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Abstract of the thesis 

Tragulidae is a family of the order Artiodactyla and suborder Ruminantia. Its 

representatives are closely related to deer, antelopes and their relatives.  Fossil evidence from 

Asia suggests an origin of the Tragulidae in the Eocene at least 34 million years ago, with a 

climax during the Miocene and subsequent decline until present.  They were well represented 

with over 30 species grouped in the genera Archaeotragulus, Afrotragulus, Iberomeryx, 

Dorcabune, Dorcatherium, Siamotragulus, and Yunnanotherium, which were completely 

replaced by the infraorder Pecora.  Fossil tragulids had a broad geographical distribution in 

Asia, Africa, and Europe, including different morphotypes (small to large species) and diverse 

diet preferences (e.g. intermediate feeders, browsers and grazers).  Nowadays tragulids are 

represented by only ten species classified in the genera Tragulus, Moschiola and Hyemoschus. 

They are exclusively distributed in the Indo-Malayan and Afro-tropical regions and feeding 

predominantly on fruits. Compared with their fossil relatives, their restricted recent distribution, 

low species richness and similar phenotype have stimulated the idea that recent tragulids 

represent “living fossils”. However, comparative studies between fossil and living relatives are 

very rare, and even the idea that living tragulids have become “frozen” in their evolution has 

been recently questioned.  In this context, the aim of this work is an analysis of the body mass 

and the morphological diversity of the dentition and skulls of tragulids through time including 

fossil and living species. Among the studied taxa, the detailed description of a so far unstudied 

tragulid material from the Miocene of Pakistan has completed previous knowledge on ancient 

diversity. The methodology used here comprised comparative morphometrics of teeth and 

skulls as well as digital 3D reconstruction of a fossil skull.  The results evidence a broad range 

of body sizes (from 1.0 kg to more than 100.0 kg) amongst fossil species, contrasting with the 

limited size range (1.0 kg to 15.0 kg) of the living species.  From the late Eocene to present, 

the analysis of median body mass per 2.0 mya showed a peak between 16.0 mya to 4.0 mya, 
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including species with less than 17.9 kg (that includes the range of living species) and between 

18.0 kg to 34.9 kg (only fossil species) as the most diverse class.  If we consider the food 

preferences of fossil tragulids (≤ 17.9 kg and medium-sized species: 18.0 kg-34.9 kg), all 

categories from grazers, browsers and intermediate feeders have been reported, but not 

frugivores as in the living species.  The study of the skulls of extant tragulids helped to 

understand their character disparity. With this, a hitherto undocumented difference in the 

neurocranium geometry among Asian tragulids was quantified: Tragulus javanicus and T. 

kanchil are relatively tall and their neurocrania are globose, while the heigth of the skull is less 

pronounced in T. napu and Moschiola spp and somewhat flattened, more comparable to 

Hyemoschus aquaticus of Africa.  Here, it is hypothesized that a flatter skull might be related 

to dietary habits and mastication movements and/or to diving and under-water locomotion to 

escape from predator as previously reported.  In addition, I have assembled a chart providing 

revised taxonomic assessments of the specimens of Moschiola and Tragulus included in my 

analysis.  The descriptions of the fossil skull of Dorcatherium crassum improve the 

understanding on its external morphology as well as its affinities with living species. This fossil 

has a strong neurocranium with some hyper-developed elements, such as the sagittal and nuchal 

crests as well as highlight the canine tooth and its alveola.  The general morphology is similar 

to living species, but its hyper-developed morphology is not comparable to living ones, and was 

probably adapted morpho-functionally to the acquisition and processing of hard food items.  

Compared with Tragulus, Moschiola and Hyemoschus, the skull of Dt. crassum is bigger, but 

it is similar in some bone proportions calculated here.  In general Dt. crassum is more similar 

to H. aquaticus than to other living species, supporting their close affinity as reported in 

previous studies based on other characters (limbs, teeth, partial skulls). The flattened skull of 

both species support this close affinity.  A formerly unreported great morphological diversity 

in the dentition of fossil tragulids was documented by an analysis of material from the Miocene 
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of Pakistan.  Thus, of seven species previously known from the Siwaliks, based on the height 

of the tooth crown and related morphological features, only four are here recognized: 

Dorcatherium nagrii, Dt. minus, Dt. majus and Dorcabune anthracotheroides. In addition, we 

extend the diversity with the new species Dorcatherium dehmi and unexpectedly we extend the 

distribution into the Siwaliks for Dt. naui and Dt. guntianum previously recorded exclusively 

from Europe.  Thus, the detailed analysis of morphology and the morphometric variables 

enabled distinguishing tragulid species that were previously masked by overlapping size. 

Accordingly, the variation described above coincides with data from the limited literature and 

it is in line with other groups previously misinterpreted as ‘living ancestors’ or ‘living fossils’, 

which were shown to be part of a greater morphological diversity than previously thought.  

However, considering that ancient diversity of tragulids was greater than the one of current 

representatives, and the living species belong to a group that is mostly extinct and such, by 

definition, provide deficient samples, it is difficult to assess with these data, which are 

plesiomorphic or derived characters.  However, my results suggest a similar palaeobiology in 

fossil and living tragulids. Finally, the outcomes presented in this Ph.D. thesis clearly enhance 

the understanding of morphological diversity and palaeobiology of these mammals, but at the 

same time, reinforce the importance of studies on tragulids in order to improve the 

understanding on their origin and evolution. 
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CHAPTER 1 

Introduction 

 

1.1 Family Tragulidae 

 

 Phylogentic studies based on molecular and morphological data support the monophyly 

of Ruminantia as well as their families (Hernández Fernández and Vrba 2005; Hassanin et al. 

2012). Among these families, Tragulidae Milne Edward, 1864 (chrevrotains or mouse deer) are 

traditionally considered the sister group to all other extant ruminant families (a clade named 

Pecora), namely Giraffidae (giraffes and okapis), Antilocapridae (pronghorns), Moschidae 

(musk deer), Cervidae (deer) and Bovidae (cattle, sheep, goats and antelopes) (Janis and Scott 

1987; Hernández Fernández and Vrba 2005: Figure 1.1). The basal position of tragulids within 

Ruminantia is unambiguously supported by molecular data that make them the first branching-

clade of the extant ruminant radiation (Métais and Vislobokova 2007; Hernández Fernández 

and Vrba 2005; Figure 1.1). 

The modern representatives of Tragulidae are allocated to three genera (Hyemoschus, 

Tragulus and Moschiola) with ten species formally accepted occurring in tropical Asia and 

Africa. The fossil species are grouped in seven genera (Archaeotragulus, Afrotragulus, 

Iberomeryx, Dorcabune, Dorcatherium, Siamotragulus, and Yunnanotherium) with at least 33 

species described so far (Rössner 2007; Mennecart 2011; Sánchez et al. 2010: Table I). The 

family originated in Asia at least 34 mya (Métais et al. 2001; Benammi et al. 2001). During the 

Miocene, it reached its maximum diversity as reflected by the high number of species, wide 

geographical distribution (Asia, Africa and Europe), high variety of morphotypes (with tiny to 
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large-bodied species), as well as in its diverse food habit strategies that range from browsing to 

grazing (Kaiser and Rössner 2007; Ungar et al. 2012; Clauss and Rössner 2014).  

 

 

Figure 1.1. Phylogenetic tree of ruminant species including estimated times of divergence. The family 

Tragulidae (in red) is sister to all other clades. A: Antilocapridae; G: Giraffidae. (Modified from 

Hernández Fernández and Vrba 2005). The use of this figure has permission from John Wiley and Sons, 

License number: 4424150661908.  
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Tragulids share with other members of the Ruminantia the fusion of the cuboid and 

navicular bones in the tarsus, which is a unique specialization of the suborder (Janis 1984). On 

the other hand, the autapomorphic features that separate the tragulids from all other ruminants 

are (1) the malleolar bone, which is fused to the distal end of the tibia (except in Dorcatherium 

naui and Hyemoschus aquaticus: Aiglstorfer et al. 2014); (2) an ectocuneiform fused with the 

cubonavicular in the tarsus; (3) a temporal bone without postglenoid process; (4) a very small 

external exposure of the mastoid in the temporal bone; (5) and a closed postorbital bar (for 

details see: Gentry 1978; Janis 1984; Milne-Edward 1864; Rössner 2007). In addition, tragulids 

have bunoselenodont and selenodont dentition (Rössner 2007). Bunoselenodont tragulids have 

rounded cusps with less developed crests, whereas selenodont forms have, in addition to 

elongated crests, non-rounded cusps with flat internal walls. Thus, selenodonty in tragulids (as 

in all ruminants) is determined by the longitudinal extension and vertical development of the 

crests, and also by the flattening of the main cusps (Sánchez et al. 2010). According the Sánchez 

et al. (2010) the crests of the bunoselenodont taxa (e.g. some Dorcatherium sp. and Dorcabune) 

are variable in their vertical and longitudinal extension within certain limits. As a result, the 

lower molars of these forms have very pointed main cusps. On the other hand,  the lower 

molars of selenodont tragulids (e.g. Afrotragulus, Siamotragulus, Yunnanotherium, Moschiola 

and Tragulus) are characterized by the presence of flat main cusps with crests that are not only 

elongated, but also very vertically developed (Sánchez et al. 2010). Thus, the existence of large 

to tiny-sized selenodont tragulids that overlap with most of the size range of Dorcatherium 

suggests that the enhanced selenodonty in tragulids evolved independently of body size and is 

not an allometric by-product (Sánchez et al. 2010).  

 

 



Chapter 1 - Introduction 

 

[4] 

 

1.2 Fossil representatives 

 
Seven genera with at least 33 species have been described so far from the fossil record 

(Table I). The remains of Archaeotragulus krabiensis of the late Eocene from Krabi Basin, 

South Thailand, represent the oldest occurrence of a tragulid (Métais et al. 2001; Benammi et 

al. 2001), whereas Oligocene records are dubious or unclear. In fact, Mennecart et al. (2011, 

2018b) considered Iberomeryx from the Oligocene (27.0 Ma to 32.0 Ma) of western Europe to 

represent another tragulid genus, a proposal that was followed scarcely so far, but not criticized 

either (e.g. Barry 2014; Sánchez et al. 2014; Kostopoulos and Sen 2016).  

 

Table I. Tragulid species (fossil and living) and their spatiotemporal distribution so far described 

(modified from Pickford 2001 and Rössner 2007 and complemented with data from Mennecart et al. 

2011; Sánchez et al. 2010; 2014; Kostopoulos and Sen 2016). 

 

 
Genus Species Spatiotemporal distribution 
Archaeotragulus Metais et al., 

2001 A. krabiensis Metais et al., 2001 37.0-34.0 Ma (Eocene), Asia 

Iberomeryx Gabunia, 1964 
I. minor (Filhol, 1882) 33.9-28.4 Ma (Oligocene), Europe  
I. parvus Gabunia, 1964 28.4-23.0 Ma (Oligocene), Georgia and Turkey 

Dorcatherium Kaup, 1833 

Dt. pigotti Whitworth, 1958 23.0-11.6 Ma (Miocene), East Africa 
Dt. chappuisi Arambourg, 1933 18.5-12.0 Ma (Miocene), Africa 
Dt. minus Lydekker, 1876 18.3-5.1 Ma (Miocene), Asia 
Dt. crassum (Lartet, 1851) 17.8-13.0 Ma (Miocene), Europe 
Dt. iririensis Pickford, 2002 17.8 Ma (Miocene), East Africa 
Dt. vindebonense von Meyer, 1846 17.2-7.2 Ma (Miocene), Europe 
Dt. guntianum von Meyer, 1846 16.5-13.3 Ma (Miocene), Europe 
Dt. peneckei (Hoffmann, 1893) 15.1-14.8 Ma (Miocene), Europe 
Dt. orientale Qui Zhanxiang and Gu Yumin, 
1991 15.9-11.6 (Miocene), China 

Dt. minimus West, 1980 14.2-11.2 Ma (Miocene), South Asia 
Dt. majus Lydekker, 1876 14.0-5.1 Ma (Miocene), South Asia 
Dt. nagrii Prasad, 1970 14.2-3.5 Ma (Miocene), South Asia 
Dt. naui Kaup and Scholl, 1834 12.3-7.6 Ma (Miocene), Europe 
Dt. jourdani (Déperet, 1887) 11.2-7.6 Ma (Miocene), Europe 
Dt. puyhauberti Arambourg and Piveteau, 1929 11.2-5.3 Ma (Miocene), Europe 
Dt. maliki Kostopoulos and Sen, 2016 9.6-9.4 Ma (Miocene), Eastern Europe 
Dt. bulgaricum Bakalov and Nikolov, 1962 5.3-2.5 Ma (?Pliocene), Bulgaria 

Siamotragulus Thomas et al., 1990 

S. songhorensis (Whitworth, 1958) 22.0-17.0 Ma (Miocene), Africa 
S. bugtiensis Ginsburg et al., 2001 19.5-18.0 Ma (Miocene), South Asia 
S. sanyathanai Thomas et al., 1990 14.8-11.2 Ma (Miocene), Southeast Asia 
S. indicus (Forster Cooper, 1915) (Miocene), Pakistan 

Dorcabune Pilgrim, 1910 Db. welcommi Ginsburg et al., 2001 19.5-18.0 Ma (Miocene), South Asia 
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Db. nagrii Pilgrim, 1915 15.1-14.8 Ma (Miocene), South Asia 
Db. anthracotheroides Pilgrim, 1910 14.1-10.1 Ma (Miocene), South Asia 
Db. sindiense Pilgrim, 1915 11.6-5.3 Ma (Miocene), Pakistan 
Db. progressus (Yan, 1978) (Miocene), China 
Db. liuchengense Han, 1974 (Pleistocene), China 

Afrotragulus Sánchez et al., 2010 
A. moruorotensis (Pickford, 2001) 19.0-16.8 Ma (Miocene), East Africa 
A. parvus (Whitworth, 1958) 18.5-17.0 Ma (Miocene), East Africa 

Yunannotherium Han, 1986 Y. simplex Han, 1986 8.0-7.4 Ma (Miocene), China 

Tragulus Brisson, 1762 

T. javanicus (Osbeck, 1765) Extant, Southeast Asia 
T. kanchil (Raffles, 1821) Extant, Southeast Asia 
T. napu (Cuvier, 1822) Extant, Southeast Asia 
T. nigricans Thomas, 1892 Extant, Southeast Asia 
T. versicolor Thomas, 1910 Extant, Southeast Asia 
T. williamsoni Kloss, 1916 Extant, Southeast Asia 

Moschiola Gray, 1853 
M. meminna (Erxleben, 1777) Extant, Sri Lanka, Dry Zone 
M. kathygre Groves and Meijaard, 2005 Extant, Sri Lanka, Wet Zone 
M. indica (Gray, 1852) Extant, India 

Hyemoschus Gray, 1845 H. aquaticus (Ogilby, 1841) Extant, West Africa 

 

 

 

 

Likewise, according to Barry et al. (2013), Dorcatherium ([sic] or perhaps Siamotragulus) was 

present in the latest Oligocene (at least 28.1 Ma - 23.0 Ma) and earliest Miocene of the 

Chitarwata (at least 22.0 Ma and perhaps as old as 26.0 Ma) and Vihowa Formations (at least 

19.1 Ma - 11.2 Ma). However, the age of the lower Chitarwata Formation is controversial 

(Lindsay et al. 2005; Antoine et al. 2013; Métais et al. 2017).  

Tragulids became quite abundant during the Miocene, represented by the genera 

Afrotragulus, Dorcatherium, Dorcabune, Siamotragulus and Yunannotherium (Rössner 2007; 

Sánchez et al. 2010, 2014). Species richness peaked during the Early/Middle Miocene of Africa 

as well as Eurasia (Eronen and Rössner 2007; Clauss and Rössner 2014), with more than 30 

species (Whitworth 1958; Pickford 2001; Rössner 2007; Geraads 2010) and up to four or more 

sympatric species (Rössner and Heissig 2013; Barry 2014). Dorcatherium is the most diverse 

fossil genus of Tragulidae with material recorded from Europe, Asia and Africa (Pickford 2001; 

Table I). However, species delimitation within the genus has been based primarily on 
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morphometric variables being an approximation criticized for its ambiguity (e.g. Sánchez et al. 

2010, 2014). Several authors indicated that a new revision of Dorcatherium, considering not 

only metric variables, is necessary and urgent (e.g. Rössner 2007; Alba et al 2014; Barry 2014). 

In this context, Sánchez et al. (2010) erected the genus Afrotragulus, in which they included 

the tiny A. parvus originally described as member of the genus Dorcatherium. Later, Sánchez 

et al. (2014) evaluated material (teeth and post-cranial bones) of tragulids from Africa (Uganda) 

and transferred Dorcatherium songhorensis Whitworth, 1958 to the genus Siamotragulus 

Thomas et al., 1990.  Thus, the study of the morphological variation along with metric 

variables has demonstrated its importance to understand the evolution of the Tragulidae, since 

for example, this taxonomic modification reordered the species diversity in Africa, while 

Siamotragulus is no longer a genus endemic to Asia (Rössner 2007; Sánchez et al. 2010).  

The species of the genus Dorcabune are the largest tragulids with bunodont molars, 

being only present in Asia. They did not receive much attention since their first description 

(Pilgrim 1910, 1915; Colbert 1935). The genus is morphologically close to or even more 

primitive than the genus Anthracotherium (Anthracotheriidae, Artiodactyla) and clearly more 

primitive than Dorcatherium (Pilgrim 1915; Gentry 1978). The genera Archaeotragulus and 

Yunannotherium are monotypic, and so far have been found only on the Asian continent 

(Pickford 2001; Rössner 2007; Sánchez et al. 2010, 2014).  

The simultaneous existence of tragulids in Africa (ca. 22.5 mya, Whitworth 1958; 

Pickford 2001) and Asia (Chitarwata Formation, Pakistan, at least 22.0 mya, Antoine et al. 

2013) represents an enigma, because the land corridor between Asia and Africa was estimated 

to be younger (19.0 Ma to 16.0 Ma, Made 1999).  In this context, Rössner (2017) suggested 

complex Miocene tragulid migrations, from Asia to Africa, and from Asia and Africa to Europe. 

However, it is still unclear how Dorcatherium reached Africa from Asia or vice versa before 

the existence of the “Gomphotherium-land bridge”.   
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In Europe, Dorcatherium is recorded from the Early Miocene (minimum appearance 

datum ca. 17.8 mya), probably through successive heterochronous dispersal events from the 

East/Southeast to the West/Southwest of Europe, rather than a synchronous appearance 

(Rössner 2017). Mennecart et al. (2018b) proposed that Bachitheriidae migration linked 

western to southeastern Europe in the “Bachitherium dispersal event”, in which Iberomeryx 

from the Earliest Oligocene of Georgia would have participated because it appears 

simultaneously in Europe.  The recently described Dorcatherium maliki from Küçükçekmece 

West (Late Miocene) in the European Turkey (Kostopoulos and Sen 2016), and the discovery 

of the previously exclusively European species Dt. naui (Middle Miocene to Late Miocene) and 

Dt. guntianum (Early to Middle Miocene) in the Siwaliks of Pakistan (chapter 5 in this thesis) 

support the migration event proposed by Mennecart (2018). Accordingly, Miocene 

Dorcatherium is recorded from Europe, Asia and Africa, whereas Siamotragulus is known from 

Asia and Africa and Dorcabune currently only from Asia. Thus, according to Sánchez et al. 

(2010), in strict biogeographic terms, Afrotragulus and Dorcatherium could be considered the 

“African” branch of the Tragulidae, since both are recorded first in the African Early Miocene, 

whereas Dorcabune and Siamotragulus could be considered the “Asian” branch, recorded first 

in Asia almost synchronously.  In addition, the presence of Afrotragulus in the Early Miocene 

of Africa and the increasingly high species diversity of the Tragulidae during the course of the 

early Miocene, strongly suggests that these ruminants underwent a strong radiation event or 

events prior to the early Miocene (Sánchez et al. 2010).  
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Figure 1.2. Dorcatherium from the Miocene. A) life reconstruction of an adult male from Europe; B) 

life reconstruction for Dorcatherium sp. from Africa. Both images have permission from the illustrators: 

A) Maurio Antón; B) Israel M. Sánchez. 
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1.3 Living species 

 

Ten living species of tragulids, distributed in tropical Africa and Asia, are currently 

recognized (Groves and Grubb 2011; Meijaard 2011; Table I). According to Meijaard and 

Groves (2004a), the genus Tragulus is distributed widely across the mainland and many islands 

of Southeast Asia with the following six species: Tragulus javanicus (only on Java), T. 

williamsoni (northern Thailand, but also southern China; see Meijaard et al. 2017), T. kanchil 

and T. napu (both in Southeast Asia, but not on Java), T. nigricans (Philippines) and T. 

versicolor (southern Vietnam). The genus Moschiola with three species is present in India with 

M. indica (southern India), while in Sri Lanka, and probably Nepal and China are present M. 

meminna (dry zone of Sri Lanka), M. kathygre (wet zone of Sri Lanka), as well as a fourth 

species that has not yet been formally described (Chasen 1940; Geist 1998; Groves and 

Meijaard 2005; Baral et al. 2009, Meijaard et al. 2017, Guzmán and Rössner 2018). A third 

genus is the monotypic Hyemoschus, with H. aquaticus only found in Africa, from Sierra Leone 

to Uganda (Groves and Meijaard 2005; Dubost 1964, 2017: Figure 1.3).  

The monophyly of these living tragulids is strongly supported in a phylogenetic analysis 

combining morphological, ethological and molecular information (Hernández Fernández and 

Vrba 2005: Figure 1.1). The five living pecoran families (Antilocapridae, Bovidae, Cervidae, 

Giraffidae and Moschidae) are classically grouped as higher ruminants and are distinguished 

from tragulids by numerous morphological characters (Janis and Scott 1987), leaving 

Tragulidae the sister group to all other ruminants (Figure 1.1).  

The living Tragulidae are known to be reclusive, shy animals hiding in dense 

understorey in the tropics (http://www.iucnredlist.org) of Asia and Africa, where fruits are 

available at least nine months of the year (Heydon and Bolloh 1997). They are selective feeders, 

with a frugivorous diet (Dubost 1984; Meijaard 2011).  
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Figure 1.3. Living species: A) Tragulus sp. of individual in Hellabrunn Zoo, Munich, Germany (source: 

cover of Mammalian Biology, 90, 2018); B) Moschiola sp. swimming to escape a brown mongoose; C) 

Tragulus napu caught in a river after having spent 60 min hiding underwater ( b and c: Meijaard et al. 

2010); D) Hyemoschus aquaticus (Source: Dubost 2017). E) stuffed tragulids in the Natural History 

Museum of Stuttgart, Germany: left Hyemoschus aquaticus, middle: Moschiola meminna, right: 

Tragulus sp. Images: a, authorized by Frank E. Zachos (Managing Editor Mammalian Biology); b and 

c, permission from Elsevier, License number: 4422460743785. d, authorized by Gérard Dubost (picture 

owner), e) taken by Jonathan Guzmán Sandoval 
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Tragulids flee into water when encountered by predators (Figure 1.3B) and their species 

are among the smallest living ruminants (from 1.7 to 16 kg) with T. javanicus (1.7 to 2.1 kg, 50 

to 53 cm head-body-length) counting as the smallest living hoofed mammal (Meijaard 2011). 

The small body size, anatomy and physiology of the digestive tract, frugivorous diet, males 

with sabre-like upper canines, lack of bony horns, short legs and neck, etc. were interpreted 

previously as conserved ancestral ruminant traits. Consequently, the extant Tragulidae were 

considered “living fossils” (e.g. Janis 1984; Thenius 2000).  

The above contrasts the suggestion, that the extant tragulids represent a novel intra-

tragulid evolutionary response to the high level of competition among modern ruminants 

(Clauss and Rössner 2014). The previous assumption of “little change through time” is now 

challenged by new lines of evidence.  

 

 

 

 

1.4 Objectives of the dissertation 

 

Due to possession of many unique features opposed to other living ruminants (e.g. small 

body size, frugivory, habitat in rain forest undergrowth), tragulids were claimed to be “living 

fossils” (Janis 1984, Thenius 2000). However, comparisons between their fossil and extant 

diversity are rather limited (Milne Edwards 1864; Sánchez et al. 2014) and new lines of 

evidence, lead to the question on a potential diversity disparity of their phenotypes over time. 

Accordingly, the main objectives of this thesis are: 

To analyze the morphology and diversity of dentition and skull features of extinct tragulids 

through space and time to identify and quantify the degree of similarity with extant tragulids.  

The more specific goals of this thesis include the following: 
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1. Documentation of body mass diversity in the family Tragulidae through time, 

2. Comparative analysis of skull morphometry and morphology of living species, 

3. First description of the best preserved skull of Dorcatherium crassum and first digital 

segmentation of a fossil tragulid skull including comparison with living species, 

4. Description of the so far largest sample of tragulid fossils from the Siwalik Group in 

Pakistan.   

 

The study of these topics compose the following chapters of this thesis. Each of these 

chapters was written to stand on its own as an independent manuscript. However, as all the 

individual chapters converge to same main objective, some overlap in their content is 

unavoidable. 
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CHAPTER 2 

Dentition-based assessment of disparity in past and present 

phenotype variability in Tragulidae 

2.1 Introduction 

 

Contemporary survivors of ancient evolutionary lineages with limited diversity and, 

hence, restricted geographical distribution, are often considered to be relict species with 

conserved ancestral phenotypes providing important information on the past of clades and biota. 

However, the proven misconception of evolutionary stasis excludes that extant impoverished 

clades have conserved ancient phenotypes (e.g. see Grandcolas et al. 2014). There are numerous 

examples of previously misinterpreted ‘living ancestors’ or ‘living fossils’, which were shown 

to be part of a greater morphological diversity than previously thought, as for example the 

Chinese gymnosperm Ginkgo spp. (e.g. Royer et al. 2003), the coelacant fish Latimeria from 

the Indian Ocean (e.g. Casane and Laurenti 2013; Friedman and Coates 2006), the archosaurian 

Crocodilia (e.g. Buckley et al. 2000), the bony fish Teleostei (e.g. Clarke and Friedman 2018), 

other groups with more genetic diversity than previously thought as the horseshoe crabs 

Limulidae (e.g. Obst et al. 2012), the New Zealand reptile Sphenodon spp., (e.g. Jones et al. 

2009; Subramanian et al. 2009; Hay et al. 2008) or even extinct species with a social behaviour 

unknown in extant relatives as the fossil opossum Pucadelphys andinus from Bolivia (e.g. 

Ladeveze et al. 2014). In this paper, we take up the ‘living fossil’ case of tragulids (Janis 1980; 

Thenius 2000), which has recently been questioned (Clauss and Rössner 2014). Tragulidae are 

a clade of artiodactyl mammals with a long, well-recorded, but severly understudied 
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evolutionary history (Rössner 2007). Living members of the group, African chevrotains and 

Asian mouse-deer were described as ‘living fossils’ by Janis (1984) and Thenius (2000). Their 

restricted geographical distribution, low species richness and phenotypic similarity within the 

family members, despite disjunct distribution ranges, spurred the idea of a conserved ancestral 

phenotype, i.e. a mosaic character suite of pig-like plesiomorphic and ruminant-like 

apomorphic artiodactyl features (Gentry and Hooker 1988; Janis and Scott 1987).  

According to Groves and Grubb (2011), present-day tragulids comprise three genera 

and ten species: Tragulus with six species (Meijaard and Groves 2004a), widely distributed 

across the mainland and many islands of Southeast Asia; Moschiola with three species in India, 

Sri Lanka, and probably Nepal and China (Chasen 1940; Geist 1998; Groves and Meijaard 

2005; Baral et al. 2009; Meijaard et al. 2017; Guzmán and Rössner 2018), and the monotypic 

Hyemoschus with H. aquaticus in Africa, from Sierra Leone to Uganda (Groves and Meijaard 

2005; Dubost 1964). All these species are among the smallest living ruminants (from 1.7 to 

16.0 kg) with T. javanicus (1.7 to 2.1 kg, 50.0 to 53.0 cm head-body-length) even considered 

the smallest living hoofed mammal (Meijaard 2011). All are known to be reclusive, shy animals 

hiding in dense understorey and fleeing into water when encountered by predators. They are 

selective feeders with a major component of fruit and additional browsing (Dubost 1984; 

Meijaard 2011). They are restricted to the tropical climate zone (http://www.iucnredlist.org) 

with availability of fruit for at least nine months of the year (Heydon and Bolloh 1997).  

The small body size and related morpho-physiological variables in living tragulids (e.g. 

anatomy and physiology of digestive tract, frugivorous diet) were interpreted previously to 

represent conserved ancestral ruminant traits (e.g. Janis 1984; Thenius 2000), but were 

suggested recently to be a novel intra-tragulid evolutionary response to the highly competitive 

ecology among modern ruminants (Clauss and Rössner 2014). This leads to the question on 
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potential diversity disparity in fossil and extant tragulid phenotypes, and triggered the present 

study.  

In this context, generally, tooth size is correlated with body size and, hence, serves as 

body size indicator (e.g. Damuth and Mc Fadden 1990). On the other hand, body size is highly 

correlated with morpho-physiological traits/constraits in herbivorous mammals (Clauss et al. 

2003), as well as related to dietary specifics (Tejcada-Lara et al. 2018). Thus, estimates of body 

size for fossil species allow for the assessment of fossil phenotype diversity. In this respect, the 

fact that the fossil record of mammals has a generally high portion of teeth is advantageous. 

Moreover, fossil tragulid species were basically established on comparative tooth metrics. 

Thus, the species described so far (see for reviews Pickford 2001; Rössner 2007; Sánchez et al. 

2010, 2014; Kostopoulos and Sen 2016) provide a reasonable framework for the quantification 

of past tragulid phenotype diversity.  

They document that the clade diverged in the Eocene from the ruminant stem lineage, 

prior to the diversification of Pecora, one of the largest large mammal group of the modern 

world (Groves and Grubb 2011), which encompasses antelopes, buffaloes, deer and kin, 

giraffes, pronghorns and several extinct clades (Janis and Scott 1987; Gentry and Hooker 1988; 

Métais et al. 2001; Hernández-Fernández and Vrba 2005; Mennecart et al. 2010).  

The hypothesis we tested here is that extinct and extant tragulids do not differ in 

phenotype ranges, according to the traditional assumption of conserved ancestral adaptation. 

Thus, based on neontological/palaeontological comparisons (e.g. Sánchez et al. 2010, 2014) 

and considering that relict species belong to groups or biotas that are mostly extinct (Grandcolas 

et al. 2014), we predict that the phenotype diversity of extant tragulids species represents only 

a moderate subset of the extinct phenotypic variation. 
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2.2 Material and Methods 
 

Geochronological Framework 

In order to provide a geochronological framework for our analysis through time, we 

compiled a data set from documented occurrences for all tragulid species studied here (Table 

II). The temporal occurrences of species were obtained from “The Paleobiology Database” 

(www.paleobiodb.org), and the “NOW” database (www.http://www.helsinki.fi) and were 

adjusted according to the literature (Pickford 2001; Geraads 2010; Ungar et al. 2012; Rössner 

and Heissig 2013; Clauss and Rössner 2014; Aiglstorfer et al. 2014; Kostopoulos and Sen 2016; 

Rössner 2017).  Listings of Dorcatherium naui older than European Land Mammal Unit MN9, 

were considered here as Dt. crassum, with the exception of Przeworno 1 and 2 in Poland 

(Czyzewska and Stefaniak 1994; see Alba et al. 2011) due to a previous mistaken junior 

synonymy of Dt. crassum with Dt. naui (Sánchez et al. 2011; Rössner and Heissig 2013).   

Late Middle Miocene Dt. naui records from Abocador de Can Mata in Spain (Alba et 

al. 2011) and Gratkorn in Austria (Gross et al. 2011) are neither entered in the NOW or the 

Paleobiology Database, but were taken into account in the present paper. Dorcatherium rogeri 

was considered a junior synonym of Dt. vindebonense (Thenius 1952), Dt. libiensis a junior 

synonym of Dt. pigotti (Geraads 2010) and Dt. songhorensis is considered a junior synonym of 

Siamotragulus songhorensis (Sánchez et al. 2014). For correlation of different and regional age 

concepts we used van der Made (1999), Qiu et al. (1999), Hilgen et al. (2012), Reichenbacher 

et al. (2013), and Sant et al. (2017).  

For each species, we considered minimum first and maximum last occurrence data, 

resulting from the different sources, unless literature offers more accurate information (Table 

II).  
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Table II. Studied species with their spatiotemporal distribution and estimation of body mass. Body mass 

for Hyemoschus, Moschiola and Tragulus species (except Tragulus nigricans and Moschiola meminna) 

were extracted from Meijaard (2011). Table modified from Pickford 2001 and Rössner 2007 and 

complemented with data from Mennecart et al. 2011; Sánchez et al. 2010; 2014; Kostopoulos and Sen 

2016; Meijaard and Groves 2004; Groves and Meijaard 2005; Groves and Grubb 2011. 
 

 

 
Genus Species Spatiotemporal distribution Bodymass (kg) 

Mean (min-max) 
Archaeotragulus Metais et al., 

2001 
A. krabiensis Metais et al., 2001 37.0-34.0 Ma (Eocene), Asia 4.7 kg (4.5-4.9) 

Iberomeryx Gabunia, 1964 I. minor (Filhol, 1882) 33.9-28.4 Ma (Oligocene), Europe  1.6 kg (1.2-2.5) 
I. parvus Gabunia, 1964 28.4-23.0 Ma (Oligocene), Georgia and 

Turkey 
3.3 kg (2.4-4.4) 

Dorcatherium Kaup, 1833 Dt. pigotti Whitworth, 1958 23.0-11.6 Ma (Miocene), East Africa 11.6 kg (6.8-18.0) 
Dt. chappuisi Arambourg, 1933 18.5-12.0 Ma (Miocene), Africa 29.9 kg (27.6-31.5) 
Dt. minus Lydekker, 1876 18.3-5.1 Ma (Miocene), Asia 22.8 kg (14.0-29.9) 
Dt. crassum (Lartet, 1851) 17.8-13.0 Ma (Miocene), Europe 24.9 kg (18.6-34.0) 
Dt. iririensis Pickford, 2002 17.8 Ma (Miocene), East Africa 22.3 kg (19.2-25.5) 
Dt. vindebonense von Meyer, 1846 17.2-7.2 Ma (Miocene), Europe 49.0 kg (45.3-51.9) 
Dt. guntianum von Meyer, 1846 16.5-13.3 Ma (Miocene), Europe 12.4 kg (9.6-14.5) 
Dt. peneckei (Hoffmann, 1893) 15.1-14.8 Ma (Miocene), Europe 71.2 kg [n=1] 
Dt. minimus West, 1980 14.2-11.2 Ma (Miocene), South Asia 1.0 kg [n=1] 
Dt. majus Lydekker, 1876 14.0-5.1 Ma (Miocene), South Asia 77.0 kg (59.1-99.6) 
Dt. nagrii Prasad, 1970 14.2-3.5 Ma (Miocene), South Asia 4.5 kg (3.3-7.0) 
Dt. naui Kaup and Scholl, 1834 12.3-7.6 Ma (Miocene), Europe 30.4 kg (19.7-47.5) 
Dt. jourdani (Déperet, 1887) 11.2-7.6 Ma (Miocene), Europe 20.9 kg (20.3-21.5) 
Dt. puyhauberti Arambourg and 

Piveteau, 1929 
11.2-5.3 Ma (Miocene), Europe 19.3 kg [n=1] 

Dt. maliki Kostopoulos and Sen, 

2016 
9.6-9.4 Ma (Miocene), Eastern Europe 33.8 kg (29.1-38.4) 

Siamotragulus Thomas et al., 

1990 
S. songhorensis (Whitworth, 1958) 22.0-17.0 Ma (Miocene), Africa 5.6 kg (3.6-7.0) 
S. bugtiensis Ginsburg et al., 2001 19.5-18.0 Ma (Miocene), South Asia 6.9 kg (6.8-7.0) 
S. sanyathanai Thomas et al., 1990 14.8-11.2 Ma (Miocene), Southeast Asia 6.2 kg [n=1] 

Dorcabune Pilgrim, 1910 Db. welcommi Ginsburg et al., 2001 19.5-18.0 Ma (Miocene), South Asia 20.3 kg [n=1] 
Db. nagrii Pilgrim, 1915 15.1-14.8 Ma (Miocene), South Asia 52.5 kg (51.9-53.1) 
Db. anthracotheroides Pilgrim, 

1910 
14.1-10.1 Ma (Miocene), South Asia 111.5 kg (72.6-

139.4) 
Afrotragulus Sánchez et al., 
2010 

A. moruorotensis (Pickford, 2001) 19.0-16.8 Ma (Miocene), East Africa 1.0 kg [n=1] 
A. parvus (Whitworth, 1958) 18.5-17.0 Ma (Miocene), East Africa 2.7 kg (2.0-4.2) 

Yunannotherium Han, 1986 Y. simplex Han, 1986 8.0-7.4 Ma (Miocene), China 5.1 kg (4.4-5.7) 
Tragulus Brisson, 1762 T. javanicus (Osbeck, 1765) Extant, Southeast Asia 1.9 kg (1.7-2.1) 

T. kanchil (Raffles, 1821) Extant, Southeast Asia 2.0 kg (1.5-2.5) 
T. napu (Cuvier, 1822) Extant, Southeast Asia 4.0 kg (3.5-4.5) 
T. nigricans Thomas, 1892 Extant, Southeast Asia 2.9 kg 

Moschiola Gray, 1853 M. meminna (Erxleben, 1777) Extant, Sri Lanka, Dry Zone 2.5 kg 
M. indica (Gray, 1852) Extant, India 3.0 kg 

Hyemoschus Gray, 1845 H. aquaticus (Ogilby, 1841) Extant, West Africa 12.0 kg (7.0-16.0) 
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Data Set and Measurements 

We compiled measurements of 1572 permanent postcanine teeth of 27 extinct species 

of the genera Archaeotragulus, Afrotragulus, Dorcabune, Dorcatherium, Iberomeryx, 

Siamotragulus and Yunannotheium, and seven extant species belonging to the genera 

Hyemoschus, Moschiola and Tragulus. The data set mainly encompasses measurements 

performed by the authors and completed with measurements from the literature (Appendix 2, 

Table 2.1). For each tooth position (premolars [2, 3, 4] and molars [1, 2, 3], we measured length 

(l) and width (w) with an analogue caliper, and we considered the “anterior width” as width 

according to Rössner (1995) (Figure 2.1, Tables III and IV).  

 

 

Figure 2.1. A: exemplified left upper and B: right lower tragulid dentition of Hyemoschus aquaticus. 

Specimen H-30 15.03.63 property of Gérard Dubost (Paris, France) currently stored at Bayerische 

Staassammlung für Paläontologie und Geologie, München, Germany.  C: occlusal view of lower left 

molar where length and anterior width measurements are indicated, D: labial view of upper right molar 

where length and height measurements are indicated. 
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Body Mass 

Estimation.-  

Based on the relationship between tooth size, body size, and body mass in mammals 

(often demonstrated in previous studies, e.g. Damuth and Mc Fadden 1990), we estimated body 

mass of extinct and some extant tragulids, via allometric equation (log body mass = a + b log 

x; where a is the intercept, b is the slope, and x is the tooth length: either second lower molar 

length (SLML) or second upper molar length (SUML) or third upper molar length (TUML). In 

general, Janis (1990) demonstrated that molar length shows significant correlation with body 

mass for all ungulates (r2 = .93 - .94). Hence, we selected the equation derived from SLML for 

“ruminants only” (r2 = .93; intercept = 1.118 and slope = 3.337) provided by Janis (1990, in 

Damuth and Mc Fadden 1990: Table 16.8) and used in previous work on fossil tragulids 

(Rössner 2010; Alba et al. 2011; Aiglstorfer et al. 2014). For Dorcatherium puyhauberti and 

Dt. minimus the m2 length was not available. Hence, for Dt. puyhauberti SUML for “ruminants 

only” (r2 = .93; intercept = 1.068 and slope = 3.360) was used, while for Dt. minimus TUML 

for “all selenodonts” (r2 = .90; intercept = 0.94 and slope = 3.12) was used (Janis 1990). Body 

mass for extant species was taken from Meijaard (2011), except for Tragulus nigricans and 

Moschiola indica of which we calculated it. The median for body mass was plotted for each 

species within a geochronological framework, to obtain a first understanding about the 

phenotype diversity of fossil and living tragulids (Figure 2.2). 

 

Description through time.  

The fossil species studied here, cover a mean time span of 4.6 Ma (SD = 3.6 Ma; 

minimum time span of 0.2 Ma for Dorcatherium maliki and maximum time span of 13.2 Ma 

for Dt. minus: see Table I). Therefore, to describe the body mass from the present to the oldest 

tragulid record (38.0 Ma), we calculated the median body mass for all species each 2.0 Ma, 
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being a resolution high enough to register changes in the phenotype through time (Table IV).  

The median was used instead the mean, because at values above 34.0 kg, body mass shows an 

irregular distribution (only five species between 49.0 kg [Dt. vindebonense] to 111.5 kg 

[Dorcabune anthracotheroides]; Table I), being the mean very sensitive to extreme values.  

 

 

Similarities/differences in tragulids with same body mass 

In order to compare directly and unambiguously the differences/similarities in tragulids, 

we established six body mass classes, using the body mass of the largest living species, 

Hyemoschus aquaticus, as unit (7.0 – 15.0 kg; e.g. Dubost 1978; Kingdon 1979; Dubost 1984; 

Meijaard 2011); plus 2.9 kg of range of uncertainty = 17.9 kg). Thus the following classes were 

established: 0.1 - 17.9 kg, 18.0 – 34.9 kg, 35.0 – 51.9 kg, 52.0 – 68.9 kg, 69.0 – 85.9 kg and ≥ 

86.0 kg (Tables III and IV). In this context, for each these body mass classes we calculate the 

dental Occlusal Surface Area (OSA), the Occlusal Tooth Area (OTA) and length and width 

patterns along tooth rows (these analyses are described below) (Figure 2.3).  Descriptive 

statistics of length and width per tooth position are reported for each body mass class (Tables 

III and IV), and are plotted for each specimen studied here (Figures 2.4A and 2.4B).   

 

 

Estimation of the Occlusal Surface Area (OSA and OTA)  

The occlusal surface area of the postcanine tooth row is related to the quantity, 

abrasiveness and mechanical resistance to comminution of the ingested food, with grazers 

having a larger occlusal surface area to grind coarse foods, while browsers have a smaller and 

narrower post-canine tooth row, with more-prominent dental crests adapted to puncturing the 

cell walls of browsed material (Pérez-Barbería and Gordon 2001 and references therein). In this 
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context, for each tooth position per species (e.g. p2 of Dt. minus), we obtained its area (length 

and width were multiplied), also called Occlusal Tooth Area: OTA (Famoso et al. 2013). Then, 

mean OTA for each premolar and molar position (upper and lower) per species were totalled 

and we obtained the mean Occlusal Surface Area: OSA (Vizcaino et al. 2006). In order to 

compare OSA between body mass diversity, the correlation between log OSA taken as 

dependent variable and log body mass as independent variable were calculated with non-

parametric “rs” Spearman or “r” Pearson parametric Correlation Coefficients (Table VI), after 

assessment of normality/homoscedasticity (Shapiro-Wilk and Levene’s test) (Hawkins 2005; 

Dytham 2011). Eventually, OSA values were plotted against body mass class (Figure 2.3). 

Occlusal Surface Area and body mass variables were log-transformed to reduce the 

heteroscedasticity of the data as for example the dispersion associated with high values 

(Vizcaino et al. 2006) (Appendix 2, Table 2.2 and 2.3). 

 

 

Dentition Proportions 

In order to compare inter-specific patterns in length and width along tooth rows, we 

provide univariate plots for upper and lower dentition of each species (Figures 2.5 and 2.6). 

Through this way of presenting the measurement data, proportional differences that exist 

between the different tooth positions are visually and metrically accessible (Pickford and 

Laurent 2014). In the present case, we are searching differences/similarities between tragulid 

species from the Eocene to the present. 
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Abbreviations 

Institutions.- SNSB ― BSPG = Staatliche Naturwissenschaftliche Sammlungen Bayerns ― 

Bayerische Staatssammlung für Paläontologie und Geologie München, Germany; NMW = 

Naturhistorisches Museum Wien, Austria; UMZC = University Museum of Zoology 

Cambridge, England; ZMH = Biozentrum Grindel Zoologisches Museum Universität 

Hamburg, Germany; MCNM = Museo de Ciencias Naturales Madrid, Spain; NMA = 

Naturmuseum Augsburg, Augsburg, Germany.   

 

Genera and Teeth.- for premolar teeth, P = upper premolars (e.g. P2); p = lower premolar (e.g. 

p3); for molar teeth, M = upper molar (e.g. M1), m = lower molar (e.g. m2); for genera, Dt. = 

Dorcatherium, Db. = Dorcabune.  
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Table III. Descriptive statistics for lower teeth per body mass class of the studied tragulid species. N = number specimens studied. Min = minimun 

value. Max=maximun value. SD = Standard deviation. 

 
Lower teeth 

m1 m2 m3 p2 p3 p4 
Living spp. 0.1-17.9 kg    length (mm) N (Min-Max) 62 (4.1-10.3) 57 (5.1-10.2) 46 (7.8-14.3) 39 (4.1-8.5) 45 (5.2-9.5) 43 (4.6-9.3) 

 Mean±SD 6.4±1.4 7.0±1.1 9.6±1.4 5.8±1.2 6.6±1.0 6.3±1.2 
  width (mm) N (Min-Max) 62 (2.7-6.5) 57 (3.4-7.4) 46 (3.5-7.1) 39 (1.7-3.0) 45 (1.9 - 3.4) 43 (2.4-4.1) 

 Mean±SD 4.0±0.9 4.7±0.9 4.7±0.8 2.1±0.3 2.5±0.4 2.9±0.5 
Fossil spp.  0.1-17.9 kg    length (mm) N (Min-Max) 57 (4.4-9.6) 81 (4.6-11.0) 101 (6.7-16.7) 12 (3.8-8.6) 20 (3.0-10.0) 39 (3.9-9.6) 

 Mean±SD 6.7±1.5 7.3±1.4 11.8±2.9 6.8 ±1.3 7.8±2.0 6.9 ±1.8 
width (mm)  N (Min-Max)  56 (2.2-6.6) 81 (2.6-7.1) 100 (2.7-8.3) 12 (2.3-3.0) 20 (1.2-3.6) 38 (1.8-4.3) 

 Mean±SD 4.0±1.3 4.4±1.0 5.4±1.4 2.6 ±0.2 2.9±0.7 3.2±0.8 
Fossil spp. 18.0-34.9 kg    length (mm) N (Min-Max) 55 (9.8-12.7) 66 (10.2-14.7) 48 (15.4-20.1) 19 (9.9-13.5) 28 (10.5-14.6) 35 (10.0-13.8) 

 Mean±SD 11.2±0.6 12.3±0.9 18.0±1.3 11.5±1.2 12.7±0.9 11.9±0.9 
width (mm) N (Min-Max) 55 (5.0-8.3) 66 (6.4-9.5) 48 (6.8-9.7) 18 (3.1-5.0) 27 (3.5-5.5) 36 (4.4-6.0) 

 Mean±SD 6.7±0.7 7.8±0.8 8.3±0.8 4.1±0.6 4.7±0.4 5.3±0.5 
Fossil spp. 35.0-51.9 kg    length (mm) N (Min-Max) - 3 (14.5-15.1) 2 (21.1-22.9) - 2 (14.7-14.9) - 

 Mean±SD - 14.8±0.3 22.0±1.3 - 14.8±0.1  - 
width (mm) N (Min-Max) - 3 (9.7-10.2) 2 (10.4-10.7) - 2 (5.6-6.0) - 

 Mean±SD - 9.9±0.3 10.6±0.2 - 5.8±0.3 - 
Fossil spp. 52.0-68.9 kg    length (mm)   N (Min-Max) 1 2 (15.1-15.2) 4 (21.7-23.1) - - - 

 Mean±SD 13.8 15.2±0.1 22.5±0.6 - - - 
width (mm) N (Min-Max) 1 2 (11.0-12.0) 4 (10.4-12.8) - - - 

 Mean±SD 10.0 11.5±0.7 11.3±1.1 - - - 
Fossil spp. 69.0-85.9 kg    length (mm) N (Min-Max) 16 (13.0-16.0) 19 (15.7-18.3) 19 (20.0-28.4) 1 4 (15.5-17.7) 13 (13.1-17.3) 

 Mean±SD 14.7±0.9 16.9±0.7 24.0±2.1 14.3 16.5±1.0 14.9±1.4 
width (mm) N (Min-Max) 16 (7.7-10.2) 19 (9.3-12.3) 19 (10.5-13.3) 1 3 (5.2-5.9) 13 (5.4-9.3) 

 Mean±SD 9.0±0.7 10.6±0.9 11.7±0.9 4.3 5.6±0.4 6.7±1.0 
Fossil spp. > 86 kg        length (mm) N (Min-Max) 5 (15.4-19.3) 7 (16.7-20.3) 6 (26.0-30.9) - 1 1 

 Mean±SD  17.3±1.6 18.9±1.3 28.8±1.6 - 17.8 16.6 
width (mm) N (Min-Max) 5 (9.0-14.0) 7 (11.5-14.7) 6 (13.0-16.0) - 1 (6.9-6.9) 1 (8.4-8.4) 

 Mean±SD 11.5±1.9 13.0±1.1 14.3±1.0 - - - 
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Table IV. Descriptive statistics for upper teeth per body mass class of the studied tragulid species. N = number specimens studied. Min =  minimun 

value. Max=maximun value. SD = Standard deviation. 

 

Upper teeth M1 M2 M3 P2 P3 P4 
Living spp. 0.1-17.9 kg         length (mm) N (Min-Max) 55 (3.9-8.8) 56 (5.2-10.0) 49 (5.6-10.2 35 (5.6-9.9) 44 (4.6-10.0) 47 (3.7-8.8) 

 Mean±SD 6.1±1.3 7.0±1.2 7.1±1.2 6.9±1.2 6.6±1.2 5.2±1.1 
width (mm)  N (Min-Max) 55.0 (4.5-9.9) 56.0 (5.2-11.2) 49.0 (5.0-12.0) 35.0 (2.2-4.4) 44.0 (2.8-7.6) 47.0 (4.0-8.5) 

 Mean ± SD 6.3±1.4 7.3±1.4 7.5±1.6 2.9±0.6 4.0±1.0 5.4±1.0 
Fossil spp.  0.1-17.9 kg        length (mm) N (Min-Max) 38 (4.5-8.7) 56 (4.0-9.9) 41 (4.6-10.6) 7 (4.3-10.5) 9 (4.2-10.8) 10 (3.8-8.3) 

 Mean±SD 6.5±1.3 7.6±1.4 8.0±1.5 8.0±2.5 7.8±2.1 6.4±1.5 
width (mm) N (Min-Max) 38 (4.5-9.7) 55 (4.3-11.4) 41 (4.0-12.3) 6 (2.0-4.9) 9 (3.0-6.5) 12 (4.4-9.7) 

 Mean±SD 6.9±1.6 8.0±1.8 8.8±2.0 3.6±1.1 4.8±1.1 7.1±1.6 
Fossil spp. 18.0-34.9 kg        length (mm) N (Min-Max) 27 (9.3-13.1) 33 (10.5-13.7) 26 (10.7-15.5) 6 (11.5-13.0) 5 (9.9-12.0) 11 (8.1-12.5) 

 Mean±SD 10.6±0.8 11.9±0.9 12.5±1.1 12.1±0.7 11.1±0.8 9.4±1.2 
width (mm)  N (Min-Max) 26 (10.0-13.8) 33 (11.1-15.1) 26 (11.3-15.8) 6 (5.0-7.2) 5 (5.7-8.5) 11.0 (8.0-12.8) 

 Mean±SD 11.4±1.0 13.1±1.1 13.5±1.2 5.7±0.8 6.9±1.1 9.5±1.2 
Fossil spp. 35.0-51.9 kg        length (mm) N (Min-Max) 3 (13.3-14.0) 4 (14.6-16.9) 1 2 (14.9-17.3) 1 1 

 Mean±SD 13.6±0.4 15.8±1.0 16.8 16.1±1.7 15.5 12.7 
width (mm) N (Min-Max) 3 (13.7-15.5) 4 (16.1-17.0) 1 2 (7.2-7.4) 1 1 

 Mean±SD 14.7±0.9 16.7±0.4 17.7 7.3±0.1 9.7 12.1 
Fossil spp. 52.0-68.9 kg        length (mm) N (Min-Max) 2 (14.0-15.2) 1 2 (14.6-14.8)    

 Mean±SD 14.6±0.8 13.4 14.7±0.1    

width (mm) N (Min-Max) 2 (16.0-17.6) 1 2 (16.7-16.8)    

 Mean±SD 16.8±1.1 14.4 16.8±0.1    

Fossil spp. 69-85 kg           length (mm) N (Min–Max) 3 (14.8-15.3) 12 (16.5-19.6) 8 (17.3-20.5)   1 
 Mean±SD 15.0±0.3 18.4±0.9 19.3±1.1   14.0 

width (mm) N (Min-Max) 2 (14.7-14.8) 12 (16.8-22.8) 8 (17.1-22.0)   1 
 Mean±SD 14.8±0.0 19.5±1.8 19.5±1.7   15.0 

Fossil spp. > 86 kg            length (mm) N (Min-Max) 1 3 (19.4-21.7) 4 (18.8-21.4)    

 Mean±SD 18.0 20.7±1.2 19.7±1.2    

width (mm) N (Min-Max) 1 3 (21.0-25.7) 4 (21.3-25.8)    

 Mean ± SD 23.1 22.9 ± 2.5 22.9 ± 2.0    
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2.3 Results 

Body mass estimations (kg) and deep time distribution 

Our body mass estimations of fossil tragulids encompass a range of species from 1.0 kg 

(e.g. Dorcatherium minimus and Afrotragulus moruorotensis) to more than 100.0 kg 

(Dorcabune anthracotheroides) (Table I). The greatest diversity and the widest range of body 

masses (from 1.0 kg to 111.5 kg) occurred during the Miocene, whereas the Pliocene and the 

Quarternary almost lack tragulid records. Thus, there is a sharp cut between phenotype diversity 

in the Miocene and the present (Figure 2.2). When the median body mass is analyzed each 2.0 

mya from 36.0 mya to the present, a distribution to right side of the time scale can be observed, 

with a peak of body mass and species richness between 16.0 mya to 4.0 mya (Figure 2.2 and 

Table V).  In more detail, from 36.0 mya to 24.0 mya the body mass fluctuated between 1.6 kg 

and 4.7 kg and grouped species as Archaeotragulus krabiensis, Iberomeryx minor and I. parvus. 

At 22.0 mya, there was increase in median body mass of 11.6 kg to decrease to median body 

mass 6.3 kg at 18.0 mya, with a concomintant increase of species number from one to six 

respectively (Figure 2.2 and Table V). Here the following species are present: Afrotragulus 

moruorotensis, Siamotragulus songhorensis, Dorcatherium pigotti and Dorcabune welcommi. 

From 16.0 mya to 4.0 mya, median body mass fluctuated between 17.4 kg and 21.1 kg, being 

also the time with the greatest number of species (between 4 to 12 species; Figure 2.2 and Table 

V). At that time, the following species were present, for example, Dorcatherium minus, Dt. 

maliki, Dorcabune anthracotheroides, Siamotragulus sanyathanai and Yunannotherium 

simplex, among others. From 2.0 mya to the present, the median body mass ranges between 2.9 

kg and 4.5 kg, with Dorcatherium nagrii being the youngest fossil species considered here 

(Figure 2.2 and Table V).  
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Figure 2.2. Body mass class (kg) v/s time (mya), for 34 fossil and living tragulid species (27 fossil 

species and 7 living species). Each symbol represents a species and lines temporal occurrence. The body 

mass for Hyemoschus, Moschiola and Tragulus species (except T. nigricans and Moschiola indica) were 

extracted from Meijaard (2011). a: Archaeotragulus krabiensis, b: Iberomeryx parvus, c: I. minor, d: 

Dorcatherium pigotti, e: Dt. guntianum, f: Dt. nagrii, g: Siamotragulus songhorensis, h: S. bugtiensis, 

i: S. sanyathanai, j: Afrotragulus moruorotensis, k: A. parvus, l: Yunannotherium simplex, m: 

Hyemoschus aquaticus, n: Moschiola indica, o: M. meminna, p: Tragulus javanicus, q: T. kanchil, r: T. 

napu, s: T. nigricans, t: Dt. chappuissi, u: Dt. minus, v: Dt. crassum, w: Dt. iririensis, x: Dt. naui, y: Dt. 

jourdani, z: Dt. puyhauberti, xx: Dt. maliki, xy: Db. welcomi, xz: Dt. vindebonense, yy: Db. nagrii, yz: 

Dt. peneckei, zv: Dt. majus, zz: Db. anthracotheroides, #: Dt. minimus. G: Grazer, in: Intermediate 

feeder, B: Browser, F: Frugivore. Plio: Pliocene, Plei: Pleistocene. 
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Table V. Median body mass (kg), plotted at 2.0 Ma intervals, for 34 fossil and living tragulid species 

(27 fossil species and 7 living species). The number of species, median, minimum and maximum body 

mass values are presented. 
 

 

Time (mya) Number of 

species 
Body Mass (kg) 

Median Min - Max 

Present 7 2.9 1.9 - 12.0 

2.0 – 3.9 1 4.5 4.5 
4.0 – 5.9 4 21.1 4.5 – 77.0 
6.0 – 7.9 7 21.9 4.5 – 77.0 
8.0 – 9.9 8 26.6 4.5 – 77.0 

10.0 – 11.9 11 20.9 1.0 – 111.5 
12.0 – 13.9 12 23.9 1.0 – 111.5 
14.0 – 15.9 10 23.9 1.0 – 71.2 
16.0 – 17.9 10 17.4 1.0 – 49.0 
18.0 – 19.9 6 6.3 1.0 – 20.3 
20.0 – 21.9 2 8.6 5.6 – 11.6 
22.0 – 23.9 1 - 11.6 
24.0 – 25.9 1 - 3.3 
26.0 – 27.9 1 - 3.3 
28.0 – 29.9 1 - 1.6 
30.0 – 31.9 1 - 1.6 
32.0 – 33.9 1 - 1.6 
34.0 – 35.9 1 - 4.7 
36.0 – 37.9 1 - 4.7 

 

 

Body mass class 

The extant tragulids' (genera Hyemoschus, Moschiola and Tragulus) body mass values 

define the limit of the lowest class (≤ 17.9 kg). Except for Hyemoschus aquaticus, which 

averages 12.0 kg, the others clearly are even smaller species, whose body mass varies from 1.0 

kg to 5.0 kg (Figure 2.2). The few known Palaeogene tragulids Archaeotragulus krabiensis, 

Iberomeryx minor, and I. parvus fall within that lower body mass range of the class of living 

tragulids with no more than 5.0 kg. The greatest diversity of tragulid body mass in general 

occurred during the Miocene, from which all six body mass classes are recorded. Among these, 

class ≤ 17.9 kg was the most diverse with 10 species closely followed by class 18.0 kg to 34.9 

kg with 9 species (Figure 2.2).  Within the Miocene, the greatest diversity and the widest range 
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of body masses (from 1.0 kg to 111.5 kg) occurred during the Middle Miocene (15.9 mya to 

11.6 mya).  In contrast to the Early Miocene, for the Late Miocene a wider range of body mass 

classes are recorded in general, but there are more species in class 18.0 kg to 34.9 kg than during 

the Early Miocene. Since there are only few tragulid records from most of the Pliocene and the 

Quarternary mostly not considered in this study a sharp cut between phenotype diversity in the 

Miocene and the present can be observed (Figure 2.2). 

 

 

Occlusal Surface Area (OSA) 

For all fossil and living species here studied, the molars are generally square (upper), 

rectangular (lower), and/or trapezoidal shape in occlusal view, while the premolars vary from 

triangular in the maxilla (especially P4) to rectangular, elongated and slender in the mandible 

(Figure 2.1 A, B).  For these teeth, there is a positive correlation between tooth width and tooth 

length, no matter which tooth position (Figure 2.4a, B).  Regarding the lower dentition we 

found a positive relationship between the OSA and body mass (Table VI).  For the species less 

than 18.0 kg (fossil and living) the length and width of lower molars has more or less similar 

proportions , while the premolars are more slender (Figure 2.3 and Figure 2.4 A).  There was 

only a single fossil species in the 18.0 kg to 34.9 kg body mass class, but the total OSA of 

premolars was greater in species of a body mass of ≤ 17.9 kg (Figure 2.4). There were not 

enough data to analyze all other body mass classes (Figure 2.3). 

The upper dentition shows positive allometry of total OSA (Table VI). Here, the 

premolars and molars were longer and wider in fossil than in living species (Figure 2.4 B). For 

premolars, the width is 76.4% and 68.9% respectively of the length in fossil and living species, 

while the molars were wider than long; 6.8% wider in fossil and 4.5% in living species. The 
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fossil species have a slightly greater total OSA, being the molar OSA higher than premolar 

OSA (Figure 2.3).  

 

 

 

 

Figure 2.3. Upper and lower Occlusal Surface Area (OSA) of the permanent dentition (premolar and 

molar) for the different body masses studied (Raw data in Appendix 2, Tables 2.2 and 2.3).  
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Table VI. Ordinary Least Squares Regression between the Total Occlusal Surface Area (Total OSA) 

and body mass for upper and lower teeth, of fossil and living tragulid species. 
 

 
 

Body Mass 
 

Species considered in the analysis with data for the 

Total OSA ( = premolar OSA + molar OSA)  

 

Ordinary Least Squares Regression  

r2 Slope 
Std error 

estimate 
 

Intercept p-value 

       

Lower dentition Fossil spp.: 

Archaeotragulus krabiensis, Dorcatherium 

pigotti, Dt. guntianum, Dt. nagrii, Dt. chappuisi, 

Dt. crassum, Dt. naui, Dt. maliki, Dt. majus, 

Yunannotherium simplex.  

 

Living spp.:  

Hyemoschus aquaticus, Moschiola indica, M. 

meminna, Tragulus javanicus, T. kanchil, 

Tragulus napu. 

 

0.97 1.10 0.04 3.13 < 0.0001 
All species         

> 0.0 kg           

(n = 16 spp.) 

Species            

≤ 17.9 kg 

(n = 11 spp.)  

 

Fossil spp.: 

Archaeotragulus krabiensis, Dorcatherium 

pigotti, Dt. guntianum, Dt. nagrii, 

Yunannotherium simplex. 

 

Living spp.: 

Hyemoschus aquaticus, Moschiola indica, M. 

meminna, Tragulus javanicus, T. kanchil, 

Tragulus napu. 

 

0.94 0.92 0.07 3.23 < 0.0001 

 

Upper dentition 

 

Fossil spp.:  

Iberomeryx minor, Afrotragulus parvus, 

Dorcatherium guntianum, Dt. chappuisi, Dt. 

minus, Dt. naui, Dt. vindebonense. 

 

Living spp.:  

Hyemoschus aquaticus, Moschiola indica, M. 

meminna, Tragulus javanicus, T. kanchil, T. 

napu. 

 

0.97 1.28 0,06 0,05 < 0.0001 All species       

> 0.0 kg          

(n = 14 spp.) 

Species                  

≤ 17.9 kg 

(n = 9 spp.) 

 

Fossil spp.: 

Iberomeryx minor, Afrotragulus parvus, 

Dorcatherium guntianum. 

 

Living spp.: 

Hyemoschus aquaticus, Moschiola indica, M. 

meminna, Tragulus javanicus, T. kanchil, T. 

napu. 

 

0.91 1.10 0.12 3.48 <0.0002 
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Figure 2.4A. Width vs. length (mm) for the lower teeth of tragulid species categorized in body mass 

classes established here. 
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Figure 2.4B. Width vs. length (mm) for the upper teeth of tragulid species categorized in body mass 

classes established here. 
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Dentition proportions in Tragulidae 

With slight differences, the length and width pattern of the full postcanine dentition 

(lower and upper) is similar between fossil and living species (Figures 2.5 and 2.6).  The lower 

molar row has similar proportions in length in fossil and living tragulids, showing a clear 

increase from m1 to m3, but being more pronounced in the heavier species of a body mass 

range from 18.0 kg to < 86.0 kg (Figure 2.5 A).  The width increases from m1 to m2, but 

decreases slightly towards m3 in fossil tragulids and coincides with m2 in living tragulids. 

However, for heavier species (18.0 kg to < 86.0 kg), this increase in width was constant from 

m1 to m3 (Figure 2.5 B).  In general, the lower premolar row increases in length fom p2 to p3, 

being the only exception Dorcatherium chappuisi, whose p3 is smaller than p2. From p3 to m1, 

in the majority of the species, the length decreases, except in living species Hyemoschus 

aquaticus and Tragulus javanicus, where they do not vary, and the fossil Dt. nagrii where there 

is a notable increase of the length from p3 to m1 (Figure 2.5 A).  The width of the lower 

premolar row shows a general pattern with only a slight increase from p2 to p4, (the increase is 

even less in the living species). However, in the heavy species, e.g. Dorcabune 

anthracotheroides, the p2-p4 increase is more pronounced.  The width usually increases from 

p2 and m3, being more pronounced in the larger species (Figure 2.5 B).  

 Regarding the upper molar row, the majority of the tragulids (fossil and living species) show 

a length increase from M1 to M2, with M3 having the same size as M2 (Figure 2.6 A). 

Exceptions from that, with M3 smaller than M2, are the fossil species Siamotragulus bugtiensis, 

Dorcatherium chappuisi and Dorcabune anthracotheroides and the living species Moschiola 

indica, M. meminna and Tragulus napu (Figure 2.6 A). The upper premolar row shows in the 

majority of species a decrease from P2 to P4. However, the fossil species Afrotragulus parvus 

shows the same length from P2 to M1, and Siamotragulus sanyathanai shows an increase of 

the length from P2 to P3, but a decrease to P4. In almost all species, between P4 and M1, there 
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is an increase in length, except for Dorcatherium maliki, where M1 is smaller than P4 (Figure 

2.6 A). With few exceptions, there is an increase in width from P2 to M3, which is very clear 

in heavyweight species. Exceptions, where M3 is less wide than M2, are the fossil species 

Siamotragulus bugtiensis, Afrotragulus moruorotensis, Dorcatherium puyhauberti and Dt. 

majus and the living species Moschiola meminna. M2 and M3 have the same width in living 

Hyemoschus aquaticus and Tragulus kanchil (Figure 2.6 B).  

 
 

Figure 2.5. A: length and B: width pattern of lower dentition in fossil and living species of Tragulidae. 

a: Archaeotragulus krabiensis, b: Iberomeryx parvus, c: I. minor, d: Dorcatherium pigotti, e: Dt. 

guntianum, f: Dt. nagrii, g: Siamotragulus songhorensis, h: S. bugtiensis, i: S. sanyathanai, j: 

Afrotragulus moruorotensis, k: A. parvus, l: Yunannotherium simplex, m: Hyemoschus aquaticus, n: 

Moschiola indica, o: M. meminna, p: Tragulus javanicus, q: T. kanchil, r: T. napu, s: T. nigricans, t: Dt. 

chappuisi, u: Dt. minus, v: Dt. crassum, w: Dt. iririensis. 
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Figure 2.6. A: length and B: width pattern of upper dentition in fossil and living species of Tragulidae. 

b: Iberomeryx parvus, c: I. minor, d: Dorcatherium pigotti, e: Dt. guntianum, f: Dt. nagrii, g: 

Siamotragulus songhorensis, h: S. bugtiensis, i: S. sanyathanai, j: Afrotragulus moruorotensis, k: A. 

parvus, l: Yunannotherium simplex, m: Hyemoschus aquaticus, n: Moschiola indica, o: M. meminna, p: 

Tragulus javanicus, q: T. kanchil, r: T. napu, s: T. nigricans, t: Dt. chappuissi, u: Dt. minus, v: Dt. 

crassum, w: Dt. iririensis, x: Dt. naui, y: Dt. jourdani, z: Dt. puyhauberti, xx: Dt. maliki, xy: Db. 

welcommi, xz: Dt. vindebonense, yy: Db. nagrii, yz: Dt. peneckei, zv: Dt. majus, zz: Db. 

anthracotheroides. 
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2.4 Discussion 
 
 

The postcanine tooth areas of Tragulidae (OSA) show positive allometry. Therefore, 

they match with data from the literature on herbivore mammals (Gould 1975). The length 

increases from M1 to M3 in fossil tragulids was reported to be diagnostic by Rössner (2007). 

This is confirmed here for the majority of fossil and living tragulids (Figure 2.4). However, the 

increase in width is differently correlated with the increase of length in fossil and living 

tragulids and between the tooth positions. While molars and P4s are less affected, all other 

premolars are more slender in living than in fossil tragulids (Figure 2.4). This is in accordance 

with the lack of lingual tooth crown elements in the living species.  

External appearance, behavior, and ecology of living African and Asian tragulids is 

documented to be quite similar among them and, hence, easily lead to the assumption that living 

species represent a phenotype that persisted possibly over more than 40 mya since divergence 

from the stem lineage (Janis 1984, Thenius 2000, Hernández-Fernández and Vrba 2005). Thus, 

the aquatic escape behaviour shared among Hyemoschus aquaticus, Tragulus napu and 

Moschiola spp. is interpreted as a symplesiomorphic trait, suggesting that it could be probably 

ancestral to all members of Tragulidae (Meijaard et al. 2010). Moreover, it has been 

hypothesized that the presence of a substantial arteria carotis interna instead of a rete mirabile 

epidurale in H. aquaticus and two species of Tragulus either represents a plesiomorphy for 

ruminants, or an apomorphic feature of extant tragulids (O’Brien 2015). Guzmán and Rössner 

(2018) found that crania of Tragulus javanicus and T. kanchil are relatively tall, with globose 

neurocrania, while cranial height is less pronounced and somewhat flattened in specimens of T. 

napu and Moschiola spp., and thus resembling more that of H. aquaticus. Given the similarity 

of H. aquaticus, which is closer related to fossil Dorcatherium than to extant Tragulus and 

Moschiola (e.g. Mennecart and Costeur 2016), to T. napu and Moschiola spp. the authors argue 

in favour of a flat skull constituting a plesiomorphic character state, whereas a globose 
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neurocranium would probably represent an apomorphic character state.  In tragulids, 

fundamental differences exist in skull and limb anatomy (Milne Edwards 1864; Carlsson 1926; 

Sánchez et al. 2014), as well as in life history traits (Dubost et al. 2011 and references therein).  

Based on extinct and extant tragulids' morphological characters, a recent phylogenetic analysis 

inferred a split of the lineages leading to Hyemoschus and Tragulus + Moschiola, respectively, 

being no younger than 20.0 mya (Sánchez et al. 2014). In any case, the living tragulids comprise 

a mixture of ancestral as well as derived characters and are most likely more misleading than 

enlightening for inferring the evolutionary history of the family (see Grandcolas et al. 2014). 

Our analysis provides evidence for a substantial range of body sizes among tragulids 

from the past, not comparable to what we observe today. In that context, a closer look at body 

size biology is of interest. Body size is the result of mutual interactions between intrinsic and 

extrinsic factors (Peter 1985; Damuth and McFadden 1990). Among these, tooth morphology, 

food composition, and digestion features are key factors. Ruminantia, including tragulids, are 

equipped with the most complex stomach structure known from mammals (Langer 1988).  A 

subdivison in several chambers facilitate a time-consuming, but effective retention and 

rumination strategy (Illius and Gordon 1992).  Whereas most ruminants (bovids, cervids, 

giraffes, antilocaprids) have four chambers, tragulids have only three, lacking the omasum 

(Clauss and Rössner 2014 and references therein). This deviation from the common pattern is 

accompanied by the frugivorous diet, being a rather rare adaptation among living ruminants 

(Dubost 1978). The observation that browsing ruminants are predominantly smaller-sized 

species compared to grazing ruminants (e.g. Owen-Smith 1988; Gagnon and Chew 2000) is 

transferable to fruit-eating ruminants, even without exceptions (Dubost 1978; Heydon and 

Bulloh 1997). The fact that browsing as well as fruit-eating ruminants are selective feeders, 

living on high-quality food with a lower fiber/protein ratio than large ruminants, makes small 

and large ruminants highly comparable but not necessarily what concerns the digestive strategy. 
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High-quality food does not need specific morpho-physiological adaptations beyond what 

general herbivores show.  Indeed, relative metabolic requirements increase with decreasing 

body weight. Not only do smaller herbivores have greater metabolic requirements than do larger 

ones, but also their gut capacity relative to these requirements is less. Thus, larger herbivores 

have a relative larger digestive storage capacity than do smaller ones, and can afford a longer 

passage time (Janis 1976).  

Our data allows for the comparison of fossil and living species on the basis of their body 

mass. This information provides indirect evidence correlated with dentition morphometrics. In 

this context, smaller species (< 18.0 kg) have a relatively smaller postcanine surface area (total 

OSA: Figure 2.3) and non-molariform premolars.  These features are correlated with the 

processing of items of herbage that are high in protein content and that require minimal 

fermentation such as fruits, young leaves, buds, berries, etc.  Indeed, these dentition 

characteristics are highly correlated with the frugivorous diet of the extant tragulid Hyemoschus 

aquaticus and Tragulus species (Dubost 1978; Heydon and Bulloh 1997).  Secondarily, these 

dentition characteristics can be associated to the fossil species Dorcatherium pigotti (11.6 kg; 

Table II), which has been classified a likely browser generalist rather than a frugivorous species, 

based on paleodiet reconstructions (Ungar et al. 2012).  Other smaller fossil species like 

Afrotragulus parvus (2.7 kg) have been reconstructed as intermediate feeders, while 

Siamotragulus songhorensis (5.6 kg) was a variable grazer and Dorcatherium guntianum (12.4 

kg) a grass-dominated mixed feeder (Ungar et al. 2012; Kaiser and Rössner 2007) despite their 

lower body mass and slender dentition (Pickford 2002; Sánchez et al. 2012).  On the other 

hand, the medium-sized Dt. crassum (24.9 kg) is considered a browser, but Dt. naui (30.4 kg) 

a frugivorous browser just as the extant species (Kaiser and Rössner 2007; Merceron 2009; 

Aiglstorfer et al. 2014), and D. chappuisi (29.9 kg; Ungar et al. 2012) a grazer. Also, our data 

show a greater length of lower m3 in these medium-sized tragulids. The issue is, whether this 



Chapter 2 – Tragulid body mass through time 

 

[39] 

 

m3 length represents a specialization related to food habits. But clearly, when compared with 

living tragulids, body mass and diet for fossil species cannot be correlated.  In other words, 

smaller fossil species are not necessarily frugivorous like similar-sized extant tragulids. 

Moreover, the geographic, ecological, and temporal segregation between living tragulids should 

result in different suites of selective pressures. Accordingly, it is unlikely that a broad diversity 

associated with diet in the small and medium-sized fossil tragulids is represented today by only 

frugivorous species.  Indeed, Yapa and Ratnavira (2013) reported that grasses, bark, herbs, 

seedlings, fruits, berries and the accidentally ingested insect constitute the diet of Moschiola 

kathygre. Therefore, an extensive comparative study on African and Asian living species 

dealing with these aspects of their biology is necessary.  

Herbivorous mammals of larger body size are able to use forage of lower quality (Bell 

1969, 1971; Jarmann 1968, 1974; Demment and Van Soest 1985; Clauss et al. 2003), due to 

morphophysiological features of the gastrointestinal tract. This opens up a higher flexibility in 

foraging, especially advantageous at difficult temporary environmental/climatic conditions and 

highly competitive guild structures. On the other hand, larger mammals tend to mature sexually 

at a later age, have longer gestation times, and fewer offspring (Peters 1985), all of which results 

in a significantly lower reproductive rate. Accordingly, there may be an associated higher risk 

of evolutionary failure.  According to Owen-Smith (1988) and Van Soest (1996), larger 

herbivorous mammals show more flexibility regarding their diet, due to their lower specific 

metabolic requirements, by thriving on lower quality forage and/or by ingesting lesser amounts 

of regular quality forage per day. All living tragulids are small, and there are no significant 

differences in gestation length (ranging from five to six months), litter size (1 or 2 fawns) and 

longevity (ca. 13 or 15 years) (Meijaard 2011). 
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Our body mass estimations show (Figure 2.2, Table V), from small to larger extinct 

tragulids, that these species did not prosper in open, grassland-dominated ecosystems during 

the Miocene (Janis 1993; Janis 2008; Zachos 2001). The diversification of pecoran species with 

their high competitivity and much more efficient fiber consumption, probably displaced the 

rather unsuccessful grazing tragulids (Ungar et al. 2012). On the other hand, browsing tragulids 

were affected by the reduction and/or dissappearance of their habitats at the expense of the 

grassland. This, in association with the arrival of pecoran competitors, must have detonated 

their extinction. In this context, the actual frugivorous diet could be considered an adaptation 

as answer to selection pressures encountered during the Miocene. It is probable that the actual 

frugivorous diet of the Asian and African mouse-deers is a recently acquired condition and, in 

a certain sense, more “sophisticated” than the feeding habit of the tragulid ancestor. 

Accordingly, based on the data here analyzed and the available paleodiet reconstructions 

(Ungar et al. 2012; Kaiser and Rössner 2007), it is highly probable that the frugivorous 

adaptation of tragulids does not necessarily represent an ancestral state for this family (e.g. Janis 

1984; Thenius 2000), but rather a novel intra-tragulid evolutionary response as has been 

hypothesized before (Clauss and Rössner 2014). Obviously, this scenario can change if there 

would exist a still not recorded frugivorous tragulid fossil. That today there are only small-sized 

species is probably due to the higher diversity of these phenotypes during the Miocene.  The 

high variation that existed in the past was the basis on which natural selection (directional 

natural selection in this case) acted upon and of which small phenotypes were favoured that led 

to the development of the extant tragulids. Notwithstanding, whether the small body size of 

living tragulids represents an ancient or derived trait remains unclear (e.g. Grandcolas et al. 

2014). In this context, the small size and short straight horns of antilopine artiodactyls was 

commonly thought to represent an ancient type of bovid body plan. However, Bärmann (2014) 

concluded that small body size and short horns are likely derived instead of primitive traits, and 
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that the ancestor of Antilopine was probably very similar to modern gazelles. In the case of 

tragulids, more samples and new approaches should be considered to advance our knowledge 

on that topic. 

 

 

2.5 Conclusions 
 
 

Our body mass estimations give evidence for the existence of a wide body size range of 

tragulid species from the past, which is not comparable to what we have today (Figure 2.2).  

The peak occurred during the Miocene between 16.0 mya to 4.0 mya with a median body mass 

that fluctuated between 17.4 kg and 21.1 kg. Among the body mass classes, the class ≤ 17.9 kg 

with 10 species and the class 18.0 kg to 34.9 kg with 9 species, were the most diverse ones 

during the Miocene (Table V). The disparity in body size of fossil and extant tragulids hints at 

a much wider spectrum of phenotypes in the past. Although our empiric analyses are restricted 

to tooth measurements, the directly related body mass is known to be tightly linked with 

ecological and physiological parameters. Here, we hypothesized that directional natural 

selection would have favoured the small phenotype of tragulids in compensation for the 

increasing interspecific competition among crown ruminants and Miocene climate change.  

Finally, we found that the phenotype diversity of extant tragulids species represents only a 

moderate subset of the extinct phenotypic variation, and consequently we validated our 

hypothesis. 
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CHAPTER 3 

Skull morphometrics of Tragulus and Moschiola for an improved 

classification of tragulid collections 

Chapter published as: Guzmán A. J. and Rössner G. E. 2018. Skull morphometrics of 

Tragulus and Moschiola for an improved classification of tragulid collections. Mammalian 

Biology 90: 78 – 88. 

 

 

3.1 Introduction 

     Mouse deer are neither deer nor mice, but rather belong to the Tragulidae, a family of 

ruminants closely related to deer, antelopes and their kin (see Hernández Fernández and Vrba, 

2005; Hassanin et al. 2012) that includes the smallest living artiodactyls (shoulder height 20 

cm). Fossil evidence from Asia suggests that the Tragulidae evolved in the Eocene, at least 34 

mya (Métais et al. 2001; Benammi et al. 2001). Present-day Tragulidae are subdivided into 

three genera, i.e. Tragulus, Moschiola, and Hyemoschus. While Hyemoschus is a monospecific 

genus that exclusively occurs in central Africa, Tragulus and Moschiola each include several 

species. Moschiola comes from India and Sri Lanka, and Tragulus is distributed widely across 

the mainland and many islands of South-East Asia (Meijaard 2011; Groves and Grubb 2011).  

     The taxonomic history of Tragulus and Moschiola is complicated (for details see Meijaard 

and Groves 2004; and Groves and Meijaard 2005). Previous phenomic analyses have produced 
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a plethora of conflicting results that triggered dispute over the number of species and validity 

of some of the historic species delimitations (e.g. see Raffles 1822; Gray 1836; Milne-Edwards 

1864; Gray 1873; Miller 1911). The first major taxonomic revision of Tragulus Brisson, 1762 

was provided by Chasen (1940), who lumped all the Tragulus species of the time (i.e. between 

two and five, depending on the author) to two species and numerous subspecies, i.e. T. javanicus 

(greater mouse-deer) with 27 subspecies, and T. kanchil (lesser mouse-deer), with 26 

subspecies. This classification had to be corrected in terms of nomenclatural issues into T. napu 

(greater mouse-deer) and T. javanicus (lesser mouse-deer) (van Bemmel 1949). Moschiola 

specimens were first described as Moschus (Erxleben 1777). Subsequently, Indian and Sri 

Lankan tragulids were assigned to yet another genus, Memina (Gray 1821), a preoccupied and 

hence invalid name. In 1843, Gray referred the Southeast Asian mouse deer to Tragulus. 

Finally, Thomas (1916), Flerov (1931), Groves and Grubb (1982), Groves and Meijaard (2005), 

and Groves and Grubb (2011) recommended that the Indian and Sri Lankan tragulids be 

accommodated in Moschiola Gray 1952. In addition to being distinctly different with regard to 

overall skull morphology, Tragulus and Moschiola differ from one another in the morphology 

of the median metacarpals and metatarsals. 

     Taxonomic assignments and labelling of tragulid specimens in zoological collections 

reflects the complex history of classification of these animals. Species splitting and lumping 

during the 19th century, along with the concurrent use of the revisions by Chasen (1940) and 

van Bemmel (1949), have led to confusion in collections and publications. For example, 

Carlsson (1926) described Tragulus embryos that he assigned to T. napu and T. kanchil; 

however, these two species names are mutually exclusive according to Chasen (1940) and van 

Bemmel (1949). Smit-van Dort (1988, 1989) mentioned the sympatric occurrence of T. 

javanicus and T. napu. While this coincides with Chasen (1940), it is impossible according to 

van Bemmel (1949). Nevertheless, most subsequent authors followed a three-species concept 
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for the Asian tragulids (i.e. two Indo-Malayan and one Indian-Sri Lankan species) (e.g. Smit-

van Dort 1988, 1989; Corbet and Hill 1992; Endo et al. 2004a). The most recent taxonomic 

revisions of Tragulus and Moschiola were provided by Meijaard and Groves (2004) and Groves 

and Meijaard (2005), who proposed substantial changes. These authors used extensive data sets 

of skull and coat variables to reassess the alpha taxonomy. As a result, sseveral of the subspecies 

established by Chasen (1940) were elevated to species rank. Seven spieces in Tragulus and 

three (or four, see below) in Moschiola species, all with relatively restricted geographical 

distributions, are currently recognized, including T. javanicus (only in Java), T. williamsoni 

(Northern Thailand, but also southern China; see Meijaard et al. 2017), T. kanchil and T. napu 

(both in Southeast Asia but not in Java), T. nigricans (Philippines), T. versicolor (southern 

Vietnam). M. indica (southern India), M. meminna (dry zone of Sri Lanka), M. kathygre (wet 

zone of Sri Lanka), as well as a fourth species that has not been formally described to date. 

Although, there seems to be general agreement in recent systematic studies (Kuznetsov et al. 

2004; Hérnandez-Fernández and Vrba 2005; Sánchez et al. 2014; Mennecart and Costeur 

2016b; Jun-Jie Hu et al. 2016 [with consistently incorrect spelling of “Tuagulus williamsoni”]) 

and reviews (e.g. Grubb 2005; Rössner 2007; Meijaard 2011; Yapa and Ratnavira 2013) 

regarding the two-Asian-genera concept of the living Tragulidae and the number of species per 

genus, the classification by Chasen (1940) and keys in Smit-van Dort (1989) continue to be 

used (e.g. Wooding et al. 2007; O’Brien 2015), due probably to the fact that specimens kept in 

collections are often still labelled based on these old works, rather than the newer and more 

accurate studies. The use of an out-dated taxonomy in papers focusing on the phenotype is not 

only the cause for time consuming and arduous disentanglement, but also rather the source of 

fundamental misinterpretations of molecular studies with deposition of DNA sequences in 

public databases. It is noteworthy in this context that the phylogeography of Tragulus provided 

in the only molecular phylogenetic analysis on tragulids available to date (Endo et al. 2004b 
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citing Meijaard and Groves 2004) includes regions where, according to Meijaard and Groves 

(2004), only T. napu and T. kanchil occur. However, Endo et al. (2004b) recovered three main 

clades (bootstrap support from 52 to 100%) in these areas, the first containing specimens 

assigned to two sub-clades of T. javanicus, one from the Malayan Peninsula (Pahang) and the 

other from Laos (Vientiane). The second clade includes specimens assigned to T. javanicus 

from Borneo Island (Sabah), while the third comprises two specimens of T. napu from Borneo 

Island (Sabah) and Pulau Tioman. Although the data clustering in itself is (more or less) 

congruent with the distribution of Tragulus species depicted in Meijaard and Groves, (2004, 

page 98) (see above), the taxonomy used by Endo et al. (2004b) does not correspond to the 

revision, and the reference DNA sequences deposited in Genbank (see 

https://www.ncbi.nlm.nih.gov/genbank/) under T. javanicus do in fact not belong to this 

species, but rather to T. kanchil based on the body size.  

     In preparation for a larger research project on tragulid morphology we measured 

morphometric variables of 43 skulls of Tragulus and Moschiola reposited in several European 

collections that still use the conventional three-species concept for Asian tragulids. To be able 

to apply the latest taxonomic revisions to these specimens, we performed a morphometric 

characterization based on the same basic methodologies used by Meijaard and Groves (2004) 

and Groves and Meijaard (2005). The morphometric variables included in our analysis include 

many variables also used in Meijaard and Groves (2004) and Groves and Meijaard (2005), but 

also some not considered previously. By using a different sample set of specimens than in the 

aforementioned studies, albeit much smaller, we are able to provide an independent scrutiny of 

the newest Tragulus and Moschiola taxonomy. 

 

 



Chapter 3 – Skull morphology of living tragulids 

 

[47] 

 

3.2 Material and methods 
 
 

Thirty-four skulls of Tragulus from Java, Borneo, Sumatra, Sunda Islands and Thailand, 

and nine skulls of Moschiola from Sri Lanka and India (according to specimen labels and 

collection catalogues) were analyzed; only adult individuals showing the erupted upper third 

molar were used. Specimen and repository information is provided in Appendix 3, Table 3.1. 

For each skull, 25 craniodental morphometric variables were measured with a digital caliper 

(accuracy 0.01 mm), partially following Meijaard and Groves (2004) (Figure 3.1).  Moreover, 

the product of the zygomatic width (ZW) and condylobasal length (CBL) was calculated and 

the result then multiplied by 100 to quantifying overall skull geometry per genus/provenance 

group (Figure 3.5 and Table VII). To perform taxonomically independent analyses, we removed 

all species-specific names from our data matrix, but retained the genus names and geographical 

provenances, because the differences between Tragulus and Moschiola are well established 

(e.g. Hérnandez Fernández and Vrba 2005; Sánchez et al. 2014; Mennecart and Costeur 

2016a,b) and are not an objective of this study. Principal Component Analysis (PCA) with the 

morphometric variables transformed to log10 was used to delimit discrete groups. Incomplete 

measurements of individual variables (e.g. because of distortion or incomplete preservation of 

the skull) were completed mathematically by calculating the mean of that variable from all other 

specimens with the same sex and geographic provenance. The genus-provenance groups were 

characterized by descriptive statistics: mean ± standard deviation, minimum and maximum 

values. All statistical analyses were performed using the free software PAST 3.14 (Hammer et 

al. 2001). 
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Figure 3.1. Standard measurements used in the analysis. A) ventral view of cranium, B) dorsal view of 

cranium, C) lateral view of cranium, D) external lateral view of mandible, E) caudal view of cranium. 

Variables indicated with an asterisk (*) taken from Meijaard and Groves (2004). Abbreviations: 

condylobasal length (CBL*); palatine length (PL); nasal length (median) (NL*); zygomatic width 

(ZW*); width across orbits (WO*); largest dorsoventral diameter of orbits (GVDO); largest 

anteroposterior diameter of orbits (GHDO); length of tympanic bulla (BL); width of tympanic bulla 

(WB*); external bullar distance (EID); occipital condylar width (OCW*); paraoccipital width (PW*); 

laterolateral diameter of foramen magnum (HDFM); width of braincase (BB*); interorbital width (IW); 

maxillar lateral length (MLL) measured to anterior side of canine tooth; occipital height dorsal of 

ophistion (OH*); occipital height dorsal of basion (BH*); length of mandibular condyle (LCM); height 

between tympanic bulla and parietal bone (BPM); length of upper tooth row (UTL); length of lower 

tooth row (LTL); length of upper diastema (UD); height of mandible (HM); length of mandible (LM*). 

 

3.3 Results 

     The PCA reveals that the first two components account for more than 67.8 % of total 

variance (PC 1: 54.5 % and PC 2: 13.3 %) (Figure 3.2) overlap of the geographic groups is 

moderate (Figure 3.3).  
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Figure 3.2. Distribution of total of variance expressed by components of the Principal Component 

Analysis. 
 

 

 All morphological variables have positive factor loadings for PC1, with moderate to high 

correlations, and hence permit definition of this component as a size vector (Figure 3.4A). 

Factor loadings are positive and negative for PC2; this component is associated with form. The 

specimens from Sumatra are the only ones to form two groups within PC1, the larger-sized 

specimens on the left and the smaller-sized to the right of the axis (Figure 3.3). The lengths of 

the palatine (PL) and nasal (NL) exhibit the highest factor loadings (0.34 and 0.30, respectively) 

for this component, and hence clearly contribute to separating three groups of Tragulus skulls, 

i.e the first comprising specimens from Sumatra & Thailand, the second those from Java, and 

the third comprised of specimens from Borneo, Sumatra and Sunda Islands.  
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Figure 3.3. Components 1 and 2 of Principal Component Analysis generated with morphometric skull 

variables of tragulids from six geographical areas. Square symbols (blue and pink) are individuals of 

Moschiola, other symbols are Tragulus. Individual numbers are affiliated to specimen in Appendix 1. 
 

 

 

a moderate to high separation of the two genera; Tragulus shows more positive values, while 

Moschiola has more negative values, suggesting that the shape of the cranium differs between 

the two genera. The variables with the highest factor loadings that support this segregation are 

the occipital height above ophistion (OH) and the length of the upper diastema (UD) (0.63 and 

0.37, respectively) (Figure 3.3 and Figure 3.4B). The specimens of Moschiola fall into two 

groups according to their provenance, i.e. either from India and or Sri Lanka (Figure 3.3 and 

Figure 3.4A). 
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Figure 3.4. Factor loadings from Principal Component Analysis: A) Principal Component 1; B) 

Principal Component 2. 
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Table VII. Summary statistics (mean ± standard deviation; minimum and maximum) of specimen 

measurements according to variables explained in Figure 3.1 and as recovered from PCA analysis 

(Figure 3.3). Specimens were classified in genus-provenance groups. n = number of specimens studied; 

nd = no data. Further abbreviations see legend Figure 3.1. Measurements are in mm. 
 

 

 Moschiola Tragulus 

Character Sri Lanka 
n = 7 

India 
n = 2 

Java 
n = 6 

Sumatra+Borneo

+Sunda Islands 
n = 11 

Sumatra+Thailand 
n = 17 

CBL 91.4±3.0 
86.6-96.2 

103.4±3.3 
101.1-105.7 

92.1±2.4 
89.7-96.5 

102.8±5.2 
97.3-112.1 

85.2±2.4 
81.3-89.9 

PL 19.6±1.8 
17.3-22.5 

22.0±3.9 
19.2-24.8 

20.5±1.1 
19.2-22.4 

22.1±1.6 
19.5-24.5 

16.4±1.6 
12.9-20.0 

NL 30.7±2.0 
27.8-33.7 

29.0±1.6 
27.9-30.1 

27.5±1.8 
25.8-29.6 

31.3±3.3 

25.3-36.3 
23.8±2.4 
20.1-28.8 

ZW 47.2±3.0 
42.1-51.8  

52.8±0.8 
52.2-53.3 

43.8±2.6 
41.8-48.6 

48.5±1.7 

46.5-51.6 
40.3±1.3 
38.8-43.1 

WO 46.4±2.6 
41.4-49.1 

49.6±2.4 
47.9-51.3 

44.7±2.6 
42.0-49.1 

49.7±2.0 
46.2-51.8 

40.5±1.2 
38.8-43.8 

GVDO 20.1±0.8 
18.9-21.5 

21.8 ±0.0 
21.7-21.8 

20.4±0.9 
19.1-21.5 

23.5±1.1 
21.7-25.1 

19.7±0.8 
18.0-20.9 

GHDO 22.9±0.5 
22.3-23.7 

24.7±1.9 
23.4-26.1 

23.6±0.5 
22.7-24.2 

25.9±0.8 
24.8-26.9 

22.6±0.7 
21.6-23.8 

BL 17.4±1.1 
16.0-18.8 

nd 18.6±0.7 
17.9-19.8 

21.1 ± 1.1 
19.4-22.8 

17.9±1.2 
16.2-19.8 

WB 9.2±0.5 
8.7-9.9 

9.6±0.0  
nd 

8.9±0.6 
8.4-10.0 

9.3±0.9 
7.9-11.0 

8.9±0.6 
7.9-10.0 

EID 26.8±0.7 
25.5-27.8 

nd 26.9±0.6 
26.1-27.8 

30.0±0.9 
28.3-31.3 

26.2±0.9 
24.9-28.2 

OCW 19.8±0.7 
18.9-20.7 

23.5±0.0 
nd 

20.6±0.5 
19.9-21.5 

25.2±0.9 
22.1-24.8 

19.6±0.7 
18.4-20.7 

PW 27.8±0.9 
26.4-29.3 

31.7±0.0 
nd 

28.1±0.4 
27.5-28.8 

30.6±1.6 
27.9-32.9 

25.6±0.9 
24.4-27.4 

HDFM 12.2±1.4 
10.4-13.8 

11.8±0.0  

nd 
11.0±0.7 
10.1-12.3 

12.6±0.9 
10.9-13.8 

11.5±1.1  
9.4-13.5 

BB 32.3±1.1 
30.9-33.7 

34.0±4.0 
31.1-36.9 

31.9±1.3 
30.9-34.5  

34.3±1.2 
32.8-36.1 

31.1±1.1 
29.9-33.4 

IW 23.1±1.0 
21.6-24.2 

26.0±1.7 
24.8-27.2 

26.6±1.5 
24.5-28.5 

29.5±1.6 
27.1-32.0 

25.2±1.0 
23.8-27.8 

MLL 49.0±1.6 
47.0-51.1 

53.6±2.3 
52.0-55.3 

49.3±3.0 
46.1-54.4 

53.9±5.9 
38.0-59.4 

44.9±2.3 
40.6-48.6 

OH 16.8±2.3 
13.9-20.7 

21.5±0.0 
nd 

25.6±3.0 
20.5-29.1 

21.8±1.6 
19.7-24.0 

19.2±1.9 
14.3-21.6 

BH 26.9±0.8 
25.5-28.8 

29.5±1.7 
28.3-30.7 

21.3±4.6 
16.5-28.3 

30.5±0.9 

29.0-31.5 
26.5±1.1 
24.9-28.1 

LCM 6.6±0.6 
6.2-7.9 

6.9±0.2 
6.8-7.0 

7.7±0.4 
7.4-8.5 

9.0±0.5 
8.1-9.8 

6.9±0.6 
5.8-8.2 

BPM 34.6±1.4 
32.5-36.1 

nd 36.2±2.1 
32.6-38.9 

40.0±1.1 
37.6-41.5  

37.3±1.3 
35.7-39.4 

UTL 37.3±1.1 
35.5-38.7 

37.6±1.0 
36.9-38.3 

34.1±3.0 
31.4-38.9 

38.7±1.5 
36.9-41.2 

32.1±1.6 
29.6-34.6 

LTL 41.7±1.6 
39.4-44.1 

41.7±0.9  
40.7-42.0 

38.4±2.5 
36.4-42.1 

43.5±1.4 
41.8-46.4 

35.5±2.0 
32.1-38.8 

UD 9.8±1.1 
8.5-11.4 

12.9±0.8 
12.4-13.5 

12.3±1.7 
10.1-14.3 

13.0±1.7 
10.8-16.3  

10.4±1.8 
8.0-14.7 

HM 39.6±2.7 
36.4-43.1 

40.8±2.3 
39.1-42.4 

36.8±4.0 
34.1-44.6 

39.1±1.8 
35.8-41.4 

31.3±1.6 
28.7-33.9 

LM 77.4±4.6  

68.9-82.0 
84.3±5.3 
80.6-88.1 

78.4±3.4 
73.5-83.1 

87.2±4.1 
81.8-94.1 

70.5±2.9 
66.7-76.0 
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 The factor scores for PC2 produced Tragulus skulls from Borneo, Sumatra & Sunda 

Islands have the longest condylobasal length (CBL) (mean and standard deviation  = 102.8 ± 

4.5 mm), followed by skulls from Java (92.1 ± 2.4 mm) and Sumatra & Thailand (85.2 ± 2.4 

mm). For Moschiola, the specimens from India (103.4 ± 3.3 mm) are longer than those from 

Sri Lanka (91.4 ± 3.0 mm) specimens (Table VII). The same tendency is apparent in both genera 

with regard to the variables palatine length (PL) and nasal length (NL) (Table VII). Tragulus 

specimens from Borneo, Sumatra & Sunda Islands possess the greatest zygomatic width (ZW) 

(48.5 ± 1.7 mm), followed by the specimens from Java (43.8 ± 2.6 mm) and Sumatra & Thailand 

(40.3 ± 1.3 mm). The Moschiola skulls from India are wider (52.8 ± 0.8 mm) than those from 

Sri Lanka (47.2 ± 3.0 mm) (Table VII). All skulls show a CBL more or less twice as long as 

the ZW. However, ZW may reach >50 % of the CBL in the Moschiola specimens from India 

and Sri Lanka, whereas it remains <50 % in Tragulus (Figure 3.5). This latter difference 

explains the stocky overall appearance of the Moschiola skull (Figure 3.6). 

     There are still other differences with regard to the form of the cranium between Tragulus 

and Moschiola. For example, specimens of Tragulus javanicus and T. kanchil show an inflated 

(globose) neurocranium and the sagittal crest is weak or absent, while Moschiola and T. napu 

skulls have non-globose neurocrania and the sagittal crest is more pronounced (Figure 3.6). 

These differences are further pronounced by the height of the opisthion (OH) in PC2 (Figure 

3.3 and, Figure 3.4B), which yields the largest values in T. javanicus, followed by M. indica + 

T. napu with medium, and T. kanchil with the smallest values (Table VII).  
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Figure 3.5. Percentage proportion of zygomatic width (ZW) to condylobasal length (CBL) 

(ZW/CBL*100) for tragulid skulls from Sri Lanka, India, Java, Borneo Sumatra, Sunda Islands, and 

Thailand. 

 

 

 

 

 

 

3.4  Discussion 
 
 

 Since the recognition of Tragulus and Moschiola as different genera (i.e. Groves and 

Grubb 1982), several methodological approximations have corroborated this distinction 

(Meijaard and Groves 2004; Groves and Meijaard 2005; Hernández Fernández and Vrba 2005; 

Sánchez et al. 2014; Mennecart and Costeur 2016a,b). Our multivariate data provide support 

for the morphological distinction between the crania of these genera, with predominantly 

positive values for PC2 for specimens of Tragulus and negative values for Moschiola (Figure 

3.3).  

47,3 %47,5 %47,6 %

51,0 %
51,7 %

40

50

60

Sri Lanka India Java Borneo-Sunda

Islands-Sumatra

Thailand-Sumatra

%
 



Chapter 3 – Skull morphology of living tragulids 

 

[55] 

 

 On the other hand, the number of species in each of the two genera is still debated, and 

estimates in literature appear to be biased by constraints in taxon sampling (e.g. Chasen 1940; 

van Bemmel 1949; Smit-van Dort 1989; Meijaard and Groves 2004; Groves and Meijaard 

2005). Our PCA provides evidence in support of the existence of three morphometric clusters 

of Tragulus skulls and two clusters of Moschiola skulls (see Figure 3.3 and explanations above), 

and thus concur the recent taxonomic review by Meijaard and Groves (2004) for Tragulus and 

Groves and Meijaard (2005) for Moschiola.  

The data gathered by Meijaard and Groves (2004) served as the basis for the formal 

description of T. napu (corresponds to our Borneo, Sumatra and Sunda Islands specimens), 

Tragulus kanchil (corresponds to our Sumatra plus Thailand specimens) and T. javanicus 

(corresponds to our Java specimens). The delimitation of these species in our analysis, as well 

as in Meijaard and Groves (2004), is based on the size and overall positive correlation of the 

factor loadings on PC1. The absolute size of the Tragulus napu specimens from Borneo, 

Sumatra, and the Sunda Islands also corresponds to that given in Meijaard and Groves (2004) 

(e.g. LCB from 97.3 mm to 112.1 mm; Table VII and Table VIII). The larger size and relatively 

small auditory bullae clearly distinguish T. napu from the other species of the genus. This is 

especially relevant since T. kanchil also lives in Sumatra, but is notably smaller (Figures 3.3 

and 3.6). 

Tragulus kanchil is morphologically distinct from, and allopatric to, T. javanicus. The 

taxon is widely distributed in SE Asia (e.g. Sumatra, Thailand, Borneo, Malayan and mainland 

Asia) with several subspecies. Specimens from Java stand out in our analysis because of their 

long and high mandibles (HM), narrow tympanic bullae (WB) and narrow braincase (BB) 

(Table VII). This result is congruent with Meijaard and Groves (2004), who proposed based on 

their analyses that only a single taxon, T. javanicus, occurs in Java. Moreover, our results add 

support to and reinforce the separation of T. javanicus from T. kanchil (Figure 3.3, specimens 
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from Java versus specimens from Sumatra and Thailand). Based on these results, we infer that 

the DNA sequences of tragulid individuals from the Malayan Peninsula, Laos, and Borneo in 

Endo et al. (2004b citing Meijaard and Groves 2004) cannot stem from T. javanicus. The 

geographical distribution of T. kanchil partly overlaps with that of T. napu, but not with that of 

T. javanicus. The individuals identified as T. javanicus by Endo et al. (2004a), most likely 

belong to T. kanchil based on body size that is similar to that in T. javanicus.  

     The ranges of morphological variation recovered through PCA for Moschiola clearly 

segregates the individuals from India from those from Sri Lanka (Figure 3.3). Here, the revision 

by Groves and Meijaard (2005) served as a basis for the formal diagnosis of M. indica 

(corresponds to our India specimens) and for the separation of the Moschiola from Sri Lanka 

(corresponds to our Sri Lanka specimens). Moschiola indica is the largest (and monotypic) 

species in India, where it occurs from the southern tip of the subcontinent to approximately 

24°N in both the east (Mandla, Hoshangabad, Palamu) and west (Rajasthan). The measurements 

obtained by Groves and Meijaard (2005) for condyle basal length (CBL) have a mean of 101.1 

mm ± 4.9 mm (range 95.0 - 108.1 mm) and a zygomatic width (ZW) of 52.2 mm ± 1.6 mm 

(range 50.0 - 54.5 mm). This is entirely consistent with our results (CBL 103.4 mm ± 3.3 mm, 

ZW 52.8± 0.8 mm, Tables VII and VIII). The following species occur in Sri Lanka according 

to Groves and Meijaard (2005): Moschiola kathygre in the humid region with CBL ranging 

from 90.6 mm to 99.9 mm (mean = 96.4 mm ± 5.08 mm); M. meminna in the dry area (CBL 

ranging from 88.2 mm to 95.7 mm; mean 91.9 mm ± 3.2 mm), and a third, yet-undescribed 

species (CBL = 97.3 mm [n=1]). Although the mean values are suggestive of the existence of 

different species in Sri Lanka (Groves and Meijaard 2005), the wide overlap of the CBL ranges 

does not permit the safe discrimination of these species.  

The diagnostic variables for M. meminna overlap with those of the other two species 

described for Sri Lanka (M. kathygre and the undescribed species) (Groves and Meijaard 2005: 
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Table VIII), and thus render the identification of our crania based only on morphometry 

impossible; qualitative characters that can be used to distinguish the species are not yet 

available. In addition to cranium morphometry, Groves and Meijaard (2005) included coat 

coloration, external body dimensions (e.g. body-head size, tail, ear) and habitat distribution 

(wet or dry zone) into their analyses and established well-defined traits for the species of 

Moschiola in India and Sri Lanka. Unfortunately, precise information on the provenance of our 

specimens from Sri Lanka is not available, neither from the labels nor the collection catalogue, 

and we did not analyze fur coloration or external morphology. We therefore refer to these 

specimens as Moschiola sp. to avoid errors in assignment (Table VIII).  

 

Table VIII. Comparison of value ranges of variables mandibular length (LM), condylobasal length 

(CBL/LCB) (or length of mandible, LM), and zygomatic width (ZW) of Tragulus and Moschiola species 

from this study, as well as Meijaard and Groves (2004) and Groves and Meijaard (2005). LM values 

considered instead of CBL values* for T. javanicus, because CBL for T. javanicus is not included in 

Meijaard and Groves (2004). Measurements are in mm. 
 

 
 This study Meijaard and Groves (2004) 

Species CBL/LM(*)  ZW CBL/LM(*)  ZW 

Tragulus javanicus (Java) 73.5-83.1* 41.8-48.6 72.8-78.8* 40.4-44.2 

Tragulus napu (Borneo, Sumatra, and Sunda Islands) 97.3-110.6 46.5-51.6 96.8-116.3 45.0-52.7 

Tragulus kanchil (Sumatra and Thailand) 81.3-89.9 38.8-43.1 81.4-101.8 38.5-48.1 

 

Species This study Groves and Meijaard (2005) 

CBL ZW LCB ZW 

Moschiola indica (India) 101.1-105.7 52.2-53.3 95.0-108.1 50.0-54.5 

Moschiola spp. (Sri Lanka) 86.6-96.2 42.1-51.8 91.1-97.3 46.0-49.3 

Moschiola meminna (Sri Lanka) - - 88.2-95.7 43.8-49.4 

Moschiola kathygre (Sri Lanka) - - 90.6-99. 9 44.9-50.9 

Moschiola sp. undescribed (Sri Lanka) - - 97.3 49.3 

 

 

Nevertheless, our data support the separation of the individuals from India from those 

from Sri Lanka. In other words, our data concur with Groves and Meijaard (2005) in that M. 

indica is distinctly different (larger) from Moschiola from Sri Lanka. We cannot confirm that 

Moschiola is monotypic as proposed by Mennecart and Costeur (2016a). Since this latter study 
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only considered specimens from Sri Lanka, M. indica was per se excluded. The taxonomic 

assignments of most of the skulls as stated in the different collection catalogues (Appendix 3, 

Table 3.1) are confirmed by our analyses. However, the identification of some of the specimens 

was refuted and evidence provided for reassignment. Since most labels attached to the skulls 

show outdated and/or invalid taxonomic assignments, they may cause continued confusion. 

Based on the results obtained from our analysis (PCA: factor loadings), we recommend to the 

keepers of zoological collections holding older tragulid material to measure nasal length, 

palatine length, condylobasal length, zygomatic width, and occipital height dorsal of ophistion 

(NL, PL, CBL, ZW, and OH in Figure 3.1) to obtain a reliable data set for taxonomic 

assignment. Moreover, we were able to confidently assign an enigmatic specimen labelled 

“Sunda Islands” (NMB C2950) to Tragulus napu. 

The crania of Tragulus javanicus and T. kanchil are relatively tall and the neurocrania 

are globose, while cranial heigth is less pronounced in specimens of T. napu and Moschiola 

spp. and somewhat flattened, more comparable to Hyemoschus aquaticus of Africa (Figure 3.6). 

These differences in cranial shape might be related to differences in dietary habits and 

mastication movements, as the neurocranium is largely shaped by the attachment areas of the 

chewing muscles. However, no comparative studies on the dietary habits of tragulids are 

available, and functional morphology of the tragulid mastication has not been assessed to 

substantiate or refute this speculation. Another possible explanation for the differences in 

cranial morphology might be related to the fact that Moschiola and T. napu commonly escape 

from predators through diving and under-water locomotion (Meijaard et al. 2010). Under-water 

locomotion is perhaps facilitated by a flatter, more hydrodynamic skull shape. Escape from 

predators through diving and movement under water has not been reported to date in T. kanchil 

and T. javanicus. Finally, the larger degree of correspondence in skull geometry between T. 

javanicus and T. kanchil might indicate a closer phylogenetic relationship of these species. 
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Figure 3.6. Skull morphology in three different species of Tragulidae. Top image = Moschiola indica 

(ZSM 1906/6); middle image = Tragulus napu (NMB C2950), and bottom image = T. kanchil (NMB 

3735). Scale bar represents 10 mm 

 

 

Several studies have demonstrated that Hyemoschus aquaticus from Africa, which is 

also characterized by a flattened skull, is closer related to the fossil Dorcatherium than to the 
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extant Tragulus and Moschiola (Rössner 2010; Sánchez et al. 2014; Mennecart and Costeur 

2016b). Thus, if the shape of the Hyemoschus skull is also present in Dorcatherium, this would 

then argue in favor of a plesiomorphic character state, whereas a globose neurocranium would 

probably represent a derived character in Tragulus kanchil and T. javanicus.  

 

3.5 Conclusions 
 

 One result of the increased use of the phylogenetic species concept in zoology is the 

splitting of long-standing and widely accepted species that were established before on the basis 

of other species concepts (e.g. biological species concept). The raising number of new species 

of mammals, generated primarily through the promotion of sub-species to the rank of species, 

has been criticized as producing taxonomic inflation or, in other words, artificial increase of the 

number of species. On the other hand, Zachos et al. (2013) states that species splitting must not 

be deemed bad per se, and taxonomic inflation is not necessarily the consequence of splitting, 

but rather of inappropriate application of the phylogenetic species concept or the naive 

interpretation of inconclusive data. The data/strong evidence available today on tragulids 

provides a strong argument in favor of splitting the historical species (Meijaard and Groves 

2004; Groves and Meijaard 2005; Meijaard et al. 2017). We agree with Groves (2013) in that 

classifications must always be open to be tested on the basis of additional data and new 

analytical approaches complementing the information available to avoid or reduce the problem 

of species inertia (Gippoliti et al. 2017) and species inflation (Zachos et al. 2013). 

Our study provides independent evidence corroborating the recently suggested 

species splitting into/delimitation of Tragulus kanchil, T. napu, T. javanicus, M. indica, and Sri 

Lankan tragulids (Meijaard and Groves 2004; Groves and Meijaard 2005). Tragulus napu 

stands out among the Tragulus species because of the larger cranium with a flatter and more 

robust overall appearance, while the crania of T. javanicus and T. kanchil are smaller and more 
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delicate. Moschiola indica from India is larger than M. meminna and M. kathygre from Sri 

Lanka (Groves and Meijaard 2005). Moschiola can be separated from Tragulus by a more 

robust skull and clear sagittal crest; instead, Tragulus (with the exception of T. napu) possesses 

a more delicate skull and weak or absent sagittal crest. There are general differences in the 

overall skull geometry of Moschiola + T. napu and T. kanchil + T. javanicus that we have 

quantified for the first time in the present study. A more flattened versus a globose 

neurocranium is a morphological skull difference that is support for a closer phylogenetic 

relationship between T. kanchil and T. javanicus, but the adaptational significance of this 

difference, if any, remains elusive. Sri Lankan Moschiola meminna and M. kathygre cannot 

presently be safely discriminated based on morphology, but we anticipate that future studies on 

osteology of Moschiola can provide new morphological information for the discrimination of 

these species (see Meijaard et al. 2017). 

Although this study is based on a statistically not significant sample size, comparison of 

the results to recently conducted extensive investigations ensures that it makes a contribution. 

Our results add to the clarification and update of taxonomical assignments of tragulid material 

in public collections and helps to lessen the bias for future of taxonomical studies of living 

Asian tragulids. It is a pilot study with regard to the quantification of skull geometry in tragulids. 

We recommend that museums update their records for Asian tragulids based on the most recent 

taxonomy using nasal length, palatine length, zygomatic width, condylobasal length, and 

occipital height dorsal of ophistion. Moreover, we strongly recommend that geneticists working 

on Asian tragulids ensure that they identify the species correctly before filing molecular data in 

GenBank or elsewhere. Greater efforts in better understanding Indo-Malayan tragulid diversity 

and distribution patterns is of cardinal importance when considering the current loss and 

fragmentation of tragulid habitats (e.g. Adila et al. 2017). Conservational measures are urgently  

needed. 



Chapter 3 – Skull morphology of living tragulids 

 

[62] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – Skull of Dorcatherium crassum 

 

[63] 

 

CHAPTER 4 

 

New skull record of Miocene Dorcatherium crassum (Lartet, 1851) 

from Walda 2 (Germany) 

 

 

4.1 Introduction 
 
 

The fossil chevrotains (Artiodactyla, Tragulidae) were diverse small to medium-sized 

ruminants that originated in the Eocene at least 34.0 mya, where they diverged from the 

ruminant stem lineage prior to the diversification of Pecora (for both opinions see Janis and 

Scott 1987; Gentry and Hooker 1988; Métais et al. 2001; Hernández Fernández and Vrba 2005; 

Hassanin et al. 2012). Tragulids are characterized by the presence of a single elongated lacrimal 

orifice situated just inside the rim of the orbit, and lack bony horns which are prominent features 

of pecoran ruminant artiodactyls (Gentry 1978; Groves and Grubb 2011).  The male possesses 

large sabre-like upper canines, while these are much smaller in the female (Janis 1984; Rössner 

2007).  They were common in Eurasia and Africa; their species number peaked during the 

Middle Miocene, when several of the species lived sympatrically before decline until present 

(Unger et al. 2012; Barry 2014). The extant tragulids differ from the extinct ones by their lower 

phenotypic diversity comprising only small body sizes, and a relict distribution in the 

Southeast-Asian and Afrotropical regions (Meijaard 2011; Groves and Grubb 2011). 

Dorcatherium crassum is a common terrestrial faunal element in the Miocene of Europe, 

as the widespread fossil remains reflect (Aiglstorfer et al. 2014).  The species appeared in 
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Central Europe earlier than in Western / Southwestern Europe.  The first appearance of Dt. 

crassum equals to the minimum appearance datum of the genus Dorcatherium in this continent 

(Rössner 2017).  Dorcatherium crassum was first described by Lartet (1851) on the basis of 

postcranial material from Sansan, France, but without the designation of a holotype;  Morales 

et al. (2012) recently established a neotype based on a left mandible from Sansan.  

Dorcatherium crassum forms with the contemporaneous Dt. vindebonense and the 

younger Dt. naui, the group of medium-sized Central European Dorcatherium with 

bunoselenodont teeth (Rössner 2010).  Because of the similar morphology and size the validity 

of Dt. crassum has been repeatedly questioned by several authors (see Rössner and Heissig 

2013; Alba et al. 2014), who considered it a junior synonym of the type species Dt. naui from 

Germany.  However, a thorough re-examination of the considerable variability of teeth and 

post-cranial morphology from different places in Europe showed that both species are well 

supported, for example, by their differences in tooth crown height and proximal inter-

metacarpal region (e.g. Rössner 2010; Alba et al. 2011, 2014; Sánchez et al. 2011; Morales et 

al. 2012).  Dt. crassum is also considered to be very similar in skeleton and body mass to the 

living aquaphilic tragulid Hyemoschus aquaticus from Africa (Milne-Edwards 1864; Carlsoon 

1926; Dubost 1978; Gentry 1978; Barrette 1982).  Milne-Edwards (1864) noticed the strong 

osteological and odontological similarity between the fossil “deer” Dicrocerus ? crassus Lartet, 

1839 from Sansan (France) and the living Hyemoschus aquaticus.  Thus he included the fossil 

species in his newly erected family Tragulidae and Hyemoschus. However, Schlosser (1916) 

finally affiliated it to the genus Dorcatherium.  

Recently, Mennecart and Cousteur (2016) studied the petrosal bone and bony labyrinth 

morphology among living Tragulus, Moschiola and Hyemoschus and Dt. crassum.  They 

found most morphological accordance in Dt. crassum and Hyemoschus aquaticus, but a 

comparison of skull anatomy among these species was not possible.  Data on cranial anatomy 
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for Dt. crassum are scarce as well as fossil tragulids. In this context, based on the morphology 

and metric variables of attached teeth, Seehuber (2015) attributed a female skull from 

Thierhaupten 2 (Germany, Middle Miocene) to Dt. crassum, but despite the relatively good 

state of preservation, he did not provide details about its morphology.  The description of 

another relatively well-preserved partial skull from France (Mennecart et al. 2018a) has added 

more anatomical information (external morphology, dentition, petrosal bone and bony 

labyrinth) to the knowledge of Dt. crassum.  However, the latter study compared merely 

superficially with living species. Another skull from Germany (Steinheim am Albuch, Middle 

Miocene) was figured but not described by Gentry et al. (1999); its taxonomic affiliation is still 

unclear (Mennecart et al. 2018).  In addition, de Bonis et al. (1998) described superficially a 

skull fragment of a small Dorcatherium sp. from Thymiana B of the middle Miocene in the 

island of Chios in Greece. 

It is evident from the preceding paragraph that skull material of fossil tragulids is not 

abundant, not very well preserved and poorly known, as well as comparison with the living 

relatives is missing. Here we describe the external morphology of another, so far undescribed 

skull of Dorcatherium crassum from the lower Middle Miocene of Germany.  We compare it 

to the external morphology of the living species and discuss some morpho-functional and 

palaeoecological aspects. 

 

4.2 Material and Methods 
 
 

     This study is based on a single well-preserved skull of Dorcatherium crassum from Walda 

2 (Landkreis Augsburg, Bayern) in southern Germany.  This locality (Figure 4.1) is located in 

Miocene deposits of the Northern Alpine Foreland Basin and correlated with unit MN5 (De 

Bruijn et al. 1992) of the European Land Mammal Chronology.  Its fluvial sediments are 
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characterized by ochres and reddish brown sands.  The studied specimen is currently stored at 

the Naturmuseum Augsburg in Germany, however the inventory number is in process. Thus, 

here we refer to the specimen as NMA-Walda 2.  Cranial and dental measurements of bones 

and attached teeth were made in millimeters with a digital caliper.  

 

 

Figure 4.1. Map indicating the geographic position of the locality Walda 2 (red star) from where the 

described Dorcatherium crassum skull was collected. Also the locality Thierphaupten from the Dt. 

crassum described by Seehuber (2015) is indicated. 
 

 

Because the skull is partially reconstructed (Figure 4.2), a high resolution computer 

tomography was performed in order to separate between original and artifical anatomy.  The 

specimen was scanned at the Bavarian Natural History Collections facility with a phoenix x-

ray nanotom m (GE Sensing & Inspection Technologies GmbH, Wunstorf / Hannover, 

Germany) at 120 kV voltage and 40 μA current with a 0.2 mm copper filter. 1,330 x-ray slices 

were generated, which yielded a volume data set with the following dimensions: 1592 x 2909 

x 1498 mm with 6.6 μm voxel size. The slices obtained in the scanning procedure were 

segmented one by one by hand using the software Amira (version 6.1.4; Visage Imaging, Berlin, 



Chapter 4 – Skull of Dorcatherium crassum 

 

[67] 

 

Germany). The 3D model is available at: https://data.ub.uni-muenchen.de/ and was performed 

using the free software: MorphoDig version 1.5.3 64-bit, available at: 

https://www.morphomuseum.com/. 

 

 

 

Figure 4.2. Original skull of Dorcatherium crassum NMA-Walda 2 studied here. A) rigth lateral view 

of cranium, B) left lateral view of cranium, C) dorsal view of cranium, D) ventral view of cranium, E) 

rostral view of cranium, F) caudal view of cranium. 

https://data.ub.uni-muenchen.de/
https://www.morphomuseum.com/
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The skull nomenclature employed in this study follows Moore (1981) and Carlsson 

(1926), the dental nomenclature is according to Bärmann and Rössner (2011).  The 

measurements taken on teeth (length and width) are defined in Rössner (1995).  We follow in 

part the taxonomic classification proposed by Sánchez et al. (2014).  This is not based on a 

complete reconstruction of phylogeny of Tragulidae, but it is the only by now.  The 

Dorcatherium crassum skull described here was identified according to characters of attached 

dentition with the help of Rössner (2010), Morales et al. (2012) and Aiglstorfer et al. (2014).  

Metric variables of NMA-Walda 2 were compared to living tragulids.  Thus, twenty 

skulls from Hyemoschus aquaticus (n = 3), Moschiola meminna (n = 3), Tragulus javanicus (n 

= 2), T. napu (n = 7), and T. kanchil (n = 4) were analyzed.  Because the skull of Dt. crassum 

is a male adult (enlarged canine and third upper molar erupted), it was exclusively compared 

with adult males of the living species.  To enrich the sample we considered the morphometric 

variables of Dt. crassum from Thierhaupten (Seehuber 2015) and partially studied here. 

Specimen and repository information is provided in the Table IX and Table XII and Appendix 

4, Table 4.1.  For each skull, 14 cranio-dental morphometric variables were measured with a 

digital caliper (accuracy 0.01 mm) following Guzmán and Rössner (2018) (Figure 4.3).  

The product of the maxillar length and condylobasal length was calculated and the result 

multiplied by 100 to quantify overall skull geometry per species.  The same procedure was 

followed with the length of upper tooth row and the length of upper diastema (Table I, variables 

o, p and q).  Principal Component Analysis (PCA) of the morphometric variables transformed 

to log10 was used to delimit the species in the morpho-space.  With this analysis, we do not 

intend to evaluate the complete relations between the morphometric skull variables of the living 

tragulids and Dt. crassum species.  We only want to describe the affinities in the morphometric 

space of Dt. crassum among some living species.  The statistical analyses were performed 

using free software PAST 3.14 (Hammer et al. 2001).  
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Figure 4.3. Standard measurements used in the analysis depicted on a skull of Hyemoschus aquaticus 

(H – 30). a: condylobasal length (measured from the occipital condyle to anterior side of the canine); b: 

zygomatic width; c: largest dorsoventral diameter of orbits; d: largest anteroposterior diameter of orbits; 

e: occipital condylar width; f: paraoccipital width; g: latero-lateral diameter of foramen magnum; h: 

width of braincase; i: interorbital width; j: maxillar lateral length; k: height dorsal ophistion; l: height 

dorsal basion; m: length of upper tooth row; n: length of upper diastema. Proportions not depicted in 

this figure. o: proportion of the maxillar length (o = [j/a]*100); p = proportion of the length of upper 

tooth row (p = [m/a]*100); q = proportion of the length of upper diastema (q = [n/a]*100).  

 

 

Institutional abbreviations:  

NMA, Naturmuseum Augsburg, Germany; SNSB – BSPG, The Bavarian Natural History 

Collections - Bavarian State Collection of Paleontology and Geology, Munich, Germany; 

NMB, Natural History Museum Basel, Switzerland; SMNS, State Museum of Natural History 

Stuttgart, Germany; NHMW, Natural History Museum Vienna, Austria. 
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Systematic Paleontology 

Class Mammalia Linnaeus, 1758 

Order Artiodactyla Owen, 1848 

Suborder Ruminantia Scopoli, 1777 

Family Tragulidae Milne-Edwards, 1864 

Genus Dorcatherium Kaup, 1833 

Type Species Dorcatherium naui Kaup and Scholl, 1834 

Dorcatherium crassum (Lartet, 1851) 

Figures 4.2, 4.4 

Neotype: Recently established by Morales et al. (2012) based on a left mandible of type locality 

of Sansan, France.  

 

Type locality: Sansan, Molasse marine de Salles, Gers, France, Middle Miocene, MN6 

(Rössner 2010). 

 

Stratigraphic range: Early Miocene (MN4a) – to Middle Miocene (MN6) (Morales et al. 2012, 

Aiglstorfer et al. 2014; Rössner 2017) potentially (MN7) (Mennecart et al. 2018). 

 

Geographical distribution.  Germany, Austria, Switzerland, France, Spain.  

 

Material studied: NMA-Walda 2, a well-preserved skull of Dorcatherium crassum from 

Germany with dentition containing the skull roof represented by both frontal and parietal bones, 

a, right and left maxilla with right canine in alveola and left and right complete postcanine tooth 

rows (P2 to M3), fragmented basicranium represented by basioccipital, paroccipital process. 

Also left squamosal and jugal bones are present (Figure 4.2). 
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4.3 Results 
 
 

Skull: NMA – Walda 2 is partially fragmented and deformed, but a number of structures 

are preserved as well as its general morphology (Figures 4.2 and 4.4). The 3D model of NMA-

Walda 2 is available at: https://data.ub.uni-muenchen.de/. 

 

 

Figure 4.4. 3D reconstruction of the external skull morphology of Dorcatherium crassum NMA-Walda 

2 here studied. A) right lateral view of cranium, B) left lateral view of cranium, C) dorsal view of 

cranium, D) ventral view of cranium, E) caudal view of cranium. 

https://data.ub.uni-muenchen.de/
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Sutures are strongly fused; therefore the identification of the limits between bones was 

not possible, but it have been inferred by comparision with living tragulids species (Figures 4.5 

to 4.7). The skull roof is fully preserved and represented by left and right occipitals, parietals 

and frontals, while both nasal bones are destroyed. The dorsal surface of the skull roof is almost 

parallel to the occlusal surface of the cheek teeth. The nasal bones are completely broken and 

it is not possible to see, if the nasals and maxillary bones were in contact or not (Figure 4.5). 

Because the preserved anterior part of the frontal is anterior to the orbit, it is highly probable 

that nasal bones reached this area of the skull.  In the living Hyemoschus aquaticus the nasal 

and frontal are in contact at level of P3, and extended anteriorly to anterior part of canine alveola 

(Figure 4.5, Figure 4.6). 

Apparently (and by inference) the naso-frontal suture of NMA - Walda 2 has a W-shape 

(Figure 4.5) as in H. aquaticus and in Dt. crassum from Contres. Despite the sagittal crest is 

damaged, it is strongly developed and slightly convex, separating into left and right temporal 

lines in the middle of the braincase (Figure 4.5 A) alike in Dt. crassum from Contres and 

Thierhaupten (Mennecart et al. 2018a) and H. aquaticus. In NMA-Walda 2 (and the others) it 

is a wide ridge and passes at the dorso-caudal skull edge to the well-developed and strong 

nuchal crest, forming the framing external crest of the occipital. The sagittal crest has a height 

of 4.17 mm in the more posterior part, almost in the confluence with the nuchal crest. In H. 

aquaticus the same pattern is evident, but weakly developed (Figure 4.5). 
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Figure 4.5. Dorsal view of tragulid crania. A) 3D reconstruction of the external skull-morphology of  

NMA-Walda 2; yellow colour indicates orbit and sagittal crest, grey colour indicates the hypothetical 

nasal bone and premaxilla. B, C, and D living species, yellow colour indicates the orbit.  

 

 

The frontal bones and the anterior part of the parietal bones form an almost flat surface, 

between orbits the supraorbital groove is well developed. In dorsal view these grooves run from 

more or less the level of the middle of the orbits to the naso-frontal suture at the level of P3-P4.  

In Tragulus, Hyemoschus and Moschiola these grooves present the same morphology and 

variation, as well as the skull from France (Mennecart et al. 2018a).  Part of the sagittal suture 

is located over a protuberance that extends from the middle of the frontal bones to parietofrontal 

suture (Figure 4.5 A).  
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 The premaxillae are not recorded.  Right maxilla and the canine  are partially 

preserved (Figure 4.6).  On the left side the maxilla is damaged and the zygomatic arch is 

partially preserved (Figure 4.5 A). The right and left tooth row is preserved from P2 to M3, 

however, the dentition is in a very advanced state of wear.  In lateral view the neurocranium is 

flat more similar to living Hyemoschus aquaticus than the “globose” shape reported for 

Tragulus javanicus (Guzmán and Rössner 2018) (Figure 4.4 A, D, Figure 4.6). The right 

maxilla is highly damaged and the infraorbital foramen is destroyed. The dorsalpart of the right 

maxilla is convex and contains a long alveola for the upper canine. The diastema is short relative 

to the long tooth row. It is similar to the length of P2+P3 and comparable in relative length to 

H. aquaticus (Figure 4.6). In NMA-Walda 2 the maxillary ramus of the zygomatic arch is 

horizontally arranged and almost parallel to the roof of the skull (Figure 4.6). The anterior 

border of the zygomatic arch is above M2 and M3, coinciding with the position in Hyemoschus 

aquaticus.  The postorbital bar is destroyed, but a fragment associated with the frontal bone is 

conserved (Figure 4.2). As in the living species it is primarily composed of the jugal and 

oriented more or less horizontally.   
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Figure 4.6. Lateral view of tragulid crania.  A) 3D reconstruction of the external skull-morphology 

of NMA-Walda 2; yellow colour indicates the orbit; grey colour indicates the hypothetical postorbital 

bar, nasal and premaxilla. B, C, and D living species, yellow colour indicates the orbit. Big red arrows 

point to the differences for the saggital crest. The small red arrows point to (assumed) contact between 

the maxillary and the premaxilla.  

 

 

 

  

 The squamosal bone forms a flat portion of the lateral wall of the braincase.  This 

projects horizontally from the neurocranium, then bends 90º anteriorly and joins with the jugal 

bone at level of the postorbital bar forming the zygomatic process (Figure 4.5 A). The orbit 

apparently is trapezoid-like with very rounded corners; the ventral part extends more to anterior 

than the dorsal part. The orbit is highly variable in living tragulids, being rounded, rectangular 

or even more triangular (Figure 4.6).  The ventral elements of the rostrum are highly damaged 

(maxilla, palatine) or destroyed (premaxilla) (Figure 4.7), while the basicranium is partially 
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preserved (occipital bone, paroccipital process, basioccipital).  The occipital condyle is longer 

than high. The paroccipital process is long and wide, with the base broader than the tip it 

projects lateral of occipital condyle.  The foramen magnum is deformed, but more or less 

circular (Figure 4.7 and Figure 4.8). 

 

 

 

 

 

Figure 4.7. Ventral view of tragulid crania.  A) 3D reconstruction of the external skull-morphology 

of NMA-Walda 2, grey colour indicates hypothetical jugal and premaxilla. B, C, and D living species.  
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Figure 4.8. Caudal view of tragulid crania.  A) 3D reconstruction of the external skull-morphology 

of NMA-Walda 2, yellow colour indicates the nuchal crest and foramen magnum. B, C, and D living 

species, yellow colour indicates the foramen magnum. Red arrows point to the saggital crest.  
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Table IX. Cranio-dental variables of fossil specimens of Dorcatherium crassum and for extant tragulid species of the genera Hyemoschus, Moschiola and 

Tragulus here studied. Measurements from a to n are in mm. From o to q the values are proportions in %. Variables  o: proportion of the maxillar length (o = 

[j/a]*100); p: proportion of the length of upper tooth row (p = [m/a]*100); q: proportion of the length of upper diastema (q =[n/a]*100). (Details of measurements 

variables are given in Figure 4.3). n.d. = no data 
 

Species Collection museum and 

inventory number 
Cranio-dental variables measured in mm Cranio-dental proportions 

(%) 
a b c d e f g h i j k l m n o p q 

Dorcatherium crassum (NMA-Walda 2) NMA-Walda 2 173.0 80.0 38.3 36.4 35.0 44.6 17.9 46.6 52.0 102.4 37.9 51.9 72.5 21.2 59.2 12.3 41.9 

Dorcatherium crassum (Thierhaupten) NMA-2012-1/2131 153.0 84.3 27.5 34.1 29.9 38.4 15.2 50.0 46.9 nd 34.0 45.0 66.3 nd nd nd nd 

Hyemoschus aquaticus NHMW-5407 139.3 62.9 24.2 27.1 31.6 43.5 16.3 42.7 33.8 73.4 26.9 41.4 50.4 13.7 52.7 9.8 36.2 

Hyemoschus aquaticus SNSB-BSPG H-30 139.9 63.7 25.9 28.4 30.8 44.2 16.9 42.0 32.0 73.5 27.3 40.9 50.0 15.4 52.5 11.0 35.7 

Hyemoschus aquaticus NHMW  40827 142.9 64.0 25.7 29.3 31.9 44.9 15.6 44.2 33.1 73.7 26.8 41.0 52.3 12.0 51.6 8.4 36.6 

Moschiola meminna SNSB-ZSM 1911-2163 91.0 46.6 20.1 22.3 18.9 27.3 13.2 32.4 22.3 47.6 13.9 26.2 37.1 9.1 52.3 10.0 40.7 

Moschiola meminna NHMB C-1366 87.6 45.3 18.9 22.8 19.6 28.1 11.9 31.8 24.2 49.7 17.9 27.2 38.5 9.4 56.7 10.7 43.9 

Moschiola meminna NHMB 1429 89.6 47.5 19.9 23.0 20.2 27.1 11.3 32.9 23.4 51.1 18.0 27.2 36.6 11.4 57.1 12.7 40.9 

Moschiola meminna NHMB 2328 84.6 42.1 19.4 23.3 19.7 26.4 13.7 30.9 21.6 47.6 14.7 25.5 35.5 8.5 56.3 10.1 42.0 

Tragulus javanicus SMNS 16874 88.9 41.8 21.1 23.5 20.2 28.8 10.8 31.0 26.6 46.6 27.1 19.9 31.4 10.6 52.4 11.9 35.3 

Tragulus javanicus SMNS 16876 94.5 45.3 21.5 24.2 21.5 27.8 12.3 34.5 28.5 54.4 29.1 19.9 36.9 12.2 57.5 12.9 39.0 

Tragulus napu SNSB-ZSM  09-411 97.7 47.1 24.5 25.4 22.2 28.9 11.9 32.8 28.6 38.0 24.0 29.1 38.2 11.6 38.9 11.9 39.0 

Tragulus napu SNSB-ZSM  1909/233 106.7 49.9 25.1 26.9 23.3 30.2 13.6 35.7 30.2 57.9 21.3 31.3 41.2 13.4 54.2 12.6 38.6 

Tragulus napu NHMW  1923 96.7 49.3 22.7 25.4 22.8 30.7 12.6 35.4 29.8 53.2 22.7 31.5 38.0 12.4 55.1 12.8 39.3 

Tragulus napu NHMW  40826 99.0 46.5 23.3 25.0 22.1 27.9 13.0 33.8 27.4 53.2 22.4 30.5 36.9 11.4 53.7 11.5 37.2 

Tragulus napu NHMW  40378 100.0 47.3 21.7 25.9 22.8 29.8 11.6 33.1 30.0 54.2 19.7 29.0 38.5 12.7 54.2 12.7 38.5 

Tragulus napu SNSB-ZSM  1903-9443 99.0 50.4 25.0 26.9 23.4 32.8 12.3 36.0 30.8 59.4 23.2 30.9 40.2 14.5 59.9 14.7 40.6 

Tragulus napu NHMW  B6014 95.3 46.8 22.3 24.8 22.3 30.4 13.4 33.9 27.3 53.1 22.0 31.1 37.9 11.3 55.7 11.8 39.8 

Tragulus kanchil NHMB  C3808 83.8 39.1 20.1 22.7 19.4 24.8 13.5 31.5 24.9 41.4 18.8 27.9 29.9 14.7 49.4 17.5 35.7 

Tragulus kanchil NHMB  C3798 83.8 39.3 19.6 22.4 19.3 25.8 11.2 30.5 25.1 40.6 20.9 26.2 29.6 8.0 48.4 9.5 35.3 

Tragulus kanchil NHMW  1473 83.8 43.1 20.1 23.6 20.5 26.6 10.9 33.4 26.3 47.2 20.9 27.9 34.1 9.6 56.3 11.4 40.7 

Tragulus kanchil SNSB-ZSM  1964-233 87.9 40.4 20.7 23.8 18.9 26.1 10.5 29.9 25.4 48.6 20.9 26.8 33.9 10.5 55.2 11.9 38.5 
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Dentition: The teeth are in a very advanced state of wear but in sufficient condition to be 

described. They are preserved in situ on the maxillary bone (Figure 4.4 and Figure 4.9).  Their 

general morphology is bunoselenodont with wrinkled enamel. In occlusal view the molars are 

square shaped with increase in overall size from M1 to M3. There is a strong cingulum running 

around the lingual base of the molars, being best developed in the protocone. The parastyle, 

paracone column, and mesostyle are labially prominent in contrast to the weak metacone 

column. The metaconule complex has a v-shape. The postprotocrista is shorter than the 

preprotocrista.  

 The P2 is slightly longer than P3, and P4 is the shortest premolar tooth. P2 has two 

roots and three cusps; the anterior cingulum is weak. The P3 has three cusps and triangular 

shape in occlusal view. The labial cones are higher than the lingual cone and the posterior part 

is wider than the anterior. Its cingulum is well developed, but more in the middle and anterior 

part. The P4 is wider than long and surrounded (except on the labial side) by a strong cingulum. 

The lingual cone is smaller than labial cone. The canine is very long and curved, with at least 

50 % housed in a long maxillary alveola. The alveola runs along the maxillonasal suture and 

extends back to the level of P2 - P3, similar to living tragulids.   

 The apical region of the canine ends with a posteriorwards orientation, but does not 

extend to the level of the anterior border of P2 (Figure 4.3).  
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Figure 4.9. Occlusal view of upper dentition of NMA-Walda 2 here studied. Top figure: left tooth row; 

bottom figure: right tooth row. The metric data for these teeth are given in the figure 4.10 and Table XII. 

Provenance, collection museum and inventory number in Appendix Chapter 4, Table 4.1. Premolars: 

P2, P3, P4. Molars: M1, M2, M3. 

 

 

 

Comparative morphometric analysis:  the first two components of the Principal Component 

Analysis (PCA) accounted for more than 91.0 % of the total variance with the PC 1: 84.6 % 

and PC 2: 6.4 % (Table X). All morphometric variables had positive factor loadings for PC 1 

and hence permit definition of this component as a size vector (Table III), while PC 2 had 

positive and negative factor loadings; it is associated with the form. PC 1 clearly separated Dt. 

crassum of Walda 2 and Thierhaupten from all living species; H. aquaticus was closer to Dt. 

crassum than the Tragulus and Moschiola species studied.  

 

Table X. Distribution of the % variance expressed by components of the Principal Component Analysis. 

 

 

PC Component % of variance PC Component % of variance 
1 84.57 8 0.49 

2 6.42 9 0.20 

3 3.11 10 0.13 

4 1.76 11 0.11 

5 1.63 12 0.08 

6 0.77 13 0.05 

7 0.68 14 0.02 
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The larger-sized species (Dt. crassum and H. aquaticus) are on the right and the medium 

and smaller-sized species (Tragulus javanicus, T. kanchil, T. napu and Moschiola meminna) on 

the left of the x-axis (Figure 4.10). The length of the maxillary and the upper tooth row had the 

highest factor loadings (0.32 and 0.31 respectively: Table XI) for this component, and hence 

clearly contribute to the separation of Dt. crassum from the other living species. The factor 

scores for PC 2 overlap between the living and fossil species, but there is moderate separation 

of M. meminna and H. aquaticus from Dt. crassum (Figure 4.10). The height of dorsal ophistion 

(HDO) had the highest factor loading (0.69) and supports this segregation (Table XI).  

 

 

Table XI. Factors loadings for Principal Component 1 (PC1) and Principal Component 2 (PC2), from 

the Principal Component Analysis. 
 

 

 

Figure 4.3 Cranio-dental variables here studied 
Principal Component 

PC1 PC2 
a Condylobasal length 0.3091 -0.0959 
b Zygomatic width 0.2949 -0.1334 
c Largest dorsoventral diameter of orbits 0.2086 0.1400 
d Largest anteroposterior diameter of orbits 0.1787 0.0577 
e Occipital condylar width 0.2670 -0.0716 
f Paraoccipital width 0.2591 -0.1587 
g Laterolateral diameter of foramen magnum 0.1785 -0.2603 
h Width of braicase 0.2024 -0.0650 
i Interorbital width 0.2861 0.2739 
j Maxillar lateral length 0.3260 -0.1289 
k Height dorsal ophistion 0.2746 0.6909 
l Height dorsal basion 0.3068 -0.3681 

m Length of upper tooth row 0.3176 -0.1717 
n Length of upper diastema 0.2690 0.3372 
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Figure 4.10. Components 1 and 2 of Principal Analysis generated with morphometric variables (Raw 

data, Table XII) from 22 individuals of 5 living tragulids species and one of the fossil species 

Dorcatherium crassum.  
 

Compared to the living species studied here, Dorcatherium crassum had the longest 

skull length (condylobasal length), followed by the skulls of Hyemoschus aquaticus and 

Tragulus napu (Table IX).  The larger skull, the proportions of the maxillary bone, diastema 

and the tooth row (with respect to the condylobasal length) for Dt. crassum are in the same 

range as the living species studied (Table IX), but closest to M. meminna. For dentition, Dt. 

crassum is clearly greater than living species (Figure 4.11).  
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Figure 4.11. Biplot of the width vs. length (mm) for the upper teeth of tragulid species here studied. 

Data from Dorcatherium crassum from Sansan based on Rössner and Heissig (2013) and for Dt. crassum 

from Contres based on Mennecart et al., (2018). (Raw data, Table XII) 
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Table XII. Dental variables of fossil specimens of Dorcatherium crassum and for extant tragulids species of the genera Hyemoschus, Moschiola and Tragulus 

here studied. Measurements are mm. Data for Dt. crassum from Sansan based on Rössner and Heissig (2013) and for Dt. crassum from Contres: Mennecart et 

al. (2018). F = female; M = male; U = undetermined. sin.: sinistral side, dex.: dextral side. 

 

Species 
Collection museum and 

inventory number 

Geographical 

provenance 
Sex 

P2 P3 P4 M1 M2 M3 

l w l w l w l w l w l w 

Dorcatherium crassum NMA-Walda 2 (sin.) Walda 2 M 14.8 7.4 14.7 8.9 10.3 11.8 10.9 11.7 13.5 13.2 13.2 13.1 

Dorcatherium crassum NMA-Walda 2 (dex.) Walda 2 M 14.9 7.2 14.8 8.9 10.2 11.6 10.6 11.7 13.7 13.1 13.0 13.3 

Dorcatherium crassum  NMA-2012-1/2131 (sin.) Tierhaupthen F 13.3 5.3 13.5 7.8 9.1 10.7 10.4 11.4 10.8 13.0 12.5 14.0 

Dorcatherium crassum NMA-2012-1/2131 (dex.) Tierhaupthen F 13,4 5.7 14.1 7.1 9.0 10.8 9.7 11.3 11.4 12.8 12.4 14.0 

Dorcatherium crassum MNHN-SS-2300 Sansan U nd nd nd nd nd sd 9.7 11.1 11.8 13.1 12.3 14.1 

Dorcatherium crassum MNHN-SS10857 Sansan U nd nd nd nd nd sd 11.6 11.1 12.5 12.9 12.9 13.3 

Dorcatherium crassum MNHN-SS 1015 Sansan U nd nd nd nd nd sd 10.8 11.4 12.3 13.5 12.9 14.1 

Dorcatherium crassum NMB-Fa.213 Contres U nd nd nd nd 9.1 10 10.6 11.6 12.1 13.4 13.0 13.7 

Hyemoschus aquaticus NMB-5407 Cameroon M 9.5 4.4 8.3 4.9 6.8 7.3 8.5 9.4 9.7 10.7 9.9 11.0 

Hyemoschus aquaticus SNSB-BSPG H-30 Gabon M 9.6 4.4 9.6 5.0 7.9 8.0 8.2 9.4 9.6 10.5 9.8 9.9 

Hyemoschus aquaticus NHMW-40827 Congo M 9.9 4.1 7.9 4.8 7.1 7.0 8.4 8.8 9.7 10.6 10.2 10.5 

Moschiola meminna NMB-1366 Sri Lanka M 7.4 2.7 7.1 3.6 5.4 6.0 6.2 6.6 7.3 7.0 7.0 6.0 

Moschiola meminna NMB-1429 Sri Lanka M 7.1 2.9 6.4 3.9 5.4 5.6 6.1 6.6 6.5 7.4 6.8 7.0 

Moschiola meminna NMB-2328 Sri Lanka M 8.3 2.5 7.0 2.6 5.7 5.4 6.7 6.5 7.1 6.4 5.6 5.6 

Tragulus javanicus SMNS-16874 Java M 5.6 2.4 5.2 3.2 4.1 4.9 4.9 5.1 6.4 6.6 6.4 7.4 

Tragulus javanicus SMNS-16876 Java M 6.4 3.1 6.5 4.1 4.8 5.0 6.0 5.5 7.4 7.6 7.4 7.2 

Tragulus napu NHMW-1923 Borneo M 7.5 3.4 7.0 4.3 5.5 5.6 5.8 6.5 7.1 7.5 7.2 7.7 

Tragulus napu NHMW-40826 Borneo M 6.2 3.0 6.3 4.0 5.4 5.5 6.0 6.5 7.0 7.7 7.3 7.8 

Tragulus napu NHMW-40378 Sumatra M 6.6 3.8 6.4 3.1 5.4 6.0 5.6 7.1 7.6 8.0 8.0 9.0 

Tragulus napu NHMW-B6014 Sumatra M 6.8 3.5 6.6 4.2 5.5 4.8 5.8 6.2 7.2 7.4 7.2 7.8 

Tragulus kanchil NMB-3808 Sumatra M nd nd 5.1 1.8 3.2 3.3 3.7 4.6 5.3 6.3 5.9 7.2 

Tragulus kanchil NMB-3798 Sumatra M 5.8 2.6 4.9 3.1 4.4 4.4 4.0 5.1 5.2 6.1 6.3 6.6 

Tragulus kanchil NHMW-1473 Sumatra M 6.5 2.6 6.0 3.2 4.5 4.4 4.8 5.2 5.7 6.4 6.0 6.4 
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4.4 Discussion 
 
 

Dorcatherium crassum forms with the contemporary Dt. vindebonense the group of 

medium-sized Central European Dorcatherium representatives with bunoselenodont teeth 

(Rössner 2010) and here, our described specimen matches in teeth (e.g. see Rössner 2010; 

Sánchez et al. 2011; Morales et al. 2012), skull size and morphology (Seehuber 2015; 

Mennecart et al. 2018a) with Dt. crassum and therefore, unambiguously associate our specimen 

with this species (Figure 4.9.2).  Comparison of teeth measurements are showing that NMA-

Walda 2 is larger than Dt. guntianum (Rössner and Heissig 2013) and smaller than Dt. 

vindebonense (Rössner 2010; Alba et al. 2011) and Dt. peneckei (Rössner and Heissig 2013). 

Dt. crassum is considered to be very similar in its skeleton and body mass to 

Hyemoschus aquaticus from Africa (Milne-Edwards 1864; Carlsson 1926; Dubost 1978; 

Gentry 1978; Barrette 1982).  Recently Mennecart et al. (2018a) described the remains of a 

partial and very fragmented skull from France and reported that it is much closer to H. aquaticus 

than to other living tragulids. Other evidence associated with the skulls comes from the 

morphology of the petrosal bone and bony labyrinth, which present greater morphological 

accordance for Dt. crassum and H. aquaticus than for Moschiola and Tragulus species 

(Mennecart and Cousteur 2016).  The strong similarity of Dorcatherium and Hyemoschus has 

often been mentioned (e.g. Gentry 1978b) and the two genera have sometimes been 

synonymised (Milne-Edwards 1864).  However, according to Rössner (2007) in its more 

selenodont cheek teeth, lacking p1 and no cingulum, less robust jaws and lack of contact 

between premaxilla and nasals (missing in NMA-Walda 2), Hyemoschus contrasts with 

Dorcatherium, distinction supported by phylogenetic analysis (Sánchez et al. 2014). In this 

context, our data for NMA-Walda 2 skull, along with the morphometric variables shows that 

Dt. crassum is the largest species when comparing with the living species, which morphology 
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is more consistent with Tragulus napu and T. kanchil than H. aquaticus (Figure 4.10). The 

above described, reinforce even more the need to evaluate the distinction of the two genera.  

 

NMA-Walda 2 here referred to Dorcatherium crassum has a robust and strong 

morphological appearance, accented by some remarkable morphological characters (Figure 4.4; 

3D model available at: https://data.ub.uni-muenchen.de/).  This robustness was previously 

reported by Mennecart et al. (2018a) for a partial skull of Dt. crassum of France.  These authors 

called it hyper-developed compared to its recent relatives that are either rather delicate 

(Tragulus and Moschiola) or Hyemoschus aquaticus which is intermediate.  We found that 

Tragulus javanicus and T. kanchil stand out by having little developed and delicate crania; the 

crania of T. napu, Moschiola meminna and M. indica are larger, and the cranium of H. aquaticus 

is the most robust with strongest developed neurocranium crests and therefore we agree with 

Mennecart et al. (2018a).  Compared with the species in Tragulus and Moschiola, 

Dorcatherium crassum and Hyemoschus aquaticus have a orbit poorly developed (dorsoventral 

and anteroposterior diameter), being the later species more similar than other two living 

tragulids.  Considering that a nocturnal or crepuscular way of life has been documented for 

Hyemoschus (Dubost 1975) a nocturnal behaviour of this extinct species is also possible.  

Recently Guzmán and Rössner (2018) reported that the crania of T. javanicus and T. kanchil 

are relatively tall and the neurocrania are globose, while cranial height is less pronounced in 

specimens of T. napu and Moschiola and somewhat flattened, more comparable to H. aquaticus 

of Africa.  Here NMA - Walda 2 looks more like H. aquaticus, but, with a hyper-developed 

morphology (Figures 4.4) where the neurocranium with sagittal and nuchal crests as well as the 

canine tooth and its alveola are important.  According to Mennecart et al. (2018a) the position 

of the naso-frontal suture of Dorcatherium crassum (Contres, France) is located at the level of 

the center of the orbits in dorsal view (Figure 4.5A). But for NMA-Walda 2 the preserved 

https://data.ub.uni-muenchen.de/
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anterior part of the frontal is anterior to the orbit and, it is highly probable that nasal bones 

reached this area of the skull. In this context, for the living Hyemoschus aquaticus the nasal and 

frontal are in contact to at level of P3, and extended anteriorly to anterior part of canine alveola 

(Figure 4.5, Figure 4.6) and consequently we do not agree with Mennecart et al. (2018a). About 

lacrimal bones are almost completely destroyed and are not informative. However for a skull 

fragment Bonis et al. (1998; figure 11, 416e) described in the front of the orbit a large lacrymal 

bone of triangular shape and flat without a lacrymal fissure, while in living tragulids, they are 

apparently larger (Figure 4.6 A). 

 

Dt. crassum is considered a medium-sized tragulid (Rössner 2010) and the 

reconstruction of its paleodiet classifies it as a browser (Kaiser and Rössner 2007).  

Considering that browsers come in many shapes and sizes (e.g. from giraffes and elephants to 

koalas and primates) and consume a broader variety of food items that includes storage 

structures (seeds, fruits, and roots), metabolically active tissues (leaves, stems, and flowers) and 

other products such as nectar or tree exudates (Ungar 2010), the general morphology of this 

species indicates that its skull may have played a role more for consuming harder food (e.g. 

roots, seeds, leaves) than softer ones (e.g. fruit flesh, flowers, nectar).  Its neurocranium is 

largely shaped by enlarged attachment areas of the chewing muscles, likewise adapted for this 

type of hard food acquisition and processing.  If hard items formed part of the diet of Dt. 

crassum, it is also probable that the enlargement of canines fulfilled the function of removing 

/excavating tools for sediment and/or forest vegetation in the active search for foods such as 

roots and/or seeds.  In some fossorial rodents, the incisors are the main tool for breaking up 

the soil and building tunnels. This adaptation is characterized by conspicuous procumbent 

incisors with long roots and extreme adpatation of the skull (Hildebrand 1985).  Up to now the 

great development of the canines has only been associated with intraspecific combats (Rössner 
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2007) as in living tragulids (Dubost 1965, Ralls et al. 1975) and the Chinese water deer, which 

uses it for stabbing and tearing when fighting (Cooke and Farell 1998).  Apparently, the 

adaptation to a frugivorous diet (e.g. fruit flesh, flowers, nectar) and to a smaller degree to small 

invertebrates, fish and small mammals (Dubost 1964, 1978) would be associated with the less 

well-developed cranium and canines in H. aquaticus as well as in the genera Tragulus (Heydon 

and Bulloh 1997) and Moschiola (Yapa and Ratnavira 2013). 

 

 

 

4.5 Conclusion 
 

 

Despite the commonness of Dorcatherium crassum in the European Miocene, 

descriptions of skulls were hitherto only based on fragmentary material.  Thus the skull 

described herein is the most complete published to date, which allowed us to more completely 

describe its morphology, make measurements, calculate some proportions, analyze 

morphometric data and compare it to living species, respectively.  This morphometrics 

information of the skull compared in the morpho-space with living relatives, had never been 

described before in any fossil tragulid, and increases our knowledge of the morphometric 

characters of this species.  As in other studies, our analyses reinforce the morphological 

similarity of this fossil species to the living Hyemoschus aquaticus from Africa.  However, it 

was not possible to analyze the nasal bones or the premaxillae, whose characters are considered 

key to discriminate among the genera of this family.  The cranium of Dorcatherium crassum 

exhibits pronounced crests and zygomatic arches, considered by some authors as hyper-

developed.  It is important to note that the sagittal and nucal crests permitted the insertion of a 

strong musculature, associated with acquisition and processing of food, among other things.  
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We also hypothesize that the enlargement of the canine teeth would be associated with the 

search for seeds, roots, fruits, etc. among the vegetation and/or in the ground, having a function 

in excavating as well as in combat and defense.  The relatively flat configuration of the cranium 

of Dt. crassum is similar to that reported for its living relatives Hyemoschus aquaticus and 

Tragulus napu, which on escaping leap into water and submerge, while walking on the 

substrate. As a consequence, a flatter skull would make this structure more hydrodynamic and 

thus more useful for escaping. 
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CHAPTER 5 

Miocene tragulids from Pakistan 

5.1 Introduction 
 
 

The lithostratigraphic Siwalik Group on the Indian Subcontinent consists of deposits of 

ancient rivers that accumulated from the beginning of the Miocene through the late Pliocene 

(Barry et al. 2002). The preserved sediments are highly fossiliferous and ruminant artiodactyls 

are the predominant element of the macromammal assemblages. Among those, the family 

Tragulidae makes up an important portion (Barry et al. 1995; Flynn 1995; Barry et al. 2002; 

Barry 2014; Flynn et al. 2016) which fossil remains (teeth and postcrania) are abundant and 

stored in various public collections around the world (Geraads 2010; Barry 2014), including 

the SNSB – BSPG in Munich, Germany (Gentry et al. 1999; Rössner 2017).  

The oldest tragulid record reported from the Pakistani Siwalik sediments stems from the 

Vihowa Formation (18.7 mya to 22.0 mya) and from the Chitarwata Formation (22.0 mya to 

possibly 26.0 mya) (Barry 2014). Lydekker (1876) was the first to report on fossil tragulids 

from Asia based on specimens from the Siwalik Hills, describing specimens of Dorcatherium.  

Kaup had established the genus in 1833 based on Dt. naui specimens from Eppelsheim in 

Germany.  Thirty years later, Pilgrim (1910) widened the knowledge on Asian tragulid 

diversity by establishing Dorcabune anthracotheroides.  Fossil tragulids from the Siwalik 

Hills comprise Dorcatherium majus Lydekker, 1876, Dt. minus Lydekker, 1876, Dt. nagrii 

Prasad, 1970, and Dt. minimus West, 1980, as well as the large Dorcabune anthracotheroides, 

the medium-sized Db. nagrii Pilgrim, 1915, and Db. sindiense Pilgrim, 1915.  Also Db. 

liuchengense Han, 1974. Db. progressus (Yan, 1978) and Db. welcommi Ginsburg, Morales 
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and Soria 2001 were recorded from Asia, but not from the Siwaliks (Pickford 2001; Rössner 

2007).  A large portion of the specimens from Siwalik was assigned to Dorcatherium sp., 

without further determination to the species level (e.g. Lydekker 1876; Colbert 1935; Antoine 

et al. 2013; Barry 2014; Flynn et al. 2014; Khan et al. 2017) and the validity of some species 

can be questioned.  In fact, when Lydekker (1876) erected Dorcatherium majus, he also 

described “Dt. majus var b” and Dorcatherium sp.  Later, Colbert (1935) studied and revised 

both Dorcatherium and Dorcabune and pointed out that “hypsodont” molars characterize Asian 

Dorcatherium whereas Dorcabune has “bunodont” molars.  Also, Colbert (1935) found some 

Dorcatherium specimens to be sufficiently distinct from all known species (smaller than Dt. 

minus), but did not describe them as new species.  Subsequently, those specimens were 

classified as Dt. nagrii by Prasad (1970). Gaur (1992) revised the genus Dorcatherium and 

assigned other specimens from Colbert (1935) to Dt. majus and Dt. nagrii to Dt. minus.  

Moreover, Colbert (1935) revised Dorcabune, accepting only the following entities: Dorcabune 

sindiense, Db. anthracotheroides (synonym of Db. hyaemoschoides), and Db. nagrii 

(synonymous with Db. latidens).  

More recently, Flynn et al. (1995) studied new fossil mammal findings from the Siwalik 

Hills and proposed eight tragulid species of the genera Dorcabune and Dorcatherium.  Three 

were preliminarily named Dt. A, Dt. B, and Dt. C, while another specimen was assigned to cf. 

Dt. nagrii.  Khan and Akthar (2011) described a tooth found in the Chinji Formation (northern 

Pakistan), suggesting that it also belongs to that latter species.  Most recently, Barry (2014) 

proposed the existence of at least 18 Siwalik tragulid species based exclusively on astragalus 

size and shape.  He assigned all but one Dorcabune astragalus morphotype to the previously 

described species.  Thus, since their establishment as genera, the four Dorcatherium and three 

Dorcabune species are recognized and the differentiation within the genera is based on tooth 

size only.  Additionally, Barry (2014) described partial metapodials, indicating that they may 
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stem from two different species because of size differences.  The metapodials match those of 

Siamotragulus, a genus previously described from the Lower Miocene Bugti Beds in Central 

Pakistan (Ginsburg et al. 2001), but not found in the Siwalik Hills. Thus the systematics above 

described is being used in a number of further papers, listing supplementary tragulid material 

from the Pakistani Siwaliks (e.g. Sankhyan 1981; Vasishat et al. 1985; Gaur 1992; Farooq et 

al. 2007a, b, c, 2008; Khan et al. 2005, 2010, 2012; Iqbal et al. 2011; Khan and Akhtar 2005, 

2011, 2013, 2017, Batool et al. 2014; Samiullah et al. 2015; Sehgal 2015).  

In this study, we describe and interprete new dental material of Tragulidae from the 

Siwalik Hills in Pakistan to enhance the knowledge on Miocene tragulid diversity and its spatio-

temporal distribution.  The specimens where collected in 1955/1956 during a joint expedition 

of the Institute of Palaeontology and Historical Geology, Ludwig-Maximilians-Universität 

München, and the Bayerische Staatssammlung für Paläontologie und Geologie (both Munich, 

Germany) (Dehm et al. 1958) from places near Chinji, Nagri and Dhok Pathan (Figure 5.1).  

The specimens identified here are characterized by features that are indicative of Miocene 

tragulid representatives (e.g. Lydekker 1876; Pilgrim 1915; Colbert 1935; Mottl 1961; 

Fahlbusch 1985; Rössner 2007). These features comprise a strong cingulum on upper molars, 

brachyodonty with different degrees of tooth crown height the absence of a mesostylid and the 

presence of an “M-structure” in lower molars and fourth lower deciduous premolar, length and 

width increase from M1 to M3, as well as the slender morphology of lower and upper premolars 

(except in P4) due to hardly or no lingual crown elements. Moreover, the presence of a 

“Dorcatherium platform” (Sánchez et al. 2010, 2014) indicates that the studied teeth belong to 

Dorcatherium Kaup, 1833 or Dorcabune Pilgrim, 1910.  Size and morphology of some of the 

specimens studied here match with the European species Dorcatherium naui and Dt. 

guntianum, until now reported only from Europe, while other specimens belong to a new 

species that is described here.  
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Figure 5.1. Location of the study area in the North of Pakistan. Collecting areas of tragulid remains 

from the Siwalik Group investigated here are indicated with asterisks (modified from Dehm et al. 1958; 

Barry et al. 2013; Khan et al. 2017). 

 

 

 

5.2 Material and methods 

Institutional abbreviations: AMNH: American Museum of Natural History, New York, 

USA; BM: British Museum, London, United Kingdom; GSI: Geological Survey of India, 

Calcutta, India; LMU: Ludwig-Maximilians-Universität München, Munich, Germany; SNSB-

BSPG: Staatliche Naturwissenschaftliche Sammlungen Bayerns - Bayerische Staatssammlung 

für Paläontologie und Geologie, Munich, Germany. 

 

Genus, tooth and measurement abbreviations: aw: anterior width, d: lower deciduous 

tooth, D: upper deciduous tooth, dex.: dextral side, Db.: Dorcabune, Dt.: Dorcatherium, h: 

height, hi: hypsodonty index, l: length, lab.: labial view, lin.: lingual view, m: lower molar, M: 

upper molar, occ: occlusal view, P: upper premolar, p: lower premolar, sin.: sinistral side, w: 

width.  
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Material: the fossil remains described in this paper comprise 213 teeth, mostly in situ in 

mandible or maxillary fragments. They are housed at the Staatliche Naturwissenschaftliche 

Sammlungen Bayerns – Bayerische Staatssammlung für Paläontologie und Geologie in 

Munich, Germany (SNSB – BSPG) under the inventory numbers SNSB – BSPG 1956 II ... 

(omitted in the text), 1961 XIX ..., 1966 II ..., 1968 XVIII. For comparison, we studied casts of 

teeth of Dorcatherium majus, Dt. minus and Dt. nagrii obtained from originals stored at the 

AMNH, BM, and GSI that were described in part by Colbert (1935). Additionally, we compared 

the samples with type material of Dorcatherium guntianum and casts of type material of Dt. 

naui and Dt. crassum stored at the SNSB – BSPG.  

 

Anatomical definitions and taxonomic affiliation: Terminology for tooth crown 

elements follows Bärmann and Rössner (2011).  In addition, we use the term “M-structure” 

(according to Mottl 1961), which is synonymous with the crest-complex comprising the 

“internal postmetacristid”, “external postmetacristid”, “internal postprotocristid”, and “external 

postprotocristid”. Further, we use the term “Dorcatherium platform” (Sánchez et al. 2010 fig. 

4; Sánchez et al. 2014, Figure 5.2) for the hyper-developed and widely curved preprotocristid 

that contacts with a very short premetacristid, a structure only present in Dorcatherium and 

Dorcabune species (Figure 5.2A, C).  The holotypes of Siwalik tragulid species are 

exclusively based on upper teeth or maxilla fragments with upper teeth.  However, crania with 

articulated mandibles or lower teeth that can be associated with the same individual are not 

available. When Prasad (1970) established Dt. nagrii, he proposed upper (M1, M2, M3, P4) 

and lower (m1, m2, m3) teeth as type material, however, both upper and lower dentition are not 

from the same individual.  The same is true for all the Dorcabune species established by 

Pilgrim (1915). 
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Figure 5.2. Main anatomical elements and measured dimensions (length, width and height) for lower 

and upper molars discussed in the text. A, occlusal view of lower molar with Dorcatherium platform 

and M-structure highlighted in red. B, occlusal view of upper molar. C, occlusal view of lower molar. 

D, labial view for upper molar.   
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Analysis: for each tooth position (deciduous teeth [2, 3, 4], premolars [2, 3, 4] and molars [1, 2, 

3], we measured l, aw, w, and h, the latter only of unworn teeth, with a digital caliper (precision 

of 0.1 mm), according to Rössner (1995) (Figure 5.2C, D).  For upper and lower molars as 

well as deciduous teeth, we considered “aw” as “w” (Rössner 1995).  Also hi was calculated 

via the ratio of height to length (Fortelius et al. 2002).  Fortelius et al. (2002) grouped dentition 

into different height classes of lower and upper second molars based on hi, being brachyodont 

< 0.8, mesodont 0.8-1.2, and hypsodont > 1.2.  In order to visualize length vs. width, we 

generated bivariate plots for each tooth position described above and each species, including 

available type material (Figure 5.15).  In addition, width and length variation of upper and 

lower dentitions is depicted in univariate plots (Figure 5.16).  Through presenting the 

measurement data in this way, visual and metric access to proportional differences is provided 

that exist between the different tooth positions (Pickford and Laurent 2014).  

Through box plots of length and anterior width of molars, we document intraspecific 

variability represented by Pakistani tragulid specimens originally identified in the present 

paper.  In addition, we generated box plots based on literature data of the same species for 

comparison (Figures 5.21 and 5.22).  The respective literature is cited: Lydekker (1876), 

Pilgrim (1915), Colbert (1935), Prasad (1970), West (1980), Sankhyan (1981), Vasishat et al. 

(1985), Gaur (1992), Farooq et al. (2007a, b, c; 2008), Khan et al. (2005, 2010, 2012, 2017), 

Iqbal et al. (2011), Khan and Akhtar (2005, 2011, 2013), Batool et al. (2014), Samiullah et al. 

(2015), Sehgal (2015). 
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5.3 Results 
 

Systematic palaeontology 

Class Mammalia Linnaeus, 1758 

Order Artiodactyla Owen, 1848 

Suborder Ruminantia Scopoli, 1777 

Family Tragulidae Milne-Edwards, 1864 

Genus Dorcabune Pilgrim, 1910 

Type species Dorcabune anthracotheroides Pilgrim, 1910. 

Further Dorcabune species.  Db. nagrii Pilgrim, 1915, Db. sindiense Pilgrim, 1915, Db. 

liuchengense Han, 1974, Db. progressus (Yan 1978), and Db. welcommi Ginsburg, Morales 

and Soria 2001. 

Stratigraphic range.  From Lower to Middle Siwalik Subgroup (Khan et al. 2010, 2012; 

Barry 2014; Khan et al. 2017). Db. anthracotheroides has a stratigraphic range from Chinji to 

Nagri Formation (14.2 – 11.2 Ma), while Db. nagrii from Nagri and Dhok Pathan Formations 

(11.3 and 8.2 Ma).  In the Sind area of the Indian Subcontinent, Db. sindiense is present in the 

upper most Gaj Formation and lower third of Manchar-Formation, as well as on the Potwar 

where specimens have been found in the Kamlial and lowest Chinji Formations (14.2 – 11.2 

Ma).  The Potwar occurrences establish a minimum range of 16.8 Ma to 13.6 Ma, but the 

Manchar and Gaj localities might be considerably older (Barry 2014; Khan et al. 2017) (Figure 

5.4).  

Remarks.  Dorcabune was established by Pilgrim (Pilgrim 1910: 68 - 69), who briefly 

described Db. anthracotheroides on the basis of upper molars and a m3, but without giving 

specimen numbers or establishing type specimens. In a later study, Pilgrim (1915: 227) 
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established five Dorcabune species and described them in detail: Db. sindiense, Db. 

anthracotheroides, Db. hyaemoschoides, Db. nagrii and Db. latidens.  Colbert (1935: 302) 

designated a lectotype and paratypes from the Db. anthracotherioides type series.  In 1935, 

Colbert revised the genus and only retained Db. sindiense, Db. anthracotheroides (synonymous 

with Db. hyaemoschoides) and Db. nagrii (synonymous with Db. latidens).  The genus 

Dorcabune has a bunoselenodont dentition with a “M-structure” and “Dorcatherium platform” 

on lower molars.  Parastyle and mesostyle of upper molars are prominent and isolated.  There 

is a prominent cingulum in the upper molars and strong rugose enamel (Pilgrim 1915; Colbert 

1935; Faroq et al. 2007; Khan and Akthar 2013). There is yet no record of a cranium of this 

genus, but postcranial remains (Barry 2014). 

 

Dorcabune anthracotheroides Pilgrim 1910 

(Figure 5.3) 

1915 Dorcabune hyaemoschoides Pilgrim, page 231, pl. 21 fig. 6 pl. 22, figs. 2, 3. 

Differential diagnosis.  Largest bunoselenodont / brachyodont tragulid known with wrinkled 

enamel and pronounced Dorcatherium-platform.  

Holotype.  GSI B 580, a left maxilla with M1 to M3 (Pilgrim 1915: pl. 21, figs. 1 and 1a). 

Paratypes.  GSI B 581 sin. M2 (Pilgrim 1915, pl. 21, fig. 2), GSI B 582 sin. m3 (Pilgrim 1915: 

pl. 22, figs 4 and 4a), GSI B 583 fragment of dex. mandible with m1 to m2 (Pilgrim 1915, pl. 

21, figs 7 and 7a), GSI B 584 sin. m2 (Pilgrim 1915, pl. 22, fig. 5), GSI B 588 fragmentary dex. 

P4 (Pilgrim 1915, pl. 21, fig. 8). 

Type locality. Chinji, Chakwal, Punjab Province of Pakistan, Lower Siwalik Subgroup, 

Siwalik Group. 
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Stratigraphic range. Chinji Formation (Lower Siwalik Subgroup) in the Middle Miocene 

(Pilgrim 1910, 1915; Colbert 1935; Khan and Akhtar 2013; this study), Nagri and Dhok Pathan 

Formation (Middle Siwalik Subgroup) in the Upper Miocene (Farooq et al. 2007c; Khan et al. 

2010; Khan et al. 2012) (Figure 5.4). 

Geographic distribution.  Db. anthracotheroides has been described from the following 

localities from north of Pakistan: Chinji (Pilgrim 1915; Colbert 1935; Khan and Akhtar 2013), 

Phadial (Colbert 1935), Nathot (Colbert 1935), Hasnot (Farooq et al. 2007c; Khan et al. 2012), 

Dhok Pathan Type Locality (Khan et al. 2010), Kali Nala, NW Kanatti Chak (this study). 

Referred material. SNSB-BSPG 1956 II 2595 fragment of dex. mandible with m2 to m3 

(Figure 5.3) 

Description.  m2 and m3 are medium worn (Figure 5.3).  They are bunoselenodont and have 

marked wrinkled enamel.  Metaconid and entoconid are higher than the labial conids and have 

a convex lingual morphology.  The “M-structure” is apparent.  External postmetacristid and 

preentocristid meet in one point, as do internal postmetacristid and internal postprotocristid, as 

well as external postprotocristid and prehypocristid.  Preprotocristid runs in a wide curve 

around the anterior end and fuses with the short premetacristid.  Although the tooth is too worn 

to show the Dorcatherium platform, the morphology preserved indicates that there once was 

one.  The prehypocristid does not fuse with the preentocristid, as postentocristid and 

posthypocristid do not.  The hypoconulid of the m3 is large and aligned towards the labial 

conids. Posthypoconulidcristid and prehypoconulidcristid connect with the posthypocristid, 

accordingly the third lobus is shallow and closed. There is no entoconulid.  There is a clear, 

but low ectostylid. A cingulid runs from anterior to posterior. Both, the ectostylid and the 

cingulid are clearer in m2 than in m3.  The m3 has a small posterior ectostylid and the cingulid 

fully surrounds the hypoconulid (Figure 5.3).  
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Remarks.  Bunoselenodonty, size “M-structure”, and marked wrinkled enamel are well in 

accordance with features described for the type material of Dorcabune anthracotheroides 

(Pilgrim 1915) (Figure 5.3 and Appendix 5, Table 5.1). 

 

 

 

 

Figure 5.3. Dorcabune anthracotheroides Pilgrim, 1910. SNSB-BSPG 1956 II 2595 fragment of dex. 

mandible with m2 to m3 A) labial view; B) occlusal view; C) lingual view. 
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Genus Dorcatherium Kaup, 1833 

Type species.  Dorcatherium naui Kaup & Scholl, 1834 

Further Asian Dorcatherium species:  Dt. majus Lydekker, 1876; Dt. minus Lydekker, 1876; 

Dt. nagrii Prasad, 1970; Dt. minimus West, 1980; and Dt. orientale Qiu and Gu 1991. 

Stratigraphic range in Asia. It is recorded from the uppermost Oligocene to Early Pliocene of 

South Asia (Barry 2014; Figure 5.4). 

Remarks.  The genus Dorcatherium was erected by Kaup (1833) on the basis of a right lower 

jaw with m3 to p3 and alveoli of p2 and p1 (Kaup 1839a, b: plate. 23 figs. 1, 1a, 1b) now lost, 

but from which casts were made and are stored at the BMNH (M. 3714; Lydekker 1887; 

Rössner 2010).  Five species are generally accepted from the Miocene of Asia (Rössner 2007), 

but differential diagnoses so far were given for tooth size only.  Most information for Asian 

representatives of Dorcatherium comes from teeth and mandibles of the large Dt. majus, 

medium-sized Dt. minus, and small-sized Dt. nagrii (Lydekker 1876; Colbert 1935; Prasad 

1970; Gaur 1992).  Information about Dt. minimus West 1980 and Dt. orientale Qui Zhanxiang 

and Gu Yumin, 1991 is scarce and available only from their original descriptions. Information 

on the skull is not available yet for the Asian species, but a few data of postcranial tragulid 

material from Siwalik species were recently provided by Barry (2014).  Thus so far only partial 

skulls of Dt. naui from Eppelsheim in Germany (MN9; Kaup 1839a, b), of Dt. crassum from 

Contres (Loir-et-Cher) in France (MN5b; Mennecart et al. 2018a), Dt. crassum from 

Thierhaupten (Bavaria) in Germany (Seehuber 2015), and of Dt. sp. from the island of Chios 

(Aegean Sea) in Greece (MN5; de Bonis et al. 1998) are described.  In Asia, Dorcatherium 

comprises selenodont species only, with more or less strong cingula and cingulids and mostly 

strong styli and stylids at the molars. The upper molars increase in size from M1 to M3.  The 

lower molars present the “M-structure” and “Dorcatherium platform” (Figure 5.2 A).  The 
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premolars are long and slender and consist mainly of the labial cones and crests, whereas lingual 

crown elements are underrepresented. On the lower p4 the entoconid fuses with the 

postprotocristid.  The p3 has only a short lingual entocristid originating at the hypoconid.  The 

upper P4 is shorter and has a triangular shape. Lower  p1 and d1 are optional and variable in 

length and cuspid number (one or two), upper P2 is variable in length too (Rössner 2007, 2010). 

 

 

Figure 5.4: Chart depicting the summarized stratigraphic occurrence of the Siwalik and European 

tragulid species recorded in this study. Correlation of formation boundaries with chronostratigraphy and 

geochronology was obtained from Barry et al. (2002), Flynn et al. (2014) and Patnaik (2016). The epoch 

boundaries were obtained from Hilgen et al. (2012). The occurence ranges of the European records of 

Dorcatherium naui and Dt. guntianum were obtained from Aiglstorfer et al. (2014) and Rössner (2017) 

and of Siwalik species from Patnaik (2013). 
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Dorcatherium majus Lydekker, 1876 

(Figure 5.5) 

1876 Dorcatherium majus, n. sp., nobis. – Lydekker, Pal. Indica,. p. 44ff, pl. VII, figs 4, 6, 9, 

10. 

1915 Dorcatherium majus. –  Pilgrim, Rec. Geol. Surv. India, p. 235f, pl.23 figs 2, 2a. 

.1935 Dorcatherium majus Lydekker. – Colbert, Trans. Am. Phil. Soc., p. 307ff (AMNH 19302, 

19304, 19359, 19520, 19524, 19939), figs 138-140.  

Differential diagnosis:  Dorcatherium majus is selenodont and the dentition is 

morphologically like the other selenedont tragulids except for features related to tooth crown 

height.  The latter is clearly higher than in the type species Dt. naui and higher than in all other 

Asian and European tragulid species and comes with slender styliform mesostyles and higher 

ectostylids.  The Hypsodonty Index for m2 is 0.86. On the d4, the anterior cristids of 

anterolingual and anterolabial conid are not fused anteriorly, the labial cingulid is weak and the 

ectostylid is strong.  The external enamel texture fluctuates from wrinkled to weakly wrinkled. 

Lectotype: GSI B 198, fragment of left maxilla with M2 and M3 (1307) (Lydekker 1876: p 46, 

pl. VII, figs 4, 6). 

Paralectotype: GSI No. B 197, (502) right upper molar (Lydekker 1876: p. 45 ff, pl. VII, figs 

9, 10) 

Type locality: Kushalghar near Attock, Potwar District, Pakistan, probably Middle Siwalik 

Subgroup, Siwalik Group. 

Stratigraphic range: Chinji Formation (Lower Siwalik Subgroup) in the Middle Miocene 

(Colbert 1935; Khan and Akhtar 2013; this study), Nagri Formation in the Upper Miocene (this 
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study), and Dhok Pathan-Formation (Middle Siwalik Subgroup) in the Upper Miocene (Khan 

et al. 2010, 2012; Batool et al. 2014; this study, (Figure 5.4). 

Geographical distribution: Dorcatherium majus has been described from the following 

localities in Pakistan: Hasnot (Colbert 1935; Farooq et al. 2007a; Farooq et al. 2008; Khan et 

al. 2012; Batool et al. 2014), Nagri (Farooq et al. 2007a; this study), Chinji (Colbert 1935; 

Farooq et al. 2007a; Farooq et al. 2008; Khan and Akhtar 2013; this study), Dhokpathan (Farooq 

et al. 2007a; Farooq et al. 2008; Khan et al. 2010; this study), Markhal (Farooq et al. 2008; this 

study), Kanatti (Khan and Akhtar 2013) and Dhok Bun Ameer Khantoon (Samiullah et al. 

2015). 

Referred material. 1956 II 2519 fragment of sin. maxillary with M1-M2 (Figure 5.5 A, B, C); 

1956 II 2535 dex. M2 to M3 (Figure 5.5 D, E, F); AMNH 19304 fragment of sin. maxillary 

with M1-M2,  Siwalik Collection B. Brown 1922; GSI 9909 fragment of dex. maxillary with 

M1-M2; 1956 II 2508 dex. p4 (Figure 5.5 G, H); 1956 II 2512 isolated sin. m3; 1956 II 2521 

sin p4; 1956 II 2603 fragment of sin. mandible with p3-m1 (Figure 5.5 I, J, K); 1956 II 2604 

sin. p4 (Figure 5.5 L, M, N); 1956 II 2616 fragment of dex. mandible with d4-m3 (Figure 5.5 

O, P, Q); 1956 II 2617 fragment of sin. mandible with p3-m1(Figure 5.6 R, S, T); 1956 II 2618 

fragment of dex. mandible with m2 and fragment of m1; 1956 II 2620 fragment of sin. mandible 

with p4 and posterior fragment of p3; 1956 II 2621 fragment of dex. mandible with d4-m2 and 

m3 in eruption (Figure 5.6 U V, W);1956 II 2623 fragment of sin. mandible with m3 (Figure 

5.7 X, Y, Z); 1968 XVIII 10 fragment of dex. mandible with p4 in eruption, m1, m2, and m3 

in eruption (Figure 5.7 A’, B’, C’); 1968 XVIII 56 fragment of dex. mandible with m2 and m3 

without back fossa; AMNH 19369 fragment of dex. mandible with m2-m3, Siwalik Collection 

B. Brown 1922; AMNH 19517 fragment of dex. mandible with m1-m2; AMNH 19520 

fragment of dex. mandible with m1-m2, Siwalik Collection B. Brown 1922; AMNH 19524 
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fragment of dex. mandible with p4-m2, Siwalik Collection B. Brown 1922, studied by Colbert 

(1935: 307, fig. 139); AMNH 19939 fragment of sin. dental with m3, Siwalik Collection B. 

Brown 1922; AMNH 39254  sin. m3, Siwalik Collection B. Brown 1922 (Figure 5.7 D’, E’, 

F’); GSI 9909 fragment of sin. mandible with m1-m2, GSI 9909 dex. M3. 

Description.  Molars are selenodont and still preserved in situ in fragments of the maxillary 

bone (Figures 5.5, 5.6 and 5.7). Their tooth crown height (hi m2: 0.86, see appendix 5, Table 

5.2) is greater than in the type species of Dt. naui.  The enamel is wrinkled.  In occlusal view 

they are square with M1 being the smallest and M3 the largest tooth in the upper molar row.  

The protocone complex has a “v” shape.  The postprotocrista is shorter than the preprotocrista.  

The latter fuses with the parastyle, whereas the postmetaconulecrista does not fuse with the 

mesostyle. Postprotocrista and premetaconulecrista are not fused.  Labial walls of paracone 

and metacone complex are slightly convex.  Parastyle and mesostyle are prominent, but 

slender.  The labial rib of the paracone is prominent, slightly folded towards anterior, and is 

fused at its base with the parastyle.  The labial rib of the metacone is only prominent towards 

the tip, but less than that of the paracone.  The metastyle is usually weak, but strongest in M3.  

The paracone-complex is arranged anteroposteriorly, whereas the metacone-complex is slightly 

oblique to the latter.  There is a strong cingulum running around the lingual base of the molars 

(Figure 5.5 A-F).  The lower dentition sample records several tooth replacement stages.  
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Figure 5.5. Dorcatherium majus Lydekker, 1876. SNSB-BSPG 1956 II: 2519 fragment of sin. maxillary 

with M1-M2; A) labial view; B) occlusal view; C) lingual view. SNSB-BSPG 1956 II 2535 dex. M2 

and M3; D) labial view, E) occlusal view, F) lingual view. SNSB-BSPG 1956 II 2508 dex. p4; G) labial 

view, H) lingual view. SNSB-BSPG 1956 II 2603 fragment of sin. mandible with p3-m1; I) labial view, 

J) occlusal view, K) lingual view. SNSB-BSPG 1956 II 2604 sin. p4; L) labial view, M) occlusal view, 

N) lingual view. SNSB-BSPG 1956 II 2616 fragment of dex. mandible with d4-m3; O) labial view, P) 

occlusal view, Q) lingual view.  
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Two mandible fragments exhibit heavily or medium worn d4s and m1s, unworn or slightly 

worn m2s, and m3s in eruption (1956 II: 2616 and 2621).  Further, specimen 1956 II 2617 has 

a p3 in eruption, a strongly worn d4, and a medium worn m1, and specimen 1968 XVIII 10 

shows an erupting p4, a medium worn m1, a slightly worn m2, and an m3 in a late eruption 

stage.  The d4 is triradiculate.  It has an elongate shape that is wider posteriorly than 

anteriorly.  The postmetacristid and postprotocristid are split into external and internal cristids, 

forming the “M-structure”.  Anterior cristids of anterolingual and anterolabial conids are not 

fused anteriorly.  The preentocristid is short and basally fused with the internal postmetacristid 

and postprotocristid.  The posthypocristid is long and fused to the posterior side of the 

entoconid.  The postentocristid is short and is not fused to the posthypocristid. Anterior and 

posterior cingulids are present as well as a very strong ectostylid.  The labial cingulid and the 

anterior ectostylid are weak. In occlusal view the hypoconid complex has a “v” shape.  The p3 

is slender.  The overall morphology is tricuspid, with a clearly dominant mesolabial conid and 

without lingual elements (Figure 5.5 I-J).  Anterior conid and anterior stylid are very small in 

specimen 1956 II 2617, but clearly developed in 1956 II 2603 (Figure 5.5 I-J), similar to p4 

(Figure 5.5 G-H).  Two short cristids split from posterior of the posterolabial conid and diverge 

towards posterolingual and posterolabial by delimiting a wide posterior valley.  There are no 

anterior and posterior cingulids.  The p4 is shorter and wider than the p3 with three cuspids; 

the mesolabial conid is the dominant one. Lingual cuspids are absent, but anterior and posterior 

cingulids are present.  From the tip of the mesolabial conid, a single anterolabial cristid 

descends anteriorly and fuses with the anterior conid.  The anterior stylid is long.  The 

anterolabial cristid and the anterior stylid are not in-line, but meet in an obtuse angle at the 

anterior conid.  The former delimit the anterior valley.  From the posterior face of the 

mesolabial conid, posterolingual and posterolabial cristids descend.  The former differs in 

length from specimen to specimen but never contacts the posterior crest.   
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Figure 5.6. Dorcatherium majus Lydekker, 1876. SNSB-BSPG 1956 II 2617 fragment of sin. mandible 

with p3, d4, m1; R) labial view, S) occlusal view, T) lingual view. SNSB-BSPG 1956 II 2621 fragment 

of dex. mandible with d4-m2 and m3 in eruption; U) labial view, V) occlusal view, W) lingual view.  
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The posterolabial cristid runs along the labial edge and curves around the posterior edge.  It 

includes an additional small conid, with different morphology from specimen to specimen, in 

the middle of its length.  Both posterior cristids delimit a relatively deep and narrow valley 

(Figure 5.5G-H).  Sometimes the additional small conid performs as a transverse element 

within this valley (1956 II 2604: Figure 5.5 L, M, N).The lower molars are preserved in situ in 

several mandible fragments and have relatively high crowns in comparison with the type 

species Dt. naui from Europe. The m1 is shorter and more slender than m2 and m3 and has a 

more trapezoidal occlusal shape due to a clearly wider posterior lobe.  In all lower molar 

positions, the lingual walls of the lingual conids are convex and the enamel fluctuates from 

wrinkled to weakly wrinkled  The lingual column of the metaconid is prominent.  The 

preprotocristid runs in a wide curve towards anterolingually, forming the “Dorcatherium 

platform”, and fuses with the short premetacristid. The “M-structure” is always present with a 

long external postprotocristid and a short external postmetacristid (Figure 5.5 O-Q).  Internal 

postprotocristid, internal postmetacristid, and preentocristid are in contact as are external 

postprotocristid and prehypocristid.  In m1 and m2 the posthypocristid extends almost to the 

labial margin of the crown, but ends with a little distance to the postentocristid.  On the m1, 

the ectostylid is mostly strong and more closely with the protoconid.  Anterior and posterior 

cingulid are well developed.  The morphology of m3 is like that of m1 and m2 with rectangular 

shape in occlusal view.  The lingual end of the posthypocristid split into two very short crests, 

one directed towards the postentocristid and one directed towards the tiny entoconulid.  There 

is a pronounced hypoconulid in a posterolabial position that basically forms the back fossa.  

The prehypoconulidcristid connects with the posthypocristid, but is not fused to it.  The 

posthypoconulid is very short and touches the entoconulid close to the base only; hence the 

back fossa is open lingually.   
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Figure 5.7. Dorcatherium majus Lydekker, 1876. SNSB-BSPG 1956 II 2623 fragment of sin. mandible 

with m3; X) labial view, Z) occlusal view, Z) lingual view. SNSB-BSPG 1968 XVIII 10 fragment of 

dex. mandible, p4, m1, m2, and m3 in eruption; A’) labial view, B’) occlusal view, C’) lingual view. 

AMNH 39254 sin. m3, Siwalik Collection B. Brown 1922; D’) labial view, E’) occlusal view, F’) 

lingual view. 
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There is a clear entoconulid, but smaller and lower than the hypoconulid.  The measurements 

for the upper and lower dentition here studied, are provided in the Appendix 5 (Table 5.2). 

Remarks. When Lydekker (1876) erected Dorcatheriumt majus he gave inconsistent  

information.  He designated “Dorcatherium majus, n. sp., nobis, Variety a” based on a well-

preserved, diagnostic dex. M3 (No. 502; G.S.I. B 197: pl. 7, figs. 9, 10) and a very worn upper 

molar with no identified position (No. 502-6, G.S.I. B 197: pl. 7, fig. 11).  He also described 

“Variety b” based on an M2 and M3 in good state (No. 1307, G.S.I. B 198; pl. 7, figs. 4, 6).  

According to him, the two teeth of “Variety a” differ chiefly in size, which “perhaps not be 

more than an individual variety”.  However, he labeled specimen 502-6 (G.S.I. B 197) on plate 

7, fig. 11, as “Dorcatherium sp.”.  He also gave measurements for 502-6 (G.S.I. B 197) (length 

= 15.2 mm; width = 20.3 mm) 

Lydekker (1876) did not provide their dimensions of “Variety b” (No. 1307; pl. 7, figs. 

4, 6) in spite of good preservation, indicating only a similar size with “Variety a”.  It was 

Pilgrim (1915) who provided dimensions of these specimens under number “G.S.I. B 198” 

(page 235) and ratified similar size for both varieties (except specimen No 502-6) (appendix 5, 

Table 5.2).  In his revision, Colbert (1935) designated the two upper molars of “Variety a” 

(G.S.I. B197) the lectotype. However, as there is considerable difference in wear, they did not 

belong to the same individual and have to be considered as two separate individuals. This 

violates ICZN (Ride et al. 1999), article 74.5, which says that a particular syntype has to be 

unambiguously selected, and makes Colbert's designation invalid. Moreover, ICZN, (Ride et 

al. 1999), article 45.6.4 indicates that (if name before 1961) a variety should be taken to be a 

subspecies. In consequence, we discard specimen 502-6 (G.S.I. B 197), as its poor preservation 

does not provide enough information, and designate specimen 1307 (G.S.I. B 198) the lectotype 

of Dorcatherium majus. 
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Our specimens are congruent with both, the morphology described by Lydekker (1876) 

and the dimensions of the type material provided by Lydekker (1876) for M3 (No. 502; G.S.I. 

B 197) and by Pilgrim (1915) for the here newly designated lectotype M2 and M3 (No. 1307: 

G.S.I. B 198). Consequently, we assigned them to Dt. majus. Furthermore, our data are 

coincident with the previous studies of Colbert (1935), Khan et al. (2010), Khan et al. (2012), 

Khan and Akhtar (2013), Samiullah et al. (2015), Batool et al. (2015), but do not fit well 

metrically with Farooq et al. (2007a).  The latter classified specimen PUPC No. 67/191 as M3, 

but with 13.6 mm length and 15.2 mm width.  These values fit neither with the Dt. majus type 

material nor is the morphology sufficiently preserved for reliable species assignment 

(measurements match M1 of Dt. majus or M3 of Dt. naui). 

Since the type material does not comprise lower teeth (Lydekker 1876), our assignments 

of lower teeth are based on correlation of the largest size classes (with the greatest hi) among 

lower and upper molars of our Dorcatherium sample. The later accord with descriptions and 

classifications of Pilgrim (1915: pl. 23 fig. 2, tab. page 235-236) and Colbert (1935: page 307-

309, figs 138-140), who allocated specimens of lower teeth to Dt. majus.  Length, width, and 

height are provided in the appendix 5, Table 5.2 as well as the hypsodonty index, if height is 

fully preserved. 
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Dorcatherium minus Lydekker, 1876 

(Figures 5.8 and 5.9) 

*1876 Dorcatherium minus, Nov. Sp. nobis, Siwaliks, – Lydekker, Pal. Indica,. p. 46, pl. VII, 

figs 3, 7. 

.1935 Dorcatherium minus Lydekker, –  Colbert, Trans. Am. Phil. Soc., p. 309ff (AMNH 

19313, 19365, 19517, 19609), fig. 142 (AMNH 119365). 

.1992 Dorcatherium majus Lydekker 1876, – Gaur, Riv. It. Paleont. Strat., p. 366 (AMNH 

19517). 

Differential diagnosis.  Dorcatherium minus is a medium-sized species of the genus, 

intermediate between the larger Dt. naui and Dt. maliki (Kostopoulos and Sen 2016) and the 

smaller Dt. dehmi sp. nov. Premolar and molar dentition is morphologically similar to other 

Miocene selenodont tragulids, except for the ectostylids.  The Hypsodonty Index in lower 

molars ranges from 0.59 to 0.74, and in M1 from 0.84 to 0.85 and is smaller than in Dt. majus 

and Dt. dehmi sp. nov. (based on m2 data), but larger than in Dt. guntianum (based on m2 data), 

Dt. naui, and Dt. nagrii (for the latter two based on m3 data).  The d4 coincides 

morphologically with Dt. majus in its anteriorly unfused anterior cristid of anterolingual and 

anterolabial conids.  The enamel of Dt. minus is less wrinkled than that of Dt. majus. 

Holotype. GSI B 195 dex. M2 and M3 according to Lydekker (1876: 46, pl. VII figs. 3 and 7) 

(No. 1301 in Lydekker), dex. M1 and M2 according to Colbert (1935: 309). 

Type locality. Kushalghar near Attock, Potwar District, Pakistan, probably Middle Siwalik 

Subgroup, Siwalik Group. 

Stratigraphic range. Chinji Formation (Lower Siwalik Subgroup) in the Middle Miocene 

(Khan et al. 2005; Khan and Akhtar 2013; Samiullah et al. 2015; Khan et al. 2017; this study), 

Nagri Formation (Middle Siwalik Subgroup) in the Upper Miocene (Iqbal et al. 2011), Dhok 
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Pathan Formation (Middle Siwalik Subgroup) in the Upper Miocene (Khan et al. 2012; Batool 

et al. 2014; Khan and Akhtar 2005; Sehgal 2015) (Figure 5.4). 

Geographical distribution.  Dorcatherium minus has been described from the following 

localities in Pakistan exclusively: Hasnot (Khan and Akhtar 2005; Farooq et al. 2007b); 

Bhandar (Farooq et al. 2007b), Nagri (Farooq et al. 2007b; Iqbal et al. 2011), Chinji (Colbert 

1935; Farooq et al. 2007b; this study), Dhok Bun Amir Khatoon (Khan et al. 2017), Rati Dheri 

(Farooq et al. 2007b), Dhulian (Khan et al. 2005), Vasnal (Farooq et al. 2007b), Bhilomar 

(Farooq et al. 2007b; this study), Nurpur (Sehgal 2015), Paridarwaza, Jhelum Tehsil (this 

study), Kanatti Chak (this study). 

Referred material. 1956 II 2456 fragment of sin. maxillary with M1-M2; 1956 II 2469 

fragment of dex. maxillary with M2-M3; 1956 II 2480 fragment of sin. maxillary with M1-M2 

(Figure 5.8 A, B, C); 1956 II 2484 sin. P4; 1956 II 2485 sin. P3 (Figure 5.8 D, E, F); 1956 II 

2497 fragment of sin. maxillary with P4-M2 (Figure 5.8 G, H, I); 1956 II 2498 fragment of dex. 

maxillary with D4-M1 (Figure 5.8 J, K); 1956 II 2536 cranium partially preserved with the dex. 

P2-M3 and sin. P2, P4, M2-M3 tooth row; AMNH 29856 fragments of dex. and sin. maxillaries 

each with M1-M3 each, studied by Colbert (1935: 310: fig. 141) (Figure 5.8 L, M, N); AMNH 

39303 fragment of sin. maxillary with D3-M1; BM 19043, fragment of sin. maxillary with D3-

M1; BM 19043, and fragment of dex. maxillary with D3-D4; 1956 II 2465 dex. M3; 1956 II 

2489 fragment of sin. mandible with p3-m2 (Figure 5.8 O, P, Q); 1956 II 2490 fragment of sin. 

mandible with m3; 1956 II 2496 fragment of sin. mandible with m3; 1956 II 2503 sin. m3; 1956 

II 2548 fragment of sin. mandible with m1-m3; 1956 II 2561 fragment of sin. mandible with d4 

(posterior portion) and m1; 1956 II 2580 fragment of dex. mandible with m2-m3; 1956 II 2581 

fragment of sin. mandible with m1-m2; 1956 II 2588 fragment of sin. mandible with m1 

(posterior lobe) and m2; 1956 II 2601 fragment of sin. mandible with m1-m3 (Figure 5.9 R, S, 
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T); 1956 II 2629 fragment of sin. mandible with p4-m3 (Figure 5.9 U, V, W); 1956 II 2655 

fragment of dex. mandible with m3; AMNH 19307, fragment of sin. mandible with m2-m3, 

studied by Colbert (1935: 309); AMNH 19366, fragment of sin. mandible with m2-m3, studied 

by Colbert (1935: 309); AMNH 39253, fragment of sin. mandible with m3, AMNH 39302 

fragment of sin. mandible with m1-m2; AMNH 39306 fragment of sin. mandible with p4-m3; 

AMNH 39510 fragment of sin. mandible with m1-m2; GSI 234 fragment of dex. mandible with 

p4 (Figure 5.9 X, Y, Z).  

Description.  The upper (Figure 5.8 A-N) and lower dentitions (Figures 5.8 O, P, Q and Figure 

5.9 R-Z) are preserved in situ of various fragments of maxillary bone Specimen AMNH 39303 

represents a tooth replacement stage with slightly to medium worn D3 and D4 and a not yet 

fully erupted, unworn M1.  Only casts of teeth in good condition represent the D3.  It is 

longish, much wider posterior than anterior.  It has three labial cones; the paracone is the 

highest and the anterior cone the smallest.  Lingually, only two cones, the larger metaconule 

and the small protocone, are existent.  The posterior lobus and adjacent elements have typical 

molariform morphology.  The posterior cingulum is clear.  There is a delicate, but clear labial 

rib at the anterior conus on specimen 1981 XVII 13.  The parastyle is tiny and the mesostyle 

is delicate and slender, but clear.  There is no metastyle. Pre- and postprotocrista are not 

existent, but there is a lingual cingulum.  The D4 is molariform with a protruding parastyle, 

which contributes to the typical trapezoidal form in occlusal view (Figure 5.8 K).  There is a 

well-developed cingulum running from anterior via lingual to posterior.  The paracone rib is 

strong.  The mesostyle is slender, but also strong.  The P3 is basically composed of labial 

elements and is lacking lingual elements apart from a small lingual cone and a lingual cingulum.  

The labial cone is the dominant and central element of the tooth flanked by the short anterolabial 

and slightly longer posterolabial crista. Its labial rib is prominent (Figure 5.8 D, E, F).   
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Figure 5.8. Dorcatherium minus Lydekker, 1876. SNSB-BSPG 1956 II 2480 fragment of sin. maxillary 

with M1-M2: A) labial view; B) occlusal view; C) lingual view. SNSB-BSPG 1956 II 2485 sin. P3: D) 

labial view; E) occlusal view; F) lingual view. SNSB-BSPG 1956 II 2497 fragment of sin. maxillary 

with P4-M2. G) labial view; H) occlusal view; I) lingual view. SNSB-BSPG 1956 II 2498 fragment of 

dex. maxillary with D4-M1. J) labial view; K) occlusal view. AMNH 29856 fragments of dex. and sin. 

maxillaries with M1-M3 each, studied by Colbert (1935: 310: fig. 141). L) labial view of dex.; M) 

occlusal view of dex.; N) lingual view of dex. SNSB-BSPG 1956 II 2489 fragment of sin. mandible 

with p3-m2. O) labial view; P) occlusal view; Q) lingual view.  
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The anterior and posterior styles are well developed.  The lingual cone is attached to the lingual 

wall of the posterolingual crista.  The enamel is finely wrinkled.  The P4 is triangular in 

occlusal view, similar to the P3 in the labial elements, but with shorter cristae.  Lingual 

elements are clearly developed with a large lingual cone and an anterolingual and a bifurcated 

posterolingual crista.  The anterolabial crista fuses to the anterior style.  The internal 

posterolingual crista fuses to the middle of the posterolabial crista.  The external 

postprotocrista is short and connects to the distinct posterior cingulum (Figure 5.8 G, H, I).  

The lower premolars and molars coincide in their morphological features (Figure 5.9 R-Z; 

appendix 5, Table 5.3) with the respective teeth in Dt. majus except in the lesser crown height 

and related features, e.g., lower ectostylids (Figure 5.20).  

Remarks.  Lydekker (1876) described Dorcatherium minus on the basis of a dex. maxillary 

fragment with M2 and M3 (No 1301).  He gave the length and width of M3 only, and length 

of both teeth, but no dimensions for M2 alone.  In 1915, Pilgrim used the latter teeth for 

comparison with Dorcabune, and provided the length and width of No. 1301 under the number 

G.S.I. B 195.  Then, Colbert (1935) established G.S.I B 195 (page 309) as the type specimens 

of Dorcatherium minus.  However, Colbert labeled it as “two upper molars, namely right M1 

and M2.  We could not study the holotype, on which Lydekker (1876) and Colbert (1935) 

disagreed, which tooth positions are represented (see above).  Yet, Lydekker’s figures are not 

informative enough to decide who is right.  Length and width given by Lydekker (1876), which 

do not coincide with Colbert’s (1935) measurements.  However, the morphology and 

dimensions in our sample are closest to the type of Dorcatherium minus than to any other 

Pakistani species.  In his description, Lydekker wrote: “this species chiefly differs from the 

preceding (Dt. majus) by the much smaller size of the teeth” and we agree with this statement. 
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Figure 5.9. Dorcatherium minus Lydekker, 1876. SNSB-BSPG 1956 II 2601 fragment of sin. mandible 

with m1-m3. R) labial view; S) occlusal view; T) lingual view. SNSB-BSPG 1956 II 2629 fragment of 

sin. mandible with p4-m3. U) labial view; V) occlusal view; W) lingual view. GSI 234 fragment of dex. 

mandible with p4. X) lingual view; Y) occlusal view; Z) labial view. 
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Our revision of some Dorcatherium minus material studied by Colbert (1935) (appendix 

5, Table 5.3) yielded a greater variability than reported by him.  Specimens AMNH 19313 

(M1-M3), 19365 (m2-m3), 19517 (D4-M1), and 19609 (m2-m3) are clearly larger than Dt. 

minus type specimens and associated lower dentition, and match better with Dt. naui specimens 

(see below), while AMNH 19310 (m1-m3), 19367 (m2-m3), 19368 (m1-m3), and 29855 (M2-

M3) fit well with Dorcatherium dehmi n. sp. (see below).  Similarly, AMNH 29887 (D4-M1) 

assigned as Dorcatherium sp. by Colbert (1935) and AMNH 19306 (M1-M3) assigned as 

Dorcatherium sp. by Colbert (1935), but as Dt. minus by Gaur (1992), also were attributed by 

us to Dorcatherium dehmi sp. nov.  Additionally, in the last decade studies on tooth specimens 

associated with Dt. minus became available.  For example, Farooq et al. (2007b) reported on 

Dt. minus from the Lower and Middle Siwaliks of Pakistan.  However, the latter authors 

referred to specimens AMNH 19517 (D4-M1), AMNH 29856 (M1-M3: Figure 5.8 L, M, N), 

AMNH 19365, and AMNH 19366 as “type specimens” (page 88) of Dt. minus and built their 

assignment on them, although these specimens do not belong to Lydekker’s (1876) type series, 

but were listed and figured in Colbert (1935) only.  Moreover, among these specimens, only 

AMNH 19366 and 29856 (Figure 5.8 L, M, N) can be associated with Dt. minus (see Table 

XIII) and hence, we recommend reexamination of the specimens described in Farooq et al. 

(2007b). 

Since the type material does not comprise lower teeth (Lydekker 1876), our association 

of lower teeth with Dt. minus is based on size class correlation between upper and lower teeth 

within our sample. The respective teeth coincide with descriptions and classifications of Pilgrim 

(1915: tab. page 235) and Colbert (1935: tab. page 311).
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Table XIII.  History of used dental measurements for Dorcatherium minus reference materials from Lydekker (1876), Pilgrim (1915) and Colbert (1935) in 

later studies.  This simbol + was used to indicate data referred to. Measurement for the upper M1 of GSI B195 never has been provided by Pilgrim (1915), but 

some values are assigned to this tooth, and used by some later studies-authors.  Rotuled values are indicating: data or tooth positions became confused (e.g. 

length given as width and vice versa). In Colbert (1935) the asterisk (*) is indicating individuals revised and determined by us as Dorcatherium naui. L = length. 
W= width. H= Height. nd = no data  
 

 
 

Studies and respective measurements used as sources for later authors 

 

 

Lydekker (1876) Pilgrim (1915) Colbert (1935) 

No 1301 Lectotype GSI B195                     

(=No. 1301)  GSI B594 AMNH 29856 

(Figure 5.8 L ,M, N) 
AMNH 

19517* AMNH 19365* AMNH 19366 

M2 M3 M1 M2 M3 p4 m1 m2 m3 M1 M2 M3 D4 M1 m2 m3 m2 m3 
Length mm nd 11.0 nd 10.6 11.4 10.0 10.8 12.5 16.7 9.8 11.3 11.5 11.0 12.0 13.0 18.0 12.0 16.0 
Width mm nd 10.0 nd 12.3 11.6 4.8 6.8 7.5 8.3 10.0 12.0 13.0 10.0 11.0 7.5 8.0 7.5 8.0 
Height mm  nd nd nd nd 9.9 nd nd nd 9.0 7.0 8.5 10.0 6.0 7.5 nd 10.0 9.0 10.0 

 

Later authors using the studies from Lydekker (1876), Pilgrim (1915) and Colbert (1935) as sources 
 M2 M3 M1 M2 M3 p4 m1 m2 m3 M1 M2 M3 D4 M1 m2 m3 m2 m3 
Sankhyan (1981)    + +  + + 8.8W + + +   + +   

Vasishat et al. (1985)               + +   

West (1980)            +       

Gaur (1992)          + + +  + + + + + 
Khan et al. (2005)               + + + + 
Khan and Akhtar (2005)           + +  +     

Farooq et al. (2007b)   10.0L 10.0W 8.0H 11.0L12.0
W   

Indicated 

as 

upperM1 
9.0W 

10.0L 

10.0W 
9.0H 

+ + +  + 12.0W 16.0W 7.5L 8.0L 8.0W 8.3H 

Khan et al. (2010)    
11.0L12.0

W   12.5L 7.5W    +    12.0W    

Khan and Akhtar (2011)       + + +      + + + + 
Iqbal et al. (2011)   10.0L 10.0W 8.0H       +     12.0W    

Khan et al. (2012)   10.0L 10.0W 8.0H 11.0L12.0
W   + + + + + +  + + + + + 

Khan and Akhtar (2013)   10.0L 10.0W 8.0H 11.0L12.0
W   + + + + + +  + + + + + 

Batool et al. (2014)               12.0W    

Sehgal (2015)        +       +  +  

Samiullah et al. (2015)   10.0L 10.0W 8.0H       +    +     

Khan et al. (2017)       + +  + + +   +  +  
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Dorcatherium nagrii Prasad, 1970 

(Figure 5.10) 

.1935 Dorcatherium sp. – Colbert, Pal. Indica, p. 311f, fig. 144 (AMNH 19613, see below). 

*1970 Dorcatherium nagrii sp. nov. – Prasad, Pal. Indica, p. 38f, pl. XII, figs 4-10, pl. XIII, 

figs 5-7. 

1981 Dorcatherium nagrii Prasad 1970. – Sankhyan, Himal. Geol., p. 91ff, figs 2a-e. 

1985 Dorcatherium nagrii Prasad, 1970. – Vasishat et al. J. Pal. Soc. India, p.59ff, pl. I, figs a 

- f. 

1992 Dorcatherium nagrii. – Gaur, Riv. It Paleont. Strat., p. 354, pl. 24 figs a-k. 

Differential diagnosis.  Dorcatherium nagrii is a selenodont smaller-sized tragulid and 

intermediate in size between the lesser Dt. minimus and the larger Dt. guntianum as well as Dt. 

dehmi nov. sp.  Postcanine dentition is morphologically similar to the other selenodont 

tragulids.  Hypsodonty Index is smaller than in Dt. naui, Dt. guntianum, Dt. minus and Dt. 

majus (Figure 5.20)   

     The lower premolars are extremely slender as compared with other Dorcatherium species 

from the Siwaliks. 

Lectotype.  GSI 18079, fragment of mandible with m1 to m3 (Prasad 1970, pl. XII, figs 4 and 

8). 

Paralectotype. GSI 18081, fragment of maxilla with M1 to M3 (Prasad 1970, pl. XIII, fig. 6). 

Type locality.  0.5 km northeast of Talyangar Village, Bilaspur District, Himachal Pradesch, 

India. 

Stratigraphic range.  Chinji-Formation (Lower Siwalik Subgroup) in the Middle Miocene 

(Vasishat et al. 1985; this study),  Nagri Formation (Middle Siwalik Subgroup) in the Upper 
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Miocene (Prasad 1970; Gaur 1992; Sankhyan 1981; this study), Dhok Pathan Formation 

(Middle Siwalik Subgroup) in the Upper Miocene (Sankhyan 1981) (Figure 5.4). 

Geographic distribution.  Dorcatherium nagrii has been described from the following 

localities in Pakistan: Chinji (Colbert 1935; this study), Hasnot (Colbert 1935), Kanatti Chak 

(this sudy). In India: Haritalyangar (Prasad 1970), Hari Scarp and Bhapral (Sankhyan 1981), 

Ramnagar (Vasishat et al. 1985), Talyangar, Udhampur, Nurpur and Kalagarh (Gaur 1992).  

Referred material.  1956 II 2455 sin. p4 (Figure 5.10 A, B, C); 1956 II 2577 fragment of sin. 

m1 (Figure 5.10 D, E, F); 1956 II 2569 fragment of sin. mandible with p3, m1, and m3 (Figure 

5.10 G, H, I); AMNH 19613 fragment of dex. mandible with m2-m3, studied by Colbert 1935: 

312 (fig. 144); AMNH 39508b, fragment of dex. mandible with m1-m2; AMNH 39508c 

fragment of sin. mandible with m1-m3; AMNH 39512 dex. m3 (appendix 5, Table 5.4). 

Description.  The lower permanent dentition is preserved in situ in some mandible fragments 

(Figure 5.10).  The only p3 (1956 II 2569; Figure 5.10 G, H, I) is in a very advanced state of 

wear and without the anterior part, hence yielding little information.  However, the shape is 

slender.  The p4 (Figure 5.10 G, H) is extremely slender, but with the general tragulid 

morphology as described above for Dorcatherium majus (Figures 5.5 and 5.6). The lower 

molars coincide with the morphology of Dt. majus as well apart from a clearly lesser crown 

height (appendix 5, Table 5.4; Figure 5.20).  

Remarks.  When Prasad (1970) established Dt. nagrii, he designated upper dentition (M1, 

M2, M3) (specimen G.S.I. 18079) and lower teeth (m1, m2, m3) (specimen G.S.I. 18081) the 

holotype. However, it is not clear, if upper and lower dentition belonged to the same individual. 

This violates ICZN, (Ride et al. 1999), article 74.5, which says that a particular syntype has to 

be unambigously selected, and makes Prasad’s designation invalid.  
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Figure 5.10. Dorcatherium nagrii Prasad, 1970.  SNSB-BSPG 1956 II 2455 sin. p4 A) labial view; B) 

occlusal view; C) lingual view. SNSB-BSPG 1956 II 2577 sin. m1; D) labial view; E) occlusal view; 

F) lingual view. SNSB-BSPG 1956 II 2569 fragment of sin. mandible with p3-m1 and m3; G) labial 

view, H) occlusal view, I) lingual view. 



Chapter 5 – Fossil tragulids of Pakistan 

[125] 

 

In consequence, we designate specimen GSI 18079 the lectotype of Dorcatherium nagrii and 

specimen GSI 18081 the paralectotype. 

Our studied material matches morphologically and metrically with Prasad's (1970) 

descriptions of Dt. nagrii, and with that from Ramnagar area (Vasishat et al. 1985), and 

Haytalyangar (Sankhyan 1981; Gaur 1992).  When Sankhyan (1981) described new material 

of Dt. nagrii from the Dhok Pathan Formation, he noted that specimen MN-11/76 A (p. 96) 

described as Dorcatherium sp. by Gaur (1980), fits better with Dt. minus.  Subsequently, this 

view was confirmed by Vasishat et al. (1985, p. 62).  Also, regarding specimen AMNH 19306, 

initially classified as Dorcatherium sp. by Colbert (1935, p. 311), and then included in Dt. nagrii 

by Prasad (1970, p. 39), was finally classified Dt. minus by Gaur (1992, p. 366), because of its 

larger size as compared to the mean of Dt. nagrii.  Our specimens assigned to Dt. nagrii match 

metrically with the holotypes of Siamotragulus sanyathanai (Thomas et al. 1990) and S. 

bugtiensis (Ginsburg et al. 2001) as well as with material of S. songhorensis (Sánchez et al. 

2014).  In the original description of Siamotragulus sanyathanai, Thomas et al. (1990) pointed 

out that the premolars are long, trenchant and strongly compressed and clearly differ from those 

of Dorcatherium and Dorcabune.  Sánchez et al. (2014) pointed out that the Dorcatherium 

platform in the lower molars is the key to separating Dorcatherium specimens from those of 

Siamotragulus.  However, in our sample this feature is not clear because of the advanced state 

of wear.  Yet, considering the similarity in dental features and size of Dt. nagrii and 

Siamotragulus, a future reexamination based on more material may reveal its possible 

affiliation to Siamotragulus. Barry (2014) considered Siamotragulus to be represented among 

postcrania from the Siwalik Group. 
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Dorcatherium aff. majus  

(Figure 5.11) 

Locality.  Rakh Datwal, WNW Dhok Pathan, Attock District, Punjab Region, Dhok Pathan 

Formation, Middle Siwalik Subgroup, Siwalik Group, Pakistan. 

Referred material.  SNSB-BSPG 1956 II 2622 dex. fragment of maxillary with M1-M3 

(Figure 5.11). 

Description.  The teeth are identical in size and qualitative characters of the upper molars of 

Dorcatherium majus described above (Figure 5.5 A-F).  However, the specimen we are here 

referring to differs from Dt. majus by the almost absent cingulum, which is weak on M1 and 

lacking on M2 and M3, but, in Dt. majus it is present without exception in an at least marked 

development.  In order to consider that peculiarity, but also with respect to some probability 

that the cingula were lost during the preparation process, we classify it provisionally under Dt. 

aff. majus (Figure 5.11; appendix 5, Table 5.5).  

 
 

Figure 5.11. Dorcatherium aff. majus. SNSB-BSPG 1956 II 2622 dex. fragment of maxillary with M1-

M3. A) labial view; B) occlusal view; C) lingual view. 
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Dorcatherium dehmi sp. nov.  

(Figure 5.12) 

.1935 Dorcatherium minus (in part). – Colbert, Trans. Am Phil. Soc., p. 309ff (AMNH 19310, 

19367, 19368, 29855). 

.1935 Dorcatherium sp. (in part). – Colbert, p. Trans. Am Phil. Soc., 311f (AMNH 19306, 

29887). 

Differential diagnosis. Dorcatherium dehmi sp. nov. is a selenodont small tragulid, 

intermediate in size between the larger Dt. minus and the smaller Dt. nagrii, but similar to Dt. 

guntianum.  Its postcanine dentition is morphologically like those of other selenodont 

tragulids.  Its tooth crown height is lower (hi in m2 is 0.82 and in M3 it is 0.83) than in Dt. 

majus, and Dt. minus, but higher than in Dt. guntianum, and Dt. nagrii and similar to Dt. naui. 

Derivatio nominis.  In honour of Richard Dehm (1907-1996), a German palaeontologist, 

former chair of the Institut für Paläontologie und Historische Geologie at the Ludwig-

Maximilians-Universität München and director of the Bayerische Staatssammlung für 

Paläontologie und historische Geologie, who initiated expeditions to Pakistan in 1939 and 

1955/56 dedicated to the exploration of the Siwalik fauna. 

Holotype.  SNSB-BSPG 1956 II 2615 (Figure 5.12 A, B, C) fragment of sin. maxillary with 

P4 (in eruption), M1, M2, and M3 (only anterior part). 

Type locality.  Parlewala 3, Dhok Pathan, Dhok Pathan Formation, Middle Siwalik Subgroup, 

Upper Miocene. 

Stratigraphic range. Chinji Formation (Lower Siwalik Subgroup) in the Middle Miocene 

(Colbert 1935; this study), Dhok Pathan Formation (Middle Siwalik) in the Upper Miocene 

(Colbert 1935; this study) (Figure 5.4).  
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Geographical distribution.  Hasnot and Chinji (Colbert 1935),  Danyar Yill, II Kanatti, 

Chinji, Parlewala 3, Kadirpur, Rokh Patwal, Kannowali, Marianwala, Palliwala, Kundalnala, 

Kandalnala 1 (this study).  

Referred material.  SNSB-BSPG 1956 II 2470 fragment of dex. maxillary with M1-M3; 

SNSB-BSPG 1956 II 2600 fragment of sin. maxillary with M2-M3; SNSB-BSPG 1956 II 2615 

fragment of sin. maxillary with with P4 in eruption, M1-M3 (Figure 5.12 A, B, C); AMNH 19306 

fragment of dex. maxillary with M1-M3, original studied by Colbert (1935: 311); AMNH 

29855, fragment of sin. maxillary with M2-M3, studied by Colbert (1935: 310) (Figure 5.12 D, 

E, F); 1956 II 2460 fragment of sin. mandible with d4-m2 or m1-m3; 1956 II 2461 fragment of 

dex. mandible with m2-m3; 1956 II 2479 fragment of sin. mandible with m2-m3 (Figure 5.12 

G, H, Y); 1956 II 2502 fragment of dex. mandible with m2-m3; 1956 II 2597 fragment of sin. 

mandible with m1-m2; 1956 II 2633 fragment of sin. mandible with posterior part of d3, d-m2 

(Figure 5.12 J, K, L), and unerupted m3 as well as fragmet of dex. mandible with m1-m2 and 

unerupted m3; 1968 XVIII 52 dex. M3 (Figure 5.12 M, N, O); AMNH 19310 fragment of sin. 

mandible with m1-m3 studied by Colbert (1935: 309) (Figure 5.12 P, Q, R); AMNH 19367 dex. 

m2-m3 (Figure 5.13 S, T, U); AMNH 19368 fragment of sin. mandible with m1-m3, studied 

by Colbert 1935: 310) (Figure 5.13 V, W, X) AMNH 20043 dex. M3; AMNH 29887 fragment 

of sin. mandible with d4-m1, studied by Colbert (1935: 311) (Figure 5.13 Y, Z, A’); AMNH 

32588 dex. M3; AMNH 39304 fragment of sin. mandible with m1-m3; AMNH 39509 fragment 

of sin. mandible with p4-m3 (appendix 5, Table 5.6). 
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Figure 5.12. Dorcatherium dehmi sp. nov. SNSB-BSPG 1956 II 2615 fragment of sin. maxillary with 

P4 in eruption, M1-M3, A) labial view; B) occlusal view; C) lingual view. AMNH 29855, fragment of 

sin. maxillary with M2-M3, studied by Colbert (1935: 310), D) labial view; E) occlusal view; F) lingual 

view. SNSB-BSPG 1956 II 2479 fragment of sin. mandible with m2-m3, G) labial view; H) occlusal 

view; I) lingual view. SNSB-BSPG 1956 II 2633 fragment of sin. mandible with posterior part of d3, 

d4-m2, J) labial view; K) occlusal view; L) lingual view. SNSB-BSPG 1968 XVIII 52 dex. m3 M) 

labial view; N) occlusal view; O) lingual view. AMNH 19310 fragment of sin. mandible with m1-m3 

studied by Colbert (1935: 309) P) labial view; Q) occlusal view; R) lingual view.   
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Description. The teeth studied accord morphologically with Dt. majus (see description) except 

for a lesser tooth crown height (Figure 5.20). Specimen 1956 II 2615 documents a tooth 

replacement stage with in situ M1 (medium worn), M2 (slightly to medium worn) and M3 

(hardly worn) and a P4 in eruption (Figure 5.12 A, B, C).  Tooth metrics are intermediate 

between dimensions of the smaller Dt. nagrii and the larger Dt. minus and similar with Dt. 

guntianum (appendix 5, table 5.6).  Specimens AMNH 29855 (Figure 5.12 D, E, F), 19310 

(Figure 5.12 P, Q, R), 19367 (Figure 5.13 S, T, U), 19368 (Figure 5.13 V, W, X), were studied 

and assigned to Dt. minus by Colbert (1935).  However, they coincide morphometrically with 

the specimens we identify as Dorcatherium dehmi sp. nov. Similarly, AMNH 19306 and 29887 

(Figure 5.13 Y, Z, A’) were studied and assigned to Dorcatherium sp. by Colbert (1935) and 

can now be attributed to Dt. dehmi sp. nov. The lower teeth of Dorcatherium dehmi sp. nov. 

are morphologically like those of Dt. majus with the exception of a lesser tooth crown height 

(Figure 5.20).  

Remarks.  Specimens AMNH 19306 and AMNH 29887 (Figure 5.13 Y, Z, A’) identified here 

as Dt. dehmi sp. nov. were studied by Colbert (1935) who attributed them to Dt. sp. because 

“The teeth are, on the whole, very much like those od Dorcatherium minus, but are relatively 

less hypsodont” (Colbert 1935, page 311). Prasad (1970, page 39) considered them to belong 

to his newly established Dt. nagrii, which is evidently smaller than Dt. minus. Gaur (1992, page 

366) classified specimen AMNH 19306 again as Dt. minus supported by three figures (M1 

Figure 2; M2 Figure 3 and M3, Figure 4), which demonstrate that dimesions are larger than in 

Dt. nagrii. Nevertheless, we can demonstrate that specimen AMNH 19306 is smaller than Dt. 

minus specimens and has a lower tooth crown height what coincides best with Dt. dehmi sp. 

nov. 
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Figure 5.13. Dorcatherium dehmi sp. nov. AMNH 19367 dex. m2-m3, S) labial view; T) occlusal view; 

U) lingual view. AMNH 19368 fragment of sin. mandible with m1-m3, studied by Colbert (1935: 310) 

V) labial view; W) occlusal view; X) lingual view. AMNH 29887 fragment of sin. mandible with d4-

m1, studied by Colbert (1935: 311) Y) labial view; Z) occlusal view; A’) lingual view. 
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Dorcatherium guntianum von Meyer, 1846 

(Figure 5.14) 

*1846 Dorcatherium Guntianum. – Von Meyer, N. Jb. Min. Geol. Geogn. Petref., p. 472. 

v.1886 Hyaemoschus guntianus H. v. Meyer. – Schlosser, p.134f, pl. VI, figs 22,23 

v.1935 Dorcatherium sp. (in part). – Colbert, Pal. Indica., p. 311f (AMNH 29854). 

v.2013 D. guntianum von Meyer, 1846. – Rössner and Heissig, Suisse J. Geosc., p. 341ff, figs 

3, 4. 

v.2017 Dorcatherium guntianum (von Meyer, 1846). – Rössner, Zitteliana, p. 353ff, figs 2, 4-3, 

4-4. 

(for more complete synonymy list see Rössner and Heissig 2013) 

Differential diagnosis. Dorcatherium guntianum is a selenodont small Miocene tragulid, 

intermediate in size between the larger Dt. minus and the smaller Dt. nagrii and similar with 

Dt. dehmi sp. nov. (Figures 5.21 and 5.22)  Postcanine dentition is morphologically similar to 

that of other selenodont tragulids.  Its tooth crown height (hi m2 0.63, hi m3 0.48) is less than 

in Dt. majus, Dt. naui, Dt. minus and Dt. dehmi sp. nov. (Figure 5.20) but it is greater than in 

Dt. nagrii and the bunoselenodont Dorcatherium species from Europe Dt. crassum, Dt. 

vindebonense, and Dt. peneckei.  

Syntypes.  von Meyer (1846:472) made the species name available by stating ‘In der Nähe 

von Günzburg an der Donau...Apotheker Wetzler in Günzburg, durch den diese Gegenstände 

fleissig gesammelt werden...als eine neue Spezies, die ich Dorcatherium Guntianum genannt 

habe, und welche kleiner ist als Dorcatherium Naui von Eppelsheim...’.[Close to Günzburg an 

der Donau...pharmacist Wetzler in Günzburg, who studiously collects those specimens...as a 

new species, which I have named Dorcatherium Guntianum and which is smaller than 
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Dorcatherium Naui from Eppelsheim…]. According to the given information and later work 

with figures (Schlosser 1886; Dehm 1984) and collection labels (Dorcatherium / Hyaemoschus 

guntianum; Wetzler Collection; Günzburg); the type series can be clearly identified at SNSB-

BSPG (appendix 5, Table 5.7) with catalogue number 1881 IX and consists of upper and lower 

permanent and deciduous teeth as well as postcranial bones (see also Rössner and Heissig 2013). 

Type locality.  Reisensburg (Günzburg, Bavaria, Germany), Upper Freshwater Molasse, 

European Land Mammal Unit MN4, Karpatian, Burdigalian, see Rössner and Heissig (2013). 

Stratigraphic range.  From the Lower (MN4, Karpatian, Burdigalian) to Middle Miocene 

(MN8, Badenian, Langhian) of Europe (Rössner and Heissig 2013; Rössner 2017) and in the 

Middle Miocene of the Lower Siwalik Subgroup (Colbert 1935; Chinji this study) (Figure 5.4). 

Geographic distribution. Dorcatherium guntianum has been recorded from lots of different 

locations in Central and Western Europe (for detailed location list see online resources of 

Rössner and Heissig 2013): Austria, France, Germany, and Switzerland. In Pakistan the species 

is recorded only from Chinji area (Colbert 1935; this study) 

Referred material. SNSB-BSPG 1956 II 2554 fragment of dex. mandible with m1-m3 (Figure 

5.14 A, B, C); AMNH 29854 fragment of dex. mandible with m2-m3 (Figure 5.14 D, E, F).  

Description. The lower molars are selenodont and preserved in situ in two mandible fragments 

(Figure 5.14).  Whereas teeth of 1956 II 2554 (Figure 5.14 A, B, C) are well preserved and 

unworn to only sightly worn, teeth of AMNH 29854 (Figure 5.14 D, E, F) are medium to heavy 

wear.  However, size (appendix 5, Table 5.7) and lingual morphology are indicative.  Apart 

from a low-crowned morphology (Figure 5.20), features are not different from all the other 

selenodont tragulids describe in the present paper. The m3 of 1956 II 2554 has a third lobe, 
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which is still filled with sediment and hence does not expose details such as bifurcation of the 

posthypocristid or unfused entoconulid (Figure 5.14 A, B, C).  

 

 

 

 

 

Figure 5.14. Dorcatherium guntianum von Meyer, 1846. SNSB-BSPG 1956 II 2454 fragment of dex. 

mandible with m1-m3, A) labial view; B) occlusal view; C) lingual view. AMNH 29854 fragment of 

dex. mandible with m2-m3, D) labial view; E) occlusal view; F) lingual view. 
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Remarks.  The described specimens match in size and morphology with Dorcatherium 

guntianum from the Lower and Middle Miocene of Europe (see Rössner 2017 and references 

therein).  Dorcatherium guntianum was established by von Meyer (1846: 472) on the basis of  

material (deciduous and permanet upper and lower dentition and postcrania) from Reisensburg 

(Bavaria, Germany) of the Wetzler collection, who recognized that it is morphologically equal, 

but smaller than the type species Dt. naui.  However, a holotype has not be designated yet nor 

has the type material been described so far. The type material is stored at SNSB-BSPG 

(appendix 5, Table 5.7), and hence was available for comparison and some specimens are 

figured in Schlosser (1886) and measurements are given in Rössner and Heissig (2013) and 

Rössner (2017). Dorcatherium guntianum is a widely-distributed species in Europe (Fortelius 

2012), but finding Dt. guntianum in Asia is quite unexpected and shakes previous hypotheses 

on relationships of European and Asian tragulids (e.g. Rössner 2017). Recently revised Dt. 

minus remains from the earliest Miocene in Vietnam (Prieto et al. 2018) were considered to be 

most similar to Dt. guntianum with the exception of having a ‘...bifurcated protocrista on the 

[upper] molars...’ for what the authors could not find an equivalent in known Dorcatherium 

species and, therefore, could not be specific on species affiliation (Dorcatherium sp.). Indeed, 

a bifurcated protocrista is a feature indicating members of stem Pecora but not Tragulidae. 

Future studies may reveal a much broader distribution of Dt. guntianum in Asia.  In Europe 

Dt. guntianum is the smallest species and one of the higher crowned brachyodont tragulid 

species. 
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Figure 5.15. Bivariate plots of width v/s length for lower and upper postcanine teeth of species from 

Siwalik Group studied here, and additional holotype, lectotype, paratype and type material data (Tm).   
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Figure 5.16. Dimension variation in dentitions of tragulid species from Siwalik Group studied here. A) 

length variation for upper dentition, B) width variation for upper dentition, C) length variation for lower 

dentition, D) width variation for lower dentition. The line joining tooth positions is only referential for 

the entire variation recorded, and does not represent a statistic mean.  
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Dorcatherium naui Kaup & Scholl, 1834 

(Figure 5.17, 5.18 and 5.19) 

*1834 Dorcatherium Naui. – Kaup & Scholl. 

v.1839a Dorcatherium Naui. – Kaup, p. 91ff. 

v.1839b Dorcatherium Naui. – Kaup, pl. XXIII fig. 1, pl. XXIII A figs 1-2, pl. XXIII B figs 1-

4, pl. XXIII C figs 1-7. 

1935 Dorcatherium minus Lydekker 1876. – Colbert, Pal. Indica, p. 309ff (AMNH 19313. 

19365. 19517. 19609), fig. 142. 

v.2009 Dorcatherium naui Kaup & Scholl, 1834. –  Hillenbrand et al. Ann. Naturhist. Mus. 

Wien, p. 522ff, pl. 1 figs 1-13, pl. 2 fig. 9. 

2011 Dorcatherium naui Kaup & Scholl, 1834. – Alba et al. Geobios, p. 138ff, figs 1,2. 

v.2014 Dorcatherium naui Kaup, 1833. – Aiglstorfer et al. Palaeobio. Palaeoenv., p. 88ff, figs 

2, 4a, 5 in part. 

Differential diagnosis. Dorcatherium naui is a selenodont medium-sized Miocene tragulid 

species, intermediate in size between the smaller Dt. minus and the larger Dt. majus.  It is 

similar in size with the European bunoselenodont Dt. crassum. Postcanine dentition is 

morphologically like that of other selenodont tragulids described here, and have more slender 

lower molars and less bulky upper molar styles than  Dt. crassum. The tooth crown height (hi 

m3 0.52 to 0.56, hi M3 0.78, appendix 5, Table 5.8) is less than in Dt. majus and Dt. minus, but 

higher than in Dt. guntianum, Dt. nagrii, Dt. crassum, Dt. vindebonense, and Dt. peneckei, and 

similar to Dt. dehmi sp. nov. Contrary to Dt. majus, in Dt. naui anterior cristids of anterolingual 

and anterolabial conids on d4 are fused anteriorly, labial cingulids are absent, and there is a 
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clear anterior ectostylid. Dorcatherium naui can be separated from Dt. mailiki due to a more 

complex distal fossete in p4. 

Holotype. Right half of a mandible with p3 to m3 and alveoli of p2 and p1 described by Kaup 

(1839a) and figured in Kaup (1839b. pl. XXIII. figs. 1. 1a and 1b).  The mandible is lost, but 

casts are available at the BM (M. 3714) and SNSB-BSPG (1961 XIX 37, appendix 5, Table 

5.8) (Lydekker 1887; Rössner 2010). 

Syntypes. BM cranium and mandible with full dentition and axis (Kaup 1839a, p. 92ff; Kaup 

1839b, pl. XXIII A figs 1-2, pl. XXIII B figs 1-4, pl. XXIII C fig. 1). 

Type locality. Eppelsheim, Deinotherien-Sand, early Late Miocene, early Tortorian, Vallesian, 

MN9, Germany. 

Stratigraphic range. From the late Middle Miocene, late Serravallian, Sarmatian, Astaracian, 

MN7/8 (Alba et al. 2011; Aiglstorfer et al. 2014) to the Late Miocene, Tortorian / Messinian, 

Vallesian / Turolian, MN12 (Clauss and Rössner 2014, Hillenbrand et al. 2009; Rössner 2007, 

Rössner and Heissig 2013) of Europe, and in the Chinji Formation (Lower Siwaliks Subgroup, 

Siwalik Group) in the Middle Miocene of Pakistan (Colbert 1935; this study) (Figure 5.4). 

Geographic distribution of species.  See Aiglstorfer et al. (2014) for a detailed list of sites, 

which yielded Dorcatherium naui in Spain, Austria, Germany, Poland, and Hungary. In 

Pakistan, it has been recorded from Chinji and Nathot (Colbert 1935; this study), Kanatti (this 

study), Kanatti Chak (this sudy), S Bhilomar, Kagalawala (this study).  

Referred material.  1956 II 2568 dex. maxillary with M1-M3 (Figure 5.17 A, B, C); AMNH 

19313 fragment of sin maxillary with M1-M3, studied by Colbert (1935: 309) (Figure 5.17 D, 

E, F); AMNH 19517 fragment of sin. maxillary with D4-M1, studied by Colbert (1935: 310) 

(Figure 5.17 G, H, I); AMNH 39308 fragment of sin. maxillary with D4-M1 (Figure 5.17 J, K, 
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L); 1956 II 2463 sin. M3; 1956 II 2468 dex. M3; 1956 II 2656 sin. p4 (Figure 5.17 M, N, O); 

1956 II 2486 fragment of sin. mandible with m1; 1956 II 2570 fragment of dex. mandible with 

m1-m2 and m3 (Figure 5.18 P, Q, R); 1956 II 2572 dex. M3; 1956 II 2582 fragment of sin. 

mandible with m3; 1956 II 2584 fragment of sin. mandible with d3-d4 (Figure 5.18 S, T, U); 

1956 II 2585 fragment of dex. mandible with m2 (Figure 5.18 V, W, X); 1956 II 2587 sin. m3 

(Figure 5.18 Y, Z, A’); AMNH 19365 sin. m2-m3 (Figure 5.18 B’, C’, D’); AMNH 19609 

fragment of dex. mandible with p3-m3, studied by Colbert (1935: 310) (Figure 5.19 E’, F’, G’); 

AMNH 32742. sin. M3; AMNH 39262 fragment of dex. mandible with m2-m3; AMNH 39305 

fragment of sin. mandible with p3-m2 and fragment of m3; AMNH 39307 fragment of sin. 

mandible with d4-m1 (appendix 5, Table 5.8); GSI 235 fragment of sin mandible with d4-m1 

(Figure 5.19 H’, I’, J’). 

Description. Basically, the tooth morphology is like that of Dorcaherium minus and Dt. majus, 

except for the crown height (Figure 5.20), which is less and overall size is intermediate. 

Measurements are provided in the Table 5.8 as well as the hypsodonty index (appendix 5).  The 

only d3 (1956 II 2584) is in perfect condition (Figure 5.18 S, T, U). It is biradiculate and has a 

longish shape, with an anterior mesolabial and a posterolabial conid. The mesolabial conid is 

the dominant cuspid. A short but clear crest splits from its tip to posterior. The tooth does not 

have an anterior, but a posterior cingulid. At the posterior aspect of the posterolabial conid three 

cristids split from the apex to posterolabial and posterolingual. The posterior one bends towards 

the posterolingual corner and eventually bifurcates into two small cristids at the posterolingual 

corner close to the posterior end of the posterolingual cristid. The d4 (Figure 5.18 S, T, U) is 

similar in morphology with Dt. majus, except the lesser tooth crown height, fused anterior 

cristids of anterolingual and anterolabial conids, a lacking labial cingulid and a clear anterior 

ectostylid in Dt. naui. Lower premolars and molars resemble morphologically those in Dt. 

majus but with a lesser crown height (Figures 5.18 and 5.19). 
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Figure 5.17. Dorcatherium naui Kaup, 1833. SNSB-BSPG 1956 II 2568 dex. maxillary with M1-M3: 

A) labial view; B) occlusal view; C) lingual view. AMNH 19313 fragment of sin maxillary with M1-

M3, studied by Colbert (1935: 309): D) labial view; E) occlusal view; F) lingual view. AMNH 19517 

fragment of sin. maxillary with D4-M1, studied by Colbert (1935: 310): G) labial view; H) occlusal 

view; I) lingual view. AMNH 39308 fragment of dex. maxillary with D4-M1: J) labial view; K) occlusal 

view; L) lingual view. SNSB-BSPG 1956 II 2656 dex. p4: M) labial view, N) occlusal view, O) lingual 

view.  
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Remarks.  The specimens from the Siwaliks associated by us with Dorcatherium naui, nest 

well within dimensions given by Hillenbrand et al. (2009), Rössner (2010), Alba et al. (2014), 

and Aiglstorfer et al. (2014) for the medium-sized species Dt. naui and Dt. crassum. They are 

larger than those of Dt. minimus (West 1980), Dt. nagrii (Prasad 1970; Vasishat et al. 1985; 

Gaur 1992), Dt. minus (Lydekker 1876; Pilgrim 1915) and Dt. dehmi nov. sp. and are smaller 

than Dt. majus (Pilgrim 1915; Colbert 1935). In morphology, Dorcatherium naui from the 

Siwaliks is in accordance with Dt. naui from Europe (Hillenbrand et al. 2009, Alba et al. 2011, 

Aiglstorfer et al. 2014). Additional critical features are listed in the “Differential diagnosis” 

above. 

Recently, Kostopoulos and Sen (2016) established Dorcatherium maliki from western 

Turkey, a species very similar to Dt. naui. The occlusal length for the lower molar row and the 

premolar and molar size for Dt. mailiki match that of the holotype of Dt. naui. The values also 

overlap with the values taken from other Dt. naui material reported from Europe and with those 

of the Pakistani material (Appendix 5, Table 5.8). This is specially significant by the high 

degree of correspondence of morphology and morphometric variables between Dt. maliki and 

Dt. naui, which indicate a close phylogenetic relationship between both species. However, Dt. 

maliki differs from Dt. naui in the longer hypoconid on dp2 and p3 compared to the protoconid, 

the strong protoconulid of dp2, the simple distal fossette of p4, and the frequent presence of a 

distinct lingual protocristid on the lower molars. Moreover, Dt. maliki is stated is stated to be 

have a tricuspid d2, which is bicuspid in Dt. naui (Aiglstorfer et al. 2014). However, we could 

not study the original material of Dt. maliki what makes it impossible to asses the relevant 

morphological features in comparison with Dt. naui and othe tragulids, except that in Dt. naui 

from Pakistan simple and complex p4 morphologies (Figures 5.17 M, N, O and 5.19 E´, F´, G´) 

of the posterior valley are recorded. A complex p4 morphology has been described for Dt. naui 

from Europe by Aiglstorfer et al. (2014: fig. 5).  
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Figure 5.18. Dorcatherium naui Kaup, 1833. SNSB-BSPG 1956 II 2570 fragment of dex. mandible 

with m1- m3: P) labial view, Q) occlusal view, R) lingual view. SNSB-BSPG 1956 II 2584 fragment 

of sin. mandible with d3-d4: S) labial view, T) occlusal view, U) lingual view. SNSB-BSPG 1956 II 

2585 fragment of dex. mandible with m2-m3 (in part): V) labial view, W) occlusal view, X) lingual 

view. SNSB-BSPG 1956 II 2587 sin. m3: Y) labial view, Z) occlusal view, A’) lingual view. AMNH 

19365 sin. m2-m3: B’) labial view, C’) occlusal view, D’) lingual view.  
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Hence, for the time being the respective specimens from Pakistan are best classified 

with Dt. naui due to a better material basis. The validity of Dt. maliki remains questionable. 

Rather than representing a new species, it may represent another population or subspecies of 

Dt. naui. Yet, more evidence is needed to answer the question. In European Dt. naui 

populations, p1 or its alveolus(i) are occasionally recorded along with mandibles without it 

(Moyá-Solá1981; Hillenbrand et al. 2009; Morales et al. 2012; Alba et al. 2014; Aiglstorfer et 

al. 2014). However, due to insufficient material, we cannot provide information about this 

feature for Dt. naui from Siwaliks. Future studies may reveal a much wieder distribution of Dt. 

naui in Asia. 

 Identifications of Dt. minus from Pakistan and India by various authors based on 

specimens described by Colbert (1935) (AMNH 19517: Figure 5.17 G, H, I) and AMNH 19365 

Figure 5.19 B´, C´, D´), which in turn were revised here as Dt. naui, makes it highly probable 

that Dt. naui is also present in Dhulian (Khan et al. 2005), Hasnot (Khan and Akhtar 2005; 

Khan et al. 2012; Batool et al. 2014), Nagri (Farooq et al. 2007; Iqbal et al. 2011), Rati Dheri, 

Bhandar, Vasnal (Farooq et al. 2007; Iqbal et al. 2011), Dhok Bun Amir Khatoon village (Khan 

and Akhtar 2013; Khan et al. 2017), Dhok Bun Ameer Khatoon (Samiullah et al. 2015) and 

Nurpur (Sehgal 2015). 
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Figure 5.19. Dorcatherium naui Kaup, 1833. AMNH 19609 fragment of dex. mandible with p3-m3, 

studied by Colbert (1935: 310): E’) labial view, F’) occlusal view, G’) lingual view. GSI 235 fragment 

of sin. mandible with d4-m1: H’) labial view, I’) occlusal view, J’) lingual view.  
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5.4 Discussion 

Fossil remains of Miocene tragulids are abundant and stored in various public 

collections around the world (Geraads 2010; Barry 2014), including the SNSB - BSPG in 

Munich, Germany (Gentry et al. 1999; Rössner 2017).  Most of this material was collected 

from the Siwalik Group in southern Asia and is represented by teeth and postcrania, which, so 

far, have been scarcely studied. A large portion of the specimens was assigned to Dorcatherium 

sp., without further determination to the species level (e.g., Lydekker 1876; Colbert 1935; 

Antoine et al. 2013; Barry 2014; Flynn et al. 2014; Khan et al. 2017).  The specimens 

investigated and identified here are characterized by features that are indicative of Miocene 

tragulid representatives (e.g., Lydekker 1876; Pilgrim 1915; Colbert 1935; Mottl 1961; 

Fahlbusch 1985; Rössner 2007).  These features comprise a strong cingulum on upper molars 

(Figure 5.2B), brachyodonty with different degrees of tooth crown height (according to hi) 

(Figure 5.20), the absence of a mesostylid, the presence of a M-structure in lower molars and 

fourth lower deciduous premolar, the length and width increase from M1 to M3, as well as the 

slender morphology of lower and upper premolars (except in P4) due to hardly or no lingual 

crown elements.  Moreover, the presence of a Dorcatherium platform (Sánchez et al. 2010, 

2014, Figure 5.2A and C) indicates that the studied teeth belong to Dorcatherium Kaup, 1833 

or Dorcabune Pilgrim, 1910.  Dorcabune is distinguished from Dorcatherium by a buno-

selenodont dentition and markedly wrinkled enamel, while Dorcatherium species are 

exclusively selenodont with different degrees of tooth crown height (according to hi, mostly 

brachyodont), but Dt. majus is slightly above the limit to mesodonty according to the definition 

in Fortelius et al. (2002) (Figure 5.20).  The Asian Dorcatherium species differ from the 

African Dorcatherium pigotti, Dt. chappuisi and Dt. iririensis by a higher tooth crown height 

and a more selenodont dentition (Whitworth 1958; Pickford 2002).   
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Figure 5.20. Lingual and labial views of lower and upper molars of Dorcatherium species recorded in 

the Siwalik Group of Pakistan in order to visualize different tooth crown heights. Row A, lingual views 

of lower molars for larger (Dt. majus) and medium-sized species (Dt. naui and Dt. minus. Row B, lingual 

views of lower molars for small-sized species. Row C, labial views of upper molars. Scale bar 5 mm. 
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The tooth morphometric of the specimens studied here match with type material of the 

classically described Siwaliks species Dorcatherium nagrii, Dt. minus, Dt. majus, and 

Dorcabune anthracotheroides (Figure 5.15). The species identity of one Dorcatherium 

specimen, primarily determined as Dorcatherium aff. majus (Figure 5.11), still remains unclear, 

but might be resolved in the future, when more tragulid material from the Siwaliks is described.  

We could identify a new species, erecting Dorcatherium dehmi sp. nov., (Figure 5.12 and 5.13) 

and assigned some Pakistan specimens to the previously exclusively European Dt. guntianum 

(Figure 5.14) and Dt. naui (Figures 5.17, 5.18 and 5.19), thus recording these two species for 

the first time in Asian fossil material. This finding points to more extensive tragulid affinities 

between Europe and Asia than previously thought (see also Made 1996). 

Recently, Barry (2014) concluded that potentially as many as sixteen species, belonging 

to Dorcabune, Dorcatherium and Siamotragulus, could be recorded in the fossils from the 

Siwalik Hills, which differ in size and, in some instances, skeletal proportions. Apart from that, 

distinctive interspecific morphological traits were not stated (see Colbert 1935; Flynn et al. 

1995; Khan et al. 2012; Flynn et al. 2014; Barry 2014; Khan et al. 2017).  However, detailed 

morphological studies of dentition and postcrania have proven to be a successful tool to 

distinguish between tragulid species, for example, in the case of European Dorcatherium 

crassum and Dt. naui (Moyà-Solà 1981; Hillebrand et al. 2009; Rössner 2010; Alba et al. 2011; 

Sánchez et al. 2011; Morales et al. 2012; Aiglstorfer et al. 2014), the African Afrotragulus 

(Sánchez et al. 2010), and the Afro-Eurasian Siamotragulus (Thomas et al. 1990; Ginsburg et 

al. 2001; Sánchez et al. 2014).  In our study, the consideration of tooth morphology, related to 

tooth crown height (Figure 5.20), apart from size, allowed us to identify the specimens and 

assess species richness, which would have been otherwise partially obscured by overlapping 

size ranges as evidenced by figures 5.21 and 5.22.   
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In Asian tragulid species, the constant use of exclusively metric variables for species 

determination (e.g. Khan et al. 2012; Khan and Akhtar 2013; Khan et al. 2017 and references 

therein) has produced wide intraspecific metric variation at the expense of the underestimation 

of species diversity (see Figures 5.21 and 5.22).  

 

 

 

Figure 5.21. Box plot of length and width of lower molars of Dorcatherium species from the Siwalik 

Group. Ts.: data of this study. LD: Literature data. 
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Figure 5.22. Box plot of length and width of upper molars of Dorcatherium species from the Siwalik 

Group. Ts.: data of this study. LD: Literature data. 
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Yet, Asian Dorcatherium dentition is morphologically uniform as long as it does not 

concern tooth crown height and related morphological features (split level of styles above 

crown base, shape of styles) (Figure 5.20).  There may be more potential in premolar and 

deciduous cheek tooth morphology as distinguishing characters (see Aiglstorfer et al. 2014), 

but more material needs is to be found before this can be proven.  Accordingly, future studies 

on fossil tragulids from the Siwaliks should keep the potential of tooth morphology for 

taxonomic purposes in mind.  At this point, we want to kindly make aware of recent mistakes 

in morphological assessments, i.e. 1) confused tooth position, highlighting a supposedly unique 

lower molar feature, instead of an anterior fragment of a lower fourth deciduous tooth (e.g. 

Khan et al. 2017: table 1, page 886, also see Table XIII in this study), and 2) mix up of 

Dorcabune and Dorcatherium (Singh et al. 2018: Figure 4t) as well as Dorcabune and a bovid 

(Singh et al. 2018: Figure 4u). 

According to Antoine et al. (2013) and Barry et al. (2013), Dorcatherium ([sic] or 

perhaps Siamotragulus) records are older than those of Dorcabune and come from the latest 

Oligocene (at least 28.1 Ma - 23.0 Ma) and early Miocene of the Chitarwata (at least 22.0 Ma 

and perhaps as old as 26.0 Ma) and Vihowa Formations in Pakistan (at least 19.1 mya - 11.2 

Ma). However, the age of the lower Chitarwata Formation is still controversial (for discussion, 

see Lindsay et al. 2005; Antoine et al. 2013; Métais et al. 2017). Undoubtedly, the Miocene 

represents the time of highest diversity and widest geographical distribution of tragulids 

(Rössner 2007; Clauss and Rössner 2014; Barry 2014). However, the synchronous existence of 

Dorcatherium in the Early Miocene of Africa (ca. 22.5 Ma, Whitworth 1958, Pickford 2001, 

Geraads 2010) and Pakistan (at least 22.0 Ma, Antoine et al. 2013) represents an enigma, as 

occurring prior to the Gomphotherium land bridge (19.0 to 16.0 Ma; Rögl 1998, 1999). This 

terrestrial corridor was reconstructed based on a faunal exchange and is considered to have 

emerged in the context of tectonical collision between Africa and Arabia (Madden and van 
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Couvering 1976; Made 1999; Harzhauser et al. 2007). The latter refers to land connections 

between Africa and the Indian Subcontinent as well as between Europe and these two areas that 

allowed faunal exchange and are considered to have emerged in the context of tectonic collision 

between Africa and Arabia (Madden and van Couvering 1976; Made 1999; Harzhauser et al. 

2007). However, Made (2014 and references therein) pointed out that the fossil evidence 

documents several migration events over an even longer period of time (21.0 to 12.5 mya). This 

coincides much better, if still not satisfying, with the given tragulid record and hints to first 

African tragulid migrations coming from Asia.  Future evidence may help to solve this 

paleobiogeographic riddle (see also Grossman et al. 2019).   

In Europe, Dorcatherium is recorded from the Early Miocene (minimum appearance 

date ca. 17.8 Ma), probably through successive heterochronous dispersal events from the 

East/Southeast to the West/Southwest of Europe, rather than a synchronous appearance 

(Rössner 2017).  Mennecart et al. (2018b) proposed that Bachitheriidae migration linked 

western to southeastern Europe in the “Bachiterium dispersal event”, where the tragulid 

Iberomeryx from the earliest Oligocene of Georgia would have participated in this dispersal 

event, because it appeared simultaneously in western and southeastern Europe. The recently 

described Dorcatherium maliki from the late Miocene of West European Turkey (Kostopoulos 

and Sen 2016) and our discovery of the previously exclusively European species Dt. naui and 

Dt. guntianum among the material of the Pakistani Siwaliks also points in the direction (Figures 

5.15, 5.16, 5.20, 5.21 and 5.22). This is especially significant by the high degree of 

correspondence of morphology and morphometric variables between Dt. maliki and Dt. naui 

(see remarks section regarding Dorcatherium naui), which indicate a close phylogenetic 

relationships between both both species. Besides reports on early Early Miocene Dorcatherium 

pigotti from Africa (Geraads 2010) and the Eastern Mediterranean (Tchernov et al. 1987), all 
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Dorcatherium, Dorcabune, and Siamotragulus representatives were considered to be endemic, 

continent-restricted species. 

With the emergence of the “Gomphotherium land bridge”, the probable dispersal of 

tragulids between Asia and Africa or vice versa was enabled. In addition, the presence of similar 

vegetation types on both continents might have facilitated the exchange of browsing mammals 

between them, as has been shown for other groups (e.g. Rhinos, Chalicotheres, Suids and 

Carnivores or creodonts, Barry 1988; Patnaik 2016 and references therein).  During the Middle 

Miocene, the Chinji Formation was deposited in an environment holding vegetation composed 

predominantly evergreen plants with additional moist- deciduous elements (Srivastava et al. 

2014). Under these conditions, tragulid species would have occupied a relatively stable 

ecological niche, dominated by C3 plants and more or less warm global temperatures (Zachos 

et al. 2001; Flynn et al. 2016). However, it is unclear how tragulids could cross a belt of dry 

habitats or open enviromentn in northern Africa, the Middle East and Central Asia (Made and 

Mateos 2010) that possibly existed for as much as 20 Ma. Indeed, Mayda and Rössner (2007) 

reported on remains of tragulids from Sabuncubeli near Izmir (Turkey) in MN3, early Early 

Miocene (Bruijn et al 2006) predating the minimum appearance datum of European 

Dorcatherium records in MN4a (17.8 Ma, C5Dr2r, Burdigalian, late Early Miocene (Rössner 

2017). This implies that, tragulids were detained for some time in Asia minor from continuing 

their dispersal, what may have been due to the dry or open environments (Jan van der Made, 

pers. Com.) impossible to live in for wetland adapted animals like the tragulids (Rössner and 

Heissig 2013, Rössner 2017). 

When tragulids entered Africa and Europe they immediately attained species diversity, 

what dropped after the Middle Miocene (Made 1992, Pickford 2001, Clauss and Rössner 2014). 

After MN12 tragulids disappeared in Europe, but lived on in Pakistan and other places in Asia 

as well as in Africa. In Asia, tragulids represented quite some diversity as well during the 
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Middle Miocene, however a clear diversity drop has not been documented so far for the Late 

Miocene.    

Overall spatiotemporal dispersal patterns of tragulids (and other taxa) may be correlated 

with gradual global cooling, especially in higher latitudes, superimposed on a relatively stable 

humid climate during the Neogene (Made 1992).  In Asia, palynological evidence from the 

Lower Siwalik suggests the existence of vast forests with subtropical to temperate broad-leafed 

tree taxa (e.g., Quercus, Lithocarpus/Castanopsis, Alnus), and tropical evergreen forest taxa 

(Hoorn et al. 2000). In contrast the lower Middle Siwalik yielded evidence of invasive grassland 

dispersal (Hoorn et al. 2000, Patnaik 2016). There is no indication yet, that tragulids where 

severely affected by that vegetation change in the Siwalik deposition area. Recent ecological 

studies revealed the habitat use to be the most common dimension along which sympatric 

species partition resources to reduce competition (e.g. Davis et al. 2018).  In this respect, the 

different tooth crown heights in the mostly contemporaneous tragulid species documented in 

our study (Figure 5.20) are likely to represent adaptations to different feeding habits. The extant 

tragulids, of which data on feeding habits are available, are the frugivorous Hyemoschus 

aquaticus of Africa and two Tragulus species of Asia, respectively (Dubost 1978; Heydon and 

Bulloh 1997), while frugivory has not been confirmed for fossil species so far.  In fact, it has 

been found that fossil species with more or less the same body mass as living species were 

adapted to either intermediate diet (Afrotragulus parvus, 2.7 kg, Ungar et al. 2012; 

Dorcatherium guntianum 12.4 kg, Kaiser and Rössner 2007), or graze (Siamotragulus 

songhorensis, 5.6 kg, Ungar et al. 2012).  In the future, detailed analyses of teeth may reveal 

feeding habits of fossil tragulids and their relatedness with tooth crown height.   

 In the future, the feeding habits of sympatric living tragulids should be analyzed in 

detail, and how they are related to tooth crown height.  Explorations in that direction may be 

applied to fossil representatives, in order to improve our knowledge also on their diet. 
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5.5  Conclusions 

 

Although there is a general consensus on the high tragulid diversity from the Siwalik 

Hills (Barry 2014; Khan et al. 2017), we recorded only three clasically Dorcatherium and one 

Dorcabune species from the Siwaliks, in contrast to the sixteen species reported by Barry 

(2014).  Since their original establishment and also in subsequent studies, the differentiation 

within the genera of Tragulidae was based on tooth size only (e.g. Pilgrim 1915; Colbert 1935; 

Gaur 1992; Khan et al. 2012; Barry 2014 and references therein).  In this context, a striking 

feature of previous quantitative analysis is for example, the poor completely missing reference 

to the data of type material for the asian species of Dorcatherium (Lydekker 1876) and 

Dorcabune  (Pilgrim 1915) and/or the erroneous assignments of tooth position (see Table 5.4). 

On the basis of size, tooth crown height and related morphological features, here we identified 

the following species from the Siwaliks: Dorcatherium nagrii, Dt. minus, Dt. majus and 

Dorcabune anthracotheroides.  In accordance with Barry (2014), we also agree that Dt. nagrii 

and the species of the genus Siamotragulus are very similar in tooth morphology and the 

analysis of post-cranial material and unworn teeth from Siwalik is required.  We also classified 

one specimen as Dt. aff. majus, while another one, here recognized as Dorcatherium dehmi sp. 

nov. had remained undescribed so far because tooth size overlapped with that of other species 

and morphological details were not considered (Figures 5.15, 5.20, 5.21 and 5.22).  

Unexpectedly, we were able to recognize Dt. naui and Dt. guntianum and thus report for the 

first time, their occurrence outside of Europe. This discovery is also the first record of tragulid 

species with a distribution range spanning more than one continent, in this case, Europe and the 

Indian subcontinent.  

Our results reveal the taxonomic potential of tooth morphology, especially of premolars 

and deciduous cheek teeth which, in future studies should be considered keeping in mind not 

only size variation.  
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Our results also show that among the Siwalik layers, the Middle Miocene Chinji 

Formation harboured the highest tragulid diversity, with seven species, followed by the Late 

Miocene Nagri and Dhok Pathan Formations with two and three species, respectively.  Here, 

the Dorcatherium guntianum recored from the Chinji Formation (14.2 mya - 11.2 mya) is not 

older than that known from Europe (16.5 mya - 12.2 mya).  By contrast, the Dorcatherium 

naui record from the Chinji Formation (14.2 mya - 11.2 mya) is older than the European one 

(8.7 mya - 12.2 mya) (Figure 5.5 ).  It is expected that future discoveries in the fossil-rich 

Siwalik area should extend the knowledge on the systematics, biostratigraphy, and 

biogeography of tragulids. 
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CHAPTER 6  

Conclusions 

 

Conclusions 

 
This thesis analyzed palaeobiology of Tragulidae. In doing so, I quantified the degree 

of similarity between fossil and living species through time.  The results demonstrate that there 

was great morphological diversity from the past to the present, reflected in body size, dentition 

and skull morphology.  

From the upper Eocene to the present, with a peak during the Middle Miocene, the 

tragulids were represented by a number of over 30 species that covered a broad range of body 

sizes from 1.0 kg to more than 100.0 kg (Chapter 2). Today, all extant tragulids are of small 

body size only. In an independent multivariate analysis I tested support based on skull 

morphometrics of living species for the recently revised taxonomy of crown Tragulidae 

(Chapter 3). This study also showed hitherto undocumented evidence of two different 

neurocranium shapes in living species: a globose shape in the Asian Tragulus javanicus and T. 

kanchil and a somewhat flattened geometry in T. napu and Moschiola spp. This skull study on 

the living tragulids was used as a reference when studying the skull of the well-preserved 

Dorcatherium crassum from the Middle Miocene of Germany. It was described based on analog 

and digital data and virtuell 3D reconstruction (Chapter 4). Comparative morphometric analysis 

of Dt. crassum was done for the first time at a multivariate basis in the context of the extant 

variability.  The results show clear segregation from extant relatives and is closest in 

morphometric variables to the living Hyaemoschus aquaticus from Africa, suggesting that the 

two species most probably had a similar biology.  Both species have even a more flattened 
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skull geometry than T. napu and Moschiola spp. In detail, hyper-development of some elements 

such as the sagittal and nuchal crest, the neurocranium and the canine characterises Dt. crassum.  

My analysis of postcanine dental proportions revealed a similar intra- and inter-specific general 

pattern in all species studied (Chapter 2).  There is an increase of size (width and length) in 

premolars and molars more pronounced in large species and  similar in fossil and living species 

of the same body size. Based on Miocene tragulids from Pakistan (Chapter 4), I quantified a 

previously not reported variation in the tooth crown height and related morphological features.  

Accordingly,  I provide an improved species delimitation for four of so far seven species from 

that spatiotemporal unit, found morphological evidence to establish the new species 

Dorcatherium dehmi, and unexpectedly discovered the hitherto only European Dorcatherium 

naui and Dt. guntianum.  

Living tragulids were previously described as ‘living fossils’, but this has been recently 

questioned (see Chapter 2).  My results show significant variation for these ruminants and 

coincide as in other groups (e.g. Gynko spp, Latimeria sp. etc, see chapter 2) previously 

misinterpreted as ‘living fossils’, which were shown to be part of a greater morphological 

diversity than previously thought (Chapter 2).  Considering that ancient diversity of tragulids 

was greater than the current representatives, it is difficult to assess with these data, which are 

plesiomorphic or derived characters.  

Finally, the outcomes presented in this Ph.D. thesis clearly enhance the understanding 

of morphological diversity and palaeobiology of these mammals, and highlight the importance 

of studies on tragulids in order to improve the understanding on their origin and evolution. 
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Future prospects 

In spite of the large numbers of Tragulidae specimens in diverse collection worldwide – 

some of them only recently gathered, some lying there for more than century – our knowledge 

about the systematics, origin, and diversification of these ruminants remains poor.  This lack 

of knowledge also applies to the recent members of Tragulidae.  Apart from physiological 

studies on captive individuals and efforts to determine the systematics of recent Tragulidae, 

there are hardly any studies on their biology, ecology, and evolution.  Even in the 21th century 

there are no comprehensive phylogenetic and population genetic studies available.  

Accordingly, I suggest the following important next steps in Tragulidae research.  

 

 The complete description of fossil genera and species of Tragulidae is needed urgently. 

There are studies that mention a great number of taxa, however these are not determined 

at the species level, creating large lists of “Tragulidae sp.”. 

 Together with the species level determination, the geographical and stratigraphical 

origin of the specimens must be given. 

 The knowledge about the biology, ecology and distribution of the recent members of 

Tragulidae must be enhanced considerably. 

 Our understanding of the paleobiology of Tragulidae must be improved by the joint 

analysis of fossil and recent data. 

 

Methods as for example computed tomography for the analysis of form and function or for 

the reconstruction of taxonomic characters for species delimitation, as well as the tooth 

microwear method for the investigation of paleodiet, are now at our disposal.  We only have 

to get down to work and bring together all the data and results. 
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Appendix Chapter 2 

Table 2.1. List of tragulid specimens as compiled for this study and from literature.  

 

 

      
Measurements 

(mm) 

Category Genera Species Specimen Literature source Tooth Length 
Width / 

Anterior 

width 

Fossil Afrotragulus moruorotensis Mor 1'2000 Pickford (2001a) m1 4.4 2.5 

Fossil Afrotragulus moruorotensis Mor 1'2000 Pickford (2001a) m2 4.6 2.9 

Fossil Afrotragulus moruorotensis Mor 1'2000 Pickford (2001a) m3 6.7 2.9 

Fossil Afrotragulus moruorotensis Mt 86'51 Pickford (2001a) m3 7.5 2.9 

Fossil Afrotragulus parvus 846.48 R.106 Whitworth (1958) p3 7.0 2.5 

Fossil Afrotragulus parvus 801.47 R.3 Whitworth (1958) p4 4.9 1.9 

Fossil Afrotragulus parvus 846.48 R.106 Whitworth (1958) p4 6.8 2.7 

Fossil Afrotragulus parvus 56.51 R.3A Whitworth (1958) p4 5.2 2.0 

Fossil Afrotragulus parvus 308.51 R.3 Whitworth (1958) p4 7.2 3.6 

Fossil Afrotragulus parvus 612.51 Whitworth (1958) p4 5.2 2.3 

Fossil Afrotragulus parvus BMNH-M82689 Sánchez et al. (2010) m1 4.9 2.6 

Fossil Afrotragulus parvus 665.47 R.3. Whitworth (1958) m1 5.5 2.8 

Fossil Afrotragulus parvus 801.47 R.3. Whitworth (1958) m1 5.1 2.8 

Fossil Afrotragulus parvus 1171.50 Whitworth (1958) m1 5.3 3.6 

Fossil Afrotragulus parvus 612.51 Whitworth (1958) m1 5.8 3.1 

Fossil Afrotragulus parvus 750.52 R.39 Whitworth (1958) m1 5.2 2.3 

Fossil Afrotragulus parvus 795.52 R.110 Whitworth (1958) m1 5.0 2.8 

Fossil Afrotragulus parvus BMNH-M82689 Sánchez et al. (2010) m2 6.0 3.2 

Fossil Afrotragulus parvus BMNH-M82690 Sánchez et al. (2010) m2 6.5 3.2 

Fossil Afrotragulus parvus 801.47 R.3. Whitworth (1958) m2 6.1 3.3 

Fossil Afrotragulus parvus 485.49 R.3A Whitworth (1958) m2 5.8 3.4 

Fossil Afrotragulus parvus 1171.50 Whitworth (1958) m2 7.1 4.6 

Fossil Afrotragulus parvus 750.52 R.39 Whitworth (1958) m2 5.7 3.3 

Fossil Afrotragulus parvus 795.52 R.110 Whitworth (1958) m2 6.3 3.6 

Fossil Afrotragulus parvus 485.49 R.3A Whitworth (1958) m3 7.8 3.6 

Fossil Afrotragulus parvus 1171.50 Whitworth (1958) m3 9.9 4.4 

Fossil Afrotragulus parvus 750.52 R.39 Whitworth (1958) m3 8.0 3.6 

Fossil Afrotragulus parvus 795.52 R.110 Whitworth (1958) m3 8.0 3.7 

Fossil Archaeotragulus krabiensis TF-2997 Métais et al. (2001) p2 5.6 2.6 

Fossil Archaeotragulus krabiensis TF-2997 Métais et al. (2001) p3 7.2 3.5 

Fossil Archaeotragulus krabiensis TF-2997 Métais et al. (2001) p4 7.0 3.9 

Fossil Archaeotragulus krabiensis TF-2989 Métais et al. (2001) m1 7.2 4.0 

Fossil Archaeotragulus krabiensis TF-2997 Métais et al. (2001) m1 6.8 4.0 

Fossil Archaeotragulus krabiensis TF-2989 Métais et al. (2001) m2 7.5 4.9 

Fossil Archaeotragulus krabiensis TF-2997 Métais et al. (2001) m2 7.3 5.1 
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Fossil Archaeotragulus krabiensis TF-2989 Métais et al. (2001) m3 10.5 5.0 

Fossil Dorcatherium guntianum NMA-1633 This study p2 6.9 2.7 

Fossil Dorcatherium guntianum NMA-1633 This study p2 7.3 2.5 

Fossil Dorcatherium guntianum NMA-2005/40/1927 This study p2 7.4 2.7 

Fossil Dorcatherium guntianum NMA-1633 This study p2 7.8 2.7 

Fossil Dorcatherium guntianum NMA-2005/22/1927 This study p2 8.1 3.0 

Fossil Dorcatherium guntianum NMA-2005/23/1927 This study p2 8.6 2.9 

Fossil Dorcatherium guntianum NMA-1633 This study p3 9.5 3.4 

Fossil Dorcatherium guntianum NMA-1415 This study p3 9.7 3.3 

Fossil Dorcatherium guntianum NMA-2005/22/1927 This study p3 9.8 3.6 

Fossil Dorcatherium guntianum NMA-1495 This study p3 9.9 3.4 

Fossil Dorcatherium guntianum NMA-1415 This study p3 9.9 3.6 

Fossil Dorcatherium guntianum NMA-85.25 This study p3 10.0 3.6 

Fossil Dorcatherium guntianum NMA-1415 This study p4 7.6 4.0 

Fossil Dorcatherium guntianum NMA-85.45 This study p4 8.6 4.3 

Fossil Dorcatherium guntianum NMA-1415 This study p4 8.6 4.0 

Fossil Dorcatherium guntianum NMA-1415 This study p4 8.8 4.0 

Fossil Dorcatherium guntianum NMA-740 This study p4 9.0 4.0 

Fossil Dorcatherium guntianum NMA-1415 This study p4 9.0 3.7 

Fossil Dorcatherium guntianum NMA-1633 This study p4 9.0 4.2 

Fossil Dorcatherium guntianum NMA-2005/22/1927 This study p4 9.2 4.0 

Fossil Dorcatherium guntianum NMA-1415 This study p4 9.3 4.2 

Fossil Dorcatherium guntianum NMA-86-302/333 This study p4 9.4 4.0 

Fossil Dorcatherium guntianum NMA-Col. Selner 64 This study m1 8.5 5.8 

Fossil Dorcatherium guntianum NMA-1415 This study m1 8.6 6.0 

Fossil Dorcatherium guntianum NMA-1995 This study m1 8.7 6.4 

Fossil Dorcatherium guntianum NMA-2005/24/1927 This study m1 8.9 5.7 

Fossil Dorcatherium guntianum NMA-1747 This study m1 9.0 6.4 

Fossil Dorcatherium guntianum NMA-85.25 This study m1 9.0 6.6 

Fossil Dorcatherium guntianum NMA-1633 This study m1 9.1 6.4 

Fossil Dorcatherium guntianum NMA-1633 This study m1 9.3 5.7 

Fossil Dorcatherium guntianum NMA-2005/22/1927 This study m1 9.6 5.9 

Fossil Dorcatherium guntianum SO-614 This study m1 8.3 5.5 

Fossil Dorcatherium guntianum SNSB-BSPG 1881 IX 737 This study m1 8.6 5.5 

Fossil Dorcatherium guntianum SNSB-BSPG 1881 IX 735 This study m1 9.3 5.6 

Fossil Dorcatherium guntianum SNSB-BSPG 1956 II 2554 This study m1 7.7 4.3 

Fossil Dorcatherium guntianum NMA-2005/23/1927 This study m2 9.9 6.1 

Fossil Dorcatherium guntianum SNSB-BSPG 1881 IX 731 This study m2 9.9 5.8 

Fossil Dorcatherium guntianum NMA-2005/24/1927 This study m2 10.0 6.7 

Fossil Dorcatherium guntianum NMA-2005/25/1927 This study m2 10.1 6.7 

Fossil Dorcatherium guntianum NMA-1995 This study m2 10.3 7.1 

Fossil Dorcatherium guntianum SNSB-BSPG 1881 IX 736 This study m2 9.1 5.4 

Fossil Dorcatherium guntianum SNSB-BSPG 1881 IX 737 This study m2 10.0 6.1 

Fossil Dorcatherium guntianum SNSB-BSPG 1956 II 2554 This study m2 9.1 5.0 

Fossil Dorcatherium guntianum NMA-1633 This study m3 13.7 6.8 
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Fossil Dorcatherium guntianum NMA-1415 This study m3 14.0 6.8 

Fossil Dorcatherium guntianum NMA-2005/24/1927 This study m3 14.0 6.7 

Fossil Dorcatherium guntianum NMA-86-292/333 This study m3 14.0 6.3 

Fossil Dorcatherium guntianum NMA-85.24 This study m3 14.1 6.7 

Fossil Dorcatherium guntianum NMA-1415 This study m3 14.2 6.6 

Fossil Dorcatherium guntianum NMA-2005/25/1927 This study m3 14.3 7.1 

Fossil Dorcatherium guntianum NMA-2005/38/1927 This study m3 14.3 6.6 

Fossil Dorcatherium guntianum NMA-1747 This study m3 14.4 7.3 

Fossil Dorcatherium guntianum NMA-740 This study m3 14.4 6.6 

Fossil Dorcatherium guntianum NMA-2005/22/1927 This study m3 14.6 6.6 

Fossil Dorcatherium guntianum NMA-1633 This study m3 14.6 6.7 

Fossil Dorcatherium guntianum NMA-1633 This study m3 14.7 7.4 

Fossil Dorcatherium guntianum NMA-1415 This study m3 15.0 6.6 

Fossil Dorcatherium guntianum NMA-85.31 This study m3 15.0 7.3 

Fossil Dorcatherium guntianum NMA-85.28 This study m3 15.1 7.2 

Fossil Dorcatherium guntianum NMA-85.27 This study m3 15.1 6.7 

Fossil Dorcatherium guntianum NMA-1415 This study m3 15.2 7.0 

Fossil Dorcatherium guntianum NMA-86-291/333 This study m3 15.2 7.0 

Fossil Dorcatherium guntianum NMA-85.30 This study m3 15.2 7.1 

Fossil Dorcatherium guntianum NMA-1415 This study m3 15.3 7.0 

Fossil Dorcatherium guntianum NMA-411 This study m3 15.4 6.8 

Fossil Dorcatherium guntianum NMA-1415 This study m3 15.5 6.5 

Fossil Dorcatherium guntianum NMA-1633 This study m3 15.5 7.0 

Fossil Dorcatherium guntianum NMA-1633 This study m3 15.5 7.2 

Fossil Dorcatherium guntianum NMA-85.32 This study m3 15.8 7.4 

Fossil Dorcatherium guntianum NMA-1633 This study m3 15.8 7.0 

Fossil Dorcatherium guntianum NMA-85.29 This study m3 15.8 7.0 

Fossil Dorcatherium guntianum NMA-2005/39/1927 This study m3 16.0 7.5 

Fossil Dorcatherium guntianum NMA-740 This study m3 16.1 8.3 

Fossil Dorcatherium guntianum NMA-2005/29/1927 This study m3 16.1 7.3 

Fossil Dorcatherium guntianum NMA-1417 This study m3 16.6 7.1 

Fossil Dorcatherium guntianum NMA-1415 This study m3 16.7 7.8 

Fossil Dorcatherium guntianum SNSP-BSPG 1881 IX 737 This study m3 14.7 6.4 

Fossil Dorcatherium nagrii VPL/AS/H/101 Gaur (1992) p2 5.2 2.3 

Fossil Dorcatherium nagrii VPL/AS/H/101 Gaur (1992) p3 7.0 2.6 

Fossil Dorcatherium nagrii SNSB-BSPG 1956 II 2569 This study p3 nd 2.9 

Fossil Dorcatherium nagrii VPL/AS/H/102 Gaur (1992) p4 8.2 3.3 

Fossil Dorcatherium nagrii SNSB-BSPG 1956 II 2455 This study p4 7.7 2.7 

Fossil Dorcatherium nagrii GSI-18079 Prasad (1970) m1 6.5 3.6 

Fossil Dorcatherium nagrii GSI-K21.658 Prasad (1970)  m1 7.0 4.0 

Fossil Dorcatherium nagrii HT-34-81 Sankhyan (1982) m1 6.0 3.5 

Fossil Dorcatherium nagrii PUA-89/76 RN Vasishat et al. (1985) m1 7.1 4.1 

Fossil Dorcatherium nagrii VPL/AS/H/102 Gaur (1992) m1 5.8 3.4 

Fossil Dorcatherium nagrii VPL/AS/H/106 Gaur (1992) m1 5.9 3.6 

Fossil Dorcatherium nagrii SNSB-BSPG 1956 II 2569 This study m1 6.5 3.7 
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Fossil Dorcatherium nagrii AMNH-39508b (1981 XVII 71) This study m1 6.5 2.9 

Fossil Dorcatherium nagrii GSI-18079 Prasad (1970) m2 6.6 4.0 

Fossil Dorcatherium nagrii GSI-K21.658 Prasad (1970) m2 7.5 4.5 

Fossil Dorcatherium nagrii GSI-K21.744 Prasad (1970) m2 7.5 4.0 

Fossil Dorcatherium nagrii GSI-K47.768 Prasad (1970) m2 7.1 4.5 

Fossil Dorcatherium nagrii HT-34-81 Sankhyan (1982) m2 7.0 4.2 

Fossil Dorcatherium nagrii HT-37-81 Sankhyan (1982) m2 7.0 4.0 

Fossil Dorcatherium nagrii PUA-89/76 RN Vasishat et al. (1985) m2 8.3 4.9 

Fossil Dorcatherium nagrii VPL/AS/H/102 Gaur (1992) m2 7.1 4.2 

Fossil Dorcatherium nagrii VPL/AS/H/105 Gaur (1992) m2 7.4 3.8 

Fossil Dorcatherium nagrii VPL/AS/H/106 Gaur (1992) m2 6.7 3.9 

Fossil Dorcatherium nagrii VPL/AS/H/107 Gaur (1992) m2 7.0 4.5 

Fossil Dorcatherium nagrii SNSB-BSPG 1956 II 2577 This study m2 7.7 3.5 

Fossil Dorcatherium nagrii AMNH-39508b (1981 XVII 71) This study m2 6.8 3.7 

Fossil Dorcatherium nagrii AMNH-19613 (1981 XVII 68) This study m2 8.0 4.6 

Fossil Dorcatherium nagrii AMNH-39508c (1981 XVII 70) This study m2 6.6 4.1 

Fossil Dorcatherium nagrii GSI-18079 Prasad (1970) m3 10.0 4.5 

Fossil Dorcatherium nagrii GSI-K21.744 Prasad (1970) m3 9.0 4.5 

Fossil Dorcatherium nagrii GSI-K47.768 Prasad (1970) m3 9.0 4.6 

Fossil Dorcatherium nagrii HT-34-81 Sankhyan (1982) m3 11.0 4.5 

Fossil Dorcatherium nagrii HT-36-81 Sankhyan (1982) m3 9.5 4.0 

Fossil Dorcatherium nagrii HT-37-81 Sankhyan (1982) m3 10.0 4.2 

Fossil Dorcatherium nagrii PUA-89/76 RN Vasishat et al. (1985) m3 10.5 5.2 

Fossil Dorcatherium nagrii VPL/AS/H/102 Gaur (1992) m3 11.0 4.3 

Fossil Dorcatherium nagrii SNSB-BSPG 1956 II 2569 This study m3 11.1 4.7 

Fossil Dorcatherium nagrii AMNH-39512 (1981 XVII 75) This study m3 12.5 5.4 

Fossil Dorcatherium nagrii AMNH-19613 (1981 XVII 68) This study m3 10.9 4.7 

Fossil Dorcatherium nagrii VPL/AS/H/105 Gaur (1992) m3 11.5 4.7 

Fossil Dorcatherium pigotti 737.52 Whitworth (1958) p2 7.1 2.5 

Fossil Dorcatherium pigotti M. 26684 Hamilton (1973) p3 10.0 3.6 

Fossil Dorcatherium pigotti 737.52 Whitworth (1958) p3 8.5 3.1 

Fossil Dorcatherium pigotti M. 26684 Hamilton (1973) p4 9.6 4.0 

Fossil Dorcatherium pigotti 737.52 Whitworth (1958) p4 7.9 3.8 

Fossil Dorcatherium pigotti M. 26684 Hamilton (1973) m1 9.3 5.8 

Fossil Dorcatherium pigotti 737.52 Whitworth (1958) m1 8.2 4.8 

Fossil Dorcatherium pigotti M. 26684 Hamilton (1973) m2 11.0 6.6 

Fossil Dorcatherium pigotti 837.47  R.75 Whitworth (1958) m2 10.0 6.0 

Fossil Dorcatherium pigotti 737.52 Whitworth (1958) m2 8.9 5.3 

Fossil Dorcatherium pigotti 790.52  R.38 Whitworth (1958) m2 8.2 5.6 

Fossil Dorcatherium pigotti 791.52 Whitworth (1958) m2 9.5 5.7 

Fossil Dorcatherium pigotti 837.47  R.75 Whitworth (1958) m3 14.0 6.0 

Fossil Dorcatherium pigotti 790.52  R.38 Whitworth (1958) m3 13.8 6.0 

Fossil Dorcatherium pigotti 791.52 Whitworth (1958) m3 14.0 5.9 

Extant Hyemoschus aquaticus NHMW-5407 This study p2 7.7 2.9 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study p2 8.5 2.8 
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Extant Hyemoschus aquaticus SMNS-1842 This study p2 7.6 2.8 

Extant Hyemoschus aquaticus NHMB-2692 This study p2 8.5 3.0 

Extant Hyemoschus aquaticus NHMB-8699 This study p2 7.5 2.7 

Extant Hyemoschus aquaticus NHMB-LXX4 This study p2 8.3 2.7 

Extant Hyemoschus aquaticus NHMW-5407 This study p3 8.9 3.4 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study p3 8.4 3.1 

Extant Hyemoschus aquaticus SMNS-1842 This study p3 8.4 3.3 

Extant Hyemoschus aquaticus NHMB-2692 This study p3 9.5 3.4 

Extant Hyemoschus aquaticus NHMB-LXX4 This study p3 9.0 3.1 

Extant Hyemoschus aquaticus NHMW-5407 This study p4 9.1 4.1 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study p4 8.6 3.9 

Extant Hyemoschus aquaticus NHMB-2692 This study p4 8.8 4.1 

Extant Hyemoschus aquaticus NHMB-8699 This study p4 9.3 4.1 

Extant Hyemoschus aquaticus UMZC-H.14.933 This study m1 10.0 6.0 

Extant Hyemoschus aquaticus UMZC-H.14.933 This study m1 10.3 5.9 

Extant Hyemoschus aquaticus NHMW-5407 This study m1 9.4 6.1 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study m1 8.9 5.2 

Extant Hyemoschus aquaticus SMNS-1842 This study m1 8.3 5.6 

Extant Hyemoschus aquaticus NHMB-2692 This study m1 9.9 6.4 

Extant Hyemoschus aquaticus NHMB-8699 This study m1 8.0 5.3 

Extant Hyemoschus aquaticus NHMB-LXX4 This study m1 9.1 6.5 

Extant Hyemoschus aquaticus NHMW-5407 This study m2 9.2 6.9 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study m2 9.5 6.2 

Extant Hyemoschus aquaticus SMNS-1842 This study m2 10.0 6.7 

Extant Hyemoschus aquaticus NHMB-2692 This study m2 9.2 7.1 

Extant Hyemoschus aquaticus NHMB-8699 This study m2 9.1 7.1 

Extant Hyemoschus aquaticus NHMB-LXX4 This study m2 10.2 7.4 

Extant Hyemoschus aquaticus NHMW-5407 This study m3 13.2 7.1 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study m3 12.9 6.2 

Extant Hyemoschus aquaticus NHMB-2692 This study m3 12.7 6.9 

Extant Hyemoschus aquaticus NHMB-LXX4 This study m3 14.3 7.1 

Fossil Iberomeryx minor Sc. 118 Sudre (1984) p2 3.8 nd 

Fossil Iberomeryx minor ITD-908 Sudre (1984) p3 6.6 3.0 

Fossil Iberomeryx minor QB 32 Sudre (1984) p3 5.5 1.5 

Fossil Iberomeryx minor Sc. 118 Sudre (1984) p3 4.2 nd 

Fossil Iberomeryx minor nn Sudre (1984) p4 4.0 2.0 

Fossil Iberomeryx minor QB 29 Sudre (1984) p4 4.0 1.8 

Fossil Iberomeryx minor QB 32 Sudre (1984) p4 5.0 1.9 

Fossil Iberomeryx minor Sc. 118 Sudre (1984) p4 3.9 nd 

Fossil Iberomeryx minor Schlosser 1886 Sudre (1984) p4 4.4 nd 

Fossil Iberomeryx minor MJSN-BEU001-410 Mennecart et al. (2011) p4 4.7 nd 

Fossil Iberomeryx minor MJSN-PRC004-159 Mennecart et al. (2011) p4 4,0 nd 

Fossil Iberomeryx minor nn Sudre (1984) m1 4.5 2.5 

Fossil Iberomeryx minor Schlosser 1886 Sudre (1984) m1 4.8 nd 

Fossil Iberomeryx minor QB 29 Sudre (1984) m1 4.4 2.5 
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Fossil Iberomeryx minor QB 32 Sudre (1984) m1 5.5 3.0 

Fossil Iberomeryx minor Sc. 118 Sudre (1984) m1 4.6 2.9 

Fossil Iberomeryx minor NMB-Sc. 118 Mennecart et al. (2011) m1 4.4 nd 

Fossil Iberomeryx minor MJSN-PRC004-159 Mennecart et al. (2011) m1 5.1 nd 

Fossil Iberomeryx minor nn Sudre (1984) m2 5.0 3.0 

Fossil Iberomeryx minor QB 29 Sudre (1984) m2 5.1 3.1 

Fossil Iberomeryx minor QB 32 Sudre (1984) m2 5.5 3.1 

Fossil Iberomeryx minor Sc. 118 Sudre (1984) m2 5.0 3.5 

Fossil Iberomeryx minor Schlosser 1886 Sudre (1984) m2 5.0 nd 

Fossil Iberomeryx minor NMB-Sc. 118 dext. Mennecart et al. (2011) m2 5.8 nd 

Fossil Iberomeryx minor MJSN-BEU001-411 Mennecart et al. (2011) m2 4.9 nd 

Fossil Iberomeryx minor MJSN-BEU001-409 Mennecart et al. (2011) m2 4.9 nd 

Fossil Iberomeryx minor MJSN-PRC004-159 Mennecart et al. (2011) m2 5.3 nd 

Fossil Iberomeryx minor NMB-Q.W.540 Mennecart et al. (2011) m2 6.1 nd 

Fossil Iberomeryx minor NMB-Qu.B.30 Mennecart et al. (2011) m2 5.5 nd 

Fossil Iberomeryx minor NMB-Qu.B.31 Mennecart et al. (2011) m2 5.4 nd 

Fossil Iberomeryx minor USTL-ITD28 Sudre (1984) m3 8.1 3.5 

Fossil Iberomeryx minor USTL-ITD29 Sudre (1984) m3 8.5 4.4 

Fossil Iberomeryx minor nn Sudre (1984) m3 7.0 3.0 

Fossil Iberomeryx minor QB 29 Sudre (1984) m3 7.7 3.5 

Fossil Iberomeryx minor QB 32 Sudre (1984) m3 8. 3.7 

Fossil Iberomeryx minor Sc. 118 Sudre (1984) m3 8.1 3.4 

Fossil Iberomeryx minor Schlosser 1886 Sudre (1984) m3 7.5 nd 

Fossil Iberomeryx minor NMB-Sc. 118 dext. Mennecart et al. (2011) m3 8.2 nd 

Fossil Iberomeryx minor MJSN-PRC004-159 Mennecart et al. (2011) m3 8.1 nd 

Fossil Iberomeryx minor NMB-Q.W.540 Mennecart et al. (2011) m3 8.2 nd 

Fossil Iberomeryx minor NMB-Qu.B.30 Mennecart et al. (2011) m3 7.8 nd 

Fossil Iberomeryx minor NMB-Qu.B.31 Mennecart et al. (2011) m3 7.6 nd 

Fossil Iberomeryx parvus GK3-11 Métais et al. (2016) p3 3.0 1.2 

Fossil Iberomeryx parvus GK3-36 Métais et al. (2016) p4 4.4 1.9 

Fossil Iberomeryx parvus GK3-8 Métais et al. (2016) m1 5.3 2.2 

Fossil Iberomeryx parvus 641-5 Métais et al. (2016) m1 5.5 2.6 

Fossil Iberomeryx parvus 641-4 Métais et al. (2016) m1 5.4 2.5 

Fossil Iberomeryx parvus GK3-3 Métais et al. (2016) m1 5.6 2.6 

Fossil Iberomeryx parvus GK3-42 Métais et al. (2016) m2 6.1 2.9 

Fossil Iberomeryx parvus 641-7 Métais et al. (2016) m2 6.3 2.6 

Fossil Iberomeryx parvus 641-3 Métais et al. (2016) m2 6.8 3.0 

Fossil Iberomeryx parvus GK3-34 Métais et al. (2016) m2 7.2 3.4 

Fossil Iberomeryx parvus GK3-33 Métais et al. (2016) m2 6.0 2.9 

Fossil Iberomeryx parvus 641-6 Métais et al. (2016) m2 7.1 3.1 

Fossil Iberomeryx parvus 641-2 Métais et al. (2016) m3 7.8 2.9 

Fossil Iberomeryx parvus GK3-2 Métais et al. (2016) m3 7.9 2.7 

Extant Moschiola indica NHMW-B6016 This study p2 5.4 2,0 

Extant Moschiola indica NHMW-B6016 This study p3 6.1 2.1 

Extant Moschiola indica ZMH-4771 This study p4 8.2 3.3 
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Extant Moschiola indica NHMW-B6016 This study p4 6.6 2.7 

Extant Moschiola indica ZMH-4793 This study m1 6.0 4.0 

Extant Moschiola indica ZMH-4793 This study m1 6.1 4.0 

Extant Moschiola indica ZMH-4771 This study m1 7.0 3.7 

Extant Moschiola indica ZMH-4773 This study m1 7.0 4.2 

Extant Moschiola indica ZMH-4770  This study m1 7.0 4.1 

Extant Moschiola indica ZMH-4770  This study m1 7.3 4.5 

Extant Moschiola indica ZMH-4773 This study m1 7.9 4.1 

Extant Moschiola indica ZMH-4771 This study m1 8.0 3.9 

Extant Moschiola indica ZMH-4791 This study m1 6.5 4.3 

Extant Moschiola indica ZMH-4791 This study m1 7.0 4.3 

Extant Moschiola indica NHMW-B6016 This study m1 6.2 4.4 

Extant Moschiola indica ZMH-4771 This study m2 7.1 4.6 

Extant Moschiola indica ZMH-4793 This study m2 7.4 4.2 

Extant Moschiola indica ZMH-4770  This study m2 7.5 4.8 

Extant Moschiola indica ZMH-4771 This study m2 7.6 4.4 

Extant Moschiola indica ZMH-4793 This study m2 7.6 4.3 

Extant Moschiola indica ZMH-4770  This study m2 7.9 4.7 

Extant Moschiola indica ZMH-4791 This study m2 7.7 4.7 

Extant Moschiola indica ZMH-4791 This study m2 8.0 4.9 

Extant Moschiola indica NHMW-B6016 This study m2 7.6 4.8 

Extant Moschiola indica ZMH-4771 This study m3 10.7 4.6 

Extant Moschiola indica ZMH-4771 This study m3 11.1 4.8 

Extant Moschiola indica NHMW-B6016 This study m3 9.7 4.7 

Extant Moschiola meminna MCNM-nn This study p2 49 1.9 

Extant Moschiola meminna MCNM-nn This study p2 5.0 2.0 

Extant Moschiola meminna NHMB-C1366 This study p2 5.6 2.1 

Extant Moschiola meminna NHMB-C2453 This study p2 6.4 2.3 

Extant Moschiola meminna NHMB-C2588 This study p2 5.5 2.0 

Extant Moschiola meminna NHMB-2328 This study p2 5.9 1.9 

Extant Moschiola meminna MCNM-nn This study p3 6.7 2.8 

Extant Moschiola meminna MCNM-nn This study p3 7.0 2.7 

Extant Moschiola meminna NHMB-C1366 This study p3 6.1 2.7 

Extant Moschiola meminna NHMB-C2453 This study p3 7.4 2.9 

Extant Moschiola meminna NHMB-C2588 This study p3 6.9 2.8 

Extant Moschiola meminna NHMB-C1429 This study p3 6.5 2.7 

Extant Moschiola meminna MCNM-nn This study p4 7.4 2.7 

Extant Moschiola meminna MCNM-nn This study p4 7.4 3.0 

Extant Moschiola meminna NHMB-C1366 This study p4 6.9 3.2 

Extant Moschiola meminna NHMB-C2453 This study p4 7.3 3.0 

Extant Moschiola meminna NHMB-C2588 This study p4 6.4 2.9 

Extant Moschiola meminna NHMB-C1429 This study p4 6.5 2.9 

Extant Moschiola meminna NHMB-2328 This study p4 8.0 3.1 

Extant Moschiola meminna MCNM-nn This study m1 7.0 4.7 

Extant Moschiola meminna MCNM-nn This study m1 7.2 4.5 
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Extant Moschiola meminna NHMB-C1366 This study m1 6.6 3.8 

Extant Moschiola meminna NHMB-C2453 This study m1 6.7 3.9 

Extant Moschiola meminna NHMB-C2588 This study m1 5.9 4.0 

Extant Moschiola meminna NHMB-C1429 This study m1 6.3 4.3 

Extant Moschiola meminna NHMB-2328 This study m1 6.3 3.7 

Extant Moschiola meminna MCNM-nn This study m2 7.9 5.0 

Extant Moschiola meminna MCNM-nn This study m2 8.1 4.5 

Extant Moschiola meminna NHMB-C1366 This study m2 7.2 4.2 

Extant Moschiola meminna NHMB-C2453 This study m2 6.9 4.6 

Extant Moschiola meminna NHMB-C2588 This study m2 6.6 4.5 

Extant Moschiola meminna NHMB-C1429 This study m2 7.1 4.6 

Extant Moschiola meminna NHMB-2328 This study m2 6.3 4.1 

Extant Moschiola meminna MCNM-nn This study m3 10.9 4.6 

Extant Moschiola meminna MCNM-nn This study m3 11.0 4.7 

Extant Moschiola meminna NHMB-C1366 This study m3 9.0 4.1 

Extant Moschiola meminna NHMB-C2453 This study m3 10.0 4.7 

Extant Moschiola meminna NHMB-C2588 This study m3 82 4.3 

Extant Moschiola meminna NHMB-C1429 This study m3 9.1 4.5 

Extant Moschiola meminna NHMB-2328 This study m3 9.3 3.8 

Fossil Siamotragulus bugtiensis PAK-2505 Ginsburg et al. (2001) p4 8.1 3.0 

Fossil Siamotragulus bugtiensis PAK-2485 Ginsburg et al. (2001) m2 8.2 6.0 

Fossil Siamotragulus bugtiensis PAK-2503 Ginsburg et al. (2001) m2 8.3 5.2 

Fossil Siamotragulus bugtiensis PAK-2485 Ginsburg et al. (2001) m3 12.2 5.5 

Fossil Siamotragulus bugtiensis PAK-2491 Ginsburg et al. (2001) m3 13.3 5.3 

Fossil Siamotragulus bugtiensis PAK-2493 Ginsburg et al. (2001) m3 13.4 6.0 

Fossil Siamotragulus sanyathanai PG1 Thomas et al. (1990) p3 9.0 nd 

Fossil Siamotragulus sanyathanai PG1 Thomas et al. (1990) p4 8.0 nd 

Fossil Siamotragulus sanyathanai PG1 Thomas et al. (1990) m1 6.7 nd 

Fossil Siamotragulus sanyathanai PG1 Thomas et al. (1990) m2 8.0 nd 

Fossil Siamotragulus sanyathanai PG1 Thomas et al. (1990) m3 11.7 nd 

Fossil Siamotragulus songhorensis 448.48 Whitworth (1958) p3 7.8 2.5 

Fossil Siamotragulus songhorensis F. 3193 Whitworth (1958) p4 6.8 2.7 

Fossil Siamotragulus songhorensis 448.48 Whitworth (1958) p4 7.6 3.0 

Fossil Siamotragulus songhorensis Nap IV'785 Pickford (2002) p4 6.7 2.7 

Fossil Siamotragulus songhorensis Nap V Pickford (2002) p4 6.9 2.8 

Fossil Siamotragulus songhorensis Nap V 64 Pickford (2002) p4 7.0 4.0 

Fossil Siamotragulus songhorensis Nap V 64 Pickford (2002) p4 7.1 3.0 

Fossil Siamotragulus songhorensis F. 3205 Whitworth (1958) m1 6.4 4.0 

Fossil Siamotragulus songhorensis F. 3207 Whitworth (1958) m1 7.0 4.4 

Fossil Siamotragulus songhorensis 754.52 Whitworth (1958) m1 6.2 3.7 

Fossil Siamotragulus songhorensis 756.52 Whitworth (1958) m1 6.6 4.0 

Fossil Siamotragulus songhorensis NAP XXI 10J'08 Sánchez et al. (2014) m1 7.1 4.2 

Fossil Siamotragulus songhorensis LT 120´07 Quiralte et al. (2008) m1 6.7 3.6 

Fossil Siamotragulus songhorensis Nap IXC 64 Pickford (2002) m1 6.4 3.4 

Fossil Siamotragulus songhorensis Nap I 91'99 Pickford (2002) m1 6.7 3.8 
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Fossil Siamotragulus songhorensis Nap I Peg 2 64 Pickford (2002) m1 6.7 3.6 

Fossil Siamotragulus songhorensis Nap I 64 Pickford (2002) m1 6.8 3.5 

Fossil Siamotragulus songhorensis Nap I 88' 98 Pickford (2002) m1 7.2 3.7 

Fossil Siamotragulus songhorensis F. 3205 Whitworth (1958) m2 7.6 4.6 

Fossil Siamotragulus songhorensis 36.49 Whitworth (1958) m2 8.0 4.2 

Fossil Siamotragulus songhorensis 519.49 Whitworth (1958) m2 6.8 3.7 

Fossil Siamotragulus songhorensis 754.52 Whitworth (1958) m2 7.4 4.5 

Fossil Siamotragulus songhorensis 756.52 Whitworth (1958) m2 7.2 4.5 

Fossil Siamotragulus songhorensis nn Pickford (2002) m2 7.1 4.2 

Fossil Siamotragulus songhorensis Nap IXC 64 Pickford (2002) m2 7.4 4.1 

Fossil Siamotragulus songhorensis Nap I 88´98 Pickford (2002) m2 7.5 4. 

Fossil Siamotragulus songhorensis Nap IV 64 P67-07 Pickford (2002) m2 7.6 4.8 

Fossil Siamotragulus songhorensis Nap V Aug 62 Pickford (2002) m2 7.6 4.6 

Fossil Siamotragulus songhorensis N I 64 Pickford (2002) m2 7.7 3.5 

Fossil Siamotragulus songhorensis Nap IV 13´99 Pickford (2002) m2 7.8 4.6 

Fossil Siamotragulus songhorensis Nap I 94´99 Pickford (2002) m2 8.0 4.3 

Fossil Siamotragulus songhorensis Nap V 61 Pickford (2002) m2 8.0 4.9 

Fossil Siamotragulus songhorensis Nap V 61 6 Pickford (2002) m2 8.0 4.2 

Fossil Siamotragulus songhorensis Nap IV 61 Pickford (2002) m2 8.2 5.4 

Fossil Siamotragulus songhorensis Nap V 12´02 Pickford (2002) m2 8.3 4.6 

Fossil Siamotragulus songhorensis Nap V 13´02 Pickford (2002) m2 8.2 4.8 

Fossil Siamotragulus songhorensis Nap V 92´02 Pickford (2002) m2 7.9 4.3 

Fossil Siamotragulus songhorensis Nap V 62 Pickford (2002) m2 8.2 4.6 

Fossil Siamotragulus songhorensis F. 3205 Whitworth (1958) m3 10.5 5.0 

Fossil Siamotragulus songhorensis 518.49 Whitworth (1958) m3 12.1 5.1 

Fossil Siamotragulus songhorensis 754.52 Whitworth (1958) m3 10.5 4.7 

Fossil Siamotragulus songhorensis 758.52 Whitworth (1958) m3 10.1 4.2 

Fossil Siamotragulus songhorensis SAM-PQ.N.21 Quiralte et al. (2008) m3 7.2 4.0 

Fossil Siamotragulus songhorensis Nap V 61 Pickford (2002) m3 9.6 4.3 

Fossil Siamotragulus songhorensis Nap Pickford (2002) m3 10.0 4.6 

Fossil Siamotragulus songhorensis Nap Iv 64 P67-07 Pickford (2002) m3 10.6 4.5 

Fossil Siamotragulus songhorensis Nap I 139´99 Pickford (2002) m3 11.0 4.5 

Fossil Siamotragulus songhorensis Nap Iv 64 P67-07 Pickford (2002) m3 11.0 4.7 

Fossil Siamotragulus songhorensis Nap I 61 Pickford (2002) m3 11.0 4.9 

Fossil Siamotragulus songhorensis Nap Pickford (2002) m3 11.2 4.7 

Fossil Siamotragulus songhorensis Nap Iv 64 P67-07 Pickford (2002) m3 11.3 4.8 

Fossil Siamotragulus songhorensis Nap Pickford (2002) m3 11.4 4.3 

Fossil Siamotragulus songhorensis Nap I 94´99 Pickford (2002) m3 11.4 4.7 

Fossil Siamotragulus songhorensis Nap V 19´98 Pickford (2002) m3 11.8 5.0 

Fossil Siamotragulus songhorensis Nap V 59´02 Pickford (2002) m3 10.7 4.3 

Extant Tragulus javanicus NMW-7595 This study p2 6.2 2.1 

Extant Tragulus javanicus NMW-7595 This study p2 6.2 2.0 

Extant Tragulus javanicus NHMW-40818 This study p2 5.3 2.1 

Extant Tragulus javanicus SMNS-16874 This study p2 5.3 1.8 

Extant Tragulus javanicus SMNS-16875 This study p2 5.2 2.1 
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Extant Tragulus javanicus NMW-7595 This study p3 6.3 2.3 

Extant Tragulus javanicus NMW-7595 This study p3 6.8 2.6 

Extant Tragulus javanicus NHMW-40818 This study p3 6.1 2.3 

Extant Tragulus javanicus SMNS-16874 This study p3 5.5 2.1 

Extant Tragulus javanicus SMNS-16875 This study p3 5.7 2.1 

Extant Tragulus javanicus SMNS-16873 This study p3 5.9 1.9 

Extant Tragulus javanicus NMW-7595 This study p4 6.0 2.8 

Extant Tragulus javanicus NMW-7595 This study p4 6.2 2.6 

Extant Tragulus javanicus NHMW-40818 This study p4 5.5 3.0 

Extant Tragulus javanicus SMNS-16874 This study p4 5.3 2.4 

Extant Tragulus javanicus SMNS-16875 This study p4 4.9 2.7 

Extant Tragulus javanicus SMNS-16873 This study p4 6.5 2.9 

Extant Tragulus javanicus NMW-7595 This study m1 6.4 3.1 

Extant Tragulus javanicus NMW-7595 This study m1 6.7 3.0 

Extant Tragulus javanicus NHMW-40818 This study m1 5.4 3,.8 

Extant Tragulus javanicus SMNS-16874 This study m1 4.7 3.2 

Extant Tragulus javanicus SMNS-16875 This study m1 4.7 3.3 

Extant Tragulus javanicus SMNS-16873 This study m1 5.0 3.6 

Extant Tragulus javanicus NMW-7595 This study m2 6.2 3.8 

Extant Tragulus javanicus NMW-7595 This study m2 6.4 3.7 

Extant Tragulus javanicus NHMW-40818 This study m2 6.6 5.1 

Extant Tragulus javanicus SMNS-16874 This study m2 6.2 3.8 

Extant Tragulus javanicus SMNS-16875 This study m2 6.4 4.2 

Extant Tragulus javanicus SMNS-16873 This study m2 5.8 3.9 

Extant Tragulus javanicus NMW-7595 This study m3 8.6 3.9 

Extant Tragulus javanicus NMW-7595 This study m3 8.7 4.0 

Extant Tragulus javanicus NHMW-40818 This study m3 9.6 5.3 

Extant Tragulus javanicus SMNS-16875 This study m3 8.9 4.2 

Extant Tragulus javanicus SMNS-16876 This study m3 8.7 3.5 

Extant Tragulus javanicus SMNS-16873 This study m3 7.9 4.2 

Extant Tragulus kanchil NHMB-C3795 This study p2 5.3 1.7 

Extant Tragulus kanchil NHMB-C3735 This study p2 4.6 2.0 

Extant Tragulus kanchil NHMB-3002 This study p2 5.1 1.9 

Extant Tragulus kanchil NHMB-C1891 This study p2 5.5 2.1 

Extant Tragulus kanchil NHMB-C3808 This study p2 4.4 1.7 

Extant Tragulus kanchil NHMB-C3802 This study p2 5.2 1.9 

Extant Tragulus kanchil NHMB-C3803 This study p2 4.7 1.8 

Extant Tragulus kanchil NHMB-C3798  This study p2 5.0 1.9 

Extant Tragulus kanchil NHMB-C3791 This study p2 5.3 1.9 

Extant Tragulus kanchil NHMB-C3804 This study p2 4.1 1.8 

Extant Tragulus kanchil NHMB-C3797 This study p2 5.6 2.0 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study p2 4.4 1.7 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study p2 4.3 1.7 

Extant Tragulus kanchil NHMW-1473 This study p2 5.3 2.1 

Extant Tragulus kanchil NHMB-C3795 This study p3 6.4 2.3 
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Extant Tragulus kanchil NHMB-C3735 This study p3 5.3 2.3 

Extant Tragulus kanchil NHMB-3002 This study p3 6.0 2.3 

Extant Tragulus kanchil NHMB-C1891 This study p3 6.1 2.5 

Extant Tragulus kanchil NHMB-C3808 This study p3 5.2 2.0 

Extant Tragulus kanchil NHMB-C3802 This study p3 6.2 2.4 

Extant Tragulus kanchil NHMB-C3803 This study p3 5.6 2.1 

Extant Tragulus kanchil NHMB-C3798  This study p3 5.6 2.2 

Extant Tragulus kanchil NHMB-C3791 This study p3 6.4 2.4 

Extant Tragulus kanchil NHMB-C3804 This study p3 5.5 2.2 

Extant Tragulus kanchil NHMB-C3797 This study p3 6.2 2.4 

Extant Tragulus kanchil NHMW-1473 This study p3 6.4 2.3 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study p3 5.2 2.0 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study p3 5.2 2.0 

Extant Tragulus kanchil NHMB-C3806 This study p3 5.7 1.9 

Extant Tragulus kanchil NHMB-C3809 This study p3 6.0 2.1 

Extant Tragulus kanchil NHMW-1473 This study p3 6.5 2.2 

Extant Tragulus kanchil NHMB-C3795 This study p4 5.0 2.6 

Extant Tragulus kanchil NHMB-C3735 This study p4 5.5 2.6 

Extant Tragulus kanchil NHMB-3002 This study p4 5.4 2.5 

Extant Tragulus kanchil NHMB-C1891 This study p4 5.4 2.7 

Extant Tragulus kanchil NHMB-C3818 This study p4 6.3 2.8 

Extant Tragulus kanchil NHMB-C3808 This study p4 5.3 2.5 

Extant Tragulus kanchil NHMB-C3809 This study p4 7.0 2.4 

Extant Tragulus kanchil NHMB-C3802 This study p4 4.9 2.8 

Extant Tragulus kanchil NHMB-C3803 This study p4 5.3 2.5 

Extant Tragulus kanchil NHMB-C3798  This study p4 4.6 2.5 

Extant Tragulus kanchil NHMB-C3791 This study p4 4.9 3.0 

Extant Tragulus kanchil NHMB-C3804 This study p4 5.2 2.5 

Extant Tragulus kanchil NHMB-C3797 This study p4 5.6 2.6 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study p4 5.3 2.4 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study p4 5.3 2.6 

Extant Tragulus kanchil NHMB-C3806 This study p4 6.4 2.8 

Extant Tragulus kanchil NHMW-1473 This study p4 5.5 2.7 

Extant Tragulus kanchil NHMB-C3795 This study m1 5.5 3.3 

Extant Tragulus kanchil NHMB-C3735 This study m1 4.4 3.0 

Extant Tragulus kanchil NHMB-3002 This study m1 4.9 3.3 

Extant Tragulus kanchil NHMB-C1891 This study m1 5.4 3.9 

Extant Tragulus kanchil NHMB-C3818 This study m1 5.1 3.3 

Extant Tragulus kanchil NHMB-C3808 This study m1 4.5 3.3 

Extant Tragulus kanchil NHMB-C3809 This study m1 5.4 3.5 

Extant Tragulus kanchil NHMB-C3802 This study m1 4.8 3.4 

Extant Tragulus kanchil NHMB-C3803 This study m1 4.8 3.3 

Extant Tragulus kanchil NHMB-C3791 This study m1 5.6 3.4 

Extant Tragulus kanchil NHMB-C3804 This study m1 4.1 2.8 

Extant Tragulus kanchil NHMB-C3797 This study m1 4.9 3.4 
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Extant Tragulus kanchil NHMW-1473 This study m1 5.3 3.0 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study m1 4.5 2.7 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study m1 4.7 2.8 

Extant Tragulus kanchil NHMB-C3806 This study m1 5.8 3.7 

Extant Tragulus kanchil NHMW-1473 This study m1 6.0 3.1 

Extant Tragulus kanchil NHMB-C3795 This study m2 5.7 4.2 

Extant Tragulus kanchil NHMB-C3735 This study m2 5.4 4.0 

Extant Tragulus kanchil NHMB-3002 This study m2 5.1 4.4 

Extant Tragulus kanchil NHMB-C1891 This study m2 5.9 4.9 

Extant Tragulus kanchil NHMB-C3818 This study m2 6.2 4.0 

Extant Tragulus kanchil NHMB-C3808 This study m2 6.2 4.0 

Extant Tragulus kanchil NHMB-C3809 This study m2 6.6 4.0 

Extant Tragulus kanchil NHMB-C3802 This study m2 5.4 4.3 

Extant Tragulus kanchil NHMB-C3803 This study m2 6.2 4.4 

Extant Tragulus kanchil NHMB-C3798  This study m2 5.3 4.3 

Extant Tragulus kanchil NHMB-C3791 This study m2 6.1 4.4 

Extant Tragulus kanchil NHMB-C3804 This study m2 5.8 4.6 

Extant Tragulus kanchil NHMB-C3797 This study m2 6.1 4.1 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study m2 6.3 3.6 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study m2 6.3 3.4 

Extant Tragulus kanchil NHMB-C3806 This study m2 6.3 3.8 

Extant Tragulus kanchil NHMW-1473 This study m2 7.0 4.0 

Extant Tragulus kanchil NHMW-1473 This study m2 7.0 4.0 

Extant Tragulus kanchil NHMB-C3795 This study m3 8.6 4.2 

Extant Tragulus kanchil NHMB-C3735 This study m3 9.1 4.2 

Extant Tragulus kanchil NHMB-3002 This study m3 8.3 4.1 

Extant Tragulus kanchil NHMB-C1891 This study m3 8.9 4.6 

Extant Tragulus kanchil NHMB-C3818 This study m3 7.8 3.9 

Extant Tragulus kanchil NHMB-C3802 This study m3 8.5 4.4 

Extant Tragulus kanchil NHMB-C3803 This study m3 8.7 4.5 

Extant Tragulus kanchil NHMB-C3798  This study m3 8.7 4.3 

Extant Tragulus kanchil NHMB-C3791 This study m3 8.1 4.1 

Extant Tragulus kanchil NHMB-C3804 This study m3 8.7 4.6 

Extant Tragulus kanchil NHMB-C3809 This study m3 8.4 4.2 

Extant Tragulus kanchil NHMB-C3797 This study m3 8.4 4.5 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study m3 8.5 4.1 

Extant Tragulus kanchil SNSB-BSPG 1977 I 185 This study m3 8.4 4.1 

Extant Tragulus kanchil NHMW-1473 This study m3 9.7 4.3 

Extant Tragulus kanchil NHMW-1473 This study m3 10.2 4.1 

Extant Tragulus napu NHMB-10085 This study p2 6.1 2.2 

Extant Tragulus napu NHMW-40378 This study p2 6.3 2.2 

Extant Tragulus napu NHMW-5001 This study p2 6.7 2.2 

Extant Tragulus napu NHMW-1923 This study p2 6.2 2.1 

Extant Tragulus napu NHMB-i 0007 This study p2 6.7 2.3 

Extant Tragulus napu NHMW-40378 This study p2 6.3 2.2 
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Extant Tragulus napu NHMB-10085 This study p3 6.3 2.6 

Extant Tragulus napu NHMB-C2950 This study p3 7.3 3.0 

Extant Tragulus napu UMZC-H. 14.976 This study p3 7.3 3.0 

Extant Tragulus napu NHMW-5001 This study p3 7.2 2.5 

Extant Tragulus napu NHMW-B6014 This study p3 7.1 2.8 

Extant Tragulus napu NHMW-1923 This study p3 7.1 2.4 

Extant Tragulus napu NHMB-i 0007 This study p3 7.2 2.8 

Extant Tragulus napu NHMW-40826 This study p3 6.4 2.6 

Extant Tragulus napu NHMW-B6014 This study p3 7.1 2.8 

Extant Tragulus napu NHMB-10085 This study p4 5.7 3.2 

Extant Tragulus napu NHMB-C2950 This study p4 6.5 3.5 

Extant Tragulus napu NHMW-5001 This study p4 6.0 3.4 

Extant Tragulus napu NHMW-B6014 This study p4 6.1 3.2 

Extant Tragulus napu NHMW-1923 This study p4 6.4 3.2 

Extant Tragulus napu NHMW-40826 This study p4 6.3 3.1 

Extant Tragulus napu NHMW-B6014 This study p4 6.1 3.2 

Extant Tragulus napu NHMB-10085 This study m1 5.4 3.9 

Extant Tragulus napu NHMB-C2950 This study m1 6.1 3.9 

Extant Tragulus napu UMZC-H. 14.976 This study m1 7.3 4.3 

Extant Tragulus napu UMZC-H. 14.976 This study m1 7.4 4.2 

Extant Tragulus napu NHMW-40378 This study m1 6.3 4.6 

Extant Tragulus napu NHMW-5001 This study m1 5.9 4.1 

Extant Tragulus napu NHMW-B6014 This study m1 6.5 4.1 

Extant Tragulus napu NHMW-1923 This study m1 6.3 4.4 

Extant Tragulus napu NHMB-i 0007 This study m1 6.3 4.1 

Extant Tragulus napu NHMW-40826 This study m1 6.9 3.8 

Extant Tragulus napu NHMW 40378 This study m1 6.3 4.5 

Extant Tragulus napu NHMW-B6014 This study m1 6.5 4.0 

Extant Tragulus napu NHMB-10085 This study m2 6.7 5.0 

Extant Tragulus napu NHMB-C2950 This study m2 6.6 4.7 

Extant Tragulus napu UMZC-H. 14.976 This study m2 7.9 5.6 

Extant Tragulus napu UMZC-H. 14.976 This study m2 7.9 5.5 

Extant Tragulus napu NHMW-5001 This study m2 7.3 4.7 

Extant Tragulus napu NHMW-B6014 This study m2 6.5 4.9 

Extant Tragulus napu NHMW-1923 This study m2 6.9 5.3 

Extant Tragulus napu NHMB-i 0007 This study m2 6.9 5.3 

Extant Tragulus napu NHMW-40826 This study m2 7.1 4.5 

Extant Tragulus napu NHMW-B6014 This study m2 6.5 4.5 

Extant Tragulus napu NHMB-10085 This study m3 9.2 4.9 

Extant Tragulus napu NHMB-C2950 This study m3 9.4 5.0 

Extant Tragulus napu UMZC-H. 14.976 This study m3 1.,0 5.5 

Extant Tragulus napu UMZC-H. 14.976 This study m3 1.,4 5.6 

Extant Tragulus napu NHMW-5001 This study m3 9.8 4.7 

Extant Tragulus napu NHMW-B6014 This study m3 9.9 4.9 

Extant Tragulus napu NHMW-1923 This study m3 9.9 5.0 
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Extant Tragulus napu NHMW-40826 This study m3 9.8 5.2 

Extant Tragulus napu NHMW-B6014 This study m3 9.9 4.8 

Extant Tragulus napu NHMB-i 0007 This study m3 10.3 5.5 

Extant Tragulus nigricans NHMB-8672 This study p2 5.7 1.9 

Extant Tragulus nigricans NHMB-8672 This study p3 6.5 2.3 

Extant Tragulus nigricans NHMB-8672 This study m1 5.7 3.9 

Extant Tragulus nigricans NHMB-8672 This study m2 6.3 5.0 

Fossil Yunannotherium  simplex V 8134.1 Han Defen (1986) p2 7.0 2.6 

Fossil Yunannotherium  simplex V 8134.2 Han Defen (1986) p2 6.6 2.4 

Fossil Yunannotherium  simplex V 8134.1 Han Defen (1986) p3 7.6 2.8 

Fossil Yunannotherium  simplex V 8134.2 Han Defen (1986) p3 7.7 2.8 

Fossil Yunannotherium  simplex V 8134.3 Han Defen (1986) p3 6.7 2.8 

Fossil Yunannotherium  simplex V 8134.1 Han Defen (1986) p4 6.5 3.0 

Fossil Yunannotherium  simplex V 8134.2 Han Defen (1986) p4 5.3 3.0 

Fossil Yunannotherium  simplex V 8134.3 Han Defen (1986) p4 6.7 2.8 

Fossil Yunannotherium  simplex V 8134.15 Han Defen (1986) m1 7.0 4.2 

Fossil Yunannotherium  simplex V 8134.16 Han Defen (1986) m2 7.2 4.1 

Fossil Yunannotherium  simplex V 8134.17 Han Defen (1986) m2 7.8 4.3 

Fossil Yunannotherium  simplex V 8134.2 Han Defen (1986) m3 10.0 4.8 

Fossil Yunannotherium  simplex V 8134.7 Han Defen (1986) m3 9.9 5.0 

Fossil Yunannotherium  simplex V 8134.8 Han Defen (1986) m3 10.0 5.0 

Fossil Yunannotherium  simplex V 8134.9 Han Defen (1986) m3 9.0 4.3 

Fossil Yunannotherium  simplex V 8134.10 Han Defen (1986) m3 10.9 4.9 

Fossil Yunannotherium  simplex V 8134.11 Han Defen (1986) m3 9.9 4.8 

Fossil Yunannotherium  simplex V 8134.12 Han Defen (1986) m3 10.0 4.6 

Fossil Yunannotherium  simplex V 8134.13 Han Defen (1986) m3 10.2 5,0 

Fossil Afrotragulus moruorotensis Mor 1'2000 Pickford (2001a) M2 4.0 4,3 

Fossil Afrotragulus moruorotensis Mor 1'2000 Pickford (2001a) M3 4.6 4,0 

Fossil Afrotragulus parvus 1164.50  R.I. Whitworth (1958) P2 5.5 2.5 

Fossil Afrotragulus parvus 1164.50  R.I. Whitworth (1958) P3 5.5 3.2 

Fossil Afrotragulus parvus 694.51 Whitworth (1958) P4 5.6 5.4 

Fossil Afrotragulus parvus BMNH-M82686 Sánchez et al. (2010) M1 5.1 4.5 

Fossil Afrotragulus parvus 490.49 R.3A Whitworth (1958) M1 5.2 5.2 

Fossil Afrotragulus parvus 996.50 R.I. Whitworth (1958) M1 5.6 5.6 

Fossil Afrotragulus parvus 1164.50  R.I. Whitworth (1958) M1 5.1 5.2 

Fossil Afrotragulus parvus 1658.50 Whitworth (1958) M1 5.7 6.0 

Fossil Afrotragulus parvus 751.52 Whitworth (1958) M1 6.0 6.8 

Fossil Afrotragulus parvus BMNH-M82686 Sánchez et al. (2010) M2 5.6 5.6 

Fossil Afrotragulus parvus 505.47 R.I.A Whitworth (1958) M2 6.1 7.0 

Fossil Afrotragulus parvus 490.49 R.3A Whitworth (1958) M2 5.5 6.0 

Fossil Afrotragulus parvus 891.50  R.I. Whitworth (1958) M2 7.0 6.7 

Fossil Afrotragulus parvus 996.50 R.I. Whitworth (1958) M2 6.7 6.2 

Fossil Afrotragulus parvus 1164.50  R.I. Whitworth (1958) M2 7.0 6.1 

Fossil Afrotragulus parvus 1658.50 Whitworth (1958) M2 6.0 7.1 

Fossil Afrotragulus parvus 751.52 Whitworth (1958) M2 7.4 8.0 
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Fossil Afrotragulus parvus 505.47 R.I.A Whitworth (1958) M3 6.1 6.8 

Fossil Afrotragulus parvus 891.50  R.I. Whitworth (1958) M3 6.1 6.8 

Fossil Afrotragulus parvus 996.50 R.I. Whitworth (1958) M3 6.1 6.5 

Fossil Afrotragulus parvus 1164.50  R.I. Whitworth (1958) M3 7.1 6.1 

Fossil Afrotragulus parvus 1658.50 Whitworth (1958) M3 6.1 7.3 

Fossil Afrotragulus parvus 751.52 Whitworth (1958) M3 7.3 8.0 

Fossil Dorcatherium guntianum SNSB-BSPG 1956 II 2554 This study m3 14.5 6.6 

Fossil Dorcatherium guntianum AMNH-29854 (1981 XVII 26) This study m3 12.7 5.7 

Fossil Dorcatherium guntianum NMA-411 This study P2 9.7 4.4 

Fossil Dorcatherium guntianum NMA-1633 This study P2 10.4 4.9 

Fossil Dorcatherium guntianum NMA-1633 This study P2 10.5 4.3 

Fossil Dorcatherium guntianum SNSP-BSPG 1881 IX 648b This study P3 8.8 5.0 

Fossil Dorcatherium guntianum NMA-800 This study P3 10.0 6.5 

Fossil Dorcatherium guntianum NMA-1995 This study P3 10.8 4.8 

Fossil Dorcatherium guntianum NMA-2005/67/1633 This study P4 8.2 9.7 

Fossil Dorcatherium guntianum NMA-1415 This study P4 8.3 8.9 

Fossil Dorcatherium guntianum SNSP-BSPG 1881 IX 648a This study P4 7.9 8.1 

Fossil Dorcatherium guntianum MNA-1747 This study M1 8.0 9.5 

Fossil Dorcatherium guntianum NMA-1995 This study M1 8.5 9.1 

Fossil Dorcatherium guntianum NMA-1633 This study M1 8.6 9.7 

Fossil Dorcatherium guntianum NMA-1995 This study M1 8.7 9.2 

Fossil Dorcatherium guntianum SNSP-BSPG 1881 IX 647 This study M1 8.7 9.5 

Fossil Dorcatherium guntianum GB-1407 This study M1 8.6 9.4 

Fossil Dorcatherium guntianum MNA-85.46 This study M2 8.4 9.0 

Fossil Dorcatherium guntianum NMA-1/148 This study M2 9.0 11.4 

Fossil Dorcatherium guntianum NMA-1995 This study M2 9.4 10.7 

Fossil Dorcatherium guntianum NMA-1633 This study M2 9.5 10.7 

Fossil Dorcatherium guntianum SNSP-BSPG 1881 IX 47i This study M2 9.8 10.9 

Fossil Dorcatherium guntianum NMA-1995 This study M2 9.9 10.0 

Fossil Dorcatherium guntianum MNA-1747 This study M2 9.9 10.9 

Fossil Dorcatherium guntianum SNSP-BSPG 1881 IX 732 This study M2 9.9 10.5 

Fossil Dorcatherium guntianum MNA-85.46 This study M3 8.8 9.6 

Fossil Dorcatherium guntianum NMA-1633 This study M3 10.0 11.8 

Fossil Dorcatherium guntianum NMA-1995 This study M3 10.2 11.5 

Fossil Dorcatherium guntianum NMA-1995 This study M3 10.3 11.2 

Fossil Dorcatherium guntianum MNA-1747 This study M3 10.3 11.8 

Fossil Dorcatherium guntianum NMA-1/148 This study M3 10.6 12.3 

Fossil Dorcatherium minimus H-GSP-1983 West (1980) M3 5.1 5.5 

Fossil Dorcatherium nagrii VPL/AS/H/100 Gaur (1992) P4 6.0 5.8 

Fossil Dorcatherium nagrii GSI-18081 Prasad (1970) M1 6.5 6.1 

Fossil Dorcatherium nagrii GSI-K47.759 Prasad (1970) M1 6.5 6.4 

Fossil Dorcatherium nagrii GSI-K47.794 Prasad (1970) M1 7.0 7.0 

Fossil Dorcatherium nagrii GSI-K50.981 Prasad (1970) M1 6.5 6.5 

Fossil Dorcatherium nagrii HT-64-81 Sankhyan (1982) M1 6.0 6.0 

Fossil Dorcatherium nagrii VPL/AS/H/100 Gaur (1992) M1 6.3 6.7 



Appendix Chapter 2 

[203] 

 

Fossil Dorcatherium nagrii VPL/AS/H/103 Gaur (1992) M1 6.2 6.6 

Fossil Dorcatherium nagrii GSI-18081 Prasad (1970) M2 7.5 6.2 

Fossil Dorcatherium nagrii GSI-K47.759 Prasad (1970) M2 7.0 7.0 

Fossil Dorcatherium nagrii GSI-K47.794 Prasad (1970) M2 7.5 7.2 

Fossil Dorcatherium nagrii GSI-K50.981 Prasad (1970) M2 7.0 6.2 

Fossil Dorcatherium nagrii HT-39-81 Sankhyan (1982) M2 7.0 6.0 

Fossil Dorcatherium nagrii HT-64-81 Sankhyan (1982) M2 7.0 6.5 

Fossil Dorcatherium nagrii VPL/AS/H/100 Gaur (1992) M2 7.5 8.0 

Fossil Dorcatherium nagrii VPL/AS/H/103 Gaur (1992) M2 7.5 7.9 

Fossil Dorcatherium nagrii GSI-18081 Prasad (1970) M3 7.1 7.0 

Fossil Dorcatherium nagrii VPL/AS/H/100 Gaur (1992) M3 8.0 8.4 

Fossil Dorcatherium nagrii VPL/AS/H/103 Gaur (1992) M3 8.0 8.9 

Fossil Dorcatherium nagrii VPL/AS/H/104 Gaur (1992) M3 8.0 8.9 

Fossil Dorcatherium pigotti 1897.50 R.3A Whitworth (1958) P3 8.0 5.1 

Fossil Dorcatherium pigotti Mb. 210 Whitworth (1958) P3 7.3 5.5 

Fossil Dorcatherium pigotti 791.50 R.104 Whitworth (1958) P4 7.0 7.5 

Fossil Dorcatherium pigotti 1897.50 R.3A Whitworth (1958) P4 6.7 7.8 

Fossil Dorcatherium pigotti 302.51 R.3 Whitworth (1958) P4 7.0 8.0 

Fossil Dorcatherium pigotti 747.52 R12 Whitworth (1958) P4 6.5 7.5 

Fossil Dorcatherium pigotti Mb. 210 Whitworth (1958) P4 6.2 6.8 

Fossil Dorcatherium pigotti 331.47 R.IA Whitworth (1958) M1 8.1 9.6 

Fossil Dorcatherium pigotti 791.50 R.104 Whitworth (1958) M1 8.0 9.0 

Fossil Dorcatherium pigotti 1895.50 R.3A Whitworth (1958) M1 7.5 8.7 

Fossil Dorcatherium pigotti 302.51 R.3 Whitworth (1958) M1 7.8 9.0 

Fossil Dorcatherium pigotti 747.52 R12 Whitworth (1958) M1 7.9 8.6 

Fossil Dorcatherium pigotti 331.47 R.IA Whitworth (1958) M2 9.0 10.8 

Fossil Dorcatherium pigotti 791.50 R.104 Whitworth (1958) M2 9.0 11.0 

Fossil Dorcatherium pigotti 1895.50 R.3A Whitworth (1958) M2 8.8 10.0 

Fossil Dorcatherium pigotti 302.51 R.3 Whitworth (1958) M2 9.0 10.0 

Fossil Dorcatherium pigotti 747.52 R12 Whitworth (1958) M2 9.0 10.0 

Fossil Dorcatherium pigotti Mb. 210 Whitworth (1958) M2 7.6 9.4 

Fossil Dorcatherium pigotti 331.47 R.IA Whitworth (1958) M3 9.6 11.5 

Fossil Dorcatherium pigotti 1895.50 R.3A Whitworth (1958) M3 9.0 10.2 

Fossil Dorcatherium pigotti 302.51 R.3 Whitworth (1958) M3 10.0 10.8 

Fossil Dorcatherium pigotti 747.52 R12 Whitworth (1958) M3 9.1 11.0 

Fossil Dorcatherium pigotti Mb. 210 Whitworth (1958) M3 8.0 9.0 

Extant Hyemoschus aquaticus NHMW-5407 This study P2 9.5 4.4 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study P2 9.9 4.1 

Extant Hyemoschus aquaticus SMNS-1842 This study P2 9.8 3.8 

Extant Hyemoschus aquaticus NHMB-8699 This study P2 8.8 4.1 

Extant Hyemoschus aquaticus NHMW-5407 This study P3 8.2 4.9 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study P3 8.0 4.8 

Extant Hyemoschus aquaticus SMNS-1842 This study P3 9.5 5.6 

Extant Hyemoschus aquaticus NHMB-2692 This study P3 8.6 5.8 

Extant Hyemoschus aquaticus NHMB-8699 This study P3 8.9 7.6 
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Extant Hyemoschus aquaticus NHMB-LXX4 This study P3 10.0 7.2 

Extant Hyemoschus aquaticus NHMW-5407 This study P4 6.8 7.3 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study P4 7.1 7.0 

Extant Hyemoschus aquaticus SMNS-1842 This study P4 8.0 7.9 

Extant Hyemoschus aquaticus NHMB-8699 This study P4 6.8 6.8 

Extant Hyemoschus aquaticus NHMB-LXX4 This study P4 8.8 8.4 

Extant Hyemoschus aquaticus NHMW-5407 This study M1 8.5 9.4 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study M1 8.4 8.8 

Extant Hyemoschus aquaticus SMNS-1842 This study M1 8.8 9.9 

Extant Hyemoschus aquaticus NHMB-2692 This study M1 8.3 9.4 

Extant Hyemoschus aquaticus NHMB-8699 This study M1 7.5 9.3 

Extant Hyemoschus aquaticus NHMB-LXX4 This study M1 8.8 9.6 

Extant Hyemoschus aquaticus NHMW-5407 This study M2 9.7 10.7 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study M2 9.7 10.6 

Extant Hyemoschus aquaticus SMNS-1842 This study M2 10.0 10.8 

Extant Hyemoschus aquaticus NHMB-2692 This study M2 9.6 11.0 

Extant Hyemoschus aquaticus NHMB-8699 This study M2 9.2 11.2 

Extant Hyemoschus aquaticus NHMW-5407 This study M3 10.0 11.0 

Extant Hyemoschus aquaticus NHMW-40827/Gr.290 This study M3 10.2 10.5 

Extant Hyemoschus aquaticus NHMB-2692 This study M3 10.0 12.0 

Extant Hyemoschus aquaticus NHMB-8699 This study M3 10.0 10.9 

Extant Hyemoschus aquaticus NHMB-LXX4 This study M3 10.2 11.2 

Fossil Iberomeryx minor ITD-912 Sudre (1984) P2 4.3 2.0 

Fossil Iberomeryx minor ITD-912 Sudre (1984) P3 4.2 3.0 

Fossil Iberomeryx minor MGB-1182 Sudre (1984) P4 4.0 4.8 

Fossil Iberomeryx minor ITD-907 Sudre (1984) M1 4.5 5.2 

Fossil Iberomeryx minor ITD-910 Sudre (1984) M1 4.7 5.4 

Fossil Iberomeryx minor ITD-911 Sudre (1984) M1 5.2 6.1 

Fossil Iberomeryx minor ROQ 2-333 Sudre (1984) M1 4.8 5.0 

Fossil Iberomeryx minor PLA 2-1160 Sudre (1984) M1 5.5 6.0 

Fossil Iberomeryx minor MGB-1182 Sudre (1984) M1 5.0 5.6 

Fossil Iberomeryx minor ITD-910 Sudre (1984) M2 5.5 6.2 

Fossil Iberomeryx minor ITD-911 Sudre (1984) M2 6.0 6.1 

Fossil Iberomeryx minor QB 296 Sudre (1984) M2 5.8 6.4 

Fossil Iberomeryx minor ROQ 2-331 Sudre (1984) M2 6.0 6.9 

Fossil Iberomeryx minor ROQ 2-333 Sudre (1984) M2 5.9 6.0 

Fossil Iberomeryx minor MGB-1182 Sudre (1984) M2 5.3 6.6 

Fossil Iberomeryx minor ITD-910 Sudre (1984) M3 5.7 6.7 

Fossil Iberomeryx minor ITD-911 Sudre (1984) M3 6.1 6.8 

Fossil Iberomeryx minor ROQ 2-333 Sudre (1984) M3 6.2 6.3 

Fossil Iberomeryx minor MGB-1182 Sudre (1984) M3 5.8 6.6 

Fossil Iberomeryx parvus GK3-4 Métais et al. (2016) P2 6.3 3.7 

Fossil Iberomeryx parvus GK3-5 Métais et al. (2016) P4 3.8 4.4 

Fossil Iberomeryx parvus GK2-4 Métais et al. (2016) M1 5.3 5.2 

Fossil Iberomeryx parvus KZ-7 Métais et al. (2016) M1 5.4 5.1 
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Fossil Iberomeryx parvus 641-13 Métais et al. (2016) M1 5.3 5.5 

Fossil Iberomeryx parvus GK3-31 Métais et al. (2016) M2 6.4 6.8 

Fossil Iberomeryx parvus 641-12 Métais et al. (2016) M2 6.3 6.2 

Extant Moschiola indica ZMH-4772 This study P2 9.0 3.9 

Extant Moschiola indica ZMH-4771 This study P3 6.9 4.1 

Extant Moschiola indica ZMH-4771 This study P3 7.3 4.2 

Extant Moschiola indica ZMH-4772 This study P3 8.0 4.6 

Extant Moschiola indica ZMH-4771 This study P4 5.5 6.0 

Extant Moschiola indica ZMH-4771 This study P4 6.0 6.0 

Extant Moschiola indica ZMH-4772 This study P4 6.8 6.6 

Extant Moschiola indica ZMH-4793 This study M1 6.7 6.5 

Extant Moschiola indica ZMH-4793 This study M1 6.9 6.5 

Extant Moschiola indica ZMH-4773 This study M1 6.9 6.8 

Extant Moschiola indica ZMH-4773 This study M1 7.0 7.0 

Extant Moschiola indica ZMH-4771 This study M1 7.9 7.3 

Extant Moschiola indica ZMH-4771 This study M1 7.3 7.2 

Extant Moschiola indica ZMH-4770  This study M1 7.3 6.9 

Extant Moschiola indica ZMH-4770  This study M1 7.5 6.7 

Extant Moschiola indica ZMH-4772 This study M1 7.7 7.6 

Extant Moschiola indica ZMH-4793 This study M2 7.2 7.6 

Extant Moschiola indica ZMH-4771 This study M2 7.5 7.3 

Extant Moschiola indica ZMH-4793 This study M2 7.6 7.7 

Extant Moschiola indica ZMH-4771 This study M2 8.0 7.5 

Extant Moschiola indica ZMH-4770  This study M2 8.0 7.5 

Extant Moschiola indica ZMH-4772 This study M2 8.4 8.9 

Extant Moschiola indica ZMH-4771 This study M3 7.1 7.9 

Extant Moschiola indica ZMH-4771 This study M3 7.1 8.0 

Extant Moschiola indica ZMH-4772 This study M3 7.8 8.3 

Extant Moschiola meminna MCNM-nn This study P2 7.0 2.5 

Extant Moschiola meminna NHMW-B6016 This study P2 6.3 2.3 

Extant Moschiola meminna NHMB-C1366 This study P2 7.4 2.7 

Extant Moschiola meminna NHMB-C2453 This study P2 7.2 2.7 

Extant Moschiola meminna NHMB-C2588 This study P2 7.2 3.1 

Extant Moschiola meminna NHMB-C1429 This study P2 7.1 2.9 

Extant Moschiola meminna MCNM-nn This study P3 6.3 3.6 

Extant Moschiola meminna MCNM-nn This study P3 7.0 4.1 

Extant Moschiola meminna NHMW-B6016 This study P3 6.0 3.4 

Extant Moschiola meminna NHMB-C1366 This study P3 7.1 3.6 

Extant Moschiola meminna NHMB-C2453 This study P3 6.7 4.1 

Extant Moschiola meminna NHMB-C2588 This study P3 5.9 3.9 

Extant Moschiola meminna NHMB-C1429 This study P3 6.4 3.7 

Extant Moschiola meminna MCNM-nn This study P4 5.4 6.3 

Extant Moschiola meminna MCNM-nn This study P4 6.9 6.1 

Extant Moschiola meminna NHMW-B6016 This study P4 4.8 6.0 

Extant Moschiola meminna NHMB-C1366 This study P4 5.4 6.0 
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Extant Moschiola meminna NHMB-C2453 This study P4 5.1 5.4 

Extant Moschiola meminna NHMB-C2588 This study P4 4.7 5.4 

Extant Moschiola meminna NHMB-C1429 This study P4 5.4 5.6 

Extant Moschiola meminna NHMB-2328 This study P4 5.7 5.6 

Extant Moschiola meminna ZMH-4791 This study M1 7.4 7.0 

Extant Moschiola meminna ZMH-4791 This study M1 8.0 7.2 

Extant Moschiola meminna NHMB-C1366 This study M1 6.2 6.6 

Extant Moschiola meminna NHMB-C2453 This study M1 6.0 6.7 

Extant Moschiola meminna NHMB-C2588 This study M1 6.5 6.9 

Extant Moschiola meminna NHMB-C1429 This study M1 6.1 6.7 

Extant Moschiola meminna NHMB-2328 This study M1 6.7 7.1 

Extant Moschiola meminna ZMH-4791 This study M2 7.6 7.6 

Extant Moschiola meminna ZMH-4791 This study M2 7.7 7.7 

Extant Moschiola meminna MCNM-nn This study M2 8.1 8.2 

Extant Moschiola meminna MCNM-nn This study M2 8.3 8.4 

Extant Moschiola meminna NHMW-B6016 This study M2 6.6 8.0 

Extant Moschiola meminna NHMB-C1366 This study M2 7.3 7.0 

Extant Moschiola meminna NHMB-C2453 This study M2 7.1 7.8 

Extant Moschiola meminna NHMB-C2588 This study M2 7.2 7.1 

Extant Moschiola meminna NHMB-C1429 This study M2 6.5 7.4 

Extant Moschiola meminna NHMB-2328 This study M2 7.1 6.6 

Extant Moschiola meminna MCNM-nn This study M3 7.8 8.5 

Extant Moschiola meminna MCNM-nn This study M3 7.8 8.2 

Extant Moschiola meminna NHMW-B6016 This study M3 7.3 8.6 

Extant Moschiola meminna NHMB-C1366 This study M3 7.0 6.0 

Extant Moschiola meminna NHMB-C2453 This study M3 7.4 8.1 

Extant Moschiola meminna NHMB-C2588 This study M3 6.6 7.8 

Extant Moschiola meminna NHMB-C1429 This study M3 6.8 7.0 

Extant Moschiola meminna NHMB-2328 This study M3 5.6 5.6 

Fossil Siamotragulus bugtiensis PAK-2498 Ginsburg et al. (2001) M2 9.3 10.0 

Fossil Siamotragulus bugtiensis PAK-2497 Ginsburg et al. (2001) M2 9.7 10.3 

Fossil Siamotragulus bugtiensis PAK-2499 Ginsburg et al. (2001) M3 9.0 9.8 

Fossil Siamotragulus bugtiensis PAK-2498 Ginsburg et al. (2001) M3 8.9 10.6 

Fossil Siamotragulus bugtiensis PAK-2495 Ginsburg et al. (2001) M3 8.6 10.1 

Fossil Siamotragulus bugtiensis PAK-2500 Ginsburg et al. (2001) M3 9.0 10.0 

Fossil Siamotragulus bugtiensis PAK-2484 Ginsburg et al. (2001) M3 9.0 9.8 

Fossil Siamotragulus bugtiensis PAK-2492 Ginsburg et al. (2001) M3 9.0 10.0 

Fossil Siamotragulus sanyathanai PG2 Thomas et al. (1990) P2 9.0 nd 

Fossil Siamotragulus sanyathanai PG2 Thomas et al. (1990) P3 9.1 nd 

Fossil Siamotragulus sanyathanai PG2 Thomas et al. (1990) P4 6.2 nd 

Fossil Siamotragulus sanyathanai PG2 Thomas et al. (1990) M1 7.2 nd 

Fossil Siamotragulus sanyathanai PG2 Thomas et al. (1990) M2 9.2 nd 

Fossil Siamotragulus sanyathanai PG2 Thomas et al. (1990) M3 9.7 nd 

Fossil Siamotragulus songhorensis 763.52 Whitworth (1958) P3 8.7 5.0 

Fossil Siamotragulus songhorensis Nap V 64 Pickford (2002) P3 6.5 5.0 
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Fossil Siamotragulus songhorensis 107.48 Whitworth (1958) M1 7.1 6.5 

Fossil Siamotragulus songhorensis 761.52 Whitworth (1958) M1 6.0 6.2 

Fossil Siamotragulus songhorensis 762.52 Whitworth (1958) M1 7.5 7.6 

Fossil Siamotragulus songhorensis Nap IV 64 Pickford (2002) M1 7.0 7.0 

Fossil Siamotragulus songhorensis Nap V 62 Pickford (2002) M1 7.2 7.7 

Fossil Siamotragulus songhorensis 107.48 Whitworth (1958) M2 7.7 7.7 

Fossil Siamotragulus songhorensis 316.49 Whitworth (1958) M2 7.1 7.6 

Fossil Siamotragulus songhorensis 761.52 Whitworth (1958) M2 7.3 8.1 

Fossil Siamotragulus songhorensis 762.52 Whitworth (1958) M2 8.1 8.1 

Fossil Siamotragulus songhorensis Nap V 15 Pickford (2002) M2 7.6 8.1 

Fossil Siamotragulus songhorensis nn Pickford (2002) M2 7.7 7.9 

Fossil Siamotragulus songhorensis Nap IV 64 Pickford (2002) M2 7.7 8.6 

Fossil Siamotragulus songhorensis Nap I 58 Pickford (2002) M2 7.9 7.6 

Fossil Siamotragulus songhorensis Nap V 64 Pickford (2002) M2 7.9 8.2 

Fossil Siamotragulus songhorensis Nap V 61 16 Pickford (2002) M2 7.9 7.8 

Fossil Siamotragulus songhorensis nn Pickford (2002) M2 8.0 7.7 

Fossil Siamotragulus songhorensis Nap V Aug 62 Pickford (2002) M2 8.2 7.8 

Fossil Siamotragulus songhorensis Nap V 64 Pickford (2002) M2 8.3 8.4 

Fossil Siamotragulus songhorensis 107.48 Whitworth (1958) M3 8.1 8.0 

Fossil Siamotragulus songhorensis 316.49 Whitworth (1958) M3 7.1 7.3 

Fossil Siamotragulus songhorensis 761.52 Whitworth (1958) M3 8.3 9.0 

Fossil Siamotragulus songhorensis Nap I 58 Pickford (2002) M3 8.2 8.7 

Fossil Siamotragulus songhorensis Nap V 64 Pickford (2002) M3 8.2 8.8 

Fossil Siamotragulus songhorensis Nap V Aug 62 Pickford (2002) M3 8.2 8.9 

Fossil Siamotragulus songhorensis Nap I 61 16 Pickford (2002) M3 8.2 8.5 

Fossil Siamotragulus songhorensis nn Pickford (2002) M3 8.4 8.2 

Extant Tragulus javanicus UMZC-H.15.014 This study P2 5.6 2.2 

Extant Tragulus javanicus UMZC-H.15.014 This study P2 5.6 2.5 

Extant Tragulus javanicus NHMW-40818 This study P2 6.4 2.6 

Extant Tragulus javanicus SMNS-16874 This study P2 5.6 2.4 

Extant Tragulus javanicus SMNS-16875 This study P2 6.2 2.5 

Extant Tragulus javanicus SMNS-16876 This study P2 6.4 3.1 

Extant Tragulus javanicus UMZC-H.15.014 This study P3 5.3 3.1 

Extant Tragulus javanicus UMZC-H.15.014 This study P3 5.7 2.8 

Extant Tragulus javanicus NMW-7595 This study P3 6.0 2.8 

Extant Tragulus javanicus NMW-7595 This study P3 6.1 3.2 

Extant Tragulus javanicus NHMW-40818 This study P3 5.8 3.8 

Extant Tragulus javanicus SMNS-16874 This study P3 5.2 3.2 

Extant Tragulus javanicus SMNS-16875 This study P3 6.1 2.8 

Extant Tragulus javanicus SMNS-16876 This study P3 6.5 4.1 

Extant Tragulus javanicus SMNS-16873 This study P3 5.6 3.7 

Extant Tragulus javanicus UMZC-H.15.014 This study P4 4.0 4.1 

Extant Tragulus javanicus UMZC-H.15.014 This study P4 4.2 4.2 

Extant Tragulus javanicus NMW-7595 This study P4 4.6 4.4 

Extant Tragulus javanicus NMW-7595 This study P4 4.7 4.7 
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Extant Tragulus javanicus NHMW-40818 This study P4 4.7 5.1 

Extant Tragulus javanicus SMNS-16874 This study P4 4.1 4.9 

Extant Tragulus javanicus SMNS-16875 This study P4 5.0 4.5 

Extant Tragulus javanicus SMNS-16876 This study P4 4.8 5.0 

Extant Tragulus javanicus SMNS-16873 This study P4 4.7 4.4 

Extant Tragulus javanicus UMZC-H.15.014 This study M1 5.0 4.7 

Extant Tragulus javanicus MCNM-nn This study M1 5.2 4.8 

Extant Tragulus javanicus UMZC-H.15.014 This study M1 5.3 4.5 

Extant Tragulus javanicus NMW-7595 This study M1 5.3 4.8 

Extant Tragulus javanicus NMW-7595 This study M1 5.4 4.6 

Extant Tragulus javanicus MCNM-nn This study M1 5.6 4.7 

Extant Tragulus javanicus SMNS-16874 This study M1 4.4 5.1 

Extant Tragulus javanicus SMNS-16875 This study M1 5.5 5.5 

Extant Tragulus javanicus SMNS-16876 This study M1 6.2 5.6 

Extant Tragulus javanicus SMNS-16873 This study M1 5.0 5.7 

Extant Tragulus javanicus UMZC-H.15.014 This study M2 5.7 5.2 

Extant Tragulus javanicus MCNM-nn This study M2 5.8 5.6 

Extant Tragulus javanicus MCNM-nn This study M2 5.9 5.6 

Extant Tragulus javanicus UMZC-H.15.014 This study M2 6.0 6.8 

Extant Tragulus javanicus NMW-7595 This study M2 6.6 6.0 

Extant Tragulus javanicus NMW-7595 This study M2 6.6 6.2 

Extant Tragulus javanicus NHMW-40818 This study M2 6.0 7.3 

Extant Tragulus javanicus SMNS-16874 This study M2 5.7 6.6 

Extant Tragulus javanicus SMNS-16875 This study M2 5.5 7.0 

Extant Tragulus javanicus SMNS-16876 This study M2 7.4 7.6 

Extant Tragulus javanicus SMNS-16873 This study M2 6.3 5.8 

Extant Tragulus javanicus UMZC-H.15.014 This study M3 5.7 5.5 

Extant Tragulus javanicus UMZC-H.15.014 This study M3 5.9 5.6 

Extant Tragulus javanicus MCNM-nn This study M3 5.9 5.9 

Extant Tragulus javanicus MCNM-nn This study M3 6.1 5.9 

Extant Tragulus javanicus NMW-7595 This study M3 6.2 6.5 

Extant Tragulus javanicus NMW-7595 This study M3 6.5 6.6 

Extant Tragulus javanicus NHMW-40818 This study M3 6.7 7.7 

Extant Tragulus javanicus SMNS-16874 This study M3 6.4 7.3 

Extant Tragulus javanicus SMNS-16875 This study M3 6.7 7.1 

Extant Tragulus javanicus SMNS-16876 This study M3 7.4 7.2 

Extant Tragulus javanicus SMNS-16873 This study M3 6.7 5.4 

Extant Tragulus kanchil NHMB-C3795 This study P2 6.0 2.7 

Extant Tragulus kanchil NHMB-C3735 This study P2 5.6 2.4 

Extant Tragulus kanchil NHMB-10085 This study P2 6.8 2.8 

Extant Tragulus kanchil NHMB-3002 This study P2 6.2 2.7 

Extant Tragulus kanchil NHMB-C1891 This study P2 5.8 2.6 

Extant Tragulus kanchil NHMB-C3802 This study P2 6.1 2.7 

Extant Tragulus kanchil NHMB-C3803 This study P2 5.9 2.3 

Extant Tragulus kanchil NHMB-C3798  This study P2 5.8 2.7 
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Extant Tragulus kanchil NHMB-C3791 This study P2 6.4 2.7 

Extant Tragulus kanchil NHMB-C3804 This study P2 6.0 2.6 

Extant Tragulus kanchil NHMB-C3797 This study P2 6.9 2.8 

Extant Tragulus kanchil NHMW-1473 This study P2 6.8 2.8 

Extant Tragulus kanchil NHMW-1473 This study P2 7.0 2.5 

Extant Tragulus kanchil NHMB-C3795 This study P3 4.6 3.0 

Extant Tragulus kanchil NHMB-C3735 This study P3 5.6 2.8 

Extant Tragulus kanchil NHMB-10085 This study P3 6.6 3.8 

Extant Tragulus kanchil NHMB-3002 This study P3 5.4 3.4 

Extant Tragulus kanchil NHMB-C1891 This study P3 5.9 3.8 

Extant Tragulus kanchil NHMB-C3802 This study P3 5.4 3.6 

Extant Tragulus kanchil NHMB-C3798  This study P3 4.9 3.1 

Extant Tragulus kanchil NHMB-C3791 This study P3 6.3 3.2 

Extant Tragulus kanchil NHMB-C3804 This study P3 5.8 3.4 

Extant Tragulus kanchil NHMB-C3797 This study P3 6.2 3.6 

Extant Tragulus kanchil NHMW-1473 This study P3 6.5 3.1 

Extant Tragulus kanchil NHMW-1473 This study P3 6.6 3.1 

Extant Tragulus kanchil NHMB-C3795 This study P4 4.2 4.4 

Extant Tragulus kanchil NHMB-C3735 This study P4 4.0 4.8 

Extant Tragulus kanchil NHMB-10085 This study P4 4.5 5.4 

Extant Tragulus kanchil NHMB-3002 This study P4 4.3 4.5 

Extant Tragulus kanchil NHMB-C1891 This study P4 4.8 4.7 

Extant Tragulus kanchil NHMB-C3818 This study P4 4.4 4.3 

Extant Tragulus kanchil NHMB-C3808 This study P4 3.7 4.8 

Extant Tragulus kanchil NHMB-C3802 This study P4 4.1 4.6 

Extant Tragulus kanchil NHMB-C3803 This study P4 4.0 4.8 

Extant Tragulus kanchil NHMB-C3798  This study P4 4.4 4.4 

Extant Tragulus kanchil NHMB-C3791 This study P4 4.7 4.9 

Extant Tragulus kanchil NHMB-C3804 This study P4 4.0 4.6 

Extant Tragulus kanchil NHMB-C3797 This study P4 4.7 4.7 

Extant Tragulus kanchil NHMW-1473 This study P4 4.4 4.0 

Extant Tragulus kanchil NHMW-1473 This study P4 4.8 4.1 

Extant Tragulus kanchil NHMB-C3795 This study M1 4.7 4.9 

Extant Tragulus kanchil NHMB-C3735 This study M1 4.6 5.2 

Extant Tragulus kanchil NHMB-10085 This study M1 5.9 6.7 

Extant Tragulus kanchil NHMB-3002 This study M1 4.9 5.2 

Extant Tragulus kanchil NHMB-C1891 This study M1 5.4 5.7 

Extant Tragulus kanchil NHMB-C3818 This study M1 4.7 4.8 

Extant Tragulus kanchil NHMB-C3808 This study M1 5.3 6.3 

Extant Tragulus kanchil NHMB-C3802 This study M1 4.6 4.8 

Extant Tragulus kanchil NHMB-C3803 This study M1 4.1 4.9 

Extant Tragulus kanchil NHMB-C3798  This study M1 4.0 5.0 

Extant Tragulus kanchil NHMB-C3791 This study M1 5.2 5.0 

Extant Tragulus kanchil NHMB-C3804 This study M1 3.9 4.9 

Extant Tragulus kanchil NHMB-C3797 This study M1 4.9 5.6 
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Extant Tragulus kanchil NHMW-1473 This study M1 5.4 5.0 

Extant Tragulus kanchil NHMW-1473 This study M1 5.4 4.9 

Extant Tragulus kanchil NHMB-C3795 This study M2 6.0 5.9 

Extant Tragulus kanchil NHMB-C3735 This study M2 5.8 6.4 

Extant Tragulus kanchil NHMB-10085 This study M2 7.3 7.5 

Extant Tragulus kanchil NHMB-3002 This study M2 6.8 6.2 

Extant Tragulus kanchil NHMB-C1891 This study M2 6.2 7.4 

Extant Tragulus kanchil NHMB-C3818 This study M2 6.1 5.7 

Extant Tragulus kanchil NHMB-C3808 This study M2 5.9 7.2 

Extant Tragulus kanchil NHMB-C3802 This study M2 5.7 5.7 

Extant Tragulus kanchil NHMB-C3803 This study M2 5.4 6.0 

Extant Tragulus kanchil NHMB-C3798  This study M2 5.2 6.1 

Extant Tragulus kanchil NHMB-C3791 This study M2 5.8 5.7 

Extant Tragulus kanchil NHMB-C3804 This study M2 5.7 6.4 

Extant Tragulus kanchil NHMB-C3797 This study M2 5.6 6.6 

Extant Tragulus kanchil NHMW-1473 This study M2 6.4 6.1 

Extant Tragulus kanchil NHMW-1473 This study M2 6.6 6.2 

Extant Tragulus kanchil NHMB-C3795 This study M3 6.7 5.5 

Extant Tragulus kanchil NHMB-C3735 This study M3 6.4 7.0 

Extant Tragulus kanchil NHMB-10085 This study M3 7.3 7.0 

Extant Tragulus kanchil NHMB-3002 This study M3 6.5 6.7 

Extant Tragulus kanchil NHMB-C1891 This study M3 7.0 7.7 

Extant Tragulus kanchil NHMB-C3818 This study M3 6.1 5.0 

Extant Tragulus kanchil NHMB-C3802 This study M3 6.2 5.6 

Extant Tragulus kanchil NHMB-C3803 This study M3 6.0 6.8 

Extant Tragulus kanchil NHMB-C3798  This study M3 6.3 6.7 

Extant Tragulus kanchil NHMB-C3791 This study M3 6.4 5.3 

Extant Tragulus kanchil NHMB-C3804 This study M3 6.0 7.4 

Extant Tragulus kanchil NHMB-C3797 This study M3 6.3 6.6 

Extant Tragulus kanchil NHMW-1473 This study M3 6.0 6.3 

Extant Tragulus kanchil NHMW-1473 This study M3 6.2 5.7 

Extant Tragulus napu NHMB-C2950 This study P2 6.8 3.3 

Extant Tragulus napu NHMW-5001 This study P2 7.3 3.1 

Extant Tragulus napu NHMW-B6014 This study P2 6.8 3.5 

Extant Tragulus napu NHMW-1923 This study P2 7.5 3.4 

Extant Tragulus napu NHMB-C2950 This study P3 6.6 4.3 

Extant Tragulus napu NHMW-40378 This study P3 6.4 4.4 

Extant Tragulus napu NHMW-5001 This study P3 6.7 3.9 

Extant Tragulus napu NHMW-B6014 This study P3 6.6 4.2 

Extant Tragulus napu NHMW-1923 This study P3 7.0 4.3 

Extant Tragulus napu NHMB-i 0007 This study P3 7.2 4.6 

Extant Tragulus napu NHMB-C2950 This study P4 5.1 5.4 

Extant Tragulus napu NHMW-40378 This study P4 5.4 5.9 

Extant Tragulus napu NHMW-5001 This study P4 5.0 5.6 

Extant Tragulus napu NHMW-B6014 This study P4 5.5 4.8 
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Extant Tragulus napu NHMW-1923 This study P4 5.5 5.6 

Extant Tragulus napu NHMB-i 0007 This study P4 5.4 5.9 

Extant Tragulus napu NHMB-C2950 This study M1 5.6 6.2 

Extant Tragulus napu UMZC-H. 14.976 This study M1 6.4 6.6 

Extant Tragulus napu UMZC-H. 14.976 This study M1 6.6 6.6 

Extant Tragulus napu NHMW-5001 This study M1 5.7 5.9 

Extant Tragulus napu NHMW-B6014 This study M1 5.8 6.2 

Extant Tragulus napu NHMW-1923 This study M1 5.8 6.5 

Extant Tragulus napu NHMB-i 0007 This study M1 6.2 6.9 

Extant Tragulus napu NHMB-C2950 This study M2 6.4 7.0 

Extant Tragulus napu UMZC-H. 14.976 This study M2 7.4 8.2 

Extant Tragulus napu UMZC-H. 14.976 This study M2 8.0 8.4 

Extant Tragulus napu NHMW-40378 This study M2 7.6 8.0 

Extant Tragulus napu NHMW-5001 This study M2 6.8 7.5 

Extant Tragulus napu NHMW-B6014 This study M2 7.2 7.4 

Extant Tragulus napu NHMW-1923 This study M2 7.1 7.5 

Extant Tragulus napu NHMB-i 0007 This study M2 7.0 7.8 

Extant Tragulus napu NHMB-C2950 This study M3 7.0 7.6 

Extant Tragulus napu UMZC-H. 14.976 This study M3 7.4 8.9 

Extant Tragulus napu UMZC-H. 14.976 This study M3 8.0 8.9 

Extant Tragulus napu NHMW-40378 This study M3 8.0 9.0 

Extant Tragulus napu NHMW-5001 This study M3 7.5 7.9 

Extant Tragulus napu NHMW-B6014 This study M3 7.2 7.8 

Extant Tragulus napu NHMW-1923 This study M3 7.2 7.7 

Extant Tragulus napu NHMB-i 0007 This study M3 7.3 8.1 

Extant Tragulus nigricans NHMB-8672 This study P2 7.3 2.7 

Extant Tragulus nigricans NHMB-8672 This study P3 6.6 4.8 

Extant Tragulus nigricans NHMB-8672 This study P4 5.8 5.5 

Extant Tragulus nigricans NHMB-8672 This study M1 6.4 5.6 

Extant Tragulus nigricans NHMB-8672 This study M2 6.8 5.9 

Fossil Yunannotherium  simplex V 8134.18 Han Defen (1986) M2 8.8 9.7 

Fossil Dorcabune welcommi PAK-2464 Ginsburg et al. (2001) p4 11.1 5.8 

Fossil Dorcabune welcommi PAK-2464 Ginsburg et al. (2001) m1 10.7 7.2 

Fossil Dorcabune welcommi PAK-2464 Ginsburg et al. (2001) m2 11.4 8.8 

Fossil Dorcabune welcommi PAK-2464 Ginsburg et al. (2001) m3 19.7 9.7 

Fossil Dorcatherium chappuisi 786.52 Rs. Whitworth (1958) p2 13.5 4.6 

Fossil Dorcatherium chappuisi Holotype Whitworth (1958) p2 13.5 5.0 

Fossil Dorcatherium chappuisi 528.50 R.3 Whitworth (1958) p3 13.5 5.1 

Fossil Dorcatherium chappuisi Holotype Whitworth (1958) p3 13.0 5.5 

Fossil Dorcatherium chappuisi 528.50 R.3 Whitworth (1958) p4 12.3 6.0 

Fossil Dorcatherium chappuisi Holotype Whitworth (1958) p4 12.5 6.0 

Fossil Dorcatherium chappuisi 352.47 R.1 Whitworth (1958) m1 11.6 7.6 

Fossil Dorcatherium chappuisi 785.52 R. III Whitworth (1958) m1 11.7 7.2 

Fossil Dorcatherium chappuisi Holotype Whitworth (1958) m1 12.0 8.0 

Fossil Dorcatherium chappuisi 352.47 R.1 Whitworth (1958) m2 12.9 9.0 
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Fossil Dorcatherium chappuisi 785.52 R. III Whitworth (1958) m2 12.5 8.5 

Fossil Dorcatherium chappuisi Holotype Whitworth (1958) m2 13.0 9.5 

Fossil Dorcatherium chappuisi 352.47 R.1 Whitworth (1958) m3 18.8 8.7 

Fossil Dorcatherium chappuisi 785.52 R. III Whitworth (1958) m3 18.0 8.7 

Fossil Dorcatherium chappuisi Holotype Whitworth (1958) m3 19.0 9.5 

Fossil Dorcatherium crassum Ss 5229 This study p2 12.0 4.3 

Fossil Dorcatherium crassum Sa 2307 This study p2 12.0 4.1 

Fossil Dorcatherium crassum Ss 5235. This study p2 12.2 4.8 

Fossil Dorcatherium crassum Ss 5234.  This study p2 12.5 4.4 

Fossil Dorcatherium crassum Ss 5233.  This study p2 12.6 4.6 

Fossil Dorcatherium crassum Ss 5237. This study p2 12.8 4.9 

Fossil Dorcatherium crassum  IPS-24607 Alba et al. (2014) p2 11.3 4.0 

Fossil Dorcatherium crassum Sa 9950 Morales et al. (2012) p2 12.4 4.6 

Fossil Dorcatherium crassum So 3629. This study p3 12.0 5.0 

Fossil Dorcatherium crassum Sa 2307 This study p3 12.1 4.4 

Fossil Dorcatherium crassum Sa 13630  This study p3 12.4 5.1 

Fossil Dorcatherium crassum SS 52190 This study p3 12.5 4.9 

Fossil Dorcatherium crassum Ss 5232 This study p3 13.0 5.2 

Fossil Dorcatherium crassum SNSP-BSPG 1969 I 163 This study p3 13.2 5.2 

Fossil Dorcatherium crassum Ss 5228 This study p3 13.9 5.2 

Fossil Dorcatherium crassum IPS-24607 Alba et al. (2014) p3 11.7 4.2 

Fossil Dorcatherium crassum IPS-24753b Alba et al. (2014) p3 12.6 4.5 

Fossil Dorcatherium crassum Sa 9950 Morales et al. (2012) p3 11.9 4.8 

Fossil Dorcatherium crassum Ss 5231 This study p4 11.9 5.3 

Fossil Dorcatherium crassum SS 52190 This study p4 11.9 5.5 

Fossil Dorcatherium crassum So 3629 This study p4 12.0 5.8 

Fossil Dorcatherium crassum Ss 5236 This study p4 12.0 5.7 

Fossil Dorcatherium crassum SNSP-BSPG 1969 I 163 This study p4 12.0 5.8 

Fossil Dorcatherium crassum MNHN Sa 2307 This study p4 12.1 5.0 

Fossil Dorcatherium crassum Ss 5230 This study p4 12.5 5.7 

Fossil Dorcatherium crassum Sa 13630 This study p4 12.9 5.7 

Fossil Dorcatherium crassum IPS-24607 Alba et al. (2014) p4 11.3 5.6 

Fossil Dorcatherium crassum IPS-24753b Alba et al. (2014) p4 11.8 5.7 

Fossil Dorcatherium crassum Sa 9950 Morales et al. (2012) p4 12.0 5.6 

Fossil Dorcatherium crassum Sa 2307 This study m1 10.2 6.6 

Fossil Dorcatherium crassum SNSP-BSPG 1969 I 163 This study m1 11.0 7.3 

Fossil Dorcatherium crassum SS 52190 This study m1 11.0 6.3 

Fossil Dorcatherium crassum Sa 2303 This study m1 11.0 6.9 

Fossil Dorcatherium crassum SS 5220 This study m1 11.2 7.0 

Fossil Dorcatherium crassum Sa 13630 This study m1 11.8 6.8 

Fossil Dorcatherium crassum IPS-57513 Alba et al. (2014) m1 11.5 7.7 

Fossil Dorcatherium crassum IPS-24106 Alba et al. (2014) m1 10.8 7.5 

Fossil Dorcatherium crassum IPS-24753c Alba et al. (2014) m1 11.7 7.0 

Fossil Dorcatherium crassum IPS-24757 Alba et al. (2014) m1 11.1 7.6 

Fossil Dorcatherium crassum IPS-24758 Alba et al. (2014) m1 10.2 7.2 
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Fossil Dorcatherium crassum IPS-57512 Alba et al. (2014) m1 10.6 7.3 

Fossil Dorcatherium crassum Sa 9950 Morales et al. (2012) m1 11.2 8.0 

Fossil Dorcatherium crassum Sa 2307 This study m2 11.1 7.9 

Fossil Dorcatherium crassum SS 52190  This study m2 11.2 8.0 

Fossil Dorcatherium crassum Sa 2303 This study m2 11.9 8.3 

Fossil Dorcatherium crassum SS 5220 This study m2 12.1 8.3 

Fossil Dorcatherium crassum SNSP-BSPG 1969 I 163 This study m2 13.0 9.0 

Fossil Dorcatherium crassum Sa 13630  This study m2 13.3 8.4 

Fossil Dorcatherium crassum IPS-57513 Alba et al. (2014) m2 12.1 8.7 

Fossil Dorcatherium crassum IPS-24753c Alba et al. (2014) m2 11.8 9.0 

Fossil Dorcatherium crassum IPS-24757 Alba et al. (2014) m2 12.4 8.6 

Fossil Dorcatherium crassum IPS-24758 Alba et al. (2014) m2 11.6 8.1 

Fossil Dorcatherium crassum IPS-57512 Alba et al. (2014) m2 12.1 8.3 

Fossil Dorcatherium crassum Sa 9955 Morales et al. (2012) m2 12.3 9.5 

Fossil Dorcatherium crassum Sa 2307 This study m3 18.2 8.8 

Fossil Dorcatherium crassum SS 52190 This study m3 19.3 8.9 

Fossil Dorcatherium crassum Sa 13630 This study m3 19.4 8.9 

Fossil Dorcatherium crassum IPS-24607 Alba et al. (2014) m3 17.9 8.8 

Fossil Dorcatherium crassum dIPS24753c Alba et al. (2014) m3 17.5 8.5 

Fossil Dorcatherium crassum Sa 9950 Morales et al. (2012) m3 18.6 9.3 

Fossil Dorcatherium iririensis Nap V Aug 62 Pickford (2002) p3 11.7 4.3 

Fossil Dorcatherium iririensis Nap V Aug 62 Pickford (2002) p4 10.3 5.0 

Fossil Dorcatherium iririensis Nap V 23´85 Pickford (2002) m1 10.5 6.6 

Fossil Dorcatherium iririensis Nap V Aug 62 Pickford (2002) m1 10.6 6.5 

Fossil Dorcatherium iririensis Nap V 2´99 Pickford (2002) m2 12.2 7.5 

Fossil Dorcatherium iririensis Nap V 61 13 Pickford (2002) m2 11.2 7.5 

Fossil Dorcatherium jourdani MHNL-CR 68 This study m1 10.9 5.9 

Fossil Dorcatherium jourdani MHNL-CR 65 This study m1 11.3 5.7 

Fossil Dorcatherium jourdani MHNL-CR 68 This study m2 11.4 6.6 

Fossil Dorcatherium jourdani MHNL-CR 65 This study m2 11.6 6.5 

Fossil Dorcatherium jourdani MHNL-CR 68 This study m3 15.4 7.1 

Fossil Dorcatherium maliki MNHN.F.TRQ779 Kostopoulos and Sen (2016) p2 11.3 3.7 

Fossil Dorcatherium maliki ITU-371  Kostopoulos and Sen (2016) p3 14.2 4.7 

Fossil Dorcatherium maliki ITU-371  Kostopoulos and Sen (2016) p3 14.6 5.0 

Fossil Dorcatherium maliki MNHN.F.TRQ768 Kostopoulos and Sen (2016) p4 12.7 4.8 

Fossil Dorcatherium maliki MNHN.F.TRQ772 Kostopoulos and Sen (2016) p4 13.7 5.3 

Fossil Dorcatherium maliki ITU-371 Kostopoulos and Sen (2016) p4 13.8 5.5 

Fossil Dorcatherium maliki ITU-nn Kostopoulos and Sen (2016) p4 12.9 4.8 

Fossil Dorcatherium maliki MNHN.F.TRQ765 Kostopoulos and Sen (2016) m1 11.4 8.3 

Fossil Dorcatherium maliki MNHN.F.TRQ748 Kostopoulos and Sen (2016) m1 11.7 7.5 

Fossil Dorcatherium maliki MNHN.F.TRQ783 Kostopoulos and Sen (2016) m2 13.5 9.3 

Fossil Dorcatherium maliki MNHN.F.TRQ767 Kostopoulos and Sen (2016) m2 13.2 8.2 

Fossil Dorcatherium maliki MNHN.F.TRQ766 Kostopoulos and Sen (2016) m2 13.7 9.0 

Fossil Dorcatherium maliki MNHN.F.TRQ782 Kostopoulos and Sen (2016) m2 13.8 9.3 

Fossil Dorcatherium maliki MNHN.F.TRQno No Kostopoulos and Sen (2016) m2 12.7 8.4 
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Fossil Dorcatherium maliki ITU-nn Kostopoulos and Sen (2016) m2 12.7 8.0 

Fossil Dorcatherium maliki MNHN.FTRQ784 Kostopoulos and Sen (2016) m3 20.1 9.3 

Fossil Dorcatherium maliki MNHN.FTRQ748 Kostopoulos and Sen (2016) m3 18.0 7.7 

Fossil Dorcatherium maliki ITU-nn Kostopoulos and Sen (2016) m3 18.6 9.0 

Fossil Dorcatherium minus PUPC 13/11 Khan et al. (2017) p3 10.5 4.9 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2489 This study p3 12.0 3.5 

Fossil Dorcatherium minus GSI-B594 Pilgrim (1915) p4 10.0 4.8 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2489 This study p4 10.0 4.4 

Fossil Dorcatherium minus GSI-234 This study p4 10.7 4.7 

Fossil Dorcatherium minus AMNH-39306 (1981 XVII 24) This study p4 10.6 4.5 

Fossil Dorcatherium minus GSI-B594 Pilgrim (1915) m1 10.8 6.8 

Fossil Dorcatherium minus PUPC 02/158 Farooq et al. (2007b) m1 10.6 6.7 

Fossil Dorcatherium minus PUPC 13/14 Khan et al. (2017) m1 9.8 5.7 

Fossil Dorcatherium minus PUPC 68/107 Khan and Akhtar (2013) m1 10.7 5.6 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2561 This study m1 11.0 5.6 

Fossil Dorcatherium minus AMNH-19594 (1981 XVII 17) This study m1 11.3 5.0 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2489 This study m1 10.5 6.2 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2601 This study m1 10.1 5.7 

Fossil Dorcatherium minus AMNH-39302 (1981 XVII 19) This study m1 11.0 6.1 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2548 This study m1 10.0 5.1 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2581 This study m1 11.1 5.9 

Fossil Dorcatherium minus AMNH-39510 (1981 XVII 38) This study m1 10.7 5,. 

Fossil Dorcatherium minus AMNH-39306 (1981 XVII 24) This study m1 10.5 5.6 

Fossil Dorcatherium minus GCS-09/04 Iqbal et al. (2011) m2 12.2 7.6 

Fossil Dorcatherium minus GSI-B594 Pilgrim (1915) m2 12.5 7.5 

Fossil Dorcatherium minus PC-GCUF 10/21 Batool et al. (2015) m2 11.0 7.0 

Fossil Dorcatherium minus PC-GCUF 12/01 Batool et al. (2015) m2 11.0 6.9 

Fossil Dorcatherium minus PUPC 02/158 Farooq et al. (2007b) m2 12.7 8.3 

Fossil Dorcatherium minus PUPC 68/294 Farooq et al. (2007b) m2 11.0 6.5 

Fossil Dorcatherium minus PUPC 72/10 Khan and Akhtar (2013) m2 11.2 7.0 

Fossil Dorcatherium minus AMNH-19594 (1981 XVII 17) This study m2 11.9 7.0 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2629 This study m2 10.2 7.1 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2489 This study m2 11.4 6.6 

Fossil Dorcatherium minus AMNH-39306 (1981 XVII 24) This study m2 12.1 7.3 

Fossil Dorcatherium minus AMNH-39302 (1981 XVII 19) This study m2 12.7 7.4 

Fossil Dorcatherium minus AMNH-39510 (1981 XVII 38) This study m2 11.8 7.0 

Fossil Dorcatherium minus AMNH-19307 (1981 XVII 10) This study m2 12.8 7.2 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2580 This study m2 11.3 6.4 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2581 This study m2 11.8 6.8 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2548 This study m2 11.6 6.4 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2588 This study m2 12.2 6.8 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2601 This study m2 11.6 6.5 

Fossil Dorcatherium minus AMNH-19366 (1981 XVII 18) This study m2 12.0 7.1 

Fossil Dorcatherium minus GSI-B594 Pilgrim (1915) m3 16.7 8.3 

Fossil Dorcatherium minus PUPC 02/158 Farooq et al. (2007b) m3 18.6 8.7 
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Fossil Dorcatherium minus PUPC 68/294 Farooq et al. (2007b) m3 16.1 6.8 

Fossil Dorcatherium naui IPS-4422 Alba et al. (2011) p2 10.1 3.5 

Fossil Dorcatherium naui HLMD-488 This study p2 10.5 3.5 

Fossil Dorcatherium naui BMNH-40632 This study p2 10.8 37 

Fossil Dorcatherium naui UMJGP-204661 Aiglstorfer et al. (2014) p2 10.1 3.6 

Fossil Dorcatherium naui UMJGP-204667 Aiglstorfer et al. (2014) p2 10.1 3.6 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) p2 10.2 nd 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) p2 10.5 3.1 

Fossil Dorcatherium naui GPIT/MA/2741 Aiglstorfer et al. (2014) p2 9.9 3.3 

Fossil Dorcatherium naui IPS-4422 Alba et al. (2011) p3 12.2 4.1 

Fossil Dorcatherium naui BMNH-40632 This study p3 12.5 4.2 

Fossil Dorcatherium naui HLMD-488 This study p3 13.7 4.7 

Fossil Dorcatherium naui AMNH-39305 (1981 XVII 53) This study p3 13.5 4.4 

Fossil Dorcatherium naui AMNH-19609 (1981 XVII 2) This study p3 13.4 4.6 

Fossil Dorcatherium naui BMNH-M3714 (1961 XIX 37) This study p3 12.4 4.9 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) p3 13.2 nd 

Fossil Dorcatherium naui UMJGP-204667 Aiglstorfer et al. (2014) p3 12.8 4.5 

Fossil Dorcatherium naui UMJGP-204661 Aiglstorfer et al. (2014) p3 12.5 4.5 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) p3 12.7 4.2 

Fossil Dorcatherium naui GPIT/MA/2741 Aiglstorfer et al. (2014) p3 13.0 4.4 

Fossil Dorcatherium naui IPS-4422 Alba et al. (2011) p4 11.7 4.6 

Fossil Dorcatherium naui BMNH-40632 This study p4 11.6 5.7 

Fossil Dorcatherium naui HLMD-488 This study p4 11.8 5.1 

Fossil Dorcatherium naui HLMD DIN 1203 This study p4 12.3 4.9 

Fossil Dorcatherium naui HLMD 489 This study p4 12.6 4.7 

Fossil Dorcatherium naui AMNH-19609 (1981 XVII 2) This study p4 12.3 5.4 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2656 This study p4 12.8 5.7 

Fossil Dorcatherium naui AMNH-39305 (1981 XVII 53) This study p4 nd 4.7 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) p4 11.7 5.2 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) p4 11.3 4.7 

Fossil Dorcatherium naui GPIT/MA/2741 Aiglstorfer et al. (2014) p4 11.2 5.0 

Fossil Dorcatherium naui GPIT/MA/2734 Aiglstorfer et al. (2014) p4 10.5 4.7 

Fossil Dorcatherium naui BMNH-M3714 (1961 XIX 37) This study p4 12.6 5.9 

Fossil Dorcatherium naui IPS-4422 Alba et al. (2011) m1 10.3 7.3 

Fossil Dorcatherium naui BMNH-40632 This study m1 11.1 6.9 

Fossil Dorcatherium naui HLMD 489 This study m1 11.5 6.5 

Fossil Dorcatherium naui HLMD DIN 1203 This study m1 12.1 6.7 

Fossil Dorcatherium naui AMNH-19609 (1981 XVII 2) This study m1 11.4 7.6 

Fossil Dorcatherium naui GSI-235 This study m1 12.6 6.9 

Fossil Dorcatherium naui AMNH-39305 (1981 XVII 53) This study m1 11.4 6.7 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2570 This study m1 12.3 6.8 

Fossil Dorcatherium naui AMNH-39307 (1981 XVII 36) This study m1 11.2 6.3 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2486 This study m1 12.7 7.4 

Fossil Dorcatherium naui BMNH-M3714 (1961 XIX 37) This study m1 11.9 7.5 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) m1 11.9 6.8 
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Fossil Dorcatherium naui UMJGP-204664 Aiglstorfer et al. (2014) m1 10.8 6.3 

Fossil Dorcatherium naui UMJGP-204663 Aiglstorfer et al. (2014) m1 11.6 6.4 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) m1 11.1 6.3 

Fossil Dorcatherium naui UMJGP-210693 Aiglstorfer et al. (2014) m1 11.9 6.7 

Fossil Dorcatherium naui GPIT/MA/2741 Aiglstorfer et al. (2014) m1 11.7 6.7 

Fossil Dorcatherium naui GPIT/MA/2734 Aiglstorfer et al. (2014) m1 11.0 6.6 

Fossil Dorcatherium naui GPIT/MA/2401 Aiglstorfer et al. (2014) m1 12.0 6.8 

Fossil Dorcatherium naui IPS-4422 Alba et al. (2011) m2 11.4 7.8 

Fossil Dorcatherium naui IPS-33110 Alba et al. (2011) m2 12.1 7.8 

Fossil Dorcatherium naui BMNH-40632 This study m2 11.3 7.9 

Fossil Dorcatherium naui HLMD-488 This study m2 11.9 7.7 

Fossil Dorcatherium naui HLMD-489 This study m2 12.6 7.7 

Fossil Dorcatherium naui HLMD DIN 1203 This study m2 12.8 8.0 

Fossil Dorcatherium naui AMNH-39305 (1981 XVII 53) This study m2 13.7 8.7 

Fossil Dorcatherium naui AMNH-19609 (1981 XVII 2) This study m2 13.2 9.0 

Fossil Dorcatherium naui AMNH-19365 (1981 XVII 3) This study m2 12.8 7.2 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2570 This study m2 13.8 8.3 

Fossil Dorcatherium naui AMNH-39262 (1981 XVII 49) This study m2 14.7 8.4 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2585 This study m2 13.3 8.1 

Fossil Dorcatherium naui UMJGP-204663 Aiglstorfer et al. (2014) m2 12.6 7.8 

Fossil Dorcatherium naui UMJGP-204662 Aiglstorfer et al. (2014) m2 12.6 7.5 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) m2 13.2 7.8 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) m2 13.1 7.5 

Fossil Dorcatherium naui GPIT/MA/2741 Aiglstorfer et al. (2014) m2 12.8 7.8 

Fossil Dorcatherium naui GPIT/MA/2734 Aiglstorfer et al. (2014) m2 12.4 7.4 

Fossil Dorcatherium naui GPIT/MA/2756 Aiglstorfer et al. (2014) m2 13.0 8.0 

Fossil Dorcatherium naui BMNH-M3714 (1961 XIX 37) This study m2 12.8 8.7 

Fossil Dorcatherium naui IPS-4422 Alba et al. (2011) m3 18.0 8.5 

Fossil Dorcatherium naui IPS-33110 Alba et al. (2011) m3 17.2 7.7 

Fossil Dorcatherium naui BMNH-40632 This study m3 16.3 8.7 

Fossil Dorcatherium naui HLMD-488 This study m3 18.5 8.2 

Fossil Dorcatherium naui HLMD-DIN 1203 This study m3 18.7 8.7 

Fossil Dorcatherium chappuisi 324.47 R.I Whitworth (1958) P2 13.0 6.2 

Fossil Dorcatherium chappuisi 324.47 R.I Whitworth (1958) P3 12.0 7.5 

Fossil Dorcatherium chappuisi 324.47 R.I Whitworth (1958) P4 9.6 9.2 

Fossil Dorcatherium chappuisi 324.47 R.I Whitworth (1958) M1 11.1 12.1 

Fossil Dorcatherium chappuisi 201.50 Whitworth (1958) M1 11.3 11.5 

Fossil Dorcatherium chappuisi 789.52 Rs. Whitworth (1958) M1 11.0 11.0 

Fossil Dorcatherium chappuisi 324.47 R.I Whitworth (1958) M2 12.4 14.5 

Fossil Dorcatherium chappuisi 789.52 Rs. Whitworth (1958) M2 12.3 12.9 

Fossil Dorcatherium chappuisi 324.47 R.I Whitworth (1958) M3 12.2 14.6 

Fossil Dorcatherium chappuisi 789.52 Rs. Whitworth (1958) M3 12.0 13.7 

Fossil Dorcatherium crassum Ss 5214 This study P3 11.1 8.5 

Fossil Dorcatherium crassum Ss 5214 This study P4 8.6 9.0 

Fossil Dorcatherium crassum IPS-24753a Alba et al. (2014) P4 9.0 9.6 
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Fossil Dorcatherium crassum Sa 2300 This study M1 9.7 11.0 

Fossil Dorcatherium crassum Ss 5213 This study M1 10.0 11.9 

Fossil Dorcatherium crassum Sa 1015 This study M1 10.8 11.4 

Fossil Dorcatherium crassum Ss 5214 This study M1 11.0 11.2 

Fossil Dorcatherium crassum Sa 10859 This study M1 11.4 12.6 

Fossil Dorcatherium crassum Sa 10857 This study M1 11.6 11.2 

Fossil Dorcatherium crassum IPS-24753a Alba et al. (2014) M1 10.4 11.4 

Fossil Dorcatherium crassum Sa 10859 This study M2 11.8 13.7 

Fossil Dorcatherium crassum Sa 2300 This study M2 11.8 13.0 

Fossil Dorcatherium crassum Ss 5214 This study M2 12,0 13.5 

Fossil Dorcatherium crassum Sa 1015 This study M2 12.3 13.5 

Fossil Dorcatherium crassum Ss 5213 This study M2 12.5 14.3 

Fossil Dorcatherium crassum Sa 10857 This study M2 12.5 12.9 

Fossil Dorcatherium crassum IPS-24753a Alba et al. (2014) M2 12.6 13.5 

Fossil Dorcatherium crassum Ss 5214 This study M3 12.2 14.6 

Fossil Dorcatherium crassum Sa 2300 This study M3 12.3 14.0 

Fossil Dorcatherium crassum Sa 10857 This study M3 12.9 13.3 

Fossil Dorcatherium crassum Sa 1015 This study M3 12.9 14.1 

Fossil Dorcatherium crassum Ss 5213 This study M3 13.6 15.0 

Fossil Dorcatherium crassum IPS-63879 Alba et al. (2014) M3 13.2 15.8 

Fossil Dorcatherium iririensis Nap V Pickford (2002) M3 10.7 11.3 

Fossil Dorcatherium jourdani MHNL-CR 70 or 69 This study P2 11.5 5.6 

Fossil Dorcatherium jourdani MHNL-CR 67 This study M1 10.4 10.2 

Fossil Dorcatherium jourdani MHNL-CR 66 This study M1 11.0 105 

Fossil Dorcatherium jourdani MHNL-CR 66 This study M2 11.4 11.2 

Fossil Dorcatherium jourdani MHNL-CR 67 This study M2 12.2 11.3 

Fossil Dorcatherium jourdani MHNL-CR 67 This study M3 12.0 11.4 

Fossil Dorcatherium maliki MNHN.F.TRQ759 Kostopoulos and Sen (2016) P2 12.8 7.2 

Fossil Dorcatherium maliki ITU-nn Kostopoulos and Sen (2016) P4 12.5 12.8 

Fossil Dorcatherium maliki MNHN.F.TRQ754 Kostopoulos and Sen (2016) M1 11.1 12.5 

Fossil Dorcatherium maliki MNHN.F.TRQ755 Kostopoulos and Sen (2016) M1 10.4 12.8 

Fossil Dorcatherium maliki ITU-nn Kostopoulos and Sen (2016) M1 11.3 13.5 

Fossil Dorcatherium maliki MNHN.F.TRQ753  Kostopoulos and Sen (2016) M2 12.8 14.3 

Fossil Dorcatherium maliki MNHN.F.TRQ757 Kostopoulos and Sen (2016) M2 13.4 13.5 

Fossil Dorcatherium maliki MNHN.F.TRQ751  Kostopoulos and Sen (2016) M2 13.7 14.7 

Fossil Dorcatherium maliki MNHN.F.TRQ752  Kostopoulos and Sen (2016) M2 13.3 15.1 

Fossil Dorcatherium maliki ITU-379 Kostopoulos and Sen (2016) M3 15.5 15.1 

Fossil Dorcatherium maliki ITU-nn Kostopoulos and Sen (2016) M3 14.7 14.9 

Fossil Dorcatherium minus AMNH-39306 (1981 XVII 24) This study m3 17.0 7.2 

Fossil Dorcatherium minus AMNH-19366 (1981 XVII 18) This study m3 16.1 7.5 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2465 This study m3 17.3 7.1 

Fossil Dorcatherium minus AMNH-39253 (1981 XVII 14) This study m3 16.8 7.6 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2601 This study m3 16.1 7.5 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2490 This study m3 17.0 7.2 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2503 This study m3 16.8 7.0 
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Fossil Dorcatherium minus SNSB-BSPG 1956 II 2496 This study m3 17.1 7.6 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2629 This study m3 16.6 7.8 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2655 This study m3 15.9 6.8 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2536 This study P2 11.6 5.2 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2536 This study P2 11.5 5.1 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2485 This study P3 9.9 5.7 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2536 This study P3 11.2 6.4 

Fossil Dorcatherium minus PC-GCUF 09/22 (H14) Khan et al. (2012) P4 8.5 9.0 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2484 This study P4 8.5 8.2 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2497 This study P4 8.1 9.4 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2654 This study P4 9.6 9.1 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2536 This study P4 8.6 8,. 

Fossil Dorcatherium minus PC-GCUF 11/178 Batool et al. (2015) M1 9.7 10.5 

Fossil Dorcatherium minus PUPC 08/90 Samiullah et al. (2015) M1 9.4 10.0 

Fossil Dorcatherium minus PUPC 87/40 Farooq et al. (2007b) M1 10.0 117 

Fossil Dorcatherium minus PUPC 87/84 Farooq et al. (2007b) M1 9.3 10.0 

Fossil Dorcatherium minus AMNH-39303 (1981 XVII 13) This study M1 9.9 10.0 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2480 This study M1 10.4 10.4 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2498 This study M1 10.6 10.9 

Fossil Dorcatherium minus AMNH-29856 (1981 XVII 32) This study M1 9.8 10.5 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2456 This study M1 10.5 nd 

Fossil Dorcatherium minus GSI-B195 Pilgrim (1915) M2 10.6 12.3 

Fossil Dorcatherium minus PUPC 02/01 Farooq et al. (2007b) M2 10.6 11.7 

Fossil Dorcatherium minus PUPC 03/15 (H15) Khan et al. (2012) M2 11.0 13.0 

Fossil Dorcatherium minus PUPC 68/08 Khan and Akhtar (2013) M2 11.0 13.4 

Fossil Dorcatherium minus PUPC 68/355 Farooq et al. (2007b) M2 10.5 11.8 

Fossil Dorcatherium minus PUPC 68/41 Farooq et al. (2007b) M2 11.0 13.0 

Fossil Dorcatherium minus PUPC 86/200 (H18) Khan et al. (2012) M2 11.0 11.9 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2456 This study M2 11.2 11.1 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2536 This study M2 11.2 12.6 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2536 This study M2 10.9 11.7 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2469 This study M2 11.0 12.3 

Fossil Dorcatherium minus AMNH-29856 (1981 XVII 32) This study M2 11.7 12.3 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2497 This study M2 11.7 13.1 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2480 This study M2 11.1 13.1 

Fossil Dorcatherium minus GCS-09/01 Iqbal et al. (2011) M3 11.2 12.7 

Fossil Dorcatherium minus GCS-09/02 Iqbal et al. (2011) M3 12.5 13.7 

Fossil Dorcatherium minus GSI-B195 Pilgrim (1915) M3 11.4 11.6 

Fossil Dorcatherium minus PC-GCUF 11/184 Batool et al. (2015) M3 12.8 12.8 

Fossil Dorcatherium minus PUPC 01/2002 Farooq et al. (2007b) M3 11.7 12.4 

Fossil Dorcatherium minus AMNH-29856 (1981 XVII 32) This study M3 11.3 13.0 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2536 This study M3 12.0 13.2 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2536 This study M3 12.3 13.6 

Fossil Dorcatherium minus SNSB-BSPG 1956 II 2469 This study M3 11.3 12.4 

Fossil Dorcatherium minus PUPC 68/355 Farooq et al. (2007b) M3 11.7 13.0 
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Fossil Dorcatherium naui AMNH-19365 (1981 XVII 3) This study m3 17.5 7.7 

Fossil Dorcatherium naui AMNH-19609 (1981 XVII 2) This study m3 20.0 9.5 

Fossil Dorcatherium naui AMNH-39262 (1981 XVII 49) This study m3 20.1 9.2 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2463 This study m3 18.3 7.7 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2572 This study m3 19.5 9.0 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2582 This study m3 nd 8.1 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2587 This study m3 19.4 9.0 

Fossil Dorcatherium naui SNSB-BSPG 1956 II 2468 This study m3 20.0 8.6 

Fossil Dorcatherium naui AMNH-32742 (1981 XVII 4) This study m3 18.9 7.9 

Fossil Dorcatherium naui UMJGP-204662 Aiglstorfer et al. (2014) m3 18.3 8.5 

Fossil Dorcatherium naui UMJGP-204665 Aiglstorfer et al. (2014) m3 18.8 8.4 

Fossil Dorcatherium naui UMJGP-204109 Aiglstorfer et al. (2014) m3 17.0 8.2 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) m3 17.2 7.9 

Fossil Dorcatherium naui UMJGP-210694 Aiglstorfer et al. (2014) m3 17.2 nd 

Fossil Dorcatherium naui GPIT/MA/2741 Aiglstorfer et al. (2014) m3 18.4 8.3 

Fossil Dorcatherium naui GPIT/MA/2734 Aiglstorfer et al. (2014) m3 16.8 8.0 

Fossil Dorcatherium naui BMNH-M3714 (1961 XIX 37) This study m3 19.1 9.6 

Fossil Dorcatherium naui BMNH-40632 This study P2 12.2 5.0 

Fossil Dorcatherium naui BMNH-40632 This study P3 11.4 6.2 

Fossil Dorcatherium naui BMNH-40632 This study P4 10.0 9.2 

Fossil Dorcatherium naui GPIT/MA/2379 Aiglstorfer et al. (2014) P4 10.2 10.2 

Fossil Dorcatherium naui IPS-43491 Alba et al. (2011) M1 13.0 13.8 

Fossil Dorcatherium naui GPIT/MA/2375 Aiglstorfer et al. (2014) M1 10.8 11.7 

Fossil Dorcatherium naui UMJGP-209952 Aiglstorfer et al. (2014) M1 11.0 11.7 

Fossil Dorcatherium naui IPS-43491 Alba et al. (2011) M2 13.2 14.9 

Fossil Dorcatherium naui BMNH-40632 This study M2 12.3 13.5 

Fossil Dorcatherium naui UMJGP-210698 Aiglstorfer et al. (2014) M2 12.9 13.8 

Fossil Dorcatherium naui IPS-45288 Alba et al. (2011) M3 12.8 14.2 

Fossil Dorcatherium naui UMJGP-210697 Aiglstorfer et al. (2014) M3 13.9 14.4 

Fossil Dorcatherium naui BMNH-40632 This study M3 13.0 13.8 

Fossil Dorcatherium puyhauberti sd (Vatiluk loc.) This study M2 11.6 13.8 

Fossil Dorcatherium puyhauberti sd (Vatiluk loc.) This study M3 12.0 12.4 

Fossil Dorcatherium vindebonense NHMW-37 A This study p3 14.7 6.0 

Fossil Dorcatherium vindebonense NHMW-37 A This study p3 14.9 5.6 

Fossil Dorcatherium vindebonense NHMW-21 This study m2 14.5 9.7 

Fossil Dorcatherium vindebonense NHMW-23 This study m2 14.9 10.2 

Fossil Dorcatherium vindebonense NHMW-37 A This study m2 15.1 9.9 

Fossil Dorcatherium vindebonense NHMW-37 A This study m3 21.1 10.4 

Fossil Dorcatherium vindebonense NHMW-23 This study m3 22.9 10.7 

Fossil Dorcatherium vindebonense NHMW-37 A This study P2 14.9 7.4 

Fossil Dorcatherium vindebonense NHMW-37 A This study P2 17.3 7.2 

Fossil Dorcatherium vindebonense NHMW-37 A This study P3 15.5 9.7 

Fossil Dorcatherium vindebonense NHMW-37 A This study P4 12.7 12.1 

Fossil Dorcatherium vindebonense NHMW-37 A This study M1 13.3 14.9 

Fossil Dorcatherium vindebonense NHMW-37 A This study M1 13.4 13.7 
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Fossil Dorcatherium vindebonense NHMW-N 5 This study M1 14.0 15.5 

Fossil Dorcatherium vindebonense NHMW-37 A This study M2 14.6 16.1 

Fossil Dorcatherium vindebonense NHMW-37 A This study M2 15.5 16.8 

Fossil Dorcatherium vindebonense NHMW-37 A This study M2 16.0 16.7 

Fossil Dorcatherium vindebonense NHMW-37 A This study M2 16.9 17.0 

Fossil Dorcatherium vindebonense NHMW-37 A This study M3 16.8 17.7 

Fossil Dorcabune nagrii GSI-B106 Pilgrim (1915) m1 13.8 10.0 

Fossil Dorcabune nagrii GSI-B106 Pilgrim (1915) m2 15.1 12.0 

Fossil Dorcabune nagrii GSI-B591 Pilgrim (1915) m2 15.2 11.0 

Fossil Dorcabune nagrii PUPC 70/13 Farooq et al. (2007a) m3 22.7 10.4 

Fossil Dorcabune nagrii GSI-B106 Pilgrim (1915) m3 23.1 12.8 

Fossil Dorcabune nagrii GSI-B591 Pilgrim (1915) m3 21.7 11.4 

Fossil Dorcabune nagrii PUPC 70/13 Farooq et al. (2007a) m3 22.7 10.4 

Fossil Dorcabune nagrii PUPC 68/425 Khan et al. (2010) M1 15.2 17.6 

Fossil Dorcabune nagrii PUPC 96/45 Khan et al. (2010) M1 14.0 16.0 

Fossil Dorcabune nagrii GSI-B598 Pilgrim (1915) M2 13.4 14.4 

Fossil Dorcabune nagrii GSI-B598 Pilgrim (1915) M3 14.8 16.8 

Fossil Dorcabune nagrii GSI-B590 Pilgrim (1915) M3 14.6 16.7 

Fossil Dorcatherium majus GSI-B593 Pilgrim (1915) p2 14.3 4.3 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2617 This study p3 15.5 5.2 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2603 This study p3 16.8 5.9 

Fossil Dorcatherium majus GSI-B593 Pilgrim (1915) p3 17.7 nd 

Fossil Dorcatherium majus PC-GCUF 10/49 Batool et al. (2015) p4 14.2 7.2 

Fossil Dorcatherium majus PUPC 86/2 Farooq et al. (2008) p4 13.3 6.0 

Fossil Dorcatherium majus PUPC 86/5 Farooq et al. (2008) p4 13.1 5.7 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2603 This study p4 14.0 6.9 

Fossil Dorcatherium majus SNSB-BSPG 1968 XVIII 10 This study p4 15.0 6.5 

Fossil Dorcatherium majus AMNH-19524 (1981 XVII 52) This study p4 14.8 5.4 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2508 This study p4 15.6 6.7 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2521 This study p4 17.2 7.1 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2604 This study p4 15.2 6.2 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2620 This study p4 13.5 6.3 

Fossil Dorcatherium majus GSI-B593 Pilgrim (1915) p4 17.3 6.2 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2603 This study m1 14.6 9.6 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2621 This study m1 15.7 8.6 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2616 This study m1 14.6 7.7 

Fossil Dorcatherium majus SNSB-BSPG 1968 XVIII 10 This study m1 15.9 8.4 

Fossil Dorcatherium majus AMNH-19524 (1981 XVII 52) This study m1 14.4 7.9 

Fossil Dorcatherium majus AMNH-19517 (1968 XVIII 15) This study m1 13.4 8.5 

Fossil Dorcatherium majus AMNH-19520 (1981 XVII 48) This study m1 14.8 8.4 

Fossil Dorcatherium majus GSI-9909 (1981 XVII 65) This study m1 13.5 9.1 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2617 This study m1 16.0 9.2 

Fossil Dorcatherium majus GSI-B593 Pilgrim (1915) m1 15.7 9.5 

Fossil Dorcatherium majus PC-GCUF 10/49 Batool et al. (2015) m1 15.5 10.2 

Fossil Dorcatherium majus PUPC 86/2 Farooq et al. (2008) m1 14.3 9.0 
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Fossil Dorcatherium majus PUPC 86/5 Farooq et al. (2008) m1 13.0 9.3 

Fossil Dorcatherium majus WIF/A-1476 Sehgal (2015) m1 14.2 9.8 

Fossil Dorcatherium majus WIF/A-1477 Sehgal (2015) m1 14.5 9.0 

Fossil Dorcatherium majus GSI-B593 Pilgrim (1915) m2 17.5 10.9 

Fossil Dorcatherium majus PC-GCUF 10/49 Batool et al. (2015) m2 17.2 11.2 

Fossil Dorcatherium majus PUPC 63/243 Farooq et al. (2008) m2 17.0 10.2 

Fossil Dorcatherium majus PUPC 63/243 Farooq et al. (2008) m2 16.0 12.0 

Fossil Dorcatherium majus PUPC 86/152 Farooq et al. (2008) m2 16.2 12.0 

Fossil Dorcatherium majus PUPC 98/61 Farooq et al. (2008) m2 17.0 10.5 

Fossil Dorcatherium majus WIF/A-1476 Sehgal (2015) m2 17.0 11.3 

Fossil Dorcatherium majus WIF/A 1478 Sehgal (2015) m2 16.5 10.5 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2616 This study m2 16.3 9.4 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2618 This study m2 17.8 9.9 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2621 This study m2 18.3 10.9 

Fossil Dorcatherium majus SNSB-BSPG 1968 XVIII 10 This study m2 17.4 10.8 

Fossil Dorcatherium majus AMNH-19517 (1968 XVIII 15) This study m2 16.8 10.6 

Fossil Dorcatherium majus SNSB-BSPG 1968 XVIII 56 This study m2 17.1 10.2 

Fossil Dorcatherium majus AMNH-19369 (1981 XVII 42) This study m2 17.7 9.8 

Fossil Dorcatherium majus AMNH-19520 (1981 XVII 48) This study m2 17.6 10.5 

Fossil Dorcatherium majus AMNH-19524 (1981 XVII 52) This study m2 15.7 9.3 

Fossil Dorcatherium majus GSI-9909 (1981 XVII 65) This study m2 16.2 9.8 

Fossil Dorcatherium majus GSI-B593 Pilgrim (1915) m3 25.0 11.4 

Fossil Dorcatherium majus PC-GCUF 10/49 Batool et al. (2015) m3 23.3 12.0 

Fossil Dorcatherium majus PUPC-84/115 Farooq et al. (2008) m3 24.0 11.0 

Fossil Dorcatherium majus PUPC-86/152 Farooq et al. (2008) m3 23.0 11.0 

Fossil Dorcatherium majus PUPC-86/2 Farooq et al. (2008) m3 25.1 11.0 

Fossil Dorcatherium majus PUPC-86/3 Farooq et al. (2008) m3 25.0 11.4 

Fossil Dorcatherium peneckei NMA-1415 This study p3 15.8 5.6 

Fossil Dorcatherium peneckei NMA-86-485 This study p4 14.2 7.6 

Fossil Dorcatherium peneckei NMA-1415 This study p4 16.3 9.3 

Fossil Dorcatherium peneckei LMJ-1601 This study m1 15.0 9.5 

Fossil Dorcatherium peneckei LMJ-1601 This study m2 16.6 12.3 

Fossil Dorcatherium peneckei NMA-1747 This study m3 20.0 10.6 

Fossil Dorcatherium peneckei NMA-85.9 This study m3 20.9 10.9 

Fossil Dorcatherium peneckei NMA-85.6 This study m3 21.6 11.0 

Fossil Dorcatherium peneckei NMA-85.7 This study m3 21.9 12.5 

Fossil Dorcatherium peneckei LMJ-1601 This study m3 23.1 12.8 

Fossil Dorcatherium peneckei Stallhofen This study m3 23.1 12.8 

Fossil Dorcatherium peneckei NMA-411 This study m3 25.7 13.3 

Fossil Dorcatherium majus AMNH-19369 (1981 XVII 42) This study m3 25.6 11.6 

Fossil Dorcatherium majus AMNH-19939 (1981 XVII 45) This study m3 25.7 12.3 

Fossil Dorcatherium majus AMNH-39254 (1981 XVII 44) This study m3 22.7 10.5 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2623 This study m3 25.2 11.1 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2512 This study m3 28.4 12.2 

Fossil Dorcatherium majus GSI-9909 (1981 XVII 66) This study m3 26.4 12.8 
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Fossil Dorcatherium majus PUPC 95/3 Farooq et al. (2007a) P4 14.0 15.0 

Fossil Dorcatherium majus AMNH-19304 (1981 XVII 47) This study M1 15.3 nd 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2519 This study M1 14.9 14.8 

Fossil Dorcatherium majus PC-GCUF 10/93 Khan and Akhtar (2013) M1 14.8 14.7 

Fossil Dorcatherium majus AMNH-19302 Colbert (1935) M2 18.5 21.5 

Fossil Dorcatherium majus GSI-B198 Pilgrim (1915) M2 19.6 19.6 

Fossil Dorcatherium majus PUPC 03/14 Khan et al. (2010) M2 19.0 19.0 

Fossil Dorcatherium majus PUPC 05/2 (H12) Khan et al. (2012) M2 19.0 22.8 

Fossil Dorcatherium majus PUPC 69/5 Khan and Akhtar (2013) M2 18.5 17.3 

Fossil Dorcatherium majus PUPC 85/15 Farooq et al. (2007a) M2 19.0 20.0 

Fossil Dorcatherium majus PUPC 85/21 Farooq et al. (2007a) M2 18.0 22.0 

Fossil Dorcatherium majus PUPC 87/328 Farooq et al. (2007a) M2 17.8 19.0 

Fossil Dorcatherium majus AMNH-19304 (1981 XVII 47) This study M2 17.7 18.3 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2519 This study M2 18.2 16.8 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2535 This study M2 19.5 19.1 

Fossil Dorcatherium majus SNSB-BSPG 1956 II 2535 This study M3 18.1 17.1 

Fossil Dorcatherium majus GSI-B198 Pilgrim (1915) M3 20.1 19.2 

Fossil Dorcatherium majus PUPC 69/193 Khan and Akhtar (2013) M3 20.0 18.5 

Fossil Dorcatherium majus PUPC 69/268 Khan and Akhtar (2013) M3 19.4 18.6 

Fossil Dorcatherium majus PUPC 86/46 Batool et al. (2015) M3 20.0 21.6 

Fossil Dorcatherium majus PUPC 87/197 Farooq et al. (2007a) M3 20.5 22.0 

Fossil Dorcatherium majus PUPC 87/328 Farooq et al. (2007a) M3 19.1 18.2 

Fossil Dorcatherium peneckei NMA-85.8 This study M2 16.5 19.1 

Fossil Dorcatherium peneckei NMA-85.8 This study M3 17.3 20.5 

Fossil Dorcabune anthracotheroides GSI-B585 Pilgrim (1915) p3 17.8 6.9 

Fossil Dorcabune anthracotheroides GSI-B585 Pilgrim (1915) p4 16.6 8.4 

Fossil Dorcabune anthracotheroides AMNH-19355 Colbert (1935) m1 17.0 12.0 

Fossil Dorcabune anthracotheroides GSI-B582 and B583 Pilgrim (1915) m1 18.6 11.9 

Fossil Dorcabune anthracotheroides GSI-B585 Pilgrim (1915) m1 16.2 10.6 

Fossil Dorcabune anthracotheroides PUPC 68/44  Khan and Akhtar (2013) m1 15.4 9.0 

Fossil Dorcabune anthracotheroides PUPC 86/40 (H23) Khan et al. (2012) m1 19.3 14.0 

Fossil Dorcabune anthracotheroides SNSB-BSPG 1956 II 2595 This study m2 19.7 13.9 

Fossil Dorcabune anthracotheroides AMNH-19355 Colbert (1935) m2 17.5 13.0 

Fossil Dorcabune anthracotheroides GSI-B582 and B583 Pilgrim (1915) m2 19.5 14.7 

Fossil Dorcabune anthracotheroides GSI-B585 Pilgrim (1915) m2 16.7 12.6 

Fossil Dorcabune anthracotheroides PUPC 96/65 Farooq et al. (2007c) m2 20.3 13.3 

Fossil Dorcabune anthracotheroides PUPC 96/66 Farooq et al. (2007c) m2 19.0 12.0 

Fossil Dorcabune anthracotheroides PUPC 99/89 Farooq et al. (2007c) m2 19.6 11.5 

Fossil Dorcabune anthracotheroides GSI-B582 and B583 Pilgrim (1915) m3 30.9 16.0 

Fossil Dorcabune anthracotheroides GSI-B585 Pilgrim (1915) m3 28.7 14.0 

Fossil Dorcabune anthracotheroides PC-GCUF 10/95 Khan and Akhtar (2013) m3 28.4 14.0 

Fossil Dorcabune anthracotheroides PUPC 04/01 Khan et al. (2010) m3 29.5 15.0 

Fossil Dorcabune anthracotheroides PUPC 85/28 Farooq et al. (2007c) m3 26.0 13.0 

Fossil Dorcabune anthracotheroides SNSB-BSPG 1956 II 2595 This study m3 29.1 14.0 

Fossil Dorcabune anthracotheroides GSI-B580 Pilgrim (1915) M1 18.0 23.1 
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Fossil Dorcabune anthracotheroides GSI-B580 Pilgrim (1915) M2 21.7 25.7 

Fossil Dorcabune anthracotheroides PUPC 04/21 (H12) Khan et al. (2012) M2 21.0 21.0 

Fossil Dorcabune anthracotheroides PUPC-99/338 Khan et al. (2010) M2 19.4 22.0 

Fossil Dorcabune anthracotheroides AMNH-19652 Colbert (1935) M3 19.5 22.5 

Fossil Dorcabune anthracotheroides AMNH-29998 Colbert (1935) M3 18.8 22.0 

Fossil Dorcabune anthracotheroides GSI-B580 Pilgrim (1915) M3 21.4 25.8 

Fossil Dorcabune anthracotheroides GSI-B587 Pilgrim (1915) M3 18.9 21.3 
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Table 2.2. Raw data of the Occlusal Tooth Area (OTA) and Occlusal Surface Area (OSA) for upper dentition of fossil and living tragulids. (f) = 

fossils species; (l) = living species. 

Species 

Body 

mass 
Occlusal Tooth Area (OTA) for upper dentition 

Occlusal Surface Area 

(OSA) 
Total OSA 

log10 Body 

mass (kg) 

log10 

OSA 

Premolar 

log10 

OSA 

Molar 

log10Total 

OSA 
Kg P2 P3 P4 M1 M2 M3 Premolars Molars 

Premolars 

+ Molars 

Iberomeryx minor (f) 1.6 8.6 12.6 19.2 27.6 36.6 39.3 40.4 103.5 143.9 0.2 1.6 2.0 3.6 

Afrotragulus parvus (f) 2.7 13.8 17.6 30.2 30.4 42.5 44.8 61.6 117.7 179.3 0.4 1.8 2.1 3.9 

Dorcatherium guntianum (f) 12.7 46.3 53.6 72.5 80.1 99.8 114.4 172.4 294.3 466.7 1.1 2.2 2.5 4.7 

Siamotragulus songhorensis (f) 5.6 n.d. 38.0 n.d. 49.0 62.2 68.3 - 179.5 - 0.7 - 2.3 - 

Dorcatherium pigotti (f) 11.6 n.d. 40.5 50.3 70.6 89.3 96.5 - 256.4 - 1.1 - 2.4 - 

Dorcatherium nagrii (f) 4.5 n.d. n.d. 34.8 41.7 50.0 64.8 - 156.5 - 0.7 - 2.2 - 

Hyemoschus aquaticus (l) 12.0 38.8 53.4 56.8 78.9 104.5 112.0 149.0 295.4 444.4 1.1 2.2 2.5 4.6 

Moschiola indica (l) 3.0 35.1 31.9 38.0 50.4 60.5 59.2 105.0 170.1 275.1 0.5 2.0 2.2 4.3 

Moschiola meminna (l) 2.5 19.1 24.4 31.5 46.2 55.8 53.1 75.0 155.1 230.1 0.4 1.9 2.2 4.1 

Tragulus javanicus (l) 1.9 15.3 19.0 20.9 26.5 39.0 41.3 55.2 106.8 162.0 0.3 1.7 2.0 3.8 

Tragulus kanchil (l) 2.0 16.6 19.4 19.9 25.7 38.4 40.6 55.9 104.7 160.6 0.3 1.7 2.0 3.8 

Tragulus nigricans (l) 2.9 19.9 31.5 31.8 36.1 40.0 n.d. 83.2 - - 0.5 1.9 - - 

Tragulus napu (l) 4.0 23.4 28.9 29.3 38.6 55.7 61.5 81.6 155.8 237.4 0.6 1.9 2.2 4.1 

Dorcatherium chappuisi (f) 29.9 80.6 90.0 88.3 128.4 169.2 171.3 258.9 468.9 727.8 1.5 2.4 2.7 5.1 

Dorcatherium crassum (f) 24.9 n.d. 94.4 81.9 123.4 164.7 186.1 - 474.2 - 1.4 - 2.7 - 

Dorcatherium minus (f) 22.8 59.5 54.5 84.1 100.8 134.6 150.8 198.1 386.2 584.3 1.4 2.3 2.6 4.9 

Dorcatherium naui (f) 24.4 61.0 70.7 92.0 179.4 181.4 180.6 223.7 541.4 765.1 1.4 2.3 2.7 5.1 

Dorcatherium jourdani (f) 20.9 64.4 n.d. n.d. 110.8 132.8 136.8 - 380.4 - 1.3 - 2.6 - 

Dorcatherium maliki (f) 33.8 92.2 n.d. 160.0 142.8 191.5 226.5 - 560.8 - 1.5 - 2.7 - 

Dorcatherium vindebonense (f) 49.0 117.4 150.4 153.7 199.6 262.5 297.4 421.5 759.5 1181.0 1.7 2.6 2.9 5.5 

Dorcabune nagrii (f) 52.5 n.d. n.d. n.d. 245.8 227.3 243.8 - 716.9 - 1.7 - 2.9 - 

Dorcatherium majus (f) 77.0 n.d. n.d. 210.0 225.8 376.2 391.2 - 993.2 - 1.9 - 3.0 - 

Dorcabune anthracotheroides (f) 111.5 n.d. n.d. n.d. 415.8 475.2 451.8 - 1342.8 - 2.0 - 3.1 - 
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Table 2.3. Raw data of the Occlusal Tooth Area (OTA) and Occlusal Surface Area (OSA) for the lower dentition of fossil and living tragulids. 

(f) = fossils species; (l) = living species. 

 

Species 

Body 

mass 

Occlusal Tooth Area (OTA) for lower 

dentition 

Occlusal Surface 

Area (OSA) 

Total OSA 

Premolars+Molars 

log10 Body 

mass (kg) 

log10 OSA 

Premolar 

log10 OSA 

Molar 

log10Total 

OSA 

Kg p2 p3 p4 m1 m2 m3 Premolars Molars      

Archaeotragulus krabiensis (f) 4.7 14.3 25.0 27.7 27.8 36.4 52.4 67.0 116.6 183.6 0.7 1.8 2.1 3.9 

Iberomeryx parvus (f) 3.3 n.d. 3.6 8.4 13.5 19.7 22.0 - 55.2 - 0.5 - 1.7 - 

Iberomeryx minor (f) 1.6 n.d. 19.8 8.2 13.0 16.3 28.8 - 58.1 - 0.2 - 1.8 - 

Afrotragulus moruorotensis (f) 1.0 n.d. n.d. n.d. 11.0 13.3 20.6 - 44.9 - 0.0 - 1.7 - 

Dorcatherium pigotti (f) 11.6 17.8 31.2 34.2 46.7 56.0 83.1 83.2 185.8 269.0 1.1 1.9 2.3 4.2 

Dorcatherium guntianum (f) 12.4 21.2 34.1 35.8 53.1 62.3 105.3 91.1 220.7 311.8 1.1 2.0 2.3 4.3 

Dorcatherium nagrii (f) 4.5 12.0 18.2 27.1 23.7 30.5 45.8 57.3 100.0 157.3 0.7 1.8 2.0 3.8 

Siamotragulus songhorensis (f) 5.6 n.d. 19.5 21.3 25.6 34.3 49.4 - 109.3 - 0.7 - 2.0 - 

Afrotragulus parvus (f) 2.7 n.d. 17.5 15.2 15.1 22.0 32.5 - 69.6 - 0.4 - 1.8 - 

Yunnanotherium simplex (f) 5.1 17.0 20.5 18.1 29.4 31.5 48.0 55.6 108.9 164.5 0.7 1.7 2.0 3.8 

Hyemoschus aquaticus (l) 12.0 22.6 29.0 36.3 54.4 65.8 90.7 87.9 210.9 298.8 1.1 1.9 2.3 4.3 

Moschiola indica (l) 3.0 10.7 12.7 22.4 28.6 34.9 49.3 45.8 112.8 158.6 0.5 1.7 2.1 3.7 

Moschiola meminna (l) 2.5 11.3 18.7 21.2 27.2 32.2 42.4 51.2 101.8 153.0 0.4 1.7 2.0 3.7 

Tragulus javanicus (l) 1.9 11.2 13.5 15.6 18.2 25.7 36.7 40.3 80.6 120.9 0.3 1.6 1.9 3.5 

Tragulus kanchil (l) 2.0 9.2 12.9 14.3 16.4 24.9 37.1 36.4 78.4 114.8 0.3 1.6 1.9 3.5 

Tragulus napu (l) 4.0 14.0 19.2 20.1 26.8 35.3 50.4 53.3 112.5 165.8 0.6 1.7 2.1 3.8 

Dorcatherium chappuisi (f) 29.9 64.8 70.2 74.4 89.5 115.3 166.9 209.4 371.7 581.1 1.5 2.3 2.6 4.9 

Dorcatherium crassum (f) 24.9 54.7 60.9 67.2 79.1 102.9 164.0 182.8 346.0 528.8 1.4 2.3 2.5 4.8 
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Dorcatherium minus (f) 22.8 n.d. 51.1 48.0 65.1 85.4 134.4 - 284.9 - 1.4 - 2.5 - 

Dorcabune welcommi (f) 20.3 n.d. n.d. 64.4 77.0 100.3 191.1 - 368.4 - 1.3 - 2.6 - 

Dorcatherium naui (f) 24.4 37.4 55.6 59.9 76.9 93.9 148.3 152.9 319.1 472.0 1.4 2.2 2.5 4.7 

Dorcatherium jourdani (f) 20.9 n.d. n.d. n.d. 64.4 75.3 109.3 - 249.0 - 1.3 - 2.4 - 

Dorcatherium maliki (f) 33.8 41.8 69.9 67.8 91.2 115.6 164.3 179.5 371.1 550.6 1.5 2.3 2.6 4.8 

Dorcabune nagrii (f) 52.5 n.d. n.d. n.d. 138.0 174.2 253.5 - 565.7 - 1.7 - 2.8 - 

Dorcatherium peneckei (f) 71.2 n.d. 88.5 129.8 142.5 204.2 269.2 - 615.9 - 1.9 - 2.8 - 

Dorcatherium majus (f) 77.0 61.5 n.d. 85.6 134.3 184.2 278.4 - 596.9 - 1.9 - 2.8 - 

Dorcabune anthracotheroides (f) 111.5 n.d. 122.8 139.4 201.2 241.3 414.9 - 857.4 - 2.0 - 2.9 - 
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Appendix Chapter 3 

Table 3.1. Stud specimens. In bold, species assignments according to this study, which differ 

from current assignments in collections. Tj = Tragulus javanicus, Tk = Tragulus kanchil, Tn = 

Tragulus napu, Tm = Tragulus meminna, Mi = Moschiola indica, Me-i = Meminna indica, Mo-

k = Moschus kanchil, Mm = Moschiola meminna, nd = no data. SNSB-BSPG: Bavarian Natural 

History Collections - Bavarian State Collection of Paleontology and Geology, Munich, 

Germany; NMB: Natural History Museum Basel, Switzerland; SMNS: Natural History 

Museum Stuttgart, Germany; NHMW: Natural History Museum Vienna, Austria; SNSB-ZSM: 

Bavarian Natural History Collections - Zoological State Collection Munich, Germany.  

 
 

Collection Inventory 

Number 

Species assignment according to: 
Sex Geographical provenance 

Skull label Collection 

catalogue 
This study                  

(PCA-plot N° in Fig. 3) 

SNSB-BSPG 1977-I-185 Tj nd Tragulus kanchil (10) Female Sumatra, Lubuk Pakam, Deli, 

North Sumatra 

NMB 

2453 Mm Mm Moschiola meminna (28) Female Sri Lanka 

1366 Me-i Mm Moschiola meminna (25) Male Sri Lanka 

1429 Tm Mm Moschiola meminna (29) Male Sri Lanka 

2328 Tm / Mm Mm Moschiola meminna (24) Male Sri Lanka 

2588 Tm Mm Moschiola meminna (30) Male Sri Lanka 

3735 Tj / Tk Tk Tragulus kanchil (13)  Female Sumatra 

3002 Tk Tk Tragulus kanchil (2) Female Sumatra 

1891 Tj Tk Tragulus kanchil (17) Female Sumatra 

3803 Tj Tk Tragulus kanchil (9) Female Sumatra, Indagrii 

3797 Tj / Tk Tk Tragulus kanchil (14) Female Sumatra, Indagrii 

3804 Tj Tk Tragulus kanchil (8) Female Sumatra 

3802 Tj Tk Tragulus kanchil (5) Female Sumatra 

3795 Tj Tk Tragulus kanchil (7) Male Sumatra 

3808 Tj Tk Tragulus kanchil (12) Male Sumatra 

3809 Tj Tk Tragulus kanchil (6) Male Sumatra 

3791 Tk Tk Tragulus kanchil (4) Male Sumatra 

3798 Tj Tk Tragulus kanchil (1) Male Sumatra 

10085 Tk Tk Tragulus napu (36) Female Borneo, Balikpapan 

3806 Tj Tk Tragulus kanchil (3) Female Sumatra 

I0007 Tn Tn Tragulus napu (42)  Female Sumatra, Deli, North Sumatra 

C2950 Tk - Tj Tk Tragulus napu (43) Female Sunda Islands 

SMNS 
2006 Tm Mm Moschiola meminna (27) Female Sri Lanka 

16875 Tj Tj Tragulus javanicus (19) Female Java 
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16868 Tj Tj Tragulus javanicus (22) Female Java 

16874 Tj Tj Tragulus javanicus (18) Male Java 

16876 Tj Tj Tragulus javanicus (23) Male Java 

NHMW 

1923 Tn Tn Tragulus napu (39) Male Borneo 

40826 Tn Tn Tragulus napu (35)  Male Borneo 

40378 Tn Tn Tragulus napu (34) Male Sumatra 

B6016 Mm Mm Moschiola indica (31) Male India 

40818 Tj / Tk Tj Tragulus javanicus (21) Female Java 

1473 Tn Tn Tragulus kanchil (16) Male Sumatra 

B6014 Tn Tn Tragulus napu (32) Male Sumatra 

SNSB-ZSM 

1962/224 Tj Tj Tragulus kanchil (11) Female Thailand 

1964/223 Tj - Tragulus kanchil (15) Male Thailand 

09/411 Tn - Tragulus napu (33) Male Borneo 

1909/233 Tn - Tragulus napu (41) Male Borneo 

1973/271 Tn Tn- Tragulus napu (37)  Male Sumatra 

1903/9443 Tn - Tragulus napu (40)  Male Sumatra 

1906/6 Mm - Moschiola indica (38) Female India 

1917/2163 Mm - Moschiola meminna (26) Male Sri Lanka 

4 (ex 21) Mo-k / Tj - Tragulus javanicus (20) Female Java 
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Appendix Chapter 4 

Table 4.1. Fossil and living tragulids here studied. SNSB-BSPG: Bavarian Natural History 

Collections - Bavarian State Collection of Paleontology and Geology, Munich, Germany; 

NMB: Natural History Museum Basel, Switzerland; SMNS: Natural History Museum Stuttgart, 

Germany; NHMW: Natural History Museum Vienna, Austria; SNSB-ZSM: Bavarian Natural 

History Collections - Zoological State Collection Munich, Germany; NMA: Natural History 

Museum Augsburg, Germany. For NMA-Walda 2 the 3D model is available at: 

https://data.ub.uni-muenchen.de/ 

 

Species Sex Collection Inventory Number Geographical provenance 

Dorcatherium crassum Male NMA Walda 2 Germany, Europe 

Dorcatherium crassum Female NMA 2012-1/2131 Germany, Europe 

Hyemoschus aquaticus Male NHMW 5407 Cameroon, Africa 

Hyemoschus aquaticus 
Male 

Currently at 

SNSB-BSPG 
H-30 Kongo, Africa 

Hyemoschus aquaticus Male NHMW 40827 Gabon, Africa 

Moschiola meminna Male SNSB-ZSM 1911-2163 Sri Lanka, Asia 

Moschiola meminna Male NHMB C-1366 Sri Lanka, Asia 

Moschiola meminna Male NHMB 1429 Sri Lanka, Asia 

Moschiola meminna Male NHMB 2328 Sri Lanka, Asia 

Tragulus javanicus Male SMNS 16874 Java, Asia 

Tragulus javanicus Male SMNS 16876 Java, Asia 

Tragulus napu Male SNSB-ZSM 09-411 Borneo, Asia 

Tragulus napu Male SNSB-ZSM 1909/233 Borneo, Asia 

Tragulus napu Male NHMW 1923 Borneo, Asia 

Tragulus napu Male NHMW 40826 Borneo, Asia 

Tragulus napu Male NHMW 40378 Sumatra, Asia 

Tragulus napu Male SNSB-ZSM 1903-9443 Sumatra, Asia 

Tragulus napu Male NHMW B6014 Sumatra, Asia 

Tragulus kanchil Male NHMB C3808 Sumatra, Asia 

Tragulus kanchil Male NHMB C3798 Sumatra, Asia 

Tragulus kanchil Male NHMW 1473 Sumatra, Asia 

Tragulus kanchil Male SNSB-ZSM 1964-233 Thailand, Asia 

 

https://data.ub.uni-muenchen.de/
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Appendix Chapter 5 

Table 5.1.  Dental measurements of Dorcabune anthracotheroides from this study and the 

lectotype (Pilgrim 1915). n.a.: not applicable. 

 

Tooth Catalogue number Length 

[mm] 
Width 

[mm] 
Height 

[mm] 
Hypsodonty 

Index Figure 3 

dex. m2 SNSB-BSPG 1956 II 2595 19.7 13.9 n.a. n.a. A, B, C 
dex. m3 SNSB-BSPG 1956 II 2595 29.1 14.0 n.a. n.a. A, B, C 
sin. M1 Holotype GSI B580 18.0 23.1 n.a. n.a. Pilgrim (1915): Pl. 21, fig. 1 
sin. M2 Holotype GSI B580 21.7 25.7 n.a. n.a. Pilgrim (1915): Pl. 21, fig. 1 
sin. M3 Holotype GSI B580 21.4 25.8 n.a. n.a. Pilgrim (1915): Pl. 21, fig. 1 

 

 

 

 

 

 

Table 5.2 Dental measurements and Hypsodonty Index for specimens of Dorcatherium majus 

studied here. Data of the type specimens are provided. n.a.: not applicable. 

 

Tooth Catalogue number 
SNSB – BSPG 

catalogue 

number cast 

Length 

[mm] 
Width 

[mm] 
Height 

[mm] 
Hypsodonty 

Index 
Figures 5.5, 

5.6, 5.7 

sin. d4 SNSB-BSPG 1956 II 2617 n.a. 17.9 8.3 n.a. n.a. R, S, T 
dex. d4 SNSB-BSPG 1956 II 2621 n.a. 18.7 7.5 n.a. n.a. U, V, W 
sin. p3 SNSB-BSPG 1956 II 2617 n.a. 15.5 5.2 n.a. n.a. R, S, T 
sin. p3 SNSB-BSPG 1956 II 2603 n.a. 16.8 5.9 n.a. n.a. I, J, K 
sin. p4 SNSB-BSPG 1956 II 2603 n.a. 14.0 6.9 n.a. n.a. I, J, K 
dex. p4 SNSB-BSPG 1968 XVIII 10 n.a. 15.0 6.5 n.a. n.a. A´, B´, C´ 
dex. p4 AMNH 19524 1981 XVII 52 14.8 5.4 n.a. n.a. n.a. 
sin. p4 SNSB-BSPG 1956 II 2508 n.a. 15.6 6.7 n.a. n.a. G, H 
sin. p4 SNSB-BSPG 1956 II 2521 n.a. 17.2 7.1 n.a. n.a. n.a. 
sin. p4 SNSB-BSPG 1956 II 2604 n.a. 15.2 6.2 n.a. n.a. L, M, N 
sin. p4 SNSB-BSPG 1956 II 2620 n.a. 13.5 6.3 n.a. n.a. n.a. 
sin. m1 SNSB-BSPG 1956 II 2603 n.a. 14.6 9.6 n.a. n.a. I, J, K 
dex. m1 SNSB-BSPG 1956 II 2621 n.a. 15.7 8.6 n.a. n.a. U, V, W 
dex. m1 SNSB-BSPG 1956 II 2616 n.a. 14.6 7.7 n.a. n.a. O, P, Q 
dex. m1 SNSB-BSPG 1968 XVIII 10 n.a. 15.9 8.4 n.a. n.a. A´, B´, C´ 
dex. m1 AMNH 19524 1981 XVII 52 14.4 7.9 n.a. n.a. n.a. 
dex. m1 AMNH 19517 1968 XVIII 15 13.4 8.5 n.a. n.a. n.a. 
dex. m1 AMNH 19520 1981 XVII 48 14.8 8.4 n.a. n.a. n.a. 
sin. m1 GSI 9909 1981 XVII 65 13.5 9.1 n.a. n.a. n.a. 
sin. m1 SNSB-BSPG 1956 II 2617 n.a. 16.0 9.2 n.a. n.a. R, S, T 
dex. m2 SNSB-BSPG 1956 II 2616 n.a. 16.3 9.4 14.0 0.86 O, P, Q 
dex. m2 SNSB-BSPG 1956 II 2618 n.a. 17.8 9.9 n.a. n.a. n.a. 
dex. m2 SNSB-BSPG 1956 II 2621 n.a. 18.3 10.9 n.a. n.a. U, V, W 
dex. m2 SNSB-BSPG 1968 XVIII 10 n.a. 17.4 10.8 n.a. n.a. A´, B´, C´ 
dex. m2 AMNH 19517 1968 XVIII 15 16.8 10.6 n.a. n.a. n.a. 
dex. m2 SNSB-BSPG 1968 XVIII 56 n.a. 17.1 10.2 n.a. n.a. n.a. 
dex. m2 AMNH 19369 1981 XVII 42 17.7 9.8 n.a. n.a. n.a. 
dex. m2 AMNH 19520 1981 XVII 48 17.6 10.5 n.a. n.a. n.a. 
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dex. m2 AMNH 19524 1981 XVII 52 15.7 9.3 n.a. n.a. n.a. 
sin. m2 GSI 9909 1981 XVII 65 16.2 9.8 n.a. n.a. n.a. 
dex. m3 AMNH 19369 1981 XVII 42 25.6 11.6 n.a. n.a. n.a. 
sin. m3 AMNH 19939 1981 XVII 45 25.7 12.3 n.a. n.a. n.a. 
sin. m3 AMNH 39254 1981 XVII 44 22.7 10.5 n.a. n.a. D´, E´ F´ 
sin. m3 SNSB-BSPG 1956 II 2623 n.a. 25.2 11.1 n.a. n.a. X, Y, Z 
sin. m3 SNSB BSPG 1956 II 2512 n.a. 28.4 12.2 n.a. n.a. n.a. 
dex. m3 GSI 9909 1981 XVII 66 26.4 12.8 n.a. n.a. n.a. 

dex. 

M1/2 GSI 9909 1981 XVII 64 14.9 n.a. n.a. n.a. n.a. 

sin. M1 AMNH 19304 1981 XVII 47 15.3 n.a. n.a. n.a. n.a. 
sin. M1 SNSB-BSPG 1956 II 2519 n.a. 14.9 14.8 n.a. n.a. A, B, C 

dex. 
M2/3 GSI 9909 1981 XVII 64 16.3 16.9 n.a. n.a. n.a. 

sin. M2 AMNH 19304 1981 XVII 47 17.7 18.3 n.a. n.a. n.a. 
sin. M2 SNSB-BSPG 1956 II 2519 n.a. 18.2 16.8 n.a. n.a. A, B, C 
dex. M2 SNSB-BSPG 1956 II 2535 n.a. 18.1 17.1 18.3 1.01 D, E, F 
dex. M3 SNSB-BSPG 1956 II 2535 n.a. 19.5 19.1 16.0 0.82 D, E, F 
sin. M2 Lectotype No: 1307/GSI B198 (Pilgrim 1915) n.a. 19.6 19.6 n.a. n.a. n.a. 
sin. M3 Lectotype No: 1307/GSI B198 (Pilgrim 1915) n.a. 20.1 19.2 n.a. n.a. n.a. 
dex. M3 Paralectotype No: 502/GSI B197 (Lydekker 1876) n.a. 19.5 20.3 n.a. n.a. n.a. 

 

 

 

 

Table 5.3.  Dental measurements and Hypsodonty Index for the specimens of Dorcatherium 

minus studied here. Also, data from type specimens are provided. n.a.: not applicable. 

 

Tooth Catalogue number 
SNSB - BSPG 

Catalogue number 

cast 

Length 

[mm] 
Width 

[mm] 
Height  

[mm] 
Hypsodonty 

Index 
Figures 5.8, 

5.9 

sin. d4 SNSB-BSPG 1956 II 2561 n.a. n.a. 4.7 n.a. n.a. n.a. 
sin. p3 SNSB-BSPG 1956 II 2489 n.a. 12.0 3.5 n.a. n.a. O, P, Q 
sin. p4 SNSB-BSPG 1956 II 2489 n.a. 10.0 4.4 n.a. n.a. O, P, Q 
dex. p4 GSI 234 n.a. 10.7 4.7 n.a. n.a. X, Y, Z 
sin. p4 AMNH 39306 1981 XVII 24 10.6 4.5 n.a. n.a. n.a. 
sin. m1 SNSB-BSPG 1956 II 2561 n.a. 11.0 5.6 6.7 0.60 n.a. 
sin. m1 AMNH 19594 1981 XVII 17 11.3 5.0 n.a. n.a. n.a. 
sin. m1 SNSB-BSPG 1956 II 2489 n.a. 10.5 6.2 n.a. n.a. O, P, Q 
sin. m1 SNSB-BSPG 1956 II 2601 n.a. 10.1 5.7 n.a. n.a. R, S, T 
sin. m1 AMNH 39302 1981 XVII 19 11.0 6.1 n.a. n.a. n.a. 
sin. m1 SNSB-BSPG 1956 II 2548 n.a. 10.0 5.1 n.a. n.a. n.a. 
sin. m1 SNSB-BSPG 1956 II 2581 n.a. 11.1 5.9 n.a. n.a. n.a. 
sin. m1 AMNH 39510 1981 XVII 38 10.7 5.8 n.a. n.a. n.a. 
sin. m1 AMNH 39306 1981 XVII 24 10.5 5.6 n.a. n.a. n.a. 
sin. m2 AMNH 19594 1981 XVII 17 11.9 7.0 n.a. n.a. n.a. 
sin. m2 SNSB-BSPG 1956 II 2629 n.a. 10.2 7.1 n.a. n.a. U, V, W 
sin. m2 SNSB-BSPG 1956 II 2489 n.a. 11.4 6.6 n.a. n.a. O, P, Q 
sin. m2 AMNH 39306 1981 XVII 24 12.1 7.3 n.a. n.a. n.a. 
sin. m2 AMNH 39302 1981 XVII 19 12.7 7.4 9.5 0.74 n.a. 
sin. m2 AMNH 39510 1981 XVII 38 11.8 7.0 n.a. n.a. n.a. 
sin. m2 AMNH 19307 1981 XVII 10 12.8 7.2 n.a. n.a. n.a. 
dex. m2 SNSB-BSPG 1956 II 2580 n.a. 11.3 6.4 n.a. n.a. n.a. 
sin. m2 SNSB-BSPG 1956 II 2581 n.a. 11.8 6.8 n.a. n.a. n.a. 
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sin. m2 SNSB-BSPG 1956 II 2548 n.a. 11.6 6.4 n.a. n.a. n.a. 
sin. m2 SNSB-BSPG 1956 II 2588 n.a. 12.2 6.8 n.a. n.a. n.a. 
sin. m2 SNSB-BSPG 1956 II 2601 n.a. 11.6 6.5 n.a. n.a. R, S, T 
sin. m2 AMNH 19366 1981 XVII 18 12.0 7.1 n.a. n.a. n.a. 
sin. m3 AMNH 39306 1981 XVII 24 17.0 7.2 n.a. n.a. n.a. 
sin. m3 AMNH 19366 1981 XVII 18 16.1 7.5 n.a. n.a. n.a. 
dex. m3 SNSB-BSPG 1956 II 2465 n.a. 17.3 7.1 n.a. n.a. n.a. 
sin. m3 AMNH 39253 1981 XVII 14 16.8 7.6 n.a. n.a. n.a. 
sin. m3 SNSB-BSPG 1956 II 2601 n.a. 16.1 7.5 10.3 0.63 R, S, T 
sin. m3 SNSB-BSPG 1956 II 2490 n.a. 17.0 7.2 n.a. n.a. n.a. 
sin. m3 SNSB-BSPG 1956 II 2503 n.a. 16.8 7.0 n.a. n.a. n.a. 
sin. m3 SNSB-BSPG 1956 II 2496 n.a. 17.1 7.6 10.2 0.59 n.a. 
sin. m3 SNSB-BSPG 1956 II 2629 n.a. 16.6 7.8 n.a. n.a. U, V, W 
dex. m3 SNSB-BSPG 1956 II 2655 n.a. 15.9 6.8 n.a. n.a. n.a. 
dex. D3 BM 19043 1961 XIX 38 12.9 7.1 n.a. n.a. n.a. 
sin. D3 BM 19043 1961 XIX 38 14.4 7.4 n.a. n.a. n.a. 
sin. D3 AMNH 39303 1981 XVII 13 12.0 6.5 n.a. n.a. n.a. 
sin. D4 AMNH 39303 1981 XVII 13 9.9 8.8 n.a. n.a. n.a. 
dex. D4 BM 19043 1961 XIX 38 9.9 9.2 n.a. n.a. n.a. 
sin. D4 BM 19043 1961 XIX 38 10.7 8.7 n.a. n.a. n.a. 
dex. D4 SNSB-BSPG 1956 II 2498 n.a. 10.1 9.0 n.a. n.a. J, K 
sin. P2 SNSB-BSPG 1956 II 2536 n.a. 11.6 5.2 n.a. n.a. n.a. 
dex. P2 SNSB-BSPG 1956 II 2536 n.a. 11.5 5.1 n.a. n.a. n.a. 
sin. P3 SNSB-BSPG 1956 II 2485 n.a. 9.9 5.7 n.a. n.a. D, E, F 
sin. P3 SNSB-BSPG 1956 II 2536 n.a. 11.2 6.4 n.a. n.a. n.a. 
sin. P4 SNSB-BSPG 1956 II 2497 n.a. 8.1 9.4 n.a. n.a. G, H, I 
sin. P4 SNSB-BSPG 1956 II 2484 n.a. 8.5 8.2 n.a. n.a. n.a. 
sin. P4 SNSB-BSPG 1956 II 2536 n.a. 8.6 8.5 n.a. n.a. n.a. 
sin. M1 AMNH 39303 1989 XVII 13 9.9 10.0 n.a. n.a. n.a. 
sin. M1 BM 19043 1961 XIX 38 10.0 8.6 8.5 0.85 n.a. 
sin. M1 SNSB-BSPG 1956 II 2480 n.a. 10.4 10.4 n.a. n.a. A, B, C 
dex. M1 SNSB-BSPG 1956 II 2498 n.a. 10.6 10.9 8.9 0.84 J, K 
dex. M1 AMNH 29856 1981 XVII 32 9.8 10.5 n.a. n.a. L, M, N 
sin. M1 SNSB-BSPG 1956 II 2456 n.a. 10.5 n.a. n.a. n.a. n.a. 
sin. M2 SNSB-BSPG 1956 II 2456 n.a. 11.2 11.1 n.a. n.a. n.a. 
dex. M2 SNSB-BSPG 1956 II 2536 n.a. 11.2 12.6 11.1 0.99 n.a. 
sin. M2 SNSB-BSPG 1956 II 2536 n.a. 10.9 11.7 n.a. n.a. n.a. 
dex. M2 SNSB-BSPG 1956 II 2469 n.a. 11.0 12.3 n.a. n.a. n.a. 
dex. M2 AMNH 29856 1981 XVII 32 11.7 12.3 n.a. n.a. L, M, N 
sin. M2 SNSB-BSPG 1956 II 2497 n.a. 11.7 13.1 n.a. n.a. G, H, I 
sin. M2 SNSB-BSPG 1956 II 2480 n.a. 11.1 13.1 n.a. n.a. A, B, C 
dex. M3 AMNH 29856 1981 XVII 32 11.3 13.0 n.a. n.a. L, M, N 
dex. M3 SNSB-BSPG 1956 II 2536 n.a. 12.0 13.2 11.9 0.99 n.a. 
sin. M3 SNSB-BSPG 1956 II 2536 n.a. 12.3 13.6 11.8 0.95 n.a. 
dex. M3 SNSB-BSPG 1956 II 2469 n.a. 11.3 12.4 n.a. n.a. n.a. 
dex. M2 Holotype No: 1301/GSI B195 (Pilgrim 1915) n.a. 10.6 12.3 n.a. n.a. n.a. 
dex. M3 Holotype No: 1301/GSI B195 (Lydekker 1876) n.a. 11.0 10.0 n.a. n.a. n.a. 
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Table 5.4. Dental measurements and Hypsodonty Index for the specimens of Dorcatherium 

nagrii studied and type material. n.a.: not applicable. 

 

Tooth Catalogue number 
SNSB-BSPG 

catalogue 

number cast 

Length 

[mm] 
Width 

[mm] 
Height 

[mm] 
Hypsodonty 

Index Figure 5.10 

sin. p3 SNSB-BSPG 1956 II 2569 n.a. broken 2.9 n.a. n.a. G, H, I 
sin. p4 SNSB-BSPG 1956 II 2455 n.a. 7.7 2.7 n.a. n.a. A, B, C 
sin. m1 SNSB-BSPG 1956 II 2569 n.a. 6,5 3.7 n.a. n.a. G, H, I 
dex. m1 AMNH 39508b 1981 XVII 71 6.5 2.9 n.a. n.a. n.a. 
sin. m2 SNSB-BSPG 1956 II 2577 n.a. 7.7 3.5 n.a. n.a. D, E, F 
dex. m2 AMNH 39508b 1981 XVII 71 6.8 3.7 n.a. n.a. n.a. 
dex. m2 AMNH 19613 1981 XVII 68 8.0 4.6 n.a. n.a. n.a. 
sin. m2 AMNH 39508c 1981 XVII 70 6.6 4.1 n.a. n.a. n.a. 
sin. m3 SNSB-BSPG 1956 II 2569 n.a. 11.1 4.7 n.a. n.a. G, H, I 
dex. m3 AMNH 39512 1981 XVII 75 12.5 5.4 4.7 0.38 n.a. 
dex. m3 AMNH 19613 1981 XVII 68 10.9 4.7 n.a. n.a. n.a. 

m1 Lectotype GSI No. 18079 (Prasad 1970) n.a. 6.5 3.6 n.a. n.a. n.a. 
m2 Lectotype GSI No. 18079 (Prasad 1970) n.a. 6.6 4.0 n.a. n.a. n.a. 
m3 Lectotype GSI No. 18079 (Prasad 1970) n.a. 10.0 4.5 n.a. n.a. n.a. 
M1 Paralectotype GSI No. 1801 (Prasad 1970) n.a. 6.5 6.1 n.a. n.a. n.a. 
M2 Paralectotype GSI No. 1801 (Prasad 1970) n.a. 7.5 6.2 n.a. n.a. n.a. 
M3 Paralectotype GSI No. 1801 (Prasad 1970) n.a. 7.1 7.0 n.a. n.a. n.a. 

 

 

 

 

 

Table 5.5. Dental measurements for Dorcatherium aff. majus studied here. n.a.: not applicable.   

Tooth Catalogue number 

SNSB - BSPG 
Length 

[mm] 
Width 

[mm] 
Height 

[mm] Figure 5.11 

dex. M1 1956 II 2622 14.0 11.7 n.a. A, B, C 
dex. M2 1956 II 2622 14.7 14.7 n.a. A, B, C 
dex. M3 1956 II 2622 18.3 17.4 n.a. A, B, C 

 

 

 

 

Table 5.6. Dental dimensions and Hypsodonty Index for specimens of Dorcatherium dehmi 

sp. nov. n.a.: not applicable. 

Tooth Catalogue number SNSB-BSPG catalogue 

number cast 
Length 

[mm] 
Width 

[mm] 
Height 

[mm]  
Hypsodonty 

Index  
Figures 5.12, 

5.13 
sin. d4 AMNH 29887 1981 XVII 69 11,3 4.7 n.a. n.a. Y, Z, A´ 
sin. d4 SNSB-BSPG 1956 II 2633 n.a. 11,4 4.7 n.a. n.a. J, K, L 
sin. m1 AMNH 29887 1981 XVII 69 9,1 4.9 n.a. n.a. Y, Z, A´ 
sin. m1 SNSB-BSPG 1956 II 2633 n.a. 9.3 4.8 n.a. n.a. J, K, L 
sin. m1 AMNH 39304 1981 I 9 8.9 5.3 n.a. n.a. n.a. 
sin. m1 AMNH 19368 1981 XVII 20 9.7 4.9 n.a. n.a. V, W, X 
sin. m1 AMNH 19310 1981 XVII 34 8.7 5.1 n.a. n.a. P, Q, R 
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sin. m1 SNSB-BSPG 1956 II 2597 n.a. 9.7 5.1 n.a. n.a. n.a. 
dex. m1 SNSB-BSPG 1956 II 2502 n.a. 9.4 5.0 n.a. n.a. n.a. 
sin. m2 SNSB-BSPG 1956 II 2633 n.a. 10.7 6.1 8.8 0.82 J, K, L 

sin. m2 AMNH 39304 1981 XVII 9 9.7 6.6 n.a. n.a. n.a. 
sin. m2 AMNH 19368 1981 XVII 20 10.2 6.2 n.a. n.a. V, W, X 
sin. m2 AMNH 19310 1981 XVII 34 10.3 6.2 n.a. n.a. P, Q, R 
sin. m2 SNSB-BSPG 1956 II 2597 n.a. 10.7 6.1 n.a. n.a. n.a. 
sin. m2 SNSB-BSPG 1956 II 2460 n.a. 9.9 6.1 n.a. n.a. n.a. 
dex. m2 AMNH 19367 1981 XVII 35 10.4 5.7 n.a. n.a. S, T, U 
dex. m2 SNSB-BSPG 1956 II 2461 n.a. 10.3 6.4 n.a. n.a. n.a. 
dex. m2 SNSB-BSPG 1956 II 2502 n.a. 9.7 5.9 n.a. n.a. n.a. 
sin. m3 AMNH 19310 1981 XVII 34 13.9 6.5 n.a. n.a. P, Q, R 
sin. m3 SNSB-BSPG 1956 II 2479 n.a. 14.9 6.3 n.a. n.a. G, H, I 
dex. m3 SNSB-BSPG 1956 II 2461 n.a. 14.6 6.5 n.a. n.a. n.a. 
dex. m3 SNSB-BSPG 1968 XVIII 52 n.a. 15.2 6.5 n.a. n.a. M, N, O 
dex. m3 AMNH 20043 1981 XVII 39 15.6 6.6 n.a. n.a. n.a. 
dex. m3 AMNH 32588 1981 XVII 30 15.3 6.5 n.a. n.a. n.a. 
dex. m3 AMNH 39304 n.a. 14.5 7.0 8.2 0.56 n.a. 
dex. m3 AMNH 19367 n.a n.a. n.a 8.4 n.a. S, T, U 
sin. m3 AMNH 19368 n.a n.a. n.a 7.9 n.a. V, W, X 
sin. P4 Holotype SNSB-BSPG 1956 II 2615 n.a. 8.9 7.4 n.a. n.a. A, B, C 
sin. M1 Holotype SNSB-BSPG 1956 II 2615 n.a. 8.6 9.0 n.a. n.a. A, B, C 
dex. M1 SNSB-BSPG 1956 II 2470 n.a. 9.3 9.7 n.a. n.a. n.a. 
sin. M2 Holotype SNSB-BSPG 1956 II 2615 n.a. 10.7 10.3 n.a. n.a. A, B, C 
dex. M2 SNSB-BSPG 1956 II 2470 n.a. 10.8 11.0 n.a. n.a. n.a. 
sin. M2 AMNH 29855 1981 XVII 11 10.9 10.3 n.a. n.a. D, E, F 
dex. M3 SNSB-BSPG 1956 II 2470 n.a. 10.6 11.6 n.a. n.a. n.a. 
sin. M3 AMNH 29855 1981 XVII 11 10.9 10.5 n.a. n.a. D, E, F 
dex. M1 AMNH 19306 1981 XVII 12 8.7 10.1 n.a. n.a. n.a. 
dex. M2 AMNH 19306 1981 XVII 12 9.2 11.0 n.a. n.a. n.a. 
dex. M3 AMNH 19306 1981 XVII 12 n.a. 11.4 n.a. n.a. n.a. 
sin. M2 SNSB-BSPG 1956 II 2600 n.a. 9.5 10.8 n.a. n.a. n.a. 
sin. M3 SNSB-BSPG 1956 II 2600 n.a. 10.0 11.4 n.a. n.a. n.a. 

 

 

 

Table 5.7. Dental measurements and Hypsodonty Index for the specimens of Dorcatherium 

guntianum from the Siwalik Group studied here and type material. n.a.: not applicable. 

 

Tooth Catalogue number 
SNSB – BSPG 

catalogue number 

cast 

Length 

[mm] 
Width 

[mm] 
Height 

[mm] Hypsodonty Index Figure 5.14 

dex. m1 SNSB-BSPG1956 II 2554 n.a. 7.7 4.3 n.a. n.a. A, B, C 
dex. m2 SNSB-BSPG1956 II 2554 n.a. 9.1 5.0 5.8 0.63 A, B, C 
dex. m3 SNSB-BSPG1956 II 2554 n.a. 14.5 6.6 7.0 0.48 A, B, C 
dex. m3 AMNH 29854 1981 XVII 26 12.7 5.7 n.a. n.a. D, E, F 

d2 SNSB-BSPG1881 IX 740 Type series (Wetzler) 8.3 2.6 n.a. n.a. n.a. 
d4 SNSB-BSPG1881 IX 738 Type series (Wetzler) 11.4 4.5 n.a. n.a. n.a. 
m1 SNSB-BSPG1881 IX 735 Type series (Wetzler) 9.3 5.6 n.a. n.a. n.a. 
m1 SNSB-BSPG1881 IX 737 Type series (Wetzler) 8.6 5.5 n.a. n.a. n.a. 
m2 SNSB-BSPG1881 IX 731 Type series (Wetzler) 9.9 5.8 n.a. n.a. n.a. 
m2 SNSB-BSPG1881 IX 736 Type series (Wetzler) 9.1 5.4 n.a. n.a. n.a. 
m2 SNSB-BSPG1881 IX 737 Type series (Wetzler) 10.0 6.1 n.a. n.a. n.a. 
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m3 SNSB-BSPG1881 IX 737 Type series (Wetzler) 14.7 6.4 n.a. n.a. n.a. 
D4 SNSB-BSPG1881 IX 733 Type series (Wetzler) 8.2 8.9 n.a. n.a. n.a. 
D4 SNSB-BSPG1881 IX 647 Type series (Wetzler) 8.7 n.a. n.a. n.a. n.a. 
P3 SNSB-BSPG1881 IX 648b Type series (Wetzler) 8.8 5.0 n.a. n.a. n.a. 
P4 SNSB-BSPG1881 IX 648a Type series (Wetzler) 7.9 8.1 n.a. n.a. n.a. 
M1 SNSB-BSPG1881 IX 647 Type series (Wetzler) 8.7 9.5 n.a. n.a. n.a. 
M2 SNSB-BSPG1881 IX 732 Type series (Wetzler) 9.9 10.5 n.a. n.a. n.a. 
M2 SNSB-BSPG1881 IX47 i Type series (Wetzler) 9.9 10.9 n.a. n.a. n.a. 

 

 

 

Table 5.8. Dental measurements and Hypsodonty Index for the specimens of Dorcatherium 

naui from the Siwalik Group studied here and holotype. n. a.: not applicable. 

 

Tooth Catalogue number 
SNSB – BSPG 

catalogue number 

cast 

Length 

[mm] 
Width 

[mm] 
Height 

[mm] Hypsodonty Index Figures 5.17, 

5.18, 5.19 

sin. d3 SNSB-BSPG 1956 II 2584 n.a. 13.5 4.9 n.a. n.a. S, T, U 
sin. d4 AMNH 39307 1981 XVII 36 13.6 5.3 n.a. n.a. n.a. 
sin. d4 SNSB-BSPG 1956 II 2584 n.a. 14.9 5.7 n.a. n.a. S, T, U 
sin. d4 GSI 235 n.a. 15.0 5.7 n.a. n.a. H´, I´, J´ 
sin. p3 AMNH 39305 1981 XVII 53 13.5 4.4 n.a. n.a. n.a. 
dex. p3 AMNH 19609 1981 XVII 2 13.4 4.6 n.a. n.a. E´, F´, G´ 
dex. p4 AMNH 19609 1981 XVII 2 12.3 5.4 n.a. n.a. E´, F´, G´ 
dex. p4 SNSB-BSPG 1956 II 2656 n.a. 12.8 5.7 n.a. n.a. M, N, O 
sin. p4 AMNH 39305 1981 XVII 53 broken 4.7 n.a. n.a. n.a. 

dex. m1 AMNH 19609 1981 XVII 2 11.4 7.6 n.a. n.a. E´, F´, G´ 
sin. m1 GSI 235 n.a. 12.6 6.9 n.a. n.a. H´, I´, J´ 
sin. m1 AMNH 39305 1981 XVII 53 11.4 6.7 n.a. n.a. n.a. 
dex. m1 SNSB-BSPG 1956 II 2570 n.a. 12.3 6.8 n.a. n.a. P, Q, R 
sin. m1 AMNH 39307 1981 XVII 36 11.2 6.3 n.a. n.a. n.a. 
sin. m1 SNSB-BSPG 1956 II 2486 n.a. 12.7 7.4 n.a. n.a. n.a. 
sin. m2 AMNH 39305 1981 XVII 53 13.7 8.7 n.a. n.a. n.a. 
dex. m2 AMNH 19609 1981 XVII 2 13.2 9.0 n.a. n.a. E´, F´, G´ 
sin. m2 AMNH 19365 1981 XVII 3 12.8 7.2 n.a. n.a. B´, C´, D´ 
dex. m2 SNSB-BSPG 1956 II 2570 n.a. 13.8 8.3 n.a. n.a. P, Q, R 
dex. m2 AMNH 39262 1981 XVII 49 14.7 8.4 n.a. n.a. n.a. 
dex. m2 SNSB-BSPG 1956 II 2585 n.a. 13.3 8.1 n.a. n.a. V, W, X 
sin. m3 AMNH 19365 1981 XVII 3 17.5 7.7 n.a. n.a. B´, C´, D´  
dex. m3 AMNH 19609 1981 XVII 2 20.0 9.5 n.a. n.a. E´, F´, G´ 
dex. m3 AMNH 39262 1981 XVII 49 20.1 9.2 n.a. n.a. n.a. 
sin. m3 SNSB-BSPG 1956 II 2463 n.a. 18.3 7.7 n.a. n.a. n.a. 
dex. m3 SNSB-BSPG 1956 II 2572 n.a. 19.5 9.0 n.a. n.a. n.a. 
sin. m3 SNSB-BSPG 1956 II 2582 n.a. n.a. 8.1 9.1 n.a. n.a. 
sin. m3 SNSB-BSPG 1956 II 2587 n.a. 19.4 9.0 11.0 0.56 Y, Z, A´ 
dex. m3 SNSB-BSPG 1956 II 2468 n.a. 20.0 8.6 n.a. n.a. n.a. 
sin. m3 AMNH 32742 1981 XVII 4 18.9 7.9 10.0 0.52 n.a. 
sin. D4 AMNH 19517 1981 XVII 15 11.4 9.7 n.a. n.a. G, H, I 
sin. D4 AMNH 39308 1981 I 8 10.7 9.9 n.a. n.a. J, K, L 
sin. M1 AMNH 19517 1981 XVII 15 11.7 11.2 n.a. n.a. G, H, I 
sin. M1 AMNH 39308 1981 I 8 11.9 11.8 n.a. n.a. J, K, L 
dex. M1 SNSB-BSPG 1956 II 2568 n.a. 11.7 11.0 n.a. n.a. A, B, C 
dex. M2 SNSB-BSPG 1956 II 2568 n.a. 13.2 13.6 n.a. n.a. A; B; C 
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sin. M2 AMNH 19313 1981 XVII 5 13.6 14.1 n.a. n.a. D, E; F 
dex. M3 SNSB-BSPG 1956 II 2568 n.a. 13.7 13.8 10.7 0.78 A, B, C 
sin. M3 AMNH 19313 1981 XVII 5 13.8 14.3 n.a. n.a. D, E, F 
dex. p3 BM M3714 Holotype 1961 XIX 37 12.4 4.9 n.a. n.a. n.a. 
dex. p4 BM M3714 Holotype 1961 XIX 37 12.6 5.9 n.a. n.a. n.a. 
dex. m1 BM M3714 Holotype 1961 XIX 37 11.9 7.5 n.a. n.a. n.a. 
dex. m2 BM M3714 Holotype 1961 XIX 37 12.8 8.7 n.a. n.a. n.a. 
dex. m3 BM M3714 Holotype 1961 XIX 37 19.1 9.6 n.a. n.a. n.a. 
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