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1 Introduction 

This chapter was partially adapted from: 

B. Steinborn, P. Hirschle, M. Höhn, T. Bauer, M. Barz, S. Wuttke, E. Wagner, U. 
Lächelt. Core-Shell Functionalized Zirconium-Pemetrexed Coordination Nanoparticles 
as Carriers with a High Drug Content. Advanced Therapeutics 2019, 2, 1900120. 

B. Steinborn, U. Lächelt. Metal-Organic Nanopharmaceuticals. Pharmaceutical 
Nanotechnology 2020, Manuscript accepted. 

 

1.1 Chemotherapy and drug delivery by nanotechnology 

Due to the wonders of modern life sciences and an overall increase in living standards, 

life expectancies in the industrialized world have improved considerably within the last 

100 years and are expected to continue doing so.[1] Currently, the cumulative cancer 

lifetime risk for an individual is estimated at about 44%,[2] however, this number is 

expected to climb since cancer typically displays elevated incidence rates at older 

ages.[3] 

Thankfully, our understanding of nanotechnology, medicine, physics, cancer biology 

and thereby possible points of intervention also grew significantly during the last 

decades and has led to the exploration of new curative strategies as illustrated by 

continuous progress with innovative concepts such as photodynamic therapy[4], 

antibodies[5], kinase inhibitors[6], radiotherapy[7], immunotherapy[8], antisense 

oligonucleotides[9] and chemotherapeutic nanoformulations.[10] 

However, additional approaches are always needed since the small molecule 

chemotherapeutic treatment schemes frequently used in the clinic often display 

unfavorable pharmacokinetic properties leading to rapid drug excretion, limited tumor 

accumulation and major systemic toxicity. As a consequence, efficient tumor treatment 

requires high loading doses but the severe dose-limiting off-target effects determine a 

narrow therapeutic window, impair patient benefits in the clinical practice[11] and 

negatively affect therapeutic outcomes. 
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Such unfavorable pharmacokinetic properties also affect commonly used small 

molecule drugs and cannot be changed without derivatization which would very likely 

also impact their pharmacodynamics. However, nanotechnology offers a solution. 

The first encounters with nanotechnology can be traced back to at least 300 – 400 A.D. 

where gold-silver alloyed nanoparticles, most likely serendipitously discovered and not 

understood at the time, gave the Lycurgus cup its fascinating ability to change color 

upon illumination.[12] Damascus steel swords forged at a similar age owed their 

exceptional strength to embedded wire-like nanoparticles and provide another 

example.[13]  

It took us approximately another 1500 years to develop the technologies necessary to 

begin to understand, actively manipulate and harness phenomena at the nanoscale in 

a biomedical context. 

At present, about 40 nanomedicines covering a wide range of indications such as 

cancer therapy[14], fungal diseases[15], viral vaccines[16], analgesics[17], photodynamic 

therapy[18] and imaging contrast agents[19] have received market approval.[20] 

In the context of cancer treatment, current approaches in nanotechnology work 

towards ameliorating problems inherent to small molecule chemotherapeutics. Here, 

nanoparticles (NPs) are highly attractive materials for the utilization as drug carriers as 

their pharmacokinetic properties can be tuned without affecting pharmacodynamics of 

the enclosed drug.  

NP drug delivery systems are therefore being investigated to overcome the poor 

selectivity and major side effects frequently associated with chemotherapy.[21]  

Multiple factors contribute to the benefits of nanoparticular drug delivery.  

Nanoformulations improve limited solubilities of hydrophobic drugs as exemplified by 

clinically approved propofol emulsions with droplet sizes between 100 and 300 nm.[22] 

Such a feature is also interesting for certain chemotherapeutics, for instance vincristine 

or taxol. As they lack sufficient aqueous solubilities, i.v. formulations require high 

concentrations of surfactants which in turn contribute to adverse reactions.[23]  
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Nanoformulations also enable targeted drug delivery by providing a particle surface 

that allows for modification with targeting ligands[24] or protect labile cargos by 

encapsulation.[25]  

Additionally, if tailored to an adequate size range, NPs may utilize the leaky tumor 

vasculature[26] to passively extravasate to and accumulate in the tumor 

microenvironment based on the enhanced permeability and retention (EPR) effect.[27]  

Whereas a minimum hydrodynamic NP diameter of about 5.5 nm is mandatory in order 

to prevent immediate renal clearance,[28] the optimal upper size limit strongly depends 

on the tumor type. A size below 12 nm seems to benefit delivery across the blood brain 

barrier,[29] pancreatic cancer favors NPs below 100 nm[30] and particles of  

approximately 300 nm benefit pulmonary delivery[31] which illustrates the importance 

of rational and precise size control based on the intended therapeutic application. 

Surface charge and chemistry constitute additional critical parameters that must be 

considered since they influence protein corona formation[32], cytotoxicity[33], uptake[33], 

immune recognition[34] and circulation times[35] of nanomaterials. 

As our understanding of the tumor microenvironment[36] is steadily increasing but 

nevertheless still limited, early research on nanoparticular chemotherapeutic drug 

delivery systems was primarily aimed at designing PEGylated nanocarriers with long 

circulation times and little systemic losses in order to maximize EPR-based tumor 

accumulation. A selection of FDA approved chemotherapeutic nanoformulations 

following this strategy is listed in Table 1. 
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Table 1 Selected chemotherapeutic nanoformulations with FDA approval 

Name Drug Formulation Company Indication(s) Approval Ref. 

Daunoxome Daunorubicin Liposome Galen   
Pharm. 

Kaposi 
sarcoma 

1996  [14a] 

Abraxane Paclitaxel Drug bound 
to Albumin 

Celgene NSCLC, 
metastatic 
breast 
cancer 

2005 [14b] 

Lipoplatin Cisplatin PEGylated 
Liposome 

Regulon Head and 
neck cancer, 
breast 
cancer 

2012 [37] 

Onivyde Irinotecan PEGylated 
Liposome 

Merrimack 
Pharm. 

Pancreatic 
cancer 

2015 [38] 

Doxil/Caelyx Doxorubicin PEGylated 
Liposome 

Johnson & 
Johnson 

Ovarian 
cancer, 
Kaposi 
sarcoma 

1995 [39] 

 

In contrast, Table 2 lists chemotherapeutics that received FDA approval in 2019 and 

reveals an increasing importance of targeted treatments with all of the approved drugs 

belonging either to the class of highly selective antibodies or small molecules aimed at 

specific targets, a marked contrast to the broadly cytotoxic drugs with low selectivities 

developed during the earlier days of chemotherapy. 

This provides a glimpse at what may be in store for cancer nanoparticles.  

So far, to the best of my knowledge, no actively targeted anticancer nanoformulation 

has received market approval, but encouraging in vitro and in vivo data - some of which 

will be discussed in chapter 1.3. - allows for a cautiously optimistic outlook. 
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Table 2 Chemotherapeutics that received FDA approval in 2019. Data was scraped from reference [40]. 

Name Drug Type Company Indication(s) Target 

Balversa Erdafitinib Small 
molecule  

Janssen 
Oncology 

Urothelial 
carcinoma 

Fibroblast 
growth factor 
receptor 

Bavencio Avelumab Antibody Merck and 
Pfizer 

Advanced renal 
cell carcinoma 

PD-L1 

Cyramza Ramucirumab Antibody Eli Lilly Hepatocellular 
carcinoma 

VEGFR2 

Keytruda Pembrolizumab Antibody Merck Recurrent 
esophageal 
cancer 

PD-L1 

Nubeqa Darolutamide Small 
molecule 

Bayer Castration-
resistant 
prostate cancer  

Androgen 
receptor 

Piqray Alpelisib Small 
molecule 

Novartis Metastatic 
breast cancer 

PI3K 

Polivy Polatuzumab 
and Vedotin 

Antibody 
drug 
conjugate 

Genentech Diffuse large  
B-cell lymphoma 

CD79b 

Rozlytrek Entrectinib Small 
molecule 

Genentech Non-small cell 
lung cancer 

Tropomyosin 
receptor 
kinases 
A,B,C 

Tecentriq Atezolizumab Antibody Genentech 
and Roche 

Extensive-stage 
small cell lung 
cancer 

PD-L1 

Turalio Pexidartinib Small 
molecule 

Daiichi 
Sankyo 

Symptomatic 
tenosynovial 
giant cell tumor 

CSF1R 

Venclextra 
and 
Gazyva 

Venetoclax and 
Obinutuzumab 

Small 
molecule 
and 
antibody 

Genentech 
and AbbVie 

Chronic 
lymphocytic 
leukemia 

BCL-2 and 
CD20 

Xpovio Selinexor Small 
molecule 

Karyopharm 
Therapeutics 

Multiple 
myeloma 

Exportin 1 
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1.2 Metal-organic framework nanoparticles in a biomedical context 

Background. This chapter provides an introduction to the underlying chemistry, key 

features and applications of metal-organic framework (MOF) nanoparticles. Due to the 

width of the field, it will briefly mention non-biomedical use cases but focus on MOFs 

in the context of chemotherapeutic drug delivery. 

Since their inception around 1990[41] and the subsequent establishment of the term by 

Prof. Yaghi, MOFs, in a broader sense also referred to as coordination polymers or 

crystalline porous scaffolds, have attracted considerable attention by the research 

community.  

Due to their modular nature and the virtually unlimited choice of suitable building 

blocks, ten thousands of distinct MOF-like structures have been reported so far with 

hundreds of them also being porous to a varying degree.[42] Of all the possible 

candidates, Table 1 depicts the subset of MOFs used within this thesis.  

An explanation for the observed spike of publications (Figure 1) lies within their 

intriguing and highly attractive properties which have sparked research interest from 

multidisciplinary areas such as catalysis[43], gas storage[44], separation[45], sensing[46], 

drug delivery[47], photovoltaics[48], imaging[49], photodynamic therapy[4] and energy 

storage.[50]  

 

Figure 1 Development of PubMed hits for the search term “metal-organic framework” since 1990 
illustrating the ever increasing research interest continuing to this day. Data was scraped from PubMed 
using reference [51]. 
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In general, MOFs are composed of multivalent metal ions and polydentate organic 

linker molecules. During a typical MOF synthesis, discrete elementary cells, also 

referred to as secondary building units (SBU), are generated in a first step by 

coordinative metal-linker interactions.[52] Here, the spatial structure of the formed SBUs 

highly depends on the used metal ion and linker.[53] In a second step, cross-linking of 

individual SBUs by additional linker molecules gives rise to the MOF superstructure. 

Scheme 1 depicts a simplified version of the assembly process with commonly used 

parameters. 

 

Scheme 1 Illustration of a synthetic approach used to generate MOFs. The scheme depicts a frequently 
used solvothermal reaction but should not be considered representative for all types of MOFs since their 
synthetic conditions are too diverse to be summarized within a single graphic. Blue bars serve as 
polydentate linker molecules, gray circles depict metal ions and the stop sign illustrates a monodentate 
modulator used for the synthesis of certain MOFs in order to control growth kinetics and the final particle 
size. The resulting framework has been simplified with regard to topology and the initial assembly of 
secondary building units (SBUs) is not shown. 

From a materials science point of view, an especially prominent MOF feature lies within 

the very large surface areas that have undergone successive evolution with values 

reaching 310 m2 g-1 by 1998[54], 3800 m2 g-1 by 2005[55] and 5200 m2 g-1 by 2009.[56] 

Today, selected MOFs exceed 7000 m2 g-1[57]  by BET nitrogen sorption which currently 

comprises the highest surface area reported for any type of nanostructure and easily 

surpasses other highly porous materials such as activated carbon (typically <1000 m2 

g-1)[58] and zeolites (typically around 500 m2 g-1).[59]  

Legal disclaimer: images illustrating high surface area and crystallinity in Scheme 1 were obtained from the Wikimedia commons foundation under 
the creative commons Attribution-Share Alike 3.0 Unported license. Both images were cropped, framed and resized. According to the license 
agreement, this scheme is published under the same license and may be reused and modified freely provided credit is given and the result will 
remain under the same license. Original links: https://commons.wikimedia.org/wiki/File:Fluorite_crystals_(Cullen_Hall_of_Gems_and_Minerals).jpg 
https://commons.wikimedia.org/wiki/File:Cam_Bioceramics_Large_Porous_Granule.png. The images were downloaded on November 5th, 2019. 
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It is also worth mentioning that pore sizes and affinities for selected cargo molecules 

can be tuned based on the chosen linker molecule.[60] 

Considering that by surface areas, a stadium-sized soccer field would comfortably fit 

within one gram of the newest MOF generation, it is easy to see their enormous 

potential for applications such as catalysis and drug delivery. 

 

Table 3 MOFs used within this thesis. MIL, Materials Institute Lavoisier; UiO, Universitetet i Oslo; 
HKUST, Hongkong University of Science and Technology; fum, fumarate; H3BTC, benzenetricarboxylic 
acid; H2BDC, benzenedicarboxylic acid. 

Preparation 
technique 

MOF Metal 
ion 

Linker component Ref. 

Microwave-assisted MIL-88A Fe3+ Fumaric acid [61] 

Solvo/hydrothermal MIL-100 (Fe) Fe3+ H3BTC [62] 

Solvo/hydrothermal UiO-66 Zr4+ H2BDC [63] 

Sonochemical HKUST-1 Cu2+ H3BTC [64] 

Solvo/hydrothermal Zr-fum Zr4+ Fumaric acid [65] 

Solvo/hydrothermal MIL-101(Cr) Cr3+ H2BDC [55] 

 

As particle size is another decisive attribute for a nanomaterial,[66] multiple approaches 

have been developed to control crystal growth rates and thereby final sizes of the 

obtained MOFs. Those strategies include optimizing reagent concentrations,[67] the 

used metal salt,[68] reaction temperature and duration,[61] control at the nucleation level 

by addition of a surfactant[69] and addition of monodentate carboxylate modulators as 

depicted in Scheme 1.[70] 

At present, a wide range of functional motifs have been successfully used as the linking 

moiety as exemplified by MOFs employing linkers based on chemical entities such as 

carboxylates,[65] phenolates,[64] amino acids,[71] imidazolates[70] and sulfonates[72].  

From a purely chemical perspective, a rich selection of metal ions appears initially 

suitable for MOF construction and, accordingly, frameworks based on metals such as 

iron,[61-62] zirconium,[63, 65] copper,[64] chromium,[73] zinc[70], gadolinium,[74] hafnium[75] 

and cadmium[76] have been reported.  
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However, with a biomedical application in mind, toxicity concerns narrow down the 

sensible choice considerably, yet little is known about MOF toxicity in general so far.  

In a biomedical context, it seems like a viable strategy to employ linker molecules 

present in the human body a priori to MOF administration. A structure such as fumaric 

acid would address this requirement and additionally entails the advantage of partaking 

in the citric acid cycle[77] which offers a direct metabolization pathway without risking 

toxic intermediate formation.  

Concerning the metal component, based on rat LD50 doses and in vitro studies utilizing 

HeLa cells, Horcajada et al. perceive Ca, Mg, Zn, Fe, Ti and Zr as most suitable.  
[42a, 78]   

Wuttke et al. examined the nanosafety profile of three selected MOFs, MIL-100(Fe), 

MIL-101(Cr) and Zr-fum. Notably, it was found that even for the same MOF, toxicities 

and interactions with cells may differ according to effector cell types and 

applications.[79]  

Baati et al. evaluated the in vivo toxicity of three iron-based MOFs, namely MIL-88A, 

MIL-100(Fe) and MIL-88B_4CH3.[80] In their rat model, MOF doses between 100 and 

200 mg/kg (remarkably, scaled to the body weight of an average person of 70 kg, this 

would correspond to high doses of 7-14 g MOF) did not result in changes of behavior, 

acute toxicities or deaths after 7 days. Apart from minor lung embolisms caused by 

pulmonal nanoparticle aggregates – an observation which was later actually utilized 

for a therapeutic application[81] - and a temporary spike in liver and spleen iron levels, 

no pathological organ chances were observed which illustrates the excellent tolerability 

of the screened iron-based MOFs. 

Ruyra et al. investigated in vivo zebrafish embryo toxicities of selected MOFs and 

observed little to no toxicity for UiO-66, UiO-77, MOF-74 and Mg-MOF-74. Additionally, 

selected members of the Zeolitic imidazolate framework (ZIF) series of MOFs were 

evaluated. ZIFs are generated from tetrahedrally coordinated transition metal ions 

which are interconnected by imidazolate linkers. So far, approximately 100 ZIF 

topologies have been reported.[82] For the examined ZIF-7 and ZIF-8, strongly reduced 

hatching rates were observed.[83]  
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However, additional factors besides component and MOF toxicities have to be 

considered. For instance, Bellido et al. reported a heparin coating approach for  

MIL-100(Fe) which reduced complement activation, reactive oxygen species 

production and macrophage recognition[84] whereas Zimpel et al. found that coating Zr-

fum with a polyglutamate-polysarcosine block-copolymer very similar to the one used 

within this thesis (chapter 3.2.3) induced pH-independent colloidal stabilization in 

multiple environments such as water, protein-enriched buffer solutions and cell culture 

medium.[85] This constitutes an additional step towards mastering control of 

interactions occurring at the biointerface, a requirement for eventual clinical translation 

of MOF-based therapeutics. 

Multiple strategies for the loading of cargos have been developed so far (Scheme 2). 

Due to the enormous porosities reported for certain MOFs, one approach lies within 

post-synthetically soaking porous MOFs in a small molecule solution (Scheme 2A). 

Here, both the properties of the utilized MOF and the drug dictate the loading efficiency. 

Although MOF scaffolds feature a certain flexibility,[86] cargos still need to be small 

enough to physically fit within the pores. Additionally, pore sizes are not the only limiting 

factor as the window sizes within the scaffold that limit the actual pore access are 

typically smaller than the pores themselves. In a chemotherapeutic context, many 

studies have employed such a loading mechanism for drugs such as cisplatin,[47b] 

methotrexate,[87] doxorubicin[88] and 5-fluorouracil.[89]  

A different approach lies within postsynthetic covalent modification (Scheme 2B). For 

instance, typical MOF linkers modified with reactive amine groups – leading to 

structures such as 2-aminoterephthalic acid – are incorporated during synthesis and 

subsequently used as a cargo grafting site.[90] Frameworks such as MOF-46,[91] 

IRMOF-3[92] and NH2-UiO-66[93] have been synthesized this way. The amines allow for 

stable cargo attachment due to covalent reactions,[94] but in a drug delivery setting, a 

possible drawback lies within reduced pharmacological activity as the molecular 

structure of the cargo is being modified. In a study using an UiO-67 derivative, azide- 

or acetylene-functionalized linkers were postsynthetically introduced into the 

framework by a linker exchange reaction.[95] Notably, the achieved incorporation of two 

distinct reactive groups allows for sequential and orthogonal click reactions. 
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Scheme 2 MOF loading strategies.  A) encapsulation into pores, B) covalent attachment exemplified by 
amine-modified linkers and a carboxylated cargo, C) coordinative attachment illustrated with a simplified 
His-tag D) direct framework incorporation by the intended cargo acting as a linker during MOF synthesis, 
E) incorporation of active metal ions during MOF synthesis. 
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Scheme 2C describes a coordinative surface anchoring strategy reported by Röder et 

al.[96] and utilizes coordinatively unsatured metal sites[97] (CUS) present on the MOF 

surface to reversibly attach cargos. Here, the desired cargo is initially modified with 

histidine tri- or hexapeptides and subsequently incubated with the MOF. An advantage 

lies within the broad range of possible cargos since the only requirement is a motif that 

allows for (reversible) His-tag modification but no intrinsic cargo affinity towards the 

chosen MOF is required. Additionally, multiple cargos may be co-delivered and the 

strategy is also suitable for proteins which are likely too bulky to fit within MOF pores. 

Conveniently, proteins are already routinely expressed with a (cleavable) His-tag as 

part of their structure.[98]  

Scheme 2D depicts a strategy where the drug to be delivered directly serves as a 

building block for the MOF structure itself. The Lin group pioneered this approach for 

pharmacotherapy[75, 99] by synthesizing MOFs based on the photosensitizer 5,15-di(p-

benzoato)porphyrin (H2DBP) which contains two carboxylic acid groups and a rather 

rigid structure enabling it to act as the linker molecule. To the best of my knowledge, 

this currently represents the only example where APIs were directly utilized as MOF 

linker molecules.  

For applications such as magnetic resonance imaging (MRI),[100] the metal ion 

providing the actual enhancement in contrast may also be directly incorporated into 

the framework during synthesis (Scheme 2E). Similarly, a MOF with an active metal 

component was designed for a radiotherapy application.[101] Here, the integrated Hf4+ 

mediates radiosensitization by X-ray attenuation.  

However, when using active pharmaceutical ingredients (API) as linkers, it is difficult 

to predict if the synthesis will result in a MOF structure or rather lead to a nanoscale 

coordination polymer (NCP). As NCPs are structurally different from MOFs and also 

often directly created from APIs, the following chapter will introduce them in detail. 
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1.3 Nanoscale coordination polymers as multifunctional drug carriers 

Background. Careful control of reaction parameters allows for the assembly of 

selected drug molecules with Lewis base functions into nanoscale coordination 

polymers (NCPs) by linkage through suitable metal ions. The following chapter 

distinguishes NCPs from MOFs, introduces recent developments of NCP research in 

the context of chemotherapeutic drug delivery and photodynamic therapy and 

additionally highlights potential advantages and applications for this rather novel class 

of nanomaterials. 

Although both MOFs and NCPs are generated by a coordinative bottom-up assembly 

approach, their properties may differ considerably as illustrated in Scheme 3.  

As a rule of thumb, assembly at room temperature tends to lead to amorphous NCPs 

whereas solvothermal conditions favor the formation of crystalline MOFs.[102]  

However, this rule just allows for an initial approximation and should be applied with 

care as exceptions do exist; both crystalline MOFs synthesized at room 

temperature[103] and crystalline NCPs synthesized under solvothermal conditions[104] 

have been reported.  

Compared to MOFs of the later generation developed within the last twenty years that 

frequently feature satisfactory aqueous stabilities,[105] NCPs tend to be less stable in 

an aqueous environment which often necessitates stabilizing surface coatings.[106]  

Although both MOFs and NCPs are held together by rather labile coordinative bonds, 

a possible explanation for the frequently observed lower NCP stabilities may lie within 

their typically non-crystalline structures.  

Whereas for selected MOFs, certain regularly arranged bulky linkers sterically shield 

the metal coordination sites from water access and therefore generate an activation 

energy barrier[105a] which impairs linker displacement, the situation might be different 

for NCPs due to their less ordered structures potentially allowing for easier water 

access.  
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Scheme 3 Characteristic differences between NCPs and MOFs. Synthesis at room temperature (left) 
frequently favors the formation of non-crystalline NCPs whereas solvothermal conditions (right) tend to 
lead to crystalline MOFs. The scheme was adapted from reference [107]. 

 

Hypothetically speaking, if comparing a MOF and NCP structure, it could be envisioned 

that metal clusters within the MOF structure feature a higher average coordination 

number as the framework has more time to assemble in an orderly and regular fashion. 

With an elevated average coordination number, metal-ligand bond hydrolysis might be 

tolerated to a higher degree before the particle dissembles into its components.[105a]  

In case of identical coordination numbers, the highly regular crosslinking observed for 

MOFs might also result in their enhanced stabilities. 

Thus, the NCP core is typically assembled in a first step and the obtained surface then 

subsequently coated with a stabilizing agent. Such a modification tends to be 

necessary in order to extend drug release profiles, prevent immediate burst release 

and increase particle degradation half-lives. Reported surface functionalization 

approaches include lipid bilayers[106c, 108],  silica shells,[106b, 109] dopamine-modified 

alginate,[110] hyaluronic acid[111] and polyhistidine-PEG.[112] Additionally, selected 

coatings mediate colloidal stabilization which comprises an additional important 

requirement for a nanomaterial. 
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Another key aspect of NCPs lies within their very high material economy.[113]  

Here, in contrast to other drug delivery systems such as drug-loaded MOFs,[114] 

liposomes[115] or polymerosomes,[116] the cargo itself constitutes an essential building 

block of the drug delivery system. As a consequence, unprecedentedly high drug 

contents of up to 80% (weight/weight) have been reported.[117] Due to the simultaneous 

loading capacity for multiple different cargos, NCPs also provide the opportunity for 

spatiotemporal co-delivery of different agents thus allowing for combination therapies 

which makes them highly attractive for biomedical applications. 

In a chemotherapeutic setting, numerous NCP formulations incorporating drugs such 

as doxorubicin[109, 117a, 118] (Table 4), platinum derivatives[106b, 106d, 112, 119] (Table 5) or 

photosensitizers[108a, 120] (Table 6) have been reported. For a subset of the summarized 

formulations, encouraging in vivo results were observed in chemotherapeutic mouse 

models. Of those, selected studies will be presented in detail as they illustrate the high 

clinical potential of NCP-based chemotherapeutic drug delivery. 

Table 4 Selected nanoscale coordination polymers incorporating doxorubicin and their key properties. 
DOX, doxorubicin; bix, 1,4-bis(imidazol-1-ylmethyl)benzene; Ce6, chlorin e6. 

 

Han et al. reported a formulation for NCP-based doxorubicin (DOX) delivery that 

additionally included polyphenol gallic acid to mitigate cardiotoxicity. Initially, the plain 

NCP scaffold was created from polyphenol gallic acid and Fe3+ (FGC). The scaffold 

was then loaded with DOX by coordinative interactions between deprotonated hydroxyl 

groups of the DOX anthracycline moiety and Fe3+. As polyphenol gallic acid derivatives 

are investigated as adjuvants for chemotherapy,[121] this approach illustrates the 

aforementioned co-delivery of two active components. An in vivo therapeutic 

experiment utilizing H22 hepatoma xenografts in mice resulted in significantly 

enhanced tumor growth inhibition compared to free DOX. The treatment with 

FGC@DOX was also well tolerated. In contrast to free DOX, no loss of body weight 

and reduced cardial tissue lesions were observed. 
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Table 5 Selected nanoscale coordination polymers incorporating platinum drugs and their key 
properties. DSCP, c,c,t-(diamminedichlorodisuccinato)Pt(IV); bix, 1,4-bis(imidazol-1-ylmethyl)benzene;  
C18PMH‐PEG, PEG‐grafted poly (maleicanhydride‐alt‐1‐octadecene); TEOS, tetraethyl orthosilicate; 
PVP, polyvinylpyrrolidon. 

 

Multiple studies using formulations incorporating platinum drug derivatives also 

resulted in promising in vivo results. [106d, 119b, 119c, 122] 

He et al. designed an NCP incorporating a cisplatin prodrug and siRNA for the 

combination therapy of chemoresistant ovarian cancer.[106d] The NCP co-delivers a 

bisphosphonate prodrug of cisplatin and pooled siRNAs targeting multiple multidrug 

resistance (MDR) genes.  

The redox-responsive cisplatin prodrug was initially assembled into an NCP core by 

addition of Zn2+ ions and then coated by a reverse microemulsion approach leading to 

particles functionalized with DSPE-conjugated siRNA, cholesterol, DOPC and DSPE-

PEG2k.  

The in vivo efficiency of the formulation was then evaluated in subcutaneous SKOV-3 

and intraperitoneal A2780/CDDP xenograft tumor mouse models which resulted in 

highly promising therapeutic outcomes as determined by strong tumor growth 

inhibitions.  

Notably, repeated intraperitoneal injections of NCP-1/siRNAs were able to completely 

eradicate SKOV-3 tumors in 5 out of 6 mice. In an A2780/CDDP model, all tumors 

were eliminated which resulted in 100% survival for more than 90 days. This study thus 

illustrates the enormous potential of NCP-based platinum drug delivery. 
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Table 6 Selected nanoscale coordination polymers designed for photodynamic therapy and their key 
properties. TCPP, tetrakis(4-carboxyphenyl)porphyrin; pHis-PEG, polyhistidine-polyethyleneglycol; 
DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DSPE-PEG2K, 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[carboxy(polyethyleneglycol)-2000]. 

 

 

He et al. combined chemotherapy and photodynamic therapy (PDT) into a core-shell 

NCP with a phospholipid-porphyrin (pyrolipid) coating for treatment of resistant head 

and neck cancers.[108a] The formulation was generated by initially assembling DOPA-

capped particles from a mixture of a bisphosphonate cisplatin derivative, DOPA and 

Zn2+ by application of a reverse microemulsion strategy. PDT capacity and PEGylation 

were then added to the NCP by coating it with a mixture of pyrolipid, cholesterol, DSPC 

and DSPE-PEG2k giving rise to NCP@pyrolipid.  

Evaluating NCP@pyrolipid uptake into SQ20B human head and neck cancer cells 

indicated a rapid uptake completed within 1h. Pharmacokinetic studies of 

NCP@pyrolipid in CT26 tumor bearing mice revealed prolonged component circulation 

half-lives. The in vivo antitumor efficiency was then investigated using a SQ20B mouse 

model. Whereas control tumors grew to approximate endpoint volumes of 1.6 cm3, 

NCP@pyrolipid plus illumination resulted in drastic tumor shrinkage with final volumes 

of about 0.1 cm3. TUNEL assay revealed a high apoptosis rate for NCP@pyrolipid plus 

illumination group (approximately 80 % TUNEL-positive cells) which additionally 

confirmed the potential of the NCP system for combined chemo- and photodynamic 

therapy. 

In sum, this chapter traced the recent emergence of NCPs as a new class of 

nanomaterial with a broad range of possible biomedical applications such as drug 

delivery, PDT, cancer combination treatment, multimodal imaging and 

radiosensitization. A huge variety of suitable pharmaceutical building blocks combined 

with appropriate metal ions allows for innovative therapeutic and diagnostic 

nanosystems with clinical potential as illustrated by the presented in vivo studies. 
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1.4 Cancer treatment by pemetrexed and methotrexate 

Background. This chapter briefly introduces the history, pharmacology and main 
applications of chemotherapeutic antifolate drugs with a focus on pemetrexed and 
methotrexate. 

 

 

Scheme 4 Chemical structures of folate (top left), aminopterin (top right), methotrexate (mid left), a 
polyglutamylated methotrexate species (mid right) and pemetrexed (bottom left). 

 

Since their discovery in the late 1940s, the class of antifolates, a selection of which 

next to folic acid is depicted in Scheme 4, has dramatically improved therapeutic 

outcomes for diseases such as pediatric acute lymphoblastic leukemia,[123] non-small 

cell lung cancer[124] and other maladies exemplified by psoriasis[125] and rheumatoid 

arthritis.[126] The development started in 1941 by the identification and isolation of folic 

acid, originally discovered in the context of antibiotics research.[127] In 1945, the newly 

discovered compound was then evaluated as a potential leukemia therapeutic and 

given to patients whose symptoms rapidly deteriorated. However, the observation 

sparked the hypothesis that folate antagonists might be useful therapeutic agents.[128] 
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In 1948, Farber et al. synthesized aminopterin, the first antifolate, which produced 

acute, but temporary, remission in children suffering from acute lymphocytic 

leukemia[129] and marked the dawn of the age of cancer chemotherapy. As aminopterin 

turned out to be too toxic and was difficult to synthesize,[128]  the search for alternatives 

led to the development of structurally similar methotrexate (MTX) and its subsequent 

evaluation in an early clinical trial during the 1950s.[130] 

To survive, cells have to perform constant de novo purine and thymidine generation as 

those structures are essential for the formation of DNA and RNA.  

The synthesis involves a complex, multi-step enzymatic interplay, a simplified version 

of which is shown in Scheme 5, and requires sufficient levels of fully reduced folates.  

Antifolates mediate their therapeutic efficiency by competitively inhibiting selected 

enzymes within this pathway leading to a breakdown of DNA- and RNA synthesis. 

Here, dihydrofolate reductase (DHFR) plays a key role as it catalyzes two subsequent 

folate reduction steps. Initially, folate is taken up by cell and multiple uptake 

mechanisms are known. In this regard, the reduced folate carrier (RFC) mainly 

contributes to the uptake of reduced folate isoforms but displays a very low affinity for 

native folic acid (Km 200-400 M)[128] which is preferably transported to the cytosol by 

the folate receptor (FR) with a very low Kd of 1 nM.[128] MTX is also taken up by the FR 

although its affinity towards it is lower compared to folate.[131] Additionally, the RFC 

contributes to cellular MTX entry and decreased RFC activity has been attributed to 

transporter-mediated MTX resistance[132] whereas the proton-coupled folate 

transporter (PCFT) supports folate uptake but also accepts pemetrexed (PMX) as a 

substrate.[133] In contrast, the adenosine triphosphate (ATP) binding cassette (ABC)[134] 

actively exports xenobiotics, including MTX and its polyglutamylated forms,[135] from 

the cytosol. 

After their uptake, both folic acid and antifolates are subjected to polyglutamylation[136] 

at the γ-carboxyl moiety catalyzed by folylpolyglutamate synthase (FPGS). Here, 

typically 5-8 glutamate residues are attached[128] which results in cytosolic entrapment 

due to the added negative charge density and an increase in affinity towards enzymes 

partaking in one-carbon transfer reactions.[137] As both PMX[138] and MTX[139] undergo 

modification by FPGS which influences their intracellular concentrations, enzyme 

affinities and thus pharmacological activities, changes in polyglutamylation status 

comprise a major contributor to antifolate resistance.[140]  
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Scheme 5 Flowchart displaying key steps of folate metabolism, their connection to DNA- and RNA 
synthesis, main enzymes inhibited by chemotherapeutic drugs pemetrexed (PMX) or methotrexate 
(MTX) and main routes of uptake. Substrates and products are denoted in orange, enzymes in red, 
chemotherapeutics in purple and cellular uptake mechanisms in green. Abbreviations: 
DHF, dihydrofolate; THF, tetrahydrofolate; dUMP, desoxyuridinmonophosphate; dTMP, 
desoxythymidinemonophosphate; 5,10-MTHF, 5,10 methylenetetrahydrofolate; 5-MTHF,  
5-methyltetrahydrofolate; 10-Formyl THF, 10-formyltetrahydrofolate. FPGS, folylpolyglutamate 
synthase; DHFR, dihydrofolate reductase; TS, thymidylate synthase; MTHFD1, 
methylenetetrahydrofolate dehydrogenase 1; MS, methionine synthase; MTHFR, 
methylenetetrahydrofolate reductase; GARFT, glycinamide ribonucleotide formyltransferase;  
RFC, reduced folate carrier; FR, folate receptor; PCFT, Proton-coupled folate transporter; ABC, ATP 
binding cassette. Intermediate steps not shown for simplicity are represented by dashed arrows. 
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After the poylglutamylation step, (DHF) is generated from folate and subsequently 

reduced again by the same enzyme to obtain fully reduced tetrahydrofolate (THF). 

By conversion of THF, methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) then 

generates 5,10-methylenetetrahydrofolate (5,10-MTHF) which serves as a cofactor 

necessary for the formation of desoxythymidinemonophosphate (dTMP) from 

desoxyuridinmonophosphate (dUMP) in a step catalyzed by thymidylate synthase 

(TS).  

5,10-MTHF is also converted to 10-formyltetrahydrofolate (10-Formyl THF) which 

partakes in the synthesis of purine intermediates. Here, the scheme only shows the 

step catalyzed by glycinamide ribonucleotide formyltransferase (GARFT) due to 

GARFT being a target of PMX.  

MTX reversibly inhibits DHFR but also targets TS[141] which results in DHF 

accumulation. As a consequence, a breakdown of purine biosynthesis occurs due to 

TS being directly inhibited. Additionally, the THF which is necessary to generate the 

5,10-MTHF cofactor required by TS to function is no longer available in sufficient 

quantities due to upstream DHFR inhibition. Apart from inhibiting DHFR and TS, PMX 

additionally impairs GARFT and AICARFT, [128] enzymes partaking in the synthesis of 

purine intermediates.[142]  

As ɣ-glutamylation enhances the bioactivity of both MTX[143] and PMX[144] and impaired 

polyglutamylation is additionally known to contribute to antifolate resistance,[140, 145] 

chapter 3.1.2 explored nanoparticular delivery of pre-polyglutamylated MTX 

derivatives by coordinative and/or electrostatic attachment to metal-organic framework 

(MOF) nanoparticles.  
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1.5 Aims of the thesis 

Within this thesis, the results are structured in two main chapters each pursuing an 

individual goal. 

Research as described in chapter 3.1. investigated the delivery of chemotherapeutic 

MTX by attachment to metal-organic framework nanoparticles with the aim to create 

a delivery system for the drug. 

To do so, a library of suitable peptide binding motifs that allow for MOF cargo 

attachment was initially identified and characterized using a panel of selected MOFs 

relevant in a biomedical context. This had to be done in order to obtain an 

understanding on how peptide tag properties such as length and charge influence tag 

binding capacities, since no such systematic screening has been conducted before. 

To maximize gained insights, the chosen MOFs had to include different metal 

components, linkers and porosities. 

Then, one of the identified suitable tag binding motifs was applied for MOF-based 

delivery of chemotherapeutic pre-polyglutamylated MTX. Here, the pursued 

polyglutamylation approach was ultimately aimed at conferring MOF binding capacity 

to MTX while simultaneously addressing a known MTX resistance mechanism based 

on impaired polyglutamylation. 

In contrast, results described in chapter 3.2. explored the design and in vitro testing of 

a novel NCP based on chemotherapeutic PMX and zirconium ions.  Here, the aim was 

the creation of a ‘carrier-free’ chemotherapeutic drug delivery system with a very high 

multifunctional efficiency[113] based on the previously observed glutamate-zirconium 

interactions. The drug-metal interactions were directly utilized for a controlled, 

coordinative bottom-up assembly of a small molecule chemotherapeutic drug into an 

NCP.  

After establishing a suitable formulation method and subsequent characterization of 

the obtained drug-containing particle core, the thesis aimed at elucidating its in vitro 

behavior by assessing colloidal and serum stabilities and investigating the introduction 

of targeting ligands and their effect on uptake and toxicity. Ultimately, the aim was to 

deliver PMX and develop a formulation with the potential for co-delivery of other cargos 

as illustrated here with the co-integrated calcein.  
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2 Materials and Methods 

2.1 Materials 

 

2.1.1 Buffers and mobile phases 

Table 1 Buffers and mobile phases used within this thesis. 

Buffer Composition 
HEPES 20 mM HEPES, pH 7.4 

 
PBS 
 

0.137 M NaCl, 0.0027 M KCl, 0.01 M Na2HPO4,  
0.0018 M KH2PO4, pH 7.4 
 

HBG 20 mM HEPES, 5 % glucose, pH 7.4 
 

TBE  89 mM Trizma® base, 89 mM boric acid, 2 mM EDTA-Na2 
  
10 mM HCl Size Exclusion 
Chromatography Mobile Phase 
 
HPLC aqueous phase containing 
0.1 % (v/v) trifluoroacetic acid  
 
HPLC organic phase containing 
0.1 % (v/v) trifluoroacetic acid 

693 mL water, 300 mL acetonitrile, 7 mL 1 M HCl solution 
 
 
999 mL water (purified and de-ionized),  
1 mL trifluoroacetic acid 
 
 
999 mL acetonitrile, 1 mL trifluoroacetic acid 
 

Freeze-dry solvent 30% (v/v) acetonitrile in water 
 
 

2.1.2 Solvents 

Table 2 Solvents used within this thesis. Superscript numbers indicate respective purities. 

Solvent CAS-No. Supplier 
Acetonitrile1 75-05-8 VWR Int. (Darmstadt, Germany) 
Dichloromethane2 75-09-2 Bernd Kraft (Duisburg, Germany) 
N,N-Dimethylformamide3 68-12-2 Iris Biotech (Marktredewitz, Germany) 
Dimethyl sulfoxide4 67-68-5 Sigma-Aldrich (Munich, Germany) 
Ethanol absolute2 64-17-5 VWR Int. (Darmstadt, Germany) 
n-Hexane5 110-54-3 Brenntag (Mülheim/Ruhr, Germany) 
Methyl-tert-butyl ether6 1634-04-4 Brenntag (Mülheim/Ruhr, Germany) 
N-Methyl-2-pyrrolidone3 872-50-4 Iris Biotech (Marktredewitz, Germany) 
Water7 7732-18-5 In-house purification 

 

1 HPLC grade, 2 analytical grade, 3 peptide grade, 4 BioReagent grade with a purity above 99.9 %, 5 purissimum, 
6 synthesis grade; 7 purified and deionized with a conductivity below 0.055 µS cm-1. 
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2.1.3 Reagents 

Table 3 Reagents used within this thesis. 

Reagent CAS-No. Supplier 
1-Hydroxybenzotriazole hydrate 123333-53-9 Sigma-Aldrich (Munich, Germany) 
2-Chlorotritylchloride resin 42074-68-0 Iris Biotech (Marktredewitz, Germany) 
4-[N-(2,4-Diamino-6-
pteridinylmethyl)-N-
methylamino]benzoic acid 
hemihydrochloride hydrate 
9-Acridinecarboxylic acid hydrate 

19741-14-1 
 
 
 

332927-03-4 

 
 
 
 

Sigma-Aldrich (Munich, Germany) 
Ammonia solution 25% 1336-21-6 Carl Roth (Karlsruhe, Germany) 
D-(+)-Glucose monohydrate 14431-43-7 Merck Millipore (Darmstadt, Germany) 
EDTA disodium salt dihydrate 6381-92-6 Sigma-Aldrich (Munich, Germany) 
Fmoc-Ala-OH 35661-39-3 Iris Biotech (Marktredewitz, Germany) 
Fmoc-L-Glu-OtBu-OH 84793-07-7 Iris Biotech (Marktredewitz, Germany) 
Fmoc-L-Glu-(OtBu)-OH 204251-24-1 Iris Biotech (Marktredewitz, Germany) 
Fmoc-L-His(Trt)-OH 109425-51-6 Iris Biotech (Marktredewitz, Germany) 
Fmoc-L-Lys(Boc)-OH 71989-26-9 Iris Biotech (Marktredewitz, Germany) 
Folic acid 59-30-3 Sigma-Aldrich (Munich, Germany) 
Formic acid 64-18-6 Sigma-Aldrich (Munich, Germany) 
HEPES 7365-45-9 Biomol (Hamburg, Germany) 
Hydrazine monohydrate 7803-57-8 Sigma-Aldrich (Munich, Germany) 
Hydrochloric acid (1M) 7647-01-0 Sigma-Aldrich (Munich, Germany) 
Methotrexate 133073-73-1 Sigma-Aldrich (Munich, Germany) 
MTT 298-93-1 Sigma-Aldrich (Munich, Germany) 
N-Fmoc-N″-succinyl-4,7,10-trioxa-
1,13-tridecanediamine 

172089-14-4 Sigma-Aldrich (Munich, Germany) 

N,N-Diisopropylethylamine 7087-68-5 Iris Biotech (Marktredewitz, Germany) 
N10-(Trifluoroacetyl)pteroic acid 37793-53-6 Clauson-Kaas A/S (Farum, Denmark) 
Ninhydrin 485-47-2 Sigma-Aldrich (Munich, Germany) 
Pemetrexed disodium 
heptahydrate 

357166-29-1 Sigma-Aldrich (Munich, Germany) 

Phenol 108-95-2 Sigma-Aldrich (Munich, Germany) 
Piperidine 110-89-4 Iris Biotech (Marktredewitz, Germany) 
Potassium cyanide 151-50-8 Sigma-Aldrich (Munich, Germany) 
Pybop® 128625-52-5 Multisyntech GmbH (Witten, Germany) 
Sephadex® G-10 9050-68-4 GE Healthcare (Freiburg, Germany) 
Sodium hydroxide (anhydrous) 1310-73-2 Sigma-Aldrich (Munich, Germany) 
Trifluoroacetic acid 76-05-1 Iris Biotech (Marktredewitz, Germany) 
Triisopropylsilane 6485-79-6 Sigma-Aldrich (Munich, Germany) 
Triton™ X-100 9002-93-1 Sigma-Aldrich (Munich, Germany) 
Trizma® base 77-86-1 Sigma-Aldrich (Munich, Germany) 
ZrCl4 (anhydrous powder) 10026-11-6 Sigma-Aldrich (Munich, Germany) 
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2.1.4 Disposables and instrumentation for solid-phase synthesis  

Synthesis utilizing microwave irradiation was carried out with a Biotage (Uppsala, 

Sweden) Initiator+ semiautomatic peptide synthesizer. Multisyntech (Witten, Germany) 

supplied disposable syringe microreactors (2 mL, 5 mL, and 10 mL) made from 

polypropylene (PP). All microreactors were purchased with pre-fitted 

polytetrafluoroethylene (PTFE) filters. For each individual synthesis, the reactor size 

was determined based on the used amount of resin and the manufacturers 

recommendations. 

 

 

2.1.5 Cell culture 

Table 7 Overview of the used cell lines and culture media. 

Cell line Description Medium 
KB Human cervix carcinoma  RPMI-1640 
L1210 Mouse lymphocytic leukemia  RPMI-1640 
A549 Lung adenocarcinoma RPMI-1640 
H1299 Non-small cell lung carcinoma RPMI-1640 

 

Cell culture studies were carried out by Miriam Höhn (Pharmaceutical Biotechnology, 

Department of Pharmacy, LMU Munich). Invitrogen (Karlsruhe, Germany) supplied 

media, fetal bovine serum (FBS) and antibiotics. The absence of mycoplasm 

contamination was verified at regular intervals. Corresponding media used for the 

respective cell lines are listed in Table 7. In general, media were supplemented with 

10 % FBS, 4 mM glutamine (stable form), 100 U/mL penicillin and 100 μg/mL 

streptomycin. Cells were cultured at 37 °C and 5 % CO2. Upon reaching approximately 

80 % confluency, adherent cells were detached from the collagen-coated culture flasks 

by addition of 1 mL trypsin-EDTA solution (Invitrogen, Karlsruhe, Germany) and 

subsequent incubation. After 5 minutes, cell detachment was quenched by addition of 

PBS and cells were split by transferring an aliquot of detached cells to a new culture 

flask pre-supplemented with medium. After approximately 20 passaging cycles, cells 

were generally discarded and replaced with freshly thawed aliquots. With the exception 

of experiments involving L1210 suspension cells, prior to performing cell-based 

experiments, respective cells were seeded at the desired density and generally 

allowed to settle for 24 hours.  
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2.2 Methods 

Selected method descriptions were adapted from the following references: 

B. Steinborn, P. Hirschle, M. Höhn, T. Bauer, M. Barz, S. Wuttke, E. Wagner, U. Lächelt. 
Core-Shell Functionalized Zirconium-Pemetrexed Coordination Nanoparticles as Carriers with 
a High Drug Content. Advanced Therapeutics 2019, 2, 1900120. 

P. Zhang, B. Steinborn, U. Lächelt, S. Zahler, E. Wagner, Biomacromolecules 2017,18, 2509.  

A. Zimpel, N. Al Danaf, B. Steinborn, J. Kuhn, M. Höhn, T. Bauer, P. Hirschle, W. Schrimpf, 
H. Engelke, E. Wagner, M. Barz, D. C. Lamb, U. Lächelt, S. Wuttke. Coordinative Binding of 
Polymers to Metal-Organic Framework Nanoparticles for Control of Interactions at the 
Biointerface. ACS Nano 2019, 13, 3884. 

 

2.2.1 Loading a 2-chlorotrityl chloride resin with an Fmoc-protected amino 
acid 

Typically, 1000 mg 2-chlorotrityl chloride resin (1 eq, corresponding to 1.6 mmol 

chloride) were pre-swollen in anhydrous DCM for 30 minutes, the DCM was then 

removed by vacuum filtration. Then, a mixture of the first Fmoc-protected building block 

(0.5 eq amino acid per eq chloride, dissolved in 1:1 (v/v) dry DCM and DMF, 5 mL per 

gram resin) and DIPEA (3 eq.) were added to the reactor and subsequently incubated 

under agitation for 60 minutes. The solution was removed by vacuum filtration, 

replaced with a capping mixture consisting of 4 mL DCM, 3 mL MeOH and 500 µL 

DIPEA per gram resin and incubated under agitation for 30 minutes in order to 

transform residual free chlorides into unreactive methoxy ethers. The resin was 

washed (3 × DMF, 3 × DCM, 10 mL each per gram resin) and approximately 60 mg 

wet resin were drawn for Fmoc-quantification, dried under high vacuum and split into 

three samples. 20% piperidine in DMF (v/v, 1 mL) was added to each sample and 

incubated under agitation for 60 min (25 °C, 600 rpm). The samples were then vortexed 

and given 2 min for the beads to settle. 25 μL supernatant of each sample were diluted 

by addition of 975 μL DMF and measured at 301 nm against an equally diluted 20 % 

piperidine in DMF blank utilizing a Genesys 10S UV−vis photometer (Fisher Thermo 

Scientific, U.S.A.). For each sample, the resin load was calculated according to the 

following formula: resin load [mmol/g] = (A × 1000)/(m [mg] × 7800 × df) with df as a 

dilution factor. The average of three values gave the respective resin load. The 

remaining resin was Fmoc deprotected by 4 × 10 min treatment with 20 % piperidine 

in DMF, washed (3 × DMF, 3 × DCM), dried under high vacuum and stored at 4 ° C. 
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2.2.2 General description of a solid phase synthesis cycle 

After pre-loading the resin with the first building block as described in 2.2.1. and 

swelling it in DCM for 30 minutes, a cycle of iterative coupling and deprotection steps 

with the respective building blocks was carried out until the final structure was obtained 

which was then cleaved from the resin. If not stated otherwise, coupling steps were 

generally performed with 4 eq HOBt, 4 eq PyBOP, 8 eq DIPEA and 4 eq Fmoc-building 

block-OH. The respective molar amount of free amine present on the resin beads was 

regarded as 1 eq. In case of structures synthesized manually, the activating reagents 

and the building block were dissolved in 1:1 DCM/DMF. For synthetic approaches 

utilizing the automated synthesizer, DCM was replaced with NMP. After each coupling 

step, a Kaiser test (2.2.3.) was performed to verify the absence of free amines which 

would indicate non-quantitative couplings. Upon a negative Kaiser test, the protective 

group was removed (Fmoc: 4x 10 min 20% (v/v) piperidine in DMF, TFA: 4 × 30 min 

1:1 25 % (v/v) ammonia solution in water  and DMF) followed by a washing step  

(3x 1 min DMF, 3x 1 min DCM) and another Kaiser test performed subsequently to 

verify successful deprotection. Table 6 provides an overview of such a synthetic cycle 

for structures synthesized manually, Table 7 depicts those parameters for structures 

synthesized utilizing a Biotage (Uppsala, Sweden) Initiator+ semiautomatic peptide 

synthesizer and microwave irradiation. Scheme 1 shows a graphical representation of 

a typical coupling cycle. 

 
Table 8 Steps of a manual synthetic cycle 

Step Description Solvent Volume Time 
1  Coupling DCM/DMF 50/50 5 mL/g resin 90 min 
2  Wash DMF, DCM 10 mL/g resin 3 x 1 min DMF 

3 x 1 min DCM 
3  Kaiser test - - - 
4  Fmoc deprotection 20 % piperidine  

in DMF 
10 mL/g resin 4 x 10 min 

5  Wash DMF, DCM 10 mL/g resin 3 x 1 min DMF 
3 x 1 min DCM 

6  Kaiser test - - - 
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Table 9 Steps of a synthetic cycle using a semiautomatic peptide synthesizer 

Step Description Solvent Volume Time 
1  Coupling NMP/DMF 5 mL/g resin 12 min at 50°C 
2  Cooling - - 3 min without heat  
3 Coupling NMP/DMF 5 mL/g resin 12 min at 50°C 
4 Wash DMF 8 mL/g resin 5 x 1 min 
5 Fmoc deprotection 20 % piperidine/DMF 7 mL/g resin 4 x 10 min 
6 Wash DMF 8 mL/g resin 5 x 1 min 
     

 

 

 

Scheme 6 Graphical representation of a typical coupling cycle. Steps 1) through 6) were repeated with 
the respective building block to be coupled until the final sequence was obtained and cleaved from the 
resin. The preswell step was performed only once at the beginning. 
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2.2.3 Kaiser test 

Qualitative evaluation of free amines was performed based on the Kaiser test. A small 

amount of resin (typically approximately the tip of a spatula) washed with DCM was 

transferred into a 1.5 mL Eppendorf reaction tube and laced with a drop of each 80 % 

phenol in EtOH (w/v), 5 % ninhydrin in EtOH (w/v) and 20 μM potassium cyanide (KCN) 

in pyridine (mL aqueous 0.001 M KCN and 49 mL pyridine). The tube was then 

vortexed, briefly centrifuged, punctured at the top to allow for pressure equalization 

and incubated under agitation for 4 minutes at 99 °C. The absence of free amines was 

indicated by a pale yellow color whereas in case of residual free amines a deep blue 

color could be observed. 

 

 

2.2.4 Cleavage and purification of structures generated by solid phase 
synthesis 

In order to maximize yields, all resins were fully dried under high vacuum prior to 

cleavage. Structures were then cleaved from resins with a mixture of trifluoroacetic 

acid (TFA), triisopropylsilane (TIS) and water (95 : 2.5 : 2.5, v/v). The cleavage cocktail 

was dosed based on the amount of resin (10 mL g−1). After 90 minutes of incubation 

under agitation, the cleavage solution was concentrated by nitrogen flow, dropwisely 

precipitated into 40 mL of MTBE and n-hexane (1:1, v/v) which had been pre-cooled 

at – 80 °C. After precipitation, the tube was shaken vigorously, centrifuged (10 minutes, 

4000 rpm, Megafuge 1.0R, Heraeus, Hanau, Germany) and the supernatant removed. 

The obtained pellets were dried under nitrogen flow, dissolved in 30% acetonitrile in 

water (v/v), frozen in liquid nitrogen and freeze-dried (Christ Alpha 2–4 LD plus, Martin 

Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany). Purity was evaluated 

by MALDI-TOF and, if necessary, RP18-HPLC. In case of a low purity, synthesized 

structures were purified by size exclusion chromatography utilizing an Äkta purifier 

system (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) equipped with a 

Sephadex G-10 column and 30 % acetonitrile (v/v) in 10 mM hydrochloric acid as the 

mobile phase. 
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2.2.5 Particle size and zeta potential 

Size and zeta-potential measurements were performed at a backscattering angle of 

173° using the Nano Series Nano-ZS Zetasizer equipped with DTS-1070 folded 

capillary cuvettes (Malvern Instruments, Malvern, Worcestershire, United Kingdom). 

For size measurements, an equilibration time of 0 s was set and the attenuator was 

adjusted automatically. Measurements in HEPES-buffered glucose were performed at 

25 °C with a solvent refractive index of 1.330 whereas a temperature of 20 °C and a 

solvent refractive index of 1.3617 were used for EtOH. Each sample was measured 

three times with at least six subruns each and z-averages, PDIs, and zeta potentials 

were reported as mean ± standard deviation. Zeta potential measurements were 

carried out in HEPES-buffered glucose (HBG) as triplicates with 10–15 subruns each 

and the zeta potential values were then calculated by the Malvern Zetasizer software 

(version 7.11) based on the Smoluchowski equation. 

 

 

2.2.6 Synthesis of metal-organic framework nanoparticles 

Table 10 MOFs used within this work and the literature describing their synthesis. 

MOF            Dispersant Storage Reference 
MIL-88A EtOH Room temperature [61] 
MIL-100(Fe) EtOH Room temperature [62] 
MIL-101(Cr) EtOH Room temperature [146] 
UiO-66 
Zr-fum 
HKUST-1 

EtOH 
EtOH 
EtOH 

Room temperature 
Room temperature 
Room temperature 

 

[147] 
[65] 
[148] 

 

Used MOFs were kindly synthesized and provided by Patrick Hirschle (Department of 

Chemistry, LMU Munich) and Dr. Andreas Zimpel (Department of Chemistry, LMU 

Munich). Table 10 lists respective storage conditions, dispersants and original 

publications describing the synthesis. 
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2.2.7 Evaluation of metal-organic framework peptide tag binding capacities 

Directly prior to the experiment, a 10 mg ml-1 stock solution of the respective MOF in 

HBG buffer (20 mM, pH 7.4) was prepared by centrifuging its ethanolic stock solution 

(10 min,10000 rpm, Eppendorf tabletop centrifuge), carefully removing the supernatant 

by gently tapping the inverted tube on a paper towel and redispersing the pellet in HBG. 

In case of residual aggregates, especially prominent for MIL-88A, MOFs in HBG were 

briefly sonicated. For each MOF and peptide structure, five aliquots of the respective 

peptide-STOTDA-acridine structure in HBG (1 mM, 130 µL, 130 nmol) were prepared 

in 1.5 mL microcentrifuge tubes. Individual amounts of HBG buffer (20 mM, pH 7.4) 

were then added to each tube in such a fashion that the tube volume totaled 1000 µL 

once the respective amount of MOF in HBG was added. In the next step, the MOF in 

HBG (25 µg, 50 µg, 100 µg, 250 µg, 500 µg; corresponding to 2.5 µl, 5 µL, 10 µL, 25 

µL, 50 µL 10 mg mL-1 MOF stock in HBG, respectively) was added, the tubes then 

briefly vortexed and incubated (Eppendorf tabletop shaker, 25 °C, 600 rpm, 15 min). 

After incubation, all samples were centrifuged (5 min,14000 rpm, Eppendorf tabletop 

centrifuge) and 100 µL of supernatant were carefully transferred to a microcuvette and 

photometrically measured at 360 nm against 20 mM HBG 7.4 as a blank. The 

concentration of peptide present in the supernatant was then determined using 

individual calibration curves of the respective peptides in HBG (6 data points between 

0 and 150 µM, measured at 360 nm, R2 of each curve > 0.99). The concentration of 

peptide bound by the respective MOF amount was then calculated according to the 

following formula: c(bound peptide) = 130 µM – c(supernatant). As the total sample 

volumes were set to 1000 µL, the determined bound peptide in µM equals the absolute 

amount of bound peptide in nmol. For each parameter, two individual samples were 

measured. 

 

2.2.8 Evaluation of metal-organic framework En-MTX binding capacities 

En-MTX bindings were determined with the assay setup described in 2.2.7 except for 

individual calibration curves being used and the photometric detection being carried 

out at a wavelength of 330 nm instead. 
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2.2.9 Nanoparticle uptake evaluation by confocal microscopy 

Respective experiments were conducted by Miriam Höhn, Department of Pharmacy, 

LMU Munich. Cells were seeded in eight well-chamber slides (Thermo Fisher 

Scientific, 20000 cells in 300 μL medium per well) 1 day prior to recording the images 

and cultured at 37 °C and 5 % CO2. On the day of the experiment, the medium was 

exchanged for 240 μL of fresh medium. The NPs were added in 60 μL HBG per well. 

After 1 h of incubation, the treatment solutions were replaced with fresh medium and 

the cells were incubated for additional 2 h at 37 °C and 5% CO2. Cells were then fixated 

with 4 % paraformaldehyde in PBS (30 min incubation, room temperature). After 

fixating the cells, each well was washed once more with 400 μL PBS. Nuclei were 

stained with DAPI (2 μg mL−1) and F-Actin was labeled with phalloidin-rhodamine (1 

μg mL−1). After 30 min of light-protected incubation at room temperature, the staining 

mixture was removed and replaced with 300 μL PBS per well. Images were then 

recorded on a Leica-TCS-SP8 confocal laser scanning microscope equipped with an 

HC PL APO 63 × 1.4 objective. DAPI emission was recorded at 460 nm and calcein at 

530 nm. All images were processed utilizing the LAS X software from Leica. 

 

2.2.10 Scanning electron microscopy 

Measurements were carried out by Dr. Steffen Schmidt, Department of Chemistry, 

LMU Munich, Germany. The respective NP stock solutions in EtOH were concentrated 

approximately tenfold (by centrifugation and redispersion in a smaller volume of EtOH) 

and subsequently spotted onto a hydrophobic SEM sample carrier. After drying 

overnight in a dust protected environment, the samples were sputtered with carbon 

(three cycles of carbon vacuum deposition) and their morphology was then 

characterized using a Dual beam FEI Helios G3 UC SEM operated at 3 kV. Particle 

sizes were determined by recording high-resolution images, correcting them for 

contrast and brightness and subsequently measuring 100 particles using the ImageJ 

software (version 1.50i). The obtained sizes were reported in nanometers as average 

± standard deviation. The elemental composition was analyzed during SEM 

measurements by energy dispersive X-ray spectroscopy (EDX) using an Oxford 

Instruments X-Max N80 device.  
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2.2.11 Synthesis of Zr-PMX NPs  

A mixture of 416 μL 10 mM ZrCl4 (1 eq,4.16 μmol, freshly dissolved in bi-distilled 

water), 50 μL 1 M HCl and 48.5 μL formic acid (100 eq.) was prepared in a 50 mL 

falcon tube and stirred at medium speed using a magnetic stirrer (solution I). In a 

separate 5 mL tube, 488 μL 15 mg mL−1 pemetrexed disodium heptahydrate (3 eq, 

12.48 μmol, dissolved in bi-distilled water) was mixed with 3 mL EtOH absolute 

(solution II). Solution II was then quickly added to solution I while stirring. The mixture 

was further stirred at medium speed for 45 min. Afterwards, the reaction batch was 

split into three 1.5 mL polystyrene microcentrifuge tubes and centrifuged (Eppendorf 

tabletop centrifuge, 14 000 rpm, 1 min, Eppendorf GmbH, Hamburg, Germany). The 

supernatants were removed and the three pellets unified in 1 mL fresh EtOH absolute. 

The concentrated NP stock solution was then washed an additional two times with 

EtOH absolute (1 mL EtOH absolute and 1 min @ 14 000 rpm centrifugation per 

washing step). The washed NPs were redispersed in 1 mL EtOH absolute by gentle 

pipetting and subsequently sonicated for 5 min (20 °C, power 9) using a VWR USC 

THD/HF Ultrasonic Cleaner (VWR International GmbH, Darmstadt, Germany).  

 

2.2.12 Synthesis of Zr-Calcein-PMX NPs  

Zr-PMX NPs containing calcein were prepared identically to Zr-PMX NPs with the 

exception of solution II additionally containing 17.85 μM calcein (12.5 μL 5 mM calcein 

were added to solution II prior to mixing solutions I and II). 
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2.2.13 Determination of zirconium content by ICP-AES 

A total of 1 mL Zr-PMX NPs in EtOH was transferred to a weighed polystyrene 

microcentrifuge tube, centrifuged (1 min, 14 000 rpm, Eppendorf tabletop centrifuge) 

and the supernatant was carefully discarded. The NP pellet was then dried under high 

vacuum for approximately 24 h followed by approximately 4 h drying at 90 °C. Next, 

the Eppendorf caps were weighed again and the dried NPs digested in 69% (v/v) HNO3 

for trace analysis (Aristar, VWR) and subsequently diluted with bi-distilled water to 3% 

(v/v) HNO3. The samples were then analyzed for their Zirconium content by ICP-AES 

(CCD simultaneous ICP AES Vista RL by Agilent, suction time 35 s, stabilization time 

45 s, power 1.25 kW). The following wavelengths were determined: 257.47, 327.307, 

339.198, 343.823, and 349.619. Utilizing this method, three independent samples were 

prepared and analyzed and the zirconium content was reported as average mass 

percentage ± standard deviation. 

 

 

2.2.14 Evaluation of crystallinity by X-ray diffraction 

XRD spectra were obtained with a Stadi MP STOE transmission diffractometer system 

with Cu K𝛼𝛼1 radiation (𝜆𝜆 = 1.54060 Å) and a Ge(111) single crystal monochromator. 

All samples were prepared by fixating the dried samples between two polymer foils. 

Diffraction patterns were recorded with a DECTRIS solid-state strip detector MYTHEN 

1K in a transmission setup derived from Debye–Scherrer geometry using a step size 

of 4.71° and a counting time of 120 s per step. For data analysis, the WinXPOW 

RawDat v3.0.2.5 software package was used. 
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2.2.15 Determination of PMX content by HPLC 

Zr-PMX NPs in EtOH were synthesized as described above. A total of 200 μL of the 

synthesized Zr-PMX NPs in EtOH was then mixed with 1 mL 500 mM EDTA pH 8.2 

and 300 μL bi-distilled water. Three independent samples were prepared and 

incubated for 72 h at 25 °C under constant shaking (500 rpm, Eppendorf tabletop 

shaker, Eppendorf GmbH, Hamburg, Germany). In order to avoid EDTA precipitation, 

the lysed NPs were subsequently diluted with an equal volume of 0.1% (v/v) 

trifluoroacetic acid (TFA) in bi-distilled water and the PMX released from the NPs was 

then quantified by HPLC (Hitachi Chromaster, YMC RP-18 column, 50 μL injection 

volume, PMX retention time 10.847 min, monitoring @ 225 nm, solvents bi-distilled 

water + 0.1% TFA, HPLC-grade acetonitrile (ACN) + 0.1 % TFA (0–2.5 min: 1% ACN 

+ 0.1% TFA, 2.5 – 11 min: increase to 41.4 %, 11–12 min: increase to 100 %, 12–14 

min: wash with 100 %). Using a PMX calibration curve (six data points between 0 nmol 

and 5 nmol, R2 = 0.9976) and the PMX molecular weight of 427.411 g mol−1, the mass 

of PMX present in each sample was calculated. To obtain the drug loading of PMX 

within the NP, the total mass of NP present in each sample was determined by 

transferring 1 mL Zr-PMX NPs in EtOH to a weighed 1.5 mL polystyrene 

microcentrifuge tube, centrifuging (1 min, 14 000 rpm, Eppendorf tabletop centrifuge) 

and removing the supernatant very carefully to avoid loss of material. The NP pellet 

was then dried under high vacuum for approximately 48 h followed by approximately 4 

h drying at 90 °C. The average of three mass determinations was then used to 

calculate the mass of NP present in each HPLC sample. The fraction of PMX in the 

NP (w/w) was subsequently calculated according to the following formula: [μg PMX in 

the HPLC sample/μg NP in the HPLC sample] × 100%. 

 

2.2.16 Thermogravimetric analysis 

Thermogravimetric analysis was carried out with a thermomicrobalance (Netzsch, STA 

449 C Jupiter) by applying a heating rate of 10 °C min−1 up to 900 °C. A total of 7.425 

mg of material was heated under synthetic air (N2/O2 mixture) with a flow rate of 25 

mL min−1. For data evaluation, the Proteus—Thermal Analysis (v.4.3) software was 

used. 
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2.2.17 BET sorption measurements 

The nitrogen sorption isotherm was measured at 77 K with a Quantachrome Autosorb-

1 iQ. Dried NPs were degassed at 60 °C under high vacuum for 38 h prior to the 

measurement. Evaluation of the sorption data was carried out using the ASiQwinTM 

software (Version 3.0, Quantachrome Instruments). BET surface areas were 

calculated employing the linearized form of the BET equation. With a relative pressure 

range between 0.15 and 0.27, this resulted in a correlation coefficient >0.999 with a 

positive C constant. The adsorption isotherm was then used to calculate the pore size 

distribution by employing the quenched solid density functional theory (QSDFT, N2 at 

77 K on carbon, cylindrical pores adsorption branch). 

 

2.2.18 Silica coating of Zr-PMX-NPs 

A mixture of 3 μL N1-(3 trimethoxysilylpropyl)diethylenetriamine (TMSP) and  

1 mL EtOH absolute and  was prepared in a 50 mL falcon tube and stirred at low to 

medium speed with a magnetic stirrer. In a separate vial, 400 μL Zr-PMXNPs in EtOH 

were pre-diluted with 2 mL EtOH absolute and briefly vortexed. The prediluted Zr-PMX 

NPs were then added dropwise to the diluted TMSP solution within approximately 2 

min and stirred for 5 min at low to medium speed. After 5 min, the polymerization 

process was initiated by addition of 60 μL 5M HCl. The tube was then stirred at low to 

medium speed for 3 h. Afterward, the reaction batch was split into three 1.5mL 

polystyrenemicrocentrifuge tubes, centrifuged (1min, 14 000 rpm, Eppendorf tabletop 

centrifuge) and the three pellets were unified in 1 mL fresh EtOH absolute. The sample 

was washed two more times with EtOH absolute (1 mL, 1 min@14 000 rpm, Eppendorf 

tabletop centrifuge). After the final washing step, the pellet was redispersed in 1 mL 

EtOH absolute and sonicated for 5 min (20 °C, power9) using the VWR USC THD/HF 

Ultrasonic Cleaner (VWR International GmbH, Darmstadt, Germany). Zr-Calcein-PMX 

NPs were coated with TMSP using the same protocol. 
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2.2.19 Serum stability of Zr-PMX@TMSP NPs 

For each sample, 1 mL of Zr-Calcein-PMX@TMSP NPs in EtOH was centrifuged (1 

min, 14 000 rpm, Eppendorf tabletop centrifuge) and the supernatant was removed 

carefully to avoid loss ofmaterial. The pellet was then redispersed in 1mL 10% (v/v) 

fetal bovine serum and subsequently incubated at 37 °C for 30 min. After the 

incubation, the samples were centrifuged (5 min, 14 000 rpm, Eppendorf tabletop 

centrifuge) and 100 μL of supernatant was diluted with 100 μL 0.1% (v/v) TFA in 

bidistilled water. The amount of released PMX present in the supernatant was then 

quantified by HPLC using a sample volume of 100 μL and the instrumentation 

described in section “Determination of PMX Content by HPLC.” To obtain 100% 

release values to normalize to, a triplicate with respective equal amounts of NP was 

centrifuged (1 min, 14 000 rpm, Eppendorf tabletop centrifuge), the supernatants were 

carefully discarded and the pellets were redispersed in 1 mL lysis buffer (500 mM 

EDTA pH 8.2) and incubated approximately 72 h (37 °C, 500 rpm). The set was then 

quantified by HPLC and the average of the determined PMX content was used as 

100% value. The amount of released PMX for the serum-incubated samples was then 

calculated according to the following formula: [PMX in supernatant/PMX in lysis 

sample] * 100%. For each time point, a set of independent triplicates was prepared 

and analyzed and the percentage of released PMX was reported as average ± 

standard deviation. 

 

2.2.20 Synthesis of pGlu31-b-pSar160-N3 

pGlu31-b-pSar160-N3 was kindly synthesized and provided by Tobias Bauer (PhD 

student at the Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, 

55099 Mainz, Germany) according to the following method. All monomers were 

prepared according to the Fuchs–Farthing method with diphosgene as phosgene 

source and purified by recrystallization (Glu(OtBu)-NCA) or sublimation (SarNCA) as 

reported previously.[149] The synthetic pathway to azide-modified poly(l-glutamic acid)-

block-poly(sarcosine) was adapted and modified from Yoo et al. and Schäfer et al.[150] 

Briefly, poly(𝛾𝛾-tert-butyl-l-glutamic acid)-block-poly(sarcosine) (pGlu (OtBu)-b-pSar) 

was prepared via sequential N-carboxyanhydride (NCA) polymerization initiated by 

neopentylamine. A total of 407.6 mg (1.78 mmol; 31 eq.) of 𝛾𝛾-tert-butyl-l-glutamic acid 
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(Glu(OtBu))-NCA was weighed into a pre-dried Schlenk-flask, dissolved in mixture of 

1:1 THF and DMF (both dried and freshly distilled) at a concentration of 100 g L−1, 

cooled to 0 °C, and a solution of neopentylamine (5.0 mg; 57.4 μmol; 1.0 eq.) in 0.5 

mL of DMF was added. After completed Glu(OtBu)-NCA consumption, as monitored 

by FT-IR spectroscopy, a solution of sarcosine- NCA (1.06 g; 9.17 mmol; 160 eq.) in 

5.0 mL of DMF was added and the polymerization was continued at 10 °C. For azide 

end-group modification, pentafluorphenyl-4-azidobutanoate (33.9 mg; 0.115 mmol, 2.0 

eq.) and N,N-diisopropylethylamine (DIPEA) (53 μL; 0.304 mmol; 5.0 eq.) were added 

and the solution was stirred at room temperature for 18 h. To react residual-free end 

groups, acetic anhydride (54 μL; 0.57 mmol; 10 eq.) and DIPEA (195 μL; 1.11 mmol; 

20 eq.) were added and the solution was stirred for 1 day. The obtained block 

copolymer was purified by repetitive (3x) precipitation/centrifugation (4500 rpm, 15 

min, 4 °C) into a mixture of n-hexane and diethyl ether (2:1). The product (pGlu 

(OtBu)31-b-pSar160-N3) was dried in vacuo and obtained as a white powder (846 mg, 

86%). 

 

1H NMR: pGlu (OtBu)n-b-pSarm-N3 (400 MHz, CD2Cl2), 𝛿𝛿 [ppm] = 8.45−8.11 (22 H, br, 

−NH−CO−CH−), 4.40−3.82 (323 H (1n + 2m), br, −CO−CH−NH + −CO−CH2−NCH3−), 

3.20−2.80 (454 H (3m), m, −NCH3−CO−), 2.66−1.70 (140 H, m, −CH2−CH2−), 

1.53−1.36 (285 H, s + br, −O−C(CH3)3), 0.94−0.83 (9 H, br CH2−C(CH3)3). HFIP-GPC: 

Mn = 39.5 kg mol−1, Mw = 45.4 kg mol−1; Ð = 1.15.  
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For deprotection, 800 mg of pGlu (OtBu)31-b-pSar160-N3 was dissolved in 16 mL of a 

mixture of 45:45:5:5 DCM/TFA/TIPS/water over 3 h in a Schlenk-flask with constant 

stirring. Polymers were precipitated into ether, centrifuged in sealed Falcon tubes and 

the precipitate was dialyzed against aqueous NaHCO3 and water, followed by 

lyophilization (yield 80%). Successful deprotection was verified by 1H NMR. 

 

1H NMR: pGlu (COOH)n-b-pSarm-N3 (400 MHz, D2O), 𝛿𝛿 [ppm] = 4.50−4.00 (490 H, (1n 

+ 2m), m, HN−CH2−CO + HN−CH−CO), 3.30−2.72 (669 H (3m), m NCH3), 2.33−1.70 

(195 H (2n), m, CH2−CH2), 0.77-0.71 (9H, s, −C(CH3)3). HFIP-GPC: Mn = 29.4 kg 

mol−1, Mw = 35.1 kg mol−1; Ð = 1.19. 

 

HFIP-GPC: 
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2.2.21 Synthesis and purification of pGlu31-b-pSar160-Folate 

Pglu31-Psar160-FolA was synthesized by reacting pGlu31-b-pSar160-N3 with a DBCO-

Folate conjugate, referred to here as DBCO-FolA, (folic acid-lysine-DBCO; gamma-

COOH of folic acid coupled to alpha-amine of lysine, epsilon amine of lysine coupled 

to DBCO-carboxylic acid).[151] A total of 3 mg pGlu31-b-pSar160-N3 (1 eq, 189.9 nmol) 

was dissolved in 168 μL 1 mg mL−1 DBCO-FolA (1 eq, 189.9 nmol) in HBG (20 mM, 

pH 7.4). The mixture was incubated overnight and dialysed for 2 days at 4 °C against 

Millipore water. A Spectra/Por prewetted RC tubing dialysis membrane with a 

molecular weight cutoff of 2 kD was used and the water was changed once after 

approximately 24 h. The purified compound was snap frozen in liquid nitrogen, freeze-

dried (Christ Alpha 2–4 LD plus, Martin Christ, Gefriertrocknungsanlagen GmbH, 

Osterode, Germany) and dissolved in bi-distilled water at 1 mg mL−1. 

 

2.2.22 Synthesis and purification of pGlu31-b-pSar160-Transferrin 

Transferrin from human plasma (50 mg, 1 eq., 0.67 μmol) was dissolved in 1 mL 

HEPES buffer (20 mM, pH 7.4). DBCO-PEG4-NHS ester was dissolved in DMSO (20 

mg mL−1) and 43.5 μL (0.87 mg, 2 eq., 1.3 μmol) was added to the transferrin solution. 

The reaction mixture was incubated for 3 h at room temperature under gentle shaking 

(25 °C, 400 rpm). The solution was then purified by size exclusion chromatography 

using an ÄKTA purifier system (GE Healthcare), a Sephadex G25 super fine-size 

exclusion column and HEPES buffer (20 mM, pH 7.4) as a mobile phase. The collected 

fractions containing the DBCO-modified transferrin were pooled and the protein 

concentration was determined by Bradford assay.[152] By pooling the fractions, 4.75 mL 

DBCO-PEG4-transferrin with a concentration of 105 μM corresponding to a total yield 

of approximately 79% was obtained. Next, pGlu31-b-pSar160-N3 (3 mg, 1.1 eq, 189.9 

nmol) was dissolved in 1.81 mL of the obtained DBCO-PEG4-transferrin (1 eq, 209 

nmol) and the mixture was incubated overnight. The resulting transferrin-modified 

polymer was diluted with HEPES to a final concentration of 1 mg mL−1, used without 

further purification and stored at 4 °C. 
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2.2.23 Synthesis and purification of pGlu31-b-pSar160-AF647 

DBCO-AlexaFluor647 (Jena Bioscience GmbH, Jena, Germany) was dissolved in 

DMSO at 1 mg mL−1. A total of 455 μL of the dissolved DBCOAlexafluor647 (1.2 eq., 

403 nmol) was then used to dissolve 5.3 mg pGlu31-b-pSar160-N3 (1 eq, 335 nmol). The 

obtained mixture was then incubated overnight using an Eppendorf tabletop shaker 

(25 °C, 400 rpm). On the next morning, the product was dialyzed for about 48 h at 4 

°C against bi-distilled water. Prior to adding the reaction batch to the dialysis 

membrane (Spectra/Por prewetted RC Tubing, MWCO 2 kD), the membrane was 

rinsed with bi-distilled water to remove the azide antifouling agent. Bi-distilled water 

was then added to the sample to reduce the DMSO content to approximately 20% v/v 

as a precaution in order to safeguard membrane integrity. During the dialysis step, the 

water was changed once after approximately 12 h, minor precipitation of blue product 

within the dialysis bag was observed. After dialysis, the sample was snap frozen in 

liquid nitrogen, freeze-dried over 2 days (Christ Alpha 2–4 LD plus, Martin Christ, 

Gefriertrocknungsanlagen GmbH, Osterode, Germany) and dissolved in bi-distilled 

water at a final concentration of 1 mg mL−1. 

 

2.2.24 pGlu31-b-pSar160-N3 coating of Zr-PMX@TMSP NPs 

pGlu31-b-pSar160-N3 was prepared as an aqueous 1 mg mL−1 stock solution. For the 

dose titration studies, x μL polymer corresponding to x μg polymer was added to a 5 

mL polystyrene tube and stirred at medium speed. Next, ethanolic Zr-PMX@TMSP 

NPs were centrifuged (1 min, 14000 rpm, Eppendorf tabletop centrifuge). The 

supernatant was carefully removed and the particles were redispersed in an equal 

volume of HBG (20 mM, pH 7.4). The particles in HBG were then sonicated for 1 min. 

Next, 500 μL of Zr-PMX@TMSP NPs in HBG were added dropwisely to the stirred 

polymer solution over approximately 2 min. The solution was stirred for additional 3 

min and the obtained polymer-coated Zr-PMX@TMSP NPs were sonicated for 1 min 

(power 9, 20 °C) using the VWR USC THD/HF Ultrasonic Cleaner (VWR International 

GmbH, Darmstadt, Germany). 
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2.2.25 pGlu31-b-pSar160-FolA coating of Zr-PMX@TMSP NPs 

To obtain folate-targeted Zr-PMX@TMSP NPs, a mixture of 1 mg mL−1 Pglu31- Psar160-

N3 and 1 mg mL−1 pGlu31-b-pSar160-FolA was prepared in a 5 mL Eppendorf tube 

stirred at medium speed. A total of 500 μL of Zr- PMX@TMSP NPs in HBG was added 

dropwisely to the stirred polymer solution over approximately 2 min. The solution was 

stirred for an additional 3 min and the obtained polymer-coated Zr-PMX@TMSP NPs 

were sonicated for 1 min (power 9, 20 °C) using the VWR USC THD/HF Ultrasonic 

Cleaner (VWR International GmbH, Darmstadt, Germany). For the polymer dose 

titration experiments, a total of 25 μL polymer containing various percentages pGlu31-

b-pSar160-FolA was used. For the uptake experiments by confocal microscopy and 

MTT assays, 500 μL of Zr-PMX@TMSP NPs in HBG was coated with a fixed amount 

of 25 μg polymer containing 25% folate-modified polymer (6.25 μL 1 mg mL−1 pGlu31-

b-pSar160-FolA + 18.75 μL pGlu31-b-pSar160-N3) as described above. 

 

2.2.26 pGlu31-b-pSar160-Transferrin coating of Zr-PMX@TMSP NPs 

To obtain transferrin-targeted Zr-PMX@TMSP NPs x μL 1 mg mL−1 pGlu31-b-pSar160-

transferrin (nomalized to polymer content) was prepared in a 5 mL polystyrene 

microcentrifuge tube stirred atmedium speed. A total of 500 μL of Zr PMX@TMSP NPs 

in HBG was added dropwisely to the stirred polymer solution over approximately 2 min. 

The solution was stirred for another 3 min and the obtained polymer-coated Zr-

PMX@TMSP NPs were sonicated for 1 min (power 9, 20 °C) using the VWR USC 

THD/HF Ultrasonic Cleaner (VWR International GmbH, Darmstadt, Germany). For the 

dose titration experiment, various amounts (0– 50 μL) pGlu31-b-pSar160-transferrin 

were used. For the uptake experiments by confocal microscopy, 500 μL of Zr-

PMX@TMSP NPs in HBG was coated with a fixed amount of 25 μg pGlu31-b-pSar160-

transferrin as described above. 
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2.2.27 Colloidal stability studies of Zr-PMX@TMSP-NPs ± pGlu31-b-pSar160-N3 

For the HBG stability experiment, 500 μL Zr-PMX@TMSP NPs in HBG were coated 

with 25 μg pGlu31-b-pSar160-N3 as described above and incubated using an Eppendorf 

tabletop shaker (37 °C, 400 rpm). Every 24 h, 75 μL sample was drawn, diluted with 

645 μL HBG and size, PDI and zeta potential were determined by DLS. For the PBS 

stability experiment, Zr-PMX@TMSP-NPs were coated with 25 μg pGlu31-b-pSar160-

N3 and incubated as described above. Then, 200 μL of the coated NPs in HBG were 

added to 800 μL PBS (20 mM, pH 7.4). Every 24 h, 180 μL sample was withdrawn, 

diluted with 540 μL PBS and then the size, PDI, and zeta potential were determined 

as described earlier. 

 

2.2.28 Serum stability of pGlu31-b-pSar160-N3@Zr-PMX@TMSP NPs 

In a 5 mL polystyrene microcentrifuge tube, 25 μL pGlu31-b-pSar160-AF647 was stirred 

at medium speed. A total of 500 μL Zr-PMX@TMSP NPs in HBG was added 

dropwisely to the stirred polymer solution over approximately 2 min. The solution was 

stirred for another 3 min and the obtained polymer-coated Zr-PMX@TMSP NPs were 

sonicated for 1 min (power 9, 20 °C) using the VWR USC THD/HF Ultrasonic Cleaner 

(VWR International GmbH, Darmstadt, Germany). One day prior to recording the 

images, KB cells were seeded in eight well-chamber slides (Thermo Fisher Scientific, 

20 000 cells in 300 μL medium per well) and cultured at 37 °C and 5% CO2. On the 

day of the experiment, the medium was removed, replaced with 240 μL fresh medium 

and 60 μL NPs dispersed in HBG were added. After 2 h of incubation at 37 °C and 5% 

CO2, each well was emptied by aspiration, supplemented with fresh medium, and 

incubated for another 2 h. The cells were then fixated with 4% paraformaldehyde in 

PBS (30 min incubation, room temperature). After fixating the cells, each well was 

washed once more with 400 μL PBS. Cell nuclei were then stained with DAPI (2 μg 

mL−1) and F-Actin was labeled with phalloidin-rhodamine (1 μg mL−1). After 30 min of 

incubation (room temperature, light protection), the staining mixture was removed and 

replaced with 300 μL PBS per well. Images were generated on a Leica-TCS-SP8 

confocal laser scanning microscope equipped with an HC PL APO 63 × 1.4 objective. 

DAPI emission was recorded at 460 nm, calcein at 530 nm, rhodamine at 580 nm, and 

Alexafluor647 at 667 nm. All images were processed with the LAS X software from 

Leica. 
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2.2.29 MALDI mass spectrometry 

For MALDI measurements, one µL of matrix solution composed of a saturated solution 

of Super-DHB (2-hydroxy-5-methoxybenzoic acid and 2,5-dihydroxybenzoic acid) in 

water/acetonitrile (1:1, v/v) containing 0.1 % (v/v) TFA was spotted on an MTP 

AnchorChip (Bruker Daltonics, Bremen, Germany). After crystallization of the Super-

DHB matrix, one µL of sample solution to be analyzed, typically dissolved in water, 

was added on top of the crystallized matrix droplet and allowed to dry in a dust-

protected environment. The samples were then analyzed utilizing an Autoflex II mass 

spectrometer (Bruker Daltonics, Bremen, Germany). Depending on the sample 

structure, data was recorded either in positive or negative mode. The actual 

measurement was carried out by Dr. Sören Reinhardt, LMU Munich, Germany. 

2.2.30 Evaluation of toxicity by MTT-assay (adherent cell lines) 

Experiments were conducted by Miriam Höhn, Department of Pharmacy, LMU Munich. 

A total of 5000 cells/well were seeded in 96-well plates (Corning® Costar, Sigma–

Aldrich, Germany) 1 day prior to the experiment. The respective amount of formulation 

to be tested was prepared in HBG pH 7.4 at a five-fold concentration. For each well, 

100 μL of treatment solution was prepared by mixing 20 μL formulation in HBG with 80 

μL medium. 24 h after seeding the cells, the medium was aspirated and replaced with 

100 μL treatment solution. For each formulation and concentration, an independent 

quintuplicate of five wells was treated. After addition of the treatment, the cells were 

incubated for the indicated duration at 37 °C and 5% CO2. Afterwards, the wells were 

aspirated and replaced with fresh medium. 72 h after addition of the sample solutions, 

10 μL 5 mg mL−1 MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

resulting in a final concentration of 0.5 mg mL−1 was added to each well. The plates 

were then incubated for 2 h at 37 °C under mild shaking. Unreacted dye and medium 

were subsequently aspirated and the 96-well plates frozen at −80 °C for approximately 

2 h. In order to fully dissolve the purple formazan product, 100 μL of DMSO were added 

to each well. The plates were then incubated under agitation for another 30 min. By 

measuring the absorbance at 590 nm taken together with a background correction at 

630 nm using a microplate reader (TecanSpectrafluor Plus, Tecan, Switzerland), the 

absorption of each well was quantified. The relative cell viability (%) related to control 

wells treated with 20 μL HBG (pH 7.4) was then calculated as ([A] test/[A] control) × 

100%. 
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2.2.31 Evaluation of toxicity by MTT-assay (suspension cell lines) 

Experiments were conducted by Miriam Höhn, Department of Pharmacy, LMU Munich. 

L1210 cells were withdrawn from their culture flask, centrifuged (1500 rpm, 5 min), 

washed, resuspended in folate-free medium and cultured for 24 h at 37 °C and 5% 

CO2. Afterward, the cell density was determined and adjusted to 125000 cells mL-1. 

Treatment solutions in HBG buffer were prepared at fivefold their intended final 

concentration. A total of 480 μL cell suspension (125000 cells mL−1) was then mixed 

with 120 μL respective treatment solution prepared at fivefold concentration. The 

obtained 600 μL cell suspension now containing the treatment at the final one-fold 

concentration was then transferred to five adjacent wells of a 96-well plate (100 μL 

corresponding to 10000 L1210 cells were added to each well). The cells were then 

cultured for the indicated duration, typically 72 h, at 37 °C and 5 % CO2. For the 1 + 71 

h incubation, cells were washed after 1 h by centrifuging (1500 rpm, 5 min) and 

replacing 50 μL of supernatant with fresh folate-free medium. This step was performed 

twice. After 72 h addition of the sample solutions, 100 μL of lysis buffer (10 mM HCl, 

10% w/v sodiumdodecylsulfate) was added to each well. The plates were then 

incubated for 2 h (37 °C, 5% CO2). Absorption values were then determined at 590 nm 

taken together with a background correction at 630 nm using a microplate reader 

(TecanSpectrafluor Plus, Tecan, Switzerland). The relative cell viability (%) related to 

control wells treated with 20 μL HBG (pH 7.4) was then calculated as ([A] test/[A] 

control) × 100%. The used washing protocol was developed by Dr. Ines Truebenbach, 

Department of Pharmacy, LMU Munich. 

 

2.2.32 Calculation of EC50 values 

EC50 values were determined using GraphPad PRISM version 6.01. To do so, 

respective dose-dependent viabilities determined in quintuplicate by MTT assay were 

plotted against their concentration (XY plot, 5 replicate values in side-by-side 

subcolumns). Then, X data (respective concentrations) was logarithmized. Respective 

EC50 values were then determined by nonlinear regression [curve fit, log(Inhibitor vs. 

response, variable slope, 4 parameters) fitting method least squares fit]. The best-fit 

EC50 values were reported in combination with the respective R2 as an indication of fit 

quality. 
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2.2.33 Nanoparticle uptake experiments by flow cytometry 

Experiments were conducted by Miriam Höhn, Department of Pharmacy, LMU Munich. 

One day before performing the experiment, KB cells were seeded in a 24-well plate. 

Each well contained 60 000 cells dispersed in 1 mL medium. On the next day, the 

medium was removed and replaced with 400 μL fresh medium. Next, 100 μL 

functionalized NPs in HBG were added to each well. After 1 h, the medium was 

removed by aspiration and each well was washed with 1 mL of PBS followed by 

trypsinization (5 min, 37 °C) with 200 μL of trypsin/EDTA. A total of 400 μL medium 

was added to each well and the cells were centrifuged (5 min, 1500 rpm, room 

temperature). In order to have enough cells for analysis, two independent wells per 

condition were pooled. The supernatant was removed and the cells were resuspended 

in 700 μL FACS buffer (10% FBS in PBS) and stored on ice. Directly prior to analysis, 

2 μL DAPI (1 mg mL−1) was added to each vial. Data were recorded utilizing the LSR 

Fortessa flow cytometer (BD Biosciences, Eysins, Switzerland). Gating and data 

analysis were performed with the FlowJo 7.6.5 flow cytometry analysis software. 

Initially, cells were gated by forward/sideward scatter and pulse width in order to 

exclude cell aggregates. Dead cells were subsequently excluded using DAPI and only 

isolated viable cells were evaluated. Approximately 10 000 gated cells per sample were 

collected. The threshold level for NP binding was determined based on the 

fluorescence of HBG-treated control wells. 

2.2.34 Statistical analysis 

If not stated otherwise, data are presented as mean ± standard deviation. Triplicates 

were analyzed for DLS measurements, ICP–AES, and PMX content by HPLC. For 

SEM, the as-obtained images were normalized to the scale bar and the size of 100 

particles was subsequently analyzed. In flow cytometry experiments, a minimum of 10 

000 gated cells were evaluated per condition. For the PMX content determination by 

HPLC, a PMX calibration curve (six data points between 0 nmol and 5 nmol) was 

recorded (R2 = 0.9976). MTT experiments were performed in quintuplicates and the 

data were analyzed by two-way ANOVA utilizing GraphPad Prism version 6.01. 

Testing was performed with 𝛼𝛼 = 0.05 and n = 5. After performing the analysis, stars 

were assigned according to the p-values: *for p ≤ 0.05, **for p ≤ 0.01, *** for p ≤ 0.001, 

and **** for p ≤ 0.0001. 
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3 Results 

3.1 Delivery of chemotherapeutics by metal-organic frameworks 

3.1.1 Screening of a peptide tag library designed for metal-organic framework 
cargo attachment  

Background. This chapter describes the screening of a peptide tag library in order to 

identify short peptide sequences that are able to mediate MOF cargo attachment.  

To obtain a deeper understanding of the binding process, the synthesized library 

incorporated different tag lengths and was evaluated on multiple selected MOFs with 

different properties. 

The ability to understand and control MOF surface chemistry is of paramount 

importance in a biomedical setting as it allows to modify and tune MOF characteristics 

such as colloidal stability,[153] on-demand cargo release,[154] co-delivery of multiple 

cargos,[96] enhanced endosomal escape[155] and immune recognition.[155] 

Nevertheless, compared to bulk functionalization approaches, research aimed 

selectively at outer surface modification of MOF NPs has received less attention.[156] 

So far, examples of reported covalent outer surface modification strategies include 

introduction of orthogonal functional groups by post-synthetic linker exchange,[95] 

polymer attachment by radical polymerization[157] or EDC/NHS chemistry,[158] coating 

with coil-forming peptides to allow for on-demand superstructure assembly[159] and 

core-shell structures realized by silica coating[160] or silica matrix inclusion.[161]  

However, the harsh reaction conditions typically required impair the biomedical 

applicability with regard to labile cargos and recent reports of milder, non-covalent 

modification strategies such as polymer coatings,[162] liposome fusion,[163] exosome 

coating[155] and cargo attachment by short[96] or long[164] peptide sequences may point 

towards more compatible alternatives.  

For the last mentioned approach, the relevant publication determined binding 

sequences by phage display which has the advantage of identifying high-affinity 

binding peptides, but provides little information about the structure-activity 

relationships governing the binding process. 
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Figure 2 Overview of the synthesized peptide tags grouped by net charge at neutral pH. Each tag is 
composed of an acridine moiety to allow for photometric detection, a short PEG spacing unit (STOTDA) 
and the respective amino acids denoted in one letter code. The left column shows screened tripeptide 
tags whereas the respective hexapeptide analogues are depicted on the right. From top to bottom: 
glutamate-, alanine-, histidine- and lysine tags. 
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Therefore, in order to shed light on how peptide properties influence binding 

characteristics, a peptide tag library consisting of 8 structures (Figure 2) was designed 

and screened on a panel of MOFs.  

Each peptide tag incorporates an aromatic acridine moiety to allow for selective 

photometric detection at a wavelength free of interference by MOF components, a 

short polyethyleneglycol-based spacing unit (STOTDA) and the actual peptidic binding 

sequence. Here, used amino acids were chosen based on their charge at neutral pH 

and included glutamate (negative), alanine (neutral), histidine (neutral to slightly 

charged) and lysine (positive).  

Of each tag, both tripeptide- and hexapeptide versions were generated and evaluated 

in order to try to understand the influence of tag length and charge density on the 

overall binding capacities. 

Investigated MOFs were chosen based on two main reasons: biomedical relevance 

and structural diversity. Zr-fum,[165] UiO-66,[166] MIL-88A,[80] MIL-100(Fe)[47d, 80] all fit the 

former requirement as illustrated by the selected studies and are also generally 

regarded as promising in a biomedical setting.  

In contrast, HKUST-1 and MIL-101(Cr) seem initially limited by toxicity concerns due 

to the incorporated copper or chromium. Nevertheless, both MOFs were included 

based on their material properties, HKUST-1 due to its potential for certain biosensory 

applications,[167] MIL-101(Cr) due to the presence of coordinatively unsaturated open 

metal sites on the particle surface and its high porosity with pores reaching sizes of 29 

Å and 34 Å.[146] 

In order to detect possible saturation processes, the actual screening was performed 

by varying the amount of MOF while keeping the amount of offered peptide tag 

constant at 130 nmol.  
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Screening of Zr-fum 

Evaluating the microporous (5 – 7 Å) Zr-fum[65] with regard to its binding capacity for 

peptide tags (Figure 3) identified the Glu3 tag as most promising. 500 µg of Zr-fum 

were able to bind approximately 31,6 ± 4,9 nmol of Glu3 which decreased to 14,7 ± 1,2 

nmol for the Glu6. Histidine was the second most prominent binder with obtained values 

of 6,9 ± 1,3 nmol (His3) and 12,4 ± 1,8 nmol (His6) per 500 µg of MOF. 

The bindings were also evaluated by plotting the photometrically determined average 

amount of bound peptide tag against the amount of MOF used to obtain the respective 

binding value (Figure 4). This was done in order to investigate if the offered amount of 

MOF and the respective amount of tag bound by it follow a linear relationship. 

Additionally, such a plot may hint at saturation processes.  

Here, linear relationships were only observed for Glu3, Glu6, His3 and His6. Here, 

respective R2 values of 0.9992, 0.9547, 0.9754 and 0.7944 were calculated and 

confirm the linearity between the amount of bound peptide and the amount of offered 

MOF. As no dose-dependent increase in binding capacity, and thus no linear 

relationship, was observed for Ala3, Ala6, Lys3 and Lys6, it may be assumed that those 

tags either do not bind to Zr-fum. The binding capacity might also be so low that even 

scaling the amount of offered Zr-fum by a factor of 20 (25 µg vs. 500 µg) only has a 

very minor effect on the overall amount of bound peptide.  

 
Figure 3 Tag screening for Zr-fum. A) binding of tripeptides, B) binding of hexapeptides. 130 nmol of 
the respective tag were added to various amounts of Zr-fum, composed of fumaric acid and Zr4+, and 
incubated for 15 minutes. After incubation, samples were centrifuged and the amount of bound tag 
determined by photometric differential quantification. 
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Figure 4 Evaluation of linearity between the amount of offered Zr-fum  in micrograms (X axis) and 
average bound respective peptide tag in nmol (Y axis). The left column represents tripeptide tags 
whereas the hexapeptide tags are denoted in the right column. Rows from top to bottom: Ala-, Glu-, His- 
and Lys-tags. For the Glu3, Glu6, His3 and His6 tags, the amount of bound peptide increases linearly with 
the amount of offered MOF as reflected by the R2 values. 
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Screening of UiO-66 

For UiO-66, His3 was identified as the best binding motif (Figure 5). Here, a binding of 

115,9 ± 2,6 nmol per 500 µg UiO-66 was observed. Lys3 showed the second highest 

binding with a value of 76.5 ± 2.1 nmol per 500 µg UiO-66. Here, the tag length had a 

decisive influence on the binding capacity, increasing the number of amino acids within 

the tag to six repetitions reduced the overall bindings to 47.7 ± 2.1 nmol (His6) and 24.5 

± 4.3 nmol (Lys6). No major difference in binding was observed between Ala3 and Glu3 

hinting at electrostatic interactions not being a major force. Ala binding might be a 

consequence of π-stacking between the aromatic moieties of acridine and the H2BDC 

linker. For hexapeptide tags, additional negative charge impaired the binding process 

– which was expected due to the slightly negative zeta potential of UiO-66[168] – and, 

compared to Glu3, the overall peptide binding was reduced for Glu6. In contrast, 

extending the Ala tag to six repetitions had no effect on overall binding. Linearity 

between the amount of offered MOF and amount of bound peptide was observed for 

all tags (Figure 6) suggesting that all tags do indeed interact with UiO-66. Observed 

R2 values varied between 0.7094 (Lys6) and 0.9982 (Lys3). With the exception of Ala6, 

better linearities were observed for the tripeptide tags. Interestingly, compared to His3, 

the observed binding capacity approximately halved for His6 which might be due to the 

increased number of coordinatively active imidazole functions. If one tag molecule has 

a twofold number of coordinative groups, it might interact with twice as many 

coordinatively unsaturated metal sites (CUS) on the MOF surface. As CUS are limited 

in number, the result might be the lower binding observed for the His6-tag. 

 
Figure 5 Tag screening for UiO-66. A) binding of tripeptides, B) binding of hexapeptides. 130 nmol of 
the respective tag were added to various amounts of UiO-66, composed of H2BDC and Zr4+, and 
incubated for 15 minutes. After incubation, samples were centrifuged and the amount of bound tag 
determined by photometric differential quantification. H2BDC, benzenedicarboxylic acid.  
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Figure 6 Evaluation of linearity between amount of offered UiO-66  in micrograms (X achsis) and 
average bound respective peptide tag in nmol (Y achsis). The left column represents tripeptide tags 
whereas the hexapeptide tags are denoted in the right column. Rows from top to bottom: Ala-, Glu-, His- 
and Lys-tags. For all evaluated peptides, the amount of bound peptide increases linearly with the amount 
of offered MOF as reflected by R2 values. The best fit was observed for Lys3. 
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Screening of MIL-88A 

Tag binding evaluation for the iron fumarate MOF MIL-88A (Figure 7)  which features 

a low porosity and some flexibility [61] identified Glu3 as the most prominent binder. 

Here, a binding of 128.4 ± 0.25 nmol per 500 µg was observed. The second highest 

overall binding was observed for His3 with a binding of 40.3 ± 5.4 nmol per 500 µg MIL-

88A. Low binding values of 5.7 ± 4.3 nmol and 0.8 ± 0.4 nmol were determined for Ala3 

and Lys3. This hints at the positive charge of Lys3 neither impairing, nor promoting tag 

attachment as the overall binding was similarly low to that observed for neutral Ala3.  

Looking at the hexahistidine tags reveals that increasing the tag length from Glu3 to 

Glu6 reduces the overall binding to 98.5 ± 10.2 nmol. In contrast, by elongating His3 to 

His6, binding notably increases to 95.8 ±1.2 nmol. With regard to Lys6 and Ala6, no 

obvious difference in binding capacities was observed by comparing the hexapeptide 

tags to the respective tripeptide tags.  

Figure 8 illustrates the linearity between the offered amount of MIL-88A in micrograms 

and the respective bound amount of peptide tag in nmol. Here, Glu3, Glu6, His3 and 

His6 displayed R2 values higher than 0.95 showing a linear relationship.  Notably, no 

such linear correlation was observed for Ala3, Ala6, Lys3 and Lys6. It was therefore 

concluded that the Ala3, Ala6, Lys3 an Lys6 tags only interact with MIL-88A to an 

insignificant degree too low for sensible quantification using a photometric setup. 

 

 

Figure 7 Tag screening for MIL-88A. A) binding of tripeptides, B) binding of hexapeptides. 130 nmol of 
the respective tag were added to various amounts of MIL-88A, composed of fumaric acid and Fe3+, and 
incubated for 15 minutes. After incubation, samples were centrifuged and the amount of bound tag 
determined by photometric differential quantification. 
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Figure 8 Evaluation of linearity between amount of offered MIL-88A  in micrograms (X axis) and average 
bound respective peptide tag in nmol (Y axis). The left column represents tripeptide tags whereas the 
hexapeptide tags are denoted in the right column. Rows from top to bottom: Ala-, Glu-, His- and Lys-
tags. For Glu3, Glu6, His3 and His6, meaningful tag bindings and linear relationships resulting in R2 values 
above 0.95 were observed. 
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Screening of MIL-100(Fe) 

For the highly porous MIL-100(Fe),[62] similarly high tag bindings were observed for 

His3 (122.9 ± 8.8 nmol per 500 µg MOF) and Lys3 (119.5 ± 6.5 nmol per 500 µg MOF). 

Strikingly, also Glu3 (100.5 ± 1.7 nmol per 500 µg MOF) and Ala3 (110 ± 0.1 nmol per 

500 µg MOF) tags resulted in very high bindings. Looking at the hexapeptides, for all 

tags except Ala6 which remained unchanged at 110.3 ± 0.6 nmol per 500 µg MOF, a 

reduction in binding capacity was determined. For His6, overall binding decreased to 

114.5 ± 0.1 nmol per 500 µg MOF whereas for Glu6, a pronounced reduction to 15.8 ± 

6.5 nmol per 500 µg MOF was observed. Compared to Lys3, tag elongation to Lys6 

resulted in a slightly reduced binding value of 103 ± 4 nmol per 500 µg MOF. Evaluating 

the linearity (Figure 10) found linear relationships for all screened tags and resulted in 

R2 values in a range between 0.6545 (Ala3) and 0.9985 (His6). At the neutral assay pH,  

MIL-100 (Fe) displays a negative zeta potential of approximately – 20 mV[169] which 

may account for the high bindings observed for positively charged Lysn tags due to 

electrostatic attraction. The Glun tags however seem to experience electrostatic 

repulsion indicated by the strongly reduced binding observed for Glu6 which has a 

higher negative charge density than Glu3. Additionally, Glu3 showed a slightly reduced 

binding compared to the neutral Ala3. Observed good Hisn tag bindings are likely 

attributable to a combination of pore diffusion and the presence of coordinatively 

unsaturated metal sites (CUS) on the MOF surface[170] whereas binding of the Ala tags 

might be related to passive pore diffusion .  

 

Figure 9 Tag screening for MIL-100(Fe). A) binding of tripeptides, B) binding of hexapeptides. 130 nmol 
of the respective tag were added to various amounts of MIL-100(Fe), composed of H3BTC and Fe3+, 
and incubated for 15 minutes. After incubation, samples were centrifuged and the amount of bound tag 
determined by photometric differential quantification. H3BTC, benzenetricarboxylic acid. 
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Figure 10 Evaluation of linearity between amount of offered MIL-100 (Fe)  in micrograms (X axis) and 
average bound respective peptide tag in nmol (Y axis). The left column represents tripeptide tags 
whereas the hexapeptide tags are denoted in the right column. Rows from top to bottom: Ala-, Glu-, His- 
and Lys-tags. For all screened tags, the amount of bound tag correlates to a varying extent with the 
amount of used MIL-100(Fe) and R2 values between 0.6545 (Ala3) and 0.9985 (His6) were observed. 
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Screening of MIL-101 (Cr) 

The highly porous MIL-101(Cr)[146] displayed the highest overall tag bindings. For the 

tripeptides, with the exception of Lys3 that showed a rather low binding of 12.6 ± 1.3 

nmol per 500 µg MOF, tag binding capacities of 500 µg MOF exceeded the respective 

130 nmol offered tag. For the hexapeptides, the same holds true for Ala6 and His6. For 

the remaining hexapeptide tags, extending the tag length resulted in lower binding 

values. For Glu6, binding decreased to 83.4 ± 3.6 nmol per 500 µg whereas a reduction 

to 7.2 ± 0.2 nmol per 500 µg MOF was determined for Lys6. Looking at the linearity 

plot (Figure 12) confirms those observations. Here, for Ala3, Ala6, His3 and His6, 

saturation can be observed as further elevating the amount of MOF beyond 250 µg 

does not increase the amount of bound tag accordingly since all offered tag molecules 

are already bound by 250 µg MOF which is also reflected by the lowered R2 values. In 

contrast, good linearity was observed for Glu3 (0.9617) and Glu6 (0.9778) further 

indicating that the binding capacity of 500 µg MOF for those peptides lies below, or - 

in case of Glu3 - close to the offered 130 nmol tag. The low R2 values calculated for 

Lys3 (0.4983) and Lys6 (0.3915) hint at a minor influence of the tag length and only 

weak interactions between the Lys tags and the MOF. At assay pH, MIL-101(Cr) 

displays a positive zeta potential of approximately +45 mV[171] which likely accounts for 

the weak positively charged Lysn and strong negatively charged Glun tag bindings due 

to electrostatic interactions. The strong Alan bindings may be attributed to the 

pronounced porosity of MIL-101(Cr) allowing for passive pore diffusion. 

 

Figure 11 Tag screening for MIL-101(Cr). A) binding of tripeptides, B) binding of hexapeptides. 130 
nmol of the respective tag were added to various amounts of MIL-101(Cr), composed of H2BDC and 
Cr3+, and incubated for 15 minutes. After incubation, samples were centrifuged and the amount of bound 
tag determined by photometric differential quantification. H2BDC, benzenedicarboxylic acid. 
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Figure 12 Evaluation of linearity between amount of offered MIL-101(Cr)  in micrograms (X axis) and 
average bound respective peptide tag in nmol (Y axis). The left column represents tripeptide tags 
whereas the hexapeptide tags are denoted in the right column. Rows from top to bottom: Ala-, Glu-, His- 
and Lys-tags. For all tags, a linear relationship was observed. For Ala3, Ala6, His3, His6, R2 values are 
reduced as a consequence of the offered respective amount of peptide tag being already fully bound by 
250 µg MOF. 
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Screening of HKUST-1 

For the microporous HKUST-1,[148] the highest binding was witnessed for His6. Here, 

500 µg of MOF bound 103.8 ± 12.5 nmol. Lys6 was the second most prominent binder 

with a value of 39.6 ± 1.8 nmol per 500 µg MOF. Among the tripeptides, His3 showed 

the highest binding (19.2 ± 5 nmol per 500 µg MOF), in contrast, comparably low 

bindings were observed for Ala3 and Lys3 (11.9 ± 2.8 nmol and 12.9 ± 0.8 nmol per 

500 µg MOF) hinting at little to no influence of the positive charge of Lys3. Looking at 

the hexapeptides, Lys6 displayed a higher binding compared to Lys3 and the amount 

of bound tag increased to 39.6 ± 1.8 nmol per 500 µg MOF.  The negative zeta potential 

of approximately -12 mV reported for HKUST-1[172] explains the better binding 

observed for Lys6 which incorporates a higher positive charge density compared to 

Lys3 and is thus likely subjected to stronger electrostatic attraction whereas the lack of 

binding observed for negatively charged Glun tags may be attributed to electrostatic 

repulsion. An explanation for the pronounced His6 binding capacity lies within the 

HKUST-1 metal component copper being able to undergo strong interactions with the 

hexahistidine tag,[173] a known mechanism also applied routinely for certain versions of 

immobilized metal affinity chromatography (IMAC). The linearity plot (Figure 14) only 

shows linear relationships between the amount of offered HKUST-1 and the respective 

amount of tag bound by it for His6, Lys3 and Lys6 with values of R2 = 0.9561, 0.9537 

and 0.9853, respectively. As no linearities were observed for Ala3, Ala6, His3, Glu3 and 

Glu6, it may be concluded that those tags only bind to HKUST-1 to a very minor extent.  

 

Figure 13 Tag screening for HKUST-1. A) binding of tripeptides, B) binding of hexapeptides. 130 nmol 
of the respective tag were added to various amounts of HKUST-1, composed of H3BTC and Cu2+, and 
incubated for 15 minutes. After incubation, samples were centrifuged and the amount of bound tag 
determined by photometric differential quantification. H3BTC, benzenetricarboxylic acid. 
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Figure 14 Evaluation of linearity between amount of offered HKUST-1  in micrograms (X axis) and 
average bound respective peptide tag in nmol (Y axis). The left column represents tripeptide tags 
whereas the hexapeptide tags are denoted in the right column. Rows from top to bottom: Ala-, Glu-, 
His- and Lys-tags. 
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3.1.2 Delivery of polyglutamylated methotrexate derivatives by attachment to 
selected metal-organic frameworks 

Background. In the previous chapter, Glu3 and Glu6, also referred to as E3 and E6 in 

amino acid one letter code, were among the structures identified as potentially suitable 

MOF anchoring motifs. This chapter proceeds to explore their utilization for a 

chemotherapeutic drug delivery application. Here, modification with the identified En 

motifs was utilized to create and deliver polyglutamylated MTX derivatives by 

attachment to MOF NPs. Due to their biocompatibility, Zr-fum and MIL-88A were 

chosen as potentially suitable MOFs. After physicochemical characterization, the 

potential of the En-MTX delivery system was then evaluated in vitro utilizing rather 

resistant adherent KB (cervix carcinoma) and sensitive suspension L1210 (mouse 

lymphocytic leukemia) cell lines. 

As outlined in the introduction, cytosolic polyglutamylation of selected antifolate 

chemotherapeutics affects their pharmacological activities as it enhances target 

enzyme affinities[128] and allows for cytosolic drug accumulation by reducing immediate 

drug efflux.  

Therefore, nanoparticular delivery of pre-polyglutamylated MTX is an interesting 

avenue to explore as it may circumvent one of the known antifolate resistance 

mechanisms based on impaired polyglutamylation. Additionally, it opens the door 

towards cellular uptake mechanisms such as endocytosis[174] which are not feasible for 

small molecule drugs.  

Among other motifs, the previous chapter identified glutamate tri- and hexapeptides as 

structures conferring pronounced MOF binding capacities to a desired cargo. 

Therefore, polyglutamylated MTX derivatives, namely E2-MTX and E5-MTX, 

corresponding to the binding substructure of the E3 and E6 tag since one glutamate is 

already part of the MTX structure, were synthesized and subsequently delivered by 

MOF. Initially, E2-Folate (E2-FolA) and E5-Folate (E5-FolA) were also included as 

control structures.  

Zr-fum and MIL-88A were chosen as the MOF component due to their 

biocompatibilities[79-80, 165] and the suitable En-tag binding capacities observed in the 

previous chapter.  
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In a first step, overall binding capacities for En-MTX and respective En-FolA controls 

were determined (Figure 15) by applying the photometric assay already established 

for the tag screening presented in chapter 3.1.1.  

For Zr-fum, respective tripeptide binding values (Figure 15A) per 500 µg MOF of  

31.11 ± 2.92 nmol (E2-MTX) and 44.65 ± 1.04 nmol (E2-FolA) were observed and agree 

well with the previously determined E3-tag binding of 31,6 ± 4,9 nmol per 500 µg MOF.  

For MIL-88A, tripeptide binding capacities (Figure 15B) of 111.05 ± 1.80 nmol  

(E2-MTX) and 94.96 ± 1.70 nmol (E2-FolA) per 500 µg MOF were recorded. Previously, 

a slightly higher E3 acridine tag binding of 128.4 ± 0.25 nmol per 500 µg MOF was 

determined. 

Screening the hexapeptides on Zr-fum (Figure 15C) revealed binding capacities of 

16.6 ± 0.71 nmol (E5-MTX) and 10.57 ± 4.03 nmol (E5-FolA) per 500 µg MOF. During 

the tag screening, an E6-tag binding of 14,7 ± 1,2 nmol per 500 µg MOF was observed. 

For MIL-88A, examination of the hexapeptide bindings (Figure 15D) revealed binding 

values of 76.7 ± 4.07 nmol (E5-MTX) and 68.68 ± 1.54 nmol (E5-FolA) per 500 µg MOF 

which is below the binding capacity of 98.5 ± 10.2 nmol E6-tag per 500 µg MOF 

determined during the tag screening. 
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Figure 15 Binding capacity evaluation for En-MTX and comparison with En-tag bindings.  
A defined quantity of binding structure was incubated with varying amounts of MOF and subsequently 
centrifuged. Binding capacities were calculated by photometrically quantifying unbound binder 
remaining in the supernatant and substraction from the initially offered amount. The top row shows 
binding capacities for E3-modified structures determined on A) Zr-fum or B) MIL-88A whereas the bottom 
row displays binding capacities for E6-modified structures on C) Zr-fum or D) MIL-88A.  
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Figure 16 Influence of En-MTX binding on zeta potentials for A) Zr-fum or B) MIL-88A. After En-MTX 
binding, MOFs were centrifuged, washed and dispersed in 10 mM NaCl. Statistical analysis was 
performed by two-way ANOVA, 𝛼𝛼 = 0.05, n = 3. 

 

After it was now confirmed that polyglutamylated MTX derivatives do indeed bind to 

the selected MOFs to the approximate extent expected, the influence of binding on 

MOF zeta potentials was examined and a significant reduction depending on the 

number of glutamates within the cargo was observed (Figure 16).  

At neutral assay pH, unmodified Zr-fum displayed a zeta potential of 36.8 ± 0.9 mV in 

10 mM NaCl (Figure 16A). The observed value decreased to - 7.35 ± 0.15 mV (E2-

MTX@Zr-fum) and - 31.7 ± 1.0 mV (E5-MTX@Zr-fum), respectively. 

For MIL-88A, a similar trend was noted (Figure 16B). Here, the experiment revealed 

zeta potentials of 24.6 ± 1.5 mV (MIL-88A), 14.8 ± 0.3 mV (E2-MTX@MIL-88A)  

and 3.14 ± 0.25 mV (E5-MTX@MIL-88A). 
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Figure 17 Influence of En-MTX binding on z-Average (left column) and PDI (right column) 
determined at neutral pH in HBG for A) Zr-fum or B) MIL-88A. For both Zr-fum and MIL-88A, 
functionalizing the MOF with En-MTX resulted in a decrease in observed size and PDI which was more 
pronounced for E5-MTX. 

 

Then, the effects of En-MTX attachment on MOF sizes in HBG were investigated by 

DLS (Figure 17). Here, for both Zr-fum (Figure 17A) and MIL-88A (Figure 17B),  

En-MTX functionalization resulted in beneficial effects. Whereas non-functionalized Zr-

fum displayed a z-Average of 264 ± 26 nm, sizes decreased to 244 ± 4 nm  

(E2-MTX@Zr-fum) and 218 ± 1 nm (E5-MTX@Zr-fum), respectively. With regard to 

PDIs, values of 0.207 ± 0.009 (Zr-fum), 0.233 ± 0.007 (E2-MTX@Zr-fum) and 0.175 ± 

0.021 (E5-MTX@Zr-fum) were determined. Interestingly, functionalizing MIL-88A led 

to similar results. Here, evaluation by DLS revealed sizes of 476 ± 84 nm (MIL-88A), 

367 ± 97 nm (E2-MTX@ MIL-88A) and 268 ± 5 nm (E5-MTX@ MIL-88A). Recorded 

PDIs followed a complementary trend with recorded values of 0.393 ± 0.011 (MIL-88A), 

0.594 ± 0.104 (E2-MTX@ MIL-88A) and 0.369 ± 0.008 (E5-MTX@ MIL-88A). 
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Then, the formulations were evaluated in vitro by MTT assay on adherent human cervix 

carcinoma KB (Figure 18) and suspension mouse lymphocytic leukemia cells (Figure 

19).  

Initially, both cell lines were treated with 10 µg of Zr-fum or MIL-88A which is more than 

the subsequently used MOF amount. Here, no MOF-related reduction in cell viabilities 

was observed (data not shown). 

For KB cells (Figure 18), testing MTX in a concentration range between 0.1 nM and 

10 nM followed by curve-fit based on nonlinear regression determined an EC50 of  

4.237 nM. At 4.438 nM (E2-MTX) and 9.883 nM (E5-MTX), the pre-polyglutamylated 

MTX compounds on their own were less potent. By attachment to Zr-fum, reduced 

EC50 values of 1.451 nM (E2-MTX@Zr-fum) and 3.757 nM (E5-MTX@Zr-fum) were 

achieved. Importantly, those two calculated values are below both the EC50 of MTX 

and its respective polyglutamylated forms and highlight the potential benefits of MOF-

based En-MTX delivery. Within the evaluated set, delivery by attachment to MIL-88A 

was less promising. Here, E2-MTX@MIL-88A displayed a calculated EC50 of 4.890 nM 

which is marginally above the 4.438 nM observed for free E2-MTX. However, due to 

the two values being that similar, it is difficult to arrive at a final conclusion.  

For E5-MTX@MIL-88A, MOF-based delivery slightly reduced the EC50 to 9.755 nM 

which is almost identical to the EC50 observed for free E5-MTX (9.883 nM) and still 

above free MTX (4.237 nM). 

Screening highly sensitive L1210 cells (Figure 19) revealed a reduced effect of  

En-MTX delivery by MOF. Respective EC50 values of 0.568 nM (MTX) and 2.120  

(E2-MTX) were observed. Delivering E2-MTX by Zr-fum or MIL-88A increased EC50 

values to 4.411 nM and 3.639 nM, respectively. For both E5-MTX and its MOF-bound 

forms, no EC50 values could be determined since no dose response was observed 

within the screened concentration range. 

In sum, beneficial effects of MOF-based En-MTX delivery as reflected in lowered EC50 

values compared to the free drugs were achieved on KB cells. Here, the best results 

were obtained utilizing Zr-fum. Notably, both E2-MTX@Zr-fum and  

E5-MTX@Zr-fum were found to be more potent than free MTX or the respective free 

En-MTX species with the effect being more pronounced for E2-MTX delivery. 
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Figure 18 In vitro evaluation of En-MTX@MOF on KB human cervix carcinoma cells. After 72 h of 
treatment with the indicated compound, cell viabilities were determined by MTT assay.  
EC50 values (top right) were calculated by nonlinear regression [curve fit, log(Inhibitor vs. response, 
variable slope) fitting method least squares fit]. The best-fit EC50 values are shown in combination with 
the respective R2 as an indication of fit quality. Cellular testing was performed by Miriam Höhn, 
Department of Pharmacy, LMU Munich. 
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Figure 19 In vitro evaluation of En-MTX@MOF on L1210 mouse lymphocytic leukemia cells.  
After 72 h of treatment with the indicated compound, cell viabilities were determined by MTT assay. 
EC50 values (top right) were calculated by nonlinear regression [curve fit, log(Inhibitor vs. response, 
variable slope) fitting method least squares fit]. The best-fit EC50 values are shown in combination with 
the respective R2 as an indication of fit quality. For E5-MTX and E5-MTX@MOF, no meaningful EC50 
values could be calculated since no dose response was observed within the tested concentration range. 
Cellular testing was performed by Miriam Höhn, Department of Pharmacy, LMU Munich. 
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3.2 Core-shell functionalized zirconium-pemetrexed coordination 
nanoparticles as carriers with a high drug content 

 

This chapter was adapted from: 

B. Steinborn, P. Hirschle, M. Höhn, T. Bauer, M. Barz, S. Wuttke, E. Wagner, U. 
Lächelt. Core-Shell Functionalized Zirconium-Pemetrexed Coordination Nanoparticles 
as Carriers with a High Drug Content. Advanced Therapeutics 2019, 2, 1900120. 

 

Background. This chapter describes the formulation development, surface 

functionalization and subsequent in vitro screening of a novel type of NCP based on 

pemetrexed, an antifolate drug mainly used to treat non-small cell lung cancer, and 

zirconium (IV) ions. The presented strategy for the assembly of a multifunctional 

nanopharmaceutical with a very high drug content is considered to be a versatile 

platform translatable to other drug molecules with functional groups capable of 

coordinative interaction with metal ions. 

 

3.2.1 Synthesis and characterization of zirconium-pemetrexed NP cores 

Scheme 7 provides an overview of the sequential assembly of multifunctional Zr-PMX 

NPs. The drug-containing NP core was generated in EtOH using the synthetic 

parameters described in Scheme 7A. Scheme 7B depicts the addition of a silica layer 

to enhance the NP core stability. The external silica surface is finally coated with a 

polyglutamate-block-polysarcosine block copolymer for simultaneous colloidal 

stabilization, sterical shielding, and attachment of targeting ligands as illustrated in 

Scheme 7C.  

Zirconium(IV) was chosen as the metal component for the assembly of the drug 

containing NP core due to its ability to form stable metal-organic complexes with 

suitable biological tolerability as observed before with other Zr-based MOFs and drug 

delivery systems.[175] The particles were formed at room temperature within 45 min in 

an ethanol-water mixture containing HCl and 100 equivalents of formic acid as 

additives for control of particle growth. 
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Scheme 7 Overview of the utilized core-shell nanoparticle (NP) assembly approach. A) Synthesis of the 
drug-containing NP core and labeling by coordinative integration of fluorescent calcein dye; B) 
stabilization of the NP core by a polymerized silica shell; and C) simultaneous shielding and targeting 
by coating with polyglutamate-polysarcosine block copolymers. 

 

The optimal linker:metal ratio varies upon different Zr-based metal-organic 

nanomaterials, such as 1:1[176] or 3:1,[65, 177] therefore a range of PMX to Zr 

stoichiometries was initially screened in this study. A molar excess of PMX is favorable 

in terms of lower polydispersity indices (PDIs), as observed for 3:1 and 3:2 ratios 

compared to equimolar 3:3 (Figure 20) with z-averages between 130 and 220 nm. 

In case of excessive Zr at a 3:6 ratio, only minor particle formation could be observed 

within the 45 min reaction time. A possible explanation lies within a higher number of 

initially formed crystal nuclei which results in the NP growth being distributed over more 

individual particles leading to slower growth of single particles as described by Wang 

et al.[178]  Satisfactory PDI and particle yield were achieved at a 3:1 PMX to Zr ratio and 

these conditions were used for subsequent studies. 
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Figure 20 Screening of different metal to linker stoichiometries. Particle sizes were determined in EtOH 
by dynamic light scattering. At the 3:6 ratio, no measurable particle formation was observed.  
A) left: z-averages in EtOH, right: PDIs in EtOH. B) Corresponding sample pellets obtained after 45 
minutes of synthesis and subsequent centrifugation. Here, smaller observed pellets indicate that 
increasing the equivalents of zirconium offered during the synthesis beyond 3:3 strongly reduces the 
amount of obtained nanomaterial. 

 
 

 

Figure 21 Screening  of  various  amounts  of  added  HCl  with  regard  to  size,  PDI  and  the amount 
of obtained nanoparticle. All samples contain 100 eq. formic acid (46.5 μL) + x μL 1M HCl. Each sample 
is composed of 3 eq. PMX, 1 eq. Zr and was incubated for 45 minutes. A) Characterization by DLS, B) 
corresponding obtained pellet sizes after 45 minutes of particle assembly. 
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In order to generate particles within the nanometer size range suitable for biological 

applications,[179] acid was added to the reaction mixture (Figure 21). For samples 

without any acidification, rapid clouding and formation of particles in the micrometer 

range was observed. By adding 100 equivalents formic acid, a monodentate modulator 

also used for MOF synthesis,[180] this immediate aggregation was prevented and the 

particle formation occurred more slowly. Additional HCl only had a minor influence on 

size and PDI, but reduced the amount of obtained nanoparticle.  

 

Figure 22 Influence of ultrasound (US) duration on obtained nanoparticle sizes as determined by DLS. 
After synthesis and wash, Zr-PMX-NPs were subjected to various durations of sonication whereas 
incubation on a tabletop shaker served as control. Left: z-averages in EtOH, right: PDIs in EtOH.  

 

Sonication of the obtained NPs mediated favorable effects on the particle size by 

disaggregating agglomerates formed during the centrifugation and washing steps 

(Figure 22). The overall effect of sonication was about 100 nm of size decrease as 

determined by comparison with the negative control and 5 min of sonication were found 

to be sufficient, longer durations did not mediate a further improvement.  

It was found that the fluorescent dye calcein, which contains several Lewis base 

functions and forms chelates with metal ions, can be co-assembled into the NP core. 

Notably, the addition of 5% calcein only had a minor influence on z-average and PDI 

(Figure 23) and enables direct fluorescence-based detection by confocal microscopy 

or flow cytometry studies without the requirement for additional labeling.  

Importantly, this illustrates the flexibility of the presented particle assembly concept 

and the possibility to encapsulate different cargos. 
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Figure 23 Formulation development and characterization of calcein-labeled Zr-PMX-NPs. A) Screening 
of different calcein amounts and solvents with regard to z-Average, PDI and zeta potential by DLS,  
B) representative intensity size distributions comparing Zr-PMX-NPs (left) and Zr-PMX-NPs assembled 
with 5% calcein (right). 

 

 

Figure 24. Physiochemical characterization of the NP core containing the drug payload. A) Imaging by 
scanning-electron microscopy; B) qualitative elemental composition determined by energy dispersive 
X-ray spectroscopy; C) analysis of crystallinity by X-ray diffraction; D) measurement of porosity by 
nitrogen sorption analysis; E) particle composition by ICP–AES and HPLC (mean, n = 3);  
F) thermogravimetric analysis; and G) particle size, polydispersity and stability in ethanol by dynamic 
light scattering (mean ± SD, n = 3). SEM imaging and EDX were performed by Dr. Steffen Schmidt, 
XRD by Patrick Hirschle, BET and TGA by Tina Reuther (Department of Chemistry, LMU Munich).  
ICP-AES was conducted by Jaroslava Obel (Central Analytics, LMU Munich). 
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The NP core (Scheme 7A) was then further investigated with regard to its 

physicochemical properties (Figure 24).  

Here, additional analysis by scanning-electron microscopy (SEM, Figure 24A) revealed 

a particle diameter of 64.26 ± 10.09 nm (n = 100). The difference in size compared to 

the previously presented DLS data can be attributed to the individual techniques, SEM-

imaging measures particles in dry form whereas DLS determines their hydrodynamic 

diameter in solution.[181]  

Energy dispersive X-ray spectroscopy (Figure 24B) confirmed the presence of key 

elements, oxygen and carbon as part of the PMX structure and zirconium as well as 

chloride due to the used metal compound and the added HCl. The carbon signal can 

also be partially attributed to the conductive carbon layer added during SEM sample 

preparation.  

X-ray diffraction (XRD) (Figure 24C) did not show crystallinity, which is why an 

amorphous structure was assumed for Zr-PMX NPs.  

The porosity and surface area of the dried NPs were investigated using nitrogen 

sorption (Figure 24D). Evaluating the sorption isotherms with the BET method[182] 

resulted in a surface area of 170 m² g−1, suggesting porosity in the sample.  

Both the nitrogen sorption isotherm and the corresponding pore size distribution 

indicate this porosity stems mainly from mesopores starting at 40 Å.  

Next, the PMX to Zr mass ratio present in the NP core was determined (Figure 24E) 

by inductively coupled plasma atom emission spectrometry (ICP-AES) and high-

performance liquid chromatography (HPLC). ICP-AES revealed a Zr content of 20.03 

± 0.96% (m/m, n = 3). NP lysis followed by PMX quantification by HPLC showed a 

PMX content of 78.23 ± 1.83% (m/m, n = 3).  

Similarly high drug contents have been observed by Heck et al. for other zirconium-

based drug formulations.[117c, 183] Considering the Zr(IV) coordination number of six and 

two coordinatively active carboxy functions per PMX molecule, the obtained result is 

close to the hypothetical PMX to Zr ratio of 3 and also corresponds to the feed ratio 

during NP synthesis.  
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For Zr-PMX NPs, thermogravimetric analysis indicated a residual particle mass of 

33.85% (Figure 24F). As the NP sample was heated in a mixed N2/O2 atmosphere, 

which led to the formation of ZrO2, the actual metal content is lower. By excluding the 

oxide formation (MW ZrO2 = 123.22 g mol−1, MW Zr = 91.22 g mol−1, factor: 1.35), the 

amount of non-oxidized Zr present in the NP can be estimated as 33.85 % divided by 

1.35 = 25.05 %, which differs only slightly from the result determined by ICP–AES and 

also agrees very well with the hypothetical particle composition.  

Next, the long-term stability of as-synthesized NPs (Figure 24G) was evaluated in 

ethanol (EtOH) at room temperature by performing DLS measurements every 24 h. 

After 48 h, a minor increase in z-average was observed whereas the PDI remained 

unchanged over 96 h. As a precaution, the freshly prepared NPs were thus stored for 

a maximum of 24 h for all experiments.  

The reproducibility of Zr-PMX-NP core synthesis with- or without calcein was then 

additionally investigated by SEM (Figure 25). Here, no changes in particle morphology 

were observed between three independently prepared batches indicating a robust 

synthetic protocol. Additionally, the morphology of particles containing calcein did not 

notably differ from the formulation generated without calcein. 
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Figure 25 Both the synthesis of Zr-PMX-NPs with (right column) or without calcein (left column) leads 
to particles with highly reproducible morphologies. Of both formulations, 3 individual batches were 
prepared and imaged by scanning electron microscopy at 100.000x magnification, scale bars represent 
500 nanometers. The images were recorded by Dr. Steffen Schmidt (Department of Chemistry, LMU 
Munich).  
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3.2.2 Silica coating of zirconium-pemetrexed nanoparticle cores enhances 
their serum stability and uptake into cancer cells 

 
Background. Initial exploratory serum stability studies of the as-synthesized Zr-PMX 

NP core (data not shown) revealed a high PMX release within 30 min of serum 

incubation. In order to increase and control the stability, a silica coating strategy was 

therefore developed and applied to the nanosystem.  

 

Although tetraethylorthosilicate (TEOS) is commonly used for silica coatings,[184] this 

study utilized N1-(3-trimethoxysilylpropyl)diethylenetriamine (TMSP) instead, which 

has, to the best of my knowledge, only been previously employed as a silica coating 

agent in a physicochemical setting[185] but not for a biological or drug delivery 

application.  

Coating NPs with a silica shell based on TEOS by applying the Stöber method[186] 

typically requires an interfacing step by attaching a polymer, such as poly-

(vinylpyrrolidone) (PVP), to the NP surface in order to maintain colloidal NP stability 

under the conditions of the Stöber process.[184b, 187] However, such a step introduces 

additional complexity to the system and the used type of PVP determines the final 

particle characteristics.[187]  

Liz-Marzán et al. directly coated gold NPs using (3-aminopropyl)trimethoxysilane as 

the interfacing agent before applying the Stöber method to deposit an additional TEOS 

layer.[188] This inspired the use of TMSP which was perceived as even more suitable 

compared to (3-aminopropyl)trimethoxysilane due to its diethylenetriamine motif 

providing additional interaction sites for coordinative and/or electrostatic attachment to 

the surface of Zr-PMX NPs (Scheme 7B).  

As shown in Figure 26, the influence of the used TMSP amount and coating duration 

was initially screened by DLS (Figure 26A), then, the obtained Zr-PMX@TMSP NPs 

were further characterized by scanning electron microscopy (SEM), energy dispersive 

x-ray spectroscopy (EDX), and X-ray diffraction (XRD).  
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Figure 26 Characterization of the silica coating. A) Effects of TMSP amount and coating duration on 
particle size determined by dynamic light scattering (mean ± SD, n = 3); B) imaging of the silica-coated 
NPs by scanning-electron microscopy; C) qualitative elemental analysis by energy dispersive X-ray 
spectroscopy and D) evaluation of crystallinity by X-ray diffraction. SEM and EDX were performed by 
Dr. Steffen Schmidt, Department of Chemistry, LMU Munich. PXRD was recorded by Patrick Hirschle, 
Department of Chemistry, LMU Munich. 

 

Interestingly, coating times up to 5 h with the highest tested TMSP amount of 3 μL 

resulted in small NPs and similar PDI values whereas 24 h of coating with TMSP 

amounts of 1.5 μL or higher resulted in strong particle aggregation and increased 

polydispersity. Coating mediated a zeta potential inversion from −20.8 ± 0.6 mV to 25.9 

± 1.1 mV or higher, which did not change further after 5 h of coating time. 

After performing an aqueous wash to remove silica polymerization by-products  

(Figure 27), SEM imaging (Figure 26B) indicated a silica-coated NP size of 74.57 ± 

16.64 nm (n = 100), which implies an increase in diameter of approximately 10 nm 

compared to the uncoated NP core and, thus, a silica shell thickness of about 5 nm. 

Besides the increase in size and the observed zeta potential inversion, EDX analysis 

(Figure 26C) also confirmed the presence of a silica peak.  

X-ray diffraction (XRD) analysis (Figure 26D) revealed an additional peak at a 2-𝜃𝜃 of 

approximately 25° which can be attributed to polymerized TMSP; a control spectrum 

of polymerized TMSP without NPs (Figure 28) revealing the characteristic peak 

confirms this suggestion.   
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Figure 27 Influence of an aqueous washing step performed after the silica coating determined by SEM 
imaging at different magnifications; top row: close-up, bottom row: overview. After 3h of TMSP-coating, 
the obtained Zr-PMX@TMSP NPs were either washed with EtOH only (left column) or subjected to an 
additional aqueous wash (right column) Here, the absence of TMSP flakes can be observed.  
Imaging was performed by Dr. Steffen Schmidt, Department of Chemistry, LMU Munich. 
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Figure 28 X-ray diffraction spectrum of polymerized TMSP recorded by Patrick Hirschle, Department of 
Chemistry, LMU Munich. 

 

 

Figure 29 The silica coating enhances the serum stability and promotes NP uptake into cancer cells.  
A) Serum stability of TMSP-coated NPs determined by HPLC (mean ± SD, n = 3); B) effects of the 
coating on NP uptake into adherent A549 lung adenocarcinoma or (C) suspension L1210 leukemia cells 
visualized by CLSM. Green, NP core labeled by coordinative integration of calcein; Red, actin stained 
with phalloidin-rhodamine; Blue, nuclei stained with DAPI. CLSM images were recorded by Miriam 
Höhn, Department of Pharmacy, LMU Munich. 

 

Next, the effects of the silica coating on the serum stability were evaluated in a time- 

and dose-dependent manner (Figure 29). Here, a distinct effect of the TMSP amount 
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on the PMX release in serum (Figure 29A) was observed. After 30 min of incubation in 

10% fetal bovine serum (FBS), approximately 70% of the incorporated PMX was 

released from the uncoated NPs. Coating with 1.5 μL TMSP reduced the release to 

approximately 50% independent of the coating duration. The stabilizing effect was 

further increased with 3 μL TMSP. Here, the observed PMX release was reduced to 

approximately 25 %. In all cases, the coating duration only had a minor effect on the 

serum stability.  

It was hypothesized that the TMSP layer stabilizes the NP core by impairing 

interactions between PMX and serum protein. PMX is known to exhibit a high degree 

of protein binding[189] which might compete with the coordinative zirconium interactions 

that mediate formation of the NP core. Higher amounts of TMSP are likely to further 

enhance the stability. However, since the drug mediates its activity in a solubilized 

state and has to be released from the nano-colloids, the achieved TMSP effect was 

considered to represent a suitable balance between required stability and lability.  

Next, the effect of the TMSP-coating on the uptake of calcein-containing Zr-PMX NP 

cores was evaluated on adherent A549 (human lung adenocarcinoma, Figure 29B) 

and L1210 (mouse lymphocytic leukemia Figure 29C) suspension cell lines using 

confocal laser scanning microscopy (CLSM). For both cell lines, the coating increased 

the overall NP uptake, likely due to the increased serum stability and the zeta inversion 

resulting in enhanced unspecific electrostatic uptake as described for other 

nanosystems.[33, 190] This observation was additionally confirmed using human cervix 

carcinoma KB cells and quantified by flow cytometry (Figure 30).  
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Figure 30 Evaluation of the uptake-enhancing effect of the TMSP shell as determined by flow cytometry. 
Zr-PMX NPs or Zr-PMX@TMSP NPs were incubated on KB cells for 1 h, afterwards, the medium was 
replaced, the cells incubated for an additional 2 h. A) distribution of calcein intensities. Blue: CTRL_KB 
cells, red: CTRL_free calcein at an equal concentration as present within the used amount of NP to 
exclude unspecific uptake of free calcein dye, green: Zr-PMX NPs, orange: Zr-PMX@TMSP NPs.  
B) obtained median calcein fluorescence values (mean ± SD, n = 3). Flow cytometry was performed by 
Miriam Höhn, Department of Pharmacy, LMU Munich. 

 

Here, TMSP-coated Zr-PMX NPs mediated significantly higher median calcein 

fluorescence compared to uncoated NPs or free calcein. However, CLSM studies 

revealed external NP attachment to the cell membrane and extracellular aggregation 

was observed on multiple cell lines (Figure 31) which illustrated the need for further 

colloidal stabilization in a biological environment. Since increased colloidal stability of 

Zr-based MOFs has been achieved with a polyglutamate-blockpolysarcosine 

copolymer before,[153] this strategy was also adapted to Zr-PMX@TMSP NPs.  
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Figure 31 CLSM-imaging of Zr-PMX@TMSP NPs on multiple cell lines. After 1h of NP uptake, cells 
were washed, incubated an additional 3h, stained, fixated and imaged. Green, NP core labeled by 
coordinative integration of calcein; Red, actin stained with phalloidin-rhodamine; Blue, nuclei stained 
with DAPI. Cytosolic uptake, but also extracellular aggregation requiring further colloidal stabilization 
were observed on all cell lines except L1210. Rows from top to bottom: A549, lung adenocarcinoma; 
H1299 non-small cell lung carcinoma; KB, human cervix carcinoma; L1210, mouse lymphocytic 
leukemia. CLSM images were recorded by Miriam Höhn, Department of Pharmacy, LMU Munich. 

  



   Results 

93 

3.2.3 Coating Zr-PMX@TMSP NPs with pGlu-b-pSar strongly improves the 
colloidal stability and mediates efficient shielding 

 

In order to enhance the colloidal stability of Zr-PMX@TMSP NPs, a sterical shielding 

was implemented by surface coating with a polyglutamate31-polysarcosine160-N3 (pGlu-

b-pSar) block copolymer.[191]  

It has been shown in previous studies with Zr-fum NPs that the polyglutamate block 

serves as the NP binding and surface attachment module while the polysarcosine block 

mediates efficient shielding, colloidal stabilization, and prevention of protein 

interactions.[85, 192] Additionally, Finsinger et al. reported steric stabilization and 

reduced complement activation for a cationic nanostructure coated with an anionic 

PEG-derived copolymer.[193]  

In order to stabilize Zr-PMX@TMSP NPs, an initial dose titration experiment was 

carried out by mixing equal amounts of Zr-PMX@TMSP NPs with different amounts of 

pGlu-b-pSar (Figure 32).  

Adding 500 μL of NP in HEPES-buffered glucose (HBG) to up to 50 μg of polymer did 

not notably influence its z-average and PDI but a zeta potential reduction depending 

on the polymer dose was observed (Figure 32B). Zr-PMX@TMSP NPs without  

pGlu-b-pSar coating exhibited a zeta potential of 28.73 ± 1.55mV, which was reduced 

to 1.19 ± 0.06 mV by addition of 25 μg pGlu-b-pSar.  

Further increasing the amount of offered polymer beyond 25 µg did not result in an 

additional zeta potential reduction, it was therefore concluded that 25 μg pGlu-b-pSar 

was sufficient to induce the observed zeta potential shift toward neutrality, which is 

known to benefit NPs by reducing unspecific uptake, immune recognition, and 

prolonging circulation half-lives.[190a, 194]  
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Figure 32 Characterization of the pGlu-pSar coating. A) Structure of pGlu31-b-pSar160-N3; B) polymer 
dose titration and the influence on size, PDI, and zeta potential by DLS (mean ± SD, n = 3); C) colloidal 
long-term stability of Zr-PMX@TMSP NPs (-pGlu31-b-pSar160-N3) and polymer-coated Zr- PMX@TMSP 
NPs (+pGlu31-b-pSar160-N3) in HBG (mean ± SD, n = 3) or (D) PBS (mean ± SD, n = 3) at 37 °C; E) 
serum stability of the polymer coating visualized by CLSM. Green channel, NP core labeled by 
coordinative integration of calcein. Red channel, polymer shell labeled with Alexa Fluor 647. Yellow 
signal in the merged channel indicates co-localization of NP core and polymer shell. “All channels”: 
includes nuclei stained with DAPI (blue) and actin stained with phalloidin-rhodamine (white).  
CLSM images were recorded by Miriam Höhn (Department of Pharmacy, LMU Munich), pGlu31-b-pSar-
N3 was synthesized by Tobias Bauer (Institute of Organic Chemistry, Johannes Gutenberg-Universität 
Mainz). 

 

Next, it was investigated how pGlu-b-pSar influenced the colloidal NP stability at 37 

°C. Incubating uncoated Zr-PMX@TMSP NPs in HBG (Figure 32C) led to increasing 

aggregation over time. After 96 h, the z-average almost doubled and a slight increase 

in PDI was also observed. In contrast, pGlu-b-pSar-coated NPs did not increase in 

size, retained a neutral zeta potential and showed no difference in PDI over 96 h.  

The colloidal stability was also evaluated in phosphate-buffered saline (PBS, Figure 

32D) which is a relevant biological buffer and challenging due to the strong interaction 

between phosphate and zirconium ions.[117c, 183, 195] Indeed, the uncoated NPs 

immediately aggregated to agglomerates in the micrometer range and the sizes further 

increased over time. In contrast, no increase in size or PDI was observed for the  
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pGlu-b-pSar coated Zr-PMX@TMSP NPs during 96 h of incubation in PBS which 

illustrated the enormous colloidal stabilization induced by the polymer coating.  

It was also investigated if the polymer remained attached to the NP surface under 

serum-containing cell culture conditions (Figure 26E) since one could expect 

competition between negatively charged polymer and serum protein for binding to the 

positively charged silica shell.  

The azide-containing pGlu-b-pSar block copolymer was therefore labeled with DBCO-

Alexafluor647 via strain-promoted alkyne-azide cycloaddition (SPAAC). We then 

proceeded to incubate calcein-containing Zr-PMX@TMSP NPs coated with pGlu-b-

pSar-AF647 on KB cells.  

After a total of 4 h incubation, confocal microscopy showed yellow signals in the merge 

channel which indicated co-localization between the calcein integrated into the NP core 

(green channel) and the AF647-labeled polymer shell (red channel).  

Examination of co-localization using the Manders coefficient[196] revealed values of M1 

= 0.996 and M2 = 0.684 (channel 1: pGlu-b-pSar-AF647, channel 2: calcein). Based 

on those findings, the polymer seems almost quantitatively colocalized (∼99.6%) with 

the calcein signal (NP core) as illustrated by Manders M1. Manders M2 reveals that 

approximately 68.4% of the calcein signal are co-localized with the polymer.  

It was therefore concluded that the polymer remained attached to the NP surface under 

serum conditions, especially since almost no isolated red signal representing detached 

polymer was observed on the merge channel. 
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3.2.4 Attachment of targeting ligands to the polymer shell enhances the 
nanoparticle uptake 

In order to improve NP uptake and selectivity toward cancer cells, folate targeting, a 

concept initially developed by Leamon and Low,[197] was introduced to the nanosystem. 

The folate receptor is known to be overexpressed for many cancer types[198] and the 

low dissociation constant (Kd approximately 0.1 nM for the 𝛼𝛼-isoform),[199] makes folate 

an attractive ligand for selective cancer targeting.[200] A folate-modified block 

copolymer (pGlu-b-pSar-FolA) was synthesized by coupling the azide-containing  

pGlu-b-pSar to a DBCO-folic acid (DBCO-FolA)[151] building block via SPAAC. 

  

 

Figure 33 Folate-targeting mediated by coating with pGlu-b-pSar-FolA. A) Polymer dose titration and 
influence on size, polydispersity, and zeta potential by DLS (mean ± SD, n = 3); B) effects of FolA-
targeting on NP uptake by flow cytometry; C) evaluation of NP uptake into KB; or (D) L1210 cells for 
FolA-targeted and untargeted NPs by CLSM. Green, NP core labeled by coordinative integration of 
calcein. Red, actin stained with phalloidin-rhodamine. Blue, nuclei stained with DAPI. E) Cell viability 
studies with KB (top) and L1210 (bottom) by MTT-assay (mean ± SD, n = 5). Cells were treated with 
NPs or free drug for 1 h, then the medium was changed and the readout took place after 72 h. PMX 
content of NPs was quantified by HPLC and the dosing adjusted accordingly. Statistical analysis was 
performed by two-way ANOVA, 𝛼𝛼 = 0.05. CLSM imaging and flow cytometry were conducted by Miriam 
Höhn, Department of Pharmacy, LMU Munich. 
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Coating Zr-PMX@TMSP NPs with pGlu-b-pSar-FolA as shown in Figure 33 led to a 

nanoformulation with folic acid attached to the polysarcosine terminus.  

Based on the polymer dose titration experiment shown in Figure 32 which identified 25 

μg of polymer as sufficient for surface saturation of the used amount of NPs, it was 

evaluated by DLS how modifying Zr-PMX@TMSP NPs with 25 μg pGlu-b-pSar 

containing different ratios of pGlu-b-pSar-FolA influenced NP size, PDI, and zeta 

potential (Figure 33A).  

Compared to 0% pGlu-b-pSar-FolA, a content of up to 75% pGlu-b-pSar-FolA did not 

notably influence any of these parameters. Coating with 100% pGlu-b-pSar-FolA led 

to aggregation, presumably as a result of the high content of hydrophobic ligands and 

the decreased electrostatic repulsion.[201]  

After confirming folate receptor expression by flow cytometry (Figure 34), the effect of 

folate on NP uptake was tested by confocal microscopy using adherent KB  

(human cervix carcinoma, Figure 33C) and suspension L1210 (mouse lymphocytic 

leukemia, Figure 33D) cell lines. On both cell lines, an enhanced uptake was observed 

for the folate-containing nanopharmaceuticals compared to the untargeted formulation.  

 

 

Figure 34 Folate receptor expression levels of A) KB and B) L1210 cells as determined by flow 
cytometry. The experiment was performed by Miriam Höhn, Department of Pharmacy, LMU Munich. 
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Flow cytometry analysis on KB cells (Figure 33B) provided additional confirmation of 

the increased uptake of folate-targeted NPs compared to an untargeted control 

formulation coated with pGlu-b-pSar only.  

A control sample with an equal concentration of free calcein was also analyzed and 

did not show any uptake. Importantly, this provided additional evidence that the 

presented coordination NPs can mediate cellular uptake of cargos that do not cross 

the cell membrane on their own.  

 

 

Figure 35 Transferrin targeting mediated by coating with pGlu-b-pSar-Tf. A) Structure of pGlu-b-pSar-
Tf; B) polymer dose titration and influence on size, polydispersity, and zeta potential by DLS (mean ± 
SD, n = 3); C) evaluation of NP uptake into KB; or (D) A549 cells for Tf-targeted and untargeted NPs by 
CLSM. Green, NP core labeled by coordinative integration of calcein. Red, actin stained with phalloidin 
rhodamine. Blue, nuclei stained with DAPI. E) Effects of Tf-targeting on NP uptake by flow cytometry 
and F) cell viability studies with KB by MTT-assay (mean ± SD, n = 5). Cells were treated with NP or 
free drug for 1 h, then the medium was changed and the readout took place after 72 h. PMX content of 
NPs was quantified by HPLC and the dosing adjusted accordingly. Statistical analysis was performed 
by two-way ANOVA, 𝛼𝛼 = 0.05. CLSM imaging and flow cytometry were performed by Miriam Höhn, 
Department of Pharmacy, LMU Munich. 
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A transferrin-functionalized formulation presented in Figure 35 was also developed 

since the transferrin receptor is frequently overexpressed by cancer cells and 

undergoes rapid and efficient internalization upon ligand binding.[202]  

Coating Zr-PMX@TMSP NPs with low amounts of 5 μg or 10 μg pGlu-b-pSar-Tf 

(Figure 35A) led to gradual increases in z-average and PDI, but suitable NPs featuring 

a small z-average, narrow size distribution and neutral zeta potential could be obtained 

by coating with 25 μg pGlu-b-pSar-Tf (Figure 35B).  

After confirming transferrin receptor expression levels (Figure 36), confocal 

microscopy uptake experiments with 1 h of incubation revealed a transferrin targeting 

effect on both KB (Figure 35C) and A549 cells (Figure 35D). For both cell lines, the 

green calcein signal representing labeled NP cores was more pronounced for Tf-

targeted NPs when compared to the untargeted NPs coated with pGlu-b-pSar.  

 

  

Figure 36 Transferrin receptor expression levels of A) KB and B) A549 cells by flow cytometry. The 
experiment was performed by Miriam Höhn, Department of Pharmacy, LMU Munich. 
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Figure 37 Short-time uptake experiment of untargeted (left) and transferrin-targeted (right)  
Zr-PMX@TMSP-NPs on KB cells by confocal microscopy. Blue channel: nuclei, red channel: actin 
cytoskeleton, green channel: calcein integrated into the NP core. After 15 min of NP uptake followed by 
a wash and an additional 3 h of incubation, enhanced uptake of the Transferrin-targeted NP can be 
observed. A similar experiment with a longer uptake time of 1 h is depicted in Figure 35.  
DLS-data of the Tf-targeted formulation is shown in Figure 38B. CLSM imaging was performed by 
Miriam Höhn, Department of Pharmacy, LMU Munich. 

 

Repeating the confocal microscopy experiment with a reduced incubation time of 15 

min in order to elucidate the uptake kinetics (Figure 37) led to a similar result although 

the effect of the transferrin targeting became less prominent due to the shorter NP 

exposure. Quantitative evaluation by flow cytometry (Figure 35E) also showed a slight 

shift of the cell population towards higher calcein fluorescence at the early time point.  

 

 

Figure 38 Representative, intensity-based DLS-curves of the formulations used for CLSM, FACS and 
MTT. A) Folate-targeted NPs presented in Figure 33 and B) Transferrin-targeted NPs presented in 
Figures 35 and 37. 
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Figure 39 Determination of PMX dose responses using A) KB and B) L1210 cells. Cells were treated 
with the indicated PMX concentration and incubated for 72 h. Treatment was performed by Miriam Höhn, 
Department of Pharmacy, LMU Munich. 

The cell killing potential of the targeted NP formulations (folate-targeted: Figure 33, 

transferrin-targeted: Figure 35, representative DLS data of both formulations:  

Figure 38) was then determined using PMX sensitive L1210 and rather insensitive KB 

cells. Initially, PMX dose–response (Figure 39) and incubation time studies (Figures 
40 and 41) were performed on both cell lines to define the assay parameters and 

effective concentration ranges of PMX.  

Treatment of KB cells revealed preserved activity of Zr-PMX NPs compared to free 

PMX and a slight increase in toxicity of folate- and transferrin-targeted formulations 

after a short exposure time of 1 h (Figures 33E and 35F).  

A faster uptake kinetic of the targeted nanoformulations compared to free PMX could 

be a possible reason for the observation; the absence of different toxicities on KB cells 

after 72 h of incubation indicates that potential benefits of the targeted 

nanoformulations can indeed rather be expected at early time points.  

Preserved activity of PMX in the nanoformulations was also confirmed for the highly 

sensitive L1210 cells with 1 h of NP or drug exposure time (Figure 33E). After 72 h, 

(Figure 41) Zr-PMX NPs even mediated an increased toxicity at the low concentration 

of 1 nM (>60% reduced viability). However, since PMX is a potent cytotoxic drug with 

high activity on L1210 cells, uptake kinetics do not seem to represent a major limiting 

factor for this cell line and the advantage of targeted nanoformulations can hardly be 

assessed under the static cell culture conditions. 
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Figure 40 MTT cell viability assay comparing PMX and polymer-coated NP formulations on KB cells. 
Zr-PMX@TMSP NPs were either coated with pGlu-b-pSar-FolA (FolA-targeted), pGlu-b-pSar-Tf (Tf-
targeted) or pGlu-b-pSar-N3 (untargeted) and incubated for 1 h or 72 h. After the indicated incubation 
time, the medium was changed and the readout was always performed after 72 h. Data from the 1h time 
point is also shown in Figures 33E and 35E. Treatment was performed by Miriam Höhn, Department of 
Pharmacy, LMU Munich. 

 

 

 

Figure 41 MTT cell viability assay comparing PMX and polymer-coated NP formulations on L1210 cells. 
Zr-PMX@TMSP NPs were either coated with pGlu-b-pSar-FolA (FolA-targeted) or pGlu-b-pSar-N3 
(untargeted) and incubated for 1 h or 72 h. After the indicated incubation time, the medium was changed 
and the readout was always performed after 72 h. A subset of the data from the 1h time point is also 
shown in Figure 33. Treatment was performed by Miriam Höhn, Department of Pharmacy, LMU Munich. 
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4 Discussion 

4.1 Delivery of chemotherapeutics by metal-organic framework 
nanoparticles 

4.1.1 Screening of a peptide tag library designed for MOF cargo attachment  

Evaluation of the tag library identified binding values summarized in Figure 42. The 

following discussion aims at providing an explanation for the observed binding trends. 

For Zr-fum, highest bindings were observed for Glu-based tags. Here, Glu3 turned out 

to be the most promising motif; additional negative charge introduced by extending the 

tag length to Glu6 seemed to decrease the binding. At pH 7, Zr-fum displays a zeta 

potential of approximately -35 mV[153] in HBG which may account for the reduced Glu6 

binding due to additional electrostatic repulsion. However, it is not clear if the 

determined approximate halving in binding capacity might be a consequence of the 

limited number of CUS present on the Zr-fum surface. The second highest binding 

capacity was found for His-based tags. Here, the still low overall binding might result 

from zirconium, compared to other metals such as copper, only displaying a minor 

affinity towards coordinative histidine interactions.[203] Additionally, the binding process 

likely constitutes a balancing act between coordinative and electrostatic interactions. 

Due to the neutral charge of the His-tag, electrostatic repulsion is not an issue which 

may provide an explanation why, in contrast to Glu-based tags, binding increased by 

elongating the His tag. Despite sharing zirconium as the metal component and some 

structural similarity to Zr-fum, UiO-66 displayed a different binding profile. When 

comparing UiO-66 to Zr-fum, Glu6 behaved almost identically whereas a slightly higher 

binding capacity was determined for Glu3. 
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Figure 42 Heat map summary of experimentally determined peptide tag binding capacities.  
The average binding capacity in nmol observed for 500 µg MOF was rounded to a full number and 
denoted within the center of each box. A number in brackets indicates the absence of a linear 
relationship between the amount of offered MOF and the amount of respective peptide tag bound by it 
as determined by low R2 values observed for linear regression. Each column represents a 
tripeptide/hexapeptide tag pair, from left to right: Ala, Glu, His, Lys. Each row depicts one of the screened 
MOFs, from top to bottom: Zr-based Zr-fum and UiO-66, Fe-based MIL-88A and MIL-100(Fe), Cr-based 
MIL-101(Cr), Cu-based HKUST-1. Boxes were color-coded according to determined tag binding 
capacities; gray and light green illustrate low (below 50 nmol), dark green and yellow intermediate (50-
100 nmol), orange and red high (above 100 nmol) observed binding capacities. 

  

In contrast, pronounced binding of Ala3 and Ala6 was only detected for UiO-66. Since 

UiO-66[204]  is more porous compared to Zr-fum,[65] the effect might be attributed to 

passive pore diffusion. Additionally, UiO-66 is synthesized from an aromatic 

terephthalic acid linker instead of the non-aromatic fumaric acid used to generate  

Zr-fum. Thus, for UiO-66, π-stacking[205] between exposed aromatic linkers situated on 

the MOF surface and the aromatic acridine moiety which is part of the tag structure 

might explain the observed binding of neutral Ala tags which do not offer electrostatic 

interaction potential. However, no Alan binding was observed for HKUST-1 which 

includes aromatic trimesic acid linkers. The higher binding observed for both His3 and 

His6 may point towards a higher number of accessible CUS present on the surface of 
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UiO-66, although, to the best of my knowledge, no study directly comparing Zr-fum and 

UiO-66 in this regard was conducted so far. At the neutral assay pH, UiO-66 displays 

a zeta potential of approximately - 25 mV[206] which is about 10 mV lower than that of 

Zr-fum and thus provides a possible explanation for the observed enhanced Lys tag 

bindings due to elevated electrostatic attractions. For MIL-88A, Glu3 once again turned 

out to be the most potent binder. Extending the tag length to Glu6 entailed a reduction 

in binding capacity. MIL-88A features a zeta potential of approximately +10 mV.[207] 

Thus, both electrostatic attraction and the known high affinity of Fe(III) towards oxygen-

rich structures[208] contribute to the observed high Glu3 binding which one could 

therefore rather expect to increase further with tag length. However, the finite number 

of available CUS[209] should also be considered. Compared to Glu3, each individual 

Glu6 tag molecule likely occupies more CUS. Additionally, steric and/or electrostatic 

repulsion between bulkier Glu6 tag molecules might contribute to the observed reduced 

binding. In contrast, increasing the His tag length from His3 to His6 drastically enhanced 

the overall binding which seems to contradict the hypothesis of the number of occupied 

CUS being the decisive factor. For positively charged Lys tags, electrostatic repulsion 

is likely responsible for the lack of observed binding. Like Zr-fum, MIL-88A also utilizes 

non-aromatic fumaric acid as the linker component and also displays minor porosity. 

Accordingly, the absence of Alan tag binding was also observed for MIL-88A which was 

to be expected as the combination of Alan tag and MIL-88A does not allow for 

electrostatic attraction, major pore diffusion or π-stacking. Of all evaluated MOFs,  

MIL-100(Fe) displayed the lowest selectivity. Here, very high binding values were 

observed for all tags except Glu6. As MIL-100(Fe) is highly porous[62] and contains 

aromatic trimesic acid as the linker component,[62] the combination of π-stacking 

between linkers and tag acridines combined with pore diffusion once again might 

account for the high binding of Alan tags. At neutral assay pH, MIL-100(Fe) shows a 

zeta potential of approximately -20 mV[169] which might explain why an influence of tag 

length was only observed for Glun tags. Here, elongating the tag from Glu3 to Glu6 

strongly reduced the binding capacity as a consequence of the higher negative charge 

density of Glu6 resulting in enhanced electrostatic repulsion. Notably, observed tag 

bindings for Hisn and Lysn were quite similar to the values determined for Alan which 

implies that for MIL-100(Fe) and the evaluated tag lengths, both electrostatic attraction 

(Lysn tags) and coordinative binding (Hisn tags) have little influence on tag binding 

capacities and that passive pore diffusion and π-stacking appear to be the determining 
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factors. For the highly porous MIL-101(Cr) which incorporates large pores of 29 and 

34 Å,[146] binding capacities exceeding the amount of offered tag were observed 

multiple times. With the used assay setup, it was therefore not possible to investigate 

the coordinative His-tag attachment as unspecific pore adsorption already mediated 

binding of all the offered tag amounts. Looking at binding data for 100 µg MOF where 

the binding capacity is below the offered tag amount is also not helpful. For His6, data 

initially seems to suggest an additional minor coordinative His binding effect. However, 

due to the standard deviations, no significant difference can be extracted. Additionally, 

looking at the literature reveals that for Cr3+ coordinative interactions may be expected 

to a bigger extent for oxygen-rich ligands[210] which was also observed here as 

exemplified by Glun tag bindings. Interestingly, the observed trend regarding Glu tag 

length was the same as for all the other screened MOFs, elongating the tag reduces 

the observed binding capacity. The highly positive zeta potential of MIL-101(Cr), about 

+45 mV at neutral pH,[171] results in diminished binding of Lysn tags. Here, the influence 

of tag length shows in the data as elongating the tag from Lys3 to Lys6 once again 

reduces the binding due to additionally introduced electrostatic repulsion. For copper-

based HKUST-1 which displays pores in the range between 5 and 14 Å[211] and a zeta 

potential of approximately -12 mV,[172] His6 was identified as the best binder which is 

in line with immobilized transition metal ions such as Ni2+ [212] or Cu2+ [213] being 

frequently employed to purify hexahistidine-tagged structures in the context of IMAC 

chromatography.[214]  Lys6 showed the second highest overall binding. For Lys, 

shortening the tag length to Lys3 reduced the binding, likely due to reduced 

electrostatic interaction with the reciprocally charged MOF. It was concluded that no 

meaningful binding was observed for His3, Alan and Glun as no linear relationship 

between determined binding and offered amount of MOF could be observed as 

depicted in Figure 14. 
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4.1.2 Delivery of polyglutamylated methotrexate derivatives by attachment to 
selected metal-organic frameworks 

 

In order to allow for the delivery of pre-polyglutamylated MTX derivatives, MOF binding 

capacities were determined in a first step.  

Per 500 µg Zr-fum, initial photometric evaluation of E3-based structures determined 

bindings of 31.11 ± 2.92 nmol, 44.65 ± 1.04 nmol and 31.6 ± 4.9 nmol (E2-MTX,  

E2-FolA and E3-Acridin). For E6-based structures, bindings of 16.6 ± 0.71 nmol,  

10.57 ± 4.03 nmol and 14.7 ± 1.2 nmol (E5-MTX, E5-FolA and E6-Acridin) were 

achieved per 500 µg Zr-fum. 

Per 500 µg MIL-88A, E3-based bindings of 111.05 ± 1.80 nmol, 94.96 ± 1.70 nmol  

and 128.4 ± 0.25 nmol (E2-MTX, E2-FolA and E3-Acridin). For E6-based structures, 

bindings of 76.7 ± 4.07 nmol, 68.68 ± 1.54 nmol and 98.5 ± 10.2 nmol (E5-MTX,  

E5-FolA and E6-Acridin) were achieved per 500 µg MIL-88A. 

Interestingly, apart from the slightly higher than expected E2-FolA binding observed on  

Zr-fum, the determined En-MTX and En-FolA binding capacities are very similar to the 

respective En-Acridin tag bindings observed during the tag screening which further 

confirms that the En motif is indeed responsible for cargo attachment since the 

remaining structure differed. Whereas the En tags contained a short PEG spacer 

(STOTDA) and a tricyclic aromatic acridine moiety, no such features were present for 

En-MTX or En-FolA. 

En-MTX attachment was further confirmed by zeta potential where the number of 

glutamates had a striking influence. On Zr-fum in HBG (36.8 ± 0.9 mV), both 

attachment of E2-MTX (- 7.35 ± 0.15 mV) and E5-MTX (- 31.7 ± 1.0 mV) mediated zeta 

potential inversion. Evaluation of MIL-88A in HBG (24.6 ± 1.5 mV) revealed the same 

trend with observed values of 14.8 ± 0.3 mV (E2-MTX@MIL-88A) and 3.14 ± 0.25 mV  

(E5-MTX@MIL-88A). 
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Testing the formulations in vitro using KB human cervix carcinoma or L1210 mouse 

lymphocytic leukemia cell lines revealed beneficial effects of MOF-based delivery for 

the KB cell line where reductions in EC50 values were observed. 

Here, respective EC50 values of 4.237 nM (MTX), 4.438 nM (E2-MTX), 9.883 (E5-MTX), 

1.451 nM (E2-MTX@Zr-fum) and 3.757 nM (E5-MTX@Zr-fum) were calculated. Using 

MIL-88A, a minor increase in EC50 was observed between E2-MTX (4.438 nM) and  

E2-MTX@MIL-88A (4.890 nM) whereas delivery of E5-MTX by MIL-88A very slightly 

reduced the EC50 (9.755 nM) compared to free E5-MTX (9.883 nM). However, it is not 

clear why E2-MTX@MIL-88A was found to be less potent compared to  

E2-MTX@Zr-fum. Both reduced particle uptake or unsatisfactory E2-MTX release might 

be responsible. 

On L1210, treatment with E5-MTX within the tested concentration range had no 

influence on cell viabilities and could therefore not be evaluated. Additionally, no MOF 

effect was observed as treatment with free MTX (0.568 nM) or E2-MTX  

(2.120 nM) was more potent than either E2-MTX@Zr-fum (4.411 nM) or  

E2-MTX@MIL-88A (7.568 nM).  

As free MTX is already highly potent on L1210 as reflected by the picomolar EC50, 

potentially enhanced uptake by nanoparticular delivery does not seem to have a major 

effect on the achievable cell killing.  

However, the good results obtained on rather resistant KB cells  

(MTX EC50 of 4.237 nM) might be related to the delivery of pre-polyglutamylated MTX 

which constitutes the active species and is more potent upon reaching the cytosol.  

In order to reveal if the observed increase in potency is related to polyglutamylation 

status or uptake kinetics, a follow-up experiment using another porous MOF to deliver 

native MTX could be conducted. If enhanced uptake was the decisive factor, one would 

expect to observe the same effect here independent of pre-polyglutamylation.  
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4.2 Core-shell functionalized zirconium-pemetrexed coordination 
nanoparticles as carriers with a high drug content 

This chapter was partially adapted from the following references: 

B. Steinborn, P. Hirschle, M. Höhn, T. Bauer, M. Barz, S. Wuttke, E. Wagner, U. 
Lächelt. Core-Shell Functionalized Zirconium-Pemetrexed Coordination Nanoparticles 
as Carriers with a High Drug Content. Advanced Therapeutics 2019, 2, 1900120. 

B. Steinborn, U. Lächelt. Metal-Organic Nanopharmaceuticals. Pharmaceutical 
Nanotechnology 2020, Manuscript accepted. 

 

Coordinative interactions between multivalent metal ions and drug derivatives with 

Lewis base functions give rise to NCPs as delivery systems. As pharmacologically 

active agents are used as a main building block of the nanomaterial, very high drug 

loadings have been observed.[117a, 117b, 119a, 119b] By additionally selecting metal ions 

with favorable pharmacological or physicochemical properties, such as mediating 

imaging contrast[215] or radiosensitization[122], the obtained NCPs are predominantly 

composed of active components.  

The assembly of drug molecules into NCPs also modulates their pharmacokinetics, 

combines pharmacological drug action with specific characteristics of metal 

components, allows for spatiotemporal co-delivery and provides a strategy to generate 

tailorable multifunctional nanoparticles with a wide range of possible biomedical 

applications.  

A huge variety of suitable pharmaceutical building blocks combined with appropriate 

metal ions allows for innovative therapeutic and diagnostic nanosystems with clinical 

potential as illustrated by encouraging in vivo studies. 

Thus, NCPs and MOFs currently receive a high research interest and numerous 

studies evaluated their feasibility for chemotherapeutic applications such as the 

delivery of platinum derivatives,[106b, 106d, 112, 119, 122] doxorubicin[109-111, 117a, 118, 216] or 

PDT[75, 99, 108a, 120] approaches. 
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Within this thesis, a novel approach for the assembly and subsequent core-shell 

functionalization of a chemotherapeutic drug carrier with a very high loading capacity, 

tunable stabilization against serum, surface shielding and the option for receptor 

targeting was presented.  

The drug-containing core consists of PMX and Zr ions which assemble into 

nanocolloids via Lewis acid–base interactions. Here, the metal to drug stoichiometry 

turned out to be decisive, whereas particles could be obtained with an excess of PMX, 

no particle assembly was observed by increasing the amount of zirconium beyond 1:1. 

A possible reason may lie within a higher number of initially formed crystal nuclei which 

results in the NP growth being distributed over more individual particles thus leading 

to slower growth of single particles as described by Wang et al.[178]    

Acidification during the synthesis also had to be controlled carefully. Without any acid, 

rapid clouding and immediate bulk formation occurred whereas too much acid strongly 

reduced the amount of obtained nanomaterial, likely due to increased protonation of 

PMX reducing its electrostatic interaction potential with zirconium and thus slowing the 

particle growth.   

After synthesis, a sonication step was found to be necessary in order to disaggregate 

agglomerates generated during centrifugation and washing steps. Here, a duration of 

5 minutes was sufficient. The developed synthetic protocol also displayed some 

flexibility with regard to the cargo that may be encapsulated as illustrated by calcein. 

Here, the addition of 5 % calcein did not notably affect the particle size and 

polydispersity and allowed for direct imaging of the NP without the need for additional 

labeling. Due to its charge, free calcein does not cross the cellular membrane. 

Importantly, the calcein signal observed by CLSM and flow cytometry thereby confirms 

that the NP is indeed able to mediate cellular uptake of an otherwise impermeable 

cargo.  

Subsequent physicochemical characterization of the NP core revealed spherical, 

monodisperse particles. The absence of crystallinity suggests that the likely 

mesoporous Zr-PMX NPs can rather be classified as amorphous nanoscale 

coordination polymers than MOFs.  
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Strikingly, combined analysis by HPLC and ICP-AES revealed a very high NP core 

drug content of about 80% (m/m) which also corresponds approximately to the feed 

ratio during synthesis. As PMX displays a high binding affinity toward serum protein, 

uncoated NP cores disassembled rapidly in a serum-containing environment and 

required a thin silica shell for stabilization and simultaneous control of drug release. To 

generate the shell, TMSP was chosen due to its diethylenetriamine motif which 

provided direct interaction sites for coordinative and/or electrostatic attachment to the 

NCP surface. To the best of my knowledge, this is the first time that TMSP was used 

in a drug delivery setting.  

For the coating process, time was identified as a decisive parameter. Whereas up to 5 

h of reaction time still resulted in particles in the nano range, increasing the duration to 

24 h led to bulk formation. The silica coating also mediated a zeta potential inversion, 

enhanced the NP uptake, but increased extracellular aggregation on multiple cell lines. 

The achieved stabilizing effect against serum depended on the used amount of TMSP 

which seems likely since one would expect that using more TMSP leads to a thicker 

silica shell.  

Interestingly, this observation hints at the possibility of tuning the drug release kinetics 

of the developed NCP core by controlling the silica shell formation. For the used TMSP 

amount, SEM imaging indicated a shell thickness of about 5 nm. As PMX mediates its 

activity in a solubilized state, the achieved stabilization was considered to represent a 

suitable balance between required stability and lability.  

In order to address the observed tendency for aggregation in a biological environment 

which initially offset the beneficial stabilizing and uptake-enhancing effects of the silica 

coating, a pGlu31-b-pSar160-N3 block-copolymer was implemented as the outermost 

layer of the delivery system. It mediated surface shielding as reflected by neutral zeta 

potentials which were observed for the polymer-coated formulations.  

The polymer coating also resulted in highly efficient colloidal stabilization observed in 

HBG, PBS but also under cell culture conditions which is evident by comparing images 

of formulations coated with the block-copolymer or TMSP only.  
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Attaching an additional fluorescence label to the polymer layer and evaluating its co-

localization with the calcein signal using the Manders coefficient[196] revealed that the 

polymer mainly remained attached to the particle surface under serum conditions.  

Moreover, the incorporated azides enabled modification with uptake-enhancing 

receptor ligands by click chemistry as shown for folate and transferrin and open up 

great flexibility towards the introduction of other functionalities. Both flow cytometry and 

CLSM revealed enhanced uptake of the targeted formulations.  

In vitro evaluations confirmed the maintained pharmacological activity of PMX on KB 

human cervix carcinoma and L1210 mouse lymphocytic leukemia cells and the cellular 

uptake of otherwise impermeable co-encapsulated calcein.  

The presented concept is considered to be exemplary of an envisioned ‘minimalist 

design’ of a nanopharmaceutical translatable to other suitable APIs. It features a very 

high drug-to-carrier material ratio meant to potentially minimize patient exposure to 

inactive nanocarrier material.
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5 Summary 

Metal-organic nanosystems such as metal-organic frameworks (MOFs) and nanoscale 

coordination polymers (NCPs) are highly attractive materials for a range of biomedical 

applications as exemplified by drug delivery,[42a, 102] imaging[49a, 100, 217] or photodynamic 

therapy.[75, 99, 108a, 120a] By directly utilizing active pharmaceutical ingredients (APIs) as 

linker molecules,[75, 99, 106b-d, 119c, 218] very high drug contents and spatiotemporal  

co-delivery may be realized. Additionally, multiple studies already illustrated potential 

biocompatibilities and encouraging chemotherapeutic in vivo results[75, 99, 106d, 112, 119c, 

218] have already been reported.  

Within the first part of this thesis, novel peptide sequences that allow for MOF cargo 

attachment were screened, identified and subsequently utilized for the delivery of 

polyglutamylated methotrexate (MTX). MOF drug loading may be achieved using 

different strategies, yet little is known on how the structure of the cargo influences the 

binding capacities. Thus, novel peptide-based anchoring motifs were screened on 

multiple MOFs. For Zr-fum and MIL-88A, the highest bindings were observed for the 

Glu3 tag. For UiO-66 and MIL-100(Fe), His3 was the most prominent binder. Of all 

screened MOFs, MIL-101(Cr) displayed the highest overall binding capacities. For 

microporous HKUST-1, the highest capacity was witnessed for His6. To the best of my 

knowledge, no systematic screening of peptide-based MOF anchoring motifs has been 

conducted previously and just one similar study utilizing His-tags comes to mind.[96] 

Thus, this thesis identified novel peptide motifs able to confer pronounced MOF binding 

capacities.  

As Zr-fum and MIL-88A are both perceived as suitable for biomedical applications, an 

exemplary application of the glutamate motif was pursued by using it to attach pre-

polyglutamylated MTX which was simultaneously aimed at potentially addressing MTX 

resistance. For both Zr-fum and MIL-88A, Glun-MTX functionalization led to a 

significant reduction in zeta potential depending on the number of glutamates within 

the tag and additionally improved particle sizes and polydispersities. The potency of 

Glun-MTX@MOF was then evaluated on adherent human cervix carcinoma KB and 

suspension mouse lymphocytic leukemia cells lines.  On KB, especially attachment of 

Glu2-MTX to Zr-fum seemed to enhance its respective potency as determined by EC50 
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values (Glu2-MTX: 4.438 nM, Glu2-MTX@Zr-fum: 1.451 nM, Glu5-MTX: 9.883 nM, 

Glu5-MTX@Zr-fum: 3.757 nM, MTX: 4.237 nM). Here, both Glu2-MTX@Zr-fum and 

Glu5-MTX@Zr-fum seem more potent than free MTX. Delivery by MIL-88A was found 

to be less effective. For the L1210 cell line, MOF attachment did not result in reduced 

EC50 values.  

The second part of this thesis proceeded to explore the design of a minimalistic, 

‘carrier-free’ chemotherapeutic drug delivery system that features a very high material 

economy. First, a novel NCP core was created by assembling PMX and zirconium ions 

into a coordinative nanoparticle using Lewis acid–base interactions. Since PMX itself 

comprises the primary building block of the NCP, the amorphous and likely 

mesoporous particle core could be obtained with an exceptionally high drug content of 

almost 80 % (weight/weight). Due to the labile nature of the linkage, NCPs typically 

display low serum stabilities which was also observed for the nanosystem developed 

here. Therefore, further functionalization with a thin silica shell was implemented in 

order control the particle stability. Instead of frequently used TEOS, TMSP was chosen 

as its diethylenetriamine motif provided direct interaction sites for coordinative and/or 

electrostatic surface attachment to the NCP surface. To the best of my knowledge, this 

is the first time that TMSP was used in a drug delivery setting. The obtained silica shell 

with a thickness of about 5 nm enhanced the serum stability and NP uptake, but 

promoted extracellular aggregation. The NCP was therefore further functionalized with 

a pGlu-b-pSar-N3 block-copolymer which dramatically increased colloidal stabilities. 

Additionally, due to the terminal azide, it also allowed for modification with uptake-

enhancing receptor ligands introduced by click chemistry. Such a targeting capacity 

was exemplified by folate and transferrin. Especially on KB cells, CLSM indicated 

strongly enhanced uptake of transferrin-targeted formulations. In vitro potencies of the 

formulations were then evaluated on KB cervix carcinoma and L1210 mouse 

lymphocytic leukemia cell lines. On KB, both transferrin- and folate-targeting led to a 

slightly enhanced potency compared to free PMX. Notably, cellular uptake of otherwise 

impermeable co-encapsulated calcein was observed and illustrates a certain flexibility 

with regard to the cargo that may be delivered utilizing the developed NCP. In sum, 

the presented NCP formulation is regarded exemplary for an envisioned ‘minimalist 

design’ of a nanopharmaceutical with a favorable multifunctional efficiency[113] based 

on the high drug-to-carrier material ratio.   
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6 Appendix 

6.1 Abbreviations 

ABC  Adenosine triphosphate binding cassette 

ACN   Acetonitrile  

ADC  Antibody drug conjugate 

API  Active pharmaceutical ingredient 

ATP  Adenosine triphosphate 

Bix  1,4-bis(imidazol-1-ylmethyl)benzene 

Boc   tert-Butoxycarbonyl protecting group  

Ce6  Chlorin E6 

CUS  Coordinatively unsaturated metal site 

DAD  Diode array detector 

DBCO  Dibenzocyclooctyne 

DCM   Dichloromethane  

DHFR  Dihydrofolate reductase 

DIPEA   N,N-Diisopropylethylamine  

DLS  Dynamic light scattering 

DMEM   Dulbecco’s modified Eagle’s medium  

DMF   N,N-Dimethylformamide  

DNA   Desoxyribonucleic acid  

DOX  Doxorubicin 

EDTA   Ethylendiaminetetraacetic acid  

En-MTX  Polyglutamylated MTX derivative containing n additional glutamates 

EPR  Enhanced permeability and retention 

FBS   Fetal bovine serum  

FDA  U. S. Food and Drug Administration 

Fmoc   Fluorenylmethoxycarbonyl protecting group  

FolA   Folic acid  

FR   Folate receptor  

H2BDC  Benzenedicarboxylic acid 

H2BTC  Benzenetricarboxylic acid 

H2DBP  5,15-di(p-benzoato)porphyrin 

HBG   Hepes-buffered glucose  

HBTU  2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate  

HEPES   N-(2-hydroxethyl) piperazine-N‘-(2-ethansulfonic acid)  

HOBt   1-Hydroxybenzotriazole  

HKUST  Hong Kong University of Science and Technology 

HPLC  High Performance Liquid Chromatography 

ICP-AES Inductively coupled plasma atomic emission spectroscopy 

IMAC  Immobilized metal ion affinity chromatography 

i.v.  intravenous 
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MDR  Multidrug resistance 

MIL  Materials institute Lavoisier 

mM  Millimolar 

MRI  Magnetic Resonance  Imaging 

MTBE  Methyl tert-butyl ether  

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  

mV  Millivolt 

MOF  Metal-organic framework 

MTX  Methotrexate 

MWCO  Molecular weight cut-off  

NCP  Nanoscale coordination polymer 

NHS   N-Hydroxysuccinimide 

nm  Nanometer 

nM  Nanomolar 

NMP   N-Methyl-2-pyrrolidone  

NP  Nanoparticle 

PDI   Polydispersity index  

PDT  Photodynamic therapy 

PEG   Polyethylene glycol  

pM   picomolar 

PMX  Pemetrexed 

PyBOP   Benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate  

RFC  Reduced Folate Carrier 

RNA   Ribonucleic acid  

RP-HPLC  Reversed-phase high performance liquid chromatography  

RT   Room temperature  

SBU  Secondary building unit 

SEC   Size-exclusion chromatography  

SEM  Scanning electron microscopy 

siRNA   Small interfering RNA 

SPAAC   Strain-promoted alkyne-azide cycloaddition  

SPS   Solid-phase synthesis  

STOTDA N-Fmoc-N″-succinyl-4,7,10-trioxa-1,13-tridecanediamine 

TFA   Trifluoroacetic acid  

TIS   Triisopropylsilane 

TMSP  N1-(3 trimethoxysilylpropyl)diethylenetriamine 

UiO  Universitetet I Oslo 

µM  Micromolar 
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6.2 Summary of synthesized structures 

Table 11 Summary of SPS derived structures 

Name Purpose Structure (C to N) Chapter 
Ala3 Tag screening HOOC-Ala-Ala-Ala-STOTDA-acridine  3.1.1. 
Ala6 Tag screening HOOC-Ala-Ala-Ala-Ala-Ala-Ala-STOTDA-acridine  3.1.1. 
Glu3 Tag screening HOOC-Glu-Glu-Glu-STOTDA-acridine  3.1.1. 
Glu6 Tag screening HOOC-Glu-Glu-Glu-Glu-Glu-Glu-STOTDA-acridine  3.1.1. 
His3 Tag screening HOOC-His-His-His-STOTDA-acridine  3.1.1. 
His6 Tag screening HOOC-His-His-His-His-His-His-STOTDA-acridine  3.1.1. 
Lys3 Tag screening HOOC-Lys-Lys-Lys-STOTDA-acridine  3.1.1. 
Lys6 Tag screening HOOC-Lys-Lys-Lys-Lys-Lys-Lys-STOTDA-acridine  3.1.1. 
E2-FolA Control structure HOOC-Glu-Glu-Glu-Pteroic acid  3.1.2. 
E5-FolA Control structure HOOC-Glu-Glu-Glu-Glu-Glu-Glu-Pteroic acid  3.1.2. 
E2-MTX Chemo delivery HOOC-Glu-Glu-Glu-4-[N-(2,4-Diamino-6-

pteridinylmethyl)-N-methylamino]benzoic acid 
 3.1.2. 

E5-MTX Chemo delivery HOOC-Glu-Glu-Glu-Glu-Glu-Glu-4-[N-(2,4-Diamino-6-
pteridinylmethyl)-N-methylamino]benzoic acid 

 3.1.2. 
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6.3 Analytical Data 

 

 

A3-STOTDA-acridine. MALDI-TOF: [M+H]+ calc. 739.4, [M+H]+ found 735.3 

 

 

 

A6-STOTDA-acridine. MALDI-TOF: [M+H]+ calc. 951.5, [M+H]+ found 947.6 
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E3-STOTDA-acridine. MALDI-TOF: [M+H]+ calc. 913.4, [M+H]+ found 908.8 and 930.8 [M+Na]+.  
RP-18 HPLC: peak@12.66 min. 

 

 

E6-STOTDA-acridine. MALDI-TOF: [M+H]+ calc. 1300.5, [M+H]+ found 1295.6 and 1317.5 [M+Na]+. 
RP-18 HPLC: peak@11.36 min. 
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H3-STOTDA-acridine. MALDI-TOF: [M+H]+ calc. 937,4 [M+H]+ found 935 and 957.8 [M+Na]+.  

 

 

 

H6-STOTDA-acridine. MALDI-TOF: [M+H]+ calc. 1348.6 [M+H]+ found 1348 and 1370.1 [M+Na]+.  
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K3-STOTDA-acridine. MALDI-TOF: [M+H]+ calc. 910,5 [M+H]+ found 906.3 
RP-18 HPLC: peak@8.42 min. 
 

 

K6-STOTDA-acridine. MALDI-TOF: [M+H]+ calc. 1294.8 [M+H]+ found 1289.9 
RP-18 HPLC: peak@8.233 min. 
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E2-Folate. MALDI-TOF: [M+H]+ calc. 700.2 [M+H]+ found 697.6 and 719.6 [M+Na]+ 
RP-18 HPLC: peak@7.167 min. 

 

 

 

E5-Folate. MALDI-TOF: [M+H]+ calc. 1087.3 [M+H]+ found 1083.9 
RP-18 HPLC: peak@7.160 min. 
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E2-MTX. MALDI-TOF: [M+H]+ calc. 713.26 [M+H]+ found 710.78 
RP-18 HPLC: peak@7.633 min. 

 

 

E5-MTX. MALDI-TOF: [M+H]+ calc. 1100.38 [M+H]+ found 1097.5 and 1120 [M+Na]+ 
RP-18 HPLC: peak@7.553 min. 
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