
Unsupervised Learning on
Social Data

Felix Borutta

München 2019

Unsupervised Learning on
Social Data

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität München

vorgelegt von
Felix Borutta
aus München

München, den 25.10.2019

Erstgutachter: Prof. Dr. Peer Kröger
Zweitgutachter: Prof. Dr. Emmanuel Müller
Datum der mündlichen Prüfung: 11.03.2020

Eidesstattliche Versicherung

Hiermit erkläre ich, Felix Borutta, an Eides statt,
dass die vorliegende Dissertation ohne unerlaubte Hilfe
gemäß Promotionsordnung vom 12.07.2011, § 8, Abs.
2 Pkt. 5, angefertigt worden ist.

München, 25.10.2019

. .
Felix Borutta

Contents

Abstract v

Zusammenfassung vii

1 Preface 1
1.1 Introduction . 1
1.2 Fundamentals . 3
1.3 Contribution and Thesis Structure 14

I Mining Social Data 17

2 Introduction 18

3 Related Work 21
3.1 Subspace Clustering . 21
3.2 Stream Clustering . 27
3.3 User Identification . 31
3.4 Text Clustering . 35

4 PCA-based Correlation Clustering on Data Streams 36
4.1 Introduction . 36
4.2 A Generic Aggregation Structure for Correlation Clustering

on Data Streams . 38
4.3 Application of CCMicro Structures for Offline Correlation Clus-

tering . 44
4.4 Experiments . 47
4.5 Conclusion . 52

5 Detecting Linear Correlated Clusters on Streams using Pa-
rameter Space Transform 53
5.1 Introduction . 53

iii CONTENTS

5.2 Correlation Clustering Using Parameter Space Transformation 55
5.3 CashStream . 59
5.4 Experiments . 72
5.5 Conclusion . 83

6 User Identification by Using Microblog Data 84
6.1 Introduction . 84
6.2 Problem Definition . 87
6.3 Trajectory based User Identification 89
6.4 Experimental Evaluation . 93
6.5 Conclusion . 102

7 Socio-Textual Mapping 103
7.1 Introduction . 103
7.2 Socio Textual Maps . 105
7.3 Proof of Concept . 108
7.4 Challenges . 110

II Representation Learning on Graphs 113

8 Introduction 114

9 Related Work 118
9.1 Unsupervised Node Embedding 118
9.2 Semi-Supervised Node Embedding 121
9.3 Embedding Entire Graphs . 123

10 Homophily-Based Node Embedding 125
10.1 Introduction . 125
10.2 Preliminaries . 127
10.3 Lasagne: Locality And Structure Aware Graph Node Em-

bedding . 129
10.4 Empirical results . 131
10.5 Conclusion . 146

11 Structure-Based Node Embedding 148
11.1 Introduction . 148
11.2 Structural Node Representations using Approximate Person-

alized PageRank . 150
11.3 Experiments . 155
11.4 Conclusion . 158

CONTENTS iv

12 Unsupervised Graph Embedding 162
12.1 Introduction . 162
12.2 Aggregated Graph Descriptors 163
12.3 Experiments . 167
12.4 Conclusion . 169

13 Semi-Supervised Learning on Graphs 173
13.1 Introduction . 173
13.2 Related Work . 176
13.3 Adaptive Node Similarity Using Local Label Distributions . . 177
13.4 Evaluation . 183
13.5 Conclusion . 193

14 Application of Node Embeddings for Map Fusion 195
14.1 Introduction . 195
14.2 Graph Alignment Networks with Node Matching Scores 197
14.3 Experiments . 199
14.4 Conclusion . 202

15 Concluding Remarks 204

Acknowledgements 208

List of Figures 209

List of Tables 212

Bibliography 213

Abstract

Analyzing social data comprises huge potentials for companies. On the
one hand, enterprises can massively benefit from identifying market seg-
ments to subsequently apply targeted marketing strategies. Another com-
mon task in this area of application is to identify so-called influencers, i.e.,
hub users within communities, that promote new products so that compa-
nies can launch these products into the market quickly. On the other hand,
the analysis of social data gathered from the employees of a company itself
can significantly improve the internal organization by revealing insights that
might enable collaboration opportunities or an optimized exchange of infor-
mation. Therefore, social data analysis has become an important component
of the analytics strategies in many companies. However, it is obvious that
this requires not only the raw data but also the appropriate tools for analyz-
ing the data. This thesis addresses several recent research questions arising
in the field of social data analytics. Though the proposed algorithms are
suitable for solving problems that are highly related to social data analysis,
most of them generalize to other domains, as well.

Given the attribute information, i.e., age, profession, interests, etc., of the
users from a social media platform, it is often difficult to identify specific user
groups in these data. Two common reasons are the large number of dimen-
sions that the data might have and the fact that social media data is generally
dynamic. Data mining approaches like subspace clustering algorithms are es-
tablished methods to identify groups of objects that are, wrt some distance
metric, similar in certain subspaces. A special kind of subspace clustering
is correlation clustering which aims at identifying arbitrarily oriented linear
subspaces, rather than being limited to only detect axis-parallel subspace
clusters. However, most previous approaches work on static data and can-
not deal with data which might change over time. To this end, this thesis
presents two novel algorithms for correlation clustering on streaming data.
While one relies on covariance matrix factorization, the other algorithm uses
Hough transformation for identifying correlation subspaces. Moreover, this
thesis presents two further data mining methods which both are based on

Abstract vi

microblog data. The first is a hierarchical clustering algorithm that relies on
text mining to create social maps at different scales by learning a clustering
model based on the most prominent discussed topics in certain spatial areas.
The second is an algorithm that is suitable to identify yet unknown users by
classifying previously mined spatio-temporal mobility patterns.

Another research direction addressed in this thesis is learning based on
network data. Since users are usually related to each other through friendship
relations or interactions, social data is often modeled as a graph where users
are considered as vertices and friendship relations, resp. interactions, form
links between two users. The proposed methodologies for learning vertex
representations all make use of the information captured in the topology of
the resulting graph. Two of the presented node embedding algorithms only
rely on topological information but learn node representations by following
different goals. One is based on the so-called homophily assumptions and
tries to learn similar vector representations for nodes that are close-by in
the graph. The other aims at creating similar node descriptors for nodes
that have a similar functionality within the network, e.g., two influencers
in a social network should get a similar vector representation even if they
are not close-by in the graph. A further algorithm that uses the latter type
of node embeddings alongside a suitable, unsupervised aggregation method
finally enables to classify entire graph structures based on the functionalities
that the nodes within a graph structure have. Furthermore, this thesis also
presents a semi-supervised approach for learning node representations by
incorporating node label information from the local neighborhoods beside of
topological information. Finally, aiming at enabling graph fusion, we also
propose a graph neural network based model that is able to learn matchings
of nodes from two partly overlapping graphs.

Zusammenfassung

Die Analyse sozialer Daten stellt ein großes Potential, sowohl für die interne
Organisation von Firmen, als auch für die wirtschaftliche Verwertung von
Produkten dar. So können Unternehmen zum Beispiel anhand der Analyse
sozialer Daten bestimmte Marktsegmente identifizieren, um anschließend auf
die Märkte zugeschnittene Marketing Strategien einzusetzen. Ein weiteres
Beispiel bei dem die Analyse sozialer Daten wirtschaftlich erfolgreich einge-
setzt werden kann ist die Analyse interner Strukturen und Abläufe. Kennt ein
Unternehmen diese, kann es diese optimieren, um so die Wirtschaftlichkeit
und letztlich die Produktivität zu steigern. Hinsichtlich dieser und weiterer
Beispiele ist die Analyse sozialer Daten bereits eine wichtige Komponente
in vielen Analysestrategien von Unternehmen weltweit geworden. Um diese
Strategien umzusetzen bedarf es allerdings nicht nur der Daten, sondern ins-
besondere auch geeigneter Methoden zur Analyse. In dieser Arbeit werden
daher verschiedene Problemstellung im Bereich der Datenanalyse mit Bezug
auf soziale Daten mittels wissenschaftlichen Methoden untersucht und Lö-
sungsvorschläge erarbeitet. Obwohl sich die vorgestellten Algorithmen für
die Analyse sozialer Daten eignen, sind sie dennoch so generisch, dass sie
prinzipiell auch in anderen Anwendungsgebieten einsetzbar sind.

Im Allgemeinen ist das Identifizieren verschiedener Nutzergruppen an-
hand der Daten die ein Nutzer in sozialen Netzwerken angibt nicht offen-
sichtlich. Das liegt zum Einen an der Menge der Informationen, und zum
Anderen daran, dass sich diese Informationen häufig ändern. Betrachtet
man die, aufgrund der Menge von Informationen, hohe Dimensionalität von
sozialen Daten sind Data Mining Ansätze wie Subspace Clustering Algorith-
men bewährte Methoden, um Nutzergruppen hinsichtlich bestimmter Unter-
mengen der Informationen zu identifizieren. Eine spezielle Art des Subspace
Clustering ist das sogenannte Correlation Clustering. Anstatt das Identi-
fizieren von Gruppen auf gegebene Merkmale zu beschränken, sogenannte
achsen-parallele Unterraumcluster, erlauben es diese Ansätze Gruppen auch
anhand kombinierter Merkmale, also in beliebig orientierten Unterräumen,
zu erkennen. Bisherige Methoden zum Erkennen von beliebig orientierten

Zusammenfassung viii

Unterraumclustern funktionieren allerdings vorrangig auf statischen Daten
und können oft nicht auf Daten angewendet werden, die sich über die Zeit
ändern. Aufgrund dieser Beschaffenheit werden in dieser Arbeit zwei Algo-
rithmen präsentiert welche dies ermöglichen. Während einer der Algorith-
men auf einer inkrementellen Version der Hauptkomponentenanalyse basiert,
nutzt der Andere Hough Transformationen, um beliebig orientierte Unter-
cluster zu finden. Des Weiteren werden in dieser Arbeit zwei Data Mining
Methoden zur Analyse von Microblog Daten präsentiert. Die erste Methode
erstellt aus Microblog Daten Bewegungsmuster, die später zur Identifikation
von Nutzern genutzt werden, und die zweite Methode ermöglicht es mittels
Text Mining und hierarchischem Clustering soziale Landkarten zu erstellen.

Eine andere Forschungsrichtung, der sich diese Arbeit widmet, ist das
maschinelle Lernen mit Netzwerkdaten. Da Nutzer im sozialen Kontext typ-
ischerweise miteinander in Beziehung stehen, sei es durch Freundschaftsbe-
ziehung oder durch menschliche Interaktionen, bietet es sich häufig an soziale
Daten in Form von Netzwerken darzustellen. In den resultierenden Graph-
strukturen bilden Nutzer folglich die Knoten und Freundschaftsbeziehun-
gen oder Interaktionen werden als Kanten abgebildet. Die im zweiten Teil
der Arbeit vorgestellten Methoden machen explizit Gebrauch von diesen
Beziehungsinformationen, um vektorielle Repräsentationen von Nutzern zu
lernen. Zwei der vorgestellten Methoden beschränken sich auf das Nutzen der
im Netzwerk vorhandenen topologischen Eigenschaften um Knotenrepräsen-
tationen zu lernen, allerdings jeweils mit einem anderen Ziel. Während eine
Methode auf der sogenannten Homophilie-Annahme basiert und versucht
Nutzer so in einen kontinuierlichen Vektorraum einzubetten, dass Nutzer die
im Netzwerk in enger Beziehung stehen auch im Vektorraum nahe beieinan-
der liegen, lernt die andere Methode anhand struktureller Eigenschaften.
Das bedeutet, dass Letztere die Knoten so in den Vektorraum einbettet,
dass Nutzer, die ein ähnliches Beziehungsgefüge pflegen am Ende im Vek-
torraum nahe beieinander liegen. Eine weitere Methode die in dieser Arbeit
vorgestellt wird nutzt Struktur-basierte Knotenrepräsentationen um ganze
Graphstrukturen in einen Vektorraum einzubetten, so dass die resultierenden
Vektorrepräsentationen letzten Endes benutzt werden können um Graphklas-
sifikatoren zu lernen. Außerdem wird ein semi-supervised Ansatz präsentiert,
welcher teilweise vorhandene Informationen zu Knotentypen für das Erler-
nen eines Klassifikators für Knoten ausnutzt. Zum Abschluss der Arbeit
wird schließlich noch eine Methode zum Fusionieren zweier Graphen, inklu-
sive konkretem Anwendungsfall, nämlich dem Fusionieren von Straßenkarten,
vorgestellt.

Chapter 1

Preface

1.1 Introduction

Social data, for instance, data gathered from social media, interactions on
social media platforms, or interactions between mobile devices in the real
world generally comprise a plethora of different kinds of information. Among
others, these types of information may include personal information of the
users (e.g., age, profession, place of residence, etc.), specific interests of the
users (e.g., what music a user likes or what kind of books she reads), relational
information (e.g., friendship relations among users or interactions among
users) or even geo-spatial information (e.g., information about specific places
that a user visited). However, given these different kinds and quite often huge
amounts of data, it is almost impossible to generate useful knowledge from
it without having suitable methods for data analysis. This is reasoned by
the facts that firstly, the data is usually high dimensional and secondly, that
there typically exist complex patterns and relations, i.e., so-called hidden
information, within the data that humans cannot reveal by only “looking” at
the data.

Considering the example of friendship recommendation within a social
network for instance should help to understand the problem. Given the
social network where vertices are users and links represent real-world friend-
ship relations, and additionally some user attributes, e.g., age, profession,
favorite movie genre and type of vehicle, associated with each user. The task
is to recommend links between users that have not been connected, yet. A
straightforward approach would be to compare the user attributes with re-
spect to some similarity measure and recommend links between similar users
given that those links do not exist, yet. At first glance this may totally
make sense since people in about the same age with similar interests are ob-

CHAPTER 1. PREFACE 2

viously more likely to become friends than differently aged persons who do
not share any interests. However, this does not reflect the reality. Following
Tobler’s first law of geography which states that “everything is related to
everything else, but near things are more related than distant things” [248],
the described approach cannot make the “desirable” recommendations since
some user coming from a completely different part of the world might be very
similar (in terms of age and interests) to a query user, but due to the large
distance between the two users, it is very unlikely that they will actually be-
come friends. However, what also can be derived from Tobler’s law is that the
network topology of the social graph should encode some information about
spatial proximity, although the links are supposed to only encode friendship
relations. Precisely, it can be assumed that members of a community within
the social graph are all located near each other. Though it was possible to
derive this knowledge based on expertise, the proximity information that is
encoded is some kind of hidden information which is not easy to detect by
non-experts or humans that only “have a look at the data”. Note that there
might be other kinds of hidden information, even in the this small example,
that are even more difficult to reveal.

In short, the goal of social data analysis can be summarized as follows:
given the social data, social data analysis aims at generating knowledge about
the real world from information that is explicitly and implicitly modeled
within the data.1 This thesis presents several different approaches to gain
knowledge from data, compress this knowledge in low-dimensional vector
representations and partly use these representations to solve subsequent tasks
like link prediction. Throughout the thesis, applications from the area of
social data analysis are taken as motivating examples but in general and
as is shown by the experimental evaluations of the methods, the presented
algorithms generalize to data from a variety of other domains as well.

Technically, all of the proposed methods are positioned in the field of
machine learning. In general, machine learning algorithms can usually be
classified into two basic categories: supervised and unsupervised methods.2
Supervised methods are primarily characterized by the property that these
algorithms learn a function that maps an input vector to some desired target
or output vector [39]. By adjusting the model parameters with respect to
the provided input-output pairs that are passed to the model during training,
the trained model is finally able to correctly transform or classify yet unseen
input signals. In particular, this means that the machine requires to know

1This is not a goal which is exclusive for social data analysis. In fact, this is a general
goal of data-driven analysis in any domains.

2Note that there exists a mixture of both which is called semi-supervised learning.
These techniques typically combine both paradigms.

3 CHAPTER 1. PREFACE

the target vector in advance for the learning phase. These target vectors are
referred to as ground truth throughout the thesis. In contrast to supervised
learning methods, unsupervised methods do not require such a ground truth.
The key idea behind unsupervised methods is that the machine learns the
ability to detect and distinguish different patterns in the data without having
the kind of “teaching mechanism” as is used for supervised methods. The key
difference of the intuitions for both supervised and unsupervised learning can
easily be described by using an example of how humans learn. Consider a
child that is learning to recognize the letter m for instance. Obviously, as the
letter m may appear differently in different fonts and handwritings, the child
needs some examples accompanied with the information that the examples
are ms to learn how an m looks like. Once internalized, the child will be able
to recognize the letter m, even from a yet unseen font. In machine learning
terminology, this is called supervised learning. On the other hand, consider
the case where the child needs to distinguish between the two letters e and
i. For this task, the child does not need to know the exact appearances of
e or i. In fact, it just needs a couple of observations of the letters e and i
to gain the experience that they are two different concepts, e.g., that they
just look differently. In terms of machine learning, such kind of learning is
referred to as unsupervised learning. Somewhat more formally, given several
instances of a random input vector x, each associated with its corresponding
ground truth vector or value y, supervised learning typically aims at learning
the probability distribution p(y|x). In contrast, unsupervised learning has
the goal to learn the probability distribution p(x), or at least important
properties of it, only based on some instances of a random input vector x
[101].

As the main part of this thesis focuses on unsupervised learning tech-
niques, Section 1.2 provides a brief overview of relevant fundamentals of un-
supervised learning in general. Section 1.3 then highlights the contributions
and surveys the structure of this thesis.

1.2 Fundamentals

Although it might seem more intuitive to train a model based on ground
truth, unsupervised learning encompasses a couple of advantages compared
to supervised learning methods. The biggest advantage is that unsuper-
vised methods are typically more broadly applicable since they obviously do
not require labeled data. In fact, many applications suffer from the lack of
ground truth data and generating labels is generally expensive. It often re-
quires knowledge from domain experts and, depending on the complexity of

CHAPTER 1. PREFACE 4

the task, supervised methods may also need a remarkable amount of labeled
data. Two common approaches to overcome this issue by using unsupervised
methods are (1) to train a model on large amounts of unlabeled data and
later inject supervision into the outcome of the model, or (2) to use only
small amounts of labeled data to train a basic model which is later tuned
by using an unsupervised training procedure with larger amounts of data on
top. Another benefit of unsupervised methods is their ability to greatly sup-
port data exploration. For instance, finding groups of patterns can provide
valuable information for further data processing steps. Furthermore, some
unsupervised methods have the advantage that they can cope with slowly
evolving data, i.e., concept drifts. This might be particularly useful for tasks
where temporal trends play a key role, e.g., identifying users in a social net-
work that temporarily have a high influence on other users in the network.
Using supervised methods, one would have to re-train, respectively train a
new model, with recent ground truth data to keep an up-to-date model [84].

This thesis concentrates on three very fundamental tasks of unsupervised
learning, namely

• clustering,

• feature extraction from unstructured data, and

• representation learning,

which are introduced in the following sections.

Clustering

Clustering denotes the task of grouping objects of a data set such that ob-
jects within a group are similar with respect to some similarity measure while
objects that do not belong to the same group are dissimilar. Typical usages
of clustering are data exploration to get insight into the nature of the data or
preprocessing for other algorithms. There exists a variety of different cluster-
ing algorithms that in turn follow different concepts which all significantly
vary in terms of properties they model. The clustering concepts that are
used in this thesis are:

• Partitioning clustering. Given a dataset D = {x0, . . . , xn}, a parti-
tioning clustering algorithm aims at finding a partitioning C = {C1, . . . ,
Ck} such that each object xi is assigned to exactly one partition Cj with
0 ≤ i ≤ n and 1 ≤ j ≤ k. During the assignment phase, those algo-
rithms typically optimize for some objective function. A well-known
representative of this class of clustering algorithms is k-means, i.e., an

5 CHAPTER 1. PREFACE

iterative partitioning procedure where the objects in D are assigned to
clusters Cj ∈ C with the objective that the sum of distances between
data objects and corresponding cluster centers is minimized. Note
that cluster centers are initially chosen according to some initializa-
tion strategy. After each iteration, the cluster centers are updated,
e.g., by setting the centroid to the mean of all data objects that have
been assigned to the corresponding partition, and the assignment phase
restarts. The partitioning procedure terminates if the cluster centers
converge to stable positions.

• Density-based clustering. Methods of this group of clustering algo-
rithms define groupings based on the local densities of the data space.
Precisely, regions that are dense with respect to some distance measure
are considered as clusters, which in turn are separated from each other
by sparse regions. The state-of-the-art approach in this class of algo-
rithms is DBSCAN, i.e., a method that relies on local point densities
and spatial reachability criteria to define the final clustering. Given
a dataset D, a distance threshold ε and a density threshold minPts,
DBSCAN searches for so-called core objects s ∈ D for which it holds
that |Nε(s)| ≥ minPts, with Nε(s) = {o ∈ D|dist(o, s) ≤ ε} being
the ε-neighborhood of s. Once such a core object is found, a new clus-
ter, initially containing the core object itself, is created and extended
by finding density-reachable objects, i.e., objects that are within the
ε-neighborhood of density-reachable core objects. If no more density-
reachable object can be found for the current cluster, the algorithm
restarts by searching a new initial core objects from the yet unprocessed
objects in D. Noteworthy, an important property of this procedure is
that some objects may not be assigned to any cluster due to its low
local density. Such objects are marked as noise.

• Subspace clustering. Roughly spoken, subspace clustering aims at
identifying clusters in lower dimensional subspaces rather than the
full high-dimensional space. The intuition behind subspace cluster-
ing is that data is often high-dimensional, i.e., the number of features
is large, and for several reasons, e.g., the curse of dimensionality or
the fact that different features are differently relevant for various clus-
ters, a large body of established methods cannot cope properly with
the large number of dimensions. By identifying various subspaces in
which data objects form groups, subspace clustering algorithms gener-
ally provide valuable insights and overcome certain issues that appear
when performing comparable global feature reduction as preprocessing

CHAPTER 1. PREFACE 6

for subsequent data mining tasks. In general, the term subspace clus-
tering represents a whole family of different algorithms that all have
slightly different underlying assumptions and goals. While axis-parallel
subspace clustering algorithms reveal clusters only in spaces spanned
by a subset of the originally given features, some subspace clustering
techniques are able to detect clusters in arbitrarily oriented subspaces.
The latter approaches are called correlation clustering algorithms. Note
that the literature sometimes also differs between projected clustering
where data objects are assigned uniquely to subspace clusters and sub-
space clustering where data objects may belong to multiple subspaces.
However, in this thesis, the term subspace clustering is used globally
to refer to the entire family of algorithms.

• Hierarchical clustering. In many applications data may contain
clusters that are nested within other clusters, i.e., there might exist an
internal hierarchy of groupings. Common clustering approaches usu-
ally cannot reveal such hierarchical relations due to aiming at some
global objective (like k-means) or relying on a global parameter set-
ting (like DBSCAN). Hierarchical clustering approaches have been de-
veloped to overcome this issue. In general, there are two classes of
hierarchical clustering approaches: agglomerative clustering and divi-
sive clustering. While agglomerative clustering methods assign each
data object to its own cluster and greedily merges pairs of clusters,
divisive clustering approaches initially assign each object to one clus-
ter and recursively performs splits until each object is its own cluster.
Either way the result is a strict hierarchy of clusters. The canonical
procedure for agglomerative clustering is as follows: each data object in
database D initially forms its own cluster Xi. After precomputing all
pairwise distances between the clusters with respect to some distance
function distc(Xi, Xj) = minx∈Xi,y∈Xj

dist(x, y), the algorithm itera-
tively merges the closest pair of clusters (Xi, Xj) by forming a new
cluster Xk = Xi ∪ Xj, substitutes the concerned clusters Xi and Xj

with the newly formed cluster Xk in the set of considered clusters, and
computes the pairwise distances between the new cluster and all other
currently considered clusters. This is repeated until there remains only
a single cluster consisting of all data objects. Note that the closest pair
of clusters requires some definition of similarity between clusters that
may vary between various agglomerative clustering strategies.

• Graph-based clustering. Given a graph G = (V,E) with V denoting
the set of vertices and E being the set of edges that connect pairs of

7 CHAPTER 1. PREFACE

vertices, graph clustering algorithms generally aim at clustering groups
of vertices such that the number of edges within a cluster of vertices,
i.e., internal edges, is notably greater than the number of edges that
connect different clusters, i.e., external edges. Formally speaking, given
a clustering C = {C1, . . . , Ck}, with Ci = V \

⋃
j∈{1,...,k},j 6=iCj for i ∈

{1, . . . , k}, the general clustering objective is to define a partitioning
that ensures a high average internal density, defined as

δint(C) =
1

k

k∑
i=1

|{euv|euv ∈ E, u ∈ Ci, v ∈ Ci}|
|Ci|(|Ci| − 1)

,

while the external density, defined as

δext(C) =
|{euv|euv ∈ E, u ∈ Ci, v ∈ Cj, i 6= j}|
|V |(|V | − 1)−

∑k
l=1(|Cl|(|Cl| − 1))

,

i.e., the ratio of internal edges to the number of all possible external
edges, is relatively low [225].

Further prominent clustering concepts, which are not used throughout the
thesis, but mentioned for the sake of completeness as they might be of interest
for further refining some of the presented methods are distribution-based
clustering algorithms, e.g., the expectation maximization algorithm, or neural
approaches, e.g., self-organizing maps.

To summarize, Figure 1.1 visualizes the clustering results achieved on four
small datasets with k-means, DBSCAN, CASH, i.e., a method for correlation
clustering, and agglomerative approaches with proper merging strategies, i.e.,
merging the clusters by minimizing the variance of the clusters, respectively
for the two moons dataset, merging the clusters with minimum distance
between all objects of the two considered clusters. Each of the clustering
algorithms follows a different goal in terms of grouping objects and therefore
they perform differently “good” on the used datasets. Thus, the selection of
a suitable clustering algorithm for a given application highly depends on the
objective of the underlying task and, obviously, the nature of the data.

Feature Extraction

When considering natural data, data mining or machine learning techniques
often face the problem that the data is not only large in terms of number of
observations, but also that the number of features is large, i.e., the number
of dimensions that a single observation consists of. Recalling the example on
social data, the features of a user can be miscellaneous. For instance, they

CHAPTER 1. PREFACE 8

Th
re
e
Bl
ob

s Raw Data k-means DBSCAN CASH Agglomerative

M
ix
tu
re
s

Tw
o
M
oo

ns
Lin

ea
r

Su
bs
pa

ce

Figure 1.1: Clustering results for four clustering algorithms on four different
datasets. The colors denote group membership as identified by the corre-
sponding algorithm. Blue colored dots are considered as noise.

may consist of numerical features like age, height, years of education, salary,
and so forth, but also of categorical features, e.g., mother tongue, music she
likes or the user’s profession. Categorical features are especially challenging
as they typically appear in string format and usually cannot be used as is
by most algorithms since they require numerical values. Obviously, simply
transforming such features into nominal values, i.e., assigning an unique in-
teger value to each category, is not an option because the resulting values are
still unrelated to each other. Oftentimes, categorical data are therefore rep-
resented as one-hot encoded vectors, i.e., potentially huge zero vectors where
each position in the vector represents one category and the value in the po-
sition of the corresponding category is set to one. However, this may lead
to infeasible high-dimensional data representations which in turn is highly
problematic for lots of data mining and machine learning algorithms as they
typically tend to suffer from the curse of dimensionality, overfitting and/or
high computational costs.

To overcome these issues, feature extraction is a fundamental and often
indispensable task. In general, feature extraction describes the process of

9 CHAPTER 1. PREFACE

combining input features such that the amount of features is reduced by
simultaneously keeping the loss of information contained in the data min-
imal.3 Particularly, feature extraction typically reduces redundancy in the
data, e.g., by combining correlated features into latent variables. In the above
given example for instance the features age, years of education and salary
are likely to correlate and hence contain some redundancy. In opposite to
feature engineering, which describes the process of constructing hand-crafted
features that may improve the outcome of an application task, feature ex-
traction approaches usually are automated and learn feature combinations
from the data in (un)supervised manner. For numerical vector data, one
commonly used method is the principal component analysis, which aims at
minimizing correlations within the input data X ⊆ Rd by transforming the
data into some lower dimensional vector space Rp, with p < d, where the
basis is defined by the eigenvectors associated with the p largest eigenvalues.
When dealing with complex, unstructured data like text or images, another
common approach to feature extraction is the bag of words model where
words in a text are represented by their frequency, or some related numerical
value, disregarding the information about a word’s location within a sentence
or grammatical details. Analogously, it is possible to extract such features in
other domains, too. In image processing for example, images can be repre-
sented as bag of words by defining specific image features, e.g., the frequency
of pixel colors, as “words” [237]. Lastly, a large group of feature extraction
methods are based on neural learning. Essentially, every pair of consecutive
layers of any neural network, or more specifically every trained weight ma-
trix between two consecutive layers, with the second layer consisting of less
neurons than the first, that is not part of the classifier, resp. regressor, can
be considered a feature extractor. These methods of feature extraction are
typically referred to as feature learning or representation learning.

Neural Learning

Neural networks have proven to be particularly powerful in lots of appli-
cations and achieved state-of-the-art results in many of them. As neural
learning is used oftentimes throughout this thesis (unsupervised and super-
vised learning for both presented methods and their evaluation), the basic
concepts are briefly reviewed in the following. Figure 1.2 depicts a sample
architecture of the simplest form of neural networks, i.e., a feed-forward neu-
ral network. This network consists of three layers, i.e., an input layer that

3This is not to be confused with feature selection where the dimensionality is reduced
by filtering out irrelevant features.

CHAPTER 1. PREFACE 10

Figure 1.2: A sample feed-forward neural network with an input layer, one
hidden layer and an output layer. Gray nodes represent variables, solid links
denote weight parameters and the dashed links coming from the white nodes
denote bias parameters.

consists of d units (or artificial neurons, resp., neurons) and one additional
neuron for the bias parameter, an hidden layer that consists of m neurons
and one additional bias neuron, and an output layer consisting of k neu-
rons. Note that the number of neurons in the output layer depend on the
problem that shall be solved. For regression tasks, which aim at inferring
one continuous value for some given instance, k should equal to 1, whereas
for classification tasks, where the goal is to assign input instances to one or
many classes, k corresponds to the total number of classes. The hidden layer
is densely connected to the input layer, which means that each neuron of the
input layer is connected to each neuron of the hidden layer. In total there
are d+ 1×m connections between the input layer and the hidden layer with
each connection corresponding to an adjustable weight parameter. The col-
lection of weight parameters is denoted as weight matrix W (1) ∈ R(d+1)×m.
The output hj of a single neuron j in the hidden layer is

hj = f(
d∑
i=0

xiw
(1)
ji) = f(xTw(1)

j),

with w(1)
j ∈ Rd+1 denoting the j-th column vector of weight matrixW (1), wji

being the i-th entry in wj, and x ∈ Rd+1 being the column vector of d input
signals and an additional input x0 being fixed to 1 since wj0 represents the
bias. Function f(·) is the so-called activation function, which is in case of
classification some differentiable and non-linear mapping f : R→ [0, 1], resp.
f : R → [−1, 1], or in case of regression the identity function. Analogously,

11 CHAPTER 1. PREFACE

passing one fixed bias input h0 = 1 along with the m outputs of the hidden
layer’s neurons in a vector h ∈ Rm+1 as input into the subsequent output
layer, the outputs of the single output layer’s neurons can be computed by
linearly combining the corresponding inputs as follows,

yk = σ(
m∑
j=0

hjw
(2)
kj) = σ(hTw(2)

k).

This time, w(2)
k ∈ Rm+1 denotes the k-th column vector of the second weight

matrixW (2), and w(2)
kj is the j-th value of w(2)

k . Due to the output layer being
densely connected to the hidden layer, each output neuron’s quantity is the
result of a linear combination of all input values passed to some activation
function σ(·). Differently to the hidden layer, the activation function for
the output layer must be chosen more carefully depending on the underlying
problem that shall be solved. Again, in case of regression problems, the ac-
tivation function is the identity function. In case of classification problems,
where input instances are assigned to discrete categories, one typically has to
distinguish between multiclass and multilabel problems. In multiclass prob-
lems, each instance is assigned to exactly one of more than two classes. The
classification problem where input instances are assigned to one of two classes
is called binary classification problem. Contrary, in multilabel problems, a
single instance can be assigned to multiple classes simultaneously. Formally,
both multiclass and multilabel problems require some input vector x and re-
trieve some output vector y whose size corresponds to the number of classes
k. In terms of neural networks, each of the k output neurons corresponds to
one of the k classes, resp. to one of the k positions in y. However, as the
objective for multiclass problems is to maximize the class probability for one
particular class in dependence on the probabilities of the other classes, the
arbitrary, real valued input signals (called logits) arriving at the neurons of
the output layer need to be transformed into probabilities that sum to one
properly. Therefore, the so-called softmax function, i.e.,

σ(zj) =
ezj∑k
l=1 e

zl
,

with any zi with i ∈ {1, ..., k} denoting the logit passed into neuron i and
e being the standard exponential function, is employed as activation func-
tion. In fact, this normalized exponential function can be interpreted as a
smoothed version of the argmax function. On the other hand, for multil-
abel classification, the probabilities for each class shall be independent from
each other. Therefore it is desirable to get probabilities that denote the class

CHAPTER 1. PREFACE 12

membership for each class independently rather than getting probability val-
ues in dependence on the other classes. This means that the probabilities do
not have to sum up to one in the multilabel case. In practice, the logistic
sigmoid function, i.e.,

σ(zj) =
1

1 + ezj
,

with zj denoting the logit passed into neuron j and again, e denoting the stan-
dard exponential function, has proven to be particularly useful as activation
function for the output layer in neural network-based multilabel classifica-
tion tasks. For binary classifications one typically uses either a single output
alongside with the logistic sigmoid activation or two outputs with softmax
activations.

Putting all together, a single forward pass aiming at predicting the out-
come for neuron k in the output layer of the neural network depicted in
Figure 1.2 can be written as

yk(x,w) = σ(
m∑
j=0

f(
d∑
i=0

xiw
(1)
ji)w

(2)
kj),

with w denoting the group of weight and bias parameters, and x being the
input vector for the neural network.

Beside the architecture of the neural network, the network training, which
is necessary to adjust the weight parameters such that finally an accurate
prediction model is retrieved, requires a set X of training instances, and a
corresponding set Y of annotations, respectively ground truth labels, or short
labels. Note that for classification tasks the labels are typically represented as
k–dimensional binary vectors where k corresponds to the number of classes.
A label vector has an 1 entry at position i if the corresponding instance is of
class i, and a 0 entry otherwise. The general goal of the network training is
to optimize the network’s weight parameters such that the resulting model
can map instances xi ∈ X from the input distribution to the corresponding
output vector yi ∈ Y . Therefore, training instances are given as input to
the network, the input signals are transformed with respect to the weight
parameters, and finally the output vector ŷi of the network is compared to
the ground truth label yi of the corresponding training instance xi. The latter
step intents to retrieve a quantitative score on how good the prediction of the
model actually is. Obviously, the objective of the network’s training phase is
to minimize the discrepancy between the output of the network ŷi and the
actually desired output yi. For being able to quantify that discrepancy, or
error, the neural network requires a loss function which typically depends on
the activation function used for the last layer of the network. Considering the

13 CHAPTER 1. PREFACE

multiclass classification problem for which the softmax activation function is
employed, the typical choice of loss function is the multiclass cross-entropy
error function:

E(w) =
N∑
i=1

k∑
j=1

(ŷij · ln(yj(xi,w)),

with N denoting the number of input variables for training, k again being the
number of output neurons, ŷij being the ground truth label for neuron j in
the output layer for training instance i andw denoting the weight parameters
of the model. When using the sigmoid activation function, as for multilabel
classification tasks, a suitable choice for the loss function is the cross-entropy
error function:

E(w) =
N∑
i=1

k∑
j=1

(ŷij · ln(yij) + (1− ŷij) · ln(1− yij)).

Note that the previously presented loss functions are commonly used options
and that they are used throughout the thesis unless stated differently. How-
ever, those loss functions are not exclusive for the corresponding tasks. Other
loss function may be suitable, too.

Given the multi-variable loss function E(w), the goal of the network
training is to minimize the loss function such that the prediction errors are
as small as possible. In this context, the phrase “as small as possible" refers
to the fact that it is not essentially necessary to find a global optimum,
respectively minimum in this case. Precisely, the optimization problem is
relaxed in the sense that finding a local minimum for the loss function is
sufficient for the network training. A broadly used optimization technique to
find local minimums is the iterative gradient descent method. The general
idea is as follows: given a differentiable multi-variable function F (x), F :
Rd → R, with d ≥ 1 and some input x = (x0, x1, ..., xd−1) such that F (x) =
y, then y approaches its (local) minimum fastest if x is changed towards
the direction of the negative gradient4 of F (x) at position x. By using a
sufficiently small weighting factor η ∈ R+ for the gradient, it holds that

xn+1 ≤ xn − η∇F (xn).

Note that ∇F (xn) denotes the gradient of F (x) at position xn and η is
the weighting factor which we refer to as learning rate in the following. The
learning rate is typically decreased with every iteration which may slow down

4The gradient is a generalization of the derivative in the sense that it computes the
slope of the tangent at a specific point of a multi-variable function.

CHAPTER 1. PREFACE 14

the convergence of the gradient descent but has proven to be effective in
avoiding oscillation around the minimum.

Considering that the number of adjustable weight parameters within a
neural network is usually quite large, e.g., up to several millions for state-of-
the-art convolutional networks [286], the calculation of the gradients, which
can mathematically be seen as an aggregation over the partial derivatives of
some multi-variable function F (x) 5, must be done efficiently to enable the
training of sufficiently good models within a feasible amount of time. The
common way to calculate the gradients of error functions in a neural network
is to use the error backpropagation algorithm. Recalling that input signals
are transformed into output signals during a single forward pass, and that the
output signals are subsequently used to determine some error by comparing
them with the desired output signals, the error backpropagation is finally
used to propagate the error backwards such that the weight parameters can
be adjusted properly. Formally, the error which is propagated backwards to
some hidden unit j after doing a forward pass for some input vector xn is
given as

∂E(xn)

∂aj
=

K∑
k

∂E(xn)

∂ak

∂ak
∂aj

= h′(aj)
K∑
k

wkj
∂E(xn)

∂ak
,

with E(·) being the loss function, aj denoting the value arriving at unit j,
h′(·) denoting the derivative of the activation function used for the hidden
layer, K being the number of units in the subsequent layer and wkj being the
weight parameters on the links connecting unit j with the units of the subse-
quent layer. The basic intuition behind error backpropagation can therefore
be interpreted as a message passing technique where partial derivatives are
passed backwards through the entire neural network by making use of the
chain rule for partial derivates.

1.3 Contribution and Thesis Structure
The research presented in this thesis has been conceptualized, implemented
and evaluated by the author of this thesis in cooperation with his supervisor
Prof. Dr. Peer Kröger, the researchers and students from the Department
for Database Systems and Data Mining at the LMU Munich as well as partly
with researchers at the UC Berkeley and the George Mason University. Some
of the content has previously been published at peer-reviewed conferences in

5E.g., ∇F (a, b, c) = ∂F
∂a ea+

∂F
∂b eb+

∂F
∂c ec, with ea, eb and ec denoting the unit vectors

in directions a, b and c.

15 CHAPTER 1. PREFACE

the field of Data Mining and Machine Learning. However, it is noteworthy
that the published content has been revised and restructured in order to have
an improved reading flow. In the following, the contribution of the thesis’
author to the works presented in this thesis, as well as the thesis structure
are summarized.

The content of this thesis is presented in two parts. The first part ad-
dresses various problems for which we present algorithms that are located
in the field data mining. The second part is on representation learning on
graphs where we present different methods that rely on neural learning tech-
niques to learn models capable of embedding graph vertices or entire graph
structures within continuous vector spaces.

Part I: Mining Social Data. The works presented in the first part of the
thesis include solutions for oriented subspace clustering on data streams, an
approach for generating and classifying user mobility profiles with the goal
of user identification and a short work that has been published as vision pa-
per presenting a proof-of-concept on how to use text mining methods with
unsupervised, hierarchical clustering to determine socio-textual maps from
social media data. The project on the PCA based correlation clustering al-
gorithm for streaming data is a collaborative work with Thomas Hubauer
from Siemens AG and Prof. Peer Kröger [48, 49]. The conceptualization,
parts of the implementation as well as the evaluation was done by the author
in cooperation with Peer Kröger. A preliminary proof of concept has been
implemented by Matthias Schreiber during his master thesis. The student
was supervised by the author. The domain knowledge for the use case was
contributed by Thomas Hubauer, who also supported the process for the
patent application. The concept for the correlation clustering approach on
streaming data that relies on Hough transformation was developed in co-
operation with Daniyal Kazempour and Peer Kröger6. It has initially been
implemented and evaluated in the master thesis of Felix Mathy, who was
advised by the author together with Daniyal Kazempour. The project on
user identification, which was a joint work from researchers of our group and
Assistant Professor Andreas Züfle and his graduate student Erik Seglem from
George Mason University, evolved from a former project which investigated
privacy issues in geo-tagged social data [228]. The author’s contribution in-
clude the implementation of a proof of concept, ideas on how to represent
trajectory data such that trajectories are suitable as input for classification
models and the preparation of the manuscript. The work on socio textual
mapping was developed with Michael Weiler, Andreas Züfle and Tobias Em-

6This work is planned to be submitted soon.

CHAPTER 1. PREFACE 16

rich [262]. The author of this thesis contributed to discussions, supported
Michael Weiler for the implementation and also supported the group to write
the manuscript.

Part II: Representation Learning on Graphs. In the beginning of the
second part of the thesis, we present solutions on unsupervised learning of
node embeddings by realizing different inductive biases. Precisely, we present
two methods, i.e., one for learning homophily based node embeddings and
one for learning structure based node embeddings. The latter embeddings
are further used to present an unsupervised method on how to generate use-
ful representations for entire graph structures. Furthermore we present a
semi-supervised method for learning node embeddings as well as an ongoing
work on a supervised method that learns node matchings for the purpose of
knowledge fusion at the example of map fusion tasks. The work on homophily
based node embeddings was developed during a research stay at UC Berke-
ley [91, 92]. The ideas were developed, implemented and evaluated by the
author together with his colleague Evgeniy Faerman. The ideas have further
been discussed with Kimon Fountoulakis and Prof. Michael Mahoney from
UC Berkeley. The work on structure based node embeddings was conceptu-
alized together with Evgeniy Faerman and supported by Julian Busch [47].
A proof-of-concept was implemented by the author and evaluated together
with Julian Busch. For further studies on the problem and the project on
graph representations, Adina Klink initially implemented and evaluated a
couple of concepts for her bachelor thesis which was supervised by the au-
thor, Julian Busch and Evgeniy Faerman [46]. The work on semi-supervised
learning on graphs using local label distribution was developed and imple-
mented together with Evgeniy Faerman [89, 90]. Julian Busch supported
writing the manuscript. Finally, the project on Map Fusion was conceptu-
alized together with Evgeniy Faerman. The models have been implemented
and evaluated by Otto Voggenreiter in his master thesis that was supervised
by the author, Evgeniy Faerman and Dr. Tobias Emrich (Harman/Becker
Automotive Systems GmbH).

Part I

Mining Social Data

17

Chapter 2

Introduction

For decades, Knowledge Discovery in Databases (KDD) is one of the most
important research areas in the field of data processing. It generally aims
at providing knowledge from huge masses of data that are due to the vast
amount hardly comprehensible and understandable by humans. The KDD
process [94, 110], as depicted in Figure 2.1, summarizes the basic, and neces-
sary steps to get from the raw data to the point where humans gain knowledge
from such huge amounts of the generated data. Starting with the raw data,

Figure 2.1: Illustration of the KDD Process.

the first step is to select the target data from the database such that the se-
lected data comprises task-relevant records. Given the target data, the next
step includes data cleaning and preprocessing, e.g., missing data handling,
data corrections or noise removal. Third is data transformation: this step
aims at representing the data appropriately for the given goal or subsequent
method, and could include tasks like feature reduction, data discretization
or simple transformation steps like representing string values in vector for-
mat or numerically. The fourth step, denoted as Data Mining, describes the
application of mathematical, respectively visualization, procedures to reveal
yet unknown patterns within the data. Finally, these patterns are inter-
preted and evaluated by experts to generate useful knowledge during the last
step. Note that the entire process is iterative and each step can be refined

19 CHAPTER 2. INTRODUCTION

individually after evaluating the outcome of the previous iteration.
The first part of this thesis presents methodologies that are positioned in

the Data Mining step of the KDD process and have been developed during
the thesis work. According to Decker et al. [78], Data Mining is defined as “a
problem-solving methodology that finds a logical or mathematical description,
eventually of a complex nature, of patterns and regularities in a set of data”.
Stemming from the fact that data mining techniques generally consider the
data generating mechanism as unknown [54] and hence do not leverage any
prior knowledge, they basically differ from statistical methods in that they
generate hypotheses automatically rather than checking pre-defined hypothe-
ses. Also, in contrast to classical approaches in the field of machine learning,
e.g., regression or classification models, data mining methods generally aim
at identifying yet unknown patterns within the data in an unsupervised fash-
ion, while those “classical machine learning approaches” learn supervised, i.e.,
with the goal to learn models that can recognize previously trained patterns
within data. Due to the “growing consensus that data mining can bring real
value” [65] and the fact that this “has led to an explosion in demand for novel
data mining technologies” [65], the development of suitable data mining al-
gorithms is a central part in the field of artificial intelligence and especially
useful for machine learning tasks where no (or very few) prior knowledge,
pre-defined patterns or ground truth labels are present.

In this part, we first focus on methods for correlation clustering in data
streams, i.e., methods that aim at detecting arbitrarily oriented subspaces
within high-dimensional data by simultaneously coping with data that is
generated, respectively changed by external influences, with high velocity.
Precisely, we present two approaches: one is biased towards finding local cor-
relation clusters and is based on the Principal Component Analysis (PCA) to
identify relevant subspaces, and the other approach is based on Hough trans-
formations and is designed to detect arbitrarily oriented subspace clusters on
a global level. Such correlation clustering methods for streaming data have
high potentials in many applications dealing with high-dimensional data. For
instance, these include sensor data analytics where potential machine failure
states may be identified when tracking correlations among specific subsets
of sensor measurements, or social data analytics where one might be inter-
ested in user groups that may cluster when considering a certain subset of
attributes, e.g., textual overlap within microblog posts. Next, we present an
analysis on identifying users of a social platform by reconstructing spatio-
temporal user profiles from geo-tagged posts. Our findings show that not
only users who post in incognito mode can quickly be identified by only con-
sidering their spatio-temporal traces, but also that even fairly simple data
mining methods are sufficient to link user profiles from different social me-

CHAPTER 2. INTRODUCTION 20

dia platforms. Finally, this part concludes by presenting a preliminary work
on socio-textual mapping, where blog posts are used to construct tempo-
rally dynamic maps that reveal regions where people follow the same trends,
respectively discuss the same topics.

Chapter 3

Related Work

3.1 Subspace Clustering

In the literature, the term subspace clustering has been used ambiguously to
describe different classes of clustering problems that focus on finding clusters
in high-dimensional data. However, as the corresponding work presented in
this part of the thesis mainly concentrates on a particular (and generalized)
problem in the field of subspace clustering, i.e., the detection of arbitrarily
oriented subspace clusters, we briefly review the standard vocabulary pre-
sented in [148] to avoid potential confusions before giving an overview of the
previously published works in that area.

In general, all subspace clustering algorithms have in common that they
aim at grouping high-dimensional objects by considering only a subset of the
entire feature space, i.e., the so-called relevant features, for the clustering
process. Formally, in terms of subspace clustering, a clustering is described
as a set of pairs (X, Y), with X being a subset of data objects and Y being
a subset of features. When projecting the objects in X onto the features of
Y , the objects in X are supposed to be spatially close to each other with
respect to some distance measure, and spatially distant to each other when
consider other features than those in Y . Generally, one can distinguish three
classes of subspace clustering algorithms. In the first class, consisting of the
axis-parallel subspace algorithms, features are considered as-is (which means
that they remain unchanged) and the goal is to find certain combinations of
features such that clusters of objects can be identified within the subspace
spanned by only those relevant features. Since the features are not ma-
nipulated further, the resulting subspaces are restricted to be axis-parallel.
Obviously, this is already a challenging problem since the number of poten-
tial subspaces, which corresponds to the complexity of the search space, is in

CHAPTER 3. RELATED WORK 22

O(2d). In contrast, subspace clustering algorithms of the second class, i.e.,
the oriented subspace clustering algorithms, or correlation clustering algo-
rithms, are designed to solve the even harder problem of detecting arbitrarily
oriented subspace clusters within the entire feature space. In particular, this
means that relevant features are not considered unchanged but can somehow
be combined such that the resulting combination serves as a part of the base
forming the arbitrarily oriented subspace. As a consequence of relaxing the
restriction of subspaces to be axis-parallel, the search space complexity be-
comes unbounded and the number of such arbitrarily oriented subspaces is
infinite. The third class of subspace clustering algorithms are the pattern-
based approaches. These approaches work on the data matrix directly and
are inherently different to those of the first two classes because they treat
the data objects and the features interchangeably rather than defining the
subspace first (w.r.t. the features) and then performing the actual clustering
within the subspace (w.r.t. some distance measure). The idea behind the
pattern-based approaches is to select subsets of features and objects simul-
taneously such that all of the selected objects follow a similar pattern when
considering the selected features. In contrast to the algorithms of the first
two classes, those patterns do not necessarily have to be based on spatial in-
tuitions. Please note that the pattern-based approaches are just mentioned
for the sake of completeness but left out when surveying the state-of-the-art
since those approaches are out of scope of the thesis. The interested reader
is referred to the survey article published in [243].

Beside the distinction of the different classes of subspace clustering algo-
rithms, the literature also distinguishes between different problems that shall
be solved with the subspace clustering algorithm. In fact there are two main
classes, i.e., the problem where each data object shall be assigned to exactly
one cluster, respectively k clusters, and the problem where each data object
may be assigned to various clusters in different subspaces. The algorithms
in the first category are called projected clustering algorithms, respectively
“soft” projected clustering, and are characterized by aiming at finding the
projection, respectively the k projections, where the set of data objects clus-
ters best. The second category is composed of the subspace clustering al-
gorithms1 which aim at finding all clusters in all subspaces. In particular,
this means that a single data object may appear in multiple clusters. It is
noteworthy that there have also been hybrid algorithms proposed which are
typically designed to detect overlapping clusters but usually do not search

1Note that the term subspace clustering algorithm is still overloaded as it is used to
describe the algorithms of this specific category as well as the entire family of algorithms de-
signed for clustering high-dimensional data. However, wherever used, the meaning should
become clear from the context.

23 CHAPTER 3. RELATED WORK

for all clusters in all subspaces.

Axis-Parallel Subspace Clustering

An early algorithm in the field of projected subspace clustering is PROCLUS
and was presented in [16]. PROCLUS is an iterative approach that starts
by selecting k0 initial medoids as cluster centers and subsequently refines
the clustering by assigning data objects to the currently considered k, with
k < k0, cluster centers with the objective to minimize the standard deviation
of the distances along each dimension. After deriving the subspaces, the set
of medoids is evaluated against certain thresholds and eventually replaced
by better medoids from the initial set. The algorithm finally retrieves k clus-
ters associated with the corresponding subspaces. This approach was fur-
ther refined in [265]. SSPC [273] presents a semi-supervised k-medoid based
variant for discovering low-dimensional projected subspace clusters within
high-dimensional data. In particular, the presented method allows to make
recourse to already labeled data instances for selecting the initial seed objects.
The method published in [167], named CLTree, follows a different approach
which relies on training decision tree to extract clusters and subspaces. The
key idea is to use artificial labels on the data points and artificial uniformly
distributed noise object with another label, and hence transforming the clus-
tering problem into a classification problem. By training a decision tree they
separate dense areas from sparse areas to finally detect clusters within the
data space. The PreDeCon algorithm [41] is a density-based approach that
first determines the preferred subspaces of the data objects by considering
the variances along each dimension within certain neighborhoods, and subse-
quently uses a weighted Euclidean distance measure in combination with an
adopted variant of the DBSCAN algorithm [87] to identify density-connected
clusters within the subspaces. Somewhat similar, the COSA algorithm [96]
also relies on subspace preferences derived from local neighborhoods, but in
contrast to PreDeCon assigns continuous weights to the preferred dimensions
(rather than discrete values in {1, κ}, with κ � 1), and finally retrieves a
similarity matrix which can be used for subsequent clustering procedures.
Note that weighting the dimension with continuous values results in a soft
projected clustering here. In [81], the authors propose a k-means based
scheme to detect projected subspace clusters. The general idea behind this
approach is to weight (again, continuous weights) each dimension such that
irrelevant (with respect to the corresponding subspace cluster) dimensions
get weights close to zero. A very similar approach that enables the user to
specify specific constraints can be found in [68].

To the best of our knowledge, the CLIQUE algorithm [20] is the first grid-

CHAPTER 3. RELATED WORK 24

based algorithm that is able to detect subspace clusters where data objects
may be assigned to multiple clusters in an arbitrary number of subspaces. By
partitioning the data space into an equi-sized grid, the algorithm identifies
dense regions within low dimensional subspaces and subsequently finds higher
dimensional subspaces in a bottom-up fashion. The idea of using a grid-based
approach has been borrowed and algorithmically refined in several works,
e.g., for the ENCLUS algorithm [67], the MAFIA algorithm [99], or the
nCluster algorithm [168]. The latest variant, i.e., the MaxnCluster algorithm
[169], uses a sliding window approach to detect maximal δ-nClusters (i.e.,
subspace clusters that consist of a maximal attribute and object set) that
might be split into several smaller clusters when using a pure grid-based
approach. SUBCLU [137] tackles the problem of subspace clustering by
employing DBSCAN within lower dimensional subspaces. The density-based
approach has been improved in [23, 24] by the DUSC method that uses a
density measure which adapts to the subspace dimensionality rather than
relying on a global density threshold. Another density-based method having
the objective to eliminate the global threshold value and therefore aiming at
determining individual subspace cluster thresholds adaptively is presented in
[70]. In [105], the authors propose a subspace clustering procedure that is
able to deal with uncertainties within the data.

The DOC algorithm [215] is a greedy Monte Carlo algorithm which com-
putes projected subspace clusters (but not all clusters in all subspaces and
hence it is a hybrid method) by determining dense subregions within a grid-
like partitioning of the data space. Similarly, but in a deterministic fashion,
MINECLUS [274, 275] aims at finding projected subspace clusters by trans-
forming the problem into a frequent pattern mining problem. Yip et al. [272]
present a top-down algorithm, named HARP, that uses a hierarchical clus-
tering scheme to iteratively decrease the number of features per subspace
cluster. Another hierarchical approach is DiSH [4], which is able to iden-
tify subspace clusters that are embedded within higher dimensional subspace
clusters. The FIRES algorithm [146] follows a bottom-up strategy by first
detecting one-dimensional subspace clusters which are later, with respect to
a similarity function that relies on the overlap of clusters, merged to form
higher-dimensional subspace clusters. P3C [184, 185] follows a somewhat
similar strategy. The authors propose to mine maximal-dimensional sub-
space cluster approximations in a bottom-up fashion and subsequently refine
them with an EM based clustering mechanism. Another subspace clustering
method that explicitly guides the clustering procedure towards considering
only the most relevant subspaces (the idea is based on the findings presented
in [187]) which makes the algorithm highly scalable was presented in [188].

25 CHAPTER 3. RELATED WORK

Correlation Clustering

The family of oriented subspace clustering, or correlation clustering, algo-
rithms that have been developed in the community of data mining mainly
can be categorized into two classes: approaches that rely on the Principal
Component Analysis (PCA), and approaches that rely on parameter space
transformations. Algorithms of either class are designed to detect arbitrarily
oriented subspace clusters within the full dimensional space.

The class of PCA-based correlation clustering algorithms have in common
that they use PCA for identifying low dimensional subspaces defined by inter-
attribute correlations and subsequently project the considered data objects
onto the relevant principal components to perform data object clustering. In
general, a wide variety of such algorithms have been presented in the past.
The first algorithm that was presented in this field of subspace clustering
algorithms is the ORCLUS algorithm [17]. ORCLUS is an iterative k-means
based algorithm which starts by assigning the data objects to k0 initially
chosen cluster seeds. In each iteration data objects are projected into the
corresponding eigensystem (derived from the yet assigned data objects). A
data object is newly assigned to the cluster in whose eigensystem the object is
closest to the cluster centroid, with the distance being calculated with respect
to the weak eigenvectors (i.e., those eigenvectors whose eigenvalues are small).
After the assignment step, the closest pairs of clusters (again, the distance
is calculated with respect to the projection onto the weak eigenvectors) are
merged. The entire procedure is repeated until the previously user-defined
number of k < k0 clusters is reached. The 4C algorithm [42] is another PCA-
based method, but, in contrast to ORCLUS, uses density criteria for deriving
the clustering rather than following the partitioning paradigm. Precisely, 4C
uses ε-neighborhoods (in Euclidean space) for deriving the covariance matrix
which is then decomposed into the eigenvector and eigenvalue matrices. After
replacing the small eigenvalues with large values, the manipulated eigenvalue
matrix of a given data object is used to compute projected distances to
other data base objects which in turn are used for expanding the density-
based clusters. To improve this idea in terms of computational efficiency,
Achtert et al. proposed COPAC [6] that partitions the data set into sets
of points that exhibit the same local subspace dimensionality. The main
advantage is the reduced complexity for detecting density-connected clusters
within the subspaces. Another improvement is that COPAC determines the
similarity matrices based on k-neighborhoods instead of ε-neighborhoods.
The intuition behind this is the avoidance of sparsity issues that might occur
when relying on ε-range queries in the high-dimensional space. Furthermore,
the ERiC algorithm [5] was proposed to further improve the outcome of

CHAPTER 3. RELATED WORK 26

the clustering procedure of COPAC by introducing another processing step
that aims at building a hierarchy of correlation clusters. This enables the
procedure to retrieve arbitrarily oriented subspace clusters that are nested
within higher dimensional subspace clusters. A similar approach that is also
able to reveal hierarchical structures is the HiCO algorithm [7]. Finally,
the CURLER algorithm [255] is also based on PCA and designed to detect
non-linear subspace clusters.

The other group of correlation clustering methods follows another base
mechanism. Instead of making use of the PCA, these approaches use param-
eter space transformations, i.e., the so-called Hough transformation [122, 83].
The original idea behind Hough transform is the transformation of data
points from the data space into the parameter space, with the parameter
space being defined by the distance r between the origin and the closest (wrt
the origin) point of a straight line, and the angle θ between the x-axis and the
connection between the origin and that closest point. In case of transform-
ing a single data point, all straight lines going through this data point are
considered. This results in single data points being represented as sinusoidal
curves, resp. (d − 1)-dimensional hyperplanes for a data point x ∈ Rd, in
parameter space. The CASH algorithm [3] is the first method that makes
use of this parameter space transformations for correlation clustering as it
uses the fact that an intersection of sinusoidal curves in the parameter space
corresponds to the data points laying on a straight line in the data space.
Using this, CASH detects correlation clusters by finding dense regions in the
parameter space. Therefore it employs a grid-based procedure that relies on
recursive descent to identify interesting subspaces. Since the search strategy
may be rather expensive, the D-MASC [138] algorithm accelerates the search
for dense regions within the parameter space by applying mean shift on the
data in data space, transforming the generated modes into the parameter
space and using the resulting functions to prune the search space. The HCC
algorithm, proposed in [139, 140], uses a variation of the Hough transform
to detect non-linear subspace clusters. By transforming the objects in data
space into a somewhat different parameter space, i.e., by using parameters
that describe paraboloids rather than linear functions, the subsequent search
for dense regions finally retrieves parabolic correlated subspace clusters.

Further Subspace Clustering Approaches

Another group of subspace clustering techniques which have primarily been
developed within the vision community are spectral methods [73, 193] and
neural learning techniques [85, 203, 205, 212, 204]. These methods basically
differ in how they learn some similarity graph, or affinity matrix, to denote

27 CHAPTER 3. RELATED WORK

relationships within the input data. Subsequent spectral clustering on the
derived affinity matrix finally aims at finding subspace clusters. Based on the
intuition of the self-expressiveness property [85], some approaches relying on
deep learning, e.g., [211, 135, 282], have been proposed recently. Note that
these approaches are mentioned for the sake of completeness as they are
somewhat related (though they all have been published within a different
community) and have been proposed very recently. However they follow a
completely different paradigm as the related works presented in this thesis,
and hence are not discussed in depth.

3.2 Stream Clustering

Mining data streams generally has gained lots of attraction in recent years
as more and more data is produced continuously by a plethora of different
devices or mechanisms, e.g., mobile phones, sensors, or user behavior mon-
itoring mechanisms. As this thesis partially focuses on oriented subspace
clustering algorithms for high-throughput data, we briefly review established
methods on how to deal with potentially unbounded sequences of data, i.e.,
data streams, in general. Then, related work in the field of data stream clus-
tering, especially subspace clustering on data streams, is reviewed in detail.

In the broad majority of presented techniques, data stream clustering
consists of an online and a separate offline step. While the online step, also
called data abstraction step, tackles the main challenge that stream algo-
rithms typically face, i.e., handling the data in a single scan properly, the
offline phase usually aims at partitioning the data. Precisely, the online step
processes the data stream by aggregating the yet seen data into summary
structures such that the key statistics needed for the offline step are kept.
One important aspect here is that more recent data is usually more impor-
tant for the knowledge discovery process since obviously, in most applications,
e.g., machine monitoring or market/trend analysis within data provided by
social media platforms, stale data quickly looses relevance for the task at
hand. This particularly holds in applications where the underlying data
generating processes reveal non-stationary distributions and hence exhibit
gradually appearing concept drifts, respectively suddenly appearing concept
shifts. Note that the mechanism of “forgetting” stale data is called aging. To
make the algorithmic procedure concentrating on up-to-date data, several
distinct window approaches have been proposed. Given a data stream, the
landmark window model picks an object of the stream as landmark element
either depending on time or number of objects seen since the previous land-
mark element. The landmark elements are basically used to partition the

CHAPTER 3. RELATED WORK 28

data stream into disjoints data chunks. Typically, the landmark approach
proceeds as follows: once a new landmark is reached, all objects that are
kept in the current window are aggregated within some summary structure
and subsequently can be discarded. Then, new incoming objects are stored
until the next landmark appears. If this happens, again, relevant statistics
of the current bunch are aggregated and the raw data objects are discarded,
and so on. The next commonly used approach is the sliding window model.
The idea is to load a certain amount of data objects into a data queue that
employs the first in first out concept. Once the queue is filled, the summary
structure keeping the relevant statistics from the data chunk is computed
and kept in memory. As new objects arrive and added to the queue, the
firstly inserted (and oldest) objects are removed, and the summary structure
is updated accordingly. Another well-known technique is the damped win-
dow model, where each data object is associated with a weighting factor that
degrades over time. This leads to the desired effect that the older objects
become, the lower their weights become, which finally corresponds to the
idea that more recent objects are considered more important. A widely used
weighting function is the exponential decay

f(t) = 2−λt,

with t denoting the current time stamp and λ > 0 being the decay rate. It
holds that the lower the decay rate λ, the more importance is given to stale
data, and vice versa.

For summarizing relevant statistics of data provided by streams, a com-
mon technique used in many of the related works is the so-called (clustering)
feature vector (CF) data structure, originally presented in connection with
the BIRCH algorithm [278]. The key characteristic of this data structure
(and similar abstractions that follow the same objective) are its incremental-
ity and additivity. Incrementality is the property that a feature vector can
be updated by inserting new data objects; additivity means that two disjoint
feature vectors can be merged into a new feature vector by summing up the
single components. In case of BIRCH, a CF vector is composed of the num-
ber of data objects, the linear sum of the data objects and the squared sum
of data objects. Importantly, these components fulfill the required properties
incrementality and additivity and additionally allow the computation of the
centroid, the radius and the diameter of the corresponding cluster. Those
measures in turn can be used in the offline step to define the final clustering
model. The Scalable k-means algorithm [53] makes use of the idea of CF vec-
tors by using those aggregation structures to compress the statistics of data
objects that are unlikely to change their cluster membership. This way, they
enable an efficient way to compute k-means clustering on very large data

29 CHAPTER 3. RELATED WORK

sets. This idea is carried on in Single-pass k-means [93] by compressing fully
disjoint data chunks, and keeping only relevant k-means statistics in mem-
ory. CluStream [14] extends the originally proposed form of clustering feature
vectors by incorporating temporal information. The resulting data structure
is called microcluster and the proposed algorithm employs a k-means based
clustering on the microclusters. Another method that uses a slightly ma-
nipulated variant of the original structure of CFs can be found in [280]. In
[60], the authors propose a density-based counterpart to CluStream which
is called DenStream. By following the density-based clustering paradigm,
they manage to get rid of the parameter k that requires to pre-define the
number of microclusters by the user. Two similar approaches that mainly
focus on the slightly related task of anytime clustering, i.e., stream clustering
approaches that are capable of providing (possibly less accurate) results to
the user whenever clustering results are requested, have been presented in
[145, 114].

A somewhat less sophisticated, but in many applications sufficient, com-
pression technique that is widely employed for stream clustering in general is
to only keep track of the cluster representatives. The basic idea is to represent
entire chunks of data solely in form of cluster representatives, e.g., cluster
centroids. The STREAM algorithm [104] loads a user specified amount of
data objects into memory and represents each chunk by 2k representatives
employing a k-medoid like approach on the data. After having a certain
number of representatives, these are further clustered into 2k representatives
and the algorithm proceeds processing newly incoming data arriving from
the stream. Likewise, the streaming variant of the LocalSearch algorithm
[198] uses such a divide and conquer processing scheme in combination with
k-medoids fully in-memory.

Further techniques to deal with the challenge of summarizing data streams
are the coreset tree structure as proposed in [8] and the family of methods
that use a grid-based summary strategy, e.g., as used in [61, 66]. However,
the stream clustering algorithms presented in this thesis use variants of the
former two methods and thus we refer to the survey in [235] for an overview
of previously presented methods using the latter two summary techniques.

Subspace Clustering on Data Streams

As we focus on subspace clustering on data streams in this thesis, the follow-
ing provides a somewhat more detailed review of related works tackling the
problem of clustering high-dimensional data streams.

The first work able to cluster high-dimensional data streams properly was
proposed in [15]. The HPStream algorithm is a projected subspace clustering

CHAPTER 3. RELATED WORK 30

method. Precisely, it is a k-means based approach that uses an adopted form
of CF vectors to represent relevant cluster statistics. This data structure not
only fulfills the additivity and incrementality properties, but also has the
property of temporal multiplicity since the CF vectors, respectively fading
cluster structures, underly an exponential decay over time. The key idea
behind the stream clustering scheme is that each fading cluster structure is
associated with a binary vector containing 1 entries for preferred dimensions,
and 0 otherwise. If a new data object arrives from the data stream, HPStream
uses these binary vectors to calculate the projected distance to the closest
cluster structure for assigning the data object. To make the assignment
more robust, the projected clustering is iteratively refined by refining the
preferred dimensions for each cluster at least temporally for incoming data
objects. Data objects are only absorbed if they lie within a specific radius
of the chosen cluster. It is also noteworthy that the entire stream clustering
process requires an initialization step to create an initial set of clusters.

The IncPreDeCon algorithm [147] is an incremental version of the density-
based projected clustering algorithm PreDeCon. Although IncPreDeCon is
designed to handle dynamic data in the sense that the projected clustering
can be adopted incrementally, it does not support any form of aging and
hence cannot deal with streaming data directly. Nonetheless, this algorithm
already presents a solution to the incrementality property and is therefore a
preliminary solution towards the density-based projected stream clustering
algorithms PreDeConStream [115] and HDDStream [197]. Both PreDeCon-
Stream and HDDStream have been developed simultaneously and rely on the
basic ideas of the PreDeCon, respectively IncPreDeCon, algorithm. During
the online phase, both methods aggregate incoming data objects within dif-
ferent microcluster structures, i.e., core, potential and outlier microcluster,
and retrieve the final clustering by following (slightly different) variants of
the density-based clustering scheme proposed in [41] during the offline phase.

The SiblingTree method presented [202] is a grid-based subspace clus-
tering approach that aims at detecting all low-dimensional clusters in all
subspaces. The idea is to start monitoring the data distributions in one-
dimensional subspaces, maintaining the grid cells in a so-called sibling list,
and splitting cells once they reach a certain density. Splitting the grid cells
corresponds to considering higher dimensional subspaces, and by doing this
iteratively, the algorithm actually builds up a tree like structure in order to
support an efficient maintenance during the online phase.

A vaguely related work that mainly focuses on the task of feature selection
in high-dimensional data streams can be found in [123]. By maintaining
low-rank approximations of the observed data coming from the data stream
the presented approach identifies the most interesting features. This can

31 CHAPTER 3. RELATED WORK

be interpreted as a global approach to projected subspace clustering, but
however neither detects locally dense subspace clusters nor is able to retrieve
precise information about different subsets of dimensions in which subspace
clusters may exist.

3.3 User Identification

This section provides a survey of the state-of-the-art in mobility patterns
of individuals, spatio-temporal user identification, user linkage, and spatial
privacy as these are related to the work presented in Chapter 6.

Mobility Patterns

There are a variety of ways to study mobility patterns of individuals. One
source of this data would be travel diaries such as in [264]. GPS devices have
also been used [230], and more recently cell phone data has been used to
study these patterns [132]. Social media, such as Twitter, can also be used.
[239] are able to use it to harvest informations about groups. However there
are some biases in the data, such as an individual only using social media
when they are at certain locations or at certain times of the day it is still
usable [125]. This can still provide frequently visited locations. Identifying
these major locations provides a good basis for activity pattern analysis such
as in [121].

Day to day variability in activity patterns have been shown in [111].
[29] establish that a single day is not sufficient enough to capture a persons
regular activity pattern, but their lives do revolve around a number of major
locations. Thus, they are not completely random, and do contain a pattern
[112]. If data is collected only over a day or two, it can be thrown off by
random activity, hence a longer period of collection may be necessary [100].
[120] establish that a coarser granularity is better at general representation of
mobility patterns. [124] aggregate longer periods of time, in order to gather
mode samples to offset the sparsity of Twitter data.

User Identification

A problem similar to the problem of trace based user-identification was con-
sidered in [77]. This work estimates the number of points needed to uniquely
identify an individual trace. The dataset contained 15 months of data on
1.5M users in a small European country. Each time a user connected to a

CHAPTER 3. RELATED WORK 32

mobile phone tower to send or receive a call or text message, a tower loca-
tion and time, with a resolution of one hour, was recorded. There are almost
6500 unique antennas in the dataset, and on average each user has 114 in-
teractions per month. Among this dataset, they found that four randomly
chosen points in a trace were enough to uniquely identify 95% of the trace,
and two randomly chosen points were enough to identify 50% of the traces.
However, the question whether a trace is unique, is different to the problem
of user-identification tackled in this work.

The user-identification method in [77] assumes that a trace of the user to
be identified is already in the database. Thus, a new trace, which has not
been seen before, cannot be classified. Summarizing, the work in [77], aims
at identifying individual traces, rather than individual users. Their work
provided an initial framework to build this work on.

The work presented in [37] investigates the problem of how to prevent the
identification of actual persons behind the users of location based services.
Thus de-anonymizing the user. Therefore, the authors employ so-called
location-based quasi identifiers, which are formed from historical spatio-
temporal movement patterns that are gathered from location-based service
requests as a potential privacy concern. However, the stated problem is
slightly different from this work, as they make use of external sources to
finally get the real names behind the pseudonames.

User Linkage

There are a variety of publications considering the problem of user linkage
or more general record linkage. In the database community, record linkage
generally aims at detecting duplicate records within one or several databases.
Records describing the same entity may not share a common key or contain
faulty attribute values, which makes the detection of such duplicates non-
trivial. A survey on the proposed approaches can be found in [86].

Considering networks, record linkage is widely understood as user linkage
and is stated as the problem of linking corresponding identities from different
communities appearing within one or many networks [276]. It is specifically
tailored to the requirements of user identification in heterogeneous data by
considering co-occurrences adjusted with a stimulus signal. The stimulus
signal is derived from locations with frequent co-occurrences and decays with
increasing distance to a trajectory. The stimulus signal allows this method
to weight important locations, which helps to distinguish two users with very
similar trajectories.

An important area of user linkage is social networks where the user link-
ing problem aims at connecting user profiles from different platforms that

33 CHAPTER 3. RELATED WORK

are used by the same persons. [170] differentiate between three types of user
linkage across social networks: user-profile-based methods, which use infor-
mation provided by the profiles to connect corresponding profiles [179], user-
generated-content-based approaches, which analyze the content published by
the users to link profiles [170] and user-behavior-model-based methods that
generate models based on the (temporal) user behaviors and finally link user
profiles based on the similarity of these models [172].

Most related to this approach is the recent work of [63]. In this work,
the authors use various sources for data for the trajectories and propose
a MapReduce-based framework called Automatic User Identification (AUI).
They identify sample rate, temporal and spatial sparsity, and the fact that
people with a close relationship provide similar trajectories as distinct fea-
tures of the data. Sparsity of the data is corrected by using a long time
frame. Signal Based Similarity (SIG) is introduced as a measurement of the
similarity of two trajectories. In contrast to that approach, this work uses
sparser trajectories. While the authors of [63] do consider sparse social me-
dia data, they accumulate these trajectories during a long time interval of at
least multiple months. In this work, a long term mobility history of user is
not assumed to be available. Instead, it aims at identifying users with the
fewest observations possible.

Spatial Privacy

The predominantly used measurement for privacy is k-anonymity [242], which
works with a closed world assumption and assures that, for each query that
could be used to identify the identity of a user, at least k− 1 other users are
returned as possible results.

Common approaches to guarantee a defined degree of anonymity are sup-
pression, obfuscation and generalization [113]. To achieve k-anonymity by
suppression, every element that does not fit into an anonymity set is removed
[58, 151]. For trajectories, suppression would require discarding observations
in discriminative locations such as a user’s home. While this method is effec-
tive, the use of suppression alone can lead to a significant loss of information.
Perturbation is another method used to obfuscate the data [12]. The goal
is to generate a synthetic dataset with the same properties of the original
dataset using a generative model. For generalization, k-groups of users could
simply be unified into a single entity.

This work does not try to maintain privacy of users, and can be seen as
an adversary approach of trying to breach the privacy of users. A highly rel-
evant future piece of work is to investigate how existing privacy preservation
methods for trajectories can be employed to suppress, obfuscate and general-

CHAPTER 3. RELATED WORK 34

ize trajectories to minimize the user identification accuracy of this solutions,
while further minimizing the loss of information in the data.

A more refined version of k-anonymity is l-diversity, which addresses
some shortcomings of k-anonymity [177], mainly where properties of the
data are homogeneous and allow conclusions, which might violate the as-
sured k-anonymity. Regarding trajectories, location l-diversity is required as
introduced in [32]. As an enhancement of l-diversity, t-closeness [160] is used
on datasets where the distribution of attribute values allows conclusions to
identities.

These measurements are typically applied when medical records are pub-
lished or in regards to Location Based Services (LBS), which require personal-
ized location information. As LBS are usually working with GPS coordinates
and trajectories, the raw data is similar to the information used in this work.
But there is a difference in quality and frequency. LBS usually work with
the assumption that a user is willingly providing their location as precise as
possible and/or performing measurements of the location with a high fre-
quency. While work has been done on interpolating real trajectories from
purposefully obfuscated ones [190], the data used is limited to one service
and focusing on the k of k-anonymity instead on user identification.

The work of [2] applies k-anonymity on spatio-temporal objects intro-
ducing the (k, δ)-anonymity. The trajectories of a user are extended by the
uncertainty of the location measurement δ. The authors claim that a series of
trajectories and locations can be modeled as a series of cylinders, or a tube.
k-anonymity is granted when k − 1 additional elements of the set can fit
into a tube. The proposed method uses outlier detection and other forms of
suppression in combination with space transformation of a maximum of δ/2
while δ defining the circumference of the tube remains unchanged. The paper
proposes a heuristic that succeeds to find anonymity sets as the problem is
NP-hard.

The notion of (k, δ)-anonymity is also discussed in [251]. The authors
come to the conclusion that existing methods to create (k, δ)-anonymity as
developed in [2] are not sufficient if δ > 0. By defining every location in a
spatio-temporal trajectory as a quasi-identifier and assuming that a poten-
tial adversary has knowledge about one sub trajectory they show that the
probability to correctly identify a series of trajectories is larger than 1/k thus
violating the k-anonymity. This work will show that it is indeed possible to
identify users with high probability by only knowing a sub trajectory.

35 CHAPTER 3. RELATED WORK

3.4 Text Clustering
Several techniques in the field of text clustering have been proposed recently.
Due to presenting a work on determining spatial areas that differ in the
current topics of social media blog posts in Chapter 7, we briefly review
basic related techniques for text clustering in the following.

Particularly in the context of clustering text originating from social me-
dia platforms, feature selection methods are useful to discard words without
informative content, i.e., words that appear very frequently. A common
approach is referred to as document frequency-based selection, introduced
by [175]. The idea is to weight those terms that appear more frequently with
a higher value. To avoid prioritizing stop words like the, [238] extended this
approach by using inverse document frequencies. However, TF-IDF weight-
ing gives no information about the importance of a term which is often needed
when considering further documents or blogs, e.g., for the purpose of clus-
tering. [76] proposed a concept that uses an entropy measure to select those
features that carry the most information. Since this method is quite ineffi-
cient for a large number of terms, the authors proposed to use sampling if
the dataset is large. In [173], Liu et al. present a filter method based on the
contribution of a term to the similarity of two documents. Let us note that
the latter technique depends on the assumed similarity measure used for the
clustering process. The aforementioned methods assign numeric values to the
selected terms which can be used to get a vector space model of the corre-
sponding document. Further transformation methods, like Latent Semantic
Indexing [79] or non-negative matrix factorization [267], can be applied to
reduce the dimensionality of such feature vectors to achieve better clustering
results when using the retrieved latent-space vectors. Also, in the natural
language processing community, lots of development effort has been spent in
learning representations on different scales, e.g., word embeddings, sentence
embeddings, or document embeddings. They all aim at representing natural
language in meaningful vector representations which can be used for subse-
quent clustering tasks. An extensive survey on text mining algorithms can
be found in [19].

Chapter 4

PCA-based Correlation
Clustering on Data Streams

The work presented in this chapter has been published as the article A
Generic Framework for Correlation Clustering on Data Streams in the Pro-
ceedings of the twelfth International Conference on Similarity Search and
Application, 2019 [49]. A second version with focus on the application
for rotating equipment is filed as US Patent US10339784B2 under the title
Method and system for monitoring sensor data of rotating equipment [48].
The previously published patent applications are filed as US2017365155A1
and EP3258333A1.

4.1 Introduction

Due to the widely deployed data gathering devices, such as sensors, smart-
phones, tablets, etc., data stream analysis has gained more and more im-
portance in the past few years. Especially the analysis of high-dimensional
data streams has become an important challenge since such data is often
extremely hard to analyze without using proper software solutions. A com-
mon approach to discover knowledge in high-dimensional data is correlation
clustering. Correlation clustering generally reveals dependencies between dif-
ferent features and aims at reducing the feature space such that clusters can
be clearly distinguished from other clusters by regarding different combina-
tions of features.

Several subspace clustering methods have been proposed in the past but
most of them are limited to static databases and the few algorithms that can
deal with streaming data basically concentrate on detecting subspace clusters
in projected, i.e., axis-parallel, subspaces. However, in many applications it

37
CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA

STREAMS

might happen that complex relationships in form of correlations between
different features appear. Finding such correlations can give a deep insight
into the nature of data. Regarding a sensor controlled turbine for instance,
a relatively simple correlation would be the relationship between the energy
production and the speed of the rotation. Generally, having knowledge about
hidden dependencies that occur during standard operation of a machine can
be very useful in monitoring systems. Assuming that the correlation be-
tween rotational speed and produced energy of a turbine slowly or suddenly
breaks could portend a failure scenario, e.g., a broken blade, and an alert
can be initiated. Correlations between different features cannot be detected
by projected clustering approaches, in general. Although there exist some
methods to identify arbitrarily oriented correlation clusters within data, these
techniques fail when considering streaming applications like monitoring sys-
tems. Further interesting applications for correlation clustering algorithms
are recommendation systems, where the knowledge of customer groups with
correlated affinities can be very helpful for companies when considering tar-
get marketing for instance. Especially online shops can profit from detecting
such user groups and assigning an active user to such a group in real time
since recommending proper products or ensuring a comfortable surfing expe-
rience on a self-adaptive website are key requirements for customer binding.

In this chapter, we present a generic framework for PCA-based correla-
tion clustering called CorrStream which is able to cope with data streams.
Therefore, we propose a generic summary structure, respectively microclus-
ter structure, that captures all the necessary statistical information of the
incorporated data points during the online phase. In the offline phase, which
can be initiated on demand or periodically, the information stored in the mi-
croclusters can be reused by any PCA-based clustering technique to generate
a final correlation clustering model. As aging mechanism, a damped window
model allows to “forget” the information that is contributed by stale data
and, thus, keeps the microcluster model up-to-date.

Considering the state-of-the-art (see Sections 3.1 and 3.2), we briefly want
to summarize that there exist a variety of approaches for both correlation
clustering and stream clustering. While several correlation clustering algo-
rithms on static data sets draw on PCA-based solutions but require multiple
scans over the entire data set, stream clustering approaches mainly use ap-
propriate data aggregation structures to be able to deal with the potentially
infinite volume of data delivered by data streams. However, to the best of
our knowledge, there currently does not exist a solution that solves the com-
bination of both problems, which is a streaming framework able to construct
correlation clustering models from streaming data where the data generat-
ing process reveals local and arbitrarily oriented subspace clusters within the

CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA
STREAMS 38

data distribution.
In our experiments section, we investigate the runtime as well as the

clustering quality of our approach and show that despite its improved per-
formance compared to the static counterpart algorithms, the loss of accuracy
is insignificant since the subspaces are mostly detected correctly. Further-
more, when considering the throughput of our approach we can state that
the algorithm can cope with high-velocity data streams that push new data
objects within milliseconds to the application.

4.2 A Generic Aggregation Structure for Cor-
relation Clustering on Data Streams

For our purpose, the main issue is to find an appropriate data aggregation
structure that captures sufficient statistics to represent the compressed in-
formation properly. At the same time it must be generic enough so that it
can be used for any PCA-based correlation clustering technique. A major
criterion for such a microcluster structure is the ability to be processed in an
incremental manner since we cannot afford to store every data point and re-
compute the statistics of the microcluster from scratch each time a new data
point arrives from the stream. As the focus of this work lies on PCA-based
correlation clustering, we therefore borrow an incremental principal compo-
nent analysis approach from [163]. Our empirical evaluation shows that this
technique can sufficiently cope with high velocity data streams.

In general, there are two categories of IPCA algorithms. The first one are
covariance-free techniques that cope without the computation or reconstruc-
tion of the covariance matrix. The algorithms from the second category ap-
proximately reconstruct the covariance matrix from the previously computed
eigenvectors and eigenvalues. By adding a new observation, the dimension of
the subspace is increased by one. But since least significant principal com-
ponents are discarded, the dimension of the subspace is kept small which
makes these approaches computational efficient. Although these methods
suffer from unpredicted approximation errors, we use the basic algorithm
presented in Algorithm 1 [163] because of its good real-time performance.
Algorithm 1 proceeds as follows: First, after collecting an initialization set
I of init observations, an initial PCA yielding the eigenvector matrix V0

and eigenvalue matrix E0, is performed on I. The initial mean value is set
to be the mean of all observations in I. After the initialization, the initial
eigenspace is updated incrementally with each incoming observation from
data stream S. Whenever a new observation x′i arrives, it gets mean normal-

39
CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA

STREAMS

Algorithm 1 Incremental PCA
Input: Data Stream S, Weight parameter τ
Output: Current Eigensystem eigi, composed of eigenvector matrix Vi and

eigenvalue matrix Ei
1: V0, E0 := initial PCA from the first init observations
2: µ0 := mean of the first init observations
3: while S does not end do
4: x′i := next incoming observation from S
5: xi = x′i − µi−1

6: µi = µ+ (1− τ) · xi
7: for j ∈ range(0, col(Vi−1)) do
8: yi =

√
τEi−1(j, j) · Vi−1(:, j)

9: end for
10: ycol(Vi−1) =

√
1− τ · xi

11: A = [y0, y1, ..., ycol(Vi−1)]
12: B = ATA
13: U,Ei = Eigen-decompose B
14: for j ∈ range(0, col(U)) do
15: vj = A · U(:, j)
16: end for
17: Vi = [v1, v2, ..., vcol(U)]
18: end while

ized, i.e. xi, and the current mean µi is determined. The parameter α ∈ [0, 1]
is used as a weight that denotes the importance of a new observation com-
pared to the previously seen ones. The larger α, the less important is a new
observation xi. Next, a d× col(Vi−1) + 1 matrix A is defined, with col(Vi−1)
denoting the number of columns of the eigenvector matrix Vi−1. The first
col(Vi−1) columns of A are constructed from the weighted previous principal
components and the weighted current observation forms the last column. Us-
ing matrix A, we can reconstruct the new d×d covariance matrix C expressed
by C = AAT . Since a high dimension d leads to high computational costs,
a smaller (col(Vi−1) + 1) × (col(Vi−1) + 1) matrix B = ATA is constructed
and then decomposed on the rank of col(Vi−1) + 1. The eigen-decomposition
retrieves the eigenvalue matrix Ei and the eigenvector matrix U . Multiply-
ing each eigenvector of U with matrix A finally retrieves the eigenvectors
of the covariance matrix C with the eigenvalues contained in Ei. For the
mathematical derivations of the single steps, we refer to [163].

CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA
STREAMS 40

The Correlation Clustering Microcluster Structure CCMi-
cro

As this part of the thesis concentrates on streaming data, we use a common
definiton of data streams.

Definition 1. A data stream S is an ordered and possibly infinite sequence
of data objects x1, x2, ..., xi, ... that must be accessed in the order they arrive
and can be read only in one linear scan.

Another concept used for our purpose is the damped window model. Since
recent data is typically more important than old data objects, especially if
an up-to-date clustering model is desired, it is useful to “forget” stale data.
Therefore, a widely used approach in applications dealing with temporal
data is the utilization of the exponential fading function for data aging. This
technique assigns a weight to each data object which decreases exponentially
with time t by using the fading function f(t) = 2−λ·t. λ > 0 is the decay rate
and determines the impact of stale data to the application. A high value of
λ means low importance of old data and vice versa.

As we rely on the concept of microclusters, we need to define a data struc-
ture that encapsulates the necessary information and simultaneously allows
update procedures. To fulfill these properties, we define our microcluster
structure, which is called CCMicro, as follows:

Definition 2. A microcluster CCMicro at time t for a set of d-dimensional
points C = {p1, p2, ..., pn} arriving at different points in time is defined as
CCMicro(C, t) = (V (t), E(t), µ(t), ts) with

• V (t) being the eigenvector matrix of the covariance matrix of C at time
t,

• E(t) being the corresponding eigenvalues of the eigenvectors in V (t),

• µ(t) being the mean of the data points contained in C at time t, and

• ts being the timestamp of the last incoming object assigned to this mi-
crocluster.

Let us note that we generally differ between strong eigenvectors and weak
eigenvectors in the eigenvector matrix V . The strength of an eigenvector is
given by the variance along the corresponding axis in the eigenspace. We
define strong and weak eigenvectors as follows [5]:

41
CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA

STREAMS

(a) Microcluster model. (b) Macrocluster model.

Figure 4.1: Micro- and macrocluster models on a toy dataset as retrieved by
CorrStream. Clusters are depicted by plotting their point sets. Differently
colored and shaped point sets describe different micro- resp. macroclusters.

Definition 3. Given α ∈ [0, 1] and some microcluster mc. Let Emc be the
microcluster’s d × d eigenvalue matrix having the eigenvalues in descending
order on the diagonal. We call the first

minr∈{1,...,d}{r|
∑r

i=1Emc(i, i)∑d
i=1Emc(i, i)

≥ α}

eigenvectors strong eigenvectors resp. preference vectors and the remaining
eigenvectors are called weak eigenvectors. The space spanned by the prefer-
ence vectors is called correlation subspace.

Online Maintenance of CCMicro Structures

The generic CorrStream framework generally consists of two phases, i.e.,
an online phase in which microclusters are generated, maintained and/or dis-
carded due to temporal expiration, and an offline phase to extract on demand
clustering models of the current state of the stream. During the continuous
online phase, which is outlined in Algorithm 2, the data stream is consumed
and for each data object o a rangeNN query is performed to detect the closest
microcluster. The rangeNN query retrieves the closest microcluster with a
maximum distance of ε. If such a microcluster exists, it absorbs the current

CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA
STREAMS 42

data object o, otherwise a new microcluster is created. Beside of the compo-
nents that fulfill the maintenance properties, each microcluster has an initial
buffer. This buffer is a small collection of data objects that serves as a basis
for an internal initialization step. The intuition behind that is to collect a
bunch of spatially close data objects for which an initial PCA is performed.
The PCA retrieves the eigenspace of those data objects. Applying Defini-
tion 3, we can define the strong eigenvectors of the microcluster which span
the correlation subspace.

Algorithm 2 Online
Input: Data Stream S, range parameter ε, buffer size buff_size, decay parameter

λ
1: for incoming data object o from S at time t do
2: Microcluster mcNN = rangeNN(o, ε)
3: if mcNN 6= null then
4: add 〈o, t〉 to mcNN
5: else
6: create new microcluster with parameters buff_size, λ and add 〈o, t〉
7: end if
8: end for

Note that the rangeNN query uses two distance measures, i.e., the Eu-
clidean distance and the correlation distance. The reason for that is the
period of grace that we establish for each newly constructed microcluster
for the initialization. If the initial PCA has not been done for a microclus-
ter yet, the correlation measure cannot be applied due to the lack of the
microcluster’s eigenspace. Therefore, we determine the Euclidean distance
between the micocluster’s mean point and the incoming data object instead
of the correlation distance in such cases. However, to define the correlation
distance, which is used in all other cases, we need to define the notion of
similarity matrix beforehand.

Definition 4. Let Vmc be an eigenvector matrix with Emc being the corre-
sponding eigenvalue matrix of a microcluster mc having onto [0; 1] normalized
eigenvalues on the diagonal. Given a threshold value α ∈ [0; 1] and a con-
stant value κ ∈ R with κ� 1, the eigenvalue matrix Emc is adopted by setting
those eigenvalues to κ whose value is below the threshold value α. The values
of the resulting matrix Êmc are computed according to the following rule:

Êmc(i, i) =

{
1 if Emc(i, i) ≥ α

κ else.

43
CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA

STREAMS

Having the adopted eigenvalue matrix Êmc, the similarity matrix of mc is
defined as

M̂mc = VmcÊmcV
T
mc.

The constant value κ specifies the allowed degree of deviation from the
correlation subspace. Following [42], we set this value to κ = 50. The
correlation distance can finally be computed as follows.

Definition 5. Given a microcluster mc with mean point µmc and a data
object o, the correlation distance between both is defined as

distancecorr(mc, o) =

√
(µmc − o) · M̂mc · (µmc − o)T

with M̂mc being the similarity matrix of mc.

After determining the closest microclustermc of the incoming data object
o, the latter must be incorporated into mc properly. Our proposed algorithm
basically differentiates three cases of how to insert a new data object into an
existing microcluster. The first two cases are considered if the microcluster
mc has not been initialized so far. In that cases, the object is inserted into
the buffer and the mean as well as the current timestamp of the microcluster
are updated. If the microcluster’s buffer still has capacity, the insertion
terminates by retrieving the updated microcluster. Otherwise, if the buffer is
filled, the initial PCA is performed on the data objects contained in the buffer
and the eigensystem is retrieved. After setting the corresponding components
of the microcluster structure, mc is marked as initialized. The third option
of inserting a new data object is used if the microcluster already has been
initialized. In this case, the existing components of the microcluster are
reused and the incremental PCA procedure is invoked to generate the new
eigenvectors and -values as well as an updated mean vector. As mentioned
above, the degree of influence of the new object on the existing eigensystem
can be regularized by the weight parameter.

Due to the possibility of expiring microclusters, i.e., microclusters that
have not absorbed any data object for a while, it might happen that this
microcluster should be deleted since stale data should not sophisticate an up-
to-date clustering model. Deleting old microclusters also has the advantage to
safe storage space. As a straightforward solution, we propose to scan the set
of microclusters sequentially from time to time and delete those microclusters
whose timestamp tsmc is older than a user specified threshold value ∆t, i.e.,
if tsmc < tscurr−∆t with tscurr denoting the current point in time. Note that
the choice of an appropriate threshold value ∆t depends on the application
at hand.

CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA
STREAMS 44

4.3 Application of CCMicro Structures for Off-
line Correlation Clustering

The main goal of the offline phase of CorrStream is the construction
of a high quality clustering model that describes correlations appearing in
the data. For that purpose, the algorithm chosen for the offline routine
must be capable of building macroclusters on top of the generated CCMicro
structures retrieved by the online process. Figure 4.1(a) exemplary depicts
the outcoming microcluster model of the online phase for a small synthetic
and 3-dimensional data set.

As can be seen easily, some of the microclusters can be grouped so that
finally two separated macroclusters, i.e., an 1-dimensional cluster and a 2-
dimensional one, are formed. In general, the microcluster structure is generic
enough so that a variety of static correlation clustering algorithms can be
adopted to build a clustering model based on the retrieved microclusters.

Integration into ERiC

In this section, we discuss a variant of the ERiC algorithm [5] in detail. The
algorithm consists of four steps, i.e., (1) partitioning the set of microclusters,
(2) computing macroclusters within each partition, (3) building the hierar-
chy of the clustering and (4) defining cross-partition macroclusters which
is optional. In the first step, we partition the set of microclusters accord-
ing to the dimensionality of their subspaces. Regarding the example data
set from Figure 4.1(a), the microclusters which form the 1-dimensional line
cluster would be in one partition, and the microclusters which form the 2-
dimensional plane would be in another partition for instance. Technically, the
partitioning process is done by counting the number of strong eigenvectors
contained in the eigenvector matrix of each microcluster. After dividing the
set of microclusters into disjoint partitions, the algorithm determines macro-
clusters within each partition. Therefore, we apply a DBSCAN [88] variant
capable of dealing with the structure of the microclusters. The basic idea is
to use the orientation of the microclusters given by the eigenvectors to group
those microclusters whose eigenvectors span a similar subspace. According
to [5], we define the correlation distance used for the spatial queries in the
offline phase as the composition of the approximate linear dependency and
the affine distance between two microclusters.

Definition 6. Given a threshold value ∆ ∈]0; 1[and two microclusters mci
and mcj, with mci having less or as many strong eigenvectors as mcj, mci is

45
CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA

STREAMS

called approximately linear dependent from mcj if√
vTi · Vmcj · Êmcj · V T

mcj
· vi ≤ ∆ ,

with Êmcj being the adopted eigenvalue matrix of mcj according to

Êmc(x, x) =

{
1 if Emc(x, x) ≥ α

0 else,

holds for all strong eigenvectors vi of mci.

Note that the threshold value ∆ is introduced to allow a certain degree
of deviation from an absolute linear dependency between two microclusters.

Definition 7. Let mci and mcj be two microclusters with mci having less or
as many strong eigenvectors as mcj and let mci be approximately linear de-
pendent from mcj. Then, the affine distance between mci and mcj is defined
as

distaff (mci,mcj) =√
(µmci − µmcj)T · Vmcj · Êmcj · V T

mcj
· (µmci − µmcj),

with Êmcj being defined as in Definition 6 and µmci, resp. µmcj , being the
mean of microcluster mci, resp. mcj.

Combining Definitions 6 and 7, and assuming the premise that two mi-
croclusters with parallel subspaces form a joint cluster if the affine distance
is below a threshold value δ ∈ R+

0 , we define the correlation distance for the
offline phase as follows.

Definition 8. Let δ ∈ R+
0 , ∆ ∈ (0; 1) and let mci and mcj be two micro-

clusters with mci having less or as many strong eigenvectors as mcj. The
correlation distance between mci and mcj, i.e., CorrDistδ∆(mci,mcj), is de-
fined as

CorrDistδ∆(mci,mcj) =

0 ifmci is approx. linear dependent from
mcj ∧ distaff (mci,mcj) ≤ δ

1 else.

Using this distance measure for DBSCAN which is performed within each
partition finally yields a density-based correlation clustering model for each
partition. Note that the ε parameter for DBSCAN must be set to 0 since

CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA
STREAMS 46

the distance measure is binary. The minPts parameter, that we refer to as
minMcs in the following to be able to distinguish this parameter from the
one used in the static ERiC method, depends on the application.

Due to the partitioning, it might happen that some microclusters might
span a subspace that lies within the subspace of surrounding microclusters
whose subspaces have a higher dimensionality, e.g., a line cluster might be
embedded into a plane shaped cluster. To detect such constellations, step
(3) builds a hierarchy of the macroclusters generated during the previous
step. The procedure borrowed from [5] iterates over the set of macroclusters
and checks for each cluster Cm whether there exists another cluster Cn whose
subspace is of a higher dimensionality and for which CorrDistδ∆(Cm, Cn) = 0
holds. If such cluster Cn exists, it is regarded as a parent of Cm unless Cn is not
an ancestor of Cm already. Processing all macroclusters in this manner yields
to a hierarchical, tree-like structure in which clusters contained in a child node
are embedded within the clusters contained its parent node. In the optional
fourth step of our algorithm, we finally merge related macroclusters which
leads to cross-partition macroclusters, i.e., clusters that contain microclusters
which span subspaces of different dimensionalities with the premise that lower
dimensional microclusters must be embedded within the microclusters of
higher dimensionalities.

Figure 4.1(b) shows the final clustering result of our sample data set. Note
that full dimensional subspaces are treated as noise, depicted as blue dots.
Lower dimensional microclusters that obviously lie within a cluster can turn
out to be handled as noise as well if they are not density-reachable for the
DBSCAN algorithm. Regarding the lower right corner of the 2-dimensional
cluster gives an example for this phenomenon. Although there exists a mi-
crocluster in the model retrieved by the online phase, this microcluster is la-
beled as noise during the offline phase since the microcluster is 1-dimensional
but not density-reachable from another 1-dimensional microcluster (and vice
versa) to satisfy the minMcs criterion for DBSCAN.

Integration into ORCLUS

As for ERiC, the adaptations that have to be made for the ORCLUS al-
gorithm are quite small. First, the parameter k0, i.e., the initial number
of seeds that the algorithm starts with, has to be set to a fraction of the
number of microclusters since the user usually do not know the exact num-
ber in advance. Further, as the algorithm basically has to work with the
mean points of the microclusters as well as their eigenvectors, we propose to
incorporate the orientations of both affected eigensystems when measuring
the distance between two microclusters. If just assigning by measuring the

47
CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA

STREAMS

projected pairwise distance of the mean points, as given in [17], it might
happen that two microclusters that have a different subspace orientation are
grouped because the mean of the one microcluster fits into the subspace of
the other one although their subspace preferences are different.

4.4 Experiments

(a) Runtime experiments for
various database sizes.

(b) Runtime experiments for
varying dimensionalities.

Figure 4.2: Runtime experiments for varying DB sizes and dimensionalities.
Note the log scale on the y-axes.

For our experimental evaluation, we simulate vector data sets as data
streams by processing the data objects one after the other.

We compare our proposed CorrStream algorithm with the static equiv-
alents, i.e., the ERiC and the ORCLUS algorithms, since we use a variant of
both methods for the offline phase. Therefore, we generate labeled data and
compare the precision and recall values of both methods. We compare the
considered approaches in terms of runtimes as well as in terms of clustering
quality. We consider different database sizes, respectively various numbers
of objects delivered by the data stream, as well as various dimensionalities
of the data points. Unless differently stated, all data points are distributed
among 5 equi-sized clusters. For the experiments using variously sized data
sets, each cluster has a random dimensionality between 1 and 2, and one
full-dimensional noise cluster spanned over the entire normalized R3 space.
For the experiments that investigate the performance under varying dimen-
sionalities, the number of data points is fixed to 12’000 and except of one

CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA
STREAMS 48

full-dimensional noise cluster, the correlation clusters have a random dimen-
sionality which is below the full dimensionality.

For all experiments, we report the results when using the best considered
parameter setting. We consider different parameter settings by performing a
grid search over buff_size ∈ {10, 15, 20}; ε ∈ {0.1, 0.15, 0.2, 0.3}; minMcs ∈
{1, 2, 3}. The parameters that were already introduced by previous methods
are fixed.

Runtime Experiments

The first set of experiments investigate the performance of the proposed
method in terms of runtime. Figure 4.2(a) shows the results for varying
numbers of data objects. The y-axis shows the measured runtime in log
scale. While the static methods both show rather fast increasing runtimes,
even for moderately sized databases, the CorrStream variants are able to
process 42’000 data objects within only a few seconds. When ranging the
dimensionality of the feature space from 4 to 24 dimensions, the outcome
is quite similar. As depicted in Figure 4.2(b), the static algorithms need
much more time compared to our method. Again, as can be observed, the
CorrStream variants significantly improve the static competitors and only
need a few seconds.

Quality Experiments

The next set of experiments investigates the considered methods in terms of
clustering quality. Therefore, we measure the quality by comparing the re-
sulting clusterings of each approach to the ground truth labels. Precisely, we
use precision and recall values to examine the performance. First, Figure 4.3
compares the results of CorrStream using the ERiC approach for the
offline phase against the static ERiC algorithm. In both plots the ERiC al-
gorithm shows higher precision and recall values than CorrStream. This
might be reasoned by aging as well as by treating microclusters as noise
if their buffer have not been filled. Figure 4.4 shows the corresponding
results when using ORCLUS for the offline procedure. Interestingly, the
CorrStream results are better in the experiments when increasing the di-
mensionality. An explanation for this result might be the phenomenon that
during the first iteration of ORCLUS, all data points are assigned to the
closest cluster center with respect to the Euclidean distance. This leads to a
situation where clusters, resp. groups of points that are treated as intermedi-
ate clusters during the iterations, are spanned across several actual clusters.

49
CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA

STREAMS

Such intermediate clusters, that typically occur if differently oriented correla-
tion clusters intersect, finally form a “false" subspace and thus might absorb
data points that actually do belong to another cluster. CorrStream re-
duces this problem due to using the correlation distance for the assignment
of a data point as soon as the initialization of a microcluster is completed.

(a) Results for varying numbers of
data objects.

(b) Results for varying dimensionali-
ties.

Figure 4.3: Precision and Recall measurements when considering ERiC.

(a) Results for varying numbers of
data objects.

(b) Results for varying dimensionali-
ties.

Figure 4.4: Precision and Recall measurements when considering ORCLUS.

Throughput

Finally, as the throughput is one of the major criterions for streaming algo-
rithms, we evaluate CorrStream in terms of throughput, i.e., the number

CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA
STREAMS 50

Figure 4.5: The throughput of the online phase by considering different di-
mensionalities.

of data objects processed per millisecond, by using various dimensionali-
ties. The plot in Figure 4.5 investigates the throughput of the online phase
by using different dimensionalities for the feature space. As can be seen,
the throughput of the algorithm decreases with increasing dimensionalities.
Nevertheless, the decline of the throughput decreases for higher dimensional-
ities and still is about 363 data objects per second for 24 dimensional feature
spaces.

Influence of Parameters

In the following block of experiments, we discuss the influence of the param-
eters that are newly introduced in this work and are required to be set by the
user for CorrStream, i.e., the ε parameter giving the allowed maximum
distance of a data point to a microcluster center for the assignment step, and
the buff_size parameter which regulates the size of the buffer, or in other
words the number of points used for the initial PCA. Note that we omit the
discussion of the minMcs parameter, as this parameter is ERiC specific and
is not used in the ORCLUS -like variant. Note that the ORCLUS specific
k0 parameter, i.e., the parameter that defines the initial number of clusters
which is subsequently reduced to k during the iterations, is implicitly given
by the number of microclusters.

The plot in Figure 4.6 describes the influence of the ε parameter. The
precision and recall values slightly decrease with increasing ε values, cf., Fig-
ure 4.6(a). This can be explained by the enlarged absorption radius as more
distant points can be absorbed by a microcluster, especially during the ini-

51
CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA

STREAMS

tialization phase. Furthermore, as can be seen in Figure 4.6(b), the number
of produced microcluster decreases with increasing values of ε and thus the
required computation time, too.

(a) Precision and Recall for varying
values of ε.

(b) Runtime (left axis) and the
absolute number of microclusters
(right axis) for varying values of ε.

Figure 4.6: Performance measures for various values of the ε parameter.

(a) Precision and Recall for varying
values of buff_size.

(b) Runtime (left axis) and the
absolute number of microclusters
(right axis) for varying values of
buff_size.

Figure 4.7: Performance measures for various values of the buff_size param-
eter.

Figure 4.7 shows the results when considering various buffer sizes. While
varying values for this parameter hardly affect the measured precision and
recall values, the measurements for the runtime shows that the size of the
initial microcluster buffers has a rather high impact on the performance,
which generally seems to benefit from larger buffers.

CHAPTER 4. PCA-BASED CORRELATION CLUSTERING ON DATA
STREAMS 52

To summarize: based on our findings we want to state that, of course,
the choice of the parameters affects the efficiency of the online phase. An
inappropriate selection of parameters might lead to increased runtimes. For
instance if the parameter ε is chosen wrongly, the number of generated mi-
croclusters may increase which in turn leads to a higher number of necessary
distance computation when assigning incoming data objects to existing mi-
croclusters. Note that the increased computational costs do not necessarily
lead to a significany improvement for the overall clustering quality. On the
other hand, it might happen that the combination of the ε and buff_size
parameters are chosen in such a way that microclusters do not initialize.
However, this strongly depends on the data distribution that is given by the
underlying data generating process.

4.5 Conclusion
We presented a novel streaming algorithm capable of detecting arbitrarily ori-
ented subspace clusters, i.e., correlation clusters, in this chapter. Regarding
the methodology, we applied the established two-step approach by dividing
the procedure in an online and an offline phase. A newly proposed microclus-
ter structure is used to aggregate similar data objects and thus compressing
the volume of data significantly. At the same time this data structure pro-
vides all the necessary statistical information gained from the incorporated
data points that are required for the offline phase to compute a clustering
model which represents the structure of the data in total sufficiently. Our ex-
perimental evaluation showed that our streaming algorithm outperforms its
static counterparts clearly in terms of computational costs by just suffering a
small loss concerning the clustering quality. Furthermore, we could measure
a satisfying throughput of up to several hundred data objects within seconds.

However, since our method needs several user-specified parameters for
which a fundamental grasp of the internal structure of the data is advan-
tageous, a parameter estimation mechanism would be an interesting topic
for future work. Another point worth to investigate would be an extension
to enable the detection of non-linear correlation clusters. As the microclus-
ter structure allows to extract the information about the orientation of the
subspaces we see the potential that this can be used to detect non-linear
correlation within the data as well.

Chapter 5

Detecting Linear Correlated
Clusters on Streams using
Parameter Space Transform

The work presented in this chapter is going to appear in the Proceedings of
the 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining,
2020.

5.1 Introduction

Data clustering is an established and widely used technique for explorative
data analysis and in general a decent approach for tackling many unsuper-
vised problems. However, when facing high-dimensional data, particularly
clustering algorithms quickly reach the boundaries of their usefulness as most
of these methods are not designed to deal with the curse of dimensionality.
Due to inherent sparsity in high-dimensional data, distances between objects
tend to become meaningless since the distances between any two objects mea-
sured in the full dimensional space tend to become the same for all pairs of
objects. This is a serious problem for most clustering algorithms since they
mostly rely on distance calculations to distinguish similar from dissimilar
objects. Furthermore, clusters often appear within lower dimensional sub-
spaces with the subspaces including various dimensions and dimensionalities.
Therefore, it may not be useful to search for clusters in the full dimensional
data space since even if clusters are detected they hardly retrieve any in-
sights for the user due to lack of interpretability. To overcome those issues,
several subspace clustering algorithms have been developed in the past. All
subspace clustering algorithms generally have the objective to (1) identify

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 54

meaningful subspaces and (2) detect clusters within these subspaces. They
can be categorized into two groups: projected clustering and oriented sub-
space clustering algorithms (cf. Section 3.1). Projected clustering algorithms
restrict themselves to the detection of axis-parallel subspace clusters. Ori-
ented subspace clustering algorithms allow the combination of features (i.e.,
the original dimensions of the data space) to identify new (and interesting)
dimensions which may form a lower dimensional subspace in which clus-
ters can be identified easily by applying conventional clustering approaches1.
While clusters found in projected subspaces are generally easier to interpret
for the end-user, oriented subspace clustering provides a better clustering in
many applications since the assumption that features are independent from
each other (as inherently assumed by projected clustering approaches) usu-
ally does not hold.

In this chapter, we present a novel oriented subspace clustering algorithm
that is able to detect arbitrarily oriented subspace clusters in data streams.
As discussed in the previous chapter, data streams implicate the challenge
that the data cannot be stored entirely and hence there is a general demand
for suitable data handling strategies for clustering algorithms such that the
data can be processed within a single scan. In contrast to the CorrStream
algorithm from Chapter 4, the method presented here relies on the Hough
transform and finds global, arbitrarily oriented subspace clusters rather than
local correlation clusters derived from neighborhood sets. Renouncing the
usage of neighborhood sets has the big advantage of being less dependent
from outliers, resp. noise data, as they might appear in vast numbers within
neighborhoods sets, especially when considering high-dimensional data. In
general, the method presented here can be understood as a streaming variant
of the CASH algorithm [3] which has been designed for robust correlation
clustering in static data. However, when looking for relevant subspaces,
CASH performs a top-down, grid-based data space division strategy with
the idea to prune sparse grid cells. This is inappropriate when considering
a data stream where the data distribution may change over time. On the
other hand, dense grid cells may become sparse and thus irrelevant over time,
too. Therefore, we propose a batched variant that is able to deal with those
challenges. The key idea is to load chunks of data into memory, deriving so-
called concepts as summary structures and applying a decay mechanism to
downgrade the relevance of stale data. Our experimental evaluation demon-
strates the usefulness of the presented method and shows that the used heap
space is drastically reduced without losses in terms of runtime and accuracy.
It is noteworthy that the complexity discussion even states that the runtime

1These are typically partitioning or density-based clustering techniques.

55
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

can be reduced for sufficiently large datasets.
The remainder of the chapter is as follows. In Section 5.2 we recapitu-

late the basic principles behind correlation clustering using Hough transform
since our proposed method heavily relies on the techniques used there for
identifying correlation clusters. Then we propose our algorithm that is able
to follow this paradigm in a streaming environment in Section 5.3. The ex-
perimental evaluation is shown in Section 5.4, and Section 5.5 finally gives a
discussion on our findings and concludes the chapter.

5.2 Correlation Clustering Using Parameter Space
Transformation

Hough Transform

The Hough Transformation originally has been introduced as a useful tool
for image processing in [218]. The basic idea is to translate every pixel from
image space into a straight line in parameter space, and every intersection of
two lines in parameter space means that these two points are on a straight line
in image space. This way, one can determine straight lines and, more broadly,
linear segments in the data space simply by detecting areas where many lines
intersect in parameter space, which is an important task in image processing.
More formally, for a data point p = (x, y) in a two-dimensional data space D,
one can define a parameter space, once again two dimensional, P with axes
m and t such that that p is represented by the straight line t = −xm + y,
with x being the negative slope and y denoting the axis intercept. This way,
if there is a point S = (sx, sy) ∈ P where several parameter space lines li
intersect, there is a common line y = sxx + sy in D that goes through all
of the inverse image points of the lines li. The idea is visualized in Figure
5.1. Given the three data points A, B and C in data space (left), we can
transform them into linear functions in parameter space (right). Since A,
B and C are perfectly correlated, the lines in parameter space intersect at
one point in parameter space. Reconstructing this point in the data space
retrieves a linear function on which all data points A, B and C lie (grey line).

However, using straight lines in parameter space has a significant draw-
back, namely that the slopes of the lines are unbounded, i.e., they may be
infinite, and therefore the possible intersection points of lines in the param-
eter space can not be controlled. A solution to this has been introduced
in [83], where polar coordinates are being used in the parameter space. In
fact, using angles and radii for parameters, and trigonometrical functions in-

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 56

(a) Cartesian space (b) Parameter space

Figure 5.1: Left: data space, right: parameter space

stead of straight lines effectively avoids the problem stated above. For a data
point p = (x, y) in a two-dimensional data space the point is mapped into
parameter space by the trigonometrical function δ = x cosα + y sinα, with
axes α and δ. Note that the free parameter α is bounded within the interval
[0, π). These functions will be called sinusoid in the following. Analogously
to the originally proposed parameter space, it holds that if such sinusoids
intersect in a point S = (αs, δs) in parameter space P , the inverse image
points lie on a straight line lS in the image space. Again, the corresponding
line in image space can easily be derived from S since δs is the distance of
the line to the origin, αs corresponds to the angle between the x axis of D
and the perpendicular line of lS that intersects the origin. Similar to above,
Figure 5.2 depicts the procedure when using the parameter space spanned by
the parameters of the polar coordinate representation. Considering the right
image, the functions are sinusoids rather than linear functions this time.

Using Hough for CASH

The sinusoidal parameterization function can be extended for the case where
we need to deal with higher dimensional data. Given a d-dimensional data
space D ⊆ Rd and a point p = (p1, ..., pd)

T ∈ D, the parameterization func-
tion fp : [0, π)d−1 → R is defined as

fp(α1, ..., αd−1) =
d∑
i=1

pi ·

(
i−1∏
j=1

sin(αj)

)
· cos(αi),

with αd = 0. This corresponds directly to the generalized polar coordinates
of a vector [3]. The basis of the resulting parameter space is defined by

57
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

(a) Cartesian space (b) Parameter space

Figure 5.2: Left: data space, right: parameter space

the d − 1 angles α1, ..., αd−1 and δ = fp(α1, ..., αd−1). Precisely, this means
that any point p from data space can be mapped to some function in the d-
dimensional parameter space with each point finally being represented by the
angles of the normal vectors defining the hyperplanes in Hessian normal form,
i.e., α1, ..., αd−1, and their distances to the origin, i.e., δ. In particular, this
also means that a point S = (α1, ..., αd−1, δ) in parameter space stands for a
d−1 dimensional hyperplane in the data space, while a function in parameter
space corresponds to all possible d− 1 dimensional hyperplanes that contain
the data point p. The following important conclusion can be made: if the
parametrization functions of two data points intersect in parameter space,
the intersection point represents a hyperplane in data space containing both
points. The same is true for any amount of points.

Taking this into account, intuition already suggests the idea of CASH, i.e,
search for dense areas in the parameter space in order to find data points with
common hyperplanes. A dense area is an area where many parametrization
functions intersect each other, or to relax this a little, small partitions of
parameter space which are intersected by many parameterization functions2.

Recalling that CASH employs a top-down grid-based space partitioning
strategy, the density criterion also introduces the first input parameter of the
algorithm: minPoints or m. It specifies how many intersections are required
doe a partition of the parameter space to be considered dense. The other
user-specified input parameter is the size of the partitions of the parame-
ter space, i.e., maxSplits or s. Since it is nearly impossible to calculate all

2Note that intersection points correspond to perfectly correlated subspace clusters.
However, by relaxing this restriction to small areas in the parameter space, we allow the
algorithm to identify correlation clusters that are not perfectly correlated, too.

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 58

possible intersection points of all parametrization functions, it is necessary
to discretize the parameter space by a grid. The resulting grid cells, also
called cuboids, act as the small partitions of parameter space. Obviously,
it is necessary to know the range of all axes for such a grid-based strategy.
For the α angles, the bounds are 0 and π. For the δ-axis, the minimum and
maximum is equal to the minimum and the maximum over all extrema of
all parametrization functions. Since every parametrization function fp is a
sinusoid with period of 2π, there is a global extremum α̃ = (α̃1, ..., α̃d−1) in
[0, π)d−1, which can be calculated by using the Hessian matrix of fp. De-
pending on whether this is a maximum or a minimum, the opposite extreme
value of the sinusoid on the domain can be calculated (see [3] for details). Fi-
nally, given the global minimum and maximum for every fp, the boundaries
[dmin, dmax) of the δ-axis are defined by

dmax = max
p∈D

(
max

α̃∈[0,π)d−1
fp(α̃)

)
,

and dmin = min
p∈D

(
min

α̃∈[0,π)d−1
fp(α̃)

)
,

and we can consider the domain of parameter space as [0, π)d−1×[dmin, dmax].
If this domain is discretized into a grid of cuboids, the next step is to

determine whether a sinusoid fp intersects a cuboid C. This can be done
by calculating the minimum fpmin

(C) and maximum fpmax(C) of the sinusoid
within the boundaries of the cuboid, and checking if the resulting interval
overlaps the δ-interval of the cuboid [dCmin

, dCmax]. If both conditions are
met, the corresponding parametrization function intersects the cuboid C.
However, this procedure may become computationally expensive, especially
in higher dimensional data where grid-based approaches generally tend to
be inefficient in terms of computational cost. In fact, searching for dense
grid cells in a d-dimensional data space exhaustively would require (2n)d,
with n being the amount of splits per dimension, grid cells to be examined.
Therefore, CASH uses a division strategy that prunes grid cells to decrease
the search space and hence reducing the complexity.

Division strategy

Starting with the full dimensional cuboid C ∈ [0, π)d−1× [dCmin
, dCmax] ⊆ Rd,

and the pre-defined divison order δ, α1, ..., αd−1, the algorithm first splits the
cuboid into two halves along the δ-dimension. For the resulting two cuboids,
the number of intersecting sinusoids is calculated. If the intersection count
of one of the cuboids is higher than the input parameter m, the cuboid is

59
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

divided recursively by the division order. If the count of intersections is
above m for both cuboids, the second cuboid is pushed into a queue. If the
number of intersections is less or equal than m, the cuboid can be discarded.
Once a cuboid reaches the maximum split threshold s, the data objects of
the corresponding sinusoids are considered to form a subspace cluster and
the sinusoids are no further considered for the recursive search within the
other cuboids. If the division process of a cuboid terminates (either because
the maximum split threshold is reached or the cuboid is discarded due to
sparsity) the next cuboid is taken from the queue and split recursively.

Finding lower dimensional clusters and hierarchies of clus-
ters

Having found a cluster, respectively a dense cuboid C ⊆ Rd after s divi-
sions, means that the corresponding points form a cluster within a (d − 1)-
dimensional subspace. However, the cluster might either be lower-dimensional
or another lower-dimensional cluster can be embedded within the found sub-
space cluster. Therefore, the sinusoids that form the (d − 1)-dimensional
cluster are transformed back into the data space and projected onto the or-
thonormal basis that can be derived from cuboid C. Somewhat more precise,
given the boundary intervals of C, the normal vector of the corresponding hy-
perplane in polar coordinates is defined by the means of the cuboid’s bound-
ary intervals. This normal vector is transformed back into the Cartesian
data space and finally a (d−1)-dimensional orthonormal basis, which defines
the subspace hyperplane3, is derived from it. To detect subspace clusters of
even lower dimensions, the CASH algorithm is performed on the resulting
(d− 1)-dimensional data set recursively until no more cluster can be found.
It is worth to note that this procedure creates an implicit dimensional cluster
hierarchy.

5.3 CashStream

Data Processing: Batch Processing

Intuitively, the process of adapting the subspace clustering procedure of
CASH in a stream setting might seem straightforward: For every new data

3Note that the resulting subspace may have a small error since its orientation is defined
by the cuboid’s mean vector rather than the mean vector of the corresponding parts of
the intersecting parametrization functions.

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 60

point, determine which cuboids are being intersected by its parameteriza-
tion function. However, regarding the facts that data cannot be kept in
memory entirely and stale data shall be downgraded within stream applica-
tions, this solution is inappropriate. The strongest argument against that
approach is the way the division strategy works. At every depth of the divi-
sion of cuboids, cuboids are being discarded and particularly, not being kept
in memory. This means that only clusters that have already proven to cor-
respond to dense cuboids at the lowest split level can potentially absorb an
incoming data object. In particular, this also means that the creation of new
clusters is impossible and in addition, potential concept shifts, i.e., abrupt
changes in the underlying data distribution, will almost not be noticeable.
One could argue for keeping certain cuboids in memory which are close to
surpassing the minPoints threshold, but this closeness would introduce an-
other parameter and the number of cuboids kept in memory could explode
under certain conditions, for example for highly noisy data sets. Another
way of tackling this would be to partition the parameter space into a static
coarse grid and to reevaluate its dense cells with the division strategy for ev-
ery new data point if the point changes the count of intersections of the cell.
A major drawback of this solution is that it does not generalize well to data
sets of different dimensionalities unless the granularity of the coarse static
grid is another parameter to be defined. Also, for high-dimensional data, a
seemingly coarse grid still has a high number of cells since it is exponential
in regard to the dimension.

Regarding the requirements that a streaming approach should be able to
deal with both changes in the underlying data distribution and data of dif-
ferent dimensionalities, we propose to process incoming data in batches. The
idea is similar to the data processing scheme proposed in [104], i.e., loading
chunks of data into memory and eventually computing cluster representa-
tives which are kept in memory while the actual data objects are discarded
to empty the space for upcoming data. On the one hand, this data pro-
cessing scheme enables the recognition of concept shifts since processing an
entire batch of data increases the probability of identifying dense grid cells
(potentially with novel subspaces) during the division steps. On the other
hand, it is also suitable in terms of processing data of different dimension-
alities as batch processing allows for using the originally proposed heuristic
for pruning sparse grid cells and hence there is no need for defining a static
grid. Precisely, our algorithm basically performs a slightly adapted variant
of CASH on a data chunk and keeps cluster representatives, which we will
refer to as Concepts in the following, in memory. Since the Concepts must be
maintained efficiently, they are designed to be additive, such that two simi-
lar Concepts can conveniently be unified into a single Concept. Algorithm 3

61
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

outlines the main procedure of CashStream.

Algorithm 3 CashStream
Input: Data Stream S, Batch size b
1: Clustering = ∅
2: batch = empty collection of size b
3: for incoming data object o from S do
4: if batch is not full then
5: add o to batch
6: end if
7: if batch is full then
8: currentConcepts = CASH (batch)
9: Clustering.add(currentConcepts)
10: unifyConcepts(Clustering, ...) // see Algorithm 4 batch = empty

collection of size b
11: end if
12: end for

Note that the batch processing scheme obviously requires the user to
specify the size b of a batch which is a hyperparameter. However, our exper-
imental evaluation shows that the size of a batch, if chosen realistically, is
not strongly influencing the performance of the clustering process in terms
of accuracy or runtime, but indeed caps the cost in terms of memory usage.

Cluster Representatives: Concepts

As a suitable summary structure for data objects that are assigned to a
cluster we define a Concept as follows.

Definition 9. A Concept is a data structure that defines a minimalistic
clustering model, an abstraction of a cluster resulting from CASH. In a d-
dimensional data space D, a Concept of dimensionality l < d captures a l-
dimensional hyperplane in parameter space P with rudimentary information
of the data objects it contained as a result of CASH. A Concept consists of
the following attributes:

• a set E containing d− l equations in Hesse normal form,

• mean µ of all data objects that are assigned to the cluster,

• number of data objects N that are assigned to the cluster,

• the timestamp t of the last update, and

• reference P to parent Concept of dimensionality l + 1, if l < d− 1.

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 62

The d−l equations in Hessian normal form are the hyperplane equations that
define the l-dimensional the subspace. These are obviously an essential part
of the Concept as they are used for the unification with other Concepts and
also are part of the final result of CashStream. The mean µ is the centroid
of the data objects that are assigned to the corresponding cluster and is used
for checking whether the Concept can be merged with another one. N denotes
the number of data objects that are assigned to the cluster. This value and
the timestamp t of the last update of this Concept are used to calculate
an importance score for the Concept. The importance scores are used to
weight the Concepts for the unification of two similar Concepts, since a recent
Concept that represents a large number of data objects should contribute
more than a stale Concept that does not represent as many objects. Finally,
a Concept also includes a reference to a parent Concept, i.e., a Concept
representing a higher-dimensional subspace in which the child Concept is
embedded. This enables CashStream the retrieval of a cluster hierarchy.

On Representing Hyperplanes in Hessian Normal Form

The Hessian Normal Form (HNF) [226] has proven to be a well-suited repre-
sentation for linear correlation cluster models. The main motivation behind
using it as abstraction for linearly correlated subspace clusters for Cash-
Stream is that it contains a normal vector which describes the orientation
of the corresponding hyperplane, respectively subspace. This is essential for
our unification step as we use the orientations of two subspaces to determine
their similarity. By using the HNF, we can formally describe a (d − 1)-
dimensional hyperplane H as

~x · ~n+ b = 0,

with · indicating the scalar product, ~x ∈ Rd denoting a data point lying
on the hyperplane, ~n ∈ Rd denoting the unit normal vector and b being the
minimum distance between the hyperplane and the origin. Every data point ~x
that solves this equation lies onH. However, since subspace clusters typically
are not perfectly correlated, we consider a data point ~x ∈ Rd belonging to
a subspace cluster of dimensionality d− 1 whose hyperplane is defined by ~n
and b, if it fulfills

~x · ~n+ b ≤ ε.

Note that the ε parameter is a threshold parameter that is implicitly defined
by setting the maxSplit parameter, i.e., the parameter that basically defines
the size of a grid cell on the lowest split level.

As can be seen in Definition 9, a Concept contains d − l of such hyper-
plane equations in HNF. This is due to the necessity of requiring d− l HNF

63
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

equation for describing a l-dimensional subspace. Intuitively, this can be un-
derstood as follows: if d − l (d − 1)-dimensional hyperplanes intersect in a
d-dimensional space (with l < d), the intersection is a l-dimensional hyper-
plane. Mathematically, this can be seen as solving a simple linear system

Ax = b,

with A denoting an m× d matrix, where m is the number of normal vectors.
If d > m, the linear system is underdetermined and hence the solution set
describes a (d−m)-dimensional subspace.

As an example, consider Figure 5.3 where we are given a 3-dimensional
data space with an 1-dimensional correlation cluster (red dots). In fact,
the 1-dimensional cluster can be described by the intersection of two planes
with collinear normal vectors that both contain all data points of the cluster.
Therefore, a possible solution of CashStream in this case could be the
following two equations (depicted as planes in Figure 5.3):

A : 0.41x+ 0.41y − 0.82z + 0.82 = 0,

B : 0.86x+ 0.05y − 0.73z + 0.73 = 0.

Figure 5.3: The intersection of two planes corresponds to the 1-dimensional
correlation cluster

As described in Section 5.2, CashStream projects the data objects of
an i-dimensional cluster onto the corresponding (i−1)-dimensional subspace
to find even lower dimensional clusters. In particular, it also produces an i-
dimensional normal vector ~ni to define an i-dimensional basis Bi from which

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 64

the (i− 1)-dimensional subspace is derived as Bi \~ni ∈ Ri−1 in this step. By
doing this iteratively until no lower dimensional subspace can be found, the
CASH procedure finally retrieves an ordered set of d− l HNF equations4 for
a l-dimensional subspace, i.e.,

~nd · x+ r0 = 0

~nd−1 · (Bd \ ~nd · x) + r1 = 0

~nd−2 · (Bd−1 \ ~nd−1 · (Bd \ ~nd · x)) + r2 = 0

...

with ~nd−i ∈ Rd−i, with 0 ≤ i < l, denoting the (d − i)-dimensional normal
vector that defines the (d − i)-dimensional basis Bd−i, x being a data point
associated with the i-dimensional subspace cluster and ri being the distances
between the subspace hyperplane and the origin. Bd−i \ ~nd−i is a (d − i −
1)× (d− i) projection matrix that is used to project (d− i)-dimensional data
objects onto the (d− i− 1)-dimensional subspace.

However, for measuring the similarity between two Concepts, Cash-
Stream requires each normal vector to be d-dimensional. We therefore
reconstruct d-dimensional normal vectors from lower-dimensional normal vec-
tors as follows. Let ~nd−i ∈ Rd−i, with 0 < i < l, be the (d − i)-dimensional
normal vector defining the (d−i−1)-dimensional subspace whose basis is de-
noted as Bd−i−1 = Bd−i \ ~nd−i, then the reconstructed d-dimensional normal
vector ~n′d ∈ Rd is

~n′d = ((((~nd−i ·Bd−i+1 \ ~nd−i+1) ·Bd−i+2 \ ~nd−i+2) · . . .) ·Bd \ ~nd) .

Employing this reconstruction strategy to all (d− i)-dimensional normal vec-
tors with 0 < i < l in addition with the d-dimensional normal vector ~nd
finally results in the desired set of d− l non-parallel, and hence linearly inde-
pendent [72], d-dimensional normal vectors that define the d− l hyperplane
equations of a Concept.

Similarity between Concepts

Theoretically, there is an infinite number of sets of equations describing a
single subspace cluster, e.g., the 1-dimensional subspace cluster in Figure 5.3
since its model is the intersection of two planes. As shown in Figure 5.4,
the straight line can be modeled by the intersection of two hyperplanes, the
orientation of which is not necessarily important.

4The equations are in the ordering of the corresponding subspace dimensionality, i.e.,
the first equation defines the (d − 1)-dimensional subspace, the second equation defines
the (d− 2)-dimensional subspace, and so on.

65
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

Figure 5.4: Sometimes the algorithm produces equivalent, but different mod-
els in terms of the model equations for the same linear correlation cluster,
especially when finding the same subspace cluster within different batches.

In terms of Concept similarity, this means that two Concepts shall be
considered similar as long as the intersections of their subspace equations de-
scribe approximately the same subspace, regardless the orientations of their
subspace equations when considering them individually. Given this obser-
vation and the fact that each subspace hyperplane is defined by its normal
vectors which are present in the HNF representations, we formalize the dis-
tance measure based on the following idea: Understanding an intersecting
set of hyperplanes as the set of their respective normal vectors, every other
normal vector contained in a second set of equations representing the same
linear subspace is linearly dependent to the first set. Considering the exam-
ple in Figure 5.4, this means that when regarding the normal vectors ~nE1

and ~nE2 of the hyperplane equations E1 and E2, and normal vectors ~nE3

and ~nE4 of the hyperplane equations E3 and E4, both {~nE1, ~nE2, ~nE3} and
{~nE1, ~nE2, ~nE4} are sets of linearly dependent vectors. However, since we aim
at measuring the similarity between two Concepts, we are interested in quan-
tifying the linear dependence of these vectors rather than just determining
whether they are linearly dependent or not. In fact, two Concepts are consid-
ered similar if their subspaces have a similar orientation, or in other words,
if their normal vectors are approximately linear dependent. Therefore, the
proposed similarity measure makes use of singular values.

Given a set of linearly independent normal vectors V = {~n1, ..., ~nk}, we
quantify the linear dependence of another vector ~m with respect to V by
calculating the singular values SV (A) of the matrix A = (~n1, ..., ~nk, ~m) and

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 66

dividing the smallest value by the largest one. The closer the resulting value

Ldep

~v1, ...~vk, ~m︸ ︷︷ ︸
A

 =
min (SV (A))

max (SV (A))

is to zero, the closer the vectors of the matrix are to being linearly dependent
through adding ~m. Given two Concepts C1 and C2 with their sets of normal
vectors N1 and N2 being of the same cardinality k, and each normal vector
representing a d−k-dimensional linear subspace, we define the Singular Value
Distance as follows:

SVdist(C1, C2) = max
~n∈N2

(Ldep(N1, ~n)) .

Note that this distance measure only accounts for the orientation of the
correlation clusters described by the Concepts. In particular, two Concepts
that describe different, parallel subspaces would have a singular value dis-
tance equal to zero. To avoid an unification of such Concepts we introduce a
secondary measure accounting for the actual distance in an Euclidean sense
between two Concepts. Precisely, we measure the Euclidean distance between
two Concepts C1 and C2 by plugging in any data point lying on the subspace
hyperplane of C1 into the subspace equation of C2. By doing this, we get
the distance one has to shift the hyperplane of C1 in direction of the normal
vector such that the data point is contained in the plane. In other words,
the perpendicular distance from the point to the plane is given by

dperp(p, E) = |n1p1 + ...+ ndpd − r|

with p denoting the data point, E denoting the HNF equation and n being
the corresponding normal vector. However, since the actual data points
that defined a subspace are not available due to aggregating the necessary
information within the Concept structure, we use the centroid of the Concept
as representative data point. Thus, we compute the Equation Shift Distance
between two Concepts C1 and C2 as:

dshift(C1, C2) = max
i=1,...,k

dperp(~µ2, E1i),

with E1,i being the hyperplane equations of C1 and ~µ2 being the mean of all
data points forming the subspace captured in C2.

In summary, we determine the similarity between a pair of Concepts by
calculating the singular value distance that accounts for the orientation of
the corresponding subspaces. If the two subspaces have a sufficiently low

67
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

singular value distance, we calculate the perpendicular distance between the
two subspaces to exclude parallel but distant subspaces from being unified.
If the perpendicular distance is below a certain threshold, the two subspaces
are considered to be similar enough such that the two corresponding Concepts
are unified according to the unification procedure described in the following
subsection.

Aging and Unification

Informally, the unification of two Concepts is the process of merging two
subspace cluster representatives. This can be done quite efficiently due to
Concepts being data structures whose entries either can just be overwritten
(in case of timestamp or pointer to the parent Concept) or are additive (in
case of hyperplane equations, number of absorbed data objects or mean).

Aging

However, when unifying two Concepts it is important to consider the im-
portance of the Concepts, as for instance a very recent Concept is typically
more important than a stale Concept, or a Concept which represents lots of
data objects is more important than a Concept that represents only a few.
Therefore, we introduce an importance score for each Concept which we use
as weighting factor when merging two Concepts. Beside that, the temporal
part of the importance score is also used to discard very old Concepts that are
considered irrelevant for an up-to-date subspace clustering model. Formally,
we define the importance score of a Concept C as

I(C) = e−λ∆t ·NC

with λ being the decay parameter, ∆t being the temporal difference between
the current timestamp and the timestamp given in C and NC being the
number of data objects that have been assigned to C. The first part of this
equation, i.e., e−λ∆t is referred to as temporal part and contains the damping
factor λ > 0. A high value of λ means low importance of old data and vice
versa. However, to save space and computational costs a Concept should be
pruned if it remains in memory unchanged for a large amount of time, resp.
a large amount of batches. We therefore introduce a threshold parameter
θ which basically models a sliding window approach as a Concept whose
temporal part of the importance score falls below the threshold θ is discarded.
Note that the size of the sliding window depends on θ. In our experiments,
we mostly used λ = 0.2 and we discarded Concepts from memory that had

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 68

an importance score below θ = 0.05. The resulting temporal decay function
is depicted in Figure 5.5.

Figure 5.5: Graph of the importance score for θ = 0.2. The x-axis denotes
the time, the y-axis denotes the importance score.

Unification

After extracting the new Concepts of a batch with CASH and recalculating
the importance score of all Concepts in memory, we perform a unification step
of the new Concepts and the Concepts currently in the memory. Beginning
at dimensionality d− 1, we compare the current Concepts with the new ones
in terms of similarity and unify two Concepts if they are similar enough
with respect to some similarity threshold. The unification is continued in
descending order regarding dimensionality. If two Concepts C1 (current) and
C2 (new) of the same dimensionality have been confirmed as similar enough,
the following operations are performed to create the resulting Concept C∗5:

- For each pair of equations E1,i and E2,i with 0 < i < d− l, we define a
new Equation E∗i by using the weighted mean of the normal vectors and
the weighted mean of the distances to the origin of the two equations.
At this, the weight of the new Concept is NC2 , the old is weighted by
its importance score, such that

E∗i =
I(C1) · nE1,i

+ I(C2) · nE2,i

2
· x+

I(C1) · rE1,i
+ I(C2) · rE2,i

2
.

This way a new and possibly slightly shifted set of hyperplane equations
is created.

5Note that we assume one of the Concepts to be a novel Concept without loss of
generality. The only difference between merging a stale Concept with a new one is that
the temporal part of the importance score function becomes 1 for newly created Concepts,
while it is less than 1 for older ones.

69
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

- The mean representative of all data points from C∗ is calculated by
weighting the respective means from C1 and C2 by their importance,
i.e.,

µC∗ =
I(C1) · µC1 + I(C2) · µC2

2
.

- The number of data objects represented by C∗ is the sum of data objects
represented by C1 and C2, i.e., NC∗ = NC1 +NC2

- The timestamp of C∗ is set to the current timestamp, i.e., the times-
tamp of newly created Concept C1, such that tC∗ = tC1 .

- The reference to the parent Concept of C∗ will be set to the parent
Concept of C1. If there is any child Concept with either C1 or C2 as
their parent, its parent pointer will be set to C∗.

Algorithm 4 unifyConcepts
Input: Set of Concepts C, current timestamp tcurr, damping factor λ, temporal

threshold θ, singular value distance threshold τSV dist, equation shift distance
threshold τESdist

1: for each Concept c having t = tcurr do
2: for each Concept c′ having t 6= tcurr do
3: if e−λ·(tcurr−t) < θ then
4: remove c′ from C // remove stale Concepts
5: continue
6: end if
7: if |Ec| == |Ec′ | then
8: distSV = SVdist(c, c

′)
9: if distSV ≤ τSV dist then
10: distshift = dshift(c, c

′)
11: if distshift ≤ τESdist then
12: c ← unify c and c′ as described above
13: remove c′ from C
14: end if
15: end if
16: end if
17: end for
18: end for

Tracking Concept Drifts

Since Concepts do not have to be completely equal with respect to normal
vectors and origin distances in order to trigger the unification, there will be

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 70

Figure 5.6: Visual example for the unification of Concepts A and B. The
resulting Concept is denoted as C in the right-far figure. For ease of presen-
tation, A and B are weighted equally.

some movement of the yet found subspace clusters. In some applications it
might be useful to record these movements, e.g., to detect abnormal behav-
iors, or on a slower scale to track effects reasoned by wearing in a machine
monitoring application. In fact, every Concept that results from an uni-
fication can be seen as a weighted compromise between the older and the
more important newer Concept. Usually, there are two possible scenarios
which we refer to as stabilization and concept drift. Stabilization means
there are several similar Concepts from succeeding batches that stand for
a linear correlation that does not change over time, the movements mostly
cancel each other out. Concept Drifts indicate a rotation or parallel shift of
one or several plane equations describing the Concept. For every equation
in the Concept resulting from an unification of an old and a new Concept,
we record the difference of the normal vectors between the equations and be-
tween the distances to the origin. When a Concept is extracted from a batch,
these difference vectors (movements) are initialized as zero-vectors. For every
unification, the actual movements are added to them. For the stabilization
scenario, the movement vectors of a Concept will be close to zero vectors,
even after several unifications. For the drift scenario, we can observe what
kind of movement has been made by looking at the movement vectors. For
instance, the unification done as seen in Figure 5.6 would yield a movement
of

~v0 = (0.1, 0.1, 0.1); d = 0.04

This corresponds to a rotation of the old Concept A by about 1° and an
origin distance by 0.02, and a later unification would simply be added to this
movement. However, this comes to the costs of requiring additional memory
space for the movement vectors and the single floating point numbers that
describe the Concepts ’ drifts of the distances to the origin.

71
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

Complexity

To conclude this Section, we briefly take a note on the complexity of Cash-
Stream. As shown in [3], the average time complexity for the static CASH
procedure is

O(s · c ·N · d3),

with s denoting the maxSplits parameter, c being the expected number of
clusters, N denoting the number of data points and d denoting the dimen-
sionality of the data set. Due to the batch-wise processing scheme in Cash-
Stream, the average time complexity for the generation of all Concepts can
be reformulated as

O(s · c · k ·B · d3),

where s, c and d again denote the maxSplits, expected number of clusters and
dimensionality, and k is the number of batches and B is the batch size, i.e.,
k = N/B. Additionally, CashStream requires the unification of Concepts
after the processing of each batch. This procedure requires pairwise distance
calculations between the Concepts and each distance calculation (note that
the singular value distance is the dominating part) is in O((d−l)·d(d−l+1)2),
with l denoting the dimensionality of the subspace6, due to performing SVD
decompositions to get the singular values. In total, the worst case amount
of distance calculations is c · (c − 1) per batch, given that c is the expected
number of clusters and all clusters have the same subspace dimensionality.
Considering all k batches, the worst case complexity (under the assumption
that the expected number of clusters is c) is O(k · c(c− 1) · (d− 1) · d3), if the
subspace clusters are all distinct and one-dimensional. Therefore, the overall
complexity of CashStream is

O(s · c · k ·B · d3 + k · c(c− 1) · (d− 1) · d3).

However, we want to emphasize that the latter part of the term (the com-
plexity over all unification steps) is almost non-relevant in practice as the
worst case scenario is usually very unlikely. In fact, our experimentations
show that the latter part nearly has no influence at all when considering the
runtime. Also, we want to note that the complexity in terms of memory usage
can be decreased, and most importantly, the batch-wise processing scheme
enables to run the Hough-based subspace clustering procedure on commodity
hardware, even for very large databases.

6Recall that the number of subspace equations is d minus the dimensionality of the
subspace l, which leads to a d× (d− l+1) matrix that needs to be decomposed (+1 due to
appending one normal vector of the second Concept to test linear dependency, the factor
(d− l) because we need to check this for each normal vector).

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 72

5.4 Experiments
In this section, we evaluate CashStream by comparing the proposed stream-
ing algorithm against the static counterpart CASH. Precisely, we evaluate the
performance with respect to accuracy, memory consumption and finally the
throughput. All these measures are important metrics for streaming methods
as such algorithms typically trade some accuracy for a drastically decreased
memory consumption, and the throughput finally measures how many data
objects can be processed within a certain amount of time.

Datasets

We use synthetic and real world datasets throughout this section. Generally,
the synthetic datasets are generated such that there are subspace clusters
within a higher-dimensional data space. The clusters can have a pre-defined
amount of jitter, i.e., some deviation from being perfectly correlated, and we
also generate noise which are data points that do not belong to any cluster.
The real-world dataset is a slightly manipulated version of the wages dataset.
The original version of the dataset7 has also been used in [3], and consists of
534 records each having four different features, i.e., age, years of education,
years of experience and salary. However, since the original version only counts
534 records, we enlarge it by copying and shuffling the records such that we
finally have 20000 data points. This way, we can use the data to simulate a
data stream appropriately.

Parameter Settings

If not stated differently, we perform grid searches over various parameter
settings and report the results for the best settings. Precisely, we range the
parameters over the following sets:

• damping factor λ ∈ {0.2, 0.5, 0.8}

• temporal threshold θ ∈ {0.2, 0.5, 0.8, 1.}

• singular value distance threshold τSV dist ∈ {0.005, 0.01, 0.02, 0.03}

• equation shift distance threshold τESdist ∈ {0.05, 0.1, 0.15}

Note that we use the number of a batch as timestamp for that batch, i.e.,
timestamp i ∈ N is assigned to the the Concepts extracted from the i-th
batch. The min. points parameter minPts that must be set for CASH is set

7http://lib.stat.cmu.edu/datasets/CPS_85_Wages

http://lib.stat.cmu.edu/datasets/CPS_85_Wages

73
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

Batch size Num. of batches ARI AMI maxSplits minPoint fraction
1000 1 0.9991 0.9937 10 0.75
500 2 0.9991 0.9937 10 0.75
333 3 0.9909 0.9603 10 0.75
200 5 0.9982 0.9889 10 0.75

Table 5.1: Results for CashStream on the simple line dataset.

proportionally to the batch size. We fix the minPts fraction m̃ to a value of
0.75, resulting in minPts parameters being m̃ · k with k being the batch size.
The other CASH specific parameter maxSplits is set according to the data
set at hand and reported for each experiment individually.

Clustering Quality

For measuring the clustering quality of StreamCash, we compare the re-
sulting clusterings for several different settings of the batch size parameter,
including the batch size for which a single batch contains the entire data set,
which is equivalent to the static CASH. We employ the following two quality
measures:

- ARI, the Adjusted Rand Index [126], which is an extension of the Rand
Index (RI) [216] that accounts for chance, meaning that the expected
value of the ARI for completely random partition labeling is 0. We
use it to compare the clustering result retrieved by CashStream to the
ground truth of the synthetic data.

- AMI, the Adjusted Mutual Information [258] is also adjusted for chance
and is another measure for similarity of clusterings.

Note that due to the lack of ground truth in the real-world dataset, we
restrict ourselves to synthetic datasets in the experiments evaluating the
clustering quality. Our first dataset contains a simple 1-dimensional line in
a 3-dimensional data space. The set contains of 1000 data points of which
200 are random noise points, and 800 belong to the cluster. The line does
not contain any jitter (thus simulating a perfectly correlated data set), and
there is no hyperplane of points containing the line.
In Table 5.1 we report the best calculated ARI and AMI scores that we
achieved when running CashStream for various parameter settings on the
simple line data set.

The results show that there is almost no loss in terms of clustering quality
when splitting the dataset into batches. This is the expected result if there

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 74

Figure 5.7: Visualization of the Simple Line data set with 20% random noise

Figure 5.8: The Simple Line dataset split into 5 batches and visualized.

is no difference in the data distributions over the different batches. A visu-
alization of the distributions within the used batches can be seen in Figure
5.9. We therefore conclude that the batch-wise processing scheme is indeed
a well-suited approach for stretching the workload of CASH.

The second dataset in this chapter is a 4-dimensional set of points con-
taining two 2-dimensional planes of 1000 data points each and 1000 random
noise points, thus 3000 points in total. The planes both are jittered, making
the data not perfectly correlated within their corresponding subspaces. This
way, we can evaluate how well the algorithm can deal with imperfect data
(as it might appear in real world applications). For a better understanding,
the amount of jitter applied to the planes is visualized for a 2−dimensional
plane in a 3−dimensional space in Figure 5.9.

The calculated ARI and AMI for this dataset can be seen in Table 5.4.
Note that we slightly adopted the maxSplits and the minPts fraction pa-
rameters compared to the previous experiment, as we also used larger batch
sizes. In general, it can be observed that the clustering quality slightly drops
when choosing a batch size below 1000. This might indicate that the sub-
sample might not reflect the data distribution sufficiently when choosing the

75
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

Figure 5.9: Two different perspectives on a 2−dimensional plane in a
3−dimensional space generated with our plane generator, where the max-
imal jitter distance of plane points is an euclidean distance 5.0 as for the
Two Planes dataset.

Batch Size Batches ARI AMI maxSplits minPts fraction
3000 1 0.951 0.922 9 0.3
1500 2 0.943 0.907 9 0.3
1000 3 0.924 0.881 9 0.3
750 4 0.875 0.829 9 0.3

Table 5.2: Results for CashStream on the perfect planes dataset.

batch size too small, which can be especially problematic in scenarios where
correlations are imperfect. Another reason for the decreasing clustering ac-
curacy can be the presence of temporal effects (i.e., slight drifts in the data
distribution, increasing amount of noise, etc.).

Throughput

In this section, we investigate the actual throughput in terms of data points
per second of the algorithm. In general, our evaluation of the throughput can
be understood as a runtime comparison between the batched algorithm and
the static CASH. For the throughput experiment, we used two synthetic and
one real-world dataset of various sizes and dimensionality to demonstrate the
scalability of the batched streaming approach. For each dataset we report
the throughput in data points per second and the total runtime in seconds.
Each of the reported values is the mean value over three runs. For all those
runs, we compared (by means of comparing the detected subspaces) the re-

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 76

Figure 5.10: The multi correlation set is our first throughput experiment set.
It contains several highly jittered, 1-dimensional correlation clusters which
form several 2-dimensional hyperplanes throughout the data space.

sulting clustering models with the clustering models that can be expected
and selected the parameter settings according to the best result.

Perfect Planes set. Firstly, we use a synthetic dataset which we refer
to as perfect planes dataset. It consists of 10000, 5-dimensional data points
which form two perfectly correlated 3-dimensional linear correlation clusters
of 4500 points each and 1000 random noise points. By using this dataset, we
study the performance of our algorithm under perfect conditions.

The results, depicted in Figure 5.11, confirm our expectations from Section
5.3 as there is no notable relationship between runtime and batch size. In
general, the runtime of the batched CashStream algorithm is comparable
to the runtime needed for the static CASH algorithm (the two right-most
bars).

Multi Correlation set. As second dataset we use a 3-dimensional data
set that contains several highly jittered linear correlations of varying size and
10% random noise. The set consists of 20000 points and can be seen in Figure
5.10. We refer to this dataset as multi correlation dataset. This dataset is
somewhat more difficult due to data points belonging to the same subspace
cluster are not correlated perfectly. Also, it appears that some of the clusters
form a hierarchy, i.e., multiple one-dimensional subspace clusters may form a
two-dimensional subspace cluster. We compare the throughput and runtime

77
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

(a) Runtime (b) Throughput

Figure 5.11: Throughput/Runtime experiment for the Perfect planes dataset
evaluated for several different batch sizes, maxSplits=7, minPts frac-
tion=0.42

(a) Runtime (b) Throughput

Figure 5.12: Throughput/Runtime experiment for the Multi Correlation
dataset evaluated for several different batch sizes, maxSplits=8, minPts frac-
tion=0.2

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 78

(a) Runtime (b) Throughput

Figure 5.13: Throughput/Runtime experiment for the enlarged wages
dataset evaluated for several different batch sizes, maxSplits=8, minPts frac-
tion=0.13

for different batch sizes, summarized in Figure 5.12.

As suspected in the complexity discussion above, the batch size does not
seem to have a large impact on the total computation time for this data
set. We can see the largest runtime deviation for a batch size of 3333, which
is most likely to be explained by a “bad batch”, i.e., a batch for which the
minPts parameter is slightly too low, which in turn leads to the situation
where CashStream needs to evaluate noisy Concepts.

Enlarged Wages dataset. Finally, we use the slightly manipulated
version of the wages dataset as a real-world dataset. Recall that the origi-
nal version of this dataset consists of 534 records each having four different
features, i.e., age, years of education, years of experience and salary. We
enlarged the original version by copying and shuffling the records such that
we finally have 20000 data points so that we can use the data to simulate a
data stream appropriately. In this experiment, we once again compare the
throughput (and runtime) for several batch sizes including the full data set.

As can be seen in Figure 5.13, this experiment once more supports our
assumption from above, suggesting there is no real dependency between run-
time and batch size in practice.

To investigate the influence of the split parameter on the runtime, we
increased the split level to 10 and repeated the experiment. As can be seen
in Figure 5.14, the total amount of computation time increases (as CASH
must process more cuboids in total), but the relation between runtime and
batch size remains approximately the same when varying the batch size.

79
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

(a) Runtime (b) Throughput

Figure 5.14: Throughput/Runtime experiment for the enlarged wages dataset
evaluated for several different batch sizes, maxSplits=10, minPts frac-
tion=0.13

Memory

As memory consumption is a critical metric in terms of streaming appli-
cations, we show the monitored RAM usage of the batched approach and
compare it with the static CASH in this section. Precisely, we demonstrate
that the memory peaks achieved by the batched approach stay close to a
constant level, no matter how many points are being processed. This is due
to the fact that we only keep the light-weight abstractions of the clustering
models in memory throughout the execution. As a general comparison, we
take a look at the heap space usage of the respective approaches, as the heap
space is the central indicator of how much memory an application needs at
runtime8. Intuitively, we expect the following heap space profile for the ap-
proaches. For the static approach, we expect the heap space usage sloping up
steadily throughout the execution time, since the amount of cuboids in the
queue is growing. In the batched approach, we expect the heap space usage to
reset to almost none after processing a batch, since between batches the only
thing to keep in memory are minimal clustering models. We sketched that
expectation in Figure 5.15. The graphs shown in this section were created
using Java ViusalVM 1.4.2, which is included in the Java JDK. To force the
JVM to be more efficient with RAM and to simulate a light-weight system,
we capped the maximal available heap space to around 2GB.

Enlarged Wages Dataset. For this experiment, we again use the en-
larged wages dataset as in Section 5.4. We showcase three different batch

8It is noteworthy that the code is implemented in Java

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 80

Figure 5.15: A sketch of the expected heap space usage comparing the meth-
ods

Figure 5.16: The Heap Space usage profile for the enlarged wages dataset in
the static approach, processing one batch of size 20000 with maxSplits=8,
minPts fraction=0.2

sizes, 20000, 6666 and 2000 with constant maxSplits of 8 and and a minPts
fraction of 0.2.
The static approach simulated in the full-sized 20000 points batch behaves
much like expected, with the heap space rising steadily to a maximum level
of around 1500MB.

When subdividing the points into 3 batches of 6666 points, we observe two
crucial details: Firstly, the peak Heap Space usage is at around 850MB,
which is significantly lower than in the static approach. Secondly, the three
sequentially processed batches can clearly be identified as three peaks in the
Heap Space profile. Another thing to note is that the three batches can
vary both in the time used for processing them and in the Heap Space used.

81
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

Figure 5.17: The Heap Space usage profile for the enlarged wages dataset
in the batched approach, processing three batches of size 6666 with maxS-
plits=8, minPts fraction=0.2

This is heavily dependent on how “good” the data points are arranged for
CASH, i.e., there is not much noise close to actual clusters filling up the
division queue, the minPts parameter is not set too low etc. Finally, when
subdividing the data into 10 batches, we see that the peaks of RAM usage
are close to being constant at 400MB, with rare deviations to higher values.
After close consideration one can still make out batch-like structures in the
Heap Space profile. 9

Multi Correlation set. We also performed the same experiment on
the multi correlation set, for which we can make the same observations. The
results for a batch size of 20000 and for a batch size of 1000 are depicted in
Figures 5.19.

Again, for the static approach we see one peak that reaches almost 1200MB.
Using a smaller batch size, i.e., 1000, again seems very economical with re-
gards to memory usage as we have around 300-400MB memory consumption
on average with very few peaks going up to 500MB.

In conclusion, we can say that a batch size of around 1000-2000 is a very
good way to control the memory usage of the algorithm. We have also seen
that the larger a data set is, the higher the memory usage rises in the static
approach. The streaming approach CashStream generally is on a much
lower base level of RAM usage, with the RAM usage dropping to quite low
values as soon as a batch is compressed into Concept structures.

9Note that the RAM usage is very low compared to the static approach. In fact the
dips could just be regular garbage collections in the middle of single a batch processing.

CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON
STREAMS USING PARAMETER SPACE TRANSFORM 82

Figure 5.18: The Heap Space usage profile for the enlarged wages dataset in
the batched approach, processing ten batches of size 2000 with maxSplits=8,
minPts fraction=0.2

(a) Static (b) Batched

Figure 5.19: The Heap Space usage profile for the multi correlation dataset
in the static approach, and the batched version with maxSplits=8, minPts
fraction=0.2

83
CHAPTER 5. DETECTING LINEAR CORRELATED CLUSTERS ON

STREAMS USING PARAMETER SPACE TRANSFORM

5.5 Conclusion
In this chapter, we presented the novel subspace clustering algorithm Cash-
Stream that is able to deal with high-dimensional streaming data efficiently.
Precisely, CashStream relies on the subspace clustering paradigm that was
introduced for the static CASH algorithm, i.e., using Hough transformations
to identify interesting linear subspaces. However, in contrast to CASH, the
proposed algorithm uses a batch processing scheme, identifies interesting sub-
spaces within the data batches, and subsequently compresses important in-
formation within Concept data structures that have been designed such that
they fulfill the necessary properties for streaming applications, i.e., additiv-
ity and incrementality. This way, CashStream does not need to keep all
data points in memory and hence requires much less memory than its static
counterpart. The additivity property allows to keep the number of different
Concepts small as similar Concepts can be merged efficiently. Due to the
incrementality property of Concepts, the algorithm can make use of an aging
mechanism to downgrade stale Concepts such that most recent data com-
ing from the data stream is considered more important than stale data. We
propose a damping window approach to downgrade old Concepts gradually
and a sliding window alike mechanism to get rid of Concepts whose impor-
tance falls below a certain threshold. This keeps the amount of data kept in
memory small. Our experimental evaluation showed that CashStream is
fairly robust against different choices for the batch size and simultaneously
reduces the memory consumption significantly compared to the static CASH
algorithm (less than 50% on the real-world dataset). At the same time the
loss in terms of clustering quality is negligible. To further boost the perfor-
mance, an interesting direction for future work is to scale the computation of
subspace clusters horizontally and distribute cluster calculations over multi-
ple machines. Furthermore, it might be worth to investigate other distance
measures for the merging criterion as SVD might become computationally
expensive for very high-dimensional subspaces.

Chapter 6

User Identification by Using
Microblog Data

The work presented in this chapter has been published as the article On
privacy in spatio-temporal data: User Identification by Using Microblog Data
in the Proceedings of the International Symposium on Spatial and Temporal
Databases, 2017 [228].

6.1 Introduction

Nowadays, billions of copies of applications distributed by Apple’s App Store®

access a user’s geographic location. As an example, Niantic’s well known aug-
mented reality game “Pokémon Go”, which has been downloaded more than
100 million times on Android devices alone 1, constantly synchronizes the
GPS location of users with a company server. While users trust that their
location data will be used in sensitive fashion, Apple® for instance collects,
uses and shares “precise location data, including the real-time geographic
location” of their customers’ devices with “partners and licensees” 2.

The mobility behavior of a person often reveals a large variety of sensitive
information, which they may not be aware of. A list of potentially sensitive
professional and personal information that could be inferred about an in-
dividual, knowing only their mobility trace, was published recently by the
Electronic Frontier Foundation [40]. Such personal information could sim-
ply be marketing information, obtained from a user’s choice of restaurants,

1https://play.google.com/store/apps/details?id=com.nianticlabs.
pokemongo [date: 2019-03-21]

2According to the Apple Privacy Policy from May 22, 2018. https://www.apple.com/
legal/privacy/en-ww/ [date: 2019-03-21]

https://play.google.com/store/apps/details?id=com.nianticlabs.pokemongo
https://play.google.com/store/apps/details?id=com.nianticlabs.pokemongo
https://www.apple.com/legal/privacy/en-ww/
https://www.apple.com/legal/privacy/en-ww/

85 CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA

(a) Weekly history of a single user. (b) 12-week trace of 10 users.

Figure 6.1: Illustration of Twitter Traces

or a user’s religious beliefs, inferred through the proximity to a particular
church. It can also indicate other, much more sensitive, information about
an individual based on their presence in a motel or at a medical clinic.

In this chapter, the severity of privacy risks through publishing individual
spatio-temporal data on the use case of Twitter data is investigated. In
particular, it is shown that geotagged tweets might yield enough location
information for building user specific trace profiles. Based on these profiles,
Twitter accounts can be linked to additional trace data being observed from
unknown users. Other location based services or mobile devices are also
potential sources for traces. Additionally, face detection methods tag known
persons in images in social networks. Thus, geotagged images can reveal a
user’s whereabouts at certain points in time. Given that there are multiple
such images, it might be possible to build a trace and link it to a known user.
To conclude, freely available location data might be used to link accounts and
devices for the same user. Thus, the user reveals more of their movements
and actions than might be intended.

To derive trace profiles for a given Twitter account, geotagged tweets
containing an exact geolocation, a time, and a user ID were collected. Since
this work focuses on the location aspect the content of the Tweet is completely
ignored, even though it might add even more useful information to user
profile. Using the Twitter API, or similar micro-blogging applications, users
can publish a short text message, called a Tweet, together with their current
geolocation, a current time-stamp, and their user ID.

The sequence of Tweets of a user is interpreted as a trace. For each user,

CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA 86

all available Twitter data is used to build a trace profile to capture each
user’s specific mobility patterns. Using these profiles, new trace, for which
the originating user is unknown, can be linked to a known user with an
alarmingly high accuracy. To illustrate this classification problem, a typical
Twitter trace of a single user is depicted in Figure 6.1(a). The figure shows
a twelve week trace of a user’s tweets, in color-coded one-week intervals.
For comparison, Figure 6.1(b) shows the same twelve week traces for ten
users, using a different color per user. Note that the tweets of this user are
voluntarily published by the user, such that Figure 6.1(a) and Figure 6.1(b)
do not raise any privacy concerns.

The challenge of this study is to match a new trace, such as a one week
trace corresponding to a single color in Figure 6.1(a), to the correct user
corresponding to one of the colors in Figure 6.1(b). Note that the ten selected
user profiles in the example are located in relatively distinct activity regions.
Thus, finding the right profile is relatively simple. In a more realistic setting,
distinguishing thousands of users in the same area, and user identification
is significantly more challenging. In these experiments up to 15,989 users,
within the same bounding box of London, are used leading to a much more
challenging classification task.

Twitter data is comparatively sparse to other location tracking applica-
tions, as tweets are typically published at a frequency of less than one per
hour. Despite this data sparsity, it is shown that a large quantity of low-
quality location data can still be used to construct highly discriminative user
models. To summarize the contributions of the work presented in this chapter
are as follows:

• Trace models to capture user-specific movement profiles from sparse
traces obtained from Twitter.

• Methods for mapping a newly observed traces of an unknown user to
the most likely user in the database.

• An experimental evaluation showing that individual patterns are highly
unique and allow for a user classification accuracy of up to 98% .

• A case study of linking users of Twitter to users of Instagram, with an
accuracy of up to 81%.

The remainder of this paper is organized as follows. Chapter 6.2 briefly
positions the work with respect to related works, and subsequently the prob-
lem setting is formalized and the task of linking new traces to users is defined.

87 CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA

Chapter 6.3 describes the trace models and the approach to user identifica-
tion. The results of the experimental evaluation are described in Chapter 6.4.
Scalability of this solution is address in Chapter 6.4 and further user linkage
experiments are address in Chapter 6.4. It is concluded in Chapter 6.5.

6.2 Problem Definition
In general, user identification is focused on identifying the same user again
within the same database, while user linkage is focused on linking two users
together across multiple sources of data. Note that the work presented in
the remainder of this chapter assumes user trace data to be fully available,
without any notion of privacy preservation. This assumption is appropriate in
the experimental evaluation, using publicly available Twitter data. However,
other datasets may employ some form of privacy, thus it is important to
understand privacy methods, which might be used on this data. We therefore
survey related state-of-the-art methods for user identification, user linkage,
mobility patterns and spatial privacy in Section 3.3.

In this work, the question of to what extent a set of spatio-temporal
observations, such as geotagged tweets, are sufficient to derive spatial user
profiles for the observed users and reliably link location traces of unknown
users to one of the known user profiles is answered. Therefore, this section
will define terms and notations, and formally define the problem of user
identification using trace data.

In this paper, spatio-temporal data is considered. That is data of users
annotated with a geolocation and a timestamp, such as obtained from Twit-
ter.

Definition 10 (Spatio-Temporal Database). Let U denote a set of unique
user identifiers, let S be a set of spatial regions, and let T denote a time
domain. A spatio-temporal database DB ⊆ U×S×T is a collection of triples
(id ∈ U , s ∈ S, t ∈ T). Each triple (u, s, t) ∈ DB is called an observation.

Furthermore, a trajectory is defined as a sequence of location and time
pairs.

Definition 11 (Trajectory). A trajectory tr ⊆ S ×T is a collection of pairs
(s ∈ S, t ∈ T).

These trajectories are then partitioned temporally and spatially to distill
the information down to a minimum set of components.

To build a user specific mobility pattern, the data is temporally parti-
tioned into equal sized time intervals called epochs. Within an epoch the set

CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA 88

of observations of a specific user is called a location trace, formally defined
as follows.

Definition 12 (Location Trace). Let DB be a spatio-temporal database. Let
E = {e1, ...en} be a partitioning of T into n temporal intervals denoted as
epochs. For each epoch e ∈ E, and each user u, the trace

DB(u, e) := {(u′, s, t) ∈ DB|u′ = u, t ∈ e}, (6.1)

is called the location trace of user id during epoch e.

In the remainder of this paper, location trace models are introduced to
capture the motion of a user in space and time. The models are derived from
the set of all trace of a user, called their trace profile formally defined as
follows.

Definition 13 (Trace Profile). Let DB be a spatio-temporal database, let
u ∈ U be a user and let E be a temporal partitioning of DB into n epochs.
The trace profile P(u) is the set of all traces of u, i.e.,

P(u) = {D(u′, e)|u′ = u, e ∈ E}. (6.2)

This trace profile is used to establish a pattern between multiple traces
over discrete epochs, in order to allow for more accurate user identification.

The main challenge of this paper is to map the trace of an unknown user
to a user already in the database, thus identifying them.

Definition 14 (User Identification). Let DB be a spatio-temporal database
and let Q ⊆ S × T be a trace of an unknown user u. The task of user
identification is to predict the identity of user u of Q given DB. The function

I : P(S × T) 7→ U , (6.3)

maps a trace Q to user x as a user identification function.

Thus, user identification is a classification task mapping a trace to its
unknown user. This is not to be confused with a de-anoymization attack,
such as in [37] where a user’s real world identity is uncovered. This task
is only attempting to identify which user’s Trace Profile is most similar to
the new trace. To train a user identification function I(Q), the next chapter
presents the classification approach, which uses the traces in DB as a training
set, in order to predict the user of a new trace Q /∈ DB.

User linkage, takes this task further and attempts to map two users, from
separate databases, together and is formally defined as follows.

89 CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA

Definition 15 (User Linkage). Let DB1 and DB2 be two trace feature databases,
and let UDB1 and UDB1 be two user databases. Such that each entry (T, u) ∈
DB1 corresponds to a trace feature vector T and a user u ∈ UDB1, and each
(T ′, u′) ∈ DB2 corresponds to a trace feature vector T ′ and a user u′ ∈ UDB2.
The task of user linkage is to map a user in UDB1 to a user in UDB2.

This is achieved by using the user identification techniques discussed in
the next chapter and will be discussed in Chapter 6.4.

6.3 Trajectory based User Identification
Trace models are introduced to capture the motion of a user u ∈ U in space
and time by learning from their trace profile P(u) in Subsection 6.3. Note
that this first approach does not consider the time component of observations
of a user within an epoch. The time component is only used to divide the
whole trajectory of a user into different epochs that can be used for learning
and testing. For each model, a similarity measure to quantify similarity be-
tween different trace models is proposed. Based on these similarity measures,
the user identification approach is presented in Subsection 6.3. As mentioned
before, the prediction is based on the assumption that there exists a profile
P (ui) for each user ui ∈ U .

Trace Profile Modeling

Each trace DB(u, e) of user u during epoch e is a sequence of observations,
i.e., time-stamped geo-locations. A spatial grid to partition geo-space into
equal sized regions S = {S1, S|S|} is used, thus reducing a trace to a se-
quence of time-stamped grid-cells. To model such a sequence, two kinds of
approaches are proposed:

• The first approach using set descriptors treats a trace as a set of grid-
cell observations, thus ignoring the sequence, ordering, and time-stamps
of these observations.

• The second approach using frequent transitions considers the transi-
tions of users from one spatial region to another, thus explicitly mod-
eling the order of observations.

Set Descriptors

Ignoring the temporal aspect, a trace DB(u, e) of user u during epoch e can
be described by a vector v(u, e) of all spatial regions in S. In other words,

CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA 90

each spatial region is represented by a dimension of v(u, e).
Note that v(u, e) contains zero values in the majority of dimensions as

each user usually only traverses a small fraction of space during an epoch. In
other words, v(u, e) is sparse. Modeling trace using frequency descriptions
has a strong resemblance to handling bag of words vectors known in text
mining. To describe, if and how often a domain was visited within trace
DB(u, e), the following two approaches are examined.

Binary Descriptor In this rather simple method, a trace DB(u, e) is rep-
resented as a set of visited spatial regions. Thus, each feature value vbit
equals one if user u visited region Si (at least once) during epoch e, formally:

vbiti (u, e) :=

{
1, if ∃(u′, s, t) ∈ DB : u′ = u ∧ s ∈ Si ∧ t ∈ e,
0, otherwise

(6.4)

To compare binary vectors v, v′ ∈ {0, 1}n, the Jaccard coefficient is em-
ployed [128], which is a standard similarity measure for sets:

Definition 16 (Jaccard Coefficient). Let v, v′ ∈ {0, 1}n be two bit vectors,
then the Jaccard coefficient is defined as follows:

Jac(v, v′) =

∑n
i=1 vi ∧ v′i∑n
i=1 vi ∨ v′i

(6.5)

Frequency Descriptors A frequency, or term weighted, vector [222] vfreq
contains the number of visits of each spatial region of user u in epoch e. This
allows to distinguish between users visiting a particular region more or less
often than other users.

vfreq(u, e)i = |{(u′, s, t) ∈ DB|u′ = u ∧ s ∈ Si ∧ t ∈ e}|. (6.6)

A common way to compute the similarity in sparse numerical vectors is
the cosine coefficient:

Definition 17 (Cosine Coefficient). Let v, v′ ∈ Nn be two vectors, then the
Cosine coefficient is defined as follows:

Cos(v, v′) =
v · v′

||v|| · ||v′||
(6.7)

Since the cosine coefficient can be strongly dominated by dimensions hav-
ing high average frequency values, spatial regions are normalized by their
total number of observations [222].

91 CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA

Transition Descriptors

All of the previous trace descriptors had in common that they treat a trace
as an unordered set of locations, without considering any notion of sequence
or time. In this section, a trace is treated as a sequence of regions. As a base-
line to compute the similarity between two sequences, dynamic time-warping
[35] (DTW), a state-of-the-art method for similarity search on sequences, is
used. Since the experimental evaluation shows that using DTW without any
adaption as a similarity measure yields a fairly low classification accuracy,
this section presents two approaches to directly model the transitions of a
trace. A transition is a pair (s, s′) of regions where s is called source and
s′ is called destination. Using a descriptor for each pair of spatial regions
si, sj, describing the number of times the specific sequence (si, sj) has been
observed in a trace DB(u, e), is proposed.

Definition 18 (Trace Transitions). Let DB(u, e) = {(s1, t1), ..., (sn, tn))} be
a trace, the set of n transitions ↑ DB(u, e) is defined as the multi-set (thus
allowing duplicates)

↑ DB(u, e) :=
∨

1≤i<n

(si, si+1). (6.8)

The number of occurrences of (s, s′) in trace DB(s, e) is denoted as ↑
DB(u, e)(s, s′).

Since modeling all observed transitions blows up the feature space quadrat-
ically, Using only the k globally most frequent transitions as features is pro-
posed.

• Frequent Transitions: The globally most frequent transitions are
searched for and the number of occurrences of these transitions is used
as a feature vector to describe a trace.

• Transition Probabilities: Common transitions of two traces are
found, and their similarities are adapted by the global rarity of these
transitions.

Definition 19 (Top-k Most Frequent Transitions). Let k be a positive inte-
ger, then the set FT is a set of pairs of spatial regions defined as

FT k(DB) = argmaxksi,sj∈S |{
∑

u∈U ,e∈E

↑ DB(u, e)(si, sj)}|, (6.9)

where argmaxkX(ϕ) returns the set of k arguments x ∈ X yielding the
maximum value substituted in term ϕ.

CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA 92

Now the k most frequent transitions FT k(DB) can be used as additional
features. Similar to the set descriptors presented in Subsection 6.3, the fea-
tures are described using

• Bit vectors, using the feature vector

v
↑bit(u,e)
i =

{
1 if FT k(DB)i ∈↑ DB(u, e)

0 otherwise
(6.10)

• Frequency vectors, using the binary feature vector

v↑freq(u, e)i =↑ DB(u, e)(FT k(DB)i) (6.11)

For these vectors, the same similarity functions defined in Section 6.3 can be
used.

Classification

Regardless of which of the modeling approaches presented in this section is
employed, the result is a high-dimensional feature vector. To classify a new
trace of an unknown user, the next section proposes the classification pro-
cedure, using the previously proposed user-specific trace models. To classify
the user of a new trace, a k-nearest neighbor classification approach is em-
ployed. This choice is made due to the extremely high dimensional feature
space, having one dimension per spatial grid-cell. Therefore, given a trace
database DB, traces DB(u, e) are extracted for each user u in each epoch
e. Since the user is known for each of these traces, the result is a labeled
dataset Ptrain of feature vectors. Given a new trace Q, map Q to its feature
description vnew and search the k-nearest neighbors of vnew in Ptrain w.r.t.
a corresponding similarity measure. To decide the final class decision, each
queried neighbor is weighted by its similarity value and the class is predicted
as the one having the largest cumulated similarity.

Formally, the k-nearest neighbors classification can be defined as follows.
Let Ptrain = {(vi, yi) | vi ∈ {0, 1}n ∧ yi ∈ L} be the set of training instances
consisting of pairs (vi, yi) with vi being the feature description of the user
trace i and yi being the label, i.e., identity of the user, assigned to trace i.
L denotes the set of labels. Given the feature description vnew of a query
trace, the identity, resp. label, ynew of vnew is determined by cumulating the
similarities, i.e., d(., .), for each label l ∈ L represented among the k-nearest
neighbors of vnew and taking the most representative label.

ynew = argmaxl∈L{
∑

d(vnew, v
l
k) | vlk ∈ kNN(vnew)} (6.12)

93 CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA

Note that no index structure is used to support the kNN-search due to the
high dimensionality of the feature space.

User Linkage

In addition to the identification of individual users, another application of
the user trace profiling is to link users between two trace datasets. Therefore,
let DB and DB′ be two trace databases having the set of users U and U ′,
respectively. The task of user linkage is to find pairs of database users (u ∈
U , u′ ∈ U ′) that correspond to the same individual in the real world, i.e.,
having u = u′. As an example, the two datasets may correspond to Twitter
and Instagram. The same individual may have different user names in both
social networks. The task of user linkage is to find such individuals.

Clearly, using the approach presented in Section 6.3, the trace of each
user are classified in DB, and the most similar user in DB′ is classified. The
drawback of such approach is that multiple users in DB may be matched to
the same user in DB′, and some users in DB′ might not have any match. To
avoid this drawback, the matching problem is formalized as a bipartite graph,
containing for each (u ∈ U , u′ ∈ U ′) a weight of similarity. This similarity
is chosen by performing a kNN search of each trace in DB on the database
DB′. Then, the score of (u, u′) corresponds to the number of occurrences of
u′ in kNN sets of all traces of user u.

Given this bipartite graph, the Hopcroft-Karp algorithm [119] is used to
find an optimal matching, i.e., mapping of each user in the smaller database
to exactly one user in the other that maximizes the total score.

6.4 Experimental Evaluation

The proposed approach is initially evaluated on a dataset mined from Twitter
using their public API, feeding from a global 1%-sample using a (51.25, 51.75)
degrees longitude to (−0.55, 0.30) degrees latitude window covering the Lon-
don region shown in Figure 6.1(b). London was chosen as a starting location
for having a high population, while still being predominantly an English
speaking location. Furthermore, London shows a high density of users and
tweets, thus increasing the size of the trace database DB, and allowing more
significant conclusions to be made.

It was also decided to use one-week periods for the temporal epoch. This
choice was meant to minimize the daily variability in a users locations. For
example: a user may work Monday through Friday, but only go to the gym
Monday, Wednesday and Friday, or night classes on Tuesday and Thursday.

CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA 94

(a) Traces within the 12 epochs (b) Observations per one-week Trace

Figure 6.2: Distribution of the Top 500 most prolific users in our London-
Twitter dataset.

They may also go grocery shopping, or to a religious institution only on the
weekends, thus going locations significantly different than were they would
be on a week day. Additionally, Twitter data is extremely sparse for most
users, thus more than a day was necessary to a reasonable number of tweets
to create location traces from. This lead to the choice of a twelve week time
interval from December 30, 2013 to March 24, 2014 being used. The choice
of twelve weeks was to allow for multiple weeks of traces for each user, while
not having too large of a dataset to use for initial testing purposes.

Out of these London-Tweets, the 500 users with the most Tweets during
the study period were selected, excluding obvious spammer or bot users.
This dataset was then split into temporal epochs of one-week. Thus, the
database contains a total of |U| = 500 users, and a total of |E| = 12 epochs.
Consequently, the database DB contains a total of U × E = 6000 location
traces.

To discretize space, a spatial grid is applied on the aforementioned rect-
angle covering the London region, having an extent ext in longitude and
latitude ranging from 0.01′ to 0.001′. The set of all resulting grid cells con-
stitutes the set of spatial regions S, having |S| = 4, 250 cells for ext = 0.01′

and 425, 000 cells for ext = 0.001′.
Consequently, for a user u ∈ U and an epoch e ∈ E a trace DB(u, e) is a

sequence of cells in S. To give a more detailed intuition of the characteristics
of the dataset, Figure 6.2 shows statistics about the traces of these 500 users.
Figure 6.2(a) shows the number of traces having at least one observation in
the corresponding epoch.

Of users, 42% have an observation have at least one observation in each
of the twelve epochs, and 75% of the users have at least one observation in at
least eight epochs. In addition, Figure 6.2(b) shows the number of observed
cells for each trace. Most users only visited a small number of space cells

95 CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA

(a) Jaccard Similarity

(b) Cosine Similarity

Figure 6.3: Classification Accuracy for varying grid-cell size and varying k.

each week, as half of the trace contain six or less cells. Note that any trace
having zero observations were removed from the dataset.

The classification experiments in this work were performed using an
eight-fold cross validation. Eight folds for optimal parallelization on an
eight core processor. Thus, in each experiment a test set of tracestrace
Q(u, e) ⊂ DB(u, e) is selected, and user mobility profiles are built using the
techniques of Section 6.3, without using the test traces, i.e. DB(u, e)\Q(u, e),
in the training step to avoid over-fitting.

Note that this important avoidance of over-fitting is a main differentiation
to the trace identification approach proposed in [77]. By having the query
trace in the training data, a k = 1-NN classification would always return a
100% classification accuracy, but defeating the purpose of user identification.
Consequently, since the related work in [77], solves a different problem, a
comparison would be unfair and non-explanatory. See Section 3.3 for more
details on [77].

As a classifier, k-nearest neighbor classification was utilized, using a

CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA 96

distance-weighting in case of ties, which is able to perform well despite an
extremely large number of |S| features. Classifications are performed us-
ing scikit-learn, a Python machine learning framework [207]. An exhaustive
search of all combinations available in scikit-learn in order to determine the
best possible settings to use. See Appendix A for raw results.

Accuracy Using Set Descriptors

In the first set of experiments, the accuracy of the user identification is eval-
uated for different grid-resolutions ext, using binary descriptors for the Jac-
card similarity measure (c.f. Definition 6.3). The results of this evaluation
are shown in Figure 6.3(a). In the basic setting having a relatively coarse spa-
tial grid of ext = 0.01′, a simple distance weighted kNN classification is able
to correctly identify (c.f. Definition 14) up to 85% of individuals for k = 5.
This result improves even further as the grid-resolution ext is increased. In
the case of the most detailed grid having ext = 0.001′, the solution is able to
break the 97% classification accuracy line. This result is quite concerning,
as it shows that the motion of individual real-persons is quite characteristic,
and that the motion model allows to capture this individuality and allows to
discriminate different users very well.

The classification result are worse for k = 1 and k = 3. This result is
contributed to chance, as another user may, by chance, have a trace very
similar to the query trace qeu ∈ Q(u, e) of user u. However, by using more
neighbors, it is likely that the correct user u appears at least twice in the
k = 3 or k = 5 set, thus out-weighting the erroneous user in the first rank.
Yet, for k > 5 there is a drop in accuracy. This is contributed that the query
user only has at most 11 traces in the training set. This number might be
less than 11 if a user was not active in all epochs. This is the case for many
users, shown by Figure 6.2. In the extreme case having k = 21, at least 10
trace of wrong users must be in the kNN result, allowing noise have a much
greater effect, especially in the case where u has few trace.

Furthermore, Figure 6.3(b) shows the results using frequency vectors as
descriptors, and using the cosine coefficient as a similarity measure (c.f. Def-
inition 6.3). The improvement in classification accuracy is relatively minor,
but are able to hit the 98% accuracy mark. This result can be contributed
to the fact that binary descriptors already perform so well. Summarizing,
knowing the set of places that a user visited is descriptive enough, such that
the frequency of visits does not yield much additional descriptiveness.

97 CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA

Figure 6.4: Classification Accuracy using Frequent Transitions.

Accuracy Using Frequent Transitions

In the next set of experiments, how the usage of transition descriptors (c.f.
Section 6.3) instead of set descriptors affects the classification accuracy is
evaluated. The results depicted in Figure 6.4 indicate that using from-to-
transitions, as opposed to just using sets of cells, further allows to improve
the classification quality. An increase in classification accuracy of around 10%
(absolute) is observed using transitions, achieving an classification accuracy
of nearly 95%. This result indicates that the sequence, and thus the motion
in space and time is more descriptive than just sets of regions, and thus the
motion in space-only.

While this was method did allow for a slight increase in accuracy, this
increase came at a cost. It causes the dimensionality of the data, and greatly
increase complexity. And thus, it greatly increases the processing require-
ments. Because there was only a small increase in accuracy for this increase
in complexity, transitions were not use used in the remainder of the experi-
ments. Though, further research in the subject could be worthwhile.

Accuracy for Different Observation Counts

Next, the number of observations required to identify (c.f. Definition 14)
a user accurately is evaluated. Therefore counts are created according to
the observation distribution in Figure 6.2. Then tests are for each count.
If a trace does not have the minimum number of observations for the corre-
sponding group, it is not tested, and if a trace has more observations than the
allowed maximum for the corresponding group, a random sample is taken and
tested instead. Thus, instead of testing the accuracy on the original traces
this tests the accuracy on controlled observation counts.

The classification results for each group can be seen in Figure 6.5. Sur-
prisingly, in the case of having only one random observation for each trace, it
is possible to identify over 70% of the users in this dataset. This is likely due

CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA 98

Figure 6.5: User identification accuracy for different observation counts.

to the fact that a random location from a trace is likely to pick a users most
frequent grid cell, which is most discriminative. Increasing the number of
observation samples to two, a significant increase in accuracy to 78% is seen,
and a steady growth in accuracy from there is shown. Accuracy starts to
level off after having 30 or more obervations from a user. This is surprising,
as the vast majority of trace has more than 60 observations. Thus, sampling
down to 30 observations, yields a significant reduction in data, but as Figure
6.5 shows, yields almost no reduction of discriminative information.

The leveled accuracy level is above 90%, which is extremely high for a
classification task having 500 different classes. This positive result is also a
consequence of large trace (i.e., traces having a large number of observations)
generally having larger trace in the training set, as the frequency distribution
of tweets among these 500 Twitter users in London is very skewed. Finally,
the classification performs the best, if the parameter of the kNN classification
is set to k = 1. This result is in line with Figure 6.3(b), as Cosine-Similarity
is used per default in this experiment.

Summarizing this experiment, very short trace having 10 or less observa-
tions in space and time are enough to unveil the identity of a user. This is a
concerning result.

User Linkage Between Different Social Networks

In all the previous experiments, a single user had to be identified based on a
new trace. In this section, the next step is evaluated. Linking whole sets of
users of two different social networks, based on their traces, as described in
Section 6.3 and defined in Definition 15. For this purpose, two new datasets
are employed, one generated synthetically by splitting the scalability (c.f.
Chapter 6.4) dataset randomly, and one splitting the same dataset based on

99 CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA

(a) Traces per user. (b) Observations per one-week Trace

Figure 6.6: Distribution of all 15,989 users in our London-Twitter dataset.

(a) User Linkage results for different frac-
tions of user belonging to each database.

(b) User Linkage results for linking Twitter
and Instagram.

Figure 6.7: Classification Accuracy for different Social Networks.

links between Twitter and Instagram.
Synthetic Database Split: For the synthetic database, a fraction of p

Tweets is uniformly sampled from the Twitter dataset DB, and pretend that
this set belongs to a different social network DB′. In this sampled database
DB′, the user-labels as ground-truth, which the algorithm tries to predict
given the data in DB can be used. For this experiment, only traces having
at least 10 tweets to sample from are considered. If uniform sampling of a
trace yields an empty set, it is re-sampled.

Instagram Data: Out of the 2.7 million tweets in the dataset, a signifi-
cant portion of 204 thousand tweets is labelled as coming from the Instagram
network. These Tweets were cross posted by the user, on both Instagram and
Twitter. Thus, the Instagram database DBI consists of all these cross-linked
posts. For the Twitter database, two cases are evaluated. In the first case,
the full dataset DB can simply be used, thus assuming that the Instagram
observations were made in both datasets. In the second case, the database
DBT = DB \ DBI is used, thus assuming that the Instagram observations
were made in the Instagram network only.

CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA 100

The results on the synthetic database split are shown in Figure 6.7(a).
For each value of p, 10 random samples of the database DB are obtained,
and results from each are averaged in order to avoid effects generated due
to random sampled. In all ten runs, the depicted values showed almost
no deviation, all being in a ±0.5% interval. An even 50/50 split yields a
correct linkage rate of almost 85%. Yet, this split becomes biased towards
a smaller value p. This can be explained by having a larger sample in the
training database DB, on which the traces of DB′ are queried on. However,
for p = 0.1, this accuracy drops significantly. This can be explained by the
previous experiments, showing that a sample of as little as three observations
suffices for a high classification accuracy. However, since many of the traces
only have 10 − 20 observations, there is a high chance that a 10% random
sample may only have one or two observations.

For the Instagram-Twitter matching, the results are shown in Figure
6.7(b), for the two cases of using the data as is, thus having all Instagram ob-
servations also present in the Twitter database, and the case of splitting the
dataset, thus removing the Instagram observations from the Twitter traces.
Using the raw dataset a prediction accuracy of roughly 80% using k = 1
nearest neighbor classification to build the bi-partite graph is observed.

In contrast, the case of splitting Instagram off of Twitter, the accuracy
drops to about 10%. These disappointing results can be explained by making
the hypothesis that users use Instagram and Twitter in different ways, such
as using Instagram when on a far-away vacation, while also using Twitter in
locations where you don’t usually take a picture, such as work and home.
Also, some of the users had all their tweets linked to Instagram, such that
the algorithm had no training data left in the Twitter database, thus having
to random guess the user. Thus, it appears that Twitter and Instagram
are used differently by users, making the Instagram sample much harder to
match than a uniform random sample taken from Twitter.

Scalability

In all of the previous experiments, only the top 500 Twitter users in London
were used. In the final experiment, this number of users is scaled up, by using
15,989 users that have a least two trace containing at least two observations
each. This larger dataset contains over 2.7 million Tweets, including the
original dataset. Statistics for this dataset are shown in Figure 6.6. The
quality of the observed traces is much worse compared to the earlier 500
users explored in Figure 6.2: In Figure 6.6(a) more than half of the users
have less than five traces within the twelve epochs, and only a small fraction
of 6% of the users have maximum number of twelve traces. In addition,

101 CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA

(a) Classification Accuracy

(b) Run-time (in seconds)

Figure 6.8: Scalability: Scaling the number of Twitter users.

Figure 6.6(b) shows the quality of these trace is much lower, as nearly 50%
of the traces have three or less observations. Due to the quality of this data
a eight-fold split was no longer possible. A stratified shuffle split was used
instead, taking 10 iterations of 20% samples.

The results on this dataset, in terms of classification accuracy as well as
run-times are shown in Figure 6.8. In terms of accuracy, there is a vast de-
crease in accuracy observed, even for the default setting of 500 users. This is
because the experiments are no longer using the top users, but just a random
sample of users, and the data quality, in terms of number of observations per
trace, as well as the number of trace per user, is much lower for these users.

Clearly, less frequent users are harder to classify, since there is less in-
formation. As the experiments are scaled up the number of users, there is
a decrease in classification accuracy, as the classification problem becomes
harder having more users. Still, the classification accuracy remains at al-
most 50%, despite the large number of 15,989 users, and the much lower
trace quality.

Since a kNN classification is employed, and thus a lazy learning method

CHAPTER 6. USER IDENTIFICATION BY USING MICROBLOG DATA 102

is used, there is no model learning phase. The run-time results for the clas-
sification is shown in Figure 6.8(b).3 a linear run-time is observed, which is
attributed to the extreme high dimensionality of the feature vectors, which
cannot be beneficially supported by an index structure for the kNN search.
But even at the full 15,989 users, the time to classify each trace is less than
1ms.

6.5 Conclusion
In this chapter, the challenge of identifying users in a spatio-temporal database
was approached. This approach uses historic traces of a user to learn their
motion in space and time, by proposing various feature extraction and sim-
ilarity search methods. Using a 12-week dataset of Tweets in the London
region, the experimental results show that it is possible to map a trace to a
ground-truth user with extremely high accuracy.

This raises various concerns and opportunities:

• The Threat of loss of privacy: Traces of real people are publicly avail-
able. Given only few observations of an individual. For example, one
person inadvertently appearing in the background of another person’s
Facebook images, then identifying this user in a trace database, and
linking them to additional data, such as username or real name.

• The Potential through record linkage of trace databases. For ex-
ample, joining the personal interests in locations (such as restaurants,
bars, cafes) from a LBSN with textual thoughts of a user from a micro-
blog. Thus, a micro-blog tweet from user u such as “I’m visiting the
Oktoberfest with my LMU colleagues!” , might be used to rec-
ommend restaurants to u by mining their restaurant preferences using
their check-ins in the LBSN.

• The Challenge of privacy preservation by trace obfuscation and other
means. By learning the characteristics that make a trace matchable to
its user, techniques to hide particularly descriptive and discriminative
observations from the public trace can be developed.

3Run-time tests were performed on AWS using a m4.2xlarge EC2 instance running
Amazon Linux. This instance type has 8 CPU cores and 32GB of RAM.

Chapter 7

Socio-Textual Mapping

The work presented in this chapter has been published as the article Socio
Textual Mapping in the Proceedings of the 8th ACM SIGSPATIAL Interna-
tional Workshop on Location-Based Social Networks, 2015 [262].

7.1 Introduction

Traditionally, a spatio-temporal database consists of triples (objectID, time,
location), mapping objects (e.g., users) and time to a position in geo-space
where the object was, is, or will be located. In recent application, this geo-
information is further enriched by textual information: For example, in geo-
social networks user can check-in at their current location such as a restaurant
and publish a textual description of their experience at this location. An-
other example is Twitter where users can broadcast small messages of no
more than 140 characters. Many of these Tweets contain a geographical tag
corresponding to the geo-spatial position of the user. Loosely speaking, the
textual content of a Tweet contains information about what’s on the mind of
a user : For example, a Tweet may describe an experience that a user wants
to share, a restaurant that a user wants to recommend, an achievement that
the user wants to boast about, or simply anything the user wants to say. In
this paper, we want to generalize this concept, by making the assumption
that the collection of recent tweets of a region reflects what’s on the mind of
a region.

As an example, consider the two topics “Justin Bieber” and “Greek Bankruptcy”
and consider two geo-spatial regions, such as Ontario, Canada and Germany.
It may turn out that in Ontario, one percent of all tweets contain the key-
word “Justin”, and five percent of all tweets contain the word “Greece”. In
contrast, the Twitter users in Germany may user the keyword “Justin” in only

CHAPTER 7. SOCIO-TEXTUAL MAPPING 104

0.1 percent of their tweets, but use the keyword Greece in ten percent of their
tweets. Clearly, these two distributions of keywords are different. Thus, peo-
ple in Ontario and people in Germany have different things that they tweet
about - different things that are on their mind. We want to automatically
extract a feature representation of what’s on the mind of people.

In the past, such a vision of describing a region by text messages published
in that region was entirely infeasible. Even in the example above, if we only
have a few hundreds of tweets per day in Germany, then making significant
statement about the frequency of the topic “Justin Bieber” is hard. Trying to
make conclusions about the frequency of rare topics such as “Databases” was
hard. Drawing conclusions for smaller spatial regions, such as cities or parts
of cities was completely impossible. But now, both the current trends in
technology such as smart phones, general mobile devices, stationary sensors
and satellites as well as a new user mentality of utilizing this technology
to voluntarily share information produce a huge flood of geo-textual data.
Today, we have 500 million tweets per day1 which, in addition to other sources
of geo-textual data such as travel blogs and social networks, we are suddenly
able to make significant conclusions about the frequency of rare terms even
in small spatial regions. It’s time to use this data. In [69], Cheng et al.
proposed a framework to predict a twitter users city-level based solely on
words in corresponding tweets. We generalize this idea to not only determine
words that classify cities, but find the latent concepts and topics that describe
a generic region. Thus we extend the relationship to areas such as districts,
cities, states or even artificial regions not tied to political borders (e.g. a
music festival event at an off-site location). Our vision is to describe geo-
spatial regions by a representation of their thoughts. We therefore derive
simple representations from the textual contents of microblog data. Using
this representation, we want to hierarchically cluster the world in terms of
what’s on the mind of their people. We call the resulting a socio textual map,
envisioned to be useful in a large variety of application fields:

• Research in sociology has focused on the problem of Ghettos and social
tensions in modern cities [130, 75, 131]. Data used in this kind of re-
search uses Census data using "up to six race/ethnicity groups (white,
black, Hispanic, Indian, Asian and other)"[131]. We claim that, es-
pecially in the 21st century, the race/ethnicity distribution of regions
is not the sole source of social tension. Social tension may be caused
simply by having different opinions and beliefs. With our solution, we
can find spatial regions, on a city scale, having people with significant
different interests. This may or may not be a result of ethnic differ-

1https://about.twitter.com/company

https://about.twitter.com/company

105 CHAPTER 7. SOCIO-TEXTUAL MAPPING

ences. Our proposed approach contains much more facets of people, by
directly mining the interests of the crowd.

• Our research may improve the process of geocoding of geo-textual data.
Given a user who specified "London" as his location, the probabilis-
tic distribution might be shifted towards the city of London, Ontario,
Canada, if the vocabulary, topics and keywords of his tweets are more
similar to regions within that area. This can be done by describing
the user, who is to be geocoded, by the set of his own tweets, obtain a
proper feature representation and compare this representation to can-
didate geo-locations.

• For targeted marketing, it may be much more interesting for a company
to direct their advertisements to an area of people having a similar
mindset. Even if this region covers multiple political regions. For
example, an upper-class car manufacturer may be looking to direct
an advertizement at a wealthy city district. However, parts of the
administrative city districts may not actually wealthy, or the actual
wealthy population may reach outside of the city district. With our
approach, the car manufacturer can target it’s advertizement at the
mental cluster that is rooted in the wealthy city district.

Obviously, the performance of the hierarchical clustering step strongly
depends on the quality of the text representation vectors that are used to fit
the clustering model. Although we limit the proof of concept to fairly simple
representations, summarized in Section 3.4, we want to emphasize that more
sophisticated text mining approaches as for instance those surveyed in [18], or
even deep learning approaches that learn vector representations [200] might
boost the performance of the clustering step.

The remainder of this chapter is as follows. In Section 7.2 we formalize
our search for a socio textual map, and identify the research challenges that
need to be solved towards this vision. In Section 7.3, we implement a first
solution, by solving each of the research challenges in an initial way. We
show that our vision is feasible: if the necessary research steps are all solved
thoroughly, then a large scale solution to map the minds of people is a vision
that may become reality.

7.2 Socio Textual Maps

In this section, we formally define our notion of our vision of a socio textual
map. We present a theoretical foundation to prove why the concept of a

CHAPTER 7. SOCIO-TEXTUAL MAPPING 106

Distance

measure

1 0 2 1 2
2 1 1 2 3
4 2 0 1 0
1 3 1 2 2
3 1 0 0 1

Hierarchical

metric clustering

Hello, World!

Good night

I like ham.

Features:
101100111...

Features:
100101001...

Feature selection

and transformation

regions x regions

Figure 7.1: Searching in collections of multi-represented users.

socio textual map is feasible and discuss problems, open research questions
and challenges. The first step requires to obtain a feature representation of
a potentially large and dynamic set of textual documents.

Definition 20 (Feature Selection). Let S ∈ String∗ be a set of text docu-
ments. A function f : S 7→ Rd is called a d-dimensional feature representa-
tion of S.

The choice of function f is one of the main challenges. This function
should chosen such that two of text documents S1 and S2 are similar in
terms of the topics, interests and experience of these texts, if and only if
f(S1) is similar to S2. Thus, a proper feature selection method should discard
terms without informative content, i.e. words that appear very frequently.
A common approach is referred to as document frequency-based selection,
introduced by [175]. The idea is to weight those terms that appear more
frequently with a higher value. To avoid prioritizing stop words like the, [238]
extended this approach by using inverse document frequencies. However,
these approaches give no information about the importance of a keyword in
terms of describing the mental topic of the user generating the text. This
is the challenge of feature extraction for socio textual mapping. In [76] a

107 CHAPTER 7. SOCIO-TEXTUAL MAPPING

concept is presented that uses an entropy measure to select those features
that carry the most information. Taking this concept to feature selection
for geo-textual data, the idea is to select terms which are highly frequent
in only a few regions, and extremely rare in others. Such local trends may
be extremely useful to distinguish regions at a local scale, but may become
useless for other scales and other areas. However, it seems intuitive that a
proper approach should also include global trends, that most of the world
has (to different degrees) on their mind.

Next, we apply function f to geo-spatial regions.

Definition 21 (Feature Transformation). Let W denote a hierarchical par-
titioning of the geo-spatial region representing the surface of the Earth. Each
level of W corresponds to a geographic scale, i.e., continental level, coun-
try level, state level and city level. For each region w ∈ W, the function
text(w) : W 7→ String∗ returns a set of text documents that are associated
with w.

The first step of our workflow in Figure 7.1 illustrates this step. In the
top-left of Figure 7.1, we consider a spatial region w corresponding to Bavaria,
Germany. We take the set of text messages text(Bavaria) and apply a (in this
example binary) feature transformation. The same feature transformation is
performed to all other German states. In the next step, we need to assess the
pair-wise dissimilarity between these regions, using standard vector distance
functions. Using the resulting dissimilarity matrix, exemplarily depicted in
the lower-left of Figure 7.1, we can apply a metric clustering approach to
find groups of similar regions. The choice and the parameterization of this
clustering approach are another challenging step. For instance, the clustering
approach needs to account for different geographic scale. That is, regions on
country level should allow much more freedom to be considered similar than
regions on a city level.

Theoretic Foundation

There are two main theoretical reasons why finding a socio textual map is
viable and feasible. The first is the law of large numbers, and the second is
Tobler’s first law of geography.
The law of large numbers states that, for a random variable, the empirical
probability approaches the actual probability as more trials are performed.
Applied to our problem, we can treat the topic of a tweet as a random vari-
able. For a sufficiently large number of tweets drawn from a region, the law
of large number states that the fraction of tweets having a specific topic con-

CHAPTER 7. SOCIO-TEXTUAL MAPPING 108

verges to the true fraction of people having this topic on their mind.2 The
flood of daily tweets and other geo-textual data sets allows us to exploit the
law of large number to obtain a representative sample of the minds of people
in a region.
Tobler’s first law of geography states that “Everything is related to ev-
erything else, but near things are more related than distant things” [248] and
is one of the key reasons why “spatial is special” [162]. It is the reason why
we expect that a clustering of the minds of regions results in a clustering that
is also spatially correlated. And it is the reason why we envision that we can
obtain a socio textual map that captures more than lingual vocabulary, but
also captures topics and trends that people think about.

7.3 Proof of Concept

For a proof of concept we collected tweets with geographic metadata from
Twitters public streaming API3. On each tweet’s text we applied the Apache
Lucene standard tokenizer to extract word tokens. For each geo-coordinate
we use the reverse geocoding library4 (based on OpenStreetMap data) to
obtain the corresponding city. In Section 7.3 we present an initial solution
to derive features corresponding to the relevance of terms based on their
relevance to a city. In Section 7.3 we will present different clustering results
which show that nearby cities are generally more related than cities further
away from each other.

Feature Selection and Transformation

Each tweet t is represented as a tuple (ct,Wt) ∈ S where ct denotes the
city corresponding to the tweet’s location and Wt = {wt,1, ..., wt,n} denotes
the set of extracted word tokens for the text of tweet t. After each epoch
(say, 1 hour), we want to obtain a set of k most “representative” features for
each city c. Using only the top-k most frequent terms would result in a sole

2Two implicit assumptions are made here. First, we assume that a the content of a
tweet correlates with what on the mind of the tweeter; second, we assume that sample
tweets are drawn independent without any bias. The second assumption is critical, as
some people are “more vocal” than other, thus tweeting more often than others and thus,
overrepresenting the topics on their minds. However, it was shown in [241] that the law
of large numbers still holds as long as there is no user which dominates all other users in
terms of tweet frequency, and as long as the error is unbiased, i.e., the frequency of tweets
of a user is independent to the topics on his mind.

3https://dev.twitter.com/streaming
4https://github.com/kno10/reversegeocode

109 CHAPTER 7. SOCIO-TEXTUAL MAPPING

clustering of languages, rather than a clustering of people’s thoughts, because
regions are usually dominated by the English language and thus, stopwords
like the, and, or, etc. would cause regions of actually different mind sets to
be indistinguishable among themselves. Let tfw and tfw,c be the frequency
of word token w and the frequency of w mentions within a city c. We then
define a score of a word token w as follows:

score(w) =
P (w|c)− P (w)√

tfw
tfw,c

where P (w) denotes the probability of obtaining the word token w regardless
of its location and P (w|c) the probability of obtaining word token w given a
city c respectively.

Clustering

To respect the hierarchical nature of our data we utilize an agglomerative
clustering approach. Therefore we first construct a similarity matrix of the
size n × n, where n is the number of all cities. The cell ci,j for the i-th
and j-th city is set to the Jaccard similarity coefficient of the corresponding
feature sets Fi and Fj, i.e. ci,j =

|Fi∩Fj |
|Fi∪Fj | . As shown in Figure 7.2(a) we

are able to determine political country boundaries. Each circle represents a
city having at least 150 tweets in a time-frame of 60 minutes. On a finer
geographical scale, we obtain more detailed micro-clusters within countries
in Europe, such as Great Britain in Figure 7.2(c)), and France and Spain in
Figure 7.2(d). On a even more detailed scale, we can find clusters within a
city, such as the city of London (England) in Figure 7.2(b). These different
clusterings are obtained by varying the distance threshold parameter of the
clustering algorithm. It is important to note that the selected features do not
consider spatial distances. Nevertheless, the clusters that we obtain, in all
settings of Figure 7.2 are, more or less, grouped in geo-space. We contribute
this result to Tobler’s first law of geography as presumed in Section 7.2.

The main conclusion drawn from this evaluation is that it is possible
to invert Tobler’s law: We show the counter-direction that regions having
similar tweets are also more like co-located in geo-space. For instance, in the
experiment of Figure 7.2(e) we only consider tweets that are flagged to be of
Spanish language. We see that cities in Spain form a cluster that, except for
a few outliers, represents all of Spain and Spain only - and cities in Mexico
form a cluster that, for the most part, represents all of Mexico and Mexico
only. Note that this experiment also shows some cities in the United States,
as these may also have more than 150 tweets in Spanish language over the
considered time period. This observation is a proof of concept for the vision

CHAPTER 7. SOCIO-TEXTUAL MAPPING 110

of socio textual mapping using user data to describe the mind of people of a
region.

7.4 Challenges

Now that the concept is defined, theoretically founded and an empirical proof
of concept is provided, we identify some of the challenges that need to be
addressed by the research community for this vision to become a success.

Feature Representation: We need to find a feature representation of
tweets of a region that capture the mind of the people of that region, rather
than their vocabulary. In our proof of concept, we used the most frequently
used terms in a region. Clearly, any region in the US or any English speaking
country will frequently use stop words such as “the” and “and”. While our
proof of concept in Section 7.3 removes these stop words, it is still an open
question weather the remaining keywords are representative for the interests
and thoughts of users. A more desirable approach, which will allow to better
reflect the mentality of a user, rather than his vocabulary, one could look
into solutions for temporal-textual trend mining as presented in [57, 227].
This way we could directly count the mentions of topics that are, globally,
on the mind of people.

Distance Measure: Given occurrences of appropriate set of keywords,
or any other means of representing the mind of region, we need adequate
solutions to measure the similarity between regions. In our experiments,
we simply used a Jaccard index to measure similarity between the selected
features sets of a region (as discussed in Section 7.3). We need a distance
measure which also takes into account the geographic scale of the considered
regions: Two small parts of a city should penalize minor difference much
more drastically. Also, a good distance measure may also consider the spatial
distance of the regions, thus incorporating Tobler’s first law of geography in
the distance function.

Metric Clustering: We use an agglomerative single-link clustering, i.e.,
a single-link clustering that returns a Dendogram of different clusterings for
different single-link-distance parameter values. This result allowed us to
manually pick single-link distance thresholds for different geographic scale.
For example, we manually picked a proper single-link-distance value to obtain
a good clustering on country-level, and a different value for a good clustering
on city-level. While our proof of concept showed that this proper parameter
choice led to solid results which were highly correlated to political (and non-
necessarily lingual) borders. Yet, an approach is needed to automatically

111 CHAPTER 7. SOCIO-TEXTUAL MAPPING

adapt its parameters for different scale-levels. Also, it would be great to
compare different levels, such as large cities and small countries.

Other Data Types: For our socio textual maps, we exclusively used
geo-textual data to describe the mentality of a spatial region. We made this
choice since large sets of geo-tagged and user-tagged are available publicly.
But this is not the end of the vision. Other data types can be used to
estimate the mindset of a region. For instance, time-series of activity of
users, content of published multi-media data, attributes of users of a region
(e.g. age, nationality, etc.). We envision a feature representation to capture
all social information available, in order to plug this feature representation
into the framework of Figure 7.1.

Independence of languages: We see that lingual borders also imply
mental borders. Ultimately, we envision a solution that is completely inde-
pendent of languages. Thus, we want a region in Japan to be able to cluster
with a region in Spain, if and only if both regions have the same topics in
mind, but use different vocabulary (and letters) to describe the thoughts on
their mind. Thus, we envision feature representation that are not merely
based on vocabulary, but more precisely capture the mentality of people.
We strongly believe, that a joint effort of the GIS community will allow to
overcome these challenges to manifest our abstract vision of a socio textual
map into a powerful instrument for social good.

CHAPTER 7. SOCIO-TEXTUAL MAPPING 112

(a) Clustering at a high level yields
country boundaries.

(b) Language independent micro-cluster at
city level (e.g. London).

(c) Language independent cluster results
at country level.

(d) Clusters within Spain and France

(e) Separation for same Language (Spanish) into distinct clusters.

Figure 7.2: Visual clustering results.

Part II

Representation Learning on
Graphs

113

Chapter 8

Introduction

One data structure that we want to put special emphasis on in this part
of the thesis are graph structures, respectively algorithms that process data
that are modeled as graph structures. In general, graphs are especially use-
ful when dealing with relational data as they are designed for the purpose
of modeling relations between entities explicitly. In terms of graph terminol-
ogy, such entities are usually referred to as nodes or vertices, while relations
or interactions between entities are modeled as links or edges. Representing
data as graphs provides a handy, and oftentimes efficiently accessible way
to store and process data in a huge variety of application fields like biology
(e.g. drug design), marketing (e.g. recommendation systems), or social sci-
ences (e.g. social network analysis). Reasoned by their broad availability
and the huge amount of information that can be captured by graphs, a very
important, and also highly demanded key challenge is to represent graphs
or parts of a graph, e.g., subgraphs, nodes, or edges, as numerical feature
vectors such that they can be used for downstream machine learning algo-
rithms. However, representing the wealth of information that is given by the
graph structure within appropriate feature vectors is not straightforward.
Traditional methods therefore often rely on hand-crafted features, like the
clustering coefficient or in-betweeness scores, that quantify specific structural
properties. A major drawback of these methods is that the choice of the right
features is not obvious and also, that some of these structural features tend
to be computationally expensive to calculate, especially for large networks.
To overcome those shortcomings, a recently popular line of research focuses
on representation learning on graphs. The key idea of all approaches that fall
into this area is that structural features shall be learned instead of computing
them explicitly. The different learning procedures are typically unsupervised,
can mostly be framed within classical encoder-decoder frameworks [109] and

115 CHAPTER 8. INTRODUCTION

(a) Input: Karate Graph (b) Output: Vector Representations

Figure 8.1: Example for homophily-based node embeddings.

partially rely on various inductive biases1, hence aiming at encoding differ-
ent structural properties within low dimensional feature vectors in Rd. In
general, the different inductive biases guide the learning processes so that
the trained models optimize the learned mappings such that specific struc-
tural properties that are present in the graph are also reflected in the learned
vector space.

Focusing on the task of learning representations for nodes in graphs, the
general goal is to learn functions that map vertices in the graph to low-
dimensional vector representation, i.e., V → Rd, with V denoting the set
of nodes in the graph. The inductive biases can be divers. One common
inductive bias is the so-called homophily assumption. Encoder models that
follow this assumption are biased towards learning node embeddings such
that nodes which reside in the same communities within in the graph are
also similar (close to each other) in the vector space, while the representa-
tions of nodes from different communities are dissimilar. Figure 8.1, taken
from [214], depicts an outcome of such an homophily-based node embed-
ding for the Zachary’s Karate Club network, a social network where nodes
denote the members of a karate club and links indicate social interactions
between the members. In the given example, the nodes have been mapped
into a 2-dimensional latent representation space. One can observe that the
community structure is preserved within the vector space, i.e., the node rep-
resentations of the nodes that belong to the same community may end up in
the same spatial cluster while nodes from different communities may belong
to different spatial clusters. Once having this kind of node embeddings after
the encoding step they are typically fed into the decoder to make specific

1Inductive biases can generally be understood as assumptions that are given into the
learning process, e.g., by the model architecture, the loss functions or other components,
as priors (see [28] for details).

CHAPTER 8. INTRODUCTION 116

(a) Input: Mirrored Karate Graph (b) Output: Vector Representations

Figure 8.2: Example for structure-based node embeddings.

predictions. Classical prediction tasks include node classification and link
prediction. For the latter task, the common approach is to combine pairs
of node embeddings into a single edge representation and subsequently use
these representations for a binary classification. The basic assumption be-
hind using homophily-based node representations for prediction tasks is that
class distributions correspond to the community structure within the graph.
This assumptions holds for many applications. For instance, in a social net-
work that models blogging platforms where nodes indicate users, edges link
users that discussed a specific topic and the labels or classes indicate interest
groups, one may rely on homophily-based node embeddings to predict the
interests of an user, or to make recommendations that point users to specific
topics.

Another well-known inductive bias for node representations that we focus
on in this part is the topology-preserving bias. Node embedding techniques of
this class aim at encoding local topological properties so that nodes that have
a similar topology within their local neighborhood end up close together in
the latent vector space. The idea of this type of node embedding is visualized
in Figure 8.2 that is taken from [217]. On the left side of the figure is the
mirrored Karate network where the original network is simply copied and
both copies are connected via a single edge that links one node of the network
to its exact copy. Each node and its corresponding copy have the same color,
and in particular each node and its corresponding copy also have the same
topological structure within their local neighborhoods. The right figure again
shows the 2-dimensional latent vector space, and it can be observed that
nodes having the same color are mostly spatially close to each other.

In contrast to homophily-based approaches, encoding nodes based on
their local neighborhood topology is less useful when aiming at solving a task

117 CHAPTER 8. INTRODUCTION

as described above. However, imagining the task of recommending “follow”
relationships in a social network where nodes are users and “follow” relation-
ships are modeled as undirected links, structure-based encodings may indeed
be more useful than homophily-based embeddings. This is due to the in-
herent multi-modal2 characteristics in such social networks. Considering the
Twitter network for instance, all users can simply be seen as users. However,
it can be observed that some users are different than the majority of users
in terms of structural properties within their local neighborhood. E.g., the
nodes that correspond to celebrity-users typically have a much higher degree
than “usual” fan-users. Naturally, it occurs that such celebrity-users and
their fan-users form some sort of community. So, using homophily-based em-
beddings for predicting new “follow” relationships for a given fan-user in this
scenario would lead to link recommendations to other fan-users with a high
probability. This may be useful if the task is to connect a specific community,
but less useful if the objective is to make some sort of celebrity recommen-
dations like “if you like rockstar A you may also like rockstar B”. In such
cases, structure-based node embeddings are more appropriate. A somewhat
more complicated use-case for structural node embeddings is the classifica-
tion of proteins according to the function they have within protein-protein
interaction networks.

The remainder of the second part of the thesis presents algorithms that
have been developed in the area of representation learning on graphs during
this thesis’ work. After discussing related work in the field of representa-
tion learning on graphs in the following chapter, we present an unsupervised
approach for learning homophily-based node embeddings based on approx-
imated Personalized PageRank distributions in Chapter 10. After this, we
present an unsupervised method for calculating structure-based node em-
beddings based on multiple local neighborhoods of various extents in Chap-
ter 11. In Chapter 12, we present a clustering-based approach that uses the
structure-based node embeddings from the previous chapter to embed entire
graph structures. Chapter 13 shows our work on semi-supervised node clas-
sification that aims at predicting node labels from partially observed labels
within multiple local neighborhoods. Finally, to conclude this part we present
results of our study where learned node embeddings have been applied for
the task of map conflation in Chapter 14.

2Multi-modal in the sense that there actually exist different types of nodes without the
nodes being tagged so explicitly.

Chapter 9

Related Work

Due to the broad range of applications for relational data represented as
network structures, there has also been a large body of work on solving em-
bedding problems. In this chapter, we briefly survey previously published
works that are related to the topics that are discussed throughout this part.
In detail, we first discuss related work on unsupervised node embedding,
before we focus on methods that have been developed for learning node rep-
resentations in a semi-supervised manner. Finally, we also review published
work that aims at embedding entire graphs for graph classification.1

9.1 Unsupervised Node Embedding

The pioneering approaches in the field of unsupervised node embeddings
mostly use global, spectral methods with the purpose of finding structure-
preserving, low-dimensional embeddings for vertices in a graph. Notably,
these approaches originally aim at solving the task of (non-linear) dimen-
sionality reduction in non-relational data. Therefore, the general inductive
bias of these methods is that the data lies on a low-dimensional manifold.
However, they are related to node embedding techniques as they firstly con-
struct some sort of similarity graph, and subsequently feed either the node
similarity matrix or the graph Laplacian into some matrix factorization step.
In a very general sense, the classical Multidimensional scaling (MDS) algo-
rithm [249, 102] can be understood as such a methodology, since the idea is

1As this chapter mainly discusses works that are closely related to the meth-
ods presented in the upcoming chapters, and in particular does not cover works on
e.g. heterogeneous graphs, or edge embedding methods, or supervised methods (e.g.
[224, 268, 159, 165, 247, 142]) that also fall into the field of representation learning on
graphs, we refer the interested reader to a recent survey that can be found in [59].

119 CHAPTER 9. RELATED WORK

to factorize the (dis)similarity matrix of objects such that similar objects are
represented close to each other in the resulting low-dimensional space and
dissimilar objects are far from each other. In fact, the similarity matrix can
be seen as a complete network, where each pair of nodes (i.e., objects) is con-
nected. Following their intuition, multiple methods, e.g., Isomap [246, 27],
LLE [220], Laplacian eigenmaps [30], or LPP [116], refine this idea with the
intention to preserve structural properties of the underlying data. By con-
structing a kNN graph, where each data object is related to their k-nearest
neighbors in the feature space (with respect to some feature-based similar-
ity measure), and deriving a similarity matrix that is then factorized, they
finally get low-dimensional representations. These approaches mainly differ
in how they derive the similarity matrix, however, all aiming at capturing
local, structural properties.

More related to the works presented in this part of the thesis are the re-
cently proposed node embedding techniques that mostly rely on neural learn-
ing and have explicitly been designed for embedding graph vertices. Here,
we broadly categorize those works into homophily-based node embedding
and structure-based node embedding techniques as this reflects the structure
of the following chapters. However, please note that there might be meth-
ods that allow for the flexibility to be biased towards either of these two
categories.

Homophily-Based Node Embedding

In general, all homophily-based node embedding techniques aim at preserv-
ing community structure, and hence they mainly rely on the local structure,
respectively the local node neighborhoods. Therefore, they mainly differ
in how to determine the node neighborhoods. The first method that has
been developed for learning node embeddings based on the homophily as-
sumption is DeepWalk [214]. The key goal of this method is to learn latent
vector representations for nodes based on the local neighborhoods (in the
network domain) of the nodes. Precisely, the algorithm first performs a cou-
ple of random walks that are intended to capture the structural properties
of the underlying graph. After performing the random walks, the authors
propose to slide a small window over the retrieved node sequences and sam-
ple “focus-context” node pairs from the window. The intuition is that the
“context node” is assumed to be a node appearing in the local neighbor-
hood of the “focus node”. Finally, the pairs are used as training instances
to learn the homophilic node embeddings by using the so-called SkipGram
model [182, 181] (we postpone the discussion of this model to Chapter 10).
This way, DeepWalk is rather likely producing similar embeddings for nodes

CHAPTER 9. RELATED WORK 120

with similar neighborhoods. Based on the DeepWalk framework, Grover et
al. presented the node2vec algorithm [103]. The key difference lies in the
way node2vec explores the local node neighborhoods. Instead of relying on
classic random walks, the authors propose to use second-order random walks
with the goal to increase the adaptability to differently structured neighbor-
hoods. This flexibility comes to the cost of introducing two hyperparameters
that guide the random walk. By setting these parameters, users can bias the
walks towards a breadth-first search or a depth-first search strategy, which
in turn introduces different inductive biases. While a breadth-first search
strategy tends to lead to homophily-based embeddings, a depth-first search
strategy tends to lead to structural embeddings. However, we want to note
that in most applications a proper hyperparameter setting is not straight-
forward and hence costly grid-searches (that possibly require ground-truth
data) are usually necessary. The LINE algorithm [244] learns two differ-
ent representations. The first-order proximity representation is learned by
maximizing the joint probability of directly connected nodes. Therefore, the
directly connected nodes have to be close to each other in the vector space.
As stated by the authors, this learning goal is only suitable for undirected
graphs. For the second-order proximity the conditional probability of the
node given its direct neighbor is maximized. This results in embeddings,
where nodes are close to each other in the vector space if they share the
same direct neighbors. Thus, the second-order proximity representation is
similar to the DeepWalk result when considering only the direct neighbors
for each node. To incorporate higher-order proximities, too, the GraRep al-
gorithm [62] computes a sequence of matrices, i.e., random walk transition
matrices taken to powers ranging from 1 to k, and subsequently applies SVD
to them. In contrast to the previous homophily-node embedding methods,
GraRep uses explicit instead of implicit factorization of co-occurrence matri-
ces. The recently proposed VERSE algorithm [253] uses a generic but fixed
node similarity measure specified by the user as input to learn the distribu-
tion of the given similarity measure that, in turn, is used to generate the
embeddings. In particular, the fact that the user can specify the similarity
measure means that VERSE also allows for the flexibility to range between
homophily-based and structural node embedding. Further recent methods
focus on additional aspects, notably the authors of GraphSAGE [108] pro-
pose an inductive node embedding technique that relies on additional node
attributes. Graph2Gauss [43] aims at taking uncertainty into account by
embedding nodes as Gaussian distributions.

121 CHAPTER 9. RELATED WORK

Structural Node Embedding

In contrast to homophily-based node embedding, the idea of structural node
embedding is to relate nodes if their connectivity patterns to their respec-
tive neighbors exhibit similar structural properties. To this end, struc2vec
[217] trains a SkipGram model using degree sequences in neighborhoods of
increasing size. However, the method hardly scales in terms of graph size.
Similarly, DRNE [254] sorts neighboring nodes by their degree and feeds the
resulting sequences into an LSTM. The authors show that in some special
cases, the resulting embeddings satisfy regular equivalence which recursively
defines two nodes in a graph to be role-equivalent if their neighbors have
the same roles. While such graph-based role definitions are rather strict and
often do not apply in the real world, we take a more flexible feature-based
embedding approach. RolX [117] is a feature-based approach which relies on
handcrafted structural features (such as node degree or clustering coefficient)
and computes soft-assignments of nodes to a predefined number of roles using
matrix factorization. For a more in-depth discussion on role discovery, we
refer to [219]. A diffusion-based approach is taken by GraphWave [82], where
the graph is first transformed to the spectral domain in which the signal is
then filtered with a heat kernel. Approximation using Chebyshev polynomi-
als of order up to k results in linear time complexity and a k-localized filter.
Node embeddings are derived by aggregating the rows of the resulting wavelet
coefficient matrix while controlling the spread of the diffusion implied by the
heat kernel. For detecting patterns at multiple scales, embeddings resulting
from different scaling parameters are computed and concatenated.

9.2 Semi-Supervised Node Embedding

In applications where some of the labels are known, unsupervised node em-
beddings can generally be used within a semi-supervised learning pipeline
consisting of separate optimization steps as is the case for semi-supervised
learning with pre-trained node embeddings. However, learning node em-
beddings via end-to-end training usually leads to better performance on the
downstream supervised learning objective. To this end, traditional methods
typically rely on some sort of propagation mechanism to spread label infor-
mation throughout the network. Label Diffusion [284, 285, 281, 208, 259]
methods propagate labels from labeled nodes until convergence and classify
based on majority vote. While classical methods [284, 285, 281] rely on the
homophily assumption, Cosine Label Propagation [208] applies label propa-
gation to a similarity graph constructed from the cosine-similarity of nodes’

CHAPTER 9. RELATED WORK 122

adjacency vectors. The underlying assumption behind this approach is that
nodes should have similar labels if they have similar neighbors. The au-
thors further propose the Two-Step Label Propagation method [208] which
skips immediate neighbors in the label propagation process to reflect the as-
sumption that nodes have the same labels if they are structurally equivalent.
Dynamic Label Propagation [259] extends the idea of the traditional label
propagation objective by inducing label correlation between nodes into the
transition matrix to reinforce propagation between nodes with similar label
distributions. These label distributions consider a node’s own labels and
not labels occurring within the node’s neighborhood. In particular, those
advanced label propagation methods have the advantage of being able to
deal with other kinds of inductive biases than only homophily. For instance,
they also can model heterophily, i.e., nodes share the same label if they ex-
hibit a single specific correlation between labels within their local neighbor-
hoods, or even mixed patterns, i.e., nodes share the same label if they exhibit
one of possibly multiple, specific correlations between labels within their lo-
cal neighborhoods. Similar to the previously mentioned approaches, Belief
Propagation [206, 144, 97] methods propagate labels but require an explic-
itly parametrized transition matrix from the user to model either homophily,
heterophily or mixed patterns. It is noteworthy that similarly to random-
walk based node embeddings, all of the above methods are not able to make
use of information in distant or disconnected parts of a graph. Furthermore,
graph diffusion methods do not have separate training and inference steps
and hence requiring these methods to be executed again whenever the un-
derlying graph changes. To overcome these shortcomings, the ICA and GS
algorithms [229] iteratively classify unlabeled nodes with a local classifier and
use nodes labeled in the previous iteration as ground truth. The more recent
model Planetoid [271] combines the prediction loss with node embeddings by
training a joint model that predicts class labels as well as graph context for
a given node. It samples context nodes from the local neighborhood, similar
to DeepWalk, as well as possibly distant nodes with a shared label.

A slightly different but important direction is semi-supervised learning
on attributed graphs. The vast majority of recently proposed neural network
based models can be described within a Message Passing Neural Network
(MPNN) framework [98]. An important special case are Graph Convolu-
tion Networks (GCN) [56, 180, 80, 142, 25, 186, 156, 236, 256, 161] which
aggregate node attributes over local neighborhoods with spatially localized
filters, similar to classical convolutional networks on image data. Note that
despite these methods typically taking benefit from additional information
provided by node attributes, they mostly can be adapted to non-attributed
versions straightforwardly and hence are considered as related. However,

123 CHAPTER 9. RELATED WORK

these methods are not able to learn direct correlations between a node’s la-
bel and labels of neighboring nodes, be it homophily or a general type of
correlation. Nonetheless, one might attempt to use MPNN in combination
with class labels instead of attributes. This would require to ensure that a
node will not at some point receive a message containing information about
its own class label, which will happen after a sufficient number of message
passing iterations if a node is reachable from itself (as is given in cyclic or
undirected graphs). This problem is non-trivial since the MPNN framework
requires the whole feature matrix for the forward pass and computes updates
based on all labeled nodes in the training set. A naive approach of masking
the nodes’ own labels would result in a different feature matrix for each node
and therefore leads to infeasible training costs.

9.3 Embedding Entire Graphs

Methods for embedding entire graphs with the purpose of graph classifica-
tion can be sorted into kernel-based and feature-based methods. Kernel-
based methods focus on deriving similarity models which typically perform
an implicit feature transformation and rely on kernelized classification mod-
els. Feature-based models compute continuous graph representations which
are fed to a generic classification model.

Kernel-based Methods

Established graph kernels include the Random-Walk (RW) [45], Shortest-Path
(SP) [44], Weisfeiler-Lehman (WL) [231] and Graphlet Kernel (GK) [232].
The first two methods rely on additional node labels and count visits to nodes
with a certain label in random walks or via shortest paths, respectively. The
WL kernel is based on the Weisfeiler-Lehman graph isomorphism test and
performs a relabeling of initial node labels. The graphlet kernel counts oc-
currences of small induced non-isomorphic subgraphs and does not consider
additional node labels. A problem with all of the above kernels is that corre-
lations between feature dimensions are not taken into account. This problem
is addressed, e.g., in [269, 192, 11] by learning hidden representations of the
substructures counted by the respective graph kernels. However, it should
be noted that all of the above methods suffer from rather high complexity.
Other works focus on directly specifying graph metric spaces. A classical ex-
ample is the Graph Edit Distance [223] which minimizes the number of edit
operations that are needed to transform one graph into another one. Such
approaches are usually NP-hard and rely on heuristics [31, 196]. For instance,

CHAPTER 9. RELATED WORK 124

[31] proposes a family of tractable graph metrics that approximate two com-
mon intractable metrics and provide extensions to incorporate additional
node attributes. In [196], graphs are represented as bags of node embedding
vectors and compared by using the Earth Mover’s Distance (EMD), where
additional node labels may be incorporated by matching only nodes with the
same label.

Feature-based methods

Earlier works on feature-based graph classification rely on handcrafted fea-
ture embeddings. Notably, NetSimile [34] extracts structural features (such
as node degree and clustering coefficient) for each node and aggregates them
per graph using different aggregation functions including mean and standard
deviation. Similar to graphlet kernels, another line of research focuses on
describing graphs by decomposing them into subgraphs. Subgraph2vec [192]
computes subgraph embeddings using a SkipGram model where subgraphs
are rooted and context subgraphs are rooted at neighbors of the source root.
The more recent method GE-FSG [194] represents graphs as bags of fre-
quent subgraphs and learns graph embeddings using a document embedding
technique. GAM [150] addresses the problems of scalability and noise by
using an attention model to focus on small and informative parts of a graph.
However, the method relies on additional node attributes. Sub2vec [11] also
focuses on embedding subgraphs but does not attempt to represent graphs
by their subgraphs.

While GraphWave [82] considers only node embedding, other diffusion-
based methods focus on embedding whole graphs. DeepGraph [158] computes
graph embeddings based on heat kernel signatures. However, the final em-
beddings are trained end-to-end for predicting network growth. In addition
to the heat kernel signature, NetLSD [252] further considers the wave kernel
signature. Similarly as in GraphWave, signatures of different scales are con-
catenated in order to obtain a multi-scale representation and a k-th order
approximation is performed to make the eigendecomposition of the Laplacian
scalable. Message Passing Networks [98] is a class of neural networks models
for graphs. The primary focus of these methods lies on learning embeddings
from node attributes and they cannot be applied out-of-the-box to classify
general non-attributed graphs. Patchy-san [195] addresses this problem by
considering auxiliary node labels such as degree or PageRank centrality.

Chapter 10

Homophily-Based Node
Embedding

The work presented in this chapter has been published as the article LASAGNE:
Locality and Structure Aware Graph Node Embeddings in the Proceedings of
the IEEE/WIC/ACM International Conference on Web Intelligence (WI),
2018 [92]. The work has been awarded with the Best Student Paper Award.
A preliminary version which serves as a technical report has been published
on arXiv as preprint arXiv:1710.06520, 2017 [91].

10.1 Introduction

Graphs are a common way to describe interactions between entities. The
entities are modeled as nodes, and the interactions between pairs of entities
are represented by edges between nodes. Describing nodes of a graph as low
dimensional vectors has the advantage that many popular machine learning
algorithms can be automatically applied, and it is applicable in many areas
like visualization, link prediction, classification, etc. [176, 166, 13, 38]. Mo-
tivated by this, so-called representation learning methods for graph vertices,
e.g., [214, 244, 103], focus on learning vectors to represent information in
neighborhoods around a node, e.g., nodes within a short geodesic distance
or nodes encountered in random walks starting at a given node.

Somewhat more formally, letG = (V,E) be a graph, with V = {v1, . . . vN}
being the set of nodes and E = {e |e ∈ V × V } being the set of (undi-
rected) edges. The general goal is to find a vector embedding or latent rep-
resentation for each node vi such that the resulting set of embedded nodes
E = {f(vi)|vi ∈ V } in the d-dimensional vector space Rd still reflects struc-
tural properties of G. For instance, such structural properties could be the

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 126

similarity of the neighborhoods of two nodes vi and vj. The neighborhood
N (v) of a node v is defined as the set of nodes having the highest probabil-
ities to be visited by a random walk starting from node v, a geodesic walk
starting from v, or some other related process. This means if N (vi) ≈ N (vj)
holds in the original graph space, it should also hold that f(vi) ≈ f(vj) in
Rd.

The intuition behind these representation learning methods is that nodes
having similar neighborhoods are similar to each other, and thus one can use
information in the neighbors of a node to make predictions for a given node.
Defining the right neighborhood for each node, however, is a challenging
task. For example, in unsupervised multi-label classification, the labels of
the nodes define the underlying local structure for a particular class, but
often this does not necessarily overlap significantly with the local structure
defined by the the edge connectivity of the graph. Alternatively, realistic
graphs typically have large-scale properties that are very poorly structured
with respect to the behavior of random walks [152, 155, 153, 134, 10, 9].

The basic assumption of random walk based methods (as well as other
related methods) is that nodes visited more often than others by random
walks starting from a particular node are also more useful to describe that
node in terms of downstream prediction tasks. However, the problem with
random walks is that typically most of the graph can be reached within a few
steps, and thus information about where the random walk began (which is
the node for which these methods are computing the embedding) is quickly
lost.

This issue is particularly problematic for extremely sparse graphs with
upward-sloping Network Community Profiles (NCPs) [152, 155, 153] and
for flat NCPs [134] (expander-like graphs) or deep k-cores [10, 9]. These
properties are ubiquitous among realistic social and information networks.
This suggests that, unless carefully engineered, embedding methods based
on random walks will perform sub-optimally, since the random walks will
mix rapidly, thereby degrading the local information that one hopes they
identify.

In this chapter, we explore these issues, and we present a method which
takes the local neighborhood structure of each node in the graph individually
into account. This leads to improved embedding vectors and improved results
in downstream applications for graphs.

Our method, Lasagne, is an unsupervised algorithm for learning locality
and structure aware graph node embeddings. It uses an Approximate Per-
sonalized PageRank vector [22] to adapt and improve state-of-the-art meth-
ods for determining the importance of the nodes in a graph from a specific
node’s point of view. The proposed methodology is easily parallelizable, even

127 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

on distributed environments, and it has even been shown that the methods
we adapt were applied to graphs with more than billions of nodes on a single
machine [234].

We evaluate our algorithm with multi-label classification and link pre-
diction on several real-world datasets from different domains under real-
life conditions. Our evaluations show that our algorithm achieves better
results—especially for downstream machine learning tasks whose objectives
are sensitive to local information—in terms of prediction accuracy than the
state-of-the-art methods, and our algorithm achieves similar results for link
prediction. As has been described previously [155, 134, 10, 9], and as we re-
view in Section 10.4, graphs with flat NCPs and many deep k-core nodes have
local structure that is particularly difficult to identify and exploit. Impor-
tantly, our empirical results for this class of graphs is substantially improved,
relative to previous methods. This illustrates that, by carefully engineering
locally-biased information into node embeddings, one can obtain improved
results even for this class of graphs, without sacrificing quality on other less
poorly-structured graphs.

We also illustrate several reasons why random walk based methods do
not perform as expected in practice, justifying our interpretation that our
method leads to improved results due to the manner in which we engineer in
locality.

The remainder of the paper is as follows: in Section 10.2, we survey related
work, including the word2vec framework and the approximate computation of
the Personalized PageRank ; in Section 10.3, we describe our main Lasagne
algorithm; in Section 10.4, we present the evaluation of our method and a
discussion of disadvantages of previous random walk based methods; and in
Section 10.5, we present a brief conclusion.

10.2 Preliminaries

Embedding Words with Word2vec
Word2vec [182, 149] is a framework for learning word representations in some
vector space by simultaneously preserving the words’ semantic meaning. The
representations are learned based on some contexts so that embeddings shar-
ing similar contexts end up close to each other in the learned space. The
embeddings are learned by maximizing the prediction probability of the con-
texts given the input embeddings, i.e., Skip-gram model. Note, that the
model assumes independence of different contexts from each other for the
same input. Negative sampling is used to estimate the prediction probability

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 128

during the training. It maximizes the log probability of the input’s context by
simultaneously minimizing the prediction probability for k randomly selected
contexts. Furthermore logistic regression is used to estimate the prediction
probability:

log σ(v′TI vci) +
k∑
j=1

Ewj∼Pn(w)
log σ(−v′TI vj).

For each word the model maintains two representations, embedding and con-
text representation. The vector v′I denotes the embedding representation
of the input, vci is the context representation and vj are representations of
randomly selected contexts. The stochastic gradient descent algorithm is
used for model optimization. The Skip-gram was later generalized to include
arbitrary contexts [157].

Approximate Personalized PageRank
The PageRank algorithm [201] computes an “importance” score for every
node in some graph. Each of the scores corresponds to the probability of a
“random surfer" to visit a node given some start distribution. The PageRank
vector is the solution of the linear system:

pr(s) = αs+ (1− α)pr(s)W, (10.1)

with W = D−1A being the random walk transition matrix. A is the adja-
cency matrix, D is the degree matrix having the node degrees on the diagonal.
The constant α is the teleportation probability. The starting nodes or more
specifically the probability for each node to be the starting point of a random
walk are given by the vector s. A variant of PageRank is the Personalized
PageRank (PPR) whose result corresponds to the result of the PageRank
algorithm, where the probabilities in the starting vector s are biased towards
some set of nodes. The push algorithm described in [133] [33] [22] is used to
compute an Approximate Personalized PageRank (APPR) vector in a more
efficient way if the start distribution vector s is sparse, i.e., has probability
mass on only a few nodes. The idea behind the push algorithm is to prop-
agate a node’s probability locally and only if there is a sufficient amount of
probability to update. This leads to a sparse solution which means that only
relatively few nodes of the underlying graph are contained in the resulting
APPR vector.1

We describe the adapted version from [234] which converges faster. In
addition to α and s, the main algorithm expects the approximation parameter

1We emphasize that this APPR method has been remarkably successful at character-
izing the local and global structural properties in large social and information networks
[152, 155, 153, 134], suggesting (as we show here) that it can also be used for improved
supervised learning on these graphs.

129 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

ε. It maintains two vectors: the solution vector p and a residual vector r.
The p vector is the current approximation of the PPR vector and vector r
contains the approximation error or not yet distributed probability mass. In
each iteration the main algorithm selects a node with sufficient probability
mass in vector r and calls the push method. The probability mass from
node’s entry in r is spread between the node entry in p and the entries of its
direct neighbors in r. The exact PPR is the linear combination of the current
solution vector p and the PPR solution for r. The approximation quality and
runtime are controlled by the parameter ε. The updates are performed as
long as there is a node for which at least ε1−α

1+α
probability mass is moved

towards each of its neighbors during the push operation.

10.3 Lasagne: Locality And Structure Aware
Graph Node Embedding

The Lasagne algorithm consists of two steps: a preprocessing step, which
computes the APPR vectors for each node; and the learning step, which uses
the APPR vectors to generate training examples batchwise to learn the final
embeddings.2

Approximated Personalized PageRank for Node Embeddings

The computation of the APPR vectors for the node embeddings is described
in Algorithm 5. There are two main modifications, relative to the original
method in [234]. The first is the assignment of probability mass to the seed
node in its own APPR vector, and the second is to the stopping criterion.3

The first modification allows the seed node to be considered as its own
neighbor during sampling the training examples. Consequently, the seed
node is considered to be similar to other nodes that have the seed node
among their neighbors, which in turn leads to higher proximity of such nodes
in the embedded space. To avoid each node being considered to be the most
important member of its own neighborhood (and thus being overrepresented

2Both our approach and the previous approaches which we improve use some sort of
random walk to construct “documents,” each “word” of which is a node from the graph, and
then they call the word2vec method. Essentially, our two improvements use APPR to more
precisely engineer in locality, thereby leading to higher-quality documents. The importance
and sensitivity of such preprocessing is well known in natural language processing.

3These modifications seem minor, but getting them right is extremely important for
obtaining a robust and successful method.

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 130

during the training phase), we replace the node’s own entry in its APPR
vector with the second highest probability, c.f. line 21 - 22.

The second modification is since our main motivation is not to approx-
imate the PPR vector but instead to keep only the relevant neighbors that
represent a meaningful context for the seed node. The algorithm avoids con-
sidering neighbors, each of which is visited relatively rarely by the random
walk.4 Thus, our algorithm stops when the new node, which can be added
to the APPR vector during the next iteration has a low chance to be vis-
ited by the random walk compared to the overall probability of previously
added nodes. The running time for the algorithm depends on the proba-
bility significance threshold δ. The number of updates of the APPR vector
is at most 1

δ
. Given that the amount of probability moved in subsequent

steps is always lower, we can assume it to be the same. Therefore it holds
that sumProbUpdates = n · probUpdate, whit n being the number of previ-
ous steps. Given that lastDistrUpdate = probUpdate/sumProbUpdates, it
follows that lastDistrUpdate ≤ 1

n
.

Learning of Embeddings From Approximated Personalized PageR-
ank Vector

The embedding learning process is described in Algorithm 6. Each training
example is a pair of nodes. We call one of them seed node and the other
one neighbor node. The embedding is learned for the seed node while the
neighbor node is used as context. The embeddings are learned analogously
to the Skip-gram model described in Section 10.2. For each training pair the
probability of the neighbor node is maximized given the seed node.

To generate the training pairs, we sample the neighbor nodes based on the
APPR vector of the corresponding seed node. This means that for each seed
node, we consider only those nodes as context which have some probability
mass in the seed node’s APPR vector, i.e., relevant nodes. Each neighbor
node is sampled with the probability proportionally to its entry in the seed’s
APPR vector. Neighbor nodes are sampled with replacement and the prob-
ability to be sampled is equal to the relative ratio of probability mass each
neighbor node contributes to the entire APPR vector. With this sampling
strategy training data can be generated on request and the number of train-
ing examples per node can be easily controlled. Using the alias method [143],
the sampling setup costs are O(k), where k is the size of the APPR vector
and the costs to sample a neighbor are O(1).

4These nodes tend to be “far from” the node of interest; but, in total, they may absorb
a significant large amount of the overall probability mass.

131 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

Algorithm 5 Lasagne ApproximatePPR
Input: Node s, teleportation parameter α, Probability significance threshold δ
Output: APPR vector p
1: p = ~0, r = ~0, heap=heap()
2: r(s) = 1
3: heap.push((s,1))
4: sumProbUpdates = 0
5: lastDistrUpdate = 1
6: while lastDistrUpdate > δ do
7: u = heap.pop()
8: probUpdate = (2α/(1 + α))r(u)
9: if u 6= s then
10: sumProbUpdates += probUpdate
11: lastDistrUpdate = probUpdate / sumProbUpdates
12: end if
13: p(u) = p(u) + probUpdate
14: neighResUpdate = ((1− α)/(1 + α))r(u)/d(u)
15: for v with (u,v)∈ E do
16: r(v) = r(v) + neighResUpdate
17: heap.update((v, r(v)/size(v.neighbours)))
18: end for
19: r(u) = 0
20: end while
21: p(s) = 0
22: p(s) = max(p)
23: return p

Parallelization

Our approach scales linearly with number of nodes and can easily be par-
allelized. The APPR vectors can be computed independently for each node
and as shown in [234] even the largest publicly available graphs fit into the
memory of todays commodity hardware. The learning procedure can be par-
allelized in two ways: the sampling from APPR can be done independently in
parallel; and the actual learning of the embeddings can also be processed in
parallel either asynchronously or synchronously on multi-core or distributed
architectures. For details see [136].

10.4 Empirical results

In this section, we summarize our empirical results. We have evaluated the
node embeddings produced by the Lasagne algorithm by performing pre-
diction tasks which aim at inferring node labels in multi-label classification

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 132

Algorithm 6 Learn Embeddings
Input: List with seed node and APPR vector pairs apprs, maxBatches, batchSize
1: samplers = emptyList()
2: for seedNode and currentAppr in apprs do
3: samplers.add((seedNode, createAliasSampler(currentAppr))
4: end for
5: while not converged and batchNumber < maxBatches do
6: currentBatch = emptyList()
7: for seedNode and s in samplers do
8: neighbors = s.sample(batchSize / size(samplers))
9: trainingExamples = createPairs(seedNode, neighbors)
10: currentBatch.add(trainingExamples)
11: end for
12: permute (currentBatch)
13: negativeSamplingGradientDescent(currentBatch)
14: batchNumber++
15: end while

and link prediction scenarios. We have used a variety of real-world graph
datasets from various domains, i.e., a biological network, social networks,
and a collaboration network. Here, we compare our results against the state-
of-the-art techniques DeepWalk, node2vec and GraRep. Note that we omit a
comparison with the LINE since it is already shown in [103] and [62] that the
results produced by node2vec and GraRep are superior to the ones produced
by LINE. We have implemented GraRep using sparse matrix operations. De-
spite of this, we were not able to run it for larger graphs due to out of memory
errors. We tested on a machine with 387GB RAM.

Datasets

Network |V | |E| |L| d C D D kmax Pkmax Description
PPI 3,890 38,739 50 9.959 0.146 8 3.095 30 0.028 biological network
BlogCatalog 10,312 333,983 39 32.388 0.463 5 2.382 115 0.043 social network
IMDb Germany 32,732 1,175,364 27 35.909 0.870 11 3.487 102 0.009 collaboration network
Flickr 80,513 5,899,882 195 73.279 0.165 6 2.901 551 0.018 social network

Table 10.1: Statistics of networks used for multi-label classification: number
of nodes |V |, number of edges |E|, number of classes |L|, average degree d,
average clustering coefficient C, diameter D and average shortest path length
D, maximum k of k − cores kmax, fraction Pkmax of nodes in kmax k − core

We consider the following graph datasets from various domains with dif-
ferent sizes and number of classes.

133 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

• Protein-Protein Interactions (PPI) [55]: This is a subgraph of the PPI
network for Homo Sapiens which is also used in [103]. The network
consists of 3,890 nodes that represent proteins and 38,739 edges which
represent the existence of interactions between the corresponding pro-
teins. The 50 different labels represent biological states.

• BlogCatalog [245]: This is a social network graph where each of the
10,312 nodes corresponds to a user and the 333,983 edges represent the
friendship relationships between bloggers. 39 different interest groups
provide the labels. This network is used in both [103] and [214].

• IMDb Germany: This kind of artificial dataset is created from the
IMDb movie database [127]. It consists of 32,732 nodes, 1,175,364
edges and 27 labels. Each node represents an actor/actress who played
in a German movie. Edges connect actors/actresses that were in a cast
together and the node labels represent the genres that the correspond-
ing actor/actress played.

• Flickr [245]: The Flickr network is a social network graph with 80,513
nodes and 5,899,882 edges. Each node describes a user and the links
represent friendships. The 195 given labels stem from different interest
groups. This dataset is also used in [214].

Table 10.1 summarizes some statistics of these networks.
The selection of networks captures different structures, and we use Net-

work Community Profile (NCP) plots from [152, 155, 153, 134] to analyze
them. The NCP depicts the best “score" for different clusters in the graph
as a function of their size. The cluster “score” is defined by conductance, i.e.,
the ratio of edges going out of a cluster to cluster internal edges. As can be
seen in Figure 10.1, the IMDb Germany network has quite clear clusters of
about 50 to 100 nodes. For each outgoing edge in the small clusters with
near-minimum conductance value, there are about 800 internal edges. The
three other datasets are not well separable.5 The best cluster in the Flickr
graph has a size of about 5000 nodes and only about 50 internal edges for
each outgoing edge.

Following [10, 9], we also use k-core information to analyze graph prop-
erties. The k-core of a graph G is the maximal induced subgraph H ⊆ G
such that every node in H has a degree of at least k. Figure 10.2 shows
size of k-cores for all k for all four datasets. We call a core “deep” if the

5In particular, the cluster quality is only slightly better than that of a randomly-rewired
graph; Lasagne does particularly well for these graphs.

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 134

(a) PPI (b) BlogCatalog

(c) IMDb Germany (d) Flickr

Figure 10.1: NCP plots for used datasets. Red, solid lines sketch the commu-
nity structure of the original graph. (Down represents better cluster quality.)
Blue, dashed lines plot the structure of randomly rewired networks.

corresponding k is high. In 10.4 we discuss how size and depth of the k-cores
affects the performance of different methods.

Experimental Setup

Like previous works, we use multi-label classification to evaluate the quality
of the node embeddings. However, as discussed in the following, we think
that the evaluation method for node representations used in [214, 244, 103]
has a major drawback: it is hardly applicable in real world scenarios. Thus,
we propose a new method for evaluating node embeddings that also relies
on multi-label classification but is far closer to a real-life application scenario
than the former method. We evaluate Lasagne according to both evaluation
metrics.

135 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

(a) PPI (b) BlogCatalog

(c) IMDb Germany (d) Flickr

Figure 10.2: k-core plots for used datasets. Note the different scaling on the
x-axes.

Previous Method

Perozzi et al. [214] made the currently used evaluation method for graph
node embeddings publicly available1. The procedure is as follows: a portion
of the labeled vertices is sampled randomly and used as training instances,
while the remaining nodes are used for testing. The sampling approach
does not preserve the percentage of samples for each class, resp. labels.
After sampling, one classifier is trained for each class by using one-vs-rest
logistic regression and the labels for the test instances are predicted. For the
actual prediction task, this method makes recourse to information that is
typically unknown. Precisely, this method uses the actual number of labels
k each test instance has. By sorting the predicted class probabilities and
choosing the classes associated with the top k probabilities, prior knowledge
is incorporated into the prediction task. In real world applications, it is fairly
uncommon that users have such knowledge in advance. A label is considered

1https://github.com/phanein/deepwalk - last accessed: 2017-01-03

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 136

as a positive if it is among the top k predicted labels, regardless its real
probability value. The entire evaluation procedure is repeated 10 times and
finally the average macro-F1 and micro-F1 scores are calculated.

More realistic method

We propose the following modified evaluation metric that reflects better the
real world classification scenario where no a priori knowledge is given. Gen-
erally, we also train logistic classifiers to predict the labels of the test in-
stances. In contrast to the previous method, we suggest to use a 10-fold
stratified cross-validation for each one-vs-rest classifier. Using such stratified
sampling is a common way to split the data into training and test set by
coincidently preserving the ratio of subpopulations within the data. In this
way, the prediction accuracy does not suffer from classes that may not ap-
pear in either the training or the test set due to small numbers of positive
examples. Furthermore, we get rid of using prior knowledge to determine
the positive predicted labels. Instead of ranking the probabilities and taking
the labels corresponding to the top k probabilities, we make the decision of
labeling the test instance based on the label probabilities directly, i.e., if the
probability of a label l is at least 50% we consider l as positive.

We use micro-F1 and macro-F1 as evaluation metrics. Macro-F1 scores
build the unweighted average of F1 scores for positive classes over all classi-
fiers. Micro-F1 scores build the global average based on prescision and recall
by treating each test example equally. We primarily focus the discussion on
the macro-F1 metric, but we also report the micro-F1 scores.

Results of the More Realistic Evaluation Method

The results reported in this section were obtained by using the parameter
settings suggested in [214]. We use γ = 80 as the length for the random walks
performed during the DeepWalk and node2vec procedures.6 The number of
random walks is |V | · r, with |V | being the number of vertices and r = 10
being the number of random walks starting from each node in the graph.
The size of the window which slides over each random walk sequence extends
to at most w = 10 in each direction of the currently regarded vertex and
the dimensionality of the node embeddings is set to d = 128. To get a fair
comparison between our method and the random walk based methods, it is
crucial to use similarly sized training sets for the learning procedure since
larger training sets typically tend to result in higher prediction accuracy for

6If diameter D = 5, 6, 8, 11, then walk length γ = 80 is quite long.

137 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

the test phase. Thus we sample

|T | = |V | ·

[
γ · r · 2 · E(U(1, w))− 2 ·

w∑
i=1

E(U(1, i))

]

training examples which corresponds to the expected number of training
instances generated by the random walk approaches. The notation E(U(x, y))
denotes the expected value of a uniform distribution U in the interval [x, y].

For node2vec we follow the suggestions of the authors and perform full
grid searches over the set {0.25, 0.5, 1.0, 2.0, 4.0} for both hyperparameters.
The GraRep hyperparameter k is ranged from 1 to 6. For Lasagne we used
σ = 0.0001 as significance threshold for probability updates in all empirical
evaluations. We show results for different values of teleportation parameter
α. For all datasets and all approaches we demonstrate the results when we
used 90% of the data for training and the remaining data as test set for
the classification tasks. The distributions of resulting macro F1 scores are
visualized as box plots. We adapted the computation of the Approximated
Personalized PageRank implemented in the Ligra framework [233] for our
implementation. The learning procedure for the embeddings is implemented
in TensorFlow [1]. The code will be publicly available upon acceptance.

(a) PPI (b) BlogCatalog

(c) IMDb Germany (d) Flickr

Figure 10.3: Macro-F1 scores achieved by doing multi-label classification as
downstream task for the considered representation learning techniques.

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 138

Figure 10.3 shows the macro-F1 scores for all methods and datasets when
applying embeddings for multi-label classification. Lasagne overcomes the
competitors for each dataset.

For the PPI network, c.f. Figure 10.3(a), the scores are steadily over 8%
for all α values, while the random walk approaches reach scores between 7%
and 7.5%. The best node2vec setting is p = 4 and q = 1, which corresponds
to a rather low willingness to allow the random walks to return to already
visited nodes. This meets the outcomes of Lasagne, which are best for
small α values. The generally low prediction quality for all approaches, and
especially the bad score for GraRep, may indicate that the distribution of
class labels do not follow any representative, local patterns and hence are
hardly graspable within local structures (at least in this set of data). The
results for BlogCatalog are even more clear. Lasagne improves the best
competitor by approximately 23%. As can be seen in Figure 10.3(b) the
performance of Lasagne decreases almost monotonically with increasing
values for α. This means that the neighbors which describe a node best are
not extremely local. The best node2vec setting, i.e., p = 0.25 and q = 0.25,
confirms this results. Recalling Figure 2 from [103], the 2nd order random
walks are biased towards leaving the neighborhoods. For IMDb Germany,
c.f. Figure 10.3(c), the best result of Lasagne, which is for α = 0.99,
is only slighty better than the best results achieved with node2vec. Since
Lasagne is, as well as node2vec with parameter setting p = 0.25, q = 4, able
to stay extremely local, both approaches reach high prediction scores on this
dataset where the labels are concentrated in low conductance clusters. Using
the Flickr network, Lasagne reaches the highest improvement over the other
random walk based methods, i.e. more than 33%. The results behave similar
to the ones for the BlogCatalog data, but in contrast the scores remain more
stable. Indeed, the drop between the smallest and largest selected α values
is only 1%. As mentioned previously, we could not run GraRep on Flickr,
because of its size.

Figure 10.4 shows the micro-F1 scores achieved with the same settings
as used for the macro-F1 score evaluation. The results show that the micro
scores are higher than the macro scores for all datasets except for IMDb
Germany. Also the relative differences between the results for Lasagne and
the best competitor are higher for the macro-F1 scores than for the micro-F1

scores. This is due to the micro score metric effectively gives higher weight
to larger classes. This may be justified by the results depicted in Figure 10.7
(discussed below). Since Lasagne performs better for smaller classes which,
except for IMDb Germany, are the vast majority of classes, the macro-F1

scores take benefit due to weighting each class equally independent from the
class sizes. Recalling that the micro-F1 considers the sizes of the classes,

139 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

(a) PPI (b) BlogCatalog

(c) IMDb Germany (d) Flickr

Figure 10.4: Micro-F1 scores achieved by doing multi-label classification as
downstream task for the considered representation learning techniques.

the performance improvements for this score are reasoned by the fact that
Lasagne performs better on smaller classes and similarly good to random
walk based methodologies on larger classes.

An important summary point from Figures 10.3 and 10.4 is that, in the
case of graphs without even small-sized good conductance clusters, the per-
formance of Lasagne clearly overcomes the performance from random walk
based methods. On the other hand, for graphs that have an upward-sloping
NCP and thus small-sized good conductance clusters, Lasagne shows sim-
ilar prediction quality to random walk based methods. In particular, while
we are never worse than previous methods, we observe the weakest improve-
ment for IMDb Germany, which is consistent with Figure 10.1(c), where the
upward-sloping NCP suggests relatively good local structure, and we observe
the strongest improvement for the Flickr network, which is consistent with
Figures 10.1(d) and 10.2(d), which indicate a relatively flat NCP and many
deep k-core nodes.

Results of the Former Evaluation Method

Tables 10.2 and 10.3 show the macro-F1 scores, resp. the micro-F1 scores
when applying the evaluation proposed by [214] and using 90% of the node

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 140

Algorithm Dataset
PPI BlogCatalog IMDb Ger Flickr

DeepWalk 0.1747 0.2221 0.6868 0.2104
node2vec 0.1930 0.2418 0.6996 0.2349
GraRep 0.1991 0.2231 0.5770 -

Lasagne 0.1835 0.2843 0.7042 0.2930

Table 10.2: Macro-F1 scores for multi-label classification when using former
evaluation method and 90% of instances for training.

Algorithm Dataset
PPI BlogCatalog IMDb Ger Flickr

DeepWalk 0.2206 0.3889 0.7043 0.3762
node2vec 0.2293 0.3963 0.7060 0.3841
GraRep 0.2487 0.3913 0.6648 -

Lasagne 0.2216 0.4116 0.6967 0.4078

Table 10.3: Micro-F1 scores for multi-label classification when using former
evaluation method and 90% of instances for training.

representations for training. WhileGraRep shows the best results on PPI, the
performance of the Lasagne embeddings clearly overcomes the competitors
when testing on the considered social networks, similar to the results in our
more realistic (and more refined) evaluation.

Link Prediction

For completeness, Table 10.4 reports the results when applying the embed-
dings retrieved by Lasagne on the link prediciton task. The experimental
setup is borrowed from [103] which means that we removed 50% of the edges
of each graph, learned the representations on the remaining graph and fi-
nally predict the existence of the removed edges by using a binary classifier.
The classifier is trained with the remaining 50% of edges as positive exam-
ples and the same amount of non-existent edges as negative samples. The
edges were embedded by using one of the embedding methods documented in
Table 10.4. Hence, an edge embedding is the combination of the representa-
tion of the nodes joined by the corresponding edge according to the specified
method. As evaluation metric we also use the well-known Area Under the
Curve (AUC) score. For Lasagne and node2vec we used the same set of

141 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

parameter settings as for multi-label classification. The reported results are
the best results that were achieved by all settings. We consider the following
graphs for link prediction:

• Facebook [154]: This is a social network consisting of friend lists from
facebook. The network consists of 4,039 nodes that represent users and
88,234 edges which represent friendships between the corresponding
users.

• BlogCatalog [245]: This is the same network as in Table 10.1.

• arXiv Astro-Ph [154]: This is a collaboration network which covers sci-
entific collaborations. It consists of 18,772 nodes and 198,110 edges.
Each node represents an author and edges connect authors who collab-
orated on a joint work submitted to arXiv astro physics category.

Facebook (which has a relatively flat NCP [155, 134]) and arXiv Astro-Ph
(which has an upward-sloping NCP [155, 134]) were also used in node2vec
[103] for link prediction.
Overall, these results show that the Lasagne embeddings perform as well
as the representations learned by node2vec when considering the facebook
dataset or the arXiv dataset. The actual differences between the best results
are less than 1%. For the BlogCatalog data, the representations retrieved
by Lasagne even improve the best prediction score reached by the random
walk based competitors. Disregarding the edge embedding methods proposed
in [103] and using the jaccard similarity (jac), i.e., jac(u, v) = Nk(u)∩Nk(v)

Nk(u)∪Nk(v)

with Nk(u) being the k nearest neighbors of node u in the embedded space,
instead, Lasagne also shows similar results as the competitors and yields
the best results on the facebook data.

Explaining our improved empirical results

In this section, we present additional empirical results aimed at explain-
ing in terms of graph locality properties Lasagne’s improved performance.
Lasagne improves previous methods by considering more finely the struc-
ture of the graph around each node. In particular, we compute local node
neighborhood by touching only the relevant neighbors of each node, which
leaves the major part of the graph unconsidered. For the node a we call b
its relevant neighbor if b has high probability to be visited by random walk
with restart starting from a.

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 142

Locality for nodes with different degrees

Previous random walk based methods follow a similar scheme, except they
simulate long random walks in the graph. For each node occurring in one of
the random walks, a window of dynamic size which contains nodes visited
previously and after that node is used to determine the context. The actual
extension of the window to each side is sampled each time uniformly from
the interval [1, w], where w is a hyperparameter (that is the same for all
nodes in the graph). For example, while simulating the random walks the
DeepWalk [214] algorithm selects the next node fully arbitrary among the
neighbors of the last visited node. node2vec [103] generally gives more control
over the context selection due to its hyperparameters and thus allows the
prioritization of closer resp. farther neighbors. This flexibility comes to the
cost of an expensive preprocessing step which is quadratic in node degree.

Nevertheless, even with this expensive preprocessing, existing methods
fail to adapt to the local graph structure. When random walks are used
to obtain neighbors, nodes having very low probability to be visited also
appear among the considered neighbors. Nodes having high probabilities
to be visited appear more frequently. However, the cumulative probability
of low probability nodes may still be significant. The wider the window is,
the more far away neighbors end up in it. However, smaller window sizes
will not help to tackle the problem with low probability neighbors, since the
nodes in sparse graph areas may have distant neighbors with high probability
to be visited by random walk. Grover et al. [103] even show, that they
achieve better results with larger window sizes. However, since the same
window size is used for all nodes in the same graph, the distributions of hop
distances of nodes to their neighbors are similar and barely adapt to local
node neighborhood.

To confirm this intuition, we computed the hop distances to the nodes
considered as context by node2vec and DeepWalk algorithms for different
datasets. For all of them, we observed similar behavior, i.e., the level of
locality was barely adapted with increasing node degree, c.f., Figure 10.5(a).
Note that the node2vec parameters were set to p = 0.25 and q = 4.0, which
constrains the random walks to capture very local neighborhoods (but in a
non-adaptive manner). The distributions of hop distances to the neighbors
found by the Lasagne algorithm are very similar per dataset; an example is
depicted in Figure 10.5(b). In contrast to the previous methods, Lasagne
adapts to the local node environment, i.e., for the high degree nodes only
the neighbors with the highest probability to be visited by the random walk
are considered as context. Consequently, we observe a clear tendency that
the preference to local neighborhoods increases with increasing node degree

143 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

(a) node2vec (b) Lasagne

Figure 10.5: Distributions of hop distances to neighbors from nodes with
different degrees. These plots visualize the ability to adjust to differently
dense areas in the graph for node2vec (left, not well) and Lasagne (right,
very well).

(which is known to correlate with poor NCP clusters and deep k cores [155,
134, 10]). The LINE algorithm considers only one hop neighbors, and the
assumption that only direct neighbors are relevant is very strong, especially
for low degree nodes.

Locality for more versus less peripheral classes

Large graphs with flat NCP, especially with large and highly connected re-
gions (with large deep k-cores) are notably affected by random walk prob-
lems. For graphs with flat NCPs, the connectivity among nodes’ relevant
neighbors is not much stronger than to the rest of the graph. Furthermore,
the larger and deeper are graphs k-cores, the more time random walks will
spend in them. This affects the neighborhoods obtained by random walks for
most nodes, since most parts of even large graphs can be reached within few
steps. Therefore, even if dense parts of the graph have high probabilities to
be visited by global random walks, if the probabilities of single nodes in these
components are low, then nodes from these components are not considered
by Lasagne as neighbors. Consequently, for the nodes from large deep k-
cores, the neighborhood will be restricted to the most relevant core neighbors.
Therefore, our method adapts to the structure of local neighborhood.

To confirm this intuition, we used the Flickr network, a graph with flat
NCP. Figure 10.2(d) shows the fraction of nodes in different k-cores of this
graph. As can be seen in Figure10.2(d), the graph has large deep k-cores,
e.g., about 30% of nodes are in the subgraph where each node has degree 100
or more. We expect random walk based methods to perform poorly on such
a graph, especially if the similarity to neighbors outside of large deep k-cores

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 144

is important for the downstream task.

Figure 10.6: Each line depicts the class label distribution in k-cores with
performance information for one class in the Flickr data. X-axis: k-core; Y-
axis: log scaled proportion between fraction of class label i within the k-core,
i.e., F k−core

i , and the fraction of this class label within the entire graph G,
i.e., FG

i ; color code: absolute difference in F1 score between Lasagne and
the best random walk based method. For ease of presentation, the plot shows
only the 20 classes where Lasagne reached the highest improvement as well
as the 20 classes where the improvement was smallest.

As multi-label classification is a common downstream task, Figure 10.6
provides empirical evidence that Lasagne’s embeddings overcome perfor-
mance issues of previous embeddings. In Figure 10.6, each line stands for
a class, and the color depicts the classification improvement of Lasagne
over best previous method. Additionally, the plotted line shows the fraction
of nodes with the corresponding class label in each k-core, relative to the
fraction of nodes with that label in the entire graph. When the fraction of
class labels is zero, the line breaks. It can be clearly seen from the plot that
Lasagne achieves the best improvement for classes with members outside
of large k-cores with high k, i.e., for classes that are more peripheral.

Relatedly, we also expect that our method has better performance on
the tasks which require very accurate determination of local neighborhoods.
Small classes (in particular) need this, since nodes of such classes are very
sensitive to irrelevant neighbors. This is due to the small number of nodes
that belong to the same class. Figure 10.7 shows plots which visualize the
improvement of Lasagne over random walk approaches for single classes.
The improvements tend to be especially notable for the small classes, which
confirms our claim.

145 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

(a) PPI (b) BlogCatalog

(c) IMDb Germany (d) Flickr

Figure 10.7: Absolute differences in F1 scores between Lasagne and the
best random walk based method for single classes. One dot stands for one
class. X-axes show the class size; Y-axes show the absolute difference in F1

scores.

Distribution of training examples per node

Another shortcoming of existing random walk based methods is the distri-
bution of training examples per node that they generate. Since high-degree
nodes are visited more often by random walks, there are more training ex-
amples for them. Since small-degree nodes are visited much less often, they
are underrepresented during training. Due to the way in which locality is
engineered into Lasagne, it solves this problem.

To confirm this intuition, we run random walk based algorithms for dif-
ferent datasets and counted the number of training examples for a sample
of nodes with different degrees. For each degree range 100 nodes were ran-
domly sampled. For all datasets we observed very similar distributions, also
with different node2vec parameters. An example is shown in Figure 10.8(a).
As can be seen, the number of training examples for previous methods still
strongly depends on node degrees. In contrast, when using Lasagne, the

CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING 146

(a) node2vec (b) Lasagne

Figure 10.8: The number of considered training instances for nodes of dif-
ferent degrees for node2vec (left) and Lasagne (right). Lasagne allows us
to control the number of training instances per node; we used 8700 for this
plot.

number of training examples per node can easily be controlled, in this case to
be uniform, which prevents us from generating extremely unbalanced training
sets, c.f. Figure 10.8(b).

10.5 Conclusion
We have proposed Lasagne, an unsupervised learning algorithm to compute
embeddings for the nodes of a graph. The basic idea of Lasagne is to use an
Approximate Personalized PageRank algorithm to bias random walks more
strongly to the local neighborhood of each node; and, thus, the embedding
for a given node is more finely tuned to the local graph structure around
that node than the embeddings from previous similar methods. Our method
performs particularly well for larger graphs that are not well-structured, e.g.,
that have flat NCPs and/or have many nodes in deep k-cores. Our empir-
ical evaluation has shown that our embeddings achieve superior prediction
accuracy over competitors when used for multi-label classification in several
different real-world networks. Our empirical results also provide evidence
justifying the reason for this improvement. While Lasagne is primarily an
exploratory tool, if one wants to use it in a more automated manner, then
an important question will be how to automate the averaging of the APPR
vectors over different values of the locality parameter.

147 CHAPTER 10. HOMOPHILY-BASED NODE EMBEDDING

op Algorithm Dataset
facebook arXiv BlogCatalog

a)

DeepWalk 0.7240 0.7002 0.7921
node2vec 0.7223 0.7259 0.8108
GraRep 0.7495 0.7097 0.8759

Lasagne 0.7069 0.7195 0.8701

b)

DeepWalk 0.9610 0.8632 0.7187
node2vec 0.9644 0.8770 0.7359
GraRep 0.9629 0.7494 0.8846

Lasagne 0.9628 0.8715 0.8281

c)

DeepWalk 0.9606 0.8438 0.7799
node2vec 0.9642 0.8499 0.8044
GraRep 0.9621 0.7980 0.8713

Lasagne 0.9072 0.7036 0.7017

d)

DeepWalk 0.9593 0.8450 0.7844
node2vec 0.9646 0.8523 0.8074
GraRep 0.9635 0.7664 0.8731

Lasagne 0.9111 0.7053 0.7045

jac

DeepWalk 0.8435 0.7357 0.5525
node2vec 0.8509 0.7381 0.5644
GraRep 0.8418 0.4980 0.5567

Lasagne 0.9256 0.7361 0.5337

Table 10.4: Results for Link Prediciton; Metric: AUC scores of predictions
retrieved by binary classifiers resp. Jaccard similarity measure; Operators
used for edge embedding: a) Average: fi(u)+fi(v)

2
, b) Hadamard: fi(u) · fi(v),

c) Weighted L1: |fi(u)− fi(v)|, d) Weighted L2: |fi(u)− fi(v)|2, with fi(x)
being the i-th component of node x [103]; jac: Jaccard similarity measure

Chapter 11

Structure-Based Node Embedding

Parts of the work presented in this chapter has been published as the article
Structural Graph Representations based on Multiscale Local Network Topolo-
gies in the Proceedings of the IEEE/WIC/ACM International Conference on
Web Intelligence (WI), 2019 [46]. A preliminary work-in-progress version has
been published as the short paper article Towards Learning Structural Node
Embeddings using Personalized PageRank in the Proceedings of the LWDA,
2017 [47].

11.1 Introduction

The increasing relevance of graph-structured data has been accompanied
by an increased interest in algorithms which can leverage underlying graph
structure to make accurate predictions about the modeled entities. In many
scenarios no additional facts about entities or properties of relationships are
known. In such cases, the only source of information for machine learning
tasks like node and graph classification is the graph topology. In this chapter,
we consider the problem of deriving structural node representations or role
representations based solely on the topological structure within the local
node neighborhoods.

The intuition behind this task is to capture the different functionalities
of network entities within vector representations such that entities that play
a similar role within the network end up close together in the embedded
space. Note that the notion of a role is generally diverse and might describe
influencers in a social network, or a specific group of atoms in molecule net-
works that are likely to bind to similar atomic substructures. In general,
node representations describing the roles of the nodes within a graph are
useful for downstream classification or clustering tasks, e.g., they may give

149 CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING

Figure 11.1: Airline networks. Left: Scandinavian Airline; Right: Niki Air.
Each node corresponds to an airport and edges connect two airports if the
airline operates a flight between them. The color coding corresponds to the
role descriptors as determined by our approach.

valuable insights for real world tasks like drug design, identification of in-
fluencers within social communities, link prediction, etc. To introduce the
problem more formally, we are given a set of graphs G = {G1, . . . , GN} with
Gi = (Vi, Ei) being a graph, V =

⋃N
i=1 Vi denoting the set of vertices and

E =
⋃N
i=1 Ei being the set of edges. The goal is to derive vector represen-

tations f(vj) ∈ Rd reflecting the various roles of nodes vj ∈ V in a graph
Gi ∈ G. Figure 11.1 illustrates the concept of node roles for airline networks.
Note that the color coding corresponds to the nodes’ roles as identified by
our approach. It can clearly be seen that the role of a node (e.g. hub air-
port, airport with connection to a single hub or an airport with connection to
several hubs) can be extracted from the node’s local neighborhood. We can
also see that these roles can be identified across different graphs although the
local neighborhoods may seem to be different, e.g., in terms of size. How-
ever, considering the local topology around the nodes, it can also be seen
that they are similar for those nodes that have similar colors. The distinct
property of node role representations is that they should be independent of
specific neighbors. Therefore, nodes that are similar in the embedded space
are not necessarily closely connected and even may reside in different graphs.
In general, these representations could be either continuous vectors, such as
structural node embeddings, or discrete role assignments, and should cap-
ture structural properties of the nodes within the graph. However, here, we
focus on continuous representations. In particular, given two nodes u, v ∈ V
which have similar local structural neighborhood patterns with respect to
some similarity measure, i.e., SN(u) ≈ SN(v), then the representation of u
and v shall be similar as well. However, defining an appropriate similarity

CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING 150

measure seems difficult since even the notion of local structural neighbor-
hood patterns is hard to grasp. In this chapter, we argue that the spread
of probability mass under the node’s most relevant local neighbors is a good
characteristic for the node’s role. Similarly to [91] we leverage the Approxi-
mate Personalized PageRank (APPR) to effectively describe multiple locality
structures around the vertices and use the probability distribution vectors as
a basis to quantify the structural roles of the nodes. An important feature
of our novel node representation is that it is very efficient to compute and
thus, even suitable for large data sets. Furthermore, an important difference
to previously published related works, e.g., [82], is that our method operates
directly in the vertex domain, though the heat kernel diffusion process re-
sembles that implied by PPR [71]. Additionally, our method is not restricted
to k-hop neighborhoods.

Our empirical evaluation demonstrates that our simple approach outper-
forms somewhat more advanced state-of-the-art role-based node representa-
tions. With respect to previously published work on the topic of structural
node embeddings (see Section 9.1) we summarize the key contributions of
the work presented in this chapter as follows:

• A novel structure-based approach to determine role representations
for single nodes directly in the vertex domain as opposed to existing
diffusion-based approaches which operate in the spectral domain.

• A fast-to-compute approach that retrieves continuous role representa-
tions rather than being composed of multiple, computationally rather
costly structural features.

• An extensive evaluation of our proposed role representations that shows
promising results when comparing our representations to state-of-the-
art node embeddings when using their setups.

11.2 Structural Node Representations using Ap-
proximate Personalized PageRank

As we use the Approximate Personalized PageRank to derive our role de-
scriptors, we start this section with a short review of this method. Note
that this is a slightly different version than the one presented in the previous
chapter since we omit the adaptation to cut the long tails from the stationary
distributions here. Afterwards, we present our method for extracting struc-
tural node descriptors. In Chapter 12, we finally describe how they can be
aggregated to derive descriptors for whole graphs.

151 CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING

Algorithm 7 APPR
Input: Source node vi, Teleportation probability α, Approximation threshold ε
Output: APPR vector pi
1: pi = 0, ri = ei
2: while rij ≥ εdj for some vertex vj do
3: pick any vj where rij ≥ εdj
4: push(vj)
5: end while
6: return pi

Algorithm 8 push(vj)
1: pij = pij + (2α/(1 + α))rij
2: for vk with (vj , vk) ∈ E do
3: rik = rik + ((1− α)/(1 + α))rij/dj
4: end for
5: rij = 0

Approximate Personalized PageRank

Personalized PageRank (PPR) can be viewed as a special case of the
PageRank [201] algorithm, where each random walk starts at the same node
vi and at each step there is a chance of α to jump back to vi. The effect of
this modification is that the PageRanks are personalized to the node vi, i.e.,
they represent the importance of each node from the perspective of the source
node vi. Formally, the PPR-vector πi of node vi is given as the solution of
the linear system

πi = αei + (1− α)πiW, (11.1)

where W = D−1A is the random walk transition matrix obtained from the
n×n adjacency matrix A by normalizing the outgoing links of each node by its
out-degree, ei ∈ R1×n denotes the i-th unit vector and α is the teleportation
parameter.

The probability of transitioning to a neighbor vj from a node vi is given by
wij. The entry πij can then be interpreted as the probability that a random
walk starting at vi and stops at vj. The expected length of a random walk
is determined by the teleportation probability α. With a smaller value, a
larger portion of the graph is explored, while a larger value leads to stronger
localization.

Intuitively, πij measures the importance of node vj for node vi and the
PPR vector πi as a whole yields a distribution of the node importance in
the neighborhood of vi where the extension of the neighborhood is controlled
by the parameter α. In particular, the neighborhood is not restricted to
nodes with a maximum hop-distance, such as the k-neighborhood, which may

CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING 152

Algorithm 9 APPR-Roles
Input: Graph G, Labels L , Teleportation probabilities αs, Approximation thresh-

old ε
Output: Classification model m
1: role_descriptors = list()
2: for idx in range(G) do
3: v = G.getNode(idx)
4: embv = list()
5: for α in αs do
6: pαv = APPR(v, α, ε)
7: embv.append(entropy(pαv))
8: end for
9: role_descriptors.append(embv)
10: end for
11: m = LogisticRegression().fit(role_descriptors, L)
12: return m

contain irrelevant nodes or miss important ones. Compared to the shortest
path distance, nodes with a larger shortest path distance from vi could still
be more important, e.g., if they can be reached via many different short
paths. For similar reasons, nodes with a small shortest path distance might
not be equally important. Such effects are captured by PPR.

Local push-based algorithms [133, 33] compute Approximate Personalized
PageRank (APPR) very efficiently and lead to sparse solutions, where only
the most relevant neighbors are taken into consideration [91]. In addition
to the teleportation parameter α, the approximation threshold ε controls
the approximation quality and runtime. The main idea is to start with all
probability mass concentrated in the source node and then repeatedly push
probability mass to neighboring nodes as long as the amount of mass pushed
is large enough. In this work, we consider the algorithm proposed in [22].
In particular, we use an adapted version proposed in [234] which converges
faster. The procedure is formalized in Algorithm 7 and Algorithm 8.

For a given graph Gi and teleportation probability α, we compute the
APPR-vector p(α)

j of each node vj ∈ Vi and store it as the j-th row of the
sparse n× n APPR-matrix P (α)

i .

Entropy-based Node Descriptors

The APPR-vector pi of a node vi effectively models the connectivity of that
node with respect to all other nodes in the graph as a probability distribution,
where the probability mass is concentrated only on vi’s relevant neighbors.
This way, the size of the neighborhood is determined by the parameter α.

153 CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING

Figure 11.2: Workflow for calculating the role-based node descriptors.

The APPR-vector pi additionally focuses on the most relevant neighbors by
ignoring nodes with small probabilities and thus providing a sparse neighbor-
hood representation. In principle, we could use the APPR-vectors directly
as node representations. This would lead to the following feature space:

∆n =

{
p ∈ Rn

≥0

∣∣∣∣∣
n∑
i=1

pi = 1

}
, (11.2)

which is known as the n-dimensional standard simplex. However, the result-
ing representations model homophily rather than structural properties, since
they encode the information to which individual nodes a particular source
node is connected. In order to make the representations location-invariant,
we need to factor out this information. Since location invariance in this case
translates to permutation invariance, we consider the quotient space

∆n/
∼ = {[p] | p ∈ ∆n} , (11.3)

which corresponds to the set of equivalence classes [p] = {q ∈ ∆n | p ∼ q}
of the equivalence relation ∼ with p ∼ q ⇔ ∃P ∈ P : p = qP where
P =

{
P ∈ {0, 1}n×n

∣∣ P1 = 1, P T1 = 1
}
is the set of permutation matrices.

As a corresponding quotient map, we can define f : ∆n → ∆n/
∼ with

f(p) = pPp which maps p to its equivalence class by sorting it using the
permutation matrix Pp such that 1 ≥ f(p)1 ≥ · · · ≥ f(p)n ≥ 0.

Though the resulting sorted APPR-vectors qualify as structural node de-
scriptors, they are not well suited for further downstream tasks since they

CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING 154

are high-dimensional and sparse. Furthermore, node descriptors would not
be comparable among graphs with different numbers of nodes. To this end
we need to perform some form of aggregation. Our approach is based on the
observation that, in terms of APPR, the structural properties of two nodes
differ mostly based on the extent to which they spread their probability mass
throughout the graph. For instance, a community node will spread its proba-
bility mass evenly to nodes within the same community, whereas a peripheral
node will strongly concentrate its probability mass to one or very few nodes
to which it is connected. The above behavior can be accurately described by
the Shannon entropy H : ∆n/

∼ → R with H(p) = −
∑n

i=1 pi log pi where
we use the binary logarithm. In particular, it fulfills the following properties.

Theorem 1. For all p ∈ ∆n/
∼ it holds that

1. H(p) ∈ [0, log n].

2. H(p) = 0 if and only if p = e1.

3. H(p) = log n if and only if p = 1
n
1.

4. H(p) = log n−DKL(p‖ 1
n
1).

Proof. The proofs are straightforward and can be found in [74].

Intuitively stated, properties (1) to (3) state that the entropy is mini-
mized for a distribution with a single peak and maximized for the uniform
distribution. Property (4) states that the entropy can be interpreted as the
similarity to the uniform distribution in terms of the Kullback-Leibler di-
vergence. Our empirical results support the usefulness of this intuition. A
further advantage over other applicable dimension reduction techniques is
that we can describe each node by a single scalar value which can be visual-
ized directly on a color map (as was done in Figure 11.1) and has a simple
and intuitive meaning. Note that the entropy function is symmetric, i.e.,
H(f(p)) = H(p) for all p ∈ ∆n. As a result, the APPR-vectors need not be
sorted and the entropy of a single node vi can be computed in linear time
with respect to the number of non-zero entries of pi.

Recalling that the teleportation parameter α in APPR controls the ef-
fective neighborhood size, we detect roles on multiple scales by computing
APPR for multiple parameter values α ∈ {α1, . . . , αl} and concatenating for
each node its corresponding l entropy values. The final descriptor of node vi
is then given as

fi =
[
H
(
p

(α1)
i

)
, . . . , H

(
p

(αl)
i

)]T
∈ Rl. (11.4)

155 CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING

The entire procedure for calculating the role descriptors is sketched in
Figure 11.2 and can be summarized as outlined in Algorithm 9. The input
for the method is the entire graph dataset G, a list of node labels L , a list
of teleportation parameters αs, and the approximation threshold ε. For each
of the nodes v in G, the algorithm stacks the entropy-based representations
of the corresponding APPR vectors, denoted as pαv , to generate the role
descriptor of v, i.e., embv. The algorithm finally fits a classification model on
the collection of role descriptors and retrieves the resulting model for node
classification.

11.3 Experiments

In the following, we investigate the performance of our new node repre-
sentations compared to node representations created with different existing
techniques including RolX [117] which relies on hand-crafted features, the
diffusion-based method GraphWave [82] and the SkipGram-based struc2vec
[217] method.

Datasets

To empirically investigate the benefits of our approach for determining the
role descriptors, we first use a barbell graph to compare the performance of
various structure based node representations. The barbell graph consists of
two fully connected components that are connected by a long chain. Specifi-
cally, we use a barbell graph that has ten nodes within each clique and a chain
of length ten as illustrated in Figure 11.3(a). The goal of this experiment is
to demonstrate the performance in terms of identifying different roles.

In a second experiment, we use the mirrored Karate network as already
used in [217, 82]. In particular, this dataset consists of two copies of the
Zachary’s karate network with one edge connecting the two copies by linking
one randomly chosen node with its copy. We use this dataset to demonstrate
the performance of the embedding techniques in terms of accuracy. Obvi-
ously, a node and its copy should end up at the same position (or very close
to each other) in the embedding space since they have exactly the same roles.

Finally, we employ two real world datasets, i.e., the European and the
American air traffic networks used in [217]. These networks are unweighted
and undirected. Nodes represent airports which are connected if there have
been commercial flights during the time this dataset was recorded. Both
networks have four equally sized classes corresponding to the relative level of
activity of the airport. These datasets are used to compare the performance

CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING 156

in terms of accuracy as well as to demonstrate the efficiency in terms of
computation time.

Structural Node Embedding

We first consider the structural node embeddings and compare the embed-
dings retrieved by our approach to the representations retrieved by RolX,
GraphWave and struc2vec. For all competitors, we used the implementations
and recommended configurations as published by the authors. The α param-
eter which is required to be set for our approach is ranged from 0.1 to 0.9
with a step size of 0.1. For each of the parameters, we get a one dimensional
descriptor for every node, referred to as APPRrolesα=i. We also construct
higher dimensional representations by combining the node descriptors for all
values of α per node. We refer to this configuration as APPRrolesstacked. The
approximation threshold ε for the computations of the APPR vectors is set
to ε = 1E−4.

Barbell Graph

In Figure 11.3 we provide a visual analysis of how well the APPR based
node representations are able to embed the structural properties of the node
neighborhoods. Figure 11.3(a) depicts the barbell graph while the remaining
plots show 1-dimensional structural node embeddings. For visualization pur-
poses, we project higher dimensional embeddings into 1-dimensional spaces
by using PCA to be able to discuss the outcomes in comparison to our 1-
dimensional representations. Therefore, we use the node identifiers on the
y-axes in our plots to spread the depicted 1-dimensional embeddings along
the y-axes such that they do not cover each other. Figures 11.3(b)-11.3(d)
show the structural node embeddings for the competitors when projecting
them onto the first principal component and normalizing the values (cf. x-
axes). The first three images in the lower row depict the results for our
approach when using different values for α. Precisely, we show the normal-
ized results for α ∈ {0.9, 0.5, 0.1}, which means that we range the exploration
of the node neighborhoods from local (α = 0.9) to spacious (α = 0.1). In
Figure 11.3(h), we visualize the node embeddings when stacking the descrip-
tors for all values of α and projecting these embeddings into 1-dimensional
space, again using PCA.

The first thing we want to emphasize is that since we do not use any
external evaluation measures in this experiment due to lack of ground truth
and it is thus difficult to say which of the methods work best on this dataset.
This also strongly depends on how to define the roles in this graph. What

157 CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING

we can clearly see is that RolX and GraphWave reveal only very few roles,
i.e., most nodes of the chain are considered to have the same role. This also
applies to struc2vec as we can identify three clusters in the 1-dimensional
projection. However, differently to the other methods, struc2vec identifies the
node in the center of the chain as an own role. Given our representations, we
can see that our approach is much more flexible in terms of role identification.
When using a rather large value for α, i.e., defining roles only based on
very local neighborhoods, our method also considers the chain elements to
have the same role. However, when decreasing the value of α, i.e., enlarging
the neighborhoods based on which to define the roles, we can observe that
the roles of the nodes in the chain are considered to differ more and more.
Nevertheless, the chain nodes that have the same hop distance from the
center of the chain are always considered to have the same role. Given that
roles are not always defined precisely, this is a very desirable property of our
approach that RolX or struc2vec cannot fulfill. GraphWave might be able to
have this flexibility but due to operating on the spectra of the graphs rather
than in the vertex domain, it might be difficult to set the corresponding
parameter appropriately.

Summarizing the insights revealed by this experiment, we can state that
the choice of the value for α might have a significant impact on the outcome.
In other words, using a small α value leads to an accurate distinction between
node roles, while rather large values of α do not distinguish as accurately
between different roles.

Mirrored Karate Network

Next, we consider the mirrored Karate network for which we measure the
performance of the embedding methods by doing 1-NN-range queries. Recall
that this network consists of two copies of the Zachary’s Karate network and
an additional edge which links a randomly chosen node with its copy. Given
a set of structural node embeddings E that contains one embedding for each
node of the mirrored karate network, the goal of this experiment is to identify
the copy of the query node among its 1-nearest-neighbors. Note that we call
this query 1-NN-range query to emphasize that the set of 1-nearest-neighbors
might be of size greater than 1. Precisely, we compute the nearest neighbor
o for each of the query points q ∈ E , and subsequently perform a range query
around q with distance dist(o, q).

The results given in Table 11.1 show the accuracy and average size of
the queries’ candidate sets, i.e., ∅|C |. Except for struc2vec, all methods
achieve an accuracy of 100%. However, when considering the precision that
we measure by the size of the candidate set of the 1-NN-range query, we can

CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING 158

see that our approach gives the best result on average.

Airport Traffic Networks

The results for the two airport traffic networks can be reviewed in Table
11.2. As proposed in [217] we employ one-vs-rest classifications with 90-10
train-test splits and report the mean accuracy and standard deviation over 10
runs. Additionally, the table contains the runtimes in milliseconds for each
method including the preprocessing steps for struc2vec and our approach.
RolX and GraphWave do not have preprocessing steps if executing their
standard configurations1.

For both networks, we can notice that although our proposed method out-
performs RolX and GraphWave in terms of accuracy, the scores achieved with
struc2vec are slightly better. Note that the results for the European airports
network are comparable across all methods. However, regarding the runtime
our method clearly outperforms the competitors. Compared to struc2vec
our approach is more than 2’300 times faster, even when considering the
APPRrolesstacked configuration, on the USA airports network2. It should
be noted that the accuracy of our approach might be further improved by
spending more time for preprocessing the local neighborhoods. As we use an
approximate version of the Personalized PageRank for engineering the local
neighborhoods, it is possible to decrease the approximation threshold to get
more accurate node descriptors. However, this comes at the cost of increased
computation time.

11.4 Conclusion

In this chapter, we presented a novel approach for defining structural node
representations that describe the nodes’ roles within a graph. More precisely,
we figured out that local, personalized PageRank distributions encapsulate
the structure of local node neighborhoods and can be compressed to mean-
ingful role descriptors. Compared to previous approaches that tackle the
problem of structural node embeddings our approach is fast to compute and
allows for much flexibility in terms of identifying different node roles by si-
multaneously being quite simple to interpret. Our experiments empirically
demonstrate the flexibility and show that we can outperform state-of-the-art

1Note that the standard configuration of GraphWave implements an automatic mode
for parameter selection. Thus, we must compare its runtime to APPRrolesstacked.

2The EUR Airports network consists of 399 nodes and 5995 edges. The USA Airports
network consists of 1190 nodes and 13599 edges.

159 CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING

methods when using the role descriptors for node classification tasks. In
the next chapter we hence state that these role descriptors are expressive
enough to achieve good performance in terms of graph classification when
aggregating them for entire graph structures.

CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING 160

(a) Barbell Graph (b) RolX

(c) GraphWave (d) struc2vec

(e) APPRrolesα=0.9 (f) APPRrolesα=0.5

(g) APPRrolesα=0.1 (h) APPRrolesstacked

Figure 11.3: 1-dimensional node representations for the barbell graph. The
y-axes show the node identifiers (i.e., numerical values that we assigned to
the nodes), the x-axes are the 1-dimensional node descriptors on [0,1] scale.

161 CHAPTER 11. STRUCTURE-BASED NODE EMBEDDING

Method Acc. ∅|C | Acc.
∅|C |

RolX 1.00 6.59 0.151
GraphWave 1.00 6.56 0.152
struc2vec 0.56 3.00 0.186
APPRrolesα=0.1 0.96 4.53 0.211
APPRrolesα=0.2 1.00 4.62 0.216
APPRrolesα=0.3 0.99 5.62 0.175
APPRrolesα=0.4 1.00 5.00 0.200
APPRrolesα=0.5 1.00 5.44 0.183
APPRrolesα=0.6 1.00 4.91 0.203
APPRrolesα=0.7 0.93 4.35 0.212
APPRrolesα=0.8 1.00 5.76 0.173
APPRrolesα=0.9 1.00 6.32 0.158
APPRrolesstacked 1.00 4.97 0.201

Table 11.1: Results for the 1-NN-range queries on the mirrored Karate net-
work. ∅|C | denotes the average size of the candidate sets retrieved by the
1-NN-range queries.

Method EUR Airports t in ms USA Airports t in ms
RolX 0.78±0.06 16747 0.77±0.05 66463
GraphWave 0.78±0.05 16596 0.77±0.04 263405
struc2vec 0.81±0.09 695616 0.84±0.05 8300984
APPRrolesα=0.1 0.77±0.03 375 0.75±0.00 772
APPRrolesα=0.2 0.76±0.03 337 0.75±0.01 530
APPRrolesα=0.3 0.75±0.01 209 0.76±0.03 431
APPRrolesα=0.4 0.75±0.01 198 0.78±0.04 379
APPRrolesα=0.5 0.77±0.04 189 0.78±0.05 331
APPRrolesα=0.6 0.77±0.04 153 0.78±0.05 307
APPRrolesα=0.7 0.76±0.03 143 0.79±0.07 281
APPRrolesα=0.8 0.74±0.03 134 0.78±0.06 240
APPRrolesα=0.9 0.75±0.00 50 0.78±0.06 252
APPRrolesstacked 0.79±0.07 1788 0.80±0.07 3523

Table 11.2: Results for one-vs-rest classification. We report the mean accu-
racy and standard deviation for each configuration. The table also reports
runtime measurements for creating the representations including preprocess-
ing steps.

Chapter 12

Unsupervised Graph Embedding

The work presented in this chapter has been published as the article Struc-
tural Graph Representations based on Multiscale Local Network Topologies in
the Proceedings of the IEEE/WIC/ACM International Conference on Web
Intelligence (WI), 2019 [46].

12.1 Introduction

Many applications benefit from using representations of entire graph struc-
tures for downstream machine learning tasks. Specific application scenarios
include target group analysis, e.g., in marketing where one might aim at
identifying similar interest groups within social networks to exploit new tar-
get groups, or pharmaceutical applications, e.g., drug design where small
molecule structures may activate or inhibit the functions of specific proteins.
However, for being able to use network structures for downstream clustering
or classification tasks, it is important to get suitable vector representation of
that networks. Although it might also be possible to define specific distance
measures like the graph edit distance for downstream tasks, these measures
have the disadvantage that they tend to be computationally expensive (es-
pecially when dealing with many graph structures), and oftentimes do not
fit the problem at hand. Thus, it is often more practicable to learn represen-
tations.

In this chapter, we tackle the problem of learning representations for en-
tire graph structures in an unsupervised manner. Precisely, we argue that
graphs can generally be described by the composition of their nodes’ func-
tions. The inductive bias of our approach can be justified by taking the
following, simplified example into account. Consider a set of social commu-
nity circles extracted from a virtual social network that is composed of two

163 CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING

kinds of communities, i.e., soccer teams and Youtube circles, and a vendor for
sports products who wants to start an advertising campaign. This vendor is
obviously interested in advertising his products in the soccer team communi-
ties. In fact, the functions, or roles, of the single members of the communities
can be used to distinguish the communities into the two classes. While the
roles of the members of the soccer team communities are expected to be the
same across each of the corresponding graphs (because soccer team networks
are likely to be clique-like), the roles in the Youtube circles are probably not
evenly distributed (there is typically one user who acts as the channel host
and forms the center of a star-like pattern). Thus, we claim that the nodes’
roles are indeed useful to represent entire graph structures. In the following,
we therefore re-use the role descriptors described in the previous chapter and
use them for the task of classifying entire graphs. Formally, for graph clas-
sification, we are given a label vector y ∈ {1, . . . , K}N assigning each graph
Gi ∈ G to one of K classes. The goal is to learn a model, which accurately
predicts the class label yi given Gi. By using an unsupervised clustering
algorithm on local, i.e., for single graphs, and global, i.e., for all graphs in
the network, scales, we discretize the definition of roles and represent each
graph by a count vector for role types.

Our experimental evaluation shows that even simple aggregation schemes
already lead to results that are comparable to the ones retrieved by current
state-of-the-art methods.

12.2 Aggregated Graph Descriptors

Since our structural node descriptors are location-invariant and thus trans-
ferable among different graphs, we are able to compare whole graphs by com-
paring their respective sets of node descriptors. However, simply collecting
the node descriptors in a (ordered) set for each graph is not a straightforward
solution, since this would result in different length representations for graphs
with different numbers of nodes. To this end, we propose two histogram-
based aggregation schemes to discretize the notion of roles. Precisely, the
first aggregation scheme is based on classic histograms with all bins having
the same size, while the second aggregation scheme can be interpreted as
an adaptive histogram where the bins adapt to the distribution of role de-
scriptors. For both aggregation schemes, the node roles can be aggregated
in a local or global fashion, i.e., a graph representation for a single graph
either relies solely on the node roles that appear in that graph, or the repre-
sentation relies on global role notions that are defined over all graphs. The
intuition behind defining roles on a local view is to be more robust against

CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING 164

outlier roles. Recalling that role descriptors are continuous values, outliers
may affect the value range over all role descriptors on a global view such that
some equi-sized histogram bins defined over the entire value range become
meaningless. On the other hand, the local view approach has the underlying
assumption that role notions do not differ substantially over the entire body
of graphs.

Somewhat more formally, let G = {G1, . . . , GN} be a set of graphs, with
Gi = (Vi, Ei) being a graph, V =

⋃N
i=1 Vi denoting the set of vertices and

E =
⋃N
i=1Ei being the set of edges. Furthermore, let f(vj) ∈ Rd denote

the continuous role descriptors of nodes vj ∈ V in G, as described in the
previous chapter. To derive graph embeddings that follow the baseline ag-
gregation scheme, i.e., the aggregation scheme that uses equi-sized bins for
the histogram representations, we simply aggregate the nodes of graph by
discretizing the value range of the role descriptors into equi-sized bins and
counting the occurrences of role descriptors per graph and bin. Hence, the
graph representation Fi for graph Gi is defined as

Fi = [|{v ∈ Vi | bj ≤ f(v) < bj+1}| : j = 1, . . . , k]T ∈ Rk, (12.1)

with bj being the lower bound value of the j-th histogram bin, and k de-
noting the number of bins. The definition of the bins’ value ranges allows
to generate graph representations from a global or a local perspective. To
define representations on a global view, the set of bins B, with |B| = k, is
defined over the value range of role descriptors collected from all graphs in
the training dataset Gtrain = {G0, . . . , Gn−1} ⊆ G, i.e.,

B =
k−1⋃
j=0

[bj, bj+1) ,with (12.2)

bj =

min({f(v) | v ∈

⋃n−1
i=0 Vi}) if j = 0,

max({f(v)|v∈
⋃n−1

i=0 Vi})−min({f(v)|v∈
⋃n−1

i=0 Vi})
k

else.

(12.3)

In contrast, to define graph representations on a local view, the sets of
bins Bi, with |Bi| = k and 0 ≤ i < n, are defined for each graph Gi ∈ Gtrain

individually, i.e.,

165 CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING

Figure 12.1: Workflow for calculating the role-based graph descriptors.

Bi =
k−1⋃
j=0

[bj, bj+1) ,with (12.4)

bj =

min({f(v) | v ∈ Vi}) if j = 0,

max({f(v)|v∈Vi})−min({f(v)|v∈Vi})
k

else.

(12.5)

Similarly, we derive graph embeddings that rely on the aggregation scheme
that is based on adaptive histograms as follows. First we collect node de-
scriptors from all graphs (in the global setting) or for each graph individually
(in the local setting) in the training dataset and cluster them with k-Means
[174]. The resulting cluster centers {µi ∈ Rl | i = 1, . . . , k} can be inter-
preted as multi-scale role concepts appearing in the dataset. In a second
step, we assign each node v in a given graph Gi to its nearest cluster center
µ(v) and use the resulting count vector

Fi = [|{v ∈ Vi | µ(v) = µj}| : j = 1, . . . , k]T ∈ Rk, (12.6)

as representation for that graph. One important advantage of these graph
descriptors in general is that they can be computed very efficiently, i.e., in
linear time with respect to the total number of nodes in the dataset. Fur-
thermore, the number of clusters k can be varied flexibly to explore different
numbers of roles in a graph. For a supervised objective, the hyper-parameter
can simply be optimized over a range of sensible values. However, other
clustering techniques may be employed for discretizing the continuous role
descriptors, too.

Figure 12.1 extends the workflow presented in the previous chapter by ad-
ditionally calculating the described graph descriptors using the global, adap-
tive approach. The final procedure consists of two blocks: in the first block,

CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING 166

Dataset |G| |L | φ|V | φ|E|
MUTAG 188 2 17.93 19.79
ENZYMES 600 6 32.63 62.14
NCI1 4110 2 29.87 32.30
NCI109 4127 2 29.68 32.13
PROTEINS 1113 2 39.06 72.82
IMDB-BINARY 2000 2 429.63 497.75
IMDB-MULTI 1500 3 13.00 65.94
REDDIT-BINARY 2000 2 429.63 497.75
REDDIT-12K 11929 11 391.41 456.89
REDDIT-5K 4999 5 508.52 594.87

Table 12.1: Benchmark datasets for graph classification. The upper part of
the table contains biological networks, the lower part of the table refers to
social network datasets. |G| denotes the number of graphs, |L | is the number
of classes and φ|V |, resp. φ|E| is the average number of nodes, resp. edges.

the continuous role descriptors for each node are calculated. Given the raw
network – composed of multiple, differently sized components which form
graph structures on their own – as input, we compute the stationary APPR
distributions for each node. From these, we next derive the continuous role-
based node descriptors by computing the entropy values of the distributions
for each node. Stacking these entropy values for each component results in
differently sized and thus incomparable vectors (or matrices in case of mul-
tiple α values for the calculations of the APPR distributions). In order to
enable comparisons between differently sized subgraphs, we first discretize
the notion of roles by employing the k-means algorithm on the continuous
role descriptors in the second block of our procedure1. Secondly, for each of
the subgraph structures, we count the appearances of each role within the
corresponding network to construct equally-sized graph descriptors which
can easily be used for downstream tasks like classifications. Note that the
example depicts the procedure for a single value of α used for APPR. As we
show in the experiments section, richer representations can be calculated by
using multiple values for α.

167 CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING

12.3 Experiments

We evaluate the proposed graph representations by employing several graph
classification tasks. We compare our approach with various settings against
state-of-the-art approaches including Deep Graph Kernels (DGK) [269], the
diffusion-based NetLSD [252] method and NetSimile [34] which relies on
hand-crafted features. The settings used for our approach include the lo-
cal and global setups for both aggregation schemes, the baseline scheme that
relies on classic histograms and the adaptive approach that relies on adaptive
histograms. For the latter, we also experiment with two setups for the calcu-
lation of the role representations. The first setup computes role descriptors
from a single neighborhood that is captured by employing the approximate
Personalized PageRank with α = 0.1, and the second setup concatenates
role descriptors gathered from multiple, differently scaled neighborhoods for
whose computation we ranged the α value from 0.1 to 0.9 with a step size of
0.1.

Datasets

For evaluating the performance of the proposed graph representations in
terms of graph classification, we use several biological and social networks
which are taken from [141] and are summarized in Table 12.1.

The MUTAG dataset consists of graph structures that represent chemical
compounds which are classified into two classes depending on their mutagenic
effect on a bacterium. The two NCI datasets also consist of chemical com-
pounds and the class labels correspond to their activity against cancer cells.
The protein graphs in the PROTEINS dataset are either enzymes or non-
enzymes. The ENZYMES dataset contains protein graph structures that are
categorized into 6 different top-level enzyme classes.

The IMDB graph datasets consist of ego networks where nodes are ac-
tors or actresses and edges connect actors/actresses if they have been in the
same cast. The labels of the graphs (two distinct labels for IMDB-BINARY
and three for IMDB-MULTI) correspond to the genre of the correspond-
ing movie. For all three REDDIT datasets, nodes correspond to users and
links indicate that one user responded to the comment of the other user.
The classes of the REDDIT-BINARY dataset indicate that a given graph
either stems from a question/answer-based community or a discussion-based
community. The classes of the REDDIT-5K and REDDIT-12K graphs corre-
spond to subreddits, with REDDIT-5K containing discussion graphs from 5

1In the figure, we used k = 3 as the number of roles.

CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING 168

distinct subreddits and REDDIT-12K consisting of graphs from 11 different
subreddits.

Results

After presenting the results of our experimental study for structural node
representations in the previous chapter, we show that the proposed node
representations are well-suited for graph classification when aggregating them
for entire graph structures. Therefore, we compare our graph representations
against Deep Graph Kernels (DGK), NetLSD and NetSimile. Though the
authors of DGK present three kernel types, i.e., graphlet kernels, shortest
path kernels and Weisfeiler-Lehmann kernels, note that the latter two require
additional node labels which are considered by none of the other methods.
For the sake of a fair comparison, we only compare against graphlet kernels.
For NetLSD, we use both presented configurations, i.e., the variant which
uses heat trace signatures, denoted as NetLSDHeat, as well as the variant that
uses wave trace signatures, denoted as NetLSDWave. Either way, we calculate
the full eigenspectra rather than using one of the proposed approximations.
Regarding our approach, we present the results for α = 0.1 and the variant
where we stack the representations for all values of α.

Method MUTAG ENZYMES NCI1 NCI109 PROTEINS
DGK 0.827±0.021 0.271±0.008 0.625±0.003 0.627±0.002 0.717±0.005
NetLSDHeat 0.841±0.032 0.367±0.042 0.665±0.014 0.647±0.018 0.649±0.023
NetLSDWave 0.809±0.055 0.265±0.042 0.611±0.012 0.603±0.016 0.603±0.028
NetSimile 0.833±0.034 0.387±0.046 0.676±0.019 0.663±0.018 0.602±0.023
PPRrolesglobalα=0.1 0.871±0.043 0.340±0.033 0.704±0.019 0.699±0.014 0.665±0.042
PPRrolesglobalstacked 0.858±0.043 0.398±0.046 0.732±0.012 0.734±0.013 0.644±0.028
PPRroleslocalα=0.1 0.826±0.052 0.263 ±0.041 0.610±0.011 0.607±0.020 0.636±0.034
PPRroleslocalstacked 0.827±0.065 0.247 ±0.038 0.626±0.014 0.615 ±0.015 0.628 ±0.020
PPRrolesglobalhistogram 0.841 ±0.039 0.332 ±0.038 0.697 ±0.014 0.691 ±0.012 0.637 ±0.044
PPRroleslocalhistogram 0.895 ±0.034 0.266 ±0.049 0.657 ±0.015 0.648 ±0.014 0.607 ±0.028

Table 12.2: Accuracy in 1-NN classification on biological networks. Note that
the DGK results are taken from [269] and report the achieved classification
accuracy when applying a SVM.

For all experiments in this section, we report the mean accuracy of 1-NN
classifications over 10 runs. The results for DGK are borrowed from the
original paper since the method relies on a Kernel-SVM with precomputed
kernels and the authors used the same evaluation setup.

169 CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING

Method IMDB-BINARY IMDB-MULTI REDDIT-BINARY REDDIT-12K REDDIT-5K
DGK 0.670±0.006 0.446±0.005 0.780±0.004 0.322±0.001 0.413±0.002
NetLSDHeat 0.690±0.034 0.421±0.035 0.782±0.017 0.246±0.009 0.332±0.014
NetLSDWave 0.681±0.033 0.420±0.038 0.671±0.023 0.227±0.005 0.317±0.012
NetSimile 0.704±0.039 0.415±0.039 0.848±0.010 0.335±0.009 0.413±0.012
PPRrolesα=0.1 0.645±0.032 0.404±0.041 0.857±0.017 0.348±0.009 0.427±0.014
PPRrolesstacked 0.666±0.035 0.429±0.039 0.867±0.014 0.348±0.007 0.417±0.010
PPRroleslocalα=0.1 0.663±0.028 0.419±0.041 0.772±0.016 0.277±0.008 0.373±0.015
PPRroleslocalstacked 0.642±0.042 0.405±0.025 0.774±0.015 0.274±0.008 0.376±0.010
PPRrolesglobalhistogram 0.649±0.033 0.398±0.039 0.839±0.015 0.341±0.007 0.426±0.014
PPRroleslocalhistogram 0.638±0.028 0.406±0.034 0.815±0.015 0.309±0.005 0.418±0.014

Table 12.3: Accuracy in 1-NN classification on social networks. Note that
the DGK results are taken from [269] and report the achieved classification
accuracy when applying a SVM.

Biological Networks

The results for the biological datasets are listed in Table 12.2. On the first
four datasets our approach achieves better accuracy scores than the competi-
tors. Indeed our approach reaches gains of approx. 3% on MUTAG, 2.8% on
ENZYMES, about 8.2% on NCI1 and over 10% on NCI109 compared to the
best competitor. For PROTEIour classifier, our method achieves the best
score. In Figure 12.2, we report the results of 20 runs per method in some-
what more detail for the biologNS, the deep graph kernel method shows the
best accuracy. However, among the methods that we evaluate with ical net-
work datasets. Note that for the sake of readability we only report the best
settings of our approach, i.e., the global approach using adaptive histograms.

Social Networks

Finally, considering the social networks, we can observe similar results. As
can be seen in Table 12.3, except for IMDB-BINARY, our method outper-
forms all competitors for which we applied the 1-NN classification. Though
we want to note that the deep graphlet kernel was slightly better on IMDB-
MULTI when using the evaluation method proposed in [269]. In Figure 12.3,
we again report more detailed results of 20 runs per method for the social
network datasets. Again, we only report the results of the global approach
using adaptive histograms to ease the readability.

12.4 Conclusion

In this chapter, we employed the role descriptors presented in the previous
chapter to generate embeddings for entire graph structures. We proposed

CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING 170

a straightforward aggregation scheme that uses traditional histograms with
equi-sized bins to aggregate the role descriptors for each graph. Further, we
used a somewhat more sophisticated aggregation scheme that also relies on
histograms but is adaptive to the distribution of all nodes’ role descriptors
due to being based on the k-means clustering. Our experimental evaluation
showed that even with these simple aggregation schemes, we were already
able to outperform state-of-the-art techniques. Hence, we conclude that the
nodes’ functions, resp. roles, and in particular their role descriptors (and
not only the ones presented in the previous chapter) are indeed useful when
aiming at representing entire graph structures as numerical vectors.

171 CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING

(a) Accuracy for MUTAG. (b) Accuracy for ENZYMES.

(c) Accuracy for NCI1. (d) Accuracy for NCI109.

(e) Accuracy for PROTEINS.

Figure 12.2: Accuracy scores achieved with 1-NN classification on the biolog-
ical datasets. The orange lines denote the medians, the green triangles depict
the mean values and correspond to the values reported in Table 12.2. Again,
the DGK results are taken from [41] and report the achieved classification
accuracy when applying a SVM.

CHAPTER 12. UNSUPERVISED GRAPH EMBEDDING 172

(a) Accuracy for IMDB-BINARY. (b) Accuracy for IMDB-MULTI.

(c) Accuracy for REDDIT-BINARY. (d) Accuracy for REDDIT-12K.

(e) Accuracy for REDDIT-5K.

Figure 12.3: Accuracy scores achieved with 1-NN classification on the social
datasets. The orange lines denote the medians, the green triangles depict
the mean values and correspond to the values reported in Table 12.3. Again,
the DGK results are taken from [41] and report the achieved classification
accuracy when applying a SVM.

Chapter 13

Semi-Supervised Learning on
Graphs

The work presented in this chapter has partly been published as the article
Semi-Supervised Learning on Graphs Based on Local Label Distributions on
the 14th ACM KDD International Workshop on Mining and Learning with
Graphs, 2018 [90]. A preliminary version can be found on arXiv [89]. At date,
a full research paper version is under review for the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, 2020.

13.1 Introduction

The increasing relevance of graph-structured data has been accompanied by
an increased interest in learning algorithms which can leverage underlying
graph structure to make accurate predictions about the modeled entities. In
many of these applications, it is important to categorize data objects into
several types such as user classes, functional types or content topics. In many
cases, we have these types only available for a portion of the nodes in the
network. An important task is now to predict the types or more generally
speaking the labels of the nodes where they are still unknown.

Real-world data is often complex and in order to make accurate pre-
dictions, different aspects need to be taken into account. Strong assump-
tions, such that a node has the same label as most of its neighbors or
that correlations between differently labeled nodes are known a priori, may
lead to insufficient exploitation of more complex correlations present in the
data. Homophily-based approaches [285, 263, 214, 103, 244, 260] assume that
nodes which are closely connected in the graph, should have similar labels.

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 174

(a) Homophily (b) Heterophily

(c) Mixed Patterns

Figure 13.1: Different node classification methods rely on different assump-
tions on node similarity, e.g., neighboring nodes have similar labels (13.1(a),
Homophily) or exhibit specific correlations between labels (13.1(b), Het-
erophily). Our method adaptively learns different types of correlations
(13.1(a), 13.1(b) and 13.1(c)) appearing (possibly simultaneously) in the
same graph for different labels. It also detects patterns at multiple scales
and uses information from the whole graph (also from different connected
components).

This assumption holds, e.g., in graphs where an edge denotes similarity be-
tween two instances. However, relationships between two entities modeled
by edges in a graph generally may describe any interactions between them
rather than being restricted to model only similarity. Another shortcoming of
homophily-based methods is that they cannot use information from distant
parts of the graph, different connected components or from other graphs with
similar structure and labels for the classification decision. These shortcom-
ings are shared by existing approaches which support heterophily in graphs
[206, 144, 97, 208]. Heterophily is the tendency to connect to nodes with
different labels. An example is an heterosexual dating network with the gen-
der as a label. Additionally, existing methods either assume that all labels
follow the same homophilic or heterophilic pattern, or correlations between
pairs of labels must be provided explicitly. However, in many scenarios it
is not feasible to manually model correlations between labels. At the same
time, many real-life graphs are characterized not only by some specific mix of

175 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

Method Homophily Heterophily Mixed Local Variation Adaptive Labels Remote

Homophilic Node Embedding [214,
103, 244, 62, 260, 91, 43, 183, 279] 3 7 7 7 7 7 7

Label Diffusion [284, 285, 281, 208,
259]

3 3 7 7 7 3 7

Belief Propagation [206, 144, 97] 3 3 3 7 7 3 7

Planetoid [271] 3 7 7 7 7 (3) (3)
MPNN [98] (3) (3) (3) (3) (3) 7 3

Ada-LLD 3 3 3 3 3 3 3

Table 13.1: Comparison to related node classification methods based on
whether they fulfill (3) the desired key properties or not (7). Parentheses
indicate partial fulfillment.

heterophily and homophily, but rather show high variations of these patterns
for the same labels across the same graph [209]. Another problem of current
methods is that the proximity of the considered neighbors often is not taken
into account explicitly. However, knowing how far a particular neighbor is
may be beneficial. E.g., in real-world social graphs the friends of some friends
may contain more information about a node’s label than the direct friends
themselves [21].

In this chapter, we propose a label-based approach Ada-LLD which learns
all possible correlations of a node’s label with labels in its local neighborhood,
as depicted in Figure 13.1, at multiple scales. The main idea is as follows: If
the graph structure is useful for prediction, then there should exist a corre-
lation between the label of a node and the distribution of labels in its local
neighborhood. Our approach neither requires this correlation to be prede-
fined in advance nor to be the fixed across the graph. Therefore, our method
first determines the distributions of labels in neighborhoods of different exten-
sions. To do so, we consider only the most relevant neighbors for each node,
which we determine by using Approximate Personalized PageRank. Given
the representations of label distributions from various parts of the graph,
our method learns how to infer labels for unlabeled nodes based on these
representations. An important advantage of our approach is that it is able to
use information from the whole graph (or all available graphs) for classifying
a node and that it does not make any assumptions about relationships of
labels (it learns them instead).

We summarize our main contributions as follows:

• A novel approach to semi-supervised node classification which is able
to learn different types of correlations between labels by considering
local label distributions.

• Variations of our base model for detecting and combining label corre-
lations at multiple scales.

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 176

• An efficient and scalable algorithm for computing local label distribu-
tions.

• Thorough experimental evaluation of our models and comparison with
state-of-the art methods on several real world datasets.

13.2 Related Work

As discussed in Chapter 9.3, numerous approaches related to semi-supervised
node classification have been proposed recently. These can broadly be cat-
egorized into unsupervised node embedding techniques and semi-supervised
techniques. To position the work presented in this chapter within the state-
of-the-art, we compare related methods for node classification with respect
to several key properties in the following.

Comparison of related methods

We compare those related methods with respect to key properties which
describe different aspects of how nodes can be related with each other for
classification. In addition to the discussion below, an overview is provided in
Table 13.1.

• Homophily: Whether the method is able to model homophily. La-
bel Diffusion, MPNN and Ada-LLD are able to learn homophily, but
are not doing so explixitly. MPNN however is only able to model
homophily indirectly via additional node attributes. The remaining
methods can either be parametrized explicitly to model homophily or
focus on homophily by design.

• Heterophily: Whether the method is able to model heterophily. MPNN
and Ada-LLD are able to model heterophily, but are not doing so ex-
plicitly. Again, MPNN is only able to model heterophily indirectly
via additional node attributes. While Belief Propagation needs to be
parametrized explicitly to model heterophily, advanced Label Diffusion
methods focus on heterophily by design.

• Mixed: Whether the method is able to model homophily or different
heterophily patterns for different labels at the same time. Capabilities
of related methods w.r.t. this property are analogous to the heterophily
property above.

177 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

• Local Variation: Whether the method is able to model homophily
or different heterophily patterns for the same label at the same time.
The only methods capable of modeling this property are MPNN and
Ada-LLD , where MPNN again relies on additional node attributes.

• Adaptive: Whether the model is able to adaptively learn appropri-
ate node similarities without explicitly relying on either homophily or
heterophily. MPNN learns general correlations only between a node’s
label and additional node attributes appearing in the neighborhood.
Ada-LLD learns such correlations directly from the neighboring node
labels. The remaining methods are not adaptive.

• Labels: Whether node similarity is modeled directly based on la-
bels. Homophilic graph embeddings are unsupervised and only con-
sider graph topology. MPNN models node similarity based on node at-
tributes. Planetoid considers labels directly only via sampling of nodes
with the same labels. Label Diffusion and Belief Propagation consider
labels directly by diffusing them through the graph. Ada-LLD is the
only method which directly learns general correlations between a node’s
label and neighboring labels.

• Remote: Whether information from different parts of the graph can
be incorporated to classify a node. MPNN and Ada-LLD are location-
invariant and thus able to learn correlations based on the whole graph.
Planetoid samples nodes with same class labels from different parts of
the graph but only in addition to neighboring nodes. The remaining
methods only take close-by nodes into account.

In conclusion, none of the existing methods fulfills all of the desired prop-
erties. Ada-LLD is the first method to support adaptive learning of direct
label-based node similarity for node classification without a need of addi-
tional attributes.

13.3 Adaptive Node Similarity Using Local La-
bel Distributions

Problem Setting

A graph G = (V,E) can be represented by an n × n adjacency matrix A =
(aij)vi,vj∈V , where aij ∈ R denotes the weight of the edge (vi, vj). In case of
an unweighted graph, ai,j = 1 indicates the existence and ai,j = 0 the absence

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 178

of an edge between vi and vj. Furthermore, we do not allow self-links and
we do not consider further attributes in addition to class labels.

Our problem setting is semi-supervised node classification, where the node
set V is partitioned into a set of labeled nodes L and unlabeled nodes U , such
that V = L ∪ U and L ∩ U = ∅. Thereby, each node vi ∈ V is associated
with a label vector yi ∈ {0, 1}l, where l is the number of possible labels and
an entry one indicates the presence of the corresponding label for a certain
node. The available labels can be represented by an n × l label matrix
Ytrain , where the i-ths row of Ytrain corresponds to the label vector yi of vi if
vi ∈ L. For unlabeled nodes, we assign constant zero vectors. The task is
to train a classifier using A and Ytrain which accurately predicts yi for each
vi ∈ U . In multi-class classification, each node is assigned to exactly one
class. Multi-label classification denotes the general case, in which each node
may be assigned to one or more classes and the goal is to predict all labels
assigned to a particular node.

The Ada-LLD Model

The main idea of our approach is to learn general correlations between a
node’s label and the labels of neighboring nodes. According to this intuition,
our core model predicts the label vector yi for a given node vi as

yi = f (aggr ({yj | vj ∈ N (vi)})) , (13.1)

where N (vi) denotes the neighborhood of vi, aggr is an aggregation function
and f is a classifier which predicts node labels based on the aggregated
neighboring node labels.

A sensible choice for aggr would be a weighted function which does not
treat any labels equally but assigns more importance to labels of nodes which
are more important to vi. Additionally, a probabilistic interpretation can be
obtained by using probabilistic weights. These considerations lead to local
label distributions which will be introduced in Section 13.3 and are used as
input features to our model.

For the classifier f , our default choice is a neural network with a single
hidden layer H1 for which different alternatives will be introduced in Section
13.3. For prediction we use a fully connected layer

H2 = q (WoutH1 + bout) , (13.2)

where Wout ∈ Rh×l is the weight matrix, bout ∈ Rl denotes the bias and q is
the softmax activation P (ci) = exp (hi)/∑l

j=0 exp (hj) in case of multi-class classi-
fication. If the classification problem is a multi-label one, class probabilities

179 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

are computed using the sigmoid activation P (ci) = 1/(1+exp (−hi)). The result-
ing model is quite simple and efficient, yet sufficiently expressive to provide
accurate predictions. Details regarding training will follow in Section 13.3.

Local Label Distributions

In many real-world graphs, most of the nodes can be reached within a few
steps and often only a small set of neighboring nodes are important to a
particular node. Therefore, it is crucial to take only the labels of the most
relevant neighbors into account and to weight them accordingly. Considering
simple neighborhoods such as the k-hop neighborhood may lead to consider-
ing irrelevant nodes or missing important ones. Nodes with a larger shortest
path distance could still be more important, e.g., if they can be reached via
many different short paths. For similar reasons, nodes with a small shortest
path distance might not be equally important. Such effects are captured by
Personalized PageRank (PPR). Personalized PageRank can be viewed as a
special case of the PageRank algorithm [201], where the probabilities in the
starting vector are biased towards some set of nodes. We consider the special
case in which the starting vector is a unit vector, resulting in personalized
importance scores for the particular source node. The PPR-vectors of all
nodes in the graph can be stored as rows of a sparse PPR-matrix Π ∈ Rn×n.

Local push-based algorithms [133, 33] can be used to compute Approxi-
mate Personalized PageRank (APPR) very efficiently and lead to sparse so-
lutions where small, irrelevant entries are omitted. In particular, we consider
the algorithm proposed in [234] as outlined in Algorithm 10. The algorithm
requires two parameters to be set by the user. The teleportation parameter
α determines the effective size of the neighborhood considered for the source
node. The second parameter ε is a threshold which controls approximation
quality and runtime.

Given the PPR-vector πi and the label matrix Ytrain, we aggregate the
neighboring labels of vi as follows:

ldi = πiYtrain ∈ Rl (13.3)

We call the resulting vector the label distribution vector of vi. Intuitively,
the entry ldi,j corresponds to the probability that a random walk starting at
vi stops at a node with label cj.

Multi-Scale Neighborhood Combination

Label distributions can be expected to change with increasing neighborhood
size and an optimal scale will depend on the graph and even on the particular

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 180

Algorithm 10 Compute_LD(v, α, ε)
Input: Source node v, Teleportation probability α, Approximation thresh-

old ε, Label matrix Ytrain
Output: Label distribution vector ld
1: // Compute APPR-vector for node v
2: p = ~0, r = ~0
3: r(v) = 1
4: while r(u) ≥ εd(u) for some vertex u do
5: pick any u where r(u) ≥ εd(u)
6: p(u) = p(u) + (2α/(1 + α))r(u)
7: for v with (u, v) ∈ E do
8: r(v) = r(v) + ((1− α)/(1 + α))r(u)/d(u)
9: end for
10: r(u) = 0
11: end while
12: // Compute label distribution vector ld for node v
13: p(v) = 0
14: ld = pYtrain
15: return ld

source node itself. Further, information from multiple scales may be com-
bined to detect multi-scale patterns. Performing a parameter search over α
would not only be expensive but also lead to a single global scale applied to
all nodes in the graph. Instead, we propose to consider label distributions at
a small set of different scales and suggest several possibilities of combining
them.

We start with computing local label distributions for a set of different
teleportation parameters {α1, . . . , αk}, resulting in a tensor

X = [Xα1 , · · · , Xαk
] ∈ Rk×n×l, (13.4)

where slice Xα = ΠYtrain = (ldi,j) ∈ Rn×l contains the label distributions
w.r.t. α of all nodes in the graph as rows. If only a single fixed scale α is used,
the matrix X = Xα is fed to a fully-connected hidden layer H1 which is then
connected to the prediction layer H2. For the general multi-scale case, we
propose four different neural network architectures with different inductive
bias for the task of learning the importance of different scales and combining
the provided label distributions. Our base model uses only a single hidden
layer H1. Naturally, the model could be extended by an arbitrary number
of additional fully-connected hidden layers depending on the task at hand.
Since our goal is to prove our concept and we want to keep our architecture

181 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

comparable with the competing methods, we will restrict ourselves in the fol-
lowing to models with only these combining layers as the single hidden layers.

Average. Our first model, LD_AVG, tries to determine an optimal
combination of label distributions in different neighborhood extensions si-
multaneously for the whole graph. Therefore, we propose to combine the
label distributions by taking the weighted average. The weight γi for the
i-th matrix Xαi

is a scalar and is trained jointly with the remaining model
parameters. Formally, the hidden layer is computed as

H1 = q ((γ1Xα1 + · · ·+ γkXαk
)Wavg + bavg) , (13.5)

with Wavg ∈ Rl×h, bavg ∈ Rh and h denoting the number of hidden neurons
in the first layer. As default activation q we choose the ReLU function (also
for the following models). Though this method has a moderate number of
parameters, it is not able to learn different scale combinations.

Concatenation. With our second model, which we refer to as LD_CONCAT,
we attempt to minimize the assumptions on the data by allowing arbitrary
relations between scales. Thus, we concatenate the neighborhood matrices
Xαi

and learn a representation by applying a fully connected layer on the
concatenation:

H1 = q ([Xα1 , · · · , Xαk
]Wconcat + bconcat) , (13.6)

with Wconcat ∈ R(l·k)×h being a third-order tensor and bconcat ∈ Rh. However,
this model might be vulnerable to overfitting due to the high number of pa-
rameters.

Independent Weights. To find a better trade-off between model com-
plexity and expressiveness, our third proposed model, LD_INDP, processes
each scale independently and combines compact representations in subse-
quent layers:

H1 = q ([Xα1W1 + b1, · · · , Xαk
Wk + bk]) , (13.7)

with Wi ∈ Rl×h̃, bi ∈ Rh̃ and h̃ being the number of hidden neurons per
scale. Although this model significantly reduces the amount of parameters
compared to the LD_CONCAT model (if h̃ < h), the amount of parameters
is still rather large because each scale i requires its own weight matrix Wi.
Furthermore, this model does not exploit that the characteristic label distri-
butions of classes may be similar over all scales.

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 182

Shared Weights. In order to account for similarities in label distribu-
tions over different scales, our final model, referred to as
LD_SHARED, uses a single weight matrix Wsh which is shared over all
scales:

H1 = q ([Xα1Wsh + bsh, · · · , Xαk
Wsh + bsh]) , (13.8)

with Wsh ∈ Rl×h̃ and bsh ∈ Rh̃. Despite the assumption about similar label
patterns in different localities, similarly to LD_INDP this model can learn
different scale combinations in subsequent layer.

The Ada-LLD Algorithm

We start with pre-computing APPR and the corresponding label distribu-
tions for a small set of k different scales. The label distributions are then
combined in H1 according to Equations 13.5 – 13.8 and fed to the prediction
layer H2. The final MLP model is trained using Stochastic Gradient Descent
(SGD) to minimize the cross-entropy loss

`(vi) =
l∑

j=1

−yi,j logPi,j, (13.9)

where Pi,j is the probability of class cj for node vi as predicted by our model.
The main steps of our algorithm are summarized in Algorithm 11.
The pre-computation as well as training steps are both highly efficient and

scale to large graphs. Computing APPR for all k scales and all n source nodes
requires O(kn/αε) operations [234]. Computing label distributions requires
O(km) operations on average where m is the average number of non-zero
entries in an APPR-vector. Due to sparsity, it usually holds that m << n.
Finally, training with SGD is again in O(n). Thus, the complexity of the
whole algorithm is linear in the size of the graph.

Extension: Combinations with Additional Node Embed-
dings

At this point, we wish to emphasize that the combined label distributions
learned by our model are in general complementary to node embeddings
based on graph topology or additional node attributes. In fact, the node
representations learned by Ada-LLD can simply be combined with such em-
beddings to improve classification accuracy.

As a first step in this direction we propose a simple combination with
topological features. We propose to compute topological embeddings, e.g.,

183 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

Algorithm 11 Ada-LLD
Input: Graph G = (V,E), Label matrix Ytrain, Approximation threshold ε,

Teleportation parameters {α1, . . . , αk}
Output: Trained classifier f
1: // Compute label distributions at each scale
2: declare X ∈ Rk×n×l

3: for αj ∈ {α1, . . . , αk} do
4: declare Xαj

∈ Rn×l

5: for vi ∈ V do
6: ldi ← Compute_LD(vi, αj, ε) (see Algorithm 10)
7: Xαj

[i, :] = ldi
8: end for
9: X[j, :, :] = Xαj

10: end for
11: // Train classifier with SGD
12: f = H2(H1(X))
13: f ← SGD(f, Ytrain, `)
14: return f

by simply multiplying an embedding matrix E ∈ Rn×d (where d is the di-
mensionality of the embedding) to the pre-processed adjacency matrix Â as
in [142]. Note that the learned topological embeddings consider only direct
neighbors. Those embeddings can be fused into our model by simply con-
catenating them to the hidden layer H1. In particular, we choose the most
simple of our model variants, LD_AVG :

H1 = q
([
ÂE, (γ1Xα1 + · · ·+ γkXαk

)Wavg + bavg

])
. (13.10)

The embedding matrix E is initialized randomly and learned together with
the rest of the model.

Despite being simple, the above model is already sufficiently expressive to
demonstrate how combinations of Ada-LLD with other types of node features
can improve classification accuracy. More sophisticated combinations as well
as incorporating additional node attributes will be subject to future work.

13.4 Evaluation

We evaluate our approach by performing node classification and compare
the quality in terms of micro F1 scores, which corresponds to accuracy for
multiclass prediction tasks, respectively micro F1 and macro F1 scores for

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 184

(a) Accuracy scores for Cora. (b) Accuracy scores for CiteSeer.

(c) Accuracy scores for Pubmed.

Figure 13.2: Accuracy scores for the three benchmark data sets.

multilabel prediction tasks, against state-of-the-art methods. For both tasks,
we compare our models against the following approaches:

• Adj : a baseline approach which learns node embeddings only based on
the information contained in the adjacency matrix

• GCN1_only_L: a GCN model which applies convolution on the label
matrix. We use one convolution layer with the adjacency matrix with-
out self-links, followed by a dense output layer 1

• GCN2: the standard 2-layer GCN as in [142] without using the node
attributes

• DeepWalk : the DeepWalk model as proposed in [214]

• node2vec: the node2vec model as proposed in [103]

• Planetoid-G : the Planetoid variant which does not use information from
node attributes [271] 2

1We use only a single convolution layer due to the reason stated in Section 13.2
2Unless stated differently, we use for all competitors the parameter settings as sug-

185 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

For the multiclass problems, we additionally compare against two label prop-
agation approaches, i.e., 2-step LP, the two-step label propagation approach
proposed in [208].

Furthermore we study the benefits of combining label distributions from
multiple scales and the effect of combining our embeddings with homophily
based embeddings (13.4). We also analyze whether our label based approach
is competitive to methods which additionally take node attributes into con-
sideration. Finally, we show that the superiority of our methods is due to
the high adaptivity to local label neighborhood.

Multiclass Prediciton

Experimental Setup

We use the following three text classification benchmark graph datasets [229,
191]:

• Cora. The Cora dataset contains 2’708 publications from seven cat-
egories in the area of ML. The citation graph consists of 2’708 nodes,
5’278 edges, 1’433 attributes and 7 classes.

• CiteSeer. The CiteSeer dataset contains 3’264 publications from six
categories in the area of CS. The citation graph consists of 3’264 nodes,
4’536 edges, 3’703 attributes and 6 classes.

• Pubmed. The Pubmed dataset contains 19’717 publications which are
related to diabetes and categorized into 3 classes. The citation graph
consists of 19’717 nodes, 44’324 edges, 500 attributes and 3 classes3.

For each graph, documents are denoted as nodes and undirected links be-
tween documents represent citation relationships. If node attributes are
applied, bag-of-words representations are used as feature vectors for each
document.

We split the data as suggested in [271], i.e., for labeled data our training
sets contain 20 randomly selected instances per class, the test sets consist
of 1’000 instances and the validation sets contain 500 instances, for each
method. The remaining instances are used as unlabeled data. For comparison

gested by the corresponding authors. Except for minor adaptations, e.g., to include label
information in the one layer GCN model or to make the Planetoid models applicable
for multilabel prediction tasks, we use the original implementations as published by the
corresponding authors.

3This turned out to be too large for the Dynamic LP approach and therefore we cannot
show the results of Dynamic LP on the Pubmed network.

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 186

we use the prediction accuracy scores which we collected over 10 different data
splits.

Since the number of iterations for sampling the graph contexts and the
label contexts for Planetoid are suggested only for the CiteSeer data set, we
adapted these values relative to the number of nodes for each graph. For
node2vec, we perform grid searches over the hyperparameters p and q with
p, q ∈ {0.25, 0.5, 1.0, 2.0, 4.0} and window size 10 as proposed by the authors.
For all models except Planetoid unless otherwise noted, we use one hidden
layer with 16 neurons, the learning rate and training procedure are used as
proposed in [142]. Regarding our models, we use α ∈ {0.01, 0.5, 0.9} as values
for the teleportation parameter and ε = 1e−5 as approximation threshold to
compute the APPR vectors for each node. For LD_CONCAT, LD_INDP
and LD_SHARED we use 16 hidden neurons per APPR matrix in the hidden
layer.

Results

Figure 13.2 shows boxplots depicting the micro F1 scores we achieved for the
multiclass prediction task for each considered model on the three benchmark
datasets Cora, CiteSeer and Pubmed.

Our models improve the best results produced by node2vec which demon-
strates that the label distributions are indeed a useful source of information,
although the evaluation for GCN1_only_L shows, especially for Pubmed,
rather poor results. This is due to this model considering only the label dis-
tribution of a very local neighborhood (in fact one-hop neighbors). However,
collecting the label distribution from more spacious neighborhoods gives a
significant boost in terms of prediction accuracy. For the Cora network, the
gain of accuracy of LD_INDP, when comparing to the result of node2vec,
is more than 13%. Moreover, for all datasets, our models perform similarly,
which shows that even simple models with shared weights are able to match
the performance of more complex models.

Multilabel Classification

Experimental Setup

We also perform multilabel node classifications on the following two multil-
abel networks:

• BlogCatalog [245]. This is a social network graph where each of the
10,312 nodes corresponds to a user and the 333,983 edges represent the

187 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

(a) Micro-F1 scores for BlogCatalog.

(b) Macro-F1 scores for BlogCatalog.

Figure 13.3: Micro F1 and macro F1 for BlogCatalog.
friendship relationships between bloggers. 39 different interest groups
provide the labels.

• IMDb Germany. This dataset is taken from [91]. It consists of
32,732 nodes, 1,175,364 edges and 27 labels. Each node represents
an actor/actress who played in a German movie. Edges connect ac-
tors/actresses that were in a cast together and the node labels represent
the genres that the corresponding actor/actress played.

Since the fraction of positive instances is relatively small for most of the
classes, we use weighted cross-entropy as loss function. Therefore, the loss
caused by erroneously classified positive instances is weighted higher. We use
weight 10 in all our experiments. For the same reason we report micro F1 and
macro F1 score metrics to measure the quality of the considered methods.
We compare our models to the attribute-less models that we already used

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 188

(a) Micro-F1 scores for IMDb Germany.

(b) Macro-F1 scores for IMDb Germany.

Figure 13.4: Micro F1 and macro F1 for IMDb Germany.
for the multiclass experiments 4.

We split the data into training, validation and test set such that 70%
of all nodes were used for training, 10% for validation and 20% of the data
were used to test the model. Note that we could not use stratified sampling
splits for these experiments since we optimize for all classes simultaneously
instead of using one-vs-rest classifiers 5. The hyperparameter setting is as
described above. For this set of experiments we ran each model, except for
Planetoid-G, 10 times on five different data splits. Due to the long runtime
of Planetoid-G we trained this model only three times on two data splits.

4To adapt the Planetoid-G implementation for multilabel classification, we use a sig-
moid activation function at the output layer and also slightly changed the embedding
learning step. Entities which are used as context and have the same labels as the node
itself are sampled from all classes to which the node belongs to.

5That is why our results for node2vec and DeepWalk on the BlogCatalog network are
slightly worse than reported in [103]

189 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

Results

The results for the BlogCatalog graph are shown in Figure 13.3. For this
network, only using the label information from the direct neighborhood of a
node is not useful to infer its labels, c.f. GCN1_only_L. However, incorpo-
rating label distributions of somewhat larger neighborhoods as for our models
(again, we also use the APPR matrix calculated for small values of α to de-
termine the label distribution in neighborhoods that span more than 1-hop
neighbors) seems to improve the results for the prediction task significantly.

Compared to node2vec and DeepWalk our models achieve similar perfor-
mance in terms of micro F1 score and clearly outperform them when consid-
ering the macro F1 scores. In fact, regarding the median, LD_INDP, which
is the best among our models, achieves a gain of about 15.8% over the best
competitor, i.e., node2vec.

For the IMDb Germany network, for which the results can be seen in
Figure 13.4, the labels in the 1-hop neighborhood are already very expressive.
In this setting, our models outperform all of the competitors. Considering
the macro F1 scores, our best model has a median score at about 64% while
the best competitor that is Adj achieves a score of approx. 34.5%. This
results in a gain of more than 85%.

Effect of Combining Multi-Scale Neighborhoods

Figure 13.5 shows how the volume of the considered neighborhood affects
the performance of the different models. As an example, we took the Blog-
Catalog network. We ran the label distribution models using only a single
APPR matrix with α ∈ {0.1, 0.2, 0.3, . . . , 0.8, 0.9} to determine the label dis-
tribution within the corresponding neighborhood. To show how combining
label distributions from multiple neighborhoods affects performance, we fur-
thermore compare the medians of the resulting micro F1 scores to the one
achieved by using the combination of only three APPR matrices, i.e., for
α = [0.01, 0.5, 0.9].

Figure 13.5(a) shows the micro F1 we achieved when running our base
model, i.e.,

H1 = q(XαW),

the model that uses only a single neighborhood’s label distribution Xα, with
a single value of α. Note that H1 again describes the first hidden layer
with q being the activation function (we use ReLU). The results show two
things: (1) that the native label distribution embeddings are quite sensitive
to the choice of α, and (2) that in addition to selecting a single optimal scale,
combining multiple scales further improves performance.

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 190

(a) Micro F1 scores for single α values.

(b) Comparing micro F1 scores of our models when us-
ing single α values (dashed lines) vs combining three
different α values (bars).

Figure 13.5: Effect of differently sized neighborhoods for label distribution
models on the BlogCatalog network.

As can be seen in Figure 13.5(b), due to the models being able to effec-
tively combine differently sized neighborhoods, we can, even with only three
different values for α, overcome the micro F1 scores that were achieved when
using a single value for α. In addition to the results of the combined models,
the dashed lines show the results achieved for single α values. The upper line
is the best result (that we got for α = 0.6), and the lower line depicts the
worst result (which we got for α = 0.9).

Based on our findings, we can summarize that in cases where no a priori
knowledge about “good” and “bad” locality levels is given for a certain dataset,
even a small set of α values which range from “very local” (α close to 1) to
“spacious” (α close to 0) is already sufficient to get useful node representations
due to the models optimizing the combination of neighborhoods.

191 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

(a) Accuracy scores for Cora. (b) Accuracy scores for CiteSeer.

(c) Accuracy scores for Pubmed.

Figure 13.6: Comparison against attribute-based methods: Accuracy scores
for the three benchmark data sets.

Combining Ada-LLD Embeddings with Further Node Em-
beddings

Regarding Figure 13.3 and Figure 13.4 again, we also show the results when
combining the node embeddings based on local label distributions with em-
beddings that capture structural properties. Precisely, the line labeled as
LD_AVG+EMB shows the results when using the model described in Equa-
tion 13.10.

Even by using this simple extension the performance of our approach
is further improved. For the IMDb network, we can observe a noteworthy
improvement of accuracy (> 15%) when combining information from label
distributions and graph topology, even when using our weakest performing
model in this setting. Given these results, we summarize that combining rep-
resentations based on local label distributions with additional node features
is indeed a promising direction for future work.

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 192

Comparison to Attribute-Based Methods

To further investigate the utility of label information compared to that of
additional node attributes, we also compare our models against the following
state-of-the-art attribute-based methods:

• Feat : a baseline approach which uses node attributes as features and
predicts node labels only based on these features without considering
the underlying graph structure.

• GCN2: the standard 2-layer GCN as in [142]

• Chebychev3: the spectral convolution method which uses chebychev
filters as presented in [80]; as in [142] we also use 3rd order chebychev
filters

• Planetoid-T : the semi-supervised Planetoid framework which uses at-
tribute information as proposed in [271].

For this set of experiments, we again perform multiclass prediction on the
three benchmark text classification datasets and report the prediction accu-
racy in terms of micro F1 scores to measure the quality of the retrieved node
representations. Note that in contrast to the competitors, our model still
does not make use of the node attribute information being available in the
given data sets. The results are depicted in Figure 13.6 and clearly show that
our models can compete with the attribute-based methods even though they
rely only on the provided class labels and do not have access to additional
attribute information. Thus, the proposed label-based embeddings yield an
expressive alternative in cases where no node attributes are available.

Different Label Patterns

To prove the intuition that our method actually adapts to different local
label patterns, we use synthetic networks. Analogously to [208] we apply the
stochastic block model (SBM) [118] to generate networks with 8000 nodes and
mean degree 15. We define three types of nodes (classes) for each network.
The relationships between different classes can be seen in Figure 13.7. The
first network models homophily relations, the second models heterophily, the
third models both types of relationships for different classes (mixed), and
for the fourth graph, each class type is subdivided into different groups to
model locally mixing patterns of heterophily and homophily (local variation).
Obviously, this is the most difficult setting for all methods. We compare our
approaches to 2-step LP [208], which can model heterophily and homophily.

193 CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS

(a)

(b)

Figure 13.7: Block interaction matrices and corresponding results for dif-
ferent amounts of training instances. The color of the blocks denotes the
average number of edges linking nodes from class i to class j.

As can be seen in Figure 13.7, our approaches clearly outperform 2-step
LP on all networks. Thus, even if all classes follow the same pattern it is
beneficial to learn how labels relate to each other rather than modeling it
explicitly. It is particularly interesting that for the most difficult case our
simplest model LD_AVG performs worse than our other models, which ex-
plicitly capture label distributions at multiple scales. Therefore we conclude
that considering different proximity is especially useful if labels do not follow
a single pattern.

13.5 Conclusion
In this chapter, we presented Ada-LLD, a novel label-based approach to
semi-supervised node classification in graphs. Our method aims at learn-
ing general correlations between a node’s label and neighboring labels in an
adaptive fashion. To detect such correlations at multiple scales, we pro-
pose four different variants of our model with different inductive biases. The
corresponding algorithm is highly efficient and scales to large graphs. Our
experimental results on various real-work datasets demonstrate that local la-
bel distributions are able to significantly improve node classification in the
multi-class as well as in the multi-label setting. We further demonstrated
how the success of our method can be explained by its ability to learn local
label patterns over different locality levels. As additional experiments, we
compared the utility of our label-based features with that of additional node

CHAPTER 13. SEMI-SUPERVISED LEARNING ON GRAPHS 194

attributes and demonstrated the adaptivity on graphs with different label re-
lationships. In future work, we plan to further investigate how to effectively
combine label-based features with different other kinds of features, such as
node attributes, edge attributes or node embeddings in a semi-supervised
model, to further improve node classification.

Chapter 14

Application of Node Embeddings
for Map Fusion

As graph convolutional networks, or more general the message passing frame-
work, have recently been successfully applied on various tasks for graph based
data, we finally present an application of node embeddings trained within the
message passing framework for the task of Map Fusion. However, we want
to mention that the proposed method follows a supervised learning regime.
The work presented in this chapter has been accepted and presented at the
2019 NeurIPS Workshop on Graph Representation Learning Workshop.

14.1 Introduction

In recent years the high relevance of graph-structured data has generally been
accompanied by an increased demand for algorithms that are able to take
advantage from the rich body of relational information encoded in graphs.
However, in many domains, the entire knowledge base of a certain domain is
spread across multiple data sources, e.g., geo-spatial information are spread
across various map providing services, social information are spread across
multiple social networks, or, somewhat more general, knowledge bases are
distributed across various knowledge graph databases.

In this chapter, we tackle the problem of knowledge fusion by developing
a graph neural network model that is able to fuse graph-structured data by
learning node matchings. Given two partly overlapping graphs, our approach
aims at identifying nodes from both graphs that match to each other by
leveraging the local neighborhoods of the nodes. The ultimate goal is to
align the graphs such that the information contained in both graphs can be
fused properly.

CHAPTER 14. USING NODE EMBEDDINGS FOR MAP FUSION 196

In general, the node matching problem is of high relevance in many ap-
plications including the fusion of road networks, also called map fusion [221],
the matching of knowledge graphs [240, 210, 277, 106, 250, 283, 261, 266, 64],
the alignment of social networks [171], or to enable efficient graph compari-
son [164, 26]. Traditional methods addressing the graph alignment problem
typically rely on calculating distances between manually engineered node and
edge features. The distances are used to generate pairs of nodes that serve
as matching candidates and the set of candidates is subsequently optimized
by incorporating the nodes’ neighborhood information [221, 270]. However,
those approaches require non-trivial, manual paramater tuning, do not gen-
eralize well to unseen data and suffer from high complexities which makes
them impractical. More recent works have applied graph neural networks
(GNNs) which have proven to be particularly suitable for the graph align-
ment task [261, 266, 64, 164, 26]. The common approach is to aggregate
nodes from the local neighborhood into a target node’s representation and
subsequently compare the resulting representations with each other. More
advanced approaches even additionally aggregate nodes from the other graph
into the node representations [164, 266].

Either way, the aggregation of information, i.e., the kind of information as
well as the locality of the area from which the information is aggregated, is the
critical point to get useful embeddings. This holds for the graph alignment
task in particular, as information gathered from local node neighborhoods
generally tends to become less useful the more the two graphs that shall
be aligned differ in terms of structural properties. To overcome the issue
of aggregating irrelevant or even misleading information, state-of-the-art ap-
proaches use different types of attention mechanisms when aggregating node
neighborhoods. The general idea behind using attention is to determine the
importance of a certain entity (e.g., a node in the neighborhood) based on
an object’s own representation (e.g., the representation of the target node)
and the current representation of the entity. The higher the importance, the
more influence should the corresponding entity have on the object’s own rep-
resentation. However, the attention based on the structure of the own graph
is of limited usefulness for the graph alignment task. We argue that the most
important information about a node’s neighbors is whether they have good
alignments in the counterpart graph.Therefore, the Graph Alignment Net-
work (GrAN) presented in this work uses an importance mechanism that,
in contrast to previous works, aims at putting special emphasis on nodes
that have a good match in the counterpart graph. By doing this, our model
effectively introduces an additional inductive bias, i.e., the assumption that
neighboring nodes which are likely to be part of the overlapping area of the
two graphs are particularly useful for a target node’s representation. The

197 CHAPTER 14. USING NODE EMBEDDINGS FOR MAP FUSION

intuition is that matching nodes in the counterpart graph also put special
emphasis on nodes whose representations tend to be similar to the representa-
tions of the nodes in the source node’s neighborhood. Hence, the aggregated
information of the two matching nodes in both graphs are likely to be similar,
too.

After presenting our GrAN model in Section 14.2, we present prelimi-
nary results of our evaluation in Section 14.3. Precisely, we compare our
model against state-of-the-art GNN approaches on map fusion tasks. These
tasks turned out to be particularly challenging due to presence of geo-spatial
coordinates as they form a natural and very strong baseline. However, it
is noteworthy that our model can also be applied to other tasks including
knowledge graph matching and the determination of graph similarities.

14.2 Graph Alignment Networks with Node Match-
ing Scores

Let G = (V,E,X, P) and G′ = (V ′, E ′, X ′, P ′) denote two graphs with V ,
V ′ denoting the sets of nodes, E, E ′ being the sets of edges and X, X ′,
and P , P ′ being the node and edge attributes, respectively. For the sake of
simplicity we assume that both graphs are undirected. Given this setup, we
aim at learning a function F : G×G′ → H ∈ R|V |×h which takes two graphs
as input, applies multiple message passing operations on them and finally
retrieves latent vector representations for the nodes of the first graph that was
fed as input into F . For the GrAN model, we use a Siamese architecture that
allows to apply the same function F to both graphs such that the model’s final
output are two node embedding matrices H = F (G,G′) and H ′ = F (G′, G),
respectively. Given the node embeddings, we subsequently align two nodes
if their vector representations are considered similar with respect to some
similarity function sim and a predefined similarity threshold τ , i.e.,

ŷ(vi, v
′
j) =

{
1 if sim(hi,hj) > τ
0 else.

, (14.1)

with vi ∈ V , v′j ∈ V ′, hi denoting the row vector from H that corresponds
to the embedding of node vi and hj being the row vector from H ′ that
corresponds to the embedding vector of node v′j. ŷ(vi, v

′
j) = 1 indicates that

the nodes vi and v′j are aligned.

Graph Alignment Network. Graph Neural Networks [224, 98] compute
node representations by propagating information between vertices and aggre-
gating them iteratively. In each layer, a message is formed from each source

CHAPTER 14. USING NODE EMBEDDINGS FOR MAP FUSION 198

node and passed to its neighbors. Incoming messages for each target node
are aggregated and flow into the target node’s output representation. Stack-
ing multiple propagation layers allows propagating information over multiple
hops. Given a graph G = (V,E,X, P) we define a single message passing
propagation step as follows:

mj→i = M l(hlj, pji), with pji ∈ P, (14.2)

M l(hlj, ej,i) = fmessage(hlj) + LSTM(pji), (14.3)

hl+1
i = [fnode(hli),

∑
j,(j,i)∈E

αlj→imj→i] (14.4)

where, l stands for the current layer, M is a message function, fnode and
fmessage are small neural networks and [·] denotes the concatenation opera-
tion. Also, note that for the Map Fusion task, the edge features pji ∈ P
are sequences of coordinates that represent the road segment. Therefore, we
process edge features with a recurrent LSTM network and add the resulting
vector to the transformed node representations. However, the inclusion of
edge features is generally optional. The weight αlj→i determines the impor-
tance of the message emitted by node j. In fact, the α weights realize the
additional inductive bias of our model, i.e., that the effect that a message
has on other nodes is determined by the maximal matching similarity of the
source node to the other nodes in other graph. Intuitively, assume that node
v ∈ V has two neighbors u,w ∈ V with u being aligned to node u′ ∈ V ′ while
node w has no matching node in V ′. In this case, our goal is to put high
emphasis on u and low emphasis on w when aggregating incoming messages
of v. The intuition is that a node v′ ∈ V ′ who has u′ as a neighbor also
receives highly weighted information from u′ which is assumed to be similar
to the information from u. Therefore, in each layer, our approach first deter-
mines the best matching for each node with respect to the similarity function
sim, and all outgoing messages are weighted accordingly. More formally, we
define the message weight αlj→i as follows:

αlj→i =
exp(I(hlj, H ′l))∑
ĵ exp(I(hl

ĵ
, H ′l))

, with (ĵ, i) ∈ E, and (14.5)

I(hlj, H
′l) = max

j
sim′(fmatch(hlj), fmatch(h

′ l
k)), with h′ lk ∈ H ′l.(14.6)

Since it is not possible to backpropagate through the max operation, we
apply the gumbel softmax trick [178, 129]. For the functions fmessage, fnode
and fmatch, we use Multilayer Perceptrons and add an additional inductive
bias by sharing parameters between these three functions. The inverse Eu-
clidean function is used as similarity function sim′(a, b) = 1

deuclidian(a,b)+1
.

199 CHAPTER 14. USING NODE EMBEDDINGS FOR MAP FUSION

Learning. We use the contrastive loss [107] with positive ε+ and negative
ε− margins, i.e.,

L = yi,j ·max(0, d(hi,hj)− ε+) + (1− yi,j) ·max(0, ε− − d(hi,hj)), (14.7)

to train our model. yi,j is 1 for aligned and 0 for non-aligned pairs of nodes,
and d is the Euclidean distance. In contrast to, e.g., triplet loss, the con-
trastive loss allows us to incorporate nodes having no matchings into the
training.

14.3 Experiments

We evaluate our approach by interpreting the node matching problem as
a binary classification task and compare the proposed GrAN model against
several state-of-the-art methods including GCN [142], GAT [256], and Graph-
SAGE [108]. All GNN models use the same siamese architecture with shared
weights. For the competitors, as well as for our model we use implementa-
tions from the pytorch geometric framework [95]. We also evaluate against
a baseline method where we simply use the geo-spatial coordinates of the
used road networks’ vertices as 2-dimensional node representations for the
evaluation. Note that this is a fairly strong baseline as the graph vertices lie
within a continuous space and two matching nodes obviously tend to have
similar geo-spatial coordinates. Additionally, where it is possible, we report
the results when using probabilistic relaxation [270]. Note that the proba-
bilistic relaxation method considers all assignments at once using hungarian
algorithm [189] in combination with Otsu’s [199] method, and therefore can
benefit from the fact that graphs are different in size. However, the com-
plexity of O(c3), with c being the number of matching candidates, is rather
high and hence makes it impractical for larger networks. In contrast, all
GNN models classify each candidate pair independently. To achieve a fair
comparison, we additionally report results when conducting nearest neighbor
queries on the set of nodes from the larger graph and query objects only being
taken from the smaller graph. This way we still need to find a threshold to
divide the retrieved candidates into nodes with and without matchings, but
consider the fact that graphs differ in size. Note that this approach ignores
cases where nodes match to multiple nodes in counterpart graph.

We train each of the models by using two different road networks (one
is from OSM1 and the other from a commercial map provider), that both
cover freeways of the Northrhine-Westphalia region in Germany. In total,

1https://www.openstreetmap.org

CHAPTER 14. USING NODE EMBEDDINGS FOR MAP FUSION 200

NRW (train) NRW (test) MUC (test)

Nodes in G1 2,430 308 2,996
Nodes in G2 9,924 1,206 3,153
Candidates 52,138 6,148 378,948
1:1 & 1:n matchings 2,359 294 1,777
1:0 matchings 99 3 1,257

Table 14.1: Training and test dataset statistics.

the networks consist of 15,442 vertices and 20,166 edges with 2956 of the
vertices having a matching node in the other network, i.e., they form match-
ing pairs. In general, nodes can have zero (1:0), one (1:1) or multiple (1:n)
matching nodes in the other graph. Every node represents an intersection
and each edge corresponds to a road segment represented by the sequence of
coordinates. To train the models, the matching pairs are split into training,
validation and test set (80-10-10). For the purpose of generating negative
samples, we project each of the positive sample vertices into the other road
network and perform spatial range queries with a radius of approximately
1km2. The resulting set of vertices form the negative samples of the cor-
responding node (except for the actual matching vertex). Additionally, we
perform the same range queries for the nodes labeled as 1:0 matchings and
add the resulting pairs to the negative samples. Finally we get a set of 65,432
positive and negative candidate pairs, that form the final training, validation
and test sets as reported in Table 14.1. Furthermore, we evaluate how well
the models generalize to yet unseen road networks by measuring their match-
ing performance on a pair of road network sections that are taken from the
urban area of the city of Munich, Germany. Beside freeways, these graphs
also contain types of roads that are not present in the training data, e.g.,
residential street. The dataset is referred to as MUC.

For all models we trained various different architectures whose details and
hyperparameter settings can be found in the appendix of this chapter. In
the following, we report the results for the architectures that showed the best
performance. The results reported for the GrAN model were achieved when
using the Adam SGD optimizer and four message propagation layers. After
each convolutional layer, we update the output node representation by com-
bining it with the messages received from the neighborhood and the encoding
of the corresponding edge geometries. For the subsequent classification and
as similarity function for the node encoding we use the Euclidean distance.

2Note that some matching nodes representing the same acceleration lanes or freeway
exits are indeed located that far from each other.

201 CHAPTER 14. USING NODE EMBEDDINGS FOR MAP FUSION

The contrastive loss has been used as loss function to be able to incorporate
negative samples during training.

Method NRW MUC

GrAN .676 .642

GCN .091 .009
GAT .091 .009
GraphSAGE .091 .009

Spatial Coordinates .681 .626
Probabilistic Relaxation .752 -

Table 14.2: Resulting F1 Scores for the NRW and MUC datasets when using
MLP classifier.

Method NRW MUC

GrAN .847 .704

GCN .048 .001
GAT .071 .005
GraphSAGE .064 .001

Spatial Coordinates .827 .661
Probabilistic Relaxation .752 -

Table 14.3: Resulting F1 Scores for the NRW and MUC datasets when using
NN queries.

Table 14.2 shows the F1 scores comparing the classification results of our
approach against the results produced by the other GNN based models and
when using only spatial coordinates, or the probabilistic relaxation method.
While our approach outperforms GCN, GAT and GraphSage, and also the
spatial coordinates baseline on the MUC dataset, we achieve similar matching
results as the baseline on the NRW data. When comparing against proba-
bilistic relaxation, the latter achieves better results on the NRW dataset.
However, considering the nearest neighbors evaluation (cf. Table 14.3), the
probabilistic relaxation approach is outperformed by both our approach and
the spatial coordinates baseline, although all methods except for probabilis-
tic relaxation ignore 1:n matchings. In summary, our method still achieves
best results on both datasets.

CHAPTER 14. USING NODE EMBEDDINGS FOR MAP FUSION 202

14.4 Conclusion
In this chapter we studied the problem of graph alignment. We presented our
ongoing work on a new Graph Neural Network based model, that aggregates
information from neighbors based on their alignment scores. We evaluated
the proposed approach on Map Fusion tasks and compared it with state-of-
the-art models. Our promising experimental results show that the proposed
approach outperforms other GNN models by large margins. In future work
we plan to adapt our model for other tasks like the alignment of entities in
heterogeneous graphs, and also for calculating graph similarities. We further
see the potential of improving the runtime of our algorithm by combining it
with graph coarsening methods for instance.

Appendix
For all Graph Neural Network models we tried different architectures and
hyperparameters:

Weight Sharing in Siamese Architecture We also tried to learn differ-
ent encoders for each map without weight sharing. This could help if
two maps have different biases. However, it just worsened the results
in our setups.

Unsupervised Pretraining We used an adapted version of Deep Graph
Infomax [257] for pretraining. To corrupt a graph we shifted nodes
randomly in the coordinate space in each iteration. In summary, the
model pretraining led to the fastest convergence but did not affect the
final results significantly.

Loss We experimented with different positive and negative margins. We
obtained best results with a positive margin of 0 and a negative margin
of 10. To account for the class imbalance, we decreased the weight for
the negative examples inversely proportional to the relative frequency.

Model Depth We tried 1 to 8 message passing layers, followed by 0 to 2
fully connected layers. For GAT we additionally tried 1 to 7 attention
heads in each layer. The number of attention heads was constant for
all layers.

Width We tested various layer sizes, with both constant and variable sizes
of layers in the same model. Precisely, the layers consisted of 64, 128,
or 256 units each.

203 CHAPTER 14. USING NODE EMBEDDINGS FOR MAP FUSION

Edge Attributes For a fair comparison we adapted the message function
of all GNN models to be able to consider edge attributes and we eval-
uated them with and without using edge attributes. We also trained
models which consider edge attributes only in the first layer. By using
the Douglas–Peucker algorithm we reduced edge attribute sequences of
different lengths to be of equal lengths. We tried the sum and con-
catenation operations for combining edge and node embeddings in the
function M .

Early Stopping We trained all models with early stopping and patience
value of 1000.

Message Aggregation For aggregating the messages, we tried mean/max
pooling and concatenation.

Normalization We normalized input coordinates to [-1,1] range. Therefore,
the data has been zero-centered for each dimension at first. Next,
each dimension was divided by the max distance from the center in all
dimensions. This normalization stabilizes training and inference while
preserving distance ratios.

Optimizer Settings All tested models were trained with the Adam SGD
optimizer with a learning rate lr ∈ [1e-4, 1e-2), β1 = 0.9, β2 = 0.999,
and a weight decay value that has been chosen from the interval [0, 1e-4).

Chapter 15

Concluding Remarks

This thesis mainly concentrates on unsupervised learning techniques suitable
for analyzing and processing data as they could appear in the field of social
data analytics. Since the analysis of social data includes many different
facets of challenges, e.g., their temporal dynamics, high dimensionality or
complex nature due to relational information, it is the research in this area
that is particularly demanded. Generally, the evolving tasks and steadily
growing amount of data always require for novel techniques that are able to
cope with the upcoming problems. This became especially concrete in the
field of social data science, as social media platforms became part of daily
life and economy as well as politics recognized the huge potential captured
within the revealed information. However, the same trend can be observed
in other sectors than social data science, too. For instance, very similar
challenges appear when considering the automotive or manufacturing sectors
where vehicles or machines are equipped with more and more sensors to
support automation. To tackle some of the upcoming challenges, this thesis
presents some modern, respectively renewed data science algorithms that are
suitable to deal with these modern problems.

In the first part of the thesis, we started by presenting two algorithm that
address the problem of finding clusters in high-dimensional data that may
change over time. Precisely, those algorithms detect arbitrarily oriented sub-
space clusters in data streams. While previous works in this research field
mainly focused on identifying clusters in axis-parallel subspaces, the pro-
posed methods have the advantage of being able to combine certain features
such that correlations within the data are exploited to compress the captured
information. The first algorithm is based on PCA and is biased towards find-
ing local cluster patterns while the second one follows a global approach that
is based on Hough transformation. Also, both algorithms follow different
goals that are achieved by employing different data streaming models. The

205 CHAPTER 15. CONCLUDING REMARKS

PCA-based method primarily aims at reducing the runtime, and hence we
proposed to use a continuous online phase that compresses the current state
of clusters within generic microcluster structures. The final clustering model
can subsequently be determined on demand by triggering an offline phase
for which one can basically use any static PCA based correlation clustering
algorithm. The streaming algorithm that is based on Hough transformation
uses a different streaming model, i.e., a batched processing model, that aims
at reducing the required memory consumption. As the static counterpart al-
gorithm has a rather high complexity that highly depends on the size of the
database, we achieved to reduce the required memory remarkably by adapt-
ing the processing scheme accompanied by proper aggregation and merging
strategies. However, due to the fact that these (as well as the static) cor-
relation clustering methods cluster based on latent features that are formed
during the dimensionality reduction, these methods generally lack in inter-
pretability. From a practical point of view, we therefore see the need of
making those algorithms, respectively the results of those algorithms, more
explainable in future work. Moreover, as neural subspace clustering methods
that identify subspace cluster based on the self-expressiveness assumption re-
cently showed promising results for axis-parallel subspace clustering, another
direction for future work would be the development of suitable algorithms
that learn to detect arbitrarily oriented subspace clusters. Furthermore, we
also presented our study on identifying users of social media platforms based
on their mobility patterns. Beside revealing the potential of using such in-
formation for fusing even anonymized social databases, we also identified
privacy issues that in turn yield the challenge of developing proper meth-
ods for more powerful anonymization techniques. Finally, the first part also
includes a work that envisions the computation of social maps at different
scales by using microblog data in combination with hierarchical clustering
approaches. Ultimately, these social maps are able to reveal areas that fol-
low similar trends or have the same topics in mind. As the NLP community
presented a huge body of successful works on text embedding methods in the
meanwhile, it would be interesting to calculate social maps by using sophisti-
cated text representation methods that also take contextual information into
account, or work on multi-lingual text corpora.

The second part of the thesis focused on learning algorithms for graph-
structured data. In the beginning of this part, we presented an unsupervised
method for learning homophily based node embeddings. By using Personal-
ized PageRank vectors as basis to generate context samples for the word2vec-
like learning scheme, the proposed method enables to adapt a node’s consid-
ered neighborhood to the local, structural properties of the graph for each
node individually. Consequently, the samples for low degree nodes, that are

CHAPTER 15. CONCLUDING REMARKS 206

generally expected to be located in a graph’s periphery, consider a more
spacious neighborhood for sampling context nodes. In contrast, high de-
gree nodes, typically being located in the center of expander-like graphs for
instance, are biased towards considering only close-by neighbors for their con-
text. Secondly, we developed a method with a different inductive bias, such
that it generates structure-based node embeddings. By using the entropy
values of the stationary personalized PageRank distributions in differently
scaled, local node neighborhoods, we already achieved meaningful node de-
scriptors. We subsequently used those node descriptors as input to various
clustering/aggregation algorithms. This way we learned abstract node role
notions in an unsupervised fashion, and used these role notions to gener-
ate vector representations for entire graph structures. After presenting those
unsupervised methods, we also addressed a semi-supervised setting for learn-
ing models that aim at solving node classification tasks. In this setting we
also considered a small portion of labeled nodes in addition to the unsuper-
vised information that is naturally given by the graph topology. Somewhat
more precise, we present models that are not limited to the homophily or
heterophily assumption, but are able to learn general correlations between a
node’s label and the labels that are present in that node’s local neighborhood.
Lastly, we present a work that tackles the general problem of knowledge fu-
sion by learning matching nodes from two partly overlapping graphs in a
supervised manner. The identification of matching nodes finally enables to
match the two graphs on each other and to fuse the information that is given
both graphs. Specifically, we focus on the task of map fusion, but regarding
future directions this model can theoretically also be applied for knowledge
graph fusion tasks and even more general for determining graph similarities.
Further, as the homophily- and structure-based node embedding techniques
rely on Personalized PageRank, we also see the potential to learn node em-
beddings in dynamic settings. In general the context exploration can already
be calculated efficiently, but one major challenge is to keep the embeddings
up-to-date. As skip-gram models are hardly applicable here, one might con-
sider other models, e.g., the glove model [213] that relies on co-occurrence
probabilities.

Lastly, as some of the author’s works that have been published during
this thesis’ work did not make it into the thesis, either because the methods
are not directly related to applications on social data or because they do not
fall into the direction of learning methods, we want to refer the interested
reader to the author’s other works. The works presented in [50, 51] address
the problem of RkNN query processing, the work presented in [36] presents
an approach on neural indexing for the MRkNNCoP-Tree and finally, the
work that can be found in [52] is the invited publication for one of the GIS

207 CHAPTER 15. CONCLUDING REMARKS

Cup 2019 winner approaches.

Acknowledgements

This thesis would not have been possible without the support and encour-
agement of the people around me. I am very grateful for the professional and
personal support I received from them during the past few years. My most
profound thanks are dedicated to all of them.

I would particularly like to thank my supervisor and first referee for this
thesis, Prof. Dr. Peer Kröger. Not only did he fund my position initially,
but he also taught me a lot of skills that have been required for this work,
inspired me with his optimism, and provided me with professional support
and sound technical guidance.

Special thanks go to Prof. Dr. Emmanuel Müller for his interest in my
work and his willingness to act as the second referee for this thesis.

I am also especially thankful to Prof. Dr. Thomas Seidl who also provided
funding for my position and, as head of the chair for database systems and
data mining, is responsible for creating the basic conditions for the good and
constructive atmosphere within the group.

My deep gratitude obviously goes to all of my colleagues, too. They have
made the past few years a great experience and a pleasant part of my life.
Special thanks go to Prof. Dr. Matthias Schubert, Prof. Dr. Andreas Züfle,
Dr. Gregor Jossé, Dr. Johannes Niedermayer, Dr. Tobias Emrich, Julian
Busch, Max Berrendorf, Sebastian Schmoll, Daniyal Kazempour, Anna Beer
and Sabrina Friedl. In particular, I want to thank Evgeniy Faerman with
whom I collaborated a lot. It’s been a great pleasure working with you!

Furthermore, I especially thank Susanne Grienberger who always helped
with administrative things and Franz Krojer who always provided help with
technical issues.

I also want to thank Prof. Dr. Mario A. Nascimento for his supervision
during my stay at the University of Alberta, and Prof. Dr. Michael W.
Mahoney for supervising me during my stay at UC Berkeley.

Finally, I want to express my very great appreciation to my parents, my
siblings and my friends. Your support and encouragement have always been
and will forever be invaluable to me.

List of Figures

1.1 Clustering results for four different clustering algorithms . . . 8
1.2 Illustration of a sample feed-forward network 10

2.1 Illustration of the KDD Process 18

4.1 Micro- and macrocluster models on a toy dataset 41
4.2 Runtime experiments for varying DB sizes and dimensionalities. 47
4.3 Precision and Recall measurements when using ERiC 49
4.4 Precision and Recall measurements when using ORCLUS . . . 49
4.5 Throughput of the online phase 50
4.6 Performance measures for various values of the ε parameter . . 51
4.7 Performance measures for various values of the buff_size pa-

rameter . 51

5.1 Illustration of the affine parameter space 56
5.2 Illustration of the sinusoidal parameter space 57
5.3 Illustration of a 1-dimensional correlation cluster 63
5.4 Illustration of equivalent subspace models 65
5.5 Graph of the importance score for θ = 0.2 68
5.6 Visual example for the unification of two Concepts 70
5.7 Visualization of the Simple Line data set with 20% random

noise . 74
5.8 The Simple Line dataset split into 5 batches and visualized. . 74
5.9 Two different perspectives on a 2−dimensional plane in a 3−

dimensional space . 75
5.10 The multi correlation set . 76
5.11 Throughput/Runtime experiment for the Perfect planes dataset 77
5.12 Throughput/Runtime experiment for the Multi Correlation

dataset . 77
5.13 Throughput/Runtime experiment for the enlarged wages dataset 78

LIST OF FIGURES 210

5.14 Throughput/Runtime experiment for the enlarged wages dataset
with larger maxSplits parameter 79

5.15 A sketch of the expected heap space usage comparing the
methods . 80

5.16 The Heap Space usage profile for the enlarged wages dataset . 80
5.17 The Heap Space usage profile of the enlarged wages dataset

with smaller batch size . 81
5.18 The Heap Space usage profile of the enlarged wages dataset

with even smaller batch size 82
5.19 The Heap Space usage profile for the multi correlation dataset 82

6.1 Illustration of Twitter Traces 85
6.2 Distribution of the Top 500 most prolific users in our London-

Twitter dataset . 94
6.3 Classification Accuracy for varying grid-cell size and varying k 95
6.4 Classification Accuracy using Frequent Transitions 97
6.5 User identification accuracy for different observation counts . . 98
6.6 Distribution of all 15,989 users in our London-Twitter dataset 99
6.7 Classification Accuracy for different Social Networks 99
6.8 Scalability: Scaling the number of Twitter users 101

7.1 Searching in collections of multi-represented users 106
7.2 Visual clustering results . 112

8.1 Example for homophily-based node embeddings 115
8.2 Example for structure-based node embeddings 116

10.1 NCP plots for used datasets 134
10.2 k-core plots for used datasets 135
10.3 Macro-F1 scores achieved by doing multi-label classification . . 137
10.4 Micro-F1 scores achieved by doing multi-label classification . . 139
10.5 Distributions of hop distances to neighbors from nodes with

different degrees . 143
10.6 Class label distribution in k-cores with performance informa-

tion for one class in the Flickr data 144
10.7 Absolute differences in F1 scores between Lasagne and the

best random walk based method for single classes 145
10.8 Comparing the number of considered training instances for

nodes of different degrees . 146

11.1 Illustration of two airline networks 149
11.2 Workflow for calculating the role-based node descriptors . . . 153

211 LIST OF FIGURES

11.3 Visualization of the 1-dimensional node representations for the
barbell graph . 160

12.1 Workflow for calculating the role-based graph descriptors . . . 165
12.2 Accuracy scores achieved with 1-NN classification on the bio-

logical datasets . 171
12.3 Accuracy scores achieved with 1-NN classification on the social

datasets . 172

13.1 Different neighborhood patterns 174
13.2 Accuracy scores for the three benchmark data sets 184
13.3 Micro F1 and macro F1 for BlogCatalog 187
13.4 Micro F1 and macro F1 for IMDb Germany 188
13.5 Effect of differently sized neighborhoods for label distribution

models . 190
13.6 Comparison against attribute-based methods 191
13.7 Block interaction matrices and corresponding results for dif-

ferent amounts of training instances 193

List of Tables

5.1 Results for CashStream on the simple line dataset. 73
5.2 Results for CashStream on the perfect planes dataset. . . . 75

10.1 Statistics of networks used for multi-label classification 132
10.2 Macro-F1 scores for multi-label classification when using for-

mer evaluation method . 140
10.3 Micro-F1 scores for multi-label classification when using for-

mer evaluation method . 140
10.4 Results for Link Prediciton . 147

11.1 Results for the 1-NN-range queries on the mirrored Karate
network . 161

11.2 Results for one-vs-rest classification on airport networks 161

12.1 Benchmark datasets for graph classification 166
12.2 Accuracy in 1-NN classification on biological networks 168
12.3 Accuracy in 1-NN classification on social networks 169

13.1 Comparison to related node classification methods 175

14.1 Training and test dataset statistics 200
14.2 Resulting F1 Scores for the NRW and MUC datasets when

using MLP classifier . 201
14.3 Resulting F1 Scores for the NRW and MUC datasets when

using NN queries . 201

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), 2016.

[2] Osman Abul, Francesco Bonchi, and Mirco Nanni. Never Walk Alone:
Uncertainty for Anonymity in Moving Objects Databases. In 2008
IEEE 24th International Conference on Data Engineering, pages 376–
385. Ieee, IEEE, apr 2008.

[3] Elke Achtert, Christian Böhm, Jörn David, Peer Kröger, and Arthur
Zimek. Global correlation clustering based on the hough transform.
Statistical Analysis and Data Mining, 1(3):111–127, 2008.

[4] Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Ina
Müller-Gorman, and Arthur Zimek. Detection and visualization of
subspace cluster hierarchies. In International Conference on Database
Systems for Advanced Applications, pages 152–163. Springer, 2007.

[5] Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, and
Arthur Zimek. On exploring complex relationships of correlation clus-
ters. In Scientific and Statistical Database Management, 2007. SS-
BDM’07. 19th International Conference on, pages 7–7, 2007.

[6] Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger,
Arthur Zimek, et al. Robust, complete, and efficient correlation clus-
tering. In SDM, pages 413–418, 2007.

[7] Elke Achtert, Christian Böhm, Peer Kröger, and Arthur Zimek. Mining
hierarchies of correlation clusters. In Scientific and Statistical Database
Management, 2006. 18th International Conference on, pages 119–128,
2006.

BIBLIOGRAPHY 214

[8] Märtens M. Raupach C. Swierkot K. Lammersen C. Ackermann, M. R.
and C. Sohler. Streamkm++: A clustering algorithm for data streams.
Journal of Experimental Algorithmics (JEA), 17:2–4, 2012.

[9] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree decomposi-
tions and social graphs. Internet Mathematics, 12(5):315–361, 2016.

[10] Aaron B Adcock, Blair D Sullivan, and Michael W Mahoney. Tree-like
structure in large social and information networks. In Proceedings of
2013 IEEE 13th International Conference on Data Mining, pages 1–10.
IEEE, 2013.

[11] Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya
Prakash. Sub2vec: Feature learning for subgraphs. In Proceedings of
the 2018 Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 170–182. Springer, 2018.

[12] C C Aggarwal and P S Yu. Condensation approach to privacy pre-
serving data mining. Adv. In Database Technology - Edbt 2004, Proc.,
2992:183–199, 2004.

[13] Charu C Aggarwal. An introduction to social network data analytics.
In Social network data analytics, pages 1–15. Springer, 2011.

[14] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu.
A framework for clustering evolving data streams. In Proceedings of
the 29th international conference on Very large data bases-Volume 29,
pages 81–92, 2003.

[15] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A
framework for projected clustering of high dimensional data streams.
In Proceedings of the Thirtieth international conference on Very large
data bases-Volume 30, pages 852–863. VLDB Endowment, 2004.

[16] Charu C Aggarwal, Joel L Wolf, Philip S Yu, Cecilia Procopiuc, and
Jong Soo Park. Fast algorithms for projected clustering. In ACM
SIGMoD Record, volume 28, pages 61–72, 1999.

[17] Charu C Aggarwal and Philip S Yu. Finding generalized projected
clusters in high dimensional spaces, volume 29. 2000.

[18] Charu C Aggarwal and ChengXiang Zhai. Mining text data. Springer
Science & Business Media, 2012.

215 BIBLIOGRAPHY

[19] Charu C Aggarwal and ChengXiang Zhai. A survey of text clustering
algorithms. In Mining Text Data, pages 77–128. 2012.

[20] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prab-
hakar Raghavan. Automatic subspace clustering of high dimensional
data for data mining applications. ACM, 1998.

[21] Kristen M Altenburger and Johan Ugander. Monophily in social net-
works introduces similarity among friends-of-friends. Nature Human
Behaviour, 2(4):284, 2018.

[22] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning
using pagerank vectors. In Proceedings of 2006 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06), pages
475–486. IEEE, 2006.

[23] Ira Assent, Ralph Krieger, Emmanuel Müller, and Thomas Seidl. Dusc:
Dimensionality unbiased subspace clustering. In Data Mining, 2007.
ICDM 2007. Seventh IEEE International Conference on, pages 409–
414. IEEE, 2007.

[24] Ira Assent, Ralph Krieger, Emmanuel Müller, and Thomas Seidl.
Visa: visual subspace clustering analysis. ACM SIGKDD Explorations
Newsletter, 9(2):5–12, 2007.

[25] James Atwood and Don Towsley. Search-convolutional neural networks.
CoRR, abs/1511.02136, 2015.

[26] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei
Wang. Simgnn: A neural network approach to fast graph similarity
computation. In Proceedings of the Twelfth ACM International Con-
ference on Web Search and Data Mining, pages 384–392. ACM, 2019.

[27] Mukund Balasubramanian and Eric L Schwartz. The isomap algorithm
and topological stability. Science, 295(5552):7–7, 2002.

[28] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre,
Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish
Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer,
Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol
Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks, 2018.

BIBLIOGRAPHY 216

[29] Alexander Bayarma, Ryuichi Kitamura, and Yusak Susilo. Recur-
rence of Daily Travel Patterns: Stochastic Process Approach to Multi-
day Travel Behavior. Transportation Research Record: Journal of the
Transportation Research Board, 2021:55–63, dec 2007.

[30] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Proceedings of Advances
in neural information processing systems, volume 14, pages 585–591,
2001.

[31] Jose Bento and Stratis Ioannidis. A family of tractable graph distances.
In Proc. of SIAM SDM, pages 333–341, 2018.

[32] A.R. Beresford and F. Stajano. Location privacy in pervasive comput-
ing. IEEE Pervasive Computing, 2(1):46–55, jan 2003.

[33] Pavel Berkhin. Bookmark-coloring algorithm for personalized pagerank
computing. Internet Mathematics, 3(1):41–62, 2006.

[34] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos
Faloutsos. Netsimile: A scalable approach to size-independent network
similarity. arXiv preprint 1209.2684, 2012.

[35] Donald J Berndt and James Clifford. Using Dynamic Time Warping
to Find Patterns in Time Series. AAAI-94 Workshop on Knowledge
Discovery in Databases (KDD-94), 398:359–370, 1994.

[36] Max Berrendorf, Felix Borutta, and Peer Kröger. k-distance approx-
imation for memory-efficient rknn retrieval. To appear in Proceedings
of the 12th International Conference on Similarity Search and Appli-
cations, 2019.

[37] Claudio Bettini, X. Sean Wang, and Sushil Jajodia. Protecting Pri-
vacy Against Location-Based Personal Identification. In Willem Jonker
and Milan Petković, editors, Secure Data Management: Second VLDB
Workshop, SDM 2005, Trondheim, Norway, September 2-3, 2005. Pro-
ceedings, volume 3674 LNCS, pages 185–199. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2005.

[38] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node clas-
sification in social networks. In Social network data analytics, pages
115–148. Springer, 2011.

[39] C. M. Bishop. Pattern Recognition and Machine Learning. 2006.

217 BIBLIOGRAPHY

[40] Andrew J Blumberg and Peter Eckersley. On Locational Privacy, and
How to Avoid Losing it Forever. Electronic Frontier Foundation Tech
Rep August, (August):1–7, 2009.

[41] C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kröger. Density connected
clustering with local subspace preferences. 2004.

[42] Christian Böhm, Karin Kailing, Peer Kröger, and Arthur Zimek. Com-
puting clusters of correlation connected objects. In Proceedings of the
2004 ACM SIGMOD international conference on Management of data,
pages 455–466, 2004.

[43] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian em-
bedding of attributed graphs: Unsupervised inductive learning via
ranking. arXiv preprint arXiv:1707.03815, 2017.

[44] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels
on graphs. In Proceedings of the 5th IEEE International Conference
on Data Mining (ICDM’05), pages 8–pp, 2005.

[45] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vish-
wanathan, Alex J Smola, and Hans-Peter Kriegel. Protein function pre-
diction via graph kernels. Bioinformatics, 21(suppl_1):i47–i56, 2005.

[46] Felix Borutta, Julian Busch, Evgeniy Faerman, Adina Klink, and
Matthias Schubert. Structural graph representations based on mul-
tiscale local network topologies. To appear in 2019 IEEE/WIC/ACM
International Conference on Web Intelligence (WI), 2019.

[47] Felix Borutta, Julian Busch, Evgeniy Faerman, and Matthias Schu-
bert. Towards learning structural node embeddings using personalized
pagerank. In 2017 Proceedings of 2017 Conference on Lernen, Wissen,
Daten, Analyen (LWDA), page 32, 2017.

[48] Felix Borutta, Thomas Hubauer, and Peer Kröger. Method and system
for monitoring sensor data of rotating equipment, 2017. US Patent
US10339784 (B2), US Patent App. US2017365155 (A1), EU Patent
App. EP3258333 (A1).

[49] Felix Borutta, Thomas Hubauer, and Peer Kröger. A generic summary
structure for correlation clustering on data streams. To appear in Pro-
ceedings of the 12th International Conference on Similarity Search and
Applications, 2019.

BIBLIOGRAPHY 218

[50] Felix Borutta, Mario A Nascimento, Johannes Niedermayer, and Peer
Kröger. Monochromatic rknn queries in time-dependent road networks.
In Proceedings of the Third ACM SIGSPATIAL International Work-
shop on Mobile Geographic Information Systems, pages 26–33. ACM,
2014.

[51] Felix Borutta, Mario A Nascimento, Johannes Niedermayer, and Peer
Kröger. Reverse k-nearest neighbour schedules in time-dependent road
networks. In Proceedings of the 23rd SIGSPATIAL international con-
ference on advances in geographic information systems, page 27. ACM,
2015.

[52] Felix Borutta, Sebastian Schmoll, and Sabrina Friedl. Optimizing the
spatio-temporal resource search problem with reinforcement learning.
To appear in Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2019.

[53] Paul S Bradley, Usama M Fayyad, Cory Reina, et al. Scaling clustering
algorithms to large databases. In KDD, volume 98, pages 9–15, 1998.

[54] Leo Breiman et al. Statistical modeling: The two cultures (with com-
ments and a rejoinder by the author). Statistical science, 16(3):199–231,
2001.

[55] Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher,
Ashton Breitkreutz, Michael Livstone, Rose Oughtred, Daniel H Lack-
ner, Jürg Bähler, Valerie Wood, et al. The biogrid interaction database:
2008 update. Nucleic acids research, 36(suppl 1):D637–D640, 2008.

[56] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun.
Spectral networks and locally connected networks on graphs. CoRR,
abs/1312.6203, 2013.

[57] Ceren Budak, Theodore Georgiou, Divyakant Agrawal, and Amr El Ab-
badi. Geoscope: Online detection of geo-correlated information trends
in social networks. Proceedings of the VLDB Endowment, 7(4):229–240,
2013.

[58] Ji-Won Byun, Ashish Kamra, Elisa Bertino, and Ninghui Li. Ef-
ficient k-Anonymization Using Clustering Techniques. In Advances
in Databases: Concepts, Systems and Applications, number 0430274,
pages 188–200. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

219 BIBLIOGRAPHY

[59] Hongyun Cai, Vincent W Zheng, and Kevin Chang. A comprehensive
survey of graph embedding: problems, techniques and applications.
IEEE Transactions on Knowledge and Data Engineering, 2018.

[60] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-
based clustering over an evolving data stream with noise. In SDM,
volume 6, pages 328–339, 2006.

[61] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. Density-
based clustering over an evolving data stream with noise. In Proceedings
of the 2006 SIAM international conference on data mining, pages 328–
339. SIAM, 2006.

[62] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph
representations with global structural information. In Proceedings of
the 24th ACM conference on Information and knowledge management,
pages 891–900. ACM, 2015.

[63] Wei Cao, Zhengwei Wu, Dong Wang, Jian Li, and Haishan Wu. Au-
tomatic user identification method across heterogeneous mobility data
sources. In 2016 IEEE 32nd International Conference on Data Engi-
neering (ICDE), pages 978–989. IEEE, may 2016.

[64] Yixin Cao, Zhiyuan Liu, Chengjiang Li, Juanzi Li, and Tat-Seng
Chua. Multi-channel graph neural network for entity alignment. arXiv
preprint arXiv:1908.09898, 2019.

[65] Soumen Chakrabarti, Martin Ester, Usama Fayyad, Johannes Gehrke,
Jiawei Han, Shinichi Morishita, Gregory Piatetsky-Shapiro, and Wei
Wang. Data mining curriculum: A proposal (version 1.0). Intensive
Working Group of ACM SIGKDD Curriculum Committee, 140, 2006.

[66] Yixin Chen and Li Tu. Density-based clustering for real-time stream
data. In Proceedings of the 13th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 133–142. ACM,
2007.

[67] Chun-Hung Cheng, Ada Wai-Chee Fu, and Yi Zhang. Entropy-based
subspace clustering for mining numerical data. In Proceedings of the
1999 ACM SIGKDD International Conference on Knowledge Discovery
in Databases, pages 84–93. ACM, 1999.

[68] Hao Cheng, Kien A Hua, and Khanh Vu. Constrained locally weighted
clustering. Proceedings of the VLDB Endowment, 1(1):90–101, 2008.

BIBLIOGRAPHY 220

[69] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where
you tweet: a content-based approach to geo-locating twitter users. In
CIKM, pages 759–768. ACM, 2010.

[70] Yi-Hong Chu, Jen-Wei Huang, Kun-Ta Chuang, De-Nian Yang, and
Ming-Syan Chen. Density conscious subspace clustering for high-
dimensional data. IEEE Transactions on knowledge and data engi-
neering, 22(1):16–30, 2010.

[71] Fan Chung. The heat kernel as the pagerank of a graph. Proceeddings
of the National Academy of Sciences, 104(50):19735–19740, 2007.

[72] Lawrence Corwin. Multivariable calculus. Routledge, 2017.

[73] João Paulo Costeira and Takeo Kanade. A multibody factorization
method for independently moving objects. International Journal of
Computer Vision, 29(3):159–179, 1998.

[74] Thomas M Cover and Joy A Thomas. Elements of information theory.
John Wiley & Sons, 2012.

[75] David M Cutler and Edward L Glaeser. Are ghettos good or bad?
Technical report, National Bureau of Economic Research, 1995.

[76] Manoranjan Dash and Poon Wei Koot. Feature selection for clustering.
In Encyclopedia of database systems, pages 1119–1125. 2009.

[77] Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen, and
Vincent D. Blondel. Unique in the Crowd: The privacy bounds of
human mobility. Scientific Reports, 3:1376, mar 2013.

[78] Karsten M Decker and Sergio Focardi. Technology overview: A report
on data mining. 1995.

[79] Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by latent
semantic analysis. JAsIs, 41(6):391–407, 1990.

[80] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convo-
lutional neural networks on graphs with fast localized spectral filtering.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Proceedings of Advances in neural information processing sys-
tems, pages 3844–3852. 2016.

221 BIBLIOGRAPHY

[81] Carlotta Domeniconi, Dimitris Papadopoulos, Dimitrios Gunopulos,
and Sheng Ma. Subspace clustering of high dimensional data. In Pro-
ceedings of the 2004 SIAM international conference on data mining,
pages 517–521. SIAM, 2004.

[82] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec.
Learning structural node embeddings via diffusion wavelets. In Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1320–1329. ACM, 2018.

[83] Richard O Duda and Peter E Hart. Use of the hough transformation
to detect lines and curves in pictures. volume 15, pages 11–15. ACM,
1972.

[84] Richard O Duda, Peter E Hart, and David G Stork. Pattern classifi-
cation. John Wiley & Sons, 2012.

[85] Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering: Algo-
rithm, theory, and applications. IEEE transactions on pattern analysis
and machine intelligence, 35(11):2765–2781, 2013.

[86] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S.
Verykios. Duplicate Record Detection: A Survey. IEEE Transactions
on Knowledge and Data Engineering, 19(1):1–16, jan 2007.

[87] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based al-
gorithm for discovering clusters in large spatial databases with noise.
pages 226–231, 1996.

[88] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[89] Evgeniy Faerman, Felix Borutta, Julian Busch, and Matthias Schubert.
Semi-supervised learning on graphs based on local label distributions.
arXiv preprint arXiv:1802.05563, 2018.

[90] Evgeniy Faerman, Felix Borutta, Julian Busch, and Matthias Schubert.
Semi-supervised learning on graphs based on local label distributions.
In Proceedings of the KDD 14th International Workshop on Mining and
Learning with Graphs (MLG), 2018.

[91] Evgeniy Faerman, Felix Borutta, Kimon Fountoulakis, and Michael W
Mahoney. Lasagne: Locality and structure aware graph node embed-
ding. arXiv preprint arXiv:1710.06520, 2017.

BIBLIOGRAPHY 222

[92] Evgeniy Faerman, Felix Borutta, Kimon Fountoulakis, and Michael W
Mahoney. Lasagne: Locality and structure aware graph node embed-
ding. In 2018 IEEE/WIC/ACM International Conference on Web In-
telligence (WI), pages 246–253. IEEE, 2018.

[93] Fredrik Farnstrom, James Lewis, and Charles Elkan. Scalability for
clustering algorithms revisited. SIGKDD explorations, 2(1):51–57,
2000.

[94] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From
data mining to knowledge discovery in databases. AI magazine,
17(3):37, 1996.

[95] Matthias Fey and Jan E. Lenssen. Fast graph representation learn-
ing with PyTorch Geometric. In ICLR Workshop on Representation
Learning on Graphs and Manifolds, 2019.

[96] Jerome H Friedman and Jacqueline J Meulman. Clustering objects on
subsets of attributes (with discussion). Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 66(4):815–849, 2004.

[97] Wolfgang Gatterbauer, Stephan Günnemann, Danai Koutra, and
Christos Faloutsos. Linearized and single-pass belief propagation.
VLDB Endowment, 8(5):581–592, 2015.

[98] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals,
and George E Dahl. Neural message passing for quantum chemistry. In
Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1263–1272. JMLR. org, 2017.

[99] Sanjay Goil, Harsha Nagesh, and Alok Choudhary. Mafia: Efficient
and scalable subspace clustering for very large data sets. In Proceed-
ings of the 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, volume 443, page 452. ACM, 1999.

[100] Marta C. González, César A. Hidalgo, and Albert-László Barabási.
Understanding individual human mobility patterns. Nature,
453(7196):779–782, jun 2008.

[101] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[102] John C Gower. Some distance properties of latent root and vector
methods used in multivariate analysis. Biometrika, 53(3-4):325–338,
1966.

223 BIBLIOGRAPHY

[103] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864,
2016.

[104] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan o’Callaghan.
Clustering data streams. In Proceedings 41st Annual Symposium on
Foundations of Computer Science, pages 359–366. IEEE, 2000.

[105] Stephan Günnemann, Hardy Kremer, and Thomas Seidl. Subspace
clustering for uncertain data. In Proceedings of the 2010 SIAM Inter-
national Conference on Data Mining, pages 385–396. SIAM, 2010.

[106] Lingbing Guo, Zequn Sun, and Wei Hu. Learning to exploit long-
term relational dependencies in knowledge graphs. arXiv preprint
arXiv:1905.04914, 2019.

[107] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduc-
tion by learning an invariant mapping. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735–1742. IEEE, 2006.

[108] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs. In Proceedings of Advances in Neural
Information Processing Systems, pages 1024–1034, 2017.

[109] William L Hamilton, Rex Ying, and Jure Leskovec. Representa-
tion learning on graphs: Methods and applications. arXiv preprint
arXiv:1709.05584, 2017.

[110] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts
and techniques. Elsevier, 2011.

[111] Susan Hanson and James O Huff. Assessing day-to-day variability in
complex travel patterns. Transportation Research Record, 891:18–24,
1981.

[112] Susan Hanson and O. James Huff. Systematic variability in repetitious
travel. Transportation, 15(1-2):111–135, 1988.

[113] Tanzima Hashem and Lars Kulik. Safeguarding Location Privacy in
Wireless Ad-Hoc Networks. In UbiComp 2007: Ubiquitous Computing,
pages 372–390. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

BIBLIOGRAPHY 224

[114] Marwan Hassani, Philipp Kranen, and Thomas Seidl. Precise anytime
clustering of noisy sensor data with logarithmic complexity. In Pro-
ceedings of the Fifth International Workshop on Knowledge Discovery
from Sensor Data, pages 52–60. ACM, 2011.

[115] Marwan Hassani, Pascal Spaus, Mohamed Gaber, and Thomas Seidl.
Density-based projected clustering of data streams. Scalable Uncer-
tainty Management, pages 311–324, 2012.

[116] Xiaofei He and Partha Niyogi. Locality preserving projections. In Ad-
vances in neural information processing systems, pages 153–160, 2004.

[117] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong,
Sugato Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and
Lei Li. Rolx: structural role extraction & mining in large graphs. In
Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1231–1239. ACM, 2012.

[118] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.
Stochastic blockmodels: First steps. Social networks, 5(2):109–137,
1983.

[119] John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Max-
imum Matchings in Bipartite Graphs. SIAM Journal on Computing,
2(4):225–231, dec 1973.

[120] Kathleen Stewart Hornsby and Stephen Cole. Modeling Moving
Geospatial Objects from an Event-based Perspective. Transactions in
GIS, 11(4):555–573, aug 2007.

[121] Frank E. Horton and David R. Reynolds. Effects of Urban Spatial
Structure on Individual Behavior. Economic Geography, 47(1):36–48,
1971.

[122] Paul VC Hough. Method and means for recognizing complex patterns,
December 18 1962. US Patent 3,069,654.

[123] Hao Huang, Shinjae Yoo, and Shiva Prasad Kasiviswanathan. Unsuper-
vised feature selection on data streams. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Manage-
ment, pages 1031–1040. ACM, 2015.

225 BIBLIOGRAPHY

[124] Qunying Huang and David W. S. Wong. Modeling and Visualizing
Regular Human Mobility Patterns with Uncertainty: An Example Us-
ing Twitter Data. Annals of the Association of American Geographers,
105(6):1179–1197, 2015.

[125] Qunying Huang and David W. S. Wong. Activity patterns, socioeco-
nomic status and urban spatial structure: what can social media data
tell us? International Journal of Geographical Information Science,
8816(February):1–26, 2016.

[126] L Hubert and P Arabie. Comparing partitions journal of classification
2 193–218. Google Scholar, 1985.

[127] IMDb. The internet movie database. In http://www.imdb.com/, 2016,
last accessed: 2016-11-22.

[128] Paul Jaccard. The distribution of the flora in the alphine zone. The
New Phytologist, XI(2):37–50, 1912.

[129] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[130] Paul A Jargowsky. Ghetto poverty among blacks in the 1980s. Journal
of Policy Analysis and Management, 13(2):288–310, 1994.

[131] Paul A Jargowsky. Poverty and place: Ghettos, barrios, and the Amer-
ican city. Russell Sage Foundation, 1997.

[132] Olle Järv, Kerli Müürisepp, Rein Ahas, Ben Derudder, and Frank Wit-
lox. Ethnic differences in activity spaces as a characteristic of segrega-
tion: A study based on mobile phone usage in Tallinn, Estonia. Urban
Studies, 52(14):2680–2698, nov 2015.

[133] Glen Jeh and Jennifer Widom. Scaling personalized web search. In
Proceedings of the 12th international conference on World Wide Web,
pages 271–279. ACM, 2003.

[134] Lucas GS Jeub, Prakash Balachandran, Mason A Porter, Peter J
Mucha, and Michael W Mahoney. Think locally, act locally: Detec-
tion of small, medium-sized, and large communities in large networks.
Physical Review E, 91(1):012821, 2015.

[135] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid.
Deep subspace clustering networks. In Advances in Neural Information
Processing Systems, pages 24–33, 2017.

BIBLIOGRAPHY 226

[136] Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey. Paral-
lelizing word2vec in shared and distributed memory. arXiv preprint
arXiv:1604.04661, 2016.

[137] Karin Kailing, Hans-Peter Kriegel, and Peer Kröger. Density-connected
subspace clustering for high-dimensional data. In Proceedings of the
2004 SIAM international conference on data mining, pages 246–256.
SIAM, 2004.

[138] Daniyal Kazempour, Kevin Bein, Peer Kröger, and Thomas Seidl. D-
masc: A novel search strategy for detecting regions of interest in linear
parameter space. In International Conference on Similarity Search and
Applications, pages 163–176. Springer, 2018.

[139] Daniyal Kazempour, Markus Mauder, Peer Kröger, and Thomas Seidl.
Detecting global hyperparaboloid correlated clusters based on hough
transform. In Proceedings of the 29th International Conference on Sci-
entific and Statistical Database Management, page 31. ACM, 2017.

[140] Daniyal Kazempour, Markus Mauder, Peer Kröger, and Thomas
Seidl. Detecting global hyperparaboloid correlated clusters: a
hough-transform based multicore algorithm. Distributed and Parallel
Databases, pages 1–34, 2018.

[141] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel,
and Marion Neumann. Benchmark data sets for graph kernels, 2016.

[142] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[143] D Knuth. The art of computer programming: Vol 2/seminumerical
algorithms, chapter 3: Random numbers, 1969.

[144] Danai Koutra, Tai-You Ke, U Kang, Duen Horng Polo Chau,
Hsing-Kuo Kenneth Pao, and Christos Faloutsos. Unifying guilt-by-
association approaches: Theorems and fast algorithms. In Proc. of
ECML PKDD, pages 245–260. Springer, 2011.

[145] Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas Seidl. The
clustree: indexing micro-clusters for anytime stream mining. Knowl-
edge and information systems, 29(2):249–272, 2011.

[146] H-P Kriegel, Peer Kroger, Matthias Renz, and Sebastian Wurst. A
generic framework for efficient subspace clustering of high-dimensional

227 BIBLIOGRAPHY

data. In fifth IEEE international conference on data mining
(ICDM’05), pages 8–pp. IEEE, 2005.

[147] Hans-Peter Kriegel, Peer Kröger, Irene Ntoutsi, and Arthur Zimek.
Towards subspace clustering on dynamic data: an incremental version
of predecon. In Proceedings of the First International Workshop on
Novel Data Stream Pattern Mining Techniques, pages 31–38. ACM,
2010.

[148] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-
dimensional data: A survey on subspace clustering, pattern-based clus-
tering, and correlation clustering. ACM Transactions on Knowledge
Discovery from Data (TKDD), 3(1):1, 2009.

[149] Quoc V Le and Tomas Mikolov. Distributed representations of sen-
tences and documents. In Proceedings of the International conference
on machine learning, volume 14, pages 1188–1196, 2014.

[150] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. Graph classifi-
cation using structural attention. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1666–1674. ACM, 2018.

[151] Kristen LeFevre, D.J. DeWitt, and Raghu Ramakrishnan. Mondrian
Multidimensional K-Anonymity. In 22nd International Conference on
Data Engineering (ICDE’06), volume 2006, pages 25–25. IEEE, 2006.

[152] J. Leskovec, K.J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical
properties of community structure in large social and information net-
works. In Proceedings of the 17th International Conference on World
Wide Web, pages 695–704, 2008.

[153] J. Leskovec, K.J. Lang, and M. W. Mahoney. Empirical comparison of
algorithms for network community detection. In Proceedings of the 19th
International Conference on World Wide Web, pages 631–640, 2010.

[154] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/data, June
2014.

[155] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Ma-
honey. Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

http://snap.stanford.edu/data

BIBLIOGRAPHY 228

[156] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein.
Cayleynets: Graph convolutional neural networks with complex ratio-
nal spectral filters. CoRR, abs/1705.07664, 2017.

[157] Omer Levy and Yoav Goldberg. Dependency-based word embeddings.
In ACL (2), pages 302–308, 2014.

[158] Cheng Li, Xiaoxiao Guo, and Qiaozhu Mei. Deepgraph: Graph struc-
ture predicts network growth. arXiv preprint arXiv:1610.06251, 2016.

[159] Kang Li, Jing Gao, Suxin Guo, Nan Du, Xiaoyi Li, and Aidong Zhang.
Lrbm: A restricted boltzmann machine based approach for representa-
tion learning on linked data. In Proceedings of 2014 IEEE International
Conference on Data Mining, pages 300–309. IEEE, 2014.

[160] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-
Closeness: Privacy Beyond k-Anonymity and l-Diversity. In 2007 IEEE
23rd International Conference on Data Engineering, number 2, pages
106–115. IEEE, 2007.

[161] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive
graph convolutional neural networks. arXiv preprint arXiv:1801.03226,
2018.

[162] Toby Jia-Jun Li, Shilad Sen, and Brent Hecht. Leveraging advances in
natural language processing to better understand tobler’s first law of
geography. In ACM SIGSPATIAL, pages 513–516. ACM, 2014.

[163] Yongmin Li. On incremental and robust subspace learning. Pattern
recognition, 37(7):1509–1518, 2004.

[164] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet
Kohli. Graph matching networks for learning the similarity of graph
structured objects. arXiv preprint arXiv:1904.12787, 2019.

[165] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel.
Gated graph sequence neural networks. In arXiv preprint
arXiv:1511.05493, 2015.

[166] David Liben-Nowell and Jon Kleinberg. The link-prediction problem
for social networks. Journal of the Association for Information Science
and Technology, 58(7):1019–1031, 2007.

229 BIBLIOGRAPHY

[167] Bing Liu, Yiyuan Xia, and Philip S Yu. Clustering through decision
tree construction. In Proceedings of the ninth international conference
on Information and knowledge management, pages 20–29. ACM, 2000.

[168] Guimei Liu, Jinyan Li, Kelvin Sim, and Limsoon Wong. Distance based
subspace clustering with flexible dimension partitioning. In 2007 IEEE
23rd International Conference on Data Engineering, pages 1250–1254.
IEEE, 2007.

[169] Guimei Liu, Kelvin Sim, Jinyan Li, and Limsoon Wong. Efficient min-
ing of distance-based subspace clusters. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 2(5-6):427–444, 2009.

[170] Jing Liu, Fan Zhang, Xinying Song, Young-In Song, Chin-Yew Lin, and
Hsiao-Wuen Hon. What’s in a name? In Proceedings of the sixth ACM
international conference on Web search and data mining - WSDM ’13,
page 495, New York, New York, USA, 2013. ACM Press.

[171] Li Liu, William K Cheung, Xin Li, and Lejian Liao. Aligning users
across social networks using network embedding. In IJCAI, pages 1774–
1780, 2016.

[172] Siyuan Liu, Shuhui Wang, Feida Zhu, Jinbo Zhang, and Ramayya Kr-
ishnan. HYDRA: large-scale social identity linkage via heterogeneous
behavior modeling. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data - SIGMOD ’14, pages 51–62,
New York, New York, USA, 2014. ACM Press.

[173] Tao Liu, Shengping Liu, Zheng Chen, and Wei-Ying Ma. An evaluation
on feature selection for text clustering. In ICML, volume 3, pages 488–
495, 2003.

[174] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions
on information theory, 28(2):129–137, 1982.

[175] Hans Peter Luhn. A statistical approach to mechanized encoding and
searching of literary information. IBM Journal of research and devel-
opment, 1(4):309–317, 1957.

[176] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

BIBLIOGRAPHY 230

[177] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthu-
ramakrishnan Venkitasubramaniam. L-diversity: privacy beyond k-
anonymity. In 22nd International Conference on Data Engineering
(ICDE’06), volume 2006, pages 24–24. IEEE, 2006.

[178] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete dis-
tribution: A continuous relaxation of discrete random variables. arXiv
preprint arXiv:1611.00712, 2016.

[179] Anshu Malhotra, Luam Totti, Wagner Meira, Ponnurangam Ku-
maraguru, and Virgilio Almeida. Studying User Footprints in Different
Online Social Networks. In 2012 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, pages 1065–1070.
IEEE, aug 2012.

[180] Yann LeCun Mikael Henaff, Joan Bruna. Deep convolutional networks
on graph-structured data. arXiv preprint arXiv:1506.05163, 2015.

[181] T Mikolov and J Dean. Distributed representations of words and
phrases and their compositionality. Proceedings of Advances in neu-
ral information processing systems, 2013.

[182] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[183] Vinith Misra and Sumit Bhatia. Bernoulli embeddings for graphs.
arXiv preprint arXiv:1803.09211, 2018.

[184] Gabriela Moise, Jorg Sander, and Martin Ester. P3c: A robust pro-
jected clustering algorithm. In Sixth International Conference on Data
Mining (ICDM’06), pages 414–425. IEEE, 2006.

[185] Gabriela Moise, Jörg Sander, and Martin Ester. Robust projected
clustering. Knowledge and Information Systems, 14(3):273–298, 2008.

[186] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà,
Jan Svoboda, and Michael M. Bronstein. Geometric deep learn-
ing on graphs and manifolds using mixture model cnns. CoRR,
abs/1611.08402, 2016.

[187] Emmanuel Müller, Ira Assent, Stephan Günnemann, Ralph Krieger,
and Thomas Seidl. Relevant subspace clustering: Mining the most
interesting non-redundant concepts in high dimensional data. In 2009

231 BIBLIOGRAPHY

Ninth IEEE International Conference on Data Mining, pages 377–386.
IEEE, 2009.

[188] Emmanuel Müller, Ira Assent, Stephan Günnemann, and Thomas
Seidl. Scalable density-based subspace clustering. In Proceedings of
the 20th ACM international conference on Information and knowledge
management, pages 1077–1086. ACM, 2011.

[189] James Munkres. Algorithms for the assignment and transportation
problems. Journal of the society for industrial and applied mathematics,
5(1):32–38, 1957.

[190] Elham Naghizade, James Bailey, Lars Kulik, and Egemen Tanin. How
private can I be among public users? In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Comput-
ing - UbiComp ’15, pages 1137–1141, New York, New York, USA, 2015.
ACM Press.

[191] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD
EDU. Query-driven active surveying for collective classification. In 10th
International Workshop on Mining and Learning with Graphs, 2012.

[192] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang
Liu, and Santhoshkumar Saminathan. subgraph2vec: Learning dis-
tributed representations of rooted sub-graphs from large graphs. arXiv
preprint arXiv:1606.08928, 2016.

[193] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clus-
tering: Analysis and an algorithm. In Advances in neural information
processing systems, pages 849–856, 2002.

[194] Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, and Dinh
Phung. Learning graph representation via frequent subgraphs. In Pro-
ceedings of the 2018 SIAM International Conference on Data Mining,
pages 306–314, 2018.

[195] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learn-
ing convolutional neural networks for graphs. In Proceedings of the
2016 International conference on machine learning, pages 2014–2023,
2016.

[196] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgian-
nis. Matching node embeddings for graph similarity. In Proceedings of

BIBLIOGRAPHY 232

the 31st AAAI Conference on Artificial Intelligence, pages 2429–2435,
2017.

[197] Irene Ntoutsi, Arthur Zimek, Themis Palpanas, Peer Kröger, and Hans-
Peter Kriegel. Density-based projected clustering over high dimensional
data streams. In Proceedings of the 2012 SIAM international conference
on data mining, pages 987–998. SIAM, 2012.

[198] Liadan O’Callaghan, Nina Mishra, Adam Meyerson, Sudipto Guha,
and Rajeev Motwani. Streaming-data algorithms for high-quality clus-
tering. In Proceedings 18th International Conference on Data Engi-
neering, pages 685–694. IEEE, 2002.

[199] Nobuyuki Otsu. A threshold selection method from gray-level his-
tograms. IEEE transactions on systems, man, and cybernetics, 9(1):62–
66, 1979.

[200] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the
usages of deep learning in natural language processing. arXiv preprint
arXiv:1807.10854, 2018.

[201] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The pagerank citation ranking: bringing order to the web. 1999.

[202] Nam Hun Park and Won Suk Lee. Grid-based subspace clustering
over data streams. In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, pages 801–810.
ACM, 2007.

[203] Vishal M Patel, Hien Van Nguyen, and René Vidal. Latent space
sparse subspace clustering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 225–232, 2013.

[204] Vishal M Patel, Hien Van Nguyen, and René Vidal. Latent space sparse
and low-rank subspace clustering. IEEE Journal of Selected Topics in
Signal Processing, 9(4):691–701, 2015.

[205] Vishal M Patel and René Vidal. Kernel sparse subspace clustering.
In 2014 IEEE International Conference on Image Processing (ICIP),
pages 2849–2853. IEEE, 2014.

[206] Judea Pearl. Reverend Bayes on inference engines: A distributed hier-
archical approach. Cognitive Systems Laboratory, School of Engineer-
ing and Applied Science, University of California, Los Angeles, 1982.

233 BIBLIOGRAPHY

[207] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. Scikit-learn: Machine Learning in Python. In
Journal of Machine Learning Research, volume 12, pages 2825–2830.
2012.

[208] Leto Peel. Graph-based semi-supervised learning for relational net-
works. In Proceedings of the 2017 SIAM International Conference on
Data Mining, pages 435–443. SIAM, 2017.

[209] Leto Peel, Jean-Charles Delvenne, and Renaud Lambiotte. Multiscale
mixing patterns in networks. Proceedings of the National Academy of
Sciences, 115(16):4057–4062, 2018.

[210] Shichao Pei, Lu Yu, Robert Hoehndorf, and Xiangliang Zhang. Semi-
supervised entity alignment via knowledge graph embedding with
awareness of degree difference. In The World Wide Web Conference,
pages 3130–3136. ACM, 2019.

[211] Xi Peng, Shijie Xiao, Jiashi Feng, Wei-Yun Yau, and Zhang Yi. Deep
subspace clustering with sparsity prior. In IJCAI, pages 1925–1931,
2016.

[212] Xi Peng, Zhang Yi, and Huajin Tang. Robust subspace clustering via
thresholding ridge regression. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[213] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 con-
ference on empirical methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[214] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 701–710, 2014.

[215] Cecilia M Procopiuc, Michael Jones, Pankaj K Agarwal, and TM Mu-
rali. A monte carlo algorithm for fast projective clustering. In Proceed-
ings of the 2002 ACM SIGMOD international conference on Manage-
ment of data, pages 418–427. ACM, 2002.

BIBLIOGRAPHY 234

[216] William M Rand. Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical association, 66(336):846–
850, 1971.

[217] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo.
struc2vec: Learning node representations from structural identity. In
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 385–394, 2017.

[218] Azriel Rosenfeld. Picture processing by computer. volume 1, pages
147–176. ACM, 1969.

[219] Ryan A Rossi and Nesreen K Ahmed. Role discovery in networks.
IEEE Transactions on Knowledge and Data Engineering, 27(4):1112–
1131, 2015.

[220] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduc-
tion by locally linear embedding. Science, 290(5500):2323–2326, 2000.

[221] Juan J Ruiz, F Javier Ariza, Manuel A Urena, and Elidia B Blázquez.
Digital map conflation: a review of the process and a proposal for clas-
sification. International Journal of Geographical Information Science,
25(9):1439–1466, 2011.

[222] Gerard Salton and Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing and Management,
24(5):513–523, jan 1988.

[223] Alberto Sanfeliu and King-Sun Fu. A distance measure between at-
tributed relational graphs for pattern recognition. IEEE transactions
on systems, man, and cybernetics, (3):353–362, 1983.

[224] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

[225] Satu Elisa Schaeffer. Graph clustering. Computer science review,
1(1):27–64, 2007.

[226] Harald Scheid and Wolfgang Schwarz. Elemente der linearen Algebra
und der Analysis. Springer-Verlag, 2009.

[227] Erich Schubert, Michael Weiler, and Hans-Peter Kriegel. Signitrend:
scalable detection of emerging topics in textual streams by hashed sig-
nificance thresholds. In KDD, pages 871–880. ACM, 2014.

235 BIBLIOGRAPHY

[228] Erik Seglem, Andreas Züfle, Jan Stutzki, Felix Borutta, Evgheniy Faer-
man, and Matthias Schubert. On privacy in spatio-temporal data: User
identification using microblog data. In International Symposium on
Spatial and Temporal Databases, pages 43–61. Springer, 2017.

[229] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian
Galligher, and Tina Eliassi-Rad. Collective classification in network
data. AI magazine, 29(3):93, 2008.

[230] Yue Shen, Mei-Po Kwan, and Yanwei Chai. Investigating commuting
flexibility with GPS data and 3D geovisualization: a case study of
Beijing, China. Journal of Transport Geography, 32:1–11, oct 2013.

[231] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12(Sep):2539–2561, 2011.

[232] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn,
and Karsten Borgwardt. Efficient graphlet kernels for large graph com-
parison. In Artificial Intelligence and Statistics, pages 488–495, 2009.

[233] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In ACM SIGPLAN Notices, volume 48,
pages 135–146. ACM, 2013.

[234] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and
Michael W. Mahoney. Parallel local graph clustering. Proceedings of
the VLDB Endowment, 9(12):1041–1052, August 2016.

[235] Jonathan A Silva, Elaine R Faria, Rodrigo C Barros, Eduardo R Hr-
uschka, Andre CPLF De Carvalho, and João Gama. Data stream clus-
tering: A survey. ACM Computing Surveys (CSUR), 46(1):13, 2013.

[236] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned
filters in convolutional neural networks on graphs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[237] Josef Sivic and Andrew Zisserman. Efficient visual search of videos cast
as text retrieval. IEEE transactions on pattern analysis and machine
intelligence, 31(4):591–606, 2009.

[238] Karen Sparck Jones. A statistical interpretation of term specificity
and its application in retrieval. Journal of documentation, 28(1):11–
21, 1972.

BIBLIOGRAPHY 236

[239] Anthony Stefanidis, Andrew Crooks, and Jacek Radzikowski. Harvest-
ing ambient geospatial information from social media feeds. GeoJour-
nal, 78(2):319–338, apr 2013.

[240] Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu. Bootstrapping
entity alignment with knowledge graph embedding. In IJCAI, pages
4396–4402, 2018.

[241] Aram Arutiunovich Sveshnikov and Bernard R Gelbaum. Problems in
probability theory, mathematical statistics and theory of random func-
tions. Courier Corporation, 1968.

[242] Latanya Sweeney. k-ANONYMITY: A MODEL FOR PROTECT-
ING PRIVACY. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(05):557–570, oct 2002.

[243] Amos Tanay, Roded Sharan, and Ron Shamir. Biclustering algorithms:
A survey. Handbook of computational molecular biology, 9(1-20):122–
124, 2006.

[244] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei. Line: Large-scale information network embedding. In
Proceedings of the 24th international conference on world wide web,
pages 1067–1077. ACM, 2015.

[245] Lei Tang and Huan Liu. Relational learning via latent social dimen-
sions. In Proceedings of the 15th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining.

[246] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global
geometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[247] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning
deep representations for graph clustering. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence, pages 1293–1299, 2014.

[248] Waldo R Tobler. A computer movie simulating urban growth in the
detroit region. Economic geography, 46(sup1):234–240, 1970.

[249] Warren S Torgerson. Theory and methods of scaling. 1958.

237 BIBLIOGRAPHY

[250] Bayu Distiawan Trisedya, Jianzhong Qi, and Rui Zhang. Entity align-
ment between knowledge graphs using attribute embeddings. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 297–304, 2019.

[251] Rolando Trujillo-Rasua and Josep Domingo-Ferrer. On the privacy
offered by (k, δ)-anonymity. Information Systems, 38(4):491–494, jun
2013.

[252] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein,
and Emmanuel Müller. Netlsd: Hearing the shape of a graph. In
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018.

[253] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel
Müller. Verse: Versatile graph embeddings from similarity measures.
In Proc. of WWW, pages 539–548, 2018.

[254] Ke Tu, Peng Cui, Xiao Wang, Philip S Yu, and Wenwu Zhu. Deep re-
cursive network embedding with regular equivalence. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 2357–2366. ACM, 2018.

[255] Anthony KH Tung, Xin Xu, and Beng Chin Ooi. Curler: finding and
visualizing nonlinear correlation clusters. In Proceedings of the 2005
ACM SIGMOD international conference on Management of data, pages
467–478, 2005.

[256] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks.
arXiv preprint arXiv:1710.10903, 2017.

[257] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò,
Yoshua Bengio, and R Devon Hjelm. Deep graph infomax. arXiv
preprint arXiv:1809.10341, 2018.

[258] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information the-
oretic measures for clusterings comparison: Variants, properties, nor-
malization and correction for chance. Journal of Machine Learning
Research, 11(Oct):2837–2854, 2010.

[259] Bo Wang, Zhuowen Tu, and John K Tsotsos. Dynamic label prop-
agation for semi-supervised multi-class multi-label classification. In

BIBLIOGRAPHY 238

Proceedings of the IEEE international conference on computer vision,
pages 425–432, 2013.

[260] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network
embedding. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1225–1234.
ACM, 2016.

[261] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. Cross-
lingual knowledge graph alignment via graph convolutional networks.
In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 349–357, 2018.

[262] Michael Weiler, Andreas Züfle, Felix Borutta, and Tobias Emrich. So-
cio textual mapping. In Proceedings of the 8th ACM SIGSPATIAL
International Workshop on Location-Based Social Networks, page 6.
ACM, 2015.

[263] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert.
Deep learning via semi-supervised embedding. In Neural Networks:
Tricks of the Trade, pages 639–655. Springer, 2012.

[264] David W S Wong and Shih-Lung Shaw. Measuring segregation: an
activity space approach. Journal of Geographical Systems, 13(2):127–
145, jun 2011.

[265] Kyoung-Gu Woo, Jeong-Hoon Lee, Myoung-Ho Kim, and Yoon-Joon
Lee. Findit: a fast and intelligent subspace clustering algorithm using
dimension voting. Information and Software Technology, 46(4):255–
271, 2004.

[266] Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang,
and Dong Yu. Cross-lingual knowledge graph alignment via graph
matching neural network. arXiv preprint arXiv:1905.11605, 2019.

[267] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on
non-negative matrix factorization. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in
informaion retrieval, pages 267–273. ACM, 2003.

[268] Shuicheng Yan, Dong Xu, Benyu Zhang, and Hong-Jiang Zhang. Graph
embedding: A general framework for dimensionality reduction. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 830–837. IEEE, 2005.

239 BIBLIOGRAPHY

[269] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1365–1374. ACM, 2015.

[270] Bisheng Yang, Yunfei Zhang, and Xuechen Luan. A probabilistic re-
laxation approach for matching road networks. International Journal
of Geographical Information Science, 27(2):319–338, 2013.

[271] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting
semi-supervised learning with graph embeddings. In Proceedings of
the 33rd International Conference on Machine Learning, pages 40–48,
2016.

[272] Kevin Y Yip, David W Cheung, and Michael K Ng. Harp: A practical
projected clustering algorithm. IEEE Transactions on knowledge and
data engineering, 16(11):1387–1397, 2004.

[273] Kevin Y Yip, David W Cheung, and Michael K Ng. On discovery
of extremely low-dimensional clusters using semi-supervised projected
clustering. In Proceedings-International Conference On Data Engineer-
ing. IEEE, Computer Society., 2005.

[274] Man Lung Yiu and Nikos Mamoulis. Frequent-pattern based iterative
projected clustering. In Third IEEE International Conference on Data
Mining, pages 689–692. IEEE, 2003.

[275] Man Lung Yiu and Nikos Mamoulis. Iterative projected clustering by
subspace mining. IEEE Transactions on Knowledge and Data Engi-
neering, 17(2):176–189, 2005.

[276] Reza Zafarani and Huan Liu. Connecting Corresponding Identities
across Communities. Proceedings of the Third International Conference
on Weblogs and Social Media - ICWSM 2009, 9(November):354–357,
2009.

[277] Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo,
and Yuzhong Qu. Multi-view knowledge graph embedding for entity
alignment. arXiv preprint arXiv:1906.02390, 2019.

[278] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an effi-
cient data clustering method for very large databases. In ACM Sigmod
Record, volume 25, pages 103–114. ACM, 1996.

BIBLIOGRAPHY 240

[279] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and
Wenwu Zhu. Arbitrary-order proximity preserved network embedding.
In Proc. of SIGKDD, pages 2778–2786, 2018.

[280] Aoying Zhou, Feng Cao, Weining Qian, and Cheqing Jin. Tracking
clusters in evolving data streams over sliding windows. Knowledge and
Information Systems, 15(2):181–214, 2008.

[281] Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and
Bernhard Schölkopf. Learning with local and global consistency. In Pro-
ceedings of Advances in neural information processing systems, pages
321–328, 2004.

[282] Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial subspace
clustering. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1596–1604, 2018.

[283] Qiannan Zhu, Xiaofei Zhou, Jia Wu, Jianlong Tan, and Li Guo.
Neighborhood-aware attentional representation for multilingual knowl-
edge graphs. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pages 1943–1949. In-
ternational Joint Conferences on Artificial Intelligence Organization,
2019.

[284] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and un-
labeled data with label propagation. 2002.

[285] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-
supervised learning using gaussian fields and harmonic functions. In
Proceedings of the 20th International conference on Machine learning
(ICML-03), pages 912–919, 2003.

[286] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.
Learning transferable architectures for scalable image recognition. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8697–8710, 2018.

	Abstract
	Zusammenfassung
	Preface
	Introduction
	Fundamentals
	Contribution and Thesis Structure

	I Mining Social Data
	Introduction
	Related Work
	Subspace Clustering
	Stream Clustering
	User Identification
	Text Clustering

	PCA-based Correlation Clustering on Data Streams
	Introduction
	A Generic Aggregation Structure for Correlation Clustering on Data Streams
	Application of CCMicro Structures for Offline Correlation Clustering
	Experiments
	Conclusion

	Detecting Linear Correlated Clusters on Streams using Parameter Space Transform
	Introduction
	Correlation Clustering Using Parameter Space Transformation
	CashStream
	Experiments
	Conclusion

	User Identification by Using Microblog Data
	Introduction
	Problem Definition
	Trajectory based User Identification
	Experimental Evaluation
	Conclusion

	Socio-Textual Mapping
	Introduction
	Socio Textual Maps
	Proof of Concept
	Challenges

	II Representation Learning on Graphs
	Introduction
	Related Work
	Unsupervised Node Embedding
	Semi-Supervised Node Embedding
	Embedding Entire Graphs

	Homophily-Based Node Embedding
	Introduction
	Preliminaries
	Lasagne: Locality And Structure Aware Graph Node Embedding
	Empirical results
	Conclusion

	Structure-Based Node Embedding
	Introduction
	Structural Node Representations using Approximate Personalized PageRank
	Experiments
	Conclusion

	Unsupervised Graph Embedding
	Introduction
	Aggregated Graph Descriptors
	Experiments
	Conclusion

	Semi-Supervised Learning on Graphs
	Introduction
	Related Work
	Adaptive Node Similarity Using Local Label Distributions
	Evaluation
	Conclusion

	Application of Node Embeddings for Map Fusion
	Introduction
	Graph Alignment Networks with Node Matching Scores
	Experiments
	Conclusion

	Concluding Remarks
	Acknowledgements
	List of Figures
	List of Tables
	Bibliography

