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Zusammenfassung (Summary in German)

Jeder lebende Organismus ist auf die Fähigkeit angewiesen, Ordnung zu schaffen
und aufrechtzuerhalten. Diese Dissertation beschäftigt sich mit Phänomenen, bei
denen Prozesse außerhalb des thermischen Gleichgewichts eine entscheidende Rolle
für die Strukturbildung in Zellen spielen. Essenziell für diese Strukturbildung ist das
interne Proteingerüst, das Zytoskelett, auf dem sich molekulare Motoren bewegen, die
die innere Organisation der Zelle wesentlich prägen. Mittels theoretischer Konzepte
wurden Prozesse der intrazellulären Strukturbildung auf zwei Ebenen analysiert: (I)
der Organisation von Proteinen auf einem einzelnen Zytoskelettfilament und (II) der
zellweiten Organisation von Proteinen.

I Organisation von Proteinen auf Zytoskelettfilamentenmit Himanshu Pandey, Louis
Reese, Patrick Wilke, Leah Gheber und Erwin Frey.
In einem ersten Projekt befassten wir uns mit Proteinen, die die Architektur des Zy-
toskeletts regulieren. Dabei entdeckten wir, dass eine eindimensionale Diffusion mit
einem darauf folgenden Einfangprozess dazu führt, dass diese Proteine effizient zu
ihrem Zielbindeplatz gelangen. Für bestimmte Biomoleküle bestätigte sich, dass der
oben beschriebene Vorgang wesentlich zu ihrer intrazellulären Funktion beiträgt. Ein
zweites Projekt führte zu dem Ergebnis, dass der molekulare Transport entlang von
Zytoskelettfilamenten veränderten Prinzipien unterliegt, sobald zwei Arten von mole-
kularen Motoren mit unterschiedlichen „Gangarten“ vorhanden sind. Aufgrund einer
Verstärkung von sterischen Wechselwirkungen durch topologische Effekte entstehen
bereits bei geringen Konzentrationen dieser Motoren Staus. Daher könnten Staupro-
zesse auch im lebenden Organismus einflussreicher sein als bisher angenommen. Im
dritten Projekt setzten wir uns mit der Richtungsumkehr von Motorproteinen ausein-
ander. Basierend auf experimentellen Erkenntnissen unserer Kollaborationspartner,
der Gruppe von Prof. Leah Gheber, entwickelten wir ein neues Modell für den Rich-
tungswechsel von molekularen Motoren. Das Modell zeigte, dass bisherige – scheinbar
widersprüchliche – Hypothesen zur Richtungsumkehr unterschiedliche Aspekte ein
und desselben Mechanismus sein könnten.

II Zellweite Organisation von Proteinen mit Jonas Denk, Lorenz Huber, Angela Oberho-
fer, Peter Spieler, Zeynep Ökten und Erwin Frey.
Im vierten Projekt zeigten wir, dass gekrümmte Polymere, die sich aktiv auf einer
zweidimensionalen Oberfläche bewegen, dynamische Ringmuster bilden können. Dies
könnte für den Proteinring, der die Zellteilung in Bakterien antreibt und durch einen
bisher unbekannten Mechanismus entsteht, von Bedeutung sein. In einem letzten Pro-
jekt untersuchten wir die zellweite Organisation von dunklen Pigmentorganellen. Die
Reorganisation dieser Organellen in Hautzellen von Fischen und Amphibien ermög-
licht eine Veränderung deren Hautfarbe. Mit Hilfe von Simulationen und theoretischen
Analysen brachten wir die von unseren Kollaborationspartnern, der Gruppe von Dr.
Zeynep Ökten, gemessenen biochemischen Veränderungen von molekularen Motoren
mit der zellweiten Organisation der Pigmentorganellen in Zusammenhang.
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Summary

Each living organism relies on the ability to establish and maintain order. This thesis
addresses multiple cases where processes out of thermal equilibrium fulfill a critical
role in the formation of order in cells. A key player in this respect is the cell’s internal
protein scaffold—the cytoskeleton—which serves as a track for molecular motors that
shape the cell’s interior organization. By means of theoretical modeling, processes
related to intracellular organization were studied on two different levels: Part I focuses
on principles of the organization of proteins on an individual cytoskeletal filament.
Part II elucidates mechanisms that determine the cell-wide organization of proteins.

I Organization of proteins on cytoskeletal filaments
with Himanshu Pandey, Louis Reese, Patrick Wilke, Leah Gheber, and Erwin Frey
In the first project, we focused on proteins that regulate the cytoskeletal architecture. We
revealed that one dimensional diffusion that is followed by a capturing process facilitates
the localization of these proteins on their target sites. For several specific biomolecules,
we showed that this “diffusion and capture” mechanism contributes essentially to their
cellular function. In a second project, we unraveled that the collective dynamics of
molecular motors along cytoskeletal filaments exhibits a different phenomenology
when two species of molecular motors with different gaits are present as compared to
the collective motion of a single species. Due to an amplification of steric interactions
of molecular motors by topological effects, the jamming of molecular motors becomes
important at low concentrations of these proteins. These findings affect our view on
intracellular transport as jamming phenomena might—because of this amplification—
be more significant than previously thought. In a third project, we investigated the
switching of directionality of specificmolecular motors. Based on experimental findings
of our collaborators in this project, the group of Prof. Leah Gheber, we suggested a
novel model for the directional switching of the collective motion of motor proteins.
The model showed that previous—apparently unrelated—hypotheses for the directional
switching may be different aspects of the same biomolecular mechanism.

II Cell-wide organization of proteins
with Jonas Denk, Lorenz Huber, Angela Oberhofer, Peter Spieler, Zeynep Ökten, and Er-
win Frey.
In the fourth project, we revealed that curved filaments which move actively on a
two-dimensional surface can self-organize into dynamic vortex patterns. This might be
relevant for the dynamic protein ring that drives bacterial cell division and which forms
by a mechanism that is poorly understood. In a last project we addressed the cell-wide
organization of dark pigment organelles. The reorganization of these organelles in skin
cells enables fish and amphibians to adapt their skin color to environmental factors.
Based on in vitro results of our collaborators, the group of Dr. Zeynep Ökten, we
related measured biochemical changes of molecular motors to a cell-wide organiza-
tion of these organelles. In this way, we identified basic mechanisms that determine
the dynamic redistribution of pigment organelles in a cell and retraced a potential
evolutionary pathway.
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Abstracts of the projects and contribution

I Localization and association of proteins by the diffusion and capture mechanism
with Louis Reese, and Erwin Frey.
Published in “Quantifying Protein Diffusion and Capture on Filaments” (Biophys. J.
108 (4), 787–790 (2015)) to which I contributed as first author, and “Nonequilibrium
Diffusion and Capture Mechanism Ensures Tip Localization of Regulating Proteins on
Dynamic Filaments” (Phys. Rev. Lett. 117 (7), 078102 (2016)) to which I contributed
as first author.

Background
Precise regulation of the cytoskeleton is vital for all eukaryotic cells and relies on
a largely unsolved interplay of a multitude of microtubule associated proteins. In
this context, the microtubule tip plays a distinguished role as it serves as a reaction
site for many regulating proteins. Efficient localization of the regulating proteins at
the microtubule tip is thus essential for the regulation of microtubules. Moreover,
recent experimental studies suggested that many microtubule regulation proteins show
the capability of diffusing passively on the microtubule lattice. Typically, diffusive
motion ceases or is suppressed once the regulating proteins reach the microtubule tip,
a process which breaks detailed balance and to which we will refer to as the diffusion
and capture mechanism.

Research questions
This project elucidated mechanisms by which diffusive motion along the microtubule
can facilitate association with a target reaction site, in our case the microtubule tip.
Using simple lattice gas models, we addressed the following questions: Canwe quantify
the association rate of proteins that employ a diffusion and capture mechanism? How
much does diffusion and capture contribute to the overall binding rate of regulating
proteins to the microtubule tip? Can we theoretically predict the distribution of
proteins along the microtubule and thus quantify the localization of proteins at the
tip? Do regulating proteins indeed localize at microtubule tips due to the diffusion and
capture process and, if so, does the process contribute to the intracellular functions of
regulatory proteins?

Key findings and their relevance
Quantifying the association of proteins by means of an effective Michaelis-Menten theory.
In a first step, we developed a theory for enzymatic reactions driven by microtubule



x

regulating proteins that are subject to a diffusion and capture mechanism. The central
result of the theoretical analysis was a novel, effective Michaelis-Menten theory. The
effective Michaelis constant of this theory accounts for the current of proteins along
the microtubule arising due to the diffusion and capture mechanism. This effect-
ive Michaelis constant depends solely on experimentally accessible parameters: the
diffusion constant of proteins on a microtubule, the particle attachment rates, and
the dwell time of particles on the microtubule bulk and at the microtubule tip. It
therefore provides a simple means to predict the efficiency of protein association due
to diffusion and capture for regulating proteins.

Diffusion and capture dominates tip binding for many regulating proteins.
Based on this theory, we determined the contribution of filament diffusion to tip
binding quantitatively for 17 different previous experiments with microtubule as-
sociated proteins. In that way, we broadly assessed the impact of diffusive motion
along cytoskeletal filaments to specific binding at a given reaction site: Our analysis
predicted that in all the 17 investigated experiments at least 90% of the tip-binding
events are due to diffusion and capture. Direct tip-binding events from the solution
or cytoplasm were negligible in all cases, making a limitation of this rate by the time
scales imposed by three dimensional diffusion mostly irrelevant.

Diffusion and capture correlates particle occupations.
In a second step, we turned to the distribution of the proteins along a microtubule.
Using an extended model, we explicitly accounted for growing and shrinking micro-
tubules to apply our theory to a central microtubule depolymerase (MCAK) and a
central polymerase (XMAP215). Strikingly, we found that standard approaches to
compute the occupation of the microtubule by particles fail due to correlations that
extended over large distances. We overcame this limitation by developing a theoretical
method that allowed us to include relevant correlations along the whole filament and
thereby to compute the particle distribution. We validated our theory with a direct
comparison to experimental data for MCAK and XMAP215.

Diffusion and capture operates most efficiently at cellular conditions for two central regu-
lating proteins.
Using our verified theoretical framework, we studied the efficiency of the diffusion
and capture mechanism for MCAK and XMAP215. In both cases, we found that
localization of the proteins at the microtubule tip due to the diffusion and capture
mechanism is most significant at cellular concentrations of these proteins. This sug-
gests that the diffusion and capture mechanism is optimized for cellular conditions
and thus of relevance also in vivo.
Related publications and contributions
This project resulted in the publications “Quantifying Protein Diffusion and Capture
on Filaments” (Biophys. J. 108 (4), 787–790 (2015)), and “Nonequilibrium Diffusion
and Capture Mechanism Ensures Tip Localization of Regulating Proteins on Dy-
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namic Filaments” (Phys. Rev. Lett. 117 (7), 078102 (2016)) to which I contributed
as first author in both cases. In both publications, I contributed to research design,
development of the numerical and analytic methods, interpretation of the results,
and writing the manuscript. The other authors are Louis Reese and Erwin Frey, who
contributed to the research design, the interpretation of the results, and writing the
manuscript.
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II Two-species transport and topological hindrance
with Patrick Wilke, and Erwin Frey.
Published in “Two-Species Active Transport along Cylindrical Biofilaments is Limited
by Emergent Topological Hindrance” (Phys. Rev. X 8(3), 031063 (2018)) to which I
contributed as shared first author.

Background
For every eukaryotic cell, active motion of motor proteins—biomolecular machines
that convert chemical energy into motion along filamentous biopolymers—is essential
for survival. While the biomolecular mechanisms of single molecular motors have
been studied in great detail, understanding their collective behavior still remains
challenging. To this end, many theoretical studies based on models like the totally
asymmetric simple exclusion process (TASEP) and concepts drawn from statistical
physics have tried to relate the behavior of individual motors to their collective motion.
In this way, a clear picture of collective transport by a single species of molecular
motors has been established. However, in each cell a multitude of different molecular
motors is present and, for example, simultaneously involved in vesicle transport.
Moreover, different species of motors are likely to employ different gaits to move
along the filaments which, in many cases, results in helical trajectories with differing
pitches. These considerations bring up the question whether collective transport
in the presence of several species of molecular motors shows distinct behavior as
compared to the well studied collective transport in the presence of a single species
only. Employing a generic two-dimensional lattice gas model, we studied the collective
behavior of two species of molecular motors along a cylindrical filament. The different
species were distinguished by different gaits: one species moves straight ahead while
the other one follows a helical path.

Research questions
Based on our model we asked: How do key findings of the paradigmatic TASEP
change when a second species is present? Can we find an effective description that
relates two-species transport to single-species transport? What are the implications of
multi-species transport for cell biology?

Key findings and their relevance
Two-species systems exhibit jamming driven by the arrangement of particles and not only
by overcrowding.
Our theoretical analyses revealed that the most evident difference of the two-species
system is a jamming transition that takes place below full occupation. While the
TASEP and similar models exhibit vanishing particle currents when the system is
maximally populated, the collective dynamics of particles stops already at low particle
densities in our model. This is due to a change in the network topology of all possible
particle movements: In the presence of two species, a single particle may block the
path of up to two other particles. Thus, not only the total number of particles in the
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system is of importance but also their arrangement. Because the network topology of
the underlying stochastic process amplifies the impact of steric hindrance, we termed
this type of interaction topological hindrance.
Jamming in two-species transport depends on the number of lanes and the species fraction.
The consequences of topological hindrance showed a dependency on (a) the system
width, i.e., the number of lanes composing the cylindrical system, and (b) the fraction
of particles from the second species. This exceeds naïve analyses that are based on
mean-field approaches, where only the total density is relevant for jamming. Moreover,
the effects created by topological hindrance set in already at very small fractions of a
second species (approximately 5%) and rapidly increase in relevance when increasing
the number of lanes. In the limit of a large number of lanes, topological hindrance
becomes the major determinant of particle dynamics.

Two-species transport leads to self-organization and pattern formation.
Another surprising observation wemade for our two-species model was the emergence
of wavelike patterns in the average particle density. In systems with small aspect ratios,
i.e., for small system lengths or large numbers of lanes, particles self-organize into
patterns that are reflected by oscillations in the average particle density. This opposes
most other transport models, where patterns in the particle occupation are absent.

Molecular crowdingmay take place at significantly lower densities than previously thought.
In the last step, we probed the robustness of our findings for model extensions with
respect to several biomolecular aspects of motor proteins. We found that also for
models that account for many specific biomolecular features of motor proteins the
key phenomenology remains unchanged and that topological hindrance is of major
importance also in these cases. Therefore, our analyses showed that mixed-species
systems start to jam already at much lower particle densities than expected based on
the previous knowledge from models for single-species transport. Active transport
inside cells may thus exhibit a much richer phenomenology than previously thought.

Related publications and contributions
This project resulted in the publication “Two-Species Active Transport along Cyl-
indrical Biofilaments is Limited by Emergent TopologicalHindrance” (Phys. Rev. X 8(3),
031063 (2018)) to which I contributed as a shared first author together with Patrick
Wilke. Together with Patrick Wilke, I contributed to research design, development
of the numerical and analytic methods, interpretation of the results, and writing the
manuscript. The other author on this project was Erwin Frey who contributed to
research design, interpretation of the results, and writing the manuscript.
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III Directional reversal of the collective motion of kinesins
with Himanshu Pandey, Leah Gheber, and Erwin Frey

Background
Over decades, the motion of molecular motors was thought to occur unidirectionally
towards the plus-ends of microtubules. In recent years, however, several molecular
motors have been shown to switch their direction of motion as a response to a change
of diverse experimental conditions or biomolecular properties. For example, it has
been shown that specific molecular motors can switch their direction of motion in
experiments when forming clusters of multiple particles or when the salt concentra-
tion of the buffer changes. While the phenomenon of directional switching has been
observed for a multitude of molecular motors, an understanding of the underlying
mechanism remained elusive. In this project, we focused on the directional reversal
of Cin8, a motor protein of yeast. Building on results from in vitro experiments of
our collaborators on this project, the group of Prof. Leah Gheber at the Ben-Gurion
University of the Negev, we addressed this problem by means of statistical analysis
and theoretical modeling.

Research questions
In this project, we studied the following research questions: What are the implications
of the in vitro measurements of our collaborators for the interaction and motility of
directionally switching motor proteins? Is there a simple mechanistic explanation that
quantitatively explains the experimental findings of our research partners? Is it possible
to unify the various previous hypotheses for a directional switching of the motion of
motor proteins and to formulate a single model that explains all observations?

Key findings and their relevance
The Cin8 motor protein of yeast is subject to weak intermolecular attractive interactions.
We showed that the experimental findings of our collaborators can be understood
by the presence of attractive forces between individual molecular motors. These
attractive forces aggregate particles into small clusters which, in turn, affects their
motility by suppressing the motion of individual particles in a cluster. Our methods
allowed us to specifically compute the strength of these forces.

An anisotropic response of the Cin8 motor protein to forces that oppose motion reverts
the movement of clusters of particles.
Inspired by the finding that attractive forces between individual molecular motors
induce a drag in each other’s motion we proposed a novel model for the directional
switching of these proteins: We postulated that the Cin8 motor protein moves actively
in both directions on amicrotubule and that these twomodes of active motion respond
anisotropically to opposing forces. By theoretical modeling, we succeeded in showing
(a) that this hypothesis causes a directional switching triggered by clustering of Cin8
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and (b) that the proposed model fully reproduces the experimental observations made
by our collaborators on a quantitative level.

Our proposed model consistently explains previous experimental results.
Finally, we related our proposed model to previous findings for motor proteins that
can switch their direction of motion. We showed that our hypothesis of an aniso-
tropic response of active motion to drag also consistently explains various previous
findings. In fact, our analysis showed that apparently unrelated observations might
be different aspects of the same mechanism. In this way, our proposed model for the
directional switching of molecular motors unifies different existing hypotheses for
this phenomenon.

Project contributions
This project is currently prepared for publication in a peer-reviewed journal [1]. In
this research project, I contributed to the research design, development of analytic
and numerical methods, and the interpretation of results. All experimental data and
related analyses were performed by the group of Prof. Leah Gheber at the Ben-Gurion
University of the Negev and, in particular, by Dr. Himanshu Pandey. Himanshu
Pandey, Maria Popov, Leah Gheber, and Erwin Frey contributed also to the research
design, and the interpretation of the results.
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IV The formation of dynamic vortex patterns by active curved polymers of the
protein FtsZ
with Jonas Denk, Lorenz Huber, and Erwin Frey.
Published in “Active Curved Polymers Form Vortex Patterns on Membranes” (Phys.
Rev. Lett. 116 (17), 178301 (2016)) to which I contributed as second author.

Background
One of the major players in bacterial cell division is the so-called Z ring, a patchy
assembly of overlapping, curved polymers formed by the protein FtsZ. Clear mech-
anisms by which the Z ring assembles are, however, largely elusive. A recent in
vitro study emphasized the importance of nonequilibrium processes for the forma-
tion of the FtsZ ring [2]: Reconstituted FtsZ polymers on a supported lipid bilayer
showed nucleotide dependent treadmilling motion that propelled the polymers over
the membrane. Since FtsZ assembles into curved polymers, the motion of these poly-
mers occurred preferentially along circular paths. Strikingly, in the corresponding
experiments, the moving filaments self-organized into dynamic rings which led to
speculations if active motion also contributes to the formation of the FtsZ ring in
vivo. Inspired by these findings, we sought for generic mechanisms for the formation
of patterns by curved polymers that move actively on a plane. We employed two
complementary approaches to study the system: Brownian dynamics simulations,
that explicitly take the microscopic structure of extended polymers into account, and
a field-theoretic kinetic Boltzmann approach, that provides a mesoscopic description
of the system.

Research questions
Based on these complementary approaches, we addressed the following questions:
Do self-propelled, curved particles self-organize into patterns? If so, does this beha-
vior explain self-organization into ring-like structures? Under which conditions are
these structures stable? Does the field theoretic approach support the existence of
nonequilbirium phase transitions in our system?

Key findings and their relevance
Transitions between differently ordered states are predicted consistently by two distinct
approaches.
Both of our different approaches consistently predicted transitions between differently
ordered states: For low particle densities on the plane or high levels of noise, the
system lacked global order. Opposed to that, collective order emerged above a certain
density or below a certain level of noise. Remarkably, despite the different nature of
both approaches, we found qualitative agreement of the respective phase diagrams.

Active curved filaments on membranes self organize into vortex patterns.
For intermediate densities and intermediate levels of noise, the system self organized
into dynamic ring-like structures. These were composed of several curved filaments
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that very much resembled the ones observed in the experiment described above [2].
This is relevant for several reasons: First, it shows that ring-like patterns can actually
form without attractive interactions between the polymers. Second, the formation
of the vortices in our system can be affected efficiently by varying, for example, the
density of polymers on the plane. Such a density-dependent response of pattern
formation could also be exploited in cell biology to dynamically switch the formation
of vortices on and off.

Onset of pattern formation is governed by a novel type of a complex Ginzburg-Landau
equation.
Our mathematical analysis based on the kinetic Boltzmann approach revealed that
the onset of pattern formation is governed by a novel form of a generalized Ginzburg-
Landau equation. A preliminary analysis suggests that this equation shows qualitat-
ively new properties as compared to an analogous equation that describes an ensemble
of straight moving particles. While we did not perform a detailed analysis, our pre-
liminary results indicate that pattern formation for particles that move along circular
paths might be fundamentally different from that of active-matter systems analyzed
previously that were mostly concerned with straight propulsion.

Related publications and contributions
This project resulted in the publication “Active Curved Polymers Form Vortex Pat-
terns onMembranes” (Phys. Rev. Lett. 116 (17), 178301 (2016)) to which I contributed
as second author. Together with Lorenz Huber, Jonas Denk, and Erwin Frey, I con-
tributed to research design, interpretation of the results, and writing the manuscript.
Jonas Denk and Lorenz Huber developed the analytic and numeric methods. The
corresponding publication is also reprinted in the PhD theses of Jonas Denk and
Lorenz Huber.
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V Cell-wide organization of pigment organelles
with Angela Oberhofer, Peter Spieler, Zeynep Ökten, and Erwin Frey.

Background
Many of a cell’s functional constituents such as organelles need to be distributed
and organized in a highly orchestrated manner within the cell. To this end, they
are actively transported by molecular motors on the two cytoskeletal components:
microtubules and actin filaments. Although it is long recognized that motion on
both of these cytoskeletal components is vital to ensure the proper organization of
proteins within a cell, general mechanisms that govern the cell-wide distribution
of organelles are elusive. In this project we addressed this problem for the case of
dark pigment organelles in highly specialized skin cells of fish and amphibians. By a
redistribution of these pigment organelles within a cell, the corresponding animals
are capable of adapting their skin color to environmental factors. In collaboration
with the group of Dr. Zeynep Ökten at the TU Munich, we related biomolecular
changes of individual motors that move the pigment organelles on the cytoskeleton
to a cell-wide distribution of the organelles.

Research questions
The goal of this project was to identify basic mechanisms that govern the cell-wide
redistribution of pigment-organelles from the biomolecular level up to the level of col-
lective dynamics. In this respect, we asked: What biomolecluar changes of the motor
proteins that move pigment organelles are responsible for a dynamic redistribution of
pigment organelles? Can we use computational modeling to connect these biomolecu-
lar changes to a cell-wide dynamic reorganization of pigment organelles as observed
in vivo? Are there regulatory principles that might have constrained an evolutionary
pathway of biomolecular changes observed from early to lower vertebrates?

Key findings and their relevance
A transfer of pigment organelles between actin filaments and microtubules as measured
in vitro reconstitutes to a cell-wide redistribution of pigment organelles in silico.
The experimental results from our collaborators revealed that signaling factors that
drive a dynamic redistribution of pigment organelles in vivo are related to a change
in the probability at which single motor proteins that move the organelles switch
from actin to microtubule filaments. We used computational modeling to relate this
measurement of the switching probabilities of an individual motor protein to the cell-
wide organization of pigment organelles in a virtual cell. Strikingly, the sole change of
the probability of an organelle to switch from actin filaments to microtubules sufficed
to reconstitute a cell-wide redistribution of the pigment organelles in silico.
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The global redistribution of pigment organelles is regulated efficiently and robustly by a
modulation of the cytoskeletal crosstalk as measured in vitro.
Our theoretical approach further allowed us to assess the efficiency of the regulatory
mechanism uncovered in the experiments. In this way we could show that a regulation
of the intracellular organization of pigment organelles is not only possible due to
change of the switching probabilities described above, but that a cell-wide regulation
of the organelle distribution in our model is particularly robust and efficient for the
switching probabilities quantified in vitro.
In silico modeling identifies potential evolutionary pathways that might have governed
the regulation of the cell-wide distribution of organelles.
Finally, our methods identified potential evolutionary pathways: Our collaborators
unraveled that the motor proteins which move pigment organelles in early vertebrates
(fish) are regulated differently than those in lower vertebrates (amphibians). Our
theoretical analysis provided a rationale for the observed changes: The experimentally
measured evolution of the switching probabilities of molecular motors of fish to that
of amphibians strongly correlated with changes of parameters that had a strong impact
on the cell-wide distribution of organelles in our simulations.

Project contributions
This project is currently prepared for publication in a peer-reviewed journal [3]. In
this research project, I contributed to the research design, development of analytic
and numerical methods, and the interpretation of results. All experimental data and
related analyses were performed by the group of Dr. Zeynep Ökten at the TUMunich
and, in particular, by Dr. Angela Oberhofer and Peter Spieler. Angela Oberhofer,
Peter Spieler, Zeynep Ökten and Erwin Frey contributed also to the research design,
and the interpretation of the results.
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1 Preface

Every living organism depends on its ability to establish and maintain structure.
As early as 1790, the philosopher Immanuel Kant defined life as a “self-organizing”
process—a concept that is anchored in many current theoretical approaches to under-
stand living systems [4–6]. The emergence of structures and patterns is manifested
on all levels of life: A dynamic collective of a group of moving animals is often
organized such that an efficient response to the environment is possible and may—in
this way—act like a single, large organism [7]. Highly orchestrated processes related
to morphogenesis create the functional shape of each living organism [8]. But even
on the smallest scale of life—within each single cell—the formation and perpetuation
of structure is vital [5, 9–11], which is the topic of this thesis.

To enable the formation of order, living systems permanently transduce energy.
From the perspective of theoretical physics, pattern formation and self-organization
in biological systems is thus often inherently linked to nonequilibrium physics. How-
ever, while general concepts that bridge the behavior of a single component of a
system to the collective properties of the system itself are well-known in thermal
equilibrium, general theoretical principles for systems out of thermal equilibrium
are largely absent. The problem of finding a suitable theoretical framework has thus
attracted the interest of many physicists over decades and can currently be regarded
as one of the major challenges in physics [12–14]. As it remains unclear whether
a general theoretical framework that characterizes nonequilibrium processes exists,
a complementary approach is to study systems that are subject to different micro-
scopic rules of interaction separately. In that way, one may hope to recognize similar
principles in different systems, which might ultimately guide the way to a general
understanding of the formation of order in nonequilibrium systems. In this light, my
thesis covers several examples where nonequilibrium processes play an essential role
in the formation of order and structure in processes related to cell biology.

A key player of intracellular organization in eukaryotes is the cell’s internal protein
scaffold, the cytoskeleton [11, 15, 16]. The cyoskeleton consists of two networks of
filamentous biopolymers that span throughout the cyoplasm: The actin network,
which consists of short and flexible (on the scale of a cell) polymers, and the microtu-
bule network, which consists of long, stiff tubular polymers [17].1 One particularly
fascinating property of the eukaryotic cytoskeleton is its vast variety of different
morphologies. Depending on the cell type, the stage of the cell cycle, or the position

1 For simplicity, we do not cover intermediate filaments in this introductory text.
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within the cell, otherwise identical biomolecular building blocks create a broad variety
of structures that differ widely in their function [17–19]. For example, actin may
assemble—depending on the cell region—either in a strongly branched meshwork
composing lamellipodia or in tightly connected parallel bundles within filopodia [17,
20–22]. Likewise, cilia rely on the ability to organize microtubules into the highly
symmetric and regular axonemes. There, nine parallel microtubule duplets assemble
in a circular shape around two more microtubules [17, 23, 24]. However, the most
common configuration of microtubules in cells (during interphase) is a much less
regular star-like aster that spans throughout the cytoplasm [17]. The fascinating trait
of the cytoskeleton to adopt different shapes and structures is also apparent in vitro:
When mixing the building blocks of the cytoskeleton with proteins that bind to and
move on cytoskeletal filaments, these components have been shown to self-organize
into a broad range of different structures. For example, microtubular architectures
ranging from asters over vortices to bundles were observed [25–28]. Similarly, also
actin assembles in a variety of different shapes in vitro, such as differently branched
meshworks, rings, or bundles [5, 11, 29]. Interestingly, not only crosslinked cyto-
skeletal filaments but also an ensemble of driven cytoskeletal filaments shows the
capability to self-organize into different dynamic patterns: In several experimental
studies, collisions and interactions between cytoskeletal filaments that were translo-
cated, for example, by molecular motors, over a planar surface led to the emergence
of robust patterns such as polar waves, nematic lanes, or vortices [2, 30–34].

Regarding the role of the cytoskeleton in intracellular organization, nonequilib-
rium physics enters in two different aspects: The dynamics of the cytoskeleton itself
and the dynamics of motor proteins—biomolecular machines that convert chemical
energy into motion—-on the cytoskeletal network. We briefly explain both processes
in the following.

Although the name cytoskeleton implies a static protein scaffold, its corresponding
protein structures are very dynamic and cells critically depend on the ability to change
the cytoskeleton’s morphology [17, 19, 35, 36]. In fact, assembly and disassembly of
the cytoskeletal components is connected to the turnover of ATP or GTP, which turns
the (de)polymerization of cytoskeletal filaments into a nonequilibrium process [36,
37]. Only because of the dynamic properties of the actin network, cells are able to
move, divide, and exchange large molecules with their environment [20–22]. Another
very prominent example in the context of cytoskeletal dynamics is the mitotic spindle:
For cell division, the monopolar microtubule aster of interphase disassembles and the
bipolar mitotic spindle, that ultimately segregates chromosomes, appears [38, 39]. The
vital role of these dynamic properties becomes dramatically evident when disabling the
microtubules’ intrinsic dynamics: Adding microtubule stabilizing drugs like paclitaxel
to a dividing cell causes a failure of the assembly of the mitotic spindle [40]. In this
way, dividing cells can be forced into apoptosis—programmed cell death. Therefore,
rapidly dividing tissue can be particularly harmed by such drugs, which explains
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the central role of microtubule-stabilizing drugs in the treatment of cancer. In fact,
changing microtubule or actin dynamics is regarded as one of the most successful
strategies in chemotherapy [40, 41].

But not only the dynamics of the cytoskeleton itself plays an important role in the
formation of structure within a cell. The cytoskeleton serves as a network of tracks
for molecular motors that bind to the cytoskeletal components and translocate along
them by transducing chemical energy in the form of ATP [15, 42]. Molecular motors
are typically categorized into three large families that each comprise a multitude
of members [43–46]: Myosin motors, that move towards the barbed ends of actin
filaments, kinesin motors, that move towards the plus ends of microtubules, and
dynein motors, that move towards the minus ends of microtubules.2 These motors
significantly shape the interior organization of cells by actively moving organelles
and other constituents of the cell [15, 47–52]. One remarkable phenomenon that
demonstrates the regulatory power of molecular motors on intracellular organization
can be observed in skin cells of amphibians and fish: A cell-wide redistribution of
dark pigment organelles leads to a switch between a bright and a dark appearance [15,
53–59]. This is achieved by either aggregating the pigment organelles in the center of
the cell or by dispersing them throughout the cell. In this way, fish and amphibians
can adapt the color of their skin to environmental cues. The dynamic redistribution
of these organelles has by now become a paradigm to study principles of intracellular
organization in general and is also subject of Section 3.2 of this thesis.

Throughout this thesis, several examples are discussed where nonequilibrium
processes critically shape cell biology and intracellular organization. Specifically,
we address principles of the organization of proteins within a cell on two different
levels: In Chapter 2, we present nonequilibrium processes that organize proteins along
individual filaments of the cyoskeleton. In Chapter 3, we discuss nonequilibrium
processes in the context of a cell-wide organization of proteins. In detail, the different
research projects cover the following topics:

Projects on the organization of proteins along cytoskeletal filaments (Chapter 2)

• Localization and association of proteins by the diffusion and capture mechanism
The first project is concerned with the localization of proteins that regulate
cyoskeletal filaments at the respective filament ends. This is of importance
as many regulatory proteins can only function when they are bound to the
end of the filaments they regulate. We showed that regulating proteins localize
particularly efficiently at the respective ends when they employ one-dimensional
diffusion along the filaments. To ensure localization, however, we further

2 It should be noted that several exceptions to the above stated directionalities are known which are,
however, neglected here for simplicity. For a discussion on the directionality of kinesin motors see
also Section 2.3.
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highlighted that it is critical that one-dimensional diffusion ceases once the end
is reached. In this way, detailed balance is broken which establishes a current of
particles towards the ends of filaments that is key for the localization of proteins
there. Thus, the nonequilibrium nature of a capturing mechanism organizes
regulating proteins along a filament and thereby contributes to their efficient
functioning. Details of this project and the corresponding publications [60, 61]
to which I contributed as first author are provided in Section 2.1.

• Two-species transport and topological hindrance
The second project addresses the collective dynamics of two species of molecular
motors that move actively along a microtubule. Motivated by recent experi-
mental findings, the two species are distinguished by different gaits: One species
walks straight ahead along the cylindrical geometry of a microtubule while the
other one follows a helical path. We found that the different network topology
of the corresponding stochastic process amplifies steric interactions between the
particles and thereby leads to a substantially different phenomenology of the
ensuing collective properties as compared to transport in the presence of only
a single species. In particular, jamming of molecular motors occurs already at
comparably low densities of particles and particles self-organize into wave-like
patterns along the microtubule—two findings that contrast previous findings
for molecular transport by a single species. Thus, our findings showed that
jamming might be more important also at cellular concentrations of molecular
motors than previously thought and that multi-species transport follows differ-
ent physical principles than transport by a single species of molecular motors.
An overview of this project and the corresponding publication [62] to which I
contributed as shared first author are provided in Section 2.2 of this thesis.

• Directional reversal of the collective motion of kinesins
In the third project we focus on the phenomenon of directional reversal in the
motion of molecular motors. Based on experimental results of our collaborating
partners on this project, the group of Prof. Leah Gheber at the Ben-Gurion
University of the Negev, we developed a novel model that explains directional
reversal of the collective motion of the yeast kinesin Cin8. By means of stat-
istical analysis and computational modeling, we showed that these molecules
form clusters on a microtubule due to attractive forces between the molecules.
Strikingly, clustering of molecules reversed the direction of motion. Our ana-
lysis revealed that an anisotropic response of active motion to drag explains
the observations made in the experiments quantitatively. Moreover, our model
provided a new perspective on the phenomenon of directional switching in gen-
eral: It showed that several previous apparently unrelated experimental findings
on how to trigger the directional switching of the motion of kinesins might
be different aspects of our proposed mechanism. Results related to this project
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are presented in Section 2.3. A publication related to this research project is
currently in preparation [1].

Projects on the cell-wide organization of proteins (Chapter 3)

• The contribution of vortex formation of active curved polymers to bacterial cell
division
The topic of the fourth project is the formation of vortices by a collective
of actively moving curved polymers on a two-dimensional surface. In detail,
we studied the collective dynamics of the protein FtsZ. In bacterial cells, this
protein forms the polymer ring that drives the constriction of cells during cell
division. The underlying principles that lead to the formation of the FtsZ ring
are, however, largely unknown. Our research related to this project was inspired
by recent experimental findings which showed that FtsZ forms curved polymers
that move actively over an artificial membrane by a treadmilling mechanism [2].
We showed that active motion of curved polymers on a surface leads to their self-
organization into dynamic vortices already in the absence of attractive forces:
For surface densities above a certain threshold, local interactions between the
active polymers suffice to form dynamic vortex patterns reminiscent of the
FtsZ ring in vivo. Thus, our findings demonstrate that the formation of the
Z ring might be governed by general principles related to the active motion
of an ensemble of FtsZ polymers while specific interactions are per se not
required. Details of this project and the corresponding publication [63] to
which I contributed as second author are provided in Section 3.1.

• Cell-wide organization of pigment organelles
The last project of this thesis is concerned with the cell-wide distribution of
dark pigment organelles that are transported by molecular motors along the
cytoskeletal networks in skin cells of fish and amphibians. By redistributing
the organelles, the respective organisms can change the color of their skin in
response to environmental factors. This redistribution is achieved by either
aggregating the pigment organelles in the center of the cell, which causes a
bright color of the respective cell, or by dispersing the organelles throughout
the cell, which provides a dark color to the respective cell. The group of
Dr. Zeynep Ökten at the TU Munich, our research partners in this project,
showed experimentally that this change of the cell-wide organization goes along
with a changed rate of the transfer of organelles between the two cytoskeletal
components, actin filaments and microtubules. By means of computational
modeling we related these measurements to the collective dynamics of organelles
in a cell. Implementing the results of the experimental measurements in the
computational model indeed provoked a cell-wide redistribution of organelles
in silico that very much resembled the change between organelle aggregation
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and dispersion in vivo. Moreover, our theoretical analysis provided a rationale
for the evolution of biomolecular characteristics determined experimentally
for different species: The regulation of the cell-wide organization of pigment
organelles was only responsive to biomolecular changes in a limited fashion,
which linked regulatory principles to evolutionary changes. Results related to
this project are presented in Section 3.2. A publication related to this research
project is currently in preparation [3].



2 Organization of proteins on single filaments

2.1 Localization and association of proteins by the
diffusion and capture mechanism

The topic of this section is the diffusion and capture mechanism of proteins
that regulate cytoskeletal filaments. This mechanism occurs among many
regulating proteins and consists of a one-dimensional diffusive motion along
a filament that ceases once the biomolecule reaches the end of the filament. In
many cases, the filament end serves as a target site for the regulating proteins:
Once captured at this location, the proteins can execute their regulatory
function. Concerning the diffusion and capture mechanism, we were able
to identify two central functional characteristics: (1) It localizes proteins at
the target site and thereby contributes substantially to the functionality of
many regulating proteins. (2) Localization goes along with correlations of
the occupation of the end with the occupation along the lattice. Therefore,
it is not possible to compute the distribution of proteins along a filament
by standard mathematical approximations for many-particle systems. We
overcame this limitation by developing a novel approximation method that
accounts for relevant correlations along the whole microtubule. In a nutshell,
these are the central results of our publications “Quantifying Protein Diffusion
and Capture on Filaments” [60] and “Nonequilibrium Diffusion and Capture
Mechanism Ensures Tip Localization of Regulating Proteins on Dynamic Fila-
ments” [61], that were published in Biophysical Journal and Physical Review
Letters, respectively. To both publications, I contributed as first author. The
following section provides an introduction and the scientific background
related to these publications. The corresponding publications are reprinted
in sections 2.1.3 and 2.1.4 of this thesis.
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2.1.1 Background

2.1.1.1 Regulation of microtubules by associated proteins

As we have already discussed in the prolog, the eukaryotic cytoskeleton shows a
fascinating variety of different structures in vivo. This integral capability of the
cytoskeleton to restructure and rearrange, however, has to be tightly regulated. To
this end, the interplay of a plethora of microtubule regulating proteins is required
to ensure a proper reorganization and thereby proper functioning of the cytoskel-
eton [36, 64–67]. However, our understanding of how these regulating proteins
determine cytoskeletal structures is limited; Clear principles explaining their aston-
ishing efficiency to accomplish this complex task are only starting to emerge. Over
the past years, essential players of the regulatory protein machinery that regulates
microtubules were identified and, in particular with the advent of single-molecule
microscopy, biomolecular interactions of many microtubule associated proteins could
successfully be unraveled [67]. While undoubtedly many biomolecular interactions
from different regulating proteins are required to shape the cytoskeleton, here we
focus primarily on one crucial class of microtubule regulating proteins: +TIPS [68,
69]. Members of this protein class are distinguished by their ability to localize and
track the plus end of microtubules, both, in vivo and in vitro. Already now a large
number of +TIPs which fulfill central roles in cytoskeletal organization or regulation
is known. For example, +TIPs are involved in regulating microtubule dynamics,
linking microtubules to cellular structures (such as kinetochores or the actin cytoskel-
eton) and in the recruitment of downstream signaling factors [67, 68]. The members
of the +TIPs class share the property that the microtubule tip serves as a reaction
site such that it becomes particularly important for them to efficiently localize there.
While we focus on +TIPS in this section, it should be noted that by now an equivalent
class of regulating proteins has been identified that localizes at the minus ends of
microtubules, the so-called -TIPs, and also that several actin-binding proteins show
similar behavior [67, 70, 71].

Regarding this vast class of proteins that depends on the ability to localize at
filament ends raises the question which strategies these proteins might have developed
to associate with microtubule ends in an efficient way. Very generally, proteins may
follow three different schemes of motility to target the microtubule end: Besides direct
attachment from the solution, the biomolecules may also locate to the microtubule
tip following either directed or diffusive motion along the microtubule, see also
Fig. 2.1 for an illustration. Interestingly, all three options are employed by different
+TIPs: In addition to direct binding from solution, several experimental studies have
shown the capability of some +TIPs to move actively towards the plus end or to use
molecular motors to “hitchhike” to the end [68]. But also diffusive motion along
the microtubule lattice has been observed for many different proteins [68, 72–74].
Together with the experimental discovery of diffusive motion along microtubules
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Figure 2.1 Illustration of potential tip-targeting mechanisms. Many regulatory proteins
need to associate with the microtubule plus end (left lattice end) to fulfill their regulatory tasks.
To bind there, these proteins may follow different mechanisms: (a) Direct attachment from
the solution to the plus end, (b) binding to the microtubule and subsequent directed motion
towards the plus end, (c) binding to the microtubule and subsequent one-dimensional diffusive
motion along the filament. For simplicity, the microtubule is depicted as a one-dimensional
array of schematic tubulin heterodimers (blue disks).

the idea has emerged that this mode of motility may enhance their binding to the
plus end [72]. In this research project, we followed this line of thought and used
computational modeling to address end targeting via one-dimensional diffusion in
the specific context of microtubule binding proteins. Specifically, we wanted to ask
the questions: Under which conditions is diffusive motion beneficial for end binding?
How much does this way of binding to the plus end contribute to the overall rate
of protein association there? Is plus-end binding via diffusion on the microtubule of
relevance in vivo? Concerning the binding of proteins to the microtubule end that
occurs subsequent to a directed motion on the microtubule, we refer the interested
reader to several recent studies on this topic [75–77].

2.1.1.2 The diffusion and capture mechanism

Before turning to our theoretical considerations, we start with a more detailed look
on microtubule regulating proteins that exhibit diffusive motion on the microtubule.
Diffusive motion on cytoskeletal filaments is a widespread feature reported for an
increasing number of proteins. Purely unbiased motility along the microtubule has
been confirmed experimentally, for example, for XMAP215/chTOG [73], kinesin-
13 [72, 78], the Ndc80 [79] and Dam1 [80] complexes, tau [81], Aurora-B [82], and
Clip-170 [83]. Finally, also myosin-V has been shown to diffuse on microtubules [84]
and the actin polymerase VASP is likely to employ diffusion on actin filaments [71].
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Figure 2.2 Illustration of a hypothetical binding potential of regulating proteins on
a microtubule. Due to structural distinctiveness, many regulatory proteins are likely to
recognize the plus end (left) of the microtubule [68]. This may lead to a higher affinity of
proteins to the plus-end as compared to the microtubule bulk, causing an increase of the
binding energy by ∆E . For simplicity, the microtubule is depicted as a one-dimensional array
of schematic tubulin heterodimers (blue disks) and the plus end only as one lattice site.

In addition to pure diffusive motion along the microtubule, several kinesins also
display diffusive periods in their otherwise directed motion. For a general review on
the diffusive interaction of microtubule binding proteins see Ref. [74].

Let us now return to the question: Under which conditions may a diffusive
interaction with microtubules be beneficial for targeting microtubule ends? To begin
with, we consider the case where particles are subject to passive diffusive motion all
along themicrotubule. Most +TIPs possess a mechanism to recognize themicrotubule
end [68].1 This can, in general, change the affinity of these proteins to the microtubule
end as compared to the rest of the microtubule lattice. A sketch of a hypothetical
profile of the binding energy is shown in Fig. 2.2. If the regulating proteins follow only
passive diffusion on the microtubule, their distribution along the filament converges to
a stationary state that equals the corresponding equilibrium distribution. In particular,
this distribution is solely determined by the interaction potential. Upon assuming the
limit of low concentrations of regulating proteins and neglecting particle interactions,
the probability ptip of finding particles at the tip is related to the probability pbulk of
finding particles in the bulk of themicrotubule 2 via the Boltzmann factor: ptip/pbulk =
exp(−β∆E), where ∆E is the difference of the binding energy at the tip and at the
bulk. Moreover, β = kT with k being the Boltzmann constant and T being the
temperature. The rate of attachment of particles from the solution is probably
limited by the time it takes a protein to reach the binding site by three-dimensional

1 The microtubule end differs structurally from the rest of the microtubule. This is presumably due
to a cap of GTP-bound tubulin dimers at the plus end and tapering of protofilaments [68].

2 Here we refer to the bulk as any location on the microtubule other than the plus end.
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diffusion in the solution and not by the time related to the binding reaction. Hence
it is plausible to assume a constant rate of attachment along the microtubule. A
change in the affinity is then completely reflected by a change in the detachment rate.
Consequently, ptip/pbulk = ωbulk

off /ω
tip
off holds true in equilibrium, where ωbulk

off and
ω
tip
off denote the detachment rates at the microtubule tip and bulk, respectively. Does

such an equilibrium model already comply with experimental observations? As it is
impossible to answer this question in general for all microtubule binding proteins, we
will—as an example—consider the special case of XMAP215/chTOG,which is a central
microtubule polymerase [85]. XMAP215 is a highly effective +TIP and exhibits
particularly strong localization at microtubule plus tips. Its spatial distribution along
the microtubule has been measured with very high accuracy and shows a roughly ten-
fold increased probability at the tip as compared to the microtubule bulk [86].3 Our
hypothetical equilibriummodel is therefore only in agreement with these experiments
if the rate for particle detachment (inverse of dwell time) at the tip is approximately
ten-fold decreased as compared to that in the bulk. Such a decrease is, however,
falsified experimentally: Measurements for XMAP215 [73] revealed that particles
remain bound to the bulk of the microtubule for an average of 2.4 seconds whereas
they remained, on average, 3.8 seconds at the tip. We therefore conclude that passive
diffusion alone can not account for tip localization observed for XMAP215 and that
an additional mechanism must enhance the binding to the plus end. Note that also
for other regulating proteins it is likely that equilibrium binding is insufficient to
explain the observed particle localization at the plus end [72].

One important feature ofmost+TIPs is, however, to undergo an energy consuming
biochemical reaction once bound to the tip [68]. In fact, many +TIPs might therefore
represent systems out of thermal equilibrium. For example, for the kinesin-13MCAK—
that has also been shown to diffuse on the microtubule—it is known that its ATPase
activity is not required to move along the microtubule. Instead, the plus end triggers
an ATP dependent reaction that catalyzes microtubule depolymerization [87]. The
fact that passive diffusion is insufficient to explain experimental data together with the
consideration that often diffusive motion ceases or is suppressed at the microtubule tip
thus leads to a new model for the tip-targeting by proteins that diffuse on cytoskeletal
filaments: We proposed a new model where diffusive motion stops once the plus end
is reached such that leaving the microtubule end other than by detachment into the
solution is not possible. This suppressed motility of particles at the plus end breaks
detailed balance and makes our model a nonequilibrium system. In the following,
we refer to this mechanism as the diffusion and capture mechanism. Intuitively, we
expect that the particle dynamics of the model converges towards a stationary flux of
particles in the direction of the plus end as a consequence of breaking detailed balance
in the way described above, see also illustration in Fig. 2.3. Indeed, it seems very

3 Values refer to measurements at a concentration of 150 nM.



12 Organization of proteins on single filaments

Figure 2.3 Capturing of one-dimensionally diffusing particles at the tip breaks detailed
balance and is expected to create a flux of particles towards the plus-end. (a) If particles
are only subject to passive diffusion (indicated schematically by the diffusion coefficient D )
the corresponding average distribution along the microtubule (density profile) will converge
to the homogeneous equilibrium distribution (bottom left). In this illustration, we neglected
a potentially different affinity of particles to the plus-ends of microtubules for simplicity.
(b) In our proposed model for diffusion and capture diffusive motion stops at the plus end
(left end) of the microtubule and particles can only leave this binding site by detaching into
solution. This breaks detailed balance and—opposed to the case without capturing—leads
to flux of particles J in the stationary state. This flux may result in a non-homogeneous
average distribution of particles along the microtubule in the stationary state (bottom right).
For simplicity, the microtubule is depicted as a one-dimensional array of schematic tubulin
heterodimers (blue disks) and the plus end only as a single lattice site. Moreover, while our
modeling implements particles that exclude each other, the figure shows multiple particles at
a single site for illustrative purposes; This serves to indicate an increased average occupation
of the respective site.

plausible that such a flux of particles enhances the probability of finding a protein at
the microtubule plus end. The following section provides a first quantitative glimpse
on the formation of structure in the particle distribution along a microtubule due to
the diffusion and capture mechanism.

2.1.1.3 Mean field and beyond: Approximation methods for driven lattice gases

As a preview on the publications and to support the intuitive arguing of the previous
section also briefly on a quantitative level, we will introduce themodel for the diffusion
and capture mechanism in the following.

The model is defined as follows. Particles populate a discrete one-dimensional
lattice with sites i ∈ {1, 2, · · · ,L} where the leftmost site ( i = 1) represents the plus
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Figure 2.4 Illustration of the model for the diffusion and capture mechanism including
a generic release rate. Particles populate a one-dimensional lattice where the left end (site
i = 1) represents the plus-end of a microtubule. One-dimensional diffusive motion is realized
as stochastic hopping events at equal rates ε to the neighboring lattice sites on the left and
on the right, respectively. A capturing mechanism takes place at the plus-end, as hopping
away from this site is suppressed and occurs at a rate ε̃ < ε . Particles attach to the lattice
stochastically at a rate ωac and leave the lattice stochastically at a rate ωd . To account for a
higher affinity of particles to the plus-end, particles leave the respective site i = 1 at a lowered
rate ω̃d . Particles exclude each other such that the motion of a particle may only occur of if
the respective target site is vacant. Note that in this introduction we account for a generic
release rate ε̃ for didactic purposes whereas the corresponding publications [60, 61] treat the
limiting case of ε̃ = 0.

end of the microtubule. Each site can be occupied by at most one particle. Particles
are subject to the following Markovian dynamics: On sites i > 1, particles perform
unbiased diffusive motion, i.e. they move at an equal rate ε to neighboring lattice
sites on the left and on the right, respectively. Motion from site i = 1 to site i = 2
occurs at a rate ε̃ ≤ ε . This “release” rate describes the strength of particle capturing
at the microtubule tip. Note that, for didactic purposes, we treat the case of a variable
“release” rate of hopping from site i = 1 to site i = 2. In the corresponding publications,
this rate is set to zero. The lattice exchanges particles with a surrounding particle
reservoir. In detail, a particle may attach to a lattice site at rate ωac where c is the
concentration of particles in the solution. Particles detach at rate ωd on sites i > 1
and at rate ω̃d on site i = 1. In this way, the model generically accounts for a distinct
affinity of proteins to the plus-end. Particles interact via hard-core repulsion meaning
that they exclude each other. Thus, particles can only move to and attach to vacant
lattice sites. An illustration of the model is shown in Fig. 2.4.

What are the fundamental changes in the system as particle capturing at the
microtubule tip is gradually changed from a value that obeys detailed balance to
one that breaks detailed balance? For detailed balance to hold true, the Kolmogorv
criterion constrains the release rate to ε̃equilibrium = ε ω̃d/ωd . For any value of the



14 Organization of proteins on single filaments

Figure 2.5 Average occupation of the lattice by particles and average correlations
between the occupation of the end of the lattice and occupations of the bulk of the
lattice in the stationary state. The average occupation of the lattice with particles 〈ni〉 (left
plots) showed a significantly pronounced localization of particles at the lattice end in the
case of a strong capturing mechanism ε̃ = 0 (plot on the lower left). Opposed to that, in
the case where the model was in equilibrium ( ε̃ = ε̃equilibrium; plot on the upper left), the
occupation of the lattice end was only slightly increased due to a higher affinity of particles
there. This formation of structure goes along with correlations (right plots): The Pearson
correlation coefficient corr(n1, ni) for the occupation of the lattice end i = 1 with that of the
bulk of the lattice ( i > 1) showed that correlations in thermal equilibrium (plot on the upper
right) are negligible while correlations in the case of a nonequilibrium capture mechanism are
significant over approximately hundred lattice sites (plot on the lower right). Parameters were
ε = 4700 s−1,ωa = 6.2 × 10−5 s−1nM−1,ωd = 4.1 × 10−1 s−1, ω̃d = 2.6 × 10−1 s−1, c = 200 nM.
Lattice length was L = 2500.

release rate ε̃ other than ε̃equilibrium, themodel is out of thermal equilibrium. Moreover,
for smaller values than ε̃equilibrium a current of particles in the direction of the plus end
will emerge in the system. Fig. 2.5 shows the distribution of particles along the lattice
(density profiles) for the two limiting cases ε̃ = ε̃equilibrium and ε̃ = 0 in the stationary
state. In the corresponding simulations, parameters were chosen to comply with
measurements for XMAP215 (see also the Supplemental Material of our publication
“Nonequilibrium Diffusion and Capture Mechanism Ensures Tip Localization of
Regulating Proteins on Dynamic Filaments” reprinted in section 2.1.4 for details on
the choice of parameters). As already anticipated earlier, the result of the particle
current is a strong localization of particles at the microtubule tip: While the model
showed only a slightly increased occupation at the tip in equilibrium (reflecting an
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increased affinity there), the occupation of the lattice end was significantly enhanced
when a nonequilibrium capturing mechanism was implemented. This emergence of
structure along the lattice goes along with the formation of correlations. The right
plots of Fig. 2.5 display the Pearson correlation coefficient of the occupation of lattice
end with the occupation of the lattice

corr(n1, ni) =
cov(n1, ni)

σn1σni

, (2.1)

where ni ∈ {0, 1} denotes whether site i is occupied (ni = 1) or vacant (ni = 0).
Furthermore, cov(n1, ni) denotes the covariance, and σni the standard deviation of the
occupation number ni . While correlations are negligible in equilibrium, a nonequi-
librium capturing process of particles correlates the occupation of the lattice over a
few hundred lattice sites. Fig. 2.6 further supports that the formation of structure
in terms of tip-localization of particles is indeed accompanied by the emergence of
correlations: Along with an increase of the average occupation of the lattice end 〈n1〉,4
also the total correlation of this random variable with the occupation of the lattice∑L

i=2 corr(n1, ni) increases. Thus, the formation of structure in the occupation of our
model is tightly connected to two other factors: (a) breaking of detailed balance, and
(b) the emergence of correlations.

How can we cope with the correlations in our system as soon as detailed balance is
broken? Indeed, by inspecting Fig. 2.5, it should already be clear that a mean field (MF)
approach will fail. This approach relies on neglecting all correlations in a system and,
hence, factorizing average occupations of distinct lattice sites, 〈nin j〉 −−→

MF
〈ni〉〈n j〉.

Another approach previously applied to driven lattice gases is the so-called finite
segment mean field theory (FSMFT) [88, 89]. This method includes correlations
locally by specifically solving the master equation within a small segment of a couple
of lattice sites. As we show in our publication [61], however, also this method is
insufficient to reproduce the density profile and, in particular, the occupation of the
lattice end 〈n1〉 with a good quality. The reason is that correlations extend over a
few hundred lattice sites, which makes all local approaches unfeasible. To overcome
this hurdle, we developed a new approximation method which accounts for those
correlations that are relevant for an accurate computation of the occupation of the
lattice end on a global scale: The central idea of this correlated mean-field approach
(CMF) [61] is to account for correlations of the occupation of the lattice end with that
of the bulk over the whole lattice; Correlations of occupations at different positions
within the bulk of the lattice ( i > 1) are, however, neglected. Accounting for tip-
bulk correlations over the whole lattice was achieved in an efficient fashion by a

4 Here, angle brackets refer to averaging. As we only focus on steady state properties and as our model
is ergodic, ensemble average and time average are equivalent and we do not differentiate between
them.
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Figure 2.6 Structure formation along the microtubule goes along with the emergence
of correlations. When detailed balance is broken by choosing ε̃ < ε̃equilibrium, the occupation
of the lattice end 〈n1〉 ( left) increases. Together with this increase, also sum of all correlations
(
∑L

i=2 corr(n1, ni)) between the occupation of the lattice end (n1) with that of the bulk of
the lattice (ni for i > 1) increases (right). Thus, a localization of particles at the lattice end
due to a nonequilibrium capturing mechanism is inherently connected to the formation of
correlations. Parameters were ε = 4700 s−1, ωa = 6.2 × 10−5 s−1nM−1, ωd = 4.1 × 10−1 s−1,
ω̃d = 2.6 × 10−1 s−1, c = 200 nM. Lattice length was L = 2500.

hydrodynamic approach: In the standard hydrodynamic mean-field approach for
driven lattice gases, one often converts the discrete occupations into a continuous
“density field” 〈ni〉 → ρ(x), with x = (i − 1)a being the continuous position on the
lattice in the continuous limit (a → 0) and a being the spacing of the lattice. We
complemented the corresponding equation of motion for ρ(x) by a second equation
that describes a “correlation field” 〈n1ni〉 → g (x). In this way, our approximation
is tailored to adequately include correlations between the occupation of the end of
the lattice and that of the bulk of the lattice on a global scale. An overview of the
different approximation methods is shown in Fig. 2.7.

At this stage, it should also be noted that—from a conceptional perspective—the
hypothesis that a “reduction of dimensionality” in the motion of molecules may
enhance binding to specific sites dates back to the seminal work of Adam and Del-
brück [90]. The idea has been largely applied to DNA binding proteins, see Refs. [91–
94] for recent reviews. The underlying scientific question of these theories is, how-
ever, different from our aims as the respective studies typically addressed association
times of individual proteins to a target site. Opposed to that, we were interested in
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Figure 2.7 Illustration of different approximation methods applied to driven lattice
gases. (a) The mean-field approach neglects all correlations by factorizing average occupations
at different positions, 〈nin j〉 −−→

MF
〈ni〉〈n j〉. (b) In the finite segment mean field theory,

correlations are included locally within a small range of a couple of lattice sites. The solution
for occupations within this segment is then self-consistently matched to the mean-field solution
for the occupation numbers outside of this segment. (c) In our correlated-mean field approach,
we include correlations corr(n1, ni) along the whole lattice. Other correlations are, however,
neglected.

the corresponding many-body problem that allows one to obtain the steady-state
distribution of particles along the whole microtubule. It should further be noted
that some other studies have also addressed collective systems of one-dimensionally
diffusing particles [72, 95, 96]. However, these models are not suitable to address
a tip-localization of microtubule regulating proteins. This is the case because the
respective models either didn’t account for a capturing mechanism [95], introduced it
ad hoc by absorbing boundary conditions at the microtubule end which, however,
neglects the occupation of the end itself [72], or implemented boundary conditions
motivated from a different biological process that are, however, not applicable to our
model system [96].

2.1.2 Key results

In our work on the tip localization of microtubule binding proteins we developed
a comprehensive theory for the diffusion and capture mechanism. The two corres-
ponding publications deal with different aspects of this mechanism: (1) An effective
Michaelis-Menten theory to quantify protein association due to the diffusion and
capture mechanism. This theory is the central component of the publication “Quan-
tifying Protein Diffusion and Capture on Filaments” [60]. (2) A theoretical approach
to compute the occupation of cytoskeletal filaments by proteins that are subject
to a diffusion and capture mechanism. Related results are published in the manu-
script “Nonequilibrium Diffusion and Capture Mechanism Ensures Tip Localization of
Regulating Proteins on Dynamic Filaments” [61]. The manuscripts are reprinted in
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sections 2.1.3 and 2.1.4, respectively. In both publications I contributed as first author.
For a detailed description of author contributions, please refer to the “Abstracts of the
projects and contribution” section at the beginning of this thesis. In the following, we
briefly summarize the key findings and explicate the scope of these two publications.

The work of publication (1) focused on the quantification of the association rate in
the diffusion and capture mechanism. The key result is an effective Michaelis-Menten
theory for the diffusion and capture mechanism. We found that—for typical biological
parameter values—the functional dependency of the occupation of the plus end by
proteins closely follows a Michaelis-Menten curve, also when proteins attach by a
diffusion and capture mechanism. Based on this observation, we extended the classical
(single molecule) Michaelis-Menten equation, that describes attachment via three-
dimensional diffusion, by the respective contribution due to diffusion and capture.
The result is useful in two ways: First, it provides an analytic expression for the
effective association rate due to diffusion and capture. This expression can be directly
compared to the association rate of direct binding from solution. Hence, we could
quantitatively relate the contribution for protein association to the plus end by direct
attachment with the respective contribution due to a diffusion and capture mechanism.
Second, our theory is fully quantitative meaning that it only depends on parameters
that can be measured in standard experiments and that have been determined for
several +TIPs. We applied our theory to quantify tip binding by diffusion and capture
for 17 previous experiments with microtubule binding proteins. In all cases diffusion
and capture contributed more than 90% to the overall rate of protein binding to the
plus end. Hence, diffusion and capture dominates tip binding and outperforms the
Smoluchowski diffusion limit [97] for binding via three-dimensional diffusion in all
of these experiments.

The work of publication (2) focused on the computation of the average stationary
occupation of a filament by proteins that are subject to a diffusion and capture
mechanism. We did this specifically for two essential regulating proteins: the central
polymerase XMAP215/chTOG and the central depolymerase MCAK. Both proteins
have been shown to fulfill vital roles in the regulation of microtubules and together
reconstitute physiological microtubule dynamics [36, 85, 98, 99]. The extended
model explicitly accounted for a dynamic lattice to provide an appropriate theoretical
description of catalyzed microtubule growth and shrinkage. The first finding of our
theoretical approach was that diffusion and capture correlates particle occupations. In
detail, we found that the occupation of the microtubule tip spatially correlates with
the occupation along the filament over hundreds of lattice sites. These correlations
complicate an analytic approach since standard theories that neglect correlations
(mean-field approach) or include them only within a spatially restricted segment
(e.g. finite-segment mean-field theory) fail. To this end, we have developed a novel
approximation method that accounts for relevant correlations globally. With this
approach, we computed the density profiles of particles which, in turn, allowed us
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to quantify tip localization. To validate our theory, we showed that it is in excellent
quantitative agreement with in vitro measurements for the concentration dependence
of (de)polymerization velocities of XMAP215 and MCAK. Further, our theory agrees
with density profiles measured experimentally for XMAP215. Strikingly, we found
that for both proteins, XMAP215 and MCAK, the diffusion and capture mechanism
localizes proteins most efficiently at cellular concentrations of these proteins. This
finding suggests an important role of the mechanism also in vivo.
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Abstract

The functional relevance of regulating proteins is often limited to specific binding sites such as
the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is
of great importance. We present a quantitative theory for a diffusion and capture process, where
proteins diffuse on a filament and stop diffusing when reaching the filament’s end. It is found that
end-association after one-dimensional diffusion is the main source for tip-localization of such pro-
teins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity
of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate.
We show that the reaction velocity can effectively be described within a Michaelis-Menten frame-
work. Together one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski
diffusion limit for the rate of protein association to filament ends.

The catalytic activity of enzymes is often restricted to specific binding sites. The ends of microtubules

(MTs) for example are binding sites for a plethora of MT associated proteins (MAPs) [1]. At MT ends,
MAPs can catalyze biochemical processes [2], or serve as substrates for other enzymes. This makes an

efficient association of MAPs to MT tips important. Recent experiments suggest that one-dimensional
diffusion of MAPs on MTs facilitates tip-targeting [3, 4]. This idea goes back to the concept of “reduction

in dimensionality” suggested by Adam and Delbrück [5] and has been largely applied [6, 7]. However,
a quantitative understanding of tip-binding mediated by diffusion on the filament and subsequent capture

at the tip has remained elusive [3, 8–16].
Here we show that capturing at the tip is crucial for tip-localization of proteins. We present a the-

ory where diffusion and capture is accurately quantified with an effective association rate constant and
provide a result which depends only on experimentally accessible parameters. For proteins which are en-

zymatically active at filament ends, our theory predicts that diffusion and capture leads to an enhancement
of the enzymatic reaction velocity due to stronger tip-localization. We observe that the reaction veloc-

ity in dependence of the enzyme concentration closely follows a Michaelis-Menten curve and quantify
the contribution of one-dimensional diffusion to tip-localization and enzymatic processes downstream

thereof.
To model the diffusive motion of proteins on a filament we consider a one-dimensional lattice of

length l with lattice spacing a = 8.4 nm [Fig. 1A]. The lattice corresponds to a single protofilament of a
stabilized MT in the absence of dynamic instability. Proteins perform a random walk on the lattice with

a hopping rate ϵ; the diffusion constant is D = ϵ a2. Each site can be occupied by only one protein; the
system is an exclusion process [17]. Proteins attach to and detach from the lattice at rates ωonc and ωoff ,
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respectively, where c is the concentration of proteins in solution. The tip of the MT is represented by

the first lattice site in our model. To account for its particular structure, different on- and off-rates are
assumed there, konc and koff . Proteins that bind to the tip are captured, i.e. not allowed to hop on the

lattice, but still may detach into solution. This important condition is a critical difference between our
model and previous approaches [3, 16], see also the Supporting Material.

A central goal of this letter is to quantify the relative contributions of diffusion and capture (tip-
attachment after diffusion on the lattice) and end-targeting (attachment after diffusion in solution) [Fig. 1B]

to tip-localization. To this end we calculated the probability to find a protein at the end of a protofilament
(the tip density ρ+). In the absence of diffusion and capture, the Langmuir isotherm is obtained,

ρ+(c) =
c

K + c
, (1)

where K = koff/kon is the dissociation constant of the protein at the tip. However, as noted pre-
viously [3, 4], such a model is incomplete as it does not account for the additional protein flux along

protofilaments mediated by diffusion and capture. We have analyzed this flux by stochastic simulations
of the model [Fig. 1]. Surprisingly, we find that over a broad range of concentrations c, the additional

protein current to an unoccupied reaction site JD effectively obeys first order kinetics, i.e. JD = kD
onc

[Supporting Material Fig. S2]. This observation implies that despite the complexity of the diffusion-

reaction process one approximately retains the functional form of the Langmuir isotherm. Accounting
for the diffusion-capture contribution to the rate of protein attachment leads to an effective dissociation

constant

Keff = koff/(kon + kD
on) . (2)

We have calculated the diffusion-capture rate kD
on analytically, by exploiting the observed approximate

linear reaction kinetics. We find

kD
on =

ωonD/a2

ωoff +
√

ωoffD/a2
. (3)

Refer to the Supporting Material for a detailed derivation of Eqs. 1-3. Together Eqs. 1-3 comprise an

effective theory for the association of proteins to the tip which accounts for direct end-targeting as well
as the diffusion-capture process. With Eq. 3 we are able to quantitatively predict the relative contribution

of diffusion and capture to tip-binding for different proteins that diffuse on filaments. The results are
shown in Fig. 2: 90 − 99% of molecules bind to the tip through one-dimensional diffusion given they

follow diffusion and capture.
Tip-localization due to diffusion and capture as predicted by our theory has important implications

for enzymatically active proteins. We extended the model to investigate enzymatic reactions at the MT
tip, where the protein-tip complex catalyzes a product at rate kcat [Fig. 1C]. In detail, we assume that

the protein does not leave the tip after catalyzing a reaction, but only through detachment into solution.
These model assumptions are consistent with filament polymerizing enzymes that act processively, such

as XMAP215 for MTs [9, 10], and VASP [15] and formins [18] for actin filaments. The assumption of a
constant length l in our model is excellent if the rate of diffusion is fast compared to the polymerization

rate. With the above model assumptions the reaction velocity v is determined by the tip density, v =

ρ+kcat. We can apply our previous results, Eqs. 1 -3, to obtain

v(c) = kcat ρ+(c) =
kcatc

Keff + c
. (4)

2



protein

empty site

Figure 1: (A) Schematic of a MT with diffusive tip-binding proteins. In the bulk of
the lattice, proteins attach to empty sites and detach. Proteins hop to neighboring
sites but obey exclusion. At the plus-end, particles are captured. (B) Illustration of
direct tip-attachment from solution and via diffusion and capture. (C) Proteins bind
reversibly at the plus-end. While a protein is attached there, a reaction is catalyzed
at rate kcat.

Figure 2: The model predicts the relative contribution to tip localization of proteins
due to diffusion and diffusion & capture (color code and solid lines), kD

on/(kD
on+kon)

with kon = ωon (dashed for actin: a = 6 nm). Proteins that are captured at the fil-
ament end (filled symbols) and proteins where evidence for capturing is lacking
(open symbols) are shown. Proteins that in addition have a direct enzymatic activ-
ity at the filament end are XMAP215 [9, 10], MCAK1 [3], and MCAK2 [8] on
MTs, and VASP on actin filaments, see Ref. [15] and personal communicaton [S.D.
Hansen and R.D. Mullins, 2014]. There are also proteins that diffuse on MTs with-
out enzymatic activity at MT ends, but with roles downstream of tip-localization,
e.g. in the protein network of MT tips [1]: NCD80 [11]; CLIP − 170 [12]; NuMa,
PRC1, EB1 [13]; Aurora − B [14].
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Figure 3: (A) Comparison of the reaction velocity with (solid) and without (dashed)
lattice diffusion and with and without capturing at the tip (circles: simulation data;
lines: analytic results) (B) shows the reaction velocity v(c). Analytic results (lines)
are confirmed by simulation data (circles). Parameters are L = 1000, ωoff = koff =
1 sec−1, kcat = 10 sec−1 ωon = kon = 0.01 sec−1 nM−1 and c = 1 nM.

The above equation is reminiscent of a single-molecule Michaelis-Menten equation [19, 20] when Keff

is reinterpreted as Michaelis constant and substrate and enzyme concentrations are interchanged. In this
way our theory constitutes an effective Michaelis-Menten theory which accounts for end-targeting and

diffusion and capture; instead of solving a complex many-body problem it suffices to apply a mathe-
matical framework which is analogous to (single-molecule) Michaelis-Menten kinetics; the details of

diffusion and caputure are accurately included in the effective on-rate keff
on = kon + kD

on. This result is in
accordance with experimental results for several enzymatically active proteins where Michaelis-Menten

curves were observed for the reaction speed depending on the enzyme concentration [8, 9]. Inspired by
the processive (de)polymerase activity of (MCAK) XMAP215, we assume that enzyme and substrate are

not decomposed in the reaction step. However, it is straightforward to include a decomposition in the
theory: the effective dissociation constant would read Keff = (koff + kcat)/keff

on .

Our analytical results, Eqs. 2-4, agree well with simulation results of the stochastic model, as shown
in Fig. 3(A) and (B). We find that the diffusion and capture mechanism dramatically increases keff

on and

thereby reduces the effective dissociation constant typically by more than one order of magnitude, e.g.
for XMAP215 we find Keff ≈ 10−2K. In the case of long dwell times ω−1

off and fast diffusion ϵ, Keff

4



reduces to a particularly simple form

Keff = (koff/ωon)/
√

ϵ/ωoff , (5)

where the denominator is the square root of the average number of diffusive steps a protein performs on

the filament. Note that one-dimensional diffusion without capturing [16] does not lead to a particle flux
on the filament [Supporting Material Fig. S4] and hence the reaction velocity is not increased [Fig. 3A].

Further, the particle flux might be limited by the length of the filament: Below a threshold length lc

(which is smaller than typical in vivo lengths of MTs) we observe a length dependent behavior of the

reaction velocity [Supporting Material Fig. S3] where our theory is not valid.
Our analysis reveals diffusion and capture as an efficient mechanism to circumvent the diffusion

limit for the rate of end-targeting: Smoluchowski’s theory of three-dimensional diffusion physically
limits the rate of direct tip-attachment from solution [21]. As shown here, one-dimensional diffusion

along a filament and subsequent capture at the filament end overcomes this limitation. This has been
shown experimentally for MCAK [3]. Our work provides an applicable theory for reaction kinetics

facilitated by diffusion and capture: specific parameter values for diffusion, tip-association and dwell
times can be accounted for, cf. Eqs. 3 and 4. On a broader perspective our results may also be applicable

to other systems where one-dimensional diffusion is important [6] including transcription factor binding
on DNA [22].
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A Derivation of Eq. (1), (2), and (4)

In the following we derive the reaction velocity of the model presented in the Main Text. We start by

considering the model depicted in Fig. 1 (A): Particles from a reservoir with concentration c can bind
reversibly to a single reaction site with rates konc for binding and koff for unbinding. As long as the

proteins are bound to the tip, they perform a not specified reaction at rate kcat. Inspired by the processive

A

B

FIGURE S1: Illustration of the chemical reaction considered in this section. Parti-
cles (blue circles) from a reservoir with concentration c bind reversibly to an unoc-
cupied (dashed circles) reaction site at rates konc for binding and koff for unbinding.
Whilst bound, the particles catalyze a (not specified) reaction at rate kcat. In (A)
particles can only attach directly via the reservoir. In (B) we have an additional par-
ticle flux JD to the reaction site due to a diffusion and capture mechanism described
in the Main Text.

(de)polymerase activity of XMAP215 (MCAK), there is no decomposition of the particle and the reaction
site in the reaction step. Including a decomposition in the model would however be straightforward (see

also the discussion in the Main Text). Let n+ denote an occupied (n+ = 1) or vacant (n+ = 0) reaction
site. Then, the average velocity of the reaction is given by

v = ⟨n+⟩kcat. (S1)

Here, the average refers to an ensemble average. Since the reaction site corresponds to the last lattice site
of one protofilament, we expect our results to be valid for experimental setups with a sufficiently large
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and constant number of protofilaments or (due to ergodicity) for the time average with respect to a single

protofilament. In the steady state the equation for the average occupation of the reaction site reads

0 =
d

dt
⟨n+⟩ = konc(1 − ⟨n+⟩) − koff⟨n+⟩ . (S2)

Solving for ⟨n+⟩ leads to an equation for the reaction velocity which is analogous to a single molecule
Michaelis-Menten equation [1]:

v =
kcatc

K + c
(S3)

with K = koff/kon. Note that here c is the concentration of the enzyme, not the substrate.
If we now have an additional particle flux J to the reaction site via one-dimensional diffusion, Fig. S1

(B), the dynamics are changed. Including this flux in the equation for the average reaction site occupation
leads to

0 =
d

dt
⟨n+⟩ = konc(1 − ⟨n+⟩) + J − koff⟨n+⟩ (S4)

=

(
konc +

J

1 − ⟨n+⟩

)
(1 − ⟨n+⟩) − koff⟨n+⟩ . (S5)

Note that the term JD := J/(1−⟨n+⟩) can be interpreted as the conditional particle flux to an unoccupied

tip. If the conditional diffusive current can be written as JD := kD
onc we conserve the functional form

of Eq. S3 but kon is replaced by an effective on-rate for direct binding as well as diffusion and capture:

keff = kon + kD
on.

In conclusion, observing a Michaelis-Menten curve for the reaction velocity in dependence of the

enzyme concentration c is equivalent to the statement, that the current of particles towards an unoccupied
reaction site due to the diffusion and capture mechanism obeys first order kinetics. In Fig. S2 simulation

results of our model show that the linearity condition is indeed approximately fulfilled over a broad
parameter range. The corresponding parameter values are chosen within the typical parameter range for

one-dimensionally diffusing proteins (see Fig. 2 in the Main Text). Note that for high concentrations
which imply almost saturated reaction velocities we observe a, in general, non-linear behavior. In such a

parameter range extended analytic approaches than the ones presented here would be necessary. For the

analysis shown in this work these deviations are, however, not relevant as we are interested in quantities
which are almost saturated at such concentrations (tip-occupation and reaction velocity; particle current

to the tip).

B Derivation of Eq. (3)

B.1 Mathematical model definition

The mathematical formulation of the model depicted in Fig. 1 of the Main Text relies on a probabilistic
description of the lattice site occupations. A basic introduction to lattice gases and related problems can

be found in Ref. [2]. The occupation numbers ni with i ∈ {0, . . . , L − 1} describe the configuration of
particles on the lattice, where ni = 0 and ni = 1 stand for an empty or occupied lattice site respectively.

The equations of motion for the density on each lattice site are obtained in terms of the mean occupation
numbers ⟨ni⟩ = ρi. Further it is assumed that neighboring lattice sites are occupied independently, which

8



FIGURE S2: The current due to the diffusion and capture mechanism towards an
unoccupied reaction site shows linearity in c over a broad parameter range. The
dashed line is the concentration, where the reaction velocity is 90% saturated, v =
0.9 kcat. For concentrations close to the maximum reaction velocity the current
differs from the linear behavior. This is, however, largely negligible because v and
J are almost saturated.

is a mean-field approximation that reads ⟨nini+1⟩ = ⟨ni⟩⟨ni+1⟩. We will justify later on that this ap-
proximation is not a restriction for the computations performed to derive kD

on. Given these preliminaries,

the equations of motion in the bulk (sites i = 2, . . . , L − 1) of the lattice read [3]

d

dt
ρi = ϵ(ρi−1 − 2ρi + ρi+1) + ωonc(1 − ρi) − ωoffρi , (S6)

where particle exclusion as well as attachment and detachment kinetics are accounted for. Particle attach-
ment and detachment define the equilibrium density of particles on the lattice, also called the Langmuir

9



density,

ρLa =
ωonc

ωonc + ωoff
. (S7)

Note that we consider the terminal site separately and refer to its average occupation as tip density ρ+,

ρ+ := ρ0 = ⟨n0⟩ . (S8)

The lattice site next to the tip, i = 1, is also considered distinct from the bulk dynamics: It serves as a

boundary for the diffusive region. The equations of motion for sites i = 0, 1 are

d

dt
ρ0 = ϵ(1 − ρ0)ρ1 + konc(1 − ρ0) − koffρ0 , (S9)

d

dt
ρ1 = ϵ(ρ2 − ρ1) − ϵρ1(1 − ρ0) + ωonc(1 − ρ1) − ωoffρ1 . (S10)

The density in the bulk is (in leading order of a gradient expansion) governed by the following diffusion

equation

∂tρ(x, t) = a2ϵ ∂2
xρ(x, t) + ωonc(1 − ρ(x, t)) − ωoffρ(x, t) , (S11)

with x = ai. This is a continuous approximation of Eq. S6. The boundary conditions are limx→∞ ρ(x) =

ρLa and ρ(a) = ρ1. The solution is obtained in the steady state ∂tρ(x, t) = 0 and reads

ρ(x) = ρLa + (ρ1 − ρLa) exp[−(x − a)/λ] , (S12)

with

λ =

√
D

ωonc + ωoff
, (S13)

as calculated by Klein et al. [3]. Here we used D = ϵa2. This solution is valid for x ≥ a. At sites

i = 0 and i = 1 the density profile is not continuous and the diffusion equation can not be applied. The
remaining task is to determine the values for ρ0 and ρ1 in the steady state.

B.2 Low density approximation

To make progress, the particle flux from site i = 2 to site i = 1 from Eq. S10 is rewritten as a derivative:

(ρ2 − ρ1) ≈ a∂xρ(x)|x=a. This corresponds again to a continuous description at the corresponding
sites. Using Eq. S12 we see that the (right) derivative at x = a (which is equivalent to i = 1) is

∂xρ|x=a+ = −(ρ1 − ρLa)/λ. With this result we can simplify Eq. S10 in the steady state

0 ≈ −a
ρ1 − ρLa

λ
− ρ1(1 − ρ0) , (S14)

where attachment and detachment rates have been assumed small. Further, note that we solve Eq. S9 in
the steady state for ρ0 as a function of ρ1:

ρ0 =
ρ1ϵ + konc

ρ1ϵ + konc + koff
. (S15)

The key relation at the basis of our theory is that tip attachment via lattice diffusion obeys first-order
reaction kinetics. This is well confirmed by simulations over a broad and biologically relevant parameter

region, see Fig. S2. The current to an unoccupied tip is hence approximately given by JD = kD
onc, where

kD
on is a constant, independent of the enzyme concentration. In the following, we determine the diffusive

10



current for infinitesimally low enzyme concentrations and thereby determine kD
on. In this parameter

region correlations become negligible such that the mean-field assumption becomes valid. Further, we
assume ρ1 to be small. This is well justified for low concentrations. Note also that the density along the

lattice is minimal at i = 1. Up to first order in ρ1 Eq. S14 reduces to

0 = − a ϵ ωonc√
ϵ (ωoff + ωonc)

+
(
a

√
ϵ (ωoff + ωonc) +

ϵ koff

konc + koff

)
ρ1 . (S16)

The solution of the above equation determines the tip density via Eq. S15. In our low-density approxi-

mation and up to first order in c we obtain

ρlow-c
0 =

kon + (ωon ϵ)/(ωoff +
√

ϵ ωoff)

koff
c . (S17)

B.3 Site attachment due to lattice diffusion

The solution of ρ+ = ρ0 allows us to determine the diffusive current. In Eq. S17 there is an additional

term that adds to the direct attachment rate kon which vanishes for ϵ = 0. Identifying this term as the
diffusive on-rate the final result reads

kD
on =

ϵ ωon

ωoff +
√

ϵ ωoff
. (S18)

C XMAP215 parameter values

Model parameters
ϵ ωon ωoff kcat koff kon

s−1 (nM s)−1 s−1 s−1 s−1 (nM s)−1

XMAP215 4.7 ×103 6 ×10−5 4.1 ×10−1 1.3 ×102 2.6 ×10−1 6 ×10−5

TABLE S1: Parameters used in our simulation for XMAP215. The numbers were
derived from experimental data [5, 6].

D Length dependent behavior for short filaments

For filaments shorter than a critical length lc our model implies a length dependent tip-density, see

Fig. S3. Below lc the particle flux due to diffusion and capture is limited because the filament is shorter
than the length scale of free diffusion. For XMAP215 we find lc ≈ 0.5 µm. This means that for typical in

vivo lengths of MTs, where l > lc, the enhancement of tip association through one-dimensional diffusion
and capture is realized. However, below lc length dependent behavior might occur.
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FIGURE S3: Below a critical length lc (dotted) the reaction velocity v depends on
the MT length. The reaction velocity saturates at the value given by Eq. 4 in the
Main Text. Parameters are for XMAP215, c = 300 nM, see Table S1.

E Differences to work by Helenius et al. [4] and Klein et al. [3]

There are several differences between our work and previous theoretical investigations of the topic. Work

by Helenius et al. [4] did not address the question of reaction kinetics and motor occupations at the
MT tip. Their approach based on differential equations leads to mathematical inconsistencies when

considering a capturing mechanism. This is why we pursued a different approach using a lattice gas. It
allows us to account for the capturing mechanism which in turn leads to an explicit expression for the tip

density. If the tip is highly occupied, the current saturates at a value which is approximately given by the
off-rate at the tip, koff . This saturation effect is not included in the model by Helenius et al. [4], but is

accounted for in our model. In Fig. S4 we compare the particle current J obtained by Helenius et al. with
our result. For high concentrations, there are large deviations between our model and the approximation

in [4]. Work by Klein et al. [3] did not include capturing at the MT tip. Therefore there is a vanishing

current to the tip if diffusion is fast compared to the enzymatic reaction at the tip, cf. Fig. S4.

FIGURE S4: Differences in the (total) protein current J to the MT tip between this
work and previous theoretical approaches. A continuous diffusion equation with
absorbing boundary condition leads to a linear relation J ∝ c [4]. A lattice gas
without capturing [3] (reflecting boundary condition) has a vanishing current to the
tip J = 0.
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A nonequilibrium diffusion and capture mechanism ensures tip-localization of
regulating proteins on dynamic filaments
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Diffusive motion of regulatory enzymes on biopolymers with eventual capture at a reaction site
is a common feature in cell biology. Using a lattice gas model we study the impact of diffusion
and capture for a microtubule polymerase and a depolymerase. Our results show that the capture
mechanism localizes the proteins and creates large-scale spatial correlations. We develop an analytic
approximation that globally accounts for relevant correlations and yields results that are in excellent
agreement with experimental data. Our results show that diffusion and capture operates most
efficiently at cellular enzyme concentrations which points to in vivo relevance.

The diffusive motion of proteins on filamentous struc-
tures in the cell is vital for several cellular functions such
as gene regulation [1] and cytoskeletal dynamics [2, 3]:
To find their target sites, transcription factors are likely
to employ one-dimensional diffusion on the DNA and the
dynamics of this process largely determine the kinetics of
gene regulation [4, 5]. Similarly, actin and microtubule
(MT) binding proteins diffuse on the respective filaments
and fulfill regulatory functions primarily at the filament
ends. Adam and Delbrück [6] suggested that a reduc-
tion in dimensionality of the diffusive motion enhances
the effective rate of association of particles with binding
sites on the membrane or on DNA and filaments, and
this concept has been widely applied and extended [7, 8],
see also Refs. [9] for recent reviews on the topic.

With regard to cytoskeletal architectures, efficient as-
sociation and localization of enzymes to specific sites is
relevant for a variety of cellular processes throughout the
cell cycle and for cell motility and dynamics [10]. It was
recently shown experimentally that one-dimensional dif-
fusion is utilized [2, 5] by two proteins with important
roles in the regulation of MT dynamics [12–15], MCAK
and XMAP215. These proteins strongly localize at their
respective reaction sites and show association rates for
these sites that are significantly higher than expected for
binding via three-dimensional diffusion [5, 8]. Both pro-
teins carry out vital tasks, with MCAK acting as depoly-
merase of tubulin protofilaments [17] and XMAP215 as
a poylmerase [8] when bound to ends of MTs. Note that
similar mechanisms are also assumed to be relevant for
actin associated proteins [18]. However, diffusive motion
on filaments does not lead to a localization and efficient
association of proteins per se: As we have shown previ-
ously [1], it is crucial to include a capturing mechanism at
the reaction site, which suppresses the one-dimensional
diffusive motion of a protein that reaches this site; with-
out such a capturing mechanism no increase in the effec-
tive association rate for the tip occurs. For MCAK and
XMAP215 protein capturing is observed in experiments:
Diffusive motion stops once the proteins reach the MT

tip [5, 8]. Yet, the underlying interactions with the MT
tip are still elusive and being studied [20].

Here we present a theoretical description of enzyme
diffusion and capture at MT tips where the enzymes cat-
alyze filament polymerization or depolymerization. Pre-
vious studies of similar systems have lacked either a cap-
turing mechanism [9, 22] or a dynamic filament [1], al-
though both features are critical. To overcome both lim-
itations, we employ a one-dimensional lattice gas [23, 24]
with particle capturing in a dynamic system, in which
growth or shrinkage of the filament is triggered by the
interactions of particles with the lattice end. Our moti-
vation is twofold: Firstly, we seek for a detailed mathe-
matical understanding of the capturing mechanism. Sec-
ondly, based on a fully quantitative model, we wish
to elucidate the specific biomolecular mechanisms em-
ployed by XMAP215 and MCAK. Our results show that
the capturing process induces large-scale spatial correla-
tions in the protein distribution along the filament. We
develop a mathematical framework that systematically
includes relevant correlations on a global scale. This
conceptual advancement allows us to quantitatively ex-
plain the results of in vitro experiments with XMAP215
and MCAK [4, 8]. We demonstrate that the diffusion
and capture mechanism strongly localizes XMAP215 and
MCAK at the MT tip and that the process operates op-
timally under physiological conditions for both proteins,
which suggests that it is relevant in vivo.

Model definition. We consider a one-dimensional lat-
tice with lattice spacing a and a semi-infinite geometry
which corresponds to one protofilament, as depicted in
Fig. 1. In the case of MTs, a is the length of a tubulin
heterodimer, 8.4 nm. The configuration of enzymes on
the lattice is described by occupation numbers ni, taking
values ni=0 for empty, and ni=1 for occupied sites. The
particles symmetrically hop to neighboring sites at rate
ε, and interact via hard-core repulsion. We implement
Langmuir kinetics to model a surrounding reservoir of
particles with a constant concentration c. Particles at-
tach to and detach from the lattice at rates ωac and ωd,
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respectively [27, 28]. Sites i≥3 are considered as bulk
sites. There the dynamics differs from that in the bulk
as we implement a protein capturing mechanism: Hop-
ping from site i=1 to site i=2 is disallowed, as suggested
experimentally for MCAK and XMAP215 [5, 8]. In this
way, detailed balance is broken which leads to strong tip-
localization due to a particle flux along the filament; in
equilibrium models such a significant localization is ab-
sent, see Fig. S1 in the Supporting Material [26]. Par-
ticles detach from the first lattice site at a distinct off-
rate, ωd 6=ωd. We refer to site i=1 as a reaction site at
which new lattice sites may be added or removed. For
the moment, we specify our discussion to polymerases
such as XMAP215 [8]. However, our considerations are
largely independent of whether polymerization or depoly-
merization occurs—an equivalent formulation can also be
found for the depolymerase MCAK [26]. For XMAP215,
we specify that lattice growth is triggered at rate δ if
the protein is bound to the first lattice site. Hence, the
average speed of lattice growth v for the MT is propor-
tional to the average particle occupation 〈n1〉 and the
XMAP215 polymerization rate: v=δa〈n1〉. Here we as-
sume one catalyzing protein per protofilament end at sat-
urating conditions [26]. The actual maximum number of
catalytically active proteins is unknown; in experimental
literature approximately 10 XMAP215 proteins at the
MT tip are estimated at 50 nM XMAP215 [8]. As shown
in recent experiments, XMAP215 acts processively, i.e.
one molecule adds multiple tubulin dimers to the growing
MT end [8]. To implement such behavior in our model
the particle at the tip is transferred to newly incorporated
lattice sites. In our analysis we neglect uncatalyzed tubu-
lin addition or removal as typical corresponding experi-
ments [3–5, 8] were performed under conditions where
these processes did not occur with a significant rate. An
extension is, however, possible in a straightforward fash-
ion and does not affect tip-localization significantly; see
Fig. S5 and S6 in the Supporting Material [26]. Therefore
we expect validity of our further considerations also with

FIG. 1. Illustration of the model for XMAP215. Particles
bind to empty lattice sites with rate ωac, where c is the par-
ticle concentration in solution, and detach with rate ωd. The
proteins hop symmetrically to neighboring sites at rate ε but
exclude each other. We assume a distinct off-rate ωd at the
first site. Particles bound there cease hopping but add new
lattice sites at rate δ. The particle which stimulates poly-
merization moves with the tip. An analogous model can be
defined for MCAK, where depolymerization occurs if the lat-
tice end is occupied, see Supporting Material for details [26].

intrinsic MT dynamics, for example as a consequence of
hydrolysis of tubulin bound GTP which was studied ex-
tensively in previous models [6].

Mathematical analysis. We set up the equations of
motion for the average occupation numbers of the
stochastic process defined above. All equations will be
formulated in the frame of reference comoving with the
dynamic lattice end. In the bulk of the lattice, i≥3, we
obtain

d
dt 〈ni〉 = ε

(
〈ni+1〉−2〈ni〉+〈ni−1〉

)
+ δ
(
〈n1ni−1〉−〈n1ni〉

)

+ωac
(
1−〈ni〉

)
− ωd〈ni〉 . (1)

This equation comprises contributions from hopping
while obeying the exclusion principle [2] (terms propor-
tional to ε) and a displacement current due to polymer-
ization (terms proportional to δ) as well as particle at-
tachment and detachment (terms proportional to ωa and
ωd, respectively). The tip occupations complement these
bulk dynamics in the following manner:

d
dtρ1 = ε(ρ2−g2) + ωac(1−ρ1)− ωdρ1 , (2)
d
dtρ2 = ε(ρ3−2ρ2+g2)− δg2 + ωac(1−ρ2)− ωdρ2 ,
d
dtg2 = ε(g3−g2) + δg2 + ωac(ρ1+ρ2−2g2)− (ωd+ωd)g2 .

Here we have defined the average density, ρi:=〈ni〉, and
the correlation function, gi:=〈n1ni〉. Moreover, since the
polymerization process facilitated by XMAP215 is pro-
cessive, an empty lattice site at i=2 is created and site
i=1 remains occupied each time a new site is added.
We fully quantify our model with the experimental data
available for XMAP215 [3, 8]; see Supporting Material
for parameter values [26].

In the first step we test the quality of standard ap-
proximation techniques for driven lattice gases against
stochastic simulation data obtained from Gillespie’s al-
gorithm [32]. The set of equations which determines the
lattice occupations (Eq. 1 and Eqs. 2) is not closed; the
dynamics of the density ρi and the correlation functions
gi=〈n1ni〉 are coupled. In fact, there is a hierarchy of
equations, which, in general, precludes the derivation
of an exact solution for many driven lattice gas sys-
tems. A common and often quite successful approxi-
mation scheme for exclusion processes is to assume that
there are no correlations and that one may factorize all
correlation functions, 〈n1ni〉≈〈n1〉〈ni〉. In this mean-field
(MF) approximation one obtains a closed set of differen-
tial equations for the particle density ρi which may be
solved subject to proper boundary conditions; see Sup-
porting Material for details. Fig. 2 shows the average
occupation number of the first site, 〈n1〉, as a function
of the protein concentration in solution c. A comparison
with our stochastic simulation data shows that the MF
solution strongly overestimates 〈n1〉 and thus the average
polymerization speed v.

One possible reason for the failure of the MF calcula-
tion lies in correlations that arise close to the reaction
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FIG. 2. Average occupation of the first lattice site 〈n1〉.
The MF approach as well as the FSMF approximation for
segment sizes of N=2, 5 deviate strongly from stochastic sim-
ulation data (open circles), in complete contrast to the CMF
approximation. Parameter values are detailed in the Support-
ing Material [26].

site. Local correlations can efficiently be accounted for
by employing a finite segment mean-field (FSMF) the-
ory [33, 34]. Here, the idea is to retain all correlations
close to the catalytic site by solving the full master equa-
tion for the first N sites and to use the MF assump-
tion only outside of this segment. The density profile
is then obtained by matching the tip solution and the
MF solution [9, 35]; see Supporting Material [26]. While
the results show the right trend towards the numerical
data, the improvement over the MF results is insignifi-
cant. These observations suggest that correlations extend
far beyond the immediate vicinity of the reaction site.

To account for such correlations we extend the MF
theory by retaining both the density and the correlation
function as dynamic variables. In order to close the set of
equations we employ the following factorization scheme:
〈n1n2ni〉≈〈n1n2〉〈ni〉, and 〈n2ni〉≈〈n2〉〈ni〉 for i≥3, i.e.
we retain correlations with respect to the reaction site
but neglect them within the bulk of the lattice. We con-
firmed this approximation scheme for typical biological
parameter values by stochastic simulations; see Fig. S2
in the Supporting Material [26]. With the above closure
relations one obtains for the bulk dynamics in a contin-
uous description

∂tρ(x, t) = D∂2
xρ− v0∂xg + ωac(1−ρ)− ωdρ , (3a)

∂tg(x, t) = D∂2
xg − v0∂xg + ερ

(
ρ2−g2

)

+ωac
(
ρ+ρ1−2g

)
−
(
ωd+ωd

)
g , (3b)

where we defined ρ(x, t)=〈ni+1〉 and g(x, t)=〈n1ni+1〉
with x=a(i−1) for i≥3. We have further introduced
the macroscopic diffusion constant D=εa2 and the max-
imum polymerization speed v0=δa. Equations 3 can
be derived from the discrete equations for the density
ρi, Eq. 1, and the correlation function gi; for details
see the Supporting Material [26]. Due to the capturing

mechanism a continuous description is not valid at sites
i=1, 2, and we retain the local dynamics there, Eqs. 2.
These equations constrain the boundary conditions of
ρ(x) and g(x) at x=a. We further impose that the density
equilibrates asymptotically at the Langmuir isotherm,
limx→∞ ρ(x)=ρLa=ωac/(ωac+ωd), and that correlations
vanish, limx→∞ g(x)=〈n1〉ρLa. Solving the equations of
this correlated MF (CMF) theory for the steady state
tip density we obtain the results shown in Fig. 2, which
are in excellent agreement with the stochastic simulation
data. We therefore conclude that there are long-ranged
correlations along the MT and that they are essential
in explaining the observed average tip density and the
ensuing polymerization speed.

Fig. 3(a) shows the density profile along the lattice ob-
tained by stochastic simulations and the CMF approach.
The particle occupation is obtained with high precision
within the CMF framework along the whole lattice. The
density profiles also agree with recent data from time
and ensemble averaged high resolution fluorescence in-
tensity profiles for XMAP215 [36]. Notably, there is a
discontinuity at sites i=1, 2, which is due to particle cap-
ture and which demonstrates the strong tip-localization
of the proteins.

FIG. 3. Comparison of density and tip-bulk correlation pro-
files obtained by the CMF approximation (lines) and stochas-
tic simulations (symbols) for XMAP215 concentrations of 10
and 100 nM (see Supporting Material [26] for parameter val-
ues [3, 8]). (a) XMAP215 strongly localizes to the MT tip and
the density profile drops abruptly at sites i=1, 2. (b) The cor-
relation coefficient corr(n1, ni) (see Eq. (4)) along the lattice
shows the significance of tip-bulk correlations over hundreds
of lattice sites.

In Figure 3(b), the Pearson product-momentum corre-
lation coefficient

corr(n1, ni) =
cov(n1, ni)

σ(n1)σ(ni)
, (4)

which quantifies the correlations between the tip site i=1
and sites i≥2 in the bulk, is plotted against lattice posi-
tion. Here cov(·, ·), and σ(·) signify the covariance and
the standard deviation, respectively. The correlation co-
efficient decays very slowly over a broad region at the
tip. The capturing mechanism and the resulting particle
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FIG. 4. Panel (a) demonstrates excellent agreement of poly-
merization and depolymerization velocities obtained from our
theoretical analysis (CMF approximation) with existing ex-
perimental data for XMAP215 [3, 8] and MCAK [4], re-
spectively. Panel (b) depicts the difference between the
occupation density at the tip ρ1 with and without diffu-
sion on the MT, where ρno diffusion

1 = ωac/(ωd + ωac), and
shows the impact of diffusion and capture on tip localization
of MCAK (blue) and XMAP (orange). The concentration
range for maximum efficiency coincides with the physiologi-
cal concentration range for each protein: 100 − 1000 nM for
XMAP215 [13] and 10 − 100 nM for MCAK [37] (shaded ar-
eas). In (c) the reaction site density with lattice diffusion (ρ1,
solid lines) and without lattice diffusion (ρno diffusion

1 , dashed
lines) is depicted. Kinetic parameters are given in the Sup-
porting Material [26].

flux towards the filament tip ensue strong positive cor-
relations with respect to the first lattice site and sites
in its vicinity. This effect is antagonized by weak nega-
tive correlations caused by the creation of empty lattice
sites due to polymerization. With diffusion taking place
on a faster time scale than polymerization, the positive
correlations dominate. This is confirmed by stochastic
simulations where either capturing or growth is switched
off: We find anti-correlations if capturing is turned off,
and positive correlations if there is no growth of the lat-
tice; see Fig. S3 in the Supporting Material [26]. Note
that for higher growth rates the correlation profile can
also become negative. We conclude that the spatial cor-
relations which emerge over several hundred lattice sites
are a direct consequence of protein capture and proces-
sive growth. Further, it becomes evident why the MF
and the FSMF approaches do not lead to the correct tip
density: Correlations extend into the system on a length-
scale which exceeds the scope of these and other previ-
ous approaches [1, 9, 22]. In contrast the CMF approx-
imation captures and quantifies significant correlations
and successfully reproduces simulation data. Note that
also higher order correlations of the form 〈n1njnk〉 and
〈njnk〉 with j, k≥2 and k>j, which are neglected in the
CMF approximation, might be of relevance when par-
ticle interactions become important for lattice diffusion.
This explains the deviations in the computed correlation

profile, Fig 3(b). As the CMF method is based on a
non-perturbative ansatz there is no analytic expression
that exactly quantifies its error. However, we observe
very good agreement with our Gillespie algorithm based
simulations over a very broad parameter range and, im-
portantly, for typical biological parameters, see Fig. S4
in the Supporting Material [26].

Comparison with experimental data. We now turn to
a comparison with experimental data for the polymer-
ization velocity [3, 8] and, to supplement the results for
XMAP215, we apply our methods to an analogous model
for MCAK particles which depolymerize MTs [4, 5]. In
essence, we adapt the above model to account for lattice
shrinkage triggered by an occupied reaction site, see Sup-
porting Material for details [26]. Similar to the proces-
sive polymerization of XMAP215 also MCAK is assumed
to depolymerize processively [4, 5]. The parameters em-
ployed in the model are again drawn from available ex-
perimental data [4]. For both MCAK and XMAP215, we
find excellent quantitative agreement between our the-
oretical approach and experimentally determined poly-
merization and depolymerization velocities; see Fig. 4(a).
This quantitative agreement is achieved without an ad-
justable parameter; see Supporting Material [26]. We
then used the quantified models to investigate the im-
pact of the diffusion and capture process for XMAP215
and MCAK. Fig. 4(b) shows the increase of protein lo-
calization at the reaction site due to diffusion and cap-
ture on the filament: We plot the difference between tip
densities in the presence (ρCMF

1 ) and absence of diffu-
sion on filaments (ρno diffusion

1 =ωac/(ωd+ωac)). For both
enzymes, diffusive motion and subsequent capturing at
the MT lattice strongly increases the occupation den-
sity at the tip and therefore constitutes a highly efficient
means of increasing the effective attachment rate to the
reaction site. Moreover, the ensuing curve shows a pro-
nounced maximum, indicating an optimal concentration
range at which the enhancement of tip occupancy due
to diffusion on the MT reaches its peak. Strikingly, this
maximum coincides with the physiological concentration
range for each protein: 100−1000 nM for XMAP215 [13]
and 10−100 nM [37] for MCAK. This strongly supports
the importance of diffusion and capture for MCAK and
XMAP215 in vivo.

It is interesting to speculate about possible biomolecu-
lar mechanisms that could generate particle capturing at
the MT tip as such a mechanism would probably require
an energy source to drive the system out of equilibrium.
Concerning MCAK, it was recently hypothesized, that
an ATP is required to stop its diffusive motion at the
MT tip [20] which is consistent with our proposed non-
equilibrium model. Since XMAP215 does not bind nu-
cleotides such as ATP or GTP itself [8], one might spec-
ulate that a non-equilibrium capturing mechanism relies
on tubulin polymerization or depolymerization. Possi-
bly, a conformational change of XMAP215 coupled to
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processes involved in MT depolymerization or polymer-
ization could lead to protein capture.

Summary and Conclusion. In this work, we studied
the regulatory influence of an explicit capture process on
the distribution of MT polymerases and depolymerases
that are subject to one-dimensional diffusion on MTs.
To model these biologically relevant situations we em-
ployed a model based on a symmetric simple exclusion
process [24] extended by a detailed balance breaking cap-
turing process at the lattice end, which acts as a biasing
mechanism. Our results show that the occupation of the
MT tip with a protein spatially correlates with the oc-
cupation of the MT lattice. This is a direct consequence
of protein capturing which in turn strongly localizes the
proteins at the MT tip. Correlations decay slowly along
the lattice and have a large impact on the occupation of
the MT tip. This is of relevance as the latter quantity de-
termines the velocity of enzyme-dependent MT growth or
shrinking. We derive a generalized set of hydrodynamic
equations which couple the evolution of the particle den-
sity with the evolution of relevant correlations. In that
way it is possible to account for those correlations on
a global scale. Similar correlations have been identified
in two-dimensional diffusive systems [38] or in diffusive
systems with a small, local drive [39].

Our findings are not limited to MTs and their asso-
ciated enzymes, but might also be applicable to other
enzymatic processes with spatial degrees of freedom and,
quite generally, non-equilibrium physics.
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Supplemental Material: A nonequilibrium diffusion and capture mechanism ensures
tip-localization of regulating proteins on dynamic filaments
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TIP LOCALIZATION DUE TO PARTICLE CAPTURING

In this work, we investigate a model where the diffusive motion of particles on a filament ceases as soon as they
arrive at a reaction site. This feature, which we refer to as particle capturing, is a key element of our model, as it
drives the system out of thermal equilibrium. In order to investigate the impact of particle capture on tip localization
of particles, we also investigated a model where particles are not captured at the tip, but where a hopping from the
tip into the bulk occurs such that detailed balance is not broken. In detail, we introduce a release rate ε, at which
particles hop from site i = 1 to site i = 2. Then, to implement equilibrium conditions for particle hopping (i.e. with
respect to a system without lattice growth or shrinkage), we impose ε/ε = ωd/ωd. This condition ensures detailed
balance in a static system and for a constant on-rate along the lattice. Since we also implement lattice growth,
detailed balance is still broken, which manifests itself in a net particle drift away from the tip in the comoving frame
of reference. In Fig. S1 we compare density profiles of the hopping-equilibrium model and the one with strict (i.e.
irreversible) particle capturing as defined in the main text with parameters as for XMAP215. In the equilibrium
model, the density profile is almost constant whereas in the model with capturing a strong tip-localization occurs (1-2
orders of magnitude increase in the tip-density). Although an irreversible capturing is, of course, a simplification, we
expect similar effects to occur for release rates much smaller than the equilibrium release rate, ε� εeq := (ε ωd)/ωd.
In this case, capturing generates a particle current towards the MT tip which conversely leads to spatial correlations
subject of this work.

FIG. S1. Diffusion and capture ensures tip-localization. Density profiles from MC simulations (open symbols) of (a) a model
where particle hopping obeys detailed balance with respect to a static lattice and (b) the model from the main text. In an
“equilibrium” model no localization occurs and the density profile is almost constant due to fast diffusion. With strict (i.e.
irreversible capturing), the tip is highly occupied as compared to its equilibrium occupation (dotted lines). Note that in both
models we implement off-rates which differ at the tip and lattice growth which results in non-constant density profiles also when
particle hopping obeys detailed balance. Further, also the “equilibrium” model is out of equilibrium due to lattice growth. In
(a) ε = 3.0× 103 s−1, in (b) ε = 0. Other parameters as for the XMAP215 model, see Table I.
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MEAN-FIELD (MF) APPROXIMATION

In the mean-field approximation all correlations are neglected; we set 〈ninj〉 = 〈ni〉〈nj〉. This closes the hierarchy
of equations stated in the main text:

d
dt 〈ni〉 = ε(〈ni+1〉 − 2〈ni〉+ 〈ni−1〉) + δ(〈n1〉〈ni−1〉 − 〈n1〉〈ni〉) + ωac(1− 〈ni〉)− ωd〈ni〉 for i ≥ 3 (S1)
d
dt 〈n1〉 = ε(〈n2〉 − 〈n1〉〈n2〉) + ωac(1− 〈n1〉)− ωd〈n1〉 (S2)
d
dt 〈n2〉 = ε(〈n3〉 − 2〈n2〉+ 〈n1〉〈n2〉)− δ〈n1〉〈n2〉+ ωac(1− 〈n2〉)− ωd〈n2〉 . (S3)

Instead of solving the recurrence relation, we use a continuous description for Eq. S1. At sites i = 1, 2 such an
approximation is not valid due to a discontinuity in the density profile. Performing a Taylor expansion for small
lattice spacings a up to second order we obtain

∂tρ(x, t) = εa2∂2
xρ(x, t)− δa∂xρ(x, t)〈n1〉+ ωac(1− ρ(x, t))− ωdρ(x, t) . (S4)

In the above equation the continuous labeling x = a(i − 1) is used for ρ(x, t) = 〈ni+1〉. Further, we use that for
typical biological systems ε� δ holds true and neglect the second order term due to the particle drift in the comoving
frame, 1

2δa
2∂2
xρ(x). Since we are only interested in the steady state solution we set the time derivative to zero. As

boundary condition, we impose that the density equilibrates at the Langmuir density for large distances to the tip,
limx→∞ ρ(x) = ρLa = ωac/(ωac + ωd). The boundary condition at x = a has to be consistent with the solution of
Eqs. S2 and S3, ρ(a) = 〈n2〉. We can use the continuous solution to express 〈n3〉 = ρ(2a) and solve Eqs. S2 and S3.
This self-consistent solution can be obtained numerically and determines the MF density profile along the whole
lattice.

THE FINITE SEGMENT MEAN-FIELD (FSMF) APPROXIMATION

The finite segment mean-field approach is based on the idea to account for correlations locally within a small
segment. In detail, all correlations within this segment are retained whereas outside the segment correlations are
neglected. An efficient implementation is achieved by using the transition matrix corresponding to the master equation
for occupations of the segment. Since in our model correlations are strongest close to the tip, we choose to keep
correlations with respect to the first N sites. For example, for N = 2 the corresponding transition matrix Mij with
i, j ∈ {0, . . . , 3} reads

M =




−2ωac− ε〈n3〉 ωd + ε〈n3〉 ωd 0
ωac+ ε〈n3〉 −ωd − ωac− ε(1 + 〈n3〉) 0 ωd

ωac ε −ωd − ωac− ε〈n3〉 δ + ε〈n3〉+ ωd
0 ωac ωac+ ε〈n3〉 −ωd − ωd − ε〈n3〉 − δ


 .

Here we introduced 〈n3〉 = (1 − 〈n3〉). Further, the enumeration of states is chosen such that it corresponds to the
respective binary number, e.g. M01 describes transitions from state (n1 = 0, n2 = 1) to state (n1 = 0, n2 = 0).
Note that correlations with respect to nN+1 are already neglected. The eigenvector of M with eigenvalue 0 is then
computed, which yields steady state occupations within the segment in dependence of 〈nN+1〉. A self-consistent
solution of these occupations and those for sites i > N is obtained in analogous fashion to the MF procedure: We
use the continuous MF solution for densities with i > N and the discrete solutions for sites in the segment to express
all densities in terms of 〈nN+1〉. The master equation for 〈nN+1〉 (given by Eq. S1) is then solved numerically in the
steady state to compute the complete density profile. This procedure is, however, strongly limited by the size of the
finite segment as the corresponding transition matrix is of size 2N × 2N .

THE CORRELATED MEAN-FIELD (CMF) APPROXIMATION

In the following we will show how to perform the CMF approximation for the model presented in the main text.
This approach systematically includes the relevant correlations arising due to the capturing mechanism.

The CMF calculations can be separated in three steps: a) Computation of the continuous solution for the density
ρ(x) and correlation profile g(x) in the bulk, i ≥ 2. b) Computation of the discrete solution for i = 1. c) Matching of
the continuous solution and the discrete solution.
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We start with deriving the continuous bulk solutions. The density profile is governed by Eq. 1 of the main text:

d
dt 〈ni〉 = ε

(
〈ni+1(1− ni)〉−〈ni(1− ni+1)〉+〈ni−1(1− ni)〉 − 〈ni(1− ni−1)〉

)
+ δ
(
〈n1ni−1〉−〈n1ni〉

)

+ωac
(
1−〈ni〉

)
− ωd〈ni〉

= ε
(
〈ni+1〉−2〈ni〉+〈ni−1〉

)
+ δ
(
〈n1ni−1〉−〈n1ni〉

)
+ ωac

(
1−〈ni〉

)
− ωd〈ni〉 . (S5)

Here, we account for particle hopping with exclusion (terms ∝ ε), lattice growth (terms ∝ δ), particle attachment
(terms ∝ ωa), and particle detachment (terms ∝ ωd). In the main text we show that it is essential to account for
tip-bulk correlations on a large scale. In the CMF approach this is achieved globally by coupling the evolution of
the density with the one for tip-bulk correlations. The discrete equation governing the evolution of correlations with
respect to the reaction site reads

d
dt 〈n1ni〉 = ε(〈n1ni−1〉 − 2〈n1ni〉+ 〈n1ni+1〉+ 〈n2ni〉 − 〈n1n2ni〉) + δ(〈n1ni−1〉 − 〈n1ni〉)

+ωac(〈n1〉+ 〈ni〉 − 〈n1ni〉)− (ωd + ωd)〈n1ni〉. (S6)

The above equation, which follows from the master equation, describes changes of the joint probability for a simulta-
neous occupation of the first and the i-th site: All probabilities for processes that lead to a simultaneous occupation
of both lattice sites multiplied with the respective rate are added and all probabilities for processes where one of
the two sites is emptied multiplied with the respective rate are subtracted. Again, contributions arise from particle
hopping with exclusion (terms ∝ ε), lattice growth (terms ∝ δ), particle attachment (terms ∝ ωa), and particle
detachment (terms ∝ ωd), respectively. For example, for particle hopping we have contributions from hopping pro-
cesses with respect to the i-th site (〈n1ni−1〉 − 2〈n1ni〉 + 〈n1ni+1〉) as well as the capturing of a particle at the
first site (〈n2ni〉 − 〈n1n2ni〉). Note that higher order correlators can be obtained in complete analogy. In order to
close the hierarchy of moments, we use the factorization scheme stated in the main text: 〈n1n2ni〉 ≈ 〈n1n2〉〈ni〉 and
〈n2ni〉 ≈ 〈n2〉〈ni〉 for i ≥ 3. Fig. S2 shows that this is justified, as the corresponding correlation coefficients are one
to two orders of magnitude lower than corr(n1, ni). In the continuous limit a → 0 the recurrence relations given by
the dynamic equations for 〈ni〉 and 〈n1ni〉 translate into a set of coupled differential equations. Up to a second order
Taylor expansion we obtain

∂tρ(x, t) = εa2∂2
xρ(x, t)− δa∂xg(x, t) + ωac(1− ρ(x, t))− ωdρ(x, t) (S7)

∂tg(x, t) = ε(a2∂2
xg(x, t) + 〈n2〉(t)ρ(x, t)− 〈n1n2〉(t)ρ(x, t))− δa∂xg(x, t) + ωac(〈n1〉(t) + ρ(x, t)− 2g(x, t))

−(ωd + ωd)g(x, t) . (S8)

Here, we used again a continuous labeling x = a(i − 1) and neglected second order terms due to lattice growth
(∝ 1

2δa
2∂2
xg(x)) since ε � δ for typical biological situations. In this work, we are interested in the steady state

properties of the system, ∂tρ(x, t) = 0 and ∂tg(x, t) = 0. Under this condition, Eqs. S7 and S8 are solved for the
continuous solutions ρ(x) and g(x). Further, we impose the following boundary conditions to obtain a meaningful
solution: limx→∞ ρ(x) = ρLa = ωac/(ωac + ωd), limx→∞ g(x) = 〈n1〉ρLa, ρ(a) = 〈n2〉 and g(a) = 〈n1n2〉. Note that
the solutions depend on the yet unknown variables 〈n1〉, 〈n2〉 and 〈n1n2〉.

In the second step, we solve the equation for the occupancy of the reaction sites, i = 1,

d
dt 〈n1〉 = 0 = ε(〈n2〉 − 〈n1n2〉) + ωac(1− 〈n1〉)− ωd〈n1〉 , (S9)

to express 〈n1〉 in terms of 〈n2〉 and 〈n1n2〉.
Lastly, we self-consistently match the discrete and continuous solutions in that we determine the values of 〈n2〉 and

〈n1n2〉. To this end we employ the “master equations” for the latter variables.

d
dt 〈n2〉 = 0 = ε(〈n3〉 − 2〈n2〉+ 〈n1n2〉)− δ〈n1n2〉+ ωac(1− 〈n2〉)− ωd〈n2〉 (S10)

d
dt 〈n1n2〉 = 0 = ε(〈n1n3〉 − 〈n1n2〉) + δ〈n1n2〉+ ωac(〈n1〉+ 〈n2〉 − 2〈n1n2〉)− (ωd + ωd)〈n1n2〉. (S11)

We insert the continuous bulk solutions derived in the first step for 〈n3〉 = ρ(2a) and 〈n1n3〉 = g(2a). Finally, the
discrete solution for 〈n1〉 is used to express all variables in terms of 〈n2〉 and 〈n1n2〉. This allows us to solve Eqs. S10
and S11 numerically which, as a consequence, fixes the entire density and correlation profile.

The behavior of correlations is also demonstrated in Fig S3: Without a capturing mechanism, correlations are
purely negative due to the creation of empty sites resulting from the processive polymerization scheme. Opposed to
that, purely positive correlations arise in a static lattice with capturing.

The CMF approach neglects correlations within the diffusive compartment (i.e. we assume 〈ninj〉 = 〈ni〉〈nj〉 and
〈n1ninj〉 = 〈n1ni〉〈nj〉 for i, j ≥ 3 and i < j). As this approximation is a non-perturbative ansatz, it is in general not



4

FIG. S2. In panel (a) and (b) we show that correlations corr(n2, ni) and corr(n1n2, ni) for i ≥ 3 are negligible since they are
one to two orders of magnitude smaller than the tip bulk correlations, corr(n1, ni). Parameters as for the XMAP215 model.
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FIG. S3. Tip-bulk correlation profile obtained from stochastic simulations. Without particle capturing (orange data points)
correlations are negative due to the processive growth of the lattice and the resulting creation of empty lattice sites. Correlations
are positive in a static system with a capturing mechanism (blue points). Parameter values are equal to the ones used for the
XMAP215 model; concentrations are c = 10 nM for the case without polymerization and c = 5000 nM for the case without
capturing.

possible to quantify its error. In order to ensure the validity over a broad and biologically relevant parameter range,
we performed extensive MC simulations and compared the result with CMF computations. In detail, we performed
parameter sweeps for ε (from 300− 10000 s−1), ωd (from 0.1− 10 s−1), δ (from 5− 95 s−1) and c (for each parameter
point at five equidistant values between c1 and c5, such that ρCMF

1 (c1) = 0.1 and ρCMF
1 (c5) = 0.9). The results are

shown in Fig. S4. The CMF approximation delivers good results over this very broad parameter range; the maximum
relative deviation for ρ1 over the 1000 different tested parameter sets is 6.5%.

In a previous publication, we derived an effective theory that allows for the calculation of reaction site occupations
that are subject to a diffusion and capture mechanism in a static lattice (i.e. without lattice growth or shrinkage) [S1].
While both approaches consider protein diffusion and capture on filaments, they differ significantly on a conceptual
level and with respect to the scope of their predictions: Whereas the previous approach is based an on a heuristic
theory and a priori only valid in the absence of polymerization and depolymerization, respectively, the CMF ap-
proach specifically accounts for lattice growth and shrinkage. Further, the CMF approximation is derived from more
conceptual considerations: It assumes that diffusion and capture creates correlations which primarily affect the tip
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FIG. S4. Error of CMF approximation. We compared results for the tip density obtained from the CMF approximation (ρCMF
1 )

and MC simulations (ρMC
1 ) for 1000 different parameter sets. For each set {ε, δ, ωa, ωd, ωd} we determined five equidistant

concentrations between c1 and c5, such that ρCMF
1 (c1) = 0.1 and ρCMF

1 (c5) = 0.9. For these concentrations, we computed the
average relative deviation between simulation results and analytic approximation to get an estimate ∆CMF of the error along a
ρ1− c curve (right side). Note that we expect the error to vanish for very low and very high occupations. We performed sweeps
with respect to ε and δ (a), and ε and ωd (b). Deviations are small, with the maximal c-averaged deviation being 5% and the
maximal relative deviation being 6.5%. Color encodes the c-averaged deviations ∆CMF with white denoting 0% deviation and
dark blue denoting more significant deviations. As expected, we observe a small trend of increasing errors whenever interactions
in the lattice bulk become more frequent, i.e. for high ε, small δ and small ωd. Opposed to Eq. S8 we include the second order
term that arises due to lattice polymerziation, 1

2
δa2∂2

xg(x), as ε�δ does not necessarily hold true any more.

occupation while the diffusive motion of proteins on the MT depends less significantly on mutual correlations [S2].
As a consequence, the CMF approach yields density and tip-bulk correlation profiles for protein occupations along
the MT, which are beyond the scope of our previous approach. As shown in the main text, the latter quantities are
key to a quantitative understanding of tip-localization due to diffusion and capture and related processes.

UNCATALYZED GROWTH AND SHRINKAGE OF MTS

The model described in the main text does not account for MT growth or shrinkage in the absence of depoly-
merziation or polymerization factors like MCAK or XMAP215. The reason for this assumption is twofold: a) In the
experiments with XMAP215 [S3] and MCAK [S4] low concentrations of free tubulin were used such that no spon-
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taneous MT growth was observed. Also, the measurements in Widlund et al. [S3] suggest that the rate of tubulin
detachment in the corresponding experiments is negligible. b) Concerning MT depolymerization, we aim for a descrip-
tion of protein induced tubulin removal from stabilized MTs in analogy to in vitro experiments with MCAK [S4, S5].
In this way, our model neglects the dynamic instability seen for unstabilized MTs [S6, S7], but provides a description
how a stabilizing structure at the MT tip (e.g. GTP-tubulin) can be removed by regulatory enzymes.

That being said, let us emphasize that an extension towards uncatalyzed tubulin attachment and detachment is
feasible based on the model described in the main text. To this end we include further processes in the model: If the
terminal lattice site is unoccupied, a new site can be added at rate δpoly

spont or removed at rate δdepoly
spont . For completeness,

we also include catalyzed (processive) growth and shrinkage with corresponding rates δpoly
cat and δdepoly

cat , respectively.
The resulting equations for the CMF framework then read

∂tρ(x, t) = 0 = (δdepoly
spont − δpoly

spont)a∂xρ(x, t) + (ε+
1

2
δdepoly
spont +

1

2
δpoly
spont)a

2∂2
xρ(x, t)

+(δdepoly
cat − δpoly

cat + δpoly
spont − δdepoly

spont )a ∂xg(x, t) +
1

2
(δpoly

cat + δdepoly
cat − δpoly

spont − δdepoly
spont )a2∂2

xg(x, t)

+ωac(1− ρ(x, t))− ωdρ(x, t) , (S12)

∂tg(x, t) = 0 = (δdepoly
spont + ε)(〈n2〉(t)− 〈n1n2〉(t))ρ(x, t) + δdepoly

spont (〈n2〉(t)− 〈n1n2〉(t))(a∂xρ(x, t) +
1

2
a2∂2

xρ(x, t))

+(δdepoly
cat − δpoly

cat )a∂xg(x, t) + (ε+
1

2
δpoly
cat +

1

2
δdepoly
cat )a2∂2

xg(x, t) + ωac(〈n1〉(t)− ρ(x, t)− 2g(x, t))

−(ωd + ωd)g(x, t) , (S13)
d
dt 〈n1〉(t) = 0 = ε(〈n2〉(t)− 〈n1n2〉(t)) + δdepoly

spont (〈n2〉(t)− 〈n1n2〉(t)) + ωac(1− 〈n1〉(t))− ωd〈n1〉(t) , (S14)

d
dt 〈n2〉(t) = 0 = ε(〈n3〉(t)− 2〈n2〉(t) + 〈n1n2〉(t))− δpoly

cat 〈n1n2〉(t) + δdepoly
cat (〈n1n3〉(t)− 〈n1n2〉(t))

−δpoly
spont(〈n2〉(t)− 〈n1n2〉(t)) + δdepoly

spont (〈n1n2〉(t)− 〈n1n3〉(t) + 〈n3〉(t)− 〈n2〉(t)) + ωac(1− 〈n2〉(t))− ωd〈n2〉(t) ,
(S15)

d
dt 〈n1n2〉(t) = 0 = ε(〈n1n3〉(t)− 〈n1n2〉(t))− δpoly

cat 〈n1n2〉(t) + δdepoly
cat (〈n1n3〉(t)− 〈n1n2〉(t))

+δdepoly
spont (〈n2〉(t)〈n3〉(t)− 〈n1n2〉(t)〈n3〉(t)) + ωac(〈n1〉(t) + 〈n2〉(t)− 2〈n1n2〉(t))− (ωd + ωd)〈n1n2〉(t). (S16)

The equations are solved in analogy to the case without spontaneous lattice dynamics.
As mentioned above, our models neglect intrinsic MT dynamics such as dynamic instability. However, we expect

validity of our results for tip-localization also under such circumstances. We studied the extended model with spon-
taneous growth and shrinkage rates over a variety of parameter values (up to spontaneous growth and shrinkage rates

of 24µm/min). For a comparison, we estimated the rate of spontaneous MT growth (vspont = a(δpoly
spont − δdepoly

spont ))
at tubulin concentrations slightly above 5 µM from the experiments performed by Widlund et al. [S3]. At such
tubulin concentrations, MTs were observed to start growing also without the presence of XMAP215 at a speed of
approximately vspont = 0.5 µm/min. Given this resulting spontaneous MT growth rate, we compared a model with

and without fast intrinsic MT dynamics (δpoly
spont = 1 s−1 and δdepoly

spont = 0 for a stable lattice; δpoly
spont = 51 s−1 and

δdepoly
spont = 50 s−1 for a dynamic lattice). The results are shown in Figs. S5 and S6. They show the robustness of the

protein distribution ρ(x) and, in particular, the tip occupation against changes in the lattice growth or shrinkage rates.
Moreover, the CMF approximation is also applicable for rapidly fluctuating MT lengths. Note that XMAP215 also
catalyzes tubulin removal under certain conditions [S8] which could readily be accounted for in the above approach.

MCAK MODEL

Similar to the model for XMAP215 stated in the main text we can set up a model for the depolymerase activity of
MCAK, see Fig. S7. The ensuing set of equations corresponding to the CMF approach in the bulk are a special case of
Eqs. S12-S16 with δpoly

spont = δdepoly
spont = δpoly

cat = 0. We implement a processive depolymerization scheme [S4, S5, S9]. In
detail, MCAK particles stay at the terminal site during depolymerization (i.e. move along with the tip) whenever the
neighboring site is empty. Otherwise, they dissociate from the tip during depolymerization. This means that MCAK
particles fall off the MT tip whenever they hit another particle during the depolymerization process. The results
of the CMF approach for the MCAK model agree excellently with simulation data, as shown in Fig. S8. Further,
also for the MCAK model the MF approximation and FSMFT produce results that deviate from simulation data at
intermediate concentrations.
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FIG. S5. Extended model that accounts for uncatalyzed growth and shrinkage of MTs. We compare diffusion and capture
on a slowly growing lattice (δpoly

spont = 1 s−1, δdepoly
spont = 0, δdepoly

cat = 0, δpoly
cat = 9.5 s−1, blue) with diffusion and capture on a

lattice with fast intrinsic dynamics but the same average growth speed (δpoly
spont = 51 s−1 , δdepoly

spont = 50 s−1, δdepoly
cat = 50 s−1,

δpoly
cat = 59.5 s−1, orange). The average MT growing velocity, and therefore also the tip density, deviate little which implies the

validity of our results also on dynamic lattices. MC simulations (symbols) agree well with solutions of the CMF approximation
(lines). Other parameter values are as for the XMAP215 model, see Table I.

FIG. S6. Density profiles of an adapted model with an intrinsically dynamic lattice (orange) in comparison to the model
presented in the main text (blue) for c = 10 nM and c = 100 nM. Tip-localization occurs also on a lattice with fast spontaneous
growth and shrinkage. The tip-density is almost unaffected by rapid fluctuations of the MT length, suggesting the validity of
our results also for dynamic MTs. The results of our simulations (symbols) agree well with the CMF results (lines). Model

parameters are δpoly
spont = 51 s−1 , δdepoly

spont = 50 s−1, δdepoly
cat = 50 s−1, δpoly

cat = 59.5 s−1 for the dynamic lattice. Other parameters
and parameters for the stable lattice as for the XMAP215 model.
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FIG. S7. Illustration of the MCAK model. Particle movement is identical to the XMPAP215 model. Depolymerization occurs
whenever the first lattice site is occupied. Particles depolymerize processively in that they move along with the shrinking tip.
When the second site is occupied, a particle on the tip that simulates shrinkage falls off together with the first lattice site.
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FIG. S8. Comparison of different analytic approaches (lines) with simulations of the MCAK model (circles). Whereas the MF
and FSMFT approaches (dashed lines) predict the depolymerization velocity insufficiently, the CMF approximation (solid line)
delivers results which are in excellent agreement with simulation data. Model parameters are given in Table I.

PARAMETER VALUES

The parameter values used for the XMAP215 and MCAK model were extracted from experimental data [S3, S4, S8].
Model parameters were computed based on measured diffusion coefficients (for ε), particle dwell times on the MT
tip (for ωd) and bulk (for ωd), attachment rates (for ωa), and maximal (de)polymerization velocities at saturated
(de)polymerase concentrations (for δ). A conversion factor ntubulins from µm into tubulin subunits was adapted to the
assumed protofilament numbers nprotofilaments of the MTs used in the respective experiments: 1625 tubulin dimers/µm
for XMAP215 [S3] and 1750 tubulin dimers/µm for MCAK [S4]. Note that the polymerization velocity refers to one
MT tip [S3, S8], wheres the depolymerization rate refers to the average shrinkage rate of both ends [S4]. Opposed
to the measurements for MCAK, where the maximal depolymerization velocity was determined [S4], Widlund et al.
do not directly state the maximal MT polymerization velocity due to XMAP215 induced growth [S3]. To get a good
estimate for the maximal growing velocity vmax of MTs at saturating polymerase (XMAP215) concentrations, we fitted
a Michaelis-Menten curve to the experimental data. The rate of tubulin attachment and detachment per regulating
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Experiment

D kon koff vmax KM

(µm)2 s−1 events /(s µm nM) events/s µm/min µm/(min nM)

MCAK-FL 7.6 ×10−2 4.56 ×10−1 1.70 5.0 ×10−1 4.3

D kon koff vmax Koff

(µm)2 s−1 events /(s µm nM) events/s µm/min s−1

XMAP215 3.0 ×10−1 1×10−1 4.1×10−1 4.6 2.6 ×10−1

Theory

ε ωa ωd δ ωd

s−1 (nM s)−1 s−1 s−1 s−1

MCAK-FL 1.2 ×103 2.61 ×10−4 1.70 5.2 ×10−1 3.0 ×10−2

XMAP215 4.7 ×103 6 ×10−5 4.1 ×10−1 9.5 2.6 ×10−1

TABLE I. Rate constants for MCAK-FL [S4] and XMAP215 [S3, S8]. The diffusion constant D and the on- and off-rates of
enzymes to the MT lattice, kon and koff , were measured directly. The measured depolymerization and polymerization profiles
yield the maximal depolymerization and polymerization velocities vmax and the effective Michaelis constant KM . Conversion to
the theoretical values was achieved by translating kon, koff , and vmax, into appropriate lattice units. The hopping rate is related
to the diffusion coefficient by ε = D/a2. The off-rate at the first site for MCAK was, in contrast to the one for XMAP215, not
measured directly. It can, however, be estimated from KM by using the depolymerization behavior at low concentrations and
a MF argument which exploits the fact that the system is uncorrelated at asymptotically low occupations [S1].

protein δ depends on the maximal number of catalytically active proteins at the MT tip ntip: vmax = δ ntip n
−1
tubulins.

Since the specific number for ntip is elusive (there are estimates for approximately 10 XMAP215s at the MT tip at
50 nM XMAP215. [S8]), we have to make an assumption. Here, we choose one protein per protofilament, ntip =
nprotofilaments. In doing so the MT tip velocity then reduces to v = 〈n1〉 δ nprotofilaments n

−1
tubulins = 〈n1〉 δ a, where a is

the length of a tubulin dimer.
As the dwell time of proteins on the tip (i.e. 1/ωd) was not measured for MCAK particles, we used the measured

Michaelis constant KM to estimate this value: Since the Michaelis constant determines the linear increase in the
depolymerization velocity for asymptotically low MCAK concentrations, vlow c = 1/KM × c+O(c2), we can use it to
estimate the tip-dwell time for MCAK particles. In detail, we analytically computed the depolymeriztion velocity for
asymptotically low concentrations using a MF and low-density approximation of our model up to first order in c [S1].
As correlations vanish under these conditions, we expect the result to be exact which allows us to infer the MCAK
off-rate at the tip ωd. The list of ensuing parameters is given in Table I.
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2.2 Two-species transport and topological hindrance 51

2.2 Two-species transport and topological hindrance

In this section, we focus on the collective dynamics two species of molecular
motors along a microtubule. The two species are distinguished by different
gaits that are motivated by recent experimental observations: One species of
molecular motors moves straight ahead along the cylindrical geometry of a
microtubule while the other one follows a helical path. In the corresponding
research project, we found that such systems are characterized by a funda-
mentally different phenomenology as compared to collective transport in the
presence of a single species. This can be explained by a change in the network
topology of the underlying stochastic process when adding a second species
to the system: A single lattice site may then be accessed from two directions
which increases the impact of steric interactions between particles. This
topological hindrance has far-reaching consequences: Jamming of molecular
motors occurs already at comparably low densities and depends not only
on the total density but also on the fraction of particles from each of the
respective species. Our findings show that jamming might be more relevant
than previously thought and might indeed occur at cellular concentrations
of motor proteins. Results related to this research project were published in
the manuscript “Two-Species Active Transport along Cylindrical Biofilaments
is Limited by Emergent Topological Hindrance” [62] in the journal Physical
Review X. To this work, I contributed as shared first author (together with
Patrick Wilke). The following section provides an introduction and the sci-
entific background related to this publication. The corresponding publication
is reprinted in section 2.2.3 of this thesis.

2.2.1 Background

2.2.1.1 Active motion along cytoskeletal filaments

Every living cell constitutes a system far from thermal equilibrium and keeping a
cell alive demands for permanent active reorganization and relocation of many of its
components [20, 22, 85, 100]. To this end, the cell constantly transforms chemical
energy into translocation and (re)assembly of proteins [17]. In the last section we
have already encountered regulating proteins that actively remodel and reshape the
cytoskeleton. But besides the dynamics of the cytoskeleton itself also active motion
along the cytoskeleton is vital for cell biology [45]. This task is fulfilled by another
example of the cell’s remarkable biomolecular “engineering skills”: kinesins [42, 43,
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46, 101]. Kinesins are molecular motors that associate with microtubules to move
processively and (in most cases) unidirectionally over micrometer distances towards
the microtubule ends [102, 103]. In doing so, they contribute to essential processes
such as organelle transport [52], mitosis [104], and intracellular organization [17,
105]. Since the discovery of kinesin [106] many different experimental studies have
focused on elucidating the behavior of individual molecular motors and, in particular,
their stepping mechanism [101, 107, 108]. While the details certainly depend on
the respective kinesin class, the general model for the motion of kinesins is an ATP
driven hand-over-hand mechanism with a step size that equals the size of a tubulin
dimer [101, 108–110].6 Moreover, for probably the most prominent kinesin involved
in intracellular transport—kinesin-1—it was shown that motion occurs along a single
protofilament [111], which is one of typically 13 linear arrays of tubulin dimers that
compose a microtubule. Phrased differently, a protofilament was long thought to act
as a lane for kinesin transport along a microtubule.

In addition to elucidating the mechano-chemical mechanisms of single kinesins also
understanding their collective behavior remains an open question of at least comparable
scientific reach. In this respect, concepts from statistical physics have significantly
advanced our understanding as they offer general tools to bridge from microscopic
to macroscopic properties. Based on the experimental work on molecular details of
kinesins, a plethora of theoretical studies has by now established a comprehensive
picture for the corresponding many-body system. Foremost, the totally asymmetric
exclusion process (TASEP) [14, 112–115] and extended versions of it have been
widely applied to model collective motion of kinesins. In the limelight of many
theoretical studies of the TASEP and extended versions thereof is an abrupt transition
of collective particle dynamics into a jammed state. This jamming transition has
not only stimulated a multitude of theoretical studies that aim for a mathematical
description of the problem but also the question whether particle jams are of relevance
for cell biology. To provide a background for the remainder of this section we therefore
briefly review particle jamming in theory and experiment.

2.2.1.2 Molecular crowding in theory and experiment

We begin our overview of molecular crowding and jamming with an excursion to the
probably most central model in this context, the TASEP. In its easiest formulation, the
TASEP describes the stochastic and unidirectional motion of point-like particles which
exclude each other on a one-dimensional lattice. In this way, it serves a prototypical

6 In general, the way kinesins move along microtubules differs significantly among the kinesins
classes. Two particularly “exotic” exceptions to a classical stepping mechanism are addressed in
other sections of this thesis: MCAK (see Section 2.1) is a kinesin-13 that has been shown to diffuse
on microtubules and to use its ATPase cycle to depolymerize microtubules [87]. In Section 2.3,
we discuss biomolecular properties of Cin8—a yeast kinesin-5—which was shown to exhibit a
context-dependent directionality.
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Figure 2.8 Dynamics and current-density relation of the TASEP. (a) Illustration of the
particle dynamics of the TASEP. Particles populate a one-dimensional lattice where they
exclude each other. A particle hops to the neighboring lattice site on the right at rate ν given
that the target site is vacant. On the left, new particles enter the system at rate α when the
first site is empty. On the right, particles leave at rate β. (b) Current-density relation of the
TASEP. For any given set of α and β, the emerging average particle current and density in
the steady state fulfill the unique relation J = ρ(1 − ρ). The current vanishes either for zero
density or at full occupation of the lattice (density equal to one).

model for the collective motion of unidirectionally moving particles on a filamentous
structure, such as the collective motion of kinesins along a microtubule. In the TASEP,
particles hop stochastically at a rate ν = 1 to the neighboring lattice site on their right,
given that the respective target site is vacant.7 The TASEP has been studied with
different boundary conditions, of which open boundary conditions may well be the
most important ones [14]. When implementing open boundary conditions, particles
enter the lattice at a rate α on the left end of the lattice (given that the respective site
is vacant) and leave the last lattice site at a rate β. Open boundary conditions may
be interpreted as connecting the lattice to two particle reservoirs at fixed densities
ρL = α on the left and ρR = 1− β on the right. An illustration of the model is shown
in Fig. 2.8(a).

Two central macroscopic observables of the TASEP are (a) the average particle
density ρ and (b) the average particle current J that emerge in the stationary state

7 Without loss of generality, we can set ν = 1 by rescaling time.
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of the system for a given set of input parameters α and β.8 For the TASEP and
many corresponding extended models, these two observables are connected by a
unique relation, the so-called current-density relation J (ρ), that is at the heart of most
phenomenological theories. Intuitively, it should be clear that the current vanishes for
(a) vanishing densities ( ρ = 0) or (b) at full occupation ( ρ = 1) because of a lack of
particles and particle jamming, respectively. Moreover, the current-density relation is
expected to exhibit two qualitatively different regimes: A regime where the current is
limited by a lack of particles and where J increases monotonically with ρ as well as a
regime where the current is limited by jamming and where J decreases monotonically
with ρ. A naïve guess is J = ν ρ(1 − ρ). This relation reflects the motion of particles
[effective rate ν ρ ] to empty sites [present with probability (1 − ρ )]. It turns out
that this educated guess is indeed the exact current-density relation of the TASEP in
the stationary state [14, 116]; For an illustration of the current-density relation, see
Fig. 2.8(b). In particular, the relation exhibits the two anticipated roots for vanishing
densities and full occupation.

The importance of open boundary conditions is highlighted by the observation
that they give rise to a surprising phenomenology: boundary induced phase trans-
itions [117]. This can be understood as follows: If the influx of particles is small but
the potential maximal outflux of particles is high, the limiting determinant of particle
transport along the lattice will be the rate at which particles enter the system. In
this case, the macroscopic behavior will be solely determined by the density of the
reservoir on the left, ρ = ρL = α. If, on the other hand, the outflux of particles is
small while there is a strong influx of particles, particles will jam due to steric interac-
tions. Then, the rate at which particles leave the system, and therefore the density
of the reservoir on the right, will be the sole determinant of collective dynamics,
ρ = ρR = 1− β. In a third scenario, when particles enter and leave the system at high
rates, the limiting factor of transport will be the maximal rate at which particles move
along the lattice, ρ = ρMC = 1/2. Indeed, a detailed analysis of the TASEP reveals
the existence of all of these three scenarios. A striking observation for the TASEP is
that—upon varying the rates for particle in- and outflux—a phase transition between
the three scenarios occurs [116–119]. It is probably for this observation together with
the much-celebrated exact solution of the TASEP [116, 118, 119] that the TASEP is
considered as a hallmark model of nonequilibrium physics. Fig. 2.9 summarizes the
phase behavior of the TASEP and shows the response of the average system density

8 Mathematically, the particle density ρ and current J are defined as follows: ρi = 〈ni〉 denotes
the particle density at lattice site i and Ji = ν 〈ni−1(1 − ni)〉 the particle current to site i. Here,
ni ∈ {0, 1} is the occupation number of site i that equals one in the presence of a particle and zero
otherwise. Further, angle brackets denote the (ensemble) average. For simplicity, we neglect the
spatial dependency in the introductory text above since—for the purpose of this section—we can
assume a spatially constant current and density.
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Figure 2.9 Phase diagram of the TASEP. The figure shows the emerging (spatially constant)
average particle density ρ (left panel) and current J for different parameter values α (in rate)
and β (out rate). The TASEP exhibits a phase transitions between the low-density (LD),
high-density (HD), and maximal-current (MC) phase. The functional dependency of the
density on the system parameters in the three phases is ρLD = α, ρHD = 1− β and ρMC = 1/2.
The respective values for the current are related to the density via J = ρ(1 − ρ). Without loss
of generality, values refer to ν = 1.

ρ and the average particle current J to the model parameters α and β.9 The three
different phases are termed as follows: Low-density (LD) phase for the case where the
system is determined by the particle reservoir on the left [ρLD = α, JLD = α(1 − α)],
high-density phase when the system is determined by the particle reservoir on the
right [ρHD = 1 − β, JHD = β(1 − β)], and maximal-current (MC) phase when the
system establishes the maximal flow of particles [ρMC = 1/2, JMC = 1/4].

Having addressed a first prototypical model for the collective motion of unidirec-
tionally moving particles raises the question if the collective motion of kinesins is
indeed subject to a similar phenomenology as predicted by the TASEP. In principle,
the results of the TASEP imply that molecular motors that move along a filament
might abruptly start to jam above a certain threshold density. Nevertheless, many
of the TASEP’s basic assumptions are certainly oversimplifications of the biological
situation. Especially particle conservation along the lattice and particle injection

9 Note that both observables ρ and J are spatially constant along the lattice. For the particle current
this is a trivial consequence from current conservation in the steady state. For the average particle
density this statement only holds true in the thermodynamic limit and can, for example, be shown
by mean-field methods and the exact solution [14].
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only at the front of the lattice are assumptions that are not compatible with the
motion of molecular motors. Those may, in general, attach and detach along the
whole microtubule lattice. To tackle this problem, the TASEP has been extended
to account for Langmuir kinetics (TASEP-LK) [120–122], that means the random
attachment and detachment of particles along the lattice. The TASEP-LK is defined
as follows. In addition to the original TASEP dynamics, the particles may attach to
an empty lattice site at rate ωa and detach at rate ωd . This choice of dynamics can be
interpreted as connecting the whole lattice to a reservoir with a spatially and tempor-
ally constant particle density. Such an implementation would find its experimental
equivalence in a large and well-mixed solution of molecular motors. Without active
motion on the filament the system would be in thermal equilibrium and the density
would homogeneously equilibrate at the Langmuir isotherm, ρLa = ωa/(ωa + ωd ).
Adding TASEP dynamics will, however, redistribute the particles and thereby lead
to a competition of the equilibrium dynamics of attaching and detaching particles
with the nonequilibrium dynamics of the TASEP. In essence, the main difference of
the TASEP-LK as compared to the original TASEP is a lacking particle conservation.
Lacking particle conservation, in turn, allows for a spatially varying particle current
and thus also for density profiles with a spatial dependency. While the current does
not have to be spatially constant anymore, it is still expected to be continuous [121].
Valid solutions for the density profile can therefore be constructed by adding different
domains in which different phases are realized. The spatial transition from one phase
to another one occurs at the point where the currents match locally. Indeed such
mixed phases are observed in the TASEP-LK and a phase separation along the lattice
as well as the coexistence of phases are well-known features of this model. In fact, this
behavior is a key difference of the TASEP-LK as compared to the original TASEP,
where always a single phase dominates the whole system.10

With this simple but powerful model extension at hand, the leap towards a quant-
itative comparison of theory and experiment was made. In vitro experiments with
the yeast kinesin-8 Kip3 unraveled that—under appropriate conditions—the particle
density along the microtubule phase separates into a low-density region (character-
ized by a sparse occupation and large particle velocity) and a high-density region
(characterized by a dense particle occupation and low velocities) [124]. Moreover,
it could be shown that the velocity v of single motors slows down linearly with
increasing motor densities on a microtubule. This is in accordance with TASEP based
models, where the linear relation v = ν(1− ρ) gives rise to the current-density relation
J = ν ρ(1 − ρ). Despite these in vitro measurements that proved the existence of jams
of molecular motors it remained an open question whether such phenomena occur

10 A noteworthy subtlety in this context is the LD-HD transition line of the original TASEP. There,
for α = β < 1/2, a domain wall separates the system into a high and low density regime. The
domain wall is, however, unstable and performs a random walk, yielding an overall linear profile for
the average particle density in the stationary state [123].
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under physiological conditions or cellular concentrations and are thus of relevance in
vivo. In the same study, it was argued that the central transport kinesins, kinesin-1
and kinesin-2, are optimized in a way to prevent particle jams: They are character-
ized by a (in comparison to, for example, Kip3) moderate processivity of motion
(approximately one micrometer) and exhibit short dwell times at the microtubule
end. Furthermore, the independence of the motor’s detachment rate of the local
density of motors—as it is assumed for most TASEP-like models—is most likely an
oversimplification which increases the probability to form jams.11 Opposing these ar-
guments against an important potential role of traffic jams in biological systems there
are, however, also arguments that support the notion that traffic jams occur in vivo:
Cargo transport in vivo is typically carried out by multiple motors, which has been
shown to increase the processivity by orders of magnitude [103, 127]. Moreover, for
Kip3 it was suggested that results from the TASEP-LK may actually be of relevance for
its regulatory function [128]: Kip3 is a highly processive microtubule depolymerase
that depolymerizes microtubules in a length-dependent manner. This is the result of
the linearly growing “antenna” density profile predicted by the TASEP-LK. So, taken
together, while in vitro experiments have confirmed the existence of traffic jams of
motor proteins, the role of these jams in vivo is currently still unclear.

2.2.1.3 Helically moving molecular motors

To apply TASEP-like models to the collective motion of kinesins, they should account
for all of the relevant biomolecular details of these motor proteins. One of the key
assumptions of the previously discussed TASEP and TASEP-LKmodels is that particles
move along one dimension. Thus, it is important to ask whether such a simplification
adequately describes to motion of molecular motors. Indeed, it was thought for a long
time that one-dimensional motion characterizes the dynamics of molecular motors
on microtubules. As mentioned above, experimental studies for kinesin-1, one of the
central players of intracellular transport [45], have shown that this motor protein
indeed follows a single protofilament of the microtubule, i.e. a single lane [111].
As the microtubule is typically composed of 13 of these lanes [129], the fact that
lane switching doesn’t occur for kinesin-1 suggested that transport along each of
the lanes is basically independent of the transport on neighboring lanes. But while
motion along a single lane is well established for kinesin-1, recent experimental studies
have by now unraveled an ever growing number of exceptions to this behavior for all
superfamilies of molecular motors: kinesin[130–133], dynein [134], and myosin [135].
Specifically, multiple molecular motors have, for example, been shown to rotate
microtubules in gliding assays where filaments are propelled over a cover slip coated

11 Detachment rates that are increased by interactions of molecular motors with obstacles or other
molecular motors have also been addresses experimentally [125] and recently in a comprehensive
theoretical work [126].
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with molecular motors. This behavior has been observed for single headed kinesin-1
monomers [131], kinesin-2 [132], kinesin-5 [133], kinesin-8 [136], dynein [134],
and heavy meromyosin [135]. While these experiments clearly show the capability of
motors to generate torque when acting in teams, the molecular origin of this behavior
has long been unclear. In this respect, progress was made recently by the usage
of optical traps [137], three-dimensional tracking [138, 139] and super-resolution
methods [140]. Based on these experimental methods, it was shown that also, for
example, single kinesin-2 and kinesin-8 proteins follow helical tracks, most likely due
to a side-stepping mechanism that allows them to switch protofilaments.

These observations further complicate theoretical analyses of molecular transport
as the dynamics on different protofilaments are likely coupled due to the sidesteps
of motor proteins. This consideration suggests to extend models to two dimensions
to properly account for multiple lanes on which molecular transport may occur.
The problem of multi-lane driven systems has been addressed in a very general setup
by a recent theoretical study by Curatolo et al. [141]. In the corresponding model,
particles move in a biased fashion on multiple lanes that connect two reservoirs on
the left and on the right in analogy to the one-dimensional TASEP. The model by
Curatolo et al. explicitly allows for transverse currents as they emerge in the collective
motion of molecular motors that switch lanes with a bias towards one side. In this
way, Curatolo et al. established a comprehensive framework for such problems that
can readily be applied to a single species of molecular motors which follows helical
paths on a microtubule. One of the main findings of this study was that—in most
cases—these multi-lane systems with transverse particle currents can indeed be reduced
to a one-dimensional system. Overall, this finding hence legitimizes applying results
of the TASEP to the collective motion of motor proteins that move helically along a
microtubule.

Yet, within each single cell a multitude of molecular motors from different species is
present and simultaneously involved in intracellular transport. And, as detailed above,
a multitude of molecular motors is likely to switch protofilaments in a biased fashion,
thus giving rise to helical trajectories. This raises the question if the phenomenology of
molecular transport changes significantly in the presence of two species of molecular
motors that are characterized by different gaits on the filament. Here, we address this
question with a simplistic but generic multi-lane and multi-species extension of the
paradigmatic TASEP model.

2.2.2 Key results

The following section summarizes the key results of the publication “Two-Species
Active Transport along Cylindrical Biofilaments is Limited by Emergent Topolo-
gical Hindrance” [62] to which I contributed as shared first author (together with
Patrick Wilke). The corresponding manuscripts are reprinted in Section 2.2.3 of this
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thesis. Detailed author contributions are listed in the “Abstracts of the projects and
contribution” section at the beginning of this thesis.

Our study addressed a model for two species of molecular motors that move
between two particle reservoirs on a variable number of lanes oriented in a cylindrical
fashion. The species were distinguished by different ways to move: One species moved
straight ahead and followed a single lane while the other one followed a helical pathway
as a result of switching the lane in a biased fashion. In the presence of both species,
a specific lattice site can be accessed from two directions by two different particles.
Therefore, a single particle can block the motion of up to two other particles in this
model. The result of this simple change in the network topology of possible particle
motions has two far-reaching consequences: (a) The existence of lattice sites that
are empty but inaccessible. (b) The creation of intrinsic bottlenecks in the motion
of particle trajectories that force particles to hop sequentially. As it is the network
topology that amplifies and extends the impact of steric hindrance in our model,
we termed the corresponding type of interaction topological hindrance. Topological
hindrance led to a significantly new phenomenology as compared to previous models
for molecular transport and could—to the best of our knowledge—not be characterized
by standard analytic methods.

Importantly, two-species transport in the way described above is characterized
by a jamming transition below a full occupation of the system by particles. While
jamming in the TASEP and similar models is driven by overcrowding, the central
determinant of jamming in our two-species model is particle arrangement. The result
is that even a completely jammed state, where the motion of every particle is blocked,
exhibits lattice sites which are inaccessible but vacant. Moreover, in the presence of
both species, the overall average particle current is strictly smaller than the one in
the presence of a single species at identical average particle densities. We found out
that the impact of topological hindrance critically depends on two factors: First, the
fraction of the relative particle species in the system. Second, the number of lanes
composing the system. Strikingly, already a small fraction (approximately 5%) of a
second species sufficed to induce strong topological hindrance. Moreover, increasing
the number of lanes rapidly decreased the maximal particle density reachable in the
stationary state. For example, for a system with 13 lanes (the typical number of
protofilaments of a microtubule) and equal fractions of the two species, the maximal
density we obtained in our simulations was as low as ρmax ≈ 0.2. A naïve estimate
suggested a scaling of the maximal reachable density as ρmax → ln(W )/W in the
limit of large numbers of lanes, whereW denotes the number of lanes.

Another novel phenomenon of our model where the relevance of the arrangement
of particles for the collective dynamics of our model became evident was pattern
formation. For systems that are characterized by small aspect ratios (length to width),
i.e. either for short systems or for systems with many lanes, particles self-organized
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in a way such that the density profile in the stationary state showed an oscillatory
behavior.

While the aim of our work was to study the novel physical aspects of two-species
transport in an isolated fashion, we also tested extended versions of our model inspired
by biomolecular details of kinesins: Since several assumptions of the original model
certainly simplified the dynamics of motor proteins, we studied several extended
model versions with more realistic particle dynamics and interactions. In all cases,
however, the key phenomenology remained unchanged: We still observed a signific-
antly increased impact of jamming in the presence of two-species of motor proteins.
Importantly, this led us to the conclusion that—in multi-species systems—jamming
may take place at much lower densities than previously thought. Therefore, molecular
crowding may indeed be relevant at cellular concentrations of kinesins.
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Active motion of molecules along filamentous structures is a crucial feature of cell biology and is often
modeled with the paradigmatic asymmetric simple exclusion process. Motivated by recent experimental
studies that have addressed the stepping behavior of kinesins on microtubules, we investigate a lattice gas
model for simultaneous transport of two species of active particles on a cylinder. The species are
distinguished by their different gaits: While the first species moves straight ahead, the second follows a
helical path. We show that the collective properties of such systems critically differ from those of
one-species transport in a way that cannot be accounted for by standard models. This is most evident in a
jamming transition far below full occupation, as well as in nonequilibrium pattern formation. The altered
behavior arises because—unlike the case in single-species transport—any given position may be
targeted by two particles from different directions at the same time. However, a particle can leave a
given position only in one direction. This simple change in connectivity significantly amplifies the
impact of steric interactions and thus becomes a key determinant of mixed species transport. We
computationally characterize this type of hindrance and develop a comprehensive theory for collective
two-species transport along a cylinder. Our observations show high robustness against model extensions
that account for additional biomolecular features and demonstrate that even small fractions of a second
species can significantly alter transport. This suggests that our analysis is also relevant in a biological
context.

DOI: 10.1103/PhysRevX.8.031063 Subject Areas: Biological Physics,
Statistical Physics

I. INTRODUCTION AND MOTIVATION

Efficient collectivemolecular transport is a vital prerequi-
site for a multitude of processes in cell biology on many
different levels. Examples range from messenger RNA
(mRNA) translation to organelle transport. Typically, highly
functional molecular motors that transform chemical energy
into stepwise mechanical translation perform this complex
task by moving along filamentous structures such as the
cytoskeleton or mRNA [1,2]. Of particular importance for
intracellular organization are the cylindrically shaped and
polarized microtubules. Kinesins—the molecular motors
associated with microtubules—exhibit distinct efficient
motility, as they are capable of “walking” processively over
micrometer distances towards the microtubule end [1].

Many experimental studies have focused on elucidating
the microscopic working mechanisms of molecular motors
[3–5], but understanding their collective behavior [6]
remains a challenging task. For this reason, concepts drawn
from statistical physics and modeling have proven to be of
much relevance, as they offer a means of linking the
microscopic to macroscopic behavior. In this context, the
totally asymmetric exclusion process (TASEP) [7,8] and
extensions thereof have proven particularly fruitful. In its
simplest formulation, the TASEP accounts for two central
aspects of transport: active motion and steric interactions. It
describes the motion of point particles along a one-dimen-
sional lattice and therefore serves as an ideal basis to study
collective transport of one-particle species along a single
track. Despite its simplicity, this model shows a surprisingly
rich phenomenology and capturesmany essential features of
transport processes. Indeed, by now it has acquired the status
of a paradigmatic model, not only for transport [8,9] but also
for nonequilibriumphysics, in general, comparable to that of
the Ising model for equilibrium physics.
Motion of kinesins was initially thought to occur

mostly along the so-called protofilaments—separate lanes
oriented parallel to the axis of the cylindrical microtubule
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(see Fig. 1, green kinesin). While this motion along a single
protofilament is a well-studied feature of one of the most
prominent kinesins involved in intracellular transport,
kinesin-1 [10], several in vitro studies have revealed
notable exceptions to this behavior. Members of all three
superfamilies of molecular motors—kinesin [11–14],
dynein [15], and myosin [16]—have been shown to
produce torsional force during their axial translation.
While the precise basis for this observation has remained
unclear, recent studies of kinesin-2 [17] and the micro-
tubule depolymerizing kinesin-8 [18,19] strongly suggest
that these molecular motors regularly switch protofilaments
and show a bias towards one side. This effectively results in
a helical motion along the microtubule [17,20,21] (see
Fig. 1, orange kinesin). On a theoretical level, systems with
a single species of kinesins that stochastically switch
protofilaments have been studied recently by employing
extended TASEP-like models with multiple lanes [22].
In that case, the qualitative behavior of collective transport
along the cylindrical microtubule was reported to be
widely conserved as compared to models for kinesins that
track protofilaments. However, many different types of

molecular motors are present in a single cell and, as lane
switching is likely to be the rule rather than the exception,
the general scenario is that several different molecular
motor species should interact on a single cytoskeletal
filament. This raises the question of how the interplay of
distinct molecular motor species that show different gaits
alters collective transport along a cylindrical structure.
Inspired by molecular transport on microtubules, we

employ lattice gas models to find generic principles of
collective transport by two species of particles that are
distinguished by different gaits on a cylinder. Here, we
demonstrate that the emerging behavior of such systems
critically differs from collective behavior in the presence of
a single species only. The simultaneous presence of
molecular motors that follow a straight and a helical
course, respectively, inevitably leads to crossings between
their trajectories: A certain lattice site may be targeted from
two different directions but, once occupied, can only be
vacated in a single direction. This modification of con-
nectivity in the network topology of potential particle
movements amplifies the impact of steric interactions
globally and thus hinders particle motion—an effect we
call topological hindrance. Topological hindrance produces
highly nontrivial correlations between the dynamics of
particles of the different species. Specifically, the particle
current and distribution on the filament are now dependent
not only on the total number of particles but also on the
fraction of the respective species. The impact of topological
hindrance is most evident in the jamming of particle flows
at densities far below full occupation. We present an
analytical framework that quantifies topological hindrance
and provides a theoretical basis for understanding two-
species transport along cylinders, much as the TASEP does
for transport by a single motor species. Moreover, our
model predicts nonequilibrium patterns in the particle
distribution that have not been observed in classical models
for single-species transport. To specifically target the
robustness and biological relevance of topological hin-
drance, we further investigate extended models that account
for specific biomolecular features. We find that topological
hindrance still plays a key role for collective transport
properties in these cases. While the extended models are
too complicated for an analytic investigation, we can
understand their behavior on the basis of our idealized
model and our theory for topological hindrance.
This paper is organized as follows: We begin with a

review of the collective transport by a single species in
Sec. II. Our model for collective transport by two species
on a cylindrical structure is presented in Sec. III. The
phenomenology of our model and the key differences to
transport with a single species are discussed in Sec. IV,
which also provides a qualitative explanation of topological
hindrance. Furthermore, we address how the system
dimensions influence topological hindrance. We then
develop a theory to quantify the strength of topological

(a)

(b)

FIG. 1. Active transport by two species along a cylindrical
structure. (a) Kinesins (e.g., kinesin-1, green) may track a single
lane of a microtubule (protofilament), but many molecular motor
species have also been reported to regularly switch protofilaments
in a biased fashion and thereby effectively undergo a helical
motion (e.g., kinesin-2, orange). (b) Model implementation to
study collective two-species transport along cylindrical struc-
tures. We consider a lattice with length L and width W. Periodic
boundary conditions are employed along the transversal direction
to account for a cylindrical geometry (e.g., microtubule). Particles
of species T (lane tracking, green) hop to the neighboring lattice
site on the right at rate νT , and particles of species S (lane
switching, orange) hop to the neighboring lattice site on the
upper-right at rate νS. All particles exclude each other. Particles
enter the system with rates αT and αS at the left boundary and exit
the system at the right boundary with rates βT and βS, respec-
tively. Gray areas denote system boundaries.
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hindrance for arbitrary particle densities in Sec. V, which
yields the current-density relation for an arbitrary number
of lanes and species fractions. This allows us to compute
the complete phase diagram of our model, i.e., the particle
density and current emerging in the system as a function of
the control parameters. In Sec. VI, we discuss the robust-
ness of our results against model modifications and their
biological relevance, and provide a guideline for potential
experimental verification. Finally, in Sec. VII, we relate our
work to existing mathematical theories of driven systems
and discuss its applicability and possible relevance in the
biological context.

II. REVISITING ONE-SPECIES TRANSPORT

We start with a summary of the TASEP, which is one of
the most fundamental models used to describe active
transport of sterically interacting agents along defined
pathways. While exact results relating to its properties
have had a major impact on the field of nonequilibrium
physics, in general [23–27], its applications cover a vast
variety of transport processes, such as ion channels [28,29],
spin transport [30,31], traffic flow [32], mRNA translation
[33], and intracellular transport [8]. Here, the TASEP will
serve as the starting point to treat molecular transport along
cytoskeletal structures in the presence of a single motor
species.
The model is defined as follows: Point particles populate

a one-dimensional lattice along which they can hop
stochastically at a rate ν to the neighboring lattice site
on their right. To account for steric interactions, the
particles exclude each other, such that a lattice site can
only be occupied by a single particle. The particles enter the
lattice from the left at a rate α and leave the lattice on the
right at a rate β. This can be interpreted as connecting
the lattice with two particle reservoirs with fixed densities
ρL ¼ α on the left and ρR ¼ 1 − β on the right.
With these definitions, the TASEP allows one to study

macroscopic properties that emerge in transport processes.
Two central observables are the average particle density
ρðx; tÞ (average particle distribution) and the average
particle flux Jðx; tÞ, where x denotes the position in the
system and t the time. Particles cannot be created or
annihilated within the lattice. Therefore, a spatial difference
in the particle flux must lead to a temporal change in the
particle distribution in the ensemble average. This is
reflected by a continuity equation that describes the
system’s temporal evolution on a macroscopic scale [34],

∂tρðx; tÞ þ ∂xJðx; tÞ ¼ 0: ð1Þ

Both the TASEP and the model considered in this paper are
ergodic, and the Perron-Fobenius theorem holds true [35].
This means that they will evolve into a unique nonequili-
brium steady state, on which we focus from now on.

For the TASEP and many other transport models, there is
a unique connection between the current and the density,
the current-density relation JðρÞ. The existence of this
unique function means that the local current J is completely
determined by the density ρ; J depends on the in rate α and
out rate β only implicitly via the density. This phenom-
enological approach based on a unique current-density
relation goes back to the work of Lighthill and Whitham
[36] and is at the heart of many theories for various
transport models [22,37–39]. For the TASEP, the current-
density relation is given by [23,24]

JðρÞ ¼ νρð1 − ρÞ: ð2Þ

This equation reflects the fact that particles may only move
to empty lattice sites: Neglecting correlations, the proba-
bility of finding a particle (given by ρ) must be multiplied
by the probability that a lattice site is empty (given by
1 − ρ) to obtain the current. Although this is just a heuristic
mode of argumentation, it can be proven that the corre-
sponding Eq. (2) is an exact relation for the TASEP on an
infinite-dimensional lattice [23–25]. This relation also
implies that the particle current vanishes if the density is
either zero (no particles) or one (full occupation). In the
latter case, the motion of every particle except for the last
one is blocked, and consequently, no hopping within the
lattice can occur. We refer to such a system as jammed.
Based on the current-density relation, it is possible to

describe the complete macroscopic behavior in terms of the
control parameters of the TASEP in the stationary state.
Specifically, it uniquely determines the average density and
particle current of the stationary state associated with a
specific choice of control parameters α and β. A very
successful theoretical concept in this context is the extremal
current principle [37,38,40]. It states that, given a set of
possible densities, the system will always realize the one
corresponding to the extremal current. As explained above,
the lattice boundaries are effectively connected to particle
reservoirs of density ρL ¼ α and ρR ¼ 1 − β on the left and
right ends, respectively. According to the extremal current
principle, the steady-state density and current are then
given by

J ¼
8<
:

max
ρ∈½ρR;ρL�

JðρÞ if ρL > ρR

min
ρ∈½ρL;ρR�

JðρÞ if ρL < ρR:
ð3Þ

The current-density relation of the TASEP, Eq. (2), exhibits
only a single maximum. Consequently, the extremal current
principle predicts boundary-induced transitions between
three different phases: Eq. (3) implies that either the left
reservoir density ρL, the right reservoir density ρR, or the
density corresponding to the sole maximum in the current-
density relation, ρMC ¼ 0.5, is a valid solution and therefore
realized in the system. On an intuitive level, when the left
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reservoir density is realized, a lack of particles determines
the system’s behavior, as the in rate is too small to create
large particle jams. The corresponding phase is called the
low-density (LD) phase. When the out rate is so small that it
is the factor that limits transport, particles start to jam at the
lattice end. Ultimately, the corresponding outflux will
determine the overall particle current. The system then
realizes the right reservoir density. This phase is called
the high-density (HD) phase. Third, if neither a lack of
particles nor the out rate is limiting transport, the particles’
motion itself and thus the maximal possible current and the
corresponding density constitute a constraint. This phase is
the maximal-current (MC) phase.
It is worth noting that the above derivation of phase

transitions is independent of the microscopic rules of a
system and has also been applied successfully to driven-
lattice-gas models other than the TASEP [40,41]. Therefore,
the extremal current principle suggests that the phase
behavior of a driven lattice gas is qualitatively identical to
that of the TASEP as long as the curve characteristics of the
current-density relation are conserved: a region where the
current shows a monotonic increase with increasing density,
a region where the current monotonically decreases with
increasing density, and a single maximum.
The TASEP has been generalized in various ways.

Several studies investigated systems with a more involved
geometry such as two lanes [30,31,42–44], junctions [45–
51], or networks [52–56]. In particular, Curatolo et al. [22]
treated TASEPs with an arbitrary number of parallel lanes
on a cylinder, where particles are also allowed to switch
lanes. The authors find that, in this case, the system reduces
in many ways to the single-lane TASEP, which justifies its
application for the case of a single species of lane-switching
molecular motors on a microtubule. Besides these studies
addressing more complicated geometries, several authors
have treated multiple species of particles, typically in
opposite directions [39,57–62]. Yet, how a mixture of
different species of molecular motors—that naturally
may move with different gaits—behave collectively on
the cylindrical microtubule structure remains elusive.

III. MODELING TWO-SPECIES TRANSPORT

As discussed in the previous section, the TASEP
adequately describes molecular transport along a cylinder
in the presence of a single species of molecular motors. We
now turn to a mixture of two species of molecular motors
that are distinguished by different gaits. Specifically, we
address the question of how to describe collective transport
in the presence of molecular motors that move parallel to
the cylinder axis andmolecular motors that follow a helical
path as suggested by experiments [17–19]. To this end, we
study the stochastic model with Markovian dynamics
illustrated in Fig. 1. We consider a two-dimensional lattice
composed of W parallel lanes, each with a length of L
lattice sites. The system is populated by two different

particle species: a lane-tracking species (T species) and a
lane-switching species (S species). Particles of the lane-
tracking species stochastically hop at rate νT to the
neighboring lattice site on the right while staying on the
same lane. In detail, using Latin letters to denote the lane
index and Greek letters to denote the site index, hopping of
T particles is described by i → i and μ → μþ 1. They
represent, for example, molecular motors that track a single
protofilament. Particles of the S species change lanes with
every hopping event and stochastically move at rate νS to
the neighboring lattice site on the upper-right, i.e., i →
iþ 1 and μ → μþ 1. To implement a cylindrical structure,
periodic boundary conditions in the transversal direction
are imposed. Thus, members of the S species hop from the
uppermost to the lowermost lane. In this way, the lane-
switching particles represent molecular motors that move in
spirals around the microtubule. Furthermore, particles are
subject to steric interactions. In the model, they exclude
each other, and hopping events can only occur if the
corresponding lattice site is empty. At the left boundary,
an empty site is filled with a particle of the respective
species at rates αT and αS. Conversely, at the right
boundary, particles of the T and S species leave the lattice
at rates βT and βS.
Note that the assumptions of lane switching in each step

and the absence of random particle attachment and detach-
ment (Langmuir kinetics) are simplifications from a bio-
logical point of view. Their aim is to isolate the basic
principles of two-species transport along a cylinder, which,
in turn, allows us to develop an analytic theory for
topological hindrance. To bridge back to biological systems
and prove the relevance of our concepts, we discuss
extended models in Sec. VI.
To describe the state of the system, we use occupation

numbers nTi;μ, n
S
i;μ ∈ f0; 1g for lattice site μ on lane i. Here,

1 indicates that the lattice site is occupied by a T or S
particle, whereas 0 stands for the absence of the respective
species. We focus our analysis on the average particle
distribution (density) ρ and the average particle current J
that emerge in the system with the above stochastic rules.
More specifically, we define ρXi;μ ≔ hnXi;μi as the ensemble
averaged occupation of site μ on lane i by a particle of type
X ∈ fT; Sg. The current of S particles at site μ on lane i is
defined as the average number of S particles hopping onto
this site per unit time: JSi;μ ≔ νShnSi−1;μ−1ð1 − nTi;μ − nSi;μÞi.
Equivalently, the current for the T species JT is defined as
JTi;μ ≔ νThnTi;μ−1ð1 − nTi;μ − nSi;μÞi. Because of periodic
boundary conditions along the transversal direction, we
implicitly use the identification i ¼ W þ 1≡ 1 and i ¼
0≡W in these relations and in the following. For later
convenience, we also define the occupation number irre-
spective of the particle species, ni;μ ≔ nTi;μ þ nSi;μ. The
temporal evolution of average occupations in the bulk of
the system (μ ≠ 1; L) is then given by the master equations
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d
dt

hnTi;μi ¼ νThnTi;μ−1ð1 − ni;μÞi − νThnTi;μð1 − ni;μþ1Þi
¼ JTi;μ − JTi;μþ1; ð4aÞ

d
dt

hnSi;μi ¼ νShnSi−1;μ−1ð1 − ni;μÞi − νShnSi;μð1 − niþ1;μþ1Þi
¼ JSi;μ − JSiþ1;μþ1: ð4bÞ

At the boundary sites μ ¼ 1, L, the equations read

d
dt

hnTi;1i ¼ αTð1 − hni;1iÞ − JTi;2; ð5aÞ

d
dt

hnSi;1i ¼ αSð1 − hni;1iÞ − JSiþ1;2; ð5bÞ

d
dt

hnTi;Li ¼ JTi;L − βThnTi;Li; ð5cÞ

d
dt

hnSi;Li ¼ JSi;L − βShnSi;Li: ð5dÞ

By rescaling time, it is possible to set one hopping rate
equal to νX ¼ 1 without loss of generality. For simplicity,
we focus on identical hopping rates νS ¼ νT ¼ 1 through-
out this paper.

IV. PHENOMENOLOGY OF TOPOLOGICAL
HINDRANCE

A. Two-species transport cannot be reduced
to one-dimensional or single-species transport

In this work, we focus on steady-state properties,
i.e., dhnXi;μi=dt ¼ 0 and likewise for other moments.
Equations (4) show that the average occupation of a lattice
site depends on higher moments, which ultimately leads to
an unclosed hierarchy of equations. This typically precludes
an exact solution. The simplest analytic approach to treat
Eqs. (4) and (5) is the mean-field approximation [8], where
correlations are neglected by factorizing (second) moments,
hnXi;μnYj;νi ¼ hnXi;μihnYj;νi, which closes the hierarchy. The
mean-field approximation works successfully for the
TASEP and various similar models, and it therefore has
acquired the status of a standard method for the analytical
treatment of driven lattice gases [8]. We employ this
factorization scheme for the total current Ji;μ≔JSi;μþJTi;μ.
Furthermore, our system is irreducible [63]. For a continuous-
timeMarkov process, this suffices to show that the stationary
state is unique [64]. Since there is only one stationary state,
it has to adapt the symmetry of the system. Thus, all
macroscopic quantities have to be independent of the lane
number, and we therefore omit the lane index i in the
following. This reasoning is further validated by stochastic
simulations as shown in Appendix D 1. The mean-field
current-density relation then reads

Jμ ¼ ρTμ−1ð1 − ρTμ − ρSμÞ þ ρSμ−1ð1 − ρTμ − ρSμÞ
¼ ρμ−1ð1 − ρμÞ: ð6Þ

Here, we also define the total particle density ρμ ≔ ρTμ þ ρSμ
at site μ. Equation (6) is identical to the current-density
relation of the TASEP, Eq. (2). In particular, it predicts that
the current is independent of the fraction of spiraling
molecular motors and depends only on the total density.
To relate the current and density to the system’s control
parameters, it is useful to introduce new quantities. First, the
total in rate is given by α ≔ αT þ αS. Second, since particles
enter the system independently, the fraction of the current
contributed by lane-switching particles is δ≔αS=ðαTþαSÞ.
Because of current conservation, this current fraction is
spatially constant. In the mean-field analysis, JS=J ¼ ρS=ρ
holds true, such that the current fraction δ of theS species also
equals the density fraction of S particles. Therefore, we can
consider ρ, J instead of ρS, ρT , JS, and JT , and use δ to
compute the respective fraction in the mean-field analysis.
Third, we can identify an effective out rate β of particles
irrespective of their species. The average dwell time of a
particle at the last site is T ¼ δ=βS þ ð1 − δÞ=βT , and
therefore,β ≔ T−1 ¼ ðβTβSÞ=½δβT þ ð1 − δÞβS�.With these
definitions of α and β, we then obtain the full phase-diagram
predicted by a naïve mean-field approximation, which
recovers all TASEP relations.
To test this mean-field analysis, we perform stochastic

simulations based on Gillespie’s algorithm [65] for a
system with two lanes. Irrespective of the initial conditions,
the dynamics converge to a unique stationary state that is
characterized by a particle density ρ averaged over the
whole system and a particle flux J that we numerically
computed for various values of α, β, and δ. The result for
a system composed of two lanes is shown in Figs. 2(a)
and 2(b). In clear contradiction to the mean-field analysis,
Eq. (6), we observe a strong dependence of the average
current and density of particles on the fraction of spiraling
molecular motors in the system. These findings falsify the
mean-field approximation and show that the current is not
uniquely determined by the density but carries an explicit
dependence on the species fraction δ. For fixed δ, however,
a unique current-density relation J(ρðα; β; δÞ; δ) can still be
found, as shown in Fig. 2(a). Unlike the species fraction δ,
the in rate α and out rate β of particles are parameters that
change the density only locally and therefore the current
only implicitly. The resulting current-density relation
J(ρðα; β; δÞ; δ), as shown for W ¼ 2 lanes in Fig. 2(a),
exhibits a symmetry upon exchanging the species. This is
explained by an invariance of particle dynamics when
lattice sites are relabeled [66]. For δ ¼ 0 and δ ¼ 1, i.e., in
the presence of a single species only, we recover the TASEP
current-density relation. If both particle species are present,
the relation changes and the current is always less than in a
single-species setup. Most interestingly, in a mixed system,
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the current vanishes already at densities below full occu-
pation [Fig. 2(a), white area]; densities above a maximal
value of ρmaxðδÞ (bold gray line) are not realized in the steady
state. Moreover, a very small fraction of lane-switching
particles already cause this effect:Approximately 2%–5%of
a second species (see Fig. 2) is sufficient to cause significant
deviations from the single-species and mean-field results.
Besides this critical difference in the maximum density of a
mixed and a one-species system, the qualitative shape of the
current-density relation remains unchanged when the spe-
cies fraction is varied. As shown in Fig. 2 for the special case
ofW ¼ 2 lanes, we observe the same curve characteristics as
for the TASEP. These are a single maximum corresponding
to the MC phase, a LD region where the current monoton-
ically increases with increasing density, and a HD region
where the current monotonically decreases with increasing
density. The extremal current principle, Eq. (3), then
suggests that the phase diagram of our model and the
TASEP are topologically equivalent, although the positions
of the phase boundaries might differ.
As the mean-field approximation fails to describe two-

species transport, the species current fraction δ cannot be
equated with the species density fraction. This complicates
any further discussion as ρS and ρT have to be treated
separately. However, as shown in Appendix D 2, in the
context of this paper, no significant deviations of the
density species fraction from the current species fraction
occur. Therefore, for the remainder of this work, we mostly
use ρ and implicitly assume a conversion to ρS and ρT via δ.
Furthermore, we refer to δ simply as a species fraction.
In summary, our simulation data show that, first, the

dynamics of the two species are correlated, as manifested by
the failure of themean-field approach and the dependence of

the current and density on the species fraction δ. Second,
correlations of the species dynamics always lead to a
reduction of the average particle current; hence, the presence
of a second species always hinders transport. We conclude
that our model cannot be reduced to the TASEP and that
naïve mean-field approaches are incapable of capturing the
emerging macroscopic transport behavior.

B. Topological hindrance

To obtain insight into the interactions that reduce the
particle flux in the presence of both particle species, we take a
qualitative look at particle configurations that might arise in
our model. First, we consider jammed configurations where
all particles (except for the very last one) are blocked and
where, consequently, the average particle current vanishes.
As discussed in Sec. II, for one species transport, a jammed
system can only arise trivially if every lattice site is occupied.
In contrast, our model exhibits jamming at densities below
full occupation. A possible jammed configuration of a mixed
system is shown in Fig. 3(a). Although the system is jammed,
there exist lattice sites that are not occupied. These sites are
inaccessible to any particle of this configuration [Fig. 3(a),
crosses] and ultimately lead to jamming below the full
occupation. In ourmodel, two particles fromdifferent species
can simultaneously target a single site. Consequently, if that
site is occupied, a single particle can block the motion of two
other particles [Fig. 3(b), configuration 1]. This, in turn, can
create sites that are empty but nevertheless inaccessible.
Moreover, if particles of both species try to access a single site
that is empty and accessible [Fig. 3(b), configuration 2], their
motion is restricted insofar as either one of them, but not both,

(a)

(b)

FIG. 3. Illustration of topological hindrance for a system with
W ¼ 2 lanes at the right lattice end. (a) State where the motion of
each particle in the bulk is blocked (jammed state) and only the
rightmost particle is allowed to move (arrow). Empty lattice sites
(crosses) are present, which lead to average densities below the
full occupation for jammed systems. (b) The second species,
which changes the connectivity of the network of possible
particle motions, amplifying the impact of steric hindrance in
our model. Bracketed area 1 shows how a single particle can now
block up to two other particles. Area 2 shows how particles might
align such that motion has to occur sequentially. The same
symbols as in Fig. 1 are used to illustrate the system and particles.

(a) (b)

FIG. 2. Current-density relation obtained from stochastic sim-
ulations with W ¼ 2 lanes and L ¼ 4096 sites. (a) The emerging
current J of an arbitrary lane (blue color) shows a dependence
not only on the average system density ρ but also on the fraction
of lane-switching particles, δ. The system jams at a maximal
density ρmaxðδÞ (bold gray line); densities between ρmax and full
occupation are not realized in any stationary state. (b) Current-
density relation for mixed species (δ ¼ 0.5, δ ¼ 0.035, symbols)
and single species (δ ¼ 0 or 1, line). For the latter cases, we
recover the TASEP current-density relation.
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can hop at a time. These configurations hence act as an
intrinsic bottleneck and will further reduce the particle
current on average. To assess these considerations also
quantitatively, we specifically compute the number of inac-
cessible lattice sites and,with it, themaximal densityρmax as a
proof of principle for a system with δ ¼ 1=2 and W ¼ 2
lanes. The detailed computations are shown in Appendix A
and lead to a value of ρtheorymax ¼ 0.74. This is in very good
agreement with simulations that yield ρsimmax ¼ 0.73, which
validates the qualitative arguments given above.
In summary, when the lane-switching species is added to

the system, the network topology of possible particle
motions is changed. Any given site is now potentially
connected to two other sites, although leaving a site is only
possible in one direction at a time. This creates a two-to-
one connectivity. The single-species model, on the other
hand, shows one-to-one connectivity or, for the general
case of particles that may stochastically switch lanes, n-to-
n connectivity. The two-to-one connectivity of our model
amplifies the impact of steric interactions relative to single-
species transport and therefore hinders motion. First, steric
interactions may now occur at more points in space as
compared to single-species transport, and thus give rise to
inaccessible lattice sites [see Fig. 3(b), group 1]. Second, at
intrinsic bottlenecks, steric interactions can now act at more
points in time, as particles may have to hop one after the
other [see Fig. 3(b), group 2]. Throughout this paper, we
refer to these phenomena as topological hindrance.

C. Influence of the number of lanes

The first important question to address is how the density
of a jammed system ρmax is influenced by the number of
lanesW. Our analytic approach forW ¼ 2 lanes, however, is
not feasible for large numbers of lanes as the complexity of
the underlying mathematical problem increases rapidly.
Figure 4 shows numeric results for the maximal system
density obtained from stochastic simulations of systems
with up to W ¼ 50 lanes. Strikingly, the maximal density
ρmax decreases rapidly with an increasing number of lanes.
Therefore, the overall impact of topological hindrance
grows accordingly and becomes the major determinant of
the system’s dynamics. This is of importance as large
numbers of lanes are often encountered in biological
contexts. For example, microtubules are typically composed
of 13 lanes, where our model already exhibits a maximal
density of ρmax ≈ 0.2. Let us also emphasize that, in analogy
to the two-lane system, current reduction and, likewise,
jamming due to topological hindrance practically saturate at
low fractions of the second species (see Appendix D 3).
To improve our conceptional understandingof thedecrease

of the maximal density with increasing numbers of lanes, we
can estimate the jamming density ρmaxðWÞ. To this end, we
consider groups of lattice sites with equal site index μ but
different lane index i, which corresponds to a column of our
two-dimensional lattice. Those columns can be occupied by

one up to W particles. The respective probabilities in a
jammed system are unknown. A rough estimate is given by a
maximum entropy approach, which assumes that all numbers
(up to W) are equally likely to occur. Then, the maximal
density for a system with W lanes can be estimated as

ρmaxðWÞ ¼ 1

W

XW
k¼1

1

k
¼ HmðWÞ

W
⟶
1≪W lnðWÞ

W
; ð7Þ

where HmðWÞ denotes the Wth harmonic number. This
scaling argument, despite its simple nature, turns out to be
very accurate for the case of symmetric particle mixtures
δ ¼ 1=2. While simulations show that the assumption of
uniformly distributed numbers of particles per column is
per se incorrect, deviations from the uniform distribution for
highly and sparsely occupied columns seem to cancel out,
leading to a correct mean value. An intuitive justification for
this is that, for example, a completely filled column is
compatible with all configurations to its left. Nonetheless,
it is very unlikely to occur because only a very restricted
number of states may appear to its right. On the other hand, a
columnwith a single particle in it can occur to the right of any
other state, but it is only compatiblewith a few configurations
to its left. Hence, this state is very rare as well. On average,
high and low occupancies are both suppressed. The effects
balance out, making the mean a good approximation.
Note here that the jamming of particles below full

occupation shows strong similarities with the jamming
transition observed in the Biham-Middleton-Levine model
[67]. The latter is a (often deterministically described)
model of two perpendicularly crossing pedestrian flows

(a) (b)

FIG. 4. Dependence of the maximal density ρmax on the number
of lanes W for the special case δ ¼ 1=2 and L ¼ 16384.
(a) Rapidly decreasing ρmax with increasing numbers of lanes
W. The decrease can be estimated by a maximum entropy
argument leading to ρmaxðWÞ ≈ HmðWÞ=W (solid line). (b) Snap-
shots of particle distributions in systems with W ¼ 20 and W ¼
40 to illustrate the maximal density. Although the system is
almost fully occupied at the left lattice end, the degree of
occupation successively decreases and converges to the maximal
density. Larger numbers of lanes exhibit more inaccessible sites
and therefore a lower maximal density. In panel (b), the same
symbols as in Fig. 1 are used to plot the system and particles. Only
the leftmost part of the system is shown for illustrative purposes.
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that exhibits a sharp transition from a phase with finite flow
to jamming. A rigorous mathematical treatment of this
transition is, however, lacking for the Biham-Middleton-
Levine model [68].
In summary, our analysis suggests that topological

hindrance becomes much more significant for large num-
bers of lanes, where we expect it to dominate the complete
dynamics. In the Sec. V, we use a novel analytic method to
construct the complete current-density relation and, thus,
relate the impact of topological hindrance to arbitrary
densities. For this theory, the maximal density is also a
key parameter as it incorporates the full impact of the
number of lanes into the relation.

V. A THEORY FOR TOPOLOGICAL HINDRANCE

In the following, we present an approximation method
that is designed to quantify the impact of topological
hindrance for arbitrary densities. This will enable us to
derive the current-density relation of our model, which
successfully takes those correlations into account that lead
to the failure of mean-field arguments. To do so, we show
that the current-density relation can be split into a mean-
field contribution, as derived in Sec. IV, and a correction
term that depends on the local density. This correction term
can be associated with the inaccessibility of an empty
lattice site and therefore quantifies topological hindrance at
a certain density. We present a construction method for this
hindrance function that, in turn, allows us to compute the
current-density relation.

A. The hindrance function

First, we split the particle currents into a mean-field
contribution and a correction term. The particle density is
independent of the lane index i, such that we find
JSμ¼ρSμ−1ð1−ρμÞ−covðnSi−1;μ−1;ni;μÞ and JTμ¼ρTμ−1ð1−ρμÞ−
covðnTi;μ−1;ni;μÞ. Here, covðnXi;μ; nYl;νÞ ¼ hnXi;μnYl;νi −
hnXi;μihnYl;νi denotes the covariance of two occupation
numbers. According to the master equations, Eqs. (4)
and (5), the particle currents JS and JT must be conserved
on each lane in the stationary state. In addition, the current
must be independent of the lane index i due to the rotational
invariance imposed by the system’s cylindrical symmetry.
Hence, the total current J ¼ JS þ JT is conserved within
the whole system:

J ¼ ρμ−1ð1 − ρμÞ − covðnSi−1;μ−1; ni;μÞ − covðnTi;μ−1; ni;μÞ
¼ const; ð8Þ

for arbitrary lanes i ∈ f1;…;Wg. The first summand is
identical to the mean-field current derived in Sec. IV,
whereas the covariances account for correlations. We define
the hindrance function H at site μ as

Hμ ≔
covðnSi−1;μ−1; ni;μÞ þ covðnTi;μ−1; ni;μÞ

ρμ−1
: ð9Þ

Then, using definition (9), the current can be rewritten as

J ¼ ρμ−1ð1 −Hμ − ρμÞ: ð10Þ

Note that no approximations have been made so far. Only
symmetries and conservation laws have been employed.
Considering the current-density relation of the TASEP,
J ¼ ρð1 − ρÞ, we find that strict accessibility of empty
lattice sites is reflected by the 1 in the second factor. In
contrast, Eq. (10) reveals that, in our model, an empty
lattice site can be accessed only with probability 1 −Hμ.
Thus, the hindrance function H can be viewed as a
correction to the accessibility of empty lattice sites and
reflects topological hindrance in the system.
As the current-density relation, Eq. (10), defines an

unclosed set of difference equations, we have to employ
approximation methods to proceed with our analysis.
Often, moment closure techniques are applied to get an
approximation for higher moments and thus the covarian-
ces. This would, in our case, also fix the hindrance function
that depends on them. However, based on our discussion of
topological hindrance and the maximal density in Sec. IV,
we expect correlations to be long-ranged and not con-
strained to certain subsegments of the lattice. Therefore,
such methods do not seem promising, especially for large
numbers of lanes. Instead, we derive a theory similar to the
considerations of Lighthill and Whitham [36,39] for our
model based on Eq. (10). Specifically, we consider the limit
of large system lengths L ≫ 1. Then, we can replace the
discrete site index μ by a continuous spatial variable
x ≔ μ=L ∈ ð0; 1�. We perform a Taylor expansion in x,
which we truncate at first order in the lattice spacing
ϵ ≔ 1=L ≪ 1. This is justified for small spatial variations
of the density profile [69]. Indeed, our stochastic simu-
lations confirm this assumption for large aspect ratios L=W
[see Fig. 8(b) and Sec. V D]. Taking everything together,
the result is a current-density relation that depends on the
local density but not on its gradient,

J ¼ ρðxÞ½1 −HðxÞ − ρðxÞ�: ð11Þ

The current is spatially conserved (and therefore does not
explicitly depend on x), and hence the dependence of the
hindrance function H on the lattice position must be
implicit via the local density ρ. Thus, our current-density
relation can be written as

J ¼ ρ½1 −HðρÞ − ρ�: ð12Þ
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At this point, the explicit dependence of H on ρ is still
unknown. To make progress, we derive an approximating
function for the hindrance function H that captures its
physical properties. This function can then be used to
predict the current [70].

B. Constructing the current-density relation

Since the current-density relations of the TASEP and our
model show similar curve characteristics, we expect their
qualitative phase behavior to be comparable because of the
extremal current principle. We split the approximating
function for topological hindrance H into two correspond-
ing regimes: HLD is associated with the monotonically
increasing part of the current-density relation, and HHD
with its monotonically decreasing part. These two functions
can be expanded independently around extremal density
values for which the behavior of H can be derived using
mean-field arguments. Each extremal case isolates one
central aspect of transport limitation: first, the lack of
particles for ρ → 0, and second, jamming in the case of
ρ → ρmax. In the intermediate regime, both transport limit-
ing factors come into play.
For vanishing densities ρ → 0, particles do not interact

and are thus uncorrelated. In this limit, we do not expect
any topological hindrance, and therefore, the hindrance
function H vanishes. Furthermore, we can compute the
derivative of H by calculating the change in current due to
the addition of particles in the mean-field approximation
(see Appendix B). These two conditions allow us to
determine the coefficients of an expansion of the function
HLD up to linear order in ρ:

HLDð0Þ ¼ 0; ð13aÞ
d
dρ

HLDðρÞ
���
ρ¼0

¼ δð1 − δÞ: ð13bÞ

Interestingly, the result is independent of the number of
lanes W and depends on the species fraction δ in the
simplest nontrivial way that fulfills the species exchange
symmetry δ → 1 − δ.
In contrast to the low-density limit, particles are totally

correlated for ρ → ρmax. A particle can only be located at a
certain lattice site if the respective target site is occupied.
For this limit, we can again find the corresponding
derivative of the hindrance function using mean-field
arguments (see Appendix B). Note that HðρmaxÞ is known
from the definition of the maximal density ρmax itself.
Again, we can determine the coefficients of an expansion
up to linear order:

1 −HHDðρmaxÞ¼! ρmax; ð14aÞ
d
dρ

HHDðρÞ
���
ρ¼ρmax

¼ −δð1 − δÞρmax: ð14bÞ

Since the maximal density depends on the number of lanes,
as discussed in Sec. IV, the same holds true for the high-
density approximation of the hindrance function. This is a
major difference compared to the low-density limit.
However, the low- and high-density components both show
the simple dependence on δð1 − δÞ.
A closer look reveals that linear approximations for the

low- and high-density regimes do not, in general, intersect
on the interval ½0; ρmax�. This would result in a discontinu-
ous current-density relation that is unreasonable. We
conclude that an expansion up to at least second order
in ρ is necessary. Therefore, we have to look for further
physical conditions to uniquely determine the additional
coefficients of the expansion. This can be achieved by
imposing a differentiable transition between the high-
density and low-density regimes. At this intersection point,
neither a lack of particles nor jamming is the limiting factor
for transport, and hence, the transition should take place at
the density ρMC, which corresponds to the maximal current.
Furthermore, both derivatives must vanish at ρMC. This can
be translated into three conditions:

HLDðρMCÞ ¼ HHDðρMCÞ; ð15aÞ

d
dρ

ρð1 −HLDðρÞ − ρÞ
���
ρ¼ρMC

¼ 0; ð15bÞ

d
dρ

ρð1 −HHDðρÞ − ρÞ
���
ρ¼ρMC

¼ 0: ð15cÞ

Combining all properties derived for the hindrance func-
tion, we can uniquely approximate HLD and HHD up to
second order in the bulk density [71]. The resulting
hindrance function is shown in Fig. 6(a) for a system with
two lanes and species fraction δ ¼ 1=2; the corresponding
current-density relations for multiple numbers of lanes W
are shown in Fig. 5. As can be seen, the results of our
approximations are in very good agreement with the
stochastic simulations and capture the main characteristics
of the current-density relation. At this point, let us also
emphasize that the theory can be applied for general δ and
W. It does not involve any explicit dependence on the
number of lanes W but depends on ρmax, which, in turn,
depends on W and also on δ. Therefore, ρmax is a key
quantity in our theory, which determines the current-
density relation and hindrance function and thus quantifies
topological hindrance in general.
Since the current is very well approximated with this

method, the exact relation given by Eq. (9) allows us to
infer the underlying correlations. This leads to a prediction
for the covariances,

covðnSi−1;μ−1 þ nTi;μ−1; ni;μÞ ≈ ρHðδ;W; ρÞ; ð16Þ
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where we have accounted explicitly for the dependence of
the hindrance function on the control parameters W and δ.
This prediction of the covariances is confirmed by the
stochastic simulation shown in Fig. 6(b), as expected from
the method’s accurate prediction of the current.
In summary, our analysis shows that modifications of the

current-density relation in our system are caused by particle
correlations. These correlations are accounted for by a
hindrance function H, which quantifies the degree of
inaccessibility of empty lattice sites and therefore quanti-
tatively characterizes topological hindrance. We construct
the hindrance function in terms of a gradient expansion.
This expansion is determined by physical constraints with
respect to the high- and low-density limits, as well as the
transition to the maximal-current phase. Numerical simu-
lations validate our method.

C. Phase behavior of collective two-species transport

So far, we have computed the relation between the
average density and particle current but have not addressed
how these observables are connected to the system’s
control parameters. In this section, we determine the
response of the current and density to a change in the
control parameters α and β and thereby derive the complete
phase diagram. As mentioned above, the extremal current
principle implies the existence of the three phases as in the
TASEP (low-density, high-density, and maximal-current

phase), due to the similarity in the form of the current-
density relation. Then, for various driven lattice gas
systems, current conservation at the respective boundary
is used to relate the system’s current and density to in and
out rates. Because of nontrivial correlations in our system,
it is, however, not possible to simply treat the boundaries as
reservoirs with density ρL ¼ α and ρR ¼ 1 − β as is done
for the TASEP. In Appendix C, we present ways to account
for correlations at the edges of the system. This involves
determining the response of the current and density to the in
rate α in the low-density phase and to the out rate β in the
high-density phase.
The LD-MC and HD-MC transitions take place when

the respective current matches the maximal bulk current.
The latter can be computed with the methods outlined in the
previous section. Analogously, the LD-HD transition
takes place when both currents are identical. The resulting
phase diagram for the special case of two lanes and a
species fraction of δ ¼ 1=2 is shown in Fig. 7. The
theoretical boundaries are calculated based on the analyti-
cally determined value for the maximal density for this
choice of parameters (see Appendix A) and hence are
derived without any free parameter. The results agree very
well with the data obtained from stochastic simulations.
Changing δ does not affect the existence of phases but
interpolates between the boundaries known for the TASEP
and those presented in Fig. 7. Increasing the number of
lanes W lowers the maximal density (see Fig. 4) and
increases the parameter range of the maximal-current

FIG. 5. Current-density relation for different numbers of lanes
W with L ¼ 16384 and δ ¼ 1=2. The theory for the current-
density relation (dashed lines) agrees very well with simulation
data (symbols). Although deviations from the TASEP current-
density relation (solid line) increase with a growing number of
lanes, the three regimes of the current-density relation are
preserved: the low-density regime (positive derivative with
respect to ρ), the high-density regime (negative derivative),
and a unique maximum. Note that the theory depends on
ρmax, which in turn depends on W and δ. For the theoretical
lines, a fit-free approach based on the analytic result for ρmax (see
Appendix A) was employed for two lanes. For three and four
lanes, results were taken from the simulations to ensure that
deviations originate from the theory itself not the estimate of
ρmax. The particle current refers to an arbitrary lane of the system
in order to allow for a comparison to the TASEP.

(a)

(b)

FIG. 6. Comparison of the developed theory for the strength of
topological hindrance with simulations for W ¼ 2, L ¼ 4096,
and δ ¼ 1=2. (a) Hindrance function H in the bulk as a
function of the density ρ. Results from simulations (symbols)
verify the continuous approximation of the hindrance function
(lines). (b) The construction of H can be used for an accurate
prediction of correlations of occupations between neighboring
sites in the bulk. The prediction for the covariance
covðntransi;μ−1; ni;μÞ in the bulk agrees well with simulation results.
Here, ntransi;μ ≔ nTi;μ þ nSi−1;μ is the total occupation of S and T
particles of two neighboring lattice sites in the transversal
direction. For the theory, ρmax was taken from our analytic
approach (see Appendix A).
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phase, while the corresponding current is reduced. Hence,
as predicted by the extremal current principle, given the
number of lanes and species ratio, the phase diagram is
topologically equivalent to the one obtained for the normal
TASEP [72]. Note that our theory holds for general values
of the system width W and the species fraction δ.

D. Nonequilibrium pattern formation

The construction of the hindrance function shown above
relies on an expansion of the density ρ in terms of the spatial
variable x ¼ μ=L. Specifically, we assume that gradients in
the density are negligible, which is justified for slowly
varying density profiles.While this assumption as illustrated
in Fig. 8(b) leads to accurate results in most cases, we
observe surprising exceptions to this behavior for systems
with a small aspect ratioL=W: If we sufficiently decrease the
system length L or increase the system width W, our
stochastic simulations reveal spatial oscillations of the
stationary average particle distribution. As shown in
Fig. 8(a), the density ρi;μ ¼ hni;μi oscillates along the
longitudinal direction (Greek index μ) with a wavelength
equal to the width of the system W. Because of rotational
symmetry, these wavelike patterns of the density profile are
equally present for each lane i. Furthermore, oscillations are
sustained for thousands of lattice sites almost without any
decay; therefore, they show remarkable robustness. This
behavior is in stark contrast to the TASEP, which (except for
boundary layers) exhibits a constant density profile. In
general, pattern formation is rarely observed in lattice gas
models and has so far been found predominantly in the form
of segregation or localization effects [62,73–75].

As stated above, the continuous approximation Eq. (12)
is, by virtue of its construction, incapable of describing
these varying density profiles. Also, the species current
fraction δ may, in this case, significantly differ from the
species density fraction (see Appendix D 2). It is, however,
worth noting that our theory still provides a good approxi-
mation for the current-density relation in terms of the total
system density (i.e., when averaging over an oscillating
density profile) for symmetric species fraction δ ¼ 1=2. To
describe the density profile itself, it is necessary to include a
dependence not only of the local density but also its spatial
change in the hindrance function H. The problem is
comparable to the boundary layers of the TASEP, which
cannot be captured by a first-order continuous theory but
are predicted by exact or higher order solutions [8,44,76].
In future work, it would be interesting to address if such a
construction or some alternative analytic method is capable
of reproducing these intriguing patterns.

VI. ROBUSTNESS AND BIOLOGICAL
RELEVANCE

To establish a generic theory for two-species transport
and to enable an analytic study of topological hindrance,
we previously made several assumptions that do not
necessarily hold in a physical or biological context. To
probe the robustness of our results and the relevance of
topological hindrance further, we now turn to extended
versions of our model that account for biomolecular
features of molecular motors.
First, kinesins are not likely to strictly follow a unique

pathway; i.e., lane switching does not occur at every step
but stochastically. Adding this modification to our model
mitigates effects such as a strict maximal density and phase

FIG. 7. Phase diagram for the special case W ¼ 2, L ¼ 4096,
and δ ¼ 1=2. Colors denote density (left panel, blue) and current
(right panel, orange) obtained from stochastic simulations. Three
different phases can be identified: the LD phase where current
and density only depend on the in rate, the HD phase where
current and density only depend on the out rate, and the MC
phase that is independent of both boundary parameters. The
theory (bold lines) accurately predicts the phase boundaries and is
valid for general δ and W as soon as the maximal density is
known. Here, ρmax was taken from the analytic approach (see
Appendix A).

(a)

(b)

FIG. 8. Density profiles ρμ for large and small system widthsW
compared to the length L ¼ 512. (a) The stationary density
distribution for W ¼ 13 lanes shows an oscillatory pattern with a
wavelength equal to the number of lanes. The system exhibits a
constant current despite the density oscillations. (b) Stationary
density distribution for W ¼ 2 lanes. The system exhibits a flat
density profile within the bulk. Other parameter values include
α ¼ 0.6, β ¼ 0.2, and δ ¼ 1=2 in both simulations.
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transitions since any inaccessible site of the original model
can now be accessed, in principle, on long timescales.
Nonetheless, topological hindrance also has a significant
impact in this case. To demonstrate this, we perform
simulations with a four-lane system in which lane-
switching particles switch lanes with a probability of
θ ¼ 0.2 and track their respective lane otherwise. The
results are shown in Fig. 9. While this system does not
strictly follow the current-density relation as predicted by
our theory, it demonstrates that topological hindrance has a
strong influence on collective transport as the particle
current is heavily suppressed: For example, the average
particle current is reduced by more than 50% at densities
around the maximal density of the original model. For
higher lane numbers, current reduction is even more
pronounced. This shows that topological hindrance can
also have substantial influence on systems where particles
rarely switch lanes but that are composed of many lanes.
To challenge our results further, we perform stochastic

simulations of an extended model that accounts for other
important biomolecular features of molecular motors: In
addition to the stochastic lane switching described above,
particlesmay attach (rateωX

a ) and detach (rateωX
d ) randomly

along the lattice (Langmuir kinetics) [77,78] and occupy two
lattice sites to account for a dimeric structure [79] of most
molecular motors (see illustration in Fig. 10). In analogy to
our analysis of the minimal model shown in Fig. 2, we
increase the particle attachment rate ωS

a of the spiraling
motor species while keeping the attachment rate of the
tracking species ωT

a constant. An example for the corre-
sponding average particle current per lane is depicted in
Fig. 10. Even in this greatly expanded model, topological
hindrance causes a significant decrease in the particle
current already at low fractions of the second species. In
particular, the impact of topological hindrance follows the
same principles as discussed in Sec. IV: It increases rapidly
with an increasing number of lanes, and it sets at already
small fractions of a second species. Taking all results
together, we conclude that topological hindrance is most
likely also of relevance in biological contexts, and the theory
described here allows one to estimate its impact. Another
interesting question in this context is whether a phenomenon
similar to the density patterns that we observe in the main
model exists in a biological context. As this strongly
depends on the system considered, at this stage, we cannot
provide a complete analysis. Nevertheless, to give an out-
look on the impact of model extensions on pattern for-
mation, a brief discussion is given in Appendix D 4.
Moreover, we would like to add that random particle

attachment and detachment may, in general, modify our
results. In particular, we expect that adding Langmuir
kinetics to our model will lead to the emergence of
additional phases [77,78] such that our results—while
providing a mathematical foundation—cannot be trans-
ferred directly [80]. Whereas a complete analysis of the
jamming behavior is out of scope of this work, the analysis
of our fully extended model (Fig. 10) strongly suggests that
whenever transport occurs over significant length scales,
topological hindrance can be expected to significantly
impact the particle current, in general.
To provide a further link from our theoretical work to

biological systems, we finally address how our results
could be tested experimentally. Two central predictions that
our model makes in this context are (1) current reduction
and (2) periodic particle jams. In case (1), the average
particle current in the system with two species is expected
to be significantly smaller compared to a single-species
system (see Fig. 10). This could be measured experimen-
tally using time-resolved single-molecule techniques. In
case (2), topological hindrance is related to spatial corre-
lations in the particle arrangement and movement, which
may lead to patterns in the particle density. These could be
resolved experimentally using techniques described pre-
viously, for example, by Maurer et al. [81]. One hurdle to
overcome is to construct suitable total internal reflection
fluorescence (TIRF) microscopy setups that do not obstruct
the helical pathways of the spiraling motor species, similar
to those described in Refs. [20,82].

FIG. 9. Current-density relation of a model with nonstrict lane
hopping on a system composed of W ¼ 4 lanes. Simulation
results (symbols) for the current and density of a model where the
lane-switching species switches the lane only with probability
θ ¼ 0.2 in each step; with probability 1 − θ, the second species
follows its current lane. Topological hindrance significantly
suppresses current and density for this model also, where lane
switching seldomly occurs. The resulting data points are in the
area between the current-density relation of the single-species
case or one-dimensional model (solid line) and the one of our
model (dashed line). For models similar to the one presented in
this work but with more realistic particle dynamics (e.g., random
particle attachment or detachment, nonstrict lane hopping,
dimeric particles), we expect current suppression due to topo-
logical hindrance to be stronger for parameters that lead to bigger
differences in both curves (shaded area). Thus, our theory
provides qualitative insights in more complex models also. Note
that the simulations suggest a noninjective current-density
relation at the onset of jamming of the original model. Other
parameter values are δ ¼ 1=2, L ¼ 16 384.
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VII. SUMMARY AND CONCLUSION

In this work, we have studied collective transport of
two particle species with distinct gaits and therefore
different directions of motion on a cylinder. As a key
result, we found that the presence of different stepping
modes enhances steric interactions and compromises
particle dynamics in ways not seen in single-species
systems. This additional hindrance changes the macro-
scopic transport behavior in a way that—to the best of our
knowledge—cannot be accounted for by previous models
or analyses. The combination of a lane-tracking and a

lane-switching species gives rise to unexpected phenom-
enology in the following fashion:
(1) Systems with a mixed population of both species

always jam at densities far below full occupation.
(2) Closely related to that, a system with a mixed

population is always characterized by a lower average
particle current at a given total system density.

(3) The proportion of the second species present has a
crucial influence on this behavior: Current reduction
sharply sets in at very small fractions of the second
species and practically saturates for fractions larger
than δ ≈ 5%.

(4) In contrast to single-species transport, the system
width W is an important determinant of collective
dynamics. Increasing W rapidly decreases the den-
sity at which particles jam and also rapidly increases
the degree of current reduction.

(5) The average particle distribution (density profile)
shows wavelike patterns for small aspect ratios L=W
of the system. This again contrasts with single-species
transport andmany transportmodels, as those typically
exhibit a spatially constant or linear density profile.

The above observations can be traced back to the following
microscopic origin: While for transport with a single species
each position can be equally accessed and vacated from a
certain number of directions, our model shows a more
intricate connectivity. A single lattice site may now be
accessed from two different directions but can be vacated
in one direction only. This simple change in the network
topology has substantial influence on collective behavior. It
creates inaccessible lattice sites and slows down particle
motiondue to intrinsic bottlenecks at pointswhere trajectories
intersect. This concept, that steric interactions are amplified
by the network topology, forms the basis of our theoretical
approaches, which sheds light on the following issues.
(1) We provide a detailed analysis of the jamming process.

The decrease of the jamming density with increasing
system width W is well approximated by ρmax →
lnðWÞ=W for largeW and symmetric species mixtures
δ ¼ 1=2. This explains the relevance of the system
width W for topological hindrance and suggests
convergence to a vanishing jamming density for large
system widths. We specifically compute the jamming
density in the case δ ¼ 1=2 and W ¼ 2, which
validates our understanding of the jamming process.

(2) Even at densities well below the jamming transition,
many lattice sites are inaccessible. We show that inac-
cessibility is quantified by a hindrance function,which
naturally arises from particle correlations. In doing so,
we obtain the current-density relation for arbitrary
species fractions and system widths. This method is
not restricted to our specific system. It reproduces the
correct current-density relation of the TASEP, and we
expect it to be applicable to other TASEP-like systems
that exhibit cylindrical symmetry.

(a)

(b)

FIG. 10. Illustration of the extendedmodel and current reduction
for different numbers of lanes. (a) Dimers populate a lattice of
widthW and lengthL. Periodic boundary conditions are employed
along the transversal direction. Dimers of speciesTmove their rear
legs to the neighboring lattice site on the right of their front legs at a
rate νT . Dimers of species Smove their rear legs to the neighboring
lattice site on the right of the front legs at a rate ð1 − θÞνS and to the
neighboring lattice site on the upper-right of the front legs at a rate
θνS. All particles exclude each other. Dimers either enter the
system at the left boundary at rates αS and αT or randomly attach to
the lattice at respective rates ωS

a and ωT
a . Lane-switching particles

may either attach with both legs in the same lane at rate ð1 − θÞωS
a

or, alternatively, with feet in neighboring lanes at rate θωS
a.

Particles exit the system at the right boundary at rates βS and
βT or stochastically detach from the lattice at rates ωS

d and ωT
d .

(b) Simulation results show the current for systems with different
numbers of lanesWwithout any spiralingmotion (empty symbols)
andwith rare stochastic lane switching (filled symbols) of θ ¼ 0.1.
If no lane switching is possible, the current is not affected by the
number of lanes, and it reduces to the single-species TASEP with
Langmuir kinetics and dimeric particles [77–79], as identical
hopping rates for both species are chosen. However, if the second
species is allowed to switch lanes, a rapid current reduction similar
to the one described above for the main model can be observed.
Note that the current is no longer conserved within the system,
such that a spatial average over a lane is taken. Other parameter
values include ωS

d ¼ ωT
d ¼ ωT

a ¼ 0.001, νS ¼ νT ¼ 1, α ¼ 0,
β ¼ 0.5, L ¼ 2048.
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(3) The current-density relation is used to compute the
phase diagram of our model. In this way, we globally
relate central macroscopic observables, namely, the
average particle current and distribution, to the
model’s control parameters—the particle in and
out rates.

An important conclusion of our study is that the
reduction to one dimension is a priori not possible for
collective transport of differently moving agents along a
cylinder. Although dynamics for each species alone are
effectively one dimensional and are successfully described
by mean-field methods, the joint system deviates from this
behavior. Our analysis overcomes this limitation and
establishes a framework for mixed populations comprising
distinct particle species. It further identifies topologically
amplified hindrance as a central determinant in this context.
The derivation of the hindrance function not only quantifies
the strength of topologically amplified hindrance but also
implements an effective mapping to a one-dimensional
system. This mapping is useful in two ways. First, it
reduces the complexity of the mathematical problem by
integrating out the transversal spatial dimension. Second, it
allows one to infer possible microscopic interactions
whenever only a one-dimensional projection is visible.
For example, in a biological context, it is still technically
challenging to resolve the motion of molecular motors
below the diameter of their respective filament. Hence, the
projection of particle positions on the filament contour is
the standard information accessible in experiments. This
holds particularly true in experimental setups with a
multitude of moving particles, where super-resolution
techniques are not always feasible. As our work shows,
it is a highly nontrivial task to relate macroscopic infor-
mation back to individual microscopic interactions, and our
theory might yield valuable insights in this respect. But our
considerations also raise the question of how much actual
biological systems, such as molecular transport along
microtubules, are affected by topological hindrance.
While some of our specific results (e.g., a strict maximal
density or phase transitions) are weakened by processes
like random particle attachment or detachment and non-
strict lane hopping, we still expect topologically amplified
interactions to play a critical role. Our analysis regarding
model modifications in Sec. VI suggests that, whenever
transport occurs over significant length scales and time-
scales, topological hindrance most likely changes collective
behavior substantially. An important conclusion in the
biological context is that particle jamming due to topo-
logical hindrance takes place at significantly lower particle
densities as compared to single-species transport: Figure 10
suggests that even slight deviations from the straight
stepping behavior (10% in this case) reduce the current
to half of the value as compared to the single-species case at
identical cytosolic particle concentrations. Thus, jamming
transitions might also be more relevant in vivo than

previously thought. Therefore, it might be revealing to
probe this phenomenon experimentally in multispecies
setups and to speculate about its biological implications.
In these ways, our work has various consequences for

intracellular transport, and it yields a generic theory for
collective motion of differently moving agents. On a
theoretical level, our analysis is in line with results of
the TASEP for single-species transport. But since the
TASEP has relevance beyond the field of transport proc-
esses, our results also form a bridge to other intensively
studied fields of statistical physics: Our model constitutes a
simple system far from thermal equilibrium that can be
investigated in great detail with the theory developed in this
paper. It exhibits a wide range of phenomena that are
insufficiently understood and have rarely been observed in
analytically well-accessible models such as driven lattice
gases. First, in contrast to many other driven lattice gas
models, the average particle distribution exhibits complex
pattern formation. While a detailed mathematical study of
these patterns is beyond the scope of this work, our
construction of the hindrance function and the correspond-
ing reduction to one dimension can form a basis for a more
rigorous investigation. Second, our model features a non-
trivial jamming transition. While jamming also has severe
and intricate implications for the TASEP and similar
models, the origin of jams in our model is not only the
consequence of mere overcrowding but also of the spatial
arrangement of the constituents. This is of interest as
jamming transitions arise in many different problems, such
as traffic flow, granular media, or glassforming liquids [83].
Nonetheless, it is still a demanding and ongoing task to
establish a concise theoretical framework for these phe-
nomena [84,85], although it is an open question whether a
general connection exists [86,87]. The challenge involved
in finding a mathematical formulation of jamming proc-
esses also becomes evident in view of the Biham-
Middleton-Levine model [67] for traffic flow: Although
the model has been extensively studied for more than
15 years, a rigorous analytic approach to describe its
jamming transition is still elusive and considered to be
an unsolved mathematical problem [68,88,89]. In this
light, our study opens a new perspective on jamming
processes as well as pattern formation in terms of simple,
analytically accessible models, and it further elucidates the
intriguing principles of collective behavior emerging in
nonequilibrium systems.
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APPENDIX A: DERIVATION OF THE MAXIMAL
DENSITY ρmax FOR δ= 1=2, W = 2

One of the critical differences of our model in compari-
son to one-species transport is complete jamming of
particles at densities far below full occupation. In this
section, we focus on these completely jammed configura-
tions and determine their number of inaccessible lattice
sites and thus the maximal density ρmax.
Complete jamming occurs only for vanishing out rates.

One might expect that it is possible to focus on the case
β ¼ 0. This results in a much easier stochastic process,
which we refer to as the filling process. Our stochastic
simulations, however, show that a more careful analysis is
required when β vanishes: The average system density
exhibits different values for arbitrarily small out rates
β → 0 than for out rates that strictly equal zero, β ¼ 0.
For example, forW ¼ 2 and δ ¼ 1=2, our simulations show
that the density converges to a constant value of ρmax ≈
0.73 for small but nonzero values of β (tested for different
values of β up to 10−10). Setting β ¼ 0, the system realizes
a different density of ρfilling ¼ 0.79. Our analysis of
completely jammed configurations hence has to treat the
cases β ¼ 0 and β → 0 separately.
To obtain a relation between the densities corresponding

to β ¼ 0 and β → 0, it is of relevance to understand how
such a discontinuous behavior of the density can arise.
Ultimately, it can be traced back to an instability of
subconfigurations that arise in the filling process.
A possible configuration is shown in Fig. 11(a). The filling
process creates configurations that contain particles that do
not block other particles [crossed particles in Fig. 11(a)].
Consequently, it is possible to remove these loose particles
from a completely jammed system without allowing further
particle motion. In the stationary state, however, each
particle that is removed from the system has to be
compensated by a new particle, on average. Therefore,
loose particles are suppressed in any stationary state that
exhibits a nonvanishing, yet arbitrarily small, stationary
current. The system undergoes a discontinuous phase
transition when the out rate changes from zero to a finite
value.
Based on this reasoning, it is possible to derive analytic

expressions of the average system density created by the
filling process ρfilling and the maximal (dynamic) system
density ρmax corresponding to β → 0. For simplicity, we
restrict our discussion to W ¼ 2 lanes and δ ¼ 1=2
throughout this section. Our analysis includes the following
steps: We first focus on the filling process with β ¼ 0. For

this stochastic process, it is possible to obtain an exact
analytic solution for the probability of finding an arbitrary
configuration and therefore for ρfilling. The result further
allows us to compute the probability ploose of finding a
loose particle in a configuration created by the filling
process. When a nonvanishing current is established, the
presence of loose particles is suppressed, and the density
decreases correspondingly, which will be computed in the
last step of our derivation.

1. The filling process

The filling process is defined as the stochastic process
arising for β ¼ 0. Typically, in jammed configurations, the
system properties are independent of the in rate α, which
suggests that we should also consider the limit α → 0.
Then, we can assume that particles arrive at the right
lattice end independently, which further simplifies our

FIG. 11. Illustrations for the filling process, β ¼ 0, α → 0.
(a) During the filling process, loose particles (crossed particles)
are created. Loose particles are particles that can be removed from
a jammed configuration without allowing further particle motion.
Thus, they are suppressed in any stationary state that exhibits an
arbitrary nonvanishing current. (b) If a column is fully occupied
(box in group 1), the next particle (shaded particles) cannot pass
this column; therefore, a truncation of the state space with respect
to particles to the right is possible. This is referred to as double
closure. If a linear array of at least two particles of the same
species is followed by a particle of the other species, either a
double closure is created or a single occupied column can be
identified (boxes in groups 2 and 3), beyond which none of the
following particles (shaded particles) can pass. This also allows
one to truncate configurations to the right of this column, and it is
referred to as a single closure. (c) Transition matrix of the
stochastic process for β ¼ 0, α → 0. The state space reduces to
arrays of particles of the same species that follow a double (solid
end) or single closure (shaded end). A single particle can only
arise after a double closure, as single closures immediately create
arrays of length two. In (a) and (b), a gray area denotes the system
boundary.
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discussion. Our mathematical formulation should describe
the sequence of lattice occupations when particles are
added sequentially. Specifically, a (discrete) time step is
defined by a new particle getting stuck in the system. A
naïve way to denote the state space would be to enumerate
the 32×L possible lattice occupations. However, this leads to
a very irregular and high-dimensional state space that
precludes an exact solution. Figure 11(b) shows several
configurations that are jammed at the lattice end but empty
at the front. Light-colored particles denote the possible
positions at which the next particle can end up. In all cases,
the next particle cannot pass the column that is marked with
a box. This means that its final position is independent of
the configuration to the right of this box. We can identify
such a column where particles cannot pass in two different
cases: First, whenever a column is filled completely [box in
group 1, Fig. 11(b)], no more changes can be made to the
configuration to the right of this column. We refer to this
column as double closure. Second, whenever a linear array
of particles of the same species is followed by a particle of
the other species, a column that cannot be passed can be
identified. In this case, either a double closure may be
created or a new kind of closure arises. Specifically, if no
double closure is created, we can always identify a half-
occupied column [boxes in groups 2 and 3, Fig. 11(b)],
beyond which no further change is possible. We refer to this
column as a single closure. The above reasoning then
suggests the following truncation scheme for the state
space: Whenever a closure occurs, we can truncate the state
space with respect to the occupation to the right of it. This
significantly reduces the complexity of the state space. The
remaining possible configurations are linear arrays of a
single species to the left of either of the two different types
of closures. Given this reduced state space, it is possible to
write down the resulting (infinite-dimensional) transition
matrix that characterizes the underlying stochastic process.
The result reads

M¼

0
BBBBBBBBBBBBBBBBBBBBB@

1=2 1=2 1=2 1=2 1=2 1=4 1=4 1=4 1=4 � � �
1=4 0 0 0 0 1=4 1=4 0 0 � � �
0 0 0 1=4 1=4 0 0 1=4 1=4 � � �
1=4 0 0 1=4 1=4 0 0 1=4 1=4 � � �
0 1=4 1=4 0 0 1=4 1=4 0 0 � � �
0 1=4 0 0 0 0 0 0 0 � � �
0 0 1=4 0 0 0 0 0 0 � � �
0 0 0 1=4 0 0 0 0 0 � � �
0 0 0 0 1=4 0 0 0 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCCCCCCCA

;

where the states are enumerated as shown in Fig. 11(c).
This matrix encodes the evolution of probabilities for

occupations after a closure and the frequencies at which
double as well as single closures occur. For an infinite
system, the occupational probabilities of the stochastic
process will converge to a steady state, which corresponds
to the eigenvector of the stochastic matrix M with eigen-
value one. The result reads
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ðA1Þ

With these steady-state probabilities for lattice configura-
tions, we can derive an exact result for the average particle
density in an infinite system. We compute the frequencies
of blocks of subconfigurations with a closure at the left
being added to the system. These frequencies can be
determined by the transition rates and the steady-state
probabilities. For example, an array of two T particles
following a double closure [second configuration in the
enumeration scheme of Fig. 11(c)] can be “closed” by an
arriving S particle such that a stable block dimension 2 × 2
occupied by three particles is created. As the probability of
an S particle arriving at the respective site is 1=4, the
corresponding frequency for this block to occur is 1=4P2.
We weigh these frequencies with the block lengths and
densities, which yields the system density in the limit
L → ∞. Our analytic approach results in a value of
ρfilling ¼ 0.79. Notably, we made no approximations in
this computation. Consequently, it should coincide with the
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system densities for β ¼ 0 and α → 0. Indeed, simulations
with respective parameter values confirm our result.

2. Maximal dynamic density ρmax

As illustrated above, the presence of unstable, loose
particles will lead to a different density as soon as β goes
from zero to arbitrarily small values. Therefore, computing
the number of loose particles that arise in the filling process
is key to determine the density decrease as soon as the
system becomes dynamic. In the first step to compute the
maximal density ρmax, we determine the probability of
finding a loose particle. In the second step, we show how to
correctly replace the corresponding occupational density
and thereby estimate ρmax.
Loose particles can only arise whenever both lanes are

occupied at a given position μ, i.e., within a double-
occupied column. The probability of double-occupied
columns created by the filling process is easily computed
from the filling density. For further convenience, we
introduce a new random variable cμ ∈ f0; 1g that equals
1 if the μth column is fully occupied (irrespective of the
particle species, i.e., for nX1;μ ¼ 1 ∧ nX2;μ ¼ 1) and 0 other-
wise. Then,

Pðcμ ¼ 1Þ ¼ 2

�
ρfilling −

1

2

�
; ðA2Þ

where Pðcμ ¼ 1Þ is the probability of finding a fully
occupied column. Then, a loose particle occurs in a
double-occupied column in two different situations: first,
when this column is followed by a column to its left that is
occupied by only one particle. This will always result in a
loose particle in the double-occupied column. The second
situation is if the double-occupied column is followed by
another double-occupied column to its left where a particle
from each species is present. Then, the two particles of the
left column are directed to a single site, which creates a
loose particle next to this site. To compute the correspond-
ing probabilities, we use the exact solution of the filling
process. In detail, we can determine the probability of a
double closure being followed by a fully occupied column.
This scenario is identical to the conditional probability of a
double-occupied column being followed by another dou-
ble-occupied column and, using the above solution of the
filling process, is given by pðcμ ¼ 1jcμ−1 ¼ 1Þ ≈ 0.64. In
half of these cases, the fully occupied column on the left is
populated by particles from different species. This corre-
sponds to the second case described above and therefore
creates a loose particle. If the double-occupied column is
not immediately followed by another double-occupied
column [corresponding to (1 − pðcμ ¼ 1jcμ−1 ¼ 1Þ)], the
first case as described above occurs, and again a loose
particle is created. Taking all these considerations together
leads to

ploose ¼
1

2
pðcμ ¼ 1;cμ−1 ¼ 1Þ þ (1−pðcμ ¼ 1;cμ−1 ¼ 1Þ)

≈ 0.39: ðA3Þ

Here, we use the definition of the conditional probability,
pðcμ ¼ 1; cμ−1 ¼ 1Þ ¼ pðcμ ¼ 1jcμ−1 ¼ 1Þ × pðcμ ¼ 1Þ.
Knowing the probability of a site being occupied by a

loose particle, it seems tempting to subtract the correspond-
ing occupations from the filling density ρfilling. But particle
rearrangements in a dynamic system will continuously
create new loose particles. Hence, we have to replace sites
occupied by a loose particle with sites of a suitable effective
density ρeff.
To this end, consider a hole (i.e., an empty site) that

propagates from right to left through the system. In each
hopping step, the hole might either hit a column that
contains a loose particle with probability ploose or one that
contains only stable particles with probability 1 − ploose. As
only loose particles contribute to a modification of the
density, we are only interested in the first case. Let the
average time between two consecutive holes arriving at any
given position in the steady be denoted by T. A fully
occupied column that contains a loose particle will, on
average, remain in this state for a time T before a hole
arrives. Then, the hole either hits the loose or the stable
particle in this column. If the stable particle is removed, the
density is not changed, and the column remains at full
occupation until the next hole arrives, i.e., for another time
T. On the other hand, the column remains at half occu-
pation for a time T if the loose particle is removed. This
leads to an effective (time-averaged) density of

ρeffective ¼
1

2T
· (T þ T ·

�
1

2
·
1

2
þ 1

2
· 1

�
) ¼ 7

8
: ðA4Þ

Hence, the filling density ρfilling and the maximal dynamic
system density ρmax are related via

ρmax ≈ ρfilling − plooseð1 − ρeffectiveÞ: ðA5Þ

The result is ρmax ≈ 0.74, which is in very good agreement
with stochastic simulations that yield ρmax ≈ 0.73. This
validates our understanding of topological hindrance for
jammed configurations.
Because of approximations in the above calculation, our

computed value for ρmax is, opposed to the one for ρfilling,
not an exact result. Specifically, we implicitly assume that
for nonvanishing β → 0, occupations are created in the
same way as they are in the filling process β ¼ 0. The good
quality of our result therefore indicates that, as a hole
propagates through a jammed system, empty lattice sites
are filled by particles in a mostly uncorrelated fashion. Note
that the filling density does, in principle, depend on the
particle in rate α. If particles are injected with a high
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frequency, mutual interactions—while traveling to the
jammed end—lead to correlations and sorting effects that
ultimately cause varying values for ρfilling. This dependency
of the filling density on α is, however, irrelevant for our
computation of the maximal (dynamic) density ρmax:
Correlations that build up during the particles’ motion
can also be neglected in the case β → 0 as the system is
almost completely jammed.
The theoretical arguments of this section addressing

a transition from the filling density to the maximal
dynamic density are further illustrated with the following
consideration. Figure 12 shows the temporal evolution of
the average system density with a very small out rate,
starting from an empty system. The out rate was chosen
such that, on average, the system completely fills
with particles before a first particle exits. Indeed, we
observe that the density gradually increases until ρfilling
is reached. In particular, the density overshoots the maxi-
mal dynamic density ρmax. As soon as particles leave the
system, loose particles are removed, which causes the
average density to decrease and fluctuate around ρmax.
These fluctuations are also explained by our above argu-
mentation: As single holes travel through the system,
particles are reordered, and loose particles are transiently
created, which leads to an (also transient) increase of the
system density.

APPENDIX B: DERIVATIVES OF THE
HINDRANCE FUNCTION

In the following, we calculate the derivatives of the
hindrance function for the two extremal cases ρ → 0 and
ρ → ρmax, as used in Sec. V. To do so, we determine the
change in current dJ in response to a change in density dρ
at a given lattice site and equate it with the derivative of the
current-density relation, Eq. (12),

d
dρ

JðρÞ ¼ 1 −HðρÞ − ρH0ðρÞ − 2ρ: ðB1Þ

In the mean-field approximation, a lattice site is occupied
with a particle with probability ρ irrespective of the
neighboring lattice sites. We find an S particle at any
given lattice site with probability δρ and a T particle with
probability ð1 − δÞρ, respectively. Increasing the density by
a value dρ, we have two contributions to the change of the
current: first, a decrease since particles are more likely to be
blocked, and, second, an increase because the additional
density itself may contribute to the overall current. Both
contributions can again be split into two separate cases. We
are either dealing with a focused state [see Fig. 3(b), group
1], where two particles are blocked simultaneously, or with
the case where only one particle is affected. Two particles
from neighboring lanes are focused on the same lattice site
with probability ρ2δð1 − δÞ, resulting in a current reduction
of −ρ2δð1 − δÞdρ. A single particle is blocked with
probability ρδ(1 − ρð1 − δÞ)þ ð1 − δÞρð1 − δρÞ. Here,
ρδ(1 − ρð1 − δÞ) is the probability of only one S particle
being blocked and ð1 − δÞρð1 − δρÞ of only one T particle
being blocked. The same contributions can be derived for
the increase in current due to the removal of a single
particle. Summing this all up, we obtain

d
dρ

J ¼ −ρ2δð1 − δÞ − ρδ(1 − ρð1 − δÞ)

− ð1 − δÞρð1 − δρÞ þ ð1 − δÞδρð1 − ρÞ
þ ð1 − δÞð1 − δρÞð1 − ρÞ þ δ(1 − ð1 − δÞρ)ð1 − ρÞ

¼ ð1 − 2ρÞ(1 − δð1 − δÞρ): ðB2Þ

This expression reduces to the derivative of the TASEP
current-density relation for δ ¼ 0 and δ ¼ 1.
The mean-field result is not correct, in general, for our

system but becomes exact in the limit ρ → 0. Using
Eq. (B1), our result for the derivative of the hindrance
function reads

1−HðρÞ− ρH0ðρÞ− 2ρ¼! ð1− 2ρÞ(1− δð1− δÞρ): ðB3Þ

As, by definition, HðρÞ=ρ → H0ð0Þ for ρ → 0, we obtain

FIG. 12. Temporal evolution of the system density for α → 0,
β → 0, β ≪ α. As the number of simulation steps increases
(x axis), particles enter the system, “pile up” at the end, and create
an average density close to ρfilling ≈ 0.79 (solid line). As soon as
particles leave the system, the presence of loose particles is
suppressed, which leads to a drop of the average density until the
maximal dynamic density ρmax ≈ 0.73 is reached. The dashed line
depicts the result of the analytic approach for ρmax described in
this section. Here, the density is obtained from an ensemble and
spatial average. A single realization (inset) shows that the average
system density (i.e., spatial average) oscillates around ρmax,
which can be explained by large reordering events if stable
particles are removed after several loose particles are extracted.
Simulation parameters include α ¼ 0.02, β ¼ 10−4, δ ¼ 1=2,
W ¼ 2, L ¼ 4096.
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H0ð0Þ ¼ δð1 − δÞ: ðB4Þ

We proceed in a similar way for the case ρ → ρmax.
However, instead of an uncorrelated system, we face total
correlations between particle occupations; a site is only
occupied if the one in front is also. Filling the last hole in a
jammed configuration will not increase the current, but it
will prevent the last possible particle motion. This means
that we are left with those parts of Eq. (B2) that have a
negative contribution. Evaluating the corresponding equa-
tion at the maximal density ρmax, we find

d
dρ

J ¼ −δρmax(1 − ρmaxð1 − δÞ)

− ð1 − δÞρmaxð1 − δρmaxÞ − δð1 − δÞρ2max

¼ −ρmax þ δð1 − δÞρ2max: ðB5Þ

Again, using Eq. (B1) and the definition of the maximal
density HðρmaxÞ ¼ 1 − ρmax, we obtain

H0ðρmaxÞ ¼ −δð1 − δÞρmax;

for the derivative of HðρmaxÞ. Note that, as opposed to the
limit ρ → 0, this is not an exact result but should be
interpreted as a refined mean-field approximation.

APPENDIX C: DERIVATION OF CURRENT
AND DENSITY RESPONSE TO THE CONTROL

PARAMETERS IN THE HIGH- AND
LOW-DENSITY PHASES

In this section, we derive the dependence of the current
and density on the in rate α and out rate β. As for the
TASEP, collective behavior in the low-density phase only
depends on the in rate α, whereas the high-density phase is
determined by the out rate β.

1. Low-density phase

For many driven lattice gases, current conservation is
used to relate the system’s current and density to in and out
rates. For the case of the TASEP, the low-density phase is
dictated by an influx J ¼ αð1 − ρ1Þ. Furthermore, there is
no boundary layer at the left lattice end in the low-density
phase such that the density at the first site equals the bulk
density. Thus, because of current conservation, ρ1 ¼ α for
the TASEP. For our model, however, we face a new
problem. Simulations suggest that, even in the low-density
phase, the occupation of a first lattice site is not equal to the
bulk density and is also not identical to the reservoir density
α. This is due to nontrivial correlations between occupa-
tions at the left lattice end (see Fig. 13), which we compute
in the following. Indeed, the density at the first site is
always slightly higher than α. Also, when, for example, the
in rate of T particles, αT , is increased, the density of S

particles at a first lattice site ρSi;1 increases and vice versa.
The latter observation, in particular, contradicts equating
ρSi;1 ¼ αS. This behavior can be understood in the following
way. Consider, for example, a T particle at the first lattice
site. This T particle can never prevent an S particle to hop in
front of it; the T particle can be blocked by the S particle,
but it cannot block the S particle. Therefore, this T particle
will, on average, stay longer at the first lattice site as
compared to the TASEP, and the corresponding density ρi;1
will be higher than α. The exact flux-balance condition for
T particles, Eq. (5), reads

αTð1−hnTi;1i−hnSi;1iÞ¼hnTi;1i−hnTi;1nTi;2i−hnTi;1nSi;2i: ðC1Þ

Again, correlators of the form hnX1

i;1n
X2

i;2i lead to an unclosed
set of equations. To overcome this problem, we approxi-
mate second moments. Note that all particles enter the
system from the left reservoir in an uncorrelated fashion.
The way T particles can block and are blocked by other T
particles follows the same scheme as in the TASEP.
Therefore, it is reasonable to assume that correlations
balance (as for the TASEP). Thus, we factorize hnTi;1nTi;2i ≈
hnTi;1ihnTi;2i for the same species. This is different for
hnTi;1nSi;2i, where a TASEP-like balance of the blockage
and getting blocked no longer holds true as argued above.
Explicitly writing down the master equation for hnTi;1nSi;2i

in the steady state leads to

d
dt

hnTi;1nSi;2i ¼ 0 ¼ αThð1 − nTi;1 − nSi;1ÞnSi;2i
þ hnTi;1nSi−1;1ð1 − nTi;2 − nSi;2Þi
− hnTi;1nSi;2ð1 − nTiþ1;3 − nSiþ1;3Þi: ðC2Þ

As particles that enter the system are uncorrelated, we can
set hnTi;1nSj;1i ¼ ρTi;1ρ

S
j;1 for i ≠ j. Furthermore, we are

FIG. 13. Second moment hnTi;1nSi;2i of occupations of different
species at the first two lattice sites as predicted by our theory
(lines) and stochastic simulations (symbols) for the special case
δ ¼ 1=2 and W ¼ 2. Deviations between theory and simulation
only occur close to the phase transition at α ≈ 0.22.
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interested in a solution that is valid in the low-density
phase, where we expect α to be small and ρi;1 to be of order
(but not necessarily equal to) α, i.e., ρi;1 ∝ OðαÞ. If
correlations are weak, we can also assume that hni;μnj;νi ∝
Oðα2Þ and hni;μnj;νnk;ξi ∝ Oðα3Þ. The transitions from the
low-density phase to the maximal-current and high-density
phases take place at lower values of α as compared to the
TASEP (cf. Fig. 5), which ensures very low values for the
density in the low-density phase in our model. Then, upon
truncating at third order in α, we arrive at an equation for
hnTi;1nSi;2i that is valid for low densities:

hnTi;1nSi;2i ≈ αTρ
S
i;1 þ ρTi;1ρ

S
i;1: ðC3Þ

Here, we also assume that ρSi;2 ≈ ρSi;1 [90]. An analogous
equation can be derived for hnSi;1nTi;2i. Inserting the results in
Eq. (C1) and its analogue for the influx of S particles, we
find

αTð1 − ρTi;1Þ ¼ ρTi;1ð1 − ρTi;1 − ρSi;1Þ; ðC4aÞ

αSð1 − ρSi;1Þ ¼ ρSi;1ð1 − ρTi;1 − ρSi;1Þ: ðC4bÞ

Equations (C4) can be interpreted as a two-species TASEP,
where particles from different species cannot block each
other when entering the system. This means that, for low
densities, the possibility of overtaking particles from the
other species when entering the system effectively acts as if
no exclusion was present for different species; particles
from the same species still exclude each other.
Equations (C4) can be solved for ρTi;1 and ρSi;1, which fixes
the current and bulk density in the system.
For the case of identical in rates, the solution of Eqs. (C4)

is of a particularly simple form, and the total current is
given by

J ¼ α

4
(2 − αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ðα − 12Þα

p
): ðC5Þ

Even though this result is independent of the number of
lanes, the actual current in the system can never become
higher than the respective maximal current of the bulk,
which, in turn, depends on the number of lanes. As soon as
the bulk limits transport, the transition to the maximal-
current phase is triggered. For higher in rates, the con-
servation of the maximal current dictates the density at the
first lattice sites. A comparison with simulation data for
different numbers of lanes is shown in Fig. 14. The low-
density theory agrees with the data up to the point of the
phase transition. The exact value of the in rate α at which
the transition into the MC phase takes place depends on the
number of lanes.
In summary, Eq. (C4) correctly describes the behavior of

our system in the low-density phase that is found to be
independent of the number of lanes W of the system.

Dependencies on the number of lanes are only relevant for
phase transitions that can be derived by applying the
extremal current principle.

2. High-density phase

In the high-density phase, the system’s current is dictated
by the right boundary and determined by an outflux of
particles J ¼ βρL. Here, ρL denotes the density at the last
lattice site for an arbitrary lane i. Because of current
conservation, this outflux must equal the bulk current,

βρL ¼ ρ(1 −HðρÞ − ρ); ðC6Þ

where ρ denotes the density in the bulk. As for the low-
density phase, we lack knowledge about the value of the
density at the dominating boundary, in this case ρL. Clearly,
the mean-field result ρL ¼ 1 − β cannot be used. This
becomes evident when we consider jammed systems that
exhibit a maximal density ρmax that, in general, does not
equal 1 − β. However, we expect the density at the right
lattice end to be of the order of the bulk density, ρL ≈ ρ.
Using this assumption in Eq. (C6) we obtain a unique
solution for the particle current. The result is shown in
Fig. 15 and is in agreement with stochastic simulations.

(a) (b)

FIG. 14. Comparison between low-density theory (lines) and
stochastic simulations (symbols) for the special case δ ¼ 1=2.
(a) Current plotted against the in rate α in the LD phase for
different numbers of lanes W. For low in rates, the current
increases monotonically until it becomes constant at a point that
depends on the number of lanes; the respective current corre-
sponds to the maximal current of the bulk. Low-density theory
agrees with simulation results for the LD phase. The low-density
theory is independent of the number of lanes. (b) Density at the
first lattice site ρi;1 plotted against the in rate α for different
numbers of lanes. In the LD phase, the density is dictated by the
left boundary and agrees with the low-density theory. After the
transition to the maximal-current phase, the density is determined
by conservation of the maximal current. Again, the corresponding
value for the maximal current depends on the respective number
of lanes, which leads to a distinct behavior for different numbers
of lanes in the MC phase.
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APPENDIX D: SUPPLEMENTAL SIMULATIONS

Here, we present additional data from simulations that
supplement several statements made in the main text.

1. Rotational symmetry of the density profile

In the main text, we discussed how density profiles have
to be identical for every lane because any stationary state
has to be unique. However, the time needed to reach this
stationary state can be very long since the system may get
stuck in metastable configurations that break symmetry.
Figure 16 shows that indeed all lanes admit identical
density profiles in our simulations. This demonstrates that

simulation times are chosen sufficiently long to ensure
convergence to the (rotationally invariant) stationary state.

2. Relation between the species fraction
of the current and the density

In Sec. IV of the main text, we have shown that, in the
mean-field approximation, the current species fraction δ is
identical to the density species fraction ρS=ρ. However, this
result does not hold true in general. To assess the difference
between the species fraction of the density and that of the
current, we perform stochastic simulations for a wide range
of parameter values. As illustrated in Fig. 17, our simu-
lations show that deviations between both quantities are
relatively small (below 10%). This justifies using δ as the
general species fraction in this paper.
There are, however, important exceptions where this

equivalence cannot be employed. If we regard systems with
a small aspect ratio L=W and significantly asymmetric
species mixtures, the species fractions of current and
density strongly differ. Figure 18 shows differences of
up to 60% between these quantities in stochastic simu-
lations, with corresponding parameter values. In all of these
cases, the naïve assumption ρS ≈ δρ clearly fails, and the
individual densities have to be considered separately.

3. Current-density relation for a system
with a large number of lanes

The current density relation for a large number of lanes
shows very drastic modifications as compared to the
TASEP (see Fig. 19). Most of the possible density values
are not realized at all in the stationary state. Furthermore,
the maximal current is far below the one known from the
TASEP. As for low numbers of lanes, a very small fraction
of the second species (2%–5%) is already sufficient to
drastically reduce transport efficiency.

FIG. 15. Average system current as a function of the out rate β
in the high-density phase for different numbers of lanes for the
special case δ ¼ 1=2. Comparison between stochastic simula-
tions (symbols) and theoretical predictions (lines). The current
increases monotonically with increasing out rate. For sufficiently
high out rates, the system enters the maximal-current phase, and
the current becomes constant. The assumption of ρL ¼ 1 − β with
a corresponding out flux of J ¼ βð1 − βÞ (uppermost dashed line)
fails to describe our model.

(a) (b)

FIG. 16. Comparison of the density profiles of all lanes for a
system with W ¼ 5 lanes. The density profiles are identical for
each lane and for both species. No symmetry breaking takes place.
In order to improvevisibility, only every 100th lattice site is plotted
for every lane, with a different offset for each lane. Other
parameters include L ¼ 4096, δ ¼ 0.5, α ¼ 10−4, β ¼ 10−6.

FIG. 17. Relative deviation of the density species fraction from
δ for the special case of W ¼ 2 lanes and L ¼ 4096 sites. Color
denotes simulation results for the relative deviation and thus the
error that is made when assuming a density species fraction of
value δ. Lines indicate the phase boundaries as predicted by our
theory.
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4. Robustness of the density patterns
with respect to model extensions

One of the most intriguing features of our main model is
the formation of regular density patterns. However, while
this is clearly an interesting phenomenon to study in the
context of nonequilibrium physics, it is an open question
whether such patterns may occur in a biological systems.
While a rigorous and complete analysis of pattern for-
mation in this context is out of the scope of this work, we
would like to provide an outlook on potential changes due
to different model extensions. Figure 20 shows how the
density patterns change as compared to Fig. 8(a) of the
main text if different modifications are included.
Modeling of particles as dimers does not significantly

affect the formation of patterns [see Fig. 20(a)]; they again
appear robustly and with the same wavelength as before.

Since no differences between monomers and dimers are
observed, we restrict our discussion to the dimeric case for
the rest of this section.
Including nonstrict lane hopping leads to a spatial decay

of oscillatory patterns [Fig. 20(b)]. On the other hand,
random particle attachment smoothens the density profiles
globally [Fig. 20(c)]. Finally, random particle detachment
(even for comparably high detachment rates) still results in
oscillatory patterns [Fig. 20(d)]. This can be explained in the
following way: To establish density patterns, particles of
different species need to jam periodically because of
particles they have encountered before. For the main model,
the typical length scale needed for this to happen is thewidth
of the lattice. In the case of nonstrict lane hopping, the period
of circulating once around the system is stochastic, which
gradually destroys the “phase” of our density oscillations. If
we add random particle detachment to the system, length
scales are not changed: Someparticlesmay leave the system,
which makes jams less likely but does not alter the length
scale on which those jams appear. Random particle attach-
ment critically changes this phenomenology: A certain
lattice position no longer corresponds to a fixed run length
of a specific particle. Therefore, the stationary density
profile becomes translationally invariant, which, in turn,
has to suppress density patterns when averaged over large
time windows.

FIG. 18. Relative deviation of the density species fraction from
δ for the special case W ¼ 13 lanes and L ¼ 512 sites. Color
denotes simulation results for the relative deviation and thus the
error that is made when assuming a density species fraction of
value δ. Lines indicate the phase boundaries as predicted by our
theory.

FIG. 19. Current-density relation obtained from stochastic
simulations with W ¼ 13 lanes and L ¼ 16 384 sites. The
emerging current of an arbitrary lane (blue) shows a dependence
not only on the average system density but also on the fraction of
lane-switching particles, δ. The system jams at a maximal density
ρmaxðδÞ (bold gray line); densities between ρmax and full
occupation are not realized in the stationary state.

(a) (b)

(c) (d)

FIG. 20. Effects of model extensions on density patterns.
(a) Dimers show the same kind of density patterns as monomers.
(b) If lane-switching dimers do not follow a unique trajectory
(θ ¼ 0.95), density patterns occur but are subject to spatial decay.
(c) As soon as dimers are allowed to attach randomly on the
lattice (ωS

a ¼ ωT
a ¼ 5 × 10−5), the system loses its characteristic

length scale and the density profile becomes smooth. (d) Random
dimer detachment (ωS

d ¼ ωT
d ¼ 10−3) still allows for the forma-

tion of density patterns. While the wavelength stays the same, the
amplitude of the oscillations is reduced. Other parameters include
W ¼ 13, L ¼ 512, α ¼ 0.6, β ¼ 0.2, δ ¼ 1=2.
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2.3 Directional reversal of the collective motion of
kinesins

This section deals with a remarkable phenomenon regarding the motion of
several kinesins: directional reversal. Triggered by various experimental
factors, multiple molecular motors have been shown to reverse their direc-
tion of motion. The underlying biomolecular mechanisms, however, have
remained obscure. In this project, we used statistical analyses and theoretical
modeling to address directional switching of the motion of molecular motors
that is caused by a clustering of these molecules. The key result of this work
is a novel model for the directional reversal of kinesins. The proposed mech-
anism relies on the assumption that forces that antagonize the movement of
kinesins have an anisotropic impact on the stepping behavior of the molecu-
lar motors. Our analysis based on experiments of our collaborators on this
project, the group of Prof. Leah Gheber, and theoretical modeling unraveled
biomolecular interactions between the molecular motors and showed that
the proposed mechanism for a directional switch accurately reproduced ex-
perimental observations. Strikingly, our proposed mechanism for directional
reversal of the motion of kinesins unifies previous unrelated findings and
hypotheses on how the directionality of kinesins can be affected. In fact,
our work shows that the different known ways of how the directionality of
the motion of molecular motors can be changed may be different aspects of
the same mechanism: An anisotropic response of active motion to opposing
forces. The work was performed in collaboration with Prof. Leah Gheber’s
group at the Ben-Gurion University of the Negev. All experimental data were
recorded by Prof. Leah Gheber’s group and, in particular, by Dr. Himanshu
Pandey. This project is currently prepared for publication in a peer-reviewed
journal [1].

2.3.1 Background

Thus far, we have already discussed two examples where the distribution of molecular
motors along a microtubule has significant effects on the functionality of cellular
processes: For regulating proteins that diffuse along the microtubule, we showed
that a capture mechanism elucidated in Section 2.1 ensures their efficient localization
and thereby contributes substantially to their functionality. For helically moving
kinesins, as discussed in Section 2.2, topological effects lead to self-organization



88 Organization of proteins on single filaments

into patterns which decrease transport efficiency. Here, we turn to another class of
molecular motors that are crucial for cellular processes: kinesin-5 motors. In most
eukaryotic cells, ranging from yeast to humans cells, this class of kinesins is essential
to establish and maintain a bipolar mitotic spindle during cell division [142–144].
Kinesin-5 motors are tetrameric molecules with a length of approximately 80 nm,
that can simultaneously bind and thus crosslink two microtubules [145, 146]. This
process is essential since kinesin-5 motors have been shown to slide apart antiparallel
microtubule pairs [147, 148], which is thought to be one of the main biomechanical
reasons for the bipolarity of the mitotic spindle.

One intensely studied subclass of kinesin-5 motors are the corresponding mem-
bers in yeast, of which budding yeast’s Cin8 may well be the most prominent one.
In vivo, Cin8 fulfills an important role in spindle assembly and kinetochore posi-
tioning [149–152]. Despite the simplicity of the organism, Cin8 and several other
kinesin-5 motors of yeast show characteristics in their motion that are absent in their
more evolved homologs present in higher organisms: While the fundamental model
for kinesin motion was long thought to be a walking mechanism towards the plus
end of microtubules [101, 108–110], Cin8 and other kinesin-5 motors in yeast don’t
follow this scheme of motility. Indeed, opposed to the motion of most kinesins [142,
153], Cin8 has been shown to move processively towards minus ends of microtubules
in single-molecule assays [154]. Even more strikingly, several studies have unraveled
another surprising feature of Cin8 and other similar kinesin-like motors: The abil-
ity to switch directionality in response to the change of several experimental and
biomolecular conditions. Up to now, directional switching has been reported for
three kinesin-5 motors in yeast (Cin8 [154, 155] and Kip1 [156] of budding yeast,
as well as Cut7 [157, 158] of fission yeast) as well as for the kinesin-14 KlpA [159].
In all cases, the directionality of motion of the molecules can be converted between
minus-end-directed and plus-end-directed motion upon varying experimental factors.
While this directional switching is by now a well-established phenomenon that has
been addressed in a multitude of studies, it still leaves many open questions. So far,
its biomolecular origin is unknown and also its potential contribution to cellular
processes in vivo remains to be understood. One particularly puzzling fact is that dir-
ectional switching is triggered by varying different apparently unrelated experimental
conditions that bear no obvious similarity to each other. To provide an overview of
the multiple observations and seemingly contradictory corresponding models for a
directional switching, we briefly summarize the different experimental findings.

Directional switching of the motion of kinesins was first observed for Cin8 in
motility/gliding assays [154]. In these experiments, a microtubule is propelled over
a surface that was coated with kinesins. Depending on the surface density of Cin8,
microtubules were observed to be either driven with their plus end leading (low
surface densities) or with their minus end leading (high surface densities). Moreover,
the study reported a weak dependence on the length of microtubules. In detail, short
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microtubules were gliding faster than longer microtubules at low motor densities.
Therefore, it was hypothesized that directional switching depends also on the length
of the microtubule and not only on the surface density. The authors of this study,
therefore, concluded that it might be the number of molecular motors engaged with
the microtubule or—in other words—the coupling of motors to a microtubule that
triggers Cin8’s directional switching. Shortly after the observation of the directional
switching of Cin8 in gliding assays, Gerson-Gurwitz et al. [155] reported that direc-
tional switching of Cin8 could also be triggered for individual motors and without
collective binding to a microtubule: Upon varying the ionic strength of the buffer,
single molecules of Cin8 changed directionality from minus-end-directed motion
(high ionic strength) to plus-end-directed motion (low ionic strength). However, also
changes in the molecular structure affected Cin8’s directionality. Similar observa-
tions have recently been made for another yeast kinesin-5: fission yeast’s Cut7 [158].
Analogous to the gliding assays with Cin8, also gliding assays with Cut7 exhibited a
directional switching when the surface density of motors was modified. Additionally,
changing the salt concentration of the buffer in the gliding assays affected directionality
as well: The movement of gliding microtubules could be converted back and forth
between minus-end and plus-end directed motion by varying the ionic strength of the
solution in the same experimental setup. Interestingly, directionality could also be
changed when adding minus directed non-Cut7 motors (Klp2) to the surface and even
by adding a non-motile microtubule linker (dynein microtubule binding domain).
This led the authors of this study to conclude that, eventually, it is the density of
molecules in general that reverses Cut7’s directionality due to steric clashes between
neighboring motors. Even further complexity entered the field of kinesin’s directional
reversal recently with yet another way how the directionality of Cin8 can be affected.
In single-molecule measurements, Shapira et al. [160] observed the ability of Cin8
to form aggregates of a few molecules (clusters) while moving on a microtubule.
Strikingly, these clusters showed a tendency to move towards the plus end while—on
the same microtubule—other individual Cin8 molecules still showed a tendency to
move towards the minus end of the microtubule. Similar behavior was also found
for the kinesin-14 KlpA [159]. Finally, it should be noted that a recent study also
addressed the stall force of Cin8 [161]. While it was not possible to measure forces
for a single Cin8 molecule attached to a bead, the study used novel force spectroscopy
and correlation analysis methods to identify force pulses on stalled microtubules in
a Cin8-based gliding assay. In this way, the authors could show that Cin8 produces
forces in the plus- and minus direction with a similar stall force of approximately
1.5 pN.

In summary, the directionality of several kinesin-5’s in yeast and a kinesin-14
can be switched by different factors: (a) In gliding assays, by changing the surface
density of molecular motors. (b) By changing the ionic strength of the buffer. (c) By
clustering of particles. A connection between these observations or even a concise
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picture of the directional reversal of kinesins remained, however, elusive. To address
this issue, we focused on the clustering behavior of budding yeast’s Cin8. Based on a
quantitative analysis of the dynamics of Cin8 clusters as observed in the experiments
of our collaborators together with theoretical modeling we propose a new model for
directional switching. Strikingly, our proposed model unifies previous results and
thereby provides a consistent picture of kinesin’s directional reversal.

2.3.2 Quantifying the motility of clusters of Cin8 particles

To study the motility of Cin8, our collaborators analyzed data from single-molecule
experiments where they tracked Cin8 particles and clusters of particles using total
internal reflection fluorescence microscopy. Fig 2.10 (a) shows kymographs (space-
time plots) of the motion of Cin8 along different microtubules. In accordance with
previous findings [154], single Cin8 particles (faint traces) showed a tendency to move
processively towards the minus end of the microtubule. Moreover, these traces were
also characterized by notable randomness which may indicate a diffusive component
of motion. In addition to the faint traces of particles that moved—on average—towards
the minus ends, the kymographs exhibited traces of particles with increased intensity
that showed a tendency to move towards the plus ends. These observations agree
with previous measurements [160] and indicate that Cin8 forms clusters consisting
of multiple particles that exhibit a different motility than single Cin8 particles. To
understand Cin8 clustering, we first inferred the number of particles in each individual
cluster. This identification was possible due to photobleaching of individual GFP
molecules as illustrated in Fig. 2.10 (b). The temporal evolution of the intensity
of different trajectories showed discrete bleaching events of single GFPs. In this
way, it was possible to identify the average intensity of a single Cin8 particle and,
consequently, to infer the expected number of particles per diffraction-limited spot.
This approach was further supported by the distribution of the intensities of all signals
observed at a given time in the experiment: Fig. 2.10(c) shows the distribution of
intensities that were measured in the first frame of a recording of the single-molecule
experiment. In accordance with the previous identification of the intensity of an
individual Cin8 particle, the distribution showed maxima at multiples of this value.
Therefore, the intensity distribution of the experiments strongly suggested that many
signals corresponded to aggregates of Cin8 molecules.

In the next step, our collaborators analyzed the motility of individual signals by
analyzing the signal traces. In detail, the average velocity of each signal was related to
its intensity which, in turn, correlates with the expected number of Cin8 particles that
contribute to the respective signal. Fig. 2.11 shows the observed particle intensities
and average velocities of different trajectories. While the majority (70%) of minus-
end-directed traces corresponded to intensities of monomeric Cin8, the majority
(approximately 88%) of plus-end-directed traces was likely to represent clusters of
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Figure 2.10 Representative kymographs (space-time plots) of motion of Cin8 observed
in single-molecule experiments using total internal reflection fluorescence microscopy.
(a) Single molecules (faint traces) typically exhibited rapid motion towards the minus end
(white arrows). Motion towards the plus end (yellow arrows) was observed as well, typically
for traces that showed an intense signal (bright traces) which, in turn, suggests that these
traces corresponded to clusters of Cin8 molecules. Blue arrows indicate clustering of Cin8
at the minus end of the microtubule. Scale bars correspond to 20 s (vertical scale bars) and
2 µm (horizontal scale bars). Plus and minus signs denote the respective microtubule end.
The black arrow denotes the direction of time. (b) The temporal evolution of the intensity of
several signals (six traces aligned next to each other) showed discrete steps because of photo
bleaching. The size of these steps showed an approximate size of 50 arbitrary units (a.u.),
which likely corresponded to the bleaching of a single GFP molecule. The two leftmost traces
likely show the bleaching of dimeric Cin8 clusters (two tetramers with eight GFP molecules)
while the remaining four traces likely represent signals of a single Cin8 tetramer (four GFP
molecules). (c) Intensity distribution of all signals in the first frame of a time-lapse sequence.
The first peak in the distribution of intensities is centered at approximately 100 a.u. which is
in accordance with the average intensity of a Cin8 tetramer with four GFP molecules where
each GFP contributed approximately 50 a.u.. Other peaks are centered at approximately
200 a.u., 300 a.u., and 400 a.u., which likely corresponded to Cin8 clusters with two, three,
or four Cin8 molecules, respectively. Solid lines represent fits of Gaussians to the respective
intensity peaks. All experimental data were produced and analyzed by Prof. Leah Gheber’s
group.
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Figure 2.11 Intensity and average velocity of different trajectories of particles and
clusters recorded in experiments where the motion of signals was tracked over time.
The plot shows a total of n = 134 traces of which nminus = 107 were minus-end-directed
(blue circles) and nplus = 27 were plus-end directed (orange circles). Approximately 70%
of the minus-end-directed traces were monomers. In contrast, the majority (approximately
88%) of plus-end-directed traces corresponded to clusters of more than two tetramers of Cin8.
For this estimate, a threshold value of 200 arbitrary units (a.u.) was used to approximately
discriminate between single particles and clusters. All experimental data were produced by
Prof. Leah Gheber’s group.

Cin8. Thus, the experimental data showed that particle clustering correlates with
Cin8’s directional reversal.

To quantitatively characterize the motility of individual Cin8 particles and particle
clusters our collaborators then categorized the different trajectories according to three
classes: single particles, dimeric clusters and particle clusters that contained more than
two particles. Since clusters with more than two particles were only observed rarely,
a further subdivision of clusters with more than two particles was not performed.
For each of the classes, our collaborators then performed a displacement analysis
of trajectories as shown in Fig. 2.12. Although not all clusters showed reversed
motion, there was a clear trend of particle clusters to move towards the plus end
whereas single particles had a clear trend to move towards the minus end. Based on
the measured tracks and intensities of signals, our collaborators computed the mean
squared displacement (MSD) and the mean displacement (MD) for the three categories.
In this way, it was possible to obtain the average drift velocity v and the diffusion
coefficient D of the particles’ motion. Whereas the drift velocity has to arise due to
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Figure 2.12 Analysis of the mean displacement and the mean squared displacement of
single Cin8 particles as well as clusters with two Cin8 particles and clusters with more
than two Cin8 particles. (a) Mean displacement (MD) for different times as obtained by an
ensemble average of trajectories measured in single-molecule experiments that allowed for the
tracking of individual Cin8 particles and clusters of Cin8 particles. The data show that single
Cin8 particles (monomers, blue) move—on average—fast towards the minus end while clusters
of two Cin8 particles (dimers, orange) and more than two Cin8 particles (oligomers, green)
moved—on average—slowly towards the plus end. (b) Mean squared displacement (MSD) of
the same trajectories as in (a) plotted against time. Data show the MSD of individual particles
(blue), dimeric clusters of particles (orange), and clusters with more than two particles (green).
Dashed lines represent statistical weighted linear (for MD: 〈x(t )〉 = vMD · t ) or quadratic fits
(for MSD: 〈x(t )2〉 = v2

MSD · t
2 + 2DMSD · t ) to the experimental data. The inset in (b) shows

the magnified MSD of clusters with two Cin8 molecules and clusters with more than two
Cin8 molecules for a better illustration. The bars show the standard error of the mean. Note
that the displacement of dimeric clusters shows a different evolution over approximately the
first 16 s. This is likely the impact of individual particles that are mistakenly categorized as
dimeric clusters (average dwell time of monomers corresponds to 16 s). Experiments were
performed at 1mM ATP. All experimental data were produced by Prof. Leah Gheber’s group.

active forces, it is important to note that the diffusion coefficient in this analysis doesn’t
necessarily reflect passive diffusive motion but may also originate from bidirectional
active motion. The results of the displacement analysis are summarized in Fig. 2.12
and Table 2.1. This statistical analysis of ensembles of trajectories quantitatively
confirmed the picture already suggested by the kymographs and the statistical analysis
of individual trajectories as shown in Fig. 2.11: While single particles moved—on
average—towards the minus end, particle clusters moved—on average—towards the
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1 mM ATP vMD [nm/s] vMSD [nm/s] DMSD [103 nm2/s]
Single Cin8 particles -234 ± 7.7 229 ± 66 102 ± 11
Dimeric Cin8 cluster 23 ± 0.7 31 ±6 5.1 ± 0.4

Oligomeric Cin8 clusters 11 ± 0.2 14 ± 2 1.1 ± 0.1

Table 2.1 Summary of the drift velocities and diffusion coefficients for the three categor-
ies of cluster sizes obtained from the displacement analysis. Values were obtained by fitting
the linear function 〈x(t )〉 = vMD · t to the temporal evolution of the MD and the quadratic
function 〈x(t )2〉 = v2

MSD · t
2 + 2DMSD · t to the temporal evolution of the MSD, where x(t )

denotes the position of the respective particles at time t on the microtubule and angle brackets
refer to an ensemble average over different traces. Oligomeric clusters denote clusters with
more than two Cin8 particles. All experimental data were produced and analyzed by Prof.
Leah Gheber’s group.

plus end. The analysis further revealed three important characteristics of the motility
of Cin8: First, clusters with two Cin8 molecules moved approximately ten-fold
slower than individual Cin8 molecules. Second, single Cin8 molecules showed a large
diffusive component of approximately 0.1 µm/s. Third, the diffusion coefficient of
clusters of Cin8 molecules was two orders of magnitude smaller than that of individual
Cin8 motors. A valuable quantity that is often used to characterize kinesin motion is
the randomness of motion r or—equivalently—the Fano factor [162]. It is defined as

r = lim
t→∞

〈(x(t ) − 〈x(t )〉)2)〉
a〈x(t )〉

. (2.2)

The randomness characterizes stochasticity during the translocation of a molecule. For
example, for unidirectional but stochastic motion with a single stochastic transition
in each step of translocation we find r = 1 [162]. For Cin8, the displacement analysis
revealed a significant randomness of motion with a value of approximately r = 100.
This value is much higher than that expected for unidirectionally stepping kinesins:
For kinesin-1, experiments yielded a typical value between r = 0.3 and r = 1 [162–
164]. While it is hard to unravel the exact reason for this discrepancy, it nevertheless
shows that the motion of Cin8 adopts a statistical signature that is very different to
that of unidirectionally moving kinesins. Reasons for this behavior might be Cin8’s
bidirectional motion that is either caused by active motion in both directions, passive
diffusion, or both.

To assess the role of active motion for the formation of clusters and for the motility
of clusters, our collaborators further varied the ATP concentration and performed
experiments with ADP. Results are summarized in Table 2.2. The key observation
was that clusters also formed at low ATP and ADP concentrations, which indicates
that active motion is not a critical prerequisite for the formation of clusters. Moreover,
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7.5 µM ATP vMD [nm/s] vMSD [nm/s] DMSD [103nm2/s]
Single Cin8 particles -70 ± 3 54 ± 21 31 ± 2
Dimeric Cin8 cluster -33 ± 0.9 35 ±9 15 ± 1

Oligomeric Cin8 clusters -34 ±1.1 34 ± 7 4.7± 1
ADP vMD [nm/s] vMSD [nm/s] DMSD [103nm2/s]

Single Cin8 particles - - 10 ± 0.1
Dimeric Cin8 cluster - - 7 ± 0.3

Oligomeric Cin8 clusters - - n.a.

Table 2.2 Summary of the drift velocities and diffusion coefficients for the three categor-
ies of cluster sizes obtained from the displacement analysis of experiments at low ATP
concentrations and in the presence of ADP. Values were obtained by fitting the linear
function 〈x(t )〉 = vMD · t to the temporal evolution of the MD and the quadratic function
〈x(t )2〉 = v2

MSD · t
2 + 2DMSD · t to the temporal evolution of the MSD, where x(t ) denotes

the position of the respective particles at time t on the microtubule and angle brackets refer to
an ensemble average over different traces. For the experiments with ADP no directed motion
was observed. Higher oligomers were not analyzed due to the small number of signals in that
category. All experimental data were produced and analyzed by Prof. Leah Gheber’s group.

decreasing ATP concentrations lowered the drift velocities as well as the diffusion coef-
ficients of individual Cin8 molecules and clusters. While an ATP-dependent decrease
of the diffusion coefficient may indicate the contribution of bidirectional stepping
to the overall motility of Cin8, a clear statement is not possible since also the dwell
times of Cin8 particles and clusters differed when changing the ATP concentration
or when using ADP. These different dwell times might indicate different affinities
of Cin8 for the microtubule when changing the ATP concentration. As different
affinities can, however, lead to a different drag that a motor experiences in its motion
along the microtubule, the observed decrease of the diffusion coefficient might also
stem from different affinities.

2.3.3 Cin8 motors are subject to weak attractive interactions that
reduce the diffusivity of clusters

The detailed quantification of Cin8’s motile behavior as an individual molecule and in
clusters left several open questions: Foremost, why did clusters move—on average—in
the opposite direction than individual Cin8 molecules? Second, why was the diffusive
component of the motion of clusters of Cin8 particles two orders of magnitude lower
than that of individual particles? We will begin our quantitative analysis by focusing
on the latter question.
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To address the significantly lowered diffusion coefficient of particle clusters, we
first analyzed the statistics of the motion of single Cin8 molecules. The two quantities
identified in the mean squared displacement analysis were the average drift velocity
and the diffusive component of particle motion. While the average particle drift has
to arise due to active forces, the origin of a diffusive component is more intricate.
It is important to note that the diffusion coefficient that is identified by the mean
squared displacement analysis doesn’t necessarily reflect passive, thermal forces but,
very generally, reflects the variance and therefore randomness of motion. To interpret
the drift and diffusion coefficients, we related these values to stochastic translocation
events of single Cin8 particles or clusters along the microtubule. It is reasonable
to assume that particles are subject to a periodic binding potential where the peri-
odicity is given by the size of a tubulin dimer. Then, the translocation of particles
corresponds to stochastic hopping events over a distance of a = 8.4 nm, which is the
approximate size of a tubulin dimer [165]. The variance, and thus diffusivity, of a
displacement due to such a discrete, stochastic motion is affected by two factors: First,
by the temporal stochasticity of the hopping events and, second, by the number of
stochastic reactions that are required to effectively translocate a particle (or cluster).
Intuitively, it should be clear that, for example, steps in opposing directions increase
the effective diffusivity. This is because, in such a scenario, more stochastic substeps
are required to displace a particle than are required for the same net displacement
based on unidirectional motion. In other words, the same overall displacement is
more random for bidirectional than for unidirectional motion. Importantly, the
drift and diffusion coefficients determined by the displacement analysis detailed in
Section 2.3.2 allowed us to specifically compute the stochastic rates msingle and psingle
at which a single Cin8 particle transitions to a binding site in the plus-end and in the
minus-end direction, respectively. In detail, the diffusion coefficient and average drift
velocity of the particle are related to these rates via

v single = a (psingle −msingle) (2.3a)

D single =
1
2
a2 (psingle +msingle). (2.3b)

Inserting the values of the mean displacement and diffusion coefficient of single
particles as listed in Table 2.1 results in the following transition rates: msingle = 1460 s−1
and psingle = 1432 s−1. Hence, the statistics of motion of single Cin8 particles shows
clear statistical traces of bidirectional motility. Indeed, most of Cin8’s motion does not
lead to a net displacement along the filament but cancels on average. The reason for
this behavior may either be passive diffusive motion, active stepping in both directions,
or a combination of these processes. To determine which of these possibilities is most
likely it is helpful to consider the maximal stepping rate of kinesins: At saturating
ATP concentrations, kinesin-1 exhibits a maximal velocity of approximately vmax ≈



2.3 Directional reversal of the collective motion of kinesins 97

0.9 µm/s [164, 166]. Since kinesin-1 hydrolyzes one ATPmolecule per step [167, 168],
the maximal ATP turnover rate therefore equals approximately 110 ATP molecules
per second. As ATP associates with the motor domain of kinesins—an amino acid
sequence of the protein that is highly conserved among different species [52]—it
is plausible to assume a similar rate of ATP turnover for Cin8. We can thus use
the maximal rate of ATP turnover of kinesin-1 to estimate the maximal plausible
contribution of ATP-driven bidirectional stepping to the diffusion coefficient of an
individual Cin8 particle. In detail, if we consider the case where each ATP hydrolysis
is coupled to a 8.4 nm step in either direction with equal probability, the turnover
frequency of kinesin-1 would only lead to a diffusion coefficient of approximately
0.004 µm2/s. This value is two orders of magnitude smaller than the corresponding
value determined experimentally for Cin8. On the other hand, 0.1 µm2/s is a very
typical value for the diffusion coefficient of proteins that diffuse passively along the
microtubule [72–74] (see also Section 2.1). Therefore, the most likely explanation
of the large diffusion coefficient of the motion of individual Cin8 particles is passive
diffusion. That being said, it should also be stressed that a dominating component due
to passive forces doesn’t imply that (bidirectional) active stepping doesn’t contribute
to the diffusion coefficient of individual particles, but only that the corresponding
contribution is small. In summary, the displacement analysis suggests that the largest
component of Cin8’s motion is likely due to passive diffusive motion. On top of this
passive motion, active stepping in either one or both directions adds, but contributes
probably only to a small degree to the randomness of motion.

Having addressed the large diffusive component in the motion of single particles,
we now turn towards the statistics of the motion of clusters. One plausible candidate
to cause the large discrepancy between the diffusion coefficient of clusters and that
of individual molecules are weak attractive forces between the motors. Such forces
may not only cause the clustering itself but also affect their motion. In order to
gain a quantitative understanding of the impact of attractive forces on the motion
of particle clusters we considered a first model for the collective dynamics of Cin8
along microtubules as the first step of our analysis. Our previous analyses for in-
dividual Cin8 particles suggest that Cin8’s dominating mode of motion is passive
diffusion. This finding motivated us to address the reduced diffusivity of clusters in an
equilibrium model that disregards active motion of particles and, consequently, also
Cin8’s directional reversal for the moment.12 The equilibrium model was defined as
follows: Motion of Cin8 was described as discrete hopping events of particles on a
lattice that represents the microtubule.13 As before, the lattice spacing a is given by
the size of a tubulin dimer, a = 8.4 nm [165]. On the lattice, particles excluded each
other to account for steric interactions. In the equilibrium model, motion was not

12 In Section 2.3.4, we complement this equilibrium model by active motion.
13 For simplicity and because of Cin8’s comparably large size of 80 nm we did not discriminate between

motion along different protofilaments.
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Figure 2.13 Illustration of the equilibrium model for the collective motion of Cin8
particles. Particles moved on a one dimensional lattice that represents the microtubule and
interact via exclusion and weak attractive forces (schematically illustrated by a spring). (a)
The interaction of particles was modeled as a constant force or—equivalently—a linearly
decreasing interaction potential for distances smaller than a specific interaction range. (b) For
interacting particles, the attractive force affected the rates to move to neighboring lattice sites.
The rate d against force to move against the force that arises from an interaction with another
particle is related to the reverse rate d with force (motion in the direction of the force) by a
Boltzmann factor: d against force/d with force = exp(−β∆E) =: δ, where ∆E is the difference of
energy associated with moving the particles further apart over a distance a = 8.4 nm [165].
Moreover, β = 1/kT with T being the temperature and k the Boltzmann constant. In the
model, we only implemented nearest-neighbor interactions. Note that forces are illustrated
schematically by springs although we assumed constant forces for interacting particles.

biased but thought to originate from passive diffusive motion. Thus, hopping to the
neighboring lattice site on the right (towards the minus end) and to the neighboring
lattice site on the left (towards the plus end) for non-interacting particles occurred
at equal rates d0, given that the respective target site was vacant. In addition, we
implemented Langmuir kinetics: Particles appeared on vacant lattice sites at a rate
kon, which represented the binding of particles from a surrounding solution with a
spatially and temporally constant Cin8 concentration. Particles disappeared from an
occupied lattice site at a rate koff. Interactions of particles were modeled as follows:
In addition to exclusion, we assumed that particles are subject to an interaction poten-
tial as illustrated in Fig. 2.13 that further constrains their motion. Specifically, for
distances below a given interaction range the interaction energy between particles
was assumed to increase linearly. Phrased differently, we assumed that a constant
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attractive force F interaction acts on pairs of particles with a distance equal or less than
the interaction range. Consequently, detailed balance constrained particle motion
as well as particle detachment for interacting particles. Let d against force denote the
rate for motion against the force from an interacting particle d with force the rate of the
opposite process. Then, these rates have to fulfill

d against force/d with force = exp (−β∆E) = exp (−β∆F interactiona), (2.4)

where ∆E denotes the difference of energy related to the movement, and, as before,
F interaction the force between interacting particles. Further, β = kT with k being the
Boltzmann constant and T the temperature. As a further simplification, we restricted
interactions to the nearest neighbors which implies that a particle can interact at
most with two other particles. This simplification will be justified a posteriori since
only very small interaction ranges produced stable clusters in simulations. As the
Boltzmann factor merely relates the ratio of the two rates, we have the freedom of
choosing how to split the contribution between motion against the direction of the
force and motion with the direction of the force. Here, we chose to give the full
weight to motion against the direction of force while motion in the direction of the
force was not accelerated. To be consistent with motion outside the potential, the
resulting rates read

d against force = d0 exp (−βF interactiona) (2.5a)
d with force = d0. (2.5b)

For thermodynamic consistency, we further have to relate particle detachment to the
interaction energy between particles

kpotentialoff = koff exp (−β
∑

i ∈ nn

∆E(di)). (2.6)

Here, the sum
∑

i ∈ nn only runs over nearest neighbors and ∆E(di) is the interaction
energy related to two particles at distance di . Thus, we also consistently neglected
interactions with particles other than the nearest one to the left and to the right,
respectively, for particle detachment.

Given these stochastic rules for particle dynamics, we then turned to simulations
of the model based on the Gillespie algorithm [169]. Parameter values other than
the interaction range and the attractive force between particles could be directly
inferred from experimental data (see Appendix D for details). Our simulations
showed that the proposed model leads indeed to the formation of clusters, see also
Fig. 2.28. In order to infer the interaction range, we investigated which values of the
corresponding parameter lead to a stable—yet not dominating—formation of clusters:
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In Appendix A we detail that the formation of stable clusters at Cin8 concentrations
corresponding to the in vitro experiments constrains the interaction range to a value
of dir = 3a ≈ 25 nm. For smaller interaction ranges, clusters hardly formed whereas
larger interaction ranges caused the formation of clusters with many particles that
were inconsistent with experimental observations. Hence, we used an interaction
range of three lattice sites.

Before we moved to a quantitative analysis of the formation of clusters and the diffu-
sion coefficient of clusters in our model, we first had to specify the defining properties
of a particle cluster. In an experimental setup, a particle cluster is an accumulation of
particles with mutual distances below the resolution limit of approximately 400 nm.
To translate this behavior to the simulations, we associated two particles to the same
cluster if their distance was smaller or equal than 400 nm, which corresponds to
approximately 48 lattice sites. It is important to note that this distance differs from
the interaction range. In this way, a particle cluster refers to non-interacting particles
whenever the distance between them is larger than the interaction range but smaller
than the resolution limit, see also Appendices B and C.

Fig. 2.14 shows simulation results for the diffusion coefficient of clusters of two
particles for different values of attractive forces between particles. The diffusion
coefficient decreases rapidly upon increasing the strength of attractive interactions.
Thus, an attractive interaction between particles can indeed explain the reduction
of the diffusion coefficient of dimeric clusters by orders of magnitude as compared
to the diffusion coefficient of an individual Cin8 molecule. Intuitively, this can be
understood by considering that two interacting particles induce a drag to each other.
As each individual particle is associated to a binding site on the microtubule an
interaction with a neighboring particle will mitigate its motility and therefore the
overall motility of the particle cluster. These results from stochastic simulations
are further supported by a mathematical analysis of the dynamics of clusters. In
Appendix B, we show how the motility of a cluster composed of two particles is
mathematically related to the motility of its individual constituents. Analytic results
of the corresponding mathematical approach are also presented in Fig. 2.14 and agree
very well with stochastic simulations. Importantly, the theoretical analysis based
on model simulations and the mathematical approach allowed us to quantitatively
determine the strength of attractive forces between Cin8 particles: To explain the
measured diffusion coefficient of clusters with two Cin8 particles, an attractive force of
approximately 1.4 pN is necessary. Strikingly, this value is very close to the measured
stall force of Cin8 in the plus-end and minus-end direction, F stall = 1.5 pN.

The presence of weak attractive forces does not only impact the motion of particle
clusters but also increases the dwell time of particles within a cluster as compared to
non-interacting particles. Therefore, longer dwell times of clusters as compared to
individual, non-interacting particles should be a clear indicator of attractive forces.
Indeed, an increased dwell time of clusters was confirmed by the experimental data
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Figure 2.14 Diffusion coefficient of clusters with two particles for varying attractive
forces F interaction between particles. The diffusion coefficient of a cluster with two particles
obtained from stochastic simulations (circles) and our analytic approach (solid line, see
Appendix B for details) decreased rapidly for increasing attractive interactions between
the two particles. A comparison of our theoretical approach with the experimentally de-
termined diffusion coefficient of dimeric clusters (dashed line) allowed us to estimate the
attractive interactions between two Cin8 particles. This approach yields a force of approx-
imately F interaction ≈ 1.4 pN between Cin8 particles. As a check for consistency, we also
show the value for the diffusion coefficient of two non-interacting particles (dotted line):
Ddimeric cluster

unbound = D single/2, where D single denotes the diffusion coefficient of a non-interacting
particle. For weak attractive forces between particles, the diffusion coefficient of clusters
approaches the theoretical value for the diffusion coefficient of two unbound particles. Para-
meter values: d0 = 1432 s−1, dagainst force = δ · d0, kon = 2 × 10−5 s−1, koff = 0.0625 s−1. Here,
δ = exp(−βF interactiona) denotes the Boltzmann factor, β = 1/kT , and a = 8.4 nm is the
lattice spacing [165]. A temperature corresponding to β−1 = 4.11 pNnm was used. Simulated
lattice size was L = 5000.

of our collaborators: While individual particles showed an average dwell time of 16
seconds, clusters consisting of two Cin8 particles—on average—showed a dwell time
of 62 seconds.14

Taken together, our theoretical analysis complemented by single-molecule experi-
ments strongly suggests the presence of weak attractive forces between Cin8 particles.
Moreover, mathematical analysis and simulations related the diffusion coefficient of
two-particle clusters to the strength of these interactions. Based on our displacement

14 Values correspond to measurements at 1mM ATP.
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analysis, this revealed forces of approximately 1.4 pN within a distance of approxim-
ately 25 nm between particles. The presence of attractive forces between Cin8 particles
was further supported by increased dwell times of particle clusters as compared to
single particles.

2.3.4 An anisotropic response of Cin8 to drag reverses the motion of
clusters

The central component of any model for directional reversal has to be active motion.
Thus, we complemented our equilibrium model of the previous section with directed
motion to study potential origins of a directional switching. In detail, motion was
assumed to be the sum of a rate d(F ) (Eqs. 2.5) due to passive diffusion that contributes
equally to both directions and an active component a±(F ) for plus-end and minus-
end-directed motion, respectively. In general, also the latter component shows a
dependency on an external force F . The overall rate for motion towards the minus
end then reads m(F ) := d(F ) + a−(F ). Likewise, the total rate for motion towards
the plus end is given by p(F ) := d(F ) + a+(F ).

The implicit underlying assumption of this superposition of rates is a rapid switch-
ing without memory between three internal states: A diffusive state, a plus end
directed, and a minus end directed state. To motivate this choice, consider the follow-
ing: The origin of Cin8’s diffusive behavior is still elusive on a biomolecular level.
One plausible interpretation of its motility is, however, that Cin8 switches between a
purely diffusive state where it is associated comparably loosely to the microtubule and
a more tightly associated state where it moves actively. Switching between a strongly
and weakly associated state is typical for kinesins [170] and, for example for MCAK,
a nucleotide dependent change of its diffusive motion has been observed [87]. To
account for bidirectionality of the active motion, also this state of motility should be
composed of two substates, which are plus-end or minus-end directed, respectively.
Then, upon averaging over time, a stationary distribution of these three internal
states emerges which we can associate with the probabilities P active

+ , P active
− and P passive.

These probabilities have to be multiplied with the respective velocities of the motion
of particles that is associated with the respective internal state to obtain the effective
rates implemented in our model. Thus, if relaxation to a steady state distribution
of the internal states occurs on timescales that are short as compared to those of the
experiments, our assumption for the superposition of bidirectional active and passive
motion follows.

Motivated by these considerations, we formulated our non-equilibrium model
for the collective motion of Cin8 based on two key assumptions. The first central
modeling component is that active motion occurs in both directions. Similar to
passive motion, also active motion is, in general, affected by external forces. Thus, to
consistently address interacting particles in our model, we specified the response of
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Figure 2.15 Illustration of the anisotropic response of active motion in the plus-end
and minus-end direction, respectively, to opposing forces. We assumed that active motion
occurs in both directions on the microtubule. The responses of active motion in the plus-
end and minus-end direction to an external force were anisotropic: Minus-end directed
motion was assumed to be faster at vanishing external forces but showed a smaller stall force
(F stall
− = 1.4 pN) than plus-end-directed active motion (F stall

+ = 1.6 pN). Note that here we
refer to forces that oppose the direction of motion which implies that the forces show differing
directions for both curves. We assumed that active motion is not accelerated by a force in the
direction of motion (here negative signs). The force-velocity curves were inspired by those
measured for kinesin-1 [107, 163, 171–174].

active motion a±(F ) to an external force. In this respect, the second key assumption
was that active motion depends anisotropically on external forces: While minus-end-
directed motion was assumed to be faster than plus-end-directed motion at vanishing
opposing forces, we assumed that plus-end-directed motion dominates when moving
against large opposing forces. Note that for many kinesins it has been shown that
active motion ceases when moving against forces larger than a certain threshold
value, the so-called stall force [107, 163, 171–174]. Thus, our assumption can be
rephrased by saying that minus-end-directed motion dominates for particles that
move freely (no opposing force) but that the stall force of plus-end-directed motion
is larger than that of minus-end-directed motion. These basic assumptions for the
response of the rates a±(F ) to an external force are illustrated in Fig. 2.15. We chose
stall forces corresponding to the values F stall

+ = 1.6 pN and F stall
− = 1.4 pN. This

choice agrees approximately with recent measurements that suggested a stall force of
approximately F stall

+ ≈ F stall
− ≈ 1.5 pN for plus-end and minus-end-directed motion



104 Organization of proteins on single filaments

of Cin8, respectively [161].15 Note that attractive interactions between particles
with a strength of F interaction = 1.4 pN as quantified in previous section stall active
motion in the minus-end direction as assumed in the model: a−(F interaction) = 0.
Since a diffusive component, however, remains present at such forces, particles move
also bidirectionally when moving against the force of particle interactions. For
simplicity, we assumed a linear decrease of the velocity of directed motion for forces
against the direction of motion. Moreover, we assumed that forces in the direction of
motion don’t accelerate the active motion of particles. This functional dependency
was inspired by the measured response of kinesin-1’s stepping rate to opposing and
supporting forces [107, 163, 171–174] which can be well approximated by such a
relation. In essence, our basic assumptions are equivalent to an anisotropic response
of active motion in plus-end and minus-end direction to varying drag. If a Cin8
particle experiences an opposing force (drag) above a certain threshold value, its drift
velocity effectively reverses since active motion in the plus-end direction exhibits a
larger stall force. Attention should, however, be paid to the fact that we address forces
that antagonize the motion of particles such that the respective direction of a force in
Fig. 2.15 is different for the plus-end and minus-end-directed active motion. Taking
everything together, our model then exhibited three distinct rates for motion in each
of the directions:

• p0 = d0 + a+(0) for unconstrained motion towards the plus end.

• pagainst force(F interaction) = d0 · δ(F interaction)+ a+(F interaction) for motion towards
the plus end when moving against a force due to particle interactions. Here,
δ(F interaction) := exp(−βF interactiona) denotes the Boltzmann factor, see also
Eqs. 2.5.

• pwith force = p0 for motion towards the plus end when moving in the direction
of a force due to particle interactions.

• m0 = d0 + a−(0) for unconstrained motion towards the minus end.

• magainst force(F interaction) = d0 ·δ(F interaction)+ a−(F interaction) for motion towards
the minus end when moving against a force due to particle interactions.

• mwith force = m0 for motion towards the minus end when moving in the direc-
tion of a force due to particle interactions.

Note that, due to our choice of splitting the Boltzmann weight (see Eqs. 2.5), and since
we assumed that active motion is not accelerated by forces in the direction of motion,

15 It should be noted that the corresponding measurements of the stall force were conducted in a
motility assay where a multitude of motors is engaged with a single microtubule. Therefore, the
stall forces were not measured directly for individual particles but could only be inferred indirectly
which likely complicates a very precise measurement of the corresponding values.
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Figure 2.16 Illustration of the model for the collective dynamics of Cin8. Particles in
the Cin8 model moved stochastically on a discrete lattice with a lattice spacing a = 8.4 nm and
excluded each other. Non-interacting particles moved towards the plus and minus end at rates
p0 and m0, respectively, and detached at rate koff. Particles attached to vacant lattice sites at
rate kon. Particles interacted within a range of dir = 3a of each particle. The rates for motion
against the force of a particle interaction read pagainst force(F interaction) = d0 · δ(F interaction) +

a+(F interaction) and magainst force(F interaction) = d0 · δ(F interaction)+ a−(F interaction), where a± are
illustrated in Fig. 2.15. Here, δ(F interaction) = exp(−βF interactiona) denotes the Boltzmann
factor and F interaction is the force between two interacting particles. Due to our specific choice
of dynamics, motion in the direction of the force of a particle interaction was not affected,
mwith force = m0 and pwith force = p0. For simplicity, we only accounted for nearest neighbor
interactions. Particles interacting with other particles in each direction behaved like a non-
interacting particle since forces cancel. Detachment was weighted by the same Boltzmann
factor δ that affected diffusive motion. Specifically, the detachment rate was multiplied by
δn where n = max[{0, (nir − dright neighbor)}] + max[{0, (nir − dleft neighbor)}]. Here, nir = 3
denotes the interaction range in units of lattice sites and dright neighbor and dleft neighbor denote
the distances to the left and right neighboring particle in units of lattice sites, respectively.

also the total rates to move in the direction of a force equal those of non-interacting
particles, mwith force = m0 and pwith force = p0. Further note that we have included
a−(F interaction) in the description above for sake of completeness, although for most
purposes of this section we assume a−(F interaction) = 0 as detailed above. Besides
this behavior for active motion, the model is identical to the previously formulated
equilibrium model detailed in Section 2.3.3. An illustration of the model is shown in
Fig. 2.16.

Although the velocity-force relation and, in particular, the differing stall forces are
merely assumptions, there are various experimental findings supporting this arguing.
First, a recent experimental study showed the capability of Cin8 to produce forces in
both directions [161], thus justifying active stepping in both directions. Moreover,
the corresponding stall forces were estimated to be roughly 1.5 pN in both directions
which approximately agrees with the value of attractive forces between particles found
in our analysis detailed above. This experimental observation, however, constrained
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Figure 2.17 Space-time plots (kymographs) obtained from stochastic simulations of the
Cin8 model that accounts for active motion. Simulation data were convoluted with a point-
spread function with appropriate dimensions to generate images comparable to those generated
by the microscopy setup, see also Appendix C for details. In this way, particles below the
resolution limit of approximately 400 nm are not resolved anymore in the kymograph but
show an increased intensity (brightness) at the respective position. While single particles (faint
traces) exhibited a tendency to move to the minus end (right), clusters (bright traces) showed
a tendency to move towards the plus end (left). Plus and minus signs denote the respective
microtubule end. The black arrow denotes the direction of time. Simulation parameters are
listed in Table 2.5. The system length was set to L = 2000.

the values for the stall forces in our model as detailed above. Second, the capability
of kinesins to step backwards was reported previously also for kinesin-1 for high
backward loads [107, 175, 176]. While the relation of Cin8’s directional reversal to
backward stepping of kinesin-1 is unclear, these experiments nonetheless show that
the assumption of a stepping mechanism that comprises forward and backward steps
is plausible for kinesin motion in principle.

Fig. 2.17 shows kymographs (space-time plots) obtained from simulations of the
full Cin8 model that accounts for weak interactions together with the active stepping
behavior detailed above. Note that the raw simulation data were convoluted with
an appropriate point-spread function. This procedure served two purposes: First, in
the raw data, single particles were hardly visible due to their small spatial extension
in relation to the overall system sizes which were of the order of several thousand
lattice sites. Second, convolution with a point spread function emulated the image
formation in an experimental microscopy setup, where the signals of the point emitters
are convoluted by the point-spread function of the microscope. For further details



2.3 Directional reversal of the collective motion of kinesins 107

on the convolution method see also Appendix C. Strikingly, our assumption of an
anisotropic response of Cin8 to drag is sufficient to explain the directional switch
due to motor clustering: Indeed, similar to the experimental observations, clusters
of particles formed that—on average—moved towards the plus-end. We therefore
concluded that the reversed motion of particle clusters can be reproduced by our
model which indicates Cin8’s ability to move actively in both directions with an
anisotropic response to an opposing force.

−25 −50 −75 −100 −125 −150 −175

a+(Finteraction) [nm/s]

−20

0

20

40

60

cl
u

st
er

d
ri

ft
ve

lo
ci

ty
[n

m
/s

]

vcluster experiment

simulation

theory

Figure 2.18 Effective drift velocity of a dimeric cluster for a varying rate a+(F interaction).
Simulation results (circles) and mathematical analysis (solid line) show a linear relation
between the rate a+(F interaction) of an individual particle and the drift velocity vdimeric cluster

of a dimeric particle cluster. A comparison of the simulation results with the drift velocity of
a dimeric particle cluster determined in experiments (dashed line) suggested a+(F interaction) ≈

−81 nm/s for an individual particle within a cluster. Here, a negative sign indicates minus-end-
directed motion. Note that we assumed that the force between interacting particles stalls active
motion in the minus-end direction, a−(F interaction) = 0. Particle dynamics were chosen to fulfill
the linear relationship and stall forces (F stall

+ = 1.6 pN, F stall
− = 1.4 pN) specified in Fig. 2.15 as

well as the measured drift velocity of approximately v single = −234 nm/s (Table 2.1) of a non-
interacting particle: d0 = 1432 s−1, d against force = 78.8 s−1, a+(0) = 1.6 (a+(F interaction)/0.2),
a−(0) = a+(0) + 28 s−1, kon = 2 × 10−5 s−1, koff = 0.0625 s−1. Simulated lattice size was
L = 5000.

To quantify the stepping rates of individual Cin8 particles within a cluster we
resorted again to the displacement analysis introduced in Section 2.3.2. Based on
our knowledge of the approximate strength of interactions between particles we
systematically varied the rate of active stepping of an individual particle within a
cluster in the simulations. Resulting drift velocities of a particle cluster with two
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Parameter Value
Interaction range 25 nm

Interaction strength 5.8 kT
Force between interacting particles (cluster force) 1.4 pN

Speed of active motion towards plus end against cluster force 81 nm/s
Speed of active motion towards minus end against cluster force 0 nm/s

Diffusion coefficient for motion against cluster force 5.6 × 103 nm2/s

Table 2.3 Summary of the model parameters in terms of physical quantities. Here, a
temperature corresponding to kT = 4.11 pNnm was used implicitly assumed.

vMD [nm/s] vMSD [nm/s] DMSD [103nm2/s]
Single Cin8 particles - 229 227 109
Dimeric Cin8 clusters 23.0 22.0 5.30
Trimeric Cin8 clusters 17.8 16.5 2.38
Tetrameric Cin8 clusters 11.5 9.58 1.79
Pentameric Cin8 clusters 9.86 8.25 1.32

Table 2.4 Summary of the effective drift velocities and diffusion coefficients of single
particles and clusters of the fully quantified model for the collective motion of Cin8.
Values were obtained by fitting the linear function 〈x(t )〉 = vMD · t to the temporal evolution
of the MD and the quadratic function 〈x(t )2〉 = v2

MSD · t
2 + 2DMSD · t to the temporal

evolution of the MSD, where x(t ) denotes the position of the respective particles at time
t on the microtubule and angle brackets refer to an ensemble average over different traces.
In simulations we referred to a cluster when the distance between particles was smaller or
equal than 48 lattice sites. An attachment rate of kon = 2 × 10−5 s−1 was used. Other model
parameters are listed in Table 2.5. A lattice size of L = 5000 was used.

Cin8 molecules as obtained by stochastic simulations and our mathematical analysis
are shown in Fig. 2.18. To match the average velocity of dimeric clusters as measured
in the experiment, a drift velocity of 81 nm/s towards the plus-end was required
for an individual particle in the cluster. As a result, this analysis determined all
model parameters and thereby quantified Cin8’s motile properties and the interaction
between particles. The resulting values are summarized in Table 2.3. Moreover,
the drift velocities and diffusion coefficients of single particles and clusters obtained
with this set of parameters are listed in Table 2.4 which accurately reproduce those
identified experimentally (see Table 2.1).

How can we understand that clusters move in the opposite direction as compared
to single particles? While this may seem intuitive at first glance, this phenomenon
is subtle in its details. Consider two particles at adjacent lattice sites as illustrated in
Fig. 2.19 (1). Since an attractive force is present between both particles, their diffusive
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Figure 2.19 Illustration that an anisotropic dependency of activemotion on drag implies
a reversed motion of clusters with two particles. Due to the asymmetric response of active
motion to an external force, particles move against an opposing force with a preference
towards the plus end. Therefore, a cluster in a completely compressed state (1) stretches
with a slightly higher probability towards the plus-end direction [transition (1)→(2) with
probability (53%)] than it does towards the minus-end direction [transition (1)→(3) with
probability 47%]. In a cluster configuration where the particles are separated at least by one
lattice site but are still interacting with each other [states (2) and (3)] the most likely reaction
is a compression of the cluster (approximately 95%) which occurs preferentially towards
the minus end since no force opposes motion. Absence of an opposing force, however, also
implies a larger diffusive component in the corresponding transition rate as compared to the
rate of stretching a cluster. Thus, the probabilities to compress a cluster towards the minus
and to the plus end, respectively, differ only insignificantly (47.8% vs. 47%). As a result, a
caterpillar-like motion of a cluster towards the plus end [transition (1)→(2)→(4)] shows a
higher transition probability than the collective motion of a cluster towards the minus end
[transition (1)→(3)→(5)]. Since the force between particles is assumed to be constant for
distances smaller than the interaction range, analogous arguments can be made when starting
from a state that is already stretched. Moreover, also for clusters that contain more than two
particles a similar argument for the particles at the boundaries can be applied, which also
implies preferred plus-end directed motion in these cases.

component and their rate to move actively is changed as compared to a single particle
outside of a cluster. For attractive forces that are large enough to reverse motion,
hopping of the left particle towards the plus end is the most likely reaction. Hence,
the cluster preferentially stretches by the motion of the left particle towards the plus
end [transition (1)→(2)]. In this stretched state, the most likely reaction to occur is
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Figure 2.20 Representative kymographs of simulations with a negligible diffusive com-
ponent of the motion of Cin8. When the diffusive component in the motion of particles was
lowered in the model, clusters either showed no net displacement or show a slight tendency
to move towards the minus end. Thus, switching the directionality of the motion of clusters
depends on a diffusive component in the motion of particles. Plus and minus signs denote
the respective lattice end. Black arrows denote the direction of time. Parameter values were
m0 = 29.8 s−1, p0 = 1.8 s−1, magainst force = 0.1 s−1, pagainst force = 9.7 s−1, kon = 4 × 10−5 s−1,
koff = 0.0625 s−1, L = 2000.

a transition back into a compressed state [transition (2)→(1) and (2)→(4) ]. Since
motion towards another particle is not subject to an opposing force, the preferred
directionality is minus-end directed. The absence of an opposing force, however, also
implies that diffusive motion is suppressed less strongly than in the presence of an
opposing force. Consequently, the corresponding transition probabilities towards the
minus-end and plus-end, respectively, differ only insignificantly [transition (2)→(4)
with probability 47%; transition (2)→(1) with probability 47.8%]. Therefore, the
large diffusive component of Cin8’s motion enables a cluster of particles to generate
overall plus-directed motion. The result is a caterpillar-like motion of a particle cluster
towards the plus-end. To further support this reasoning we also performed simulations
of a modified model where particles showed a negligible diffusive component in their
motion. Indeed, simulation results as depicted in Fig. 2.20 support that a directional
switching of the motion of clusters is absent in this modified model. Therefore, the
ability of clusters of particles to move towards the plus end is a consequence of (a)
an anisotropic response of the active (bidirectional) motion of particles to opposing
forces and (b) a large diffusive component in the motion of particles.
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Figure 2.21 Distribution of the velocities and numbers of particles of trajectories of
single Cin8 particles and clusters in simulations. (a) The plot shows simulation data for
the average velocity of different trajectories of individual particles and clusters plotted against
the respective number of particles in the cluster (cluster size). While single particles moved—
on average—towards the minus end (negative sign, blue circle) with a very broad distribution
of velocities, particle clusters showed less random behavior and moved—on average—towards
the plus end (positive sign, orange circles). Panels (b) and (c) show the distribution of velocities
(irrespective of the number of particles of the respective trajectory) and the distribution of
the number of particles of a cluster (cluster size) obtained from stochastic simulations. The
probability distribution of the number of particles in a cluster agrees excellently with the
experimental data (dashed Gaussians). Other parameter values as listed in Table 2.5. A lattice
size of L = 2750 was used. For better comparability with the experimental data the number of
evaluated trajectories was reduced in (a) by reducing the simulated time (1000 s in (a); 5000 s
in (b) and (c)).

2.3.5 The model for the collective dynamics of Cin8 accurately
reproduces the distributions of cluster sizes and velocities

The probability to observe a cluster of a given size is, in general, expected to be mostly
determined by the interaction strength which we have estimated by the diffusion
coefficient of Cin8 clusters containing two particles. Thus, only if the strength of
the interaction energy was quantified to a good degree by our analysis, the model
will reproduce a distribution of the number of particles in a cluster that agrees with
the experiment. Moreover, the parameters were chosen to fix the velocities and
diffusion coefficients of single particles and clusters with two particles. Therefore, the
distributions of velocities for clusters that contained more than two particles were not
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fitted by this procedure but correspond to an emerging property of the model. Because
of this reasoning, we turned towards the distribution of the numbers of particles in a
cluster (referred to as cluster size) and velocities of different trajectories as a further
means to quantitatively assess the agreement of our Cin8 model with the experimental
data. A resulting comparison is shown in Fig. 2.21. Both, the distribution of the
average velocities and the number of particles in a cluster of different trajectories
obtained from simulations [Fig. 2.21(a)], as well as the distribution of the numbers
of particles in a cluster [2.21(a)] show the excellent accordance of our model with
the experimental data as depicted in Figs. 2.11 and 2.10(c), respectively. This finding
supports that interactions and motility of Cin8 are estimated to a very good degree
by our theoretical approach.
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Figure 2.22 Average occupation of the lattice obtained from simulations with varying
particle attachment rates. When the attachment rate of particles was increased—which
corresponds to increasing particle concentrations in the experiment—the average occupation
of the lattice by particles ρ showed an abrupt change at kon ≈ 5 × 10−5 s. For larger attachment
rates, clusters tended to grow steadily until almost the complete lattice was occupied. Interest-
ingly, cluster growth in simulations was observed to become significant for attachment rates
very close to those measured in the experimental setup (kExperiment

on ≈ 4.8 × 10−5 s, dashed line)
at concentrations of c = 1–2 pM. The inset shows the same data for very small densities and
attachment rates. Note that the figure may not display the steady state values of the density as
the simulations converged only very slowly to the stationary state for high concentrations.
Simulated time was t = 8 × 105 s. Parameter values as listed in table 2.5. A lattice size of
L = 2750 was used.
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One very apparent feature that we observed in simulations was a rapid onset in
the formation of clusters when increasing the Cin8 concentration. Above a certain
concentration, we observed a constant growth of clusters accompanied by a rapidly
growing particle density along the microtubule. Fig. 2.22 shows the particle density
averaged over the whole lattice for varying Cin8 concentrations as obtained by our
stochastic simulations. These simulations showed a sharp transition from a sparsely
occupied lattice to a highly occupied lattice when increasing the particle concentration
(equivalent to increasing the attachment rate). The reason for this behavior is that the
increasing probability of particles to collide facilitates the formation of clusters. Since
additional interaction energy is required to detach a particle from a cluster as compared
to a non-interacting particle, clusters show an increased dwell time as compared to
single particles. Thus, a stable yet not dominating formation of clusters constrains the
Cin8 concentration to a range where the attachment rate of particles is (a) high enough
to allow for the formation of clusters but (b) low enough such that a cluster—on
average—breaks before colliding with another particle or cluster. Strikingly, as shown
in Fig. 2.22, the attachment rate that correspond to the onset of the formation of stable
clusters as predicted by our simulations (ksimulation

on ≈ 5 × 10−5 s) coincides excellently
with the attachment rate measured in the experiment (kexperiment

on ≈ 4.8 × 10−5 s),
where the onset of clustering was found empirically.

To gain insights in the formation of clusters on time scales of in vitro experiments,
we performed additional simulations where the average cluster size at a given attach-
ment rate was determined by an ensemble average of 250 simulations with (shorter)
simulated time windows of 2300 seconds that are of the order of magnitude as the
experiments .16 The result is presented in Fig. 2.23. The simulated time window of
2300 seconds was not sufficient to create a sharp transition in the formation of clusters
as the one displayed in Fig. 2.22. Instead, the simulations showed a gradual increase of
the average number of particles composing a cluster when increasing the attachment
rate. However, these simulations allowed us to identify the range of attachment
rates where the formation of small and stable clusters is expected. Experimentally,
evaluation of microscopy images becomes difficult when predominantly large clusters
are present. Then, the overall illumination signal is too strong to distinguish between
individual signals. We therefore defined the range of attachment rates that is expec-
ted to lead to reasonable experimental results as that where the average number of
particles in a cluster is between 1.5 and 3. In the corresponding range of attachment
rates, clusters are expected to form but won’t dominate the lattice. The corresponding
range is shaded in green color in Fig. 2.23. The attachment rate determined in the
experiments is located precisely in this regime, which further demonstrates the very

16 In the corresponding simulations, the first 500 seconds were not evaluated to allow particles to bind
to the microtubule; The number of particles of clusters was recorded over 1800 seconds following
an initial time window of 500 seconds.
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Figure 2.23 Average number of particles of a cluster (cluster size) on short time scales
recorded in simulations with different attachment rates. The figure shows ensemble aver-
ages (circles) for the number of particles of a cluster recorded over 1800 seconds following
an initial delay-time window of 500 seconds to initialize particle binding to the lattice. An
ensemble size of 250 simulations was used for each data point. The green shaded area corres-
ponds to the region of attachment rates that led to an average of 1.5 to 3 particles per cluster in
the simulations. This range approximately corresponds to the region where we expect small
clusters to be measurable in experiments. The attachment rate determined in experiments
(dashed line) is located accurately in this region. Note that also single particles were included
in the above evaluation. Parameter values as listed in Table 2.5. A lattice size of L = 2750 was
used.

good agreement of our stochastic simulations and the experiment with respect to the
formation and stability of clusters.

Motivated by these observations our collaborators performed additional in vitro
measurements at different Cin8 concentrations. Indeed, high Cin8 concentrations
led to a strong formation of clusters also in the experiments. Representative kymo-
graphs for varying Cin8 concentrations obtained from experiments and simulations
are compared in Fig. 2.24. Supplementing this qualitative comparison, we further
addressed the distribution of the number of particles of a cluster at varying concen-
trations quantitatively. The result is presented in Fig. 2.25, which again shows a great
agreement of our model with experimental measurements.

Taken together, our model not only captures the motility of individual Cin8
molecules and clusters but also accurately reproduces the clustering behavior observed
in experiments.
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Figure 2.24 Representative kymographs from simulations and experiments at different
Cin8 concentrations. Kymographs obtained from simulations (top row) and experiments
(bottom row) were recorded at three different concentrations. Simulations and experiments
consistently suggest strong clustering of Cin8 when increasing the concentration. Attachment
rates in (a) were kon = {5 × 10−5, 6.67 × 10−5, 1.25 × 10−4} s−1 from the left to the right.
Lattice size in simulations was L = 2000. Other parameters as listed in Table 2.5. In (b),
concentrations were c = {0.75–1.5, 1–2, 1.875–3.75} pM from the left to the right. The total
time window for each kymograph in (b) is 90 seconds. The black arrows indicate the direction
of time. Plus and minus signs denote the respective lattice end. All experimental data were
produced by Prof. Leah Gheber’s group.

2.3.6 An anisotropic response of Cin8 to drag consistently explains
previous experimental results

Thus far, we have shown how a simple mechanistic model for Cin8’s motion and
interaction can consistently and quantitatively describe the clustering of Cin8 and,
importantly, the directional reversal of particle clusters. The central idea was that
Cin8’s motility is based on (a) active motion in the plus-end and minus-end direction
that superimposes with a substantial diffusive component, and (b), that the active
motion in both directions shows an anisotropic response to external forces that oppose
this motion. In experiments, Cin8’s motion can not only be reversed by a clustering
of particles but also by varying the surface densities of Cin8 in gliding assays or by
varying salt concentrations. Hence, it is important to relate our considerations to
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Figure 2.25 Comparison of the distribution of the number of particles in a cluster
(cluster size) determined in experiments and simulations at different concentrations
of Cin8. Both, simulations (a) and experiments (b) consistently show that for increasing
Cin8 concentrations (left to right) very large clusters of Cin8 form and dominate the lat-
tice/microtubule for high concentrations. Simulation results agree with the experimental
data. Since the concentration of particles could not be determined with a high accuracy in
the experiments, we fixed the attachment rate at medium concentrations to approximately
reproduce the distribution of intensities observed in experiments. The other attachment
rates for the simulations were then computed such that the relative change is equivalent to
the variation of the Cin8 concentration of the experiments in (b). Attachment rates in (a)
were kon = {5 × 10−5, 6.67 × 10−5, 1.25 × 10−4} s−1 from the left to the right. Lattice size in
simulations was L = 2000. Other parameters as listed in Table 2.5. In (b) concentrations were
c = {0.75–1.5, 1–2, 1.875–3.75} pM from the left to the right. All experimental data were
produced by Prof. Leah Gheber’s group.

these results as well. In the following, we address the implications of our model for
directional reversal for those two experiments.

2.3.6.1 Directional switching induced by changing ionic strengths

Several previous experimental studies showed the ability of yeast kinesin-5 motors to
switch directionality when the salt concentration of the buffer is changed. This effect
was reported for single-molecule studies with Cin8 [155, 177, 178] as well as for gliding
assays with Cut7 [158]. Varying the salt concentration of the buffer causes a change in
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Figure 2.26 Accordance of our proposed model with a directional switch induced by
changing salt concentrations. A buffer with a high ionic strength (left panel, upper illus-
tration) shields electrostatic interactions more strongly as compared to a buffer with low
ionic strengths (left panel, lower illustration) and thus leads to weaker interactions with the
microtubule. Therefore, a moving Cin8 particle will experience a higher resisting force (drag)
when moving along a microtubule at high ionic strength than at low ionic strength (two
arrows, right panel). In our model, this implies reversal of motion if the drag is large enough.

the strength of electrostatic interactions. Specifically, higher salt concentrations shield
electrostatic interactions and thus lead to weaker interactions very generally. For
Cin8 this means that a particle is attached more weakly to the microtubule for high
salt concentrations than it is for low salt concentrations. Thus, the energy barriers
between different binding sites will be lowered as well, see Fig. 2.26 for an illustration.
As a consequence, this decrease of interactions for high ionic strengths is expected to
reduce the force that opposes a Cin8 particle (here referred to as drag for simplicity)
when moving along the microtubule. It is therefore reasonable to assume that active
stepping is subject to stronger opposing forces for low salt concentrations than it is
for high salt concentrations. Our basic modeling hypotheses then predict for a switch
of directionality in the motion of Cin8 for changing ionic strengths whenever the
forces that oppose Cin8’s movement along a microtubule become large enough.

In order to support this hypothesis, our collaborators performed additional exper-
iments at different salt concentrations. While this is still ongoing work, preliminary
results indeed support that lowered salt concentrations simultaneously affect the drag
and the directionality of Cin8’s motion: In experiments with a buffer of low ionic
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strength a diffusion coefficient of D single = 20 × 103 nm2/s was measured, which is
significantly lower (approximately five-fold) than the one at high ionic strengths, see
Table 2.1. Moreover, while single particles at high ionic strengths showed pronounced
and robust motion towards the minus end, single particles at low ionic strengths
showed a decreased preference to move towards minus-ends. Specifically, the drift
velocity towards the minus ends was substantially decreased and several particles were
plus-end directed or undirected (zero net drift)—two effects that were not observed for
buffers with high ionic strengths. The decrease of the diffusion coefficient measured
in these experiments allowed us to roughly estimate the increase of the forces that
oppose the motion of Cin8 along a microtubule. Following the Arrhenius law [179,
180] the decrease of the diffusion coefficient when changing the ionic strenght is
associated to an increase of energy barriers by ∆E = 1.6 kT that has to be overcome
by Cin8 particles as they move along the microtubule lattice. Assuming a symmetric
and periodic binding potential with a period of 8.4 nm [165] leads to maxima of the
binding energy that are located at a distance of 4.2 nm from the minima. This assump-
tion results in additional drag forces of roughly 1.6 pN at lowered ionic strengths,
where we have assumed a temperature corresponding to 4.11 pNnm. Our estimate is
approximately consistent with our previous assumptions that suggested a directional
reversal for forces of this magnitude, see Fig. 2.26. Based on this arguing, we therefore
conclude that our proposed model for the directional reversal of Cin8 also explains
previous observations concerning the motility of Cin8 at varying salt concentrations.

2.3.6.2 Directional switching in gliding assays

Directional switching of Cin8’s motion was uncovered in gliding assays with varying
surface densities of Cin8 [154], and other kinesins have been reported to show this
behavior as well [156, 158, 159]. In the corresponding experiments, the directionality
of microtubules driven over a surface coated with molecular motors switched when
varying the density of molecular motors bound to the surface. How do these obser-
vations relate to our proposed model for directional reversal? Directional switching
in gliding assays would be in agreement with our model when changing the surface
density of molecular motors corresponds to a change in the opposing force that an
individual kinesin experiences when pushing the gliding microtubule. This scenario
is plausible whenever the molecular motors act in an unsynchronized fashion. Then,
a large number of motors that are engaged with a microtubule increases the overall
binding strength of the surface and the microtubule. This increased rigidity may
result in an increased resistance for individual molecular motors that try to move
the microtubule. Recent experimental studies indeed suggested such a behavior for
Cin8: The impact of forces of an individual Cin8 molecule on a stalled microtubule
in a gliding assay was observed to decrease with an increasing density of molecular
motors on the surface [161]. Therefore, an individual motor may require larger forces
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to translocate the microtubule at high surface densities than at low surface densities.
Ultimately, these forces may become large enough such that, according to our model,
minus-end-directed motion effectively stalls while plus-end-directed motion can still
cause a movement of the microtubule. In this respect, also the findings by Britto et
al. [158] for Cut7, which showed that the addition of non-kinesin-5 motors in gliding
assays can induce a directional switch of gliding microtubules, is captured by our
model: As it is irrelevant if opposing forces arise due to the increased number of
kinesin-5 motors engaged with the microtubule or due to the binding of other proteins,
our model suggests a directional switch in both cases. Importantly, also results from
a recent theoretical study suggest that our basic assumptions are in agreement with
directional switching in gliding assays: Based on computer simulations of a gliding
assay, Saito and Kaneko [181] observed a directional switch in the motion of gliding
microtubules when the drift velocity of Cin8 particles depended asymmetrically on
the intramolecular strain of a Cin8 molecule. The latter requirement is, however,
equivalent to our basic modeling assumptions. Thus, our suggested mechanism for
the directional reversal of kinesins may also explain directional switching observed in
gliding assays and could therefore unify our view on Cin8’s directional reversal. In
fact, our model shows that all previously observed ways to change the directionality
of motion of Cin8 may be different aspects of the same mechanism: An anisotropic
response of active motion to drag.

2.3.7 Conclusion and outlook

In this section we have addressed the directional reversal of the yeast kinesin-5 Cin8
by statistical analyses and stochastic modeling. The central result is a new model
for the directional switching of Cin8 that significantly advances our view on this
phenomenon by bringing together multiple—seemingly unrelated—observations.

Our model sheds light on the biomolecular origins of directional switching due to
the formation of clusters of particles:

• As shown by our analysis, the formation and motility of Cin8 clusters is ex-
plained by attractive forces between motors. Strikingly, our theoretical consid-
erations allowed us to compute the strength and range of these forces: 1.4 pN
between motors for distances smaller than 25 nm.

• Directional reversal in our model is the result of an anisotropic response of
motion to opposing forces; While motion at small or no opposing forces is
assumed to occur predominantly towards the minus end, the relative contribu-
tion of motion towards the plus end is assumed to increase as particles have to
move against large opposing forces.

• Based of the anisotropic response of active motion to drag, clusters of Cin8
particles can generate drift due to their significant diffusive component of



120 Organization of proteins on single filaments

motion: As an opposing force suppresses diffusion exponentially, the motion
against opposing forces exhibits a higher relative drift than motion which is not
hindered by an opposing force. Therefore, the movement of particles against
forces arising from particle interactions is effectively more directed than that of
non-interacting particles. This behavior ultimately enables a cluster to move
towards the plus end in a caterpillar-like fashion.

• In this way, our model accurately reproduced the statistics of motion of single
Cin8 particles and clusters of particles determined in experiments.

• Furthermore, our fully quantitative model accurately reproduced also the clus-
tering behavior at different Cin8 concentrations: The probability of observing
a cluster of a given size in the simulations agreed precisely with that observed in
the experiments. Moreover, inspired by our stochastic simulations, we quantit-
atively verified a sharp transition of the probability to observe large clusters of
Cin8 molecules when the Cin8 concentration in the experiments was increased.

In this way, our model provides a consistent picture of the clustering behavior
of Cin8 and the reversed directionality of the motion of clusters with respect to
individual particles. Importantly, these insights significantly change our view on
previous findings with respect to Cin8’s directional switch being triggered by factors
other than clustering. Specifically, our model is consistent with a directional switch
that is induced by lowering the ionic strength of the buffer. Also, our proposed
mechanism is likely to be consistent with a directional switch due to a change of the
surface density of molecular motors in a gliding assay:

• Our model of Cin8’s directional switch agrees with the finding that directional-
ity is affected by the ionic strength of the buffer: Due to enhanced electrostatic
interactions, lowering the ionic strength increases the force that opposes the
motion of a motor along a microtubule. This increased resistance, in turn,
leads to a reversal of the directionality in the motion of Cin8 according to
the hypothesized anisotropic response of particle motion to opposing forces.
Indeed, preliminary results of experiments at low ionic strengths strongly sup-
port this view: Minus-end-directed motion was mitigated and the movement
of several individual particles was reversed as compared to experiments at high
ionic strengths. Simultaneously, the diffusivity of individual particles was ap-
proximately five-fold decreased, which suggests additional drag forces of roughly
1.6 pN.

• In a gliding assay, increasing the number of molecular motors that are simultan-
eously bound to a microtubule may also increase opposing forces that a single
motor experiences when pushing the microtubule. This is because the overall
stiffness of the microtubule-to-surface binding increases when more motors are
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bound, consequently making it harder for an individual motor to translocate
the microtubule. If these opposing forces are large enough, our proposed mech-
anism for Cin8’s directional reversal predicts a switch of the gliding direction
of microtubules when increasing the surface density of molecular motors in
gliding assays. Importantly, also a recent theoretical study reported a directional
switch in simulations of a gliding assay in the case of an asymmetric dependency
of the motor velocity on intramolecular strain [181].

In view of the above considerations, our model unites various previous experimental
findings related to directional reversal; A mechanism for directional switching based
on (a) bidirectional active motion of Cin8 and (b) an anisotropic response of this active
motion to drag connects previous models and consistently explains experimental
findings.

As an outlook for future work, it should also be noted that further analyses are
still required to resolve the phenomenon of directional reversal fully. As a first step,
it is planned to transfer our quantified model to simulations of a gliding assay. While
Saito et al. [181] already reported the possibility of a directional switch in simulations
of gliding assays with assumptions very similar to our modeling hypotheses, it will
be illuminative to specifically simulate particles with the parameters identified by the
analysis presented in this section. These simulations will then answer whether (a)
the molecular parameters identified by our study are consistent with a directional
switch of Cin8-based gliding assays and (b) provide a quantitative means to analyze
experimental data of gliding assays such as those conducted to estimate Cin8’s stall
force [161]. On the experimental side, the most important step is a direct measurement
of the potential bidirectional active motion of Cin8 and of the potential asymmetric
response of Cin8’s active motion to opposing forces. It should be noted that this
is likely a difficult task as previous experiments with optical traps and beads coated
with Cin8 molecules failed due to reasons that are currently unclear: Opposed to
measurements with other kinesins, Cin8 was not able to displace Cin8-coated beads
from the center of an optical trap; Only multi-motor gliding assays could be used to
infer forces exerted by individual Cin8 molecules on a microtubule indirectly [161].
It was hypothesized that it is because of inherent features related to the directional
switching mechanism of Cin8 that standard experiments based on optical traps may be
unsuitable to measure the force production by single Cin8 molecules. In this respect,
simulations of gliding assays might indeed provide a valuable contribution by relating
forces exerted on a microtubule in a gliding assay to that produced by an individual
motor.
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Figure 2.27 Diffusion coefficient of clusters with two particles for different attractive
forces F interaction between particles and different interaction ranges. The plot shows the
diffusion coefficient of dimeric particle clusters obtained from simulations (symbols) and
our theoretical analysis (dashed colored lines, see also Section B) of the equilibrium model
presented in Section 2.3.3. The analysis allowed us to determine the strength of attractive forces
that lead to a diffusion coefficient compatible with that measured in the experiments (dashed
gray line). Parameter values other than those denoted in the figure are p0 = m0 = 1432 s−1,
pagainst force = magainst force = δ · p0 with δ = exp(−βF interactiona) being the Boltzmann factor
and β = 1/kT . Here, a = 8.4 nm denotes the lattice spacing and a temperature corresponding
to β−1 = 4.11 pNnm was used. Attachment and detachment rates were kon = 2 × 10−5 s−1,
koff = 0.0625 s−1, respectively. A lattice size of L = 5000 was used.

Appendix

A Determination of the interaction range

In order to choose an appropriate interaction range dir in the model, we performed
simulations using an interaction range of either two, three, or four lattice sites. The
motility of clusters is expected to be influenced not only by the force between particles
but also by the range of interactions. Therefore, in analogy to the procedure described
in Section 2.3.3, we first systematically increased the attractive force between particles
of the equilibrium model presented in Section 2.3.3 for each of the three different
interaction ranges. We then measured the diffusion coefficient of dimeric particle
clusters observed in the corresponding simulations. This approach allowed us to
determine the respective values of attractive forces between particles that reproduce
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the diffusion coefficient measured in the experiments for each of the three interaction
ranges. An overview of the simulation results is shown in Fig. 2.27.

Figure 2.28 Analysis of the number of particles in a cluster (cluster size) for different
interaction ranges. (a) Distribution of the number of particles in a cluster obtained from
simulations of the equilibrium model (see also Section 2.3.3) for dir = {2a, 3a, 4a}. Only for
interaction ranges of dir = 3a the formation of clusters was significant yet not dominating;
For dir = 2a clusters hardly formed and for dir = 4a the formation of large clusters dominated
the system. (b) Illustrative kymographs obtained from simulations with dir = {2a, 3a, 4a}
supporting that the formation of stable but small clusters is only likely for dir = 3a. Other para-
meters in (a) and (b) were p0 = m0 = 1432 s−1, pagainst force = magainst force = {9.6, 79, 130} s−1
for dir = {2a, 3a, 4a}, respectively, kon = 4.8 × 10−5 s−1, koff = 0.0625 s−1. The corresponding
Boltzmann weight for particle detachment consistent with the reduced hopping rate against
the force of interactions reads δ = {6.7 × 10−3, 5.5 × 10−2, 9 × 10−2}. Lattice size was set to
L = 2000 in (a) and (b). Plus and minus signs denote the respective lattice end. Black arrows
indicate the direction of time.

In the next step, we used this quantification of the forces of interactions between
particles and performed simulations at particle attachment rates that corresponded to
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those measured in the experiments. Representative kymographs for dir = {2a, 3a, 4a}
are shown in Fig. 2.28(b). While an interaction range of dir = 2a hardly led to the
formation of clusters, an interaction range of dir = 4a already led to systems that
were dominated by large clusters. This qualitative observation was further supported
by the distribution of the number of particles in a cluster measured in simulations
for the different interaction ranges as shown in Fig. 2.28. Unlike the behavior for
interaction ranges of size dir = {2a, 4a}, an interaction range of dir = 3a produced
clusters that exhibited sizes and lifetimes compatible with experiments. Indeed, the
simulated distribution of the number of particles in a cluster is in great agreement with
those observed in experiments as shown in Fig. 2.10(c). Taken together, this stability
analysis of clusters suggests that—at attachment rates measured in the experiment—
only an interaction range of dir = 3a is in agreement with experimental data while
interaction ranges of dir = {2a, 4a} produce unstable systems where clusters either
hardly form or dominate the system.

B Theoretical relation between the motility of single particles in a
cluster and the motility of the cluster

In this section, we aim for an analytic expression for the motility of a cluster with two
particles in terms of the motility parameters of its individual particles. Two particles
are considered to belong to the same cluster whenever their distance to each other
is below or equal to a specific threshold value. Based on the experimental setup, we
estimated this distance by dmax ≈ 400 nm ≈ 48 a, where a is the lattice spacing and
thus the size of a tubulin dimer a = 8.4 nm [165]. For the case of a cluster composed
of two particles, we can uniquely describe the configuration by the distance d = i a
between the two particles, with i ∈ {1, 2, . . . , nmax} and nmax = 48 being the maximal
distance of the particles in numbers of lattice sites. The corresponding probabilities
to find such a state will be denoted by Pi . To describe the motility of the cluster, we
consider transitions between these differently stretched states in the comoving frame
of reference. A cluster with given inter-particle distance i may stretch at rate s or
compress at rate c by moving either one of its two composing particles further away
or closer to the other particle, respectively. In general, these rates differ depending on
whether the particles interact with each other or not. For a complete mathematical
description we further have to equip the transitions between differently stretched
states with appropriate boundary conditions that define how clusters are destroyed
and created. For a maximally stretched cluster with an inter-particle distance of
dmax = nmaxa, a further stretching event will cause a breaking of the cluster. To
ensure probability conservation, we mapped these breaking events of a cluster to the
creation of a new cluster. The distribution of initial distances between two particles
when a cluster is created is elusive. Therefore, we assumed, for simplicity, that new
clusters are created with a uniformly distributed distance between the two particles.
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Moreover, we neglected the breaking of a cluster due to a detachment of one of the
particles because of the small transition rate of this process. The corresponding master
equations then read

d
dt

Pi = −Pi(c ir + s ir) + Pi+1c ir + Pi−1s ir + n−1maxPnmax s for i ∈ {2, . . . , nir − 1},

(2.7a)
d
dt

Pi = −Pi(c + s) + Pi+1c + Pi−1s + n−1maxPnmax s for i ∈ {nir + 1, . . . , nmax − 1}.

(2.7b)

Here, s ir = magainst force + pagainst force is the rate of stretching the cluster when its
particles are interacting, c ir = mwith force+pwith force = p+m denotes the corresponding
rate for compressing the cluster, and s = c = m + p is the rate of stretching or
compressing the cluster when its particles are not interacting. Furthermore, dir = nir·a
denotes the interaction range within which the particles are subject to a weak attractive
force. These equations are supplemented with the following boundary conditions:

d
dt

P1 = −P1s ir + P2c ir + n−1maxPnmax s, (2.8a)

d
dt

Pnir = −Pnir(c
ir + s) + Pnir+1c + Pnir−1s

ir + n−1maxPnmax s, (2.8b)

d
dt

Pnmax = −Pnmax(c + s) + Pnmax−1s + n
−1
maxPnmax s . (2.8c)

We solved Eqs. 2.7 and 2.8 in the stationary state. The general solution of the linear
and non-homogeneous recurrence relation reads

Pi =
Pnmax s ir

nmax(s ir − c ir)
i +C1

(
s ir

c ir

) i
+C2 for i ∈ {1, . . . , nir}, (2.9)

Pi = −
Pnmax

2nmax
i2 +C3i +C4 for i ∈ {nir + 1, . . . , nmax}, (2.10)

where Ci are constants and where we have used c = s . It should be noted that
the term proportional to (s ir/c ir)i reflects the Boltzmann distribution and would
be the correct distribution of distances if we would consider a cluster that can’t be
destroyed when it is fully stretched. Since we, however, explicitly implemented the
breaking of maximally stretched clusters with a subsequent uniform repositioning
(terms proportional n−1maxPnmax s ) the distance distribution is driven out of equilibrium
which adds further terms to the solution. To determine the constants, we solved the
three boundary conditions Eqs. 2.8 as well as a normalization condition,

∑nmax
i=1 Pi =

1. While solving the corresponding equations is straightforward, the closed-form
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expression of the solution is lengthy. Therefore, we here only provide the steady-state
probability distribution of cluster configurations for the specific case of parameters
given in Table 2.5:

Pi = −2.1 · 10−6 + 15.9 · (0.0549)i − 1.3 · 10−7i for i ∈ {1, . . . , nir}

(2.11a)
Pi = 2.64 · 10−3 + 1.12 · 10−6i − 1.12 · 10−6i2 for i ∈ {nir + 1, . . . , nmax}.

(2.11b)

Fig. 2.29 shows the excellent accordance of this solution with simulation results for
the distribution of the distances between the particles in the cluster.

To derive the statistics for the motion of the whole cluster we then focused on
transitions between the different states. Specifically, the center of mass of the cluster
moves a distance a/2 whenever either one of the two particles moves to a neighboring
lattice site. To account for the modified dynamics of interacting particles, we have to
distinguish between distances between the particles that are smaller and larger than
the interaction range. We then arrive at

mcluster = P1magainst force +

nir−1∑
i=2

Pi(magainst force +mwith force)

+Pnir(m
with force +m) +

nmax−1∑
i=nir+1

2Pim + Pnmaxm (2.12a)

pcluster = P1pagainst force +
nir−1∑
i=2

Pi(pagainst force + pwith force)

+Pnir(p
with force + p) +

nmax−1∑
i=nir+1

Pi2p + Pnmaxp . (2.12b)

The summation above takes into account that particles in a fully compressed cluster
can only move in one direction due to exclusion. Moreover, breaking and recreation
of a cluster is not considered as motility event, which explains the different coefficients
of terms proportional to Pnmax . The drift and diffusion coefficient of the cluster is
then given by equations analogous to Eqs. 2.3 with ã = a/2 = 4.2 nm.

C Convolution method for the generation of kymographs

In order to generate images from simulations that are comparable to images of the
microscopy setup, we convoluted all particle positions with a point spread function:
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Figure 2.29 Probability distribution for the inter-particle distance in a cluster with two
particles. The distribution of different distances d between two particles in a dimeric cluster
obtained by our mathematical approach (solid line) agrees excellently with the distribution
obtained by simulations (circles). Strongly compressed (small d ) dimeric clusters with very
small inter-particle distances are significantly more likely than strongly stretched states (large
d ). This explains the lowered motility (drift and diffusion coefficients) of particle clusters
as compared to individual particles since the attractive interactions between particles and
steric hindrance mitigate the motility of the cluster for small distances between the particles.
The inset shows the magnified distribution of distances between particles in a dimeric cluster
outside of the interaction range, d = {4, . . . , nmax}a. For distances close to the maximal
distance nmax the probability decreases since any further elongation of a maximally stretched,
dimeric cluster results in its breaking. The latter effect drives the distribution of distances out
of equilibrium such that the result differs from a Gibbs-Boltzmann distribution. Attachment
rate was kon = 2 × 10−5 s−1 and the simulated lattice size was L = 5000. Other parameters as
in Table 2.5.

I (r ) = I0 · (2J1(2πr/β)/(2πr/β))2 with r the radial distance to the origin, I0 the
maximal intensity, J1 the Bessel function of the first kind of order one, and β =
0.78. The optical resolution of the experimental setup was estimated by 400 nm.
Fig. 2.30 shows a corresponding point spread function that was also used to generate
kymographs from the simulated data.

D Model parameters

We inferred the model parameters by using the fitted values of vMD and DMSD as
stated in Table. 2.1 and by using Eq. 2.3. The detachment rate was inferred from
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Figure 2.30 Illustration of the point spread function used to generate images from
simulated kymographs. We used a point spread function corresponding to an estimated
optical resolution of 400 nm. The function which was used to generate the kymographs is
shown as two-dimensional plot in (a); the corresponding one-dimensional profile is shown in
(b).

the average dwell time of individual Cin8 particles measured in the experiment,
τ = (16 ± 2) s. The attachment rate of Cin8 particles was also measured at 1–2 pM:
kon = 5.74 ± 0.68 · 10−3molecules µm−1s−1, which was converted to the attachment
rate per lattice site of size a = 8.4 nm. A list of the ensuing model parameters used
for the Cin8 model is provided in Table 2.5.
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Parameter Value [s−1]
Minus-end-directed motion; non-interacting particles p0 1.54 × 103
Plus-end-directed motion; non-interacting particles m0 1.51 × 103

Minus-end-directed motion against the force of interactions pagainst force 7.88 × 101

Plus-end-directed motion against the force of interactions magainst force 8.84 × 101
Attachment kon 4.82 × 10−5

Detachment non-interacting particle koff 6.25 × 10−2
Boltzmann weight for detachment rate δ 5.5 × 10−2

Table 2.5 Summary of the parameters for the Cin8 model. Here, the Boltzmann weight for
detachment refers to the additional weight multiplied with the detachment rate of interacting
particles. Specifically, the detachment rate is multiplied by δn where n = max[{0, (nir −

dright neighbor)}] +max[{0, (nir − dleft neighbor)}]. Here, nir = 3 denotes the interaction range in
units of lattice sites and dright neighbor and dleft neighbor denote the distances to the left and right
neighboring particle in units of lattice sites, respectively.





3 Cell-wide organization of proteins

3.1 The formation of dynamic vortex patterns by active
curved polymers

This section addresses the analysis of a model for the self-organization of act-
ive, curved polymers into dynamic vortex patterns. The model was motivated
by recent experimental findings [2] on the protein FtsZ which plays a vital
role in bacterial cell division by forming the protein ring that initiates the
constriction of the cell. In detail, these in vitro studies showed the ability of
curved FtsZ polymers to translocate on a membrane because of treadmilling
and to thereby self-organize into ring-like patterns. In the research project
described in the following, we used methods from the field of active matter to
address the collective dynamics of FtsZ polymers. The central result of our
work was that active motion along circular and chiral tracks is sufficient to or-
ganize the collective motion of polymers into dynamic vortex patterns, even
in the absence of attractive forces between the polymers. Results related to
this project were published in the manuscript “Active Curved Polymers Form
Vortex Patterns on Membranes” [63] in the journal Physical Review Letters. To
this work, I contributed as second author. The following section provides an
introduction and the scientific background related to this publication. The
corresponding publication is reprinted in section 3.1.3 of this thesis.

3.1.1 Background

3.1.1.1 Bacterial cell division and the Z ring

As in eukaryotic cells, also bacterial cells vitally depend on the ability of biomolecules
to organize into large, functional structures. Again, cell division is a good example
where this remarkable capability becomes evident: In many bacteria, a self-organizing
system of reactive proteins interacts to correctly identify the cell’s middle [182–187].
There, the tubulin homologue FtsZ assembles into an annular structure, the so-called
Z ring. This protein ring marks the future division site and initiates cell division [188–
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192]. More precisely, in the presence of GTP, FtsZ polymerizes into polar filaments
that show a—probably nucleotide-dependent—intrinsic curvature [193–198]. These
filaments form the central building block of the Z ring, which is thought of as a
disordered conglomerate of many overlapping FtsZ filaments [199–201]. Once the Z
ring has successfully assembled, it recruits a multitude of different proteins involved
in the synthesis of the cell wall and, ultimately, initiates cytokinesis by a mechanism
that is still unknown [190, 202, 203]. Surprisingly, unlike the eukaryotic counter
piece—the actomyosin ring—motor proteins are most likely not involved in the Z
ring’s contraction [204]. Nevertheless, while it is beyond doubt that the Z ring and
FtsZ in general play a vital role in bacterial cell division, the mechanisms behind the
formation of the Z ring and its constriction are mostly unknown.

This question has been fueled by recent findings that, in fact, the Z ring is a very
dynamic structure [2, 34, 202, 203, 205]. FtsZ filaments are likely to incorporate
new monomers at one end of the polar filament while monomers preferentially leave
the polymer at the opposing end. This mechanism ultimately transforms FtsZ’s
(de)polymerase activity into a nonequilibrium process. In recent in vitro studies with
reconstituted FtsZ on a supported lipid bilayer, FtsZ filaments have been shown
to—based on this mechanism—undergo treadmilling motion that allows a single FtsZ
filament to effectively translocate in a directed fashion [2, 34]. Due to the intrinsic
curvature of the filaments and because of biomolecular details of their anchoring to
the lipid bilayer, FtsZ filaments move along chiral and circular tracks over the surface.
Moreover, these studies addressed not only the behavior of individual particles but
also the collective properties of many filaments moving on the membrane. It was
found that the dynamic FtsZ filaments self-organize into different patterns on the lipid
bilayer, of which the most remarkable ones were probably dynamic polymer rings
composed of moving FtsZ filaments. Strikingly, the average diameter of these rings
coincided with the typical diameter of bacterial cells. While the explicit contributions
of treadmilling and the GTPase activity of FtsZ to the formation of the Z ring and its
constriction are still not fully understood, it has been shown that FtsZ filaments are
also dynamic within the Z ring in vivo and, in particular, that this motion plays a
crucial role in cell division [202, 203]. It is therefore important to understand how
active motion contributes to the organization of FtsZ into patterns and, foremost,
ring-like structures.

From a more abstract perspective, the findings that actively moving particles self-
organize into patterns are reminiscent of active matter systems [206, 207]. Those
systems deal with the collective motion of self-propelled agents that are subject to local
alignment rules. One characteristic feature of active matter systems is the emergence
of patterns above a certain density of agents/particles in the system. Strikingly,
self-organization of cytoskeletal filaments into patterns has already been observed
experimentally: In gliding assays where cytoskeletal filaments were propelled over
a surface coated with molecular motors, the collective dynamics of these filaments
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self-organized into patterns (such as polar waves or nematic lanes) as soon as the
surface density of the filaments exceeded a certain critical value [30, 31, 33]. We
therefore wanted to know: Do the ring-like patterns that have been observed for the
collective dynamics of FtsZ polymers correspond to an emergent phenomenon of an
active matter system or, phrased differently, do the patterns emerge because of specific
interactions of FtsZ or because of generic principles related to the active motion of
FtsZ polymers? Before summarizing the key results of our study and presenting the
publication itself, we will briefly review some central findings in the field of active
matter and, in particular, the emergence of order in systems of self-propelled particles.

3.1.1.2 Self organization in active matter systems

Active matter is defined as systems of entities which transduce energy into directed
motion [206, 207]. Over the last years, this field of physics has been intensively
studied. Similar to driven lattice gases, that exhibit boundary driven phase transitions
and that are discussed in Chapter 2, also active matter systems are far from thermal
equilibrium and feature a rich phenomenology that outreaches that of equilibrium
physics in several respects. What is prohibited by the Mermin-Wagner theorem [208]
in equilibrium systems is indeed realized in active matter systems: A phase transition
to a symmetry-broken, long-range ordered state in two dimensions despite only
short-range interactions. One prominent subclass of active matter are systems of self-
propelled agents that interact with each other only locally via mechanical repulsion.
A typical feature of such system of self-propelled particles is—loosely speaking—
a transition towards more organized collective motion above a certain density of
particles and below a certain level of noise [206, 207, 209]. The characteristics of the
ordered states, in general, depend on the interaction of the actively moving particles.
For example, the collective motion of particles that are subject to isotropic interactions
(such as repulsive collisions of spherical particles) has been shown to phase separate
into regions with gas-like disorder and solid-like order—a phenomenon known as
motility-induced phase separation [210]. If, on the other hand, particles exhibit an
intrinsic orientation and interact by local alignment, a transition to a state with
macroscopic polar or nematic order emerges [30, 206]. In the following, we provide a
rough overview of the emergence of such organized, collective motion in systems of
self-propelled agents in theory and experiment.

The theoretical foundation of systems of self-propelled particles dates back to
the work of Vicsek et al. [211]. In detail, the work described a system of particles
that show an intrinsic orientation and that move actively with a constant speed
v in the direction of their intrinsic orientation. In each time step, particles align
with neighbors in a small vicinity of each particle but are also subject to noise.
The key observation by Vicsek et al. was that—above a certain threshold density
and below a certain level of noise—the system establishes macroscopic polar order.
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Refined numerical simulations later suggested that the change from a disordered to an
ordered state stems indeed from a first-order phase transition [212, 213]. Building
on the idea to describe such agent-based systems by a continuum theory, Toner and
Tu constructed a hydrodynamic, phenomenological theory that is based on general
symmetry arguments [214, 215]. With this theory, it was possible to formally describe
the transition towards the ordered state and reveal, for example, the two-dimensional
long-range order of this state. By now, also a formal connection between a microscopic
Vicsek-type model and a hydrodynamic field theory has successfully been established
by Bertin et al. [216, 217]. The corresponding approach is based on the Boltzmann
equation that was additionally equipped with an advective term. Particle collisions are
thus included in a coarse-grained fashion and can be related to the system’s large-scale
behavior. The resulting equations of this kinetic Boltzmann approach were indeed
very similar to the equations derived on phenomenological grounds by Toner and
Tu. In particular, the coefficients in the equations of the kinetic Boltzmann approach
are directly related to the microscopic variables and could thereby, in principle, get
extracted from experiments

In parallel to these theoretical studies, much effort has also been devoted to ex-
perimental realizations and studies of active matter systems and, in particular, the
emergence of collective coherent motion. Clustering of particles with characteristics
very similar to a phase separation has been observed in systems with self-propelled
colloidal particles [218–220]. Similarly, such colloidal systems as well as systems with
vibrated discs have been shown to undergo a transition towards ordered collective
motion for high particle densities [221, 222]. Interestingly, transitions to flocking or
self-organized coherent collective motion has also been reported for systems with
living entities such as bacteria [223–226], insects [227], or even birds and other higher
organisms [209]. Another very prominent model system in this field are motility
assays of cytoskeletal filaments that indeed bare many similarities to the experiments
with FtsZ polymers by Loose et al.[2] and Ramirez-Diaz et al. [34]. There, actin
or microtubule filaments are driven by molecular motors over a two-dimensional
surface [30, 31]. Collisions between the filaments lead to a local alignment of their ori-
entation [33] and thereby promote the formation of order. Similarly to the theoretical
models and other active matter systems, ordered motion emerges on a macroscopic
scale when the density of cytoskeletal filaments exceeds a specific critical value [30,
31]. Depending on the experimental details, collective order in the experiments with
gliding assays is realized, for instance, in the form of polar waves [30, 31], vortex pat-
terns [32], or nematic lanes [33]. Notably, also the phase coexistence of nematic lanes
and polar waves has recently been shown [33]. While all of these studies show that
flocking and a transition to ordered macro-states are a widespread experimental phe-
nomenon, it should, however, be stressed that a rigorous connection to the theoretical
approaches is still debated [206, 210].
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Building on the intuition that already local repulsive interactions together with
active motion can order the collective motion of particles and thereby lead to the
formation of patterns, we addressed the impact of these two ingredients for systems
of curved polymers that move on chiral, circular paths. Indeed, our study showed
that even without further interactions actively moving curved polymers self-organize
into vortex patterns reminiscent of those observed experimentally. Below, we list the
key findings of our corresponding study.

3.1.2 Key findings

This section summarizes results from the publication “Active Curved Polymers Form
Vortex Patterns on Membranes” to which I contributed as a second author. The ma-
nuscript was published in the journal Physical Review Letters [63] and is reprinted in
Section 3.1.3 of this thesis. Detailed author contributions are listed in the “Abstracts
of the projects and contribution” section at the beginning of this thesis.

To study the collective behavior of self-propelled curved filaments on a two-
dimensional surface, we employed two distinct theoretical approaches: Brownian
dynamics simulations and a kinetic Boltzmann approach. In this way, we compre-
hensively addressed the corresponding active matter problem by complementing
approaches on a single-particle level and a field-theoretical level. The Brownian dy-
namics simulation explicitly accounted for the dynamics and collisions of polymers
on the level of individual particles. The kinetic Boltzmann approach, on the other
hand, relied on approximations for the microscopic behavior (collision rules) but
provided a coarse-grained field-theoretical approach that was well suited for studying
phase transitions more formally. Strikingly, both approaches predicted transitions
into differently ordered phases and coincided on a phenomenological level. Thereby,
our work established a detailed picture of the emerging properties of our system
and proved the robust formation of patterns in systems of actively moving curved
filaments.

Remarkably, for intermediate densities and noise levels, the system exhibited a
phase of stable, dynamic polymer rings. This shows that active motion in addition to
steric interactions alone is already sufficient to self-organize active curved filaments
into dynamic vortices similar to the dynamic FtsZ rings observed by Loose and
Mitchison; Additional interactions other than hard-core repulsion are not required.
By now, such a formation of vortex patterns that is controlled by the surface density
of polymers has been confirmed for FtsZ in a recent in vitro study that systematically
varied the density of FtsZ polymers on a supported membrane [34]. Our study
therefore highlighted the impact of active motion on ordering processes that might
ultimately be relevant for the formation of the Z ring in vivo.

Our kinetic Boltzmann approach further revealed that the onset of pattern form-
ation is governed by a complex Ginzburg-Landau equation with convective spatial
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coupling as well as a density-current coupling. This equation represents an interesting
mathematical problem on its own right: It constitutes a highly non-trivial extension
of the standard complex Ginzburg-Landau equation and is formally distinct to the
real Ginzburg-Landau equations that were previously found to describe the formation
of patterns in systems of self-propelled particles with preferentially straight paths.
While a detailed analysis of this extended Ginzburg-Landau equation still remains an
open problem, preliminary numerical analysis suggested the presence of turbulent
dynamics, which is absent in analogous theories of the kinetic Boltzmann equation
with straight moving particles.
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Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns,
including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving
along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two
conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find
self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the
onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

DOI: 10.1103/PhysRevLett.116.178301

Intracellular structuring is often facilitated by the active
dynamics of cytoskeletal constituents. The origin of these
driven dynamics and their impact on pattern formation has
been extensively studied using artificial motility assays of
cytoskeletal filaments [1–4]. Another intriguing example of
self-organization due to driven filaments was reported
recently by Loose and Mitchison [5]. In vitro, the bacterial
protein FtsZ forms membrane-bound, intrinsically curved
polymers. These seem to exhibit treadmilling dynamics
(consuming guanosine triphosphate) and, as a result, move
clockwise on the membrane. Depending on the protein
density, polymers cluster into dynamic structures such as
rotating rings or jammed bundles, despite the absence of
attractive interactions [6]. These ring structures are of
particular interest, since, in vivo, FtsZ builds the contractile
Z ringwhich drives cell division in a yet unknownway [7–9].
But also in the in vitro experiments, the pattern-forming
mechanism remains unclear even on a qualitative level.
Motivated by these experimental findings, we have

studied pattern formation in a class of active systems,
where particles move on circular tracks and interact only
via steric repulsion. To assess the dynamics of this class, we
consider two conceptually different models: First, we
emulate active particles as elastic polymers with fixed
intrinsic curvature that move with a constant tangential
velocity [Fig. 1(a)] and perform Brownian dynamics sim-
ulations. Second, we employ a kinetic Boltzmann approach,
where pointlike particles move on circular paths and
undergo diffusion and binary collisions (with polar sym-
metry) according to a simplified collision rule [Fig. 1(b)].
As a result, we identify different phases of collective
behavior as a function of density and noise level. With
both approaches, we find flocking into vortex patterns in

the regime of intermediate density and noise strength. Our
simulations for extended particles predict the formation of
closed ring structures reminiscent of those found in Ref. [5],
even in the absence of any attractive interactions. In the
mesoscopic limit, our analysis yields that, close to the onset
of vortex formation, the dynamics at the onset of ordering is
characterized by a novel generalization of the complex
Ginzburg-Landau equation.
In our Brownian dynamics simulations, we consider a

system of M curved polymers of the same chirality
embedded in a two-dimensional membrane of area A with
periodic boundary conditions. Each polymer is described as
an inextensible wormlike chain [10,11] of length L, per-
sistence length lp, and intrinsic curvature κ0. For a given
polymer conformation rðsÞ, parameterized in terms of arc
length s, the overall bending energy is given by
Ebend ¼ 1

2
lpkBT

R
L
0 ds½κðsÞ − κ0�2, where κðsÞ ¼ j∂2

srðsÞj
denotes the local curvature. Excluded volume interaction is
implemented by a repulsive truncated Lennard-Jones poten-
tial. To assure motion of the filament contour on a circular
track (apart from noise), polymers are propelled with a
tangential velocity v0ðsÞ ¼ v0∂srðsÞ. This accounts for the
effective motion of treadmilling in a simplified way [12].

(a) (b)

FIG. 1. Systems of active particles, which are driven on chiral,
circular tracks with speed v0: (a) Microscopic view: Extended,
elastic polymers with intrinsic curvature, where noise and steric
interaction trigger bending of filaments. (b) Mesoscopic view:
Pointlike particles that undergo diffusion as well as binary
collisions.
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Note that, for this choice, the area explored by a circling
polymer is minimal. In the free draining limit, the dynamics
of the polymer system is then determined by a set of coupled
Langevin equations for the contours rðmÞðt; sÞ of each

polymer m ¼ 1; 2;…;M: ζð∂trðmÞ − vðmÞ
0 Þ ¼ −δE½frðnÞg�=

δrðmÞ þ ηðmÞ, balancing viscous friction with elastic and
repulsive forces generated by the total energy E and
Langevin noise η with zero mean and hηðt; sÞ·
ηðt0; s0Þi ¼ 4kBTζδðt − t0Þδðs − s0Þ. To numerically solve
the polymer dynamics, we employ a bead-spring represen-
tation of the polymers [12,17,18]. For most simulations, we
adapted length scales close to those observed in Refs. [5,8]:
κ−10 ¼0.5μm, L ¼ 0.9 μm, and lp ¼ 10 μm. The relevant
dimensionless parameters that characterize the system
are the reduced noise σ and density ρ. Here, σ ≔
kBTlp=ðζv0L2Þ relates thermal forces at length scale lp

with friction forces, and ρ ≔ ðR0=bÞ2 denotes the squared
ratio of the radius of curvature R0 ¼ κ−10 to the mean
polymer distance b ¼ ffiffiffiffiffiffiffiffiffiffi

A=M
p

.
For dilute systems ρ ≪ 1, our simulations show that each

polymer is propelled on a circular path and collisions
between polymers are infrequent; see Fig. 2(a) and Movie 1
in Supplemental Material [12]. The positions of the

polymers’ centers of curvature (CC) rðmÞ
CC are uncorrelated

as in a gas, and we refer to this state as a disordered state.
On increasing ρ, we observe that a significant fraction of
filaments begin to collide and collect into localized vortex
structures (vortex state). These ringlike structures are

highly dynamic. They assemble and persist for several
rotations, during which their centers of mass remain
relatively static; see Fig. 2(b) and Movie 2 [12]. Despite
our simplified kinetic assumption, the overall phenomenol-
ogy resembles the FtsZ patterns observed by Loose and
Mitchison [5], including vortex assembly, disassembly, and
localization. In the dense regime ρ≳ 1, where each
polymer is likely to collide, these vortices are unstable.
Instead, the polymers cluster and form jammed “trains”
that travel through the system in an irregular fashion; see
Fig. 2(c) and Movie 3 [12].
In order to quantitatively distinguish between the various

observed patterns and organize them into a “phase dia-
gram,” we consider the pair correlation function gðdCCÞ
[19,20] of distances dCC ¼ jrðmÞ

CC − rðnÞCCj between the centers
of curvature [Fig. 2(d)]. We regard a system as disordered if
gðdCCÞ exhibits a minimum at a distance dmin

CC equal to the
diameter of a free circular path, dmin

CC ≈ 2R0. This is distinct
from vortex states, where dmin

CC , defining an effective vortex
diameter, is larger than 2R0. Finally, for train states, gðdCCÞ
does not exhibit a local minimum, indicating the absence of
an isolated vortex structure; for more details, see
Supplemental Material [12]. The ensuing phase diagram
is shown in Fig. 2(d). As in other active systems [21–28],
pattern formation is favored by increasing density and
decreasing noise strength. Jammed states prevail only when
the density is high and the noise level low. Note also that
the structure of the phase diagram depends on the ratio of
filament length L to radius of curvature R0. Polymers with
an arc angle close to κ0L ¼ 2π (closed circles) retain a
single-circle structure and do not form any collective
structures upon increasing ρ (Movie 4 [12]). Conversely,
reducing κ0L suppresses the formation of closed ring
structures, due to inefficient alignment of short polymers.
Instead, these polymers cluster into flocks which move on
approximately circular paths (Movie 5 [12]). Hence, we
conclude that the range of arc angles of FtsZ polymers,
κ0L ≈ 0.6π, observed in vitro [5], facilitates the formation
of closed polymer rings particularly well [Fig. 2(b)]. In
summary, closed polymer rings require explicit curvature
and filament lengths larger than a certain threshold value.
For other interactions than local, steric repulsion ring
structures may also emerge [1,3,29]; straight, rotating rods
may form vortex arrays but not closed rings [30].
We complement the Brownian dynamics simulations of

active particles that are propelled on circular tracks by
considering the mesoscopic limit of a vanishing particle
extension. To this end, we have employed a kinetic
Boltzmann approach [24,31–36] to determine the collective
behavior and the corresponding phase transitions in this
limit, irrespective of the microscopic details of the con-
stituent particles. In detail, we simplified the active system
to one consisting of spherical particles (of diameter d)
moving clockwise with constant speed v0 on circular orbits
of radius R0. This accounts for both self-propulsion and

FIG. 2. System snapshots are provided to depict (a) disorder
(ρ ¼ 0.556, σ ¼ 0.987), (b) vortices (ρ ¼ 0.556, σ ¼ 0.247), and

(c) trains (ρ ¼ 1.389, σ ¼ 0.247). Curvature centers rðmÞ
CC are

depicted by light blue dots. (d) Phase portrait for varying density
ρ and noise σ: disorder states (gray rectangles), vortex states (red
circles), and train states (blue triangles). (e) Pair correlation
function gðdCCÞ for the three different states with σ ¼ 0.247 and ρ
indicated in the graph.
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spontaneous curvature but neglects the finite extension of
the polymers as compared to our Brownian dynamics
simulations.
We further assume that a particle’s orientation is altered

by “self-diffusion” as well as by local binary collisions. In
self-diffusion, a particle’s instantaneous orientation θ
changes at rate λ into θ þ η, where we assume η to be
Gaussian distributed with standard deviation σ. As in other
particle-based active systems [32,34,37], binary collisions
are modeled by a polar alignment rule where the orienta-
tions of the collision partners align along their average
angle plus a Gaussian-distributed fluctuation; for simplic-
ity, we take the same width σ as for self-diffusion.
The kinetic Boltzmann equation [24,31–36] for the one-

particle distribution function fðr; θ; tÞ then reads

∂tf þ v0½eθ · ∂r þ κ0∂θ�f ¼ Id½f� þ Ic½f; f�: ð1Þ

It describes the dynamics of the density of particles in
phase-space element drdθ which is being convected due to
particle self-propulsion and which undergoes rotational
diffusion and binary particle collisions, as given by the
collision integrals Id½f� and Ic½f; f�, respectively; for
explicit expressions, please see Supplemental Material
[12]. Note here the critical difference from field theories
for straight-moving particles [32,38–40]; there is an addi-
tional angular derivative in the convection term, which
reflects the fact that the particles are moving on circular
orbits. In the following, we rescale the time, space, and
density such that v0 ¼ λ ¼ d ¼ 1. Then, the only remain-
ing free parameters are the noise amplitude σ, κ0, and the
mean particle density ρ̄ ¼ A−1

R
A dr

R
π
−π dθfðr; θ; tÞ mea-

sured in units of λ=ðdv0Þ, i.e., the number of particles found
within the area traversed by a particle between successive
self-diffusion events.
To identify possible solutions of the Boltzmann equation

and analyze their stability, we performed a spectral analy-
sis. Upon expanding the one-particle distribution function
in terms of Fourier modes of the angular variable,
fkðr; tÞ ¼

R
π
−π dθe

iθkfðr; θ; tÞ, one obtains

∂tfk þ
v0
2
½∂xðfkþ1 þ fk−1Þ− i∂yðfkþ1 − fk−1Þ�− ikv0κ0fk

¼ −λð1− e−ðkσÞ2=2Þfk þ
X∞

n¼−∞
In;kfnfk−n; ð2Þ

where explicit expressions for the collision kernels In;kðσÞ
are given in Supplemental Material [12]. For k ¼ 0, Eq. (2)
yields the continuity equation ∂tρ ¼ −∇ · j for the local
density ρðr; tÞ ≔ f0ðr; tÞ with the particle current given by
jðr; tÞ ¼ v0ðRef1; Imf1ÞT . In general, Eq. (2) constitutes
an infinite hierarchy of equations coupling lower- with
higher-order Fourier modes.
A linear stability analysis of Eq. (2) enables further

progress. Since In;0 ¼ 0 for all n, a state with spatially

homogeneous density ρ̄ ¼ f0 and all higher Fourier modes
vanishing is a stationary solution to Eq. (2) (disordered
state). To linear order, the dynamics of small perturbations
δfk with respect to this uniform state is given by
∂tδfk ¼ μkðρ̄; σÞδfk, where μkðρ̄; σÞ ¼ ðI0;k þ Ik;kÞρ̄−
λð1 − e−ðkσÞ2=2Þ. For a polar collision rule, as considered
here, only μ1 can become positive, defining a critical
density ρcðσÞ at μ1ðρc; σÞ ≔ 0 [Fig. 3(a)]. Above the
threshold (ρ̄ > ρc), the spatially homogeneous state is
unstable, the particle current grows exponentially, and
collective motion may emerge.
In close proximity to the critical density ρcðσÞ, a weakly

nonlinear analysis yields further insights into the dynamics
of the system and the ensuing steady states. Here we follow
Ref. [31] and assume small currents f1 ≪ 1 at the onset.
Then, balancing of the terms in the continuity equation, the
equation for f1, and terms involving f1 in the equation for
f2 implies the scaling ρ − ρ̄ ∼ f1, f2 ∼ f21 as well as weak
spatial and temporal variations ∂x=y ∼ f1, ∂t ∼ f1. To
include the lowest-order damping term in f1, we retain
terms up to cubic order in f1. This yields the following
hydrodynamic equation for the complex particle current
v0f1ðr; tÞ ¼ jxðr; tÞ þ ijyðr; tÞ:

FIG. 3. (a) Stability of homogeneous solutions of Eq. (2) as a
function of σ and ρ̄ in units of λ=ðdv0Þ. White and red areas
denote regions where finite wavelength perturbations of the
homogeneous solutions are stable and unstable, respectively.
The color code denotes the value of the maximal growth rate
Smax. (b) Dispersion relation of SðqÞ (q in units of 2π=

ffiffiffiffi
A

p
) for

ρ̄ ¼ 0.8 and σ ¼ 0.7 (short-dashed line), σ ¼ 0.6 (long-
dashed line), and σ ¼ 0.4 (solid line). Vertical lines indicate
Smax. (c) Phase diagram for density ρ̄ and σ displaying phases of
homogeneous disorder (gray rectangles), swirls (red circles), and
homogeneous order (blue triangles). The solid line marks the
analytic solution of ρcðσÞ. An overlay of (a) and (c) can be found
in Supplemental Material [12]. (d) Snapshot of swirl patterns
(ρ̄ ¼ 0.8, σ ¼ 0.7). All swirls are moving clockwise on circular
paths.
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∂tf1ðr; tÞ ¼ ½αðρ − ρcÞ þ iv0κ0�f1 − ξjf1j2f1 −
v0
2
∇ρ

− βf�1∇f1 − γf1∇�f1 þ ν∇�∇f1; ð3Þ

where ∇ ≔ ∂x þ i∂y. While this equation shows similar
functional dependencies on local density and current as
found in systems without [41] and with straight propulsion
[32], the coefficients α, ξ, ν, γ, and β are now complex
valued (for explicit expressions, please see Supplemental
Material [12]). This can be traced back to the angular
convection term in Eq. (1) or, equivalently, to the corre-
sponding phase-shift term in Eq. (2). As a consequence, the
field theory of active systems with particles moving on
circular orbits with defined chirality is generically given by
a complex Ginzburg-Landau (GL) equation with convec-
tive spatial coupling as well as density-current coupling.
This constitutes a highly interesting generalization of the
standard (diffusive) complex GL equations [42,43] and is
qualitatively different from real GL-type equations that
were previously applied in the context of self-propelled
particles [31]. Above the threshold, ρ̄ > ρcðσÞ, the active
chiral hydrodynamics described by the generalized GL
equation (3) exhibits a uniform oscillatory solution with
f1 ¼ F1eiΩ0t, i.e., a state in which particles move
on a circular (chiral) path with an angular velocity
Ω0 ¼ v0κ0 − αðρ̄ − ρcÞIm½ξ�=Re½ξ�; the amplitude F1 ¼
fαðρ̄ − ρcÞ=Re½ξ�g1=2 gives the particle density. However,
a linear stability analysis of Eq. (3) shows that for densities
slightly larger than ρc this oscillatory solution is linearly
unstable against finite wavelength perturbations in the
current and density fields. Preliminary numerical solutions
of the generalized GL equation [Eq. (3)] take the form of
rotating spots of high density that appear to show turbulent
dynamics [12,44]. This is qualitatively distinct from the
high-density bands found for straight-moving particles
[23,45] and the vortex field of a fluid coupled to torque
dipoles [46,47].
Far above the threshold, closure relations such as those

discussed above [31] may become invalid and with them
the ensuing hydrodynamic equations. Therefore, we pro-
ceed with the full spectral analysis of the Boltzmann
equation [Eq. (2)] as detailed in Supplemental Material
[12]. First, we numerically calculate the spatially homo-
geneous solutions for all angular Fourier modes fk below
some cutoff wave vector kmax. For given values of ρ̄ and σ
and a desired accuracy ε of this mode truncation scheme,
the cutoff is chosen such that jfkmaxþ1j < ε. We find that for
ρ̄ < ρcðσÞ a spatially homogeneous state where all modes
but f0 vanish is the only stable state. In contrast, above the
threshold [ρ̄ > ρcðσÞ], there is a second solution for which
jf1j > 0. It corresponds to a polar ordered state whose
orientation is changing periodically in time with frequency
v0κ0. For moderate ρ̄ − ρc, the amplitude quantitatively
agrees with the result from the generalized GL equation;
see Supplemental Material [12]. In a second step, we

consider wavelike perturbations, δfkðqÞ with wave vector
q, of the spatially homogeneous oscillatory solution in a
corotating frame. The largest real part of all eigenvalues of
the corresponding linearized system for δfk then yields the
linear growth rate SðqÞ [Fig. 3(b)]. In accordance with the
linear stability analysis of Eq. (3), we find that for densities
slightly larger than ρc a spatially homogeneous solution
is unstable against finite wavelength perturbations. The
dispersion relation SðqÞ exhibits a band of unstable modes,
with the maximal growth rate Smax decreasing as one moves
away from the threshold ρc [Figs. 3(a) and 3(b)]. Actually,
there is lobelike regime in parameter space where SðqÞ < 0
[Fig. 3(a)], and hence a homogeneously polar ordered state
with rotating direction is stable. We emphasize here that our
stability portrait [Fig. 3(a)] is independent of κ0 and hence
equally valid for systems of straight-moving particles. For
our two approaches [Figs. 2(d) and 3(a)], the onset to order
is governed by a similar trend [12], common for active
systems [28,48]: Disorder prevails for low density or high
noise, and order is promoted for high density or low noise.
To determine the spatiotemporal dynamics in the regime

where neither a spatially homogeneous state nor a homo-
geneously polar ordered state are stable, we resort to a
modified version of the SNAKE algorithm [34] to numeri-
cally solve Eq. (1). It accurately reproduces the threshold
value ρcðσÞ at which the spatially homogeneous state
becomes unstable [Fig. 3(c)]. Above the threshold
(ρ̄ > ρc), we find that local density fluctuations quickly
grow and evolve into stable swirls, i.e., disklike flocks of
high density and polar order moving on circular paths; see
Fig. 3(d) and Movie 6 in Supplemental Material [12]. The
radius of such a path is approximately given by R0. These
swirl patterns closely resemble the swirling flocks observed
in the Brownian dynamics simulations for short polymer
arc angles (Movie 5 [12]), as well as our preliminary
numerical solutions of the generalized GL equation
[Eq. (3)] [12,44]. Moreover, in accordance with the spectral
analysis, we find a second threshold density, above which
the system settles into a homogeneously polar ordered state
with a periodically changing orientation (Movie 7 [12]).
The amplitude and frequency of the polar order agree with
the numerical results of the spectral analysis to high
accuracy [12], while the numerically determined phase
boundaries differ. The SNAKE algorithm produces stable
swirl patterns only in a parameter regime where our linear
stability analysis yields significant growth rates. This is
mainly due to spurious noise caused by the discretization of
the angular variable, which tends to suppress inhomoge-
neities in the regime of small growth rates. Furthermore, the
finite system size constricts the band of possible modes and
allows only for patterns of sufficiently short length scales.
For active systems of circling particles that interact via

steric repulsion, our microscopic and mesoscopic treat-
ments strongly suggest that a phase of collective vortex
structures is a generic feature. Within this class, our work
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shows that extended polymers which as a whole follow
circular tracks can form closed rings. Concerning our
motivation of circling FtsZ, further research is needed to
elucidate the dynamics of treadmilling; yet our minimal
kinetic assumption suggests that varying the particle
density alone suffices to regulate the patterns as observed
by Loose and Mitchison [5]. Compared to systems of
straight-moving particles, we find qualitatively new phe-
nomena [12,44]. For those systems, it was already reported
that (globally achiral) vortices can occur due to collisions of
particles of asymmetric shape [49] or due to memory in
orientation [3,50]. Some of our findings, like the polymer
length dependence of patterns and the possible emergence
of active turbulence [51,52], pose interesting questions for
future work. Our analysis yields a mapping of the emergent
dynamics onto a generalized Ginzburg-Landau equation,
providing a connection between active matter and nonlinear
oscillators [44].
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COMMENT ON TREADMILLING

In their experiments [1], Loose and Mitchison observe
that FtsZ polymers undergo depolymerization and poly-
merization processes leading to an effective translation in
the direction of the polymers’ backbones. However, the
underlying molecular details are unclear, as they involve
many qualitatively and quantitatively unknown reactions
and a yet unstudied interplay of different auxiliary pro-
teins (e.g. FtsA, ZipA). Here, we neglect these details
and focus on the collective effects of many FtsZ poly-
mers retaining only their effective movement along circu-
lar tracks. To realize this kind of motion we assume an
intrinsic particle velocity.

NUMERICAL IMPLEMENTATION OF
BROWNIAN DYNAMICS

In the following, we discuss the details of the imple-
mentation of the Brownian dynamics simulations. We
use a bead-spring model [2, 3] that comprises the fol-
lowing discretization scheme: a polymer of length L
is subdivided into N beads at positions ri = (xi, yi)

T

(i = 1, 2, ..., N), with N − 1 bonds of length a; the (nor-
malized) bond vectors are given by ∂sr ≈ ri+1−ri

a =: t̂i;
the bending angle between two adjacent bonds is given by
θi = arccos(t̂i+1 · t̂i). The corresponding bending energy
reads

Ebend =
`p
2a
kBT

N−2∑

i=1

(θi − θ0)2. (S1)

where θ0 ≈ aκ0 is the spontaneous bending angle. In
the bead-spring model, neighboring beads are connected
by stiff harmonic springs. The corresponding stretching
energy is given by

Estretch =
k

2

N−1∑

i=1

(|ri+1 − ri| − a)2. (S2)

In the simulations, the spring constant k is chosen larger
than all other force constants to account for the fact that
biopolymers are nearly inextensible; as a consequence,
stretching modes relax fast compared to other dynamic
processes. At the same time, k cannot be chosen ar-
bitrarily large as this would strongly limit the maximal
simulation time Tmax (see below for values).

In the two-dimensional system of M polymers, we as-
sume steric repulsion between adjacent polymer segments

r
(m)
i (m = 1, 2, ...,M). As an interaction potential we use

a truncated Lennard-Jones potential [4–6]

(Eint)
(mn)
ij = ε



(

a

r
(mn)
ij

)12

−
(

a

r
(mn)
ij

)6

Θ(a− r(mn)

ij ),

(S3)

with r
(mn)
ij = |r(m)

i − r
(n)
j |, ε the potential strength, and

Θ(r) the Heaviside step function. At distances smaller
than the bond length a, the potential is strongly repul-
sive.

In the Langevin description, the equation of motion is
given by a force balance between elastic, active, thermal
and dissipative terms. For the i-th bead of a polymer,
the equation of motion reads

ζ∂tri = −δE
δri

+ Fpropi + ηi

= Fbendi + Fstretchi + Finti + Fpropi + ηi (S4)

where E = Ebend + Estretch + Eint, Fprop is the propul-
sive force and the amplitude of the thermal forces is
given by 〈ηi(t) · ηj(t′)〉 = 4kBTζδijδ(t − t′). The bend-
ing, stretching and interaction forces Fbendi ,Fstretchi ,Finti
are obtained by variation of the corresponding energetic
terms with respect to the position vector ri [2, 3]. We
employ the following implementation of the tangential
propulsive force Fprop = ζv0∂sr:

Fpropi = ζv0





t̂1 i = 1

(t̂i−1 + t̂i)/2 1 < i < N

t̂N−1 i = N

(S5)

For the integration of Eq. (S4) we use an Euler-
Maruyama iteration scheme [7] with sufficiently small
time steps ∆ = 0.0001τ with the unit time τ =
ζa2/(kBT ). In our simulations, we used the following set
of parameters: L = 9a, `p = 100a, k = 500kBT/a

2, ε =
1kBT, θ0 = 0.2, ζ = 1 and a periodic system of area
A = 60a×60a (such that it can contain many consecutive
polymer lengths). In the main text, the unit of length is
set to a = 100nm, such that L = 0.9µm, `p = 10µm are
roughly similar to FtsZ filaments. The noise strength
σ = kBT`p/(ζv0L

2) was varied as follows: we changed
the temperature scale in the interval kBT ∈ [0, 1] for
v0 = 5, and for kBT = 1 varied v0 in the range v0 ∈ [1, 5].
The maximal simulation times Tmax for all simulations
in the main text were chosen such that the single poly-
mer rotation time τR = 2π/(κ0v0) is much smaller. We



2

took Tmax > 400τR and Tmax > 700τ for our data to
provide a sufficiently large sampling interval for both
convective and diffusive motion. To consolidate the re-
sults, data were recorded for 10 independent simulation
for each given set of parameters.

ANALYSIS OF THE PAIR CORRELATION
FUNCTION

To analyze the patterns observed in the Brownian dy-
namics simulations, we consider the pair correlation func-

tion g(dcc) [8, 9] of center distances dcc = |r(m)
cc − r

(n)
cc |.

The positions r
(m)
cc are the curvature centers of each poly-

mer, generated by averaging over the local curvature and
all local reference positions on a contour (see Fig. S1(a)).
In contrast to the positions r(m), the curvature centers do
not oscillate due to self-propulsion and hence represent a
more stable measure of particle position.

Figure S1(b) displays the contour of g(dcc) for param-
eters kBT = 0.5 and v0 = 5 (i. e. σ = 0.247). For suffi-
ciently small ρ, the density exhibits a local minimum at
dmincc , the diameter of a vortex. This implies that there
is a preferred vortex size and structure connected to the
distance dmincc . These minima were determined after ap-
plying a Gaussian filter to suppress random fluctuation
artifacts and then used to distinguish the observed pat-
terns according to the ’phase’ criteria introduced in the
main text: disordered states for dmincc ≈ 2R0, vortex states
for dmincc > 2R0 and train states without dmincc .

2

4

0 0.5 1.0

1

2

0

(a) (b)

FIG. S1. (a) Illustration of the curvature center rcc as deter-
mined by averaging over local centers with a mean contour
curvature κ̄ (polymer in red). (b) Heat map of the pair cor-
relation function for σ = 0.247 in terms of distances dcc and
densities ρ. Red polygons denote the positions of dmin

cc . The
short dashed line depicts the free polymer radius and the long
dashed line marks the regime where dmin

cc vanishes.

DERIVATION OF THE HYDRODYNAMIC
EQUATIONS

To assess the dynamics at larger scales, we employed a
kinetic Boltzmann approach. The corresponding general-
ized Boltzmann equation for f(θ, r, t) is given by Eq. (1).
The self-diffusion and collision integrals Id and Ic, re-
spectively, are given by

Id[f ] = λ〈
π∫

−π

dφf(φ) [δ(θ − φ− η)− δ(θ − φ)]〉η ,

(S6)

Ic[f ; f ] = 〈
π∫

−π

dφ1

π∫

−π

dφ2S(|φ1 − φ2|)f(φ1)f(φ2)

× [δ(θ − 1

2
(φ1 + φ2)− η)− δ(θ − φ1)]〉η , (S7)

where S(ψ) = 4dv0| sin(ψ2 )| is the scattering cross sec-
tion for spherical particles of diameter d and velocity v0

in two dimensions as detailed in Ref. [10]. The collision
integral represents ferromagnetic alignment of two parti-
cles with orientation φ1 and φ2 along their average angle
θ = 1

2 (φ1 + φ2). The brackets denote an average over
a Gaussian-distributed noise variable η. To obtain a di-
mensionless form we used the rescaling

t→ t · λ−1 ,

x→ x · v0λ
−1 ,

f → f · ρ0 ,

κ0 → κ0 · v0λ
−1 ,

with ρ0 = λ/(dv0). Measuring time, space and density
in units of λ−1, v0λ

−1, and ρ0, respectively, allows to set
d = λ = v0 = 1. Then, the only remaining free parame-
ters are the noise amplitude σ, κ0, and the mean particle
density ρ̄ = A−1

∫
A

dr
∫ π
−π dθ f(r, θ, t). To proceed, we

performed a Fourier transformation of the angular vari-
able: fk(r, t) =

∫ π
−π dθ eiθkf(r, θ, t). This leads to the

Boltzmann equation in Fourier space, Eq. (2), where the
Fourier transforms In,k are given by

In,k =

π∫

−π

dΦ

2π
S(|Φ|)

[
P̂k cos(Φ(n− k/2))− cos(Φn)

]
.

(S8)

P̂k = e−(kσ)2/2 is the Fourier transform (characteristic
function) of the Gaussian noise with standard deviation
σ. Note that In,0 = 0 for all n. For k = 0, Eq. (2) hence
yields the continuity equation ∂tρ = − 1

2 (∇f∗1 +∇∗f1) =
−∇ · j for the local density ρ(r, t) := f0(r, t) with the
particle current given by j(r, t) = v0(Ref1, Imf1)T . In
order to get a closed equation for the particle current
at onset, we assume small currents f1 � 1 and use the
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truncation scheme: ρ − ρ̄ ∼ f1, ∂x/y ∼ f1, ∂t ∼ f1,
f2 ∼ f2

1 with vanishing higher modes as presented for
polar particles with ferromagnetic interaction in Ref. [11].
In analogy to Ref. [10], we retained only terms up to cubic
order in f1 in the Boltzmann equation, Eq. (2), for k = 1.
The equation for f1 then couples to the nematic order
field f2 via a term ∼ f∗1 f2 of order f3

1 , where the star
denotes complex conjugate. Writing down contributions
from Eq. (2) for k = 2 of quadratic order in f1 yields
an expression for f2 as a function of f1. The expression
for f2 can then be substituted into Eq. (2) for k = 1
to obtain a closed equation for f1. Together with the
continuity equation, the hydrodynamic equations for the
density and the particle current read

∂tρ =− 1

2
(∇f∗1 +∇∗f1) , (S9a)

∂tf1 = [α(ρ− ρc) + iv0κ0] f1 − ξ|f1|2f1 + ν∇∗∇f1

− γf1∇∗f1 − βf∗1∇f1 −
v0

2
∇ρ , (S9b)

where ∇ := ∂x + i∂y. The coefficients are given by

α := (I0,1 + I1,1),

ρc =
λ(1− P̂1)

I0,1 + I1,1
,

ν := −1

4

1

λ(P̂2 − 1) + 2iv0κ0 + (I0,2 + I2,2)ρ
,

ξ := −4(I−1,1 + I2,1)νI1,2 ,

β := 2(I−1,1 + I2,1)ν ,

γ := 4νI1,2 . (S10)

We note that the employed truncation scheme implies
fast relaxation of the nematic order field f2 such that ∂tf2

is assumed to be negligible on time scales of the dynamics
of f1. f2 is then slaved to f1 via f2 = −2ν∇f1 + γf2

1 .

Linear stability analysis

For ρ < ρc Eqs. (S9) are solved by the homogeneous
isotropic state: ρ = ρ̄ = const., f1 = 0. For ρ > ρc there
is a second solution given by the homogeneous oscillatory
state: ρ = ρ̄, f1 = F1eiΩ0t with F1 = (α(ρ̄−ρc)/Re[ξ])1/2

and Ω0 = v0κ0 − α(ρ̄− ρc)Im[ξ]/Re[ξ].

Homogeneous isotropic state

To study the stability of the homogeneous isotropic
state we substitute ρ = ρ̄ + δρ and f1 = δf1 with the
wave-like perturbations of the form

δρ(r, t) ∼ δρq eiq·r ,

δf1(r, t) ∼ δf1,q eiq·r , (S11)

where δρq and δf1,q are in general complex amplitudes
that are assumed to be small. Periodic boundary con-
ditions in our numeric solution impose |q| = n 2π

L , nεZ,

where L =
√
A and A is the area of the (quadratic) sys-

tem. The linearized set of equations of motion for the
perturbations δρq(t), δf1,q(t) and δf∗1,q(t) has the char-
acteristic polynomial

− q2α(ρ̄− ρc) + q4<[ν]

+
(
2(α(ρ̄− ρc)−<[ν]q2)2 + 2(v0κ0 −=[ν]q2)2 + q2

)
S

+ 4
(
−α(ρ̄− ρc) + <[ν]q2

)
S2 + 2S3 . (S12)

where S is the eigenvalue of the linearized set of equa-
tions for δρq(t), δf1,q(t) and δf∗1,q(t). We note that <[ν]
is positive for all densities. For ρ̄ < ρc, all coefficients
in (S12), including the S-independent terms are positive,
such that (S12) only yields S with negative real part.
Thus, for ρ̄ < ρc the homogeneous isotropic state is lin-
early stable against inhomogeneous wave-like perturba-
tions. For ρ̄−ρc > 0, the real part of S becomes positive
where the fastest growing mode is always at q = 0.

Homogeneous oscillatory state

To study the stability of the homogeneous oscillatory
solution we substitute small perturbations in the basis of
the homogeneous oscillating solution:

ρ =ρ̄+ δρ(0)

+

√
α(ρ̄− ρc)
<[ξ]

δρ(1)e
iΩ0t +

√
α(ρ̄− ρc)
<[ξ]

δρ∗(1)e
−iΩ0t,

f1 =F1eiΩ0t + δf(0)

+

√
α(ρ̄− ρc)
<[ξ]

δf(1)e
iΩ0t +

√
α(ρ̄− ρc)
<[ξ]

δf(2)e
−iΩ0t,

(S13)

where the amplitudes δρ(0), δρ(1), δf(0), δf(1) and δf(2)

are again of the form (S11). Truncating at the lowest
order of (ρ̄−ρc), which is

√
α(ρ̄− ρc), yields a closed set

of linear equations for the amplitudes. The eigenvalue
with the largest real part of this linear system determines
the growth rate S(q) of wave-like perturbations. We find
that the dispersion relation yields positive S(q) for finite
q (see Fig S2).

NUMERICAL LINEAR STABILITY ANALYSIS
IN THE FULL PHASE SPACE

In the derivation and the stability analysis of Eqs. (S9)
we rely on the assumption of small particle currents
which might be justified at onset. However, this assump-
tions is in general questionable and not well justified for
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0.2

0.1

0

0 100 200 300
-0.05

FIG. S2. Dispersion relations for σ = 0.6, 0.4 and 0.1 (short-
dashed, long-dashed and solid lines, respectively) at ρ̄ = 0.8.

densities much larger than ρc. To obtain a stability map
for the full phase space (Fig. 3), we first calculated the
homogeneous solution of Eq. (2) retaining only modes
up to kmax. Given some values of ρ̄ and σ and a desired
accuracy ε of this mode truncation scheme the cutoff is
chosen such that |fkmax+1

| < ε. As a next step, we lin-
earized Eq. (2) with respect to this solution and calcu-
lated the maximal growth rate S(q) of wave-like pertur-
bations with wave vector q. If S(q) > 0 for some |q|, the
homogeneous solution is unstable whereas if S(q) < 0 for
all |q|, the corresponding homogeneous solution is stable.

Note that the homogeneous version of Eq. (2) (neglect-
ing all gradient terms) is invariant under a phase shift
fk → fkeikv0κ0t. Choosing the orientation of the polar
order at t = 0 to be aligned along the x-axis, Eq. (2) is
solved by fk = |fk|eikv0κ0t with the time and space inde-
pendent amplitude |fk|. |fk| is then determined by the
stationary homogeneous version of Eq. (2):

0 = λ(P̂k − 1)|fk|+
∞∑

n=−∞
In,k |fn||fk−n| . (S14)

This equation is identical to the stationary homogeneous
Boltzmann equation for straight moving particles; i.e.
where κ0 = 0. Hence, the solutions for the amplitudes
|fk| are identical to the solutions for the Fourier modes
in systems of straight moving particles [10]. To proceed,
we truncate the infinite sum in Eq. (S14) at kmax and
calculate the solution of all |fk| with |k| ≤ kmax. Fig. S3
depicts the solution for the amplitude |f1| as compared
to the solution of the generalized Ginzburg-Landau equa-
tion as well as the SNAKE algorithm. The explicit solu-
tion for |f1| and higher modes justifies the scaling scheme
used to derive Eqs. (S9) in the vicinity of ρc [Fig. S3,
inset]. For decreasing noise σ or increasing density ρ̄

an increasing number of Fourier modes starts to grow
[Fig. S3, inset]. In our numerical calculations we typi-
cally included 30− 50 Fourier modes. The dashed region
in Fig. 3(a) indicates the regime where we cannot find
a nontrivial solution to Eq. (S14) by neglecting Fourier
modes above the chosen kmax = 50 and where we would
have to choose a larger kmax.

0

0.2

0.4

0.6

0.8

0.40.2 0.6 0.8 10 1.2

1

HE
AMT
SNAKE

0.08

0

0.04

0.05 0.1 0.150

FIG. S3. Homogeneous solution for f1 and f2 for σ = 0.5 ob-
tained from the hydrodynamic equations Eqs. (S9) (HE), the
adapted mode truncation scheme (AMT), and the SNAKE al-
gorithm. Note that within ρc and ρc,2 (dashed vertical lines),
the SNAKE algorithm yields swirl states and hence the corre-
sponding mode values do not represent homogeneous states.
The inset depicts the solutions for the first modes obtained
from the AMT and shows nonlinear scaling of higher modes
with respect to |f1|.

With the substitution fk = (|fk|+ δfk)eikv0κ0t the lin-
ear system for δfk then reads

∂tδfk =− v0
2 (∇δfk−1 +∇∗δfk+1) + λ(P̂k − 1)δfk

+
∞∑

n=−∞
(In,k + Ik−n,k)|fk−n|δfn . (S15)

Here, we performed a coordinate transformation to a
frame rotating with angular frequency κ0 such that
∇ → eikv0κ0∇. Assuming wave-like perturbations as in
Eq. (S11), we solved Eq. (S15) for the maximal eigenvalue
and get the growth rate as a function of the wavenum-
ber in the rotating frame (see Fig. 3(b)). The maxi-
mum taken over all wavenumbers |q| > 0 then defines
the maximal growth rate Smax of wave-like perturba-
tions. In agreement to previous results [10], we found
that the growth rate is maximal for q parallel to the par-
ticle current. The contour plot of Smax as a function of
ρ̄ and σ yields the phase diagram Fig. 3(a). Note again,
that our stability analysis and the resulting phase dia-
gram Fig. 3(a) is independent of curvature and also valid
for the well-studied system of propelled particles without
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curvature [10, 12, 13]. Hence, Fig. 3(a) shows that the
Boltzmann approach is capable of reproducing phases of
all states observed in [12, 14] including a transition from
travelling wave patterns to global homogeneous order.

NUMERICAL SOLUTION OF THE BOLTZMANN
EQUATION WITH SNAKE

In order to study the resulting steady states in the
regime where our linear stability analysis predicts inho-
mogeneities, we numerically solved the generalized Boltz-
mann equation, Eq. (1). To this end we employed the
SNAKE algorithm as introduced in Ref. [15]. As tesse-
lations we used a quadratic periodic regular lattice with
equally sized angular slices. Circling propulsion was in-
cluded by rotating the angular distribution of each lattice
site with a frequency v0κ0 in addition to the straight
convection steps. The system was initialized with a
disordered state with small random density fluctuations
around the mean density ρ̄ = A−1

∫
A
ρ(r, t). Changing κ0

did not change the observed patterns qualitatively. In the
limiting case of very small κ, we observed traveling wave
patterns as reported in Refs. [12, 14, 15]. For Fig. 3(c),
Movie 6, and Movie 7 we used a lattice of of 200 × 200
grid points with lattice field size 2 and angular disretiza-
tion of 24 angular slices; hence, A = 400×400 = 160000.
In the swirl phase the swirl size grows for growing ρ̄− ρc
whereas the radius of a swirl’s motion stays at approx-
imately κ−1

0 . Fig. S4 shows the parameter values of ρ̄
and σ where the SNAKE algorithm exhibits steady swirl
patterns together with the phase diagram obtained from
the adapted mode truncation scheme.
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FIG. S4. Overlay of the parameter values where the SNAKE
algorithm exhibits steady swirl patterns (red dots) together
with the phase diagram obtained from the adapted mode
truncation scheme (with kmax = 50). In the shaded region,
neglected Fourier modes become important.

REMARK ON THE SHAPE OF THE PHASE
CURVES

When comparing the transition to order in the phase
diagrams 2 and S4 it should be noted that our particle-
based and continuum approaches are distinct in the fol-
lowing features: polymer fluctuations vs. effective dif-
fusion, multi-particle collisions vs. binary alignment, ex-
tended polymers vs. point particles. The functional form
of ρc(σ) (S10) depends on the choice of diffusion and col-
lision noise (e.g. equally Gaussian distributed). In con-
trast, the form of the transition line in our Brownian
dynamics simulations depends on the choice of the phe-
nomenological criteria (disordered states for dmincc ≈ 2R0,
vortex states for dmincc > 2R0 and train states without
dmincc ). These differences result in different shapes of the
phase boundaries. In addition, the observed patterns in
the vortex phase are distinct. While for our particle-
based model we find closed, rotating rings, dense, rotat-
ing swirls are observed in the continuum model (Fig. 2(b)
and Fig. 3(d)). These differences are interesting and
should be considered as part of the results we obtained.
For example, these differences will guide future model
building for specific models, e.g. the dynamics of FtsZ,
as they emphasise what molecular details need to be ac-
counted for. For the discussion of this work, however,
our emphasis was on the topology of the phase diagram
(similar trend of the onset to order) and the fact that in
both models one finds a vortex phase.

MOVIE DESCRIPTIONS

Movie1.mp4: Brownian dynamics simulation of a
system with M = 10 polymers with v0 = 5, kBT = 1
and hence ρ = 0.069, σ = 0.247.

Movie2.mp4: Brownian dynamics simulation of a
system with M = 80 polymers with v0 = 5, kBT = 1
and hence ρ = 0.556, σ = 0.247.

Movie3.mp4: Brownian dynamics simulation of a
system with M = 200 polymers with v0 = 5, kBT = 1
and hence ρ = 1.389, σ = 0.247.

Movie4.mp4: Brownian dynamics simulation with
parameters as in Movie 3, except for a changed curva-
ture angle θ0 = 0.333, resulting in an polymer arc angle
Lκ0 = 3.

Movie5.mp4: Brownian dynamics simulation with
parameters as in Movie 3, except for a changed con-
tour length L = 6, resulting in an polymer arc angle
Lκ0 = 1.2.

Movie6.mp4: SNAKE solution for ρ̄ = 0.2 and
σ = 0.45 with κ0 = 0.1. The colour code denotes the
local density ρ/ρ̄. The orientation and length of the ar-
rows indicates the orientation and amplitude of the local
particle current.
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Movie7.mp4: SNAKE solution for ρ̄ = 0.75 and
σ = 0.2 with κ0 = 0.1. The colour code denotes the
local density ρ/ρ̄. The orientation and length of the ar-
rows indicates the orientation and amplitude of the local
particle current.

Hydroswirl.mp4: Preliminary results of the explicit
integration [16] of the hydrodynamic Eqs. (S9). The
video shows the time evolution of the density field ρ(r, t),
for parameters close above threshold ρ̄ > ρc. The system
size is A = 80× 80 = 640, ρ̄ = 0.5, σ = 0.6, and R0 = 5.
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3.2 Cell-wide organization of pigment organelles

The last section of this thesis is devoted to a cell-wide view on intracellular
organization: An in silico reconstitution of the distribution of pigment organ-
elles in so-called melanophore cells. Melanophores are specific skin cells in
fish and amphibians that allow these animals to rapidly adapt their skin color.
This adaptation is achieved by either aggregating dark pigment organelles
in the center of melanophores (resulting in a bright color of the cell) or by
dispersing the pigment organelles evenly in the melanophore (resulting in
a dark color of the cell). Redistributing the pigment organelles in such a
way requires the active transport of these organelles on the microtubules and
actin filaments of the cells. Because of the excellent experimental accessibil-
ity of the motion of its pigment organelles in vivo, melanophores have by
now become a paradigm for studying intracellular transport and intracellular
organization in general. While it is a long-standing hypothesis that a switch
between an aggregated and a dispersed state of a melanophore relies on the
transfer of these organelles from microtubules to actin filaments and vice
versa, the underlying biomolecular principles that govern the redistribution
of pigment organelles are elusive. In this research project we collaborated
closely with the group of Dr. Zeynep Ökten at the TU Munich to address
the regulation of the distribution of pigment organelles by experiments and
theoretical approaches. In detail, we used computational modeling to relate
the experimental results of our collaborators to the cell-wide distribution of
pigment organelles in silico. The combination of experiments and theoret-
ical approaches allowed us to identify a key factor for the redistribution of
pigment organelles within a cell: the probability at which the organelles are
transferred from an actin filament to a microtubule at an intersection of two
filaments. Our simulations unraveled that a change of only this probability is
sufficient to reconstitute a switch between a dispersed state and an aggregated
state of a melanophore. Moreover, we used our theoretical model to reveal
potential evolutionary pathways that might have governed the regulatory
mechanisms of intracellular organization of amphibians. All experimental
results in this section were obtained by the group of Dr. Zeynep Ökten and,
in particular, by Dr. Angela Oberhofer and Peter Spieler. This project is
currently prepared for publication in a peer-reviewed journal [3].
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3.2.1 Background

One recurring topic of this thesis is that the formation and maintenance of structure
in living systems demands a permanent turnover of energy. As we have already seen
at various examples, molecular motors are a critical component in this respect as
they play a vital role in intracellular organization. In this section, we discuss a model
system that provides a very broad view on the formation and maintenance of structure
in cells: The active transport of organelles within a cell. In general, the positioning of
many of the cell’s components requires active transport by molecular motors on the
cytoskeleton. This holds true for organelles such as lysosomes [47], mitochondria [48],
the Golgi apparatus [49] and the endoplasmic reticulum [50, 51]. Here we focus on the
organization of pigment organelles, the so-called melanosomes, within a cell [53–57].
Melanosomes are comparably large (diameter of approximately 500 nm) organelles
that are responsible for the synthesis and storage of melanin. They are found in
skin cells of mammals and lower vertebrates [59]. As melanosomes absorb light
and thus have a dark appearance, they determine the skin color of these organisms
and are critical, for example, in the protection against UV radiation [228]. The
dynamics and organization of melanosomes in cells has by now become a paradigm
in the study of intracellular transport since the motion of melanosomes can, even in
vivo, easily be detected because of their large size and dark color [58]. Importantly,
melanosomes move on both components of the cytoskeleton, actin filaments and
microtubules. This inter-cytoskeletal motion can be established because molecular
motors associated to both types of filaments are simultaneously bound to the surface
of melanosomes (see also Fig. 3.2): Kinesin (plus-end directed motor on microtubules),
dynein (minus-end directed motor on microtubules), and myosin (actin-associated
motor that moves to the barbed ends) allow melanosomes to move on the actin and
microtubule network [56].

A fascinating example of a change in the intracellular organization of melanosomes
can be found in early and lower vertebrates: Fish and amphibians possess highly
specialized skin cells, so-called melanophores, that allow the corresponding animals
to adapt their skin color in response to environmental changes [58]. This change
of skin color is achieved by a cell-wide reorganization of the melanosomes in the
melanophores. The melanophores switch between a so-called aggregated state, where
the melanosomes accumulate in the center of the cell, and a so-called dispersed state,
where the melanosomes are distributed throughout the cell [58]. As a result, melano-
phores in an aggregated state appear bright whereas melanophores in a dispersed state
appear dark, see also Fig. 3.1 for an illustration. In vivo, this transition is determined
by the activity of the protein kinase A (PKA) [58, 229–231]. How a variation of the
PKA level in cells relates to biomolecular changes that could govern a redistribution
of pigment organelles is, however, unknown. By now, it is well established that this
dynamic redistribution of melanosomes depends on the presence of actin filaments as
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Figure 3.1 Illustration of the dispersion and aggregation of melanosomes in melano-
phores. Fish and amphibians possess highly-specialized skin cells (melanophores) that allow
these animals to rapidly change the color of their skin. This is achieved by a redistribution of
dark, pigment filled organelles (melanosomes) in the cell. In the dispersed state of a melano-
phore (left), the melanosomes distribute throughout the cell, which causes a dark color. In
the aggregated state of melanophores (right), the melanosomes accumulate in the center of
the cell which leads to a bright color.

well as microtubules: Aggregation of melanosomes requires an intact microtubule
network in fish as well as in amphibians [54, 57, 232]. Likewise, removal of the
actin network of melanophores in the dispersed state leads either to the motion of
melanosomes towards the periphery of the cell in fish or to the motion of melano-
somes to the center of the cell in amphibians [53, 54, 57]. These and other findings
therefore show that a crosstalk between both cyoskeletal networks—actin filaments
and microtubules—is essential for the function of melanophores [84, 233–235]. While
the central role of a transfer of melanosomes between the cytoskeletal networks
is without question, the principles that determine their organization in a cell are
unknown on the biomolecular level.

In this respect, progress was recently made by Oberhofer et al. [236]: The corres-
ponding research project focused on the impact of PKA—the signaling factor that
drives the switch between aggregation and dispersion of melanosomes in amphibians
and fish—on myosin-based transport complexes of mouse cells. These transport com-
plexes move melanosomes on actin filaments in the respective cells and consist of the
myosin motors itself and further molecules that link the motors to a melanosome in
vivo (see also Fig. 3.2(b) for an illustration). The study showed that the transport com-
plexes are indeed phosphorylated by PKA. Surprisingly, the functional consequence
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of this phosphorylation was neither a change of the velocities at which the complexes
moved along actin filaments nor their affinity to actin filaments. Instead, the probabil-
ity of the myosin-based transport complexes to switch between microtubule and actin
filaments at intersections of filaments was changed by a phosphorylation. In this way,
the regulatory impact of PKA could be traced back to being a mediator of the crosstalk
of melanosome motion on the actin and on the microtubule networks. Let us note
that an exchange between microtubules and actin filaments can be mediated already by
myosin alone (i.e. in the absence of the microtubule-based molecular motors dynein
and kinesin): It has been shown previously that—while being an actin-associated
motor protein—myosin can also bind to and move on microtubules [84]. Bound
there, myosin performs unbiased diffusive motion in contrast to the directed motion
it undergoes on actin filaments.

Although the findings by Oberhofer et al. revealed a first potential biomolecular
origin of the regulation of an exchange of organelles between actin filaments and
microtubules, the in vivo relevance remained elusive for two reasons: (a) The studied
myosin-based transport complexes corresponded to those of mammalian cells (mouse),
where the regulatory role of PKA is, however, unclear. (b) It is unknown how the
behavior of an organelle at a single crossing relates to a cell-wide organization of
organelles.

Here, we present novel findings related to the organization of melanosomes in fish
and amphibian cells. The findings resulted from a close collaboration with the group
of Dr. Zeynep Ökten at the TUMunich, which sought to overcome both of the above
mentioned limitations. Our study addressed the aspects of a cell-wide organization
of melanosomes on two levels: Firstly, results from our experimental collaborators
succeeded in unraveling biomolecular principles of the cyoskeletal crosstalk of melano-
somes in amphibians and fish in vitro. Secondly, we used computational modeling
to relate these in vitro findings to the cell-wide collective dynamics of melanosomes.
In this way, we showed that the in vitro findings are indeed related to the functional
behavior of melanophores, as they generated a switch between an aggregated and a
dispersed state of melanophores in simulated cells. We further used our model to
illuminate general principles in the regulation of the melanosome distribution in
melanophores. Thereby, we retraced a potential evolutionary pathway that might
have governed the regulatory mechanism employed in amphibians.

3.2.2 Myosin-based transport complexes mediate a cytoskeletal
crosstalk in vitro

The experimental studies of our collaborators focused again on the in vitro dynamics
of the reconstituted myosin-based transport complex that moves melanosomes on
actin filaments. As already briefly mentioned above, this transport complex consists of
the myosin motor itself as well as additional proteins that mediate binding to pigment
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Figure 3.2 Illustration of a melanosome and the related complexes that transport the
melanosome along cytoskeletal filaments. (a) Several kinesin, dynein, and myosin transport
complexes are typically bound simultaneously to the membrane of a melanosome. To attach
to melanosomes, the molecular motors require additional proteins (ellipses) that mediate the
binding. (b) The transport complex studied in the in vitro experiments of our collaborators
consisted of myosin Va motors, melanophilin, and Rab27a. The latter two proteins are
required to bind the myosin motors to the membrane of the melanosome. Note that the
ratio of sizes of the molecular motors and the melanosome is not chosen realistically but for
illustrative purposes; Real melanosomes are more than an order of magnitude larger than
molecular motors. Moreover, we only illustrated three melanosome-bound molecular motors
although in vivo it is likely that a much larger number is bound to the melanosomes.

organelles in vivo (see also Fig. 3.2). Opposed to the previous experimental study
detailed above, our collaborators now investigated myosin-based transport complexes
from model organisms where it is known that PKA causes a cell-wide redistribution
of melanosomes. Specifically, the myosin-based transport complexes from zebrafish
and Xenopus frog were reconstituted. The motion of these transport complexes was
then studied in vitro on an immobilized network of actin filaments and microtubules
by using total internal reflection fluorescence microscopy (TIRF). An image obtained
from such an experiment is shown in Fig. 3.3 for illustrative purposes. It should be
noted that only myosin-based transport complexes could be reconstituted. In vivo,
however, also dynein and kinesin are simultaneously bound to a pigment organelle.
Therefore, this study dissects the regulatory impact of myosin motors on the collective
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dynamics of organelles while in cells also dynein and kinesin might contribute to
regulation.

Figure 3.3 Image of the reconstituted cytoskeletal network and transport complexes ob-
tained by total internal reflection fluorescence microscopy (TIRF). Fluorescently labeled
actin filaments (blue) and microtubules (red) were immobilized on a surface. On this recon-
stituted cytoskeletal network, the motion of myosin-based transport complexes (green) was
observed and quantified. Scale bar is 10 µm. The image was recorded by the group of Dr.
Zeynep Ökten.

Using this experimental setup, our collaborators quantified the motion of com-
plexes that either passed a microtubule-actin crossing or switched to the other filament
in dependence on the phosphorylation state; Complexes that fell off the filament at an
intersection were not taken into account. Interestingly, the myosin transport complex
from zebrafish was not regulated by phosphorylation while the switching behavior of
the transport complex from Xenopus showed a phosphorylation-dependent change.
Specifically, the probability to switch from actin onto microtubules was regulated,
while the probability to switch from microtubules onto actin filaments was unaffected
by phosphorylation. The results of these experiments are summarized in Fig. 3.4.
Similar to previous findings for the mammalian transport complex, neither the velo-
cities of the transport complexes nor their affinity to actin filaments (as quantified by
the run length) showed a significant change due to phosphorylation. An overview of
these results is provided in Table 3.1.

Collectively, this in vitro analysis of the myosin-based transport complex on actin
filaments and microtubules provides a first mechanistic insight in a cytoskeletal
crosstalk.
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Figure 3.4 Phosphorylation regulates the transfer of myosin-based transport complexes
from actin filaments to microtubules in Xenopus frog. While the myosin-based transport
complex of zebrafish did not show a response to phosphorylation, the transport complex
of Xenopus showed a significant change in the probability to switch from actin filaments
to microtubules. Surprisingly, the probability for the transverse process—to switch from
microtubules to actin filaments—was not affected by phosphorylation. All results related to
experimental data were produced by the group of Zeynep Ökten.

3.2.3 Modeling the cell-wide organization of melanosomes

To simulate the cell-wide organization of pigment organelles in melanophores we
developed a stochastic model that allowed us to relate the switching behavior of trans-
port complexes at individual crossings to the global distribution of melanosomes in a
cell. Specifically, we wanted to impose the changing probabilities to switch between
filaments as measured for a myosin-based transport complex experimentally to the
motion of a whole melanosome. This means that also biased, bidirectional motion
on microtubules was simulated, as it results when kinesin and dynein are bound to a
melanosome in addition to the myosin motors [234]. In other words, we wanted to
know how the changes of the switching probabilities measured for myosin complexes
impact the collective motion of whole melanosomes in vivo. The following section
details the implementation of the model for melanosome organization and is split
into two parts: (a) A description of the implementation of the virtual melanophore
and the related cytoskeletal architecture. (b) A description of the dynamics of virtual
melanosomes within our virtual cells. The choice of parameters of the model is
provided in Appendix A.
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Xenopus frog Phos Dephos
Velocity 241 ± 115 nm/s 239 ± 121 nm/s

Run length 900 ± 100 nm 1000 ± 200 nm

Table 3.1 Overview of the motile parameters of the myosin-based transport complex of
Xenopus frogs on actin filaments. Neither the velocity of single transport complexes nor
their run length (average distance travelled on an actin filament before detachment) showed a
significant change between a dephosphorylated and a phosphorylated state. All results related
to experimental data were produced by the group of Zeynep Ökten.

3.2.3.1 Construction of the virtual melanophore

Our virtual cells were composed of three discretized and interconnected domains that
correspond to the cytoplasm, the microtubule network and the actin network that are
discussed in the following.

To create a virtual cell, the cytoplasmic layer was created in the first step. A
specific (two-dimensional) cell geometry was defined which was then translated into a
two-dimensional lattice of the corresponding (discretized) shape. In most simulations
we used a circular shape of the cell.

In the next step, we constructed the cytoskeletal architecture of the cell. We added
two species of filaments to our virtual cell that correspond to actin and microtubule
filaments, respectively. Each filament was implemented as a one dimensional lattice
that we placed randomly in the virtual cell. The filaments showed an intrinsic
orientation. By attributing a direction to each filament, we could associate any of the
filament ends with either the plus (barbed) or minus (pointed) ends of microtubules
and actin filaments, respectively. Attributing a directionality to each filament, in turn,
determined the direction of motion of melanosomes on the filaments.

Actin filaments were successively placed in the cell in the following manner:
Initially, we drew the orientation of the filament from a uniform distribution in the
range [0,2π ). This ensured an isotropic orientation of the actin filaments. Thereafter,
we randomly selected the length of the filament from an exponential distribution
with a mean length of 1.5 µm. Lastly, we selected a random position for the center
of mass of this filament in the cell. For most simulations, we chose a homogeneous
distribution for the center of masses of the filaments. In case a filament would have
been positioned completely or partially outside of the virtual cell, we drew a new
center of mass from the same distribution as before until a valid position was found.
Note that this specific choice to place actin filaments was adapted to experimental
findings for melanophores of Xenopus frogs. There, actin filaments have been shown
to be distributed approximately homogeneously within the cell, with an isotropic
orientation, and a length distribution that approximately equals our choice [58, 237].
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Microtubules were implemented as radially arranged filaments that emerged from
the center (minus end located close to center) of the cell towards the periphery (plus
end located close to the periphery). The angle of orientation was again chosen from
a uniform distribution in the range [0,2π ) to ensure isotropy of the network. The
starting point of microtubules was slightly shifted away from the center towards
small radii such that microtubules did not intersect. Similarly, also the plus ends of
microtubules were cut slightly below the maximum radius. While the algorithm also
allowed us to implement an arbitrary distribution of lengths for the microtubules in
principle, we implemented microtubules that radiate to the cell periphery in most
cases. The main reason for this assumption was that a detailed information on the
distribution of the lengths of microtubules of Xenopus melanophores is lacking.
Our specific implementation therefore corresponds to a conservative choice for the
purposes of our modeling that are detailed in the next section. In essence, we wanted
to probe if motion on the actin network can outperform motion on microtubules.
Thus, by choosing the largest possible length for the microtubules we ensured that
their impact is not underestimated in the virtual melanophore.

In summary, our virtual melanophores consisted of three different discrete “do-
mains”: (1) The cytoplasm, which was a two-dimensional lattice in the shape of the
given cell geometry. (2) The actin network, which was an ensemble of short, one-
dimensional lattices with an exponential length distribution and a homogeneous as
well as isotropic arrangement. (3) The microtubule network, which was an ensemble
of isotropic and radially arranged, one-dimensional lattices of (typically) equal length.
To study the impact of a crosstalk between the cytoskeletal elements we connected
the different filaments with each other as well as with the cytoplasmic domain.

Crossings of filaments from the same filament species were only relevant for the
actin network as microtubules do not intersect because of our choice for their radial
arrangement. Upon placing a new filament in our virtual cell, we checked for crossings
with each of the existing filaments. In case the new filament intersected one or several
other filaments, we identified which lattice sites are affected on the corresponding
filament. In this way, we ultimately obtained lists of crossings for intersections of two
actin filaments and for intersections of an actin filament with a microtubule. Note
that due to our discrete implementation, a single lattice site could be associated with
several crossings. In addition to these intra- and interconnections within and between
the filament layers, we also connected filaments to the cytoplasmic layer. To do so,
we projected each of the lattice sites of the filaments onto the cytoplasmic lattice and
connected the lattice site on the filament with that in the cytoplasm. Note that the
same cytoplasmic lattice site could, in general, be associated with multiple lattice sites
of filaments.

After the construction of our virtual melanophore, we randomly placed the virtual
melanosomes on the lattice sites. The stochastic dynamics of the melanosomes are
described in the following.
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3.2.3.2 Dynamics of virtual melanosomes

Figure 3.5 Illustration of the computational model for collective melanosome motion.
Melanophores were modeled as two-dimensional circles that contain one-dimensional actin
and microtubule filaments with an intrinsic orientation (upper panel). The distribution of
actin filaments was homogeneous and isotropic. Microtubules were arranged radially and
extended from the center of the cell to the periphery. The dynamics of melanosomes was
either (i) directed towards barbed ends when bound to actin, (ii) bidirectional but with a
dominating minus-end directed component (see also Section 3.2.4 for a comment on this
choice) when bound to microtubules (iii) diffusive in two dimensions when unbound. On
intersections of filaments melanosomes could either continue on the same filament or switch
onto another filament with respective probabilities pAct→MT, pMT→Act, and pAct→Act.
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Particles (i.e. virtual melanosomes) obeyed the following dynamic rules: In gen-
eral, motion was modeled as stochastic transitions between lattice sites. For each
of the domains, particle dynamics was different. When bound to actin filaments,
particles moved unidirectionally at rate r+actin to neighboring lattice sites in the direc-
tion of the barbed end. When bound to microtubules, virtual melanosomes moved
bidirectionally to neighboring lattice sites in both directions on the microtubule. This
implementation mimicked a transport mediated by dynein and kinesin motors. Note
that such a bidirectional motion was also observed in vivo [234]. The corresponding
transition rates are denoted with r+MT for motion towards the plus end and r−MT for
motion towards the minus end, respectively. Particles in the cytoplasmic layer moved
with isotropic rates rCytoplasm to neighboring lattice sites in all four directions, which
corresponds to discretized two-dimensional diffusive motion.

Particles interacted by steric exclusion whenever they were bound to filaments.
Specifically, this means that motion was only possible when the respective target
lattice site was vacant. In the cytoplasmic layer, particles didn’t interact and multiple
occupations of a single lattice site were allowed.

At intersections of two filaments, particles could switch from one filament to the
other. The respective rates are denoted with rAct→MT for the transitions from actin
to microtubule filaments, rMT→Act for the transitions from microtubules to actin
filaments, and rAct→Act for the transitions from one actin filament to another. In
experiments, the effective probabilities to switch from one filament to another were
determined. To transfer these effective probabilities to our model, we disallowed a
particle to switch back to the original filament before the particle hasmoved at least one
lattice site further. Thus, the respective probabilities to switch onto another filament
(switching probabilities) are related to the rates by pAct→MT = rAct→MT/(rAct→MT +

r+actin) for the switching probability from actin to microtubule filaments, pMT→Act =

rMT→Act/(rMT→Act + r+MT + r−MT) for switching events from microtubules to actin
filaments, and pAct→Act = rAct→Act/(rAct→Act + r+actin) for switching from one actin
filament to another. Switching onto another filament was only possible when the
respective target site was vacant.

The interaction of filaments with the cytoplasm was as follows: Particles from a
specific lattice site in the cytoplasmic domain could attach at rate rCytoplasm→MT =

rCytoplasm→Act to associated lattice sites on microtubules and actin filaments, respect-
ively. Such an attachment process was only allowed when the respective lattice site
on the filament was vacant. We assumed that melanosomes bind equally likely to
microtubules and actin filaments. This approximation is reasonable whenever the
binding process is limited by the time scales imposed by three dimensional diffusion
but not by the time scales of the reaction itself. The detachment of particles that
are bound to actin filaments and microtubules occurred at rates rAct→Cytoplasm and
rMT→Cytoplasm, respectively. As we implemented non-interacting particles in the cyto-
plasm, this process occurred irrespective of whether the associated lattice site in the
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cytoplasm was occupied or vacant. At the plus (barbed) ends of actin filaments and
microtubules we implemented increased detachment rates r endAct→Cytoplasm = r+Act and
r endMT→Cytoplasm = r+MT, respectively. In this way, melanosomes were assumed to “walk
off” filament ends.

An illustration of the model that summarizes the implementation of the virtual
melanophore and the particle dynamics is shown in Fig. 3.5.

3.2.4 Measured biomolecular changes provoke a switch between
aggregation and dispersion in silico

The in vitro measurements of our collaborators showed that the key target in the
regulation of myosin-based transport complexes of Xenopus frogs is the probability
at which they switch from actin to microtubule filaments. Other biomolecular
characteristics, such as the velocity ofmotors or their affinity, did not show a significant
response to a PKA-dependent phosphorylation in the experiments. We therefore
wanted to understand how these measurements for Xenopus translate to the cell-wide
organization of melanosomes and, ultimately, how they relate to the functionality of
melanophores.

To this end, we transferred the results of our collaborators to the in silico setup
detailed in the previous section. In vivo, the transition from an aggregated to a dis-
persed state might be accompanied by a change in the dynamics of microtubule-based
molecular motors (i.e. dynein and kinesin) [238]. However, in this research project
we specifically wanted to study the impact of the experimental results independently
of other potential regulatory factors. Thus, to differentiate the impact of a change
in the switching probabilities from that of a potential change in the dynamics of
melanosomes on microtubules, we kept the dynamics of virtual melanosomes on
microtubules constant throughout our simulations. Specifically, we implemented a
predominantly centripetal motion of the melanosomes on the microtubule network,
which favors aggregation of melanosomes in the cell center. Implementing centripetal
rather than centrifugal motion of melanosomes on microtubules had the following
reason: Maintaining a dispersed state in melanophores of Xenopus frogs relies on the
actin network. It has been shown that a depolymerization of the actin cytoskeleton of
a melanophore in the (late) dispersed state causes a centripetal motion of melanosomes
which results in the clustering of the pigment organelles in the center of the cell [54].
This finding shows that the preferred direction of motion of melanosomes on micro-
tubules is minus-end directed, even in melanophores in a dispersed state. Thus, the
maintenance of the dispersed state requires an intact actin-based transport system.
Our choice of dynamics of melanosomes on microtubules therefore correspond to
addressing the questions: Can the motion of melanosomes on actin filaments outper-
form the centripetal motion of melanosomes on microtubules? Can a change in the
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probability of melanosomes to switch from actin filaments to microtubules already
by itself induce a switch from an aggregated to a dispersed state of a melanophore?

Figure 3.6 Decreasing the probability pAct→MT to switch from actin filaments to micro-
tubules provokes the dispersion of melanosomes in silico. (a) Illustration of a virtual cell
at the three different values pAct→MT = {61%, 31%, 1%} for pMT→Act = 46% (corresponding
to the value measured for transport complexes of Xenopus frogs in the experiments, see
also Fig. 3.4). Low values of pAct→MT caused a much broader distribution of the simulated
melanosomes in the cell which leads to a brighter appearance as for melanophores in vivo.
(b) The average distance of pigment organelles to the center of the cell r̄ (t ) determined in our
simulations converged to a stationary value r̄ ∗ (dashed orange line) that depended on the prob-
abilities pMT→Act and pAct→MT. The stationary average distance of the organelles to the center
r̄ ∗ increased rapidly for decreasing values of pAct→MT which shows that a change in this value
provokes dispersion of our virtual melanophores. Probabilities of melanosomes to switch from
actin filaments to microtubules corresponded to that of panel (a), pAct→MT = {61%, 31%, 1%}.
The simulations were performed at pMT→Act = 46%. Snapshots in (a) correspond to the last
time frame of the simulation corresponding to the data shown in (b). The radius of the cell
was set to 30 µm. Other parameter values as given in Table 3.2

Using this approach, our simulations yielded the following insights. For high
switching probabilities pAct→MT melanosomes were transferred to the microtubule
network which consequently caused aggregation in our simulations, as expected. Strik-
ingly, however, even completely without a change of the dynamics on microtubules—
that is without downregulating dynein activity—decreasing the switching probab-
ility from actin filaments to microtubules provoked the dispersion of the virtual
melanosomes. When the respective probability was lowered, pigment organelles
were transferred onto the actin network which, in fact, outperformed the centripetal
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motion on microtubules. As a result, the melanosomes distributed broadly in the
virtual cell. Corresponding results from simulations are presented in Fig. 3.6 (a) that
shows the same virtual cell for three different values of pAct→MT = {61%, 31%, 1%}
at pMT→Act = 46%. Note that in experiments pAct→MT for myosin-based transport
complexes from Xenopus frogs changed from 2% to 29% due to phosphorylation at an
approximately constant value of pMT→Act ≈ 46% (see also Fig. 3.4). The observation
that dispersion can be provoked by decreasing pAct→MT is particularly remarkable
when considering that motion on the actin network was frequently interrupted by
cytosolic excursions after falling off the network at filament ends. Cytosolic melano-
somes, however, attached equally likely to nearby actin and microtubule filaments
such that long and uninterrupted paths of melanosomes on the actin network were
unlikely.

In order to introduce a quantitative measure of the degree of dispersion, we de-
termined the average distance of virtual melanosomes to the center of the cell at a
specific time t :

r̄ (t ) =
1
N

N∑
i=1

ri(t ), (3.1)

where ri(t ) is the distance of the i-th pigment to the center of the cell at time t and N is
the total number of pigment organelles. As our virtual melanophores evolved in time,
the average distance of organelles to the center converged to a stationary value r̄ ∗. This
value depended on the switching probabilities pAct→MT and pMT→Act as illustrated
in Fig. 3.6 (b). Importantly, r̄ ∗ was significantly larger for small values of pAct→MT
than for large values of pAct→MT which shows that a regulation of the distribution of
melanosomes is possible by solely changing the corresponding probability.

In the next step we tested whether changes in the distribution of melanosomes
occur reversibly. We therefore alternated between low and high values of pAct→MT
in the simulations on time scales that allowed for a relaxation of the melanosome
dynamics between the switches. On timescales of approximately an hour, the cell-
wide distribution of pigment organelles could indeed be converted back and forth
between an aggregated and a dispersed state, as shown in Fig. 3.7. Interestingly, these
timescales also approximately correspond to those measured in vivo [58, 59]. Taken
together, these data show that a switch between a dispersed and an aggregated state
of a melanophore in silico occurs when simulating the different phosphorylation-
dependent switching probabilities measured in vitro.

To gain further understanding of the relevance of the in vitro measurements, we
wanted to understand whether a redistribution of melanosomes in our simulations
occurs efficiently and robustly in the range of values determined experimentally for
pMT→Act and pAct→MT. We thus changed the probability pAct→MT in a range of 1-
99% for three different values of pMT→Act ≈ {30%, 40%, 50%} and determined the
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Figure 3.7 In silico reconstitution of a switch between dispersion and aggregation of
melanosomes. The figure shows the temporal evolution of the average distance of melano-
somes to the cell center in a simulation where we implemented a switch in pAct→MT from a
high (pAct→MT = 31%, orange shading) to a low (pAct→MT = 1%, purple shading) probability
at time t=4 h. A redistribution of melanosomes between an aggregated and a dispersed state
occurred reversibly and on timescales of approximately one hour that correspond to those
in vivo [58, 59]. The simulation was performed at pMT→Act = 46%, which approximately
corresponds to the value measured for the myosin-based transport complexes of Xenopus
frogs measured in vitro. We used parameter values as given in Table 3.2.

corresponding value of the average distance of pigment organelles to the center of
the cell in the stationary state r̄ ∗.1 Note that the variation in pMT→Act investigated
here corresponds to a variation around the value measured in vitro, see Fig. 3.4. As r̄ ∗
showed a dependency on the specific cytoskeletal network that was randomly realized
in our simulations, we performed simulations in 15 virtual cells and computed the
ensemble average. The result is depicted in Fig. 3.8 and shows that a redistribution of
melanosomes occurs robustly and efficiently in the range of probabilities pMT→Act
and pAct→Mt that correspond to those measured in vitro: The degree of dispersion as
quantified by r̄ ∗ was particularly sensitive for variations of pAct→MT in the range from
1-40%. This range, in particular, includes the phosphorylation-dependent change
of switching probabilities observed experimentally of pAct→MT from 2% to 29%
when phosphorylating the transport complexes, see Fig. 3.4. Moreover, variations
in pMT→Act close to a value of 46% (i.e. close to the in vitro value) didn’t affect r̄ ∗ to

1 We did not simulate probabilities of 0% and 100% as we had the impression that this might correspond
to unrealistic scenarios.
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Figure 3.8 In vitro measurements correspond to an effective and efficient means to
change the cell-wide organization of melanosomes. In simulations, we changed pAct→MT
in a range of 1-99% for three different fixed values of pMT→Act = {30.4%, 40.2%, 50%} and
determined the corresponding values of r̄ ∗. The average distance of organelles to the center
r̄ ∗ was only responsive to a variation in pAct→MT in the region from approximately 0-40%.
This coincides excellently with the change from pAct→MT = 2% to pAct→MT = 29% (blue
shaded area) that was measured in vitro when phosphorylating the transport complexes of
Xenopus, see also Fig. 3.4. Moreover, changes in pMT→Act close to the value of pMT→Act = 46%
(corresponding to that measured in vitro for Xenopus) had little impact on the distribution
of melanosomes in the cell. Each data point corresponds to an average over 15 cells. Error
bars show the standard error of the mean. We used parameter values as given in Table 3.2.

a large degree. We therefore concluded that the in vitro measurements relate to an
efficient and robust means to regulate the cell-wide distribution of melanosomes.

In summary, our in silico analysis highlights the relevance of the in vitro exper-
iments of our collaborators: The measured change of the switching probability
pAct→MT is likely to contribute to the collective dynamics of pigment organelles
not only in a secondary role, but as a key player in the cell-wide organization of
melanosomes. In fact, while an additional regulation of kinesin and dynein might
support a rapid transition from an aggregated to a dispersed state, our simulations
show that it is per se not required and that it can be compensated by regulating the
cytoskeletal crosstalk.
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3.2.5 The cell-wide distribution of melanosomes is regulated more
effectively by changing the switching from actin to
microtubules than vice versa

Figure 3.9 Manifold of regulation of the cell-wide melanosome distribution due to
variations in the switching probabilities. We measured the stationary value of the average
distance of melanosomes to the center of the cell r̄ ∗ in virtual melanophores for varying
probabilities pMT→Act and pAct→MT for 11 equidistant values in the range from 1-99%. Each of
the data points (blue points) obtained in simulations corresponds to an ensemble average over
15 virtual melanophores to suppress the randomness that arises from different realizations
of the (random) cytoskeletal networks. A two-dimensional spline was fitted to the data to
interpolate values in the complete pAct→MT-pMT→Act plane. In light of the resulting manifold,
we can address the problem of a regulation of the degree of dispersion very generally by
focusing on changes in r̄ ∗ due to variations in pMT→Act and pAct→MT, respectively. We used
parameter values as given in Table 3.2.

In vitro, a PKA-dependent phosphorylation of the myosin-based transport com-
plexes of Xenopus frogs only resulted in a significant change of the probability
pAct→MT to turn from an actin to a microtubule filament; The transverse process—
switching from microtubules to actin filaments characterized by pMT→Act—did not
show a PKA-dependent response. We therefore sought for functional origins of this
behavior. Studying this problem by in vitro experiments is—with current experi-
mental methods—not feasible, as it is not possible to vary both switching probabilities,
pAct→MT and pMT→Act, over a broad range. Opposed to that, such a scenario is very
well accessible in silico, which consequently allowed us to compare the consequences



168 Cell-wide organization of proteins

of changes in both probabilities. To this end, we systematically varied pAct→MT and
pMT→Act in ten equidistant steps from 1-99%. For each combination of switching
probabilities the virtual melanosomes converged to a stationary average distance to
the cell center r̄ ∗ which, in turn, quantified the degree of dispersion. Again, we
simulated 15 different virtual cells and took the ensemble average. We then fitted a
two-dimensional spline to the data to interpolate values for the stationary pigment
distances r̄ ∗ in the complete pMT→Act vs. pAct→MT plane. The result of this analysis is
presented in Fig. 3.9. In view of the manifold determined by r̄ ∗(pMT→Act, pAct→MT),
the question of regulating the distribution of melanosomes within a cell could be
rephrased as follows: How can r̄ ∗ be changed effectively and efficiently by variations
of the switching probabilities pMT→Act and pAct→MT? A redistribution of particles is
only efficient when a small change in the switching probabilities leads to a significant
change in r̄ ∗, in other words if r̄ ∗ responds sensitively. Thus, a reasonable value for the
efficiency of our regulatory problem is the magnitude of the gradient of the manifold
r̄ ∗(pMT→Act, pAct→MT). While, in principle, a simultaneous variation of both prob-
abilities pMT→Act and pAct→MT may contribute to the regulation of the organization
of melanosomes, we focused on changing either of the rates. This had the following
reason: The in vitro results of our collaborators for transport complexes of Xenopus
frogs suggested that primarily the probability of pAct→MT is changed by the signaling
factor that triggers dispersion (PKA). Opposed to that, pMT→Act did not show a re-
sponse to the signaling factor. Thus, we wanted to dissect the efficiency of a regulation
of the melanosome distribution by changing either pAct→MT or pMT→Act. To this end,
we compared the absolute values of the partial derivatives of the stationary average
distance of melanosomes to the center with respect to both switching probabilit-
ies, |∂pMT→Act r̄

∗(pMT→Act, pAct→MT)| and |∂pAct→MT r̄
∗(pMT→Act, pAct→MT)|. The results

are shown in Fig. 3.10. Importantly, r̄ ∗ showed a high sensitivity for variations in
pAct→MT (dark orange area in Fig. 3.10) over a much broader range than for variations
in pMT→Act. Intuitively, this can be understood in the following way: In order to
outperform the centripetal motion on microtubules, a melanosome must compensate
any inward displacement by a larger, isotropic displacement on the actin network.
Thus, dispersing the melanosomes in the cell requires sufficiently long passages of
actin-based motility. Consequently, large values of pAct→MT impede any regulatory
impact of varying pMT→Act, which limits this way of regulation. Our theoretical
considerations further supported the relevance of the in vitro results of our collab-
orators: The change of the probabilities to switch between microtubules and actin
filaments identified in vitro (black arrow in Fig. 3.10; for values see also Fig 3.4) is
located in a particularly sensitive region of the pMT→Act-pAct→MT plane. Furthermore,
the switching probabilities measured for the transport complexes of zebrafish (green
point in Fig. 3.10; for values see also Fig 3.4) are located in a region where only a
variation of pAct→MT would lead to a change in the distribution of melanosomes in
a cell. Our regulatory manifold hence suggests a clear pathway for the evolution of
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Figure 3.10 Regulatory sensitivity of the degree of dispersion r̄ ∗ for changes in the
probabilities to switch from actin to microtubule filaments and vice versa. The figure
shows the absolute value of the partial derivatives |∂pAct→MT r̄

∗(pMT→Act, pAct→MT)| (left) and
|∂pMT→Act r̄

∗(pMT→Act, pAct→MT)| (right), respectively, of the regulatory manifold as depicted
in Fig. 3.9. These quantities determine the sensitivity of r̄ ∗ (which measures the degree
of dispersion) when changing the probabilities pMT→Act and pAct→MT. Regulation of the
melanosome distribution via pAct→MT showed a much larger region that is sensitive (dark
orange area) as compared to a regulation via pMT→Act. The phosphorylation-dependent change
of the switching probabilities measured in vitro for transport complexes of Xenopus frogs
(black arrow) is located in a region with a particularly high regulatory sensitivity. The myosin-
based transport complex of the earlier organism (i.e. zebrafish) showed in-vitro switching
probabilities pMT→Act and pAct→MT (green point) that are located in a region that would only
be sensitive for changes in pAct→MT. Blue arrows indicate the direction of regulation in the
respective plots. Parameter values as given in Table 3.2.

a regulatory mechanism when starting from the value corresponding to the earlier
organism (i.e. zebrafish): regulating the probability pAct→MT. While it should be
noted that, of course, our analysis identifies just one of several potential regulatory
pathways, it is nonetheless remarkable that the pathway suggested by our regulatory
manifold is in excellent accordance with the evolutionary changes traced back by the
in vitro analysis of our collaborators (Fig 3.4).

Taking everything together, our theoretical analyses detailed above revealed the
following functional characteristics related to a regulation of the melanosome dis-
tribution in a cell: (a) The distribution of melanosomes is affected by variations of
pMT→Act only in a very limited fashion. Opposed to that, a regulation by changes of
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pAct→MT is possible in a robust manner. (b) The myosin-based transport complexes
used in the in vitro experiments of our collaborators operated in a range of switching
probabilities where the cell-wide organization of melanosomes responds particularly
well to variations of pMT→Act. (c) Our general analysis of the regulatory efficiency
strongly suggests the evolution towards a regulation of pAct→MT when starting at
switching probabilities that correspond to zebrafish (i.e. an earlier organism than
the Xenopus frog). It is noteworthy that a previous study already suggested that the
regulation of the probability to switch from actin filaments to microtubules fulfills an
important role for the organization of melanosomes in fish melanophores [235]. The
in vitromeasurements of our collaborators (Fig. 3.4) showed that this regulation can’t
be mediated by myosin in fish cells and is thus probably mediated by kinesin and/or
dynein. Our theoretical findings explain why a regulation of exactly this probability
is beneficial and show that myosin has adopted the ability of carrying out this central
role in Xenopus frogs.

While our analysis detailed above provides a reasonable measure for small vari-
ations of the switching probabilities, it doesn’t quantify the maximal potential change
in r̄ ∗ when the switching probabilities are changed over a broad range. In other
words, we have so far quantified the sensitivity of regulation but are lacking a meas-
ure for the maximal potential impact of a specific scheme of regulation. To over-
come this limitation, we analyzed the maximal difference of r̄ ∗ along the curves
defined by pMT→Act ∈ [0.01, 0.99]; pAct→MT = const. and vice versa. Together with
this measure for the effectiveness (i.e. the maximal potential impact) of a regula-
tion upon variations in pAct→MT and pMT→Act, respectively, we also determined
the maximal sensitivity for the respective changes, measured in terms of the max-
imal value of the partial derivative in the respective direction: smax

Act→MT(pMT→Act) =

maxpAct→MT∈[0.01,0.99][∂pAct→MT r̄ ∗(pMT→Act, pAct→MT)] and smax
MT→Act(pAct→MT) =

maxpMT→Act∈[0.01,0.99] [∂pMT→Act r̄ ∗(pMT→Act, pAct→MT)]. The result of this approach
is presented in Fig. 3.11. This analysis unfolded further principles of the regulation of
cell-wide melanosome organization: While a regulation of the distribution of melano-
somes is, in principle, effective by changing pMT→Act in the range pAct→MT / 30%, the
melanosome distribution is not particularly sensitive against such changes (small values
for the maximal sensitivity) basically over the whole range of values for pAct→MT. Con-
versely, a regulation by changing pAct→MT is effective (large values for the effectiveness)
in a range of pMT→Act ' 30% and sensitive (large values for the maximal sensitivity)
in the range pMT→Act ' 10%. Remarkably, a fixed probability of pMT→Act ≈ 46%
(dashed line in Fig. 3.11) as measured in vitro is located closely to a global, simul-
taneous optimum of the effectiveness and sensitivity of regulation via changes in
pAct→MT.

In summary, our analysis of the maximal regulatory effectiveness and sensitivity
further supports the notion that only a regulation of the melanosome distribution
via changes in pAct→MT works robustly while a regulation via variations in pMT→Act
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Figure 3.11 The intracellular distribution of melanosomes is regulated effectively and
sensitively by changes in pAct→MT. (a) Illustration of our definition of the effectiveness and
sensitivity at the example of varying pAct→MT. Each fixed value of pMT→Act (here 40.2%) is
related to a curve r̄ ∗(pAct→MT) (blue points). For each such curve, we defined the effectiveness
as the maximal range of r̄ ∗ and the maximal sensitivity as the maximal (absolute) value
of the slope. Hence, we can associate an effectiveness and a sensitivity for every (fixed)
value of pMT→Act. Analogous to this example for varying pAct→MT and fixed pMT→Act, we
also computed the effectiveness and sensitivity for varying pMT→Act and fixed pAct→MT. (b)
Resulting effectiveness and sensitivity for a regulation by changes in pAct→MT [blue circles
in panels (b) and (c)] and by changes in pMT→Act [orange triangles in panels (b) and (c)]. A
regulation by changes in pMT→Act was only effective at low fixed values of pAct→MT and not
particularly sensitive in the complete range of pAct→MT. The regulation of the distribution
of melanosomes by changes in pAct→MT, on the other hand, was effective and sensitive for
pMT→Act ' 30%. The value of pMT→Act = 46% (dashed green line) as measured in vitro is
close to a global, simultaneous optimum of the effectiveness and sensitivity. Parameter values
as given in Table 3.2.
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is very limited. Moreover, our analysis strongly suggests that myosin-based transport
complexes in Xenopus frogs are optimized in a way to establish an effective yet
sensitive regulation of the cell-wide melanosome distribution.

3.2.6 Conclusion and outlook

In this sectionwe have studied the cell-wide distribution of pigment organelles. In early
and lower vertebrates, a redistribution of these organelles in skin cells allows these
animals to adapt their skin color to the environment: When the pigment organelles
switch from an aggregated state, in which the organelles are accumulated in the center
of the cell, to a dispersed state, in which the organelles are distributed throughout the
cell, the cells change from a bright to a dark appearance. While it is a well-known fact
that this redistribution depends on the motion of the organelles on both cytoskeletal
components, actin filaments and microtubules, the underlying biomolecular changes
as well as general principles that govern a redistribution of melanosomes remained
unknown.

Here we traced a global redistribution of melanosomes back to a change in the
transition probability at which organelles switch from an actin to a microtubule fila-
ment. Our collaborators on this project, the group of Dr. Zeynep Ökten, unraveled
that myosin-based transport complexes that move the organelles on actin in Xenopus
frogs developed a switch in this probability that can be triggered by a phosphorylation.
Opposing this finding for transport complexes of Xenopus frogs, the corresponding
complexes from zebrafish—an organism that evolved earlier—did not show such a
response. Here, we used computational modeling to relate the experimental findings
for individual proteins to a cell-wide organization and, ultimately, to their functional-
ity. In doing so, we elucidated the following principles of the cell-wide organization
of pigment organelles:

• We showed that the measured change of the probability of an individual myosin-
based transport complexe to switch from an actin filament to a microtubule
indeed reconstitutes a transition between an aggregated and a dispersed state
in silico. While additional regulation of other factors might facilitate such a
transition in vivo, our simulations showed that they are per se not required
to reorganize the organelles in silico. Thus, the findings of our collaborators
indeed relate to the functionality of melanophores.

• We probed the efficiency and robustness of the in vitro measurements in our
computational model by measuring the degree if dispersion when varying
the switching probability over a broad range. This analysis revealed that the
cell-wide organization of pigment organelles was particularly sensitive against
changes in the probability to switch from actin filaments to microtubules in the
range measured in the experiment. Conversely, a modulation of the opposite
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probability (i.e. for switching from a microtubule to an actin filament) around
the values measured in vitro did not provoke significant changes in the distri-
bution of the virtual melanosomes. Hence, the results from the experiments
translate to an efficient yet robust way to regulate the cell-wide organization of
organelles.

• With regard to the biomolecular changes observed experimentally for the trans-
port complexes from fish and amphibians, our results suggest a potential evolu-
tionary pathway: Starting from the in vitro measurements related to zebrafish,
only changes in the probability pAct→MT showed a significant impact on the
distribution of organelles. Opposed to that, a change in the transverse probabil-
ity, pMT→Act, did not lead to a relevant redistribution of organelles in a virtual
cell. Thus, our theoretical analysis provides a rationale for the evolution of
biomolecular properties of the myosin-based transport complex of zebrafish
and Xenopus frogs as determined in the experiments.

In summary, our study elucidates principles that determine the cell-wide organiz-
ation of melanosomes over a broad range: While our collaborators uncovered first
biomolecular changes related to the signaling factors that drive a redistribution of
melanosomes in vivo, we related these molecular properties to the cell-wide collective
dynamics of organelles. Nevertheless, the remaining open questions with regard to
the regulation of the melanosome distribution in cells should be mentioned as well.
Foremost, our study treated the problem from the view of single myosin motors
while in vivo also dynein and kinesin motors might contribute to a redistribution of
melanosomes. The aim of this study was to investigate the contribution of myosin-
based transport complexes on a cell-wide organization of melanosomes independently
from other factors that might additionally influence the melanosome distribution.
For future work, it might, however, be revealing to also study the potential regulatory
impact of kinesin and dynein. Additionally, not only other types of motors are
bound to melanosomes in vivo but also several motors from each of the species are
present. Hence, it will be interesting to relate properties of individual motor proteins
to the “tug of war” between multiple motors that are simultaneously attached to the
melanosomes. Finally, it should also be noted that the reorganization of melano-
somes in mammalian cells has a different functional purpose than that in the cells
of fish and amphibians: Mammalian cells have lost the capability of dynamically
rearranging organelles between an aggregated and a dispersed state. Instead, they
have developed mechanisms to transport the organelles to the periphery of a cell
where the melanosomes are handed over to the surrounding skin tissue for protection
against UV radiation [59]. With regard to this different functionality, it will certainly
be revealing to study evolutionary changes that might have governed these different
characteristics of the cell-wide organization of pigment organelles in mammalian cells
as compared to fish and amphibians.
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Appendix

A Parameter selection

In the following, we describe how we inferred the parameters used in our model
for the collective dynamics of melanosomes in a melanophore. To begin with, we
summarize the parameters with respect to the cytoskeletal architecture.

In melanophores, it is assumed that the orientation of actin filaments is mostly
isotropic [237]. Therefore, we selected the orientation of actin filaments in our virtual
melanosomes from a uniform distribution in the range [0,2π ). The length in our
model is chosen from an exponential distribution with a mean length of 1.5 µm, which
is roughly consistent with experimental data [237]. The average distance between
crossings of actin filaments was measured in vivo and yielded values between 160 nm
and 330 nm [237]. We determined this value in our simulations and chose a number
of actin filaments that leads to an average distance of approximately 170 nm. The
corresponding density of actin filaments is approximately 9 µm of filament per µm2

area of the cell. This value is also consistent with the values determined in other
experiments [239–241].

For the arrangement of microtubules we could find neither a measurement of
the distribution of their ends in Xenopus melanophores nor a measurement of the
number of microtubules per cell. We estimated the number of microtubules roughly
by 200, which is in accordance with estimates of the number of microtubules in
different cells [242].

For the diffusion constant of our virtual melanosomes, we used the following
approach: The measured diffusion coefficient of melanosomes in vivo is approxim-
ately 1.3 × 10−3 µm2/s [243]. In vivo measurements of the diffusion constant are,
however, likely obstructed by other factors such as molecular crowding. Since we
were interested in the corresponding value of an unobstructed motion in the cyto-
plasm as it occurs on very small length scales, we also computed the theoretical value
based on the Stokes-Einstein relation. Assuming an effective cytoplasmic viscosity of
5 × 10−2 Pa s [244] yields a value of approximately 1.7 × 10−2 µm2/s for a melanosome
with an approximate diameter of 500 nm [237]. For the simulations we chose a value
of 4.5 × 10−3 µm2/s, which is located between the measured and the theoretical value.

For the speed of melanosomes on actin filaments we used the results of in vitro
measurements for single myosinmotors performed by our collaborators which yielded
values of approximately 240 nm/s, see also Table 3.1. In addition to these measure-
ments for individual myosin-based transport complexes, our collaborators determined
also the translocation speed when the transport complexes where additionally bound
to melanosomes. As the transport-complex-melanosome construct moved at a speed
of 190 nm/s, we concluded that melanosomes move at similar velocities on actin
filaments as individual transport complexes and used the latter value (240 nm/s) in
our simulations.
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For the speed of melanosomes on microtubules we referred to previous in vivo
measurements [233]. These measurements quantified the bidirectional motion of
melanosomes on microtubules and yielded values of approximately 400 nm/s for plus-
end as well as minus-end directed transport of melanosomes on microtubules. During
aggregation, the average run length of uninterrupted minus-end directed motion was
approximately 640 nm while that of uninterrupted plus-end directed motion was
approximately 480 nm. This indicates an increased probability of melanosomes to
move towards the minus end as compared to move to the plus end. Since we treat
bidirectional motion in an effective fashion in our model, the resulting rates to move
towards the plus end and minus end can be understood as the respective velocities
multiplied by the probability for being in a plus-end or minus-end directed state,
respectively. Based on the previous finding, we chose an effective speed of 240 nm/s
for the motion of the virtual melanosomes towards the plus end of a microtubule and
an effective speed of 390 nm/s for motion towards the minus end of a microtubule.
Thus, melanosomes in our model showed a slightly increased minus-end directed
component in their motion on microtubules than the melanosomes measured in the
in vivo experiments [233], which corresponds to a conservative choice of modeling.

For the detachment rates of melanosomes, we assumed that corresponding values
are lowered significantly by the fact that multiple motors transport a single melano-
some. This assumption is supported by experimental [103] and theoretical [127]
findings. We estimated that melanosomes show a 100-fold increased dwell time as
compared to single myosin motors on microtubules and actin filaments. Based on
the in vitro measurements of our experimental collaborators for the run lengths of
myosin-based transport complexes (see Table 3.1) and dwell times on microtubules
(approximately 3.9 s), we assumed dwell times of τMT ≈ 390 s of melanosomes on
microtubules and τAct ≈ 417 s on actin filaments. At the plus (barbed) ends of mi-
crotubules (actin filaments), we chose values for the detachment rates that equal the
speed of translocation on the respective filament type. In this way, the melanosomes
simply “walked off” the plus and barbed ends of filaments, respectively.

Measuring the attachment rate of molecular motors that are in close proximity
to a cytoskeletal filament is experimentally very challenging. As we could not find
a corresponding measurement for the attachment rates of myosin motors to either
microtubules or actin filaments, we resorted to previous measurements of the attach-
ment rate for kinesins to microtubules [245]. We estimated that this value would,
however, be similar to the attachment rate of mysoin motors to actin filaments or
microtubules as the binding process is likely limited by the time scales related to a
diffusion in the cytoplasm but not by the time scales related to the binding reaction
itself. The above mentioned study measured a value of 5 s−1 for the attachment rate
of kinesins to a microtubule in their close proximity which we used for the binding
rate of our particles to actin filaments as well as to microtubules.
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Our cells had a radius of 30 µm. For discretization, we used a lattice size of
a = 30 nm, which was inspired by the fact that this corresponds to the step size of
myosin motors [246] that we wanted to resolve in the simulations. We used this
discretization to relate all of the values detailed above to the respective rates in terms of
the lattice spacing. In case of translocation speeds, this transformation is trivial. The
diffusion coefficient D of melanosomes in the cytoplasm is related to the “hopping
rate” rCytoplasm of melanosomes in the cytoplasm by D = rCytoplasma2.

The switching probability of melanosomes from one actin filament to another
one at an intersection was indirectly inferred in previous experiments [237]. During
dispersion, the corresponding switching probability was estimated to be very low or
effectively zero. Thus, we set the value for pAct→Act to 3% in our simulations.

The number of virtual melanosomes in the cell was roughly estimated on a visual
basis to be compatible with in vivo images of melanophores and to reproduce visible
color changes when redistributing. A random number of melanosomes was selected
according to a mean density of 33 melanosomes per µm2 of cell area.

A list of the ensuing parameters employed in our simulations is given in Table 3.2.

Parameter Value
Radius of the cell 30 µm

Number of actin filaments 17000
Average length of an actin filament 1.5 µm

Number of microtubules 200
Length of a microtubule 30 µm
Melanosome density 33 µm−2

Motion in the cytoplasm rCytoplasm 5 s−1

Motion on actin filaments r+actin 8 s−1

Plus-end directed motion on microtubules r+MT 8 s−1

Minus-end directed motion on microtubulesr−MT 13 s−1

Detachment rate from actin filaments rAct→Cytoplasm 0.0024 s−1

Detachment rate from actin ends r endAct→Cytoplasm 8 s−1

Detachment rate from microtubules rMT→Cytoplasm 0.0026 s−1

Detachment rate from microtubule ends r endMT→Cytoplasm 8 s−1

Attachment rate to actin filaments rCytoplasm→Act 5s−1

Attachment rate to microtubules rCytoplasm→MT 5s−1

Switching probability actin-actin pAct→Act 3%

Table 3.2 Summary of the parameters for our model for the cell-wide organization of
melanosomes.



4 Postface

This thesis covers several examples where nonequilibrium processes lead to organ-
ization and formation of structure on the probably smallest scale of life: within an
individual cell. In Chapter 2, we have seen how proteins organize along individual
cytoskeletal filaments: (1) Breaking detailed balance at a single position localizes
proteins at their target binding site. (2) Two species of actively moving molecular
motors self-organize into patterns along a microtubule, which critically changes their
collective dynamics. (3) Specific molecular motors of yeast cells form aggregates,
which triggers a reversal of their direction of motion. In Chapter 3, we have discussed
examples of protein organization on a cell-wide level: (1) Active motion groups
curved polymers into dynamic vortex patterns—a mechanism that might contribute
to bacterial cell division. (2) The interplay of active motion of pigment organelles
on the different cytoskeletal networks stimulates a cell-wide redistribution of these
organelles and thereby allows certain animals to change the color of their skin.

Because the examples where nonequilibrium processes create order are ubiquitous,
it seems tempting to raise this observation to a general principle. However, each of
our examples differed with respect to the approaches we employed as well as with
respect to the specific characteristics of structure formation. In the end, comprehensive
theoretical frameworks that describe nonequilibrium systems—and thus livingmatter—
are mostly lacking. While the question of “What is life?” [247] has intrigued scientists
for decades, it seems that we are still far away from an answer. Meanwhile, we can
resort to studying nonequilibrium systems individually and tailor different approaches
for different collective phenomena. In this regard, studying living systems may well
be just as diverse, complex—yet fascinating—as life itself.
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