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Zusammenfassung 

Für jede Form von koordinierten Bewegungen werden propriozeptive Informationen, wie 

z.B. die Muskelspannung oder die Position der Extremitäten im Raum benötigt. Die 

wichtigsten propriozeptiven Sensoren sind Muskelspindeln. Muskelspindeln sind komplexe, 

dehnungssensitive Mechanorezeptoren. Sie messen die Geschwindigkeit und das Ausmaß 

einer Dehnung von Skelettmuskelfasern. Muskelspindeln bestehen aus spezialisierten 

Skelettmuskelfasern, den so genannten Intrafusalfasern. Diese werden in ihrem Zentrum 

von einem sensorischen Neuron annulospiral umwunden. In diesem Bereich wird die 

Geschwindigkeit und das Ausmaß der Muskeldehnung in eine Aktionspotentialfrequenz 

kodiert, die proportional sowohl zum Ausmaß der Längenänderung als auch zu deren 

Geschwindigkeit ist. Beide polare Endigungen von Intrafusalfasern werden von einem  

-Motoneuron innerviert. 

Im zentralen Bereich der Muskelspindel sind AChR im Bereich des Kontaktes 

zwischen sensorischer Afferenz und Intrafusalfaser konzentriert. Um die Funktion dieser 

AChR zu untersuchen, wurden extrazelluläre Ableitungen propriozeptiver Afferenzen von 

EDL-Muskeln aus Wildtypmäusen untersucht. Dafür wurden sowohl „ramp-and-hold“-

Dehnungen als auch sinusoidale Vibrationen vor und nach Zugabe der AChR-Inhibitoren  

d-Tubocurarin und α-Bungarotoxin sowie Hemicholinium-3, einem Inhibitor der 

Cholinwiederaufnahme, durchgeführt. Nach Zugabe der Medikamente blieb die 

Aktionspotentialfrequenz in Ruhe konstant während sich die Aktionspotentialfrequenz bei 

Dehnung des Muskels erhöhte. Des Weiteren erhöhte sich die Aktionspotentialfrequenz bei 

sinusoidalen Vibrationen mit kleiner Amplitude in der Gegenwart von α-Bungarotoxin. Diese 

Ergebnisse deuten darauf hin, dass ACh die Muskelspindelfunktion während einer 

Muskeldehnung moduliert. 

In einem zweiten Projekt habe ich die Muskelspindelfunktion in Mausmodellen für 

Muskeldystrophie untersucht. Zu der Gruppe der Muskeldystrophien werden verschiedene 

erbliche Krankheiten zusammengefasst, die alle durch eine progressive Degeneration und 

Schwäche der Skelettmuskulatur charakterisiert sind. Um zu untersuchen ob 

Intrafusalfasern ebenfalls betroffen sind, habe ich die Funktion und die Morphologie der 

Muskelspindeln von zwei Mausmodellen für Muskeldystrophie (Dystrophin- und Dysferlin-

defiziente Mäuse) untersucht. Sowohl die Morphologie als auch die Anzahl der 

Muskelspindeln in Soleusmuskeln von dystrophischen Mäusen erscheint unverändert. 

Extrazelluläre Ableitungen von einzelnen sensorischen Ia-Afferenzen des EDL-Muskels 

während „ramp-and-hold“-Dehnung sowie während sinusoidaler Vibrationen zeigten, dass 

beide Mausmodelle eine erhöhte Aktionspotentialfrequenz bei der Ruhelänge des Muskels 

aufweisen, aber keine Änderung der Sensitivität während der dynamischen oder der 
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statischen Phase einer „ramp-and-hold“-Dehnung haben. Bei sinusoidalen Vibrationen mit 

kleiner Amplitude und langsamer Frequenz zeigten die dystrophischen Mausmodelle einen 

signifikanten Unterschied zu den Wildtypmäusen. Ein stärker ausgeprägter Phänotyp 

konnte in der DMDmdx-dysf-/- Doppelmutante nicht festgestellt werden. Diese Ergebnisse 

zeigen, dass ein Fehlen von Dystrophin und/oder Dysferlin zu einer Veränderung in der 

Funktion der Muskelspindeln führt. Diese veränderte propriozeptive Funktion könnte zu den 

bei Patienten mit Muskeldystrophie beobachteten häufigen Stürzen und ihrem unsicheren 

Gang beitragen. 

Um die Hypothese zu untersuchen, dass eine veränderte Konzentration von 

intrazellulärem Ca2+ eine Ursache für die veränderte Propriozeption sein könnte, wurden 

extrazelluläre Ableitungen der propriozeptiven Afferenz von EDL-Muskeln aus 

Wildtypmäusen in Gegenwart und Abwesenheit des AChE Inhibitors Neostigmin und des 

Calciumkanalblockers Nifedipin durchgeführt. Nach der Zugabe der Medikamente stieg die 

Aktionspotentialfrequenz in Ruhe, aber nicht während ramp-and-hold Dehnung an. Nach 

Zugabe von Neostigmin stieg auch die Aktionspotentialfrequenz während sinusiodaler 

Vibrationen mit kleiner Amplitude und langsamer Frequenz an. Die Ergebnisse dieser 

Experimente stützen die Hypothese einer Ca2+-abhängigen Muskelspindelfunktion. 

Zusammengefasst zeige ich, dass Mausmodelle für Muskeldystrophie eine 

veränderte Funktion der Muskelspindeln aufweisen, welche zur Gang- und 

Standunsicherheit in Dystrophiepatienten beitragen könnte. Diese Veränderungen könnten 

durch eine erhöhte intrazelluläre [Ca2+] Konzentration in den Muskelzellen bedingt sein. 

Zudem zeige ich, dass die AChR im zentralen Bereich der Muskelspindel die 

Muskelspindelantwort während einer Dehnung modulieren. 
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Abstract 

Coordinated movements require proprioceptive information, such as information about 

muscle tone as well as position and movement of extremities in space. The primary 

proprioceptive sensory receptors are muscle spindles. Muscle spindles are complex stretch-

sensitive mechanoreceptors. They detect how much and how fast a muscle is lengthened. 

Muscle spindles consist of specialised skeletal muscle fibers, so called intrafusal fibers. In 

their central part, these fibers are surrounded by a proprioceptive afferent sensory neuron 

in an annulospiral shape. Here the speed as well as the length of the stretch is translated 

into action potential frequencies, which are proportional to the length change and the speed 

thereof. Both polar endings are innervated by efferent γ-motoneurons. 

Previously it was shown that AChRs are concentrated in the polar region at the 

contact site between intrafusal fiber and sensory neuron. To investigate the function of 

these AChRs, extracellular recordings from single unit proprioceptive-afferents of wildtype 

murine extensor digitorum longus muscles in the absence of γ-motoneuron activity was 

performed. I investigated the response during ramp-and-hold stretches as well as during 

sinusoidal vibrations in the presence and absence of the AChR inhibitors d-tubocurarine,  

α-bungarotoxin or of the choline reuptake inhibitor hemicholinium-3. In the presence of 

either drug, the resting action potential discharge frequency was not altered but the stretch-

evoked action potential frequencies were increased. Additionally, the firing rate during 

sinusoidal vibrations at low amplitudes was higher in the presence of α-bungarotoxin 

compared to control spindles. These results indicate that ACh modulates muscle spindle 

function during stretch in the central region of intrafusal fibers by possibly fine-tuning muscle 

spindle sensitivity. 

As a second project, I investigated the morphology and function of muscle spindles 

from murine models of muscular dystrophies. Muscular dystrophies comprise a 

heterogeneous group of hereditary diseases, which are all characterised by progressive 

degeneration and weakness of skeletal muscles. Murine model systems for two distinct 

types of muscular dystrophy with very different disease etiologies, i.e. dystrophin- and 

dysferlin-deficient mice, were analysed. The total number and the overall structure of 

muscle spindles in soleus muscles of these mice appeared unchanged. 

Immunohistochemical analyses of wildtype muscle spindles revealed a concentration of 

dystrophin and β-dystroglycan in intrafusal fibers outside the region of contact to the 

sensory neuron. Moreover, extracellular recordings from single units of sensory afferents 

from muscle spindles of the extensor digitorum longus muscle were performed during ramp-

and-hold stretches, as well as during sinusoidal vibrations. I demonstrate that mouse 

models for muscular dystrophy have an increased resting discharge but no change during 

https://en.wikipedia.org/wiki/Neuromuscular_disease
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the dynamic or static phase of ramp-and-hold stretches. Mutant muscle spindles show a 

higher action potential firing rate during sinusoidal vibrations with small amplitudes and low 

frequencies. I observed no exacerbated phenotype in DMDmdx- dysf-/- double transgenic 

mice compared to either single transgenic animal. These results demonstrate that a lack of 

dystrophin and or dysferlin lead to a change in muscle spindle function and suggest that an 

impaired proprioceptive feedback might contribute to the instable gait and the frequent falls 

in patients with muscular dystrophy.  

To test the hypothesis that an increased intracellular calcium ion concentration 

[Ca2+] in dystrophic muscles could cause the impaired proprioceptive function, extracellular 

recordings from single units of sensory afferents from muscle spindles of the extensor 

digitorum longus muscle were performed during ramp-and-hold stretches, as well as during 

sinusoidal vibrations in the presence and absence of the AChE inhibitor neostigmine and 

the calcium channel blocker nifedipine. After nifedipine and neostigmine administration an 

increased resting discharge but no change during the dynamic or static phase of ramp-and-

hold stretches as well as a higher action potential firing rate during sinusoidal vibrations 

after neostigmine administration with small amplitudes and low frequencies was observed.  

Overall, I show that murine models of muscular dystrophy have an impaired muscle 

spindle function, which could contribute to the instable gait and posture observed in patients 

with muscular dystrophy, that these changes could be due to an increased intracellular 

[Ca2+] in muscles and that the AChR in the central part of the muscle spindles negatively 

modulates muscle spindle responses during stretch. 
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1 Introduction 

Coordinated movements, including locomotion and their control, require proprioceptive 

information, like information about muscle tone as well as position and movement of 

extremities in space (Blecher et al., 2018, Dietz, 2002, Kröger, 2018, Tuthill and Azim, 

2018). Proprioception is also required for realignment of fractured bones (Blecher et al., 

2017a), for the maintenance of spinal alignment (Blecher et al., 2017b), as well as for basic 

locomotor recovery and circuit reorganisation after spinal cord injury (Takeoka et al., 2014). 

The primary proprioceptive sensory receptors are muscle spindles. They detect how much 

and how fast a muscle is lengthened (Kröger, 2018, Proske and Gandevia, 2012). 

1.1 Muscle spindle structure 

Muscle spindles were first characterised as sense organs by Sherrington in 1894 

(Sherrington, 1894) in cats. In cat, they are approximately 6 - 10 mm long, localised within 

skeletal muscle tissue and consist of 4 - 12 specialised skeletal muscle fibers, the intrafusal 

fibers. In adult mice, muscle spindles are 200 - 400 µm long and consist of 3 - 5 specialised 

intrafusal muscle fibers (Lionikas et al., 2013). These intrafusal fibers lie in parallel with the 

force-generating extrafusal skeletal muscle fibers and are surrounded by a connective 

tissue capsule (Figure 1; Banks, 1994a, Bewick and Banks, 2015). Two types of intrafusal 

fibers can be distinguished, the nuclear chain and nuclear bag fibers. The nuclear bag fibers 

have diameters of 20 – 25 μm. Due to the high density of nuclei in the equatorial region, 

most of the contractile apparatus is replaced and only a circumferential ring of sarcomeres 

is left in the subsarcolemmal region. The function of the accumulation of nuclei is still 

unclear. Based on the specificity of the myosin ATPase isoform, they can be classified into 

bag1 and bag2 fibers (Banks, 1994b, Ovalle, 1972). The bag2 fibers are the largest 

intrafusal fibers and extend beyond the capsule. Bag1 fibers are shorter and their 

proprioceptive afferents respond maximally to the speed of changes in muscle fiber length 

(dynamic sensitivity), whereas bag2 fibers and nuclear chain fibers as well as their afferents 

respond to the amount of stretch. Nuclear chain fibers run entirely within the capsule and 

their diameter is between 10 – 12 μm (Banks, 1994b). 

 



17 
 

  

Figure 1: Scheme of a muscle spindle. The intrafusal fibers (beige) are surrounded by a connective 
tissue capsule (blue). All intrafusal fibers are innervated by an Ia-afferent (green) in the equatorial 
part. Bag2 and chain fibers are as well innervated by type II afferents (II) which flank the Ia-afferents. 

In the polar region chain and bag2 fibers are innervated by static -motoneurons ( static, red line) 

and bag1 fibers by dynamic -motoneurons ( dynamic, red line). Modified from Proske, 1997. 

 

1.2 Muscle spindle innervation 

Muscle spindles are innervated by afferent and efferent neurons. The equatorial (central) 

part of intrafusal muscle fibers is in close contact with two types of afferent proprioceptive 

sensory neurons (Banks, 2015), type Ia and type II afferents (Hunt, 1990). Both Ia and II 

afferent axons are myelinated and have a diameter of 4 – 20 μm in cats (Hunt, 1954). Ia 

afferent nerve fibers exhibit a conduction velocity of up to 120 m/sec in cats and innervate 

bag1, bag2 as well as chain fibers (Banks et al., 1982); Figure 1). They form the primary 

sensory nerve endings (Banks, 1986), called annulospiral endings, which are coiled around 

the equatorial region of the intrafusal fibers. In contrast, type II afferent sensory endings 

display a slower conduction velocity of 30 – 70 m/sec and innervate only bag2 and chain 

fibers (Banks et al., 1982). They form secondary sensory nerve endings which flank the  

Ia-afferents (Sonner et al., 2017). Ruffini described these secondary nerve endings, which 

have not been described in mice yet, in cats as “flower spray” endings (Ruffini, 1898). 

Afferent neurons generate action potentials with frequencies that are proportional to the 

size of the muscle stretch or to the speed of stretching (De-Doncker et al., 2003). The cell 

bodies of these pseudounipolar sensory neurons represent a minor fraction of all neurons 

in the dorsal root ganglion (DRG). They can be selectively labelled by using antibodies 

against the vesicular glutamate transporter 1 (vGluT1;(Wu et al., 2004). 

Besides the sensory neurons, intrafusal muscle fibers are at both polar regions 

innervated by efferent -motoneurons, the so-called fusimotor innervation (Figure 1; Banks, 

1994b). These -motoneurons form a cholinergic synapse which appears functionally 

similar to the neuromuscular junction formed between α-motoneurons and extrafusal 

muscle fibers (Hunt and Kuffler, 1951a). Axons of -motoneurons enter the spindle together 

with the sensory fibers in the equatorial region of the spindle. Their cell bodies are localized 

in the ventral horn of the spinal cord (Ashrafi et al., 2012, Friese et al., 2009, Shneider et 
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al., 2009). These neurons represent about 30 % of all motoneurons in the ventral horn. 

Gamma-motoneurons function as gain control by inducing a contraction in the polar regions 

of the muscle spindle to exert tension on the central region of the muscle fiber (Proske, 

1997, Banks, 1994a). This allows a continuous control of the mechanical sensitivity of 

muscle spindles over the wide range of lengths and velocities that occur during motor 

behaviours. This function is based on evidence provided by experiments by Hunt and 

Kuffler, who were the first to describe a short period of sensory nerve recordings without 

action potentials during the contraction of extrafusal fibers in which the -motoneuron 

innervation had been cut (Hunt and Kuffler, 1951a, Hunt and Kuffler, 1951b). They 

discovered that  

-motoneurons control the sensitivity of muscle spindles by regulating the length of intrafusal 

fibers. When extrafusal fibers are stretched, intrafusal fibers are stretched simultaneously 

and information about the stretch is transmitted by sensory nerves from muscle spindles to 

the spinal cord and to higher motor centres in the cortex and cerebellum. When extrafusal 

fibers contract, a passive loss in tension occurs in the intrafusal fibers and the muscle 

spindle is unresponsive to stretch. The simultaneous activation of -motoneurons cause the 

contraction of the polar regions of intrafusal fibers leading to a lengthening of the equatorial 

region of intrafusal fibers. Therefore, the co-activation of α- and -motoneurons maintains 

the tension of intrafusal fibers during the contraction of extrafusal muscle fibers. This 

ensures the sensitivity of muscle spindles during all phases of muscle relaxation and 

contraction (Hunt and Kuffler, 1951a). 

1.3 The acetylcholine receptor in muscle spindles 

How exactly the speed and the rate of stretching of the central part of the muscle spindle is 

transformed into action potential frequencies is still unknown. The Piezo2 channel is very 

likely an essential part of the transduction complex and the responsible channel for 

mechanotransduction at the central part of muscle spindles (Woo et al., 2015, Kröger, 

2018). Little is known about the modulation of the transduction and transformation process 

(Bewick and Banks, 2015). Glutamate appears to be a positive regulator since exogenous 

glutamate enhanced stretch-induced Ia excitability and since Ia peripheral endings are 

enriched with glutamate-filled vesicles (Bewick et al., 2005). 

A negative regulator of muscle spindle function has so far not been identified but 

acetylcholine (ACh) could be another neurotransmitter influencing muscle spindle 

sensitivity. Acetylcholine receptors (AChRs) are concentrated at the contact site of primary 

nerve endings with the intrafusal fiber at the central part of the muscle spindle (Zhang et al., 

2014; see Figure 5). While the function of these cholinergic specialisations in this region is 

still unknown, the function of AChRs at the neuromuscular junction (NMJ), the contact site 
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between α-motoneuron and extrafusal fibers, is well characterised.  

In the pre-synaptic terminal of the motor axon ACh is stored in vesicles. Action potentials 

which are arriving at the axon terminal open voltage-sensitive calcium channels. The influx 

of calcium leads to a fusion of the synaptic vesicles with specific binding sites on the pre-

synaptic nerve membrane (active zone) and a release of their contents into the synaptic 

cleft. Cooperative binding of 2 ACh molecules to the post-synaptic AChR on the extrafusal 

muscle fiber causes an above threshold depolarisation of the muscle fiber membrane and 

opens voltage-gated Na+ channels which initiates an action potential that can spread over 

the surface of the muscle, initiating muscle contraction. The ACh in the synaptic cleft is 

quickly hydrolysed by ACh esterase (AChE) into acetate and choline. The free choline is 

transported back into the axon and used for the resynthesize of ACh (Auerbach, 2015, Taly 

et al., 2009). The transmission of the motoneuron action potential into a contraction of 

muscle fibers can be modulated at several sites. For example, the uptake of choline into the 

pre-synaptic terminal can be blocked by hemicholinium-3 (HC-3). This leads to a gradual 

paralysis because the ACh stored in the pre-synaptic terminal becomes exhausted with 

repeated stimulation (Bhattacharyya et al., 1988, Carpenter and Woodruff, 1987, Ferguson 

et al., 2004, Fukuda et al., 1972, Ganguly et al., 1978). The activity of the AChE, hydrolysing 

ACh, can be inhibited by neostigmine (Neely and Kohli, 2017). Whereas the binding of ACh 

to the AChR can be blocked by α-bungarotoxin (Dutertre et al., 2017) or d-tubocurarine 

(Fukuda et al., 1972, Ganguly et al., 1978, Smith and Albuquerque, 1967), leading to muscle 

paralysis. All these intervening effects are well described at the NMJ, but these drugs have 

not been tested in muscle spindles yet. 

So far, the existence of the fetal (-subunit containing AChR) and the adult (ε-subunit 

containing AChR) forms of the AChR have been described in the central region of intrafusal 

fibers at the contact site with the sensory nerve ending (Zhang et al., 2014). Moreover, the 

AChR-associated protein rapsyn as well as the machinery for ACh uptake into vesicles and 

their exocytosis have been detected at the central part of the muscle spindle by 

immunohistochemistry (Zhang et al., 2014). Other studies described an excitatory effect of 

ACh and succinylcholine on muscle spindles, which is most likely due to a direct 

depolarising activity on intrafusal fibers via the -motoneuron endplate (for review Carr and 

Proske 1996). Accordingly, the function of the cholinergic specialisations in the equatorial 

region of intrafusal fibers remains unknown. One aim of this study was therefore to 

investigate the function of the AChRs at the central part of the muscle spindle by analysing 

muscle spindle afferent responses to stretch in the presence and absence of inhibitors of 

cholinergic transmission. 
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1.4 The effect of muscular dystrophies on the muscle spindle 

Muscular dystrophies are a heterogeneous group of more than 30 different hereditary 

myogenic disorders that are all characterised by peripheral muscle weakness and a 

progressive loss of skeletal muscle tissue (Mercuri and Muntoni, 2013). The most common 

form is the Duchenne muscular dystrophy (DMD) which was first described in 1851 by 

Guillaume-Benjamin Duchenne. DMD affects approximately 1 in 5000 boys (Mah et al., 

2014), making it one of the most common recessive disorders in the human population. The 

first symptoms of this disease, including progressive muscle wasting and weakness, appear 

in early childhood and the loss of skeletal muscle tissue leads to premature death in late 

adolescence (Emery, 1993, Meryon, 1852). The cause of DMD is a mutation in the DMD 

gene in the chromosomal region Xp21 leading to a loss of function of the sarcolemmal 

protein dystrophin (Kunkel et al., 1985, Ray et al., 1985, Waite et al., 2009).  

Dystrophin is part of the dystrophin glycoprotein complex (DGC). This complex 

consists of several proteins and provides a framework which connects the extracellular 

matrix with the intracellular cytoskeleton (Chan et al., 1998, Ervasti, 2003, Ervasti and 

Campbell, 1991, Ozawa et al., 1998, Yoshida et al., 2000). A loss of dystrophin leads to a 

reduction or complete loss also of the remaining DGC components from the muscle fiber 

membrane and subsequently to an instability of the sarcolemma as well as sarcolemmal 

damage (Le Rumeur et al., 2010, Mercuri and Muntoni, 2013, Waite et al., 2012). This 

damage can be enhanced by muscle contractions and eventually leads to a degeneration 

and phagocytosis of the muscle fibers (Allikian and McNally, 2007). Due to several 

mechanisms, including changes in the regenerative capacity of satellite cells (Chang et al., 

2016) and loss of signaling capacity of the DGC (Constantin, 2014), over time regeneration 

cannot compensate the degenerative loss of muscle tissue. This ultimately leads to a 

reduction of muscle mass, loss of contractile force and, in the case of Duchenne muscular 

dystrophy, to premature death of the affected person due to respiratory or cardiac muscle 

failure.  

The degeneration of extrafusal fibres may lead to an increased instability of posture, 

an instable gait and frequent falls in patients with muscular dystrophy (Hsu and Furumasu, 

1993, Pradhan et al., 2006, Chyatte et al., 1966). However, an altered proprioception might 

augment or contribute to the symptoms. Therefore, several studies investigated muscle 

spindle morphology in different mouse models for muscular dystrophy (Johnson and Ovalle, 

1986, Nahirney and Ovalle, 1993, Gossrau and Grozdanovic, 1997, Ovalle and Dow, 1986) 

as well as in post-mortem material from DMD patients (Swash and Fox, 1976). In all cases 

muscle spindle morphology was mildly affected but spindles showed less severe signs of 

degeneration or regeneration compared to extrafusal muscle fibers. Spindles were slightly 

atrophic, and the connective tissue capsule appeared widened.  
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Analysis of the distribution of dystrophin showed a concentration at the central part of the 

muscle spindle between the contact region of the Ia-afferent and the intrafusal fiber (Figure 

2; Nahirney and Ovalle, 1993). 

 

Figure 2: Distribution of dystrophin at the central part of the muscle spindle in mice. 
Dystrophin-deficient regions of the sarcolemma (arrows in a) are consistent with those areas in 
contact with the Ia-afferent sensory nerve endings (arrows in b). Phase contrast image (c) reveals a 
nuclear bag (nb) and a nuclear chain (nc) fiber. Bar = 10 µm, Reproduced with permission. (Nahirney 
and Ovalle, 1993). 

 

This distribution suggested that dystrophin might not be part of the mechanotransduction 

system in the central region of the muscle spindle but could play a role in normal muscle 

spindle function. Moreover, the presence of dystrophin in muscle spindles suggested the 

possibility that muscle spindle function could be altered in dystrophic muscles.  

Another form of muscular dystrophy is the dysferlinopathy. The phenotype of this 

disease is much milder compared to DMD with an onset between the second and third 

decade (Galassi et al., 1987, Barohn et al., 1998, Barohn et al., 1991, Rosales et al., 2010). 

A mutation in the DYSF gene on chromosome region 2p13 leads to a loss of dysferlin (Aoki 

et al., 2001, Bashir et al., 1998, Liu et al., 1998), a single pass transmembrane protein, 

which is an important component of the sarcolemmal membrane repair machinery 

(Anderson et al., 1999). Microlesions in the plasma membrane occur due to muscle 

mechanical activity or due to an adaptation to functional demands (Tidball, 2011). As a 

consequence, dysferlin-containing vesicles are recruited to the injury site in a calcium-

dependent manner (Matsuda et al., 2012, Duann et al., 2015).  
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At the injury sites, dysferlin appears to promote the vesicle aggregation and fusion by a 

mechanism that depends on its association with anexins (McNeil, 2009). Moreover, 

dysferlin seems to be involved in Ca2+ homeostasis during mechanical stress (Kerr et al., 

2013). A loss of dysferlin therefore leads to an impaired Ca2+ homeostasis and a disturbed 

membrane repair in skeletal muscles resulting in a degeneration of skeletal muscle fibers, 

eventually causing the muscle weakness. 

In this part of my study, I investigated if an altered muscle spindle function can 

contribute to the phenotype of patients with muscular dystrophy. To this end, recordings of 

muscle spindle afferent responses to stretch were analysed in two mouse models for 

muscular dystrophy, the DMDmdx mouse and the dysf-/- mouse. Both mouse lines will be 

introduced in the subsequent paragraphs. 

 

1.5 Mouse models to study muscular dystrophy 

1.5.1 The DMDmdx mouse 

In 1984 the first dystrophin-deficient mouse line arose due to a spontaneous mutation in a 

colony of C57BL/10 mice (Bulfield et al., 1984). The mutation in exon 23 of the dystrophin 

gene generates a premature stop codon and therefore to the absence of the full-length 

dystrophin. DMDmdx mice die earlier compared to wildtype mice (Chamberlain et al., 2007) 

but the severity of the muscle degeneration differs from DMD patients. The degeneration of 

extrafusal fibers in DMDmdx mice is slower and appears in waves followed by waves of 

regeneration (McGeachie et al., 1993; Haddix et al., 2018) which leads to an increased 

number of newly differentiated myofibers. They are characterised by centralised nuclei and 

an increased heterogeneity in myofiber diameter (Grounds and Torrisi, 2004, Messina et 

al., 2006). The absolute muscle force remains unchanged compared to wildtype mice 

whereas the relative force normalised to body weight decreases 20 – 50 % (Connolly et al., 

2001, Messina et al., 2006, Raymackers et al., 2003). Moreover, calcium ion concentration 

([Ca2+]) in the subsarcolemmal compartment (Mallouk et al., 2000) and in the sarcoplastic 

reticulum (Robert et al., 2001) are increased. Despite the slightly less severe phenotype of 

DMDmdx mice compared to DMD patients, the DMDmdx mouse is recommended as the model 

of choice for proof-of-concept studies as well as for preclinical tests (Willmann et al., 2009). 

1.5.2 The SJL-Dysf mouse 

The SJL-Dysf (dysf-/-) mouse is a model for dysferlinopathies, including the Miyoshi 

myopathy and limb girdle muscular dystrophy type 2B. These mice develop a mild, 

progressive myopathy (Bittner et al., 1999) due to a splice site mutation in the dysferlin 

gene. This leads to a deletion of 57 amino acids (Vafiadaki et al., 2001) and subsequently 



23 
 

to a reduction of 75 % of the dysferlin expression compared to wild type mice. The first signs 

of a progressive dystrophy appear at 2 months of age (Ho et al., 2004). Despite the residual 

25 % of dysferlin, histological changes in these mice display many of the features also 

observed in patients (Hornsey et al., 2013). 

1.5.3 The DMDmdx-dysf-/- mouse 

The DMDmdx- dysf-/- mouse is a cross breading of the DMDmdx and the dysf-/- mouse. This 

mouse model exhibits a more severe muscle pathology compared to DMDmdx mice or  

dysf-/- mice. The onset of the muscle pathology occurs a lot earlier than in dysf-/- mice. These 

mice show a greater number of regenerating muscle fibers, higher serum creatine kinase 

levels and elevated Evans blue dye uptake into skeletal muscles compared to either DMDmdx 

or dysf-/- mice. (Han et al., 2011). Moreover, the DMDmdx-dysf-/- mice have a significant 

higher incidence to develop rhabdomyosarkomas compared the single mutant mice (Hosur 

et al., 2012, Schmidt et al., 2011). 

1.5.4 The C57BL10/10sc/Utro mouse 

The protein utrophin is a structural and functional autosomal paralogue of dystrophin (Love 

et al., 1989, Tinsley et al., 1992). It is localised at the sarcolemma during fetal development 

and confined to the NMJ in mature muscles (Lin and Burgunder, 2000). Studies have shown 

that utrophin overexpression can reduce or even prevent the dystrophic phenotype in 

DMDmdx mice (Guiraud et al., 2015, Tinsley et al., 1998, Tinsley et al., 2011, Krag et al., 

2004, Amenta et al., 2011, Kennedy et al., 2017). Thus, modulation of utrophin is a 

promising therapy for DMD patients (Guiraud et al., 2019). Utrophin-deficient mice 

C57BL10/10sc/Utro (utro-/-) have a very mild phenotype and only subtle changes in skeletal 

muscle tissue (Deconinck et al., 1997, Grady et al., 1997), and were therefore used as 

controls. 
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2 Aims of the study 

While the function of muscle spindles is relatively well understood, the molecules that 

mediate this function and potential mechanisms that modulate muscle spindle responses to 

stretch are poorly investigated. In my study, I characterised muscle spindles on the 

molecular level by addressing two main questions: 

 

1. What is the function of the acetylcholine receptors in the central part of muscle 

spindles? To this end, I analysed muscle spindle Ia-afferent responses to stretch in 

the presence and absence of AChR inhibitors and inhibitors of cholinergic synaptic 

transmission. 

 

2. What are the functional consequences of mutations in the DGC and in mouse 

models of dysferlinopathies? Do muscle spindle intrafusal fibers undergo similar 

rounds of degeneration and regeneration as extrafusal fibers? Can altered 

functional properties of dystrophic muscle spindles contribute to the unstable 

gait and frequent falls observed in dystrophic patients? To this end I analysed 

electrophysiological recordings from single unit Ia-afferent responses to 

stretch in a mouse model for DMD as well in other mouse models for 

muscular dystrophy. 
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3 Material and Methods 

3.1 Chemicals 

Chemical Company Catalog number 

4',6-Diamidino-2-

phenylindol 

Dihydrochloride 

(DAPI) 

Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

6843.1 

Albumin Fraction V Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

8076.2 

Aqua-Poly/Mount Polysciences Europe GmbH 18606 

CaCl2 Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

CN93.2 

D-Glucose Sigma-Aldrich Chemie GmbH, 

Taufkirchen, Germany 

G5146 

KCl Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

6781.3 

Ketamine Pfizer Inc., Berlin, Germany  

KH2PO4 Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

3904.1 

MgSO4 Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

0261.1 

NaCl Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

9265.1 

NaHCO3 Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

6885.1 

Paraformaldehyde Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

0335.1 

Sodium borohydride Sigma-Aldrich Chemie GmbH, 

Taufkirchen, Germany 

71320 

Sodium citrate Sigma-Aldrich Chemie GmbH, 

Taufkirchen, Germany 

W302600 

Tissue Tec®  Sakura Finetek Europe, AJ Alphen an den 

Rijn, Netherland 

TTEK 

Triton® X-100 Sigma-Aldrich Chemie GmbH, 

Taufkirchen, Germany 

9002-93-1 

Tween20 Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

9127.1 

Xylazine Bayer AG, Leverkusen, Germany  
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3.2 Artificial cerebrospinal fluid 

Chemical Concentration 

CaCl2 2,4 mM  

D-Glucose 10,0 mM  

KCl 1,9 mM  

KH2PO4 1,2 mM  

MgSO4 1,3 mM  

NaCl 128,0 mM  

NaHCO3 26,0 mM  

 

3.3 Drugs for pharmacological experiments 

Drug 
Concen-

tration 

Equilibration 

time 
Company 

Catalog 

number 

d-tubocurarine 30 µM 1 h Sigma-Aldrich Chemie 

GmbH, Taufkirchen, 

Germany 

T2379 

Hemicholinium-3 10 µM 1 h Sigma-Aldrich Chemie 

GmbH, Taufkirchen, 

Germany 

H108 

Neostigmine 10 µM 1 h Sigma-Aldrich Chemie 

GmbH, Taufkirchen, 

Germany 

N2126 

Nifedipine 20 µM 4 h Sigma-Aldrich Chemie 

GmbH, Taufkirchen, 

Germany 

N7634 

α-bungarotoxin 1,25 µM 3 h Life Technologies, Carlsbad, 

California, USA 

B1601 
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3.4 Antibodies 

3.4.1 Primary Antibodies 

Antibody Host Dilution Company 
Catalog 

number 

anti-calcium 

channel L type 

DHPR α2 subunit 

rabbit 1:100 Abcam plc, Cambridge, UK ab80990 

anti-dysferlin rabbit 1:20 Abcam plc, Cambridge, UK ab124684 

anti-dystroglycan mouse 1:75 Leica Biosystems, 

Nussloch, Germany 

NCL-b-DG 

anti-dystrophin rabbit 1:20 Thermo Fisher Scientific 

Inc., Massachusetts, USA 

RB-9024 

anti-Nav1.4 rabbit 1:100 Abcam plc, Cambridge, UK ab65165 

anti-utrophin mouse 1:4 Leica Biosystems, 

Nussloch, Germany 

NCL-DRP2 

anti-vesicular 

glutamate 

transporter 1 

guinea 

pig 

1:1000 Merck KGaA, Darmstadt, 

Germany 

AB5905 

 

3.4.2 Secondary Antibodies 

Antibody Host Dilution Company 
Catalog 

number 

anti-guinea pig 

Alexa Flour 647 
donkey 1:300 

Merck KGaA, Darmstadt, 

Germany 
AP193SA6 

anti-mouse Alexa 

Flour 488 
goat 1:100 

Thermo Fisher Scientific 

Inc., Massachusetts, USA 
A11029 

anti-mouse Alexa 

Flour 594 
goat 1:500 

Thermo Fisher Scientific 

Inc., Massachusetts, USA 
A11032 

anti-rabbit Alexa 

Flour 594 
goat 1:100 

Thermo Fisher Scientific 

Inc., Massachusetts, USA 
A11037 

α-Bungarotoxin 

conjugated with 

Alexa Flour 488 

Bungarus 

multicinctus 

venom 

1:100 
Thermo Fisher Scientific 

Inc., Massachusetts, USA 
B13422 

 

 

 

 

 

 

 



28 
 

3.5 Technical devices 

Technical device Type Company 

Ag/AgCl Electrode  0.015“(380 M) Science Products GmbH, 

Hofheim, Germany 

Amplifier  A-M Systems, Modell 1800 Science Products GmbH, 

Hofheim, Germany 

Analog to Digital Board  Power Lab 8/35 ADInstruments, Oxford, UK 

Binocular microscope  Leica MZ 75 Leica Camera, Wetzlar, 

Germany 

Cryostat  LEICA CM3050S Leica Biosystems, 

Nussloch, Germany 

Electrode Glass 

 

OD = 1,65 mm,  

ID = 0,75 mm 

Dagan Corporation, 

Minneapolis, USA 

Electrode holder  2 mm pin holder, narrow, 

with suction port and wire 

with 1.7 mm diameter 

Science Products GmbH, 

Hofheim, Germany 

Epifluorescence 

microscope  

Module 700 with Imager 

M2, Power supply 232, 

HXP 120 C and camera 

AxioCam MRm 

Carl Zeiss AG, 

Oberkochen, Germany 

Fiber Optic Illuminator 1500 LCD OLYMPUS, Munich, 

Germany 

Force and Length 

Controller & Tissue Bath 

300C-LR & 809B-IV Aurora Scientific Europe, 

Dublin, Ireland 

Laser-scanning confocal 

microscope 

LSM 710 Module with 

AxioImagerZ.1, power 

supply 231, MCU 2008, 

HXP 120.  

Laser: Diode 405-30, 

HeNe633, DPSS 561-10 

and Argon 

Carl Zeiss AG, 

Oberkochen, Germany 

Laser-scanning confocal 

microscope  

SP8X WLL microscope 

with 405 nm laser, WLL2 

laser (470 - 670 nm) and 

acusto-optical beam splitter 

Leica Biosystems, 

Nussloch, Germany 

Microforge  MF-900 Narishige Group, London, 

UK 

Non-Sterile Suture  5/0 FINE SCIENCE TOOLS 

GmbH, Heidelberg, 

Germany 

Pump Masterflex L/S  Novodirect GmbH, Kehl, 

Germany 

Pump Head EASY-LOAD II Novodirect GmbH, Kehl, 

Germany 

Silver wire 99,99 % Science Products GmbH, 

Hofheim, Germany 
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Stimulator  SD 9 / 701C GRASS-Telefactor / Aurora 

Scientific Europe, Dublin, 

Ireland 

Vertical Pipette puller  L/M-3P-A List-Medical; Artisan 

Technology Group ® 

Champaign, Illinois, USA 

 

3.6 Software 

Software Company 

GraphPad Prism v.7 GraphPad Software, La Jolla California USA 

ImageJ public domain Java image processing program from NIH, 

USA (rsbweb.nih.gov/ij/) 

Lab Chart Pro v.8.1.3  ADInstruments, Oxford, UK  

 

3.7 Mice 

Line Producer/Manufacturer 

C57BL6/J Charles River Laboratories, Germany 

C57BL10/10sc University of Greifswald, Prof. Brinkmeier 

C57BL10/10sc/DMDmdx University of Greifswald, Prof. Brinkmeier 

C57BL10/10sc/Utro University of Vienna, Prof. Bittner 

DmdmdxSJL-dysf C57BL/6 University of Vienna, Prof. Bittner 

SJL-dysf C57BL/6 University of Vienna, Prof. Bittner 
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4 Methods 

4.1 Ethical Approval 

Care and use of animals and all experimentations were approved by the German authorities 

and according to national law (§ 7 TierSchG; license Az.: 55.2-1-54-2532.8-160-13). All 

experiments were conducted in accordance with the guidelines of the Ludwig-Maximilians-

University Munich. Additionally, all experimental protocols were designed to minimise 

suffering as well as the number of animals used in this study. At most five adult animals 

were housed in a sterile cage on a 12-hr light/dark cycle. Only male mice which were aged 

10 -16 weeks with a weight of 22-30 grams were used in this study. 

 

4.2 Immunofluorescence 

4.2.1 Confocal images 

Immunofluorescence stainings were performed as described previously (Zhang et al., 2014, 

Gerwin et al., 2019). To obtain muscle tissue for immunohistochemistry, mice were deeply 

anesthetised using ketamine and xylazine. Depth of anesthesia was assessed by the 

abolition of pedal reflexes. After transcardial perfusion with phosphate-buffered saline 

(PBS) followed by 4 % paraformaldehyde (PFA), the extensor digitorum longus muscle 

(EDL) was dissected. Muscles were post-fixed in 4 % PFA for 30 min to 2 h and afterwards 

incubated in 30 % sucrose in PBS overnight at 4°C. Fixed muscles were cryo-preserved in 

Tissue-Tek O.C.T. Compound and cryo-sectioned along the longitudinal axis at 20 - 30 µm 

thickness. 

Frozen sections were washed 10 min in PBS and quenched 2 times in 1 mg/ml 

sodiumborohydrate for 4 min to reduce background signals. After an additional washing 

step, unspecific staining was blocked by incubating the sections in PBS containing 0.2 % 

Triton X-100 and 1 % bovine serum albumin (blocking solution) for 30 min at room 

temperature and incubated with the primary antibody in blocking solution at 4 °C overnight. 

After 3 washing steps, 10 min each, primary antibodies were detected by incubating the 

sections for 1 h with the appropriate secondary antibody, diluted in blocking solution. 

Sections were washed 10 min in PBS and the nuclei were stained using DAPI at a 

concentration of 2 µg/ml in blocking solution for 10 min. 

Subsequent to 3 more washing steps in PBS for 10 min the sections were embedded 

in PolyAqua Mount mounting medium and analysed using a Zeiss LSM 710 laser scanning 

confocal microscope or a Leica SP8X WLL microscope. The LSM 710 was equipped with 

an Argon Laser (laser line 488 nm), a Diode (laser line 405 nm), a DPSS laser (561 nm) 

and a HeNe laser (633 nm). Confocal z-stack-images were generated using a 40x water 
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immersion objective (LD C-Apochromat 40x/1.1) and a multi-alkaline-based photomultiplier 

(PMT). Sequential recordings were performed to avoid bleed-through. The SP8X WLL 

microscope situated at the core facility bioimaging of the Biomedical Center was equipped 

with 405 nm laser, a WLL2 laser (470 - 670 nm) and an acusto-optical beam splitter. 

Sequentially scanned confocal Z-stacks of whole muscle spindles were obtained using 1 

µm optical sections. Images were acquired with a 63x1.4 objective with an image pixel size 

of 80 nm. The following fluorescence settings were used: DAPI (excitation 405; emission 

410-470), GFP (489; 492-550), Cy3 (558; 560-600) and Cy5 (650; 652-700). GFP and Cy3 

were recorded with hybrid photo detectors (HyDs), DAPI and Cy5 with conventional 

photomultiplier tubes. Laser power levels, photomultiplier gain levels, scanning speed, and 

the confocal pinhole size were kept constant between experimental and control specimens. 

To avoid false positive results due to unspecific binding of secondary antibodies, negative 

control stainings were run in parallel. Digital processing of entire images, including 

adjustment of brightness and contrast, was performed by using the Java image processing 

program software package Fiji (Schindelin et al., 2012). 

To improve the quality of staining using the anti-dysferlin antibody the staining 

protocol was enhanced by an antigen retrieval protocol (Roche et al., 2000). Sections were 

washed 10 min with PBS and incubated in 10 mM sodium citrate containing 0,05 % 

Tween20 (pH 6,0) at 90 °C for 30 min. After cooling down to 30 °C over 60 min, sections 

were washed 2 times in PBS for 5 min and then blocked and stained as described above. 

4.2.2 Epifluorescence microscopy 

To determine the number of muscle spindles whole soleus muscles were cryo-sectioned 

along the longitudinal axis at 20 - 30 µm thickness and stained with anti-vGluT1 and DAPI 

as described above. Each section was scanned by performing tile-scans and fused to one 

picture using the stitching tool at the epifluorescence microscope Zeiss Module 700. The 

number of muscle spindles for each individual muscle was counted. Muscle spindles were 

identified by morphological criteria, i.e. a positive staining of the annulospiral endings with 

anti-vGluT1 and the characteristic distribution of nuclei in nuclear chain and -bag fibers. 3 

mice were analysed for each mouse line (Data from DMDmdx-dysf-/- mice were compared to 

unpublished Data from Sarah Rossmanith from BL6, BL10 and DMDmdx mice.) 

4.3 Extracellular muscle spindle recordings 

Proprioceptive sensory neuron responses to stretch were assayed using an isolated 

muscle-nerve preparation previously described (Franco et al., 2014, Wilkinson et al., 2012, 

Gerwin et al., 2019). Mice were sacrificed by cervical dislocation and the EDL muscle 

together with the deep peroneal branch of the sciatic nerve were dissected and afterwards 

placed in an oxygenated tissue bath containing artificial cerebrospinal fluid (ACSF).  



32 
 

The tendons were sutured to a fixed post and on the other end to a lever arm which was 

connected to a dual force and length controller allowing the simultaneous recording of 

muscle tension, muscle length and muscle spindle afferent discharges. The baseline 

muscle length (Lo) was defined as the length at which the maximal twitch contractile force 

was generated. The sensory activity was sampled using a suction electrode with a tip 

diameter of 50–70 μm, which was connected to an extracellular amplifier. A signal was 

classified as certainly being from a muscle spindle sensory afferent if it displayed a 

characteristic instantaneous frequency response to stretch as well as a pause during twitch 

contraction (Wilkinson et al., 2012, Gerwin et al., 2019). 

4.3.1 Extracellular recordings from mouse models for muscular dystrophy 

For every muscle spindle afferent recording (Figure 3A), a series of 27 ramp and hold 

stretches (Figure 3B; triplicates of each Lo plus 2.5 %, 5 % and 7.5 % Lo; ramp speed 20, 

40 and 60 % Lo/sec; stretch duration: 4 sec with 45 sec intervals between each stretch), as 

well as 16 sinusoidal vibrations (amplitudes: 5 µm, 10 µm, 50 µm, 100 µm, each with a 

frequency of 10 Hz, 25 Hz, 50 Hz, 100 Hz for 9 sec) were recorded. The resting discharge 

(average baseline firing rate), the dynamic peak (highest firing rate during ramp – baseline 

firing rate), the dynamic index (highest firing rate during ramp – firing rate 0.45 to 0.55 sec 

into stretch), the static response (firing rate 3.25 to 3.75 sec into stretch – baseline firing 

rate) and the time of silence (time after the end of the ramp-and-hold stretch and the first 

action potential) were determined (Figure 3C). In addition to the stretch-evoked action 

potentials, the length and tension of the muscle were simultaneously recorded. 

For the data analysis, individual sensory neurons were identified by spike shape and 

the interspike interval using the Spike Histogram feature of Lab Chart. Spindle afferent 

baseline firing rate (RD), dynamic peak (DP), dynamic index (DI) and the static stretch 

response (SR) were determined as described above. Only recordings in which a single 

individual muscle spindle afferent unit could be clearly identified were included in the 

analysis. Up to 3 different muscle spindle afferents were recorded from 1 EDL muscle 

(Gerwin et al., 2019, Wilkinson et al., 2012). 
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Figure 3: Data analysis of the action potential frequency of an exemplary muscle spindle Ia-
afferent in response to a ramp-and-hold stretch. A: Change in action potential frequency of a 
muscle spindle Ia-afferent in response to stretch. B: Length change of the muscle during a ramp-
and-hold stretch of the EDL. C: Action potentials/sec over time. Spindle afferent baseline firing rate 
(RD), dynamic peak (DP), dynamic index (DI), static stretch response (SR) and the pause of the 
firing rate after release of the stretch (TS) were determined. 

 

Sinusoidal vibrations were analysed by comparing the number of action potentials during 

the 9 sec of each of the 16 vibrations between mutant mouse models with control animals. 

The values were expressed as impulses per 9 sec. Examples for 4 different vibrations are 

shown in Figure 4. 

 

 

Figure 4: Examples of 4 different sinusoidal vibrations varying in vibrations frequency. The 
length change during each vibration is shown in green (lower panel) and the corresponding muscle 
spindle action potential frequency is shown in red (upper panel).  
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4.3.2 Extracellular recordings during pharmacological experiments 

To ensure muscle spindle health, the experimental protocol was shortened during 

pharmacological experiments. For all muscle spindle afferent recordings, a series of only 9 

ramp and hold stretches (triplicates of each Lo plus 2.5 %, 5 % and 7.5 % Lo; ramp speed 

40 % Lo/sec; stretch duration: 4 sec with 45 sec intervals between each stretch), as well as 

16 sinusoidal vibrations (amplitudes: 5 µm, 10 µm, 50 µm, 100 µm, each with a frequency 

of 10 Hz, 25 Hz, 50 Hz, 100 Hz for 9 sec) were recorded. Then a drug or 100 µL ACSF for 

control experiments was added to the oxygenated ACSF. After 1-4 h of equilibration 

depending on the drug, the response of the same muscle spindle afferent neuron was 

determined to the same series of three repetitions of each of the three ramp-and-hold 

stretches and 16 sinusoidal vibrations. Thus, a precise comparison of the stretch-evoked 

responses of individual single unit muscle spindle afferents in the absence and presence of 

each drug was possible. 

For data analysis, individual sensory neurons were identified by spike shape and the 

interspike interval using the Spike Histogram feature of Lab Chart and RD, DP, DI as well 

as SR were determined as described above as well as the number of action potentials 

during the 9 sec of each sinusoidal vibration (Gerwin et al., 2019, Wilkinson et al., 2012). 

Only when an individual muscle spindle afferent unit could be unambiguously identified 

throughout the entire experiment the recording was included in the analysis.  

4.3.3 Overall muscle health  

At the end of each recording the muscle health checked. This was done by comparing the 

maximal contractile force during a tetanic stimulation (500 ms train, 120 Hz frequency,  

0.5 ms pulse length, supramaximal voltage; Grass SD9 square pulse stimulator; Wilkinson 

et al., 2012) to the previously reported peak force of 23,466 N/cm² of the EDL (Brooks and 

Faulkner, 1988, Larsson and Edstrom, 1986). Neither the maximal force after tetanic 

stimulation nor the resting discharge varied significantly over the time course of the 

experiments. This leads to the suggestion that spindle afferents were not undergoing time 

dependent changes in firing properties and that the EDL muscle was returning to resting 

length after each stretch. 

4.3.4 Statistical analysis 

Exclusively single unit spindle afferent responses which were recorded without interruption 

throughout the entire experiment, i.e. before and after the addition of a drug, were included 

in the analysis. All statistical analyses were performed by using GraphPad Prism (v8; 

GraphPad Software, Inc., La Jolla, CA, USA). The level of significance (P-value) for all 

statistical tests was set at *P < 0.05, **P < 0.01, ***P < 0.001, **** P < 0.0001. 
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Date from wildtype mice were compared to data from mutant mouse lines by 

determining all parameters of ramp-and-hold stretches (baseline firing rate, dynamic peak, 

dynamic index and the static stretch response) as an average of three stretches for all 

mouse lines. Afterwards the values from mutant mouse lines were compared statistically by 

performing a one-way ANOVA (factor: mutation) with Dunnett’s post hoc test to the wildtype 

(BL6 or BL10) control group. All values are reported as mean of the frequency (imp/sec) in 

a dot plot. Each dot represents an individual muscle spindle afferent. 

To analyse sinusoidal vibrations, the total number of action potentials per 9 sec 

(imp/9 sec) for each of the 4 frequencies and 4 amplitudes were determined for all mouse 

lines. Data are presented as imp/9 sec in a dot plot. Each dot represents an independent 

experiment. Testing for statistical significance was done by using the three-way ANOVA 

(factors: mutation, amplitude and frequency). Additionally, all responses to the 16 different 

vibrations were compared individually with the one-way ANOVA (factor drug; Dunnett’s 

multiple comparisons test) to the wildtype controls.  

Data from pharmacological experiments, i.e. with hemicholinium-3, were statistically 

analysed as previously described by Gerwin et al. (2019). Baseline values for all parameters 

for ramp-and-hold stretches (resting discharge, dynamic peak, dynamic index and the static 

response) were determined as an average of three stretches before drug addition. After 

drug addition and equilibration, the firing frequencies were determined again from an 

average of three stretches. Action potential frequencies of individual muscle spindle 

afferents before drug addition were subtracted from the action potential frequencies after 

drug addition. In the no-drug control group the same time points within a ramp-and-hold 

stretch (RD, DP, DI and SR) were used to calculate the change in firing frequency. The 

mean of the overall changes in firing rate of all drug groups were compared statistically by 

using the one-way ANOVA (factor: drug) with Dunnett’s post hoc test to the no-drug (ACSF) 

control group. All values are reported as mean of the action potential frequency change 

from pre- to post-drug addition (Δmean; imp/sec) in a dot plot. Each dot represents an 

individual muscle spindle afferent. 

For sinusoidal vibrations, the total number of action potentials per 9 sec (imp/9 sec) 

for each of the 4 amplitudes and 4 frequencies before drug addition were subtracted from 

the corresponding values (imp/9 sec) after drug addition. Data are presented as Δimp/9 sec 

in a dot plot. Each dot represents an independent experiment. Statistical significance was 

determined by using the three-way ANOVA (factors: drug, frequency and amplitude). 

Furthermore, all responses to the 16 different vibrations were compared in the absence and 

presence of all drugs to the no drug control by using the one-way ANOVA (factor drug) with 

Dunnett’s multiple comparisons test.  
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5 Results 

5.1 Validation of the experimental protocol 

Wilkinson et al. (2012) previously published an experimental protocol for extracellular 

recordings from muscle spindle afferents that I used in my thesis. To validate if my 

experimental setup and my method of analysis were comparable to the published data, I 

reproduced the results previously reported by the Wilkinson lab. 

The EDL muscle from wildtype mice was dissected and the response of triplicates 

of 9 ramp-and-hold stretches were recorded. The results were then compared with the data 

from the literature (Wilkinson et al., 2012). No significant difference to the published data 

was observed for the resting discharge, dynamic peak, dynamic index or static response. 

Additionally, 16 sinusoidal vibrations were analysed, and the data showed the same 

distribution of multiple, harmonic, subharmonic and no entrainment as described by 

Wilkinson et al. (2012). Collectively, these results strongly suggest that my experimental 

setup and my method of analysis were comparable to those published previously by the 

Wilkinson lab. This provided strong confidence to further analyse muscle spindle afferent 

responses to stretch under various experimental conditions. 

 

5.2 The AChR at the central part of the muscle spindle 

5.2.1 Distribution of the AChR at the central part of the muscle spindle 

The presence of mRNA which codes for the α- and ε-subunit of the AChR in the equatorial 

part of intrafusal muscle fibers as well as a concentration of α-, γ- and ε-subunit-containing 

AChRs at the contact site of the sensory nerve terminal and the intrafusal muscle fibers 

were reported previously (Sanes et al., 1991, Hippenmeyer et al., 2002, Zhang et al., 2014). 

Therefore, I investigate the distribution of the AChRs with respect to the sensory nerve 

terminal in detail in sections from the M. soleus. I stained these sections with fluorescently 

labelled α-bungarotoxin and anti-vGluT1 antibodies. A subsequent high-resolution confocal 

microscopic analysis of the equatorial region of the intrafusal muscle fibers revealed a 

precise codistribution of the AChRs with the vGluT1 immunoreactivity (Figure 5). A similar 

distribution of AChRs was observed in muscle spindles from EDL, quadriceps and soleus 

muscles. This positive fluorescent labelling represents a concentration of the AChRs in the 

intrafusal fiber plasma membrane at the contact region with the sensory nerve terminal as 

was previously described by Zhang et al. (2014). Some α-bungarotoxin labelling could be 

observed in the area of the intrafusal muscle fibre membrane between the annulospiral 

endings. Overall, a similar spatial distribution of the AChRs was detected in nuclear bag as 

well as in nuclear chain fibres from a number of different muscles (Gerwin et al., 2019). 
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Thus, a concentration of AChRs appears to be a general characteristic for the contact site 

between sensory nerve ending and intrafusal plasma membrane. 

 

Figure 5: AChRs colocalise with the sensory nerve terminals at the central region of muscle 
spindles. A and B, high-resolution confocal z-scan of the distribution of AChRs (green channel, A) 
and the sensory nerve terminal shown by anti-VGluT1 immunoreactivity (red channel, B) in the 
equatorial region of a nuclear chain fiber of a soleus muscle. C, the precise overlap of both staining 
patterns at the contact site between sensory neuron and intrafusal muscle fiber can be seen in the 
merged image (Gerwin et al., 2019). 

 

5.2.2 Effect of AChR blockers and hemicholinium-3 on action potential 

frequencies during ramp-and-hold stretches 

To investigate the function of the AChRs at the contact site between sensory nerve terminal 

and intrafusal muscle fibre, I analysed individual muscle spindle afferent responses to ramp-

and-hold stretches in the presence and absence of the AChR blockers d-tubocurarine and 

α-bungarotoxin (Figure 6). Firing rates were analysed at four different time points (Figure 

6D) before (RD) and during (DP, DI, SR) the stretch each before and after drug 

administration. Figure 6 shows the action potentials during a ramp-and-hold stretch (Figure 

6C) of one representative muscle spindle afferent neuron before (Figure 6A) and after 

(Figure 6B) the administration of 1.25 µM α-bungarotoxin. Figure 6E shows an exemplary 

image of the action potential firing frequency of a single proprioceptive sensory unit. The 

responses to a ramp-and-hold stretch before (green dots) and after (grey dots) addition of 

α-bungarotoxin (α-Btx) can be seen. The administration of α-bungarotoxin did not influence 

the resting discharge and the variation of RD frequencies were not larger than the normal 

variation of the frequency during the time course of the experiment. In contrast, DP, DI and 

SR were substantially increased after α-bungarotoxin administration (Gerwin et al., 2019). 
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Figure 6: An inhibition of AChRs increases the stretch-evoked sensory afferent action 
potential firing frequencies. A and B, action potentials of the same muscle spindle proprioceptive 
afferent during a ramp-and-hold stretch (C) in the absence (A) and presence (B) of α-bungarotoxin. 
(C) A ramp-and-hold stretch of 4 sec with a ramp speed of 40 % Lo/sec and a length change of  
7.5 % Lo. (D) The response of a muscle spindle afferent to a ramp-and-hold stretch to illustrate the 
four different parameters that were analysed before and during the stretch: resting discharge (RD), 
dynamic peak (DP), dynamic index (DI) and static response (SR). (E) representative image of the 
action potential firing frequency of the same proprioceptive sensory unit in response to a ramp-and-
hold stretch before (green dots) and after (grey dots) the addition of α-bungarotoxin (α-Btx).  
α-bungarotoxin did not influence RD but DP, DI and SR were increased (Gerwin et al., 2019). 
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The action potential frequencies of DP, DI and SR changed with the length of the stretch. 

In Figure 7 these changes are shown for one exemplary spindle recording of ACSF,  

α-bungarotoxin and d-tubocurarine. The imp/sec before drug administration were 

subtracted from the imp/sec after drug administration for RD, DP, DI and SR. The values 

are expressed as Δmean imp/sec for triplicates of 2.5, 5 and 7.5 % Lo stretch length change, 

respectively. The RD did not differ between control experiments and the drug experiments 

(Fig. 8A). In contrast, the frequency of DP, DI and SR in the presence of α-bungarotoxin or 

d-tubocurarine increased significantly with increasing lengths (Fig. 8 B-D) whereas the 

frequencies of ACSF-control remained constant at all length changes. Since the most 

significant changes in frequency where observed at a stretch length of 7.5 % Lo these 

stretches were used for my subsequent statistical analysis.  

 

 

 

 

Figure 7: Firing frequencies increased with stretch length after administration of AChR 
blockers. The imp/sec before drug administration during ramp-and-hold stretches of 2.5, 5 and 7.5 
% Lo stretch length change were subtracted from the imp/sec after drug administration for RD, DP, 
DI and SR. The values are expressed as Δmean imp/sec for triplicates of each 2.5, 5 and 7.5 % Lo 
stretch length change. No changes in frequency can be observed at RD (A) after administration of 
ACSF or a drug whereas at DP (B), DI (C) and SR (D) an increase of frequency is observed with 
stretch length after drug administration. In contrast, no increase is observed after ACSF 
administration during stretch. 
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To investigate the function of AChRs at the contact region between the sensory nerve 

terminal and the intrafusal muscle fiber, I analysed individual muscle spindle afferent 

responses to a ramp-and-hold stretch (Lo plus 7.5 % of Lo; ramp speed 40 % Lo/sec), 

before and after the addition of the AChR blockers d-tubocurarine and α-bungarotoxin, as 

well as the choline uptake inhibitor hemicholinium-3 (Gerwin et al., 2019). At four different 

time points before (RD) and during (DP, DI and SR) the stretch the action potential firing 

frequency were analysed in detail. Neither drug influenced the resting discharge (Figure 

8A). In contrast, all drugs increased the action potential firing frequency during a ramp-and-

hold stretches (Figure 8 B-D) compared to the action potential frequencies of the same 

muscle spindle afferents before drug addition. The overall effect of the drugs was analysed 

by using the one-way ANOVA (factor: drug). No differences for the resting discharge  

(P= 0.0610), but statistically significant differences for the dynamic peak (P = 0.0100), 

dynamic index (P = 0.0204) and static response (P = 0.0459) were revealed. 

For a better comparison of the specific effect of the individual drugs, the results were 

expressed as Δmean. This Δmean represents the mean of the difference in frequency 

(imp/sec) before compared to after drug addition. Neither AChR inhibitor had an effect on 

the resting discharge (Δmean control: 2.092 imp/sec; Δmean d-tubocurarine: 1.346 imp/sec; 

Δmean α-bungarotoxin: 4.758 imp/sec; Dunnett’s post hoc test relative to ACSF control:  

P = 0.9664, control vs. d-tubocurarine; P = 0.4313, control vs. α-bungarotoxin; Figure 8A). 

Nevertheless, the dynamic peak (Δmean control: −12.04 imp/sec; Δmean d-tubocurarine: 

9.992 imp/sec; Δmean α-bungarotoxin: 26.53 imp/sec; Figure 8B) as well as the dynamic 

index (Δmean control: −5.413 imp/sec; Δmean d-tubocurarine: 2.78 imp/sec; Δmean  

α-bungarotoxin: 5.799 imp/sec; Figure 8C) were increased after drug addition compared to 

the same muscle spindle afferent before drug addition. The observed differences were 

statistically significant for the dynamic peak (P = 0.0442, control vs. d-tubocurarine;  

P = 0.0027, control vs. α-bungarotoxin; Figure 8B) as well as for the dynamic index  

(P = 0.0412, control vs. d-tubocurarine; P = 0.0073, control vs. α-bungarotoxin; Figure 8C). 

Moreover, α-Bungarotoxin also significantly increased the static response (Δmean control: 

−5.581 imp/sec; Δmean α-bungarotoxin: 18.69 imp/sec; P = 0.0169, control vs.  

α-bungarotoxin; Figure 9D), whereas d-Tubocurarine did not affect the static response 

(Δmean d-tubocurarine: 8.276 imp/sec; P = 0.2122, control vs. d-tubocurarine). Overall, 

these results demonstrate a higher instantaneous frequency and a higher sensitivity of 

muscle spindle responses to ramp-and-hold stretches in the presence of both AChR 

inhibitors. 

Hemicholinium-3 (HC-3) blocks the high-affinity uptake of choline into nerve 

terminals, including α-motoneuron terminals at the neuromuscular junction (Yu and Van der 

Kloot, 1991). Therefore, an application of HC-3 to neuromuscular junctions results in an 
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inhibition of ACh synthesis and release (Carpenter and Woodruff, 1987). To investigate if 

the blockade of vesicular acetylcholine uptake and release through HC-3 influenced the 

proprioceptive afferent responses to stretch I analysed muscle spindle firing frequency in 

response to ramp-and-hold stretches before and after the addition of the drug. I observed 

no effect of HC-3 on the resting discharge before and after drug addition (Δmean control: 

2.092 imp/sec; Δmean HC-3: −1.612 imp/sec; P = 0.235; Figure 8A). These data 

demonstrate that HC-3, like both tested AChR inhibitors before, did not activate  

-motoneuron endplates or had an effect on muscle spindle sensory afferents at resting 

length. However, the parameters analysed during the ramp-and-hold stretches, dynamic 

peak (Δmean control: −12.04 imp/sec; Δmean HC-3: 26.7 imp/sec; Figure 8B) and dynamic 

index (Δmean control: −5.413 imp/sec; Δmean HC-3: 16.35 imp/sec; Figure 8C) were 

significantly increased (Dunnett’s post hoc test relative to ACSF control; dynamic peak  

P = 0.0111; dynamic index P = 0.0071). I did not observe an effect of HC-3 on the static 

response (Δmean control: −5.581 imp/sec; Δmean HC-3: 8.867 imp/sec; static response  

P = 0.228; Figure 8D). 

Overall, these results demonstrate that muscle spindle afferent firing rates in 

response to stretch can be modulated by ACh uptake, synthesis and release. This 

modulation leads to an increase of the afferent firing rates in the response to stretch. 
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Figure 8: Neither d-Tubocurarine, α-bungarotoxin nor hemicholinium-3 have an effect on the 
resting discharge frequency but increase the firing rate during ramp-and-hold stretches.  
The effect of d-tubocurarine, α-bungarotoxin or hemicholinium-3 on stretches of 7.5 % of Lo on single 
proprioceptive afferents was determined before and after the addition of each drug. The values 
(imp/sec) before drug addition were subtracted from the values after drug addition. The results are 
presented in a dot plot with each dot representing an individual muscle spindle afferent. Mean values 
are indicated as horizontal line. Five spindles, each from a different mouse, were analysed in the 
presence and absence of α-bungarotoxin or d-tubocurarine (n = 5). Four mice were evaluated in the 
presence and absence of hemicholinium-3 (n = 4) and control values represent muscle spindle 
activities where ACSF was added instead of a drug (n = 5). Addition of either drug had no influence 
on RD (A) but increased the firing frequencies during DP (B) and DI (C). SR was also increased after 
α-Bungarotoxin administration (D). Statistical significance was evaluated using one-way ANOVA 
(factor: drug) with Dunnett’s post hoc corrections. *<0.05, **<0.01, ***<0.001, ****<0.0001. (Gerwin 
et al., 2019) 
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Table 1: Mean values (frequencies in imp/sec) ± SD of the responses to ramp-and-hold stretches 
before and after administration of ACSF, α-bungarotoxin, d-tubocurarine or HC-3 (Gerwin et al., 
2019). 

 
Mean (imp/sec) 

 Control α-Bungarotoxin d-Tubocurarine HC-3 

 Before After Before After Before After Before After 

RD 13,0 ± 6,0 15,1 ± 5,8 18,4 ± 4,4 23,2 ± 5,8 16,4 ± 3,6 17,8 ± 2,4 20,8 ± 1,5 19,2 ± 2,8 

DP 94,2 ± 20,6 88,0 ± 31,5 56,8 ± 21,6 83,3 ± 34,5 60,5 ±23,5 70,5 ± 7,8 50,5 ± 14,7 77,2 ± 12,8 

DI 37,3 ± 9,3 34,2 ± 11,6 27,9 ± 10,3 33,7 ± 10,4 27,3 ± 8,6 30,1 ± 9,2 26,1 ± 5,3 42,5 ± 5,4 

SR 42,2 ± 12,9 40,3 ± 18,3 17,7 ± 7,4 36,4 ± 22,9 21,5 ±10,5 29,8 ±16,2 15,6 ± 1,8 24,4 ± 5,5 

 

 

5.2.3 Effect of d-tubocurarine, α-bungarotoxin and hemicholinium-3 on action 

potential frequencies during sinusoidal vibrations 

To analyse the function of the AChRs specifically during the dynamic response of a stretch, 

I determined the effect of both AChR blockers and of HC-3 on muscle spindle afferent 

responses to sinusoidal vibrations varying in displacement as well as in frequency as 

previously described (Gerwin et al., 2019). The tested stimuli included four different 

frequencies (10, 25, 50 and 100 Hz) and four different amplitudes (5, 10, 50 and 100 µm). 

In contrast to the ramp-and-hold stimuli, sinusoidal vibrations test the dynamic 

responsiveness at much smaller length changes and, thus, relatively selectively activate  

Ia-afferents (Brown et al., 1967). 

Ia-afferent units show a narrow time range to spike during the stretching phase of a 

sinusoidal vibration (phase lock). Therefore, I investigated if d-tubocurarine or  

α-bungarotoxin changed this firing pattern. In the presence of either d-tubocurarine or  

α-bungarotoxin, I did not observe a change in the phase locking. Thus, the exact time point 

during a vibration at which an action potential was generated did not change significantly in 

the presence of the drug (Figure 9). Wilkinson et. al. described that the units fire 

preferentially in the stretch phase of the cycle (Wilkinson et al., 2012). However, the units 

in this study fired preferentially at the peak of the stretch or during the release phase of the 

vibration. 
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Figure 9: AChR inhibitors do not change the firing pattern of muscle spindles during 
sinusoidal vibrations. The time range to spike of Ia-afferents during a sinusoidal vibration (lower 
panel, upward deflection corresponds to lengthening of the muscle) is shown before (upper panel) 
and after drug or ACSF administration (middle panel). No differences are observed after drug or 
ACSF administration or between the groups. Each dot represents a single muscle spindle afferent 
unit before and after drug or ACSF administration. 

 

Moreover, I observed an increase in firing frequency in response to sinusoidal vibrations 

after addition of all three drugs. Statistical analysis with the three-way ANOVA (factors: 

drug, amplitude and frequency) showed a significant change of the frequency before and 

after drug addition for the factor drug (P = 0.0003). The changes in the factors amplitude  

(P = 0.6465) and frequency (P = 0.0602) were not statistically significant. The effect was 

also significant for the drug by frequency analysis (P = 0.0176) but the drug by amplitude 

(P = 0.5672), the amplitude by frequency (P = 0.7768) or the drug by amplitude and 

frequency analysis (P = 0.522) were not significant. 

Moreover, each of the 16 sinusoidal vibrational stimuli was analysed individually 

before and after drug addition by using the one-way ANOVA with Dunnett’s multiple 

comparison test. This analysis revealed that the frequency were significantly increased in 

the presence of α-bungarotoxin. This increase appeared particularly at high frequencies (50 

and 100 Hz) and small amplitudes (5 and 10 μm; Figure 10 B and C) but not at higher 
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amplitudes (50 and 100 μm; Figure 10 D and E) compared to the ACSF control. I detected 

no significant change in the presence of d-tubocurarine or HC-3 (Figure 10 B–E). 

 

 

Figure 10: Responses of muscle spindle sensory afferents to sinusoidal vibrations in the 
presence and absence of cholinergic inhibitors. (A) Individual action potentials of an exemplary 
muscle spindle afferent in response to sinusoidal length changes (displayed below). In the absence 
of d-tubocurarine the muscle spindle afferent entrained with every 4th vibration (left side) whereas 
after drug addition the firing frequency increased and entrained with every 2nd vibration (right side). 
(B–E) Quantification of the 16 different sinusoidal vibrations (5, 25, 50 and 100 μm amplitude with 
each 10, 25, 50 and 100 Hz frequency). The impulses before drug, or ACSF for the control group, 
addition were subtracted from the impulses after drug addition (imp/9 sec) and presented as dot in a 
dot plot. Each dot represents an individual muscle spindle afferent. The mean of 5 (ACSF,  
α-bungarotoxin or d-tubocurarine) or 4 (hemicholinium-3) individual experiments is indicated as red 
line. Statistically significance was determined by using the one-way ANOVA (factor: drug) with 
Dunnett’s post hoc test to the no drug control. Only significant changes are indicated *<0.05, **<0.01, 
***<0.001, ****<0.0001. (Gerwin et al., 2019).  

 

The absolute values (imp/9 sec ± SD) of the responses to sinusoidal vibrational stimuli are 

shown in Table 2. Overall, the effect of all three drugs on muscle spindle afferent responses 

to sinusoidal vibrations further support the hypothesis of a role for AChRs in modulating 

muscle spindle function during the dynamic phase of a muscle stretch. 
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Table 2: Mean values (in impulses per 9 sec) ± SD of the responses of muscle spindle afferents to 
all 16 sinusoidal vibrations before and after administration of ACSF, α-bungarotoxin, d-tubocurarine 
or HC-3 (Gerwin et al., 2019). 

  Amplitude 

Frequency   5 µm 10 µm 50 µm 100 µm 

Control 
 

        

  10 Hz Before 119,5 ± 61,6 148,3 ± 80,2 155,9 ± 83,8 176,3 ± 56,7 

After 135,2 ± 49,6 133,8 ± 46,8 130,4 ± 42,7 191,6 ± 60,1 

  25 Hz Before 122,9 ± 65,4 207,5 ± 68,1 221,5 ± 39,1 234,5 ± 13,4 

After 143,2 ± 58,2 211,8 ± 26,4 229,4 ± 8,3 267,6 ± 76,9 

  50 Hz Before 125,2 ± 67,5 241,4 ± 89,6 433,2 ± 257,1 448,4 ± 71,4 

After 143,0 ± 56,3 234,4 ± 38,6 358,6 ± 79,8 454,6 ± 8,7 

  100 Hz Before 124,2 ± 66,9 232,8 ± 95,2 455,8 ± 239,1 887,9 ± 231,2 

After 138,8 ± 56,4 236,4 ± 43,3 484,6 ± 220,3 716,2 ± 210,8 
  

   

α-Bungarotoxin     

  10 Hz Before 182,5 ± 29,8 144,8 ± 43,9 162,0 ± 35,5 162,4 ± 36,2 

After 208,6 ± 57,4 191,8 ± 51,2 195,2 ± 52,7 207,4 ± 66,8 

  25 Hz Before 158,8 ± 60,4 202,2 ± 44,6 206,8 ± 36,9 224,8 ± 0,4 

After 207,8 ± 49,3 203,2 ± 45,1 202,8 ± 44,4 246,2 ± 55,1 

  50 Hz Before 156,2 ± 68,3 221,4 ± 69,6 344,8 ± 131,0 386,6 ± 88,7 

After 217,4 ± 54,0 355,8 ± 128,7 390,0 ± 119,5 405,4 ± 90,2 

  100 Hz Before 155,6 ± 57,1 233,2 ± 79,4 385,0 ± 159,8 729,0 ± 290,4 

After 228,6 ± 62,2 378,6 ± 149,8 651,4 ± 303,1 767,0 ± 267,5 
  

   

d-Tubocurarine     

  10 Hz Before 147,2 ± 32,4 137,2 ± 40,0 141,6 ± 40,9 168,6 ± 22,8 

After 152,6 ± 31,2 148,6 ± 39,4 161,4 ± 24,6 180,2 ± 1,0 

  25 Hz Before 155,2 ± 36,0 198,2 ± 44,4 207,8 ± 36,9 227,0 ± 1,7 

After 170,8 ± 26,7 211,2 ± 28,1 227,4 ± 1,6 227,0 ± 2,1 

  50 Hz Before 161,4 ± 38,6 223,6 ± 56,8 337,0 ± 99,4 450,4 ± 0,5 

After 181,8 ± 34,9 279,4 ± 97,2 403,0 ± 62,0 450,2 ± 0,4 

  100 Hz Before 157,6 ± 34,7 227,4 ± 65,2 378,4 ± 91,9 637,8 ± 215,0 

After 178,0 ± 32,5 294,4 ± 92,2 509,2 ± 207,7 672,4 ± 211,5 
  

   

HC-3     

  10 Hz Before 190,7 ± 12,8 209,7 ± 7,3 212,3 ± 17,4 207,3 ± 17,9 

After 242,3 ± 65,2 255,0 ± 52,2 251,7 ± 43,9 267,0 ± 46,6 

  25 Hz Before 183,7 ± 20,0 220,7 ± 8,0 330,3 ± 1,2 317,7 ± 2,0 

After 229,7 ± 60,8 267,0 ± 46,8 358,0 ± 36,1 365,7 ± 34,9 

  50 Hz Before 174,0 ± 18,7 228,7 ± 82,4 379,3 ± 93,2 600,3 ± 87,0 

After 229,3 ± 60,9 258,7 ± 88,1 400,7 ± 75,8 656,0 ± 25,6 

  100 Hz Before 181,7 ± 16,5 228,3 ± 73,6 381,7 ± 240,9 704,0 ± 247,7 

After 227,0 ± 71,6 266,7 ± 102,1 436,7 ± 210,7 826,7 ± 134,2 
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5.3 Altered muscle spindle function in murine models of muscular 

dystrophy 

Duchenne muscular dystrophy is a disease that leads to an increased degeneration of 

muscle fibers. Histological hallmarks of the disease are variable fiber calibre as well as 

centralised nuclei, a loss of extrafusal muscle fibers and an infiltration of connective tissue 

and fat cells. It is unclear if intrafusal fibers are similarly affected as extrafusal muscle fibers. 

There are conflicting reports regarding the morphology of intrafusal muscle fibers in patients 

with muscle dystrophy and it cannot be excluded that some of the morphological changes 

are due to post-mortem damage and other, age-related degenerative processes (Gossrau 

and Grozdanovic, 1997, Johnson and Ovalle, 1986, Nahirney and Ovalle, 1993, Ovalle and 

Dow, 1986, Swash and Fox, 1976). In any case, patients with Duchenne muscular 

dystrophy fall and trip more often compared to healthy control groups (Hsu and Furumasu, 

1993, Pradhan et al., 2006) and a functional analysis of muscle spindles has not been 

performed yet. To investigate if intrafusal fibers are similarly affected by the mutation as are 

extrafusal fibers, I analysed the morphology and function of adult muscle spindles in several 

mouse models for muscular dystrophies. 

5.3.1 Dystrophin at the central part of the muscle spindle 

The distribution of dystrophin in the central part of muscle spindles in mice has been 

previously described (Nahirney and Ovalle, 1993) and it was reported that dystrophin is 

concentrated in the area between the contact region of the sensory nerve terminal with the 

intrafusal fiber and is excluded from the area of contact to the sensory nerve terminal. To 

investigate the exact distribution of dystrophin in mouse models with respect to the sensory 

nerve terminal of the muscle spindle, I analysed sections stained with anti-dystrophin and 

anti-vGluT1 antibodies. High resolution confocal microscopic analysis of the central region 

of intrafusal muscle fibers, demonstrated an alternating staining pattern of dystrophin and 

the sensory nerve terminal (Figure 11). This indicates a concentration of dystrophin in the 

intrafusal fiber between the contact region of the sensory nerve terminal and the intrafusal 

fibers of mice, similar to what has been described by Nahirney and Ovalle. 
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Figure 11: Distribution of dystrophin at the central part of the muscle spindle. Dystrophin (B, 
green panel) is concentrated in the area between the contact region of the sensory nerve terminal 
(A, red panel) with the intrafusal fiber. Nuclear chain fiber, Scale bar = 10 µm. 

 

5.3.2 The dystrophin-associated glycoprotein complex at the central part of the 

muscle spindle 

Dystrophin is part of the dystrophin-associated glycoprotein complex (DGC). In the 

sarcolemma of extrafusal fibers this complex has the function to connect the extracellular 

matrix with the intracellular cytoskeleton and by this secures mechanical stability of the 

sarcolemma during contraction (Chan et al., 1998, Ervasti, 2003, Ervasti and Campbell, 

1991, Ozawa et al., 1998, Yoshida et al., 2000). To study if other components of the DGC 

are present at the central part of the muscle spindle and if they codistribute with dystrophin, 

I analysed sections stained with anti-beta-dystroglycan antibodies. Confocal microscopic 

analysis of the central region of intrafusal muscle fibers, demonstrated an alternating 

staining pattern of beta-dystroglycan immunoreactivity and the sensory nerve terminal 

(Figure 12), comparable to the staining pattern obtained with antibodies against dystrophin 

(Figure 11). This indicates a codistribution of beta-dystroglycan and dystrophin in the 

intrafusal fiber and suggests the presence of the DGC at the central part of the muscle 

spindle. 
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Figure 12: Distribution of beta-dystroglycan at the central part of the muscle spindle. Beta-
dystroglycan (B, green panel) is concentrated in the area between the contact region of the sensory 
nerve terminal (A, red panel) with the intrafusal fiber, comparable with the staining pattern of 
dystrophin. Nuclear chain fiber, Scale bar = 10 µm. 

 

5.3.3 Utrophin at the central part of the muscle spindle 

The DGC has a differential composition at different regions along the extrafusal fiber. At the 

neuromuscular junction, dystrophin is replaced by an autosomal homologue named 

utrophin (Pilgram et al., 2010). In contrast, extrajunctional regions of the extrafusal fiber 

plasma membrane contain a DGC with dystrophin. To investigate if utrophin is present at 

the central part of the muscle spindle, I analysed sections stained with anti-utrophin 

antibodies. No signal with anti-utrophin antibodies was detected at the equatorial part of 

intrafusal fibers (Figure 13), suggesting an absence of utrophin at this area of the muscle 

spindle. Extrafusal fibers stained in parallel with the intrafusal fibers show a strong 

immunoreactivity at neuromuscular junctions (data not shown), demonstrating the 

specificity of the antibodies. 
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Figure 13: Distribution of utrophin at the central part of the muscle spindle. Utrophin (B, green 
panel) is not concentrated at the central part of the muscle spindle. The annulospiral ending is stained 
with anti-VGluT1 (A, red panel). Nuclear chain fiber, Scale bar = 10 µm. 

 

5.3.4 The morphology of the central part of the muscle spindle in DMDmdx-mice 

The DMDmdx-mouse has a mutation in the DMD gene, leading to an absence of dystrophin 

in extrafusal fibers. Thus, this mouse line is a model to study Duchenne muscular dystrophy 

in rodents. The absence of dystrophin in skeletal muscles leads to an increased 

degeneration of muscle fibers with typical signs of degenerative and regenerative 

processes. These include variable fiber calibre as well as centralised nuclei and loss of 

extrafusal fibers. To study if the absence of dystrophin also affects the morphology of the 

central part of the muscle spindle, I analysed sections from wildtype (WT) and DMDmdx mice 

stained with anti-vGluT1 and anti-dystrophin antibodies. Sections of utrophin-/- mice (utro-/-) 

were used as control, since utrophin was not detectable in this region of the muscle spindle. 

The same distribution and apparent intensity of the anti-vGluT1 staining of the 

sensory nerve terminal were observed in WT, utro-/- and DMDmdx-mice (Figure 14), 

suggesting a similar morphology of the annulospiral endings in these three mouse-lines. 

Additionally, the same distribution of dystrophin could be observed in WT and utro-/- mice 

and – as expected – no dystrophin immunofluorescence was detected in DMDmdx mice. 



51 
 

 

Figure 14: Distribution of dystrophin at the central part of the muscle spindle in DMDmdx- and 
utro-/- mice. Dystrophin (green panel) is concentrated at the central part of the muscle spindle in the 
area between the contact region of the sensory nerve terminal with the intrafusal fiber in WT and 
utro-/- mice. No positive staining for dystrophin was observed in DMDmdx-mice due to the knockout of 
dystrophin. The annulospiral ending was stained with anti-VGluT1 (red panel). No difference in the 
distribution of VGluT1 was discovered between the three mouse models. WT and utro-/- mice nuclear 
chain fiber, DMDmdx-mice nuclear bag fiber, Scale bar = 10 µm. 

 

To further investigate the molecular composition and the distribution of the DGC in the 

central region of muscle spindles from DMDmdx mice, I analysed sections from WT and 

DMDmdx-mice stained with anti-vGluT1 and anti-beta-dystroglycan antibodies. Sections of 

utro-/- mice were used as additional control. Again, the same distribution and intensity of the 

anti-vGluT1 staining of the sensory nerve terminal were observed in WT, utro-/- and DMDmdx 

mice (Figure 15), suggesting a similar composition and subcellular distribution of the DGC 

in intrafusal fibers of wildtype and mutant mice. Furthermore, the overall distribution of the 

anti-beta-dystroglycan immunoreactivity was comparable in WT, utro-/- and DMDmdx mice, 

suggesting that the absence of Dystrophin did apparently not impact the general subcellular 

concentration of -dystroglycan. I noticed however that the -dystroglycan distribution was 

slightly more diffuse in both mutant mice and not as clear compared to the wildtype-mice. 
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Figure 15: Distribution of beta-dystroglycan at the central part of the muscle spindle in 
DMDmdx- and utro-/--mice. Beta -dystroglycan (green panel) is concentrated at the central part of the 
muscle spindle in the area between the contact region of the sensory nerve terminal with the 
intrafusal fiber in WT, DMDmdx- and utro-/- mice. The annulospiral ending is stained with anti-vGluT1 
(red panel). No differences in the distribution of VGlutT1 were observed between the three mouse 

models. However, the -dystroglycan immunoreactivity in DMDmdx mice was slightly more diffuse 
compared to the other mouse lines. WT, DMDmdx- and utro-/- mice nuclear chain fiber, Scale bar = 10 
µm. 

 

5.3.5 Muscle spindle function in DMDmdx-mice 

Intrafusal fibers appeared to be morphologically less affected in DMDmdx-mice compared to 

extrafusal fibers. I did not observe gross structural changes in the annulospiral endings 

between wildtype and the different mutant mice. To investigate if muscle spindle function is 

altered in DMDmdx- and utro-/- mice, I analysed individual muscle spindle afferent unit 

responses to a ramp-and-hold stretch (Lo plus 7.5 % of Lo; ramp speed 40 % Lo/sec). Four 

different time points examining firing rates before (RD) and during (DP, DI and SR) the 

stretch from mutant mice were analysed in detail and compared to the results from wildtype 

mice (see Figure 3 for details). Analysis of the overall effect of the mutation using the one-

way ANOVA (factor: mutation) revealed a statistically significant difference for the resting 

discharge (P < 0.0001), but no significant differences for the dynamic peak (P = 0.2353), 

dynamic index (P = 0.3157) and static response (P = 0.3465). 

The resting discharge of the DMDmdx-mice was significantly increased compared to 

wildtype and utro-/- mice (mean BL10: 13.7 imp/sec; mean utro-/-: 13.6 imp/sec; mean 

DMDmdx: 26.0 imp/sec; Dunnett’s post hoc test relative to DMDmdx mice: P < 0.0001, DMDmdx 

vs. BL10; P < 0.0001, DMDmdx vs. utro-/- ; Figure 16 A). However, dynamic peak (mean 
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BL10: 89.1 imp/sec; mean utro-/- : 81.9 imp/sec; mean DMDmdx: 114.5 imp/sec; Dunnett’s 

post hoc test relative to DMDmdx mice: P = 0.3549, DMDmdx vs. BL10; P = 0.1855, DMDmdx 

vs. utro-/- ; Figure 16 B), dynamic index (mean BL10: 44.9 imp/sec; mean utro-/- :  

40.4 imp/sec; mean DMDmdx: 53.6 imp/sec; Dunnett’s post hoc test relative to DMDmdx mice: 

P = 0.5206, DMDmdx vs. BL10; P = 0.2364, DMDmdx vs. utro-/- ; Figure 16 C) and static 

response (mean BL10: 27.6 imp/sec; mean utro-/- : 29.0 imp/sec; mean DMDmdx:  

40.0 imp/sec; Dunnett’s post hoc test relative to DMDmdx mice: P = 0.3186, DMDmdx vs. 

BL10; P = 0.3856, DMDmdx vs. utro-/- ; Figure 16 D) were not increased compared to the 

wildtype control. Overall, the results demonstrate a higher firing frequency of DMDmdx-mice 

muscle spindle responses at resting length compared to wildtype mice. These results also 

demonstrate that a loss of dystrophin affects muscle spindle afferent firing rates at resting 

length. The absolute values of the mean muscle spindle afferent frequencies for each of the 

three mouse lines are given in Table 3 together with the corresponding standard deviations. 

 

 

Figure 16: Muscle spindle function in DMDmdx- and utro-/- mice compared to WT mice. (A) RD 
was significantly increased in DMDmdx-mice compared to WT (control) or utro-/- mice. DP (B), DI (C) 
and SR (D) were not changed in DMDmdx-mice compared to WT or utro-/- mice. Each dot represents 
an individual muscle spindle signal, mean values are indicated as black line. Control: N=6, n=11; 
utro-/-: N=7, n=12; DMDmdx: N=6, n=12; One-way ANOVA with Dunnett’s multiple comparison test: 
*<0.05, **<0.01, ***<0.001, ****<0.0001. Only significant changes are indicated. 
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Table 3: Mean values (frequencies in imp/sec) ± SD from BL10, utro-/-- and DMDmdx mice in 
response to ramp-and-hold stretches. 

 Mean (imp/sec) 

 BL10 utro-/- DMDmdx 

RD 13.7 ± 4.8 13.6 ± 5.7 26.0 ± 7.5 

DP 89.1 ± 39.2 81.9 ± 57.1 114.5 ± 45.3 

DI 44.9 ± 21.0 40.4 ± 23.5 53.6 ± 18.8 

SR 27.6 ± 17.5 29.0 ± 27.9 40.0 ± 19.2 

 

DP and SR were calculated depending on the RD values (see 4.3.1). Since RD values are 

changed significantly in DMDmdx-mice compared to WT and utro-/- mice I tested if DP and 

SR still remain unchanged in DMDmdx-mice compared to WT and utro-/- mice if RD-values 

are not subtracted from DP or SR values. Therefore, DP was determined as highest firing 

rate during ramp and SR was determined as firing rate at 3.25 to 3.75 sec into stretch. 

Again, no significant differences were observed between mutant and WT mice when the 

non-normalised values were compared. The results are summarised in Table 4. 

 

Table 4: Mean values (frequencies in imp/sec, not depending on RD) ± SD of DP and SR from 
BL10, utro-/- and DMDmdx-mice in response to ramp-and-hold stretches. 

 Mean (imp/sec) 

 BL10 utro-/- DMDmdx 

DP 102.8 ± 39.6 91.2 ± 56.7 132.1 ± 39.8 

SR 44.3 ± 16.3 41.2 ± 28.5 65.9 ± 22.8 

 

To study the muscle spindle function of DMDmdx-mice with respect to the dynamic phase of 

a muscle stretch, I analysed the muscle spindle afferent discharge response to sinusoidal 

vibrations varying in both displacement and frequency. I observed an increase in firing 

frequencies in response to sinusoidal vibrations for DMDmdx mice compared to WT and  

utro-/- mice. Statistical analysis using a three-way ANOVA (factors: mutation, amplitude and 

frequency) showed that the change of frequency was significant for the factor mutation  

(P = 0.0192), amplitude (P < 0.0001) and frequency (P < 0.0001). 

Additionally, each of the 16 vibrational stimuli from DMDmdx-mice were compared to 

the corresponding values from WT and utro-/- mice with a one-way ANOVA and Dunnett´s 

multiple comparison test. This analysis revealed that the frequencies from DMDmdx-mice 

were significantly increased at small amplitudes (5 µm, Figure 17 A) and low frequencies 

(10 Hz and 25 Hz, Figures 17 B, C and D) compared to WT- and utro-/- mice. The absolute 

values (imp/9 sec ± SD) for the responses to all 16 sinusoidal vibrations are shown in Table 

5.  
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Collectively, the analysis of the response of wildtype and dystrophic mice to 

sinusoidal vibrational stimuli revealed an altered sensitivity of dystrophic mice compared to 

wildtype mice at vibrations with low frequencies and small amplitudes. 

 

 

Figure 17: Muscle spindle response to sinusoidal vibrations in BL10 (Control), utro-/- and 
DMDmdx-mice. DMDmdx-mice show a significantly higher firing frequency in response to small 
sinusoidal vibrations (A) and slow frequencies (10 Hz and 25 Hz; B-D) compared to BL10 and utro-/- 
mice. Control: N=5, n=12; utro-/-: N=7, n=12; DMDmdx: N=6, n=12; Mean is indicated as red bar; one-
way ANOVA with Dunnett´s multiple comparison-test, P-values: *<0.05, **<0.01, ***<0.001, 
****<0.0001. 
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Table 5: Mean values (in impulses per 9 sec) ± SD of the responses of muscle spindle afferents to 
all 16 sinusoidal vibrations from BL10, utro-/- and DMDmdx-mice. 

  Amplitude 

Frequency 5 µm 10 µm 50 µm 100 µm 

BL10 
        

  10 Hz 90.3 ± 19.5 114.2 ± 37.9 138.5 ± 46.3 162.4 ± 33.3 

  25 Hz 123.0 ± 51.0 208.0 ± 47.9 214.7 ± 35.4 221.4 ± 17.4 

  50 Hz 143.0 ± 63.5 285.7 ± 112.2 379.6 ± 123.2 423.3 ± 84.4 

  100 Hz 140.1 ± 66.5 350.3 ± 148.0 596.6 ± 308.0 749.3 ± 268.3 

        
 

  
 

  
 

utro-/- 
        

  10 Hz 117.0 ± 51.1 123.2 ± 41.0 125.1 ± 37.1 149.4 ± 33.8 

  25 Hz 148.1 ± 46.5 185.6 ± 42.0 223.3 ± 18.4 240.1 ± 68.5 

  50 Hz 146.0 ± 45.3 276.8 ± 137.9 314.2 ± 113.7 396.3 ± 89.1 

  100 Hz 130.0 ± 47.8 327.6 ± 282.5 400.0 ± 256.2 689.8 ± 283.6 
         

DMDmdx 
        

  10 Hz 226.6 ± 71.2 216.0 ± 68.3 226.0 ± 60.4 230.1 ± 62.8 

  25 Hz 225.1 ± 64.9 249.8 ± 50.7 271.3 ± 75.6 317.0 ± 113.3 

  50 Hz 249.4 ± 80.4 375.3 ± 106.0 418.3 ± 60.8 450.4 ± 1.0 

  100 Hz 268.3 ± 91.5 478.1 ± 242.1 647.3 ± 273.8 842.8 ± 135.3 

 

5.3.6 Differences in muscle spindle function in BL6 and BL10 mice 

To investigate if the reduced sensitivity during ramp-and-hold stretches and during 

sinusoidal vibrations of DMDmdx-mice was directly due to the loss of the protein dystrophin 

or due to secondary effects in the dystrophic muscles, I analysed a mouse model with a 

different kind of muscular dystrophy, a dysferlinopathy. These mice also exhibit a 

degeneration of extrafusal fibers due to a loss of function of dysferlin, a protein which is 

important for membrane repair in muscles. The components of the DGC are not altered in 

this mouse line.  

These mice were bred on a C57/BL6 background whereas the DMDmdx- and utro-/- 

mice were bred on a BL10 background. Therefore, I initially determined if the response to 

stretch of mice with BL6 or BL10 background is similar. To this end, I compared muscle 

spindle afferent responses to stretch in both mouse lines. All parameters analysed were 

highly comparable between C57BL/6 and C57BL/10 animals and I detected no significant 

difference between both mouse lines (Figure 18). This demonstrates that muscle spindles 

from both mouse lines have very similar functional properties and therefore the subsequent 

results from mouse models with dysferlinopathy can be compared to the results from the 

DMDmdx-mice. 
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Figure 18: Differences in muscle spindle function between BL6 and BL10 mice in response to 
ramp-and-hold stretches. No differences between BL6 and BL10 mice in RD (A), DP (B), DI (C) or 
SR (D) were observed. BL6: N=5, n=12; BL10: N=7, n=12; Mean ± standard deviation; Student‘s t-
test, P-values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 

 

5.3.7 Dysferlin at the central region of the muscle spindle 

To investigate if dysferlin is present at the membrane of intrafusal fibers and to investigate 

it`s subcellular distribution, I analysed sections stained with anti-dysferlin and anti-VGluT1 

antibodies. High resolution confocal microscopic analysis of the equatorial region of 

intrafusal muscle fibers demonstrated anti-dysferlin immunoreactivity at the sarcolemmal 

membrane, in particular in the contractile region of intrafusal fibers (Figure 19 arrows). A 

comparable distribution was observed in extrafusal fibers (arrowheads in Fig. 19 B, C). This 

indicates a comparable subcellular distribution of dysferlin in intrafusal and extrafusal fibers 

(Figure 19). 
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Figure 19: Distribution of Dysferlin in extrafusal and intrafusal fibers. Dysferlin (green, panel B) 
is concentrated at the sarcolemma of extrafusal (arrow heads) and intrafusal fibers (arrows) in an 
alternating pattern. The Ia-afferent of the muscle spindle is stained with anti-VGluT1 (red, panel A). 
An unspecific binding of the anti-dysferlin antibody at nuclei was observed (panel B). Scale bar = 10 
µm. 

 

5.3.8 The morphology of the central part of the muscle spindle in Dysferlin-/- mice 

The Dysferlin-/- (dysf-/-) mouse is a mouse model to study dysferlinopathies (Bittner et al., 

1999). This mouse line has a mutation that leads to a similar phenotype as in DMDmdx-mice, 

i.e. an increased degeneration and loss of extrafusal muscle fibers. To investigate if a loss 

of dysferlin affects the morphology of the central part of muscle spindles, I analysed sections 

from WT and dysf-/- mice stained with anti-vGluT1 and anti-dysferlin antibodies. Sections of 

DMDmdx-dysf-/- double transgenic mice were used to investigate if the phenotype is additive. 

A comparable distribution and intensity of the anti-vGluT1 staining of the sensory 

nerve terminal were observed in WT, dysf-/- and DMDmdx dysf-/- mice (Figure 20), suggesting 

a rather normal morphology of the annulospiral ending in these three mouse lines. As 

expected, no dysferlin signal was observed in either mutant mice. 
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Figure 20: Distribution of dysferlin in intrafusal fibers of dysf-/- and DMDmdx-dysf-/- mice 
compared to WT mice. Dysferlin (green panel) is concentrated at the sarcolemma of intrafusal fibers 
at the central region in an alternating pattern (green) whereas no positive staining was seen in both 
mutant lines despite of the 25 % of residual dysferlin in theses mice. The annulospiral ending was 
stained with anti-VGluT1 (red). All shown intrafusal fibers are chain fibers. Scale bar = 10 µm. 

 

To further characterise the morphology and the distribution of the DGC at the central part 

of the muscle spindle of dysf-/- mice, I analysed sections from WT and mutant mice stained 

with anti-vGluT1 and either anti-dystrophin or anti-beta-dystroglycan antibodies. Similar to 

the other immunohistochemical analyses, I observed the same distribution and intensity of 

the anti-vGluT1 staining of the sensory nerve terminal in WT, dysf-/- and DMDmdx-dysf-/- mice 

(Figures 21 and 22), supporting the hypothesis that the morphology of the annulospiral 

endings in these three mouse-lines was unaffected by the respective mutation. 

Furthermore, the distribution of the anti-beta-dystroglycan immunoreactivity was 

unchanged in the mutant mice compared to wildtype mice, indicating a mutation-

independent distribution of beta-dystroglycan. The distribution of the anti-dystrophin 

immunoreactivity was unchanged in the dysf-/- mice compared to the WT mice, indicating 

that the lack of dysferlin did not affect the distribution of dystrophin and of the DGC. No 

dystrophin immunoreactivity was detected in the DMDmdx-dysf-/- mice due to the genetic 

ablation of this protein. 
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Figure 21: Distribution of dystrophin at the central part of muscle spindles in dysf-/- and 
DMDmdx-dysf-/- mice compared to WT mice. Dystrophin (green panel) is concentrated in the area 
between the contact region of the Ia-afferent with the intrafusal fiber in wildtype and dysf-/- mice. No 
positive fluorescent signal of the anti-dystrophin antibody was observed in DMDmdx-dysf-/- mice due 
to the knockout of this protein in this line. The annulospiral ending was stained with anti-VGluT1 (red 
panel). Scale bar = 10 µm. 

 

 

Figure 22: Distribution of beta-dystroglycan in dysf-/- and DMDmdx-dysf-/- mice compared to WT 
mice. Beta-dystroglycan (red panel) is concentrated in the area between the contact region of the 
Ia-afferent (green panel) with the intrafusal fiber. Scale bar = 10 µm 
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5.3.9 Muscle spindle function in dysf-/- mice 

The morphology of the annulospiral endings of the dysf-/- and DMDmdx dysf-/- mice appeared 

unchanged compared to wildtype mice. To investigate if muscle spindle function is altered 

in dysf-/- and DMDmdx-dysf-/- mice, I analysed individual muscle spindle afferent unit 

responses to a ramp-and-hold stretch (Lo plus 7.5% of Lo; ramp speed 40% Lo/sec). Four 

different time points examining firing rates before (RD) and during (DP, DI and SR) the 

stretch from mutant mice were analysed in detail and compared to the results from wildtype 

mice (C57BL/6). Analysis of the overall effect of the mutation using the one-way ANOVA 

(factor: mutation) revealed a statistically significant difference for the resting discharge  

(P = 0.0002), but no significant differences for the dynamic peak (P = 0.4357), dynamic 

index (P = 0.5032) or static response (P = 0.3413). 

The resting discharge of the dysf-/- and DMDmdx dysf-/- mice was significantly 

increased compared to wildtype mice (mean BL6: 9.0 imp/sec; mean dysf-/-: 18.1 imp/sec; 

mean DMDmdx-dysf-/- : 18.3 imp/sec; Dunnett’s post hoc test relative to BL6-mice:  

P = 0.0009, BL6 vs. dysf-/- ; P = 0.0003, BL6 vs. DMDmdx-dysf-/- ; Figure 23 A). However, 

dynamic peak (mean BL6: 94.9 imp/sec; mean dysf-/-: 94.9 imp/sec; mean DMDmdx-dysf-/- : 

75.1 imp/sec; Dunnett’s post hoc test relative to BL6-mice: P > 0.9999, Bl6 vs. dysf-/- ;  

P = 0.4329, BL6 vs. DMDmdx-dysf-/- ; Figure 23 B), dynamic index (mean BL6: 45.3 imp/sec; 

mean dysf-/-: 45.0 imp/sec; mean DMDmdx-dysf-/- : 36.0 imp/sec; Dunnett’s post hoc test 

relative to BL6 mice: P = 0.9991, BL6 vs. dysf-/- ; P = 0.4854, BL6 vs. DMDmdx-dysf-/- ; Figure 

23 C) and static response (mean BL6: 39.5 imp/sec; mean dysf-/- : 35.0 imp/sec; mean  

DMDmdx-dysf-/- : 26.6 imp/sec; Dunnett’s post hoc test relative to BL6 mice: P = 0.8344, BL6 

vs. dysf-/-; P = 0.2573, BL6 vs. DMDmdx-dysf-/- ; Figure 23 D) were not increased compared 

to wildtype control mice. The absolute values of the mean muscle spindle afferent 

frequencies for each of the three mouse lines are given in Table 6 including the 

corresponding standard deviations. Overall, the results demonstrate a higher firing 

frequency of dysf-/- and DMDmdx-dysf-/- mice muscle spindles at resting length compared to 

wildtype mice.  
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Figure 23: Muscle spindle responses to ramp-and-hold stretches in dysf-/- and DMDmdx-dysf-/- 
mice compared to WT mice. The RD (A) is significantly increased in both mutant lines compared 
to the WT control. In contrast, the DP (B), the DI (C) and the SR (D) are not changed compared to 
WT mice. Control: N=6, n=11; dysf-/-: N=6, n=11; DMDmdx-dysf-/-: N=5, n=12; Mean is indicated is 
black bar. One-way ANOVA with Dunnett´s multiple comparison test; P-values: *<0.05, **<0.01, 
***<0.001, ****<0.0001. Only significant changes are indicated. 

 

Table 6: Mean values (frequencies in imp/sec) ± SD from BL6, dysf-/- and DMDmdx-dysf-/- mice in 
response to ramp-and-hold stretches. 

 Mean (imp/sec) 

 RD DP DI SR 

BL6 9.0 ± 5.0 94.9 ± 36.8 45.3 ± 16.0 39.5 ± 22.3 

dysf-/- 18.1 ± 1.7 94.9 ± 56.1 45.0 ± 32.3 35.0 ± 24.5 

DMDmdx-dysf-/- 18.3 ± 6.8 75.1 ± 30.3 36.0 ± 11.1 26.6 ± 17.7 
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DP and SR were calculated depending on the RD values (see 4.3.1). Since RD values are 

changed significantly in dysf-/- and DMDmdx-dysf-/- mice compared to WT mice I tested if DP 

and SR still remain unchanged in dysf-/- and DMDmdx-dysf-/- mice compared to WT mice if 

RD-values are not subtracted from DP or SR values. Therefore, DP was determined as 

highest firing rate during ramp and SR was determined as firing rate 3.25 to 3.75 sec into 

stretch. Again, no significant changes were observed in mutant mice compared to WT mice. 

The results are summarised in Table 7. 

 

Table 7: Mean values (frequencies in imp/sec, not depending on 
RD) ± SD of DP and SR from BL6, dysf-/-- and DMDmdx-dysf-/- mice 
in response to ramp-and-hold stretches. 

 Mean (imp/sec) 

 DP SR 

BL6 103.9 ± 37.3 48.0 ± 23.2 

dysf-/- 112.6 ± 56.4 52.7 ± 23.7 

DMDmdx-dysf-/- 93.4 ± 33.3 49.6 ± 26.3 

 

To study the altered muscle spindle function of dysf-/- and DMDmdx-dysf-/- mice more detailed 

during the dynamic phase of a muscle stretch, I analysed the muscle spindle afferent 

discharge responses to sinusoidal vibration stimuli varying in displacement as well as in 

frequency. I observed an increase in firing frequencies in response to sinusoidal vibration 

stimuli for dysf-/- and DMDmdx-dysf-/- mice compared to WT mice especially at small 

amplitudes. Statistical analysis was performed using a three-way ANOVA (factors: 

mutation, amplitude and frequency) showed that the change of frequency was not 

statistically significant for the factor mutation (P = 0.0838) but significant for the factors 

amplitude (P < 0.0001) and frequency (P < 0.0001). 

Moreover, each of the 16 sinusoidal vibrations from dysf-/- and DMDmdx-dysf-/- mice 

were compared with the corresponding values from WT mice with a one-way ANOVA 

including a Dunnett´s multiple comparison test. This analysis revealed that the frequency 

from dysf-/- and DMDmdx-dysf-/- mice were significantly increased at small amplitudes (5 µm, 

Figure 24 A) and slow frequencies (10 Hz and 25 Hz, Figures 24 B-D) compared to WT 

mice. The absolute values (imp/9 sec ± SD) for the responses to all 16 vibration stimuli are 

shown in Table 8.  
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Figure 24: Muscle spindle responses to sinusoidal vibration stimuli of dysf-/- and DMDmdx- 
dysf-/- mice compared to WT mice. dysf-/- and DMDmdx-dysf-/- mice show a significantly higher firing 
frequency in response to small sinusoidal vibration stimuli (5 µm; A) and low frequencies (10 Hz and 
25 Hz; B-D) compared to BL6 mice. Control: N=6, n=12; dysf-/-: N=6, n=11; DMDmdx-dysf-/-: N=5, 
n=12; Mean is indicated as red bar; one-way ANOVA with Dunnett´s multiple comparison-test,  
P-values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 
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Table 8: Mean values (in impulses per 9 sec) ± SD of the responses of muscle spindle afferents to 
all 16 sinusoidal vibrations from BL6, dysf-/- and DMDmdx-dysf-/- mice. 

  Amplitude 

Frequency 5 µm 10 µm 50 µm 100 µm 

BL6                 

  10 Hz 85.5 ± 37.5 104,2 ± 41.4 109.3 ± 47.3 155.3 ± 57.7 

  25 Hz 102.4 ± 54.1 182,6 ± 67.4 204.2 ± 71.2 201.4 ± 62.1 

  50 Hz 109.4 ± 64.3 239,8 ± 130.5 287.8 ± 142.8 391.8 ± 142.2 

  100 Hz 102.8 ± 64.3 289,6 ± 242.6 440.8 ± 319.1 568.8 ± 294.0 
                  

dysf-/- 
 

              

  10 Hz 158.1 ± 50.4 166.2 ± 48.5 166.2 ± 28.7 172.5 ± 45.7 

  25 Hz 163.0 ± 43.1 221.3 ± 17.3 223.5 ± 6.5 278.5 ± 93.1 

  50 Hz 173.0 ± 49.2 301.4 ± 98.6 360.5 ± 98.1 382.8 ± 102.5 

  100 Hz 170.4 ± 53.9 323.2 ± 160.4 498.2 ± 284.7 645.3 ± 292.5 
                  

DMDmdx-

dysf-/- 

 
              

  10 Hz 161.2 ± 63.4 150.3 ± 56.1 150.6 ± 57.3 177.0 ± 50.8 

  25 Hz 171.8 ± 56.7 206.8 ± 38.5 228.4 ± 9.07 237.6 ± 43.3 

  50 Hz 188.0 ± 73.8 275.3 ± 103.2 383.2 ± 100.1 440.3 ± 31.3 

  100 Hz 188.8 ± 83.9 373.6 ± 260.7 574.6 ± 278.7 749.8 ± 224.5 

 

5.3.10 Number of muscle spindles in mouse models for muscular dystrophy 

To investigate if a reduced number of muscle spindles contributes to the altered muscle 

spindle function in the different dystrophic mice, the exact number of muscle spindles in the 

M. soleus of wildtype and mutant mice was determined. My own data form DMDmdx- dysf-/- 

mice were compared with the unpublished data from Sarah Rossmanith who analysed BL6, 

BL10 and DMDmdx-mice. All mouse lines had approximately 10 muscle spindles per muscle 

(Figure 25) which agrees well with previously published results. This demonstrates that 

mutations in dystrophin-, utrophin- and or in the dysferlin-gene did not affect the overall 

number of muscle spindles per soleus muscle and that the altered muscle spindle function 

is likely due to other reasons. Moreover, I did not detect an additive effect of muscle spindle 

number in the double-transgenic mice. In other words, the degeneration of extrafusal 

muscle fibers is not accompanied by a similar degeneration of intrafusal fibers. 
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Figure 25: Number of muscle spindles in wildtype and mutant mice. No difference was observed 
between wildtype mice (BL6, BL10) and mutant mice (DMDmdx, DMDmdx-dysf-/-) in soleus muscles. 
Results from BL6, BL10 and DMDmdx-mice are unpublished data from Sarah Rossmanith. N = 3 for 
all mouse lines. Mean + Standard deviation; one-way ANOVA; P-values: *<0.05, **<0.01, ***<0.001, 
****<0.0001. Only significant changes are indicated. 

 

5.3.11 Tension at Lo and Lo of EDL muscles in mouse models for muscular 

dystrophy 

To investigate if an increased tension at Lo or an increased Lo in mutant mice led to the 

increased action potential frequency at resting length, the tension at Lo and Lo of all mutant 

mice were compared with the corresponding WT data. No differences between WT and 

mutant mice was observed (Table 9). This result suggests that the biomechanical properties 

of the muscles were comparable in all mutant mouse lines. 

 

Table 9: Mean values ± SD for Lo and Tension at Lo of EDL muscles in mouse models of muscular 
dystrophy and wildtype mice. N=number of EDL muscles measured. 

Mutant Lo (mm) Tension at Lo (mN) N 

C57BL6/J 10,86 ± 0,40 3,90 ± 0,22 4 

C57BL10/10sc 10,67 ± 0,08 4,00 ± 0,28 6 

C57BL10/10sc/Utro 10,59 ± 0,83 4,36 ± 0,54 7 

SJL-dysf C57BL/6 11,04 ± 0,23 3,88 ± 0,40 6 

DmdmdxSJL-dysf C57BL/6 11,57 ± 0,33 3,96 ± 0,29 6 

C57BL10/10sc/DMDmdx 10,58 ± 0,31 3,83 ± 0,23 7 
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5.3.12 Neostigmine increases resting discharge of wildtype muscle spindles similar 

to mutations in dystrophin or dysferlin 

One possibility to explain the changes in muscle spindle responses to stretch in dystrophic 

mice is the hypercontractility of extrafusal fibers described in all forms of muscular dystrophy 

(Cullen and Fulthorpe, 1975). To test if this hypercontractility affects not only extrafusal 

fibers but also intrafusal fibers, I investigated if a simulated hypercontractility induced by an 

increased ACh concentration, would lead to a dystrophic-like muscle spindle function. To 

this end, 10 µM of the AChE inhibitor neostigmine was added to the ACSF to prevent 

degradation of ACh through AChE. The EDL muscle in the presence of neostigmine showed 

spontaneous twitch contractions, suggesting an increase of the ACh concentration in 

extrafusal fibers.  

Moreover, the hypercontractility of the dystrophic muscles is very likely due to an 

increased intracellular calcium concentration [Ca2+] (Cullen and Fulthorpe, 1975, Millay et 

al., 2009, Franco and Lansman, 1990, Fong et al., 1990). To investigate if an increased 

intracellular [Ca2+] leads to a dystrophic like hypercontractility also in intrafusal fibers, I 

analysed muscle spindles from WT mice before and after the administration of 20 µM 

nifedipine, a long- and short-acting 1,4-dihydropyridine (L-type) calcium channel blocker. 

Addition of nifedipine increased intracellular [Ca2+] in extrafusal fibers and has been shown 

to affect muscle spindles in cat (Fischer and Schafer, 2002). 

To investigate the function of these two drugs, I analysed individual muscle spindle 

afferent unit responses to a ramp-and-hold stretch (Lo plus 7.5% of Lo; ramp speed 40% 

Lo/sec), before and after the addition of neostigmine or nifedipine in a similar way as 

described for α-bungarotoxin, d-tubocurarine and hemicholinum-3. Action potential 

frequency were determined at four different time points before (RD) and during (DP, DI and 

SR) the stretch. Analysis of the overall effect of the drugs was performed by using the one-

way ANOVA (factor: drug) and revealed a significant difference for RD (P < 0.0001), but no 

significant differences for DP (P = 0.1353), DI (P = 0.14) or SR (P = 0.3519). 

For a clearer comparison of the specific effects of individual drugs, the results were 

expressed as Δmean, which represents the mean of the difference of the frequency 

(imp/sec) before compared to after drug administration. Both drugs had an effect on the 

resting discharge (Δmean control: 2.1 imp/sec; Δmean neostigmine: 14.4 imp/sec; Δmean 

nifedipine: 8.7 imp/sec; Dunnett’s post hoc test relative to ACSF control: P < 0.0001, control 

vs. neostigmine; P = 0.0367, control vs. nifedipine; Figure 26 A). However, DP (Δmean 

control: -12.5 imp/sec; Δmean neostigmine: -3.4 imp/sec; Δmean nifedipine: 14.3 imp/sec; 

Dunnett’s post hoc test relative to ACSF control: P = 0.6601, control vs. neostigmine;  

P = 0.0921, control vs. nifedipine; Figure 26 B), DI (Δmean control: -5.4 imp/sec; Δmean 

neostigmine: -9.1 imp/sec; Δmean nifedipine: 5.2 imp/sec; Dunnett’s post hoc test relative 
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to ACSF control: P = 0.7944, control vs. neostigmine; P = 0.2426, control vs. nifedipine; 

Figure 26 C), and SR (Δmean control: -5.6 imp/sec; Δmean neostigmine: 9.1 imp/sec; 

Δmean nifedipine: 4.8 imp/sec; Dunnett’s post hoc test relative to ACSF control: P = 0.2793, 

control vs. neostigmine; P = 0.5338, control vs. nifedipine; Figure 26 D) were not 

significantly different compared to the no drug control. Overall, the results demonstrate an 

increase of firing frequencies at resting length in the presence of neostigmine and 

nifedipine. Thus, both drugs had a similar effect on wildtype muscle spindles as the mutation 

in dystrophin and dysferlin. 

 

 

Figure 26: Change in muscle spindle response to resting length after administration of 
neostigmine and nifedipine. Muscle spindle firing frequency was measured before and after the 
addition of10 µm neostigmine or 20 µm nifedipine. The RD increased significantly (A) whereas DP 
(B), DI (C) and SR (D) showed no significant differences compared to the ACSF control. N=5, control, 
N=5 neostigmine, N=4 nifedipine; Mean is indicated by black bars. one-way ANOVA with Dunnett´s 
multiple comparison test, P-values: *<0.05, **<0.01, ***<0.001, ****<0.0001. 
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Table 10: Mean values (frequencies in imp/sec) ± SD of the responses to ramp-and-hold stretches 
before and after administration of ACSF (control), neostigmine or nifedipine. 

 
Mean (imp/sec) 

 
control 10 µM neostigmine 20 µM nifedipine 

 
before after before after before after 

RD 13.0 ± 6.0 15.1 ± 5.8 18.3 ± 4.0 30.8 ± 6.6 7.3 ± 2.1 11.5 ± 3.8 

DP 94.2 ± 20.6 88.0 ± 31.5 103.4 ± 13.6 105.0 ± 9.5 57.6 ± 20.6 72.9 ± 27.2 

DI 37.3 ± 9.3 34.2 ± 11.6 55.9 ± 11.9 49.8 ± 16.8 25.1 ± 7.4 31.7 ± 7.3 

SR 42.2 ± 12.9 40.3 ± 18.3 31.1 ± 13.0 40.1 ± 14.3 21.3 ± 8.8 26.4 ± 20.2 

 

To investigate if the effect of both drugs is also similar when sinusoidal vibrations were used 

as stimulus, I applied the same 16 different vibrations to wildtype muscles in the presence 

and absence of nifedipine or neostigmine. I observed an increase in the firing frequency in 

response to sinusoidal vibration stimuli in the presence of neostigmine. Statistical analysis 

using the three-way ANOVA (factors: drug, amplitude and frequency) showed that the 

change of the frequency before and after drug addition was statistically significant for the 

factors drug (P < 0.0001) and frequency (P = 0,0194) but not for the factor amplitude  

(P = 0.7286).  

Moreover, each of the 16 sinusoidal vibrations was analysed individually before and 

after drug addition with the one-way ANOVA and Dunnett’s multiple comparison test. This 

analysis revealed that the frequency were significantly increased in the presence of 

neostigmine especially at small amplitudes (5 μm; Figure 27 A) and slow frequencies (10 

and 25 Hz, Figure 27 B, C and D) compared to the ACSF control. Interestingly, I observed 

no effect of nifedipine on the response to vibrational stimuli (Figure 27 A–D), indicating that 

this drug affects muscle spindles in a different way, compared to neostigmine. The absolute 

values (imp/9 sec ± SD) for the responses to sinusoidal vibration stimuli are shown in Table 

11.  

Overall, neostigmine mimicked the effect of a mutation in dysferlin and dystrophin 

qualitatively and quantitatively during ramp-and-hold stretches as well as during sinusoidal 

vibration stimuli. This is consistent with the hypothesis that an altered Ca2+ homeostasis 

might be the cause for the altered resting discharge in both mutant mice. 
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Figure 27: Response of muscle spindle sensory afferents to sinusoidal vibrations in the 
presence and absence of neostigmine and nifedipine. Quantification of 16 different sinusoidal 
vibrations (5, 25, 50 and 100 μm amplitude with each 10, 25, 50 and 100 Hz frequency). Each dot 
represents the difference of the impulses per 9 sec (imp/9 sec) where the values before drug (or 
ACSF in the case of controls) addition were subtracted from those after drug addition. An increase 
of firing frequencies is seen after neostigmine administration at small amplitudes (5 µm, A) and slow 
frequencies (10 Hz and 25 Hz, B-D). The mean is indicated as red line. One-way ANOVA (factor: 
drug) with Dunnett’s post hoc test relative to the no drug control group, P-values: *<0.05, **<0.01, 
***<0.001, ****<0.0001. 
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Table 11: Mean values (in impulses per 9 sec) ± SD of the responses of muscle spindle afferents to 

all 16 sinusoidal vibrations before and after administration of ACSF (control), neostigmine or 

nifedipine. 

    Amplitude 

Frequency 
 

5 µm 10 µm 50 µm 100 µm 

Control       

  10 Hz before 119,5 ± 61,6 148,3 ± 80,2 155,9 ± 83,8 176,3 ± 56,7 

after 135,2 ± 49,6 133,8 ± 46,8 130,4 ± 42,7 191,6 ± 60,1 

  25 Hz before 122,9 ± 65,4 207,5 ± 68,1 221,5 ± 39,1 234,5 ± 13,4 

after 143,2 ± 58,2 211,8 ± 26,4 229,4 ± 8,3 267,6 ± 76,9 

  50 Hz before 125,2 ± 67,5 241,4 ± 89,6 433,2 ± 257,1 448,4 ± 71,4 

after 143,0 ± 56,3 234,4 ± 38,6 358,6 ± 79,8 454,6 ± 8,7 

  100 Hz before 124,2 ± 66,9 232,8 ± 95,2 455,8 ± 239,1 887,9 ± 231,2 

after 138,8 ± 56,4 236,4 ± 43,3 484,6 ± 220,3 716,2 ± 210,8 

            

Neostigmine           

  10 Hz before 162,2 ± 47,4 154,2 ± 37,8 154,7 ± 36,9 174,8 ± 12,5 

after 267,3 ± 58,1 260,3 ± 59,7 282,8 ± 76,4 303,5 ± 91,7 

  25 Hz before 173,2 ± 42,6 209,7 ± 43,2 221,7 ± 9,3 226,2 ± 1,3 

after 269,8 ± 83,3 298,0 ± 94,9 381,5 ± 155,3 438,0 ± 219,9 

  50 Hz before 179,8 ± 40,2 251,8 ± 73,3 399,0 ± 82,1 446,8 ± 8,0 

after 318,3 ± 102,1 466,7 ± 218,7 552,2 ± 209,4 588,8 ± 174,0 

  100 Hz before 172,8 ± 39,1 249,0 ± 63,7 391,8 ± 88,6 815,8 ± 163,2 

after 400,3 ± 239,2 688,5 ± 278,2 733,8 ± 235,9 900,5 ± 0,5 
 

        

Nifedipine           

  10 Hz before 85,5 ± 13,9 89,0 ± 2,9 90,8 ± 0,4 113,3 ± 38,5 

after 134,0 ± 43,9 135,5 ± 45,5 126,0 ± 38,4 135,3 ± 45,3 

  25 Hz before 84,8 ± 18,9 141,8 ± 54,9 152,0 ± 53,7 195,5 ± 47,8 

after 154,8 ± 55,1 194,5 ± 54,0 195,5 ± 51,7 197,5 ± 48,8 

  50 Hz before 87,5 ± 20,2 146,8 ± 51,7 206,0 ± 106,2 254,0 ± 117,4 

after 148,5 ± 53,6 257,0 ± 124,7 270,8 ± 126,7 319,8 ± 134,0 

  100 Hz before 92,0 ± 21,5 138,8 ± 51,5 192,8 ± 85,7 376,8 ± 275,4 

after 143,3 ± 51,8 215,0 ± 92,5 337,8 ± 179,4 504,3 ± 280,6 
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6 Discussion 

6.1 Reliability of the extracellular recordings 

I established the method previously described by Wilkinson et al., (2012) to record and 

analyse single unit muscle spindle afferent responses to stretch. The method was used to 

investigate the modulatory effect of blockers of cholinergic transmission and to determine 

muscle spindle responses in mouse models of muscular dystrophy.  

In all experiments, muscle health was ensured by comparing the maximal contractile 

force during a tetanic stimulation to the previously reported peak force of the EDL of 23,466 

N/cm² (Larsson and Edstrom, 1986, Brooks and Faulkner, 1988). Neither the maximal force 

after tetanic stimulation nor the resting discharge varied significantly during the course of 

the recordings, suggesting that spindle afferents were not undergoing time dependent 

changes in firing properties and that the muscle was returning to resting length following 

each stretch. 

To compare results between animals and to results of other species, I determined 

the length at which the maximum twitch contractile force was generated and set it as resting 

length, or Lo. In other studies muscle length was measured when knee and ankle joints 

were set to 90° angles (Haftel et al., 2004). The muscle length determined using this method 

appeared comparable to Lo (Wilkinson et al., 2012). At Lo, the majority of spindle afferents 

had a resting discharge and responded to an increase or a decrease in muscle length by 

changing their firing frequency. 

To exclude the possibility that the recorded units included responses from Golgi 

tendon organs (type Ib fibers) or mechanosensitive group III or IV pain afferents is difficult. 

However, I am confident that the responses in my preparation arose from muscle spindle 

Ia-afferents, because Ib-afferents usually do not show a response to stretch, unless it is a 

very large unphysiological stretch (Houk and Henneman, 1967, Houk et al., 1971). Stretch 

sensitive group III or IV units show very low firing rates (0.2 imp/sec) at resting length and 

only slightly increase their firing rates in response to stretch (up to 1.2 imp/sec; Kindig et 

al., 2006). Therefore, to avoid the possibility of falsely measuring type Ib, III or IV afferents, 

recordings that showed no or a very low RD frequency, as well as no or a very low increase 

of firing rates in response to stretch, were excluded from the analysis. To further reduce the 

possibility of including type Ib, III or IV afferents in my analysis, only stretch sensitive signals, 

which showed a short pause in firing frequency after release of the stretch, the so-called 

time silenced, which is specific for Ia-afferents, were included in the data analysis. 

In muscles of C57BL/6 mice, muscle spindle afferent responses to ramp-and-hold 

stretches were comparable to published data from mice (Wilkinson et al., 2012; Elahi et al., 

2018; Zaytseva et al., 2018) as well as to other species (Lionikas et al., 2013).  
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The resting discharge in mice was similar to the reported data from Wilkinson et al., with 

average firing rates of 13 imp/sec in mice at room temperature (Wilkinson et al., 2012) and 

to cat tenuissimus spindles at 24 °C with firing rates of 13 imp/sec in primary and 20 imp/sec 

in secondary units at resting length (Fischer and Schafer, 1999). Moreover, comparable 

resting discharge frequencies at 34 °C are reported for mouse EDL (32 imp/sec; Wilkinson 

et al., 2012), rat soleus muscle (25 imp/sec; De-Doncker et al., 2003) and isolated cat 

tenuissimus spindles (25 imp/sec primary units and 38 imp/sec secondary units; Fischer 

and Schafer, 1999). 

The static response to stretch was constant over time and did not depend on the 

speed of stretch. This is similar to what has been reported by Wilkinson et al. (2012) and 

Matthews (1963) and leads to the suggestions that once a steady state has been reached, 

mouse spindle afferents accurately and linearly encode the length change of a muscle 

stretch as well as the speed of stretching.  

The dynamic response to stretch in my experimental setup was also comparable to 

that reported in mice and other species (Wilkinson et al., 2012, Fischer and Schafer, 1999, 

De-Doncker et al., 2003). Moreover, the highest firing frequency (DP) occurred during the 

ramp phase of a stretch and the dynamic peak as well as the dynamic index were both 

increased by increasing stretch length and speed. This is similar to what has been observed 

in mice, rats and cats  

Muscle spindle afferent responses to sinusoidal vibrations were also in line with 

published data for mice, rats, cats and humans. The range of vibration frequency and 

amplitudes tested in my study demonstrated that mouse spindle afferents respond to a large 

dynamic range of muscle stretch. This range of firing frequency entrainment in mice was 

already reported by Wilkinson et al. (2012) and was observed in a similar way in cats, rats 

and humans (De-Doncker et al., 2003, Hunt and Ottoson, 1977, Matthews, 1964, Fallon 

and Macefield, 2007). These findings support the hypothesis of a common mechanosensory 

encoding mechanisms across vertebrate species. 

In mouse, cat and frog spindles, resting spindle discharge increased with increasing 

temperature (Wilkinson et al., 2012, Fischer and Schafer, 1999, Ottoson, 1965). 

Conversely, cooling decreased firing frequencies in humans and cats (Bell and Lehmann, 

1987, Michalski and Seguin, 1975). Moreover, dynamic peak, dynamic index and static 

response firing frequencies were higher at 34 °C compared to 24 °C in mice and cats 

(Wilkinson et al., 2012, Fischer and Schafer, 1999). These differences in response 

properties are most likely based on the fact that higher temperatures increase the rate of 

ion channel gating (Beam and Donaldson, 1983, Rodriguez et al., 1998) and can increase 

channel conductance (Peloquin et al., 2008). Therefore, room temperature was kept 
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constant throughout all of my experiments to avoid temperature-dependent changes in 

muscle spindle afferent discharge frequencies. 

Weight, in particular obesity, is another factor that can influence muscle spindle firing 

patterns. For example, obese mice exhibit decreased muscle spindle afferent responses to 

muscle movement (Elahi et al., 2018). Therefore, mice with a bodyweight of more than  

30 g were excluded from the experiments. 

Sensory endings which innervate muscle spindles are in general classified into two 

types of units, primary (Ia) and secondary (II), based on their anatomical location, their 

functional responses to stretch and their conduction velocity (Hunt, 1954, Ruffini, 1898). So 

far it has not been possible to distinguish between group I and II afferents in mice by using 

the difference in conduction velocity (Wenk and McCleskey, 2007). Functional analyses of 

spindle afferent responses to stretch can generally be used to separate primary and 

secondary endings in humans and cats (Edin and Vallbo, 1990, Fischer and Schafer, 1999, 

Matthews, 1963, Cody et al., 1972), though in rats it is less clear. While Bullinger et al. 

report that 34 % of their stretch sensitive units were not classifiable (Bullinger et al., 2011). 

De-Doncker et al. reported that in de-efferented rats in vivo, the slope of the linear 

regression of the dynamic index during various stretch speeds produced a bimodal 

distribution of stretch sensitive units. This slope closely matched the classification based on 

the conduction velocity (De-Doncker et al., 2003). Wilkinson et al. (2012) did not observe a 

bimodal distribution of the dynamic index slope in mice at any stretch length tested. 

Recordings from identified spindle primary and secondary afferents may be required to 

generate classification criteria for unit determination in mice. Alternatively, the innervation 

patterns of spindle afferents during the development of rodents may explain the difficulty in 

unit classification. In cat, primary fibers innervate the developing muscle spindle before 

chain fibers have formed. In contrast the secondary endings innervate the muscle spindle 

at a later developmental stage. In rat, the time course for innervation is much shorter and 

many afferents have primary as well as secondary-like terminals or even more multiple 

primary units than in the cat (Banks et al., 2009). This may be an explanation for the large 

number of units in the rat that cannot be clearly characterised as a primary or a secondary 

afferent. Mouse spindle anatomy has been investigated lately and primary and secondary 

afferents were described (Sonner et al., 2017). However, the evidence for the presence of 

secondary afferent endings was not completely satisfying. Nevertheless, the non-bimodal 

distribution of stretch responses described by Wilkinson et al. (2012) would be consistent 

with the innervation pattern which was observed in rat. It was suggested that there may be 

no consistent way to separate units into primary and secondary by conduction velocity, 

instead a third hybrid afferent population may emerge with response properties 

characteristic for both types of afferents. Future studies are necessary to investigate the 
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electrophysiological differences and similarities between primary and secondary endings in 

mice and it remains possible that type II afferents may not exist in rodents. This would be 

consistent with the fact that I never recorded exclusively dynamic muscle spindle afferent 

responses to stretch – a feature that would be predicted if type II afferents would exist in 

mice – and that I never observed structures comparable to typical type II endings in my 

immunohistochemical analysis. 

 

6.2 The role of the AChR at the central part of the muscle spindle (based 

on the publication Gerwin et al. 2019) 

So far, the simultaneous presence of the fetal (-subunit containing AChR) and the adult (ε-

subunit containing AChR) forms of the AChR have been described in the central region of 

intrafusal fibers at the contact site with the sensory nerve ending of the muscle spindle. 

Moreover, the AChR associated protein rapsyn as well as the machinery for ACh uptake in 

vesicles and their exocytosis have been described at the central part of the muscle spindle 

via immunohistochemical staining (Zhang et al., 2014) as well as glutamate containing 

synaptic-like vesicles (Bewick et al., 2005). Other studies described an excitatory effect of 

ACh and succinylcholine on muscle spindles, which might be due to a direct depolarising 

action on the intrafusal fibers via the -motoneuron endplate (for review see Carr and Proske 

1996). The function of the cholinergic specialisations at the contact site between sensory 

neuron and intrafusal muscle fiber remained unknown. To investigate the function of these 

AChR at the central part of the muscle spindle, I blocked AChR ion permeability using a 

non-competitive (α-bungarotoxin) as well as a competitive (d-tubocurarine) antagonist while 

applying two different kinds of stretches, ramp-and-hold stretches and sinusoidal vibration 

stimuli, respectively (Gerwin et al., 2019). During both kinds of stretch protocols, the action 

potential frequency was increased in the presence of either drug. In contrast, no changes 

of the resting discharge frequency were detected. I observed a similar effect in muscle 

spindle sensitivity during stretch after the inhibition of the high-affinity choline uptake 

mechanism by using hemicholinium-3. Collectively, these results provide the first evidence 

for a function of AChRs in the central region of muscle spindles and suggest that ACh might 

modulate muscle spindle responses to stretch. 

Several studies previously analysed the effects of cholinergic agonists and 

antagonists in muscle spindle firing behaviour (Carr and Proske, 1996). Direct application 

of ACh to muscle spindle for example induced a strong excitatory activity in cat soleus 

muscles in vivo, which could be blocked by d-tubocurarine. These results are probably due 

to a contraction of the polar regions of intrafusal muscle fibers rather than activity acting 

directly on sensory nerve terminals. Additionally, intravenous injections of d-tubocurarine 
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into anesthetised cats followed by a fusimotor stimulation resulted in a transient increase of 

the discharge frequency in 55 % of the cases, a decrease in the frequency in 29 % and an 

unchanged discharge frequency in 15 % of the cases during the first 20 minutes after  

d-tubocurarine administration (Smith and Albuquerque, 1967). In these and other studies 

summarised by Carr and Proske (1996), the drugs were either applied systemically, i.e. by 

intravenous infusion or stretch-evoked action potentials were not recorded. Therefore, these 

studies could not distinguish if the observed effects were due to an activity of neuromuscular 

junctions on extrafusal fibers, -motoneuron endplates or on AChRs in the equatorial region 

of intrafusal fibers (Gerwin et al., 2019). In consequence of this ambiguity, I specifically 

analysed the effect of antagonists instead of agonists. This excludes any influence of 

neuromuscular junction activity and on the fusimotor innervation of intrafusal fibers. 

Moreover, I analysed stretch-induced afferent changes instead of changes, induced by  

-motoneuron stimulation. Eliminating the influence of -motoneuron endplate activity on 

sensory afferents allowed for selective analysis of AChR function in the central region of 

muscle fibers. Additionally, I used single unit muscle spindle afferent recordings with a much 

higher sensitivity allowing me to detect small modulatory activities that probably have 

escaped detection in previous studies (Ganguly et al., 1978, Akoev, 1980). 

Addition of d-tubocurarine, α-bungarotoxin or hemicholinium-3 did not change the 

resting discharge frequency. Since the resting discharge depends on -motoneuron activity 

(Proske et al., 1991), the results strongly suggest that neither drug directly activated 

fusimotor activity at -motoneuron endplates. Additionally, the absence of an effect of all 

drugs on the resting discharge level makes a potential agonistic activity of d-tubocurarine 

on intrafusal muscle fibers very unlikely (Takeda and Trautmann, 1984, Ziskind and Dennis, 

1978). The effect of d-tubocurarine, α-bungarotoxin and hemicholinium-3 specifically on 

stretch-evoked responses also excludes other possible sites of action of these drugs, 

including the sympathetic innervation (Santini and Ibata, 1971) or nociceptive fibers (Lund 

et al., 2010b). Therefore, it is very likely that I examined the effect of the drugs exclusively 

on the AChRs that are concentrated at the contact site between intrafusal muscle fibers and 

proprioceptive sensory neurons. 

Previous studies have proven that in addition to the AChR, the acetylcholine 

receptor-associated protein rapsyn is concentrated in the central region of the intrafusal 

muscle fibers at the contact site with the sensory neuron (Zhang et al., 2014). Sensory nerve 

terminals also contain the vesicular acetylcholine transporter as well as the choline acetyl 

transferase, the key enzyme of acetylcholine synthesis (Zhang et al., 2014). Moreover, 

sensory nerve terminals contain synapse-like vesicles (Bewick et al., 2005) and the 

molecular machinery required for their exocytosis. These include the presynaptic cytomatrix 

protein bassoon, the vesicle clustering protein synapsin I, and synaptophysin, 
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synaptotagmin, VAMP/synaptobrevin I and II, as well as syntaxin (Aguado et al., 1999, De 

Camilli et al., 1988, Li et al., 1996, Bewick et al., 2005, Simon et al., 2010, Zhang et al., 

2014, Bewick, 2015). Functional proof of vesicle exo- and endocytosis in the sensory nerve 

terminal was provided by using the styryl dye FM1-43 (Banks et al., 2002, Bewick et al., 

2005). The vesicle turnover was 4-fold increased in response to stretch and depended on 

the presence of extracellular calcium ions (Bewick et al., 2005). All together, these 

previously published results as well as the present study suggest that the terminals of the 

stretch-sensitive muscle spindle afferents have a molecular specialisation reminiscent of 

cholinergic synapses and incorporate the molecular machinery which is required to release 

vesicles.  

The high-affinity choline transporter (ChT) is essential for proper signalling at 

cholinergic synapses due to the transporter’s rate-limiting reuptake of choline which is 

required to sustain ACh synthesis and release (Lund et al., 2010a, Carpenter and Woodruff, 

1987). At cholinergic synapses, the majority of this transporter is present on synaptic 

vesicles (Nakata et al., 2004). Accordingly, the treatment of neuromuscular junctions with 

the high-affinity choline transporter antagonist hemicholinium-3 reduced ACh levels in NMJ 

presynaptic vesicles (Yu and Van der Kloot, 1991). Here I demonstrate that incubation of 

muscle spindles with hemicholinium-3 resulted in an increase in the firing frequency during 

the dynamic peak and the dynamic index by about 30 % as well as to a lesser extend during 

the static phase. Thus, the effect of blocking AChR or inhibiting ACh release from the 

sensory neuron are very similar and suggest a vesicular release of ACh from sensory 

neurons. These results further support the hypothesis that the ACh-mediated signalling is 

part of a stretch-dependent modulatory feedback system which can possibly regulate 

muscle spindle sensitivity. 

Previously Zhang et al. (2014) discussed that AChRs at the central region of 

intrafusal muscle fibers are very likely located in the muscle fiber plasma membrane, rather 

than in the sensory nerve terminal. Therefore, it appears likely that α-bungarotoxin and  

d-tubocurarine affect AChRs which are located there. Based on the results of the present 

study, I propose that some of the vesicles that are located in the sensory nerve terminal 

contain ACh. A stretch-dependent release of this ACh could activate AChRs in the intrafusal 

muscle fiber membrane directly opposite to the sensory nerve terminal. If this release is 

calcium-dependent (Bewick et al., 2005) and either involves the stretch-sensitive calcium 

channel which has been described in the sensory nerve terminal (Hunt et al., 1978, Kruse 

and Poppele, 1991) or the Piezo2 channel (Woo et al., 2015), remains to be determined. 

Since an effect of d-tubocurarine and α-bungarotoxin on firing rates of resting muscle 

spindles was not observed, I assume that ACh is released primarily during mechanical 
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activity, consistent with the stretch-induced increase in vesicle turnover (Bewick et al., 

2005).  

Binding of sensory neuron-derived ACh to the AChR would most likely result in a 

depolarisation of the intrafusal fiber. In addition, the fetal (-subunit-containing) as well as 

the adult (-subunit-containing) AChR have been detected in the central region of intrafusal 

fibers (Zhang et al., 2014). Both types of AChRs are permeable for calcium, although the 

adult type has a higher permeability (Grassi and Fucile, 2019). Thus, above threshold 

depolarisation or direct influx of calcium via the AChRs might elevate the calcium 

concentration in intrafusal fibers. Since nuclear bag- and nuclear chain fibers both contain 

a cylinder of myofilaments directly underneath the plasma membrane in their equatorial 

regions (Ovalle, 1972), this Ca2+ influx would lead to a contraction of the subsarcolemmal 

sarcomeres and, thus, to a contraction of the central part of the intrafusal muscle fibers. 

This would counteract the -motoneuron-mediated contraction of the polar regions and 

might therefore be considered a negative feedback signal. This AChR-mediated negative 

feedback system could be a control system modulating the stretch-induced muscle spindle 

afferent firing rate to reduce the potential damage to the central region of intrafusal fibers 

caused for example by excessive contraction of the polar regions. Alternatively, the 

contraction in the central part of intrafusal fibers might lead to a lengthening of the polar 

regions, thereby enabling the subsequent -motoneuron-mediated contraction of this part 

of the intrafusal fiber. In any case, these results strengthen the hypothesis that in addition 

to the afferent activity of proprioceptive neurons, their terminals might have synapse-like 

functions and thus, have efferent activity as well. 

A termination of the AChR activation could be mediated by acetylcholinesterase 

(AChE), although there have been conflicting results regarding the presence of this enzyme 

at the central region of intrafusal muscle fibers (Giacobini, 1959, Schober and Thomas, 

1978, Zhang et al., 2014). Alternatively, a long-lasting presence of ACh, due to the absence 

of AChE in the equatorial part of intrafusal muscle fibers, might generate a background 

intrafusal fiber tone, counteracting the mechanical tension generated by the fusimotor 

activity in the polar regions. 

Proprioceptive sensory afferents have been shown to contain glutamate-filled 

synapse-like vesicles, suggesting that they might release glutamate. This glutamate could, 

via an unusual phospholipase D-linked metabotropic glutamate receptor that is located 

within the sensory nerve terminal, modulate the stretch-induced sensory afferent excitability 

(Bewick, 2015, Bewick et al., 2005, Simon et al., 2010, Bewick and Banks, 2015). The 

results from my study suggest that ACh has very likely a different effect. In contrast to 

glutamate, ACh possibly modulates the stretch-induced response via the nicotinic AChR in 

the intrafusal muscle fiber plasma membrane. Moreover, ACh is likely to act as a negative 
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feedback mechanism, reducing stretch-induced sensitivity. These results certainly do not 

exclude the possibility that mechanical activity releases glutamate- as well as ACh-

containing vesicles and that both modulate the sensitivity of the proprioceptive sensory 

neuron responses to stretch.  

 

6.3 Increased resting discharge in murine models for muscular dystrophy 

An impaired muscle spindle function contributes to several neurodegenerative and 

neuromuscular diseases (Blecher et al., 2018; for review see Kröger, 2018). An example 

for neuromuscular diseases are muscular dystrophies, a heterogeneous group of hereditary 

myogenic disorders. Since extrafusal and intrafusal fibers are very similar in several 

aspects, including structure, ATPase or myosin subgroups (Yellin, 1969, Ovalle, 1972) I 

tested the hypothesis if intrafusal fibers and muscle spindle function are similarly affected 

as extrafusal fibers in mouse models for muscular dystrophies. To this end, I analysed 

muscle spindle afferent responses to ramp-and-hold stretches as well as to sinusoidal 

vibrations in three mouse models for muscular dystrophies. I show that proprioceptive 

sensory afferents from all three different dystrophic mouse lines with mutations in different 

genes and different molecular mechanisms for the muscle degeneration have a qualitatively 

and quantitatively similar increase in the resting discharge frequency and in the response 

to sinusoidal vibrations. I also show that the response to ramp and hold stretches were not 

affected by the mutations, as was the overall structure and the total number of muscle 

spindles. My results demonstrate that intrafusal fibers are less affected by the degenerative 

events compared to extrafusal fibers and that muscle spindles from dystrophic mice have 

functional deficits. Moreover, they represent the first description of a possible contribution 

of muscle spindles to the unstable gait and frequent falls observed in patients with muscular 

dystrophy. 

Three different mouse models for muscular dystrophy were used in this study: the 

DMDmdx-mouse, the SJL-Dysf-/- mouse and the DMDmdx-dysf-/- mouse line. The utro-/- line 

was used to control for unspecific loss of function effects due to mutations in proteins 

expressed in skeletal muscle tissue. The DMDmdx-mouse is a well-characterised mouse-

model for DMD, the most common and severe form of muscular dystrophy (Bulfield et al., 

1984, Chamberlain et al., 2007, Connolly et al., 2001, Messina et al., 2006, Raymackers et 

al., 2003). Mutations in dystrophin affect the mechanical stability of muscle fibers, rendering 

them mechanically labile, so that the sarcolemmal membrane has a higher susceptibility to 

damage particularly during contraction (Waite et al., 2009). Despite the less severe 

phenotype of DMDmdx-mice compared to DMD patients, this mouse model is recommended 

as the model of choice for preclinical tests and proof-of-concept studies (Willmann et al., 

2009).  
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The SJL-Dysf-/- mouse is a model for dysferlinopathies, another form of muscular 

dystrophy with a completely different molecular origin. This mouse develops a mild, 

progressive myopathy (Bittner et al., 1999) due to a 171-bp deletion in the DYSF gene 

(Vafiadaki et al., 2001) and a reduction of 75 % in dysferlin expression compared to wild 

type mice. Despite the residual 25 % of dysferlin histological changes observed in these 

mice display many of the features seen in the corresponding patients (Hornsey et al., 2013).  

The DMDmdx-dysf-/- double transgenic mouse is a cross breading of the DMDmdx and 

the dysf-/- mouse. This mouse model exhibits a more severe muscle pathology than either 

DMDmdx-mice or dysf-/- mice and the onset of the muscle pathology occurs much earlier than 

in dysf-/- mice. These mice show a greater number of regenerating muscle fibers, higher 

serum creatine kinase levels and elevated Evans blue dye uptake into skeletal muscles 

compared to either DMDmdx or dysf-/- mice. (Han et al., 2011).  

The three mouse models for muscular dystrophy were analysed with respect to 

muscle spindle morphology and muscle spindle function. DMDmdx- and utro-/- mice are bred 

on a BL10 background whereas the dysf-/- and DMDmdx-dysf-/- mice had a BL6 background. 

Data from mice with different genetic background are not always comparable since they 

differ in various details (Lionikas et al., 2013). However, the morphology as well as the 

function of muscle spindles were similar if not identical between the BL6 and BL10 mice 

(probably due to their close genetic relationship). Nevertheless, I cannot rule out the 

possibility that very minor differences are due to a different genetic background of the mice 

and not due to an altered muscle spindle function. 

In a previous study, the distribution of dystrophin-deficient segments alternating with 

positive-stained domains along the sarcolemma in the central part of intrafusal fibers has 

been reported (Nahirney and Ovalle, 1993). I confirmed this finding using a different anti-

dystrophin antibody and additionally show that other components of the DGC are similarly 

subcellularly concentrated in the same segments of the sarcoplasmic membrane. These 

segments coextend with the parts of intrafusal fibers that are in direct contact with the basal 

lamina (Maier and Mayne, 1995). In contrast, the intrafusal fiber plasma membrane is 

separated from the basal lamina by the sensory nerve terminal in the DGC-deficient 

segments. Thus, it is tempting to speculate that the DGC in intrafusal fibers is stabilised in 

the regions between the sensory nerve terminals by the direct contact to the extracellular 

matrix. The absence of dystrophin and β-dystroglycan immunoreactivity in the contact 

region between the sensory neuron and the intrafusal fiber also suggests that the DGC is 

not directly involved in the mechanotransduction process but instead is more likely to 

provide a mechanical link between intrafusal fiber plasma membrane and the basal lamina. 

It remains to be shown if the DGC is actively excluded from the sensory neuron to the 
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intrafusal fiber contact zone or if it is selectively stabilised in regions where intrafusal fibers 

have contact to the basal lamina. 

Several studies have previously analysed the effect of muscular dystrophy on 

extrafusal fibers in humans and mice (Barohn et al., 1998, Barohn et al., 1991, Emery, 1993, 

Galassi et al., 1987, Meryon, 1852, Rosales et al., 2010). Due to a reduced mechanical 

stability of skeletal muscle fibers or a limited membrane repair, extrafusal fibers degenerate 

and subsequently, due to satellite cell proliferation and differentiation, regenerate 

(Anderson et al., 1999, Kunkel et al., 1985, Ray et al., 1985). These (vicious) cycles of 

degeneration and regeneration lead to the diagnostic hallmarks of muscular dystrophy, 

including variable fiber diameter, centralised nuclei and an increase of connective tissue 

infiltration between muscle fibers (Grounds and Torrisi, 2004, Messina et al., 2006).  

Analysis of muscle tissue from DMD patients has revealed conflicting results 

regarding the overall morphology of muscle spindles. Some studies reported that muscle 

spindle morphology in post mortem muscle tissue was slightly atrophic and that due to the 

loss of intrafusal fibers and due to a reduced intrafusal fiber diameter, the periaxial space 

was increased and the connective tissue capsule was widened (Kararizou et al., 2007, 

Swash and Fox, 1976). In contrast, other studies, analysing intrafusal fibers in biopsy 

material from patients, showed a normal diameter and an unaltered thickness of the 

connective tissue capsule (Cazzato and Walton, 1968, Skuk et al., 2010). It is therefore 

possible, that the morphological changes observed in the first two studies were not a direct 

consequence of the mutation but instead caused by secondary effects, including age, 

immobilisation or post-mortem tissue autolysis. In any case, compared to extrafusal fibers, 

intrafusal fibers and muscle spindle function appear much less affected by the mutation. 

This is consistent with my finding that in the DMDmdx-mouse, the morphological changes 

appeared to be considerably less pronounced compared to those described for extrafusal 

fibers as well as with previous studies (Gossrau and Grozdanovic, 1997, Johnson and 

Ovalle, 1986, Nahirney and Ovalle, 1993, Ovalle and Dow, 1986).  

I observed no centrally localised nuclei and no apparent degeneration of intrafusal 

fibers or a reduction in the total number of muscle spindles per soleus muscle. Likewise, 

the distribution and intensity of the vGluT1 immunoreactivity in the central region of 

intrafusal fibers was not apparently different in muscle spindles from the various dystrophic 

mice. One potential explanation for the mild phenotypic effect might be that intrafusal fibers 

have a much smaller mechanical burden and are thus less likely to suffer from mechanical 

damage. An additional possibility is suggested by the finding from Sara Rossmanith 

(unpublished data) that utrophin expression was severely upregulated in the DMDmdx-mice. 

Utrophin is an autosomally encoded homologue of dystrophin which shares more than 80% 

amino acid sequence similarity to dystrophin, has a very similar domain structure and like 
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dystrophin can interact with actin filaments and with β-dystroglycan (Tinsley et al., 1992). In 

skeletal muscle, utrophin is highly expressed in fetal and regenerating muscle fibers 

(Khurana et al., 1991, Lin et al., 1998). In adult wildtype muscle fibers, utrophin is replaced 

by dystrophin along the entire sarcolemmal membrane but remains present at the 

neuromuscular junction, the myotendenous junction and blood vessels (Nguyen et al., 1991, 

Ohlendieck et al., 1991, Schofield et al., 1993). In DMDmdx-mice, utrophin is severely 

upregulated in extrafusal fibers and can be found along the entire sarcolemma (Keep, 

2000). The passive stiffness of the EDL and the soleus muscle is slightly different in utro-/- 

mice compared to wildtype mice (Rajaganapathy et al., 2019). However, several studies 

have demonstrated that utrophin overexpression can lessen or even prevent the dystrophic 

phenotype in DMDmdx-mice and muscular dystrophy patients (Amenta et al., 2011, Gilbert 

et al., 1999, Guiraud et al., 2019, Krag et al., 2004, Tinsley et al., 1998, Tinsley et al., 2011). 

I therefore suggest that a similar functional compensation occurs endogenously in intrafusal 

fibers, resulting in a less severe phenotype in DMDmdx-mice. In contrast, utrophin is only 

slightly increased in human MD patients at the sarcolemma of regenerating extrafusal fibers 

as part of the repair process and their regeneration (Guiraud et al., 2019, Helliwell et al., 

1992). Likewise, intrafusal fibers in DMD patients do not apparently upregulate utrophin 

expression (Skuk et al., 2010), predicting more severe functional deficits in human muscle 

spindles compared to those from DMDmdx-mice. 

Muscle spindle afferent responses to stretch from all three mouse strains with 

muscular dystrophy were, despite the extensive differences between dysf-/- and DMDmdx 

mice, strikingly similar affected. All showed an increase in the resting discharge and an 

altered response to sinusoidal vibrations particularly at small amplitudes but no change in 

the response to ramp-and-hold stretches. Moreover, there was no additive effect in double 

transgenic mice and no change in the distribution of dystrophin in dysf-/- mice, suggesting 

that both mutations phenotypically converge onto a common intracellular signaling 

mechanism. 

The molecular mechanism underlying the increase in the resting discharge in 

dystrophic muscles is unclear. After shortening, muscle spindles fall silent, but the original 

resting discharge frequency is gradually reached again after several seconds. In cat soleus 

muscle, an early recovery could be induced by stimulating static- but not dynamic  

β-motoneurons suggesting that the resting discharge frequency in cat muscle spindles is 

primarily mediated by Bag2 fibers (Proske et al., 1991). Thus, a selective effect of the 

mutations on Bag2 fibers could be one way to explain the increased resting discharge. I did 

not observe a difference in the distribution of dystrophin or β-dystroglycan in wildtype or 

dystrophic mice between nuclear bag and nuclear chain fibers. Nor did Sarah Rossmanith 

observe a difference in the distribution of utrophin in wildtype or dystrophic mice between 
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nuclear bag and nuclear chain fibers, suggesting that the mutations in these proteins are 

unlikely to selectively affect Bag2 intrafusal fibers. However, I cannot exclude an effect of 

the mutations on the viscoelastic properties specifically of Bag2 fibers. 

The only similarity between these groups are the dystrophic changes of the 

extrafusal fibers, suggesting that this could be the reason for the altered muscle spindle 

function observed in all three mouse models. One of the first symptoms of muscular 

dystrophies is the hypercontractility of the skeletal muscles (Cullen and Fulthorpe, 1975). 

To simulate an increased contraction of intrafusal as well as extrafusal fibers, the ACh 

concentration was increased by incubating the EDL muscle with neostigmine, an AChE 

inhibitor. ACh can be released tonically or phasically from the presynapse into the synaptic 

cleft after an action potential arrives at the presynaptic terminal. Additionally, due to the 

muscle dissection for the experiment, ACh could leak from damaged muscles surrounding 

the EDL into the bathing solution and increase the ACh concentration over time. 

Electrophysiological analyses were performed at least half an hour after the first twitch 

contractions of the muscle were observed, indicating a complete diffusion of neostigmine 

into the muscle. After drug administration muscle spindle RD increased, whereas the DP, 

DI and SR remained unchanged, leading to the same changes in muscle spindle function 

as observed in dystrophic mice during ramp-and-hold stretches as well as during sinusoidal 

vibrations. These results are in line with previously reported results from Ganguly et al. 

(1978) using physostigmine, another AChE inhibitor, in rats (Ganguly et al., 1978). 

The hypercontractility in muscular dystrophy could be due to a change in the 

intracellular calcium ion concentration [Ca2+]. Several studies have shown an abnormal 

calcium ion homeostasis in extrafusal fibers in murine models of both types of muscular 

dystrophies (Flix et al., 2013, Franco and Lansman, 1990, Kerr et al., 2013, Klinge et al., 

2010, Turner et al., 1993, Turner et al., 1988, Mallouk et al., 2000, Robert et al., 2001, 

Vandebrouck et al., 2002). An increase of intracellular calcium concentration via calcium 

leak channels (Fong et al., 1990, Franco and Lansman, 1990, Millay et al., 2009) and 

shorter calcium channels close times in dystrophic muscles of mice and humans (Franco 

and Lansman, 1990) have been reported. This results in an increase of the intracellular 

calcium concentration in myotubes, resulting in hypercontractility of the muscle fiber (Fong 

et al., 1990). Moreover, Millay et al. (2009) showed that a dystrophic-like phenotype similar 

to the one observed in DMDmdx-mice can be induced when TRPC3 channels, very likely the 

calcium leak channel, were overexpressed in wildtype muscle tissue (Millay et al., 2009). 

Dysferlin is localised in the t-tubule membrane and physically associated with the 

dihydropyridine receptor and several other proteins involved in Ca2+-based signalling 

(Ampong et al., 2005, Kerr et al., 2013, Klinge et al., 2010, Matsuda et al., 2001, de Morree 

et al., 2010, Waddell et al., 2011,). In addition, blocking of L-type Ca2+ channels using 
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diltiazem improves the recovery of dysf-/- muscle fibers from injury (Kerr et al., 2013). 

Collectively, these results suggest that calcium ions might play a pivotal role in the etiology 

of the dystrophic phenotype in extrafusal fibers from both mouse strains.  

I tested this hypothesis by recording muscle spindle Ia afferents in the presence and 

absence of nifedipine. Nifedipine is a long- and short-acting 1,4-dihydropyridine (L-type) 

calcium channel blocker. However, an excitatory effect of low concentrations of nifedipine 

on extrafusal and intrafusal fibers of cats and frogs was described previously and suggests 

that nifedipine could promote the contractility of skeletal muscle fibers through a yet 

unknown mechanism (Fischer and Schafer, 2002, Neuhaus et al., 1990). After drug 

administration RD increased significantly whereas DP, DI and SR showed no statistically 

significant difference compared to the no drug control. Thus, I observed similar changes in 

muscle spindle function as in experiments with an increased ACh-concentration as well as 

in dystrophic mice. On the contrary no changes were observed during sinusoidal vibrations. 

Overall, my results show that muscle spindle function is altered in mouse models of 

muscular dystrophy. In line with these findings, I hypothesize that an elevated cytosolic 

[Ca2+] under resting conditions as the mechanistic link between the genetic defect and the 

dystrophic phenotype in muscle spindles from the tested mouse models of muscular 

dystrophy. An increased Ca2+ concentration in intrafusal fibers would presumably lead to a 

contraction in the polar regions. This would exert stretch in the central region causing an 

elevated discharge frequency of the proprioceptive sensory neuron. It will therefore be 

interesting to investigate, if the intracellular [Ca2+] concentration is elevated and if the Ca2+ 

homeostasis is perturbed in both dystrophic mouse lines. 

Postural abnormalities have been reported previously in patients with muscular 

dystrophy of the Duchenne type and in dysferlinopathies (Hsu and Furumasu, 1993, 

Pradhan et al., 2006, Mahjneh et al., 2001). In general, muscular dystrophy patients suffer 

from sudden spontaneous falls, balance problems, as well as gait and posture abnormalities 

(Barrett et al., 1988) or kinematic and mechanical deficits as well as a peripheral areflexia 

(Fukuda et al., 1999, Umakhanova et al., 2017). Some of these symptoms can certainly be 

attributed to the muscle weakness. However, a disturbance in proprioception may also 

contribute to the impaired postural control in these patients. Analyses of the perception of 

body segment movement and control of posture in patients suffering from various types of 

muscular dystrophy failed to reveal differences between MD patients and healthy subjects 

(Ribot-Ciscar et al., 2004). Both the MD patients and healthy subjects perceived passive 

movements and experienced sensations of illusory movement induced by vibratory 

stimulation applied to muscle tendons, suggesting that muscle spindles are still responsive 

to vibratory stimulation and that proprioception in general might be spared in MD patients 

(Ribot-Ciscar et al., 2004). Moreover, the effects of reinforcement manoeuvres that are 



85 
 

known to increase muscle spindle sensitivity via fusimotor drive in healthy subjects were 

unaltered in MD patents, suggesting that the intrafusal muscle fibers preserve their 

contractile abilities in slowly progressive MDs (Aimonetti et al., 2005). My results of an 

unaltered dynamic and static response to stretch in DMDmdx-mice is in agreement with these 

studies. However, I observed a strong increase in the resting discharge of muscle spindle 

afferents. It is unclear how much this increase in the afferent discharge frequency affects 

conscious proprioception, since muscle spindle afferent information is highly processed in 

the central nervous system (Proske and Gandevia, 2012, Proske and Gandevia, 2018). 

However, the increased resting discharge frequency could directly feed back on skeletal 

muscle tissue via the monosynaptic stretch reflex. An increased resting discharge is likely 

to cause an increase in the muscle tone in the patients. This would probably not only cause 

postural problems but also enhance the degeneration of extrafusal fibers. 

Therefore, muscle spindle activity might contribute to the instable gait and the 

increased frequency of falling in patients with muscular dystrophy. Since frequent falls often 

lead to injuries which are more severe in patients with muscular dystrophy and often cause 

hospitalisation, I would therefore propose to include proprioceptive training into the clinical 

treatment of DMD patients – at least during the time while they are still able to walk. 
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