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ABSTRACT 

Conventional dendritic cells (cDCs), are the major antigen-presenting cell type that bridges the 

innate and adaptive immune system. DCs are constantly replenished from myeloid bone marrow 

progenitors which latest stage, pre-cDC, leave the BM, seeds the peripheral tissues and further 

differentiates into two functionally and developmentally distinct subsets, cDC1 and cDC2. This 

study aimed to investigate DC development by assessing the trafficking of pre-cDCs and by 

analyzing the effect of a specific depletion of DC progenitors. The signals that regulate the 

recruitment of pre-cDCs to different peripheral organs are poorly understood. Therefore, this study 

aimed to identify pre-cDCs in different peripheral organs and to find differences in expression 

pattern of trafficking receptors. In this study 39 trafficking receptors have been identified to be 

expressed on pre-cDCs of the analysed tissues and showed differences in the expression patterns 

between peripheral organs. These receptors are interesting candidates to further study differences 

in the recruitment of pre-cDCs to different peripheral tissues This can provide possibilities to 

influence the recruitment of pre-cDCs in certain diseases, where the replenishment of cDCs is 

accelerated. To generate a DC deficient model, DNGR-1/ CLEC9A expressing cells and its 

progeny were depleted by crossing Clec9a-Cre mice to Rosa-lox-STOP-lox- diphtheria toxin (DTA) 

mice. Despite cDC progenitors being diminished in these mice, as expected, cells that 

phenotypically resemble cDC2 arise independent of conventional DC progenitors. As these cells 

show somatic rearrangements of the Ig-heavy gene locus, typical for lymphoid cells, they were 

termed lymphoid DC2. A lymphoid origin of DCs has been shown in vitro as well as in adoptive 

transfer studies, however, the reason for this dual origin and under which physiological settings 

lymphoid derived DC2 develop and replenish myeloid-derived cDCs is unknown. To test the 

hypothesis that lymphoid DCs represent a subset of cells with distinct functions that replace 

myeloid-derived DCs in certain types of diseases, functional analyses were performed. Indeed, 

less lymphoid DC2 showed TNFα expression after LPS stimulation compared to DC2 from control 

mice. Furthermore, less lymphoid DC2 showed migration towards CCR7 ligands suggesting a 

migration defect. Additionally, increased cell death of lymphoid DC2 compared to DC2 from control 

mice was found in vitro. Increased cell death, on the one hand, provides evidence that lymphoid 

DC2 behave different from bona fide cDC2, on the other hand it impedes the interpretation of 

quantitative functional analyses, such as migration assays. Taken together, depletion of myeloid 

DC progenitors in Clec9aCreRosaDTA mice provides an artificially induced situation in which DC2 

like cells can develop in the absence of myeloid DC progenitor. Furthermore, preliminary findings 

indicate that lymphoid DC2 show functional differences to bona fide cDC2 which argues for the 

requirement of a redundant developmental pathway to create a situation adapted repertoire of 

cells.  
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1. INTRODUCTION 

1.1 DENDRITIC CELLS ARE IMPORTANT ACTIVATORS OF IMMUNE RESPONSES 

Dendritic cells (DCs) have first been described based on their morphology as stellate cells 

that adhere to glass surfaces by Steinman et al 1973 and were further described to express 

high levels of major histocompatibility complex II (MHCII). DCs are the most potent antigen 

presenting cells (APC) and activators of T-cell responses (Banchereau & Steinman, 1998; 

Nussenzweig et al., 1981; Steinman & Cohn, 1973; Steinman & Witmer, 1978; Steinman, 

Kaplan, Witmer, & Cohn, 1979), making them important regulators of immune responses that 

bridge innate and adaptive immune responses. DCs are short-lived cells that reside in the 

peripheral organs and patrol their surroundings for pathogen and damage associated antigens 

(Gallo & Gallucci, 2013; Kamath, Henri, Battye, Tough, & Shortman, 2002). Upon antigen 

encounter, DCs become activated and transport the antigen to the draining lymph nodes (LN) 

to initiate T-cell responses (Merad, Sathe, Helft, Miller, & Mortha, 2013). Additionally, DCs 

contribute to tolerance against self-antigens or food antigens (Merad et al., 2013). Such 

tolerance is induced by DCs through taking up and transporting peripheral self- or oral 

antigens, to the thymus or peripheral lymphoid organs and participating in deletion of reactive 

T-cells or induction of T regulatory cells (Iberg, Jones, & Hawiger, 2017; Merad et al., 2013).  

The DC population consists of plasmacytoid DCs (pDCs) and conventional DCs (cDCs), which 

are important for the immune responses against viruses and extra-/intracellular pathogens, 

respectively (Schraml & Reis e Sousa, 2015; Vu Manh, Bertho, Hosmalin, Schwartz-Cornil, & 

Dalod, 2015). These DC populations have been found conserved in mice and men (Schlitzer 

& Ginhoux, 2014). CDCs are typically identified based on the expression of the surface 

markers CD11c and MHCII can further be subdivided into two functionally and transcriptionally 

distinct subsets, so-called cDC1 and cDC2 (Guilliams et al., 2014). cDC1 and cDC2 based on 

the expression of surface markers CD8, CD24, XCR-1, DEC205 and CD11b, CD4, CD172a, 

respectively (Guilliams et al., 2014). The different subsets of DCs cannot only be distinguished 

from each other by the expression of surface markers but also differ in their immunological 

functions (Mildner & Jung, 2014). The main function of pDCs is their defence against viruses 

by producing large amounts of Type I interferons (Cella et al., 1999; Perussia, Fanning, & 

Trinchieri, 1985; Siegal et al., 1999). cDC1 recognize intracellular pathogens, activate CD8+ 

T-cells via cross-presentation of antigens on MHCI molecules and initiate Th1 responses. 

cDC2 recognize extracellular pathogens and initiate Th2 and Th17 responses (Dudziak, 

Kamphorst, Heidkamp, Buchholz, & Nussenzweig, 2007; Guilliams et al., 2014; Hildner et al., 

2008; Pooley, Heath, & Shortman, 2001). In addition to the ability of DCs to activate T-cell 

responses upon inflammation, DCs are also important for the tolerance against self-antigen 
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and regulate innate immune responses for example by producing cytokines like IL-12 and IL-

23 (Arora et al., 2014; Banchereau & Steinman, 1998; Kinnebrew et al., 2012; Reis e Sousa 

et al., 1997; Whitney et al., 2014). As in most lymphoid organs, the distribution DC subsets 

shows that cDC2 are the predominant population in LNs and spleen, whereas cDC1 are more 

abundant than cDC2 in the thymus (Pakalniškytė & Schraml, 2017). 

1.2 LOCALIZATION AND MIGRATION OF DCS 

DCs have been found in many lymphoid and non-lymphoid organs, such as the lymph nodes, 

spleen, small intestine, kidneys, lungs, skin, heart, and brain (D'Agostino, Gottfried-

Blackmore, Anandasabapathy, & Bulloch, 2012). Although the expression of surface markers 

on DCs can vary between the peripheral tissues, the key antigen-presenting function remains 

the same (Malissen, Tamoutounour, & Henri, 2014; Persson et al., 2013). In the non-lymphoid 

organs, DCs patrol their environment for pathogens that have entered the tissue for example 

through the skin, gut, or lung. From here the DCs transport the antigen via lymphatic vessels 

to the draining lymph nodes to initiate T-cell responses (Figure 1). The migration and the 

localization of DCs within lymphoid organs are mediated by the chemokine receptor 7 (CCR7) 

which gets upregulated in DCs upon activation (Braun et al., 2011; Calabro et al., 2016; 

Förster et al., 1999; Yanagihara, Komura, Nagafune, Watarai, & Yamaguchi, 1998). This 

transport is especially important in inflammatory situations to initiate immune responses 

against pathogen-derived antigens, but migration of DCs also occurs in steady-state 

conditions which is important to induce tolerance against peripheral self-antigens (Merad et 

al., 2013). For the proper function of DCs, the localization in the tissues and migration play 

important roles (Eisenbarth, 2019).  

1.2.1 DC LOCALIZATION IN PERIPHERAL ORGANS 

The localization within the tissue has an important impact on DC function both in non-lymphoid 

and lymphoid organs. DCs are localized so that they can easily reach incoming antigens to 

further transport and present it (Eisenbarth, 2019). In peripheral non lymphoid organs, such 

as the small intestine and the lung, DCs localize subepithelial and extend their dendrites 

through the epithelial layer, which allows them to probe foreign antigens (Hoffmann et al., 

2016; Rescigno, Rotta, Valzasina, & Ricciardi-Castagnoli, 2001; Sung et al., 2006). The small 

intestine contains three cDC subset of which the most abundant is the CD11b+CD103+ cDC2 

subset followed by the CD11b-CD103+ cDC1 and the least frequent is the CD11b+CD103- 

cDC2 (Persson et al., 2013). In the kidney, CD11b+ DC2 are the predominant over cDC1 but 

additionally to these two subsets, also CD64 expressing pre-cDC derived cells exists that are 

much more frequent than cDC1 and cDC2 (Pakalniškytė & Schraml, 2017). In the skin, two 

distinct cell types of APCs exist. Langerhans cells (LCs), install the first layer of defence by 
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residing in the epidermis (Deckers, Hammad, & Hoste, 2018; Figure 1). Although LCs have 

overlapping functions with cDCs in terms of migration and antigen presentation, LCs, other 

than cDCs, are of embryonic origin and are maintained in the skin by self-renewal (Deckers 

et al., 2018). CDCs of the skin reside in the dermis and patrol there for foreign antigens (Figure 

1) (Henri, Guilliams, et al., 2010a). The DCs in the skin can be divided into several different 

subsets which suggests adaptation to specific functions in this tissue (Henri, Poulin, et al., 

2010b). The most frequent DC subset in the skin is the CD207-CD11b+ DCs, followed by 

CD207-CD11b- DCs and the least frequent subsets are the CD207+ CD103- and the 

CD207+CD103+ DCs (Henri, Poulin, et al., 2010b). 

 

Figure 1: Scheme for DC migration from the skin to the draining LN. Migratory cDCs (blue) in the skin localize 

to the dermis, whereas LCs (green) can be found in the epidermis. Both cell types patrol for antigens and upon 

activation upregulate the chemokine receptor CCR7, which recognizes CCL19 as well as CCL21. Thereupon, DCs 

and LCs migrate along a CCL19/21 gradient towards the lymph vessel and in the lymph vessel to the draining LN. 

In the draining LN, DCs that immigrated from the peripheral organ can be distinguished from LN resident DCs 

(orange). The activated migratory DCs from the LN present the antigen to T-cells (red) in the LN to induce 

proliferation. 

1.2.2 DC LOCALIZATION IN LYMPHOID ORGANS 

The lymph nodes are the place where DCs migrate to after they have taken up antigen in the 

periphery (Alvarez, Vollmann, & Andrian, 2008). Therefore, LNs contain the DCs that have 

migrated from the drained organ, which are then called migratory dendritic cells. In addition to 

the migratory DCs, also tissue-resident DCs can be found in the LNs (Hashimoto, Miller, & 

Merad, 2011). The exact location, to which DC localize in the lymphoid organs is especially 

important because the B and T-cells localize to very confined regions within the LNs so the 

DCs can only function to activate their target cells when they colocalize (Eisenbarth, 2019). 

An alteration in the localization of DC subsets can, therefore, have a major influence on their 
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function to prime T and B-cell responses (Yi & Cyster, 2013). In steady-state, resident and 

migratory DCs can be distinguished based on the levels of the surface molecules CD11c and 

MHCII as CD11chi MHCII+ resident DC and CD11c+MHCIIhi migratory DCs (Hashimoto et al., 

2011), however, in inflammation this discrimination often fails due to upregulation of these 

markers and can only be achieved for cDC1 by using different markers, such as CD103 for 

migratory DC1 and CD8α for resident cDC1 (Eisenbarth, 2019; Merad et al., 2013; Waithman 

et al., 2013). Resident and migratory DCs are functionally distinct and this division of labour 

is also represented in their spatio-temporal localization. The localization of B-cells, T-cells, 

and DCs in the LN is depicted in Figure 2. Migratory DCs enter the LN parenchyma through 

the subcapsular sinus in a CCR7 independent manner and from here migDC2 are furthermore 

directed to either the interfollicular zone at the T-cell-B-cell border dependent on EBI2, 

whereas migratory cDC1 are directed to the deep T-cell zone (Braun et al., 2011; Gerner, 

Kastenmüller, Ifrim, Kabat, & Germain, 2012; Gerner, Torabi-Parizi, & Germain, 2015; 

Schumann et al., 2010). These differences in localization of migratory DC2 goes in hand with 

their function as inducers of different T-cell responses as it coincides with the localization of 

T-cells subsets. Migratory cDC2 can therefore induce Th2 T-cells and TfH cells as some CD4+ 

T-cells also localize at the T-cell B-cell border in close proximity to B-cells whereas migratory 

cDC1 induce Th1 cells and CD8+ T-cells, which localize to the deep T-cell zone (Dudziak et 

al., 2007; Gerner et al., 2015; Pooley et al., 2001; Qi, Egen, Huang, & Germain, 2006; 

Randolph, Inaba, Robbiani, Steinman, & Muller, 1999; Reuter et al., 2015; Y. Suzuki et al., 

2004b). In contrast to migratory DCs, resident DCs receive their antigen either from draining 

the lymph or via antigen-hand over from other cells, such as migratory DCs. Following that 

they can also induce T-cell responses (Allan et al., 2006; Ersland, Wüthrich, & Klein, 2010; 

Gurevich et al., 2017). The difference between resident and migratory DCs, therefore, lays in 

the access to and origin of the antigen. The localization of resident DCs only marginally varies 

from the localization of migratory DCs to get access to the antigen. The resident DC2 are 

located close to the lymphatic sinuses and like migratory DC2 also in the interfollicular zone 

but closer to the medullary side where they capture particulate antigens from the lymph 

(Gerner et al., 2015). Resident DC1 are located in the deep T-cells zone and presumably form 

a network with migratory DC1 (Gerner et al., 2015; Kissenpfennig et al., 2005; Kitano et al., 

2016).  
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Figure 2: Organization of lymphocytes in the lymph node. A. Schematic overview of the general LN structure. 
Orange zones indicate B-cells zones (BCS), red structure represents T-cells zone (TCZ). Interfollicular zones (IFZ) 
are the connection between the BCZs. Between the TCZ and the T-cell-B-cell border high endothelial venules 
(HEV) are displayed. Furthermore, subcapsular sinus (SCS) macrophages and medullary sinus macrophages are 
shown in the SCS and medullary sinus, respectively. B. Localization of different T-cell subpopulations in the 
different zones of the LN. C. Location of cDC1 (violet border) and cDC2 (cyan border) among migratory DCs (filled 
with blue) and resident DCs (filled with yellow), respectively. Modified from (Eisenbarth, 2019). 

The spleen is the largest secondary lymphoid organ, which drains the circulatory systems as 

it filters blood to recycle red blood cells and clear blood-borne antigens (Eisenbarth, 2019). It 

is essential to support rapid B- and T-cell responses against circulating antigens (Mebius & 

Kraal, 2005). For these purposes, the spleen is divided into the blood filtering regions, the so-

called red pulp and the lymphoid compartments that contain the immune cells which are called 

white pulp (Mebius & Kraal, 2005). The sub-organization of the white pulp resembles the LN 

structure and, therefore, is divided into T- and B-cell compartments (Mebius & Kraal, 2005). 

In the spleen, most DC2 localize to the bridging channels close to the T-cell zone and only 

some can be found in the marginal zone or red pulp of the spleen (Dudziak et al., 2007). cDC1, 

in contrast, can be found within the T-cell zones but also in the marginal zone (De Smedt et 

al., 1996; Idoyaga, Suda, Suda, Park, & Steinman, 2009; Kraal, Twisk, Tan, & Scheper, 1986). 

After the encounter of a microbial stimulus, the DCs in the spleen have been shown to 

redistribute to the T-cell zones, which is important to get in contact with and activate T-cells 

(Idoyaga et al., 2009; Reis e Sousa et al., 1997). 
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1.2.3 DENDRITIC CELL MIGRATION  

DC migration is facilitated by several chemokines, such as CCL19 and CCL21, CCL17, 

CCL22, CXCL12, CCL8 (Rapp et al., 2019; Ricart, Yang, Hunter, Chen, & Hammer, 2011; 

Sokol, Camire, Jones, & Luster, 2018; Stutte et al., 2010) and their respective chemokine 

receptors CCR7, CCR4, CCR8, CXCR4 and CXCR7. The interaction of the relevant 

chemokines and receptors is shown in Figure 3 (Ohl et al., 2004). 

The CCL19/CCL21-CCR7 axis provides the most important directional cue for the trafficking 

of DCs to and within the LN (Ohl et al., 2004). Gradients of the CCR7 binding chemokines 

CCL19 and CCL21 are built up by expression in the tissues (Förster, Davalos-Misslitz, & Rot, 

2008; Hauser et al., 2016; Link et al., 2007; Worbs, Mempel, Bölter, Andrian, & Förster, 2007). 

Although CCL19 and CCL21 bind to the same receptor, they act in different ways depending 

on their expression pattern and structure (Hjortø et al., 2016). CCL19 and CCL21 share only 

25% sequence identity and are expressed by different cell types (Ott et al., 2006). Whereas 

both chemokines are expressed by stromal cells in the T-cell zones of the LN, CCL19 is also 

expressed by DCs and can act in an autocrine fashion (Carlsen, Haraldsen, Brandtzaeg, & 

Bækkevold, 2005; Katou et al., 2003; Luther, Tang, Hyman, Farr, & Cyster, 2000; Ngo, Tang, 

& Cyster, 1998). CCL21 has an additional C-terminal tail, which facilitates enhanced affinity 

to glucosaminoglycans (GAGs) (Hromas et al., 1997; Love et al., 2012). Through cleavage of 

the C-terminal tail of CCL21 by DC-derived proteases or plasmin the soluble form of CCL21 

is generated that forms a chemotactic gradient (Lorenz et al., 2016; Schumann et al., 2010). 

The chemotactic gradient is further maintained by the GAG affinity of CCL21, which enables 

it to bind to the extracellular matrix and cell surfaces (Schumann et al., 2010). The immobilized 

CCL21 gradient provides a strong stimulus for haptokinetic movement of the DCs in the tissue 

towards the lymph vessel (Weber et al., 2013). The N-termini of CCL19 and CCL21 facilitate 

Figure 3: DC migration relevant chemokines and receptors. Chemokine receptors and the corresponding 

chemokines are linked with a line. Adapted from 2(Bachelerie et al., 2014)  
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the binding to CCR7 but provoke distinct receptor signalling as depicted in Figure 4. Binding 

of both CCL19 and CCL21 leads to receptor phosphorylation of the G-protein coupled receptor 

CCR7 by GRK6, β-arrestin 2 recruitment, and downstream signalling but binding of CCL21 

induces a stronger intracellular calcium release and stronger ERK signalling (Hauser et al., 

2016; Hjortø et al., 2016; Ricart et al., 2011) whereas CCL19 serves as a more potent 

chemotactic cue that initiates better recruitment of β-arrestin 2 and initializes CCR7 

internalization more effectively, which leads to desensitization of the receptor (Bardi, Lipp, 

Baggiolini, & Loetscher, 2001; Byers et al., 2008; Hjortø et al., 2016; Kohout et al., 2004; 

Otero, Groettrup, & Legler, 2006; Zidar, Violin, Whalen, & Lefkowitz, 2009). DC migration, 

therefore, is a very complex process that is regulated by different chemokines that have 

different effects on the migration.  

 

Figure 4: CCL19 and CCL21 mediated CCR7 signalling. CCL19 and CCL21 both bind theCCR7 but initiate 
divergent intracellular responses. Both facilitate migration via CCR7, Rho, pyk21, and cofilin, but CCR19 is stronger 
in inducing chemotaxis and CCR7 internalization. Adapted from (Noor & Wilson, 2012). 

1.3 HISTORY OF DENDRITIC CELL ONTOGENY 

Historically, DCs are a population of cells belonging to the mononuclear phagocyte (MNP) 

network, together with monocytes and macrophages (Guilliams et al., 2014). A reason for this 

classification was that monocytes were considered the precursor of DCs as, indeed, 

monocytes give rise to DCs especially in culture conditions with GM-CSF and IL-4 (Romani et 

al., 1994; Sallusto & Lanzavecchia, 1994). With the advances in technology since that time, 

however, the cells of the MNP network can be distinguished in populations with different 

functions and origins for example by making use of expression patterns of surface molecules 
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and flow cytometric analyses (Guilliams et al., 2014). There are however still limitations of 

distinction of populations within the MNP network resulting from the fact that cells can adapt 

their surface marker expression to the microenvironment of the organ they are residing in and 

in the course of activation in inflammatory conditions. As an example, DCs in the kidney 

express the surface marker CD64, which is generally thought to mark cells of monocyte origin, 

which complicates the assignment to a developmental origin (Langlet et al., 2012; Schraml et 

al., 2013). In addition, monocytes further differentiate into cells resembling either DCs or 

macrophages during infection (Cheong et al., 2010) and these monocyte-derived DCs 

(moDCs) show great overlap of surface receptors and express for example the typical DC 

surface markers CD11c and MHCII but differ in their function (Guilliams et al., 2014). It 

becomes obvious, that origin plays an important role in the classification of specific cell 

lineages order to fully understand their turn over in different conditions and especially because 

origin can have an impact on the function of the cells. For DCs, the origin still is a highly 

debated field because, in vitro, multiple progenitors were shown to give rise to DC (Manz, 

Traver, Miyamoto, Weissman, & Akashi, 2001b). Why the development of DCs can be so 

diverse and under which physiological conditions this redundancy is required is not fully 

understood yet.  

1.3.1 THE LYMPHOID ORIGIN OF DENDRITIC CELLS 

Lymphoid and myeloid progenitors are thought to branch after the multipotent progenitor 

(MPP) stage. Lymphoid-primed multipotent progenitors (LMPPs) further differentiate into 

common lymphoid progenitors (CLPs), which give rise to the lymphoid lineage, including B 

and T-cells. Common myeloid progenitors (CMPs) exclusively generate granulocytes, 

monocytes and dendritic cells (Nimmo, May, & Enver, 2015). One indicator to distinguish cells 

of lymphoid origin is D-J rearrangements in the heavy chain locus of the B-cell receptor 

(Borghesi et al., 2004). These rearrangements occur as an early event in the commitment of 

progenitors to the lymphoid lineage and depend on the expression of Rag1 (Borghesi et al., 

2004; Schlissel, Corcoran, & Baltimore, 1991; Welner et al., 2009). Many studies have shown 

that lymphoid progenitors, such as the CLPs, LMPPs and pro-B cells can give rise to cDCs 

under certain conditions like, in in vitro systems and after adoptive transfer into irradiated mice 

(Björck & Kincade, 1998; Izon et al., 2001; Manz, Traver, Miyamoto, Weissman, & Akashi, 

2001b; Naik et al., 2013; Traver et al., 2000; Welner et al., 2008). Interestingly, the DCs 

obtained from lymphoid origin and the DCs that were obtained from myeloid origin show no 

functional difference in mixed leukocyte reactions as well as IL-12 production after different 

stimuli (Manz, Traver, Miyamoto, Weissman, & Akashi, 2001b; Wu et al., 2001). However, it 

has been reported that TLR9 stimulation increases the potential of lymphoid progenitors to 

give rise to DCs (Welner et al., 2008; 2009) implying that lymphoid progenitors are more prone 
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to give rise to DCs under inflammatory conditions. In steady state, however, it is generally 

thought that cDCs derive from myeloid progenitors as they are not labelled in IL7R-creRFP 

reporter mice that label lymphoid progenitors based on the expression of the IL7 receptor 

(Schlenner et al., 2010). Furthermore, CMPs are more potent at producing cDC outcome 

compared to CLPs (Manz, Traver, Miyamoto, Weissman, & Akashi, 2001b; Traver et al., 

2000). In the thymus, but not in the spleen, DC1 have been shown to have signs of lymphoid 

past and therefore are considered to be lymphoid derived in this specific tissue (Corcoran et 

al., 2003). Nevertheless, it remains unknown if lymphoid DC poiesis happens in other organs 

under specific physiological conditions and why the DC potential exists in progenitors of 

different hematopoietic lineages despite functional redundancy. 

1.3.2 THE MYELOID ORIGIN OF CONVENTIONAL DENDRITIC CELLS 

In steady-state, cDCs are considered to belong to the myeloid lineage (Corcoran, Manz, 

Traver). The development of cDCs starts in the BM: Downstream of hematopoietic stem cells 

(HSC) and multipotent progenitors (MPP), common myeloid progenitors (CMPs) differentiate 

that further give rise to granulocyte-monocyte progenitors that develop into macrophage 

dendritic cell progenitors (MDPs) (Auffray et al., 2009). MDPs can give rise to both monocytes 

and common dendritic cell progenitors (CDPs) and the development starting from the MDPs 

is depicted in Figure 5 (Liu et al., 2009; Naik et al., 2007; Onai et al., 2007). CDPs give rise 

to cells resembling pDCs and pre-cDCs (Auffray et al., 2009; Fogg et al., 2006; Naik et al., 

2007; Onai et al., 2007; Rodrigues et al., 2018). The development until the pre-cDC stage 

takes place in the bone marrow (BM). From there pre-cDCs migrate into the blood and home 

to peripheral tissues where they fully differentiate into the different subsets of cDCs (Liu et al., 

2009). The factors that regulate the BM egress of pre-cDCs and their homing to different 

peripheral tissues are not fully understood. But it has been shown that CXCR4 expression on 

pre-cDCs facilitates the retention to the BM (H. Nakano, Lyons-Cohen, Whitehead, Nakano, 

& Cook, 2017). Furthermore, CCR2 and CX3CR1 expression in pre-cDCs are known to be 

relevant for the migration to the lung, in steady-state, whereas only CCR2 is relevant for the 

migration of pre-cDCs to the inflamed lung (H. Nakano et al., 2017). 

DC development depends on different growth factors, such as Flt3L but also GMCSF 

(Banchereau & Steinman, 1998; Durai et al., 2018; Inaba et al., 1992; Maraskovsky et al., 

1996; Pulendran et al., 1997; Saunders et al., 1996). These cytokines are also commonly 

used to differentiate DCs from BM precursors in vitro however, while Flt3L cultures yield mainly 

pDCs and cDCs, GMCSF cultures also give rise to a mixture of cell types including monocyte-

derived macrophages, monocyte-derived dendritic cells but also CDP derived DCs (Helft et 

al., 2017; Karsunky, Merad, Cozzio, Weissman, & Manz, 2003). For studying the function of 
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DCs, culture systems are a useful tool to generate large amounts of DCs however it has to be 

considered which progenitor is expanded by which growth factor and that this could have an 

effect on the functionality of the cells. 

 

Figure 5: Myeloid development of cDCs, pDCs, and monocyte-derived cells. Downstream of hematopoietic 
stem cells macrophage and dendritic cell progenitors (MDPs) develop within the myeloid lineage. MDPs have the 
potential to generate either the monocytes via common monocyte progenitors (cMOPs) or conventional dendritic 
cells via the common dendritic cell progenitor CDP and the immediate DC precursor pre-cDC. pDCs were originally 
thought to derive from CDPs however recent evidence shows that IFN-producing pDCs derive from IL7R+ lymphoid 
progenitors (LPs) and suggests to call CDP derived pDCs pDC like cells (Rodrigues et al., 2018). The background 
color indicates the location of the cell type in the body. 

1.3.3 SUBSET COMMITMENT OF DENDRITIC CELL PROGENITORS 

The two cDCs subsets cDC1 and cDC2 that are typically distinguished are developmentally 

and functionally distinct (Guilliams et al., 2014). It is however not clear whether the 

differentiation into the two main DC subsets shows plasticity or flexibility of one common 

progenitor or if they derive from distinct progenitors that have split from upstream progenitors. 

Pre-cDC differentiation into cDC1 or cDC2 takes place in the different peripheral organs and 

the differentiation is known to depend on different transcription factors for the different subsets. 

Transcription factors that are important for the development of cDC1 are IRF8, Batf3 and 

NFIL3 (Hildner et al., 2008; Kashiwada, Pham, Pewe, Harty, & Rothman, 2011; Schiavoni et 
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al., 2002) whereas cDC2 development depends on RelB, Pu1, RBPJ and IRF4 (Caton, Smith-

Raska, & Reizis, 2007; Chopin et al., 2018; Guerriero, Langmuir, Spain, & Scott, 2000; Lewis 

et al., 2011; Satpathy et al., 2013; Schlitzer et al., 2013; S. Suzuki et al., 2004a; Wu et al., 

1998). In different peripheral organs, different subset ratios of cDCs can be identified and also 

site-specific DC subsets exist for example in the lamina propria and in the kidney (Bogunovic 

et al., 2009; C. L. Scott, Tfp, Beckham, Douce, & Mowat, 2014). Therefore, one hypothesis is 

that signals within the organ of destination, the tissue microenvironment, dictate the 

differentiation into cDC1 or cDC2 or the tissue-specific subsets. Recent publications however 

have identified pre-committed pre-cDC populations already in the BM suggesting a subset 

imprinting at the CDP stage that initiates a transcriptomic program to either cDC1 or cDC2 

regardless of the tissue microenvironment (Breton et al., 2016; Grajales-Reyes et al., 2015; J. 

Lee et al., 2015; Schlitzer et al., 2015; See et al., 2017). This suggests that the pre-cDCs pre-

committed before they migrate to the different organs as well. This raises the question if there 

is differential recruitment to peripheral organs among the pre-committed pre-cDCs that 

explains the variation in DCs subsets and its ratio. A recent publication in this context suggests 

that the migration of different pre-cDC subsets is indeed differentially regulated by showing 

that the migration to melanoma tumours of pre-cDC1 but not pre-cDC2 depends on the 

expression of CXCR-3 (S. J. Cook et al., 2018). 

1.4 MOUSE MODELS ARE USED TO DISTINGUISH DCS FROM OTHER 

MONONUCLEAR PHAGOCYTES AND TO IDENTIFY THEIR FUNCTIONS 

The phenotype of DCs partially overlaps with other cells of the MNP network. The distinction 

of DCs is especially difficult upon infection when monocyte differentiate into monocyte-derived 

DCs (Cheong et al., 2010). Therefore, it is necessary to develop models that help to identify 

DCs in the best case DCs of a certain developmental lineage. To further not only identify the 

cells based on their origin but also identify the specific function of the cells specific DC 

depletion models have been established. With these, one can ideally knock out all CDP 

derived DCs or one specific subset and compare the functionality of immune responses in the 

absence of these cells, to understand their specific immunogenic role. 

The most abundantly used model to mark and manipulate cDCs are the Itgax-DTR/GFP 

mouse model (Hochweller, Striegler, Hämmerling, & Garbi, 2008; Jung et al., 2002) in which 

the CD11c promoter drives the expression of a diphtheria toxin receptor and a green 

fluorescent protein (GFP). Here, CD11c expressing cells are fluorescently labelled and can 

conditionally be depleted with the administration of diphtheria toxin (DT). This model is 

however not specific to DCs as depletion broadly affects cells of the MNP network, such as 

macrophages, Langerhans cells as well as plasmablasts, T-cells, and non-immune cells, 
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which leads to inconclusive results when analysing DC function (Bar-On et al., 2010; Bennett 

& Clausen, 2007; Jung et al., 2002; Probst et al., 2005; Tittel et al., 2012; van Blijswijk, 

Schraml, & Reis e Sousa, 2013). Other mouse models that are used to label cDCs or deplete 

them are the Zbtb46-GFP or -DTR model, respectively (Meredith et al., 2012; Satpathy et al., 

2012). Zbtb46 expression is more restricted to cDCs and not expressed by other immune cells 

except some activated monocytes, but the depletion of DCs with a single dose of DT is lethal 

in these mice, presumably due to Zbtb46 expression in endothelial cells, which can only be 

circumvented by BM transplantation (Finger Stadler, Patel, Pacholczyk, Cutler, & Arce, 2017; 

Meredith et al., 2012; Rombouts et al., 2017). To deplete cDC1 specifically, different models 

are available, such as CD205-DTR (Fukaya et al., 2012), Batf3-/-(Hildner et al., 2008), IRF8-/- 

(Aliberti et al., 2003; Schiavoni et al., 2002) and XCR-1-DTRvenus (Yamazaki et al., 2013). 

Specific depletion of the cDC2 has been reported in RelB-/- mice (Wu et al., 1998) and 

Clec4a4-DTR mice but here, analyses have been restricted to the lamina propria (Durai & 

Murphy, 2016; Muzaki et al., 2016).  

Dendritic cell natural killer lectin group receptor-1 (DNGR-1), which is encoded by the gene 

Clec9a, was originally found to be expressed in cDC1 and to a lower extent also on pDCs but 

furthermore also expression on DC restricted precursors has been observed (Caminschi, 

Lahoud, & Shortman, 2009; Poulin et al., 2012; Sancho et al., 2009; Schraml et al., 2013). A 

lineage-tracing mouse model for cDCs was, therefore, established by crossing Clec9acre mice 

to Rosa26-stopflox-enhanced yellow fluorescent protein (YFP). These mice faithfully trace cells 

that derive from CDPs. Additionally, pDCs are labelled due to their low-level DNGR-1 

expression with fluorescence. The Clec9acreRosaYFP mouse model does, however, not label 

cells of other hematopoietic lineages and is therefore highly specific (Schraml et al., 2013). By 

crossing Clec9acre mice to a ROSA26-LSL-DTR strain, conditional depletion of cDC1, as well 

as cDC2, is possible that is highly specific (van Blijswijk et al., 2014).  

What has to be considered when working conditional DC depletion models that rely on DTR 

expression and DT injection is that they have the disadvantage of showing reduced LN 

cellularity and DC frequency in mice expressing DTR without DT injection and therefore have 

to be used carefully (van Blijswijk et al., 2014). Furthermore, long-term DTR dependent DC 

depletion models cannot be used in chronic experiments due to the fact that mice develop 

antibodies against the DT, which lowers the depletion efficiency drastically (Rombouts et al., 

2017). 

What needs to be considered dealing with DC depletion models is that the depletion has 

effects on the homeostasis of other cells in the body as well, which can lead to secondary 

effects when analysing functional differences. Mice that have a depletion of all cDCs or even 
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only cDC1 have been reported to show increased spleen size as well as monocytosis and 

neutrophilia, which goes in hand with increased Flt3L levels (Birnberg et al., 2008; Finger 

Stadler et al., 2017; Hochweller et al., 2008; Jiao et al., 2014; Meredith et al., 2012; Rombouts 

et al., 2017; Sichien et al., 2016; Tittel et al., 2012; van Blijswijk et al., 2014). Therefore, DC 

depletion models are a useful means to study the function of DCs in general or of one subset 

specifically, however careful choice of the model in terms of specificity or inducibility as well 

as proper controls to avoid misinterpretation of results that derived from secondary effects are 

necessary. Furthermore, the development of more specific models will help to evolve a better 

understanding of the role of DCs in different immune responses. 
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2. AIM OF THE THESIS 

This study aimed to address the development of dendritic cells. For this purpose, the trafficking 

of DC progenitors was taken into focus. The signals that regulate the egress of pre-cDCs from 

the BM and their entry into peripheral tissues were to be identified. Furthermore, the existence 

of pre-commitment in pre-cDCs has led to the hypothesis that pre-committed subsets are 

differentially recruited to different tissues. Therefore, this study aimed to determine regulators 

for the BM egress of pre-cDCs and pre-committed pre-cDC subsets and their homing to 

peripheral tissues. This will improve the understanding of pre-cDC recruitment in steady-state 

and further enable a comparison of pre-cDC recruitment in inflammatory settings during 

emergency haematopoiesis. Differences in the recruitment of pre-cDCs in inflammation can 

be clinically relevant because knowledge about recruitment provides a tool to improve immune 

responses. 

In order to further study the function of DCs, Clec9acre mice were crossed to Rosa26-lox-

STOP-lox-DTA mice to gain a depletion model that specifically lacks DCs. Thereby it can be 

studied how immune responses differ in the absence of DCs. This thesis aimed to characterize 

the mouse model in terms of DC depletion but further found that a population of cells 

resembling cDC2 developed independent of DC progenitors in these mice. This has led to the 

hypothesis that different DC progenitors are differentially triggered in certain conditions of 

inflammation to generate a situation-adapted repertoire of cDCs and directed the study to 

further gain knowledge on the origin of these cells as well as on functional differences that 

elucidate their specific role in immunity. 
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3. MATERIALS AND METHODS 

3.1 ANIMAL HUSBANDRY 

C57BL/6J, OTII/Thy1.1, Clec9a-Cre, Rosa26-lox-STOP-lox-DTA, and Rosa26-lox-STOP-lox-

DTR mice were bred at ENVIGO, the core facility animal models in the Biomedical Center or 

at the Cancer Research UK in specific-pathogen-free conditions. All experiments were 

performed in accordance with national and institutional guidelines for animal care and were 

approved by the Regierung of Oberbayern or the Francis Crick Institute Animal Ethics 

Committee and the UK Home Office.  

3.2 GENOTYPING BY PCR 

To determine the genotype of transgenic lines (Clec9a-Cre, Rosa26-lox-STOP-lox-DTA, and 

Rosa26-lox-STOP-lox-DTR), mice were genotyped using polymerase chain reaction (PCR). 

Ear samples were taken from the mice and digested for 3h at 56°C and shaking at 300rpm in 

200μl quick lysis buffer (10mM TRIS, 150mM NaCl, 5mM EDTA, 0.05% tergitol NP40, pH 8.0) 

containing proteinase K (0.2mg/ml, Sigma). After the digestion, the samples were heat-

inactivated for 10min at 90°C and 350rpm. The solution was centrifuged at 12700rpm for 5min 

and 1ul of the supernatant was directly used as DNA input to the PCRs. The genotyping PCR 

for the Rosa26-lox-STOP-lox-DTA locus was performed according to the protocol Gt 

(Rosa)26Sortm1(EYFP)Cos provided from the Jackson Laboratory for the Rosa26-lox-STOP-lox-

EYFP locus. The genotyping PCR for the Rosa26-lox-STOP-lox-DTR locus was performed 

according to the protocol Gt (ROSA)26Sortm1sor STD provided from the Jackson laboratory. 

The genotyping PCR was performed using 0.5μΜ common and 0.25μΜ of each wild type and 

mutant primers Table 1 and run with the protocol shown in Table 2.  

Table 1: PCR primers 

PCR primers Sequence 5’-3’ 

Clec9a-Cre-BS49 Common  

   

AAA AGT TCC ACT TTC TGG ATG ATG A 

Clec9a-Cre-BS47 Wild type GGC TCT CTC CCC AGC ATC CAC A 

Clec9a-Cre-A65 Mutant TCA CTT ACT CCT CCA TGC TGA CG 

RosaDTA Common AAA GTC GCT CTG AGT TGT TAT 

RosaDTA Wild type GGA GCG GGA GAA ATG GAT ATG 

RosaDTA Mutant AAG ACC GCG AAG AGT TTG TC 

RosaDTR Common Forward AAA GTC GCT CTG AGT TGT TAT 

RosaDTR Wild type Reverse GGA GCG GGA GAA ATG GAT ATG 

RosaDTR Mutant Reverse AAT AGG AAC TTC GTC GAG C 



 Materials and Methods 

 25 

Table 2: PCR programs 

Cre and DTA  DTR 

Temperature time step  Temperature time step 

95 °C 3 min 1  94 °C 5 min 1 

95 °C 30 s 2  94 °C 30 s 2 

60 °C 30 s 3  61 °C 1 min 3 

72 °C 40 s 4 to 2 35 

cycles 

 72 °C 1 min 4 to 2 35 

cycles 

72 °C 10 min 5  72 °C 10 min 5 

4 °C end 6  4 °C end 6 

 

3.3 CELL ISOLATION FROM DIFFERENT TISSUES 

3.3.1 BONE MARROW 

Femurs, tibias, and ilia (optional) were isolated from mice and cleaned from muscle and 

connective tissue. For sterile cultures the bones were quickly washed in 70% ethanol and 

washed again with sterile FACS-Buffer (DPBS, Sigma; 1% fetal bovine serum, Sigma; 2.5mM 

EDTA, Invitrogen; 0.02% sodium azide, Sigma, 10% w/v stock; for culturing of cells, FACS 

buffer without sodium azide was used). Bones were cut open from both sides and flushed with 

FACS buffer into a 70μm cell strainer (Falcon). Red blood cells were lysed by incubation of 

the cell pellet in 2ml red blood cell lysis buffer (Sigma) followed by washing with FACS buffer 

and repeated filtering of the suspension (70μm). 

3.3.2 SPLEEN, THYMUS AND LYMPH NODES  

Spleen, thymus, and LNs were cut in small pieces and digested in 1ml RPMI (Gibco) 

containing 200U/ml collagenaseIV (Worthington) and 0.2 mg/ml DNaseI (Roche) for 30min at 

37°C shaking at 120rpm. The cell suspension was strained through a 70μm cell strainer and 

washed with FACS buffer. For cell isolation from spleen, erythrocytes were lysed as described 

for BM cells.  

3.3.3 LUNG AND KIDNEY 

Kidneys and lung were isolated from mice after perfusion of the heart with PBS in the left or 

right chamber, respectively. Organs were cut in small pieces and digested in 2ml RPMI (Gibco) 

containing 200U/ml collagenaseIV (Worthington) and 0.2 mg/ml DNaseI (Roche) for 1h at 

37°C shaking at 120rpm. The cell suspension was strained through a 70μm cell strainer and 

washed with FACS buffer. The cell pellet was resuspended in 4ml of a 70% percoll solution 

overlaid by 4ml of a 37% percoll solution and again overlaid by 1ml of a 30% percoll solution 



 Materials and Methods 

 26 

in a 15ml falcon tube. By centrifugation of the cells in this gradient at 2000rpm for 30min at 

room temperature without brakes leukocytes were enriched at the 70%-37% interphase. 

Percoll solutions were diluted from 100% percoll (GE Healthcare mixed 9:10 with 10x PBS) 

with PBS (37%) or HBSS (70% and 30%). After the centrifugation, the cells were collected at 

the 70%-37% interphase. 

3.3.4 SMALL INTESTINE AND COLON 

After removing the gut from the mouse, the fat, connective tissue and payer’s patches were 

removed. The colon or small intestine were cut open longitudinally and the feces as well as 

the mucosa were removed in ice-cold PBS. 1cm long pieces were incubated for 20min in 

complete medium (RPMI (Gibco), 1% L-Glutamine (Sigma), 1% penicillin-streptomycin 

(Sigma), 1% sodium pyruvate (Sigma), 1% non-essential amino acids (Sigma), 50μM β-

mercaptoethanol (Gibco)) additionally supplemented with 25mM HEPES (Gibco), 3% FCS, 

5mM EDTA and 0.145mg/ml dithiothreitol (DTT, Roche) shaking at 180rpm. The pieces were 

then strained through a fine-meshed kitchen strainer and washed 3 times with 10ml serum-

free medium containing 25mM HEPES and 2mM EDTA by repeated shaking on a vortex for 

30sec and straining. Tissue pieces were then cut in small pieces and digested in 10ml serum 

free medium containing 200U/ml collagenaseIV (Worthington) and 0.2 mg/ml DNaseI (Roche) 

for 1h at 37°C shaking at 180rpm. After the digestion, the cell suspension was strained though 

a 70μm cell strainer and washed with ice-cold FACS buffer. Leukocytes were enriched using 

a percoll gradient as described above. 

3.3.5 SKIN 

For isolation of leukocytes from the skin, ears were cut from the mice, cartilage was removed, 

ears were weighed and split into dorsal and ventral halves. Each half was incubated floating 

on 1ml PBS containing 2U/ml dispaseII (Gibco) in a 24 well plate (Falcon) for 1-1.5h at 37°C. 

After the digestion, the ears were flattened on a petri dish with the epidermal side to the plate 

and the dermis was carefully separated from the epidermis using forceps. Dermis and 

epidermis were then separately cut in small pieces and digested in 2ml RPMI containing 

200U/ml collagenaseIV (Worthington) and 0.2 mg/ml DNaseI (Roche) for 1h at 37°C while 

shaking at 120rpm. After the digestion, the cell suspension was strained through a 70μm cell 

strainer and washed with ice-cold FACS buffer. Leukocytes were enriched using a percoll 

gradient as described above. 

3.4 FLOW CYTOMETRY 

For cell surface staining, the single-cell suspensions were incubated with Fc-Block (purified 

CD16/32 Antibody in FACS buffer at 1:300 dilution) for 10min at 4°C. After this blocking step 
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a 2x antibody cocktail was added to the cell suspension, carefully mixed and incubated for 20 

min at 4°C. The cell suspension was washed twice and resuspended in FACS buffer for 

analysis. For CCR7 staining, the cells were stained at 37°C for 45min. To exclude dead cells 

for the analysis, either DAPI was added at 0.25μg/ml final just before the acquisition or the 

cells were stained with a Fixable Viability Dye eFluor™ 780 (Thermo Fisher Scientific) or 

Zombie UV dye (Biolegend) according to the manufacturer’s instructions. For the staining of 

apoptotic cells, surface stained cells were washed one additional time and resuspended in 

complete Medium with 10%FCS. 10min prior to acquisition 10μl annexin staining buffer was 

added to the sample (complete Medium with 0.5μg/ml annexin and 0.1M CaCl2).  

For intracellular cytokine staining, after extracellular surface staining, cells were fixed with 2% 

paraformaldehyde for 15 min at room temperature and subsequently washed in 0.05% 

saponin in PBS. The antibody mix against cytokines was prepared in 0.5% saponin and cells 

were stained with this for 20min. Cells were washed once with 0.05% saponin, once with 

FACS buffer and resuspended in FACS buffer for analysis. For intranuclear staining of IRF4 

and IRF8, the FOXp3 transcription factor staining set (eBioscience-00-5523-00) was used 

according to the manufacturer’s instruction and for intranuclear staining of Zbtb46 the 

transcription factor buffer from BDBioscience-562574 was used. Multiparameter analysis was 

performed at a BD Fortessa analyser (BD Biosciences) and analysed with FlowJo software 

(Tree Star Inc.). Cell sorting was performed at a BD Aria III Fusion or BD Aria III. 

3.5 CELL ENRICHMENT 

3.5.1 POSITIVE ENRICHMENT 

CD11c+ cells were enriched from splenic cell suspensions by magnetic separation using 

magnetic beads and LS columns from Miltenyi Biotec. CD135+ cells were enriched using anti-

biotin microbeads and LS-columns (Miltenyi Biotech) after staining the cells from different 

tissues with biotinylated anti-CD135 antibody. 

3.5.2 LIN DEPLETION 

For isolation of DC progenitors, BM cells were isolated as described above and stained with 

FITC conjugated antibodies against CD4, CD8, CD16/32, CD11b, B220, MHCII, Ter119, 

NK1.1. Lineage positive cells were then depleted by magnetic separation using anti-FITC 

microbeads on LD-columns (Miltenyi Biotech). Lineage depleted cells were sorted as follows: 

pre-cDC (Lin-, CD11c+, CD172aint), MDP (Lin-, CD11c-, CD115+, CD135+, CD117hi), CDP (Lin-

, CD11c-, CD115+, CD135+, CD117lo-int). For the isolation of CD4+ T-cells, splenocytes and 

cells isolated from LNs by simply straining them through a 70μm cell strainer (Falcon) were 

enriched by Lineage depletion using FITC conjugated CD8, CD16/32, B220, MHCII, CD11c, 
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CD11b, NK1.1, and anti-FITC magnetic beads. Lineage positive cells were then depleted by 

magnetic separation using anti-FITC microbeads on LD-columns (Miltenyi Biotech). 

 

3.6  CYTOSPINS AND HEMACOLOR STAINING 

CD11c+ cells were isolated from splenic single-cell suspensions using magnetic enrichment 

(Miltenyi Biotech), and sorted for live, single cells, F4/80lo, CD64-, CD11c+ MHCII+ CD11b+, 

CD172a+. 20 000 cells were spun on a microscope slide in a Shandon Cytospin 2 for 3min at 

8000rpm and stained with Hemacolor® rapid staining kit (Merck). 

3.7 MULTIPLEX QUANTITATIVE PCR USING FLUIDIGM 

RNA was extracted from sort purified populations using the Qiagen micro Pus RNeasy kit, 

according to the manufacturer’s instructions. RNA was transcribed into cDNA using the 

SupersciptIII (Invitrogen) kit and random primers (Company). Primer mixes (Delta Gene 

Assays) for 96 targets were purchased from Fluidigm. The cDNA was pre-amplified using a 

mix of all delta gene assays according to the manufacturer’s instruction (Fluidigm PN 100-

5875 C1). The gene expression analysis on the pre-amplified samples was performed in a 

96.96 IFC from Fluidigm that measures the expression of up to 96 targets in up to 96 samples 

in a Biomark HD according to the manufacturer’s instructions (Fluidigm PN 100-9792 B1). Q-

PCR results were calculated using the delta-delta Ct method and GAPDH was used as a 

housekeeping gene. Targets that did not show expression in all analysed pre-cDC populations 

were excluded from the analysis and potential targets were imported in a heatmap showing 

relative expression in all samples scaled per target.  

3.8 IN VITRO DENDRITIC CELL MIGRATION THROUGH TRANSWELLS 

DC migration assays in Transwells were performed adapted to previously published assays 

for BMDCs (Stutte et al., 2010; Williams, Morris, Rush, & Ketheesan, 2014). The in vitro 

migration assay was performed using 24-well Transwell® inlets (Corning®, CLS3421-48EA) 

with polycarbonate filters with 5μm pore size. The transwells were preincubated with the 

chemokine in 600ul complete medium in the lower well at 37°C, 5% CO2 in a humidified 

incubator 1h before seeding the upper well. As chemokines CCL2 (indicated concentrations, 

R&D Systems), CCL19 (100ng/ml, PeproTech), CCL21 (100ng/ml, PeproTech) or CXCL12 

(200ng/ml, R&D Systems) were used. Complete medium without chemokine served as the 

negative control. 105 total BM cells or CD11c enriched splenocytes as described above were 

seeded in 100μl complete medium to the inlet of the transwell and incubated at 37°C, 5% CO2 

in a humidified incubator for 2h. Optionally CD11c enriched splenocytes were stimulated with 

LPS (200ng/ml, Enzo) for 18h prior to seeding them in the transwell. After the incubation, the 
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inlets were removed and the cells that have migrated to the lower well were harvested, stained 

and quantified using flow cytometric analyses and CountBright™ Absolute Counting Beads 

(Thermo Fisher Scientific). For the calculation, the absolute count of a population that was 

harvested from the lower well was divided by the input count of the respective population 

giving the percentage of migrated cells for the indicated population.  

3.9 EAR EXPLANT ASSAY 

The ears were removed from the mouse, cartilage was removed, and the ears were weighed. 

Then the ears were soaked in 70% ethanol and air-dried under sterile conditions for 10min. 

After drying the ears were separated into dorsal and ventral halved and incubated in a 24 well 

plate with the dermal side sown on 1ml complete medium with 10% FCS for 2h at 37°C 5% 

CO2 and then transferred to a 24 well plate with 1ml complete medium with 10% FCS with or 

without CCL19 (100ng/ml, PeproTech). The ears were incubated for 24h at 37°C and 5% CO2 

(Henri et al., 2001). After the incubation, the ears were removed from the Medium and the 

cells that have migrated to the medium were harvested, stained for flow cytometric analyses 

and counted using CountBright™ Absolute Counting Beads (Thermo Fisher Scientific). 

3.10  CELL CULTURE 

3.10.1 FLT3L CULTURES 

Cells were seeded together with CD45.1 filler BM in 48 well plates and incubated at 37°C, 5% 

CO2 for 7 days in RPMI (Biochrome), 10% fetal calf serum, 1% penicillin/ streptomycin, 1% 

non-essential amino acids, 1% sodium pyruvate, 1% L-Glutamine, 50μΜ β-mercaptoethanol 

and stimulated with 50ng/ml Flt3L from the cell culture supernatant of CHO-Flt3L-Flag cell 

line. 

Total bone marrow cells or sorted cells were seeded (optional together with CD45.1 filler BM) 

in 48 well plates and incubated at 37°C, 5% CO2 for 7 days in RPMI (Biochrome), 10% fetal 

calf serum, 1% penicillin/ streptomycin, 1% non-essential amino acids, 1% sodium pyruvate, 

1% L-Glutamine, 50μM β-mercaptoethanol and stimulated with 50ng/ml from the cell culture 

supernatant of CHO-Flt3L-Flag cell line.  

3.10.2 GM-CSF CULTURES 

For GM-CSF only cultures a concentration of 10ng/ml GM-CSF (PeproTech) was used. 1.5 x 

105 cells were seeded in one well of a 48 well plate in a total volume of 300μl. On day 2 half 

of the medium was removed and exchanged with fresh medium containing 20ng/ml GM-CSF. 

On day3 the complete medium was exchanged with medium containing 10ng/ml GM-CSF. On 

day 6 cells were harvested by pipetting and washing with PBS (Helft et al., 2015). 
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3.11 ELISAS AND CYTOKINE BEAD ASSAY  

For Fms-like tyrosine kinase 3 ligand (Flt3L) ELISA the duoSet mFlt3L (DY427) from R&D 

Systems was used according to the manufacturer’s recommendations. Briefly, flat bottom 96 

microwell plates (Microlon®, HighBinding, Greiner Bio-One) were coated with 0.4μg/ml 

capture antibody in 0.2M sodium phosphate buffer overnight, washed with PBS 0.05% 

Tween20, blocked with PBS 10%FCS, incubated in 0.2μg/ml detection antibody and 

streptavidin HRP (1:200). Peroxidase substrate reaction was performed with ABTS buffer and 

substrate system (Sigma-Aldrich, 11204530001, 11204521001). The absorbance at 450nm 

was measured at the Microplate reader (Tecan Spark 10M). The concentration was calculated 

using a standard curve. G-CSF ELISA was performed with the Quantikine® ELISA kit from 

R&D Systems following the manufacturer’s instructions 

3.12 DIPHTHERIA TOXIN (DT) MEDIATED CELL ABLATION IN 

CLEC9ACRE/DTRROSADTR MICE 

Clec9acre/creRosaDTR mice were injected with 25ng per gram body weight diphtheria toxin (DT) 

(SIGMA) intraperitoneally (i.p.). 24h after the injection the spleens were harvested and 

analysed using flow cytometry.  

3.13 IN VITRO CYTOKINE PRODUCTION  

Splenocytes were enriched for CD11c+ cells as described above. 105 cells were seeded in a 

round bottom plate (Sarstedt) and stimulated with either LPS (100ng/ml, R151-E.coli, Sigma 

of CpG (0.5ng/ml, CpG 1668, Sigma). The cells were incubated at 37°C 1ith 5% CO2 in a 

humid atmosphere for 2h. Then, brefeldin A (5μg/ml, Biolegend) was added and the cells were 

incubated for another 4h. Cells were harvested and stained intracellular for cytokine 

production as described above. 

3.14 POLYMERASE CHAIN REACTION FOR DJ-REARRANGEMENTS OF THE 

HEAVY CHAIN LOCUS 

Genomic DNA was isolated from sort purified populations that were digested for 2h with 

proteinase K (0.2mg/ml, Sigma, in lysis buffer containing 0.5M Tris-HCl, 0.5M EDTA, 5M NaCl, 

20% SDS) by phenol-chloroform extraction. Two different approaches were used for the PCR 

for the IgH locus. One PCR approach targets the Dfl16 and Dsp2 D gene families. This PCR 

was split into two reactions for Germline (J3 & Mu0) and DJ-rearrangement (DH L & J3) with 

20ng input DNA each (Schlissel et al., 1991).  

DHL-GGAATTCG(AorC)TTTTTGT(CorG)AAGGGATCTACTACTGTG;  

Mu0-CCGCATGCCAAGGCTAGCCTGAAAGATTACC;  
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J3-GTCTAGATTCTCACAAGAGTCCGATAGACCCTGG.  

The alternative PCR approach to assess DJ-rearrangements targets the DHQ52 element. The 

following primers were used for two sequential PCRs as previously described (Bar-On et al., 

2010). 

PCR-1:  DHQ52-1-CACAGAGAATTCTCCATAGTTGATAGCTCAG; 

DHQ52-2GCCTCAGAATTCCTGTGGTC TCTGACTGGT;  

PCR-2:  JH4-1-AGGCTCTGAGATCCCTAG ACAG;  

JH4-2- GGGTCTAGACTCTCAGCCGGCTCCCTCAGGG  

3.15 MICROSCOPIC ANALYSIS OF IN VITRO CHEMOTACTIC MIGRATION OF 

DENDRITIC CELLS 

In vitro chemotactic migration was adapted from the protocol published by Michael Sixt and 

Tim Lämmermann (Sixt & Lämmermann, 2011). Here, however, DC2 were sort purified from 

CD11c enriched splenocytes as CD64-CD11c+MHCII+CD11b+CD24- cells and cultured in 

complete medium with and without LPS (200ng/ml, Enzo) and GM-CSF (20ng/ml; PeproTech) 

for 18h at 37°C in 5% CO2 to activate the cells. The cells were then resuspended in bovine 

collagen (Purecol, final concentration 1.67%; Advanced Biomatrix) and seeded into prepared 

migration chambers in a 6 well cell culture plate to image 6 conditions simultaneously. After 

the collagen matrix was polymerized, CCL19 (100ng/ml, PeproTech) was added on top of the 

gel to form a gradient. Images were taken in brightfield at an inverted motorized live-cell 

fluorescence microscope (Leica DMi8) at 37°C every minute for 5h. The analysis was 

performed using FIJI (ImageJ) software and manual tracking. 

3.16  IMMUNOFLUORESCENCE STAINING OF LYMPH NODES 

Mouse lymph nodes were carefully isolated from the mice and snap-frozen in OCT on dry ice. 

12μm thin sections were cut at a cryostat at -20°C (Leica CM3050S), rehydrated in PBS for 

5min, then fixed in ice-cold acetone for 5min and washed again in PBS for 5min. The tissue 

was circled with a Hydrophobic barrier PAP pen (Kisker Biotech GmbH) and blocked for 1h at 

RT with 100ul blocking solution (PBS 10% goat serum). After blocking the buffer was removed 

by tilting the slide and the tissue was stained with 100μl antibody staining mix in blocking 

buffer for 2h at RT in a humidified staining chamber in the dark. After the staining the slides 

were washed 3 times for 5min in PBS and the sections were stained with a secondary antibody 

with an analogous procedure if necessary. Finally, the tissue was mounted with ProLong™ 

Diamond Antifade Mountant (Thermo Fisher Scientific) at RT for 24h and stored at 4°C until 

imaging. LNs were imaged with a Leica SP8X WLL microscope, equipped with 405nm laser, 

WLL2 laser (470 - 670nm) and acusto-optical beam splitter. Tile scans were acquired with a 
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20x0.75 objective and signal was recorded with hybrid photodetectors. The following channels 

were used: BV421 (excitation 405nm; emission 415-470nm), AF488/GFP (500; 510-542), 

AF594 (592; 605-640) and AF647 (646; 656-718). Recording was done sequentially to avoid 

bleed-through and finished tile-scans were merged in LAS X (Leica, version 3.4.1.17670). 

3.17 STATISTICAL ANALYSES 

Statistical analyses were performed using PRISM software (TreeStarInc.) Statistical 

significance was assessed by unpaired student’s t-test with a value of p < 0.05 considered to 

be statistically significant.  

3.18 TABLE OF ANTIBODIES 

 

ANTIGEN CLONE CONJUGATE COMPANY 

CD3 145-2C11 Pacific Blue (PB), Fluorescein 

isothiocyanate (FITC), Brilliant violet 

421 (BV421) 

Biolegend 

CD4 RM4-5 PB Biolegend 

CD4 GK1.5 FITC Biolegend 

CD8 53-6.8 FITC, PB, BV605 eBioscience 

CD11b M1/70 FITC, PB, Allophycocyanin-Cyanine7 

(APC-Cy7) 

Biolegend 

CD11b M1/70 Brilliant Ultraviolet 737 (BUV737) BD-Bioscience 

CD11C N418 Peridinin-chlorophyll- protein 
complex Cyanine5.5 (PerCpCy5.5), 
APC/Cy7, BV785 

Biolegend 

CD16/32 2.4G2 Purified (Fc-Block) BD-Bioscience 

CD16/32 93 FITC Biolegend 

CD19 ID3 Phycoerythrin (PE), PB BD-Bioscience 

CD24 M1/69 BV605, BV510 Biolegend 

CD25 3C7 PE Biolegend 

CD40 3/23 BV421 BD-Bioscience 

CD43 1B11 PeCy7 Biolegend 

CD45.1 A20 PB Biolegend 

CD45.2 104 Phycoerythrin-Cyanine7 (Pe-Cy7) Biolegend 

CD45.2 104 AF700 eBioscience 

B220 (CD45R) RA3-6B2 FITC, PE, PB Biolegend 

CD64  X54-5/7.1 PE, Pe-Cy7, APC Biolegend 
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CD86 GL-1 BV605 Biolegend 

CD90.2 

(Thy1.1) 

OX-7 APC-Cy7 Biolegend 

CD103 2E7 PE eBioscience 

CD103 M290 BUV395 BD-Bioscience 

CD115 AFS98 BV605, APC Biolegend 

CD117 2B8 PerCpCy5.5, Pe-Cy7 Biolegend 

CD135 A2F10 PE, APC, purified Biolegend 

NK1.1 

(CD161c) 

PK136 PB, FITC Biolegend 

CD172A P84 Pe-Cy7, APC, PerCP-Cy5.5 Biolegend 

CD197 (CCR7) 4B12 PE Biolegend 

CD205 NLDC-145 APC Biolegend 

DNGR-1 

(CD370) 

1F6 PE Custom 

conjugated 

anti-RAT Poly4054 AF594 Biolegend 

CCR7 (CD197) 4B12 PE Biolegend 

CLEC4A4 33D1 Purified, APC Biolegend 

EPCAM G8.8 AF647, AF594 Biolegend 

ESAM 1G8 APC Biolegend 

F4/80 BM8 AF647, APC Biolegend 

IFNγ XMG1.2 APC eBioscience 

IL7R/CD127 SB/199 BUV737 eBioscience 

IL-12/IL-23 p40 C15.6 PeCy7 Biolegend 

IRF4 M-17 purified Santa Cruz 

IRF8 V3GYXCH PE eBioscience 

ISOTYPE RAT 

IgG2a, κ 

RTK2758 PE, BV421, BV605 Biolegend 

LY6C HK1.4 AF700, PB, BV421, PerCPCy5.5, FITC Biolegend 

LY6G 1A8 FITC AF700 Biolegend 

anti-mMer 

(MerTK) 

polyclonal Biotinylated R&D Systems 

MHCII I-A/I-E M5/114.15.2 AF700, BV421, aF488 Biolegend 

SCA-1 (LY-

6A/E) 

D7 PE eBioscience 

SiglecH 551 PerCPCy5.5 Biolegend 
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SiglecH eBio440 eF660 eBioscience 

STREPTAVIDI

N 

- PE, APC Biolegend 

TER119 Ter119 PB, FITC Biolegend 

TNFΑ MP6-XT22 PE Biolegend 

ZBTB46 U4-1374 PE BD Pharmingen 
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4. RESULTS 

4.1  IDENTIFICATION OF POTENTIAL REGULATORS FOR TRAFFICKING OF 

DENDRITIC CELL PROGENITORS IN STEADY-STATE 

4.1.1 ANALYSES ON PRE-CDC SUBSET DISTRIBUTION IN THE TISSUES REVEALS 

NO DIRECT CORRELATION WITH DENDRITIC CELL SUBSETS 

The aim of this study was to identify which factors are relevant for the trafficking of pre-cDCs. 

With regard to recent publications showing pre-committed DC subpopulations in the BM, it 

became interesting to investigate if pre-committed precursors are differentially recruited to the 

peripheral tissues (Grajales-Reyes et al., 2015; Schlitzer et al., 2015). For this purpose, pre-

cDCs were identified in lymphoid and non-lymphoid organs using multicolour flow cytometric 

analyses and the pre-committed subsets were identified based on the expression of the 

surface markers Ly6C and SiglecH as (Schlitzer et al., 2015). The pre-cDCs were further 

distinguished in Ly6C-SiglecH+ pre-DC, which are most unrestricted and have been shown to 

have both cDC and pDC potential, Ly6C+SiglecH+ pre-cDCs, which are restricted to the cDC 

lineage, Ly6C+SiglecH+ pre-cDC2 and Ly6C+SiglecH- pre-cDC1 (Schlitzer et al., 2015). To be 

able to investigate tissue-specific differences in recruitment, lymphoid as well as non-lymphoid 

organs were analysed. As lymphoid organs, the spleen, mesenteric LN (mLN) and thymus 

were chosen due to their well-investigated DC populations. Kidney, lung and lamina propria 

of the small intestine were chosen for non-lymphoid organs due to their differential but defined 

DC subset distribution. As reference population, cDCs were gated in the spleen as depicted 

in Figure 6 A. For all flow cytometric analyses on spleen, leukocytes were first defined by size 

and granularity, then doublets were gated out and the following gate restricts the cell 

population on living cells by excluding dead cells. DCs are further identified as CD11c+MHCII+ 

cells that were lacking the monocyte marker CD64 and are not auto-fluorescent (Figure 6, A). 

DC subsets are furthermore defined as CD24+CD11b- cDC1 and CD24-CD11b+ cDC2 (Figure 

6, A). Splenic pre-cDCs were identified as lineage- (Lin, CD3, CD4, CD8, Ter119, NK1.1, 

B220), CD11blowCD11c+MHCII-CD43+CD135+CD172aint cells. The gating strategy for BM pre-

cDCs is very similar but does not gate on CD43. Figure 6 B and C show the representative 

gating on BM and spleen respectively. In the non-lymphoid organs, kidney, small intestine and 

lung, pre-cDCs were identified by gating on CD45+ cells first and then lineage- (Lin, CD3, CD4, 

CD8, Ter119, NK1.1, B220), CD11blowCD11c+MHCII-CD135+CD172aint cells. The 

identification of pre-committed pre-cDCs in the published organs BM, blood, and spleen could 

be largely reproduced, but the frequency of the Ly6C-SiglecH- pre-cDC1 population was 

diminished in comparison to published data (Schlitzer et al., 2015). 
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To understand the differences in pre-cDC subset distribution in comparison to published data, 

further analyses to improve the gating strategy led to the conclusion that a more inclusive 

gating on cells with an intermediate expression of MHCII increases the frequency of the pre-

cDC1 gate, as also shown by (Grajales-Reyes et al., 2015), but also increases the risk of 

including differentiated DCs. Therefore, a strict gating on MHCII negative cells remained the 

basis of the pre-cDC identification in the various tissues. Finally, cells that share the marker 

expression of pre-cDCs were identified in the thymus, lung, and mesenteric lymph node but 

also in the kidney, and lamina propria of the small intestine. Furthermore, the pre-committed 

subsets were identified based on Ly6C and SiglecH expression. To find a correlation between 

the pre-committed pre-cDC subsets and the differentiated DC subsets in the peripheral organs 

the subset distribution in was compared to published ratios of DC subset distribution and is 

shown here in representative plots (Figure 7). DCs were identified as in Figure 6, A. The DC 

subsets were identified based on the surface markers CD24 and CD11b as CD24+CD11b- 

cDC1 and CD11b+CD24- cDC2 or based on the expression of CD103 and CD11b in the small 

intestine as CD103+CD11b- cDC1, CD103+CD11b+ double-positive cDC2, and CD103-CD11b+ 

single positive cDC2. (Figure 7, A). As it has also been published, DC subset distribution 

shows a predominance of the cDC2 in all organs except the thymus (Pakalniškytė & Schraml, 

Figure 6: Representative gating strategy of DCs and their precursors. A. representative gating of DCs in the 
spleen. B+C. representative gating of pre-cDCs in the spleen (B) and BM (C) with further dividing in pre-committed 
subsets by gating on SiglecH and Ly6C. D. representative gating of MDP and CDP in the BM of wildtype mice. 
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2017). The pre-cDC subset distribution in the thymus, however, shows a predominance of the 

pre-cDC2 whereas it shows an equal distribution of pre-cDC1 and pre-cDC2 in the kidney, 

which does not reflect the DC subset distribution in the respective tissue (Figure 7). These 

analyses suggest that the DC network is generated by the tissue microenvironment and not 

by differential recruitment of the progenitor. 

4.1.2 MULTIPLEX QPCR SCREEN FOR MIGRATION-RELATED RECEPTORS 

REVEALS 39 TRAFFICKING RECEPTORS TO BE EXPRESSED ON PRE-CDCS IN 

PERIPHERAL TISSUES 

To identify migration-related receptors that are important for the trafficking of bulk pre-cDCs 

to different peripheral organs, a quantitative real-time PCR based method was employed. 

Fluidigm provides the technology that facilitates the screening of 96 targets against 96 

samples by running a 96x96 delta gene plate in one run on a Biomark machine. This method 

has the advantage of a high throughput screening with a low amount of input RNA. For the 96 

target genes, a list of migration related-receptors was created including chemokine receptors, 

IL-receptors, integrin chains, and intracellular adhesion molecules as well as control genes for 

sort precision and normalization (Table 3). 

  

Figure 7: DC and pre-cDC subset distribution across lymphoid and non-lymphoid organs. A. DC subset 
distribution of CD24+CD11b- cDC1 and CD11b+CD24- cDC2 in the spleen, thymus, mLN and kidney of wildtype 
mice after pre-gating on live, CD11c+MHCII+CD64- cells (CD45+ cells in the kidney and small intestine). In the small 
intestine, DCs were subset into CD103+CD11b- cDC1, CD103+CD11b+ double positive cDC2 and CD103-CD11b+ 
single positive cDC2. B. pre-cDCs were identified in the indicated populations as live, Lin-(CD3, CD4, CD8, Ter119, 
NK1.1, B220) CD11c+MHCII-CD172aintCD135+ cells and further pre-committed subsets were identified by Ly6C 

and SiglecH expression. Shown are representative plots. 
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Table 3 List of target migration related receptors 

Ccr1 Cxcr6 Il2ra Notch2 ITGA6 ITGB4 

Ccr1l1 Cx3cr1 Il2rb Id2 ITGA7 ITGB5 

Ccr2 Aplnr Il2rg TCF4 ITGA8 ITGB6 

Ccr3 Cmklr1 Il4ra Zeb2 ITGA9 ITGB7 

Ccr4 Csf1r Il5ra IRF8 ITGA10 ITGB8 

Ccr5 Csf2ra Il6ra IRF4 ITGA11 SELL 

Ccr6 Csf3r Il6st Batf3 ITGAD SELP 

Ccr7 Tnfrsf1a Il18r1 Klf4 ITGAE SELPLG 

Ccr8 Tnfrsf1b Il9r SiglecH ITGAL ICAM-3 

Ccr9 Trem1 Il10ra Ly6C ITGAM ICAM-1 

Ccr10 Xcr1 Il10rb GAPDH ITGAV ICAM-2 

Cxcr1 GPR1 Il13 ITGA1 ITGA2B ICAM4 

Cxcr2 Il1r1 Il13ra1 ITGA2 ITGAX ICAM5 

Cxcr3 Il1r2 Il15ra ITGA3 ITGB1 PECAM-1 

Cxcr4 Il1rapl2 Il21r ITGA4 ITGB2 GPR183 

Cxcr5 Il1rapl1 Sigirr ITGA5 ITGB3 CDH1 

 

For this screening, pre-cDCs were sorted from BM, spleen, mLN, thymus, and lung to cover 

both lymphoid and non-lymphoid organs and to gain sufficient yield of pre-cDCs to isolate 

RNA. As also in the chosen organs the frequency of pre-cDCs is very low (Table 4) an 

enrichment technique was established based on magnetic enrichment of CD135 positive cells 

using biotinylated CD135 antibody and anti-biotin beads, which gave better results than 

gradient-based enrichment techniques as well as a lineage depletion approach and CD11c 

enrichment.  
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Figure 8: Sort purity of bone marrow DC progenitors. BM cells were stained with biotinylated CD135 antibody 
and enriched using anti-biotin beads and magnetic separation. The first row shows the gating strategy to sort 
lineage- (Lin, CD3, CD4, CD8, Ter119, NK1.1, B220), CD11blowCD11c+MHCII-CD135+CD172aint pre-cDCs, 
lineage- (Lin, CD3, CD4, CD8, Ter119, NK1.1, B220), CD11blowCD11c-MHCII-CD115+CD135+CD117hi MDPs and 
lineage- (Lin, CD3, CD4, CD8, Ter119, NK1.1, B220), CD11blowCD11c-MHCII-CD115+CD135+CD117low CDPs. The 
following rows show samples of sorted pre-cDCs, MDPs and CDPs, respectively. 

Table 4 pre-cDC sorts from selected lymphoid and non-lymphoid organs 

Cell type Organ Sorted 

cells 

Frequency of pre-cDCs 

among living cells 

MDP 

 

BM 3563 0.19% 

 3395 

4705 

CDP 

 

18505 0.42% 

22751 

26075 

Pre-cDC 

 

30014 0.07% 

31934 

44750 

Spleen 14164 0.02% 

14465 

11160 

mLN 1055 0.012% 
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1671 

3380 

Thymus 2368 0.001% 

3782 

4179 

lung 2352 0.31% 

(of leukocytes) 3787 

4750 

 

Pre-cDCs from BM, spleen, thymus, mLN, and lung were sorted in biological triplicates from 

steady-state wildtype mice (Table 4). In addition, earlier progenitors namely MDPs and CDPs 

were sorted from the BM to compare expression levels of trafficking receptors between 

migratory and non-migratory stages of DC development. The purity of the sort was controlled 

by flow cytometry on the sorted sample and is exemplified on the sort of BM progenitors in 

Figure 8. The qPCR screen revealed 39 candidate trafficking receptors that were detectable 

in pre-cDCs from all tissues (Figure 9). Out of this list, most receptors are higher expressed 

in the peripheral organs compared to the progenitors that have not emigrated from the BM 

yet. 

Figure 9: Candidate receptors for pre-cDC migration. Expression of chemotactic receptors on DC progenitors 
from different tissues. Pre-cDCs, CDPs (lin-B220-CD11c-MHCII-CD11b-CD135+CD115+CD117low-int) and MDPs 
(lin-B220-CD11c-MHCII-CD11b-CD135+CD115+CD117hi) were sorted from indicated tissues. Expression of the 
indicated receptors was quantified by real time PCR using Fluidigm technology, normalized to GAPDH and scaled 
per target. Heatmap shows relative expression of receptors with detectable expression in pre-cDC. 
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4.1.3 IN VITRO MIGRATION OF PRE-CDCS IN TRANSWELL ASSAY AS A BASIC TOOL 

FOR THE VERIFICATION OF RELEVANCE FOR TRAFFICKING RECEPTORS IN 

PRE-CDC MIGRATION 

A further step to verify the influence of the identified candidate receptors is to access their 

relevance on pre-cDC migration in vitro. For this purpose, an in vitro migration experiment for 

pre-cDC migration, which is based on the CCR2-CCL2 axis that, had been published before 

has been successfully reproduced (H. Nakano et al., 2017; Figure 10). This assay can further 

be used to validate the influence of the candidate receptors on pre-cDC migration by 

manipulating them or by analysing differential migration of pre-cDCs from different tissues.  

4.2 CLEC9A-MEDIATED ABLATION OF CONVENTIONAL DENDRITIC CELLS 

SUGGESTS A LYMPHOID PATH TO GENERATING DENDRITIC CELLS IN VIVO 

4.2.2 MYELOPROLIFERATION IN CLEC9ACRE/CREROSADTA MICE 

Clec9acre/creRosaDTA mice were generated to serve as a mouse model to specifically deplete 

DCs. Available DC depletion models are not specific to the cDCs but also deplete other cells 

that express CD11c, such as monocyte-derived DCs and macrophages (CD11c-DTR 

(Rombouts et al., 2017). Here, Clec9acre mice were crossed to Rosa26-STOP-floxed-

Figure 10: CCL2 induced migration of bone marrow pre-cDCs. 1x105 total bone marrow cells were seeded to 

the 5μm pore size transwell inlets which have been preincubated with indicated concentrations of CCL2. After two 

hours, migrated cells were harvested from the lower well and pre-cDCs were quantified by flow cytometry (n=3).  

 

Figure 11: Clec9acre/creRosaDTA 

mice show splenomegaly. Total 
number of leukocytes in the spleen 
of Clec9acre/creRosaDTA and control 
mice is shown. Each symbol 
represents one mouse; n=13, **p < 
0.01 
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diphtheria toxin (DT) mice (Clec9aCreRosaDTA) with the aim to deplete all cells deriving from 

CDPs as they are the first progenitor with Clec9a expression (Schraml et al., 2013). In this 

study, most experiments were performed on mice that were homozygous for the cre locus as 

it has been published that homozygosity increases the cre mediated recombination but does 

not affect the specificity in the reporter mice Clec9acreRosaEYFP experiments, in which mice 

with different genotypes were used, are explicitly marked (Schraml et al., 2013). As 

comparisons throughout the experiments, littermate control mice were used that had either 

only Clec9acre or RosaDTA or that were wildtype in both loci. For the shown analyses, adult 

mice between the age of 8 and 17 weeks were used. 

 

Figure 12: Clec9acre/creRosaDTA mice exhibit neutrophilia and monocytosis. A. representative gating strategy 
for the flow cytometric identification of neutrophils and monocytes in the spleen of Clec9acre/creRosaDTA and control 
mice neutrophils were identified among live cells by the marker expression of Ly6G and CD11b and monocytes 
were identified as Ly6G-Ly6C+CD11b+ cells. B. neutrophils and monocytes were quantified in the spleens of 
Clec9acre/creRosaDTA and control mice. Each symbol represents one mouse; n=7; ns: not significant; * p<0.05; ** 
p< 0.01. 
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In existing DC depletion models it has been shown that these mice develop a systemic 

neutrophilia and monocytosis (Birnberg et al., 2008; Finger Stadler et al., 2017; Hochweller et 

al., 2008; Jiao et al., 2014; Meredith et al., 2012; Rombouts et al., 2017; Sichien et al., 2016; 

Tittel et al., 2012; van Blijswijk et al., 2014). One symptom caused by myeloproliferation is an 

increased spleen. Figure 11 shows that, indeed, the total cellularity of the spleen is increased 

in Clec9acre/creRosaDTA mice compared to control mice. Specifically, neutrophilia and 

monocytosis can also be found in Clec9acre/creRosaDTA mice by an increase of neutrophil 

(Ly6G+CD11b+) and monocyte (Ly6G-Ly6C+CD11b+) counts in the spleen of adult 

Clec9acre/creRosaDTA mice compared to littermate controls (Figure 12). Myeloproliferation in 

DC depletion mice is considered a secondary effect of increased Flt3L levels in the serum of 

these mice (Birnberg et al., 2008). Therefore, the FLt3L levels in the serum of 

Clec9acre/creRosaDTA mice were measured by ELISA and indeed elevated Flt3L levels were 

found in comparison to control mice (Figure 13). To study if additional growth factors or 

chemokines that are responsible for the neutrophil and monocyte homeostasis were 

dysregulated in Clec9acre/creRosaDTA mice ELISA and bead array were performed to detect 

differences in the serum levels of G-CSF, CXCL9, CCL22, CCL5, and CCL17. From the 

detected chemokine ligands none was found significantly altered in Clec9acre/creRosaDTA mice 

compared to control mice and also the growth factor G-CSF was found at equal levels in the 

compared serum samples (Figure 14).  

Figure 13: Clec9acre/creRosaDTA mice have increased serum levels of Flt3L. Flt3L concentrations in the serum 
of Clec9acre/creRosaDTA and control mice were measured using ELISA. Each symbol represents one mouse; n=10; 

*** p< 0.001 
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Increased Flt3L concentrations and DC depletion can influence the T-cell homeostasis (Fry et 

al., 2004; Stolley & Campbell, 2016). To analyse if the lymphoid compartment in 

Clec9acre/creRosaDTA mice shows differences in the homeostasis of lymphoid cells, B-cells as 

well as CD4+ and CD8+ T-cells were quantified in the spleen of Clec9acre/creRosaDTA mice. No 

difference was observed in the frequency of CD19+B220+MHCII+ B-cells, and CD3+CD4+ T-

cells, Unexpectedly though, also the counts of CD19+B220+MHCII+ B-cells, and CD3+CD4+ T-

cells are not significantly different between Clec9acre/creRosaDTA and control mice although the 

cellularity of the spleen in Clec9acre/creRosaDTA mice is significantly higher as shown in Figure 

11. This can be explained by a trend to lower frequency of CD3+CD4+ T-cells in 

Clec9acre/creRosaDTA mice on the one hand, and a generally high spread of total cell counts in 

this experiment on the other hand. Interestingly, however, CD3+CD8+ T-cells were diminished 

by a third both in counts and frequency. Taken together, Clec9acre/creRosaDTA mice show 

myeloproliferation and increased Flt3L concentrations as well as a decreased CD8+ T-cell 

compartment in the spleen. These systemic differences have to be considered when 

performing functional analyses on these mice, which can therefore not be considered as 

steady-state mice. 

Figure 14: Clec9acre/creRosaDTA mice comparable levels of growth factors and chemokines in the serum. 
GCSF was measured using ELISA on the serum of Clec9acre/creRosaDTA and control mice; CXCL9, CCL22, CCL5 
and CCL17 were measured using cytometric bead array on the serum collected from Clec9acre/creRosaDTA and 
control mice. Each symbol represents one mouse; n=4-5; ns: not significant.  
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Figure 15: CD8+ T-cells are diminished in the spleen of Clec9acre/creRosaDTA mice. A. Representative gating 
strategy of B-cells and CD4+ and CD8+ T-cells on control mouse splenocytes. First, CD64+ and CD11b+ cells were 
excluded and then B-cells were further gated as CD19+CD3-B220+MHCII+ cells. T-cells were identified as CD19-

CD3+ and further subset in CD8+ and CD4+ T-cells. B. Frequency of B-cells, CD4+ and CD8+ T-cells in the spleen 
of Clec9acre/creRosaDTA and control mice as identified in (A). C. Total counts of B-cells, CD4+ and CD8+ T-cells in 
the spleen of Clec9acre/creRosaDTA and control mice. Data of 2 independent experiments. Each symbol represents 
one mouse; n=7; ns: not significant; ***p<0.001. 

4.2.3 INCOMPLETE DEPLETION OF CDC2 IN CLEC9ACRE/CREROSADTA MICE 

Next, the spleen was analysed for the depletion of DCs. Here, the frequency of CD64-

CD11c+MHCII+ DCs (Figure 16, A) was reduced Clec9acre/creRosaDTA mice but not fully 

depleted and not even reduced when comparing total DC counts (Figure 16, B). The analysis 

of the two main subsets of DCs in the spleen showed that the cDC1 subset, which was 

identified as CD64-CD11c+MHCII+CD24+ cells, was lost in Clec9acre/creRosaDTA mice (Figure 

16, C). It is expected that the cDC1 population is lost in Clec9acre/creRosaDTA mice because the 

progenitor as well as the differentiated population expresses the Clec9a gene and therefore 

expresses the Cre that excises the STOP codon in front of the RosaDTA locus and therefore 

enables the expression of the toxin that kills the cell. The idea behind the depletion of cDC2 

Clec9acre/creRosaDTA mice, on the other hand, does not rely on the expression of Clec9a in the 

differentiated population as the cDC2 do not express Clec9a, but the depletion would solely 

depend on the depletion of the Clec9a expressing progenitors. The fate-mapping model 

Clec9acreRosaYFP also underlines that this Clec9a expression in the progenitor population is 

sufficient to label the cDC2 efficiently (Schraml et al., 2013). Interestingly the frequency cDC2, 

which were identified as CD64-CD11c+MHCII+CD11b+ cells (Figure 16, A) by flow cytometry, 

was only slightly reduced from 1.300.06% to 0.880,08% (MeanSEM) of living cells in the 
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spleens of Clec9acre/creRosaDTA mice (Figure 16, B). The total counts of cDC2 was not 

diminished in the spleen of Clec9acre/creRosaDTA mice due to the increased spleen sizes in 

comparison to control mice (Figure 16, C). The difference in frequency only can hereby be 

explained by the proportional increase of monocytes and neutrophils in the spleen of 

Clec9acre/creRosaDTA mice.  

 

Figure 16: Depletion of cDC1 but not cDC2 in Clec9acre/creRosaDTA mice. A. Representative FACS plots on 
splenic live CD64- cells from Clec9acre/creRosaDTA and control mice showing gating on CD11c+MHCII+ DCs and 
gating to identify the CD24+CD11b- cDC1 and CD11b+CD24- cDC2. B. Frequency and counts of total 
CD11c+MHCII+ DCs in the spleen of Clec9acre/creRosaDTA and control mice. C. Frequency and counts of the DC 
subsets cDC1 and cDC2 as identified in (A). Each symbol represents one mouse; n=11; ns: not significant; *p<0.05; 
**p<0.01; *** p< 0.001. 

Plasmacytoid DCs also express DNGR-1 at low levels in their differentiated state, therefore a 

depletion of pDCs was likely in Clec9acre/creRosaDTA mice although they do not derive from 

DNGR-1+ progenitors. pDCs were quantified in the spleen of Clec9acre/creRosaDTA mice, 

however no difference in frequency or counts was detected (Figure 17, A). Interestingly 

though, whereas pDCs from control mice express low levels of DNGR-1, pDCs isolated from 

Clec9acre/creRosaDTA mice show reduced expression of DNGR-1 on the surface, even though 

DNGR-1 is still slightly expressed as the biological negative control (knockout for DNGR-1) 

shows lower background staining (Figure 17, B). Red pulp macrophages are an abundant 

subset of APCs in the spleen. Due to the expressional overlap with DCs, they are also 

depleted in the CD11c depletion model CD11c-DTR (Meredith et al., 2012). To show the 

specificity of the DC depletion in Clec9acre/creRosaDTA mice RPMs were quantified in 

Clec9acre/creRosaDTA mice. RPMs were found in equal frequencies and counts in the spleen of 

Clec9acre/creRosaDTA and control mice (Figure 17, C).  
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Figure 17: Equal quantification of pDCs and RPMs in the spleens of Clec9acre/creRosaDTA and control mice. 
A. Frequency and counts of pDC in the spleen of Clec9acre/creRosaDTA and control mice identified as SiglecH+B220+ 
cells. B. DNGR-1 expression level of pDCs from heterozygous Clec9aCreRosaDTA and control mice that were 
determined by flow cytometry are shown as a representative histogram. Mice homozygous for the Cre locus served 
as a negative control for DNGR-1 expression; n=11. C. Frequency and counts of red pulp macrophages in the 
spleen of Clec9acre/creRosaDTA and control mice identified as either auto-fluorescent CD64+ cells or CD64+F4/80+ 
cells; n=9. Each symbol represents one mouse; ns: not significant. 

4.2.4 LOSS OF DENDRITIC CELL PROGENITORS IN CLEC9ACREROSADTA MICE 

As the DC2 population was not found to be decreased in Clec9acre/creRosaDTA mice, the next 

step was to verify that the cDC progenitors are indeed depleted. For this purpose, the 

frequencies and counts of MDPs, CDPs, and pre-cDCs in the BM, as well as pre-cDCs in the 

spleen of Clec9acre/creRosaDTA mice, were analysed in comparison to control mice. Figure 18, 

A shows the gating strategy for DC progenitors in the BM and Figure 18, C the identification 

of pre-cDCs in the spleen of both Clec9acre/creRosaDTA and control mice. The quantification 

shows no difference in the MDP population, as expected, but a reduction in CDP and a loss 

in pre-cDCs both from BM and spleen (Figure 18, B and D). This shows that the DC 

progenitors are indeed depleted in Clec9acre/creRosaDTA mice indicating that the development 

of cells that resemble DC2 in Clec9acre/creRosaDTA mice is independent of conventional DC 

progenitors. 



 Results 

 48 

 

Figure 18: Loss of DC precursors in Clec9acre/creRosaDTA mice. A. Representative FACS plots on BM cells from 
Clec9acre/creRosaDTA and control mice pre-gated as live, lineage negative (Lin: CD3, CD4, CD8, Ter119, NK1.1, 
B220, CD11b) cells. Pre-cDCs were then identified as CD11c+MHCII-CD135+CD172aint cells. MDPs were identified 
as CD11c-MHCII-CD115+CD135+CD117hi cells and CDPs as CD11c-MHCII-CD115+CD135+CD117low-int cells. B. 
Quantification of DC progenitors in the BM of Clec9acre/creRosaDTA and control mice identified as in (A). C. 
Representative FACS plots on splenocytes from Clec9acre/creRosaDTA and control mice pre-gated as live, lineage 
negative (Lin: CD3, CD4, CD8, Ter119, NK1.1, B220, CD11b) MHCII- cells. Pre-cDCs were then identified as 
CD11c+CD43+CD135+CD172aint cells. D. Quantification of pre-cDCs in the spleen of Clec9acre/creRosaDTA and 
control mice identified as in (C). Each symbol represents one mouse; n=4; ns: not significant; ** p<0.01. 

4.2.5 LOSS OF DENDRITIC CELLS AND THEIR PROGENITORS UPON DT TREATMENT 

OF CLEC9ACRE/CREROSADTR MICE  

To verify that Clec9acre mice can be used to deplete DCs we turned to Clec9acre/creRosaDTR 

mice. In the transient depletion model in Clec9aCreRosaDTR mice, cells which express Clec9a 

express Cre recombinase, which excises the floxed STOP sequence before the DTR gene. 

Therefore, all cells that express Clec9a but also all its progeny will express the DTR because 

the edited sequence in the genome is inherited. The DTR expression is a useful tool to induce 

the depletion of the DTR expressing cells at a given time point and for a short period of time 

(van Blijswijk et al., 2014). Clec9acre/creRosaDTR mice were injected intraperitoneally (i.p.) with 

25ng/g of body weight of diphtheria toxin and the splenocytes were analysed after 24h. After 
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this short time of DC depletion, there is no increase monocyte or neutrophil frequencies or 

counts in the spleen of Clec9acre/creRosaDTR mice compared to control mice (Figure 19).  

 

Figure 19: No manifestation of neutrophilia and monocytosis in Clec9acre/creRosaDTR mice 24 hours after DT 
injection.Clec9acre/creRosaDTR and control mice were injected i.p. with 25ng/g diphtheria toxin. After 24h the 
spleens were analysed with flow cytometry. Monocytes were identified as Ly6G-Ly6C+CD11b+ cells, neutrophils as 
Ly6G+CD11b+ cells. Each symbol represents one mouse; n=6; ns not significant; *p<0.05. 

Figure 20: Efficient depletion of DCs in Clec9acre/creRosaDTR mice. A. Representative FACS plots on splenic 
live CD64- cells from Clec9acre/creRosaDTR and control mice showing gating on CD11c+MHCII+ DCs and gating to 
identify the CD24+CD11b- cDC1 and CD11b+CD24- cDC2. B. Frequency and counts of total CD11c+MHCII+ DCs 
in the spleen of Clec9acre/creRosaDTR and control mice. C. Frequency and counts of the DC subsets cDC1 and cDC2 
as identified in (A). Each symbol represents one mouse; n=6; **p<0.01; *** p< 0.001. 
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As expected, cDC1 were lost in the spleens of Clec9acre/creRosaDTR mice (Figure 20). In 

contrast to the constitutive depletion in Clec9acre/creRosaDTA mice, in the short-term inducible 

depletion in Clec9acre/creRosaDTR mice, also the cDC2 cells were lost proving that the Cre 

expression in the progenitor population is sufficient to deplete the progeny although it does 

not express Clec9a in the differentiated state (Figure 20). Additionally, also pre-cDCs were 

quantified in the spleens of Clec9acre/creRosaDTR mice and found to be lost (Figure 21). 

Therefore, Clec9acre mice are a valid tool that efficiently depletes cDCs as well as cDC 

progenitors in a short-term depletion.  

 

Figure 21: Loss of pre-cDCs in Clec9acre/creRosaDTR mice. A. Representative FACS plots on splenocytes from 
Clec9acre/creRosaDTR and control mice pre-gated as live, lineage negative (Lin: CD3, CD4, CD8, Ter119, NK1.1, 
B220, CD11b) MHCII- cells. Pre-cDCs were identified as CD11c+CD43+CD135+CD172aint cells. B. Quantification 
of pre-cDCs in the spleen of Clec9acre/creRosaDTR and control mice identified as in (A). Each symbol represents one 

mouse; n=6; ** p<0.01. 

4.2.6 PROGENITORS OF DENDRITIC CELLS IN CLEC9ACRE/CREROSADTA MICE ARE 

INEFFICIENT IN PRODUCING DENDRITIC CELLS IN VITRO 

To additionally rule out the fact that the reduced population of CDPs and the few remaining 

pre-cDCs that are still present in Clec9acre/creRosaDTA mice escape depletion and develop into 

DC2, the remaining progenitor cells were cultured to analyse their potential to produce 

progeny. For this purpose, sort purified progenitors were cultured in a FLT3L ligand DC-

differentiation culture system. In detail, total BM (TBM), MDPs, CDPs, and pre-cDCs from the 

bone marrow of Clec9acre/creRosaDTA and control mice were cultured in the presence of FLT3. 

Additionally, CD45.1 congenic feeder BM cells, were used in the culture to ensure equal 

culture conditions despite differences in starting cells due to poor yield resulting from the 

severe reduction of pre-cDCs in Clec9acre/creRosaDTA mice. Seven days later, the output of the 
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cultures was analysed by flow cytometry. Despite low cell numbers put in culture, culturing 

equal numbers of pre-cDCs from control mice generated CD11c+MHCII+ cells, whereas no 

pre-cDC from DTA mice generated equivalent cells (Figure 22). While gating for pre-cDC in 

Clec9acre/creRosaDTA mice it became obvious that the few remaining cells that fall into the pre-

cDC gate remain on the lower corner of the gate for CD135 which becomes obvious in the 

spleen as visible in Figure 18, C. The low CD135 expression on splenic cells is shown in 

Figure 23 by comparing CD135 levels from the previous gate. It is, therefore, possible that 

the failure to expand pre-cDCs from Clec9ccre/creRosaDTA
 mice in response to FLT3L was due 

to lower expression of the receptor CD135. CD135 expression was not found to be different 

in MDPs and CDPs coming from Clec9ccre/creRosaDTA
 and control mice as becomes evident in 

the representative gating for MDPs and CDPs in Figure 18, A. Therefore, also these cells 

were cultured with FLT3L and compared to TBM cells in culture. TBM FLT3L culture gave 

substantial amounts of progeny from Clec9ccre/creRosaDTA
 and control mice, but yet, 

Clec9ccre/creRosaDTA BM gave significantly less CD11c+MHCII+ cells (Figure 24, A). MDPs, 

and CDPs from control mice readily expanded in FLT3L cultures and generated 

CD11c+MHCII+ cells of both cDC1 and cDC2 subtypes. In contrast, the same progenitor 

populations from Clec9acre/creRosaDTA
 mice exhibited significantly reduced output in response 

Figure 22: Remaining pre-cDCs from Clec9acre/creRosaDTA mice do not generate cDC in vitro. Sort purified 
pre-cDCs (Lin-MHCII-CD11c+CD135+CD172int) from the BM of control and Clec9acre/creRosaDTA mice were cultured 
in FLT3L and the presence of congenic CD45.1+ bone marrow for 7 days. On Day 7 cultures were analysed by 
flow cytometry. Shown is the representative gating strategy for the DC outcome of the culture after 7 days. Pre-

cDC progeny is gated on CD45.2 and gated for B220+SiglecH+ pDCs or B220-SiglecH-CD11c+MHCII+ DCs. 

Figure 23: Lower expression of CD135 on cells resembling pre-cDCs in the spleen of Clec9acre/creRosaDTA 

mice. Representative gating of pre-cDC gating without final gating on CD135 in splenocytes from a control mouse 
and overlaid histogram of these cells from Clec9acre/creRosaDTA and control mice shown the expression of CD135. 
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to FLT3L compared to control progenitor outcome to which it was normalized for quantification 

in Figure 24, C. Looking at the DC subsets, the cultures with TBM, MDPs and CDPs 

generated no CD24+ cDC1 equivalents and only few CD11b+ cDC2 equivalents (Figure 24, 

C).  

 

Figure 24: Bone marrow progenitors from Clec9acre/creRosaDTA mice do not generate cDC in Flt3L cultures 
in vitro. A. Total bone marrow (TBM) from control and Clec9acre/creRosaDTA mice was cultured with Flt3L for 7 days. 
On Day 7 cultures were analysed by flow cytometry. Shown is the representative gating for and the frequency of 
CD11c+MHCII+ cells in all CD45.2+ cells in the culture B. Sort purified MDPs (Lin-MHCII-CD11c-

CD115+CD135+CD117hi) and CDPs (Lin-MHCII-CD11c-CD115+CD135+CD117low-int) from the BM of control and 
Clec9acre/creRosaDTA mice were cultured with Flt3L in the presence of congenic BM cells (CD45.1+) for 7 days. On 
Day 7 cultures were analysed by flow cytometry. Shown is the representative gating for and the frequency of 
CD11c+MHCII+ cells in all CD45.2+ cells in the culture. C. The output efficiency of cultured BM, MDPs and CDPs 
from A and B was calculated as the number of cells generated at the end of the culture period divided by the 
number of input cells normalized to the control. Each symbol represents one mouse. * p<0.05, ** p<0.01, *** 
p<0.001. 

Taking into account that Flt3L is not the only growth factor that stimulates DC progenitors to 

differentiate into DCs, additionally also cultures with GM-CSF were prepared. GM-CSF 
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cultures are known to produce cells resembling either macrophages (GM-MACs) or DCs (GM-

DCs) or other CD11c+MHCII+ cells (GM-DN, double negative), which can be distinguished by 

the marker expression of MHCII, CD115, and CD135, where MHCIIhiCD11bloCD115-CD135+ 

cells are termed GM-DCs, MHCIIloCD11bhiCD115-MerTK+ cells are termed GM-MACS and 

MHCIIhiCD11bloCD115-CD135- are termed GM-DN cells (Helft et al., 2015). When total BM 

(TBM) of Clec9acre/creRosaDTA and control mice was cultured in the presence of GM-CSF, less 

GM-DCs developed compared to the culture of TBM form control mice (Figure 25, A). 

However, the frequency of CD115-CD135- GMDNs and CD115+CD135-MerTK+ GM-MACs 

was unchanged between Clec9acre/creRosaDTA and control mice (Figure 25, A). Additionally, 

also sort purified CDPs gave reduced output of GM-DCs when cultured in the presence of 

GM-CSF and also here the frequency of GM-DN cells was comparable between 

Clec9aCre/CreRosaDTA
 and control mice (Figure 25, B).  

Considering that the few DC progenitors that are left in Clec9acre/creRosaDTA mice are inefficient 

in giving progeny in vitro in BM-cultures, the hypothesis was further supported that DC2 in 

Clec9acre/creRosaDTA mice do not derive from myeloid DC progenitors but derive from 

alternative progenitors in the absence of bona fide progenitors. 

4.2.7 DC2 FROM CLEC9ACRE/CREROSADTA MICE PHENOTYPICALLY RESEMBLE 

BONA FIDE DENDRITIC CELLS 

DC2 that have been found to unexpectedly arise in Clec9acre/creRosaDTA mice were identified 

as such based on the expression of confined markers as CD64-CD11c+MHCII+CD11b+ cells. 

However, based on the hypothesis that these cells have a distinct origin than bona fide DC2, 

phenotypic differences were analysed to provide evidence of different origins or functions that 

explain the reason for this additional DC development pathway. For this purpose, surface 

Figure 25: Bone marrow progenitors from Clec9acre/creRosaDTA mice do not generate cDC in GM-CSF 
cultures in vitro. A. and B. TBM from control and Clec9acre/creRosaDTA mice (CD45.2+) in the presence of GM-
CSF for 6 days. A. Representative gating on cells harvested from GM-CSF culture of BM from control mice to 
identify GM-CSF-derived CD45.2+CD11c+CD11b+MHCIIhiCD115-CD135+ GM DCs and 
CD45.2+CD11c+CD11b+MHCIIhiCD115-CD135- GM-DNs. Frequency of GM-DC and GM-DN as well as 
CD45.2+CD11c+CD11bhiMHCII+CD115+MerTK+ GM MACs. B. Sort purified CDPs (Lin-MHCII-CD11c-

CD115+CD135+CD117low-int) from the BM of control and Clec9acre/creRosaDTA mice were cultured with GM-CSF in 
the presence of congenic BM cells (CD45.1+) for 6 days. On Day 6 cultures were analysed by flow cytometry. 
Shown is the representative gating for and the frequency of GMDC and GMDN cells in all CD45.2+ cells in the 
culture as identified in (A). Each symbol represents one mouse; n=5; ns: not significant; * p<0.05, ** p<0.01. 
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markers that are commonly used to identify DC2 were analysed by flow cytometry. However, 

most markers showed a similar expression profile on cells resembling DC2 in 

Clec9acre/creRosaDTA mice compared to control mice like CD11c, MHCII, Clec4a4, ESAM, 

CD172a (Figure 26, A). CD4, however, showed a decreased expression on some but not all 

the cells resembling DC2 in Clec9acre/creRosaDTA mice (Figure 26, A). Another marker that was 

analysed on the cells of interest was the receptor for Flt3L, CD135, which was found to be 

decreased on the cells that resemble DC2 in Clec9acre/creRosaDTA mice. In addition to surface 

markers also transcription factors that are known to be required for the development of DCs 

were analysed by intranuclear staining and flow cytometry (Kashiwada et al., 2011; Satpathy 

et al., 2012; Schlitzer et al., 2013). The analysed transcription factors IRF4 and Zbtb46 showed 

overlapping expression whereas IRF8 was not expressed in both bona fide DC2 from control 

mice and cells resembling DC2 in Clec9acre/creRosaDTA mice (Figure 26, A). The characteristic 

phenotype of DCs are the dendrites, which DCs use to patrol their surroundings for antigens. 

For the comparison of the microscopical structure, cytospins of sort purified 

CD11c+MHCII+CD24-CD11b+ cells from the spleens of Clec9acre/creRosaDTA as well as 

heterozygous Clec9a+/creRosaDTA and control mice were analysed. Both cytospins showed 

characteristic dendrites and no microscopic differences of any kind were detected between 

cells resembling DC2 from Clec9acre/creRosaDTA, Clec9a+/creRosaDTA mice and cDC2 from 

control mice (Figure 26, B). From the phenotype of the cells, therefore, no definite distinction 

can be made between DC2 in Clec9acre/creRosaDTA and control mice. 
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Figure 26: Phenotypic comparison of DC2 from of Clec9acre/creRosaDTA and control mice. A. Splenic DC2 
(CD64-CD11c+MCHII+CD24-CD11b+) were analysed for the expression of typical DC2 surface markers (first two 
rows) as well as intranuclear staining of typical DC transcription factors by flow cytometry. Shown are 
representative overlays. Representative gating of pre-cDC gating without final gating on CD135 in splenocytes 
from a control mouse and overlaid histogram of these cells from Clec9acre/creRosaDTA

 and control mice shown the 
expression of CD135. B. Cytospins of sort purified DC2. DC2 were sorted from homozygous Clec9acre/creRosaDTA

 

(upper panel) and heterozygous Clec9a+/creRosaDTA
 (lower panel) as well as control mice as CD64-

CD11c+MCHII+CD24-CD11b+ cells spun on a microscope slide and stained with Giemsa. Representative cells were 

imaged. 

4.2.8 DC2 FROM CLEC9ACRE/CREROSADTA MICE PRODUCE CYTOKINES IN 

RESPONSE TO CPG AND LPS IN COMPARABLE FREQUENCIES TO CDC2 

FROM CONTROL MICE 

To test whether DC2 from Clec9acre/creRosaDTA and control mice share the same function 

despite differences in origin, functional analyses were performed to gain more insights into the 

reason for the existence of DC2 of a different origin. A hallmark function of DCs is their ability 

to secrete cytokines to stimulate T cells responses. In comparative functional analyses, 

splenocytes were enriched for DCs and stimulated with TLR ligands in the presence of the 

Golgi inhibitor brefeldin A to block secretion of the cytokines. After 6h, cytokine expression 

was measured by intracellular cytokine staining and flow cytometry in the cells resembling 

DC2 from Clec9acre/creRosaDTA mice and bona fide cDC2 from control mice. As expected DC2 
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produced IL12 and TNF after stimulation with either LPS or CpG in comparison to unstimulated 

cells (Figure 27). Equal frequencies of cDC2 from control mice and cells resembling DC2 from 

Clec9acre/creRosaDTA mice produced TNF and/ or IL12 in response to CpG (Figure 27, lower 

panel). When stimulated with LPS, however, a lower percentage of DC2 from 

Clec9acre/creRosaDTA mice produced TNF alone and also the percentage of TNF+IL12+ DC2 was 

lower in Clec9acre/creRosaDTA mice compared to DC2 from control mice, whereas no difference 

was observed in the frequency of only IL-12 producing cells after LPS stimulation (Figure 27, 

upper panel). 

 

Figure 27: Cytokine production of DC2 from of Clec9acre/creRosaDTA and control mice after stimulation. A. 
Splenocytes from Clec9acre/creRosaDTA and control mice were enriched for CD11c+ cells using magnetic separation. 
CD11c enriched cells were stimulated with either LPS (100ng/ml) or CpG (0.5μg/ml) for 6h in the presence of 
brefeldin A. From the harvested cells DC2 were identified as CD64-CD11c+MCHII+CD24-CD11b+ cells and 
analysed for the expression of IL12 and TNF by intracellular cytokine staining and flow cytometry. The frequency 
of either single or double-positive cells for each cytokine among the DC2 population are shown. Each symbol 
represents one mouse; n=6; ns: not significant; * p<0.05. 

4.2.9 DC2 FROM CLEC9ACRE/CREROSADTA MICE HAVE SOMATIC REARRANGE-

MENTS IN THE IGH LOCUS SUGGESTING A LYMPHOID ORIGIN 

Although the current opinion in the field is, that DCs derive from myeloid progenitors in steady-

state (Auffray et al., 2009; Manz, Traver, Akashi, Merad, Miyamoto, Engleman, et al., 2001a), 

studies also showed that common lymphoid progenitors have the potential to give rise to DCs 

in vitro and also in adoptive transfer studies (Izon et al., 2001; Manz, Traver, Miyamoto, 

Weissman, & Akashi, 2001b; Welner et al., 2008; Wu et al., 2001). Considering the hypothesis 

that the cells that resemble cDC2 in Clec9acre/creRosaDTA mice have an alternative origin, a 
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potential lymphoid origin was further investigated. RAG1 is expressed in common lymphoid 

progenitors and leads to the somatic rearrangement of the D- and J- segments of the heavy 

chain locus (IgH) in the B-cell receptor gene (Borghesi et al., 2004; Figure 28, A). The D-J 

rearrangement of the IgH locus was analysed by PCR on genetic DNA isolated from sort 

purified cDC2 from control mice and equivalent cells from Clec9acre/creRosaDTA mice. 

Neutrophils, which served as a negative control due to their myeloid origin, were sorted as 

Ly6G+ cells from control splenocytes and showed no bands at the height of D-J 

rearrangements but only the germline band whereas pDC, which have been under discussion 

for having a dual myeloid and lymphoid origin and are known to have D-J rearrangement of 

the IgH locus, did show rearrangements in the PCR and served as a positive control (Figure 

28, B). As expected cDC2 from control mice did not show bands at the height of somatic 

rearrangements of the IgH locus but indeed the cells that resemble DC2 in Clec9acre/creRosaDTA 

mice showed D-J rearrangements control (Figure 28, B). This shows a history of RAG1 

expression in the DC2 in Clec9acre/creRosaDTA mice indicating a lymphoid origin and clearly 

shows a difference to cDC2 from control mice. Therefore, the Clec9acre/creRosaDTA mouse 

model suggests that upon blockade of normal cDC development, cDC can arise from a 

lymphoid progenitor and these cells will from here on be termed lymphoid DC2. 

 

Figure 28: DC2 from Clec9acre/creRosaDTA mice show D-J rearrangements. A. Schematic display of RAG1 
induced rearrangements in the IgH locus. B. Genomic PCR of sort purified populations from Clec9acre/creRosaDTA 
and control mice for germline (GL) locus and D–J rearrangements of the IgH chain using primer mixtures 
homologous for regions of the Dfl16 and Dsp2 D gene families. pDCs (SiglecH+B220+) served as positive control 
and neutrophils (Ly-6G+) as negative control. Representative of 3 independent experiments. * unspecific band. 

4.2.10 CLEC9ACRE/CREROSADTA MICE SHOW A TREND TO INCREASED COMMON 

LYMPHOID PROGENITORS (CLP)  

As it has been shown that CLPs can give rise to DCs in in vitro studies and also in adoptive 

transfer experiments into irradiated mice, and CLPs are known to have RAG1 expression 

leading to D-J rearrangements as they have been found in the lymphoid DC2 of 

Clec9acre/creRosaDTA mice, they were considered a potential progenitor for the lymphoid DC2 
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that arise independent of CDPs in Clec9acre/creRosaDTA mice. The CLPs in the BM of control 

and Clec9acre/creRosaDTA mice were quantified since a potential increase in a progenitor 

population was reasoned to be indicative of an increased demand for the population to fill an 

empty niche. Indeed, CLPs identified as CD117intSca-1low-intCD135+IL7R+ cells seemed 

increased in frequency and in counts in the BM of 2 analysed Clec9acre/creRosaDTA mice in 

comparison to 2 control mice (Figure 29). This provides a hint towards a dysregulation of the 

CLP population however does not prove the CLP to be the progenitor of the lymphoid DC2 in 

Clec9acre/creRosaDTA mice. 

 

Figure 29: Quantification of Common Lymphoid Progenitors (CLPs) in the BM of Clec9acre/creRosaDTA and 
control mice. A. Representative gating strategy of CLPs identified as Lineage negative (Lin: CD3, CD4, CD8, 
CD19, GR-1, Ter119, NK1.1) CD117intSca-1low-intCD135+IL7R+ cells in the BM of Clec9acre/creRosaDTA and control 
mice. B. Frequency and counts of CLPs in the BM Clec9acre/creRosaDTA and control mice as identified in (A). Each 
symbol represents one mouse; n=2. 

4.3 CLEC9ACRE/CREROSADTA MICE SHOW A POTENTIAL REDUCTION IN DC2 

MIGRATION COMPARED TO BONA FIDE DC2 

4.3.2 REDUCED MIGRATORY DC2 IN THE SKIN DRAINING BUT NOT MESENTERIC 

LYMPH NODES FROM CLEC9ACRE/CREROSADTA MICE COMPARED TO BONA 

FIDE CDC2 

To gain further insight into differences between Clec9acre/creRosaDTA and control mice outside 

of the spleen, lymph nodes that drain different organs were analysed by flow cytometry. The 

analysis in this chapter shows the inguinal LN (iLN) and the ear draining LN (auricular LN, 

aLN) representing 2 skin draining LNs and the mesenteric LN that drains the intestine. The 

analysis of the spleen showed that Clec9acre/creRosaDTA Amice do not fully represent a steady-

state model and depletion of CDP derived cells leads to myeloproliferation and neutrophilia 

(Figure 12). The total cellularity of the analysed iLN, aLN and mLNs however, in contrast to 

the spleen has not been found increased. Interesting in the context of myeloproliferation 
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though, a population of CD64+CD11b+ cells that are likely monocyte-derived cells based on 

the expression of CD64 was found to be increased in the LNs of Clec9acre/creRosaDTA mice 

(Figure 30). The DC compartment in LNs is divided into resident DCs, that are constantly 

replenished from bone marrow precursors and migratory DCs that have migrated from the 

drained organ to the lymph node. These populations can be distinguished by the level of the 

markers CD11c and MHCII in steady-state. 

Figure 30: Comparable cellularity but increase of a CD64+CD11b+ population in different LNs in 
Clec9acreRosaDTA mice. A. Total cellularity of iLN, aLN and mLN in Clec9acre/creRosaDTA and control mice. B. 
Representative FACS plots of live cells in the different LNs showing gating on a CD64+CD11b+ population. C. 
Quantification of the CD64+CD11b+ population identified as in (B). Each symbol represents one mouse; n=8; ns: 
not significant; * p<0.05; ** p<0.01.  
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Figure 31: Representative gating of resident and migratory DC subsets as well as LC in different of 
Clec9acre/creRosaDTA and control mice. Cells were isolated from the skin draining inguinal LN (iLN, A), auricular 
LN (aLN, B) and mesenteric LN (mLN; C) of control mice (upper row) and Clec9acre/creRosaDTA mice (lower row) 
and analysed by flow cytometry. A. and B. Skin draining LN were gated for EpCAM+CD103- Langerhans cells 
(further gating ensured them to be CD11c+MHCII+, not shown) the remaining non-Langerhans cells were further 
gated for CD11c and MHCII and CD11chiMHCII+ resident DCs were distinguished from CD11c+MHCIIhi migratory 
DCs. Both resident and migratory DC subsets were further subset in CD24+ cDC1 and CD11b+ DC2. C. Living cells 
from the mLN of control mice (upper row) and Clec9acre/creRosaDTA mice (lower row) were gated for CD11chiMHCII+ 
resident DCs and CD11c+MHCIIhi migratory DCs. Resident DCs were further subset into CD24+ cDC1 and CD11b+ 
DC2 whereas among migratory DCs CD103+CD11b- cDC1, CD103+ CD11b+ double-positive (DP) DC2 and CD103-

CD11b+ single-positive (SP) DC2 were distinguished. 

As shown in Figure 31 this discrimination can still be applied in Clec9acre/creRosaDTA mice. In 

the skin draining iLN and aLN. Langerhans cells (LCs) that also migrate from the skin to the 

draining LN under steady state conditions have to be distinguished from DCs. Therefore, LCs 
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were gated separate as EpCAM+CD103cells and excluded from further DC gating (Figure 

31). The remaining cells were gated as CD11c+MHCIIhi migratory DCs and CD11chiMHCIIhi 

resident DCs (Figure 31). Both DC compartments can again be dissected into cDC1 and 

cDC2 based on gating on CD24+ and CD11b+ cells respectively (Figure 31). In mesenteric 

lymph nodes, the migratory DC compartment is composed of the DCs that have migrated from 

the intestine. Therefore, the migratory DC population can be divided into the 3 main DC 

populations that can be identified in the gut, namely CD103+CD11b-, CD103+CD11b+ and 

CD103-CD11b+ cells (Figure 31, C). When comparing the quantification of the different 

populations in the skin draining LNs between Clec9acre/creRosaDTA and control mice, it became 

evident that cDC1 were depleted from both resident and migratory DC compartments, as 

expected. Also, resident DC2 were not diminished in counts in Clec9acre/creRosaDTA mice, which 

compares to the observation in the spleen in Figure 16. Migratory DC2, however, were 

significantly decreased in the skin draining lymph nodes in Clec9acre/creRosaDTA mice compared 

to control mice. This implies that the migration of lymphoid DCs is impaired. A decrease in 

migratory DC2 was not found in the mLN of Clec9acre/creRosaDTA mice, which suggests a tissue-

specific defect that affects the migration from the skin to the skin draining LNs specifically. To 

exclude that the discrepancy in migratory DC2 is derived from cell-extrinsic effect like a 

dysregulation of the CCL7 gradient deposition in Clec9acre/creRosaDTA mice, also Langerhans 

cells were quantified. Langerhans cells are not affected by the Clec9acre/creRosaDTA system, as 

they derive from embryonic precursors and do not express Clec9a (Schraml et al., 2013). In 

addition, Langerhans cells also migrate from the skin to the in steady-state using similar 

mechanisms (Ohl et al., 2004). In the quantification of Langerhans cells in the iLN and aLN, 

equal frequencies and counts were found for Clec9acre/creRosaDTA and control mice (Figure 31, 

A and B). Therefore, the hypothesis that lymphoid DC2 show an intrinsic cell migration defect 

from the skin to the draining LNs was stated.  
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Figure 32: Quantification of migratory DC2 in the inguinal (A) and auricular (B) and mesenteric (C) LN of 
Clec9acre/creRosaDTA and control mice in both frequency and counts. Resident and migratory DC2 were 
analysed by flow cytometry and gated as in Figure 31 were Clec9acre/creRosaDTA and control mice. Each symbol 
represents one mouse; n=4-6; ns: not significant; * p<0.05; ** p<0.01; *** p<0.001. 
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One possible reason for reduced migration in lymphoid DC2 is a difference in CCR7 receptor 

expression as this is necessary to facilitate the migration. Therefore, the expression of CCR7 

on DC2 in the inguinal LNs from Clec9acre/creRosaDTA and control mice was analysed by surface 

antibody staining and flow cytometry. In the LNs migratory DCs have high CCR7 expression, 

compared to resident DCs (Lee et al., 2009; Figure 33). The level of CCR7 on both resident 

and migratory DC2 was not altered between DC2 from Clec9acre/creRosaDTA and control mice 

(Figure 33, A) and also the percentage of CCR7 positive cells among the resident and 

migratory DC2 populations was comparable between lymphoid DC2 and cDC2 (Figure 33, 

B). This shows that lymphoid DC2 can express CCR7 upon migration to the draining LN at 

the same level as cDC2 and also the baseline expression of CCR7 in the resident DC2 

population is comparable between Clec9acre/creRosaDTA and control mice and therefore 

differences in upregulation of CCR7 in migratory DCs is not defective in lymphoid DC2 and 

thus cannot account for the reduced migratory DC cell numbers found in skin draining LN in 

Clec9acre/creRosaDTA compared to control mice. 

 

Figure 33: Equal CCR7 expression on migratory and resident DC2 in the inguinal LN of Clec9acre/creRosaDTA 
and control mice. A. Overlaid histograms of CCR7 expression in resident, CD11chiMHCII+ (light traces) and 
migratory, CD11c+MHCIIhi (dark traces) CD11b+CD24- DC2 subsets in the inguinal LN of Clec9acre/creRosaDTA (pink 
traces) and control mice (black traces). The grey trace shows the isotype stained migratory DC2 population of a 
control mouse. B. Frequency of CCR7+ cells among the indicated population gated based on isotype control 

staining. Each symbol represents one mouse; n=4; ns: not significant. 

4.3.3  REDUCED NUMBERS OF DC2 AFTER MIGRATION FROM THE SKIN OF FROM 

CLEC9ACREROSADTA MICE BUT ALSO IN THE ISOLATION FROM THE SKIN  

To confirm the hypothesis that lymphoid DC2 have a defect in the migration from the skin, an 

experiment was performed that analyses the migration from the skin of the ear in vitro. For 

this purpose, ears from Clec9acreRosaDTA and control mice were split into dorsal and ventral 

halves and incubated for 24h on either medium only, as a negative control, or medium 

containing CCL19 that induces CCR7 mediated DC migration. The migration towards CCL19 

gave a great advantage over cell migration to medium proving that the cells migrate directed 

toward the chemokine in a CCR7 dependent manner. In the quantification of the DC2 in the 

medium after 24h using flow cytometry, about 10 times less lymphoid DC2 were found to have 

migrated out of the ear of Clec9acre/creRosaDTA mice compared to cDC2 that migrated out of the 



 Results 

 64 

ears of control mice (Figure 34, A). Langerhans cells served again as control for CCR7 

directed movement and showed no difference between Clec9acre/creRosaDTA and control mice 

(Figure 34, A). Of note, this experiment was performed in both heterozygous a 

Clec9a+/CreRosaDTA and homozygous Clec9aCre/CreRosaDTA mice giving similar results (Figure 

34, B). The reduced counts of lymphoid DCs after the migration out of the ear towards CCL19 

indicate that indeed lymphoid DCs have a defect in the migration from the skin. 

c 

Figure 34: Reduced migration of lymphoid DC2 but not LC out of ear from heterozygous Clec9a+/creRosaDTA 
and homozygous Clec9acre/creRosaDTA mice. Ears from heterozygous Clec9a+/creRosaDTA (B, n=6), homozygous 
Clec9acre/creRosaDTA (A, n=4) and control mice (A: n=4 B: n=1) were placed on medium alone or containing 
100ng/ml CCL19. 24 hours later the number of lymphoid and myeloid DC2 was quantified by flow cytometry and 
calculated back to the initial weight of the ear placed in culture. Each symbol represents one mouse; ns: not 
significant. * p<0.05; ** p<0.01; *** p<0.001. 

The data from both, the reduced migration of lymphoid DC2 and the reduced quantification 

after migration out of the ear in the in vitro crawl out assay relies on the fact that the numbers 

of DC2 in the skin are not reduced as has been also shown for the spleen and the resident 

DC2 in the LNs. To prove that lymphoid DC2 numbers are equal in the skin of 

Clec9acreRosaDTA and control mice, leukocytes were isolated from the dermis and epidermis 

of the ears of these mice. The gating strategy for DCs and Langerhans cells, which are mainly 

found in the epidermis, is depicted in Figure 35 A. for the dermis and B. for the epidermis and 

includes CD45+CD11c+MHCII+CD64-EpCAM+CD103- cells. Dendritic cells, which can only be 

found in the dermis, were gated as CD45+CD11c+MHCII+CD64- cells that were not 

EpCAM+CD103- and were further subset in CD24+ cDC1 and CD11b+ cDC2 (Figure 35, A) 

(Henri, Poulin, et al., 2010b; Tamoutounour et al., 2013). 
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Figure 35: Representative gating of DC subsets in the dermis as well as LC in the epidermis of the ear. 
Cells were isolated from the skin of a control mouse, split into dermis (A) and epidermis (B), stained and analysed 
by flow cytometry. A and B. Cells were gated on CD45.2 positive, then doublets were excluded from the analysis. 
Single cells were gated based on size and granularity for leukocytes and these were further gated on 
CD11c+MHCII+ cells. In the next step, cells were divided into CD64+ and CD64- cells. CD64- cells were gated for 
EpCAM+CD103- Langerhans cells and the remaining non-Langerhans cells were considered DCs and further 
subset in CD24+ cDC1 and CD11b+ DC2 in the dermis (A). 

In contrast to the quantification in the spleen, however, reduced numbers of lymphoid DC2 

and cDC2 were found per mg ear tissue from both heterozygous Clec9+/creRosaDTA and 

homozygous Clec9acre/creRosaDTA mice compared to control mice (Figure 36, A and B). 

Noticeable however is that the difference in DC2 numbers between Clec9a+/creRosaDTA and the 

control mouse are more marginal than between homozygous Clec9acre/creRosaDTA mice and 

thus was not detected with fewer repetitions. These findings question the hypothesis of 

reduced migration based on the finding of reduced numbers of migratory lymphoid DC2 in the 

skin draining LNs and in the ear-crawl out assay in homozygous mice, however higher 
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differences in the crawl out assays compared to the skin quantification of DC2 still point 

towards a migration defect of lymphoid DC2 in the skin. 

 

Figure 36: Quantification of Langerhans cells and DC2 in the skin of heterozygous Clec9a+/creRosaDTA (A) 
and homozygous Clec9acre/creRosaDTA (B) mice. Cells were isolated from the skin of a control mouse, split into 
dermis and epidermis, and analysed by flow cytometry. Cells were quantified using counting beads and the counts 
were divided by the weight of the ear, to control for different amounts of input material. The cells were gated as 
described in Figure 35. Each symbol represents one mouse; n=7-8; ns: not significant; * p<0.05; ** p<0.01; *** 
p<0.001. 

4.3.4 SPLENIC LYMPHOID DC2 MIGRATE LESS TOWARDS CCR7 LIGANDS IN 

VITRO IN STEADY-STATE BUT NOT UPON ACTIVATION 

To further test the migration of the lymphoid DC2 in general, independent of the skin, splenic 

DCs were tested for their migratory capacity in an in vitro assay. Migration of splenic DC2 

does not occur from a non-lymphoid tissue but takes place only within the spleen from the 

bridging channels into the white pulp, where they carry out their function as activators of T-

cells (Calabro et al., 2016; Lu, Dang, McDonald, & Cyster, 2017; Yi & Cyster, 2013). Therefore, 

the migration of DCs within the spleen is important for their function as only the correct 

positioning to the zones of action facilitates their function. To analyse the migration capacity 

of splenic DC2 from Clec9acre/creRosaDTA and control mice, total splenocytes were enriched for 

CD11c+ cells using magnetic separation and the enriched cells were applied to a transwell 

inlet with a polycarbonate membrane of 5μm pore size. The DC2 that had migrated to the 

lower well containing either medium or medium supplemented with CCR7 ligands were 

quantified using flow cytometry and calculated back to the percentage of input cells. 

Interestingly, the splenic lymphoid DC2 from Clec9acre/creRosaDTA mice showed a reduced 

percentage of migration compared to the cDC from control mice although both lymphoid DC2 

and bona fide cDC2 showed enhanced migration towards CCR7 stimuli in comparison to 

medium only (Figure 37). These findings suggest that, in steady-state, splenic lymphoid DC2 

migrate less efficient towards CCR7 ligands (independent of the ligand), which further raises 
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the hypothesis that antigen-presenting function of DC2 could be impaired due to incorrect 

positioning of the cells within the organs.  

 

Figure 37: Reduced migration of splenic lymphoid DC2 to CCR7 ligands. CD11c enriched splenocytes from 
Clec9acre/creRosaDTA and control mice were tested for their ability to migrate towards CCL19 (100ng/ml), CCL21 
(100ng/ml) or a combination of both in transwells with 5μm pore size. Cell migration of DC2 to the lower chamber 
was quantified after 2 hours using flow cytometry and counting beads (n=9). ns, not significant; * p<0.05; ** p<0.01. 

To further examine the mechanism that is impaired and leads to decreased migration of the 

DC2 an in vitro microscopic approach was applied. With this method, different parameters of 

the migration can be visualized, such as the velocity, directionality and shape of the cells. In 

vitro imaging approaches to visualize DC migration have been published for BM-derived DCs 

produced by culture with GM-CSF and activated with LPS but have not been shown on ex 

vivo isolated cells. The “in vitro analysis of chemotactic Leucocyte migration in 3D 

environments” approach has been chosen to provide an overview of the migration (Sixt & 

Lämmermann, 2011). For the purposes of this thesis, it was, however, necessary to perform 

the assay on ex vivo isolated cells, as only these have been validated and have been 

demonstrated do be of distinct origin Clec9acre/creRosaDTA compared to control mice, whereas 

in GM-CSF cultures likely monocytes produce the DC outcome. In addition, the frequency of 

migrating cells in the transwell assay was with only up to 5% very low to possibly give enough 

data for the analysis of the imaging approach. Therefore, for this assay, DC2 were sort purified 

from the spleens of Clec9acre/creRosaDTA and control mice and cultured in the presence of either 

medium only or medium containing LPS for 18h for the cells to rest or to become activated 

before seeding them in a collagen gel to improve the percentage of migrating cells. After the 

collagen had polymerized, a CCL19 gradient was applied and the cells were imaged every 

minute for 5h at 37°C using brightfield microscopy. The analysis of the videos by tracking of 

single cells as shown in Figure 38, A revealed no striking difference between 

Clec9acre/creRosaDTA and control mice in either of the parameters, such as velocity, 
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accumulated distance and directionality (Figure 38). Of note, there was no difference 

observed comparing medium cultured and LPS cultured cells, except the percentage of 

migrating cells in LPS cultured cells was increased (Figure 38, B). This finding contradicts the 

fact that less splenic lymphoid DC2 have migrated in the transwells towards CCR7 ligands, 

but also cannot directly be compared as the transwell migration showed cells in steady-state 

condition.  

 

Figure 38: Comparable in vitro chemotactic migration of DC2 from Clec9acre/creRosaDTA and control mice in 
3D environments. DC2 were sort purified from the spleens of Clec9acre/creRosaDTA and control mice and cultured 
in medium alone of medium containing 200ng/ml LPS for 18h. Cells were harvested and seeded in bovine collagen 
and stimulated with CCL19 to induce migration. Cells were imaged for 5h in 1min intervals. For the analysis 9-10 
cells were tracked manually. A. Single-cell tracks of migrated splenic DC2 from Clec9acre/creRosaDTA and control 
mice. B. Analysis of migration parameters was calculated automatically from the tracks of the individual cells. The 
frequency of migrating cells was calculated by dividing counts of migrating cells by counts of motionless cells while 
analysing at least 85 cells. 

To analyse if the activation in the 3D migration assay has an impact on the abrogation of 

differences in migration capacity between lymphoid DC2 and cDC2, the activation status of 

lymphoid DC2 and control cDC2 was compared and the transwell migration experiment was 

repeated using CD11c enriched cells that have been activated with LPS for 18h prior to 

seeding them on the transwell. 

The activation status of the DC2 was analysed to compare if lymphoid DC2 and cDC2 are 

differentially activated by LPS, which can impact their migration capacity. DCs upregulate co-

stimulatory molecules on their surface after like CD40 CD80, CD83 and CD86 but also the 

chemokine receptor CCR7, which is a prerequisite for the migration towards CCR7 ligands. 

Therefore, the activation factors CD40 and CD86, as well as CCR7 were stained on the 

surface of the CD11c enriched cells after 18h culture with either medium or LPS and analysed 

by flow cytometry. All analysed markers, CD40, CD86 and CCR7 were highly upregulated on 
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DC2 after the culture with both LPS and medium only. The level of CD40, however, was yet 

increased in DC2 cultured with LPS compared to cells cultured with medium only whereas 

CCR7 staining intensity was even increased on cells cultured with medium only compared to 

LPS activated cells (Figure 39). The level of the activation markers CD40 and CD86 were not 

different between DC2 from Clec9acre/creRosaDTA and control mice suggesting that both cells 

were equally activated after the culture (Figure 39). Additionally, also the CCR7 levels were 

comparable between DC2 from Clec9acre/creRosaDTA and control mice (Figure 39). Lymphoid 

DC2, therefore, behave similarly to activation in culture with or without LPS in terms of 

upregulation of activation markers and CCR7 and therefore a possible defect in migration is 

not dependent on the differential activation status of the mice. 

 

Figure 39: Comparable regulation of activation markers on splenic DC2 from Clec9acre/creRosaDTA and 
control mice after culture for 18h. CD11c enriched splenocytes from Clec9acre/creRosaDTA and control mice were 
cultured in complete medium with or without LPS (200ng/ml) for 18h. Shown are overlaid histograms of DC2 gated 
as CD64-CD11c+MHCII+CD11b+CD24- cells for the markers CCR7, CD40 and CD86 for both conditions each. Grey 
traces represent the respective isotype control for the activation marker that has been stained on a control sample 
cultured with LPS. 

In a transwell experiment that was performed as described above with the difference that cells 

were seeded after culturing them for 18h in either medium alone or medium containing LPS, 

the cells migrated about 10 times more efficiently towards CCR7 ligands, independent of LPS 

however also the migration towards medium is highly increased implying a higher random 

migration after activation (Figure 40). In line with the fact that DC2 cultured for 18h in medium 

alone show similar activation markers as DCs stimulated with LPS in addition, cells from both 

conditions migrated at the same frequency (Figure 40). Interestingly, the lymphoid DC2 and 

cDC2 from Clec9acre/creRosaDTA and control mice respectively migrated at a similar frequency. 

(Figure 40). Therefore, the migration defect that has been observed in freshly isolated steady-

state lymphoid DCs has been abrogated after activation in culture.  
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Figure 40: Comparable migration of splenic lymphoid DC2 to CCR7 ligands after activation with LPS. CD11c 
enriched splenocytes from Clec9acre/creRosaDTA and control mice were cultured in complete medium with or without 
LPS (200ng/ml) for 18h. After the culture, cells were harvested and 105 cells were seeded into a transwell with 5μm 
pore size to test their ability to migrate towards a combination of both CCL19 and CCL21 (100ng/ml, each). Cell 
migration to the lower chamber was quantified after 2 hours using flow cytometry and counting beads (n=3). Each 
symbol represents one mouse; ns, not significant; * p<0.05. 

4.3.5 LYMPHOID DC2 SHOW INCREASED NECROSIS IN CULTURE AND INCREASED 

APOPTOSIS AFTER TRANSMIGRATION IN THE PRESENCE OF CCR7 LIGANDS 

Given the fact that the migration differences that have been observed in the crawl out assay 

and in the transwell migration of freshly isolated splenic DC2 were both depending on 

quantification of migrated cells after a certain time period and in the presence of CCR7 ligands, 

the differences can also be an artefact of increased cell death of lymphoid DC2 compared to 

cDC2 either due to faster turnover or due to their reaction to CCR7 ligands. Therefore, the 

frequency of apoptotic and necrotic cells was measured CD11c enriched cells that have been 

cultured for 2h in complete medium or in the presence of CCR7 ligands as well as in cells that 

have migrated through a transwell towards medium only, or medium containing CCR7 ligands 

using annexinV and propidium iodide (PI) staining. In this assay, double-negative cells are 

considered viable, whereas cells that stain for annexinV but not PI are apoptotic and double-

positive cells are necrotic (Figure 41, A) (Schutte, Nuydens, Geerts, & Ramaekers, 1998). 

The DC2 that have been cultured with medium with or without CCR7 ligands showed a higher 

frequency of apoptotic cells compared to freshly isolated cells (Figure 41, B). No difference 

was however observed between ex vivo isolated lymphoid DC2 and cDC2 from 

Clec9acre/creRosaDTA and control mice (Figure 41, B). Interestingly among the cells that have 

migrated through a transwell towards CCR7 ligands more apoptotic cells were found 

percentage-wise among the lymphoid DC2 (17.132.4%) compared to control cDC2 

(9.541.59%) (MeanSEM; Figure 41, B). These cells, however, were still quantified in the 

transwell migration assay, as they did not (yet) stain as dead cells and therefore do not explain 

the differences in migration frequency. Cells cultured with CCR7 ligands serve as the control 
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for the input cells to the transwell inlet. Here the percentages of apoptotic cells is very high 

after 2h in culture compared to ex vivo isolated cells, but no difference can be observed in 

apoptotic cells between lymphoid DC2 and cDCs (Figure 41, C). However, the percentage of 

necrotic cells is slightly increased in lymphoid DC2 cultured with medium or CCR7 ligands 

from 14.921.13% to 19.021.26% and 16.551.39% to 21.551.69%, respectively 

(MeanSEM; Figure 41, C). Therefore, it appears that lymphoid DC2 are more susceptible to 

cell death in culture compared to control cDC2.  

The results of the increased cell death of lymphoid DC2 in vitro impact the results of the 

previously shown experiments. Although the differences in cell death induction between DC2 

from Clec9acre/creRosaDTA and control mice are not as pronounced as the differences observed 

in DC migration, they still have to be considered to impact the outcome of assays that include 

culturing. Therefore, the previously shown reduction in migration of not activated splenic 

lymphoid DC2 can be explained by the increased cell death in the assay and not by a migration 

defect after all. 

 

Figure 41: Splenic lymphoid DC2 show increased apoptosis after transwell migration towards CCR7 
ligands and increased necrosis in lymphoid DC2 after culture. A. Representative gating on 
CD11c+MHCII+CD11b+CD24- cDC2 from ex vivo cells and CD11c enriched splenocytes cultured for 2h in complete 
medium to identify annexinV+PI- apoptotic and annexinV+PI+ necrotic cells B. Frequency of apoptotic and necrotic 
cells among DC2 from Clec9acre/creRosaDTA and control mice before and after migration through a transwell. CD11c 
enriched splenocytes from Clec9acre/creRosaDTA and control mice seeded on a transwell and migrated cells (towards 
medium or CCL19 and CCL21) were harvested after 2h as in the above experiments (Figure 37). DC2 were 
identified by flow cytometry as CD64-CD11c+MHCII+CD11b+CD24- cells and apoptotic and necrotic cells were 
identified based on annexinV and PI staining as in (A). Freshly isolated splenocytes (ex vivo) served as a control 
sample. C. Frequency of apoptotic and necrotic cells among DC2 from Clec9acre/creRosaDTA and control mice before 
and after or cultured in complete medium with or without both CCL19 and CCL21 for 2h. DC2 were identified by 
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flow cytometry as CD64-CD11c+MHCII+CD11b+CD24- cells and apoptotic and necrotic cells were identified based 
on annexinV and PI staining as in (A). Freshly isolated splenocytes (ex vivo) served as a control sample. n=9; 
Each symbol represents one mouse; ns, not significant; * p<0.05. 

4.3.6 THE LOCALIZATION OF THE LYMPHOID DC2 IN THE INGUINAL LN APPEARS 

DISTURBED IN IMMUNOFLUORESCENCE SECTIONS 

The migration of DCs is not only important for the transport of antigens from peripheral tissues 

upon activation, but also for the positioning of DCs within the lymphoid organs at steady state. 

The finding that freshly isolated, but not activated splenic DC2 migrate less towards CCR7 

ligands, therefore, implied that the correct positioning of the lymphoid DC2 is impaired. To 

analyse the localization of DC2 within the lymphoid organs, inguinal LNs were analysed by 

confocal fluorescence microscopy. To visualize the T-cell zone, T-cells were stained with CD3 

and to identify DC2 the markers CD11c, MHCII and Clec4a4 (clone 33D1) were used. 

Whereas CD11c and MHCII are staining all DCs, Clec4a4 is a specific marker to stain DC2 

(Dudziak et al., 2007). Preliminary data of 2 independent experiments show that in the 

analysed control LN, the T-cells zone can clearly be distinguished by the CD3 staining 

whereas the B-cells zones can be identified by the absence of CD3 staining and MHCII 

staining, as B-cells express MHCII. In the control iLN section, clusters of cells that stain for 

Clec4a4 can be found in the interphase between T- and B-cells zones, which correlates with 

the published localization of cDC2 to the interfollicular zones in the LNs as indicated by arrows 

in the Clec4a4 staining in Figure 42, A (Braun et al., 2011; Gerner et al., 2012; 2015; 

Schumann et al., 2010). The Clec4a4 staining in the iLNs of Clec9acre/creRosaDTA mice shows 

more and smaller clusters compared to the control lymph node that are more spread across 

the centre of the lymph node in the upper panel of Figure 42, B, but the second replicate 

shows comparable Clec4a4 distribution to the control iLNs (indicated by white arrow in each 

of the Clec4a4 staining panels). Additionally, the T-cell zone in the iLNs of Clec9acre/creRosaDTA 

mice shows a more condensed staining pattern which is indicated by arrows in the staining 

for CD3 in Figure 42, B. This could be indicative of a deviant organization within the lymph 

nodes of Clec9acre/creRosaDTA mice compared to control mice.  

From this analysis, it, therefore, appears that the lymph node organization in the 

Clec9acre/creRosaDTA mouse is abnormal. This could mean that defective positioning of 

lymphoid DC2 compared to CDP derived DC2 can have an effect on the LN structure 

especially in terms of the development of T-cell zones. One has to however also consider that 

DC migration might not be different between lymphoid DC2 and bona fide DC2 due to 

increased cell death in the migration assays, but the lymphoid DC2 are simply reduced in the 

skin of Clec9acre/creRosaDTA mice and following this, migratory DC2 are diminished in the LNs 

of Clec9acre/creRosaDTA mice. Therefore, the reduction of migratory DC2 could affect the LN 

structure. However, in Figure 42 a reduction of DC2 does not become evident when 
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comparing the Clec4a4 staining. On the contrary, the Clec4a4 in the Clec9acre/creRosaDTA iLN 

appears to stain more cells overall compared to the control iLN, which does not compare to 

the quantification of DC2 in the flow cytometry data shown in Figure 32. A quantification of 

the Clec4a4+ cells in this assay is however missing. Whether other factors that are relevant 

to ensure proper LN structure are different between Clec9acre/creRosaDTA and control mice has 

not been addressed yet and therefore no absolute interpretation can be given. 
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Figure 42: Immunofluorescence images of inguinal LN sections from control and Clec9acre/creRosaDTA 
mice.12μm iLN sections from 2 control (A) and 2 Clec9acre/creRosaDTA mice (B) were stained with MHCII-AF488 

(blue); CD3-BV421 (cyan), CD11c-AF647 (red); Clec4a4-anti-rat-AF594, scale bar 1000/ 500 μm; n=2. 
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5. DISCUSSION 

5.1 PRE-CDC SUBSET DISTRIBUTION DOES NOT ALWAYS CORRELATE TO DC 

SUBSET DISTRIBUTION IN TISSUES 

Recent publications claim that the pre-cDC population contains subpopulations that show pre-

commitment towards DC subsets already in the BM (Grajales-Reyes et al., 2015; Schlitzer et 

al., 2015). One aim of this thesis was to identify regulators of pre-cDC trafficking and to study 

if the homing of pre-cDCs to different peripheral organs is differentially regulated. Therefore, 

the existence of pre-committed subpopulations in the pre-cDC population in addition to the 

knowledge that the ratio of DC subpopulations varies between tissues, has led to the 

hypothesis that pre-committed pre-cDC subsets are differentially recruited to the different 

tissues. Differential recruitment could be necessary especially also in inflammation or cancer 

due to the different functions of the DC subsets and the identification of trafficking receptors 

that facilitate the migration gives important targets for pharmacological manipulation to 

improve the outcome of diseases. 

Although cells resembling pre-committed pre-cDCs were identified in various peripheral and 

non-peripheral tissues, the comparison of the pre-cDC subset distribution to the subset 

distribution found in the differentiated DC population showed no direct correlation in the 

thymus and in the kidney. These results have led to negate the hypothesis of differential 

recruitment of the pre-committed pre-cDC to the different tissues because this would include 

that the ratio of pre-committed pre-cDCs correlates with the DC subset ratioin the respective 

tissue. One potential critique point for the experiments performed is that the pre-cDCs have 

been identified based on similar marker expression of pre-cDCs that have been characterized 

only in lymphoid organs so far. It is, therefore, possible that all cells that were identified as 

pre-cDCs were in fact not pre-cDCs or contain contamination with other populations, which 

would erase the ability to judge if the pre-cDC subset distribution differs from the DC subset 

distribution. In the non-lymphoid organs, especially in the kidney, this is highly probable as the 

CD135 expression that ultimately defines the pre-cDC population is lower compared to the 

lymphoid organs, such as the spleen, which hampers proper identification. To ensure the 

purity of pre-cDCs, the identified gating strategy could be controlled with a differentiation study 

on sorted pre-cDCs from different tissues. Also, the thymus and kidney could be exceptional 

organs with different sets of DC subsets. In line with this, cDC1 in the thymus have been 

shown to have a lymphoid origin, therefore it is possible that the demand for a pre-cDC1 in 

the thymus is reduced and the subset correlation to the differentiated cDC1 not applicable 

(Corcoran et al., 2003; Wu et al., 2001). On the other hand, the recruitment of pre-cDCs to the 
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thymus via the CCR7-CCL21 axis have been shown to be relevant for the cDC1 development 

in the thymus but cDC2 have been shown to develop extrathymically and migrate to the 

thymus dependent on CCR2 transporting self-antigens necessary for negative selection 

(Cosway et al., 2018; Li, Park, Foss, & Goldschneider, 2009; Naik et al., 2005; Wu & 

Shortman, 2005). This would, therefore, interfere with the hypothesis that pre-committed pre-

cDCs have to seed the tissue in the ratio that is found for DCs in the respective tissue. From 

the correlation of the pre-cDC and DC subsets alone it cannot definitely be judged whether 

pre-committed pre-cDCs are differentially recruited to the different peripheral tissues. For this 

reason, but also because pre-cDC subpopulations are even less frequent than the bulk pre-

cDC population in the different organs, the hypothesis was declined and further studies on 

pre-cDC trafficking were performed on bulk pre-cDCs. Interestingly also a recent study that 

has been published in the course of this thesis has addressed differences in chemokine 

receptor expression in pre-committed pre-cDC subsets in the BM and indeed found 

differences in the recruitment of pre-cDC1 and pre-cDC2 (S. J. Cook et al., 2018). They show 

that CCR5 is highest expressed in uncommitted SiglecH+Ly6C+ pre-cDCs, CXCR1 is highest 

expressed in pre-cDC2 and CXCR3 is highest expressed in pre-cDC1. Furthermore, they 

show that CXCR3 is important for the recruitment of pre-cDC1 to tumours, but not other 

tissues, such as spleen, skin, and skin draining LN, by showing a reduction of tumour 

infiltrating cDC1 in B16 melanomas in CXCR3-/- mice and mixed BM chimeras (S. J. Cook et 

al., 2018). Cook et al. does however not address differential recruitment of pre-cDCs to 

different tissue, as this study was aiming at, but concentrates on general differences in the 

recruitment of pre-cDC1 and pre-cDC2 in tumour development. The fact that differential 

recruitment is the topic of other publications proves the validity and necessity of studying 

differences in the regulators for trafficking of pre-committed pre-cDCs as it emphasizes the 

role for pre-cDC recruitment in fighting diseases, such as cancer here. However, differential 

recruitment of pre-cDCs seems not to be necessary to establish the DC subset distribution in 

the peripheral tissues. 

5.2 DIFFERENTIAL RECRUITMENT OF PRE-CDCS TO DIFFERENT PERIPHERAL 

TISSUES  

One aim of this thesis was to identify trafficking receptors that facilitate the migration of pre-

cDCs to different peripheral organs following the hypothesis that pre-cDCs are differentially 

recruited to different tissues. This could provide a target to manipulate recruitment in different 

types of diseases. For this purpose, BM MDPs, CDPs, and pre-cDCs and well as pre-cDCs 

from spleen, mLN, thymus, and lung were screened for the expressional profile of 96 targets 

including mostly trafficking receptors. The organs were chosen to cover both lymphoid and 

non-lymphoid organs to find potential differences in recruitment. Additionally, blood was 
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considered a very interesting organ for comparison as well as this is the organ where the pre-

cDCs actually traffic though, but the very low frequency and therefore pre-cDC yield did not 

allow the analysis of this, particularly interesting organ. 

Using a high throughput qPCR screening for trafficking receptors comparing pre-cDC from 

different organs, 39 potentially relevant migration-related receptors were identified in all pre-

cDC from different organs. Interestingly some of these identified receptors show expression 

differences between organs suggesting that they are specifically relevant for the migration to 

the specific organ. In further experiments, the expression differences of the trafficking 

receptors will have to be verified on the mRNA level again and furthermore also on the protein 

level using flow cytometry. Additionally, also their impact on the trafficking of pre-cDC will have 

to further be proven by in vitro and in vivo studies using ligands, inhibitors, or receptor/ ligand 

knock-out mice for the respective receptor. Alternatively, inducible DC depletion and 

surveillance of DC replenishment with and without receptor blockage can be used. 

Furthermore, comparing the differences in receptor dependence of pre-cDC recruitment that 

were found here in steady-state to the recruitment in different kinds of diseases, such as 

bacterial or viral infections will be especially interesting as in these situations require a faster 

replenishment of DCs and potential organ-specific recruitment of pre-cDC. 

At the beginning of this study, little was known about the trafficking of DC progenitors, however 

in the course of the study, Nakano et al published a study that identified trafficking receptors 

that are relevant for pre-cDC trafficking (H. Nakano et al., 2017) and Cook et al show 

differences in the trafficking of uncommitted pre-cDCs in the BM and pre-cDC1 and pre-cDC2 

in the context of tumor infiltration (S. J. Cook et al., 2018). It is therefore already known that 

CXCR4 is important for the retention of pre-cDC in the BM. This matches the findings for other 

cell types showing CXCR4 as a retention marker for HSPCs and B-cells in the BM (Ma, Jones, 

& Springer, 1999; Mazo, Massberg, & Andrian, 2011; Zou, Kottmann, Kuroda, Taniuchi, & 

Littman, 1998). In the q-PCR screening of CXCR4 in this thesis, CXCR4 was indeed higher 

expressed in CDPs compared to BM pre-cDCs, which supports the findings of earlier studies 

as it implies that, once this receptor is lost from the surface in the development from CDP to 

pre-cDCs, the retention is also lost and the cells can egress from the BM. Interestingly though, 

the highest expression of CXCR4 in the screening of pre-cDCs from different organs was 

found in the lung. This implies that the CXCR4 can also be upregulated again and presumably 

facilitates pre-cDC retention to the lung. 

As chemokine receptors that actually facilitate the migration of pre-cDCs, CCR2 and CX3CR1 

have been shown to have compensatory roles for accumulation of pre-cDC in the lung in 

steady-state whereas only CCR2 but not CX3CR1 is important for the migration of pre-cDCs 
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to the inflamed lung in a LPS inhalation model (H. Nakano et al., 2017). In this thesis, CCR2 

and CX3CR1 have been shown to be highest expressed in pre-cDCs of the spleen and only 

lower expressed in the lung. Nakano et al have also compared the expression of these 

receptors in the pre-cDCs of spleen and lung, but only proved their expression and did not 

analyse differences in the expression. However, in their studies on receptor knock out mice 

or BM-chimeras of CCR2 and CX3CR1, a decrease in pre-cDC numbers was only shown for 

the lung, but not for the spleen indicating an organ-specific recruitment. This differential 

recruitment can, for example, be explained by a difference in the gradient establishment and 

production of the chemokines in the target organ, but this has not been investigated so far. 

It has also been shown, that CXCR1 is highest expressed in pre-cDC2 and CXCR3 is highest 

expressed in pre-cDC1 in comparisons of chemokine receptors on pre-cDC subsets in the BM 

(S. J. Cook et al., 2018). Furthermore, CXCR1 has been shown to be important for the tumour 

infiltration of pre-cDC1. In the screening in this study, CXCR1 was also be identified on pre-

cDCs in all analysed organs with relatively higher expression in mLN and lung, CXCR3 was 

not found to be expressed in pre-cDCs of all analysed organs, possibly because the pre-cDC1 

are low in frequency among the bulk pre-cDCs, or due to organ differences. 

About the recruitment of pre-cDC to the thymus, Cosway et al. have identified pre-cDCs in the 

thymus and show that the cDC1 pool is dependent on the recruitment of pre-cDCs to the 

thymus via the CCR7-CCL21 axis (Cosway et al., 2018). CCR7 has not been identified as a 

receptor that is expressed on pre-cDCs from all analysed organs in this screen and is therefore 

not included in the list of potential targets. This does not exclude that CCR7 cannot be 

specifically relevant for the recruitment of pre-cDCs to the thymus and suggests that for finding 

very specific trafficking receptors, the analysis can be further expanded. The role of the 

identified migration-related receptors on pre-cDCs has not been investigated so far but the list 

provides a potential resource for future studies. 

5.3 DC DEPLETION IN CLEC9ACRE/CREROSADTA MICE LEADS TO REPLENISHMENT 

OF DC2 BY PHENOTYPICALLY SIMILAR CELLS OF LYMPHOID ORIGIN  

Although cDCs are generally thought to derive from myeloid progenitors in steady-state 

(Auffray et al., 2009; Manz, Traver, Akashi, Merad, Miyamoto, Engleman, et al., 2001a), 

several studies have reported that lymphoid progenitors can give rise to cDCs in vitro as well 

as in adoptive transfer experiments (Corcoran et al., 2003; Izon et al., 2001; Sathe, Vremec, 

Wu, Corcoran, & Shortman, 2013; Wu et al., 2001). This study provides additional evidence 

that cDCs can develop from an alternative path using Clec9acre/creRosaDTA mice as a model to 

constitutively deplete cDC progenitors based on the expression of Clec9a. Other than 
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expected, cells arise in Clec9acre/creRosaDTA mice that resemble cDC2 phenotypically and show 

only minor differences in cytokine expression after activation. However, the cells that resemble 

cDC2 in Clec9acre/creRosaDTA mice show somatic rearrangements of the IgH locus, which is 

indicative of a lymphoid origin and are therefore called lymphoid DC2 here. The working 

hypothesis is illustrated in Figure 43. In general, different ways of defining cell populations 

can be applied, typically cells are defined as a separate population based on their function, 

phenotype or origin. One often applied strategy to classify mononuclear phagocytes is to 

identify them based on their developmental origin. As this study shows that lymphoid DCs do 

not derive from classical DC progenitors this excludes them from this definition of DCs 

although they are phenotypically similar to bona fide cDC2 (Ginhoux, Guilliams, & Naik, 2016; 

Guilliams et al., 2014; Schraml & Reis e Sousa, 2015). Therefore, more research is required 

for lymphoid DC2 to better understand their developmental origin and function to be able to 

assign it to a particular cell population.  
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Figure 43: Scheme for lymphoid progenitors filling the cDC2 niche when myeloid DC precursors are lost 

in Clec9acreRosaDTA mice. 

Within this study, only the development of cDC2 but not cDC1 can be analysed as cDC1 

express Clec9a in the differentiated state and therefore cDC1 will be depleted independent on 

the progenitor in Clec9acre/creRosaDTA mice. Theoretically, lymphoid progenitors could also give 

rise to cDC1 in Clec9acre/creRosaDTA mice, but they would immediately be depleted after they 

start expressing Clec9a. To analyse the progenitors with respect to cDC1, other models need 

to be chosen. 

It is still unclear whether lymphoid DC2 develop in Clec9acre/creRosaDTA mice as a consequence 

of the constitutive depletion of the DC throughout development. It was shown that young 
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Clec9acre/creRosaDTA mice still show efficient depletion of cDC2 and the cDC2 in the 

Clec9acre/creRosaDTA mice only appear with age (Salvermoser et al., 2018). Interestingly, the 

increase of cDC2 in Clec9acre/creRosaDTA mice goes in line with the establishment of 

myeloproliferation. To find out if lymphoid DC2 also appear later in life when DC progenitors 

are depleted over a longer time period, an inducible depletion in Clec9acre/creRosaDTR mice 

could be utilized. This, however, is not practicable because mice have been shown to produce 

antibodies against repeated DT doses over time (Rombouts et al., 2017). Ultimately, it will be 

interesting to find a physiological situation in which lymphoid DC2 develop either to ensure the 

DC population replenishment with functional redundancy or with functional differences similar 

to how situation adapted inflammatory monocytes are produced in response to inflammatory 

stimuli (Yáñez et al., 2017) to mediate specific immune functions. This however also implies 

that lymphoid DC2 are functionally different from CDP derived cDC2.  

5.4 POTENTIAL PROGENITORS OF DC2 IN CLEC9ACRE/CREROSADTA MICE 

5.4.1 DC PROGENITORS 

It has not been fully investigated which progenitor finally gives rise to the lymphoid DC2 in 

Clec9acre/creRosaDTA mice. Although CDPs were found to be decreased and pre-cDCs almost 

absent in in the BM and spleen of Clec9acre/creRosaDTA mice, they were not fully depleted and 

thus it cannot be excluded that CDPs escape the depletion or the remaining pre-cDCs are 

sufficient to replenish the cDC2 pool. Nevertheless, sorted pre-cDCs from Clec9acre/creRosaDTA 

mice in contrast to control pre-cDC were unable to produce DC outcome in Flt3L culture. This 

assay, however, is limited by the very low cell number of pre-cDCs in the DTA mice and 

furthermore could be influenced by lower CD135 expression in all CD11c+MHCII- cells, which 

could affect the identification of pre-cDCs in the first place. But also, the response to Flt3L, the 

ligand for CD135 in the cultures could be affected by lower CD135 levels on cells identified as 

pre-cDCs in Clec9acre/creRosaDTA mice. TBM gave rise to cDCs in Flt3L cultures as well as in 

GM-CSF cultures as is expected as the TBM also contains other progenitors, such as 

lymphoid progenitors. CDPs and MDPs do not show reduced CD135 levels on their surface, 

in contrast to pre-cDCs do. Nevertheless, both CDPs and MDPs, which were sorted from 

Clec9acre/creRosaDTA mice, give rise to some DC2 in Flt3L and GM-CSF cultures, however, the 

yield is significantly lower compared to CDPs and MDPs sorted from control mice. This 

assumes that some DC progenitors escape the depletion and still produce some cDC2 but 

also shows that the proliferation in these progenitors is not increased enough to yield 

equivalent numbers of DC2 as have been observed in the spleen of Clec9acre/creRosaDTA mice. 

The reason for MDPs and CDPs giving DC progeny at all in the in vitro culture could be that 

in this artificial system the progenitors proliferate very fast. This could be responsible for the 
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escape, as the cre has been shown to be less efficient in rapidly cycling cells (Jakubzick et 

al., 2008; Ye et al., 2003; Yona et al., 2013). Finally, escaping myeloid DC progenitors in 

Clec9acre/creRosaDTA mice does not explain why at least a fraction of the DC2 in 

Clec9acre/creRosaDTA mice shows D-J rearrangements. An explanation for lymphoid DCs having 

DJ-rearrangements independent of their progenitor would be that they themselves start to 

express RAG1 due to differences in the environment in Clec9acre/creRosaDTA mice. The 

microarray analysis in Salvermoser et al., however, shows no RAG1 gene expression in the 

lymphoid DC2. Another explanation for D-J rearrangements in DCs is that they derive from 

RAG1 expressing myeloid progenitors, which have been described by Sathe et al. (Sathe et 

al., 2013). This RAG-1 expressing myeloid progenitor is still a possible progenitor of the, in 

this case wrongly termed, “lymphoid DC2”, which requires further investigation. 

5.4.2 MONOCYTES AND OTHER MYELOID PROGENITORS 

Monocytes are known to differentiate into monocyte-derived DCs and they have been shown 

also increased in Clec9acre/creRosaDTA mice in the context of myeloproliferation, which is a 

reported phenomenon in mice lacking both cDC1 and cDC2 (Hildner et al., 2008; Ohta et al., 

2016). This makes monocytes a potential candidate for the progenitor of lymphoid DC2 in 

Clec9acre/creRosaDTA mice. DCs have however been identified as CD64- cells with the purpose 

to exclude monocyte-derived cells. Additionally, transcriptomic analyses were performed to 

compare bona fide DC2 and lymphoid DC2 in Salvermoser et al., 2018. Here, microarray data 

from YFP+ DC2 from Clec9acreRosaYFP and lymphoid DC2 from Clec9a+/creRosaDTA mice were 

compared (Salvermoser et al., 2018). YFP+ Clec9acreRosaYFP mice were chosen as they show 

Clec9a expression history, which proves their CDP origin. This transcriptomic analysis has 

showed no significant similarities of lymphoid DC2 to published transcriptomes of monocytes 

(Salvermoser et al., 2018). Furthermore, monocytes belong to the myeloid lineage, which does 

typically not have a RAG1 expression history and no IgH receptor rearrangement. Therefore, 

monocytes are unlikely to be the progenitor of lymphoid DC2. 

5.4.3 PLASMACYTOID DENDRITIC CELLS 

Another explanation for the origin of lymphoid DCs is that pDCs convert their phenotype and 

function to resemble cDC2. This would explain the DJ-rearrangements that were found in the 

lymphoid DCs as pDC are known to have DJ-rearrangements because they are known to be 

(at least in part) derived from lymphoid precursors (Corcoran et al., 2003; Rodrigues et al., 

2018; Sathe et al., 2013). The lymphoid origin of pDCs is potentially the reason why pDCs are 

still present in Clec9acre/creRosaDTA mice although pDCs express DNGR-1 at low levels in the 

differentiated population in control mice. Additionally, pDCs downregulate the expression of 

DNGR-1 in Clec9a+/creRosaDTA mice compared to control mice. Generally, cells are not thought 
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to convert to each other but trans-differentiation and trans-determination are known concepts 

for plasticity of cells (Crompton, Clever, Vizcardo, Rao, & Restifo, 2014) and also pDCs have 

been shown to be able to convert to DCs when the major defining transcription factor E2-2 is 

deleted. This has also been recapitulated in a more physiological setting during viral infection 

in some but not all studies on the topic (Ghosh, Cisse, Bunin, Lewis, & Reizis, 2010; Liou et 

al., 2008; Manh, Alexandre, Baranek, Crozat, & Dalod, 2013; Zuniga, McGavern, Pruneda-

Paz, Teng, & Oldstone, 2004). The development in Clec9acre/creRosaDTA mice is potentially 

already disturbed due to increased serum Flt3L levels and eventually also other growth factors 

that have not been tested so that a conversion from one cell to another can potentially happen. 

Principle component analyses on microarray data comparing bona fide CDP derived cDC2 

and lymphoid DC2 however showed that lymphoid DC2 did not cluster closer to published 

datasets for pDC and therefore does not argue for pDCs as precursors of lymphoid DC2 

(Salvermoser et al., 2018). To finally exclude the contribution of pDCs to the development of 

lymphoid DC2, pDCs could be additionally depleted in Clec9acre/creRosaDTA mice, for example, 

using antibody-mediated depletion with an α-PDCA-1 antibody. 

5.4.4 COMMON LYMPHOID PROGENITORS 

The current hypothesis for the progenitor of lymphoid DC2 in Clec9acre/creRosaDTA mice is that 

lymphoid progenitors, such as CLPs give rise to DC2 when the myeloid progenitors are 

impaired. This is likely because lymphoid progenitors express RAG1 and following that, DJ-

rearrangements occur as an early event in the development of the B-cells receptor. This study, 

therefore, suggests that DC-poiesis can be taken over by lymphoid progenitors when the 

myeloid progenitors are depleted. CLPs have been shown to develop into DCs in vitro as well 

as in adoptive transfer studies (Izon et al., 2001; Manz, Traver, Miyamoto, Weissman, & 

Akashi, 2001b; Welner et al., 2009; Wu et al., 2001). The development of DCs from the 

lymphoid branch also depends on the growth factor Flt3L as Flt3L deficient mice lack all cDCs 

(Ginhoux et al., 2009; McKenna et al., 2000) and this also explains the development of DCs 

from TBM in Flt3L cultures. Therefore, CLPs in the Clec9acre/creRosaDTA mice could either be 

triggered by the disturbed growth factor environment, such as the high levels of Flt3L levels in 

the serum or by the open DC niche that needs to be filled. A lack of cDCs could again also 

have an impact on the growth factors as DCs are considered to act as a sink for Flt3L (Birnberg 

et al., 2008), which goes along the hypothesis that the cDC differentiation is homeostatically 

regulated by the size of the cDC pool (Hochweller et al., 2009; Kabashima et al., 2005). 

Additionally, CLPs showed a trend to be increased in Clec9acre/creRosaDTA compared to control 

mice though more replicates would be required to ensure the results. An increase in the CLP 

population could argue for a demand of them to fill the DC niche in Clec9acre/creRosaDTA mice 

but it could also be a secondary effect of increased FLt3L that induces more proliferation in 



 Discussion 

 84 

this population that also expresses the receptor CD135. Interestingly, although the CLP 

population seems to be increased, the CD8+ T-cells are reduced in Clec9acre/creRosaDTA mice 

(Figure 15). Although (Birnberg et al., 2008) claim that T-cell development is not affected by 

the DC depletion in CD11c-DTA mice, other studies have reported increased frequencies of 

CD4+ thymocytes and higher numbers of Th1 and Th17 cells in CD11c-DTA mice(Ohnmacht 

et al., 2009) or that IL-2 dependent T-regs are diminished in a similar mouse model CD11c-

DTR (Stolley & Campbell, 2016). cDC1 depletion and following loss of especially CD8+ T-cell 

proliferation can explain the differences in the CD8+ T-cell numbers, (Fukaya et al., 2012) 

however T-cell responses should not occur in a non-infected mouse. To prove CLPs as the 

true progenitor of lymphoid DCs, adoptive transfer studies would be required. These studies 

have already been successfully performed by CLP transfers into irradiated mice that 

demonstrably produced DCs progeny (Izon et al., 2001; Manz, Traver, Miyamoto, Weissman, 

& Akashi, 2001b; Traver et al., 2000). It is, however, unknown so far in which physiological 

settings CLPs will give DC progeny.  

5.5 THE PHYSIOLOGICAL RELEVANCE OF FUNCTIONAL DIFFERENCES 

BETWEEN DENDRITIC CELLS WITH DIFFERENT ORIGIN 

The redundancy of developmental pathways underlined the importance of DCs as nature has 

developed a back-up plan for lymphoid emergency DC-poiesis that kicks in when myeloid DC 

progenitors are impaired. Functional differences between DC2 that derive from myeloid 

progenitors in control mice and lymphoid progenitors in Clec9acre/creRosaDTA mice would argue 

for the hypothesis that these cells are produced in different physiological settings that require 

differentially adapted cell types although they phenotypically overlap and seem to fill the same 

niches. This study has therefore addressed different functions of DCs from cytokine production 

and T-cell activation to migration and localization.  

5.5.1 CYTOKINE PRODUCTION 

After stimulation of DC2 from Clec9acre/creRosaDTA and control mice in vitro with LPS or CpG, 

only slight differences could be observed. More specifically, the percentage of TNFα 

expressing but not IL-12 expressing DC2 that was reduced by about 0.5% in DC2 from 

Clec9acre/creRosaDTA mice compared to control cDC2 when stimulated with LPS but not CpG. 

This very specific difference in cytokine production could indicate a functional impairment of 

lymphoid DC2 in the defence against infections with gram-negative bacteria, for example. This 

could further impair the capacity of lymphoid DC2 to activate T-cells or further induce innate 

immune functions. Following up on the functional differences in cytokine production and 

furthermore also T-cell stimulation of DC2 from Clec9acre/creRosaDTA and control mice will be 

important to understand the dual origin of the cells. 
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5.5.2 MIGRATION 

Migration of DCs is very important for the transport of antigen and therefore activation of T-

cells and positioning of the DCs within the lymphoid tissues. First observations, that migratory 

DC2 are about 4-fold reduced in the skin draining inguinal and auricular LN but not in the 

mesenteric LN of Clec9acre/creRosaDTA in comparison to control mice suggested a reduced 

migration of lymphoid DC2 specifically from the skin. DCs in the skin have been identified 

without excluding CD64+ cells from the analysis as the identity of CD64+ cells in steady-state 

LNs is unclear, nevertheless in Clec9acre/creRosaDTA mice, a CD64+CD11b+ population is 

increased. The origin of this CD64+ population is unclear but due to the marker expression, a 

monocytic origin is likely and also matches the myeloproliferative disease in 

Clec9acre/creRosaDTA mice. Of note, a fraction of this population seems to contaminate the DC 

gates, which implies that the decrease in migratory DC2 in Clec9acre/creRosaDTA mice is even 

stronger if this unknown population was excluded from the analysis. This has not been done 

for this experiment as published gating strategies do not include CD64 in the gating strategy 

on LNs and the identity of the CD64+ population is unclear. Additional data for reduced 

migration of lymphoid DC2 is that they migrate about 5 times less out of the ear towards the 

CCR7 ligand CCL19 in a crawl-out assay (Figure 34). The conclusion that the cells actually 

migrate less can only truly be stated on the fact that the DC2 numbers in the ears of 

Clec9acre/creRosaDTA and control mice are equal like they have been found to be equal in the 

spleen but in fact they were found to be reduced by about 50% in Clec9acre/creRosaDTA mice 

(Figure 36). The fact that the discrepancy in the total DC2 counts in the ear (50%) are lower 

than the discrepancies in cells migrating out of the ear in the crawl out assay (20%) and also 

in migratory DCs in the skin draining LN (25%) still suggests that lymphoid DC2 have a 

reduced migratory capacity but omits further conclusions.  

In the spleen, DC migration is necessary for the correct localisation in steady-state and the re-

localization after antigen encounter and inflammation (Idoyaga et al., 2009; Reis e Sousa et 

al., 1997). Under steady-state conditions, splenic lymphoid DC2 showed less migration in a 

transwell assay. Typically, however, migration of DC is measured after activation with the 

gram-negative endotoxin LPS, which makes sense in a way that DCs upregulate CCR7 and 

other activation markers after stimulation and migrate upon a certain stimulus. Activation of 

the cells was monitored by staining of activation markers on the DC surfaces and was found 

comparable between DC2 from Clec9acre/creRosaDTA and control mice. It has been previously 

shown that ex-vivo DCs become activated by simple isolation techniques and following culture 

or transfer into mice (Montoya et al., 2002; Schlecht, Mouriès, Poitrasson-Rivière, Leclerc, & 

Dadaglio, 2006). Therefore, it was expected that the control cells that were cultured with 

medium alone also showed an increase in activation markers CD40 and CD86 (Figure 39). 
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Interestingly, after activation in culture with or without LPS, the DCs migrated about 10 times 

more though the transwells towards both medium and CCR7 ligands, but the differences 

between DC2 from Clec9acre/creRosaDTA and control mice were abrogated, as well as no 

differences could be observed in microscopic analyses of 3D migration in a collagen matrix 

(Figure 38; Figure 40). It is surprising that steady-state splenic lymphoid DC2 migrate less 

than steady-state control DC2 but upon activation, both cell types migrate similar, but this 

could be explained by the intensity of the stimulus. When DCs mature for example by 

recognizing LPS with the toll like receptor 4 (TLR4), they activate many downstream pathways 

to induce the expression of co-stimulatory molecules, the production of pro inflammatory 

cytokines. It is possible that the cells are at the limit of their activation and the program that 

follows the activation changes the ability of the cell so much that any previous difference in 

function is masked by the adopted program. It is nevertheless possible that by varying external 

parameters, such as different or shorter activation period, which is more physiological, 

differences in migration capacity between DC2 from Clec9acre/creRosaDTA and control mice can 

be observed also after activation. Furthermore, in transwell experiments that were performed 

after activation of the cells, also the undirected migration towards medium was with 20% very 

high. This implies that chemokinesis is increased in activated DC2, which could potentially 

mask possible differences in chemotaxis of DC2 from Clec9acre/creRosaDTA and control mice. 

Interestingly also, less LPS activated lymphoid DC2 migrated towards medium only 

suggesting them to be defective in chemokinesis. In retrospect, however, the differences 

observed in migration of steady-state splenic lymphoid DC2 can also be explained by 

differences in the rate of dying cells as more necrotic lymphoid DC2 from Clec9acre/creRosaDTA 

mice were found after culture in medium compared to CDP-derived DC2 from control mice 

(Figure 41). 

The mechanism why migration might be impaired in steady-state lymphoid DCs still has to be 

addressed, so far it can only be excluded that differences in CCR7 expression on lymphoid 

and bona fide DC2 in the migratory DC2 in the LNs were responsible and CCR7 levels, as 

well as some activation markers on activated splenic DC2, showed no differences as well. It 

would, however, be more interesting to compare CCR7 levels on steady-state or activated 

DC2 from peripheral tissue, such as the skin because DC2 that have migrated to the draining 

LN have succeeded the migration. Furthermore, although CCR7 signalling differs in response 

to either CCL19 or CCL21 no differences were observed in the migration towards both stimuli 

when tested in steady-state migration of splenocytes through transwell pores. This suggests 

that both signalling pathways could presumably be affected in lymphoid DC2.  

For the biology of the redundant development of DC2 this implies that lymphoid DC2 might 

show differences in migration in steady-state and potentially other certain circumstance but 
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not in infection with gram negative bacteria (LPS). DC migration in steady state is happening 

in very low levels compared to inflammation, nevertheless it is prerequisite for induction of 

tolerance to peripheral antigens (Audiger, Rahman, Yun, Tarbell, & Lesage, 2017; Förster et 

al., 2008; Vitali et al., 2012). In this context, an advantage of CDP derived DC2 to migrate 

better in steady-state makes sense, as, in steady-state, DC2 derive from CDPs and lymphoid 

DCs develop only in the absence of myeloid DC progenitors and potentially in inflammatory 

conditions where migration is supposed to happen upon activation anyways.  

5.5.3 CELL DEATH 

The observations that have led to the conclusion that steady-state lymphoid DC2 migrate less 

towards CCR7 ligands all depended on counting of cells after migration. The finding that 

lymphoid DC2, in fact, show higher necrosis than bona fide cDC2 when cultured for 2h with 

either medium of CCR7 ligands, however, levers out this argumentation and points toward a 

different phenotypic divergence. Higher or faster induction of necrosis in lymphoid DC2 

compared to CDP derived DC2 implies that the cells are more susceptible to stress situation, 

such as the isolation or enrichment process for unknown reasons. In fact, the analysed 

activation markers showed no difference but were also measured at a later timepoint. The 

difference in necrosis, however, is around 30% but the difference in migration of steady-state 

lymphoid DC2 is around 50% and therefore the difference in necrosis does not account for all 

the differences observed in the migration assay. To judge if steady-state lymphoid DC2 have 

an impaired capacity to migrate, the migration can be observed in live-cell imaging as has 

been performed for the activated splenic DC2 because here not only the counts of migrated 

cells can be analysed but also differences in velocity, directionality, and shape of the cells can 

be observed.  

5.5.4 LOCALIZATION 

Migration of DCs has an impact on their localization within lymphoid organs. The Clec4a4 

staining pattern in one of the two analysed iLN section of Clec9acre/creRosaDTA is more 

dispersed throughout the LN and shows smaller clusters in comparison to the few Clec4a4 

clusters that localize to the interfollicular zones in the control iLN section. This points towards 

a failure of the lymphoid DC2 to migrate to the correct localization in the B-cell T-cell 

interphase and therefore argues for a migration defect of lymphoid DC2, however, in the 

second replicate the distribution of Clec4a4+ cells seems to be as expected. Nevertheless, the 

failure of lymphoid DC2 to localize to the T-cell zone in the lymph nodes could have a major 

influence on the inflammatory response, such as T-cell activation in Clec9acre/creRosaDTA mice. 

Unexpectedly, the organization in Clec9acre/creRosaDTA iLN of in the analysed section seems 

abnormal due to a more condensed T-cell zone and a large centre part that is not stained with 
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CD3 but with MHCII and densely packed with CD11c+ cells, which could be an abnormally 

enlarged medullary sinus and medullary cord region. The medullary sinus and medullary cord 

is known to contain medullary sinus/ medullary cord macrophages, respectively, which can in 

part explain the CD11c staining found in the enlarged centre region in the Clec9acre/creRosaDTA 

iLN, however, these macrophages are typically classified as CD11clow cells (Gray & Cyster, 

2012). The deviant LN organization indicates a generally aberrant LN organization in 

Clec9acre/creRosaDTA mice that can be a secondary effect of the dysregulation of growth factors 

like Flt3L. Furthermore, Figure 15 shows that CD8+ T-cells are indeed diminished in the 

spleen of Clec9acre/creRosaDTA mice indicating that the development of T-cells is dysregulated 

in Clec9acre/creRosaDTA mice and can therefore also be the reason for the altered assembly of 

T-cell zones in the LN of Clec9acre/creRosaDTA mice although the quantification of B-and T-cells 

has not been analysed in the LNs in this study. Figure 42 however only shows two analysed 

LN sections and it is possible that, for both LN sections, the depth of the sections is not equal 

in the Clec9acre/creRosaDTA and LN section, which certainly has an effect on the organization. 

To confirm the aberrant LN organization and localization of lymphoid DC2 further localization 

analyses on LN or spleen sections need to be performed.  

Although no final conclusions can be drawn from the localization of the lymphoid DC2 in the 

LN before further confirmation, the data suggests that a lymphoid DC2 in the iLN of 

Clec9acre/creRosaDTA mice do not properly localize to the interfollicular region. This implies that 

lymphoid DC2 are less capable of presenting antigens to T-cells due to lacking contact and 

further suggests that lymphoid DC2 are inferior in inducing T-cell responses. This hypothesis 

has to further be tested using in vivo models for T-cell proliferation after antigen exposure. 

The distinct functions of lymphoid DC2 and bona fide cDC2 that have been observed in terms 

of TNFα production after LPS stimulation and potentially migration in steady-state, but also 

the fact that lymphoid DC2 are more susceptible to cell death support the hypothesis that 

lymphoid DC2, which replace cDC2 in the in the artificial setting of the Clec9acre/creRosaDTA DC 

depletion model, are not redundant but they have a distinct physiological role. This distinct 

role is presumably required in certain inflammatory settings, which trigger the differentiation 

of DC2 from lymphoid progenitors. Future studies will be required to confirm the putative 

functional differences between lymphoid derived DC2 and CDP derived DC2 and identify 

under which physiological settings CDP derived DC2 are replaced by lymphoid DC2. This 

basic knowledge will help to understand when and why developmentally distinct DCs are 

recruited and provide a basis to redirect immune responses. 
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