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1 The Development of Transition Metal-Catalyzed Cross-Coupling Reactions 

The exploration of transition metal-catalyzed cross-coupling reactions during the last 150 years was 

complicated by issues regarding the scope and the selectivity as major restrictions.1 Possible side 

reactions involve homocoupling, isomerization, β-hydride elimination and functional group 

intolerance. Pioneering contributions of Beletskaya, Corriu, Kumada, Kochi, Murahashi, Sonogashira, 

Stille, Trost, Tsuji, Yamamoto and overall Heck, Negishi and Suzuki showed, that carbons of all 

hybridization states can undergo C-C bond forming reactions under palladium catalysis. The 

development of a vast variety of ligands with different sterical and electronical properties allowed to 

fine-tune the reactivity and broadened the scope. 

 

1.1 Early Examples of Carbon-Carbon Bond Formations Involving Transition Metals 

The first seminal approaches which formed the basic principles for the development of modern 

cross-coupling chemistry were reported in the middle of the 19th century. The pioneering work of 

Glaser in 1869 described the homocoupling of phenylacetylene (1) in the presence of copper(I) 

chloride and ammonia in water/ethanol under air, leading to diphenylbutadiyne (2, Scheme 1).2  

 
Scheme 1. Glaser coupling of phenylacetylene (1). 

 

This methodology was utilized by Baeyer for a synthesis of indigo (3) starting from 

2-nitrophenylpropiolic acid (4, Scheme 2).3  

Scheme 2. Baeyer synthesis of indigo (3) starting from 2-nitrophenylpropiolic acid (4). 

  

                                                             
1 For a review, see: C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus Angew. Chem., Int. Ed. 
2012, 51, 5062-5085. 
2 a) C. Glaser Ber. Dtsch. Chem. Ges. 1869, 2, 422-424. b) C. Glaser Justus Liebigs Ann. Chem. 1870, 154, 137-171. 
3 A. Baeyer Ber. Dtsch. Chem. Ges. 1882, 15, 50-56. 
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In 1855, Wurtz described a coupling of alkyl Iodides 5 in the presence of metallic sodium and 

potassium affording products of type 6 (Scheme 3).4  

 
Scheme 3. Wurtz coupling of alkyl iodides. 

 

A few years later, Fittig and Tollens extended this reaction to the formation of alkylated aryl 

compounds and biaryls starting from alkyl and aryl halides.5 Thus, pentylbenzene (7) was synthesized 

from bromopentane (8) and bromobenzene (9) by adding sodium to a solution of the starting 

materials in benzene (Scheme 4).5b The discovery of highly reactive sodium and potassium reagents, 

led to the development of milder magnesium reagents by Grignard in the early 20th century.6  

 
Scheme 4. Fittig and Tollens coupling leading to pentylbenzene (7). 

 

Bennet and Turner explored the chromium(III) chloride promoted homocoupling reactions of aryl- and 

benzylmagnesium reagents of type 10 in 1914 (Scheme 5).7  

 

Scheme 5. Bennet and Turner homocoupling reactions. 

 

Later, in 1919 Krizewsky and Turner described, that several copper salts are sufficient additives to 

perform homocoupling reactions with in situ generated phenylmagnesium iodide (Scheme 6).8 

                                                             
4 a) A. Wurtz Ann. Chim. Phys. 1855, 44, 275-312. b) A. Wurtz Justus Liebigs Ann. Chem. 1855, 96, 364-375. 
5 a) R. Fittig Justus Liebigs Ann. Chem. 1862, 121, 361-365. b) B. Tollens, R. Fittig Justus Liebigs Ann. Chem. 1864, 
131, 303-323. c) B. Tollens, R. Fittig Justus Liebigs Ann. Chem. 1864, 129, 369-370. 
6 V. Grignard C. R. Hebd. Seances Acad. Sci. 1900, 130, 1322-1324. 
7 G. M. Bennett, E. E. Turner J. Chem. Soc., Trans. 1914, 105, 1057-1062. 
8 J. Krizewsky, E. E. Turner J. Chem. Soc., Trans. 1919, 115, 559-561. 
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Scheme 6. Krizewsky and Turner homocoupling. 

 

Although these reactions opened a completely new field for C-C bond formations, they were limited 

to homocouplings, a small scope or used poorly soluble stoichiometric amounts of metal salts. 

 

1.2 First Selective Transition Metal-Catalyzed Cross-Couplings 

An early example for the application of substoichiometric amounts of a metal catalyst was reported 

by Job in 1924, but was barely recognized by the chemistry community.9 Job investigated the effect of 

nickel(II) chloride on phenylmagnesium bromide in the atmospheres of ethylene, hydrogen, carbon 

monoxide and other gases. Later in 1939, Meerwein described the ability of copper(II) salts to catalyze 

the first couplings of aryldiazonium salts with substituted alkenes.10 Thus, 4-nitroaniline (11) was 

transferred into the corresponding aryldiazonium chloride 12 and cross-coupled with cinnamic acid 

(13) under copper catalysis. The product 4-nitrostilbene (14) was isolated in 48% yield (Scheme 7). 

 
Scheme 7. Meerwein copper-catalyzed arylation. 

 

A cross-coupling employing substoichiometric amounts of cobalt(II) chloride as catalyst was explored 

by Kharasch in 1941 (Scheme 8).11 Aryl- and benzylmagnesium bromides of type 15 underwent 

efficient coupling reactions with aryl and vinyl halides of type 16. A selective version based on the 

chemistry of Kharasch was developed over 30 years later by Kumada12 and Corriu13 in 1972. The 

                                                             
9 A. Job, R. Reich C. R. Hebd. Seances Acad. Sci. 1923, 177, 1439-1441. 
10 H. Meerwein, E. Büchner, K. van Emster J. Prakt. Chem. 1939, 152, 237-266. 
11 a) M. S. Kharasch, E. K. Fields J. Am. Chem. Soc. 1941, 63, 2316-2320. b) Grignard Reactions of Nonmetallic 
Substances (Eds.: M. S. Kharasch, O. Reinmuth), Prentice-Hall, New York, 1954. c) M. S. Kharasch, C. F. Fuchs J. 
Am. Chem. Soc. 1943, 65, 504-507. 
12 a) K. Tamao, K. Sumitani, M. Kumada J. Am. Chem. Soc. 1972, 94, 4374-4376. b) K. Tamao, Y. Kiso, K. Sumitani, 
M. Kumada J. Am. Chem. Soc. 1972, 94, 9268-9269. c) T. Kohei, S. Koji, K. Yoshihisa, Z. Michio, F. Akira, K. Shun-
ichi, N. Isao, M. Akio, K. Makoto Bull. Chem. Soc. Jpn. 1976, 49, 1958-1969. 
13 R. J. P. Corriu, J. P. Masse J. Chem. Soc., Chem. Commun. 1972, 144. 
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cross-coupling of aryl and alkenyl halides with aryl- and alkylmagnesium reagents was catalyzed by 

adding nickel salts. Herein, the beneficial effect of phospine ligands on the reactivity of the metal was 

described by Kumada and initiated their exploration as ligands in the palladium chemistry. 

 
Scheme 8. Kharasch cobalt-catalyzed couplings of aryl and benzylmagnesium reagents. 

 

The transition metal-promoted couplings discovered until the middle of the 20th century are 

fundamental for the coupling chemistry which was developed in the following decades. It was 

demonstrated, that catalytic amounts of metals salts can be utilized for carbon-carbon bond 

formations. However, selectivity problems such as the ratio between homocoupling and product, the 

narrow scope or low functional group tolerance for these reactions represented the major limitations. 

Cadiot and Chodkiewicz described a new method to form unsymmetrical sp-sp and sp-sp2 bonds in 

1957 by using aryl and alkynyl halides with alkynylcopper reagents (Scheme 9).14 Thus, 

(bromoethynyl)benzene (17) and the terminal alkyne 18 gave the bisacetylene 19 in 92% yield by 

addition of copper(I) chloride. 

 
Scheme 9. Cadiot-Chodkiewicz coupling of bromoacetylene 17 and the terminal alkyne 18. 

 

Similarly, Castro and Stephens cross-coupled sp- and sp2-carbons in 1963 (Scheme 10).15 Various 

functionalized aryl iodides, underwent the reaction with copper acetylides. Thus, 2-iodobenzoic acid 

(20) was coupled with the copper reagent 21 to afford the cyclized isocoumarin 22. 

 
Scheme 10. Castro-Stephens coupling of 2-iodobenzoic acid (20) with copper phenylacetylide (21). 

 

                                                             
14 a) W. Chodkiewicz, P. Cadiot C. R. Hebd. Seances Acad. Sci. 1955, 241, 1055–1057. b) W. Chodkiewicz Ann. 
Chim. Paris 1957, 2, 819 – 869. c) P. Cadiot, W. Chodkiewicz, in Chemistry of Acetylenes (Ed.: H. G. Viehe), Marcel 
Dekker, New York, 1969; pp 597-647. 
15 R. D. Stephens, C. E. Castro J. Org. Chem. 1963, 28, 3313-3315. 
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A key for the selective formation of carbon-carbon bonds was elucidated. The combination of an 

organohalide, an organometallic partner and a transition metal catalyst in stoichiometric or catalytic 

quantity is required. 

 

1.3 The Discovery of Palladium as Catalyst 

In 1959, the Wacker Chemie GmbH discovered the exceptional activity of palladium in the oxidation 

of ethylene to acetaldehyde (Wacker oxidation). Hafner, the leader of Wacker Chemie’s research 

institute, isolated and characterized a palladium π-allyl complex for the first time.16 These 

observations were transferred to the context of cross-couplings by Heck and led to one of the most 

important inventions of the 20th century. In 1968, the coupling of organomercury compounds with 

alkenes in the presence of a palladium catalyst was reported (Scheme 11).17 Under reoxidizing 

conditions, Li2PdCl4 readily catalyzes the coupling of phenylmercuric chloride (23) and methyl acrylate 

(24) to afford the desired methyl cinnamate (25) in 60% yield. 

 
Scheme 11. Heck’s palladium-catalyzed coupling of organomercury compounds with alkenes. 

 

In 1971 and 1972, Mizoroki18 and Heck17a,19 published almost simultaneously that aryl, benzyl and 

styryl halides can be cross-coupled with alkenes using a palladium(II) catalyst (Scheme 12). Phenyl 

iodide (26) reacts smoothly with methyl acrylate (24), leading to methyl cinnamate (25) in 97% yield. 

Similarly, methyl 4-iodobenzoate (27) and styrene (28) were coupled with palladium(II) acetate as 

catalyst to furnish 4-carbomethoxy stilbene (29) in 74% yield. This procedure is known as the 

Mizoroki-Heck-reaction today. 

                                                             
16 J. Smidt, W. Hafner Angew. Chem. 1959, 71, 284-284. 
17 a) R. F. Heck J. Am. Chem. Soc. 1968, 90, 5518-5526. b) R. F. Heck J. Am. Chem. Soc. 1968, 90, 5526-5531. c) R. 
F. Heck J. Am. Chem. Soc. 1968, 90, 5531-5534. d) R. F. Heck J. Am. Chem. Soc. 1968, 90, 5535-5538. e) R. F. Heck 
J. Am. Chem. Soc. 1968, 90, 5538-5542. f) R. F. Heck J. Am. Chem. Soc. 1968, 90, 5542-5546. g) R. F. Heck J. Am. 
Chem. Soc. 1968, 90, 5546-5548. 
18 a) T. Mizoroki, K. Mori, A. Ozaki Bull. Chem. Soc. Jpn. 1971, 44, 581-581. b) M. Kunio, M. Tsutomu, O. Atsumu 
Bull. Chem. Soc. Jpn. 1973, 46, 1505-1508. 
19 a) H. A. Dieck, R. F. Heck J. Am. Chem. Soc. 1974, 96, 1133-1136. b) R. F. Heck, J. P. Nolley J. Org. Chem. 1972, 
37, 2320-2322. 
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Scheme 12. Mizuroki’s and Heck’s first palladium(II) catalyzed cross-coupling reactions of organic halides with alkenes. 

 

Heck reported a palladium-catalyzed coupling of (hetero)aryl and vinyl halides with sp-carbon centers 

in 1975 (Scheme 13).20 4-Bromonitrobenzene (30) and tert-butylacetylene (31) gave the desired alkyne 

32 in 88% yield. 

 
Scheme 13. Heck’s palladium catalyzed coupling of 4-bromonitrobenzene (30) and tert-butylacetylene (31). 

 

Sonogashira extended the possibilities of the palladium-catalyzed cross-couplings of aryl and vinyl 

halides of type 33 with terminal alkynes of type 34 in 1975 (Scheme 14).21 By using a copper cocatalyst, 

the reactions could be performed under exceedingly mild conditions and the desired acetylenes of 

type 35 were afforded in high to excellent yields.  

 
Scheme 14. Sonogashira coupling of vinyl and aryl halides with acetylenes. 

 

Compared to the Castro-Stephens cross-coupling (Scheme 10) or the sp2-sp coupling of Heck (Scheme 

13), the Sonogashira coupling (Scheme 14) can be performed at room temperature with only catalytic 

                                                             
20 H. A. Dieck, F. R. Heck J. Organomet. Chem. 1975, 93, 259-263. 
21 K. Sonogashira, Y. Tohda, N. Hagihara Tetrahedron Lett. 1975, 16, 4467-4470. 
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amounts of transition metals. Until this time, the coupling of Grignard reagents was predominated by 

nickel-catalysis.12, 13 Murahashi22 followed by Jutand23 were the first, who demonstrated that 

organomagnesium species can undergo palladium-catalyzed carbon-carbon bond formations with 

alkenyl halides (Scheme 15). Although not catalytically, organolithium reagents were coupled for the 

first time, which was not possible with nickel salts so far. Organometallic reagents such as 36 could be 

cross-coupled with (Z)-styryl bromide 37 to afford the (Z)-product 38 under stereoretention.  

 

 
Scheme 15. Palladium-catalyzed Corriu-Kumada cross-couplings by Murahashi. 

 

However, the limitations of organolithium and –magnesium reagents were obviously the intolerance 

of sensitive functional groups, due to the anionic character. According to Snieckus, the second wave 

of cross-coupling development began, which is the exploration of the organometallic coupling 

partner.1 

 

1.4 Exploration of Organometallic Reagents as Coupling Partners 

Negishi24 and Jutand25 reported in 1977, that lithium and magnesium organometallics can be replaced 

by the much milder organozinc reagents, which undergo palladium-catalyzed cross-couplings with aryl 

halides (Scheme 16). Phenylzinc chloride (39) and 4-iodonitrobenzene (40) afforded the biaryl 41 in 

74% yield. Similarly, the Reformatsky reagent 42 was successfully coupled with 4-iodobenzoic acid 

(43), leading to 44 in 85% yield. 

                                                             
22 a) S. Murahashi, M. Yamamura, K. Yanagisawa, N. Mita, K. Kondo J. Org. Chem. 1979, 44, 2408-2417. b) M. 
Yamamura, I. Moritani, S.-I. Murahashi J. Organomet. Chem. 1975, 91, C39-C42. 
23 J. F. Fauvarque, A. Jutand Bull. Soc. Chim. Fr. 1976, 765-770. 
24 a) E. Negishi, A. O. King, N. Okukado J. Org. Chem. 1977, 42, 1821-1823. b) A. O. King, N. Okukado, E.-i. Negishi 
J. Chem. Soc., Chem. Commun. 1977, 683-684. 
25 J. F. Fauvarque, A. Jutand J. Organomet. Chem. 1977, 132, C17-C19. 
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Scheme 16. Negishi’s and Jutand’s cross-coupling of organozinc reagents with aryl halides under palladium-catalysis. 

 

Negishi also screened various metal acetylides for their applicability as nucleophilic reagents in 

Pd-catalyzed cross-coupling reactions (Scheme 17). The metal reagents of type 45, including boron, 

tin, and zinc organometallics were efficient coupling partners with 2-iodotoluene (46) to afford the 

alkynylated product 47 in high yields.26 

 
Scheme 17. Negishi’s investigation of other organometallics 45 as coupling partners. 

 

The reactivity of organostannanes under palladium-catalysis was further investigated by Eaborn. A 

procedure to synthesize tributylarylstannanes of type 48 by reacting the corresponding aryl halides, 

such as 49 with hexabutyldistannane 50 and a palladium(0) catalyst was developed (Scheme 18).27  

 
Scheme 18. Eaborn’s synthesis of trimethylarylstannanes using a palladium(0) catalyst. 

 

Migita demonstrated, that tetrakis(triphenylphosphine)palladium is a sufficient catalyst for the 

alkylation, arylation and vinylation of acyl chlorides and the allylation of aromatic halides (Scheme 

                                                             
26 E. Negishi, Aspects of Mechanism and Organometallic Chemistry, (Ed.: J. H. Brewster), Plenum, New York, 
1978; pp 285-317. 
27 D. Azarian, S. S. Dua, C. Eaborn, D. R. M. Walton J. Organomet. Chem. 1976, 117, C55-C57. 
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19).28 The keto function of 4-bromoacetophenone (51) is well tolerated and the allylation with 

allyltributylstannane (52) under palladium-catalysis leads to the desired product 53 in excellent yield. 

 
Scheme 19. Migita allylation of aryl halides with allyltributylstannane (52). 

 

Stille developed versatile and exceedingly mild cross-coupling methodologies in the late 1970s and 

early 1980s employing organostannanes as metal reagents.29 An early publication with Milstein 

reported the synthesis of various ketones of type 54 from acyl chlorides 55 and organotin compounds 

of type 56 (Scheme 20).30 Various functional groups, such as aldehydes, nitriles and esters were 

tolerated. Despite the remarkable features of organostannanes, the toxicity of the tin reagents always 

remained as the major drawback. 

 
Scheme 20. Stille palladium-catalyzed acylation reactions of organostannanes. 

 

Suzuki and Miyaura investigated organoboron reagents as organometallic coupling partners in more 

detail in 1979 (Scheme 21).31 (Hetero)aryl bromides and iodides 57 were sufficient coupling partners 

for simple alkenylboranes of type 58, leading to the corresponding (E)-alkenes of type 59. 

                                                             
28 a) M. Kosugi, Y. Shimizu, T. Migita Chem. Lett. 1977, 6, 1423-1424. b) M. Kosugi, K. Sasazawa, Y. Shimizu, T. 
Migita Chem. Lett. 1977, 6, 301-302.  
29 For a reviews on palladium-catalyzed cross-couplings of organotin reagents, see: a) J. K. Stille Angew. Chem., 
Int. Ed. Engl. 1986, 25, 508-524. b) C. Cordovilla, C. Bartolomé, J. M. Martínez-Ilarduya, P. Espinet ACS Catal. 
2015, 5, 3040-3053. 
30 D. Milstein, J. K. Stille J. Am. Chem. Soc. 1978, 100, 3636-3638. 
31 N. Miyaura, A. Suzuki J. Chem. Soc., Chem. Commun. 1979, 866-867. 
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Scheme 21. Suzuki-Miyaura cross-coupling of aryl halides 57 with alkenyl boranes 58. 

 

Boron was the remaining metal species identified by Negishi (zinc, boron, tin) in the field of 

palladium-catalyzed cross-couplings. The air- and moisture stability of the starting materials, mild 

reaction conditions and the generation of inorganic less-toxic byproducts which can easily be 

removed, made the Suzuki-Miyaura coupling an extremely powerful methodology for the formation 

of carbon-carbon bonds.32 

Based on publications of Kumada33 and Hallberg,34 the coupling of organic halides 60 with 

organosilanes 61 under palladium-catalysis was reported by Hiyama in 1988 (Scheme 22).35 TASF 

(tris(diethylamino)sulfonium difluorotrimethylsilicate) was necessary as a fluorine source to obtain 

the synthetically useful cross-coupling products 62. The Hiyama coupling-reaction was extended by 

DeShong,36 Denmark,37 and others in the following decades. 

                                                             
32 a) N. Miyaura, A. Suzuki Chem. Rev. 1995, 95, 2457-2483. b) A. Suzuki J. Organomet. Chem. 1999, 576, 147-
168. 
33 J. Yoshida, K. Tamao, H. Yamamoto, T. Kakui, T. Uchida, M. Kumada Organometallics 1982, 1, 542-549. 
34 A. Hallberg, C. Westerlund Chem. Lett. 1982, 11, 1993-1994. 
35 a) Y. Hatanaka, T. Hiyama J. Org. Chem. 1988, 53, 918-920. b) T. Hiyama J. Organomet. Chem. 2002, 653, 58-
61. 
36 a) M. E. Mowery, P. DeShong J. Org. Chem. 1999, 64, 3266-3270. b) P. DeShong, J. Handy Christopher, E. 
Mowery Molly Pure Appl. Chem. 2000, 72, 1655-1658. c) M. E. Mowery, P. DeShong J. Org. Chem. 1999, 64, 1684-
1688. 
37 a) S. E. Denmark, J. Y. Choi J. Am. Chem. Soc. 1999, 121, 5821-5822. b) S. E. Denmark, C. S. Regens Acc. Chem. 
Res. 2008, 41, 1486-1499. 
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Scheme 22. Hiyama coupling of organosilanes. 

 

In the following decades, the fine tuning of these versatile coupling reactions was pursued. Especially 

the design of sophisticated ligands – to increase functional group tolerance and to broaden the 

substrate scope – was the key interest of several research groups, such as Spencer,38 Osborn,39 

Milstein,40 Fu,41 Schönebeck,42 Beller,43 Buchwald,44 and Hartwig45 to name only a few. The palladium-

catalyzed cross-couplings were extended to pseudohalides as electrophiles, including sulfonates such 

as OMs46 and OTs,47 hypervalent iodine species48 and diazonium salts49 among others. However, some 

pseudohalides still stayed subject to nickel-catalysis, due to an unreactive oxidative addition-step for 

palladium salts.50 

Palladium-catalyzed cross-couplings have become one of the most powerful methodologies in the 

toolbox of the synthetic organic chemist. Therefore, these reactions have found plenty of applications 

in pharmaceutical, agrochemical and natural product synthesis in academia and industry.51  

                                                             
38 A. Spencer J. Organomet. Chem. 1983, 258, 101-108. 
39 M. Huser, M.-T. Youinou, J. A. Osborn Angew. Chem., Int. Ed. Engl. 1989, 28, 1386-1388. 
40 Y. Ben-David, M. Portnoy, D. Milstein J. Am. Chem. Soc. 1989, 111, 8742-8744. 
41 a) A. F. Littke, G. C. Fu Angew. Chem., Int. Ed. 1998, 37, 3387-3388. b) A. F. Littke, C. Dai, G. C. Fu J. Am. Chem. 
Soc. 2000, 122, 4020-4028. c) J. H. Kirchhoff, M. R. Netherton, I. D. Hills, G. C. Fu J. Am. Chem. Soc. 2002, 124, 
13662-13663. 
42 F. Proutiere, F. Schoenebeck Angew. Chem., Int. Ed. 2011, 50, 8192-8195. 
43 A. Zapf, A. Ehrentraut, M. Beller Angew. Chem., Int. Ed. 2000, 39, 4153-4155. 
44 a) A. Aranyos, D. W. Old, A. Kiyomori, J. P. Wolfe, J. P. Sadighi, S. L. Buchwald J. Am. Chem. Soc. 1999, 121, 
4369-4378. b) J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald J. Am. Chem. Soc. 1999, 121, 9550-9561. 
45 a) Q. Shelby, N. Kataoka, G. Mann, J. Hartwig J. Am. Chem. Soc. 2000, 122, 10718-10719. b) J. F. Hartwig Acc. 
Chem. Res. 2008, 41, 1534-1544. 
46 B. P. Fors, D. A. Watson, M. R. Biscoe, S. L. Buchwald J. Am. Chem. Soc. 2008, 130, 13552-13554. 
47 a) J. Terao, H. Watanabe, A. Ikumi, H. Kuniyasu, N. Kambe J. Am. Chem. Soc. 2002, 124, 4222-4223. b) H. N. 
Nguyen, X. Huang, S. L. Buchwald J. Am. Chem. Soc. 2003, 125, 11818-11819. 
48 S.-K. Kang, H.-W. Lee, S.-B. Jang, P.-S. Ho J. Org. Chem. 1996, 61, 4720-4724. 
49 A. Roglans, A. Pla-Quintana, M. Moreno-Mañas Chem. Rev. 2006, 106, 4622-4643. 
50 D.-G. Yu, B.-J. Li, Z.-J. Shi Acc. Chem. Res. 2010, 43, 1486-1495. 
51 For reviews, see: a) C. Torborg, M. Beller Adv. Synth. Catal. 2009, 351, 3027-3043. b) J. Magano, J. R. Dunetz 
Chem. Rev. 2011, 111, 2177-2250. c) A. Biffis, P. Centomo, A. Del Zotto, M. Zecca Chem. Rev. 2018, 118, 2249-
2295. 
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Pfizer developed a multikilogram synthesis of CI-1034 (63) a potent endothelin receptor antagonist, 

which showed promising effects for the treatment of primary pulmonary hypertension.52 A 

Suzuki-coupling of triflate 64 and a boronic acid 65 was employed as the key step (Scheme 23). The 

coupling product 66 was isolated in 95% yield. 

 
Scheme 23. Suzuki-coupling as the key step for the synthesis of CI-1034 (63). 

 

A convergent route to MIV-150 (67) was performed by Chiron (acquired by Novartis) on a 0.48 mol 

scale, using a Negishi-coupling as the key step (Scheme 24).53 MIV-150 (67) is a non-nucleoside reverse 

transcriptase inhibitor (NNRTI) of human immunodeficiency virus type-1 (HIV-1).53 Thus, the aryl 

fluoride 68 was metalated by nBuLi in THF, transmetalated with ZnBr2 and cross-coupled with the 

cyclopropyl iodide 69 by using palladium(II) acetate as catalyst and tris(2,4-di-tert-butylphenyl) 

phosphite as ligand. The desired product 70 was isolated by recrystallization in 85% yield. Remarkably, 

only the cis-product 70 was formed in this reaction and no epimerization in the α- or β-position 

occurred. 

 

Scheme 24. Negishi-coupling as the key step for the synthesis of MIV-150. 

 

                                                             
52 T. E. Jacks, D. T. Belmont, C. A. Briggs, N. M. Horne, G. D. Kanter, G. L. Karrick, J. J. Krikke, R. J. McCabe, J. G. 
Mustakis, T. N. Nanninga, G. S. Risedorph, R. E. Seamans, R. Skeean, D. D. Winkle, T. M. Zennie Org. Process Res. 
Dev. 2004, 8, 201-212. 
53 S. Cai, M. Dimitroff, T. McKennon, M. Reider, L. Robarge, D. Ryckman, X. Shang, J. Therrien Org. Process Res. 
Dev. 2004, 8, 353-359. 
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The Nobel Prize for Heck, Negishi, and Suzuki in 2010 and a plethora of applications demonstrate the 

importance of palladium-catalysis in modern cross-coupling based synthetic approaches. Although 

palladium shows exceptional reactivity patterns and allows a broad variety of transformations, it may 

not always be the best choice due to several reasons. Mainly, the low earth abundance and the world’s 

high demand for palladium, resulted in an increasing price development.54 This can be a challenge for 

the applicability in large scale approaches in the agrochemical and pharmaceutical industry, where 

cost efficiency is a major requirement. Additionally, reactions that form alkyl-palladium species as 

intermediates and have hydrogen substituents in the 2-position, often suffer from elimination 

reactions and undesired side reactions.55 This is often the case for cross-couplings employing alkyl 

halides as electrophiles, which limits the scope dramatically.55 To circumvent these drawbacks it was 

demonstrated that especially nickel,56 iron,57 and cobalt58 salts can be cheap and environmentally 

benign alternatives to palladium based approaches. 

  

                                                             
54 World market prices for Pd: 51140 EUR/kg; for Co: 32 EUR/kg (retrieved Nov. 2019, 
http://www.infomine.com). 
55 G. Cahiez, A. Moyeux Chem. Rev. 2010, 110, 1435-1462. 
56 For reviews on nickel-catalyzed cross-coupling chemistry, see: a) X. Hu Chemical Science 2011, 2, 1867-1886. 
b) T. Iwasaki, N. Kambe Top. Curr. Chem. 2016, 374, 66.  
57 For reviews on iron-catalyzed cross-coupling chemistry, see: a) C. Bolm, J. Legros, J. Le Paih, L. Zani Chem. Rev. 
2004, 104, 6217-6254. b) B. D. Sherry, A. Fürstner Acc. Chem. Res. 2008, 41, 1500-1511. c) E. Nakamura, T. 
Hatakeyama, S. Ito, K. Ishizuka, L. Ilies, M. Nakamura Organic Reactions 2014, 83, 1-210. d) A. Guérinot, J. Cossy 
Top. Curr. Chem. 2016, 374, 49. c) A. Piontek, E. Bisz, M. Szostak Angew. Chem., Int. Ed. 2018, 57, 11116-11128. 
d) J. D. Sears, P. G. N. Neate, M. L. Neidig J. Am. Chem. Soc. 2018, 140, 11872-11883. 
58 For reviews on cobalt-catalyzed cross-coupling chemistry, see: a) C. Gosmini, J.-M. Bégouin, A. Moncomble 
Chem. Commun. 2008, 3221-3233. b) W. Hess, J. Treutwein, G. Hilt Synthesis 2008, 3537-3562. c) P. Knochel, T. 
Thaler, C. Diene Isr. J. Chem. 2010, 50, 547-557. d) J. M. Hammann, M. S. Hofmayer, F. H. Lutter, L. Thomas, P. 
Knochel Synthesis 2017, 49, 3887-3894. 
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2 Objectives 

Pd-catalysts allow various cross-coupling reactions. However, restrictions and drawbacks as pointed 

out above can arise with Pd-salts as catalysts and alternatives must be developed. This work aims for 

the discovery of efficient and economic transition metal-catalyzed cross-coupling reactions to 

substitute palladium and further extend the scope of these C-C bond forming reactions. 

Knochel et al. explored organozinc pivalates as a new class of reagents with unique characteristics.59 

It was demonstrated, that organozinc pivalates of type 71 are excellent coupling reagents using 

classical electrophiles such as iodides and bromides under Pd- and Co-catalysis.60 However, the 

coupling of 71 with pseudohalides, such as triflates and nonaflates of type 72 leading to products of 

type 73 was still unexplored (Scheme 25). Thus, the first part focused on the development of a cheap 

and efficient catalyst system, allowing the cross-coupling of a broad range of triflates and nonaflates 

as electrophiles, with organozinc pivalates as coupling partners. 

 
Scheme 25. Cross-coupling of organozinc pivalates 71 with triflates and nonaflates of type 72. 

 

Cross-coupling reactions involving sp3-carbon centers are often inaccessible for palladium-catalyzed 

methods, due to β-hydrogen elimination side reactions.55 Therefore, a coupling-reaction between 

sp2-sp3-carbons, such as the arylation of secondary alkyl halides with earth abundant transition metal-

catalysts would be highly favorable. Organomanganese reagents as coupling partners can be a 

valuable alternative to magnesium organometallics in terms of stability.86 Additionally, manganese 

has a low toxicity, is highly earth-abundant and organomanganese reagents can undergo versatile 

                                                             
59 a) S. Bernhardt, G. Manolikakes, T. Kunz, P. Knochel Angew. Chem., Int. Ed. 2011, 50, 9205-9209. b) C. I. 
Stathakis, S. Bernhardt, V. Quint, P. Knochel Angew. Chem., Int. Ed. 2012, 51, 9428-9432. c)C. I. Stathakis, S. M. 
Manolikakes, P. Knochel Org. Lett. 2013, 15, 1302-1305. d)A. Hernán-Gómez, E. Herd, E. Hevia, A. R. Kennedy, 
P. Knochel, K. Koszinowski, S. M. Manolikakes, R. E. Mulvey, C. Schnegelsberg Angew. Chem., Int. Ed. 2014, 53, 
2706-2710. 
60 a) S. M. Manolikakes, M. Ellwart, C. I. Stathakis, P. Knochel Chem. - Eur. J. 2014, 20, 12289-12297. b) M. Ellwart, 
P. Knochel Angew. Chem., Int. Ed. 2015, 54, 10662-10665. c) Y.-H. Chen, C. P. Tüllmann, M. Ellwart, P. Knochel 
Angew. Chem., Int. Ed. 2017, 56, 9236-9239. d) J. M. Hammann, F. H. Lutter, D. Haas, P. Knochel Angew. Chem. 
2017, 129, 1102-1106. e) J. M. Hammann, L. Thomas, Y.-H. Chen, D. Haas, P. Knochel Org. Lett. 2017, 19, 3847-
3850. f) M. S. Hofmayer, J. M. Hammann, F. H. Lutter, P. Knochel Synthesis 2017, 49, 3925-3930. g) Y.-H. Chen, 
S. Graßl, P. Knochel Angew. Chem., Int. Ed. 2018, 57, 1108-1111. h) J. Li, P. Knochel Angew. Chem., Int. Ed. 2018, 
57, 11436-11440. i) L. Thomas, F. H. Lutter, M. S. Hofmayer, K. Karaghiosoff, P. Knochel Org. Lett. 2018, 20, 2441-
2444. j) F. H. Lutter, L. Grokenberger, M. S. Hofmayer, P. Knochel Chem. Sci. 2019, 10, 8241-8245. 
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transformations.61 Thus, the second part focused on the development of coupling reactions involving 

(hetero)arylmanganese reagents of type 74 with alkyl halides of type 75 leading to the arylated 

products 76 (Scheme 26).  

 
Scheme 26. Cross-coupling of organomanganese reagents 74 with alkyl halides of type 75. 

 

The third part aimed for the development of a trans-diastereoselective cross-coupling of optically 

enriched α-bromolactones 77 with arylzinc reagents 78 (Scheme 27). This would allow the formation 

of optically enriched arylated products 79 as valuable building blocks for total syntheses. The synthetic 

utility could be demonstrated in the stereoselective preparation of a rotenoid derivative with the core 

structure 80. 

 
Scheme 27. Stereoselective cross-coupling of α-bromlactones of type 77 with arylzinc reagents 78 and the core-structure 

of various rotenoids 80. 

 

                                                             
61 a) G. Cahiez, C. Duplais, J. Buendia Chem. Rev. 2009, 109, 1434-1476. b) Z. Peng, P. Knochel Org. Lett. 2011, 
13, 3198-3201. c) A. D. Benischke, A. J. A. Breuillac, A. Moyeux, G. Cahiez, P. Knochel Synlett 2016, 27, 471-476. 
d) J. R. Carney, B. R. Dillon, S. P. Thomas Eur. J. Org. Chem. 2016, 3912-3929. 
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1 Nickel-Catalyzed Cross-Coupling Reactions of Unsaturated Zinc Pivalates and 

Unsaturated Nonaflates and Triflates 

1.1 Introduction 

Organozinc reagents are key intermediates in organic synthesis.62 Their main features are a 

high functional group tolerance, low toxicity and a moderate price.62e Recently the 

preparation of organozinc pivalates with enhanced air and moisture stability was reported.63 

These zinc species can be handled in air for several hours without appreciable 

decomposition.63 Previously, it was demonstrated that organozinc pivalates are superior 

reagents for various cross-couplings.63,64 Functionalized nonaflates and triflates are excellent 

coupling partners with numerous organometallic reagents and a broad variety of these 

sulfonates can easily be obtained from the corresponding alcohols and enolates.65  

However, the nickel-catalyzed reactions of arylzinc reagents with unsaturated triflates and 

nonaflates lacked of generality.66 

                                                             
62 a) Cross-Coupling Reactions, A Practical Guide (Ed.: N. Miyaura), Springer, Berlin, Germany, 2002. b) Metal-
Catalyzed Cross-Coupling Reactions (Eds.: A. Meijere, F. Diederich), Wiley-VCH, Weinheim, Germany, 2004. c) 
Modern Drug Synthesis (Eds.: J. J. Li, D. S. Johnson), Wiley-VCH, Weinheim, Germany, 2010. d) Organotransition 
Metal Chemistry: From Bonding to Catalysis (Ed.: J. F. Hartwig), University Science Books, Sausalito, CA, 2010. e) 
D. Haas, J. M. Hammann, R. Greiner, P. Knochel ACS Catal. 2016, 6, 1540-1552. 
63 a) S. Bernhardt, G. Manolikakes, T. Kunz, P. Knochel Angew. Chem., Int. Ed. 2011, 50, 9205-9209. b) C. I. 
Stathakis, S. Bernhardt, V. Quint, P. Knochel Angew. Chem., Int. Ed. 2012, 51, 9428-9432. c) J. R. Colombe, S. 
Bernhardt, C. Stathakis, S. L. Buchwald, P. Knochel Org. Lett. 2013, 15, 5754-5757. d) S. M. Manolikakes, M. 
Ellwart, C. I. Stathakis, P. Knochel Chem. - Eur. J. 2014, 20, 12289-12297. e) M. Ellwart, P. Knochel Angew. Chem., 
Int. Ed. 2015, 54, 10662-10665. f) Y.-H. Chen, C. P. Tüllmann, M. Ellwart, P. Knochel Angew. Chem., Int. Ed. 2017, 
56, 9236-9239. 
64 a) J. M. Hammann, F. H. Lutter, D. Haas, P. Knochel Angew. Chem., Int. Ed. 2017, 56, 1082-1086. b) J. M. 
Hammann, L. Thomas, Y.-H. Chen, D. Haas, P. Knochel Org. Lett. 2017, 19, 3847-3850. c) M. S. Hofmayer, J. M. 
Hammann, F. H. Lutter, P. Knochel Synthesis 2017, 49, 3925-3930. d) Y.-H. Chen, S. Graßl, P. Knochel Angew. 
Chem., Int. Ed. 2018, 57, 1108-1111. e) J. Li, P. Knochel Angew. Chem., Int. Ed. 2018, 57, 11436-11440. f) L. 
Thomas, F. H. Lutter, M. S. Hofmayer, K. Karaghiosoff, P. Knochel Org. Lett. 2018, 20, 2441-2444. g) C. P. 
Tüllmann, Y.-H. Chen, R. J. Schuster, P. Knochel Org. Lett. 2018, 20, 4601-4605. 
65 a) For a review summarizing the benefits of nonaflates and triflates, see: J. Högermeier, H.-U. Reissig Adv. 
Synth. Catal. 2009, 351, 2747-2763. b) F. Keigo, O. Koichiro, U. Kiitiro Chem. Lett. 1987, 16, 2203-2206. c) S. 
Sengupta, M. Leite, D. S. Raslan, C. Quesnelle, V. Snieckus J. Org. Chem. 1992, 57, 4066-4068. d) K. Ritter 
Synthesis 1993, 1993, 735-762. e) E. Riguet, M. Alami, G. Cahiez Tetrahedron Lett. 1997, 38, 4397-4400. f) A. F. 
Littke, C. Dai, G. C. Fu J. Am. Chem. Soc. 2000, 122, 4020-4028. g) A. Fürstner, A. Leitner Angew. Chem., Int. Ed. 
2002, 41, 609-612. h) A. Fürstner, A. Leitner, M. Méndez, H. Krause J. Am. Chem. Soc. 2002, 124, 13856-13863. 
i) B. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner J. Org. Chem. 2004, 69, 3943-3949. j) W. M. Seganish, P. 
DeShong J. Org. Chem. 2004, 69, 1137-1143. k) F. Proutiere, F. Schoenebeck Angew. Chem., Int. Ed. 2011, 50, 
8192-8195. l) C. Vila, V. Hornillos, M. Giannerini, M. Fañanás-Mastral, B. L. Feringa Chem. - Eur. J. 2014, 20, 
13078-13083. 
66 a) For a recent review, see: B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A.-M. Resmerita, N. K. Garg, 
V. Percec Chem. Rev. 2011, 111, 1346-1416. b) K. Koch, R. J. Chambers, M. S. Biggers Synlett 1994, 347-348. c) 
C. A. Quesnelle, O. B. Familoni, V. Snieckus Synlett 1994, 349-350. d) I. Klement, M. Rottländer, C. E. Tucker, T. 
N. Majid, P. Knochel, P. Venegas, G. Cahiez Tetrahedron 1996, 52, 7201-7220. e) M. Rottländer, N. Palmer, P. 
Knochel Synlett 1996, 573-575. f) M. Rottländer, P. Knochel J. Org. Chem. 1998, 63, 203-208. g) A. Gavryushin, 
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1.2 Nickel-Catalyzed Cross-Coupling Reactions of 4-Anisylzinc and (Hetero)arylzinc 

Pivalates with Aryl and Alkenyl Triflates and Nonaflates 

The reaction of 4-anisylzinc pivalate67 (71a) with triflate 72a was further optimized (Table 1).  

Table 1. Reaction conditions optimization of the cross-coupling of arylzinc pivalate 71a with aryl triflate 72a. 

 
aCalibrated GC-yield using undecane as internal standard. bUsing 4-anisylzinc chloride. cIsolated yield of analytically pure 

product. 

                                                             
C. Kofink, G. Manolikakes, P. Knochel Org. Lett. 2005, 7, 4871-4874. h) A. Gavryushin, C. Kofink, G. Manolikakes, 
P. Knochel Tetrahedron 2006, 62, 7521-7533. i) L. Melzig, A. Gavryushin, P. Knochel Org. Lett. 2007, 9, 5529-
5532. j) S. Sase, M. Jaric, A. Metzger, V. Malakhov, P. Knochel J. Org. Chem. 2008, 73, 7380-7382. k) G. Monzon, 
P. Knochel Synlett 2010, 304-308. l) A. Pitchaiah, I. T. Hwang, J.-S. Hwang, H. Kim, K.-I. Lee Synthesis 2012, 44, 
1631-1636. m) M. Mastalir, K. Kirchner Monatsh. Chem. 2017, 148, 105-109. n) C. A. Quesnelle, V. Snieckus 
Synthesis 2018, 50, 4395-4412. 
67 NMR experiments and crystallographic data showed, that the structure of these zinc reagents is 
RZnX·Mg(OPiv)2·LiCl. However, for the sake of clarity, these reagents were named RZnOPiv; see: A. Hernán-
Gómez, E. Herd, E. Hevia, A. R. Kennedy, P. Knochel, K. Koszinowski, S. M. Manolikakes, R. E. Mulvey, C. 
Schnegelsberg Angew. Chem., Int. Ed. 2014, 53, 2706-2710. 
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In the absence of a transition metal catalyst, no product formation was observed. CuCl2, CrCl2, MnCl2, 

FeCl2 and CoCl2 resulted in only poor yields, in contrast to NiCl2, which afforded 73a in 47% 

(entries 1-7). To increase the amount of the coupling product, various ligands were added (L1-9, 

entries 8-16).68 The cheap and commercially available NiCl2(PPh3)2 catalyst, led to 73a in 86% isolated 

yield. Remarkably, using 4-anisylzinc chloride instead of 4-anisylzinc pivalate (71a), resulted in only 

52% of product 73a, showing the superior ability of organozinc pivalates to promote cross-couplings 

(entry 16).64aThe variation of solvents showed, that THF was the best solvent when compared to NMP, 

DMPU, DME, 1,4-dioxane, tBuOMe, AcOEt, hexanes and toluene. 

The rates of the cross-couplings using 4-anisylzinc chloride and 4-anisylzinc pivalate (71a) were 

compared in detail (Scheme 28). The yield of the product 73a for each reaction after equal amounts 

of time was determined. Using the arylzinc pivalate (square data points) leads to a higher rate and a 

higher overall yield of product 73a. Using the arylzinc chloride (triangular data points) instead, the 

reaction rate was significantly lower and led to a decreased overall yield. Longer reaction times did 

not improve the reaction outcome.  

 

 

Scheme 28. Rate comparison of 4-anisylzinc chloride (triangles) versus of 4-anisylzinc pivalate 72a (squares) in the 

cross-coupling with aryl triflate 72a. 

  

                                                             
68 a) J. Terao, H. Watanabe, A. Ikumi, H. Kuniyasu, N. Kambe J. Am. Chem. Soc. 2002, 124, 4222-4223. b) T. J. 
Korn, P. Knochel Angew. Chem., Int. Ed. 2005, 44, 2947-2951. c) T. Hatakeyama, S. Hashimoto, K. Ishizuka, M. 
Nakamura J. Am. Chem. Soc. 2009, 131, 11949-11963. d) O. M. Kuzmina, A. K. Steib, J. T. Markiewicz, D. 
Flubacher, P. Knochel Angew. Chem., Int. Ed. 2013, 52, 4945-4949. e) S. Z. Tasker, E. A. Standley, T. F. Jamison 
Nature 2014, 509, 299-309. 
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With these optimized conditions in hand, the electrophile scope was further examined. Therefore, 

4-anisylzinc pivalate (71a) was coupled with various unsaturated triflates and nonaflates (Table 2).65a,69 

The reaction with 1-naphthyl triflate (72b) afforded biphenyl 73b in 87% yield (entry 1). Also, para- 

and meta-cyano substituted aryl triflates 72c and 72d underwent this cross-coupling with zinc pivalate 

71a, giving 73c and 73d in 84% and 71% yield (entry 2). Similarly, the benzonitrile derivative 73e was 

obtained in 66% yield (entry 3).  

Table 2. Nickel-catalyzed cross-coupling between 4-anisylzinc pivalate (71a) and various (hetero)aryl and alkenyl triflates 

and nonaflates of type 72. 

  
a Using 1a stored as a solid under argon for 8 d. b Using 4-anisylzinc chloride. 

  

                                                             
69 Triflates and nonaflates were equally efficient substrates in this nickel-catalyzed cross-coupling. These 
sulfonates afforded the corresponding products in high yields. 
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Interestingly, ester and ketone moieties were tolerated in this cross-coupling. Thus, the reaction of 

triflate 72f and nonaflate 72g with organozinc reagent 71a, led to products 73f and 73a in 81-87% yield 

(entries 4 and 5). Using 4-anisylzinc chloride instead of the corresponding arylzinc pivalate 71a gave 

73f in only 68% yield (entry 4). The para-benzophenone triflate 72h was successfully coupled with 

arylzinc pivalate 71a, leading to 73g in 66% yield (entry 6). Coumarin derivative 73h was readily 

obtained by the reaction of 71a with the heterocyclic triflate 72i in 95% yield (entry 7). Moreover, 

pyridyl and quinolyl triflates and nonaflates 72j and 72k proved to be good substrates for this 

cross-coupling. Pyridyl triflate 72j led to the 2,3-disubstituted pyridine 73i in 87% yield and quinolyl 

nonaflate 72k furnished the quinoline derivative 73j in 84% yield (entries 8 and 9). Additionally, alkenyl 

nonaflates were employed in this reaction. Therefore, nonaflate 72l and zinc pivalate 71a were 

cross-coupled, leading to 3k in 73% yield (entry 10).  

Next, the organozinc pivalate scope was examined (Table 3). The coupling of electron rich 

3,4,5-trimethoxyphenylzinc pivalate (71b) with an electron-poor benzonitrile 72e and ester derivative 

72a led to the biaryl compounds 73l and 73m in 81-85% yield (entries 1 and 2). Furthermore, 

benzodioxol-5-yl-zinc pivalate (71c) reacts with the triflates 72c and 72j, furnishing the biphenyls 73n 

and 73o in 85-89% yield (entries 3 and 4). Also, fluorinated arylzinc pivalates can readily be employed 

in this cross-coupling. Thus, 4-(trifluoromethoxy)phenylzinc pivalate (71d) and 4-cyano-substituted 

aryl triflate 72d were successfully cross-coupled, leading to biaryl 73p in 83% yield (entry 5). Similarly, 

4-(trifluoromethyl)phenylzinc pivalate (71e) reacted with 4-methylquinoline-2-yl nonaflate (72m) and 

3-cyano-substituted aryl nonaflate 72n, affording the desired products 73q and 73r in 83-91% yield 

(entries 6 and 7). Using 4-(trifluoromethyl)phenylzinc chloride instead of the corresponding arylzinc 

pivalate 71e gave 73r in only 75% yield (entry 7). Also, the use of electron-poor arylzinc reagents was 

possible. Thus, 4-cyano-3-fluorophenylzinc pivalate 71f and (E)-4-styrylphenyl triflate (72o) led to 73s 

in 71% yield (entry 8). Interestingly, couplings between heterocyclic zinc pivalates and heterocyclic 

triflates could be performed. The coumarin derivative 73t was obtained in 84% yield, by coupling 

3-thienylzinc pivalate 71g and triflate 72i (entry 9). Furthermore, N-methyl 5-indolylzinc pivalate (71h) 

reacted with triflates 72j and 72p, leading to the bis-heterocyclic products 73u and 73v in 85-86% yield 

(entries 10 and 11). 
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Table 3. Nickel-catalyzed cross-coupling of (hetero)arylzinc pivalates 71b-h with (hetero)aryl triflates and nonaflates of 

type 72.  

 
a Using 4-anisylzinc chloride. 
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Table 3. Continued.  

 
 

 

Additionally, this nickel-catalyzed cross-coupling retained the double bond configuration, using 

alkenyl triflates as electrophiles (Scheme 29). Thus, the (E)-alkenyl triflate70 of ethyl acetoacetate 72q 

underwent a stereoretentive reaction with 4-anisylzinc pivalate (71a), affording only E-alkene 73w in 

89% yield (E/Z > 99:1).71 Similarly, the corresponding (Z)-triflate70 72r reacted with arylzinc pivalate 

71a in 86% yield, to give the (Z)-acrylate 73x in high diastereoselectivity (Z/E > 99:1).71 Remarkably, 

using the corresponding organozinc chloride instead of the corresponding arylzinc pivalate 71a, the 

reaction proceeds without retention of configuration, leading to the (E)-isomer 73w in only 67% yield 

(Z:E = 11:89). 

                                                             
70 D. Babinski, O. Soltani, D. E. Frantz Org. Lett. 2008, 10, 2901-2904. 
71 The (E)- and the (Z)-isomers were verified by NOE-NMR. 
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aUsing 4-anisylzinc chloride. 

Scheme 29. Stereoretentive coupling of 4-anisylzinc pivalate (71a) and the alkenyl triflates of ethyl acetoacetate 72q and 

72r. 

 

1.3 Nickel-Catalyzed Cross-Coupling Reactions of Alkynylzinc Pivalates with Aryl 

and Alkenyl Triflates 

Remarkably, also alkynylzinc pivalates of type 81 underwent this cross-coupling (Table 4). The reaction 

of TIPS-ethynylzinc pivalate (81a) with triflate 72i led to 82a in 97% yield (entry 1). Using the 

phenyl-substituted alkynylzinc pivalate 81b, the corresponding alkyne 82b was obtained in 73% yield 

(entry 2). Also alkynylzinc pivalate 81c was cross-coupled with 72i, providing 82c in 87% yield (entry 3). 

Finally, the reaction of (3-chlorophenyl)ethynylzinc pivalate (81d) with 72i gave the desired product 

82d in 93% yield (entry 4). 

Table 4. Nickel-catalyzed cross-coupling of alkynylzinc pivalates of type 81 with triflate 72i. 
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2 Cobalt-Catalyzed Cross-Coupling Reactions of Diarylmanganese Reagents with 

Secondary Alkyl Iodides72 

2.1 Introduction 

Palladium-catalyzed cross-couplings have widely been used.73 However, cost74 and toxicity75 

considerations led to the search of alternative transition metal catalysts for cross-coupling reactions. 

Especially cobalt-catalyzed transformations have shown their synthetic utility.76 Pioneering work of 

Oshima,77 Cahiez,78 Gosmini,79 and Cossy80 demonstrated the broad field of applications of cobalt salt 

catalysis for forming new carbon-carbon bonds.  

  

                                                             
72 This project was developed and published in cooperation with Jeffrey M. Hammann, see: M. S. Hofmayer, J. 
M. Hammann, D. Haas, P. Knochel, Org. Lett. 2016, 18, 6456 and Jeffrey M. Hammann, PhD Dissertation “Cobalt-
Catalyzed Cross-Coupling Reactions” 2017, LMU Munich. 
73 a) Metal-Catalyzed Cross-Coupling Reactions (Eds.: A. Meijere, F. Diederich), Wiley-VCH, Weinheim, Germany, 
2004. b) Organotransition Metal Chemistry: From Bonding to Catalysis (Ed.: J. F. Hartwig), University Science 
Books, Sausalito, CA, 2010. 
74 World market prices for Pd: 51140 EUR/kg; for Co: 32 EUR/kg (retrieved Nov. 2019, 
http://www.infomine.com). 
75 Handbook on the Toxicology of Metals (Eds.: L. Friberg, G. F. Nordberg, V. B. Vouk), Elsevier, Amsterdam, 1986. 
76 a) M. Lautens, C. M. Crudden Organometallics 1989, 8, 2733-2735. b) M. Lautens, W. Tam, C. Sood J. Org. 
Chem. 1993, 58, 4513-4515. c) T. Gensch, F. J. R. Klauck, F. Glorius Angew. Chem., Int. Ed. 2016, 55, 11287-11291. 
d) A. Lerchen, S. Vásquez-Céspedes, F. Glorius Angew. Chem., Int. Ed. 2016, 55, 3208-3211.  
77 a) Y. Ikeda, T. Nakamura, H. Yorimitsu, K. Oshima J. Am. Chem. Soc. 2002, 124, 6514-6515. b) H. Ohmiya, H. 
Yorimitsu, K. Oshima J. Am. Chem. Soc. 2006, 128, 1886-1889. c) H. Someya, H. Ohmiya, H. Yorimitsu, K. Oshima 
Org. Lett. 2007, 9, 1565-1567. d) T. Kobayashi, H. Ohmiya, H. Yorimitsu, K. Oshima J. Am. Chem. Soc. 2008, 130, 
11276-11277. e) K. Murakami, H. Yorimitsu, K. Oshima Chem. - Eur. J. 2010, 16, 7688-7691. 
78 a) G. Cahiez, H. Avedissian Tetrahedron Lett. 1998, 39, 6159-6162. b) H. Avedissian, L. Bérillon, G. Cahiez, P. 
Knochel Tetrahedron Lett. 1998, 39, 6163-6166. c) G. Cahiez, C. Chaboche, C. Duplais, A. Giulliani, A. Moyeux 
Adv. Synth. Catal. 2008, 350, 1484-1488. d) G. Cahiez, C. Chaboche, C. Duplais, A. Moyeux Org. Lett. 2009, 11, 
277-280. 
79 a) I. Kazmierski, M. Bastienne, C. Gosmini, J.-M. Paris, J. Périchon J. Org. Chem. 2004, 69, 936-942. b) M. 
Amatore, C. Gosmini, J. Périchon Eur. J. Org. Chem. 2005, 989-992. c) J.-M. Bégouin, C. Gosmini J. Org. Chem. 
2009, 74, 3221-3224. d) X. Qian, A. Auffrant, A. Felouat, C. Gosmini Angew. Chem., Int. Ed. 2011, 50, 10402-
10405. e) A. Moncomble, P. L. Floch, A. Lledos, C. Gosmini J. Org. Chem. 2012, 77, 5056-5062. f) M. Corpet, X.-Z. 
Bai, C. Gosmini Adv. Synth. Catal. 2014, 356, 2937-2942. g) Y. Cai, X. Qian, C. Gosmini Adv. Synth. Catal. 2016, 
358, 2427-2430. h) S. Pal, S. Chowdhury, E. Rozwadowski, A. Auffrant, C. Gosmini Adv. Synth. Catal. 2016, 358, 
2431-2435. 
80 a) L. Nicolas, P. Angibaud, I. Stansfield, P. Bonnet, L. Meerpoel, S. Reymond, J. Cossy Angew. Chem., Int. Ed. 
2012, 51, 11101-11104. b) L. Nicolas, E. Izquierdo, P. Angibaud, I. Stansfield, L. Meerpoel, S. Reymond, J. Cossy 
J. Org. Chem. 2013, 78, 11807-11814. c) B. Barré, L. Gonnard, R. Campagne, S. Reymond, J. Marin, P. Ciapetti, M. 
Brellier, A. Guérinot, J. Cossy Org. Lett. 2014, 16, 6160-6163. d) L. Gonnard, A. Guérinot, J. Cossy Chem. - Eur. J. 
2015, 21, 12797-12803. 
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Ackermann81 and Yoshikai82 also used cobalt complexes for direct C-H activations of various 

unsaturated systems. Recently, it was reported that cobalt halides are excellent catalysts for the 

cross-couplings between C(sp3)-C(sp2),83 C(sp3)-C(sp)84 and C(sp2)-C(sp2)85 centers using magnesium or 

zinc organometallics. However, these organometallic reagents are not always the best choice for 

performing C-C bond formations, since homo-couplings are often observed side-reactions. Also, the 

formation of organomagnesium species leads to the decomposition of sensitive substrates, whereas 

manganation procedures led to stable nucleophiles (Scheme 30).86 Studies by Wunderlich et al. 

demonstrated, that organomanganese reagents can be a valuable alternative to magnesium 

organometallics (Scheme 30). Thus, the directed metalation of phenyloxadiazol 82 with TMPMgCl·LiCl 

only led to the decomposition of the corresponding organomagnesium intermediate. However, using 

TMP2Mn·2MgCl·4LiCl as base, the stable manganese organometallic could be successfully trapped by 

benzaldehyde to furnish the secondary alcohol 83. 

 

Scheme 30. Directed metalation of phenyloxadiazol 82 with a magnesium and manganese TMP-base.  

 

Thus, a new cobalt-catalyzed cross-coupling between secondary alkyl iodides and diarylmanganese 

reagents was developed.  

                                                             
81 a) J. Li, L. Ackermann Angew. Chem., Int. Ed. 2015, 54, 3635-3638. b) J. Li, L. Ackermann Angew. Chem., Int. 
Ed. 2015, 54, 8551-8554. c) M. Moselage, N. Sauermann, S. C. Richter, L. Ackermann Angew. Chem., Int. Ed. 2015, 
54, 6352-6355. d) J. Li, M. Tang, L. Zang, X. Zhang, Z. Zhang, L. Ackermann Org. Lett. 2016, 18, 2742-2745. e) R. 
Mei, J. Loup, L. Ackermann ACS Catal. 2016, 6, 793-797. f) H. Wang, M. M. Lorion, L. Ackermann Angew. Chem., 
Int. Ed. 2016, 55, 10386-10390. g) H. Wang, M. Moselage, M. J. González, L. Ackermann ACS Catal. 2016, 6, 2705-
2709. h) D. Zell, Q. Bu, M. Feldt, L. Ackermann Angew. Chem., Int. Ed. 2016, 55, 7408-7412. 
82 a) K. Gao, N. Yoshikai J. Am. Chem. Soc. 2011, 133, 400-402. b) M.-Y. Jin, N. Yoshikai J. Org. Chem. 2011, 76, 
1972-1978. c) Z. Ding, N. Yoshikai Angew. Chem., Int. Ed. 2012, 51, 4698-4701. d) B.-H. Tan, J. Dong, N. Yoshikai 
Angew. Chem., Int. Ed. 2012, 51, 9610-9614. e) K. Gao, N. Yoshikai J. Am. Chem. Soc. 2013, 135, 9279-9282. f) B.-
H. Tan, N. Yoshikai Org. Lett. 2014, 16, 3392-3395. g) J. Yang, Y. W. Seto, N. Yoshikai ACS Catal. 2015, 5, 3054-
3057. h) W. Xu, N. Yoshikai Angew. Chem., Int. Ed. 2016, 55, 12731-12735. i) J. Yan, N. Yoshikai ACS Catal. 2016, 
6, 3738-3742. 
83 a) J. M. Hammann, A. K. Steib, P. Knochel Org. Lett. 2014, 16, 6500-6503. b) J. M. Hammann, D. Haas, P. Knochel 
Angew. Chem., Int. Ed. 2015, 54, 4478-4481. c) J. M. Hammann, D. Haas, A. K. Steib, P. Knochel Synthesis 2015, 
47, 1461-1468. d) A. D. Benischke, I. Knoll, A. Rérat, C. Gosmini, P. Knochel Chem. Commun. 2016, 52, 3171-3174. 
84 J. M. Hammann, D. Haas, C.-P. Tüllmann, K. Karaghiosoff, P. Knochel Org. Lett. 2016, 18, 4778-4781. 
85 a) T. J. Korn, G. Cahiez, P. Knochel Synlett 2003, 1892-1894. b) T. J. Korn, M. A. Schade, M. N. Cheemala, S. 
Wirth, S. A. Guevara, G. Cahiez, P. Knochel Synthesis 2006, 3547-3574. c) T. J. Korn, M. A. Schade, S. Wirth, P. 
Knochel Org. Lett. 2006, 8, 725-728. d) A. K. Steib, O. M. Kuzmina, S. Fernandez, D. Flubacher, P. Knochel J. Am. 
Chem. Soc. 2013, 135, 15346-15349. e) O. M. Kuzmina, A. K. Steib, S. Fernandez, W. Boudot, J. T. Markiewicz, P. 
Knochel Chem. - Eur. J. 2015, 21, 8242-8249. f) D. Haas, J. M. Hammann, F. H. Lutter, P. Knochel Angew. Chem., 
Int. Ed. 2016, 55, 3809-3812. 
86 S. H. Wunderlich, M. Kienle, P. Knochel Angew. Chem., Int. Ed. 2009, 48, 7256-7260. 
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2.2 Cobalt-Catalyzed Cross-Coupling Reactions of Di(4-anisyl)manganese with 

Secondary Alkyl Iodides 

Preliminary experiments have shown that the cross-coupling between the secondary alkyl iodide 75a 

and 4-anisylmagnesium bromide (84) proceeds in the presence of 20 mol% CoCl2·2LiCl in THF 

at -20 °C to 25 °C (8 h) to produce the substitution product 76a in only 40% yield due to extensive 

homocoupling side reactions (Scheme 31). However, it was found that by replacing 84 with the 

corresponding di(4-anisyl)manganese reagent (74a) prepared by the transmetalation of 84 with 

MnCl2·2LiCl87 (0.5 equiv), the same cross-coupling now produces 76a in 75% isolated yield (Scheme 

31). Remarkably, rearrangement products (branched to unbranched) were not observed during these 

couplings.88  

 
Scheme 31. Cobalt-catalyzed cross-coupling reactions of metal reagents 84 and 74a with alkyl iodide 75a. 

 

Based on these encouraging results, the scope of this cross-coupling was further examined (Table 5). 

CoCl2·2LiCl was the preferred catalyst since Co(acac)2, Co(acac)3, CoBr2 and CoCl2 gave inferior yields 

(entries 1-4). The use of 10% CoCl2·2LiCl instead of 20%, reduced the yield of 76a to 64% 

(compare entries 5 and 6).  

                                                             
87 G. Cahiez, Butyl Manganese Chloride and Related Reagents, in Encyclopedia of Reagents for Organic Synthesis 
(Ed.: L. Paquette), Wiley, Chichester 1995; p 925. 
88 a) K. Tamao, Y. Kiso, K. Sumitani, M. Kumada J. Am. Chem. Soc. 1972, 94, 9268-9269. b) T. Hayashi, M. Konishi, 
Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu J. Am. Chem. Soc. 1984, 106, 158-163. c) A. Joshi-Pangu, M. Ganesh, 
M. R. Biscoe Org. Lett. 2011, 13, 1218-1221. d) J. T. Binder, C. J. Cordier, G. C. Fu J. Am. Chem. Soc. 2012, 134, 
17003-17006. 
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Table 5. Reaction conditions optimization of the cross-coupling of alkyl iodide 75a with the manganese reagent 74a. 

 
aUsing 40% of the ligand bCalibrated GC-yield using undecane as internal standard. cIsolated yield. dUsing 10% CoCl2·2LiCl. 

 

Attempts to improve the reaction outcome by adding ligands such as TMEDA (L1),89 4-fluorostyrene 

(L2),90 or neocuproine (L3)84, 91 were not successful (entries 7-9). Also, NHC-ligands L4 or L5 were not 

beneficial for the reaction (entries 10-11). Alternative transition metal salts such as PdCl2, CuCl2, CrCl2, 

NiCl2 or FeCl2 were inefficient (entries 12-16). A solvent screening showed that THF was the best 

solvent when compared to NMP, DMPU, DME, 1,4-dioxane and tBuOMe.  

 

  

                                                             
89 J. M. Hammann, A. K. Steib, P. Knochel Org. Lett. 2014, 16, 6500-6503. 
90 a) A. K. Steib, T. Thaler, K. Komeyama, P. Mayer, P. Knochel Angew. Chem., Int. Ed. 2011, 50, 3303-3307. b) L. 
R. Jefferies, S. P. Cook Org. Lett. 2014, 16, 2026-2029. c) L. R. Jefferies, S. R. Weber, S. P. Cook Synlett 2015, 26, 
331-334. 
91 T. Thaler, L.-N. Guo, P. Mayer, P. Knochel Angew. Chem., Int. Ed. 2011, 50, 2174-2177. 
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2.1 Cobalt-Catalyzed Cross-Coupling Reactions of Diarylmanganese Reagents with 

Secondary Alkyl Iodides 

These cobalt-catalyzed alkylations proved to be general and the cross-coupling between the 

dianisylmanganese reagent (74a) and various secondary alkyl iodides has been successfully performed 

(Table 6).92 Thus, various secondary alkyl iodides bearing a range of various functional groups (OTBS, 

CF3, OAc; 75b-d) reacted with the dianisylmanganese reagent (74a) providing the expected products 

76b-d in 73-77% yield (entries 1-3). When the diarylmanganese reagent 74a reacted with iodide 75b 

the coupling-product 76b was obtained in only 63% yield using CoCl2. In contrast, using THF soluble 

CoCl2·2LiCl gave 76b in 73% yield (entry 1). Also, various cyclohexyl iodides underwent the 

cross-coupling with 74a yielding the desired arylated products 76e-g in 75-84% yield. The reaction of 

74a with cyclohexyl iodide (75e) gave 76e in 81% yield using CoCl2 compared to 84% yield when using 

CoCl2·2LiCl in THF (entry 4). Additionally, this cross-coupling can also be performed with cyclopentyl 

iodides 75h-i, leading to the expected products 76h and 76i in 59-70% yield (entries 7-8). When a 

TBSO-substituent was present in the 2-position to the carbon-iodide bond, excellent 

diastereoselectivities were observed (dr up to 99:1, see entries 6 and 8). 

Table 6. Cobalt-catalyzed cross-coupling reactions between various secondary alkyl iodides of type 75 and the 

diarylmanganese reagent 74a. 

 
a 20% CoCl2 was used instead of CoCl2·2LiCl. 

  

                                                             
92 Using primary or tertiary alkyl halides did not lead to a good conversion. 
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Table 6. Continued. 

 

a 20% CoCl2 was used instead of CoCl2·2LiCl. b dr ca. 70:30. 

 

Furthermore, a range of functionalized diarylmanganese reagents could also be readily used in this 

reaction (Table 7). (p-MOMO-C6H4)2Mn (74b) reacted smoothly with the alkyl iodides 75c and 75j, 

leading to the arylated products 76j-k in 75-76% yield (entries 1-2). The coupling of the electron-poor 

manganese reagent 74c with 75a or 75k afforded the cross-coupling products 76l-m in 81-87% yield 

(entries 3-4). Interestingly, the manganese reagents bearing an OBoc- (74d) or an OTBS-group (74e) 

were well tolerated and the cross-coupling with 75h and 75i (dr = 99:1) led to the desired products 

76n-p in 74-92% yield (entries 5-7). Moreover, the electron-rich diarylmanganese reagent 74f was 

readily coupled with the cyclic alkyl iodides 75e and 75b to provide the corresponding arylated 

products 76q-r in 60-80% yield. Interestingly, using CoCl2 as the catalyst led to dramatically decreased 

yields for the same reactions affording 76q (CoCl2: 48%; CoCl2·2LiCl: 80%; entry 8) and 76r (CoCl2: 19%; 

CoCl2·2LiCl: 60%; entry 9). The cross-coupling of 75l or 75m with the 

di(1,3-benzodioxol-5-yl)manganese reagent (74g) afforded the arylated compounds 76s-t in 66-70% 

yield (entries 10-11). Also, the di(4-methoxy-3,5-dimethylphenyl)manganese reagent (74h) was 

successfully coupled with 75h and 75i (dr = 99:1), leading to the desired products 76u-v in 63-82% 

yield (entries 12-13). For the diarylmanganese reagents 74e and 74h using the protected heterocyclic 
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iodohydrine 75i (dr = 99:1) excellent diastereoselectivities were observed (dr = 99:1, entries 7, 13). 

 

Table 7. Cobalt-catalyzed cross-couplings of diarylmanganese reagents of type 74 with secondary alkyl iodides of type 75. 
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Table 7. Continued. 

 
a 20% CoCl2 was used instead of CoCl2·2LiCl. 

 

Although, the scope of this reaction is broad and tolerates a variety of functional groups, some 

limitations occurred (Scheme 32). Experiments using diheteroarylmanganese reagents, such as 

di(thiophen-3-yl)manganese (85) or bis(1-methyl-1H-indol-5-yl)manganese (86) were performed, but 

no cross-coupling product was observed. Also, the application of manganese reagents prepared via 

directed metalation, such as 87 and 88 did not lead to product formation. 



RESULTS AND DISCUSSION 

 

34 

 
Scheme 32. Limitations of this methodology. 

 

2.2 Application in the Formal Synthesis of (±)-Preclamol 

In order to demonstrate the synthetic utility of this cross-coupling, the protected iodopiperidine 75n 

was prepared, which is a key intermediate for the synthesis of (±)-preclamol (89).93 Thus, the 

commercially available carboxylic acid 90 was converted into the iodide 75n according to the 

procedure of Boto and coworkers (Scheme 33).80d, 94 The cobalt-catalyzed cross-coupling with the 

diarylmanganese reagent 74e furnished the desired product 76w in 60% yield. 

 
Scheme 33. Formal synthesis of (±)-preclamol (89).  

                                                             
93 Gonnard, L.; Guerinot, A.; Cossy, J. Chem. - Eur. J. 2015, 21, 12797-12803. 
94 A. Boto, R. Hernández, Y. de León, J. R. Murguía, A. Rodriguez-Afonso Eur. J. Org. Chem. 2005, 673-682. 
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3 Iron-Catalyzed Cross-Coupling Reactions of Di(hetero)arylmanganese Reagents 

and Primary and Secondary Alkyl Halides  

3.1 Introduction 

Transition metal catalyzed cross-coupling reactions have found broad application, especially for the 

synthesis of agrochemicals and pharmaceuticals.95 In the past, palladium and nickel complexes have 

frequently been used for such couplings. However, the high price as well as toxicity issues96 of these 

catalysts led to the search for alternative transition metals for cross-coupling reactions. Especially, 

iron is a cheap and environmentally benign alternative for C-C-bond forming reactions, due to its high 

abundance in the earth’s crust. Pioneering work by Fürstner,97 Cahiez98 as well as other research 

groups99 demonstrated the high potential of iron salts as catalysts in coupling reactions.   

                                                             
95 a) Cross-Coupling Reactions, A Practical Guide (Ed.: N. Miyaura), Springer, Berlin, Germany, 2002. b) Metal-
Catalyzed Cross-Coupling Reactions (Eds.: A. Meijere, F. Diederich), Wiley-VCH, Weinheim, Germany, 2004. c) 
Modern Drug Synthesis (Eds.: J. J. Li, D. S. Johnson), Wiley-VCH, Weinheim, Germany, 2010. d) Organotransition 
Metal Chemistry: From Bonding to Catalysis (Ed.: J. F. Hartwig), University Science Books, Sausalito, CA, 2010. 
96 a) LD50(FeCl2, rat oral) = 900 mg/kg; LD50(NiCl2, rat oral) = 186 mg/kg. b) K. S. Egorova, V. P. Ananikov Angew. 
Chem., Int. Ed. 2016, 55, 12150-12162. 
97 a) A. Fürstner, H. Brunner Tetrahedron Lett. 1996, 37, 7009-7012. b) A. Fürstner, A. Leitner Angew. Chem., Int. 
Ed. 2002, 41, 609-612. c) A. Fürstner, A. Leitner, M. Méndez, H. Krause J. Am. Chem. Soc. 2002, 124, 13856-
13863. d) R. Martin, A. Fürstner Angew. Chem., Int. Ed. 2004, 43, 3955-3957. e) B. Scheiper, M. Bonnekessel, H. 
Krause, A. Fürstner J. Org. Chem. 2004, 69, 3943-3949. f) B. D. Sherry, A. Fürstner Acc. Chem. Res. 2008, 41, 
1500-1511. g) C.-L. Sun, H. Krause, A. Fürstner Adv. Synth. Catal. 2014, 356, 1281-1291. h) A. Casitas, H. Krause, 
R. Goddard, A. Fürstner Angew. Chem., Int. Ed. 2015, 54, 1521-1526. i) A. Fürstner ACS Cent. Sci. 2016, 2, 778-
789. 
98 a) G. Cahiez, H. Avedissian Synthesis 1998, 1199-1205. b) C. Duplais, F. Bures, I. Sapountzis, T. J. Korn, G. Cahiez, 
P. Knochel Angew. Chem., Int. Ed. 2004, 43, 2968-2970. c) G. Cahiez, C. Chaboche, F. Mahuteau-Betzer, M. Ahr 
Org. Lett. 2005, 7, 1943-1946. d) G. Cahiez, C. Duplais, A. Moyeux Org. Lett. 2007, 9, 3253-3254. e) G. Cahiez, V. 
Habiak, C. Duplais, A. Moyeux Angew. Chem., Int. Ed. 2007, 46, 4364-4366. f) G. Cahiez, A. Moyeux, J. Buendia, 
C. Duplais J. Am. Chem. Soc. 2007, 129, 13788-13789. g) G. Cahiez, O. Gager, V. Habiak Synthesis 2008, 2636-
2644. h) G. Cahiez, L. Foulgoc, A. Moyeux Angew. Chem., Int. Ed. 2009, 48, 2969-2972. i) A. D. Benischke, A. J. A. 
Breuillac, A. Moyeux, G. Cahiez, P. Knochel Synlett 2016, 27, 471-476. 
99 a) M. Nakamura, K. Matsuo, S. Ito, E. Nakamura J. Am. Chem. Soc. 2004, 126, 3686-3687. b) M. Nakamura, S. 
Ito, K. Matsuo, E. Nakamura Synlett 2005, 1794-1798. c) T. Hatakeyama, M. Nakamura J. Am. Chem. Soc. 2007, 
129, 9844-9845. d) T. Hatakeyama, Y. Yoshimoto, T. Gabriel, M. Nakamura Org. Lett. 2008, 10, 5341-5344. e) S. 
Ito, Y.-i. Fujiwara, E. Nakamura, M. Nakamura Org. Lett. 2009, 11, 4306-4309. f) D. Noda, Y. Sunada, T. 
Hatakeyama, M. Nakamura, H. Nagashima J. Am. Chem. Soc. 2009, 131, 6078-6079. g) T. Hatakeyama, T. 
Hashimoto, Y. Kondo, Y. Fujiwara, H. Seike, H. Takaya, Y. Tamada, T. Ono, M. Nakamura J. Am. Chem. Soc. 2010, 
132, 10674-10676. h) E. Nakamura, N. Yoshikai J. Org. Chem. 2010, 75, 6061-6067. i) Z.-Q. Liu, Y. Zhang, L. Zhao, 
Z. Li, J. Wang, H. Li, L.-M. Wu Org. Lett. 2011, 13, 2208-2211. j) O. M. Kuzmina, A. K. Steib, D. Flubacher, P. 
Knochel Org. Lett. 2012, 14, 4818-4821. k) Y.-Y. Lin, Y.-J. Wang, C.-H. Lin, J.-H. Cheng, C.-F. Lee J. Org. Chem. 
2012, 77, 6100-6106. l) R. Shang, L. Ilies, A. Matsumoto, E. Nakamura J. Am. Chem. Soc. 2013, 135, 6030-6032. 
m) E. Nakamura, T. Hatakeyama, S. Ito, K. Ishizuka, L. Ilies, M. Nakamura Org. React. 2014, 83, 1-210. n) T. 
Agrawal, S. P. Cook Org. Lett. 2014, 16, 5080-5083. o) O. M. Kuzmina, A. K. Steib, A. Moyeux, G. Cahiez, P. Knochel 
Synthesis 2015, 47, 1696-1705. p) X. Shang, Z.-Q. Liu Synthesis 2015, 47, 1706-1708. q) R. Agata, T. Iwamoto, N. 
Nakagawa, K. Isozaki, T. Hatakeyama, H. Takaya, M. Nakamura Synthesis 2015, 47, 1733-1740. r) I. Bauer, H.-J. 
Knölker Chem. Rev. 2015, 115, 3170-3387. s) R. Greiner, R. Blanc, C. Petermayer, K. Karaghiosoff, P. Knochel 
Synlett 2016, 27, 231-236. t) J. Halli, A. E. Schneider, T. Beisel, P. Kramer, A. Shemet, G. Manolikakes Synthesis 
2017, 49, 849-879. u) T. Parchomyk, K. Koszinowski Synthesis 2017, 49, 3269-3280. 
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However, most of these reactions use magnesium organometallics as nucleophiles, which are not 

always the best choice due to their high nucleophilicity. In contrast, the use of organomanganese 

reagents enables performing coupling reactions under mild conditions. 

 

3.2 Iron-Catalyzed Cross-Coupling Reactions of the Di(4-anisyl)manganese Reagent 

with Alkyl Halides 

It was demonstrated that cobalt(II) chloride is an excellent catalyst for the cross-coupling of 

diarylmanganese reagents with secondary alkyl halides.100 However, some coupling partners including 

alkyl bromides as electrophiles and di(hetero)arylmanganese reagents prepared via directed 

metalation were not very efficient and gave only poor yields. Thus, the cross-coupling between 

cyclohexyl bromide (75o) and di(4-anisyl)manganese (74a, 0.7 equiv) using 20 mol% CoCl2 gave the 

desired product 76e in only 28% yield (Table 8, entry 1). In contrast, different iron salts proved to be 

more efficient and furnished 76e in better yields (64-69%, entries 2-4). FeCl2 gave the best results. The 

addition of amine- (L1-2), phosphine- (L3-4), phenanthroline- (L5-6) and NHC-ligands (L7), as well as 

isoquinoline (L8) and 4-fluorostyrene (L9), which were beneficial ligands in previous studies,101 did not 

improve the reaction outcome (entries 5-13). Remarkably, CrCl2 and NiBr2 were inefficient catalysts 

for this reaction (entries 14-15). A solvent screening showed that THF led to the best reaction outcome 

compared to NMP, DME, 1,4-dioxane and tBuOMe. Thus, di(4-anisyl)manganese (74a) reacted in the 

presence of 20 mol% FeCl2 in THF at -20 to 25 °C (16 h) to produce the substitution product 76e in 

69% yield (entry 4). 

  

                                                             
100 M. S. Hofmayer, J. M. Hammann, D. Haas, P. Knochel Org. Lett. 2016, 18, 6456-6459. 
101 a) T. J. Korn, P. Knochel Angew. Chem., Int. Ed. 2005, 44, 2947-2951. b) T. J. Korn, M. A. Schade, M. N. 
Cheemala, S. Wirth, S. A. Guevara, G. Cahiez, P. Knochel Synthesis 2006, 3547-3574. c) T. J. Korn, M. A. Schade, 
S. Wirth, P. Knochel Org. Lett. 2006, 8, 725-728. d) S. H. Wunderlich, P. Knochel Angew. Chem., Int. Ed. 2009, 48, 
9717-9720. e) A. K. Steib, T. Thaler, K. Komeyama, P. Mayer, P. Knochel Angew. Chem., Int. Ed. 2011, 50, 3303-
3307. f) O. M. Kuzmina, A. K. Steib, J. T. Markiewicz, D. Flubacher, P. Knochel Angew. Chem., Int. Ed. 2013, 52, 
4945-4949. g) O. M. Kuzmina, A. K. Steib, S. Fernandez, W. Boudot, J. T. Markiewicz, P. Knochel Chem. - Eur. J. 
2015, 21, 8242-8249. h) A. D. Benischke, I. Knoll, A. Rérat, C. Gosmini, P. Knochel Chem. Commun. 2016, 52, 
3171-3174. 
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Table 8. Reaction conditions optimization of the cross coupling of bromocyclohexane (75o) with the di(4-anisyl)manganese 

reagent (74a). 

 
aCalibrated GC yield using undecane as internal standard. bIsolated yield. 

 

These optimized conditions proved to be general and the cross-couplings of di(4-anisyl)manganese 

(74a) with various primary and secondary alkyl halides of type 75 were successfully performed (Table 

9). Thus, a range of cycloalkyl halides were readily employed in this reaction. Cyclohexyl chloride (75p), 

bromide (75o) and iodide (75e) underwent the cross-coupling with 74a to afford the desired product 

76e in 32-73% yield (entry 1). The secondary bromides and iodides 75q, 75f, 75r-s, and 76h bearing 

an iPr-, OTBS- or a tert-butyl-group were also tolerated, leading to the substitution products 76x-z and 

76h in 43-88% yield (entries 2-5). Furthermore, the functionalized acyclic secondary alkyl iodides 75b-

c and 75t bearing a CF3, OTBS or a fluoro substituent, proved to be good substrates, affording the 

alkylated products 76b-c and 76aa in 44-58% yield (entries 6-8). Interestingly, no rearrangement of 
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branched secondary alkyl groups to the corresponding unbranched secondary alkyl moiety was 

observed. Additionally, the primary alkyl iodide (3-iodopropyl)benzene (75u) coupled smoothly, 

affording 76ab in 46% yield (entry 9).  

Table 9. Iron-catalyzed cross-coupling reactions between various alkyl halides of type 75 and the diarylmanganese 74a.  

 
a Calibrated GC yield using undecane as internal standard. b Electrophile: cis:trans ratio: 99:1; product: cis:trans 

ratio: 83:17. c Electrophile: cis:trans ratio: 99:1; product: cis:trans ratio: 75:25. d Electrophile: cis:trans ratio: 75:25; product: 

cis:trans ratio: 98:2. e Electrophile: cis:trans ratio: 99:1; product: cis:trans ratio: 60:40. 
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Table 9. Continued.  

 

 

3.3 Iron-Catalyzed Cross-Coupling Reactions of Di(hetero)arylmanganese Reagents 

with Alkyl Halides 

Furthermore, a range of functionalized diarylmanganese reagents could also be used in this reaction 

(Table 10). (p-MOMO-C6H4)2Mn (74b) reacted smoothly with the alkyl iodides 75c and 75j, leading to 

the expected products 76j-k in 46-62% yield (entries 1-2). Interestingly, the diarylmanganese 74d 

bearing an OBoc-group was cross-coupled with 75h, leading to the desired product 76n in 56% yield 

(entry 3). The coupling of the electron-poor diarylmanganese 74i and 74c with the alkyl halides 75a 

and 75k afforded the cross-coupling products 76ac, 76ad, and 76m in 48-78% yield (entries 4-6).  

Table 10. Iron-catalyzed cross-couplings of di(hetero)arylmanganese reagents of type 74 with secondary alkyl bromides 

and iodides of type 75. 
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Table 10. Continued.  

 

Also, the diarylmanganese 74j was successfully coupled with the secondary alkyl iodide 75b, to give 

the desired product 76ae in 80% yield (entry 7). Additionally, heterocyclic diarylmanganese reagents 

were compatible under these conditions, leading to the expected heterocycles in good yields. Thus, 

di-(thiophene-3-yl)manganese 74k coupled smoothly with 75v or 75j providing the alkylated 

thiophene 76af in 82-87% yield (entry 8). Moreover, diarylmanganese reagents generated via directed 

manganation using TMP2Mn·2MgCl2·4LiCl86 (0.7 equiv) could also be readily employed. Thus, 74l-m 

were cross-coupled with 75i and 75m, leading to the corresponding products 76ag and 76ah in 

46-86% yield (entries 9-10). For the coupling with alkyl iodide 75i an excellent diastereoselectivity was 

observed (dr = 99:1).  
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4 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides 

with α-Bromolactones and Related Derivatives102 

4.1 Introduction 

The preparation of chiral agrochemicals and pharmaceuticals requires general and efficient 

asymmetric syntheses.103 Recently, several advances involving Pd- and Ni-catalyzed asymmetric 

carbon-carbon bond formations have been reported.104 These transition metal-catalyzed asymmetric 

cross-couplings involve expensive105 or toxic106 Ni- or Pd-catalysts. Also, reactions involving alkyl-

palladium intermediates are often of limited scope due to β-hydrogen elimination side reactions.55 It 

was shown that relatively inexpensive and less toxic CoCl2 can efficiently catalyze cross-couplings.107 

Also, organozinc compounds are excellent nucleophilic reagents for various Co-catalyzed 

                                                             
102 This project was developed in cooperation with Alisa S. Sunagatullina, see: Alisa S. Sunagatullina, PhD 
Dissertation, LMU Munich. 
103 a) Modern Drug Synthesis;  Li, J. J.; Johnson, D. S., Eds.  Wiley-VCH: Weinheim, Germany, 2010; b) Yeh, V.; 
Szabo, W. A., Asymmetric Cross-Coupling Reactions. in Applications of Transition Metal Catalysis in Drug 
Discovery and Development,  Crawley, M. L.; Trost, B. M., Eds. 2012; pp 165-213; c) Innovative Drug Synthesis;  
Li, J. J.; Johnson, D. S., Eds.  Wiley-VCH: Weinheim, Germany, 2015. 
104 a) Horibe, H.; Fukuda, Y.; Kondo, K.; Okuno, H.; Murakami, Y.; Aoyama, T. Tetrahedron 2004, 60, 10701-10709; 
b) Genov, M.; Fuentes, B.; Espinet, P.; Pelaz, B. Tetrahedron: Asymmetry 2006, 17, 2593-2595; c) Taylor, B. L. H.; 
Jarvo, E. R. Synlett 2011, 2761-2765; d) Binder, J. T.; Cordier, C. J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 17003-
17006; e) Choi, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 9102-9105; f) Wang, C.-Y.; Derosa, J.; Biscoe, M. R. Chem. 
Sci. 2015, 6, 5105-5113; g) Eno, M. S.; Lu, A.; Morken, J. P. J. Am. Chem. Soc. 2016, 138, 7824-7827; h) Yang, X.; 
Xu, G.; Tang, W. Tetrahedron 2016, 72, 5178-5183; i) Lovinger, G. J.; Aparece, M. D.; Morken, J. P. J. Am. Chem. 
Soc. 2017, 139, 3153-3160; j) Poremba, K. E.; Kadunce, N. T.; Suzuki, N.; Cherney, A. H.; Reisman, S. E. J. Am. 
Chem. Soc. 2017, 139, 5684-5687; k) Uozumi, Y.; Matsuura, Y.; Suzuka, T.; Arakawa, T.; Yamada, Y. M. A. Synthesis 
2017, 49, 59-68; l) Myhill, J. A.; Wilhelmsen, C. A.; Zhang, L.; Morken, J. P. J. Am. Chem. Soc. 2018, 140, 15181-
15185; m) Huang, W.; Hu, M.; Wan, X.; Shen, Q. Nat. Commun. 2019, 10, 2963; n) Jin, Y.; Wang, C. Angew. Chem., 
Int. Ed. 2019, 58, 6722-6726; o) Wang, G.; Xin, X.; Wang, Z.; Lu, G.; Ma, Y.; Liu, L. Nat. Commun. 2019, 10, 559; 
p) Aparece, M. D.; Hu, W.; Morken, J. P. ACS Catal. 2019, 11381-11385. 
105 World market prices for Pd: 51140 EUR/kg; for Co: 32 EUR/kg (retrieved Nov. 2019, 
http://www.infomine.com). 
106 a) Handbook on the Toxicology of Metals;  Friberg, L.; Nordberg, G. F.; Vouk, V. B., Eds.  Elsevier: Amsterdam, 
1986; b) Egorova, K. S.; Ananikov, V. P. Angew. Chem., Int. Ed. 2016, 55, 12150-12162. 
107 a) Czaplik, W. M.; Mayer, M.; Jacobi von Wangelin, A. Synlett 2009, 2931-2934; b) Gülak, S.; Stepanek, O.; 
Malberg, J.; Rad, B. R.; Kotora, M.; Wolf, R.; Jacobi von Wangelin, A. Chem. Sci. 2013, 4, 776-784; c) Mao, J.; Liu, 
F.; Wang, M.; Wu, L.; Zheng, B.; Liu, S.; Zhong, J.; Bian, Q.; Walsh, P. J. J. Am. Chem. Soc. 2014, 136, 17662-17668; 
d) Liu, F.; Bian, Q.; Mao, J.; Gao, Z.; Liu, D.; Liu, S.; Wang, X.; Wang, Y.; Wang, M.; Zhong, J. Tetrahedron: 
Asymmetry 2016, 27, 663-669; e) Rérat, A.; Michon, C.; Agbossou-Niedercorn, F.; Gosmini, C. Eur. J. Org. Chem. 
2016, 2016, 4554-4560; f) Barde, E.; Guérinot, A.; Cossy, J. Org. Lett. 2017, 19, 6068-6071; g) Liu, F.; Zhong, J.; 
Zhou, Y.; Gao, Z.; Walsh, P. J.; Wang, X.; Ma, S.; Hou, S.; Liu, S.; Wang, M.; Wang, M.; Bian, Q. Chem. - Eur. J. 2018, 
24, 2059-2064; h) Thomas, L.; Lutter, F. H.; Hofmayer, M. S.; Karaghiosoff, K.; Knochel, P. Org. Lett. 2018, 20, 
2441-2444; i) Linke, S.; Manolikakès, S. M.; Auffrant, A.; Gosmini, C. Synthesis 2018, 50, 2595-2600; j) Lutter, F. 
H.; Graßl, S.; Grokenberger, L.; Hofmayer, M. S.; Chen, Y.-H.; Knochel, P. ChemCatChem 2019, 11, 5188-5197; k) 
Sun, X.; Wang, X.; Liu, F.; Gao, Z.; Bian, Q.; Wang, M.; Zhong, J. Chirality 2019, 31, 682-687; l) Dorval, C.; Dubois, 
E.; Bourne-Branchu, Y.; Gosmini, C.; Danoun, G. Adv. Synth. Catal. 2019, 361, 1777-1780; m) Koch, V.; Lorion, M. 
M.; Barde, E.; Bräse, S.; Cossy, J. Org. Lett. 2019, 21, 6241-6244; n) Song, T.; Arseniyadis, S.; Cossy, J. Org. Lett. 
2019, 21, 603-607. 
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cross-coupling reactions, as a broad range of sensitive functional groups are tolerated in these 

organometallics.108 

Previous experiments demonstrated, that the coupling of organozinc species with cyclic secondary 

alkyl halides with a substituent in the 2-position can be performed with high trans-diastereoselectivity 

under cobalt-catalysis.109 Thus, a cross coupling of enantiomerically enriched β-substituted 

α-bromocarbonyl compounds could lead to the chiral arylation products after a Co-catalyzed 

cross-coupling with organozinc species. 

 

4.2 Development of Starting Materials 

As a starting point the brominated menthone derivative 91 was prepared (Scheme 34).110 L-Menthone 

(92) was deprotonated by TMPLi and trapping with TMSCl gave the silyl enol ether 93. Subsequent 

bromination with NBS afforded α-bromo-L-menthone 91 in 67% overall yield (dr = 80:20). 

 
Scheme 34. Synthesis of α-bromo-L-menthone 91. 

  

                                                             
108 a) Hammann, J. M.; Haas, D.; Knochel, P. Angew. Chem., Int. Ed. 2015, 54, 4478-4481; b) Haas, D.; Hammann, 
J. M.; Greiner, R.; Knochel, P. ACS Catal. 2016, 6, 1540-1552; c) Haas, D.; Hammann, J. M.; Lutter, F. H.; Knochel, 
P. Angew. Chem., Int. Ed. 2016, 55, 3809-3812; d) Hammann, J. M.; Hofmayer, M. S.; Lutter, F. H.; Thomas, L.; 
Knochel, P. Synthesis 2017, 49, 3887-3894; e) Hammann, J. M.; Lutter, F. H.; Haas, D.; Knochel, P. Angew. Chem. 
2017, 129, 1102-1106; f) Hammann, J. M.; Thomas, L.; Chen, Y.-H.; Haas, D.; Knochel, P. Org. Lett. 2017, 19, 
3847-3850; g) Hofmayer, M. S.; Hammann, J. M.; Lutter, F. H.; Knochel, P. Synthesis 2017, 49, 3925-3930; h) Li, 
J.; Knochel, P. Angew. Chem., Int. Ed. 2018, 57, 11436-11440; i) Balkenhohl, M.; Ziegler, D. S.; Desaintjean, A.; 
Bole, L. J.; Kennedy, A. R.; Hevia, E.; Knochel, P. Angew. Chem., Int. Ed. 2019, 58, 12898-12902; j) Graßl, S.; 
Hamze, C.; Koller, T. J.; Knochel, P. Chem. - Eur. J. 2019, 25, 3752-3755; k) Lutter, F. H.; Grokenberger, L.; 
Hofmayer, M. S.; Knochel, P. Chem. Sci. 2019, 10, 8241-8245; l) Lutter, F. H.; Hofmayer, M. S.; Hammann, J. M.; 
Malakhov, V.; Knochel, P., Generation and Trapping of Functionalized Aryl- and Heteroarylmagnesium and -Zinc 
Compounds. in Organic Reactions,  Denmark, S. E., Ed. 2019; Vol. 100, pp 63-120. 
109 a) J. M. Hammann, D. Haas, P. Knochel Angew. Chem., Int. Ed. 2015, 54, 4478-4481. b) L. Thomas, F. H. Lutter, 
M. S. Hofmayer, K. Karaghiosoff, P. Knochel Org. Lett. 2018, 20, 2441-2444. 
110 Harrowven, D. C.; Pascoe, D. D.; Guy, I. L. Angew. Chem., Int. Ed. 2007, 46, 425-428. 
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Preliminary cross-coupling experiments were performed with the α-bromoketone 91 (Scheme 35).  

 
Scheme 35. Cobalt-catalyzed cross-coupling of arylzinc reagent 78a and the diastereomers of bromomenthone 91. 

 

The TBSO-substituted arylzinc chloride 78a and the menthone derivative 91 (dr = 80:20) led to the 

desired product 94 with 20% CoCl2 in 76% yield (dr = 70:30). To determine the dependency of the 

reaction outcome on the diastereomeric ratio of the starting material, the pure diastereomers 91a 

and 91b were subjected to the cross-coupling separately. In each case, the product 94 was formed in 

the same diastereomeric ratio of 70:30. A ligand and solvent screening was performed to improve the 

stereoselectivity of this reaction (Table 11). Using N,N,N’,N’-cyclohexyl-1,2-diamine (L1), the 

bisoxazoline ligand L2, and the NHC-ligand L3 did not lead to significant enhancements of the 

diastereomeric ratio for product 94 (entries 1-3). In contrast, 40 mol% of triphenylphosphine (L4) 

afforded 94 in 83% yield and a diastereomeric ratio of 85:15 (entry 4). Interestingly, reducing the 

amount of PPh3 to 20 mol% led to similar results (entry 5).  

Various trialkyl- or triarylphosphines, such as L5-9 as additives gave the arylated menthone 94 in 

decreased yields or decreased diastereomeric purity (entries 6-10). Also, changing the solvent system 

from THF (entry 5) to acetonitrile, toluene, dioxane, MTBE, NMP, and EtOAc did not improve the 

reaction outcome (entries 11-16). 
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Table 11. Additive and solvent screening for the cross-coupling of arylzinc reagent 78a and the bromomenthone 91. 

 
aCalibrated GC yield using undecane as internal standard. 

 

In order to identify starting materials, which afford diastereomerically pure arylation products, two 

strategies were pursued. First, reducing the conformational degrees of freedom of the starting 

material possibly forces the selectivity towards one diastereomer in the arylation step. Second, 

attaching a more bulky group in the β-position, leads to higher steric hindrance and possibly forces 

the aryl moiety towards the trans-isomer. Therefore, a five-membered lactone with a 

TBSO-substituent in β-position was prepared. The synthesis of α-bromolactone 95a starts from 
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D-isoascorbic acid (96) as low-cost commercially available precursor (Scheme 36).111 Deprotonation 

and oxidation,112 followed by bromination113 leads to the α-bromo-β-hydroxylactone 97. Subsequent 

TBS protection affords the (3S,4R)-enantiomer 95a diastereomerically and enantiomerically pure. The 

second enantiomer 95b was synthesized by thermal cyclization of the zwitterion L-carnitine (98), 

followed by TBS-protection affording the intermediate 99. Selective bromination in α-position led to 

the desired (3R,4S)-enantiomer 95b. 

 
Scheme 36. Synthesis of α-bromolactones 95a-b starting from D-isoascorbic acid (96) and L-carnitine (98). 

 

4.3 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc 

Reagents with α-Bromolactones 

The chiral α-bromolactone 95a was then submitted to an arylation using 4-anisylzinc chloride (78b). 

The formation of product 100a was optimized using various metallic salts (Table 12). Whereas CuCl2, 

CrCl2, MnCl2, and FeCl2 were not effective catalysts (entries 1-5), CoCl2 gave excellent results compared 

to CoBr2 or Co(acac)2 (entries 6-8). The addition of a ligand, such as PPh3 allowed to further improve 

the yield (entries 9-12).  

  

                                                             
111 5 kg can be purchased for 170 € at Sigma Aldrich (September 2019) 
112 a) N. Cohen, B. L. Banner, A. J. Laurenzano, L. Carozza Org. Synth. 1985, 63, 127. b) L. L. Wong, R. L. Wong, G. 
Loh, P. E. W. Tan, S. K. Teoh, S. M. Shaik, P. N. Sharratt, W. Chew, S. T. Tan, D. Wang Org. Process Res. Dev. 2012, 
16, 1003-1012. c) S. R. Borkar, N. Bokolia, I. S. Aidhen, I. A. Khan Tetrahedron: Asymmetry 2017, 28, 186-195. 
113 a) M. Bols, I. Lundt Acta Chem. Scand. Ser. B 1988, 42, 67-74. b) C. Falentin, D. Beaupère, G. Demailly, I. Stasik 
Tetrahedron 2008, 64, 9989-9991. 
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These optimized conditions were then applied to the arylation of α-bromolactone 95a using various 

arylzinc reagents of type 78 (Table 13). Thus, 4-trifluoromethoxyphenylzinc chloride (78c) was 

cross-coupled with 95a, leading to the desired α-arylated lactone 100b in 63% yield (dr = 99:1, 99% ee, 

entry 1). Similarly, the electron-poor organozinc reagent 78d furnished the 4-trifluorotolyl substituted 

lactone 100c in 62% yield (dr = 99:1, 99% ee, entry 2).  

Table 12. Reaction conditions optimization for the cross-coupling of 4-anisylzinc chloride (78b) with the α-bromolactone 

95a. 

 
aCalibrated GC yield using undecane as internal standard. b99.99% CoCl2 was used. cIsolated yield of 100a (dr = 99:1, 

99% ee). 

 

Also, the meta-substituted arylzinc reagents 78e and 78a, bearing a MeS- and a TBSO-group in 

meta-position are satisfactory coupling partners. This afforded the optically pure products 100d and 

100e in 63-77% yield (dr = 99:1, 99% ee, entries 3-4). The arylation of 95a with (6-methoxynaphthalen-

2-yl)zinc chloride (78f) and the benzodioxolylzinc reagent 78g gave the products 100f and 100g in 

61-84% yield and in excellent stereoselectivity (dr = 99:1, 99% ee, entries 5-6). Interestingly, the 

sterically hindered organozinc chloride 78h, having a benzyl oxide substituent in the ortho-position, 

was efficiently coupled with α-bromolactone 95a. The arylated lactone 100h was obtained in 94% 

yield; dr = 99:1; 99% ee (entry 7).  

 



RESULTS AND DISCUSSION 

 

47 

Table 13. Stereoselective cobalt-catalyzed cross-couplings of arylzinc reagents of type 78 with α-bromolactone 95a. 

 
aIsolated yield of analytically pure lactones.  
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Starting from L-threonine (101) and pivalaldehyde, the chiral α-bromolactone 102a was prepared, 

bearing a smaller methyl substituent in β-position (Scheme 37).114 After diazotation, bromination, and 

TMS-protection of 101, the bis-trimethylsilylated intermediate 103 can be isolated. The reaction with 

pivalaldehyde and catalytic TMS-triflate led to the optically enriched protected β-hydroxy ester 102a 

in 99% ee (2R,5R,6R-substitution). The second enantiomer 102b (2S,5S,6S-substitution) was 

synthesized equivalently by simply starting from D-threonine. 

 
Scheme 37. Synthesis of α-bromolactone 102a starting from L-threonine (101). 

 

The cross-coupling of 102a with various arylzinc reagents of type 78 was performed (Table 3). Thus, 

4-anisylzinc chloride 78b efficiently led to the desired product 104a in 81% yield (dr = 99:1, 99% ee). 

Similarly, 4-trifluoromethoxyphenylzinc chloride 78c and the electron-poor trifluoromethyl 

substituted arylzinc reagent 78d underwent the coupling affording 104b and 104c (dr = 99:1, 99% ee) 

in 61-63% yield (entries 2-3). This C-C bond forming reaction also proceeded well with 

meta-substituted zinc organometallics, such as the TBS-protected phenol 78a and 3-thioanisylzinc 

chloride (78e). The corresponding arylated esters 104d and 104e were obtained in 61-69% yield 

(dr = 99:1, 99% ee, entries 4-5). Methoxynaphthylzinc chloride 78f and benzodioxolylzinc chloride 78g 

stereoselectively arylated the α-bromolactone 102a, leading to the protected β-hydroxy esters 104f 

and 104g in 73-82% yield (dr = 99:1, 99% ee, entries 6-7). Interestingly, the zinc organometallics 78i 

and 78j bearing an ester function in meta- and para-position were satisfactory coupling partners, 

leading to 104h and 104i in 52-76% yield (entry 8). However, an ester substituent in para-position 

resulted in the loss of stereoselectivity (dr = 50:50). In contrast, the meta-carbethoxyphenylzinc 

chloride 78j gave the product 104i in excellent diastereomeric ratio (dr = 99:1). This can be explained 

by a subsequent base-catalyzed epimerization of the very acidic proton in α-position to the aryl 

substituent in 104h. 

                                                             
114 J. Zimmermann, D. Seebach Helv. Chim. Acta 1987, 70, 1104-1114. 
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Table 14. Stereoselective cobalt-catalyzed cross-couplings of arylzinc reagents of type 78 with α-bromolactone 102a 

leading to protected β-hydroxy esters of type 104. 

 
aIsolated yield of analytically pure products; bdr = 50:50. 
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4.4 Total Synthesis of the Artificial Rotenoid Derivative MOM-Protected 

Munduserol 

Many natural and unnatural rotenoids, such as tephrosin (105), munduserol (106), rotenone (107), 

deguelin (108) and various others show considerable antiplasmodial or cytotoxic activities (Scheme 

38).115 These bioactive compounds were the target of several total syntheses.116  

 
Scheme 38. Various rotenoids 105-108, bearing the same core scaffold. 

 

The core scaffold consists of four fused six-membered rings A, B, C, D , such as the protected 

munduserol derivative 109, which was chosen as the starting point for the retrosynthetic analysis 

(Scheme 39).  

 
Scheme 39. Retrosynthetic analysis of protected munduserol derivative 109.  

                                                             
115 a) Fang, N.; Casida, J. E. Proc. Natl. Acad. Sci. 1998, 95, 3380; b) Fang, N.; Casida, J. E. J. Agric. Food. Chem. 
1999, 47, 2130-2136; c) Yenesew, A.; Derese, S.; Midiwo, J. O.; Oketch-Rabah, H. A.; Lisgarten, J.; Palmer, R.; 
Heydenreich, M.; Peter, M. G.; Akala, H.; Wangui, J.; Liyala, P.; Waters, N. C. Phytochemistry 2003, 64, 773-779; 
d) Ahmed-Belkacem, A.; Macalou, S.; Borrelli, F.; Capasso, R.; Fattorusso, E.; Taglialatela-Scafati, O.; Di Pietro, A. 
J. Med. Chem. 2007, 50, 1933-1938; e) Varughese, R. S.; Lam, W. S.-T.; Marican, A. A. b. H.; Viganeshwari, S. H.; 
Bhave, A. S.; Syn, N. L.; Wang, J.; Wong, A. L.-A.; Kumar, A. P.; Lobie, P. E.; Lee, S. C.; Sethi, G.; Goh, B. C.; Wang, 
L. Cancer 2019, 125, 1789-1798. 
116 a) Nakatani, N.; Matsui, M. Agric. Biol. Chem. 1968, 32, 769-772; b) Granados-Covarrubias, E. H.; Maldonado, 
L. A. J. Org. Chem. 2009, 74, 5097-5099; c) Nayak, M.; Kim, I. J. Org. Chem. 2015, 80, 11460-11467; d) Georgiou, 
K. H.; Pelly, S. C.; de Koning, C. B. Tetrahedron 2017, 73, 853-858; e) Nakamura, K.; Ohmori, K.; Suzuki, K. Angew. 
Chem., Int. Ed. 2017, 56, 182-187; f) Matsuoka, S.; Nakamura, K.; Ohmori, K.; Suzuki, K. Synthesis 2019, 51, 1139-
1156; g) Perveen, S.; Yang, S.; Meng, M.; Xu, W.; Zhang, G.; Fang, X. Commun. Chem. 2019, 2, 8. 
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The B-ring could be formed via a intramolecular nucleophilic aromatic substitution starting from 

fluoro-substituted secondary alcohol 110. The C-ring could be closed by a Mitsunobu-reaction of the 

aromatic hydroxy group and the primary alcohol in structure 111. The chiral alcohol 111 could be 

accessed by opening the optically pure lactone 100h with a 2-fluoro-4-anisylorganometallic 112.  

Thus , the arylation of α-bromolactone 95a with arylzinc chloride 78h under cobalt-catalysis gave 100h 

on gram scale in 94% yield and optically pure (dr = 99:1, 99% ee, Scheme 40). The arylation product 

100h was reduced by diisobutylaluminum hydride, to furnish lactol 113. The addition of 

2-fluoro-4-methoxyphenylmagnesium bromide (112a) led to the ring opening product 114 in 

84% yield over two steps. Interestingly, 114 was formed stereoselectively, leading to only a single 

diastereomer.117 Palladium catalyzed hydrogenolysis118 removed the benzyl protecting group on the 

dimethoxy substituted aryl moiety, affording 115 in 88% yield. The Mitsunobu-reaction using 

diisopropyl azodicarboxylate and triphenylphosphine, allowed to close the first cycle between the 

phenol function and the primary alcohol, which led to 116 in 84% yield. Protection of the secondary 

alcohol with chloromethyl methyl ether and deprotection of the TBS-function by tetrabutylammonium 

fluoride furnished the secondary alcohol 117 in 54% yield. A combination of sodium hydride and 

15-crown-5 ether under heating allowed the intramolecular nucleophilic aromatic substitution and 

furnished MOM-protected munduserol 118 in 28% yield (dr = 99:1).  

  

                                                             
117 For discussions of asymmetric induction in the addition to α,β-substituted aldehydes, see: a) Mengel, A.; 
Reiser, O. Chem. Rev. 1999, 99, 1191-1224; b) Evans, D. A.; Cee, V. J.; Siska, S. J. J. Am. Chem. Soc. 2006, 128, 
9433-9441. The stereochemistry was approved by NOE-NMR experiments of the final ring-closed product MOM-
protected munduserol derivative (118). 
118 Hartung, W. H.; Simonoff, R., Hydrogenolysis of Benzyl Groups Attached to Oxygen, Nitrogen, or Sulfur. in 
Organic Reactions, 1953; pp 263-326. 
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Scheme 40. Total synthesis of MOM-protected munduserol (118) 
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5 Summary 

This work focused on the development of new transition metal-catalyzed cross-coupling reactions. A 

special interest was the utilization of easily accessible starting materials, stable and functional group 

tolerant organometallics from highly abundant metals and the substitution of expensive palladium 

catalysts. These requirements were the key features to explore efficient and economic carbon-carbon 

bond formations as valuable alternatives in the toolbox of organic chemistry. 

First, a practical Ni-catalyzed cross-coupling of unsaturated zinc pivalates with unsaturated triflates 

and nonaflates was developed (Scheme 41). These electrophilic reagents can be easily accessed from 

the corresponding phenols or enolates. Using (hetero)aryl- and alkynylzinc pivalates as organometallic 

coupling partners provided the desired products in 66-97% yield. Furthermore, the beneficial effect of 

organozinc pivalates in comparison to organozinc chlorides was demonstrated, which led to 

dramatically increased reaction rates. Thus, the coupling products were obtained in significantly 

higher yields. Also, the catalyst loading of cheap and commercially available NiCl2(PPh3)2 was only 0.5 

mol%. 

 
Scheme 41. Nickel-catalyzed cross-coupling of organozinc pivalates with triflates and nonaflates. 

 

The second part focused on the formation of sp2-sp3-carbon bonds by using diarylmanganese reagents 

and secondary alkyl iodides as coupling partners (Scheme 42). The THF-soluble CoCl2·2LiCl as catalyst 

(20 mol%) led to the alkylated aryls in 59-92% yield under mild conditions (THF, -20 °C to rt). 

Remarkably, no rearrangement of the secondary alkyl group was observed. Also, this cross-coupling 

was applied to the preparation of a key intermediate for the synthesis of (±)-preclamol. 
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Scheme 42. Cobalt-catalyzed cross-coupling of diarylmanganese reagents with secondary alkyl iodides. 

 

The scope of this reaction was further extended by using FeCl2 as the catalyst (Scheme 43). The 

formation of sp2-sp3-bonds between various alkyl halides and di(hetero)arylmanganese reagents was 

performed. The alkylated products were obtained in 43-88% yield under mild reaction conditions 

(THF, -20 °C to rt). Additionally, organometallic reagents prepared via directed manganation using 

TMP2Mn·2MgCl2·4LiCl successfully underwent this cross-coupling. High diastereoselectivities were 

obtained (dr up to 99:1) and rearrangements of secondary alkyl halides to the corresponding 

unbranched products were not observed. 

 
Scheme 43. Iron-catalyzed cross-coupling of di(hetero)arylmanganese reagents with secondary alkyl halides. 
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The fourth project focused on the stereoselective carbon-carbon bond formation between arylzinc 

chlorides and chiral α-bromolactones and related derivatives under cobalt-catalysis (Scheme 44). The 

optically enriched starting materials with substituents in the β-position allowed a highly 

trans-diastereoselective coupling reaction. This led to the chiral arylation products in 52-96% and in 

excellent stereoselectivity (dr = 99:1, 99% ee). In terms of cost efficiency, the cheap and commercially 

available catalytic system of CoCl2 and PPh3 was used.  

 
Scheme 44. Stereoselective cobalt-catalyzed cross-coupling of α-bromolactones and arylzinc chlorides. 

 

This cross-coupling reaction was used to prepare an arylated lactone as key intermediate for the 

stereoselective total synthesis of the artificial rotenoid derivative MOM-protected munduserol 

(Scheme 45).  

 
Scheme 45. Stereoselective preparation of MOM-protected munduserol starting from an arylated lactone. 
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1 General Considerations 

All reactions were performed in flame dried glassware with magnetic stirring under argon atmosphere 

using Schlenk technique. Syringes used to transfer solvents and reagents were purged with argon prior 

to use. Starting materials were purchased from Sigma Aldrich, TCI, Alfa Aesar, Acros, Apollo Scientific 

or Fluorochem and were used without further purification.  

1.1 Solvents 

CH2Cl2 was predried over CaCl2 and distilled from CaH2. 

DMF was refluxed over CaH2 (14 h), distilled from CaH2 and stored over 4 Å molecular sieves under 

argon atmosphere. 

DMPU was predried over CaH2 (4 h) and distilled (bp = 247 °C). 

NEt3 was dried over KOH and distilled. 

THF was continuously refluxed and distilled from sodium benzophenone ketyl under nitrogen and 

stored over 4 Å molecular sieves under argon atmosphere. 

TMEDA was predried over CaH2 (12 h) and distilled from sodium benzophenone ketyl under argon 

atmosphere. 

Toluene was continuously refluxed and distilled over sodium. 

Solvents for reaction workups and column chromatography were distilled prior to use 

1.2 Reagents 

iPrMgCl·LiCl was purchased as a 14% solution in THF from Albemarle (Höchst, Germany) and was 

titrated119 prior to use. 

EtMgBr 

A dry and argon-flushed 250 mL Schlenk-flask, equipped with a stirring bar and a septum, was charged 

with magnesium turnings (2.92 g, 120 mmol) in THF (90 mL). Bromoethane (10.8 g, 100 mmol) was 

added dropwise at 0 °C and the reaction mixture was shortly heated to reflux and again cooled to 0 °C. 

After stirring for 3 h and allowing to warm to rt, the dark-grey solution was titrated119 by using a 

stoichiometric amount of iodine (100 mg) in THF (2 mL) and a concentration of 1.03 M was determined.  

                                                             
119 Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 6040-6044. 
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Zn(OPiv)2 

Pivalic acid (20.4 g, 22.6 mL, 200 mmol) was placed in a dry and argon-flushed 500 mL three-necked 

round bottom flask, equipped with a magnetic stirring bar, a septum, and a pressure equalizer. The 

mixture was dissolved in dry THF (120 mL), cooled to 0 °C, and a solution of Et2Zn (13.0 g, 10.8 mL, 

105 mmol) in dry THF (120 mL) was added over a period of 30 min under vigorous stirring. Then, the 

ice-bath was removed and stirring was continued at 25 °C for one additional hour at which point 

bubbling was ceased (a thick slurry was formed). The solvent was removed in vacuo and the solid 

residue was dried for at least 4 h. Zn(OPiv)2 was obtained in quantitative yield, as a puffy amorphous 

white solid. 

nBuLi was purchased as a solution in hexane from Albemarle (Höchst, Germany) and was titrated prior 

to use. 

ZnCl2 solution in THF (1.0 M) 

ZnCl2 (40.9 g, 300 mmol) was placed in a dry and argon-flushed 500 mL Schlenk-flask and dried under 

high vacuum at 150 °C for 4 h. After cooling to 25 °C, anhydrous THF was added until a total volume 

of 300 mL was reached. The suspension was stirred overnight at 25 °C and after 12 h the salts had 

completely dissolved. The stirring was stopped and the clear solution was stored over 4 Å MS under 

argon upon use. 

MnCl2 solution in THF (1.0 M) 

A dry and argon-flushed 250 mL Schlenk-flask, equipped with a magnetic stirring bar and a rubber 

septum, was charged with anhydrous LiCl (140 mmol, 5.94 g) and heated to 150 °C under high vacuum 

for 5 h. After cooling to rt under vacuum, anhydrous MnCl2 (70.0 mmol, 8.81 g) was added under 

argon. The Schlenk-flask was further heated to 130 °C for 3 h under high vacuum, cooled to 25 °C and 

charged with dry THF (70 mL). The mixture was stirred for at least 24 h (covered with aluminum foil) 

at rt and the resulting reagent MnCl2·2LiCl (1 M in THF) was obtained as a yellow solution. 

CoCl2·2LiCl solution in THF (1.0 M) 

LiCl (8.5 g, 200 mmol) was placed in a Schlenk-flask and dried under high vacuum at 150 °C for 3 h. 

After cooling to 25 °C, anhydrous CoCl2 (13.0 g, 100 mmol) was added and the salts were further 

heated to 130 °C for 5 h under high vacuum. After cooling to 25 °C anhydrous THF (100 mL) was added. 

The mixture was vigorously stirred until all solids were dissolved and the reagent was obtained as a 

dark blue solution. 
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2,2,6,6-Tetramethylpiperidine (TMPH) was distilled from CaH2 under argon prior to use. 

TMPMgCl·LiCl 

A dry and argon flushed 250 mL Schlenk-flask was charged with iPrMgCl·LiCl (120 mmol, 100 mL, 1.2 M 

in THF). Freshly distilled 2,2,6,6-tetramethylpiperidine (TMPH; 126 mmol, 23.9 mL) was added 

dropwise at 25 °C and the mixture was stirred for 48 h. 

TMP2Mn·2MgCl2·4LiCl 

A dry and argon-flushed 500 mL Schlenk-flask, equipped with a magnetic stirring bar and a septum, 

was charged with freshly titrated TMPMgCl·LiCl (348 mL, 400 mmol) and cooled to 0 °C. Then, 

MnCl2·2LiCl (1 M in THF, 50 mL, 50 mmol) was added over a period of 5 min. The resulting mixture was 

stirred for 30 min at 0 °C, warmed to rt and stirred for another 3 h. The resulting solution of 

TMP2Mn·2MgCl2·4LiCl was concentrated in vacuo and was titrated prior to use at 0 °C with benzoic 

acid using 4-(phenylazo)diphenylamine as indicator. A concentration of 0.5 M in THF was obtained. 

1.3 Purification 

Thin layer chromatography (TLC) was performed using aluminum plates covered with SiO2 (Merck 60, 

F-254) and visualized either by UV detection or by staining with KMnO4 solution (1.5 g KMnO4, 10 g 

K2CO3, 1.25 mL 10% NaOH solution in 200 mL H2O). 

Flash column chromatography was performed using silica gel 60 (40 – 63 μm 230-400 mesh ASTM) 

from Merck. 

1.4 Analytical Data 

NMR spectra were recorded on Varian VXR 400S, Bruker Avance III HD 400 MHz and Bruker AMX 600 

instruments. Chemical shifts (δ) are reported in parts per million (ppm) relative to the residual solvent 

peak of CHCl3 (δH = 7.26, δC = 77.0) or benzene (δH = 7.16, δC = 128.1) respectively. For the 

characterization of the observed signal multiplicities the following abbreviations were used: s (singlet), 

d (doublet), t (triplet), q (quartet), quint (quintet), sept (septet), m (multiplet), br (broad signal). 

Mass spectra and high resolution mass spectra (HRMS) were recorded on a Finnigan MAT 95Q (EI) or 

a Thermo Finnigan LTQ FT instrument (ESI). Electron impact ionization (EI) was conducted with an 

electron energy of 70 eV. Electrospray ionization (ESI) was conducted with an IonMax ion-source 

equipped with an ESI head. It was performed with a voltage of 4 kV at the spray capillary tube, a 

heating filament temperature of 250 °C and a nitrogen flow of 25 units. 
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Gas Chromatography (GC, GC/MS) was performed with machines of the types Hewlett-Packard 6890 

or 5890 Series II (Hewlett Packard, 5% phenylmethylpolysiloxane; column length: 15 m, diameter: 0.25 

mm; film thickness: 0.25 µm). For the combination of gas chromatography with mass spectroscopic 

detection, a GC-MS from Hewlett Packard of type 6890/MSD 5973 was used. 

Chiral HPLC (cHPLC) was measured on a ShimazuHPLC Prominence with Daicel Chiracel columns.  

Optical Rotation values were recorded on an Anton Paar MCP 500 polarimeter. The specific rotation 

is calculated as follows:  

𝛼𝜆
𝜑
=
𝛼 · 100

𝑐 · 𝑑
 

Thereby, the wavelength λ is reported in nm and the measuring temperature ϕ in °C. α represents the 

recorded optical rotation, c the concentration of the analyte in 10 mg/mL and d the length of the 

cuvette in dm. Thus, the specific rotation is given in 10−1·deg·cm2·g−1. Usage of the sodium D line (λ = 

589 nm) is indicated by D instead of the wavelength in nm. The respective concentration as well as 

the solvent is reported at the relevant section of the experimental section. 

Infrared spectra (IR) were recorded from 4500 cm-1 to 650 cm-1 on a Perkin Elmer Spectrum BX-59343 

instrument. For detection a Smiths Detection Dura SamplIR II Diamond ATR sensor was used. The 

absorption bands (𝜈 ̃) are reported in wave numbers (cm-1). 

Melting points (m.p.) were measured using a Büchi B-540 apparatus and are uncorrected. 

Reactions were monitored by gas chromatography (GC and GC-MS) using an internal standard 

(undecane) or thin layer chromatography (TLC). Yields refer to isolated yields of compounds estimated 

to be >95% pure as determined by 1H NMR (25 °C) and capillary GC analysis.  
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2 Nickel-Catalyzed Cross-Coupling Reactions of Unsaturated Zinc Pivalates and 

Unsaturated Nonaflates and Triflates 

2.1 Typical Procedures 

Typical procedure 1 (TP1) for the preparation of (hetero)arylzinc pivalates by magnesium insertion 

and transmetalation with Zn(OPiv)2: 

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was 

charged with magnesium turnings (1.1 equiv), dry LiCl (1.1 equiv) and dry THF (1 M solution relating to 

the aryl halide). The aromatic halide (1.0 equiv) was added at 0 °C. The progress of the insertion 

reaction was monitored by GC-analysis of reaction aliquots quenched with I2. Upon completion of the 

insertion, the concentration of the Grignard reagent was determined by titration of I2. Solid Zn(OPiv)2 

(1.0 equiv) was placed in a dry and argon flushed Schlenk-tube equipped with a magnetic stirring bar 

and a septum, THF (2 M relating to Zn(OPiv)2) was added and cooled to 0 °C. The Grignard reagent (1.0 

equiv) was added, the solution was allowed to warm to rt and stirred for 1 h. Solvent evaporation 

affords the solid organozinc pivalate. 

 

Typical procedure 2 (TP2) for the preparation of (hetero)arylzinc pivalates by halogen/magnesium-

exchange and transmetalation with Zn(OPiv)2: 

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was 

charged with the aryl halide (1.0 equiv) and dry THF (1 M solution relating to the aryl halide). The 

mixture was cooled to the respective temperature, iPrMgCl·LiCl (1.1 equiv) was added dropwise and 

stirred for the indicated time. The progress of the exchange reaction was monitored by GC-analysis of 

reaction aliquots quenched with I2 (for aryl bromides) or H2O (for aryl iodides). Upon completion of 

the insertion, the concentration of the Grignard reagent was determined by titration of I2. Solid 

Zn(OPiv)2 (1.0 equiv) was placed in a dry and argon flushed Schlenk-tube equipped with a magnetic 

stirring bar and a septum, THF (2 M relating to Zn(OPiv)2) was added and cooled to 0 °C. The Grignard 

reagent (1.0 equiv) was added, the solution was allowed to warm to rt and stirred for 1 h. Solvent 

evaporation affords the solid organozinc pivalate. 

 

  



EXPERIMENTAL PART 

62 

Typical procedure 3 (TP3) for the preparation of alkynylzinc pivalates by metalation of alkynes using 

EtMgBr and transmetalation with Zn(OPiv)2: 

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was 

charged with the corresponding alkyne (1.0 equiv) and dry THF (2 M solution relating to the alkyne). 

EtMgBr (1.1 equiv) was added dropwise at rt and the mixture was stirred until a reaction aliquot 

quenched with I2 showed full conversion of the starting material. The progress of the metalation was 

monitored by GC-analysis of reaction aliquots quenched with I2 in THF. Upon completion, solid 

Zn(OPiv)2 (1.1 equiv) was added in one portion at 0 °C. The mixture was allowed to warm to rt and 

stirred for 1 h. Solvent evaporation affords the solid organozinc pivalate. 

 

Typical procedure 4 (TP4) for the preparation of (hetero)aryl triflates: 

A dry and argon flushed round-bottomed flask, equipped with a magnetic stirring bar and a septum, 

was charged with the (hetero)aromatic alcohol (30 mmol, 1.0 equiv), dissolved in NEt3 (2.0 equiv) and 

CH2Cl2 (50 mL). The mixture was cooled to 0 °C and trifluoromethanesulfonic anhydride (39 mmol, 1.3 

equiv) was added dropwise. The reaction was allowed to warm to rt and stirred for 16 h. Sat. aq. NH4Cl 

(25 mL) was added, the phases were separated and the aqueous phase was extracted with CH2Cl2 (3 x 

50 mL). The combined organic layers were dried over Na2SO4, the solvents were evaporated and the 

residue was subjected to column chromatography purification on silica yielding the respective triflate. 

 

Typical procedure 5 (TP5) for the preparation of (hetero)aryl nonaflates: 

A dry and argon flushed round-bottomed flask, equipped with a magnetic stirring bar and a septum, 

was charged with the (hetero)aromatic alcohol (30 mmol, 1.0 equiv) and DMAP (5%) and dissolved in 

NEt3 (1.3 equiv) and CH2Cl2 (50 mL). The mixture was cooled to 0 °C and perfluoro-1-butanesulfonyl 

fluoride (33 mmol, 1.1 equiv) was added dropwise. The reaction was allowed to warm to room 

temperature and stirred for 16 h. Sat. aq. NH4Cl (25 mL) was added, the phases were separated and 

the aqueous phase was extracted with CH2Cl2 (3 x 50 mL). The combined organic layers were dried 

over Na2SO4, the solvents were evaporated and the residue was subjected to column chromatography 

purification on silica yielding the respective nonaflate. 
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Typical procedure 6 (TP6) for the nickel-catalyzed cross-coupling of unsaturated zinc pivalates with 

unsaturated nonaflates and triflates 

A dry and argon-flushed 20 mL Schlenk-tube, equipped with a stirring bar and a septum, was charged 

with the respective (hetero)aryl or alkenyl triflate or nonaflate (1.0 mmol, 1.0 equiv) and a freshly 

prepared solution of NiCl2(PPh3)2 in THF (1.0 mL, 0.005 mmol, 0.5 mol%) was added. The solution was 

warmed to 40 °C and the (hetero)aryl or alkynylzinc pivalate dissolved in THF (1.5 mmol, 1.5 equiv, 

approx. 2 mL) was added under stirring. The reaction was monitored by GC-analysis (C11H24 was used 

as an internal standard). Upon consumption of the starting material, sat. aq. NH4Cl (5 mL) and EtOAc 

(5 mL) were added, the phases were separated and the aqueous phase was extracted with EtOAc (3 x 

20 mL). The combined organic layers were washed with sat. aq. KHCO3 (50 mL) and dried over Na2SO4. 

The solvents were evaporated and the residue was subjected to column chromatography purification 

on silica yielding the respective title compound.  
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2.2 Preparation of Starting Materials 

Ethyl 4-(((trifluoromethyl)sulfonyl)oxy)benzoate (72a) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.15 (d, J=8.8, 2H), 7.35 (d, J=8.8, 2H), 4.40 (q, J=7.1, 2H), 1.40 (t, 

J=7.1, 3H). 

Naphthalen-1-yl trifluoromethanesulfonate (72b) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.10 (d, J=8.3, 1H), 7.96 – 7.83 (m, 2H), 7.71 – 7.56 (m, 2H), 7.54 

– 7.44 (m, 2H). 

3-Cyanophenyl trifluoromethanesulfonate (72c) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.72 (d, J=7.7, 1H), 7.63 (t, J=8.0, 1H), 7.62 – 7.52 (m, 2H). 

4-Cyanophenyl trifluoromethanesulfonate (72d) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.84 – 7.76 (m, 2H), 7.46 – 7.39 (m, 2H). 

4-Cyano-3-fluorophenyl trifluoromethanesulfonate (72e) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.79 (dd, J=9.0, 6.9, 1H), 7.30 – 7.21 (m, 2H). 

  



EXPERIMENTAL PART 

65 

Dimethyl 5-(((trifluoromethyl)sulfonyl)oxy)isophthalate (72f) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.71 (s, 1H), 8.11 (s, 2H), 3.98 (s, 6H). 

Ethyl 4-(((nonafluorobutyl)sulfonyl)oxy)benzoate (72g) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.15 (d, J=8.8, 2H), 7.36 (d, J=8.6, 2H), 4.40 (q, J=7.1, 2H), 1.40 (t, 

J=7.1, 3H). 

4-Benzoylphenyl trifluoromethanesulfonate (72h) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.95 – 7.88 (m, 2H), 7.83 – 7.77 (m, 2H), 7.69 – 7.60 (m, 1H), 7.55 

– 7.48 (m, 2H), 7.44 – 7.38 (m, 2H). 

2-Oxo-2H-chromen-4-yl trifluoromethanesulfonate (72i) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.70 (t, J=7.7, 2H), 7.49 – 7.38 (m, 2H), 6.52 (s, 1H). 

3-Methylpyridin-2-yl trifluoromethanesulfonate (72j) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.20 (dd, J=4.8, 1.9, 1H), 7.77 – 7.64 (m, 1H), 7.28 (dd, J=7.5, 4.8, 

1H), 2.37 (s, 3H). 
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2-Methylquinolin-8-yl nonafluorobutane-1-sulfonate (72k) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.09 (d, J=8.5, 1H), 7.80 (dd, J=8.1, 1.3, 1H), 7.61 – 7.54 (m, 1H), 

7.48 (t, J=7.9, 1H), 7.39 (d, J=8.5, 1H), 2.80 (s, 3H). 

2,2-Diphenylvinyl nonafluorobutane-1-sulfonate (72l) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.36 – 7.25 (m, 6H), 7.22 – 7.15 (m, 4H), 7.02 (s, 1H). 

4-Methylquinolin-2-yl nonafluorobutane-1-sulfonate (72m)  

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.96 (t, J=9.3, 2H), 7.75 – 7.67 (m, 1H), 7.61 – 7.54 (m, 1H), 7.01 

(s, 1H), 2.70 (s, 3H). 

3-Cyanophenyl nonafluorobutane-1-sulfonate (72n) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.72 (dt, J=7.6, 1.4, 1H), 7.65 – 7.54 (m, 3H). 

(E)-4-Styrylphenyl trifluoromethanesulfonate (72o) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.62 – 7.56 (m, 2H), 7.56 – 7.51 (m, 2H), 7.44 – 7.36 (m, 2H), 7.35 

– 7.25 (m, 3H), 7.14 (d, J=16.5, 1H), 7.09 (d, J=16.5, 1H). 

  



EXPERIMENTAL PART 

67 

3-Cyano-4,6-dimethylpyridin-2-yl trifluoromethanesulfonate (72p) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.19 (s, 1H), 2.59 (s, 3H), 2.58 (s, 3H). 

Ethyl (E)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (72q)70 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 5.95 (s, 1H), 4.22 (q, J=7.1, 2H), 2.51 (s, 3H), 1.30 (t, J=7.1, 3H). 

Ethyl (Z)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (72r)70 

The product was synthesized according to the procedure reported in literature. 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 5.76 (s, 1H), 4.24 (q, J=7.1, 2H), 2.16 (s, 3H), 1.29 (t, J=7.1, 3H). 
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2.3 Nickel-Catalyzed Cross-Coupling Reactions of (Hetero)arylzinc and Alkynylzinc 

Pivalates with Aryl and Alkenyl Triflates and Nonaflates 

Ethyl 4'-methoxy-[1,1'-biphenyl]-4-carboxylate (73a) 

 

Triflate 71a as the electrophile: 

According to TP6, ethyl 4-(((trifluoromethyl)sulfonyl)oxy)benzoate (72a, 298 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (100:5) as an eluent to afford 73a as colorless 

crystals (86%, 220 mg, 0.86 mmol). 

Nonaflate 72g as the electrophile: 

According to TP6, ethyl 4-(((nonafluorobutyl)sulfonyl)oxy)benzoate (72g, 448 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (100:5) as an eluent to afford 73a as colorless 

crystals (81%, 208 mg, 0.81 mmol). 

m.p.: 104 – 106 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.12 – 8.05 (m, 2H), 7.65 – 7.60 (m, 2H), 7.60 – 7.55 (m, 2H), 7.04 

– 6.97 (m, 2H), 4.40 (q, J=7.1, 2H), 3.86 (s, 3H), 1.41 (t, J=7.1, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 166.7, 160.0, 145.2, 132.6, 130.2, 128.8, 128.5, 126.6, 114.5, 

61.0, 55.5, 14.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 2968, 2904, 2838, 1704, 1600, 1290, 1270, 1254, 1198, 1182, 1122, 1108, 1036, 

1024, 1012, 1000, 828, 770, 718, 698. 

MS (EI, 70 eV): m/z (%) = 256 (100), 228 (51), 213 (19), 212 (14), 211 (97), 185 (14), 183 (19), 168 (25), 

152 (16), 140 (17), 139 (34). 

HR-MS (EI, 70 eV): [C16H16O3]+•, calcd.: 256.1094; found: 265.1095. 
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1-(4-Methoxyphenyl)naphthalene (73b) 

 

According to TP6, naphthalen-1-yl trifluoromethanesulfonate (72b, 276 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (100:2) as an eluent to afford 73b as colorless 

crystals (87%, 205 mg, 0.87 mmol). 

m.p.: 117 – 118 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.98 – 7.89 (m, 2H), 7.89 – 7.83 (m, 1H), 7.57 – 7.48 (m, 2H), 7.48 

– 7.41 (m, 4H), 7.09 – 7.03 (m, 2H), 3.91 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 159.1, 140.1, 134.0, 133.3, 132.0, 131.2, 128.4, 127.5, 127.0, 

126.2, 126.0, 125.8, 125.5, 113.9, 55.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 1608, 1512, 1504, 1496, 1462, 1438, 1394, 1282, 1240, 1208, 1174, 1146, 1106, 

1030, 1018, 964, 840, 834, 802, 780. 

MS (EI, 70 eV): m/z (%) = 234 (100), 233 (13), 219 (35), 203 (21), 202 (10), 191 (34), 190 (32), 189 (62). 

HR-MS (EI, 70 eV): [C17H14O]+•, calcd.: 234.1039; found: 234.1038 

 

4'-Methoxy-[1,1'-biphenyl]-3-carbonitrile (73c) 

 

According to TP6, 3-cyanophenyl trifluoromethanesulfonate (72c, 251 mg, 1.0 mmol, 1.0 equiv) reacts 

with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:5) as an eluent to afford 73c as yellow oil (84%, 

176 mg, 0.84 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.83 – 7.79 (m, 1H), 7.79 – 7.74 (m, 1H), 7.60 – 7.55 (m, 1H), 7.54 

– 7.47 (m, 3H), 7.04 – 6.97 (m, 2H), 3.86 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 160.1, 142.1, 131.4, 131.1, 130.3, 130.1, 129.6, 128.3, 119.1, 

114.7, 113.0, 55.5. 
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FT-IR (ATR, cm-1): 𝜈̃ = 2936, 2838, 2228, 1608, 1516, 1478, 1464, 1434, 1296, 1268, 1246, 1180, 1048, 

1026, 830, 792, 686. 

MS (EI, 70 eV): m/z (%) = 209 (100), 195 (8), 194 (59), 166 (75), 140 (40), 139 (19), 113 (7). 

HR-MS (EI, 70 eV): [C14H11NO]+•, calcd.: 209.0835; found: 209.0833. 

 

4'-Methoxy-[1,1'-biphenyl]-4-carbonitrile (73d) 

 

According to TP6, 4-cyanophenyl trifluoromethanesulfonate (72d, 251 mg, 1.0 mmol, 1.0 equiv) reacts 

with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:5) as an eluent to afford 73d as colorless crystals 

(71%, 149 mg, 0.71 mmol). 

m.p.: 111 – 113 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.72 – 7.67 (m, 2H), 7.67 – 7.62 (m, 2H), 7.57 – 7.51 (m, 2H), 7.05 

– 6.98 (m, 2H), 3.87 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 160.4, 145.4, 132.7, 131.7, 128.5, 127.3, 119.2, 114.7, 110.3, 

55.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 2970, 2868, 2224, 1606, 1492, 1248, 1178, 1118, 1040, 1024, 844, 812. 

MS (EI, 70 eV): m/z (%) = 209 (100), 194 (50), 166 (66), 164 (9), 140 (38), 139 (14), 113 (7) 

HR-MS (EI, 70 eV): [C14H11NO]+•, calcd.: 209.0835; found: 209.0833. 
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3-Fluoro-4'-methoxy-[1,1'-biphenyl]-4-carbonitrile (73e) 

 

According to TP6, 4-cyano-3-fluorophenyl trifluoromethanesulfonate (72e, 269 mg, 1.0 mmol, 1.0 

equiv) reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73e as 

colorless crystals (66%, 149 mg, 0,66 mmol). 

m.p.: 153 – 154 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.6 (dd, J=8.1, 6.7, 1H), 7.6 – 7.5 (m, 2H), 7.4 (dd, J=8.1, 1.7, 1H), 

7.4 (dd, J=10.4, 1.6, 1H), 7.1 – 7.0 (m, 2H), 3.9 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 163.7 (d, J=258.1), 160.8, 148.3 (d, J=8.3), 133.8, 130.5 (d, J=2.1), 

128.5, 122.9 (d, J=3.1), 114.8, 114.4, 114.2 (d, J=20.2), 99.1 (d, J=15.7), 55.6. 

FT-IR (ATR, cm-1): 𝜈̃ = 2970, 2868, 2224, 1606, 1492, 1248, 1178, 1118, 1040, 1024, 844, 812. 

MS (EI, 70 eV): m/z (%) = 227 (100), 212 (39), 185 (8), 184 (66), 158 (39), 157 (8). 

HR-MS (EI, 70 eV): [C14H10FNO]+•, calcd.: 227.0741; found: 227.0738. 

 

Dimethyl 4'-methoxy-[1,1'-biphenyl]-3,5-dicarboxylate (73f) 

 

According to TP6, dimethyl 5-(((trifluoromethyl)sulfonyl)oxy)isophthalate (72f, 342 mg, 1.0 mmol, 1.0 

equiv) reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73f as 

colorless crystals (87%, 262 mg, 0.87 mmol). 

m.p.: 90 – 92°C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.58 (t, J=1.6, 1H), 8.40 (d, J=1.6, 2H), 7.62 – 7.56 (m, 2H), 7.02 – 

6.97 (m, 2H), 3.96 (s, 6H), 3.85 (s, 3H). 



EXPERIMENTAL PART 

72 

13C-NMR (101 MHz, CDCl3, ppm): δ = 166.4, 160.0, 141.6, 131.8, 131.5, 131.2, 128.8, 128.3, 114.6, 

55.5, 52.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 2954, 2838, 1732, 1716, 1608, 1428, 1338, 1234, 1182, 1130, 1106, 1070, 1028, 

998, 970, 830, 754, 726, 718. 

MS (EI, 70 eV): m/z (%) = 300 (100), 285 (14), 269 (43), 257 (11), 241 (20), 226 (23), 139 (15). 

HR-MS (EI, 70 eV): [C17H16O5]+•, calcd.: 300.0992; found: 300.0991. 

 

(4'-Methoxy-[1,1'-biphenyl]-4-yl)(phenyl)methanone (73g) 

 

According to TP6, 4-benzoylphenyl trifluoromethanesulfonate (72h, 330 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73g as yellow 

crystals (66%, 190 mg, 0.66 mmol). 

m.p.: 168 – 170 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.91 – 7.86 (m, 2H), 7.86 – 7.81 (m, 2H), 7.70 – 7.65 (m, 2H), 7.63 

– 7.56 (m, 3H), 7.54 – 7.47 (m, 2H), 7.06 – 6.98 (m, 2H), 3.87 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 196.5, 160.0, 145.0, 138.0, 135.8, 132.5, 132.4, 130.9, 130.1, 

128.5, 128.4, 126.5, 114.6, 55.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 1646, 1594, 1252, 1200, 1180, 1032, 826, 792, 748, 692, 664. 

MS (EI, 70 eV): m/z (%) = 289 (17), 288 (75), 212 (16), 211 (100), 183 (17), 168 (19), 152 (12), 140 (13), 

139 (26), 77 (10). 

HR-MS (EI, 70 eV): [C20H16O2]+•, calcd.: 288.1145; found: 288.1140. 
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4-(4-Methoxyphenyl)-2H-chromen-2-one (73h) 

 

According to TP6, 2-oxo-2H-chromen-4-yl trifluoromethanesulfonate (72i, 294 mg, 1.0 mmol, 1.0 

equiv) reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73h as 

yellowish crystals (95%, 239 mg, 0.95 mmol). 

m.p.: 130 – 132°C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.58 – 7.49 (m, 2H), 7.44 – 7.35 (m, 3H), 7.26 – 7.18 (m, 1H), 7.07 

– 7.00 (m, 2H), 6.32 (s, 1H), 3.88 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 160.9, 160.9, 155.4, 154.3, 131.9, 130.0, 127.5, 127.1, 124.2, 

119.2, 117.4, 114.7, 114.4, 55.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 3072, 2954, 2930, 2838, 1724, 1682, 1604, 1506, 1450, 1442, 1366, 1254, 1242, 

1184, 1176, 1140, 1112, 1028, 928, 886, 830, 772, 752, 710. 

MS (EI, 70 eV): m/z (%) = 252 (100), 251 (21), 225 (16), 224(98), 221 (11), 210 (11), 209 (75), 181 (34), 

153 (16), 152 (50). 

HR-MS (EI, 70 eV): [C16H12O3]+•, calcd.: 252.0781; found: 252.0781. 

 

2-(4-Methoxyphenyl)-3-methylpyridine (73i) 

 

According to TP6, 3-methylpyridin-2-yl trifluoromethanesulfonate (72j, 241 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (7:3) as an eluent to afford 73i as colorless oil 

(87%, 173 mg, 0.87 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.53 – 8.47 (m, 1H), 7.57 – 7.51 (m, 1H), 7.51 – 7.45 (m, 2H), 7.12 

(dd, J=7.6, 4.7, 1H), 7.02 – 6.94 (m, 2H), 3.84 (s, 3H), 2.36 (s, 3H). 
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13C-NMR (101 MHz, CDCl3, ppm): δ = 159.5, 158.4, 147.0, 138.6, 133.3, 130.7, 130.4, 121.8, 113.6, 

55.4, 20.3. 

FT-IR (ATR, cm-1): 𝜈̃ = 1608, 1578, 1513, 1460, 1446, 1440, 1421, 1303, 1294, 1244, 1174, 1118, 1108, 

1042, 1024, 1008, 993, 990, 836, 788, 772. 

MS (EI, 70 eV): m/z (%) = 199 (12), 198 (100), 183 (31), 155 (13), 154 (16). 

HR-MS (EI, 70 eV): [C13H12NO]+•, calcd.: 198.0912; found: 198.0912 [M+ -H]. 

 

8-(4-methoxyphenyl)-2-methylquinoline (73j) 

 

According to TP6, 2-methylquinolin-8-yl nonafluorobutane-1-sulfonate (72k, 441 mg, 1.0 mmol, 1.0 

equiv) reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (100:5) as an eluent to afford 73j as 

colorless solid (84%, 210 mg, 0.84 mmol). 

m.p.: 92 – 93°C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.09 (d, J=8.4, 1H), 7.84 – 7.76 (m, 2H), 7.74 (ddd, J=8.8, 7.6, 1.5, 

2H), 7.58 – 7.50 (m, 1H), 7.31 (d, J=8.4, 1H), 7.11 – 7.03 (m, 2H), 3.92 (s, 3H), 2.73 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 159.1, 158.6, 145.6, 139.5, 136.3, 132.2, 132.1, 130.0, 127.1, 

126.9, 125.5, 121.8, 113.4, 55.4, 25.9. 

FT-IR (ATR, cm-1): 𝜈̃ = 3014, 2960, 2922, 2839, 1606, 1568, 1507, 1497, 1459, 1452, 1442, 1430, 1331, 

1302, 1285, 1246, 1207, 1185, 1177, 1139, 1105, 1031, 1009, 980, 968, 840, 823, 816, 800, 785, 767. 

MS (EI, 70 eV): m/z (%) = 249 (37), 248 (100), 234 (24), 233 (28), 205 (18), 204 (18), 191 (8). 

HR-MS (EI, 70 eV): [C17H14NO]+•, calcd.: 248.1070; found: 248.1070 [M+ -H]. 
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(2-(4-Methoxyphenyl)ethene-1,1-diyl)dibenzene (73k) 

 

According to TP6, 2,2-diphenylvinyl nonafluorobutane-1-sulfonate (72l, 478 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane as an eluent to afford 73k as yellowish oil (73%, 

210 mg, 0.73 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.39 – 7.25 (m, 8H), 7.25 – 7.20 (m, 2H), 7.00 – 6.94 (m, 2H), 6.93 

(s, 1H), 6.72 – 6.63 (m, 2H), 3.76 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 158.5, 143.7, 140.8, 140.7, 130.9, 130.6, 130.2, 128.8, 128.3, 

127.8, 127.5, 127.4, 127.3, 113.6, 55.3. 

FT-IR (ATR, cm-1): 𝜈̃ = 3054, 3016, 2992, 2951, 2925, 2878, 2853, 2836, 1602, 1574, 1508, 1492, 1463, 

1454, 1441, 1415, 1370, 1299, 1248, 1221, 1177, 1152, 1143, 1113, 1079, 1073, 1034, 1009, 999, 943, 

877, 832, 814, 806, 780, 767, 752, 733, 714, 700, 690. 

MS (EI, 70 eV): m/z (%) = 287 (24), 286 (100), 165 (22). 

HR-MS (EI, 70 eV): [C21H18O]+•, calcd.: 286.1352; found: 286.1353. 

 

3-Fluoro-3',4',5'-trimethoxy-[1,1'-biphenyl]-4-carbonitrile (73l) 

 

According to TP6, 4-cyano-3-fluorophenyl trifluoromethanesulfonate (72e, 269 mg, 1.0 mmol, 1.0 

equiv) reacts with 71b (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (75:25) as an eluent to afford 73l as 

colorless crystals (85%, 243 mg, 0.85 mmol). 

m.p.: 130 – 132 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.66 (dd, J=8.1, 6.7, 1H), 7.44 (dd, J=8.1, 1.7, 1H), 7.39 (dd, J=10.2, 

1.6, 1H), 6.75 (s, 2H), 3.93 (s, 6H), 3.90 (s, 3H). 
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13C-NMR (101 MHz, CDCl3, ppm): δ = 163.5 (d, J=258.7), 154.0, 148.77 (d, J=8.2), 139.4, 133.9 (d, 

J=2.0), 133.8, 123.4 (d, J=3.2), 114.9 (d, J=20.3), 114.2, 104.7, 99.8 (d, J=15.7), 61.1, 56.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 2234, 2170, 1620, 1588, 1556, 1492, 1400, 1350, 1256, 1236, 1130, 998, 820, 

812, 766. 

MS (EI, 70 eV): m/z (%) = 287 (100), 272 (77), 244 (49), 229 (40), 214 (29), 212 (44), 201 (26), 184 (45), 

158 (99). 

HR-MS (EI, 70 eV): [C16H14FNO3]+•, calcd.: 287.0952; found: 287.0944. 

 

Ethyl 3',4',5'-trimethoxy-[1,1'-biphenyl]-4-carboxylate (73m) 

 

According to TP6, ethyl 4-(((trifluoromethyl)sulfonyl)oxy)benzoate (72a, 298 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71b (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73m as colorless oil 

(81%, 257 mg, 0.81 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.14 – 8.05 (m, 2H), 7.64 – 7.58 (m, 2H), 6.81 (s, 2H), 4.40 (q, 

J=7.1, 2H), 3.94 (s, 6H), 3.90 (s, 3H), 1.42 (t, J=7.1, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 166.6, 153.7, 145.7, 138.5, 136.1, 130.2, 129.4, 127.1, 104.8, 

61.1, 61.1, 56.4, 14.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 2938, 1710, 1588, 1344, 1272, 1242, 1124, 1102, 1078, 1004, 830, 770, 732, 704. 

MS (EI, 70 eV): m/z (%) = 316 (100) 301 (88), (373 (24), 245 (19), 241 (15), 185 (23), 169 (14), 159 (11). 

HR-MS (EI, 70 eV): [C18H20O5]+•, calcd.: 316.1305; found: 316.1300. 
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3-(Benzo[d][1,3]dioxol-5-yl)benzonitrile (73n) 

 

According to TP6, 3-cyanophenyl trifluoromethanesulfonate (72c, 251 mg, 1.0 mmol, 1.0 equiv) reacts 

with 71c (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73n as colorless crystals. 

(89%, 198 mg, 0.89 mmol). 

m.p.: 101 – 103°C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.77 (ddd, J=2.1, 1.6, 0.6, 1H), 7.72 (ddd, J=7.8, 1.9, 1.3, 1H), 7.58 

(dt, J=7.7, 1.3, 1H), 7.50 (td, J=7.8, 0.6, 1H), 7.04 – 7.00 (m, 2H), 6.91 – 6.87 (m, 1H), 6.02 (s, 2H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 148.6, 148.1, 142.2, 133.2, 131.2, 130.4, 130.4, 129.6, 121.0, 

118.9, 113.0, 108.9, 107.5, 101.6. 

FT-IR (ATR, cm-1): 𝜈̃ = 2235, 1506, 1477, 1453, 1410, 1341, 1274, 1254, 1236, 1232, 1176, 1111, 1035, 

934, 914, 908, 900, 847, 815, 802, 786. 

MS (EI, 70 eV): m/z (%) = 223 (89), 222 (100), 166 (14), 164 (39), 138 (12), 137 (13). 

HR-MS (EI, 70 eV): [C14H9NO2]+•, calcd.: 223.0628 ; found: 223.0625. 

 

2-(Benzo[d][1,3]dioxol-5-yl)-3-methylpyridine (73o) 

 

According to TP6, 2,2-diphenylvinyl nonafluorobutane-1-sulfonate (72j, 241 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71c (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (7:3) as an eluent to afford 73o as yellow oil 

(85%, 181 mg, 0.85 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.50 (dd, J=4.8, 1.7, 1H), 7.59 – 7.52 (m, 1H), 7.19 – 7.12 (m, 1H), 

7.06 – 6.99 (m, 2H), 6.90 (d, J=8.0, 1H), 6.00 (s, 2H), 2.37 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 158.2, 147.5, 147.4, 147.0, 138.6, 134.8, 130.8, 122.9, 122.0, 

109.7, 108.1, 101.2, 20.3. 
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MS (EI, 70 eV): m/z (%) = 212 (100), 182 (10), 154 (35). 

HR-MS (EI, 70 eV): [C13H10NO2]+•, calcd.: 212.0706; found: 212.0705 [M+ -H]. 

 

4'-(Trifluoromethoxy)-[1,1'-biphenyl]-4-carbonitrile (73p) 

 

According to TP6, 4-cyanophenyl trifluoromethanesulfonate (72d, 251 mg, 1.0 mmol, 1.0 equiv) reacts 

with 71d (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:7) as an eluent to afford 73p as colorless solid 

(83%, 217 mg, 0.83 mmol). 

m.p.: 50 – 52°C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.76 – 7.71 (m, 2H), 7.69 – 7.64 (m, 2H), 7.63 – 7.57 (m, 2H), 7.36 

– 7.29 (m, 2H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 149.7 (q, J=1.7), 144.3, 138.0, 132.8, 128.8, 127.8, 121.6, 120.6 

(q, J=257.7), 118.8, 111.6. 

FT-IR (ATR, cm-1): 𝜈̃ = 2228, 1606, 1492, 1304, 1290, 1256, 1208, 1166, 1150, 1108, 1022, 1006, 920, 

864, 834, 808, 662. 

MS (EI, 70 eV): m/z (%) = 263 (100), 194 (39), 166 (69), 140 (37), 139 (15), 113 (6). 

HR-MS (EI, 70 eV): [C14H8F3NO]+•, calcd.: 263.0552; found: 263.0552. 

 

4-Methyl-2-(4-(trifluoromethyl)phenyl)quinoline (73q) 

 

According to TP6, 4-methylquinolin-2-yl nonafluorobutane-1-sulfonate (72m, 441 mg, 1.0 mmol, 1.0 

equiv) reacts with 71e (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73q as 

yellow oil (83%, 238 mg, 0.83 mmol). 
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1H-NMR (400 MHz, CDCl3, ppm): δ = 8.27 (d, J=8.1, 2H), 8.18 (d, J=8.4, 1H), 8.02 (d, J=8.3, 1H), 7.82 – 

7.68 (m, 4H), 7.58 (t, J=7.6, 1H), 2.79 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 155.5, 148.3, 145.5, 143.3 (d, J=1.2), 131.1 (q, J=32.5), 130.6, 

129.8, 127.9, 127.6, 126.7, 125.8 (q, J=3.8), 124.4 (q, J=272.1), 123.8, 119.7, 19.2. 

FT-IR (ATR, cm-1): 𝜈̃ = 1616, 1598, 1551, 1505, 1449, 1418, 1322, 1241, 1234, 1165, 1157, 1143, 1137, 

1108, 1077, 1063, 1033, 1015, 951, 905, 878, 866, 841, 787, 768, 758. 

MS (EI, 70 eV): m/z (%) = 287 (100), 286 (33), 273 (14), 272 (88), 218 (17), 217 (21), 216 (11). 

HR-MS (EI, 70 eV): [C17H12F3N]+•, calcd.: 287.0916; found: 287.0912. 

 

4'-(Trifluoromethyl)-[1,1'-biphenyl]-3-carbonitrile (73r) 

 

According to TP6, 3-cyanophenyl nonafluorobutane-1-sulfonate (72n, 401 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71e (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73r as colorless 

crystals. (91%, 225 mg, 0.91 mmol). 

m.p.: 51 – 53°C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.86 (t, J=1.5, 1H), 7.83 (dt, J=7.8, 1.5, 1H), 7.77 – 7.70 (m, 2H), 

7.72 – 7.63 (m, 3H), 7.59 (t, J=7.8, 1H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 142.4, 141.0, 131.7, 130.9, 130.5 (q, J=32.7), 130.0, 127.5, 126.2 

(q, J=3.8), 124.1 (q, J=272.1), 118.6, 113.4. 

FT-IR (ATR, cm-1): 𝜈̃ = 3072, 2924, 2855, 2231, 1617, 1573, 1480, 1396, 1324, 1165, 1122, 1113, 1070, 

1043, 1017, 851, 840, 797. 

MS (EI, 70 eV): m/z (%) = 247 (100), 228 (11), 228 (9), 197 (10), 177 (12). 

HR-MS (EI, 70 eV): [C14H8F3N]+•, calcd.: 247.0603; found: 247.0600. 

  



EXPERIMENTAL PART 

80 

(E)-3-Fluoro-4'-styryl-[1,1'-biphenyl]-4-carbonitrile (73s) 

 

According to TP6, (E)-4-styrylphenyl trifluoromethanesulfonate (72o, 328 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71f (1.5 mmol, 1.5 equiv) prepared according to TP2. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73s as colorless 

solid (71%, 212 mg, 0.71 mmol). 

m.p.: 204 – 206 °C 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.68 (dd, J=8.1, 6.7, 1H), 7.65 – 7.57 (m, 4H), 7.57 – 7.53 (m, 2H), 

7.51 (dd, J=8.1, 1.7, 1H), 7.45 (dd, J=10.3, 1.6, 1H), 7.43 – 7.36 (m, 2H), 7.33 – 7.27 (m, 1H), 7.21 (d, 

J=16.3, 1H), 7.14 (d, J=16.4, 1H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 163.6 (d, J=258.5), 148.1 (d, J=8.1), 138.6, 137.0, 136.9 (d, J=2.1), 

133.9, 130.3, 128.9, 128.2, 127.6, 127.4, 126.8, 123.2 (d, J=3.2), 114.6, 114.4, 114.3, 99.8 (d, J=15.7). 

FT-IR (ATR, cm-1): 𝜈̃ = 3079, 3022, 2927, 2848, 2231, 1615, 1600, 1575, 1570, 1552, 1487, 1449, 1429, 

1404, 1307, 1262, 1213, 1199, 1182, 1118, 1073, 969, 964, 952, 901, 881, 869, 815, 761. 

MS (EI, 70 eV): m/z (%) = 299 (24), 298 (10), 281 (23), 225 (19), 209 (10), 208 (13), 207 (100), 191 (21), 

178 (11), 165 (13).  

HR-MS (EI, 70 eV): [C21H14FN]+•, calcd.: 299.1105; found: 299.1106. 
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4-(Thiophen-3-yl)-2H-chromen-2-one (73t) 

 

According to TP6, 2-oxo-2H-chromen-4-yl trifluoromethanesulfonate (72i, 294 mg, 1.0 mmol, 1.0 

equiv) reacts with 71g (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73t as 

yellow solid (84%, 192 mg, 0.84 mmol). 

m.p.: 84 – 86 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.70 (dd, J=8.0, 1.6, 1H), 7.61 – 7.49 (m, 3H), 7.40 (d, J=8.3, 1H), 

7.32 – 7.23 (m, 2H), 6.44 (s, 1H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 161.0, 154.3, 150.4, 135.9, 132.1, 127.9, 127.2, 126.8, 126.3, 

124.4, 119.0, 117.5, 114.8. 

FT-IR (ATR, cm-1): 𝜈̃ = 3089, 3078, 1711, 1603, 1560, 1485, 1444, 1413, 1410, 1390, 1385, 1340, 1322, 

1274, 1255, 1246, 1207, 1176, 1151, 1140, 1112, 948, 935, 857, 828, 813, 771, 761, 750, 742, 723, 

707, 666. 

MS (EI, 70 eV): m/z (%) = 228 (58), 201 (12), 200 (100), 172 (19), 172 (11), 171 (93). 

HR-MS (EI, 70 eV): [C13H8O2S]+•, calcd.: 228.0240; found: 228.0236. 

 

1-Methyl-5-(3-methylpyridin-2-yl)-1H-indole (73u) 

 

According to TP6, 3-methylpyridin-2-yl trifluoromethanesulfonate (72j, 241 mg, 1.0 mmol, 1.0 equiv) 

reacts with 71h (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (7:3) as an eluent to afford 73u as yellow oil 

(86%, 192 mg, 0.86 mmol). 
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1H-NMR (400 MHz, CDCl3, ppm): δ = 8.56 (d, J=3.9, 1H), 7.83 – 7.79 (m, 1H), 7.60 – 7.53 (m, 1H), 7.45 

(dd, J=8.5, 1.6, 1H), 7.39 (d, J=8.5, 1H), 7.14 (dd, J=7.6, 4.8, 1H), 7.08 (d, J=3.1, 1H), 6.55 (d, J=3.1, 1H), 

3.80 (s, 3H), 2.41 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 160.0, 146.8, 138.4, 136.4, 132.0, 130.9, 129.4, 128.2, 123.0, 

121.6, 121.4, 108.8, 101.5, 32.9, 20.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 3046, 2946, 2923, 2817, 1714, 1679, 1616, 1581, 1571, 1563, 1512, 1493, 1458, 

1438, 1415, 1378, 1360, 1332, 1297, 1270, 1242, 1222, 1191, 1172, 1151, 1115, 1103, 1079, 1064, 

1032, 1006, 992, 887, 788, 760, 747, 718, 660. 

MS (EI, 70 eV): m/z (%) = 222 (21), 221 (100), 220 (12), 206 (19), 205 (14), 103 (6). 

HR-MS (EI, 70 eV): [C15H13N2]+•, calcd.: 221.1073; found: 221.1070 [M+ -H]. 

 

4,6-Dimethyl-2-(1-methyl-1H-indol-5-yl)nicotinonitrile (73v) 

 

According to TP6, 3-cyano-4,6-dimethylpyridin-2-yl trifluoromethanesulfonate (72p, 280 mg, 1.0 

mmol, 1.0 equiv) reacts with 71h (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product 

was purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 73v 

as colorless crystals (82%, 215 mg, 0.82 mmol). 

m.p.: 170 – 172 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.20 – 8.15 (m, 1H), 7.76 (dd, J=8.6, 1.8, 1H), 7.42 (d, J=8.6, 1H), 

7.09 (d, J=3.1, 1H), 7.04 (s, 1H), 6.58 (dd, J=3.1, 0.8, 1H), 3.82 (s, 3H), 2.64 (s, 3H), 2.58 – 2.56 (m, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 162.7, 161.5, 152.4, 137.6, 129.9, 129.4, 128.6, 122.7, 122.4, 

121.8, 117.8, 109.3, 105.5, 102.3, 33.1, 25.1, 20.8. 

FT-IR (ATR, cm-1): 𝜈̃ = 3084, 2218, 1584, 1544, 1516, 1446, 1428, 1382, 1340, 1326, 1284, 1246, 1092, 

882, 866, 812, 780, 762, 734, 726. 

MS (EI, 70 eV): m/z (%) = 262 (12), 261 (69), 260 (100), 245 (21). 

HR-MS (EI, 70 eV): [C17H15N3]+•, calcd.: 261.1260; found: 261.1261.  
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Ethyl (E)-3-(4-methoxyphenyl)but-2-enoate (73w) 

 

According to TP6, ethyl (E)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (72q, 262 mg, 1.0 mmol, 1.0 

equiv) reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (100:5) as an eluent to afford 73w 

as colorless oil (89%, 195 mg, 0.89 mmol). 

The E-isomer was verified by NOESY NMR. Z/E > 1/99. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.48 – 7.41 (m, 2H), 6.93 – 6.86 (m, 2H), 6.11 (q, J=1.3, 1H), 4.21 

(q, J=7.1, 2H), 3.82 (s, 3H), 2.56 (d, J=1.3, 3H), 1.31 (t, J=7.1, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 167.2, 160.5, 155.0, 134.5, 127.8, 115.5, 113.9, 59.8, 55.4, 17.8, 

14.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 2980, 2936, 2838, 1706, 1626, 1602, 1574, 1512, 1462, 1440, 1366, 1344, 1288, 

1274, 1250, 1152, 1096, 1080, 1030, 872, 828, 808. 

MS (EI, 70 eV): m/z (%) = 220 (54), 175 (82), 174 (66), 148 (100), 147 (24), 146 (31), 133 (19), 131 (22), 

115 (21), 91 (29). 

HR-MS (EI, 70 eV): [C13H16O3]+•, calcd.: 220.1094; found: 220.1093. 

 

Ethyl (Z)-3-(4-methoxyphenyl)but-2-enoate (73x) 

 

According to TP6, ethyl (Z)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (72r, 262 mg, 1.0 mmol, 1.0 

equiv) reacts with 71a (1.5 mmol, 1.5 equiv) prepared according to TP1. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (100:7) as an eluent to afford 73x 

as yellowish oil (86%, 189 mg, 0.86 mmol). 

The Z-isomer was verified by NOESY NMR. Z/E > 99/1. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.22 – 7.16 (m, 2H), 6.91 – 6.84 (m, 2H), 5.87 (q, J=1.5, 1H), 4.03 

(q, J=7.1, 2H), 3.82 (s, 3H), 2.17 (d, J=1.4, 3H), 1.14 (t, J=7.1, 3H). 
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13C-NMR (101 MHz, CDCl3, ppm): δ = 166.3, 159.5, 155.0, 132.8, 128.7, 117.2, 113.4, 59.8, 55.4, 27.2, 

14.2. 

FT-IR (ATR, cm-1): 𝜈̃ = 2978, 2937, 2906, 2836, 2357, 1717, 1700, 1675, 1652, 1635, 1606, 1575, 1510, 

1464, 1456, 1442, 1391, 1387, 1375, 1355, 1290, 1246, 1227, 1155, 1112, 1095, 1080, 1031, 955, 854, 

829, 806. 

MS (EI, 70 eV): m/z (%) = 220 (73), 191 (15), 176 (11), 175 (97), 174 (71), 148 (100), 147 (23), 146 (31), 

133 (19), 132 (11), 131 (24), 103 (15), 91 (27). 

HR-MS (EI, 70 eV): [C13H16O3]+•, calcd.: 220.1094; found: 220.1092. 

 

4-((Triisopropylsilyl)ethynyl)-2H-chromen-2-one (82a) 

 

According to TP6, 2-oxo-2H-chromen-4-yl trifluoromethanesulfonate (72i, 294 mg, 1.0 mmol, 1.0 

equiv) reacts with 81a (1.5 mmol, 1.5 equiv) prepared according to TP3. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (100:5) as an eluent to afford 82a 

as colorless solid. (97%, 316 mg, 0.97 mmol). 

m.p.: 58 – 60 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.88 (dd, J=8.3, 1.6, 1H), 7.55 (ddd, J=9.1, 7.4, 1.6, 1H), 7.33 (t, 

J=7.4, 2H), 6.58 (s, 1H), 1.27 – 1.11 (m, 21H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 160.3, 153.7, 137.2, 132.3, 126.7, 124.6, 119.5, 118.5, 117.1, 

106.8, 99.6, 18.7, 11.3. 

FT-IR (ATR, cm-1): 𝜈̃ = 2942, 2891, 2864, 1751, 1727, 1603, 1555, 1485, 1461, 1449, 1361, 1322, 1274, 

1249, 1210, 1176, 1146, 1129, 1072, 1059, 1031, 1018, 996, 928, 881, 856, 763, 749, 697, 675, 662. 

MS (EI, 70 eV): m/z (%) = 301 (40), 283 (85), 255 (51), 245 (91), 231 (70), 227 (100), 213 (88), 161 (70). 

HR-MS (EI, 70 eV): [C20H26O2Si]+•, calcd.: 326.1697; found: 326.1692. 
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4-(Phenylethynyl)-2H-chromen-2-one (82b) 

 

According to TP6, 2-oxo-2H-chromen-4-yl trifluoromethanesulfonate (72i, 294 mg, 1.0 mmol, 1.0 

equiv) reacts with 81b (1.5 mmol, 1.5 equiv) prepared according to TP3. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 82b as 

colorless solid (73%, 180 mg, 0.73 mmol). 

m.p.: 136 – 137 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.96 (dd, J=8.2, 1.6, 1H), 7.68 – 7.62 (m, 2H), 7.57 (ddd, J=8.9, 7.5, 

1.6, 1H), 7.51 – 7.40 (m, 3H), 7.39 – 7.32 (m, 2H), 6.62 (s, 1H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 160.3, 153.7, 137.4, 132.4, 132.4, 130.3, 128.8, 126.8, 124.6, 

121.3, 118.5, 118.5, 117.2, 102.3, 82.9. 

FT-IR (ATR, cm-1): 𝜈̃ = 3065, 3047, 2204, 1750, 1727, 1718, 1688, 1681, 1606, 1593, 1571, 1555, 1487, 

1449, 1442, 1439, 1372, 1325, 1282, 1271, 1249, 1189, 1184, 1177, 1172, 1158, 1142, 1125, 1043, 

1031, 997, 939, 934, 917, 862, 856, 852, 773, 768, 755, 747, 708, 683, 657. 

MS (EI, 70 eV): m/z (%) = 246 (100), 219 (14), 218 (84), 190 (15), 189 (99), 188 (17), 187 (19), 163 (15), 

95 (21). 

HR-MS (EI, 70 eV): [C17H10O2]+•, calcd.: 246.0675; found: 246.0672. 

 

4-(Cyclohex-1-en-1-ylethynyl)-2H-chromen-2-one (82c) 

 

According to TP6, 2-oxo-2H-chromen-4-yl trifluoromethanesulfonate (72i, 294 mg, 1.0 mmol, 1.0 

equiv) reacts with 81c (1.5 mmol, 1.5 equiv) prepared according to TP3. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 82c as 

yellowish solid (87%, 218 mg, 0.87 mmol). 

m.p.: 114 – 115 °C. 
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1H-NMR (400 MHz, CDCl3, ppm): δ = 7.75 (dd, J=8.1, 1.6, 1H), 7.52 – 7.40 (m, 1H), 7.28 – 7.16 (m, 2H), 

6.43 – 6.35 (m, 2H), 2.29 – 2.18 (m, 2H), 2.18 – 2.09 (m, 2H), 1.69 – 1.62 (m, 2H), 1.61 – 1.53 (m, 2H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 160.5, 153.6, 140.2, 137.8, 132.2, 126.8, 124.4, 119.9, 118.6, 

117.6, 117.0, 104.8, 80.8, 28.8, 26.1, 22.1, 21.3. 

FT-IR (ATR, cm-1): 𝜈̃ = 2934, 2913, 2875, 2860, 2192, 1713, 1686, 1683, 1651, 1644, 1621, 1600, 1561, 

1550, 1486, 1447, 1434, 1425, 1421, 1378, 1352, 1342, 1324, 1279, 1270, 1255, 1244, 1177, 1137, 

1120, 1077, 1049, 1028, 932, 918, 863, 854, 841, 777, 762, 753, 707, 668. 

MS (EI, 70 eV): m/z (%) = 251 (18), 250 (100), 235 (27), 221 (29), 207 (34), 194 (32), 181 (21), 178 (29), 

165 (40). 

HR-MS (EI, 70 eV): [C17H14O2]+•, calcd.: 250.0988; found: 250.0988 

 

4-((3-Chlorophenyl)ethynyl)-2H-chromen-2-one (82d) 

 

According to TP6, 2-oxo-2H-chromen-4-yl trifluoromethanesulfonate (72i, 294 mg, 1.0 mmol, 1.0 

equiv) reacts with 81d (1.5 mmol, 1.5 equiv) prepared according to TP3. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 82d as 

colorless crystals (93%, 262 mg, 0.93 mmol). 

m.p.: 140 – 142 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.92 (dd, J=8.3, 1.6, 1H), 7.63 (t, J=1.8, 1H), 7.58 (ddd, J=9.0, 7.5, 

1.6, 1H), 7.52 (dt, J=7.5, 1.4, 1H), 7.45 (ddd, J=8.1, 2.1, 1.2, 1H), 7.41 – 7.32 (m, 3H), 6.63 (s, 1H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 160.1, 153.7, 136.9, 134.8, 132.6, 132.1, 130.6, 130.5, 130.1, 

126.7, 124.7, 122.9, 119.1, 118.3, 117.2, 100.2, 83.8. 

FT-IR (ATR, cm-1): 𝜈̃ = 2215, 1749, 1718, 1674, 1604, 1586, 1565, 1556, 1485, 1472, 1446, 1406, 1374, 

1323, 1271, 1257, 1249, 1188, 1174, 1164, 1147, 1126, 1123, 1092, 1079, 1043, 1029, 926, 884, 878, 

870, 866, 860, 801, 791, 788, 770, 761, 751, 705, 686, 678, 654. 

MS (EI, 70 eV): m/z (%) = 282 (32), 280 (100), 254 (25), 252 (75), 245 (24), 189 (96), 188 (28), 187 (49). 

HR-MS (EI, 70 eV): [C17H9ClO2]+•, calcd.: 280.0286; found: 280.0280.  
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3 Cobalt-Catalyzed Cross-Coupling Reactions of Diarylmanganese Reagents with 

Secondary Alkyl Iodides 

3.1 Typical Procedures 

Typical procedure 7 (TP7): Preparation of di(hetero)arylmanganese reagents by magnesium 

insertion and transmetalation120 

LiCl (1.2 equiv) was flame dried under high vacuum and allowed to cool to room temperature, then 

Mg turnings (1.2 equiv) and THF (1 M solution relating to the aryl bromide) were added. The reaction 

mixture was cooled to 0 °C and the corresponding aryl bromide (1.0 equiv) was added dropwise. The 

progress of the insertion reaction was monitored by GC-analysis of reaction aliquots quenched with 

I2. Then a solution of MnCl2·2LiCl (0.55 equiv, 1 M in THF) was added dropwise at 0 °C and the solution 

was stirred for 1 h to afford the corresponding diarylmanganese reagent. 

 

Typical procedure 8 (TP8): Preparation of di(hetero)arylmanganese reagents by 

bromine-magnesium exchange and transmetalation121 

The corresponding aryl bromide (1.0 equiv) was dissolved in THF (1 M solution relating to the aryl 

bromide) and the reaction mixture was cooled to the corresponding temperature. Then iPrMgCl·LiCl 

(1.1 equiv) was added dropwise and the reaction was stirred at this temperature until reaction 

aliquots quenched with I2 showed full consumption of the starting material. Then a solution of 

MnCl2·2LiCl (0.55 equiv, 1 M in THF) was added dropwise and the solution was stirred for 1 h before 

use to afford the corresponding diarylmanganese reagent (ca. 0.5 M in THF). 

 

  

                                                             
120 For magnesium insertion, see: F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel 
Chem. - Eur. J. 2009, 15, 7192-7202. 
121 For applications of the bromine-magnesium exchange, see: a) H. Ren, A. Krasovskiy, P. Knochel Org. Lett. 
2004, 6, 4215-4217. b) H. Ren, A. Krasovskiy, P. Knochel Chem. Commun. 2005, 543-545. c) C.-Y. Liu, P. Knochel 
Org. Lett. 2005, 7, 2543-2546. d) H. Ren, P. Knochel Chem. Commun. 2006, 726-728. e) P. Sinha, P. Knochel 
Synlett 2006, 3304-3308. f) C.-Y. Liu, H. Ren, P. Knochel Org. Lett. 2006, 8, 617-619. g) A. H. Stoll, A. Krasovskiy, 
P. Knochel Angew. Chem., Int. Ed. 2006, 45, 606-609. h) F. Kopp, P. Knochel Synlett 2007, 2007, 0980-0982. i) F. 
Kopp, S. Wunderlich, P. Knochel Chem. Commun. 2007, 2075-2077. j) W. Lin, L. Chen, P. Knochel Tetrahedron 
2007, 63, 2787-2797. k) C. Despotopoulou, R. C. Bauer, A. Krasovskiy, P. Mayer, J. M. Stryker, P. Knochel Chem. 
- Eur. J. 2008, 14, 2499-2506. l) L. Melzig, C. B. Rauhut, P. Knochel Chem. Commun. 2009, 3536-3538. m) C. B. 
Rauhut, C. Cervino, A. Krasovskiy, P. Knochel Synlett 2009, 67-70. 
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Typical Procedure 9 (TP9): Cobalt-catalyzed cross-coupling of diarylmanganese reagents with 

secondary alkyl halides 

A dry and argon-flushed 10 mL Schlenk-tube, equipped with a stirring bar and a septum, was charged 

with CoCl2·2LiCl (1 M in THF, 0.1 mL, 0.10 mmol, 20 mol%). The secondary alkyl halide (0.50 mmol, 

1.0 equiv) and THF (1 mL) were added and the mixture was cooled to -20 °C. The diarylmanganese 

reagent (0.35 mmol, 0.7 equiv) was added dropwise and the mixture was allowed to warm to rt 

overnight. A sat. aq. solution of NH4Cl (5 mL) and EtOAc (5 mL) were added and the aqueous phase 

was extracted with EtOAc (3 x 20 mL). The combined organic phases were washed with brine, dried 

over Na2SO4 and the solvents were evaporated. The residue was subjected to column chromatography 

purification (SiO2; ihexane:EtOAc) yielding the corresponding title compound. 
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3.2 Preparation of Starting Materials 

The following starting materials were prepared according to literature procedures with only little 

deviation.122 The spectral data of known compounds were in full agreement with the literature. 

1-Chloro-4-(2-iodopropyl)benzene (75a) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.31 – 7.27 (m, 2H), 7.14 – 7.10 (m, 2H), 4.29 (dp, J = 7.6, 6.8 Hz, 

1H), 3.22 (dd, J = 14.2, 7.6 Hz, 1H), 3.04 (dd, J = 14.2, 7.0 Hz, 1H), 1.90 (d, J = 6.8 Hz, 3H). 

 

tert-Butyl(3-iodobutoxy)dimethylsilane (75b)123 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 4.35 (dqd, J = 9.5, 6.9, 4.4 Hz, 1H), 3.76 (ddd, J = 10.3, 5.7, 4.6 Hz, 

1H), 3.65 (ddd, J = 10.3, 8.1, 4.8 Hz, 1H), 2.04 – 1.94 (m, 4H), 1.78 (dddd, J = 14.6, 8.1, 5.7, 4.4 Hz, 1H), 

0.89 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H). 

 

1-(2-Iodopropyl)-3-(trifluoromethyl)benzene (75c) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ =7.57 – 7.52 (m, 1H), 7.48 – 7.41 (m, 2H), 7.41 – 7.36 (m, 1H), 4.32 

(dp, J = 7.7, 6.8 Hz, 1H), 3.30 (dd, J = 14.3, 7.7 Hz, 1H), 3.13 (dd, J = 14.2, 6.9 Hz, 1H), 1.93 (d, J = 6.8 

Hz, 3H). 

  

                                                             
122 C. W. Cheung, P. Ren, X. Hu Org. Lett. 2014, 16, 2566-2569. 
123 R. Yefidoff, A. Albeck Tetrahedron 2004, 60, 8093-8102. 
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4-(3-Iodobutyl)phenyl acetate (75d) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.23 – 7.19 (m, 2H), 7.03 – 6.98 (m, 2H), 4.10 (dqd, J = 9.2, 6.8, 

4.4 Hz, 1H), 2.84 (ddd, J = 14.0, 9.0, 5.1 Hz, 1H), 2.69 (ddd, J = 13.9, 9.0, 7.0 Hz, 1H), 2.29 (s, 3H), 2.19 

– 2.08 (m, 1H), 1.94 (d, J = 6.8 Hz, 3H), 1.86 (dddd, J = 14.6, 9.0, 7.0, 4.4 Hz, 1H). 

 

tert-Butyl((cis-4-iodocyclohexyl)oxy)dimethylsilane (75f)124 

 

dr = 99:1 

1H-NMR (400 MHz, CDCl3, ppm): δ = 4.44 – 4.32 (m, 1H), 3.96 – 3.82 (m, 1H), 2.30 (dtd, J = 13.1, 9.0, 

3.8 Hz, 2H), 1.97 – 1.87 (m, 2H), 1.72 – 1.62 (m, 2H), 1.63 – 1.52 (m, 2H), 0.90 (s, 9H), 0.04 (s, 6H). 

 

tert-Butyl((cis-2-iodocyclohexyl)oxy)dimethylsilane (75g)125 

 

dr = 75:25 (cis:trans) 

1H-NMR (400 MHz, CDCl3, ppm): δ = 4.53 – 4.39 (m, 1H), 3.36 (s br., 1H), 2.32 – 2.20 (m, 1H), 1.96 – 

1.84 (m, 1H), 1.79 – 1.60 (m, 3H), 1.57 – 1.30 (m, 3H), 0.95 (s, 9H), 0.14 (s, 3H), 0.08 (s, 3H). 

 

  

                                                             
124 K. Moriya, P. Knochel Org. Lett. 2014, 16, 924-927. 
125 M. Smietana, V. Gouverneur, C. Mioskowski Tetrahedron Lett. 2000, 41, 193-195. 
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2-Iodo-2,3-dihydro-1H-indene (75h)126 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.28 – 7.23 (m, 2H), 7.23 – 7.18 (m, 2H), 4.71 (tt, J = 6.5, 5.0 Hz, 

1H), 3.48 (dd, J = 16.8, 6.5 Hz, 2H), 3.39 (dd, J = 16.8, 5.0 Hz, 2H). 

 

3-((tert-Butyldimethylsilyl)oxy)-4-iodo-1-tosylpyrrolidine (75i)127 

 

dr = 99:1 (trans:cis) 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.74 – 7.68 (m, 2H), 7.34 – 7.28 (m, 2H), 4.34 (dt, J = 4.8, 2.5 Hz, 

1H), 3.93 (dd, J = 11.1, 5.4 Hz, 1H), 3.88 (dtd, J = 5.4, 2.7, 0.8 Hz, 1H), 3.81 (dd, J = 10.6, 4.5 Hz, 1H), 

3.68 (dd, J = 11.1, 2.6 Hz, 1H), 3.17 (ddd, J = 10.6, 2.2, 0.9 Hz, 1H), 2.41 (s, 3H), 0.73 (s, 9H), -0.01 (s, 

3H), -0.03 (s, 3H). 

 

1-(3-Iodobutyl)-4-methoxybenzene (75k) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.15 – 7.10 (m, 2H), 6.87 – 6.81 (m, 2H), 4.11 (dqd, J = 9.1, 6.8, 

4.5 Hz, 1H), 3.79 (s, 3H), 2.79 (ddd, J = 13.9, 8.8, 5.2 Hz, 1H), 2.64 (ddd, J = 13.8, 8.8, 7.0 Hz, 1H), 2.13 

(dtd, J = 14.2, 8.9, 5.2 Hz, 1H), 1.95 (d, J = 6.8 Hz, 3H), 1.84 (dddd, J = 14.6, 8.8, 7.1, 4.5 Hz, 1H). 

 

  

                                                             
126 Y. Dai, F. Wu, Z. Zang, H. You, H. Gong Chem. Eur. J. 2012, 18, 808-812. 
127 J. M. Hammann, D. Haas, A. K. Steib, P. Knochel Synthesis 2015, 47, 1461-1468. 
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((3-Iodobutoxy)methyl)benzene (75l) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.39 – 7.27 (m, 5H), 4.64 – 4.44 (m, 2H), 4.39 (dqd, J=9.5, 6.9, 4.6, 

1H), 3.67 – 3.61 (m, 1H), 3.55 (ddd, J=9.6, 8.0, 5.0, 1H), 2.15 – 2.03 (m, 1H), 2.00 – 1.86 (m, 4H). 

 

4-Iodotetrahydro-2H-pyran (75m) 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 4.45 (tt, J = 7.7, 5.5 Hz, 1H), 3.87 – 3.76 (m, 2H), 3.57 – 3.48 (m, 

2H), 2.18 – 2.12 (m, 4H). 

 

tert-Butyl 3-iodopiperidine-1-carboxylate (75n)128 

 

1H-NMR (400 MHz, CDCl3, ppm): δ = 4.29 – 3.92 (m, 2H), 3.78 (d, J = 13.0 Hz, 1H), 3.53 – 3.24 (m, 1H), 

3.09 (s, 1H), 2.26 (s, 1H), 2.10 – 1.95 (m, 1H), 1.72 (d, J = 13.5 Hz, 1H), 1.57 (s, 1H), 1.46 (s, 9H). 

  

                                                             
128 A. Boto, R. Hernández, Y. de León, J. R. Murguía, A. Rodriguez-Afonso Eur. J. Org. Chem. 2005, 673-682. 
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3.3 Cobalt-Catalyzed Cross-Coupling Reactions of Diarylmanganese Reagents with 

Secondary Alkyl Iodides 

1-Chloro-4-(2-(4-methoxyphenyl)propyl)benzene (76a) 

 

According to TP9, 1-chloro-4-(2-iodopropyl)benzene (75a, 140 mg, 0.5 mmol, 1 equiv, in 1 mL THF) 

reacts with the di(4-anisyl)manganese reagent (74a, 0.35 mmol, 0.7 equiv) prepared according to TP7, 

at -20 °C. The solution was allowed to warm to room temperature under stirring for 8 h and was 

worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:1.5) as an eluent to afford 76a as a colorless solid (75%, 98 mg, 0.38 mmol). 

Mp.: 62.2 – 63.5 °C 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.21 – 7.16 (m, 2H), 7.08 – 7.03 (m, 2H), 6.98 – 6.93 (m, 2H), 6.85 

– 6.79 (m, 2H), 3.79 (s, 3H), 2.92 (h, J = 6.9 Hz, 1H), 2.84 (dd, J = 13.3, 7.0 Hz, 1H), 2.74 (dd, J = 13.2, 

7.6 Hz, 1H), 1.22 (d, J = 6.8 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 158.0, 139.4, 138.6, 131.7, 130.6, 128.3, 128.0, 113.8, 55.4, 44.7, 

41.1, 21.6. 

FT-IR (ATR, cm-1): 2956, 2925, 2852, 1513, 1490, 1455, 1440, 1259, 1241, 1177, 1088, 1031, 1008, 829, 

814, 806, 798, 698, 656. 

MS (EI, 70 eV): m/z (%) = 260 (2), 136 (8), 135 (100), 125 (4), 105 (5), 103 (4), 91 (5), 77 (3). 

HR-MS (EI, 70 eV): [C16H17ClO]+•, calcd.: 260.0962; found: 260.0952. 

 

tert-Butyl(3-(4-methoxyphenyl)butoxy)dimethylsilane (76b) 

 

According to TP9, tert-butyl(3-iodobutoxy)dimethylsilane (75b, 157 mg, 0.5 mmol, 1 equiv, in 1 mL 

THF) reacts with the di(4-anisyl)manganese reagent (74a, 0.35 mmol, 0.7 equiv) prepared according 

to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 8 h and 
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was worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:2) as an eluent to afford 76b as a yellowish oil (73%, 108 mg, 0.37 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.14 – 7.08 (m, 2H), 6.86 – 6.81 (m, 2H), 3.79 (s, 3H), 3.57 – 3.43 

(m, 2H), 2.84 (h, J = 7.1 Hz, 1H), 1.80 – 1.73 (m, 2H), 1.22 (d, J = 7.0 Hz, 3H), 0.88 (s, 9H), 0.00 (d, J = 

0.8 Hz, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 157.9, 139.5, 128.0, 113.8, 61.4, 55.4, 41.5, 35.4, 26.1, 22.7, 18.4, 

-5.1. 

FT-IR (ATR, cm-1): 2953, 2927, 2856, 2834, 1612, 1512, 1462, 1245, 1176, 1095, 1037, 899, 827, 773. 

MS (EI, 70 eV): m/z (%) = 237 (100), 165 (20), 135 (22), 97 (20), 89 (56), 85 (42), 84 (31), 83 (29), 

71 (49), 69 (32), 57 (89), 55 (29), 44 (25), 43 (46), 41 (28). 

HR-MS (EI, 70 eV): [C13H21O2Si]+•, calcd.: 237.1305; found: 237.1314 [M+-tBu]. 

 

1-(2-(4-Methoxyphenyl)propyl)-3-(trifluoromethyl)benzene (76c) 

 

According to TP9, 1-(2-iodopropyl)-3-(trifluoromethyl)benzene (75c, 157 mg, 0.5 mmol, 1 equiv, in 

1 mL THF) reacts with the di(4-anisyl)manganese reagent (74a, 0.35 mmol, 0.7 equiv) prepared 

according to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 

8 h and was worked-up as usual. The crude product was purified by column chromatography on silica 

using ihexane:EtOAc (100:5) as an eluent to afford 76c as a colorless oil (77%, 114 mg, 0.39 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.44 – 7.39 (m, 1H), 7.35 – 7.27 (m, 2H), 7.21 – 7.17 (m, 1H), 7.09 

– 7.03 (m, 2H), 6.85 – 6.80 (m, 2H), 3.79 (s, 3H), 3.02 – 2.89 (m, 2H), 2.88 – 2.79 (m, 1H), 1.24 (d, J = 

6.8 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 158.2, 141.8, 138.3, 132.7, 130.5 (q, J = 31.9 Hz), 128.5, 128.0, 

126.0 (q, J = 3.9 Hz), 124.4 (q, J = 272.2 Hz), 122.8 (q, J = 3.9 Hz), 113.9, 55.4, 45.2, 41.0, 21.4. 

FT-IR (ATR, cm-1): 2959, 2929, 2836, 2360, 1611, 1512, 1449, 1326, 1245, 1176, 1159, 1118, 1072, 

1037, 904, 827, 796, 702, 661. 

MS (EI, 70 eV): m/z (%) = 158 (4), 136 (8), 135 (100), 105 (5), 103 (4), 91 (6), 79 (3), 77 (4), 42 (3). 
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HR-MS (EI, 70 eV): [C17H17F3O]+•, calcd.: 294.1226; found: 294.1232. 

 

4-(3-(4-Methoxyphenyl)butyl)phenyl acetate (76d) 

 

According to TP9, 4-(3-iodobutyl)phenyl acetate (75d, 159 mg, 0.5 mmol, 1 equiv, in 1 mL THF) reacts 

with the di(4-anisyl)manganese reagent (74a, 0.35 mmol, 0.7 equiv) prepared according to TP7, 

at -20 °C. The solution was allowed to warm to room temperature under stirring for 8 h and was 

worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:5) as an eluent to afford 76d as a colorless oil (75%, 112 mg, 0.37 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.16 – 7.09 (m, 4H), 7.00 – 6.94 (m, 2H), 6.90 – 6.84 (m, 2H), 3.81 

(s, 3H), 2.68 (h, J=7.1, 1H), 2.49 (td, J=7.9, 1.8, 2H), 2.29 (s, 3H), 1.93 – 1.82 (m, 2H), 1.25 (d, J=6.9, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 169.8, 158.0, 148.7, 140.3, 139.4, 129.4, 128.0, 121.3, 113.9, 

55.4, 40.2, 38.8, 33.4, 22.9, 21.3. 

FT-IR (ATR, cm-1): 3032, 2995, 2955, 2928, 2866, 2835, 1758, 1610, 1510, 1507, 1368, 1244, 1213, 

1189, 1164, 1031, 1017, 1010, 910, 828, 808. 

MS (EI, 70 eV): m/z (%) = 299 (4), 298 (22), 256 (14), 148 (5), 136 (10), 135 (100), 121 (8), 107 (12), 

105 (4), 91 (5), 77 (5), 43 (8). 

HR-MS (EI, 70 eV): [C19H22O3]+•, calcd.: 298.1563; found: 298.1565. 

 

1-Cyclohexyl-4-methoxybenzene (76e)99a 

 

According to TP9, iodocyclohexane (75e, 105 mg, 0.5 mmol, 1 equiv, in 1 mL THF) reacts with the 

di(4-anisyl)manganese reagent (74a, 0.35 mmol, 0.7 equiv) prepared according to TP7, at -20 °C. The 

solution was allowed to warm to room temperature under stirring for 8 h and was worked-up as usual. 

The crude product was purified by column chromatography on silica using ihexane:EtOAc (100:2) as 

an eluent to afford 76e as a colorless solid (84%, 80 mg, 0.42 mmol). 
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Mp.: 58.1-58.7 °C 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.17 – 7.11 (m, 2H), 6.87 – 6.82 (m, 2H), 3.79 (s, 3H), 2.46 (ddq, 

J=11.7, 8.7, 3.3, 1H), 1.91 – 1.81 (m, 4H), 1.79 – 1.71 (m, 1H), 1.47 – 1.32 (m, 4H), 1.31 – 1.20 (m, 1H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 157.8, 140.5, 127.8, 113.8, 55.4, 43.8, 34.9, 27.1, 26.3. 

MS (EI, 70 eV): m/z (%) = 190 (56), 147 (97), 121 (34), 111 (36), 97 (59), 95 (47), 85 (51), 84 (93), 

83 (45), 71 (65), 69 (68), 57 (100), 55 (74), 43 (71), 42 (62), 39 (72). 

HR-MS (EI, 70 eV): [C13H18O]+•, calcd.: 190.1352; found: 190.1349. 

 

tert-Butyl((4-(4-methoxyphenyl)cyclohexyl)oxy)dimethylsilane (76f) 

 

According to TP9, tert-butyl((4-iodocyclohexyl)oxy)dimethylsilane (75f, 170 mg, 0.5 mmol, 1 equiv, in 

1 mL THF) reacts with the di(4-anisyl)manganese reagent (74a, 0.35 mmol, 0.7 equiv) prepared 

according to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 

8 h and was worked-up as usual. The crude product was purified by column chromatography on silica 

using ihexane:EtOAc (100:2) as an eluent to afford 76f as a colorless oil (75%, 120 mg, 0.37 mmol). 

Signals of both diastereomers are given (dr = 70:30). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.18 – 7.09 (m, 2H), 6.89 – 6.79 (m, 2H), 3.79 (d, J=1.9, 3H), 4.09 

– 3.58 (m, 1H), 2.51 – 2.38 (m, 1H), 2.03 – 1.72 (m, 4H), 1.64 – 1.37 (m, 4H), 0.92 (s, 9H), 0.07 (s, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 157.9, 157.8, 140.4, 139.2, 127.8, 127.7, 113.8, 113.8, 71.6, 66.0, 

55.4, 43.3, 42.8, 36.5, 34.0, 33.1, 28.3, 26.1, 26.0, 18.4, 18.3, -4.4, -4.7. 

FT-IR (ATR, cm-1): 2927, 2855, 1612, 1582, 1512, 1471, 1462, 1450, 1441, 1420, 1387, 1375, 1360, 

1304, 1281, 1245, 1177, 1117, 1091, 1040, 1019, 1005, 988, 938, 891, 859, 833, 824, 805, 793, 772, 

749, 668. 

MS (EI, 70 eV): m/z (%) = 263 (18), 189 (8), 188 (50), 187 (100), 173 (5), 134 (15), 121 (17), 75 (39), 

73 (8). 

HR-MS (EI, 70 eV): [C19H32O2Si]+•, calcd.: 320.2166; found: 320.2168.  
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tert-Butyl((2-(4-methoxyphenyl)cyclohexyl)oxy)dimethylsilane (76g) 

 

According to TP9, tert-butyl((cis-2-iodocyclohexyl)oxy)dimethylsilane (75g, 170 mg, 

0.5 mmol, 1 equiv, in 1 mL THF) reacts with the di(4-anisyl)manganese reagent (74a, 0.35 mmol, 

0.7 equiv) prepared according to TP7, at -20 °C. The was allowed to warm to room temperature under 

stirring for 8 h and was worked-up as usual. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:2) as an eluent to afford 76g as a colorless oil 

(83%, 133 mg, 0.41 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.13 – 7.07 (m, 2H), 6.84 – 6.78 (m, 2H), 3.78 (s, 3H), 3.47 (td, 

J=9.8, 4.5, 1H), 2.39 (ddd, J=13.1, 9.6, 3.6, 1H), 2.03 – 1.93 (m, 1H), 1.87 – 1.76 (m, 2H), 1.76 – 1.70 (m, 

1H), 1.53 (qd, J=13.0, 3.6, 1H), 1.44 – 1.24 (m, 3H), 0.68 (s, 9H), -0.19 (s, 3H), -0.50 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 158.1, 137.5, 129.3, 113.5, 76.2, 55.5, 52.2, 36.9, 33.1, 26.3, 25.9, 

25.4, 18.0, -4.6, -5.4. 

FT-IR (ATR, cm-1): 2926, 2854, 2360, 2341, 1512, 1360, 1244, 1176, 1124, 1090, 1039, 983, 881, 857, 

846, 831, 813, 772, 753, 666. 

MS (EI, 70 eV): m/z (%) = 305 (1), 265 (6), 264 (22), 263 (100), 189 (12), 187 (7), 165 (7), 121 (33), 

75 (33), 73 (12). 

HR-MS (EI, 70 eV): [C18H29O2Si]+•, calcd.: 305.1931; found: 305.1936 [M+-CH3].  

 

2-(4-Methoxyphenyl)-2,3-dihydro-1H-indene (76h) 

 

According to TP9, 2-iodo-2,3-dihydro-1H-indene (75h, 122 mg, 0.5 mmol, 1 equiv, in 1 mL THF) reacts 

with the di(4-anisyl)manganese reagent (74a, 0.35 mmol, 0.7 equiv) prepared according to TP7, 

at -20 °C. The solution was allowed to warm to room temperature under stirring for 8 h and was 

worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:2) as an eluent to afford 76h as a colorless oil (70%, 78 mg, 0.35 mmol). 
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1H-NMR (400 MHz, CDCl3, ppm): δ = 7.29 – 7.19 (m, 4H), 7.22 – 7.17 (m, 2H), 6.90 – 6.84 (m, 2H), 3.81 

(s, 3H), 3.66 (p, J=8.6, 1H), 3.33 (dd, J=15.4, 8.0, 2H), 3.06 (dd, J=15.5, 9.0, 2H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 158.1, 143.2, 137.7, 128.1, 126.5, 124.4, 114.0, 55.4, 45.0, 41.2. 

FT-IR (ATR, cm-1): 3066, 3019, 2932, 2903, 2833, 1611, 1511, 1482, 1458, 1441, 1243, 1220, 1177, 

1034, 825, 741. 

MS (EI, 70 eV): m/z (%) = 225 (19), 224 (100), 209 (34), 116 (36), 115 (30), 82 (18), 57 (23), 55 (21), 

43 (47), 42 (14). 

HR-MS (EI, 70 eV): [C16H16O]+•, calcd.: 224.1196; found: 224.1193. 

 

3-((tert-Butyldimethylsilyl)oxy)-4-(4-methoxyphenyl)-1-tosylpyrrolidine (76i) 

 

According to TP9, 3-((tert-butyldimethylsilyl)oxy)4-iodo-1-tosylpyrrolidine (75i, 241 mg, 

0.5 mmol, 1 equiv, in 1 mL THF) reacts with the di(4-anisyl)manganese reagent (74a, 0.35 mmol, 

0.7 equiv) prepared according to TP7, at -20 °C. The solution was allowed to warm to room 

temperature under stirring for 8 h and was worked-up as usual. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 76i as a colorless 

solid (59%, 136 mg, 0.29 mmol). 

Signals of the main diastereomer are given (dr = 95:5). 

Mp.: 124.3-126.1 °C 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.78 – 7.74 (m, 2H), 7.37 – 7.32 (m, 2H), 7.15 – 7.05 (m, 2H), 6.86 

– 6.80 (m, 2H), 4.04 (q, J=5.3, 1H), 3.78 (s, 3H), 3.67 – 3.58 (m, 2H), 3.51 (dd, J=9.8, 6.2, 1H), 3.10 – 

2.97 (m, 2H), 2.45 (s, 3H), 0.71 (s, 9H), -0.16 (s, 3H), -0.21 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 158.9, 143.6, 134.0, 131.2, 129.8, 128.6, 127.7, 114.2, 77.7, 55.4, 

54.4, 51.9, 51.5, 25.7, 21.7, 17.9, -4.9, -5.0. 

FT-IR (ATR, cm-1): 2953, 2929, 2885, 2856, 1515, 1346, 1250, 1161, 1093, 1034, 834, 778, 666. 

MS (EI, 70 eV): m/z (%) = 406 (10), 405 (24), 400 (100), 270 (3), 174 (3), 149 (4), 147 (5), 134 (5), 

125 (6), 121 (17), 91 (8), 72 (8), 42 (7). 
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HR-MS (EI, 70 eV): [C23H32NO4SSi]+•, calcd.: 446.1816; found: 446.1805 [M+-CH3]. 

 

1-(2-(4-(Methoxymethoxy)phenyl)propyl)-3-(trifluoromethyl)benzene (76j) 

 

According to TP9, 1-(2-iodopropyl)-3-(trifluoromethyl)benzene (75c, 314 mg, 1 mmol, 1 equiv, in 2 mL 

THF) reacts with the di(4-(methoxymethoxy)benzene)manganese reagent (74b, 0.7 mmol, 0.7 equiv) 

prepared according to TP7, at -20 °C. The was allowed to warm to room temperature under stirring 

for 8 h and was worked-up as usual. The crude product was purified by column chromatography on 

silica using ihexane:EtOAc (100:2) as an eluent to afford 76j as a colorless oil (76%, 246 mg, 

0.76 mmol). 

1H-NMR (599 MHz, CDCl3, ppm): δ = 7.42 (d, J=7.7, 1H), 7.33 (t, J=7.7, 1H), 7.27 (s, 1H), 7.22 (d, J=7.6, 

1H), 7.08 – 7.03 (m, 2H), 6.98 – 6.93 (m, 2H), 5.15 (s, 2H), 3.48 (s, 3H), 3.02 – 2.88 (m, 2H), 2.87 – 2.79 

(m, 1H), 1.24 (d, J=6.7, 3H). 

13C-NMR (151 MHz, CDCl3, ppm): δ = 155.8, 141.8, 139.7, 132.7 (d, J = 1.2 Hz), 130.5 (q, J = 31.9 Hz), 

128.6, 128.1, 126.0 (q, J = 3.8 Hz), 124.4 (q, J = 272.3 Hz), 122.9 (q, J = 3.8 Hz), 116.3, 94.7, 56.1, 45.1, 

41.1, 21.4. 

FT-IR (ATR, cm-1): 2961, 2930, 2899, 1511, 1328, 1314, 1234, 1200, 1152, 1120, 1073, 1019, 999, 921, 

831, 796, 702, 661. 

MS (EI, 70 eV): m/z (%) = 324 (2), 293 (2), 166 (9), 165 (100), 159 (10), 136 (4), 135 (42), 91 (6), 77 (2), 

45 (80). 

HR-MS (EI, 70 eV): [C18H19F3O2]+•, calcd.: 324.1332; found: 324.1334. 

 

tert-Butyl 4-(4-(methoxymethoxy)phenyl)piperidine-1-carboxylate (76k) 

 

According to TP9, tert-butyl 4-iodopiperidine-1-carboxylate (75j, 156 mg, 0.5 mmol, 1 equiv, in 1 mL 

THF) reacts with the di(4-(methoxymethoxy)benzene)manganese reagent (74b, 0.35 mmol, 0.7 equiv) 
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prepared according to TP7, at -20 °C. The solution was allowed to warm to room temperature under 

stirring for 8 h and was worked-up as usual. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (10:1) as an eluent to afford 76k as a colorless solid 

(75%, 121 mg, 0.38 mmol). 

Mp.: 84.8 – 86.6 °C 

1H-NMR (599 MHz, CDCl3, ppm): δ = 7.14 – 7.09 (m, 2H), 7.00 – 6.97 (m, 2H), 5.15 (s, 2H), 4.23 (s, 2H), 

3.47 (s, 3H), 2.85 – 2.73 (m, 2H), 2.59 (tt, J = 12.2, 3.6 Hz, 1H), 1.79 (d, J = 12.6 Hz, 2H), 1.63 – 1.54 (m, 

2H), 1.48 (s, 9H). 

13C-NMR (151 MHz, CDCl3, ppm): δ = 155.8, 155.0, 139.4, 127.8, 116.4, 94.7, 79.5, 56.1, 44.7, 42.1, 

33.5, 28.6. 

FT-IR (ATR, cm-1): 2974, 2932, 2850, 1687, 1511, 1422, 1365, 1279, 1228, 1198, 1151, 1123, 1106, 

1077, 1001, 985, 922, 831, 762. 

MS (EI, 70 eV): m/z (%) = 321 (7), 265 (22), 248 (14), 221 (22), 220 (15), 203 (17), 189 (6), 176 (14), 82 

(13), 57 (89), 56 (15), 45 (100), 41 (17). 

HR-MS (EI, 70 eV): [C18H27NO4]+•, calcd.: 321.1935; found: 321.1931. 

 

1-Chloro-4-(2-(4-(trifluoromethyl)phenyl)propyl)benzene (76l) 

 

According to TP9, tert-butyl 4-iodopiperidine-1-carboxylate (75a, 140 mg, 0.5 mmol, 1 equiv, in 1 mL 

THF) reacts with the di(4-(trifluoromethyl)benzene)manganese reagent (74c, 0.35 mmol, 0.7 equiv) 

prepared according to TP8, at -20 °C. The solution was allowed to warm to room temperature under 

stirring for 8 h and was worked-up as usual. The crude product was purified by column 

chromatography on silica using ihexane as an eluent to afford 76l as a colorless oil (81%, 106 mg, 

0.41 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.52 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.22 – 7.17 (m, 

2H), 7.00 – 6.93 (m, 2H), 3.04 (h, J = 7.1 Hz, 1H), 2.92 – 2.77 (m, 2H), 1.27 (d, J = 6.9 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 150.5 (d, J = 1.5 Hz), 138.6, 132.0, 130.5, 128.7 (q, J = 30.7 Hz), 

128.5, 127.5, 125.4 (q, J = 4.0 Hz), 124.4 (q, J = 272.0 Hz), 44.2, 41.9, 21.2. 
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FT-IR (ATR, cm-1): 2964, 2928, 2874, 2856, 1618, 1491, 1322, 1161, 1114, 1105, 1093, 1068, 1014, 834, 

801. 

MS (EI, 70 eV): m/z (%) = 298 (10), 174 (35), 173 (35), 153 (11), 133 (14), 127 (36), 126 (18), 125 (100), 

103 (4), 90 (4), 89 (9), 44 (5), 43 (7). 

HR-MS (EI, 70 eV): [C16H14ClF3]+•, calcd.: 298.0731; found: 298.0736. 

 

1-Methoxy-4-(3-(4-(trifluoromethyl)phenyl)butyl)benzene (76m) 

 

According to TP9, 1-(3-iodobutyl)-4-methoxybenzene (75k, 145 mg, 0.5 mmol, 1 equiv, in 1 mL THF) 

reacts with the di(4-(trifluoromethyl)benzene)manganese reagent (74c, 0.35 mmol, 0.7 equiv) 

prepared according to TP8, at -20 °C. The solution was allowed to warm to room temperature under 

stirring for 8 h and was worked-up as usual. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:2) as an eluent to afford 76m as a colorless oil 

(87%, 134 mg, 0.43 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.57 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.06 – 7.01 (m, 

2H), 6.84 – 6.80 (m, 2H), 3.79 (s, 3H), 2.78 (h, J = 7.1 Hz, 1H), 2.52 – 2.41 (m, 2H), 1.98 – 1.85 (m, 2H), 

1.28 (d, J = 6.9 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 157.9, 151.6 (d, J = 1.5 Hz), 134.2, 129.3, 128.4 (q, J = 32.2 Hz), 

127.6, 125.5 (q, J = 4.0 Hz), 124.5 (q, J = 272.0 Hz), 113.9, 55.4, 40.0, 39.5, 33.0, 22.4. 

FT-IR (ATR, cm-1): 2958, 2931, 2835, 2360, 2332, 1511, 1323, 1243, 1161, 1115, 1066, 1036, 1016, 837, 

820. 

MS (EI, 70 eV): m/z (%) = 309 (5), 308 (23), 135 (17), 134 (12), 122 (16), 121 (100), 108 (6), 91 (10), 78 

(7), 77 (8), 57 (6). 

HR-MS (EI, 70 eV): [C18H19F3O]+•, calcd.: 308.1383; found: 308.1383. 
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tert-Butyl (3-(2,3-dihydro-1H-inden-2-yl)phenyl) carbonate (76n) 

 

According to TP9, 2-iodo-2,3-dihydro-1H-indene (75h, 122 mg, 0.5 mmol, 1 equiv, in 1 mL THF) reacts 

with the di(3-(BocO)benzene-1-yl)manganese reagent (74d, 0.35 mmol, 0.7 equiv) prepared according 

to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 8 h and 

was worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:2) as an eluent to afford 76n as a colorless oil (76%, 118 mg, 0.38 mmol). 

1H-NMR (599 MHz, CDCl3, ppm): δ = 7.30 (t, J = 7.9 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.21 – 7.14 (m, 3H), 

7.12 – 7.10 (m, 1H), 7.03 (ddd, J = 8.1, 2.4, 1.0 Hz, 1H), 3.70 (p, J = 8.6 Hz, 1H), 3.36 (dd, J = 15.5, 8.2 

Hz, 2H), 3.08 (dd, J = 15.5, 8.9 Hz, 2H), 1.56 (s, 9H). 

13C-NMR (151 MHz, CDCl3, ppm): δ = 152.1, 151.3, 147.4, 142.8, 129.4, 126.6, 124.5, 124.5, 120.1, 

119.2, 83.6, 45.4, 40.9, 27.9. 

FT-IR (ATR, cm-1): 2980, 2934, 2907, 2844, 2361, 2332, 1753, 1586, 1369, 1269, 1253, 1232, 1138, 

1002, 780, 742, 692. 

MS (EI, 70 eV): m/z (%) = 211 (11), 210 (84), 195 (15), 178 (8), 165 (11), 117 (9), 116 (27), 115 (11), 57 

(100), 40 (11). 

HR-MS (EI, 70 eV): [C20H22O3]+•, calcd.: 310.1563; found: 310.1556. 

 

tert-Butyl(3-(2,3-dihydro-1H-inden-2-yl)phenoxy)dimethylsilane (76o) 

 

According to TP9, 2-iodo-2,3-dihydro-1H-indene (75h, 122 mg, 0.5 mmol, 1 equiv, in 1 mL THF) reacts 

with the di(3-(TBSO)benzene-1-yl)manganese reagent (74e, 0.35 mmol, 0.7 equiv) prepared according 

to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 8 h and 

was worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane as eluent to afford 76o as a colorless oil (74%, 120 mg, 0.37 mmol). 
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1H-NMR (400 MHz, CDCl3, ppm): δ = 7.29 – 7.21 (m, 2H), 7.21 – 7.14 (m, 3H), 6.92 – 6.88 (m, 1H), 6.79 

(t, J = 2.2 Hz, 1H), 6.70 (ddd, J = 8.1, 2.4, 1.0 Hz, 1H), 3.65 (p, J = 8.5 Hz, 1H), 3.34 (dd, J = 15.5, 8.1 Hz, 

2H), 3.07 (dd, J = 15.5, 8.8 Hz, 2H), 0.98 (s, 9H), 0.18 (s, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 155.8, 147.2, 143.1, 129.4, 126.6, 124.4, 120.2, 118.8, 117.9, 

45.5, 41.0, 25.9, 18.4, -4.2. 

FT-IR (ATR, cm-1): 3069, 3023, 2954, 2930, 2857, 1602, 1584, 1483, 1472, 1278, 1252, 1158, 899, 836, 

808, 779, 740, 695. 

MS (EI, 70 eV): m/z (%) = 325 (5), 324 (20), 269 (6), 268 (21), 267 (100), 134 (4), 117 (32), 115 (9), 91 

(4). 

HR-MS (EI, 70 eV): [C21H28OSi]+•, calcd.: 324.1904; found: 324.1904. 

 

3-((tert-Butyldimethylsilyl)oxy)-4-(3-((tert-butyldimethylsilyl)oxy)phenyl)-1-tosylpyrrolidine (76p) 

 

According to TP9, 3-((tert-butyldimethylsilyl)oxy)4-iodo-1-tosylpyrrolidine (75i, 241 mg, 

0.5 mmol, 1 equiv, in 1 mL THF) reacts with the di(3-(TBSO)benzene-1-yl)manganese reagent (74e, 

0.35 mmol, 0.7 equiv) prepared according to TP7, at -20 °C. The solution was allowed to warm to room 

temperature under stirring for 8 h and was worked-up as usual. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (100:5) as eluent to afford 76p as a colorless 

solid (92%, 257 mg, 0.46 mmol). 

Mp.: 96.6-97.2 °C 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.79 – 7.73 (m, 2H), 7.37 – 7.32 (m, 2H), 7.13 (t, J = 7.8 Hz, 1H), 

6.77 – 6.67 (m, 3H), 4.07 (dt, J = 5.6 Hz, 1H), 3.67 – 3.59 (m, 2H), 3.50 (dd, J = 10.0, 6.6 Hz, 1H), 3.05 

(dd, J = 10.2, 5.2 Hz, 1H), 2.99 (dt, J = 7.8, 6.2 Hz, 1H), 2.45 (s, 3H), 0.98 (s, 9H), 0.72 (s, 9H), 0.18 (s, 

6H), -0.16 (s, 3H), -0.21 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 156.1, 143.6, 140.7, 133.9, 129.8, 129.8, 127.7, 120.5, 119.3, 

119.0, 77.6, 54.5, 52.6, 51.4, 25.8, 25.7, 21.7, 18.4, 17.9, -4.2, -4.9, -5.0. 

FT-IR (ATR, cm-1): 2954, 2929, 2886, 2857, 1602, 1585, 1485, 1472, 1463, 1347, 1280, 1252, 1160, 

1143, 1093, 1003, 905, 861, 834, 813, 778, 732, 699, 663, 608, 589. 
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MS (EI, 70 eV): m/z (%) = 507 (4), 506 (19), 505 (33), 504 (100), 224 (8), 149 (3), 91 (3), 73 (4). 

HR-MS (EI, 70 eV): [C28H44NO4SSi2]+•, calcd.: 546.2524; found: 546.2526 [M+ -CH3] 

 

5-Cyclohexyl-1,2,3-trimethoxybenzene (76q) 

 

According to TP9, iodocyclohexane (75e, 105 mg, 0.5 mmol, 1 equiv, in 1 mL THF) reacts with the 

di(3,4,5-(trimethoxy)benzene)manganese reagent (74f, 0.35 mmol, 0.7 equiv) prepared according to 

TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 8 h and was 

worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:5) as eluent to afford 76q as a colorless oil (80%, 101 mg, 0.40 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 6.43 (s, 2H), 3.86 (s, 6H), 3.83 (s, 3H), 2.50 – 2.38 (m, 1H), 1.94 – 

1.80 (m, 4H), 1.79 – 1.70 (m, 1H), 1.47 – 1.34 (m, 4H), 1.31 – 1.19 (m, 1H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 153.2, 144.1, 136.2, 103.9, 61.0, 56.2, 45.2, 34.8, 27.0, 26.3. 

FT-IR (ATR, cm-1): 2923, 2850, 2363, 2341, 1587, 1508, 1449, 1418, 1330, 1238, 1184, 1133, 1121, 

1103, 1009,956, 822, 775, 689. 

MS (EI, 70 eV): m/z (%) = 251 (25), 250 (100), 236 (9), 235 (51), 207 (13), 181 (16), 176 (10), 153 (22), 

151 (15), 57 (8). 

HR-MS (EI, 70 eV): [C15H22O3]+•, calcd.: 250.1563; found: 250.1562. 

 

tert-Butyldimethyl(3-(3,4,5-trimethoxyphenyl)butoxy)silane (76r) 

 

According to TP9, tert-butyl(3-iodobutoxy)dimethylsilane (75b, 157 mg, 0.5 mmol, 1 equiv, in 1 mL 

THF) reacts with the di(3,4,5-(trimethoxy)benzene)manganese reagent (74f, 0.35 mmol, 0.7 equiv) 

prepared according to TP7, at -20 °C. The solution was allowed to warm to room temperature under 

stirring for 8 h and was worked-up as usual. The crude product was purified by column 



EXPERIMENTAL PART 

105 

chromatography on silica using ihexane:EtOAc (100:8) as eluent to afford 76r as a colorless oil (60%, 

157 mg, 0.30 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 6.40 (s, 2H), 3.85 (s, 6H), 3.83 (s, 3H), 3.60 – 3.44 (m, 2H), 2.82 (h, 

J = 7.1 Hz, 1H), 1.77 (q, J = 6.8 Hz, 2H), 1.24 (d, J = 7.0 Hz, 3H), 0.89 (s, 9H), 0.01 (d, J = 2.0 Hz, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 153.2, 143.3, 136.3, 104.1, 61.3, 61.0, 56.2, 41.4, 36.7, 26.1, 22.5, 

18.4, -5.1. 

FT-IR (ATR, cm-1): 2954, 2929, 2856, 1588, 1510, 1459, 1420, 1322, 1236, 1128, 1100, 1010, 982, 899, 

832, 811, 773, 664. 

MS (EI, 70 eV): m/z (%) = 354 (8), 299 (7), 298 (20), 297 (100), 282 (12), 252 (13), 196 (11), 195 (10), 

191 (8), 89 (14), 73 (5). 

HR-MS (EI, 70 eV): [C19H34O4Si]+•, calcd.: 354.2226; found: 354.2226. 

 

5-(4-(Benzyloxy)butan-2-yl)benzo[d][1,3]dioxole (76s) 

 

According to TP9, ((3-iodobutoxy)methyl)benzene (75l, 145 mg, 0.5 mmol, 1 equiv, in 1 mL THF) reacts 

with the di(1,3-benzodioxol-5-yl)manganese reagent (74g, 0.35 mmol, 0.7 equiv) prepared according 

to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 8 h and 

was worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:1) as eluent to afford 76s as a colorless oil (66%, 93 mg, 0.33 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.38 – 7.26 (m, 5H), 6.75 – 6.68 (m, 2H), 6.63 (dd, J = 7.9, 1.7 Hz, 

1H), 5.92 (s, 2H), 4.44 (d, J = 2.2 Hz, 2H), 3.45 – 3.29 (m, 2H), 2.86 (dp, J = 9.0, 6.9 Hz, 1H), 1.95 – 1.75 

(m, 2H), 1.22 (d, J = 7.0 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 147.7, 145.7, 141.1, 138.7, 128.5, 127.8, 127.6, 120.1, 108.2, 

107.4, 100.9, 73.1, 68.6, 38.4, 36.5, 22.7. 

FT-IR (ATR, cm-1): 3030, 2958, 2926, 2868, 1503, 1486, 1453, 1439, 1363, 1241, 1204, 1189, 1093, 

1075, 1060, 1038, 937, 912, 860, 808, 734, 697. 

MS (EI, 70 eV): m/z (%) = 285 (11), 284 (65), 192 (52), 176 (21), 163 (30), 150 (30), 149 (100), 135 (27), 

119 (19), 91 (88), 65 (18), 43 (20). 
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HR-MS (EI, 70 eV): [C18H20O3]+•, calcd.: 284.1407; found: 284.1406. 

 

5-(Tetrahydro-2H-pyran-4-yl)benzo[d][1,3]dioxole (76t) 

 

According to TP9, 4-iodotetrahydro-2H-pyran (75m, 106 mg, 0.5 mmol, 1 equiv, in 1 mL THF) reacts 

with the di(1,3-benzodioxol-5-yl)manganese reagent (74g, 0.35 mmol, 0.7 equiv) prepared according 

to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 8 h and 

was worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (9:1) as eluent to afford 76t as a colorless solid (70%, 72 mg, 0.35 mmol). 

Mp.: 73.4-74.2 °C 

1H-NMR (400 MHz, CDCl3, ppm): δ = 6.76 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 1.8 Hz, 1H), 6.67 (ddd, J = 8.0, 

1.8, 0.6 Hz, 1H), 5.93 (s, 2H), 4.08 (td, J = 3.0, 0.9 Hz, 1H), 4.06 – 4.03 (m, 1H), 3.54 – 3.46 (m, 2H), 2.68 

(tt, J = 10.6, 5.3 Hz, 1H), 1.84 – 1.69 (m, 4H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 147.8, 146.0, 140.2, 119.6, 108.4, 107.4, 101.0, 68.5, 41.5, 34.4. 

FT-IR (ATR, cm-1): 2935, 2915, 2841, 1503, 1487, 1440, 1385, 1262, 1247, 1227, 1189, 1129, 1085, 

1037, 1020, 980, 930, 911, 875, 806, 776. 

MS (EI, 70 eV): m/z (%) = 207 (13), 206 (100), 162 (39), 161 (24), 149 (13), 148 (45), 146 (27), 135 (26), 

132 (12), 119 (13), 91 (13), 89 (12). 

HR-MS (EI, 70 eV): [C12H14O3]+•, calcd.: 206.0937; found: 206.0934. 

 

2-(4-Methoxy-3,5-dimethylphenyl)-2,3-dihydro-1H-indene (76u) 

 

According to TP9, 2-iodo-2,3-dihydro-1H-indene (75h, 122 mg, 0.5 mmol, 1 equiv, in 1 mL THF) reacts 

with the di(2-methoxy-1,3-dimethylbenzene-5-yl)manganese reagent (74h, 0.35 mmol, 0.7 equiv) 

prepared according to TP7, at -20 °C. The solution was allowed to warm to room temperature under 
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stirring for 8 h and was worked-up as usual. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:2) as eluent to afford 76u as a colorless solid (63%, 

79 mg, 0.31 mmol). 

Mp.: 52.8-54.2 °C 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.26 – 7.21 (m, 2H), 7.22 – 7.16 (m, 2H), 6.97 (s, 2H), 3.73 (s, 3H), 

3.60 (p, J = 8.8 Hz, 1H), 3.31 (dd, J = 15.4, 8.1 Hz, 2H), 3.06 (dd, J = 15.6, 9.4 Hz, 2H), 2.28 (s, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 155.4, 143.2, 140.7, 130.8, 127.5, 126.5, 124.4, 59.8, 45.2, 41.2, 

16.3. 

FT-IR (ATR, cm-1): 3020, 2934, 2842, 1482, 1459, 1447, 1436, 1224, 1144, 1015, 870, 763, 741. 

MS (EI, 70 eV): m/z (%) = 253 (13), 252 (100), 237 (29), 222 (9), 179 (9), 136 (33), 121 (10). 

HR-MS (EI, 70 eV): [C18H20O]+•, calcd.: 252.1509; found: 252.1507. 

 

3-((tert-Butyldimethylsilyl)oxy)-4-(4-methoxy-3,5-dimethylphenyl)-1-tosylpyrrolidine (76v) 

 

According to TP9, 3-((tert-butyldimethylsilyl)oxy)4-iodo-1-tosylpyrrolidine (75i, 241 mg, 

0.5 mmol, 1 equiv, in 1 mL THF) reacts with the di(2-methoxy-1,3-dimethylbenzene-5-yl)manganese 

reagent (74h, 0.35 mmol, 0.7 equiv) prepared according to TP7, at -20 °C. The solution was allowed to 

warm to room temperature under stirring for 8 h and was worked-up as usual. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as eluent to afford 76v as a 

colorless solid (82%, 200 mg, 0.41 mmol). 

Mp.: 104.5-106.1 °C 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.81 – 7.72 (m, 2H), 7.38 – 7.32 (m, 2H), 6.77 (s, 2H), 4.03 (q, J = 

5.4 Hz, 1H), 3.68 (s, 3H), 3.67 – 3.58 (m, 2H), 3.50 (dd, J = 9.9, 6.4 Hz, 1H), 3.06 (dd, J = 10.2, 5.1 Hz, 

1H), 2.94 (dt, J = 7.9, 6.1 Hz, 1H), 2.45 (s, 3H), 2.23 (s, 6H), 0.71 (s, 9H), -0.15 (s, 3H), -0.21 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 156.2, 143.6, 134.4, 134.1, 131.1, 129.8, 127.8, 127.7, 77.6, 59.8, 

54.4, 52.0, 51.3, 25.7, 21.7, 18.0, 16.2, -5.0, -5.0. 
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FT-IR (ATR, cm-1): 2951, 2928, 2886, 1598, 1472, 1346, 1252, 1225, 1160, 1091, 1034, 1009, 868, 835, 

811, 777, 733, 665, 594, 580. 

MS (EI, 70 eV): m/z (%) = 474 (6), 435 (11), 434 (58), 433 (100), 432 (60), 270 (5), 175 (8), 162 (8), 149 

(36), 91 (9), 73 (8). 

HR-MS (EI, 70 eV): [C26H39NO4SSi]+•, calcd.: 489.2364; found: 489.2344. 

 

tert-butyl 3-(3-((tert-Butyldimethylsilyl)oxy)phenyl)piperidine-1-carboxylate (76w) 

 

According to TP9, tert-butyl 3-iodopiperidine-1-carboxylate (75n, 156 mg, 0.5 mmol, 1 equiv, in 1 mL 

THF) reacts with the di(3-(TBSO)benzene-1-yl)manganese reagent (74e, 0.35 mmol, 0.7 equiv) 

prepared according to TP7, at -20 °C. The solution was allowed to warm to room temperature under 

stirring for 8 h and was worked-up as usual. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:5) as eluent to afford 76w as a yellowish oil (60%, 

116 mg, 0.30 mmol). 

1H-NMR (600 MHz, CDCl3, ppm): δ = 7.18 – 7.13 (m, 1H), 6.82 (dt, J = 7.7, 1.4 Hz, 1H), 6.72 – 6.68 (m, 

2H), 4.15 (s, 2H), 2.79 – 2.56 (m, 3H), 2.04 – 1.95 (m, 1H), 1.82 – 1.71 (m, 1H), 1.65 – 1.53 (m, 2H), 1.47 

(s, 9H), 0.98 (s, 9H), 0.20 (s, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 155.9, 155.0, 145.3, 129.4, 120.2, 119.1, 118.3, 79.6, 60.5, 31.9, 

28.7, 25.9, 25.6, 21.2, 18.4, 14.4, -4.2. 

FT-IR (ATR, cm-1): 2955, 2930, 2857, 1693, 1602, 1584, 1483, 1473, 1464, 1439, 1417, 1391, 1364, 

1280, 1252, 1158, 1148, 1134, 1002, 965, 887, 861, 837, 810, 779, 698. 

MS (EI, 70 eV): m/z (%) = 391 (2), 318 (7), 290 (8), 279 (19), 278 (100), 234 (9), 73 (8), 57 (29), 44 (9), 

43 (8), 41 (5). 

HR-MS (EI, 70 eV): [C22H37NO3Si]+•, calcd.: 391.2537; found: 391.2533.  
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4 Iron-Catalyzed Cross-Coupling Reactions of Di(hetero)arylmanganese Reagents 

and Primary and Secondary Alkyl Halides  

4.1 Typical Procedures 

Typical procedure 10 (TP10): Directed manganation of functionalized aromatics and 

heteroaromatics using (TMP)2Mn·2MgCl2·4LiCl86 

In a dry argon-flushed 25 mL Schlenk-flask, equipped with a magnetic stirring bar and a septum, the 

corresponding starting material (2 mmol) was dissolved in THF (2 mL). This solution was cooled to the 

given temperature, then (TMP)2Mn·2MgCl2·4LiCl (0.5 M in THF, 4.8 mL, 2.4 mmol) was added dropwise 

and stirred at this temperature for the indicated time. 

 

Typical Procedure 11 (TP11): Iron-catalyzed cross-coupling of di(hetero)arylmanganese reagents 

with alkyl halides 

A dry and argon-flushed 20 mL Schlenk tube, equipped with a stirring bar and a septum, was charged 

with anhydrous FeCl2 (25 mg, 0.20 mmol, 20 mol%). The alkyl halide (1 mmol, 1.0 equiv) and THF 

(1 mL) were added and the mixture was cooled to -20 °C. The di(hetero)arylmanganese reagent 

(0.7 mmol, 0.7 equiv) was added dropwise and the mixture was allowed to warm to room temperature 

overnight. A sat. aq. solution of NH4Cl (5 mL) and EtOAc (5 mL) were added, the phases were separated 

and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic phases were 

washed with brine, dried over Na2SO4 and the solvents were evaporated. The residue was subjected 

to column chromatography purification (SiO2; ihexane:EtOAc) yielding the corresponding title 

compound. 
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4.2 Preparation of Starting Materials 

The following starting materials were prepared according to literature procedures with only little 

deviation.122 The spectral data of known compounds were in full agreement with the literature. 

syn-1-Iodo-3-isopropylcyclohexane (75q) 

 

dr = 99:1 

1H-NMR (400 MHz, CDCl3, ppm): δ = 4.93 (t, J=3.6, 1H), 2.11 – 1.99 (m, 2H), 1.81 – 1.59 (m, 4H), 1.53 

– 1.41 (m, 2H), 1.29 (ddd, J=14.5, 10.9, 3.5, 1H), 1.14 – 1.00 (m, 1H), 0.86 (d, J=6.8, 6H). 

1-(tert-Butyl)-4-iodocyclohexane (75s) 

 

dr = 99:1 

1H-NMR (400 MHz, CDCl3, ppm): δ = 4.88 (s, 1H), 2.12 (d, J=13.1, 2H), 1.67 – 1.60 (m, 2H), 1.62 – 1.43 

(m, 4H), 1.12 – 1.01 (m, 1H), 0.89 (s, 9H). 

1-Fluoro-4-(2-iodopropyl)benzene (75t) 

 

1H-NMR (400 MHz, CDCl3, ppm): 7.17 – 7.12 (m, 2H), 7.04 – 6.97 (m, 2H), 4.29 (h, J=7.0, 1H), 3.22 (dd, 

J=14.2, 7.5, 1H), 3.03 (dd, J=14.2, 7.1, 1H), 1.90 (d, J=6.8, 3H). 
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4.3 Iron-Catalyzed Cross-Coupling Reactions of Di(hetero)arylmanganese Reagents 

and Primary and Secondary Alkyl Halides  

1-Cyclohexyl-4-methoxybenzene (76e)99a 

 

According to TP11, iodocyclohexane (75e, 210 mg, 1.0 mmol, 1 equiv, in 1 mL THF) reacts with the 

di(4-anisyl)manganese reagent (74a, 0.7 mmol, 0.7 equiv) prepared according to TP7, at -20 °C. The 

solution was allowed to warm to room temperature under stirring for 16 h and was worked-up as 

usual. The crude product was purified by column chromatography on silica using ihexane:EtOAc 

(100:2) as an eluent to afford 76e as a colorless solid (73%, 139 mg, 0.73 mmol). 

Mp.: 58.1-58.7 °C 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.17 – 7.11 (m, 2H), 6.87 – 6.82 (m, 2H), 3.79 (s, 3H), 2.46 (ddq, 

J=11.7, 8.7, 3.3, 1H), 1.91 – 1.81 (m, 4H), 1.79 – 1.71 (m, 1H), 1.47 – 1.32 (m, 4H), 1.31 – 1.20 (m, 1H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 157.8, 140.5, 127.8, 113.8, 55.4, 43.8, 34.9, 27.1, 26.3. 

MS (EI, 70 eV): m/z (%) = 190 (56), 147 (97), 121 (34), 111 (36), 97 (59), 95 (47), 85 (51), 84 (93), 

83 (45), 71 (65), 69 (68), 57 (100), 55 (74), 43 (71), 42 (62), 39 (72). 

HR-MS (EI, 70 eV): [C13H18O]+•, calcd.: 190.1352; found: 190.1349. 

 

1-(3-Isopropylcyclohexyl)-4-methoxybenzene (76x) 

 

According to TP11, 75q (252 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) reacts with the 

di(4-anisyl)manganese reagent (74a, 0.7 mmol, 0.7 equiv) prepared according to TP7, at -20 °C. The 

solution was allowed to warm to room temperature under stirring for 16 h and was worked-up as 

usual. The crude product was purified by column chromatography on silica using ihexane:EtOAc 

(100:2) as an eluent to afford 76x as a colorless oil (51%, 119 mg, 0.51 mmol). 

The signals of the major diastereomer are given (dr = 83:17). 
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1H-NMR (400 MHz, CDCl3, ppm): δ = 7.19 – 7.12 (m, 2H), 6.90 – 6.83 (m, 2H), 3.80 (s, 3H), 2.48 (tt, 

J=11.7, 3.4, 1H), 1.95 – 1.81 (m, 3H), 1.76 (dtt, J=11.6, 3.4, 1.8, 1H), 1.54 – 1.33 (m, 3H), 1.33 – 1.21 

(m, 2H), 1.12 (dt, J=12.8, 11.8, 1H), 0.90 (dd, J=6.8, 3.7, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 157.8, 140.5, 127.8, 113.8, 55.4, 44.6, 44.0, 38.4, 34.7, 33.2, 29.5, 

27.0, 20.0, 19.9. 

FT-IR (ATR, cm-1): 2954, 2922, 2852, 1512, 1462, 1444, 1244, 1176, 1038, 824, 806. 

MS (EI, 70 eV): m/z (%) = 232 (55), 189 (78), 147 (100), 134 (68), 121 (77). 

HR-MS (EI, 70 eV): [C16H24O]+•, calcd.: 232.1822; found: 232.1821. 

 

tert-Butyl((4-(4-methoxyphenyl)cyclohexyl)oxy)dimethylsilane (76y) 

 

According to TP11, tert-butyl((4-iodocyclohexyl)oxy)dimethylsilane (75f, 340 mg, 1.0 mmol, 1.0 equiv, 

in 1 mL THF) reacts with the di(4-anisyl)manganese reagent (74a, 0.7 mmol, 0.7 equiv) prepared 

according to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 

16 h and was worked-up as usual. The crude product was purified by column chromatography on silica 

using ihexane:EtOAc (100:2) as an eluent to afford 76y as a colorless oil (66%, 211 mg, 0.66 mmol). 

Signals of both diastereomers are given (dr = 75:25). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.18 – 7.09 (m, 2H), 6.89 – 6.79 (m, 2H), 3.79 (d, J=1.9, 3H), 4.09 

– 3.58 (m, 1H), 2.51 – 2.38 (m, 1H), 2.03 – 1.72 (m, 4H), 1.64 – 1.37 (m, 4H), 0.92 (s, 9H), 0.07 (s, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 157.9, 157.8, 140.4, 139.2, 127.8, 127.7, 113.8, 113.8, 71.6, 66.0, 

55.4, 43.3, 42.8, 36.5, 34.0, 33.1, 28.3, 26.1, 26.0, 18.4, 18.3, -4.4, -4.7. 

FT-IR (ATR, cm-1): 2927, 2855, 1612, 1582, 1512, 1471, 1462, 1450, 1441, 1420, 1387, 1375, 1360, 

1304, 1281, 1245, 1177, 1117, 1091, 1040, 1019, 1005, 988, 938, 891, 859, 833, 824, 805, 793, 772, 

749, 668. 

MS (EI, 70 eV): m/z (%) = 263 (18), 188 (50), 187 (100), 121 (17), 75 (39). 

HR-MS (EI, 70 eV): [C19H32O2Si]+•, calcd.: 320.2166; found: 320.2168.  

1-(4-(tert-Butyl)cyclohexyl)-4-methoxybenzene (76z) 
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According to TP11, 1-(tert-butyl)-4-iodocyclohexane (75s, 266 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) 

reacts with the di(4-anisyl)manganese reagent (74a, 0.7 mmol, 0.7 equiv) prepared according to TP7, 

at -20 °C. The solution was allowed to warm to room temperature under stirring for 16 h and was 

worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:2) as an eluent to afford 76z as a colorless solid (70%, 172 mg, 0.70 mmol). 

Signals of both diastereomers are given (dr = 60:40). 

Mp.: 52.0-53.8 °C 

1H-NMR (400 MHz, CDCl3, ppm): 7.26 (s, 2H), 7.16 – 7.11 (m, 2H), 6.89 – 6.81 (m, 4H), 3.80 (d, J=5.6, 

6H), 2.99 (s, 1H), 2.40 (tt, J=12.3, 3.4, 1H), 2.26 – 2.14 (m, 2H), 1.98 – 1.84 (m, 5H), 1.81 – 1.70 (m, 1H), 

1.61 – 1.53 (m, 2H), 1.47 – 1.33 (m, 2H), 1.25 – 1.01 (m, 6H), 0.85 (d, J=32.3, 18H). 

13C-NMR (101 MHz, CDCl3, ppm): 157.8, 157.3, 140.2, 137.4, 128.7, 127.8, 113.8, 113.6, 55.4, 55.4, 

48.4, 47.9, 43.8, 35.7, 35.2, 32.8, 32.6, 31.1, 27.9, 27.8, 27.7, 22.8. 

FT-IR (ATR, cm-1): 2936, 2852, 1610, 1512, 1482, 1464, 1442, 1364, 1288, 1248, 1180, 1036, 838, 824, 

816, 802, 776. 

MS (EI, 70 eV): m/z (%) = 246 (65), 147 (100), 121 (38), 57 (40), 55 (21), 44 (29). 

HR-MS (EI, 70 eV): [C17H26O]+•, calcd.: 246.1979; found: 246.1974.  
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2-(4-Methoxyphenyl)-2,3-dihydro-1H-indene (76h) 

 

According to TP11, 2-iodo-2,3-dihydro-1H-indene (75h, 244 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) 

reacts with the di(4-anisyl)manganese reagent (74a, 0.7 mmol, 0.7 equiv) prepared according to TP7, 

at -20 °C. The solution was allowed to warm to room temperature under stirring for 16 h and was 

worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:2) as an eluent to afford 76h as colorless oil (88%, 197 mg, 0.88 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.29 – 7.19 (m, 4H), 7.22 – 7.17 (m, 2H), 6.90 – 6.84 (m, 2H), 3.81 

(s, 3H), 3.66 (p, J=8.6, 1H), 3.33 (dd, J=15.4, 8.0, 2H), 3.06 (dd, J=15.5, 9.0, 2H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 158.1, 143.2, 137.7, 128.1, 126.5, 124.4, 114.0, 55.4, 45.0, 41.2. 

FT-IR (ATR, cm-1): 3066, 3019, 2932, 2903, 2833, 1611, 1511, 1482, 1458, 1441, 1243, 1220, 1177, 

1034, 825, 741. 

MS (EI, 70 eV): m/z (%) = 225 (19), 224 (100), 209 (34), 116 (36), 115 (30). 

HR-MS (EI, 70 eV): [C16H16O]+•, calcd.: 224.1196; found: 224.1193. 

1-(2-(4-Methoxyphenyl)propyl)-3-(trifluoromethyl)benzene (76c) 

 

According to TP11, 1-(2-iodopropyl)-3-(trifluoromethyl)benzene (75c, 314 mg, 1.0 mmol, 1.0 equiv, in 

1 mL THF) reacts with the di(4-anisyl)manganese reagent (74a, 0.7 mmol, 0.7 equiv) prepared 

according to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 

16 h and was worked-up as usual. The crude product was purified by column chromatography on silica 

using ihexane:EtOAc (100:5) as an eluent to afford 76c as a colorless oil (52%, 152 mg, 0.52 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.44 – 7.39 (m, 1H), 7.35 – 7.27 (m, 2H), 7.21 – 7.17 (m, 1H), 7.09 

– 7.03 (m, 2H), 6.85 – 6.80 (m, 2H), 3.79 (s, 3H), 3.02 – 2.89 (m, 2H), 2.88 – 2.79 (m, 1H), 1.24 (d, J = 

6.8 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 158.2, 141.8, 138.3, 132.7, 130.5 (q, J = 31.9 Hz), 128.5, 128.0, 

126.0 (q, J = 3.9 Hz), 124.4 (q, J = 272.2 Hz), 122.8 (q, J = 3.9 Hz), 113.9, 55.4, 45.2, 41.0, 21.4. 
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FT-IR (ATR, cm-1): 2959, 2929, 2836, 2360, 1611, 1512, 1449, 1326, 1245, 1176, 1159, 1118, 1072, 

1037, 904, 827, 796, 702, 661. 

MS (EI, 70 eV): m/z (%) = 135 (100), 105 (5), 103 (4), 91 (6), 79 (3), 77 (4), 42 (3). 

HR-MS (EI, 70 eV): [C17H17F3O]+•, calcd.: 294.1226; found: 294.1232. 

tert-Butyl(3-(4-methoxyphenyl)butoxy)dimethylsilane (76b) 

 

According to TP11, tert-butyl(3-iodobutoxy)dimethylsilane (75b, 314 mg, 1.0 mmol, 1.0 equiv, in 1 mL 

THF) reacts with the di(4-anisyl)manganese reagent (74a, 0.7 mmol, 0.7 equiv) prepared according to 

TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 16 h and was 

worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:2) as an eluent to afford 76b as a yellowish oil (44%, 130 mg, 0.44 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.14 – 7.08 (m, 2H), 6.86 – 6.81 (m, 2H), 3.79 (s, 3H), 3.57 – 3.43 

(m, 2H), 2.84 (h, J = 7.1 Hz, 1H), 1.80 – 1.73 (m, 2H), 1.22 (d, J = 7.0 Hz, 3H), 0.88 (s, 9H), 0.00 (d, J = 

0.8 Hz, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 157.9, 139.5, 128.0, 113.8, 61.4, 55.4, 41.5, 35.4, 26.1, 22.7, 18.4, 

-5.1. 

FT-IR (ATR, cm-1): 2953, 2927, 2856, 2834, 1612, 1512, 1462, 1245, 1176, 1095, 1037, 899, 827, 773. 

MS (EI, 70 eV): m/z (%) = 237 (100), 89 (56), 85 (42), 84 (31), 71 (49), 69 (32), 57 (89), 43 (46). 

HR-MS (EI, 70 eV): [C13H21O2Si]+•, calcd.: 237.1305; found: 237.1314 [M+-tBu]. 

 

1-Fluoro-4-(2-(4-methoxyphenyl)propyl)benzene (76aa) 

 

According to TP11, 1-fluoro-4-(2-iodopropyl)benzene (75t, 264 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) 

reacts with the di(4-anisyl)manganese reagent (74a, 0.7 mmol, 0.7 equiv) prepared according to TP7, 

at -20 °C. The solution was allowed to warm to room temperature under stirring for 16 h and was 
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worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (100:2) as an eluent to afford 76aa as colorless solid (58%, 142 mg, 0.58 mmol). 

Mp.: 42.2-43.4 °C 

1H-NMR (400 MHz, CDCl3, ppm): 7.09 – 7.03 (m, 2H), 7.02 – 6.96 (m, 2H), 6.94 – 6.87 (m, 2H), 6.85 – 

6.80 (m, 2H), 3.79 (s, 3H), 2.88 (ddd, J=29.2, 13.7, 7.0, 2H), 2.74 (dd, J=13.2, 7.6, 1H), 1.23 (d, J=6.8, 

3H). 

13C-NMR (101 MHz, CDCl3, ppm): 161.41 (d, J=243.2), 158.00, 138.77, 136.58, 130.58 (d, J=7.7), 

128.05, 114.90 (d, J=21.0), 113.81, 55.37, 44.55, 41.27, 21.50. 

FT-IR (ATR, cm-1): 2950, 2922, 1504, 1466, 1454, 1442, 1262, 1236, 1220, 1180, 1156, 1114, 1102, 

1036, 1010, 830, 816, 726, 714. 

MS (EI, 70 eV): m/z (%) = 244 (2), 135 (100), 119 (2), 109 (3), 105 (7), 103 (3). 

HR-MS (EI, 70 eV): [C16H17FO]+•, calcd.: 244.1258; found: 244.1278. 

 

1-Methoxy-4-(3-phenylpropyl)benzene (76ab) 

 

According to TP11, (3-iodopropyl)benzene (75u, 246 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) reacts with 

the di(4-anisyl)manganese reagent (74a, 0.7 mmol, 0.7 equiv) prepared according to TP7, at -20 °C. 

The solution was allowed to warm to room temperature under stirring for 16 h and was worked-up as 

usual. The crude product was purified by column chromatography on silica using ihexane:EtOAc 

(100:2) as an eluent to afford 76ab as colorless oil (46%, 103 mg, 0.46 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): 7.34 – 7.27 (m, 2H), 7.24 – 7.18 (m, 3H), 7.16 – 7.11 (m, 2H), 6.89 – 

6.84 (m, 2H), 3.81 (s, 3H), 2.65 (dt, J=17.0, 7.7, 4H), 2.02 – 1.91 (m, 2H). 

13C-NMR (101 MHz, CDCl3, ppm): 157.9, 142.5, 134.5, 129.4, 128.6, 128.4, 125.8, 113.9, 55.4, 35.5, 

34.6, 33.3. 

FT-IR (ATR, cm-1): 3026, 2934, 2856, 2834, 1612, 1584, 1510, 1496, 1462, 1454, 1442, 1300, 1242, 

1176, 1106, 1036, 826, 808, 742, 698. 

MS (EI, 70 eV): m/z (%) = 226 (41), 134 (18), 121 (100), 91 (20), 78 (6), 77 (9). 

HR-MS (EI, 70 eV): [C16H18O]+•, calcd.: 226.1353; found: 226.1351. 



EXPERIMENTAL PART 

117 

1-(2-(4-(Methoxymethoxy)phenyl)propyl)-3-(trifluoromethyl)benzene (76j) 

 

According to TP11, 1-(2-iodopropyl)-3-(trifluoromethyl)benzene (75c, 314 mg, 1 mmol, 1 equiv, in 

1 mL THF) reacts with the di(4-(methoxymethoxy)benzene)manganese reagent (74b, 0.7 mmol, 

0.7 equiv) prepared according to TP7, at -20 °C. The mixture was allowed to warm to room 

temperature under stirring for 16 h and was worked-up as usual. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (100:2) as an eluent to afford 76j as a colorless 

oil (46%, 148 mg, 0.46 mmol). 

1H-NMR (599 MHz, CDCl3, ppm): δ = 7.42 (d, J=7.7, 1H), 7.33 (t, J=7.7, 1H), 7.27 (s, 1H), 7.22 (d, J=7.6, 

1H), 7.08 – 7.03 (m, 2H), 6.98 – 6.93 (m, 2H), 5.15 (s, 2H), 3.48 (s, 3H), 3.02 – 2.88 (m, 2H), 2.87 – 2.79 

(m, 1H), 1.24 (d, J=6.7, 3H). 

13C-NMR (151 MHz, CDCl3, ppm): δ = 155.8, 141.8, 139.7, 132.7 (d, J = 1.2 Hz), 130.5 (q, J = 31.9 Hz), 

128.6, 128.1, 126.0 (q, J = 3.8 Hz), 124.4 (q, J = 272.3 Hz), 122.9 (q, J = 3.8 Hz), 116.3, 94.7, 56.1, 45.1, 

41.1, 21.4. 

FT-IR (ATR, cm-1): 2961, 2930, 2899, 1511, 1328, 1314, 1234, 1200, 1152, 1120, 1073, 1019, 999, 921, 

831, 796, 702, 661. 

MS (EI, 70 eV): m/z (%) = 324 (2), 165 (100), 159 (10), 135 (42), 45 (80). 

HR-MS (EI, 70 eV): [C18H19F3O2]+•, calcd.: 324.1332; found: 324.1334. 
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tert-Butyl 4-(4-(methoxymethoxy)phenyl)piperidine-1-carboxylate (76k) 

 

According to TP11, tert-butyl 4-iodopiperidine-1-carboxylate (75j, 311 mg, 1.0 mmol, 1.0 equiv, in 

1 mL THF) reacts with the di(4-(methoxymethoxy)benzene)manganese reagent (74v, 0.7 mmol, 

0.7 equiv) prepared according to TP7, at -20 °C. The solution was allowed to warm to room 

temperature under stirring for 16 h and was worked-up as usual. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (10:1) as an eluent to afford 76k as a colorless 

solid (62%, 198 mg, 0.62 mmol). 

Mp.: 84.8 – 86.6 °C 

1H-NMR (599 MHz, CDCl3, ppm): δ = 7.14 – 7.09 (m, 2H), 7.00 – 6.97 (m, 2H), 5.15 (s, 2H), 4.23 (s, 2H), 

3.47 (s, 3H), 2.85 – 2.73 (m, 2H), 2.59 (tt, J = 12.2, 3.6 Hz, 1H), 1.79 (d, J = 12.6 Hz, 2H), 1.63 – 1.54 (m, 

2H), 1.48 (s, 9H). 

13C-NMR (151 MHz, CDCl3, ppm): δ = 155.8, 155.0, 139.4, 127.8, 116.4, 94.7, 79.5, 56.1, 44.7, 42.1, 

33.5, 28.6. 

FT-IR (ATR, cm-1): 2974, 2932, 2850, 1687, 1511, 1422, 1365, 1279, 1228, 1198, 1151, 1123, 1106, 

1077, 1001, 985, 922, 831, 762. 

MS (EI, 70 eV): m/z (%) = 321 (7), 265 (22), 221 (22), 203 (17), 57 (89), 45 (100). 

HR-MS (EI, 70 eV): [C18H27NO4]+•, calcd.: 321.1935; found: 321.1931. 

 

tert-Butyl (3-(2,3-dihydro-1H-inden-2-yl)phenyl) carbonate (76n) 

 

According to TP11, 2-iodo-2,3-dihydro-1H-indene (75h, 244 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) 

reacts with the di(3-(BocO)benzene-1-yl)manganese reagent (74d, 0.7 mmol, 0.7 equiv) prepared 

according to TP7, at -20 °C. The solution was allowed to warm to room temperature under stirring for 

16 h and was worked-up as usual. The crude product was purified by column chromatography on silica 

using ihexane:EtOAc (100:2) as an eluent to afford 76n as a colorless oil (56%, 175 mg, 0.56 mmol). 
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1H-NMR (599 MHz, CDCl3, ppm): δ = 7.30 (t, J = 7.9 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.21 – 7.14 (m, 3H), 

7.12 – 7.10 (m, 1H), 7.03 (ddd, J = 8.1, 2.4, 1.0 Hz, 1H), 3.70 (p, J = 8.6 Hz, 1H), 3.36 (dd, J = 15.5, 8.2 

Hz, 2H), 3.08 (dd, J = 15.5, 8.9 Hz, 2H), 1.56 (s, 9H). 

13C-NMR (151 MHz, CDCl3, ppm): δ = 152.1, 151.3, 147.4, 142.8, 129.4, 126.6, 124.5, 124.5, 120.1, 

119.2, 83.6, 45.4, 40.9, 27.9. 

FT-IR (ATR, cm-1): 2980, 2934, 2907, 2844, 2361, 2332, 1753, 1586, 1369, 1269, 1253, 1232, 1138, 

1002, 780, 742, 692. 

MS (EI, 70 eV): m/z (%) = 211 (11), 210 (84), 116 (27), 115 (11), 57 (100), 40 (11). 

HR-MS (EI, 70 eV): [C20H22O3]+•, calcd.: 310.1564; found: 310.1556. 

 

4-(1-(4-Chlorophenyl)propan-2-yl)benzonitrile (76ac) 

 

According to TP11, 1-chloro-4-(2-iodopropyl)benzene (75a, 281 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) 

reacts with the di(4-cyanophenyl)manganese reagent (74i, 0.7 mmol, 0.7 equiv) prepared according 

to TP8 (exchange at 0 °C for 2 h), at -20 °C. The solution was allowed to warm to room temperature 

under stirring for 16 h and was worked-up as usual. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:5) as an eluent to afford 76ac as yellowish solid 

(57%, 147 mg, 0.57 mmol). 

Mp.: 58.0-59.0 °C 

1H-NMR (400 MHz, CDCl3, ppm): 7.57 – 7.53 (m, 2H), 7.23 – 7.16 (m, 4H), 6.94 – 6.90 (m, 2H), 3.03 (h, 

J=7.1, 1H), 2.89 – 2.75 (m, 2H), 1.28 (d, J=6.9, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): 151.9, 138.2, 132.4, 132.1, 130.5, 128.5, 128.1, 119.1, 110.2, 44.0, 

42.2, 21.0. 

FT-IR (ATR, cm-1): 2960, 2926, 2856, 2222, 1606, 1504, 1490, 1456, 1408, 1370, 1108, 1088, 1014, 832, 

802, 766, 728. 

MS (EI, 70 eV): m/z (%) = 255 (10), 130 (25), 127 (29), 125 (100). 

HR-MS (EI, 70 eV): [C16H14ClN]+•, calcd.: 255.0810; found: 255.0811. 
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4-(4-(4-Methoxyphenyl)butan-2-yl)benzonitrile (76ad) 

 

According to TP11, 1-(3-iodobutyl)-4-methoxybenzene (75k, 290 mg, 1.0 mmol, 1.0 equiv, in 1 mL 

THF) reacts with the di(4-cyanophenyl)manganese reagent (74i, 0.7 mmol, 0.7 equiv) prepared 

according to TP8 (exchange at 0 °C for 2 h), at -20 °C. The solution was allowed to warm to room 

temperature under stirring for 16 h and was worked-up as usual. The crude product was purified by 

column chromatography on silica using ihexane:EtOAc (100:5) as an eluent to afford 76ad as yellow 

oil (48%, 127 mg, 0.48 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): 7.62 – 7.57 (m, 2H), 7.32 – 7.27 (m, 2H), 7.06 – 6.99 (m, 2H), 6.84 – 

6.78 (m, 2H), 3.78 (s, 3H), 2.77 (h, J=7.0, 1H), 2.53 – 2.36 (m, 2H), 1.89 (dt, J=8.4, 7.4, 2H), 1.27 (d, 

J=6.9, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): 158.0, 153.2, 133.9, 132.4, 129.3, 128.1, 119.2, 113.9, 110.0, 55.4, 

39.8, 39.7, 32.9, 22.1. 

FT-IR (ATR, cm-1): 2958, 2928, 2856, 2226, 1608, 1512, 1456, 1442, 1416, 1300, 1242, 1176, 1118, 

1036, 1018, 832, 820, 750, 702. 

MS (EI, 70 eV): m/z (%) = 265 (37), 121 (100), 108 (6), 91 (7), 77 (8). 

HR-MS (EI, 70 eV): [C18H19NO]+•, calcd.: 265.1462; found: 265.1460. 

 

1-Methoxy-4-(3-(4-(trifluoromethyl)phenyl)butyl)benzene (76m) 

 

According to TP11, 1-(3-iodobutyl)-4-methoxybenzene (75k, 290 mg, 1.0 mmol, 1.0 equiv, in 1 mL 

THF) reacts with the di(4-(trifluoromethyl)benzene)manganese reagent (74c, 0.7 mmol, 0.7 equiv) 

prepared according to TP7, at -20 °C. The solution was allowed to warm to room temperature under 

stirring for 16 h and was worked-up as usual. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:2) as an eluent to afford 76m as a colorless oil 

(78%, 242 mg, 0.78 mmol). 
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1H-NMR (400 MHz, CDCl3, ppm): δ = 7.57 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.06 – 7.01 (m, 

2H), 6.84 – 6.80 (m, 2H), 3.79 (s, 3H), 2.78 (h, J = 7.1 Hz, 1H), 2.52 – 2.41 (m, 2H), 1.98 – 1.85 (m, 2H), 

1.28 (d, J = 6.9 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 157.9, 151.6 (d, J = 1.5 Hz), 134.2, 129.3, 128.4 (q, J = 32.2 Hz), 

127.6, 125.5 (q, J = 4.0 Hz), 124.5 (q, J = 272.0 Hz), 113.9, 55.4, 40.0, 39.5, 33.0, 22.4. 

FT-IR (ATR, cm-1): 2958, 2931, 2835, 2360, 2332, 1511, 1323, 1243, 1161, 1115, 1066, 1036, 1016, 837, 

820. 

MS (EI, 70 eV): m/z (%) = 308 (23), 135 (17), 134 (12), 122 (16), 121 (100), 91 (10). 

HR-MS (EI, 70 eV): [C18H19F3O]+•, calcd.: 308.1383; found: 308.1383. 

 

tert-Butyl(3-(2-fluoro-[1,1'-biphenyl]-4-yl)butoxy)dimethylsilane (76ae) 

 

According to TP11, tert-butyl(3-iodobutoxy)dimethylsilane (75b, 314 mg, 1.0 mmol, 1.0 equiv, in 1 mL 

THF) reacts with 74j (0.7 mmol, 0.7 equiv) prepared according to TP7, at -20 °C. The solution was 

allowed to warm to room temperature under stirring for 16 h and was worked-up as usual. The crude 

product was purified by column chromatography on silica using ihexane:EtOAc (100:4) as an eluent to 

afford 76ae as colorless oil (80%, 288 mg, 0.80 mmol). 

1H-NMR (600 MHz, CDCl3, ppm): 7.57 – 7.54 (m, 2H), 7.46 – 7.42 (m, 2H), 7.38 – 7.34 (m, 2H), 7.05 (dd, 

J=7.8, 1.7, 1H), 7.00 (dd, J=12.0, 1.7, 1H), 3.59 (dt, J=10.2, 6.2, 1H), 3.52 (dt, J=10.2, 6.7, 1H), 2.95 (h, 

J=7.1, 1H), 1.82 (dt, J=7.1, 6.3, 2H), 1.29 (d, J=7.0, 3H), 0.90 (s, 9H), 0.03 (d, J=1.5, 6H). 

13C-NMR (150 MHz, CDCl3, ppm): 159.9 (d, J=247.4), 149.3 (d, J=6.7), 136.1, 130.6, 129.1, 128.5, 127.5, 

126.5 (d, J=13.4), 123.3, 114.7 (d, J=22.6), 61.1, 41.1, 35.9, 26.1, 22.2, 18.4, -5.2. 

FT-IR (ATR, cm-1): 2956, 2928, 2856, 1484, 1472, 1462, 1418, 1254, 1098, 1076, 1010, 980, 900, 870, 

832, 810, 774, 766, 724, 696. 

MS (EI, 70 eV): m/z (%) = 302 (22), 301 (100), 207 (22), 179 (77), 165 (35). 

HR-MS (EI, 70 eV): [C21H28FOSi]+•, calcd.: 343.1888; found: 343.1872 [M+-CH3]. 
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tert-Butyl 4-(thiophen-3-yl)piperidine-1-carboxylate (76af) 

 

According to TP11, 75j (311 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) reacts with the 

di(thiophene-3-yl)manganese reagent (74k, 0.7 mmol, 0.7 equiv) prepared according to TP8 

(exchange at 0 to 25 °C for 16 h). The solution was allowed to warm to room temperature under 

stirring for 16 h and was worked-up as usual. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:2) as an eluent to afford 76af as yellowish oil (87%, 

233 mg, 0.87 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): 7.27 (dd, J=5.0, 2.9, 1H), 6.98 (dd, J=5.0, 1.4, 1H), 6.96 – 6.95 (m, 1H), 

4.20 (s, 2H), 2.89 – 2.70 (m, 3H), 1.96 – 1.87 (m, 2H), 1.57 (qd, J=12.5, 4.2, 2H), 1.47 (s, 9H). 

13C-NMR (101 MHz, CDCl3, ppm): 155.0, 146.9, 126.8, 125.6, 119.1, 79.6, 37.9, 33.1, 28.6, 28.6. 

FT-IR (ATR, cm-1): 2974, 2932, 2852, 1686, 1478, 1466, 1446, 1420, 1392, 1364, 1292, 1274, 1236, 

1158, 1116, 1080, 1018, 992, 940, 874, 850, 834, 776, 724. 

MS (EI, 70 eV): m/z (%) = 267 (23), 211 (80), 196 (45), 194 (36), 57 (100), 43 (32). 

HR-MS (EI, 70 eV): [C14H21NO2S]+•, calcd.: 267.1288; found: 267.1281. 

 

4-(trans-4-((tert-Butyldimethylsilyl)oxy)-1-tosylpyrrolidin-3-yl)-2-chloronicotinonitrile (76ag) 

 

According to TP11, 75i (481 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) reacts with 74l (0.7 mmol, 

0.7 equiv) prepared according to TP10 (directed metalation at 0 °C for 2 h), at -20 °C. The solution was 

allowed to warm to room temperature under stirring for 16 h and was worked-up as usual. The crude 

product was purified by column chromatography on silica using ihexane:EtOAc (8:2) as an eluent to 

afford 76ag as colorless solid (46%, 224 mg, 0.46 mmol). 

Only one diastereomer was observed as product (dr = 99:1). 

Mp.: 152.9-154.7 
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1H-NMR (400 MHz, CDCl3, ppm): 8.54 (d, J=5.3, 1H), 7.77 – 7.72 (m, 2H), 7.48 (d, J=5.3, 1H), 7.37 (d, 

J=8.0, 2H), 4.22 (dt, J=5.0, 3.9, 1H), 3.70 – 3.59 (m, 3H), 3.51 (dt, J=6.5, 4.3, 1H), 3.04 (dd, J=10.6, 3.8, 

1H), 2.46 (s, 3H), 0.68 (s, 9H), -0.08 (d, J=8.2, 6H). 

13C-NMR (101 MHz, CDCl3, ppm): 156.0, 153.8, 153.0, 144.3, 133.0, 130.1, 127.7, 120.1, 113.7, 111.3, 

54.5, 51.0, 50.4, 29.8, 25.5, 21.7, 17.7, -4.8, -4.9. 

FT-IR (ATR, cm-1): 2952, 2926, 2854, 1580, 1540, 1476, 1456, 1376, 1344, 1326, 1262, 1256, 1210, 

1184, 1156, 1136, 1096, 1032, 1016, 1004, 952, 910, 864, 850, 840, 826, 808, 776, 708, 680, 664. 

MS (EI, 70 eV): m/z (%) = 437 (10), 436 (40), 435 (23), 434 (100), 91 (19). 

HR-MS (EI, 70 eV): [C22H27ClN3O3SSi]+•, calcd.: 476.1225; found: 476.1215 [M+ -CH3]. 

 

2-Fluoro-3-(tetrahydro-2H-pyran-4-yl)benzonitrile (76ah) 

 

According to TP11, 4-iodotetrahydro-2H-pyran (75m, 212 mg, 1.0 mmol, 1.0 equiv, in 1 mL THF) reacts 

with 74m (0.7 mmol, 0.7 equiv) prepared according to TP10 (directed metalation at 0 °C for 2 h), 

at -20 °C. The solution was allowed to warm to room temperature under stirring for 16 h and was 

worked-up as usual. The crude product was purified by column chromatography on silica using 

ihexane:EtOAc (8:2) as an eluent to afford 76ah as colorless solid (86%, 177 mg, 0.86 mmol). 

Mp.: 98.8-100-7 °C 

1H-NMR (400 MHz, CDCl3, ppm): 7.50 (m, 2H), 7.23 (t, J=7.8, 1H), 4.12 – 4.06 (m, 2H), 3.57 (td, J=11.7, 

2.4, 2H), 3.17 (tt, J=11.9, 4.1, 1H), 1.83 (qd, J=12.5, 11.9, 4.4, 2H), 1.77 – 1.72 (m, 2H). 

13C-NMR (101 MHz, CDCl3, ppm): 161.0 (d, J=257.4), 133.9 (d, J=13.3), 132.7 (d, J=5.7), 131.2, 124.9 (d, 

J=4.2), 114.2, 101.6 (d, J=16.8), 68.0, 34.3, 32.2. 

FT-IR (ATR, cm-1): 2940, 2922, 2850, 2234, 1614, 1582, 1460, 1388, 1366, 1304, 1278, 1272, 1260, 

1246, 1234, 1204, 1188, 1174, 1122, 1080, 1026, 1016, 974, 948, 908, 858, 826, 800, 736, 700. 

MS (EI, 70 eV): m/z (%) = 205 (44), 161 (79), 160 (49), 147 (100), 134 (46). 

HR-MS (EI, 70 eV): [C12H12FNO]+•, calcd.: 205.0898; found: 205.0898.  



EXPERIMENTAL PART 

124 

5 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides 

with α-Bromolactones and Related Derivatives 

5.1 Preparation of α-Bromolactones 

(3S,4R)-3-Bromo-4-((tert-butyldimethylsilyl)oxy)dihydrofuran-2(3H)-one (95a) 

 

D-Isoascorbic acid (96, 200 g, 1.14 mol, 1.00 equiv) was dissolved in water (1.5 L). The solution was 

cooled to 0 °C and Na2CO3 (168 g, 1.59 mol, 1.40 equiv) was added in portions. The reaction mixture 

was allowed to warm to rt, stirred for 30 min and cooled to 0 °C again. Hydrogen peroxide (33% in 

water, 400 mL, 3.98 mol, 3.50 equiv) was added very slowly in small portions. The mixture was slowly 

heated to 55 °C and stirred for 40 min. After cooling to 0 °C, activated charcoal (25.0 g) was added, 

the mixture was heated to 70 °C for 1 h and the hot suspension was filtered over celite. The filtrate 

was acidified to pH = 1 with concentrated hydrochloric acid (ca. 170 mL) and the water was removed 

on a rotatory evaporator. The resulting residue was extracted by refluxing in EtOAc (6 x 900 mL). The 

combined organic layers were dried over Na2SO4, the solvents were evaporated and the residue 

containing the crude chiral dihydroxylactone (128 g, 1.09 mol, 96% yield) as a yellowish oil was used 

in the next step without further purification.129 

Hydrobromic acid (33% in glacial acetic acid, 420 mL) was cooled to 0 °C and added to the residue 

containing the dihydroxylactone. The mixture was allowed to warm to rt and was stirred for 2 h. 

Methanol (500 mL) was added over 3 h using a dropping funnel and the mixture was stirred at rt 

overnight. The volatiles were removed under reduced pressure and the resulting suspension was 

extracted with EtOAc (3 x 250 mL). The combined organic layers were dried over Na2SO4, the solvents 

were evaporated and the residue was subjected to column chromatography purification (silica, 

ihexane:EtOAc 6:4) to afford the α-bromo-β-hydroxylactone 97 as brownish oil (54.0 g, 300 mmol, 

26% yield over two steps).130 

The α-bromo-β-hydroxylactone 97 (54.0 g, 300 mmol, 1.00 equiv) was dissolved in CH2Cl2 (500 mL) 

and cooled to 0 °C. Imidazole (26.6 g, 390 mmol, 1.30 equiv) and DMAP (367 mg, 3 mmol, 1 mol%) 

                                                             
129 a) N. Cohen, B. L. Banner, A. J. Laurenzano, L. Carozza Org. Synth. 1985, 63, 127. b) L. L. Wong, R. L. Wong, G. 
Loh, P. E. W. Tan, S. K. Teoh, S. M. Shaik, P. N. Sharratt, W. Chew, S. T. Tan, D. Wang Org. Process Res. Dev. 2012, 
16, 1003-1012. c) S. R. Borkar, N. Bokolia, I. S. Aidhen, I. A. Khan Tetrahedron: Asymmetry 2017, 28, 186-195. 
130 a) M. Bols, I. Lundt Acta Chem. Scand. Ser. B 1988, 42, 67-74. b) C. Falentin, D. Beaupère, G. Demailly, I. Stasik 
Tetrahedron 2008, 64, 9989-9991. 
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were added and TBSCl (58.8 g, 390 mmol, 1.30 equiv) dissolved in CH2Cl2 (200 mL) was added dropwise 

over 30 min. The mixture was allowed to warm to rt and was stirred overnight, was washed with sat. 

aq. NaHCO3 (300 mL) and water (300 mL). The organic layer was dried over Na2SO4, the solvents were 

evaporated and the residue was subjected to column chromatography purification (silica, 

ihexane:EtOAc 100:2.5) to afford the protected α-bromolactone 95a as colorless solid (52.0 g, 176 

mmol, 59% yield, dr = 99:1, 99% ee).  

m.p.: 39 – 40 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 4.60 (dd, J = 9.7, 2.4 Hz, 1H, H-4), 4.51 (td, J = 4.3, 2.3 Hz, 1H, H-

3), 4.19 (dd, J = 9.7, 2.2 Hz, 1H, H-4’), 4.04 (d, J = 2.5 Hz, 1H, H-2), 0.88 (s, 9H, H-7-9), 0.12 (d, J = 5.7 

Hz, 6H, H-5-6). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 171.8 (C-1), 75.4 (C-3), 74.1 (C-4), 41.8 (C-2), 25.7 (C-7-9), 18.0 

(C-10), -4.6 (C-5/6), -4.8 (C-5/6). 

FT-IR (ATR, cm-1): 𝜈̃ = 2953, 2928, 2893, 2884, 2857, 1781, 1747, 1470, 1462, 1373, 1367, 1360, 1346, 

1259, 1251, 1231, 1193, 1170, 1103, 1057, 997, 987, 937, 906, 875, 838, 824, 807, 780, 765, 713, 671, 

663. 

MS (EI, 70 eV): m/z (%) = 159 (12), 158 (12), 119 (13), 118 (32), 117 (100), 103 (10), 89 (23), 75 (30), 

73 (24), 59 (16), 57 (35), 45 (12), 41 (20). 

HR-MS (EI, 70 eV): [C6H10BrO3Si]+• = [M – C(CH3)3]+•, calcd.: 236.9577; found: 236.9575. 

cHPLC: Chiracel OD-H; heptane: iPrOH = 99.5:0.5; 1 mL·min-1; 209 nm; Rf(3S,4R) = 9.2 min; Rf(3R-4S) = 

9.9 min. 

Optical Rotation: 𝛼𝐷
20 = −35.2° (c = 1.0, CHCl3). 
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(3R,4S)-3-Bromo-4-((tert-butyldimethylsilyl)oxy)dihydrofuran-2(3H)-one (95b) 

 

L-carnitine (98, 3.22 g, 20.0 mmol, 1.0 equiv) was dissolved in DMF (32 mL). The mixture was heated 

to 150 °C for 16 h, cooled to room temperature and DMF was evaporated under reduced pressure. 

Sat. aq. NH4Cl (10 mL) was added and extracted with EtOAc (3 x 25 mL). The combined organic layers 

were washed with 10% aq. LiCl (25 mL) and brine (25 mL), dried over Na2SO4 and the volatiles were 

removed under reduced pressure. The residue was subjected to column chromatography purification 

(silica, ihexane:EtOAc 7:3) to afford the chiral β-hydroxylactone (561 mg, 5.50 mmol, 28% yield). 

The β-hydroxylactone (561 mg, 5.50 mmol, 1.00 equiv) was dissolved in CH2Cl2 (11 mL), DMF (8 µL) 

and NEt3 (0.92 mL, 6.60 mmol, 1.20 equiv) were added. The mixture was cooled to 0 °C. TBSCl (995 

mg, 6.60 mmol, 1.20 equiv) was added and allowed to warm to rt overnight. Sat. aq. NH4Cl (10 mL) 

was added, the layers were separated and the aqueous phase was extracted with CH2Cl2 (3 x 25 mL). 

The combined organic layers were dried over Na2SO4 and the volatiles were removed under reduced 

pressure. The residue was subjected to column chromatography purification (silica, ihexane:EtOAc 

7:3) to afford the β-OTBS-substituted lactone 99 (1.18 g, 5.47 mmol, 99% yield). 

Lactone 99 (1.18 g, 5.47 mmol, 1.00 equiv) was dissolved in CH2Cl2 (30 mL) and NEt3 (4.67 mL, 32.8 

mmol, 6.00 equiv) was added. The mixture was cooled to 0 °C and TMSOTf (3.0 mL, 16.4 mmol, 3.0 

equiv) was added and stirring was continued for 30 min. N-Bromosuccinimide (1.49 g, 8.20 mmol, 1.50 

equiv) was dissolved in CH2Cl2 (15 mL) and the solution was added to the reaction mixture dropwise. 

Stirring was continued for 1 h, sat. aq. Na2CO3 (20 mL) and water (20 mL) was added, the layers were 

separated and the aqueous phase was extracted with CH2Cl2 (3 x 25 mL). The combined organic layers 

were dried over Na2SO4 and the volatiles were removed under reduced pressure. The residue was 

subjected to column chromatography purification (silica, ihexane:EtOAc 100:3) to afford the 

α-bromolactone 95b as colorless solid (983 mg, 3.34 mmol, 61% yield, dr = 99:1, 99% ee). 

The analytical data is identical to the (3S,4R)-enantiomer 95a. 

Optical Rotation: 𝛼𝐷
20 = +35.4° (c = 1.0, CHCl3). 

 

  



EXPERIMENTAL PART 

127 

(2R,5R,6R)-5-Bromo-2-(tert-butyl)-6-methyl-1,3-dioxan-4-one (102a)114 

 

L-threonine (101, 20.0 g, 168 mmol, 1.00 equiv) and KBr (31.0 g, 260 mmol, 1.50 equiv) were dissolved 

in water (300 mL) and conc. H2SO4 (50 mL) was added. The solution was cooled to -12 °C and NaNO2 

(18.8 g, 272 mmol, 1.60 equiv) dissolved in water (60 mL) was added dropwise over 2 h. The mixture 

was allowed to warm to rt, stirred overnight and extracted with EtOAc (3 x 200 mL). The combined 

organic layers were dried over Na2SO4 and the volatiles were removed under reduced pressure. The 

crude viscous oil containing the α-bromo acid (22.0 g, 120 mmol) was dissolved in CH2Cl2 (150 mL), 

cooled to 0 °C, and NEt3 (36.8 mL, 264 mmol, 2.20 equiv) and TMSCl (33.5 mL, 264 mmol, 2.20 equiv) 

were added. The mixture was allowed to warm to rt and was stirred for 3 d. Pentane (100 mL) was 

added, the salts were removed by filtration and the filtrate was evaporated to dryness. Pentane (150 

mL) was added again, the salts were removed by filtration and the filtrate was evaporated to dryness. 

The crude product 103 (32.8 g, 100 mmol, 60% yield over two steps) was clean enough for the 

following transformation. 

The TMS-protected compound 103 (32.8 g, 100 mmol, 1.0 equiv) and pivalaldehyde (8.44 g, 98.0 

mmol, 0.98 equiv) were dissolved in CH2Cl2 (220 mL) and the solution was cooled to -78 °C. TMSOTf 

(0.54 mL, 3 mol%) was added and stirring at -78 °C was continued overnight. Pyridine (0.8 mL, 10.0 

mmol, 0.10 equiv) was added, the mixture was allowed to warm to rt and washed with sat. aq. NaHCO3 

(30 mL). The organic layer was dried over Na2SO4 and the volatiles were removed under reduced 

pressure. The residue was subjected to column chromatography purification (silica, ihexane:EtOAc 

9:1) to afford the chiral (R)-α-bromolactone 102a (6.87 g, 27.4 mmol, 27% yield) as colorless solid. 

m.p.: 49 – 51 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 5.00 (s, 1H, H-5), 4.31 (d, J = 2.2 Hz, 1H, H-3), 3.88 (qd, J = 6.1, 2.2 

Hz, 1H, H-2), 1.40 (d, J = 6.1 Hz, 3H, H-1), 1.01 (s, 9H, H-7-9). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 165.4 (C-4), 110.0 (C-5), 72.1 (C-2), 46.1 (C-3), 35.7 (C-6), 24.0 (C-

7-9), 19.1 (C-1). 

FT-IR (ATR, cm-1): 𝜈̃ = 2979, 2938, 2878, 1716, 1706, 1701, 1685, 1670, 1654, 1647, 1636, 1458, 1374, 

1281, 1168, 1126, 1084, 1028, 941, 853. 
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cHPLC: Chiracel OJ-H; heptane:iPrOH = 95:5; 1 mL·min-1; 230 nm; Rf(R*) = 7.4 min; Rf(S*) = 16.3 min. 

Optical Rotation: 𝛼𝐷
20 = −14.2° (c = 1.0, CHCl3). 

 

 

(2S,5S,6S)-5-Bromo-2-(tert-butyl)-6-methyl-1,3-dioxan-4-one (102b) 

The (S)-enantiomer 102b was synthesized by using D-threonine as starting material. 

The analytical data is identical to the other (R)-enantiomer 102a. 

Optical Rotation: 𝛼𝐷
20 = +15.8° (c = 1.0, CHCl3). 
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5.2 Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc 

Reagents with α-Bromolactones 

Typical Procedure 1 (TP12) for the cobalt-catalyzed cross-couplings of arylzinc reagents with 

α-bromolactones: Synthesis of (3S,4S)-4-((tert-butyldimethylsilyl)oxy)-3-(4-methoxyphenyl)-

dihydrofuran-2(3H)-one (100a) 

 

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was 

charged with magnesium turnings (291 mg, 12.0 mmol, 1.20 equiv), dry LiCl (508 mg, 12.0 mmol, 1.20 

equiv) and dry THF (1 M solution relating to the aryl halide, 10 mL). 4-Bromoanisole (1.87 g, 10.0 mmol, 

1.00 equiv) was added dropwise at 0 °C. The progress of the magnesium insertion was monitored by 

GC-analysis of reaction aliquots quenched with I2. Upon completion of the insertion (2 h), the 

concentration of the Grignard reagent was determined by titration4 of I2 in THF (c = 0.82 M).  

Solid ZnCl2 (681 mg, 5.00 mmol, 1.00 equiv) was placed in a dry and argon flushed Schlenk-tube 

equipped with a magnetic stirring bar and a septum and dried under vacuum at 250 °C for 5 min. After 

cooling to rt under vacuum, an argon atmosphere was applied and THF (1 M according to ZnCl2, 5 mL) 

was added. The Grignard reagent (6.1 mL, 5.00 mmol, 1.00 equiv) was added at 0 °C, the solution was 

allowed to warm to rt and stirred for 15 min. The concentration of 4-anisylzinc chloride 78b was 

determined by titration119 of I2 (c = 0.43 M).  

A dry and argon-flushed 20 mL Schlenk-tube, equipped with a stirring bar and a septum, was charged 

with CoCl2 (6.5 mg, 0.050 mmol, 10 mol%). The solid was flame dried under high vacuum for 5 min. 

After cooling to rt, PPh3 (13 mg, 0.050 mmol, 10 mol%) and the α-bromolactone 95a (148 mg, 0.500 

mmol, 1.00 equiv) was added. The mixture was dissolved in THF (1 mL) and cooled to -20 °C. 

4-Anisylzinc chloride 78b (1.4 mL, 0.600 mmol, 1.20 equiv) was added and the mixture was allowed to 

warm to rt overnight. The reaction was monitored by GC-analysis (C11H24 was used as an internal 

standard) and TLC. Upon consumption of the starting material, sat. aq. NH4Cl (5 mL) and EtOAc (5 mL) 

were added, the phases were separated and the aqueous phase was extracted with EtOAc (3 x 20 mL). 

The combined organic layers were dried over Na2SO4, the solvents were evaporated and the residue 

was subjected to column chromatography purification on silica using ihexane:EtOAc (9:1) as an eluent 

to afford 100a as colorless solid (131 mg, 0.406 mmol, 81% yield, dr = 99:1, 99% ee). 

m.p.: 56 – 58 °C. 
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1H-NMR (400 MHz, CDCl3, ppm): δ = 7.16 – 7.02 (m, 2H), 6.97 – 6.73 (m, 2H), 4.44 (dd, J = 5.9, 2.4 Hz, 

2H), 4.11 – 3.97 (m, 1H), 3.80 (s, 3H), 3.64 (d, J = 6.1 Hz, 1H), 0.83 (s, 9H), -0.07 (s, 3H), -0.12 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 175.8, 159.4, 129.5, 126.6, 114.6, 76.3, 72.6, 55.4, 55.0, 25.7, 

18.0, -4.8, -4.9. 

FT-IR (ATR, cm-1): 𝜈̃ = 2997, 2953, 2930, 2856, 1785, 1613, 1515, 1473, 1465, 1345, 1249, 1221, 1177, 

1144, 1122, 1109, 1091, 1072, 1023, 1011, 942, 915, 838, 826, 816, 778, 675. 

MS (EI, 70 eV): m/z (%) = 237 (13), 190 (26), 162 (20), 133 (68), 121 (40), 117 (14), 89 (10), 77 (11), 75 

(100), 45 (10), 44 (11), 43 (66). 

HR-MS (EI, 70 eV): [C17H26O4Si]+•, calcd.: 322.1595; found: 322.1607. 

cHPLC: Chiracel OD-H; heptane: iPrOH = 98:2; 1 mL·min-1; 227 nm; Rf(S*) = 13.3 min; Rf(R*) = 16.8 

min. 

Optical Rotation: 𝛼𝐷
20 = −36.6° (c = 1.0, CHCl3). 

 

 

(3S,4S)-4-((tert-Butyldimethylsilyl)oxy)-3-(4-(trifluoromethoxy)phenyl)dihydrofuran-2(3H)-one 

(100b) 

 

According to TP12, α-bromolactone 95a (148 mg, 0.500 mmol, 1.00 equiv) was treated with 

4-trifluoromethoxyphenylzinc chloride 78c (0.600 mmol, 1.20 equiv). The crude product was purified 
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by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 100b as colorless 

solid (63% yield, dr = 99:1, 99% ee, 119 mg, 0.316 mmol). 

m.p.: 57 – 58 °C.  

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.25 (d, J = 2.2 Hz, 4H), 4.56 – 4.31 (m, 2H), 4.21 – 3.97 (m, 1H), 

3.79 – 3.57 (m, 1H), 0.82 (s, 9H), -0.08 (s, 3H), -0.15 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 174.7, 149.0, 133.4, 130.1, 121.7, 120.8 (q, J = 257.5 Hz), 76.2, 

72.4, 54.9, 25.6, 18.0, -4.9. 

FT-IR (ATR, cm-1): 𝜈̃ = 2956, 2932, 2860, 1786, 1510, 1472, 1464, 1390, 1254, 1214, 1154, 1126, 1070, 

1028, 1004, 922, 836, 778, 674. 

MS (EI, 70 eV): m/z (%) = 290 (31), 244 (38), 216 (18), 188 (14), 187 (97), 174 (31), 118 (14), 117 (100), 

101 (11), 89 (11), 75 (84), 73 (11), 61 (16), 43 (52). 

HR-MS (EI, 70 eV): [C17H23O4F3Si]+•, calcd.: 376.1312; found: 376.1311. 

cHPLC: Chiracel OD-H; heptane: iPrOH = 98:2; 1 mL·min-1; 210 nm; Rf(S*) = 11.1 min; Rf(R*) = 17.6 min. 

Optical Rotation: 𝛼𝐷
20 = −11.0° (c = 1.0, CHCl3). 

 

 

  



EXPERIMENTAL PART 

132 

(3S,4S)-4-((tert-Butyldimethylsilyl)oxy)-3-(4-(trifluoromethyl)phenyl)dihydrofuran-2(3H)-one 

(100c) 

 

According to TP12, α-bromolactone 95a (148 mg, 0.500 mmol, 1.00 equiv) was coupled with 

4-trifluoromethylphenylzinc chloride 78d (0.600 mmol, 1.20 equiv). The crude product was purified 

by column chromatography on silica using ihexane:EtOAc (100:8) as an eluent to afford 100c as 

yellowish solid (62% yield, dr = 99:1, 99% ee, 112 mg, 0.310 mmol). 

m.p.: 61 – 63 °C. 

1H-NMR (400 MHz, benzene-D6, ppm): δ = 7.32 (d, J = 8.1 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 3.93 – 3.70 

(m, 2H), 3.47 (dd, J = 8.6, 7.0 Hz, 1H), 3.15 (d, J = 8.1 Hz, 1H), 0.74 (s, 9H), -0.36 (s, 3H), -0.45 (s, 3H). 

13C-NMR (101 MHz, benzene-D6, ppm): δ = 173.0, 139.5, 130.1 (q, J = 32.4 Hz), 129.4, 125.8 (q, J = 3.9 

Hz), 124.8 (q, J = 272.1 Hz), 75.7, 71.4, 54.8, 25.6, 17.8, -5.1, -5.2. 

FT-IR (ATR, cm-1): 𝜈̃ = 2952, 2932, 2858, 1795, 1621, 1469, 1325, 1257, 1224, 1155, 1136, 1125, 1111, 

1068, 1012, 923, 836, 784, 765, 702, 674. 

MS (EI, 70 eV): m/z (%) = 245 (8), 228 (5), 171 (15), 151 (5), 118 (7), 117 (100), 89 (6), 75 (28), 73 (7), 

43 (18). 

HR-MS (EI, 70 eV): [C17H23F3O3Si]+•, calcd.: 360.1363; found: 360.1344. 

cHPLC: Chiracel AD-H; heptane: iPrOH = 98:2; 1 mL·min-1; 216 nm; Rf(S*) = 9.3 min; Rf(R*) = 7.4 min. 

Optical Rotation: 𝛼𝐷
20 = −24° (c = 1.0, CHCl3). 
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(3S,4S)-4-((tert-Butyldimethylsilyl)oxy)-3-(3-(methylthio)phenyl)dihydrofuran-2(3H)-one (100d) 

 

According to TP12, α-bromolactone 95a (148 mg, 0.500 mmol, 1.00 equiv) was coupled with 3-

thioanisylzinc chloride 78e (0.600 mmol, 1.20 equiv). The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 100d as colorless solid (63% 

yield, dr = 99:1, 99% ee, 107 mg, 0.316 mmol). 

m.p.: 109 – 110 °C.  

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.29 (t, J = 7.7 Hz, 1H), 7.20 (ddd, J = 7.9, 1.9, 1.1 Hz, 1H), 7.08 (t, 

J = 1.9 Hz, 1H), 6.97 (dt, J = 7.5, 1.5 Hz, 1H), 4.49 – 4.35 (m, 2H), 4.15 – 4.01 (m, 1H), 3.70 – 3.62 (m, 

1H), 2.47 (s, 3H), 0.84 (s, 9H), -0.07 (s, 3H), -0.12 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 175.1, 139.6, 135.3, 129.5, 126.6, 126.1, 124.9, 76.1, 72.7, 55.5, 

25.7, 18.0, 15.9, -4.8, -4.9. 

FT-IR (ATR, cm-1): 𝜈̃ = 2954, 2928, 2858, 1792, 1592, 1574, 1468, 1416, 1350, 1262, 1252, 1226, 1180, 

1152, 1126, 1086, 1070, 1014, 928, 868, 860, 836, 794, 780, 744, 696, 682, 674. 

MS (EI, 70 eV): m/z (%) = 207 (13), 206 (100), 150 (14), 149 (74), 134 (17), 117 (29), 115 (11), 102 (21), 

75 (78). 

HR-MS (EI, 70 eV): [C17H26O3SSi]+•, calcd.: 338.1366; found: 338.1376. 
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cHPLC: Chiracel AD-H; heptane: iPrOH = 99.5:0.5; 1 mL·min-1; 213 nm; Rf(S*) = 31.1 min; Rf(R*) = 40.0 

min. 

Optical Rotation: 𝛼𝐷
20 = −23.6° (c = 1.0, CHCl3). 

 

 

(3S,4S)-4-((tert-Butyldimethylsilyl)oxy)-3-(3-((tert-butyldimethylsilyl)oxy)phenyl)dihydrofuran-

2(3H)-one (100e) 

 

According to TP12, α-bromolactone 95a (148 mg, 0.500 mmol, 1.00 equiv) was coupled with arylzinc 

reagent 78a (0.600 mmol, 1.20 equiv). The crude product was purified by column chromatography on 

silica using ihexane:EtOAc (9:1) as an eluent to afford 100e as yellow oil (77% yield, dr = 99:1, 99% ee, 

163 mg, 0.386 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.22 (t, J = 7.9 Hz, 1H), 6.83 – 6.75 (m, 2H), 6.68 (t, J = 2.1 Hz, 1H), 

4.52 – 4.40 (m, 2H), 4.14 – 4.03 (m, 1H), 3.64 (d, J = 5.7 Hz, 1H), 0.98 (s, 9H), 0.84 (s, 9H), 0.19 (s, 6H), 

-0.06 (s, 3H), -0.09 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 175.4, 156.3, 136.0, 130.1, 121.3, 120.3, 119.7, 76.3, 72.8, 55.6, 

25.8, 25.7, 18.3, 18.0, -4.3, -4.8, -4.9. 

FT-IR (ATR, cm-1): 𝜈̃ = 2955, 2930, 2891, 2858, 1786, 1774, 1603, 1586, 1487, 1472, 1464, 1438, 1279, 

1253, 1237, 1160, 1121, 1028, 1002, 908, 870, 837, 808, 779, 722, 694. 
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MS (EI, 70 eV): m/z (%) = 365 (39), 337 (60), 278 (25), 277 (62), 233 (100), 159 (63), 117 (88). 

HR-MS (EI, 70 eV): [C22H38O4Si2]+•, calcd.: 422.2303; found: 422,2313. 

cHPLC: Chiracel OD-H; heptane: iPrOH = 98:2; 1 mL·min-1; 270 nm; Rf(S*) = 5.6 min; Rf(R*) = 7.8 min. 

Optical Rotation: 𝛼𝐷
20 = −13.4° (c = 1.0, CHCl3). 

 

 

(3S,4S)-4-((tert-Butyldimethylsilyl)oxy)-3-(6-methoxynaphthalen-2-yl)dihydrofuran-2(3H)-one 

(100f) 

 

According to TP12, α-bromolactone 95a (148 mg, 0.500 mmol, 1.00 equiv) was coupled with 

(6-methoxynaphthalen-2-yl)zinc chloride 78f (0.600 mmol, 1.20 equiv). The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 100f as 

colorless solid (61% yield, dr = 99:1, 99% ee, 113 mg, 0.303 mmol). 

m.p.: 136 – 137 °C.  

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.76 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.9 Hz, 1H), 7.60 (d, J = 1.9 Hz, 

1H), 7.30 – 7.24 (m, 1H), 7.20 – 7.09 (m, 2H), 4.61 – 4.44 (m, 2H), 4.13 (dd, J = 8.9, 5.7 Hz, 1H), 3.92 (s, 

3H), 3.84 (d, J = 6.4 Hz, 1H), 0.84 (s, 9H), -0.08 (s, 3H), -0.14 (s, 3H). 
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13C-NMR (101 MHz, CDCl3, ppm): δ = 175.7, 158.0, 134.1, 129.5, 129.4, 129.0, 127.9, 127.5, 126.3, 

119.5, 105.7, 76.2, 72.9, 55.7, 55.4, 25.7, 18.0, -4.7, -4.9. 

FT-IR (ATR, cm-1): 𝜈̃ = 2954, 2928, 2856, 1792, 1608, 1508, 1488, 1468, 1422, 1402, 1392, 1346, 1274, 

1262, 1252, 1238, 1228, 1192, 1182, 1154, 1134, 1086, 1072, 1028, 1018, 1002, 974, 928, 906, 888, 

860, 848, 834, 814, 782, 738, 704, 686, 670. 

MS (EI, 70 eV): m/z (%) = 372 (17), 316 (2), 315 (7), 314 (23), 288 (4), 287 (18), 240 (24), 171 (100). 

HR-MS (EI, 70 eV): [C21H28O4Si]+•, calcd.: 372.1751; found: 372.1747. 

cHPLC: Chiracel OJ-H; heptane: iPrOH = 98:2; 1 mL·min-1; 233 nm; Rf(S*) = 36.6 min; Rf(R*) = 25.7 min. 

Optical Rotation: 𝛼𝐷
20 = −39.9° (c = 1.0, EtOAc). 

 

 

(3S,4S)-4-((tert-Butyldimethylsilyl)oxy)-3-(benzo[d][1,3]dioxol-5-yl)dihydrofuran-2(3H)-one (100g) 

 

According to TP12, α-bromolactone 95a (148 mg, 0.500 mmol, 1.00 equiv) was coupled with 

benzodioxolylzinc chloride 78g (0.600 mmol, 1.20 equiv). The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (100:8) as an eluent to afford 100g as colorless solid 

(84% yield, dr = 99:1, 99% ee, 141 mg, 0.419 mmol). 

m.p.: 75 – 77 °C. 



EXPERIMENTAL PART 

137 

1H-NMR (400 MHz, benzene-D6, ppm): δ = 6.71 – 6.54 (m, 2H), 6.47 (dd, J = 8.0, 1.8 Hz, 1H), 5.35 – 

5.18 (m, 2H), 3.96 (dt, J = 7.6, 6.6 Hz, 1H), 3.84 (dd, J = 8.8, 6.4 Hz, 1H), 3.51 (dd, J = 8.8, 6.8 Hz, 1H), 

3.19 (d, J = 7.8 Hz, 1H), 0.77 (s, 9H), -0.29 (s, 3H), -0.31 (s, 3H). 

13C-NMR (101 MHz, benzene-D6, ppm): δ = 174.0, 148.6, 147.7, 129.1, 122.5, 109.1, 108.6, 101.2, 76.0, 

71.5, 55.0, 25.7, 17.9, -5.0, -5.1. 

FT-IR (ATR, cm-1): 𝜈̃ = 2955, 2927, 2857, 2359, 2332, 1760, 1605, 1508, 1471, 1444, 1379, 1359, 1269, 

1252, 1237, 1164, 1095, 1063, 1044, 996, 932, 913, 888, 826, 775, 723, 681, 666. 

MS (EI, 70 eV): m/z (%) = 251 (30), 204 (12), 162 (21), 147 (25), 135 (100), 117 (41), 89 (14), 75 (48), 

73 (13), 43 (19). 

HR-MS (EI, 70 eV): [C17H24O5Si]+•, calcd.: 336.1388; found: 336.1388. 

cHPLC: Chiracel OD-H; heptane: iPrOH = 99:1; 1 mL·min-1; 289 nm; Rf(S*) = 18.9 min; Rf(R*) = 27.4 min. 

Optical Rotation: 𝛼𝐷
20 = −28.9° (c = 1.0, CHCl3). 
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(3S,4S)-3-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-4-((tert-butyldimethylsilyl)oxy)dihydrofuran-2(3H)-

one (100h) 

 

According to TP12, α-bromolactone 95a (2.50 g, 8.46 mmol, 1.00 equiv) was coupled with arylzinc 

reagent 78h (10.2 mmol, 1.20 equiv). The crude product was purified by column chromatography on 

silica using ihexane:EtOAc (8:2) as an eluent to afford 100h as yellow solid. (94% yield, dr = 99:1, 99% 

ee, 3.65 g, 7.96 mmol). 

m.p.: 83 – 85 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.47 – 7.32 (m, 5H), 6.71 (s, 1H), 6.63 (s, 1H), 5.06 (q, J = 11.4 Hz, 

2H), 4.68 (td, J = 6.8, 6.3 Hz, 1H), 4.29 (dd, J = 9.0, 6.9 Hz, 1H), 3.97 (dd, J = 9.0, 6.3 Hz, 1H), 3.86 (s, 

3H), 3.85 (s, 3H), 3.60 (d, J = 6.8 Hz, 1H), 0.81 (s, 9H), -0.12 (s, 3H), -0.17 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 176.1, 150.5, 149.6, 143.3, 136.6, 128.7, 128.2, 127.8, 115.3, 

115.3, 99.3, 74.2, 73.2, 71.6, 56.7, 56.3, 53.1, 25.7, 18.0, -4.8, -5.0. 

FT-IR (ATR, cm-1): 𝜈̃ = 2952, 2929, 2897, 2886, 2855, 1779, 1612, 1511, 1463, 1450, 1400, 1388, 1338, 

1251, 1223, 1195, 1152, 1117, 1071, 1021, 933, 882, 836, 815, 780, 758, 733, 697, 683, 672. 

MS (EI, 70 eV): m/z (%) = 326 (28), 235 (51), 207 (13), 179 (11), 91 (100), 75 (42), 73 (17). 

HR-MS (EI, 70 eV): [C25H34O6Si]+•, calcd.: 458.2119; found: 458.2116. 

cHPLC: Chiracel AD-H; heptane: iPrOH = 95:5; 1 mL·min-1; 220 nm; Rf(S*) = 11.7 min; Rf(R*) = 18.5 min. 

Optical Rotation: 𝛼𝐷
20 = −44.7° (c = 1.0, CHCl3). 
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(2R,5R,6R)-2-(tert-Butyl)-5-(4-methoxyphenyl)-6-methyl-1,3-dioxan-4-one (104a) 

 

According to TP12, α-bromolactone 102a (126 mg, 0.500 mmol, 1.00 equiv) was coupled with 4-

anisylzinc chloride 78b (0.750 mmol, 1.50 equiv) using CoCl2 (13 mg, 0.100 mmol, 20 mol%) and PPh3 

(26 mg, 0.100 mmol, 20 mol%) as catalytic system. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 104a as colorless solid (81% 

yield, dr = 99:1, 97% ee, 113 mg, 0.405 mmol). 

m.p.: 68 – 70 °C. 

1H-NMR (400 MHz, benzene-D6, ppm): δ = 6.88 – 6.78 (m, 2H), 6.78 – 6.69 (m, 2H), 4.78 (s, 1H), 3.53 

(dq, J = 10.5, 6.0 Hz, 1H), 3.30 (s, 3H), 3.12 (d, J = 10.7 Hz, 1H), 1.04 (s, 9H), 0.90 (d, J = 6.0 Hz, 3H). 

13C-NMR (101 MHz, benzene-D6, ppm): δ = 168.5, 159.6, 130.7, 114.5, 108.2, 77.3, 55.5, 54.8, 35.5, 

24.1, 19.3. 

FT-IR (ATR, cm-1): 𝜈̃ = 2961, 2907, 2838, 1736, 1616, 1519, 1484, 1461, 1409, 1345, 1271, 1209, 1177, 

1152, 1120, 1081, 1026, 992, 970, 924, 881, 830, 762. 

MS (EI, 70 eV): m/z (%) = 193 (47), 165 (32), 149 (28), 148 (100), 147 (45), 133 (17), 121 (14), 91 (15), 

77 (16), 57 (17), 43 (13), 41 (15). 

HR-MS (EI, 70 eV): [C16H22O4]+•, calcd.: 278.1513; found: 278.1514. 
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cHPLC: Chiracel OJ-H; heptane: iPrOH = 9:1; 1 mL·min-1; 222 nm; Rf(R*) = 13.3 min; Rf(S*) = 9.4 min. 

Optical Rotation: 𝛼𝐷
20 = +29.4° (c = 1.0, EtOAc). 

 

 

(2R,5R,6R)-2-(tert-Butyl)-6-methyl-5-(4-(trifluoromethoxy)phenyl)-1,3-dioxan-4-one (104b) 

 

According to TP12, α-bromolactone 102a (126 mg, 0.500 mmol, 1.00 equiv) was coupled with 

4-trifluoromethoxyphenylzinc chloride 78c (0.750 mmol, 1.50 equiv) using CoCl2 (13 mg, 0.100 mmol, 

20 mol%) and PPh3 (26 mg, 0.100 mmol, 20 mol%) as catalytic system. The crude product was purified 

by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 104b as colorless 

solid. (63% yield, dr = 99:1, 99% ee, 105 mg, 0.316 mmol). 

m.p.: 64 – 67 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.21 (s, 4H), 5.15 (s, 1H), 3.99 (dq, J = 10.5, 6.0 Hz, 1H), 3.50 (d, J 

= 10.6 Hz, 1H), 1.23 (d, J = 6.1 Hz, 3H), 1.03 (s, 9H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 169.6, 148.9 (q, J = 1.9 Hz), 134.2, 130.8, 121.6, 120.5 (q, J = 

257.5 Hz), 109.1, 77.0, 55.5, 35.5, 24.0, 19.6. 

FT-IR (ATR, cm-1): 𝜈̃ = 2974, 2966, 2876, 1738, 1512, 1486, 1366, 1344, 1258, 1208, 1150, 1114, 1088, 

1030, 1020, 992, 966, 938, 922, 884, 844, 804, 762. 
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HR-MS: Fragmentation: [C10H10O2F3]+• = M – [C6H9O2]+•, calcd.: 219.0633; found: 219.0625. 

cHPLC: Chiracel OD-H; heptane: iPrOH = 98:2; 1 mL·min-1; 210 nm; Rf(R*) = 7.9 min; Rf(S*) = 8.7 min. 

Optical Rotation: 𝛼𝐷
20 = −3.3° (c = 1.0, CHCl3). 

 

 

(2R,5R,6R)-2-(tert-Butyl)-6-methyl-5-(4-(trifluoromethyl)phenyl)-1,3-dioxan-4-one (104c) 

 

According to TP12, α-bromolactone 102a (126 mg, 0.500 mmol, 1.00 equiv) was coupled with 

4-trifluoromethylphenylzinc chloride 78d (0.750 mmol, 1.50 equiv) using CoCl2 (13 mg, 0.100 mmol, 

20 mol%) and PPh3 (26 mg, 0.100 mmol, 20 mol%) as catalytic system. The crude product was purified 

by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 104c as colorless 

crystals. (61% yield, dr = 99:1, 99% ee, 97 mg, 0.307 mmol). 

m.p.: 90 – 94 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.83 – 7.55 (m, 2H), 7.51 – 7.14 (m, 2H), 5.17 (s, 1H), 4.03 (dq, J 

= 10.6, 6.0 Hz, 1H), 3.56 (d, J = 10.6 Hz, 1H), 1.23 (d, J = 6.0 Hz, 3H), 1.03 (s, 9H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 169.3, 139.4 (d, J = 1.5 Hz), 130.3 (q, J = 32.6 Hz), 129.8, 126.1 

(q, J = 3.8 Hz), 124.0 (q, J = 272.1 Hz), 109.2, 76.8, 55.9, 35.5, 24.0, 19.5. 

FT-IR (ATR, cm-1): 𝜈̃ = 2967, 2919, 2875, 2359, 2341, 1733, 1619, 1484, 1452, 1366, 1322, 1283, 1214, 

1165, 1128, 1117, 1066, 1020, 992, 964, 884, 830, 760, 685. 
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MS (EI, 70 eV): m/z (%) = 214 (3), 213 (31), 203 (31), 187 (11), 186 (100), 185 (22), 158 (13), 117 (52), 

115 (11). 

HR-MS (EI, 70 eV): Fragmentation: [C10H10OF3]+• = M – [C6H9O2]+•, calcd.: 203.0684; found: 203.0677. 

cHPLC: Chiracel AD-H; heptane: iPrOH = 70:30; 1 mL·min-1; 215 nm; Rf(R*) = 7.9 min; Rf(S*) = 17.5 min. 

Optical Rotation: 𝛼𝐷
20 = +24.0° (c = 1.0, CHCl3). 

 

 

(2R,5R,6R)-2-(tert-Butyl)-5-(3-((tert-butyldimethylsilyl)oxy)phenyl)-6-methyl-1,3-dioxan-4-one 

(104d) 

 

According to TP12, α-bromolactone 102a (126 mg, 0.500 mmol, 1.00 equiv) was coupled with arylzinc 

reagent 78a (0.750 mmol, 1.50 equiv) using CoCl2 (13 mg, 0.100 mmol, 20 mol%) and PPh3 (26 mg, 

0.100 mmol, 20 mol%) as catalytic system. The crude product was purified by column chromatography 

on silica using ihexane:EtOAc (95:5) as an eluent to afford 104d as colorless solid (69% yield, dr = 99:1, 

99% ee, 131 mg, 0.346 mmol). 

m.p.: 62 – 63 °C.  

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.20 (t, J = 7.9 Hz, 1H), 6.85 – 6.69 (m, 2H), 6.64 (t, J = 2.1 Hz, 1H), 

5.14 (s, 1H), 3.98 (dq, J = 10.4, 6.0 Hz, 1H), 3.41 (d, J = 10.6 Hz, 1H), 1.23 (d, J = 6.0 Hz, 3H), 1.03 (s, 9H), 

0.98 (s, 9H), 0.19 (s, 6H). 
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13C-NMR (101 MHz, CDCl3, ppm): δ = 169.9, 156.1, 136.9, 130.1, 122.2, 121.2, 119.5, 108.9, 77.2, 56.1, 

35.5, 25.8, 24.1, 19.6, 18.3, -4.2, -4.3. 

FT-IR (ATR, cm-1): 𝜈̃ = 2959, 2931, 2859, 1732, 1602, 1585, 1485, 1473, 1458, 1446, 1342, 1274, 1253, 

1236, 1217, 1151, 1114, 1030, 1002, 993, 982, 961, 939, 926, 874, 860, 837, 804, 783, 758, 728, 699. 

MS (EI, 70 eV): m/z (%) = 378 (5), 293 (8), 248 (18), 192 (24), 191 (100), 73 (8). 

HR-MS (EI, 70 eV): [C21H34O4Si]+•, calcd.: 378.2221; found: 378.2212. 

cHPLC: Chiracel OD-H; heptane: iPrOH = 99.5:0.5; 1 mL·min-1; 218 nm; Rf(R*) = 7.2 min; Rf(S*) = 12.3 

min. 

Optical Rotation: 𝛼𝐷
20 = −0.9° (c = 1.0, CHCl3). 

 

 

(2R,5R,6R)-2-(tert-Butyl)-6-methyl-5-(3-(methylthio)phenyl)-1,3-dioxan-4-one (104e) 

 

According to TP12, α-bromolactone 102a (126 mg, 0.500 mmol, 1.00 equiv) was coupled with 

3-thioanisylzinc chloride 78e (0.750 mmol, 1.50 equiv) using CoCl2 (13 mg, 0.100 mmol, 20 mol%) and 

PPh3 (26 mg, 0.100 mmol, 20 mol%) as catalytic system. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 104e as colorless solid (61% 

yield, dr = 99:1, 99% ee, 90 mg, 0.306 mmol). 

m.p.: 56 – 57 °C.  
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1H-NMR (400 MHz, CDCl3, ppm): δ = 7.28 (t, J = 7.7 Hz, 1H), 7.19 (dt, J = 7.9, 1.1 Hz, 1H), 7.05 (t, J = 1.8 

Hz, 1H), 6.94 (dt, J = 7.6, 1.4 Hz, 1H), 5.15 (s, 1H), 4.01 (dq, J = 10.6, 6.1 Hz, 1H), 3.44 (d, J = 10.6 Hz, 

1H), 2.47 (s, 3H), 1.23 (d, J = 6.1 Hz, 3H), 1.03 (s, 9H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 169.7, 139.6, 136.2, 129.5, 127.4, 126.0, 125.9, 109.0, 77.1, 56.1, 

35.5, 24.1, 19.6, 15.9. 

FT-IR (ATR, cm-1): 𝜈̃ = 2978, 2962, 2872, 1738, 1592, 1574, 1482, 1440, 1422, 1410, 1378, 1366, 1342, 

1278, 1234, 1212, 1150, 1112, 1086, 1030, 992, 968, 938, 926, 914, 780, 760, 738, 696. 

MS (EI, 70 eV): m/z (%) = 294 (6), 181 (19), 165 (11), 164 (100), 163 (13), 117 (60), 115 (15). 

HR-MS (EI, 70 eV): [C16H22O3S]+•, calcd.: 294.1284; found: 294.1281. 

cHPLC: Chiracel OJ-H; heptane: iPrOH = 98:2; 1 mL·min-1; 211 nm; Rf(S*) = 12.29 min; Rf(R*) = 20.01 

min. 

Optical Rotation: 𝛼𝐷
20 = +4.3° (c = 1.0, CHCl3). 

 

 

(2R,5R,6R)-2-(tert-Butyl)-5-(6-methoxynaphthalen-2-yl)-6-methyl-1,3-dioxan-4-one (104f) 

 

According to TP12, α-bromolactone 102a (126 mg, 0.500 mmol, 1.00nequiv) was coupled with 

(6-methoxynaphthalen-2-yl)zinc chloride 78f (0.750 mmol, 1.50 equiv) using CoCl2 (13 mg, 0.100 
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mmol, 20 mol%) and PPh3 (26 mg, 0.100 mmol, 20 mol%) as catalytic system. The crude product was 

purified by column chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 104f as 

colorless solid (82% yield, dr = 99:1, 99% ee, 134 mg, 0.408 mmol). 

m.p.: 199 – 200 °C.  

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.74 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.9 Hz, 1H), 7.60 (d, J = 1.8 Hz, 

1H), 7.23 (dd, J = 8.4, 1.8 Hz, 1H), 7.16 (dd, J = 8.9, 2.5 Hz, 1H), 7.12 (d, J = 2.5 Hz, 1H), 5.22 (s, 1H), 4.26 

– 4.02 (m, 1H), 3.91 (s, 3H), 3.62 (d, J = 10.6 Hz, 1H), 1.26 (d, J = 6.1 Hz, 3H), 1.06 (s, 9H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 170.2, 158.0, 134.1, 130.6, 129.3, 129.0, 128.6, 127.8, 126.9, 

119.4, 109.0, 105.7, 77.2, 56.2, 55.4, 35.5, 24.1, 19.6. 

FT-IR (ATR, cm-1): 𝜈̃ = 2962, 2906, 2874, 1730, 1630, 1606, 1484, 1462, 1394, 1378, 1364, 1342, 1266, 

1234, 1218, 1204, 1176, 1162, 1142, 1110, 1080, 1026, 992, 980, 960, 946, 936, 922, 900, 882, 846, 

826, 812, 756, 736, 718, 668. 

MS (EI, 70 eV): m/z (%) = 328 (37), 243 (47), 215 (27), 199 (56), 198 (100), 155 (24).  

HR-MS (EI, 70 eV): [C20H24O4]+•, calcd.: 328.1669; found: 328.1668. 

cHPLC: Chiracel OJ-H; heptane: iPrOH = 98:2; 1 mL·min-1; 232 nm; Rf(R*) = 39.7 min; Rf(S*) = 45.9 min. 

Optical Rotation: 𝛼𝐷
20 = +64.2° (c = 1.0, EtOAc). 
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(2R,5R,6R)-5-(Benzo[d][1,3]dioxol-5-yl)-2-(tert-butyl)-6-methyl-1,3-dioxan-4-one (104g) 

 

According to TP12, α-bromolactone 102a (126 mg, 0.500 mmol, 1.0 equiv) was coupled with 

benzodioxolylzinc chloride 78g (0.750 mmol, 1.5 equiv) using CoCl2 (13 mg, 0.100 mmol, 20 mol%) and 

PPh3 (26 mg, 0.100 mmol, 20 mol%) as catalytic system. The crude product was purified by column 

chromatography on silica using ihexane:EtOAc (9:1) as an eluent to afford 104g as colorless oil (73% 

yield, dr = 99:1, 99% ee, 107 mg, 0.366 mmol). 

1H-NMR (400 MHz, benzene-D6, ppm): δ = 6.58 (d, J = 7.9 Hz, 1H), 6.48 (d, J = 1.8 Hz, 1H), 6.29 (dd, J = 

7.9, 1.8 Hz, 1H), 5.29 (dd, J = 13.0, 1.4 Hz, 2H), 4.71 (s, 1H), 3.44 (dq, J = 10.5, 6.0 Hz, 1H), 3.00 (d, J = 

10.7 Hz, 1H), 1.02 (s, 9H), 0.86 (d, J = 6.1 Hz, 3H). 

13C-NMR (101 MHz, benzene-D6, ppm): δ = 168.2, 148.4, 147.6, 129.9, 123.2, 109.8, 108.6, 108.1, 

101.2, 77.1, 55.9, 35.4, 24.1, 19.3. 

FT-IR (ATR, cm-1): 𝜈̃ = 2978, 2962, 2906, 2874, 1738, 1506, 1486, 1464, 1444, 1410, 1378, 1366, 1340, 

1278, 1246, 1228, 1212, 1152, 1112, 1084, 1030, 992, 968, 930, 806, 762, 734. 

MS (EI, 70 eV): m/z (%) = 292 (7), 207 (17), 163 (11), 162 (100), 43 (32). 

HR-MS (EI, 70 eV): [C16H20O5], calcd.: 292.1305; found: 292.1298. 

cHPLC: Chiracel OJ-H; heptane: iPrOH = 9:1; 1 mL·min-1; 234 nm; Rf(R*) = 10.4 min; Rf(S*) = 7.9 min. 

Optical Rotation: 𝛼𝐷
20 = +13.4° (c = 1.0, CHCl3). 
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Ethyl 3-((2R,4R,5R)-2-(tert-butyl)-4-methyl-6-oxo-1,3-dioxan-5-yl)benzoate (104i) 

 

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was 

charged with ethyl 3-iodobenzoate (207 mg, 0.750 mmol, 1.00 equiv) and dry THF (1.5 mL). The 

mixture was cooled to -20°C, i-PrMgCl·LiCl (0.50 mL, 0.825 mmol, 1.10 equiv) was added dropwise and 

stirred for 30 min. Solid ZnCl2 (0.750 mmol, 1.00 equiv) was placed in a dry and argon flushed Schlenk-

tube equipped with a magnetic stirring bar and a septum and dried under vacuum at 250 °C for 5 min. 

After cooling to rt under vacuum, an argon atmosphere was applied and THF (1.5 mL) was added. The 

solution was added to the Grignard reagent at -20 °C. The mixture containing arylzinc reagent 78j was 

allowed to warm to rt and stirred for 15 min . 

A dry and argon-flushed 20 mL Schlenk-tube, equipped with a stirring bar and a septum, was charged 

with CoCl2 (13 mg, 0.100 mmol, 20 mol%). The solid was flame dried under high vacuum for 5 min. 

After cooling to rt, PPh3 (26 mg, 0.100 mmol, 20 mol%) and the α-bromolactone 102a (126 mg, 0.500 

mmol, 1.00 equiv) was added. The mixture was dissolved in THF (1 mL) and cooled to -20 °C. The 

freshly prepared organozinc chloride 78j was added and the mixture was allowed to warm to rt 

overnight. Sat. aq. NH4Cl (5 mL) and EtOAc (5 mL) were added, the phases were separated and the 

aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over 

Na2SO4, the solvents were evaporated and the residue was subjected to column chromatography 

purification on using ihexane:EtOAc (9:1) as an eluent to afford 104i as colorless oil (52% yield, dr = 

99:1, 83 mg, 0.259 mmol). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.99 (dt, J = 7.7, 1.5 Hz, 1H), 7.86 (t, J = 1.8 Hz, 1H), 7.43 (t, J = 7.7 

Hz, 1H), 7.37 (dt, J = 7.7, 1.6 Hz, 1H), 5.18 (s, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.06 (dq, J = 10.6, 6.1 Hz, 1H), 

3.53 (d, J = 10.7 Hz, 1H), 1.38 (t, J = 7.1 Hz, 3H), 1.22 (d, J = 6.0 Hz, 3H), 1.03 (s, 9H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 169.6, 166.2, 135.8, 133.8, 131.3, 130.2, 129.2, 129.2, 109.0, 

76.9, 61.3, 55.9, 35.5, 24.0, 19.5, 14.4. 

FT-IR (ATR, cm-1): 𝜈̃ = 2980, 2964, 2938, 2906, 2874, 1734, 1716, 1367, 1343, 1283, 1236, 1213, 1189, 

1150, 1107, 1084, 1029, 993, 970, 912, 764, 751, 729, 705, 695. 

MS (EI, 70 eV): m/z (%) = 275 (20), 235 (24), 217 (18), 191 (32), 190 (100), 162 (17), 161 (46), 145 (87), 

117 (41), 115 (30), 91 (23), 57 (21). 

HR-MS (EI, 70 eV): [C18H23O5]+• = [M-H]+•, calcd.: 319.1545; found: 319.1547.  
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5.3 Total Synthesis of the Rotenoid Derivative MOM-Protected Munduserol  

1-(Benzyloxy)-2-bromo-4,5-dimethoxybenzene 

 

3,4-Dimethoxyphenol (119, 5.00 g, 32.4 mmol, 1.00 equiv) was dissolved in freshly distilled CH2Cl2 (60 

mL) and cooled to 0 °C. N-Bromosuccinimide (5.77 g, 32.4 mmol, 1.00 equiv) was added slowly, the 

reaction mixture was allowed to warm to rt and stirred for 16 h. The reaction was stopped by adding 

sodium thiosulfate (15 mL), a sat. sol. of NH4Cl (15 mL) and water (15 mL). The phases were separated 

and the aqueous phase was extracted with CH2Cl2 (2 x 100 mL). The combined organic layers were 

dried over Na2SO4, the solvents were evaporated and the residue was subjected to column 

chromatography purification (silica, ihexane:EtOAc 8:2). 2-Bromo-4,5-dimethoxyphenol (120) was 

isolated as a brown solid (4.78 g, 20.5 mmol, 63% yield).  

2-Bromo-4,5-dimethoxyphenol (120, 4.78 g, 20.5 mmol, 1.00 equiv) was dissolved in THF (40mL). The 

solution was cooled to 0 °C and sodium hydride (60% in paraffin oil, 1.07 g, 26.7 mmol, 1.30 equiv) 

was added slowly. The reaction mixture was allowed to warm to rt and stirred for 30 min. Benzyl 

bromide (3.65 mL, 30.8 mmol, 1.50 equiv) was added and the mixture was refluxed at 80 °C overnight. 

Water (100 mL) was added and the mixture was extracted with EtOAc (3 x 100 mL). The combined 

organic layers were dried over Na2SO4, the solvents were evaporated and the residue was subjected 

to column chromatography purification (silica, ihexane:EtOAc 9:1). 1-(Benzyloxy)-2-bromo-4,5-

dimethoxybenzene (121) was isolated as a as yellowish solid (5.51 g, 17.1 mmol, 83% yield). 

m.p.: 80 – 81 °C. 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.56 – 7.44 (m, 2H), 7.44 – 7.36 (m, 2H), 7.36 – 7.30 (m, 1H), 7.04 

(s, 1H), 6.56 (s, 1H), 5.10 (s, 2H), 3.83 (s, 3H), 3.80 (s, 3H). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 149.4, 148.9, 144.4, 136.8, 128.7, 128.2, 127.5, 116.1, 102.6, 

101.6, 72.7, 56.6, 56.3. 

FT-IR (ATR, cm-1): 𝜈̃ = 3084, 2998, 2969, 2952, 2934, 2920, 2909, 2899, 2877, 2845, 1580, 1503, 1462, 

1455, 1445, 1437, 1392, 1373, 1331, 1276, 1264, 1247, 1211, 1199, 1186, 1168, 1164, 1119, 1083, 

1045, 1033, 1027, 1011, 997, 975, 966, 922, 843, 817, 804, 759, 727, 700. 

MS (EI, 70 eV): m/z (%) = 324 (16), 322 (17), 244 (11), 243 (71), 233 (44), 231 (43), 211 (10), 205 (42), 

203 (41), 190 (17), 188 (17), 175 (11), 173 (11), 91 (100). 
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HR-MS (EI, 70 eV): [C15H15BrO3]+•, calcd.: 322.0199; found: 322.0197. 

 

(1S,2R,3S)-2-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-3-((tert-butyldimethylsilyl)oxy)-1-(2-fluoro-4-

methoxyphenyl)butane-1,4-diol (114) 

 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with the chiral arylated lactone 100h (3.45 g, 7.52 mmol, 1.00 equiv) and dry CH2Cl2 (40 mL) 

was added. The solution was cooled to -78 °C and a solution of diisobutylaluminum hydride (1.0 M in 

CH2Cl2, 11.3 mL, 11.3 mmol, 1.50 equiv) was added dropwise to the reaction. Upon disappearance of 

the starting material (TLC, after 2.5 h) the reaction was quenched with sat. aq. Rochelle’s salt (10 mL) 

and EtOAc (10 mL) and allowed to warm to rt and stirred for another 30 min. The layers were 

separated, and the aqueous phase was extracted with CH2Cl2 (5 x 20 mL). The combined organic layers 

were dried over Na2SO4, the solvents were evaporated and the residue containing the corresponding 

lactol 113 was used without further purification for the next step. 

The crude lactol 113 was dissolved in THF (8 mL) and slowly added to the arylmagnesium reagent 112a 

(19.5 mL, 15.0 mmol, 2.00 equiv) at 0 °C. The mixture was allowed to warm to rt and stirred for 16 h. 

Sat. aq. NH4Cl (15 mL) and EtOAc (15 mL) was added. The layers were separated, and the aqueous 

phase was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over Na2SO4, the 

solvents were evaporated and the residue was subjected to column chromatography purification 

(silica, ihexane:EtOAc 7:3) to afford the alcohol 114 as a foamy solid (3.80 g, 6.49 mmol, 86% yield 

over two steps). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.39 – 7.33 (m, 2H, H-12, H-19), 7.30 (d, J = 7.6 Hz, 2H, H-27-28), 

7.20 (dd, J = 7.5 Hz, 2H, H-29-30), 7.11 (t, J = 7.4 Hz, 1H, H-31), 6.50 (dd, J = 8.6, 2.4 Hz, 1H, H-13), 6.25 

(dd, J = 12.1, 2.5 Hz, 1H, H-9), 6.15 (s, 1H, H-22), 5.66 (d, J = 10.6 Hz, 1H, H-14), 4.81 (dd, J = 5.7, 2.8 

Hz, 1H, H-16), 4.62 (d, J = 11.7 Hz, 1H, H-26’), 4.51 (d, J = 11.8 Hz, 1H, H-26), 4.15 (dd, J = 10.5, 2.6 Hz, 

1H, H-15), 3.82 (s, 3H, H-25), 3.68 (dd, J = 11.1, 5.6 Hz, 1H, H-17’), 3.46 (dd, J = 11.2, 7.9 Hz, 1H, H-17), 
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3.23 (s, 3H, H-24), 3.00 (s, 3H, H-7), 2.54 (s, 1H, OH), 1.04 (s, 9H, H-3-4), 0.32 (s, 3H, H-1/2), 0.16 (s, 3H, 

H-1/2). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 161.2 (d, J = 244.5 Hz, C-10), 160.4 (d, J = 11.0 Hz, C-8), 150.9 (C-

23), 149.1 (C-20), 144.5 (C-21), 137.6 (C-27), 129.4 (d, J = 6.4 Hz, C-12), 129.0 (C-30-31), 127.8 (C-32), 

127.6 (C-28-29), 123.7 (d, J = 13.9 Hz, C-11), 118.5 (C-18), 116.1 (C-19), 111.0 (d, J = 2.9 Hz, C-13), 100.7 

(d, J = 26.9 Hz, C-9), 100.0 (C-22), 73.0 (C-16), 72.1 (C-26), 66.9 (C-14), 65.6 (C-17), 56.5 (C-25), 55.5 (C-

24), 54.8 (C-7), 45.3 (C-15), 26.3 (C-3-5), 18.5 (C-6), -4.4 (d, J = 38.2 Hz, C-1-2). 

FT-IR (ATR, cm-1): 𝜈̃ = 3489, 2953, 2932, 2855, 1737, 1624, 1613, 1587, 1507, 1484, 1464, 1444, 1401, 

1374, 1360, 1313, 1248, 1214, 1191, 1153, 1106, 1092, 1033, 1025, 973, 948, 920, 889, 859, 830, 812, 

775, 735, 696, 667. 

HR-MS (EI, 70 eV): [C32H43FO7Si]+•, calcd.: 586.2762; found: 586.2760. 

Optical Rotation: 𝛼𝐷
20 = +13.4° (c = 1.0, CHCl3). 

 

(S)-((3S,4R)-3-((tert-Butyldimethylsilyl)oxy)-6,7-dimethoxychroman-4-yl)(2-fluoro-4-

methoxyphenyl)methanol (116) 

 

A dry and argon flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was 

charged with the benzyl protected alcohol 114 (2.76 g, 4.70 mmol, 1.00 equiv). Pd/C (10 mol%) and 

dry ethanol (30 mL) was added. H2 was bubbled through the mixture for 1 min at rt. The reaction was 

stirred under H2 (1 atm.) for 3 h until full consumption of the starting material was observed via TLC. 

The reaction was filtered over celite and rinsed with EtOAc (100 mL). The solution was dried over 

Na2SO4, the solvents were evaporated under reduced pressure and the residue was subjected to 

column chromatography purification (silica, ihexane:EtOAc 1:1) to afford the deprotected product 115 

as a colorless solid (2.06 g, 4.15 mmol, 88% yield). 

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was 

charged with the aromatic alcohol (2.00 g, 4.04 mmol, 1.00 equiv) and PPh3 (1.27 g, 4.85 mmol, 1.20 

equiv). The mixture was dissolved in CH2Cl2 (16 mL) and cooled to 0 °C. Diisopropyl azodicarboxylate 

(2.34 mL, 4.45 mmol, 1.10 equiv) was added and stirring was continued for 2 h until full consumption 
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of the starting material was observed via TLC. The reaction was warmed to rt and sat. aq. NH4Cl (5 mL) 

and CH2Cl2 (5 mL) were added. The layers were separated, and the aqueous phase was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic layers were dried over Na2SO4, the solvents were evaporated 

and the residue was subjected to column chromatography purification (silica, ihexane:EtOAc 7:3) to 

afford product 116 as a yellowish oil (2.57 g, 5.37 mmol, 84% yield). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.46 (t, J = 8.6 Hz, 1H, H-12), 6.97 (s, 1H, H-24), 6.67 (dd, J = 8.9, 

2.6 Hz, 1H, H-13), 6.66 (s, 1H, H-19), 6.53 (dd, J = 12.4, 2.5 Hz, 1H, H-9), 6.47 (s, 1H, H-22), 5.51 (d, J = 

10.1 Hz, 1H, H-14), 4.51 (dt, J = 8.0, 6.7 Hz, 1H, H-16), 4.21 (dd, J = 8.8, 6.9 Hz, 1H, H-17’), 3.93 (dd, J = 

8.7, 6.3 Hz, 1H, H-17), 3.78 (s, 3H, H-24), 3.77 (s, 3H, H-25), 3.74 (s, 3H, H-7), 3.64 (dd, J = 10.1, 8.0 Hz, 

1H, H-15), 0.89 (s, 9H, H-3-5), 0.02 (d, J = 15.9 Hz, 6H, H-1-2). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 161.3 (d, J = 246.1 Hz, C-10), 160.9 (d, J = 11.4 Hz, C-8), 149.7 (C-

23), 148.8 (C-21), 142.8 (C-20), 129.1 (d, J = 5.7 Hz, C-12), 118.5 (d, J = 13.0 Hz, C-11), 114.4 (C-15), 

110.7 (d, J = 2.9 Hz, C-13), 110.3 (C-19), 101.8 (C-22), 101.3 (d, J = 26.2 Hz, C-9), 80.4 (C-16), 74.8 (C-

14), 73.5 (C-17), 56.5 (C-24), 55.9 (C-25), 55.6 (C-7), 54.3 (C-15), 25.8 (C-3-5), 18.0 (C-6), -4.8 (d, J = 

40.4 Hz, C-1-2). 

FT-IR (ATR, cm-1): 𝜈̃ = 3323, 2980, 2969, 2954, 2934, 2883, 2856, 1709, 1626, 1588, 1510, 1465, 1451, 

1417, 1374, 1311, 1229, 1203, 1180, 1153, 1106, 1076, 1043, 1029, 1006, 948, 933, 897, 833, 812, 

775, 729, 671. 

HR-MS (EI, 70 eV): [C25H35FO6Si]+•, calcd.: 478.2181; found: 478.2181. 

Optical Rotation: 𝛼𝐷
20 = +28° (c = 1.0, CHCl3). 
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MOM-Protected Munduserol (118) 

 

The benzylic alcohol 116 (1.10 g, 2.31 mmol, 1.00 equiv) was dissolved in CH2Cl2 (5 mL) and the mixture 

was cooled to 0 °C. NaH (184 mg, 7.67 mmol, 2.00 equiv) was added, stirring at 0 °C was continued for 

30 min and chloromethyl methyl ether (0.44 mL, 5.78 mmol, 2.50 equiv) was added. The reaction was 

allowed to warm to 25 °C and stirred overnight. Sat. aq. NH4Cl (15 mL) and CH2Cl2 (20 mL) were added, 

the layers were separated and the aqueous phase was extracted with CH2Cl2 (3 x 20 mL). The combined 

organic layers were dried over Na2SO4, the solvents were evaporated and the residue was subjected 

to column chromatography purification (silica, ihexane:EtOAc 8:2) to afford the MOM- and TBS-

protected compound (1.01 g, 1.92 mmol, 84% yield). This intermediate was dissolved in THF (8 mL) 

and cooled to 0 °C. TBAF (1.0 M in THF, 2.88 mL, 2.88 mmol, 1.50 equiv) was added, and the mixture 

was stirred for 2 h. Sat. aq. NH4Cl (20 mL) and EtOAc (20 mL) was added, the layers were separated, 

and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried 

over Na2SO4, the solvents were evaporated and the residue was subjected to column chromatography 

purification (silica, ihexane:EtOAc 3:7) to afford 117 as a yellowish oil (502 mg, 1.23 mmol, 64% yield). 

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was 

charged with the alcohol 117 (37 mg, 0.091 mmol, 1.00 equiv), toluene (4.5 mL) and DMPU (0.5 mL). 

15-crown-5 ether (38 μL, 0.191 mmol, 2.10 equiv) and NaH (60% in paraffin oil, 12 mg, 0.282 mmol, 

3.10 equiv) were added and the mixture was heated to 110 °C for 48 h. The mixture was allowed to 

cool to rt and sat. aq. NH4Cl (2 mL) and EtOAc (2 mL) were added. The layers were separated, and the 

aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over 

Na2SO4, the solvents were evaporated and the residue was subjected to preparative thin-layer 

chromatography purification (silica, ihexane:EtOAc 5:5) to afford the rotenoid derivative 118 as a 

yellow oil (10 mg, 0.026 mmol, 28% yield). 

1H-NMR (400 MHz, CDCl3, ppm): δ = 7.17 (s, 1H, H-14), 7.02 (d, J = 8.1 Hz, 1H, H-4), 6.81 (s, 1H, H-17), 

6.44 (d, J = 2.4 Hz, 1H, H-7), 6.42 (dd, J = 8.1, 2.4 Hz, 1H, H-3), 5.21 (d, J = 6.9 Hz, 1H, H-20), 5.18 (d, J = 

6.9 Hz, 1H, H-20’), 5.05 (s, 1H, H-8), 4.84 (d, J = 3.3 Hz, 1H, H-10), 4.22 (d, J = 10.6 Hz, 1H, H-13), 3.98 
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(dd, J = 10.6, 3.5 Hz, 1H, H-13’), 3.96 (s, 1H, H-9), 3.88 (s, 3H, H-18), 3.86 (s, 3H, H-19), 3.78 (s, 3H, H-

1), 3.50 (s, 3H, H-21). 

13C-NMR (101 MHz, CDCl3, ppm): δ = 161.4 (C-2), 154.3 (C-6), 149.6 (C-12), 148.9 (C-16), 144.4 (C-15), 

127.6 (C-4), 120.6 (C-5), 117.9 (C-11), 111.1 (C-14), 106.0 (C-3), 101.9 (C-7), 100.2 (C-17), 95.5 (C-20), 

81.6 (C-10), 77.2 (C-8), 73.5 (C-13), 56.8 (C-19), 56.3 (C-21), 56.2 (C-18), 55.5 (C-1), 43.2 (C-9). 

NOE-NMR shows a proximity of H-8 and H-9. 

FT-IR (ATR, cm-1): 𝜈̃ = 2958, 2935, 2840, 1623, 1587, 1508, 1465, 1444, 1314, 1272, 1210, 1189, 1148, 

1122, 1106, 1092, 1068, 1050, 1008, 949, 921, 833, 790, 752, 666. 

HR-MS (EI, 70 eV): [C21H25O7]+• = [M+H]+•, calcd.: 389.1600; found: 389.1601. 

Optical Rotation: 𝛼𝐷
20 = −18° (c = 1.0, CHCl3). 


