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Zusammenfassung

Mit der Entwicklung der Quantenmechanik wurden neuartige Konzepte in der Beschreibung
der Natur eingeführt. Der quantenmechanische Formalismus, basierend auf Wellenfunktio-
nen von Teilchen und Systemen, führte zu überraschenden und außergewöhnlichen Erkennt-
nissen. Ein bemerkenswertes Beispiel dafür ist die Möglichkeit der Verschränkung mehrerer
quantenmechanischer Systeme. Aufgrund der einzigartigen Eigenschaften solcher verschränk-
ten Systeme, die einer intuitiven lokal-realistischen Beschreibung der Welt widersprechen,
entbrannte eine Diskussion, ob die Quantenmechanik eine komplette Beschreibung der physi-
kalischen Realität liefern kann. Die Verfechter einer lokal-realistischen Weltsicht, unter ihnen
Albert Einstein, schlugen eine Erweiterung der Quantenmechanik durch so genannte lokale
verstecke Parameter (im Englischen local-hidden variables kurz LHV) vor, um den Wider-
spruch zwischen der Quantenmechanik und ihrem lokal-realistischen Weltbild zu lösen. Nach
über dreißigjähriger Kontroverse, ob so eine Erweiterung möglich und sinnvoll sei, schlug John
Bell ein Experiment vor, in dem die Vorhersagen der Quantenmechanik denen auf LHVs ba-
sierenden Vorhersagen widersprechen. Er formulierte dies 1964 in der berühmten Bellschen
Ungleichung.

In den letzten 50 Jahren wurden daraufhin zahlreiche Experimente zur Überprüfung der
Bellschen Ungleichung durchgeführt, die alle eine Verletzung der Ungleichung zeigten und
damit das lokal-realistischen Weltbild widerlegten. In diesen Experimenten war es jedoch
Aufgrund technischer und konzeptueller Limitierungen nötig, zusätzliche Annahmen zu ma-
chen, die mögliche „Schlupflöcher“ für LHV Theorien öffnen. Die drei bekanntesten sind
das Detektionsschlupfloch, das Lokalitätsschlupfloch und das Entscheidungsschlupfloch: Das
Detektionsschlupfloch öffnet sich, wenn aufgrund unzureichender Detektionseffizienz eine fair
verteilte Auswahl der Detektionsereignisse angenommen werden muss. Das Lokalitätsschlup-
floch entsteht durch die Annahme von unabhängigen Messungen. Es kann durch raumartige
Trennung der Messungen geschlossen werden. Das Entscheidungsschlupfloch betrifft die Una-
bhängigkeit der Messungrichtungswahl.

Da das Ausschließen der lokal-realistischen Theorien eine sehr grundsätzliche Aussage über
die Natur ist, neben den experimentellen Herausforderungen, eine sehr sorgsame Analyse
der Messdaten notwendig. In den üblichen Methoden zur Auswertung experimenteller Da-
ten wird unter anderem angenommen, dass die wiederholte Messungen unabhängigen und
identisch verteilten Ergebnisse liefern. Diese Annahme für zum „Erinnerungsschlupfloch“
in dem LHV Theorien die Ergebnisse vorheriger Messungen nutzen können. Deshalb sind
speziell entwickelte Auswertemethoden notwendig. Erst seit kurzem ist es möglich auf alle
Extraannahmen in einem Experiment zu verzichten und so ein schlupflochfreies Experimentes
durchzuführen. Die ersten Experimente die alle Schlupflöcher auf einmal schließen konnten,
wurden parallel zu den Experimenten in dieser Dissertation entwickelt und durchgeführt.

Jenseits von den fundamentalen Überlegungen kann die quantenmechanische Verschrän-
kung für neue vielversprechende Anwendungen genutzt werde. Dazu zählen unter anderem
Quantencomputer und neue Protokolle in der Quantenkommunikation. In dieser Arbeit wer-
den beide Bereiche sowohl die Konsequenzen der Verschränkung für das fundamentale Verst-



ändnis der Welt als auch die sich ergebenden Möglichkeiten für neue quantentechnologische
Anwendungen betrachtet.

Dies wird experimentell am Beispiel zweier verschränkter Rubidiumatome, die 398 m von-
einander entfernt sind, untersucht. Zunächst werden dazu zwei einzelne 87Rb-Atome in sepa-
raten Atomfallen gefangen. Um jetzt beide Atome über die große Entfernung miteinander zu
verschränken, wird das sogenannte „entanglement swapping“ Protokoll angewandt. Hierzu
wird zunächst jedes Atom mit einem Photon verschränkt, welches dann in einer optische Glas-
faser zu einem Bellzustandsanalysator geleitet wird. Hier werden die beiden Photonen auf
einen gemeinsamen verschränkten Zustand projiziert und gemessen. So wird die Verschrän-
kung auf die Atome übertragen, wobei das Messergebnis der Photonenmessung die erfolgreiche
Erzeugung der Verschränkung verkündet. Nachdem nun die Atome miteinander verschränkt
sind, ist es möglich, eine Messung an jedem Atom vorzunehmen und so den verschränkten
Zustand zu untersuchen.

Mit den verschränkten Atomen kann ein experimenteller Test der Bellschen Ungleichung
durchgeführt werden. Hierzu wird die Clauser-Horne-Shimony-Holt (CHSH)-Ungleichung,
die bekannteste von mehreren äquivalenten Formulierungen der Ungleichung, verwendet. Sie
bezieht sich auf ein Experiment mit Teilchenpaaren und zwei Messapparaturen: Die bei-
den Messapparaturen erhalten jeweils ein Teilchen eines Paares, um unabhängig voneinan-
der eine von zwei möglichen (lokalen) Messungen durchzuführen. Die Messergebnisse für die
vier verschiedenen Messungskombinationen werden in den Korrelatoren 𝐸𝑎𝑏 zusammengefasst
(𝑎, 𝑏 ∈ {0, 1}) und diese in der folgenden Art zusammengezählt 𝑆 = |𝐸00 + 𝐸01|+|𝐸10 − 𝐸11|.
Die CHSH-Ungleichung besagt 𝑆 ≤ 2 für LHV basierte Theorien, Quantenmechanik erlaubt
jedoch für verschränkte Teilchenpaare Werte von 𝑆 ≤ 2

√
2 . Die obengenannten Schlupflöcher

werden wie folgt geschlossen: Zunächst wird durch die Verwendung des „entanglement swap-
ping“ Protokoll zusammen mit der Verkündung der Verschränkung eine Messung für jedes
verschränkte Paar durchgeführt und das Detektionsschlupfloch ist automatisch geschlossen.
Um das Entscheidungsschlupfloch zu schließen wird die Messrichtung für jedes Atom von
zwei unabhängigen und schnellen Quantenzufallszahlengeneratoren gewählt. Außerdem wird
ein schnelles Messverfahren angewandt, das mit einer maximalen Dauer von 1.1 µs (inklusive
der Messrichtungswahl) eine raumartige Trennung der Messungen an den Atomen sicherge-
stellt. Eine Messung mit 10000 Messereignissen lieferte mit einem 𝑆 = 2.222 ± 0.033 eine
nahezu eindeutige Verletzung der Ungleichung. Eine genauere Analyse der Daten mittels
eines extra an das Experiment angepassten Hypothesentest ergibt eine Wahrscheinlichkeit
von 𝑝 ≤ 1.739 ⋅ 10−10, dass ein Experiment in einer durch LHV Theorien beschrieben Welt
vergleichbare Messdaten produziert. Dies erlaubt eine Zurückweisung der lokal-realistischen
Weltsicht.

Eine der wenigen Annahmen, die gemacht wurden, um das Experiment durchzuführen,
ist, dass die Quantenzufallszahlengeneratoren, die auf einem spezifischen physikalischen Mo-
del basieren, wirklich unabhängige und unvorhersagbare Zufallszahlen liefern. Die Tatsache,
dass es unmöglich ist, die Zufälligkeit von Zufallszahlen zu beweisen, ist ein grundsätzliches
Problem der experimentellen Tests der Bellschen Ungleichung. Um dieses Problem anzuge-
hen, wurden in Zusammenarbeit mit 12 anderen Forschungsgruppen unter der Führung des
ICFO Instituts, Barcelona, zeitgleich 13 Experimente durchgeführt, wobei Messrichtungen
durch von Menschen erzeugten Zufallszahlen bestimmt wurden. So ersetzt der freie Wille
der Menschen das physikalische Model der Zufallszahlen. Der hier beschriebene Münche-
ner Beitrag ist ein Test der CHSH Ungleichung mit Atom-Photon-Verschränkung, welcher
𝑆 = 2.427 ± 0.022 ergab und damit den lokal-realistischen Theorien widerspricht.
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Auf der Anwendungsseite ist diese experimentelle Atom-Atom-Verschränkung ein Demon-
strator für ein simples Quantennetzwerk: Die Atome sind die Quantenspeicher an den beiden
Knoten, die durch einen auf Photonen basierenden Kanal verbunden sind. Solch ein elemen-
tare Verbindung ist ein notwendiger Baustein für zukünftige Quantenrepeater und somit auch
für größere Quantennetzwerke. Mittels der vorher gezeigten quasi schlupflochfreien Verletzung
der Bellschen Ungleichung ist es möglich, diese Verbindung in einem „Black-Box-Szenario“ zu
zertifizieren. Das bedeutet, dass die Verschränkung zwischen den beiden Netzwerkknoten mit
minimalen Annahmen über das physikalische System und insbesondere ohne Vertrauen in die
benutzten Aufbauten quantifiziert werden kann. Dieses verfahren nennt man „Self-Testing“
oder „device-independent state certification“. Auf diese Weise konnte in Zusammenarbeit
mit der Forschungsgruppe von Nicolas Sangouard von der Universität Basel eine mittlere
(device-independent) Quantenzustandstreue des Atom-Atom-Zustands von 𝐹 = 51.24% mit
einer statistischen Sicherheit von 99% gezeigt werden. So war es zum ersten mal möglich,
eine Quantennetzwerkverbindung, die zwei Knoten miteinander verbindet, welche sich nicht
in ein und demselben Raum befinden, zu zertifizieren.

Um die Qualität des verschränkten Zustandes und damit der Quantennetzwerkverbindung
in künftigen Experimente zu verbessern, wurde abschließend untersucht, wie sich die Er-
zeugung der Atom-Photon-Verschränkung für das „entanglement-swapping“ verbessern lässt.
Dazu wurde ein detailliertes Model von optischer Anregung und Photoemission der Atome
unter Berücksichtigung mehrerer angeregter Zustände erstellt und die Zeitabhängigkeit der
einzelnen Emissionskanäle berechnet. Basierend auf diesen ist es möglich, die Verschrän-
kungqualität abhängig von den Photondetektionszeitpunkten im Bellzustandsanalysator zu
berechnen. Mit verbesserten Zeitfenstern und optischen Anregepulsen ist es möglich den zu
erwartenden 𝑆-Wert einer Bellmessung auf 𝑆 ≈ 2.3 und auch die durchschnittliche Quan-
tenzustandstreue in der Zertifizierung auf 𝐹 ≈ 0.58 zu steigern. Zusammen mit Verbesse-
rungen bezüglich der zeitlichen Kohärenz des verschränkten Zustandes, sowie der zustandser-
haltenden Wellenlängenumwandlung der Photonen in Telekommunikationsbereich wird es in
Zukunft möglich, sein die Distanz zwischen den Atomen zu vergrößern und weitere „device-
independent“-Anwendungen zu realisieren.
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Abstract

The development of quantum mechanics introduced new concepts to describe the world. Its
formalism, based on wave functions for particles, lead to surprising and unique consequences.
One particular noteworthy example is the possibility to entangle quantum mechanical systems.
The features of entanglement oppose the more intuitive local-realistic world view, which lead
to a controversy about the completeness of quantum mechanics itself. Yet, once established,
entanglement was not only seen as mere curiosity of quantum mechanics,but instead its vast
potential for possible quantum technologies was investigated. Today, it is a valuable resource
for, e.g., quantum computing and quantum communication. This thesis focuses on how
quantum entanglement challenges and expands our fundamental understanding of nature, as
well as its implementation in quantum technologies.

Among others, Albert Einstein (in the famous EPR paper from 1935) opposed the non local-
realistic concept of quantum mechanics. This criticism resulted in the demand for an extension
of quantum mechanics with so called local-hidden variables (LHV), serving the sole purpose
of converting quantum mechanics into a local-realistic theory. In 1964 John Bell proposed an
experimental test, involving a pair of entangled particles, for which quantum mechanics and
local-realistic theories predict different results. Bell formulated this in form of an inequality,
called Bell’s inequality. The most known and more general formulation of this inequality
was derived by Clauser, Horne, Shimony, and Holt (CHSH) in 1969. They proposed an
experiment consisting out of a pair of entangled particles and two measurement devices. From
each pair one of the particles is send to each of the measurement deceives. Subsequently, both
measurement devices perform a local measurement on their particle, using one of two possible
measurement settings. Here, the correlators 𝐸𝑎,𝑏 for all setting combinations 𝑎, 𝑏 ∈ {0, 1} are
evaluated and used to calculated the CHSH 𝑆 value via 𝑆 = |𝐸00 + 𝐸01|+|𝐸10 − 𝐸11|. For all
local realistic theories 𝑆 ≤ 2, while quantum mechanics allows for a violation of the inequality
up to the value of 𝑆 = 2

√
2.

Over the last 50 years experiments testing Bell’s theorem showed a violation of the ine-
quality, contradicting local-realism. However, extra assumptions needed to be made for the
evaluation of those Bell tests since the experiments were limited by technical imperfections
as well as conceptual limitations. This opens so called “loopholes” that can be exploited by
more complex local-realistic theories, which do not comply to these extra assumptions. Three
major loopholes exist: the detection loophole, the locality loophole and the freedom of choice
loophole. First, in case of insufficient detection efficiency, only a fraction of the entangled
particles is detected. Therefore, it is necessary to assume that the measured fraction con-
stitutes a fair representation of all particles (fair sampling assumptions). This opens the to
called detection loophole. The second loophole is related to the necessity of performing local
measurements on each particle. This can only be ensured by space-like separation of the two
measurements on one entangled pair. If this is not the case, the local measurements have to
be assumed not to influence each other, opening the locality loophole. The last one is called
“the freedom of choice loophole”, demanding an independent and unpredictable setting choice
for each measurement.Until recently, it was not possible to close all major loopholes in one



experiment.
In addition to the requirements on the experimental setup, there are also requirements on

the experimental procedure and the evaluation of the recorded data. Since a possible rejection
of local-realism is a fundamental statement, it is necessary to perform both the experiment
as well as the evaluation with great care. In standard methods for evaluating experiments
independent and identically distributed (i.i.d.) measurement outcomes are assumed. This
assumption opens the so called memory loophole, which can be exploited by LHV theories
with a history dependence. The first experiments complying with all requirements on the ex-
periment and using rigorous evaluation method were conducted parallel to the work presented
in this thesis.

In this work, entanglement of two single 87Rb atoms is investigated. For this, single atoms
are trapped in two setups 398 m apart . To create entanglement between the atoms, the spin
state of each atom is entangled with the polarization of a single photon employing excitation
and spontaneous photon emission. The emitted photons are coupled into single mode optical
fibers and guided to a photon measurement setup. Then the entanglement of the atom-photon
pairs is swapped to the atoms by a joint Bell state projection measurement of the two photons,
heralding the atom-atom entanglement allowing for an event ready measurement of the atomic
state. The atomic state measurement is based on a state selective ionization and a subsequent
detection of the ionization fragments and allows for an efficient projection of the atomic state
in less than 1.1 µs, enabling space like separation of parallel atomic measurement. Additionally
employing quantum random number generators (QRNG) to chose the measurement setting,
this setup enabled for a loophole free Bell experiment. The measurement of 10000 entangled
atom pairs yielded 𝑆 = 2.222±0.033 showing a clear violation of the CHSH inequality. Using
the collected data for a hypothesis test of local-realism showed a probability for the same
data produced in an experiment described by LHV theories of 𝑝 = 1.739 ⋅ 10−10. This allows
for a rejection of local-realism.

Additionally, Atom-atom entanglement over 398 mdemonstrates a real world implementa-
tion of a basic quantum network link. Such a link constitutes a basic building block for a
quantum repeater that are necessary for future large scale quantum networks. Furthermore,
the quality of the entangled state, in conjunction with the absence of the loopholes enable
the implementation of certain device-independent protocols. Therefore, self-testing can be
applied for certifying the quantum network link. With the improved self-testing formalism,
developed in a collaboration with Nicolas Sangouard’s group at the University of Basel, it is
possible two show the first fully device-independent certification of a quantum link. The link
has an average fidelity of 𝐹 = 51.24% with a confidence level of 99%.

For future experiments, a higher quality of the entangled atom-atom state is desirable. The-
refore, the atom-atom state generation based on entanglement swapping from atom-photon
entanglement, is thoroughly investigated. First the excitation process, which creates the
atom-photon entanglement, is investigated and possible effects of experimental imperfections
and the effect of the actual multilevel atom are identified. A time dependence for different
excitation processes is obtained. Now the dependence of the atom-atom state on the detection
times of both photons is calculated. Based on this model optimized parameters for the exci-
tation pulse and the acceptance time window for the photon detection for future experiments
are obtained. Together with other improvements, e.g., increasing the temporal coherence of
the atomic state and frequency conversion of the photon wavelength into telecom range, this
enables to create entanglement over even longer distances.
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1. Introduction

With the development of quantum mechanics new concepts for the description of the world
were introduced. Its formalism, as it is based on wave functions for particles, lead to surprising
and unique consequences. One particular noteworthy example is the possibility of entangle-
ment of quantum mechanical systems. Its features oppose the more intuitive local-realistic
world view, and thus lead to a controversy about the completeness of quantum mechanics it-
self [1, 2]. Yet, once established, entanglement was not only seen as mere curiosity of quantum
mechanics and, instead, its vast potential for possible quantum technologies was investigated.
Today, it is a valuable resource for, e.g., quantum computing [3, 4] and quantum communi-
cation [5]. This thesis will focus on how quantum entanglement challenges and expands our
fundamental understanding of nature, as well as its implementation in quantum technologies.

Among others, Albert Einstein opposed the non local and non realistic concept of quantum
mechanics [1], which surfaces most prominent for entangled particles. This criticism resulted
in the demand for an extension of quantum mechanics with so called local-hidden variables
(LHV), serving the sole purpose of converting quantum mechanics into a local-realistic theory.
The controversy, whether such an extension is necessary and possible, was open for more
than three decades [6, 7, 8]. Finally, in 1964 John Bell formulated his famous no-go theorem
on local-realistic theories. Along the theorem he also described a possible scenario for and
experimental test, involving a pair of entangled particles, where quantum mechanics and
local-realistic theories predict different results [2]. Bell’s theorem is usually stated in the
form of an inequality, called Bell’s inequality, of which the CHSH inequality is the most
prominent form [9] . Here, the possible experiment consists of a pair of particles and two
measurement devices. From each pair one of the particles is sent to each of the measurement
devices. Subsequently, both devices perform a local measurement on their particle, using one
of two possible measurement settings. The correlators 𝐸𝑎,𝑏 for all setting combinations 𝑎, 𝑏 ∈
{0, 1} are evaluated and used to calculated the needed CHSH 𝑆 value via 𝑆 = |𝐸00 + 𝐸01| +
|𝐸10 − 𝐸11|. For all local realistic theories it is smaller or equal than 2. Crucially, in quantum
mechanics 𝑆 values up to 2

√
2 are possible. Therefore, it is possible to disprove local-realism

by violating the CHSH inequality 𝑆 ≤ 2.
The first experiments testing Bell’s theorem showed a violation of the inequality and thus,

in a sense, contradicted local-realism [10, 11, 12]. However, the experiments were limited by
technical imperfections as well as conceptual limitations. Thus assumptions need to be made
for the evaluation. This opens so called “loopholes” for more complex local-realistic theories,
which do not comply to these extra assumptions. There are three major loopholes [13]: First,
in case of insufficient detection efficiency only a fraction of the entangled particles is detected.
Here, it is necessary to assume that the measured fraction constitutes a fair representation of
all particles (fair sampling assumptions). This opens the to called “detection loophole”. The
second loophole is related to the necessity of performing local measurements on each particle.
This can only be ensured by space-like separation of the two measurements on one entangled
pair. If this is not the case, the local measurements have to be assumed not to influence each
other, opening the “locality loophole”. The last one is called “the freedom of choice loophole”,
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demanding an independent and unpredictable setting choice for each measurement.
In addition to the requirements on the experimental setup, there are also requirements

on the experimental procedure and the evaluation of the recorded data. Since a possible
rejection of local-realism is a very fundamental statement, it is necessary to perform both the
experiment as well as the evaluation with great care. To avoid a possible bias introduced by the
experimenter [14], the duration, the measurement procedure, and the analysis method need to
be fixed before the actual experiment starts. Furthermore, no data my be discarded in Bell test
experiments. There is only one exception: if a predefined objective criterium independent of
the measurement results, is fulfilled before the excluded result was recorded, e.g., malfunction
of a crucial device, it is possible to discard events during the malfunction. Violating these
rules will diminish or even make the result of the experiment void. The evaluation process
is even more delicate, since in standard methods for evaluating experiments independent
and identically distributed (i.i.d.) measurement outcomes are assumed. This assumption
opens the so called memory loophole, which can be exploited by LHV theories with a history
dependence [15]. However, it is possible to avoid this loophole by using evaluation methods
without assuming i.i.d. measurement results [16, 17]. Only experiments that follow all of the
mentioned requirements and rules allow for a valid test of local realism. Until recently, it was
not possible to close all major loopholes in one experiment. The first experiments complying
with all requirements were conducted parallel to the work presented in this thesis [18, 19, 20].

Beyond providing a clever method disproves local realism, quantum entanglement also ena-
bles a whole field of new applications in quantum technology. Not only is it the backbone of
quantum computing, but also enables novel “device-independent” protocols for secure quan-
tum communication as well as random number generation [21, 22, 23]. In such protocols,
a test of Bell’s inequality is used to verify that the respective devices create entanglement.
In case of a successful verification, the protocols allow for trusted results, e.g., a secret key,
even from imperfect not trustworthy devices. A downside of these protocols is that, due to
the Bell test, the technical requirements are much higher than for standard device-dependent
protocols. But with the demonstration of the loophole free Bell test experiments, the first
device independent protocols can now be implemented.

Moreover, entanglement of separated stationary qubits, which serve as quantum memories,
is the key ingredient for future, large scale quantum networks [24], enabled by using quantum
repeater protocols. These can not only extend the range of quantum connections but can also
include quantum error correction protocols, e.g., state purification [25]. Such networks are
key to enable distributed quantum computation, secure communication over long distance,
and precise clock synchronization [26]. In this context the device-independent protocol for
self-testing verifies connections between quantum nodes [22, 27]. Thus, it will be possible to
certify in a device-independent manner that a quantum network can be used for the quantum
communication tasks it is designed for.

In this work, entanglement of two single 87Rb atoms is investigated. For this, single atoms
are trapped [28] in two setups 398 m apart. To create entanglement between the atoms, each
atom is entangled with a single photon employing excitation and spontaneous photon emission
[29, 30]. Then the entanglement of the atom-photon pairs is swapped to the atoms by a joint
Bell state projection measurement of the two photons [31, 32, 33]. The emitted photons
are coupled into single mode optical fibers and guided to photon measurement setup. The
measurement outcome of the two-photon measurement heralds the atom-atom entanglement
and allows for an event ready measurement of the atomic state. This measurement is based on
a state selective ionization and a subsequent detection of the ionization fragments [34, 35, 36]

2



and allows for an efficient projection of the atomic state in less than 1.1 µs [37], enabling space
like separation of parallel atomic measurement [38].

With this atom-atom entanglement setup, a Bell test experiment is performed. By additio-
nally employing physical random number generators [39] for the setting choices, it is possible
to close all major loophole and to refute local-realism. While the design of the experiment,
allowing to close the detection and locality loophole, is described in [38], the present work
focuses on the characterization of the employed random number generators as well as the
evaluation methods. For a sound analysis of a Bell test, it is necessary to state all used as-
sumptions for the experiment and the evaluations. Since it is impossible to prove randomness
without extra assumptions, employing random number generators result in residual assump-
tions for the Bell test which LHV theories could exploit. Although, such theories are very
specific and not very likely, a different way for choosing independent and unpredictable set-
tings is desirable. One possible solution is employing randomness stemming from distant stars
[40, 41, 42, 43]. In this work a different approach based on human free will is pursued [44]. In
“The Big Bell Test” collaboration 13 experiments were performed parallel on November 30th
2016 to test local realism [45]. The setting choices were based on random bits generated by
people around the world via a browser game during the experiments. This work contributed
to the Big Bell Test by testing the CHSH inequality based on atom-photon entanglement.
Here, the settings for the atom state read-out were determined by human made random bits,
while photon settings were chosen by a beam splitter.

Atom-atom entanglement over 398 m additionally demonstrates a basic quantum network
link. By connecting two laboratories in different buildings of the university, with a fiber
connection that crosses trough public space, i.e, a four lane main street, it is a clear proof
that quantum networks can be implemented in the real world. Also, this link constitutes
a basic building block for a quantum repeater that will bee needed for future large scale
quantum networks [46]. Furthermore, the quality of the entangled state, in conjunction
with the absence of the loopholes enable the implementation of certain device-independent
protocols. Thereby, the device-independent generation of random bits can be shown. More
importantly, since the connection between the two atoms forms a quantum network link, self-
testing can be applied for certifying it. With the improved self-testing formalism, developed
in a collaboration with Nicolas Sangouard’s group at the University of Basel [47], it is possible
two show the first fully device-independent certification of a quantum link. Moreover, this is
the first fully device-independent demonstration of the self-testing protocol [27].

For future developments, an even higher quality of the entangled atom-atom state is de-
sirable. In order to achieve this, the processes involved in the atom-atom state generation,
which is based on entanglement swapping from atom-photon entanglement, are thoroughly
investigated. First the excitation process, which creates the atom-photon entanglement, is
investigated and possible effects of misalignment and the effect of the actual multilevel atom
are identified. To quantify these detrimental effects the “quantum jump model” from [33]
is expanded. A time dependence for different excitation processes is obtained. To describe
the effect of the imperfection of the atom-photon state generation on the atom-atom state,
entanglement swapping is analyzed. This also includes the two photon interference process
employed for the Bell state measurement [33]. Finally, a the dependence of the atom-atom
state on the detection times of both photons. To find optimal parameters for both the excita-
tion pulse and acceptance time-window it is necessary to include additional parameters such
as photon detection efficiency, detector dark counts, and the atomic state read-out process.
Once all these measures and effects are included in the model, it can be used to optimize
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the results of the device independent protocols as well as future experiments with entangled
atoms.

The structure of this thesis is as follows: Chapter 2 describes the methods and the experi-
mental setup used for the creation of atom-atom entanglement. The aim of this chapter is to
provide the reader with the basic background information on both experimental setup and the
techniques that are used for the experiments in this work. More detailed information on the
development of the experimental methods and setup can be found in the preceding PhD theses
[28, 30, 48, 36, 33, 37, 34, 38]. In Chapter 3 Bell’s inequality is motivated and the possible ex-
perimental loopholes are identified. Subsequently, the evaluation is discussed through the use
of hypothesis testing. Chapter 4 provides a description the Bell test experiment focusing on
the used physical random number generators and data evaluation. Chapter 5 concludes this
thesis’ treaty on Bell’s theorem. Here, the alternatives to setting choices by physical random
number generators are addressed. In the second part of this chapter, the Munich contribution
to the Big Bell Test, which is based on atom-photon entanglement, is described. Chapter 6 is
focused on possible quantum networks and device-independent applications. This includes a
description of the certification process required to form a quantum network link. Chapter 7
treats on the imperfections of the atom-atom state creation. With the used model presented
in this work it is possible to find optimized acceptance time windows for the photonic Bell
state measurement. Lastly, possible improvements for future experiments are discussed.
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2. Long Distance Entanglement of Atomic Qubits

One of the focus points of this thesis is to create and detect entanglement between two atomic
qubits that are located in two separate laboratories approximately 400 m apart (Fig. 2.1). To
achieve this, it is necessary to both trap and individually control single atoms. This chapter
will introduce both the main experimental methods required to trap and entangle atoms as
well as the experimental setup. First, the main features of rubidium are discussed, which
will be used for the experiments discussed herein. This is followed by a description of the
setup used to trap single neutral atoms, along with the procedure to control and measure the
atomic state. Finally, the process of creating entanglement of two single atoms in separated
traps is described.

2.1. Qubit Encoding in Interior States of 87Rb

To realize an atomic qubit, an atom with suitable quantum states is needed. For that purpose,
the element needs to fulfill the following three requirements:

1. Possibility for entanglement of the stationary atomic qubit with a “flying” qubit to
distribute the entanglement over long distances. A convenient way to realize a flying
qubit is to encode it in the polarization state of a single photon, which can be guided
via glass fiber and measured with high fidelity.

2. The qubit should allow for a high fidelity read-out. Furthermore, especially for the Bell
experiment, the read-out needs to be very fast to enable space-like separation.

3. Since an event ready experimental scheme will be used, where the atom states are
measured after the entanglement is established, the atomic coherence time must be
long enough to allow for a high state fidelity after entanglement generation.

The alkali metal rubidium is chosen as the quantum states of its single valence electron are
particularly well suited for this kind of experiment. Of the two naturally occurring isotopes
85Rb and 87Rb, the latter with nuclear spin of I = 3/2 is used due to its better fitting hyper-fine
level structure.

The qubit is encoded in the degenerate Zeeman substates F = 1, mF = ±1 of the 52S1/2
ground state (Fig. 2.2), satisfying all listed requirements. The spontaneous decay of the
F’ = 0 hyper-fine level of the 52P3/2 excited state to the ground state generates a photon
whose polarization state is entangled with the Zeeman-state of the F = 1 of the 52S1/2 ground
state (Sec. 2.3.1). Dipole selection rules allow to individually address the Zeeman-states with
polarized light. By this method and by additionally employing particle detectors, a fast and
efficient readout scheme can be implemented (Sec. 2.3.2). As a down side, the employed
Zeeman-states are highly susceptible to magnetic and light fields, which need to be controlled
to enable long state coherence (Sec. 2.3.3) .
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Figure 2.1.: The location of the two laboratories at the main campus of Ludwig-Maximilians-
Universität in Munich. Laboratory 1 (Lab 1) is located in the basement of the
faculty of physics at Schellingstraße 4. Laboratory 2 (Lab 2) is located in the
basement of the department of economics at Schackstraße 4. Both labs are con-
nected with glass fibers for communication and for guiding the fluorescence pho-
tons emitted by the atoms. Map data provided by the Bayerisches Landesamt
fuer Digitalisierung, Breitband und Vermessung.
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Figure 2.2.: Level scheme for the valence electron of 87Rb [49]: the ground state 52S1/2 is split
in two hyper-fine levels F = 1 and F = 2 . The excited state 2P1/2 is split also in
two hyper-fine levels F’ = 1 and F’ = 2 while the excited state 2P3/2 is split into
four hyper-fine levels F’ = 0, F’ = 1, F’ = 2 and F’ = 3. All hyper-fine levels are
split into Zeeman sublevels mF. The transition wavelength for 2S1/2 to 2P1/2(D1)
is 795 nm and for 2S1/2 to 2P1/2(D1) is 780 nm. The atomic qubit is encoded in
the 52S1/2, F = 1, mF = ±1 ground states with mF = −1 = |1, −1⟩ = |↓⟩𝑧 and
mF = +1 = |1, +1⟩ = |↑⟩𝑧 (blue) .
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For using single 87Rb-atoms as a stationary qubit, a so called quantum memory, the atoms
need to be trapped and well-localized. For an optical dipole trap[50], which is the employed
trapping method, it is necessary to first slow down the atoms before trapping by cooling them
[51]. 87Rb can be conveniently laser cooled via Doppler cooling [52]. Here, radiation pressure
and the Doppler effect are employed to slow down atoms.

Formal definition and nomenclature of atomic and qubit states

For convenience of the reader, the following simplified notation shall be used henceforth: the
hyper fine states (F) and their associated Zeeman states (mF) of the 52S1/2 ground state
are written as |F, mF⟩. If not mentioned otherwise the Zeeman states are with respect to
the quantization axis introduced in section 2.2 (Fig. 2.4). With this, the qubit states are
defined as |1, −1⟩ = |↓⟩𝑧 and |1, +1⟩ = |↑⟩𝑧. A complete definition of the atomic, qubit, and
polarization states, as well as of the coordinate system used in this work, is given in Appendix
B.

2.2. Trapping Single Atoms

The centerpieces of the experiment are the two traps for single 87Rb-atoms, which are set up
in two laboratories 400 m apart on different sides of the campus (Fig. 2.1). One is located
in the basement of the faculty of physics at Schellingstraße 4 (Lab 1) and the other in the
basement of the department for economics at Schackstraße 4 (Lab 2)1.

For trapping of atoms and obtaining long coherence times it is necessary to isolate them
from the environment. Collisions with other atoms and molecules can only be suppressed
in an ultra high vacuum environment. Therefore a core part of the trap setup is a vacuum
chamber with good optical access for the required laser beams. To actually trap atoms inside
the vacuum chamber, a two step scheme is implemented: first, a cloud of atoms is trapped
and cooled in a magneto-optical trap (MOT) [53]. After this atoms are slow enough for the
second step: to be trapped in an optical dipole trap (ODT) [50]. To verify that an atom is
actually trapped the fluorescence light emitted by the atom is collected.

Vacuum chamber and setup for the magneto-optical trap

The vacuum chamber used allows for a pressure below 10−9 mBar. Additionally the particle
detectors for the fast and efficient atomic-state measurement need to be placed (Sec. 2.3.2)
inside the vacuum close to the trap position. To make this possible, the ultra high vacuum
(UHV) setup incorporates a specially designed glass cell, which is attached to the main steel
part. This glass cell is designed such that both particle detectors can be placed inside, without
impeding optical access to the trap region (Fig. 2.3a). The main steel part of the vacuum
setup houses an ion getter pump, an ion pressure gauge, and rubidium dispensers. A detailed
description of the design and the construction of the vacuum setup can be found in [37, 54].

A magneto-optical trap, as the name indicates, uses a magnetic quadrupole field and laser
light to trap and cool atoms [53]. The magnetic field is created by coils installed in an anti-
Helmholtz configuration around the glass cell (Fig. 2.3a). Six circularly polarized laser beams,

1For clarity the trap in Lab 1 is the example for describing the core components and techniques. The minor
differences of the trap in Lab 2, which are not important for the general understanding, are left for the
Appendix F.
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(a) The glass cell connected to the main UHV setup:
The two detectors for the fast atomic state read-out
(Sec. 2.3.2) are placed close to the region of the rap.

(b) The glass cell inside anti-Helmholtz MOT-coils and
microscope objective for the ODT and collection of
fluorescence light.

Figure 2.3.: Vacuum chamber and atomic trap setup.

two counter propagating beams for each direction in space, are overlapped inside the glass
cell at the center of the coils. These beams are generated by both a cooling laser, which is
slightly red detuned with respect to a closed atomic transition, as well as a repump laser. By
employing a quadrupole field together with circular polarized light, the atoms can not only be
cooled but also confined. Thus, a cloud of cooled, trapped atoms is created. This cloud has
a diameter of < 1 mm and contains > 104 atoms [30] with a temperature well below 146 µK,
which is the so-called Doppler limit for 87Rb [49]. The atoms are actually cooled further by a
process called polarization gradient cooling [55] resulting in significantly lower temperatures
of only 30 µK to 40 µK [38, 56].

The optical dipole trap

To capture a single atom out of the cloud of cold atoms trapped by the MOT an optical dipole
trap used [50, 57]. It relies on the interaction between an induced atomic dipole and a light
field. The latter is far detuned from any transition such that other potential effects, such as
optical excitation and photon scattering can be neglected. An off-resonant light field affects
the energy level structure of an atom due to the AC-Stark shift. This acts like a conservative
potential, depending on the detuning and local intensity of the light field. In the case of 87Rb,
a focused red detuned laser forms a 3-dimensional potential well where atoms are attracted
to the position with the highest intensity at the focal point. This potential well is typically
shallow (energy equivalent of a few mK) and allows only the trapping of very slow atoms.
For a linearly polarized light field, the potential takes the form

𝑈 (𝑟, 𝑧) = 𝜋𝑐2Γ
2𝜔3

0
( 2

Δ2,𝐹
+ 1

Δ1,𝐹
) ⋅ 𝐼 (𝑟, 𝑧) (2.1)

with the spontaneous decay rate of the excited state Γ, transition frequency of the D-line 𝜔0,
and the detuning of the laser with respect to the transition of the 𝐷1 and 𝐷2 line Δ1,𝐹 and
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Δ2,𝐹 . The spatially dependent intensity 𝐼 (𝑟, 𝑧) is defined by the Gaussian mode of the laser
beam and has the form

𝐼 (𝑟, 𝑧) = 𝐼0 ( 𝑤0
𝑤 (𝑧))

2
𝑒− 2𝑟2

𝑤(𝑧)2 (2.2)

with 𝑤 (𝑧) = 𝑤0√1 + ( 𝑧
𝑧𝑅

)2
the beam waist a position 𝑧, 𝑧𝑅 = 𝜋𝑤2

0
𝜆 the Rayleigh length,

𝜆 the wavelength of the laser, 𝑧 = 0 the focus position, 𝑤0 the waist at the focus, and 𝐼0
the intensity at the center of the focus. The potential of the trapped cold atoms can be
approximated as harmonic [28, 38], with the trap frequencies

𝜔𝑇 = √4𝑈𝑂𝐷𝑇
𝑚𝑤2

0
(2.3)

𝜔𝐿 = √2𝑈𝑂𝐷𝑇
𝑚𝑧2

𝑅
(2.4)

where 𝜔𝑇 is the transversal and 𝜔𝐿 is the longitudinal trap frequency, 𝑈𝑂𝐷𝑇 = 𝑈 (0, 0) is the
potential depth at the focal spot of the laser light, and 𝑚 is the mass of 87Rb (Tab.: A.2).

To implement the ODT, a laser with a wavelength of 852 nm is focused at the position of the
cloud of cold 87Rb-atoms trapped by the MOT. The focal waist of the laser is 𝑤0 = 1.92 µm
with a Rayleigh length of 𝑧𝑅 = 13.6 µm [37] thereby only one single atom can be trapped
due to collisional blockade effects [58, 28]. This waist size together with an optical power of
60 mW of the laser results in an trapping potential 𝑈𝑂𝐷𝑇 = 𝑘𝐵 ⋅ 3.2 mK. The trap frequencies
are 𝜔𝑇 = 2𝜋 ⋅ 92 kHz and 𝜔𝐿 = 2𝜋 ⋅ 13 kHz [38].

Confocal setup for the ODT and fluorescence collection

To enable the atom being used as qubit, it is not only necessary to trap a single atom, but
also to be able to collect and detect light emitted by it. Here a confocal configuration with
a single high numerical aperture (NA) microscope objective2 will be used to focus the ODT
laser and to collect the fluorescence light (Fig. 2.4) . The microscope objective is designed for
both wave lengths 852 nm and 780 nm and it allows to focus light through 3.5 mm glass with
a large working distance. This allows the objective to be mounted outside the vacuum setup
and to collect the fluorescence light from inside the vacuum glass cell. The effective numerical
aperture used for the collection of the florescence is NA = 0.267 [37]. A dichroic beam splitter
separates the light emitted by the atom with a wavelength of 780 nm from the 852 nm laser
used for the ODT . The fluorescence light is then coupled into a single mode optical fiber and
guided to the single photon detection setup (Fig. C.1, Fig. 2.15). The combined collection and
detection efficiency of the fluorescence light, 𝜂col, is ca 2.15h. This low efficiency is due to the
small fraction of light that can be coupled into the optical fiber by the microscope objective,
which is limited by the collection and aberration effects. The transmission losses in the fiber
𝜏fib

3, of the objective, and he other optical elements as well as the detector efficiencies4 reduce
2Mitutoyo, G Plan Apo 50, NA = 0.5 corrected for a 3.5 mm glass plate, working distance 13.89 mm,

wavelength range 435 - 655 nm, reduced performance in the near infrared.
3𝜏fib = 0.9954 for 5 m fiber with 4.0 dB/km at 780 nm (Thorlabs’ 780-HP) and 𝜏fib = 0.5249 for 700 m fiber.
4The detection efficiency of the detectors (Laser Components Count-10C) is in a range between 0.45 and

0.65. With four detectors used simultaneously the best average detector efficiency is ca 0.60. Due to
frequent detector failures detectors the efficiency changed during measurements done in this work.
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(a) Top view (𝑧-𝑥 plane): The collected fluorescence light is separated
from the ODT laser with a dichroic beam splitter and coupled into
a single mode fiber guiding it to the single photon detection setup
(Fig. C.1). Cooling beams (red arrows) in the horizontal plane.

(b) Front view (𝑧-𝑦 plane) with ver-
tical cooling beams (red arrows)

Figure 2.4.: Confocal ODT and fluorescence collection setup: The linearly polarized ODT
laser (magenta) is focused with a microscope objective at the position of the
atom cloud trapped by the MOT (red arrows: cooling beams) inside the vacuum
glass cell. A single atom is trapped a the point of highest intensity (focus) of the
ODT laser (black dot: position of the trapped single atom). The fluorescence light
emitted by the trapped single atom (red) is collected with the same objective.
The collection of the fluorescence light via the microscope objective into the single
mode fiber defines the quantization axis of the system. It corresponds to the axis
of the microscope objective.

the efficiency even further [37].
The direction of the fluorescence collection defines the quantization axis of the system.

The coordinate system of the experiment is defined so that the 𝑧-axis coincides with the
quantization axis (Fig. 2.4).

Trapping sequence

The procedure to trap a single atom is the following: first the cooling beams, the current in
the quadrupole coils, and the dipole trap laser are switched on. By this a cloud of cold atoms
is trapped. One of these cold atoms eventually enters the dipole trap potential and is trapped
providing it scatters light inside the potential. The ongoing scattering of cooling light from
this atom leads to a rapid increase in the photon detection rate. If the photon detection rate
is above a certain threshold, the current in the quadrupole coils is turned off. This leads the
cloud of cold atoms to dissipate, while the single atom in the ODT remains trapped . This
trapped single atom is now ready for experiments. If the atom is lost after some time the
photon detection rate drops back to the background level. As soon as the photon detection
rate is below a certain threshold, typically set lower than the first one (Fig. 2.5), the current
in the quadrupole coils is turned on to trap another atom. This process is fully automated
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Figure 2.5.: Trace of photon counts: the photon count rate integrated for 40 ms (blue).
The background count level is caused the cooling beams and has an average
of 6.75 counts. If an atom is trapped the average counts rise to 24.75. The thres-
hold above which an atom can be considered trapped is 25 counts (green). If fewer
than 15 counts (red) are recorded, the atom is considered lost. This hysteresis is
needed to identify if an atom is trapped or lost correctly.

and controlled by a computer.

2.3. State Preparation, Control, and Measurement of Single Atoms

After trapping the single atoms, they are ready to be used as atomic qubits. For this it is
necessary to prepare, control, and measure atomic states with high fidelity. For the creation
and detection of long distance entanglement via entanglement swapping it is necessary to
entangle the atomic qubit with a photon, perform measurements of the qubit state, and
control the coherence of these states.

2.3.1. Creation of atom-photon entanglement

Spontaneous emission of an excited atom generally leads to entanglement of the emitted
photon state with the atomic state after the decay. This can be used to entangle the atomic
qubit with a photon. To achieve this, the transition of the excited 52P3/2, F’ = 0 state to the
ground state can be used. From this state the atom only decays to the 52S1/2, F = 1 ground
state. There are three possible decay channels (Fig. 2.6c) to mF = +1 while emitting a 𝜎− (left
hand circular) polarized photon, to mF = 0 while emitting a 𝜋 (parallel to the quantization
axis) polarized photon, and to mF = −1 while emitting a 𝜎+(right hand circular) polarized
photon. These processes have equal Clebsch-Gordon coefficients (Fig. A.1a) [49] and thus a
probability of 1/3. Considering quantization along the 𝑧-axis, which is defined by the collection
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optics of the experiment (Fig. 2.4), the entangled atom-photon state has the form

|Ψ⟩𝐴𝑃 = 1√
3 (|𝜎+⟩ |1, -1⟩ + |𝜋⟩ |1, 0⟩ + |𝜎-⟩ |1, +1⟩)

The 𝜋-light interferes destructively when coupled into the single mode fiber leading to the
photon detectors (Fig. 2.2). Filtering out 𝜋 polarized light leaves only two decay channels to
mF = ±1 for the collected photons, resulting in the atom-photon state

|Ψ⟩𝐴𝑃 = 1√
2

(|𝜎+⟩|1, -1⟩ + |𝜎-⟩|1, +1⟩)

= 1√
2

(|L⟩|1, -1⟩ + |R⟩|1, +1⟩) . (2.5)

Following the definition from Appendix B for the polarization states of the photon (|L⟩ ≡ |𝜎+⟩,
|R⟩ ≡ |𝜎-⟩) |L⟩ and |R⟩represent the circular polarization states of the photon in the reference
frame of the laboratory. This quantum state (2.5) is the Ψ+-state, one of the four maximally
entangled Bell-states. Considering the atomic qubit (Sec. 2.1), the entangled state can also
be written as

|Ψ⟩𝐴𝑃 = 1√
2

(|L⟩ |↓⟩𝑧 + |R⟩ |↑⟩𝑧) (2.6)

A complete definition of the qubit states for all three orthogonal axes x,y, and z can be found
in the Appendix B.

Optical Pumping process

To employ entanglement generation via spontaneous emission, the atom is first prepared in the
52S1/2, F = 1, mF = 0 state and then excited to the 52P3/2, F’ = 0 state via a short laser pulse.
The preparation of 52S1/2, F = 1, mF = 0 is performed via optical pumping. After trapping
and cooling, the single atom is with a high likelihood in the 52S1/2, F = 2 ground state. To
transfer the population to the 52S1/2, F = 1 ground state, the atom is excited with a laser
(pump2�1, Fig. 2.6a) resonant to 52P3/2, F’ = 1. From these it can decay to the 52S1/2, F = 1
ground state or back to the F = 2 ground state. After several excitation-decay cycles the
atom is with a very high probability in the 52S1/2, F = 1 ground state. To avoid residual
population of the 52S1/2, F = 2 ground state, multiple directions and polarizations for the
pump2�1 laser are used, thereby addressing all Zeeman sub-levels (Fig. 2.6a and Fig. 2.7b).

The population in the 52S1/2, F = 1, mF ≠ 0 Zeeman-states is excited with pump1�1 laser
to the 52P3/2, F’ = 1 state from where it decays to the mF = 0, ±1 (Fig.2.6b and Fig. 2.7a).
The employed laser pulse is 𝜋 polarized, where the polarization is parallel to the quantization
axis and since the transition from 52S1/2, F = 1, mF = 0 to 52S1/2, F’ = 1, mF = 0 is dipole
forbidden, the 52S1/2, F = 1, mF = 0 state is not excited by the pump1�1 laser. For this the
incidence direction needs to be orthogonal to this axis (Fig: 2.7a). To avoid populating the
52S1/2, F = 2 ground state the pump2�1 and pump1�1 laser are applied simultaneously. This
pumping procedure takes less than 4 µs and has an efficiency of 𝜂p ≈ 80%. A more detailed
description can be found in [38].
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5 2P3/2 F’ = 1

5 2S1/2

F = 1

F = 2

multiple
polpump2→1

(a) The pump2�1laser transfers the population from
F = 2 to F = 1.

5 2P3/2

F’ = 1

F’ = 0

5 2S1/2 F = 1

+10−1 mF

pump1→1

(b) The pump1�1 laser transfers the mF = ±1
Zeeman-states to the mF = 0 Zeeman-state of
the F = 1 ground state.

5 2P3/2 F’ = 0

5 2S1/2 F = 1

+10−1 mF

π

(c) Excitation to the 52P3/2, F = 0, mF = 0 state:
The 𝜋 -polarized excitation pulse (orange) excites
the atom from prepared the 52S1/2, F = 1, mF =
0 to the excited state.

5 2P3/2 F’ = 0

5 2S1/2 F = 1

+10−1 mF

|π〉

|σ−〉|σ+〉

|1,−1〉 |1,+1〉

(d) Decay of the 52P3/2, F’ = 0, mF = 0 excited
state: the population in the excited state decays
with equal probability to each of the three Zee-
man levels of the 52S1/2, F = 1. Only photons
with 𝜎± polarization (red) emitted by the decay
to the mF = ±1 Zeeman-ground states can be
collected into the single mode fiber. The photons
with 𝜋 polarization (gray) originating in the de-
cay to mF = 0 are not collected. This results
in the entangled atom-photon state |Ψ𝐴𝑃 ⟩ =

1√
2 (|𝜎+⟩|1, -1⟩ + |𝜎-⟩|1, +1⟩).

Figure 2.6.: The pumping and excitation process: preparation the 52S1/2, F = 1, mF = 0
ground state (a, b) and creation of atom-photon entanglement via excitation of
the 52P3/2, F = 0, mF = 0 state (c, d).
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(a) Top view of the experimental setup: the pump1→1laser (green) and the
excitation pulse (orange) need to be 𝜋-polarized. For a 𝜋-polarization
the direction of the laser needs to be perpendicular to the quantization
axis. Here the pump1→1laser and the excitation laser are parallel and
anti-parallel to the 𝑥-axis.

z x

y

objec�ve

pump →2 1

(b) Front view of the experimental se-
tup: the pump2→1 laser is split up
into two beams which are overlap-
ped with the vertical cooling be-
ams (Fig. 2.4).

Figure 2.7.: Setup for the pump and excitation process

Excitation process

Next, the atom, prepared 52S1/2, F = 1, mF = 0 ground state, is excited with a short laser
pulse that is 𝜋 polarized to the 52P3/2, F’ =0, mF = 0 state (Fig. 2.6c). The excited state
decays with a short life time of 26.24 ns [49]. The emitted photons are subsequently collected
with the confocal microscope setup, filtering out the 𝜋 polarized photons. The remaining
photons are then guided to the photon detection setup.

The fidelity of the atom-photon state (2.5) is limited by imperfections of the pumping and
excitation process, leading to unwanted effects, such as off-resonant excitation resulting in
two photon emission during one excitation process. These effects strongly depend on the
polarization, temporal shape, and intensity of the excitation pulse. For optimizing these
parameters it is necessary to consider the photon collection efficiency, the photon detection
efficiency as well as the detector dark counts5. Additionally, an excitation efficiency as high
as possible is required in order to achieve a reasonable event rate for executing experiments.
Especially since the atom-atom entanglement rate is proportional to the square of the single-
atom excitation and photon detection probability. A rigorous analysis based on [33] can be
found in Chapter 6.

Considering all these parameters an approximately Gaussian shaped excitation pulse with
a full width at half maximum duration (FWHM) of 20.35 ns (Fig. 2.8) and with an intensity
yielding approximately 80% of the maximal excitation efficiency is chosen [33]. Together with
an acceptance time window of 208 ns this results in a total photon detection probability of
𝜂 = 1.7h per excitation pulse.

This low detection probability makes a fast repetition of the pumping and excitation process
necessary to achieve a reasonable event rate. For this the heating of the atom by repeated

54×Laser components Count-10C with total dark counts of 40 1/𝑠
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Figure 2.8.: Temporal shape of the excitation pulse and of the emitted photon: intensity of
the excitation pulse measured with a fast photo-diode (orange) and Gaussian
fit of the excitation pulse (black, dashed) 𝐼 = 𝐼0𝑒− 1

2 ( 𝑡−𝑡0
2𝑇 )

2
with 𝑇 = 8.64 ns,

𝑡0 = 740.20 ns, and 𝐼0 = 21.98 mV. The FWHM pulse duration is 20.35 ns.
The time-dependent detection probability of the photon (red), normalized on
the total photon detection events inside acceptance time window (black, finely
dashed), reflects the temporal shape of the photon.
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pumping and excitation has to be considered. The heating does not only lead to a possible
loss of the trapped atom, but also to decoherence of the atomic state caused by stronger
motion of the trapped atom (Sec. 2.3.3) . A scheme in which 40 repetitions of pumping and
excitation are followed by 350 µs of cooling enables for fast repetition, without heating the
atom significantly [38].

2.3.2. Measurement of the atomic state

In order to read-out a physical qubit, it is necessary to perform a projection measurement
on the qubit with a freely chosen measurement direction. To perform such as measurement
on the qubit encoded in the Zeeman states, a state selective ionization scheme is used. It
is composed from two steps: first, a selected superposition of Zeeman states is excited from
the 52S1/2, F = 1 ground state to the 52P1/2, F’ = 1 excited state Then the excited atoms
are ionized. The ionized atoms are no longer trapped, and the cooling light and detection of
fluorescence photons can be used to measure if an atom is still trapped or not.

To close one of the most significant loopholes in Bell experiments, the so called locality
or communication loophole (Sec.3.3), a very fast state measurement with a high fidelity is
mandatory. While the state-selective ionization process is very fast and has a high fidelity, the
detection of fluorescence light in this setup has also a high fidelity but needs long measurement
times of more than 30 ms. To enable a faster decision, particle detectors that can confirm the
ionization are employed, which detect the 87Rb+-ion and the electron directly.

Zeeman-level selective ionization scheme

To excite only a specific superposition of the Zeeman-levels for the F = 1, mf = ±1 aser light
(read-out laser) resonant to the 52S1/2, F = 1 to F’ = 1 transition (D1 line) is used (Fig. 2.9a).
The incidence direction of the read-out laser coincides with the quantization axis, counter
propagating to the dipole trap (Fig. 2.10a). Selection rules and transition dipole moments
of the atom (Fig. A.1b) determine which polarization of the read-out laser 𝜒𝑟𝑜 ( 2.7) excites
which superposition of the Zeeman-levels. The superposition transferred |B⟩𝜒𝑟𝑜

will be called
bright state (2.8) and the orthogonal superposition which is not transferred |D⟩𝜒𝑟𝑜

dark state
(2.9). The polarization of the read out laser is set via a quarter and a half wave plate, thus
any measurement direction can be chosen.

𝜒𝑟𝑜 = cos(𝛼) ⋅ 𝑉 + 𝑒−𝑖𝜙 sin (𝛼) ⋅ 𝐻 (2.7)

|B⟩𝜒𝑟𝑜
= cos (𝛼) −1√

2
(|1, −1⟩ − |1, +1⟩) + sin (𝛼) 𝑒𝑖𝜙 𝑖√

2
(|1, −1⟩ + |1, +1⟩) (2.8)

|D⟩𝜒𝑟𝑜
= sin (𝛼) 1√

2
(|1, −1⟩ − |1, +1⟩) + cos (𝛼) 𝑒𝑖𝜙 𝑖√

2
(|1, −1⟩ + |1, +1⟩) (2.9)

The ionization threshold for the excited 52P1/2, F’ = 1 state is 473.67 nm and the ionization
threshold for the ground state 52S1/2, F = 1 is 296.82 nm [59]. To ionize only the excited
atoms a laser with a wavelength below 473 nm (Appendix F) is used, which is focused on the
atom with the same microscope objective used for fluorescence collection and for focusing the
dipole trap (Fig. 2.10a). Ionized atoms are immediately lost from the trap. By integrating
the fluorescence counts measured at the detectors it is possible to determine whether the
atom was ionized or not. It is important to note that the 52S1/2, F = 1, mF = 0 state is
excited by any polarization. The probability to observe the bright state, meaning the atom is
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ionized, for a given atomic state 𝜌 is 𝑃𝑟𝐵 = ⟨𝐵| 𝜌 |𝐵⟩ + ⟨1, 0| 𝜌 |1, 0⟩ while the probability to
observe the dark state, in this case the atom is still trapped, is 𝑃𝑟𝐷 = ⟨𝐷| 𝜌 |𝐷⟩ (disregarding
imperfections).

The fidelity of this measurement is limited by the life-time of the excited state and by
off-resonant excitation of the dark state to the state 52P1/2, F’ = 2. The short life time of
27.7 ns[49] leads to spontaneous decay to the ground states before the excited atom is ionized
(Fig. 2.9b). With a probability of 5/6 the excited state decays to the F = 2 ground state.
This can be overcome by exciting this state with a laser to the 52P3/2, F’ = 3 state, allowing
for the ionization of the atom (Fig. 2.9c). With a probability of 1/6 the excited state decays
to the F = 1 ground state and in equal parts to bright state |𝐵⟩𝑟𝑜 and to dark state |𝐷⟩𝑟𝑜.
While the part in |𝐵⟩𝑟𝑜 can be excited again, the decay into |𝐷⟩𝑟𝑜 leads to a reduction of
ionization probability of the initial bright state. The 52P1/2, F’ = 2 state is separated from
the 52P1/2, F’ = 1 state by 816.7 MHz (Fig. 2.2) with a natural line width (FWHM) of only
5.746 MHz [49]. However, the fast ionization of the excited atom, which is caused by the high
intensity (ca 𝑃𝑖𝑜𝑛 = 200 mW focused with 𝑤0 = 1 µm at the atom) of the ionization leaser,
leads to an increase of the line width, leads to significant off-resonant excitation [34, 37].

For an optimal distinction of bright and dark state, the contrast

𝐶𝑟𝑜 = 𝑃𝑟𝑖𝑜𝑛𝑖𝑧𝑒𝑑 (|𝐵⟩𝜒𝑟𝑜
) − 𝑃𝑟𝑖𝑜𝑛𝑖𝑧𝑒𝑑 (|𝐷⟩𝜒𝑟𝑜

)

as the difference between the ionization probability of an atom prepared in |𝐵⟩𝜒𝑟𝑜
and the

ionization probability of an atom prepared in |𝐷⟩𝜒𝑟𝑜
needs to be maximized. This is achieved

by selecting an optimal pulse duration and power of the read-out pulse. With a pulse length
of 140 ns and optical power of 1.24 µW, ionization probabilities of 𝑃𝑟𝑖𝑜𝑛𝑖𝑧𝑒𝑑 (|𝐵⟩𝜒𝑟𝑜

) ≃ 0.98
and 𝑃𝑟𝑖𝑜𝑛𝑖𝑧𝑒𝑑 (|𝐷⟩𝜒𝑟𝑜

) ≃ 0.04 can be obtained, resulting in a contrast of 𝐶𝑟𝑜 ≃ 0.94 [37].
The duration of this read-out process is less than 400 ns. A detailed analysis of the read-out
scheme can be found in [37, 34].

Detection of the ionization fragments

In order to close the locality loophole of a Bell-experiment, it is necessary to obtain the result
of the ionization faster than with fluorescence detection. This can be achieved by a direct
detection of the ionization fragments. Channel-electron-multipliers6 (CEMs) are used to
detect both the electron and the Rb+-ion created during a successful ionization process. The
setup consists of two CEMs (Fig.2.10c) that are set to different electrical potentials. Hence,
one attracts and detects electrons and the other one Rb+-ions. Tuning the electrical field
with copper apertures on the detectors, compensation electrodes and an electrical conducting
coating (ITO) enables detection efficiencies above 0.9 for each detector. This results in a
probability of 0.99 to detect at least one of the fragments of an ionization process. The dark
count rate of this setup is with < 10 kHz for the electron and < 10 Hz for the ion detector
very low [35, 36, 37, 54].

The time needed for the detection of the ionization fragments is determined by the time of
flight to the detectors and the response time of the detectors of ca 25 ns. The time of flight
depends on the mass of the fragments and the electrical potential difference Δ𝑈𝑎𝑐𝑐 between

6Channel electron multiplier KBL10RS Dr. Sjuts Optotechnik GmbH. These can detect particles like ions
and electrons, but also photons with a wavelength below 150 nm.
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(a) Zeeman-state selective ionization: the polariza-
tion 𝜒𝑟𝑜 (2.7) of the read-out leaser (red) se-
lects which superposition of the|1, ±1⟩ Zeeman-
states, called bright state |B⟩ (2.8), is excited to
the 52P1/2, F’ = 1 state, while the orthogonal
superimposed dark state |D⟩ is not affected by
the read-out laser and stays in the ground state.
The third Zeeman-state |1, 0⟩ can be excited by
any polarization 𝜒𝑟𝑜 of the read-out laser (das-
hed red). The excited atoms are ionized by the
ionization laser (blue).

5 2P1/2 F’ = 1

5 2S1/2 F = 1

F = 2

|B〉|1, 0〉|D〉
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(b) Possible decay routes from the exited state: the
population in the excited 52P1/2, F’ = 1 state can
decay before it is ionized. This decay is with pro-
bability 5/6 to the F = 2 ground state, with pro-
bability of 1/12 back to bright state |B⟩, and with
the same probability to the dark state |D⟩.

5 2P1/2

5 2P3/2

F’ = 1

F’ = 3

5 2S1/2 F = 1

F = 2

|B〉|1, 0〉|D〉

ionization
threshold
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ionization
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(c) Second excitation after decay: To overcome the
the detrimental effect of the decay to F = 2
ground state, this state is excited by the additi-
onal cycling laser (green) to the 52P3/2, F’=3 ex-
cited state. Additionally, atoms that decay back
to the bright state |B⟩ are re-excited by the read
out laser (red).

Figure 2.9.: Fast read-out scheme based on Zeeman-state selective ionization.

19



(a) Top view: The read out laser (dark red) propagating in positive 𝑧-direction (counter propa-
gating to the ODT laser) is focused on the atom (black dot). A linear polarizer followed a
𝜆/2 and a 𝜆/4 wave plate allow to set any desired polarization 𝜒𝑟𝑜. The ionization laser (blue)
is overlapped with the ODT laser by a dichroic beam splitter and focused with the objective
on the atom. Two channel electron multipliers (CEMs) are located near the atom inside the
vacuum glass cell. The two inner surfaces of the glass cell are coated with transparent and
conducting indium tin oxide (ITO) allowing for applying of electric fields.

z x

y
objec�ve

cycling

ITO coa�ng

(b) Front view: The additional cycling
laser is propagating downwards in
𝑦-direction.

ΔUacc

cycling

CEMe CEMion

z x

y

compensa�on
electrodes

(c) View from the side of the objective (scale 2×): A
high voltage Uacc is applied between the two CEMs
to accelerate the ionization fragments to the detec-
tors. One detector registers the 87Rb-ions (CEMion)
and the other one detects electrons (CEMe). The
compensation electrodes and the ITO coated sides of
the glass cell (a, b) are used to tune the electric field
inside the vacuum for optimal fragment detection ef-
ficiency.

Figure 2.10.: Experimental setup for the fast and efficient state read-out.
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the detectors. With a potential difference of Δ𝑈𝑎𝑐𝑐 = 4.2 kV, the time of flight of an electron
is < 2.5 ns. the time of flight of a 87Rb-ion, having 1.63⋅105 times more mass than an electron;
is < 380 ns [37]. For each detector a short acceptance time window is defined. if one particle
gets detected within the given time windows, a successful ionization can be assumed. When
considering the CEM detection efficiency and the acceptance time window lengths of 240 ns
the probability to not detect one of the fragments when the atom is actually ionized is ca 1%.
Further considering and the dark count rates, the probability to detect a background count
during time windows is below 2.4 ⋅ 10−3.

Duration and performance of the state measurement

The fidelity of the atomic state measurement depends on the performance of the state se-
lective ionization and the subsequent measurement, whether the atom was ionized. Using
fluorescence detection to confirm the ionization the overall the measurement takes > 30 ms
and the measurement fidelity is ca 0.97. However, using the particle detectors the end of the
acceptance time window, which defines the end of the measurement, for ions is only 570±3 ns
after the start of the read-out laser pulse [38, 60]. Still the measurement fidelity with ca 0.965
[37] is very high and allows for a not only fast but also efficient atomic state read-out.

2.3.3. Coherence of the atomic states

In the experiments presented in this thesis the atomic state is only measured if the signal
heralding atom-atom entanglement is received. This is called an event-ready scheme. For
the experiments to be successful the initially prepared state needs to be maintained until
the state is measured after receiving the heralding signal. A long temporal coherence of the
atomic state is thus necessary. In this setup the heralding signal is sent back to the trap setup
after the photon detection. Thus, the time from excitation to receiving the signal is the time
needed for the photon to travel to the detectors, the time needed by the detection electronics,
and the time the signal needs to travel back to the setup. Considering the 700 m long fiber
channel this time is about 7 µs.

The atomic qubit is encoded in the |1, ±1⟩ Zeeman states of the S1/2 ground state. Popula-
tion of these states cannot decay to a different atomic state, but can be changed by external
influences. For single atoms trapped inside ultra high vacuum, these external influences are
limited to laser light of the setup and the external magnetic field.

Interaction with a magnetic field

The interaction between the atomic spin and a magnetic field 𝐵⃗ is described by the interaction
Hamiltonian 𝐻̂𝐵. For a quantization axis in 𝑧-direction and the basis vectors ⃗𝑒1 = |1, +1⟩𝑍,

⃗𝑒2 = |1, 0⟩𝑍, and ⃗𝑒3 = |1, −1⟩𝑍 and a magnetic field

𝐵⃗ = ⎛⎜
⎝

𝐵𝑥
𝐵𝑦
𝐵𝑧

⎞⎟
⎠

the Hamiltonian is
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𝐻̂𝐵 = 𝜇𝐵𝑔𝐹
ℏ 𝐵⃗ ⃗̂𝐹 (2.10)

= ℏ𝜔𝐿
⎛⎜⎜
⎝

𝑏𝑧
1√
2 (𝑏𝑥 − 𝑖𝑏𝑦) 0

1√
2 (𝑏𝑥 + 𝑖𝑏𝑦) 0 1√

2 (𝑏𝑥 − 𝑖𝑏𝑦)
0 1√

2 (𝑏𝑥 + 𝑖𝑏𝑦) −𝑏𝑧

⎞⎟⎟
⎠

(2.11)

with the vector of the angular momentum operators for a spin 1 system ⃗̂𝐹 ((B.1) in Appen-
dix B), the Larmor frequency 𝜔𝐿 = 1

ℏ𝑔𝐹 𝜇𝐵∥𝐵⃗∥, the Bohr magneton 𝜇𝐵, the Landé factor 𝑔𝐹
for the hyperfine state, and 𝑏𝑥 = 𝐵𝑥

∥𝐵⃗∥ , 𝑏𝑦 = 𝐵𝑦

∥𝐵⃗∥ , 𝑏𝑧 = 𝐵𝑧
∥𝐵⃗∥ [38]. For cylindrical coordinates

𝑏𝑥 = √1 − 𝑏2𝑧 cos (𝜙) and 𝑏𝑦 = √1 − 𝑏2𝑧 sin (𝜙) the eigenvalues 𝜆𝑖 of 𝐻̂𝐵 are 𝜆1 = +ℏ𝜔𝐿 ,
𝜆0 = 0, and 𝜆−1 = −ℏ𝜔𝐿 with the corresponding eigenvectors |Φ+1⟩, |Φ0⟩, and |Φ−1⟩.

|Φ+1⟩ = ⎛⎜⎜
⎝

−1
2 (𝑏𝑧 + 1) 𝑒−𝑖𝜙

−√1−𝑏2𝑧
2

1
2 (𝑏𝑧 − 1) 𝑒𝑖𝜙

⎞⎟⎟
⎠

|Φ0⟩ =
⎛⎜⎜⎜⎜
⎝

−√1−𝑏2𝑧
2 𝑒−𝑖𝜙

𝑏𝑧
√1−𝑏2𝑧

2 𝑒𝑖𝜙

⎞⎟⎟⎟⎟
⎠

,

|Φ−1⟩ = ⎛⎜⎜
⎝

−1
2 (𝑏𝑧 − 1) 𝑒−𝑖𝜙

−√1−𝑏2𝑧
2

1
2 (𝑏𝑧 + 1) 𝑒𝑖𝜙

⎞⎟⎟
⎠

(2.12)

These eigenvectors form an orthonormal basis and the time dependence for any state can be
written in the form

|Ψ (𝑡)⟩ = 𝑐0|Φ0⟩ + 𝑐−1|Φ−1⟩𝑒𝑖𝜔𝐿𝑡 + 𝑐+1|Φ+1⟩𝑒−𝑖𝜔𝐿𝑡 (2.13)

with 𝑐0, 𝑐±1 ∈ ℂ and √‖𝑐−1‖2 + ‖𝑐0‖2 + ‖𝑐+1‖2 = 1.

Interaction with the ODT light

During the time between excitation and state read-out the only laser interacting with the
atom is the ODT laser. Since the ODT laser is far red off-resonant, scattering of photons is
very rare and can be neglected and only the ac-stark shift needs to be considered for state
evolution. The energy shift of the atomic 52S1/2 ground states induced by the ODT laser light
field is

Δ𝐸 = −𝜋𝑐2Γ
2𝜔3

0
(2 + 𝑔𝐹 𝑚𝐹 𝑃

Δ2,𝐹
+ 1 − 𝑔𝐹 𝑚𝐹 𝑃

Δ1,𝐹
) ⋅ 𝐼. (2.14)

It depends on the intensity 𝐼 of the ODT laser, the decay rate and transition frequency of
the central D-line Γ and 𝜔0 , the detuning Δ1,𝐹 and Δ2,𝐹 with respect to the transition of
the 𝐷1 and 𝐷2 line , and 𝑔𝐹 is the Landé factor of the considered hyperfine state. 𝑃 is a

measure of the circular polarization of the electric field of the ODT laser ⎛⎜
⎝

𝐸𝑥
𝐸𝑦𝑒𝑖𝛿

0
⎞⎟
⎠

, with

the relative phase shift 𝛿. This measure is defined as

𝑃 = sign (𝛿) 2 ‖𝐴‖ ‖𝐵‖
‖𝐴‖2 + ‖𝐵‖2 (2.15)
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with the semi-axes of the polarization ellipse 𝐴 and 𝐵 (Appendix D). Therefore, 𝑃 = ±1
corresponds to perfect circular polarization while 𝑃 = 0 corresponds to to perfect linear
polarization [61]. This energy shift Δ𝐸 can be split up in two terms: one Δ𝐸𝑙𝑖𝑛 which
depends only on the intensity 𝐼 and detuning Δ1,𝐹 , Δ2,𝐹 of the ODT laser and a second term
Δ𝐸𝑚𝐹

, with an additional dependence on the polarization 𝑃 of the ODT laser and on the
Zeeman level 𝑚𝐹 of the atom.

Δ𝐸𝑙𝑖𝑛 = −𝜋𝑐2Γ
2𝜔3

0
( 2

Δ2,𝐹
+ 1

Δ1,𝐹
) 𝐼 (2.16)

Δ𝐸𝑚𝐹
= 𝜋𝑐2Γ

2𝜔3
0

( 1
Δ1,𝐹

− 1
Δ2,𝐹

) ⋅ 𝑔𝐹 𝑚𝐹 𝑃 ⋅ 𝐼 (2.17)

Time evolution of the qubit state can only be caused by an energy shift between the Zeeman
states 𝑚𝐹 , only the second term Δ𝐸𝑚𝐹

needs to be considered. It is equivalent to an energy
shift Δ𝐸𝑏𝑧 = 𝑔𝐹 𝜇𝐵𝑚𝐹 ∥𝐵⃗∥ (2.10) caused by a magnetic field in 𝑧-direction (𝑏𝑥 = 𝑏𝑦 = 0,
𝑏𝑧 = 1) . Therefore, one can define an effective magnetic field

𝐵⃗𝑒𝑓𝑓 ( ⃗𝑥) = 𝐵⃗ + ⎛⎜
⎝

0
0
1

⎞⎟
⎠

1
𝜇𝐵

𝑢 ⋅ 𝑃𝑂𝐷𝑇 ⋅ 𝐼 ( ⃗𝑥) (2.18)

composed of the external magnetic field 𝐵⃗ and the effect of circular polarization 𝑃𝑂𝐷𝑇 of
the ODT laser with 𝑢 = 𝜋𝑐2Γ

2𝜔3
0

( 1
Δ2,𝐹

− 1
Δ1,𝐹

). Furthermore, since the laser beam has the
TEM00Gaussian mode, the position-dependent intensity distribution is of the form

𝐼 ( ⃗𝑥) = 𝐼 (𝑟, 𝑧) = 𝐼0 ( 𝑤0
𝑤 (𝑧))

2
𝑒− 2𝑟2

𝑤(𝑧)2

where 𝑤 (𝑧) = 𝑤0√1 + ( 𝑧
𝑧𝑅

)2
is the beam waist at position 𝑧, 𝑧𝑅 = 𝜋𝑤2

0
𝜆 is the Rayleigh

length, and 𝑧 = 0 is the focal spot. The other parameters of the dipole trap are the wave
length 𝜆 = 852 nm,the waist at the focus 𝑤0 = 1.92 µm, and intensity at the focus 𝐼0. Thus
the effective magnetic field depends not only on the ellipticity but also on the position of the
atom in the trapping potential.

For a linearly polarized light field with 𝑃 = 0 the energy shift Δ𝐸𝑚𝐹
vanishes. Thus, no

state evaluation occurs when using a linearly polarized ODT laser and no magnetic field is
present. Focusing a linearly polarized Gaussian beam, the emergence of longitudinal pola-
rization near the focus has to be considered [48, 62]. In [48] the polarization of the ODT
laser in the trapping region is calculated applying the formalism from [63, 64] for focusing a
Gaussian beam. The position dependent amplitude of the electric field near the focus in each
direction (𝐸𝑥, 𝐸𝑦, 𝐸𝑧) can be approximated in cylindrical coordinates (𝑟, 𝜙, 𝑧 with 𝑟 in the
𝑥-𝑦 plane and 𝑧 = 𝑧) as

⎛⎜
⎝

𝐸𝑥 ( ⃗𝑥)
𝐸𝑦 ( ⃗𝑥)
𝐸𝑧 ( ⃗𝑥)

⎞⎟
⎠

≈ 𝐸0𝐹0 (0, 0)
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1
√1+𝑧2/𝑧2

𝑅
+ 𝑟2⋅cos(2𝜙)

4⋅𝑧2
𝑅(1+𝑧2/𝑧2

𝑅)
3
2

𝑟2⋅sin(2𝜙)
4⋅𝑧2

𝑅(1+𝑧2/𝑧2
𝑅)

3
2

𝑖2⋅𝑟⋅cos(𝜙)
2⋅𝑧𝑅⋅(1+𝑧2/𝑧2

𝑅)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

𝑒
−𝑟2

𝑤(𝑧)2 (2.19)
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(a) 𝐵𝑙𝑜𝑛𝑔 (𝑥⃗) in the 𝑥-𝑧 plane at 𝑦 = 0, 𝑃𝑙𝑜𝑛𝑔 (𝑥⃗)
according to Appendix D with sign change of the
phase shift 𝛿 between 𝐸𝑥 and 𝐸𝑧 at 𝑥 = 0 (solid
line)

(b) 𝐵𝑙𝑜𝑛𝑔 (𝑥⃗) in the 𝑥-𝑦 plane at 𝑧 = 0
(color scale as in (a)), 𝑃𝑙𝑜𝑛𝑔 (𝑧 = 0) =
sign(𝛿) 2‖𝐸𝑥‖‖𝐸𝑧‖

‖𝐸𝑥‖2+‖𝐸𝑧‖2 with phase −𝜋/2 for
𝑥 < 0 and 𝜋/2 for 𝑥 > 0.

Figure 2.11.: Effective magnetic field in 𝑦 caused by the longitudinal polarization components
𝐸𝑧 that arise near the focus polarization: 𝐵𝑙𝑜𝑛𝑔 ( ⃗𝑥) (2.20) in the 𝑥-𝑧 plane at
𝑦 = 0 and in the 𝑥-𝑦 plane at 𝑧 = 0.

for a beam propagating along the 𝑧-axis with an original polarization of the Gaussian beam
in 𝑥-direction corresponding to 𝜙 = 0 direction in the cylindrical coordinates. The beam
waist 𝑤 (𝑧) and the the Rayleigh length 𝑧𝑅 are defined as before. 𝐸0 is a scaling constant

and 𝐹 (0, 0) = ∫𝛼
0 𝑒− 𝑓2𝑡𝑎𝑛(𝜃)2

𝑤2
𝑜𝑑𝑡 √cos (𝜃) (1 + cos (𝜃)) sin (𝜃) 𝑑𝜃 with the waist of the ODT laser

𝑤𝑜𝑑𝑡 before the microscope objective (𝑤0 = 𝜆⋅𝑓
𝜋𝑤𝑜𝑑𝑡

), and the focal length of the objective
𝑓 . The arising field component in 𝑧-direction has a phase shift of 𝛿 ≠ 0 to the transverse
components, resulting in an elliptical polarization. This phase is 𝛿 = arctan (𝑧/𝑧𝑟) + 𝜋/2 for
positive 𝑥 positions and 𝛿 = − arctan (𝑧/𝑧𝑟)−𝜋/2 for negative, changing sign by crossing the 𝑦-𝑧
plane (𝜙 = 𝜋/2, 3𝜋/2 ⇔ 𝑥 = 0) (Appendix D). This leads to different rotation directions for the
elliptical polarization on each side of this plane. Since this elliptical polarization is composed
from 𝐸𝑥 and 𝐸𝑧, it can be considered as elliptical polarization of a light field propagating in
𝑦-direction with the polarization 𝑃𝑙𝑜𝑛𝑔 ( ⃗𝑥),which depends on the relative amplitude and phase
of the transverse and longitudinal components of the ODT light, see Appendix D. Analogous
to equation (2.18), this elliptical polarization causes a state dependent AC-Stark shift, which
can be considered as an effective magnetic field in 𝑦-direction

𝐵𝑙𝑜𝑛𝑔 ( ⃗𝑥) = 1
𝜇𝐵

𝑢 ⋅ 𝑃𝑙𝑜𝑛𝑔 ( ⃗𝑥) ⋅ 𝐼( ⃗𝑥) (2.20)

𝐵⃗𝑒𝑓𝑓 ( ⃗𝑥) = 𝐵⃗ + 1
𝜇𝐵

𝑢 ⋅ ⎛⎜
⎝

0
𝑃𝑙𝑜𝑛𝑔 ( ⃗𝑥)

𝑃𝑂𝐷𝑇

⎞⎟
⎠

⋅ 𝐼 ( ⃗𝑥) (2.21)

with 𝑢 as defined above (Fig. 2.19). The direction of the shift caused by the longitudinal
polarization is proportional to 𝑃𝑙𝑜𝑛𝑔 ( ⃗𝑥). The latter is position dependent and has different
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sign for different sides of the 𝑦-𝑧 plane, contrary to the constant 𝑃𝑂𝐷𝑇 for the transverse
circular polarization.

Control of the magnetic field

The evolution of the atomic states is affected by the external magnetic field (2.13). The
magnetic field can originate from multiple sources with a broad variety of strengths and
temporal behavior. There are sources outside the laboratories, e.g., the earth magnetic field
which is ca 480 mG [65] in Munich varies only very slowly. A second contribution is from
the Munich U-Bahn, located only 60 m from the trap position. The current for powering the
trains results in a magnetic field, which changes its amplitude on a time scale of below 1 min.
Furthermore, there are sources inside the lab, e.g., the ion getter pump of the Vacuum setup,
which has a large permanent magnet leading to a static field up to 1000 mG at the position
of the atom. Multiple power supplies and other electronics contribute to the magnetic field
with time scales below 1 s.

To control the magnetic field at the position of the atom, three pairs of coils are centered
around the vacuum glass cell (Fig. 2.12a). Each pair generates a field along one direction in
space (𝑥, 𝑦, and 𝑧-axis). These coils and their current supply are designed to compensate the
magnetic field present at the position of the atom, allowing to create any desired magnetic
field strength and direction in the range of ±5000 mG.

An active feedback loop controls the current in each coil pair to stabilize the magnetic field
to the set value. For this a 3D magnetic field sensor7 is placed less than 2 cm from the atom
(Fig 2.12b). The feedback loop has a bandwidth up to 200 Hz and the resulting residual
noise of the magnetic field at the position of the atom is below 0.5 mG(rms). [38, 48? ].
Through the precise setting of the magnetic field the evolution of the atomic state can be
controlled. This enables for two ways of achieving long coherence times of the atomic state:
First, employing a magnetic guiding field for a controlled oscillation between the Zeeman
states allows to suppress the external field fluctuations, or second setting the magnetic field
to zero with no state evolution at all.

Decoherence caused by polarization depending AC-Stark shift and motion of the atom

The circular polarization components of the ODT laser influence the atomic state evolution
similarly to a magnetic field (2.21). But in contrast to the magnetic field, which is homoge-
neous over the trapping region < 1 µm3, the effect of the ODT laser is strongly depending on
the position of the atom.

For an hypothetical case in which the atom is not moving, it is possible to compensate
all effects of the ODT on the atomic state evolution perfectly. Yet in practice, the trapped
atom is only cooled to a temperature of about 40 µK and oscillates in the trap. For the trap
parameters, see Section 2.2, the transverse trap oscillation periods (𝑥 and 𝑦 direction) are
𝑇𝑂𝐷𝑇 ,𝑡 = 10.9 µs and the longitudinal is 𝑇𝑂𝐷𝑇 ,𝑙 = 108.9 µs [38]. The ODT potential can
be approximated as an harmonic potential for low temperatures. The oscillation periods are
independent of the actual energy of the atom and how it is distributed in its three degrees of
freedom. The evolution of the Zeeman states however depends on the actual trajectory of the
atom during the time between excitation and state measurement. This trajectory is different

7Honeywell, HMC1053, with a range of ±6000 mG.
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(a) The three pairs of rectangular Helmholtz coils, which
are used to compensate the magnetic field, enclose
the vacuum chamber with the trapped atom. (the
magnetic field sensor is not on the picture)

(b) Position of the 3D magnetic field sensor (scale
1.5×): The sensor is placed as close as possible
to the atomic position outside the vacuum in
such a way that is does not interfere with laser
beams and fluorescence collection. This posi-
tion is 𝑥 ≈ 0 cm, 𝑦 ≈ 1 cm, and 𝑧 ≈ 1.3 cm.

Figure 2.12.: Setup for the control of the magnetic field: the compensation coils around the
glass cell (a) and magnetic field sensor placed near the glass cell (b)

for each trial, and averaging over multiple trials of the experiment yields the average over all
those trajectories. This results in decoherence of the atomic state [48].

The effect of the circular polarization of the ODT 𝑃𝑂𝐷𝑇 can be reduced by optimizing the
linear polarization. Values of 1

𝜇𝐵
𝑢 ⋅ 𝑃𝑂𝐷𝑇 ⋅ 𝐼 ( ⃗𝑥 = 0) < 1 mG can be achieved, resulting in an

decoherence lower than the effect of the magnetic noise.
The effect of the longitudinal polarization near the focus cannot be overcome by optimizing

the beam parameters; a linearly polarized strongly focused laser field will always show this
behavior. Fortunately, the phase change of 𝜋 at the 𝑦-𝑧 plane also changes the sign of the
state evolution. After one transverse oscillation period the state evolution on both sides of
the plane cancels out, leaving the atom in the starting state. This effect is independent of
the actual starting position of transverse motion of the atom in the trapping light field. This
“rephasing” of the different trajectories is slightly reduced by two effects: first, the actual
3D oscillation does not allow for perfect rephasing after one period. Second, the Gaussian
shaped potential of the ODT is not exactly harmonic, thus the trap frequencies for atoms
with different energies are slightly different. This leads to a temperature dependence of the
rephasing; the colder the atoms the better the coherence. A detailed analysis and discussion
of this effect can be found in [38].

Time resolved measurements of the atomic state evolution

To observe the temporal evolution of the atomic state, the resulting state is measured at
different times after the excitation and photon detection. The entanglement between the
atom and the photon allows to prepare arbitrary atomic states by a projection measurement
on the photon (Appendix C).
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For this measurement the atom is prepared in the state |Ψ𝐻⟩ = 𝑖√
2 (|1, −1⟩ − |1, +1⟩) by

projecting the photon polarization on |𝐻⟩ and |Ψ𝑉 ⟩ = 1√
2 (|1, −1⟩ + |1, +1⟩) by projection on

|𝑉 ⟩. These two states have favorable properties: while |Ψ𝑉 ⟩ is an eigenstate to a magnetic
field in 𝑦-direction, |Ψ𝐻⟩ is an eigenstate to one in 𝑥-direction (2.12) [38]. The effects of a
magnetic field in 𝑥 or 𝑦-direction can therefore be observed individually.

While the 𝑚𝐹 = 0 Zeeman state |Ψ0⟩ = |1, 0⟩ is not involved in the entanglement scheme
(Sec. 2.3.1), it needs to be considered in the temporal evolution of the atomic states. This
state is an eigenstate for a magnetic field in 𝑧-direction, but not for fields in 𝑥 or 𝑦-direction.
Therefore, magnetic field components in 𝑥 or 𝑦-direction will lead to a population of this
state. Since |Ψ𝐻⟩, |Ψ𝑉 ⟩, and |Ψ0⟩ are orthogonal, they form a complete basis for the spin-1
system of 52S1/2, F = 1 ground state.

Using (2.13) the evolution of these states for a given magnetic field can be calculated. For

a magnetic field 𝐵⃗ = ⎛⎜
⎝

0
0

±𝐵
⎞⎟
⎠

, the temporal evolution of the states is

|Ψ𝐻 (𝑡)⟩ = |Ψ𝐻 (0)⟩ cos (𝜔𝐿𝑡) ± |Ψ𝑉 (0)⟩ sin (𝜔𝐿𝑡)
|Ψ𝑉 (𝑡)⟩ = |Ψ𝑉 (0)⟩ cos (𝜔𝐿𝑡) ∓ |Ψ𝐻 (0)⟩ sin (𝜔𝐿𝑡) . (2.22)

Likewise, for a magnetic field 𝐵⃗ = ⎛⎜
⎝

±𝐵
0
0

⎞⎟
⎠

, the temporal evolution is

|Ψ𝐻 (𝑡)⟩ = |Ψ𝐻 (0)⟩
|Ψ𝑉 (𝑡)⟩ = |Ψ𝑉 (0)⟩ cos (𝜔𝐿𝑡) ± 𝑖|Ψ0⟩ sin (𝜔𝐿𝑡) . (2.23)

For a magnetic field 𝐵⃗ = ⎛⎜
⎝

0
±𝐵
0

⎞⎟
⎠

, the temporal evolution is

|Ψ𝐻 (𝑡)⟩ = |Ψ𝐻 (0)⟩ cos (𝜔𝐿𝑡) ∓ |Ψ0⟩ sin (𝜔𝐿𝑡)
|Ψ𝑉 (𝑡)⟩ = |Ψ𝑉 (0)⟩. (2.24)

By setting the overall magnetic field, including the residual effect of 𝑃𝑂𝐷𝑇 , to zero, temporal
evolution can only be caused by magnetic noise and the effect of the longitudinal polarization
of the ODT near the focus. Since the longitudinal polarization 𝑃𝑙𝑜𝑛𝑔 (𝑥) (2.20) causes an
effective magnetic field in 𝑦-direction, its effect is only visible in the time evolution of |Ψ𝐻⟩
(2.24). The letter statement holds only if the other field components are small.

To perform a projection measurement on the prepared states, the polarization of the read-
out pulse is set to 𝜒𝑟𝑜 = 𝑉 (2.7) with the dark state |𝐷⟩𝑉 = 𝑖√

2 (|1, +1⟩ − |1, −1⟩) = |Ψ𝑉 ⟩
(2.9) and the bright state |𝐵⟩𝑉 = 1√

2 (|1, +1⟩ + |1, −1⟩) = |Ψ𝐻⟩ (2.8) . The measurement
(Fig. 2.13a) shows slow decoherence of the prepared |Ψ𝑉 ⟩ state: for a measurement with a
delay of 120 µs after the excitation the probability to find an atom in |Ψ𝑉 ⟩ is > 0.8. for a delay
between 5 µs and 15 µs the probability is only 0.02 lower than for no delay. The decoherence of
|Ψ𝐻⟩ appears to be even slower. However, since |Ψ0⟩ is also a bright state independent of the
polarization of the read-out pulse (Sec. 2.3.2), the projection on the bright state is insensitive
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(a) Read-out polarization 𝜒𝑟𝑜 = 𝑉 : atoms prepared in
|Ψ (0)⟩ = |Ψ𝑉 ⟩ = 1√

2 (|1, +1⟩ + |1, −1⟩) (red) show
slow decoherence. The decoherence of atoms prepa-
red in the |Ψ (0)⟩ = |Ψ𝐻⟩ = 𝑖√

2 (|1, +1⟩ − |1, −1⟩)
state (blue) appears to be even slower, but this is
only a feature of the read-out scheme; it does not
distinguish between |𝐵⟩ and |Ψ0⟩. Therefore, the
time evolution of |Ψ𝐻⟩ can only be measured di-
rectly with 𝜒𝑟𝑜 = 𝐻.
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(b) Read-out polarization 𝜒𝑟𝑜 = 𝐻: evolution of
atoms from the prepared state |Ψ (0)⟩ = |Ψ𝐻⟩ =

𝑖√
2 (|1, +1⟩ − |1, −1⟩) (blue) to |Ψ0⟩ is visible.

The evolution is due to longitudinal polarization
near the focus of the ODT (2.20). Rephasing
occurs after one transverse oscillation of the atom
in the trap (10.9 µs). Note the first measurement
point at 0.5 µs is already influenced by the effect
of the longitudinal polarization.

Figure 2.13.: Measurement of the time evolution of atoms prepared in the states |Ψ (0)⟩ =
|Ψ𝑉 ⟩ and |Ψ (0)⟩ = |Ψ𝐻⟩. The ionization fragment detection probability on the
𝑦-axis shows the probability to ionize the atom.

to the evolution into |Ψ0⟩. To measure the evolution of |Ψ𝐻⟩, a second measurement has to
be performed with a read-out polarization set to 𝜒𝑟𝑜 = 𝐻 with |𝐷⟩𝐻 = |Ψ𝐻⟩ (Fig. 2.13b).

The measurement with 𝜒𝑟𝑜 = 𝐻 reveals a different behavior of the |Ψ𝐻⟩ state: the state
decoheres quickly due to the longitudinal components of the ODT light introducing an effective
magnetic field in 𝑦-direction. But as predicted, it is found to rephase, after one transverse
oscillation period of 10.9 µs. This point in time is called a rephasing point. Through tuning of
the power of the ODT laser the depth of the trapping potential can be changed. This allows
to change the trap frequencies and thus, the rephasing point to a desired point in time.

These measurements show that the atomic qubit can be read-out with a very high fidelity,
more than 10 µs after its preparation. Yet, one has to consider the rephasing and pick a fitting
rephasing point before the experiment.

2.4. Creation of long Distance Atom-Atom Entanglement

Once a high level of control of the trapped atoms and a high fidelity state read-out is obtained
the experiment is ready for the next step: creation of entanglement between two single atoms
trapped in independent setups separated by 398 m. Here, the two atoms are entangled via
the entanglement swapping process [31, 66]. This enables the transfer of entanglement of
two atom-photon pairs to the atoms by performing a joint measurement on the photons
[32, 33]. In order to achieve a high fidelity of the photon measurement the photons emitted
by independent atoms need to fulfill specific requirements. Especially their temporal shape
is of great importance. To fulfill these requirements, synchronization of the processes in both
trap setups is necessary.
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2.4.1. Heralded entanglement via entanglement swapping

For the entanglement swapping, two entangled pairs need to be considered. Here, each pair
consists of an atom and a photon. The entangled atom-photon pairs initially are in the states

|Ψ1⟩ = 1√
2

(|↑⟩𝐴,1 |↓⟩𝑃,1 + |↓⟩𝐴,1 |↑⟩𝑃,1)

and

|Ψ2⟩ = 1√
2

(|↑⟩𝐴,2 |↓⟩𝑃,2 + |↓⟩𝐴,2 |↑⟩𝑃,2) ,

with the subscripts indicating the particle 𝐴 and 𝑃 for atom or photon, 1 or 2 for the pair,
and the atomic states |↓⟩𝐴 , |↑⟩𝐴 and the photonic states |↓⟩𝑃 , |↑⟩𝑃 . The states are pairs of
orthogonal qubit states (Appendix B). The four particle state can be written as

|Ψ𝑎𝑙𝑙⟩ = |Ψ1⟩ ⊗ |Ψ2⟩ (2.25)

= 1√
2

(|↑⟩𝐴,1 |↓⟩𝑃,1 + |↓⟩𝐴,1 |↑⟩𝑃,1) ⊗ 1√
2

(|↑⟩𝐴,2 |↓⟩𝑃,2 + |↓⟩𝐴,2 |↑⟩𝑃,2)

= 1
2 (|↑⟩𝐴,1 |↓⟩𝑃,1 |↑⟩𝐴,2 |↓⟩𝑃,2 + |↑⟩𝐴,1 |↓⟩𝑃,1 |↓⟩𝐴,2 |↑⟩𝑃,2)

+ 1
2 (|↓⟩𝐴,1 |↑⟩𝑃,1 |↑⟩𝐴,2 |↓⟩𝑃,2 + |↓⟩𝐴,1 |↑⟩𝑃,1 |↓⟩𝐴,2 |↑⟩𝑃,2) .

A projection ⟨Ψ𝐵𝑒𝑙𝑙,𝑃 |Ψ𝑎𝑙𝑙⟩ of the two photons on one of the four entangled Bell-states

|Ψ𝐵𝑒𝑙𝑙⟩ ∈ {|Ψ-⟩ , |Ψ+⟩ , |Φ-⟩ , |Φ+⟩}

|Ψ±⟩ = 1√
2

(|↑⟩ |↓⟩ ± |↓⟩ |↑⟩)

|Φ±⟩ = 1√
2

(|↑⟩ |↑⟩ ± |↓⟩ |↓⟩)

results in an entangled atom-atom states of the same type. Thus a measurement of the photo-
nic Bell state will transfer the entanglement to the atoms. The outcome of this measurement
will herald which entangled atom-atom state is prepared.

Photonic Bell-state measurement via two photon interference

A Bell-state measurement on two photons can be implemented by employing two-photon
interference on a beam splitter [66, 67]. The interference behavior of single photons at a
beam splitter is described by the Hong-Ou-Mandel effect [68]: two indistinguishable photons,
meaning that they overlap in every degree of freedom, entering a beam splitter in different
input ports, will only be detected bunched together in one output port of the beam splitter
and never one photon in each output. It is important to state that, in this experiment the
photonic qubits are encoded in the polarization degree of freedom, which has to be considered
in the calculation of the two photon interference.

A beam splitter with two input and two output ports (Fig. 2.14) can be described via
four pairs of creation ̂𝑎†

1 and ̂𝑎†
2 for the inputs and ̂𝑏†

1 and ̂𝑏†
2 for the outputs. In general,

these operators are different for photons with different properties. The operators commute
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for photons in orthogonal states [𝑎†
𝛼, 𝑎†

𝛽] = 0, with 𝛼 and 𝛽 being orthogonal states. For
orthogonal polarizations, the creation operators are independent. For a polarization 𝑃 the
relation between the input and the output is given by

(
̂𝑏†
1,𝑃
̂𝑏†
2,𝑃

) = 𝐵̂𝑃 ( ̂𝑎†
1,𝑃
̂𝑎†
2,𝑃

) ⇔ ( ̂𝑎†
1,𝑃
̂𝑎†
2,𝑃

) = 𝐵̂−1
𝑃 (

̂𝑏†
1,𝑃
̂𝑏†
2,𝑝

) (2.26)

with the matrix of the beam splitter

𝐵̂𝑃 = ( cos (Θ𝑃 ) sin (Θ𝑃 ) 𝑒𝑖𝛿𝑃

− sin (Θ𝑃 ) 𝑒−𝑖𝛿𝑃 cos (Θ𝑃 ) ) (2.27)

where Θ𝑃 is the angle representing the splitting ratio and 𝛿𝑃 is the phase difference between
transmitted and reflected part [32, 69]. When using the 𝐻 and 𝑉 polarization basis 𝑃 ∈
{𝐻, 𝑉 }, two independent sets of creation operators are obtained.

The two photons emitted by independent single atoms, while being entangled with the
emitting atom, are in a completely mixed polarization state. Since the four Bell-states form a
complete orthonormal basis for this two photon space, it is possible to describe the two photon
interference for any two photon polarization state by looking at the interference of the four
Bell-states. Furthermore, the incidence of photons on the beam splitter can be written as a
Fock state. For the four polarization Bell-states these Fock states are

|Φ±⟩𝑖𝑛 = 1√
2

( ̂𝑎†
1,𝐻 ̂𝑎†

2,𝐻 ± ̂𝑎†
1,𝑉 ̂𝑎†

2,𝑉 ) |0, 0⟩𝑖𝑛

and

|Ψ±⟩𝑖𝑛 = 1√
2

( ̂𝑎†
1,𝐻 ̂𝑎†

2,𝑉 ± ̂𝑎†
1,𝑉 ̂𝑎†

2,𝐻) |0, 0⟩𝑖𝑛

with |0, 0⟩𝑖𝑛being the zero photon (vacuum) state of the two input ports. Considering the case
of a perfect, polarization independent 50/50 beam splitter (Θ𝐻 = Θ𝑉 = 𝜋

4 and 𝛿𝐻 = 𝛿𝑉 = 0)
and two indistinguishable photons the corresponding output states are

|Φ±⟩ → 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝐻 ± ̂𝑏†
1,𝑉 ̂𝑏†

1,𝑉 − ̂𝑏†
2,𝐻 ̂𝑏†

2,𝐻 ∓ ̂𝑏†
2,𝑉 ̂𝑏†

2,𝑉 ) |0, 0⟩𝑜𝑢𝑡 , (2.28)

|Ψ+⟩ → 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝑉 − ̂𝑏†
2,𝐻 ̂𝑏†

2,𝑉 ) |0, 0⟩𝑜𝑢𝑡 , (2.29)

|Ψ−⟩ → 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

2,𝑉 − ̂𝑏†
2,𝐻 ̂𝑏†

1,𝑉 ) |0, 0⟩𝑜𝑢𝑡 . (2.30)

A detailed derivation also considering different beam splitter properties and imperfections
can be found the Appendix E and in [32].

The different output states for the Bell-states (2.28, 2.29, and 2.30) allow to deduce the
input states from a measurement of the photons in the output ports of the beam splitter.
For this measurement a polarizing beam splitter (PBS), separating 𝐻and 𝑉 polarization, is
placed at each output port of the beam splitter and single photon detectors are placed at
each output port of the two PBSs (Fig. 2.14). The possible two photon detection events can
be put into four different categories:
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Figure 2.14.: Photonic Bell-state measurement scheme: Two photons are overlapped on a
beam splitter (gray). Behind each output port of the beam splitter a polarizing
beam splitter (PBS) (purple) guides 𝐻and 𝑉 photons to different single photon
detectors (red). The number and superscript of the detector labeling indicate
the output port of the beam splitter and the polarization output of the PBS.

category 1: one photon detected in each output port of the beam splitter with detectors for
different polarization. A detection in the 1𝐻 and 2𝑉 photon detectors or in the
1𝑉 and 2𝐻 photon detectors (Fig. 2.14) projects the two photon state on |Ψ−⟩
(2.30).

category 2: both photons are detected in one output port of the beam splitter with detectors
for different polarization. A detection in 1𝐻 and 1𝑉 or in 2𝑉 and 2𝐻 result projects
the two photon state on |Ψ+⟩ (2.29).

category 3: both photons are detected with the the same detector. This results corresponds
to both |Φ±⟩ photon states (2.28) but a distinction between them is not possible.
Since the employed detectors are not photon number resolving, this outcome is
not registered in the experiments presented here.

category 4: one photon detected in each output port of the beam splitter and with detectors
for the same polarization. Detection on 1𝐻 and 2𝐻 or on 1𝑉 and 2𝑉 . This result
does not correspond to any of the input Bell states and does only occur due to
experimental imperfections.

Thereby, it is possible to detect two out of the four Bell states and by this to prepare two
entangled atom-atom states. The photonic measurement result will herald which atom-atom
state is prepared.

The prepared atom-atom states depends on the chosen photon polarization basis, here 𝐻
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and 𝑉 . In this basis the entangled atom-photon state (2.5) can be written as (C.2)

|Ψ⟩𝐴𝑃 = 1√
2

(|𝐻⟩ |↓⟩𝑥 + |𝑉 ⟩ |↑⟩𝑥)

and the four particle state (2.25) has the form

|Ψ⟩𝐴𝑙𝑙 = 1√
2

(|𝐻⟩ |↓⟩𝑥 + |𝑉 ⟩ |↑⟩𝑥) ⊗ 1√
2

(|𝐻⟩ |↓⟩𝑥 + |𝑉 ⟩ |↑⟩𝑥) .

A measurement result from category 1 projects the photons on

|Ψ−⟩𝑃𝑃 = 1√
2

(|𝐻⟩ |𝑉 ⟩ − |𝑉 ⟩ |𝐻⟩)

preparing and heralding the atomic state

|Ψ−⟩𝐴𝐴 = 1√
2

(|↓⟩𝑥 |↑⟩𝑥 − |↑⟩𝑥 |↓⟩𝑥) . (2.31)

A measurement result from category 2 projects the photons on

|Ψ+⟩𝑃𝑃 = 1√
2

(|𝐻⟩ |𝑉 ⟩ + |𝑉 ⟩ |𝐻⟩)

preparing and heralding the atomic state

|Ψ+⟩𝐴𝐴 = 1√
2

(|↓⟩𝑥 |↑⟩𝑥 + |↑⟩𝑥 |↓⟩𝑥) . (2.32)

Experimental setup for a fiber based Bell state measurement

For a Bell-state measurement setup employing such a scheme one has to consider two impor-
tant points. First, the beam splitter should be as close to a polarization-independent 50/50
beam splitter as possible. A imperfect beam splitter, e.g, partially polarizing beam splitter or
a not 50/50 beam splitter will lead to errors in the measurement of the Bell state measurement.
Depending on the type of imperfections they will allow for two photons in the |Ψ+⟩𝑖𝑛 state
also to be detected in different output port of the beam spiltter (category 1) and for photons
in the |Ψ−⟩𝑖𝑛 state to be detected in the same output port (category 2) (App. E) [32]. The
mixing of theses states reduces the photonic Bell state fidelity and by this the fidelity of the
prepared entangled atom-atom state. Second, the photons need to be indistinguishable in
every degree of freedom including spectral, temporal, and spatial properties. Spectral and
temporal properties are defined by the excitation and emission process (Sec. 2.3.1). However,
the spatial degree of freedom needs to be considered in the Bell state measurement setup.

A perfect overlap of the spatial modes of the two photons can be ensured by using a beam
splitter based on single-mode optical fibers (Fig. 2.15). The used fiber beam splitter has
only a very small polarization dependence and the splitting ratio is very close to 50/50 [67].
Furthermore, this beam splitter allows to set the phase difference for both polarizations to
zero 𝛿𝐻 = 𝛿𝑉 = 0 (2.27), by properly compensating for the birefringence inside the optical
glass fibers. The polarization analysis behind the fiber beam splitter is performed with free
space optics. The light from the beam splitter is coupled out of the glass fibers, collimated and
guided directly on two polarizing beam splitter cubes, these send each polarization component
on a single photon counting module8 (SCPM) for detection (Fig. 2.15).

8Laser Components Count-10C, with detection efficiency 0.45 to 0.65 and dark counts < 10 1/s
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Figure 2.15.: Bell state measurement setup with a fiber beam splitter. The fiber beam splitter
(gray and orange) allows for perfect spatial overlap. The subsequent polarization
analysis is done free space with polarizing beam splitters (PBS, purple) and
single photon detectors (SPCMs, red) yielding a high fidelity of the polarization
measurement.

2.4.2. Operation of the two-trap setup

To create entanglement between two atoms in independent and separated traps, the fibers
guiding the fluorescence photons (Fig. 2.4) are connected to the BSM setup located in lab 1
(Fig. 2.16). For trap 1, this is done with a 5 m long fiber, while trap 2 is connected via a 700 m
fiber. The polarization encoding of the photon state makes compensation of the birefringence
in the fibers necessary. The birefringence in the shorter fiber to trap 1 and in the fiber beam
splitter, which are both inside Lab 1, drifts only very slowly and manual compensated every
couple of days is sufficient. Yet, the drifts in the 700 m fiber are on a time scale below one
hour and a automatized compensation of the polarization is employed [70].

Furthermore, the excitation process needs to be synchronized in a way that the emitted
photons overlap temporally inside the BSM setup. This means, that while both trap setups are
able to work completely independently from each other, still the systems need to communicate
and to be very precisely synchronized.

Communication between the laboratories

For communication and synchronization both labs are connected with a fiber channel (Fig. 2.1),
which contains not only the glass fiber for the fluorescence photons from lab 2, but also ad-
ditional fibers for fast and reliable communication9. The different signals, which need to be

9The fiber channel (Leoni AT-VQ(ZN)H(ZN)B2Y 4SM780+4G50+12E9 2,5) contains in total 20 fibers. 4 ×
SM780 single mode fiber (attenuation < 4 dB/km at 780 nm), 12 × E9/125 single mode fiber (attenuation
between 0.154 dB/km and 0.236 dB/km at 1550 nm), and 4 × G50/125 multi mode fiber (attenuation <
0.6 dB/km at 1350 nm)
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Figure 2.16.: Overview of the experimental setup with two independent traps: The trap se-
tups are located 400 m apart in different buildings of the university (see Fig. 2.1).
They are connected with a 700 m fiber link, which contains fibers for guiding
the fluorescence photons at 780 nm and for communication. The Bell state me-
asurement setup for entanglement swapping is located in lab 1. It is connected
with trap 1 via a 5 m fiber and to trap 2 via a fiber for 780 nm light of the
fiber link (orange). For maintaining the polarization of the fluorescence pho-
tons the long fiber is compensated for polarization drifts using a automatized
polarization controller. Time critical components of both traps and the BSM
setup are synchronized with a clock located in lab 2. The signal is send via a
communication fiber (yellow) to lab 1 and distributed via two clock distribu-
tion system in in each laboratory. The experiment is controlled by a master
computer in lab 1 that is responsible for the loading process in lab 1 and mo-
nitoring the the photon detection counts from the single photon detectors. For
the loading procedure in lab 2 the master computer sends commands to a slave
computer in lab 2. When two atoms are trapped, the start control (green) in
lab 2 is triggered and starts the synchronized excitation process by the control
units (light blue). Its signal is transmitted via an asynchronous communication
channel to lab 1. An FPGA monitors the single photon detection signals after
the excitation pulses for a coincidence that heralds the creation of atom-atom
entanglement. In case of a valid coincidence the FPGA (blue) sends a signal to
the control units of both labs, which is transmitted to lab 2 via asynchronous
optical communication, triggering the read-out of the atomic states.
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transmitted, have different requirements so the communication system between the labora-
tories consists of different subsystems:

• fiber based Ethernet connection between the two computers controlling the atom traps
making the communication independent of the university network.

• 4 analog communication channels for the transmission of time critical signals.

• 6 asynchronous digital communication channels for time critical signals.

• 16 synchronous digital communication channels for not time critical signals.

Control and synchronization

Figure 2.16 shows an overview of the two-trap setup. Each trap is operated via a local
computer that sets most experimental parameters and controls the atom loading procedure. In
the two trap experiment the computer in lab 1 serves as master that controls the experiment.
It sends commands via the fiber based Ethernet connection to the computer in lab 2 serving
as slave. The master monitors the trapping procedure and when two atoms are trapped it
sends a command to the slave that triggers a synchronized start control unit. Upon receiving
the start signal the control units take over. They execute the experimental sequence until one
of the atoms is lost and the loading procedure starts again.

The timing critical parts as the control units, start control, the FPGA monitoring the
photon detectors for a heralding signals, and a time to digital converter unit need to be syn-
chronized to a common clock. For this the signal from a 100 MHz clock, located in lab 2, is
distributed to all synchronized components. The signal is sent via an analog optical communi-
cation channel to lab 1 and in each lab the clock signal is distributed with a clock distribution
board 10. This allows for an overall synchronization of the control units with a jitter below
150 ps rms [38].

Experimental scheme

Creation and verification of the atom-atom entanglement is divided in three steps. The first
step is trapping a single atom in each of the setups. After this both trapped atoms are excited
and each emits a photon entangled with the emitting atom. These photons are collected and
guided to the Bell-state measurement setup, where the measurement on both photons swaps
the entanglement onto the atoms. The measurement outcome heralds the entanglement and
a signal is sent back to the trap setup triggering the last step, the measurement of the atomic
states (Sec. 2.3.2).

Trapping two atoms The trapping procedure for one trap is described in section 2.2. Specific
to the procedure of loading of two traps is that the fluorescence photons from both traps are
guided to the same photon detectors in the BSM setup. To distinguish between atoms in
the different traps the master computer switches the cooling light of the traps in turns, while
monitoring the fluorescence counts on the detectors. When an atom is trapped in each trap
the computer sends the command to start the excitation process.
10Analog Devices, AD9523-1 Evaluation Board
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Synchronized excitation process As mentioned in section 2.4.1 it is crucial for the two photon
interference employed in the BSM that photons originating from the two traps are indistin-
guishable in every degree of freedom. To fulfill this requirement the excitation pulses in both
traps need to have the same temporal shape and intensity (Sec. 2.3.1). Additionally, they
need to be timed such that the temporal shapes of the emitted photons overlap at the fiber
beam splitter. For the precise timing of the pulses a synchronized start of the excitation
process in both traps is necessary. The slave computer triggers the start control in lab 2 that
sends synchronized signals to both control units starting the excitation process (Fig. 2.16).
The start signal for lab 1 is transmitted via an asynchronous digital communication channel
to preserve the precise timing on a timescale ≪ 1 ns.

After receiving the start signal, the control units switch to the excitation mode, in which
atoms are excited and an FPGA monitors the SPCMs for two photon coincidences in a 208 ns
acceptance time window (Fig. 2.17). Once a two photon coincidence heralds entaglement, the
FPGA sends a signal to the the control units to switch to the measurement mode. Due to
the very low combined photon collection and detection probabilities of 𝜂1 ≈ 1.7h for trap 1
and 𝜂2 ≈ 0.85h11 for trap 2, the probability for a two photon coincidence heralding atom-
atom entanglement is only 𝑃𝑟𝐴𝐴 = 1

2𝜂1𝜂2 ≈ 7 ⋅ 10−7 [38]. Such a low success probability
makes a high repetition rate necessary. For this one has to consider the time needed from
the beginning of the excitation scheme, including state preparation, to the time a potential
heralding signal would have arrived. Only after waiting for this time the next excitation
attempt can take place. Otherwise, one would destroy the prepared atom-atom state before
it can be used. This time is the sum of the time needed for state preparation and excitation,
the time for photon transmission to the BSM, and the time needed for sending the heralding
signal (including photon detection and state analysis in the FPGA). Due to the asymmetric
location of the BSM in lab 1 next to trap 1 this time is much larger for trap 2 than for trap 1.
Altogether, this time is 10.36 µs. Combining 40 repetitions of pumping an excitation followed
by 350 µs of cooling (Sec. 2.3.1) an excitation repetition rate of 52.2 ⋅ 103 1

s is achieved [38].

Event ready state read-out The two-photon coincidence signal from the BSM heralds the pre-
sence of an entangled state and “readiness” of the system. Only upon receiving the heralding
signal the control units switch to the measurement mode. This is called an “event ready”
state read-out. Due to the effects of the tightly focused ODT an atomic state measurement
with high fidelity is only possible after one transversal oscillation period of the atom in the
trap (Sec.: 2.3.3) starting with the photon emission. To overcome this an additional waiting
time determined by the intensity of the ODT laser is introduced in the measurement mode,
before the actual state read-out is performed (Sec. 2.3.2).

11including the loss in the 700 m fiber with an attenuation of 4 dB/km
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Figure 2.17.: Timing scheme for creation of atom-atom entanglement: After trapping of an
atom in each trap (red) the synchronized excitation process starts. Preparation
(blue) and excitation (orange) processes in both traps are timed taking into ac-
count the photon transmission times in the optical fibers (gray) such that the two
photons overlap in time at the fiber beam splitter and than are detected within
the acceptance time window (yellow). In the case of a two photon coincidence
detection heralding entanglement the atomic state read-out process (magenta)
is triggered, otherwise the preparation and excitation process is repeated. After
40 unsuccessful attempts the repetition is interrupted with an additional cooling
period (red) for both atoms to assure a low atom temperature before the scheme
continues until a valid coincidence detection or one of the atoms is lost.
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3. Bell’s theorem: Testing Local-Realism

Bell’s theorem allows to test local-realism: while all theories which strictly obey local-realism
predict results complying with Bell’s inequality, quantum mechanics predicts a violation of
the inequality for certain measurements on an entangled pair of two qubits. Thereby, the
theorem allows, by means of experiment, to decide the dispute whether quantum mechanics
is a complete description of nature or whether it might to be extended to a local-realistic
theory. This chapter starts with introducing this dispute and a possible extension to quan-
tum mechanics, the so called local-hidden variables. Then, Bell’s theorem is derived in the
experimenter-friendly CHSH formulation of the inequality, the scenario for an experiment
is set and a bound for local-realism is found. The last part focuses on experiments testing
the theorem. First, possible shortcomings in experiments, which result in loopholes for local-
realist description, are pointed out. Then the requirements to close such loopholes are defined.
Finally the historical development of Bell test experiments is summarized.

3.1. Local-Realism and Quantum Mechanics

In their famous paper “Can Quantum-Mechanical Description of Physical Reality Be Con-
sidered Complete?” [1] published in 1935, Albert Einstein, Boris Podolsky, and Nathan
Rosen (EPR) challenged the completeness of quantum mechanics. For a theory to be com-
plete they demand that “every element of the physical reality must have a counterpart in
the physical theory.” They defined an element of physical reality by the possibility of cer-
tainly predicting (with probability of unity) the value of its corresponding physical quantity
“without in any way disturbing the system.” Further, they pointed out that in the case of
not commuting measurement operators quantum mechanics does not comply to this demand.
Using the example of momentum and position they conclude “when the momentum of a
particle is known, its coordinate has no physical reality”. To expand this they considered a
two particle system in which two particles interact with each other at a time 𝑡1 but have
no interaction later on. After 𝑡 = 𝑡1 particles are described by the common wave function
Ψ12 (𝑥1, 𝑥2) = ∑∞

𝑛=1 𝜓𝑛 (𝑥2) 𝑢𝑛 (𝑥1) with 𝑥1, 𝑥2 describing the two particles (and not a vari-
able in space). In this case of non-commuting measurements the properties of both particles
cannot be real at the same time. Moreover, the physical quantities of one particle depend
on measurements performed on the other even though they are separated in space and the
interaction between the particles has ended before. From the lack of reality for physical
quantities in certain cases and from the dependence of one particle’s properties on the mea-
surement result of a separated other one, EPR concluded that the quantum mechanical wave
function “does not provide a complete description of the physical reality”. They emphasize
the possibility of an extension to quantum mechanics which includes parts of physical reality,
yet do not offer a concrete proposal.

Opposing the claim of incompleteness, Nils Bohr pointed out in a reply that their definition
of reality demanded a prediction “without in any way disturbing the system.” He argued
that for phenomena described by quantum mechanics such a not disturbing measurement
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of physical quantities is in principle not possible, due to a necessary interaction between
measured particle and measurement apparatus. He concluded, “it is only the mutual exclusion
of experimental procedures, permitting the unambiguous definition of complimentary physical
quantities, which provides room for new physical laws, the coexistence of which at first sight
appear irreconcilable with the basic principles of science” [6]. As a response, Albert Einstein
specified the incompleteness argument by stating that quantum mechanics is the description
of the statistical properties of an ensemble of states, while the wave function lacks the ability
to actually describe a single particle’s physical state [7]. Later on he extended the concept
of realism by stating that in a complete theory the physical reality cannot be influenced by
actions in a remote part of the space [8]. This connection of locality and reality lead to the
demand for local-realism as a mandatory requirement for all physical theories.

This philosophical, precisely metaphysical, dispute about the interpretation of the quantum
theory was brought to a more solid ground by discussing possible extensions for quantum me-
chanics and their implications. A possible extension of quantum mechanics is the introduction
of “hidden variables” that allow to define values of a physical quantity independent of a pos-
sible measurement fulfilling EPRs demand on reality. This concept was already named and
investigated by John von Neumann [71] in 1932. He claimed such hidden parameters cannot
reproduce predictions of quantum mechanics. Nevertheless, in 1952 David Bohm presented a
quantum theory with hidden variables [72, 73], which is now called Bohmian mechanics. He
claimed the assumptions von Neumann used for his proof were too restrictive to be general,
which lead to a long going discussion see, e.g., [74, 75].

This discussion was settled by John Bell by demonstrating that von Neumann’s rejection
is based on a false requirement on the hidden variables [76]. Additionally, he pointed out
that Bohm’s hidden variable theory fulfills EPRs reality demand [1], but not Einstein’s local-
realism demand [8], which would imply a “local-hidden variable” (LHV) theory. Bell further
investigated the possibility of such a theory reproducing the predictions of quantum mechanics
in his famous paper “On the Einstein Podolskiy Rosen Paradox” [2] published in 1964. He
showed that all possible local-hidden variable theories cannot reproduce certain predictions
of quantum mechanics. His theorem is formulated as an inequality. The novelty of Bell’s
approach was that it pointed towards an experiment to test all possible local-hidden variable
theories, and by this Einstein’s concept of local-realism.

3.2. CHSH Inequality

Bell’s first formulation of his inequality is not directly applicable to experiments since it
demanded pairs of perfectly correlated parameters. Therefore, in this work the reformulation
of Bell’s inequality by Clauser, Horne, Shimony, and Holt [9], short CHSH, is used. CHSH
consider a scenario (Fig. 3.1) in which a source emits pairs of particles that are sent to
separated measurement devices. These devices have two possible settings determined by a
binary input and give one of two possible results as output. For better understanding, here
one measurement device is called Alice and the other Bob. The input of Alice is abbreviated
as 𝐴 and Bob’s 𝐵, which both can take values of 0 or 1. Analogously the measurement
result of Alice is called 𝑋 and of Bob 𝑌 . Both take values of −1 or +1. The emission and
measurement of one pair is called event and the experiment contains many events.

For the evaluation of the experiment one considers the CHSH value 𝑆. It is defined as
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Figure 3.1.: Scenario for a CHSH experiment: A source (yellow) sends two particles (purple) to
two measurement devices (gray) one called Alice the other one Bob. Each device
performs a measurement on the particles depending on the input 1 (orange) or 0
(green) and give either the result “+” (blue) or “-” (red).

𝑆 ≔ |𝐸11 + 𝐸10| + |𝐸01 − 𝐸00| (3.1)

where

𝐸𝑎,𝑏 ≔
𝑁𝑋=𝑌

𝑎,𝑏 − 𝑁𝑋≠𝑌
𝑎,𝑏

𝑁𝑋=𝑌
𝑎,𝑏 + 𝑁𝑋≠𝑌

𝑎,𝑏
(3.2)

are so called correlators. Here 𝑁𝑋=𝑌
𝑎,𝑏 and 𝑁𝑋≠𝑌

𝑎,𝑏 are the number of events with correlated
respective anti-correlated result 𝑋, 𝑌 for the inputs 𝐴 = 𝑎 and 𝐵 = 𝑏, 𝑎, 𝑏 ∈ {0, 1}.

To estimate the experimental outcome one considers the expectation values 𝐸𝑣 ( 𝑁𝑋=𝑌
𝑎,𝑏

𝑁𝑋=𝑌
𝑎,𝑏 +𝑁𝑋≠𝑌

𝑎,𝑏
)

and 𝐸𝑣 ( 𝑁𝑋≠𝑌
𝑎,𝑏

𝑁𝑋=𝑌
𝑎,𝑏 +𝑁𝑋≠𝑌

𝑎,𝑏
) in the theoretical case of infinite number of events. Without extra as-

sumptions about the experiments one can write these expectation values also as probabilities.
Thus, 𝐸𝑎𝑏 takes the form of

𝐸𝑎𝑏 =𝑃𝑟 (𝑋 = 𝑌 |𝐴 = 𝑎, 𝐵 = 𝑏) − 𝑃𝑟 (𝑋 ≠ 𝑌 |𝐴 = 𝑎, 𝐵 = 𝑏) (3.3)

with

𝑃𝑟 (𝑋 = 𝑌 |𝐴 = 𝑎, 𝐵 = 𝑏)

being the probability for correlated measurement results of Alice and Bob for certain inputs
and

𝑃𝑟 (𝑋 ≠ 𝑌 |𝐴 = 𝑎, 𝐵 = 𝑏)

the probability for anti-correlated results. They have the trivial properties

0 ≤ 𝑃𝑟 (𝑋 = 𝑌 |𝐴 = 𝑎, 𝐵 = 𝑏) ≤ 1
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and

𝑃 𝑟 (𝑋 = 𝑌 |𝐴 = 𝑎, 𝐵 = 𝑏) + 𝑃𝑟 (𝑋 ≠ 𝑌 |𝐴 = 𝑎, 𝐵 = 𝑏) = 1.
So the correlators are bounded by −1 ≤ 𝐸𝑎,𝑏 ≤ 1 and it follows an algebraic bound of 𝑆 ≤ 4
for 3.1.

3.2.1. Bound for LHV theories

To find the expectations for a possible local-realistic theory, local-hidden variables are consi-
dered with the following assumptions:
Local measurements: the measurement process of Alice on her particle has no influence on

Bob’s measurement process and vice versa.

Independent measurements: Alice’s measurement result is independent of Bob’s input and
vice versa.

Independent inputs: the input for Alice and the input for Bob are chosen independently of
each other, of the particle pair and of the local-hidden variables describing the experi-
ment.

Unpredictable inputs: The input choices are random and thus the local-hidden variables and
the experimental setup are independent of the input choices.

With these assumptions the probability to measure the outcomes 𝑋 = 𝑥 and 𝑌 = 𝑦 for the
inputs 𝐴 = 𝑎 and 𝐵 = 𝑏 is

𝑃𝑟 (𝑋 = 𝑥, 𝑌 = 𝑦|𝐴 = 𝑎, 𝐵 = 𝑏) = ∫
Γ

𝑃𝑟 (𝑋 = 𝑥|𝐴 = 𝑎, 𝜆) 𝑃𝑟 (𝑌 = 𝑦|𝐵 = 𝑏, 𝜆) 𝜌 (𝜆) 𝑑𝜆.
(3.4)

Here 𝜆 stands for a certain realization of the local-hidden variables, Γ is the space of all possible
realizations of the LHVs, and 𝜌 (𝜆) is their normalized probability distribution. Inserting this
in (3.3) leads to

𝐸𝑎,𝑏 = ∫
Γ

𝑃𝑟 (𝑋 = 1|𝐴 = 𝑎, 𝜆) 𝑃𝑟 (𝑌 = 1|𝐵 = 𝑏, 𝜆) 𝜌 (𝜆) 𝑑𝜆

− ∫
Γ

𝑃𝑟 (𝑋 = 1|𝐴 = 𝑎, 𝜆) 𝑃𝑟 (𝑌 = 0|𝐵 = 𝑏, 𝜆) 𝜌 (𝜆) 𝑑𝜆

− ∫
Γ

𝑃𝑟 (𝑋 = 0|𝐴 = 𝑎, 𝜆) 𝑃𝑟 (𝑌 = 1|𝐵 = 𝑏, 𝜆) 𝜌 (𝜆) 𝑑𝜆

+ ∫
Γ

𝑃𝑟 (𝑋 = 0|𝐴 = 𝑎, 𝜆) 𝑃𝑟 (𝑌 = 0|𝐵 = 𝑏, 𝜆) 𝜌 (𝜆) 𝑑𝜆

= ∫
Γ

(2 ⋅ 𝑃𝑟 (𝑋 = 1|𝐴 = 𝑎, 𝜆) − 1) 𝑃𝑟 (𝑌 = 1|𝐵 = 𝑏, 𝜆) 𝑑𝜆

+ ∫
Γ

(2 ⋅ 𝑃𝑟 (𝑋 = 1|𝐴 = 𝑎, 𝜆) − 1) 𝑃𝑟 (𝑌 = 0|𝐵 = 𝑏, 𝜆) 𝑑𝜆

= ∫
Γ

(2 ⋅ 𝑃𝑟 (𝑋 = 1|𝐴 = 𝑎, 𝜆) − 1) (2 ⋅ 𝑃𝑟 (𝑌 = 1|𝐵 = 𝑏, 𝜆))
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For the CHSH value 𝑆 (3.1) follows

𝑆 = |𝐸11 + 𝐸10| + |𝐸01 − 𝐸00|

= ∣ ∫
Γ

[ [2 ⋅ 𝑃𝑟 (𝑋 = 1|𝐴 = 1, 𝜆) − 1] [2 ⋅ 𝑃𝑟 (𝑌 = 1|𝐵 = 1, 𝜆) − 1]

+ [2 ⋅ 𝑃𝑟 (𝑋 = 1|𝐴 = 1, 𝜆) − 1] [2 ⋅ 𝑃𝑟 (𝑌 = 1|𝐵 = 0, 𝜆) − 1] ]𝜌 (𝜆) 𝑑𝜆∣

+ ∣ ∫
Γ

[ [2 ⋅ 𝑃𝑟 (𝑋 = 1|𝐴 = 0, 𝜆) − 1] [2 ⋅ 𝑃𝑟 (𝑌 = 1|𝐵 = 1, 𝜆) − 1]

− [2 ⋅ 𝑃𝑟 (𝑋 = 1|𝐴 = 0, 𝜆) − 1] [2 ⋅ 𝑃𝑟 (𝑌 = 1|𝐵 = 0, 𝜆) − 1] ]𝜌 (𝜆) 𝑑𝜆∣

= ∣ ∫
Γ

[2 ⋅ 𝑃𝑟 (𝑋 = 1|𝐴 = 1, 𝜆) − 1]

⋅ 2 [𝑃𝑟 (𝑌 = 1|𝐵 = 1, 𝜆) + 𝑃𝑟 (𝑌 = 1|𝐵 = 0, 𝜆) − 1] 𝜌 (𝜆) 𝑑𝜆∣

+ ∣ ∫
Γ

[2 ⋅ 𝑃𝑟 (𝑋 = 1, 𝐴 = 0, 𝜆) − 1]

⋅ 2 [𝑃𝑟 (𝑌 = 1, 𝐵 = 1, 𝜆) − 𝑃𝑟 (𝑌 = 1, 𝐵 = 0, 𝜆)] 𝜌 (𝜆) 𝑑𝜆∣

allowing for an estimation of the upper bound of

𝑆 ≤ ∫
Γ

[ |[2 ⋅ 𝑃𝑟 (𝑋 = 1|𝐴 = 1, 𝜆) − 1] ⋅ 2 [𝑃𝑟 (𝑌 = 1|𝐵 = 1, 𝜆) + 𝑃𝑟 (𝑌 = 1|𝐵 = 0, 𝜆) − 1]|

+ |[2 ⋅ 𝑃𝑟 (𝑋 = 1, 𝐴 = 0, 𝜆) − 1] ⋅ 2 [𝑃𝑟 (𝑌 = 1, 𝐵 = 1, 𝜆) − 𝑃𝑟 (𝑌 = 1, 𝐵 = 0, 𝜆)]| ]𝜌 (𝜆) 𝑑𝜆

= ∫
Γ

𝐼 (𝜆) 𝜌 (𝜆) 𝑑𝜆.

The integrand 𝐼 (𝜆) can be limited from above using Lemma 1 (G.1) from Appendix G

𝐼 (𝜆) ≤ 2[ |[𝑃𝑟 (𝑌 = 1, 𝐵 = 1, 𝜆) + 𝑃𝑟 (𝑌 = 1, 𝐵 = 0, 𝜆) − 1]|

+ |[𝑃𝑟 (𝑌 = 1, 𝐵 = 1, 𝜆) − 𝑃𝑟 (𝑌 = 1, 𝐵 = 0, 𝜆)]| ] ≤ 2
and it follows the local-realistic bound for the CHSH value

𝑆 ≤ ∫
Γ

2𝜌 (𝜆) 𝑑𝜆 = 2. (3.5)

This so called CHSH inequality (3.5) provides a bound that is valid for all LHV theories
complying to the assumptions above, independent of the actual theory.

3.2.2. Bound for Quantum Mechanics

For the predictions of quantum mechanics two particles with a spin of 1/2 in the entangled
state

|Ψ−⟩ = 1√
2

(∣ 1
0 ⟩

𝐴𝑙𝑖𝑐𝑒
∣ 0

1 ⟩
𝐵𝑜𝑏

− ∣ 0
1 ⟩

𝐴𝑙𝑖𝑐𝑒
∣ 1

0 ⟩
𝐵𝑜𝑏

) (3.6)
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Input operator eigenstates with eigenvalue
+1 −1

𝐴 = 1 ̂𝐴1 = 𝜎𝑧 ∣ ⃗𝐴+1
1 ⟩ = ∣ 1

0 ⟩ ⃗𝐴−1
1 = ∣ 0

1 ⟩

𝐴 = 0 ̂𝐴0 = 𝜎𝑥 ∣ ⃗𝐴+1
0 ⟩ = 1√

2 ∣ 1
1 ⟩ ⃗𝐴−1

0 = 1√
2 ∣ 1

−1 ⟩

𝐵 = 1 𝐵̂1 = 1√
2 (𝜎𝑧 + 𝜎𝑥) ∣𝐵⃗+1

1 ⟩ = 1
2√1+ 1√

2
∣ 1 +

√
2

1 ⟩ ∣𝐵⃗−1
1 ⟩ = 1

2√1+ 1√
2

∣ −1
1 +

√
2 ⟩

𝐵 = 0 𝐵̂0 = 1√
2 (𝜎𝑧 − 𝜎𝑥) ∣𝐵⃗+1

0 ⟩ = 1
2√1+ 1√

2
∣ −1 −

√
2

1 ⟩ ∣𝐵⃗−1
0 ⟩ = 1

2√1+ 1√
2

∣ 1
1 +

√
2 ⟩

Table 3.1.: Quantum mechanical measurement operators for the CHSH scenario with corre-
sponding eigenstates.

are considered. Further, the measurements performed by Alice are described by the operator
̂𝐴1 = 𝜎𝑧 for 𝐴 = 1 and ̂𝐴0 = 𝜎𝑥 for 𝐴 = 0 while the measurements performed by Bob

are 𝐵̂1 = 1√
2 (𝜎𝑧 + 𝜎𝑥) for 𝐵 = 1 and 𝐵̂0 = 1√

2 (𝜎𝑧 − 𝜎𝑥) for 𝐵 = 0. The results of the
measurements are defined as ±1 depending on the eigenvalue of the projected eigenstate of
the measurement operators (Tab.: 3.1).

The probability to measure an outcome 𝑋 = 𝑥 and 𝑌 = 𝑦 for inputs 𝐴 = 𝑎 and 𝐵 = 𝑏 is

𝑃𝑟 (𝑋 = 𝑥, 𝑌 = 𝑦|𝐴 = 𝑎, 𝐵 = 𝑏) = ∣⟨ ⃗𝐴𝑥
𝑎∣ ⟨𝐵⃗𝑦

𝑏 ∣ ∣Ψ−⟩∣
2

Inserting this in (3.3) leads to

𝐸𝑎𝑏 = ∣⟨ ⃗𝐴+1
𝑎 ∣ ⟨𝐵⃗+1

𝑏 ∣ ∣Ψ−⟩∣
2

+ ∣⟨ ⃗𝐴−1
𝑎 ∣ ⟨𝐵⃗−1

𝑏 ∣ ∣Ψ−⟩∣
2

− ∣⟨ ⃗𝐴+1
𝑎 ∣ ⟨𝐵⃗−1

𝑏 ∣ ∣Ψ−⟩∣
2

− ∣⟨ ⃗𝐴−1
𝑎 ∣ ⟨𝐵⃗+1

𝑏 ∣ ∣Ψ−⟩∣
2

(3.7)

= ⟨ ̂𝐴𝑎𝐵̂𝑏⟩

the expectation value of the correlation measurement operators ̂𝐴𝑎𝐵̂𝑏. This inserted in (3.1)
results in

𝑆 = ∥⟨ ̂𝐴1𝐵̂1⟩ + ⟨ ̂𝐴1𝐵̂0⟩∥ + ∥⟨ ̂𝐴0𝐵̂1⟩ − ⟨ ̂𝐴0𝐵̂0⟩∥ . (3.8)

A straight forward calculation, which can be found in Appendix G, shows that for |Ψ−⟩ (3.6)
(3.8) takes the value of

𝑆 = 2
√

2. (3.9)

This result shows that quantum mechanics predicts for certain states and measurement ope-
rations a violation of the CHSH inequality (3.5). Boris Tsirelson1 proved that

𝑆 ≤ 2
√

2. (3.10)
1Tsirelson or Cirel’son depending on the transcription
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is indeed the upper limit for any quantum mechanical state and measurement operation [77].
The other states that allow for the maximal value of S are

|Ψ+⟩ = 1√
2

(∣ 1
0 ⟩

𝐴𝑙𝑖𝑐𝑒
∣ 0

1 ⟩
𝐵𝑜𝑏

+ ∣ 0
1 ⟩

𝐴𝑙𝑖𝑐𝑒
∣ 1

0 ⟩
𝐵𝑜𝑏

) , (3.11)

|Φ−⟩ = 1√
2

(∣ 1
0 ⟩

𝐴𝑙𝑖𝑐𝑒
∣ 1

0 ⟩
𝐵𝑜𝑏

− ∣ 0
1 ⟩

𝐴𝑙𝑖𝑐𝑒
∣ 0

1 ⟩
𝐵𝑜𝑏

) , (3.12)

|Φ+⟩ = 1√
2

(∣ 1
0 ⟩

𝐴𝑙𝑖𝑐𝑒
∣ 1

0 ⟩
𝐵𝑜𝑏

+ ∣ 0
1 ⟩

𝐴𝑙𝑖𝑐𝑒
∣ 0

1 ⟩
𝐵𝑜𝑏

) (3.13)

(each with a different arrangement of the ̂𝐴1, ̂𝐴0, 𝐵̂1, 𝐵̂0). This set of four states ((3.6),
(3.11), (3.12) and (3.13)) are called Bell states. The Bell state represents a class of states as
local rotations and basis transformations preserve the entanglement and a maximal violation
of Bell’s inequality is only a question of choosing the right combination of measurement
operators.

With (3.5) being the absolute limit for local-realistic theories and the prediction of quantum
mechanics violating it (3.9), the CHSH inequality enables for a direct experimental testing
of local-realistic theories that satisfy the previous assumptions. A significant experimental
violation of (3.5) would show that the experiment cannot be described by these theories
and that local-realistic descriptions of the world have to be rejected. However, it would not
prove quantum mechanics being ultimately the correct description of the world. There could
be a different non local-realistic theory for which quantum mechanics is only an incomplete
approximation, as classical mechanics is only an approximation of general relativity for special
conditions. Thus, an experimental test of Bell’s theorem is a test of local realism and is
generally called a “Bell test” or “Bell experiment”.

3.3. Bell experiments and “Loopholes” for local-realism

In an experiment testing local-realistic theories, a Bell experiment, one prepares and measures
particles in such a way that quantum mechanics predicts a violation of Bell’s inequality. For
an experiment testing the CHSH inequality a pair of particles is prepared in one of the four
Bell states (a perfect Bell-state fidelity is not necessary). Each particle is sent to an analysis
device, which performs a measurement according to the settings for the predicted maximum
of 𝑆. This procedure has to be performed numerous times. In this work the creation and
measurement on one pair is called event and an experiment with numerous events is called
run. For the evaluation all results are combined to calculate the 𝑆 value (3.1).

Before one draws a conclusion from the experimental result, e.g., to reject local-realism, the
limitations of the experiment have to be considered. These possible limitation can be specific
to the experimental implementation and procedure or apply to the method of the experiment
itself. One limitation that applies to every experiment is finite statistics. For a Bell test
experiment this leads to the problem that the bound of 𝑆 ≤ 2 is only strict for an infinite
amount of events. A finite amount of events leads to a non zero probability for any algebraic
possible value of the outcome (0 ≤ 𝑆 ≤ 4 ). To be able to draw meaningful conclusions from
experiments with finite statistics the proper use of statistical analysis methods is necessary.
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3.3.1. “Loopholes” in experiments

In section 3.2.1 four assumptions on local hidden variable theories are made to derive the
probability for measurement outcomes (3.4) and the bound (3.5) is only valid for theories
obeying them. For an experiment the assumptions are requirements meaning that the experi-
mental design must be such that the assumptions are experimentally guaranteed. Moreover,
each assumption which needs to be made about the experiment opens a so called loophole
for local-realism. This means there exists a local-realistic theory that does not obey the as-
sumption. Such a theory can violate (3.5) and thus is capable of explaining every possible
experimental result. Such loopholes invalidate a Bell test and must be avoided.

Local and independent measurements and the locality loophole

The first assumption made to derive the local-realistic bound of the CHSH inequality is, that
each measurement process is local and not influenced by the other measurement process. The
second is, that each measurement process depends only on the local input and is independent
from the other input. Without the measurements and inputs being separated the probability
to get a certain result 𝑋 = 𝑥 and 𝑌 = 𝑦 for a certain combination of the inputs 𝐴 = 𝑎 and
𝐵 = 𝑏 cannot be written as in (3.4), but has the form

𝑃𝑟 (𝑋 = 𝑥, 𝑌 = 𝑦|𝐴 = 𝑎, 𝐵 = 𝑏) = ∫
Γ

𝑃𝑟 (𝑋 = 𝑥, 𝑌 = 𝑦|𝐴 = 𝑎, 𝐵 = 𝑏, 𝜆) 𝜌 (𝜆) 𝑑𝜆 (3.14)

and the limit for the 𝑆 value becomes 4. This is called the locality loophole.
To guarantee local measurements in an experiment, it is necessary to separate them such

that no communication between Alice and Bob is possible during the time needed for the input
choice and measurement process. Since no specifics of the local-hidden variable theories are
assumed, the only possibility to close this loophole is to enforce space-like separation of the
measurement processes including the setting choice. With each measurement process outside
the past light cone of the other, influence between them is excluded for any local-realistic
theories.

Independent and unpredictable setting choice and the freedom of choice loophole

The third and fourth assumption made to derive the local-realistic bound concern the input
choices. These inputs need to be chosen freely, independently for each other, and unpredic-
table.

If each input is not chosen freely but does depend on the local-hidden variables this has to
be considered for (3.4) and it takes the form of

𝑃𝑟 (𝑋 = 𝑥, 𝑌 = 𝑦|𝐴 = 𝑎, 𝐵 = 𝑏)

= ∫
Γ

𝑃𝑟 (𝑋 = 𝑥|𝐴 = 𝑎, 𝜆) 𝑃𝑟 (𝑌 = 𝑦|𝐵 = 𝑏, 𝜆) 𝜌𝑎,𝑏 (𝜆) 𝑑𝜆 (3.15)

with 𝜌𝑎,𝑏 (𝜆) = 𝜌(𝜆)𝑃𝑟(𝐴=𝑎|𝜆)𝑃𝑟(𝐵=𝑏|𝜆)
∫Γ 𝜌(𝜆)𝑃𝑟(𝐴=𝑎|𝜆)𝑃𝑟(𝐵=𝑏|𝜆)𝑑𝜆 being a renormalized probability density for 𝜆 de-

peding on the probability for the inputs 𝑃𝑟 (𝐴 = 𝑎|𝜆) and 𝑃𝑟 (𝐵 = 𝑏|𝜆). Since 𝜌𝑎,𝑏 (𝜆) can
be different for each of the four combinations of 𝑎 and 𝑏, 𝑆 can take every value up to 4. If
the inputs are not chosen independently of each other (3.4) they have a common source and
space like separation of the input choices is not possible, which opens the locality loophole.

45



Furthermore, if the inputs are predictable this can have influence on the realization of the
local-hidden variables and (3.4) takes the form

𝑃𝑟 (𝑋 = 𝑥, 𝑌 = 𝑦|𝐴 = 𝑎, 𝐵 = 𝑏)

= ∫
Γ

𝑃𝑟 (𝑋 = 𝑥|𝐴 = 𝑎, 𝜆) 𝑃𝑟 (𝑌 = 𝑦|𝐵 = 𝑏, 𝜆) 𝜌 (𝜆|𝐴 = 𝑎, 𝐵 = 𝑏) 𝑑𝜆 (3.16)

with 𝜌 (𝜆|𝐴 = 𝑎, 𝐵 = 𝑏) being the probability density adapted for the case 𝐴 = 𝑎 and 𝐵 = 𝑏.
In this case the bound of 𝑆 for local realism is 4. This problem of input choice is referred to
as the freedom of choice loophole.

In an experiment this loophole is usually addressed by employing two physical random
number generators one for Alice’s and one for Bob’s setting choice. Still, random number
generators suffer from the fundamental problem that randomness of their outputs cannot
be proven without additional assumptions. These assumptions need to be stated and will
limit the excluded theories to the ones obeying the assumptions. Furthermore, to exclude a
possible influence of the pair generation onto the inputs, space like separation of the random
number generation and pair creation can be used. A more detailed discussion of possibilities
for closing this loophole can be found in Chapter 5.

Fair sampling and the detection loophole

Additionally to the four explicit assumptions stated in section 3.2.1 to derive the CHSH
inequality, further implicit assumptions were made. An important one is that every pair
which is created is also measured and two results are produced. Already in the original
CHSH paper [9] it was pointed out that this is hardly possible for experiments depending on
single photon detection for their measurements. To address this, they added the assumption
that the detected pairs are a fair sample of all created pairs. This assumption opens the so
called detection loophole for LHV theories that exploit input-dependent detection efficiencies
[78] to change the probabilities in (3.4). The form of the new probabilities also depends on
the design of the conducted experiment.

If the particle pairs are created at random points in time and are identified by coincidences
of detection event in Alice and Bob, which is the case in a continuously driven pair source,
(3.4) takes the form

𝑃𝑟 (𝑋 = 𝑥, 𝑌 = 𝑦|𝐴 = 𝑎, 𝐵 = 𝑏)

= 1
𝜂𝑡𝑜𝑡𝑎𝑙(𝑎,𝑏)

∫
Γ

𝑃𝑟 (𝑋 = 𝑥|𝐴 = 𝑎, 𝜆) 𝜂𝐴 (𝑎, 𝜆) 𝑃𝑟 (𝑌 = 𝑦|𝐵 = 𝑏, 𝜆) 𝜂𝐵 (𝑏, 𝜆) 𝜌 (𝜆) 𝑑𝜆. (3.17)

The the overall detection efficiency 𝜂𝑡𝑜𝑡𝑎𝑙 (𝑎, 𝑏) = ∫Γ 𝜂𝐴 (𝑎, 𝜆) 𝜂𝐵 (𝑏, 𝜆) 𝜌 (𝜆) 𝑑𝜆 for inputs 𝑎
and 𝑏 depends on the detection efficiencies 𝜂𝐴 (𝑎, 𝜆) and 𝜂𝐵 (𝑏, 𝜆), which depend the LHV
realization 𝜆. This allows the LHV to change the detection efficiency depending on the local
input choice for each pair. The bound for 𝑆 can be derived by considering deterministic LHV
models. In such models the local outcomes depend directly on the local inputs.

Here, the case of equal detection efficiencies for Alice and Bob 𝜂𝐴,𝑡𝑜𝑡𝑎𝑙 = 𝜂𝐵,𝑡𝑜𝑡𝑎𝑙 = 𝜂 with
𝜂𝐴,𝑡𝑜𝑡𝑎𝑙 = ∑1

𝑎=0 ∫Γ 𝜂𝐴 (𝑎, 𝜆) 𝜌 (𝜆) 𝑑𝜆 and 𝜂𝐵,𝑡𝑜𝑡𝑎𝑙 = ∑1
𝑏=0 ∫Γ 𝜂𝐵 (𝑏, 𝜆) 𝜌 (𝜆) 𝑑𝜆 is examined. As

an example an LHV model that chooses randomly one of the four output combinations and
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𝜆 𝐴 = 1 𝐴 = 0 𝐵 = 1 𝐵 = 0

1 𝑋 = 1 𝑋 = 1 𝑋 = 1 𝑋 = 1
𝜂𝐴 = 1 𝜂𝐴 = 𝜂𝑑 𝜂𝐵 = 1 𝜂𝐵 = 1

2 𝑋 = 1 𝑋 = 1 𝑋 = 1 𝑋 = 1
𝜂𝐴 = 1 𝜂𝐴 = 1 𝜂𝐵 = 1 𝜂𝐵 = 𝜂𝑑

3 𝑋 = 1 𝑋 = −1 𝑋 = −1 𝑋 = 1
𝜂𝐴 = 𝜂𝑑 𝜂𝐴 = 1 𝜂𝐵 = 1 𝜂𝐵 = 1

4 𝑋 = 1 𝑋 = −1 𝑋 = −1 𝑋 = 1
𝜂𝐴 = 1 𝜂𝐴 = 1 𝜂𝐵 = 𝜂𝑑 𝜂𝐵 = 1

Table 3.2.: Example for deterministic LHV model utilizing the detection loophole by using
four combinations of local outputs and detection efficiencies for local inputs. The
detection efficiency for “unwanted” measurement results 0 ≤ 𝜂𝑑 ≤ 1 allows for
𝑆 ≥ 2.

detection efficiencies from Table 3.2 for each pair is considered. The resulting 𝑆 value is

𝑆 = ∥1 + 1 − 𝜂𝑑 − 𝜂𝑑
1 + 1 + 𝜂𝑑 + 𝜂𝑑

+ 1 + 𝜂𝑑 + 𝜂𝑑 + 1
1 + 𝜂𝑑 + 𝜂𝑑 + 1∥ + ∥𝜂𝑑 + 1 + 1 + 𝜂𝑑

𝜂𝑑 + 1 + 1 + 𝜂𝑑
− +𝜂𝑑 + 𝜂𝑑 − 1 − 1

𝜂𝑑 + 𝜂𝑑 + 1 + 1 ∥

= 2 + 21 − 𝜂𝑑
1 + 𝜂𝑑

(3.18)

where 1 ≥ 𝜂𝑑 ≥ 0 is the a model parameter describing the reduced detection efficiency for local
measurement that potentially can result in a reduced 𝑆 value, while the detection efficiency
for all other local measurement is 1.

Reducing 𝜂𝑑 from 1 to 0 in (3.18) leads to an increase of the 𝑆 value from 2 to 4 . Since the
bound of 𝑆 ≤ 2

√
2 (3.10) for quantum mechanics is not influenced by the detection efficiency

in such type of experiments a test of local realism is not only possible if

21 − 𝜂𝑑
1 + 𝜂𝑑

+ 2 ≥ 2
√

2. (3.19)

Inserting the total detection efficiency for Alice or Bob

𝜂 = ∑
𝜆

∑
𝐴

𝜂𝐴
1
8

= ∑
𝜆

∑
𝐵

𝜂𝐵
1
8

= 3 + 𝜂𝑑
4 (3.20)

in (3.19) leads to a lower bound of

𝜂 > 2 +
√

2
4 ≈ 0.854.

The LHV model (Tab. 3.2) is a simple example to demonstrate the possibility of exploiting
the detection loophole and it would lead to a very specific combination of results in an
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experiment. However, the model can easily be expanded by using more combinations of
outputs and detection efficiencies to a model that will produce experimental results that
cannot be distinguished from the predictions of quantum mechanics. Furthermore, the not
perfect detection efficiency allows for LHV theories to additionally exploit the pair finding
based on time differences between single detection events. This is called the coincidence
time-loophole and leads to a lower bound of 𝜂 > 0.879 for the detection efficiency [79].

In experiments with a well defined pair creation, where one can identify each created pair,
e.g., with heralded entanglement creation, it is possible to assign an value to the output even
in the case of no detection. This prohibits LHV models to utilize a input dependent detection
efficiency and the bound of 𝑆 < 2 holds for local realistic theories. However, assigning an
output in the case of no detection means that this output is not based on a measurement of
the particle. Thus, the detection inefficiency is now a problem of measurement fidelity and
decreases the predicted bound for quantum mechanics.

This can also be shown by a concrete example: one assigns the output 𝑋 = +1 for no
detection at Alice and 𝑌 = +1 for no detection at Bob and one assumes a perfectly prepared
Bell state and perfect measurements. Now, it is possible to make three different categories of
events in the experiment: first, only pairs with no detection on both sides, which yield 𝑆 = 2;
second, with no detection on one side and a detection on the other yielding 𝑆 = 0; and the
third with detection on both sides yielding 𝑆 = 2

√
2. These three categories together yield

the modified bound of

𝑆 ≤ 2 + 𝜂𝐴,𝑡𝑜𝑡𝑎𝑙𝜂𝐵,𝑡𝑜𝑡𝑎𝑙 (2
√

2 + 2) − 2 (𝜂𝐴,𝑡𝑜𝑡𝑎𝑙 + 𝜂𝐵,𝑡𝑜𝑡𝑎𝑙)

depending on the detection efficiencies of Alice and Bob. To still allow for a violation of the
classical bound of 𝑆 = 2 the efficiencies of the detectors need to be above

𝜂𝐴,𝑡𝑜𝑡𝑎𝑙, 𝜂𝐵,𝑡𝑜𝑡𝑎𝑙 > 2
√

2 − 2 ≈ 0.829

[80, 81]. Using an equivalent formulation of Bell’s inequality, which was derived by Clauser
and Horne [82], Philippe Eberhard showed that for non-maximally entangled states, e.g.,

Ψ𝐸 = 1√
1 + 𝑟2 (∣ 1

0 ⟩
𝐴𝑙𝑖𝑐𝑒

∣ 0
1 ⟩

𝐵𝑜𝑏
− 𝑟 ∣ 0

1 ⟩
𝐴𝑙𝑖𝑐𝑒

∣ 1
0 ⟩

𝐵𝑜𝑏
)

with 0 ≤ 𝑟, the lower bound for the detection efficiency can be reduced to 𝜂𝐴,𝑡𝑜𝑡𝑎𝑙, 𝜂𝐵,𝑡𝑜𝑡𝑎𝑙 > 2/3
[83].

Finite statistics and the memory loophole

All above mentioned loopholes arise from assumptions specific to the actual implementation
of the experiment and are closed by employing a fitting experimental design. But there is
an additional source for assumptions: the analysis of the experiment. For an experiment
testing local realism the analysis has to consider if the experimental result can be explained
by local realistic theories. For this the analysis method must incorporate the finite statistic of
experiments. The most frequently used methods for statistical analysis of experimental data
make the assumption that the repeated experiment produces independent and identically
distributed (i.i.d.) results. For many experiments this can be a fair assumption, even though
experimental setups might change over time and thus the results are not independent and
identically distributed.
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# 𝑋|𝐴 = 1 𝑋|𝐴 = 0 𝑌 |𝐵 = 1 𝑌 |𝐵 = 0
1 +1 +1 +1 +1
2 +1 +1 +1 −1
3 +1 +1 −1 +1
4 +1 +1 −1 −1
5 +1 −1 +1 +1
6 +1 −1 +1 −1
7 +1 −1 −1 +1
8 +1 −1 −1 −1
9 −1 +1 +1 +1
10 −1 +1 +1 −1
11 −1 +1 −1 +1
12 −1 +1 −1 −1
13 −1 −1 +1 +1
14 −1 −1 +1 −1
15 −1 −1 −1 +1
16 −1 −1 −1 −1

Table 3.3.: The 16 possible input and measurement outcomes combinations for deterministic
LHV strategies. The blue marked combinations are used in the example exploiting
the memory loophole.

If one applies this assumption for the evaluation of a Bell experiment the so called memory
loophole for theories in which the probabilities for the measurement outcomes depend on the
results and inputs of previous events opens [15]. For such theories the probability for certain
result for each event can differ from the previous events and might even depend on them. The
probability for the event 𝑖 resulting in 𝑋𝑖 = 𝑥 and 𝑌𝑖 = 𝑦 for inputs 𝐴𝑖 = 𝑎 and 𝐵𝑖 = 𝑏 is

𝑃𝑟 (𝑋𝑖 = 𝑥, 𝑌𝑖 = 𝑦|𝐴𝑖 = 𝑎, 𝐵𝑖 = 𝑏)

= ∫
Γ

𝑃𝑟 (𝑋𝑖 = 𝑥|𝐴𝑖 = 𝑎, 𝜆, ℎ𝑖) 𝑃𝑟 (𝑌𝑖 = 𝑦|𝐵𝑖 = 𝑏, 𝜆, ℎ𝑖) 𝜌𝑖 (𝜆, ℎ𝑖) 𝑑𝜆 (3.21)

with

ℎ𝑖 = {𝐴1, 𝐴2,..., 𝐴𝑛−1, 𝑋1, ..., 𝑋𝑛−1, 𝐵1, ..., 𝐵𝑛−1, 𝑌1, ..., 𝑌𝑛−1, 𝜌1, .., 𝜌𝑛−1}

being the history (or memory) of the previous events and 𝜌𝑖 (𝜆, ℎ𝑖) the history dependent
probability density of the LHVs 𝜆. Again if the number of events 𝑛 approaching infinity
this does not affect the bound of 𝑆 ≤ 2 (3.5), yet, for finite statistics the probability for an
experiment with outcome 𝑆 > 2 increases dramatically.

The possible effect can be illustrated with an example of a very simple deterministic LHV
model (close to an example in [15]), which employs a direct dependence on the history of
both input choices. As mentioned already before in a deterministic LHV model the local
outcomes depend directly on the local inputs. This means that for each created pair one of
the 16 possible output combinations from Table 3.3 is chosen. In this model the history of
the experiment, meaning the inputs and outputs from previous events, is known and used to
update the strategy of the LHVs. Yet, the inputs for the next measurements are unknown
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# 𝐴 = 1, 𝐵 = 1 𝐴 = 1, 𝐵 = 0 𝐴 = 0, 𝐵 = 1 𝐴 = 0, 𝐵 = 0
1 + + + −
2 + − + +
5 + + − +
7 − + + +
10 − + + +
12 + + − +
15 + − + +
16 + + + −

Table 3.4.: The change of 𝑆𝑖 → 𝑆𝑖+1 depending on the input combination of Alice and Bob
for the 8 output combinations used in the LHV model exploiting the memory
loophole. + represents 𝑆𝑖+1 ≥ 𝑆𝑖 and − 𝑆𝑖+1 ≤ 𝑆𝑖.

and no communication is possible after the measurement starts. In this model only the 8 blue
marked combinations (1,2,5,7,10,12,15,16) from Table 3.3) ares used.

Considering an ideal experiment with unbiased inputs and infinite statistic, an LHV model
that fairly samples from these 8 combinations for the created pairs yields the correlators (3.2)
𝐸11 = 0.5, 𝐸10 = 0.5, 𝐸01 = 0.5, and 𝐸00 = −0.5 and thus 𝑆 = 2. But for an experiment
with finite statistics and and a strategy exploiting knowledge of the inputs from the previous
events this is not the case. To derive such a strategy one can use a common feature of the 8
combinations:

For an experiment with 𝑖 events already measured resulting in a potential 𝑆 value 𝑆𝑖
the measurement on the next pair (𝑖 + 1) will result in an 𝑆𝑖+1 ≥ 𝑆𝑖 for 3 out of 4 input
combinations. Yet the 4th input combination will result in 𝑆𝑖+1 ≤ 𝑆𝑖. The inputs leading to
a higher or lower 𝑆 for the output combinations can be deduced from (3.1) and (3.2) and are
summarized in Table 3.4. Now, the strategy is the following:

1. For the first pair 1 of the 8 combinations is chosen randomly and then the measurement
with random inputs is performed.

2. From the history of the experiment the number of events for each input combination
𝑁1,1, 𝑁1,0, 𝑁0,1, and 𝑁0,0 are determined.

3. For the next round only the combination which will lead to 𝑆𝑖+1 ≤ 𝑆1 for the most
frequent input combination 𝑁𝑚𝑎𝑥 are considered:

a) 𝑁𝑚𝑎𝑥 = 𝑁1,1 ⇒ combinations 7 or 10.
b) 𝑁𝑚𝑎𝑥 = 𝑁1,0 ⇒ combinations 2 or 15.
c) 𝑁𝑚𝑎𝑥 = 𝑁0,1 ⇒ combinations 5 or 12.
d) 𝑁𝑚𝑎𝑥 = 𝑁0,0 ⇒ combinations 1 or 16.
e) if if there is a tie for the smallest number one of the smallest is randomly chosen

to determine the strategy

4. The next measurement is performed and the strategy starts again repeating step 2. to
4. until the experiment is finished.
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(b) 𝑁 = 250
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(c) 𝑁 = 1000
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(d) 𝑛 = 4950
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(e) 𝑁 = 10000 (f) Expected average S-value and me-
dian depending on 𝑁.

Figure 3.2.: Example for exploiting the memory loophole: S-value distribution for experiments
with different number of events 𝑁 using a strategy exploiting the distribution of
past inputs (a,b,c,d,e) and expected average and median S-value depending on
𝑁 (f). The distributions are extracted from simulating 107experiments for each
𝑁 .

In an experiment with random and unbiased input selection choosing the most frequent
input combination of the previous events can lead to a positive expectation value for the
change of 𝑆 from event 𝑖 to event 𝑖 + 1. This arises form the definition of the correlators
𝐸𝑎,𝑏 ≔ 𝑁𝑋=𝑌

𝑎,𝑏 −𝑁𝑋≠𝑌
𝑎,𝑏

𝑁𝑎,𝑏
, where the effect of a single event is smaller if the total amount of events

is higher. Thus, this LHV model with a strategy based on the history of the experiment leads
in the case of a small total number of events 𝑁 to an expectation value for 𝑆 well above 2.
However, for experiments with more events the effect decreases, vanishing when approaching
infinite number of events. This effect is quantified with a Monte Carlo experiment of the
model with 107 experimental runs for each total events from 100 to 10000 in steps of 150 (𝑆
value distributions for selected 𝑛 in Figure 3.2). The simulation shows, that for experiments
with only a few hundred events the median of the resulting 𝑆 value is above 2.1 and decreases
for larger 𝑁 to 2.025 for 10000 (Fig. 3.2) events, while a LHV model fulfilling the i.i.d.
assumption would give a median of 2 independent of the events per experiment.

To address this loophole it is necessary to use an analysis method without the i.i.d. as-
sumption. In [15] it is recommended to use a modified definition of (3.2)

𝐸𝑎,𝑏 ≔
𝑁𝑋=𝑌

𝑎,𝑏 − 𝑁𝑋≠𝑌
𝑎,𝑏

1/4𝑁
with the total number of events 𝑁 . This modification of the correlators is allowed for experi-
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ments with large 𝑁 and unbiased inputs, which does not lead to any extra assumptions and is
desirable for an experimental Bell test since biased inputs will lead to a residual predictability
of the inputs. In this formulation the CHSH inequality is immune to this kind of history de-
pendence. It is used, for example, in the formalism by Gill [16] modeling the experiment with
a martingale process. There are also other methods that address this loophole by employing
a game formalism [84, 17].

3.3.2. Statistical analysis of a Bell experiment

In order to draw meaningful conclusions from the experiment, it is necessary to employ an
analysis method yielding a statement whether local realism can explain the outcome. The
most common evaluation of a measured parameter, here 𝑆, is to consider the measured value
and calculate its standard deviation. Based on this it is possible to quantify the confidence
that a certain interval around a measured 𝑆 includes the unknown actual 𝑆. If this interval
includes only 𝑆 values that violate Bell’s inequality (𝑆 > 2) one can infer that it is likely
that the underlying 𝑆 also violates Bell’s inequality thus, local-realism can be rejected. Ho-
wever, this is an indirect way of answering the question whether local realism can explain the
experimental results. Therefore, a different well-established method is introduced to draw
meaningful conclusions with respect to local-realism from the outcome of the experiment.

Statistical hypothesis testing

For this situation the concept of hypotheses testing is well suited. It allows deciding between
a null hypothesis 𝐻0 and an alternative hypothesis 𝐻𝑎 based on recorded data. These hypot-
heses are defined in the following way: the null hypothesis 𝐻0 is an exactly defined hypothesis
which is actually tested, while the alternative hypothesis 𝐻𝑎 is defined as the complementary
to the null hypothesis 𝐻𝑎 = ¬𝐻0.

For performing the test, the so called 𝑝 value, i.e. the probability to observe the recorded
or a more extreme outcome, conditioned on the null hypotheses is true, is calculated.

𝑃𝑟 (outcome and more extreme|𝐻0 is true) = 𝑝 (3.22)

If this probability is smaller than a predefined 0 ≤ 𝛼 ≤ 1, giving a confidence level 𝑐𝑙 = 1 − 𝛼,
𝐻0 is rejected and 𝐻𝑎 is accepted. Otherwise, 𝐻0 is not rejected, without any conclusion on
𝐻𝑎.

Since this is a statistical analysis the inference (rejection or no rejection) might be not true.
There are two types of false inference: the type I error is the case when the null hypothesis
is rejected although it is true and the type II error is the case where the null hypothesis is
not rejected although it is false. The type I error is easy to quantify since its probability
corresponds to the 𝑝 value, which is indeed the probability to observe the recorded data (and
more extreme) under the condition 𝐻0 is true. The type II error is more delicate to address.
As it concerns the case of 𝐻0 being false 𝐻𝑎 is then true and

𝑃𝑟 (outcome and more extreme|𝐻𝑎 is true) (3.23)

is the probability to observe the recorded or a more extreme outcome, conditioned 𝐻𝑎 is true.
This probability depends on 𝐻𝑎 and might be 1 for every possible case of recorded data even
if (3.22) yields also 1. The consideration of the two possible errors show that in general the
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null hypotheses can be disproven according to the respective confidence level, but it cannot
be proven2 [85].

It is important to note, that these probabilities are conditioned on either 𝐻0 or 𝐻𝑎 to
be true and by this are not absolute probabilities for the occurrence of such an error. The
absolute probabilities depend on the the actual scenario of the test. There is a difference
between a scenario in which both hypotheses can be true, e.g., a test if individuals of a group
have an infection, or a scenario in which only one hypothesis can be true, e.g., a test of physical
principles. In the first example the absolute probabilities for the error of type I depends on
how big the tested group is and which fraction is actually infected. However, in the second
example the probability for an error of type I is either equal to 𝑝 when the null hypothesis is
correct, or zero if the null hypothesis is wrong. Therefore, a 𝑝 value from a possible Bell test
with the null hypothesis that local-realism explains the experiment is always an upper bound
for the probability of an error type I. Nevertheless, the definition of 𝐻0 needs to be as exact
as possible. This includes its intended meaning and its formulation in mathematical terms
since conclusions made from the experiment and their significance depend on it [86].

Requirements for a conclusive hypothesis test

When using hypothesis testing one has to be aware that there are certain requirements on
the experimental and analysis procedures, which, if not followed, can obliterate the whole
result. First, the analysis method should be independent of the result of the experiment.
The simplest way to account for this is by fixing the way the 𝑝 value is calculated before the
experiment [87].

Second, the data should not be filtered to minimize the 𝑝 value, for example by changing
acceptance time windows or similar parameters after the experiment since this will obliterate
the mathematical process to calculate 𝑝 and by this the significance of 𝑝. Events may be
excluded, but only on objective criteria independent from the results and defined before the
experiment. This can be, for example, malfunction of experimental equipment.

Third, the experiment needs a predefined end. If the experiment is stopped when reaching
a desired result, e.g., at a certain 𝑝 value threshold, the 𝑝 value will not correspond to the
probability of a type I error and the validity of the result is diminished. One must either
define a fixed duration in time or a fixed event number after which the experiment is finished.

Finally, in the case of multiple repetitions of an experiment this has to be carefully taken into
account for drawing conclusions of significance. For example for an 𝛼 = 0.05 the probability
for a type I error is 5% if the experiment is performed once, but if the experiment is performed
multiple times without adjusting the testing procedure this error probability dramatically
increases. For 14 repetitions the probability to have at least 1 type I error is already >
50%. The same problem arises if one tests multiple independent hypotheses with the same
recorded data. This can be avoided by accounting for the multiple experimental runs within
the mathematical model or combining multiple experiments with their 𝑝 values using an
appropriate method [88, 89]. In general it is necessary to minimize the effect of a possible
bias introduced by the experimenter and the procedure [14].

2For special cases the probability (3.23 can be quantified and then corresponds to a new hypothesis test with
𝐻𝑛𝑒𝑤

0 = 𝐻𝑎 and 𝐻𝑛𝑒𝑤
𝑎 = 𝐻0.
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Applying hypothesis testing to a Bell test

The concept of hypothesis testing does fit very well to a Bell test. Since a Bell experiment
allows only falsify local-realism and not prove quantum mechanics (Sec. 3.2.2), the limitations
of hypothesis testing do not limit the possible conclusion of the experiment.

For the analysis the null hypothesis 𝐻0 and the alternative hypothesis 𝐻𝑎 are defined as
follows:

• 𝐻0: the experiment can be described by local-realistic theories obeying stated assump-
tions

• 𝐻𝑎 = ¬𝐻0, i.e. the experiment can only be described by theories not obeying local-
realism or local-realistic theories not obeying stated assumptions

Calculating the probability for all possible results for the experiment depending on the num-
ber of events is a delicate matter, because it must include all possible local-realistic theories
without any additional knowledge and assumptions on their potential physical working. Mo-
reover, the standard methods of hypothesis testing, e.g., the z-test or the t-test assume i.i.d.
events disqualifying them for the full analysis of a Bell test. Still, it is possible to estimate a
an upper bound for 𝑝 (3.22) that is sufficient for a hypothesis test. This problem has been
addressed (including considerations of the memory loophole) for example in [16, 17, 90, 91].

Bounding 𝑝 from above leads to an overestimation of the probability for a type I error
increasing the requirements on the experiment in terms of event number and fidelity, but
leading to no fundamental problems in the possibility to disprove local-realism (under the
used assumptions). Since 𝐻0 and 𝐻𝑎 do not include anything about the experiment itself,
the probability for a type II error is unity not allowing to make any statement if the null
hypothesis of local-realism is not rejected. Second, disproving local-realism does not prove
anything else about physical theories, especially it does neither prove the correctness nor the
completeness of quantum mechanics.

Alternatives to hypothesis testing

There are also other methods using the Bayesian inference to analyze Bell test experiments[92].
In such an analysis there are the two hypotheses to decide between i.e., for a Bell test these
are either local-realistic theories t or quantum mechanics describe the experiment(with a
very specific model of the experiment). It shows that the experiments can be explained by
quantum mechanics with a much higher probability than with local-realism. Furthermore,
the analysis tests whether the experiment was well characterized by quantum mechanics and
performed in the expected way than if local-realism is valid or not. But the analysis does not
prove whether quantum mechanics is correct or complete since neither the experiment nor the
analysis tests conventional quantum mechanics against other theories that also do not obey
local-realism.

3.3.3. Requirements for a robust Bell experiment

To make a Bell test most conclusive, it is necessary to minimize assumptions leading to
loopholes (Sec. 3.3.1) as this maximizes the amount of tested local realistic theories. This
is a challenging technical task, since while fulfilling the assumptions experimentally, still a
sufficiently high fidelity of the entanglement creation and the readout is necessary. Otherwise,
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a significant violation of the classical bound cannot be achieved. Nevertheless, it is not possible
to drop all assumptions, especially those on the choice of inputs. The remaining assumptions
have to be stated to specify which local realistic-theories are not tested with the experiment.
Furthermore, to draw any inference on the validity of local-realism from the data, a suited
analysis method needs to be chosen and applied carefully.

The requirements for a robust Bell test experiment can be summarized:

1. Space-like separation of the local measurements of Alice and Bob including random
inputs choice for each event.

2. High detection efficiency of employed detectors or heralded pair creation with a high
fidelity measurement.

3. Fast and random generation of the inputs for Alice and Bob, independent from each
other and from the rest of the setup, as well as independent from the previous inputs.

4. Duration of the experiment defined prior to the experiment with fixed total number of
events 𝑛 or fixed end time.

5. Choice of an analysis method without i.i.d. assumption before the measurement.

6. No post selection of events. Excluding events is only allowed based on predefined inde-
pendent objective criteria that do not allow a LHV model to violate Bell’s inequality.

3.3.4. A short history of Bell experiments

After the introduction of Bell’s theorem and proposal of an experiment in 1964 it took some
time to develop a solid framework applicable for experiments like the CHSH inequality and
then to actually perform such experiments.

First experiments

The first experiment was performed by Freedman and Clauser [10] in 1972. They used photon
pairs emitted in a cascade transition of calcium and measured the polarization of the photons.
The experiment showed a violation of the bound for local-realism with a significance of 5
standard deviations, but with a detection efficiency of only 𝜂 ≈ 10−3 and with a measurement
of each of the four input choice combinations run for several minutes it did not close any
loophole from section 3.3.1. Still it was a first indicator towards the rejection of local-realism.

A conceptual progress in the experiments was reported by by Aspect, Dalibard, and Roger
in 1982 by implementing fast switching of the measurement direction [11]. They also used
photons from a calcium cascade transition and measured the polarization of the photons, but
the measurement direction was quickly switched using acousto-optic deflectors every 10 ns,
while the measurement devices were separated by 12 m allowing for space-like separation of the
measurement process, yet, due to the periodic switching without including the input choice.
The switching of the measurement was done by two independent modulations at ∼ 50 MHz
for each side. The detection efficiency was 𝜂 ≈ 10−3 as in previous experiments [12]. The
experimental results violated the predictions of local-realism with 5 standard deviations. It
has to be pointed at, that this experiment did not close the locality loophole, because the
input choice was done periodically and deterministically and not random. Still, the fast
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and independent input selection removed many doubts concerning the results of the previous
experiments with measurements with fixed analysis settings.

Closing loopholes

Further steps towards a conclusive Bell test experiment took more than a decade. The first
experiment closing the locality loophole was published by Weihs et al. in 1998 [93]. In this
experiment entangled photon pairs created by spontaneous parametric down-conversion were
sent to two devices for measuring the polarization, which were separated by 355 m. The
measurement direction was set by fast switching EOMs according to inputs from a quantum
random number generator based on the detection of photons in either output port of a beam
splitter. The time needed the generation of the random input until the photon detection was
less than 100 ns thus clearly space-like separated from the other measurement. A violation
of more than 36 standard deviations was observed, yet with a detection efficiency of only
𝜂 = 0.05.

In 2001 the first experiment without the need for the fair sampling assumption was per-
formed by Rowe et al. using deterministic entanglement between two ions in one trap [94].
The efficiency in this experiment was unity 𝜂 = 1, since for every measurement a result was
obtained and a violation of the local-realistic bound by 8 standard deviations could be shown.
Yet, with a seperation of the two ions of only 3 µm the locality loophole was left open.

An analysis method for a Bell test using hypothesis testing and closing the memory loophole
was presented by Gill in 2003 [16]. Applied to the data from Weihs et al [93] with 𝑆 =
2.73 ± 0.02 and 𝑛 ≈ 14700 events the method yields 𝑝 ≤ 10−32.

The next steps towards experiments closing locality and detection loopholes in one experi-
ment were taken in 2012 and 2013. On one hand techniques to create heralded entanglement
between widely separated quantum memories, like neutral atoms [32] ( LMU Munich, Ger-
many) and vacancy centers in diamonds [95] (TU Delft, Netherlands), were demonstrated.
These paved the way for space-like separation of measurements with a detection efficiency of
unity. On the other hand experiments closing the detection loophole with entangled photons
[96, 97] (University Vienna, Austria and NIST Boulder, Colorado USA), which employed su-
perconducting photon detectors with very high efficiency [98], were developed. Each of the
four demonstrations finally lead to an experiment closing all major loopholes.

Recent loophole free experiments

50 years after the publication of Bell’s paper [2] the first experiments without loopholes were
conducted. In August 2015 Hensen et al. (Delft) reported a Bell test experiment that used
heralded entanglement between two nitrogen vacancy centers in diamond separated by 1.3 km
[18]. The heralded scheme allowed for a detection efficiency of unity and a measurement read-
out duration of 3.7 µs. With an additional 0.480 µs for the random input selection employing
quantum random number generators [99] enabled to close the detection and locality loophole.
The experiment yielded 𝑆 = 2.42 ± 0.2 with 𝑛 = 245 events during 220 h of measurement
in18 days. With a hypothesis test using the game formalism from Elkouss and Wehner [17]
local-realism could be rejected with a 𝑝 = 0.039. Even though the experiment is a very
impressive test of Bell’s inequality and demonstration of quantum technology the probability
of nearly 4% for an experiment following local-realism to achieve the same result (error type I
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in section 3.3.2) is quite high for such a fundamental decision3.
Shortly afterwards, in October 2015 two groups Giustina et al. (Vienna) [19] and Shalm

et al. (Boulder) [20] performed both a violation of Bell’s inequality in the Eberhard-CH
formulation using pairs of entangled photons created by pulsed spontaneous parametric down
conversion. Giustina et al. had detector efficiencies, including all losses between source and
detector, of 𝜂𝐴 = 0.786 for Alice and 𝜂𝐵 = 0.762 for Bob thus closing the detection loophole.
With Alice and Bob separated by 60 m and a measurement time of 140 ns and additional 26 ns
for the random input selection the locality loophole was closed. Shalm et al. had efficiencies
of 𝜂𝐴 = 0.747 and 𝜂𝐵 = 0.756 and a separation of 184.9 m with a maximum measurement
time of 578 ns 4 including random input choice also closing both loopholes. Both report a
very significant violation of Bell’s inequality and with 𝑝 = 3.74 ⋅ 10−31 (Giustina et al.) and
𝑝 = 2.3 ⋅ 10−7 (Shalm et al) show a high confidence for the rejection of the null hypothesis.
Both experiments used the same type of quantum random number generators as used in
Hensen et al. [99].

In this thesis a Bell experiment conducted from November 2015 to June 2016 is described.
Employing heralded atom-atom entanglement over 398 m, a fast and efficient read-out, and
a QRNG based on photon counting [39], this experiment allowed for closing the locality and
detection loophole in one experiment [60, 38]. A detailed description of the experiment follows
in the next chapter.

3A second run of the experiment was done in 2016 with 𝑛 = 300 events and combining results from both run
leads to a 𝑝 = 8 ⋅ 10−3 [100] .

4In the experiment an input sets the measurement direction for the next 200 ns, during this time multiple
laser pulses of the pump laser (12.6 ns pulse-to-pulse separation) are generating photon pairs leading to
multiple acceptance time windows for the same input choice. The measurement time and 𝑝 stated here are
for the case of summing over events in 5 acceptance time windows.
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4. Violation of Bell’s Inequality with Entangled
Atoms

As outlined in the previous chapter an experimental test of local-realism is possible by per-
forming measurements on an entangled pair of qubits using Bell’s inequality. The topic of
this chapter is such an experimental Bell test, which is based on the entanglement of two ru-
bidium atoms (Chap. 2). The chapter starts with a short description of the design and setup
of the experiment and how this allows to close the detection and locality loophole (Sec 3.3.1)
[38]. This is followed by a characterization of the random number generators employed for
the setting choices. Then the procedures for conducting and evaluating the experiment are
defined. Finally, the data collected in multiple experimental runs between November 2015
and June 2016 are presented. This includes the two main runs with 10000 events of which
one was public, meaning the result for each event was available on a live feed on a publicly
accessible website.

4.1. Design of the experiment

For a Bell experiment using the CHSH inequality (3.1), two qubits are prepared in one of
the four maximally entangled Bell-states and then measurements on the qubits are performed
independently. The measurement directions are chosen to allow for a maximal violation of
the inequality. In this experiment the two qubits are encoded in the two independently
trapped rubidium atoms (Sec 2.1). They are prepared in the Ψ+ = 1√

2 (|↑𝑥⟩ |↓𝑥⟩ + |↓𝑥⟩ |↑𝑥⟩)
or the Ψ- = 1√

2 (|↑𝑥⟩ |↓𝑥⟩ − |↓𝑥⟩ |↑𝑥⟩) depending on the result of the Bell state measurement
for entanglement swapping (Sec 2.4). The measurement operations on the qubits are defined
in Table 4.1.

These operations are implemented via the atomic state read-out (Sec 2.3.2) with the corre-
sponding read-out polarization 𝜒𝑟𝑜. The result of a measurement is defined by the detection
of ionization fragments with the CEMs. For this purpose, acceptance time windows for the de-

Setting measurement operator readout polarization 𝜒𝑟𝑜 𝛼 and 𝜙 in (2.7)

𝐴 = 0 ̂𝐴0 = 𝜎𝑥 𝜒𝐴,0 = 𝑉 𝛼 = 0, 𝜙 = 0
𝐴 = 1 ̂𝐴1 = 𝜎𝑦 𝜒𝐴,1 = cos (𝜋/4) 𝑉 + sin (𝜋/4) 𝐻 𝛼 = 45∘, 𝜙 = 0
𝐵 = 0 𝐵̂1 = 1√

2 (𝜎𝑥 − 𝜎𝑦) 𝜒𝐵,1 = cos (𝜋/8) 𝑉 − sin (𝜋/8) 𝐻 𝛼 = −22.5∘, 𝜙 = 0
𝐵 = 1 𝐵̂0 = 1√

2 (𝜎𝑥 + 𝜎𝑦) 𝜒𝐵,0 = cos (𝜋/8) 𝑉 + sin (𝜋/8) 𝐻 𝛼 = 22.5∘, 𝜙 = 0

Table 4.1.: Settings for the Bell test experiment: ̂𝐴0, ̂𝐴1 are the measurement operations in
Lab 1 and 𝐵̂0, 𝐵̂1 in Lab 2.
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Figure 4.1.: Overview of the Bell test setup: The two trap setup for heralded entanglement
as described in Section 2.4.2 and Figure 2.16. For the Bell test experiment the
setting of the atomic state read-out is chosen by a random bit from the QRNG.
After receiving a heralding signal the control unit in each laboratory requests a
random bit from the QRNGs and depending on the bit one of two AOMs creates
a read-out pulse with a polarization 𝜒𝑟𝑜 according to Table 4.1. The result of
the measurements is deterimned by the detection or not detection of ionization
fragments by the CEMs. The random bit and the results are recorded locally in
each laboratory. The heralding signal is recorded in the local storage of Lab 1.

tection of electrons and 87Rb+-ions are predefined with a fixed timing relative to the read-out
laser pulse. The measurement outcome is defined as “+1” if there was at least one detector
click inside the respective time window while no detection yields a “−1” outcome.

The experimental scheme is the following: two atoms are trapped and synchronously ex-
cited. A two photon coincidence detected in the Bell state measurement setup heralding
atom-atom entanglement is communicated and triggers the measurement process in both la-
boratories. The input values that determine the measurement setting are generated by local
quantum random number generators (QRNG) (Sec 4.1.2). In each laboratory the local in-
put and output combination is recorded by a local storage unit. Additionally, the heralding
signal from the Bell state measurement is recorded in the storage unit of Lab 1. After the
measurement the experimental scheme starts again and the procedure is repeated until the
experiment is finished.

4.1.1. Closing the detection and the locality loophole

The locality and the detection loopholes (Sec 3.3.1) are of most concern for the actual design
since closing them requires well performing measurement devices and a large distance between
them.

The detection loophole is opened by the fair sampling assumption that is needed in the
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case of insufficient detector efficiencies. Since this experiment applies entanglement swap-
ping, the entanglement creation is heralded by the Bell state measurement result (Sec 2.4).
This enables to identify and to obtain measurement results for every entangled pair. Hence,
the fair sampling assumption is not needed and the loophole is closed. Inefficiencies of the
measurement process, especially of the particle detectors, results in wrong answers and thus
will not open the detection loophole but will reduce the resulting 𝑆 value.

To close the locality loophole it is necessary to have space-like separation of the measure-
ment processes. The measurement process starts with the random selection of the input and
ends with announcing the outcome. Thus, end of the process, i.e., the announcement of the
outcome on one side must be outside the forward light cone of the begin of the process, i.e.,
the random input selection, on the other side. In this experiment the result is announced by a
hard wired logic device monitoring the CEMs signals and the latest possible announcement is
defined by the end of the acceptance time window for the detection of 87Rb+-ions [38], which
is the later of time windows for the detection of ionization fragments (Sec 2.3.2).

Space-like separation of the measurements

The distance between the QRNG in Lab 1 and the comparator devices in Lab 2 is 402.7 m
and the distance between the QRNG in Lab 2 and the comparator devices in Lab 1 is 398.0 m
(Fig. 4.2). The distances were determined by measuring the distances in each laboratory in
combination with data provided by the Bayerisches Landesamt fuer Digitalisierung, Breitband
und Vermessung (Bavarian Agency for Digitisation, High-Speed Internet and Surveying, short
LDBV) allowing an accuracy of less than 1 m for distances. Thus, the time budget for a space
like separation is 398.0 m−1 m

𝑐 > 1324.2 ns in Lab 1 and 401.7 m−1 m
𝑐 > 1339.9 ns in Lab 2 [38, 60].

Effectively, the measurement starts with the request of a random bit from the QRNG.
Within the next 10 ns the QRNG returns a bit generated less than 60 ns before. To account
for possible next neighbor correlations of the QRNG [39, 60] the creation of the previous
random bit 20 ns before is set as the starting point of the forward light cone of the the random
bit creation. Based on the random bit, one of two beam paths with different polarization 𝜒𝑟𝑜
(Fig. 4.1) is selected for creating a read-out laser pulse with an acousto-optic modulator
(AOM)1. A beam waist of 12.5 µm in the AOM and an acoustic frequency of 408 MHz [37]
enables to create a pulse that reaches the atom in less than 220 ns after the input is received.
For the fast read-out scheme the duration of state selective ionization and subsequent detection
of the ionization fragments, depends mainly on the acceleration voltage 𝑈𝑎𝑐𝑐 between the
CEMs. With 𝑈𝑎𝑐𝑐 = 4250 V the duration of the read-out in Lab 1 is 570±3 ns, while in Lab 2
only a 𝑈𝑎𝑐𝑐 = 2400 V is possible (Appendix F) resulting in a duration of 725±3 ns. Finally, the
signals from CEMs are converted by comparator electronics to logic signals defining the result
of the measurement, which takes another 80 ns. The total time needed for the measurement
process, from the generation of the random bit for the input until the end of the ion detection
time window, is 947 ± 1 ns in Lab 1 and 1093 ± 1 ns in Lab 22 [38, 60]. This is more than 200
ns shorter than the maximal time budget for space-like separation (Fig 4.3).

Additionally to the short duration of the measurement process, it is necessary to preci-
1AA Opto-Electronic MT350-A0, 12-800 (Lab 1), Gooch & Housego AOMO 3350-199 (Lab 2)
2The much smaller uncertainty of the the total measurement time is due to the fact that it is defined by the

request of the random input and the end of the acceptance time window for the ions which both are defined
by highly precise signals from the control units.
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Figure 4.2.: Detailed map of the Bell experiment setup: The location of the two laboratories
and the exact position of each device within. The distance of 398 m between
trap 1 and the QRNG in Lab 2 (red arrow) is the shortest distances considered
for the space like separation of the two measurements. Map data provided by the
LDBV.
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Figure 4.3.: Timing and Space-time diagram of an event during the Bell test experiment
[38, 60]: First synchronized excitation (orange), which considered the different
photon travel times for photons from each trap, is used to create atom-atom
entanglement employing a photonic BSM. In case of a successful atom-atom state
creation the heralding signal is send to the trap setups. Then at each trap a fitting
waiting time is introduced to allow for space-like separated measurement. Both
measurements are composed of input generation, generation of a read-out laser
pulse with input depended polarization, state selective ionization with subsequent
fragment detection with the CEMs, and signal processing of the CEM pulses.
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Figure 4.4.: Schematics of the quantum random number generator [39]: The photons emitted
by the LED are detected by the PMT and converted to an analog pulse. A com-
parator converts these into digital signals that are counted within 20 ns intervals,
even counts yield “0” while odd yield “1”. This allows for output of random bits
with a rate of 50 MHz.

sely time both state measurements to guarantee space-like separation. Since a local state
measurement is triggered by the heralding signal, the transmission of this signal is time cri-
tical. Inside Lab 1 it is transmitted via a 0.5 m coaxial cable with a transmission time of
2.5 ± 0.2 ns.The transmission to Lab 2 is via an asynchronous optical communication channel
and takes 3717 ± 7 ns.3 Considering the effects of the atoms oscillating in the tightly focused
ODT (Sec. 2.3.3), the intensity of the trap lasers is set to values allowing for synchronized
rephasing. This requires an additional waiting time that depends on the intensity of the
ODT laser beam. For the actual parameters this results in 10730 ns in Lab 1 and 6987 ns in
Lab 2 before the actual measurement process can start. Thus in total the measurement in
Lab 2 starts 28.5 ns before the measurement in Lab 1. This results for a total measurement
duration of 947 ± 1 ns in Lab 1 in a margin of 340 ns for space-like separation and for a total
measurement duration of 1093±1 ns in Lab 2 in a margin of 267 ns(Fig 4.3). A more detailed
description of the closing of the locality loophole can be found in [38, 60].

4.1.2. Generation of random inputs

To generate independent and unpredictable inputs for the Bell test two quantum random
number generators that are based on photon counting are employed [39]. The light emitted
by an LED is strongly attenuated and then detected by a photo-multiplier tube (PMT). The
analogue electrical pulses from the PMT are converted by a comparator to digital signals.
The signals are counted over a period of 𝑡𝑠 = 20 ns by an FPGA (Fig. 4.4) and the parity of
these counts yields the random bit output. In particular, an even number of counts within
the interval is interpreted as "0" and odd as "1". This allows an output of random bits at a
rate of 50 MHz.

3The error margin here is only to an uncertainty of cable or glass fiber length and should not to be confused
with a jitter of the signal
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Physical model of the QRNG

The randomness of the output bit arises from photon detection theory: In the case of a light
source with constant intensity, the number of photon detection events 𝑛 in a time period with
length 𝑡𝑠, which is longer than the coherence time 𝜏𝑐 of the light source, are uncorrelated.
This leads to a Poisson distribution [101, 102]

𝑃𝑟 (𝑛, 𝜇) = 𝜇𝑛

𝑛! 𝑒−𝜇

for the probability to detect 𝑛 clicks for a mean of 𝜇 clicks per time period. The LED is
a broad band light source with a coherence time of 𝜏𝑐 ≤ 1

Δ𝜔 . For a typical spectral width
of Δ𝜔 > 5 ⋅ 1013 the coherence time is below 𝑡𝑐 < 20 fs [102]. This means the number of
detections in each time interval is independent from any event inside the backward light cone
and by this random.

To allow for a constant LED output, it is stabilized by a digital feedback loop leading to
Poisson distributed counts of the PMT . The comparator only registers pulses exceeding a
preset threshold voltage, which introduces an extendable dead time 𝑡𝑑 for counting photons.
This deadtime depends on the threshold voltage 𝑈𝑡 and the pulse shape of the PMT signal. It
effects counts inside the time window and leads to a modified Poisson distribution (equation
(2) in [39])

𝑃𝑟 (𝑛, 𝜇𝑟, 𝑡𝑑, 𝑡𝑠) = 𝜇𝑛
𝑟

𝑛! 𝑒−𝜇𝑟
𝐾−𝑛
∑
𝑘=0

(−𝜇𝑟)𝑘

𝑘! 𝑒𝜇𝑟 ((1 − (𝑘 + 𝑛 − 1) 𝑡𝑑
𝑡𝑠

))
𝑛+𝑘

(4.1)

with the actual mean of registered detections

𝜇𝑟 = 𝜇 ⋅ 𝑒(−𝜇 𝑡𝑑
𝑡𝑠 ) (4.2)

and the maximum of possible registered detection events in one time interval 𝐾 ≤ ⌈ 𝑡𝑠
𝑡𝑑

⌉ . By
summing up (4.1) for different 𝑛 the probabilities for the two possible outputs "0" and "1"
follow.

𝑃𝑟 ("0") =
∞

∑
𝑛=0,2,...

𝑃𝑟 (𝑛, 𝜇𝑟, 𝑡𝑑, 𝑡𝑠) (4.3)

𝑃𝑟 ("1") =
∞

∑
𝑛=1,3,...

𝑃𝑟 (𝑛, 𝜇𝑟, 𝑡𝑑, 𝑡𝑠) (4.4)

For certain values of 𝜇𝑟, 𝑡𝑠, and 𝑡𝑑 both probabilities are equal 𝑃𝑟 ("0") = 𝑃𝑟 ("1") = 1/2 and
unbiased random bits can be obtained [39].

Estimation the predictability based on technical imperfections

Even though the physical model of the QRNG principally allows for perfectly unbiased random
outputs, a real world implementation has imperfections that potentially can introduce a
predictability of the output bits. Especially critical are photon count rate and the comparator
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threshold voltage 𝑈𝑡, which defines the dead time 𝑡𝑑, since both have a direct effect on the
output probabilities (4.3) and (4.4). To estimate a possible predictability the bias

𝐵 (𝜇𝑟, 𝑈𝑡) = 𝑃𝑟 ("1") − 1
2

=
∞

∑
𝑛=1,3,...

𝑃 𝑟 (𝑛, 𝜇𝑟, 𝑡𝑑 (𝑈𝑡) , 𝑡𝑠) − 1
2 (4.5)

depending on the imperfections of 𝑈𝑡 and 𝜇𝑟 is investigated. For operation of the QRNG the
time periode 𝑡𝑠 = 20 ns is fixed by the clock of the FPGA with a negligible jitter.

Photon count rate Knowledge of the photon count rate and its fluctuation can result in
a possible predictability. The mean number of registered counts per time period 𝜇𝑟 (4.2)
depends on the mean number of photon counts 𝜇 (𝐼𝐿𝐸𝐷, 𝑇𝐿𝐸𝐷) and the extendable dead time
𝑡𝑑 (𝑈𝑡). The count rate depends on the LED current 𝐼𝐿𝐸𝐷 and temperature 𝑇𝐿𝐸𝐷, while the
extendable dead time depends on the comparator threshold voltage 𝑈𝑡:

𝜇𝑟 (𝐼𝐿𝐸𝐷, 𝑇𝐿𝐸𝐷, 𝑈𝑡, 𝑡𝑠) = 𝜇 (𝐼𝐿𝐸𝐷, 𝑇𝐿𝐸𝐷) ⋅ 𝑒(−𝜇(𝐼𝐿𝐸𝐷,𝑇𝐿𝐸𝐷) 𝑡𝑑(𝑈𝑡)
𝑡𝑠 ). (4.6)

Considering a fixed 𝑈𝑡 and 𝑡𝑠 = 20 ns the bias (4.5) becomes a function of only 𝐼𝐿𝐸𝐷 and 𝑇𝐿𝐸𝐷.
To obtain a constant photon count rate during the operation of the QRNG the temperature is
stabilized and current is controlled by a digital feedback set on fixed registered photon count
rate 𝜇𝑟,𝑠𝑒𝑡 [39]. With this the count rate shows only the expected statistical fluctuations
around the set value 𝜇𝑟,𝑠𝑒𝑡. The value of 𝜇𝑟,𝑠𝑒𝑡 resulting in minimal bias of the random bits
has to determined after each start of the QRNG. To find this value the QRNG is operated
with a different digital feedback mode that controls the current with a feedback stabilizing on
zero bias. After some time the system sets and the registered photon count rate 𝜇𝑟 becomes
constant while the bias of the input bits is very close to zero. This value of 𝜇𝑟 is then used
to set point 𝜇𝑟,𝑠𝑒𝑡 of the digital feedback for a fixed photon count rate, which enables for an
operation of the QRNG with a residual bias of ‖𝐵‖ < 1.04 ⋅ 10−5 (Supplementary material of
[60]).

Threshold level of the comparator The threshold voltage of the comparator 𝑈𝑡 is set by a
digital to analog converter (DAC). Any fluctuations of this voltage or noise on the analog
signal from the PMT will lead to a change of the bias and thus of the predictability. To
characterize the influence of fluctuations and noise of the threshold level and the PMT signal,
the dependence of the bias 𝐵 for a fixed LED current 𝐼𝐿𝐸𝐷 on the threshold voltage 𝑈𝑡 around
the working point 𝑈𝑠𝑒𝑡 = −8.847 mV with nearly zero bias is measured (Fig 4.5). A fit of the
measured data to a second order polynomial yields

𝐵 (𝑈𝑡) = 142.008 1
V2 𝑈2

𝑡 + 1.957 1
V𝑈𝑡 + 0.0062, (4.7)

which can be used to estimate the bias for a given change of the threshold 𝑈𝑓 , e.g. introduced
by noise or drift of the DAC, of using 𝐵 (𝑈𝑠𝑒𝑡 + 𝑈𝑓).
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Figure 4.5.: Bias of the QRNG for fixed 𝐼𝐿𝐸𝐷 depending on the threshold voltage 𝑈𝑡 of the
comparator: measured data (red cross) and fit of a quadratic polynomial (4.7)
(green, dashed line).

Characterization of electrical noise Since the noise of the PMT signal and of the threshold
voltage both influence the comparator counts in the same manner, and if known their effect on
the bias can be calculated via (4.7). However, it is hard to measure the noise of both channels
of the comparator individually during operation of the QRNG without influencing them.
Nevertheless, it is possible to estimate the parameters of the noise based on a measurement
of the count rate of the comparator while the LED is off. A scanning the threshold voltage 𝑈𝑡
yields an dark count rate depending on the threshold voltage (Fig. 4.6). This measurement
(Fig. 4.6) shows two different regions of comparator dark counts: for large negative 𝑈𝑡 <
−5 mV the counts are caused by dark counts of the PMT showing a typical behavior of
random pulses with Gaussian distribution in pulse height with a rate of ca 5 ⋅ 103 1/s. For
threshold voltages −5 mV ≤ 𝑈𝑡 ≤ 0 mV electrical noise is the dominant cause of counts. It
leads to a peak in the count rate at 𝑈𝑡 = 4.04 mV of 9 ⋅ 107 1/s (Fig. 4.6b). This is the zero
level 𝑈0 for the PMT signal and the effect of the noise is the highest close to 𝑈0 even small
fluctuations will trigger the comparator. Moving further away from 𝑈0 only larger and larger
fluctuations, i.e. larger amplitudes in the noise, will trigger the comparator. Therefore, it
is possible to estimate the amplitude distribution of the combined electrical noise from the
dark count measurement. To characterize the amplitude distribution of the noise, assuming
a Gaussian distribution, to each side of the peak at 𝑈0 an error function of the form

𝐶± (𝐴, 𝜇, 𝜎, 𝑈𝑡) = 𝐴 ⋅ (1 ± 𝑒𝑟𝑓 (𝑈𝑡 − 𝜇√
2𝜎

)) (4.8)

is fitted. A fit of the rising slope to 𝑈𝑡 ≤ 𝑈0 𝐶+ results in 𝜇1 = −4.30 mV and 𝜎1 = 0.13 mV
and a fit of the falling slope to 𝑈𝑡 ≥ 𝑈0 𝐶− results in 𝜇2 = −3.70 mV and 𝜎2 = 0.25 mV
(Fig. 4.7).

Temperature fluctuation To avoid drifts of the important parameters caused by temperature
fluctuations, critical parts of the QRNG like LED, PMT, and the comparator are actively
stabilized with a precision better than ±0.15 °C. This residual fluctuation can influence the
threshold voltage 𝑈𝑡 of the comparator. The digital to analog converter (DAC) providing the
threshold voltage and the comparator are both specified to less than 10−5 V/°C leading to a
maximal drift of ±0.003 mV.
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(a) Comparator counts depending on the threshold
voltage 𝑈𝑡 . Measured with LED current off. The
lower count rates < 104 for 𝑈𝑡 < −5 mV are cau-
sed by PMT dark counts while the peaking count
rate for −5 mV ≤ 𝑈𝑡 ≤ 0 mV is caused by elec-
trical noise. (The detailed view of the threshold
values between −7 mV ≤ 𝑈𝑡 ≤ 0 mV in (b) inclu-
des additional measurement points)
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(b) Detailed view of (a) for threshold values for
−7 mV ≤ 𝑈𝑡 ≤ 0 mV with additional measure-
ment points. The count rate for threshold voltage
of 𝑈𝑡 > −5 mV allows to characterize the electri-
cal noise. The fluctuations are centered around
the zero level 𝑈0 = 4.04 mV.

Figure 4.6.: Noise of PMT signal and comparator threshold voltage 𝑈𝑡.
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(a) Range 𝑈𝑡 ≤ 𝑈𝑑: fitting 𝐶+ (𝐴, 𝜇1, 𝜎1, 𝑈𝑡) (4.8)
results in 𝐴 = 4.59408 ⋅ 107, 𝜇1 = −4.30 mV,
and 𝜎1 = 0.13 mV
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(b) Range 𝑈𝑡 ≥ 𝑈𝑑: fitting 𝐶− (𝐴, 𝜇2, 𝜎2, 𝑈𝑡) (4.8)
results in 𝐴 = −4.98186 ⋅ 107, 𝜇2 = −3.70 mV,
and 𝜎2 = 0.25 mV

Figure 4.7.: Fit of the error function (4.8) to the measured count rate.
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“Reasonable” bound for the predictability The analysis of the imperfections of the QRNG
including setting of the photon count rate, electrical noise, and temperature drifts allows to
derive an upper bound for the predictability

𝜏 ≥ ∥𝑃𝑟 ("1") − 1
2∥

of the QRNG output. Since, e.g., the electrical noise has high frequency components the
actual probability 𝑃𝑟 ("1") can be different for each output but 𝜏 is a bound for every out-
put. Additionally one has to consider the possible information about the QRNG of a possible
“adversary” that defines the LHV or the measurement results. A reasonable model allows
the “adversary” to know only parameters of the QRNG which are accessible from the out-
side. These also include information about the current photon count rate and the current
temperature inside the QRNG because both are stabilized and the information is externally
available. This yields a predictability of 𝜏 = 1.04 ⋅ 10−5 determined by analyzing the out-
put of the QRNG and bounding its bias (Supplementary material of [60]). This already
includes the relatively small predictability stemming from the temperature drift which is
𝑚𝑎𝑥 (‖𝐵 (𝑈𝑠𝑒𝑡 − 0.003)‖ , ‖𝐵 (𝑈𝑠𝑒𝑡 + 0.003)‖) ≤ 1.67 ⋅ 10−7 (4.7).

“Paranoid” bound for the predictability For the Bell test experiment it is neccesary to mini-
mize assumptions to prevent loopholes. Hence, a more “paranoid” model of the information
of the “adversary” is preferable. In this model the full information on the actual internal
parameters, which include photon count rate, electrical noise on the PMT signal as well as
threshold voltage, and temperature, is known to an “adversary” (Supplementary material of
[60]). Since a predictability stemming from the electrical noise cannot be bounded by analy-
zing the output data of the QRNG, it is necessary to use a model for the noise for this task.
For this the measured noise distribution (Fig 4.6b) is added to the set threshold voltage 𝑈𝑠𝑒𝑡
(Fig. 4.8). Now it is possible to bound the resulting predictability using the fit of the noise
from Figure 4.7 and a two sided 5𝜎 interval (Fig. 4.8). Additionally, the effect of the tempe-
rature has to be considered and is added to both 5𝜎 intervals. This results in a predictability
of

𝑚𝑎𝑥( ‖𝐵 (𝑈𝑠𝑒𝑡 − 0.26 mV − 5 ⋅ 0.13 mV − 0.003 mV)‖ ,

‖𝐵 (𝑈𝑠𝑒𝑡 + 0.34 mV + 5 ⋅ 0.25 mV + 0.003 mV)‖ ) ≤ 6.2 ⋅ 10−4.

Together with the effect of the predictability arising from the setting of the photon count rate
of 1.04 ⋅ 10−5, the bound for the total predictability of 𝜏 ≤ 6.3 ⋅ 10−4 is found (Supplementary
material of [60]).

4.1.3. Residual assumptions made for the Bell test

As discussed in Chapter 3, assumptions made for a Bell test limit the tested LHV theories
and by this need to be known to make correct statements. The design of this experiment,
especially, the heralded entanglement generation, and the event ready and space-like separated
measurements, allows for minimizing the assumptions made on the LHV theories. However,
it is not possible to abandon all assumptions. The residual assumptions needed for this
experiment belong into two categories. The first category are assumptions based on well
established physical theories:
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Figure 4.8.: Comparator counts caused by electrical noise (blue) of PMT signal and threshold
voltage centered at the set threshold level 𝑈𝑠𝑒𝑡 = 𝑈0 = −8.847 mV. Fit of the
bias dependence on the threshold voltage (4.7) (green). The horizontal dashed
line indicates zero bias and the two vertical dashed lines indicate the 5𝜎 interval
of the electrical noise based on the fit from Figure 4.7.

no faster than light communication To allow for space-like separation of measurements of Alice
and Bob it is assumed that information transmission is limited to 𝑐 the speed of light
in vacuum.

physical model of the QRNGs Each of the two QRNGs based on photon counting (physical
model in Sec. 4.1.2), provides random outputs that are only predictable up to the
specified level of 𝜏 ≤ 6.3 ⋅ 10−4.

These two assumptions limit the LHV theories tested in this experiment. The first assumption
that communication is limited by the speed of light is intrinsic to local-realism, but the
assumption that the QRNGs produce a random output based on photon counting restricts
the test to theories in which this process of photon counting is indeed an independent process
an thus allows for the creation of unpredictable inputs.

The second category concerns the correctness of time and distance measurement as well as
a proper functioning data recording:

distance measurements The distances provided by the LDBV and the distance measurements
inside the laboratories are correct within the error margins given.

clock and timing The time synchronization of the experiment, which is provided by the
100 Mhz clock and distributed to all time critical devices, is stable and correct as well
as the timing of the measurements.

data recording The classical signal and data recording devices are trustworthy and reliable.

Listing these assumptions might seem meticulous and such assumptions are actually implicitly
made for all experiments. Moreover, it is hard to formulate a serious local-realistic theory that
would exploit them. But since the statement of a Bell test experiment is very fundamental
all assumptions, even the seemingly obvious ones, should be stated to avoid confusion about
the results.
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4.2. Evaluation with Hypothesis Testing

In order to draw conclusions after a Bell experiment was conducted, a robust analysis of
the whole data collected during the experiment is necessary. As described in Section 3.3.2
hypothesis testing allows for such an analysis. The decision on the null hypothesis is based
on the 𝑝 value that is calculated from the result of the experiment. For this Bell experiment
two different ways of calculating an upper bound of the 𝑝 value (3.22) are employed. The
first bound, which is based on martingales and concentration inequalities follows [16], and is a
relatively simple formula especially well suited for experiments with a small absolute violation
of Bell’s inequality but many events. The second bound from [17] based on a non-local game
is tighter than the first but needs a lot more computational effort. Calculating both bounds
allows for a better comparison with experiments using only one of the methods.

Definition of the null hypothesis

The first step for the hypothesis test is to formulate the null hypothesis, i.e, that “the recorded
data can be explained with local-realistic theories”, in a mathematical formulation that allows
to calculate 𝑝 (3.22). For this it is necessary to formulate (3.1) according to the experimental
design: the experiment has two measurement devices, Alice in Lab 1 and Bob in Lab 2.
For each event both devices receive an input from the QRNGs, which is triggered by the
heralding signal 𝐻𝑖 ∈ {−1, +1}, and produce an output. For the 𝑖-th event Alice’s input is
called 𝐴𝑖 ∈ {0, 1} and her output is called 𝑋𝑖 ∈ {−1, +1}. The analog definition for Bob is
𝐵𝑖 ∈ {0, 1} and 𝑌𝑖 ∈ {−1, +1}. The heralding signal 𝐻𝑖 takes the value −1 if the state Ψ−

and +1 if the state Ψ+is prepared. The functions 𝑔± (𝐴, 𝐵) are defined as
𝑔+ (𝐴, 𝐵) = −1 ∀ (𝐴, 𝐵) ≠ (1, 1) (4.9)
𝑔+ (𝐴, 𝐵) = +1 (𝐴, 𝐵) = (1, 1)

for events with the heralding signal 𝐻𝑖 = +1 and
𝑔− (𝐴, 𝐵) = −1 ∀ (𝐴, 𝐵) ≠ (1, 0) (4.10)
𝑔− (𝐴, 𝐵) = +1 (𝐴, 𝐵) = (1, 0)

for 𝐻𝑖 = −1. These allow to write 𝑆, (3.1), in the from

𝑆± = ∑
𝐴,𝐵∈{0,1}

𝑔± (𝐴, 𝐵)
±𝑁𝑋=𝑌

𝐴,𝐵 − ±𝑁𝑋≠𝑌
𝐴,𝐵

±𝑁𝑋=𝑌
𝐴,𝐵 + ±𝑁𝑋≠𝑌

𝐴,𝐵
≤ 2 (4.11)

for the two states Ψ±. The 𝑔± (𝐴, 𝐵) are chosen that the expected 𝑆 value for the experiment
is 𝑆 ≥ 2, based on the entangled state and measurement directions (Tab 4.1). The formulation
of 𝑆+ for Ψ+ might seem different from (3.1) but renaming the inputs or outputs would restore
the old form and thus the bounds for local-realism (3.5) and quantum mechanics (3.10) are
still the same.

Considering the memory loophole (Sec. 3.3.1) one can modify (4.11) making it immune to
exploiting finite statistics by approximating ±𝑁𝑋=𝑌

𝐴,𝐵 + ±𝑁𝑋≠𝑌
𝐴,𝐵 with ±𝑁/4. Note, that this is

allowed for only relatively large number of total events 𝑁 and unbiased inputs. This leads to
the used formulation of the null hypothesis

𝑆± = 1
±𝑁

±𝑁
∑
𝑖=1

4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 ≤ 2. (4.12)
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Furthermore, this style of writing the CHSH inequality allows to formulate a CHSH ine-
quality combining both states Ψ+and Ψ−

𝑆𝑐𝑜𝑚𝑏 = 1
𝑁

𝑁
∑
𝑖=1

4 ⋅ (1 + 𝐻𝑖
2 𝑔+ (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 + 1 − 𝐻𝑖

2 𝑔− (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖) ≤ 2. (4.13)

It is important to note here, that this definition unlike (3.1) does not use absolute values,
thus (4.12) and (4.13) are strictly speaking bounded from two sides for LHV theories −2 ≤
𝑆± ≤ 2. However, permuting outcomes for 𝑔± (𝐴, 𝐵) allows to formulate an inequality with
𝑆± ≤ 2 for every experimental realization. This one sided bound is preferable for finding an
upper bound of the 𝑝 value, but one has to consider, that for a hypothesis test the 𝑔± (𝐴, 𝐵)
should be fixed before the experiment. Therefore, in this experiment (4.9) and (4.10) are
fixed beforehand and (4.12) and (4.13) with 𝑆±, 𝑆𝑐𝑜𝑚𝑏 ≤ 2 are tested.

4.2.1. Bound based on martingales and concentration inequalities

This method is inspired by a work of Richard Gill [16] published in 2003. He showed that
Hoeffding’s inequality [103] or other concentration inequalities, e.g., Azuma’s inequality [104],
can be used to calculate a bound for the probability of an experiment following LHV theories
resulting in a certain 𝑆 > 2 or higher. For this he modeled a Bell test experiment as a
supermartingale without using the assumption of independent and identically distributed
(i.i.d.) events closing the memory loophole (Sec. 3.3.1). So his method can be used to
calculate 𝑝 via

𝑝 = 𝑃𝑟 (𝑆 ≥ 𝑆𝑚) ≤ 𝑒( −(𝑆𝑚−2)2𝑁
64 ) (4.14)

depending on the measured 𝑆 value 𝑆𝑚 and the total number of events 𝑁 .
Here a method is derived that yields a tighter bound on the 𝑝 value using an inequality

shown by McDiarmid [105]. This inequality bounds processes concerning martingale difference
sequences (MDS).

Bounding a martingale by its difference sequences

In [105] Colin McDiarmid presented an inequality ((6.1) on page 165) bounding the probability
of the sum of a martingale difference sequence, which is a martingale, reaching a certain
value or higher. There he considers a martingale difference sequence (MDS) 𝑀1, ..., 𝑀𝑛 with
−𝑎𝑘 ≤ 𝑀𝑘 ≤ 1 − 𝑎𝑘 for each 𝑘 in 𝑛. Further, he defines 𝑎 and ̄𝑎 as 𝑎 = 1

𝑛 ∑𝑛
𝑘=1 𝑎𝑘 and

̄𝑎 = 1 − 𝑎. With this he shows

𝑃 (
𝑛

∑
𝑘=1

𝑀𝑘 ≥ 𝑛𝑡) ≤ (( 𝑎
𝑎 + 𝑡)

𝑎+𝑡
( ̄𝑎

̄𝑎 − 𝑡)
𝑎̄−𝑡

)
𝑛

(4.15)

for all 𝑡 > 0.

From the CHSH inequality to a martingale difference sequence

To use this to bound the probability to measure a certain 𝑆 or higher in an experiment, it
is necessary to derive a fitting MDS based on the CHSH inequality. Starting with (4.12) one
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can define a violation of the inequality as

𝛿± = 𝑆± − 2

= 1
±𝑁

±𝑁
∑
𝑖=1

4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − 2 (4.16)

= 1
±𝑁

±𝑁
∑
𝑖=1

4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − 1
±𝑁

±𝑁
∑
𝑖=1

2.

For the case of ±𝑁 → ∞ the CHSH inequality limits 𝛿± to

𝛿± = 1
±𝑁

±𝑁
∑
𝑖=1

(4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − 2) ≤ 0. (4.17)

By multiplying this by 𝑁± results in the supermartingale

𝑁±𝛿± =
±𝑁
∑
𝑖=1

(4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − 2) ≤ 0 (4.18)

that can be bounded from above by the martingale

𝑁±𝛿± =
±𝑁
∑
𝑖=1

(4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − 2) = 0. (4.19)

The individual terms of this martingale form a MDS with a maximum range of

−6 ≤4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − 2 ≤ 2.
By normalizing the range to 1

−3
4 ≤4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − 2

8 ≤ 1
4 (4.20)

one can define a new MDS

𝑍±
𝑖 = 4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − 2

8 (4.21)

that fulfills the demands of (4.15) with 𝑎𝑘 = 3/4 for all 𝑘. From this follows 𝑎 = 3/4 and ̄𝑎 = 1
4

and it is possible to bound the probability of ∑
±𝑁
𝑖=1 𝑍±

𝑖 ≥ 𝑡𝑁± by

𝑃 (
𝑁±

∑
𝑖=1

𝑍𝑖 ≥ 𝑡𝑁±) ≤ ((
3/4

3/4 + 𝑡)
3/4+𝑡

(
1/4

1/4 − 𝑡)
1/4−𝑡

)
𝑁±

. (4.22)

Bounding the probability for 𝑆 ≥ 𝑆𝑚

Using 𝑍±
𝑖 in (4.12) yields

1
±𝑁

±𝑁
∑
𝑖=1

𝑍±
𝑖 = 1

±𝑁

±𝑁
∑
𝑖=1

4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − 2
8

= 𝑆± − 2
8
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setting 𝑡 = 𝑆𝑚−2
8 , with 𝑆𝑚 being the measured 𝑆 value, allows to bound the probability for

a certain 𝑆𝑚 or a higher by

𝑃𝑟 (𝑆 ≥ 𝑆𝑚) = ⎛⎜⎜
⎝

(
3/4

3/4 + 𝑆𝑚−2
8

)
3/4+ 𝑆𝑚−2

8

⋅ (
1/4

1/4 − 𝑆𝑚−2
8

)
1/4− 𝑆𝑚−2

8 ⎞⎟⎟
⎠

𝑁

= ⎛⎜⎜
⎝

1

(1 + 𝛿𝑚
6 )

6+𝛿𝑚
8 ⋅ (1 − 𝛿

2)
2−𝛿𝑚

8

⎞⎟⎟
⎠

𝑁

(4.23)

with 𝛿𝑚 = 𝑆𝑚 − 2. This bound for 𝑝 is derived without making additional assumptions, e.g.,
assuming i.i.d. events or assumptions on a possible history dependence in the LHV theories,
and thus it does not open possible loopholes. (4.23) can be derived in the same manner for
𝑆𝑐𝑜𝑚𝑏 .

Effect of partially predictable inputs

For deriving the CHSH inequality (3.5) independent and unpredictable inputs are assumed
(Sec. 3.2.1). In an actual experiment one is always left with partially predictable inputs
(Sec 4.1.2). This changes the bound of 𝑆 ≤ 2 for LHV theories: for an LHV model the
estimate of (4.12) is

𝐸 (𝑆) = 4
±𝑁

±𝑁
∑
𝑖=1

[ ∑
𝐴,𝐵∈{0,1}

(𝑔± (𝐴, 𝐵) ⋅ 𝑃𝑟(𝐴𝑖 = 𝐴) ⋅ 𝑃𝑟 (𝐵𝑖 = 𝐵)

∑
𝑋,𝑌 ∈{0,1}

(𝑋 ⋅ 𝑌 ⋅ 𝑃𝑟(𝑋𝑖 = 𝑋|𝐴, 𝐻𝑖, 𝜆, 𝐺𝐴,𝑖) ⋅ 𝑃𝑟 (𝑌𝑖 = 𝑌 |𝐵, 𝐻𝑖, 𝜆, 𝐺𝐵,𝑖)) )].

(4.24)

𝑃𝑟(𝑋𝑖 = 𝑋|𝐴, 𝐻𝑖, 𝜆, 𝐺𝐴,𝑖) and 𝑃𝑟 (𝑌𝑖 = 𝑌 |𝐵, 𝐻𝑖, 𝜆, 𝐺𝐵,𝑖) may depend on the heralding signal
𝐻𝑖 and the previous history of the experiment 𝐺𝐴,𝑖, 𝐺𝐵,𝑖

4. The partial predictability of the
inputs 𝐴𝑖, 𝐵𝑖 can be written as

1
2 − 𝜏𝐴 ≤ 𝑃𝑟(𝐴𝑖 = 1) ≤ 1

2 + 𝜏𝐴, (4.25)
1
2 − 𝜏𝐵 ≤ 𝑃𝑟(𝐵𝑖 = 1) ≤ 1

2 + 𝜏𝐵 (4.26)

with 𝜏𝐴, 𝜏𝐵 ∈ [−1/2, +1/2].
Considering an example for the Ψ+ state with 𝜏 = 𝑚𝑎𝑥 (𝜏𝐴, 𝜏𝐵), 𝑃𝑟 (𝐴𝑖 = 0) = 1/2 + 𝜏

and 𝑃𝑟 (𝐵𝑖 = 0) = 1/2 + 𝜏 a deterministic LHV strategy producing always anti-correlated

4𝐺𝐴𝑖,𝐺𝐵,𝑖 can include the hole backwards light cone of the announcement of the measurement outcome on
their side.
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measurement outcomes will produce an expectation value of

𝐸 (𝑆) ≤ 4 [(−1) (−1) (1
2 + 𝜏)

2
+ (−1) (−1) (1

2 + 𝜏) (1
2 − 𝜏)

+ (−1) (−1) (1
2 − 𝜏) (1

2 + 𝜏) + (+1) (−1) (1
2 − 𝜏)

2
]

= 4 [(1
4 + 𝜏 + 𝜏2) + (1

4 − 𝜏2) + (1
4 − 𝜏2) − (1

4 − 𝜏 + 𝜏2)]

= 4 (1
2 + 2𝜏 − 2𝜏2) = 2 + 8 (𝜏 − 𝜏2) .

It is easy to verify that this is the maximum for all 16 deterministic LHV strategies (Tab. 3.3).
It is possible to find such strategies for all combinations of state and input probabilities.
Considering now many events and a predictability bounded by (4.25) and (4.26) for all events
it is possible to bound the CHSH value by

𝑆 ≤ 2 + 8 (𝜏 − 𝜏2) (4.27)

with 𝜏 = 𝑚𝑎𝑥 (𝜏𝐴, 𝜏𝐵).
Here it is important to state, that this bound is independent of the actual reason for the

predictability. It can be due to electrical noise and other technical imperfections as assumed
in this experiment (Sec. 4.1.2), due to history dependence, e.g., next neighbor correlations.
In and case the LHV theories allowing for a prediction of the physical process in the random
number generators would utilize it for the generation of output values, yet, would be always
bound by (4.27).

Calculation of the 𝑝 value with partially predictable inputs

With this updated bound a new MDS can be derived from (4.21)

̃𝑍±
𝑖, = 4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 − (2 + 8 (𝜏 − 𝜏2))

8
with 𝑎 = 3/4 + 𝜏 − 𝜏2 and ̄𝑎 = 1/4 − 𝜏 + 𝜏2. Setting 𝑡 = 𝛿𝑚 − 𝜏 + 𝜏2 leads than to a new bound
for a certain 𝑆𝑚 or a higher one

𝑃𝑟 (𝑆 ≥ 𝑆𝑚) ≤ 𝑝𝑚 = ⎛⎜⎜
⎝

(
3/4+𝜏−𝜏2

3/4 + 𝛿𝑚
8

)
3/4+ 𝛿𝑚

8

(
1/4−𝜏+𝜏2

1/4 − 𝛿𝑚
8

)
1/4− 𝛿𝑚

8 ⎞⎟⎟
⎠

𝑁

(4.28)

This is an upper bound of the 𝑝 value of the hypothesis test.

4.2.2. Bound derived from a non-local game

For this approach the Bell test is formulated as a game. Alice and Bob have to generate
correlated or anticorrelated outputs based on the inputs given. They win a round if they
produce the right correlation for the given inputs. The challenge of the game is that each
party only knows its local input in each round [84]. To design a game for the CHSH inequality
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(3.1) one defines the winning correlations as the ones that would lead to 𝑆𝑖−1 ≤ 𝑆𝑖 for the
𝑖-th event in a Bell test. Using (4.9) and (4.10) one can define a winning function

𝑤±
𝑖 = 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 + 1

2
for 𝐻𝑖 = ±1 and a winning function for both 𝐻𝑖 combined

𝑤𝑐𝑜𝑚𝑏𝑜
𝑖 = 1 + 𝐻𝑖

2
𝑔+ (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 + 1

2 + 1 − 𝐻𝑖
2

𝑔− (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 + 1
2

𝑤±,𝑐𝑜𝑚𝑏𝑜
𝑖 is 1 if the game is won and otherwise 0.

𝑊 ± =
𝑁

∑
𝑖=1

1 ± 𝐻𝑖
2 𝑤±

𝑖

and

𝑊𝑐𝑜𝑚𝑏𝑜 =
𝑁

∑
𝑖=1

𝑤𝑐𝑜𝑚𝑏𝑜
𝑖

count the rounds won by Alice and Bob. For local-realistic theories the wining probabilities
in each round 𝑃𝑟 (𝑤±

𝑖 = 1) and 𝑃𝑟 (𝑤𝑐𝑜𝑚𝑏𝑜
𝑖 = 1) is bounded by

𝑃𝑟 (𝑤±
𝑖 = 1) , 𝑃𝑟 (𝑤𝑐𝑜𝑚𝑏𝑜

𝑖 = 1) ≤ 3/4 (4.29)

yielding the null hypothesis [17]. For example 𝑃𝑟 (𝑤±
𝑖 ) = 3/4 is true for deterministic LHV

models as presented in (Tab 3.4): in three out of four cases 𝑤+
𝑖 = 1. Considering partially

predictable inputs as in (4.25) and (4.26) the probability of winning in each round is

𝑃𝑟 (𝑤±
𝑖 = 1) , 𝑃𝑟 (𝑤𝑐𝑜𝑚𝑏𝑜

𝑖 = 1) ≤ 3/4 + (𝜏 − 𝜏2) = 𝜉 (4.30)

with 𝜏 = 𝑚𝑎𝑥 (𝜏𝐴, 𝜏𝐵). With this it is possible to bound the probability of winning at least
𝑊 times in 𝑁 rounds

𝑃 (𝑊, 𝑁) ≤ 𝑝𝑔 =
𝑁

∑
𝑗=𝑊

( 𝑁
𝑗 ) 𝜉𝑗 (1 − 𝜉)𝑁−𝑗 . (4.31)

This is an upper bound for the 𝑝 value of the hypothesis test.
The total number of is are connected to the S value (4.12) via

𝑆± + 4
8 = 1

±𝑁

±𝑁
∑
𝑖=1

4 ⋅ 𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 + 4
8

= 1
±𝑁

±𝑁
∑
𝑖=1

𝑔± (𝐴𝑖, 𝐵𝑖) 𝑋𝑖𝑌𝑖 + 1
2

= 𝑊 ±

±𝑁 . (4.32)

For fixed 𝑁 (4.32) is a bijective and strictly monotonically increasing function thus an upper
bound for 𝑃𝑟 (𝑆 ≥ 𝑆𝑚) is also a bound for 𝑃𝑟 (𝑊 ≥ 𝑊𝑖) and vice versa.
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4.2.3. Applying the hypothesis test

This evaluation method is designed for an experiment using CHSH’s scenario (Fig. 3.1) with a
relatively unbiased and unpredictable input selection. The maximal allowed bias is 1−√2

√
2

2 ≈
0.117. A higher bias, i.e., predictability 𝜏 , would allow local-realistic theories to violate
the Tsirelson Bound 3.10 for the modified CHSH inequality (4.12) as well as to surpass the
correspondent winning probability for the non-local game (4.30). Therefore, in case of such
a high bias (4.28) and (4.31) yield a 𝑝 close or equal to 1 even for an experiment employing
a perfectly entangled Bell-state and perfect measurements. This susceptibility to bias is a
specific problem of the presented methods to estimate 𝑝. The unmodified CHSH inequality
(4.11) is actually robust against biased input choices if the bias is constant and a method to
estimate 𝑝 in cases of high, but constant bias can be found in the supplemental materials of
[41, 42].

In the presented experiment the bias and predictability of the employed QRNGs are far
below the critical value of 0.117 (Sec 4.1.2), thus the presented methods to estimate 𝑝 can be
used. Both bounds (4.31) and (4.28) are a bound of the same underlying 𝑝 value and thus one
can freely chose between them. Even after the experiment it is possible since the underlying 𝑝
is not changed by the choice of the bound. (4.31) is a tighter bound for 𝑝 but for many events
(large 𝑁) the computation can become very time-consuming, so the choice depends on how
much computational power and time are available. In this work both bounds are calculated
to compare to other experiments employing different methods of bounding 𝑝. Since 𝑝𝑔 is the
more accurate bound, the null hypothesis is judged on it.

4.3. Avoiding expectation bias

A scientific experiment consists of both empiric data collection and inference based on these
data. Each part should be done as impartially as possible in order to allow for meaningful
results. This might seem obvious, but it can happen very easily that an experimenter uninten-
tionally biases an experiment towards his or hers expectation, e.g., by stopping an experiment
when the expected result occurs, or when an experiment is optimized and repeated several
times and finally, just one measurement run with the expected result is taken into account.
A collection of experiments in which such problems occurred can be found in [14].

To avoid such an expectation bias, rules for conducting the Bell test in this work are set:
• The number of events to be collected is fixed before an experimental run

• The measurement procedure, including all acceptance time windows, is defined before-
hand.

• The analysis method is chosen before the experiment.

• The maintenance for the setup is performed once every 24 hours (morning). It is limited
to:

– adjustment of the laser system (optical powers and frequency stabilization)
– check of the compensation of the magnetic field
– minimizing the polarization rotation in the fiber components guiding the single

photons and checking the automatized polarization compensation procedure of the
700 m long fiber connecting trap 2 to the BSM.

76



𝑁 𝑃𝑚 𝑝𝑔 𝑇𝐷
500 ≈ 0.45 ≈ 0.12 ≈ 4.1 h
1000 ≈ 0.20 ≈ 0.04 ≈ 8.2 h
2500 ≈ 0.02 ≈ 2.5 ⋅ 10−3 ≈ 21 h
5000 ≈ 3 ⋅ 10−4 ≈ 3 ⋅ 10−5 ≈ 44 h
10000 ≈ 9 ⋅ 10−8 ≈ 6.6 ⋅ 10−9 ≈ 89 h
20000 ≈ 8 ⋅ 10−15 ≈ 4.2 ⋅ 10−16 ≈ 181 h

Table 4.2.: Expected duration 𝑇𝐷 and 𝑝 depending on the total number of events 𝑛 for 𝑆 = 2.2.

– UV-cleaning the CEM setup in trap 2 (Appendix F)

• Events are only excluded from the evaluation in three cases:
1. Malfunction of the CEMs: The voltage supplies of the CEMs shut down in the

case of over-current, e.g., during of a sparkover.
2. Jump of the frequency of one of the stabilized lasers.
3. During maintenance no events are counted and all data is excluded.

The CEM voltage supplies and the laser frequencies are monitored during the experiment
with cameras. They enable to register the exact timing of a shut down or a frequency jump
and inform the experimenter of the malfunction. This allows to exclude the data collected
until the problem is solved manually.

4.4. Experimental violation of Bell’s inequality

Before conducting an experiment under the rules set in Section 4.3 the total number of events
𝑁 for a run has to be fixed. Considering an expected 𝑆 ≈ 2.20 as in previous experiments
[32], a run that can yield a 𝑝 with a comparable confidence to a 5𝜎 ≈ 5.75 ⋅ 10−5 confidence
level needs a total number of events 𝑁 of ca 5000 (Fig .4.9 and Tab. 4.2). For this experiment
±𝑁 = 5000 for each of the two Bell states Ψ+ and Ψ− is chosen leading to a total number of
𝑁 = 10000 events. With an expected average rate of 120 events per minute this will lead to
a measurement duration of 𝑇𝐷 ≈ 89 h ≈ 4 days already including daily maintenance of 2 h.
This is only a rough estimate, 𝑇𝐷 depends not only on the loading rate and life time of atoms
in each trap, but also possible detector or laser malfunctions might increase it.

First runs

Since a full run with 10000 events has a duration of several days a highly stable performance
of the experiment is necessary to execute such a run. The first runs in November 2015
where considering only the first events gave a clear violation of Bell’s inequality yet, the
stability of the system over a longer time was not yet possible. Temperature fluctuations in
the laboratories as well as a changing MOT coil temperature between the trap calibration
measurement and atom-atom entanglement creation lead to polarization and magnetic field
drifts. Nevertheless, the first sign of a violation of the CHSH inequality could be shown on
November 27th 2015 after 300 events with an 𝑆 = 2.415 ± 0.185 calculated via (3.1) and (3.2)
(Supplement material of [60]).
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Figure 4.9.: Expected duration 𝑇𝐷 (blue) and 𝑝𝑚 (4.28) (red) 𝑝𝑔(4.31) (green) depending on
the total number of events 𝑁 for 𝑆 = 2.2. The dashed black line is the 5𝜎
confidence level for the 𝑝 value.

4.4.1. Runs with 10000 events

After improving the overall temperature stability in the trap setups [37], introducing a mag-
netic field offset between single trap calibration measurements and two trap operation, and
better cooling of the single atom in the trap [38], the required long term stability and perfor-
mance was possible to measure a complete run.

First complete run with 10000 events

The first full run that strictly followed all rules defined in Section 4.3 was started on April 15th
2016. Over a period of 90 h ±𝑁 = 5000 events for both states Ψ± were collected. It showed a
violation of the CHSH inequality with 𝑆 = 2.204±0.047 for Ψ+, 𝑆 = 2.240±0.047 for Ψ−, and
𝑆 = 2.221±0.033 for both combined (Tab. 4.3). The hypothesis test yields a 𝑝+ ≤ 2.643⋅10−5

for Ψ+, 𝑝− ≤ 7.397 ⋅ 10−7 for Ψ−, and 𝑝 ≤ 1.739 ⋅ 10−10 (game formalism (4.31)) for both
combined leading to a rejection of local-realism under the few residual assumptions stated in
Section 4.1.3.

“Live” run with 10000 events

To confirm and strengthen these results, a second full run was started on June 14th 2016.
This run did not only follow the rules defined in Section 4.3 but was additionally publicly
announced via twitter and on a conference. Everyone could follow the experiment online. In
this run, the event rate was lower and the 10000 events were collected over a time period of
10 days. The reason for the lower event rate was a lower loading rate and shorter trapping
time of the atoms. The run resulted in 𝑆 = 2.057 ± 0.048 for Ψ+, 𝑆 = 2.134 ± 0.048 for Ψ−,
and 𝑆 = 2.096 ± 0.034 for both combined (Tab. 4.4). The hypothesis test yields a 𝑝+ ≤ 0.13
for Ψ+, 𝑝− ≤ 2.752⋅10−3 for Ψ−, and 𝑝 ≤ 2.818⋅10−3 for both combined. These results violate
Bell’s inequality but not as significantly as the run from April 15th. The main reasons for
the lower 𝑆 are higher fluctuations of the temperature during the run, which lead to stronger
drifts over the longer measurement duration. Still, the hypothesis test for the combined value
leads to a rejection of local-realism.
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Input ++ +− −+ −− 𝑁𝑋=𝑌 𝑁𝑋≠𝑌 𝑁𝑡𝑜𝑡𝑎𝑙 𝐸𝑎,𝑏
𝐴 = 1, 𝐵 = 1 489 160 182 443 932 342 1274 0.463 ± 0.025
𝐴 = 1, 𝐵 = 0 134 499 513 117 251 1012 1263 −0.603 ± 0.022
𝐴 = 0, 𝐵 = 1 135 471 507 107 242 978 1220 −0.603 ± 0.023
𝐴 = 0, 𝐵 = 0 154 483 471 135 289 954 1243 −0.535 ± 0.024

total 5000 𝑆 = 2.204 ± 0.047
(a) Data for the Ψ+state

Input ++ +− −+ −− 𝑁𝑋=𝑌 𝑁𝑋≠𝑌 𝑁𝑡𝑜𝑡𝑎𝑙 𝐸𝑎,𝑏
𝐴 = 1, 𝐵 = 1 172 439 483 130 302 922 1244 −0.507 ± 0.025
𝐴 = 1, 𝐵 = 0 535 115 128 461 996 243 1239 0.608 ± 0.023
𝐴 = 0, 𝐵 = 1 122 492 510 117 239 1002 1241 −0.615 ± 0.022
𝐴 = 0, 𝐵 = 0 168 443 536 149 317 979 1296 −0.511 ± 0.024

total 5000 𝑆 = 2.240 ± 0.047
(b) Data for the Ψ−state

state 𝑆𝑚 𝑝𝑚 𝑊 𝑝𝑔
Ψ+ 2.2016 ≤ 2.611 ⋅ 10−4 3876 ≤ 2.643 ⋅ 10−5

Ψ− 2.2384 ≤ 8.444 ⋅ 10−6 3899 ≤ 7.397 ⋅ 10−7

Ψ+&Ψ− 2.22 ≤ 2.569 ⋅ 10−9 7775 ≤ 1.739 ⋅ 10−10

(c) Result of the hypothesis test

Table 4.3.: Experimental data of the run started at April 15th 2016

79



Input ++ +− −+ −− 𝑁𝑋=𝑌 𝑁𝑋≠𝑌 𝑁𝑡𝑜𝑡𝑎𝑙 𝐸𝑎,𝑏
𝐴 = 1, 𝐵 = 1 506 158 127 489 995 285 1280 0.555 ± 0.025
𝐴 = 1, 𝐵 = 0 161 441 427 173 334 868 1202 −0.478 ± 0.022
𝐴 = 0, 𝐵 = 1 144 482 450 185 329 932 1261 −0.444 ± 0.023
𝐴 = 0, 𝐵 = 0 118 483 510 146 264 993 1257 −0.555 ± 0.024

total 5000 𝑆 = 2.057 ± 0.048
(a) Data for the Ψ+state

Input ++ +− −+ −− 𝑁𝑋=𝑌 𝑁𝑋≠𝑌 𝑁𝑡𝑜𝑡𝑎𝑙 𝐸𝑎,𝑏
𝐴 = 1, 𝐵 = 1 104 523 484 132 236 1007 1243 −0.620 ± 0.022
𝐴 = 1, 𝐵 = 0 431 159 160 454 885 319 1204 0.470 ± 0.026
𝐴 = 0, 𝐵 = 1 162 466 410 207 369 876 1245 −0.407 ± 0.026
𝐴 = 0, 𝐵 = 0 133 533 537 105 238 1070 1308 −0.636 ± 0.021

total 5000 𝑆 = 2.134 ± 0.048
(b) Data for the Ψ−state

state 𝑆𝑚 𝑝𝑚 𝑊 𝑝𝑔
Ψ+ 2.0608 ≤ 0.52 3788 ≤ 0.13
Ψ− 2.1408 ≤ 0.02 3838 ≤ 2.752 ⋅ 10−3

Ψ+&Ψ− 2.1008 ≤ 0.021 7626 ≤ 2.818 ⋅ 10−3

(c) Result of the hypothesis test

Table 4.4.: Experimental data of the run started at June 14th 2016
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Input ++ +− −+ −− 𝑁𝑋=𝑌 𝑁𝑋≠𝑌 𝑁𝑡𝑜𝑡𝑎𝑙 𝐸𝑎,𝑏
𝐴 = 1, 𝐵 = 1 2696 966 902 2453 1868 5149 7017 0.486 ± 0.011
𝐴 = 1, 𝐵 = 0 873 2686 2644 730 1603 5330 6933 −0.538 ± 0.010
𝐴 = 0, 𝐵 = 1 809 2629 2708 816 1625 5337 6962 −0.533 ± 0.010
𝐴 = 0, 𝐵 = 0 778 2621 2770 804 1582 5391 6973 −0.546 ± 0.010

total 27885 𝑆 = 2.085 ± 0.020
(a) Data for the Ψ+state

Input ++ +− −+ −− 𝑁𝑋=𝑌 𝑁𝑋≠𝑌 𝑁𝑡𝑜𝑡𝑎𝑙 𝐸𝑎,𝑏
𝐴 = 1, 𝐵 = 1 865 2620 2640 791 1656 5260 6916 −0.521 ± 0.010
𝐴 = 1, 𝐵 = 0 2783 787 840 2503 5286 1627 6913 0.529 ± 0.010
𝐴 = 0, 𝐵 = 1 696 2570 2788 772 1468 5358 6826 −0.570 ± 0.010
𝐴 = 0, 𝐵 = 0 817 2596 2873 742 1559 5469 7028 −0.556 ± 0.010

total 27683 𝑆 = 2.177 ± 0.020
(b) Data for the Ψ−state

state 𝑆𝑚 𝑝𝑚 𝑊 𝑝𝑔
Ψ+ 2.0841 ≤ 6.448 ⋅ 10−4 21207 ≤ 6.538 ⋅ 10−5

Ψ− 2.1765 ≤ 8.932 ⋅ 10−16 21373 ≤ 4.527 ⋅ 10−17

Ψ+&Ψ− 2.1301 ≤ 1.014 ⋅ 10−16 42580 ≤ 4.891 ⋅ 10−18

(c) Result of the hypothesis test

Table 4.5.: Experimental data from all runs between November 27th 2015 and June 24th 2016

4.4.2. Evaluation of all collected events and further analysis

In the 7 month between November 27th 2015 and June 24th 2016 a total 55568 valid events
were collected. Events were only discarded in case of an objective criteria from Section 4.3
or other clear experimenter mistake, e.g., read-out beam path blocked. These combined runs
showed a violation of 𝑆 = 2.085±0.020 for Ψ+, 𝑆 = 2.177±0.020 for Ψ−, and 𝑆 = 2.130±0.014
for both combined (Tab. 4.5). Since the events were only discarded based on objective criteria
a hypothesis test is possible yielding 𝑝 ≤ 4.891 ⋅ 10−18 for both states combined leading to a
very strong rejection of local-realism.

Test for correlation between remote inputs and signaling

The independence of the measurements in Lab 1 and Lab 2 are ensured by space-like separa-
tion and random input choices. To test if there are still possible signs of correlation between
the random inputs or signaling from one side (Alice) of the experiment to the other (Bob)
during the measurement, which would make the test of local-realism void [106, 107], a possible
correlation between the inputs generated by the QRNGs as well as possible dependence of
the local measurement outcomes on the remote inputs are investigated.

Independence of inputs Averaged over all 55568 events the probabilities for 𝐵𝑖 = 0 conditio-
ned on 𝐴𝑖 are 𝑃𝑟 (𝐵𝑖 = 0|𝐴𝑖 = 0) = 0.5038±0.0030 and 𝑃𝑟 (𝐵𝑖 = 0|𝐴𝑖 = 1) = 0.4984±0.0030.
These shows no significant derivation from the expected 𝑃𝑟 (𝐵 = 0) = 0.5. The same is true
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if 𝐴𝑖 is conditioned on 𝐵𝑖.
For a test of a possible time dependent correlation of 𝐴𝑖 and 𝐵𝑖 the 55568 events are split

in interval of 500 events5 and the frequency of 𝐵𝑖 = 0 for 𝐴𝑖 = 0 and 𝐴𝑖 = 1 are compared in
a chi-squared test. The test statistic has the form

𝜒2 =
112
∑
𝑘=1

(𝑛𝑘,0 − 𝐸 (𝑛𝑘,0))2

𝐸 (𝑛𝑘,0) +
112
∑
𝑘=1

(𝑛𝑘,1 − 𝐸 (𝑛𝑘,1))2

𝐸 (𝑛𝑘,1)
where 𝑘 is the number of the interval,

𝑛𝑘,0 = ∑
𝑖∈𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝛿(𝐴𝑖)𝛿(𝐵𝑖),

is the sum of the inputs 𝐵𝑖 = 0 in the interval conditioned on 𝐴 = 0 and

𝑛𝑘,1 = ∑
𝑖∈𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝛿(1 − 𝐴𝑖)𝛿(𝐵𝑖)

is the sum conditioned on 𝐴 = 1.

𝐸 (𝑛𝑘,0) = ∑
𝑖∈𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝛿(𝐴𝑖) ⋅ 1
2

and

𝐸 (𝑛𝑘,1) = ∑
𝑖∈𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝛿(1 − 𝐴𝑖) ⋅ 1
2

are the theoretically expected values for independent and nearly perfect QRNGs .
For 112 intervals the test yields a 𝜒2 = 100.8 representing a 𝑝 > 0.695 for 111 degrees of

freedom. This does not allow to reject the null hypothesis that the inputs are independent
from each other. Thus there is no reason to suspect any dependence of 𝐴𝑖 on 𝐵𝑖 or vice versa.

No signaling The space-like separation of the measurements including the random input
choice is used to enforce independent local measurements. To test, if this no signaling as-
sumption one can test the independence of the results in one device 𝑋𝑖 respectively 𝑌𝑖 from
the the inputs at the other device 𝐵𝑖 respectively 𝐴𝑖. For this task a chi-squared test is
employed in a similar manner as for the test of independent inputs above. For this test one
has to consider that the ionization probabilities might be different for the two states as well
as for the two different measurement settings. To exclude an interference of such effects the
55568 events are first split into the two prepared states Ψ+and Ψ− and the two measurement
settings. Since there are two possible dependencies 𝑋𝑖 on 𝐵𝑖 and 𝑌𝑖 on 𝐴𝑖, each event is used
in two independent tests (Tab. 4.6). These test show no sign of signaling and the 𝑝 values are
far from a possible rejection of the no signaling hypothesis. Also further tests with 500 event
intervals show no sign of a no signaling violation.

The analysis of independent random numbers and no signaling shows no anomalies. The-
refore, there is no reason to doubt the space-like separation of the measurements or the
independence of the QRNGs. A comparable analysis with the same result based on slightly
different statistical tests can be found in the supplement of [60]. There each of the experimen-
tal runs is individually tested for independent random numbers as well as signs of signaling.
These tests show also no significant deviation from the null-hypothesis of independent random
numbers and no-signaling.

5The last 68 interval has only 68 events
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𝑋 = −1 𝑋 = +1 total 𝜒2 𝑝

𝐴 = 0
𝐵 = 0 3574 3399 6973

0.07 0.79𝐵 = 1 3524 3438 6962
total 7098 6837 13935

𝐴 = 1
𝐵 = 0 3374 3559 6973

0.13 0.72𝐵 = 1 3355 3662 6962
total 6729 7221 13950

(a) Test for 𝑋𝑖 depending on 𝐵𝑖 for Ψ+

𝑋 = −1 𝑋 = +1 total 𝜒2 𝑝

𝐴 = 0
𝐵 = 0 3615 3413 7028

0.09 0.76𝐵 = 1 3560 3266 6826
total 7175 6679 13854

𝐴 = 1
𝐵 = 0 3343 3570 6913

028 0.60𝐵 = 1 3431 3485 6916
total 6774 7055 13829

(b) Test for 𝑋𝑖 depending on 𝐵𝑖 for Ψ−

𝑌 = −1 𝑌 = +1 total 𝜒2 𝑝

𝐵 = 0
𝐴 = 0 3425 3548 6973

0.01 0.92𝐴 = 1 3416 3517 6933
total 6841 7065 13906

𝐵 = 1
𝐴 = 0 3445 3517 6962

0.10 0.75𝐴 = 1 3419 3598 7017
total 6864 7115 13979

(c) Test for 𝑌𝑖 depending on 𝐴𝑖 for Ψ+

𝑌 = −1 𝑌 = +1 total 𝜒2 𝑝

𝐵 = 0
𝐴 = 0 3338 3690 7028

10−3 0.97𝐴 = 1 3290 3623 6913
total 6628 7313 13854

𝐵 = 1
𝐴 = 0 3342 3484 6826

0.02 0.89𝐴 = 1 3411 3505 6916
total 6753 6989 13742

(d) Test for 𝑌𝑖 depending on 𝐴𝑖 for Ψ−

Table 4.6.: No signaling test: categories and results for all 55568 events.
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5. Addressing Assumptions for the Choice of
Random Inputs

Two out of the four assumptions made to derive the local-realistic bound for the CHSH
inequality (Sec. 3.2.1), consider the independence and unpredictably of the inputs. In an
experiment without such inputs the freedom of choice loophole (Sec. 3.3.1) is open. To account
for this in the experiment presented in Chapter 4 two physical random number generators
(QRNG) (Sec. 4.1.2) are used. In the other Bell test experiments [18, 19, 20] also quantum
random number generators [99] are employed for that task.

The use of the physical QRNGs replaces the two assumptions from Section 3.2.1 with
the assumption that the QRNG creates independent and unpredictable random bits. This as-
sumption is based on a physical model of the QRNG and thus it ultimately rests on a physical
theory. For the QRNGs used for the experiment in Chapter 4 this is photon counting theory
[39, 101], while the ones used for [18, 19, 20] are based on phase differences between indepen-
dent laser pulses [108]. Furthermore, to estimate a predictability technical imperfection, e.g.,
electrical noise, are used.

Even though, the physical theories that allow for the random bit generation are well es-
tablished, one can think of a underlying local-realistic theory in which a set of LHVs 𝜆𝑖
determines both the outputs of the RNGs 𝐴𝑖 (𝜆𝑖) and 𝐵𝑖 (𝜆𝑖) and the measurement results
𝑋𝑖 (𝐴𝑖, 𝜆𝑖), 𝑌𝑖 (𝐵𝑖, 𝜆𝑖) on the particle pairs depending on the input. Also theories in which the
the outputs of the QRNGs 𝐴𝑖 (ℎ𝑖) , 𝐵𝑖 (ℎ𝑖) and the LHVs 𝜆𝑖 (ℎ𝑖) depend on a common past
ℎ𝑖 are possible. Therefore, these theories cannot be tested by an experiment using random
number generators.

5.1. Separating input generation from the experiment

One way to increase the amount of tested LHVs theories, while additionally reducing the
plausibility of the not tested theories, one can spatially separate the input generation from
the rest of the experiment. Of special concern here is separation of the QRNGs from the
generation of the entangled particle pairs. In experiments using photon pairs the pair source
was set up at least 29 m [19] respectively 126.2 m [20] from the measurement devices and
the random number generators. This allowed for a space-like separation of the photon pair
creation and the random input generation. Thus, theories in which the LHVs 𝜆𝑖 determining
the measurement results 𝑋𝑖 (𝐴𝑖, 𝜆𝑖), 𝑌𝑖 (𝐵𝑖, 𝜆𝑖) are fixed when the particle pair can be tested.
Moreover, placing the QRNGs in a completely different room at another end of a more than
100 m long building as done in [20] reduces the plausibility for a theory connecting the devices.

For experiments using stationary particles and entanglement swapping, defining a single
point in space-time of the entanglement creation, is hardly possible. The LHVs at the statio-
nary particles determining the measurement results 𝑋𝑖 (𝐴𝑖, 𝜆𝑖), 𝑌𝑖 (𝐵𝑖, 𝜆𝑖) must be set before
the entanglement swapping. To space-like separate the random number generation and pair
creation one has to place the RNGs at a different place as Alice respectively Bob (Fig. 5.1).
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Figure 5.1.: Possible setup for a Bell test experiment using stationary qubits and entanglement
swapping with space-like separated random input generation: Alice and Bob
hold each a stationary qubit and are connected via glass fibers to the Bell state
measurement (BSM) setup. They create entanglement between their stationary
qubits and photons which are then send via the fiber link to the (BSM) for
entanglement swapping. The inputs for Alice and Bob are generated in the two
remote RNGs and are send via a radio connection to the measurement devices.

Depending on the actual experimental scheme it might be necessary to implement a free
space connection, e.g., via radio between the QRNGs and the measurement devices to allow
for space-like separation.

“Cosmic” Bell test experiments

The space-like separation of the pair generation and input generation limits the possible form
of the underlying local realistic-theory. However, theories in which the LHVs determining the
the measurement outcomes are set before the pair generation are still possible. The same
is true for theories allowing for a common history dependence of random inputs and LHVs.
Increasing the distance between the input generation and the measurement devices reduces the
possibilities for such theories. To maximize this distance, it was proposed to utilize photons
stemming from distant stars for the random input selection [40]. The first Bell test experiment
closing the locality loophole while using photons from stars, which are roughly 600 ly away
from the sun, was performed in Vienna in 2016 [41]. Yet, this experiment did not close the
detection loophole. To further expand the distance, a similar experiment was conducted on
La Palma in 2018. It utilized the William Herschel Telescope and the Telescopio Nazionale
Galileo for collecting photons from quasars, which emitted the light 7.78 ⋅ 109 yr respectively
12.21 ⋅ 109 yr ago [42]. In this experiment a history influencing the input choices would need
to reach 13.15 ⋅ 109 yr into the past. Furthermore, in 2018 an Bell text experiment, which
additionally to the locality loophole also closed the detection loophole, while using photons
from stars at a distance of at least 11.4 ly was performed in Shanghai [43].

These experiments limit the possible LHV theories to those allowing for a common history
dependence. In in the loophole free case the common history needs to include more than a
decade, while in the case of the detection loophole open the common history must start close
to the beginning of the Universe. One can consider performing a loophole free experiment
using inputs stemming from quasars for an otherwise loophole free Bell test experiment. This
will maximize the time constraint on for all LHV theories.
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5.2. Human free will as sources for randomness: “The Big Bell Test”

The random number generators and also the randomness from photons emitted by stars
are a technical approach to create random inputs. At the end there is always a physical
theory used to verify the claim of random inputs. These physical theories are well established
and trusted, but ultimately they cannot be proven. To address this one can try to take a
completely different approach to provide independent and unpredictable inputs : the human
free will [44].

Free will is a metaphysical concept as such it cannot be proven, either. Using input choice
made by humans allow to test LHVs theories that allow for humans to decide between "0" and
"1" independently from any experiment. This excludes only LHV theories that do not allow
for an independent human decision. To test such theories, which restrict the human free will,
is anyhow hardly possible for a human.

The work presented in this section was done in collaboration with many experimenters from
around the world in the “BIG Bell Test Collaboration” (https://thebigbelltest.org) [45]. This
collaboration was initiated and managed by the group of Morgan W. Mitchell from ICFO,
Barcelona. The goal was to perform multiple independent Bell experiments simultaneously,
while their settings are chosen by human participants around the world via a browser game.
The BIG Bell Test was conducted on November 30th 2016 and in total 13 experiments in
12 different laboratories on five continents were conducted, while the participants generated
97347490 random bits. These bits were collected at the ICFO and rerouted to the single
experiments on request during that time. A description on how the human made bits were
collected and the results of the experiments can be found in [45]. A detailed description of
every experiment is presented in its supplementary information.

5.2.1. The Munich contribution

The Munich contribution to the the Big Bell Test is a Bell test based on atom-photon en-
tanglement. The goal of the experiment is to test local-realistic theories using human made
input and inputs originated from a random number generator in one measurement run.

Bell test with entangled atom-photon pairs

The experiment is based on entanglement between a single atom in trap 2 and a photon
emitted by it (Sec 2.3.1). The atom-photon state can be written in the atomic qubit bases as
shown in Appendix C (C.2) as

|Ψ⟩𝐴𝑃 = 1√
2

(|H⟩| ↓⟩𝑥 + |V⟩ |↑⟩𝑥) (5.1)

= 1√
2

(|+⟩| ↓⟩𝑦 + |-⟩| ↑⟩𝑦)

The experimental scheme is as follows: after trapping and cooling one atom in trap 2 (Bob)
the atom is prepared and then excited to emit a single photon. This photon is guided via
the 700 m long optical fiber to the photon analysis setup (Alice) in Lab 1 (Fig. 5.2). Due to
the low probability of 𝜂 ≈ 0.8h to detect a single photon after an excitation attempt, the
preparation and excitation is repeated rapidly and interrupted by a cooling period every 40
excitation attempts. The detection of a single photon emitted by the atom in trap 2 interrupts
the excitation process and triggers the state read-out of the atom (Fig. 5.3).

86

https://thebigbelltest.org


(a) Setup for Bell test with atom-photon entanglement: The single atom is trapped in trap 2 (Bob) and
its emitted photon is guided via the 700 m long fiber to the photon analysis (Alice) in Lab 1. The
input choice is done by a fiber beam splitter with different polarization analysis at each output port.
A detection of a single photon is registered by an FPGA that triggers the atomic state read out. The
atomic input choice is determined by a human random bit (hrn1) that chooses via a mulitplexer (MUX)
between another human random bit (hrn2) or a bit from the QRNG. Depending on this input one of
two AOMs creates a read-out pulse with a polarization 𝜒0 or 𝜒1. The input choices and measurement
outcomes are stored in an local storage in Lab 1.

(b) Location of Lab 1 with the photon analysis, Lab 2 with the atom trap, and the connecting fiber channel.
Map data provided by the Bayerisches Landesamt fuer Digitalisierung, Breitband und Vermessung.

Figure 5.2.: Atom-photon Bell test setup and Map for The BIG Bell Test. 87



Figure 5.3.: Experimental Sequence for the atom-photon Bell test experiment: After trapping
a single atom in trap 2 the preparation and excitation sequence is started. It is
repeated until a photon detection in the 208 ns long acceptance time window
(yellow) after an excitation (orange) ocured. Since the photons are detected in
the photon analysis setup in lab 1 a total waiting time for the detection signal
of 7.3 µs is necessary after each excitation pulse. After 40 excitation tries 350 µs
cooling is performed before continuing with the sequence. In the case of a photon
detection the atomic state measurement is performed after an extra waiting time
for the atomic state rephasing (Fig. 2.13b).

Measurement of the photon The photon analysis setup is the same setup used for BSM
(Fig. 2.15). When used for one photon only the BSM setup is a polarization measurement
with four detectors. To enable two different measurement settings (Tab 5.1a) a half-wave
plate at 22.5∘ is placed between one output of the fiber beam splitter and the polarizing beam
splitter in that arm (Fig. 5.2a). Therefore, the measurement choice for the photon is passive
and not based on an explicit input. The inputs and results are defined by which SPCM
detects the photon: the 𝑉 detector yields 𝐴 = 0 and 𝑋 = −1, the 𝐻 detector yields 𝐴 = 0
and 𝑋 = +1, the + detector yields 𝐴 = 1 and 𝑋 = +1, and the − detector yields 𝐴 = 1 and
𝑋 = −1.

Measurement of the atom The measurement of the atom is performed with the selective
ionization based read-out scheme (Sec. 2.3.2). The settings from Table 5.1b are chosen using
two beam paths and AOMs as described in Section 4.1.1 and the decision whether the atom
was ionized is on fluorescence collection. The special part here is the input choice: to compare
the input choice by humans to the one of the QRNG (Sec. 4.1.2), a human made random
bit (hrn1) is used to decide whether a second human made random bit (hrn2) or random bit
from the QRNG should be the input. With this one receives two randomly selected data sets
that are measured in one experimental run. To implement this scheme a multiplexer (MUX)
is used for a fast selection of the input source based on hrn1 as shown in the light blue box
in Figure 5.2a.

5.2.2. Experimental Results “Humans vs QRNG”

In the time period between 14:30 November 30th 2016 and 03:50 December 1st 2016 59330
random bits made by humans were received from the BIG Bell Test server. This allowed to
measure in total 39614 events (Tab. 5.2c). For 19716 events the input was chosen by human
made random bits (Tab. 5.2a) and for 19898 events the input was chosen by the QRNG
(Tab. 5.2b).
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Setting measurement operator polarization analysis result

𝐴 = 0 ̂𝐴0 = 𝜎𝑥 |𝑉 ⟩, |𝐻⟩ 𝑉 = −1, 𝐻 = +1
𝐴 = 1 ̂𝐴1 = 𝜎𝑦 |+⟩, |−⟩ + = −1, − = +1

(a) Photonic measurement settings (Alice)

Setting measurement operator readout polarization 𝜒𝑟𝑜 𝛼 and 𝜙 in (2.7)

𝐵 = 0 𝐵̂1 = 1√
2 (𝜎𝑥 − 𝜎𝑦) 𝜒1 = cos (𝜋/8) 𝑉 − sin (𝜋/8) 𝐻 𝛼 = −22.5∘, 𝜙 = 0

𝐵 = 1 𝐵̂0 = 1√
2 (𝜎𝑥 + 𝜎𝑦) 𝜒0 = cos (𝜋/8) 𝑉 + sin (𝜋/8) 𝐻 𝛼 = 22.5∘, 𝜙 = 0

(b) Atomic measurement settings (Bob)

Table 5.1.: Definition of measurement settings for the Bell test experiment using atom-photon
entanglement.

Input ++ +− −+ −− 𝑁𝑡𝑜𝑡𝑎𝑙 𝐸𝐴,𝐵
𝐴 = 0, 𝐵 = 0 1745 297 347 2173 4562 0.718 ± 0.010
𝐴 = 0, 𝐵 = 1 1747 477 734 1963 4921 0.508 ± 0.012
𝐴 = 1, 𝐵 = 0 683 1570 1920 715 4888 −0.428 ± 0.013
𝐴 = 1, 𝐵 = 1 2247 215 391 2492 5345 0.773 ± 0.009

total 19716 2.427 ± 0.022
(a) Results for human made inputs

Input ++ +− −+ −− 𝑁𝑡𝑜𝑡𝑎𝑙 𝐸𝐴,𝐵
𝐴 = 0, 𝐵 = 0 1782 321 331 2372 4761 0.726 ± 0.010
𝐴 = 0, 𝐵 = 1 1685 452 728 1916 4781 0.506 ± 0.013
𝐴 = 1, 𝐵 = 0 714 1621 2007 766 5108 −0.421 ± 0.013
𝐴 = 1, 𝐵 = 1 1782 221 417 2428 5248 0.757 ± 0.009

total 19898 2.410 ± 0.022
(b) Results for inputs from the QRNG

Input ++ +− −+ −− 𝑁𝑡𝑜𝑡𝑎𝑙 𝐸𝐴,𝐵
𝐴 = 0, 𝐵 = 0 3527 618 678 4500 9323 0.722 ± 0.009
𝐴 = 0, 𝐵 = 1 3432 929 1462 3879 9702 0.507 ± 0.010
𝐴 = 1, 𝐵 = 0 1397 3191 3927 1481 9996 −0.424 ± 0.009
𝐴 = 1, 𝐵 = 1 4429 436 808 4920 10593 0.765 ± 0.006

total 39614 2.418 ± 0.018
(c) Results for all events during the BIG Bell test

Table 5.2.: Result from the Munich contribution to the BIG Bell Test.
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Bias in the input choices

The data collected shows a clear bias in the photon measurement input choice as well as in
the human chosen inputs. The bias in the photon input choice is observed in the whole data
(Tab. 5.2c): 20589 times 𝐴 = 1 and only 19025 𝐴 =0 and the estimate for 𝑃 (𝐴 = 1) = 0.52
this corresponds to a 7.81𝜎 deviation to an unbiased input with 𝑃 (𝐴 = 1) = 0.5. It is
independent from the atomic input choice as well as from the way it is chosen by humans or
the QRNG. This bias stems from two sources: first the fiber beam splitter diviates slightly
from a perfect 50/50 splitting ratio [67]. The second reason are differences in the detection
efficiencies of the SPCMs1.

The inputs chosen by humans show a bias of 𝑃 (𝐵 = 0) = 0.52. This is in agreement with
bias found during the analysis of all human made random bits from the BIG Bell Test [45]. The
analysis also showed a strong tendency towards alternation for humans generating random
bits (𝑃 ("1", "0") = 𝑃 ("0", "1") = 0.6406. The strong bias and high next neighbor correlations
of the human made random bits exceed the maximal predictability of 0.117 that is allowed
for the analysis method from Section 4.2. Thus, it cannot be used for the evaluation. In
stead the standard definition of 𝑆 (3.1) together with error estimation is used to evaluate the
data. For this method the values of the correlators 𝐸𝑎,𝑏 (3.2) are independent from the ratio
of the inputs. Therefore, 𝑆 is not effected by a constant bias. There are also other evaluation
methods allowing to deal with high bias of the inputs (Supplemental Material from [41]), but
for this not loophole free experiment with a large number of events 𝑁 calculating 𝑆 and its
standard deviation is sufficient for drawing conclusions.

Test of local realism

The data set with human input choices yielded 𝑆 = 2.427 ± 0.022, the data set with inputs
from the QRNG yielded 𝑆 = 2.410 ± 0.022, and both combined yield 𝑆 = 2.418 ± 0.018.
These results show a clear violation of the CHSH inequality (3.5) with a quite small standard
deviation and thus support for a rejection of local realism. The results for human choices
and for the QRNG inputs agree within the error margins. This was to be expected and also
agrees with the result of the experiment conducted by Liu et al. at the IQOQI in Vienna for
the BIG Bell test (experiment 4 in [45]).

All 13 experiments conducted during the BIG Bell test show results strongly supporting the
rejection of local-realism in many different physical systems. Off course one has to consider
that the experiments for the BIG Bell test, like this atom-photon Bell test experiment, are not
loophole free, yet the results are quite clear. The experiment conducted by Shalm et al. from
NIST in Boulder, Colorado2 (experiment 13 in [45]) closed the detection loophole and had
space-like separated measurements. But the human random bits were always generated before
and thus the input choice cannot be space like separated. The earth diameter of 12756 km
[109] is to small for space-like separation of human choices so closing the locality loophole
completely in an experiment using human made inputs is not possible on Earth and would
need a maned space mission.

1The detection efficiency of the detectors (Laser Components Count-10C) is in a range between 0.45 and
0.65.

2The same group performed the loophole free experiment [20].
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Figure 5.4.: Correlators for all events during the BIG Bell test from Table 5.2c. The red bars
represent positive values and the blue bar a negative value.

photon state |𝑝⟩ 𝑃 𝑟(|𝑝⟩) prepared atom state
|𝑉 ⟩ 0.264 ± 0.003 1√

2 (|1, −1⟩ + |1, +1⟩) = |↑⟩𝑥
|𝐻⟩ 0.216 ± 0.003 𝑖√

2 (|1, −1⟩ − |1, +1⟩) = |↓⟩𝑥
|+⟩ 0.281 ± 0.003 1√

2𝑒−𝑖 𝜋
4 (|1, −1⟩ + 𝑖|1, +1⟩) = |↓⟩𝑦

|−⟩ 0.239 ± 0.003 1√
2𝑒𝑖 𝜋

4 (|1, −1⟩ − 𝑖|1, +1⟩) = |↑⟩𝑦

Table 5.3.: Probabilities for the outcome of the photon projection measurement and the pre-
pared atomic state.

5.2.3. Model of the Bell test using atom-photon entanglement

The bias of the input selection is not the only noticeable feature of the collected data. There
are more anomalies that should be analyzed. The most obvious is that all four correlators 𝐸𝑎,𝑏
have significantly different absolute values (Fig. 5.4) as it would be expected from the atom-
photon state (5.1) and the settings (Tab. 5.1). This is not critical for a Bell test experiment
and a rotation of the prepared atom-photon state as well as errors in the polarization settings
for the read-out laser or the photon measurement are a possible explanation. However, in
this experiment the situation is a bit more complex.

Another more critical anomaly is a correlation of the photon input choice 𝐴 with the
measurement outcome of the atom 𝑌 . This is quite notable since the measurement of the
atoms should be independent from the measurement settings for the photon for both local-
realism as well as quantum mechanics. The reason for these anomalies is a combination of
experimental design and the state evolution of the atom caused by the magnetic field and the
optical dipole trap (Sec. 2.3.3).

Imperfections in the state measurement

The photon measurement (Fig. 5.2a and Tab. 5.1a) projects the photon onto one of the four
polarization states |𝑉 ⟩, |𝐻⟩, |+⟩, or |−⟩. For the entangled atom-photon state |Ψ⟩𝐴𝑃 (5.1)
each of four possible measurement outcomes has the same probability of 1/4. But due to small
imperfections in the fiber beam splitter and the different detection efficiencies the probabilities
for the four measurement outcomes are different from each other (Tab. 5.3).

Each of the four outcomes prepares one atomic state (Tab. 5.3) with certain probabilities
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atom state 𝑃 𝑟 (𝑌 = −1|𝐵 = 0, Ψ𝑝) 𝑃𝑟 (𝑌 = −1|𝐵 = 1, Ψ𝑝)
|Ψ𝑉 ⟩ = |↑⟩𝑥 0.94 ⋅ cos (−22.5∘)2 + 0.02 0.94 ⋅ cos (22.5∘)2 + 0.02
|Ψ𝐻⟩ = |↓⟩𝑥 0.94 ⋅ sin (−22.5∘)2 + 0.02 0.94 ⋅ sin (22.5∘)2 + 0.02
|Ψ+⟩ = |↓⟩𝑦 0.94 ⋅ cos (22.5∘)2 + 0.02 0.94 ⋅ cos (67.5∘)2 + 0.02
|Ψ−⟩ = |↑⟩𝑦 0.94 ⋅ sin (22.5∘)2 + 0.02 0.94 ⋅ sin (67.5∘)2 + 0.02

Table 5.4.: Probability for the measurement result 𝑌 = −1 depending on the prepared atomic
state and the input 𝐵 for prefect state preparation and state read-out.

for measuring 𝑌 = +1 or 𝑌 = −1 outcome for the different setting for 𝐵 = 0 or 𝐵 = 1 (5.1b).
Considering a perfect preparation but an imperfect state-read out (Sec. 2.3.2) the probability
to measure a projection of the prepared atomic state |Ψ⟩𝑝 on the read-out dark state (2.9)
for 𝐵 = 𝑏 with 𝑏 ∈ {0, 1} is

𝑃𝑟 (𝑌 = −1|𝐵 = 𝑏, Ψ𝑝) =0.96 ⋅ ⟨𝐷𝜒𝑏
|Ψ⟩𝑝 + 0.02 (1 − ⟨𝐷𝜒𝑏

|Ψ⟩𝑝) (5.2)

0.94 ⋅ ⟨𝐷𝜒𝑏
|Ψ⟩𝑝 + 0.02 (5.3)

with

|𝐷⟩𝜒0
= sin (−22.5∘) 1√

2
(|1, −1⟩ − |1, +1⟩) + cos (−22.5∘) 𝑖√

2
(|1, −1⟩ + |1, +1⟩)

= −𝑖 ⋅ sin (−22.5∘) |↓⟩𝑥 + 𝑖 ⋅ cos (−22.5∘) |↑⟩𝑥
= 𝑖 ⋅ cos (22.5∘) |↓⟩𝑦 − sin (22.5∘) |↑⟩𝑦

for 𝐵 = 0 and

|𝐷⟩𝜒1
= −𝑖 ⋅ sin (22.5∘) |↓⟩𝑥 + 𝑖 ⋅ cos (22.5∘) |↑⟩𝑥
= 𝑖 ⋅ cos (67.5∘) |↓⟩𝑦 − sin (67.5∘) |↑⟩𝑦 .

for 𝐵 = 1. The values of (5.2) for the four prepared states can be found in Table 5.4.
Considering the photon detection probabilities the probability to detect a certain atomic
state depending on the photon setting 𝐴 takes the form

𝑃𝑟 (𝑌 = −1|𝐴 = 0) =
∑𝑝∈{𝑉 ,𝐻} ∑𝑏∈{0,1} 𝑃𝑟 (|𝑝⟩) ⋅ 𝑃𝑟 (𝑌 = −1|𝐵 = 𝑏, Ψ𝑝) 𝑃𝑟 (𝐵 = 𝑏)

𝑃 𝑟 (|𝑉 ⟩) + 𝑃𝑟 (|𝐻⟩) (5.4)

and

𝑃𝑟 (𝑌 = −1|𝐴 = 1) =
∑𝑝∈{+,−} ∑𝑏∈{0,1} 𝑃𝑟 (|𝑝⟩) ⋅ 𝑃𝑟 (𝑌 = −1|𝐵 = 𝑏, Ψ𝑝) 𝑃𝑟 (𝐵 = 𝑏)

𝑃 𝑟 (|+⟩) + 𝑃𝑟 (|−⟩) . (5.5)

While for equal detection efficiencies the probabilities for 𝑌 = −1 are equal and no correlation
of 𝑌 on 𝐴 can be seen, unequal detection probabilities give rise to a correlation between 𝑌
on 𝐴. Yet, the photon detection probabilities from Table 5.3 alone do not explain the data
measured.
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Effects of atomic state evolution

There is another important factor to consider for the dependence of the atomic state measu-
rement result 𝑌 for a give result of the measurement of the photon: the temporal evolution
of the atomic state. As explained in Section 2.3.3, it is only possible to measure the atomic
state with high fidelity after a full transverse oscillation of the atom in the ODT (Fig. 2.13b).
In this experiment the oscillation period is 𝑇 = 14.4 µs and so the actually measured atomic
state is not the initially prepared state ∣Ψ𝑝⟩, but the one after this time ∣Ψ𝑝 (𝑡 = 14.4 µs)⟩.
Thus, the atomic state has to be changed accordingly in (5.4) and (5.5).

Considering (2.13) each of the prepared states has a different representation in the eigen-
vectors of the magnetic field. Therefore they have a different temporal evolution and are
susceptible to different magnetic field vectors. A simulation, employing the Monte Carlo
Method and considering the distribution of different atom trajectories and magnetic field
noise [38, 56], is used to estimate the evolution for different states. The simulation shows
that a magnetic field on the order of several mG (Fig. 5.5c and Fig. 5.5d) would explain the
measured data.

Since before the start of the experiment the magnetic field was set to zero with an accuracy
below 1 mG (Fig. 5.5a and Fig. 5.5b), the drift of the active magnetic field stabilization
(Sec. 2.3.3) explaining such a magnetic field would have to be quite strong. In fact it would
need to be well above the expected drifts, especially for 𝐵𝑥 and 𝐵𝑦. Indeed the experimental
data evaluated in 3 h intervals show a drift of the resulting correlators (Fig. 5.6). However,
this drift is small and slow compared the result of the simulation. Additionally, already the
results of first interval have a quite strong offset to the values that are expected for a magnetic
field close to zero.

Calibration error of the automatized fiber birefringence compensation

A possible reason for that offset is a calibration error of the polarimeter [110] used in the
automatized compensation of the birefringence in the 700 m long fiber. The polarimeter
drifts very slowly over time and needs a calibration after several weeks. A calibration error
leads to a constant extra rotation of the photon measurement angles. An error of ca −3∘ for
𝑉 and 𝐻 and of 6∘ for + and −, together with a small magnetic field drift over the duration
of the experiment explains the offset as well as the drift over time of the correlators.

This carefully and explicitly developed model of the experiment can explain the noticeable
features of the measured data and shows that they stem from the design of the experiment
or small calibration errors. For a “normal” experiment one can think of a repetition with an
optimized calibration, but for an experiment conducted live and parallel to others, as during
the BIG Bell test, this is not possible. Both effects, polarization rotation and atomic state
evolution, can be seen as a rotation of the measurement settings and thus neither change the
evaluation nor inference of a Bell test experiment.
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Figure 5.5.: Simulation of the atomic state evolution: ionization probability depending on
time delay between state preparation and atomic state measurement. The me-
asurement in the experiment is conducted at a delay of 14.4 µs (dashed black
line).
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6. Towards Applications and Quantum Networks
with Atom-Atom Entanglement

The entanglement between two stationary qubits, e.g., atoms, is not only useful to test the
fundamentals of quantum mechanics, but also a key ingredient in quantum technology and an
integral part of future quantum networks. This chapter is focused on employing long-distance
entanglement of atoms for such purposes. After a general introduction into quantum networks,
the possibility of networks based on quantum memories and their possible realizations are
discussed. Next, the interesting possibility of device-independent applications is introduced
and different examples that can be realized with atom-atom entanglement are shown. One of
such applications, self-testing, allows for the test of entanglement. Here, the first application
of self-testing to certify a quantum network link is demonstrated.

6.1. Quantum Networks

Quantum networks [111] have many different quantum communication applications, e.g.,
quantum key distribution (QKD) [112, 5], precise time synchronization [26], and distribu-
ted quantum computing [113]. These different applications have different demands on the
network: while QKD can be realized by simpler networks based only on photon states, dis-
tributed quantum computing needs a more sophisticated network establishing entanglement
between connected quantum memories.

QKD Networks

The first networks employing quantum technology are networks for QKD. These networks
can be realized by utilizing photons guided in optical fibers [114, 115, 116, 117, 118, 119] or
free space links [120, 121], which also include connections to airborne senders [122] or even in
satellites [123].

However, the transmission of these networks is limited by losses due to absorption in fiber
or by geometrical losses in free space. Furthermore, decoherence of the transmitted states is
introduced during the transmission in the optical fiber or by atmospheric turbulence. This
restricts range and secret key rate of such networks. To overcome this, as done in the 2000 km
QKD link between Beijing and Shanghai[119, 124], longer distances are split up in smaller
sections connected via classical relay stations. The QKD protocols are only performed in each
of the sections separately. Afterwards the resulting secret keys are then used to distribute
a secret key between sender and receiver. However, a big drawback from using the classical
relay stations is that the security is not guarenteed by the QKD scheme. To guarantee secure
communication, the relay stations need to be trusted and hence, such stations are called
trusted nodes. Another example of a trusted node QKD is the satellite based intercontinental
QKD link where the satellite serves as moving relay station[125, 126]. Since trusted nodes
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relay only classical information, they cannot distribute entanglement from one section to the
next, and thus quantum state transfer via teleportation is not possible.

Networks connecting quantum memories

The next step is to go forward towards a universal quantum network capable of more than the
standard QKD schemes, frequently called quantum internet [24]. Such a quantum network
consists of nodes that can store and process quantum information in so called quantum
memories. The nodes are connected with quantum channels that allow for the distribution
of quantum states via photons1. The main difference to the QKD networks are the quantum
nodes that allow for the relay of entanglement via entanglement swapping in so called quantum
repeater schemes [25]. The quantum repeater do not breach the security of QKD schemes
and allow for overcoming the problems introduced by photon loss. Such schemes also employ
entanglement distillation or purification to overcome imperfections and decoherence in the
quantum state distribution.

Currently, the demonstrators for this kind of networks are limited to a basic quantum link
consisting of two nodes with one connection. The two atom traps form such a link over 398 m
distance, respectively 700 m fiber connection (Fig. 2.16). Besides the 400 m link (700 m fiber)
presented in this thesis, other realizations of such links are: atomic ensembles [127, 128, 129],
single atoms [130], single ions [131, 132], impurity-vacancy centers in diamond [95, 18, 133],
quantum dots [134], and superconducting qubits [135].

The next step towards an universal qunatum network is to demonstrate a quantum repeater
and hence entangle two nodes via an intermediate node. For the presented experiment, this
demands a third atom trap with two atoms, which can be entangled with the existing traps,
and which allows for a Bell state measurement to swap entanglement to the distant atoms.

6.2. Device-independent quantum protocols

Quantum entanglement enables many different applications, particularly interesting are the
so called “device-independent” (DI) applications. The term device-independent can be under-
stood in different ways, so a proper definition is helpful. The most common use of the term
is in the sense of compatibility with different devices, as for example in computer science:
device-independent data formats or applications are meant to work on different platforms
independent of the hardware and operating system. Device-independent accessibility should
allow for the use of programs independently of the interface hardware. Also, in physics device-
independent evaluation methods exist, allowing to evaluate results for different setups in the
same manner. In the field of quantum technology device-independent is understood in the
sense of device-independent trust in the results. The protocols are designed to guarantee for
trusted results even in the case of imperfect or not trustworthy devices.

6.2.1. Scenario for DI protocols

For ordinary (device-dependent) quantum protocols it is assumed that the devices deliver a
certain quantum state. In contrast, device-independent protocols ensure via a Bell test that
a quantum state 𝜌𝐴𝐵 ∈ ℋ𝐴𝐵 generated by the devices 𝐴 and 𝐵 (Fig. 6.1), has the properties

1For the exchange of additional information the nodes are also connected with classical channels.
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Figure 6.1.: Device-independent scenario: Alice and Bob have a “black box” device each.
Both parties provide inputs for their devices and and record the outputs. The
quantum state 𝜌𝐴𝐵 ∈ ℋ𝐴𝐵 is not assumed but certified by a Bell test.

applicable for the protocol [21]. This allows to summarize the assumptions made to derive
DI protocols [21, 23, 47] as follows:

1. Quantum mechanics describes the system.

2. The system is composed of two well defined separate devices that receive an input and
respond to it with an output. The protocol is split in well defined rounds with each
device receiving one input and giving one output back.

3. Device inputs are provided independently of the devices.

4. No communication between the devices between the in- and output in one round2.

These assumptions, except the first one which is an obvious assumption for quantum techno-
logy, are a slightly relaxed version of the assumptions made to derive the CHSH inequality
in Section 3.2. More important, they neither concern nor limit the internal functioning of
the devices. Therefore, the devices can be considered “black boxes” and no knowledge about
their internal workings are used in the protocol (Fig. 6.1). This includes the communication
of the devices, its specifics are not considered but it is not allowed during the time between
receiving input and answering output. Especially, there are no limitations on the dimension
of the Hilbert space ℋ𝐴𝐵 = ℋ𝐴 ⊗ ℋ𝐵 of the joint quantum state 𝜌𝐴𝐵 ∈ ℋ𝐴𝐵 of the devi-
ces. Nevertheless, a certain violation of Bell’s inequality ensures two things: first, the shared
quantum state of Alice and Bob has a certain amount of monogamous entanglement [136].
Second, the measurement results of the devices are not programmed in the devices before-
hand, as this is equivalent to LHV theories and cannot violate Bell’s inequality. From this it
is possible to infer that the results of the protocol, e.g. a secret key, are neither accessible by
third party measurement devices nor already known to the manufacturer of the devices, and
by this can be trusted.

Requirements for the systems

For a real world implementation of DI protocols, the assumptions 2 to 4 turn into requirements
for the system. Similarly to Bell test experiments, in which assumptions open loopholes for

2For cryptography applications the limitation of the communication between the devices is stronger: inputs
and outputs must not be communicated by the devices.
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local-realism (Sec. 3.3.1), assumptions that are not met by the employed system allow for
potential adversaries to compromise the results of the protocol. There are diverse solutions
for complying with the requirements for DI independent protocols. Some include the ones for
loophole free Bell tests, but others might differ quite strongly, depending on the task of the
protocol and resources available.

Assumption 2 A system with to well defined separate devices is a straight forward require-
ment. The same is true for well defined rounds with one input and output for each
device. The two devices should be macroscopic devices that can be identified by non
experts and have clearly defined input and output mechanism.

Assumption 3 Providing inputs independent of the devices can be implemented in many dif-
ferent ways. Possible solutions among others are: random number generators, both
a pseudo RNG as well as a physical one, hashing of information independent of the
devices, or human choices. In contrast to a loophole free Bell test experiment, DI
applications can accept reasonable claims of independence and do not need “freshly”
generated random inputs.

Assumption 4 To ensure for no communication between the two devices during the time nee-
ded from first input to outputs in one round is a more delicate problem. For a loophole
free Bell test, it is ensured by space-like separation of the measurements. This is also
possible for some DI applications, but for other applications it is necessary that the
inputs and outputs are not communicated at all. This cannot be granted based on fun-
damental physical theories, but it might be reasonable to use a shielded, bug proof room
to control the communication capability of the devices (Supplementary information of
[23]).

6.2.2. Examples of DI applications

Entangled quantum states that violate Bell’s inequality enable DI protocols in real world
applications. Two prominent examples for this are randomness generation and secure com-
munication.

Randomness generation

In 2010 Pironio et al. showed that measurements on entangled particles can be used to
generate random bits and this randomness can be certified by a violation of Bell’s inequality
enabling DI generation of random numbers [23]. Using heralded entanglement of single 171Yb+

ions trapped 1 m apart (see [131]), made it possible to produce 42 new random bits with
99% confidence [23]. Yet, there were only a few small measures taken to ensure the no
communication assumption (Assumption 4). The same is true for the demonstrations based
on entangled photons [137, 138], which provided a random bit rate of more than 100 bits/s with
confidence of 1 − 10−5 or higher for each bit.

The realization of loophole free Bell test, as shown in Chapter 4 and in [18, 19, 20] fulfilled
the no communication requirement by space-like separation. This lead to the first fully
DI random number generation extracting 1024 random bits [139], followed by extracting
6.2469 ⋅ 107 random bits with a confidence of 1 − 10−5 for each bit [140] .
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Also, the data from the Bell test experiment in Chapter 4 allows for the extraction of
certified random bits. Following [23] the number of random bits that can be extracted from
a Bell test experiment is

𝑛𝑟𝑏𝑖𝑡𝑠 = 𝑁 ⋅ 𝑓(𝑆𝑚 − 𝜖), (6.1)

with

𝑓 (𝐼) = 1 − log2 (1 + √2 − 𝐼2

4 )

and

𝜖 (𝑁, 𝑆𝑚, 𝑞, 𝛼) = √2 ln (1/𝛼) (1/𝑞 + 𝑆𝑚)2

𝑁 . (6.2)

Here 𝑞 is the probability for a setting combination in a Bell test experiment (Sec. 4.1) and
1 − 𝛼 is the confidence level. Using all 55568 events from Section 4.4.2 with 𝑆𝑚 = 2.1301 and
setting 𝑞 = 1

4 and 𝛼 = 0.01 it is possible to extract 1059 certified random bits.

Secure communication

Another very interesting protocol is device-independent quantum key distribution (DIQKD),
as proposed by Andrew Yao and Dominic Mayers in 1998 [21]. It addresses the problem,
that for the commonly used prepare and measure QKD protocols, e.g., BB84 [112] and COW
[141], the precise generation of the quantum states is necessary since otherwise possible side
channels can spoil the secrecy [142] . This means that for the security proofs the dimension
of the Hilbert space of the quantum system is limited to the desired ones [143]. Though
Ekert’s protocol from 1991 [5] points already in the direction of using Bell’s inequality for
QKD it needed to be modified to become a device-independent protocol [143, 144] with no
assumptions about the Hilbert space (Sec 6.2.1).

The protocols for DIQKD were further investigated and improved over the last two decades
[136, 145], but still the implementation, even for a prove of concept demonstration, is not yet
possible. The main reason is that the protocol needs a relatively low quantum bit error rate
of 𝑄𝑏𝑒𝑟 ≤ 7.1% (equivalent to a CHSH value of 𝑆 ≥ 2.426) to be able to produce a secret
key [146]. Furthermore, for 𝑆 = 2.426 the needed total number of events 𝑛 to extract the
first bit of secure key is 1015[147]. Currently, the two experiments showing a loophole free
violation of Bell’s inequality employing entanglement between stationary qubits (employing
nitrogen vacancy centers in diamonds [18, 100] and single atoms, as presented in Chapter 4),
did neither show the needed 𝑆 value nor a suitable event rate allowing for any kind of QKD.
The loophole free Bell test experiment with entangled photons [19, 20] did show a much
higher event rate, but they employed a scheme for the Clauser Horn inequality[82], also called
Eberhard inequality [83], with a not maximally entangled state to overcome the detection
loophole (Sec 3.3.1). Therefore the absolute violation of the inequality was with an equivalent
of 𝑆 ≈ 2.00004 [148] very small and the detection efficiency is by far not high enough to allow
for the DIQKD schemes. Hence for a proof of concept demonstration many improvements of
e.g. state fidelity and event rate are necessary.

For a demonstration based on the Bell experiment described in Chapter 4 a significant
increase of the measured 𝑆 value and even more critical an improvement of the event rate are
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necessary. A thorough investigation of the atom-atom entanglement generation and possibi-
lities to improve on the fidelity can be found in Chapter 7. A perfectly created atom-atom
state together with improved temporal coherence of the state (Sec. 2.3.3) will allow for an of
𝑆 ≈ 2.5 that is only reduced by the imperfections of the atomic state read-out (Sec. 2.3.2).
However, this 𝑆 value represents a 𝑄𝑏𝑒𝑟 ≈ 5.8% and thus requires 𝑛 > 108 for a positive key
rate [147], which is impossible to achieve with an event rate of 2 events per minute. Even
with a significantly improved rate of ∼ 1 Hz (using the new collection optics [149]) the mea-
surement would take years. Thus, an improvement on the read-out fidelity together with a
even further improvement of the event rate will be necessary. With 𝑆 = 2.66 a positive key
rate starts after reaching 𝑛 = 107 hence an even rate of > 10 Hz would allow this within 12
days of measurement and thus, enable a proof of concept experiment [147, 148]. Additionally,
new DIQKD protocols [150] using advantage distillation , based on two-way communication
[151], show progress in reducing the high experimental demands on the quantum bit error
rate (𝑄𝑏𝑒𝑟 ≤ 9.1equivalent to 𝑆 ≥ 2.313). However, these protocols need expansion to account
for coherent attacks [136] and finite-size security [152] to enable the full device-independent
trust.

6.3. Self-testing: A device-independent characterization of entanglement

Another device-independent application is the so called “self-testing” [22]. The purpose of this
protocol is to device-independently characterize the quantum state shared by two devices and
by this allowing for a device-independent certification of entanglement. Such a certification of
entanglement does not have a specific purpose, e.g., the generation of random bits or QKD,
but it allows to device-independently test if a connection in a quantum network distributes
entanglement and by this, to confirm the usability for other quantum protocols.

To characterize a quantum state, one would perform certain measurements that allow to
estimate the properties of the state, e.g., a fidelity in respect to a target state. In most
cases to allow for the inference from measurements to properties of the quantum system it is
necessary to exactly know the measurement settings and to have a model of the investigated
physical system, especially its dimension. In contrast to this, Self-testing as a DI protocol, is
based on a Bell test in the device-independent scenario only using the four assumptions from
Section 6.2.1.

6.3.1. Self-testing with a Bell state fidelity

In this work, the fidelity of a maximally entangled Bell-state is estimated using self-testing
with the CHSH inequality. An overview of self-testing can be found in [27]. In the DI
scenario (Fig. 6.1) the measurements performed by device A are defined as observables 𝐴0
and 𝐴1 that act on the Hilbert space ℋ𝐴 and the measurements performed by device B as
observables 𝐵0 and 𝐵1act on the Hilbert space ℋ𝐵. Since this is done without making any
assumptions about the underlying physical system, both Hilbert spaces ℋ𝐴 and ℋ𝐵 are of
unknown dimension. The tested quantum state 𝜌𝐴𝐵 is element of the joint Hilbert space
ℋ𝐴𝐵 = ℋ𝐴 ⊗ ℋ𝐵. Using local trace-preserving maps Λ𝐴 from ℋ𝐴 to ℂ2 and Λ𝐵 from ℋ𝐵
to ℂ2 it is possible to calculate the Trace of 𝜌𝐴𝐵 with a Bell state Ψ ∈ {Ψ+, Ψ−, Φ+, Φ−}

𝑇 𝑟𝑎𝑐𝑒 (𝜌𝐴𝐵, Λ𝐴, Λ𝐵) =𝑇 𝑟 ((Λ𝐴 ⊗ Λ𝐵) [𝜌𝐴𝐵] , |Ψ⟩ ⟨Ψ|) . (6.3)
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The Fidelity of 𝜌𝐴𝐵 with respect to Ψ is defined as the maximum of (6.3)

𝐹(𝜌𝐴𝐵) = max
Λ𝐴,Λ𝐵

(𝑇 𝑟 ((Λ𝐴 ⊗ Λ𝐵) [𝜌𝐴𝐵] , |Ψ⟩ ⟨Ψ|)) (6.4)

for all possible local trace-preserving maps Λ𝐴 and Λ𝐵.
To exactly determine this fidelity based on a measured CHSH 𝑆 value (3.1) is not possible

since neither the state 𝜌𝐴𝐵 nor the measurement observables 𝐴0, 𝐴1, 𝐵0, and 𝐵1 are known.
However, it is possible to find a lower bound ℱ for the fidelity (6.4) by finding the state with
the lowest fidelity that still allows for the measured 𝑆 value. Hence, one minimizes over the
set 𝑆𝑒𝑡𝐴𝐵,𝑆 of all states 𝜌𝐴𝐵 and observables 𝐴0, 𝐴1, 𝐵0, and 𝐵1that allow for the measured
𝑆 with

𝐸𝑎,𝑏 = 𝑇 𝑟 (𝜌𝐴𝐵𝐴𝑎𝐵𝑏) .

Then, the minimum fidelity can be written as

ℱ = min
𝑆𝑒𝑡𝐴𝐵,𝑆

(𝐹 (𝜌𝐴,𝐵)) .

Minimizing over the set of unknown states measured using unknown observables, which are
in a Hilbert space having an unknown dimension, is not a trivial task. Currently, the best
known lower bound considering the CHSH inequality is equation (10) in [153]:

ℱ ≥ 1
2 + 1

2 ⋅ 𝑆 − 𝑆𝑚𝑖𝑛
2
√

2 − 𝑆𝑚𝑖𝑛
(6.5)

with

𝑆𝑚 = 16 + 14
√

2
17 ≈ 2.106 (6.6)

being the minimum violation of the CHSH inequality that allows for a non trivial bound of
ℱ ≥ 0.5 on the fidelity.

Bound for finite data

The bound (6.5) is derived for an exactly known 𝑆 value, however, an actual measurement
will only yield an estimate of 𝑆 limited by the finte number of events 𝑛. Further, real devices
might have some imperfections and the prepared state 𝜌𝐴𝐵 might change between events.
Therefore, a method for bounding the average fidelity for 𝑛 events

̄ℱ = 1
𝑛

𝑛
∑
𝑖=1

ℱ𝑖

was derived in colaboration Jean-Daniel Bancal, Pavel Sekatski, and Nicolas Sangouard from
the University of Basel [47].

For this analysis 𝑆𝑚 is calculated via (4.12) from the measurement results. The actual
formulation of (4.12) depends on the Bell state Ψ chosen for the self-testing3. To estimate the

3The definition of (4.12) is for the Ψ+and Ψ−state, but a modification of the 𝑔±(ℎ𝑖) allows to define it for
all four Bell states.
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average CHSH value during the measurement, it is bounded with a confidence level of 1 − 𝛼
by

̂𝑆𝛼 = 8 (𝐼−1
𝛼 (𝑛𝑡𝑚 − 1, 𝑛 (1 − 𝑡𝑚) + 2) − 𝜏 − 𝜏2) − 4,

where 𝑡𝑚 = (4+𝑆𝑚)/8, 𝐼−1
𝛼 (𝑥, 𝑦) is the inverse incomplete Beta function, and 𝜏 is a bound for

the possible predictability of the inputs. This bound on 𝑆 allows to calculate a lower bound
for the average fidelity via (6.5). This results in

̂ℱ = 1
2 + 1

2 ⋅
̂𝑆𝛼 − 𝑆𝑚𝑖𝑛

2
√

2 − 𝑆𝑚𝑖𝑛
(6.7)

=
12 + (4 + 5

√
2) (5 ̂𝑆𝛼 − 8)

80
with a confidence level of 1 − 𝛼. The bound was derived without assuming that the measu-
rement outcomes are independently and identically distributed. The prove for the bound of
the average fidelity can be found in Appendix B of [47].

The average fidelity allows to device-independently characterize and certify entanglement.
Therefore, it can be used to ensure the distribution of entanglement in future quantum net-
works.

6.3.2. DI certification of an elementary quantum network link

In future quantum networks, it will be necessary to test and certify the performance of the
quantum links. Since the self-testing formalism is device-independent, it can be applied
to all possible realizations of quantum networks. Furthermore, the results are trustworthy
even if the network providers and device manufacturers are not trustworthy. So it allows for a
universal certification of quantum network links, assuming the requirements from Section 6.2.1
for DI applications are fulfilled. As mentioned before, loophole free tests of Bell’s inequality
fulfill those requirements and thus the Bell test experiment from Chapter 4 can be used to
certify a 398 m elementary quantum network link formed by the two atom traps.

Setup for DI certification

To implement the certification protocol based on self-testing, the experimental setup for the
Bell test experiment (Fig. 4.1) is divided into two parts (Fig. 6.2):

Quantum network link The quantum network link consists of two nodes connected with one
channel. The two atom trap setups, including laser setup and control electronics, form
the nodes and the BSM and the fiber link form the communication channel.

Certification setup To test the quantum link a trusted input generation and data storage
are necessary. For this setup these are the QRNGs and local storage units. Additio-
nally, a common clock is necessary to allow for ensuring the space-like separation of
the measurements, as well as a possibility to combine the data from both local storage
units.

The quantum network link with the two nodes in different laboratories, clearly fulfills assump-
tion 2, being a well defined system of two devices that receive inputs and answer outputs.
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Figure 6.2.: Setup for the certification of a 398 m elementary quantum link. The quantum
network link (violet) is considered to be two black box devices, one in each labo-
ratory, that give a heralding signal (𝐻𝑖) when they are ready to receive inputs
(𝐴𝑖, 𝐵𝑖) and after receiving the input each device replies an output (𝑋𝑖, 𝑌𝑖) in
less than1.2 µs (to be space-like separated). The certification setup (blue) pro-
vide inputs on request and stores the inputs and outputs in a local storage units
in each laboratory. Additionally, the heralding signal is stored in Lab 1 and a
common clock for both storage units allows ensure space-like separation of the
measurement in the devices, as well as combing the data from both storage units.
Since the clock is distributed via one of the glass fibers of the fiber link (yellow)
this fiber is trusted as well.
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State 𝑆𝑚 𝑁 ̂ℱ, 𝛼 = 0.05 ̂ℱ, 𝛼 = 0.01 ̂ℱ, 𝛼 = 10−3

Ψ+ 2.2016 5000 0.5067 − −
Ψ− 2.2384 5000 0.5325 0.5099 −

combined 2.2200 10000 0.5365 0.5205 0.5025

Table 6.1.: Self-testing for the experimental run April 2016 (Tab 4.3)

State 𝑆𝑚 𝑁 ̂ℱ, 𝛼 = 0.05 ̂ℱ, 𝛼 = 0.01 ̂ℱ, 𝛼 = 10−3

Ψ+ 2.0841 27885 − − −
Ψ− 2.1765 27683 0.5220 0.5124 0.5016

combined 2.1301 55568 − − −

Table 6.2.: Self-testing for the full data of all runs combined (Tab 4.5)

The other requirements concern the certification setup. The inputs are generated by QRNGs
(Sec. 4.1.2), which are independent from the network link and thus fulfilling the requirement
based on assumption 3. Finally, space-like separation of input 𝐴𝑖 from 𝑌𝑖 as well as 𝐵𝑖 from
𝑋𝑖 enforces the last assumption on no communication. The local storage units only accept
outputs in a time window of 1.2 µs after the input. Otherwise the output is set to “−1”. By
synchronization of the storage units with a common clock it is possible to verify space-like
separation and by this the no communication requirement.

Certification results

Using the data collected in the Bell experiments (Sec. 4.4), it is possible to certify the quantum
network link. Applying the formalism (6.7), with a predictability of 𝜏 = 6.3⋅10−4 (Sec. 4.1.2),
to the data from the run in April 2016 with 5000 events for each state allows to certify an
average Bell state fidelity with a confidence level of 0.95 (𝛼 = 0.05) above 0.5 for both prepared
states (Tab. 6.1). With a higher confidence level of 0.99 (𝛼 = 0.01) it is only possible to certify
the distribution of the Ψ− state with ̂ℱ = 0.5099. Even higher confidence levels demand either
a higher 𝑆𝑚 or more events. Therefore (6.7) is applied to the combined data collected in all
runs of the Bell experiment (Tab. 4.5). Now, it is possible to to certify the distribution of the
Ψ− state with a confidence level of 0.999. However, the 𝑆𝑚 = 2.0841 of the Ψ+ state is below
the threshold for self testing (6.6) (Tab. 6.2).

Furthermore,it is possible to use the combined data for both prepared states to calculate
̂ℱ (6.7). One might object to the use of the data for both prepared state, as the fidelity

is only defined towards one of the four Bell states. However, this can be refuted as follows:
Considering an example with the exact same setup as in Figure 6.2 with the differences that
the heralding signal always announces the creation of Ψ+ and inside device B in case of a
preparation of Ψ− the measurements for input 𝐵𝑖 = 0 and 𝐵𝑖 = 1 are switched. This quantum
link uses the same states as the original quantum link, yet it pretends to only create Ψ+ and
the result is equivalent to the original result for both states. Since for self-testing there are no
assumptions made about the working of the devices, especially not about their measurement
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operations, all requirements for it are met and the result can be used in the formalism. A
bit more formal is the argument, that the heralding signal can be seen as an extra dimension
in the Hilbert space for 𝜌𝐴𝐵 and the local trace preserving maps Λ𝐴, Λ𝐵 are such that they
map differently onto Ψ from regions with heralding signal for Ψ+ than from regions with
heralding signal Ψ−. Therefore using the data from the run in April 2016 allows to certify the
distribution of entanglement even with a confidence level of 0.999 (𝛼 = 10−3) (Tab. 6.1). Also,
the combined data for both states from all runs can be combined. However, the relatively low
𝑆 = 2.1301 allows even with 𝑛 = 55568 a fidelity of ̂ℱ > 0.5 only for a rather low confidence
level of 90.6%.
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7. Improving the Atom-Atom State Preparation

The certification of the elementary quantum network link demonstrates a step forward on
the path towards new quantum communication applications, however, the performance of the
quantum link is limited by a low event rate, imperfect atom-atom state creation, decoherence
of atomic states, and the limitations of atomic state measurement. In this section possible
improvements on the atom-atom entanglement creation are investigated. As described in
Chapter 2, the atom-atom entanglement is generated by swapping the entanglement from
two entangled atom-photon pairs onto the atoms. Therefore, the atom-atom state fidelity
directly depends on the quality of the atom-photon states and a detailed modeling of the
process for creation of atom-photon entanglement can be utilized to improve the atom-atom
state.

7.1. Detailed model for photon emission from a single atom

In the experiment descried in this work, atom-photon entanglement (Sec 2.3.1) generation is
based on the spontaneous emission of a photon during the decay from the 5P3/2, F’ = 0, mF =
0 excited state to the 5S1/2, F = 1, mF = 0, ±1 ground states (Fig. 2.6d). Since photons
originating from the decay to the F = 1, mF = 0 are not collected by the setup (Sec. 2.4) the
resulting entangled atom-photon state is |Ψ⟩𝐴𝑃 = 1√

2 (|𝜎+⟩ |1, −1⟩ + |𝜎−⟩ |1, +1⟩) (2.5). To
implement this scheme the atom is prepared in the F = 1, mF = 0 state and excited via a
short laser pulse to the F’ = 0, mF = 0. The emitted photons are collected with a microscope
objective, coupled into a single mode fiber, and guided to the photon analysis setup.

7.1.1. Deviations from the ideal excitation process

In Section 2.3.1, only a simplified excitation model is considered, using two atomic levels and
and a perfectly 𝜋-polarized excitation pulse. For a more realistic examination of the excitation
process, the complete level structure of the atom has to be considered as well as limitations
and imperfections in the experimental realization [33].

First, the preparation of the F = 1, mF = 0 by optical pumping (Fig. 2.6a and Fig. 2.6b) is
not perfect with a success probability of 𝑃𝑟𝑝𝑟𝑒𝑝 ≈ 80% [33]. Since the preparation for each
excitation try is independent of the others, this results in the mixed state

𝜌𝑝𝑟𝑒𝑝 = 𝑃𝑟𝑝𝑟𝑒𝑝 |1, 0⟩ ⟨1, 0| + ((1 − 𝑃 𝑟𝑝𝑟𝑒𝑝) 𝐴 |1, −1⟩ ⟨1, −1| + 𝐵 |1, +1⟩ ⟨1, +1|) , (7.1)

with 𝐴 + 𝐵 = 1 being the population ratio between |1, −1⟩ and |1, +1⟩. In the experiment,
the state preparation is optimized for the trade-off between minimal duration and maximal
efficiency. 𝐴 and 𝐵 dependent of different properties, e.g., on the pumping laser adjustment,
dipole trap properties, and magnetic field. Thus 𝐴 and 𝐵 are different for each trap and can
change over time.
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Second, the excitation process it self is more complex as described in Section 2.3.1. Con-
sidering the hyperfine structure and imperfections of the excitation pulse alignment three
different excitation processes are possible:

Resonant excitation This is the desired excitation process by a 𝜋-polarized excitation pulse
that is resonant to the transition from F = 1, mF = 0 to F’ = 0, mF = 0, see Figure 7.1a.
The resonant excitation process is by far the most dominant.

Off-resonant excitation This is a possible off-resonant excitation to the F’ = 1 level, see
Figure 7.1b. It is separated from F’ = 0 by 72 MHz and has a natural line width of
6.065 MHz [49]. Since the excitation from F = 1, mF = 0 to F’ = 1, mF = 0 with ΔF = 0
and ΔmF = 0 is forbidden, only the F = 1, mF = ±1 can be excited to F’ = 1, mF = ±1
by 𝜋-polarized light.

𝜎𝑒𝑥𝑐-polarized excitation This is a possible excitation to F’ = 0, mF = 0 caused by residual
𝜎-polarization of the excitation pulse, see Figure. 7.1c. This residual 𝜎𝑒𝑥𝑐 can excite a
certain superposition of 5S1/2, F = 1, mF = ±1 to 5P3/2, F = 1, mF = 0. The amplitude
of 𝜎𝑒𝑥𝑐 is due to imperfect alignment of the excitation laser pulse and normally very
small and thus, off-resonant excitation by 𝜎-polarized light can be neglected.

Finally, the excitation pulse (Fig. 2.8) has a finite duration of 20.35 ns (FWHM). In case of
the atom emitting a photon before the excitation pulse has ended there is a possibility of a
second excitation of the atom resulting in the emission of a second photon. Additionally, the
short pulse leads to a spectral broadening (21.6 MHz) of the excitation light increasing the
probability for off-resonant excitation.

7.1.2. Unconditioned Atom-photon state

These different processes lead to a complex atom-photon state 𝜌𝐴𝑃 that is not only partially
mixed but also includes possible two photon states. To describe the total state, it is split into
substates resulting from different effects. For this subsection the condition of only collecting
𝜎± photons, which is introduced by the collection into the single mode optical fiber (Sec. 2.3.1),
not considered. The photon conditioning on possible detection will be considered afterwards.

To denote the substates and excitation process, the following notation is used. The atomic
states and photon polarization, considering quantization in 𝑧-direction, is |F, mF⟩ and |𝜎±⟩𝑖,
|𝜋⟩𝑖 with 𝑖 ∈ {1, 2} representing the first or second emitted photon. For an excitation process
𝜁 and atom-photon state 𝜌 or Ψ the superscripts indicate the excitation type, whereby 𝑟, 𝑜,
and 𝜎 denote resonant, off-resonat, and 𝜎𝑒𝑥𝑐-polarized excitation, respectively. For example
𝜁𝑟 denotes a resonant excitation with one emitted photon resulting in |Ψ𝑟⟩, while 𝜁𝑟,𝑟 denotes
two resonant excitations with two emitted photons resulting in |Ψ𝑟,𝑟⟩

One photon processes 𝜁𝑟, 𝜁𝑜, and 𝜁𝜎

Starting from the (imperfectly) prepared state 𝜌𝑝𝑟𝑒𝑝 there are three processes that involve
only one emitted photon:

𝜁𝑟: Resonant excitation of the ’F = 1, mF = 0 (Fig. 7.1d) leads to

|Ψ𝑟⟩ = 1√
3 (|𝜎+⟩1 |1, −1⟩ + |𝜋⟩1 |1, 0⟩ + |𝜎−⟩1 |1, +1⟩) . (7.2)
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5 2P3/2
F’ = 1
F’ = 0

5 2S1/2 F = 1
F = 2

+2+10−1−2 mF

π

(a) Resonant excitation from 5S1/2, F = 1, mF = 0 to
5P3/2, F = 0, mF = 0 with a 𝜋-polarized excita-
tion pulse (orange).

5 2P3/2
F’ = 1
F’ = 0

5 2S1/2 F = 1
F = 2

+2+10−1−2 mF

72 MHz

ππ

(b) Off-resonant excitation from 5S1/2, F = 1, mF =
±1 to 5P3/2, 𝐹 = 1, mF = ±1 with a 𝜋-polarized
excitation pulse (orange).

5 2P3/2
F’ = 1
F’ = 0

5 2S1/2 F = 1
F = 2

+2+10−1−2 mF

σexc

(c) Resonant 𝜎-excitation from 5S1/2, F = 1, mF =
±1 to 5P3/2, F = 0, mF = 0 with a 𝜎𝑒𝑥𝑐-polarized
excitation pulse (orange)..

5 2P3/2
F’ = 1
F’ = 0

5 2S1/2 F = 1
F = 2

+2+10−1−2 mF

|π〉
|σ−〉|σ+〉

(d) Photon emission subsequent to a resonant exci-
tation.

5 2P3/2
F’ = 1
F’ = 0

5 2S1/2 F = 1
F = 2

+2+10−1−2 mF

6.8 GHz

(e) Photon emission subsequent to off-resonant ex-
citation. Photon polarization indicated by color
|𝜎+⟩ (blue), with polarization|𝜎−⟩ (red), and |𝜋⟩
(gray)

Figure 7.1.: Detailed excitation and emission process
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This is the simplified atom-photon state considered in Section 2.3.1.

𝜁𝑜: Off-resonant excitationto 𝐹 ′ = 1, mF = ±1 states leads to a state that includes
decay to the F = 2 ground state (Fig. 7.1e). An off-resonant excitation of 𝜌𝑝𝑟𝑒𝑝
results in

𝜌𝑜 = 𝐴 ∣Φ𝐴⟩ ⟨Φ𝐴∣ + 𝐵 ∣Φ𝐵⟩ ⟨Φ𝐵∣ (7.3)

with 𝐴, 𝐵 from (7.1) and

∣Φ𝐴⟩ = √25
60 |𝜎−⟩1 |1, 0⟩ − √ 1

60 |𝜎−⟩1 |2, 0⟩

+ √25
60 |𝜋⟩1 |1, −1⟩ − √ 3

60 |𝜋⟩1 |2, −1⟩

− √ 6
60 |𝜎+⟩1 |2, −2⟩

for the excitation from |1, −1⟩ and

∣Φ𝐵⟩ = √25
60 |𝜎+⟩1 |1, 0⟩ + √ 1

60 |𝜎+⟩1 |2, 0⟩

+ √25
60 |𝜋⟩1 |1, +1⟩ + √ 3

60 |𝜋⟩1 |2, +1⟩

+ √ 6
60 |𝜎−⟩1 |2, +2⟩

from |1, +1⟩ (see Appendix A Figure A.1 for Clebsch-Gordan coefficients).

𝜁𝜎: Resonant excitation by residual 𝜎-polarization of the excitation pulse (Fig. 7.1d)
leads to

|Ψ𝜎⟩ = 1√
3 (|𝜎+⟩1 |1, −1⟩ + |𝜋⟩1 |1, 0⟩ + |𝜎−⟩1 |1, +1⟩) . (7.4)

Two photon processes 𝜁𝑟,𝑟 , 𝜁𝑟,𝑜, and 𝜁𝑟,𝜎

For the processes that involve multiple emitted photons only the two photon processes starting
with a resonant excitation are considered. Since the probability for other two or more photon
processes have only a very small probability, their contribution to the atom-photon state is
neglectable. There are three such two photon processes:

𝜁𝑟,𝑟: A first decay to F = 1, mF = 0 emitting a 𝜋-polarized photon followed a second
resonant excitation and decay(Fig. 7.1d) lead to

|Ψ𝑟,𝑟⟩ = 1√
3 |𝜋⟩1 (|𝜎+⟩2 |1, −1⟩ + |𝜋⟩2 |1, 0⟩ + |𝜎−⟩2 |1, +1⟩) . (7.5)

𝜁𝑟,𝑜: A first decay to F = 1, mF = ±1 emitting 𝜎±-polarized photons followed by a
off-resonant excitation (Fig. 7.1e) to 5P3/2, F = 1, mF = ±1 leading to an emission
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of a second photon (Fig. 7.1e). This process results in the state

|Ψ𝑟,𝑜⟩ = √25
60

1√
2

(|𝜎+⟩1 |𝜎−⟩2 + |𝜎−⟩2 |𝜎+⟩1) |1, 0⟩ (7.6)

+ √ 1
60

1√
2

(− |𝜎+⟩1 |𝜎−⟩2 + |𝜎−⟩ |𝜎+⟩) |2, 0⟩

+ √25
60 |𝜋⟩2 (|𝜎+⟩1 |1, −1⟩ + |𝜎−⟩1 |1, +1⟩)

+ √ 3
60 |𝜋⟩2 (− |𝜎+⟩1 |2, −1⟩ + |𝜎−⟩1 |2, +1⟩)

+ √ 6
60

1√
2

(− |𝜎+⟩1 |𝜎+⟩2 |2, −2⟩ + |𝜎−⟩ |𝜎−⟩ |2, +2⟩) .

This state involves the F = 2 level and includes entanglement between the first
and second emitted photon.

𝜁𝑟,𝜎: Two photon process with first a decay to F = 1, mF = ±1 emitting a photon with
a polarization state 𝜎𝑒𝑥𝑐 analog to the residual 𝜎-polarization of the excitation
pulse can be excited again to the F’ = 1, mF = 0. The emission of the second
photon (Fig. 7.1d) results in the state

|Ψ𝑟,𝜎⟩ = 1√
3 |𝜎𝑒𝑥𝑐⟩ (|𝜎+⟩2 |1, −1⟩ + |𝜋⟩2 |1, 0⟩ + |𝜎−⟩2 |1, +1⟩) . (7.7)

Combined atom-photon state

The six substates from one and two photon processes can be combined to the following atom-
photon state

𝜌𝐴𝑃 = 𝑃𝑟𝑝𝑟𝑒𝑝 |Ψ⟩𝑠𝑢 ⟨Ψ|𝑠𝑢 + (1 − 𝑃𝑟𝑝𝑟𝑒𝑝) (𝑃𝑟𝑜𝜌𝑜 + 𝑃𝑟𝜎 |Ψ𝜎⟩ ⟨Ψ𝜎|) , (7.8)

with

|Ψ𝑠𝑢⟩ = 𝐴𝑟 |Ψ𝑟⟩ + 𝐴𝑟,𝑟 |Ψ𝑟,𝑟⟩ + 𝐴𝑟,𝑜 |Ψ𝑟,𝑜⟩ + 𝐴𝑟,𝜎 |Ψ𝑟,𝑜⟩ .

The probabilities 𝑃𝑟𝑜 and 𝑃𝑟𝜎 as well as the amplitudes 𝐴𝑟, 𝐴𝑟,𝑟, 𝐴𝑟,𝑜, and 𝐴𝑟,𝜎 depend on
the properties of the excitation pulse including temporal shape, intensity, and polarization.

7.1.3. Atom-photon state conditioned on photon detection

The observable atom-photon state in the experiment differs from the atom photon state
(7.8) since in the experiment only 𝜎± photons can be collected by the employed optics.
Further, the efficiency of photon collection and detection is only 𝑃𝑟𝑑𝑒𝑡 ≈ 2 ⋅ 10−3 [37] and
thus the probability to detect both photons from a two photon process is a factor of 10−3

lower compared to detecting one of the photons. This leads to four different categories of
conditioned photon detection: one photon process with a detection (subscript 1), two photon
process with the detection of the first photon (subscript 1), two photon process with the
detection of the second photon (subscript 2), and two photon detection (subscript 1, 2).
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One photon processes The one photon processes conditioned on the detection of |𝜎±⟩ pho-
tons result in the states:

𝜁𝑟
1 → |Ψ𝑟

1⟩ = 1√
2

(|𝜎+⟩1 |1, −1⟩ + |𝜎−⟩1 |1, +1⟩) , (7.9)

𝜁𝑜
1 → 𝜌𝑜

1 = 𝐴 ∣Φ𝐴
1 ⟩ ⟨Φ𝐴

1 ∣ + 𝐵 ∣Φ𝐵
1 ⟩ ⟨Φ𝐵

1 ∣ (7.10)

with

∣Φ𝐴
1 ⟩ = √25

32 |𝜎−⟩1 |1, 0⟩ − √ 1
32 |𝜎−⟩1 |2, 0⟩ − √ 6

32 |𝜎+⟩1 |2, −2⟩ (7.11)

and

∣Φ𝐵
1 ⟩ = √25

32 |𝜎+⟩1 |1, 0⟩ + √ 1
32 |𝜎+⟩1 |2, 0⟩ + √ 6

32 |𝜎−⟩1 |2, +2⟩ , (7.12)

and

𝜁𝜎
1 → |Ψ𝜎

1⟩ = 1√
2

(|𝜎+⟩1 |1, −1⟩ + |𝜎−⟩1 |1, +1⟩) .

Detection of the first of two photons From the three possible two photon processes 𝜁𝑟,𝑟 (7.5),
𝜁𝑟,𝑜(7.6), and 𝜁𝑟,𝜎 (7.7) only the two later ones involve a first photon that is detectable by the
setup. Conditioning on a detection of the first photon and no detection of the second means
tracing out the second photon in (7.6) and (7.7). This results in partially mixed atom-photon
states

𝜁𝑟,𝑜
1 → 𝜌𝑟,𝑜

1 = 25
120 (|𝜎+⟩1 |1, −1⟩ + |𝜎−⟩1 |1, +1⟩) (⟨𝜎+|1 ⟨1, −1| + ⟨𝜎−|1 ⟨1, +1|)

+ 25
120 |𝜎+⟩1 |1, 0⟩ ⟨𝜎+|1 ⟨1, 0| + 25

120 |𝜎−⟩1 |1, 0⟩ ⟨𝜎−|1 ⟨1, 0|

+ 1
120 |𝜎+⟩1 |2, 0⟩ ⟨𝜎+|1 ⟨2, 0| + 6

120 |𝜎−⟩1 |2, +2⟩ ⟨𝜎−|1 ⟨2, +2|

+ 1
120 |𝜎−⟩1 |2, 0⟩ ⟨𝜎−|1 ⟨2, 0| + 6

120 |𝜎+⟩1 |2, −2⟩ ⟨𝜎+|1 ⟨2, −2|

+ 3
120 (− |𝜎+⟩1 |2, −1⟩ + |𝜎−⟩1 |2, +1⟩) (− ⟨𝜎+|1 ⟨2, −1| + ⟨𝜎−|1 ⟨2, +1|) ,

and

𝜁𝑟,𝜎
1 → 𝜌𝑟,𝜎

1 = 1
3 |𝜎𝑒𝑥𝑐⟩1 |1, −1⟩ ⟨𝜎𝑒𝑥𝑐|1 ⟨1, −1|

+ 1
3 |𝜎𝑒𝑥𝑐⟩1 |1, 0⟩ ⟨𝜎𝑒𝑥𝑐|1 ⟨1, 0|

+ 1
3 |𝜎𝑒𝑥𝑐⟩1 |1, +1⟩ ⟨𝜎𝑒𝑥𝑐|1 ⟨1, +1| .
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category excitation process resulting state

1 𝜁𝑟
1 , 𝜁𝜎

1 , 𝜁𝑟,𝑟
2 , 𝜁𝑟,𝜎

2 atom-photon entanglement (2.5)
2 𝜁𝑜

1 , 𝜁𝑟,𝑜
1 , 𝜁𝑟,𝜎

1 ,𝜁𝑟,𝑜
2 mixed atom-photon state

3 𝜁𝑟,𝑜
1,2 , 𝜁𝑟,𝜎

1,2 two-photon state

Table 7.1.: Categories of the excitation processes with conditioning on the detected pho-
ton (indicated by the subscripts) on the measured atom-photon state (𝑀𝑝𝑟𝑜 =
{𝜁𝑟

1 , 𝜁𝜎
1 , 𝜁𝑟,𝑟

2 , 𝜁𝑟,𝜎
2 𝜁𝑜

1 , 𝜁𝑟,𝑜
1 , 𝜁𝑟,𝜎

2 , 𝜁𝑟,𝑜
2 }).

Detection of the second of two photons The detection of the second photon is possible for
all two photon processes and tracing out the first photon and a projection on the detectable
|𝜎±⟩2 second photons leads to

𝜁𝑟,𝑟
2 → |Ψ𝑟,𝑟

2 ⟩ = 1√
2

(|𝜎+⟩2 |1, −1⟩ + |𝜎−⟩2 |1, +1⟩) ,

𝜁𝑟,𝑜
2 → 𝜌𝑟,𝑜

2 = 1
2 ∣Φ𝐴

2 ⟩ ⟨Φ𝐴
2 ∣ + 1

2 ∣Φ𝐵
2 ⟩ ⟨Φ𝐵

2 ∣ (7.13)

with ∣Φ𝐴
2 ⟩ = ∣Φ𝐴

1 ⟩ (7.11) and ∣Φ𝐵
2 ⟩ = ∣Φ𝐵

1 ⟩ (7.11) (with 𝑖 = 2 for the detected photon), and

𝜁𝑟,𝜎
2 → |Ψ𝜎

2⟩ = 1√
2

(|𝜎+⟩2 |1, −1⟩ + |𝜎−⟩2 |1, +1⟩) .

Two photon detection The detection of both photons is again only possible for 𝜁𝑟,𝑜 (7.6),
and 𝜁𝑟,𝜎 (7.7) this leads to the states

𝜁𝑟,𝑜
1,2 → ∣Ψ𝑟,𝑜

1,2⟩ = √25
32

1√
2

(|𝜎+⟩1 |𝜎−⟩2 + |𝜎−⟩1 |𝜎+⟩2 |1, 0⟩) (7.14)

+ √ 1
35

1√
2

(− |𝜎+⟩1 |𝜎−⟩2 + |𝜎−⟩1 |𝜎+⟩2 |2, 0⟩)

+ √ 6
35

1√
2

(− |𝜎+⟩1 |𝜎+⟩2 |2, −2⟩ + |𝜎−⟩1 |𝜎−⟩2 |2, 2⟩)

and

𝜁𝑟,𝜎
1,2 → ∣Ψ𝑟,𝜎

1,2⟩ = 1√
2

|𝜎𝑒𝑥𝑐⟩1 (|𝜎+⟩2 |1, −1⟩ + |𝜎+⟩2 |1, +1⟩) .

These 10 different substates can be sorted in three different categories based on their effect
on the combined atom-photon states (Tab 7.1): The first category is formed by processes that
lead to the desired atom-photon state |Ψ⟩𝐴𝑃 = 1√

2 (|𝜎+⟩ |1, −1⟩ + |𝜎−⟩ |1, +1⟩) (2.5) (𝜁𝑟
1 , 𝜁𝜎

1 ,
𝜁𝑟

2 , 𝜁𝜎
2 ). These processes involving only resonant excitation to the F’ = 0, mF = 0, regardless

whether the excitation is caused by 𝜋-polarized light or residual 𝜎𝑒𝑥𝑐-polarization and but
only consider one photon processes or the detection of the second of two photons. The second
category are lead to a mixed state. In this category are two photon processes in which only
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the first photon is detected ( 𝜁𝑟,𝑜
1 , 𝜁𝑟,𝜎

1 ), which are called “disturbed states” because the
second excitation disturbs the entangled state between the first photon and the atom. Also
in this category are processes involving off-resonant excitation (𝜁𝑜

1 ,𝜁𝑟,𝑜
2 ). The last category

is formed by the two photon detection processes 𝜁𝑟,𝑜
1,2 and 𝜁𝑟,𝜎

1,2 these two-photon-atom states
can be identified and excluded from measurements. Therefore, they do not contribute to the
atom-photon state.

7.2. Possible reduction of unwanted processes

Since only processes from the first category from Table 7.1 lead to the desired atom-photon
state, while the other two categories reduce the atom-photon state fidelity, it is preferable
to minimize the contribution of the unwanted processes. There are two different options of
reducing the unwanted processes by minimizing the occurrence of those processes or filter out
events with unwanted processes. Minimizing the occurrence is possible by finding optimal
parameters of optical pumping and the excitation pulse. In order to be able to filter out
events, it is necessary to discriminate between the desired and the unwanted processes by
means of measurement. Then it is possible to exclude the unwanted processes from the
evaluation. This is for example possible for the two photon detection events1 or photons
originating in a decay to 5S1/2, F = 2 that have a 6.8 GHz (Fig. 2.2) lower frequency than the
desired photons.

For both options of reducing unwanted processes a thorough quantitative analysis of the
excitation process considering the level structure of 87Rb and the parameters of the excitation
pulse is very helpful. Such an analysis was performed in [33] based on optical Liouville
equations with a model called “quantum jump model”. By expanding the analysis of this
model it is possible to find optimized parameters as well as possibilities to filter out the
unwanted processes.

7.2.1. Model of the excitation process

Liouville’s equation, in quantum mechanics called von Neuman’s equation [154], allows to
calculate the time evolution of a density matrix 𝜌 for an Hamiltonian 𝐻

𝑖ℏ𝜕𝜌
𝜕𝑡 = − [𝜌, 𝐻] .

The Hamiltonian 𝐻 = 𝐻0 + ℏ
2Ω (𝑒𝑥𝑐 (𝑡)) − ℏΔ is composed of the unperturbed Hamiltonian

of a single atom 𝐻0 and an interaction part including the Rabi frequencies for all transitions
Ω𝑖𝑗 (𝑒𝑥𝑐 (𝑡)) caused by the excitation pulse 𝑒𝑥𝑐 (𝑡) and the detuning of the light field Δ𝑖𝑗. To
account for the spontaneous decay with decay rate Γ the equation is modified to

𝑖ℏ𝜕𝜌
𝜕𝑡 = − [𝜌, 𝐻] + 𝑖ℏ

2 {Γ, 𝜌} ,

with {Γ, 𝜌} = Γ𝜌 + 𝜌Γ [155]. For the excitation pulse a Gaussian shape

𝑒𝑥𝑐 (𝑡) = 𝑃𝑂𝑒− 1
2 ( 𝑡−𝑡0

2𝑇 )
2

(7.15)
1Only possible for atom photon entanglement, for the BSM with two photon coincidences these events cannot

be filtered out so easily.
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excitation process 1st photon 2nd photon
resonant 𝑃 𝑟𝑟

𝑒1(𝑡1) 𝑃𝑟𝑟
𝑒2 (𝑡2|𝑡1)

off-resonant 𝑃 𝑟𝑜
𝑒1(𝑡1) 𝑃𝑟𝑜

𝑒2 (𝑡2|𝑡1)
𝜎𝑒𝑥𝑐-polarized 𝑃 𝑟𝜎

𝑒1(𝑡1) 𝑃𝑟𝜎
𝑒2 (𝑡2|𝑡1)

Table 7.2.: Photon emission probabilities for the excitation process.

process Detection probability

𝜁𝑟
1 𝑃 𝑟𝑟

1 (𝑡1) = 𝑃𝑟𝑝𝑟𝑒𝑝 ⋅ 2
3𝑃𝑟𝑟

𝑒1 (𝑡1) 𝑃𝑟𝜎±
𝑑𝑒𝑡 (1 − ∫ (𝑃𝑟𝑜𝑟

𝑒1 (𝑡2|𝑡1) + 𝑃𝑟𝜎
𝑒1 (𝑡2|𝑡1)) 𝑑𝑡2)

𝜁𝑜
1 𝑃 𝑟𝑜

1 (𝑡1) = (1 − 𝑃𝑟𝑝𝑟𝑒𝑝) 32
60𝑃 𝑟𝑜

𝑒1(𝑡1)𝑃𝑟𝜎±
𝑑𝑒𝑡

𝜁𝜎
1 𝑃 𝑟𝜎

1 (𝑡1) = (1 − 𝑃𝑟𝑝𝑟𝑒𝑝) 2
3𝑃 𝑟𝜎

𝑒1(𝑡1)𝑃𝑟𝜎±
𝑑𝑒𝑡

𝜁𝑟,𝑜
1 𝑃𝑟𝑟,𝑜

1 (𝑡1) = 𝑃𝑟𝑝𝑟𝑒𝑝 ⋅ 2
3𝑃 𝑟𝑟

𝑒1 (𝑡1) 𝑃𝑟𝜎±
𝑑𝑒𝑡 ∫ 𝑃𝑟𝑜

𝑒2 (𝑡2|𝑡1) 𝑑𝑡2 (1 − 𝑃𝑟𝜎±
𝑑𝑒𝑡)

𝜁𝑟,𝜎
1 𝑃𝑟𝑟,𝜎

1 (𝑡1) = 𝑃𝑟𝑝𝑟𝑒𝑝 ⋅ 2
3𝑃𝑟𝑟

𝑒1 (𝑡1) 𝑃𝑟𝜎±
𝑑𝑒𝑡 ∫ 𝑃𝑟𝜎

𝑒2 (𝑡2|𝑡1) 𝑑𝑡2 (1 − 𝑃𝑟𝜎±
𝑑𝑒𝑡)

𝜁𝑟,𝑟
2 𝑃𝑟𝑟,𝑟

2 (𝑡2) = 𝑃𝑟𝑝𝑟𝑒𝑝 ⋅ ∫ 2
3𝑃 𝑟𝑟

𝑒2 (𝑡2|𝑡1) 𝑃𝑟𝜎±
𝑑𝑒𝑡

1
3𝑃 𝑟𝑟

𝑒1 (𝑡1) 𝑑𝑡1

𝜁𝑟,𝑜
2 𝑃𝑟𝑟,𝑜

2 (𝑡2) = 𝑃𝑟𝑝𝑟𝑒𝑝 ⋅ ∫ 32
60𝑃𝑟𝑜

𝑒2 (𝑡2|𝑡1) 𝑃𝑟𝜎±
𝑑𝑒𝑡

2
3𝑃𝑟𝑟

𝑒1 (𝑡1) (1 − 𝑃𝑟𝜎±
𝑑𝑒𝑡) 𝑑𝑡1

𝜁𝑟,𝜎
2 𝑃𝑟𝑟,𝜎

2 (𝑡1) = 𝑃𝑟𝑝𝑟𝑒𝑝 ⋅ ∫ 2
3𝑃𝑟𝜎

𝑒2 (𝑡2|𝑡1) 𝑃𝑟𝜎±
𝑑𝑒𝑡

2
3𝑃𝑟𝑟

𝑒1 (𝑡1) (1 − 𝑃𝑟𝜎±
𝑑𝑒𝑡) 𝑑𝑡1

Table 7.3.: Probabilities for single photon detection for the considered processes (𝑀𝑝𝑟𝑜) cal-
culated from the result of the “quantum jump” model (Tab. 7.2).

is used, which is a very good approximation of the excitation used in the experiment (Fig. 7.3a).
It has the parameters width 𝑇 , absolute timing 𝑡0, and optical power density at the atom 𝑃𝑂.
An additional parameter is the polarization 𝜒𝑒𝑥𝑐 = cos (𝛽) |𝜋⟩ + sin (𝛽) |𝜎𝑒𝑥𝑐⟩ of the excitation
pulse. This applied in the “quantum jump model” from [33] allows for the extraction of the
time dependent photon emission probability for each of the possible excitation processes from
Section 7.1.2.

7.2.2. Time dependence of the excitation process

The quantum jump model yields time dependence of the photon emission probabilities for
the different excitation processes (Sec. 7.1): for a first photon 𝑃𝑟𝑝𝑟𝑜

1 (𝑡1), and for a second
photon 𝑃𝑟𝑝𝑟𝑜

2 (𝑡2|𝑡1) conditioned on the emission of a first photon at time 𝑡1 (Tab. 7.2). This
emission probabilities include emission in all possible polarizations.

To calculate the time dependent photon detection probabilities it is necessary to include
further parameters: the polarization of the emitted photons, the collection of only 𝜎± photons,
and the collection and detection efficiency. The estimated detection probability 𝑃𝑟𝑑𝑒𝑡 =
2 ⋅ 10−3 already includes that 𝜋-polarized photons are not collected and thus a modified
detection probability for only 𝜎±-photons of 𝑃𝑟𝜎±

𝑑𝑒𝑡 = 3 ⋅ 10−3 is used. Considering this, the
photon detection probabilities for the one photon detection processes 𝑀𝑝𝑟𝑜 from Table 7.1
are calculated in Table 7.3.
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(b) Measured photon detection time histogram (red dots) and simulated photon emission probability
(black line) for the simulation parameters 𝑃𝑂 = 0.52 mW/mm2 and 𝑡0 = 736 ns. Photon emission
of all processes combined (∑𝜁∈𝑀𝑝𝑟𝑜

𝑃𝑟𝜁) (black line) and fitted excitation pulse (gray, dashed
line, a.u).

Figure 7.2.: Estimation of the optical power of the excitation pulse 𝑃𝑂 based on the excitation
efficiency.

Estimation of parameters

For calculating the dynamics for the experiments in this thesis, it is necessary to set the four
parameters of the excitation pulse (7.15) according to the one used in the experiment. The
width 𝑇 = 8.64 ns can be extracted from a fit of the measured excitation pulse (Fig. 2.8),
while the other three parameters are not directly accessible. 𝑡0 needs to be exact with respect
to the measured photon detection times and 𝑃𝑂 and 𝜒𝑒𝑥𝑐 cannot be measured exactly at the
position of the atom inside the vacuum. There a two ways to estimate 𝑃𝑂 by combining the
experimental data and the model. The first is to measure the excitation efficiency depending
on the excitation laser pulse power and to compare the result to a simulation of this measure-
ment using the model. For the atom-atom entanglement experiments the excitation power is
set to a value yielding 80% of the maximal excitation efficiency 𝜂𝑚𝑎𝑥. The respective power
is 47% of the power 𝑃𝑚𝑎𝑥 needed for the maximal excitation efficiency 𝜂𝑚𝑎𝑥 (Fig. 7.2a). The
simulation yields a 𝑃𝑚𝑎𝑥 = 1.14 mW/mm2 and thus the actual optical power can be estimated
to 𝑃𝑂 = 0.47 ⋅ 1.14 mW/mm2 = 0.52 mW/mm2. However, a simulation with this optical power
and 𝑡0 = 736 ns yields a time dependent photon emission probability that does not agree
with the measured photon detection histogram (Fig 7.2b). The second option to estimate the
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optical power is to fit the time dependence of the simulated emission probability to a me-
asured photon detection time histogram (Fig. 7.3a). This approach yields an optical power
of the excitation pulse of 𝑃𝑂 = 1.08 mW/mm2. Additionally, overlapping the photon detection
histogram and the emission probability allows to estimate 𝑡0 = 740 ns.

The discrepancy between the values of 𝑃𝑂 obtained with the two different model is most
probably a cause of the fact that the quantum jump model from [33] still not a perfect model
of the excitation. For example the different processes are simulated independently of each
other. A more detailed model considering all involved atomic state levels and other potential
parameters might solve might be necessary in the future. Nevertheless, the simulation fitted to
the measured photon shape reproduces the temporal shape of the photon emission. Therefore
it is a fair estimation of the actual process and allows for a thorough investigation of the time
dependent photon emission probability for each sub process. The final parameter that has to
be determined is the polarization of the excitation laser pulse 𝜒𝑒𝑥𝑐. It cannot be measured
directly and indirect measurements, as performed in [33]2, need a long measurement time
and the value might actually change between measurements. Hence, 𝜒𝑒𝑥𝑐 is determined
by estimating the misalignment of beam path and polarizer setting. Combining possible
misalignment of the fluorescence collection (quantization axis) to the excitation beam path
(Fig. 2.6), the polarizer setting and possible birefringence in the front part of the glass cell
an polarization misalignment of 5∘is estimated.

Using the fit and the estimated 𝜒𝑒𝑥𝑐 for the “quantum jump model” result in the normalized
detection probabilities for the different excitation processes shown in Figure 7.3. The time
dependent photon emission probabilities for the different processes are quite different. Espe-
cially, the unwanted processes from Table 7.1 occur preferably during the excitation pulse,
while the photon having the desired atom-photon state are also emitted at later times.

7.2.3. Time filtering and optimizing pulse parameters

The calculation shows that reducing the unwanted processes in the atom-photon state is
possible by time filtering. For optimizing the photon detection acceptance time window it
is necessary to consider background and detector dark counts. Here, a value of 60 counts/s

background and dark counts is used. Using an acceptance time window for the photon
detection which excludes all detection events during the duration of the excitation pulse, e.g.,
[755 ns, 800 ns] reduces the fraction of unwanted processes from 2.72% to 0.97%, while also
reducing the total photon detection probability to 0.47 of the previous value. Such a time
filtering has the advantage that it can be employed for both future experiments as well as for
post processing data of previous experiments. For example, it can be applied to the data of
the atom-photon Bell test experiment conducted during the Big Bell Test (Sec. 5.2.1)3. This
leads to an 𝑆 = 2.477 ± 0.022 with 𝑁 = 18715, which is slightly above the original value of
2.418 ± 0.018 with 𝑁 = 39614.

For future experiments, time filtering can also be applied using the FPGA that switches
the control units to measurement mode (Fig. 5.2a). Since in atom-photon entanglement
experiments, the event rate is limited by loading atoms in the trap and not by the photon

2The value from [33] was measured for a previous version of the atom trap.
3Post selection of data recorded in a Bell test experiment is usually not permitted (Sec. 3.3.3). However,

here the purpose is not to test local realism, but to show the effect of time filtering. Additionally, it is
necessary to consider the time difference 𝑡0 of the model and the actual timing of the excitation pulse in
the experiment of +8 ns has to be considered,. This results in an actual time window of [763 ns, 808 ns].
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(a) Measured photon detection time histogram (red dots) and fitted simulated photon emission proba-
bility for all processes combined (∑𝜁∈𝑀𝑝𝑟𝑜

𝑃𝑟𝜁) (black line) for the fitted excitation pulse (gray,
dashed line, a.u).

(b) One photon processes: 𝑃𝑟𝑟
1 (𝑡1) (red), 𝑃𝑟𝑜

1 (𝑡1) × 10 (green), and 𝑃𝑟𝜎
1 (𝑡1) × 10 (blue).

(c) Second photon of two photon processes: 𝑃𝑟𝑟,𝑟
2 (𝑡1) (red), 𝑃𝑟𝑟,𝑜

2 (𝑡1) (green), and 𝑃𝑟𝑟,𝜎
2 (𝑡1) (blue).

(d) First photon of two photon processes (disturbed states): 𝑃𝑟𝑟,𝑜
1 (𝑡1) (green) and 𝑃𝑟𝑟,𝜎

1 (𝑡1) (blue).

Figure 7.3.: Calculated time dependent photon emission probability for all processes (only
detectable photons) for 𝑃𝑂 = 1.08 mW/mm2, 𝑡0 = 740 ns. The the excitation pulse
is shown (a.u) to display the relative timing.
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detection efficiency, time filtering will not influence the overall event rate. However, it is
more promising to combine time filtering with additionally optimizing the excitation pulse
parameters to minimize the unwanted effects. Reducing the excitation power will reduce
both wanted and unwanted processes. Since the unwanted processes are reduced more, the
state fidelity is higher. Here, it is necessary to find the optimal trade-off between excitation
probability, background and dark counts, and the acceptance time window to optimize the
state fidelity.

The model shows for an excitation power of reduced by 50% of the current value and an
acceptance time window of [755 ns, 800 ns] a reduction of the unwanted processes < 0.5%,
while the total photon detection probability is reduced by a factor of 0.45. For the improved
collection optics [149] the optimal time window is larger, since the better photon collection
improves by a factor of 3 reduces the effect of possible dark counts. The time window of
[755 ns, 840 ns] yields a fraction of unwanted processes of < 0.4% with a total photon detection
probability of > 0.5 compared to the full time window of [700 ns, 900 ns]. These parameters
allow for a higher state fidelity and the photon detection probability would still be increased
by a factor of 1.5 with the new setup.

7.3. Effect of the photon emission on the two atom state fidelity

The atom-atom state fidelity is not only affected by the two photon processes resulting in
mixed atom-photon states (Tab. 7.1), but also by reduced two photon interference caused by
the different time dependence of the photons emitted in different processes (Fig. 7.3).

7.3.1. Two photon interference

The entanglement swapping is realized by performing a Bell-state measurement based on two
photon interference at a beam splitter (Sec. 2.4.1). This two photon interference requires
indistinguishable photons in all degrees of freedom, including the frequency and time depen-
dence of the photons. Hence, the interference contrast decreases when the photons become
distinguishable, e.g., in case of a two photon process at one of the atoms, information carried
by the other photon from that process causes the distinguishability. The reduced two photon
interference results in a corrupted Bell-state measurement and the distinction between Ψ+

and Ψ− suffers. A figure of merit for this is the temporal mode overlap 𝑂 that is connected
with the probability to identify a Bell state correctly by

𝑃𝑟 (Ψ± → Ψ±) = 1 − 𝑂2

2 .

This temporal mode overlap can be calculated using the temporal shape of the two interfering
photons. It is sufficient to calculate the overlap for the case with a resonant one photon process
𝜁𝑟

1 for one of the atoms. The probability for other combinations is quite low and, additionally,
in those cases the temporal mode overlap has only a minor contribution to the atom-atom
state. Thus, it takes the form

𝑂2
𝜁 = (∫

𝑡𝑒

𝑡𝑠

𝑑𝑡√𝛽𝜁 (𝑡) ⋅ √|𝛼𝑟
𝑒1(𝑡)|2)

2

.

119



Here 𝜁 represents the excitation process of the second atom,

|𝛼𝑟
𝑒1(𝑡)|2 = 𝑃𝑟𝑟

𝑒1 (𝑡)
∫𝑡𝑒
𝑡𝑠

𝑃𝑟𝑟
𝑒1 (𝑡) 𝑑𝑡

(7.16)

is the normalized expectation value of the temporal amplitude of the photon from 𝜁𝑟
1 process,

and 𝛽𝜁 (𝑡) represents the temporal amplitude of the photon emitted by the second atom [33].
For a one photon process 𝛽𝜁 has a form analogous to (7.16) with the respective time depending
emission probabilities from Table 7.2. For photons from a two photon process the emission
probabilities of the photons are connected, a second photon can only be emitted after the
first one and a first one only before the second. Thus, the temporal emission probability of
the second emitted photon depends on the emission time of the first with a 𝛽𝜁 (𝑡|𝑡1) and the
emission time of the second photon yields information on the first photon and thus changes
the conditioned temporal amplitude𝛽𝜁 (𝑡|𝑡2) of the first photon. A thorough analysis of the
two photon interference, considering the two photon processes and other imperfections can
be found in [33]. From all excitation processes there are a single excitation process (𝜁𝜎

1 ),
two two-photon processes with a second photon detected (𝜁𝑟,𝑟

2 , 𝜁𝑟,𝜎
2 ), and one two-photon

process with a first photon detected (𝜁𝑟,𝑜
1 ) where the temporal mode overlap has an effect on

the atom-atom state fidelity. For these the parameters needed to calculate the two photon
overlap are

|𝛼𝜎
𝑒1(𝑡)|2 = 𝑃𝑟𝜎

𝑒1 (𝑡)
∫𝑡𝑒
𝑡𝑠

𝑃𝑟𝜎
𝑒1 (𝑡) 𝑑𝑡

𝛽𝜁𝑟,𝑟
2

(𝑡|𝑡1) =
√√√
⎷

𝑃𝑟𝑟,𝑟
𝑒2 (𝑡2|𝑡1)

∫𝑡𝑒
𝑡𝑠

𝑃𝑟𝑟,𝑟
𝑒2 (𝑡2|𝑡1) 𝑑𝑡2

,

𝛽𝜁𝑟,𝜎
2

(𝑡|𝑡1) =
√√√
⎷

𝑃𝑟𝑟,𝜎
𝑒2 (𝑡2|𝑡1)

∫𝑡𝑒
𝑡𝑠

𝑃𝑟𝑟,𝜎
𝑒2 (𝑡2|𝑡1) 𝑑𝑡2

,

and

𝛽𝜁𝑟,𝑜
1

(𝑡|𝑡2) =
√√√
⎷

𝑃𝑟𝑟
𝑒1 (𝑡1) 𝑃𝑟𝑟,𝑜

𝑒2 (𝑡2|𝑡1)
∫𝑡𝑒
𝑡𝑠

𝑃𝑟𝑟
𝑒1 (𝑡1) 𝑃𝑟𝑟,𝑜

𝑒2 (𝑡2|𝑡1) 𝑑𝑡1
.

The respective 𝑂2
𝜁𝜎

1
, 𝑂2

𝜁𝑟,𝑟
2

(𝑡1), 𝑂2
𝜁𝑟,𝜎

2
(𝑡1), and 𝑂2

𝜁𝑟,𝑜
1

(𝑡2) are displayed in Figure 7.4.
Considering the features of the interference together with the atom-photon states (Tab. 7.1)

allows to categorize the excitation processes according to their effect on the Bell-state measu-
rement and thus on the atom-atom state fidelity (Tab. 7.4). The main difference to the effects
on the atom-photon entanglement is that, because of the reduced temporal mode overlap, 𝜁𝜎

1 ,
𝜁𝑟,𝑟

2 , and 𝜁𝑟,𝜎
2 reduce the atom-atom state fidelity, even though the atom-photon entangle-

ment is perfect. Also, the detection of two photons from only one of the atoms leads to a
completely mixed atom-atom state and since the BSM is based on two photon coincidence
detection these events cannot be simply filtered out.
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(a) Temporal mode overlap of the second emitted from atom A (𝑂𝜁𝑟,𝑟
2

(𝑡1))2
(red) and

(𝑂𝜁𝑟,𝜎
2

(𝑡1))2
(blue) depending on the emission time of the first photon 𝑡1 of atom A.

(b) Temporal mode overlap of the first emitted photon from atom A (𝑂𝜁𝑟,𝑜
1

(𝑡2))2
(green) de-

pendent on the emission time of the second photon 𝑡2 from atom A.

Figure 7.4.: Two photon temporal mode overlap on the beam splitter for various two photon
processes with 𝜁𝐴 ∈ {𝜁𝑟,𝑟

2 , 𝜁𝑟,𝜎
2 , 𝜁𝑟,𝑜

1 } for one atom and 𝜁𝐵 = 𝜁𝑟
1 for the other atom.

For the one photon processes the value for 𝑂𝜁𝑟
1

= 𝑂𝜁𝑟,𝑟
2

(𝑡1 = 700) = 1 respectively
𝑂𝜁𝜎

1
= 𝑂𝜁𝑟,𝜎

2
(𝑡1 = 700) is used. The processes 𝜁𝑜

1 , 𝜁𝑟,𝑜
2 , and 𝜁𝑟,𝜎

2 at atom A (not
displayed here) result in a completely mixed atom-atom state and independent
of the temporal overlap with the photon from atom B.

category excitation processes resulting state

1 𝜁𝑟
1 atom-atom entanglement

2 𝜁𝜎
1 , 𝜁𝑟,𝑟

2 , 𝜁𝑟,𝜎
2 atom-atom entanglement with reduced fidelity

3 𝜁𝑜
1 , 𝜁𝑟,𝑜

1 , 𝜁𝑟,𝜎
1 ,𝜁𝑟,𝑜

2 𝜁𝑟,𝑜
1,2 , 𝜁𝑟,𝜎

1,2 mixed atom-atom state

Table 7.4.: Consequences of the different excitation processes on the atom-atom state inclu-
ding effects of the two photon interference.
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7.3.2. Detection time dependent atom-atom state

To apply temporal filtering on the two photon coincidence detection of the BSM it is necessary
to first calculate the detection time dependence of the atom-atom state fidelity. Possibly one
cloud also calculate the dependence on the detection time for or another figure of merit, e.g.,
for the CHSH 𝑆 value.

Two photon coincidences from two atoms

To find the time dependence for a figure of merit, the synchronized excitation of two inde-
pendent single atoms is considered. This allows to calculate the probability

𝑃𝑟𝜁𝐴,𝜁𝐵
(𝑡𝐴, 𝑡𝐵) = 1

4𝑃 𝑟𝜁𝐴
(𝑡𝐴) 𝑃𝑟𝜁𝐵

(𝑡𝐵)

for a two photon coincidence, which heralds the state |Ψ±⟩. It consideres the case of the de-
tecting one photon emitted from atom A in the excitation process 𝜁𝐴 at time 𝑡𝐴 and on from
atom B, respectively, using the time depended emission probabilities from Table 7.3. Addi-
tionally, it is possible to calculate the atom-atom state 𝜌𝜁𝐴,𝜁𝐵

(𝑡𝐴, 𝑡𝐵) for such a coincidence
using the atom-photon states and the photon overlap resulting from 𝜁𝐴 and 𝜁𝐵.

Summing over all combinations of 𝜁𝐴, 𝜁𝐵 ∈ 𝑀𝑝𝑟𝑜 = {𝜁𝑟
1 , 𝜁𝜎

1 , 𝜁𝑟,𝑟
2 , 𝜁𝑟,𝜎

2 𝜁𝑜
1 , 𝜁𝑟,𝑜

1 , 𝜁𝑟,𝜎
2 , 𝜁𝑟,𝑜

2 },
yields the time depending atom-atom state

𝜌𝐴𝐵(𝑡𝐴, 𝑡𝐵) = 1
𝑁 (𝑡𝐴, 𝑡𝐵) ∑

𝜁𝐴,𝜁𝐵∈𝑀𝑝𝑟𝑜

𝑃𝑟𝜁𝐴,𝜁𝐵
(𝑡𝐴, 𝑡𝐵) 𝜌𝜁𝐴,𝜁𝐵

(𝑡𝐴, 𝑡𝐵) , (7.17)

with the normalization

𝑁 (𝑡𝐴, 𝑡𝐵) = ∑
𝜁𝐴,𝜁𝐵∈𝑀𝑝𝑟𝑜

𝑃𝑟𝜁𝐴,𝜁𝐵
(𝑡𝐴, 𝑡𝐵) .

The time dependent states 𝜌𝜁𝐴,𝜁𝐵
(𝑡𝐴, 𝑡𝐵) can be calculated for each combination of 𝜁𝐴, 𝜁𝐵 ∈

𝑀𝑝𝑟𝑜 leading to 64 different combinations. From this 8 examples with 𝜁𝐵 = 𝜁𝑟
1 and 𝜁𝐴 ∈ 𝑀𝑝𝑟𝑜

are discussed in more detail.

One photon processes First the three cases with 𝜁𝐴 being a one photon process are consi-
dered. For such cases 𝜌𝜁𝐴,𝜁𝐵

(𝑡𝐴, 𝑡𝐵) = 𝜌𝜁𝐴,𝜁𝐵
is independent of the photon detection times.

The processes 𝜁𝐴 = 𝜁𝑟
1results in the desired atom-atom state

𝜌𝜁𝑟
1,𝜁𝑟

1
= |Ψ±⟩ ⟨Ψ±| .

For 𝜁𝐴 = 𝜁𝜎
1 the emitted photon has a slightly different temporal mode that leads to a not

perfect overlap (𝑂𝜁𝜎
1

< 1) and therefore results in a not perfectly entangled atom-atom state

𝜌𝜁𝜎
1 ,𝜁𝑟

1
= |Ψ±⟩ ⟨Ψ±|

1 + 𝑂2
𝜁𝜎

1

2 + |Ψ∓⟩ ⟨Ψ∓|
1 − 𝑂2

𝜁𝜎
1

2
with the correct Bell state |Ψ±⟩, wrong Bell-state |Ψ∓⟩, and the overlap 𝑂𝜁𝜎

1
= 𝑂𝜁𝑟,𝜎

2
(𝑡1 = 700)

(Fig. 7.4).
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The off-resonant process 𝜁𝐴 = 𝜁𝑜
1 results in a mixed state 𝜌𝜁𝑜𝑟

1 ,𝜁𝑟
1
. Here, atom 𝐴 is in a

partially mixed state similar to (7.10) which is partially entangled with atom 𝐵 in a super-
position state of |1, ±1⟩. For this state the influence of the spectral mode overlap of the
photons is reduced since the off-resonant photon includes a different frequency from decay to
F = 2 (Δ𝑓 = 6.8 GHz), which reduces the interference for this decay to zero [33]. Moreover,
even with perfect two photon interference the atom-atom state is still mixed. Considering all
possible Zeeman states of both hyperfine levels of the 5S1/2 ground state 𝜌𝜁𝑟

1,𝜁𝑟
1

gives a 64 × 64
density matrix.

Two photon processes The two photon process 𝜁𝐴 = 𝜁𝑟,𝑟
2 leads to a photon detection time

depending atom-atom state 𝜌𝜁𝑟,𝑟
2 ,𝜁𝑟

1
(𝑡𝐴, 𝑡𝐵). To calculate this state one has to consider that

the temporal overlap of the two detected photons depends on the emission time 𝑡1 of the first
not detected photon of 𝜁𝑟,𝑟

2 . This results in a 𝑡1 dependence of the atom-atom state

𝜌𝜁𝑟,𝑟
2 ,𝜁𝑟

1
(𝑡1) = |Ψ±⟩ ⟨Ψ±|

1 + (𝑂𝜁𝑟,𝑟
2

(𝑡1))2

2 + |Ψ∓⟩ ⟨Ψ∓|
1 − (𝑂𝜁𝑟,𝑟

2
(𝑡1))2

2 .

Hence, it is necessary to integrate this state over all possible first photon emission times
𝑡1 ≤ 𝑡𝐴 to obtain a state depending on 𝑡𝐴 and 𝑡𝐵:

𝜌𝜁𝑟,𝑟
2 ,𝜁𝑟

11
(𝑡𝐴, 𝑡𝐵) = 1

𝑁𝜁𝑟,𝑟
2 ,𝜁𝑟

11
(𝑡𝐴) ∫

𝑡1<𝑡𝐴

𝜌𝜁𝑟,𝑟
2 ,𝜁𝑟

11
(𝑡1, 𝑡𝐴, 𝑡𝐵) 𝑃𝑟𝑟

1(𝑡1)𝑃𝑟𝑟
2(𝑡1|𝑡𝐴)𝑑𝑡1 (7.18)

where 𝑃𝑟𝑟
1(𝑡1) and 𝑃𝑟𝑟

2(𝑡1|𝑡𝐴) are the time dependent emission probabilities for the first and
the second photon from Table 7.2, and

𝑁𝜁𝑟,𝑟
2 ,𝜁𝑟

11
(𝑡𝐴) = 1

∫𝑡<𝑡𝐴
𝑃𝑟𝑟

1(𝑡)𝑃𝑟𝑟
2(𝑡, 𝑡𝐴)𝑑𝑡

is the normalization. For the process 𝜁𝐴 = 𝜁𝑟,𝜎
2 the resulting state 𝜌𝜁𝑟,𝜎

2 ,𝜁𝑟
1

(𝑡𝐴, 𝑡𝐵) is calculated
analogous to (7.18) with 𝑂𝜁𝑟,𝜎

2
(𝑡) and 𝑃𝑟𝜎

2 (𝑡|𝑡𝐴). The state 𝜌𝜁𝑟,𝑜
2 ,𝜁𝑟

1
(𝑡𝐴, 𝑡𝐵) for 𝜁𝐴 = 𝜁𝑟,𝑜

2 is
mixed and very similar to 𝜌𝜁𝑜𝑟

11 ,𝜁𝑟
11

but also includes a small time dependence from the two
photon interference. However, this time dependence is not important for the state fidelity
concerning the wanted |Ψ±⟩ state.

The other possible two photon processes 𝜁𝐴 = 𝜁𝑟,𝑜
1 and 𝜁𝐴 = 𝜁𝑟,𝜎

1 are conditioned on the
detection of a first photon. Since for 𝜁𝑟,𝜎

1 all information on the state of atom A is in the not
detected second photon, the atom-atom state mixed with atom 𝐴 being in |1, 0⟩ or |1, ±1⟩
with an equal probability of 1/3 independent of atom 𝐵. The situation for the process 𝜁𝑟,𝑜

1 is
more complex, since, due to possible 𝜋-decay from F’ = 1, mF = ±1, the second photon does
not carry all information about the atomic state. Hence, the atom-atom state

𝜌𝜁𝑟,𝑜
1 ,𝜁𝑟𝑞

(𝑡𝐴, 𝑡𝐵) = 5
12𝜌𝐼

𝜁𝑟,𝑜
1 ,𝜁𝑟

1
(𝑡𝐴, 𝑡𝐵) + 7

12𝜌𝐼𝐼
𝜁𝑟,𝑜

1 ,𝜁𝑟
1

is a mixture of a detection time dependent partially mixed state

𝜌𝐼
𝜁𝑟,𝑜

1 ,𝜁𝑟
1

(𝑡𝐴, 𝑡𝐵) = ∫
𝑡2>𝑡𝐴

𝜌𝐼
𝜁𝑟,𝑜

1 ,𝜁𝑟
1

(𝑡2) 𝑃𝑟𝑜
2(𝑡𝐴, 𝑡2)𝑑𝑡2,
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with the state

𝜌𝐼
𝜁𝑟,𝑜

1 ,𝜁𝑟
1

(𝑡2) = |Ψ±⟩ ⟨Ψ±|
1 + (𝑂𝜁𝑟,𝑜

1
(𝑡2))2

2 + |Ψ∓⟩ ⟨Ψ∓|
1 − (𝑂𝜁𝑟,𝑜

1
(𝑡2))2

2
depending on the emission time of the second photon 𝑡2 and normalization

𝑁𝜁𝑟,𝑜
1 ,𝜁𝑟

1
(𝑡𝐴) = 1

∫𝑡2>𝑡𝐴
𝑃 𝑟𝑜

2(𝑡𝐴, 𝑡2)𝑑𝑡2
.

and a constant mixed state 𝜌𝐼𝐼
𝜁𝑟,𝑜

1 ,𝜁𝑟
1
with atom 𝐴 uncorrelated to atom 𝐵.

Two photon coincidences from one atom

In addition to the two photon coincidences with photons from two atoms, there is also the
possibility of two photon originating from one atom. This always leads to a completely
uncorrelated atom-atom states 𝜌𝜁𝑟,𝑜

1,2 ,𝜁𝐵
and 𝜌𝜁𝑟,𝜎

1,2 ,𝜁𝐵
.

In the case of off-resonant excitation 𝜁𝑟,𝑜
1,2 one has to consider entanglement between the

two emitted photons (7.14). For two photons resulting in the atomic state |1, 0⟩, which are
in the entangled state 1√

2 (|𝜎+⟩1 |𝜎−⟩2 + |𝜎−⟩1 |𝜎+⟩2) = 1√
2 (|𝐻⟩1 |𝐻⟩2 + |𝑉 ⟩1 |𝑉 ⟩2), the BSM

analyzing the photons in the 𝐻, 𝑉 polarization basis (Sec. 2.4.1) never results in heralding of
an entangled atom-atom state [33]. Thus, they do not contribute to the atom-atom state and
the mixed atom-atom state 𝜌𝜁𝑟,𝑜

1,2 ,𝜁𝐵
considers only the F = 2 ground state in one of the atoms.

The two photon detection caused by imperfect polarization 𝜁𝜎
21,2

results in 𝜌𝜁𝑟,𝜎
1,2 ,𝜁𝐵

. with only
F = 1 ground states. The two photon detection probabilities are

𝑃𝑟𝜁𝑟,𝑜
1,2 ,𝜁𝐵

(𝑡𝐴1
, 𝑡𝐴2

) = 1
16𝑃 𝑟𝑜

2(𝑡𝐴1
, 𝑡𝐴2

)

and

𝑃𝑟𝜁𝑟,𝜎
1,2 ,𝜁𝐵

(𝑡𝐴1
, 𝑡𝐴2

) =1
4𝑃 𝑟𝜎

2 (𝑡𝐴1
, 𝑡𝐴2

).

Combined atom-atom state

To combine all possible two photon coincidence types to the complete detection time depen-
dence of the atom-atom state one has to consider that the BSM cannot differentiate between
photons from atom 𝐴 and 𝐵. So the combined atom-atom state 𝜌𝑐𝑜

𝐴𝐴 (subscript analogous to
the atom-atom state in Section 2.4) for a coincidence with detection times 𝑡1 and 𝑡2 has the
form

𝜌𝑐𝑜
𝐴𝐴 (𝑡1, 𝑡2) = 1

𝑁(𝑡1,𝑡2)
[𝑃 𝑟𝐴𝐵 (𝑡1,𝑡2) 𝜌𝐴𝐵 (𝑡1, 𝑡2) + 𝑃𝑟𝐴𝐵 (𝑡2,𝑡1) 𝜌𝐴𝐵 (𝑡2, 𝑡1) (7.19)

+ 2 ⋅ 𝑃𝑟𝜁𝑟,𝑜
1,2 ,𝜁𝐵

(𝑡1, 𝑡2) 𝜌𝜁𝑟,𝑜
1,2 ,𝜁𝐵

+ 2 ⋅ 𝑃𝑟𝜁𝑟,𝜎
1,2 ,𝜁𝐵

(𝑡1, 𝑡2) 𝜌𝜁𝑟,𝜎
1,2 ,𝜁𝐵

] ,

with the probability for a coincidence 𝑃𝑟𝐴𝐵 (𝑡𝐴,𝑡𝐵) with a photon from atom 𝐴 at time 𝑡𝐴
and a photon from atom B at time 𝑡𝐵 and the normalization

𝑁 (𝑡1, 𝑡2) = (𝑃𝑟𝐴𝐵 (𝑡1,𝑡2) + 𝑃𝑟𝐴𝐵 (𝑡2,𝑡1) + 2 ⋅ 𝑃𝑟𝜁𝑟,𝑜
1,2 ,𝜁𝐵

(𝑡1, 𝑡2) + 2 ⋅ 𝑃𝑟𝜁𝑟,𝜎
1,2 ,𝜁𝐵

(𝑡1, 𝑡2)) .

124



This allows to calculate the atom-atom state for a certain acceptance time window [𝑡𝑠, 𝑡𝑒],
conditioned on 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑒, via integration of the time dependent state over the time window

𝜌𝑐𝑜
𝐴𝐴 ([𝑡𝑠, 𝑡𝑒]) = 1

𝑁[𝑡𝑠,𝑡𝑒]
∫

𝑡𝑒

𝑡𝑠

∫
𝑡𝑒

𝑡1

(𝜌𝑐𝑜
𝐴𝐴 (𝑡1, 𝑡2) ⋅ 𝑁 (𝑡1, 𝑡2)) 𝑑𝑡2𝑑𝑡1,

with normalization

𝑁[𝑡𝑠,𝑡𝑒] = ∫
𝑡𝑒

𝑡𝑠

∫
𝑡𝑒

𝑡1

𝑁 (𝑡1, 𝑡2) 𝑑𝑡2𝑑𝑡1.

The fidelity to the Bell-state |Ψ±⟩ can be calculated via

𝐹 (𝜌𝑐𝑜
𝐴𝐴 ([𝑡𝑠, 𝑡𝑒]) , |Ψ±⟩) = ⟨Ψ±| 𝜌𝑐𝑜

𝐴𝐴 ([𝑡𝑠, 𝑡𝑒]) |Ψ±⟩ .

7.4. Optimizing the two photon coincidence time window

As shown in the previous section, it is possible to calculate the prepared atom-atom state
using the model from [33] and based on this to optimize the acceptance conditions for the
coincidence detection. However the full density matrix of 𝜌𝐴𝐴 has dimension 64×64 and even
if most of the 4096 entries are zero still many not vanishing entries remain. Additionally, since
the atomic state read-out (Sec. 2.3.2) only discriminates a certain superposition of |1, ±1⟩,
the dark state (2.9), from all other states, the full density matrix is not needed to predict the
results of an experiment. Strictly speaking, the read-out will lead to an ionization of |1, 0⟩
and all F = 2 Zeeman states independent of the actual measurement setting. Hence, the
measurement results for most states involving an off-resonant excitation process are simply
+1 . This allows to bypass the complex mixed state resulting from off-resonant excitation
reducing the complexity of the atom-atom model.

7.4.1. Model for the 𝑆 value dependence on the detection times

Such a consideration enables to calculate an expectation value for a measured CHSH 𝑆 value
for every excitation process. To do so, here a model with the following considerations is used:

1. 𝑆 is defined accordingly to (4.12) with the measurement settings from Table 4.1.

2. The atomic measurement process is assumed to be perfect.

3. The evolution of atomic states is not considered.

4. Imperfections of the photon collection and detection are considered, i.e, imperfect col-
lection and detection efficiency and detector dark counts.

5. All imperfections of read-out and decoherence are implemented afterwards with a con-
stant factor 𝑓𝑖𝑚𝑝.

The general atom-atom state is composed from four different types of states. First, there
is the desired Bell state |Ψ±⟩. Then there is a contribution from the unwanted Bell state
|Ψ∓⟩ due imperfect two photon interference. Further, there are the mixed or partially mixed
atom-atom states where one atom is in a combination of |1, 0⟩ and F = 2 Zeeman states.
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atom-atom state 𝑆±

|Ψ±⟩ 2
√

2
|Ψ∓⟩ 0

one of the atoms in |1, 0⟩ and F = 2 states 0
both atoms in|1, 0⟩ and F = 2 states for both atoms −2

Table 7.5.: Expected 𝑆±for specific atom-atom states according to (4.11).

Finally, there is a very small contribution from states where both atoms are in a combination
of |1, 0⟩ and F = 2 Zeeman states.

When evaluating 𝑆+ (4.11), with |Ψ+⟩ the desired state and |Ψ−⟩ the wrong component
due to bad overlap, the expectation is 𝑆+ = 2

√
2 for |Ψ+⟩ and 0 for |Ψ−⟩ (and vice versa for

𝑆−with the respective superscripts). For the states where one of the atoms is in a combination
of |1, 0⟩ and F = 2 Zeeman states the measurement results are uncorrelated and thus, the
expectation is 𝑆 = 0.. And for the cases where both atoms are in a combination of |1, 0⟩ and
F = 2 Zeeman states the measurement yields always the result +1 for both sides and thus
correlated. Since in the Bell settings in the experiment from Chapter 4 (Tab. 4.1) predict for
three out of the four input combinations negative correlator functions full correlation leads
to an expected 𝑆 = −2.

Combining these expectation values allows to calculate the expected 𝑆 for all excitation
process combinations. Some specific examples can be found in Table 7.6. With this the
coincidence detection time time depending 𝑆𝑐𝑜 (𝑡1, 𝑡2)

𝑆𝑐𝑜 (𝑡1, 𝑡2) = 1
𝑁(𝑡1,𝑡2)

[𝑃 𝑟𝐴𝐵 (𝑡1,𝑡2) 𝑆 (𝜌𝐴𝐵 (𝑡1, 𝑡2)) + 𝑃𝑟𝐴𝐵 (𝑡2,𝑡1) 𝑆 (𝜌𝐴𝐵 (𝑡2, 𝑡1)) (7.20)

+ 𝜂𝐴𝐵 (𝑃𝑟𝜁𝑟,𝑜
1,2 ,𝜁𝐵

(𝑡1, 𝑡2) 𝑆 (𝜌𝜁𝑟,𝑜
1,2 ,𝜁𝐵

) + 𝑃𝑟𝜁𝑟,𝜎
1,2 ,𝜁𝐵

(𝑡1, 𝑡2) 𝑆 (𝜌𝜁𝑟,𝜎
1,2 ,𝜁𝐵

))]

according to (7.19) with 𝑁(𝑡1,𝑡2) from (7.19) and the reduced detection efficiency for detecting
two photons from one atom

𝜂𝐴𝐵 = 𝜂2
𝐴 + 𝜂2

𝐵
𝜂𝐴 ⋅ 𝜂𝐵

.

Here 𝜂𝐴 is the combined collection detection and detection efficiency for Atom A and 𝜂𝐵 for
Atom B. The total collection and detection efficiency of the trap setup in Lab 2 is reduced by
∼ 50% in comparison to the setup in Lab 1, due to the significantly photon loss in the 700 m
long fiber connection (Fig. 2.1), resulting in 𝜂𝐴𝐵 ≈ 2.5.

To optimize the acceptance conditions for the coincidences heralding atom-atom entangle-
ment, it is necessary to include experimental parameters such as noise introduced by detector
dark counts or by a possible background in the model. Coincidences caused by at least one
noise detection lead always to an uncorrelated atom-atom state and thus 𝑆 ≤ 0 is expected,
depending on the emission process of the other detected photon. The time dependent proba-
bility of a coincidence from a background count and a photon from atom A is

𝑃𝑟𝑐𝑜
𝑛𝑜𝑖𝑠𝑒,𝐴 (𝑡1, 𝑡2) = ∑

𝜁𝐴∈𝑀𝑝𝑟𝑜

(𝑃𝑟𝜁𝐴
(𝑡1) ⋅ 𝑃𝑟𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑟𝜁𝐴

(𝑡2) ⋅ 𝑃𝑟𝑛𝑜𝑖𝑠𝑒)
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with the constant probability density for a noise detection

𝑃𝑟𝑛𝑜𝑖𝑠𝑒 = 𝑅𝑛𝑜𝑖𝑠𝑒Δ𝑡

depending on the noise rate 𝑅𝑛𝑜𝑖𝑠𝑒 and normalized for the detection time bin Δ𝑡. Resulting
in the following noise dependent 𝑆 value

𝑆𝑐𝑜
𝑛𝑜𝑖𝑠𝑒 (𝑡1, 𝑡2) = 𝑆𝑐𝑜 (𝑡1, 𝑡2) 𝑁 (𝑡1, 𝑡2)

𝑁 (𝑡1, 𝑡2) + 𝑃𝑟𝑐𝑜
𝑛𝑜𝑖𝑠𝑒,𝐴 (𝑡1, 𝑡2) (7.21)

that can be used to optimize the acceptance conditions for the coincidence detection.

Including parameters of the experiment

To calculate an 𝑆 that is actually comparable to the experiment in Chapter 4 a factor 𝐹𝑖𝑚𝑝
to account for imperfections of the experiment, e.g., imperfect read-out and decoherence, is
needed. Since the experimental deficiencies only effect the processes with expected 𝑆 > 0,
this factor is only applied if 𝑆 (𝜌𝐴𝐴 (𝑡𝐴, 𝑡𝐵)) > 0 resulting in a new

𝑆𝑐𝑜
𝑖𝑚𝑝 (𝑡1, 𝑡2) = 𝑁 (𝑡1, 𝑡2)

𝑁 (𝑡1, 𝑡2) + 𝑃𝑟𝑐𝑜
𝑛𝑜𝑖𝑠𝑒,𝐴 (𝑡1, 𝑡2) (7.22)

[𝑃𝑟𝐴𝐵 (𝑡1,𝑡2) 𝑆𝑖𝑚𝑝 (𝜌𝐴𝐵 (𝑡1, 𝑡2)) + 𝑃𝑟𝐴𝐵 (𝑡2,𝑡1) 𝑆𝑖𝑚𝑝 (𝜌𝐴𝐵 (𝑡2, 𝑡1))
+𝜂𝐴𝐵 (𝑃𝑟𝜁𝑟,𝑜

1,2 ,𝜁𝐵
(𝑡1, 𝑡2) 𝑆𝑖𝑚𝑝 (𝜌𝜁𝑟,𝑜

1,2 ,𝜁𝐵
) + 𝑃𝑟𝜁𝑟,𝜎

1,2 ,𝜁𝐵
(𝑡1, 𝑡2) 𝑆𝑖𝑚𝑝 (𝜌𝜁𝑟,𝜎

1,2 ,𝜁𝐵
))]

with a modified expected 𝑆 value

𝑆𝑖𝑚𝑝 (𝜌𝐴𝐴 (𝑡𝐴, 𝑡𝐵)) = 𝑆 (𝜌𝐴𝐴 (𝑡𝐴, 𝑡𝐵)) 𝑆 (𝜌𝐴𝐴 (𝑡𝐴, 𝑡𝐵)) ≤ 0
𝑆𝑖𝑚𝑝 (𝜌𝐴𝐴 (𝑡𝐴, 𝑡𝐵)) = 𝑆 (𝜌𝐴𝐴 (𝑡𝐴, 𝑡𝐵)) ⋅ 𝐹𝑖𝑚𝑝 𝑆 (𝜌𝐴𝐴 (𝑡𝐴, 𝑡𝐵)) > 0.

Here, for the noise only the dark count rate of 60 counts/sis considered and 𝐹𝑖𝑚𝑝 = 0.83975
is chosen to result in an expected 𝑆 = 2.2 for all events combined. The coincidence detection
probabilities and respective 𝑆 values for these parameters are illustrated in Figure 7.5).

Acceptance conditions for coincidences

There are several ways to define acceptance conditions for the coincidence detection. To find
the optimal conditions two different kinds of coincidence conditions are considered. The first
one is absolute acceptance time windows [𝑡𝑠, 𝑡𝑒] for both detection times resulting in

𝑆𝑐𝑜
𝐼 (𝑡𝑠, 𝑡𝑒) = 1

𝑁[𝑡𝑠,𝑡𝑒]
∫

𝑡𝑒

𝑡𝑠

∫
𝑡𝑒

𝑡1

(𝑆𝑐𝑜
𝑛𝑜𝑖𝑠𝑒 (𝑡1, 𝑡2) ⋅ (𝑁 (𝑡1, 𝑡2) + 𝑃𝑟𝑐𝑜

𝑛𝑜𝑖𝑠𝑒,𝐴 (𝑡1, 𝑡2))) 𝑑𝑡2𝑑𝑡1 (7.23)

with normalization

𝑁[𝑡𝑠,𝑡𝑒] = ∫
𝑡𝑒

𝑡𝑠

∫
𝑡𝑒

𝑡1

(𝑁 (𝑡1, 𝑡2) + 𝑃𝑟𝑐𝑜
𝑛𝑜𝑖𝑠𝑒,𝐴 (𝑡1, 𝑡2)) 𝑑𝑡2𝑑𝑡1. (7.24)
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Figure 7.5.: Model for coincidence depending 𝑆 value considering noise and other imperfecti-
ons.
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A second possibility for coincidence conditions is an absolute time window [𝑡𝑠, 𝑡𝑒] for 𝑡1 and
a relative time window [𝑡1, 𝑡1 + 𝛿𝑡] depending on 𝑡1 for 𝑡2. This results in

𝑆𝑐𝑜
𝐼𝐼 (𝑡𝑠, 𝑡𝑒, 𝛿𝑡) = 1

𝑁[𝑡𝑠,𝑡𝑒,𝛿𝑡]
∫

𝑡𝑒

𝑡𝑠

∫
𝑡1+𝛿𝑡

𝑡1

(𝑆𝑐𝑜
𝑛𝑜𝑖𝑠𝑒 (𝑡1, 𝑡2) ⋅ (𝑁 (𝑡1, 𝑡2) + 𝑃𝑟𝑐𝑜

𝑛𝑜𝑖𝑠𝑒,𝐴 (𝑡1, 𝑡2))) 𝑑𝑡2𝑑𝑡1

(7.25)

with normalization

𝑁[𝑡𝑠,𝑡𝑒,𝛿𝑡] = ∫
𝑡𝑒

𝑡𝑠

∫
𝑡1+𝛿𝑡

𝑡1

(𝑁 (𝑡1, 𝑡2) + 𝑃𝑟𝑐𝑜
𝑛𝑜𝑖𝑠𝑒,𝐴 (𝑡1, 𝑡2)) 𝑑𝑡2𝑑𝑡1. (7.26)

Comparison with experimental data

During the experiment not only data on the measurement results and the heralding signal
was collected, but also the coincidence detection times for each event. This allows to compare
the results from model (Fig 7.6) to experimental data collected during the Bell experiment
(Sec. 4.4.2).

By choosing the optimal time window for 𝑆𝐼 (7.23), an improvement of the expected 𝑆
value from 2.20 to ≥ 2.29, with [𝑡𝑠 = 757 ns, 𝑡𝑒 = 800 ns] is realized (Fig. 7.6a). However,
tightening the time window lowers the fraction of accepted coincidences significantly. For the
optimal 𝑆 the fraction of accepted coincidences is only 𝑁𝑐𝑜

𝐼 (𝑡𝑠, 𝑡𝑒) = 0.18 (Fig. 7.6b). Also
with the second method for time filtering (7.25) , using an additional constraint 𝑡2 − 𝑡1 ≤ 𝛿𝑡,
a significant improvement of the atomic state is possible (Fig. 7.6c). A short relative time
window [𝑡1, 𝑡1 + 𝛿𝑡] allows for 𝑆 > 2.30, but the fraction of accepted coincidences 𝑁𝑐𝑜

𝐼𝐼 (𝑡𝑠, 𝑡𝑒, 𝛿𝑡)
approaches zero. For a reasonable amount of accepted coincidences (Fig. 7.6c), the second
method yields results comparable to the first method, using an absolute time window.

To compare the results of the model to the actual experiment, the data collected during
the Bell test experiment is filtered with the same acceptance condition as the model. This
comparison is limited to the Ψ− state, which was more robust against drifts of the setup.
Additionally, only data collected after the installation of an accurate temperature control
of the trap setups in December 2015 and January 2016, which made a realignment of the
excitation beam path necessary and by this changed 𝑡0, is used. The Results in a total
number of events of 𝑁 = 25189 Comparing the expected 𝑆 values from the model to the time
filtered experimental data shows that the data fits to the model with error margins (Fig. 7.7).
Yet, there is a tendency that the model shows less improvement of the 𝑆 value compared
to the experimental data. This might be due to an underestimation of the misalignment of
the excitation pulse and also due to the detailed but still not perfect model of the excitation
process.

7.4.2. Optimal acceptance time windows for different applications

Finding the optimal acceptance conditions is not only based on the optimal 𝑆, it is also neces-
sary to consider the lower the event rate. Additionally, different experiments and application
have different dependencies on both the dependence on the atom-atom state fidelity, respecti-
vely on the 𝑆 value, and on the number events 𝑁 . Therefore, there are different optima for
different applications.
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Figure 7.6.: Expected CHSH 𝑆 value and fraction of accepted coincidence for both coincidence
conditions (7.23) and (7.25).
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(a) 𝑆 value for 𝑡𝑒 = 900
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(b) Fraction of accepted coincidences for 𝑡𝑒 = 900
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(c) 𝑆 value for 𝑡𝑒 = 850

 0

 0.25

 0.5

 0.75

 1

 700  725  750  775

fr
ac

. a
cc

. c
o

in
.

start time ts

model
exp

(d) Fraction of accepted coincidences for 𝑡𝑒 = 850
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(e) 𝑆 value for 𝑡𝑒 = 800
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(f) Fraction of accepted coincidences for 𝑡𝑒 = 800

Figure 7.7.: Comparison of 𝑆𝑐𝑜
1 (𝑡𝑠, 𝑡𝑒) from the the model to the experimental data for the

Ψ− state conditioned on the same acceptance conditions.
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dence time windows. The optimal coincidence time
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(b) Expected 𝑝 value depending on the measurement
duration for optimized acceptance time window
[730 ns, 850 ns] (red) reaching the 5𝜎 level after
𝑇𝐷 ≈ 71 h of measurement. A measurement accep-
ting all coincidences (green) needs a 𝑇𝐷 ≈ 85 h.

Figure 7.8.: Optimized coincidence time window for the measurement duration of a Bell ex-
periment. The optimization is based on the experiment in Section 4.4 and the
considerations in Figure 4.9.

Bell test experiment For the Bell experiment in Chapter 4 an 𝑁 for a run was chosen to allow
for an expected violation comparable to a 5𝜎 confidence interval for each heralded state. This
resulted in a certain measurement duration 𝑇𝐷 (Tab. 4.2, Fig 4.9). Here, the task is to find
acceptance conditions that minimize the measurement duration 𝑇𝐷 needed to reach such a
confidence level. The optimal acceptance time window [730 ns, 850 ns] (Fig 7.8) leads to an
expected reduction of the measurement duration by a factor of < 5/6. Using this result for a
future Bell test experiment the duration of a run can be reduced by 14 h.

DI random numbers For the generation of random bits the generation rate 𝐶𝑟𝑏𝑖𝑡𝑠 = 𝑛𝑟𝑏𝑖𝑡𝑠
𝑇𝐷

is the interesting property. Yet the rate for DI random bits is not linear in time, since the
fraction of generated random bits (6.1) from 𝑁 events

𝑛𝑟𝑏𝑖𝑡𝑠
𝑁 = 𝑓 (𝑆𝑚 − 𝜖 (𝑁, 𝑆𝑚, 𝑞, 𝛼))

depends on 𝑁 (6.2). With fixed 𝑞 and 𝛼 and a constant event rate 𝐶𝑁 this leads to a random
bit rate

𝐶𝑟𝑏𝑖𝑡𝑠 = 𝐶𝑁𝑓 (𝑆𝑚 − 𝜖 (𝑁, 𝑆𝑚)) ,

depending on the total number of events 𝑁 and 𝑆𝑚. This behavior does not allow to determine
an absolute optimum for the acceptance time window, but it is possible to find optimal
time windows for fixed number of total events 𝑁 . Considering 𝑁 = 25189 from the data
collected in 2016 the model yields an optimal acceptance time window of [731 ns, 850 ns] for
the randomness extraction (Fig. 7.9a).

Since the used model is an ab initio model of the atom-atom state generation, which is
derived independently from any measurement, the filtering with an acceptance time window
is a preselection of the events and does not diminish the trust in the DI protocol. Without
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(b) Bound for the average Bell state fidelity ̂ℱ depen-
ding on the acceptance time window [𝑡𝑠, 𝑡𝑒]. Maxi-
mum at [748 ns, 825 ns]

Figure 7.9.: Optimization of the acceptance time window for DI random number generation
and self-testing

the preselection the 𝑁 = 25189 events resulting in 𝑆𝑚 = 2.1729 allow for an extraction of
𝑛𝑏𝑖𝑡𝑠 = 516 random bits with a confidence level of 99%. Now applying the new acceptance
time window (Fig. 7.9a) to the data leads to 𝑁 = 24126 accepted events with 𝑆𝑚 = 2.2084
and 𝑛𝑟𝑏𝑖𝑡𝑠 = 801 certified random bits. Considering the data for both states, the time window
filtering yields 𝑁 = 48341 events with 𝑆𝑚 = 2.1593 and 𝑛𝑟𝑏𝑖𝑡𝑠 = 1358 random bits. This is a
significant improvement of the randomness extraction presented in Section 6.2.2.

Self-testing In this thesis, the certification of a quantum network link using self-testing
(Sec. 6.3) is demonstrated. Here, the figure of merit is the average Bell state fidelity ̂ℱ,
which, like 𝑝 and 𝑛𝑟𝑏𝑖𝑡𝑠, depends on 𝑆𝑚 as well as the number of events 𝑁 (6.7). However, in
contrast to the previous two examples a larger minimal 𝑆𝑚 of 2.106 (6.6) is required. Thus, the
optimization here is more towards higher 𝑆𝑚 than larger 𝑁 . As for the DI random number
generation optimizing is only possible for a fixed number of total events 𝑁 . Considering
𝑁 = 25189 events and a confidence interval of 𝛼 = 99% leads to an optimal time window of
[748 ns, 825 ns] (Fig. 7.9b). With this new acceptance time window (Fig. 7.9b) the data for
Ψ− from 2016 gives 𝑁 = 111725 and 𝑆𝑚 = 2.3038 resulting in a certified Bell state fidelity
of ̂ℱ = 0.584 with 99% confidence. For a higher confidence level of 99.99% optimal the time
window is [745 ns, 825 ns] resulting in ̂ℱ = 0.549. Considering both Ψ+ and Ψ− applying these
time windows yields a ̂ℱ = 0.568 with 99% confidence and ̂ℱ = 0.53 with 99.99% confidence.

This is a very strong improvement to the results presented in Section 6.3. Especially, the
improvement for the combined states shows that the two atom traps form an unprecedented
quantum network link over the distance of 400 m. This links allows for device-independent
applications and opens the possibility for future quantum networks.

7.5. Optimal excitation parameters for future experiments

In future experiments, an optimized time dependence and absolute power of the excitation
pulse could allow for a higher atom-atom state fidelity. For this purpose, the detailed model
of the excitation process can be used to find optimal parameters of such a pulse. It must be
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pointed out that the optimal excitation pulse parameters are not the same for different appli-
cations and experimental goals. Additionally, it is necessary to consider improvements and
changes in the experimental setup, since certain parameters of the experiment, e.g, pumping
efficiency, photon detection efficiency, and background counts might change. To account for
this, different scenarios are considered.

Setup with higher photon detection efficiency

Recently, a new custom designed high NA objective was installed for fluorescence collection
[149, 156]. With the new optics an increase of the collection efficiency by a factor of abound
3 is expected leading to an increase of the atom-atom event rate by a factor of 9. This higher
collection efficiency reduces the effect of background counts. Therefore, besides time filtering,
a weaker excitation pulse, which will reduce the probability of two photon processes while
still allowing for a good signal to background ratio, can be implemented.

Reducing the excitation pulse power by a factor of 0.5 from the value used for the expe-
riments in this work leads to a strong reduction of the unwanted processes. A simulation
with 𝑃𝑂 = 0.5 ⋅ 1.08 mW/mm2 while all other parameters are the same as in Section 7.2.2 leads
to an expected 𝑆 value of above 2.28 without any extra time filtering. Still, reducing the
excitation power by 0.5 will reduce the total photon emission probability by the factor 0.625
(Fig. 7.2a) resulting in a reduction of the two photon coincidence rate by 0.39. However,
given the improved photon collection the total event rate will still rise by a factor of 3.5.

Setup for longer distance between the atoms

The next step towards quantum networks is to increase the distance between the atom traps.
To overcome the photon loss of 4 dB/kmat 780 nm in the fiber wavelength conversion of the
fluorescence photons to a wavelength with lower fiber losses is necessary. Conversion to
1522 nm reduces the attenuation to 0.2 dB/km[156]. To detect photons of this wavelength new
highly efficient superconducting nanowire single-photon detector (SNSPD) will be used in
the BSM. Therefore, the new total photon collection and detection efficiency depends on the
conversion efficiency, fiber length, and the SNSPD detection efficiency. Furthermore, due
to the frequency conversion additionally background counts will introduced on the detectors
and thus spectral filtering (27 MHz) is needed to suppress this background to an acceptable
level of roughly 1000 counts/s. This high background count rate makes a short acceptance time
window necessary but the spectral filtering has the additional positive effect that photons
resulting from a decay to the 5S1/2, F = 2 are filtered out.

A simulation considering the higher noise but using the same parameters as in Section 7.2.2
otherwise suggests an acceptance time window [735 ns, 785 ns], which results in an expected
𝑆 = 2.16 while still allowing for an event rate of 0.5 of all coincidences. An even narrower
acceptance time window of [748 ns, 775 ns] results in 𝑆 = 2.2 but reduces the event rate to 0.2
of the original value.
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8. Conclusion and Outlook

In this work, entanglement of two independent 87Rb atoms separated by 398 m was used for
a test of local-realism with Bell’s inequality, but also the first steps towards its application in
quantum networks and for device-independent protocols were shown.

The Bell test with entangled atoms yielded a violation of the CHSH inequality with 𝑆 =
2.221 ± 0.033, while closing all major experimental loopholes. This results in a 𝑝 value of
1.739 ⋅10−10 allowing for a strong rejection of local-realism. To minimize possible expectation
bias the experiment was conducted following a set of strict rules. Additionally, a “Live” run
of the experiment was conducted to allow for maximal transparency. The only part of the
experiment that still relied on assumptions was the creation of random inputs for the setting
choice. To address this, human made random numbers were used for a Bell test employing
atom photon entanglement. This experiment was part of “The Big Bell Test”, which included
13 parallel experiments. They were provided with random bits created by online participants
around the world, which then were used as inputs in the experiment. All 13 experiments
showed a clear violation of the predictions based on local-realism.

The result of the Bell test also confirms the entanglement between the two atoms. Being
stationary qubits and by this quantum memories, the entangled atoms form a basic quantum
network link with two nodes and a 700 m fiber connection. Such links are the building blocks
of future large scale quantum networks incorporating quantum repeaters. Furthermore, the
setup allowed for device-independent applications. In such protocols no assumptions on the
devices used are made and they are considered black boxes. This allows for trusted results even
in the case of imperfect or not trustworthy devices. The 55568 entanglement events collected
within 7 months allowed for the extraction of 1059 DI certified random bits. Additionally, it
was possible to demonstrate the first fully device independent certification of entanglement.
Using the self-testing formalism, it was possible to obtain a device-independent Bell state
fidelity of 51.24% for the Ψ−state with a confidence of 99%, certifying the quantumness of
the network link.

To further improve the performance of the quantum network link, a thorough analysis
of the creation of atom-atom entanglement, which is based on entanglement swapping, was
conducted. A realistic model of the excitation process creating the atom-photon entanglement
used for the swapping allows for the optimization of the entanglement creation. This model
allowed to find optimized acceptance conditions for the Bell-test measurement of the swapping
process. Applying those conditions for the data for the device independent protocols allows
for a significant improvement of those, leading to 1358 certified random bits and a Bell state
fidelity of 58.4% with 99% confidence. Furthermore, the model can be used to optimize the
parameters of the excitation laser pulse for higher rates and fidelity in future experiments.

The next step towards quantum networks and further quantum communication applicati-
ons is to extend the distance between the entangled atoms. Due to the attenuation of 4.0 dB/km

for 780 nm light in optical fibers a frequency conversion of the single photons to the telecom
range with 1522 nm with an attenuation of only ≈ 0.2dB/km is necessary [156]. Further, the
event ready scheme makes it necessary that the coherence of the atomic state is improved
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significantly. For this, a lower temperature of the trapped atoms is necessary. Also a possible
state transfer of the qubit from the Zeeman states to the hyperfine states can help to prolong
the coherence time by several orders of magnitude [157]. Additionally, to improve the en-
tanglement generation rate, the collection of the fluorescence photons needs to be improved.
For this a new custom designed collection optics will be implemented [149]. The expected
improvement of the collection efficiency by a factor of 3 will lead to an improvement of the
event rate by a factor of 9.

A further step can be the expansion of the experiment to a three node network, with a
middle node containing two trapped atoms. By additionally implementing an atom-atom Bell
state measurement at the middle node, a quantum repeater can be realized. This would be
an important milestone for quantum networks and quantum communication in the future.
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A. Physical Constants and Properties of
87Rubidium

Physical constants and properties of the 87Rb-atoms used in the experiments are from[49]
including Clebsch-Gordan coefficients for dipole transition concerning the excitation process
(Sec. 2.3.1) and the read-out process (Sec. 2.3.2).

constant description value

ℏ = ℎ
2𝜋 reduced Planck constant 1.054571726 ⋅ 10−34 J ⋅ s

𝑐 speed of light in vacuum 2.99792458 ⋅ 108 m/s
𝜇0 permeability of free space 1.25663770614 ⋅ 10−6 N/A2

𝜖0 = 1
𝑐2𝜇0

permittivity of free space 8.8541878176 ⋅ 10−12 F/m
𝑒 elementary charge 1.602176565 ⋅ 10−19 C

𝑢 atomic mass unit 1.660538921 ⋅ 10−27 kg

𝑘𝐵 Boltzmann constant 1.38064852⋅10−23 m2⋅kg
s2⋅K

Table A.1.: Physical constants
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constant description value
87Rb-atom

𝑍 atomic number 37
𝑚 mass 86.90918020 ⋅ 𝑢
𝐼 nuclear spin 3/2

𝜏𝑛 nuclear life time 4.88 ⋅ 1010 yr
𝐸0 ground state energy 4.177127 eV

ionization limit 296.817 nm

𝐷1 transition 52S1/2 → 52P1/2

Γ𝐷1 decay rate 2𝜋 ⋅ 5.7500 MHz
𝜏𝐷1 life time of 52P1/2 excited state 27.70 ns
𝑑𝐷1 dipole matrix element 2.537 ⋅ 10−29 C ⋅ m
𝜆𝐷1 transition wavelength 794.979 nm

𝐷2 transition 52S1/2 → 52P3/2

Γ𝐷2 decay rate 2𝜋 ⋅ 6.0666 MHz
𝜏𝐷2 life time of the 52P3/2 excited state 26.24 ns
𝑑𝐷2 dipole matrix element 3.584 ⋅ 10−29 C ⋅ m
𝜆𝐷2 transition wavelength 780.241 nm

Table A.2.: Atomic properties of 87Rb

139



5 2P3/2

F’ = 1
F’ = 0

5 2S1/2
F = 1
F = 2

+2+10−1−2 mF

1√
6 1√

6
1√
6

1√
40 1√

20

1√
120

1√
401√

20

1√
120

−5√
24

5√
24

5√
24

−5√
24
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Figure A.1.: Clebsch-Gordan coefficients for transitions between selected states
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B. Definition of the Coordinate System,
Polarization, and Atomic States

For a consistent description of the performed experiment it is necessary to define a coordinate
system applicable for the setups in both labs. It is important to connect the reference frame
of a single atom with the one of the laboratory in a consistent way. This includes definitions
of polarization for photons emitted by the atom and laser light in the setup as well as fitting
definitions of the atomic states.

The older definition of [48] used also in [34, 33] and with modifications in [37, 38] fits for a
previous stage of the trap setup used for the experiment published in [32] and is sometimes
misleading in the current setup.

Definition of the coordinate system

The coordinate system for both traps is defined in the following way:

1. The origin is at the focal spot of the dipole trap (position of the atom).

2. The 𝑧-axis is defined by the axis of the microscope objective pointing from the focal
spot towards the objective.

3. The 𝑥-axis is defined parallel to the optical table (horizontal plane) orthogonal to the
𝑧-axis. Pointing from the focal spot towards front side of the glass cell.

4. The 𝑦-axis is defined perpendicular to the table pointing upwards.

This coordinate system has a right hand orientation. See also Figure B.1.

(a) Top view (b) Front view

Figure B.1.: Definition of the coordinate system
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Definition polarization and photon states

Reference frame of the atom

For the atom with a quantization axis 𝒵 the polarization of the photon emitted by the atom
is defined in the following way:

1. 𝜎+ with a right hand rotation of the polarization in traveling direction for a change of
Δ𝑚𝑓,𝒵 = −1

2. 𝜎− with a left hand rotation of the polarization in traveling direction with a change of
Δ𝑚𝑓,𝒵 = +1

3. 𝜋 linear polarization parallel to 𝒵 for with a change of Δ𝑚𝑓,𝒵 = 0

Reference frame of the laboratory

In the laboratory (coordinate system from section B) the polarization of light is defined in
the following way:

1. 𝐻 is a linear polarization parallel to the surface of the optical table (𝑥-𝑧 plane ).

2. 𝑉 is a linear polarization vertical to the surface of the optical table (𝑦-axis ).

3. + is a linear polarization rotated 45∘ right hand side in traveling direction with respect
to 𝑉 .

4. − is a linear polarization rotated 45∘ left hand side in traveling direction with respect
to 𝑉 .

5. 𝐿 is a circular polarization with right hand rotation in the direction of propagation
(historic left hand rotation for the counter propagating direction)

6. 𝑅 is a circular polarization with left hand rotation in the direction of propagation
(historic right hand rotation for the counter propagating direction)

Boundary conditions of the physical system

To connect the coordinate systems in a consistent way there are boundary conditions to be
respected:

1. the axis of the microscope objective for photon collection defines the quantization axis
of the atom system as the 𝑧-axis 𝒵 = 𝑧.

2. a photon emitted with the linear polarization 𝐻 propagating along the 𝑧-axis is a photon
with 𝜋-polarization for the atom with quantization axis 𝒵 = 𝑥( Δ𝑚𝑓,𝑥 = 0)

3. a photon emitted with the linear polarization 𝑉 propagating along the 𝑧-axis is a photon
with 𝜋-polarization for the atom with quantization axis 𝒵 = 𝑦( Δ𝑚𝑓,𝑦 = 0)
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Definition of photon states

The definition of the polarization in the reference frame of the atom and the reference frame
of the laboratory together with the boundary conditions lead to the definition of photon
states for collected photons and the read-out laser, which have a 𝑘 vector allong the 𝑧-axis

𝑘⃗ = ⎛⎜
⎝

0
0
𝑘

⎞⎟
⎠

, found in Table B.1.
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qubit state in qubit z states composition in 𝑚𝐹,𝑧
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4 (|1, −1⟩ + 𝑖|1, +1⟩)
|↑⟩𝑦

1√
2𝑒𝑖 𝜋

4 (|↓⟩𝑧 − 𝑖 |↑⟩𝑧) 1√
2𝑒𝑖 𝜋

4 (|1, −1⟩ − 𝑖|1, +1⟩)

Table B.2.: Atomic-qubit state definition

Atomic states

The qubit: a two level quantum system

Analogue to a classical bit that has two possible values, zero and one, a qubit is a two level
quantum system [158]. This system can be described via the density matrix

̂𝜌 = 1
2 ( ̂1 + 𝑐𝑥𝜎̂𝑥 + 𝑐𝑦𝜎̂𝑦 + 𝑐𝑧𝜎̂𝑧) =

3
∑
𝑖=0

𝑐𝑖𝜎̂𝑖

with 𝜎̂𝑖 ∈ { ̂1, 𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑧} being the identity and the three Pauli operators and the 𝑐𝑖 are the
expectation values for the respective 𝑐𝑖 = ⟨𝜎̂𝑖⟩ with 𝑐2

𝑥 + 𝑐2
𝑦 + 𝑐2

𝑧 ≤ 1.

Definition of the atomic qubit

The atomic qubit is encoded in F = 1, mF = ±1 of the 52S1/2 ground state (Fig. 2.2) with the
𝑧-axis as quantization axis and |1, −1⟩ = |↓⟩𝑧 and |1, +1⟩ = |↑⟩𝑧 are defined as the eigenvectors
to the Pauli matrix 𝜎̂𝑧. This allows to define the qubit also in the eigenvectors of 𝜎̂𝑥 and 𝜎̂𝑦
accordingly in Table B.2. Their definition is taylored to fit to the definition of the photon
states in Table B.1.It is important to notice that the |↓⟩𝑥 , |↑⟩𝑥 , |↓⟩𝑦 , |↑⟩𝑦 are labeled with
𝑥 and 𝑦 because they are eigenvectors of the Pauli operators 𝜎̂𝑥,𝑦 and not because they are
Zeeman states for a quantization axis in 𝑥, 𝑦-direction, labeled ∣𝐹 , 𝑚𝐹,𝑥⟩𝑥 and ∣𝐹 , 𝑚𝐹,𝑦⟩𝑦.
These are two different set of states and must not be confused.
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Spin-1 system: Zeeman states of the 52S1/2, F = 1 ground state
The qubit is defined on F = 1, mF = ±1 of the 52S1/2 ground state (quantization axis = 𝑧-axis)
(Sec. 2.1 and B), but these states themselves are part a the Spin-1 system, the 52S1/2, F = 1
ground state. For physical effects like the state evolution in a magnetic field the whole spin-1
system has to be considered.

The angular momentum operators for a spin-1 system in the basis of the 𝑧 eigenvectors
(|1, −1⟩𝑧, |1, 0⟩𝑧, and |1, +1⟩𝑧) are

̂𝐹𝑧 = ℏ ⎛⎜
⎝

1 0 0
0 0 0
0 0 −1

⎞⎟
⎠

, ̂𝐹𝑥 = ℏ√
2

⎛⎜
⎝

0 1 0
1 0 1
0 1 0

⎞⎟
⎠

, ̂𝐹𝑦 = ℏ√
2

⎛⎜
⎝

0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

⎞⎟
⎠

. (B.1)

Their respective eigenvectors and eigenvalues are for ̂𝐹𝑧

𝜆−1 = −1 Φ−1 = ⎛⎜
⎝

0
0
1

⎞⎟
⎠

, 𝜆0 = 0 Φ0 = ⎛⎜
⎝

0
1
0

⎞⎟
⎠

, 𝜆+1 = +1Φ+1 = ⎛⎜
⎝

1
0
0

⎞⎟
⎠

,

for ̂𝐹𝑥

𝜆−1 = −1 Φ−1 = ⎛⎜
⎝

1
−

√
2

1
⎞⎟
⎠

, 𝜆0 = 0 Φ0 = ⎛⎜
⎝

−1
0
1

⎞⎟
⎠

, 𝜆+1 = +1 Φ+1 = ⎛⎜
⎝

1√
2

1
⎞⎟
⎠

,

for ̂𝐹𝑦

𝜆−1 = −1 Φ−1 = ⎛⎜
⎝

−1
𝑖
√

2
1

⎞⎟
⎠

, 𝜆0 = 0 Φ0 = ⎛⎜
⎝

1
0
1

⎞⎟
⎠

, 𝜆+1 = +1 Φ+1 = ⎛⎜
⎝

1
−𝑖

√
2

−1
⎞⎟
⎠

.

This allows to transform The Zeeman states from 𝑧 as quantization axis to the Zeeman states
for 𝑥 or 𝑦 [159].

Read-out Polarization and corresponding |𝐵⟩ and |𝐷⟩ states
The read-out polarization 𝜒𝑟𝑜 follows the definition from Table B.1. The definition of 𝜒𝑟𝑜
(2.7) using 𝐻 and 𝑉 polarization allows to calculate the bright |𝐵⟩ (2.8) and dark state |𝐷⟩
(2.9). Transformed for 𝐿 = 𝜎+ and 𝑅 = 𝜎- polarization they are

|𝜒𝑟𝑜⟩ = 1√
2

(|𝐿⟩ (cos (𝛼) + sin (𝛼) 𝑒−𝑖(𝜙− 𝜋
2 )) + |𝑅⟩ (cos (𝛼) + sin (𝛼) 𝑒−𝑖(𝜙+ 𝜋

2 ))) ,

|𝐵⟩ = −1√
2

((cos (𝛼) + 𝑒𝑖(𝜙− 𝜋
2 ) sin (𝛼)) |1, −1⟩ − (cos (𝛼) + sin (𝛼) 𝑒𝑖(𝜙+ 𝜋

2 )) |1, +1⟩) ,

and

|𝐷⟩ = 1√
2

((cos (𝛼) 𝑒𝑖(𝜙− 𝜋
2 ) + sin (𝛼)) |1, −1⟩ + (cos (𝛼) 𝑒𝑖(𝜙+ 𝜋

2 ) + sin (𝛼)) |1, +1⟩) .

This 𝐿 and 𝑅 dependent definition can be useful for understanding the read-out scheme in
the 87Rb level scheme in Figure 2.2. A list of |𝐷⟩ and |𝐵⟩ for the six polarizations 𝜒𝑟𝑜 defined
in Table B.1 can be found in Table B.3.
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𝜒𝑟𝑜 |𝐵⟩ |𝐷⟩
𝐿 |1, −1⟩ |1, +1⟩
𝑅 |1, +1⟩ |1, −1⟩
𝐻 1√

2 (|1, −1⟩ + |1, +1⟩) 𝑖√
2 (|1, −1⟩ − |1, +1⟩)

𝑉 𝑖√
2 (|1, −1⟩ − |1, +1⟩) 1√

2 (|1, −1⟩ + |1, +1⟩)
+ 1√

2𝑒𝑖 𝜋
4 (|1, −1⟩ − 𝑖|1, +1⟩) 1√

2𝑒−𝑖 𝜋
4 (|1, −1⟩ + 𝑖|1, +1⟩)

- 1√
2𝑒−𝑖 𝜋

4 (|1, −1⟩ + 𝑖|1, +1⟩) 1√
2𝑒𝑖 𝜋

4 (|1, −1⟩ − 𝑖|1, +1⟩)

Table B.3.: Polarization of the read-out pulse and resulting bright |𝐵⟩ and dark states |𝐷⟩
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C. On the Entangled Atom-Photon State

Some more details on the atom-photon entanglement employed for the creation of atom-atom
entanglement are given in this Appendix: a complete formulation of the atom-photon state
in the possible bases defined in Appendix B, a description of the photonic state measurement
setup, a measurement verifying the atom-photon entanglement, and atomic state preparation
with photonic projection measurements.

Entangled Atom-Photon state

The entangled atom-photon-state (2.5) can be expressed in different bases by using the tables
B.2.

1. In Zeeman states:

|Ψ⟩𝐴𝑃 = 1√
2

(|L⟩|1, -1⟩𝑧 + |R⟩|1, +1⟩𝑧) (C.1)

= 1√
2

(|H⟩ 𝑖√
2

(|1, +1⟩𝑧 − |1, −1⟩𝑧) + |V⟩ 1√
2

(|1, −1⟩𝑧 + |1, +1⟩))

= 1√
2

(|+⟩ 1√
2

𝑒−𝑖 𝜋
4 (|1, −1⟩ + 𝑖|1, +1⟩) + |-⟩ 1√

2
𝑒𝑖 𝜋

4 (|1, −1⟩ − 𝑖|1, +1⟩))

2. In qubit states:

|Ψ⟩𝐴𝑃 = 1√
2

(|L⟩| ↓⟩𝑧 + |R⟩| ↑⟩𝑧) (C.2)

= 1√
2

(|H⟩| ↓⟩𝑥 + |V⟩ |↑⟩𝑥)

= 1√
2

(|+⟩| ↓⟩𝑦 + |-⟩| ↑⟩𝑦)

Preparation of an atomic state via photon detection

A measurement of the photon projects the atom onto the state corresponding to its result
(C.1). This allows to use the measurement of the single photon as a preparation of an atomic
state as listed in Table C.1.

Photonic state measurement

The single photon emitted by the atom is coupled into a fiber and guided to a setup for
measurement of the photonic polarization state. This measurement setup consists of a 𝜆/4-
wave plate, a 𝜆/2-wave plate, a polarizing beam splitter and two single photon detectors (Laser
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prepared atomic state photonic measurement result read-out pol

|1, +1⟩𝑥 = 1√
2 (|1, −1⟩𝑧 + |1, +1⟩𝑧) |V⟩ |V⟩

|1, -1⟩𝑥 = 𝑖√
2 (|1, −1⟩𝑧 − |1, +1⟩𝑧) |H⟩ |H⟩

|1, -1⟩𝑦 = −1√
2𝑒−𝑖 𝜋

4 (|1, −1⟩𝑧 + 𝑖 |1, +1⟩𝑧) |+⟩ |+⟩
|1, +1⟩𝑦 = 1√

2𝑒𝑖 𝜋
4 (|1, −1⟩𝑧 − 𝑖 |1, +1⟩𝑧) |-⟩ |-⟩
|1, −1⟩𝑧 |𝜎+⟩ |𝜎−⟩
|1, +1⟩𝑧 |𝜎−⟩ |𝜎+⟩

Table C.1.: Atomic state preparation corresponding to result of the photonic measurement
and the read-out polarization corresponding to that state being the dark state

Components C10) (Fig. C.1). Since the polarizing beam splitter can only separate H and
V polarization the wave plates are employed to project on every combination of orthogonal
polarizations. The detection of a single photon at one of the SPCMs then indicates the
polarization state of that photon.

Measurement of atom-photon entanglement

Typical measurement to confirm and characterize atom-photon entanglement: The photon
is analyzed in to mutually unbiased polarization bases here +/− and 𝐻/𝑉 using the setup in
Figure C.1 , while the atomic analysis angle (𝛼 from (2.7)) is rotated from 0∘ to 180∘ in
step of 22.5∘using a 𝜆/2 wave plate (Fig. 2.10a). The result of such a measurement is shown
in Figure C.2. Calculating the probability for correlated and anti-correlated measurement
results of atom and photon leads to the correlation fringes shown in Figure C.2b.

To estimate the fidelity of the experimental atom-photon state to the maximally entangled
one (C.2) the experimental state is assumed to be of the form

̂𝜌 = 𝑉 |Ψ𝐴𝑃 ⟩ ⟨Ψ𝐴𝑃 | + 1
4 (1 − 𝑉 ) ̂1

with the visibility 𝑉 [48, 38]. The visibility is the average contrast between the maximum and
the minimum of the correlation fringes. Fitting a sinusoidal function 𝐴 sin(2⋅𝛼+𝜙)+1

2 to each
correlation fringe enables to calculate the Visibility

𝑉 = 1
4 ∑ |𝐴| .

With this the Fidelity is

𝐹 = ⟨Ψ𝐴𝑃 | ̂𝜌 |Ψ𝐴𝑃 ⟩
= 0.25 + 0.75 ⋅ 𝑉

= 0.25 + 3
16 ∑ |𝐴| .

For the measurement in Figure C.2 the visibility is 𝑉 = 0.902 ± 0.009 resulting in a fidelity
of 𝐹 = 0.9265 ± 0.0068.
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Figure C.1.: Photonic state measurement setup: The wave plates (𝜆/4and 𝜆/2) define which
polarization of the single photon is projected on each output port of the pola-
rizing beam splitter (PBS) with H or V polarization and the detected by the
corresponding single photon detector (SPCM).
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(b) Atom-photon correlations based on the measurement in (a). In the +/− basis projection on|+⟩ is considered
as +1 and |−⟩ as −1, in the 𝐻/𝑉 |𝐻⟩ is considered as +1 and|𝑉 ⟩ as −1. Additionally, a sinusoidal function
𝐴 sin(2⋅𝛼+𝜙)+1

2 is fitted to each correlator and anti-correlator to estimate the fidelity of the entangled atom-
photon state.

Figure C.2.: Measurement for the characterization of atom photon entanglement performed
on the 22.10.2015.
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D. Light field of the ODT near its focus

The trapping potential of the optical dipole trap (D.1) [37, 61, 57] is depending on the shape,
intensity, and detuning of the laser used. Furthermore, it depends on the considered hyperfine
state 𝐹 and Zeeman state 𝑚𝐹 of the atom.

𝑈 (𝑟, 𝑧) = 𝜋𝑐2Γ
2𝜔3

0
(2 + 𝑔𝐹 𝑚𝐹 𝑃

Δ2,𝐹
+ 1 − 𝑔𝐹 𝑚𝐹 𝑃

Δ1,𝐹
) ⋅ 𝐼 ( ⃗𝑥) (D.1)

Γ and 𝜔0are the decay rate and transition frequency of the central D-line, 𝑔𝐹 is the Landé
factor of the considered hyper fine state, Δ1,𝐹 and Δ2,𝐹 is the detuning of the laser with
respect to the transition of the 𝐷1and 𝐷2line, 𝑃 a measure of the circular polarization [61],
is the polarization of the laser, 𝐼 ( ⃗𝑥) the intensity of the ODT laser. This is usually estimated
with a Gaussian beam 𝐼0 ( 𝑤0

𝑤(𝑧))
2 𝑒− 2𝑟2

𝑤(𝑧)2 with 𝑧 = 0 as focus position, 𝑤0 = 1.92 µm as waist
at the focus, and 𝐼0 as intensity at the Focus.

However, to calculate the actual light field near the focus of the ODT laser one has to
consider that the behavior of a strongly focused linearly polarized beam. Here we consider
polarization along the 𝑥 axis. Following the formalism developed in [60] based on [63, 64] the
electric field amplitude vector takes the form

𝐸𝑥 = 𝐸0 (𝐹0 (𝑟, 𝑧) + 𝐹2 (𝑟, 𝑧) ⋅ cos (2𝜙))
𝐸𝑦 = 𝐸0𝐹2 (𝑟, 𝑧) ⋅ sin (2𝜙)
𝐸𝑧 = 𝑖2 ⋅ 𝐸0𝐹1 (𝑟, 𝑧) ⋅ cos (𝜙)

using cylindrical coordinates to calculate the Cartesian vector of the electric field amplitude
( (𝑧 = 𝑧, 𝑥 = 𝑟 cos (𝜙), 𝑦 = 𝑟 sin (𝜙))). This can be can be approximated using

𝐹0 ≈≈ 𝐹0 (0, 0) 1
√1 + 𝑧2

𝑧2
𝑅

𝑒−𝑟2⋅(𝑤2
0(1+ 𝑧2

𝑧2
𝑅

))
−1

𝐹1 ≈ 𝐹0 (0, 0) 𝑟
2𝑧𝑅 (1 + 𝑧2

𝑧2
𝑅

)
𝑒−𝑟2⋅(𝑤2

0(1+ 𝑧2
𝑧2

𝑅
))

−1

𝐹2 ≈ 𝐹0 (0, 0) 𝑟2

4𝑧2
𝑅 (1 + 𝑧2

𝑧2
𝑅

)
2 𝑒−𝑟2⋅(𝑤2

0(1+ 𝑧2
𝑧2

𝑅
))

−1

.

Since 𝐸𝑦 ≈ 0 only 𝐸𝑥 and 𝐸𝑧 are important for further considerations (Fig D.1 (a-d)).
The dynamics of the Zeeman states of the F = 1 ground state, which are used to encode

the atomic qubit (Tab. B.2), is influenced by a Zeeman state depending vector light shift
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introduced by circular polarization of the ODT laser (Sec. 2.3.3). To characterize this 𝐼 ( ⃗𝑥)
and 𝑃 ( ⃗𝑥) need to be estimated. The intensity

𝐼 ( ⃗𝑥) = ‖𝐸𝑥‖2 + ∥𝐸𝑦∥2

follows directly from the electric field amplitude. The polarization of the beam 𝑃 ( ⃗𝑥) depends
additionally to the electric field amplitude also on the phase differences between the 𝑥 and 𝑧
component of the ODT laser. This phase difference can be approximated by approximating
the 𝑥 component by the TEM00 mode and the 𝑧 component by the TEM10mode[160]. This
leads to a a phase difference

𝛿 (𝑧) = arctan( 𝑧
𝑧𝑟

)

based on the difference between the Gouy phase between the two modes [161, 162]. With this
it is possible to calculate 𝑃 ( ⃗𝑥) based on (2.15)

𝑃 = sign (𝛿) 2 ‖𝐴‖ ‖𝐵‖
‖𝐴‖2 + ‖𝐵‖2 .

For this the time time depending electric field vector at position ⃗𝑥 is simplified to

𝐸( ⃗𝑥, 𝑡) = 𝐸𝑥 ( ⃗𝑥) cos (𝜔𝑡) ̂𝑒𝑥 + 𝐸𝑧 ( ⃗𝑥) cos (𝜔𝑡 + 𝛿 (𝑧)) ̂𝑒𝑧. (D.2)

Therefore the semi-major axis of the polarization ellipse is

𝐴 = max
0≤𝜔𝑡≤2𝜋

(√‖𝐸𝑥 ( ⃗𝑥)‖2 cos2 (𝜔𝑡) + ‖𝐸𝑧 ( ⃗𝑥)‖2 cos2 (𝜔𝑡 + 𝛿 (𝑧))) (D.3)

and the respective semi-minor axis is

𝐵 = min
0≤𝜔𝑡≤2𝜋

(√‖𝐸𝑥 ( ⃗𝑥)‖2 cos2 (𝜔𝑡) + ‖𝐸𝑧 ( ⃗𝑥)‖2 cos2 (𝜔𝑡 + 𝛿 (𝑧))) . (D.4)

The resulting 𝑃 ( ⃗𝑥) is displayed in Figure. D.1 e) and f).

Finding the semi axes of the polarization elipse

To find an analytical solution for (D.3) and (D.4) is straight forward. To find the extrema of

‖𝐸( ⃗𝑥, 𝑡)‖ = √‖𝐸𝑥 ( ⃗𝑥)‖2 cos2 (𝜔𝑡) + ‖𝐸𝑧 ( ⃗𝑥)‖2 cos2 (𝜔𝑡 + 𝛿 (𝑧))

the square root can be neglected due to its strictly monotonic behavior. Further, 𝜔 is set to
1 to simplify the calculation. The derivative of

‖𝐸( ⃗𝑥, 𝑡)‖2 = ‖𝐸𝑥 ( ⃗𝑥)‖2 cos2 (𝑡) + ‖𝐸𝑧 ( ⃗𝑥)‖2 cos2 (𝑡 + 𝛿 (𝑧))

is

𝑑
𝑑𝑡 ‖𝐸( ⃗𝑥, 𝑡)‖2 = − ‖𝐸𝑥 ( ⃗𝑥)‖2 2 cos (𝑡) sin (𝜔𝑡) − ‖𝐸𝑧 ( ⃗𝑥)‖2 2 cos (𝑡 + 𝛿 (𝑧)) sin (𝑡 + 𝛿 (𝑧)) .
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(a) 𝐸𝑥 in the 𝑥-𝑧 plane (𝑦 = 0) (b) 𝐸𝑥 in the 𝑥-𝑦 plane (𝑧 = 0)

(c) 𝐸𝑧 in the 𝑥-𝑧 plane (𝑦 = 0) (d) 𝐸𝑧 in the 𝑥-𝑦 plane (𝑧 = 0)

(e) 𝑃𝑙𝑜𝑛𝑔 in the 𝑥-𝑧 plane (𝑦 = 0) (f) 𝑃𝑙𝑜𝑛𝑔in the 𝑥-𝑦 plane (𝑧 = 0)

Figure D.1.: Electric field amplitude for 𝐸𝑥 and 𝐸𝑧 (a-d) and polarization 𝑃𝑙𝑜𝑛𝑔 ( ⃗𝑥) (e, f) near
the focus
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Using the identities

sin (2𝑥) = 2 sin (𝑥) cos (𝑥)

and

cos (2𝑥) = cos2 (𝑥) − sin2 (𝑥)

this can be written as

𝑑
𝑑𝑡 ‖𝐸( ⃗𝑥, 𝑡)‖2 = [− ‖𝐸𝑥 ( ⃗𝑥)‖2 − ‖𝐸𝑧 ( ⃗𝑥)‖2 cos (2𝛿 (𝑧))] sin (2𝑡) − ‖𝐸𝑧 ( ⃗𝑥)‖2 sin (2𝛿 (𝑧)) cos (2𝑡)

and 𝑑
𝑑𝑡 ‖𝐸( ⃗𝑥, 𝑡)‖2 ∶= 0 yields the extrema

𝑡𝑒𝑥𝑡 = 1
2 arctan( − ‖𝐸𝑧 ( ⃗𝑥)‖2 sin (2𝛿 (𝑧))

‖𝐸𝑥 ( ⃗𝑥)‖2 + ‖𝐸𝑧 ( ⃗𝑥)‖2 cos (2𝛿 (𝑧))
) .

Due to the elliptic form of ‖𝐸( ⃗𝑥, 𝑡)‖ the minima and maxima alternate with a periodicity of
𝜔𝑡 = 𝜋/2. And since (2.15) needs a pair of minimum and maximum it is possible to use the
values for 𝜔𝑡 = 𝑡𝑒𝑥𝑡 and 𝜔𝑡 = 𝑡𝑒𝑥𝑡 + 𝜋/2 in (D.2) to calculate 𝑃 ( ⃗𝑥).
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E. Hong Ou Mandel effect for unpolarized
photons

In section 2.4.1 I introduced a Bell state measurement based on the Hong Ou Mandel effect[68,
66]. There the formalism for the two photon interference is only treated in a very condensed
matter. For the sake of completeness in this chapter a thorough analysis is done following
the considerations in [32, 69]. Here the picture of a cubic beam splitter with reflected and
transmitted modes will be used, the formalism still is valid for all kinds of beam splitter, e.g.,
fiber or wave guide based ones. First the two photon interference without special consideration
for unpolarized photons is derived. Afterwards unpolarized photons are introduced.

Two photon interference with identical polarization

A beam splitter with two input and two output ports (Fig. E.1, can be described via four
pairs of creation and annihilation operators ̂𝑎1, ̂𝑎†

1 and ̂𝑎2, ̂𝑎†
2 for the inputs and ̂𝑏1, ̂𝑏†

1 and ̂𝑏2,
̂𝑏†
2 for the outputs. In the general case these operators are different for photons with different

properties. The relation between the input and the output is given

(
̂𝑏†
1
̂𝑏†
2

) = 𝐵̂ ( ̂𝑎†
1
̂𝑎†
2

) → ( ̂𝑎†
1
̂𝑎†
2

) = 𝐵̂−1 (
̂𝑏†
1
̂𝑏†
2

) (E.1)

while the matrix

𝐵̂ = 𝑒𝑖𝜙0 ( cos (Θ) 𝑒𝑖𝜙𝜏 sin (Θ) 𝑒𝑖𝜙𝜌

− sin (Θ) 𝑒−𝑖𝜙𝜌 cos (Θ) 𝑒−𝑖𝜙𝜏
) (E.2)

with a general phase shift 𝜙0, a phase shift 𝜙𝜏 for the transmission mode, and a phase shift
𝜙𝜌 for the reflection mode of the beam splitter [32, 69]. With this the input of one photon at
each input port, described by the Fock state

|1, 1⟩𝑖𝑛 = ̂𝑎†
1 ̂𝑎†

2 |0, 0⟩𝑖𝑛 (E.3)

leads to this output state

𝑒𝑖𝜙0 ( ̂𝑏†
1 cos (Θ) 𝑒𝑖𝜙𝜏 − ̂𝑏†

2 sin (Θ) 𝑒𝑖𝜙𝜌) 𝑒𝑖𝜙0 ( ̂𝑏†
1 sin (Θ) 𝑒−𝑖𝜙𝜌 + ̂𝑏†

2 cos (Θ) 𝑒−𝑖𝜙𝜏 ) |0, 0⟩𝑜𝑢𝑡 . (E.4)

This can be rearranged to identify the three different output combinations, both in output
one, in each output, and both in output two:

̂𝑏†
1 ̂𝑏†

1 cos (Θ) sin (Θ) 𝑒𝑖(𝜙𝑡−𝜙𝜌+2𝜙0) |0, 0⟩𝑜𝑢𝑡
− ̂𝑏†

1 ̂𝑏†
2 cos2 (Θ) 𝑒𝑖2𝜙0 |0, 0⟩𝑜𝑢𝑡 + ̂𝑏†

2 ̂𝑏†
1 sin

2 (Θ) 𝑒𝑖2𝜙0 |0, 0⟩𝑜𝑢𝑡
− ̂𝑏†

2 ̂𝑏†
2 sin (Θ) cos (Θ) 𝑒𝑖(𝜙𝜌−𝜙𝜏+2𝜙0) |0, 0⟩𝑜𝑢𝑡 .
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Figure E.1.: Basic scheme of a beam splitter with two input ports and two output ports. (the
quibic shape is only an example)

To simplify this expression the global phase is set to zero (𝜙0 = 0) and only the phase
difference between transmission and reflection 𝛿 = 𝜙𝜏 − 𝜙𝜌 is considered without limiting the
generality.

Considering the case of a perfect 50/50 beam splitter (Θ = 𝜋
4 ) the output state is of the form

1
2 ( ̂𝑏†

1 ̂𝑏†
1𝑒𝑖𝛿 − ̂𝑏†

1 ̂𝑏†
2 + ̂𝑏†

2 ̂𝑏†
1 − ̂𝑏†

2 ̂𝑏†
2𝑒−𝑖𝛿) |0, 0⟩𝑜𝑢𝑡 .

In the case of indistinguishable photons, both photons are described by identical operators
and together with the commutation relations for the creation and annihilation operators for
bosonic particles [ ̂𝑎𝑖, ̂𝑎†

𝑗] = [ ̂𝑏𝑖, ̂𝑏†
𝑗] = 𝛿𝑖,𝑗 and [ ̂𝑎†

𝑖 , ̂𝑎†
𝑗] = [ ̂𝑏†

𝑖 , ̂𝑏†
𝑗] = 0 with 𝑖, 𝑗 ∈ {1, 2}, the

output state reduces to

1
2

̂𝑏†
1 ̂𝑏†

1𝑒−𝑖𝛿 + 1
2 (− ̂𝑏†

1 ̂𝑏†
2 + ̂𝑏†

2 ̂𝑏†
1)⏟⏟⏟⏟⏟⏟⏟

=[𝑏̂†
2,𝑏̂†

1]=0

−1
2

̂𝑏†
2 ̂𝑏†

2𝑒−𝑖𝛿 |0, 0⟩𝑜𝑢𝑡

= 1
2𝑒−𝑖𝛿 (|2, 0⟩𝑜𝑢𝑡 − |0, 2⟩𝑜𝑢𝑡) .

This shows that two indistinguishable photons, one in each input mode of the beam splitter,
will always both be detected after output 1 or output 2 of the beam splitter and never one
photon in each output.

Two photon interference with unpolarized photons

In the experiment the single photons, which are interfered on the beam splitter, are entangled
with the emitting atoms. In particular the polarization of the emitted photon is entangled
with the Zeeman states of the emitting atom (2.5). If one only considers the photon its state
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is totally mixed with the density matrix 𝜌 = 1
2 |𝐿⟩ ⟨𝐿| + 1

2 |𝑅⟩ ⟨𝑅| = 1
2 |𝐻⟩ ⟨𝐻| + 1

2 |𝑉 ⟩ ⟨𝑉 | =
1
2 |+⟩ ⟨+| + 1

2 |-⟩ ⟨-| and by this unpolarized.
To describe this photon state in the formalism described in the previous section (E) one

needs to consider polarization for creation and annihilation operators. This leads to indepen-
dent operators for the orthogonal polarization. Here, the 𝐻 and 𝑉 polarization basis is used.
Analog to (E.1) the relation between the input and the output is given for both polarization
independently

(
̂𝑏†
1,𝑃
̂𝑏†
2,𝑃

) = 𝐵̂𝑃 ( ̂𝑎†
1,𝑃
̂𝑎†
2,𝑃

) ⇔ ( ̂𝑎†
1,𝑃
̂𝑎†
2,𝑃

) = 𝐵̂−1
𝑃 (

̂𝑏†
1,𝑃
̂𝑏†
2,𝑝

) (E.5)

while analog to (E.2) and directly simplifying the phase shifts the matrix

𝐵̂𝑃 = ( cos (Θ𝑃 ) sin (Θ𝑃 ) 𝑒𝑖𝛿𝑃

− sin (Θ𝑃 ) 𝑒−𝑖𝛿𝑃 cos (Θ𝑃 ) ) (E.6)

with Θ𝑃 for the splitting ratio of the beam splitter, the phase difference between transmitted
and reflected part 𝛿𝑃 , and 𝑃 ∈ {𝐻, 𝑉 } indicating the polarization. In contrast to equation
(E.3) writing the an input state for the beam splitter with two unpolarized photons is not so
trivial. It is necessary to consider the basis states of the state 𝜌1 ⊗ 𝜌2 as input states, here
the indices stand for the photons at different input ports. Using the four Bell states as a
complete set of orthonormal basis vectors the input states are

|Φ+⟩𝑖𝑛 = 1√
2

( ̂𝑎†
1,𝐻 ̂𝑎†

2𝐻 + ̂𝑎†
1,𝑉 ̂𝑎†

2𝑉 ) |0, 0⟩𝑖𝑛 ,

|Φ−⟩𝑖𝑛 = 1√
2

( ̂𝑎†
1,𝐻 ̂𝑎†

2𝐻 − ̂𝑎†
1,𝑉 ̂𝑎†

2𝑉 ) |0, 0⟩𝑖𝑛 ,

|Ψ+⟩𝑖𝑛 = 1√
2

( ̂𝑎†
1,𝐻 ̂𝑎†

2𝑉 + ̂𝑎†
1,𝑉 ̂𝑎†

2𝐻) |0, 0⟩𝑖𝑛 ,

and

|Ψ−⟩𝑖𝑛 = 1√
2

( ̂𝑎†
1,𝐻 ̂𝑎†

2𝑉 − ̂𝑎†
1,𝑉 ̂𝑎†

2𝐻) |0, 0⟩𝑖𝑛 .

Analog to (E.4) these states leads to the following output states:
1. |Φ+⟩𝑖𝑛 →

1√
2

( ( ̂𝑏†
1,𝐻 cos (Θ𝐻) − ̂𝑏†

2,𝐻 sin (Θ𝐻) 𝑒𝑖𝛿𝐻) ( ̂𝑏†
1,𝐻 sin (Θ𝐻) 𝑒−𝑖𝛿𝐻 + ̂𝑏†

2 cos (Θ𝐻))

+ ( ̂𝑏†
1,𝑉 cos (Θ𝑉 ) − ̂𝑏†

2,𝑉 sin (Θ𝑉 ) 𝑒𝑖𝛿𝑉 ) ( ̂𝑏†
1,𝑉 sin (Θ𝑉 ) 𝑒−𝑖𝛿𝑉 + ̂𝑏†

2,𝑉 cos (Θ𝑉 )) ) |0, 0⟩𝑜𝑢𝑡

= 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝐻 cos (Θ𝐻) sin (Θ𝐻) 𝑒−𝑖𝛿𝐻 + ̂𝑏†
1,𝑉 ̂𝑏†

1,𝑉 cos (Θ𝑉 ) sin (Θ𝑉 ) 𝑒−𝑖𝛿𝑉

+ ̂𝑏†
1,𝐻 ̂𝑏†

2,𝐻 cos2 (Θ𝐻) − ̂𝑏†
2,𝐻 ̂𝑏†

1,𝐻 sin2 (Θ𝐻)
+ ̂𝑏†

1,𝑉 ̂𝑏†
2,𝑉 cos

2 (Θ𝑉 ) − ̂𝑏†
2,𝑉 ̂𝑏†

1,𝑉 sin
2 (Θ𝑉 )

− ̂𝑏†
2,𝐻 ̂𝑏†

2,𝐻 cos (Θ𝐻) sin (Θ𝐻) 𝑒−𝑖𝛿𝐻 − ̂𝑏†
2,𝑉 ̂𝑏†

2,𝑉 cos (Θ𝑉 ) sin (Θ𝑉 ) 𝑒−𝑖𝛿𝑉 ) |0, 0⟩𝑜𝑢𝑡 (E.7)
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2. |Φ−⟩𝑖𝑛 →

1√
2

( ( ̂𝑏†
1,𝐻 cos (Θ𝐻) − ̂𝑏†

2,𝐻 sin (Θ𝐻) 𝑒𝑖𝛿𝐻) ( ̂𝑏†
1,𝐻 sin (Θ𝐻) 𝑒−𝑖𝛿𝐻 + ̂𝑏†

2 cos (Θ𝐻))

− ( ̂𝑏†
1,𝑉 cos (Θ𝑉 ) − ̂𝑏†

2,𝑉 sin (Θ𝑉 ) 𝑒𝑖𝛿𝑉 ) ( ̂𝑏†
1,𝑉 sin (Θ𝑉 ) 𝑒−𝑖𝛿𝑉 + ̂𝑏†

2,𝑉 cos (Θ𝑉 )) ) |0, 0⟩𝑜𝑢𝑡

= 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝐻 cos (Θ𝐻) sin (Θ𝐻) 𝑒−𝑖𝛿𝐻 − ̂𝑏†
1,𝑉 ̂𝑏†

1,𝑉 cos (Θ𝑉 ) sin (Θ𝑉 ) 𝑒−𝑖𝛿𝑉

+ ̂𝑏†
1,𝐻 ̂𝑏†

2,𝐻 cos2 (Θ𝐻) − ̂𝑏†
2,𝐻 ̂𝑏†

1,𝐻 sin2 (Θ𝐻)
− ̂𝑏†

1,𝑉 ̂𝑏†
2,𝑉 cos

2 (Θ𝑉 ) + ̂𝑏†
2,𝑉 ̂𝑏†

1,𝑉 sin
2 (Θ𝑉 )

− ̂𝑏†
2,𝐻 ̂𝑏†

2,𝐻 sin (Θ𝐻) cos (Θ𝐻) 𝑒𝑖𝛿𝐻 + ̂𝑏†
2,𝑉 ̂𝑏†

2,𝑉 sin (Θ𝑉 ) cos (Θ𝑉 ) 𝑒𝑖𝛿𝑉 ) |0, 0⟩𝑜𝑢𝑡 (E.8)

3. |Ψ+⟩𝑖𝑛 →

1√
2

( ( ̂𝑏†
1,𝐻 cos (Θ𝐻) − ̂𝑏†

2,𝐻 sin (Θ𝐻) 𝑒𝑖𝛿𝐻) ( ̂𝑏†
1,𝑉 sin (Θ𝑉 ) 𝑒−𝑖𝛿𝑉 + ̂𝑏†

2 cos (Θ𝑉 ))

+ ( ̂𝑏†
1,𝑉 cos (Θ𝑉 ) − ̂𝑏†

2,𝑉 sin (Θ𝑉 ) 𝑒𝑖𝛿𝑉 ) ( ̂𝑏†
1,𝐻 sin (Θ𝐻) 𝑒−𝑖𝛿𝐻 + ̂𝑏†

2,𝐻 cos (Θ𝐻)) ) |0, 0⟩𝑜𝑢𝑡

= 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝑉 cos (Θ𝐻) sin (Θ𝑉 ) 𝑒−𝑖𝛿𝑉 + ̂𝑏†
1,𝑉 ̂𝑏†

1,𝐻 cos (Θ𝑉 ) sin (Θ𝐻) 𝑒−𝑖𝛿𝐻

+ ̂𝑏†
1,𝐻 ̂𝑏†

2,𝑉 cos (Θ𝐻) cos (Θ𝑉 ) − ̂𝑏†
2,𝑉 ̂𝑏†

1,𝐻 sin (Θ𝑉 ) sin (Θ𝐻) 𝑒𝑖(𝛿𝑉 −𝛿𝐻)

+ ̂𝑏†
1,𝑉 ̂𝑏†

2,𝐻 cos (Θ𝑉 ) cos (Θ𝐻) − ̂𝑏†
2,𝐻 ̂𝑏†

1,𝑉 sin (Θ𝐻) sin (Θ𝑉 ) 𝑒𝑖(𝛿𝐻−𝛿𝑉 )

− ̂𝑏†
2,𝐻 ̂𝑏†

2,𝑉 sin (Θ𝐻) cos (Θ𝑉 ) 𝑒𝑖𝛿𝐻 − ̂𝑏†
2,𝑉 ̂𝑏†

2,𝐻 sin (Θ𝑉 ) cos (Θ𝐻) 𝑒𝑖𝛿𝑉 ) |0, 0⟩𝑜𝑢𝑡 (E.9)

4. |Ψ−⟩𝑖𝑛 →

1√
2

( ( ̂𝑏†
1,𝐻 cos (Θ𝐻) − ̂𝑏†

2,𝐻 sin (Θ𝐻) 𝑒𝑖𝛿𝐻) ( ̂𝑏†
1,𝑉 sin (Θ𝑉 ) 𝑒−𝑖𝛿𝑉 + ̂𝑏†

2 cos (Θ𝑉 ))

− ( ̂𝑏†
1,𝑉 cos (Θ𝑉 ) − ̂𝑏†

2,𝑉 sin (Θ𝑉 ) 𝑒𝑖𝛿𝑉 ) ( ̂𝑏†
1,𝐻 sin (Θ𝐻) 𝑒−𝑖𝛿𝐻 + ̂𝑏†

2,𝐻 cos (Θ𝐻)) ) |0, 0⟩𝑜𝑢𝑡

= 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝑉 cos (Θ𝐻) sin (Θ𝑉 ) 𝑒−𝑖𝛿𝑉 − ̂𝑏†
1,𝑉 ̂𝑏†

1,𝐻 cos (Θ𝑉 ) sin (Θ𝐻) 𝑒−𝑖𝛿𝐻

+ ̂𝑏†
1,𝐻 ̂𝑏†

2,𝑉 cos (Θ𝐻) cos (Θ𝑉 ) + ̂𝑏†
2,𝑉 ̂𝑏†

1,𝐻 sin (Θ𝑉 ) sin (Θ𝐻) 𝑒𝑖(𝛿𝑉 −𝛿𝐻)

− ̂𝑏†
1,𝑉 ̂𝑏†

2,𝐻 cos (Θ𝑉 ) cos (Θ𝐻) − ̂𝑏†
2,𝐻 ̂𝑏†

1,𝑉 sin (Θ𝐻) sin (Θ𝑉 ) 𝑒𝑖(𝛿𝐻−𝛿𝑉 )

− ̂𝑏†
2,𝐻 ̂𝑏†

2,𝑉 sin (Θ𝐻) cos (Θ𝑉 ) 𝑒𝑖𝛿𝐻 + ̂𝑏†
2,𝑉 ̂𝑏†

2,𝐻 sin (Θ𝑉 ) cos (Θ𝐻) 𝑒𝑖𝛿𝑉 ) |0, 0⟩𝑜𝑢𝑡 (E.10)
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With these results one can consider different values for the characteristic parameters Θ𝐻, Θ𝑉 ,
𝛿𝐻, and 𝛿𝑉 of the beam splitter. Assuming two indistinguishable photons entering the beam
splitter analog to the previous section, one can derive the interference behavior for different
cases:

Perfect polarization independent 50/50 beam splitter
The characteristic parameters of a perfect polarization independent 50/50 beam splitter are
Θ𝐻 = 𝜋

4 , Θ𝑉 = 𝜋
4 and 𝛿𝐻 = 𝛿𝑉 = 𝛿:

|Φ+⟩𝑖𝑛 → 1√
2

(1
2 ( ̂𝑏†

1,𝐻 ̂𝑏†
1,𝐻 + ̂𝑏†

1,𝑉 ̂𝑏†
1,𝑉 ) 𝑒−𝑖𝛿 − 1

2 ( ̂𝑏†
2,𝐻 ̂𝑏†

2,𝐻 + ̂𝑏†
2,𝑉 ̂𝑏†

2,𝑉 ) 𝑒𝑖𝛿) |0, 0⟩𝑜𝑢𝑡

= 1√
2

(𝑒−𝑖𝛿 1
2 (|2𝐻, 0⟩𝑜𝑢𝑡 + |2𝑉 , 0⟩𝑜𝑢𝑡) − 𝑒𝑖𝛿 1

2 (|0, 2𝐻⟩𝑜𝑢𝑡 + |0, 2𝑉 ⟩𝑜𝑢𝑡))

|Φ−⟩𝑖𝑛 → 1√
2

(1
2 ( ̂𝑏†

1,𝐻 ̂𝑏†
1,𝐻 − ̂𝑏†

1,𝑉 ̂𝑏†
1,𝑉 ) 𝑒−𝑖𝛿 − 1

2 ( ̂𝑏†
2,𝐻 ̂𝑏†

2,𝐻𝑒𝑖𝛿𝐻 − ̂𝑏†
2,𝑉 ̂𝑏†

2,𝑉 ) 𝑒𝑖𝛿) |0, 0⟩𝑜𝑢𝑡

1√
2

(𝑒−𝑖𝛿 1
2 (|2𝐻, 0⟩𝑜𝑢𝑡 − |2𝑉 , 0⟩𝑜𝑢𝑡) − 𝑒𝑖𝛿 1

2 (|0, 2𝐻⟩𝑜𝑢𝑡 − |0, 2𝑉 ⟩𝑜𝑢𝑡))

|Ψ+⟩𝑖𝑛 → 1√
2

(1
2 ( ̂𝑏†

1,𝐻 ̂𝑏†
1,𝑉 + ̂𝑏†

1,𝑉 ̂𝑏†
1,𝐻) 𝑒−𝑖𝛿 − 1

2 ( ̂𝑏†
2,𝐻 ̂𝑏†

2,𝑉 + ̂𝑏†
2,𝑉 ̂𝑏†

2,𝐻) 𝑒𝑖𝛿) |0, 0⟩𝑜𝑢𝑡

= 1√
2

(𝑒−𝑖𝛿 |1𝐻1𝑉 , 0⟩𝑜𝑢𝑡 − 𝑒𝑖𝛿 |0, 1𝐻1𝑉 ⟩𝑜𝑢𝑡)

|Ψ−⟩𝑖𝑛 → 1√
2

(1
2 ( ̂𝑏†

1,𝐻 ̂𝑏†
2,𝑉 + ̂𝑏†

2,𝑉 ̂𝑏†
1,𝐻) − 1

2 ( ̂𝑏†
1,𝑉 ̂𝑏†

2,𝐻 + ̂𝑏†
2,𝐻 ̂𝑏†

1,𝑉 )) |0, 0⟩𝑜𝑢𝑡

= 1√
2

(|1𝐻, 1𝑉 ⟩𝑜𝑢𝑡 − |1𝑉 , 1𝐻⟩𝑜𝑢𝑡)

Two photons in the |Φ+⟩𝑖𝑛, |Φ−⟩𝑖𝑛, and |Ψ+⟩𝑖𝑛 state exhibit bunching and will be detected in
the same output port. Two photons in the |Ψ−⟩𝑖𝑛 state show perfect anti-bunching and will
be detected each in a different output port. This type of beam splitter configuration is used
in Bell state measurement in section 2.4.1.
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Perfect 50/50 beam splitter with a phase shift difference of 𝜋 between polarizations
Here the characteristic parameters are Θ𝐻 = 𝜋

4 , Θ𝑉 = 𝜋
4 and ‖𝛿𝐻 − 𝛿𝑉 ‖ = 𝜋:

|Φ+⟩𝑖𝑛 → 1√
2

(𝑒−𝑖𝛿𝐻

2 ( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝐻 + ̂𝑏†
1,𝑉 ̂𝑏†

1,𝑉 𝑒±𝑖𝜋) − 𝑒𝑖𝛿𝐻

2 ( ̂𝑏†
2,𝐻 ̂𝑏†

2,𝐻 + ̂𝑏†
2,𝑉 ̂𝑏†

2,𝑉 𝑒±𝑖𝜋)) |0, 0⟩𝑜𝑢𝑡

= 1√
2

(𝑒−𝑖𝛿𝐻

2 (|2𝐻, 0⟩𝑜𝑢𝑡 + 𝑒±𝑖𝜋 |2𝑉 , 0⟩𝑜𝑢𝑡) + 𝑒𝑖𝛿𝐻

2 (|0, 2𝐻⟩𝑜𝑢𝑡 + 𝑒±𝑖𝜋 |0, 2𝑉 ⟩𝑜𝑢𝑡))

|Φ−⟩𝑖𝑛 → 1√
2

(𝑒−𝑖𝛿𝐻

2 ( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝐻 − 𝑒±𝑖𝜋 ̂𝑏†
1,𝑉 ̂𝑏†

1,𝑉 ) − 𝑒𝑖𝛿𝐻

2 ( ̂𝑏†
2,𝐻 ̂𝑏†

2,𝐻 − ̂𝑏†
2,𝑉 ̂𝑏†

2,𝑉 𝑒±𝑖𝜋)) |0, 0⟩𝑜𝑢𝑡

1√
2

(𝑒−𝑖𝛿𝐻

2 (|2𝐻, 0⟩𝑜𝑢𝑡 − 𝑒±𝑖𝜋 |2𝑉 , 0⟩𝑜𝑢𝑡) + 𝑒𝑖𝛿𝐻

2 (|0, 2𝐻⟩𝑜𝑢𝑡 − 𝑒±𝑖𝜋 |0, 2𝑉 ⟩𝑜𝑢𝑡))

|Ψ+⟩𝑖𝑛 → 1√
2

(1
2 ( ̂𝑏†

1,𝐻 ̂𝑏†
2,𝑉 + ̂𝑏†

2,𝑉 ̂𝑏†
1,𝐻) + 1√

2
( ̂𝑏†

1,𝑉 ̂𝑏†
2,𝐻 + ̂𝑏†

2,𝐻 ̂𝑏†
1,𝑉 )) |0, 0⟩𝑜𝑢𝑡

= 1√
2

(|1𝐻, 1𝑉 ⟩𝑜𝑢𝑡 + |1𝑉 , 1𝐻⟩𝑜𝑢𝑡)

|Ψ−⟩𝑖𝑛 → 1√
2

(1
2𝑒−𝑖𝛿𝑉 ( ̂𝑏†

1,𝐻 ̂𝑏†
1,𝑉 − ̂𝑏†

1,𝑉 ̂𝑏†
1,𝐻𝑒±𝑖𝜋) + 1

2𝑒𝑖𝛿𝑉 (− ̂𝑏†
2,𝐻 ̂𝑏†

2,𝑉 𝑒±𝑖𝜋 + ̂𝑏†
2,𝑉 ̂𝑏†

2,𝐻)) |0, 0⟩𝑜𝑢𝑡

= 1√
2

(𝑒−𝑖𝛿𝑉 |1𝐻1𝑉 , 0⟩𝑜𝑢𝑡 − 𝑒𝑖𝛿𝑉 |0, 1𝐻1𝑉 ⟩𝑜𝑢𝑡)

Two photons in the |Φ+⟩𝑖𝑛, |Φ−⟩𝑖𝑛state behave in the same way as in the previous case and
bunch. In contrast two photons in the |Ψ+⟩𝑖𝑛 and , and |Ψ−⟩𝑖𝑛 show different behavior: now
two photons in the |Ψ−⟩𝑖𝑛 state show bunching and two photons in the |Ψ+⟩𝑖𝑛 state show
anti-bunching. This beam splitter configuration can also be used for the type of Bell state
measurement from section 2.4.1.
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Polarization independent but not perfect 50/50 beam splitter
For this beam splitter the characteristic parameters are Θ𝐻 = Θ𝑉 = Θ and 𝛿𝐻 = 𝛿𝑉 = 𝛿:

|Φ+⟩𝑖𝑛 → 1√
2

( sin (2Θ)
2 (( ̂𝑏†

1,𝐻 ̂𝑏†
1,𝐻 + ̂𝑏†

1,𝑉 ̂𝑏†
1,𝑉 ) 𝑒−𝑖𝛿 − ( ̂𝑏†

2,𝐻 𝑏̂†
2,𝐻 + ̂𝑏†

2,𝑉 ̂𝑏†
2,𝑉 ) 𝑒𝑖𝛿)

+ cos (2Θ) ( ̂𝑏†
1,𝐻 ̂𝑏†

2,𝐻 + ̂𝑏†
1,𝑉 ̂𝑏†

2,𝑉 ) ) |0, 0⟩𝑜𝑢𝑡

= 1√
2
sin (2Θ)

2 (𝑒−𝑖𝛿 (|2𝐻, 0⟩𝑜𝑢𝑡 + |2𝑉 , 0⟩𝑜𝑢𝑡) − 𝑒𝑖𝛿 (|0, 2𝐻⟩𝑜𝑢𝑡 + |0, 2𝑉 ⟩𝑜𝑢𝑡))

+ 1√
2
cos (2Θ) (|1𝐻, 1𝐻⟩ + |1𝑉 , 1𝑉 ⟩𝑜𝑢𝑡)

|Φ−⟩𝑖𝑛 → 1√
2

( sin (2Θ)
2 (( ̂𝑏†

1,𝐻 ̂𝑏†
1,𝐻 − ̂𝑏†

1,𝑉 ̂𝑏†
1,𝑉 ) 𝑒−𝑖𝛿 − ( ̂𝑏†

2,𝐻 𝑏̂†
2,𝐻 − ̂𝑏†

2,𝑉 ̂𝑏†
2,𝑉 ) 𝑒𝑖𝛿)

+ cos (2Θ) ( ̂𝑏†
1,𝐻 ̂𝑏†

2,𝐻 − ̂𝑏†
1,𝑉 ̂𝑏†

2,𝑉 ) ) |0, 0⟩𝑜𝑢𝑡

= 1√
2
sin (2Θ)

2 (𝑒−𝑖𝛿 (|2𝐻, 0⟩𝑜𝑢𝑡 − |2𝑉 , 0⟩𝑜𝑢𝑡) − 𝑒𝑖𝛿 (|0, 2𝐻⟩𝑜𝑢𝑡 − |0, 2𝑉 ⟩𝑜𝑢𝑡))

+ 1√
2
cos (2Θ) (|1𝐻, 1𝐻⟩ − |1𝑉 , 1𝑉 ⟩𝑜𝑢𝑡)

|Ψ+⟩𝑖𝑛 → 1√
2

( sin (2Θ)
2 (( ̂𝑏†

1,𝐻 ̂𝑏†
1,𝑉 + ̂𝑏†

1,𝑉 ̂𝑏†
1,𝐻) 𝑒−𝑖𝛿 − ( ̂𝑏†

2,𝐻 𝑏̂†
2,𝑉 + ̂𝑏†

2,𝑉 ̂𝑏†
2,𝐻) 𝑒𝑖𝛿)

cos (2Θ) ( ̂𝑏†
1,𝐻 ̂𝑏†

2,𝑉 − ̂𝑏†
1,𝑉 ̂𝑏†

2,𝐻) ) |0, 0⟩𝑜𝑢𝑡

= 1√
2
sin (2Θ)

2 (𝑒−𝑖𝛿 |1𝐻1𝑉 , 0⟩𝑜𝑢𝑡 − 𝑒𝑖𝛿 |0, 1𝐻1𝑉 ⟩𝑜𝑢𝑡)

+ 1√
2
cos (2Θ) (|1𝐻, 1𝑉 ⟩𝑜𝑢𝑡 − |1𝑉 , 1𝐻⟩𝑜𝑢𝑡)

|Ψ−⟩𝑖𝑛 → 1√
2

(1
2 ( ̂𝑏†

1,𝐻 ̂𝑏†
2,𝑉 + ̂𝑏†

2,𝑉 ̂𝑏†
1,𝐻) − 1

2 ( ̂𝑏†
1,𝑉 ̂𝑏†

2,𝐻 + ̂𝑏†
2,𝐻 ̂𝑏†

1,𝑉 )) |0, 0⟩𝑜𝑢𝑡

= 1√
2

(|1𝐻, 1𝑉 ⟩𝑜𝑢𝑡 − |1𝑉 , 1𝐻⟩𝑜𝑢𝑡)

A not 50/50 beam splitter leads to reduced bunching. The anti bunching input state, in this
case |Ψ−⟩𝑖𝑛 sees no effect. For a Bell state measurement this reduced bunching leads to a
mixing of the Bell states and reduces the fidelity for both detectable input states.
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A polarizing beam splitter
For a polarizing beam splitter the characteristic parameters Θ𝐻 = 0, Θ𝑉 = 𝜋

2 and 𝛿𝐻, 𝛿𝑉 are
free:

|Φ+⟩𝑖𝑛 → 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

2,𝐻 − ̂𝑏†
2,𝑉 ̂𝑏†

1,𝑉 ) |0, 0⟩𝑜𝑢𝑡

|Φ−⟩𝑖𝑛 → 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

2,𝐻 + ̂𝑏†
2,𝑉 ̂𝑏†

1,𝑉 ) |0, 0⟩𝑜𝑢𝑡

|Ψ+⟩𝑖𝑛 → 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝑉 𝑒−𝑖𝛿𝑉 − ̂𝑏†
2,𝑉 ̂𝑏†

2,𝐻𝑒−𝑖𝛿𝑉 )

|Ψ−⟩𝑖𝑛 → 1√
2

( ̂𝑏†
1,𝐻 ̂𝑏†

1,𝑉 𝑒−𝑖𝛿𝑉 + ̂𝑏†
2,𝑉 ̂𝑏†

2,𝐻𝑒−𝑖𝛿𝑉 )

A polarizing beam splitter shows the expected effect: for the input state with the same
polarization for both photons |Φ+⟩𝑖𝑛 and |Φ−⟩𝑖𝑛 the photons are still in different ports. For
the states with different polarization for the photons |Ψ+⟩𝑖𝑛 and |Ψ−⟩𝑖𝑛 are combined in one
output.
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F. Technical Details of the Experimental Setup

Laser System

All lasers used in the experiment are diode lasers.

Frequency stabilized lasers

The lasers used for laser cooling and addressing atomic states are frequency stabilized using
Doppler-free saturation spectroscopy. Three stabilized diode lasers are used in each setup to
create the fitting lasers light for the different purposes of cooling, pumping, excitation and
read-out (Fig F.1).

D2 transition from 5𝑆1/2, 𝐹 = 2(780 nm) A laser stabilized to the transition from 5𝑆1/2, 𝐹 = 2
to 5𝑃3/2 is used to create the “cooling”, “pump2→1”, and “cycling” light. For this the light
is split up in 3 beam lines using polarizing beam splitters. The light in each beam line is
shifted frequency using AOMs to the needed resonance and coupled into glass fibers going to
the experiment.

D2 transition from 5𝑆1/2, 𝐹 = 1(780 nm) A laser stabilized to the transition from 5𝑆1/2, 𝐹 = 1
to 5𝑃3/2 is used to create the “repump”, “pump1→1”, and “excitation” light.

D1 transition (795 nm) A laser stabilized to the transition from 5𝑆1/2, 𝐹 = 1 to 5𝑃1/2 is used
to create the “read-out” light.

Free running lasers

The ODT trap laser (850 nm) and the ionization laser (450 nm in lab 1 and 473 nm in lab 2)
are free running single mode lasers. Due to the higher power demand of the ODT in lab 1
the laser is amplified using a tapered amplifier.

Differences in the Trap Setups

Differences pumping and excitation beam path

The main difference in the two setups is the alignment of the pumping and excitation beam
path: this is rotated by 90∘for lab 2 (Fig. F.2). This does not lead to any change of the
experimental procedure or the resulting atom-photon states.
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Figure F.1.: Laser light in the experiment

(a) Top view of the trap setup in
lab 1: the excitation pulse pro-
pagates along the 𝑥-axis and
the pump1→1 beam is counter
propagating to the excitation
pulse. both are polarized paral-
lel to the 𝑧-axis.

(b) Front view of the trap setup in
lab 2: the excitation pulse pro-
pagates along the 𝑦-axis and the
pump1→1 beam is counter pro-
pagating to the excitation pulse.
both are polarized parallel to the
𝑧-axis.

Figure F.2.: Excitation and pump1→1 beam path in both traps.
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(a) CEM setup in Lab 1: The CEMs with gold coating show no background caused by the ionization laser.
Stable operation with acceleration voltage of Δ𝑈𝑎𝑐𝑐 = 4.3 kV possible.

(b) CEM setup in Lab 2: CEMs with silver coating show background caused by the ionization laser. An
acceleration voltage Δ𝑈𝑎𝑐𝑐 ≥ 2.8 kV leads to very high background counts.

Figure F.3.: Differences of the channel electron multiplier setups in the trap setups.

Differences in the CEM setup

The design of the CEM setup in both traps is identical, however the CEMs themselves are
slightly different: in lab 1 gold coated CEMs and in lab 2 silver coated ones are used (Fig. F.3).
Also the performance of the two setups is different. The setup in lab 1 performs as characteri-
zed in [37, 54]. However, the setup in lab 2 has a slightly higher fragment detection efficiency
yet it suffers from background counts: with an acceleration voltage Δ𝑈𝑎𝑐𝑐 > 2800 V field
emission leads to background counts in the order of more than 105counts/s. Thus, a lower
voltage is used leading to a longer time of flight of the Rb+ ions to the detectors. Further-
more, the silver coating in combination with rubidium leads to electron emission caused by
the ionization laser. The effect is stronger with shorter wave length blue laser but it can be
reduced by “cleaning” the surfaces with UV light. After installing new silver coated CEMs
in lab 1 the same problem occurred there.
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G. Formulary

Bell state projection for entanglement swapping

|Ψ𝑎𝑙𝑙⟩ = |Ψ1⟩ ⊗ |Ψ2⟩

= 1√
2

(|↑⟩𝐴,1 |↓⟩𝑃,1 + |↓⟩𝐴,1 |↑⟩𝑃,1) ⊗ 1√
2

(|↑⟩𝐴,2 |↓⟩𝑃,2 + |↓⟩𝐴,2 |↑⟩𝑃,2)

= 1
2 (|↑⟩𝐴,1 |↓⟩𝑃,1 |↑⟩𝐴,2 |↓⟩𝑃,2 + |↑⟩𝐴,1 |↓⟩𝑃,1 |↓⟩𝐴,2 |↑⟩𝑃,2)

+ 1
2 (|↓⟩𝐴,1 |↑⟩𝑃,1 |↑⟩𝐴,2 |↓⟩𝑃,2 + |↓⟩𝐴,1 |↑⟩𝑃,1 |↓⟩𝐴,2 |↑⟩𝑃,2) .

⟨Ψ−
𝑃 |Ψ𝑎𝑙𝑙⟩ = ⟨ 1√

2
(⟨↑|𝑃,1 ⟨↓|𝑃,2 − ⟨↓|𝑃,1 ⟨↑|𝑃,2) |Ψ𝑎𝑙𝑙⟩

= 1
2

1√
2

(|↓⟩𝐴,1 |↑⟩𝐴,2 − |↑⟩𝐴,1 |↓⟩𝐴,2)

= −1
2 |Ψ−

𝐴⟩

⟨Ψ+
𝑃 |Ψ𝑎𝑙𝑙⟩ = ⟨ 1√

2
(⟨↑|𝑃,1 ⟨↓|𝑃,2) + ⟨↓|𝑃,1 ⟨↑|𝑃,2 |Ψ𝑎𝑙𝑙⟩

= 1√
2

(1
2 |↓⟩𝐴,1 |↑⟩𝐴,2 + 1

2 |↑⟩𝐴,1 |↓⟩𝐴,2)

= 1
2 ∣Ψ+

𝐴⟩

⟨Φ−
𝑃 |Ψ𝑎𝑙𝑙⟩ = ⟨ 1√

2
(⟨↑|𝑃,1 ⟨↑|𝑃,2 − ⟨↓|𝑃,1 ⟨↓|𝑃,2) |Ψ𝑎𝑙𝑙⟩

= 1√
2

(1
2 |↓⟩𝐴,1 |↓⟩𝐴,2 − 1

2 |↑⟩𝐴,1 |↑⟩𝐴,2)

= −1
2 |Φ−

𝐴⟩

⟨Φ−
𝑃 |Ψ𝑎𝑙𝑙⟩ = ⟨ 1√

2
(⟨↑|𝑃,1 ⟨↑|𝑃,2 + ⟨↓|𝑃,1 ⟨↓|𝑃,2) |Ψ𝑎𝑙𝑙⟩

= 1√
2

(1
2 |↓⟩𝐴,1 |↓⟩𝐴,2 + 1

2 |↑⟩𝐴,1 |↑⟩𝐴,2)

= 1
2 ∣Φ+

𝐴⟩
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Lemma 1

∀𝑎, 𝑏 ∈ [0, 1] is 0 ≤ |𝑎 + 𝑏 − 1| + |𝑎 − 𝑏| ≤ 1.
Proof: 0 ≤ |𝑎 + 𝑏 − 1| + |𝑎 − 𝑏| follows directly from the definition. Now four cases that

cover all combinations of 𝑎, 𝑏 ∈ [0, 1] are considered:

1. 𝑏 ≤ 𝑎 and 𝑎 + 𝑏 ≤ 1

|𝑎 + 𝑏 − 1| + |𝑎 − 𝑏| = 1 − 𝑎 − 𝑏 + 𝑎 − 𝑏
= 1 − 2𝑏 ≤ 1

2. 𝑎 ≤ 𝑏 and 𝑎 + 𝑏 ≤ 1

|𝑎 + 𝑏 − 1| + |𝑎 − 𝑏| = 1 − 𝑎 − 𝑏 − 𝑎 + 𝑏
= 1 − 2𝑎 ≤ 1

3. 𝑏 ≤ 𝑎 and 𝑎 + 𝑏 ≥ 1

|𝑎 + 𝑏 − 1| + |𝑎 − 𝑏| = 𝑎 + 𝑏 − 1 + 𝑎 − 𝑏
= 2𝑎 − 1 ≤ 1

4. 𝑏 ≤ 𝑎 and 𝑎 + 𝑏 ≤ 1

|𝑎 + 𝑏 − 1| + |𝑎 − 𝑏| = 𝑎 + 𝑏 − 1 − 𝑎 + 𝑏
= 2𝑏 − 1 ≤ 1

⇒0 ≤ |𝑎 + 𝑏 − 1| + |𝑎 − 𝑏| ≤ 1 ∀𝑎, 𝑏 ∈ [0, 1] (G.1)

Bell-correlators for |Ψ−⟩ and measurement operators from Tab.: 3.1

An arbitrary state |𝜓⟩ can be written as

|𝜓⟩ = ∣ cos (𝜃/2) 𝑒−𝑖𝜙/2

sin (𝜃/2) 𝑒 𝑖𝜙/2 ⟩

and an operator 𝜎̂ as

𝜎̂ = ( cos (𝜃) sin (𝜃) 𝑒−𝑖𝜙

sin (𝜃) 𝑒𝑖𝜙 − cos (𝜃) ) . (G.2)

Using this for the operators ̂𝐴𝑎 and 𝐵̂𝑏from Table 3.1 leads to

̂𝐴𝑎 = ( cos (𝜃𝑎) sin (𝜃𝑎)
sin (𝜃𝑎) − cos (𝜃𝑎) )

𝐵̂𝑏 = ( cos (𝜃𝑏) sin (𝜃𝑏)
sin (𝜃𝑏) − cos (𝜃𝑏)

)

with 𝜙𝑎 = 𝜙𝑏 = 0 (since the operators have only real elements) and the 𝜃𝑎 and 𝜃𝑏 in Table G.1.
Therefore, the correlator (3.7) takes the form
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Input operator 𝜃 from (G.2)

𝐴 = 1 ̂𝐴1 = 𝜎𝑧 𝜃𝑎 = 0
𝐴 = 0 ̂𝐴0 = 𝜎𝑥 𝜃𝑎 = 𝜋/2

𝐵 = 1 𝐵̂1 = 1√
2 (𝜎𝑧 + 𝜎𝑥) 𝜃𝑏 = 𝜋/4

𝐵 = 0 𝐵̂0 = 1√
2 (𝜎𝑧 − 𝜎𝑥) 𝜃𝑏 = −𝜋/4

Table G.1.: 𝜃𝑎 and 𝜃𝑏 for the measurement operators from Table 3.1

𝐸𝑎𝑏 = ⟨ ̂𝐴𝑎𝐵̂𝑏⟩ = ⟨Ψ−| ̂𝐴𝑎𝐵̂𝑏 |Ψ−⟩

= ⟨Ψ−| ( cos (𝜃𝑎) sin (𝜃𝑎)
sin (𝜃𝑎) − cos (𝜃𝑎) )

𝐴
( cos (𝜃𝑏) sin (𝜃𝑏)
sin (𝜃𝑏) − cos (𝜃𝑏)

)
𝐵

|Ψ−⟩

= ⟨Ψ−| 1√
2

[∣ cos (𝜃𝑎)
sin (𝜃𝑎) ⟩ ∣ sin (𝜃𝑏)

− cos (𝜃𝑏)
⟩ − ∣ sin (𝜃𝑎)

− cos (𝜃𝑎) ⟩ ∣ cos (𝜃𝑏)
sin (𝜃𝑏)

⟩]

= 1
2 (− cos(𝜃𝑎) cos (𝜃𝑏) − sin(𝜃𝑎) sin (𝜃𝑏) − 𝑠𝑖𝑛(𝜃𝑎) cos (𝜃𝑏) − cos(𝜃𝑎) cos (𝜃𝑏))

= − cos (𝜃𝑎 − 𝜃𝑏) .

With the angles from Table G.1 the values of 𝐸𝑎𝑏 are

𝐸11 = − cos (−𝜋/4) = −1/√
2,

𝐸10 = − cos (+𝜋/4) = −1/√
2,

𝐸01 = − cos (+𝜋/4) = −1/√
2, and

𝐸00 = − cos (3𝜋/4) = 1/√
2.

Finally, (3.1) takes the value of

𝑆 = |−1/√
2 − 1/√

2| + |−1/√
2 − 1/√

2| = 2
√

2.

The according calculation can be done for |Ψ+⟩.
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