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1 INTRODUCTION 

1.1 Epidemiology of Colorectal cancer 

1.1.1 Incidence and mortality 

Cancer is a considerable public health problem, and is one of the main causes of death 

2. In 2018, an estimated 18.1 million new cancer cases and 9.6 million cancer deaths 

occurred worldwide, and among them 1.8 million colorectal cancer (CRC) cases causing 

881,000 deaths. Moreover, Globally CRC is the second most common cancer in women 

and the third in men, and it is the third and fourth leading cause of cancer-related deaths 

in women and men, respectively 3,4. Furthermore, it is predicted that by the year 2035, 

deaths from colon cancer would have increased by 60 % 5.  

Despite advances in CRC early detection and treatment, metastasis remains the main 

cause of cancer related death, and nearly half of all patients with CRC present with 

metastasis either at the time of diagnosis (20 %) or in the fellow up period (20-30 %) 6,7. 

Therefore, there is an urgent need to identify robust and informative biomarkers for risk 

stratification of CRC patients which could improve therapeutic decision making in 

routine clinical practice and CRC outcome. 

 

1.1.2 Survival  

Survival rates for colorectal cancer can differ based on a variety of factors, but it is 

highly dependent on stage of disease at diagnosis. The 5-year survival rate of patients 

with localized stage I and II CRC is up to 90 %. If the cancer has spread to the regional 

lymph nodes (stage III), the 5-year survival rate is about 71 %. If the cancer has 

metastasized to distant parts of the body (stage IV), the 5-year survival rate is only 

around 14 % 2.  
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1.1.3 Risk factors  

The Risk of developing CRC can be increased by environmental and hereditary factors 

8. Some of the environmental risk factors are modifiable such as lifestyle-related factors 

including obesity, diet rich in red and processed meat, physical inactivity, smoking and 

moderate to heavy alcohol consumption 8-10. Other risk factors are non-modifiable such 

as increasing age (50 years and over), male sex, inflammatory bowel disease, diabetes 

mellitus, and family history of CRC which accounts for 20 % of all CRC cases 11. 

Hereditary factors accounts for about 3-5 % of all CRC cases 12. The two most common 

forms of hereditary colorectal cancers are hereditary nonpolyposis colorectal cancer 

(HNPCC or Lynch syndrome) and familial adenomatous polyposis (FAP) 13. Indeed, 

the majority of CRC cases, approximately 75 %, occurs sporadically without family 

history of CRC or apparent evidence of having inherited disorders 12. 

 

 

 

 

 

 

 

1.2 Development of sporadic colorectal cancer 

1.2.1 Molecular background of colorectal carcinogenesis 

The development of CRC is a multistep process during which multiple genetic and 

epigenetic alterations sequentially accumulate in normal colonic epithelial cells and 
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transform them into malignant neoplastic cells 14-16. Some of these molecular 

alterations are called ‘‘drivers’’, conferring selective growth advantages to the affected 

cells via activating proto-oncogenes, inactivating tumor suppressor genes and 

abnormalities in DNA repair genes, and ultimately give rise to malignant transformation 

of the affected cell by disturbing key signaling pathways that regulate normal cell 

proliferation, differentiation, and survival 17-19. The remainder alterations are non-

oncogenic and called “passengers” 20. It was proposed that at least four or five genetic 

alterations (mainly APC, KRAS, SMAD4, and TP53) are required to drive the 

transformation of normal colonic epithelial cells into invasive carcinoma 14. Afterwards, 

it was suggested that three driver gene alterations are sufficient for invasive carcinoma 

formation 21. 

Furthermore, the advances in understanding the molecular genetics and epigenetics 

of CRC have enabled the identification of two pathways of histological/molecular 

development of colorectal cancer, beginning with two different precursor lesions: the 

adenoma-carcinoma sequence and the serrated neoplasia pathway; each pathway is 

associated with specific sequence of genetic and epigenetic alterations, standard 

clinical and histological characteristics and resulting in diverse phenotypes of CRC, 

which explains the heterogeneity of CRC 22. 

 

1.2.2 Pathways of colorectal carcinogenesis 

1.2.2.1 The adenoma-carcinoma sequence 

The adenoma-carcinoma sequence is the classical pathway, proposed by Fearon and 

Vogelstein and accounts for approximately 60-70 % of sporadic CRCs 17. It is a 

multistep mutation pathway, describing the gradual progression of normal colorectal 

epithelium to benign precursor lesions, called conventional adenomas (Adenomatous 

polyps), and ultimately to adenocarcinoma 14. 
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The initial step transforming normal colorectal epithelium into microscopic adenomas 

composed of a few dysplastic glands is often caused by inactivation of the tumor 

suppressor gene adenomatous polyposis coli (APC) 18,23,24. APC mutations are found 

in about 70-80 % of colorectal adenomas and sporadic CRCs, and are essential for 

initiating adenoma formation and sustained activation of Wnt/β-catenin signaling 

pathway 17. 

The second step involves activating mutations of the KRAS oncogen at codons 12, 13, 

61 which lead to enlargement of preexisting adenomas to become more than 1cm 17,25. 

KRAS mutations are present in about 40 % of colorectal adenomas and carcinomas 26, 

and lead to activation of GTPase enzyme that increase RAS signaling and promote 

tumor progression by MAPK signaling pathway activation 

(RAS/RAF/MEK/ERK/MAPK)18. Subsequently, malignant transformation is driven by 

loss of heterozygosity (LOH) of chromosome 18q in about 70 % of CRCs that is usually 

associated with mutational inactivation of tumor suppressor gene SMAD4 which 

facilitates cell proliferation and malignant progression of CRC by inactivation of 

transforming growth factor β (TGF-β) pathway 27,28. Additionally, inactivating mutations 

of the tumor suppressor gene PTEN or activating mutations of the oncogene PIK3CA 

may occur 29,30, and result in inhibition of apoptosis and promotion of tumor cell survival 

by activating PI3K pathway 31. 

The final step is inactivation of the tumor‑suppressor gene TP53 which encodes for 

p53, the main cell-cycle checkpoint which causes an uncontrolled entry in the cell cycle 

and is mainly detectable in colorectal carcinomas with an estimated frequency of 

approximately 60 % 24,25. A small group of conventional adenomas develops through 

DNA mismatch repair (MMR) deficiency which result in CRC with high level 

microsatellite instability, termed (MSI-H) phenyotype 32 (Figure 1A).  
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Figure 1. Pathways of colorectal carcinogenesis 

(A) The classical pathway involves the progression of conventional adenomas to invasive adenocarcinomas with MSS 
or MSI phenotypes if MMR deficiency occurs. (B) The serrated neoplasia pathway involves serrated polyps and their 
progression to either MSI-H cancers if methylation occurs in MLH1 promoter, or MSS cancers if methylation occurs in 
tumor suppressor genes. The mutated or epigenetically altered genes during the progression sequence are shown. 
Figure from reference 33. 

 

 

1.2.2.2 The serrated neoplasia pathway 

The serrated neoplasia pathway is an alternative pathway for CRC development, 

described by Jass and Smith and accounts for approximately 30 % of all CRCs 34. In 

the serrated pathway, serrated polyps including sessile serrated lesions (SSL) and 

traditional serrated adenomas (TSA) are recognized precursors for colorectal 

carcinoma and are histologically characterized by a “serrated” (or saw-toothed) 

appearance of the epithelial glandular crypts 35,36. 

The development of serrated polyps is often initiated by activating BRAF oncogene 

mutations, more common at codon 600 (V600E), which promote cell proliferation 

through MAPK signaling pathway and found in about 5-15 % of CRC cases, mainly in 

SSL and TSA, or activating mutations in KRAS, specifically in TSA 37,38. Then serrated 

polyps proceed to evident epithelial dysplasia and eventually serrated adenocarcinoma 

through Wnt signaling pathway activation and progressive CPG island methylation 
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which frequently inactivates DNA mismatch repair (MMR) gene, mutL homologue 1 

(MLH1) and give rise to MMR-deficient CRCs with MSI-H phenotype, or TP53 

mutations which result in MMR-proficient CRCs with microsatellite stable (MSS) 

phenotype 39-41 (Figure 1B).  

1.2.3 Patterns of genomic Instabilities in colorectal cancer and hallmarks of cancer 

1.2.3.1 Chromosomal instability  

Chromosomal instability (CIN) is the most common form of genomic instability in CRC, 

observed in 85 % of sporadic CRC and adenomas, which are derived from the 

adenoma-carcinoma sequence 42,43. CIN refers to widespread gains or losses of whole 

or large portions of chromosomes during cell division that can result from defects in 

chromosomal segregation, centromere function, telomere stability and DNA damage 

response, giving rise to karyotypic variation between cells 44-46. Moreover, CIN is 

characterized by changes in chromosome copy number (aneuploidy) and frequent loss 

of heterozygosity (LOH) 47,48, which can drive CRC initiation and progression by 

inducing ongoing copy number alterations (CNAs) in large groups of genes, such as 

tumor suppressor genes, oncogenes and apoptotic genes 49,50. 

1.2.3.2 Microsatellite instability  

Microsatellite instability (MSI) is found in about 15 % of sporadic CRCs 42, and occurs 

as a consequence of defective DNA MMR system which is caused by inactivation of 

DNA MMR genes, most commonly MLH1, by promoter hypermethylation 51-53. MSI is 

characterized by multiple mutations, mainly insertions and deletions, in repetitive 

sequences of DNA called microsatellites 54. Clinically, based on the MSI status, CRCs 

can be categorized into MSI-high (MSI-H), if 30 % or more of the repeats are unstable; 

MSI-low (MSI-L), if fewer than 30 % of repeats are unstable, and microsatellite stable 

(MSS), if no repeats are unstable 55. 
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Furthermore, MSI-H encourages malignant transformation by allowing the 

accumulation of mutations in microsatellites located in DNA coding regions of specific 

genes that are implicated in tumor progression, such as TGFβRII and BAX, then 

generating frameshift mutations 56,57, and subsequently leading to sporadic CRCs 

which frequently carry BRAF (V600E) mutations 58.  

1.2.3.3 CpG island methylator Phenotype (CIMP)  

CIMP is found in about 20 % of CRC, and is characterized by widespread 

hypermethylation of promoter CpG islands of tumor suppressor genes or DNA repair 

genes such as CDKN2A, which encodes p16, or MLH1 respectively, resulting in 

transcriptional silencing 51,59-61. On the basis of aberrant CpG island methylation, CRCs 

can be classified into three subclasses: CIMP-1 (CIMP-high) which is more frequently 

associated with the MSI-H phenotype and with the presence of BRAF (V600E) 

mutations, CIMP-2 (CIMP-low), and CIMP-negative 39,62. Additionally, CIMP-high 

facilitates the initiation and progression of CRC mainly from serrated polyps through 

the serrated neoplasia pathway 40,41. 

To sum up, genomic instability has been recognized as an enabling characteristic of 

cancer as it accelerates the accumulation of genetic and epigenetic alterations that 

enable selective growth advantages and acquisition of essential functional capabilities 

which in turn critically drive colorectal tumors development and cancer progression 63 

(Figure 2). These capabilities are not limited to the development of CRC, but are 

acquired during the development of almost all human cancer types, and were 

highlighted and termed “Hallmarks of cancer” by Hanahan and Weinberg 16,63. 
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Figure 2. The hallmarks of cancer. 

(A) The original hallmark capabilities acquired during the development of human cancers. (B) Emerging Hallmarks and 

Enabling Characteristics. Figure from reference 63. 

The originally proposed hallmark capabilities of cancer are self-sufficiency in signals, 

insensitivity to growth inhibitory signals, escaping from normal programmed cell death, 

allowing limitless replication potential by maintaining telomere length, triggering 

angiogenesis, and activating invasion and metastasis 16 (Figure 2A). Moreover, the 

original list has been expanded by emerging hallmarks such as disrupting cellular 

energetics and evading immune response 63 (Figure 2B). 

 

 

 

 

 

 
1.3 Metastasis of colorectal cancer  

1.3.1 The metastatic cascade 

Following the malignant transformation of normal colonic epithelial cells, the neoplastic 

cells continue to evolve by acquiring the ability to invade and metastasize, which is one 

of the hallmarks of malignancy 16,63. During metastatic progression, each cancer cell 
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must accomplish a number of sequential and interrelated steps, known as the invasion-

metastasis cascade 64. This cascade starts with the local invasion of primary tumor 

cells into adjacent tissue, followed by dissemination of cancer cells and formation of 

secondary tumors at distant sites 65 (Figure 3). 

 

Figure 3. Invasion-metastasis cascade  
Metastasis is a complex multistep process. Tumor cells detach from the primary tumor site, migrate and invade through the 
BM and the surrounding stroma, enter the blood or lymphatic vessels (intravasation), survive in the circulation, leave 
the blood or lymphatic vessels after identifying a premetastatic niche (extravasation), adhere and grow as micro-
metastasis which at end may die or become dormant or form metastatic colonization. Figure from reference 66.  

The initial steps of this cascade including cancer cell local invasion and migration are 

achieved by loss of cell-cell adhesion that allows cancer cells to detach from the 

primary tumor mass and changes in cell-matrix interaction that enable the cells to pass 

through the basement membrane and invade the surrounding stroma. These changes 

are strongly driven by a cellular program termed the epithelial-mesenchymal transition 

(EMT) 67-69. Once cancer cells have invaded the surrounding stroma, it becomes 

reactive and promotes intravasation of these cells into blood or lymphatic vessels 

where they can survive in the blood or lymphatic circulation, and are known as 

circulating tumor cells (CTCs) 70. Once CTCs reach organs which provide a suitable 
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stromal environment for secondary growth termed pre-metastatic niche, the cells may 

extravasate through vascular walls into the parenchyma of distant tissues 71. Some of 

these cells that survive may form micrometastatic colonies in this parenchyma, and 

finally proliferation of these microscopic colonies may lead to macroscopic clinically 

detectable metastases 72 (Figure 3).  

In metastatic CRC cases, the most common first site of metastasis is the liver, whereas 

the lung and bones are considered the second most common target organs 73, this may 

be because the venous drainage of the colon and upper rectum is via the portal vein; 

therefore those cancer cells dissociate from primary tumors within the colon  usually 

reach the capillary network of the liver as a first station for colonization 74,75. 

Notably, CRC metastasis is a multistep process by which cancer cells spread from 

primary tumors and form new tumor colonies at distant tissues. The initial and last steps 

of the metastatic cascade require the support of a process termed epithelial-

mesenchymal transition (EMT) and its reverse program mesenchymal-epithelial 

transition (MET).  

1.3.2 Epithelial-mesenchymal transition  

EMT is a complex cellular and molecular program that plays an essential role in 

enhancing the migratory and invasive properties of cancer cells during metastasis and 

controlled by various families of transcriptional regulators through different signaling 

pathways 63,76. EMT occurs not only during cancer progression but also is essential for 

embryonic development and many pathological processes such as wound healing and 

tissue fibrosis 77-79. 

During EMT, The polarized epithelial cancer cells are subjected to loss of apical–basal 

polarity, dissolution of adhesion forces between cells and reorganization of cytoskeletal 

architecture, which enable these cells to acquire mesenchymal phenotype with spindle-

like morphology, increased cellular motility, cancer stem cell activity, elevated 
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resistance to apoptosis, and ability to degrade and penetrate the basal extracellular 

matrix (ECM) by matrix metalloproteinases (MMPs) secretion 80-82. Within CRC, These 

mesenchymal characteristics are more predominant in cancer cells at the invasive front 

of colorectal tumors, whereas those towards the center often exhibit a more epithelial-

like phenotype 78,83. 

Furthermore, EMT is characterized by a high level of plasticity and thus is a reversible 

process. During metastatic colonization, the mesenchymal-like cancer cells revert 

again into the epithelial phenotype to restore proliferative capacity and form 

macrometastasis by undergoing Mesenchymal-epithelial transition (MET) 84. 

The initiation and progression of EMT is orchestrated by a network formed of multiple 

molecular signaling pathways and regulators 85,86. The induction of EMT is mediated 

by many extracellular stimuli and corresponding intracellular signalling pathways 

including TGFβ-SMAD signalling, Wnt/b-Catenin, growth factor-receptor tyrosine 

kinase, and Notch pathway. These different signaling pathways converge on the 

activation of a group of transcription factors called EMT-inducing transcription factors 

(EMT-TFs), such as SNAI1, SNAI2 (Slug), zinc-finger E-box-binding homeobox1 

(ZEB1) and ZEB2, and Twist-related protein 1 (TWIST1) 87,88 (Figure 4).  
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Figure 4: Regulatory molecular network of EMT 

A number of signaling pathways activate EMT-related transcription factors such as the Snail, Twist, and Zeb families 
which can be further modified by epigenetic, post-transcriptional, and post-translational regulators such as microRNAs 

and other non-coding RNAs to organize the expression of epithelial and mesenchymal markers during EMT. Figure from 
reference 89. 

The activated EMT-TFs drive alterations in the expression of EMT-associated genes 

which in turn regulate the shift to a mesenchymal state by suppressing expression of 

epithelial markers, mainly E-cadherin, which is a key protein for epithelial cell-cell 

adhesion. It also induces expression of other markers associated with the 

mesenchymal state such as, vimentin, fibronectin, and N-cadherin 90,91. The loss of E-

cadherin expression is considered a crucial event in EMT and can be mediated by its 
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transcriptional repression through the binding of EMT-TFs such as SNAI1, SNAI2, 

ZEB1, and ZEB2 to E-box sequence in the promoter region of CDH1 88,92 (Figure 4). 

In addition, the expression and functions of EMT-TFs are controlled at multiple levels 

by different regulatory mechanisms, including epigenetic modifications, post-

transcriptional modifications by miRNAs, translational control, and post-translational 

modifications 89,93,94 (Figure 4). All theses mechanisms together regulate the activation 

of EMT. 

In summary, EMT and its reverse program MET play crucial roles in the metastatic 

progression of CRC. When CRC metastasizes in patients, the prognosis of these 

patients become worse, and according to the extent of metastasis, CRC stage and 

treatment are determined. 
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1.4 Prognostic and predictive determinants in colorectal cancer 

1.4.1 Pathological factors 

1.4.1.1 Tumor stage 

Pathologic stage of tumor after surgical resection is by far the most important 

prognostic predictor of postoperative outcome for CRC patients 95. However, there is 

sometimes considerable stage-independent variability in clinical outcome. The most 

common staging system for CRC is the TNM system, of the combined American Joint 

Committee on Cancer (AJCC)/Union for International Cancer Control (UICC) 96,97.This 

staging system is based on three parameters. "T" describes the depth of tumor invasion 

in the colorectal wall, "N" the extent of lymph node involvement, and "M" the extent of 

metastasis 97 (Table 1, Figure 5). 

Most CRCs present as localized tumor at time of initial diagnosis, involving the 

colorectal wall (stages I and II) and regional lymph nodes (stage III), and these tumors 

are amenable to potentially curative surgical resection 98. While stage I colorectal 

cancers are mostly cured by surgery alone, stage II and III disease more frequently 

recurs 99, and especially for stage III adjuvant chemotherapy is an additional treatment 

option after surgery and can reduce disease recurrence by up to 30 % 100. Yet, for node 

negative stage II colorectal cancer the use of adjuvant chemotherapy remains 

controversial, since only patients with high-risk stage II disease may benefit from this 

treatment, while others are unnecessarily harmed by toxic side effects of chemotherapy 

101,102. Therefore, additional stage independent risk stratification is needed to identify 

high-risk stage II CRC patients who should receive adjuvant therapy. In this context, 

indicators of tumor aggressiveness, such as histologic tumor grade, vascular invasion, 

perforation, and DNA MMR status may guide the decision for adjuvant therapy 103-105.  

 

Table 1. CRC TNM staging AJCC/ UICC 8th edition 96,97 
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Primary tumor 

Tx  Primary tumor cannot be assessed 

T0  No evidence of primary tumor 

Tis Carcinoma in situ, intramucosal carcinoma  

T1  Tumor invades submucosa 

T2  Tumor invades muscularis propria 

T3  Tumor invades through muscularis propria into pericolorectal tissues 

T4 
Tumor invades visceral peritoneum or invades or adheres to adjacent organ or 
structure 

   T4a Tumor invades through visceral peritoneum  

   T4b Tumor directly invades or adheres to adjacent organs or structures 

Nodal status (N) 

Nx  Regional lymph nodes cannot be assessed 

N0  No regional lymph node metastasis 

N1 
1-3 regional lymph nodes are positive (tumor in lymph nodes ≥0.2 mm), or any number 
of tumor deposits are present and all identifiable lymph nodes are negative 

   N1a  1 regional lymph node is positive 

   N1b 2 or 3 regional lymph nodes are positive 

   N1c 

No regional lymph nodes are positive, but there are tumor deposits in the: 
◾ Subserosa 
◾ Mesentery 
◾ Nonperitonealized pericolic, or perirectal/mesorectal 

N2 4 or more regional nodes are positive 

   N2a 4-6 regional lymph nodes are positive 

   N2b 7 or more regional lymph nodes are positive 

Distant metastases(M) 

M0  No distant metastases 
M1 Metastasis to 1 or more distant sites or organs or peritoneal metastasis is identified 

   M1a Metastasis to one site or organ is identified without peritoneal metastasis 

   M1b Metastasis to two or more sites or organs is identified without peritoneal metastasis 

   M1c 
Metastasis to the peritoneal surface is identified alone or with other site or organ 
metastases 

Stage TNM Classification 

0 Tis, N0, M0 

I T1,T2, N0, M0 

IIA T3, N0, M0 

IIB T4a, N0, M0 

IIC T4b, N0, M0 

IIIA 
T1-T2, N1/N1c, M0  

T1, N2a, M0 

IIIB 
T3-T4a, N1/N1c, M0  

T2-T3, N2a, M0 

T1-T2, N2a, M0 

IIIC 
T4a, N2a, M0  

T3-T4a, N2b, M0  

T4b, N1-N2, M0 

IVA T (any), N (any), M1a 

IVB T (any), N (any), M1b 

IVC T (any), N (any), M1c 
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Figure 5: CRC TNM staging AJCC/ UICC, 8th edition  

The diagram illustrates the depth of tumor invasion in the bowel wall, the extent of lymph node involvement, and the 
extent of metastasis in CRC stages from 0 to IV. For the National Cancer Institute © 2018 Terese Winslow LLC, U.S. 
Govt. has certain rights.  
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1.4.1.2 Tumor grade 

Tumor grade is a traditional prognostic parameter in CRC, which can be assessed on 

hematoxylin and eosin (H&E) stained slides 106. Tumor grading describes the degree 

of tumor cell differentiation and the resemblance of the tumor to the tissue of origin. 

Grading of CRC can only be applied on adenocarcinomas, not otherwise specified 

(NOS) which represent 90 % of all CRCs. Moreover, grading should be based upon 

the least differentiated component of carcinomas which are sometimes heterogeneous 

and should not include the leading front of tumor invasion 107. 

According to the current WHO classification, tumor grading, depending on the extent 

of glandular appearance, classifies tumors into low grade, showing 50 % or more gland 

formation (formerly well- to moderately differentiated) and high grade, showing less 

than 50 % gland formation (formerly poorly differentiated) 107. Notably, combining well 

and moderately differentiated into low grade reduces interobserver variation in the 

interpretation of tumor grade and improves its prognostic significance 103. Tumor 

grading has a prognostic value in CRC, since the loss of differentiation during tumor 

progression has repeatedly been associated with tumor aggressiveness, thereby 

indicating poor patients’ outcome. However, it is not always true because some CRC 

tumors may show high grade morphology but behave as low grade tumors because of 

their DNA mismatch repair status/MSI status 108. 

1.4.1.3 Lymphovascular invasion (LVI) and perineural invasion (PNI) 

Tumor invasion into veins or lymphatics or the space surrounding nerves is an 

important prognostic determinant for CRC 109,110. Moreover, lymphovascular and 

perineural invasion are included in the definition of "high-risk" stage II colon cancer 

111,112, and usually are associated with poor prognosis 113,114  
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1.4.1.4 Other pathological features 

There are other factors that could affect CRC prognosis, including status of the surgical 

resection margins, tumor border configuration, host immune response, Peritumoral 

fibrosis and tumor location 115-119. 

1.4.2 Clinical factors 

Poor prognostic clinical factors at diagnosis include bowel obstruction or perforation 

and high preoperative carcinoembryonic antigen (CEA) level 120.  

1.4.3 Molecular factors 

1.4.3.1 Microsatellite instability 

MSI reflects deficiency of mismatch repair enzymes, and it has been demonstrated to 

be an independent positive prognostic factor after curative resection of CRC 121,122. In 

Patients with localized CRCs (stages I and II), tumors that are MMR-deficient/MSI-H 

are associated with longer survival, compared with MMR-proficient /MSI-L or MSS 

tumors 123,124. Additionally, MSI in combination with BRAF status seems to be predictive 

of a lack of response to chemotherapy 125. Furthermore, it has been suggested as a 

predictive marker for response to immunotherapy such as anti-programmed-cell-death 

protein 1 (PD-1) therapy 126 

1.4.3.2 RAS and BRAF mutations 

RAS and BRAF mutational status has a significant prognostic and predictive value 127, 

and has become part of routine pathological evaluation for CRC greater than stage I, 

since it may alter treatment strategy 128,129. RAS mutations, including KRAS and NRAS 

codons 12 and 13 of exon 2; 59 and 61 of exon 3; and 117 and 146 of exon 4, are used 

to identify CRC patients who will not benefit from anti-epidermal growth factor receptor 

(EGFR) treatment 130. BRAF mutations, in particular the V600E mutation, are 
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demonstrated to be associated with worse survival in CRC patients with microsatellite 

stable (MSS) tumors compared with those with microsatellite instable (MSI) tumors 131.  

1.4.3.3 Other molecular markers 

The prognostic value of other potentially clinically applicable molecular markers has 

been studied in CRC. However, many individual markers linked to CRC outcome were 

not selected due to best performance in outcome prediction but based on certain tumor 

cell characteristics or phenotypic traits, such as markers for putative cancer stem cells 

and budding colon cancer cells, respectively 132,133.  

1.4.3.4 Consensus Molecular Subtypes 

In addition to predictive biomarkers for CRC risk stratification, owing to recent advances 

in understanding the molecular characterization of CRC, a number of gene expression 

based classifications has been suggested and may improve clinical risk stratification 

134,135. Recently, classification of CRCs into four consensus molecular subtypes (CMSs) 

with distinguishing molecular and clinical characteristics has been proposed. In this 

classification, CRCs with subtype CMS1 involve MSI-H tumors, and also tumors with 

a CIMP and mutations in the BRAF oncogene, whereas CSM2 CRCs have high CIN 

as well as activation of the Wnt signalling. Additionally, CRCs with subtype CMS3 

include tumors with KRAS mutations and show disruption of metabolic pathways, and CSM4 

CRCs have a mesenchymal phenotype and frequently, CIMP phenotype134. Moreover, it 

was demonstrated that CMS1 tumors are associated with a good prognosis, whereas 

the CMS4 tumors are associated with a poor prognosis, and the CMS2 and CMS3 

tumors have an intermediate prognosis 134,136,137 . 

Finally, Molecular classification is not yet ready for incorporation into available staging 

systems or prognostic stratifications, and it is difficult to be reproducible since it requires 

analysis of a large number of genes. Therefore further robust and potential prognostic and 
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predictive genetic markers are needed for CRC risk stratification; hence, improving CRC 

patients’ outcome and clinical decision making regarding therapeutic strategies. 
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2 AIMS OF THE STUDY 

The present study had the following aims: 

• Identify robust prognostic biomarkers for patient outcome in colorectal cancer 

through exploitation of the publicly available TCGA dataset. 

 

• Explore the distribution and expression levels of RBP7 and Annexin A9 on the 

protein level using tissue collections of colorectal cancer patients with long 

survival follow-up data. 

 

• Evaluate the prognostic power of RBP7 and Annexin A9 for patients with 

colorectal cancer.   

 

• Investigate the functional relevance of RBP7 in colorectal cancer using 

biological assays. 
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3 MATERIALS 

3.1 Chemicals and reagents 

Table 2. Chemicals and reagents used in this study  

Chemical/Reagent Manufacturer 

4x Laemmli Sample Buffer Bio-Rad, Munich, Germany 

Acetic acid 100 % Carl Roth GmbH, Karlsruhe, Germany 

Agarose Biozym LE Biozym Scientific, Hessisch Oldenforf, Germany 

All-purpose Hi-Lo DNA Marker Bionexus Inc., Oakland, CA, USA 

Ammonium peroxodisulfate Carl Roth GmbH, Karlsruhe, Germany 

Ampicillin sodium salt Sigma-Aldrich, St. Louis, MO, USA 

Bovine serum albumin 25 % (BSA) Thermo Fisher Scientific Inc., Waltham, MA, USA 

BSA (Albumin Faktor V) Carl Roth GmbH, Karlsruhe, Germany 

β-Mercaptoethanol Bio-Rad, Munich, Germany 

Crystal violet Carl Roth GmbH, Karlsruhe, Germany 

Dimethylsulfoxide Carl Roth GmbH, Karlsruhe, Germany 

DMEM Biochrom, Berlin, Germany 

Deoxycholic acid sodium salt Carl Roth GmbH, Karlsruhe, Germany 

Ethylenediaminetetraacetic acid Sigma-Aldrich, St. Louis, MO, USA 

Ethidium bromide solution 1 % Carl Roth GmbH, Karlsruhe, Germany 

Fetal Bovine Serum Biochrom, Berlin, Germany 

Fugene 6 Promega GmbH, Mannheim, Germany 

Glycine Carl Roth GmbH, Karlsruhe, Germany 

Immobilon-P PVDF Membrane Merck Millipore, Billerica, MA, USA 

Immobilon Western Chemiluminescent HRP 
Substrate 

Merck Millipore, Billerica, MA, USA 

LB Broth (Luria/Miller) Carl Roth GmbH, Karlsruhe, Germany 

Matrigel Corning Life Sciences, Tewksbury, MA, USA 
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Chemical/Reagent Manufacturer 

Methanol Carl Roth GmbH, Karlsruhe, Germany 

Opti-MEM Thermo Fisher Scientific Inc., Waltham, MA, USA 

Penicillin/Streptomycin Biochrom, Berlin, Germany 

SDS ultra pure Carl Roth GmbH, Karlsruhe, Germany 

Skim milk powder Sigma-Aldrich, St. Louis, MO, USA 

Sodium chloride Carl Roth GmbH, Karlsruhe, Germany 

TEMED Carl Roth GmbH, Karlsruhe, Germany 

TRIS Carl Roth GmbH, Karlsruhe, Germany 

TWEEN 20 Sigma-Aldrich, St. Louis, MO, USA 

 

3.2 Enzymes 

Table 3. Enzymes used in this study 

Enzymes Manufacturer 

Restriction endonucleases Thermo Fisher Scientific Inc., Waltham, MA, USA 

FastAP Thermosensitive Alkaline Phosphatase Thermo Fisher Scientific Inc., Waltham, MA, USA 

T4 DNA Ligase Thermo Fisher Scientific Inc., Waltham, MA, USA 

 

3.3 Kits 

Table 4. Kits used in this study 

Kits Manufacturer 

DC Protein Assay Bio-Rad, Munich, Germany 

ImmPRESS HRP Anti-Rabbit IgG (Peroxidase) 
Polymer Detection Kit 

Vector Laboratories Inc., Burlingame, CA, USA 

mi-Plasmid Miniprep Kit Metabion International AG, Planegg, Germany 

PureYield Plasmid Midiprep System Promega GmbH, Mannheim, Germany 

QIAamp DNA Micro Kit Qiagen GmbH, Hilden, Germany 
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Kits Manufacturer 

Rapid DNA Ligation Kit Thermo Fisher Scientific Inc., Waltham, MA, USA 

ThinCert cell culture inserts Greiner Bio-One, Kremsmünster, Austria 

UltraView Universal DAB Detection Kit Ventana Medical Systems, Inc., Tucson, AZ, USA 

Wizard SV Gel and PCR Clean-Up System Promega GmbH, Mannheim, Germany 

 

3.4 Bacterial strain and vectors 

Table 5. Bacterial strain and vectors used in this study 

Strain Source 

Escherichia coli DH5α Invitrogen GmbH, Karlsruhe, Germany 

Vector name Source 

pcDNA3.1 Invitrogen GmbH, Karlsruhe, Germany 

RBP7 gene fragment Integrated DNA Technologies, Inc., Coralville, Iowa, USA 

 

3.5 Antibodies  

Table 6. Antibodies used in this study 

Antibody Source/Clone Manufacturer/Catalog # 
Dilution used 

IHC WB 

Primary antibodies 

ANXA9 Mouse/F9 Santa Cruz- Biotechnology/sc-374288 1:00 - 

RBP7 Rabbit Sigma-Aldrich/HPA034749 1:100 1:250 

Tubulin Mouse/DM1A Sigma-Aldrich/T6199 - 1:50000 

Secondary antibodies 

Anti-Mouse HRP Goat Promega GmbH/W4021 - 1:30000 

Anti-Rabbit HRP Goat Sigma-Aldrich/12-342 - 1:5000 

Immunohistochemistry (IHC), Western Blot (WB) 
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3.6 Buffers 

Table 7. Buffers used in this study 

Buffer Components 

4x Lower gel buffer 0.4 % SDS, 1.5 M TRIS, pH 8.8 
 

4x Upper gel buffer 0.4 % SDS, 500 mM TRIS, pH 6.8 

 

10x Running buffer 1.92 M Glycine, 1 % SDS, 250 TRIS, pH 8.5 
 

10x TBS buffer 150 mM NaCl, 20 mM TRIS, pH 7.6 
 

1x TBST buffer 10x TBS buffer, 0.1 % Tween 20 
 

10x Transfer buffer 1.92 M Glycine, 20 % Methanol, 1 % SDS, 250 mM TRIS, pH 8.5  
 

50x TAE buffer 20 mM Acetic acid, 1 mM EDTA, 40 mM TRIS, pH 8.0 
 

RIPA buffer 

1 % NP 40, 150 mM NaCl, 0.1 % SDS, 0.5 % Deoxycholic acid sodium salt, 

 50 mM TRIS hydrochloride, pH 8.0 

 
 

3.7 Laboratory equipment  

Table 8. Equipment used in this study 

Equipment Manufacturer 

BenchMark XT Ventana Medical Systems, Inc., Tucson, AZ, USA 

Centrifuge 5415R Eppendorf AG, Hamburg, Germany 

Heracell 240i CO2 Incubator Thermo Fisher Scientific Inc., Waltham, MA, USA 

Heraeus Megafuge 40R Centrifuge Thermo Fisher Scientific Inc., Waltham, MA, USA 

Herasafe KSP Class II Biological Safety Cabinet Thermo Fisher Scientific Inc., Waltham, MA, USA 

HTU SONI-130G. Heinemann Ultraschall- und 
labortechnikMini-PROTEAN Tetra Cell Bio-Rad, Munich, Germany 

NanoDrop 1000 Spectrophotometer Thermo Fisher Scientific Inc., Waltham, MA, USA 
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Equipment Manufacturer 

Odyssey Fc Imaging system LI-COR Biosciences, Bad Homburg, Germany 

PerfectBlue 'Semi-Dry'-Blotter, Sedec Peqlab Biotechnologie GmbH, Erlangen, Germany 

T100 Thermal Cycler Bio-Rad, Munich, Germany 

Theromixer comfort Eppendorf AG, Hamburg, Germany 

Varioskan Flash Multimode Reader Thermo Fisher Scientific Inc., Waltham, MA, USA 

 

3.8 Software and databases 

Table 9. Software and database used in this study 

Software/Datebase Reference 

cBioPortal https://www.cbioportal.org 

Endnote X9 Clarivite analytics, https://endnote.com 

GraphPad Prism version 5.0 GraphPad Software, www.graphpad.com  

GSEA  Broad Institute, http://software.broadinstitute.org/gsea/index.jsp 

Microsoft Office Excel 2010 Microsoft Corporation 

Morpheus Broad Institute, https://software.broadinstitute.org/morpheus 

PANTHER version 10.0  www.pantherdb.org 

Qupath https://qupath.github.io 

SPSS version 25.0 IBM, https://www.ibm.com 

TCGA https://cancergenome.nih.gov 
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4 METHODS 

Parts of the methods presented in this section are from Elmasry et al., 2019 1. 

4.1 Clinical samples collection 

All tumor samples used in this work were from CRC patients who underwent curative 

surgical resection between 1994 and 2007 at the hospital of the Ludwig-Maximilians-

Universität München (LMU), had long survival follow-up data and had no history of 

receiving adjuvant therapies. Follow-up data of these patients were registered by the 

Munich Cancer Registry, all information regarding their personal identification was 

removed from samples and follow-up data, and the need for consent was waived by 

the institutional ethics committee of the Medical Faculty of the LMU. All Samples were 

collected from the archives of the Institute of Pathology of the Ludwig-Maximilians-

Universität München (LMU) in the form of Formalin-fixed, paraffin-embedded (FFPE) 

tissue blocks. From these blocks Tissue microarrays (TMAs) with representative 1 mm 

cores were constructed, including tumor edges and tumor centers of each case. 

Furthermore, information about tumor stage and grade of tumor differentiation in each 

case was reviewed. 

For evaluation of RBP7 expression, a collection of tumor samples from 219 cases with 

localized colorectal adenocarcinomas and without lymph node involvement or distant 

metastasis at the time of diagnosis (UICC stage I and II 96,97) was used. During the 

follow-up period of these patients, 42 cases (19 %) have died from CRC. 

Furthermore, for validating ANXA9 for survival and metastasis prediction, survival and 

metastatic collections of colon cancer patients were analysed. The survival collection 

constituted of 244 tumor samples from cases with UICC stage II CRC at the time of 

diagnosis. The median follow-up period for these cases was 4.9 years. Additionally, 

the metastatic collection had a case- control design and comprised of tumor samples 
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from 90 patients. No tumor tissue from these patients was used in the survival 

collection. 50 % of the patients used in the metastatic collection had colon cancer with 

synchronous liver metastases (UICC stage IV), detected via clinical imaging or liver 

biopsy. Moreover, this collection included a group of patients with colon cancer, no 

distant metastasis at the time of diagnosis (UICC stages I–III) and at least 5 years 

disease-free survival after primary surgical resection as controls. Criteria used for 

matching cases and controls were right sided location of tumor, T-category and tumor 

grade (according to WHO 2010), giving rise to 46 matched pairs. 

4.2 Immunohistochemistry 

4.2.1 Immunohisochemical staining 

5 µm sections were cut from constructed colon cancer TMAs, deparaffinized with 

xylene and rehydrated with graded ethanol. Then, staining was carried out on a 

BenchMark XT autostainer (Ventana Medical Systems) by using primary antibodies 

which were listed with their dilutions in section 3.5 (Table 6). Subsequently, staining 

was visualized by ultraView DAB detection kits (Ventana Medical Systems). 

4.2.2 Immunohistochemical scoring 

For RBP7 staining, the expression intensities were categorized at first by semi-

quantitative scoring into barely detectable, weak, moderate or strong expression, 

based on the extent of positive staining, followed by quantitative scoring, slides were 

scanned using a Panoramic Desk digital slide scanner (3D Histech), and analyzed 

using the QuPath digital image analysis software 138. All scanned images of 

immunohistochemically stained TMA sections were imported into QuPath to be 

dearrayed, and computational color deconvolution was applied to separate 

haematoxylin and 3,3’-diaminobenzidine (DAB) stains, as previously described 139. An 

automated detection algorithm was used in QuPath to differentiate tumor and non-
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tumor cells. After calibration of RBP7 immunopositivity thresholds, H-scores were 

calculated based on the extent and intensity of RBP7 nuclear staining by adding 3x % 

of strongly stained tumor cells, 2x % of moderately stained tumor cells, and 1x % of 

weakly stained tumor cells 138. For regional differences, H-scores of RBP7 staining 

were separately determined in tumor cells at the tumor stroma interface (tumor edge), 

and 100 µm or more away from the tumor stroma interface (tumor center), for each 

case. All analyses were conducted in a blinded fashion from clinical outcome. 

For ANXA9 staining, semi-quantitative scoring was used to assess the degree of 

expression and a numerical score was given: score 0 (no tumor cells stained), score 1 

(<10 % tumor cells stained), score 2 (10 %-50 % tumor cells stained), or score 3 (> 50 

% tumor cells stained). 

4.3 TCGA colon cancer data analysis and GSEA 

The colon cancer related mRNA expression profile and corresponding clinical and 

mutational data of 457 cases were downloaded from the TCGA database and 

cBioPortal (https://www.cbioportal.org/). To explore the functional relevance of RBP7, 

a ranked gene list was generated by calculating Pearson correlations of RBP7 

expression and the expression of 20,531 genes within the TCGA dataset. Then, 

correlations between this ranked gene list and curated gene sets from the Molecular 

Signatures Database v5.0 140 were searched for by gene set enrichment analysis 

(GSEA) 141. The default parameters of GSEA using gene lists of 15 to 500 genes were 

applied, and analyses were run with 1,000 permutations. Heat maps and clustering for 

RBP7 mRNA expression and individual EMT regulators were generated by using 

Morpheus software (Broad Institute, https://software.broadinstitute.org/morpheus/). 

For RAS and BRAF status, activating mutations in codons 12, 13, 61, 117, and 146 of 

KRAS and NRAS, and in codon 600 of BRAF were considered, respectively. 

Furthermore, the 194 putative genes for survival and metastasis prediction were 
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characterized according to the classes of proteins they encode by using PANTHER 

version 10.0 (www.pantherdb.org). 

4.4 RBP7 cloning in vector pcDNA3.1 

A synthetic sequence containing RBP7 mRNA transcript variant 1 (accession number 

NM_052960.2) was created via Integrated DNA Technologies. The mammalian 

expression vector, pcDNA3.1 (Invitrogen) was used as an insert plasmid target. 

pcDNA3.1 was digested using Eco32I restriction enzyme, dephosphorylated, then 

loaded on a 1 % agarose gel to be separated by electrophoresis at 120 V and extracted 

at the end from gel using WizardSV Gel and PCR Clean-up System. Next, RBP7 

synthetic sequence was inserted between BamH1 and Xba1 sites of pcDNA3.1 vector 

using T4 DNA ligase. Successful cloning was finally verified by restriction analysis and 

Sanger sequencing (GATC Biotech). 

4.5 Bacterial cell culture  

For cloning the RBP7 expression vector and replicating plasmids with an ampicillin 

resistance, the Escherichia coli DH5α strain was used. The bacterial cells were grown 

overnight at 37 °C in LB-medium containing 100 µg/ml ampicillin for the selection of 

antibiotic-resistant cells. For transforming bacterial cells, plasmid DNA and competent 

E. coli DH5α were mixed and incubated on ice for 30 minutes and then a heat shock 

in a 42 °C water bath for 45 seconds was performed, followed by cooling the bacteria 

on ice for 2 minutes and incubation in 500 µL LB medium without antibiotics at 37 °C 

for 45 minutes. Afterwards, bacteria were cultured on LB agar plates containing 

ampicillin and let to grow at 37 °C overnight. For multiplying the transformed bacteria, 

a single bacterial colony was picked, inserted in LB medium with added ampicillin and 

let to grow at 37 °C on a shaker for 12 hours. Finally, Plasmid DNA was extracted and 

purified from bacteria by using the mi-Plasmid Miniprep Kit (Metabion) or the PureYield 

Plasmid Midiprep System (Promega) according to the manufacturer's instructions. 
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4.6 Cancer cell culture 

4.6.1 Preparation of human colon cancer cell lines  

HCT116 and SW1222 human colon cancer cell lines were purchased from the 

American Type Culture Collection. Cells were grown in DMEM media supplemented 

with 10 % FBS, 100 U/ml penicillin, and 0.1 mg/ml streptomycin (Biochrom) and kept 

in an incubator at 37 °C and 5 % CO2. Cryopreservation of culture cells was performed 

by slowly cooling cells to -80 °C using 90 % FCS and 10 % DMSO (Sigma) and then 

cells were transferred into liquid nitrogen for long term preservation. 

4.6.2 Transient transfection of cells by plasmids 

For transient RBP7 overexpression, HCT116 and SW1222 colon cancer cells were 

seeded in 35-mm dishes. 24 hours after seeding, 36 μl FuGENE 6 (Promega) was 

added to Opti-MEM (Thermo Fisher) and incubated to 5 minutes, followed by adding 1 

ug of constructed plasmid pcDNA3.1-RBP7 or, as control, empty plasmid pcDNA3.1 

(Invitrogen) and incubated for another 15 minutes. Subsequently, the transfection 

mixture was added to the plated cells and then they were incubated. 48 hours after 

transfection, transfected cells were harvested for further analysis. 

4.7 Western blot analysis 

Transfected HCT116 and SW1222 colon cancer cells were lysed in ice cold RIPA 

buffer containing protease and phosphatase inhibitors (Roche), followed by sonication 

twice for 10 seconds (HTU SONI-130). Next, samples were centrifuged at 13000 rPM 

for 30 min at 4°C and supernatants were transferred to new tubes. The Protein 

concentration of the lysates was determined by DC protein assay kits (Bio-Rad) as 

stated in the manufacturer’s protocol and measured by using a Varioskan Flash 

Multimode Reader with SkanIt Software 2.4.4 (Thermo Fisher Scientific). For preparing 

samples for electrophoresis, 30 µg of the diluted protein samples with 4x Laemmli 
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sample buffer (Biorad) and added 10 % β-Mercaptoethanol (Biorad) were denaturated 

at 95 C for 5 minutes. Next, samples were loaded on a 10 % SDS-PAGE gel and 

separated by molecular weight after running the gel in Mini-PROTEAN Tetra Cell 

(Biorad) filled with TRIS/glycine/SDS running buffer. The gel was run at 90 volt for 20 

minutes followed by 120 volt for 60 minutes. After electrophoresis, the separated 

proteins are blotted onto PVDF membranes, Immobilon-P (Millipore) soaked up in 

transfer buffer using the PerfectBlue 'Semi-Dry'-Blotter, Sedec (Peqlab). 

Electrotransfer was performed at 100 mA and 10 volt for 20 minutes. The membranes 

were then placed in 5 % blocking solution (5 % non fat dried milk diluted in TBST) for 

1 hour on a shaker then washed once in TBST and incubated with primary antibodies 

in 5% bovine serum albumin (Carl Roth) diluted in TBST overnight in 4°C on a shaker. 

Next, the membranes were washed with TBST for 10 minutes on a shaker, repeated 3 

times. Afterwards, the membranes were incubated in secondary antibody in 5% non 

fat dried milk diluted in TBST for 1 hour then washed with TBST for 10 minutes on a 

shaker, repeated 3 times. Finally, the membranes were incubated with a 

chemiluminescent HRP substrate (Millipore) for 1-2 minutes then protein bands were 

detected using the Odyssey Fc imaging system (Li-COR). Primary and secondary 

antibodies used are listed in section 3.5 (Table 6). 

4.8 Cell migration and invasion assays 

To analyze the effect of RBP7 overexpression on cell migration and invasion, a cell 

suspension containing 1x105 transfected HCT116 and SW1222 colon cancer cells/ml 

in serum free medium was prepared, and then 250 μl of this cell suspension solution 

was added to the inside of each upper chamber of ThinCert cell culture inserts with 8 

μm pore size (Greiner Bio-One). To carry out cell invasion assays, 100 µl of 1 mg/ml 

growth factor depleted Matrigel (Corning) were added to the inserts and solidified in a 

37°C incubator for 30 minutes before adding the transfected colon cancer cells. Next, 

500 µl serum-free medium was added to the lower chamber of the inserts, and replaced 
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after 24 hours by DMEM containing 10 % FBS. After incubation in a cell culture 

incubator for 48 hours for migration and 96 hours for invasion, inserts were removed; 

cells were fixed by adding 4 % paraformaldehyde then Methanol into both sides of 

inserts, and then stained by 0.1 % crystal violet. Cells that have not migrated or invaded 

were removed carefully from the upper surface of the filters by cotton swabs and 

photomicrographs of migrated or invaded cells were taken. To quantify cell migration 

and invasion rates, the culture inserts were incubated in 250 µl of 30 % acetic acid for 

30 seconds on a shaker, the stained migrated or invaded cells will be lysed by the 

acetic acid and the Crystal Violet will be liberated. Finally, the optical density of the 

30% acetic acid was read using a Varioskan Flash Multimode Reader with SkanIt 

Software 2.4.4 (Thermo Fisher Scientific). 

4.9 Statistical analysis 

Receiver operated characteristic (ROC) curve analysis was used for binary 

classification of CRC cases. Moreover, the optimal cutoff values for RBP7 protein and 

mRNA expressions were determined by Youden’s index, whereas for mRNA reads of 

TCHH, ANXA9, HOTAIR, CCT6B and MCU were determined manually. Cancer-

specific survival involved the time period from the date of tumor resection to the date 

of death from colon cancer, deaths of a cause other than colon cancer were censored. 

The cancer specific survival was analyzed using the Kaplan-Meier method, and the 

log-rank test was used to compare the differences between groups. The univariate 

analysis and multivariate analysis were carried out using Cox proportional hazards 

model, and the hazard ratio (HR) and the associated 95 % confidence interval were 

calculated. Cases with missing data were excluded from respective analyses. t-tests 

were used to compare the differences between some groups. z-scores for survival and 

metastasis were generated using Microsoft Office Excel 2010. SPSS v.25.0 (IBM) and 

GraphPad Prism v.5.00 were used. For all analyses, a p value < 0.05 was considered 

statistically significant. 
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5 RESULTS 

5.1 Identification of RBP7 as a prognostic biomarker in colon cancer 

The results presented in this section are part of Elmasry et al., 2019 1. 

5.1.1 RBP7 is expressed in colon cancer cell subpopulations 

To learn about the distribution and expression of RBP7 in colon cancer, we examined 

tissue specimens of a collection of 219 colon adenocarcinomas. RBP7 protein was 

located in the tumor cell nuclei of colon cancers. The number of RBP7 positive tumor 

cells and expression intensities varied greatly, ranging from barely detectably in few, 

to strong expression in most tumor cells (Figure 6A). Interestingly, within individual 

cancers RBP7 expression was not evenly distributed but instead labelled tumor cell 

subsets, which was most apparent in cases with weak to moderate expression (Figure 

6A). Next, in order to assess RBP7 expression objectively, we applied a digital 

quantitative scoring approach to determine H-scores 138 that integrated the frequency 

(range 0 %-100 %) and staining intensity (range 0-3) of RBP7 positive tumor cells for 

each case (Figure 6B). In line with our initial semiquantitative analysis, H-scores 

ranged widely among different colon cancers, with a minimum of 0 and a maximum of 

184.27 in our case collection (Figure 6B-C). We then analyzed different regions within 

each tumor, and observed that tumor cells close to the tumor edge showed significantly 

higher RBP7 expression scores when compared to tumor cells that were located in the 

tumor center (Figure 6D) 
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Figure 6. RBP7 protein expression and distribution in colon cancer. 

(A) Detection of RBP7 by immunostaining in primary human colon cancers. Tumors were assigned semi-quantitative 
categories from barely detectable to strong expression of RBP7. Arrows indicate positively stained tumor cells in cases 
with weak or moderate expression. Lower panel images are magnifications of areas boxed in upper panel images. 
Scale bars, 100 μm. (B) Representative images showing digital quantitative scoring of RBP7 protein expression on the 
same cases as in (A). Detected cells were color-coded according to their classification. Green, non-tumor cells. Blue, 
negative tumor cells. Yellow, weakly stained tumor cells. Orange, moderately stained tumor cells. Red, strongly stained 
tumor cells. H-scores are indicated. Lower panel images are magnifications of areas boxed in upper panel images. (C) 
Histogram showing the distribution of H-score values in n = 219 colon cancer cases. (D) Distribution of H-scores, when 
separately measured in tumor cells at the tumor stroma interface (tumor edge), and 100 μm or more away from the 
tumor stroma interface (tumor center). Horizontal bars indicate mean and P-value is t-test result. Figure from Elmasry 
et al., 2019 1. 
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These data indicated that RBP7 is expressed in tumor cell nuclei of most colon 

cancers, increases in expression towards the tumor edge, and can be quantitatively 

assessed in tumor tissue specimens. 

 

5.1.2 High RBP7 expression indicates poor outcome in patients with early stage colon 

cancer 

In order to determine the clinical significance of RBP7 expression in colon cancer, we 

tested for associations with clinicopathological variables and patient follow-up in our 

collection of 219 cases, which included UICC stages I and II. Using ROC curve analysis 

and Youden’s index for cancer specific survival, we identified an optimal cut-off H-score 

of 32.5 for dichotomal classification into cases with high or low RBP7 expression, 

respectively (Figure 7A). Indeed, Kaplan-Meier analysis and log-rank testing 

demonstrated significantly poorer cancer specific survival of patients whose tumors 

were RBP7 high when compared to RBP7 low cases (P = 0.003; Figure 7B).  

 
Figure 7. High RBP7 expression indicates poor survival in colon cancer patients. 
(A-B) Analysis of RBP7 protein expression and cancer specific survival in a case collection of n = 219 UICC stage I 
and II colon cancer cases. (A) ROC curve for determining best discrimination thresholds of RBP7 H-scores for tumor 
specific survival prediction. Arrow indicates chosen value for binary classification. AUC, area under curve. (B) Kaplan-
Meier plot for tumor specific survival of cases with low or high H-scores. P-value indicates a log-rank test result. Ratios 
on curves indicate the number of events over the number of patients per group. HR, hazard ratio. Figure from Elmasry 
et al., 2019 1. 

Next, we evaluated correlations of RBP7 high and low expression with other 

clinicopathological variables by Chi-square testing. High RBP7 expression marginally 
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significantly correlated with high tumor grade (P = 0.05), whereas we found no 

correlations with age, gender, T-category, or UICC-stage (Table 10). 

Table 10. Clinical data and RBP7 protein expression in UICC stage I and II colon cancer 
Table from Elmasry et al., 2019 1.  

Moreover, proportional hazards regression analysis demonstrated that high RBP7 

expression was an independent predictor of poor tumor specific survival in this case 

collection (HR = 2.54; P = 0.009; Table 11). 

Table 11. Multivariate analysis of cancer specific survival in UICC stage I and II colon 
cancer. Table from Elmasry et al., 2019 1. 

 

These findings suggested that RBP7 is a prognostic marker in early stage colon 
cancer. 
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5.1.3 High RBP7 expression is an independent predictor of poor survival in colon 

cancer 

For further validation, we next tested for clinical correlations of RBP7 mRNA levels 

using publicly available gene expression data of 457 colon cancer cases from TCGA , 

379 of which had information on clinical follow-up. ROC curve analysis and Youden’s 

index identified an optimal cutoff score of 21.01 RBP7 normalized mRNA reads for 

dichotomal classification of cases (Figure 8A). Also in this data set, Kaplan-Meier 

analysis and log-rank testing demonstrated a strong positive correlation of high RBP7 

expression and poor cancer specific survival when compared to tumors with low RBP7 

levels (P = 0.00007; Figure 8B). 

Figure 8. High RBP7 expression indicates poor survival in colon cancer patients. 
(A-B ) Analysis of RBP7 mRNA expression and cancer specific survival in n=379 colon cancer cases from TCGA (A) 
ROC curve for determining best discrimination thresholds of RBP7 mRNA reads for survival prediction. Arrow indicates 
chosen value for binary classification. AUC, area under curve. (B) Kaplan-Meier plot for cases with low or high RBP7 
mRNA expression. P-value indicates a log-rank test result. Ratios on curves indicate the number of events over the 
number of patients per group. HR, hazard ratio. Figure from Elmasry et al., 2019 1. 

 

We then tested for associations with other core clinical variables, and found that the 

frequency of high RBP7 expression increased with increasing T-category and also was 

higher in tumors that had metastasized to lymph nodes. Other variables including 

microsatellite instability as well as RAS and BRAF mutation status were not associated 

with RBP7 (Table 12). 
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Table 12. Clinical data and RBP7 mRNA expression in colon cancer cases from TCGA. 

Table from Elmasry et al., 2019 1.

Furthermore, proportional hazards regression analysis including key clinical variables 

demonstrated independent prognostic power of high RBP7 mRNA expression (HR = 

2.5, P = 0.038; Table 13).  

Table 13. Multivariate analysis of cancer specific survival in colon cancer cases from 
TCGA. Table from Elmasry et al., 2019 1. 
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Collectively, these data provided additional evidence on the mRNA level that RBP7 is 

linked to advanced tumor stages and colon cancer progression. 

 

5.1.4 RBP7 is linked to invasion and EMT in colon cancer 

To gain insights into the functional role of RBP7 in colon cancer, we conducted Gene 

Set Enrichment Analyses (GSEA) using the TCGA dataset. Interestingly, when we 

tested for associations with curated gene sets (n = 4.762), we found a top enrichment 

for a multicancer invasiveness gene signature 142, while RBP7 itself was not part of this 

gene set (Figure 9A). 

Figure 9. RBP7 expression is linked to invasion and EMT in colon cancer. 
(A-B) Gene Set Enrichment Analyses for genes ranked by Pearson correlation (Pearson r) of expression to RBP7 
indicates enrichment for (A) multicancer invasion and (B) hallmark EMT gene signatures. P < 0.001. (C) Heat map 
indicates clustering and positive correlation of RBP7 expression with colon cancer relevant EMT markers and negative 
correlation with CDH1. Colors indicate Pearson r from -1 (blue) to 1 (red). Figure from Elmasry et al., 2019 1. 
 

We then further tested for associations with hallmark gene sets (n = 50) 143, and found 

the strongest enrichment for genes linked to epithelial mesenchymal transition. 

Moreover, individual markers that indicate or drive EMT in colon cancer showed a 

significant overexpression in tumors with high RBP7 expression, including ZEB1 (r = 
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0.27, P < 0.0001) and ZEB2 (r = 0.36, P < 0.0001) (Figure 9C). In contrast, the epithelial 

differentiation marker CDH1 negatively correlated with RBP7 (Figure 9C). Importantly, 

RBP7 itself again was not part of this EMT gene set. These findings suggested a 

previously unknown functional link of RBP7, invasion and EMT in colon cancer cells. 

5.1.5 Overexpression of RBP7 enhances migration and invasion of colon cancer cells 

Finally, due to its link with EMT and cancer invasion, we tested for a functional 

relevance of RBP7 for invasion and migration of colon cancer cells. We constructed a 

vector for transient overexpression of RBP7. Transfection of HCT116 and SW1222 

colon cancer cells with RBP7 encoding vector caused strong ectopic expression in both 

cell lines, when compared to empty control vector (Figure 10A). 
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Figure 10. Overexpression of RBP7 enhances migration and invasion of colon cancer 
cells. 
(A) Immunoblotting for indicated proteins on whole cell lysates of SW1222 and HCT116 colon cancer cells harvested 
48 h after transfection with pcDNA3.1-RBP7 (pRBP7) or empty pcDNA3.1 (pControl) vector. (B-C) Representative 
micrographs (left panels) and quantification (right panels) of migrated or invaded (B) SW1222 and (C) HCT116 colon 
cancer cells in transwell assays. Data are mean ± SD, n ≥ 3, P-values are t-test results. Figure from Elmasry et al., 
2019 1. 
We then seeded both cell lines in Boyden chamber assays that were coated with 

matrigel for invasion. Importantly, ectopic expression of RBP7 increased the number 

of migrated and invaded tumor cells, and these effects were comparable in both cell 

lines (Figure 10B-C). These findings supported the idea that RBP7 is a regulator of 

invasion and migration, which are malignant traits of colon cancer progression. 
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5.2 Unbiased screening for prognostic biomarker identifies Annexin A9 for 

independent risk stratification in colon cancer 

5.2.1 Identification of prognostic indictors in colon cancer  

To identify predictors of survival and tumor metastasis in colon cancer patients in an 

unbiased approach, we used gene expression and clinical data of 457 colon cancer 

cases from The Cancer Genome Atlas network (TCGA). For each of the 20,253 genes 

represented in this data set, we plotted receiver operator characteristics (ROC) curves 

for sensitivity and specificity in discriminating cancer survival and tumor metastasis, 

and then calculated the area under the curve (AUC) for each gene (Figure 11) 
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Figure 11. ROC curves for sensitivity and specificity in discriminating cancer survival 
and tumor metastasis 
Using mRNA expression level of each gene in TCGA data. Orange curves indicate genes with AUC values > 0.5, while 
green curves indicate genes with AUC values < 0.5.  

 

To equally weigh both AUC-survival and AUC-metastasis values for further analyses, 

we then transformed them into normalized z-scores for survival (zsurv) and metastasis 

(zmet). Direct comparison of zsurv and zmet for all genes confirmed the expected linkage 

of survival and metastasis prediction in this data set (Figure 12A), and allowed us to 

combine both into a single average zsurv/met score. Next, to determine significance levels 

for outcome prediction, we classified colon cancer cases into those with low and high 

expression for each gene by expression median, and calculated P-values for survival 

and metastasis prediction by Log-Rank and Chi-square testing, respectively. 

Moreover, Plotting average P-values of both tests against zsurv/met illustrated that genes 

with high significance levels in survival and metastasis prediction were among those 

with lowest and highest zsurv/met scores and validating that our approach identified 

potential predictors of cancer outcome in this dataset (Figure 12B). Of note, when 

comparing median gene expression levels to zsurv/met scores, genes that predicted 

outcome showed rather average expression levels, while genes with low or extremely 

high expression levels were less likely linked to patient outcome (Figure 12C). 
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Figure 12. Volcano plots of normalized z-scores for survival (zsurv) and metastasis (zmet) 
for all TCGA genes. 

(A) Direct comparison of zsurv and zmet for all genes confirm the expected linkage of survival and metastasis in TCGA 
data. (B) Plotting average -P values for survival and metastasis prediction against zsurv/met shows that  genes with high 
significance levels in survival and metastasis prediction were among those with lowest and highest zsurv/met scores. (C) 
Comparing median gene expression levels to zsurv/met scores shows that genes with low or extremely high expression 
levels were less likely linked to patient outcome. Colored dots denote genes that are significantly upregulated (red & 
orange) or downregulated (green & blue) P = 0.0001, r ² = 0.31. 

 

Ranking all genes based on zsurv/met and filtering for those with significant P-values for 

survival and metastasis prediction resulted in a final list of 194 putative candidates with 

prognostic power in colon cancer. 

 

 

 

5.2.2 Characterization of identified indictors according to their encoded Protein and 

survival association 

To further characterize genes in this list, we added information on classes of proteins 

they encode. Of note, we found several candidates indicating poor survival and 

metastasis encoded for known or potential drug targets, transporters, transcription 

factors, or G-protein coupled receptors (Figure 13A). 
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Figure 13. Characterization of identified prognostic candidate genes according to 
classes of proteins they encode and survival association. 

(A) The result of PANTHER analysis of 194 putative prognostic genes showing the classes of proteins they encode. 
Blue bars indicate genes associated with good survival and absence of metastasis in CRC, whereas Red bars indicate 
genes associated with poor survival and metastasis in CRC. (B) Heat maps of the top 35 candidate genes for CRC 
prognosis indicators showing the correlation of each gene expression median and p values of survival, metastasis and 
main clinically relevant covariates prediction. Genes written in red color are associated with poor CRC outcome, while 
genes written in blue color are associated with good CRC outcome. Colors indicate Pearson r from -1 (red) to 1 (green). 

 

On the contrary, mitochondrial proteins were solely encoded by genes whose 

expression indicated good survival and absence of metastasis. Additionally, to 

determine which of these candidates may be potentially independent predictors of 

cancer survival, we calculated proportional hazards regression analyses for survival 

association for each gene, including age, gender, T-stage, nodal status, and 

microsatellite instability (MSI) as main clinically relevant covariates. 35 genes 

significantly passed this analysis, suggesting independent prognostic power in colon 

cancer, with TCHH and ANXA9 ranking top in poor survival prediction (Figure 13B). 

5.2.3 Identification of prognostic potential of the top 5 independent indicators of colon 

cancer outcome 

To test for prognostic usability of genes identified by this method, we focused on TCHH, 

ANXA9, and HOTAIR as the top independent genes whose expression indicated poor 

outcome, and CCT6B and MCU as top candidates indicating good outcome. Using 

ROC curve analyses, we manually determined best cutoff scores for dichotomal 
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classification of colon cancers by expression of these genes for survival prediction 

(Figure 14A). As expected, Kaplan-Meier plots indicated strong separation into groups 

with good and poor cancer survival by these genes (Figure 14B), and significantly 

selected for cases with high or low proportions of metastasized tumors, respectively 

(Figure 14C). Among these markers, ANXA9 performed best in multivariate analysis 

and high expression most significantly indicated tumors that had metastasized. 

Collectively, we therefore suggest that our list of genes derived from TCGA data 

provides a useful resource to identify not only predictors of outcome in colon cancer 

but also new potential therapeutic targets, and functionally relevant factors for cancer 

progression. 
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Figure 14. The prognostic potential of the top 5 independent indicators of colon cancer 
outcome.  

(A) ROC curves for determining best discrimination thresholds of the top 5 prognostic genes mRNA reads for survival 
prediction. Arrows indicate chosen value for binary classification. AUC = Area under curve. (B) Kaplan-Meier statistics 
for binary (low and high) classified top 5 prognostic genes expression indicates shorter tumor specific survival for TCHH, 
ANXA9, and HOTAIR high expression and longer tumor survival for CCT6B and MCU low expression. Significance p-
values indicate log-rank test results. Ratios on curves indicate the number of events over the number of patients per 
group. m.p = malignant potential. (C) Cases with high TCHH, ANXA9, and HOTAIR expression are significantly (t-test) 
associated with distant metastasis when compared to cases with low expression of these genes. While cases with high 
CCT6B and MCU expression are significantly (t-test) not associated with distant metastasis. P-values are log-rank test 
results. *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤ 0.001. 
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5.2.4 Validation of ANXA9 as a strong prognostic marker on the protein level 

Due to the highest significance in multivariate survival and metastasis prediction 

(Figure 15), we selected ANXA9 to test if our findings from the TCGA data set may be 

translated on the protein level in independent tissue collections of colorectal cancer. 

We used two collections, one stratified for survival analysis of cases with UICC stage 

II colon cancer (n = 244) and long term follow-up data, and a second matched case 

control collection of colon cancer patients with and without synchronous liver 

metastasis (n = 90).  

We analyzed both collections for ANXA9 protein expression by immunostaining and 

found differential expression among these cases, ranging from complete absence (2.4 

%, score 0), through weak (65.3 %, score 1) and moderate (29.0 %, score 2) 

expression, to strong expression (3.3 %, score 3, Figure 15). 

Figure 15. Immunostaining of ANXA9 in colorectal cancer tissues. 
Assessment of ANXA9 staining in a collection of 244 cases with stage II colon cancer. ANXA9 staining is restricted to 
the cytoplasm of colorectal cancer cells. According to intensity of ANXA9 staining, tumors were given scores from 0 (no 
ANXA9 staining) to 3 (strong ANXA9 staining in most tumor cells), and moreover categorized as ANXA9 low (score 0–
1) and ANXA9 high (score 2–3). Arrows indicate strong ANXA9 staining in tumor cells at the infiltrative edge. Lower 
panel images are magnifications of areas boxed in upper panel images (20X magnification). 

Furthermore, ANXA9 expression was heterogeneous within the tumors and was most 

strong in tumor cells at the leading tumor edge, including cells that invaded the 

surrounding stroma by apparently detaching from the gland forming tumor mass 

(Figure 15). In cases with weak and moderate expression, ANXA9 was absent in gland 

forming tumor cells of the tumor center, while in cases with strong ANXA9 expression, 
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staining extended to this compartment (Figure 15). Interestingly, stromal cells 

surrounding the tumor were negative for ANXA9, indicating that tumor cells exclusively 

or predominantly contributed to ANXA9 expression levels. 

 

5.2.5 High expression of ANXA9 predicts poor survival in colon cancer 

To test for clinical relevance of ANXA9 protein expression, we then looked at cancer 

survival in the collection of 244 colon cancer cases with clinical follow-up data. In 

Kaplan-Meier curves, ANXA9 expression scores significantly separated patients into 

groups with different cancer specific survival (Figure 16). 

Figure 16. High ANXA9 indicates poor survival in colorectal cancer. 

(A) Kaplan-Meier plots of cancer specific survival for different ANXA9 expression scores indicate significant poorer 
outcome with increasing ANXA9 expression. (B) Kaplan-Meier analysis of cancer specific survival for dichotomal 
ANXA9 expression (low and high). P-values indicate log-rank test results. Ratios on curves indicate the number of 
events over the number of patients per group. 

Importantly, all patients whose colon cancers were negative for ANXA9 (score 0) fully 

survived their follow-up period, while moderate or strong ANXA9 expression indicated 

worse outcomes (Figure 16A). Based on these observations and due to low prevalence 

of cases with ANXA9 expression scores 0 and 3, we then reclassified cases into two 

categories of low (scores 0 and 1) and high (scores 2 and 3) ANXA9 expression only. 

Kaplan-Meier curves indicated highly significantly different patient outcome of these 

two categories, with ten year survival rates of 75 % vs. 51 % of cases with low and high 
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ANXA9 expression, respectively (Figure 16B). Next, we determined associations of 

ANXA9 expression with other clinical and pathological variables. High ANXA9 

expression was slightly more frequent in female patients, while no associations with 

age, tumor grade or T-stage were found in this collection (Table 14). 

Table 14. Clinical data and ANXA9 protein expression in UICC stage II colon cancer. 

 

Importantly, multivariate proportional hazards regression analyses demonstrated that 

ANXA9 indicated poor cancer specific survival, independent of other clinical and 

pathological variables (Table 15). 

Table 15. Multivariate analysis of cancer specific survival in UICC stage II colon cancer 

Taken together, ANXA9 protein expression robustly predicted poor outcome in 

colorectal cancer patients in univariate and multivariate analyses. 
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5.2.6 High ANXA9 expression is strongly correlated with metastasis in colon cancer 

Finally, we tested for associations of ANXA9 expression and tumor metastasis in a 

case control collection of 90 colon cancer patients, half of which had metastasized to 

the liver at the time of diagnosis. Indeed, in this collection high ANXA9 expression 

strongly correlated with synchronous liver metastasis (Figure 17A, Table 16), while we 

also observed a weak association with nodal metastasis (Figure 17B, Table 16). 

 
Figure 17. High ANXA9 expression is significantly correlated with metastasis in colon 
cancer.  

(A) Cases with high ANXA9 expression in a matched case control collection of 90 colon cancer patients are significantly 
associated with liver distant metastasis when compared to cases with low ANXA9 expression. (B) The same cases as 
in (A) show a weak association with nodal metastasis. P-values are t-test results. 

In addition, and contrary to the survival collection, high ANXA9 expression was slightly 

more frequent in male patients, suggesting that associations of ANXA9 and gender 

where at random (Table 16). 
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Table 16. Clinicopathological variables and correlation with ANXA9 protein expression 
in a case control collection of 90 colon cancer patients 

Similarly to our findings in the survival collection, no correlations of ANXA9 with age, 

tumor grade or T-stage were found. Collectively, our findings demonstrate that ANXA9 

is a strong and independent marker for poor outcome and tumor progression in 

colorectal cancer, derived from the TCGA data set and validated in independent 

colorectal cancer case collections. 
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6 DISCUSSION 

Parts of the discussion presented in this section are from Elmasry et al., 2019 1 

6.1 RBP7 is a clinically prognostic biomarker and linked to tumor invasion and 

EMT in colon cancer 

RBP7 is one of the cellular retinol-binding proteins (CRBPs), which play an important 

role in vitamin A stability and metabolism 144. Vitamin A and its metabolites act as 

regulators of multiple biological activities, such as epithelial cell proliferation, 

differentiation, and apoptosis 145. Previous studies suggested that some CRBP 

members and Vitamin A signaling might promote CRC progression and regulate colon 

cancer stem cell functions 146,147. In addition, it was recently reported that RBP7 

expression is significantly increase in renal cell carcinomas and suggested that it may 

contribute to the progression of some types of cancer 148. However, nothing is known 

about RBP7 expression and function in colon cancer. 

This work demonstrates that RBP7 is a prognostic biomarker in colon cancer. Using a 

collection of 219 stage I and II colon cancer cases with long-term follow-up data, we 

show that high levels of RBP7 protein expression were strongly linked to poor cancer 

specific survival. This finding is important when considering that the clinical 

management of patients with colorectal cancer is mainly guided by disease stage. 

While patients with early and localized stage I and II disease generally have the best 

prognosis, and in most cases can be curatively treated by surgical resection alone, 

patients with advanced and metastatic disease may benefit from primary or adjuvant 

chemotherapy 149. However, in about 25-30 % of early stage colon cancer cases, the 

disease still recurs and progresses after surgical management, and may ultimately be 

fatal 108. 
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Therefore, high expression of RBP7 may be particularly useful to identify patients with 

colon cancer that are at high risk for disease progression, and thus may be candidates 

for adjuvant chemotherapy and increased clinical attention, despite low clinical stage. 

Additionally, we found that also on the mRNA level, RBP7 was significantly linked with 

poor outcome in an independent collection of 457 colon cancers from TCGA that 

included all tumor stages, and also was an independent prognostic biomarker in this 

case collection. This further validated and broadened the results from our own tissue 

collection. In addition, in this data set RBP7 levels increased with T-category and thus 

with the depth of bowel wall infiltration, suggesting a link of RBP7 and tumor invasion. 

Collectively, these findings demonstrated significant biomarker potential of RBP7 on 

protein and mRNA levels that may be useful for risk stratification in patients with colon 

cancer. 

Disease progression of colon cancer requires invasive growth of tumor cells into 

surrounding tissues, blood vessels, and lymphatics 150. Invasion often is tied to a loss 

of epithelial characteristics during epithelial-mesenchymal transition (EMT) 151. Looking 

at thousands of different curated and hallmark gene sets with GSEA, we found that 

RBP7 was most strongly linked to a multicancer invasiveness signature, as well as to 

a hallmark EMT gene signature 141-143. 

This is of particular interest because markers that indicate invasion and EMT in colon 

cancer are scarce, and detection of typical EMT biomarkers such as ZEB1, SNAIL1, 

or Vimentin in cancer tissues can be challenging, as reflected by yet few convincing in 

situ studies 152,153. On the contrary, we demonstrate that RBP7 can be robustly detected 

by immunohistochemistry in primary colon cancer, and quantified by digital image 

analysis. We therefore suggest that RBP7 may serve as a surrogate marker that 

indicates the overall degree of tumor invasion and EMT within colon cancer, which also 

may explain its association with poor prognosis. However, before implementation in a 
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clinical setting, i.e. to complement tumor staging, further independent confirmation of 

these findings will be mandatory. 

Ectopic expression of RBP7 increased migration and invasion, which demonstrates a 

direct functional contribution of RBP7 to the malignant traits of colon cancer cells. This 

may explain the association of RBP7 with invasion, EMT, and poor prognosis that we 

observed in colon cancer case collections. Previous studies demonstrated that another 

member, RBP4 and its receptor, are potent oncogenes in human breast and colon 

cancer cells that drive malignant transformation 154. Furthermore, RBP4 expression in 

colon cancer has been associated with poor prognosis, promoted growth in xenograft 

models, and increased the expression of putative cancer stem cell antigens 147. 

Considering these findings, our data provide a new link of retinol metabolism, invasion, 

and EMT in colon cancer through RBP7. However, the exact mechanism by which 

RBP7 drives these malignant traits and affects the transcriptome of colon cancer cells 

remains to be determined. Further study also is required to elaborate whether 

therapeutic interference with retinol metabolism and RBP7 may be a strategy to target 

invasion, EMT, and colon cancer progression. 
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6.2 An unbiased screen for prognostic marker identifies Annexin A9 for 

independent risk stratification in colon cancer 

Disease prognosis and survival probability of colorectal cancer yet can most robustly 

be assessed by tumor staging, describing the extent of the disease 95. However, since 

tumors of identical stage can behave significantly different in aggressiveness followed 

by different outcomes, there is need for additional robust and validated molecular 

predictors of biological behavior and disease progression, so that treatment protocols 

may be personalized based on individual risk. Although a multitude of molecular 

prognostic markers for colon cancer have been published, many markers lack robust 

independent validation, or are commercial and proprietary in interpretation 136,155. 

In this work, using a large open access data set of 457 colon cancer cases from the 

TCGA, we identified genes whose expression is significantly linked to patient survival 

and tumor metastasis. For identification of these genes, we applied large scale ROC 

curve analyses, a method for establishing medical diagnostic tests 156. The full list of 

genes provides information on prognostic power and independence of staging and 

other key clinical variables. Moreover, we added information on functional properties 

of proteins encoded by these genes. We suggest this may be a useful resource to 

develop robust open access molecular signatures to predict more precisely colon 

cancer outcome, and to identify individual factors driving tumor progression or 

indicating response to personalized cancer therapy and subsequently to avoid 

unnecessary treatment, toxicity and the financial costs associated with therapy. 

Among the top predictors of poor survival and metastasis, ANXA9 most significantly 

was independent of other clinical variables, and thisfinding validates previous studies 

on ANXA9 and prognosis in colon cancer 157,158. Moreover, this provided a rationale to 

select this factor for validation on the protein level by immunostaining in two 

independent case collections, stratified for survival and metastasis, respectively. Using 
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a collection of UICC stage II colon cancer cases, high ANXA9 protein expression 

indicated poor cancer specific survival, independent of other clinical variables. Patients 

with Stage II colon cancer generally have a good outcome. However, a high risk group 

of these patients may have a worse outcome. Therefore, identification of patients with 

stage II colon cancer who are at high risk of poor oncologic outcome is very important 

to select for cases that may benefit from additional chemotherapy. Based on these 

observations, we suggest that assessing ANXA9 expression may identify patients with 

more aggressive stage II colon cancer that may benefit from adjuvant chemotherapy 

despite low tumor stage. Due to robust detection of ANXA9 in tumor cells by 

immunostaining, and absence of possibly confounding ANXA9 expression in 

surrounding stromal cells, assessing this marker may well be integrated into routine 

pathology workup of colorectal cancer specimens and guide the decision for adjuvant 

therapy for patients with stage II colon cancer. Furthermore, a strong correlation of 

ANXA9 expression and liver metastasis was demonstrated in a second independent 

case control collection, and this finding further strengthens the validity of this marker in 

predicting colon cancer outcome. 

This work explains an approach for unbiased extraction of prognostically useful 

markers for colon cancer, and determines ANXA9 as the most robust candidate in 

predicting colon cancer outcome and progression on the mRNA and protein levels. 

ANXA9 is a member of the annexin family of calcium and phospholipid binding proteins 

and only little is known about its cellular regulation and function 159-161. Although 

functional characterization of this protein in colon cancer is beyond the scope of this 

work, its localization within tumor cells of colon cancer is notable and might guide 

further investigations. We found ANXA9 expression primarily in colon cancer cells at 

the leading tumor edge, including tumor cells that apparently dissociate from the tumor 

mass. These cells have also been termed budding colon cancer cells and are attributed 

certain characteristics, such as loss of epithelial markers and putative cancer stem cell 
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traits. It might therefore be speculated that ANXA9 marks colon cancer cells 

undergoing epithelial-mesenchymal transition or putative colon cancer stem cells, a 

hypothesis that might explain its strong link to poor survival and metastasis. 

Collectively, this work confirms that tumor cells at the leading tumor edge indeed might 

be drivers for malignant progression and potential therapeutic targets. Additionally, we 

propose Annexin A9 as an independent prognostic predictor of poor outcomes in colon 

cancer by means of immunohistochemical analysis. 
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SUMMARY 

For patients with colorectal cancer, the risk for disease recurrence and death mainly 

depends on disease stage. Yet, patients with early stage colon cancer may still 

succumb to the disease. Therefore, to improve the management of patients with 

colorectal cancer, new biomarkers for risk stratification are needed that are 

independent of tumor stage. 

Here, we demonstrate that RBP7 is a strong prognostic biomarker in colon cancer that 

functionally contributes to the malignant phenotype of colon cancer cells. We quantified 

RBP7 expression in colon cancer tissue by digital image analysis, and high levels of 

RBP7 protein and mRNA expressions were associated with poor cancer specific 

survival. Additionally, GSEA analysis and cell migration and invasion assays 

demonstrated that RBP7 is functionally linked to invasion and epithelial-mesenchymal 

transition in colon cancer.  

Furthermore, we illustrate here an unbiased approach using publically available TCGA 

data to identify new biomarkers that may aid in colorectal cancer risk stratification 

beyond clinical staging. By this approach Annexin A9 was identified and validated as 

an independent prognostic predictor of poor outcomes and that was associated with 

distant metastasis in independent colon cancer case collections on the protein level.  

Collectively, these findings provide a rationale for considering RBP7 and Annexin A9 

as promising independent predictors for prognosis. These may be useful for risk 

stratification in patients with colorectal cancer and aid in improving patient 

management.  
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ZUSAMMENFASSUNG 

Bei Patienten mit kolorektalen Karzinomen ist das Risiko für Tumorrezidive nach 

Therapie und für eine tödlich verlaufende Krebserkrankung eng mit dem Tumorstadium 

assoziiert. Allerdings können auch Patienten mit frühen Tumorstadien letztlich an ihrer 

Krebserkrankung versterben. Um die Behandlung von Patienten mit kolorektalen 

Karzinomen zu verbessern sind daher neue Biomarker erforderlich, die das Risiko für 

einen Krankheitsprogress unabhängig vom Tumorstadium vorhersagen können. 

Hier zeigen wir, dass RBP7 ein starker prognostischer Biomarker bei Kolonkarzinomen 

ist, der funktionell zu den malignen Eigenschaften von Kolonkarzinomzellen beiträgt. 

Die RBP7-Expression in Kolonkarzinomengewebe konnte durch digitale Bildanalyse 

quantifiziert werden, und hohe Spiegel von RBP7 Protein als auch von RBP7 mRNA 

waren mit einem schlechten krebsspezifischen Überleben verbunden. Zusätzlich 

zeigten GSEA-Analysen sowie Zellmigrations- und Invasions-Assays, dass RBP7 

funktionell zu den invasiven Eigenschaften von Kolonkarzinomzellen beiträgt und mit 

epithelial-mesenchymaler Transition (EMT) assoziiert ist. 

Darüber hinaus zeigen wir hier einen unvoreingenommenen Ansatz unter Verwendung 

von öffentlich verfügbaren TCGA-Daten, um neue Biomarker zu identifizieren, die sich 

für die Risikostratifizierung beim Kolonkarzinom über das klinische Stadium hinaus 

eignen. Über diesen Ansatz konnten wir Annexin A9 als unabhängigen prognostischen 

Prädiktor für schlechtes Überleben und für Metastasierung in zwei unabhängigen 

Kolonkarzinomkollektiven identifizieren und validieren. 

Zusammengenommen zeigen diese Ergebnisse, dass sich RBP7 und Annexin A9 als 

neue und vielversprechende unabhängige Biomarker eignen könnten, um die 

Prognose bei Patienten mit Kolonkarzinomen vorherzusagen und deren Behandlung 

zu verbessern.  
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ABBREVIATIONS 

A AJCC American Joint Committee on Cancer 

 ANXA9 Annexin A9 

 APC Adenomatous polyposis coli 

 AUC Area under the curve 

B BAX BCL2 associated X 

 BM Basement membrane 

 BSA Bovine serum albumin 

 BRAF B-Raf proto-oncogene, serine/threonine kinase  

C CCT6B Chaperonin containing TCP1 subunit 6B 

 CDH1 Cadherin-1 

 CDKN2A Cycline Dependent Kinase Inhibitor 2A 

 CEA Carcinoembryonic Antigen 

 CIN Chromosomal Instability 

 CIMP CpG island methylator phenotype 

 CMS Consensus molecular subtype 

 CNAs Copy number alterations 

 CRBPs Cytoplasmic retinol binding proteins 

 CRC Colorectal cancer 

 CTCs Circulating tumor cells 

D DAB 3,3'-Diaminobenzidine 

 DMEM Dulbecco's Modified Eagle Medium 

 DMSO Dimethylsulfoxide 
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 DNA Deoxyribonucleic acid 

E ECM Extracellular Matrix 

 E. coli Escherichia coli 

 EDTA Ethylene Diamine Triacetic Acid 

 ERK Extracellular signal-regulated kinases 

 EGFR Epidermal growth factor receptor 

 EMT Epithelial-mesenchymal transition 

 EMT-TFs 
Epithelial-mesenchymal transition - inducing transcription 

factors 

 ERK Extracellular signal-regulated kinase 

 ES Enrichment score 

F FAP Familial adenomatous polyposis 

 FBS Fetal bovine serum 

 FDA Food and Drug Administration 

 FFPE Formalin-fixed, paraffin-embedded 

G G-protein guanine nucleotide-binding proteins 

 GTPase Guanosine triphosphatase 

 GSEA Gene set enrichment analysis 

H H&E Hematoxylin and Eosin 

 HOTAIR HOX transcript antisense RNA 

 HR Hazard ratio 

 HRP Horseradish peroxidase 

I IDT Integrated DNA technologies 

 IHC Immunohistochemistry 
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K KRAS KRAS proto-oncogene, GTPase 

L LOH Loss of heterozygosity 

 LVI Lymphovascular invasion 

M MAPK Mitogen-activated protein kinase 

 MCU Mitochondrial calcium uniporter 

 MEK Mitogen-activated protein kinase kinase 

 MET Mesenchymal-epithelial transition  

 miRNAs microRNA 

 MLH1 Mut L homologue 1 

 MMR Mismatch Repair 

 MSI Microsatellite instability 

 MSI-H Microsatellite instability-High 

 MSI-L Microsatellite instability-Low 

 MSS Microsatellite Stable 

N NaCl Sodium chloride 

 NOS Not otherwise specified 

 NRAS NRAS proto-oncogene, GTPase 

P PD-1 programmed-cell-death protein 1 

 PI3K Phosphatidylinositol-3-Kinase 

 PIK3CA 
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic 

Subunit Alpha 

 PNI Perineural invasion 

 PTEN 
Phosphatase and tensin homologue deleted on 

chromosome 10 
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 PVDF polyvinylidene difluoride 

Q QuPath Quantitative Pathology 

R RAF Raf Proto-Oncogen, Serine/Threonine Kinase 

 RBP7 Retinol Binding Protein 7 

 RIPA Radioimmunoprecipitation assay 

 ROC Receiver operating characteristic 

S SDS Sodium dodecyl sulfate 

 
SDS-

PAGE 
sodium dodecyl sulfate polyacrylamide gel electrophoresis 

 SMAD 
homolog of the Drosophila protein, mothers against 

decapentaplegic 

 SLUG SNAI2; snail homolog 2 

 SNAI1 snail homolog 1, a Zn finger protein 

 SSLs Sessile serrated lesions 

T TCGA The Cancer Genome Atlas 

 TCHH Trichohyalin 

 TFs Transcription factors 

 TGF-β Transforming growth factor-β 

 TGFβRII     Transforming growth factor-β receptor II 

 TMAs Tissue microarrays 

 TNM Tumor, Nodes, Metastasis 

 TP53 Tumor Protein 53 

 TSAs Traditional serrated adenomas 

 TWIST Twist-related protein 1 
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U UICC Union for International Cancer Control 

W WHO World Health Organization 

 Wnt Wingless-type /integration site family member 

Z ZEB Zinc-finger E-box-binding homeobox 

 zsurv z-scores for survival 

 zmet z-scores for metastasis 
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