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Zusammenfassung

Im großen Maßstab angelegte, komplexe Umfragen, wie der in dieser Arbeit verwendete
Multiple Indicator Cluster Survey (MICS, http://mics.unicef.org/, http://mics.unicef.org/surveys),
hier speziell für Punjab (Pakistan), enthalten in der Regel eine große Anzahl von Variablen, die
an einer noch größeren Anzahl von Befragten gemessen werden. Variablen mit verschiedenen
Skalenniveaus (zum Beispiel nominale, ordinale oder metrische Variablen) können die Aufgabe
der multiplen Imputation (Multiple Imputation, MI) für Umfragedaten erschweren, insbesondere
wenn die Anzahl der kategorialen Variablen hoch ist. Diese Arbeit stellt eine allgemeine
Methode für die Behandlung des Problems fehlender Daten vor, bei dem vorhandene MI-
Methoden kombiniert werden. Die Entwicklung dieses Konzepts wurde durch die
Forschungsfrage motiviert, wie Variablen gemischten Skalentyps ersetzt werden können, wenn
vorhandene MI-Methoden nur für einen Skalentyp, zum Beispiel metrische Variablen, gut
funktionieren und für andere, zum Beispiel hochdimensionale kategoriale Daten, fehlschlagen
oder auch von der Rechenzeit her zu aufwendig werden. Wir konzentrieren uns dabei auf die
Suche nach flexiblen und rechentechnisch effizienten Imputationsalgorithmen.

In Beitrag 1 wird eine sogenannte hybride multiple Imputationsmethode (HMI) zur Behandlung
fehlender Werte vorgestellt und deren prädiktive Güte untersucht.

Beitrag 2 untersucht die HMI Methode in einer komplexen Simulationsstudie, wobei die
Zielvariable binär ist (logistisches generalisiertes lineares Modell (logistisches GLM)). Die
Kovariablen können dabei fehlende Werte aufweisen, die Zielvariable wird als vollständig
beobachtet angenommen. Umfangreiche Vergleiche der vorgeschlagenen und vorhandenen
Methoden für MI werden mit verschiedenen statistischen Kennzahlen (zum Beispiel dem
sogenannten root mean squared error, RMSE) durchgeführt. Anschließend wird die Methode auf
einen großen Datensatz, MICS 2014 Punjab, angewendet.

Beitrag 3 konzentriert sich auf die statistischen Eigenschaften der HMI-Methode für eine
metrische Zielvariable und Kovariablen mit verschiedenen Skalentypen unter Verwendung
linearer Modelle (LMs). Umfangreiche Simulationsstudien werden durchgeführt. Die HMI-
Methode wird zusätzlich auf einen Teildatensatz von MICS 2014 Punjab angewendet.

Beitrag 4 beschreibt und bewertet die in R allgemein verfügbaren Softwarepakete und vergleicht
deren Ergebnisse mit denen der vorgeschlagenen HMI-Methode am Beispiel eines künstlichen,
simulierten Datensatzes.

Beitrag 5 implementiert eine Erweiterung der vorgeschlagenen HMI-Methode. In diesem
Beitrag wird das Konzept der Imputation des Datensatzes basierend auf hilfsweise
kategorisierten Versionen der metrischen Variablen angewendet. Die erweiterte HMI-Methode
nutzt dabei für die Imputation der kategorialen Variablen auch die Information der metrischen,



kategorisierten Variablen aus. Ein spezielles, sequentielles Verfahren hierzu wird vorgestellt,
implementiert und getestet.





Summary

Large scale complex surveys e.g. multiple indicator surveys or MICS typically contain a large
number of variables measured on an even larger number of respondents. Mixed type variables
(i.e. categorical and continuous) can complicate the task of Multiple Imputation (MI) for survey
data, especially if the number of categorical variables is high. This thesis introduces a general
framework for the missing data problem by combining existing MI methods. The development of
this framework was motivated by the research question how to impute variables of mixed type
when existing MI methods perform well for only one type of variables and fail for the other. We
focus our attention on seeking several flexible and computational efficient imputation
algorithms.

In contribution 1, the use of a hybrid multiple imputation (HMI) method to handle missing
values in large scale surveys is introduced, highlighting its predictive performance by measuring
the accuracy of predictive models.

Contribution 2 evaluates the performance of HMI with repeated sampling simulation studies for
generalized linear models (GLM’s) with binary response and mixed type missing covariates.
Extensive comparisons of the proposed and existing methods for MI are made based on various
statistical measures. Complex structured simulation studies are conducted in order to assess the
ability of HMI and applied to a large dataset from MICS 2014 Punjab.

Contribution 3 focuses on the statistical properties of the HMI method for continuous response
and mixed type covariates using linear models (LM’s). The HMI method is applied to a child
dataset from MICS 2014 Punjab. Further, extensive simulation studies are performed.

Contribution 4 describes and evaluates software packages commonly available in R and
compares the results with the proposed HMI method by using an artificial data set as an
example.

Contribution 5 implements an extension to the proposed HMI method. In this contribution the
concept of imputing the dataset based on the categorized versions of the continuous variables is
applied. The extended HMI method utilizes the information on continuous and categorical
variables to impute each other through a sequential procedure.
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Chapter 1 

1 Introduction 

1.1  Multiple Indicator Cluster Survey (MICS) 

In recent days, all countries around the globe are committed to the advancement of the statistical 

systems both at national and district levels. These statistical systems or bureaus not only compile 

and disseminate data but also develop new methodologies to standardize statistical methods, 

classifications of geographical regions and definitions. Many large scale complex surveys such 

as the Multiple Indicator Cluster Survey or MICS are conducted to recognize forces that 

contribute to the public’s health factors that interact at individual, family, community, 

population, and policy levels.   

MICS is an international household survey. United Nations Children’s Fund (UNICEF) started 

MICS and assists countries in collecting and analyzing data in order to fill data gaps for 

monitoring the situation of children and women. MICS is a main source of information on the 

background characteristics of women, children and households. It contains items on health, 

demographic, and socioeconomic characteristics. The data is collected at both, family and person 

levels, and it allows the study of relationships between health and other characteristics. MICS 

contains information on more than 100 key indicators of the health and well-being of women and 

children. The MICS program was started in 1995 and since then nearly 300 surveys have been 

implemented in more than 100 low and middle income countries. Face-to-face interviews with 

household members are conducted to collect the data. MICS questionnaires have a modular 

structure and can be adapted for national and sub-national monitoring priorities. Questionnaires 

are widely used in surveys but other methods like structured, and in-depth interviews, 

observation and content analysis can also be used in surveys. The questionnaire consists of 

several items and these items may measure qualitative variables like health, fertility, attitudes 

toward domestic violence, etc. The data can be analyzed by cross tabulating several variables and 

results obtained can further be used to understand obstacles to implement new public health 

programs.  
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The Bureau of Statistics Punjab has conducted the MICS Punjab 2014 in Pakistan in 

collaboration with UNICEF. The Government of Punjab has provided the major funding through 

the Annual Development Program 2014-15. The documents related to MICS Punjab consisting 

final report, key findings, survey plan, list of indicators and questionnaires can be found on the 

MICS website (www. http://bos.gop.pk).  

1.2 Description of the Datasets 

We use the women’s, child’s and household’s datasets from MICS Punjab 2014 household 

survey to illustrate the techniques developed and compare them with other frequently used 

methods throughout the thesis as key examples. Brief description of these datasets is provided as: 

1.2.1 MICS Women Data 

The MICS questionnaire for women of age 15-49 contains information of a woman's 

background, access to mass media, use of information and communication technology, 

fertility/birth history, desire for last birth, maternal and newborn health, illness symptoms, 

contraception, attitudes toward domestic violence, marriage/union, sexual behavior, HIV/AIDS, 

tobacco and alcohol use, life satisfaction and victimization etc. Most of the background variables 

are categorical with lots of categories whereas few variables like age are continuous.  The MICS 

Punjab 2014 women data comprises more than 200 background variables on 61286 observations 

from 36 districts of Punjab. An analysis based on these characteristics can prove to be very 

helpful in decision making policies regarding women and child health. For example, women data 

can be used to determine the effect of various factors on feeding practices in the district Punjab 

(WHO, 2003).  

1.2.2 MICS Child Data 

Questionnaires for child labor and child discipline in MICS household survey contains 

information of children of age 1−7 years living in the household. The questionnaire for children 

under age five is administered to the mother of the child. It includes information of following 

dimensions of children’s life: family characteristics, care and protection, child health, child 

development, education, early labor engagement, birth registration, breastfeeding and dietary 
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intake, immunization and attitudes toward children with disabilities. The MICS Punjab 2014 

children dataset contains more than 200 child related health background variables on 31083 

children. For example: indicators on child mental development (e.g. child follows simple 

directions, child is able to pick up small object with 2 fingers, child identifies at least ten letters 

of the alphabet, attends early childhood education program and child is able to do something 

independently etc.), child’s nutrition intake in diet (e.g. child drank or ate vitamin or mineral 

supplements, child still being breastfed, child ate white potatoes, green leafy vegetables, eggs, 

cheese, meat etc.), vaccinations (e.g. ever had vaccination card, times child given Polio and BCG 

vaccinations etc.). MICS data also contains indicators related to child’s discipline (e.g. took 

away privileges, spanked, hit or slapped child on bottom with bare hand, hit child on the bottom 

or elsewhere with belt, brush, stick, called child dumb, lazy or another name etc.) and 

participation in household chores (e.g. shopping, repairing equipment, cooking or cleaning, 

washing clothes and caring for children etc.) Information based indicators described above can 

prove to be very useful in policy making in order to improve children’s health conditions in the 

district Punjab. For example, stunting, also known as “insufficient longitudinal growth” is one of 

the forms of chronic malnutrition. Many factors, like socio economic status, imbalanced intake 

of the nutrients, inequitable distribution of food within the household, vaccination, and infectious 

diseases are attributed to the main cause of persistent underweight and stunted growth among 

children in developing countries (Black et al., 2013, McDonald et al., 2013).  

1.2.3 MICS Household Data 

The MICS household questionnaire is responded by a household head. Household head could be 

any knowledgeable adult member living in the household. It contains information of the 

following dimensions of a household head’s life: education, household characteristics, water and 

sanitation, salt iodization, hand washing facilities, water quality testing and results etc. The 

MICS Punjab 2014 household survey covers 38,405 households to provide estimates of around 

125 indicators for the province, 9 divisions and 36 districts. For example, indicators on house 

conditions (e.g. number of rooms used for sleeping, main material of floor and roof etc.), access 

to general facilities (e.g. electricity, radio, television, non-mobile phone, refrigerator etc.), source 

of drinking water (e.g. main source of drinking water and other purposes, location of the water 

source, duration to get water and come back, person collecting water, treatment for water to 
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make safer for drinking etc.), sanitation facilities (e.g. type of toilet facility, water available at the 

place for hand washing, soap or detergent present at place of hand washing etc.). The household 

dataset has mixed type variables. Binary logistic regressions models can be fitted to describe 

household trends in access to improved water sources and sanitation facilities. Associated factors 

like location, demographic and socio-economic etc. can further be used for prediction. Indicators 

described above can prove to be very useful in policy making in order to improve quality of 

drinking water and sanitation in the district Punjab (Tabassum, 2017, Daud et al., 2017). 

1.3 Complications with MICS 

Like other cross sectional studies, MICS data is often prone to a lot of missing values and 

various complications. In the following we give a description of complications with survey data. 

1.3.1 Missing Values 

The MICS data has a significant amount of missing values. Missing data problems arise when a 

sampled unit does not respond to the entire survey (also called unit non response (UNR)) or to a 

particular question (also called item non response (INR)). Variables in the MICS Punjab 2014 

women’s dataset have between 14 to 95 per cent missing values. Only few variables are 

completely observed. Respondents feeling shy to answer sexual activity related questions can 

result in INR. MICS child’s dataset also has a significant amount of INR. The missing data rates 

in the MICS Punjab 2014 child’s data range from 10% to 95% and most of the variables have 

more than 50% missing values. Questions related to child cleaning utensils or washing clothes 

and physical punishment etc. may make participants reluctant to provide full information which 

results in incomplete data (Akmatov, 2011, Cappa and Khan, 2011). In the MICS 2014 

household data file, only 26819 out of 41413 observations have complete data. The missing data 

rates range from 7% to 83%. Respondents can be reluctant to answer questions related to 

income, wealth and marriages which can be the reason for missing values in household surveys. 
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1.3.2 Inconsistency 

Inconsistency in MICS data may happen when one or more sets of exclusive iterative questions 

are answered in the survey. Rates of inconsistency may vary by respondent’s race, education and 

cognitive ability. For example, in MICS child’s dataset, DPT2 and polio vaccination dates differ, 

the polio 3 vaccination date must not come before the polio 1 vaccination date. Poor recall for 

the exact number of doses and vaccination of children by illiterate mothers is also subject to 

inconsistency problems (Gareaballah, Loevinsohn, 1989, Angelillo et al., 1999) Sensitivity or 

stigma related with the activity being reported is also a main cause of inconsistent 

responses.  Incorrect information on child labor can hinder child education or trends in estimated 

poverty (Siddiqi and Patrinos, 1995). Inconsistencies in surveys also happen due to edit 

restrictions i.e. disaggregation totals not adding up; reported numbers far lower or higher than for 

previous reporting period. Complex consistency errors, however, must be resolved by carefully 

examining the questionnaire.  

1.3.3 Complex Dependencies 
 

Apart from missing values and inconsistency problems, MICS datasets may contain the 

categorical variables having complex dependencies and various distributional features (i.e. 

continuous variables having different variances and skewness at different combinations of the 

categorical variables). The precision of survey estimates is affected if complex dependency 

structures in the items are not taken into account (Chromy and Abeyasekera, 2005). Complex 

dependency structures among units may also occur due to the clustered nature of the data. For 

example, a child feeding index is linked to responses to items on breastfeeding, use of baby 

bottles, dietary diversity, the number of days the child receives selected food groups in past 

seven days, and feeding frequency (Ruel and Menon, 2002). In depth qualitative interviews with 

complex logical structured questionnaires are a main reason for complex dependencies where 

answers to questions depend on whether previous questions were answered or not. Analysis of 

data becomes more complex in such situations. Complex relationships linked to large 

households, multiple generation households or two or more households increase the number of 

potential predictors for each imputation model. More information on complex household survey 
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designs can be found in Binder (1983). However, we mainly focus on the missing data problem 

and inconsistency and complex dependency problems are not addressed in this thesis. 

1.4  Statement of the Problem 

Presence of complex dependency structures in large scale complex surveys can make estimates 

biased (Bishop et al., 1975). Traditional methods to deal missing values can fail to detect 

complex dependencies structure among categorical variables. For example, implementation of 

conditional specification models become challenging when incompatibility issue arises due to 

high dimensions in large scale complex data (White et al., 2011). Other techniques to handle 

missing values are limited to categorical variables or require transformations (or other tricks) for 

continuous variables or require knowledge of complicated models to create dependence between 

the continuous and the high dimensional categorical variables (Murray and Reiter, 2016). 

Multiple imputation (MI) was originally introduced to handle nonresponse in public use data 

files or shared databases (Rubin, 1987). Despite of its popularity and acceptance it is applied to a 

handful of variables in many studies (e.g. NNS, 2011). Applications of MI in large scale studies 

with complicated datasets such as MICS are very few. These limitations create serious problems 

for researchers to obtain complete datasets with mixed type variables. The objectives of this 

study are: 

1. To develop methods for imputing mixed type data from large scale complex surveys.  

2. To avoid difficulties of complicated models in high dimensions. 

3. To combine existing techniques to handle incomplete large scale complex datasets. 

4. To gain computational efficiency. 

 

 

  

 



7 

 

Chapter 2 

2 Fundamentals of Missing Data and Multiple Imputation (MI) 

2.1 Missing Data Mechanisms 

There are three missing data mechanisms. Missing values in any data can be missing completely 

at random (MCAR), or missing at random (MAR), or missing not at random (MNAR) (Rubin, 

1987, Little and Rubin, 2002). In MCAR, the probability of missing data on a variable is not 

correlated to its self and to the other measured variables. In MAR probability of missing depends 

on other, observed, variables. Finally, data are MNAR if the probability of missing depends on the 

variable value itself. MCAR and MAR are ‘ignorable’ because we don’t have to include any 

information about the missing data itself when we deal with the missing data. MAR or MNAR 

results in the loss of power due to missing information and the possibility of a biased estimate. 

Practically all methods implemented in software assume MAR. MNAR is called “non-ignorable” 

because the missing data mechanism itself has to be modeled as you deal with the missing data.  

Exact missing data mechanisms are often unknown when dealing with large scale datasets 

therefore, most of the time certain assumptions are made accordingly. Li et al. (2013) address some 

problems with the MI in large data. Little’s MCAR test is used commonly for testing missing cases 

being MCAR. Notations and assumptions for the missing mechanisms are given as: 

Let 𝑌𝑌 denote the  n × p data matrix with n rows (cases) and p variables. Let 𝑦𝑦𝑖𝑖𝑖𝑖 refer to the value 

in row i  and column j of 𝑌𝑌, where i=1,…,n and j=1,…,p. Further suppose that there are two 

components of the dataset 𝑌𝑌 = {𝑌𝑌𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 ,𝑌𝑌𝑜𝑜𝑜𝑜𝑚𝑚} where the first component denotes the observed part 

of the data and the second component is the missing data.  Let 𝐻𝐻 be a response indicator matrix 

with the same dimensions as 𝑌𝑌 indicating, if an element of 𝑌𝑌 is observed or missing: 

𝐻𝐻𝑖𝑖𝑖𝑖 = � 0  𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖  𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,

  1  𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖  𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.
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Data is MCAR when 𝑃𝑃𝑜𝑜�𝐻𝐻ǀ𝑌𝑌𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 ,𝑌𝑌𝑜𝑜𝑜𝑜𝑚𝑚�=𝑃𝑃𝑜𝑜(𝐻𝐻), MAR when 𝑃𝑃𝑜𝑜�𝐻𝐻ǀ𝑌𝑌𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚,𝑌𝑌𝑜𝑜𝑜𝑜𝑚𝑚�=𝑃𝑃𝑜𝑜(𝐻𝐻ǀ𝑌𝑌𝑜𝑜𝑜𝑜𝑚𝑚) 

and MNAR when 𝑃𝑃𝑜𝑜�𝐻𝐻ǀ𝑌𝑌𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚,𝑌𝑌𝑜𝑜𝑜𝑜𝑚𝑚� ≠ 𝑃𝑃𝑜𝑜(𝐻𝐻ǀ𝑌𝑌𝑜𝑜𝑜𝑜𝑚𝑚) (Little and Rubin, 2002). We treat item non 

response as MAR throughout the thesis. 

2.2 Problems Associated with Missing Data  

In population surveys, respondents may refuse to provide a requested piece of information based 

on various reasons, such as unwillingness, lack of capability to answer, reservation on sensitivity 

of question, confidentiality and privacy etc. This results in the failure to collect complete 

information. Problems associated with missing data are: 

1. Systematic nonresponse may make sample non representative. For instance, evidence exists that 

in sample surveys, the sample results may over represent the middle incomes due to non-response 

behavior of individuals with low-income or high-income when they are asked to fill in their 

incomes. Questions related to income or wealth are often related to high rate of INR (e.g. Riphahn 

and Serfling, 2005, Hawkes and Plewis, 2006). High rate of INR occurs for simple demographic 

variables such as age, sex or marital status. According to various studies (Colsher and Wallace, 

1989, Dillman, 1978, Herzog and Rodgers, 1992), high INR is commonly observed for responded 

with less education and elder age. Missing values may also occur due to interview errors i.e. a 

variable that should have a response, but the question was not asked.  

2. Information about the parameters of interest is less in incomplete dataset as compared to the 

hypothetical complete dataset. Analysis of incomplete dataset may result in larger standard errors, 

wider confidence intervals and less significant p-values consequently, resulting in loss in statistical 

power and making conclusions less powerful.  
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3. Missing values can make analysis more complicated and can reduce the efficiency of statistical 

analysis, for instance it is complicated to directly apply logistic regression when covariates are 

incompletely observed.  

2.3 Simple Methods for Missing Data 

Most popular approaches for INR include list wise deletion (LD), available case (AC) analysis, 

maximum likelihood of the incomplete data (MLID) approach and imputation. In LD method, 

complete response patterns provided by a responded are included in statistical analysis by 

discarding the cases which are not completely observed. Loss of power is one of the main downside 

of LD. Moreover, LD can make results biased unless strong assumption about the mechanism that 

caused the missingness are met. In order to get a satisfactory solution for loss of  

power problem, AC analysis can be used. AC also requires same strong assumption about 

mechanism working behind missingness. AC analysis selects all respondents who provided 

complete information on the variables that are used in analysis. The amount of data used by AC 

analysis is more as compared to the LD method. MLID is yet another approach to handle missing 

data. Maximum likelihood estimates of the parameters of the desired statistical model are 

estimated in presence of missing data (e.g. Rasch, 1960, Birnbaum, 1968, Masters, 1982, 

Samejima, 1969). Imputation is a gold standard for fill in the blanks in incomplete data. According 

to the definition of Cambridge dictionary “imputation is a way of calculating something when you 

do not have the full or correct data”. In imputation method, a statistical model is used to estimate 

missing values. There are several imputation techniques describe by Little and Rubin (2002). In 

mean imputation values of mean, median or mode are imputed for metrical, ordinal or nominal 

variables respectively. Hot deck imputation is a nonparametric technique to imputation. A similar 

but observed unit, whose value serves as a donor for the record of the similar but incompletely 

observed unit is specified in hot deck methods in order to impute missing values.  Various 

techniques are used to measure similarity e.g. distance measures etc. The predictive mean 

matching (PMM) (Little, 1988) is one of the popular known methods of k-nearest neighbor (kNN) 

algorithms for generating hot-deck imputations. The nearest neighbor donor distance based on 

expected values of the missing variables which are conditional on the observed covariates is 
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employed to impute missing values. The main advantages of kNN imputation are that it is a simple 

method without strong parametric assumptions and various types of variables can be imputed by 

applying it easily (e.g. Andridge and Little, 2010, Little, 1988, Schenker and Taylor, 1996). Harrell 

(2015) proposes “aregImpute” algorithm which combines PMM with the various aspects of model-

based imputation methods in the form of flexible nonparametric models. Another imputation 

approach is called cold deck imputation. It uses external data to generate substitute values. 

Regression imputation predicts the missing values by fitting a regression model of the variables 

with missing values on the other variables where these variables are observed. Stochastic 

regression imputation is one step higher than regression imputation. It adds a random noise to the 

predictions from the regression imputation. Amelia (Honaker et al., 2011) is a modern method 

which uses explicit or implicit linear imputation models. The dependent variable used in a 

homoscedastic linear model with incompletely observed metric predictors has the property of 

conditional normality.  However, the argument to apply linear imputation model on the 

incompletely observed variable requires more justification. Thus, assumed linear imputation 

models would be incompatible with the true data generating process in general. Moreover, the 

transformation of variables to assume multivariate normality (e.g. Honaker et al., 2011, Schafer, 

1997) does not seems to work well in general and can led to biases in the estimators (Hippel, 2013).   

Approaches for missing values described above are simple, reasonable in case of a small fraction 

of incomplete cases and are commonly implemented in existing statistical softwares for complete 

data. However, these methods have serious disadvantages when fraction of missing cases gets 

larger. Software packages used for imputations are “mi” (Su et al., 2011) in R (R Core Team, 

2018), “ICE” (Royston, 2004) in STATA (Stata Corporation, 2013) and “IVEware” (Raghunathan 

et al., 2002) in SAS (SAS Institute, 2014) implement imputations. Salfran and Spiess (2015) 

provide details of these imputation techniques. We take R under consideration throughout the 

thesis due to its open source character and popularity. 

2.4 Multiple Imputation 

Multiple imputation (MI) (Rubin, 1987) replaces missing values in a dataset by drawing random 

values from the predictive posterior distribution of the missing data given the observed data. MI 

creates M complete datasets. Inference of interest (e.g. mean, regression) can be run on each newly 
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created imputed dataset. Estimates can be combined by using “Rubin’s rules”. Final estimates 

obtained are unbiased on the average.  

2.4.1 Fully Conditional Specification Model 

 

Fully conditional specification (FCS) model is a general approach to MI. FCS specifies univariate 

conditional distributions on a variable-by-variable basis, and draws missing values iteratively from 

the specified conditional distributions. MI by chained equations (MICE) (Raghunathan et al., 2001, 

van Buuren and Groothuis-Oudshoorn, 2011, Royston and White, 2011, Su et al., 2011) is a fully 

conditional specification (FCS) approach to MI. The FCS uses following iterative algorithm. For 

each incomplete variable a density, 𝑖𝑖𝑖𝑖�𝑌𝑌𝑖𝑖�𝑌𝑌−𝑖𝑖,𝜃𝜃�, conditional on all other variables is specified, 

where 𝜃𝜃 is the unknown parameters of the imputation model. A conditionally specified imputation 

model known as MICE, visits sequentially each incomplete variable and draws alternately the 

imputation parameters and the imputed values. The FCS method is summarized in algorithm 1. 

The researcher can choose a suitable regression model for each variable for example classification 

and regression trees (CART) (Breiman et al., 1984) for categorical variables, PMM for continuous 

variables or default method which uses logistic regression models for categorical and PMM for 

continuous variables. Sometimes problems of convergence and incompatibility arises when MICE 

is used for specifying univariate conditional distributions (Arnold and Press, 1989, Gelman and 

Algorithm 1:  MICE (FCS)  

1: Fill in missing data 𝑌𝑌𝑚𝑚𝑖𝑖𝑚𝑚 bootstrapping the observed data 𝑌𝑌𝑜𝑜𝑜𝑜𝑚𝑚 
2: For j = 1, . . . , p 

a. Draw  𝜃𝜃𝑖𝑖∗ , from the posterior distribution of the imputation parameters. 

b. Impute 𝑌𝑌𝑖𝑖∗ from the conditional model 𝑖𝑖𝑖𝑖�𝑌𝑌𝑖𝑖�𝑌𝑌−𝑖𝑖, 𝜃𝜃𝑖𝑖∗� 

3: Repeat step 2 until convergence 
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Speed, 1993). Moreover, “regression imputations” is very time consuming. R package “mice” (van 

Buuren and Groothuis-Oudshoorn, 2011) implements MICE. 

2.4.2 Joint Model 
 

 

The joint modeling (JM) specification is another approach used for MI. Joint modeling (JM) draws 

missing values simultaneously for all incomplete variables. JM involves specifying a multivariate 

distribution for the missing data and draws imputations from their conditional distributions by 

Markov Chain Monte Carlo (MCMC) methods (Schafer, 1997). For simplicity, let’s assume that 

                                                                                 𝑌𝑌 ~ 𝑁𝑁(𝜇𝜇,𝛴𝛴),                          (1) 

where 𝜇𝜇 = (𝜇𝜇1, . . ., 𝜇𝜇𝑝𝑝) and 𝛴𝛴 a 𝑝𝑝 × 𝑝𝑝 covariance matrix. The posterior distribution of (𝜇𝜇,𝛴𝛴) given 𝑌𝑌 (where 𝑌𝑌 is fully observed) with a prior distribution for 𝜇𝜇 and a prior 𝑊𝑊𝑝𝑝(𝑜𝑜, 𝑆𝑆𝑝𝑝) for 𝛴𝛴−1could be 

written as the product of 

                                                                𝜇𝜇|𝑌𝑌,𝛴𝛴 ~ 𝑁𝑁(𝑌𝑌,𝑚𝑚−1𝛴𝛴)                  (2) 

and  

                                                           

1 The “*” symbol in algorithm 2 denotes that the variable or parameter randomly drawn from a 

posterior conditional distribution 

Algorithm 2:  Joint Modeling Gibbs Sampler1 

1: Fill in missing data 𝑌𝑌𝑚𝑚𝑖𝑖𝑚𝑚 bootstrapping the observed data 𝑌𝑌𝑜𝑜𝑜𝑜𝑚𝑚 
2: Estimate 𝑌𝑌 and 𝑆𝑆 

3: Draw 𝜇𝜇 and  𝛴𝛴−1 from equations (2) and (3) 

4: Draw 𝑌𝑌∗𝑚𝑚𝑖𝑖𝑚𝑚 ~ 𝑁𝑁(𝜇𝜇∗,𝛴𝛴∗) 

5: Update the estimation of 𝑌𝑌 and 𝑆𝑆 

6: Repeat steps 3 to 5 a large number of times to allow the sampler to reach its 

    stationary distribution. 
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                                 𝛴𝛴−1|𝑌𝑌 ~ 𝑊𝑊𝑝𝑝(𝑆𝑆𝑝𝑝−1+𝑆𝑆)−1(𝑚𝑚 + 𝑜𝑜, (𝑆𝑆𝑝𝑝−1 + 𝑆𝑆)−1)                                           (3) 

where 𝑌𝑌 and  (𝑚𝑚 − 1)−1𝑆𝑆 are the sample mean and covariance matrix respectively (Carpenter and 

Kenward, 2013). Above method can be generalized for incomplete 𝑌𝑌 method. See algorithm 2 for 

summary. It is not possible to implement JM approach in the multilevel context if missingness also 

occurs in the random slope variable(s) (Carpenter and Kenward, 2013). Modeling mixed type 

variables can make the specification of a joint distribution very difficult. R packages “pan” 

(Schafer and Zhao, 2014) and “jomo” (Quartagno and Carpenter, 2014) implement JM approach. 

2.4.3 Dirichlet Process Mixture of Products of Multinomial Distributions Model 

 (DPMPM)  
 

Dirichlet Process Mixture of Products of Multinomial Distributions Model (DPMPM) provides a 

fully Bayesian, non-parametric JM approach to MI for high dimensional categorical data 

(Manrique-Vallier and Reiter, 2015, Si and Reiter, 2013). Dunson and Xing (2009) proposed the 

DPMPM for the first time. This approach uses nonparametric Bayesian versions of latent class 

models (LCM) to multiply impute high-dimensional categorical data (Vermunt et al., 2008).This 

approach automatically models complex dependencies whereas other MI methods (log linear 

model or logistic regressions) can fail to detect complex structures in high dimensional categorical 

variables. Before describing the DPMPM, few notations related to LCM in the context of 

categorical data are as follow. Let 𝑌𝑌 represent the data of n individuals with p categorical variables 

that is, 𝑌𝑌 = (𝑌𝑌1, ... ,𝑌𝑌𝑝𝑝) subject to INR. An associated response vector for each individual i can be 

defined as 𝑌𝑌𝑖𝑖 = (𝑌𝑌𝑖𝑖1, ... ,𝑌𝑌𝑖𝑖𝑝𝑝). Elements of vector 𝑌𝑌𝑖𝑖 can take on a set of 𝐿𝐿𝑖𝑖 levels such as 

each 𝑌𝑌𝑖𝑖𝑖𝑖  𝜖𝜖 �1, . . . ,  𝐿𝐿𝑖𝑖�, thus 𝑌𝑌𝑖𝑖 𝜖𝜖 𝐶𝐶 =   𝛱𝛱𝑖𝑖=1𝑝𝑝
{ 1, … , 𝐿𝐿𝑖𝑖}. Missing and observed parts of 𝑌𝑌𝑖𝑖 can be 

presented as  𝑌𝑌𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 and 𝑌𝑌𝑖𝑖𝑜𝑜𝑜𝑜𝑚𝑚 respectively, so that 𝑌𝑌𝑜𝑜𝑜𝑜𝑚𝑚= {𝑌𝑌1𝑜𝑜𝑜𝑜𝑚𝑚 , ... , 𝑌𝑌𝑝𝑝𝑜𝑜𝑜𝑜𝑚𝑚 } and 𝑌𝑌𝑚𝑚𝑖𝑖𝑚𝑚= {𝑌𝑌1𝑚𝑚𝑖𝑖𝑚𝑚 , ... , 𝑌𝑌𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚 } 

be the observed and missing parts in 𝑌𝑌, respectively. LCM without any missing data is a finite 

mixture of product-multinomial distributions, 

p(Y|λ,𝜋𝜋) =  𝑖𝑖𝐿𝐿𝐶𝐶𝐿𝐿(Y|λ,𝜋𝜋) =  𝛴𝛴𝑘𝑘=1
𝐾𝐾 𝜋𝜋𝑘𝑘  𝛱𝛱𝑗𝑗=1

𝑝𝑝 λ𝑗𝑗𝑘𝑘�𝑌𝑌𝑗𝑗�,                                           (4) 

                         where λ = λ𝑖𝑖𝑗𝑗[𝑙𝑙], all λ𝑖𝑖𝑗𝑗[𝑙𝑙] > 0 and 𝛴𝛴𝑙𝑙=1𝐿𝐿𝑗𝑗 λ𝑖𝑖𝑗𝑗[𝑙𝑙] =  1.  (5) 
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Here, 𝜋𝜋  =  {𝜋𝜋1, … ,𝜋𝜋𝑗𝑗}, where 𝛴𝛴𝑗𝑗=1𝐾𝐾 𝜋𝜋𝑗𝑗 = 1. This model can be use to generate data using 

         𝑌𝑌𝑖𝑖𝑖𝑖|𝑧𝑧𝑖𝑖    𝑖𝑖𝑚𝑚𝑜𝑜
  ~

 𝐷𝐷𝑖𝑖𝑖𝑖𝐷𝐷𝑜𝑜𝑜𝑜𝐷𝐷𝑜𝑜1: 𝐿𝐿𝑖𝑖(λ𝑖𝑖𝑗𝑗𝑖𝑖[1], . . . , λ𝑖𝑖𝑗𝑗𝑖𝑖�𝐿𝐿𝑖𝑖�) for all i and j,     (6) 

  𝑧𝑧𝑖𝑖|θ    𝑖𝑖𝑖𝑖𝑖𝑖
  ~

 𝐷𝐷𝑖𝑖𝑖𝑖𝐷𝐷𝑜𝑜𝑜𝑜𝐷𝐷𝑜𝑜1:𝐾𝐾 {θ1, … , θ𝐾𝐾} for all i. (7) 

For prior distributions2, Si and Reiter (2013) and Manrique-Vallier and Reiter (2012) use  

                                                            𝜆𝜆𝑗𝑗𝑖𝑖[. ]  ~ Dirichlet  (1L𝑖𝑖) , (8) 

   𝜋𝜋𝑗𝑗 = 𝑉𝑉𝑗𝑗 ( ∏ 1 − 𝑉𝑉ℎℎ<𝑗𝑗 ) , (9) 

 𝑉𝑉𝑗𝑗    
  𝑖𝑖𝑖𝑖𝑜𝑜
  ~

  𝐵𝐵𝑜𝑜𝐷𝐷𝐵𝐵 (1, 𝛼𝛼)  for k=1,…,K-1, 𝑉𝑉𝑗𝑗=1, (10) 

 𝛼𝛼  ~ Gamma  (𝐵𝐵𝛼𝛼, 𝑜𝑜𝛼𝛼). (11) 

In order to get complete data sets, first the latent class indicator for each individual is drawn from 

the full conditional and then, second, each missing 𝑌𝑌𝑖𝑖 is drawn from class-specific, independent 

categorical distributions. Like many complex models, the effectiveness of DPMPM still lag in 

capturing the many features of empirical data. The DPMPM imputation routines are implemented 

in the R software package “NPBayesImputeCat” (Quanli et al., 2018).  

2.4.4  Combining rules 

In order to incorporate the uncertainty introduced by missing data and imputation into the 

inferences, the estimates for quantities of interest obtained by analyzing each completed dataset 

are combined by utilizing rules proposed by Rubin (1987). For instance, let Q be any quantity of 

interest (a population proportion or probability). For m = 1,…,M, let 𝑞𝑞(𝑚𝑚) and 𝑢𝑢(𝑚𝑚) be respectively 

the point estimates of, Q and variance estimates of 𝑞𝑞(𝑀𝑀). Valid inferences for scalar Q by 

combining the 𝑞𝑞(𝑚𝑚) and 𝑢𝑢(𝑚𝑚) ,  by Rubin (1987) are as follows:  

                                         𝑞𝑞   =∑ 𝑞𝑞(𝑚𝑚)𝑀𝑀𝑀𝑀𝑚𝑚=1  ,                                                            (12) 

                                                           b =∑ (𝑞𝑞(𝑚𝑚)−𝑞𝑞)2𝑀𝑀−1𝑀𝑀𝑚𝑚=1  ,                                                        (13) 

                                                           
2 We examined different vague prior specifications for 𝐵𝐵𝛼𝛼, 𝑜𝑜𝛼𝛼 in contributions.   
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                                                   𝑢𝑢 =∑ 𝑢𝑢(𝑚𝑚)𝑀𝑀𝑀𝑀𝑚𝑚=1 ,                                                              (14) 

where 𝑞𝑞 can be used to estimate Q and the variance of 𝑞𝑞 can be estimated by 

                                               𝑇𝑇 =  �1 +
1𝑀𝑀� 𝑜𝑜 + 𝑢𝑢                                                              (15) 

with degrees of freedom 𝑜𝑜 = (𝐿𝐿− 1)(1 + 𝑜𝑜−1)2,              (16) 

where  

                                                  𝑜𝑜 =  
(1+𝑀𝑀−1 )𝑜𝑜𝑢𝑢                                                                      (17) 

represents the relative increase in the conditional variance due to the missing data (see Rubin, 

1987). Confidence intervals can be constructed using standard multiple imputation confidence 

interval construction rules, possibly based on a t-distribution. For more details see Rubin (1996), 

Barnard and Meng (1999), Reiter and Raghunathan (2006), Harel and Zhou (2006).  

2.4.5 Number of Imputations 

It has been shown that 2 to 5 multiple imputations are usually sufficient to yield excellent results 

(Carpenter and Kenward, 2013, van Buuren, 2012). However, there is no general consensus about  

for which situation this is an appropriate number for imputations, because over time, more and 

more examples occurred where that proved to be problematic. Various factors, i.e. the number of 

observations and missing values, the exact patterns in the missingness, the extent of complications 

in the imputation and the substantive model, play an important role in the determination of the 

exact number for imputations. Previous guidelines suggest the use of relative efficiency for 
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determining a sufficient M. The relative efficiency of the M imputations given a fraction of missing 

data (Rubin, 1987) is computed in standard error units as  

                                                     𝑅𝑅𝑅𝑅=�1 +
𝜆𝜆𝑀𝑀�−1 2�

                                                                (18) 

where 

                                                    𝜆𝜆 = (
𝑟𝑟+2 (𝑣𝑣+3)⁄𝑟𝑟+1 )                                                                     (19) 

is the estimated fraction of missing information, with 𝑜𝑜 and 𝑜𝑜𝑚𝑚 given by equations (16) and (17) 

(Rubin, 1987). For instance, a relative efficiency of 0.92 can be obtained if 𝜆𝜆 = 0.9 and M is set to 

5 imputations. Consequently, more than five imputations are rarely required, and 10 imputations 

are more than suitable in almost any realistic application. According to van Buuren (2012), a small 

number of imputations may be created in the beginning when building the imputation model with 

an exploratory analysis, and increase M gradually for the final analysis. 

2.5 Imputation Methods for Large Scale Complex Survey 

A complete overview of state of the art MI methods for accommodating non-linear relationships 

and best ways to impute categorical and non-normal continuous variables is available in Vermunt 

et al. (2008), Yucel et al. (2011), Seaman et al. (2012) and Lee and Carlin (2010). Information on 

missing categorical data can be obtained by log-linear models (Schafer, 1997). Imputation of large 

scale survey data can become challenging due to the presence of irregular missing patterns, 

interdependent logical constraints and data inconsistencies. There exist several approaches for 

multiple imputation of high dimensional data (Marker et al., 2002, Andridge and Little, 2010, Zhu 

and Eisele, 2013, Audigier et al., 2018) but most of the existing methods are not designed to handle 

mixed data (quantitative and categorical) and become difficult to implement with large dimensions 

and are extremely time consuming (Erosheva et al., 2002). Moreover, the presence of complex 

dependency structures can also make estimates biased (Bishop et al., 1975). Random forest 
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imputation is yet another method for handling missing data (Stekhoven and Bühlmann, 2012). 

Random forest imputation is a machine learning technique for nonlinearity and interaction 

problems and does not require a particular regression model to be specified. Shah and Anoop 

(2014) use random forest imputation for imputing complex epidemiologic datasets. They find that 

MI based on random forest techniques tends to be more efficient and produced narrower 

confidence intervals as compared to standard MI methods. However, they focus on the setting 

where few variables have missing values. One disadvantage of the algorithms based on random 

forests is that they are computationally expensive to implement in high-dimensions and do not 

account for the uncertainty of estimating parameters in the imputation models (Rubin, 1987). Loh 

et al. (2015) implement CART and forests to overcome incomplete data problems when the 

auxiliary variables are numerous. A study shows that CART and forest methods are more reliable 

than likelihood methods for MI but CART can be biased towards selecting variables that allow 

more splits (Loh and Shih, 1997, Kim and Loh, 2001). A study by Burgette and Reiter (2010) 

suggests that inferences based on the CART imputation engine can be more reliable than default 

applications of MICE based on main-effects generalized linear models. However, despite of 

various merits, CART methods and other fully conditional specifications are subject to odd 

behaviors in high dimensions (Raghunathan et al., 2001, van Buuren and Oudshoorn, 1999). 

Categorical predictors with many levels can be a major hurdle for CART algorithms. For example, 

over two billion potential partitions are formed for a categorical predictor with 32 levels which 

makes the CART algorithms computationally inefficient for standard computers. Joint 

distributions of the missing covariates are also specified by parametric, non-parametric and semi 

parametric models. Akande et al. (2017) compare the performance of various default MI methods 

for categorical data. According to their study, the Bayesian mixture model approach dominates the 

application of the chained equations approach based on Generalized Linear Models (GLM’s) 

(Nelder and Wedderburn, 1972) and is as reliable as imputation engines based on CART. They 

also found that the Bayesian joint modeling approach is substantially computationally expedient 

as compared to the FCS methods for MI. However, in the presence of a large number of categorical 

and continuous variables, the sequential behavior of CART can form suboptimal and unstable trees 

(Hastie et al., 2001, Marshall and Kitsantas, 2012, Strobl et al., 2009). Moreover, to implement a 
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fully Bayesian, joint modeling approach as suggested by Akande et al. (2017), one has to either 

discard all continuous variables or to categorize them. Murray and Reiter (2016) extend the 

Bayesian, joint modeling approach for multivariate continuous and categorical variables. This 

approach involves knowledge of complicated models to create the dependence structure between 

the continuous and the categorical variables. Schafer (1997) uses a JM approach called general 

location model for a mixture of continuous and categorical variables. Despite of being superior to 

CART in many ways, He (2009) suggests that the JM approaches can lack the flexibility needed 

to represent complex data structures arising in various studies (van Buuren, 2007). Various 

recursive partitioning (RP) techniques (Iacus and Porro, 2007, 2008, Nonyane and Foulkes, 2007, 

Burgette and Reiter, 2010, Stekhoven and Bühlmann, 2012, Doove et al., 2014) are proposed to 

overcome the problem of ignoring interactions in chained equations but most of the proposed 

methods combines recursive partitioning with single imputation instead of multiple imputation. A 

multilevel singular value decomposition (SVD) approach to missing values is used by Husson et 

al. (2018) for mixed data. SVD uses the between and within groups variability to impute 

values.  One major drawback of SVD is that it cannot be implemented with MI. Geneviève et al. 

(2018) address main effects and interactions challenges in mixed and incomplete data frames. MI 

by multiple correspondence analysis (MIMCA) (Audigier et.al, 2017) utilizes the dimensionality 

reduction property of multiple correspondence analysis to impute categorical data with a high 

number of categories. Estimates obtained by MIMCA are reliable as MI methods using log linear 

models or conditional logistic regressions. MIMCA is less time consuming on datasets of high 

dimensions than the other multiple imputation methods. However, MIMCA is limited to only 

categorical variables. Imputation methods that treat the categorical data as continuous, for 

example, as multivariate normal, can work well for some problems but are known to fail in others, 

even in low dimensions (Ake, 2005, Allison, 2000, Bernaards et al., 2007, Finch, 2010, Graham 

and Schafer, 1999, Horton et al., 2003, Yucel et al., 2011). Iterative singular value decomposition 

(SVD) algorithms for MI can be a good choice for quantitative (Hastie et al., 2015), qualitative 

(Audigier et al., 2017) and mixed data (Audigier et al., 2016) because of better performance than 

their counter parts. De Jong, van Buuren, and Spiess (2016) propose a new method based on 

generalized additive models for location scale, and shape (GAMLSS) which uses spline functions 

to fit a nonparametric regression model. The individual conditional distribution of the variables 
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with missing values is specified using these functions. The conditional distribution can be further 

used in the framework of chained equations. However, simulation studies for the GAMLSS 

imputation method were limited to missing values in only one covariate and the variables were all 

independent and normally distributed. Salfran (2018) extends the GAMLSS imputation method to 

the multivariate case by relaxing the distributional assumption of the error and requiring weak 

distributional assumptions. Extensive empirical comparisons of the GAMLSS approaches with 

available modern techniques in the context of complex datasets show that the extended method 

allows valid inference. However, applications of GAMLSS-based methods are limited and they 

did not perform well with non-monotone missing patterns. Moreover, GAMLSS-based methods 

are very time consuming as compared to the available standard methods. Further research is 

required in high dimensions.  

 

2.6 Hybrid Techniques for Imputations  

Recently, hybrid techniques for imputations have gained a lot of attention (Ankaiah and Ravi, 

2011, Tang et.al, 2015, Shukur and Lee, 2015). For example, Ankaiah and Ravi (2011) propose a 

hybrid two stage imputation method involving K-means algorithm and multi-layer perceptron 

(MLP) in stage 1 and stage 2, respectively. Also, Nishanth et al. (2012) propose a hybrid clustering 

and model based method where k-means are combined with an artificial neural network (ANN). 

Nishanth and Ravi (2013) propose the online data imputation framework incorporating data 

mining techniques. Considering the local similarity of data, Li et al. (2013) borrow the idea from 

clustering and applied it to the problem of missing data imputation. Azim et al. (2014) present a 

hybrid model that uses a multi-layer perceptron and a fuzzy c-means clustering working in 

sequence for data imputation. Liang et al. (2015) also propose a novel missing value imputation 

method using stacked auto-encoder and incremental clustering (SAIC). However, obtaining 100% 

correct clustering results may become challenging due to the expansion of the data volume with 

existing clustering algorithms. MI using grey theory and entropy based on clustering (MIGEC) is 

another hybrid missing data method proposed by Ting et al. (2014). The MIGEC method divides 

the complete data into clusters and selects the nearest cluster based on grey theory for each 

incomplete instance and imputes values using a weighted average based on the information  
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entropy. Various other MI approaches are suggested in nested imputation (Rubin, 2003), where a 

set of variables is imputed based on the former set. Two-stage multiple imputation by Harel (2007), 

Harel and Schafer (2003), Reiter and Drechsler (2007), (Reiter and Raghunathan (2007) are 

examples of nested imputation. These methods explicitly manage two MI procedures in a 

dependent structure (Rubin, 2003). Weirich (2014) extends the nested imputation methods in both 

continuous and categorical background variables for large-scale assessment. However, these 

procedures are computationally more extensive and implemented in limited ways and require 

further research. Zhao and Long (2016) have done some recent work for imputation methods in 

the presence of high-dimensional data. However, they focused on the setting where only one 

variable has missing values. Most recently, Nikfalazar et al. (2019) propose a new hybrid 

imputation method that deals with the missing data issue of the Mobility in Cities Database 

(MCD). Their hybrid method combines features of decision trees and fuzzy clustering into an 

iterative algorithm for missing data imputation. 

2.7 New Approach to the Imputation of Large Scale Survey Data 

This thesis deals exclusively with the development of new methods for the imputation of mixed 

data type in complex surveys. All contributions are based on the assumption of fully conditional 

specification models for incomplete continuous variables dependent on complete categorical 

variables obtained by fully Bayesian, non-parametric joint models. Although it can be argued that 

Algorithm 3:  Hybrid MI   

Require: P nxp matrix with incomplete data 

1. Miss.cat , Miss.num ← Initial division of p variables into  factor and numeric subsets  

2.      for z= 1, …,Z do 

3.              for m= 1, …,M do   

4. Imp.𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗 ← Imputation using  fully Bayesian joint modelling MI 

5. Imp.𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗  𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖.𝑛𝑛𝑢𝑢𝑚𝑚𝑚𝑚𝑗𝑗 ← Combining Imp.Pcatmz and Miss.nummz  to generate partially imputed 

dataset   

6. 𝐼𝐼𝑚𝑚𝑝𝑝𝑚𝑚𝑗𝑗 ← Imputing Imp.𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗  𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖.𝑛𝑛𝑢𝑢𝑚𝑚𝑚𝑚𝑗𝑗 using MICE i.e. 𝑖𝑖( 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖.𝑛𝑛𝑢𝑢𝑚𝑚𝑚𝑚𝑗𝑗 ⃒𝐼𝐼𝑚𝑚𝑝𝑝.𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑗𝑗 )    

7. 𝐼𝐼𝑚𝑚𝑝𝑝𝑚𝑚𝑗𝑗  ← Final imputed dataset 
8.           end for   

9.     end for   
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this assumption for imputation is unjustified, there certainly exist situations in high dimensions 

which are enough complex that existing methods for imputation are difficult to implement 

seperately. As already mentioned by van Buuren and Groothuis-Oudshoorn (2011),  “fitting a 

series of conditional distributions, as is done using a series of regression models, may not be 

consistent with a proper joint distribution”. Also motioned by Speidel et al. (2018), that “the 

specification of a joint distribution can be difficult, if different variable types need to be modeled”. 

Hybrid MI (HMI) methods are able to combine conditional and joint models to impute mixed type 

variables. In addition, already present knowledge about complete categorical variables can be 

directly included to impute continuous variables. The same holds for categorical variables when 

categorized continuous variables are used in dependence models with or without initial values. 

Another advantage of hybrid models is that they are computational efficient. Different dependence 

models using a categorization approach are presented in the last contribution whereas, in the first  

four contributions, dependence models that only use information of categorical variables are 

implemented with a variety of settings. The proposed hybrid MI (HMI) approach is a 3-stage 

approach. In step 1, imputations for a large number of categorical variables are created under the 

JM MI techniques. Incomplete continuous variables are combined with complete categorical 

variables in step 2, resulting in a dataset where values in the continuous variables may be missing 

and values in the categorical variables are imputed. The continuous variables in each dataset are 

then imputed using FCS MI techniques, such that the means of the draws from the posterior 

predictive distribution of the unobserved data depend on the data already imputed by the JM MI 

in step 3. Steps 1-3 are repeated M times to generate multiple completed versions of the data. 

Therefore we provide a flexible and practical hybrid MI approach to obtain complete data, which 

sometimes cannot be possible to be obtained when both MI approaches are applied separately. 

Step 1 is implemented by using the DPMPM MI technique due to its computational efficiency, its 

ability to automatically model complex dependencies and its successful implementation for the 

case of high dimensional categorical variables (Chib and Hamilton, 2002, Hirano, 2002, Kyung 

and Gill, and Casella, 2010). Step 3 is implemented by using MICE due to its open source character 
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and popularity. Algorithm 33 provides an outline of how the simulations are run for the HMI 

method. HMI is denoted as H.CART, H.PMM and H.DEF when the MICE algorithms CART, 

PMM and default (which uses logistic regression for categorical and PMM for continuous 

variables) are used to impute the continuous variables in step 3, respectively. 

 

                                                           

3 The various experimental conditions can be controlled according to steps 1 to 7 of the algorithm. These 

distinct settings will be discussed in the next sections. 
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3 Contributions  

3.1  Contribution 1 

In this Section an overview of the theoretical background of those concepts are presented, which 

are essential for the understanding of the contributions1. At first, in Section 3.1.1 an introduction 

into generalized linear regression (GLM’s) is given. To check the capacity of a hybrid and common 

MI approaches for predictive performance in GLM’s, the experimental conditions after step 7 of 

algorithm 3 are further defined in Section 3.1.2. We take a close look at various dimensions of 

proposed approach and highlight its predictive performance in simulation study and a real data 

example in Sections 3.1.3 and 3.1.4 respectively. The Section ends with an outlook.   

3.1.1  Generalized Linear Models  

The theory of generalized linear models (GLM’s) was first introduced by Nelder and Wedderburn 

in 1972. They proposed that interdependencies and causalities between the dependent (response) 

variable 𝑌𝑌 = (y1, . . . , yn) and p ≥ 1 independent variables (covariates) 𝑋𝑋 = (𝑋𝑋1, . . . , 𝑋𝑋p) can be 

analysed by an entire class of regression models where the response variable of the model is 

hypothesized to follow exponential family of distributions e.g. (Gaussian, binomial, poisson, 

gamma, inverse Gaussian, geometric, and negative binomial). Many types of response variables 

e.g. count, binary, proportions and positive valued continuous distributions can be accommodated 

by GLM’s (Nelder and Wedderburn (1972) and Hoffmann (2004). Nelder and Wedderburn (1972) 

discovered that the assumptions of linear models can be relaxed to develop general models in order 

to the specify relationship between response variable and some number of covariates and 

relationship which initially seems to be nonlinear can be linearized by restructuring the relationship 

between the linear predictor and the fit. This flexibility makes GLM’s a valuable statistical tool 

and is widely implemented in softwares since past twenty years (Hoffmann, 2004). 

                                                           

1 The following sections are written in a way to aid the reader in understanding the contributions, but are 

 by no means exhaustive or even complete with respect to the theory described. 
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GLM’s use a random sample of n observations to make inference on the whole population under 

investigation. The observations on 𝑌𝑌 are normally distributed with constant variance σ2. 

Parameters of interest and the variance are estimated from sample by solving a linear equation 

system using ordinary least square (OLS) method.  Properties of OLS include independence and 

constant variance whereas maximum likelihood (ML) linear regression has a more restrictive 

distributional assumption of normality. The response is linked to a linear combination of covariates 

in classical setting of ordinary linear regression and a random error term ε = (ε1, . . . , εn) is added 

to  the model to observe the deviation of the each observation from global sum. The main 

assumptions are independent, identical and normally distributed error terms, expectation E(εi) = 0 

and variance Var(εi) = σ2 , and error terms are uncorrelated to the covariates. Intercept β0 and 

weights β1, . . . , βp are the parameters of interest in the model. A GLM consists of:  

 

1. A linear predictor 

  𝛾𝛾𝑖𝑖 =  β0 +  ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖=1 𝛽𝛽𝑖𝑖  , 𝑖𝑖 = {1, . . . ,𝑛𝑛}. 

 

 2. A smooth linearizing response function2 (e.g. 𝑤𝑤). The link function linearizes the GLM’s by 

transforming the expectation of the response variable, 𝜇𝜇𝑖𝑖 = 𝐸𝐸 (𝑦𝑦𝑖𝑖) to the linear predictor: 𝑤𝑤( 𝜇𝜇𝑖𝑖) =   𝛾𝛾𝑖𝑖  .    
3. A variance function that describes how the variance, 𝑣𝑣𝑣𝑣𝑣𝑣 (𝑦𝑦𝑖𝑖) depends on the mean 𝑣𝑣𝑣𝑣𝑣𝑣 (𝑦𝑦𝑖𝑖) = φV (µ),  

where the dispersion parameter φ is a constant. More flexible modelling of the linear predictor can 

be made using an approach called generalized estimation equations (GEE) and several other 

models branched off from the stems of basic ideas of GLM’s. A sum of unknown functions (to be 

estimated) of the covariates can be used as a linear predictor in nonparametric regression. A 

(penalised) spline-based approach is used to estimate these functions. This approach transforms 

the linear predictor back to the estimation of a generalized linear regression. Some covariates can 

be modelled in the predictor using aspects of functions whereas others may use aspects of linear 

combinations. Generalized additive regression (e.g. Hastie and Tibshirani, 1999) is another 

approach which combines these aspects. More flexible modelling of the linear predictor can be 

                                                           

2 The inverse function 𝑤𝑤−1 is called link function 
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formed using these approaches. These approaches are beyond the scope of this thesis since only 

standard generalized linear regression models are discussed in contributions.  

GLM’s approach has some key assumptions which need to be met when computing a p-value. 

Violation of these assumptions can produce biased standard errors and can make p-values 

unreliable. However, key assumptions for linear modeling are not properly specified. For instance, 

the chi-square distribution assumes homogeneity, normality, and independent deviations centred 

on zero to calculate the type I error (the p-value) on the improvement in fit with the GLM’s 

(Dobson, 2002). In this scenario, it follows that these properties are considered as key assumptions 

for GLM’s. A general consensus is developed on the assumptions of homogeneity and 

independence of residuals (see e.g. Nelder, Wedderburn, 1972, Hoffmann, 2004, Dobson, 2002, 

Breslow, 1996, McCullagh, Nelder, 1989). On the other hand the importance of normality of 

residuals in GLM’s is not clearly specified. According to Hoffmann (2004) and Dobson (2002) 

the assumption of normality of the residuals is important in order to correctly interpret the results 

while Gill (2001) noted that normally distributed errors are simply a description of model 

behaviour not a condition of GLM’s quality.  

3.1.2  Predictive performance for HMI 
 

 

                                                           

3 The test and train datasets are generated randomly using unequal split. 
4 The arithmetic mean is taken of M AUROC estimates obtained by M fitted GLM’s. 

Algorithm 4:   Holdout cross validation and estimation of AUROC for HMI method 

Require: 𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑧𝑧   i.e. M complete datasets over Z simulations runs 

1.      for z= 1, …, Z do 

2.              for m= 1, …,M do   

3. 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑧𝑧 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑧𝑧  ← Divide matrix  𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑧𝑧  into testing and training subsets3 

4. 𝑃𝑃(𝑦𝑦 = 1ǀ  𝑥𝑥1,…,𝑥𝑥𝑝𝑝)𝑚𝑚 
𝑧𝑧 =  1/(1 + 𝑒𝑒−(𝑡𝑡+∑ (𝑏𝑏 𝑗𝑗𝑚𝑚𝑧𝑧 𝑥𝑥𝑗𝑗𝑚𝑚𝑧𝑧 )   

𝑝𝑝𝑗𝑗=1 ) ← Train a GLM model on 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑧𝑧  

5. 𝑃𝑃𝑚𝑚𝑧𝑧  ← Make prediction on  𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑚𝑚𝑧𝑧  

6. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑧𝑧   ← AUROC curve based on 𝑃𝑃𝑚𝑚𝑧𝑧   

7.           end for   

8. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴����������𝑧𝑧 =
∑ (𝑀𝑀𝑚𝑚=1 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚 

𝑧𝑧 )𝑀𝑀  ←Pooled4 AUROC curve  

9.     end for   

http://eleganza.biz/book/9780205377930/generalized-linear-models-applied-approach
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Algorithm 4 explains the experimental conditions for obtaining the predictive performance for 

HMI proposed in Chapter 2. Holdout cross validation is used to access the predictive performance 

of GLM’s for binary response. We focus on the area under the Receiver Operating Characteristic 

(ROC) curve or AUROC as diagnostic check to evaluate performance of the new method. 

3.1.3 Simulation Study 

 A small simulation study is conducted with five covariates generated from a Multivariate Normal 

(MVN) distribution. Further, three out of five covariates are binariazed using some thresh hold 

criterias. Lastly, covariates dependent binary response is generated with probabilities governed by 

logistic model.  Artificial data is generated under two scenarios i.e. variables having moderate to 

somewhat high correlations. Logistic probabilities satisfying Rubin’s definition for MAR 

missngness are defined to yield missing observations in covariates and binary response. M 

complete datasets are made for proposed and existing MI methods. A total of 200 simulations are 

made for each method. We use GLM’s5 because effect of various factors on a binary response 

(breastfeeding) is analysed later in a real data example. Various numbers of imputations are 

generated using three MICE methods (i.e. CART, PMM, default) and two HMI methods 

(H.CART, H.PMM) in both types of scenarios. The AUROC values for Cross 

validated complete datasets are used as benchmark ("theoretical" AUROC) for comparison. 

Computational times are also recorded as a measure of performance to compare different MI 

methods. We noticed, for highly correlated data, H.PMM and H.CART showed better predictive 

performance in terms of larger median values of pooled AUROC over all simulations as compared 

to the default and PMM methods in simulation studies. 

3.1.4 Real Data Application  

In order to confirm potential of proposed approach we apply hybrid approach to create multiple-

imputed background characteristics for individual women in 2014 Punjab MICS data. A subset of 

background characteristics of women is selected because implication of existing MI approaches 

may become problematic for large number of categorical variables due too high missing rates, 

inconsistencies and complex dependency structures. Women's background characteristics like 

demographics, age, education, motherhood and recent births are included in this dataset. The 

                                                           

5 We used the GLM’s with link “logit” throughout all contributions. 
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number of categorical variables is high as compared to continuous variables. Fifty sampling 

simulations are run and M=5 completed datasets are generated for each MI method. The binary 

response is modeled using GLM’s depending on various categorical and continuous covariates. 

The AUROC is pooled for each MI method after cross validation over all simulation runs. Results 

suggest overall better predictive performance of the GLM’s for the two hybrid methods as 

compared to CART and PMM methods. Surprisingly, the computational time taken by MICE 

methods is reduced from days to hours when the proposed methods are applied.  

3.1.5  Outlook  

The source of low rates of AUC for hybrid methods as compared to CART in simulation studies 

is still unknown. Further research for complex simulation studies, large-sample results or large 

number of imputations could be needed to find an answer. 
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3.2 Contribution 2 

This contribution links with the previous one in the way that it is a review of inference in GLM’s 

with binary response and mixed type missing covariates for the presented and existing methods. 

Repeated sampling properties for the imputation techniques are highlighted in this Section. More 

complex data structures are generated in simulation studies for the evaluation of various statistical 

properties for GLM’s. A brief description of the simulation study is provided and the major 

findings of contribution 3 are discussed. The section ends with an outlook.  

 

3.2.1 Inference on GLM’s for HMI method 
 

Algorithm 5 explains the experimental conditions for the hybrid approach described in Chapter 2 

for inference in GLM’s. 

                                                           

1 𝑞𝑞�(𝑧𝑧) are pooled point estimates over M imputed datasets across Z simulations. 

2
 𝑇𝑇(𝑧𝑧) are pooled variances over M imputed datasets across Z simulations. 

3
 𝑞𝑞� is an average of pooled variances (𝑞𝑞�(𝑧𝑧)) across Z simulations. 

4 𝑇𝑇�  is an average of pooled variances (𝑇𝑇(𝑧𝑧)) across Z simulations. 

Algorithm 5:    Inference on GLM’s for HMI method 

Require: 𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑧𝑧   i.e.  M complete datasets over Z simulations runs 

1.               for z= 1, … ,Z do  

2.                         for m= 1, …,M do   

3. 𝑞𝑞�(𝑧𝑧)← ∑ q(𝑚𝑚)𝑀𝑀𝑀𝑀𝑚𝑚=1                  Pooled point estimates1.   

4. 𝑏𝑏(𝑧𝑧) ← ∑ (q(𝑚𝑚)−𝑞𝑞�(𝑧𝑧))2𝑀𝑀−1𝑀𝑀𝑚𝑚=1        

5. 𝑢𝑢�(𝑧𝑧) ← ∑ u(𝑚𝑚)𝑀𝑀𝑀𝑀𝑚𝑚=1           

6. 𝑇𝑇(𝑧𝑧) ←  �1 +
1𝑀𝑀� 𝑏𝑏(𝑧𝑧) + 𝑢𝑢�(𝑧𝑧)      Pooled variances2. 

7.                  end  for 

8. 𝑞𝑞�← ∑ 𝑞𝑞�(𝑧𝑧)𝑍𝑍𝑍𝑍𝑧𝑧=1      Average of pooled point estimate3.      

9. 𝑇𝑇� ←  ∑ 𝑇𝑇(𝑧𝑧)𝑍𝑍𝑍𝑍𝑧𝑧=1      Average of pooled variance4. 

      end for  
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3.2.2  Simulation Study  

Flexibility and ability of new MI method to detect complex dependencies structures in categorical 

variables motivated us to conduct more complex simulations. A simulation study is conducted to 

check the theoretical findings and to quantify the bias. Artificial data is generated under the missing 

at random mechanism with various percentages of item nonresponse in all covariates. The number 

of categorical variables is kept more than the number of continuous variables, aiming to compare 

strategies in a realistic data situation. Bernoulli distributions with probabilities governed by the 

logistic regression are used to generate binary variables. Statistical properties of different MICE 

based MI methods (i.e. CART, PMM, default) are compared with two HMI methods (i.e. H.CART, 

H.DEF) based on the root mean square errors (RMSEs), empirical standard errors (ESEs) and 

coverage rates of 95% confidence intervals for GLM’s with binary response and mixed covariates. 

We also check the performance of imputation models with graphical diagnostics (i.e. boxplots for 

the point estimates and standard errors across all simulations) for various regression coefficients 

under all MI methods. Results from simulations showed that HMI methods tend to produce 

minimum bias as compared to MICE methods for most of the co-variants. The average point 

estimates based on proposed methods are closer to the corresponding true values in most of the 

cases. Average standard errors, RMSEs and ESEs are also smaller for most of the cases 

hence, suggesting reasonable performance. 

3.2.3  Real Data Application 
 

MICS Punjab 2014 women data (used in contribution 1) is also used for real data application in 

this contribution. The binary response is modeled using a GLM’s depending on four categorical 

variables and continuous. Twenty simulations are run and M=10 completed datasets are generated 

for each MI method.  We noted that, HMI MI methods tend to have  comparatively smaller pooled 

standard errors are for all coefficients as compared to MICE default and PMM MI methods and 

similar pooled standard errors as compared to MICE CART which suggests a reasonable 

performance. Computational time is also reduced significantly for most of the settings of proposed 

HMI methods. 
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3.2.4 Outlook  

Statistical properties of the proposed approach can be further studied for continuous response with 

mixed type co-variants. The proposed method is practical and computationally efficient. New 

method for MI allows the user to choose a set of incomplete categorical that the regular MICE can 

sometimes fails to impute due to various restrictions i.e. large dataset, complex dependencies, high 

percentage of missing data, specification of higher order interactions, multicolinearity and other 

instability problems. To implement this method no knowledge of complicated models is required. 

Further experiments with strong relationship between continuous and categorical covariates can 

be made to improve the estimated values for coverage rates and point estimates. However, of note, 

one limitation of proposed method is that, the information available in the continuous variables is 

not used for imputing the categorical variables.  
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3.3 Contribution 3 

The features of HMI method for GLM’s in previous contributions suggest its potential to handle 

large scale survey data with complexities and dependencies. Motivated by the performance, we 

further made a comprehensive comparison of the MI methods in contribution 3 for child data from 

the multiple indicator survey (MICS) in Punjab 2014. We evaluated estimators of regression 

coefficients for a linear regression model in the presence of incomplete binary and continuous 

predictors. Results are also illustrated with more complex and somewhat large simulated data.  

3.3.2 Simulation study  

In this simulation, some part of  the artificial data is generated from a MVN distribution and all 

variables are continuous. Further, all continuous variables are discretized to be binary variables by 

taking small steps. Some part of the data is generated from normal distributions (ND) and random 

variables are split into various homogeneous groups between 4 and 6 nominal categories. To 

encode complex dependence relationships with higher order interactions in simulation, another 

binary covariate is generated from Bernoulli distributions with probabilities governed by the 

logistic regression. Two highly correlated continuous covariates having strong relationship with 

categorical covariates are generated from NDs. Finally, a covariate dependent continuous response 

with a random error component is generated. Hence, simulated data is generated with complex 

dependence structure in order to insure complications which are difficult to capture with log linear 

models or chained equation methods for MI. Missing values for independent covariates are 

generated using a novel approach in each simulation that conforms to Rubin’s (1987) definition of 

missing at random (MAR). We begin with complete data by imposing MAR missingness onto the 

data. A point to note, default version of chained equations using “mice” was unable  to impute 

missing values in the child data which gives an indication that may be complex dependence 

structures in the data make it complicated to identify them by the default application of MICE. 

Rubin’s combining rule are used to estimate the parameters of interest for linear models (LM’s) 

with continuous response and mixed covariates. In order to make model as rich as possible, we 

included all of the variables from the generated data in the imputation model ensuring that the 

imputation model preserves the relationships between the variables of interest. RMSEs, empirical 

standard errors ESEs, coverage rates of 95% confidence intervals and bias are



3.3 Contribution 3 

 

32 

 

compared for the evaluation of performance. Means for CI coverage and RMSEs over all beta 

coefficients are also calculated. For the purpose of graphical diagnostic check, comparisons are 

also made based on boxplots of standard errors and point estimates for various regression 

coefficients  for the 1000 simulation runs. There seem to be similarities in structure among all MI 

methods for a binary covariate generated with higher order interactions. We noticed that H.CART 

tends to be less biased as compared to CART for all types of covariates and interaction terms. The 

H.DEF method led to more overall accuracy with smaller means for RMSEs over all beta 

coefficients as compared to CART. For the most part, coverage rates for the H.CART are in line 

to those from CART and produce almost identical results. In most cases, coverage probabilities 

for H.CART were 100%, which suggests that these confidence intervals may be too conservative. 

The simulated coverage rates of the 95% confidence intervals based on H.DEF are near to nominal 

95% for most cases. Few of the incidences in H.DEF led to under-coverage. H.DEF method tends 

to have smaller standard errors, ESEs and slightly higher RMSEs as compared to CART for all 

covariates.  

3.3.3 Real Data Application 
 

In order to demonstrate the validity of proposed MI method on a real dataset, we use the MICS 

Punjab 2014 child’s data.  For description of child data used in this contribution see Chapter 1. We 

impute a subset of variables that includes background variables which are continuous and 

categorical with multiple categories. Graphics of incomplete predictors are used to explore the 

missing data patterns. Multiple categories for categorical variables were reduced for proper 

comparisons because it can be tedious for MICE to specify imputation models and interaction 

terms in the presence of large data. But to keep the analysis comparable and challenging a 

demographical variable with 36 levels was retained. To create multiple imputations, we included 

all covariates (especially variables that will be used in subsequent analyses) as predictors in the 

imputation model. We formulate linear model for a continuous outcome with two continuous and 

two categorical variables predictors. Since there are no true values to compare for in the real data 

example, we calculated complete case (CC) estimates for comparison purposes. Similar to 

simulation study ESEs, average point estimates, average standard across the 200 simulations and 

computational time are calculated for real data. The results showed smaller standard errors for 
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H.DEF as compared to CART (see Figure 1). ESEs for HMI variants are also smaller as compared 

to CART for most of the cases, suggesting better performance over CART. There is a noticeable 

difference in computational time. Hybrid methods require 3 times less computational time to run 

all stimulations as compared to MICE methods. 

 

 

 

Figure 1. Real data: Boxplots for standard errors across 200 simulations by various imputation 

methods under Missing at Random (MAR) and ten imputations. 
 

3.3.4 Outlook  

A drawback of the HMI approach is that it does not use the information available on the continuous 

variables for imputing the categorical variables. Further work is needed to use iterative procedures 

to develop strong relationships between the categorical and continuous variables.  
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3.4 Contribution 4 

This contribution is an extension to the contribution 2. The statistical properties of GLM’s are 

compared for three dependence models for incomplete variables in proposed HMI method.  

Therefore three related hybrid imputation strategies are proposed to generate a complete complex 

data. The objective of this study is to perform an extensive empirical study that evaluates the 

performance of three software packages commonly available in R. The results are compared for 

the proposed hybrid MI method and available modern techniques by using an artificial dataset as 

an example. 

 3.4.1 HMI for dependence models 

In this contribution we investigate the ability of various approaches to detect complex dependency 

structures in high dimensions using the HMI approach. HMI method is implemented by combining 

DPMPM MI technique with MICE, expectation-maximization with bootstrapping (EMB) and 

additive regressions/bootstrapping technique. These techniques are denoted as MICE, Amelia and 

Hmisc respectively. We denote HMI algorithm as H.MICE, H.Amelia and H.Hmisc when 

incomplete continuous variables are imputed by MICE, expectation-maximization with 

bootstrapping (EMB) and additive regressions/bootstrapping technique respectively. Basic 

information of MI used in this contribution is provided in Table 1. Algorithm 6 explains that how 

simulations are carried out for different dependence models.  

3.4.2 Summary 

To access the efficiency, we applied existing MI methods to both incomplete continuous and 

categorical data and contrast the results with HMI methods. A simple artificial data is generated 

with a covariate dependent binary response in this study. First, five predictors are generated from 

a MVN distribution which are further binarized using thresh hold criteria. Further two continuous 

predictors are generated from normal distributions with probabilities governed by regression 

models. A binary response is generated from Bernoulli distributions with probabilities governed 

by the logistic regression. Moderate missing rates are induced using a particular (MAR) dropout 

model in each item except the response variable which is completely observed. The missing values 

are then multiply imputed somewhat large times using three existing and three HMI methods. 

Finally, GLM’s with binary response are fitted to the completed data. 
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Estimates obtained from prescribed models are compared with the parameters used for data 

generation. The impact of the various procedures is evaluated in terms of the RMSEs and ESEs 

indices and the coverage rates of the 95% confidence intervals. Five thousand sampling 

simulations are run for each MI procedure. The coverage rates of the 95% confidence intervals for 

Hmisc tend to be larger than the coverage rates for H.Hmisc. H.Hmisc tends to result in smaller 

RMSEs as well for most of the cases. H.Amelia tends to have high coverage rates for most of the 

estimands with slight bias. H.MICE tends to have lower bias for most of the cases as compared to 

the MICE. Standard errors are also often lower for the three HMI methods. We considered only 

binary response with binary and continuous covariates in this study. Challenging issues which 

need further research include consideration of continuous response with mixed type covariates in 

HMI approach. Additionally, data with ordinal nature and more categories can be included for 

further comparisons. 

Table 1. Basic information of MI methods 

Source:  Based on Manuals available on http://www.r-project.org/ in R and Hybrid Multiple Imputation 

(HMI). 

 

 

                                                           

1 We use the R package “Amelia II” (version 1.6.1, Honaker, King, and Blackwell, 2011) with defaults as 

basic command. 
2 We implement bootstrap and PMM MI methods using 13 (for convenience) iterations with the 

“aregImpute” function in the “Hmisc”. 
3 The main R tool “NPBayesImpute” seems not anymore available at CRAN. The new version called 

“NPBayesImputeCat” implements the same routines. 
4 We implement a default version of chained equations in “mice” software package in R. 

#Method Acronym Description 

1 

2 

3 

4 

5 

6 

7 

Amelia 1
 

Hmisc2
 

NPBayesImpute3
 

MICE4 

H.Amelia 

H.Hmisc 

H.MICE 

Uses a bootstrap +EM algorithm  

Uses Additive Regression, Bootstrapping and PMM algorithms 

Uses a fully Bayesian, joint modeling approach  

MI using FCS 

Amelia+NPBayesImpute 

Hmisc+NPBayesImpute 

Mice+NPBayesImpute 

http://www.r-project.org/
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Algorithm 6:  HMI  for different dependence models 

    Require:  Imp.𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑧𝑧  and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑧𝑧   

1.      for z = 1, …,Z do 

2.              for m= 1, …,M do    

3. 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑧𝑧 ← Imputing Imp.𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑧𝑧  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑧𝑧 using MICE│Amelia│Hmisc i.e.  𝑓𝑓( 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑧𝑧 ⃒𝐼𝐼𝐼𝐼𝐼𝐼.𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑧𝑧 )    

4. 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑧𝑧  ← Final imputed dataset 
5. 𝑞𝑞�(𝑧𝑧)← ∑ q(𝑚𝑚)𝑀𝑀𝑀𝑀𝑛𝑛=1                    

6. 𝑏𝑏(𝑧𝑧) ← ∑ (q(𝑚𝑚)−𝑞𝑞�(𝑧𝑧))2𝑀𝑀−1𝑀𝑀𝑛𝑛=1        

7. 𝑢𝑢�(𝑧𝑧) ← ∑ u(𝑚𝑚)𝑀𝑀𝑀𝑀𝑛𝑛=1           

8. 𝑇𝑇(𝑧𝑧) ←  �1 +
1𝑀𝑀� 𝑏𝑏(𝑧𝑧) + 𝑢𝑢�(𝑧𝑧)       

9.                  end  for 

10. 𝑞𝑞�← ∑ 𝑞𝑞�(𝑧𝑧)𝑍𝑍𝑍𝑍𝑧𝑧=1       

11. 𝑇𝑇� ←  ∑ 𝑇𝑇(𝑧𝑧)𝑍𝑍𝑍𝑍𝑧𝑧=1       

12.  end for 
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3.5 Contribution 5 

 

Performance of previously developed hybrid approach to handle missing values in large scale 

complex surveys was limited and was not equipped to use information of continuous variables to 

impute categorical variables. Therefore, we developed two conditional scenarios of hybrid 

architectures which use the concept of categorizing continuous covariates. Unlike existing 

approaches, where categorizing results in loss of power, proposed approaches restore the 

continuous variables in their original form. These variants are computationally fast and can be 

applied to both categorical and continuous data in high dimensions.  

3.5.1  Iterative hybrid architecture 1 
 

In first conditional scenario of hybrid architecture, we use the concept of categorizing continuous 

variables before the imputation of categorical data by using three steps (see Figure 2).  Incomplete 

data is divided in to two sub groups i.e. one containing incomplete continuous data and other 

having incomplete categorical data. In Step 1 incomplete continuous variables are categorized. 

Further, in Step 2 the JM technique is applied on these categorized variables given additional 

covariates i.e. (incomplete categorical data) to generate complete categorical data. Complete 

categorical data generated in this step contains complete categorical variables. In Step3, the FCS 

technique is applied to impute missing values in original continuous variables given additional 

completed categorical variables. Points worth noticing, in first step, categorization allows the 

information on continuations variables to impute categorical variables and step 3, allows the 

information on categorical variables to impute continuous variables. Steps 1 to 3 are repeated M 

times to generate multiple copies of complete datasets. Inference (e.g. mean, regression) can be 

run on each of the newly created, imputed datasets. Finally, estimates can be combined by using 

‘Rubins rules’. 
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Figure 2. Schematic diagram illustrating the proposed hybrid architecture 1.  

3.5.2  Iterative hybrid architecture 2 
 

The second variant uses initial imputed values. These values are obtained by categorization of 

continuous data before the imputation of categorical data (see Figure 3). Second variant of 

proposed hybrid architecture is a two steps approach. In first step the initial values for categorical 

variables are obtain by applying JM approach to missing categorical data. Given the initial values 

for categorical variables in dependence model, initial values for continuous data are 

generated. Further, in step 2 these initial values for continuous are categorized and used in 

conditional models with incomplete categorical variables to obtain complete categorical data with 

updated values. Given the updated values of categorical covariates, complete continuous 
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variables are generated by applying single iteration of  FCS  approach to incomplete continuous 

data with updated values. These updated values are further categorized for another initial values 

for categorical variables. These steps are repeated M times with new updated values and M 

complete datasets are obtained.  

 

Figure 3. Schematic diagram illustrating the proposed hybrid architecture 2. 

3.5.1  Simulation Study 
 

In this contribution, the complex simulation experiment design similar to the contribution 3 is 

generated with a covariate dependent binary response. The GLM’s are used as a analysis models 

of interest to explore the performance of the imputation methods. HMI methods which use CART 

and default algorithms to impute continuous variables under the first and second conditional 
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scenarios are denoted as H.DEF1, H.CART1 and H.DEF2 and H.CART2 respectively. For 

comparison, two MICE based MI methods i.e. CART and default are used. Ten imputed datasets 

for each of the proposed and the MICE MI methods are generated. The parameters of interest are 

estimated using Rubin’s aforementioned method for Z =1000 simulation runs. Hybrid and CART 

methods tend to have smaller standard errors as compared to default method for covariates, 

whereas the hybrid methods tend to have similar standard errors as compared to CART for most 

of the cases. All hybrid methods tend to have smaller RMSEs for most of the cases where H.DEF2 

shows smallest RMSE among the remaining methods. Hence, suggesting overall better 

performance. 

3.5.2 Real Data 

 

The data for this example were taken from a secondary household data from the Punjab Multiple 

Indicator Cluster Survey in 2014. The substantive goal of this study is to determine the association 

between access to water and sanitation, and geographic, demographic, and socio-economic factors. 

A geographical variable “district” is given a special importance in imputation model because it has 

36 levels. Most of the background variables related to geographic, demographic, and socio-

economic characteristics in MICS household data are categorical with many categories having 

complex data structures and missing values. It can be tedious for MICE to specify imputation 

models and interaction terms in presence of such complications (Van Buuren, and Oudshoorn 

1999). Therefore, for proper comparisons, multiple categories for categorical variables were 

reduced by merging them and a sub-sample is selected which contains information on water and 

sanitization, hand washing and household characteristics. For the sake of keeping the analysis 

comparable and challenging at the same time, a variable which has fifteen levels is included in the 

sub-sample. The variables are in a sub sample are mostly categorical with multiple categories. The 

missing data rates in most items are moderate. Only two variables are fully observed. We assume 

items are MAR in data under consideration. To identify key determinants of water quality we use 

various explanatory variables associated with the binary response using GLM’s. Since there are 

no true values to compare for real data example, we calculated complete case (CC) estimates for 

comparison purpose. Point estimates and standards for ten completed datasets across 50 

simulations are calculated for real data. Computational time, ESEs and means of point estimates 
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(standard errors) for completed datasets across all simulation runs under various MI methods are 

estimated.  The empirical example with real data indicated that the both hybrid variants yielded 

smaller standard errors as compared to remaining methods. ESEs and means of standard errors for 

hybrid variants are also smaller as compared to other methods, suggesting better performance. 

Moreover there exist significant differences in terms of the computational efficiency among the 

MI methods. 

3.5.3 Outlook 

 Since there is a variety of MI methods for different types of variables, using these methods in 

conditional models for multiply imputing missing values in the presence of high-dimensional 

mixed data seems logical. Our numerical results show that the hybrid imputation achieves, in most 

cases, better performance than the other existing imputation methods. In addition, the iterative 

hybrid architectures 1 and 2 have an other advantage. It is straightforward to include information 

of both types of variables in conditional models, where hybrid approach used in previous 

contributions do not use the information on continuous variables to impute categorical data.  Our 

current work is limited to MAR mechanism, however, this study has for the first time provided an 

overview and a systematic comparison of previous approaches to MI for large scale complex data 

implemented in conditional models. We propose that the performance of proposed algorithms can 

be improved by extending the categorization process of continuous variables to ordinal or multiple 

categories.  Issues like convergence and appropriate selection of predictors is are not addressed in 

this contribution therefore further evaluations with diversity of experimental settings will 

undoubtedly be needed to account for this.  
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4 Concluding Remarks and Conjectures for future research   
  

Investigation of optimal strategies for fitting MI on the classical regression techniques in the 

presence of a large number of variables is questionable. There is no general agreement on 

especially to the how many variables should the imputation model have. According to van Buuren 

et al. (2012) the number of predictors should be as large as possible for the generally accepted 

principle for imputation. On the other hand a Hardt et al. (1999) recommends that the small number 

of variables will be sufficient to successfully implement MI in the R package “mice”. It is worth 

noting that the performance of the regression techniques is known to deteriorate as number of 

variables increases and it is generally not feasible to include all variables in imputation models. 

Little (2018) focuses on the flexibility of MICE by referring a large list of references to the 

application of chained equation MI in real applications. As opposed to Little (2018), we claim that 

high-dimensional real applications in these references are limited. Many of the references applied 

MICE to epidemiological real data in context of large sample sizes rather than a large number of 

mixed type variables. Consequently the application of classic regression models to the high-

dimensional setting as investigated in this thesis may be questionable. The new imputation 

techniques open the door for us to conduct imputation in the high-dimensional setting by 

combining various properties of existing MI approaches, the main advantages of the proposed 

methodology are as follows: (1) it is flexible and can be implemented to mixed type high-

dimensional data, (2) it does not rely on heuristic rules of thumb for predictor selection and (3) it 

is fast. Despite of favorable features of HMI methods for missing data imputation in large-scale 

studies, in the following some global remarks are given.  

Various issues concerning the implementation of the hybrid imputation models need further 

research. For example, CART method resulted similar or improved performance over hybrid 

models in most our all applications in simulation studies where we have considered moderate rates 

of missingness. Whereas, for real world applications where we have high missing rates, hybrid 

models performed relatively better than CART which gives an indication that we may need even 

higher rates of missingness than we used in our simulations to get improved performance over 

CART. Moreover for better performance it may be that we need an even larger number of 

imputations than we used in our application. Moreover, the specification of the priors
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in the context of HMI needs further study. The performance of the hybrid models is compared with 

three existing algorithms for MI in contribution 4 already. In parallel with existing classical 

imputation approaches, the performance of the hybrid models can be improved by adapting other 

existing algorithms such as GAMLSS imputation method by using R package “ImputeRobust” to 

multiply impute missing values in the presence of high-dimensional data, which can relax some 

modeling assumptions. It may be interesting to evaluate the hybrid approach in comparison to a 2-

stage and nested multiple imputation approaches. Hybrid models can also be compared to the 

Bayesian nonparametric hierarchical model developed by Murray (2019) which imputes missing 

multivariate continuous and categorical data using R package “MixedDataImpute”. Iterative 

hybrid models proposed in the last contribution can easily be extended with categorization of 

continuous variables up to multiple levels. It may be interesting to investigate whether inclusion 

of more continuous variables may improve the obtained imputations. Future work will considering 

the diagnostics or sensitivity analysis in the real data applications can be helpful to provide 

justification of the method recommendation.  

 Hybrid MI methods are applied to various datasets from MICS Punjab. However, applications can 

be made to MICS datasets from other provinces of Pakistan (e.g. Sindh, Khyber Pakhtunkhwan 

and Baluchistan). Lastly, as previously mentioned, datasets with more complex structures between 

the variables will be considered. 
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Abstract

We discuss the development of a multiple imputation (MI) method for analysing data from the Multiple Indicator
Cluster Survey (MICS). A popular chained equations approach to MI called MICE fails to perform sometimes
because of computational inefficiency, a complex dependency structure among categorical variables and high
percentage of missing information in large scale survey data. On the other hand, a MI approach based on fully
Bayesian joint modeling seems to perform very well for categorical variables having complex dependencies but
requires transformation and other techniques to impute continuous variables. A hybrid approach is presented
here where imputations for a large number of categorical variables are created under a fully Bayesian joint
modeling MI technique and regular MICE is used to create imputations for continuous variables. This provides
a flexible and practical hybrid MI approach to obtain complete data, which sometimes cannot be obtained when
both MI approaches are applied separately. The method proposed is used to analyse data from the MICS 2014
survey women’s data investigating the association between various factors and breastfeeding practices among
women in Punjab. The relationship between the binary response (breastfeeding) and explanatory variables is
modelled using generalized linear models (GLM’s). The accuracy of a predictive model is assessed by the area
under the receiver operating characteristic (ROC) curve, known as AUROC, and the results obtained under
the proposed and existing MI methods are compared. The proposed method outperforms the MICE algorithms
CART and PMM in most of the cases requiring less computational time and only minimal tuning by the analyst.
The results obtained by the simulation study are supported by a real data example.
Key Words: Complex dependencies; Hybrid multiple imputation

1 Introduction

Many large scale complex surveys such as the Multiple Indicator Cluster Survey or MICS are conducted to recognize
forces that contribute to the public health factors that interact at individual, family, community, population, and
policy levels. Generally, MICS contains a large number of categorical variables with lots of categories, a complex
dependency structure and missing values. For example, the data set of individual women from MICS 2014 used in
the real data example has more than 60 per cent data missing on 44 background variables.

Missing data often implicates a biased or an inefficient analysis. Missing mechanisms are: (i) missing completely
at random (MCAR), (ii) missing at random (MAR), (iii) missing not at random (MNAR)1 (Little and Rubin, 2002).
MCAR occurs if the probability of missing variable X does not depend on the values of any other variable in the
data set (Bennett, 2001). This means that the value of the missing variable is unrelated to any other variable.
For example, if the probability that the gender of the child is missing in a household database does not depend on
any other variable of the database then MCAR holds. Although it is difficult to detect whether data are MCAR,
however, Little (1988) provides a statistical test of MCAR. Schafer and Graham (2002) describe MCAR to be a
special case of MAR. With MAR, the probability of having a missing data point in a certain variable is related

∗Razzak@stat.uni-muenchen.de
†chris@stat.uni-muenchen.de
1MNAR is also called non-ignorable (Ankaia and Ravi, 2011) and not further used in the paper.
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to atleast one other variable in the data set but is not related to the variable itself (Allison, 2002). MAR occurs
if the probability that a variable X is missing depends on observed data set but not on the variable X itself. For
example, if the probability that income of a person is missing depends on profession and age, then the missing data
process is MAR. MNAR occurs if the probability that a variable X is missing depends on the variable X itself. For
example, if the probability that income is missing dependes on the income itself (often the probability that income
is missing is higher for low incomes than for higher incomes) then MNAR occurs.

It is critical to impute the data since multiply imputed data usually provides more accurate inference as compared
to complete case analysis or single imputation (Abdella and Marwala, 2005, Little and Rubin, 2002), if the missing
data is missing at random (MAR). In recent decades, lots of efforts have been made in the development of statistical
methods to treat the problem of missing data. According to studies (Vach and Blettner, 1991 and Kleinbaum et
al., 1981), the estimation of regression coefficients can be biased when ad hoc methods and complete case analysis
for handling missing data are used. Various approaches based on the Expectation-Maximization (EM) algorithm
(Little and Schluchter, 1985), a fully Bayesian analysis (Dellaportas and Smith, 1993), maximum likelihood (Vach
and Schumacher, 1993), a mixture of independent multinomial distributions (Dunson and Xing, 2009) and weighted
estimating equations (Robins et al., 1994) have been proposed. Multiple-imputation (MI) introduced by Rubin
(1987) is nowadays considered as a gold standard to handle the missing data problem. MI replaces missing values in
a data set by drawing random values from the predictive posterior distribution of the missing data given the observed
data. MI creates M complete data sets. Inference of interest (e.g. mean, regression) can be run on each newly
created imputed data set and estimates can be combined by using ”Rubin’s rules” (Rubin, 1987). One approach for
MI is the so-called Fully conditional specification (FCS) model. FCS specifies univariate conditional distributions
on a variable-by-variable basis, and draws sequentially missing values iteratively from the estimated conditional
distributions. MI by chained equations (MICE) (Raghunathan et al., 2001, van Buuren and Groothuis-Oudshoorn,
2011) is such a fully conditional specification (FCS) approach to MI. The researcher can choose a suitable regression
model for each variable, for example classification and regression trees (CART) (Breiman et al., 1984) for categorical
variables, predictive mean matching (PMM) (Little, 1988) for continuous variables or just rely on the default method
which e.g. uses logistic regression models for binary and PMM for continuous variables. Sometimes, problems of
convergence and incompatibility arise when MICE is used for specifying univariate conditional distributions (Gelman
and Speed, 1993). MICE fails to perform sometimes due to a complex dependency structure among the categorical
variables and a high percentage of missing information which is typical for large scale survey data. Moreover,
regression imputations are very time consuming. The R (R Core Team, 2018) package ”mice” (van Buuren and
Groothuis-Oudshoorn, 2011) implements MICE. The joint modeling (JM) specification is another approach used
for MI. JM draws missing values simultaneously for all incomplete variables. JM involves specifying a multivariate
distribution for the variables and draws imputations from their conditional distributions by the Markov Chain
Monte Carlo (MCMC) methods (Schafer, 1997). Modeling variables of different types can make the specification of
a joint distribution very difficult. The Dirichlet Process Infinite Mixtures of Products of Multinomials (DPMPM) is
a full Bayesian JM approach (Dunson and Xing, 2009). Si and Reiter (2013) implement DPMPM to impute missing
values for categorical variables. The R package ”NPBayesImputeCat” by Quanli et al. (2018) implements the
DPMPM approach for MI. The implemented DPMPM JM technique to handle missing values is therefore limited
to categorical variables and requires transformations (or other tricks) for continuous variables.

The complex dependencies in the MICS data sets containing mixed type covariates (i.e. both categorical and
continuous) can be difficult to be identified by the mentioned MI approaches. It has been shown that the MI
approach based on DPMPM performs very well for categorical variables having complex dependencies but requires
knowledge of complicated models to create the dependence structure between the continuous and the (possibly high)
dimensional categorical variables (Murray and Reiter, 2016). These limitations sometimes create serious problems
for researchers to obtain complete data sets with mixed type variables. Therefore, we need to develop methods for
imputing mixed type data from large scale complex surveys which avoid difficulties of complicated models in high
dimensions, combine existing well studied techniques to handle incomplete large scale complex data sets and which
are computationally efficient.

We develop a Hybrid Multiple-Imputation (HMI) approach for handling data for the problem described above.
We propose to apply the DPMPM MI approach to impute categorical variables having potentially complex depen-
dencies and to use MICE to create imputations for the continuous variables after the categorical variables have
been imputed beforehand. The HMI method enables us to utilize the good properties of the DPMPM MI approach
and the simplicity of MICE to obtain complete data sets in the mixed data type situation in a flexible and practical
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manner.
The method proposed is used to analyse data from the MICS 2014 survey women’s data. The association be-

tween various factors and breastfeeding practices among women in Punjab is investigated. The relationship between
the binary response (breastfeeding) and explanatory variables is modelled using generalized linear models (GLM’s).
The accuracy of the predictive model is assessed by the area under the receiver operating characteristic (ROC)
curve, known as AUROC. The predictive performance of the proposed and existing MI methods is compared under
a large spectrum of data characteristics. The hybrid mechanism is described in section 2. In Section 3 and 4,
cross validation and the measure of performance used for comparison are described. Through simulation studies,
we evaluate two software packages used for implementing the hybrid procedure in section 5. Section 6 shows an
applications of the proposed method for a real data set. Finally, we give concluding remarks.

2 Proposed hybrid architecture

Figure 1: The schema of the hybrid imputation method

3
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The proposed missing data imputation approach is a 3-stage approach. The dataflow diagram (Figure 1) presents
the schema of the hybrid imputation method. Step 1: Only the categorical variables (Imp.cat) are imputed utilizing
the R package NPBayesImputeCat (Quanli et al., 2018) which uses a fully Bayesian joint modeling approach. Step
2: The incomplete continuous variables (Miss.num) are combined with the already imputed categorical variables,
Imp.cat, resulting in M incomplete data sets where values in the continuous variables may be missing and values
in the categorical variables have been imputed. M incomplete data sets are made such that the rows of each
Miss.num data set correspond to the same rows of each Imp.cat data set. Hence, one ensures that MI using chained
equations for continuous variables uses the information of the imputed categorical covariates for the same unit.
Step 3: MICE with various algorithms is used to yield M complete datasets. The R package mice (van Buuren
and Groothuis-Oudshoorn 2011) is used for this purpose. The draws from the posterior predictive distribution
of the incomplete continuous variables therefore depend on the (in the first step) imputed categorical variables.
This process is repeated M times to generate multiple complete data sets. Two Hybrid MI based methods are
H.CART and H.PMM. H.CART combines DPMPM with the CART and H.PMM combines DPMPM with PMM.
For comparisons, CART, PMM and the Default method in MICE are used.

3 Cross validation

Holdout cross validation is used to assess the predictive performance of a logistic regression model used for the
binary response. The logistic regression model 2is used because the effect of various factors on a binary response
(breastfeeding) is analysed later in the real data example. Train and test data sets are generated randomly using a
70% / 30% split. The basic reason to select this method is its simplicity.

4 Evaluation of Performance

The area under the receiver operating characteristic (ROC) curve, known as AUROC, is used to compare different
MI methods. For more detail see McNeil and Hanley (1984), Metz (1986), Swets (1979) and Wieand et al., (1989).
Algorithm 1 describes how the AUROC curve is pooled3.

2A special generalized linear model with link logit.
3The arithmetic mean is taken of M AUROC values obtained by M fitted GLM’s

4
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5 A small scale study

A small scale study is conducted to examine the impact of MI by our proposed method. The incomplete data is
generated MAR to compare the methods in a realistic data situation. The number of categorical variables is kept
higher than the number of continuous variables due to the fact that the simulation is aimed to be similar to the
survey data. Table 1 represents a large spectrum of practially occurring data characteristics used for generating
data according to a variety of settings. Series of simulations are run varying the correlation among covariates, the
number of imputations, different hybrid methods and the algorithms used in MICE.
Simulation study: Five (X1, X2, X3, X4 and X5) dimensional correlated normal data is generated using the R pack-
age Binorm (Demirtas et al., 2014). The marginal distribution of X1, X2, X3 ∼ Bernoulli(0.5), X4∼ N (80, 250)
and X5 ∼ N (80, 250). The correlation structure is given as:

H=







1 · · · ρ
...

. . .
...

ρ · · · 1







Here, ρ = 0.5 and 0.7 stand for moderate and high correlations, respectively. The dichotomization of X1, X2 and
X3 is based on the following criteria

P (Xi = 1) = P (Xi ≤ µi) = 0.5.

Where i = 1, 2, 3 and 0.5 is the mean value of Xi. A population consists of N = 1000 observations is generated.
By defining and standardizing µy= β1Xi1 + ...+ βpXip, θ = βtrue = (2, 2, 2, 2, 2), p = 5, i = 1...N . We generate the
covariate dependent binary response y using the probability

π = 1
[1+exp(a−bµy)]

.

Where a = −1 and b = −8. By using the following probability, it is ensured that the missing mechanism is MAR
in each variable:

p= 1− ǫ(−0.5−µy)

(1+ǫ(−0.5−µy))
.

The probability defined above yields about 20% of the observations in Xi and y to be missing (at random). R
version 3.0.1 is used to perform all calculations. The packages mice, version 2.17 and NPBayesImputeCat, version
0.1 are used to perform MICE for continuous data and Non-Parametric Bayesian Multiple Imputation for categorical
variables, respectively.

Table 1: Simulation settings

Perameters Notations Values

Population size N 1000
No. of covariates p 5
No.imputations Imp. 2, 5, 10
Correlation ρ 0.5, 0.7

Prior specifications aα, bα 0.25, 0.25
Missing mechanism MAR

Algorithms CART, PMM, Default, DPMPM
No. of mixture componenta k 80

No.simulations Z 50, 200

5
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Various numbers of imputations (M = 2, 5, 10) are generated using five MI methods for moderately and highly cor-
related simulated data. Numbers of imputations are small to facilitate beginners because manuals and descriptions
for statistical software often use small number of imputations in examples whereas, large number of imputations is
made for better estimates. A total of 200 simulations were made for each method. The binary response is modeled
using GLM’s depending on various categorical and continuous covariates. Predictive performance of the GLM’s for
binary response is compared using pooled AUROC curves after cross validation. The actual times taken for MI
using all methods for high and moderate correlated data sets are displayed in Tables 2 and 3 respectively. Median
values of pooled AUROC curves for all MI methods and different correlations are shown in Table 4. Since no
noticeable differences in the posterior distributions of y are observed for different prior specifications in the similar
study by Si and Reiter (2013), we limited the examination of different vague prior specifications for aα and bα to
(aα=0.25, bα=0.25). The maximum number of mixture components k is set to 80 in all simulation runs. The AUROC
values for moderate and high correlated, cross validated complete data sets are 98 per cents. These values can be
used as benchmark (theoretical AUROC) for comparison. For moderate correlation, the predictive performance of
the Hybrid MI methods is low but at least comparable to the MICE MI methods (see Figure 2). Figure 3 shows that
for the highly correlated data, the Hybrid MI methods perform better than PMM and Default. The performance
of H.CART is slightly less than CART. The number of multiple imputations has no significant effect on the results
in the simulation study. It is noticeable, that although there is no significant difference among computational time
taken for two Hybrid MI methods and Default MI method, but this difference increases when comparison is made
with PMM and CART.

Table 2: Similated data ρ = 0.7: The time to complete M multiple imputation by variants of MI across 200
simulations

Imp. Default CART PMM H.CART H.PMM

2 15.12m 15.74m 25.52m 13.51m 15.50m
5 36.47m 38.08m 59.48m 30.99m 36.45m
10 1.13h 1.21h 1.83h 1.04h 1.17h

Note: m = minutes and h = hours to complete multiple imputation on this subset.

Table 3: Similated data ρ = 0.5: The time to complete M multiple imputation by variants of MI across 200
simulationss

Imp. Default CART PMM H.CART H.PMM

2 12.19m 16.92m 25.46m 13.79m 15.65m
5 28.84m 41.09m 59.80m 32.63m 35.40m
10 53.35m 1.34h 1.85h 1.02h 1.15h

Note: m = minutes and h = hours to complete multiple imputation on this subset.

6

Attached Contributions

62



Table 4: Simulated data: Median values of the pooled AUROC curve for various MI methods across 200 simulations

ρ = 0.5 ρ = 0.7

Imp. Default CART PMM H.CART H.PMM Default CART PMM H.CART H.PMM

2 0.9511 0.9593 0.9507 0.9282 0.9270 0.9658 0.9720 0.9662 0.9715 0.9700
5 0.9533 0.9593 0.9505 0.9286 0.9272 0.9658 0.9718 0.9660 0.9714 0.9703
10 0.9509 0.9592 0.9504 0.9288 0.9273 0.9657 0.9718 0.9662 0.9713 0.9703

 
Figure 2: Simulation study: Boxplots of pooled AUROC under various MI methods forρ = 0.5

 

 

Figure 3: Simulation study: Boxplots of pooled AUROC under various MI methods forρ = 0.7

6 Real data-based example: Imputation of MICS Background Vari-

ables

We use the MICS 2014 women’s data as real data based example. This data contains more than 200 variables with
61286 observations around all districts of Punjab. Due to compatibility problems and for demonstration purposes,
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we include only forty four background variables in the analysis. Women’s background characteristics like demo-
graphics, age, education, motherhood and recent births are included in this data set. The number of categorical
variables is high as compared to continuous variables. According to WHO (2003), breastfeeding is important for
the well-being of both child and a mother. MICS 2014 women’s data can be used to determine the effect of various
factors affecting feeding practices in Punjab. We treat item non response as MAR. Information on the global MICS
may be obtained from mics.unicef.org and information about Bureau of Statistics, Punjab is available at bos.gop.pk.
Fifty sampling simulations are run and M = 5 completed data sets are generated for each MI method. The binary
response (Ever Breastfeed) compromising two categories (Yes / No) is modeled using the GLM’s depending on
various categorical and continuous covariates. The AUROC is pooled for each MI method after cross validation.
Predictive performance of the GLM’s for two hybrid methods is slightly less than the Default MI method and
better than the remaining two, see Figure 4. Surprisingly, there is a great difference between the computational
time required by the proposed and the MICE MI methods. It can be seen in Table 5 that the time taken by MICE
methods is reduced from days to hours when the proposed methods are applied. The median values of the pooled
AUROC curves for all methods can be seen in Table 6.

Table 5: Real data: The time to complete 5 multiple imputations by variants of MI across 50 simulationss

Imp. Default CART PMM H.CART H.PMM

5 1.93d 1.88d 1.80d 10.78h 11.59h

Note: d = days and h = hours to complete multiple imputation on this subset.

Table 6: Real data: Median values of the pooled AUROC curve for various MI methods across 50 simulations

Imp. Default CART PMM H.CART H.PMM

5 0.94 0.63 0.82 0.88 0.88

 

 
Figure 4: Real data : Boxplots of pooled AUROC obtained for 5 imputations under various MI methods
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7 Concluding remarks

We proposed a computational efficient hybrid MI method. Our proposed method makes it possible to MI both types
of variables (categorical with large numbers of outcomes and continuous) in survey data in the presence of complex
dependencies. This method combines MI by chained equations and mixtures of multinomial. In this method,
chained equations of MI continuous variables are made dependent on categorical variables MI by DPMPMs. This
approach can prove to be very appropriate for a large number of variables with complex association structures
especially coming from sample surveys. To implement this method no knowledge of complicated models is required.
The dependence among continuous and categorical variables can be made through an easy engine. Better predictive
performance with minimum computational time as compared to the existing methods is partly achieved in simulation
studies. However, of note, one limitation of the proposed method is that the information available in the continuous
variables is not used for imputing the categorical variables. The source of low rates of AUC for hybrid methods
as compared to CART in simulation studies is still unknown. Further research for complex simulation studies,
large-sample results or large number of imputations could be needed to find an answer.
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Abstract

Most of the background variables in MICS (multiple indicator cluster surveys) are categorical with many

categories. Like many other survey data, the MICS 2014 women's data suffers from a large number of

missing values. Additionally, complex dependencies may be existent among a large number of

categorical variables in such surveys. The most commonly used parametric multiple imputation (MI)

approaches based on log linear models or chained equations (MICE) become problematic in these

situations and often the implemented algorithms fail. On the other hand, nonparametric MI techniques

based on Bayesian latent class models have worked very well if only categorical variables are considered.

This paper describes how chained equations MI for continuous variables can be made dependent on

categorical variables which have been imputed beforehand by using latent class models. Root mean

square errors (RMSEs) and coverage rates of 95% confidence intervals (CI) for generalized linear models

(GLM’s) with binary response are estimated in a simulation study and a comparison is made among

proposed and various existing MI methods. The proposed method outperforms the MICE algorithms in

most of the cases with less computational time. The results obtained by the simulation study are supported

by a real data example.

Keywords: Complex dependencies; MICE; Multiple Indicator Cluster Surveys

1 Introduction

Information on many variables is collected in different large-scale surveys like Multiple Indicator Cluster

Surveys (MICS). The MICS provides opportunities to fill data gaps for monitoring the health situation of

children and women in under developed countries. MICS collects data on various indicators like

mortality, nutrition, child and reproductive health, etc. Face to face interviews with household members

are conducted to collect data. Information based on background variables of the indicators mentioned

Attached Contributions

69



2

above is very important for data analysis, and for policy making (Corsi, Perkins and Subramanian, 2017).

However, the problem of missing data is inevitable in such studies. For example, the data set of individual

women from MICS 2014, which has been used in the real data example latter, has a high percentage of

data missing on 200 background variables. This problem arises, for example, due to item non response

(INR) or entry errors etc. Beside INR, general reasons for the missing datasets include data entry errors,

system failures etc. There are three missing data mechanisms. Missing values in any data can be missing

completely at random (MCAR), or missing at random (MAR), or missing not at random (MNAR) (Rubin,

1987; Little and Rubin, 2002). In MCAR, the probability of missing data on a variable is not correlated to

itself and or other measured variables. In MAR, the probability of missing depends on other, observed,

variables. Finally, data are MNAR if the probability of missing depends on the variable value itself.

Practically all methods implemented in software assume MAR. MNAR is called “non-ignorable”, if the

parameters driving the missing data process and the parameters driving the data generating process are

distinct (or independent in a Bayesian analysis), but this is not further considered in the paper. Exact

missing data mechanisms are often unknown when dealing with large scale data sets. Therefore, most of

the time, certain assumptions are made accordingly. Li et al. (2012) addresses some problems with

missing large data. Little’s MCAR test proposed by Little (1988) is used commonly for testing missing

data beingMCAR.

The representativeness of the sample can be reduced and inferences about the population can be

distorted due to missing values. Moreover, ignoring missing data can lead to a bias of unknown direction

and magnitude in the estimated parameters. Therefore, it is critical to impute the data, which usually

provides more accurate inference compared to ad-hoc methods (e.g. complete case (CC) analysis or

single imputation) in case of missing at random (MAR) (Abdella and Marwala, 2005; Little and Rubin,

2002). The CC analysis sacrifices all units where at least the value of one variable is missing. Such

methods are still very popular in psychological research (Schlomer et al., 2010). However, the CC

analysis (listwise deletion) can lead to biased estimates (Little and Rubin, 2002). The CC method also

results in a loss of power, which can make the analysis inefficient (Little and Rubin, 2002). Despite of

being the worst available method (Wilkinson and Task Force on Statistical Inference, 1999), CC is still

the most applied technique due to the simplicity and availability as default option in statistical software

packages (van Ginkel, 2007). The hot-deck method is another approach and belongs to the family of

single-imputation approaches. This method replaces missing values with values from a “similar”

responding unit (Andridge and Little, 2010) and the empirical distribution obtained is used to draw the
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imputed values. In the case that the entire sample of respondents is being used as a single donor pool, this

method produces consistent and unbiased estimates for missing completely at random (MCAR) data

(Rubin, 1976; Little and Rubin, 2002). This method uses covariate information, avoids strong parametric

assumptions and requires no careful modelling to develop selection criteria for imputing a value because

it does not have any parametric model (Schafer and Graham, 2002). However, the problem with this

method is that it lacks the clear criteria to guide the selection of the donor set of complete cases (Pérez et

al., 2002). Bayesian bootstrap (Rubin, 1987) is a useful alternative when standard hot-deck becomes

unsuitable to impute in the presence of a large number of variables (Andridge and Little, 2017). Other

proposed methods for missing data use various statistical methods including self-organizing maps (SOM)

(Kohonen, 1995; Oja and Kaski, 1999), k-nearest neighbour (kNN) (Batista and Monard, 2003), multi-

layer perceptron (Sharpe and Solly, 1995), recurrent neural networks (Bengio and Gingras, 1995). Auto-

associative neural network imputations with genetic algorithms are proposed by Pyle (1999), Narayanan

et al. (2002), Chung and Merat (1996). Marseguerra and Zoia (2005) and Marwala and Chakraverty

(2006) also implement some of the well-known methods used for handling missing data. Multi-task

learning approaches are some other techniques based on machine learning methods (Ankaiah and Ravi,

2011).. According to the studies of Horton and Kleinman (2007), Honaker et al. (2011), Royston and

White (2011) and van Buuren and Groothuis-Oudshoorn (2011), over the last three decades, a wide range

of variety and settings of multiple imputation (MI) techniques has been introduced for catering missing

data problems in different research areas (Abdella and Marwala, 2005; Honaker et al., 2011; Little and

Rubin, 2002; Schafer and Graham, 2002). MI, likelihood based analysis, and weighting approaches are

alternatives to listwise and pairwise deletion methods. These methods usually make the assumption that

the missing data is missing at random (MAR), hence making the estimates unbiased, consistent, and

asymptotically normal (Allison, 2002; Barnard and Meng, 1999; Roth, 1994; Schafer and Graham, 2002)

if that assumption holds. Model-based MI is currently considered the most popular method of addressing

missing data problems. The true complete-data distribution and the missing-data mechanism form the

basis of the imputation model which can be explicit or implicit by nature (Rubin, 1987). Draws from the

posterior predictive distribution of the unobserved data given the observed data can be used to impute

missing values. This process is repeated andM imputed data sets are created. By conducting the analysis

on each of these data sets, the resulting M point and M variance estimates are then combined by a set of

rules (Rubin, 1987). Missing values in continuous variables are often treated using a multivariate normal

MI. These models are often robust to departure from normality by nature (Graham and Schafer, 1999;

Schafer, 1997). Indicators in survey datasets are mostly categorical. Schafer (1997) describes that MI
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with log-linear models can be used to generate imputed values for such indicators by capturing the

associations in the joint distribution. A severe restriction is that the number of variables must in general be

small (Vermunt et al., 2008). The fully conditional specification (FCS) (van Buuren, 2007), also known

as MI by chained equations (MICE) (Raghunathan et al., 2001; van Buuren, 2007) is another important

tool. Missing values are sequentially imputed by estimating a series of univariate conditional models.

Normal regressions and logistic or multinomial logistic regressions are used for continuous and

categorical dependent variables, respectively. Alternatively, a method called predictive mean matching

(PMM) can be used. Newer implementations also allow classification and regression trees (CART).

MICE is an iterative method and imputes missing values variable by variable. It uses the current

regression estimates for the response variable, where the response variable in this context is the actual

target variable in the iterative process for which missing values are imputed. MICE assumes that

equivalent, or at least nearly as good, draws for the joint distribution of the variables can be approximated

by the sequential draws from the univariate conditional models. There are three main limitations or

difficulties in the implementation of MICE. First, there is a possible lack of compatibility among the set

of univariate conditional regression models and the joint distribution of the variables being imputed

(Arnold and Press, 1989; Gelman and Speed, 1993). Although an algorithm is proposed which selects the

sequence of regression models such that they are assumed to be a good fit for the data, it is very

complicated to establish exact conditions for convergence (Zhu and Raghunathan, 2016). Second, the risk

of overlooking higher order interactions arises when MICE includes only the main effects in the

univariate conditional regression models, although using CART may resolve this problem. Third, the

procedure is very time consuming when higher-order interactions are included parametrically in the

model (Vermunt et al., 2008). To resolve such complications, a fully Bayesian Joint Modelling (JM)

approach, called Dirichlet process mixture of products of multinomial distributions (DPMPM), is

proposed by Si and Reiter (2013). This approach uses nonparametric Bayesian versions of latent class

models to multiply impute high-dimensional categorical data (Vermunt et al., 2008). This approach has

two stages. In stage one, a mixture of independent multinomial distributions is modelled for a

contingency table of the categorical variables. In the second stage, the mixture distributions are estimated

non-parametrically with Dirichlet process prior distributions. Arbitrarily complex dependencies can be

described by such mixtures of multinomials. Since the computation of these dependencies is practical and

generally easy, they can serve as an effective general purpose MI engine. These models have been

successfully used to impute missing values in up to 80 categorical variables (Si and Reiter, 2013).Murray

and Reiter (2016) have also worked on combining Dirichlet process mixtures of multinomial and
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multivariate normal distributions for categorical and continuous variables, but this approach involves

complicated models to create the dependence structure between the continuous and the categorical

variables. The R (R Core Team, 2018) package “NPBayesImputeCat” by Quanli et al. (2018) is a tool for

non-parametric Bayesian JM MI, but the implementation of this package is restricted to categorical

variables. Since categorical variables are internally represented as dummy variables which could easily

double the actual number of predictors, the implementation of the FCS MI by chained equations

algorithm becomes extremely slow or difficult in the presence of categorical variables with missing

values. The R package “mice” by van Buuren and Groothuis-Oudshoorn (2011) implements MI by

chained equations. Usually, household surveys based on health studies include data on a range of risk

factors and health outcomes, including categorical variables with many categories mainly, and often the

number of numeric variables is less as compared to categorical variables in such studies (Chandra et al.,

2005; Gulliford et al., 1999). Therefore, one is limited in the choice of both MI methods, i.e. for using the

former (JM), one has to sacrifice continuous variables in the analysis (or categorize them) and the latter

(FCS) becomes problematic if many categorical variables are involved. Due to certain limitations, both

approaches cannot be used together without correct modifications. An easy to implement hybrid

technique is proposed in this paper which describes how FCS MI by chained equations for continuous

variables can be blended with JMMI by latent class models for categorical variables.

The paper is organized as follows: A detailed description of a fully Bayesian, JM approach for multiple

imputations of large categorical datasets is given in Section 2. In Section 3, the measures of performance

used for the comparisons are described. The hybrid algorithm is described in Section 4. Section 5

compares the performance of different imputation methods in simulation studies. In Section 6, the

proposed method is applied to a real data set and results are discussed. Concluding remarks are given at

the end.

2 Latent class models and multiple imputation

2.1 Bayesian latent class imputation model and MI

To understand a fully Bayesian, JM approach to multiply impute large categorical datasets, it is important

to understand a few details regarding how mixture models are used for density estimation and MI. The

distribution of categorical data can be described by a mixture model known as latent class model

(Lazarsfeld, 1950). Mixture models are considered as flexible tools which model the association structure
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of a set of variables (their joint density) by utilizing a finite mixture of simpler densities (McLachlan and

Peel, 2000). The probability of having a specific response pattern is defined by each mixture component

in a Latent Class Analysis (LCA). A weighted average of the class-specific densities generates the

estimated overall density. As described by Lazarsfeld (1950), the scores of different items are

independent of each other within latent classes due to local independence assumptions in LCA. A brief

introduction to the mathematical form of an LC model as a tool for density estimation is given in the

following: Let yij be the score of the ithperson on the jth categorical item belonging to an n×J data-matrix Y

(i = 1, ..., n, j = 1, ..., J), yi the J-dimensional vector with all scores of person i, and xi a discrete

(unobserved) latent variable with K categories. In the LC model, the joint density P (yi; π) has the

following form:

P (yi; π) =∑K𝑘=1 𝑃(𝑥 𝑖 = 𝑘;𝛑𝒙) P 𝑦𝑖ǀ𝑥𝑖 =  𝑘;𝛑𝒚
=  ∑K𝑘=1 𝑃(𝑥 𝑖 = 𝑘;𝛑𝒙)∏ 𝐽𝑗=1 P 𝑦 𝑖𝑗ǀ𝑥 𝑖 =  𝑘;𝛑𝑦𝑗 (1)

where π=(πx, πy) is a set of LC model parameters which can be partitioned into two parts. The first part

contains the latent class proportions (πx) and the second contains class-specific item response

probabilities (πy). A separate set of parameters for each of the J items (πyj) is assigned to the second part.

Due to the fact that a mixture distribution is used, a weighted sum of the K class-specific multinomial

densities P(yi|xi = k; πy) generates the overall density. In this generation, the latent proportions are used as

weights. From (1) it can be seen that the product over the J independent multinomial distributions

(conditional on the k-th latent class) makes use of the local independence assumption. The first, second,

and higher-order moments of the J response variables can be captured in LC models by setting the

number of latent classes large enough (McLachlan and Peel 2000). The generated higher-order moments

are actually the univariate margins, bivariate associations, and higher-order interactions when dealing

with categorical variables (Vermunt et al., 2008). The unit’s posterior class membership probabilities, i.e.

the probability that a unit belongs to the k-th class given the observed data pattern yi, is the quantity of

interest when using LC models. According to the theorem of Bayes, we can define this quantity as

follows:  P(𝑥𝑖 =  𝑘|𝑦𝑖 ; 𝛑) =  𝑃(𝑥𝑖 = 𝑘;𝛑𝐱)𝑃(𝑦𝑖|𝑥𝑖= 𝑘;𝛑𝐲)𝑃(𝑦𝑖;𝛑)   (2)
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2.2 Dirichlet process infinite mixtures of products of multinomials

The fully Bayesian, joint modeling (JM) approach known as “Dirichlet process mixtures of products of

multinomial distributions model” (DPMPM) (Dunson and Xing, 2009) is described as:

1. Assume that each individual i belongs to exactly one of K < ∞ latent classes

2. For i = 1,…, n, let x𝑖 𝜖  { 1,…, 𝑘} indicate the class of individual i, and let𝜋𝑘=P 𝑥𝑖 = 𝑘 . Assume further, that 𝜋 = { 𝜋1,…, 𝜋∞} is the same for all individuals. Within

any class, we suppose that each of the j variables independently follows a class-specific

multinomial distribution i.e. for any value yj 𝜖  { 1,…, 𝑑𝑗} let Ұ(𝑗)𝑘𝑗𝑦 = 𝑃 𝑦𝑖𝑗 = 𝑦𝑗  ǀ𝑥𝑖 = 𝑘 . Here,𝑑𝑗 is the the total number of categories for the variable j.

Mathematically expressing the finite mixture model as𝑦𝑖𝑗 |x𝑖 , Ұ i𝑛𝑑 Multinomial (Ұ(𝑗)𝑥𝑖1,…,Ұ(𝑗)𝑥𝑖𝑑𝑗) for all i and j (3)  x𝑖 | 𝜋 ~ Multinomial (𝜋1, …, 𝜋∞) for all i (4)

For prior distributions on Ұ and 𝜋 , we have  𝜋𝑘 = Vk ( ∏ 𝑙<𝑘 1 − Vx) For k=1,…, ∞Vw    ii𝑑 Beta (1, 𝛼)𝛼 ~ Gamma (aα, bα )

Ұkj  ~ Dirichlet ( 𝑎𝑗1 , …, 𝑎𝑗𝑑j)
Here (aα, bα)  and (𝑎𝑗1, …, 𝑎𝑗𝑑j) are analyst-supplied constants. Each element of (𝑎𝑗1 , …, 𝑎𝑗𝑑j) is set to one
in order to correspond to the uniform prior distribution. Following Dunson and Xing (2009), we set 𝑎𝛼 =
0.25 and 𝑏𝛼= 0.25 and k=80, 150 and 400 as numbers for the mixture components.

3 Evaluation of performance
In order to incorporate the uncertainty introduced by missing data and the imputations into the inferences,

the estimates for quantities of interest obtained by analyzing each completed dataset are combined by

utilizing rules proposed by Rubin (1987). Let Q be any quantity of interest (e.g. a population proportion or

a probability or a regression coefficient). For m = 1,…,M, let q(m) and u(m) be respectively the point

estimate of Q in the m-th imputed data set with variance estimate q(m). Valid inferences for a scalar Q by

combining the q(𝑚) and u(𝑚) according to Rubin (1987) are obtained as follows:𝑞 𝑀 =∑𝑀𝑚=1 q (𝑚)𝑀 , (5)
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𝑏𝑀=∑𝑀𝑚=1 (q 𝑚 − 𝑞 𝑀)2𝑀−1 , (6) 𝑢 𝑀 =∑𝑀𝑚=1 u (𝑚)𝑀 , (7)𝑞 𝑀 can be used to estimate Q and the variance of 𝑞 𝑀 can be estimated byTM =  1 + 1𝑀 𝑏𝑀 + 𝑢 𝑀 , (8)

with degrees of freedom 𝑣𝑀 = (𝑀 − 1)(1 + 𝑢 𝑀( 1+ 1𝑀 𝑏𝑀)2).
Confidence intervals can be constructed using standard multiple imputation confidence interval

construction rules, which approximately follow a t-distribution. For more detail see Rubin (1996),

Barnard and Meng (1999), Reiter et al. (2006), Harel and Zhou (2007).

4Proposed hybrid architecture
Since the application of the package “NPBayesImputeCat” (Quanli et al., 2018) is limited to only

categorical variables, the incomplete dataset is proposed to be partitioned into two sets, one consisting of

categorical variables (Miss.cat), (which MICE may not be able to impute due to reasons described in the

introduction) and the other consisting of continuous variables (Miss.num), where variables may be missing

in both sets. A fully Bayesian JM (DPMPM) approach is used to fill in missing values by utilizing the

package "NPBayesImputeCat" in Miss.cat. This results in a complete version (Imp.cat) of categorical

variables independent of information available in the continuous variables. This complete version

(Imp.cat) of categorical variables can be used by MICE to construct chained equations based on

categorical variables which have already been imputed by the fully Bayesian joint models to now impute

the continuous variables. To achieve this, the dataset (Miss.num) is added to the dataset (Imp.cat) andMICE

is run. This provides one completely imputed dataset where the imputations of the continuous variables

obtained by FCS using chained equations depend on the information available in the imputed categorical

variables. This process is repeatedM times to obtain multiple imputed datasets using different algorithms

offered by the R package “mice” (van Buuren and Groothuis-Oudshoorn, 2011) along with some prior
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specifications and a number of mixture components used in the R package "NPBayesImputeCat" (Quanli

et al., 2018).Algorithm 1 explains the proposed hybrid architecture in detail.

1: 𝑞(𝑧)  are pooled point estimatesoverM imputed datasets across z simulations.

2: 𝑇(𝑧)  are pooled variancesoverM imputed datasets across z simulations.

3: 𝑞 is an average of pooled point estimates ( 𝑞(𝑧))across z simulations.

4: 𝑇 is an average of pooled variances (𝑇(𝑧))across z simulations.

5 Simulation studies
Simulation studies are conducted to examine the impact of MI by our proposed method. The incomplete

data is generated as MAR with (known) effects and the number of categorical variables is kept more than

the number of continuous variables, aiming to compare strategies in a realistic data situation.

We generate a sample of size n={1000} for five (X1, X2, X3, X4,X5) dimensional correlated random

covariates from a multivariate normal distribution MVN. The marginal distributions of X1, X2, X3, X4, X5
are normal and we set the mean and variance of each variable to 0 and 0.5 respectively. The correlation

structure is given as:

Algorithm 1: Proposed hybrid architecture
Require: P nxp matrix with incomplete data
1. Miss.cat , Miss.num← Initial division of p variables into factor and numeric subsets.
2. for z= 1, … ,Z do
3. for m= 1, …,M do  
4. 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚 ← Imputing Miss.cat using R package “NPBayesImputeCat”.
5. 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚 𝑀𝑖𝑠𝑠.𝑧𝑛𝑢𝑚𝑚←Combining 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚 and 𝑀𝑖𝑠𝑠.𝑧𝑛𝑢𝑚𝑚 to generate partially imputed dataset.

6. 𝐼𝑚𝑝𝑧𝑚← Imputing 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚 𝑀𝑖𝑠𝑠.𝑧𝑛𝑢𝑚𝑚using R package “mice” i.e. 𝑓( 𝑀𝑖𝑠𝑠.𝑧𝑛𝑢𝑚𝑚⃒ 𝐼𝑚𝑝.𝑧𝑐𝑎𝑡𝑚)
7. 𝐼𝑚𝑝𝑧𝑚 ← Final imputed data set.

8. 𝑞(𝑧)← ∑𝑀𝑚=1 q (𝑚)𝑀 Pooled point estimates1.

9. 𝑏(𝑧) ←∑𝑀𝑚=1 (q 𝑚 −𝑞 (𝑧))2𝑀−1
10. 𝑢(𝑧) ←∑𝑀𝑚=1 u (𝑚)𝑀
11. 𝑇(𝑧) ←  1 + 1𝑀 𝑏(𝑧) + 𝑢(𝑧) Pooled variances2.
12.  end for

13. 𝑞← ∑𝑍𝑧=1 𝑞 (𝑧)𝑍 Average of pooled point estimate3.

14. 𝑇 ←  ∑𝑍𝑧=1 𝑇 (𝑧)𝑍 Average of pooled variance4.
end for
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R =
1 ⋯ 𝜌⋮ ⋱ ⋮𝜌 ⋯ 1 ,

where 𝜌 = 0.5. The following component-wise threshold is used to transform random covariates into

binary values. 𝑋𝑖 =
0   𝑖𝑓    𝑋𝑖  ≤ 0 .5   ,     1    𝑖𝑓     𝑋𝑖 > 0.5   ,      

where i=1, 2, 3, 4, 5.

We than define 𝜇6 = -0.2X1-0.3X2+0.5X3 -0.2X4+ 0.22X5 and 𝜇7= -2+𝜇6 . Outcomes for two

continuous covariates are generated from normal distributions (ND) described as below:

X6 ~ N (𝜇6; 2),
X7 ~ N (𝜇7; 2).

We generate X8 from Bernoulli distributions with probabilities governed by the logistic regression with

logit Pr (X8) =-3+1.5X1 -2.15X2+2.25 X3+1.6X4-1.88X5 +1.11X6 -0.96 X2X3+2.3 X1X3+0.5 X2X6 -2 X5
X6+1.21 X1 X5-2.7 X1X2+1.2 X1X2X3+3 X6X7.
A covariate dependent binary response y is generated from Bernoulli distributions with probabilities

governed by the logistic regression with

logit Pr (y) = 0.2-0.1X1 -0.1 X2-0.1 X3+0.3X4 -0.5X5 +0.2 X6-0.1 X7-0.1 X8 and βtrue = (0.2;-0.1 ;-0.1 ;-

0.1 ;0.3 ;-0.5;0.2 ;-0.1 ;-0.1). We suppose that values in all covariates are missing at random with the

following probabilities

p = 1 - 𝑒(−𝜏−𝑋7)(1 + 𝑒(−𝜏−𝑋7)) ,
where 𝝉 is a constant. The probabilities defined above yield about 10% to 15 % of the observations in Xj to

be missing (at random) for 𝝉=-1.5 and 𝝉= -0.5 respectively. We repeat the process 1000 times, each

time generating new binary response variables and new missing patterns. We use three purely MICE

based MI methods, namely classification and regression trees (CART) (Breiman, 2001), ppredictive

mean matching (PMM) (Morris et al., 2014) and the Default (which uses logistic models for categorical

and PMM for continuous variables). We use two Hybrid Multiple Imputation (HMI) methods e.g.

H.CART and H.DEF depending on various combinations with MICE algorithms (Default and CART)

and different tuning parameters (aα, bα; k ). We further define H.CART1 which is a combination of

MICE.CART and (𝑎𝛼= 0.25, 𝑏𝛼= 0.25, k = 80), H.CART2 which is a combination of MICE.CART and (𝑎𝛼=
0.25, 𝑏𝛼= 0.25, k =150) and H.CART3which is a combination of MICE.CART and (𝑎𝛼=0.25, 𝑏𝛼=0.25, k =
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400). Also we define H.DEF1 which is a combination of MICE.DEF and (𝑎𝛼= 0.25, 𝑏𝛼= 0.25,k = 80),
H.DEF2 which is a combination of MICE.DEF and (𝑎𝛼= 0.25, 𝑏𝛼= 0.25,k = 150) and H.DEF3 which is a

combination of MICE.DEF and (𝑎𝛼= 0.25, 𝑏𝛼= 0.25,k = 400). In order to achieve convergence and

estimates from simulations in a reasonable time, a Gibbs sampler with 100 Markov-Chain-Monte-Carlo

(MCMC) iterates is used. Two hundred iterations are run to insure convergence and to have the results of

the simulations in a reasonable time when using the HMI methods. The R (R Core Team, 2018) version

3.0.1 is used to perform all calculations. The packages “mice” (van Buuren and Groothuis-Oudshoorn,

2011), version 2.17 and “NPBayesImputeCat” (Quanli et al., 2018), version 0.1 are used to perform

MICE for continuous data and non-parametric Bayesian MI for categorical variables, respectively. Three

sets of M=10 imputed datasets are generated using MICE methods, i.e. MICE.PMM, MICE.DEF and

MICE.CART, three sets of (M=10) imputed datasets are generated using H.CART1, H.CART2 and

H.CART3 and three sets of (M=10) imputed datasets are generated using H.DEF1, H.DEF2 and H.DEF3.

The number of multiple imputations (M=10) is large in order to get better estimates of standard errors.

Even a higher number ofMwould have been desirable but would have led to further increased computing

times. Simulated root mean square errors (RMSEs), empirical standard errors (ESEs) and coverage rates

of 95% confidence intervals for generalized linear models (GLM’s) with binary response and mixed

covariates are estimated via combining rules described above and a comparison is made among the

proposed and various existing MI methods. Tables 1-2 and Tables 3-4 display the coverage rates of 95%

confidence intervals (CI) and RMSEs (ESEs) for the 10% and 15% MAR datasets, respectively, across

1000 simulations. Figures 1-2 and Figures 3-4 show boxplots of the pooled point estimates and standard

errors for 10% and 15%MAR datasets, across 1000 simulations respectively.

5.1 Results

As discussed, we used two HMI methods i.e. (“H.CART” and “H.DEF”) for comparison with three

MICE based MI methods, i.e. (“MICE.DEF”, “MICE.CART” and “MICE.PMM”). In the simulation study in

section 5, we generated datasets with two missing rates, i.e. 10% and 15%, using a MAR process. The

HMI method “H.DEF1” provides almost equal 95% CI coverage rates for the most parts and the

remaining two “H.DEF” methods, i.e. (“H.DEF2” and “H.DEF3”) provide better results for the most parts

as compared to the “MICE.DEF” and “MICE.PMM” MI methods. This may imply that larger values for k

have an effect on the overall performance of the “H.DEF” MI methods. All three MI methods based on

“H.CART” provide better 95% CI coverage rates for the most parts as compared to “MICE.DEF” and

“MICE.PMM”, but slightly worse coverage than “MICE.CART” for some of the simulations. Surprisingly,
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the coverage rates for the regression coefficient β8 of all three “H.CART” based MI methods are higher

for the 10% MAR datasets, indicating a better ability to detect complex dependency structure as

compared to “MICE.CART”. See Tables 1-2. However, we observe no such real differences in the monte

carlo errors (Koehler et al., 2009). This can be due to the limited number of simulation runs used. We

observe for the most parts that the between imputation variations (i.e. ESEs) for all HMI MI methods are

smaller compared to “MICE.DEF” and “MICE.PMM” and almost equal compared to “MICE.CART”. The

amount of bias is also relatively low for the proposed HMI methods, see Tables 3-4. The average point

estimates based on the proposed HMI methods are close to the corresponding true values in most of the

cases, see Figures 1-2. Average standard errors based on the proposed HMI methods are also smaller for

all cases as compared to the threeMICE basedMImethods, see Figures 3-4.

Table 1. Simulated data: 95% confidence intervals (CI) coverage rates for 10% MAR.

Table 2. Simulated data: 95% confidence intervals (CI) coverage rates for 15% MAR.

Method β1 β2 β3 β 4 β 5 β6 β 7 β 8

MICE.PMM
MICE.CART
MICE.DEF
H.DEF1
H.CART1
H.DEF2
H.CART2
H.DEF3
H.CART3

95 95 96 95 95 94 95 96
97 96 97 96 96 96 95 96
95 95 96 96 95 96 95 95
96 96 96 94 95 95 96 96
95 96 97 94 96 96 97 97
96 96 96 95 95 95 95 97
95 96 96 94 97 95 96 96
96 96 96 94 95 94 95 97
96 96 96 95 97 96 96 97

Method β1 β2 β3 β 4 β 5 β6 β7 β 8

MICE.PMM
MICE.CART
MICE.DEF
H.DEF1
H.CART1
H.DEF2
H.CART2
H.DEF3
H.CART3

97 95 95 95 95 96 95 97
98 96 97 95 94 95 95 97
94 95 95 96 96 96 96 96
97 97 97 96 96 96 95 98
96 97 97 95 96 96 96 96
98 96 97 96 95 96 95 97
96 96 96 95 96 96 96 97
98 96 96 96 95 96 96 97
96 96 97 96 96 96 96 97
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Table 3. Simulated data: RMSEs (ESEs) for 10%MAR.

Table 4. Simulated data: RMSEs (ESEs) for 15% MAR.

V
ar
ia
bl
es

Mice.PMM MICE.DEF MICE.CART H.DEF1 H.CART1 H.DEF2 H.CART2 H.DEF3 H.CART3

β1
β2
β3
β4
β5
β6
β7
β8

0.16(0.16)
0.16(0.16)
0.16(0.16)
0.16(0.16)
0.16(0.16)
0.08(0.08)
0.05(0.05)
0.19(0.19)

0.16(0.16)
0.16(0.15)
0.16(0.16)
0.16(0.16)
0.16(0.16)
0.08(0.08)
0.04(0.04)
0.19(0.19)

0.14(0.14)
0.15(0.15)
0.15(0.15)
0.15(0.15)
0.16(0.16)
0.08(0.08)
0.04(0.04)
0.17(0.17)

0.15(0.15)
0.15(0.15)
0.16(0.16)
0.16(0.16)
0.16(0.15)
0.08(0.08)
0.04(0.04)
0.17(0.17)

0.15(0.15)
0.15(0.15)
0.15(0.15)
0.16(0.16)
0.15(0.15)
0.08(0.08)
0.04(0.04)
0.17(0.16)

0.15(0.15)
0.15(0.15)
0.16(0.16)
0.16(0.16)
0.16(0.15)
0.08(0.08)
0.05(0.05)
0.17(0.17)

0.15(0.15)
0.15(0.15)
0.15(0.15)
0.16(0.16)
0.15(0.15)
0.08(0.08)
0.04(0.04)
0.17(0.16)

0.15(0.15)
0.15(0.15)
0.16(0.16)
0.16(0.16)
0.16(0.15)
0.08(0.08)
0.05(0.04)
0.17(0.17)

0.15(0.15)
0.15(0.15)
0.15(0.15)
0.16(0.16)
0.15(0.15)
0.08(0.08)
0.04(0.04)
0.17(0.16)

V
ar
ia
bl
es Mice.PMM MICE.DEF MICE.CART H.DEF1 H.CART1 H.DEF2 H.CART2 H.DEF3 H.CART3

β1
β2
β3
β4
β5
β6
β7
β8

0.15(0.15)
0.16(0.16)
0.17(0.17)
0.16(0.16)
0.17(0.17)
0.08(0.08)
0.05(0.05)
0.20(0.20)

0.17(0.17)
0.17(0.17)
0.17(0.17)
0.16(0.16)
0.17(0.17)
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0.14(0.14)
0.15(0.15)
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0.17(0.16)
0.08(0.08)
0.05(0.05)
0.18(0.17)

0.14(0.14)
0.15(0.15)
0.15(0.15)
0.16(0.15)
0.16(0.16)
0.08(0.08)
0.05(0.05)
0.17(0.17)

0.15(0.15)
0.15(0.15)
0.16(0.16)
0.16(0.16)
0.16(0.16)
0.08(0.08)
0.05(0.05)
0.18(0.17)

0.14(0.14)
0.15(0.15)
0.15(0.15)
0.16(0.15)
0.17(0.16)
0.08(0.08)
0.05(0.05)
0.18(0.17)

0.15(0.15)
0.15(0.15)
0.16(0.16)
0.16(0.16)
0.16(0.16)
0.08(0.08)
0.05(0.05)
0.18(0.17)

0.14(0.14)
0.15(0.15)
0.16(0.15)
0.16(0.15)
0.17(0.16)
0.08(0.08)
0.05(0.05)
0.18(0.17)

0.15(0.15)
0.15(0.15)
0.16(0.16)
0.16(0.16)
0.16(0.16)
0.08(0.08)
0.05(0.05)
0.18(0.17)
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Figure 1. Simulated data: Boxplots of the pooled point estimates for 10% MAR (1000 simulations).
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Figure 2. Simulated data: Boxplots of the pooled point estimates for 15% MAR (1000 simulations).
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Figure 3. Simulated data: Boxplots of the pooled standard errors for 10% MAR (1000 simulations).
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Figure 4. Simulated data: Boxplots of the pooled standard errors for 15% MAR (1000 simulations).
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6 Real data-based example
6.1 Motivation

The Bureau of Statistics Punjab has conducted the Multiple Indicator Cluster Survey (MICS) Punjab,

2014, Pakistan, in collaboration with the United Nations Children's Fund (UNICEF). The Government of

the Punjab has provided the major funding through the Annual Development Program 2014-15 and

UNICEF has provided the annual report. The documents related to MICS Punjab consisting of the final

report, key findings, survey plan, list of indicators and questionnaires can be found on the MICS website

(www. http://bos.gop.pk). UNICEF in the 1990s has developed the global MICS program as an

international household survey program. MICS provides support to the countries in gathering universal

comparable data consisting of a wide range of indicators on the health and socio economic situation of

children and women. We have used the MICS 2014 women's data that comprises more than 200

background variables on 61286 observations from 36 districts of Punjab. The data contains information

of women's background characteristics like demographics, age, education, motherhood and recent births

etc. Most of the background variables are categorical with lots of categories whereas few variables like

age are numeric. The health benefits of breastfeeding are no longer in doubt (WHO 2003). Breastfeeding

does not only contribute to the early development of a child but is also crucial for the wellbeing of the

mother as well. MICS 2014 women's data can be used to determine the effect of various factors affecting

the feeding practices in Punjab. This analysis could be very helpful in decision making policies regarding

women and child health.

6.2 Imputation ofMICS background variables

Since MICS data for women contains data with a possibly complex dependency structure, the application

of the package “mice” can become problematic due to various limitations, e.g. non-convergence of the

Gibbs sampler in special cases, large amount of missing values, tedious work required for specification of

imputation models and interaction terms in presence of large data bases with hundreds of variables and

multicollinearity problems (van Buuren and Oudshoorn, 1999). It was not possible to have a proper

comparison of the proposed and existing MI approaches in such cases. Therefore, it was decided to select

a subset containing 7 continuous and 37 categorical variables. The selection of variables is made

according to the evidence from demographical and behavioral risk factors effecting inclination towards

breastfeeding. Some of the selected categorical variables, i.e. district, has lots of categories (k=36), hence

keeping the analysis comparable and challenging at the same time. Among these 43 variables, 5 variables

have less than 14% missing values; 16 variables have between 32 to 68 per cent missing values; 20

variables have between 80 to 95 per cent missing values. Only 2 variables are completely observed. All
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variables are included in the imputation model. The reasons of missing observations in MICS data are

typical, i.e. nonresponse, don’t know, not reached, etc. For the sake of multiple imputations, all reasons

for item nonresponse are treated asMAR.

The whole process of creating imputations is repeated twenty times and M=10 completed datasets are

generated for each MI method. The binary response (Ever Breastfeed), which compromises two

categories (Yes / No), is finally modeled using a GLM analysis model depending on four categorical

variables (Mother Ever Attended School: two categories, Delivery by C Section: two categories,

Satisfaction from Health: two categories, Area: two categories) and two continuous covariates (Age of

Mother and Freq. ofMother Reads New). The R package “VIM” (Templ et al., 2012) is utilized to explore

the pattern of missing values. Figure 5 displays the proportion of missing values and the missing data

pattern for the variables used in the analysis model. Since there are no true values to compare for in the

real data example, we calculated complete case (CC) estimates for comparison purposes (Table 5). The

time taken by each MI method is shown in Table 6. Boxplots of the pooled point estimates and standard

errors for the real data are shown in Figures 6 and 7 respectively.

6.3 Results

Figure 5 in the real data example displays the bar plot on the left side which shows the proportions of

missing values in the predictors. The categorical predictor “Delivery By C Section” has the highest

amount of missing values (i.e. more than 80%) followed by “Ever Breastfeed” (about 80%), “Satisfaction

FromHealth” (about 60%) and “Freq. ofMother Reads New” (about 40%). The amount of missing values

is rather small for “Mother Ever Attended School” and “Age” (i.e. less than 20%). The categorical

predictor “Area” has no missing values. An aggregation plot on the right side shows all existing

combinations of missing (red) and imputed observed (blue) values. The frequencies of different

combinations can be seen by a small bar plot on the right side (Templ et al., 2012). The aggregation plot

reveals that if missing values occur in the variable “Ever Breastfeed”, they most often also occur in the

variables “Satisfaction From Health”, “Freq. of Mother Reads New” and “Delivery By C Section”. We

note, that the standard errors for most of the coefficients are smaller relative to the (absolute) point

estimates under all MI methods (see Figures 6-7). We noticed that point estimates in MICE.CART are

nearer to the estimates in complete case analysis for most of the cases as compared to the hybrid methods

(see Table 5). In the real data example, the HMI methods tend to show smaller pooled standard errors for

most of the co-variates as compared to the MICE methods. We see, that when HMI MI methods are

applied to the real data set, the pooled standard errors are comparatively smaller for all covariates as

compared to the “MICE.DEF”MI method and smaller for most the covariates ( i.e. “Age”, “Freq. of Mother
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Reads New”, “Delivery By C Section” and “Area”) as compared to the “MICE.PMM” MI

method. “H.CART” tends to show smaller pooled standard errors for the covariates (i.e. “Age” and

“Delivery by C Section”) as compared to its counterparts. For the rest of the covariates, the differences

are also not so high, which suggests a reasonable performance compared to MICE, see Figures 6-7. The

computational burden is significantly reduced for most of the settings using the proposed HMI methods,

see Table 6.

Table 5. Real data: complete case (CC) estimates

Variables est se
Age
Mother Attended School
Freq. Mother Reads News
Delivery by C Section
Satisfaction FromHealth
Area

0.14
-0.59
-0.09
0.43
0.27
0.16

0.06
0.77
0.15
0.25
0.27
0.25

The “est” and “se” denote the point estimates and standard errors of the coefficients of the GLM,
respectively.

Table 6. Real data: Time taken by various MI methods.

Note: Time = the time to complete 10 multiple imputation by variants of MI across 20 simulations and
d = days.

Method Time

MICE.CART
MICE.PMM
MICE.DEF
H.DEF1
H.CART1
H.DEF2
H.CART2
H.DEF3
H.CART3

4.20d
3.52d
3.14d
1.70d
1.62d
1.68d
1.64d
1.82d
1.77d
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Figure 5. Aggregation graphic of the incomplete covariates.

Figure 6.Real data: Boxplots of the pooled point estimates.
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Figure 7. Real data: Boxplots of the pooled standard errors.

7 Concluding remarks
The superiority of CARTand the JM technique DPMPM over the default MI methods in MICEis already

established in Akande et al. (2017). Results from simulations and a real data example show that for most

of the cases, hybrid techniques tend to perform better not only than the default MI methods in MICE, but

also than the remaining MICE options in the presence of mixed type variables, at least for the considered

GLM analysis model with binary response. The statistical properties of the proposed approach can be

further studied for continuous response with mixed type covariates. In this method, chained equations

used to multiply impute continuous variables are made dependent on categorical variables which have

been already multiply imputed by DPMPMs through a conceptually simple method. The user can choose

a set of incomplete categorical covariates that the regular MICE can sometimes fail to impute due to

various restrictions, i.e. large datasets, complex dependencies, high percentage of missing data,

specification of higher order interactions, multicolinearity and other instability problems. Missing values

in categorical variables can be imputed by a nonparametric MI approach called DPMPMs. After filling
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the categorical variables, these variables are replaced in the original dataset in order to perform regular

MICE. This method combines MI by chained equations and mixtures of multinomial distributions. This

approach could be very appropriate for a large number of variables with complex association structures,

especially coming from large sample surveys. To implement this method, no knowledge of complicated

models is required. Various combinations of prior specifications and the maximal number of mixture

components can be chosen together with the appropriate MICE algorithms to achieve better coverage

rates and point estimates. We have observed that increasing the maximal number of mixture components

tends to result in better coverage rates compared to most of the MICE methods in many cases. The

proposed method is more flexible in specifying higher order interactions in the model. It also eliminates

the use of predictor selection beforehand. Further comparisons can be made for data with ordinal nature

and more categories with large values of prior specifications. Our proposed method is also

computationally inexpensive and requires less time even when performed with a large number of

iterations. Since most of the educational and health surveys contain lots of categorical and comparatively

less continuous variables, various organizations can use this imputation method to create completed

datasets without understanding the complexity of the dependency and model structures. However, of

note, one limitation of the proposed method is, that the information available in the continuous variables

is not used for imputing the categorical variables. Therefore, it is too early to make any final conclusion

until unless experiments with diversity of settings are conducted.
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HYBRID MULTIPLE IMPUTATION IN A LARGE SCALE 
COMPLEX SURVEY 

Humera Razzak1, Christian Heumann2 

ABSTRACT 

Large-scale complex surveys typically contain a large number of variables 
measured on an even larger number of respondents. Missing data is a common 
problem in such surveys. Since usually most of the variables in a survey are 
categorical, multiple imputation requires robust methods for modelling high-
dimensional categorical data distributions. This paper introduces the 3-stage 
Hybrid Multiple Imputation (HMI) approach, computationally efficient and easy to 
implement, to impute complex survey data sets that contain both continuous and 
categorical variables. The proposed HMI approach involves the application of 
sequential regression MI techniques to impute the continuous variables by using 
information from the categorical variables, already imputed by a non-parametric 
Bayesian MI approach. The proposed approach seems to be a good alternative to 
the existing approaches, frequently yielding lower root mean square errors, 
empirical standard errors and standard errors than the others. The HMI method 
has proven to be markedly superior to the existing MI methods in terms of 
computational efficiency. The authors illustrate repeated sampling properties of 
the hybrid approach using simulated data. The results are also illustrated by child 
data from the multiple indicator survey (MICS) in Punjab 2014. 

Key words: complex surveys, high-dimensional data, missing data, multiple 
imputation. 

1. Introduction 

Large scale complex surveys contain high-dimensional data with a large 
number of variables measured on an even larger number of respondents. The 
Multiple Indicator Cluster Surveys (MICS) is such a popular large scale 
international household survey. Like other cross-sectional surveys, the data sets 
from MICS contain complex survey features (e.g. many categorical variables). 
Missing values are also a problem in MICS surveys. Missing data problems arise 
when a sampled unit does not respond to the entire survey (also called unit non 
response) or to a particular question (also called item non response). For 
example, the MICS Punjab 2014 child data set contains more than 200 child 
health background variables on 31083 children under the age of 5. Among all 
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these variables, the missing data rates per variable range from 10% to 95% and 
26 variables have more than 50% missing values. Questions related to a child 
cleaning utensils or washing clothes and physical punishment, etc. may make 
participants reluctant to provide full information, which results in incomplete data 
(Akmatov (2011)) (Cappa and Khan (2011)). 

In recent decades, considerable efforts have been made into the development 
of statistical methods to treat the problem of missing data. Complete-case or 
available-case analysis, or single imputation methods such as mean and 
regression imputation, often result in potentially biased estimates when applied to 
incomplete data (Anderson et al. (1983)). Rubin (1987) proposed multiple 
imputation (MI) as an appropriate alternative under certain assumptions. 
Predictive distributions are used to draw repeated samples in order to simulate 
values for missing data. M>1 complete data sets are generated and point and 
variance estimates of interest are estimated and combined using the formulas 
developed by Rubin (1987). One advantage of MI is the decoupling of the 
imputation task and the analysis task although one has to be careful in choosing 
the imputation and the analysis model (Xie et al. (2017)). 

In this paper, we propose a computationally efficient and an easy to 
implement 3-stage Hybrid Multiple Imputation (HMI) approach to impute complex 
survey data sets that contain both continuous and categorical variables. The HMI 
approach applies sequential regression MI techniques to impute continuous 
variables by using information of categorical variables already imputed by a non-
parametric Bayesian MI approach. This blended version of joint and sequential 
modelling MI techniques makes it possible to obtain complete datasets with both 
types of variables. This approach is motivated by missing values in background 
variables related to children’s life and health in MICS. In order to get valid and 
accurate results, it becomes important to impute all types of variables in MICS. As 
we noted earlier, handling mixed continuous and categorical data in high 
dimensions presents unique challenges to MI. Existing MI methods can be difficult 
to implement in the presence of complex dependence structures among 
categorical variables, whereas some recently developed methods focus on 
missing values of few variables (Zhao and Long (2016)). Moreover, various MI 
techniques are limited to categorical variables or require transformations (or other 
tricks) for continuous variables (Si and Reiter (2013)). 

The reminder of the paper is organized as follows. We begin in Section 2 by 
describing missing data mechanisms. In Section 3, we review imputation methods 
dedicated to categorical, continuous and mixed data in high dimensions. In 
section 4 we illustrate Rubin’s inference and various estimates used for 
comparing the performance of the imputation algorithms. Section 5 presents the 
proposed hybrid architecture. In Section 6 we present the simulation studies and 
relevant results to evaluate our proposed approach.  Section 7 presents the 
imputation of the MICS Child Data. We conclude with a discussion at the end. 

2. Missing data mechanisms 

There are three missing data mechanisms. Missing values in any data can be 
missing completely at random (MCAR), or missing at random (MAR), or missing 
not at random (MNAR) (Rubin (1987)), (Little and Rubin (2002)). Let 𝑌 denote the 
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n × p data matrix with n rows (cases) and p variables. Let 𝑦𝑖𝑗 refer to the value in 

row i  and column j of 𝑌, where i=1,…,n and j=1,…,p. Further, suppose that there 
are two components of the data set 𝑌 = {𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠} where the first component 
denotes the observed part of the data and the second component is the missing 
data.  Let 𝑈 be a response indictor matrix with the same dimensions as 𝑌 
indicating whether an element of 𝑌 is observed or missing: 

 𝑈𝑖𝑗 = { 0  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑚𝑖𝑠𝑠𝑖𝑛𝑔,  1  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 
 

Data is MCAR when 𝑃𝑟(𝑈ǀ𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠)=𝑃𝑟(𝑈), MAR when 𝑃𝑟(𝑈ǀ𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠)=𝑃𝑟(𝑈ǀ𝑌𝑜𝑏𝑠) and MNAR when 𝑃𝑟(𝑈ǀ𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠) ≠ 𝑃𝑟(𝑈ǀ𝑌𝑜𝑏𝑠) 
(Little and Rubin (2002)). MNAR is also called “non-ignorable” (NI). 

3. Imputation methods for large scale complex surveys  

A complete overview of the state of the art MI methods for accommodating 
nonlinear relationships and best ways to impute categorical and non-normal 
continuous variables is given in Vermunt et al. (2008), Yucel et al. (2011), Lee et 
al. (2012), Seaman et al. (2012) and Lee and Carlin (2017). Information on 
missing categorical data can be obtained by log-linear models (Schafer (1997)).  

Imputation of large scale survey data can become challenging due to the 
presence of irregular missing patterns, interdependent logical constraints and 
data inconsistencies. There exist several approaches for MI for high-dimensional 
data. For example, in hot-deck imputation, which replaces missing values with 
observed values of pre-defined “donor” cells (Marker et al. (2002)), the 
probabilities of donor selection can be modified by respondent sampling weights 
(Andridge (2009)), or a k nearest neighbours (KNN) MI approach based on the 
distance metric for high-dimensional data (Holder (2015)) may be used or a 
principal component method to impute missing values (Audigier et al. (2016)). But 
most of the existing methods are not designed to handle mixed data (quantitative 
and categorical), become difficult to implement in the situation of large 
dimensions and are extremely time-consuming (Erosheva et al. (2002)). 
Moreover, the presence of complex dependence structures can also lead to 
biased estimates (Wirth and Tchetgen (2014)).  

Sequential regression models (Raghunathan et al. (2001)) or fully conditional 
specification (FCS) (Su et al. (2011)), (van Buuren and Oudshoorn (1999)) is 
another general approach for MI. It is an iterative process. It specifies univariate 
conditional distributions on a variable-by-variable basis, and it draws missing 
values iteratively from the specified conditional distributions. FCS is also known 
as MI by chained equations (MICE) (Raghunathan et al. (2001)), (van Buuren and 
Groothuis-Oudshoorn (2011)), (White et al. (2011)), (Su et al. (2011)). The 
researcher can choose a suitable regression model for each incomplete variable 
where all the other variables are included as predictor variables, and a suitable 
imputation method, e.g. predictive mean matching (PMM) (Morris et al. (2014)). 
Examples are a linear regression model for a continuous variable or a logistic 
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regression model for a binary variable. Also, classification and regression trees 
(CART; Breiman (2001)) can be used. Vermunt et al. (2008) and van Buuren 
(2007) applied FCS to impute a small number of categorical and continuous 
variables. The theoretical implementation of this approach may become 
challenging when specified conditional densities become incompatible due to high 
dimensions (White et al. (2011)). Chained equations, when implemented by 
default settings (i.e. ignoring interaction effects in the conditional models) can also 
result in biased estimates. Moreover, standard MICE methods cannot handle 
high-dimensional data (Deng et al. (2016)). Sometimes problems of convergence 
and incompatibility arise when MICE is used to specify univariate conditional 
distributions (Arnold and Press (1989)), (Gelman and Speed (1993)) and due to 
the presence of complex dependencies, implementation of MICE may fail. Similar 
to log-linear models, conditional models in MICE suffer from model selection and 
estimation problems in high dimensions, which makes the regression imputations 
very time-consuming.  

 
Random forest imputation is a method for handling missing data (Stekhoven 

et al. (2012)). Random forest imputation is a machine learning technique for 
nonlinearity and interaction problems and does not require a particular model to 
be specified. Shah et al.  (2014) used random forest imputation for imputing 
complex epidemiological data sets. They found that MI based on random forest 
techniques tends to be more efficient and produced narrower confidence intervals 
as compared to standard MI methods. However, they focused on the setting 
where few variables have missing values. One disadvantage of algorithms based 
on random forests is that they are computationally expensive to implement in high 
dimensions and do not account for the uncertainty of estimating parameters in the 
imputation models (Rubin (1987)). 

Loh et al. (2016) implement CART and forests to overcome incomplete data 
problems when the auxiliary variables are numerous. The study shows that the 
CART and forests methods are more reliable than likelihood methods for MI but 
CART can be biased toward selecting variables that allow more splits (Loh and 
Shih (1997)), (Kim and Loh (2001)). The study by Burgette and Reiter (2010) 
suggests that inferences based on the CART imputation engine can be more 
reliable than default applications of MICE based on main-effects generalized 
linear models. However, despite of various merits, CART methods and other fully 
conditional specifications are subject to odd behaviours, e.g. CART can be biased 
toward selecting variables that allow more splits in high dimensions 
(Raghunathan et al. (2001)), (van Buuren and Oudshoorn (1999)). Categorical 
predictors with many levels can be a major hurdle for CART algorithms. For 
example, over two billion potential partitions are formed for a categorical predictor 
with 32 levels, which makes CART algorithms computationally inefficient for 
standard computers.  

The joint modelling (JM) specification is an alternative to the FCS approach. 
JM involves specifying a multivariate distribution for the data and draws 
imputations from their conditional distributions by Markov Chain Monte Carlo 
(MCMC) methods. Joint distributions of the variables with missing values are also 
specified by parametric, non-parametric and semi parametric models. A non-
parametric Bayesian joint modelling approach for MI for multivariate categorical 
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data presented by Si and Reiter (2013) uses the Dirichlet process mixtures of 
multinomial distributions (DPMPM) (Dunson and Xing (2009)). This approach 
automatically models complex dependencies whereas other MI methods (log 
linear model or conditional logistic regressions) can fail to detect complex 
structures in high-dimensional categorical variables. Akande et al. (2017) 
compared the performance of various MI methods for categorical data. According 
to their study, the Bayesian mixture model approach dominates the approach 
based on chained equations (which uses generalized linear models) and is as 
reliable as imputations based on CART in MICE. They also found that the 
Bayesian joint modelling approach is substantially faster than the FCS methods 
for MI. However, in the presence of a large number of categorical and continuous 
variables, the sequential behaviour of CART can form suboptimal and unstable 
trees (Hastie et al. (2001)), (Marshall and Kitsantas (2012)), (Strobl et al. (2009)). 
Moreover, to implement a fully Bayesian, joint modelling approach as suggested 
by Akande et al. (2017), one has to either discard all continuous variables or to 
categorize them. Murray and Reiter (2016) extended the Bayesian, joint modelling 
approach for multivariate continuous and categorical variables. However, this 
approach involves knowledge of complicated models to create the dependence 
structure between the continuous and the categorical variables. Schafer (1997) 
uses a JM approach called general location models for a mixture of continuous 
and categorical variables. Despite of being superior to FCS and CART in many 
ways, He (2010) suggests that the JM approaches can lack the flexibility needed 
to represent complex data structures arising in many studies (van Buuren (2007)).  

Various recursive partitioning (RP) techniques (Iacus and Porro (2007, 2008)), 
(Nonyane and Foulkes (2007)), (Burgette and Reiter (2010)), (Stekhoven and 
Bühlmann (2012)), (Doove et al. (2014)) were proposed to overcome the problem 
of ignoring interactions in chained equations but most of the proposed methods 
combine recursive partitioning with single imputation instead of multiple 
imputation.  

An approach called multilevel singular value decomposition (SVD) is used by 
Husson et al. (2018) for mixed data. SVD uses the between and within groups 
variability to impute values.  One major drawback of SVD is that it cannot be 
implemented with MI. Geneviève et al. (2018) addressed main effects and 
interaction challenges in mixed and incomplete data frames.  

MI by multiple correspondence analysis (MIMCA) (Audigier et al. (2017b)) 
utilizes the dimensionality reduction property of multiple correspondence analysis 
to impute categorical data with a high number of categories. Estimates obtained 
by MIMCA are as reliable as methods using MI with log linear models or 
conditional logistic regressions. MIMCA is less time-consuming on data sets with 
high dimensions than the other multiple imputation methods. However, MIMCA is 
limited to only categorical variables. Imputation methods that treat the categorical 
data as continuous, for example, as multivariate normal, can work well for some 
problems but are known to fail in others, even in low dimensions (Ake (2005)), 
(Allison (2000)), (Bernaards et al. (2007)), (Finch (2010)), (Graham and Schafer 
(1999)), (Horton et al. (2003)), (Yucel et al. (2011)). 

An iterative singular value decomposition (SVD) algorithm for MI can be a 
good choice for quantitative (Hastie et al. (2015)), qualitative (Audigier et al. 
(2017a)) and mixed data (Audigier et al. (2016)) because of better performance 

Attached Contributions

101



160                                               H. Razzak , Ch. Heumann: Hybrid multiple imputation… 

 

 

than their counterparts. However, these methods cannot be suitable for the 
complex data we address in this paper. 

Recently, hybrid techniques for imputations have gained a lot of attention 
(Ankaiah et al. (2011)), (Tang et al. (2015)), (Liyong et al. (2016)), (Shukur and 
Lee (2015)). For example, Ankaiah and Ravi (2011) propose a hybrid two stage 
imputation method involving the K-means algorithm and a multi-layer perceptron 
(MLP) in stage 1 and stage 2, respectively. Also, Nishanth et al. (2012) proposed 
a hybrid clustering and model based method, where they combine the K-means 
with an artificial neural network (ANN). Nishanth and Ravi (2013) propose an 
online data imputation framework incorporating data mining techniques. 
Considering the local similarity of data, Li et al. (2013) borrowed the idea from 
clustering and applied it to the problem of missing data imputation. Azim et al. 
(2014) present a hybrid model that uses a multi-layer perceptron and a fuzzy c-
means clustering working in sequence for data imputation. Liang et al. (2015) also 
proposed a novel missing value imputation method using the stacked auto-
encoder and incremental clustering (SAIC). However, obtaining good clustering 
results may become challenging due to the expansion of the data volume with 
existing clustering algorithms. Multiple Imputation using grey theory and entropy 
based on clustering (MIGEC) is another hybrid missing data method proposed by 
Ting et al. (2014). The MIGEC method divides the complete data into clusters and 
selects the nearest cluster based on grey theory for each incomplete instance and 
imputes values using a weighted average based on the information entropy.  

Various other MI approaches are suggested in nested imputation (Rubin 
(2003)), where a set of a variable is imputed based on the former set. Two-stage 
multiple imputation by Harel (2007), Harel and Schafer (2003), Reiter and 
Drechsler (2007), Reiter and Raghunathan (2007) are examples for nested 
imputations. These methods explicitly manage two multiple imputation procedures 
in a dependent structure (Rubin (2003)). Weirich et al. (2014) extended nested 
imputation methods in both continuous and categorical background variables for a 
large-scale assessment. However, we think these procedures are computationally 
more extensive, implemented in limited ways and require further research. Zhao 
and Long (2016) did some recent work for imputation methods in the presence of 
high-dimensional data. However, they focused on the setting where only one 
variable has missing values. Most recently, Nikfalazar et al. (2019) proposed a 
new hybrid imputation method that deals with the missing data issue in the 
Mobility in Cities Database (MCD). Their hybrid method combines features of 
decision trees and fuzzy clustering into an iterative algorithm for missing data 
imputation. 

When dealing with large scale complex data with missing values in high-
dimensional situations, we desire a hybrid multiple imputation approach (HMI) 
that (i) avoids odd behaviours of FCS techniques in high dimensions (ii) avoids 
difficulties of creating complicated models for the dependence between the 
continuous and the categorical variables as in JM approaches (iii) avoids the 
problem of a specification of clusters (iv) offers efficient computation. HMI is a 
flexible and practical technique, which combines properties of existing 
approaches to handle missing values in large scale complex surveys. We 
propose a HMI technique which applies FCS MI techniques to impute continuous 
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variables based on information obtained by categorical variables that are already 
imputed by a JM MI approach. 

4. Materials and methods 

Before introducing the proposed hybrid architecture, a brief description of FCS 
and JM MI methods, Rubin’s inference and various estimates used for comparing 
the performance of the imputation algorithms is given below. 

4.1.  Fully Conditional Specification (FCS): Chained Equations  

The FCS method specifies an imputation model for each variable with missing 
values conditional on the other variables in the data set.  Missing values are 
sequentially imputed in each iteration. Imputation starts from the first variable with 
missing values. 

 In the first step, initial values for missing values in all variables are specified, 

i.e. 𝑌10 , ... ,𝑌10. 
 In the second step, at iteration t: for j  = 1 to p, most recently imputed values, 

i.e. X, 𝑌1𝑡, ... ,𝑌𝑗−1𝑡 ,𝑌𝑗+1𝑡−1 , ... ,𝑌𝑝𝑡−1 of all other variables, X, 𝑌2𝑡−1, ... , 𝑌𝑝𝑡−1 for j=1 and 𝑌1𝑡−1, ... ,𝑌𝑝𝑡−1 use a univariate method to impute all missing values in the  jth 

variable 𝑌𝑗𝑡.  Here, X denotes a set of variables that have no missing values. 

Repeat the second step until the maximum number of iterations is reached. The 
above steps (including the first one) are repeated M times to get M imputations. 
The starting values for each chain are generated with a different seed for random 
numbers to generate different initial values. 

4.2.  Fully Bayesian joint modelling (JM) using Dirichlet process infinite 
mixtures of products of multinomials (DPMPM) 

The fully Bayesian, joint modelling (JM) approach known as “Dirichlet process 
mixtures of products of multinomial distributions model” (DPMPM) (Dunson and 
Xing, (2009)) is described as: 

1. Assume that each individual i belongs to exactly one of K < ∞ latent classes. 

2. For i = 1,…, n, let 𝑔𝑖 𝜖  { 1, … , 𝑘}  indicate the class of individual i, and let 𝜋𝑘 =Pr (𝑔𝑖 = 𝑘) . Assume further that  𝜋  =  {𝜋1, … , 𝜋𝑘} is the same for all individuals. 

3. Within any class, we suppose that each of the j variables independently 
follows a class-specific multinomial distribution, i.e. for any value 

                             𝑦 𝑗   𝜖  { 1, … , 𝑑𝑗}, let 𝜙𝑘𝑐𝑗(𝑗) = 𝑃𝑟(𝑦𝑖𝑗 = 𝑦𝑗  ǀ𝑔𝑖 = 𝑘). 

Note that dj denotes the number of categories of the j-th variable. 
 
Mathematically, the finite mixture model can be expressed as follows: 
 

           𝑦𝑖𝑗|g𝑖 , 𝜙    𝑖𝑛𝑑 ~   Multinomial (𝜙𝑔𝑖1(𝑗) , … , 𝜙𝑔𝑖𝑑𝑗(𝑗) ) for all i and  j                     (4.1) 

                        g𝑖| 𝜋 ~ Multinomial (𝜋1, … , 𝜋𝐾) for all i                              (4.2) 
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For prior distributions on 𝜙 and 𝜋 , we have   𝜋𝑘 = 𝑉𝑘  ( ∏ 1 − 𝑉𝑔𝑙<𝑘 )  For k=1,…,K 𝑉𝑘      𝑖𝑖𝑑  ~    𝐵𝑒𝑡𝑎 (1, 𝛼)     𝛼  ~ Gamma (𝑎𝛼, 𝑏𝛼 ) 𝜙𝑘𝑗   ~ Dirichlet    ( 𝑎𝑗1 , … , 𝑎𝑗𝑑𝑗)  

We set 𝑎𝑗1=…= 𝑎𝑗𝑑𝑗 = 1 for all j, and (𝑎𝛼 = 0.25; 𝑏𝛼 = 0.25). In order to get 

complete data sets, first the latent class indicator for each individual is drawn from 
the full conditional and then each missing 𝑦𝑖𝑗 is drawn from the class specific, 

independent multinomial distributions.  

4.3. Rubin’s inference: 

For m = 1,…,M, let 𝑞(𝑚) and 𝑢(𝑚) be respectively the point estimates of Q (e.g. the 
estimated regression coefficient in an analysis model) and the variance estimates 

of 𝑞(𝑚) of the interesting analysis model, e.g. a parametric regression model. 

Valid inferences for a scalar Q are obtained by combining the 𝑞(𝑚) and 𝑢(𝑚),  
using Rubin’s (1987) rules as follows: 

                                                   𝑞𝑀=∑ 𝑞(𝑚)𝑀𝑀𝑚=1 ,                                          (4.3) 

                                               𝑏𝑀=∑ (𝑞(𝑚)−𝑞𝑀)2𝑀−1𝑀𝑚=1 ,                                      (4.4) 

                                             𝑢𝑀 =∑ 𝑢(𝑚)𝑀𝑀𝑚=1  ,                                          (4.5)  

 

𝑞𝑀 can be used to estimate Q and  the variance of 𝑞𝑀 can be estimated by 

                                       𝑇𝑀 =  (1 + 1𝑀) 𝑏𝑀 + 𝑢𝑀,                                         (4.6) 

 with degrees of freedom 𝑣𝑀 = (𝑀 − 1)(1 + 𝑢𝑀((1+ 1𝑀)𝑏𝑀)2).                                   (4.7) 
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5. Proposed hybrid architecture 

 

 

Figure 1.  Schematic diagram illustrating the proposed hybrid architecture  

 
 
A schematic diagram illustrating the proposed hybrid architecture is provided 

in Figure 1. The proposed missing data imputation approach is a 3-stage 
approach. Step 1: We begin by partitioning incomplete data into two different 
groups, i.e. categorical data → Miss.cat and incomplete continuous data → 
Miss.num, where Miss.cat and Miss.num may contain missing values. After 
partitioning, multiple complete versions → Imp.cat are created for Miss.cat by 
applying a fully Bayesian joint modelling approach to MI. In this step, Miss.num 
still contains missing values. Step 2: All variables in the data set Miss.num are 
added to each of the Imp.cat data sets, resulting in M partially imputed datasets 
where values in the continuous variables may be missing and values in the 
categorical variables have already been imputed in step 1. Step 3: Incomplete 
continuous variables in the M partially imputed datasets are imputed using MICE 
such that the draws from the posterior predictive distribution of the unobserved 
continuous data depend on the given categorical variables, which have been 
already imputed by the fully Bayesian joint modelling MI.  

To implement the HMI approach, we combine a JM approach “DPMPM” with 
the FCS approach MICE. We select “DPMPM” due to its computational efficiency, 
its ability to automatically model complex dependencies and its successful 
implementation for the case of high-dimensional categorical variables in various 
fields, i.e. econometrics (Chib and Hamilton (2002), Hirano (2002)), social science 
(Kyung, Gill, and Casella (2010)), and finance (Rodrı´guez and Dunson (2011)). 
MICE is selected due to its open source character and popularity. R (R Core 
Team (2018)) software, version 3.0.1 is used to perform all calculations. The two 
R packages “mice” (van Buuren and Groothuis-Oudshoorn, (2011)), version 2.17 
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and “NPBayesImputeCat” (Quanli et al. (2018)), version 0.1 are used to 
implement the HMI approach. The “default” function of “mice” uses predictive 
mean matching (PMM) for continuous variables, logistic regression for factor 
variables with two levels and multinomial logit model for more than two 
categories. We also use the package 'mitools' (Thomas (2019)) to combine the 
results from MI. Default versions of chained equations using “mice” fail to impute 
missing values in the child data. The neural net function, called by “mice” for 
categorical variables with more than two categories, stops the default version 
because of exceeded "maximum allowable number of weights". The function 
“nnet” is used to prevent running code that will take a very long time to complete 
when there are factor variables with many levels. This gives an indication that 
complex dependence structures in the data make it complicated to identify them 
by the default application of MICE. Therefore, we did not implement the default 
version and compare two HMI approaches, i.e. “H.CART” and “H.DEF” with the 
MICE based method “MiceCART” (classification and regression trees (CART)). 
“H.CART” and “H.DEF” combine a fully Bayesian joint modelling approach with 
the MICE algorithms “CART” and “Default”, respectively. To implement the hybrid 
approach, we examine a small prior specification for 𝑎𝛼 and  𝑏𝛼 (i.e. 𝑎𝛼= 0.25, 𝑏𝛼 
= 0.25) with a moderate number of mixture components (i.e. k=80).  

6.  Simulation studies 

To investigate the performance of the HMI method via simulation, we 
generate a large number (X=39) of mixed type variables. First, we generate 31 
binary (Xb) variables. A multivariate normal (MVN) distribution is used to generate 
correlated random covariates Ci comprising 1000 observations. The marginal 
distributions are: Ci ~ N (0, 0.5), where i={1,…,31}.The correlation structure is 
given as:   

                                          R = (1 ⋯ 𝜌⋮ ⋱ ⋮𝜌 ⋯ 1). 

Where 𝜌 = 0.5. Random covariates (Ci) are transformed into binary values 
(Xb) using the following threshold: 

  𝑋𝑏𝑖 =  { 0   𝑖𝑓    𝐶𝑖  ≤ 0 ,      1   𝑖𝑓    𝐶𝑖  > 0,         
where i={1,…,31}.  

 
In order to generate two multilevel categorical covariates, i.e. (𝑋𝑚1 and 𝑋𝑚2 ), 

we first generate two random covariates from normal distributions (ND) given as: 

  𝐶32  ̴  𝑁 (𝜇1; √2),   𝐶33   ̴  𝑁 (𝜇2; √2), where 𝜇1 and 𝜇2 are described as: 𝜇1  =  0.1 + 0.1 ∑ 𝑋𝑏𝑖 31𝑖=1 + 0.1𝑋𝑏2 𝑋𝑏3 + 0.1𝑋𝑏5 𝑋𝑏8 + 0.1𝑋𝑏2 𝑋𝑏29..                  (6.1) 𝜇2  =  0.1 + 0.1 ∑ 𝑋𝑏𝑖 +31𝑖=1 0.1𝐶32 + 0.1𝑋𝑏2 𝑋𝑏3 + 0.1𝑋𝑏5 𝑋𝑏8 + 1.1𝑋𝑏2 𝑋𝑏29 .    (6.2)  
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Further, all observations in 𝐶31and 𝐶32 are randomly split into various 

homogeneous groups and two multilevel categorical variables 𝑋𝑚1 and 𝑋𝑚2  are 

formed with four and six categories respectively. 
To encode complex dependence relationships with higher order interactions, 

we generate another binary covariate 𝑋𝑏32  from Bernoulli distributions with 

probabilities governed by the logistic regression with  
 𝑙𝑜𝑔𝑖𝑡 𝑃𝑟 (𝑋𝑏32) = 0.001 −  0.01𝑋𝑏1 −  0.09𝑋𝑏2 − 0.09𝑋𝑏3 − 0.09𝑋𝑏4 + 0.05𝑋𝑏5 +0.08𝑋𝑏6 −  0.02 𝑋𝑏7 + 0.08 𝑋𝑏8  + 0.01𝑋𝑏9 +  0.01 𝑋𝑏10 − 0.02 𝑋𝑏11 + 0.01𝑋𝑏𝑖12 − 𝑋𝑏13  + 0.02𝑋𝑏14 − 0.01𝑋𝑏15 +  0.02 𝑋𝑏16 − 0.03𝑋𝑏17 − 0.02𝑋𝑏18 −  0.07𝑋𝑏19 +0.08𝑋𝑏20 + 0.08𝑋𝑏21 + 0.01𝑋𝑏22 + 0.09𝑋𝑏23 + 0.09𝑋𝑏24  +  0.05𝑋𝑏25 + 0.08𝑋𝑏26 −0.02𝑋𝑏27  +  0.08𝑋𝑏28 + 0.08𝑋𝑏29 − 0.01𝑋𝑏30 + 0.09 𝑋𝑏31 + 0.02 𝐶32 + 0.02𝐶33 +0.02 𝑋𝑏12 𝑋𝑏29 − 0.02𝑋𝑏15𝑋𝑏18 𝑋𝑏29 .                      

   (6.3 
                           

We then generate two continuous covariates, i.e. 𝑋𝑛1  and 𝑋𝑛2   from normal 

distributions (ND) as follows: 

𝑋𝑛1  ̴  𝑁 (𝜇3; √0.5). 
Where, 𝜇3 =  −2 −  1.5𝑋𝑏1 +  2.15𝑋𝑏2 + 2.25 𝑋𝑏3 − 3.6 𝑋𝑏4 − 1.88𝑋𝑏5 +1.11 𝑋𝑏6 + 2𝑋𝑏7 − 5𝑋𝑏8 + 𝑋𝑏9 − 2𝑋𝑏10 + 2𝑋𝑏11 + 5𝑋𝑏12 − 2𝑋𝑏13 + 3𝑋𝑏14  +4𝑋𝑏15  + 𝑋𝑏16  + 𝑋𝑏17 − 𝑋𝑏18 − 𝑋𝑏19 − 𝑋𝑏20  − 𝑋𝑏21 − 𝑋𝑏22 + 2𝑋𝑏23 − 𝑋𝑏24 + 𝑋𝑏25 +𝑋𝑏26 + 𝑋𝑏27 + 𝑋𝑏28  + 𝑋𝑏29 + 𝑋𝑏30 + 𝑋𝑏31 + 2𝐶32 − 𝐶33 +  𝑋𝑏32 + 2𝑋𝑏11 𝑋𝑏12 𝑋𝑏13 −2 𝑋𝑏15𝑋𝑏18 + 2𝑋𝑏12  𝑋𝑏29 .                           

  (6.4)  

And 

                                                𝑋𝑛2  ̴  𝑁 (𝜇4; √0.5).                                               (6.5) 

Where, 𝜇4 =  𝜇3+  𝑋𝑛1 .   

 (6.6) 
Both continuous covariates are highly positively correlated, i.e. 𝑟 = 0.9. 
We then define a covariate dependent continuous response with expectation 𝜇𝑦 = 1 + ∑ 𝑋𝑏𝑖 +32𝑖=1 ∑ 𝑋𝑛𝑖 4𝑖=1 +  ∑ 𝑋𝑚1_𝑖 4𝑖=2 + ∑ 𝑋𝑚2_𝑖 6𝑖=2 + 𝑋𝑏9 𝑋𝑏15 + 𝑋𝑏1 𝑋𝑏17 +𝑋𝑏14 𝑋𝑏20 + 𝜖.    

                                                                    (6.7)  

Additionally, a random component 𝜖    ̴   𝑁 ( 0;  0.5) is added. The regression 
coefficients for categorical variables with multiple levels are expressed as dummy 

variables, e.g. ∑ 𝑋𝑚1_𝑖 4𝑖=2  and ∑ 𝑋𝑚2_𝑖 6𝑖=2  in the predictor (all coefficients are 1.0).     

Equations 6.1–6.7 include higher-order interactions to represent complex 
dependence structures. Imputation approaches based on log-linear models or 
chained equations may fail to capture these structures. There is no particular 
importance of the specific values of the coefficients. Nonzero coefficients are 
specified for higher order interactions for generating complex dependencies. The 
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analysis model of interest is the linear model. Observations in all covariates can 
be missing (at random) with probabilities based on a logistic probability 
distribution model. Probabilities for missing for a random covariate X are given as: 𝜋𝑋𝑖=    

𝑒(−2−𝑋𝑗)(1 + 𝑒(−2−𝑋𝑗)). 
Here, i={1,…,39} and j ≠ i. Missingness in 𝑋𝑖 is attributed solely to other 

observed variable 𝑋𝑗. This yields 10% of the observations to be MAR. Based on 

recommendations in the MI literature (White et al. (2011)), (van Buuren (2012)), 
we decided to include all of the variables from the generated data in the 
imputation model to ensure that the imputation model preserves the relationships 
between the variables of interest (Schafer (1997)), (Moons et al. (2006)). Based 
on Z =1000 simulation runs, the parameters of interest are estimated using the 
aforementioned Rubin’s method. According to Rubin (1987), the number of 
suitable imputations for useful statistical inferences can be determined by a 
fraction of missing data. A surprisingly high relative efficiency can be obtained 
with no more than five imputations. Fichman and Cummings (2003) suggest, that 
M=10 imputations are more than suitable in almost any realistic application. 
Therefore, ten imputed datasets are generated for each of the proposed and the 
MICE MI methods. Two hundred iterations (for each imputation step) are run to 
insure convergence and to obtain results of the simulations in a reasonable time. 
To compare the performance of the imputation algorithms, two error-based 
measurements were chosen to evaluate the quality of MI: Root mean square error 
(RMSE) and empirical standard errors (ESE) (Akande et al. (2017)), (Armina et al. 
(2017)). Smaller values for RMSEs and ESEs indicate better performance (Oba et 
al. (2003)). RMSE and ESE are calculated using the following formulas: 

Root mean square error (RMSE 𝑞𝑚) =√∑ (𝑞̅𝑀𝑧 − 𝛽 )2𝑍𝑧=1 𝑍 ,                            (6.8) 

Empirical standard errors (ESE 𝑞𝑚) =√∑ (𝑞̅𝑀𝑧 − 𝑞̅ )2𝑍𝑧=1 𝑍 ,                             (6.9) 

where 𝑞̅𝑀𝑧  denotes the estimated parameter pooled over M imputed data sets in 
simulation run number z and β  denotes the original parameter. The arithmetic 

mean of 𝑞̅𝑀𝑧  and (√𝑇𝑀  ) across all z = {1,…,Z} simulations are denoted as  𝑞̅ and √𝑇 ̅̅ ̅̅ ̅. The amount of bias can be calculated by a simple difference, i.e.  
    

                                  𝐵𝑖𝑎𝑠 =  𝑅𝑀𝑆𝐸 –  𝐸𝑆𝐸                                  (6.10) 
 

The coverage rates of at least 95% are calculated as:  
 

                  Coverage rate 𝑞𝑚= 
∑  1 [𝛽 ∈𝐶𝐼 (𝑞̅𝑀𝑧 ,𝑇𝑀𝑧 )]𝑍𝑧=1 𝑍  ,                        (6.11)   

 
where 1 [𝛽 ∈  𝐶𝐼 (𝑞̅𝑀𝑧 , 𝑇𝑀𝑧 )] is an indicator function.  The indicator function is equal 

to one when the confidence interval based on  𝑞̅𝑀𝑧   and 𝑇𝑀𝑧  contains 𝛽 and equal to 
zero otherwise. 
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Table 1 gives the performance of the MI methods. Means for CI coverage and 
RMSEs over all beta coefficients are presented in Table 2. Various researchers 
(White et al. (2011)), (van Buuren, 2012)) recommend graphical comparisons of 

the imputation methods. For that purpose, boxplots of standard errors (√𝑇𝑀  ) and 

point estimates (𝑞𝑀) for the regression coefficients  for the 1000 simulation runs 

are presented in Figures 2 and 3 respectively.  

6.1. Results 

 

Table 1.  Performance of methods for MI 

 

 

Estimates Parameter MICECART H.DEF H.CART 

RMSES (ESEs) 𝑋𝑏23  𝑋𝑚1_2  𝑋𝑚2_3  𝑋𝑏32  𝑋𝑛2  𝑋𝑏1 𝑋𝑏17  

0.158(0.114) 
0.158(0.155) 
0.187(0.148) 
0.045(0.032) 
0.063(0.063) 
0.190(0.182) 

0.148(0.089) 
0.228(0.122) 
0.167(0.114) 

0.071(0) 
0.071(0.032) 

0.239(0.130) 

0.122(0.110) 
0.173(0.158) 
0.164(0.145) 
0.032(0.032) 
0.055(0.055) 
0.195(0.190) 

𝑞̅(√𝑇 ̅̅ ̅̅̅) 𝑋𝑏23  𝑋𝑚1_2  𝑋𝑚2_3  𝑋𝑏32  𝑋𝑛2  𝑋𝑏1 𝑋𝑏17  
 

0.891(0.192) 
1.038(0.266) 
0.887(0.245) 

0.969(0.049) 
1.014(0.088) 

0.951(0.319) 

1.119(0.137) 
0.808(0.193) 
1.122(0.176) 
1.065(0.027) 

0.935(0.049) 
0.800(0.255) 

0.947(0.137) 
0.928(0.272) 
0.920(0.249) 
1.006(0.047) 
0.995(0.086) 
0.958(0.225) 

Bias 
 
 
 
 

 
 
 
 

Coverage(%) 

𝑋𝑏23  𝑋𝑚1_2  𝑋𝑚2_3  𝑋𝑏32  𝑋𝑛2  𝑋𝑏1 𝑋𝑏17  
 𝑋𝑏23  𝑋𝑚1_2  𝑋𝑚2_3  𝑋𝑏32  𝑋𝑛2  𝑋𝑏1 𝑋𝑏17  

0.044 
0.772 
0.039 
0.013 
0.956 
0.008 

 
 
99 
100 
100 
97 
99 
100 
 
   

0.059 
0.615 

0.053 
0.071 
0.886 

0.109 
 

 
95 
94 
97 
29 
83 
96 
 

0.012 

0.656 
0.671 
   0 
0.909 
0.005 
 
 
100 
100 
100 
99 
100 
100 
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Root mean square errors and empirical standard errors (top), point estimates, 
standard errors and bias for different methods (middle) and estimated coverage 
probability (bottom) for MI methods under the Missing at Random (MAR) 
assumption. The middle panel lists the mean estimated standard errors and point 
estimates across the simulated data sets. All results are based on 10 imputations. 
Estimates are shown for only six regression coefficients, i.e. for variables 𝑋𝑏23 , 𝑋𝑚1_2 , 𝑋𝑚2_3, 𝑋𝑏32 , 𝑋𝑛2 , 𝑋𝑏1 𝑋𝑏17 . Bold figures indicate the smallest mean root 

mean square errors, mean empirical standard errors and amount of bias among 
the three imputation variants. 

 

Table 2.  Results over all beta coefficients 

 
 

Means for CI coverages and RMSEs are estimated over all regression 
coefficients for all MI methods. Bold values indicate the smallest mean for RMSEs 
over all regression coefficients among the three imputation variants. 

 
 

Figure 2. Simulated data: Boxplots for the point estimates (𝑞𝑀) across 1000 

simulations by imputation methods under Missing at Random (MAR) 
and ten imputations. Point estimates are shown for only six regression 
coefficients, i.e. for variables 𝑋𝑏23 , 𝑋𝑚1_2 , 𝑋𝑚2_3, 𝑋𝑏32 , 𝑋𝑛2 , 𝑋𝑏1 𝑋𝑏17 .The 

horizontal red lines indicate the respective “true” values  

 

 

Estimates MICECART H.DEF H.CART 

 CI coverage  

  RMSEs  

98.66 

0.184 

91.91 

0.170 

 99.89 

 0.146 
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Figure 3. Simulated data: Boxplots for standard errors (√𝑇𝑀  ) across 1000 

simulations by imputation methods under Missing at Random (MAR) 
and ten imputations. Standard errors are shown for only six regression, 
i.e. 𝑋𝑏23 , 𝑋𝑚1_2 , 𝑋𝑚2_3, 𝑋𝑏32 , 𝑋𝑛2 , 𝑋𝑏1 𝑋𝑏17  coefficients 

 
The average point estimates based on H.CART are closer to the 

corresponding true values than those based on CART. H.CART tends to be less 
biased as compared to the CART method for all types of covariates and 
interaction terms, whereas H.DEF tends to be upward biased for binary and the 
multilevel covariate with four levels and slightly downward biased for the 
multilevel covariate with six levels, for the continuous covariates and the 
interaction terms as compared to the CART method (Figure 2). There seem to be 
similarities in the structure among all MI methods (i.e. all methods are downward 
biased) for binary covariate 𝑋𝑏32, which was generated with higher order 

interactions. The H.DEF method tends to have smaller standard errors as 
compared to two relevant methods for all covariates, whereas the H.CART 
method tends to have similar standard errors as compared to CART for most of 
the cases (Figure 3). The estimated RMSES, ESEs and averages of standard 
errors for the H.CART method are smaller for all types of covariates except the 
multilevel covariate with many categories. H.CART shows similar ESEs and 
averages of standard errors and slightly higher RMSES for the multilevel covariate 
with more categories as compared to CART. The H.DEF method shows smaller 
ESEs and averages of standard errors for all types of covariates and slightly 
higher RMSEs for most of the covariates as compared to the other methods 
(Table 1). The H.DEF method led to more overall accuracy with smaller means for 
RMSEs over all beta coefficients as compared to CART (Table 2). A possible 
explanation for the efficiency gain with H.DEF is that it was able to make better 
use of the available information by accommodating nonlinearities among the 
predictors. For the most part, coverage rates for H.CART are in line with those 
from CART and produce almost identical results. In most cases, coverage 
probabilities for H.CART were 100%, which suggests that these confidence 
intervals may be too conservative. The simulated coverage rates of the 95% 
confidence intervals based on H.DEF are near to nominal 95% for most cases. 
Few of the incidences in H.DEF led to under-coverage. All but one of the 
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incidences, i.e. 𝑋𝑏32 in which coverages dip below 30% occur. This severe under-

coverage suggests that H.DEF (which uses the Bayesian approach for categorical 
and PMM as default for continuous covariates) might performing not well for 
continuous covariates but works well for categorical covariates. This might be one 
of the reasons that H.DEF gets biased results. Increasing M can lead to obtain 
coverage rates that are close to nominal in the case of under-coverages. 
Nevertheless, the H.DEF method led to coverage rates that are close to nominal 
over all beta coefficients as compared to CART (Table 2). 

7.  Imputation of MICS child data 

The data for MICS is collected at both family and person level and it allows 
the study of relationships between health indicators and other characteristics. In 
this study, we use the child data set from the MICS Punjab 2014 household 
survey. The MICS Punjab data for children contains more than two hundred 
indicators on a variety of a child’s conditions. For example, indicators on a child’s 
mental development (e.g. a child is able to pick up small object with 2 fingers, 
etc.), a child’s nutrition intake in diet (e.g. a child drank or ate vitamin or mineral 
supplements, etc.) and vaccinations (e.g. ever had vaccination card, etc.). The 
MICS data for children contains a complex data structure for categorical variables 
with multiple levels and large amounts of missingness, which can be problematic 
for MICE. It can be tedious for MICE to specify imputation models and interaction 
terms in the presence of large databases with hundreds of variables and 
multicollinearity (Van Buuren and Oudshoorn 1999).  It was not possible to have a 
proper comparison of the proposed and existing MI approaches in such case. 
Therefore, multiple categories for categorical variables were reduced by merging 
them, and a sub-sample of 52 variables, which contains information on child 
health, nutrition and development, is selected from MICS Punjab 2014 children 
data. Among these variables, 43 background variables are categorical with 
multiple categories and the remaining are continuous. Demographical variables 
like “district” and “area” are also included in the sub-sample. In this sub-sample, 5 
variables have between 6 and 21% of missing values, 17 variables have 48% of 
missing values, 27 variables have between 50% and 86% of missing values, and 
1 variable has more than 90% of missing values. Of all variables, only 3, i.e. “sex”, 
“wealth” and “area”, have complete records (see additional file). The variable 
“district” has 36 levels, hence keeping the analysis comparable and challenging at 
the same time. There are various reasons listed for item non response in the 
methodology of MICS i.e. nonresponse, don’t know and not reached, etc. Without 
distinguishing reasons for item non response, we assume that the items are MAR in 
the data under consideration. Similar to the simulation study, all of the variables 
from the sub-sample are included in the imputation model.  

After imputations, parameters of interest for the child health are estimated 
using linear models for continuous response (height for age percentiles NCHS). 
The response variable, “height for age percentiles NCHS”, is obtained by using a 
table of Z-scores (percentile = the area from infinity to Z). Based on the evidence 
from demographical and behavioural risk factors associated to height, two 
continuous covariates i.e. “age”, “polio_vacc.” and two categorical variables, i.e. 
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“grains_in_diet” (Yes/ No) and “eggs_in_diet” (Yes/ No) are selected as potential 
determinants in the analysis model. Since there are no true values to compare for 
in the real data example, we calculated complete case (CC) estimates for 
comparison purposes (Table 5). The R package “VIM” (Templ et al.  (2012)) is 
utilized for exploring data and the pattern of missing values. Figure 4 shows 
graphics of the incomplete predictors. Graphics for the remaining variables in the 
sub-sample are provided in an additional file. Similar to the simulation study 
ESEs, average point estimates and average standard across the 200 simulations 
are calculated for real data. Computational time and ESEs for MI methods are 
shown in Tables 3 and 4 respectively. Figures 5 and 6 display the average point 
estimates and average standard errors for the MI methods across the 200 
simulations. 

7.1. Results 

Figure 4.  Real data: Aggregateplot in R, graphics of incomplete predictors. For 
purposes of displaying the graphical depiction, only four variables with 
proportions of missing values ranges between 18-28 were selected 

 

Figure 5.  Real data: Boxplots for point estimates (𝑞𝑀) across 200 simulations by 

imputation methods under Missing at Random (MAR) and ten 
imputations  
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Figure 6.  Real data: Boxplots for standard errors (√𝑇𝑀  ) across 200 simulations 

by imputation methods under Missing at Random (MAR) and ten 
imputations. 

 
 

Table 3.  Real data: Time taken for various MI methods 

Method Default CART H..DEF H.CART 

Time No run 3.25d 22.78h. 21.21h 

Note: time = the time to complete 10 multiple imputation by variants of MI across 1000 
simulations, h = hours, d = days, and Not Run = the program not able to complete multiple 
imputation on this subset. The maximum number of iterations is set to 200.   

 

Table 4.  Real data: ESEs for various MI methods 

 

Variables CART H.DEF          H.CART 

age 

eggs_in_diet  

polio_vacc.   

grains_in_diet 

0.06 

0.21 

0.07 

0.17 

0.04 

0.22 

0.04 

0.16 

0.06 

0.20 

0.09 

0.21 

 
 
Empirical standard errors by imputation methods under Missing at Random 

(MAR) and ten imputations. Cases where both HMI methods result in minimum 
between imputation variances (ESEs) as compared to CART are highlighted in 
bold. 
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Table 5.  Real data: complete case (CC) estimates  

Variables est se 

age 3.542 0.899 

eggs_in_diet -9.866 1.305 

polio_vacc. -0.808 0.242 

grains_in_diet 0211 1,342 

 
The CC analysis uses only the complete cases (n = 4264), “est” and “se” 

denote the point estimates and standard errors of the coefficients of the linear 
model, respectively. 

Figure 4 displays graphics of incomplete predictors. The bar plot on the left 
side shows the proportions of missing values in the predictors. The continuous 
predictor “polio_vacc.” has the highest amount of missing values (i.e. about 80%) 
while the amount is rather small in the other three variables (i.e. less than 60% for 
two binary predictors and less than 40% for predictor “age”). An aggregation plot 
on the right side shows all existing combinations of missing (red) and imputed 
observed (blue) values. Additionally, the frequencies of different combinations are 
visualized by a small bar plot and by the number of their occurrences on the right 
side (Templ et al. (2012)). The aggregation plot reveals that missing values in the 
variable “polio_vacc.” are also missing in the two binary variables. We note that 
the standard errors for all of the coefficients are smaller compared to the 
(absolute) point estimates under all MI methods (see Figures 5-6). This happens 
most likely due to sampling variability in the multiple imputation inferences. The 
empirical example with real data indicated that the CART and HMI variants 
yielded differing point estimates. We noticed that point estimates in CART are 
nearer to the estimates in complete case analysis for most of the cases with 
larger standard errors as compared to hybrid methods (see Table 5, Figures 5-6).  
Figure 6 displays smaller standard errors for H.DEF as compared to CART. ESEs 
for HMI variants are also smaller as compared to CART for most of the cases 
(see Table 5), suggesting better performance over CART. Given the results 
produced by the MI methods, a look at the computation times in Table 3 may be 
useful for a further comparison. Almost 4 days were taken by CART to run on 
standard computers, whereas, surprisingly, this time was reduced to almost one 
day when HMI methods were applied. We also applied the proposed methods to 
the full MICS data set with hundreds of variables and categories with multiple 
levels. We found that the proposed methods have a good capacity to perform for 
the MICS data where the MICE methods simply fail.  

8.  Conclusion and remarks 

We acknowledge that results of MI can be biased even when complex 
multivariate data is MAR (White and Carlin, 2010). However, in this paper, we 
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assumed that the missing data mechanism is MAR. We applied our hybrid 
strategy to handle missing data in large scale survey data with complex 
dependence structures among categorical variables and a high percentage of 
missing information. Identification of complex dependence structures among 
mixed type covariates will be difficult for JM and FCS MI methods in high 
dimensions. We obtain promising results by performing an illustrative analysis. 
The results obtained from the simulation studies and a real data example confirm 
the potential of our proposed approach to handle missing data under MAR. 
Superiority of H.DEF was its efficiency relative to the other imputation inference 
methods. The H.DEF method outperformed the other methods with respect to 
RMSEs, ESEs and standard errors but its point estimates were downwardly 
biased for a few regression coefficients, which led to under-coverage of the 
confidence intervals. H.CART gives estimates with less bias but over-coverage of 
confidence intervals. There was no noticeable difference in coverage and 
standard errors between H.CAT and CART.  H.CART produces smaller RMSEs 
and ESEs for most parts and 3 times less computational cost as compared to 
MICE. A problem of the HMI approach is that it does not use the information 
available on the continuous variables for imputing the categorical variables. 
Further work is needed to use iterative procedures to develop strong relationships 
between the categorical and continuous variables. Currently, we are 
implementing solutions for this problem and we use the concept of categorizing 
continuous variables. We are working on the development of a new R package 
that will implement the proposed HMI approach with the hope that it will contribute 
in MI of large scale survey data. 
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ABSTRACT 
Multiple-imputation (MI) is a method for treating the problem of missing data. There are 

various competing computational algorithms available in the R environment to address missing 

data problems of categorical and continuous variables. In the case of a high amount of missing 

information, large sample sizes and complex dependency structures among categorical variables, 

the utility of the provided R packages is somewhat limited. A computationally expedient, fully 

Bayesian, joint modeling (JM) approach known as “Dirichlet process mixtures of multinomial 
distributions” (DPMD), automatically models complex dependencies among variables. But this 

approach is limited to categorical variables only. We propose a simple and easy to implement 

combining algorithm which imputes continuous variables using various algorithms and uses the 

JM approach to detect complex dependency structures among categorical variables. We review, 

describe and evaluate software packages commonly available in R and compare the results with 

the proposed MI method by using as example an artificial data set. The results suggest that the 

MI approach which combines the JM approach and various algorithms based on generalized 

linear models dominates various algorithms when applied solely. 

Keywords: Survey data; Multiple Imputation; Complex dependencies; Hybrid; Dirichlet 

process prior distributions, R - project. 

 

1. INTRODUCTION 

 

Item non response is a main problem in large scale surveys. Such surveys usually have a 

large number of categorical variables as compared to the number of continuous variables. Using 

only the available data results in decreased efficiency and possibly biased inference. Rubin 

(1987) has proposed multiple-imputation (MI), a method for handling missing data, more than 40 

years ago. For more details, see Rubin (1987) and Schafer (1997).  

MI requires random draws from the posterior distribution of the missing data given the 

observed data. Although this method is conceptually simple but can lead to potentially unsound 

imputations when there are mixed type variables (i.e. continuous and categorical variables with 

many categories). There exist various competing computational algorithms to impute data. There 

is a need to investigate which of these algorithms outperform the others with respect to MI in the 

presence of complex dependencies among categorical variables in large scale surveys. A fully 

Bayesian, joint modeling approach called “Dirichlet process mixtures of multinomial 
distributions” (DPMD) for multiple imputation (MI) for categorical data (Si and Reiter, 2013) in 

large scale surveys automatically models complex dependencies while being computationally 

efficient at the same time. Akande et al. (2017) have compared repeated sampling properties of 

various MI methods for categorical data. They found that chained equations using Classification 

and Regression Trees (CART), and a fully Bayesian approach based on Dirichlet Process 
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mixture models dominate the default chained equations approaches based on Generalized Linear 

Models (GLM‟s). The DPMD MI approach is limited to categorical variables; but it is possible 

to impute categorical variables with complex dependencies and high dimensions using DPMD 

and continuous variables with existing MI methods by combining two approaches.  In this paper 

we propose a hybrid MI (HMI) approach which combines DPMD and existing MI approaches by 

imputing categorical variables with DPMD and use various imputation techniques to impute the 

continuous variables. In this paper, we compare the performance of existing and proposed MI 

methods in the presence of complex dependency structures among categorical variables. The 

judgment about the performance will be based on various dimensions, such as accuracy in 

comparison with the true values, point estimates and standard errors for the fitted GLM‟s and 

coverage rates of 95% confidence intervals. 

2 NOTATIONS AND ASSUMPTIONS FOR THE MISSING 

MECHANISMS 

 
Let D denote the incomplete data with sample size n  and p variables. The distribution of 

D is an arbitrary multivariate distribution. 

Also assume i and j refer to observations where i=1,…,n and variables j=1,…,p, respectively. 

There are two components of the data set D= {D
obs

, D 
miss

}. A response indictor matrix with same 

dimensions as D is      {                                             

Note that we use R in atelic for the R environment in this article. Missing Completely At 

Random (MCAR) is one possible assumption where    (            )=   ( ). The second 

possible assumption is Missing At Random (MAR) where   (            )=   (      ). 
Missing Not At Random (MNAR) is another possible assumption where   (            )     (      ) and depends on      . The third assumption is also called non-ignorable (NI) (Little 

and Rubin, 2002) and not further used in the paper. 

 

3 IMPUTATION SOFTWARE 
 

Various imputation algorithms are implemented in a variety of statistical packages to handle 

missing data and to perform MI. Many standard statistical packages i.e., R, S-Plus, SAS, SPSS, 

and STATA not only implement standard algorithms but also offer user-written programs to 

facilitate a variety of more elaborated methods to handle missing data. Readers who are 

interested in the comparison of the performances of these packages are suggested to read Yu et 

al. (2007) or Horton and Kleiman (2007). We take R under consideration in this paper due to its 

open source character and its popularity. NA‟s are used to indicate missing values in R. There are 

various statistical packages that use R environment to impute missing data. For example “Amelia 
II” implements MI by bootstrapping and Expectation Maximization (EM) algorithm, “Hmisc” 

implements MI using additive regression and bootstrapping, R package “mi” offers various 

features (e.g. choice of predictors, models, and transformations for chained imputation models 

etc.) for imputations, “mice” algorithm can impute mixed type data and offer various diagnostic 

functions to inspect the quality of the imputations,“yaImpute” performs nearest neighbor-based 

imputation, “mix” performs MI for mixed categorical and continuous data, “NPBayesImpute” 
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impute categorical data by using Dirichlet process mixtures of multinomial distributions, “norm” 

uses multivariate normal model for imputations,  “pan” is a MI technique for multivariate  panel 

or clustered data. The “mitools” is a useful package to combine the results from MI whereas the 

package “VIM” can be utilized for exploring data and the pattern of missing values. We use 

“Amelia II”, “Hmisc”, “mice” and "NPBayesImpute” in our examples.  

 

4 REVIEW OF EXISTING APPROACHES 

 
There is a wide range of imputation models available which are based on the missingness 

patterns. These approaches can be categorized according to the data types. In case of a monotone 

missing pattern, simple methods, i.e. “propensity” (Rosenbaum and Rubin, 1983) or “Predictive 
Mean Matching” (PMM) (Little, 1988), are used for continuous variables.  Markov Chain Monte 

Carlo (MCMC) approaches use Markov chains to generate random draws from multidimensional 

probability distributions. One can obtain a sample of the desired distribution by recording states 

from the chain (Gilks, 1995). MCMC approaches are suggested for complicated missingness 

patterns. The MCMC approach has few downsides; it is complicated and usually requires more 

time. Statistical packages “SAS”, “S-Plus” and “R” etc. use the MCMC approach.  Multivariate 

normality assumptions apply to both the predictive mean matching and MCMC approaches 

(Horton and Lipsitz, 2001). According to Schafer (1997), inferences based on this normality 

assumption can be robust for minor departures. 

Discriminant analysis or logistic regression are preferred for discrete variables for 

monotone missing pattern.  There are a variety of imputation methods for categorical data in high 

dimensions. For details, see Vermunt et al. (2008). Log-linear models may be the preferred 

method for discrete variables, since arbitrary complex dependency structures can be modeled. 

But the implementation of this approach becomes difficult or impossible in high dimensions 

(Erosheva, et al., 2002). Naturally, there are a large number of possible models in high 

dimensions which makes model selection very challenging and makes it also impossible to select 

a model from all possible log-linear models as well. In this situation, implementation of 

automated model selection procedures becomes unavoidable. Moreover, model selection 

procedures become more complicated with missing data. Maximum likelihood estimates of the 

log-linear model coefficients can be biased in high dimensions (Bishop et al., 1975).  

Imputation methods like fully normal (FN) imputation (Rubin and Schenker, 1986) 

convert categorical data to multivariate normal or continuous by applying rounding techniques. 

But there are evidences that the performance of these methods is limited. For example, an 

imputed value when made “plausible” using rounding, can tend to generate a bias and the 
method can fail even in low dimensions (Ake, 2005; Allison, 2000; Bernaards et al., 2007; Finch, 

2010; Graham and Schafer, 1999; Horton et al., 2003; Yucel et al., 2011). Below we discuss in 

detail the MI algorithms we used for comparison purposes.  Advantages and disadvantages of the 

algorithms are discussed as well. 

 

4.1 EXPECTATION-MAXIMIZATION WITH BOOTSTRAPPING (EMB) USED BY 

AMELIA II 

R package called „Amelia II‟ by Honaker et al. (2011) implements imputation method. 

Amelia assumes that all variables in data set are distributed multivariate normally. „Amelia II‟ 
combines the bootstrap (Efron, 1979) with the EM algorithm (Dempster, Laird, and Rubin, 

1977). The combination of the expectation-maximization algorithm and bootstrapping is called 
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the Expectation-Maximization with Bootstrapping (EMB) algorithm.  The bootstrapping method 

works by utilizing the observed sample as the pseudo-population and randomly drawing a 

subsample of size n with replacement from this observed sample.  The EMB algorithm consists 

of the following steps: First: assuming a data set with q observed and n - q missing values, 

bootstrap samples of size n are drawn from incomplete data M times by applying bootstrapping 

method. Second: M point estimates of µ and Ʃ are calculated by applying the EM algorithm to 
each of these M bootstrap samples. Maximization steps are iterated until estimates converge. 

Finally, M multiply-imputed data sets are constructed by repeating this process M times 

(Wooldridge, 2002). For more details on the expectation maximization with bootstrapping 

(EMB) algorithm see (Schafer, 1997; Watanabe and Yamaguchi, 2000; Little and Rubin, 2002). 

Although EMB is computationally more efficient as compared to MCMC methods but is only an 

approximate Bayesian procedure (Lin, 2008).  

 

4.2 MIXTURE MODELS FOR MULTIPLE IMPUTATION 

 
 To impute high-dimensional categorical data with significant item non-response, one has 

to face the challenges of model selection and estimation of log-linear models. Moreover, log-

linear models and sequential regression techniques become computationally inefficient and 

potentially biased when the number of possible models becomes very large. Therefore, a MI 

technique is preferred that not only addresses these difficulties but also has a theoretical 

grounding as a coherent Bayesian joint model and tackles all sources of uncertainty, including 

parameter estimation and inference, see Rubin (1987). According to Si and Reiter (2013), 

Bayesian models incorporate such uncertainty automatically. They propose to use the fully 

Bayesian, joint modeling (JM) approach known as “Dirichlet process mixtures of products of 

multinomial distributions model” (DPMPM) which was originally proposed by Dunson and Xing 

(2009). DPMPM is a nonparametric Bayesian model for multivariate unordered categorical data.  

Below we describe categorical data imputation using DPMPM. A brief description is given how 

this approach can be combined with existing approaches through a flexible and easy to 

implement architecture. 

Assume, we have item non-response in n individuals with p variables     i.e. (value of 

variable j for individual i, where each i belongs to exactly one of K <   latent classes). Further 

assume for i = 1,…, N, we have the class    of individual i  i.e.       *     + with probability    

=Pr (    ). Let     = {        } be the same for all individuals. We suppose that within any 

class, each of the p variables independently follows a class-specific multinomial distribution. For 

any value        {      }   let     ( )    (           )  We can express the finite mixture 

model mathematically as               i  ̃              .    ( )         ( ) /  for all i and j and                       (         ) for all i. For prior distributions on   and   , we have       ( ∏        ) for k =1,…,   and           (1,  ) for k=1,…,        . Finally we have      Gamma (    ,    ) and   .   ( )       ( ) /  Dirichlet  (             ). In order to get complete 

data sets, first the latent class indicator for each individual is drawn from the full conditional and 

then, second, each missing     is drawn from class-specific, independent categorical 

distributions. 
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This approach is consistent (i.e. any multivariate categorical data distribution can be 

approximated by DPMPM for a sufficiently large number of mixture (Dunson and Xing, 2009)), 

is computationally efficient and easy to code. The R package, “NPBayesImpute” by Manrique-

Vallier et al. (2014) implements this approach. Shortcoming of this package is that it only takes 

categorical variables into account.  

4.3 FULLY CONDITIONAL SPECIFICATION (FCS): CHAINED EQUATIONS 

The FCS approach is another approach to multiple imputation. Multivariate missing data is 

imputed on a variable-by-variable basis. We specify a multivariate distribution Pr(D, R│ ) 

using a series of conditional densities Pr(  │        ) where λ is the unknown parameter of the 

imputation model. An imputation model is specified for each variable, depending on the 

observed values in the dataset and the response mechanism, i.e   (           )               .   

A simple draw is made using the marginal distributions first. Then imputation is repeated over 

the conditionally specified imputation models (van Buuren, 2012). Imputations are created for 

each variable iteratively. Multivariate Imputation by Chained Equations (MICE) is a prominent 

conditionally specified imputation model.  MICE works as follows.  

1 Specify an imputation model for each variable    
Pr(       │            ). 

2 Let     ̃ be the starting imputation for each variable j. This value is e.g. obtained by 

making random draws from the observed values       . 
3 Repeat this process for t=1,…,T and j=1,…,p  as well. 

4 Draw     ̃   (                 ̃  ). 
5 At the end draw imputations     ̃   (                    ̃       ̃). 

MICE uses logistic or multinomial logistic regression models for categorical variables. 

Similar to log-linear models, these conditional models suffer from model selection and 

estimation problems in high dimensions. Moreover, it is very time consuming to specify many 

conditional models when the number of variables is large. This can result in biased estimates if 

default settings are used for chained equations, i.e. when we are ignoring interaction effects in 

the conditional models and hence fail to capture complex dependencies (Vermunt et al., 2008). 

The R Package, “mice” 2.13 (van Buuren and Groothuis-Oudshoorn, 2011) implements the FCS 

algorithm. 

4.4 ADDITIVE REGRESSIONS, BOOTSTRAPPING AND PREDICTIVE MEAN 

MATCHING TECHNIQUES 
Additive regressions, bootstrapping and predictive mean matching techniques for MI are 

implemented in the “Hmisc” package using “aregImpute” functions. A brief summary of the 

steps used by the “aregImpute” algorithm is as follow: 

Consider p variables containing m missing observations (NAs) 

1 Initial values are assigned to the NAs by drawing a random sample of size m from 

observed values. Random samples are drawn with replacement if there exist a 

sufficient number of NAs. 

2 The observations from the variable already imputed, i.e. having no missings, are used 

to draw a sample with replacement for a variable containing any missing value.  

3 After transforming the variable, a flexible additive model is fitted to predict this target 

variable. 
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4 This semi-parametric fitted model is used to predict the target variable in all of the 

original observations.  

5 The target variable can be imputed either by using the observed value whose 

predicted transformed value is closest to the predicted transformed value of the 

missing value or a drawn from a multinomial distribution with probabilities derived 

from distance weights. 

6 Repeat this process whenever predicting other missing variables with current target 

variable by using random draws from imputations obtained. 

This approach has few downsides. Many of the multiple imputations for an observation 

will be identical when the predicted transformed value is closest to the predicted transformed 

value of the missing value. This happens when less than three variables are used to predict 

the target variable and implementation of PMM fails. Moreover, PMM and Bayesian 

predicted values will always match to same donor observation when only monotonic 

transformations of left and right-side variables are allowed e.g., every bootstrap resample 

will give predicted values of the target variable that are monotonically related to predicted 

values from every other bootstrap resample. 

 

5 MI METHOD FOR COMBINING ESTIMATES 
 

 For   = 1,…, M, assume q and u are complete-data estimates θ and its covariance matrix 

Σ. Let  ( ) and  ( ) be respectively the point estimates of quantity of interest, Q and variance 

estimates of  ( ). Valid inferences for scalar Q by combining the  ( ) and  ( )    by Rubin 

(1987) are as follow. 

                               =∑  ( )       ,                

                      =∑ ( ( )   )         ,        

 

                     =∑  ( )     ,     

 where    can be used to estimate Q and variance of    can be estimated by     .    /       ,  

with degrees of freedom    (   )(   ), where    (      )     represents the relative 

increase in the conditional variance due to the missing data (see Rubin, 1987). Confidence 

intervals can be constructed using standard multiple imputation confidence interval construction 

rules, possibly based on a t-distribution. For more details see Rubin (1996), Barnard and Meng 

(1999). 

 

6 HYBRID MI (HMI) APPROACH 
 

Implementations of fully conditional MI methods to tackle missing data can become problematic 

for high missing rates or when there exist complex dependencies structures among variables. For 
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example, implementation of MICE MI become challenging when incompatibility issue arises due 

to high dimensions in large scale complex data (White et al., 2011; Razzak and Heumann, 2019). 

Such complex structures are common in high dimension household surveys where categorical 

variables have lots of categories i.e. District, Country etc. Moreover these methods are 

computationally expensive and, in some cases, less accurate as compared to full Bayesian joint 

models for MI (Si and Reiter, 2013). Many MI algorithms are specific for categorical variables, 

only, and cannot be implemented with continuous variables or require transformations (other 

tricks) for continuous variables (Si and Reiter, 2013). Murray and Reiter (2016) implement 

Bayesian mixture models with local dependence to impute both categorical and continuous 

values. However, combining the Dirichlet process for multinomial (discrete) mixes with the ones 

for multivariate (continuous) normal mixes involves knowledge of complicated models to create 

the dependence structure between the continuous and the categorical variables. These limitations 

create serious problems for researchers to obtain complete datasets with mixed type variables. 

We propose an easy to implement hybrid MI (HMI) approach to handle incomplete complex 

datasets with mixed type variables. HMI combines full Bayesian joint models (JM) MI for 

categorical data with various MI algorithms commonly implemented in the R environment.  

The proposed method consists of three stages: Firstly, data instances are separated into 

two different groups i.e. Gcat and Gnum. All categorical variables are assigned to Gcat and numeric 

ones to Gnum. Both groups may have missing information. We impute Gcat using the DPMPM MI 

method implemented in R package, “NPBayesImpute” (Manrique-Vallier et al., 2014) in the 

second stage. Then, we combine Gcat  and Gnum again but this time we have missing information 

in Gnum, only. Lastly, we apply different algorithms to impute Gnum based on values already 

imputed by DPMPM. We investigate the ability of various approaches to detect complex 

dependency structures in high dimensions using the HMI approach. Algorithm 1 explains HMI in 

detail. To assess the efficiency, we applied three well known MI methods (R-packages: “mice”, 
“Amelia” and “Hmisc”) to both groups and contrast the results with our HMI methods 
(“H.Amelia”, “H.MICE”, “H.Hmics”). Details of all methods are already provided in section 4 

of this article. However, short descriptions of existing and hybrid methods can be seen in Table 1 

and Table 2 respectively.  

Table 1. Basic information: Multiple Imputation in R 

Source:  Based on Manuals available on http://www.r-project.org/ 

 

 

 

 

 

 

 

#Method   Acronym Description 

1 

2 

3 

 

 

4 

  

  

  

  

  

  

Amelia II 

Hmisc 

NPBayesImpute 

 

mice 

Uses a bootstrap + EM algorithm  

Uses Additive Regression, Bootstrapping and PMM algorithms 

Uses a fully Bayesian, joint modeling approach to multiple 

imputations for categorical data based on latent class models 

with structural zeros. 

MI using FCP 
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Table 2 .Basic information: Hybrid Multiple Imputation (HMI) in R 

 
                                                  

 

 
 
 
 

Source: Self-prepared. 

 

 

 

 
                                                           
1
  ̅    are pooled point estimates

 
over M imputed datasets across z simulations.  

2
      are pooled variances

 
over M  imputed datasets across z simulations. 

3
  ̅ is an average of pooled point estimates ( ̅    ) 

across z simulations.  
4
  ̅ is an average of pooled variances (   ) across z simulations. 

#Method Acronym   Description 

1 

2 

3 

H.Amelia 

H.Hmisc 

H.MICE 

  

  

  

Amelia+NPBayesImpute 

Hmisc+NPBayesImpute 

Mice+NPBayesImpute 

Algorithm 1:  Hybrid MI  

Require:  n x p matrix with incomplete data. 

1. Gcat ,Gnum ← Initial division of p variables into two factor and numeric groups 

2.      for z= 1, … ,Z do 

3.              for m= 1, … ,M do   
4.       ← Imputation using  NPBayesImpute. 
5.               ← Combining        imputed and        missing to generate partially 

imputed        dataset.   

6.    ← Imputing       missing using mice        Hmisc i.e.       (                            )     
7.     ← Final imputed data set. 
8.  ̅  ← ∑  ( )          Pooled point estimates

1
.   

9.     ∑ ( ( )   )               

10.  ̅    ∑  ( )               

11.       .    /      ̅        Pooled variances
2
. 

12.                  end  for 

13.  ̅← ∑  ̅            Average of pooled point estimate
3
.      

14.  ̅    ∑              Average of pooled variance
4
. 

      end for   
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7 SIMULATION STUDIES 
 

The simulation studies are inspired by Si and Reiter (2013). The data consists of N = 1000 

observations. First, five binary variables (X1, X2, X3, X4, and X5) are generated from a 

multivariate normal (MVN) distribution, followed by a categorization. The marginal 

distributions of X1,  X2, X3, X4, X5    are  normal and we set the mean of each variable at 0 and  the 

variance of each variable at 0.5. The correlation structure is given as:  

                                               H = (         ) 

Where   = 0.5. Random variates are transformed into binary values using the following 

threshold: 
  

                                                                       =     {                                                         
 

Here i=1, 2, 3,4,5.  

We than define    = 5 X1- 3X2+ 5X3 -4 X4+ X5 and    = -2+   . Outcomes for two continuous   

covariates are generated from a normal distribution (ND) as described below: 

X6         N (  ; √ ), 

X7           N (  ; √ ). 

We generate X8 from Bernoulli distributions with probabilities governed by the logistic 

regression with  

 

logit Pr (X8) =-1 - 1.5X1 -1.15X2+1.25X3+1.6X4 + 2.88X5 +1.11X6 - 1.5 X7 -1.9 X2X3 + 2.3X1X3  -

1.5X2X6  -2X5X6 X7  +1.21 X1X5 -2.7X1X2 +1.2X1X2 X3 +3X6X7. 

 

We then define a co-variate dependent binary response generated from Bernoulli 

distributions with probabilities governed by the logistic regression as follow: 

 

logit Pr (y)  = 0.5 - 0.1X1 - 0.1 X2 -0.1X3 + 0.9X4  - 0.5X5 + 0.2 X6  - 0.1 X7 -  0.5 X8  and ϕ= βtrue = 
(0.5;-0.1;-0.1;-0.1;0.9;-0.5;0.2;-0.1;-0.5). We suppose that values in all covariates are MAR 

with the following probability 

p = 1   -   
 (          )(     (          ))  
 

This provides around 10% of the observations in Xi to be missing (at random). Since Si 

and Reiter (2013) did not observe noticeable differences in the posterior distributions of θ for 
higher values of prior specifications, we set relatively small prior specification values i.e. (  = 

0.05,   = 0.01) in R package “NPBayesImpute” version 0.6 (Manrique-Vallier et al., 2014). 

Akande et al. (2017) suggest that the latent classes (k) less than 40 can appear sufficiently large 

based on tuning with initial runs. However, we follow Dunson and Xing (2009) who suggest that 

large enough k can make the latent class model consistent for any joint probability distribution in 

case of dependencies among variable. Therefore, we set the sufficiently large number of latent 

classes (k) 80 and run each MCMC chain for 1000 iterations using the first 200 as burn-in. We 
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implement a default version of chained equations using the “mice” software package in R version 

2.12 (van Buuren and Oudshoorn, 1999). We implement bootstrap and PMM MI methods using 

13 iterations (for convenience) with the “aregImpute” function in the “Hmisc” software package 
in R version 4.1 (Harrell, 2010). We also use the R package “Amelia II” version 1.6.1 (Honaker 

et al., 2011) with defaults as basic command. Various imputations are generated for each MI 

method. Five thousand sampling simulations are run. 

 Pooled point estimates and standard errors for the fitted GLM‟s with binary response 

are  presented in figures 1, 2 ,3 and 4 for 10 and 20  imputed data sets, respectively. In order to 

get insight into the performance of the imputation algorithms, we make comparisons of different 

imputation methods using the root mean square error (RMSE) and empirical standard errors 

(ESE) indices, which are calculated using the following formulas:         =√∑ ( ̅      )      , 

 

                                                                  =√∑ ( ̅     ̅ )       

where    and   denote the estimated parameter pooled over M imputed data sets and original 

parameters, respectively. The average values of the pooled estimated parameters over the 5000 

simulations are presented by  ̅. The coverage rates of at least 95% are calculated as:  

 

                                                                         = 
∑    ,       ( ̅      )-       ,                                      

 

where   ,       ( ̅      )- is an indicator function whose value is equal to one when the 

confidence interval based on   ̅    and     contains   and equal to zero otherwise. 

 

 

8 SIMULATION RESULTS 

 
 As discussed, we used three software package in R i.e. (“Amelia”,“MICE” and 
“Hmisc”) for comparison with our proposed HMI methods, i.e. (“H.Amelia”,“H.MICE” and 
“H.Hmisc”). We limited the simulation study to low missingness rates and consider 10% of 

values MAR, only. We also increased the number of imputations from M=10 to M=20 for 

eventually better estimates. Table 3 shows the performance of various MI methods based on 

estimated means RMSEs, ESEs (top) and coverage rates of 95% confidence intervals (bottom) 

over 5000 simulation runs. The estimated amount of bias and between imputations variation can 

be assesed by RMSEs and ESEs respectively. Overall, “MICE” tends to result in the most mean 

coverage rates concentrated around 95% and fewest high rates. The mean coverage rates for 

“H.MICE” tend to be larger than the mean coverage rates for “MICE”, although both tend to be 
close to 95%. Standard “Amelia” results in coverage rates above 95% for most of the covariates. 

Sometimes it reaches very high rates for categorical covariates (i.e. M = 10: ß2 and ß3= 98) 

except one binary covariate where it reaches very low rates (i.e. M = 10, 20: ß4 = 92). “H. 
Amelia” results in mean coverage rates for all covariates that are concentrated slightly above 
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95%, but its lower and upper tails are comparable to that of “Amelia”. “Hmisc” results in the 

mean coverage rates for most of the covariates that are concentrated very above 95%, it has the 

longest upper tail, sometimes reaching very high rates (i.e. M = 20: ß2 = 98). Across the 

simulations, the mean coverage rates for “H.Hmisc” tend to be similar to the mean coverage 

rates for “Hmisc” but its upper tail is comparable to that of “Hmisc” (i.e. M = 20: ß2 = 97 ). We 

observe that the estimated mean ESEs for “H.MICE” MI method are smaller for all types of 

covariates as compared to “MICE”, whereas “H.Hmisc” shows similar or smaller mean ESEs as 

compared to “Hmisc” and “H. Amelia” shows similar or slightly higher mean ESEs as compared 

to “Amelia” for most of the covariates. The estimated mean RMSEs for “H.MICE” MI method 

are smaller for most of the covariates as compared to “MICE”, whereas “H.Hmisc” have similar 

or slightly higher mean RMSEs as compared to “Hmisc” and Amelia” have the similar or smaller 

mean RMSEs as compared to Amelia” for most of the covariates. There seem to be similarities 

in structure among all MI methods i.e. all methods are slightly upward biased for most of the 

binary covariates e.g. ß1, ß2, ß3, ß5, ß8 and downward biased for continues covariates and one 

binary covariates e.g. ß4. The point estimates based on “MICE” and “H.MICE” methods are 

closer to the corresponding true values as compared to other methods (see Figures 1-2). Hybrid 

MI methods (i.e. “H.MICE”, “H.Hmisc”, “H. Amelia”) tend to have smaller standard errors as 

compared to their counterparts (i.e. “MICE”, “Hmisc”, “Amelia”) for most of the covariates 
except three binary covariates i.e. ß2, ß5, ß8 where “H.Amelia” shows similar or slightly higher 

standard errors as compared to “Amelia” (see Figures 3-4). 
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Table 3. The performance of methods for MI 

 

      M =10        

 Coef. H. Hmics Hmics H.Amelia Amelia H.MICE MICE 

  
  

  
 C

o
v

er
a

g
e 

%
  
  
  
  
 R

M
S

E
s(

E
S

E
s)

 

β1 

β2 

β3 

β4 

β5 

β6 

β7 

β8 

 

β1 

β2 

β3 

β4 

β5 

β6 

β7 

β8 

 

0.19(0.17) 

0.17(0.17) 

0.19(0.18) 

0.19(0.18) 

0.17(0.16) 

0.27(0.23) 

0.47(0.46) 

0.17(0.17) 

 

96 

97 

96  

94  

96  

95  

97  

96 

 

0.18(0.18) 

0.17(0.16) 

0.19(0.18) 

0.19(0.17) 

0.16(0.16) 

0.27(0.26) 

0.47(0.47) 

0.16(0.15) 

 

97  

97 

96 

94 

96  

97  

97  

97 

 

0.19(0.17) 

0.17(0.17) 

0.19(0.18) 

0.19(0.17) 

0.17(0.16) 

0.27(0.23) 

0.47(0.46) 

0.17(0.17) 

 

96  

97  

96 

94  

96  

95 

97  

96 

 

0.18(0.16) 

0.16(0.16) 

0.18(0.17) 

0.21(0.16) 

0.16(0.15) 

0.28(0.24) 

0.46(0.46) 

0.16(0.15) 

 

97 

98 

98 

92 

96 

96 

97 

96    

 

0.19(0.18) 

0.18(0.17) 

0.19(0.18) 

0.19(0.18) 

0.17(0.16) 

0.28(0.24) 

0.50(0.49) 

0.17(0.17) 

 

96 

97 

96 

94  

96 

95 

96 

96 

 

0.20(0.20) 

0.18(0.18) 

0.20(0.20) 

0.19(0.19) 

0.17(0.17) 

0.30(0.30) 

0.51(0.51) 

0.18(0.18) 

 

96  

95  

95  

95  

96 

96 

95 

95       

 

    M = 20    

Coef. H. Hmics Hmics H.Amelia Amelia H.MICE MICE 

  
  

  
  

  
co

v
er

a
g

e 
%

  
  

  
  

  
  

  
  

  
R

M
S

E
s(

E
S

E
s)

 

β1 

β2 

β3 

β4 

β5 

β6 

β7 

β8 

 

β1 

β2 

β3 

β4 

β5 

β6 

β7 

β8 

 

0.18(0.17) 

0.17(0.17) 

0.18(0.18) 

0.19(0.18) 

0.16(0.16) 

0.28(0.23) 

0.46(0.46) 

0.17(0.17) 

 

96 

97 

97 

94 

96 

95 

97 

96 

0.18(0.18) 

0.16(0.16) 

0.18(0.18) 

0.19(0.17) 

0.16(0.16) 

0.27(0.26) 

0.47(0.47) 

0.16(0.15) 

 

97 

98 

97 

95 

96 

97 

97 

96 

0.18(0.17) 

0.17(0.17) 

0.18(0.18) 

0.19(0.17) 

0.17(0.16) 

0.27(0.23) 

0.46(0.46) 

0.17(0.17) 

  

96 

96 

97 

94 

96 

96 

97 

96 

0.18(0.16) 

0.16(0.16) 

0.18(0.17) 

0.20(0.16) 

0.16(0.15) 

0.28(0.24) 

0.46(0.46) 

0.17(0.15) 

 

97  

98 

97 

92 

96 

96 

97 

96 

 

0.19(0.18) 

0.17(0.17) 

0.19(0.18) 

0.19(0.18) 

0.16(0.16) 

0.28(0.25) 

0.49(0.49) 

0.17(0.17) 

 

96 

97 

96 

94 

96 

95 

96 

96 

0.20(0.20) 

0.18(0.18) 

0.20(0.20) 

0.19(0.19) 

0.17(0.17) 

0.30(0.30) 

0.51(0.51) 

0.18(0.18) 

 

95 

96 

95 

96 

96 

95 

95 

96 
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Figure 1. Boxplots for the point estimates across 5000 simulations and 10 imputations by various 

imputation methods.  
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Figure 2. Boxplots for the point estimates across 5000 simulations and 20 imputations by various 

imputation methods. 
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Figure 3. Boxplots for the standard errors across 5000 simulations and 10 imputations by various 

imputation methods. 
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Figure 4. Boxplots for the standard errors across 5000 simulations and 20 imputations by various 

imputation methods.  
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9  CONCLUDING REMARKS 

Based on results obtained by simulations, we can make several general conclusions about various 

MI procedures. First, the default application of “MICE”, appears to be inferior to “H.MICE”, 
overall. “H.MICE” utilizes the JM approach to identify complex dependency structures among 

categorical variables where missing continuous variables are imputed using the PMM technique. 

Of course, one could use various applications offered by MICE, (e.g. CART). Second, analysts 

may prefer “H.Amelia” for high coverage rates for most estimands with slight bias and due to its 
fastness5. Third, identification of a clear winner between “Hmisc” and “H.Hmisc” is little 
difficult.  “H.Hmisc” tends to result in slightly higher mean RMSEs than “Hmisc” does, but its 

coverage rates are comparable that of “Hmisc”. Based on results obtained by simulations, we can 

also make some general conclusions about three HMI procedures. Analysts concerned with 

getting at least nominal coverage rates for most estimands at the expense of some high mean 

RMSEs and ESEs, may prefer “H.MICE” over “H.Hmisc” and “H.Amelia”. Simulation studies 

indicate that “H.Hmisc” and “H.Amelia” tend to perform in most cases. Further evaluations with 

diversity of experimental settings will undoubtedly be needed to account for this behavior. 

Increasing the number of imputed data sets improves results by reducing RMSEs. Since now, we 

have considered small numbers of prior specifications (    ,   ) and mixture components (k) in 

simulations, extensive comparisons are required for increased levels of    ,    and k. We 

considered only binary response with binary and continuous covariables. Of course, statistical 

properties of the HMI approach can be studied for continuous response with mixed type 

covariates, also. Additionally, data with ordinal nature and more categories can be included for 

further comparisons. Real data applications can prove to be useful to see potential of proposed 

methods.  
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ABSTRACT 

The multiple indicator cluster survey (MICS) is a household survey tool designed to obtain 

internationally comparable, statistically rigorous data of standardized indicators related to the 

health situation of children and women. Missing data in a large number of categorical variables 

are a serious concern for MICS, following complex dependency structures and inconsistency 

problems that impose severe challenges to the investigators. Despite the popularity of multiple 

imputation of missing data, its acceptance and application still lag in large-scale studies with 

complicated data sets such as MICS. We propose interdependent hybrid multiple imputation 

(HMI) techniques which combines features of existing MI approaches to handle complex 

missing data in large scale household surveys. The iterative HMI approach is observed to be a 

good competitor to the existing approaches, with often smaller root mean square errors, 

empirical standard errors and standard errors. Regardless of any combination, the iterative HMI 

method is markedly superior to the existing MI methods in terms of computational efficiency. 

Results from household data example support the capacity of proposed method to handle 

complex missing data. 

Keywords: word; Survey data; hybrid multiple imputation; household data; complex;MICS 
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1. Introduction 

Key indicators or background variables related to the health situation of children and women are 

measured in complex household surveys e.g. multiple indicator cluster survey (MICS). These 

indicators enable countries to produce data that can further be used in policies and programs. 

Datasets of such surveys have mixed type variables that are both multilevel categorical and 

continuous variables. However, missing data in a large number of variables are a serious concern 

for household surveys, following complex dependency structures and inconsistency problems 

that impose severe challenges to the investigators.  For example the MICS 2014 house hold data 

file that we analyze, 26819 only out of 41413 observations have complete data on a set of more 

than 200 background variables. Respondent’s may refuse to provide a requested piece of 

information based on various reasons, such as unwillingness, lack of  capability to answer, 

reservation on  sensitivity of question, confidentiality and privacy etc. This results in the failure 

to collect complete information. Generally, this non-response behavior is referred to as item non-

response (INR). Most typically, high rate of INR occurs for simple demographic variables such 

as age, sex or marital status however, questions related to income or wealth are often related to 

high rate of INR (e.g. Riphahn and Serfling 2005; Hawkes and Plewis 2006).  Beside INR 

general reasons for the missing datasets include data entry errors, system failures etc.  

Analysis of data for scientific investigations becomes complicated, biased and less 

efficient in presence of missing information. In recent decades, lots of effort has been made in 

development of statistical methods to carter missing data. Missing data can be handled by 

“Multiple Imputation” (MI).   MI, first introduced by Rubin (1987), is widely regarded as the 

“gold standard” approach to handle missing data problem, with many documented advantages 

over complete case analyses. Multiple random values for the missing data under a statistical 
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model can be generated to estimate the values multiple times using MI. This results in M >1 

multiple complete datasets.  MI combines the results which account extra variability caused by 

the missing data. The complete datasets can be analyzed by using standard statistical procedures 

or so called “Rubin’s inference”. Multivariate normal model, the log linear model, or the general 

location model (Schafer 1997) are examples of MI.  Despite the popularity of MI, its acceptance 

and application still lag in large-scale studies with complicated data sets such as MICS data. 

Hence, MI is restricted in one or the other way and not dedicated to the complex household 

survey data. 

The paper is organized as follows: First, we provide a description of notations and 

assumptions of missing mechanisms then briefly describing some fundamentals of missing data 

and MI. In Section 3 we describe hybrid architectures in detail. In Section 4 we present the 

simulations studies, the methods used in the analyses and relevant results to evaluate our 

proposed approach.  Section 5 presents the imputation of the household data. We conclude with a 

discussion in Section 6. 

2. Fundamentals of Missing Data and Multiple Imputation (MI) 

2.1. Notations and Assumptions of Missing Mechanisms 

In general, there are three types of missingness generating mechanisms. Missing categories can 

be classified into: (i) missing completely at random (MCAR), (ii) missing at random (MAR), (iii) 

missing not at random (MNAR) (Little and Rubin 2002).  Let 𝑌 be the data with n × p 

dimensions. Assume,  𝑦𝑖𝑗 refers to the ith value of variable j from  𝑌 where i=1,…, n and j=1,…, 

p. Suppose, there are two components of the data set 𝑌 = {𝑌𝑚𝑖𝑠𝑠 ,𝑌𝑜𝑏𝑠} where, the first 

component denotes the observed part of the data and the second component is the missing data.  
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Let 𝐻 be a response indictor matrix with same dimensions as 𝑌 indicating, if an element of 𝑌 is 

missing.  

𝐻𝑖𝑗 = � 0  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑚𝑖𝑠𝑠𝑖𝑛𝑔
1  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

Missing Completely At Random (MCAR):  𝑃𝑟�𝐻ǀ𝑌𝑚𝑖𝑠𝑠 ,𝑌𝑜𝑏𝑠� =  𝑃𝑟(𝐻).  

Missing At Random (MAR):  𝑃𝑟�𝐻ǀ𝑌𝑚𝑖𝑠𝑠 ,𝑌𝑜𝑏𝑠� =  𝑃𝑟(𝐻ǀ𝑌𝑜𝑏𝑠).  

Missing Not At Random (MNAR): �𝐻ǀ𝑌𝑚𝑖𝑠𝑠,𝑌𝑜𝑏𝑠� ≠ 𝑃𝑟(𝐻ǀ𝑌𝑜𝑏𝑠). 

The third assumption is also called non-ignorable (NI) (Little and Rubin 2002) and not further 

used in the paper.  

2.2. Rubin’s inference 

In general any measure of interest Q (e.g. parameter estimates 𝜃�) is assessed by the average 

 𝑄𝑀= 
1𝑀   ∑   𝑄𝑚�𝑀𝑚=1                                      (1) 

using 𝑀 estimates   𝑄𝑚�   derived from the imputed complete data sets. The total variability of the 

estimate is given by 

 𝑇𝑀 =  �1 +
1𝑀�𝐵𝑀 + 𝑊𝑀                (2) 

where 

                       𝑊𝑀 = 
1𝑀  ∑   𝑊𝑚�𝑀𝑚=1  (3) 

and                   

                                                𝐵𝑀= 
1𝑀−1   ∑ � 𝑄𝑚� −  𝑄𝑀�2𝑀𝑚=1         (4) 
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 are the averages of the within-imputation variances   𝑊𝑚� and the between-imputation variance, 

respectively. 

2.3. Literature Review of Existing Studies in Large-Scale Complex Surveys 

There are two general approaches for MI. Fully conditional specification (FCS; also 

known as sequential regression and MI using chained equations (MICE)) and MI based on the 

joint posterior distribution of incomplete variables, often referred to as joint modelling (JM) 

(Raghunathan et al. 2001; van Buuren 2007; Schafer 1997; van Buuren et al. 2006). 

FCS is an iterative process which cycles through incomplete variables one at a time and 

imputes data on a variable-by-variable basis. A conditionally specified imputation model known 

as MICE, visits sequentially each incomplete variable and draws alternately the imputation 

parameters and the imputed values. FCS MI approach imputes variables one at a time from a 

series of univariate conditional distributions (van Buuren et al. 2006). FCS approach requires 

existence of joint distribution for convergence, which is a major downside of this approach. It is 

possible to get the joint distribution under rather general conditions (Liu et al. 2014; Zhu and 

Raghunathan 2015). However, correct specification of conditional distributions can guarantee 

consistency of inferences based on the imputed data even in the absence joint distribution. In 

MICE missing values can be present in many variables and user can specifies regression methods 

according to the types of variables. For example classification and regression tree (CART) 

(Burgette and Reiter 2010) for categorical variables and predictive mean matching (PMM) 

(Rubin and Schenker 1986) which is the default imputation technique for continuous data. CART 

is a nonparametric method. CART uses splitting algorithms to divide the values of a variable into 

homogeneous subgroups. On the other hand, PMM approach uses predicted value obtained by a 
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linear regression model to impute an observed value.  The predicted value is among the values of 

donor pool which are closest to the value predicted for the missing one. Software packages 

implementing MICE includes “mice” (van Buuren and Groothuis-Oudshoorn 2011; van Buuren 

2012),  “mi” in R (Su et al. 2011) and  “IVEware” in SAS (Raghunathan et al. 2002). Despite of 

many advantages, MICE has few downsides for example, MICE mostly use parametric models. 

Those models are hard to implement due to lack of compatibility and complex dependencies 

among variables. Moreover, implementation is difficult due to higher order interactions effects or 

many nonlinear relations in regression model (see Burgette and Reiter (2010)). Implementation 

of MICE becomes very time consuming in presence of large number of categorical variables. 

PMM can be problematic, when sample size is large (van Buuren 2011) and CART can subject 

to odd behaviors in high dimensions. Another limitation of CART is that the corresponding joint 

distribution based on conditional models might not exist (Si and Reiter 2013). Moreover, 

variables with many levels are preferred to variables with few levels in CART, e.g. Breiman et 

al. (1984) and Kim and Loh (2001). 

Joint modeling (JM) draws missing values simultaneously for all incomplete variables 

using a multivariate distribution (Schafer 1997). Draws from fitted distribution are used to create 

imputations. Dirichlet Process Mixture of Products of Multinomial Distributions Model 

(DPMPM) provides a fully Bayesian, non-parametric JM approach to MI for high dimensional 

categorical data (Manrique-Vallier and Reiter 2015; Si and Reiter 2013).  Dunson and Xing 

(2009) proposed DPMPM for the first time. This approach uses nonparametric Bayesian versions 

of latent class models to multiply impute high-dimensional categorical data (Vermunt et al. 

2008). The DPMPM imputation routines are implemented in the R software package, 

“NPBayesImputeCat” (Quanli et al. 2018). Softwares “Realcom-impute” (Carpenter and 
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Kenward 2011), R package “pan” (Schafer and Zhao 2014), R package “jomo” (Quartagno and 

Carpenter 2015) implement JM approach. 

Like many complex models, the effectiveness of DPMPM still lags in capturing the many 

features of empirical data. It is not possible to implement JM approach in the multilevel context 

if missingness also occurs in the random slope variable(s) (Carpenter and Kenward 2011). 

Modeling mixed type variables can make the specification of a joint distribution very difficult.  

MI approaches described above are available in standard computer packages (SAS, Stata and R). 

See Horton and Kleinman (2007) for an overview of available MI procedures and packages. FCS 

and JM MI approaches were originally proposed for dealing with item nonresponse in cross-

sectional data sets. Despite of being commonly available in existing softwares, these methods are 

hard to implement in large scale data sets with many categorical variables and many levels.  

In large-scale complex surveys many types of variables with special data situations have 

to be handled. To do so, several methods have been proposed in the literature over recent years. 

For example Audigier et al. (2018) deal with quantitative variables. Manrique-Vallier and Reiter 

(2014, 2015), Audigier et al. (2017) among many deal for qualitative and Audigier et al. (2016) 

and Murray and Reiter (2016) deal for mixed data.  Methods for qualitative and mixed data tend 

to perform well particularly for small number of observations and dataset having multilevel 

categorical variables. Moreover, these methods often require less execution time. However, some 

of these approaches require knowledge of complicated models and other need transformations 

(or other tricks) for continuous variables or assume missing values in few variables. Categorizing 

of continuous variables can subject to considerable loss of information (van Buuren and 

Groothuis-Oudshoorn 2011). Husson et al. (2019) have proposed a MI method based on 

multilevel singular value decomposition (SVD) for quantitative, categorical, or mixed data. This 
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method performs SVD on between and within groups variability of the data. Downside of this 

method is that it does not take into account the uncertainty associated with predicting missing 

values from observed values. Goßmann (2016) proposed the application of CART in 

combination with multiple imputation and data augmentation for large-scale survey. Mislevy 

(1991) presented the idea to combine multiple imputation with latent variables that were used to 

estimate population characteristics when individual values were missing in complex surveys. A 

Bayesian approach for flexible handling of missing values is proposed by Aßmann et al. (2016) 

which handles continuous and categorically scaled background variables in large-scale surveys. 

Stekhoven and Bühlmann (2012) have presented a machine learning technique based on non-

parametric models called random forest models to impute ordinal missing data. It has many 

desirable properties such that can be applied to a variety of categorical data, a mix of categorical 

and continuous data. It does not require any specific distributional assumption. It can handle 

nonlinear relationships among variables (Doove et al. 2014; Shah et al. 2014). Random forest 

approach to MI is implemented in R packages “mice” (van Buuren and Groothuis-Oudshoorn 

2011; van Buuren 2012) and “missForest” (Doove et al. 2014; Stekhoven and Bühlmann 2012). 

Shah et al. (2014) found that random forest-based MICE tends to perform better than parametric 

MICE on survival data. Hybrid MI based on dependence models (Razzak and Heumann 2019) is 

another approach to impute complex household survey data. The dependence models impute 

continuous covariates using FCS MI given the categorical covariates already imputed using JM 

MI.  The Hybrid MI based on dependence models not only yields better predictive performance 

of generalized linear models (GLMs) (Nelder and Wedderburn 1972) for binary response 

(Razzak and Heumann 2019) but are also observed to be a good competitor to the existing 

approaches, with often smaller root mean square errors and less computational cost. However, 
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hybrid dependence models do not use the information of continuous covariates for imputing 

categorical covariates. In this article, we extend the hybrid imputation approach based on 

dependence models by categorizing continuous variables. We propose two iterative hybrid 

imputation approaches for mixed data in complex household surveys where missing values in 

continuous covariates are imputed by using the information of already imputed categorical 

variables and continuous variables are categorized to impute categorical variables. We review 

inference in GLMs with binary response and mixed type missing covariates in large scale survey 

for a proposed and existing methods. 

3. Proposed Hybrid Architectures 

Consider the motivational question in section one. Performance of JM and FCS approaches to 

obtain complete information on mixed type covariates in large scale surveys are limited and 

subject to specific tasks. Moreover, these approaches are generally not equipped to handle a wide 

range of complexities in large scale data, categorical variables, and different heretical relations. 

We propose that various features of JM and FCS methods can be combined to obtain complete 

data with the limitations discussed above. To do so, we propose two easy and simple to 

implement variants of hybrid architecture that use the idea of categorizing continuous data. In 

first variant of hybrid architecture, we use the concept of categorizing continuous variables 

before the imputation of categorical data. Second variant uses initial imputed values. These 

values are obtained by categorization of continuous data before the imputation of categorical 

data. Unlike existing approaches, where categorization results in loss of power, proposed 

approaches restore the continuous variables in their original form. These variants are 

computational fast and can be applied to both categorical and continuous data in high 

dimensions.  
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3.1. Proposed Hybrid Architecture 1 

 

The first variant of proposed hybrid architecture generates a complete data set in three steps.  

Incomplete data is divided in to two sub groups (i.e. one containing incomplete continuous data 

(Missnum) and other having incomplete categorical data (Misscat)). Step 1: variables in Missnum are 

categorized Missnum.cat. Step 2: JM technique is applied on Misscat  given additional covariates 

Missnum.cat   to generate complete categorical data. Complete categorical data generated in this 

step contains complete categorical variables Impcat and complete categorized variables  

Impnum.cat.. In first step, categorization allows the information on continuations variables to 

impute categorical variables. Step3:  FCS technique is applied to impute missing values in  

original continuous variables Missnum given additional categorical variables Impcat. Step 3, allows 

the information on categorical variables to impute continuous variables. Steps 1 to 3 are repeated 

M times to generate multiple copies of complete data sets. Inference (e.g. mean, regression) can 

be run on each of the newly created, imputed datasets. Finally, estimates can be combined by 

using ‘Rubins rules’. Algorithm 1 explains the proposed method in detail. Schematic diagram 

illustrating the proposed hybrid architecture 1can be seen in supplementary file (see Figure S1). 

Algorithm 1:  Iterative Hybrid MI 1 

Require: P nxp matrix with incomplete data 

           Misscat , Missnum ← Division of p variables into  factor and continuous subsets.  

 for z= 1, …,Z do 

                  for m= 1, …,M do  

 𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡𝑚𝑧    ← Categorizing Missnum.        

               𝐼𝑚𝑝𝑐𝑎𝑡𝑚𝑧    ←  imputation  using  JM approach for  Miss.cat⃒𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡𝑚𝑧 . 

              𝐼𝑚𝑝𝑛𝑢𝑚𝑚𝑧    ←  imputation  using  FCS approach for  Miss.num⃒  𝐼𝑚𝑝𝑐𝑎𝑡𝑚𝑧 . 

                      end for 

                  end for 
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3.2. Proposed Hybrid Architecture 2 

 

The second variant of proposed hybrid architecture is a two steps approach. Step 1: (a) Initialize 

values for categorical variables (𝐼𝑚𝑝𝑐𝑎𝑡_𝑖 ) by applying JM approach to Misscat. (b) Given the 

initial values for categorical variables, single iteration of the FCS algorithm is run to Missnum for 

initialization of values for continuous variables 𝐼𝑚𝑝𝑛𝑢𝑚_𝑖. Information on categorical variables is 

used for the generation of 𝐼𝑚𝑝𝑛𝑢𝑚_𝑖 whereas, no information available on continuous variables is 

used in generation of 𝐼𝑚𝑝𝑐𝑎𝑡_𝑖. (c) Initial values for continuous variables  𝐼𝑚𝑝𝑛𝑢𝑚_𝑖 are 

categorized 𝐼𝑚𝑝𝑛𝑢𝑚.𝑐𝑎𝑡_𝑖 to allow usage of information available on continuous variables for 

imputing categorical variables. Step 2: (a) Given the initial categorized variables (𝐼𝑚𝑝𝑛𝑢𝑚.𝑐𝑎𝑡_𝑖) 
as additional covariates, complete categorical variables with updated values (𝐼𝑚𝑝𝑐𝑎𝑡 ) are  

Algorithm 2:  Iterative Hybrid MI 2  

Require: P nxp matrix with incomplete data 

       0.     Misscat , Missnum ← Division of p variables into  factor and continuous subsets.  

1. Initialization 

(a) Initialize missing values for categorical variables:𝐼𝑚𝑝𝑐𝑎𝑡_𝑖← single imputation 
using  JM approach for Miss.cat. 

(b) Initialize missing values for continuous variables:𝐼𝑚𝑝𝑛𝑢𝑚_𝑖← single imputation 

using  FCS approach for Missnum⃒𝐼𝑚𝑝𝑐𝑎𝑡_𝑖. 
(c) Initialize categorized values for continuous variables:𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡𝑖𝑧  ← Categorizing 𝐼𝑚𝑝𝑛𝑢𝑚_𝑖 
          for z= 1, …,Z do 

                  for m= 1, …,M do  
2. Update imputed values 

(a)  𝐼𝑚𝑝𝑐𝑎𝑡𝑚𝑧    ←  imputation  using  JM approach for  Miss.cat⃒𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡_𝑖. 
(b)  𝐼𝑚𝑝𝑛𝑢𝑚𝑚𝑧    ←  imputation  using  FCS approach for  Miss.num⃒  𝐼𝑚𝑝𝑐𝑎𝑡𝑚𝑧 . 

(c)  𝐼𝑚𝑝𝑛𝑢𝑚_𝑐𝑎𝑡𝑚𝑧    ← Categorizing   𝐼𝑚𝑝𝑛𝑢𝑚𝑚𝑧 . 

                      end for 

                  end for 
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generated by applying JM approach to Misscat. (b) Given updated values of additional covariates 𝐼𝑚𝑝𝑐𝑎𝑡, complete continuous variables (𝐼𝑚𝑝𝑛𝑢𝑚) with updated values  are generated by applying 

single iteration of  FCS  approach to Missnum. (c) Updated values of complete continuous 

variables are categorized (𝐼𝑚𝑝𝑛𝑢𝑚.𝑐𝑎𝑡). Steps 2(a-c) are repeated M times with new updated  

values of 𝐼𝑚𝑝𝑐𝑎𝑡, 𝐼𝑚𝑝𝑛𝑢𝑚 and 𝐼𝑚𝑝𝑛𝑢𝑚.𝑐𝑎𝑡 to obtain M complete data sets. Algorithm 2 explains 

the proposed method in detail. Schematic diagram illustrating the proposed hybrid architecture 2 

is provided in supplementary file (see Figure S2). 

 

4. A Simulation study 

To investigate the performance of hybrid architectures via simulation, somewhat large numbers 

(X=39) of mixed type variables are generated. To generate first thirty one binary (Xb) variables a 

multivariate normal (MVN) distribution is used and correlated random covariates Ci 

compromising 1000 observations are generated. The marginal distributions are: Ci ~ N (0, 0.5), 

where i={1,…,31}.The correlation structure is given as:   

                                          R = �1 ⋯ 𝜌⋮ ⋱ ⋮𝜌 ⋯ 1
�. 

Where 𝜌 = 0.5. Random covariates (Ci) are transformed into binary values (Xb) using the 

following threshold: 

𝑋𝑏𝑖 =  � 0   𝑖𝑓    𝐶𝑖  ≤ 0 ,   

     1    𝑖𝑓     𝐶𝑖  > 0 .        
 

Where i={1,…,31}.  
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In order to generate outcomes for the two multilevel categorical covariates i.e. (𝑋𝑚1 
and 𝑋𝑚2 

), 

we first generate two random covariates from normal distributions (ND) given 

as:   𝐶32  ~ 𝑁 (𝜇1;√2),   𝐶33 ~ 𝑁 �𝜇2;√2�, where 𝜇1 and 𝜇2 are described as: 

𝜇1  =  0.1 + 0.1 �𝑋𝑏𝑖 31
𝑖=1 + 0.1𝑋𝑏2 

𝑋𝑏3 
+ 0.1𝑋𝑏5 

𝑋𝑏8 
+ 0.1𝑋𝑏2 

𝑋𝑏29                                            (5)   

𝜇2 = 0.1 + 1.1 �𝑋𝑏𝑖 + 0.1 � 𝑋𝑏𝑖 +

31
𝑖=20

19
𝑖=1 0.1𝐶32 + 0.1𝑋𝑏2 

𝑋𝑏3 
+ 0.1𝑋𝑏5 

𝑋𝑏8 
+ 1.1𝑋𝑏2 

𝑋𝑏29 . (6)  

..                                                                                                                                                                   

Further, all observations in 𝐶31and 𝐶32 are randomly split into various homogeneous groups and 

two multilevel categorical variables 𝑋𝑚1 
and 𝑋𝑚2 

 are formed with four and six categories 

respectively. To encode complex dependence relationships with higher order interactions, we 

generate another binary covariate 𝑋𝑏32  from Bernoulli distribution with probabilities governed by 

the logistic regression with  

𝑙𝑜𝑔𝑖𝑡 𝑃𝑟 (𝑋𝑏32) = 0.001 −  0.01𝑋𝑏1 
−  0.09𝑋𝑏2 

− 0.09𝑋𝑏3 
− 0.09𝑋𝑏4 

+ 0.05𝑋𝑏5 
+

0.08𝑋𝑏6 
−  0.02 𝑋𝑏7 

+ 0.08 𝑋𝑏8  + 0.01𝑋𝑏9 
+  0.01 𝑋𝑏10 

− 0.02 𝑋𝑏11 
+ 0.01𝑋𝑏𝑖12 −  𝑋𝑏13 

 +

0.02𝑋𝑏14 
− 0.01𝑋𝑏15 

+  0.02 𝑋𝑏16 
− 0.03𝑋𝑏17 

− 0.02𝑋𝑏18 
−  0.07𝑋𝑏19 

+ 0.08𝑋𝑏20 
+

0.08𝑋𝑏21 
+ 0.01𝑋𝑏22 

+ 0.09𝑋𝑏23 
+ 0.09𝑋𝑏24  +  0.05𝑋𝑏25 

+ 0.08𝑋𝑏26 
− 0.02𝑋𝑏27 

 +

0.08𝑋𝑏28 
+ 0.08𝑋𝑏29 

− 0.01𝑋𝑏30 
+ 0.09 𝑋𝑏31 

+ 0.02 𝐶32 + 0.02𝐶33 +  0.02 𝑋𝑏12 
𝑋𝑏29 

−
0.02𝑋𝑏15𝑋𝑏18 

𝑋𝑏29 
.                                                                                                                            (7)       

We then generate outcomes for the two continuous covariates i.e. 𝑋𝑛1  
and 𝑋𝑛2   from normal 

distributions (ND).  Description is as follows 𝑋𝑛1  
~ N (𝜇3;√0.5). 

Where,  𝜇3 =  0.002 +  0.5𝑋𝑏1 
−  0.15𝑋𝑏2 

+ 0.25 𝑋𝑏3 
− 0.6 𝑋𝑏4 − 0.88𝑋𝑏5 + 0.11 𝑋𝑏6 

+

0.2𝑋𝑏7 
− 0.5𝑋𝑏8 

+ 0.1𝑋𝑏9 
− 0.2𝑋𝑏10 

+ 0.3𝑋𝑏11 
+ 5𝑋𝑏12 

− 0.2𝑋𝑏13 
+ 0.3𝑋𝑏14 

 + 0.4𝑋𝑏15 
 +

0.1𝑋𝑏16 
 + 0.1𝑋𝑏17 

− 0.1𝑋𝑏18 
− 0.1𝑋𝑏19 

− 0.10𝑋𝑏20 
 − 0.1𝑋𝑏21 

− 0.1𝑋𝑏22 
− 0.2𝑋𝑏23 

−
0.1𝑋𝑏24 

+ 𝑋𝑏25 
+ 𝑋𝑏26 

+ 0.1𝑋𝑏27 
+ 0.1𝑋𝑏28 

 + 0.1𝑋𝑏29 
+ 0.1𝑋𝑏30 

+ 0.1𝑋𝑏31 
+ 0.2𝐶32 −
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0.1 𝐶33 + 0.5 𝑋𝑏32 + 0.2𝑋𝑏11 
𝑋𝑏12 

𝑋𝑏13 
− 0.2 𝑋𝑏15𝑋𝑏18 

+ 0.2𝑋𝑏12  𝑋𝑏29 .                                    (8)                                                 

                                                                                                                                                                                          

                                                    𝑋𝑛2   
~ N (𝜇4;√0.5).               

                                                

Where, 𝜇4 =  3 − 0.5𝑋𝑏1 
− 0.2𝑋𝑏2 

+ 0.05𝑋𝑏3 
 − 0.6𝑋𝑏4 

− 0.08𝑋𝑏5 
+ 0.01𝑋𝑏6 

+ 0.2𝑋𝑏7 
+

0.2𝑋𝑏8 
+ 0.1𝑋𝑏9 

− 0.1𝑋𝑏10 
+ 0.2𝑋𝑏11 

 + 0.5𝑋𝑏12 
− 0.2𝑋𝑏13 

+ 0.3𝑋𝑏14 
+ 0.4𝑋𝑏15 

+ 0.1𝑋𝑏16 
+

0.1𝑋𝑏17 
− 0.1𝑋𝑏18 

− 0.1𝑋𝑏19 
− 0.1𝑋𝑏20 

− 0.1𝑋𝑏21 
− 0.1𝑋𝑏22 

− 0.2𝑋𝑏23 
− 0.1𝑋𝑏24 

+

0.1𝑋𝑏25 
+ 0.1𝑋𝑏26 

+ 0.1𝑋𝑏27 
+  0.1𝑋𝑏28 

+ +0.1𝑋𝑏29 
+ 0.1𝑋𝑏30 

+ 0.1𝑋𝑏31 
+ 0.2𝐶32 −

0.1 𝐶33 + 0.5 𝑋𝑏32 + 0.2𝑋𝑏11 
𝑋𝑏12 

𝑋𝑏13 
− 0.2 𝑋𝑏15𝑋𝑏18 

+ 0.2𝑋𝑏12  𝑋𝑏29+  𝑋𝑛1 
.       (9)     

                                                                           

Both continuous covariates are highly positively correlated i.e. 𝑟 = 0.9. 

Covariate dependent binary response 𝑦 is generated from Bernoulli distributions with 

probabilities governed by the logistic regression with  𝑙𝑜𝑔𝑖𝑡𝑃𝑟(𝑦) = -3 − 3𝑋𝑏1 
+ 3𝑋𝑏2 

+ 3𝑋𝑏3 
 + 3𝑋𝑏4 

− 3𝑋𝑏5 
+ 3𝑋𝑏6 

− 3𝑋𝑏7 
+ 3𝑋𝑏8 

+ 3𝑋𝑏9 
+

3𝑋𝑏10 
+ 2𝑋𝑏11 

 + 3𝑋𝑏12 
− 2𝑋𝑏13 

+ 3𝑋𝑏14 
+ 3𝑋𝑏15 

+ 3𝑋𝑏16 
− 4𝑋𝑏17 

− 0.3𝑋𝑏18 
− 0.3𝑋𝑏19 

−
0.3𝑋𝑏20 

− 0.3𝑋𝑏21 
− 3𝑋𝑏22 

− 3𝑋𝑏23 
− 3𝑋𝑏24 

− 3𝑋𝑏25 
− 3𝑋𝑏26 

− 3𝑋𝑏27 
− 3𝑋𝑏28 

− 3𝑋𝑏29 
+

3𝑋𝑏30 
+ 3𝑋𝑏31 

+ 3𝑋𝑚1_2 
+ 3𝑋𝑚1_3 

+ 1𝑋𝑚1_4 
+ 1𝑋𝑚1_5 

+ 1𝑋𝑚1_6 
+ 3𝑋𝑚2_2 

+ 3𝑋𝑚2_3 
+

3𝑋𝑚2_4 
− 3𝑋𝑏32 + 3𝑋𝑛1 

+ 3 𝑋𝑛2 
− 3𝑋𝑏9 

𝑋𝑏15 
− 3 𝑋𝑏1𝑋𝑏17 

+ 3𝑋𝑏13  𝑋𝑏30 .                               (10)   

                                                                                         

Equations 5–10 include high-order interactions to represent the type of complex 

dependence structures. Imputation approaches based on log-linear models or chained equations 

may fail to capture these structures. There is no particular importance of the specific values of 

the coefficients. Nonzero coefficients are specified for higher order interactions for generating 

complex dependencies. The analysis model of interest is the GLMs with link “logit”. The 

observations in all covariates are missing (at random) with the probabilities based on a logistic 

probability distribution model. Probabilities for a random covariate X are given as: 

                                                             𝜋𝑋𝑖=    
𝑒(−2−𝑋𝑗)

(1 + 𝑒(−2−𝑋𝑗)
)
 .                                                (11) 

        

Where i={1,…,39} and j ≠ i. Missingness in 𝑋𝑖 is attributed solely to other observed variable 𝑋𝑗. 
This yields 10% of the observations to be MAR. 
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We use a JM technique called DPMPM MI for categorical variables. DPMPM MI 

technique is selected due its ability to identify complex dependencies structure among 

categorical variables and computational efficient qualities in high dimensions.  We use a FCS 

technique called MICE for continuous variables. MICE is selected due to its popularity and 

applications in wide range of fields.  For comparison, two MICE based MI methods namely 

“MiceCART” (classification and regression trees (CART)) and “MiceDEF” (which uses logistic 

regression models for categorical and “PMM” for continuous variables as default) are used. 

Proposed hybrid architectures are implemented as “H.CART” and “H.DEF”. The mixtures of 

multinomial distributions approach is combined with the MICE algorithms “CART” and 

“Default” in H.CART” and “H.DEF” respectively. Further, we express “H.CART” as 

“H.CART1” and “H.CART2” indicating first and second hybrid architectures based on CART. 

Similarly first and second hybrid architectures based on “default” are expressed as “H.DEF1” and 

“H.DEF2” respectively. JM technique in hybrid architectures is implemented with prior 

specifications 𝑎𝛼= 0.25, 𝑏𝛼 = 0.25, and somewhat large number of mixture components i.e. 

k=80. We used R (R Core Team 2018) version 3.0.1 to perform all calculations. The packages 

“mice” (van Buuren and Groothuis-Oudshoorn 2011), version 2.17 and “NPBayesImputeCat” 

(Quanli et al. 2018), version 0.6 were used to perform MICE for continuous data and Non-

Parametric Bayesian MI for categorical variables, respectively. These blended versions of joint 

and sequential modeling MI techniques make it possible to obtain complete datasets with 

information available on both types of variables. The imputation model contains all of the 

variables from the generated data in order to preserve the relationships between the variables of 

interest (Schafer 1997; Moons et al. 2006; White et al. 2011; van Buuren 2012). The parameters 

of interest are estimated using Rubin’s aforementioned method on Z =1000 simulation runs. Ten 
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imputed data sets for each of the proposed and the MICE MI methods are generated for realistic 

applications (Fichman and Cummings 2003). Table 1 displays the performance of MI methods 

for simulated data. Graphical comparisons of the imputation methods based on boxplots (White 

et al. 2011; van Buuren 2012) of standard errors and point estimates across 1000 simulations for 

regression coefficients  are presented in Figures 1 and 2 respectively.  

 4.1.  Evaluation Criteria 

The quality of MI methods is evaluated based on two error-based measurements i.e. root mean 

square error (RMSE) and empirical standard errors (ESE) (Akande 2017; Armina et al. 2017). 

RMSE is computed as a combination of the bias and variance of the estimate (Burton et.al 2006). 

ESEs can be considered to access the between imputation variations. The smaller values for 

RMSEs and ESEs indicate better performance (Oba et al. 2003).  RMSE and ESE are calculated 

using the following formulas: 

                    Root mean square error (RMSE 𝑞𝑚) =�∑ �𝑞�𝑀𝑧 − 𝛽 �2𝑍𝑧=1 𝑍 ,                (12)    

                                                    

      Empirical standard errors (ESE 𝑞𝑚) =�∑ �𝑞�𝑀𝑧 − 𝑞� �2𝑍𝑧=1 𝑍 ,                             (13)                                

 

where 𝑞�𝑀𝑧  denote the estimated parameter pooled over M imputed data sets and Z simulation runs 

and β  denote original parameters.  

4.2. Results 

There seem to be similarities in structure among all MI methods i.e. all methods are upward 

biased for binary covariates e.g. 𝑋𝑏1,  whereas, the average point estimates based on default and 

H.DEF methods are closer to the corresponding true values as compared to other methods. 

CART and hybrid methods are slightly downward biased for multilevel covariate with six levels 

e.g. 𝑋𝑚1_5 
𝑋𝑏1. The average point estimates for multilevel covariate with six levels based on 
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CART and H.CART methods are closer to the corresponding true values as compared to H.DEF 

methods. All methods are downward biased for the interaction terms e.g. 𝑋𝑏13 
𝑋𝑏30 

,  whereas, the 

average point estimates based on default, CART, H.DEF methods and  H.CART2 method are 

closer to the corresponding true values as compared to H.CART1 (Figure  1). Hybrid and CART 

methods tend to have smaller standard errors as compared to default method for all covariates, 

whereas the hybrid methods tend to have similar standard errors as compared to CART for most 

of the cases (Figure 2).  The estimated ESEs for the all hybrid methods are smaller for all types 

of covariates except the binary covariate. H.DEF methods and H.CART2 show similar or slightly 

higher ESEs as compared to default and CART methods for the binary covariate. The estimated 

ESEs for the H.CART1 are smallest for the multilevel covariate with six levels and H.DEF2 has 

smallest ESEs for the interaction terms. All hybrid methods tend to have smaller estimated 

RMSEs for binary covariate where H.DEF2 has smallest RMSEs as compared to all methods.  

The estimated RMSEs for all hybrid methods are slimier to default and CART methods for the 

multilevel covariate with six levels whereas the H.CART1 has the smallest RMSEs among 

others. Similarly for interaction term, all hybrid methods tend to have smaller RMSEs for most 

of the cases where H.DEF2 shows smallest RMSE among the remaining methods (Table 1). The 

estimated ESEs(RMSEs) and averages of point estimates(standard errors) for all coefficients 

under hybrid architecture 1 and 2 are provided in supplementary file (Tables S1-S4). Boxplots 

for point estimates(standard errors) for all coefficients under hybrid architecture 1 and 2 are 

given in supplementary file (Figures S3-S18). 

Attached Contributions

163



18 

 

Figure1. Simulated data: Boxplots for the point estimates across 1000 simulations by imputation 

methods under Missing at Random (MAR) and ten imputations with 10% of missing data. Point 

estimates are shown for only three regression coefficients, i.e. for variables 𝑋𝑏1 
, 𝑋𝑚1_5 

, 

 𝑋𝑏13 
𝑋𝑏30 

.The horizontal red lines indicate the respective “true” values. 

Figure2. Simulated data: Boxplots for the standard errors across 1000 simulations by imputation 

methods under Missing at Random (MAR) and ten imputations with 10% of missing data.  

Standard errors are shown for only three regression coefficients, i.e. for variables 𝑋𝑏1 
, 𝑋𝑚1_5 

, 

 𝑋𝑏13 
𝑋𝑏30 

. 
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Table1. Simulated data: The performance of methods for MI based on RMSEs, ESEs (top), 

means of Rubin’s estimates i.e. Est(point estimates) and SE(standard errors) (middle) and 

amount of bias (bottom) under Missing at Random (MAR) with 10% of missing data.  Estimated 

bias is simply a difference between root mean square error and empirical standard error. All 

results are based on 10 imputations and 1000 simulations. Estimates are shown for only three 

regression coefficients (Coef.) i.e. for variables 𝑋𝑏1 
, 𝑋𝑚1_5 

, 𝑋𝑏13 
𝑋𝑏30 

. Bold figures indicate the 

smallest mean root mean square errors, mean empirical standard errors and amount of bias 

among various imputation variants.  
 

 Coef.  MICEDEF  MICECART  H.DEF1  H.CART1  H.DEF2  H.CART2 

B
ia

s 
  

  
  

  
 E

st
(S

E
) 

  
 E

S
E

S
 (

R
M

S
E

s)
 

  

𝑋𝑏1 
 𝑋𝑚1_5 

 𝑋𝑏13 
𝑋𝑏30 

 

 

 𝑋𝑏1 
 𝑋𝑚1_5 

 𝑋𝑏13 
𝑋𝑏30 

 

 𝑋𝑏1 
 𝑋𝑚1_5 

 𝑋𝑏13 
𝑋𝑏30 

 

0.51(2.04) 

0.59(0.60) 

0.75(1.34) 

 

 

-1.329(0.935) 

1(0.976) 

2.258(1.260) 

 

 

1.53 

0.01 

0.59 

0.51(2.04) 

0.59(0.60) 

0.75(1.34) 

 

 

-1.029(0.760) 

0.876(0.810) 

1.893(1.040) 

 

 

1.53 

0.01 

0.59 

0.53(1.99) 

0.57(0.61) 

0.72(1.31) 

 

 

-1.084(0.773) 

0.772(0.825) 

1.904(1.061) 

 

 

 1.46 

0.04 

0.59 
  

0.52(2.03) 

0.55(0.58) 

0.71(1.35) 

 

 

-1.037(0.759) 

0.835(0.814) 

1.8498(1.043) 

 

 

1.51 

0.03 

0.64 

0.51(1.96) 

0.57(0.61) 

0.68(1.27) 

 

 

-1.106(0.768) 

0.785(0.820)  

1.927 (1.058) 

 

 

1.45 
0.04 

0.59 

0.54(2.01) 

0.57(0.60) 

0.70(1.29) 

 

 

-1.061(0.758) 

0.833(0.813)  

1.920(1.041) 

 

 

1.47 

0.03 

0.59 
 

 

5. Motivation 

Multiple Indicator Cluster Survey (MICS) is an international household survey tool. MICS is 

developed by the United Nations Children’s Fund (UNICEF) to obtain internationally 

comparable, statistically rigorous data of standardised indicators related to the health situation 

of children and women. MICS household questionnaire contains information of following 

dimensions of household head life: education, household characteristics, water and sanitation, 

salt iodization, hand washing facilities, water quality testing and results etc. Such background 

variables are important for data analysis, modeling, and policy research. 

 National study like Government of Pakistan Economic survey (2008) highlighted that 

nearly 50 million individuals are deprived from safe drinking water in Pakistan. Our motivation 

stems from data obtained from MICS Punjab, 2014. MICS in Punjab was conducted in the 
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Punjab province of Pakistan with joint collaboration of the Bureau of Statistics (BOS) Punjab 

and the United Nations Children's Fund (UNICEF). Final and key findings report, survey plan, 

list of indicators, questionnaires and training agenda of MICS Punjab 2014 is available for 

download via a dedicated BOS Punjab website (www.bos.gop.pk). MICS Punjab questionnaire 

for household contains more than two hundred indicators on variety of household’s conditions. 

For example indicators on house conditions (e.g. number of rooms used for sleeping, main 

material of floor and roof etc.), access to general facilities (e.g. electricity, radio, television, non-

mobile phone, refrigerator etc.), source of drinking water (e.g. main source of drinking water and 

other purposes, location of the water source, duration to get water and come back, person 

collecting water, treatment for water to make safer for drinking etc.),  sanitation facilities (e.g. 

type of toilet facility, water available at the place for hand washing, soap or detergent present at 

place of hand washing etc.). Binary logistic regressions models can be fitted to describe 

household trends in access to improved water sources and sanitation facilities. Associated factors 

like location, demographic and socio-economic etc. can be further use for prediction. 

Information based indicators described above can prove to be very useful in policy making in 

order to improve quality of drinking water and sanitation in Punjab. 

5.1. Imputation of MICS Household Data 

We use a secondary household data from the Punjab Multiple Indicator Cluster Survey in 2014 

and use a GLM with a logit link is used to describe associations between access to water and 

sanitation, and geographic, demographic, and socio-economic factors. Most of the background 

variables related to geographic, demographic, and socio-economic characteristics in MICS data 

for household are categorical with many categories having complex data structures and large 

amount of missingness. For example geographical region of Punjab is divided into 36 districts. 
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Living area has two levels i.e. urban or rural. Statistical models based on survey data sets contain 

both, continuous and categorical variables and it can be tedious for MICE to specify imputation 

models and interaction terms in presence of such complications (Van Buuren, and Oudshoorn 

1999). Therefore for the proper comparisons, multiple categories for categorical variables were 

reduced by merging them and a sub-sample of fifty seven variables is selected which contains 

information on water and sanitization, hand washing and household characteristics. For the sake 

of keeping the analysis comparable and challenging at the same time, variable “Main material of 

exterior walls” is included in the sub-sample which has fifteen levels. Among all these variables, 

forty nine variables are categorical with multiple categories and remaining are continuous, only 

two variables are fully observed.  The missing data rates in most items were moderate. Items 

carrying great substantive importance, such as “Person collecting water”, 83% values were 

missing; “Energy use for cooking” indicator was missing at approximately 68%; the indicator on 

whether the child needed to be physically punished to be brought up properly was missing at 

approximately 37% (see supplementary file (Tables S5-S6)). We assume items are MAR in data 

under consideration.  The R package “VIM” (Templ et al. 2012) is utilized for exploring data and 

the pattern of missing values. Graphics for the all variables in sub sample are provided in a 

supplementary file (see Figures S19-S25).  

5.2. Logistic Regression Model 

To identify key determinants of water quality, we use a dichotomous variable indicating whether 

the household  do anything to the water to make it safer to drink. That is, 

 𝑊𝑇 = �      0   𝑖𝑓    ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑑𝑜 𝑛𝑜𝑡 𝑑𝑜 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑠𝑎𝑓𝑒𝑟 𝑡𝑜 𝑑𝑟𝑖𝑛𝑘 ,   

1    𝑖𝑓    ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑑𝑜 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑠𝑎𝑓𝑒𝑟 𝑡𝑜 𝑑𝑟𝑖𝑛𝑘 .        
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where 𝑊𝑇 denotes water treatment status. 

We determine two explanatory variables associated with the binary response "𝑊𝑇". 

We then used a Logistic regression model, given by 

                                 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 � 𝑝1−𝑝� =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2,                                         (14) 

where 𝑋1,𝑋2 are the predictor variables, “type of area (rural or urban)” and  “soap/other material 

available for washing hands (yes or no)”,  respectively and p denoted the probability that the 

household do not do anything to the water to make it safer to drink. The binary predictor 

“soap_avilb_wash_hand ” has the highest amount of missing values (i.e. about 9%) while the 

amount is rather small in the other two variables (i.e. less than 8% for response 

“treat_water_make_safe” and less than 6% for predictor “area”). See supplementary file for 

summary of all variables. Since there are no true values to compare for real data example, we 

calculated complete case (CC) estimates for comparison purpose. The CC analysis uses only the 

complete cases (i.e. n = 26819). The point estimates of GLM for “type of area” and “soap/other 

material available for washing hands” are 1.361 and 1.111 respectively. Whereas, standard errors 

for “type of area” and “soap/other material available for washing hands” are 0.106 and 0.052 

respectively. Similar to simulation study, point estimates and standards for M=10 completed data 

sets across 50 simulations are calculated for real data (see Figures 3-4). ESEs and means of point 

estimates (standard errors) and computational time for various MI methods are shown in Tables 

2 and 3 respectively.  
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5.3. Results 

We note that the standard errors for all of the coefficients are smaller compared to their point 

estimates under all MI methods (see Figures 3-4). The empirical example with real data indicated 

that the MICE methods and HMI variants yielded differing point estimates. We noticed that 

point estimates in both default and CART methods are nearer to the estimates in CC analysis for 

all cases with larger standard errors as compared to hybrid methods (see Table 2).  Figure 4 

displays smaller standard errors for hybrid variants (i.e. H.DEF1, H.CART1, H.DEF2, H.CART2) 

as compared to default and CART methods. ESEs and means of standard errors for hybrid 

variants are also smaller as compared to other methods (see Table 2) whereas these estimates are 

smaller for H.DEF2 and H.CART2 as compared to H.DEF1 and H.CART1, suggesting better 

performance over default and CART. Given the results produced by the MI methods, a look at 

the computation times in Table 3 may be useful for a further comparison. We found that hybrid 

variants ran quite fast followed by default method whereas, it took almost 5 days by CART to 

run on standard computers for a small subset of incomplete household data. Surprisingly, this 

time was reduced to almost half a day when hybrid methods were applied. We also found that 

hybrid variants also resulted in satisfactory performance when applied the full MICS household 

data set with hundreds of variables and categories with multiple levels whereas, methods based 

on MICE were not even able to run this large dataset due to complex structures. Thus, there exist 

significant differences in terms of the computational efficiency among the MI methods. 

Attached Contributions

169



24 

 

Figure3.  Real data: Boxplots for point estimates across 50 simulations by imputation methods 

under Missing at Random (MAR) and ten imputations. 

 
 

Figure4.  Real data: Boxplots for standard errors across 50 simulations by imputation methods 

under Missing at Random (MAR) and ten imputations.  
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Table2. Real data: Means of point estimates (standard errors) for two categorical regression 

coefficients for M=10 completed data sets across 50 simulations under various MI methods.  
  

Estimates Methods              Coefficients 

         area              soap_avilb_wash_hand 
M

ea
n
s 

o
f 

 

E
st

(S
E

) 
MICEDEF 

MICECART 

H.DEF1  

H.CART1  

H.DEF2 

H.CART2 

  

1.332(0.052)              0.957(0.137) 

1.334(0.051)              0.947(0.143) 

1.272(0.050)              0.976(0.124) 

1.271(0.050)              0.985(0.124) 

1.307(0.049)              1.103(0.103) 

1.293(0.050)              1.034(0.102) 

  

E
S

E
s 

MICEDEF 

MICECART 

H.DEF1  

H.CART1  

H.DEF2 

H.CART2 

  

0.0061                        0.0290 

0.0061                             0.0350 

0.0056                             0.0286 

0.0056                             0.0209 

0.0032                             0.0118 

0.0045                             0.0130 

 

Here Est and SE stand for point estimates and standard errors respectively. Cases where both 

Hybrid architectures result in minimum standard errors and ESEs as compared to default and 

CART are highlighted in bold.  

 

Table3. Real data: Time taken for various MI methods 

Method MICEDEF MICECART H..DEF1 H.CART1 H..DEF2 

 

H.CART2 

 

Time 2.37d 4.87d 12.48h. 13.67h 12.99h 13.03h 

Note: time = the time to complete 10 multiple imputation by variants of MI across 1000 

simulations, h = hours, d = days. The maximum number of iterations is set to 200.  

 

6. Conclusion and future research 

This paper describes the mechanisms of two hybrid strategies to handle missing data in large 

scale survey data with complex dependence structures among categorical variables and high 

percentage of missing information. After compering the performance of  various multiple 

imputation algorithms, we showed that both proposed hybrid variants of the multiple imputation 

algorithms were clearly superior to MICE MI methods not only in terms of the accuracy of 

imputation, but were also markedly superior to the others in terms of  the computational 
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efficiency.  Practitioners can easily use our proposed methods to handle complex survey data 

because our techniques rely mostly on previously implemented algorithms. Our current work is 

limited to MAR mechanism, however, we believe that the biases due to wrongly assumed 

missingness mechanism are minimal when the imputation models are kept as rich as possible to 

the extent where they are estimable. We also believe that a data generating processes considered 

in simulation study can be generalized to a large number of situations. However, we have no 

sound grounding to prove that the comparisons we make here will always apply for any data. In 

particular, we have not yet considered alternative categorizations for continuous variables such 

as ordinal, unordered or multiple categories. Issues like convergence and appropriate selection of 

predictors is beyond the scope of the present paper. This study has for the first time provided an 

overview and a systematic comparison of previous approaches to MI for large scale complex 

data implemented in conditional models. We propose that the performance of proposed 

algorithms can be improved by extending the categorization process of continuous variables to 

ordinal or multiple categories. Since proposed approach requires the covariates to be strongly 

correlated in order to work properly, further evaluations with diversity of experimental settings 

will undoubtedly be needed to account for this.  
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Supplementary file 

TableS1. ESEs and RMSEs for all coefficients for various MI methods and hybrid architecture 1 

ESEs RMSEs 

Coef.          MICEDEF         MICECART    H.DEF1    H.CART1 MICEDEF  MICECART   H.DEF1  H.CART1 

𝑋𝑏3 𝑋𝑏4 𝑋𝑏5  𝑋𝑏6 𝑋𝑏8 𝑋𝑏9 𝑋𝑏10  𝑋𝑏11 𝑋𝑏13 𝑋𝑏14 𝑋𝑏15  𝑋𝑏16 𝑋𝑏18 𝑋𝑏19 𝑋𝑏20  𝑋𝑏21 𝑋𝑏23 𝑋𝑏24 𝑋𝑏25  𝑋𝑏26 𝑋𝑏28  𝑋𝑏29  𝑋𝑏30  𝑋𝑏31  𝑋𝑚1_2 
 𝑋𝑚1_3 
 𝑋𝑚1_4 
 𝑋𝑚1_5 
 𝑋𝑚1_6 
 𝑋𝑚2_2 
 𝑋𝑚2_3 
 𝑋𝑚2_4 
 𝑋𝑛1  

𝑋𝑏1  𝑋𝑏2   

𝑋𝑏7   

𝑋𝑏12   

𝑋𝑏17   

𝑋𝑏22   

𝑋𝑏27   

0.51      

0.41      

0.40      

0.40      

0.44      

0.40      

0.41      

0.41  

0.48      

0.39      

0.40      

0.68      

0.49      

0.40      

0.51      

0.41      

0.58  

0.39      

0.43      

0.39      

0.36      

0.40      

0.42      

0.42      

0.44      

0.41  

0.42      

0.39      

0.42      

0.47      

0.42       

0.48      

0.51      

0.67      

0.59  

0.75      

0.52      

0.80      

1.10      

0.35       

0.51      

0.41      

0.40      

0.40      

0.44      

0.40      

0.41      

0.41  

0.48      

0.39      

0.40      

0.68      

0.49      

0.40      

0.51      

0.41      

0.58  

0.39      

0.43      

0.39      

0.36      

0.40      

0.42      

0.42      

0.44      

0.41  

0.42      

0.39      

0.42      

0.47      

0.42      

0.48      

0.51      

0.67      

0.59  

0.75      

0.52      

0.80      

1.10      

0.35      

0.53      

0.40      

0.41      

0.42      

0.42      

0.41      

0.40      

0.42  

0.48      

0.40      

0.39      

0.67      

0.49      

0.42      

0.50      

0.41      

0.60  

0.39      

0.43      

0.40      

0.39      

0.41      

0.41      

0.43      

0.42      

0.42  

0.42      

0.41      

0.44      

0.47      

0.42      

0.46      

0.51      

0.63      

0.57  

0.74      

0.51      

0.78      

1.06      

0.34      

0.52      

0.41      

0.40      

0.40      

0.44      

0.41      

0.40      

0.42  

0.49      

0.41      

0.39      

0.65      

0.48      

0.40      

0.50      

0.41      

0.56      

0.39      

0.43      

0.38      

0.37      

0.38      

0.42      

0.39      

0.41      

0.41  

0.41      

0.40      

0.42      

0.47      

0.41      

0.45      

0.48      

0.64      

0.55  

0.71      

0.50      

0.79      

1.06      

0.33      

2.04      

1.38      

1.57      

1.29      

1.42      

1.65      

1.24      

1.46  

1.46      

1.32      

0.88      

1.03      

0.98      

1.36      

1.93      

1.18      

1.46  

1.49      

0.98      

1.98      

1.52      

1.61      

1.55      

1.43      

1.37      

1.76  

1.64      

1.48      

1.38      

1.58      

1.69      

1.30      

1.17      

0.71      

0.60  

0.83      

1.64      

2.27      

2.61      

1.51      

2.04      

1.38      

1.57      

1.29      

1.42      

1.65      

1.24      

1.46  

1.46      

1.32      

0.88      

1.03      

0.98      

1.36      

1.93      

1.18      

1.46  

1.49      

0.98      

1.98      

1.52      

1.61      

1.55      

1.43      

1.37      

1.76  

1.64      

1.48      

1.38      

1.58      

1.69      

1.30      

1.17      

0.71      

0.60  

0.83      

1.64      

2.27      

2.61      

1.51      

1.99      

1.31      

1.53      

1.23      

1.48      

1.64      

1.21      

1.39 

1.44      

1.28      

0.87      

0.92      

0.98      

1.37      

1.94      

1.18      

1.42  

1.47      

0.98      

1.94      

1.47      

1.57      

1.53      

1.38      

1.26      

1.66  

1.61      

1.45      

1.30      

1.56      

1.59      

1.36      

1.27      

0.76      

0.61  

0.88      

1.59      

2.19      

2.55      

1.60      

2.03      

1.39      

1.55      

1.32      

1.43      

1.64      

1.24      

1.45 

1.49      

1.32       

0.85      

0.84      

1.00      

1.38      

1.95      

1.19      

1.43  

1.47      

0.99      

1.95      

1.49      

1.57      

1.54      

1.40      

1.35      

1.74  

1.64      

1.48      

1.32      

1.54      

1.63      

1.36      

1.24      

0.72      

0.58  

0.77      

1.61      

2.23      

2.60      

1.61      
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TableS2. Point estimates and Standard errors for all coefficients under various MI methods and 

hybrid architecture 1. 

𝑋𝑛2  𝑋𝑏32  𝑋𝑏9𝑋𝑏15  𝑋𝑏1𝑋𝑏17  𝑋𝑏13𝑋𝑏30  

 

 

 

 

0.21      

0.11      

0.69      

0.71  

0.75 

0.21      

0.11      

0.69      

0.71 

0.75 

0.20      

0.12      

0.70      

0.76  

0.72 

0.21      

0.11      

0.71      

0.72  

0.71  

 

1.32      

0.36      

1.75      

1.61  

1.34 

1.32      

0.36      

1.75      

1.61  

1.34 

1.28      

0.37      

1.77      

1.60      

1.31 

 

1.31      

0.39      

1.79      

1.58    

1.35 

Point estimates Standard errors 

Coef.              MICEDEF  MICECART   H.DEF1  H.CART1 MICEDEF MICECART    H.DEF1      H.CART1 

𝑋𝑏3 𝑋𝑏4 𝑋𝑏5  𝑋𝑏6 𝑋𝑏8 𝑋𝑏9 𝑋𝑏10  𝑋𝑏11 𝑋𝑏13 𝑋𝑏14 𝑋𝑏15  𝑋𝑏16 𝑋𝑏18 𝑋𝑏19 𝑋𝑏20  𝑋𝑏21 𝑋𝑏23 𝑋𝑏24 𝑋𝑏25  𝑋𝑏26 𝑋𝑏28  𝑋𝑏29  𝑋𝑏30  𝑋𝑏31  

𝑋𝑏1  𝑋𝑏2   

𝑋𝑏7   

𝑋𝑏12   

𝑋𝑏17   

𝑋𝑏22   

𝑋𝑏27   

-1.329  

2.183  

1.887  

2.230 

 -1.981  

1.816  

-2.245  

2.017  

1.961  

2.242  

1.474  

3.055  

-1.418  

2.127  

1.417  

2.346 

 -3.259  

-1.947 

 -2.636 

 -1.369 

 -1.964 

 -1.850 

 -1.869 

 -2.090  

-2.117  

-1.738  

-1.760  

-1.924  

-2.181  

1.981  

1.812  

2.204  

-1.029  

1.681  

1.481  

1.776 

 -1.654  

1.404  

-1.831  

1.600  

1.616  

1.743  

1.219  

2.229  

-1.154  

1.696  

1.136  

1.889  

-2.666 

 -1.558 

-2.116  

-1.062 

 -1.526 

-1.436 

 -1.504 

-1.634 

 -1.703    

-1.291  

-1.417 

 -1.575 

-1.688  

1.490  

1.368  

1.794  

-1.084  

1.754  

1.530  

1.848 

 -1.581  

1.408 

 -1.858  

1.679  

1.640  

1.789  

1.221  

2.372  

-1.156  

1.692  

1.123  

1.896  

-2.711 

 -1.579 

-2.115 

 -1.103 

-1.583  

-1.485 

 -1.521 

 -1.688 

-1.815    

-1.391 

 -1.445 

-1.614 

 -1.774  

1.506  

1.470  

1.717  

-1.037  

1.674  

1.502  

1.745  

-1.634  

1.416 

 -1.827  

1.612  

1.592  

1.741  

1.244  

2.470  

-1.121  

1.676  

1.114  

1.884  

-2.682 

 -1.582  

-2.102  

-1.090 

 -1.557  

-1.481  

-1.514 

 -1.653  

-1.713  

-1.307  

-1.409 

 -1.575 

 -1.745  

1.534  

1.423  

1.718  

0.935 

0.754 

0.744 

0.767 

0.756 

0.731 

0.737 

0.757 

0.821 

0.750 

0.697 

1.239 

0.867 

0.744  

0.890 

0.724 

1.024 

0.728 

0.763 

0.698 

0.707 

0.717 

0.730 

0.738 

0.745 

0.721 

0.765 

0.733 

0.773  

0.911 

0.776 

0.818 

0.760 

0.596 

0.588 

0.604 

0.610 

0.580 

0.581 

0.604 

0.674 

0.593 

0.570 

0.985 

0.708 

0.586  

0.730 

0.575 

0.822 

0.579 

0.602 

0.565 

0.561 

0.571 

0.590 

0.586 

0.588 

0.576 

0.612 

0.590 

0.606  

0.733 

0.621 

0.669 

0.773 

0.608 

0.604 

0.613 

0.612 

0.586 

0.591 

0.615 

0.682 

0.604 

0.574 

0.987 

0.714 

0.604  

0.734 

0.579 

0.832 

0.588 

0.612 

0.575 

0.571 

0.582 

0.597 

0.597 

0.602 

0.591 

0.624 

0.595 

0.618  

0.742 

0.637 

0.672 

0.759 

0.598 

0.595 

0.601 

0.608 

0.581 

0.583 

0.602 

0.673 

0.594 

0.568 

0.979 

0.702 

0.587  

0.722 

0.574 

0.826 

0.578 

0.606 

0.565 

0.561 

0.574 

0.589 

0.586 

0.594 

0.577 

0.616 

0.590 

0.611    

0.732 

0.621 

0.658 
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TableS3. ESEs and RMSEs for all coefficients for various MI methods and hybrid architecture 2 

ESEs RMSEs 

 Coef.               MICEDEF  MICECART   H.DEF2  

H.CART2 

MICEDEF  MICECART   H.DEF2 H.CART2 𝑋𝑏1  𝑋𝑏2   𝑋𝑏3 𝑋𝑏4 𝑋𝑏5  𝑋𝑏6 𝑋𝑏7   𝑋𝑏8 𝑋𝑏9 𝑋𝑏10  𝑋𝑏11 𝑋𝑏12   𝑋𝑏13 𝑋𝑏14 𝑋𝑏15  𝑋𝑏16 𝑋𝑏17   𝑋𝑏18 𝑋𝑏19 𝑋𝑏20  𝑋𝑏21 𝑋𝑏22   𝑋𝑏23 𝑋𝑏24 

0.65      

0.53      

0.52      

0.55      

0.54      

0.51      

0.53      

0.54  

0.60      

0.55      

0.50      

0.94      

0.61      

0.56      

0.59      

0.54      

0.78  

0.55      

0.59      

0.50      

0.49      

0.52      

0.54      

0.54      

0.55      

0.51      

0.41      

0.40      

0.40      

0.44      

0.40      

0.41      

0.41  

0.48      

0.39      

0.40      

0.68      

0.49      

0.40      

0.51      

0.41      

0.58  

0.39      

0.43      

0.39      

0.36      

0.40      

0.42      

0.42      

0.44      

0.51      

0.42      

0.40      

0.41      

0.43      

0.42      

0.41      

0.42  

0.48      

0.41      

0.38      

0.65      

0.49      

0.39      

0.49      

0.40      

0.58  

0.39      

0.42      

0.39      

0.38      

0.41      

0.42      

0.42      

0.42      

0.54      

0.41      

0.40      

0.40      

0.42      

0.41      

0.39      

0.41  

 0.51      

0.41      

0.40      

0.69      

0.49      

0.40      

0.49      

0.40      

0.58  

0.39      

0.43      

0.40      

0.36      

0.41      

0.41      

0.42      

0.43      

1.79      

0.97      

1.23      

0.95      

1.15      

1.29      

0.93      

1.12  

1.20      

0.94      

0.73      

0.94      

0.84      

1.04      

1.69      

0.85      

1.07  

1.19      

0.69      

1.71      

1.14      

1.26      

1.25      

1.06      

1.04      

2.04      

1.38      

1.57      

1.29      

1.42      

1.65      

1.24      

1.46  

1.46      

1.32      

0.88      

1.03      

0.98      

1.36      

1.93      

1.18      

1.46  

 1.49      

0.98      

1.98      

1.52      

1.61      

1.55      

1.43      

1.37      

1.96      

1.32      

1.54      

1.20      

1.49      

1.68      

1.21      

1.38  

1.44      

1.30      

0.87      

0.94      

0.96      

1.36      

1.94      

1.20      

1.45  

1.49      

0.99      

1.94      

1.50      

1.56      

1.52      

1.37      

1.27      

2.01      

1.36      

1.56      

1.31      

1.44      

1.65      

1.26      

1.46  

1.50      

1.35      

0.86      

0.89      

0.97      

1.39      

1.94      

1.18      

1.49  

1.48      

1.01      

1.96      

1.49      

1.58      

1.53      

1.39      

1.35      

𝑋𝑚1_2 
 𝑋𝑚1_3 
 𝑋𝑚1_4 
 𝑋𝑚1_5 
 𝑋𝑚1_6 
 𝑋𝑚2_2 
 𝑋𝑚2_3 
 𝑋𝑚2_4 
 𝑋𝑛1  𝑋𝑛2  𝑋𝑏32  𝑋𝑏9𝑋𝑏15  𝑋𝑏1𝑋𝑏17  𝑋𝑏13𝑋𝑏30  

 

 

2.246  

0.806  

1.000  

0.892  

1.797  

1.129  

0.674 

 -1.832  

1.996  

0.774  

-1.592 

 -1.973  

2.258 

 

1.946  

0.764  

0.876  

0.635  

1.440  

0.881  

 0.630  

-1.531  

1.695  

0.663 

 -1.394 

-1.557  

1.893  

 

1.840  

0.568  

0.772  

0.527  

1.492  

0.958  

0.680  

-1.433  

1.735  

0.645 

 -1.373 

-1.592  

1.904 

1.851  

0.678  

0.835  

0.693  

1.464  

0.913  

 0.623 

 -1.421  

1.707  

0.624  

-1.351 

 -1.587  

1.849 

  

 

0.827 

1.074 

0.976 

1.404 

0.989 

1.563 

2.224 

0.628 

0.429 

0.215 

1.194 

1.320  

1.260 

0.686 

0.897 

0.810 

1.132 

0.801 

1.271 

1.806 

0.501 

0.326 

0.169 

0.996 

1.092  

1.040  

 

0.686 

0.907 

0.825 

1.153 

0.808 

1.283 

1.818 

0.504 

0.332 

0.171 

1.010 

1.119  

1.061 

0.677 

0.894 

0.814 

1.140 

0.795 

1.265 

1.803 

0.496 

0.321 

0.166 

1.003 

1.109  

1.043  
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𝑋𝑏25  𝑋𝑏26 𝑋𝑏27   𝑋𝑏28  𝑋𝑏29  𝑋𝑏30  𝑋𝑏31  𝑋𝑚1_2 
 𝑋𝑚1_3 
 𝑋𝑚1_4 
 𝑋𝑚1_5 
 𝑋𝑚1_6 
 𝑋𝑚2_2 
 𝑋𝑚2_3 
 𝑋𝑚2_4 
 𝑋𝑛1  𝑋𝑛2  𝑋𝑏32  𝑋𝑏9𝑋𝑏15  𝑋𝑏1𝑋𝑏17  𝑋𝑏13𝑋𝑏30  

 

0.53       

0.54      

0.54      

0.57      

0.61      

0.54      

0.62      

0.64      

0.81      

0.72  

0.97      

0.70      

1.16      

1.61      

0.43      

0.27      

0.15      

0.75      

0.89  

0.86 

 

0.41       

0.42      

0.39      

0.42      

0.47      

0.42      

0.48      

0.51      

0.67      

0.59     

0.75      

0.52      

0.80      

1.10      

0.35      

0.21      

0.11      

0.69      

0.71  

0.75 

0.41        

0.41      

0.42      

0.43      

0.48      

0.42      

0.46      

0.49      

0.65      

0.57 

 0.71      

0.51      

0.79      

1.09      

0.32      

0.20      

0.11      

0.67      

0.71      

0.68  

 

0.41      

0.42      

0.41      

0.43      

0.47      

0.41      

0.47      

0.49      

0.63      

0.57  

0.71      

0.50      

0.77      

1.06      

0.34      

0.22      

0.11      

0.67      

0.75  

0.70  

 

1.37       

1.35      

1.20      

1.00      

1.19      

1.30      

1.01      

0.99      

0.83      

0.72  

0.98      

1.39      

2.20      

2.83      

1.25      

1.04      

0.27      

1.60      

1.36  

1.14  

 

1.76  

1.64      

1.48      

1.38      

1.58      

1.69      

1.30      

1.17      

0.71      

0.60  

0.83      

1.64      

2.27      

2.61      

1.51      

1.32      

0.36      

1.75      

1.61  

1.34 

1.65      

1.63      

1.48      

1.29      

1.59      

1.59      

1.35      

1.25      

0.77      

0.61  

0.86      

1.59      

2.20      

2.56      

1.61      

1.27      

0.38      

1.77      

1.57  

1.27  

 

1.74       

1.64      

1.45      

1.33      

1.57      

1.64      

1.36      

1.24      

0.69      

0.60  

0.79      

1.61      

2.19      

2.55      

1.62      

1.31      

0.40      

1.78      

1.60  

 1.29 

 

TableS4. Point estimates and Standard errors for all coefficients under various MI methods and 

hybrid architecture 2 

Point estimates Standard errors 

Coef.               MICEDEF  MICECART   H.DEF2    

H.CART2 

MICEDEF  MICECART   H.DEF2 H.CART2 𝑋𝑏1  𝑋𝑏2   𝑋𝑏3 𝑋𝑏4 𝑋𝑏5  𝑋𝑏6 𝑋𝑏7   𝑋𝑏8 𝑋𝑏9 𝑋𝑏10  𝑋𝑏11 𝑋𝑏12   𝑋𝑏13 𝑋𝑏14 𝑋𝑏15  𝑋𝑏16 𝑋𝑏17   

-1.329  

2.183  

1.887  

2.230 

 -1.981  

1.816 

 -2.245  

2.017  

1.961  

2.242  

1.474  

3.055  

-1.418  

2.127  

1.417  

2.346  

-3.259  

-1.029  

1.681  

1.481  

1.776 

 -1.654  

1.404 

 -1.831  

1.600  

1.616  

1.743  

1.219 

2.229  

-1.154  

1.696  

1.136 

1.889 

 -2.666  

-1.106  

1.754  

1.517  

1.869  

-1.574  

1.371  

-1.861  

1.685  

1.640  

1.770  

1.221  

2.321  

-1.175  

1.701  

1.119  

1.874 

 -2.669  

-1.061  

1.701  

1.489  

1.754 

 -1.622  

1.402  

-1.799  

1.595  

1.591  

1.710  

1.242  

2.431  

-1.165  

1.670  

1.124  

1.890  

-2.628 

0.935 

0.754 

0.744 

0.767 

0.756 

0.731 

0.737 

0.757 

0.821 

0.750 

0.697 

1.239 

0.867 

0.744  

0.890 

0.724 

1.024 

0.760 

0.596 

0.588 

0.604 

0.610 

0.580 

0.581 

0.604 

0.674 

0.593 

0.570 

0.985 

0.708 

0.586  

0.730 

0.575 

0.822 

0.768 

0.605 

0.602 

0.615 

0.609 

0.584 

0.590 

0.612 

0.676 

0.602 

0.576 

0.986 

0.713 

0.598  

0.730 

0.578 

0.829 

0.758 

0.596 

0.590 

0.598 

0.604 

0.579 

0.580 

0.598 

0.669 

0.595 

0.565 

0.972 

0.700 

0.584  

0.720 

0.574 

0.820 
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𝑋𝑏18 𝑋𝑏19 𝑋𝑏20  𝑋𝑏21 𝑋𝑏22   𝑋𝑏23 𝑋𝑏24 𝑋𝑏25  𝑋𝑏26 𝑋𝑏27   𝑋𝑏28  𝑋𝑏29  𝑋𝑏30  𝑋𝑏31  𝑋𝑚1_2 
 𝑋𝑚1_3 
 𝑋𝑚1_4 
 𝑋𝑚1_5 
 𝑋𝑚1_6 
 𝑋𝑚2_2 
 𝑋𝑚2_3 
 𝑋𝑚2_4 
 𝑋𝑛1  𝑋𝑛2  𝑋𝑏32  𝑋𝑏9𝑋𝑏15  𝑋𝑏1𝑋𝑏17  𝑋𝑏13𝑋𝑏30  

-1.947 

 -2.636  

-1.369  

-1.964 

 -1.850 

 -1.869  

-2.090 

 -2.117  

-1.738 

 -1.760  

-1.924  

-2.181  

1.981  

1.812  

2.204  

2.246  

0.806  

1.000  

0.892  

1.797  

1.129  

0.674 

 -1.832  

1.996  

0.774 

 -1.592  

-1.973  

2.258 

-1.558 

 -2.116 

 -1.062 

 -1.526 

 -1.436 

 -1.504 

 -1.634 

 -1.703  

-1.291 

 -1.417 

 -1.575 

 -1.688  

1.490  

1.368  

1.794  

1.946  

0.764  

0.876  

0.635  

1.440  

0.881  

 0.630  

-1.531  

1.695  

0.663 

 -1.394 

 -1.557  

1.893 

 

-1.562 

 -2.098 

 -1.100 

 -1.548 

 -1.492 

 -1.539 

 -1.693 

 -1.797  

-1.406 

 -1.426 

 -1.586 

 -1.786  

1.489  

1.469  

1.728  

1.852  

0.596  

0.785  

0.515  

1.495  

0.949  

 0.687  

-1.424  

1.742  

0.636 

 -1.364 

 -1.593  

1.927 

 -1.577 

 -2.086  

-1.077 

 -1.551 

 -1.478 

 -1.521 

 -1.679 

 -1.716  

-1.308 

 -1.417 

 -1.609 

 -1.744  

1.504  

1.412  

1.729  

1.864  

0.720  

0.833  

0.658  

1.469  

0.953  

0.685  

-1.413  

1.708  

0.620 

 -1.350  

-1.587  

1.920 

 

0.728 

0.763 

0.698 

0.707 

0.717 

0.730 

0.738 

0.745 

0.721 

0.765 

0.733 

0.773  

0.911 

0.776 

0.818 

0.827 

1.074 

0.976 

1.404 

0.989 

1.563 

2.224 

0.628 

0.429 

0.215 

1.194 

1.320  

 1.260 

0.579 

0.602 

0.565 

0.561 

0.571 

0.590 

0.586 

0.588 

0.576 

0.612 

0.590 

0.606  

0.733 

0.621 

0.669 

0.686 

0.897 

0.810 

1.132 

0.801 

1.271 

1.806 

0.501 

0.326 

0.169 

0.996 

1.092  

1.040 

 

0.585 

0.612 

0.572 

0.568 

0.582 

0.596 

0.592 

0.602 

0.592 

0.620 

0.593 

0.619  

0.740 

0.635 

0.671 

0.688 

0.903 

0.820 

1.149 

0.801 

1.274 

1.811 

0.500 

0.331 

0.169 

1.006 

1.122  

1.058  

 

0.580 

0.598 

0.564 

0.563 

0.570 

0.582 

0.584 

0.592 

0.577 

0.612 

0.588 

0.608  

0.727 

0.617 

0.660 

0.679 

0.895 

0.813 

1.130 

0.793 

1.259 

1.791 

0.493 

0.319 

0.166 

0.995 

1.110 

1.041  

 

 

TableS5. Real data: Summary of all categorical variables 

No.     Variable                                        Description                                           Levels                    %miss 

1     T.fuel                                Energy use for cooking                                         3                                  68 

2     Cooking_loc                     Cooking location                                                   3                                  43 

3     physically_punished         Child needs to be physically                                 2                     37 

                                                 punished to be brought up properly                                                                         

4     Mother_tongue                 Mother tongue of household head                         4                                    7                                                                                 

5     Elec                                   Electricity                                                              2                                    7                                          

6     material_floor                   Main material of flooring                                      3                                    7                                  

7     material_exterior              Main material of exterior walls                             15                                  7         

8     area                                   Area of Residence                                                  2                                   5                  

9     refrigrator                         Refrigerator                                                            2                                   7                 

10  wash_machine.dryer         Washing machine/ Dryer                                        2                   7 

11  A.C                                    Air conditioner                                                       2                   7 
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12  Air_cooler.fan                   Air cooler/ Fan                                                       2                    7 

13  copmuter                           Computer                                                                2                   7 

14   Radio                                Radio                                                                      2                   7 

15  no _mobile                         Non-mobile phone                                                 2                   7 

16  gas                                     Gas                                                                          2                  7 

17  water_filter                       Water filter                                                              2                   7 

18   Microwave                       Cooking range/ Micro wave                                   2                  7 

19 sew.nitt_machine               Sewing/ Knitting Machine                                      2                  7 

20  iron                                    Iron                                                                          2                 7 

21  Dunkey_pump.turbine       Dunky pump/ Turbine                                            2                7 

22  watch                                 Watch                                                                      2                7 

23  Trac_troly                          Tractor trolley                                                         2             7 

24   Bicycle                             Bicycle                                                                     2              7 

25  Animal_drawn_cart          Animal-drawn cart                                                   2              7 

26  motercycle                        Motorcycle or scooter                                              2              7 

27  boat_w_moter                   Boat with motor                                                       2              7 

28   car_or_van                       Car or Van                                                                2                    7 

29  Bus.truck                           Bus or truck                                                             2                    7 

30  mobile                               Mobile telephone                                                     2                    7 

31  soap_avilb_wash_hand     Soap or detergent present at place                           2  9 

                                                 of handwashing      

32  water_place_hand_wash   Water available at the place                                     2           9 

                                                 for handwashing  

33   gov_init_lowincome         Government initiatives are                                      2 7 

                                                  benifiting the low income groups   

34  HH_rec_remmitence          HH recieved any remittances                                  2 7 

                                                  during last year    

35  HH_rec_pension                Any HH member recieved any                                2 7 

                                                  pension benefits during last year 

36  HH_bought_utility_store    HH purchased consumable items                           2 7 

                                                  from utility store  

37  HH_rec_benif_gov             HH received any benifit from                                 2 7 

                                                  Government   

38  memb_outside.V.C.            Family member working outside                            2 7 

                                                   village/city/country                           

39  sex_head_HH                     Sex of household head                                             2                                7 

40  fam_memb_work_outside  Number of HH member working 7 

                                                  outside   

41  person_coll_water               Person collecting water                                            7                             83 

42  loc_water_source                 Location of the water source                                   2                             19 

43  bank_acc_saving_sertif       Any household member have 7 

                                                   account in Bank, PO or 

                                                   National Saving Centre 

44  HH_own_animal                 Household own any animals                                    2                               7 

45  HH_own_dwelling              Household owns the dwelling                                  3                               7 

46  treat_water_make_safe       Treat water to make safer for drinking                     2                               7 
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47  HH_own_land_agri            Any household member own land                            2  7 

                                                   that can be used for agriculture  

48  Type.of.toilet.facility           Type of toilet facility                                              13                              7                               

49   T.V.                                     Television                                                                 2 7 
“Levels” indicates number categories of categorical variables and “% mis” indicates percentage of 

missing observations in all variables. 

 

TableS6. Real data: Summary of all continuous variables 

No.       Variabels                                  Discription                                                                %miss 

1          time_inmin_get_water    Time (in minutes) to get water and come back          83 

2          no.HHmem                      Number of HH members 13 

3          T.C.age_1_17                  Total children aged 1-17 years 7 

4          no.W._15_19                   Number of women 15 - 49 years 7 

5          No_rooms_use_sleeping  Number of rooms used for sleeping  7 

6          no.C._und5                       Number of children under age 5 7 

7          hhweight                           Household sample weight  0 

8          stweight                            Salt testing’s sample weight 0 

 “% mis” indicates percentage of missing observations in all variables 

 

FigureS1. Schematic diagram illustrating the proposed hybrid architecture 1 

Attached Contributions

183



38 

 

 

FigureS2. Schematic diagram illustrating the proposed hybrid architecture 2 
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FigureS3. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏1, 𝑋𝑏2  , 𝑋𝑏3 , 𝑋𝑏4 , 𝑋𝑏5 , 𝑋𝑏6under various MI methods over 1000 simulations 
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FigureS4. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏7, 𝑋𝑏8  , 𝑋𝑏9 , 𝑋𝑏10 , 𝑋𝑏11 , 𝑋𝑏12under various MI methods over 1000 simulations 
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FigureS5. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏13, 𝑋𝑏14  , 𝑋𝑏15 , 𝑋𝑏16 , 𝑋𝑏17 , 𝑋𝑏18under various MI methods over 1000 simulations 
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FigureS6. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏19, 𝑋𝑏20  , 𝑋𝑏21 , 𝑋𝑏22 , 𝑋𝑏23 , 𝑋𝑏24   under various MI methods over 1000 simulations 
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FigureS7. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏25, 𝑋𝑏26  , 𝑋𝑏27 , 𝑋𝑏28 , 𝑋𝑏29 , 𝑋𝑏30   under various MI methods over 1000 simulations 
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FigureS8. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏31, 𝑋𝑚1_2 
, 𝑋𝑚1_3 

, 𝑋𝑚1_4 
,𝑋𝑚1_5 

, 𝑋𝑚1_6 
 under various MI methods over 1000 simulations 
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FigureS9. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑚2_2 
,𝑋𝑚2_3 

,𝑋𝑚2_4 
,Xb32, 𝑋𝑛1 

, 𝑋𝑛2 
under various MI methods over 1000 simulations 
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FigureS10. Simulated data: Boxplots of point estimates for coefficients 𝑋𝑏9 
𝑋𝑏15 

, 𝑋𝑏1 
𝑋𝑏17  𝑋𝑏13 

𝑋𝑏30 
under various MI methods over 1000 simulations 
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FigureS11. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏1, 𝑋𝑏2  , 𝑋𝑏3 , 𝑋𝑏4 , 𝑋𝑏5 , 𝑋𝑏6under various MI methods over 1000 simulations 
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FigureS12. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏7, 𝑋𝑏8  , 𝑋𝑏9 , 𝑋𝑏10 , 𝑋𝑏11 , 𝑋𝑏12under various MI methods over 1000 simulations 
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FigureS13. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏13, 𝑋𝑏14  , 𝑋𝑏15 , 𝑋𝑏16 , 𝑋𝑏17 , 𝑋𝑏18under various MI methods over 1000 simulations 
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FigureS14. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏19, 𝑋𝑏20  , 𝑋𝑏21 , 𝑋𝑏22 , 𝑋𝑏23 , 𝑋𝑏24   under various MI methods over 1000 simulations  
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FigureS15. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏25, 𝑋𝑏26  , 𝑋𝑏27 , 𝑋𝑏28 , 𝑋𝑏29 , 𝑋𝑏30   under various MI methods over 1000 simulations  
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FigureS16. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏31, 𝑋𝑚1_2 
, 𝑋𝑚1_3 

, 𝑋𝑚1_4 
,𝑋𝑚1_5 

, 𝑋𝑚1_6 
 under various MI methods over 1000 simulations 
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FigureS17. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑚2_2 
,𝑋𝑚2_3 

,𝑋𝑚2_4 
,Xb32, 𝑋𝑛1 

, 𝑋𝑛2 
under various MI methods over 1000 simulations  
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FigureS18. Simulated data: Boxplots of standard errors for coefficients 𝑋𝑏9 
𝑋𝑏15 

, 𝑋𝑏1 
𝑋𝑏17 

, 𝑋𝑏13 
𝑋𝑏30 

under various MI methods over 1000 simulations 

 

FigureS19. Real data: Aggregate plots in R, graphics of incomplete variables i.e. 

"HH_own_dwelling,"HH_own_land_agri","Type.of.toilet.facility”,"HH_own_animal","treat_wa

ter_make_safe", "bank_acc_saving_sertif","loc_water_source","person_coll_water" 
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 FigureS20. Real data: Aggregate plots in R, graphics of incomplete variables i.e. "mobile 

","Bicycle","motercycle","Amimal_drawn_cart","Bus.truck","boat_w_moter","car_or_van","Tra

c_troly" 

 

FigureS21. Real data: Aggregate plots in R, graphics of incomplete variables i.e. "Radio", 

"no_mobile", refrigrator","gas"," copmuter ", "A.C", "wash_machine.dryer ", "Air_cooler.fan" 
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 FigureS22. Real data: Aggregate plots in R, graphics of incomplete variables i.e. “Microwave", 

"sew.nitt_machine ","iron", "water_filter", "Dunkey_pump.turbine ", "watch” 

 

 

FigureS23.Real data: Aggregate plots in R, graphics of incomplete variables i.e. 

"memb_outside.V.C.","HH_rec_remmitenc","HH_rec_pension","HH_rec_benif_gov","HH_bou

ght_utility_store","gov_init_lowincome","water_place_hand_wash","soap_avilb_wash_hand" 
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FigureS24. Real data: Aggregate plots in R, graphics of incomplete variables i.e. "area", 

"physically_punished","Mother_tongue","material_floor","material_exterior","T.fuel","Cooking

_loc","Elec" 

 

 

FigureS25. Real data: Aggregate plots in R, graphics of incomplete variables i.e."no.HHmem", 

"no.W._15_19","no.C._und5","T.C.age_1_17","No_rooms_use_sleeping","time_inmin_get_wat

er", "hhweight", "stweight" 
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