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Abstract 
 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease ranging from an 

asymptomatic preclinical phase to dementia. A small subset (less than 5%) of AD patients, 

starting at an early age (from 30 to 65 years old), was found mainly caused by the genetic 

mutation which is autosomal dominant AD (ADAD). Even though ADAD only accounts for a 

small proportion of AD, because of similar pathological and clinical features, it is critical to 

better understand the pathophysiology in the preclinical stage of sporadic AD (SAD).  

Decades before the dementia onset, the earliest changes have already occurred in the brain 

even though the cognitive function is still normal. Such a long phase of gradual brain changes 

offers the opportunity to detect the disease in the preclinical phase. However, due to the subtle 

degree of the brain changes and the unclear etiology in the early stage of AD, it is a 

challenging task to establish markers for the prediction of the development of dementia. 

Moreover, subjects in the early-stage SAD may have additional brain changes that are 

unrelated to AD pathology. To address this problem, we proposed a machine learning model 

based on patients with ADAD, i.e. pure genetically caused AD which not accompanied by 

aging-related co-pathologies due to the early disease onset that can start in the third decade of 

life.  

Previous studies in both ADAD and SAD have shown that markers of pathological brain 

changes including brain atrophy, cerebral glucose hypometabolism, as well as amyloid-beta 

(Ab) and pathologic tau protein are altered in AD (Clifford R. Jack et al., 2010; Dickerson 

and Wolk, 2013). Recent guidelines for early diagnosis of AD recommended using a 

combination of neuroimaging, CSF biomarkers and neuropsychological tests for aiding the 

diagnosis of AD (Sperling et al., 2011). In the present work, we established a classification 

model for the early detection of AD in the predementia phase using machine learning. First, 

we employed the Naïve Bayes algorithm for classification and information gain method for 
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feature selection. Features were derived from neuroimaging (MRI, FDG-PET), CSF 

biomarkers, and neuropsychological tests. First, we trained the classification model based on 

the ADAD sample and subsequently validated the best prediction model with optimal 

combinations of multi-modalities in a larger independently recruited sample of subjects with 

SAD (ADNI dataset).  

We found high accuracy for distinguishing HC vs. AD and MCI converters vs. non-

converters. Generally, combining multiple modalities, the classification model yielded a 

better result than the single-modality model. Particularly, the classification for MCI 

converters versus non-converters in SAD showed the best result when using FDG-PET, 

neuropsychological and CSF data with AUC of 89.12% (sensitivity = 82.79%, specificity = 

82.42%) which is above the clinical relevant accuracy. In summary, the machine learning 

model established in DIAN achieved predictive accuracy to distinguish the converters versus 

non-converters in the early stage of SAD. Moreover, the current study provides good 

interpretability to understand SAD through ADAD. 
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Zusammenfassung 
 

Die Alzheimer Krankheit (AK) ist eine fortschreitende neurodegenerative Erkrankung, die 

ausgehend von einer asymptomatischen präklinischen Phase in eine Demenz mündet.  Schon 

Jahrzehnte bevor klinische Symptome sichtbar werden, zeigen sich pathologische 

Veränderungen im Gehirn der Betroffenen. Diese lange prodromale Phase bietet die 

Möglichkeit die Krankheit frühzeitig zu erkennen und eine Therapie einzuleiten. Allerdings 

sind die ersten Hirnveränderungen oft marginal und auch wegen der unklaren Ätiologie ist es 

im Frühstadium der AK schwierig eine gute Vorhersage darüber zu treffen, welcher Patient in 

das nächste Krankheitsstadium fortschreiten wird. Zusätzlich leiden gerade ältere Patienten 

mit einer sporadischen AK, deren Risiko nach der 6. Lebensdekade start ansteigt,  oft an 

altersbedingten Hirnläsionen, die nicht unmittelbar mit Alzheimer in Verbindung stehen. Bei 

der genetisch verursachten Form der familialen AK (autosomal-dominant vererbte Alzheimer 

Krankheit, ADAK) treten die ersten Symptome bereits aber der 3. Dekade auf, also weitaus 

früher als bei der sporadischen Form der AK). Aufgrund des frühen Krankheitsbeginns, sind 

die AD-spezifischen Gehirnveränderunge bei der ADAK nicht durch alterskorrelierte Co-

patholgien wie zB zerebrovaskuläre Erkrankungen konfundiert. Daher kann die ADAK trotz 

geringer Häufigkeit (< 5% aller AK Fälle) als Modell dienen, um AD spezifische Marker für 

die frühe Krankheitserkennung zu etablieren. 

Vorausgegangene Studien zeigten, dass Marker der Abnahme des Hirnvolumens 

(Hirnatrophie), zerebraler Glukose-Hypometabolismus, sowie Ablagerungen seniler Plaques 

aus Beta-Amyloid Peptiden und Neurofibrillenbündel bestehend aus dem Tau-Protein einen 

bei der AK sowie ADAK abnorm verändert sind  (Clifford R. Jack et al., 2010; Dickerson and 

Wolk, 2013). Aktuelle Richtlinien zur Alzheimer Frühdiagnose empfehlen, dass eine 

Kombination aus Bildgebung, Liquorbiomarker und neuropsychologischen Untersuchungen 

zu einer verbesserten Diagnosestellung hergenommen werden (Sperling et al., 2011). In der 
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vorliegenden Arbeit kam ein naiver Bayes Algorithmus für die Identifikation der wichtigsten 

Klassifikationsmerkmale (feature selection) zum Einsatz. Zunächst etablierten wir multi-

modale Vorhersagemodelle basierend auf den Bildgebungsdaten (MRT, FDG-PET), 

Liquormarkern und neuropsychologischen Tests in ADAK Patienten aus der DIAN-Studie. 

Danach wurde das Modell mit der besten Vorhersageleistung ausgewählt, um Probanden mit 

einer sporadischen AK aus der ADNI-Studie zu klassifizieren. Unser Modell konnte mit 

hoher Genauigkeit gesunde Kontrollprobanden von Alzheimerpatienten unterscheiden und 

besonders kritisch progrediente Probanden mit leichter kognitiver Störung – also diejenigen, 

die zum Demenz-Stadium konvertieren - von stabil bleibenden Probanden trennen. 
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1 Introduction 

  
1.1. Sporadic and autosomal-dominant Alzheimer’s disease  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder ranging from an 

asymptomatic preclinical phase to dementia (Mattson, 2004). The clinical syndrome is 

characterized by cognitive impairment including loss of memory, problems with language, 

executive function, and visuospatial abilities and so on (Wilson et al., 2012). Even though the 

cause of the disease is unknown, pathological features of AD include loss of neurons, 

accumulation of amyloid plaques, neurofibrillary tangles (Terry et al., 1991; Touchon and 

Ritchie, 1999).   

Globally, based on the statistic of World Alzheimer Report in 2018, there were approximately 

50 million people with dementia (Christina, 2018). By 2040, the number of people who have 

dementia will be doubled (Prince et al., 2016).  The estimated cost for the treatment and care 

of individuals with dementia in 2018 was a trillion dollars worldwide. In the United States, 

Alzheimer’s disease (AD) was ranked as the second most frequent disease leading to fatal 

health problems based on one Medicare survey (Mayeux et al., 2011; Prince et al., 2015; Niu 

et al., 2017).  

Sporadic Alzheimer’s disease (SAD) is an age-related neurodegenerative disorder, where the 

risk of SAD-related dementia symptoms starts to increase after the age of 65 years. In a small 

subset (less than 5%) of AD patients, AD is caused by genetic mutations and is called autosomal 

dominant (ADAD) (Cruts and Van Broeckhoven, 1998).  The known genetic mutations causing 

ADAD occur in genes encoding the amyloid precursor protein (APP) and the genes for the 

presenilin 1 (PSEN1) and presenilin 2 (PSEN2) proteins, among which mutation in PSEN1 is 

most common in ADAD (Campion et al., 1999). Even though ADAD only accounts for a small 
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proportion of AD, the familial early onset-form of AD provides an excellent opportunity to 

investigate the course of the disease.  A longitudinal multicenter study, i.e. the Dominantly 

Inherited Alzheimer’s Network (DIAN), has been started in 2008 to assess biomarker, 

neuroimaging and cognitive changes in ADAD. Based on the parental onset of symptom, it 

gives an opportunity to track the brain changes of asymptomatic offspring (mutation carriers) 

10-20 years before the estimated onset (Bateman et al., 2012).   

The main pathogenesis in both sporadic and autosomal dominant AD include the accumulation 

of beta-amyloid plaques (Ab) and neurofibrillary tangles consisting of hyperphosphorylated 

tau protein which could be measured in cerebrospinal fluid (CSF) or by positron emission 

tomography (PET) imaging (Klunk et al., 2004; Buerger et al., 2006; Walsh and Selkoe, 2007; 

Fodero-Tavoletti et al., 2011). As the main component of amyloid plaque, Ab1-42 is the most 

important pathological peptide that aggregates and forms diffuse plaques, entailing a cascade 

of brain alterations such as the  activation of astrocytes and microglia, increased development 

of pathologic tau, and ultimately widespread neuronal and synaptic dysfunction (Blennow, de 

Leon and Zetterberg, 2006). Due to the aggregation of Ab deposits in plaque and then less 

diffusion in CSF, Ab1-42 level can be detected in the CSF, where in AD CSF levels are reduced 

presumably due to the deposition of the Ab  peptide in the plaques and thus reduced availability 

of soluble Ab in the CSF (Tapiola et al., 2009).  

APP, PSEN1 and PSEN2 are associated with the pathogenesis of the amyloid-β. These three 

genes are involved in the proteolytic cleavage of the APP protein, leading to the beta-amyloid 

protein, where the APP and PSEN mutations enhance the production of the Ab protein (Ryan 

and Rossor, 2010).  

Besides Aβ, phosphorylated tau is another important AD pathology which is the main 

component of neurofibrillary tangles. Tau is a soluble microtubule-associated protein whose 

main function is to stabilize intracellular microtubules. Phosphorylated tau aggregates into 
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paired helical filaments (PHFs), and further forms neurofibrillary tangles (NFTs), eventually 

causing neuronal death (Lee et al., 2005). The distribution of tau can also refer to the Braak 

staging which was described by Heiko Braak in 1991 (Braak and Braak, 1991; Braak et al., 

2006). The stage 1 and 2 marked as lesion firstly developed in the transentorhinal region then 

progress to the entorhinal region. Stage 3 and 4 marked as the involvement of hippocampus and 

entorhinal cortex. Stage 5 and 6 marked as tau widely progress to other neocortex regions. 

Evidence from Iqbal suggested that he pathological tau protein, like prion protein, can spread 

through neurons in the brain and eventually affect the remote brain area as the disease 

progresses (Iqbal et al., 2005). Presumably due to the degeneration of neurons, intraneuronal 

tau and phosphorylated tau are released into the extracellular space, which becomes detectable 

in the CSF. CSF total tau is a biomarker of neurodegeneration since it is enhanced also in other 

neurodegenerative diseases without NFT, whereas phosphorylated tau is often regarded as a 

marker of neurofibrillary tau pathology (Shaw et al., 2009). 

To detect AD-related early changes in the brain, neuroimaging techniques including MRI and 

PET have been widely used in recent years. The pattern of brain atrophy can be examined by 

structural MRI via gray matter volume change. AD-related brain atrophy occurs in multiple 

areas including the preferentially the medial temporal lobe and posterior parietal cortex at an 

early disease stage and involving other brain areas eventually as well. MRI assessed 

hippocampus volume is a key neuroimaging marker of AD, that was found to be reduced by 

32.5% in AD dementia patients compared to healthy subjects (Frisoni et al., 2008).  In MCI 

patients, there is a significant difference in limbic and fronto-temporo-parietal neocortical 

atrophy compared to the HC group. The general brain atrophy pattern in MCI by structural MRI 

is an important indicator to predict the progression from MCI to AD (Misra, Fan and Davatzikos, 

2009). The best-established functional neuroimaging marker includes [18F]fluorodeoxyglucos 

PET (FDG-PET) assessed glucose metabolism in temporoparietal brain regions (Furst et al., 
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2012). In AD patients, brain metabolism is reduced between 30% to 70% compared with 

cognitively normal elderly people (Silverman et al., 2001).  

 

1.2. Changes in Alzheimer’s disease  

Alzheimer’s disease is slowly progressive and usually can be classified as three stages based 

on the severity of cognitive impairment: cognitively normal, mild cognitive impairment and 

dementia. In the very early stage of AD, there is subtle or no impairment shown in cognitive 

function, but the AD pathophysiology in the brain is already ongoing. Mild cognitive 

impairment (MCI) is an intermediate state between normal cognition and dementia and it is 

always considered as an early stage of AD due to up to two-thirds of patients with MCI 

underlying AD pathology.  Even though there is wide heterogeneity, patients of MCI have a 

higher risk to progress to dementia.  

Many years - even decades - before the symptom onset of AD, pathological changes begin to 

accumulate in the brain. Understanding the order and rate of pathophysiological changes in the 

progress of AD is important for preclinical diagnosis. Ab accumulation starts earlier than other 

pathologies and becomes abnormal up to 20-25 years before the onset of dementia symptoms 

(Jansen et al., 2015). Following Ab, Synaptic dysfunction appears in the preclinical stage of 

AD which can be accessed by [18F]fluorodeoxyglucos PET (FDG-PET) and functional MRI 

(fMRI).  FDG-PET hypometabolism starts to develop in the brain especially in the 

temporoparietal cortex. Following FDG hypometabolism,  CSF tau levels begin to be elevated 

and become abnormal progressively.  Grey matter volume changes, which become abnormal at 

last, can be detected by structural MRI which reflects brain atrophy and massive neuronal loss. 

Changes of each biomarker start from the follow a sigmoid shape which implies a rapid 

progression in the middle period and little change in initial and final periods (Clifford R. Jack 

et al., 2010; Ewers et al., 2011; Sperling et al., 2011).   
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Figure 1. Hypothetical model of dynamic biomarkers of the AD expanded to explicate the preclinical phase. 
Aβ is identified by CSF Aβ42 or PET amyloid imaging (red). Synaptic dysfunction is assessed by FDG-PET 
or fMRI (orange). Tau is identified by CSF (green). Brain structure is evidenced by structural MR(blue) 
(adopted from (Sperling et al., 2011)). 
 

For SAD, the individuals who will develop AD dementia cannot be confirmed until obvious 

disease characteristics being detected (Clifford R. Jack et al., 2010). Because of the predictable 

parental onset age of ADAD patients, their pathophysiological changes can be assessed in 

relation to the estimated years to symptom onset (EYO).  

The Dominant Inherited Alzheimer’s Network (DIAN) is a multicenter study for the 

longitudinal assessment of neuroimaging, biomarker, and neuropsychological changes in 

ADAD (http://www.dian-info.org/de/). Levels of Aβ42 assessed in CSF or by amyloid PET 

becoming abnormal as early as 25 years before their estimated time point of symptom onset. 

Pathologic tau as assessed by CSF tau phosphorylated at threonine 181 (p-tau181) shows a 

significant increase approximately 15 years before the expected age at symptom onset in ADAD. 

Besides pathological changes, structural changes such as hippocampal atrophy were observed 

15 years before symptom onset, followed by cerebral glucose hypometabolism and cognitive 

impairment (measured by the Clinical Dementia Rating-Sum of Boxes (CDR-SB)) 
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approximately 10 years before expected symptom onset (Bateman et al., 2012). Temporal 

ordering of abnormalities in biomarkers is similar to the change during the course of SAD which 

suggested common pathophysiology between SAD and ADAD (Jack et al., 2013; Villemagne 

et al., 2013). The progress of biomarker change in SAD is similar compared to ADAD, but the 

symptoms are less severe and the onset is later. Similar to ADAD,  CSF Ab1-42 also decreases 

in SAD but the degree of decline is only half of that in ADAD (Ringman et al., 2012). The ratio 

of Ab1-40/ Ab1-42 is observed decrease in the progress of ADAD, however, in SAD,  the reported 

results can be variable (Mayeux et al., 2003; van Oijen et al., 2006; Blennow et al., 2010).  For 

the tau pathology, higher severity has also been showen in ADAD compared to SAD 

(Sunderland et al., 2003). 

 

Figure 2. Temporal ordering of dynamic biomarkers in ADAD. Temporal ordering is assessed based on 
estimated years from expected symptom onset and shown with standardized difference between mutation 
and non-mutation carriers. The abnormalities of biomarkers appear in the following order: CSF Aβ42, 
fibrillar Aβ deposition, CSF tau, hippocampal atrophy, glucose hypometabolism, followed by cognitive 
change. (adopted from (Bateman et al., 2012) ). 
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1.3. Machine learning for brain imaging and bioinformatics 

In recent years, the development of machine learning was growing very fast in many fields. 

Neuroscience is one of the fields with the fastest growth in machine learning applications 

(Vogt, 2018; Vu et al., 2018). In the past decade, the number of publications about machine 

learning in neuroscience and AD increased rapidly (Figure 3).  

 

 

Figure 3. Trends of machine learning publications in neuroscience and Alzheimer’s disease in the past 
decade. Numbers of publications from Web of Science based on search of keywords: machine learning 
Alzheimer’s disease, machine learning neuroscience. 
 

For volumetric MRI derived features, there are mainly two types of features: voxel-based 

features and region of interest (ROI) based features. Recent machine learning 

studies investigating the use of structural MRI to predict the conversion in the early stage of 

AD (MCI converters vs. non-converters) are listed in Table 1. Voxel-based features yielded 

AUC/accuracy of 70-86%. ROI-based features showed AUC/accuracy of 71-93%. 

Hippocampus features had the AUC/accuracy of 74-79% in distinguishing convertors with 

non-converters. 
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Table 1: Structural MRI as predictor: results from recent (past 5 years) studies on the classification of MCI who 
developed AD dementia (MCI converter) vs those who remained stable during the follow up period (MCI non-
converter) 

Study Dataset 
Sample size: 
MCI cov: 
MCI ncov 

AUC SEN SPE 
Follow-up 
duration 
(month) 

Voxel-based features 

(Moradi et al., 2015) ADNI 164:100 76.61 88.85 51.59 0-36 

(Wang et al., 2016) ADNI 64:65 69.7* 64.06 75.38 0-36 

(Beheshti, Demirel and 
Matsuda, 2017) ADNI 71:65 76.92 73.23 75.08 0-36 

(Lin et al., 2018) ADNI 169:139 86.1 84 74.8 0-36 

ROI-based features 

(Guerrero et al., 2014) ADNI 116:114 71* 75.0 67.0 0-24 

(Chen, Wei and Liu, 
2015) ADNI 167:236 71.8 58.1 76.3 0-24 

(Cheng et al., 2015) ADNI 43:56 76.40 74.3 72.1 0-24 

(Clark et al., 2016) ADNI 24:83 76.0 68.2 75.6 0-48 

(Hor and Moradi, 2016) ADNI 96:126 84.8 81.9 75.0 0-36 

(Korolev, Symonds and 
Bozoki, 2016) ADNI 120:139 76.0 68.5 69.6 0-36 

(Liu et al., 2016) ADNI 117:117 80.90 85.95 78.41 0-18 

(Long et al., 2017) ADNI 95:132 93.2 86.32 90.91 0-36 

Hippocampus 

(Komlagan et al., 2014) ADNI 166:236 75.6* 61.5 85.6 - 

(Hu et al., 2015) ADNI 71:62 79.00 71.83 83.26 0-36 

(Sørensen et al., 2016) ADNI 93:140 74.2 - - 0-24 

Abbreviations: ADNI = Alzheimer's Disease Neuroimaging Initiative; AUC = Area Under Curve; SEN = 

Sensivity; SPE = Specificity 
* accuracy 

Voxel-based methods quantify the brain structure changes by density map which were used in 

several studies in recent years (Moradi et al., 2015; Wang et al., 2016; Beheshti, Demirel and 

Matsuda, 2017; Lin et al., 2018). ROI-based methods are based on pre-defined anatomical 

atlases such as Desikan-Killiany atlas (Desikan et al., 2006) and automated anatomical 

labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The quantitative measures used in ROI-

based methods include cortical thickness (Clark et al., 2016; Korolev, Symonds and Bozoki, 



 
 

9 

2016), regional volume (Chen, Wei and Liu, 2015; Cheng et al., 2015; Clark et al., 2016; Hor 

and Moradi, 2016; Korolev, Symonds and Bozoki, 2016), and average intensity value 

(Guerrero et al., 2014; Liu et al., 2016; Long et al., 2017). In both voxel or ROI based 

methods, some studies focused on the hippocampus (Komlagan et al., 2014; Hu et al., 2015; 

Sørensen et al., 2016) and entorhinal cortex (Dickerson et al., 2001). The voxel-based method 

achieved prediction accuracy or AUC of 76-85%. The ROI-based features were 57-82% 

accurate in differentiating MCI converters and non-converters. 

Table 2: FDG-PET as predictor: results from recent (past 5 years) studies on the classification of MCI who 
developed AD dementia (MCI converter) vs those who remained stable during the follow up period (MCI 
nonconverter) 

Study Dataset 
Sample size: 
MCI cov: 
MCI ncov 

AUC SEN SPE 
Follow-up 
duration 
(month) 

Voxel-based features 

(Cabral et al., 2015) ADNI 44:56 85* - - 0-24 

(Dukart, Sambataro and 
Bertolino, 2015) ADNI 29:135 82.4 90.0 83.9 2-10 years 

(Wang et al., 2016) ADNI 64:65 75.97* 68.74 83.08 0-36 

ROI-based features 

(Cheng et al., 2015) ADNI 43:56 74.1 76.4 67.9 0-24 

(Jie et al., 2015) ADNI 242:174 57.00 48.37 59.11 0-36 

(Xu et al., 2015) ADNI 27:83 74.1 67.4 66.7 0-36 

(Suk, Lee and Shen, 
2015) ADNI 43:56 68.9* - - 0-18 

(Choi and Jin, 2018) ADNI 79:92 82 70.9 79.3 0-36 

Abbreviations: ADNI = Alzheimer's Disease Neuroimaging Initiative; AUC = Area Under Curve; SEN = 

Sensivity; SPE = Specificity  

* accuracy 

For FDG-PET, - as for structural MRI - there are two types of features for classification with 

FDG-PET: voxel-based features and ROI or atlas-based features. Therefore, features of FDG-

PET studies for AD prediction can be roughly divided into voxel-based FDG-PET (Cabral et 

al., 2015; Dukart, Sambataro and Bertolino, 2015) (Wang et al., 2016), and ROI-based 

(Cheng et al., 2015; Jie et al., 2015; Suk, Lee and Shen, 2015; Choi and Jin, 2018) (Xu et al., 

2015) FDG-PET studies (Table 2).  
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Neuropsychological assessments have identified the cognitive and behavior changes in early 

AD. For cognitive alterations as a predictor for the identification of subjects who will convert 

to AD dementia, there were several studies using test such as verbal cued recall and verbal 

fluency tests, ADAS-Cog test, Functional Activities Questionnaire (FAQ), Rey Auditory 

Verbal Learning Test (RAVLT), Mini Mental State Examination (MMSE) and Geriatric 

Depression Scale (GDS) (Segovia et al., 2014; Dukart, Sambataro and Bertolino, 2015; Clark 

et al., 2016; Korolev, Symonds and Bozoki, 2016; Wang et al., 2016) (Table 3). With 

neuropsychological measures, the studies showed AUC/accuracy of 72-87%. 

Table 3 Neuropsychological scores as predictors: results from recent (past 5 years) studies on the classification 
of MCI who developed AD dementia (MCI converter) vs those who remained stable during the follow up period 
(MCI non-converter) 

Study Dataset PSY tests 
Sample size: 
MCI cov: 
MCI ncov 

AUC SEN SPE 
Follow-up 
duration 
(month) 

(Segovia et al., 2014) EADC Verbal cued recall, 
Verbal fluency  

26:20 73.91* 73.08 75.00 0-36 

(Dukart, Sambataro 
and Bertolino, 2015) ADNI MMSE, GDS, ADAS, 

RAVLT, FAQ 29:135 71.6 85.7 51.3 0-24 

(Clark et al., 2016) ADNI Verbal fluency  24:83 87.2 70.8 88 0-48 

(Korolev, Symonds 
and Bozoki, 2016) 

ADNI ADAS-Cog, FAQ, 
RAVLT 

120:139 83.0 76.9 75.3 0-36 

(Wang et al., 2016) ADNI ADAS-Cog 64:65 79.07* 73.44 84.62 0-36 

Abbreviations: EADC =European Alzheimer's disease consortium; ADNI = Alzheimer's Disease Neuroimaging 

Initiative; AUC = Area Under Curve; SEN = Sensivity; SPE = Specificity; MMSE = Mini Mental State 

Examination; GDS = Geriatric Depression Scale; ADAS = Alzheimer’s Disease Assessment Score; RAVLT 

= Rey Auditory Verbal Learning Test 

* accuracy 

 

Previous studies established CSF biomarkers Aβ42, t-tau, and p-tau to predict MCI 

conversion to AD as single modality (Table 4). For the classification of MCI converters 

versus non-converter, the results CSF biomarkers were between 58% to 68% (AUC/accuracy) 

when used as a single marker. 
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Table 4: CSF biomarkers as predictor: results from recent (past 5 years) studies on the classification of MCI 
who developed AD dementia (MCI converter) vs those who remained stable during the follow up period (MCI 
nonconverter) 
 

Study Dataset 
Sample size: 
MCI cov: 
MCI ncov 

AUC SEN SPE 
Follow-up 
duration 
(month) 

Ab1-42, p-tau, total Tau 

(Cheng et al., 2015) ADNI 43:56 67.6 74.6 61.5 0-24 

(Jie et al., 2015) ADNI 242:174 63.00 53.02 63.04 0-36 

(Suk, Lee and Shen, 
2015) ADNI 43:56 57.7* - - 0-18 

Abbreviations: ADNI = Alzheimer's Disease Neuroimaging Initiative; AUC = Area Under Curve; SEN = 

Sensivity; SPE = Specificity 
* accuracy 

 

To predict the conversion in the early stage of AD, combining multiple modalities may 

provide complementary information and then improve the classification performance 

compared to a single modality. Some recent studies combined two modalities such as MRI & 

FDG-PET (Liu et al., 2014; Suk, Lee and Shen, 2014; Hor and Moradi, 2016), MRI & 

neuropsychological tests (Korolev, Symonds and Bozoki, 2016; Minhas et al., 2017), MRI & 

CSF biomarkers (Frölich et al., 2017). Some other multi-model studies did the classification 

combined with three modalities such as MRI & FDG-PET & neuropsychological tests 

(Segovia et al., 2014; Dukart, Sambataro and Bertolino, 2015; Wang et al., 2016), MRI & 

FDG-PET & CSF biomarkers (Suk, Lee and Shen, 2014; Zhu, Suk and Shen, 2014; Cheng et 

al., 2015; Jie et al., 2015), MRI & FDG-PET & 18F-florbetapir-PET (Xu et al., 2015), MRI & 

neuropsychological tests & demographic data (Moradi et al., 2015; Clark et al., 2016; Tong et 

al., 2017). The two-modality-combination achieved prediction accuracy or AUC of 71-87% 

(Table 5). With three-modality-combination, the studies showed the AUC/accuracy of 74-

90% (Table 5). 
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Table 5: Multi-modal predictors: results from recent (past 5 years) studies on the classification of MCI who 
developed AD dementia (MCI converter) vs those who remained stable during the follow up period (MCI non-
converter) 

Study Dataset Modalities 
Sample size: 
MCI cov: 
MCI ncov 

AUC SEN SPE 
Follow-up 
duration 
(month) 

2-modality-combination 

(Liu et al., 2014) ADNI MRI+FDG 43:56 69.57 64.88 70.00 0-18 

(Suk, Lee and Shen, 
2014) ADNI MRI+FDG 76:128 74.66 48.04 95.23 - 

(Hor and Moradi, 
2016) ADNI MRI+FDG 27:144 87.2 83.10 80.3 0-36 

(Korolev, Symonds 
and Bozoki, 2016) ADNI MRI+PSY 120:139 87.0 83.4 76.4 0-36 

(Minhas et al., 2017) ADNI MRI+PSY 67:78 - 92.3 87.5 0-36 

(Frölich et al., 2017) DCN MRI+CSF 28:87 82 85 64 0-36 

3-modality-combination 

(Segovia et al., 2014) EADC MRI+FDG+PSY 26:20 86.96* 92.32 80.00 0-36 

(Dukart, Sambataro 
and Bertolino, 2015) ADNI MRI+FDG+PSY 29:135 83.3 100 75.5 0-24 

(Wang et al., 2016) ADNI MRI+FDG+PSY 64:65 84.5* 82.81 86.15 0-36 

(Jie et al., 2015) ADNI MRI+FDG+CSF 242:174 72.00 66.05 76.61 0-36 

(Zhu, Suk and Shen, 
2014) ADNI MRI+FDG+CSF 43:56 78.8 48.5 94.4 0-36 

(Suk, Lee and Shen, 
2015) ADNI MRI+FDG+CSF 43:56 83.3* - - 0-18 

(Cheng et al., 2015) ADNI MRI+FDG+CSF 43:56 84.80 84.50 72.70 0-24 

(Moradi et al., 2015) ADNI MRI+PSY+AGE 164:100 90.20 86.65 73.64 0-36 

(Tong et al., 2017) ADNI MRI+PSY+AGE 171:129 87.0 86.7 72.6 0-36 

(Clark et al., 2016) ADNI MRI+PSY+DEM 24:83 81.4 62.5 89.2 0-48 

(Xu et al., 2015) ADNI MRI+FDG+FBP 27:83 80.7 74.1 81.5 0-36 

Abbreviations: EADC =European Alzheimer's disease consortium; ADNI = Alzheimer's Disease Neuroimaging 

Initiative; DCN = Dementia Competence Network; AUC = Area Under Curve; SEN = Sensivity; SPE = 

Specificity; FBP= florbetapir; DEM = Demographic Variable 

* accuracy 
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From the articles which focused on automated detection of MCI conversion to AD in the past 

five years, the majority of studies combined multiple modalities rather than single modality 

(Some of the single modality results listed in Table 1-4 are parts of the multimodality studies 

listed in Table 5). Based on the use of imaging data – MRI, FDG-PET or the combination of 

those, the classification accuracy is generally below 80%. Only two of five articles listed in 

Table 3 which used neuropsychological tests showed a classification accuracy higher than 

80%. Using only CSF biomarkers, the classification accuracy was in none of the studies 

above 70%. Compared to the single modality, multi-modality predictors achieved better 

performance which was generally above 80% classification accuracy.  

Machine learning can be roughly categorized into supervised learning, unsupervised learning 

and semi-supervised learning. In supervised learning, the prediction model is established 

based on the data which is associated with the output and then applied to the new data for 

prediction (such as classification). In unsupervised learning refers to the models are trained 

based on the unlabelled data. In semi-supervised learning, the models are established based on 

both labeled and unlabeled data. Its purpose is to use limited labeled data and a large amount 

of unlabeled data to enhance the learning ability.  

To improve classification performance, feature selection is a critical step by selecting the 

most discriminative features. Among the supervised methods, Information Gain (IG) (Hor and 

Moradi, 2016), t-test (Xu et al., 2015; Beheshti, Demirel and Matsuda, 2017; Minhas et al., 

2017), Mutual Information (MI) (Cabral et al., 2015), and Markov Blanket approach (Dukart, 

Sambataro and Bertolino, 2015) were used in recent five years’ studies of predicting AD 

conversion. When the number of features is very high and exceeds the number of training 

samples such as voxel-based features of imaging data, it will lead to poor performance of 

classification. To reduce the feature dimensionality, unsupervised learning methods were 

usually applied including Principle Component Analysis (PCA) (Wang et al., 2016; Choi and 

Jin, 2018; Lin et al., 2018), Independent Component Analysis (ICA) (Segovia et al., 
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2014), Least Absolution Shrinkage and Selection Operator (LASSO) (Guerrero et al., 2014; 

Zhu, Suk and Shen, 2014; Tong et al., 2017; Lin et al., 2018). For classification, a number of 

algorithms on predicting MCI conversion to AD have been used based on supervised and 

semi-supervised learning. The most used supervised learning method in recent research is 

Support Vector Machine (SVM) (Liu et al., 2014, 2016; Segovia et al., 2014; Cabral et al., 

2015; Cheng et al., 2015; Hu et al., 2015; Jie et al., 2015; Sørensen et al., 2016; Beheshti, 

Demirel and Matsuda, 2017). Besides, Naïve Bayes (NB) (Cabral et al., 2015; Dukart, 

Sambataro and Bertolino, 2015), Random Forest (RF) (Hor and Moradi, 2016; Tong et al., 

2017), and logistic regression (Clark et al., 2016) were also widely used supervised learning 

methods in predicting AD. With semi-supervised methods, few recent studies investigated the 

used of Low Density Separation (LDS) (Moradi et al., 2015) and multimodal relevance vector 

regression (Zhu, Suk and Shen, 2014) for the predicting of MCI conversion. 
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1.4. Aim of the study 

The overall goal of the current thesis was to establish a cross-validated multimodal biomarker 

model for the early detection of AD. The specific aims were  

1) Train the best classification model based on single modalities and combinations of up to 4 

modalities for discriminating ADAD against controls.  

2) Cross-validate the best classification models in a large sample of SAD subjects at different 

disease stages   
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2 Materials and methods 

  
2.1. Databases  

DIAN: 

Dominantly Inherited Alzheimer’s Network is a multisite study established in 2008 (Moulder 

et al., 2013). The DIAN study recruits individuals who carry the gene mutations (PSEN1, 

PSEN2 or APP) and their siblings who do not carry any of the mutations. The individuals 

who are non-mutation carriers contribute as control sample. The ratio of mutation and non-

mutation carriers is approximately equal. Inclusion criteria are: 1) provide informed consent 

before other procedures; 2) older than 18 years; 3) nursing home-level care is not needed; 4) 

have at least one non-full-blooded sibling as collateral source; 5) language fluency needs to be 

equal or higher than 6th grade level. The participants who have psychiatric illness were not 

eligible. The main goals of DIAN study are to investigate asymptomatic brain changes with 

cognitive, imaging and fluid biomarkers to track the disease. 

ADNI: 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multicenter study that was 

established by various institutes and organizations (e.g. National Institute on Aging (NIA)). 

ADNI started in October 2004 led by Dr. Michael W. Weiner from department of Radiology 

and Biomedical Imaging in University of California, San Francisco (UCSF). The first stage 

was ADNI-1 which has recruited around 800 subjects (HC/MCI/AD = 200/400/200) for five 

years. Different types of data were collected in ADNI-1 including brain scans (structural 

MRI, FDG-PET, PIB-PET), CSF biomarkers (Ab1-42, p-tau, total Tau) and genetic profiles. 

The initial aim was developing biomarkers for tracking the early stage of AD. The second 

stage ADNI-GO started in September 2009 and recruited another 200 new early MCI 

subjects. At the same time, the subjects from ADNI-1 were keeping examined.  Besides the 



 
 

17 

data types measured ADNI-1, diffusion MRI (diffusion tensor imaging, DTI) and resting 

state fMRI were added in ADNI-GO. The focus of this stage is biomarkers of earlier stage of 

AD. Followed ADNI-GO, the third stage ADNI-2 begun in September 2011 and lasted for 

five years. In addition to follow up the participants of ADNI-1/GO, 150 HC, 300 MCI and 

150 AD subjects were added. Main differences from previous stages were additional amyloid 

PET (florbetapir PET) added. The past three stages ADNI-1/GO/2 recruited more than 1500 

subjects from 55 to 90 years old and widely used in clinical and scientific research.  

 

2.2. Participants  

DIAN: 

A total of 174 subjects were included from DIAN cohort who were enrolled from September 

2009 through April 2014 collected at 13 sites (7 sites in the United States, 3 sites in Australia, 

1 site in the United Kingdom, 2 sites in Germany). Of these subjects, 101 were carriers of 

mutation causing AD in the genes presenilin1 (PSEN1, n = 77), presenilin2 (PSEN2, n = 9), 

or amyloid precursor protein (APP, n = 15). And 73 subjects were non-mutation carriers from 

the same families that were used as control samples (Table 6). In addition to satisfy the 

inclusion criteria of DIAN mentioned above, all DIAN subjects included in this study had to 

be assessed with T1-weighted MRI, FDG-PET, neuropsychological tests and CSF biomarkers 

of Ab1-42 and tau which is shown in Figure 4A. For each subject, the predictable year to 

symptom onset was estimated based on the symptomatic onset of parents. EYO thereby was 

defined as current age minus the year of symptom onset. 

ADNI: 

We included 545 subjects with baseline diagnoses from ADNI GO/2 database as our 

validation sample set. Among all the subjects, there are 205 HC subjects, 262 MCI subjects, 

and 78 AD patients (Table 6). HC refers to the subjects of cognitive normal with mini-mental 
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state examination (MMSE) score between 24 and 30, clinical dementia rating (CDR) of 0 and 

no signs of cognitive impairment and significant depression. MCI indicates the subjects who 

have mild cognitive impairment with MMSE score between 24 and 30, CDR score of 0.5 and 

subjective memory concern. AD subjects had MMSE score between 20 and 26, a CDR score 

equal or greater than 0.5 and memory complaints. In addition to meet these requirements, 

ADNI inclusion criteria mainly included: Geriatric Depression Scale < 6, age from 55 to 90, 

fluently speaking English or Spanish, willing to attend longitudinal measures (more details in 

ADNI protocol). The ADNI subjects involved in our study also need to have 3T T1-structural 

MRI, FDG-PET, neuropsychological tests and CSF biomarkers at baseline and at least one 

clinical follow-up assessment after 3 years (Figure 4B). HC converters were defined based on 

conversion MCI or AD dementia within 36 months. MCI converters were defined based on 

conversion to AD dementia within 36 months. The other HC or MCI subjects who didn’t 

convert and had at least 36 months follow-up data were included as non-converters. Median 

clinical follow-up time was 48 months for HC subjects (from 12 up to 60 months) and also 48 

months for MCI subjects (from 36 up to 60 months). 

 

Table 6A: Baseline demographics of DIAN 

Demographic Mutation 
Carriers Non-carriers 

n 101 73 

Agea 39.9(10.4) 39.2(10.5) 

Male(%) 48(48) 33(45) 

Educationa 13.7(3.0)** 14.9(2.3) 

APOE4+(%) 59(58.4)*** 2(2.7) 

ADAS11a 26(26.0) 23(32.4) 

MMSEa 26.6(9.1)* 29.0 (1.3) 
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Table 7B: Baseline demographics of ADNI 

Demographic HC AD HC cov HC ncov MCI cov MCI ncov 

n 205 78 14 62 78 184 

Agea 72.7(6.1)** 75.6(7.7) 76.3(5.9) 74.1(6.0) 72.9(7.0) 71.1(7.2) 

Male(%) 110(46) 60(61) 11(61) 37(50) 42(52) 116(56) 

Educationa 16.6(2.5)** 15.6(2.6) 15.6(2.7) 16.6(2.6) 16.1(2.6) 16.3(2.6) 

APOE4+(%) 35(29)*** 67(69) 4(22) 21(28) 60(74)** 80(38) 

ADAS11a 5.6(2.9)*** 19.7(6.4) 8.7(2.8)* 6.0(2.9) 13.5(4.8)** 8.1(3.3) 

MMSEa 29.0(1.2)*** 22.9(2.0) 28.6(1.4) 29.1(1.4) 27.2(1.7)** 29.1(1.4) 

 

Cov = converter, ncov = non-converter 
* p < 0.05. 
** p < 0.01. 
*** p < 0.001 
a values are mean and standard deviation 
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Figure 4. Flowchart for subject inclusion. In (A) DIAN and (B) ADNI, we included the subjects who had 
the data of all four modalities (MRI, FDG-PET, psychological data and CSF biomarkers). Abbreviation: 
Cov = converter, nCov = non-converter 
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2.3. MRI acquisition and assessment  

DIAN: 

For each DIAN subject, structural MRI was acquired with Siemens 3T scanner and pass the 

initial and follow-up quality control procedures. Across different sites, scans were performed 

based on unified protocol (according to ADNI protocol). Three-dimensional T1-weighted 

sagittal MP-RAGE scans lasted for five minutes with the following parameters: 

TR/TE=2300ms/2.95ms, flip angle = 9°, 1.1 × 1.1 × 1.2 mm resolution. All the scans were 

screened by DIAN Imaging Core for compliance of the imaging acquisition protocol.  

Processing of 3T MRI scans was done with FreeSurfer 5.1 (FreeSurfer Software Suite is 

available at http:// surfer.nmr.mgh.harvard.edu/) based on Dell PowerEdge 1950 servers with 

Intel Xeon processors contained cortical surface reconstruction and volumetric segmentation 

(Fischl, 2012). DIAN MRI processing included motion correction, segmentation of 

volumetric structure (gray matter and white matter) (Fischl et al., 2002), intensity 

normalization, cortical surface extraction and parcellation of cortical and subcortical areas 

using Desikan Killiany probabilistic atlas (Desikan et al., 2006). Each region of interest (ROI) 

was corrected for intracranial volume with published method (Jack et al., 1989). All MRI 

processing was done by the DIAN imaging core including ROI extraction. For further 

analysis, we used cortical volume from 41 ROIs for each hemisphere (34 cortical and 7 

subcortical ROIs) (Figure 5). All Desikan Killiany ROIs are listed in Table 8. 

ADNI: 

T1 MRI images of ADNI database were acquired using 3T Siemens scanners. All scans were 

based on ADNI acquisition protocol and posted methods (available at http://www.adni-

info.org). Imaging was performed with three-dimensional MP-RAGE sequence with the 

following parameters: TR/TE/TI=2300/2.98/900ms, field of view (FOV) = 256 × 240 mm2, 

flip angle = 9°, 176 slices, 1.1 × 1.1 × 1.2 mm resolution. Each MP-RAGE image underwent 
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gradient non-linearity distortion correction, B1 non-uniformity correction and non-uniform 

intensity normalization (N3) by ADNI MRI core (http://adni.loni.usc.edu/methods/mri-

tool/mri-pre-processing/). 

The volumetric T1-weighted images were processed using Freesurfer (Version 5.1). The 

procedure done by ADNI Imaging Core included motion correction, geometry distortion 

correction, non-brain tissue removal, Talairach space transformation, white matter and gray 

matter segmentation and intensity normalization. Desikan-Killiany atlas-based ROI extraction 

was also provided by ADNI Core. We used same extracted ROIs (41 ROIs for each 

hemisphere) subdivided from cortical and subcortical regions of ADNI MR scans as DIAN 

data for further analysis. 

 

2.4. FDG-PET acquisition and assessment  

DIAN: 

18F-FDG scans were performed using a bolus injection of 5 mCi of FDG. The acquisition 

started 40 minutes after the injection and lasted for 20 minutes (4x5 minute frames). Each 

FDG-PET image was taken quality check according to the ADNI PET QC. With the standard 

protocol, PET images were motion-corrected and registered to individual FreeSurfer derived 

MRI regions of interest. FDG-PET was then converted to standardized uptake value ratio 

(SUVR) for each ROI in Desikan-Killany Atlas space with the brainstem reference. Due to 

lower spatial resolution of PET imaging than structural MR imaging, it will lead to loss of 

activity or blurring of adjacent tissues which is called partial volume effects (PVE). So partial 

volume correction (PVC) was done using a method based on regional spread function (RSF) 

by DIAN imaging core (Roussel, Ma and Evans, 1998).  

ADNI: 
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Before PET scanning, each subject need to be checked to ensure blood glucose <180 mg/dL. 

FDG-PET scanning will last for 30 minutes with 4x5 minute frames after 30 minutes of 

injection of 185 MBq (5 mCi) fluorodeoxyglucose.  After scanning, each PET image was 

checked by ADNI PET QC team. In order to get uniform PET scans, same Freesurfer 

preprocessing pipeline (as described previously in DIAN) was applied to ADNI dataset. Since 

FDG-PET SUVR value is not available from ADNI core, we performed the same procedure 

to calculate the corresponding SUVR score by superimposing Desikan-Killiany ROIs to 

FDG-PET. SUVR value of ADNI PET images was normalized to brainstem. 

 

 

 

Figure 5. Regions of Desikan-Killiany atlas. For each hemisphere, it includes 34 cortical regions and 7 
subcortical regions. 
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Table 8: Regions of Desikan-Killiany atlas 
 

Frontal lobe Temporal lobe 

Caudal middle frontal gyrus Banks superior temporal sulcus 

Frontal pole  Inferior temporal gyrus 

Lateral orbital frontal cortex Middle temporal gyrus 

Medial orbital frontal cortex Superior temporal gyrus 

Paracentral lobule Transverse temporal cortex 

Pars opercularis  Entorhinal cortex 

Pars orbitalis Fusiform gyrus 

Pars triangularis Parahippocampal gyrus 

Precentral gyrus Temporal pole 

Rostral middle frontal gyrus Cingulate cortex 

Superior frontal gyrus Caudal anterior-cingulate cortex 

Parietal lobe Insula 

Inferior parietal cortex Isthmus–cingulate cortex 

Postcentral gyrus Posterior-cingulate cortex 

Precuneus cortex Rostral anterior cingulate cortex 

Superior parietal cortex Subcorical structures 

Supramarginal gyrus accumbens  

Occipital lobe amygdala  

Cuneus cortex caudate   

Lateral occipital cortex hippocampus  

Lingual gyrus pallidum  

Pericalcarine cortex putamen 
 

thalamus  

 

 

2.5. Neuropsychological tests  

Participants from DIAN and ADNI underwent a set of neuropsychological assessments. 

Among these assessments, we included seven tests for both DIAN and ADNI studies which 

are listed below. 

1) Mini-Mental State Examination (MMSE) is a widely used test to evaluate cognitive 

impairment and screen for possible dementia. MMSE score ranges from 0 to 30: greater 

than 23 points suggests cognitively normal; 19-23 indicates mild cognitive impairment; 

10-18 means moderate cognitive impairment; below 10 suggests severe cognitive 
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dysfunction. The test evaluates orientation (time and place), registration (repetition 

immediately), attention and calculation, recall, language, repetition and visual 

construction (Folstein, Folstein and McHugh, 1975; Weintraub et al., 2009).  

2) Boston Naming Test is a measure of naming ability and semantic memory. During test, 

participants will be showed 30 pictures and asked to tell the name of the object. In both 

DIAN and ADNI studies, reduced version was used based on original 60 items test 

(Goodglass and Kaplan, 1983). 

3) Category Fluency Test, also called verbal fluency test, is a measure of semantic memory 

and executive function. Participants will be asked to produce words of a given category 

within 60 seconds. We used category fluency test of animal category in this study from 

DIAN and ADNI (Morris et al., 1989). 

4) Trail Making Test, including two different tests (A&B), is a measure of processing speed 

visual–motor skills, and executive functions. For the test A, participants need to connect 

the 25 circles from number 1 through 25 in sequence. For the test B, there are also 25 

circles including 13 numbers (1-13) and letters (A-L) which need to be connected in 

alternative order. Protocols are same for DIAN and ADNI (Reitan and Wolfson, 1985).  

5) Word List Immediate and Delayed Recall test is a measure of episodic memory. 

Participants will be asked to recall a list of words immediately and after a while. In DIAN, 

the word list contains 16 high-frequency words. In ADNI, the word list contains 10 words 

(Rosen, Mohs and Davis, 1984). 

 

2.6. CSF biomarkers  

CSF concentration of amyloid-b42, total tau and phosphorylated tau at threonine 181 (p-tau) 

were included in our analysis. The protocol of gathering CSF in DIAN is consistent with the 

biofluid protocol in ADNI.  
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DIAN: 

CSF (15 ml) was collected in the morning under fasting circumstance by standard lumbar 

puncture into polypropylene tubes. CSF samples were then shipped to and analyzed by DIAN 

biomarker core team at Washington University. CSF amyloid-b42, tau and p-Tau were 

measured by multiplex xMAP Luminex platform (Fagan et al., 2014a). 

ADNI: 

CSF collection pipeline is the same with DIAN. CSF samples were shipped to and analyzed 

by the Roche Elecsys® electrochemiluminescence immunoassays and conducted by the 

ADNI biomarker core team at University of Pennsylvania (Shaw et al., 2009). 

 

2.7. Data preprocessing 

We used DIAN data as our training data to establish the Naïve Bayes algorithm-based 

machine learning model and ADNI data as our independent validation data to test the 

classification model. To meet the prerequisites of classification, we did data preprocessing 

including normalization and standardization. 

2.7.1 Feature normalization 
 
Recent research shows Box-Cox transformation did improve the performance of classifiers 

which are under the assumption of normality (Bicego and Baldo, 2016). We used Naïve 

Bayes algorithm as our classification method. One of the prerequisites of Naïve Bayes with 

Gaussian kernel is that each attribute (feature) need to be normally distributed. Therefore, we 

did normalization as the first step of data preprocessing.  

One of the most useful normalization methods is Box-Cox power transformation which was 

proposed by George Box and David Cox in 1964. The aim of Box-Cox transformation is to 

transform the non-normal data to approximately normal distributed. The reasons for non-

normality usually are: 1) there are extreme values which may lead to a skewed distribution; 2) 
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limit of the data may also result in a skewed distribution; 3) overlap of more than one process 

will cause non-normal distribution. 4) insufficient data discrimination will make data become 

non-normal. To normalize the data, we used the following equation: 

x(𝜆) = 	'
𝑥) − 1
𝜆 , 𝑖𝑓	𝜆 ≠ 0	

ln 𝑥 ,													𝑖𝑓	𝜆 = 0,
 

where x is the recorded data (features of different modalities) and x needs to be positive (>0). 

In our projects, some features didn’t meet this condition: e.g. the minimum score of delayed 

word recall test is zero (in both DIAN and ADNI). If y is smaller or equal to zero, we used an 

extended form: 

x(𝜆) = 	'
(𝑥 + 𝑐)) − 1

𝜆
, 𝑖𝑓	𝜆 ≠ 0	

ln(𝑥 + 𝑐) ,													𝑖𝑓	𝜆 = 0,
 

where c is a constant which makes any y meet the condition: 𝑥 + 𝑐 > 0. In both equations, 𝜆 

is the transformation parameter estimated using maximum likelihood theory.  The operation 

with different values of parameter 𝜆 is shown in Figure 6. In special cases, when 𝜆 = 0, it’s 

natural log transformation. When 𝜆 = 1, it’s linear transformation and the data stays 

unchanged. When 𝜆 = −1, it’s reciprocal transformation. When 𝜆 = 0, it’s natural log 

transformation. In our project, Box Cox transformation was done with SciPy library of Python 

(available at https://scipy.org/). 
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Figure 6. Box Cox transformation with different 𝜆 parameters 
 

2.7.2 Feature standardization 
 

A prerequisite for the cross-validation between studies is that the features across DIAN and 

ADNI are comparable. In other words, the same feature in DIAN and ADNI need to be in a 

comparable value range.  Even though the assessment of DIAN and ADNI data used very 

similar protocols , some differences still remain (available at http://www.adni-info.org and 

dian.wustl.edu). Different CSF assays were used (xMap in DIAN and Elesys in ADNI) which 

may lead to difference in absolute CSF measurement values. Moreover, the age range of the 

subjects differs between the two studies (20-61 years old of mutation carriers in DIAN, 55-

91years old of MCI in ADNI). Lack of consistency in training and validation set will lead to 

poor performance of classifier. Hence, we did standardization (scaling) as the second step of 

preprocessing. 

𝑥 

x(𝜆) 
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We used the Centiloid method which was originally developed for the standardization of 

amyloid PET imaging and enabled the comparison of results from different tracers and 

methods (Klunk et al., 2015). In this project, the Centiloid method was applied to create 

comparable value ranges (i.e. a scale ranging from 0 to100) across the training set (DIAN) 

and test set (ADNI) for each feature of MRI and FDG-PET images, psychological tests and 

CSF biomarkers. Similar to the procedure for the Centiloid scaling method applied to amyloid 

PET, we firstly defined two reference groups at both ends of the disease spectrum (HC vs AD 

dementia) for both DIAN and ADNI. The HC reference group included cognitive normal 

elder subjects who showed normal CSF Aß values. The AD reference group was included 

cases with AD dementia who showed abnormal CSF Aß values. Specifically, in DIAN, the 

control reference group was defined as non-mutation carriers who meet the conditions: 

EYO>0 & CDR=0 & Aß- (CSF Aß1-42 > 192 pg/ml). AD reference group was defined as 

mutation carriers who meet the conditions: EYO>0 & CDR>=1 & Aß+ (CSF Aß1-42 < 192 

pg/ml) (Shaw et al., 2009). In ADNI, the control reference group was defined as HC subjects 

who meet the conditions: Age<70 & Aß-. AD reference group was defined as AD subjects 

who met the conditions: Aß+. Limitation of age is to minimize age-related effects (non-

Alzheimer related pathologies). Each feature was scaled linearly with the following equation 

(Jack et al., 2015): 

𝑋789:;< = 100 ×
𝑋>?@ − 𝑋ABC
𝑋A9D − 𝑋ABC

 

Where:  

𝑋>?@ is individual’s feature value.   

𝑋ABC is the 5th percentile of 𝑋EFCGHF: if  𝑋EFCGHF:IIIIIIIIII < 	𝑋K@IIIII. 

𝑋ABC is the 5th percentile of 𝑋K@ if  𝑋K@IIIII < 	𝑋EFCGHF:IIIIIIIIII. 

𝑋A9D is the 95th percentile of 𝑋EFCGHF: if  𝑋EFCGHF:IIIIIIIIII > 	𝑋K@IIIII. 

𝑋A9D is the 95th percentile of 𝑋K@ if  𝑋K@IIIII > 	𝑋EFCGHF:IIIIIIIIII. 
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Scaled value was calculated for each feature and the comparison between original and scaled 

feature is shown in the chapter 3. 

 

2.8. Feature selection 

The total features we extracted include: 82 features from MRI (gray matter volume), 82 

features from FDG-PET (SUVR), 7 features from neuropsychological tests and 3 CSF 

biomarker features. To enhance the performance of classification algorithm, we reduced the 

number of features and selected the most informative features using a method of information 

theory – information gain (IG) (Hall and Holmes, 2003; Quinlan, 2014). IG method, in our 

case, describes the amount of information gained about a feature from class separation. This 

method has successfully been used in previous studies on DTI and structural MRI for feature 

selection (Plant et al., 2010; Dyrba et al., 2013).  

Information gain is based on Shannon entropy which is a measure of unpredictability in 

information theory. When a state is unpredictable, the entropy is high. In the contrast, when a 

state is predictable, the entropy is low. In our case, the entropy of class distribution is defined 

as 𝐻(𝐶) = −∑ 𝑝(𝑐B) ∙ logST𝑝(𝑐B)U8V∈E . Where C is separated classes, 𝑐B is the ith class and 

𝑝(𝑐B) is the probability of 𝑐B. Class distribution here means the distribution of separated 

classes, i.e. if C = {AD, HC} and the number of subjects in HC and AD is equal, the class 

distribution is uniform distribution. If subjects in each class is balanced, the entropy is high 

(𝐻(𝐶) = 1). On the contrary, if it is unbalanced, the entropy is relatively low. The more 

unbalanced the class size is, the lower the entropy.  

Based on entropy, information gain is defined as 𝐼𝐺(𝑓B) = 𝐻(𝐶) − 𝐻(𝐶|𝑓B), and 𝐻(𝐶|𝑓B) is 

the conditional entropy of the class distribution given the feature 𝑓B. IG describes the decrease 

in entropy of the class distribution and conditional class distribution given feature 𝑓B which 

indicates how much a feature contributes to the class separation. The range of IG value is 
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from 0 to 1. The larger the IG is, the more the information the feature gains for data 

differentiation. 

For computing conditional entropy, the feature need to be discretized if it is continuous. We 

used an algorithm based on minimum description length principle (MDLP) invented by 

Fayyad and Irani which optimizes the number and location of cut points for each feature 

(Irani and Fayyad, 1993). 

Since IG value of each feature indicates how it contributes to the class separation, to choose 

the most informative features, we only keep the features whose IG value is above the 

threshold for further classification. IG threshold varies for different modalities and different 

fold which will be described with more details in the next section. 

 

2.9. Classification 

Machine learning (ML) approaches have been used for detecting AD with imaging and non-

imaging data in the past years. The most widely used methods include Naïve Bayes, Support 

Vector Machine (SVM), and logistic regression. Naïve Bayes is a statistical method which is 

suitable for small dataset. SVM is a multivariate ML method which has advantage in high 

dimensional data classification even the data is non-linear.  Logistic regression is a generating 

model which performs very well especially with large dataset. In this study, we chose a 

univariate supervised machine learning method – Naïve Bayes classifier for the following 

reasons: Naïve Bayes performs well even with small training data (our DIAN training dataset: 

174 subjects); Compared to multivariate ML methods, it is less likely to overfit the training 

data with low - dimensional feature space (less than 200 features even before feature 

selection). Even though Naïve Bayes assumes all features used in classification which are 

mutually independent, it still works well for real-world data if the data doesn’t meet the 

condition (Eisenstein and Alemi, 1993; Dyrba et al., 2013). 
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Naïve Bayes method has been applied to predict AD progression with single and multiple 

modalities in recent studies (Plant et al., 2010; Dyrba et al., 2013; Khazaee, Ebrahimzadeh 

and Babajani-Feremi, 2016; Bhagya Shree and Sheshadri, 2018). Naïve Bayes is calculated 

based on applying Bayes’ theorem and the predictive class label is determined by posterior 

class probability (class labels in our study: e.g. HC vs. AD, converters vs. non-converters).  

Posterior class probability is defined as  𝑃(𝐶|𝐹], … , 𝐹C) where 𝐶 is class label and 𝐹 is 

selected features. Bayesian classifiers 𝑃(𝐶|𝐹], … , 𝐹C) is calculated using Bayes’ theorem: 

𝑃(𝐶|𝐹], … , 𝐹C) =
_( à,…, b̀|E)_(E)

_( à,…, b̀)
,  where 𝑃(𝐶) is the prior probability of class,  𝑃(𝐹], … , 𝐹C) 

are the probabilities of the selected features,  𝑃(𝐹], … , 𝐹C|𝐶) are the class conditional 

probabilities.  In this study, all the features we used are continuous and follow Gaussian 

distribution (all the data were normalized described in section 2.7.1). Therefore, for each 

class, conditional probability was modeled with gaussian distribution: 𝑃(𝑓B|𝑐) =

]

cSdefg
𝑒𝑥𝑝 i− (jVklf)g

Sefg
m. Each subject in the test dataset was assighed to the class with higher 

posterior probability based on the Maximum Likelihood Estimate (MLE) with training data.  

 

2.10.  Two-stage cross validation 

To test the established machine learning model (training within DIAN dataset), we did two-

stage cross validation (CV): (1) At the first stage, we cross-validated with DIAN dataset (test 

dataset: DIAN) to select the best time period from the longitudinal disease progress for 

distinguishing mutation and non-mutation carriers ; (2) At the second stage, we cross-validate 

with ADNI dataset (test dataset: ADNI) to predict AD conversion in the early disease phase. 

Unlike traditional cross-validation which is usually training and testing within the same 

dataset, we did both intra- and inter- database cross validation to establish the machine 
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learning model in autosomal dominant AD and extendedly validate and apply in more 

common SAD. 

To be more specific, we firstly trained machine learning model with DIAN dataset at different 

stages of ADAD. In DIAN, the disease progression of each participant can be infered 

according to the symptom onset their parents. Estimated year of symptom onset (EYO) is 

calculated by the difference between the age of participant and parental onset of symptom for 

both mutation and non-mutation carriers (e.g. Assuming the parent started showing symptom 

at 60 and the offspring is at the age of 40 at the moment, EYO is -20 based on age difference). 

To assess the disease stage of each participant, we defined different EYO intervals for the 

analysis: (1) 15 years before symptom onset EYO = (−Inf, −15] (2) 20 to 10 years before 

symptom onset EYO = (−20,−10] (3) 15 to 5 years before symptom onset EYO =

(−15,−5] (4) less than 10 years before symptom onset EYO = (−10, 0] (5) less than 5 years 

before and after symptom onset EYO = (−5, 5] (6) after symptom onset EYO = (0, Inf]. 

For the first stage cross-validation (DIAN-DIAN), we applied repeated 10-fold CV to get 

stable estimation for mutation vs. Non-mutation classification(Ojala and Garriga, 2009). 

Repeated 10-fold CV was done through the following steps: 

(1) DIAN data was randomly divided into 10 subgroups and each subgroup had same amount 

of data (subgroupi, i=1,...,10); 

(2) We used 9 subgroups as training dataset and 1 subgroup as testing dataset for each fold 

(CVi, i=1,...,10); 

(3) In each fold (CVi), the training dataset was randomly divided into 10 subgroups again; 

(4) Step 2 was repeated only within training dataset and each fold of inner loop CV is defined 

as CVij(i, j=1,...,10); 

(5) In the inner-loop CVij, Classification was done with different groups of features by using 

different IG threshold (IG percentiles from 0.5 to 0.95 with a step size of 0.05) (Dyrba et 

al., 2015); 
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(6) After 10-fold inner-loop CV (each fold was done as step 5), best features (IG threshold) 

were selected based on AUC value and applied to the testing set of CVi; 

(7) 10 fold outer-loop CV was done for CV1 ... CV10 as step 2 to step 6; 

(8) We did 10 times repeated 10 fold CV (step 1 to step 7 was repeated 10 times).  

After the first stage CV, established machine learning model and selected features were taken 

forward to the second stage validation to classify HC vs. AD and converter vs. Non-converter. 

For the second stage cross-validation (DIAN-ADNI), we applied repeated hold-out CV 

instead of 10-fold CV. Repeated hold-out CV was done through the following steps:  

(1) Data and results from 1st stage CV were prepared; 

(2) ADNI data was randomly divided into 10 subgroups and each subgroup had same amount 

of data (subgroupi, i=1,...,10); 

(3) We used 1 subgroup as testing dataset for each validation (CVi, i=1,...,10); 

(4) Training model of DIAN was applied to ADNI testing dataset (subgroupi) for CVi; 

(5) 10 times CV was done for CV1 ... CV10 as step 4; 

(6) We did 10 times repeated hold-out CV (step 2 to step 5 was repeated 10 times). 

For traditional 10-fold CV we used in the first stage, testing dataset in one fold will be part of 

the training dataset in another fold. In the second stage, we used hold-out CV because training 

and testing data are independent. Considering limited number of subjects in DIAN, we did 

repeated 10-fold CV to get stable estimation. For consistency, CV in the second stage was 

also repeated the same times. Two-stage CV schema is illustrated in Figure 7. 
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Figure 7. Cross-validation schema for feature selection and classification. Within each cross-validation 
fold (CVi), another loop of cross-validation was run on the training data to estimate the best IG threshold 
for feature selection. The best threshold of that inner loop was the applied to the test sample of that fold 
(CVi). This was run for all CV folds to determine the overall best set of features for the prediction of MC vs 
NC in the DIAN data. The best feature set was subsequently used as predictors tested in ADNI via Naïve 
Bayes, where classification result is reported as the average AUC across the repeated cross-validation. 
 

2.11.  Evaluation 

To evaluate the classification result, we report the receiver operating characteristic (ROC) 

curve, area under the curve (AUC), sensitivity and specificity.  

ROC curve and AUC are usually used to evaluate the performance of binary classifier. ROC 

curve is created by different thresholds and plotted with true positive rate (TPR) and false 

positive rate (FPR). TPR is defined as  v_
v_w`?

 and FPR is defined as `_
v?w`_

, where 𝑇𝑃 is the 

number of instances correctly identified as positive class,  𝑇𝑁 is the number of instances 

correctly identified as negative class, 𝐹𝑃 is the number of instances incorrectly identified as 

positive class which belong to negative class, 𝐹𝑁 is the number of instances incorrectly 

identified as negative class which belong to positive class. If FPR=0 and TPR=1, it means the 

classifier is perfect and all the instances are correctly classified. If ROC curve is plotted as 

𝑦 = 𝑥, it means the classifier randomly classified the instances. Therefore, the closer the ROC 

points to the (0,1) point, the better the classifier is. AUC is the area under the ROC curve. 

Since the ROC curve is usually above the diagonal (𝑦 = 𝑥), the AUC value is between 0.5 to 
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1. Higher AUC value indicates better performance of classifier. ROC curve and AUC are 

illustrated in Figure 8. A big advantage of AUC is insensitivity to the data imbalance. Hence, 

we used AUC as a measure of classification result instead of accuracy (e.g. Assuming 90% 

samples belongs to the positive class and all the samples are classified as positive class, it’s 

not a good classifier even with the accuracy of 90%).  In our case, the samples in converter 

group are less than that in non-converter group of ADNI (HC converter/non-converter, 

n=18/74; MCI converter/non-converter, n=81/208). Furthermore, we also reported sensitivity 

and specificity as the classification result. The definition of sensitivity is the same as TPR. 

For the specificity, it equals to 1-FPR. All the measures (AUC, sensitivity and specificity) 

were averaged across multiple CV and with 95% confidence intervals reported.  

 

Figure 8. Example of ROC curve. The area colored in grey is area under the ROC curve. 
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2.12.  Statistics 

Demographic differences between groups were compared using two-sample t-test for 

continuous data and  𝜒S test for categorical data (mutation vs. non-mutation carriers, HC vs. 

AD, HC converter vs. HC non-converter, MCI converter vs. MCI non-converter).  

In the two-stage cross validation, two-sample t-tests were applied to compare the AUC 

between different modality combination (e.g. single modality vs. two-modality, two-modality 

vs. three modality and so on). In the first-stage CV, we did t-tests for the classification result 

of mutation vs. non-mutation carriers in DIAN and selected the best single or multiple-

modality combination for the second-stage CV. In the second stage, t-tests were applied to 

HC vs. AD, converters vs. non-converters to compare single and multi-modality classification 

results. P<0.05 was defined as statistical significance. 

 

2.13. Software and toolbox 

Data preprocessing (normalization and standardization) were done in Python 3.6 (Spyder IDE 

3.2.4). Box-cox transformation was done with SciPy library. Feature selection and 

classification were processed in Eclipse Java IDE (version 4.5.1) using free Weka toolbox 

(https://www.cs.waikato.ac.nz/ml/weka/). For statistical and other analysis, we conducted in 

R Statistical Computing Environment (version 1.1.414) and Matlab (version 2015b). 
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3 Results 
 

3.1. Preprocessed features 

We did a two-step preprocessing (normalization and standardization) for each feature of MRI, 

FDG-PET, neuropsychological tests and CSF biomarkers. Due to a large number of total 

features (N=174), we only included CSF features (Ab1-42, total Tau, p-tau, N=3) as examples 

to show the results of preprocessing.  

We applied normalization as the first step of preprocessing using Box-Cox transformation to 

all features of all modalities. For illustrational purposes, the distribution and Quantile-

Quantile plot (QQ plot) before and after normalization are shown for CSF Ab1-42, total 

Tau ,and pTau from DIAN and ADNI (Figure 9 and Figure 10). For DIAN, parameters 𝜆 of 

Box-Cox transformation was estimated for Ab, Tau and p-Tau respectively: 𝜆|} =

0.436, 	𝜆��� = −0.122, 𝜆���� = −0.496. For ADNI dataset, estimated parameter λ were: 

𝜆|} = 0.437, 	𝜆��� = −0.216, 𝜆���� = −0.281. The results in Figure 9 and Figure 10 show 

that features become more normally distributed where points in QQ-plot become closer to the 

reference line after Box-Cox transformation. All CSF features are unimodally distributed 

except Ab of ADNI which is from bimodal distribution. Due to technical limitations, 

amyloid-b42 CSF immunoassay was truncated to 1700 pg/mL in ADNI. 
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Figure 9. Histogram and normal QQ plot of DIAN CSF biomarkers. Data distribution of (A) Aβ, (D) Tau 
and (G) p-tau with and without normalization are shown together for comparison. QQ plots for (B, C) Aβ, 
(E, F) Tau and (H, I) p-tau are plotted against quantiles from a normal distribution (blue: non-normalized 
data, red: normalized data). 
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Figure 10. Histogram and normal QQ plot of ADNI CSF biomarkers. Data distribution of (A) Aβ, (D) Tau 
and (G) p-tau with and without normalization are shown together for comparison. QQ plots for (B, C) Aβ, 
(E, F) Tau and (H, I) p-tau are plotted against quantiles from a normal distribution (blue: non-normalized 
data, red: normalized data). 
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After the Box-Cox transformation, Centiloid scaling method was applied to the transformed 

data. Figure 11 shows the CSF data before and after normalization and standardization for 

both DIAN and ADNI. Before preprocessing, CSF Ab, Tau and pTau of DIAN and ADNI 

show different data ranges and all CSF data is significantly different between two datasets 

(p < 0.001) (Figure 11A). After preprocessing, all CSF features were converted to the similar 

ranges and there is no significant difference between two datasets (𝑝K� = 0.060, 𝑝v9� =

0.761, 𝑝�v9� = 0.150)  (Figure 11B).  

 

Figure 11. Box plot of CSF data for the group comparison (ADNI vs DIAN) (A) before and (B) after 
normalization and standardization. The top represents the 75th percentile of the data and the bottom is the 
25th percentile of the data. The horizontal line in the middle is the median (50th percentile). 
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3.2. Establishing machine learning model within DIAN 

To establish the machine learning model, we first selected the most informative features  

of MRI, FDG-PET, neuropsychological data and CSF biomarker respectively based on 

information gain method. With selected features, we applied the Naïve Bayes method to 

differentiate mutation and non-mutation carriers. 

3.2.1 Feature selection across EYO 

In DIAN, the subjects were categorized in different 10-year EYO intervals. We did feature 

selection and classification for each EYO interval sequentially. For the cross-validation, we 

did repeated (10 times) 10-fold CV which has been described in details in the method part. 

The selected features whose IG values were above the thresholds in more than half CV folds 

(larger than the IG threshold in more than 10*10/2 folds) were shown in Figure 12 to Figure 

15. 

Using MRI, selected features for differentiating mutation carriers and non-carriers at more 

than 15 years before the onset of symptoms were mainly in the central of left hemisphere: left 

paracentral lobule and postcentral gyrus (Figure 12A). By EYO = (−20,−10], selected 

features of grey matter volumes were left putamen and right lingual (Figure 12B). ROIs from 

the central regions in both medial and lateral sides (left paracentral lobule and postcentral 

gyrus, right supramarginal gyrus) were selected at the EYO = (−15,−5] (Figure 12C). At the 

EYO interval (−10, 0], right accumbens and precuneus were selected as the most informative 

features (Figure 12D). By EYO = (−5, 5] which is around the year of symptom onset, more 

features were selected including left putamen, left and right hippocampus, right banks of the 

superior temporal sulcus, right cuneus and precuneus (Figure 12E). At the years after 

symptom onset, similar features as (−5, 5] were selected: left and right hippocampus, left 

amygdala, left and right postcentral gyrus, right cuneus (Figure 12F). From the years 
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approaching symptom onset to years after the onset, selected features of GM volumes for 

classification were mostly memory-related such as hippocampus and precuneus. 

Using FDG-PET, selected features at more than 15 years before the onset of symptoms were 

left caudal anterior cingulate cortex, right fusiform and superior parietal cortex (Figure 13A). 

By EYO = (−20,−10], selected features of FDG-PET were left and right hippocampus, left 

amygdala and right frontal pole (Figure 13B). Three ROIs from the right hemisphere 

(pallidum, hippocampus, and accumbens) were selected at the EYO = (−15,−5] (Figure 

13C). At the EYO interval (−10, 0], left inferior parietal, right cuneus, and isthmus-cingulate 

cortex were selected as the most informative features (Figure 13D). By EYO = (−5, 5] which 

is around the year of symptom onset, features were selected including left and right 

precuneus, right isthmus-cingulate cortex (Figure 13E). In the years after symptom onset, 

more features were selected: left inferior and superior parietal cortex, left and right isthmus-

cingulate cortex, right precuneus (Figure 13F). From the years approaching symptom onset to 

years after the onset, selected features of FDG-PET for classification were mostly memory-

related such as parietal and cingulate cortex. 

Using the data of neuropsychological tests, selected features at more than 15 years before the 

onset of symptoms were mainly related to semantic and episodic memory: Boston Naming 

Test, Animal Fluency Test and Word List Delayed Recall. For EYO = (−20,−10], selected 

features of neuropsychological data were Boston Naming Test, Animal Fluency Test and 

Word List Immediate Recall. Features related to executive function (Animal Fluency Test, 

Trail Making Test (A&B)) were selected at the EYO = (−15,−5]. At the EYO interval 

(−10, 0], Boston Naming Test, Animal Fluency Test, and MMSE were selected as the most 

informative features. By EYO = (−5, 5] which is around the year of symptom onset, features 

were selected including Boston Naming Test, Trail Making Test (A), Word List Delayed, and 

Immediate Recall. At the years after symptom onset, three features were selected: Boston 
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Naming Test and Trail Making Test (A&B). Neuropsychological features of different EYO 

intervals are shown in Figure 14. 
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Figure 12. Desikan-Killiany atlas of selected MRI features at different EYO intervals: (A)	(−𝐼𝑛𝑓,−15] 
(B)	(−20,−10] (C)	(−15,−5]	 (D)	(−10, 0] (E)	(−5, 5] (F)	(0, 𝐼𝑛𝑓). 
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Figure 13. Desikan-Killiany atlas of selected FDG-PET features at different EYO intervals: 
(A)	(−𝐼𝑛𝑓,−15] (B)	(−20,−10] (C)	(−15,−5]	 (D)	(−10, 0] (E)	(−5, 5] (F)	(0, 𝐼𝑛𝑓). 
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Figure 14. Selected neuropsycholocal features acrosst different EYO intervals 
 

Using CSF biomarkers, selected feature at more than 15 years before the onset of symptoms 

was pTau. By EYO = (−20,−10], the selected feature of CSF biomarkers was pTau which is 

the same as earlier EYO interval. Ab and pTau were selected at the EYO = (−15,−5]. At the 

EYO interval (−10, 0], Ab and pTau were selected as the most informative features. By 

EYO = (−5, 5] which is around the year of symptom onset, the selected feature was pTau. At 

the years after symptom onset, two features were selected: Ab and pTau. From the very early 

years before symptom onset, pTau was shown as an informative feature for differentiating 

mutation carriers and non-carriers until the years after symptom onset which indicates pTau is 

a prominent biomarker for the early diagnosis of AD. CSF features of different EYO intervals 

are shown in Figure 15. 

 

 

Figure 15. Selected CSF features at different EYO intervals 



 
 

48 

3.2.2 Classification of ADAD for different EYO intervals 

With selected features described in 3.2.1, the classification was done using Naïve Bayes 

method for the separation between mutation and non-mutation carriers with single and 

multiple modalities across different EYO intervals. The results of the cross-validation are 

shown in Figure 16, Table 9 and Table 10. In general, classification results within DIAN 

became better when the time gets closer to the symptom onset.  

The classification results (AUC) of single modality are shown in Figure 16A.  For MRI, AUC 

generally increased across EYO intervals (except the EYO interval (−10, 0] which was a bit 

decreased comparing to (−15,−5]). AUC became larger than 85% (AUC = 90.00%) at the 

EYO interval [0, +Inf). For FDG-PET, AUC increased across EYO intervals from the EYO 

interval of (−20,−10]. From the EYO interval of (−5, 5], the AUCs of FDG-PET were 

better than the AUCs of MRI and AUC achieved higher than 85% (AUC = 89.50, 92.25%). 

For neuropsychological data, AUC increased across EYO intervals across all the EYO 

intervals and approached 85% at the EYO of (−10, 0] (AUC = 84.11%). From the EYO 

interval of (−10, 0], the AUCs of psychological data were better than the AUCs of MRI. For 

CSF, AUC increased across EYO intervals from the EYO interval of (−15,−5] and reached 

89.17% at (−10, 0] (>85%). The AUCs of CSF biomarkers were larger than the other single 

modality across most time intervals (except the EYO interval (−15,−5] which was lower 

than MRI). Across all EYO intervals, highest AUC was observed for CSF (97.75% at 

(0, +𝐼𝑛𝑓)). 

The classification results (AUC) of two modality combinations are shown in Figure 16B. For 

MRI-FDG (M-F), AUCs were higher than both MRI and FDG-PET across most of the EYO 

intervals except (−15,−5]. For MRI-PSY (M-P), AUCs were higher than both MRI and 

neuropsychology across most of the EYO intervals except (−20,−10]. For MRI-CSF (M-C), 

AUCs were higher than both MRI and CSF across most of the EYO intervals except (−5, 5]. 
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The AUC of M-C became clinical relevent from (−20,−10] (AUC = 91.67%) which was 

earlier than every single modality. For FDG-PSY (F-P), AUCs were higher than both FDG-

PET and neuropsychology across most of the EYO intervals except (0, +𝐼𝑛𝑓). For FDG-CSF 

(F-C), AUCs were higher than both FDG-PET and CSF across most of the EYO intervals 

except (−10, 0] and (−5, 5] where CSF had higher AUC values. For PSY-CSF (P-C), AUCs 

were not higher than CSF at (−𝐼𝑛𝑓,−15], (−20,−10], (−15,−5] and (−5, 5]. 

The classification results (AUC) of three and four (all) modality combinations are shown in 

Figure 16C. For MRI-FDG-PSY (M-F-P), AUCs were higher than every single one of these 

three modalities across all of EYO intervals but not higher than all two modality combinations 

from these three modalities. For MRI-FDG-CSF (M-F-C), AUCs were higher than almost 

every single one of these three modalities across all of EYO intervals except CSF of (−5, 5] 

and not higher than all two modality combinations from these three modalities. For MRI-

PSY-CSF (M-P-C), AUCs were higher than every single one of these three modalities across 

all of EYO intervals and equal or higher than most two modality combinations from these 

three modalities (except M-C of (−20,−10]). For FDG-PSY-CSF (F-P-C), AUCs were 

higher than most single ones across all of EYO intervals except CSF of (−20,−10] and 

(−15,−5], but not higher than all two modality combinations from these three modalities. 

Combining all four modalities, the results showed that AUCs of all-modality-combination 

were higher than every single modality across all of EYO intervals. However, compared to 

two and three modality combinations, all modality combinations did not improve 

classification results for all EYO intervals. 
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Figure 16.  AUC for the discrimination of mutation carriers vs. non-mutation carriers of (A) single 
modality (B) two-modality combination (C) three-modality and all combination across different EYO 
intervals.  
  



 
 

51 

 

Table 9: AUC(95%CI) for the discrimination of mutation carriers vs. non-mutation carriers of single 
modality, two-modality combination, three-modality and all combination across different EYO intervals 

Modality/
Modalities 

Classification results (AUC) of different EYO intervals  

(-Inf, -15)  [-20, -10)  [-15, -5)  [-10, 0)  [-5, 5)  [0, +Inf)  

MRI 66.58±2.60  78.25±2.50  83.50±2.26  82.22±1.71  84.75±1.80  90.00±1.67  

FDG 68.33±2.88  65.50±2.86  73.92±2.66  78.32±2.15  89.50±1.50  92.25±1.33  

PSY 55.79±3.11  58.92±2.68  71.79±2.63  84.11±1.93  87.81±1.62  93.79±1.20  

CSF 72.67±2.42  81.42±2.07  80.29±2.52  89.17±1.25  95.88±0.98  97.75±0.76  

M-F 77.17±2.34  81.17±2.34  82.67±2.14  82.83±1.99  90.63±1.30  97.00±0.86  

M-P 72.67±2.60  75.83±2.31  84.75±2.08  89.01±1.52  92.25±1.49  96.67±0.91  

M-C 76.00±2.48  91.67±1.22  91.00±1.66  92.81±1.19  93.50±1.16  98.33±0.69  

F-P 70.75±2.76  70.50±2.51  74.92±2.64  85.86±1.84  92.50±1.27  93.42±1.16  

F-C 74.33±2.68  82.50±1.90  81.67±2.44  87.25±1.54  95.13±0.87  99.25±0.38  

P-C 67.08±2.70  74.00±2.16  77.42±2.61  94.79±0.89  95.63±0.89  99.08±0.47  

M-F-P 80.83±2.25  80.00±2.15  85.00±2.09  86.99±1.77  93.75±1.13  97.00±0.89  

M-F-C 84.33±1.95  88.17±1.63  88.17±1.90  91.11±1.33  94.63±0.91  99.67±0.23  

M-P-C 78.25±2.54  86.67±1.61  91.00±1.80  95.65±0.96  96.13±0.81  99.08±0.47  

F-P-C 74.08±2.60  78.83±1.95  79.42±2.58  92.58±1.22  96.88±0.67  99.58±0.30  

M-F-P-C 83.83±2.05  85.00±1.76  89.75±1.82  93.31±1.23  97.38±0.62  99.58±0.30  

For each modality or modality combination, the average AUC with SE of repeated cross-validation is 
presented. Abbreviations: M-F = MRI & FDG; M-P = MRI & PSY; M-C = MRI & CSF; F-P = FDG & 
PSY; F-C = FDG & CSF; P-C = PSY & CSF; M-F-P = MRI & FDG &PSY; M-F-C = MRI & FDG & 
CSF; M-P-C = MRI & PSY & CSF; F-P-C = FDG &PSY & CSF; M-F-P-C = MRI & FDG &PSY & CSF. 
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Table 9: Sensitivity and specificity for the discrimination of mutation carriers vs. non-mutation carriers of 
single modality, two-modality combination, three-modality and all combination across different EYO 
intervals 

Modality/
Modalities 

Classification results (sensitivity, specificity) of different EYO intervals  

(-Inf, -15)  [-20, -10)  [-15, -5)  [-10, 0)  [-5, 5)  [0, +Inf)  

MRI 85.33, 60.00 83.33, 75.17 93.33, 74,17 90.00, 68.33 90.25, 85.50 91.75, 93.50 

FDG 88.33, 62,50 88.67, 59.67 93.33, 64.33 90.00, 59.17 92.00, 90.50 95.75, 82.00 

PSY 85.33, 47.00 87.00, 48.17 93.33, 58.83 90.00, 70.17 90.00, 90.50 96.25, 82.50 

CSF 88.33, 62.50 91.33, 73.33 94.67, 74.00 90.00, 82.50 95.50, 95.00 96.83, 98.50 

M-F 83.33, 72.50 83.33, 75.67 93.33, 72.67 90.00, 68.83 92.00, 91.50 95.75, 93.00 

M-P 83.33, 66.00 83.33, 71.50 93.33, 77.33 92.08, 91.17 93.50, 94.50 95.83, 99.00 

M-C 83.33, 72.00 94.67, 89.83 98.00, 86.50 92.25, 96.00 95.50, 94.50 98.33, 98.50 

F-P 83.33, 63.50 83.33, 63.00 93.33, 65.00 90.50, 86.83 92.50, 96.00 96.75, 84.50 

F-C 83.33, 68.50 83.33, 76.33 93.33, 75.50 90.17, 90.17 94.25, 96.00 98.75, 100 

P-C 83.33, 57.50 83.67, 67.17 93.33, 69.50 92.67, 98.67 95.25, 98.00 99.08, 99.50 

M-F-P 83.33, 77.00 83.33, 74.33 93.33, 76.17 90.00, 75.00 93.75, 96.00 96.75, 93.00 

M-F-C 83.33, 81.50 83.33, 85.83 93.33, 82.17 90.25, 82.50 94.50, 96.00 96.00, 99.00 

M-P-C 83.33, 75.00 83.33, 83.50 93.33, 88.33 90.00, 90.67 94.75, 99.00 96.75, 98.50 

F-P-C 83.33, 68.00 83.33, 73.83 93.33, 72.17 90.00, 84.83 96.00, 98.00 97.00, 99.50 

M-F-P-C 83.33, 81.00 83.33, 81.17 93.33, 85.00 90.25, 85.83 96.75, 98.00 97.00, 99.50 

For each modality or modality combination, the average sensitivity and specificity of repeated cross-
validation is presented. Abbreviations: M-F = MRI & FDG; M-P = MRI & PSY; M-C = MRI & CSF; F-P 
= FDG & PSY; F-C = FDG & CSF; P-C = PSY & CSF; M-F-P = MRI & FDG &PSY; M-F-C = MRI & 
FDG & CSF; M-P-C = MRI & PSY & CSF; F-P-C = FDG &PSY & CSF; M-F-P-C = MRI & FDG &PSY 
& CSF. 
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3.2.3 Optimal classification model of DIAN 

Before further cross-validation in ADNI, we selected the prediction model from classification 

models of different EYO intervals. Based on the classification results and sample size, we 

selected the machine learning model trained for EYO interval (−5,+𝐼𝑛𝑓) because 1) the 

classification result for mutation vs. non-mutation carriers was within the clinical relevant 

accuracy (AUC > 85%) and 2) the classification model was established to predict the early 

stage of AD and 3) sufficient sample size compared to one EYO interval. 

For the EYO interval of (−5,+𝐼𝑛𝑓), we also did feature selection using information gain 

(IG) method. For MRI, the selected features included left and right hippocampus, left 

putamen and amygdala, right precuneus, right postcentral gyrus, and cuneus. The average IG 

value of all ROI features (41 ROIs for each hemisphere) and MRI features after selection are 

shown in Figure 17. 

For FDG-PET, the selected ROI features were predominantly located within posterior parietal 

cortex of the default mode network including left inferior and superior parietal cortex, left and 

right isthmus-cingulate cortex, left and right precuneus. The average IG value of all ROI 

features and selected FDG-PET features are shown in Figure 18. 

For neuropsychological tests, the most discriminative features were Boston Naming Test, 

Trail Making Test (A&B) and Word List Immediate Recall. For CSF biomarkers, Ab and 

pTau were selected as the most informative features. The average IG value of all 

neuropsychological and CSF features before and after selection are shown in Figure 19. 
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Figure 17. (A) Bar graph of mean IG value for each MRI feature (selected features were colored with 
orange for the left hemisphere and red for the right hemisphere). (B)Selected MRI features from Desikan-
Killiany atlas at the EYO interval of  (−5,+𝐼𝑛𝑓). 
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Figure 18.  (A) Bar graph of mean IG value for each FDG-PET feature (selected features were colored 
with orange for the left hemisphere and red for the right hemisphere). (B)Selected FDG-PET features from 
Desikan-Killiany atlas at the EYO interval of  (−5,+𝐼𝑛𝑓). 
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Figure 19.  Bar graph of mean IG value for each PSY and CSF feature (selected features were colored 
with red) at the EYO interval of  (−5,+𝐼𝑛𝑓). 
 

Classification results of single and multiple modalities for distinguishing mutation and non-

mutation carriers at the EYO interval of (−5,+𝐼𝑛𝑓) are shown in Figure 20 and Table 10. 

For the single modality, the best classification result was using CSF biomarkers with the AUC 

of 93.75%. Concatenating features from two modalities, the best performance was combining 

neuropsychological data and CSF biomarkers which was significantly better than every single 

modality. Besides PSY-CSF, the AUC of FDG-CSF was also significantly improved 

compared to every single modality. For the rest two-modality combinations (MRI-FDG, MRI-

PSY, FDG-PSY, MRI-CSF), classification results were significantly better than the single 

modality of MRI and FDG-PET, but not better than PSY or CSF. The best combination 

among three-modality combinations was FDG-PSY-CSF, which was significantly better than 

the all two-modality combinations except PSY-CSF. Other than that, the AUC of MRI-PSY-

CSF was significantly higher than MRI-FDG, MRI-PSY, FDG-PSY, and MRI-CSF. MRI-

FDG-PSY performed significantly better than MRI-FDG, MRI-PSY, and FDG-PSY. 

However, the result of three-modality MRI-FDG-CSF didn’t improve significantly from any 

two-modality combination. Combining all four modalities, the AUC was significantly better 

than all three-modality combinations except FDG-PSY-CSF. 
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Table 10: Mean AUC, sensitivity and specificity for the discrimination of mutation carriers vs. non-
mutation carriers of single modality, two-modality combination, three-modality and all combination at the 
EYO interval of  (−5,+𝐼𝑛𝑓). 

Modality/ 
Modalities 

Classification results of EYO interval  (−𝟓,+𝑰𝒏𝒇) 

Mean AUC (95%CI) Sensitivity, Specificity 

MRI 86.38 (84.06, 88.70) 85.97, 80.50 

FDG 90.07 (88.02, 92.12) 88.50, 88.08 

PSY 93.61 (92.05, 95.17) 91.03, 91.58 

CSF 93.75 (91.91, 95.59) 92.53, 95.00 

M-F 92.54 (90.71, 94.37) 89.80, 92.92 

M-P 94.19 (92.54, 95.84) 91.33, 93.42 

M-C 95.24 (93.94, 96.54) 92.53, 97.08 

F-P 94.87 (93.33, 96.41) 92.40, 95.25 

F-C 95.97 (94.62, 97.32) 93.53, 97.08 

P-C 96.92 (95.67, 98.17) 95.47, 98.33 

M-F-P 96.25 (94.83, 97.67) 94.37, 95.17 

M-F-C 95.93 (94.62, 97.24) 93.23, 97.67 

M-P-C 97.03 (95.96, 98.10) 94.50, 98.75 

F-P-C 98.08 (97.23, 98.93) 96.07, 98.75 

M-F-P-C 98.18 (97.29, 99.07) 96.67, 99.67 

 

Figure 20. AUC of single and multiple modalities (classification of mutation carriers and non-mutation 
carriers). The significant increasing of AUC is only marked for the highest one (e.g. The AUC of combining 
psychological data with CSF biomarkers is significantly higher than any single modality and it is only marked 
with the modality with highest AUC: CSF biomarkers). 
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3.3. Cross-validation in ADNI 

With the machine learning model trained in DIAN, we further applied to the ADNI dataset to 

validate in the more common SAD. Classification models of every single modality (MRI, 

FDG, PSY, CSF) and the multi-modality combinations with best results were used in ADNI 

dataset. 

 

3.3.1 Discrimination between HC and AD in ADNI 

We used three single modality models (MRI, FDG, CSF), the two-modality combination 

(FDG-CSF) and the three-modality combination (MRI-FDG-CSF) models with the best 

performance in DIAN to further apply to the ADNI dataset. Note that neuropsychological data 

was not used for discriminating HC versus AD since it provided diagnostic information which 

may lead to circularity. The ROC curves and classification results (AUC, sensitivity and 

specificity) of single- and multi- modality are shown in Figure 21 and Table 11. Among the 

single modality models, the FDG-PET model had the best result (AUC = 91.96%). The two-

modality combination FDG-CSF (best two-modality model in DIAN), achieved AUC of 

94.80%. The three-modality combination MRI-FDG-CSF showed AUC of 96.00%.  

In comparison with each single modality model, FDG-CSF performed significantly better. 

The three-modality MRI-FDG-CSF even had significantly higher AUC than FDG-CSF 

model. In general, MRI-FDG-CSF showed the best result among all single- and multi- 

modality models. 
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A          B 

Figure 21. Classification result for HC versus AD in SAD based on ADAD Naïve Bayes model with MR 
volume, FDG-PET and CSF biomarkers and the multi-modalities combination with best performance in 
ADAD. (a) ROC curves of classification: HC vs. AD. (b) AUC of classification: HC vs. AD. The significant 
increasing of AUC is only marked for the highest one. AUC of F-C and M-F-C is significant lager than 
FDG-PET and it is also significant larger than MRI and CSF (AUC: FDG > CSF > MRI) 
 

Table 11: Classification result (AUC, sensitivity and specificity) for HC versus AD of ADNI data with 
single modality and corresponding best multi-modality combination tested in DIAN. 

Modality/Modalities Mean AUC (95%CI) Sensitivity, Specificity 

MRI  86.17 (85.94, 86.40) 83.11, 77.81 

FDG 91.69 (91.55, 91.82) 83.38, 88.12 

CSF 90.81 (90.66, 90.96) 84.00, 87.91 

F-C 94.80 (94.69, 94.90) 89,11, 90.62 

M-F-C 96.00 (95.89, 96.11) 93.35, 91.40 

 

3.3.2 Classification of HC converters and non-converters in ADNI 

We used all single modality models (MRI, FDG, PSY, CSF), the two-modality combination 

(PSY-CSF) and the three-modality combination (FDG-PSY-CSF) models with the best 

performance in DIAN, and all-modality combination model (MRI-FDG-PSY-CSF) to 

distinguish HC converters and non-converters of ADNI dataset. The ROC curves and 

classification results (AUC, sensitivity, and specificity) of single- and multi- modality are 

shown in Figure 22 and Table 12. Among the single modality models, the neuropsychological 
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model had the best result (AUC = 68.17%), and CSF model (best single model in DIAN) 

showed the AUC of 49.57% which was not better than the other single modalities. The two-

modality combination PSY-CSF (best two-modality model in DIAN), achieved AUC of 

58.22%. The three-modality combination FDG-PSY-CSF (best three-modality model 

established in DIAN), showed AUC of 63.28%. All-modality combination (MRI-FDG-PSY-

CSF) achieved AUC of 62.69%. 

Compared with each single modality model, FDG-CSF performed only significantly better 

than CSF model. The three-modality FDG-PSY-CSF showed significantly higher AUC than 

PSY-CSF model as well as FDG and CSF single-modality models. Four-modality-

combination didn’t show better performance compared to three- modality model. 

 

A          B 
Figure 22. Classification result for HC Converters (HC-C) versus HC non-Converters (HC-NC) in SAD 
based on ADAD Naïve Bayes model with all four modalities: MR volume, FDG-PET, Psychological data 
and CSF biomarkers and the multi-modality combinations with best performance in ADAD. (a) ROC 
curves of classification: HC-C vs. HC-NC. (b) AUC of classification: HC-C vs. HC-NC. The significant 
increasing of AUC is only marked for the highest one. (AUC: PSY > MRI > FDG >CSF) 
HC-C = HC Converters; HC-NC = HC Non-Converters 
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Table 12: Classification result (AUC, sensitivity and specificity) for HC-C versus HC-NC of ADNI data 
with single modality and corresponding best multi-modality combination tested in DIAN. 

Modality/Modalities Mean AUC (95%CI) Sensitivity, Specificity 

MRI  64.65 (64.03, 65.27) 84.10, 52.05 

FDG 62.79 (62.24, 63.35) 84.10, 34.46 

PSY 68.17 (67.68, 68.67) 84.10, 61.00 

CSF 49.57 (48.95, 50.19) 84.10, 10.67 

P-C 58.22 (57.64, 58.79) 84.10, 22.49 

F-P-C 63.28 (62.75, 63.82) 84.10, 35.13 

M-F-P-C 62.69 (62.12, 63.26) 84.10, 36.06 

 

 

3.3.3 Classification of MCI converters and non-converters in 

ADNI 

We used all single modality models (MRI, FDG, PSY, CSF), the two-modality combination 

(PSY-CSF) and the three-modality combination (FDG-PSY-CSF) models with the best 

performance in DIAN, and all-modality combination model (MRI-FDG-PSY-CSF) to 

distinguish MCI converters and non-converters of ADNI dataset. The ROC curves and 

classification results (AUC, sensitivity, and specificity) of single- and multi- modality are 

shown in Figure 23 and Table 13. Among the single modality models, the neuropsychological 

model had the best result (AUC = 83.24%), and CSF model (the best single model in DIAN) 

showed the AUC of 82.61% which was not better than the other single modalities. The two-

modality combination PSY-CSF (best two-modality model in DIAN), achieved AUC of 

88.38%. The three-modality combination FDG-PSY-CSF (best three-modality model 

established in DIAN), showed AUC of 89.12%. All-modality combination (MRI-FDG-PSY-

CSF) achieved AUC of 88.66%. 
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Compared with each single modality model, FDG-CSF model had significantly better 

performance. The three-modality FDG-PSY-CSF showed significantly higher AUC than 

PSY-CSF model as well as all single-modality models. Four-modality-combination performed 

significantly better than all single-modality models but not better than two- and three- 

modality models. 

 
A          B 

Figure 23. Classification result for MCI Converters (MCI-C) versus MCI non-Converters (MCI-NC) in 
SAD based on ADAD Naïve Bayes model with all four modalities: MR volume, FDG-PET, Psychological 
data and CSF biomarkers and the multi-modality combinations with best performance in ADAD. (a) ROC 
curves of classification: MCI-C vs. MC-NC. (b) AUC of classification: MCI-C vs. MCI-NC. The significant 
increasing of AUC is only marked for the highest one. (AUC: Psy >CSF > FDG-PET > MRI) 
MCI-C = MCI Converters; MCI-NC = MCI Non-Converters 
 

Table 13: Classification result (AUC, sensitivity and specificity) for MCI-C versus MCI-NC of ADNI data 
with single modality and corresponding best multi-modality combination tested in DIAN. 

Modality/Modalities Mean AUC (95%CI) Sensitivity, Specificity 

MRI  72.41 (72.20, 72.63) 81.88, 53.76 

FDG 75.56 (75.33, 75.79) 81.05, 54.83 

PSY 83.24 (83.04, 83.44) 81.57, 69.92 

CSF 82.61 (82.42, 82.80) 81.80, 76.06 

P-C 88.38 (88.24, 88.52) 83.25, 76.99 

F-P-C 89.12 (88.97, 89.28) 82.79, 82.42 

M-F-P-C 88.66 (88.51, 88.80) 83.48, 80.92 
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3.3.4 Overview of results in ADNI 

In general, the combinations of multiple modalities improved the classification result 

especially when the single modality performed relatively good (such as HC vs. AD, MCI 

converters vs. non-converters).  

With the best models established in DIAN, classification results of ADNI were shown in 

Figure 24 and Table 14. For the most difficult task, the AUC of distinguishing HC converter 

and non-converters was 62.69% using all four modalities. For predicting MCI conversion, the 

four-modality combination model showed AUC of 88.66%. To distinguish HC and AD, the 

best model in DIAN (FDG-CSF) achieved AUC of 94.80%. 

 
Figure 24. Classification result (AUC) for all three pairs of groups of ADNI data with corresponding best 
multi-modality combination tested in DIAN. 
 

Table 14: Classification result (AUC, sensitivity and specificity) for all three pairs of groups of ADNI data 
with corresponding best multi-modality combination tested in DIAN. 

Groups Mean AUC (95%CI) Sensitivity, Specificity Best combinations in DIAN 

HC Cov vs. nCov  62.69 (62.12, 63.26) 84.10, 36.06 MRI-FDG-PSY-CSF 

MCI Cov vs. nCov  88.66 (88.51, 88.80) 83.48, 80.92 MRI-FDG-PSY-CSF 

HC vs. AD 94.80 (94.69, 94.90) 89,11, 90.62 FDG-CSF 
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4 Discussion 
 

In this study, we used Bayesian machine learning method: 1) to differentiate mutation and 

non-mutation carriers in ADAD and 2) to detect subjects at early risk-stages of SAD (HC to 

MCI/AD or MCI to AD converters ) 

For the classification of ADAD mutation and non-mutation carriers in the training sample 

(DIAN), the result showed that the classification accuracy increased with the progress of the 

disease (higher EYO). When combining multiple modalities, it achieved higher classification 

accuracy than a single modality. Moreover, classification with three-modality combination 

showed a better result than two-modality combination and combination of all the modalities 

showed the best result.   

To predict the conversion in the early stage of SAD, we applied the same machine learning 

model established in DIAN (ADAD subjects). For predicting the conversion from MCI to 

AD, classification results achieved clinically relevant levels of accuracy when combining two 

or more modalities. Combinations of multiple modalities significantly improved the 

performance of the classifiers compared to single modality for distinguishing MCI converters 

and non-converters. For the more difficult task, predicting conversion from HC to MCI, the 

classification accuracy didn’t achieve clinically relevant levels of accuracy. 

For the discrimination between HC and AD, the same classification model establish in DIAN 

was applied.  The AUC score ranged from 86% to 95% (sensitivity: 83% - 93%, specificity: 

78% - 91%), supporting the plausibility of the established machine learning model. 
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4.1. Selected features 

To improve the classification performance, we did feature selection for all four modalities 

(MRI, FDG-PET, CSF biomarkers and neuropsychological tests) using information gain (IG) 

method in DIAN across different EYO.  

In MRI, feature selection was applied to cortical and subcortical volumes of 82 ROIs. Most 

informative features were selected to distinguish mutation and non-mutation carriers across 

the whole EYO range. The results showed volumes of paracentral lobule and 

postcentral gyrus were selected as most important features at more than 15 years before the 

onset of symptoms. Similar regions have been found showing a difference in amyloid 

deposition between mutation and non-mutation carriers at the same EYO and became more 

significant in the following years (Benzinger et al., 2013). At the EYO = (−15,−5], the same 

brain regions paracentral lobule and postcentral gyrus, with the addition of supramarginal 

gyrus were selected for classification. By EYO = (−20,−10], selected features of grey matter 

volumes were left putamen and right lingual. Atrophy and  

¹¹C-PiB accumulation in putamen have been reported in recent ADAD research with EYO = -

10 and -15 respectively (Benzinger et al., 2013; Gordon et al., 2018). At the EYO interval 

(−10, 0], accumbens and precuneus were selected as the most informative features. 

Consistent to our results, the same gray matter regions were found with greatest cortical 

thinning or volume loss at the same EYO interval (Benzinger et al., 2013). From five years 

before the estimated year of onset, more features were selected including subcortical regions 

such as putamen, hippocampus, amygdala and cortical regions such as banks of the superior 

temporal sulcus, postcentral gyrus, cuneus and precuneus which were known to be vulnerable 

in AD. In ADAD, cortical thickness changes in precuneus, temporal lobe and subcortical 

regions when approaching to the year of symptom onset have been shown in the recent study 

(Gordon et al., 2018), suggesting similar patterns between most informative features for 
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distinguishing mutation vs non-mutation carriers and brain structure changes in the progress 

of ADAD.  

For FDG-PET, the most informative features were selected from SUVR scores of 82 ROIs 

across the entire EYO window. Selected features at more than 15 years before the onset of 

symptoms were shown in the caudal anterior cingulate cortex, fusiform and superior parietal 

cortex. Hypometabolism in parietal lobe has been observed in AD (Mosconi et al., 2006). But 

the other regions selected in the very early stage have not been reported previously which 

may due to the subtle difference in this stage. By EYO = (−20,−10], selected features of 

FDG-PET were hippocampus, amygdala and frontal pole. Hippocampus has been shown with 

reduction of glucose metabolism when approaching the symptom onset in ADAD (Benzinger 

et al., 2013). Our result showed that hippocampus was also selected at the next EYO interval 

(−15,−5] but not at the following EYO. Besides hippocampus, pallidum and accumbens of 

subcortical regions were selected at the EYO = (−15,−5] which have been shown with a 

significant difference in PiB accumulation but not in FDG-PET between mutation carriers and 

non-carriers at almost the same time in ADAD (Benzinger et al., 2013). At the EYO interval 

(−10, 0], inferior parietal, cuneus, and isthmus-cingulate cortex were selected as the most 

informative features. Similar regions (cingulate cortex and parietal lobe) have been shown 

with a significant difference in hypometabolism between mutation carriers and noncarriers 10 

years before symptom onset. More cortical features of FDG-PET were selected around the 

onset of symptoms including precuneus, isthmus-cingulate cortex, inferior and superior 

parietal cortex which were consistent with previous findings that these regions differ between 

carriers and non-carriers in ADAD and also showed metabolic reductions in SAD (Bateman 

et al., 2012; Förster et al., 2012; Gordon et al., 2018).  

The selected features from neuropsychological tests were relatively consistent across EYO. 

Boston Naming test was the most frequently selected feature among neuropsychological 

features which is a measure of naming ability and semantic memory and one of the most used 
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assessments of cognitive function in AD.  Animal Category Fluency Test is a measure of 

semantic memory and executive function which was selected multiple times especially in the 

years before symptom onset. Fluency score has been used to predict MCI conversion and 

showed good performance in the recent study (Clark et al., 2016). At the EYO interval 

(−15,−5] and the years after symptom onset, Trail Making Tests (A&B) were selected for 

further classification. Trail Making Test is a measure of processing speed, visual–motor skills, 

and executive functions which has been shown with a relatively good result for predicting 

MCI conversion but not for differentiating HC and AD as a single predictor (Ewers et al., 

2012). As a measure of episodic memory, Word List Recall Test was selected at ten years 

before symptom onset and at the EYO interval (−5,+5]. However, in a recent study, it has 

been shown increasing difference between mutation and non-mutation carriers (CDR = 0) in 

the progress of ADAD and it has been reported with high accuracy for the classification of 

HC and AD (Ewers et al., 2012; Storandt et al., 2014). So the Word List Recall Test was not 

selected in the late stage of ADAD which remains unclear. MMSE, a widely used test to 

evaluate cognitive impairment and screen for possible dementia, was only selected at one 

EYO interval (−10, 0]. This may suggest that the global cognitive function did not show the 

significant difference between mutation and non-mutation carrier in most time during the 

disease progress which may due to late changes are usually shown in cognitive impairment.  

Among CSF biomarkers, phosphorylated Tau was selected as the informative feature across 

all EYO intervals, which may imply a significant difference between mutation and non-

mutation carriers in the whole progress of ADAD. In recent research, concentrations of pTau 

have been shown significantly higher in mutation carriers than non-mutation carriers from 20 

years before the estimated year of symptom onset which is consistent with our result (Fagan 

et al., 2014b). As another selected feature of CSF biomarkers, Ab was selected mainly in the 

later stage of ADAD compared to pTau which was from 15 years before symptom onset 

expect the EYO interval (−5,+5]. Similarly, Ab1-42 in mutation carriers was shown a 
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significant difference from those of non-mutation carriers from 10 years before symptom 

onset (Fagan et al., 2014b). Even though Ab1-42 was selected across almost all time intervals 

from EYO = 	−15, it still remains unclear why it was not selected at the EYO interval 

(−5,+5] which also has been shown with a big difference between the two groups in the 

other study (Fagan et al., 2014b). Longitudinal change of Tau in SAD and difference between 

the mutation and non-mutation carriers in ADAD was reported previously (Bateman et al., 

2011). However, in our study, total Tau was not selected across the whole range EYO.  

 

4.2. Classification in DIAN 

Previous studies have shown brain atrophy, glucose hypometabolism, abnormalities in CSF 

and cognitive impairment in the progress of ADAD. So we derived features from 

neuroimaging (MRI, FDG-PET), CSF biomarkers, and neuropsychological tests. 

With the selected features, we trained the classification model for successive EYO intervals to 

predict the mutation status and the results showed increasing classification accuracy in the 

disease course. 

For machine learning model establishing, we used Naïve Bayes algorithm using the features 

of MRI, FDG-PET, neuropsychological and CSF data. Naïve Bayes algorithm has been used 

in the prediction of AD previously and it has been proved to have good performance with 

limited size of training data and relatively low dimensional feature space which is fit for our 

training dataset of DIAN (Dyrba et al., 2013; Dukart, Sambataro and Bertolino, 2015; Bhagya 

Shree and Sheshadri, 2018). In different stages of ADAD, classification model was trained 

with selected features of that EYO interval. As expected, classification accuracy increased 

with the EYO intervals approaching the symptom onset.  

Among the classifications with single modality, CSF predictors yielded the highest, and in 

opposite neuropsychological predictors showed lowest AUC from 15 years before symptom 
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onset, which is in consistency with the temporal ordering of biomarkers in ADAD where the 

earliest change was CSF biomarkers and cognitive change was shown at the late stage of 

ADAD (Bateman et al., 2012). At this EYO interval, AUC of MRI and FDG-PET measures 

were between neuropsychological test and CSF biomarkers. Previous studies reported that 

brain atrophy and hypometabolism could be detected following CSF biomarkers which could 

explain our result that CSF predictors performed better than MRI and FDG-PET in a very 

early stage of the disease. For the CSF predictors, classification result generally increased and 

better than the other single-modality models across almost all time intervals (except the EYO 

interval (−15,−5]). CSF predictors achieved a predictive accuracy from EYO interval 

(−10, 0] which was earlier than FDG-PET, neuropsychological assessments and MRI. In 

general, the result of the single-modality classification models showed a trend toward 

increasing AUC when the time gets closer to the symptom onset, and it is consistent with the 

model of dynamic biomarkers in ADAD proposed in recent year (Bateman et al., 2012). 

However, the measures used in our research were not exactly same as those of the temporal 

model of ADAD (e.g. gray matter volumes of multiple regions used in our study and only 

hippocampus volume used in the temporal model), so the minor difference still remains. 

For the two-modality predictors, there were 6 different combinations of MRI, FDG-PET, 

neuropsychological tests and CSF biomarkers. Comparing with single-modality predictors, 

we found that the best two-modality combinations were not always the combination of the 

best single modality which was also shown in the previous study (Dukart, Sambataro and 

Bertolino, 2015). Combining MRI and CSF biomarkers, the AUC became clinical relevant 

from the EYO interval of (−20,−10] which was earlier than every single modality predictor. 

In general, the classification result of either the best combination or averaging all six 

combinations were better than those of single modality which was shown in Table 9 and 

Figure 26. 
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For the three-modality predictors, combining MRI, FDG-PET and CSF biomarkers achieved 

the highest AUC at most EYO intervals. Generally, the average of all three-modality 

combinations was better than those of 2-modality combinations which were shown in Figure 

26. The best combination models with three modalities were better than two-modality 

combination for most EYO intervals. When the predictors with every single modality showed 

relatively high AUC especially in the late stage of ADAD, the multi-modality model may 

gain extra benefits through combination. In comparison with the best model of 3-modality 

combinations at each EYO interval, 4-modality combination model performed better only at 

the EYO interval of (−5,+5].  However, the AUC of the model combining all modalities was 

higher than the average of all three-modality combinations across all EYO intervals. In 

general, combining multiple modalities showed a gain over the model of fewer modalities for 

the discrimination between mutation and non-mutation carriers in ADAD (Figure 26).  

Mutation carriers of ADAD can be tracked decades before the symptom onset. Importantly, 

clear AD-related brain changes can be detected in the early stage of ADAD. Multi-modality 

modals to predict conversion of AD have been used in previous studies (Ewers et al., 2012; 

Segovia et al., 2014; Dukart, Sambataro and Bertolino, 2015; Korolev, Symonds and Bozoki, 

2016). All of these studies established the model based on SAD related dataset which may 

include non-AD-specific pathology for the subjects who are in the early stage of AD. Hence, 

we used the machine learning model based on pure AD-related features extracted from DIAN 

participants to predict the conversion of SAD. Before further applying the prediction model to 

ADNI dataset, we evaluated the models of different modality predictors at different EYO 

intervals in DIAN. Considering the model need to be relativity accurate and robust, we thus 

chose the prediction model trained for EYO interval of (−5, Inf) which is above the clinically 

relevant accuracy and similar to the early stage of SAD. The EYO interval of (−5, Inf) is 

combined of two intervals to enlarge the sample size and gain more power for the model. 
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For MRI, the selected features included hippocampus, putamen, amygdala, precuneus, 

postcentral gyrus, and cuneus. Difference between mutation and non-mutation carriers in the 

similar regions and timepoint in the course of ADAD was shown in the recent study where the 

significant difference was observed in postcentral gyrus , precuneus, cuneus and hippocampus 

(Gordon et al., 2018). Consistent brain regions (inferior and superior parietal cortex, 

precuneus) were also found in FDG-PET both in our and Gordon’s study. For 

neuropsychological tests, the most discriminative features were Boston Naming Test, Trail 

Making Test (A&B) and Word List Immediate Recall. For CSF biomarkers, Ab and pTau 

were selected as the most informative features. Our classification results showed the AUCs of 

all single and multiple modalities predictors were above the clinically relevant accuracy for 

distinguishing mutation and non-mutation carriers at the EYO interval of (−5,+𝐼𝑛𝑓) which 

met one of the prerequisites: an accurate predictive model. Based the classification results 

validated within DIAN dataset, the best models among different combinations were selected 

for further validation in ADNI dataset. 

 

4.3. Classification in ADNI 

Applied with the best models of the different number of modalities established in DIAN, 

classification in the more common SAD (ADNI dataset) showed high accuracy for 

distinguishing HC vs. AD and MCI converters vs. non-converters. 

For the classification of HC and AD subjects, the CSF model showed the best result among 

the single-modality models. When FDG-PET was added, the combination of CSF and FDG-

PET yielded significant a better result than the single-modality model. Compared to two-

modality model, combining MRI, FDG-PET and CSF biomarker achieved significant higher 

AUC of 96.00% (sensitivity = 93.35%, specificity = 91.40%). Similarly, a combination of 

these three modalities was reported in a previous study with an accuracy of 92.0% which was 
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significantly better than the single modality. It should be noted that the psychological data 

was not included for the classification of HC and AD, since it provided diagnostic 

information which may lead to circularity. 

For the prediction of conversion in the early stage of AD, the classification for both HC and 

MCI converters versus non-converters performed best when using neuropsychological data 

among the single predictors. This result is consistent with the previous relevant study which 

reported higher AUC using cognitive measures than MRI and CSF data to predict HC to MCI 

at 5 years (Albert et al., 2018). With multi-modalities, the classification for MCI converters 

versus non-converters in SAD showed the best result when using FDG-PET, 

neuropsychological and CSF data which increased significantly compared to single and two-

modality models with AUC of 89.16% which is above the clinical relevant accuracy. This 

result was comparable with recent studies which reported classification accuracy between 

80% to 90% for discrimination of MCI converters and non-converters combining three 

modalities (Segovia et al., 2014; Cheng et al., 2015; Dukart, Sambataro and Bertolino, 2015; 

Moradi et al., 2015; Suk, Lee and Shen, 2015; Wang et al., 2016; Tong et al., 2017). 

However, different modality combinations were used in different studies which limited the 

comparability of accuracies.  

Combination of all four modalities didn’t show a better result than three modalities, indicating 

the model didn’t gain more useful information for the prediction of MCI conversion by 

adding MRI features. Combination of different modalities didn’t benefit for HC converters 

versus non-converters where none of the multi-modalities performed better than the single 

modality of neuropsychological data. There were very few studies in recent years predicted 

the conversion of healthy subjects which may due to limited of follow-up for HC and thus the 

sample size (the number of subjects who developed to MCI/AD) was not sufficient for 

prediction. In our study, there was only 14 HC subjects who converted within 36 months and 

the limited the sample size may lead to lacking robustness. There was one recent study 
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reported relatively high AUC for predicting progression from HC to MCI at 5 years based 

on the Cox proportional hazards model. However, with machine learning algorithms, there 

was no study showing the prediction of HC conversion so far (Pellegrini et al., 2018). 

Though many previous studies used multi-modality machine learning models for the 

prediction in the early stage of AD in previous studies, most studies tested the prediction 

model using the cross-validation method. This means training and testing data were not 

independent and it may increase the risk of overfitting. Our current study used fully 

independent training (DIAN dataset) and testing set (ADNI dataset). Even though ADAD 

only accounts for a small proportion of AD, because of similar pathological and clinical 

features, it has a critical role to better understand the pathophysiology in the preclinical stage 

of SAD. 
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5 Conclusion 
 

With the use of neuroimaging, psychological and CSF biomarkers, we did classification for 

successive EYO intervals to predict the mutation status and the results showed increasing 

classification accuracy in the disease course for both single modality and multi-modality 

models. Considering the model need to be relativity accurate and robust, we thus chose the 

prediction model trained for EYO interval of (−5, Inf) which is above the clinically relevant 

accuracy and similar to the early stage of SAD.  

Applied with the best models established in DIAN, classification in the more common SAD 

(ADNI dataset) showed high accuracy for distinguishing HC vs. AD and MCI converters vs. 

non-converters. Combining multiple modalities, the prediction model yielded a significant 

better result than the single-modality model. Particularly, the classification for MCI 

converters versus non-converters in SAD showed the best result when using FDG-PET, 

neuropsychological and CSF data which increased significantly compared to single and two-

modality models with AUC of 89.12% which is above the clinical relevant accuracy. In 

summary, the machine learning model established in DIAN achieved predictive accuracy to 

predict the conversion in the early stage of SAD. Moreover, the current study provides good 

interpretability to understand SAD through autosomal-dominant AD.  
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6 Supplement 
 

 

 

Figure 25 (A) 3D scatter plot of CSF data for the group comparison (ADNI vs DIAN) (A) before and (B) 
after normalization and standardization.  
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Figure 26 Mean AUC for the discrimination of mutation carriers vs. non-mutation carriers of single 
modality, two-modality combination, three-modality and all combination across different EYO intervals.  
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