHs, whereas 

NaCl concentration showed an almost insignificant effect in the concentration range investigated (p value 

> 0.05). Nonlinear methodologies have been proved successful in predicting biophysical properties of 

PPI-01 and other mAbs based on the amino acid composition, pH, and NaCl concentration.
30 

 

3.1 The pH effect 

The sedimentation coefficient (S) of PPI-1 between pH 5 and 7.5 at 0.1, 0.5, and 1 mg/mL (Fig. 1a) was 

calculated from analytical ultracentrifugation (AUC) measurements. We observed an increasing amount 

and size of oligomers with increasing pH. A table with the weight-average sedimentation coefficient (Sw) is 

reported in Table SI 3. Sw is reported for all the peaks and calculated across the entire distribution. The 

Sw is a critical parameter used to understand protein self-association.
31

 AUC results correlate well with 

both the Rh calculated by DLS (Figs. 1b and 1c) and the Rg calculated by SAXS (Fig. SI 4). DLS results 

also indicate a step decrease of the oligomer size at pH 8 and 9 (Fig. 1c). More information regarding 

SAXS results can be found in SI 3. All the techniques confirm the presence of monodispersed solution of 

the monomer at pH 5. Physical separation of the oligomers was attempted by AF4-MALS. This technique 

was selected as the mobile phase can be matched to the exact formulation of the measured sample. AF4 

chromatograms are shown in Fig. SI 5. By AF4 theory, Rh was calculated from the maximum of the 

eluting peak. The obtained Rh values correspond to the ones measured by DLS within the experimental 

error (Fig. 1c). However, the Mw calculated from MALS yields a consistent molecular weight of around 

154 kDa indicating the presence of monomer Mw. This effect is probably due to the AF4 separation 

process. The molecules are pushed towards the membrane during separation and then diluted before 
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reaching the detector. Therefore, PPI-1 probably separates in its oligomeric form but rapidly equilibrates 

back to the monomer due to the dilution at the end of the channel. Further, PPI-1 self-interaction was 

investigated by the apparent kD (Table SI 2). It was not possible to differentiate the interaction effect from 

the oligomerization effect on the light scattering signal. This is due to the fact that the abundance of the 

complexes will increase with increasing solute concentration, leading to an apparent negative value of 

kD.
32

 

 

Figure 1. Selected studies on PPI-1 solution behavior. Graph “a” shows the AUC sedimentation 

velocity results at protein concentrations of 0.1, 0.5, and 1 mg/mL. Missing data at lower concentrations 

are owing to the formation of very large, rapidly sedimenting particles. All formulations were investigated 

in 10 mM His from pH 5 to 7. The data points are depicted as shown in the legends. The same 

formulations and color codes are used for graph “b” and “d”. Graph “b” shows the apparent Rh of PPI-1 

as a function of protein concentration (logarithmic scale). Graph “c” shows the apparent Rh of PPI-1 at 1 

mg/mL as a function of the pH. Different NaCl concentrations are depicted in scale of grays as shown on 

the legend. Graph “d” shows the temperature ramp curves of PPI-1 at 1 mg/mL measured by SLS as a 

function of pH. Similar curves for the apparent Rh were generated by DLS. 

 

A B

C D

T (°C)
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3.2 The salt effect 

Formulation with high salt content always yielded the apparent size of the monomer around 5.3 nm (Fig. 

1c). Titration with sodium chloride was performed, and the sedimentation coefficient of PPI-1 at 1 mg/mL 

was analyzed by AUC at pH 6 and 6.5 (Fig. 2, Table SI 3). A broad distribution of oligomers was 

observed at zero NaCl concentration. A lower distribution of oligomers was observed at higher 

concentration of NaCl (Fig. 2, Table SI 3).  

 

Figure 2. The effect of NaCl on the sedimentation coefficients of PPI-1 by sedimentation velocity 

AUC. All formulations were investigated in 10 mM His at pH 6 and 6.5, which are showed on the left and 

right of the graph, respectively. The final concentration of NaCl is shown in different colors as depicted in 

the legend. 

The AUC results correlate well with other experimental techniques, which show a reduction of oligomers 

at increasing concentration of salt. However, at low ionic strength (<10 mM), the apparent radius of 

protein will increase (i.e., decreasing the sedimentation coefficient)
33

 and may lead to quantitatively 

inaccurate interpretation of the results. SEC-MALS yielded no elution from the column when low salt 

eluents were used. However, high salt eluents (i.e., PBS as described in materials and methods) yielded 

99.9% of monomer fraction for all the formulations studied. This behavior is due to the buffer exchange  

over the column, which shifts the equilibrium from oligomers to monomers. Further, the salt could 

influence the interactions between the SEC stationary phase and PPI-1, regardless of its oligomerization 

state. Nonetheless, column mass recovery correlates with the formation of oligomers, as highlighted by 

the Rh measured by DLS (Fig. 1c), where lower recovery (Fig. SI 6) is observed in formulation with higher 

Rh measured by DLS (Fig. 1c). Further, we investigated the stability of PPI-1 under isothermal stress 
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after long-term storage by SEC-MALS. PPI-1 in 4 different formulations was stored for 6 months at 4 °C, 

25 °C, and 40 °C (Fig. 3). Taking into consideration only soluble aggregates, the lowest aggregate 

content is detected at pH 6.5. The addition of salt has a minor impact. On the other hand, at pH 5 a steep 

increase of aggregates is observed after 6 months of storage at 40 °C. The monomer loss, which includes 

both soluble aggregates and the mass lost to insoluble aggregates, indicates formation of the latter 

(observed also by visual inspection) at pH 5. As previously mentioned, the monomer loss in conditions 

where PPI-1 presents native self-association is possibly due to the precipitation of the oligomers (Fig. SI 

6), which is also observed under unstressed conditions. 

 

Figure 3. Long-term stability results. Each graph represents 1 of the 4 different formulations stored for 

6 months at 4 °C, 25 °C, and 40 °C depicted in blue, red, and green, respectively. The percentage of 

aggregates is calculated by the UV signal at 280 nm. The error bars are calculated from the analytical 

error. The numbers on each bar represent the calculated monomer loss corrected by the recovered mass, 

where 1 stands for complete monomer loss and 0 stands for no monomer loss. This is calculated 

including into the calculation the initial recovered mass (i.e., before stress) divided by the calculated 

recovered mass. 

 

4 °C

25 °C

40 °C

0.11* 0.12* 0.32* 0.01* 0.04* 0.76*

0.11* 0.41* 0.68* 0.05* 0.06* 0.06*

*monomer loss corrected by the mass recovered
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3.3 The temperature effect 

The temperature effect on PPI-1 self-association was studied by means of light scattering experiments 

with temperature ramps (Fig. 1d). We observed 2 mechanisms of aggregation: (1) irreversible nonnative 

aggregation (e.g. pH 5), (2) reversible native disassociation with subsequent unfolding, which leads to 

irreversible nonnative aggregation. Formulation including high salt concentration (Fig. SI 7) always 

presented nonnative aggregation. We confirmed the reversibility of the first step of the second 

mechanism by temperature cycles between 0 °C and 45 °C (Fig. 4). The association/dissociation is fully 

reversible between 0 °C and 20 °C. Upon ramping from 25 °C to 45 °C, a very small amount of PPI-1 of 

around 0.5% appears to irreversibly aggregate in each cycle, which is probably due to a small population 

of partially unfolded molecules formed with each cycle. Similarly, we confirmed the irreversibility of the 

second step by cycling the temperature in the range of 45 °C to 55 °C (Fig. SI 8). We noticed that PPI-1 

irreversibly aggregates if the temperature reached the onset temperature of unfolding measured by 

nanoDSF (Table SI 2). 

 

Figure 4. An example of PPI-1 temperature cycle data generated by SLS for 1 mg/mL of PPI-1 in 10 

mM His at pH 6.5. The figure shows 2 temperature cycle experiments performed between 0° C and 20° 

C and between 25 °C and 45 °C respectively on the left and right of the graph. 1. The Mw color is based 

on the cycle number. The first temperature ramp is depicted in bright green while the last in bright red. At 

the end of each cycle, PPI-1 was rapidly cooled (data was not collected during the cooling phase). 
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3.4 The protein concentration effect 

PPI-1 formed more and larger oligomers with increasing concentration in the range of 1 to 20 mg/mL as 

detected by DLS (Fig. 1b), SLS (Fig. 1d), AUC (Fig. 1a) and SAXS (Fig. SI 3). DLS indicates the 

formation of large particles at low concentration at pH 6.5 and 7 (Figs. 1b-1d). These particles rapidly 

sediment during AUC experiments. Therefore, we further investigated PPI-1 at pH 6 without salt in diluted 

samples by DLS (Fig. 5). Three different slopes for the linear correlation between the apparent diffusion 

and PPI-1 concentration were observed. Between 0.1 and 0.4 mg/mL, the diffusion coefficient linearly  

increases with concentration. From 0.4 to 2 mg/mL, the diffusion coefficient shows a steep negative linear 

dependency on concentration followed by a more gradual decrease with concentration above 3 mg/mL. 

 

Figure 5. PPI-1 Diffusion coefficient as a function of the concentration. Three linear regions are 

identified for PPI-1 formulated in 10 mM Histidine at pH 6. The corresponding fits and confidence intervals 

are shown in different colors.  

 

3.5 Fab and Fc fragments studies 

A fractional design of experiment was applied to PPI-1 fragments due to material limitations. We focused 

on solutions where oligomers were present, which is low ionic strength. The absence of oligomers in 

formulation including salt for PPI-1 fragments was confirmed by DLS and SLS. pKa-based calculations of 

the pI of the whole mAb, its Fab, and its Fc fragment yielded 7.9, 6.2, and 8.4, respectively. Therefore, we 

hypothesized that the native reversible self-association may be caused by hydrophobic patches of the 

Fab fragment. Other low volume techniques (e.g. CG-DLS) were not successful to investigate Fab-Fab, 
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Fab-Fc, and Fc-Fc association. In fact, as previously mentioned in the case of the whole mAb, it is not 

possible to distinguish the interaction effect from the oligomerization effect on the light scattering signal. 

However, oligomers were observed only in the presence of the Fab fragment. To prove that the 

reversibility of the process is equal to the one of the whole mAb, we exploited PPI-1 behavior by 

temperature cycling as described in section 4.3. We confirmed our hypothesis studying the whole mAb, 

the Fc, and Fab fragments by SLS at pH 5 and 6 (Fig. 6).  

 

Figure 6. Temperature cycles investigated by SLS of the intact mAb, Fab, and Fc. Temperature 

cycles from 25 °C to 45 °C are shown for all the samples at pH 5 and 6 (10 mM His) on the left and right 

of the graph, respectively. The Mw ratio is calculated dividing the measured Mw by the Mw detected at 

25C. mAb, Fab, and Fc are respectively depicted as shown in the legend. 

Upon a series of temperature cycles at pH 6, self-(dis)associating oligomers for both the whole mAb and 

its Fab fragment were observed. On the other hand, the Fc fragment was present in its monomeric form 

over the cycles. At pH 5 no self-association is observed. The mixtures of Fab-Fc, Fc-PPI-1, and Fab-PPI-

1 were similarly investigated; however, as the Fab or PPI-1 oligomers are responsible for most of the light 

scattering signal, results from this experiment are similar to the one showed in Fig. 6. Further, nonnative 

irreversible aggregation starts once that Tm,on is reached (Fig. SI 8). Finally, we observed a considerable 

difference in the retention time measured by RP-UPLC among the whole mAb, the Fc, and the Fab 

fragment, which eluted at 2.9 mL, 2.58 mL, and 3.2 mL, respectively (Fig. 7). Thus, the Fab fragment 

showed a rather high degree of hydrophobicity compared to the Fc fragment and the whole mAb. 
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Figure 7. Reverse phase chromatograms. In black, blue and red the results from the whole mAb, the  

Fc and the Fab fragments are respectively shown 

 

4 Discussion 

4.1 Rationalization of  PPI-1 native reversible self-association  

Protein aggregation can occur through a number of distinct pathways that are not mutually exclusive. PPI-

1 presents a reversible association of the native monomer that is intrinsic under certain solution 

conditions. In these conditions the surface of PPI-1 in the native structure is self-complementary and 

readily self-associates to form oligomers. Insulin is a typical example of therapeutic protein which forms 

reversible oligomers.
34

 Conversely, the first step of irreversible aggregation is due to partial unfolding of 

the monomer, which acts as precursor of disordered oligomers.
35-42 

We carried out long-term stability 

studies (Fig. 3) to differentiate these 2 mechanisms. We observed that PPI-1 does not form critical 

percentage of aggregates at room temperature or if refrigerated after 6 months of storage. On the other 

hand, high temperatures induce formation of nonnative aggregates at acidic pHs. It is known that acidic 

pHs lower the conformational stability of mAbs,
43

 which most likely prompts the nonnative aggregation of 

PPI-1 stored at 40 °C. In fact, PPI-1 was demonstrated to have a lower apparent temperature of unfolding 

(Tm) at lower pHs (Table SI 2). Further, the addition of salt does not influence (at the low concentration 

used) the conformational stability of PPI-1. Therefore, the formulation with 10 mM histidine and 140 mM 

NaCl at pH 6.5 allows to both minimize the nonnative aggregation and eliminate PPI-1 native oligomers. 
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The latter has been observed to induce phase separation, precipitation, and high viscosity.
12,15 

Several 

mAbs are known to have a tendency of intrinsically self-interacting, which prompts phase separation at 

high concentrations.
44-46 

Therefore, we focused our investigation into the characterization of PPI-1 native 

reversible self-association. This process is schematically summarized in Fig. 8, and hereafter, the aim of 

the discussion is to rationalize this behavior. 

 

Figure 8. Graphical representation of PPI-1 self-association as a function of 4 factors: pH, 

Temperature, salt concentration and protein concentration.  The graph is indicative. The red, yellow 

and green areas represent respectively the presence of irreversible aggregates, the presence and the 

absence of native oligomers.   

It has been suggested that self-association at low ionic strength is due to electrostatic interaction.
47

 We 

observed for PPI-1 that the association process is weakened at low pH values (Fig. 1), which is due to 

the increasing mAb net charge. High net charge prevents short range interactions from being accessible 

as described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) or proximity energy theory.
48,49 
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salting-in effect (Figs. 1c and 3), that is as the ionic strength increases, protein solubility increases, can 

pH

[NaCl] (mM)

T(
°C

)

[m
A

b
](m

g
/m

L)
1

0
.0

1

57.5

25

52

040

The mAb concentration effect:

-Relative Fig.s : 1(A-B), 5, SI 1, SI 2, 
SI 3.3
-The higher the concentration
the higher the reference energy which
leads to lower activation barrier

The pH effect:

-Relative Fig.s : 1(A-D), 2, 6, SI 1-8
-Charge–charge repulsion between 
molecules can shield shorter-ranged 
attractive energies, as the dipole 
moment and hydrophobic interaction, 
from being accessible

The salt effect:

-Relative Fig.s : 1(C), 2, SI 1, SI 5, SI 7
-The screening effect of the salt 
reduces charge–charge repulsion, 
charge–dipole and dipole–dipole 
attraction.
-Salting-in near pI (e.g. Fab)

The Temperature effect:

-Relative Fig.s : 1(D), 4, 6, SI 7-8
-Entropically driven association by 
decreasing temperature occurs as a 
result of a more ordered water 
structure in the proximity of 
nonpolar hydrocarbon groups

Non-native aggregation (Fig.s 1(D), 4, SI 5, SI 7, SI 8) 

Precipitation at low mAbs concentration 
(pH > 5.5 & NaCl 0 mM)



CHAPTER IV: Characterization of native reversible self-association of a monoclonal antibody mediated by 
Fab-Fab interaction 

 

163 
 

be rationalized by DLVO or proximity energy theory only if a very strong dipole moment is assumed. In 

fact, high ionic strength depletes electrostatic interactions such as charge-charge repulsion, charge-

dipole, and dipole-dipole attraction. PPI-1 shows, at low ionic strength, an increase of Rh and Mw with 

increasing pH up to 7.5 followed by a steep decrease at pH 8 (Fig. 1d). pKa-based calculations of the pI 

of the whole mAb, its Fab, and its Fc fragment, yielded, respectively, 7.9, 6.2, and 8.3. This supports the 

hypothesis of a different local surface charge behavior of PPI-1. For example, a strong self-association is 

detected from pH 6 (Figs. 1, 2, 4, and 6), which is close to the Fab pI, a milder self-association is 

detected at pH 8 (Fig. 1c) as the Fab is negatively charged, and no self-association at pH 5 were the Fab 

is positively charged (Figs. 1 and 6). Therefore, we digested PPI-1 to study the behavior of its fragments. 

We demonstrate that the native reversible self-association of PPI-1 is driven by Fab-Fab interaction (Fig. 

6), by exploiting PPI-1 temperature-dependent behavior (Figs. 4 and 6). It has been shown that high mAb 

viscosity can be mediated by Fab-Fab self-association
11

 and that IgG1 self-association can be driven by 

either the Fab or the Fc region.
11,12 

The hydrophobic aggregation-prone regions, identified by 

Chennmsetty et al,
50,51 

are more frequently found on the Fc region than on the Fab regions. However, we 

observed that PPI-1 Fab fragment presents a higher degree of hydrophobicity compared to the Fc 

fragment by RP-UPLC (Fig. 8). As the primary sequence of molecules studied in literature is unfortunately 

not available, it is impossible to compare IgG1 molecules showing pronounced self-association and 

identify molecular moieties on the Fab or Fc that could drive the association. Herein, we provide the 

primary sequence of PPI-1 to possibly increase the molecular understanding of IgG1 self-association (SI 

9). We suggest that PPI-1 native reversible association is (1) highly dominated by the Fab fragments 

interaction, (2) that the locus of the interaction is located on the Fab fragment, and (3) that the association 

is due to hydrophobic interactions. The short-range nature of the hydrophobic interaction can explain the 

pH-dependent behavior (Fig. 1). Higher charge at low pH values prevents the short-range interaction 

from being accessible. If only the Fab is considered, with net neutral charge species at pH values close to 

6, the salting-in effect (Figs. 1 and 2) can be rationalized. For charge-neutral species, many theoretical 

considerations were developed to explain initial salting-in of proteins. 
52-54 

It has been shown that mAbs 

close to their pI reveal a general salting-in effect by all anions.
55

 The Debye-Huckel theory, in combination 

with the Kirkwood’s theory expression of the dipole moments, actually predicts a salting-in effect which is 

consistent with the observation of protein behavior near their respective pIs.
56

 This would explain the 

strong effect of Na
+
 and Cl

-
 to dampen the PPI-1 native self-association (Figs. 1 and 2). We expect Na

+
 to 

weakly interact with the fragment surface, and Cl
-
 could specifically bind to the protein surface. The idea 

of attractive electrostatic interaction is supported by salting-in behavior of carboxyhemoglobin close to its 

pI by potassium fluoride.
57

 In addition, this is in agreement with the observation that a chaotropic 

monovalent ion binds more strongly to a net-charge neutral molecule.
58,59 

Therefore, attractive 

electrostatic interactions may dominate at the Fab-Fab interaction site(s) at pHs near the Fab pI, where 

the cation and anion binding strengths with the protein surface determine the decreasing protein native 

self-association as the salt is increased. Further, a hydrophobic interaction supports the oligomers 
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association by decreasing the temperature of PPI-1 and its Fab fragments (Figs. 4 and 6). Hydrophobic 

association occurs as a result of a more ordered water structure in the proximity of nonpolar hydrocarbon 

groups.
60

 It has been estimated that the change of entropy for protein-protein hydrophobic associations is 

positive and it becomes less positive at higher temperatures.
61

 This would thermodynamically support an 

association at lower temperature as entropically driven. As expected, at increased PPI-1 concentrations, 

an increased degree of self-association was observed (Fig. 1b). In fact, higher mAb concentration 

increases the entropy of mixing which will tend to decrease the activation energy required to aggregate by 

increasing the potential energy baseline.
49

 Interestingly, PPI-1 shows the formation of large particles once 

a lower concentration threshold is reached and exceeded (Figs. 1b and 5), and this is only observed 

under conditions that prompt PPI-1 native reversible self-association. The mAbs self-association is driven 

by the minimization of solvent exposed hydrophobic surfaces on the Fab fragment. We hypothesize that 

under a critical value, the mAb concentration is not enough to self-stabilize, and therefore a phase 

separation occurs. However, further studies are necessary to properly characterize PPI-1 behavior at very 

low concentration. 

 

 4.2 Lessons learned: pitfalls to study PPI-1 reversible native self-association 

Batch DLS, batch SLS, SEC-MALS, AF4-MALS, CG-MALS, DLSMALS, AUC, nanoDSF, and SAXS were 

applied to investigate PPI-1. Owing to the ubiquitous native reversible self-association of PPI- 1, only the 

techniques capable to measure the naïve sample (batch SLS and DLS, AUC, SAXS) allowed proper 

assessment of the size and, or, amount of the reversible oligomers. On the other hand, care in the 

interpretation of the results is necessary if the technique applied involves the modification of either pH, 

ionic strength, temperature, or protein concentration, as the equilibrium of the system will be shifted. 

Owing to the unusual behavior of PPI-1 as a function of its concentration (Figs. 1b and 5), pH (Fig. 1), 

and salt concentration (Figs. 1c and 2), the SEC-MALS (Fig. 3) cannot be applied to investigate PPI-1 

reversible self-association. In fact, the buffer exchange and dilution over the column impacts the mass 

recovery even without stress (Fig. SI 6). However, SEC-MALS remains a valuable tool to characterize the 

formation of irreversible nonnative aggregation. Other fractionation methods had similar issues; for 

example, AF4 does not allow to properly characterize the sample due to the intense dilution over the 

channel (Fig. SI 5). Further, the uncommon behavior of PPI-1 as a function of the concentration (Figs. 1c 

and 5) does not allow the assessment of the stoichiometry and constants of dissociation with limited 

amount of material (e.g. CG-MALS, AUC). This could be a limiting factor for mAbs in early stage of 

development, such as PPI-1. Thus, we suggest the use of nanoDSF, DLS, and SLS as high-throughput 

technologies and AUC as a gold-standard to characterize native reversible self-association. 
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SI 1. SAXS supplementary information 
 
Table SI 1.1: Experimental set up of SAXS measurements 
 

Instrument ESRF, Grenoble (France), bioSAXS beamline (BM29) 

Wavelength ( ) 0.99 

q-range (   ) 0.004 – 0.49 

Sample-to-detector distance 
( ) 

2.864 

Detector Pilatus 1M 
Flux (photons/s) 2 x 1012 

Beam size (   ) 700 x 700 
Sample configuration 1.8 mm quartz glass capillary 
Absolute scaling method Comparison to water in sample capillary 
Normalization To transmitted intensity by beam-stop counter 
Monitoring for radiation 
damage 

Control of un-subtracted and scaled subtracted data for 
systematic changes typical for radiation damage 

 

 

Figure SI 1.2 SAXS scattering curves: a) 10mM_Histidine_pH 5.0, b) 10mM_Histidine_pH 5.5, c) 

10mM_Histidine_pH 6.0, d) 10mM_Histidine_pH 6.5. Data are shown for different PPI-1 formulation 

conditions with increasing concentrations. 

[a] [b] 

[c] [d] 



CHAPTER IV: Supplementary information 

 

173 
 

Table SI 1.3 An overview of the samples measured by SAXS and data treatment parameters: 

 
a) 10mM histidine pH 5.0    b) 10mM histidine pH 5.5  

Protein 
concentration 
(mg/ml) 
 

   
(Gnom) 
(nm) 
 

 ( )   
(Gnom) 
 

   
(kDa) 
 

 Protein 
concentration 
(mg/ml) 
 

   
(Gnom) 
(nm) 
 

 ( )   
(Gnom) 
 

   
(kDa) 
 

0.74 6.01 0.11 156  0.47 6.32 0.12 163 
1.10 6.79 0.14 188  1.00 8.06 0.18 249 
2.01 9.80 0.24 333  1.93 13.55 0.44 610 
4.56 15.34 0.66 916  4.65 19.71 1.32 1931 
6.26 19.32 1.05 1451  6.82 20.64 1.39 1828 
8.94 23.24 1.74 2412  9.11 21.51 1.42 1966 
16.89 25.82 2.24 3109  16.93 23.09 1.77 2456 

 
c) 10mM histidine pH 6.0    d) 10m histidine pH 6.5 

Protein 
concentration 
(mg/ml) 
 

   
(Gnom) 
(nm) 
 

 ( )   
(Gnom) 
 

   
(kDa) 
 

 Protein 
concentration 
(mg/ml) 
 

   
(Gnom) 
(nm) 
 

 ( )   
(Gnom) 
 

   
(kDa) 
 

0.70 12.70 0.48 663  0.48 17.48 0.81 1119 
1.04 15.34 0.56 774  1.01 19.74 1.26 1747 
1.88 15.98 0.69 949  1.34 22.09 1.54 2129 
2.41 19.32 1.05 1451  3.52 23.38 1.84 2555 
4.92 20.24 1.58 2190  4.74 23.94 2.38 3298 
8.43 24.42 1.70 2351  8.03 25.48 2.50 3459 
15.50 26.52 2.16 2998  16.82 29.36 2.96 4106 
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Table SI 2. PPI-1 DLS and nanoDSF results. 

Protein pH [NaCl] kD 

(mg/mL) 
Tagg 

(°C) 
Tm,on 

(°C) 
Tm1 

(°C) 

PPI-1 5 0 -2.46E-02 52.69 52.12 57.44 

PPI-1 5.5 0 -1.90E-02 54.28 53.43 58.84 

PPI-1 6 0 -1.72E-02 55.38 54.48 60.73 

PPI-1 6.5 0 -2.94E-02 56.96 54.90 62.55 

PPI-1 7 0 -2.45E-02 56.8 55.29 64.62 

PPI-1 7.5 0 -2.34E-02 50.82 53.78 64.31 

PPI-1 8 0 -1.81E-02 49.47 56.77 69.97 

PPI-1 9 0 -1.87E-02 56.5 58.98 69.99 

PPI-1 5 70 -2.39E-02 45.97 49.98 54.91 

PPI-1 5.5 70 -2.01E-02 50.7 52.01 57.44 

PPI-1 6 70 -1.89E-02 51.98 54.61 60.30 

PPI-1 6.5 70 -4.05E-02 54.41 55.64 63.14 

PPI-1 7 70 -4.44E-02 51.56 56.27 63.73 

PPI-1 7.5 70 -3.62E-02 55.76 56.57 64.00 

PPI-1 8 70 -3.37E-02 55.48 53.60 69.93 

PPI-1 9 70 2.11E-02 56.48 59.72 70.69 

PPI-1 5 140 -2.01E-02 50.24 49.19 54.30 

PPI-1 5.5 140 -1.74E-02 47.11 52.17 57.12 

PPI-1 6 140 -2.46E-02 52.63 54.10 59.85 

PPI-1 6.5 140 -1.90E-02 55.98 56.00 62.65 

PPI-1 7 140 -1.72E-02 55.78 56.59 63.40 

PPI-1 7.5 140 -2.94E-02 55.84 56.65 63.94 

PPI-1 8 140 -2.45E-02 56.81 55.17 70.59 

PPI-1 9 140 -2.34E-02 56.09 58.75 70.67 

Tm fit formula: 37.102+3.875pH – (0.005[NaCl])* 
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Table SI 3. The effect of NaCl on the sedimentation coefficient of PPI-1 by sedimentation velocity. 

AUC. The table lists the Sw from the NaCl tritation experiment showed in Fig. 2. 

System (in 10 mM Histidine) Monomer TOTAL AVERAGE 

pH NaCl (mM) PPI-01 (mg/mL) Sw Std. Dev. % Sw Std. Dev. % 

5 0 1 7.31 0.277 99 7.31 0.277 99 
5 0 0.5 7.35 0.621 99 7.35 0.621 99 
5 0 0.1 7.36 0.343 99 7.36 0.343 99 

5.5 0 1 7.69 0.293 83 7.82 0.528 100 
5.5 0 0.5 7.52 0.385 92 7.75 1.02 99 
5.5 0 0.1 7.42 0.394 94 10.7 3.1 99 
6 0 1 7.8 0.734 39 10.77 3.5 100 
6 0 0.5 7.85 0.521 69 9.28 2.9 100 
6 0 0.1 7.4 0.444 81 7.89 1.578 95 

6.5 0 1 7.78 0.864 24 16.82 6.9 100 
6.5 0 0.5 7.55 0.392 30 11.67 4.05 99 
6.5 0 0.1 * * * * * * 
7 0 1 - - - 30.1 15.3 100 
7 0 0.5 * * * * * * 
7 0 0.1 * * * * * * 

7.5 0 1 * * * * * * 
7.5 0 0.5 * * * * * * 
7.5 0 0.1 * * * * * * 
6 10 1 7.8 1.2 92 8.1 1.683 99 
6 20 1 7.5 0.8 92 7.73 1.21 99 
6 30 1 7.33 0.433 97 7.5 0.85 100 
6 40 1 7.3 0.429 95 7.3 0.429 99 
6 50 1 7.14 0.356 99 7.14 0.356 99 
6 60 1 7.23 0.48 100 7.23 0.48 100 
6 140 1 6.9 0.48 99 6.9 0.48 99 

6.5 10 1 8.15 1.384 99 8.15 1.384 99 
6.5 20 1 7.6 0.751 90 7.98 1.6 99 
6.5 30 1 7.47 0.634 97 7.54 0.766 99 
6.5 40 1 7.33 0.64 95 7.49 1.2 99 
6.5 50 1 7.3 0.65 93 7.52 1.1 99 
6.5 60 1 7.21 0.62 93 7.41 1.2 99 
6.5 140 1 7 0.53 93 7 1 99 
7 10 1 7.62 0.41 60 9.51 3.35 98 
7 20 1 7.43 0.4 77 8.23 1.93 98 
7 30 1 7.27 0.231 95 7.43 0.87 100 
7 40 1 7.3 0.37 99 7.3 0.37 99 
7 50 1 7.22 0.6 97 7.22 0.6 97 
7 60 1 7.1 0.57 99 7.1 0.57 99 
7 140 1 6.8 0.7 99 6.8 0.7 99 
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Figure SI 4 SAXS results. Four formulations (without salt) were formulated at pH 5, 5.5, 6.0 and 6.5 

depicted respectively in green, brown, blue and red. 

 

Figure SI 5. AF4-MALS chromatograms. The light scattering signal is showed for PPI-1 in different 

formulations. The mobile phase always matches the formulation (His 10 mM for all the pHs investigated). 
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Figure SI 6. Size exclusion chromatograms. The figure includes PPI-1 formulations with no salt from 

pH 5 to pH 9. The red and black chromatograms represent respectively a decrease of column recovery 

with the pH and an increase of column recovery with the pH. 

 

 

Figure SI 7. Temperature ramp curve measured by DLS. All formulations where investigated in 10 mM 

His, 140 mM NaCl from pH 5 to 7 and the data points were depicted as shown in the legend. 
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Figure SI 8. Temperature cycles investigated by DLS of the undigested mAb, Fab and Fc. 

Temperature cycles from 45 °C to 54 °C are shown for all samples at pH 5 and 6 (10 mM His) 

respectively on the left and right of the graph. On the ordinates the apparent Rh is shown. mAb, Fab and 

Fc are respectively depicted as shown in the legend. 

____________________________________________________________________________________ 

SI 9: PP-1 (IgG1) primary sequence. 

Heavy chain 

EVQLVQSGAEVKKPGATVKISCKVYGYIFTDYNIYWVRQAPGKGLEWMGLIDPDNGETFYAEKFQGRAT

MTADTSSDRAYMELSSLRFEDTAVYYCATVMGKWIKGGYDYWGRGTLVTVSSASTKGPSVFPLAPSSK

STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVN

HKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV

KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ

PREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV

DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 

 

N-glycosylation site 

 

Light chain 

QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYDNFNRPSGVPPRFSGSKS

GTSASLAITGLQAEDEADYYCQSYDSPTLTSPFGTGT 

LTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKY

AASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS 

____________________________________________________________________________________ 
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Abstract 

An important aspect of initial developability assessments as well formulation development and selection 

of therapeutic proteins is the evaluation of data obtained under accelerated stress condition, i.e. at 

elevated temperatures. We propose the application of artificial neural networks (ANNs) to predict long 

term stability in real storage condition from accelerated stability studies and other high-throughput 

biophysical properties e.g. the first apparent temperature of unfolding (Tm). Our models have been trained 

on therapeutic relevant proteins, including monoclonal antibodies, in various pharmaceutically relevant 

formulations. Further, we developed network architectures with good prediction power using the least 

amount of input features, i.e. experimental effort to train the network. This provides an empiric means to 

highlight the most important parameters in the prediction of real-time protein stability. Further, several 

models were developed by a different validation means (i.e. leave-one-protein-out cross-validation) to test 

the robustness and the limitations of our approach. Finally, we apply surrogate machine learning 

algorithms (e.g. linear regression) to build trust in the ANNs decision making procedure and to highlight 

the connection between the leading inputs and the outputs. 

 

Graphical abstract. Application of machine learning to predict monomer retention of therapeutic proteins 

after long term storage 
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List of abbreviations 

ANNs – artificial neural networks 

IgG - immunoglobulin 

mAb – monoclonal antibody 

Tm – first apparent temperature of unfolding 

Tagg,on – onset temperature of aggregation 

Cm1 - denaturant concentration at half transition of the first apparent unfolding 

m1 - slope of the first unfolding transition curve of chemical denaturation 

Tm,on - onset temperature of unfolding 

Rh – hydrodynamic radius 

SEC – size-exclusion chromatography 

MALS - multi angle (laser) light scattering 

R – Pearson´s correlation coefficient 

Mw – molecular weight 

RMSE – root means square error 

DLS – dynamic light scattering 

ICD – isothermal chemical denaturation 

an
x 
– monomer retention after 6 months of storage at temperature X

 

mn
x 
- monomer retention after 2 weeks of storage at temperature X

 

LSm
X 

- light scattering area ratio after 2 weeks of storage at the temperature X 
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1 Introduction 

Protein therapeutics are used against multiple severe diseases.
1,2

 Their success lies in the specificity for 

therapeutic targets, which is rooted in the diversity and the complexity of protein structures. Promising 

candidates have to exhibit desirable biophysical properties that allow for sufficient stability during 

manufacturing, shipping, storage, handling and administration. Even immunoglobulins (IgGs) of the same 

subclass that share common structural features often behave quite differently in solution.
3
 An important 

aspect of initial developability assessments of therapeutic proteins is the evaluation of data obtained by 

stressing the candidates under several stressing conditions, i.e. accelerated stability studies.
4,5

 Aim of 

these studies is to gain an understanding of the modes of instability that could impact the drug product 

during its lifecycle, which is often difficult to predict. Afterwards this information is used to design 

formulation strategies that mitigate protein instability. Amongst these instabilities protein drugs 

aggregation presents one of the most common and troubling challenges.
6
 It has been shown that 

aggregates have reduced activity and greater immunogenicity.
7,8

 Arrhenius kinetics could be applied to 

extrapolate approximate aggregation rates at intended storage condition from data obtained at higher 

temperature in different formulations. Nevertheless, with increasing temperature, other reactions could 

become rate-determining that cannot be described by Arrhenius kinetics. Ultimately, only real-time 

stability testing permits the establishment of recommended storage conditions and shelf life. On the other 

hand, for developability assessment and formulation development and selection, higher temperature 

studies are indispensable. 

Various tools for the prediction of aggregation rates have been reported, some of which have been 

validated with therapeutically relevant proteins.
9–14

 Notably, the spatial aggregation potency tool was 

validated using long term stability data, and was found beneficial to rank therapeutically relevant 

monoclonal antibodies (mAbs).
15,16

 These tools are usually related to a protein class, e.g. mAbs, and 

require the protein structure. Additionally, they render an intrinsic aggregation propensity, even though 

aggregation depends on both the protein and its surrounding environment, the formulation. In this study 

we applied machine learning to predict the real-time stability, in our case the six months stability at 4°C, 

25°C and 40°C, from accelerated stability studies. All the proteins presented in this work have recently 

been extensively characterized and their primary sequence is publicly available.
17

 We focused our 
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investigation on the prediction of monomer retention in size exclusion chromatography (SEC). We 

coupled SEC with multi angle laser light scattering (MALS) which is useful for studying and characterizing 

aggregation due to its high sensitivity towards high molecular weight species.
18,19

 SEC-MALS results 

provide an absolute means for qualitative and quantitative analysis of protein aggregation kinetics.
20–23

 

For the prediction of long term stability from accelerated stability studies we propose the use of artificial 

neural networks (ANNs). ANNs have been applied in the pharmaceutical research for many different 

purposes.
24–33

 However, a significant limitation of ANNs is their interpretability. Algorithms, such as 

TREPANs, have been used to extract a comprehensible concept description from a trained network to 

solve classification problems.
34

 For certain regression problems another approach is to use surrogate 

models.
35

 Therefore, we investigated several machine learning algorithms (e.g. Support vector machines) 

as surrogate models to understand and build trust in the ANNs decision making process. Amongst the 

one investigated we selected “white box” algorithms (i.e. human friendly), namely linear regression and a 

decision trees, as no significant benefit was observed in applying more complex models. Fourteen 

therapeutically relevant proteins were investigated in twenty-four pharmaceutically relevant formulation 

conditions. Our hypothesis was that the output of suitably designed short term accelerated stability 

assays could be used to generate formulation dependent protein stability “finger-prints”. These features 

are used as input for the ANNs to predict the real-time stability of proteins. Furthermore, we developed 

multiple algorithms which included other additional high-throughput biophysical parameter typically used 

to investigate protein stability, e.g. the temperature of unfolding (Tm). We investigate ANN architectures 

with the highest prediction power and the least amount of input features, i.e. experimental effort to train 

the network. This provides an empiric means to highlight the most important parameters in the prediction 

of the monomer retention after six months of stress from the data collected after only two weeks of stress. 

 

2 Material and methods 

2.1 Sample preparation 

 Five antibodies IgG1s (PPI-02, PPI-03, PPI-04, PPI-10, PPI-13), one bispecific antibody (PPI-08), one 

IgG2 (named PPI-17), and one HSA-fusion protein (named PPI-18) were provided by AstraZeneca (UK). 
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Interferon alpha-2a (named PPI30) was provided from Roche (Switzerland). Two lipases (PPI-45 and 

PPI-46) were provided by Novozymes (Denmark). Recombinant human transferring and human serum 

albumin (respectively PPI-44 and PPI-49) were provided by Albumedix (UK). A summary of the protein 

properties is listed in Table 1. The proteins were dialyzed overnight using Slide-A-Lyzer™ cassettes 

(Thermo Fisher Scientific, USA) with suitable membrane cut-off against excess of 10 mM of buffer at 

several pHs 5.0, 5.5, 6.5, 7.5. The excipients (e.g. Sucrose) stock solutions were prepared in the 

respective buffers. The 24 investigated formulations are listed in Table 1. Protein concentration was 

measured on a Nanodrop 2000 (Thermo Fisher Scientific, USA) using the protein extinction coefficient. 

The extinction coefficient was double-checked experimentally by means of a refractive index detector 

(Optilab T-ReX, Wyatt technology, USA) through the software ASTRA V7.2 (Wyatt technology, USA). All 

conditions were prepared in 1.5 mL non-coated PP Eppendorf tubes. Finally, the formulations were sterile 

filtered with 0.22 μm cellulose acetate filters from VWR International (Germany). The purity of the proteins 

before formulation was studied by SEC and cEIF.
17

 All the proteins presented in this work have recently 

been extensively characterized and their primary sequence is publicly available.
17

  

 

2.2 Size exclusion chromatography combined with multi angle light scattering (SEC–

MALS) 

SEC-MALS was conducted on Agilent 1260 Bio-Inert system (Agilent Technologies, Germany) with a 

variable wavelength Ultraviolet (UV) detector operated at 280 nm (Thermo Fischer Scientific, USA), 

followed by a TREOS II detector (Wyatt Technology, USA) and an Optilab T-rEX (Wyatt Technology, 

USA). The temperature controlled autosampler was kept at 4 °C. Separation was performed with a 

Superdex 200 increased 10/30 GL column. Data collection and processing were performed using the 

ASTRA® software V7.2 (Wyatt Technology, USA). The aqueous mobile phase consisted of 38 mM 

NaH2PO4, 12 mM Na2HPO4, 150 mM NaCl and 200 ppm NaN3 at pH 7.4 dissolved in HPLC-grade 

water. The mobile phase was filtered through Durapore VVPP 0.1 µm membrane filters (Millipore, USA). 

The samples were centrifuged and were injected at a volume of 25 µl.  
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2.3 Stress assays 

0.2 mL of each protein solution was aliquoted at a concentration of 1 mg/mL and sterile filtered in 0.5 mL 

sterile non-coated PP Eppendorf tubes. The samples were incubated at 4 °C, 25 °C, and 40°C for 2 

weeks (i.e. accelerated assay) and 6 months (i.e. real time-storage). The samples were routinely 

analyzed, i.e. after 1 and 3 months of stress. After storage, the samples were left at 4 °C and measured 

within two weeks. Due to the high number of samples (i.e. 1008 per time point) only one replicate was 

collected by SEC-MALS. Chromatograms were routinely controlled and additional injections were 

conducted when deemed necessary.  

 

2.4 Dynamic light scattering (DLS) 

DynaPro® III plate reader (Wyatt Technology, USA) was used for the dynamic light scattering 

experiments. The measurements were performed in 1536 LoBase Assay Plates (Aurora Microplates, 

USA) in triplicates using 4 μL of sample sealed with a few μL of silicone oil. The plate was centrifuged for 

1 min at 2000 rpm before placed in the plate reader. Data was collected and processed with the 

DYNAMICS® software V7.8 (Wyatt Technology, USA). The coefficient of self-diffusion, D, and the 

polydispersity index (PDI) were calculated from the obtained autocorrelation functions using cumulant 

analysis. The Stokes-Einstein equation was used to calculate Rh from D. The aggregation onset 

temperature (Tagg) was determined using protein concentration of 1 mg/mL. A temperature ramp of 0.1 

°C/min was applied from 25 °C to 80 °C. One measurement included 3 acquisitions of 3 s. Tagg was 

calculated by the DYNAMICS® software V7.8 from the increase in Rh during heating. 

 

2.5 Differential scanning fluorimetry with intrinsic protein fluorescence detection 

(nanoDSF) 

Samples containing 1 mg/mL protein in the respective formulations were filled in standard nanoDSF 

capillaries (NanoTemper Technologies, Germany). Measurements were performed using the Prometheus 
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NT.48 (NanoTemper Technologies, Germany) system that measures the intrinsic protein fluorescence 

intensity at 330 nm and 350 nm after excitation at 280 nm. A temperature ramp of 1°C/min was applied 

from 20 to 95°C. The fluorescence intensity ratio (F350/F330) was plotted against the temperature, the 

inflection points of the unfolding transitions were determined from the first derivative of each 

measurement using the PR Control software V1.12 (NanoTemper Technologies, Germany).  

 

2.6 Isothermal chemical denaturation (ICD)  

ICD studies were performed on Unchained Labs HUNK system (Unchained Labs, USA). The excitation 

wavelength was 285 nm and emission intensities were recorded from 300 nm to 450 nm. The incubation 

time was varied depending on the protein studied. 48-point linear gradient was automatically generated 

for each condition. Guanidine hydrochloride (GnHCl) was used as denaturants. 6 M GnHCl stock 

solutions were prepared in each condition. Protein stock solutions were prepared at 1 mg/ml and diluted 

12.5 times to the final condition. The data analysis was performed using the software Formulator V3.02 

(Unchained Labs, USA). For the native protein, the fluorescence emission maximum λmax (native) was 

selected from the spectrum of the sample containing no denaturant. For the unfolded state, the 

fluorescence emission maximum λmax (den) was chosen from the fluorescence emission spectrum of the 

sample containing 5.5 M GnHCl. Cm1 and m1 were calculated for the first transitions.
36,37

 Different state 

models were applied for different proteins. 

 

2.7 Learning algorithms 

All the algorithms presented in this work have been coded in MATLAB R2018a (MathWorks, USA)
38

, 

unless differently stated, and the trained models may be available upon request. The functions used in 

the algorithms are part of the Statistic and Machine Learning Toolbox
TM

 and of the Deep Learning 

Toolbox
TM

. Data preprocessing involved the scaling of the features before training.  
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Table 1. List of the proteins and formulations investigated.  

Protein 
Protein ID Type Batch MW (kDa) pI Notes 

PPI-01 IgG1λ SP11-255 144.8 7.96 - 

PPI-02 Human IgG1κ SP12-394  148.2 8.53 - 

PPI-03 Human IgG1κ SP12-423 144.8 8.44 Wild-type IgG 

PPI-04 IgG1λ YTE SP08-128/e 146.2 8.99 - 

PPI-08 IgG1κ + scFv 72635-132 204.4 8.9-9.2 Bispecific 

PPI-10 Human IgG1 SP07-212/1 144.2 8.95 - 

PPI-11 IgG4λ-P YTE SP09-384 146.3 9 - 

PPI-13 Human IgG1κ TM SP10-016 148.9 9.04 BFI, no VRF 

PPI-17 IgG2κ 72635-056 145.1 7.78 - 

PPI-18 HSA-NEP SP11-285 146.7 5.8 Conjugate 

PPI-30 Ifnα-2A (ROC) N/A 19.2 5.97 Interferon alpha-2A 

PPI-44 Transferrin UK08E0103A 74.9 6.58 - 

PPI-45 Lipozyme RM U8BJ6 29.5 4.7 pdb code: 5TGL 

PPI-46 Lipolase U8D3D 29 4.8 pdb code: 1GT6 

PPI-49 HAS RF20-001 66.4 5.67   

Formulation 

Rank** Buffer pH 
NaCl 
(mM) Excipient type Excipient concentration (mM) 

5 His 5 / 5.5* 0 Proline 280 
10 His 5 / 5.5* 0 Arg.HCl 140 
9 His 5 / 5.5* 0 Sucrose 280 
7 His 5 / 5.5* 0 - - 

11 His 5 / 5.5* 140 Proline 280 
9 His 5 / 5.5* 140 Arg.HCl 140 
9 His 5 / 5.5* 140 Sucrose 280 
8 His 5 / 5.5* 140 - - 
6 Acetate 5 / 5.5* 0 Proline 280 

10 Acetate 5 / 5.5* 0 Arg.HCl 140 
8 Acetate 5 / 5.5* 0 Sucrose 280 
5 Acetate 5 / 5.5* 0 - - 
6 His 6.5 / 7.5* 0 Proline 280 
6 His 6.5 / 7.5* 0 Arg.HCl 140 
8 His 6.5 / 7.5* 0 Sucrose 280 
5 His 6.5 / 7.5* 0 - - 
5 His 6.5 / 7.5* 140 Proline 280 
6 His 6.5 / 7.5* 140 Arg.HCl 140 
5 His 6.5 / 7.5* 140 Sucrose 280 
7 His 6.5 / 7.5* 140 - - 
9 Phosphate 6.5 / 7.5* 0 Proline 280 

10 Phosphate 6.5 / 7.5* 0 Arg.HCl 140 
14 Phosphate 6.5 / 7.5* 0 Sucrose 280 
10 Phosphate 6.5 / 7.5* 0 - - 

*PPI-30, PPI-45, PPI-46; **see section 3.1 
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This step was necessary to investigate features with different range of values (e.g. Tm and LSm). 5 fold 

cross validation was preferred for the decision trees and linear regressions algorithms, while for ANNs 

different approaches were applied (see next section). ANNs and linear regression were applied to fit the 

data while the decision tree algorithms were applied to build classifiers. The analyzed data used in this 

study will be available via a specially-designed publicly-available database for protein formulation 

(https://pippi-data.kemi.dtu.dk/). 

 

2.7.1 Application of machine learning to predict long term storage stability 

Our target is to predict the monomer retention at the temperature X (an
X
) after 6 months of incubation, 

which is calculated from: 

Eq. 1                                                                 
  (

    
 

    
 )     

Where Umon
X
 is the monomer UV area after storage at the temperature X, Utot

X
 is the UV area of all the 

peaks after storage at the temperature X, and RX is the calculated recovered monomer mass ratio at the 

temperature X. Rx is calculated as the total peaks mass divided by the total injected mass. Therefore, an
X
  

is “normalized” by taking into account the mass loss due to soluble and insoluble aggregates (which are 

filtered through the column or before injection). Protein column recovery was tested right before 

formulation to confirm complete recovery.  

The primary features selected to predict an
X
 were the reduced monomer retention mn

X
, which is calculated 

similarly to an
X
 in Eq.1 using data after two weeks of storage, and the light scattering area ratio at the 

temperature X after two weeks of stress, calculated from: 

Eq.2                                                                
  

     
 

     
  

Where LStot
X 

is the sum of the light scattering peaks area at the temperature X, and LSmon
X  

is the light 

scattering monomer area at the temperature X. Furthermore, in order to tell the “prediction power” of 

https://pippi-data.kemi.dtu.dk/
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typical high-throughput biophysical assays we developed a series of models which took additional 

features into account, namely: the melting temperature of the first transition (Tm), the onset temperature of 

unfolding (Tm, on), the onset temperature of aggregation (Tagg, on), the denaturant concentrations for 50% of 

the first chemical unfolding process (Cm1), the slope of the first chemical unfolding process (m1). Then 

features were optimized as appropriate for each algorithm type to individuate the minimum amount 

necessary for an accurate prediction. Multiple models were developed when necessary including different 

features. 

 

2.7.2 Artificial neural networks 

The architecture of our feed-forward back-propagation ANNs is shown in Fig. 1. This presents one hidden 

layer, which is usually sufficient to provide adequate predictions even when continuous variables are 

adopted as units in the output layer.
24,39

  

 

Figure 1. Neural network architectures. The input layer is fully connected to the neurons in the hidden 

layer by the weights, w, which multiplies the corresponding signal. All the weighted signals are summed 

by a summing function and an external bias, b, is applied. Finally, the signal is connected to a sigmoidal 

activation function, which limits the amplitude of the signal to the output layer. The neurons used are 2, 4 

and 6 respectively for models using the inputs 1-4, 1-8 and 1-11. Similarly, the output layer differs based 

on the prediction output. 

Output

Input

Hidden Layer

W

b

+

Output Layer

W

b

+

6/4/2 1/2/3

A) an
4

B) an
25

C) an
40
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40

3) LSm
25

4) LSm
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5) mn
4
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4

7) Tm1

8) Tagg

9) Tm,on

10) Cm1

11) m1
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The initial number of neurons to optimize was selected as previously described.
24

 Then, due to the low 

computational time required to train our shallow ANNs, usually less than a minute, the optimal number of 

neurons was optimized based on grind search, which was evaluated on the test set. Similarly, 

combinations of input and output parameters were optimized by investigating all the possible 

combinations. We selected a Bayesian regularization backpropagation according to Levenberg-Marquardt 

optimization
40 to minimize a linear combination of squared errors and weights so that at the end of training 

the resulting network has good generalization qualities.
41,42

 

This algorithm typically requires more time (yet within a minute of computation in our case), but can result 

in good generalization for difficult, small or noisy datasets. As the training stops according to adaptive 

weight minimization, no validation was necessary and we randomly divided the dataset for these ANNs 

into training and test sets (respectively 70% and 30%). The features and outputs of each ANN validated 

in such way are enlisted in Table 2. Similarly to the features selection a grind search of output 

combinations has been explored, which resulted in multi-output architecture for the prediction of both an
25

 

and an
40

. Other ANNs models were developed by a different cross-validation method, i.e. “leave-one-

protein-out”. These experiments were executed to test the robustness of our approach. In this case the 

data of only one protein at the time was used to test the models, which in turn were trained with the 

remaining data (Table 3).  

 

2.7.3 Linear regression 

We assessed the full model using all the available features, and then reduced the model to only the terms 

that were statistically deemed relevant. A curvature response was allowed by assessing the quadratic 

term considering also two-way interactions. The reduced model was obtained using a backward stepwise 

elimination. The F-statistic approach was used to perform the effect test considering a value of 0.05 or 

less as statistically significant. This yielded the SEC-MALS parameters, namely mn
25

, mn
40

, LSm
25

,LSm
40

, 

as the statistically relevant features to be used. These calculations were performed by the statistical 
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software JMP® v 14.0 (SAS Institute Inc., Cary, USA). As no significant interaction was observed we 

trained the linear model assuming no interactions of the selected features. 

Table 2. List of the features and outputs for models A1-3, B1-3, C1-3, D1-3 and E1-3. “Y” stands for 

“yes”, i.e. included as feature, while “N” stands for “no”, i.e. not included as feature. Notice that models D 

and E include only data from mAbs and non-mAbs respectively, while the other models include the whole 

dataset. 

ID Outp. R 
(Training) 

R 
(Test) 

RMSE 
 (Test) 

mn
25

 mn
40

 LSm
25

 LSm
40

 mn
4
 LSm

4
 Tm Tagg,on Tm,on Cm1 m1 

A1 an
4
 0.94 0.91 5.8∙10

-3
 Y Y Y Y N N N N N N N 

A2 
an

4
 

an
25

 
0.93 0.84 3.8∙10

-3
 Y Y Y Y N N N N N N N 

A3 
an

4
 

an
25

 
an

40
 

0.91 0.77 1.7∙10
-2
 Y Y Y Y N N N N N N N 

B1 an
4
 0.97 0.95 1.8∙10

-3
 Y Y Y Y Y Y Y Y N N N 

B2 
an

4
 

an
25

 
0.96 0.89 5.0∙10

-3
 Y Y Y Y Y Y Y Y N N N 

B3 
an

4
 

an
25

 
an

40
 

0.96 0.84 6.0∙10
-2
 Y Y Y Y Y Y Y Y N N N 

C1 an
4
 0.98 0.94 0.1∙10

-3
 Y Y Y Y Y Y Y Y Y Y Y 

C2 
an

4
 

an
25

 
0.95 0.87 1.1∙10

-3
 Y Y Y Y Y Y Y Y Y Y Y 

C3 
an

4
 

an
25

 
an

40
 

0.96 0.84 1.3∙10
-2
 Y Y Y Y Y Y Y Y Y Y Y 

D1 an
4
 0.95 0.91 2.0∙10

-3
 Y Y Y Y Y Y Y Y N N N 

D2 
an

4
 

an
25

 
0.94 0.83 6.2∙10

-3
 Y Y Y Y Y Y Y Y N N N 

D3 
an

4
 

an
25

 
an

40
 

0.94 0.81 1.5∙10
-2
 Y Y Y Y Y Y Y Y N N N 

E1 an
4
 0.99 0.93 1.1∙10

-3
 Y Y Y Y Y Y Y Y N N N 

E2 
an

4
 

an
25

 
0.98 0.95 3.3∙10

-3
 Y Y Y Y Y Y Y Y N N N 

E3 
an

4
 

an
25

 
an

40
 

0.99 0.93 1.7∙10
-2
 Y Y Y Y Y Y Y Y N N N 

 

2.7.4 Decision tree 

Our top-down induction decision tree used the Gini's diversity index as splitting criterion.
43

 The maximum 

number of splits was initially set to 10 and then gradually reduced until a balance between model 

performance and generality was achieved. This search was based on the average R
2
 and RMSE values 

from the 5-fold cross validation by reducing the split until a significant drop of the prediction power was 

observed. Further, the true and false positive rates were investigated by means of confusion matrixes and 

receiver operator characteristic (ROC) curves. Similarly to the linear regression models, the optimized 
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selection of splits included only rules based on the SEC-MALS parameters, namely mn
25

, mn
40

, 

LSm
25

,LSm
40 

. Samples were classified as high stability (H), medium stability (M) and low stability (L) 

respectively when they presented an
X
 >0.8, 0.8≤ an

X 
≤0.5 and an

X
<0.5. This classification was arbitrarily 

selected, as previously described,
17

 in order to investigate the prediction power of the decision tree 

algorithm and to easily visualize the data as described in section 2.1.  

 

3 Results 

3.1 The target: protein monomer retention after long term storage 

Although accelerated stability testing is an attractive practice it is beset by many pitfalls that arise from 

complex deterioration profiles.
4
 To develop an accurate empirical model based on data acquirable in a 

timely manner we investigated samples by SEC-MALS stored at 4°C, 25°C and 40°C for 2 and 24 weeks. 

The samples were analyzed also after 4 and 12 weeks as a control. We used the SEC-MALS data after 

two weeks of storage as feature to predict the monomer retention after six months of storage. The light 

scattering detector can often identify high molecular weight species which are not clearly detectable by 

UV. The Mw of those species cannot be calculated as the concentration of the sample is unknown.
44

 

Therefore, in most cases these small populations of species are disregarded during the calculations. 

Nevertheless, these small populations of sample after two weeks of stress can be well correlated with the 

long term monomer retention (Fig. S1). However, the relationship between the formation of small 

population of high molecular weight species detected by MALS and the monomer retention is not linear, it 

can involve multiple peaks and it is formulation and protein dependent. Our hypothesis was that the light 

scattering signal could be used to refine our models, especially at higher temperatures. Moreover, we 

processed the monomer column retention to take into account also the formation of insoluble particles, 

which do not elute in SEC (see material and methods). 

A total of 336 samples were investigated. The samples included 14 protein formulated in 24 different 

conditions (Table 1) stored at 4°C, 25°C and 40°C, for a total of 1008 data points at each time point. As a 

brief overview, we clustered the result by protein (Fig. 2) and by formulation (Fig. 3).  



CHAPTER V: Application of machine learning to predict monomer retention of therapeutic proteins after 
long term storage 

 

193 
 

Most proteins show a rather high stability at 4°C. This is understandable as the protein drug candidates 

are engineered to be sufficiently stable. Overall PPI-03, PPI-13, PPI-2 and PPI-49 are the most stable, 

while PPI-18 and PPI-45 show the least thermal stability. We noticed formation of big insoluble 

aggregates in some cases. The formulation cluster (Fig. 3) indicates a rather consistent distribution of 

low, medium and high stability samples for each formulation. After 6 month storage at 4°C the phosphate 

buffered formulations comprised the lowest number of highly stabile samples and the highest number of 

lowly stable samples. The formulations could be ranked by the sum of sample with low stability at the 

three temperatures (Table 1). A slight linear correlation was observed between the monomer retention 

after 6 months at 4 and 40°C (R=0.23) and at 4 and 25 °C (R=0.48). 

 

Figure 2. The samples were classified as high stability (Green-High), medium stability (Yellow-medium) 

and low stability (red-low) respectively when they presented an
X
 >0.8, 0.8≤ an

X 
≤0.5 and an

X
<0.5. The total 

number of resulting formulations is clustered by protein. 
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Figure 3. The samples were classified as high stability (Green-High), medium stability (Yellow-medium) 

and low stability (red-low) respectively when they presented an
X
 >0.8, 0.8≤ an

X 
≤0.5 and an

X
<0.5. The 

number of proteins is clustered by formulation. 

 

3.2 Artificial neural networks 

ANNs were applied to predict an
4
, an

25
 and an

40
. We developed a total of 11 models validated by random 

holdout to train and test ANNs for the whole dataset (Fig. 4, Table 2). In Fig. 1 the models architecture is 

shown, including the list of features, amount of neurons in the hidden layer and the output layer. Multi-

outputs algorithms were selected to predict an
25 

and an
40

, e.g. model A3. This approach was preferred to a 

single output, e.g. an
40

, as the fitting and prediction of these parameters was significantly improved with 

the former approach. This is possibly due to the increased amount of training data to predict the more 

complex and less linear behavior at higher temperature. In fact, the number of data point available 

increased for each output included in the prediction, i.e. 336 runs for an
4 

, 672 for an
4
 and an

25
,1008 for  

an
4
, an

25
 and an

40
.  Models A1, A2 and A3 (Fig. 4, Table 2) used only SEC-MALS data to predict an

4
, an

4
-

an
25

, or an
4
-an

25
-an

40
. Similarly, models B1, B2, B3 (Fig. 4, Table 2) utilized the same features as models 

A1, A2 and A3 plus Tagg,on, Tm1, mn
4
 and LSm

4
. Finally, models C1, C2, C3 (Fig. 4, Table 2) use the same 

features as B1, B2 and B3 plus Tm,on, Cm1, m1. We observed a good prediction power for A1, B1 and C1 
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(i.e. to predict an
4
) with a R values between 0.91 to 0.94, and low RMSEs (Fig. 4, Table 2). Thus SEC-

MALS data after 2 weeks of stress in combination with a simple network are sufficient to predict 6 month 

monomer retention at intended storage temperature. In addition ANNs showed a good accuracy in 

predicting monomer retention after storage at elevated temperature (an
25

 and an
40

). This in turn allows to 

better comprehend the sample stability especially for highly stable samples (e.g. PPI-3 and PPI-46). This 

is possibly due to the rather good accuracy of the models A2-3, B2-3 and C2-3 (Fig. 4, Table 2). We 

noticed that including more biophysical parameters (e.g. C3) yielded a better linear correlation between 

models output and actual data. This is due to a more accurate prediction of samples with low stability. 

The models B1, B2 and B3 offer a good high-throughput approach to predict monomer retention after 

long term storage at refrigerated and elevated temperature as all the data necessary for the models can 

be collected in a timely manner and with low material consumption. Differently, C1, C2 and C3 

necessitate isothermal chemical denaturation (ICD) data which requires more time and material.
45

 

Therefore, we selected the models B1, B2 and B3 to further investigate the robustness of our approach 

for the different classes of proteins investigated. We divided our dataset into mAbs (models D1, D2 and 

D3, Fig. 5, Table 2) and non-mAb proteins (models E1, E2 and E3, Fig. 5, Table 2). Good prediction was 

achieved for both datasets (Fig. 5, Table 2). Furthermore we noticed that D1 presented the lowest RMSE 

compared to the other models. This is probably due to the high stability of the investigated mAbs. 

Overall, ANNs offer higher of accuracy compared to other approaches (e.g. linear regression). In fact, 

ANNs are known to have robust performance in dealing with noisy or incomplete datasets and the ability 

to generalize highly non-linear problem with a high fault tolerance.
46

 Further, we investigated the 

robustness of the approach when dealing with unknown proteins as described in section 3.3.  
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Figure 4. Neural network models to predict long term stability of therapeutic protein at different 

storage temperature. he models A1-3, B1-3 and C1-3 represent the linear relationship between the 

targets and the model outputs. The features used for the model are either 4, 8 or 11 respectively for the 

A, B and C model. The list of the features is shown in Fig. 1. In brackets information on each model is 

provided, e.g. “(F11, 4-25°C)” stands for 11 inputs to predict the monomer retention after 6 month of 

storage at 4 and 25°C. 
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Fig. 5 Neural network models to predict long term stability of mAb and non-mAb. The figure is 

organized similarly to Fig. 4. D-models are relative to mAbs only, while E-models are relative to non-mAbs 

molecules. 

 

3.3 Cross-validation: leave-one-protein-out 

Although formulation ranking is of paramount importance in product development, we expect our 

approach to be of use especially to predict the monomer retention after long term storage of new proteins 

from short term data (i.e. proteins inexperienced by the models during the training phase). Therefore new 

models were trained and cross-validated leaving the data of one protein out for each model. The models 

investigated presented the same architecture as the previous models. The results for the computed 378 

models are summarized in Table 3. We observed a drop of R for the testing of PPI-13 and 46 after 6 

months storage at 4°C as both proteins vary only minimally in monomer retention between the 

formulations and exhibit a very high stability. In turn the models for testing PPI-13 and 46 predict high 

D1 (F8, 4°C) D2 (F8, 4-25°C) D3 (F8, 4-25-40°C) 

E1 (F8, 4°C) E2 (F8, 4-25°C) E3 (F8, 4-25-40°C) 
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RMSE=2.0∙10-5
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stability and cluster all the data points in the right region, yielding low Rs and low RMSE (Table 3). This 

means that the models are accurate, and cluster all the data points properly (i.e. all the values predicted 

are clustered around the value of 1, which means no difference in formulation is observed). At higher 

storage temperature the data points are more distributed and the R values of these two sets increase. 

This case demonstrates that access to the prediction at different temperatures can be beneficial.  

Most non-mAb proteins presented lower R values and usually higher RMSE values. In all cases the 

formulations are properly ranked, but the fitting line presented a slightly different slope. The prediction of 

monomer retention decreased in accuracy at high temperature (with the exception for the model tested by 

PPI-13 and PPI-46 as aforementioned). The prediction of PPI-30 stability at 40°C presented negative R 

for models of type A and B. However, the addition of ICD features in C models allows a proper positive 

correlation. Differently, the prediction of PPI-49 at high temperature is impaired for model type C. 

In Fig. 6 the averaged R values and standard deviations calculated from Table 3 for the train and 

validation sets are showed. The standard deviations are significantly reduced if only mAbs are included. 

As expected, the models predicting an
4
 present the highest prediction accuracy. A significant drop in 

prediction power was observed for multi-output models. Further, we observed that the implementation of 

more input parameter to predict an
4 

has only a limited effect on the prediction accuracy, while slightly 

increasing the fitting capabilities of the network. On the other hand, architecture B and C presented higher 

R values and lower standard deviation for the multi-output models.  

 

3.4 Linear regression and decision tree classifier 

ANNs have a series of known limitations, namely overfitting, chance effect, overtraining and difficult 

interpretability.
47–50

 The interpretation of ANNs is still an open field of research and ANNs are often 

named as black-box models. One approach for the interpretation of ANNs is to develop human-friendly 

surrogate models. In order to provide such surrogate model we developed linear regression and decision 

tree models. 
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Table 3. Leave-one-protein-out cross-validation (Part 1 of 2). Summary of the results for the 378 

models generated by the leave-one-protein-out cross-testing procedure. The features used for the model 

are either 4, 8 or 11 respectively for the A, B and C model, similarly to models showed in Fig. 5. The list of 

the features is shown in Fig. 7. Information for each model is summarized for each model type, e.g. “(F11, 

4-25°C)” stands for 11  inputs to predict  the monomer retention after 6 month of storage at 4 and 25°C. 

Models C F11 4°C F11 4-25°C F11 4-25-40°C 

Protein 
R 

(Train) 
R 

(Test) 
RMSE 
(Test) 

R 
(Train) 

R 
(Test) 

RMSE 
(Test) 

R 
(Train) 

R 
(Test) 

RMSE 
(Test) 

PPI-01 0.98 0.95 0.024 0.93 0.84 0.031 0.94 0.85 0.036 

PPI-02 0.98 0.95 0.0358 0.94 0.81 0.023 0.94 0.84 0.021 

PPI-03 0.97 0.96 0.008 0.93 0.8 0.001 0.93 0.89 0.041 

PPI-04 0.98 0.91 0.077 0.94 0.44 0.1824 0.94 0.68 0.1936 

PPI-08 0.98 0.86 0.0177 0.94 0.6 0.0296 0.95 0.76 0.056 

PPI-10 0.98 0.9 0.006 0.93 0.7 0.042 0.94 0.75 0.094 

PPI-13 0.98 0.46 0.009 0.94 0.44 0.033 0.95 0.77 0.0291 

PPI-17 0.97 0.55 0.0246 0.93 0.41 0.02 0.93 0.73 0.097 

PPI-18 0.98 0.96 0.0185 0.94 0.83 0.0185 0.94 0.78 0.0185 

PPI-30 0.98 0.73 0.1452 0.94 0.72 0.16 0.94 -0.6 0.3514 

PPI-44 0.96 0.7 0.047 0.93 0.57 0.065 0.93 0.44 0.154 

PPI-45 0.97 0.56 0.001 0.92 0.5 0.029 0.95 0.87 0.06 

PPI-46 0.98 0.17 0.003 0.93 0.21 0.0354 0.94 0.71 0.193 

PPI-49 0.98 0.93 0.049 0.94 0.49 0.031 0.94 0.53 0.0408 

Models B F8 4°C F8 4-25°C F8 4-25-40°C 

Protein 
R 

(Train) 
R 

(Test) 
RMSE 
(Test) 

R 
(Train) 

R 
(Test) 

RMSE 
(Test) 

R 
(Train) 

R 
(Test) 

RMSE 
(Test) 

PPI-01 0.96 0.93 0.036 0.93 0.83 0.025 0.89 0.84 0.053 

PPI-02 0.96 0.93 0.017 0.93 0.84 0.018 0.89 0.85 0.021 

PPI-03 0.95 0.94 0.004 0.92 0.83 0.009 0.89 0.88 0.022 

PPI-04 0.95 0.88 0.026 0.93 0.6 0.118 0.9 0.68 0.195 

PPI-08 0.96 0.86 0.005 0.93 0.57 0.0465 0.87 0.77 0.059 

PPI-10 0.95 0.93 0.009 0.94 0.68 0.048 0.9 0.7 0.109 

PPI-13 0.96 0.14 0.0348 0.93 0.56 0.019 0.89 0.77 0.0146 

PPI-17 0.96 0.61 0.0349 0.93 0.36 0.0239 0.89 0.78 0.071 

PPI-18 0.96 0.84 0.0259 0.92 0.89 0.0259 0.91 0.9 0.0259 

PPI-30 0.95 0.53 0.1956 0.93 0.64 0.187 0.87 -0.77 0.4164 

PPI-44 0.96 0.61 0.051 0.9 0.53 0.073 0.89 0.55 0.176 

PPI-45 0.93 0.62 0.066 0.91 0.54 0.023 0.86 0.83 0.075 

PPI-46 0.97 0.46 0.0194 0.93 0.2 0.0213 0.9 0.75 0.171 

PPI-49 0.96 0.94 0.046 0.93 0.31 0.0432 0.9 0.35 0.059 
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Table 3. Leave-one-protein-out cross-validation (Part 2 of 2). 

Models A F4 4°C F4 4-25°C F4 4-25-40°C 

Protein 
R 

(Train) 
R 

(Test) 
RMSE 
(Test) 

R 
(Train) 

R 
(Test) 

RMSE 
(Test) 

R 
(Train) 

R 
(Test) 

RMSE 
(Test) 

PPI-01 0.94 0.91 0.038 0.85 0.81 0.026 0.86 0.86 0.04 

PPI-02 0.93 0.92 0.021 0.86 0.67 0.032 0.81 0.8 0.012 

PPI-03 0.93 0.92 0.0143 0.84 0.83 0.024 0.82 0.83 0.104 

PPI-04 0.92 0.91 0.0294 0.87 0.3 0.194 0.83 0.77 0.599 

PPI-08 0.92 0.83 0.0121 0.85 0.69 0.01 0.78 0.68 0.054 

PPI-10 0.94 0.94 0.005 0.87 0.66 0.046 0.81 0.79 0.081 

PPI-13 0.92 0.46 0.004 0.84 0.4 0.012 0.85 0.84 0.027 

PPI-17 0.94 0.35 0.023 0.86 0.2 0.034 0.79 0.36 0.04 

PPI-18 0.91 0.84 0.01 0.85 0.72 0.01 0.77 0.55 0.01 

PPI-30 0.93 0.83 0.0334 0.87 0.63 0.0562 0.77 0.87 0.182 

PPI-44 0.91 0.6 0.052 0.79 0.31 0.077 0.76 0.27 0.145 

PPI-45 0.88 0.76 0.0518 0.86 0.46 0.041 0.77 0.83 0.113 

PPI-46 0.92 0 0.005 0.85 0 0.033 0.78 0.68 0.134 

PPI-49 0.93 0.9 0.0371 0.86 0.29 0.034 0.79 0.26 0.116 

 

Linear regression (Fig.7) enabled to predict an
4
 and an

25
 with R

2
 values of 0.79 and 0.62 respectively, by 

means of the following equations: 

Eq. 3   an
4
=0.1149+ 0.8856∙mn

25
+ 0.0569∙LSm

25
-0.0487∙mn

40
 

Eq. 4   an
25

=0.1091+ 0.8723∙mn
25

+ 0.0658∙LSm
40

-0.0817∙mn
40 

The features in Eq. 3 and 4 are listed in order of relevance evaluated by F-statistic approach. The F-

statistic approach applied for the linear regression to select statistically significant features confirmed that 

other investigated parameters (e.g. Tm) were found to be statistically insignificant to linearly fit an
X
. 

Differently, ANNs fitting capability was slightly improved by including the biophysical parameter especially 

to predict the monomer retention at 40°C. mn
25 

was confirmed as the most important factor to predict an
4 

and an
25

. No fit was achieved for samples stored at 40°C. LSm
25

 and LSm
40

 have been found statistically 

significant respectively to predict an
4 

and an
25

. The root means square error (RMSE) averaged over the 

cross-validation was 3.3e-2 for an
4 

and 6.5e-2 for an
25

, which are an order of degree higher than the 

RMSE yielded by ANNs.  
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Fig. 6 Leave-one-protein-out cross-validation. The mean R values for the train and validation set are 

depicted respectively in black and grey. The error bars represent the standard deviation. The values were 

averaged from the data listed in Table 3. PPI-13 and PPI-46 were not included in the calculation as the R 

values are not representative, as mentioned in the text, of the prediction accuracy. Similarly, PPI-30 

resulted in negative values and was considered as an outliner and not included. 

 

Figure 7. Linear regression prediction at 4°C (A) and 4°-25°C (B). 

R2=0.79
RMSE=3.3∙10-2

R2=0.62
RMSE=6.5∙10-2
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We also included in this work the evaluation of decision tree models. In Fig. 8 the calculated rules of the 

selected model are shown. The averaged cross-validation accuracy is of 90.5% and 80.7% to predict the 

classes (calculated as described in material and method) for the samples stored at 4 °C and 25°C 

respectively. No reasonable prediction was achieved if samples stored at 40°C were included. Further 

pruning did not significantly improve the performance of the model. The individuated rules suggest that if 

a sample after two weeks of stress yields a mn
25 

> 0.77 and a mn
40 

> 0.32 it has very high chances to be 

stable after six months of stress. However, the model fails to classify poorly stable samples (i.e. an
X
<0.5) 

and the accuracy of cross-validation is due to the high number of highly stable sample (i.e. an
X
>0.8). 

Therefore, we concluded that decision tree models were not suitable to predict an
X
. Nevertheless, the 

decision tree algorithm intuitively highlighted the relative importance of the parameters relative to two 

weeks accelerated stability studies calculated by SEC-MALS, which were also selected from the linear 

models and the ANNs. 

 

Figure 8. Decision Tree. Each node (black dots) corresponds to one input variables, while each leaf 

(squares) represent the target value given the values of the input variables. The connection between the 

dots represents a conditional statement control. The samples were classified as high stability (H), medium 

stability (M) and low stability (L) respectively when they presented an
X
 >0.8, 0.8≤ an

X 
≤0.5 and an

X
<0.5. 

M HL L
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4 Discussion 

Proteins tend to aggregate under a variety of conditions. The extent of aggregation depends on several 

factors that can be generally distinguished as intrinsic (e.g. primary structure) and extrinsic (e.g. the 

formulation). In our study we developed empirical ANNs capable to accurately predict the real-time 

aggregation of therapeutically relevant proteins in pharmaceutically relevant formulations based on 

accelerated stability studies and typically used biophysical parameters. Other in silico tools have been 

developed which predict the intrinsic aggregation propensity of certain classes of proteins
9–13

. However, 

our ANNs have a series of advantages: i) the networks output provide an accurate prediction of the 

sample (meant as the combination of a certain protein in a certain formulation) monomer retention after 

long term storage at refrigerated condition, room temperature and elevated temperature, allowing a better 

understanding of the sample thermal stability ii) the networks output is a value calculated by SEC and 

could be validated in every lab, iii) the networks can be retrained in different laboratories to further refine 

their performance iv) no primary sequence or protein structure is necessary, v) the ANNs have been 

trained and tested over different classes of therapeutically relevant protein in several formulations, 

including different excipients, providing a means to predict protein stability as a function of the 

formulation. We propose 11 models which necessitate different levels of analytical effort. These have 

been cross-validated by randomly dividing the dataset in test and validation set. SEC-MALS analysis of 

samples stored for two weeks at 25 °C and 40°C is the key to predict the monomer retention of proteins 

after 6 months storage at refrigerated conditions. We have recently shown that such accelerated stability 

studies do not correlate with other biophysical parameters when several proteins and formulations are 

considered.
17

 The models present a reduced, but still acceptable accuracy in prediction of monomer 

retention after long term storage at elevated temperatures i.e. 25 °C and 40°C. To increase the accuracy 

the high throughput biophysical parameters Tagg,on and Tm can be included. We showed in a previous 

study how those two can be accurately computed ab-priori by means of different ANNs as a function of 

basic formulation conditions.
24

 Finally, to further refine the prediction of samples stored at 40°C ICD data 

can be included. A different cross-validation approach was also investigated to test the robustness of our 

approach when dealing with unknown proteins. 378 models were developed and cross-validated to 

predict new proteins. We demonstrate a rather high robustness of the models and individuate that the 
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stability of new mAbs have the highest chances of being accurately predicted. This highlights the 

robustness and validity of our approach to predict the stability of candidates at long term refrigerated 

storage. Monomer retention of the monoclonal antibodies, but for PPI-17, was accurately predicted. PPI-

17 presents the formation of insoluble aggregates which has been shown to be difficult to predict also 

with other approaches.
24

 Interestingly, high prediction power has been observed for PPI-01, which 

presents a complex reversible native self-association mediated by the Fab-Fab fragments.
51

 The 

prediction of the monomer retention for non-mAbs was less accurate since only mAbs were extensively 

represented in the investigated data set. For instance, models which do not include PPI-30 in the training 

set cannot gain experience on the aggregation pathway of such protein class. 

The two validation approaches, i.e. random holdout and “leave-one-protein-out”, served to two different 

scopes. The former yielded intrinsically more accurate models because some data points of each protein 

were randomly included in the training phase. Therefore, this validation approach provides models which 

might be more general when tested with data from different groups in the future. On the other hand, the 

latter validation process provides a means of testing the robustness of our approach by using our dataset 

only. Further, it provides room to discuss the limitations of the models when the aim is the prediction of 

protein classes which has not been experienced by the network. Possibly, this validation method would 

provide better results with larger dataset, where multiple proteins of each class are included. In order to 

overcome this limitation, we developed a protein formulation database, which could serve to this scope in 

the future (https://pippi-data.kemi.dtu.dk/).
17

 

In recent years, many models used to support several kinds of decision making processes have been 

constructed as black boxes, meaning that their internal logic is unknown to the user.
35

 Therefore, we 

developed two types of human-friendly surrogate global machine learning algorithms: decision tree and 

linear regression. The first is considered as a transparency machine learning model with the ability of 

nonlinear relationship modeling, while the second is the most common linear model applied in science. 

We evaluated also other surrogate algorithms (e.g. support vector machines) achieving similar or slightly 

better results. Nevertheless, we selected the aforementioned algorithms as their scope is to support the 

connection between the features and the output of the ANNs algorithm. Thanks to these two “white box” 
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algorithms we build trust in the hidden relationships of the ANNs. In fact, we could confirm that 

accelerated stability studies with SEC-MALS analysis are the key to predict the monomer retention after 

long term storage at refrigerated and elevated temperatures. The linear regression shows indeed a 

simple linear relationship at low temperature which gets lost with increasing temperature. As therapeutic 

proteins are usually stored at refrigerated conditions the linear model provides a rather accurate algorithm 

to differentiate samples with high and medium stability. Similarly, the tree decision could simply spot the 

most important parameters for the prediction of real-time stability. Further, the rules from such decision 

trees could be used to individuate cut-off values to generate Stability Risk Scores.
17

 On the other hand, 

ANNs are the most accurate approach and manage to provide a more complete characterization of 

protein thermal stability. 
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Table SI 1 Purity data (i.e. cIEF and SEC) of the protein bulk    

 
Method cIEF SEC 

Protein Isoelectric point Ip Monomer mass fraction (%) 

PPI-01 7.2 99.7 

PPI-02 9.2 – 9.3 98.3 

PPI-03 9.3 – 9.4 99.8 

PPI-04 8.8 – 9.0 99.1 

PPI-08 9.0 – 9.2 99.7 

PPI-10 8.9 – 9.2 96.3 

PPI-13 8.8 – 8.9 99.4 

PPI-17 8.9 – 9.1 98.5 

PPI-18 5.2 – 5.6 98.3 

PPI-30 6.2 100 

PPI-44 5.2 – 5.5 85.1 

PPI-45 4.7 – 4.8 100 

PPI-46 4.3 – 4.4 100 

PPI-49 4.7 – 4.9 98.1 
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Figure SI 2. SEC-MALS exemplary chromatogram. The SEC-MALS chromatogram of two samples, 

stored for two weeks at 40°C, are colored in black and gray, representing respectively PPI-1 formulated in 

10 mM Histidine at pH 5 (F1) and with 280 mM Sucrose as excipient (F2). Similarly, F1 and F2 after 6 

months of storage at 25°C are colored, respectively, in blue and red. The light scattering (LS) and UV 

signal are superimposed. The higher molecular weight species are visible only by LS. F1 presents a lower 

amount of HWM compared to F2 after two weeks of stress, which correlated with a lower monomer 

retention after 6 months of stress. 
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Abstract 

Multi-angle light scattering coupled with size-exclusion chromatography (SEC-MALS) is a standard 

approach for protein characterization. Recently MALS detection has been coupled with ion-exchange 

chromatography (IEX) which demonstrated the feasibility and high value of MALS in combination with 

non-sized-based fractionation methods. In this study we coupled reverse-phase ultra-high pressure liquid 

chromatography (RP-UPLC) with a low-dispersion MALS detector for the characterization of intact 

monoclonal antibody (mAbs) and their fragments. We confirmed a constant refractive index increment 

value for mAbs in RP gradients, in good agreement with the values in literature for other classes of 

proteins. We showed that the impurities eluting from a RP column can often be related to aggregated 

species and we confirmed that in most cases those oligomers are present also in SEC-MALS. Yet, in few 

cases small aggregates fractions in RP-UPLC are an artifact. In fact, proteins presenting thermal and 

physical stability not suitable for the harsh condition applied during the RP separation of mAbs (i.e. 

organic solvents at high temperature) can aggregate. Further, we applied RP-UPLC-MALS during a long 

term stability studies. The different principle of separation used in RP-UPLC- MALS provides an 

additional critical level of protein characterization compared to SEC-MALS and IEX-MALS. 

 

Graphical abstract. Coupling multi-Angle light scattering to ultra-high-pressure reverse-phase 

chromatography (UPLC-RP-MALS) for monoclonal antibodies characterization 
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1 Introduction 

Light scattering is one of the widely-used techniques for the characterization of macromolecules and 

particles in solution in biological and biopharmaceutical sciences
1
. By far the most common application of 

light scattering in this field is the determination of mass and size of proteins by means of multi-angle light 

scattering coupled to size-exclusion chromatography (SEC-MALS)
2
 or field flow fractionation (FFF-

MALS)
3
. Other important applications include the characterization of protein conformational and colloidal 

stability and the characterization of both specific and non-specific protein-protein interaction
1
. The use of 

MALS with fractionated samples yields a calculation of the absolute molecular weight (Mw) at each point 

of the chromatogram. As the Mw estimated by the retention time is often inaccurate,
4,5

 SEC-MALS 

provides a useful tool for determination of accurate monomer and fragment Mw, oligomeric state and 

hydrodynamic radius (Rh)
1,2,6

. Recently the advantages of coupling MALS with ion exchange 

chromatography (IEX) have been demonstrated
7
. IEX separates proteins according to surface charge 

based on differences in ionic interaction with the support matrix
8
. The different principle used in the 

separation of IEX-MALS provides additional critical information and can resolve SEC-MALS 

shortcomings
7
. In this study, we coupled MALS with another type of liquid chromatography, reversed-

phase (RPLC). RPLC is a highly promising technique to study chemical changes
9-11 

and to quantify
12,13 

peptides and proteins, including monoclonal antibodies (mAbs). Historically, the use of RP to monitor 

intact mAb was limited because the complex hydrophobic and hydrophilic nature of these large proteins 

caused poor recovery and limited resolution. More recently, the use of columns with large pores (300 Å) 

at high temperatures (60–75 °C) in combination with non-traditional solvent system containing ion pairing 

agents has been consolidated as standard procedure for the analysis of mAbs, overcoming previous 

difficulties
14,15

. Small chemical differences cannot be separated by standard RP-HPLC
16

, as they are often 

insufficient to yield significant changes in polarity
17

. Here, we took advantage of ultra-high pressure LC 

(UPLC) instrumentation to further refine the separation of mAb species and their derivatives. We 

investigated RP-UPLP-MALS for mAb characterization, focusing on two common applications: (i) analysis 

and characterization of mAb fragments, which are typically studied by mass spectrometry, (ii) analysis of 

mAbs after long term storage. The former is a real-time stability testing which permits the establishment of 

recommended storage condition and shelf life of the bio-therapeutic products. The addition of MALS 

allows the Mw assignment for each individual peak in the chromatogram enabling differentiation between 

chemical variants of the monomeric form and other impurities or degradation products as aggregates and 

fragments. 
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2 Result and discussion 

2.1 RP-MALS technique. 

The principle of RP-HPLC-MALS is the combination of RP chromatography with an online MALS detector. 

As shown in Fig. 1, multiple hydrophobic areas of protein molecules interact with the alkyl silane-derived 

surface of the stationary phase.  

 

Figure 1. Schematic illustration of the RP-UPLC-MALS method. A protein sample is injected in the RP 

chromatography column in-line with a MALS detector. The protein interacts with the hydrophobic matrix. 

The separation is achieved by decreasing the water concentration in the mobile phase increasing the 

organic solvent fraction (e.g. acetonitrile). This in turn weakens the hydrophobic attraction of the protein to 

the column. During elution from the column the molecules are then introduced into a concentration 

detector (i.e. UV) and subsequently in a MALS detector. Using these detectors to measure the Mw of 

eluting molecules is especially important as no column calibration procedure, analogous to that of 

analytical SEC, can be applied to relate the size of a molecule to its hydrophobic interaction with a 

column matrix. 

 

2.2 Development of UPLC-RP-MALS 

Good RP-HPLC conditions for intact protein analysis are typically achieved with a UPLC, a stationary 

phase with short alkyl chain length and large pore size, a strong ion-pairing agent and an adequate 

gradient decreasing the water content of the mobile phase at high temperature
9
. We coupled a low-

volume, low-dispersion MALS detector to our UPLC system allowing for small peak width and high 

resolution. Six different IgG1s (PPI01, PPI02, PPI03, PPI04, PPI10, PPI13), one IgG2 (PPI17), one 

bispecific (PPI08), and one protein-drug conjugate (PPI18) were used to develop and assess our RP-
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UPLC-MALS method. IFNα2a served as a reference, as RPLC is a well-established technique to detect 

its chemically-changed species
18-21

. During the development of the RP-UPLC-MALS method column type, 

temperature, flow rate, injection volume, mobile phase and gradient were evaluated
14,15

. Some proteins 

presented better resolution with the BEH-300 C4 column compared with the Zorbax 300SB-C8 column. 

However, we noticed a fast decrease of efficiency with the BEH-300 C4 after just 400 injections, while the 

Zorbax 300SB-C8 showed good robustness. This is possibly due to the fact that the C4 phase chemistry 

is less resistant to hydrolysis in acidic media than the C8 phase chemistry. As screens of proteins in 

multiple formulations and across many time points involve thousands of injections, we selected the 

Zorbax 300SB-C8 as workhorse. 

In order to determine Mw correctly, it is necessary to know the refractive index increment of solute in 

solution value dn/dc and the concentration for each slice of a peak. It has been shown that MALS is 

compatible with RP elution gradients
22

. Different classes of proteins have been investigated in literature 

with various mobile phase compositions containing aqueous buffer and acetonitrile yielding a dn/dc 

values close to 0.175 ml/g
22-25

. It has been shown that assuming a constant dn/dc in the narrow interval of 

an eluting peak only induces an error at most 3–4%
22

. This is due to the fact that the solvent refractive 

index changes only very slightly within the time frame of peak elution
26

. We first calculated the protein Mw 

using the dn/dc of proteins in water at 660 nm of 0.185 mL/g
27

. The obtained Mw was approx. 25% below 

the Mw calculated based on the primary sequence. Consequently, we fixed the Mw of the monomer as 

calculated from the primary sequence and confirmed by SEC-MALS to obtain a dn/dc in the RP-MALS 

eluent. This yielded a dn/dc value of 0.1742 +/− 0.0017 mL/g for the proteins, which is in very good 

agreement with the literature
22-25

, and was used for calculating the Mw of the investigated proteins. 

 

2.3 Analysis of intact monoclonal antibodies using UPLC-RP-MALS. 

Proteins with similar size cannot be separated by SEC, but if they have a different hydrophobicity they 

can be separated by RP-UPLC. In our study we encountered three cases: (i) The Mw of all peaks reflects 

monomeric variants (e.g. PPI01 and PPI10), (ii) The main peak represents a monomeric form while other 

impurity peaks are identified as aggregates (e.g. PPI04), (iii) The main peak represents a monomeric form 

while other impurities peaks are either identified as aggregates, fragments or close to, but not equal 

within the experimental error, to the monomer Mw (e.g. PPI02) (Fig. 2). Dimers detected in SEC-MALS 

(Fig. 3) were not found in RP-UPLC-MALS (Fig. 2). 
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Figure 2. RP-UPLC-MALS of mAbs. Typical chromatograms showing the UV and the MALS signals of 

PPI02, PPI01, PPI04 and PPI10 analyzed by RP-UPLC-MALS. The MW of the monomer, 

aggregates/fragments, and dimers are highlighted in blue and respectively. (*) denotes aggregates. 

As the RP-UPLC recovery was often close or exactly 100% (Table 1) we hypothesize that (i) the 

monomer-dimer equilibrium is completely shifted towards the monomeric form in the RPLC eluent, (ii) the 

dimers are prompted to further aggregation, (iii) the dimers are lost over the column. Both RP-UPLC-

MALS and SEC-MALS confirmed the absence of oligomers beyond the dimers visible in SEC for PPI01 

and PPI10 (Fig. 2). Similar conclusions were reached for PPI13, PPI08 and PPI17 (Supplementary 

information - SI 1). Differently, PPI04 (Fig. 2) and PPI18 (SI 2) showed a very small fraction of oligomers 

by RP-UPLC-MALS, which were not detected in SEC-MALS (Fig. 3).These oligomers may have been 

induced by the high temperature of 75 °C applied during the RP separation. The first temperature of 

unfolding (Tm1), the temperature of aggregation (Tagg), and the diffusion interaction parameter (kD) for 

PPI01, PPI02, PPI03, PP10 and PP17 are 66, 61 °C and 5.6 mg/L (data averaged from 24 formulation 

conditions, Gentiluomo L, et al.)
28 

as compared to 54 °C, 47 °C and 4.7 mg/L resp. for PPI18 and 64 °C, 

55 °C and −1.9 mg/L for PPI04. This lower thermal and/or colloidal stability of PPI18 and PP4 could 

explain their susceptibility to aggregation under the RP conditions. Finally, PPI02 showed aggregates and 

fragments (highlighted in red in Fig. 2) that were also detected in SEC-MALS (Fig. 3). The averaged Mw 

of the PPI02 aggregates from SEC-MALS and RP-UPLC-MALS are respectively of 250 kDa and 235 kDa. 

This difference is probably due to the high error in the Mw calculations, which is in turn due to the small 
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concentration of such aggregates. Further, the 235 kDa aggregate in RP-UPLC-MALS is not baseline 

separated. Moreover, PPI02 presented a series of peaks and shoulders with 5 to 15 kDa difference to the 

monomer Mw, which were not visible by SEC-MALS. The Mw difference may be possibly due to post-

translational modifications of the IgG. These typically include methionine oxidation, asparagine and 

glutamine deamidation, N-terminal acetylation or cyclization, glycation of lysine and variable 

glycosylation
29

. Physically, the refractive index increment is insensitive to the long-range structure of 

macromolecules
27

 and is nearly independent on its amino acid composition
30

. However, carbohydrate 

moieties do affect the refractive index value
31

. This would suggest that PPI02 comes with a high degree 

of variation in glycosylation. 

 

2.4 Characterization of Fab and Fc fragments. 

Complete proteolytic digestion of mAb (peptide mapping) followed by RP-UPLC coupled with mass 

spectrometry (MS) is a well-established method for the identification and quantification of chemical 

modification of mAbs
32,33

. Alternatively, the analysis by MALS of large fragments, such as Fab and Fc, 

requires little sample preparation and can provide a high-throughput alternative. The preparation and 

purification of the fragments was performed as described in material and methods. Subsequently, we 

investigated the Fab and Fc fragments of PPI01 by RP-UPLC-MALS. The Fc fragment eluted before the 

intact mAb which in turn eluted before the Fab fragment (Fig. 4). The latter exhibited two shoulders on the 

left and right of the 47 kDa monomer with a Mw close to that of a Fab dimer (~90 kDa). The Fc fragment 

elutes with a series of peaks after the main peak of ~110, ~700, ~170 kDa with longer elution time. SEC-

MALS measurements on the purified fragments confirmed the presence of Fab dimer and of Fc dimer and 

trimer (fragments showed in SI 3, intact mAb showed in Fig. 3). However, the 700 kDa Fc aggregate was 

not detected in SEC-MALS. As previously mentioned, the formation of small fraction of high molecular-

weight oligomers due to the RP conditions can affect proteins with insufficient thermal and/or colloidal 

stability. 

PP01 shows averaged Tm1, typically reflecting unfolding of the CH2 domain and Tm2, typically reflecting 

unfolding of the CH3 and Fab fragment, of 64 °C and 77 °C
34-36

. This would explain the higher 

susceptibility of the Fc fragment to unfolding and aggregation. Thus, it could be useful to couple MALS 

with RP-UPLC-MS to differentiate between monomer and aggregates peak before analyzing the MS 

spectra. 
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Figure 3. SEC-MALS of mAbs. Typical chromatograms of the proteins investigated by SEC-MALS 

showing UV and LS signals along superimposed with calculated molar mass. The MW of the monomer, 

aggregates/fragments and dimers are highlighted in blue, red and green, respectively. HMW stands for 

high-molecular weight species, which are usually not separated, and in all our investigated cases 

presented no UV detectable signal. (*) denotes aggregates; (**) denotes dimers. 

 

2.5 Long term stability studies. 

Finally, we performed a long term stability study and analyzed samples with the RP-UPLC-MALS method 

developed herein to learn whether we can gain additional insights from the MALS information on the 

chemical stability of our proteins. PP02, PP03, PP04, PP08, PP10, PP13 were tested in 8 different 

formulations for six month at 4 °C and 25 °C (see SI 4 for the formulations list). We observed an overall 

high chemical stability. Significant changes upon storage stress occurred only in a few conditions. PP10, 

formulated in 10 mM His at pH 6.5 stored at 25 °C, exhibited an increased hydrophobicity of the shoulder, 

presenting the same Mw of the monomer (Fig. 5). Chemical changes can perturb the local conformation 

backbone of proteins, such in the case of deamidation, the most common hydrolytic reaction for protein, 

and Asp isomerization. Conformational variants of proteins often present increased hydrophobicity and 

are more prone to aggregate
37

. 
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Figure 4. UPLC-RP-MALS of PPI-1 and its fragments. PPI1 Fc fragment, PPI1 (whole mAb) and PPI1 

Fc fragment are plotted in blue, black and red lines, respectively.  

Other chemical reactions, such Met oxidation, could on the other side decrease the hydrophobicity of 

proteins
38

. However, RP-UPLC-MALS cannot provide mechanistic insight behind an increased 

hydrophobicity after isothermal stress. For such purpose mass spectroscopy, which could be coupled with 

RP-UPLC-MALS, could provide quantitation of degradation products, such as in the case of deamidation 

products
39

. PPI08 stored at 25 °C in 10 mM Histidine at pH 5 showed a new peak with an Mw of 225 kDa, 

which was not observed in any other formulation and was not noticeable in SEC- MALS (Fig. 5). This 

aggregate is probably made of a mixture of fragments formed during the stress e.g. Fab, Fc, Heavy chain 

or by a complex formed by monomer and light chain. Comparison with SEC-MALS confirmed the 

presence of fragments (Fig. 5). As baseline separation was not obtained between the monomer and the 

dimer, we could not tell whether the small complex is present in the formulation or formed during the RP 

separation. Regardless, MALS provided the exact Mw of the peaks eluting upon RP-UPLC, which allowed 

differentiation between chemical variants of the monomer (i.e. in cases of PPI10) and aggregates (i.e. in 

case of PPI08) formed during long term storage. 
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Figure 5. RP-UPLC-MALS and SEC-MALS of mAbs for long term stability studies. Typical 

chromatograms of the long-term-storage study, showing the regions of eluting sample. Top: RP-UPLC-

MALS chromatograms; bottom: SEC-MALS chromatograms. Left: PPI10; right: PPI08. The Mw of the 

monomer, aggregates/fragments, and dimers are highlighted in blue, red and green, respectively. HMW 

stands for high-molecular-weight species, which are usually not separated, and in all our investigated 

cases presented no detectable UV signal. A magnified section shows the impurities for PP08. The shifting 

of the chromatograms at different time points is due to column ageing. PPI10 is shown in one formulation 

only (His 10 mM at pH 6.5), where the chromatograms before and after 6 months at 25 °C are depicted in 

black and red, respectively. PPI08 is shown formulated at pH 6.5 (His 10 mM) before stress, in black, and 

after 6 months at 25 °C, in magenta, and formulated at pH 5 (His 10 mM) before, in black, and after 6 

months at 4 °C, in green, and 6 months at 25 °C, in red. PPI08 fragments are zoomed. 

 

Molar Mass vs. volume

volume (mL)

3.6 3.7 3.8 3.9

M
o

la
r 

M
a
ss

 (
g

/m
o

l)

7.0x10
4

8.0x10
4

9.0x10
4

1.0x10
5

2.0x10
5

LS UV

Molar Mass vs. volume

volume (mL)

0.9 1.0 1.1 1.2 1.3 1.4

M
o

la
r 

M
a
ss

 (
g

/m
o

l)

0.1

1.0

10.0

100.00

1000.000

1.0x10
4

1.0x10
5

1.0x10
6

1.0x10
7

1.0x10
8

LS UV

146 kDa

t. point 0
6 months at

25 °C

Column ageing (~400 inj)

PPI10

Molar Mass vs. volume

volume (mL)

3.6 3.7 3.8 3.9 4.0 4.1 4.2

M
o

la
r 

M
a
ss

 (
g

/m
o

l)

2.0x10
5

3.0x10
5

LS UV

205 kDa

225 kDa

Molar Mass vs. volume

volume (mL)

0.9 1.0 1.1 1.2 1.3 1.4

M
o

la
r 

M
a
ss

 (
g

/m
o

l)

0.1

1.0

10.0

100.00

1000.000

1.0x10
4

1.0x10
5

1.0x10
6

1.0x10
7

1.0x10
8

LS UV

PPI08

6 month 25°C at pH 5

6 month 4°C at pH 5 6 month 25°C at pH 6.5

Time point 0 at pH 5 / 6.5

Molar Mass vs. volume

volume (mL)

3.8 3.9 4.0 4.1 4.2

M
o

la
r 

M
a
ss

 (
g

/m
o

l)

2.0x10
5

3.0x10
5

LS UV

Impurity

Molar Mass vs. volume

volume (mL)

6.0 8.0 10.0 12.0 14.0 16.0 18.0

M
o

la
r 

M
a
ss

 (
g

/m
o

l)
1.0x10

5

LS UV

208 kDa

453 kDa

50 kDa

Molar Mass vs. volume

volume (mL)

0.9 1.0 1.1 1.2 1.3 1.4

M
o

la
r 

M
a
ss

 (
g

/m
o

l)

0.1

1.0

10.0

100.00

1000.000

1.0x10
4

1.0x10
5

1.0x10
6

1.0x10
7

1.0x10
8

LS UV

PPI08
HMW

Molar Mass vs. volume

volume (mL)

14.0 15.0 16.0 17.0 18.0 19.0

M
o

la
r 

M
a
ss

 (
g

/m
o

l)
1.0x10

5

LS UV

Molar Mass vs. volume

volume (mL)

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

M
o

la
r 

M
a
ss

 (
g

/m
o

l)

1.0x10
5

2.0x10
5

3.0x10
5

4.0x10
5

5.0x10
5

6.0x10
57.0x10
5

LS UV

PPI10

6 months at
25 °C

146 kDa

~296 kDa

Molar Mass vs. volume

volume (mL)

0.9 1.0 1.1 1.2 1.3 1.4

M
o

la
r 

M
a
s
s
 (

g
/
m

o
l)

0.1

1.0

10.0

100.00

1000.000

1.0x10
4

1.0x10
5

1.0x10
6

1.0x10
7

1.0x10
8

LS UV

SE
C

-M
A

LS
U

-R
P

-M
A

LS



CHAPTER VI: Coupling multi-angle light scattering to ultra-high-pressure reverse-phase chromatography 
(UPLC-RP-MALS) for monoclonal antibodies characterization 

 

225 
 

3 Conclusion 

We successfully coupled RP-UPLC with MALS to calculate the Mw of each eluting peak of intact mAbs 

and of Fc and Fab fragments. The different principle of separation used in RP-UPLC-MALS provides an 

additional critical level of protein characterization compared to SEC-MALS and IEX-MALS. RP is one of 

the most promising analytical techniques to analyze proteins
11,12,40

. Yet, peaks eluting from the column 

can often be related to aggregated species. Thanks to MALS, it is possible to tell whether an impurity is 

indeed a chemical variant of the monomer, an aggregate or a fragment. Furthermore, we highlight that 

the organic solvent and the temperature applied during the RP separation of mAbs could artificially induce 

aggregates which may lead to false interpretation of protein purity. Nonetheless, MALS could not be 

enough to describe detailed mechanisms and further coupling with MS (i.e. RP-UPLC-MALS-MS) could 

prove in the future natural development to characterize RP chromatograms. 

 

4 Material and methods 

4.1 Sample preparation. 

Five antibodies IgG1s (PPI02, PPI03, PPI04, PPI10, PPI13), one bispecific antibody (PPI08), one IgG2 

(PPI17), and one HSA-fusion protein (PPI18) were provided by AstraZeneca (Cambridge, UK). Interferon 

alpha-2a (PPI30) was provided from Roche Diagnostics GmbH. A summary of the protein’s physical 

properties is listed in Table 1. The proteins were dialyzed overnight using Slide-A-Lyzer™ cassettes 

(Thermo Fisher Scientific, USA) with suitable membrane cut-off against excess of 10 mM of histidine HCl 

buffer with pH 5.0, 5.5, 6.0, 6.5, 7.0, 7.5. The excipient (e.g. NaCl) stock solutions were prepared in the 

respective buffers. Protein concentration was measured on a Nanodrop 2000 (Thermo Fisher Scientific, 

Waltham, USA) using the protein extinction coefficient calculated from the primary sequence. All 

conditions were prepared in 1.5 mL non-coated PP Eppendorf tubes. Finally, the formulations were 

sterile-filtered with 0.22 μm cellulose acetate filters from VWR International (Germany). The purity of the 

proteins was studied by SEC and cEIF (SI 5). 

 

4.2 Ultra-high-pressure reverse-phase chromatography combined with multi-angle 

light scattering (UPLC-RP-MALS) 

RP-UPLC-MALS was conducted on an ACQUITY UPLC H-Class system (Waters, USA) equipped with a 

quaternary pump, an autosampler, UV detector and a μDAWN detector (Wyatt Technology, USA). The 

separation was performed with both an Acquity BEH-300 C4 (Waters, USA) and a Zorbax 300SB-C8 
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column (Agilent Technologies, Germany). The samples were diluted to 1 mg/mL before injection. For 

monoclonal antibodies a pilot gradient of 20 to 40% of eluent B in A over 20 minutes was used. Eluent A 

consisted of 10% w/v acetonitrile and 0.1% w/v trifluoracetic acid in ultrapure water. Eluent B consisted of 

0.1% w/v trifluoracetic acid in acetonitrile. The flow rate was 0.2 mL/min. The column oven temperature 

was set at 75 °C. A preheater was included before the column. Subsequently, depending on the protein 

and the column used the gradient was fine-tuned. 

Table 1. Information on the investigated protein. The theoretical Mw is calculated from the primary 

sequence. Mass recovery is calculated over all the visible UV peaks as described in material and method. 

Type Provider Ɛ at 280 nm 

(mg/ml/cm) 

Theoretical 

MW (kDa) 

MALS 

Mw (kDa) 

Mass 

recovery 

pI Notes ID 

IgG1λ AstraZeneca 1.56 144.8 144.1 ± 0.2% 99.9% 7.96 - PPI01 

Human IgG1κ AstraZeneca 1.47 148.2 148.1 ± 0.1% 100% 8.53 - PPI02 

Human IgG1κ AstraZeneca 1.435 144.8 144.6 ± 0.2% 100% 8.44 WT IgG PPI03 

IgG1λ YTE AstraZeneca 1.755 146.2 146.5 ± 0.1% 97.2% 8.99 - PPI04 

IgG1κ + scFv AstraZeneca 1.57 204.4 204.4 ± 0.1% 98% 9.2 Bispecific PPI08 

Human IgG1 AstraZeneca 1.533 144.2 144.6 ± 0.2% 96.5% 8.95 - PPI10 

Human IgG1κ  AstraZeneca 1.66 148.9 148.7 ± 0.2% 100% 9.04 - PPI13 

IgG2κ AstraZeneca 1.31 145.1 145.6 ± 0.3% 99.9% 7.78  PPI17 

HSA-NEP AstraZeneca 1.04 146.7 146.3 ± 0.1% 100% 5.8 Conjugate PPI18 

Intα-2A Roche 0.972 19.2 20.1 ± 7.5% 100% 5.97 - PPI30 

 

All methods were based on a gradient from 20–25 to 40%. On-column adsorption of the mAbs was 

evaluated systematically and almost complete mass recovery was reached for all the protein (Table 1). 

All the calculations were performed with ASTRA V7.1 software (Wyatt Technology, USA). Mass recovery 

is calculated from the injected mass versus the calculated mass from the concentration detector (i.e. UV). 

Therefore, to achieve an accurate determination of the mass recovery the sample concentration needs to 

be accurately measured. Thus, the concentration was measured again before injection in real triplicates 

by a Nanodrop One (Thermo Fisher Scientific, USA). The theoretical extinction coefficients were double-

checked re-calculating the values from the RI monomeric peaks during the SEC-MALS experiments. 

PPI30 (int-2alpha) was used as a standard. Finally, to achieve a flat baseline, we collected and 

subtracted the blanks by the algorithm included in the ASTRA V7.1 software. 

4.3 Size-exclusion chromatography combined with multi angle light scattering (SEC–

MALS) 

SEC-MALS was conducted on Agilent 1260 Bio-Inert system with a variable wavelength UV detector 

operated at 280 nm (Thermo Fischer Scientific, USA), followed by a TREOS II detector (Wyatt 
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Technology, USA) and an Optilab T-rEX (Wyatt Technology, USA). The temperature controlled-

autosampler was kept at 4 °C. Separation was performed with a Superdex 200 increased 10/30 GL 

column. Data was collected and processed using the ASTRA® software V7.2 (Wyatt Technology, USA). 

The aqueous mobile phase consisted of 38 mM NaH2PO4, 12 mM Na2HPO4, 150 mM NaCl and 200 

ppm NaN3 at pH 7.4 dissolved in HPLC-grade water, filtered through Durapore VVPP 0.1 m membrane 

filters (Millipore, USA). The samples were centrifuged and injected in duplicates of 25 µl. 

 

4.4 Stress assay 

0.2 mL of each protein solution was aliquoted at a concentration of 1 mg/mL and filtered in 0.5 mL sterile 

non-coated PP Eppendorf tubes. The samples were incubated at 4 °C and 25 °C, for 6 months. After 

storage, the samples were quenched in an ice bath, left at 4 °C and measured within two weeks. Sample 

concentration was measured after the stress in real triplicates by a Nanodrop One (Thermo Fisher 

Scientific, USA). Similarly, the pH was measured after the stress showing no changes within the 

experimental error (i.e. ±0.1). 

 

4.5 Preparation and purification of Fab and Fc fragments 

Immobilized Papain (Thermo Fisher Scientific, USA) was used to digest PPI01 into its Fab and Fc 

fragments. PPI01 at 20 mg/mL was pipetted into 15 mL glass vial, the vial capped with the resin separator 

provided with the kit to remove all the air-liquid interfaces. The vial was gently rotated by a Sunlab rotator 

SU1100 for 5 h at 37 °C. An ÄKTA purifier 10 (GE Healthcare, Uppsala, Sweden) equipped with a Pierce 

Protein A chromatography cartridge (Thermo Fisher Scientific, USA) (column volume, CV = 5 ml) was 

used to separate Fc (and undigested mAb) from the Fab fragments. The binding buffer was made of 

100 mM sodium phosphate with 150 mM NaCl at pH 7.2. The column was equilibrated with 2 CV of 

binding buffer with a flow of 2 ml/min. Fractions were collected in 15-ml PP tubes using a Frac 920 

fraction collector (GE Healthcare, Sweden) capturing any unbound species e.g. Fab. The elution buffer 

(100 mM sodium phosphate at pH 3) was kept at 100% over 7 CV. The eluting protein was collected in 

15-ml PP tubes using the fraction collector, and was immediately neutralized with a 1 M sodium 

phosphate buffer at pH 8.5. Ultrafiltration was performed using Vivaspin® tubes with a 10 kDa MWCO 

PES membrane (Sartorius Stedim Biotech, Germany). Success of the purification was monitored by HP-

SEC (see 3.4). 
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List of supplementary information: 

SI 1. PPI-8, PPI-13 & PPI-17 UPLC-RPLC-MALS Chromatograms 

SI 2. PPI-18 UPLC-RPLC-MALS Chromatogram  

SI 3. Fab & Fc SEC-MALS Chromatograms 

SI 4. Formulations list for long term stability studies 

SI 5. Purity data (i.e. cIEF and SEC) of the protein bulk    
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Figure SI 1. UPLC-RPLC-MALS of PPI-8, PPI-13 & PPI-17. MALS results confirmed the absence of 
oligomers for PPI-8, PPI-13 and PPI-17. 
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Figure SI 2. UPLC-RPLC-MALS of PPI-18. MALS results confirmed the presence of oligomers for 
PPI18. 

 

 
Figure SI 3. SEC-MALS of PPI-1 Fc and Fab fragments. PPI1 Fc fragment and PPI1 Fc fragment are 
plotted in blue, and red lines, respectively. 
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Table SI 4. Long-term formulations list. Formulations list for long term stability studies. 

 
Formulation 

 
Buffer pH Excipient Salt 

A 10 mM Histidine 5 - - 
B 10 mM Acetate 5 - - 
C 10 mM Histidine 6.5 280 mM Proline - 
D 10 mM Histidine 6.5 140 mM ArgHCl - 
E 10 mM Histidine 6.5 280 mM Sucroce - 
F 10 mM Histidine 6.5 - - 
G 10 mM Histidine 6.5 - 140 mM NaCl 
H 10 mM 

Phosphate 
6.5 - - 

 

Table SI 5 Purity data.  cIEF and SEC results of the protein bulk  (i.e. before formulating). 

 
Method cIEF SEC 

Protein Isoelectric point Ip Monomer mass fraction 
(%) 

PPI-01 7.2 99.7 

PPI-02 9.2 – 9.3 98.3 

PPI-03 9.3 – 9.4 99.8 

PPI-04 8.8 – 9.0 99.1 

PPI-08 9.0 – 9.2 99.7 

PPI-10 8.9 – 9.2 96.3 

PPI-13 8.8 – 8.9 99.4 

PPI-17 8.9 – 9.1 98.5 

PPI-18 5.2 – 5.6 98.3 

PPI-30 6.2 100 
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SUMMARY 

 

The control of protein stability is an important component to ensure safety and efficacy of protein drugs. In 

Chapter II we argue that to understand what exactly indicates intrinsic stability of a protein molecule 

requires more information on various therapeutically-relevant proteins, including their primary sequences, 

purity data, and computational and biophysical characterization in different solution conditions. Therefore, 

we made publicly available a comprehensive dataset, which leads the foundation for a protein formulation 

database. Moreover, we could demonstrate that the relationships between some biophysical parameters 

cannot be generalized for a heterogeneous population of proteins in a diverse set of formulation 

conditions (Chapter II). These findings highlight that “protein stability” cannot be well described by using 

a single biophysical parameter, nor by studying a protein in a single solution condition. Therefore, design 

of experiments (DoE) approaches and response surface methodology (RMS) remain pivotal for the 

optimization of robust protein formulations. We presented a simple parallel approach which combine 

multiple parameters into stability risk scores (SRS).  

The application of empirical models to predict protein stability and aggregation can be a powerful practical 

method to support the selection of lead products. Among these models, shallow ANNs showed the best 

performance as they can solve problems that are complex, ill-defined, highly nonlinear, of many and 

different variables, and/or stochastic (Chapter III and V). Thanks to our trained model it is possible to 

achieve a better understanding of protein stability even before expression (Chapter III) or predict 

monomer retention in pharmaceutically relevant formulation after long term storage (Chapter V). 

Furthermore, these models can be used to highlight the most important biophysical assays to predict 

aggregation. Importantly, machine learning models can be designed in a way that allows continuous 

validation and improvement. They could be even more efficacious in industrial environments as the large 

amount of data usually available allows for the use of deep ANNs. However, the interpretation of “black-

box” models is an open field of research. To address this problem we designed surrogate “white-box” 

models. While the quality of the prediction of simpler model might be lower, they can highly valuable for a 

better understanding of the process. 

The major drawback of empirical algorithms is that their output does not provide any causations (i.e. 

understanding of the process) but only correlations. Even “white-box” models such as a simple linear 

model do “only” highlight useful data patterns. Therefore, the characterization of case studies for protein 

aggregation is yet extremely important. Following an extensive screening of several therapeutic proteins 

(Chapter II) we individuated the intense native reversible self-association of one IgG1, namely PPI-1 

(Chapter IV). This process has been observed in literature at high mAb concentration, nonetheless PPI-1 

exerts its self-association at low concentration. The nature of the self-association of the full-length IgG1 

as well as the corresponding Fab and Fc fragments was investigated by several orthogonal methods. We 
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rationalized the self-association as a combination of hydrophobic and electrostatic interactions driven by 

the Fab fragments. A long term storage study demonstrated that PPI-1 is a perfect example of a protein 

having multiple non-exclusive aggregation pathways. 

Finally, the development of new information rich techniques to investigate protein chemical and physical 

stability is of primary importance. In this direction we coupled UPLC-RP with MALS (Chapter VI), which is 

a natural means to characterize protein aggregates. The different principle of separation used in UPLC-

RP-MALS provides an additional level of protein characterization compared to SEC-MALS and IEX-

MALS. The MALS detection allows telling whether an impurity detected in UPLC-RP is indeed a chemical 

variant of the monomer or an aggregate or fragment.
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2 Biophysical parameter tables  

(Part 1 of 22)  

Parts of the data discussed in Chapter II (i.e. SI 13) are listed in the following. 

Legend: 

*Not detected. 
**Could not be determined accurately. 
***Not included for these conditions. 
#Not detected in the tested PEG concentration range. 
##Not injected due to precipitation 
### PPI-04 unfolds already at low GuHCl concentrations, no pre-unfolding baseline can be obtained and 
no model can be fit to the data. 
^ Value could not be detected with this experimental setup. PPI-18 is very hydrophobic and the dye 
already binds to the native protein. 
^^ PPI-18 unfolds already at low GuHCl concentrations, no pre-unfolding baseline can be obtained and 
no model can be fit to the data. 
^^^ Not included due to solubility problems. 
~ Not measured due to limited sample amount. 
~~ Value could not be detected with this experimental setup. 
~~~ Probable binding of the dye to the native state 
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Biophysical parameter tables (Part 2 of 22) 

 

Protein Buffer pH
NaCl 

(mM)

Ton,int 

(⁰C)

Tm1,int 

(⁰C)

Tm2,int 

(⁰C)

Ton,ex 

(⁰C)

Tm1,ex 

(⁰C)

Tagg 

(⁰C)
kD ζ (mV)

Rh 

(nm)

PD 

(%)

PPI-01 10 mM histidine 5 0 52.12 57.44 * 46.89 55.17 52.69 -2.01E-02 9.81 5.55 13

PPI-01 10 mM histidine 5.5 0 53.43 58.84 * 49.61 56.86 54.28 -3.62E-02 7.50 5.83 7

PPI-01 10 mM histidine 6 0 54.48 60.73 * 48.42 58.35 55.38 -4.05E-02 5.83 7.96 15

PPI-01 10 mM histidine 6.5 0 54.90 62.55 * 51.42 59.96 56.96 -3.37E-02 2.94 12.92 18

PPI-01 10 mM histidine 7 0 55.29 64.62 * 51.52 62.20 56.8 -4.44E-02 -0.44 19.65 16

PPI-01 10 mM histidine 7.5 0 53.78 64.31 * ** 62.03 50.82 2.11E-02 -2.44 6.67 30

PPI-01 10 mM tris 8 0 56.77 69.97 76.03 ** 63.54 49.47 *** -4.19 6.86 11

PPI-01 10 mM tris 9 0 58.98 69.99 75.88 51.68 62.99 ** *** -10.46 7.60 51

PPI-01 10 mM histidine 5 70 49.98 54.91 * 44.66 52.67 45.97 -1.90E-02 - 5.49 4

PPI-01 10 mM histidine 5.5 70 52.01 57.44 * 47.76 55.43 50.7 -1.72E-02 - 5.48 4

PPI-01 10 mM histidine 6 70 54.61 60.30 * 46.78 58.02 51.98 -2.46E-02 - 5.59 5

PPI-01 10 mM histidine 6.5 70 55.64 63.14 * 48.79 60.88 54.41 -2.45E-02 - 5.62 5

PPI-01 10 mM histidine 7 70 56.27 63.73 * 51.49 62.55 51.56 -2.94E-02 - 5.60 7

PPI-01 10 mM histidine 7.5 70 56.57 64.00 * 51.87 63.17 55.76 -2.34E-02 - 3.83 17

PPI-01 10 mM tris 8 70 53.60 69.93 77.11 50.94 64.17 55.48 *** - 5.52 5

PPI-01 10 mM tris 9 70 59.72 70.69 76.43 ** 61.64 56.48 *** - 5.48 5

PPI-01 10 mM histidine 5 140 49.19 54.30 * 43.18 51.11 50.24 -1.74E-02 - 5.48 5

PPI-01 10 mM histidine 5.5 140 52.17 57.12 * 44.88 54.48 47.11 -1.87E-02 - 5.46 5

PPI-01 10 mM histidine 6 140 54.10 59.85 * 45.35 58.15 52.63 -1.81E-02 - 5.52 4

PPI-01 10 mM histidine 6.5 140 56.00 62.65 * 49.53 59.98 55.98 -2.39E-02 - 5.49 5

PPI-01 10 mM histidine 7 140 56.59 63.41 * 49.43 60.50 55.78 -2.01E-02 - 5.44 5

PPI-01 10 mM histidine 7.5 140 56.65 63.94 * 48.46 62.02 55.84 -1.89E-02 - 5.51 7

PPI-01 10 mM tris 8 140 55.17 70.59 77.41 48.83 61.89 56.81 *** - 5.49 5

PPI-01 10 mM tris 9 140 58.75 70.67 76.83 50.28 63.10 56.09 *** - 5.42 3

PPI-02 10 mM histidine 5 0 59.09 63.38 79.01 52.79 59.78 80 4.76E-02 12.00 5.38 8

PPI-02 10 mM histidine 5.5 0 60.48 65.94 80.73 57.99 64.69 80 5.09E-02 11.12 5.32 8

PPI-02 10 mM histidine 6 0 64.30 68.81 81.85 60.33 67.50 80 7.30E-02 10.83 5.20 9

PPI-02 10 mM histidine 6.5 0 66.86 71.14 83.00 62.02 69.04 80 6.97E-02 9.74 4.89 7

PPI-02 10 mM histidine 7 0 67.31 71.36 82.81 63.11 69.72 76.19 2.33E-03 4.69 4.56 7

PPI-02 10 mM histidine 7.5 0 67.33 71.37 82.76 63.07 69.59 76.24 2.55E-02 4.08 4.54 10

PPI-02 10 mM tris 8 0 64.70 71.10 82.77 63.00 69.34 70 *** 0.53 5.29 3

PPI-02 10 mM tris 9 0 65.38 70.42 83.71 59.00 69.06 70 *** -3.83 5.27 2

PPI-02 10 mM histidine 5 70 55.83 60.45 77.17 47.05 55.56 68.1 5.13E-03 - 5.46 7

PPI-02 10 mM histidine 5.5 70 59.29 63.62 80.49 53.82 60.85 73 3.13E-03 - 5.42 4

PPI-02 10 mM histidine 6 70 62.38 66.48 82.85 56.49 64.21 73.69 3.90E-03 - 5.44 5

PPI-02 10 mM histidine 6.5 70 64.38 69.29 82.30 59.83 67.38 71.67 -3.03E-03 - 3.66 15

PPI-02 10 mM histidine 7 70 65.29 70.08 81.81 56.75 63.60 76.48 2.51E-02 - 5.38 4

PPI-02 10 mM histidine 7.5 70 65.69 70.35 81.68 61.39 68.99 74.05 -3.84E-03 - 5.57 10

PPI-02 10 mM tris 8 70 65.65 70.47 82.12 61.78 68.78 ** *** - 5.44 4

PPI-02 10 mM tris 9 70 65.60 70.09 85.39 59.81 68.59 ** *** - 5.47 4

PPI-02 10 mM histidine 5 140 55.58 59.62 75.82 46.29 55.29 67.06 1.23E-02 - 5.68 9

PPI-02 10 mM histidine 5.5 140 58.34 63.03 79.70 52.60 60.57 73.26 7.89E-03 - 5.49 7

PPI-02 10 mM histidine 6 140 61.92 66.15 82.38 57.38 64.13 75.8 -1.35E-03 - 5.47 7

PPI-02 10 mM histidine 6.5 140 63.78 68.72 82.14 58.47 67.08 74.34 -3.01E-03 - 5.46 6

PPI-02 10 mM histidine 7 140 64.85 69.67 81.01 60.41 68.05 65 1.06E-03 - 5.43 5

PPI-02 10 mM histidine 7.5 140 64.99 69.96 81.22 60.58 68.33 75.38 -3.58E-03 - 5.46 5

PPI-02 10 mM tris 8 140 65.55 70.01 81.52 61.39 68.00 ** *** - 5.45 3

PPI-02 10 mM tris 9 140 65.17 69.63 85.12 59.43 68.28 ** *** - 5.47 5
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Biophysical parameter tables (Part 3 of 22) 

 

Protein Buffer pH
NaCl 

(mM)

Ton,int 

(⁰C)

Tm1,int 

(⁰C)

Tm2,int 

(⁰C)

Ton,ex 

(⁰C)

Tm1,ex 

(⁰C)

Tagg 

(⁰C)
kD ζ (mV)

Rh 

(nm)

PD 

(%)

PPI-03 10 mM histidine 5 0 55.08 61.05 75.66 ** 58.97 65.98 3.91E-02 15.85 5.36 7

PPI-03 10 mM histidine 5.5 0 59.97 65.72 76.88 ** 58.90 73.32 4.27E-02 12.66 5.21 5

PPI-03 10 mM histidine 6 0 59.75 69.30 76.98 ** 68.42 75.89 8.63E-02 13.39 5.08 5

PPI-03 10 mM histidine 6.5 0 57.26 70.32 76.59 ** 57.62 74.67 8.41E-02 10.85 5.45 7

PPI-03 10 mM histidine 7 0 56.43 70.53 76.25 ** 56.86 73.56 9.35E-03 8.55 5.44 5

PPI-03 10 mM histidine 7.5 0 59.16 70.33 75.78 ** 56.17 72.16 1.26E-02 7.01 5.55 8

PPI-03 10 mM tris 8 0 60.61 70.61 75.83 ** 56.54 69.7 *** 5.14 ** **

PPI-03 10 mM tris 9 0 59.58 69.93 75.55 ** 56.84 67.94 *** -1.55 5.27 3

PPI-03 10 mM histidine 5 70 52.48 58.03 73.83 ** 57.41 63.34 -3.36E-03 - 5.27 9

PPI-03 10 mM histidine 5.5 70 56.79 62.41 75.71 ** 59.50 70.08 -1.44E-03 - 5.40 6

PPI-03 10 mM histidine 6 70 60.15 66.56 76.97 ** 65.48 70.25 -2.88E-04 - 5.45 9

PPI-03 10 mM histidine 6.5 70 62.78 69.02 77.19 ** 67.71 71.07 1.70E-04 - 5.34 4

PPI-03 10 mM histidine 7 70 54.22 70.37 77.17 ** 57.40 70.45 -6.28E-03 - 5.38 6

PPI-03 10 mM histidine 7.5 70 58.01 70.74 77.06 ** 56.49 60.87 1.66E-03 - 5.38 5

PPI-03 10 mM tris 8 70 59.03 70.90 76.94 ** 57.21 ** *** - 5.48 14

PPI-03 10 mM tris 9 70 60.42 70.84 76.32 ** 56.20 ** *** - 5.42 10

PPI-03 10 mM histidine 5 140 52.53 58.09 74.16 ** 56.82 65.89 -5.39E-03 - 5.40 4

PPI-03 10 mM histidine 5.5 140 56.62 62.08 75.94 ** 61.01 70.47 -3.44E-03 - 5.42 5

PPI-03 10 mM histidine 6 140 60.48 66.08 77.24 ** 64.76 69.15 2.47E-03 - 5.44 8

PPI-03 10 mM histidine 6.5 140 63.23 69.17 77.53 ** 67.61 70.82 -5.96E-03 - 5.41 5

PPI-03 10 mM histidine 7 140 55.36 70.22 77.49 ** 68.49 59.86 -1.02E-03 - 5.41 5

PPI-03 10 mM histidine 7.5 140 54.75 70.69 77.29 ** 68.59 70.96 -6.00E-03 - 5.46 9

PPI-03 10 mM tris 8 140 55.49 70.68 77.23 ** 68.84 70.3 *** - 5.40 4

PPI-03 10 mM tris 9 140 59.60 70.92 76.80 ** 68.36 69.38 *** - 5.62 10

PPI-04 10 mM histidine 5 0 52.77 61.64 * 50.52 61.75 65 3.19E-02 13.97 5.48 14

PPI-04 10 mM histidine 5.5 0 54.00 63.15 * 54.51 64.47 63.99 1.04E-02 8.40 5.71 24

PPI-04 10 mM histidine 6 0 54.75 64.24 74.90 56.50 65.30 63.49 3.80E-02 8.67 5.48 11

PPI-04 10 mM histidine 6.5 0 52.65 64.98 75.31 56.68 65.32 59.83 2.68E-02 6.94 5.43 9

PPI-04 10 mM histidine 7 0 54.41 65.19 * 55.83 65.38 58.73 -1.02E-02 2.70 5.83 27

PPI-04 10 mM histidine 7.5 0 53.31 65.59 * 56.81 65.43 55.7 -9.64E-03 ** 6.17 38

PPI-04 10 mM tris 8 0 53.41 66.53 * 56.40 65.52 51.71 *** 2.46 7.15 9

PPI-04 10 mM tris 9 0 55.27 66.95 * 52.70 66.08 44.88 *** -5.11 6.77 7

PPI-04 10 mM histidine 5 70 52.49 58.06 68.42 44.61 57.07 59.65 -3.97E-03 - 5.78 12

PPI-04 10 mM histidine 5.5 70 53.31 61.17 69.70 50.11 61.42 55.94 -5.45E-03 - 5.60 8

PPI-04 10 mM histidine 6 70 54.67 63.75 * 53.65 64.65 55.6 -5.64E-03 - 3.89 21

PPI-04 10 mM histidine 6.5 70 55.25 65.27 * 54.54 65.60 55.62 -2.76E-03 - 5.47 5

PPI-04 10 mM histidine 7 70 55.75 66.24 * 54.89 66.33 54.19 -2.44E-03 - 5.65 5

PPI-04 10 mM histidine 7.5 70 56.11 66.55 * 56.35 66.45 54.62 -9.06E-03 - 5.70 11

PPI-04 10 mM tris 8 70 56.56 66.98 * 53.96 66.67 55 *** - 5.66 4

PPI-04 10 mM tris 9 70 55.50 67.08 * 55.39 66.63 51.66 *** - 5.79 14

PPI-04 10 mM histidine 5 140 52.88 57.31 67.91 43.09 56.28 50.63 -4.91E-03 - 5.77 11

PPI-04 10 mM histidine 5.5 140 53.08 60.52 69.02 46.99 59.54 53.44 -6.17E-03 - 5.62 14

PPI-04 10 mM histidine 6 140 55.98 63.35 * 51.39 63.44 53.67 -8.87E-03 - 5.57 7

PPI-04 10 mM histidine 6.5 140 56.17 65.03 * 53.43 65.01 54.28 -1.15E-02 - 5.74 10

PPI-04 10 mM histidine 7 140 57.01 60.67 * 57.28 65.63 54.43 -1.39E-02 - 5.62 5

PPI-04 10 mM histidine 7.5 140 56.34 66.07 * 54.92 66.35 53.52 -1.40E-02 - 5.63 6

PPI-04 10 mM tris 8 140 54.83 66.59 * 55.90 66.39 53.61 *** - 5.62 4

PPI-04 10 mM tris 9 140 55.03 66.50 * 55.59 66.49 52.73 *** - 5.94 19
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Protein Buffer pH
NaCl 

(mM)

Ton,int 

(⁰C)

Tm1,int 

(⁰C)

Tm2,int 

(⁰C)

Ton,ex 

(⁰C)

Tm1,ex 

(⁰C)

Tagg 

(⁰C)
kD ζ (mV)

Rh 

(nm)

PD 

(%)

PPI-08 10 mM histidine 5 0 49.65 67.96 * 49.23 61.15 57.99 2.74E-02 10.03 6.84 31

PPI-08 10 mM histidine 5.5 0 58.51 68.41 * 49.81 63.36 58.73 3.56E-02 9.46 6.37 9

PPI-08 10 mM histidine 6 0 64.15 75.71 * 52.85 64.97 58.17 5.11E-02 9.38 6.96 11

PPI-08 10 mM histidine 6.5 0 64.61 75.51 * 53.56 65.37 60.27 4.87E-02 8.47 6.02 16

PPI-08 10 mM histidine 7 0 64.42 74.71 * 54.07 66.05 56.03 6.64E-03 6.45 5.64 10

PPI-08 10 mM histidine 7.5 0 64.20 74.31 * 54.11 65.64 59.16 5.06E-02 4.41 6.17 45

PPI-08 10 mM tris 8 0 63.24 74.10 * 54.13 65.34 57.09 *** 4.14 6.20 1

PPI-08 10 mM tris 9 0 61.47 73.55 * 53.40 65.07 50.51 *** -0.38 6.44 7

PPI-08 10 mM histidine 5 70 50.72 64.58 * 45.84 58.58 52.16 -5.59E-03 - 6.70 16

PPI-08 10 mM histidine 5.5 70 55.42 65.90 * 49.94 61.49 53.23 -6.84E-03 - 6.57 13

PPI-08 10 mM histidine 6 70 62.21 74.74 * 52.96 64.39 54.18 -8.39E-03 - 6.29 4

PPI-08 10 mM histidine 6.5 70 62.53 74.77 * 51.54 63.79 54.54 -9.14E-03 - 6.37 10

PPI-08 10 mM histidine 7 70 63.03 74.84 * 53.54 65.40 54.77 -2.99E-03 - 6.31 4

PPI-08 10 mM histidine 7.5 70 63.16 74.85 * 53.28 65.64 56.71 -7.03E-03 - 6.31 4

PPI-08 10 mM tris 8 70 62.65 74.75 * 52.37 66.45 56.47 *** - 6.31 3

PPI-08 10 mM tris 9 70 61.48 72.23 * 54.35 67.91 55.98 *** - 6.44 8

PPI-08 10 mM histidine 5 140 50.53 63.77 * 41.32 56.44 ** -5.65E-03 - 6.40 5

PPI-08 10 mM histidine 5.5 140 54.37 65.36 * 47.18 60.32 52.14 -6.89E-03 - 6.41 4

PPI-08 10 mM histidine 6 140 61.60 74.16 * 50.78 62.99 53.66 -9.97E-03 - 6.43 5

PPI-08 10 mM histidine 6.5 140 61.73 74.56 * 52.07 65.22 54.18 -1.04E-02 - 6.38 4

PPI-08 10 mM histidine 7 140 62.84 75.20 * 51.76 65.42 55.43 -9.40E-03 - 6.38 4

PPI-08 10 mM histidine 7.5 140 62.61 74.93 * 52.33 65.99 55.3 -1.29E-02 - 6.42 6

PPI-08 10 mM tris 8 140 62.97 74.00 * 53.07 67.15 54.92 *** - 7.54 8

PPI-08 10 mM tris 9 140 60.95 72.81 * 53.20 68.54 54.55 *** - 6.44 3

PPI-10 10 mM histidine 5 0 55.57 62.97 82.15 49.34 58.67 33.41 3.00E-02 12.73 6.00 31

PPI-10 10 mM histidine 5.5 0 59.88 65.91 82.65 54.56 63.46 50 4.74E-02 9.86 5.83 24

PPI-10 10 mM histidine 6 0 61.96 69.11 82.88 58.23 67.68 70 1.44E-01 6.77 5.23 8

PPI-10 10 mM histidine 6.5 0 63.44 71.44 82.57 60.56 69.72 70 7.52E-02 7.15 5.21 15

PPI-10 10 mM histidine 7 0 62.68 71.82 82.22 59.60 70.13 74.91 7.25E-04 6.42 4.90 16

PPI-10 10 mM histidine 7.5 0 63.39 72.01 82.10 58.56 70.36 66.48 2.47E-02 4.31 5.15 23

PPI-10 10 mM tris 8 0 63.47 71.73 82.66 56.90 69.85 71.45 *** 3.88 5.47 4

PPI-10 10 mM tris 9 0 63.36 71.16 80.77 52.92 69.89 70 *** -0.54 5.60 5

PPI-10 10 mM histidine 5 70 52.98 59.10 80.37 42.76 53.39 35 -2.97E-03 - 6.07 22

PPI-10 10 mM histidine 5.5 70 56.52 62.74 80.86 53.49 61.66 65 -4.52E-03 - 5.75 17

PPI-10 10 mM histidine 6 70 60.52 66.48 81.38 55.70 65.55 68.91 -1.04E-02 - 5.57 7

PPI-10 10 mM histidine 6.5 70 62.47 69.39 82.56 58.36 67.79 65 -3.23E-03 - 5.60 9

PPI-10 10 mM histidine 7 70 62.91 70.35 82.40 56.26 68.82 66.05 -1.90E-04 - 5.53 5

PPI-10 10 mM histidine 7.5 70 62.80 70.71 82.06 55.04 69.03 42.32 -1.57E-03 - 5.58 6

PPI-10 10 mM tris 8 70 64.02 70.92 82.10 55.53 68.78 ** *** - 5.71 13

PPI-10 10 mM tris 9 70 63.76 70.47 80.73 52.64 68.90 70.56 *** - 5.57 7

PPI-10 10 mM histidine 5 140 53.27 58.20 79.16 43.28 53.17 40 -2.32E-03 - 5.77 16

PPI-10 10 mM histidine 5.5 140 57.01 62.16 80.38 50.81 59.81 66.64 -1.14E-02 - ** **

PPI-10 10 mM histidine 6 140 60.44 65.79 81.68 54.32 64.52 63.44 -8.23E-03 - 6.87 25

PPI-10 10 mM histidine 6.5 140 62.66 68.78 82.16 57.85 67.12 71.57 -5.58E-02 - 5.71 10

PPI-10 10 mM histidine 7 140 63.71 69.85 82.06 ** 68.57 68.91 -8.53E-03 - 5.60 7

PPI-10 10 mM histidine 7.5 140 63.27 70.35 81.82 54.55 69.37 ** -1.22E-02 - 5.60 6

PPI-10 10 mM tris 8 140 63.98 70.57 81.53 53.25 68.98 51.91 *** - 5.63 10

PPI-10 10 mM tris 9 140 63.43 69.94 80.15 53.85 69.00 64.99 *** - 5.67 9
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Protein Buffer pH
NaCl 

(mM)

Ton,int 

(⁰C)

Tm1,int 

(⁰C)

Tm2,int 

(⁰C)

Ton,ex 

(⁰C)

Tm1,ex 

(⁰C)

Tagg 

(⁰C)
kD ζ (mV)

Rh 

(nm)

PD 

(%)

PPI-13 10 mM histidine 5 0 52.54 56.28 81.44 42.86 54.85 75 3.91E-02 10.46 5.39 10

PPI-13 10 mM histidine 5.5 0 55.99 60.01 83.00 50.40 58.37 78.69 4.27E-02 8.78 5.37 7

PPI-13 10 mM histidine 6 0 58.17 62.82 83.28 52.60 61.00 75.88 8.63E-02 6.26 5.44 18

PPI-13 10 mM histidine 6.5 0 59.12 64.13 82.60 50.66 61.40 65 8.41E-02 5.49 5.23 17

PPI-13 10 mM histidine 7 0 59.14 64.57 82.18 47.42 56.16 65 9.35E-03 3.21 5.31 22

PPI-13 10 mM histidine 7.5 0 58.85 64.46 81.70 50.92 56.60 73.63 4.50E-02 1.78 5.16 34

PPI-13 10 mM tris 8 0 58.64 64.14 81.64 50.88 58.63 42.89 *** 0.60 5.76 12

PPI-13 10 mM tris 9 0 57.57 63.44 81.14 49.99 57.12 69.95 *** -3.36 5.78 6

PPI-13 10 mM histidine 5 70 50.01 53.64 79.15 41.60 52.60 59.3 -5.65E-03 - 5.58 6

PPI-13 10 mM histidine 5.5 70 53.88 57.65 81.21 47.24 57.14 68.11 -1.59E-03 - 5.71 7

PPI-13 10 mM histidine 6 70 56.89 61.08 82.23 51.30 59.31 60 -2.88E-04 - 5.78 8

PPI-13 10 mM histidine 6.5 70 58.66 63.25 82.48 53.18 60.54 55 1.70E-04 - 5.72 6

PPI-13 10 mM histidine 7 70 59.11 63.97 82.51 51.79 62.04 45.21 -6.28E-03 - 5.79 11

PPI-13 10 mM histidine 7.5 70 59.08 64.32 82.04 47.10 57.19 68.13 1.66E-03 - 5.95 13

PPI-13 10 mM tris 8 70 59.33 64.37 81.95 48.67 63.23 73.3 *** - 5.95 10

PPI-13 10 mM tris 9 70 58.53 63.96 80.38 45.93 55.99 70.05 *** - 6.14 24

PPI-13 10 mM histidine 5 140 49.44 52.90 77.84 42.86 51.62 62.13 -5.39E-03 - 5.56 5

PPI-13 10 mM histidine 5.5 140 53.72 57.20 80.40 47.65 56.08 64.03 -3.44E-03 - 5.97 28

PPI-13 10 mM histidine 6 140 56.74 60.61 81.97 51.16 59.52 64.49 2.20E-03 - 5.81 7

PPI-13 10 mM histidine 6.5 140 58.50 62.93 82.46 53.83 62.02 65.64 -5.96E-03 - 5.77 7

PPI-13 10 mM histidine 7 140 59.53 64.22 82.19 55.59 63.26 55.44 -1.02E-03 - 5.88 13

PPI-13 10 mM histidine 7.5 140 59.95 64.57 81.55 56.13 63.24 65 -6.00E-03 - 5.76 6

PPI-13 10 mM tris 8 140 59.58 64.67 81.49 54.84 63.11 66.06 *** - 6.48 14

PPI-13 10 mM tris 9 140 59.70 64.51 79.91 55.29 63.35 72.77 *** - 5.82 7

PPI-17 10 mM histidine 5 0 56.78 62.71 76.83 59.96 60.00 2.49E-02 4.98 5.90 44

PPI-17 10 mM histidine 5.5 0 59.43 66.09 77.32 47.98 64.68 67.68 2.87E-02 5.97 6.01 54

PPI-17 10 mM histidine 6 0 55.25 69.55 77.92 54.86 67.96 62.33 2.30E-02 4.24 6.58 48

PPI-17 10 mM histidine 6.5 0 61.09 77.93 * 59.33 69.52 68.90 2.05E-02 3.37 5.78 34

PPI-17 10 mM histidine 7 0 62.15 77.35 * 58.41 69.88 63.10 5.76E-03 1.19 5.51 30

PPI-17 10 mM histidine 7.5 0 62.16 76.94 * 59.51 70.04 62.47 -8.28E-03 0.89 6.16 42

PPI-17 10 mM tris 8 0 *** *** *** 58.29 70.31 63.79 *** 0.68 6.10 39

PPI-17 10 mM tris 9 0 *** *** *** 58.91 72.04 55.00 *** -3.14 6.31 43

PPI-17 10 mM histidine 5 70 52.22 58.02 70.55 38.75 54.90 62.86 -1.76E-03 - 6.23 41

PPI-17 10 mM histidine 5.5 70 53.72 61.88 75.78 44.98 61.53 61.21 -2.14E-03 - 8.02 50

PPI-17 10 mM histidine 6 70 59.64 66.57 76.96 51.41 65.45 65.43 -3.76E-03 - 6.19 40

PPI-17 10 mM histidine 6.5 70 57.26 70.24 77.65 57.01 68.02 63.72 -3.23E-03 - 7.82 48

PPI-17 10 mM histidine 7 70 60.06 77.37 * 57.23 68.59 62.62 1.04E-02 - 6.88 48

PPI-17 10 mM histidine 7.5 70 61.17 77.00 * 58.27 69.44 65.67 -3.47E-03 - 6.66 48

PPI-17 10 mM tris 8 70 *** *** *** 58.48 69.43 65.34 *** - 6.26 30

PPI-17 10 mM tris 9 70 *** *** *** 57.38 69.25 61.97 *** - 6.56 50

PPI-17 10 mM histidine 5 140 50.70 56.24 69.27 39.78 53.94 54.37 -4.25E-03 - 6.55 50

PPI-17 10 mM histidine 5.5 140 54.90 61.01 75.26 41.88 59.00 58.01 -3.10E-03 - 6.49 50

PPI-17 10 mM histidine 6 140 58.51 65.49 76.28 49.68 63.62 65.94 -5.93E-03 - 6.50 45

PPI-17 10 mM histidine 6.5 140 59.72 69.44 77.09 54.37 67.48 66.13 -5.99E-03 - 6.30 47

PPI-17 10 mM histidine 7 140 59.21 77.00 * 54.37 68.36 63.53 -5.96E-03 - 6.24 52

PPI-17 10 mM histidine 7.5 140 60.88 76.81 * 55.66 68.55 65.36 -1.00E-02 - 6.29 34

PPI-17 10 mM tris 8 140 *** *** *** 57.78 68.71 65.81 *** - 8.68 50

PPI-17 10 mM tris 9 140 *** *** *** 56.48 68.75 64.33 *** - 7.08 50
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Protein Buffer pH
NaCl 

(mM)

Ton,int 

(⁰C)

Tm1,int 

(⁰C)

Tm2,int 

(⁰C)

Ton,ex 

(⁰C)

Tm1,ex 

(⁰C)

Tagg 

(⁰C)
kD ζ (mV)

Rh 

(nm)

PD 

(%)

PPI-18 10 mM histidine 5 0 39.59 50.20 55.50 ^ ^ 39.28 -9.78E-03 -0.46 5.76 19

PPI-18 10 mM histidine 5.5 0 44.40 51.11 55.46 ^ ^ 40.77 -4.38E-03 -2.96 5.67 16

PPI-18 10 mM histidine 6 0 38.07 44.99 * ^ ^ 43.76 1.29E-02 -6.41 5.74 17

PPI-18 10 mM histidine 6.5 0 41.26 48.21 60.07 ^ ^ 48.1 2.35E-02 -8.09 5.50 18

PPI-18 10 mM histidine 7 0 42.75 50.62 63.43 ^ ^ 45.79 2.03E-02 -12.20 5.12 24

PPI-18 10 mM histidine 7.5 0 40.55 52.68 65.79 ^ ^ 52.74 4.50E-02 -12.68 4.75 40

PPI-18 10 mM tris 8 0 39.14 47.85 53.82 ^ ^ 51.18 *** -14.85 4.97 9

PPI-18 10 mM tris 9 0 37.22 46.27 54.20 ^ ^ 56.88 *** -14.64 3.62 37

PPI-18 10 mM histidine 5 70 46.02 53.43 * ^ ^ 36.16 -5.76E-03 - 7.97 34

PPI-18 10 mM histidine 5.5 70 46.96 53.47 * ^ ^ 44 -4.93E-03 - 6.53 30

PPI-18 10 mM histidine 6 70 37.81 44.94 56.65 ^ ^ 47.93 2.57E-03 - 7.63 42

PPI-18 10 mM histidine 6.5 70 41.55 48.45 60.22 ^ ^ 47.61 -1.86E-03 - 6.47 39

PPI-18 10 mM histidine 7 70 44.20 50.88 65.00 ^ ^ 44.93 2.86E-03 - 8.55 46

PPI-18 10 mM histidine 7.5 70 41.77 52.34 67.27 ^ ^ 49.32 5.53E-03 - 6.17 38

PPI-18 10 mM tris 8 70 38.70 53.34 * ^ ^ 47.35 *** - 5.64 14

PPI-18 10 mM tris 9 70 37.73 46.65 53.85 ^ ^ 49.21 *** - 5.74 24

PPI-18 10 mM histidine 5 140 46.24 53.27 * ^ ^ 36.59 -1.35E-02 - 9.55 41

PPI-18 10 mM histidine 5.5 140 47.29 53.35 * ^ ^ 40.98 3.01E-04 - 7.35 25

PPI-18 10 mM histidine 6 140 59.05 65.86 * ^ ^ 44.96 -1.01E-04 - 5.68 36

PPI-18 10 mM histidine 6.5 140 59.05 65.86 * ^ ^ 48.64 -2.75E-03 - 5.74 15

PPI-18 10 mM histidine 7 140 62.75 65.62 * ^ ^ 49.1 1.19E-03 - 6.52 46

PPI-18 10 mM histidine 7.5 140 62.75 65.62 * ^ ^ 49.17 -5.26E-04 - 5.98 24

PPI-18 10 mM tris 8 140 62.32 65.75 * ^ ^ 49.13 *** - 5.65 9

PPI-18 10 mM tris 9 140 62.32 65.75 * ^ ^ 48.63 *** - 5.91 25

PPI-30 10 mM histidine 5 0 59.05 65.86 * ~~~~ ~~~~ 55.59 ~ 8.36 3.03 21.73

PPI-30 10 mM histidine 5.5 0 59.77 65.80 * ~~~~ ~~~~ ^^^ ~ 5.53 ^^^ ^^^

PPI-30 10 mM histidine 6 0 ^^^ ^^^ * ~~~~ ~~~~ ^^^ ~ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 6.5 0 ^^^ ^^^ * ~~~~ ~~~~ 56 ~ ^^^ 6.07 33.20

PPI-30 10 mM histidine 7 0 62.75 65.61 * ~~~~ ~~~~ 57.49 ~ -9.70 4.80 34.30

PPI-30 10 mM histidine 7.5 0 62.32 65.75 * ~~~~ ~~~~ 58.4 ~ -11.49 ** **

PPI-30 10 mM tris 8 0 62.62 66.14 * ~~~~ ~~~~ 58.33 ~ -18.45 4.20 30.07

PPI-30 10 mM tris 9 0 61.45 64.88 * ~~~~ ~~~~ 48.6 ~ - 2.67 31.57

PPI-30 10 mM histidine 5 70 56.34 63.75 * ~~~~ ~~~~ ** ~ - ** **

PPI-30 10 mM histidine 5.5 70 58.53 64.43 * ~~~~ ~~~~ ^^^ ~ - ^^^ ^^^

PPI-30 10 mM histidine 6 70 ^^^ ^^^ * ~~~~ ~~~~ ^^^ ~ - ^^^ ^^^

PPI-30 10 mM histidine 6.5 70 ^^^ ^^^ * ~~~~ ~~~~ 54.29 ~ - 5.03 16.93

PPI-30 10 mM histidine 7 70 63.32 66.88 * ~~~~ ~~~~ 54.87 ~ - 5.37 19.00

PPI-30 10 mM histidine 7.5 70 63.33 66.98 * ~~~~ ~~~~ 55.62 ~ - 5.77 15.20

PPI-30 10 mM tris 8 70 63.20 66.96 * ~~~~ ~~~~ 55.83 ~ - 5.70 19.43

PPI-30 10 mM tris 9 70 62.03 66.16 * ~~~~ ~~~~ 48.4 ~ - 2.47 13.10

PPI-30 10 mM histidine 5 140 56.62 62.60 * ~~~~ ~~~~ ** ~ - ** **

PPI-30 10 mM histidine 5.5 140 58.40 63.80 * ~~~~ ~~~~ ^^^ ~ - ^^^ ^^^

PPI-30 10 mM histidine 6 140 ^^^ ^^^ * ~~~~ ~~~~ ^^^ ~ - ^^^ ^^^

PPI-30 10 mM histidine 6.5 140 ^^^ ^^^ * ~~~~ ~~~~ 52.88 ~ - 4.40 23.23

PPI-30 10 mM histidine 7 140 63.06 67.08 * ~~~~ ~~~~ 52.91 ~ - 4.50 19.03

PPI-30 10 mM histidine 7.5 140 63.07 67.15 * ~~~~ ~~~~ 54.3 ~ - 5.13 21.70

PPI-30 10 mM tris 8 140 63.05 67.09 * ~~~~ ~~~~ 54.19 ~ - 5.20 21.10

PPI-30 10 mM tris 9 140 61.86 66.35 * ~~~~ ~~~~ ** ~ - ** **
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Protein Buffer pH
NaCl 

(mM)

Ton,int 

(⁰C)

Tm1,int 

(⁰C)

Tm2,int 

(⁰C)

Ton,ex 

(⁰C)

Tm1,ex 

(⁰C)

Tagg 

(⁰C)
kD ζ (mV)

Rh 

(nm)

PD 

(%)

PPI-44 10 mM histidine 5 0 51.92 61.90 67.77 51.69 60.09 69.32 1.46E-03 11.54 4.23 18

PPI-44 10 mM histidine 5.5 0 57.42 66.06 73.23 54.55 64.25 63.16 -3.26E-04 4.05 4.88 39

PPI-44 10 mM histidine 6 0 57.99 69.05 75.43 56.49 67.42 56.48 -9.84E-04 -3.01 4.14 41

PPI-44 10 mM histidine 6.5 0 53.68 80.32 * ~~ ~~ 55.00 -8.85E-03 -4.49 4.59 41

PPI-44 10 mM histidine 7 0 59.03 78.95 * ~~ ~~ 59.94 -4.08E-03 -10.21 4.84 39

PPI-44 10 mM histidine 7.5 0 73.41 85.54 * ~~ ~~ 65.34 2.02E-02 -12.20 4.57 43

PPI-44 10 mM tris 8 0 77.48 87.19 * ~~ ~~ 61.21 *** - 4.70 49

PPI-44 10 mM tris 9 0 76.03 88.20 * ~~ ~~ ** *** - 4.13 44

PPI-44 10 mM histidine 5 70 36.85 40.80 59.82 47.69 58.08 58.51 -1.45E-02 - 4.73 27

PPI-44 10 mM histidine 5.5 70 56.60 65.90 * ~~ 63.76 61.13 -1.42E-02 - 4.22 17

PPI-44 10 mM histidine 6 70 61.80 69.82 * 55.87 67.93 60.00 2.03E-03 - 4.10 12

PPI-44 10 mM histidine 6.5 70 65.36 73.12 77.06 ~~ ~~ 64.59 -4.23E-03 - 4.13 13

PPI-44 10 mM histidine 7 70 65.34 82.60 * ~~ ~~ 65.45 -1.61E-03 - 5.22 27

PPI-44 10 mM histidine 7.5 70 70.98 84.57 * ~~ ~~ 62.00 -3.44E-03 - 5.54 40

PPI-44 10 mM tris 8 70 75.56 85.96 * ~~ ~~ 61.74 *** - 4.62 44

PPI-44 10 mM tris 9 70 57.79 85.88 * ~~ ~~ 57.53 *** - 4.84 50

PPI-44 10 mM histidine 5 140 28.79 39.84 58.44 39.11 57.22 57.40 -1.42E-02 - 4.49 27

PPI-44 10 mM histidine 5.5 140 56.20 65.30 * 51.83 63.50 60.50 -1.16E-02 - 4.29 17

PPI-44 10 mM histidine 6 140 61.32 69.63 * 56.25 67.80 60.00 -4.14E-03 - 4.30 30

PPI-44 10 mM histidine 6.5 140 66.28 73.22 76.43 ~~ ~~ 64.70 -7.51E-03 - 4.45 35

PPI-44 10 mM histidine 7 140 61.41 72.95 80.37 ~~ ~~ 66.84 -2.34E-03 - 4.28 28

PPI-44 10 mM histidine 7.5 140 66.63 83.73 * ~~ ~~ 62.75 -4.19E-03 - 6.40 31

PPI-44 10 mM tris 8 140 72.52 85.06 * ~~ ~~ 61.13 *** - 4.69 33

PPI-44 10 mM tris 9 140 72.48 85.18 * ~~ ~~ 57.85 *** - 4.77 41

PPI-45 10 mM histidine 5 0 34.61 57.77 * 45.95 54.38 37.56 ~ ~~ 6.82 50

PPI-45 10 mM histidine 5.5 0 37.36 58.46 * 45.75 56.16 39.37 ~ ~~ 6.77 50

PPI-45 10 mM histidine 6 0 39.43 58.75 * 47.81 56.37 42.52 ~ ~~ 17.24 50

PPI-45 10 mM histidine 6.5 0 39.45 58.92 * 47.56 57.04 46.50 ~ ~~ 20.41 50

PPI-45 10 mM histidine 7 0 43.78 58.88 * 49.71 56.95 46.36 ~ ~~ 19.68 50

PPI-45 10 mM histidine 7.5 0 52.20 59.33 * 50.66 57.66 46.62 ~ ~~ 22.26 50

PPI-45 10 mM tris 8 0 54.58 59.39 * 48.34 56.12 48.27 ~ ~~ 4.29 50

PPI-45 10 mM tris 9 0 47.14 53.95 * 46.20 54.35 50.58 ~ ~~ 16.48 50

PPI-45 10 mM histidine 5 70 35.38 57.70 * 43.80 54.47 39.62 ~ - 5.31 50

PPI-45 10 mM histidine 5.5 70 40.50 58.51 * 45.65 55.78 42.10 ~ - 4.99 50

PPI-45 10 mM histidine 6 70 40.46 58.65 * 46.22 57.44 44.63 ~ - 11.61 50

PPI-45 10 mM histidine 6.5 70 39.41 58.79 * 47.85 56.94 46.44 ~ - 10.82 50

PPI-45 10 mM histidine 7 70 38.80 58.38 * 48.54 56.67 47.07 ~ - 5.57 50

PPI-45 10 mM histidine 7.5 70 39.48 57.89 * 48.34 56.21 47.16 ~ - 13.63 50

PPI-45 10 mM tris 8 70 47.00 56.77 * 47.73 55.78 45.62 ~ - 5.82 50

PPI-45 10 mM tris 9 70 46.25 54.90 * 45.30 53.95 46.42 ~ - 5.78 50

PPI-45 10 mM histidine 5 140 36.76 57.76 * 44.63 54.02 39.63 ~ - 5.02 50

PPI-45 10 mM histidine 5.5 140 38.49 58.61 * 45.54 56.96 42.32 ~ - 6.09 50

PPI-45 10 mM histidine 6 140 40.38 58.88 * 47.14 57.28 44.97 ~ - 6.60 50

PPI-45 10 mM histidine 6.5 140 37.86 59.04 * 46.82 57.68 46.86 ~ - 12.36 50

PPI-45 10 mM histidine 7 140 39.33 58.82 * 49.29 57.01 47.35 ~ - 4.72 50

PPI-45 10 mM histidine 7.5 140 39.74 58.30 * 48.70 56.53 46.28 ~ - 5.34 50

PPI-45 10 mM tris 8 140 47.15 57.41 * 47.88 56.00 45.72 ~ - 4.35 50

PPI-45 10 mM tris 9 140 42.65 55.92 * 45.58 54.52 46.50 ~ - 5.85 50
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Protein Buffer pH
NaCl 

(mM)

Ton,int 

(⁰C)

Tm1,int 

(⁰C)

Tm2,int 

(⁰C)

Ton,ex 

(⁰C)

Tm1,ex 

(⁰C)

Tagg 

(⁰C)
kD ζ (mV)

Rh 

(nm)

PD 

(%)

PPI-46 10 mM histidine 5 0 64.13 69.28 * 44.63 61.17 42.67 4.38E-02 ~~ 2.77 12

PPI-46 10 mM histidine 5.5 0 67.04 71.72 * 45.50 64.86 44.48 2.20E-02 ~~ 2.70 11

PPI-46 10 mM histidine 6 0 69.81 73.27 * 49.49 64.94 50.94 2.42E-02 ~~ 2.60 13

PPI-46 10 mM histidine 6.5 0 71.07 74.09 * 50.80 68.61 57.08 4.22E-02 ~~ 2.53 12

PPI-46 10 mM histidine 7 0 71.51 76.21 * 50.51 64.02 58.26 6.69E-02 ~~ 2.40 10

PPI-46 10 mM histidine 7.5 0 65.62 72.80 * 50.42 68.20 59.33 6.11E-02 ~~ 2.30 7

PPI-46 10 mM tris 8 0 64.84 72.83 * 51.10 64.26 62.13 *** ~~ 3.07 48

PPI-46 10 mM tris 9 0 62.04 71.25 * 50.71 66.53 61.58 *** ~~ 2.40 6

PPI-46 10 mM histidine 5 70 65.54 69.23 * 43.15 61.23 45.15 1.08E-01 - 2.77 10

PPI-46 10 mM histidine 5.5 70 68.40 72.20 * 48.32 61.32 46.17 3.21E-03 - 2.87 18

PPI-46 10 mM histidine 6 70 71.33 74.67 * 51.11 65.98 51.92 1.39E-03 - 2.70 9

PPI-46 10 mM histidine 6.5 70 71.80 79.22 * 51.89 66.64 56.73 2.77E-03 - 3.30 26

PPI-46 10 mM histidine 7 70 72.02 77.01 * 53.26 70.96 57.09 1.76E-02 - 2.83 17

PPI-46 10 mM histidine 7.5 70 66.04 72.24 * 53.43 70.45 57.35 1.34E-01 - 2.70 9

PPI-46 10 mM tris 8 70 64.67 71.49 * 51.12 69.68 57.70 *** - 2.90 17

PPI-46 10 mM tris 9 70 63.84 70.94 * 48.35 63.26 58.34 *** - 2.70 7

PPI-46 10 mM histidine 5 140 64.81 68.84 * 44.17 59.59 45.10 1.92E-01 - 2.83 12

PPI-46 10 mM histidine 5.5 140 68.42 72.18 * 47.61 61.42 46.94 -2.28E-03 - 2.73 9

PPI-46 10 mM histidine 6 140 71.49 74.63 * 51.82 66.43 52.48 8.20E-04 - 3.17 38

PPI-46 10 mM histidine 6.5 140 71.03 78.15 * 53.62 68.47 56.49 3.49E-03 - 2.77 11

PPI-46 10 mM histidine 7 140 72.56 77.14 * 53.86 71.17 56.71 5.39E-03 - 2.70 10

PPI-46 10 mM histidine 7.5 140 62.42 71.21 * 52.17 70.37 57.24 1.89E-03 - 2.80 10

PPI-46 10 mM tris 8 140 61.05 70.81 * 51.03 69.56 56.62 *** - 2.90 21

PPI-46 10 mM tris 9 140 60.87 68.81 * 46.86 67.66 56.70 *** - 2.80 14

PPI-49 10 mM histidine 5 0 38.62 47.07 * ~~~~ ~~~~ 66.26 1.78E-02 ~~ 3.66 12

PPI-49 10 mM histidine 5.5 0 44.83 52.75 * ~~~~ ~~~~ 62.06 2.35E-02 ~~ 3.73 14

PPI-49 10 mM histidine 6 0 48.44 56.14 * ~~~~ ~~~~ 52.86 1.98E-02 ~~ 4.58 35

PPI-49 10 mM histidine 6.5 0 49.53 57.73 * ~~~~ ~~~~ 48.38 3.61E-02 ~~ 3.44 26

PPI-49 10 mM histidine 7 0 50.04 58.63 * ~~~~ ~~~~ 51.34 5.12E-02 ~~ 2.70 15

PPI-49 10 mM histidine 7.5 0 50.92 59.61 * ~~~~ ~~~~ 48 4.44E-02 ~~ 2.77 26

PPI-49 10 mM tris 8 0 52.17 59.77 * ~~~~ ~~~~ 52.37 *** ~~ 3.47 9

PPI-49 10 mM tris 9 0 44.08 54.41 * ~~~~ ~~~~ 65 *** ~~ 3.33 24

PPI-49 10 mM histidine 5 70 40.57 48.76 * ~~~~ ~~~~ 70 5.78E-03 - 3.93 30

PPI-49 10 mM histidine 5.5 70 51.07 57.73 * ~~~~ ~~~~ 53.07 5.52E-03 - 3.72 25

PPI-49 10 mM histidine 6 70 56.49 62.90 * ~~~~ ~~~~ 51.74 5.10E-03 - 3.66 20

PPI-49 10 mM histidine 6.5 70 59.05 65.26 * ~~~~ ~~~~ 50.56 4.38E-03 - 4.14 26

PPI-49 10 mM histidine 7 70 59.84 65.57 * ~~~~ ~~~~ 54.67 7.89E-03 - 3.66 11

PPI-49 10 mM histidine 7.5 70 58.99 64.31 * ~~~~ ~~~~ 56.27 8.05E-03 - 3.64 13

PPI-49 10 mM tris 8 70 59.10 64.26 * ~~~~ ~~~~ 54.25 *** - 3.83 20

PPI-49 10 mM tris 9 70 51.36 59.40 * ~~~~ ~~~~ 55.4 *** - 3.87 21

PPI-49 10 mM histidine 5 140 41.90 50.00 * ~~~~ ~~~~ 74.51 1.77E-03 - 4.32 23

PPI-49 10 mM histidine 5.5 140 51.15 57.86 * ~~~~ ~~~~ 53.26 2.33E-02 - 3.79 21

PPI-49 10 mM histidine 6 140 57.47 63.62 * ~~~~ ~~~~ 50.24 9.13E-04 - 3.82 19

PPI-49 10 mM histidine 6.5 140 60.83 66.84 * ~~~~ ~~~~ 51.51 1.55E-03 - 3.72 14

PPI-49 10 mM histidine 7 140 62.01 67.42 * ~~~~ ~~~~ 50 6.38E-03 - 3.57 18

PPI-49 10 mM histidine 7.5 140 61.06 65.99 * ~~~~ ~~~~ 50 8.56E-03 - 3.58 10

PPI-49 10 mM tris 8 140 60.74 65.54 * ~~~~ ~~~~ 54.86 *** - 3.71 19

PPI-49 10 mM tris 9 140 55.20 61.53 * ~~~~ ~~~~ 56.04 *** - 3.96 24
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Protein Buffer pH
dG1 

(kcal/mol)
m1 Cm1 (M)

dG2 

(kcal/mol)
m2 Cm2 (M) D0 (cm2/s)

PEGTMP 

(%)

PPI-01 10 mM histidine 5 6.82 4.79 1.42 7.45 2.88 2.58 4.35E-07 #

PPI-01 10 mM histidine 5.5 8.63 5.12 1.69 6.05 2.23 2.71 3.47E-07 ***

PPI-01 10 mM histidine 6 8.71 5.26 1.65 4.21 1.82 2.31 2.33E-07 2.8

PPI-01 10 mM histidine 6.5 8.83 5.23 1.69 3.93 1.66 2.37 1.69E-07 ***

PPI-01 10 mM histidine 7 9.34 5.02 1.86 4.6 1.74 2.65 4.58E-07 1.62

PPI-01 10 mM histidine 7.5 8.54 4.63 1.84 6.25 2.06 3.04 3.43E-07 ***

PPI-01 10 mM tris 8 7.86 4.07 1.93 7.26 2.62 2.77 *** 0

PPI-01 10 mM tris 9 5.22 2.4 2.17 12.77 4.48 2.85 *** 1.7

PPI-01 10 mM histidine 5 5.94 4.05 1.47 7.94 2.86 2.78 4.44E-07 3.52

PPI-01 10 mM histidine 5.5 7.14 4.58 1.56 5.54 2.19 2.54 4.52E-07 ***

PPI-01 10 mM histidine 6 8.89 4.88 1.82 5.02 1.79 2.8 4.59E-07 3.62

PPI-01 10 mM histidine 6.5 9.21 4.94 1.86 4.71 1.67 2.82 4.48E-07 ***

PPI-01 10 mM histidine 7 8.61 4.77 1.81 5.23 1.83 2.85 3.41E-07 3.8

PPI-01 10 mM histidine 7.5 8.40 4.36 1.93 7.53 2.27 3.31 4.44E-07 ***

PPI-01 10 mM tris 8 7.60 3.72 2.04 8.91 2.99 2.98 *** 0

PPI-01 10 mM tris 9 4.06 1.73 2.34 15.8 5.26 3 *** 3.72

PPI-01 10 mM histidine 5 6.40 4.27 1.5 7.34 2.75 2.66 4.52E-07 3.52

PPI-01 10 mM histidine 5.5 8.65 5.36 1.61 5.81 2.12 2.74 4.46E-07 ***

PPI-01 10 mM histidine 6 10.31 6.06 1.7 4.41 1.73 2.54 4.52E-07 3.6

PPI-01 10 mM histidine 6.5 11.09 6.37 1.74 4.09 1.59 2.57 4.52E-07 ***

PPI-01 10 mM histidine 7 11.73 6.31 1.86 4.45 1.69 2.63 4.46E-07 6.65

PPI-01 10 mM histidine 7.5 10.54 5.86 1.8 5.73 2.03 2.82 4.11E-07 ***

PPI-01 10 mM tris 8 8.88 5.02 1.77 7.16 2.62 2.73 *** 0

PPI-01 10 mM tris 9 5.20 2.21 2.36 13.22 4.52 2.92 *** 2.82

PPI-02 10 mM histidine 5 4.71 2.44 1.93 11.24 3.13 3.59 4.29E-07 #

PPI-02 10 mM histidine 5.5 4.67 2.06 2.27 13.91 3.48 4 4.21E-07 ***

PPI-02 10 mM histidine 6 4.02 1.77 2.27 14.56 3.7 3.93 4.16E-07 #

PPI-02 10 mM histidine 6.5 3.77 1.6 2.36 14.55 3.81 3.82 4.56E-07 ***

PPI-02 10 mM histidine 7 3.66 1.54 2.38 15.06 3.79 3.97 4.33E-07 #

PPI-02 10 mM histidine 7.5 3.78 1.58 2.39 13.96 3.66 3.81 4.88E-07 ***

PPI-02 10 mM tris 8 3.92 1.73 2.27 10.98 3.41 3.22 *** 3.77

PPI-02 10 mM tris 9 4.91 2.36 2.08 8.84 2.55 3.47 *** ***

PPI-02 10 mM histidine 5 2.87 1.23 2.34 19.37 4.97 3.9 4.23E-07 12.04

PPI-02 10 mM histidine 5.5 3.28 1.48 2.22 15.88 4.07 3.9 4.23E-07 ***

PPI-02 10 mM histidine 6 3.93 1.69 2.32 13.76 3.36 4.1 4.16E-07 7.65

PPI-02 10 mM histidine 6.5 4.27 1.87 2.28 11.38 2.81 4.05 4.37E-07 ***

PPI-02 10 mM histidine 7 4.39 2.01 2.18 8.96 2.44 3.67 3.49E-07 **

PPI-02 10 mM histidine 7.5 4.64 2.11 2.2 8.24 2.25 3.66 4.33E-07 ***

PPI-02 10 mM tris 8 4.89 2.18 2.25 7.98 2.24 3.56 *** 4.64

PPI-02 10 mM tris 9 4.70 2.19 2.14 9.47 2.74 3.46 *** **

PPI-02 10 mM histidine 5 2.82 1.24 2.27 15.62 4.09 3.82 3.94E-07 3.62

PPI-02 10 mM histidine 5.5 3.46 1.44 2.4 16.04 4 4.02 3.96E-07 ***

PPI-02 10 mM histidine 6 3.78 1.61 2.35 15.35 3.87 3.97 4.36E-07 3.43

PPI-02 10 mM histidine 6.5 4.06 1.75 2.32 14.16 3.7 3.82 4.30E-07 ***

PPI-02 10 mM histidine 7 4.18 1.85 2.25 13.35 3.5 3.81 4.19E-07 11.04

PPI-02 10 mM histidine 7.5 4.54 1.93 2.35 12.15 3.26 3.73 4.40E-07 ***

PPI-02 10 mM tris 8 5.08 1.97 2.58 11.25 2.98 3.77 *** 6.1

PPI-02 10 mM tris 9 4.05 1.96 2.06 7.77 2.32 3.35 *** **
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Protein Buffer pH
dG1 

(kcal/mol)
m1 Cm1 (M)

dG2 

(kcal/mol)
m2 Cm2 (M) D0 (cm2/s)

PEGTMP 

(%)

PPI-03 10 mM histidine 5 8.14 3.4 2.21 2.49 1.13 2.4 4.61E-07 #

PPI-03 10 mM histidine 5.5 6.80 3.8 1.79 6.21 2.2 2.83 4.64E-07 ***

PPI-03 10 mM histidine 6 7.16 4.1 1.75 7.85 2.98 2.64 4.43E-07 #

PPI-03 10 mM histidine 6.5 8.97 4.29 2.09 10.08 3.47 2.9 4.97E-07 ***

PPI-03 10 mM histidine 7 9.08 4.39 2.07 11.24 3.68 3.05 4.47E-07 #

PPI-03 10 mM histidine 7.5 8.75 4.38 2 10.49 3.61 2.91 6.63E-07 ***

PPI-03 10 mM tris 8 11.36 4.27 2.66 11.39 3.24 3.51 *** 6.04

PPI-03 10 mM tris 9 10.11 3.74 2.7 5.37 1.65 3.25 *** 2.23

PPI-03 10 mM histidine 5 6.15 4.41 1.4 5.32 2.07 2.57 4.71E-07 13.38

PPI-03 10 mM histidine 5.5 6.25 3.58 1.75 7.47 2.61 2.86 4.67E-07 ***

PPI-03 10 mM histidine 6 6.12 3.21 1.91 9.32 2.99 3.12 4.64E-07 14.13

PPI-03 10 mM histidine 6.5 6.48 3.28 1.98 9.64 3.2 3.02 4.57E-07 ***

PPI-03 10 mM histidine 7 7.43 3.81 1.95 9.21 3.24 2.84 4.73E-07 10.92

PPI-03 10 mM histidine 7.5 8.52 4.79 1.78 9.1 3.12 2.92 4.42E-07 ***

PPI-03 10 mM tris 8 15.43 6.23 2.48 9.04 2.83 3.19 *** 4.18

PPI-03 10 mM tris 9 27.71 10.45 2.65 5.15 1.76 2.92 *** 3.67

PPI-03 10 mM histidine 5 8.58 5.51 1.56 4.91 1.89 2.59 4.72E-07 10.19

PPI-03 10 mM histidine 5.5 8.84 5.14 1.72 7.08 2.49 2.84 4.73E-07 ***

PPI-03 10 mM histidine 6 8.65 4.94 1.75 8.25 2.91 2.83 4.55E-07 1.12

PPI-03 10 mM histidine 6.5 8.99 4.89 1.84 9.05 3.15 2.88 4.74E-07 ***

PPI-03 10 mM histidine 7 10.30 5.01 2.06 9.47 3.2 2.96 4.61E-07 11.3

PPI-03 10 mM histidine 7.5 10.05 5.29 1.9 8.54 3.07 2.79 4.64E-07 ***

PPI-03 10 mM tris 8 15.32 5.74 2.67 9.56 2.75 3.47 *** 5.82

PPI-03 10 mM tris 9 19.73 7.12 2.77 4.83 1.58 3.06 *** 4.02

PPI-04 10 mM histidine 5 ### ### ### ### ### ### 4.47E-07 #

PPI-04 10 mM histidine 5.5 ### ### ### ### ### ### 4.41E-07 ***

PPI-04 10 mM histidine 6 ### ### ### ### ### ### 4.25E-07 #

PPI-04 10 mM histidine 6.5 ### ### ### ### ### ### 4.51E-07 ***

PPI-04 10 mM histidine 7 ### ### ### ### ### ### 4.08E-07 #

PPI-04 10 mM histidine 7.5 ### ### ### ### ### ### 3.97E-07 ***

PPI-04 10 mM tris 8 ### ### ### ### ### ### *** 2.01

PPI-04 10 mM tris 9 ### ### ### ### ### ### *** 0

PPI-04 10 mM histidine 5 ### ### ### ### ### ### 4.31E-07 4.43

PPI-04 10 mM histidine 5.5 ### ### ### ### ### ### 4.46E-07 ***

PPI-04 10 mM histidine 6 ### ### ### ### ### ### 4.42E-07 3.01

PPI-04 10 mM histidine 6.5 ### ### ### ### ### ### 4.25E-07 ***

PPI-04 10 mM histidine 7 ### ### ### ### ### ### 4.00E-07 4.27

PPI-04 10 mM histidine 7.5 ### ### ### ### ### ### 4.20E-07 ***

PPI-04 10 mM tris 8 ### ### ### ### ### ### *** 2.78

PPI-04 10 mM tris 9 ### ### ### ### ### ### *** 0

PPI-04 10 mM histidine 5 ### ### ### ### ### ### 4.49E-07 3.5

PPI-04 10 mM histidine 5.5 ### ### ### ### ### ### 4.24E-07 ***

PPI-04 10 mM histidine 6 ### ### ### ### ### ### 4.48E-07 3.2

PPI-04 10 mM histidine 6.5 ### ### ### ### ### ### 4.49E-07 ***

PPI-04 10 mM histidine 7 ### ### ### ### ### ### 4.49E-07 6.67

PPI-04 10 mM histidine 7.5 ### ### ### ### ### ### 4.44E-07 ***

PPI-04 10 mM tris 8 ### ### ### ### ### ### *** 2.92

PPI-04 10 mM tris 9 ### ### ### ### ### ### *** 0
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Protein Buffer pH
dG1 

(kcal/mol)
m1 Cm1 (M)

dG2 

(kcal/mol)
m2 Cm2 (M) D0 (cm2/s)

PEGTMP 

(%)

PPI-08 10 mM histidine 5 5.45 3.85 1.41 6.93 3.18 2.18 3.90E-07 #

PPI-08 10 mM histidine 5.5 5.30 3.46 1.53 7.7 3.28 2.35 3.85E-07 ***

PPI-08 10 mM histidine 6 5.16 3.16 1.63 7.55 3.3 2.29 3.74E-07 #

PPI-08 10 mM histidine 6.5 4.45 2.96 1.51 7.47 3.24 2.3 4.06E-07 ***

PPI-08 10 mM histidine 7 5.06 2.84 1.78 7.91 3.11 2.54 3.71E-07 #

PPI-08 10 mM histidine 7.5 5.20 2.81 1.85 6.88 2.89 2.38 4.16E-07 ***

PPI-08 10 mM tris 8 3.49 2.87 1.22 5.77 2.6 2.22 *** 2.85

PPI-08 10 mM tris 9 7.08 3.25 2.17 3.91 1.78 2.2 *** 2.78

PPI-08 10 mM histidine 5 5.07 3.46 1.47 6.98 3.04 2.3 3.88E-07 7.68

PPI-08 10 mM histidine 5.5 4.64 3.18 1.46 6.85 3.1 2.21 3.90E-07 ***

PPI-08 10 mM histidine 6 4.62 2.93 1.58 7.57 3.12 2.43 3.97E-07 7.53

PPI-08 10 mM histidine 6.5 4.80 2.71 1.77 7.6 3.1 2.45 4.00E-07 ***

PPI-08 10 mM histidine 7 4.50 2.51 1.79 7.13 3.04 2.34 3.82E-07 4.44

PPI-08 10 mM histidine 7.5 4.24 2.35 1.81 7.22 2.95 2.44 3.92E-07 ***

PPI-08 10 mM tris 8 3.63 2.21 1.64 6.56 2.83 2.32 *** 2.88

PPI-08 10 mM tris 9 3.62 2.01 1.8 5.92 2.46 2.4 *** 2.82

PPI-08 10 mM histidine 5 5.35 3.82 1.4 9.08 4.08 2.23 3.79E-07 4.87

PPI-08 10 mM histidine 5.5 5.75 3.56 1.61 8.89 3.62 2.45 3.91E-07 ***

PPI-08 10 mM histidine 6 5.71 3.3 1.73 7.8 3.23 2.42 3.99E-07 3.94

PPI-08 10 mM histidine 6.5 4.42 3.02 1.46 6.62 2.89 2.29 4.00E-07 ***

PPI-08 10 mM histidine 7 4.48 2.74 1.64 6.17 2.61 2.36 3.98E-07 3.06

PPI-08 10 mM histidine 7.5 3.59 2.44 1.47 5.33 2.39 2.23 4.01E-07 ***

PPI-08 10 mM tris 8 4.20 2.13 1.97 4.71 2.23 2.11 *** 2.84

PPI-08 10 mM tris 9 2.47 1.49 1.66 4.58 2.08 2.21 *** 2.85

PPI-10 10 mM histidine 5 2.78 1.31 2.13 8.39 2.31 3.64 4.75E-07 #

PPI-10 10 mM histidine 5.5 3.44 1.58 2.18 9.55 2.46 3.89 4.51E-07 ***

PPI-10 10 mM histidine 6 3.79 1.82 2.08 9.97 2.59 3.85 3.45E-07 #

PPI-10 10 mM histidine 6.5 4.60 2.04 2.25 10.57 2.7 3.91 5.00E-07 ***

PPI-10 10 mM histidine 7 4.97 2.24 2.22 10.89 2.8 3.89 4.37E-07 #

PPI-10 10 mM histidine 7.5 4.99 2.41 2.07 10.78 2.88 3.75 5.42E-07 ***

PPI-10 10 mM tris 8 5.66 2.56 2.21 10.79 2.94 3.67 *** 3.73

PPI-10 10 mM tris 9 5.38 2.77 1.94 10.47 3.01 3.48 *** 1.79

PPI-10 10 mM histidine 5 3.51 1.7 2.06 9.1 2.47 3.68 4.47E-07 10.38

PPI-10 10 mM histidine 5.5 4.01 1.89 2.12 9.67 2.61 3.71 4.66E-07 ***

PPI-10 10 mM histidine 6 4.66 2.05 2.28 10.94 2.72 4.02 4.57E-07 10.48

PPI-10 10 mM histidine 6.5 4.55 2.16 2.1 11.27 2.81 4.01 4.56E-07 ***

PPI-10 10 mM histidine 7 4.90 2.25 2.18 10.91 2.88 3.79 4.40E-07 9.83

PPI-10 10 mM histidine 7.5 4.72 2.29 2.06 11.31 2.93 3.86 4.34E-07 ***

PPI-10 10 mM tris 8 4.94 2.3 2.15 10.84 2.95 3.67 *** 4.13

PPI-10 10 mM tris 9 4.65 2.2 2.11 10.78 2.93 3.68 *** 4.14

PPI-10 10 mM histidine 5 3.51 1.55 2.26 9.45 2.56 3.7 4.35E-07 8.85

PPI-10 10 mM histidine 5.5 3.56 1.83 1.94 9.54 2.51 3.8 4.58E-07 ***

PPI-10 10 mM histidine 6 4.09 2.07 1.98 9.4 2.49 3.77 4.51E-07 9.40

PPI-10 10 mM histidine 6.5 4.78 2.26 2.12 9.68 2.51 3.86 5.23E-07 ***

PPI-10 10 mM histidine 7 4.90 2.4 2.04 10.05 2.56 3.93 4.44E-07 9.83

PPI-10 10 mM histidine 7.5 5.17 2.49 2.07 9.87 2.64 3.73 4.48E-07 ***

PPI-10 10 mM tris 8 5.28 2.54 2.07 9.68 2.76 3.51 *** 4.35

PPI-10 10 mM tris 9 5.53 2.5 2.21 10.85 3.09 3.51 *** 3.73
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Biophysical parameter tables (Part 12 of 22) 

 

Protein Buffer pH
dG1 

(kcal/mol)
m1 Cm1 (M)

dG2 

(kcal/mol)
m2 Cm2 (M) D0 (cm2/s)

PEGTMP 

(%)

PPI-13 10 mM histidine 5 4.83 3.63 1.33 5.36 1.83 2.93 4.61E-07 #

PPI-13 10 mM histidine 5.5 4.75 3.25 1.46 6.61 1.96 3.37 4.64E-07 ***

PPI-13 10 mM histidine 6 4.79 2.93 1.63 7 2.11 3.32 4.43E-07 #

PPI-13 10 mM histidine 6.5 5.28 2.68 1.97 7.85 2.28 3.44 4.97E-07 ***

PPI-13 10 mM histidine 7 4.58 2.48 1.85 8.78 2.47 3.55 4.47E-07 9.58

PPI-13 10 mM histidine 7.5 4.32 2.35 1.84 8.88 2.69 3.3 6.07E-07 ***

PPI-13 10 mM tris 8 4.47 2.27 1.97 9.31 2.92 3.18 *** 2.62

PPI-13 10 mM tris 9 4.07 2.31 1.76 10.66 3.46 3.08 *** 2.39

PPI-13 10 mM histidine 5 3.65 2.41 1.52 6.06 1.92 3.16 4.74E-07 0.87

PPI-13 10 mM histidine 5.5 3.73 2.51 1.48 6.56 2.1 3.13 4.67E-07 ***

PPI-13 10 mM histidine 6 4.44 2.64 1.68 7.82 2.26 3.46 4.64E-07 1.66

PPI-13 10 mM histidine 6.5 5.46 2.78 1.97 8.62 2.41 3.58 4.57E-07 ***

PPI-13 10 mM histidine 7 5.31 2.93 1.81 8.22 2.53 3.25 4.73E-07 2.87

PPI-13 10 mM histidine 7.5 5.57 3.11 1.79 9.02 2.64 3.41 4.42E-07 ***

PPI-13 10 mM tris 8 6.30 3.3 1.91 8.89 2.73 3.25 *** 2.56

PPI-13 10 mM tris 9 6.67 3.75 1.78 9.04 2.86 3.16 *** 2.86

PPI-13 10 mM histidine 5 4.01 2.71 1.48 6.84 2.25 3.04 4.72E-07 0.20

PPI-13 10 mM histidine 5.5 3.70 2.19 1.69 7.67 2.28 3.36 4.73E-07 ***

PPI-13 10 mM histidine 6 3.53 1.96 1.8 7.68 2.31 3.32 4.58E-07 0.87

PPI-13 10 mM histidine 6.5 4.00 2.04 1.96 8.1 2.34 3.46 4.74E-07 ***

PPI-13 10 mM histidine 7 4.46 2.42 1.85 8.11 2.38 3.41 4.61E-07 3.63

PPI-13 10 mM histidine 7.5 5.54 3.09 1.79 7.88 2.41 3.27 4.64E-07 ***

PPI-13 10 mM tris 8 7.19 4.07 1.77 7.43 2.45 3.04 *** 2.23

PPI-13 10 mM tris 9 12.06 6.92 1.74 7.63 2.52 3.02 *** 2.44

PPI-17 10 mM histidine 5 5.72 3.85 1.49 10.01 4.35 2.3 4.26E-07 #

PPI-17 10 mM histidine 5.5 5.56 3.64 1.53 7.71 3.25 2.37 4.16E-07 ***

PPI-17 10 mM histidine 6 5.42 3.44 1.58 7.99 3.42 2.34 4.30E-07 #

PPI-17 10 mM histidine 6.5 5.59 3.24 1.73 11.05 4.85 2.28 4.41E-07 ***

PPI-17 10 mM histidine 7 5.73 3.04 1.89 18.03 7.54 2.39 4.13E-07 3.47

PPI-17 10 mM histidine 7.5 5.69 2.83 2.01 26.49 11.5 2.3 4.51E-07 ***

PPI-17 10 mM tris 8 *** *** *** *** *** *** *** 0

PPI-17 10 mM tris 9 *** *** *** *** *** *** *** 0

PPI-17 10 mM histidine 5 6.97 4.42 1.58 9.62 4.1 2.35 3.83E-07 3.37

PPI-17 10 mM histidine 5.5 6.42 4.26 1.51 9.32 4.02 2.32 4.18E-07 ***

PPI-17 10 mM histidine 6 6.59 4 1.65 10.32 4.26 2.42 4.17E-07 2.77

PPI-17 10 mM histidine 6.5 6.28 3.64 1.73 11.42 4.82 2.37 4.18E-07

PPI-17 10 mM histidine 7 5.42 3.17 1.71 12.95 5.7 2.27 3.84E-07 2.34

PPI-17 10 mM histidine 7.5 5.18 2.6 1.99 16.54 6.9 2.4 4.11E-07 ***

PPI-17 10 mM tris 8 *** *** *** *** *** *** *** 0

PPI-17 10 mM tris 9 *** *** *** *** *** *** *** 0

PPI-17 10 mM histidine 5 5.26 3.59 1.46 7.62 3.37 2.26 4.21E-07 2.1

PPI-17 10 mM histidine 5.5 5.44 3.24 1.68 11.34 4.63 2.45 3.97E-07 ***

PPI-17 10 mM histidine 6 5.46 3.11 1.75 12.87 5.37 2.4 4.19E-07 14.19

PPI-17 10 mM histidine 6.5 5.51 3.22 1.71 12.7 5.58 2.28 4.19E-07 ***

PPI-17 10 mM histidine 7 6.49 3.55 1.83 12.7 5.27 2.41 4.15E-07 2.86

PPI-17 10 mM histidine 7.5 6.69 4.11 1.63 9.91 2.23 2.23 4.24E-07 ***

PPI-17 10 mM tris 8 *** *** *** *** *** *** *** 0

PPI-17 10 mM tris 9 *** *** *** *** *** *** *** 0
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Biophysical parameter tables (Part 13 of 22) 

 

Protein Buffer pH
dG1 

(kcal/mol)
m1 Cm1 (M)

dG2 

(kcal/mol)
m2 Cm2 (M) D0 (cm2/s)

PEGTMP 

(%)

PPI-18 10 mM histidine 5 ^^ ^^ ^^ ^^ ^^ ^^ 3.97E-07 3.48

PPI-18 10 mM histidine 5.5 ^^ ^^ ^^ ^^ ^^ ^^ 4.53E-07 ***

PPI-18 10 mM histidine 6 ^^ ^^ ^^ ^^ ^^ ^^ 4.69E-07 8.78

PPI-18 10 mM histidine 6.5 ^^ ^^ ^^ ^^ ^^ ^^ 4.86E-07 ***

PPI-18 10 mM histidine 7 ^^ ^^ ^^ ^^ ^^ ^^ 4.45E-07 #

PPI-18 10 mM histidine 7.5 ^^ ^^ ^^ ^^ ^^ ^^ 5.86E-07 ***

PPI-18 10 mM tris 8 ^^ ^^ ^^ ^^ ^^ ^^ *** #

PPI-18 10 mM tris 9 ^^ ^^ ^^ ^^ ^^ ^^ *** #

PPI-18 10 mM histidine 5 ^^ ^^ ^^ ^^ ^^ ^^ 2.63E-07 6.88

PPI-18 10 mM histidine 5.5 ^^ ^^ ^^ ^^ ^^ ^^ 3.46E-07 ***

PPI-18 10 mM histidine 6 ^^ ^^ ^^ ^^ ^^ ^^ 4.50E-07 #

PPI-18 10 mM histidine 6.5 ^^ ^^ ^^ ^^ ^^ ^^ 4.62E-07 ***

PPI-18 10 mM histidine 7 ^^ ^^ ^^ ^^ ^^ ^^ 4.63E-07 12.93

PPI-18 10 mM histidine 7.5 ^^ ^^ ^^ ^^ ^^ ^^ 4.46E-07 ***

PPI-18 10 mM tris 8 ^^ ^^ ^^ ^^ ^^ ^^ *** #

PPI-18 10 mM tris 9 ^^ ^^ ^^ ^^ ^^ ^^ *** #

PPI-18 10 mM histidine 5 ^^ ^^ ^^ ^^ ^^ ^^ 1.28E-07 6.7

PPI-18 10 mM histidine 5.5 ^^ ^^ ^^ ^^ ^^ ^^ 4.03E-07 ***

PPI-18 10 mM histidine 6 ^^ ^^ ^^ ^^ ^^ ^^ 4.50E-07 #

PPI-18 10 mM histidine 6.5 ^^ ^^ ^^ ^^ ^^ ^^ 4.71E-07 ***

PPI-18 10 mM histidine 7 ^^ ^^ ^^ ^^ ^^ ^^ 4.58E-07 #

PPI-18 10 mM histidine 7.5 ^^ ^^ ^^ ^^ ^^ ^^ 4.62E-07 ***

PPI-18 10 mM tris 8 ^^ ^^ ^^ ^^ ^^ ^^ *** #

PPI-18 10 mM tris 9 ^^ ^^ ^^ ^^ ^^ ^^ *** #

PPI-30 10 mM histidine 5 7.44 2.12 3.51 * * * ~ ~

PPI-30 10 mM histidine 5.5 7.39 2.1 3.52 * * * ~ ~

PPI-30 10 mM histidine 6 ^^^ ^^^ ^^^ * * * ~ ~

PPI-30 10 mM histidine 6.5 ^^^ ^^^ ^^^ * * * ~ ~

PPI-30 10 mM histidine 7 6.44 1.83 3.52 * * * ~ ~

PPI-30 10 mM histidine 7.5 8.08 2.27 3.56 * * * ~ ~

PPI-30 10 mM tris 8 8.98 2.48 3.62 * * * ~ ~

PPI-30 10 mM tris 9 8.58 2.27 3.79 * * * ~ ~

PPI-30 10 mM histidine 5 6.07 1.72 3.53 * * * ~ ~

PPI-30 10 mM histidine 5.5 7.50 2.1 3.57 * * * ~ ~

PPI-30 10 mM histidine 6 ^^^ ^^^ ^^^ * * * ~ ~

PPI-30 10 mM histidine 6.5 ^^^ ^^^ ^^^ * * * ~ ~

PPI-30 10 mM histidine 7 8.24 2.38 3.46 * * * ~ ~

PPI-30 10 mM histidine 7.5 7.84 2.22 3.53 * * * ~ ~

PPI-30 10 mM tris 8 9.08 2.45 3.71 * * * ~ ~

PPI-30 10 mM tris 9 9.03 2.46 3.68 * * * ~ ~

PPI-30 10 mM histidine 5 5.67 1.59 3.56 * * * ~ ~

PPI-30 10 mM histidine 5.5 6.66 1.87 3.57 * * * ~ ~

PPI-30 10 mM histidine 6 ^^^ ^^^ ^^^ * * * ~ ~

PPI-30 10 mM histidine 6.5 ^^^ ^^^ ^^^ * * * ~ ~

PPI-30 10 mM histidine 7 6.95 2 3.48 * * * ~ ~

PPI-30 10 mM histidine 7.5 7.34 2.08 3.54 * * * ~ ~

PPI-30 10 mM tris 8 8.52 2.31 3.69 * * * ~ ~

PPI-30 10 mM tris 9 8.55 2.29 3.73 * * * ~ ~
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Biophysical parameter tables (Part 14 of 22) 

 

Protein Buffer pH
dG1 

(kcal/mol)
m1 Cm1 (M)

dG2 

(kcal/mol)
m2 Cm2 (M) D0 (cm2/s)

PEGTMP 

(%)

PPI-44 10 mM histidine 5 6.56 6.43 1.02 11.06 6.69 1.65 6.19E-07 #

PPI-44 10 mM histidine 5.5 6.41 6.45 0.99 9.07 5.28 1.72 6.29E-07 ***

PPI-44 10 mM histidine 6 7.28 6.29 1.16 7.23 4.14 1.75 6.10E-07 3.27

PPI-44 10 mM histidine 6.5 8.93 5.97 1.5 7.59 3.24 2.34 6.35E-07 ***

PPI-44 10 mM histidine 7 9.16 5.47 1.67 6.96 2.61 2.67 5.93E-07 3.22

PPI-44 10 mM histidine 7.5 8.08 4.8 1.68 6.17 2.24 2.76 6.09E-07 ***

PPI-44 10 mM tris 8 7.96 3.97 2.01 6.3 2.12 2.97 *** #

PPI-44 10 mM tris 9 3.77 1.78 2.12 7.58 2.67 2.84 *** #

PPI-44 10 mM histidine 5 3.45 3.97 0.87 10.7 6.51 1.64 5.79E-07 6.74

PPI-44 10 mM histidine 5.5 5.52 5.73 0.96 8.51 5.14 1.66 6.02E-07 ***

PPI-44 10 mM histidine 6 7.74 6.9 1.12 7.1 4.03 1.76 5.99E-07 9.96

PPI-44 10 mM histidine 6.5 10.39 7.49 1.39 7.02 3.17 2.22 6.13E-07 ***

PPI-44 10 mM histidine 7 12.09 7.49 1.61 6.61 2.56 2.59 6.12E-07 11.94

PPI-44 10 mM histidine 7.5 10.89 6.91 1.58 5.79 2.2 2.63 5.87E-07 ***

PPI-44 10 mM tris 8 10.47 5.74 1.83 6.06 2.1 2.89 *** #

PPI-44 10 mM tris 9 3.76 1.64 2.3 6.82 2.65 2.58 *** #

PPI-44 10 mM histidine 5 5.43 6.83 0.8 9.95 6.25 1.59 5.53E-07 #

PPI-44 10 mM histidine 5.5 6.57 6.84 0.96 8.6 5.07 1.7 5.93E-07 ***

PPI-44 10 mM histidine 6 7.65 6.68 1.15 7.27 4.09 1.78 5.99E-07 #

PPI-44 10 mM histidine 6.5 9.20 6.36 1.45 7.39 3.33 2.22 6.27E-07 ***

PPI-44 10 mM histidine 7 9.00 5.88 1.53 7.28 2.77 2.62 6.09E-07 13.64

PPI-44 10 mM histidine 7.5 8.75 5.23 1.67 6.76 2.43 2.79 5.91E-07 ***

PPI-44 10 mM tris 8 8.21 4.42 1.86 6.68 2.29 2.92 *** #

PPI-44 10 mM tris 9 4.64 2.32 2 7.5 2.64 2.84 *** #

PPI-45 10 mM histidine 5 5.70 2.45 2.33 * * * ~ ~

PPI-45 10 mM histidine 5.5 5.10 2.27 2.25 * * * ~ ~

PPI-45 10 mM histidine 6 4.79 2.13 2.25 * * * ~ ~

PPI-45 10 mM histidine 6.5 4.66 2.1 2.28 * * * ~ ~

PPI-45 10 mM histidine 7 4.47 1.98 2.26 * * * ~ ~

PPI-45 10 mM histidine 7.5 4.58 1.96 2.33 * * * ~ ~

PPI-45 10 mM tris 8 4.42 1.99 2.23 * * * ~ ~

PPI-45 10 mM tris 9 4.85 2.16 2.25 * * * ~ ~

PPI-45 10 mM histidine 5 5.08 2.18 2.33 * * * ~ ~

PPI-45 10 mM histidine 5.5 4.85 2.15 2.25 * * * ~ ~

PPI-45 10 mM histidine 6 5.02 2.13 2.36 * * * ~ ~

PPI-45 10 mM histidine 6.5 5.06 2.09 2.38 * * * ~ ~

PPI-45 10 mM histidine 7 4.70 2.07 2.27 * * * ~ ~

PPI-45 10 mM histidine 7.5 4.92 2.04 2.41 * * * ~ ~

PPI-45 10 mM tris 8 4.58 2.02 2.27 * * * ~ ~

PPI-45 10 mM tris 9 4.44 1.96 2.27 * * * ~ ~

PPI-45 10 mM histidine 5 5.16 2.16 2.39 * * * ~ ~

PPI-45 10 mM histidine 5.5 5.04 2.22 2.27 * * * ~ ~

PPI-45 10 mM histidine 6 5.12 2.24 2.33 * * * ~ ~

PPI-45 10 mM histidine 6.5 5.14 2.22 2.31 * * * ~ ~

PPI-45 10 mM histidine 7 4.94 2.18 2.27 * * * ~ ~

PPI-45 10 mM histidine 7.5 4.66 2.1 2.22 * * * ~ ~

PPI-45 10 mM tris 8 4.41 1.98 2.22 * * * ~ ~

PPI-45 10 mM tris 9 4.32 1.89 2.28 * * * ~ ~
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Biophysical parameter tables (Part 15 of 22) 

 

Protein Buffer pH
dG1 

(kcal/mol)
m1 Cm1 (M)

dG2 

(kcal/mol)
m2 Cm2 (M) D0 (cm2/s)

PEGTMP 

(%)

PPI-46 10 mM histidine 5 8.29 2.66 3.12 * * * 2.87E-08 ~

PPI-46 10 mM histidine 5.5 9.39 2.66 3.53 * * * 6.99E-07 ~

PPI-46 10 mM histidine 6 11.39 2.87 3.97 * * * 8.46E-07 ~

PPI-46 10 mM histidine 6.5 7.86 2.26 3.47 * * * 8.79E-07 ~

PPI-46 10 mM histidine 7 6.77 1.91 3.54 * * * 9.17E-07 ~

PPI-46 10 mM histidine 7.5 8.08 2.26 3.57 * * * 9.18E-07 ~

PPI-46 10 mM tris 8 8.99 2.48 3.62 * * * *** ~

PPI-46 10 mM tris 9 8.67 2.29 3.79 * * * *** ~

PPI-46 10 mM histidine 5 7.86 2.66 2.95 * * * 2.38E-08 ~

PPI-46 10 mM histidine 5.5 9.65 2.7 3.57 * * * 7.49E-07 ~

PPI-46 10 mM histidine 6 10.87 2.84 3.82 * * * 8.45E-07 ~

PPI-46 10 mM histidine 6.5 7.32 2.15 3.41 * * * 8.87E-07 ~

PPI-46 10 mM histidine 7 8.23 2.38 3.45 * * * 8.36E-07 ~

PPI-46 10 mM histidine 7.5 7.43 2.12 3.5 * * * 4.62E-02 ~

PPI-46 10 mM tris 8 9.43 2.54 3.71 * * * *** ~

PPI-46 10 mM tris 9 9.35 2.53 3.7 * * * *** ~

PPI-46 10 mM histidine 5 8.55 2.83 3.02 * * * 1.81E-08 ~

PPI-46 10 mM histidine 5.5 8.48 2.41 3.51 * * * 7.40E-07 ~

PPI-46 10 mM histidine 6 10.10 2.62 3.86 * * * 8.01E-07 ~

PPI-46 10 mM histidine 6.5 7.72 2.24 3.44 * * * 8.21E-07 ~

PPI-46 10 mM histidine 7 7.18 2.06 3.48 * * * 8.44E-07 ~

PPI-46 10 mM histidine 7.5 8.41 2.35 3.58 * * * 8.62E-07 ~

PPI-46 10 mM tris 8 8.68 2.35 3.7 * * * *** ~

PPI-46 10 mM tris 9 8.48 2.27 3.74 * * * *** ~

PPI-49 10 mM histidine 5 5.65 2.4 2.35 * * * 5.62E-07 ***

PPI-49 10 mM histidine 5.5 5.43 2.47 2.2 * * * 5.76E-07 ***

PPI-49 10 mM histidine 6 5.46 2.5 2.19 * * * 6.46E-07 ***

PPI-49 10 mM histidine 6.5 5.13 2.47 2.08 * * * 6.48E-07 ***

PPI-49 10 mM histidine 7 4.83 2.39 2.02 * * * 5.98E-07 ***

PPI-49 10 mM histidine 7.5 4.58 2.27 2.02 * * * 7.89E-07 ***

PPI-49 10 mM tris 8 4.07 2.1 1.94 * * * *** ***

PPI-49 10 mM tris 9 3.19 1.61 1.98 * * * *** ***

PPI-49 10 mM histidine 5 5.80 2.38 2.44 * * * 6.24E-07 ***

PPI-49 10 mM histidine 5.5 5.43 2.43 2.23 * * * 6.31E-07 ***

PPI-49 10 mM histidine 6 5.65 2.43 2.32 * * * 6.37E-07 ***

PPI-49 10 mM histidine 6.5 4.89 2.38 2.06 * * * 6.43E-07 ***

PPI-49 10 mM histidine 7 4.37 2.27 1.93 * * * 6.32E-07 ***

PPI-49 10 mM histidine 7.5 4.08 2.1 1.94 * * * 6.31E-07 ***

PPI-49 10 mM tris 8 3.65 1.88 1.94 * * * *** ***

PPI-49 10 mM tris 9 2.95 1.27 2.33 * * * *** ***

PPI-49 10 mM histidine 5 6.29 2.56 2.46 * * * 6.37E-07 ***

PPI-49 10 mM histidine 5.5 5.96 2.4 2.49 * * * 5.33E-07 ***

PPI-49 10 mM histidine 6 5.02 2.24 2.24 * * * 6.56E-07 ***

PPI-49 10 mM histidine 6.5 4.30 2.09 2.06 * * * 6.60E-07 ***

PPI-49 10 mM histidine 7 3.87 1.95 1.99 * * * 6.54E-07 ***

PPI-49 10 mM histidine 7.5 3.65 1.81 2.01 * * * 6.38E-07 ***

PPI-49 10 mM tris 8 4.02 1.69 2.38 * * * *** ***

PPI-49 10 mM tris 9 2.53 1.45 1.75 * * * *** ***
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Biophysical parameter tables (Part 16 of 22) 

 

Protein Buffer pH
m25,rec 

(%)

m40,rec 

(%)

m50,rec 

(%)
M25 (%) M40 (%) M50 (%) LSA25 LSA40 LSA50 RR,25 RR,40 RR,50

PPI-01 10 mM histidine 5 90.4 85.4 5.8 99.70 99.10 11.10 0.96 0.97 0.14 0.99 1.03 1.82

PPI-01 10 mM histidine 5.5 86.3 85.2 25.4 99.60 98.90 52.80 0.97 0.94 0.47 0.98 1.05 2.01

PPI-01 10 mM histidine 6 97.8 94.4 46.4 99.50 98.90 76.20 0.97 0.94 0.58 0.98 1.03 1.04

PPI-01 10 mM histidine 6.5 88.2 89.7 44.9 99.30 98.10 86.20 0.97 0.92 0.46 0.95 1.05 1.55

PPI-01 10 mM histidine 7 88.6 81.1 36.3 99.20 98.60 97.40 0.97 0.95 0.94 0.93 0.99 0.83

PPI-01 10 mM histidine 7.5 91.7 77.1 37.6 99.00 97.90 88.80 0.90 0.97 0.82 1.09 0.90 1.04

PPI-01 10 mM tris 8 87.1 89.7 51.5 99.60 99.30 97.60 0.95 0.99 0.93 0.94 0.97 0.98

PPI-01 10 mM tris 9 97.3 95.9 44.2 99.40 98.20 77.80 0.95 0.91 0.34 0.96 1.27 2.60

PPI-01 10 mM histidine 5 81.4 69.8 0.8 99.60 97.10 1.90 0.98 0.92 0.04 0.99 1.95 6.97

PPI-01 10 mM histidine 5.5 90.4 89.9 2.1 99.70 99.20 4.50 0.98 0.98 0.13 1.01 1.05 23.10

PPI-01 10 mM histidine 6 89.9 88.6 42.6 99.70 99.70 98.90 0.98 0.99 0.67 0.98 0.98 **

PPI-01 10 mM histidine 6.5 94.7 94.8 55.0 99.70 99.60 99.30 0.98 1.00 1.00 0.99 0.98 10.53

PPI-01 10 mM histidine 7 93.4 96.7 51.8 99.70 99.60 99.10 0.98 0.99 0.96 0.99 0.98 1.00

PPI-01 10 mM histidine 7.5 81.4 81.7 47.3 99.60 99.50 99.00 0.98 0.99 0.98 1.45 1.42 1.49

PPI-01 10 mM tris 8 102.1 96.9 52.9 99.50 99.40 98.50 0.99 0.97 0.90 1.00 0.99 1.10

PPI-01 10 mM tris 9 82.8 81.4 40.9 99.50 98.70 86.20 0.98 0.97 0.39 0.99 1.07 3.78

PPI-01 10 mM histidine 5 79.6 50.4 ## 99.60 88.20 ## 0.99 0.27 ## 0.99 5.82 103.35

PPI-01 10 mM histidine 5.5 92.2 93.2 ## 99.60 98.70 ## 0.99 0.98 ## 1.00 1.18 84.32

PPI-01 10 mM histidine 6 75.0 85.0 38.2 99.60 99.50 97.50 0.98 0.98 0.40 0.98 0.99 13.45

PPI-01 10 mM histidine 6.5 81.3 90.2 64.3 99.50 99.60 99.20 0.98 0.99 0.81 0.99 0.98 1.73

PPI-01 10 mM histidine 7 92.5 93.4 53.6 99.70 99.60 98.60 0.99 0.99 0.93 0.99 0.99 1.23

PPI-01 10 mM histidine 7.5 80.3 80.6 46.0 99.70 99.40 97.80 0.99 0.99 0.85 0.99 0.98 1.57

PPI-01 10 mM tris 8 93.5 94.4 47.4 99.60 99.40 97.20 0.99 0.98 0.03 1.00 0.98 2.50

PPI-01 10 mM tris 9 89.5 92.5 35.9 99.50 98.50 79.90 0.98 0.96 0.37 1.00 1.16 3.13

PPI-02 10 mM histidine 5 77.7 77.7 67.1 99.80 98.50 98.50 0.99 0.96 0.98 1.05 1.02 1.07

PPI-02 10 mM histidine 5.5 89.1 78.4 73.3 100.00 98.70 98.60 0.99 0.97 0.98 0.98 1.00 1.04

PPI-02 10 mM histidine 6 113.5 84.6 68.7 99.90 98.80 98.70 0.99 0.97 0.98 0.97 1.00 1.02

PPI-02 10 mM histidine 6.5 89.3 77.0 52.2 99.90 98.80 98.70 0.99 0.97 0.42 0.70 1.01 1.05

PPI-02 10 mM histidine 7 85.7 75.1 65.1 99.90 98.70 98.90 0.99 0.97 0.91 1.02 1.05 1.06

PPI-02 10 mM histidine 7.5 84.1 76.0 55.8 99.90 99.20 98.70 0.99 0.97 0.49 1.06 1.13 1.09

PPI-02 10 mM tris 8 82.3 78.1 68.5 99.70 98.60 98.80 0.99 0.97 0.98 1.01 1.04 1.01

PPI-02 10 mM tris 9 83.8 80.1 68.6 99.80 98.40 97.90 0.99 0.96 0.97 1.00 0.99 1.03

PPI-02 10 mM histidine 5 79.0 74.2 63.7 99.90 98.30 97.70 0.99 0.96 0.97 1.26 1.01 1.07

PPI-02 10 mM histidine 5.5 76.8 71.0 65.6 99.80 98.60 98.40 0.99 0.97 0.94 1.00 0.98 1.06

PPI-02 10 mM histidine 6 87.4 83.4 74.5 99.90 98.50 98.70 0.99 0.97 0.99 0.99 0.99 1.04

PPI-02 10 mM histidine 6.5 72.8 69.7 63.6 99.90 99.00 98.80 0.99 0.97 0.98 1.47 1.49 1.51

PPI-02 10 mM histidine 7 69.7 69.0 60.5 99.90 98.80 98.80 0.99 0.97 0.98 1.00 1.00 1.00

PPI-02 10 mM histidine 7.5 84.6 79.8 72.8 99.80 98.50 98.80 0.99 0.97 0.98 0.97 0.99 0.99

PPI-02 10 mM tris 8 33.3 30.9 26.4 99.80 98.70 98.80 0.99 0.97 0.99 0.99 0.99 1.02

PPI-02 10 mM tris 9 78.0 73.3 63.2 99.90 98.40 97.80 0.99 0.97 0.97 0.99 1.00 0.99

PPI-02 10 mM histidine 5 72.5 66.4 65.0 99.80 97.60 94.60 0.99 0.96 0.91 0.96 0.95 1.03

PPI-02 10 mM histidine 5.5 88.9 74.5 68.6 100.00 98.40 98.40 0.99 0.97 0.98 0.98 1.01 1.00

PPI-02 10 mM histidine 6 80.8 74.0 68.2 99.90 98.40 98.70 0.99 0.97 0.99 0.99 0.99 1.01

PPI-02 10 mM histidine 6.5 86.9 81.1 68.9 99.90 98.80 98.80 0.99 0.97 0.99 1.00 1.04 1.01

PPI-02 10 mM histidine 7 81.9 79.3 70.9 100.00 98.80 98.80 0.99 0.97 0.99 0.99 0.98 1.01

PPI-02 10 mM histidine 7.5 78.9 75.2 69.0 99.90 98.60 98.80 0.99 0.97 0.99 1.00 1.00 1.00

PPI-02 10 mM tris 8 71.5 64.1 57.7 99.90 99.00 98.80 0.99 0.97 0.98 0.99 1.01 1.01

PPI-02 10 mM tris 9 81.1 77.1 67.8 99.50 98.50 98.20 0.99 0.97 0.98 0.99 0.99 1.01
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Protein Buffer pH
m25,rec 

(%)

m40,rec 

(%)

m50,rec 

(%)
M25 (%) M40 (%) M50 (%) LSA25 LSA40 LSA50 RR,25 RR,40 RR,50

PPI-03 10 mM histidine 5 98.4 97.0 85.4 99.20 99.60 98.90 0.99 0.99 0.98 0.98 1.00 1.01

PPI-03 10 mM histidine 5.5 101.2 97.7 86.0 99.10 99.60 99.00 0.99 0.99 0.99 1.00 0.99 1.02

PPI-03 10 mM histidine 6 106.0 98.2 88.9 99.10 99.70 99.20 0.99 0.99 0.98 1.00 1.00 1.02

PPI-03 10 mM histidine 6.5 101.9 98.9 83.7 99.00 99.80 99.20 0.99 0.99 0.98 0.87 0.90 0.90

PPI-03 10 mM histidine 7 103.0 100.3 94.4 98.90 99.70 99.20 0.99 0.99 0.99 0.77 0.78 0.81

PPI-03 10 mM histidine 7.5 83.4 97.1 ## 98.40 99.60 ## 0.99 0.99 ## 1.07 0.74 0.80

PPI-03 10 mM tris 8 85.9 82.8 68.2 98.00 99.50 98.80 0.99 0.98 0.97 ** ** **

PPI-03 10 mM tris 9 100.6 97.2 78.6 98.10 98.50 97.00 0.99 0.95 0.93 0.97 1.01 1.04

PPI-03 10 mM histidine 5 100.4 92.6 80.0 99.20 99.20 97.90 0.99 0.99 0.99 1.02 1.06 1.10

PPI-03 10 mM histidine 5.5 94.1 103.0 85.0 99.20 99.50 98.70 0.99 1.00 0.99 1.03 1.00 1.05

PPI-03 10 mM histidine 6 99.8 90.9 79.1 99.30 99.60 99.20 0.99 0.99 1.00 0.99 0.97 1.02

PPI-03 10 mM histidine 6.5 98.7 102.1 86.7 99.10 99.70 99.20 0.99 1.00 1.00 1.00 1.00 1.02

PPI-03 10 mM histidine 7 84.6 91.6 83.3 99.20 99.60 99.30 0.99 1.00 0.99 1.00 1.00 1.00

PPI-03 10 mM histidine 7.5 92.9 88.7 74.6 99.00 99.60 99.00 0.99 1.00 1.00 1.02 1.03 1.00

PPI-03 10 mM tris 8 96.3 103.5 88.4 98.90 99.50 99.10 0.99 0.99 0.98 0.99 0.99 0.99

PPI-03 10 mM tris 9 96.6 67.2 69.3 98.70 99.10 98.20 0.99 0.97 0.97 1.00 1.00 1.03

PPI-03 10 mM histidine 5 110.3 ** 82.9 99.50 ** 95.20 0.99 ** 0.95 1.00 ** 1.12

PPI-03 10 mM histidine 5.5 87.0 98.8 80.2 99.20 99.40 98.40 0.99 0.99 0.99 1.00 1.00 1.02

PPI-03 10 mM histidine 6 96.4 75.9 74.0 99.20 99.60 99.10 0.99 0.99 1.00 0.99 0.99 1.03

PPI-03 10 mM histidine 6.5 103.6 107.5 93.9 99.30 99.70 99.30 0.99 1.00 1.00 1.00 0.99 1.00

PPI-03 10 mM histidine 7 84.5 100.0 82.2 99.00 99.60 99.20 0.99 1.00 1.00 1.00 1.00 1.00

PPI-03 10 mM histidine 7.5 83.3 85.6 76.3 99.20 99.60 99.10 0.99 0.99 0.99 0.99 0.98 1.01

PPI-03 10 mM tris 8 99.3 101.0 86.0 98.90 99.50 99.10 0.99 0.99 0.98 1.00 1.01 1.01

PPI-03 10 mM tris 9 77.6 95.2 81.6 98.80 99.00 97.60 0.96 0.98 0.97 0.96 0.98 0.98

PPI-04 10 mM histidine 5 80.8 60.1 42.2 99.20 99.10 94.80 0.96 0.98 0.95 0.99 1.05 1.19

PPI-04 10 mM histidine 5.5 102.3 79.4 68.7 99.10 99.50 97.20 0.96 1.00 0.98 0.93 0.95 1.17

PPI-04 10 mM histidine 6 88.3 57.7 64.2 99.10 99.00 97.50 0.96 0.95 0.94 0.97 1.10 1.30

PPI-04 10 mM histidine 6.5 87.8 66.8 68.3 99.00 98.60 97.10 0.95 0.98 0.92 0.71 1.11 1.74

PPI-04 10 mM histidine 7 88.9 75.0 57.5 98.90 97.00 94.40 0.95 0.97 0.86 0.92 1.13 1.72

PPI-04 10 mM histidine 7.5 90.8 68.5 53.8 98.40 96.50 93.70 0.94 0.97 0.97 0.96 1.48 **

PPI-04 10 mM tris 8 70.9 47.1 32.9 98.00 94.20 92.80 0.93 0.94 0.82 1.00 1.03 0.97

PPI-04 10 mM tris 9 41.5 16.2 6.9 98.10 95.20 88.30 0.93 0.94 0.76 0.95 0.89 0.85

PPI-04 10 mM histidine 5 113.5 65.1 7.4 99.20 99.00 92.10 0.96 0.99 0.97 0.99 1.45 21.06

PPI-04 10 mM histidine 5.5 100.0 71.4 55.6 99.20 98.90 98.60 0.96 0.98 1.00 0.99 1.29 3.02

PPI-04 10 mM histidine 6 97.2 78.6 65.8 99.30 98.90 98.50 0.96 0.98 1.00 1.42 1.73 2.14

PPI-04 10 mM histidine 6.5 83.5 67.3 48.3 99.10 98.70 98.50 0.96 0.99 0.94 1.04 1.16 1.12

PPI-04 10 mM histidine 7 90.1 66.3 65.4 99.20 98.60 98.50 0.95 0.98 1.00 0.99 1.08 0.70

PPI-04 10 mM histidine 7.5 104.6 82.0 64.5 99.00 98.10 97.40 0.95 0.98 0.99 1.01 1.05 0.98

PPI-04 10 mM tris 8 84.2 62.2 52.4 98.90 97.70 97.40 0.94 0.91 0.92 1.03 1.10 1.02

PPI-04 10 mM tris 9 88.3 66.2 37.2 98.70 93.50 88.80 0.93 0.86 0.74 0.99 1.84 3.06

PPI-04 10 mM histidine 5 80.1 48.9 6.0 99.50 99.20 95.00 0.97 1.00 1.00 1.00 1.91 307.51

PPI-04 10 mM histidine 5.5 80.5 57.1 35.4 99.20 99.30 98.70 0.96 1.00 1.00 1.00 1.54 4.48

PPI-04 10 mM histidine 6 93.3 86.2 64.4 99.20 98.90 98.80 0.96 0.99 1.00 0.99 1.29 1.58

PPI-04 10 mM histidine 6.5 82.2 66.0 59.0 99.30 98.60 98.60 0.96 0.98 1.00 0.97 1.23 1.25

PPI-04 10 mM histidine 7 80.0 64.3 55.3 99.00 98.40 98.40 0.95 0.99 1.00 1.00 1.25 1.15

PPI-04 10 mM histidine 7.5 93.0 70.7 69.1 99.20 97.50 97.50 0.95 0.98 0.95 1.00 1.20 1.15

PPI-04 10 mM tris 8 87.9 71.8 64.1 98.90 97.30 97.70 0.94 0.93 0.93 1.02 1.30 1.21

PPI-04 10 mM tris 9 86.7 91.8 40.3 98.80 93.20 88.60 0.94 0.72 0.47 0.96 1.86 4.22
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Protein Buffer pH
m25,rec 

(%)

m40,rec 

(%)

m50,rec 

(%)
M25 (%) M40 (%) M50 (%) LSA25 LSA40 LSA50 RR,25 RR,40 RR,50

PPI-08 10 mM histidine 5 72.6 62.8 68.1 100.00 99.50 98.70 0.99 0.99 0.90 0.92 0.93 1.23

PPI-08 10 mM histidine 5.5 48.8 39.3 54.0 100.00 99.60 99.10 1.00 0.99 0.99 0.98 1.03 1.19

PPI-08 10 mM histidine 6 71.4 57.7 77.7 100.00 99.40 99.20 1.00 0.98 0.99 0.89 0.89 0.94

PPI-08 10 mM histidine 6.5 59.6 48.9 67.2 99.90 99.30 99.10 1.00 0.98 0.97 1.00 1.00 1.10

PPI-08 10 mM histidine 7 64.6 48.0 71.4 100.00 99.30 98.90 1.00 0.99 0.98 1.01 1.11 1.15

PPI-08 10 mM histidine 7.5 68.4 62.0 75.9 100.00 99.20 98.70 1.00 0.98 0.95 1.12 1.08 2.17

PPI-08 10 mM tris 8 66.1 66.9 65.3 100.00 99.00 98.40 1.00 0.99 0.91 1.04 1.01 1.63

PPI-08 10 mM tris 9 66.8 55.5 39.6 92.50 94.60 93.50 0.98 0.95 0.91 0.95 1.05 0.96

PPI-08 10 mM histidine 5 76.8 53.9 2.1 100.00 99.00 77.20 1.00 0.99 0.82 0.95 1.51 4.81

PPI-08 10 mM histidine 5.5 71.4 57.2 44.6 100.00 99.20 98.30 1.00 0.99 0.99 0.98 ** 5.77

PPI-08 10 mM histidine 6 52.9 43.1 56.6 100.00 99.30 99.30 1.00 0.99 1.00 1.01 1.03 2.66

PPI-08 10 mM histidine 6.5 62.2 49.1 66.2 100.00 99.40 99.30 1.00 0.99 0.99 1.00 1.02 3.71

PPI-08 10 mM histidine 7 62.3 48.7 67.9 100.00 99.20 99.10 1.00 0.99 1.00 1.00 0.67 1.08

PPI-08 10 mM histidine 7.5 61.8 43.8 64.3 100.00 98.90 99.10 1.00 0.99 0.99 1.00 1.00 1.01

PPI-08 10 mM tris 8 68.8 39.9 69.3 100.00 98.90 98.80 1.00 0.96 0.83 1.01 1.01 1.23

PPI-08 10 mM tris 9 56.6 59.9 46.2 100.00 98.30 97.80 1.00 0.98 1.23 0.99 0.99 0.98

PPI-08 10 mM histidine 5 54.4 28.0 ## 100.00 98.80 ## 1.00 1.00 ## 1.00 5.98 6.29

PPI-08 10 mM histidine 5.5 65.7 53.9 ## 99.80 99.20 ## 1.00 1.00 ## 1.00 1.27 43.60

PPI-08 10 mM histidine 6 62.8 49.0 55.0 100.00 99.30 99.20 1.00 0.99 0.99 1.00 1.02 1.17

PPI-08 10 mM histidine 6.5 66.7 51.8 71.1 100.00 99.30 99.20 1.00 1.01 1.00 0.99 1.00 1.04

PPI-08 10 mM histidine 7 60.8 44.7 63.7 100.00 99.00 99.10 1.00 1.01 0.99 1.00 1.01 1.00

PPI-08 10 mM histidine 7.5 66.2 44.9 68.9 100.00 99.00 99.10 1.00 0.97 1.02 0.99 0.99 1.01

PPI-08 10 mM tris 8 38.6 63.6 63.2 100.00 98.90 99.00 0.82 0.98 0.98 0.85 0.85 0.87

PPI-08 10 mM tris 9 61.1 63.5 39.5 100.00 98.40 97.30 1.00 0.99 1.05 0.99 1.02 1.00

PPI-10 10 mM histidine 5 84.7 83.3 67.4 99.10 99.10 97.80 0.92 0.96 0.90 0.97 0.76 **

PPI-10 10 mM histidine 5.5 93.2 77.7 67.4 99.00 98.90 97.80 0.92 0.95 0.87 1.01 ** **

PPI-10 10 mM histidine 6 92.2 85.0 74.7 98.90 99.20 98.30 0.90 0.96 0.91 1.08 1.11 1.11

PPI-10 10 mM histidine 6.5 86.3 80.1 72.2 98.70 98.80 98.30 0.87 0.95 0.92 1.09 1.08 1.28

PPI-10 10 mM histidine 7 84.8 75.1 67.6 98.50 98.90 98.20 0.91 0.95 0.94 1.09 1.19 1.18

PPI-10 10 mM histidine 7.5 84.5 64.9 64.2 98.50 98.00 97.00 0.87 0.93 0.85 1.11 1.48 **

PPI-10 10 mM tris 8 78.2 71.8 61.2 98.30 97.70 97.70 0.89 0.92 0.91 1.02 1.07 0.99

PPI-10 10 mM tris 9 86.0 75.1 64.4 98.10 97.00 95.10 0.89 0.90 0.90 0.99 1.04 1.03

PPI-10 10 mM histidine 5 76.7 70.2 54.9 99.30 98.10 93.20 0.85 0.94 0.78 1.19 0.94 **

PPI-10 10 mM histidine 5.5 84.3 80.2 70.5 99.10 99.00 97.90 0.83 0.88 0.84 1.27 1.29 **

PPI-10 10 mM histidine 6 90.8 84.9 76.1 98.80 99.00 98.30 0.88 0.96 0.86 1.08 1.53 **

PPI-10 10 mM histidine 6.5 85.4 76.5 63.6 98.70 99.00 98.30 0.89 0.95 0.85 1.01 1.36 1.16

PPI-10 10 mM histidine 7 44.4 82.1 75.2 98.50 98.50 98.30 0.80 0.94 0.85 1.05 1.39 **

PPI-10 10 mM histidine 7.5 85.1 79.3 72.8 98.60 98.70 98.00 0.87 0.94 0.86 1.11 0.82 **

PPI-10 10 mM tris 8 88.3 85.4 73.8 98.30 98.60 98.00 0.89 0.93 0.91 0.98 0.96 0.98

PPI-10 10 mM tris 9 69.8 68.6 57.9 98.30 98.10 96.50 0.90 0.93 0.90 0.99 1.01 0.99

PPI-10 10 mM histidine 5 94.5 91.2 70.4 99.20 98.40 92.80 0.88 0.93 0.82 1.00 0.97 1.09

PPI-10 10 mM histidine 5.5 80.5 82.0 71.3 99.10 98.90 97.90 0.88 0.94 0.88 ** ** **

PPI-10 10 mM histidine 6 82.7 85.4 75.3 99.10 99.00 98.30 0.89 0.96 0.89 0.83 1.11 **

PPI-10 10 mM histidine 6.5 83.6 81.5 76.1 98.80 99.10 98.50 0.90 0.95 0.94 1.01 1.44 1.01

PPI-10 10 mM histidine 7 81.1 79.7 71.7 98.60 98.80 98.40 0.90 0.94 0.94 1.07 1.30 1.02

PPI-10 10 mM histidine 7.5 87.8 83.1 77.6 98.60 98.50 98.30 0.90 0.92 0.99 1.02 0.99 0.99

PPI-10 10 mM tris 8 83.2 76.0 70.1 98.60 98.60 97.70 0.92 0.93 0.98 0.98 0.98 0.98

PPI-10 10 mM tris 9 79.8 76.1 65.5 98.20 97.50 96.50 0.89 0.91 0.89 0.99 0.98 0.98
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Protein Buffer pH
m25,rec 

(%)

m40,rec 

(%)

m50,rec 

(%)
M25 (%) M40 (%) M50 (%) LSA25 LSA40 LSA50 RR,25 RR,40 RR,50

PPI-13 10 mM histidine 5 73.8 102.8 87.2 98.60 98.60 98.40 0.92 0.95 0.96 1.00 1.04 1.00

PPI-13 10 mM histidine 5.5 80.7 100.5 85.0 98.80 98.80 98.60 0.94 0.96 0.98 1.03 1.06 1.03

PPI-13 10 mM histidine 6 65.6 86.8 86.1 98.70 98.70 98.50 0.94 0.96 0.98 0.99 0.96 0.99

PPI-13 10 mM histidine 6.5 68.5 95.2 89.6 98.70 98.80 98.90 0.95 0.96 0.98 0.99 0.96 0.99

PPI-13 10 mM histidine 7 76.1 86.6 94.1 98.80 98.90 98.70 0.95 0.96 0.98 1.17 0.89 0.92

PPI-13 10 mM histidine 7.5 65.6 87.7 103.1 98.80 98.90 98.80 0.94 0.96 0.98 1.05 0.95 0.97

PPI-13 10 mM tris 8 78.1 94.9 99.4 98.60 98.50 98.30 0.95 0.95 0.97 0.98 0.97 0.98

PPI-13 10 mM tris 9 60.4 78.4 74.5 98.80 98.10 97.60 0.95 0.94 0.96 0.97 0.98 0.97

PPI-13 10 mM histidine 5 98.9 115.0 87.8 98.60 97.70 98.00 0.96 0.94 0.95 0.68 0.98 1.07

PPI-13 10 mM histidine 5.5 66.0 74.7 79.2 98.60 98.70 98.70 0.96 0.95 0.97 0.96 0.99 1.00

PPI-13 10 mM histidine 6 61.2 83.2 89.4 98.80 98.80 98.80 0.96 0.96 0.98 0.99 0.98 1.00

PPI-13 10 mM histidine 6.5 68.1 83.4 86.8 98.70 98.90 98.80 0.96 0.96 0.98 1.04 0.98 1.00

PPI-13 10 mM histidine 7 94.0 83.0 98.8 98.70 98.80 98.80 0.96 0.96 0.89 1.01 0.99 1.01

PPI-13 10 mM histidine 7.5 63.5 76.6 79.7 98.70 98.80 98.80 0.96 0.96 0.99 0.97 0.95 0.97

PPI-13 10 mM tris 8 71.0 83.0 90.0 98.60 98.60 97.00 0.94 0.95 0.96 0.97 0.96 0.96

PPI-13 10 mM tris 9 77.2 85.6 ## 98.70 98.00 ## 0.95 0.94 ## 0.93 0.91 1.02

PPI-13 10 mM histidine 5 74.8 82.4 81.2 98.70 98.70 92.50 0.96 0.96 0.67 1.22 0.99 1.07

PPI-13 10 mM histidine 5.5 69.8 87.0 ## 98.70 98.80 ## 0.96 0.96 ## 8.20 0.93 2.82

PPI-13 10 mM histidine 6 79.1 96.1 103.0 98.80 98.90 98.80 0.96 0.96 0.98 0.99 0.99 1.00

PPI-13 10 mM histidine 6.5 70.4 84.3 100.4 98.70 98.80 98.90 0.96 0.96 0.98 1.10 1.00 1.02

PPI-13 10 mM histidine 7 71.9 85.0 89.3 98.60 98.90 98.70 0.96 0.96 0.97 1.16 0.96 0.97

PPI-13 10 mM histidine 7.5 80.4 97.6 97.7 98.60 98.90 98.90 0.96 0.96 0.98 0.86 0.98 0.99

PPI-13 10 mM tris 8 75.3 91.9 96.4 98.60 98.70 98.60 0.95 0.95 0.98 0.78 0.87 0.88

PPI-13 10 mM tris 9 70.2 84.4 90.9 98.60 98.20 97.60 0.95 0.95 0.97 0.79 0.96 0.98

PPI-17 10 mM histidine 5 73.3 78.2 82.8 98.00 98.10 98.30 0.79 0.80 0.80 0.96 0.97 0.99

PPI-17 10 mM histidine 5.5 88.8 97.0 97.2 98.10 98.20 98.40 0.79 0.80 0.80 0.93 0.95 0.97

PPI-17 10 mM histidine 6 79.9 89.0 90.3 98.10 98.10 98.40 0.79 0.81 0.82 0.92 0.87 0.90

PPI-17 10 mM histidine 6.5 82.1 88.1 87.3 98.10 98.10 98.50 0.81 0.82 0.82 0.95 0.98 0.97

PPI-17 10 mM histidine 7 78.9 89.7 91.0 98.10 97.90 98.20 0.82 0.83 0.83 1.06 0.99 1.05

PPI-17 10 mM histidine 7.5 79.3 84.4 82.1 98.40 97.80 97.70 0.79 0.82 0.82 2.79 0.98 0.94

PPI-17 10 mM tris 8 76.7 81.0 79.3 98.00 97.60 97.70 0.82 0.81 0.80 0.96 0.98 1.00

PPI-17 10 mM tris 9 79.4 87.7 ## 98.30 97.20 ## 0.81 0.82 ## 1.36 0.95 1.57

PPI-17 10 mM histidine 5 85.9 90.4 78.8 98.00 97.80 80.40 0.80 0.78 0.44 0.93 0.96 1.29

PPI-17 10 mM histidine 5.5 77.2 85.5 83.8 98.10 97.90 97.70 0.80 0.80 0.75 0.75 0.74 0.77

PPI-17 10 mM histidine 6 80.4 91.5 78.4 98.10 97.90 98.00 0.80 0.80 0.77 0.95 0.97 0.97

PPI-17 10 mM histidine 6.5 85.4 92.2 94.0 98.20 97.90 98.00 0.80 0.80 0.73 0.82 0.75 0.77

PPI-17 10 mM histidine 7 82.6 91.1 91.3 98.10 97.80 97.60 0.80 0.80 0.78 0.85 0.86 0.87

PPI-17 10 mM histidine 7.5 81.0 89.5 91.5 98.10 97.70 97.50 0.80 0.80 0.71 1.18 0.89 0.92

PPI-17 10 mM tris 8 81.7 90.0 92.0 98.00 97.50 97.50 0.79 0.80 0.78 0.96 0.96 0.99

PPI-17 10 mM tris 9 80.3 85.3 84.5 97.80 97.00 95.00 0.81 0.80 0.77 0.90 0.91 1.24

PPI-17 10 mM histidine 5 81.6 86.8 53.3 98.00 97.50 63.50 0.80 0.78 0.16 0.90 0.94 1.69

PPI-17 10 mM histidine 5.5 80.3 84.3 83.7 98.10 97.80 96.50 0.80 0.81 0.87 0.90 0.93 0.98

PPI-17 10 mM histidine 6 76.6 88.3 86.5 98.10 97.90 97.80 0.80 0.80 0.78 0.91 0.91 0.94

PPI-17 10 mM histidine 6.5 85.6 96.3 88.6 98.10 97.90 97.90 0.80 0.80 0.79 1.00 0.94 0.96

PPI-17 10 mM histidine 7 82.9 94.7 92.7 98.10 97.90 97.60 0.80 0.80 0.69 0.95 0.96 0.99

PPI-17 10 mM histidine 7.5 73.4 83.3 83.7 98.10 97.70 97.20 0.79 0.80 0.74 0.93 1.00 0.99

PPI-17 10 mM tris 8 84.2 92.4 86.7 98.00 97.40 96.90 0.79 0.80 0.78 0.83 0.71 0.75

PPI-17 10 mM tris 9 85.7 90.4 85.2 97.90 96.90 92.30 0.80 0.79 0.77 2.10 0.62 1.37
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Biophysical parameter tables (Part 20 of 22) 

 

Protein Buffer pH
m25,rec 

(%)

m40,rec 

(%)

m50,rec 

(%)
M25 (%) M40 (%) M50 (%) LSA25 LSA40 LSA50 RR,25 RR,40 RR,50

PPI-18 10 mM histidine 5 90.0 0.0 ## 88.5 7 ## 0.80 0.28 ## 2.96 2.09 4.08

PPI-18 10 mM histidine 5.5 66.3 0.5 ## 96.9 6.3 ## 0.96 0.14 ## 1.21 140.53 97.36

PPI-18 10 mM histidine 6 63.6 0.5 ## 97.7 0.4 ## 0.96 0.11 ## 1.01 7.85 12.88

PPI-18 10 mM histidine 6.5 63.6 0.4 ## 97.8 0.4 ## 0.96 0.03 ## 1.11 3.10 13.46

PPI-18 10 mM histidine 7 62.8 0.7 ## 98.1 1 ## 0.97 0.02 ## 1.52 1.51 3.80

PPI-18 10 mM histidine 7.5 78.3 1.4 ## 98 1.2 ## 0.96 0.01 ## 1.29 0.91 1.66

PPI-18 10 mM tris 8 137.5 0.0 ## 97.8 0 ## 0.96 0.00 ## 1.17 1.21 2.43

PPI-18 10 mM tris 9 59.7 0.0 ## 97.6 0 ## 0.96 0.00 ## 1.62 73.08 1.92

PPI-18 10 mM histidine 5 23.0 0.7 ## 75.3 9.6 ## 0.90 0.15 ## 2.94 44.33 155.51

PPI-18 10 mM histidine 5.5 79.9 0.0 ## 93.6 0 ## 0.86 0.00 ## 1.74 46.11 0.06

PPI-18 10 mM histidine 6 52.2 0.0 ## 98.1 0 ## 0.96 0.00 ## 0.83 3.44 43.36

PPI-18 10 mM histidine 6.5 71.1 0.0 ## 98.1 0 ## 0.96 0.00 ## 0.94 5.99 3.38

PPI-18 10 mM histidine 7 71.9 0.6 ## 98.2 0.7 ## 0.96 0.01 ## 0.71 1.37 2.92

PPI-18 10 mM histidine 7.5 79.8 0.0 ## 98 0 ## 0.96 0.00 ## 0.97 1.74 4.50

PPI-18 10 mM tris 8 105.3 0.0 ## 97.6 0 ## 0.96 0.00 ## 1.06 9.82 5.79

PPI-18 10 mM tris 9 68.2 12.5 ## 96.8 15.7 ## 0.95 0.08 ## 1.03 2.28 3.65

PPI-18 10 mM histidine 5 19.1 0.7 ## 72.5 44.2 ## 0.89 0.02 ## 0.42 0.07 192.70

PPI-18 10 mM histidine 5.5 80.6 0.3 ## 88.3 2.6 ## 0.68 0.00 ## 0.54 54.10 176.22

PPI-18 10 mM histidine 6 76.2 0.0 ## 98.1 0 ## 0.96 0.00 ## 0.72 5.45 50.48

PPI-18 10 mM histidine 6.5 71.8 1.0 ## 98.1 0.9 ## 0.96 0.02 ## 0.73 2.32 8.83

PPI-18 10 mM histidine 7 62.3 67.3 ## 98.2 71.8 ## 0.97 0.24 ## 0.64 1.19 5.60

PPI-18 10 mM histidine 7.5 65.6 41.3 ## 98 54.4 ## 0.97 0.24 ## 0.68 1.98 4.88

PPI-18 10 mM tris 8 99.0 0.0 ## 97.8 0 ## 0.96 0.00 ## 0.77 2.79 5.75

PPI-18 10 mM tris 9 60 0.0 ## 96.8 0 ## 0.95 0.00 ## 0.69 2.15 4.40

PPI-30 10 mM histidine 5 9.8 34.6 ## 100.00 99.70 ## 0.44 1.02 ## 1.73 1.04 **

PPI-30 10 mM histidine 5.5 ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 6 ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 6.5 ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 7 60.1 80.9 39.3 99.80 99.00 99.80 0.56 0.43 0.31 1.21 1.96 41.79

PPI-30 10 mM histidine 7.5 107.9 89.5 36.2 99.20 99.40 94.50 0.69 0.42 0.40 0.92 1.39 106.97

PPI-30 10 mM tris 8 75.8 81.2 33.5 100.00 99.40 95.20 0.86 0.80 0.40 0.00 ** **

PPI-30 10 mM tris 9 95.5 105.5 30.4 100.00 94.30 71.90 0.89 0.74 0.00 1.02 1.10 9.67

PPI-30 10 mM histidine 5 91.1 90.4 ## 100.00 99.40 ## 1.01 0.99 ## 1.00 1.04 290.40

PPI-30 10 mM histidine 5.5 ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 6 ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 6.5 ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 7 78.6 41.6 11.5 99.40 98.10 100.00 1.00 0.55 0.00 0.99 1.00 2.76

PPI-30 10 mM histidine 7.5 80.5 78.9 4.8 100.00 100.20 15.80 1.00 0.88 0.10 0.90 1.19 9.00

PPI-30 10 mM tris 8 83.1 81.4 52.1 100.00 93.60 93.10 1.00 0.88 0.53 0.77 1.92 5.07

PPI-30 10 mM tris 9 48.2 75.8 15.9 100.80 95.60 100.00 0.70 0.78 0.23 0.98 1.76 77.03

PPI-30 10 mM histidine 5 117.4 74.6 ## 99.80 100.60 ## 1.01 0.99 ## 1.01 1.04 **

PPI-30 10 mM histidine 5.5 ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 6 ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 6.5 ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^

PPI-30 10 mM histidine 7 31.3 78.2 19.4 94.50 98.80 100.00 0.44 0.98 0.19 1.01 1.07 14.70

PPI-30 10 mM histidine 7.5 102.3 105.7 65.4 99.70 98.50 100.00 1.00 0.96 0.72 1.03 1.07 6.57

PPI-30 10 mM tris 8 114.5 90.0 65.0 99.20 96.80 100.00 0.79 0.84 NaN 1.08 3.92 15.65

PPI-30 10 mM tris 9 63.6 80.2 21.9 100.00 96.80 100.00 0.79 0.80 0.31 1.06 3.47 38.51
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Biophysical parameter tables (Part 21 of 22) 

 

Protein Buffer pH
m25,rec 

(%)

m40,rec 

(%)

m50,rec 

(%)
M25 (%) M40 (%) M50 (%) LSA25 LSA40 LSA50 RR,25 RR,40 RR,50

PPI-44 10 mM histidine 5 60.4 70.3 64.7 84.30 83.70 87.60 0.68 0.77 0.81 1.01 0.99 1.02

PPI-44 10 mM histidine 5.5 94.6 95.3 90.0 84.90 83.20 86.90 0.69 0.75 0.62 0.87 0.86 1.17

PPI-44 10 mM histidine 6 82.4 87.2 90.0 85.10 83.00 87.40 0.69 0.74 0.61 ** 1.00 1.60

PPI-44 10 mM histidine 6.5 80.5 84.7 85.0 85.00 83.10 87.80 0.69 0.66 0.66 0.90 1.36 1.06

PPI-44 10 mM histidine 7 92.4 89.5 127.1 84.90 82.90 88.10 0.68 0.66 0.46 0.88 0.93 21.50

PPI-44 10 mM histidine 7.5 115.5 30.0 30.0 84.40 83.30 88.20 0.67 0.70 0.68 ** 0.87 1.38

PPI-44 10 mM tris 8 142.1 30.0 30.0 85.00 83.80 88.60 0.69 0.69 0.66 0.91 0.99 1.40

PPI-44 10 mM tris 9 88.3 30.0 30.0 86.00 86.80 91.90 0.71 0.79 0.82 1.03 1.02 0.94

PPI-44 10 mM histidine 5 36.4 36.4 32.1 83.80 82.20 86.20 0.69 0.77 0.78 ** 0.68 **

PPI-44 10 mM histidine 5.5 66.3 75.6 88.9 84.30 82.50 87.40 0.69 0.67 0.72 1.05 1.42 1.08

PPI-44 10 mM histidine 6 93.6 91.5 90.0 85.00 83.20 87.60 0.69 0.67 0.73 1.15 1.10 1.00

PPI-44 10 mM histidine 6.5 91.6 100.0 90.0 84.70 83.30 88.00 0.68 0.72 0.72 ** 1.06 0.99

PPI-44 10 mM histidine 7 80.9 85.6 80.0 85.20 83.50 88.50 0.69 0.74 0.68 0.89 0.84 **

PPI-44 10 mM histidine 7.5 84.2 89.6 80.0 85.30 84.70 89.90 0.70 0.75 0.74 0.78 0.76 1.09

PPI-44 10 mM tris 8 110.5 30.0 30.0 85.30 84.90 89.80 0.70 0.75 0.69 ** 1.05 1.82

PPI-44 10 mM tris 9 85.7 30.0 30.0 86.50 88.40 91.70 0.72 0.79 0.79 0.91 0.95 1.10

PPI-44 10 mM histidine 5 30.2 31.6 21.2 86.30 84.80 90.40 0.72 0.83 0.88 0.95 1.20 1.20

PPI-44 10 mM histidine 5.5 100.2 95.7 103.2 85.10 83.70 87.60 0.70 0.76 0.75 ** 1.09 1.06

PPI-44 10 mM histidine 6 86.0 104.9 125.3 85.30 83.40 88.20 0.69 0.68 0.73 1.00 1.10 0.96

PPI-44 10 mM histidine 6.5 74.6 100.4 121.9 85.20 83.50 88.20 0.70 0.74 0.73 0.97 0.92 0.97

PPI-44 10 mM histidine 7 86.8 97.0 90.0 85.20 83.90 89.10 0.69 0.74 0.71 ** 0.98 **

PPI-44 10 mM histidine 7.5 84.0 96.0 90.0 84.90 85.00 90.10 0.69 0.76 0.75 0.70 0.64 0.94

PPI-44 10 mM tris 8 102.5 30.0 20.0 85.50 85.30 90.20 0.70 0.74 0.72 0.97 0.93 1.66

PPI-44 10 mM tris 9 81.5 30.0 20.0 87.30 89.10 91.70 0.74 0.82 0.80 ** 0.90 0.90

PPI-45 10 mM histidine 5 52.1 30.0 ## 100.00 ** ## 0.81 ** ## 0.99 ** 20.36

PPI-45 10 mM histidine 5.5 99.0 73.9 ## 100.00 100.00 ## 0.66 0.81 ## 0.93 ** 28.21

PPI-45 10 mM histidine 6 99.4 88.5 ## 100.00 100.00 ## 0.76 0.55 ## 0.34 0.14 14.07

PPI-45 10 mM histidine 6.5 86.6 93.9 ## 100.00 100.00 ## 0.76 0.58 ## 0.19 0.32 40.44

PPI-45 10 mM histidine 7 99.0 95.7 6.2 100.00 100.00 50.90 0.80 0.55 0.02 0.18 0.18 46.56

PPI-45 10 mM histidine 7.5 98.6 95.3 24.8 100.00 100.50 57.50 0.81 0.55 0.02 0.19 0.62 1.76

PPI-45 10 mM tris 8 98.1 75.6 1.7 100.00 99.50 16.70 0.56 0.10 0.02 1.07 2.70 200.77

PPI-45 10 mM tris 9 96.2 91.4 12.1 100.00 100.00 16.70 0.39 0.08 0.00 0.52 0.24 0.81

PPI-45 10 mM histidine 5 98.8 ## ## 100.00 ## ## 0.88 ## ## 0.77 0.48 40.80

PPI-45 10 mM histidine 5.5 99.7 96.0 ## 100.00 100.00 ## 0.72 0.96 ## 0.85 0.51 42.20

PPI-45 10 mM histidine 6 101.1 90.2 ## 100.00 100.00 ## 0.81 0.89 ## 0.40 0.26 14.11

PPI-45 10 mM histidine 6.5 99.9 93.7 ## 100.00 100.00 ## 0.74 0.90 ## 0.37 0.29 24.19

PPI-45 10 mM histidine 7 99.4 ## ## 100.00 ## ## 0.73 ## ## 1.08 0.56 44.73

PPI-45 10 mM histidine 7.5 94.6 88.4 1.5 100.00 100.00 100.00 0.65 0.71 0.21 0.27 0.37 70.81

PPI-45 10 mM tris 8 97.1 85.6 0.2 100.00 99.30 100.00 0.79 0.06 1.00 1.68 6.48 174.90

PPI-45 10 mM tris 9 96.6 71.3 ## 100.00 88.90 ## 0.32 0.01 ## 0.70 6.34 15.99

PPI-45 10 mM histidine 5 100.8 ## ## 100.00 ## ## 0.67 NaN ## 0.74 0.48 47.55

PPI-45 10 mM histidine 5.5 92.6 82.6 ## 100.00 100.00 ## 0.77 0.91 ## 0.74 0.43 28.07

PPI-45 10 mM histidine 6 98.6 90.9 ## 100.00 100.00 ## 0.76 0.84 ## 0.65 0.39 37.94

PPI-45 10 mM histidine 6.5 102.7 101.3 ## 100.00 100.00 ## 0.73 0.86 ## 0.29 0.27 21.23

PPI-45 10 mM histidine 7 100.1 94.5 ## 100.00 100.00 ## 0.67 0.87 ## 0.91 0.66 38.72

PPI-45 10 mM histidine 7.5 98.8 89.5 ## 100.00 100.00 ## 0.63 0.82 ## 1.00 0.59 42.43

PPI-45 10 mM tris 8 98.5 90.0 ## 100.00 100.00 ## 0.45 0.42 ## 0.93 ** 272.16

PPI-45 10 mM tris 9 96.8 74.8 ## 100.00 99.20 ## 0.40 0.04 ## 0.56 27.97 157.13
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Biophysical parameter tables (Part 22 of 22) 

Protein Buffer pH
m25,rec 

(%)

m40,rec 

(%)

m50,rec 

(%)
M25 (%) M40 (%) M50 (%) LSA25 LSA40 LSA50 RR,25 RR,40 RR,50

PPI-46 10 mM histidine 5 97.4 86.3 ## 97.70 98.80 ## 0.60 0.97 ## 1.10 1.07 95.61

PPI-46 10 mM histidine 5.5 99.7 93.7 ## 97.50 98.00 ## 0.67 0.72 ## 1.12 1.05 151.16

PPI-46 10 mM histidine 6 98.4 101.7 87.5 97.50 97.90 98.80 0.72 0.48 0.69 1.03 22.26 337.40

PPI-46 10 mM histidine 6.5 0.6 97.2 90.0 97.50 97.20 95.40 0.01 0.72 0.06 1.04 1.03 9.07

PPI-46 10 mM histidine 7 101.7 102.7 98.4 97.50 97.60 91.50 0.72 0.81 0.37 1.10 1.10 3.46

PPI-46 10 mM histidine 7.5 99.1 103.1 97.3 97.50 97.60 95.60 0.74 0.81 0.60 1.12 1.04 1.48

PPI-46 10 mM tris 8 98.1 99.8 93.9 97.50 97.80 97.70 0.75 0.81 0.78 0.99 0.85 1.07

PPI-46 10 mM tris 9 101.7 97.5 92.8 97.60 97.60 99.30 0.76 0.95 0.79 1.06 1.04 **

PPI-46 10 mM histidine 5 103.4 86.9 ## 97.60 98.30 ## 0.77 0.97 ## 1.01 1.02 109.64

PPI-46 10 mM histidine 5.5 99.8 96.9 ## 97.50 97.70 ## 0.72 0.95 ## 0.95 0.94 64.14

PPI-46 10 mM histidine 6 100.1 99.8 97.0 97.50 97.70 98.10 0.73 0.79 0.83 2.01 1.04 37.42

PPI-46 10 mM histidine 6.5 94.3 102.5 104.0 97.50 97.40 97.90 0.70 0.73 0.75 0.82 0.85 56.81

PPI-46 10 mM histidine 7 101.4 101.6 100.0 97.50 97.40 94.80 0.74 0.81 0.08 0.95 1.14 7.88

PPI-46 10 mM histidine 7.5 99.8 100.0 99.7 97.50 97.50 93.40 0.72 0.79 0.18 1.00 1.04 4.83

PPI-46 10 mM tris 8 95.4 100.6 103.3 97.40 96.70 91.90 0.75 0.87 0.25 0.95 9.84 1.67

PPI-46 10 mM tris 9 145.5 100.0 100.0 97.50 96.10 91.20 0.74 0.77 0.38 1.01 1.17 **

PPI-46 10 mM histidine 5 102.5 99.9 ## 97.50 97.70 ## 0.49 0.53 ## 0.95 1.12 75.89

PPI-46 10 mM histidine 5.5 101.8 97.0 ## 97.50 97.70 ## 0.73 0.79 ## 0.96 1.01 53.59

PPI-46 10 mM histidine 6 104.5 100.0 100.1 97.50 97.60 98.00 0.73 0.78 0.81 1.17 0.89 3.94

PPI-46 10 mM histidine 6.5 102.5 100.3 113.2 97.50 97.50 98.10 0.75 0.78 0.78 0.88 1.05 1.14

PPI-46 10 mM histidine 7 100.8 107.2 102.3 97.50 97.50 96.50 0.74 0.84 0.14 0.90 1.04 14.77

PPI-46 10 mM histidine 7.5 114.2 100.0 100.0 97.50 97.50 93.80 0.74 0.85 0.11 1.17 1.04 7.38

PPI-46 10 mM tris 8 100.4 98.2 103.9 97.50 96.70 92.40 0.75 0.79 0.20 0.90 1.03 **

PPI-46 10 mM tris 9 100.3 97.0 105.4 97.60 95.30 90.80 0.76 0.68 0.31 ** 1.14 **

PPI-49 10 mM histidine 5 74.8 81.4 61.0 98.80 97.70 76.10 0.91 0.79 0.36 0.98 1.03 1.64

PPI-49 10 mM histidine 5.5 79.7 84.5 84.2 98.20 98.70 96.40 0.93 0.94 0.79 0.96 0.97 1.17

PPI-49 10 mM histidine 6 75.3 79.5 84.6 98.40 98.60 98.40 0.92 0.92 0.98 0.76 0.81 0.78

PPI-49 10 mM histidine 6.5 41.1 76.4 79.4 98.50 98.60 98.60 0.73 0.90 0.98 0.96 0.87 0.99

PPI-49 10 mM histidine 7 72.0 79.0 80.1 98.80 98.60 98.70 0.91 0.90 0.98 1.01 0.99 0.98

PPI-49 10 mM histidine 7.5 72.9 80.3 81.5 98.60 98.70 98.80 0.91 0.91 0.99 1.01 1.05 0.99

PPI-49 10 mM tris 8 86.1 82.9 88.7 98.60 98.80 98.70 0.92 0.84 0.92 0.98 0.72 1.03

PPI-49 10 mM tris 9 75.3 71.3 78.1 98.60 98.90 98.80 0.91 0.86 0.94 0.90 0.99 0.98

PPI-49 10 mM histidine 5 59.0 62.6 39.3 97.20 96.80 53.70 0.94 0.89 0.05 0.92 0.95 5.82

PPI-49 10 mM histidine 5.5 71.7 77.5 76.2 98.20 98.10 97.40 0.92 0.94 0.89 0.97 1.05 1.03

PPI-49 10 mM histidine 6 77.7 84.8 88.1 98.80 98.60 98.70 0.93 0.93 0.98 0.97 0.99 10.39

PPI-49 10 mM histidine 6.5 72.2 78.9 81.7 98.50 98.60 98.70 0.96 0.93 0.92 0.86 0.89 0.87

PPI-49 10 mM histidine 7 85.1 86.3 90.0 98.30 98.60 98.80 0.92 0.94 0.98 0.98 1.03 0.98

PPI-49 10 mM histidine 7.5 75.2 82.7 85.8 98.60 98.70 98.80 0.92 0.92 0.99 1.30 0.72 1.01

PPI-49 10 mM tris 8 81.2 88.3 88.8 98.10 98.30 98.40 0.91 0.85 0.92 0.95 0.78 0.96

PPI-49 10 mM tris 9 79.1 85.9 90.2 98.20 98.10 97.90 0.92 0.91 0.92 0.95 0.96 0.99

PPI-49 10 mM histidine 5 74.4 80.4 46.6 98.30 98.40 76.60 0.93 0.91 0.03 0.83 8.03 25.23

PPI-49 10 mM histidine 5.5 69.9 74.3 75.0 98.60 98.60 98.40 0.93 0.94 0.90 0.95 0.99 0.98

PPI-49 10 mM histidine 6 81.5 90.1 89.3 98.30 98.70 98.70 0.92 0.94 0.98 0.94 14.97 0.94

PPI-49 10 mM histidine 6.5 77.3 83.4 85.3 98.40 98.50 98.70 0.93 0.93 0.98 0.97 8.78 0.97

PPI-49 10 mM histidine 7 74.8 81.4 85.8 98.60 98.60 98.80 0.93 0.93 0.98 1.01 0.72 1.01

PPI-49 10 mM histidine 7.5 81.7 87.3 89.6 98.30 98.60 98.70 0.93 0.89 0.98 1.00 1.07 1.02

PPI-49 10 mM tris 8 77.9 85.6 94.4 98.60 98.60 98.70 0.92 0.89 0.92 0.97 0.97 1.01

PPI-49 10 mM tris 9 81.3 62.5 90.2 98.50 98.70 98.80 0.92 0.75 0.93 0.92 ** 1.00
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3 Neural network constants to predict monomer retention of therapeutic 

proteins after long term storage 

The constants of the trained networks, cross-validated by random holdout and presented in Chapter V, 

are listed in the following. The algorithms were coded in MaTLab2018a.  

3.1  Network constants of model A1 (F4, 4°C):  

% Input 1 
x1_step1.xoffset = [0;0;6.26045452316477e-05;0.528539388524551]; 
x1_step1.gain = [2;2;2.00012521692961;4.34947223805172]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [0.39607276174183170259;0.069832958543102174875]; 
IW1_1 = [0.054787589085189290772 -0.12042662105899816505 -

0.86412089177281237173 -0.023444560190131236849;-0.15709513045521628083 

0.1791570368552709569 1.9379742155004295867 -1.2217577740399869768]; 

  
% Layer 2 
b2 = 0.67426946728449099755; 
LW2_1 = [-2.5360709220595802904 -1.4723612317324712429]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = 6.03314122048985; 
y1_step1.xoffset = 0.668497731628166; 

 

3.2  Network constants of model A2 (F4, 4-25°C): 

% Input 1 
x1_step1.xoffset = [0;0;6.26045452316477e-05;0.528539388524551]; 
x1_step1.gain = [2;2;2.00012521692961;4.34947223805172]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [0.85152986843293176911;-0.25524368507062633604]; 
IW1_1 = [1.4743080093768090588 -0.2940277278565914254 0.031206545797845947759 

-0.11861344619187222382;0.40555147492113685637 -0.28700432140874782005 

0.20456067146874123974 -1.1068203174392445831]; 

  
% Layer 2 
b2 = [-0.53354832751902425692;-0.80071332697122044042]; 
LW2_1 = [0.49319977233629452851 -

0.98297374637185896962;0.47019185209484098964 -1.5393358670505212782]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.33570182775714;6.03314122048985]; 
y1_step1.xoffset = [0.538713666332862;0.668497731628166]; 
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3.3  Network constants of model A3 (F4, 4-25-40°C): 

% Input 1 
x1_step1.xoffset = [0;0;6.26045452316477e-05;0.528539388524551]; 
x1_step1.gain = [2;2;2.00012521692961;4.34947223805172]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [-0.31029856834989372194;0.76982633197127103841]; 
IW1_1 = [0.54404922496028662593 -0.86845005290765930894 -

0.49642368338054460031 2.5081753874866263843;-0.033641901691432676835 

0.27720939466867877687 0.44063306735669627301 -1.3468487764394425632]; 

  
% Layer 2 
b2 = [-0.41984844539812471442;-0.032993606706157134478;-

1.2737377318650751068]; 
LW2_1 = [0.9638667187140489423 0.93912771017501128767;0.75365431795556214745 

0.21322517036493496279;1.266486106656306454 2.5013054792766702406]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.33570182775714;6.03314122048985;2.00076573878507]; 
y1_step1.xoffset = 

[0.538713666332862;0.668497731628166;0.000382722859664607]; 

  

3.4  Network constants of model B1 (F8, 4°C): 

% Input 1 
x1_step1.xoffset = [0;0;-0.055930255733897;0;0;0;0;0]; 
x1_step1.gain = 

[2;1.97773680791308;0.837709383383849;2;2;2;2;2.02354333654555]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = 

[0.8779997622410470326;0.10753112403923095752;0.72929536021262109102;0.158050

91849032293361]; 
IW1_1 = [-0.17326065554008712732 0.66468983461611630403 

0.32595155596861163927 -0.36137342811901923545 -0.042703439202685322673 -

0.12374793018432769798 -0.38544424340076927082 -

1.376151006477973171;0.48814174494277512428 -0.62814595392996552814 

0.30482271140650085695 0.16425750645652179016 0.57771024463333131571 -

0.60250586389755833583 1.1863527189703910736 -

0.67995786710895378402;0.072566515494120728547 -0.0052687513689282667456 -

0.93631930905823168576 1.1539023858665489186 -0.22651903446358676031 

0.48696296959063539722 0.44694277884513966548 -2.4646930827591799762;-

0.34360307669374717809 -1.2893058020283305609 0.35791055369090751803 -

0.7338328532590642217 -0.16031149640635158904 0.062142584158095870439 -

0.57656272646510597912 3.0102907296633789613]; 

  
% Layer 2 
b2 = 0.75360231365168361961; 
LW2_1 = [-1.7342886448572534253 -1.0839900956883172789 -1.403105782608680796 

-1.7783634984817375813]; 
% Output 1 
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y1_step1.ymin = -1; 
y1_step1.gain = 6.03314122048985; 
y1_step1.xoffset = 0.668497731628166; 

  

3.5  Network constants of model B2 (F8, 4-25°C): 

% Input 1 
x1_step1.xoffset = [0;0;-0.055930255733897;0;0;0;0;0]; 
x1_step1.gain = 

[2;1.97773680791308;0.837709383383849;2;2;2;2;2.02354333654555]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = 

[1.5009845240882822015;1.2862442384726000544;0.013942400782822867919;0.190654

39568694014794]; 
IW1_1 = [-0.33170518133754711698 -1.3216132016790063108 1.0196929560781884394 

-0.35848364752385786236 -0.40396642151839945445 0.19955983755454656525 

2.2901855611214654296 -0.79212838080443814803;-0.047373128779114447029 -

0.058451875819191485839 -0.2211035611823531366 0.09386783637145067194 -

0.024347942117175266907 -0.080163488893689946457 -0.35635980392357297086 -

1.5065724845955823508;0.23331589216063977621 -0.42968165287315113199 -

1.3438292988631241887 0.078075177955313296296 -0.70808704455796267485 

0.41732452241238165991 -0.25877976696381332911 -0.43184035435404971581;-

0.076827353061130546075 -0.31886648785949528451 -0.46766852837849298696 -

0.082861684731440593543 -0.59230282950113366525 0.31979437785681585904 

1.2691109715603916541 -0.71410263252733252592]; 

  
% Layer 2 
b2 = [0.5755932112000898826;0.58129103813642424292]; 
LW2_1 = [-2.0467370355969158879 -0.11896333240695314282 -

1.6564400304863364788 2.6716730662630170379;-1.0346482905317837542 -

1.4234301168013716588 -0.25416988415433788839 0.81132432669165677197]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.33570182775714;6.03314122048985]; 
y1_step1.xoffset = [0.538713666332862;0.668497731628166]; 
 

3.6  Network constants of model B3 (F8, 4-25-40°C): 

% Input 1 
x1_step1.xoffset = [0;0;-0.055930255733897;0;0;0;0;0]; 
x1_step1.gain = 

[2;1.97773680791308;0.837709383383849;2;2;2;2;2.02354333654555]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [-1.6678886944407154136;1.1599726637959426601;-0.013493001919060821497;-

0.03001794481686028554]; 
IW1_1 = [-0.17550700259775048329 0.12437900796796157177 

0.11079239025341047764 -0.034075895754986283703 0.29483175937824362967 -

0.057713815834810146266 -1.1193397324834686302 
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3.3403573184268307017;0.10382108796636763115 -0.26423074546211317015 -

0.070405650218118190353 0.14880835326845129329 0.24531852798260075921 -

0.14005801785651375568 -0.86108523618232735153 -0.49447826497060376472;-

1.5375680323729121746 0.10744233312355987164 1.6972164684725878914 

0.023475570635027292327 0.18654826701683385748 -0.3040185727588216591 -

1.2667740544547705372 2.5996354505903949139;1.6759218404130238333 -

0.99220912659864490823 -1.7639973679471612211 0.24409267318162125582 

0.6703697837820276062 0.057992176831529004821 -3.6546840051134310556 

1.9322862201354018552]; 

  
% Layer 2 
b2 = [-0.20064561634415761793;0.2126716541953492523;-1.207669621029798579]; 
LW2_1 = [1.4903682160365423481 1.2342221870312257703 -0.74689452973439007799 

-0.84407765909843834873;0.93997435989942523804 -0.5797040945375588894 -

0.2791793199562800365 -0.061694321259383247402;2.5958358576357181136 

4.5098690559625476126 -2.2368002370158452941 -2.2187453127702148059]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.33570182775714;6.03314122048985;2.00076573878507]; 
y1_step1.xoffset = 

[0.538713666332862;0.668497731628166;0.000382722859664607]; 

 

3.7  Network constants of model C1 (F11, 4°C): 

% Input 1 
x1_step1.xoffset = [0;0;0;0;0;-0.055930255733897;0;0;0;0;0]; 
x1_step1.gain = 

[2;2;2;2;1.97773680791308;0.837709383383849;2;2;2;2;2.02354333654555]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [-

0.40370089747207732467;0.17871799244745403823;0.47721400744757097589;0.520897

95999478671895;0.35457508070124665878;-0.94286052713759127553]; 
IW1_1 = [0.42155318445361472657 -0.51524473126784586796 -

0.20416798404505290265 0.20768760396018018377 0.91916844755465487715 -

0.12411818824628013946 0.062744834704219876187 0.067716436169300994741 

0.45633171680676221094 1.1312218874864743423 -0.99368871304347861084;-

0.075393579991349463088 0.16334887328936875672 -0.59583923552529727274 -

0.41668703852470406757 0.044162310996705117505 -0.5351140441134089043 -

0.36265903159808504652 -0.1946690382647009443 -0.34075115001898026446 -

0.48514089676642330184 -0.99573410884504554019;-1.1018482189815230754 

0.39109425926540880569 0.5022508519833684959 -0.18066345514459647426 -

0.73383218576374342756 0.23175528400746367441 0.49056863989596116715 

0.68421672228251062542 -0.091714531470580146211 0.16413163147728729307 

0.18544990585682508133;-0.32220459213361984929 -0.44611626501836698644 

0.5951783055127251032 0.081814668854340133475 -0.35094977437538699139 

0.03667013504512791483 -0.15108827441790620427 0.80839056868347070051 

0.018060888995733902218 -0.1729977215935263879 -0.29692770056889195018;-

1.678856968015912221 -0.49662208635976368143 0.58022662747001263472 

0.96352965387047762036 0.56931444262515684684 -0.59179359526713404271 -

0.14693476133743244016 0.51195120845292796385 0.15873225673975835393 

0.30521451541199917656 -1.057796546570762386;0.11424739908715322856 
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0.26971448480340631804 0.316969740906699049 -1.1481567825044523001 -

0.0074052056914349273162 -0.052248831785534813332 0.23327881834227992552 

0.84472418487630918094 -0.00072994081188172102621 0.34210671310969131831 

0.60528776425713382014]; 

  
% Layer 2 
b2 = 0.25004823586103314126; 
LW2_1 = [-1.4222597480419465477 -1.5149632866517936947 -1.4028569325369002474 

-1.113295912051026626 1.2217769190397147483 1.2258728538589300783]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = 6.03314122048985; 
y1_step1.xoffset = 0.668497731628166; 
 

3.8  Network constants of model C2 (F11, 4-25°C): 

% Input 1 
x1_step1.xoffset = [0;0;0;0;0;-0.055930255733897;0;0;0;0;0]; 
x1_step1.gain = 

[2;2;2;2;1.97773680791308;0.837709383383849;2;2;2;2;2.02354333654555]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [-0.52651855988476814474;0.69062321846358665223;-

0.17167419635148478685;-0.15499703436247458388;0.52209410001840095283;-

0.42767933782322692382]; 
IW1_1 = [0.10022963166839572724 -0.84081543522351886999 -

0.29543577802368514718 0.72116697155261100249 1.7127660871314180913 -

0.28516433906903887463 -0.72880523384219852989 -0.17856100516108489029 

0.15093786032072054049 0.95412463959634619126 -0.10710561056643286282;-

0.00039829718886674617476 0.22050275586323619947 -0.39226632266018590656 -

0.54392347313409739051 -0.34878852547786320937 0.17925726534135802415 

0.67261144648981685545 -0.31054145611810962668 0.30790081361015109174 -

0.46277435567193164756 -1.4642725542925394411;0.13625355556901347365 

0.002463140863459799268 -0.52802226153241338391 0.28977916859303337604 -

0.96768573666869950323 1.210825525780141243 0.57813464266175240702 

0.30559296977505984172 -0.14514216772172061631 -0.35949722848328380387 

1.3094910292552288666;0.26425597946439760566 -0.073738425137265431464 -

1.5029833750217902466 -0.076281370054950892179 0.16865405701609323397 -

0.22884309627202747972 0.93123848734340863853 -0.38073160815216555708 

0.35296788766705933238 -0.30270105573622169137 -0.60867937149247641759;-

0.13786229440281241865 -0.23317168465003168532 -0.3041845833310828362 -

0.1739640165537831018 -1.0132457062355946231 -1.6272761142785407973 -

0.57072078290912131582 0.021820235472612806854 -0.30091898545501122308 -

0.12427108770706132845 -0.78640154956120456031;0.14631461314929727902 -

0.087234483749774119343 -0.23492433614969499001 -0.47138504446961276839 

0.58554162201984205627 0.064136046786829034594 0.53819358487453516915 -

0.50161955465587315661 0.48357451118477440266 -0.15300712300686425404 -

0.25504133871203688022]; 

  
% Layer 2 
b2 = [-0.3957536563933603535;-0.0027204676170238142711]; 
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LW2_1 = [-1.0283769261819599716 -1.175600542265540005 -1.8198451666350585754 

1.2973431152349981232 -1.390529074198237458 -0.73936386857524893923;-

1.0551096428032396002 -1.7581362654837433546 -0.43157668385251063414 

0.37343596504681847437 -0.37581698320677126013 1.1150136839987450088]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.33570182775714;6.03314122048985]; 
y1_step1.xoffset = [0.538713666332862;0.668497731628166]; 
 

3.9  Network constants of model C3 (F11, 4-25-40°C): 

% Input 1 
x1_step1.xoffset = [0;0;0;0;0;-0.055930255733897;0;0;0;0;0]; 
x1_step1.gain = 

[2;2;2;2;1.97773680791308;0.837709383383849;2;2;2;2;2.02354333654555]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [-1.2392226155832075651;1.2966158332307400336;0.26850488476994649467;-

1.3247219500176135032;-0.88022712900115407386;-1.2810062537233188884]; 
IW1_1 = [0.71608821579649795108 0.3409317793897489457 -

0.052174061111371225485 0.9538860365435065658 1.2854636201136866447 

0.94644461581302075093 -1.0273497022101258924 0.58676415695967398811 -

0.10807895724704920382 -0.64795847557246744053 1.8686243371798876289;-

0.11270553452187728749 0.22679310657614148994 -0.10237681129151732229 -

0.068361740010054655725 -0.42314162205500049918 -0.036313823835854804056 

0.003172797347704695535 -0.23063687649130920621 0.016941200328373838546 -

0.62152320192993015802 -1.2810505714629634166;-0.0074507819657740363348 -

0.23125036136245119556 0.049380463780601693835 1.5293577813736947135 -

1.0525655494245482746 -2.3552070267476157284 -1.4673893145569010255 

0.31312216229156331071 -0.17754766724191686778 -2.1577111566370517082 

1.1076873834512623862;0.029634417142328804695 1.353012543655713884 

0.040160093153926372522 0.46566651949555820655 1.1707714247437135402 

1.0221934464931057285 -0.82324845039265837077 0.059661774486995243494 -

0.14242170493113240348 -1.2880827257448252965 

0.61536103684240961442;0.25106860345269838009 0.22842046826466586018 

0.020308366311532363713 1.2462430374475896855 0.56942799937270838218 -

2.3034564935030985566 -1.1559582095849907368 0.16244021157367546926 

0.1134253548220293395 0.45229451592467639909 -0.020907643342617097948;-

0.033749069795194333587 1.1331913951069494395 0.044510223619863037436 

0.84194905452217483344 1.07052264342128578 -2.2858954648655465114 -

0.70836733338416313366 -1.1301562327285641363 0.70502761775772204711 

0.47647127560363750076 -0.10546778216772731418]; 

  
% Layer 2 
b2 = [0.75074727525263573735;0.63407654340164654183;1.0970393464380399084]; 
LW2_1 = [-0.36967834613234545893 -1.3950388413634842166 

0.045354031686088633335 0.81608230579108209657 -0.039415582913781693764 

0.16730421296430131317;-0.23016961987202153028 -1.8128752736744009333 

0.23354928990336648598 0.53929324135714873378 -0.71210704965445881243 

0.38990595802020555638;-1.6264627863393188445 0.14695715082251606387 -

1.8434275379145830254 2.5533514120532867508 2.6418053462848876123 -

1.3196798194018877215]; 
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% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.33570182775714;6.03314122048985;2.00076573878507]; 
y1_step1.xoffset = 

[0.538713666332862;0.668497731628166;0.000382722859664607]; 
 

3.10  Network constants of model D1 (F8, 4°C): 

% Input 1 
x1_step1.xoffset = 

[0;0.578048457148629;0.504630685370859;0.262552631822902;0.558329429597553;0.

121445902425566;0.320586542346591;0.568642574177782]; 
x1_step1.gain = 

[2;4.61671515771224;3.29535895127815;3.07013207334982;4.5282618630841;2.27646

767059846;2.94371560861879;4.76505063157985]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [0.46226033058223148231;-

0.039604028491902795728;0.15149371605456501966;-0.65341946296139263861]; 
IW1_1 = [-1.7324195799026460563 0.39858007103103948454 -

0.35916257909204302168 0.28681331343778226906 0.3898331574879249084 -

0.73046225506045325826 -0.71760775935311360563 -

0.35928426760370385518;0.17348226008647976704 -0.75171379011693073569 

0.26841949147381283236 0.155759909769252608 -0.62917756745993347334 

0.58356411232913307785 0.81309283502202722715 -

0.68249943503489951535;1.1979955287650545515 0.21395335052703146062 

0.064102074526654867492 0.49362767499456261522 1.1551988574146536681 -

0.53126238742993037167 -0.10958601862512362679 0.39500070889342187019;-

0.026582418915605761367 -0.39777051900722937283 0.055903900628677893891 -

1.074746352346635625 -0.71204013805111610047 0.014875178202156688276 

0.25143122081670804535 -0.64595619548028759827]; 

  
% Layer 2 
b2 = -0.42250793271618813929; 
LW2_1 = [-1.1463831735757361585 -0.94600724021728355151 -

1.2483796052899607254 -1.2081670431717708158]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = 6.03314122048985; 
y1_step1.xoffset = 0.668497731628166; 
 

3.11  Network constants of model D2 (F8, 4-25°C): 

% Input 1 
x1_step1.xoffset = 

[0;0.578048457148629;0.504630685370859;0.262552631822902;0.558329429597553;0.

121445902425566;0.320586542346591;0.568642574177782]; 
x1_step1.gain = 

[2;4.61671515771224;3.29535895127815;3.07013207334982;4.5282618630841;2.27646

767059846;2.94371560861879;4.76505063157985]; 
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x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [-0.35617905549234829543;-

0.41892582824143997922;0.37924793923566973985;-0.86286447773348495804]; 
IW1_1 = [0.33925165458226053117 -0.078989479449508237519 

0.1567430586683562499 0.131269349818998321 -0.30242796330672022664 

0.67047375572527356802 0.34308796891194076606 0.50782648386046003175;-

0.89456258860463566673 -0.51942793654267949144 0.95420138459822190224 -

1.2765454490159577894 -0.27523691667659827553 0.030725564925658463422 

1.4870587829083758979 -0.64106319981723003387;-0.45314488733215435579 

0.43453231756131183161 0.49401812675466100222 -0.96302257691206805124 -

0.0227142942216037938 -0.97778109368067067653 -0.5973241123265220498 

0.95429919414000108357;-0.50324774746997547048 0.40648668289087752648 

0.30289911830334803611 -0.34008757912086523545 -0.26366064002048639203 

0.3037322423339041122 1.5117781997273185279 -1.3163712418748116928]; 

  
% Layer 2 
b2 = [0.60287279178289909787;0.14744378905376265276]; 
LW2_1 = [0.3916673119489742505 -1.1129497118103595099 0.8139650978018614369 

1.4800344186853791051;0.91197984162503187289 -0.58451683891640904278 

0.71861410265830516497 0.59524747655955612125]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.95521477085903;6.03314122048985]; 
y1_step1.xoffset = [0.584773656687707;0.668497731628166]; 

 

 

3.12  Network constants of model D3 (F8, 4-25-40°C): 

% Input 1 
x1_step1.xoffset = 

[0;0.578048457148629;0.504630685370859;0.262552631822902;0.558329429597553;0.

121445902425566;0.320586542346591;0.568642574177782]; 
x1_step1.gain = 

[2;4.61671515771224;3.29535895127815;3.07013207334982;4.5282618630841;2.27646

767059846;2.94371560861879;4.76505063157985]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [0.12306361225536781301;-0.53966669081909068861;0.36656064188294035233;-

0.69299295051835085868]; 
IW1_1 = [-2.0074569595974565139 -1.2204017982957546806 0.2394366041436190029 

-2.2865540946300626501 1.7889668248195083056 1.8471183335868692765 -

2.2035606648373744498 -2.4642331554415477513;-0.026883572229301603423 -

0.045566037425901810554 -1.2473170442658954027 0.6036941653605939484 

0.8434983246138421098 0.69587596367047099832 0.13328751860562118581 -

0.52425761264123627026;-1.0210932003967743142 -1.4392998980433400202 

0.65963496468599791545 -2.0737626651702525393 0.77284705469432279923 

0.55003979801526159399 -1.1656031342103754245 -

2.3066866344921295173;0.89647078775850619348 -0.4402694322699585161 -

1.6606750170070705419 1.5774424716933317381 0.95254372678695786725 

1.0524785096407160978 0.46410107597776611987 -1.973902773208430883]; 
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% Layer 2 
b2 = [0.36210794046796063173;0.30607573585256131476;0.69879923580211900092]; 
LW2_1 = [-0.30817073546736140077 0.84117526057646840876 

0.17481725739552503307 -0.70673235285474189649;-0.20518617236931485648 

0.70398339089493167098 -0.053575454849440345972 -0.71988351691421448297;-

2.0277897846080130684 1.9551992706789758092 2.1209403038154373 -

0.99650157056928245769]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.95521477085903;6.03314122048985;2.09609572180438]; 
y1_step1.xoffset = 

[0.584773656687707;0.668497731628166;0.000382722859664607]; 

 

3.13  Network constants of model E1 (F8, 4°C): 

% Input 1 
x1_step1.xoffset = [0.399577464788732;0;-0.055930255733897;0;0;0;0;0]; 
x1_step1.gain = 

[3.88261381937096;2.17131722032741;0.837709383383849;2;2;2.13304186684969;2.0

6416932772396;2.0700417231272]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [0.45868763237835985525;-0.1995172999306056294;1.0939337440584191441;-

0.72761038376368381009]; 
IW1_1 = [0.10550530380314357415 0.51202744134167166301 -

0.022483404811268613288 0.057463524659501719061 1.1783596839634353781 

0.18380019133974687118 -0.90184015028218167398 0.0045616387928068208649;-

0.22326814743801826069 0.059150798279541470792 -0.15282454681264190377 

0.35902897499569036421 -0.65059939937768007656 -0.53169983899447104125 -

0.4424668821019595577 1.3218425385318728349;-0.16447769642528858869 

0.15535708961337046929 -0.22702765953263073784 0.5133975598846085564 -

0.3719939804139695827 -0.38641070519496484303 -0.48387943503280800295 -

1.2101368354462489485;-0.22932119423103722311 -0.23730571938086264527 

0.11860738977645129966 0.82641174546414386537 -1.2033985442193688709 -

0.38987750380609359491 -0.01893426825632058344 -0.10079708225399422461]; 

  
% Layer 2 
b2 = 0.0089405831805081294877; 
LW2_1 = [0.94700689655140113388 1.4963083025905123957 -1.7229745092008086349 

1.1208835042803368953]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = 7.00496287781719; 
y1_step1.xoffset = 0.687464394929014; 
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3.14  Network constants of model E2 (F8, 4-25°C): 

% Input 1 
x1_step1.xoffset = [0.399577464788732;0;-0.055930255733897;0;0;0;0;0]; 
x1_step1.gain = 

[3.88261381937096;2.17131722032741;0.837709383383849;2;2;2.13304186684969;2.0

6416932772396;2.0700417231272]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [-0.42710442531050368808;1.2638378257505151758;-0.10969403914571353165;-

0.038794447932146439162]; 
IW1_1 = [0.18178196914529881623 1.3135120099494961288 -0.52035306520478963321 

-1.379498215899536584 -0.15344586940627280569 -0.24848675240437048672 -

1.882272769956559344 0.52908063364162105646;0.12015626854582947547 

0.24229591420878365815 -0.54126195653649777917 0.38153979770303148022 -

0.029537862278413165584 -0.093929092588251536511 -0.74333789945365635887 -

1.506832516907202546;-0.06522503739089847985 0.35499834665457374872 -

0.18797076112611943444 1.5338148262230968388 0.071905588981503912316 -

0.044348224000649534571 0.82938131836907591499 -

0.67041499335623988554;0.092649307683572823535 0.27662443836092337479 -

0.30769087853402427024 0.23460425128056169863 -0.073662407454700901122 -

0.082591988291961002111 -0.93259083801826270221 0.34143976345947585349]; 

  
% Layer 2 
b2 = [-0.067444105885872587813;0.21408896718345235555]; 
LW2_1 = [1.3273582649521054044 -0.80680244946838763909 1.7674672902300629929 

-1.5796403416202389192;0.083006575384792044559 -1.929784396263211077 

0.30116897971609174478 1.7874686426362318414]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.33570182775714;7.00496287781719]; 
y1_step1.xoffset = [0.538713666332862;0.687464394929014]; 

 

3.15  Network constants of model E3 (F8, 4-25-40°C): 

% Input 1 
x1_step1.xoffset = [0.399577464788732;0;-0.055930255733897;0;0;0;0;0]; 
x1_step1.gain = 

[3.88261381937096;2.17131722032741;0.837709383383849;2;2;2.13304186684969;2.0

6416932772396;2.0700417231272]; 
x1_step1.ymin = -1; 

  
% Layer 1 
b1 = [-1.2410411149750029125;0.69914969161205176018;0.47151978599762162103;-

1.9627228748189600172]; 
IW1_1 = [1.0897581664238331633 -0.60734205231348847853 -

0.64191966422586410612 0.85524763529426728326 -1.440017180225172666 -

0.16230116294272059485 -0.77410814485782908356 -1.4772771508868229873;-

0.20166922399038414437 -1.4753746185813385594 -0.013286099395561063938 

0.30205714692312435332 -0.029752259352854026897 0.013367550331830988647 

0.30121733026169528191 -1.486869252450622847;-0.53711453215301041553 -

2.1825440178469355246 -0.010153265258977521579 0.20587348584335951607 
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0.01397506571221173062 0.14222300140092034026 -1.2405066176131749334 

1.4973333114983937708;-0.117222951459633698 0.89731970163599861223 

0.085010789539900016853 -0.20544179548860450057 0.00019588949115233099895 

0.058259981703963750754 0.71495147213064758063 1.8396645955968276009]; 

  
% Layer 2 
b2 = [0.4404100454422593125;0.81721162716614814681;-0.11842909309622452751]; 
LW2_1 = [0.40505951576539822589 0.2928633900468197715 -0.03867368802576221648 

1.1115844814170010579;1.3647370703348271626 -0.44704939357110989873 

0.63958233224248617343 1.2951817458093852764;-1.1168422673335656192 

2.3794037914798402689 -1.3747467131236648097 1.1979217246531053132]; 

  
% Output 1 
y1_step1.ymin = -1; 
y1_step1.gain = [4.33570182775714;7.00496287781719;2.01612903225806]; 
y1_step1.xoffset = [0.538713666332862;0.687464394929014;0.008]; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 


