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Abstract

This dissertation examines various philosophical issues associated with the

physics of phase transitions. In particular, i) I analyze the extent to which

classical phase transitions impose a challenge for reductionism, ii) I evaluate

the widespread idea that an infinite idealization is essential to give an account

of these phenomena, and iii) I discuss the possibility of using the physics of

phase transitions to offer a reductive explanation of cooperative behavior in

economics.

Against prominent claims to the contrary, I defend the view that phase

transitions do not undermine reductionism and that they are in fact compat-

ible with the reduction of thermodynamics to statistical mechanics. I argue

that this conclusion follows even in the case of continuous phase transitions,

where there are two infinite limits involved.

My second claim is that the infinite idealizations involved in the physical

treatment of phase transitions although useful are not indispensable to give

an account of the phenomena. This follows from the fact that the thermo-

dynamic limit provides us with a controllable approximation of the behavior

of finite systems. My third claim is that the physics of phase transitions, in

particular renormalization group methods, can constitute a promising way

of giving a reductive explanation of stock market crashes. This will serve

not only to motivate the use of statistical mechanical methods in the study

of economic behavior, but also to contradict the claim that renormalization

group explanations are always non-reductive explanations.
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Zusammenfassung

Diese Doktorarbeit untersucht verschiedene philosophische Probleme, die mit

der Physik der Phasenübergängen zu tun haben. Insbesondere i) analysiere

ich, ob das klassische Phasenübergänge tatsächlich eine Herausforderung für

den Reduktionismus ist, ii) bewerte ich die Idee, dass eine unendliche Ide-

alisierung notwendig ist, um eine Erklärung der Phasenübergänge zu geben

und iii) diskutiere ich die Möglichkeit, die Physik der Phasenübergängen zu

verwenden, um eine reduktive Erklärung des kooperativen Verhaltens in der

Wirtschaft anzubieten.

Gegen prominente Ansprüche auf das Gegenteil verteidige ich die An-

sicht, dass Phasenübergänge Reduktionismus nicht untergraben, und dass sie

tatsächlich mit der Reduktion der Thermodynamik zur statistischen Mechanik

vereinbar sind. Ich behaupte, dass dieser Beschluss sogar im Falle von kon-

tinuierlichen Phasenübergängen folgt, wo es zwei unendliche Limes gibt.

Mein zweiter Anspruch besteht darin, dass die unendlichen Idealisierun-

gen an der physischen Behandlung von Phasenübergängen, obwohl nützlich,

nicht notwendig sind, um eine Erklärung der Phänomene zu geben. Das

folgt aus der Tatsache, dass die thermodynamische Limes uns mit einer kon-

trollierbaren Annäherung des Verhaltens von endlichen Systemen versorgt.

Mein dritter Anspruch besteht darin, dass die Physik von Phasenübergängen,

inbesondere die Renormalisierungsgruppe, eine versprechende Weise einset-

zen kann, eine reduktive Erklärung von Börsencrashs zu geben. Das wird

nicht nur dienen, um den Gebrauch von statistischen mechanischen Metho-
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den in der Studie des Wirtschaftsverhaltens zu verleiten, sondern auch um

dem Anspruch zu widersprechen, dass die Erklärung der Renormalisierungs-

gruppe immer nichtreduktive Erklärungen sind.
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Karim Thébault and Sean Gryb for encouraging me to start thinking about

the relationship between phase transitions and black holes.

I would like to thank the Deutscher Akademischer Austauschdienst (DAAD),

which awarded me a DAAD scholarship to support my doctoral studies, the

National Science Foundation (NSF), which partially supported my research
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Chapter 1

Introduction

A question that has puzzled scholars since Democritus is how exactly is it

that the macroworld of our everyday experience arises out of the behavior of

the microconstituents of matter. This is in fact the question that motivated

the development of statistical mechanics, which is a theory that aims to

explain how macroscopic phenomena, especially thermodynamic phenomena,

originate in the cooperative behavior of interacting lower level entities. From

its origin, in the latter half of the nineteenth century, until now, statistical

mechanics has successfully derived many macroscopic thermal phenomena

from the laws governing the interactions of microscopic constituents and

probabilistic assumptions, however in some important cases such a derivation

has been particularly problematic. One of those cases is the irreversible

approach to equilibrium and the other case, which is the one that I will focus

on in this dissertation, is equilibrium phase transitions.

Phase transitions are those sudden changes in the phenomenological prop-

erties of a system that we observe every time that we see liquid water turn-

ing into vapor. Other typical examples include the transition from a normal

conductor to a superconductor and from a paramagnetic to a ferromagnetic

phase in magnetic materials. Surprisingly, the microscopic explanation of

these everyday phenomena has constituted one of the major challenges of
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statistical mechanics. In fact, in order to give such an account it has been

necessary the appeal to the thermodynamic limit, whereby the volume and

the number of particles go to infinity, and, in the case of continuous phase

transitions, the introduction of renormalization group methods, which is an

entirely new theoretical framework that basically consists in reducing the

number of effective degrees of freedom, losing information about the fine

grained details of the system.

The use of the thermodynamic limit and the introduction of renormaliza-

tion group techniques in the theory of phase transitions motivated an anti-

reductionist position among physicists working in condensed matter physics,

who considered phase transitions as a genuine example of emergent behav-

ior in physics. In his celebrated paper “More is Different” (Anderson 1972),

Philip Anderson says that the use of the thermodynamic limit “is not only

convenient but essential to realize that matter will undergo mathematically

sharp, singular ’phase transitions’” (p. 395). As a consequence of that, he

argues that the properties of a huge number of constituents, all working

together, were different from the behavior of a few of these particles. In

a similar vein, the statistical mechanic Lebowitz (1999) claims that phase

transitions are “paradigms of emergent behavior” (p.2), arguing that the

properties of this collective behavior had no counterpart in the behavior of

individual atoms.

Recently, considerations of this sort have entered the philosophical de-

bate and have been at the center of philosophical discussions on reduction,

idealizations and explanations in science. In this discussion, some philoso-

phers have argued that statistical mechanics cannot provide a full reductive

account of phase transitions in finite systems and that this undermines re-

ductionism, i.e. the belief that ultimately all macroscopic laws are reducible

to the fundamental microscopic laws of physics (i.e. Batterman 2011, Mor-

rison 2012, Bangu 2009). At the same time, it has been claimed that the

infinite idealization is indispensable to give an account of phase transitions
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(Batterman 2005, Jones 2006), which has led some of them to the conclusion

that discontinuities are physically real (Batterman 2005). Finally, it has been

said (Batterman and Rice 2014) that the use of renormalization group tech-

niques leads to a special kind of explanations in science which they regard

as non-reductive and non-causal.

In this dissertation, I address these positions and analyze the extent to

which the physical treatment of classical phase transitions actually call into

question important philosophical theses. Although I will admit that phase

transitions challenge various notions of reduction present in the physical and

philosophical literature, my main claim is that phase transitions do not un-

dermine reductionism and that they are in fact compatible with the reduction

of thermodynamics to statistical mechanics. Against prominent claims to the

contrary, I will defend the view that the statistical mechanical treatment of

these phenomena actually succeeds in building a connection between the

thermodynamic behavior of phase transitions and the cooperative behavior

of lower level entities.

My second claim is that the infinite idealizations involved in the physi-

cal treatment of phase transitions although useful are not indispensable to

give an account of the phenomena. This will follow from the fact that the

thermodynamic limit provides us with a controllable approximation of the

behavior of finite systems, which is not necessarily the case when other lim-

iting operations, such as the infinite-time limit, are involved.

My third claim is that the use of renormalization group techniques do

not necessarily lead to non-reductive explanations. Contra what has been

claimed by some philosophers (e.g. Batterman and Rice 2014), I will argue

that these methods can constitute a promising way of offering a reductive

account for the behavior of collective phenomena not only in physics but also

in the social sciences, in particular, in economics.

These claims will be made along the next three chapters, each of which is

to a large extent self-contained. In the next chapter (Chapter 2), I will focus
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on the problem of the reduction of phase transitions and argue that despite

the use of the thermodynamic limit and the introduction of renormalization

group methods, phase transitions are compatible with inter-theory reduction.

The notion of inter-theory reduction that I will endorse is a revised version

of Nickles’ (1973) notion of limiting reduction. This notion departs from the

traditional Nagelian model reduction, but in my view accommodates better

the limiting operations involved in the statistical mechanical treatment. In

the same chapter, I argue against the idea that the thermodynamic limit is

indispensable to give an account of phase transitions.

In Chapter 3, I put the emphasis on the justification for the empirical

success of infinite limits. After a systematic comparison between the ther-

modynamic limit in the theory of phase transitions and the infinite-time in

the ergodic theory of equilibrium, I will conclude that what allows for a justi-

fication of the empirical success of the thermodynamic limit is that this limit

is controllable, which means that one has control over how large the value of

the parameter must be assure that the infinite limit is a reasonable substitute

for a finite system. This will also serve to undermine claims about the in-

dispensability of the thermodynamic limit in the theory of phase transitions,

but it will make salient some problems associated with the justification of

the infinite-time limit in statistical mechanics.

Finally, in Chapter 4, I will indirectly address the question of whether

renormalization group explanations always constitute non-reductive expla-

nations. I will do so by considering a specific model of econophysics, the

Johansen-Ledot-Sornette (JLS) model that treats stock market crashes as

critical phase transitions and, therefore, uses renormalization group tech-

niques. After a careful analysis of the epistemic role of this highly idealized

model, I will conclude that this model constitutes a promising way of giv-

ing a reductive and causal explanation for stock market crashes that can

also help visualize possible avenues for intervention. This will serve not only

to motivate the use of statistical mechanical methods in the study of eco-
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nomic behavior, but also to contradict the idea that renormalization group

explanations are always non-reductive explanations.

Although this dissertation aims to resolve different problems that have

raised in the philosophical discussion around phase transitions, there are

many other issues associated with phase transitions that I will not be able

to address here. In Chapter 5, I will offer an overview of some of these issues

with the purpose of motivating the philosophical discussion on these topics.
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Chapter 2

Phase Transitions: A Challenge

for Reductionism?

“By convention sweet is sweet, bitter is bitter, hot is hot, cold

is cold, color is color; but in truth there are only atoms and the

void.” [Democritus, trans. Durant 1939]

2.1 Introduction

Phase transitions are sudden changes in the phenomenological properties of

a system. Some common examples include the transition from liquid to gas,

from a normal conductor to a superconductor, or from a paramagnet to a

ferromagnet. Nowadays phase transitions are considered one of the most

interesting and controversial cases in the analysis of inter-theory relations.

This is because they make particularly salient the constitutive role played by

idealizations in the inference of macroscopic behavior from a theory that de-

scribes microscopic interactions. In fact, it appears that statistical mechanics

– a well-established microscopic theory – cannot account for the behavior of

phase transitions as described by thermodynamics – a macroscopic theory –

without the help of infinite idealizations in the form of mathematical limits.
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In the discussion on phase transitions, physicists and philosophers alike

have mainly been concerned with the use of the thermodynamic limit, an

idealization that consists of letting the number of particles as well as the vol-

ume of the system go to infinity. For many authors (e.g. Bangu 2009, Bangu

2011; Batterman 2005; Batterman 2011, Morrison 2012) this idealization has

an important philosophical consequence: it implies that phase transitions are

emergent phenomena. As a result, they claim that such phenomena present

a challenge for reductionism, i.e. the belief that ultimately all macroscopic

laws are reducible to the fundamental microscopic laws of physics.

On the other hand, numerous other authors (e.g. Butterfield 2011; But-

terfield and Buoatta 2011; Norton 2012; Callender 2001; Menon and Cal-

lender 2013) have rejected this conclusion, arguing that the appeal to the

infinite limit does not represent a problem for reductionism. Some of them

(Butterfield 2011, Norton 2012) have even argued that phase transitions, in-

stead of threatening reductionism, are paradigmatic examples of Nagelian

reduction, whereby reduction is understood in terms of logical deduction.

These last remarks, however, have not ended the debate. In particular,

the physical treatment of continuous phase transitions that implements renor-

malization group (RG) techniques is still regarded as especially problematic

for the reductionist attitude towards phase transitions (e.g. Batterman 2011,

Morrison 2012).

In this chapter, I analyze the extent to which classical phase transitions,

especially continuous phase transitions, impose a challenge for reductionism.

My main contention is that classical phase transitions are, in fact, compatible

with reduction, at least with the notion of reduction that relates the behavior

of physical quantities in different theories under certain limiting conditions.

I argue that this conclusion follows even if one recognizes the existence of

two infinite limits involved in the physics of continuous phase transitions.

To reach my goal, I organize this chapter as follows. In the next sec-

tion (Section 2.2), I describe the physics of phase transitions, outlining how
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statistical mechanics recovers thermodynamical behavior. Here I emphasize

that in the RG treatment of continuous phase transitions, apart from the

thermodynamic limit, there is a second infinite limit involved. Subsequently

(Section 2.3), I further develop the concept of limiting reduction suggested

by Nickles (1973). Based on that notion of reduction, I contend (Section

4) that, despite some objections, first-order phase transitions satisfy Nick-

les’ criterion of limiting reduction. However, I also show that continuous

phase transitions do not satisfy this criterion due to the existence of the sec-

ond infinite limit. In Section 5, I suggest to liberalize the notion of limiting

reduction and I argue that continuous phase transitions fulfill this notion.

This paper concludes by describing some attempts to apply RG methods to

finite systems, which indeed support the claim that thermodynamical phase

transitions are reducible to statistical mechanics.

2.2 From Statistical Mechanics to the Ther-

modynamics of Phase Transitions

Statistical mechanics aims to account for the macroscopic behavior typically

described by thermodynamics in terms of the laws that govern microscopic

interactions. In the philosophical literature, the reproduction of the thermo-

dynamic results by statistical mechanics is generally referred to in terms of

reduction. In this section, I will describe how statistical mechanics recovers

the thermodynamic behavior of phase transitions and will explain why phase

transitions are an interesting and puzzling case for the project of reducing

thermodynamics to statistical mechanics.

2.2.1 The Thermodynamics of Phase Transitions

In thermodynamics, phases correspond to regions of the parameter space

(known as a phase diagram) where the values of the parameters uniquely
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specify equilibrium states. Phase boundaries, in contrast, correspond to

values of parameters at which two different equilibrium states can coexist.

The coexistence of states expresses itself as discontinuities of thermodynamic

quantities, like volume, which are related to the first derivatives of the free

energy with respect to a parameter such as pressure or temperature. If the

system goes from one phase to another intersecting a phase boundary, the

system is said to undergo a first-order phase transition. This name is due to

the fact that the discontinuous jumps occur in the first derivatives of the free

energy. On the other hand, if the system moves from one phase to another

without intersecting any coexistence line, the system is said to undergo a

continuous phase transition, in which case there are no discontinuities in-

volved in the first derivatives of the free energy but there are divergencies in

the response functions (e.g. specific heat, susceptibility for a magnet, com-

pressibility for a fluid). An example of a first-order phase transition is the

passage from liquid water to vapor at the boiling point, where the quanti-

ties that experience discontinuous jumps are entropy and volume, which are

first derivatives of the free energy with respect to temperature and pressure

respectively. An example of continuous phase transition instead is the transi-

tion in magnetic materials from the phase with spontaneous magnetization –

the ferromagnetic phase – to the phase where the spontaneous magnetization

vanishes – the paramagnetic phase –. (Figure 1)
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Figure 1: Phase diagram for the paramagnetic–ferromagnetic transi-
tion. Here H is the external magnetic field and T the temperature.
At the transition or critical point TC the spontaneous magnetization
M vanishes.

Although both first-order and continuous phase transitions are of great

interest for the project of reducing thermodynamics to statistical mechanics,

the latter kind is considered to be more controversial than the former. The

reason is that continuous phase transitions have characteristic properties that

are much more difficult to recover from statistical mechanics than first-order

phase transitions. One of those properties is that, in the vicinity of a contin-

uous phase transition, measurable quantities depend upon one another in a

power-law fashion. For example, in the ferromagnetic-paramagnetic transi-

tion, the net magnetization M , the magnetic susceptibility χ, and the specific

heat C depend on the reduced temperature t = T−Tc
Tc

(the temperature of the

system with respect to the critical temperature Tc) as follows:

M ∼ |t|β, C ∼ |t|−α, χ ∼ |t|−γ,

where β, α, γ are the critical exponents. Another remarkable property of

continuous phase transitions is that radically different systems, such as flu-
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ids and ferromagnets, have exactly the same values of critical exponents, a

property known as universality.

Finally, continuous phase transitions are also characterized by the diver-

gence of some physical quantities at the transition or critical point. The

critical exponents α and γ are typically (although not always) positive, so

that the power laws that have negative exponents (and the corresponding

quantities like specific heat and susceptibility) diverge as T → Tc. The

divergence of the magnetic susceptibility χ implies the divergence of the cor-

relation length ξ, a quantity that measures the distance over which the spins

are correlated, which also obeys power-law behavior: ξ ∼ |t|−ν . The di-

vergence of the correlation length is perhaps the most important feature of

continuous phase transitions because it involves the loss of a characteristic

scale at the transition point and thus provides a basis for universal behavior.

The inference of the experimental values of critical exponents – or ade-

quate relations among them – together with the account of universality has

been one the major challenges of statistical mechanics. We will see next that,

in order to provide such an account, it was necessary to appeal to infinite ide-

alizations and to RG methods, an entirely new theoretical framework, which

basically consists in reducing the number of effective degrees of freedom of

the system.

2.2.2 The Importance of the Thermodynamic Limit

We saw in the previous section that the macroscopic behavior of first-order

phase transitions is defined in terms of singularities or non-analyticities in

the first derivatives of the free energy. Gibbsian statistical mechanics offers

a precise definition of the free energy F , given by:

F (Kn) = −κBT lnZ, (2.1)

where Kn is the set of coupling constants, κB is the Boltzmannian constant,

T is the temperature, and Z is the canonical partition function, defined as
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the sum over all possible configurations:

Z =
∑
i

eβHi . (2.2)

When trying to use statistical mechanics to recover the non-analyticities

that describe phase transitions in thermodynamics, the following problem

arises. Since the Hamiltonian H is usually a non-singular function of the de-

grees of freedom, it follows that the partition function, which depends on the

Hamiltonian, is a sum of analytic functions. This means that neither the free

energy, defined as the logarithm of the partition function, nor its derivatives

can have the singularities that characterize first-order phase transitions in

thermodynamics. Taking the thermodynamic limit, which consists of letting

the number of particles as well as the volume of the system go to infinity

N →∞, V →∞ in such a way that the density remains finite, allows one to

recover those singularities. In this sense, the use of this limit appears essential

for the recovery of the thermodynamic values, which motivated Kadanoff’s

controversial claim: “phase transitions cannot occur in finite systems, phase

transitions are solely a property of infinite systems” (Kadanoff, 2009, p. 7).

The appeal to the thermodynamic limit is also found in the descrip-

tion of continuous phase transitions. Consider again the paramagnetic-

ferromagnetic transition. This is a continuous phase transition defined in

terms of the divergence of the magnetic susceptibility at the critical temper-

ature and characterized by the appearance of spontaneous magnetization in

the absence of an external magnetic field. From a statistical mechanical point

of view, the appearance of spontaneous magnetization in finite systems is,

strictly speaking, impossible. The impossibility is due to the up-down sym-

metry of the lattice models used in the study of magnetization, including the

Ising model. A consequence of up-down symmetry is that for zero external

field H the magnetization obeys the symmetry condition M = −M , whose

unique solution is M = 0. That means that the magnetization M with zero

external magnetic field H must be zero (Details elsewhere, e.g. Goldenfeld
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1992, Sec. 4; Le Bellac, Mortessagne, and Batrouni 2006, Sec. 4). This so-

called “impossibility theorem” can be avoided by taking the thermodynamic

limit N →∞ followed by the limits H → 0+ and H → 0−:

M = lim
H→0+

lim
N→∞

1

N

∂F (H)

∂H
6= 0

−M = lim
H→0−

lim
N→∞

1

N

∂F (H)

∂H
6= 0.

Notice that since M and −M have different values and are different from

zero, the magnetic susceptibility, defined as the derivative of the magnetiza-

tion with respect to an external field, diverges to infinity in the neighborhood

of the zero external field. One can see, therefore, that taking the thermo-

dynamic limit not only provides the concept of spontaneous magnetization

with precise meaning but also allows for the recovery of the divergence of the

thermodynamic quantities that characterizes continuous phase transitions.

2.2.3 The Appeal to a Second Limit: Infinite Iteration

of RG Transformations

In an ideal scenario, one would expect to perform a direct calculation of

the partition function. Unfortunately, analytic calculations of the partition

functions have been performed only in particular models with dimension

D = 1 or D = 2; for all other cases, one requires to use approximation

techniques.1 The most useful approximation for the case of first-order phase

transitions is the mean field approximation, which employs the assumption

that each spin acts as if it were independent of the others, feeling only the

average mean field. Although the mean field approximation proved to be

1The first and most famous exact solution of the partition function is the Onsager

solution for an Ising model of dimension D=2.
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successful in some cases of first order phase transitions, experiments have

shown that this account fails to give accurate predictions for the case of

continuous phase transitions, in which the correlation length diverges. It is

believed that this failure is due to the fact that mean field theories neglect

fluctuations whereas fluctuations govern the behavior near the critical point.

A more complete account of continuous phase transitions requires the use

of RG methods. These methods are mathematical and conceptual tools that

allow one to solve a problem involving long-range correlations by generating

a succession of simpler (generally local) models. The goal of these meth-

ods is to find a transformation that successively coarse-grains the effective

degrees of freedom but keeps the partition function and the free energy (ap-

proximately) invariant. The usefulness of RG methods lies in the fact that

one can compute the critical exponents and other universal properties with-

out having to calculate the free energy. This methods also allow to account

for universality, the remarkable fact that entirely different systems behave

qualitatively and quantitatively in the same way near the critical point.

To give a specific illustration of RG methods, let us consider a block spin

transformation for a simple Ising model on the two-dimensional square lat-

tice with distance a between spins.2 Here, the spins have two possible values,

namely ±1. If it is assumed that the spins interact only with an external

magnetic field h and with their nearest neighbors through the exchange in-

teraction K (meaning that the coupling constants are only K and h), the

Hamiltonian H for the model is given by:

H = −K
N∑
ij

SiSj +−h
∑
i

Si. (2.3)

2For simplicity, I am going to restrict the analysis to real-space renormalization. How-

ever, I think that the same conclusions apply to momentum-space renormalization. For

details on the difference between real-space and momentum space-renormalization, see

Wilson and Kogut (1974) and Fisher (1998). For a philosophical account on the difference

between those two frameworks see Franklin (2017)
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By applying the majority rule, which imposes the selection of one state

of spin based on the states of the majority of spins within a block, one can

replace the spins within a block of side la by a single block spin. Thus, one

obtains a system that provides a coarse-grained description of the original

system.

If one assumes further that the possible values for each block spin SI are

the same as in the Ising model, namely ±1, and also that the block spins

interact only with nearest neighbor block spins and an external field, the

effective Hamiltonian H ′ will have the same form as the original Hamiltonian

H:

H ′ = −K ′
Nl−d∑
IJ

SISJ +−h′
∑
I

SI . (2.4)

Formally, this is equivalent to applying a transformation R to the original

system, so that H ′ = R[H], in which the partition function and the free

energy remain approximately invariant.3

Although the systems described by H and H ′ have the same form, the

correlation length in the coarse-grained system ξ[K ′] is smaller than the

correlation length ξ[K] of the original system. This follows from the fact

that the correlation length in the effective model is measured in units of the

spacing la whereas the correlation length in the original system is measured

in units of the spacing a. In other words, the correlation length is rescaled

by a factor l. The expression that relates the correlation lengths of the two

systems is:

ξ[K]

l
= ξ[K ′]. (2.5)

3The previous example captures the spirit of real-space RG methods. However in

practice RG transformations consist of complicated non-linear transformations that do

not preserve the form of the original Hamiltonian. This allows for the possibility that new

local operators are generated during the RG transformation (Details in Goldenfeld 1992,

p. 235).
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After n iterations of the RG transformation, the characteristic linear di-

mension of the system is ln. Thus the correlation lengths in the sequence of

coarse-grained models vary according to:

ξ[K] = lξ[K ′] = ... = lnξ[K(n)]. (2.6)

The idea is that one iterates the RG transformation until fluctuations at

all scales up to the physical correlation length ξ are averaged out. In many

cases, this involves numerous iterations (Details elsewhere, e.g. Le Bellac et

al. 2006, Sec. 4.4.3; Goldenfeld 1992, Sec. 9.3).

It follows from equation (6) that for a large correlation length, the number

of iterations should be large. For an infinite correlation length, which is

the case of continuous phase transitions, the number of iterations should be

infinite.4 Indeed, if the original correlation length ξ[K] is infinite and we

want to eliminate all effective degrees of freedom, i.e. we want the effective

correlation length to be small, then we are forced to take the limit n→∞ in

the right hand side of equation (6) such that the following expression holds:

ξ[K] = lim
n→∞

lnξ[K(n)] =∞ (2.7)

This result is important because it demonstrates the existence of two

different infinite limits involved in the theory of phase transitions. The first is

the thermodynamic limit that takes us to a system with an infinite correlation

length. The second is the limit for the number of RG iterations going to

infinity that takes us to a fixed point Hamiltonian, i.e. the Hamiltonian with

the coupling constants equal to their fixed point values: [K∗] = R[K∗]. These

fixed points can be also thought of as stationary or limiting distributions to

which the renormalization group trajectories converge after infinite iterations

4In order to maintain the system at criticality, one performs a sort of double rescaling

process: one changes scale in space and also changes the distance to criticality in coupling

space (Details in Sornette 2000, p. 232).
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of the RG transformation n → ∞. This point will be crucial for what will

be argued in Sections 3.3 and 5.2.

Although the iteration of the RG transformation preserves the symme-

tries of the original system, it does not preserve the value of the original

Hamiltonian, and, therefore, it does not preserve the value of the set of cou-

pling constants [K] associated with the corresponding Hamiltonians. Thus,

the iteration of the RG transformation can be thought of as describing a

sequence of points moving in a space of coupling constants Kn or a corre-

sponding space of Hamiltonians H. If the sequence describes a system at the

critical point, after infinite iterations n→∞ it will converge to a non-trivial

fixed point [K*] given by:

[K∗] = R[K∗] (2.8)

The other possible fixed points are trivial, namely K = 0 and K =∞, which

correspond to low and high temperature fixed points respectively.

At fixed points the coupling constants remain invariant under the trans-

formation. Therefore, varying the length scale does not change the value

of the Hamiltonian and therefore brings us to a physically identical system.

This latter feature associates fixed points with the property of scale invari-

ance, which means that the system looks statistically (and physically) the

same at different scales.

It has been shown that by linearizing in the vicinity of the fixed point, one

can calculate the values of the critical exponents and the relations between

them (Details in Goldenfeld 1992, Sec. 9; Domb 2000, Sec. 7; Sornette

2000, Sec. 11). This is remarkable because it demonstrates that the critical

exponents are solely controlled by the RG trajectory near the fixed point and

that one does not need to calculate the free energy to determine the behavior

of the system in the vicinity of the critical point. This means also that the

initial values of the coupling constants do not determine the critical behavior.

The latter constitutes the origin of the explanation of universality because it
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tells us that systems that flow towards the same fixed point are governed by

the same critical exponents, even if they are originally described by different

coupling constants. The systems that flow towards the same fixed point –

that are in the basin of attraction of the fixed point – are said to be in the

same universality class.

In summary, we have seen that the recovery of the thermodynamic proper-

ties from statistical mechanics involves: i) first, the introduction of particular

assumptions (e.g. lattice structure, a particular kind of degrees of freedom,

ranges of values of the degrees of freedom, and dimension) that allow one

to build a specific model (Ising model in our case study); ii) second, the

assumption of the thermodynamic limit, which brings us to a fine-grained

system with infinite number of particles and infinite correlation length;5 and

iii) finally, the assumption of a second infinite limit that consists of an infinite

number of iterations of a coarse-graining transformation. This limit takes us

to a fixed point Hamiltonian that represents a coarse-grained model. After

those steps are made, the most important statistical mechanical approaches

can make accurate predictions of the behavior of continuous phase transitions

and explain universal behavior. Figure 2 illustrates this process. Notice, how-

ever, that in the case of first-order phase transitions, one could in principle

derive the thermodynamic behavior just after taking the first limit.6

5Recently, Norton (2012) has challenged the appeal to an infinite system in the theory

of phase transitions. His contention is that the limit system would have properties that

are not suitable to describe phase transitions, such as the violation of determinism and

energy conservation. This point is relevant for his distinction between idealizations and

approximations, which led him to the conclusion that phase transitions are a case of

approximation and not idealization. Since we are trying to make a different point here,

we are going to adhere to the standard façon de parler that refers to the existence of an

“infinite system” (e.g. Kadanoff 2009; Fisher 1998; Butterfield 2011). This does not mean

that our view is incompatible with Norton’s view.
6One should bear in mind that although RG methods are not required to infer the

behavior of first-order phase transitions, they can be (and have been) used to describe

these kinds of transitions as well. See Goldenfeld (1992, Sec. 9).
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Figure 2: Inter-theory relation for continuous phase transitions.
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2.3 The Concept of Limiting Reduction

What has been at stake in the philosophical debate around phase transitions

is whether the thermodynamic description of these phenomena reduces to

statistical mechanics. Even if the previous section showed that statistical

mechanics can reproduce the non-analyticities that describe phase transitions

in thermodynamics, the appeal to the infinite idealizations throws suspicion

to the legitimacy of such a reduction. The main aim of Sections 4 and 5

is to evaluate whether the infinite idealizations mentioned in Section 2 are

compatible with the reduction of phase transitions. However, given that the

term “reduction” is notoriously ambiguous, before we can assess this issue,

some clarifications as to how this term is constructed in this context are

necessary. This is the task of the present section.

2.3.1 Nickles’ Concept of Limiting Reduction

Since we are interested in relating the thermodynamic treatment of phase

transitions with another theory that aims to describe the same phenomena,

we are treating phase transitions as a potential case of inter-theory reduc-

tion, where reduction is taken as a relation between two theories (or parts

of theories). This kind of reduction is to be distinguished from other types

of reduction such as whole-parts reduction.7 More specifically, since the

description of the phenomenon in the two theories coincides only by assum-

ing a limit process, the case of interest is a candidate for a specific class

of inter-theory reduction sometimes called limiting or asymptotic reduction

(Landsman, 2013).

Nickles (1973, pp. 197-201), who was the first to distinguish limiting re-

duction from other classes of inter-theory reduction, calls this type of reduc-

tion reduction2 (henceforth LR2) to distinguish it from reduction1, which

corresponds to Nagelian reduction. He characterizes LR2 in the following

7See Norton (2012) for a clear distinction between these two kinds of reduction.
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way:

LR2: A theory TB (secondary theory) reduces to another TA

(fundamental theory), iff the values of the relevant quantities of

TA become the values of the corresponding quantities of TB by

performing a limit operation on TA.8

According to Nickles, the motivation for this type of reduction is heuristic

and justificatory. The development of the new (or fundamental) theory TA

is motivated heuristically by the requirement that, in the limit, one obtains

the same values as the predecessor (or secondary) theory TB for the relevant

quantities. As such, TA is also justified as it can account adequately for

the domain described by TB. Nickles is also emphatic in pointing out that

this kind of reduction is to be distinguished from reduction1, which, as I said

above, corresponds to Nagelian reduction. He clarifies that whereas Nagelian

reduction requires the old (or secondary) theory to be embedded entirely in

the new theory, limiting reduction only requires that the two theories make

the same predictions for the relevant quantities when a limiting operation

is performed. In this way, reduction2, in contrast to reduction1, does not

require the logical derivation of one theory from another and, therefore, does

not require logical consistency between the two theories (Nickles, 1973, p.

186). Since Nickles’ reduction2 does not make any reference to explanation,

logical deduction or the ontological status of reduction, which are aspects of

more standard philosophical conceptions of reduction, this type of reduction

8Nickles (1973) inverts the order of “reducing” theory and theory “to be reduced”

used by philosophers. According to him, the “reducing theory” is the theory that results

from the limit operation and the theory “to be reduced” is the theory in which the limit

operation is performed. This terminology is motivated by the way in which physicists

use the term “reduce to”. Since this notation is not relevant for Nickles’ general concept

of limiting reduction, I will use the term according to the philosophers’ jargon and not

following Nickles’ terminology.
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is often regarded as the “physical sense” of reduction (e.g. Nickles 1973;

Rohrlich 1988; Batterman 2016).

2.3.2 Beyond Nickles’ Concept of Reduction

In order to evaluate potential cases of limiting reduction, it is useful to have

a formal definition at hand. Batterman (2016) advances such a definition by

proposing the following schema (which he calls Schema R, henceforth SR):

SR : A theory TB reduces asymptotically to another TA iff:

lim
x→∞

TA = TB,

where x represents a fundamental parameter appearing in TA. TA is generally

taken as the fundamental theory and TB is typically taken as a secondary

or coarser theory.9 For Batterman, the relation between two theories can

be called “reductive” if the solutions of the relevant laws of the theory TA

smoothly approach the solutions of the corresponding laws in TB, or in other

words, if the “limiting behavior” of the relevant laws, with x → ∞, equals

the “behavior in the limit”, where x =∞.

It could be objected, however, that Batterman’s Schema R is not precise

enough since, strictly speaking, the limit is taken on functions representing

quantities (or properties) of a theory rather than on the theory itself. More-

over, even if two functions representing the same physical quantity in TA and

TB respectively coincide when a limit is taken, that does not guarantee the

reduction of an entire theory to another. In fact, it might be possible for the

functions representing a given quantity in the fundamental and secondary

theory to be related by limiting reduction while for another quantity the

9In the original formulation, Batterman (2016) defines schema R, using ε→ 0 instead

of x→∞. For consistency with other parts of this paper, I instead express schema R as

considering the limit to infinity x → ∞. Whether one formulates x → ∞ or ε → 0 does

not make a difference in the content of this schema.
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corresponding functions fail to do so. A more precise definition of limiting

reduction, formulated only in terms of the quantities to be compared, is as

follows:

LR3: A quantity QB of TB reduces asymptotically to a quantity

QA of TA if:

lim
x→∞

Qx
A = QB,

where x represents a parameter appearing in TA, on which the function rep-

resenting Qx
A depends. According to this definition, one is thus allowed

to call a relation between quantities “reductive” if the values of the quan-

tity Qx
A smoothly approach the values of the quantity QB when the limit

x → ∞ is taken. Naturally, in order to obtain the reduction of one theory

to another, one would require that the values of all the physically significant

quantities of the reduced theory coincide with the values of the quantities

of the fundamental theory under certain conditions.10 Proving this in every

case is a huge enterprise, but note that, according to the above framework,

the failure of reduction of one of the relevant quantities suffices to infer the

failure of reduction of an entire theory to another. As it will be seen in the

next section, this is exactly what is at stake in the case of phase transitions.

Before going there though, more specifications regarding the concept of

limiting reduction are necessary. For example, it can still be argued that

definition LR3 is far too strict since it requires that the values obtained

by performing a limit operation on a quantity Qx
A are exactly the same

as the values of QB. In most cases this condition is not satisfied. Take,

for instance, the concept of entropy as it is defined in thermodynamics and

in Bolzmannian statistical mechanics. In thermodynamics, such a quantity

10Note, however, that here we assume that the two quantities have some qualitative

features in common that make them candidates for reduction. An important topic that

deserves to be addressed in future research regards the issue of whether quantitative co-

incidence suffices to infer correspondence between two quantities of different theories.
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reaches its maximum value at equilibrium and does not allow for fluctuations.

In contrast, Bolzmannian entropy is a probabilistic quantity that fluctuates

every now and then even when the system has reached equilibrium. Cases

like this motivated many authors (including Nickles himself) to allow for

“approximate reduction”. Accordingly, one can reformulate LR3 as follows :

LR4: A quantity QB of TB reduces asymptotically to a quantity

QA of TA if:

lim
x→∞

Qx
A ≈ QB,

where “≈” means “approximates”, “is similar to”, or “is analogous to”. This

means that a quantity Qx
A reduces another quantity QB if the values of Qx

A

approximate the values of QB when the limit x→∞ is taken.

2.4 Are Continuous Phase Transitions Incom-

patible with Reduction?

In order to judge whether phase transitions correspond to a case of reduction,

one needs to specify which quantities of TA and TB are expected to display

the same values when a certain limit is taken. Subsequently, one needs

to evaluate whether these quantities relate to each other according to the

definitions provided in the previous section.

In both first-order and continuous phase transitions one is interested in

comparing quantities of statistical mechanics with quantities of classical ther-

modynamics, where statistical mechanics is taken as the reducing theory TA

and classical thermodynamics as the theory to be reduced TB. As it was

shown in Section 2.2, in the case of first-order phase transitions one takes

the thermodynamic limit to obtain the singularities in the derivatives of the

free energy that successfully describe the phenomenon in thermodynamics.

Following definition LR4, one will say that the derivatives of the free energy
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in thermodynamics are reduced to the corresponding quantities in statistical

mechanics if

lim
N→∞

F SM
N ≈ F TD,

where F SM represents a derivative of the free energy as defined in statistical

mechanics and F TD the corresponding quantity in thermodynamics.

The case of continuous phase transitions is different, because, in general,

one is not interested in computing the free energy but rather in calculating

the universal quantities, like the critical exponents, and in explaining uni-

versality. In other words, one uses the thermodynamic limit and the infinite

iteration limit to calculate the critical exponents that control the behavior

of the system close to the critical point.

2.4.1 The Problem of “Singular” Limits

The view that phase transitions are not a case of limiting reduction has been

most notably developed by Batterman (2001; 2005; 2011). He argues that

this is a consequence of the “singular” nature of the thermodynamic limit.11

Using Batterman’s terminology, a limit is singular “if the behavior in the

limit is of a fundamentally different character than the nearby solutions one

obtains as ε → 0” (Batterman, 2005, p. 2). According to him, the thermo-

dynamic limit is singular in this sense because no matter how large we take

the number of particles N to be, as long as the system is finite, the deriva-

tives of the free energy will never display a singularity. As a consequence,

he says that taking the limit of the free energy of finite statistical mechanics

F SM does not allow us to construct a model or theory that approximates the

thermodynamic behavior.

The idea that we can find analytic partition functions that “ap-

proximate” singularities is mistaken, because the very notion of

11Similar views are also held by Rueger (2000) and Morrison (2012).
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approximation required fails to make sense when the limit is sin-

gular. The behavior at the limit (the physical discontinuity, the

phase transition) is qualitatively different from the limiting be-

havior as that limit is approached (Batterman, 2005, p. 14).

This means that phase transitions would not even satisfy definition LR4

stated in Section 4.

Although Batterman’s argument is plausible, Butterfield (2011) (and But-

terfield and Buoatta (2011)) challenges his reasoning using the following

mathematical example. Consider the following sequence of functions:

gN(x) =


−1 if x ≤ −1/N

Nx if − 1/N ≤ x ≤ 1/N)

1 if x ≥ 1/N

As N goes to infinity, the sequence converges pointwise to the discontin-

uous function:

g∞(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

If one introduces another function f , such that

f =

1 if g is discontinuous

0 if g is continuous

then one will conclude, in the same vein as Batterman, that the value of f∞

at the limit N = ∞ is fundamentally different from the value when N is

arbitrarily large but finite. However, Butterfield warns us that if we look at

the behavior of the function g, we will see that the limit value of the function

is approached smoothly and therefore that the limit system is not “singular”

in the previous sense.
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According to Butterfield, this is exactly what happens with classical phase

transitions and, for the cases analyzed here, he seems right.12 Consider again

the paramagnetic-ferromagnetic transition discussed in Section 2.1. This

transition is characterized by the divergence of a second derivative of the free

energy - the magnetic susceptibility χ - at the critical point. If we introduce

a quantity that represents the divergence of the magnetic susceptibility and

attribute a value 1 if the magnetic susceptibility diverges and 0 if it does

not (analogously to the function f in Butterfield’s example), then we might

conclude that such a quantity will have values for the limit system that are

considerably different from the values of the of systems close to the limit,

i.e. for large but finite N . As a consequence, we will say that definition LR4

fails. However, if we focus on the behavior of a different quantity, namely

the magnetic susceptibility itself χ, we will arrive at a different conclusion.

In fact, as N grows, the change in the magnetization becomes steeper and

steeper so that the magnetic susceptibility smoothly approaches a divergence

in the limit (analogous to the function g). This result is important because

it tells us that definition LR4 holds:

lim
N→∞

χN
SM ≈ χTD,

where χSM and χTD are taken as the magnetic susceptibility in statistical

mechanics and thermodynamics respectively. The existence of finite statisti-

cal systems whose quantities approximate qualitatively the thermodynamic

quantities for the case of first-order and continuous phase transitions has

been also corroborated by Monte Carlo simulations (I will come back to this

12Even if Butterfield aims to make a more general claim, this does not hold for all cases of

“singular” limits. Landsman (2013) shows that for the case of quantum systems displaying

spontaneous symmetry breaking and the classical limit h̄→ 0 of quantum mechanics, the

situation is different and much more challenging. It seems therefore that the analysis of

singular limits and the way of “dissolving the mystery” around them should be done on a

case-by-case basis.
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point in Section 6).

The important lesson from Butterfield’s argument is that the “singular”

nature of the thermodynamic limit does not imply that there are no models of

statistical mechanics that approximate the thermodynamic behavior of phase

transitions, for N sufficiently large but finite. If we assume that inter-theory

reduction is consistent with the fact that the quantities of the secondary

theory are only approximated by the quantities of the fundamental theory

(as suggested by schema LR4), then we arrive at the important conclusion

that the “singular” nature of the thermodynamic limit is not per se in tension

with the reduction of phase transitions.

One needs to be cautious, however, in not concluding that the previous

argument solves all the controversy around the reduction of phase transitions.

First of all, it is important to bear in mind that we are referring only to

classical phase transitions and that quantum phase transitions have not been

considered.13 Second, one needs to note that we have not considered the use

of renormalization group methods yet, in which there are two infinite limits

involved. This is precisely the issue that we are going to address next.

2.4.2 Implementing RG Methods

As was shown in Section 2, the inference of the thermodynamic behavior of

continuous phase transitions generally requires the appeal to RG methods.

Batterman (2011) has suggested that the assumption of RG methods imposes

a further challenge for the project of reducing phase transitions to statistical

mechanics. He attributes this difficulty to the need for the thermodynamic

limit in the inference of fixed point solutions, which are said to be neces-

sary for the computation of critical exponents and for giving an account of

universality. He claims (2011, p. 23):

Notice the absolutely essential role played by the divergence of the

13For an analysis of quantum phase transitions see Landsman (2013).
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correlation length in this explanatory story. It is this that opens

up the possibility of a fixed point solution to the renormalization

group equations. Without that divergence and the corresponding

loss of characteristic scale, no calculation of the exponent would

be possible.

Why is it that the thermodynamic limit appears to be so important in

the inference of non-trivial fixed points? The reason is that in every finite

system there will be a characteristic length scale associated to the size of

the system. Therefore, the application of a coarse-graining transformation

beyond that length will no longer give identical statistical systems and the

“RG flow” will inevitably move towards a trivial fixed point, with values of

the coupling constants either K = 0 or K =∞.

Figure 3 describes a contour map sketching the topology of the renormal-

ization group flow and serves to illustrate the previous situation. Here the

RG flows are represented by the trajectories R and D in a space S of Hamil-

tonians. Each point in this space represents a physical system described by a

particular Hamiltonian associated with a set of coupling constants K. In this

topology, the elements of S can be classified according to their correlation

lengths ξ. Therefore, one can define surfaces containing all Hamiltonians

H ∈ S with a given correlation length. For example, the critical surface

describes the set of all Hamiltonians with infinite correlation length ξ =∞.

In the figure, p represents a system with a Hamiltonian that inhabits the

critical surface ξ = ∞, whereas s represents a system with a Hamiltonian

that is infinitesimally close to p but is not on the critical surface; p∗ and p0

are fixed points. As one can see, the trajectory starting from s will stay close

to trajectory R, describing a system at criticality, but eventually will move

away towards a trivial fixed point. This follows because in a finite system

the RG transformation will constantly reduce the value of the correlation

length, moving the system away from criticality and resulting in a system

with trivial values of coupling constants. As a result, two neighbor systems
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will approach far away fixed-points when a RG transformation is repeated

infinitely many times, i.e. when n→∞, and therefore the two neighbor sys-

tems will approach two different limiting distributions describing physically

diverse systems. Since the values of the critical exponents can be calculated

by linearizing around non-trivial fixed points, this naturally means that it-

erating the RG transformation infinitely many times in a finite system will

lead us to a fixed point from which one will be able neither to compute the

critical exponents nor to give an account of universality. Taking into account

that the critical exponents describe the behavior of the physical quantities Q

close to the critical point, one can formally express this fact as follows. For

N being arbitrarily large but finite:

lim
n→∞

QN,n
SM 6≈ QTD,

where n is the number of iterations, QSM represents a quantity of statisti-

cal mechanics controlled by the critical exponents, whereas QTD represents

the corresponding quantity in thermodynamics whose values match with the

experimental results.
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Figure 3: Contour map sketching the topology of the renormalization
group flow (R). s and p represent systems infinitesimally close to each
other. p∗ is a critical fixed point and p0 is a trivial-fixed point.

This is what led Batterman and others, for example Morrison (2012), to

stress the importance of the thermodynamic limit. In fact, one can see from

the argument given above that only systems with infinite correlation length

(associated with a loss of characteristic scale) will approach non-trivial fixed

points after infinite iterations of the RG transformation. The point that

these authors do not emphasize is, however, that it is by taking the infinite

iteration limit n → ∞ that one approaches trivial fixed points from which

one can neither explain universality nor calculate the critical exponents. If

one realizes this, then the question that arises is whether in a finite system

one can recover the experimental values of the critical exponents only after a

finite number of iterations of the renormalization group transformations, i.e.

without taking the second limit. This will be addressed in the next section.
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2.5 Approximation, Topology and the Reduc-

tion of Continuous Phase Transitions

Before assessing the reducibility of continuous phase transitions, let us discuss

the notion of approximation involved in the concept of limiting reduction. In

the definition suggested by Nickles (and also in the revised versions mentioned

in Section 4), there is implicit a precise criterion of approximation given by

the convergence of the values of quantities in the fundamental theory to

the values of the corresponding quantities in the secondary theory (See also

Scheibe 1998, Hüttermann and Love 2016, Fletcher 2015).14 We saw that,

in cases where the quantitative and qualitative behavior of phase transitions

can be inferred solely by taking the thermodynamic limit, this criterion of

approximation well captures the idea of the reducibility of the quantities that

describe phase transitions. The cases mentioned in Section 4.1 are examples

of this.

Unfortunately, one cannot use the same criterion of approximation in

cases in which taking the thermodynamic limit is not sufficient to infer the

thermodynamic behavior. The reason is that, as we saw, in the case of con-

tinuous phase transitions one generally infers the thermodynamic behavior

and explains universality only after performing a second limiting operation,

which consists of applying repeatedly an RG transformation in the parameter

space until the trajectory converges towards a non-trivial fixed point. Such

a convergence does not, however, give us the criterion of approximation that

can be used to determine whether phase transitions are a case of reduction.

This is because when we ask about reduction, we are interested in analyz-

ing the behavior of finite systems. Instead, the points of the RG trajectory

describing a system at criticality are confined to the critical surface, corre-

sponding to points with infinite correlation length ξ =∞, and that does not

give us any information about the behavior of finite systems.

14The convergence involved in limiting relations is generally pointwise and not uniform.
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The challenge that the reductionist needs to face is that every point in

a space of coupling constants that describes a system with finite correlation

length will approach a trivial fixed point when the infinite iteration limit is

taken. In this sense, if one sticks to the criterion of convergence to establish

similarity or approximation between different physical quantities, one will

conclude that the values of the quantities of statistical mechanics do not

approximate the values of thermodynamic quantities. As a consequence, and

in agreement with Batterman (2011), one would claim that limiting reduction

fails for the case of continuous phase transitions.

But, what forces us to understand approximation only in terms of con-

vergence towards a certain limit? Imagine that we could delimitate a region

in the neighborhood of a fixed point p∗, as illustrated in Figure 4. Imagine

further that we could show that the RG trajectory D generated by a finite

system s intersects the region U around the fixed point p∗, after a large

but finite number of iterations. Finally, imagine that linearizing around a

point d′ of the trajectory D which resides inside the region U allows us to

calculate, at least approximately, the experimental values of the critical ex-

ponents. Could we say, then, that we have succeeded in deriving, at least

approximately, the experimental values of the physical quantities from fi-

nite statistical mechanics? I think we could. Let me now show that this is

actually the case.
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Figure 4: The region around the fixed point p∗ represents neighboring
points.

Wilson and Kogut (1974, Sec. 12) demonstrated by using ε-expansion

approximation that in principle, and for an idealized case, if one starts from

a point which is close enough to the critical surface, the RG trajectory will

move close to the critical trajectory until it reaches the vicinity of a non-

trivial fixed point p∗.15 Once the trajectory reaches the neighborhood U of

the fixed point p∗ will stay there for a long time (which means, for repeated

iterations of the RG transformation), thereby acting as it were a fixed-point.

Finally, as n→∞, the trajectory will eventually move away from that region

approaching a trivial fixed point.

What is relevant for us is that within the neighborhood U of the fixed

point linearization is indeed possible, which implies that from a finite system

one can obtain the values of the critical exponents after a finite number of

iterations of the RG transformation. In order to derive accurate values of

15The ε-expansion is an asymptotic expansion for which ε takes values from ε = 1 to

ε << 1. Since the exponents are not analytic at ε = 0 one faces convergence problems

which are treated by sophisticated summation methods that are nowadays under control.
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the critical exponents, the number of iterations of the RG transformations

should be large enough so that all details which are not universal, namely all

details specific to a model, are washed out. If the number of iterations is not

large enough the coupling constants will be sensitive to details of the model

and the calculations of critical exponents will not be accurate (For details

see also Le Bellac 1998).

If the ultimate goal of limiting reduction is to justify the fundamental the-

ory by showing that the relevant quantities display values that approximate

the values of the secondary theory, then, based on the previous argument, we

have good reason to say that the quantities that describe continuous phase

transitions in thermodynamics reduce to the quantities that describe the

same phenomena in statistical mechanics, at least in this idealized case.

The formal expression that describes reduction in this particular case is

as follows:

LR5: A physical quantity QSM in statistical mechanics reduces

asymptotically to the analogous quantity QTD in thermodynam-

ics, if for N sufficiently large:

∃n0 such that QSM
N,n0
≈ QTD,

where n0 corresponds to a finite range of iterations of the RG transfor-

mation. It should be noticed that the values of QSM
N,n0

also approximate

limn→∞ limN→∞Q
SM , which represent the values of the given quantity after

taking both the thermodynamic limit and the infinite iteration limit.

One might object that the results obtained in this section rely too much

on an idealized case and that in actual practice things are more complicated.

Although it is true that in practice things are less straightforward, numerical

simulation gives an important support for what has been said here. Since

1976 there have been attempts to use the numerical Monte Carlo simulation

in the framework of renormalization group methods for the study of critical

exponents. The first contribution in this direction was made by Ma (1976),
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who suggested an application of real space RG methods that required the

calculation of the renormalized Hamiltonians. However, since calculating

the renormalized couplings accurately enough proved to be too difficult, this

approach did not succeed in determining the fixed point Hamiltonian with

significant precision. Pawley, Swendsen, and Wilson (1984) made further

progress in this direction by suggesting an approach based on expectation

values of the correlation functions that did not rely on the calculation of

renormalized Hamiltonians. Using this approach, they showed that for an

Ising square lattice with 64 number sites, the system approaches the behavior

of an infinite system after two iterations of a RG transformation. After more

iterations, however, the system was shown to depart from the expected results

flowing towards a trivial fixed point. A plausible explanation for this cross-

over was that after more iterations the correlation length became comparable

to the size of the system and finitary effects became relevant.16

One should bear in mind, however, that for some models the convergence

is not as rapid as for the 2D-Ising lattice. Therefore, in order to avoid finite

size effects in the renormalized systems, one should use large lattices. In the

past years there has been significant improvement in this direction. See, for

example, Hsiao and Monceau (2002) and Itakura (2003).

2.6 Concluding Remarks

The arguments presented in this paper give us good reason to think that

the appeal to the infinite limits in the theory of phase transitions does not

represent a challenge for reduction, at least not for limiting reduction. In

fact, contra what has been argued by Batterman (2001, 2009) and Morrison

(2012), these arguments suggest that the infinities and divergences character-

istic of the physics of phase transitions are not essential for giving an account

of the phenomena since from finite statistical mechanics one can recover the

16This is also pointed out by Butterfield (Butterfield, 2011, p. 69).
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thermodynamic behavior of phase transitions even in the case of continuous

phase transitions, as it was shown in section 5.

Nevertheless, this does not mean that phase transitions are not incon-

sistent with other notions of reduction that have also been discussed in the

philosophical literature. Norton (2013), for instance, correctly points out

that the case of continuous phase transitions does not satisfy what he calls

“few-many reduction”, according to which there will be a reduction if the

behavior of a system with a few components can be used to explain the be-

havior of a system with a large number of them. The reason for this is that

continuous phase transitions are intrinsically fluctuation phenomena that can

only arise when N is sufficiently large.

Likewise, continuous phase transitions also seem to be at odds with the

kind of reductive explanation that requires the explanans to give us accu-

rate and detailed information about the microscopic causal mechanisms that

produce the phenomenon (e.g. Kaplan (2011)). As it has been pointed out

by Batterman (2002), Batterman and Rice (2014) and Morrison (2012), the

impossibility of giving such an account is related with the robustness of the

fixed point solutions under different choices of the initial conditions. This im-

plies that the critical behavior is largely independent of specific microscopic

details characterizing the different models and that the statistical mechani-

cal account of phase transitions does not give us complete information about

the microscopic mechanisms underlying the transitions. However, as it was

shown in the paper, these senses in which reduction ”fails” do not threat the

project of inter-theory reductionism in any relevant sense.
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Chapter 3

Had We But World Enough,

and Time... But We Don’t!

Justifying the Thermodynamic and Infinite-time Limits

in Statistical Mechanics

“The divergent series are the invention of the devil, and it is a

shame to base on them any demonstration whatsoever” [N. H.

Abel 1828]

3.1 Introduction

“Had we but world enough, and time” are the words with which Andrew

Marvell begins his passionate poem in which he tells his lover that things

would be different if they had infinite space and time. While neither the

number of particles in real systems nor the time of measurements are infinite,

it is common in statistical mechanics to take the number of particles and time

to infinity in order to recover the values of thermodynamic observables. These

are called the thermodynamic limit and the infinite-time limit, respectively.

This raises the following questions: What justifies the empirical adequacy of
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scientific models that involve infinite limits? And what is the justification

that we have for applying such a theory to finite systems? Sure enough,

there would be a straightforward justification for the limits if one could show

that, at least for the purpose of inferring the values of the thermodynamic

observables, the infinite case is rather similar to the finite case (contrary to

the situation described by Marvell!). But, is this so?

As it was seen in the previous chapter, there has been a fervent contro-

versy around the use of the thermodynamic limit in the statistical mechanical

treatment of phase transitions, in which has been claimed by some authors

(e.g. Batterman 2005, Jones 2006, Batterman 2011, Bangu 2009, Bangu

2011) that the use of the thermodynamic limit – and so of an infinite system

– is indispensable to give an account of phase transitions. As a consequence,

it has been said that the behavior in the limit is physically real (Batterman

2005) or that phase transitions are not reducible to statistical mechanics

(e.g. Batterman 2011, Bangu 2011, Morrison 2012). Others (e.g. Butterfield

2011, Butterfield and Buoatta 2011, Norton 2012) have argued against these

conclusions saying that the thermodynamic limit can be justified straightfor-

wardly, because the thermodynamic limit gives an approximate description

of the behavior of real systems. They generally arrive at that conclusion by

saying that the thermodynamic limit satisfies what Landsman (2013) calls

Butterfield’s principle, according to which a limit is justified and can be re-

garded as mathematically convenient and empirically adequate if the same

behavior that arises in the limit also arises, at least approximately, “on the

way to the limit”.

In this chapter, I will take the side of the ones that believe that there

is a straightforward justification for the thermodynamic limit, but I will ar-

gue against the idea that the so-called “Butterfield Principle” is sufficient to

give a straightforward justification for the use of infinite limits in general. I

arrive at that conclusion by comparing the use of the thermodynamic limit

in the theory of phase transitions with the infinite-time limit in the expla-
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nation of equilibrium states, which has generally been left aside from the

recent philosophical debate around the use of infinite idealizations in statis-

tical mechanics. In the case of phase transitions, I will argue (Section 3.2)

that the thermodynamic limit can be justified pragmatically, since the limit

behavior also arises before we get to the limit and for a number of particles

N that is physically significant. However, I will contend (Section 3.3) that

the justification of the infinite-time limit is less straightforward. In fact, I

will point out that even in cases where one can recover the limit behavior for

finite time t, i.e. before we get to the limit, one fails to recover this behavior

for realistic time scales. In my view this leads us to reconsider the role that

the rate of convergence plays in the justification of infinite limits in general

and calls for a revision of the so-called Butterfield’s principle. I will end

this paper (Section 4.4) by offering a criterion for the justification of infinite

limits based on the notion of controllable approximations.

3.2 The Thermodynamic Limit in the Theory

of Phase Transitions

In recent years, phase transitions have captured the attention of philosophers

of science mainly because there seems to be an eliminable appeal to the ther-

modynamic limit in the statistical mechanical treatment of these phenomena.

In this section, I will explain the apparent need for the thermodynamic limit

and I will argue – in the same vein as Butterfield (2011)– that, despite some

claims about the “singular nature” of the thermodynamic limit, this ideal-

ization can be justified pragmatically.1

1Since the goal here is to relate the problem of the thermodynamic limit in the theory

of phase transitions with the infinite-time limit in the explanation of equilibrium, I will be

deliberately brief in my exposition of the problem of phase transitions. A more detailed

treatment of these topics can be found in the previous chapter as well as in Kadanoff

(2009), Butterfield (2011), Batterman (2001), and Butterfield and Buoatta (2011).
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3.2.1 The Problem of Phase Transitions

In thermodynamics, phases correspond to regions of the parameter space

where the values of the parameters uniquely specify equilibrium states. Phase

boundaries, in contrast, correspond to values of parameters at which two

different equilibrium states can coexist. The coexistence of different equi-

librium states at phase boundaries expresses itself as discontinuities of ther-

modynamic quantities, which are related to the first derivatives of the free

energy with respect to a parameter such as pressure or temperature. If the

system intersects a phase boundary when going from one phase to another,

i.e., encounters a discontinuity in a macroscopic observable, the system is

said to undergo a first-order phase transition. If the system moves from one

phase to another without intersecting a phase boundary, the system is said

to undergo a continuous phase transition, in which case there are no discon-

tinuities involved in the macroscopic observables, but there are divergences

in the second derivatives of the free energy.

In the statistical mechanical treatment of phase transitions, which is gen-

erally constructed on the basis of Gibbs’ canonical ensembles, one can de-

scribe phase transitions in terms of discontinuities or divergencies of the free

energy by invoking the thermodynamic limit. However, it appears that one

cannot do so without the infinite limit. In fact, in the canonical ensemble,

the free energy is defined as the logarithm of the partition function Z:

F = −kBT lnZ, (3.1)

where kB is the Boltzmannian constant. The partition function is the sum

over all states accessible to the system:

Z =
∑
i

eβHi , (3.2)

where β = 1
kbT

and Hi is the Hamiltonian associated to a particular mi-

crostate i. Since the Hamiltonian is usually a non-singular function of the
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degrees of freedom, it follows that the partition function is a sum of analytic

functions. As a consequence, neither the free energy nor its derivatives can

have the singularities that characterize phase transitions in thermodynam-

ics. Taking the thermodynamic limit, which consists of letting the number of

particles and the volume of the system go to infinity, i.e., N →∞, V →∞,

in such a way that N/V remains constant, allows one to recover those singu-

larities and provide a rigorous definition for the phenomena that turns out

to be empirically adequate.

Since we assume that real systems have a finite number of degrees of free-

dom, the question that arises is how can one justify the empirical adequacy

of the statistical mechanical treatment of phase transitions, notwithstanding

the fact that we know that it relies on an infinite idealization. One might

think that what explains the success of the theory is that it provides us with

a mathematical model that approximates the behavior of finite systems. Fol-

lowing this line of reasoning, one might assume that the quantities that suc-

cessfully describe phase transitions in the thermodynamic limit (in this case,

the derivatives of the free energy) approximate the values of the quantities

before we get to the limit, i.e. for finite and large N , and, moreover, that

they do so for realistic values of N . If this were actually the case, one would

have good reason to conclude that the justification for both the success of

the theory and the infinite idealization are straightforward. Moreover, we

would have good reason to justify the use of the limit as mathematically

convenient and empirically adequate, which is what Butterfield (2011) calls

“a straightforward justification of the limit”.

Unfortunately, the previous reasoning faces at least three difficulties that

prevent us from arriving at that conclusion as quickly as we would expect.

1. The first difficulty, pointed out most notably by Batterman in a series

of papers (2002, 2005, 2011), concerns the so-called “singular nature”

of the thermodynamic limit. According to Batterman, a limit is singu-

lar “if the behavior in the limit is of a fundamentally different character
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than the nearby solutions one obtains as ε → 0” (2005, p. 2), where

ε → 0 is taken as the “limiting behavior”. Batterman argues that the

thermodynamic limit is singular in the previous sense because even if

we take N to be arbitrarily large, as long as it is finite, the derivatives

of the free energy will never display a singularity. It is important to

note that he arrives at that conclusion by assuming that the singular

behavior of a quantity is qualitatively different from its analytic be-

havior. As will be seen in the next section, this assumption is far from

trivial.

2. The second difficulty regards the apparently essential role of the ther-

modynamic limit in the renormalization group approach. In order to

give an account of the quantitative behavior of continuous phase tran-

sitions, it was necessary to incorporate renormalization group (RG)

techniques. These techniques rely on the existence of non-trivial fixed

points, which are points in a space of Hamiltonians at which different

renormalization trajectories arrive after repeated iterations of a renor-

malization group transformation (details elsewhere, e.g, in Goldenfeld

1992, Wilson and Kogut 1974). It has been claimed (Batterman 2011,

Morrison 2012) that the thermodynamic limit is “ineliminable” in this

approach, because no matter how large we take N to be, as long as it is

finite, the RG trajectory will not converge towards a non-trivial fixed

point. This is supposed to follow from the fact that finite systems can-

not display a divergence in the correlation length and therefore cannot

present a loss in the characteristic length scale, which is necessary to

define non-trivial fixed points in the space of Hamiltonians.

3. The third difficulty is the problem of generality. Even if we could show

that in some cases the values of the quantities that successfully describe

phase transitions in the limit “N =∞” approximate the values of the

quantities evaluated for large but finite N , there remains the question
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of whether this is so in all cases in which the thermodynamic limit is

used to describe the phenomena of phase transitions. Landsman (2013)

argues, for instance, that for the case of quantum systems displaying

spontaneous symmetry breaking and the classical limit h̄→ 0 of quan-

tum mechanics, the situation is different and much more challenging

than in classical phase transitions.

3.2.2 Butterfield’s Principle and Butterfield’s Solution

to the Problem of Phase Transitions

The difficulties mentioned in the previous section have motivated controver-

sial claims. For instance, it has been argued that the need for the ther-

modynamic limit in the theory of phase transitions and, especially, in the

theory of continuous phase transitions imply the failure of the reduction of

thermodynamics to statistical mechanics (Batterman 2011, Morrison 2012,

Bangu 2009). Moreover, it has been argued that as a consequence of the

“singular” nature of the thermodynamic limit, one should conclude that the

singularities that describe phase transitions in the limit are physically real

(Batterman 2005).

Independently of whether these conclusions actually follow from the prob-

lems pointed out above, the fact is that, in light of those difficulties, the em-

pirical adequacy of the theory of phase transitions appears as conceptually

puzzling and requires an explanation.

So the question is: can we restore a straightforward justification for the

thermodynamic limit in the theory of phase transitions despite the objections

mentioned above? Butterfield (2011) actually argued that we can. Accord-

ing to him, the thermodynamic limit is justified and can be conceived as

mathematically convenient and empirically adequate because

there is a weaker, yet still vivid, novel and robust behaviour that

occurs before we get to the limit, i.e., for finite N. And it is this
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weaker behaviour which is physically real. (p. 1065)

Here “novel and robust” represents the behavior that is novel and robust

with respect to the behavior of systems with finite N : in the case of phase

transitions that is the discontinuities and singularities in the derivatives of the

free energy. And the word “weak ” is meant to emphasize that the behavior

that arises before one gets to the limit only approximates the behavior that

is observed in the limit. In other words, Butterfield thinks that the limit is

justified because the value of the relevant quantities before we get to the limit

is close to the value of the corresponding quantities evaluated at the limit.

In order to support his view, he presents a series of examples to show that

the “qualitative” difference between the behavior of the relevant quantities in

the limit and close to the limit is only apparent, since it is the consequence of

focusing on the wrong quantities. Let me summarize his argument. Consider

a sequence of functions:

gN(x) =


−1 if x ≤ −1/N

Nx if − 1/N ≤ x ≤ 1/N)

1 if x ≥ 1/N

As N goes to infinity, the sequence converges pointwise to the discontin-

uous function:

g∞(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

If one introduces another function f , such that

f =

1 if g is discontinuous

0 if g is continuous
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then one will conclude that the value of f∞ at the limit N =∞ is fundamen-

tally different from the value when N arbitrarily large but finite: f∞ 6≈ fN .

Consequently we will conclude that the thermodynamic limit is “singular” in

Batterman’s sense. However, if one looks at the behavior of the function g,

one will see that the limit value of the function is approached smoothly and

therefore that the limit system is not “singular” in the previous sense. Thus,

if one looks only at the quantity f , one will not be able to see what is revealed

when one looks at the behavior of the quantity g, namely that the limit is ac-

tually an approximate description of the behavior before we get to the limit.

According to Butterfield, this is exactly what happens with classical phase

transitions, and, for typical examples of phase transitions, he seems right.

Consider the paramagnetic–ferromagnetic transition in magnetic materials.

This transition is characterized by the divergence of a second derivative of

the free energy - the magnetic susceptibility χ - at the critical point. If we

introduce a quantity that represents the divergence of the magnetic suscep-

tibility and attribute a value 1 if the magnetic susceptibility diverges and 0

if it does not (analogous to the function f in Butterfield’s example), then we

might conclude that the limit quantities have values that are considerably

different from the values of the quantities for arbitrarily large but finite N .

However, if we focus on the behavior of a different property, namely the mag-

netic susceptibility itself χ, we will arrive at a different conclusion. In fact,

the magnetic susceptibility χ is defined as the derivative of the magnetization

with respect to an external magnetic field χ = ∂M/∂H. As N grows, the

change in the magnetization becomes steeper and steeper, and the quantity

smoothly approaches a divergence in the limit (analogous to the function

g). This means that in statistical mechanics one can, in principle, find finite

systems that have values of the magnetic susceptibility χ that approximate

the thermodynamic behavior.

I take it as a moral of Butterfield’s argument that the “singular” nature

of a limit is not in conflict with a straightforward justification of the limit.
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However, one needs to recognize that this only solves the first of the prob-

lems pointed out above and does not allow us to conclude that the same

argument applies to other cases of phase transitions (problem (iii)), or to

explain the role of the thermodynamic limit in renormalization group tech-

niques (problem (ii)). This last problem was studied extensively in the first

chapter and has been addressed also, for example, by Batterman 2011, Morri-

son 2012, Norton 2012 and Butterfield himself (Butterfield 2011, Butterfield

and Buoatta 2011). Since I do not have space to discuss these other issues

here, I will restrict my analysis to the cases in which numerical values for

finite systems are available: the paramagnetic-ferromagnetic transition de-

scribed above and the liquid-vapor transition at the critical point in which

the compressibility behaves analogously to the magnetic susceptibility. The

question that I want to raise here instead is whether, in order to justify the

use of the thermodynamic limit, it is sufficient to show that the behavior

of finite systems before we get to the limit (for large N) approximates the

behavior in the limit, as Butterfield’s principle prescribes. Moreover, I wish

to discuss whether this can be used as a general principle for justifying the

use of infinite limits in physics.

Although Butterfield (2011) does not consider this criterion as a general

principle (at least not explicitly), Landsman (2012) does:

Butterfield’s Principle is the claim that in this and similar situ-

ations, where it has been argued (by other authors) that certain

properties emerge strictly in some idealisation (and hence have

no counterpart in any part of the lower-level theory), “there is

a weaker, yet still vivid, novel and robust behaviour [...] that

occurs before we get to the limit, i.e., for finite N. And it is this

weaker behaviour which is physically real.” (p. 383)

Likewise, Norton (2012) also seems to take this as a criterion when he suggests

that most of the controversy around phase transitions is dissolved after one

recognizes that this theory does not require idealizations (i.e. systems that
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provide inexact descriptions of the target system) but only approximations

(i.e. inexact description of the target system) of the behavior of systems

with very large number of particles. It is important to note, however, that

if one wants to transform Butterfield’s criterion into a principle, one needs

to show not only that this criterion is necessary for giving a straightforward

justification of infinite idealizations (which seems hard to deny), but also

sufficient. In this respect, it is surprising that little attention has been given

to the rate of convergence in the justification of infinite limits.

More to the point, if we assume that the limit is justified when we can

prove that the idealized mathematical model is just an approximation of the

behavior of realistic systems, it does not suffice to show that the behavior

of phase transitions can be recovered for large but finite N , but it must also

be shown that it is recovered for values of N that are physically significant,

i.e. for N ≈ 1023. In the examples discussed here, it turns out that this

is actually the case. For instance, the value of the magnetic susceptibility

χN for N ≈ 1023 is approximately the same as the limit value limN→∞ χN .

Therefore, one can be confident that the idealized model for phase transitions

is a good approximation of realistic systems. Butterfield (2011, p. 19) points

this out, but he does not emphasize the importance of demonstrating that

the infinite limit also provides a good approximation for realistic values of

N , nor he includes this explicitly as a condition for the justification of the

limit. Sure enough, in the examples of phase transitions he refers to, the

values of the quantities for realistic N are so close to the values obtained in

the neighborhood of the limit that distinguishing between such values does

not seem to be crucial. However, this is not necessarily the case in other

examples of infinite limits. Indeed, we will see next that in the infinite-time

limit the values of the relevant quantities for very large but finite time can

vary significantly from the values obtained for realistic t.
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3.3 The Infinite-time Limit in the Ergodic

Explanation of Equilibrium

The infinite-time limit, which consists in letting time go to infinity t → ∞,

has played an important role in statistical mechanics and, like the ther-

modynamic limit, has also been matter of controversy in the philosophical

literature (e.g. Malament and Zabell 1980, Earman and Rédei 1996, Emch

and Liu 2013, Sklar 1995).

In this section, I will first discuss the role of the infinite-time limit in

the explanation of equilibrium in Gibbsian statistical mechanics and I will

then expose the difficulties for giving a straightforward justification of the

limit. Contrary to the case of the thermodynamic limit in the theory of phase

transitions, I will argue that these difficulties are not related to whether or

not one can recover the limit values of the relevant quantities for finite t,

i.e. before we get to the limit, but rather to whether or not one can recover

those values for realistic t. This will reveal the important role of the rate of

convergence in the justification of infinite limits.

3.3.1 The Problem of the Infinite-Time Limit

In order to understand the use of the infinite-time limit in the Gibbs’ frame-

work, one needs to become familiar with the Gibbs formalism. The most

important concept here is the notion of ensemble, defined as an infinite collec-

tion of systems governed by the same Hamiltonian but distributed differently

over the phase space Γ. An ensemble can also be understood as a uniform

probability distribution ρ over Γ, which reflects the probability of finding the

state of a system in a certain region of Γ. The uniform probability distribu-

tion on an hypersurface ΓE of this space Γ is referred to as the microcanonical

ensemble, where the energy and the number of particles are constant. In the

microcanonical ensemble, there is a phase function fp : ΓE → IR associ-
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ated with each relevant physical quantity. The expectation values of those

functions will correspond to phase averages, defined as follows:

〈f〉p =

∫
ΓE

fpρ dΓE (3.3)

Phase averages play an important role in this approach because they cor-

respond to the values of the macroscopic quantities measured in experiments.

In fact, if we measure the macroscopic quantities of a gas in equilibrium which

is enclosed in some container, we will observe that these values coincide with

the values predicted by Gibbs’ phase averages, even if we do not have any

information about the microscopic configuration of the gas.

The question that has puzzled physicists and philosophers of science is

why phase averages coincide with values measured in real physical systems.

The answer is not clear. First of all, this formalism is built upon the notion

of ensemble, which is a fictional entity that does not make direct reference

to the behavior of a single system. Second, phase averages do not tell us

anything about the dynamics, i.e. they do not give us information about

how the the system – at the microscopic level – behaves in time. Third, this

formalism does not explain why the experimental values always correspond

to the average values and are not spread around the mean.2

The most intuitive explanation for the success of phase averages consists

of associating them with time averages 〈f〉t. Time averages have a clearer

physical meaning because they make reference to the fraction of time that the

system spends in the regions of the phase space associated to the mean values

of the macroscopic observables. In other words, if we assume that measure-

ments take some time, then we might think that we succeed in measuring

phase averages because they correspond to the average values that actually

occur during the time of measurement. And here is when the infinite-time

limit comes into scene. In order to associate phase averages with time aver-

2See Frigg 2008, Uffink 2007 and van Lith 2001 for a more detailed description of the

problems associated with the Gibbs formalism.
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ages, one generally needs to introduce the infinite-time limit. For example,

the Birkhoff theorem tells us that if we define the invariant mean of time 〈f〉t
of time dependent functions f(t) as

〈f〉t = lim
T→∞

1

T

∫ T

0

f(t) dt, (3.4)

it follows that for almost all sets (except on a set with measure zero):

1. 〈f〉t exists for every integrable function f(t) in ΓE.

2. If the system is ergodic, then 〈f〉p = 〈f〉t.

Note that in this approach, in order to derive the equivalence between

phase averages and time averages 〈f〉p = 〈f〉t, one needs to assume that the

system is ergodic, which means that as time evolves the dynamic trajectories

pass through every point in ΓE.3 The assumption of ergodicity has been

itself a matter of controversy in the foundations of statistical mechanics, but

for the sake of brevity I will leave this discussion aside and focus instead on

the appeal to the infinite-time limit for the justification of equilibrium.

The introduction of the infinite-time limit in the definition of time aver-

ages is far from trivial, especially if one thinks that the original motivation for

relating phase averages with time averages is the belief that the latter have a

clearer physical meaning. In fact, we know that measurements do not take an

infinite amount of time: so, what is that justifies the use of the infinite-time

limit in this context? One might try to give a straightforward justification

for the limit along the lines of Butterfield’s principle by saying that even if

the measurement times are short with respect to human macroscopic scales,

they are very long with respect to the microscopic time scales, i.e. time of

3Strictly speaking, this theorem was formulated in terms of metric transitivity instead

of ergodicity. Metric transitivity is a property of dynamical systems that captures the same

idea as ergodicity but in measure theoretic sense. For more details see Uffink 2007[sec.6],

van Lith 2001[ch. 7]
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collision between particles, and therefore they are well approximated by in-

finite time averages (One can find arguments in this direction, for example,

in Gallavotti 1999, Emch and Liu 2013). If so, one might think that one has

good reason to consider the infinite-time average as a mathematical model

that approximate the values obtained in finite time measurements and will

have good reason to give a pragmatic justification for it. For example, that

it allows us to wash out fluctuations we deem irrelevant, that it is mathemat-

ically convenient and that it allows us not having to decide in advance how

long the time of measurement should be. Unfortunately, there are difficulties

that prevent us from arriving at this conclusion as quickly as we would like.

1. The first is that even if the limit defined in (4) exists, it does not mean

necessarily that it describes a system in equilibrium. Uffink (2007, p.

92) expresses this difficulty pointing out that generally:

lim
T→∞

1

T

∫ T

0

f(t) dt 6= lim
t→∞

f(t), (3.5)

where the right-hand side describes a constant value of a physical quan-

tity f(t) and the left-hand side represents an average value of the same

quantity. Note that for periodical motions the left-hand side exists

whereas the right-hand side does not.

2. Second, there is a problem related to the apparent indispensability of

the infinite limit in the derivation of the equivalence between phase

and time averages (this problem is similar but not equivalent to the

problem of “singular” limits discussed above in the context of the ther-

modynamic limit). We saw that Birkhoff’s theorem states that one

can derive the equivalence between phase averages and time averages

after taking the infinite time limit, but this theorem does not tell us

anything about how these two averages are related for large but finite

times. Frigg expresses this point as follows: “... the infinity is crucial.
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If we replace infinite time averages by finite ones (no matter how long

the relevant period is taken to be), then the ergodic theorem does not

hold any more and the explanation is false.” (2008, p. 147)

3. Finally, there is the difficulty that even if one can show that the limit

in (4) converges, this does not imply that it converges rapidly enough

to be empirically meaningful. Measurement times generally take a very

short time with respect to human macroscopic time scales. Thus, in

order to show that the infinite time average is a good approximation for

finite time averages, one needs to prove that the infinite time average

is approached within realistic measurement time scales.

In the reminder of this paper, I will focus mainly on problem (iii), because

it is this problem that reveals the most important difference between the

thermodynamic limit discussed in Section 2 and the infinite-time limit.

3.3.2 The Dog-Flea Model and a Straightforward Jus-

tification for the Infinite-Time Limit

In order to understand under which conditions one could give a straight-

forward justification for the infinite-time limit it is useful to consider a toy

model. The toy model that can best help us to grasp these conditions is the

Dog-Flea model, invented by Tatjana Ehrenfest-Afanassjewa and Paul Ehren-

fest (Ehrenfest and Ehrenfest-Afanassjewa 1907). A version of the model is

as follows. Consider two dogs, Poomba and Woori, that share a population

of N fleas. Assume further that N is even and that the fleas are labeled

by an index from 1 to N . The macroscopic observables of the model are n

and m, representing the number of fleas in Poomba and Woori, respectively.

A microscopic description of the system corresponds to the specification of

the positions of all fleas in each dog. The time evolution of the system is

described like this: At every second, a number from 1 to N is taken randomly
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from a bag and announced. When hearing its name, the corresponding flea

jumps immediately from the dog it pestered to the other. The model predicts

that in the long run (t → ∞), and independently of the initial distribution,

the process leads to a time-invariant distribution that is symmetric around

the value p = N/2 and it is very peaked at that value, all the more so when

N is large. It is important to emphasize that the model admits only one

time-invariant probability distribution, which is the same as the distribution

in classical probability theory that in a sequence of N trials of a fair coin,

exactly p heads come up. In this way, the model illustrates quite nicely that

under certain statistical assumptions, it is possible to obtain the properties

that characterize equilibrium. And, analogously to the case described above,

the equilibrium distribution is defined in the limit t→∞.

Following the strategy used in the previous section, we might think that

the asymptotic distribution will approximate the behavior of a finite time

measurement if the measurement time (macroscopic time scale) is very long

with respect to the time that it takes for a flea to jump from one dog to the

other (microscopic time scale), which is here one second. If this is the case,

we might also say that the infinite-time limit is justified pragmatically, since

it is mathematically convenient and it enables us to wash out fluctuations.

An advantage of the Dog-Flea model is that it allows us to perform com-

puter simulations to test our hypothesis. Emch and Liu (2013, sec. 3.4)

present the results of these simulations for two different time scales:

1. The first run consists of 102 iterations.

2. The second run consists of 104 iterations.

In both cases, the number of fleas is N = 100. Remarkably, even if the two

macroscopic time scales are long with respect to the microscopic scale (a

single iteration), the results for (a) are significantly different from the results

obtained for (b). Whereas (a) exhibits values of n, m that are constantly

changing, (b) exhibits equilibrium behavior (with chaotic fluctuations) that
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is in good agreement with the equilibrium distribution obtained in the infinite

time limit.

Based on these results, we should conclude that the time invariant dis-

tribution (for t → ∞) gives us a good approximation for the values of the

macroscopic observables in (b) but not in (a). Accordingly, we can say that

we are justified in using the limit distribution for describing the situation for

(b), but not for (a). Note, that this justification is not related with whether

or not the system approaches the equilibrium values in a finite time, but

rather with whether or not the system approaches those values in a time

that is short with respect to the time of measurement. This obliges us to

consider the convergence rate, which represents the rapidity at which the

limit is reached. In the first case (a), the convergence is not rapid enough.

Indeed, the system will eventually approach equilibrium, in a long but finite

time, but since this time is much longer than the measurement time, the

average values of the observables will not coincide with the values predicted

by the time invariant distribution. Therefore, the asymptotic average value

will not provide a good approximation of the values measured during that

time.

3.3.3 The Importance of the Rate of Convergence

For the present discussion, the important lesson of the Dog-Flea model is

that talking about “long time” is useless unless we specify the relevant time

scales of the problem under investigation. In this sense, if we want to justify

the infinite-time limit in the explanation of equilibrium, it does not suffice

to argue that the time of measurement is “very long” with respect to micro-

scopic time scales, but rather we need to specify the rate of convergence and

guarantee that the asymptotic value will be reached within the time scales

that we are interested in. As one might suspect, specifying the convergence

rate is not a trivial task. To give a more precise idea, let 〈f(T )〉 represent
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the average value calculated at time T , that is:

〈f(T )〉 =
1

T

∫ T

0

f(Tt)dt. (3.6)

Then in order to determine the convergence rate, one needs to find a finite

ε(T ) such that:

||〈f(T )〉 − 〈f〉t|| ≤ ε(T ), (3.7)

where 〈f〉t is the time invariant mean defined in (4). Even in simple mod-

els, to obtain definite values of ε(T ) is often difficult in both theory and

practice, and to demonstrate that this value is very small, i.e, ε(T ) ≈ 0, for

realistic measurement times is even harder. More importantly, it is perfectly

conceivable to have a situation in which the values of the functions are con-

stantly changing so that the time needed to attain the time average is of

the order of the recurrence time, i.e. the time necessary to visit the entire

surface ΓE. One can estimate that the recurrence time for a small sample

of diluted hydrogen gas is unimaginably longer than the age of the universe,

and this time is even longer if we consider more complicated systems. In

situations like this, there might well exist a finite ε(T ) that satisfies eq.(7).

However, the time for which ε is sufficiently small will be much longer than

realistic measurement times, which means that for realistic time scales T ′,

say 2/10 sec., 〈f(T ′)〉 6≈ 〈f〉t.4

The previous argument just tells us that, even if we could demonstrate

that the asymptotic average will be reached within finite but very large times

(or in other words “on the way to the limit” as in Butterfield’s principle),

this does not imply that the asymptotic average will be reached for realistic

t and, therefore, it does not imply that we can interpret the limit as giving

us a good approximation of the systems that we are interested in. This has

an important philosophical consequence because it tells us that the so-called

“Butterfield’s principle” is not sufficient to justify the limit in this case.

4For a quantitative estimation, see Gallavotti 1998
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Boltzmann himself was aware of the problem of the rate of convergence in

the justification of the infinite-time limit, and in order to reconcile this limit

with the rapid approach to equilibrium, assumed that the “the macroscopic

observables, had an essentially constant value on the surface of given energy

with the exception of an extremely small fraction ε of cells” (1874 [quoted

in Gallavotti 1999, p. 16]). Unfortunately, this assumption is not uncon-

troversial, and to some extent it does not really solve the problem. In fact,

even if we accept the premise postulating, for example, that the functions

satisfy symmetry conditions, we still need an argument to associate phase

averages with time averages. In other words, we still need an argument that

allows us to conclude that the system does not spend so much time in the

small fraction of cells that differ from the mean phase values. Ironically, this

seems to beg the question, in that it brings us back to the original problem

for which the infinite time limit entered the picture, namely the problem of

deriving the equivalence between phase and time averages.

Different alternatives have been offered in the literature to deal with this

and the other problems associated with infinite time averages. Maybe the

most radical was the proposal by Malament and Zabell (1980), where they

argue that one can explain the empirical adequacy of phase averages without

appealing to time averages at all. Their argument is based on two assump-

tions: i) the system exhibits small dispersion with respect to the phase av-

erage (analogously to Boltzmann’s assumption), and ii) the microcanonical

measure represents the probability of finding a system in a particular region

of the phase space. According to them, these two assumptions taken together

lead to the conclusion that the probability that phase functions are always

close to their phase averages is very large, without making any reference to

infinite time averages. Even if this view looks appealing, two main criticisms

have been raised in the literature. The first is that in order to justify assump-

tion (ii), they invoke a version of ergodicity, which is an hypothesis that has

been questioned in the foundations of statistical mechanics (e.g. Earman and
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Redei 1998, Frigg 2008, van Lith 2001). The second, which is more important

for us, is that they justify assumption (i) based on Khinchin-Lanford disper-

sion theorems, which tell us that for functions that satisfy strong symmetry

conditions, the dispersions from the mean will go to 0 in the thermodynamic

limit. The appeal to the thermodynamic limit would not be problematic, if

we could demonstrate that – like the case of phase transitions – there is a

straightforward justification for it. Unfortunately, the use of the thermody-

namic limit in this context appears to be less straightforward than in the

case of phase transitions, because Butterfield’s principle is not enough to

justify the limit. In fact, for realistic N ≈ 1023, one can estimate, based on

Khinchin’s theorem, that the probability that there is a relative deviation

from the mean of more than a tiny ε is very small, but not sufficiently small

to discard that these states will occur in nature. This means that one cannot

regard (at least not without risks) the asymptotic results obtained in this

and other similar theorems as providing us with a good approximation of the

behavior of realistic systems. This problem is also referred in the literature

as the measure-epsilon problem (See Uffink 2007, van Lith 2001 and Frigg

2008).

An alternative approach can be found in Earman and Redei (1996). They

do not invoke ergodicity for the explanation of the success of phase averages,

but they are quite sympathetic towards the explanatory role of “ergodic-like

behavior”. According to them, ergodic-like behavior only requires weak mix-

ing behavior with respect to a set of finite observables. It is important to

note that the definition of mixing offered by them still requires the appeal

to the infinite-time limit. Interestingly for what we are discussing here, they

explicitly include rapid convergence as an additional condition for the expla-

nation of equilibrium. To justify this assumption they suggest (although not

necessarily endorse) two possible routes: a) The first is to make reference

to matter-of-fact initial states. b) The second is to assume that systems

are subjected to perturbations from outside that act as a kind of ‘stirring’
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mechanism which rapidly drive the observed values of the macroscopic quan-

tities.5 Even if one should not discard that some progress can be done in

each of these lines of research, one should recognize that they are method-

ologically complicated since they oblige us to the consider specific features

of the systems of interest.

The explanation of the empirical success of phase averages is still an open

problem in the foundations of statistical mechanics. Although there is some

skepticism in the philosophical literature towards the idea of explaining this

success via infinite time averages, the infinite-time limit continues playing an

important role in physics. It is far beyond the scope of this paper to offer a

final assessment for the appeal to the infinite-time limit in the explanation of

equilibrium. However, it suffices for our purposes to have shown that much

of the problems for providing a justification for such a limit come from the

conceptual and methodological difficulties to specify the rapidity at which

the limit is approached. I argued that this has an important consequence for

the current philosophical literature on infinite limits, because it teaches us

an important lesson about the role of the convergence rate in the justification

of infinite limits.

3.4 Conclusion: Infinite Limits as Control-

lable Approximations

Although there is no consensus regarding the status of infinite limits in

physics, it seems reasonable to interpret these idealizations as mathemati-

cal models that approximate the behavior of finite systems. The question

that one needs to ask, however, is under which conditions are we allowed

to arrive at that conclusion. In the debate on phase transitions, it is often

assumed that we are allowed to interpret the infinite limit as providing an

5A review of this attempts can be found in Lanford 1973

69



approximation of finite systems as long as the behavior that arises in the

limit also arises, at least approximately, “on the way to the limit”, which is

what we called here the “ Butterfield principle”. However, in this paper I ar-

gued that in the case of the infinite-time limit this condition is not sufficient

to justify the limit. This is because in this case the values of the relevant

quantities “before we get to the limit”, that is for finite but very large t, can

take values significantly different from the values obtained for realistic time

scales t.

The above result leads us to a revision of Butterfield’s principle that

would apply more generally than the original formulation. A proposal is as

follows:

We can justify infinite limits, when x→∞, as being mathemat-

ical models that approximate the behavior of real finite systems,

iff (i) the behavior that arises in the limit also occurs, at least

approximately, before we get to the limit, i.e., for finite x., and

(ii) it also arises for realistic values of x.

A concept that captures the main idea of the previous statement is the

notion of controllable approximations. Emch and Liu (2002, p. 526) define

controllable approximations as the ones in which the deviations of the model

with respect to realistic systems can be quantitatively estimated. When no

such estimation can be given, the approximation is said to be uncontrollable.

Uffink (2007, p. 109) makes this notion more precise, suggesting that in the

case of controllable approximations involving infinite limits one has control

over how large the value of the parameter must be to assure that the infinite

limit is a reasonable substitute for a finite system. Since we are interested

in the behavior of realistic systems, I claim that this “control” should also

involve a specification of the rate of convergence. This will allow us to warrant

that the limit is reached for realistic values of the parameters and therefore

that it is a good approximation of the target systems. In the cases of phase

transitions analyzed in Section 3.2, the thermodynamic limit appears to be
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controllable in this sense. However, for what has been argued in Section 3.3,

we do not seem to be in the position of deriving the same conclusion for the

case of the infinite-time limit.
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Chapter 4

Market Crashes as Critical

Phase Transitions?

Reductive Explanations and Idealizations in Econophysics1

“Essentially, all models are wrong, but some are useful” [George

Box 1987]

4.1 Introduction

The success of formal methods to explain natural phenomena in physics

prompts the question of whether similar methods can be applied to explain

phenomena in social sciences. Or more specifically, whether the same math-

ematics employed in physics can be used to explain and predict phenomena

in economics and politics. There are reasons to think that this is possible.

In the last thirty years, a great number of models originally designed in the

context of statistical mechanics have been reinterpreted to recover certain

1Chapter based on the paper “Market Crashes as Critical Phenomena: Explanation,

Idealization, and Universality in Econophysics”, co-authored with Jennifer Jhun and James

O. Weatherall (Jhun, Palacios, and Weatherall in press)
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regularities in economics. Work in this tradition has come to be known

as econophysics, a term coined by H. Eugene Stanley in 1996. 2 In this

tradition, important models have tried to account for cooperative behavior

in economics using the physics of phase transitions. The idea of using the

physics of phase transitions to build models in social sciences is principally

motivated by the fact that phase transitions are the prototypical example of

cooperative phenomena, in which the correlations between particles extend to

very large distances, even though the microscopic interactions remain local.

There is, therefore, the thought that the physics that successfully explains

the first case will serve to explain the other analogous cases.

Despite the apparent empirical successes of some models in econophysics,

the field has not been widely embraced by economists. The few who have

engaged have been strongly critical. For example, Lo and Mueller. (2010)

have argued that econophysics is doomed because “human behavior is not

nearly as stable and predictable as physical phenomena” (1), and thus the

strategies available in physics are not at all suitable for dealing with economic

phenomena. 3 Our strategy will not be to address the general criticisms and

we do not mean to argue that all models from econophysics, or even most or

many models, are successful. Instead, we will focus on just one model that, we

will argue, has two features of interest: it (1) draws on a significant analogy

with phase transitions, in a way that goes beyond standard modeling methods

in economics; and (2) has real explanatory power. Our principal goal is to

elaborate and defend how we take the model to work, including where and

how the analogy with phase transitions enters, and to articulate what sorts of

novel insights into market behavior we believe it offers. In this sense, we take

the model we consider as “proof of concept”, while simultaneously providing

2For more on the relationship between physics, finance, and econophysics, see Weather-

all (2013); for further technical details and overviews of recent work, see Mantegna and

Eugene (1999), McCauley (2004), and Cottrell, P., G., Wright, and V. (2009).
3Despite the prevalence of this sort of criticism, it is far from clear that physics is more

guilty of oversimplification than economics when it is applied to economic facts.
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a case-study for the sorts of explanatory goals that arise in econophysics.

The model that we evaluate is the Johansen-Ledoit-Sornette (JLS) model

of “critical” market crashes (Johansen, Ledoit, and Sornette 2000), which

uses methods from the theory of critical phase transitions in physics to pro-

vide a predictive framework for financial market crashes.4. This model is of

particular interest because it aims both to predict and describe market-level

phenomena – crashes – and to provide microscopic foundations that explain

how that behavior can result from interactions between individual agents.

More specifically, in addition to its predictive role, the JLS model aims to

explain two “stylized facts” associated market crashes. 5. The first is the

fact that stock market returns seem to exhibit power law behavior in the

vicinity of a crash, and the second is so-called volatility clustering, which is

the fact that market returns seem to exhibit dramatic, oscillating behavior

before crashes, with large changes followed by other large changes.6

The plan of the paper is as follows. In section 4.2, we will present some

(limited) background on mainstream modeling in financial economics that

will help place the JLS model in context.7. In section 4.3, we will introduce

the model itself, focusing on the role the analogy with critical phase tran-

sitions plays in the model. Then, in section 4.4 we will argue against one

tempting way of understanding how the model works, and instead defend a

somewhat different understanding. On the view we will defend, the principal

achievements of the model are to explain why crashes occur endogenously in

markets and to provide a possibly predictive signature for impending crashes.

4For more on this model and related ideas, see especially Sornette, Woodard, Yan, and

Wei-Xing 2013 and references therein.
5These stylized facts are often treated as qualitative laws or as descriptions of lawlike

behavior, capturing “set[s] of properties, common across many instruments, markets, and

time periods” (Cont 2001, 223)
6This has also been noted by Mandelbrot (1963).
7For more on how the JLS model fits into mainstream financial modeling, see Sor-

nette (2003); for background on mathematical methods in finance more generally, see for

instance, Joshi (2008)
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Central to our argument in section 4.4 will be the observation that al-

though the analogy with critical phase transitions is crucial in motivating and

developing the model, in the end the analogy is only partial. In particular,

although the model fruitfully draws on the renormalization group theory of

critical exponents, financial crashes do not seem to constitute a universality

class in the strict sense that one encounters in that area of physics. Nonethe-

less, we argue, there is a weaker sense in which crashes exhibit universal

features. This weaker notion of universality allows one to draw novel infer-

ences about the microscopic mechanisms that might underlie crashes. Since

the model helps make salient the possible microscopic mechanisms that could

explain the occurrence of a crash, we claim that the model provides an ex-

planation of crashes that is both causal (in the sense of Woodward 2003) and

reductive.

In section 5 of the paper, we will explore how the argument just sketched

relates to recent debates in philosophy of science concerning explanatory

uses of idealized models. We will argue that the JLS model is naturally

understood as a “minimal model” in the sense of Batterman and Rice 2014

(see also Batterman 2002; 2005; 2009). Nonetheless, we claim, (apparently)

contra Batterman and Rice, that it provides both a causal and reductive

explanation of market crashes. As we will argue, this shows that the same

mathematical methods may be used for multiple explanatory purposes, and

that to understand explanatory strategies in the context even of minimal

models, one needs to pay careful attention to the salient why questions.

We conclude with some remarks about possible policy consequences. In

particular, we argue that our interpretation of the JLS model as one that

yields causal explanations suggests methods by which policymakers could

intervene on the economy in order to prevent crashes or to halt the spread

of one. The JLS model, we argue, may be used as a diagnostic tool, allow-

ing economists and regulators to formulate new measures or to assess the

performance of ones are already in place.
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4.2 Some Financial and Economic Background

to the JLS Model

Although the JLS model draws extensively on methods and ideas from the

theory of critical phenomena in physics, it also builds on a long, mainstream

tradition of market modeling in financial economics. Moreover, Sornette and

collaborators emphasize this continuity with early work in financial modeling.

In the course of analyzing work in econophysics, it seems particularly impor-

tant to be clear about just where this work diverges from more traditional

modeling. And so in this section we will provide some minimal background

on methods and ideas from financial modeling that the JLS model builds on.

The JLS model may be broadly located in a tradition of modeling markets

as stochastic processes. This tradition originated with groundbreaking work

in 1900 by French mathematician Louis Bachelier, who first proposed treating

price changes as a random walk and built an options model on this basis

(Bachelier and Samuelson 2011). Bachelier’s work went largely unnoticed,

however, until re-discovered by J. L. Savage and Paul Samuelson in the early

1950s. Independently, in 1959 a physicist named M.F.M. Osborne proposed

modeling market returns as undergoing Brownian motion (Osborne 1959).

Osborne provided his own empirical support for this model, though it was

largely consistent with earlier empirical work on market time series by the

Cowles Commission (1933) and by Kendall (1953).

Later, Samuelson (1965) and Fama (1965) explicitly connected the random-

walk hypothesis to the efficient markets hypothesis (EMH). 8 The EMH is

8The EMH has been a topic of considerable controversy. For instance, Shiller (1984)

has argued that the argument behind the EMH is invalid. The main worry is that current

models neglect (i) agent psychology and (ii) interactions amongst agents as key causal and

explanatory features of asset price variations. Once these factors are considered, it seems

markets may well be random irrespective of how efficiently markets process information

or how accurately prices reflect fundamental values. Meanwhile, as Ball (2009) and others

have argued, over-reliance on the assumption of efficiency may affect how market partic-

76



the claim that markets are informationally efficient and asset prices reflect

(all) available information. The EMH is consistent with, and indeed implies,

market randomness. This is because if markets are assumed to assimilate

information efficiently, then any information available to market participants

at a given time will already be factored into the price at that time.9 Thus

only (unaccounted for) news, which is random, changes prices, meaning that

changes in stock option prices themselves must be random. Persistent excep-

tions to this rule, it is argued, are impossible, since if traders were to observe

a pattern in asset price time series that could be exploited, they will exploit

it, which would tend to wash out the pattern.

More formally, in efficient markets prices follow a martingale process,

which is a general stochastic process where the conditional expectation of

the next value, given past history and current value, is precisely the current

value. That is,

E(pt+1 − pt|Ωt) = 0,

where Ωt = (p1, p2, ...pt), the history up till time t.

Here E(pt+1 − pt|Ωt) = 0, is the expectation value of the change in price

in a given time-step. Thus, for an asset that pays no dividends, one should

expect the future price to hover around the current value, all other things

being equal.

Et[p(t
′)] = p(t),

ipants synthesize information regarding possible asset bubbles. But we will not weigh in

on such controversies; our purpose here is not to endorse the EMH, but rather to describe

the context of the JLS model and to emphasize its continuity with mainstream economic

modeling methods.
9Note that this argument appears to suppose that news that will positively affect price

is equally likely as news that will negatively affect price. But if there were any information

available that would indicate that positive (resp. negative) news was more likely, then that

fact alone would count as tradeable information that would affect price.
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for all t′ > t. In other words, we could say that the prices of stocks do not

depart from their fundamental or intrinsic value in a way that an investor

could systematically predict or exploit to make a profit in the long run. In

this sense, the EMH implies that the market will behave unpredictably.

The market models just described have some well-known limitations. For

instance, if returns are modeled as a random walk, as Osborne and others

proposed, one would generally expect returns to be normally distributed. In

fact, however, market returns tend to be “fat-tailed”.10 This means that

we see extreme events more often than one would expect if returns were

normally distributed. In addition, treating markets as a martingale process

leaves out a number features that appear to be good indicators of crises,

such as volatility clustering (where large changes in price are followed by

further large changes in price). That said, neither the martingale condition

nor the EMH is in and of itself inconsistent with fat-tailed distributions or

with large asset price changes. Indeed, there is a tradition in economics of

modeling rational bubbles, which are deviations from fundamental values that

are compatible with the martingale condition and the EMH (Blanchard 1979;

Santos and Woodford 1997; Sornette and Malevergne 2001) The idea is that

under some circumstances markets enter a “speculative regime” in which it

is rational to hold onto an asset in anticipation of growing future returns,

even though one believes that the current price is not the fundamental price.

Here, markets may still be understood to be processing information efficiently

– and thus the EMH may be taken to hold – since the endogenous facts about

the speculative regime are themselves information bearing on future prices.

In this regime, an asset’s value grows indefinitely, which itself is not realistic

but may be a suitable modeling assumption if persistant increase in value

is anticipated over the timescale of interest. Still, rational bubbles models

of the sort just described provide no insight into the circumstances under

which the speculative regime ends and markets crash. The JLS model is

10See, for instance, Mandlebrot (1963) and Cont (2001).
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intended to extend rational bubbles models in order to explain and predict

market crashes in the speculative regime. The basic proposal is that financial

bubbles and subsequent crashes are much like the development of sudden,

spontaneous, and drastic behavior in physical systems such as magnets. Like

earlier rational bubbles models, the JLS model treats bubbles and crashes

without rejecting the EMH. Instead, as we will see in the next section, it

attempts to reconcile the EMH with a story about the behavior of interacting

traders.

4.3 The JLS model

Important stock market crashes of the twentieth century, including the US

crashes of 1929 and 1987 and the Hong-Kong crash of 1997, have been the re-

sult of the action of a large group of traders placing sell orders simultaneously.

Curiously, this synchronized “herding” behavior seems to arise endogenously,

rather than from outside instruction or the influence of communication me-

dia. Traders, who are geographically apart and generally disagree with each

other, seem to organize themselves to place the same order at the same time.

The JLS model concerns the character and dynamics of this self organization

between traders. 11

In physics, critical phase transitions constitute an important class of phe-

nomena that likewise exhibit “self organization”. A paradigm example of

these kinds of transitions is the paramagnetic-ferromagnetic transition in

magnetic materials. In this transition, a large group of spins that are gen-

erally pointing in different directions align themselves in the same direction

simultaneously, so that the system undergoes spontaneous magnetization.

This suggests a potentially useful analogy between critical phase transitions

11Note that we mean “self-organization” in the informal sense of coordinated action

between agents without any apparent external mechanism. We do not intend to invoke

any specific theories of self-organization or self-organized criticality.
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and stock market crashes.

Motivated by this analogy, Johansen et al (2000) propose a model (hence-

forth the JLS model) that elaborates on the rational bubbles models noted

in the previous section and other work in econophysics (eg. Sornette, Jo-

hansen, and Bouchaud 1996). The main hypothesis underlying this model is

that market crashes may be understood as a “critical phenomenon” strongly

analogous to critical phase transitions. This hypothesis is made precise by

postulating a correspondence between the quantities that are used to describe

financial crashes and the physical quantities that describe critical phase tran-

sitions. This correspondence then allows one to draw inferences concerning

various quantities of interest, including the probability of a crash occurring

under various circumstances.

In more detail, on the JLS model a stock market crash occurs when the

system transitions between two phases: a phase prior to the crash and a phase

after the crash. This transition point is analogous to the critical point for

physical systems, and in the present context corresponds to the time at which

a stock market crash is most likely to occur. In this model, there are two

quantities that are relevant for capturing this behavior of interest. The first is

known as the hazard rate, h(t). The hazard rate measures the instantaneous

rate of change of the probability of the event occurring at time t, given that

it has not yet occurred by t. The larger the hazard rate, the more rapidly

the probability of an impending crash is increasing, given that the crash has

not yet occurred. 12 It may be thought of as the instantaneous rate at which

crashes should be expected to occur, if only crashes were repeatable. The

second quantity is the price of some asset as a function of time, p(t). These

two quantities determine the dynamic equation that will be used to predict

12More precisely, if F(t) is the cumulative distribution function of a crash occurring at

or before time t, then h(t) = F ′(t)/(1−F (t)), where F ′(t) = dF is the probability density

function. Conversely, one can define a cumulative probability function from a hazard rate

by integrating both sides of this equation with respect to t. See, for instance, Cleves (2004,

Ch. 2) for further details on interpreting hazard rates.
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future crashes and provide a framework for the underlying microfoundational

story.

The model begins with a general form for the price dynamics for a time

prior to a crash. These dynamics are given by:

log
p(t)

p(t0)
= k

∫ t

t0

h(t)dt (4.1)

where is the price at some initial time t0, is the price at a subsequent time t,

is a constant, and is the hazard rate. Note that the hazard rate determines

the price. 13 This means: the higher the hazard rate, the faster the price of

an asset will rise. In other words, the more risky the asset is, the more the

trader expects to receive in the future as compensation for taking on that

risk.

Note that these dynamics are consistent with the standard financial mod-

eling assumptions described above. In particular, in the special case where

the hazard rate vanishes, the expected change in price over any given time

interval vanishes, just as one would expect from the martingale condition dis-

cussed in Section 2 for a stock that does not pay dividends. Following JLS,

we call this the “fundamental regime”. When the hazard rate is positive,

meanwhile – the so-called “bubble regime” – one expects price to increase

exponentially over time. In this regime, the increase in price is driven up by

the accumulated risk involved in holding the asset during a period in which

a crash is deemed possible. Investors are willing to pay ever higher prices on

the grounds that they expect price to continue to increase without bound,

as long as a crash does not occur.

13It is tempting to interpret the right hand side of Eq. 4.1 as representing the probability

of a crash occurring during the period from t0 to t, but this would be incorrect: the

integral of h(t)dt does not yield a probability. (For instance, it may exceed 1.) Instead,

this quantity should be understood as a measure of accumulated risk, in the sense that

it represents the total number of times you should have experienced a crash during this

period, supposing the crash were repeatable. Once again, see Cardy 2004[Ch. 2].
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In this general form, these dynamics do not give an account of stylized

facts such as the power law behavior we observe in financial time series, nor

do they tell us anything about the microscopic mechanism underlying the

occurrence of a crash. It is to get these further results that one introduces

the qualitative analogy to critical phase transitions. (Up to this point, no

such analogy has been invoked.)

To begin, we suppose that markets consist of populations of two types of

traders, which JLS call “rational” and “noise” traders. (It is not essential

that these populations be distinct; particular traders may sometimes be noise

traders and sometimes rational traders.) The rational traders are assumed

to trade on the basis of market fundamentals; noise traders, meanwhile, are

assumed to base their decisions on trends, imitate others around them, etc.

rather than investigating market fundamentals (Kyle (1985)).

The model then assumes that traders are situated in a lattice network,

analogous to the lattice of the Ising model, the most important model in the

study of phase transitions, including the paramagnetic- ferromagnetic tran-

sition mentioned above. (Note, however, that the specific lattice structure

will turn out to be distinct from the Ising model.) Agents in this network

may be in one of two possible states: a “buy” state or a “sell” state, just as

spins in an Ising model may be either “up” or “down” Also like in an Ising

model, agents are assumed to imitate their nearest neighbors, so that if a

given agent is in a different state from the average of her neighbors, there

will be a non-zero probability that the agent will change states. A crash on

this model is understood as a moment in which a large group of traders are

suddenly in the “sell” state.14 Therefore, in this model a crash is caused (at

the microscopic level) by self-reinforcing imitative behavior between traders.

14Sornette (2003) also considers the possibilities of “anti-crashes”, wherein a large num-

ber of traders suddenly transition to “buy” states; these are taken to be the ends of

“anti-bubble” regimes. However, it is important to note that neither Sornette (2003) nor

Johansen (2000) explain the fact that crashes are generally caused by “sell” states instead

of “buy” states.
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This behavior is analogous to a phase transition, during which a large number

of nodes in the Ising model adopt the same state.

In statistical mechanics, the quantity that best describes the tendency of

particles to imitate one another is the susceptibility of the system. In the

ferromagnetic-paramagnetic transition mentioned above, this quantity cor-

responds to the magnetic susceptibility , which is governed by the following

power law near the transition point:

χ ≈ A|T − TC |−γ (4.2)

where A is a positive constant, TC corresponds to the critical temperature,

and is known as the critical exponent. Informally, the susceptibility of the

system characterizes the tendency of the system?s average magnetization

(which is related with the number of spins in the same state) to change due

to the influence of a small external field. One consequence of the power law is

that at the critical point, T = TC , χ diverges. The divergence of the magnetic

susceptibility implies the divergence of the correlation length, a quantity that

measures the average distance over which particles in the system interact. It

is due to the divergence of the correlation length at the critical point that

distant particles are likely to be mostly in the same state at the same time.15

The JLS model posits that the hazard rate has the same general form as

the magnetic susceptibility

h(t) ≈ B|t− tc|−α (4.3)

where tc is the most probable time for the crash, B is a positive constant,

and is a critical exponent that is assumed to have values between zero and

one. Note that attributing this form to the hazard rate is really an ansatz:

15For more details on the logic of critical phenomena in physics, see Wilson and Kogut

(1974), Goldenfeld (1992), Cardy (1996), Fisher (1998), Kadanoff (2000), Sornette (2006),

and Zinn-Justin (2007); for a more philosophical take, see Batterman (2002) and Butter-

field and Bouatta (2015).
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no claim has been made to have derived this power law behavior from any

microscopic model (or family of models). Instead, we have made two in-

dependent assumptions: the first is that traders may be modeled as agents

on a lattice with two states, without specifying any details of the lattice or

interactions between agents; and the second is that the hazard rate has a

particular form analogous to the magnetic susceptibility. The idea that the

hazard rate should be analogous to susceptibility is motivated by the idea

that a crash should correspond to large correlation lengths, but this does not

fix the form of the equation 4.3.

The final ingredient of the model is phenomenological. Observing the

stylized fact that prices exhibit accelerating oscillations in the lead up to a

crash, one infers that the critical exponent α in 4.3 is complex.16 A complex

critical exponent modifies the power law to include periodic oscillations in

time known as log-periodic oscillations.17 JLS argue that, to leading order

in a Fourier expansion near tc, the general solution for h(t) is given by:

16The argument here is subtle. JLS first present their model generically, without making

any assumptions about the details of the network. They then observe that if the network

has certain features – in particular, if it is hierarchical in a sense to be explained in section

4.2 – then it will exhibit complex critical exponents, and hence log-periodic oscillations near

criticality. They give some plausibility argument for considering hierarchical lattices, but

leave the actual lattice structure open until they consider historical data –at which point

they conclude that, given the presence of oscillations, the network must be approximately

hierarchical and the critical exponents must be complex. It is in this sense that introducing

complex critical exponents is “phenomenological”. One can also run the argument in the

other direction, however, and argue that on the basis of a plausible assumption concerning

the hierarchical nature of trader networks, the critical exponents should be expected to

be complex; at times, Sornette and collaborators appear to prefer this version of the

argument.
17An early discussion of log-periodicity and self-similarity is given by Barenblatt and

Zeldovich (1971). Extensive work on the existence of complex critical exponents with log-

periodic oscillations has been carried out by Sornette and his collaborators (eg. Sornette

1998; 2006; Zhou et al. 2005).
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h(t) ≈ B0|tc − t|α
′
+B1|tc − t|−α

′
cos[α′′ log |tc − t|+ φ (4.4)

where B0, B1, and φ are real constants, α′ is the real part of α, and α′′ is the

imaginary part of α.

Having identified this form for the hazard rate, one then plugs h(t) from

Eq. 4 back into the general dynamic equation 4.1 to obtain an expression

that describes the behavior of price as a function of time given this hazard

rate, to obtain:

log[p(t)] = log[pc]−
k

β
(B0(tc − t)βcos[ω log(tc − t) + φ]) (4.5)

where β = 1− α′ ∈ (0, 1), pc = p(tc) is the price at the critical time, and

φ is another constant.

Eq. 4.5 succeeds in capturing the stylized facts observed in the occurrence

of extreme events, including volatility clustering and accelerating oscillations

(Yalamova and McKelvey 2011). Moreover, as we will elaborate below, it pro-

vides an explanation of these observed phenomena – and indeed, of crashes

themselves – that appeals to the existence of self-reinforcing imitative behav-

ior between traders. Finally, the model aims to be predictive by providing

the tools to anticipate the occurrence of crashes that arise due to endogenous

herding behavior, such as panics, by describing a specific form of accelerating

oscillations – namely log periodic oscillations – that provide a signature of

approaching criticality.

Note that although volatility clustering and accelerating oscillations are

taken as stylized facts that are “inputs” for the model that are used to

establish that the complex exponent in Eq. 4.3 is complex, the specific form

of Eq. 4.5 should be taken as an output of the model. As such, it can be back-

tested to provide empirical support for the model as a whole, and specifically

for the claim that crashes may be understood as critical phenomena. The

results of these tests have been reported in several places (Sornette, Johansen,
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and Bouchaud 1996; Sornette and Johansen 1997; Johansen, Ledoit, and

Sornette 2000; Sornette 2003; v. Bothmer and Meister. 2003; Calvet and

Fisher. 2008). Perhaps most remarkable is the crash of 1987, where the log-

periodic oscillations are visible even to the naked eye (Johansen, Ledoit, and

Sornette 2000).

4.4 The Logic of the JLS model

The JLS model, and the analogy between crashes and critical phenomena on

which it is based, are highly suggestive. However, one needs to be careful

about the limits of the analogy.18 As we will presently argue, even if one

accepts the arguments given in the previous section, the logic of the model is

importantly different from that of models from statistical physics on which it

is based. First, we will argue that unlike critical phase transitions, “critical”

market crashes do not form a universality class in the sense of renormaliza-

tion group (RG) physics. It follows that explanatory strategies familiar from

applications of the RG in physics do not carry over directly to this model.

We will then present a different analysis of the logic of the JLS model, em-

phasizing what sort of explanations we think the model can provide. We will

conclude by observing that although the mathematical methods used in the

JLS model are similar to those from physics the role that these methods play

in application are different.

18There are various criticisms of the JLS model that also stress the disanalogies between

the JLS model of financial crises and critical phase transitions. For example, Ilinski (1999)

casts doubt on a main component of the JLS model: crashes are principally caused by im-

itative dynamics between individual traders. He objects that different market participants

may act over different time horizons (e.g. minutes for speculators, years for managers),

so that the instantaneous long-range interactions between traders postulated by the JLS

model are implausible. We will not engage with this criticism or others; instead, we

want to see how far the analogy goes if we assume that the model is well-motivated and

well-supported empirically.
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4.4.1 Do Market Crashes Constitute a Universality Class?

To evaluate the analogy between market crashes in the JLS model and criti-

cal phenomena in physics, we will begin by describing the situation in physics

in some further detail. As noted above, when a system undergoes a critical

phase transition, some important physical quantities diverge. For instance,

in the ferromagnetic-paramagnetic transition described in section 3, the di-

vergent quantities are the magnetic susceptibility, the specific heat, and the

correlation length. The divergence of the correlation length implies that all

spins are correlated at the transition point regardless of the distance between

them. That is, the measuring distance unit is no longer important. When

this happens, the system is said to be scale invariant.

Scale invariance is consistent with the observation of power law behav-

ior of physical quantities near a critical point. The exponents appearing

in these power laws – called critical exponents – were originally determined

experimentally. Surprisingly, radically different systems, such as fluids and

ferromagnets, were found to have exactly the same values for their critical ex-

ponents. This was particularly striking because the exponents were deemed

anomalous, which is to say that they were not whole numbers or simple frac-

tions. Systems having the same values of their critical exponents are said to

belong to the same universality class.19 One of the great achievements in the

theory of phase transitions was the development of RG methods to explain

how this universal behavior comes about – i.e., to explain why apparently

different systems have the same scaling behavior near criticality.

19As will become clear in what follows, by “universality class” we mean the basin of

attraction of a given non-trivial fixed point under some RG flow. In cases of critical phase

transitions, these correspond to systems with the same critical exponent near the transition

point, though RG methods may be applied more generally. Batterman and Rice (2014)

suggest a still-broader definition of “universality class” that applies to systems outside of

physics where the RG does not apply; as we will see below, market crashes will turn out

to form a universality class in this more general sense, but one needs to be careful about

the role that the RG plays in the argument for this.
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RG methods consist, roughly, in a set of transformations by which one

replaces a set of variables by another set of – generally coarse-grained – vari-

ables without changing the essential physical properties of a system. The (in-

finite) iteration of these transformations in a space of Hamiltonians enables

one to find so-called fixed points of the transformation, which are Hamilto-

nians that represent the (coarse-grained) dynamics of a system near a tran-

sition point.20 This procedure is taken to explain universality, as it has been

shown that systems in the same universality class flow to the same fixed

points, and thus the systems in a given universality class should be expected

to have the same dynamical properties near the transition point. The exis-

tence of non-trivial fixed points is generally taken to show that a system’s

microscopic details are irrelevant to its behavior near criticality. In addition,

RG methods provide an argument for the use of highly idealized models in

the explanation of radically different systems. For instance, by showing that

both ferromagnets and fluids are in the same universality class as the Ising

model, RG methods justify the use of the Ising model for the study of both

systems.

Thus, in physics, the logic of universality arguments goes as follows. One

begins with the empirical observation that certain systems exhibit the same

behavior ? i.e., have the same critical exponents – near criticality. One then

shows that those that systems flow to the same fixed point by iterated appli-

cation of an RG transformation, thus explaining their observed similarity by

establishing that, at a certain level of coarse-graining, these systems have the

same dynamical properties. In other words, the thing one is ultimately trying

to explain is why a range of apparently different systems are all saliently the

same, and the explanation proceeds by showing that the microscopic details

of the systems do not matter to the phenomenon in question.21

20Note that our description of RG methods here follows the “field space” approach, in

the sense of Franklin (2017).
21Note that it is not essential, here, to begin with an empirical observation –though that

is what happened in the physics of phase transitions. In principle, one can demonstrate
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Is the same reasoning applied in the JLS model? Note that if this sort

of argument could be so applied, it would be very attractive. For one, it

would mean that markets could be expected to always have the same log-

periodic behavior, with the same critical exponent, in the lead up to a crash,

which would yield a strong predictor of crashes. Moreover, there are good

reasons to be skeptical about the microscopic details of any market model.

Markets have heterogeneous participants whose behavior will depend on a

large number of endogenous and exogenous factors that no model can hope

to accurately represent. And so, an argument to the effect that, irrespective

of the details of how one models market participants’ disposition, the same

large-scale behavior can be expected would provide both helpful support for

the resulting large-scale model, and also alleviate worries about the particu-

lar microscopic model that has been adopted. It would also justify adopting

highly idealized models of market actors, analogously to how the renormal-

ization group justifies using the Ising model for critical phase transitions.

Unfortunately, however, it would appear that this reasoning cannot be

carried over directly. In particular, the first step does not work. While data-

fitting supports the idea that the relationship between price returns and

hazard can be captured via a power-law (eg. Johansen, Sornette, and Ledoit

1999), analysis of past crashes does not support the hypothesis that crashes

constitute a universality class in the sense of all corresponding to the same

non-trivial fixed point of some RG flow. This is because crashes do not all

exhibit the same critical exponent. Via curve-fitting, Graf v. Bothmer and

Meister (2003) show that in 88 years of Dow-Jones-Data there actually are

no characteristic peaks in the critical exponent β of equation 4.5. Although

JLS showed that the exponent of the crash in 1987 and the crash in 1997

differ by less 5%, Sornette et al. (1996) show that the value of that exponent

differs substantially from other important crashes such as the crash in 1929.

that two systems are in the same universality class and thereby predict their behavior near

critical points.
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The fact that that there is no characteristic peak in the exponent ? has

the following consequence. Stock market crashes are neither in the same

universality class as the Ising model (or any previously solved model) nor do

they constitute a universality class themselves.

One might think, as Sornette and collaborators themselves seem argue to

in at least some places, that the fact that crashes do not constitute a uni-

versality class entirely undermines the analogy between crashes and critical

phenomena.

If we believe that large crashes can be described as critical points

and hence have the same background, then β, ω and δt should

have values which are comparable. (Johansen, Ledoit, and Sor-

nette 2000, p. 17)

As we will argue below, however, we do not think that the failure of

crashes to constitute a universality class is a major problem for the model.

But it does mean that the logic of the model, and the sorts of explanations

we can expect from it, are importantly different from in physics. If we cannot

expect crashes to constitute a universality class, then the RG story cannot be

applied either for the calculation of critical exponents or for the explanation

of the universal behavior observed in crashes (or not observed, as it happens).

In other words, if there is universal behavior in stock market crashes, this

is not the kind of universal behavior that can be explained via RG methods

alone. 22

22Note however that this does not mean that RG methods cannot be applied at all in

the context of the JLS model. Zhou and Sornette (2003), for instance, use renormalization

group methods to obtain an extension of equation (5) that gives an account of larger time

scales. Moreover, as we will see, RG methods will reappear in our analysis below, although

they will play a different role than in statistical physics.
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4.4.2 On the Reductive and Explanatory Character of

the JLS model

We saw above that the JLS model apparently does not work by establishing

that market crashes form a universality class. This means that one cannot

apply the same reasoning as in physics to argue that large-scale market be-

havior near transition points (i.e., crashes) is independent of the microscopic

details of market dynamics. It thus seems that insofar as the JLS model is

successful, it must function differently. In this section we will develop a posi-

tive account of the logic of the JLS model, describing what we take the model

to explain and how. We will argue that the JLS model relies on a subtle inter-

play between microscopic and macroscopic considerations, by which known

mathematical facts familiar from statistical physics are used, in conjunction

with empirical considerations, to draw inferences in both directions.

Recall that, whereas the arguments from statistical physics sketched above

began with a brute empirical claim –many systems appear to have the same

critical exponents – the JLS model began with two separate ingredients. The

first, 4.1, was taken from mainstream economics – or at least, from the the-

ory of rational bubbles. The second, Eq. 4.3, was a bare ansatz, inspired by

statistical physics but in no sense justified by it. In other words, one begins

by considering what market dynamics would look like if the hazard rate were

governed by a power law near crashes, similarly to how the magnetic suscep-

tibility behaves. These two ingredients, along with the further specification

that the exponent in Eq. 4.3 is complex, then lead to Eq. 4.5, concerning

the logarithm of market prices near a crash. It is this equation that is the

principal predictive output of the model, and also the means by which the

model is both calibrated and tested against historical data.

But this is not the whole model. To motivate the ansatz that the hazard

rate satisfies Eq. 4.3 near crashes, JLS include a third ingredient, which is

that microscopic market dynamics may be modeled as a network of agents,
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interacting with their nearest neighbors via imitation, and that the hazard

rate may be interpreted, much like the magnetic susceptibility, as a mea-

sure of the characteristic distance scale of correlations between agents. The

proposal that market participants form some sort of network of influence is

taken as prima facie plausible, and no particular evidence is offered for it;

at this stage, no claims are made about the details of the network structure.

Drawing on known results from statistical physics, JLS then observe that

networks of this sort are very often associated with power laws near critical-

ity for the parameter that is now being interpreted as hazard rate, thereby

linking Eq. 4.3 with a class of microscopic models.

One then argues that insofar as Eq. 4.5 is successful, this relationship

between network models and power laws lends further plausibility to treating

market microdynamics with a network model of this sort, and also that

spontaneous herding, which now is understood to correspond to long-distance

correlations in a network, explains endogenous market crashes. In particular,

the divergence of the hazard rate at the critical point implies the divergence

of the correlation length, i.e. the range of interaction between traders.

As we noted above, if the correlation length in a network model of this sort

diverges, the system becomes scale invariant. It is under these circumstances

that the system is successfully described by power laws. Scale invariance

means that, near the critical point, market dynamics are self-similar across

scales. In other words, as traders imitate their neighbors, they aggregate

into clusters (e.g. companies) that act as individual traders imitating their

neighbor companies, and so on, to higher and higher scales. This imitation

procedure across different scales accounts for how information propagates

so quickly before a crash: “...critical self-similarity is why local imitation

cascades through the scales into global coordination” (p. 32).

But now, recall that the critical exponents in the JLS model were de-

termined to be complex, and that the associated power laws exhibited log-

periodic oscillations. Not all network models lead to log-periodic power laws
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(LPPLs); they typically arise (only) when the underlying network model

exhibits discrete scale invariance. Discrete scale invariance means that the

system is scale invariant only under special discrete magnification factors;

this, in turn, implies that the system and the underlying physical mecha-

nisms have characteristic length scales. As Sornette (1998) points out, this

provides important constraints on the underlying dynamics. In particular,

it suggests that traders are arranged on a hierarchical lattice, which is a

lattice in which, by virtue of the network structure, some nodes (traders)

have greater influence than others (still via nearest-neighbor interaction).

Examples of hierarchical networks such as the Bethe lattice, a fractal tree,

or hierarchical diamond lattice. These hierarchical networks tell us not only

how information propagates through scales but also how information prop-

agates within the same scale. In figure 1, for instance, one can see that in

the Bethe lattice information that starts by one agent propagates within the

same scale faster than exponentially.
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Figure 1: Illustration of a Bethe Lattice, one of the possible network

structures underlying the occurrence of a crash according to the JLS model.

The point in the center of the figure represents a trader who is source of

opinion. The first ring represents the neighbors, who tend to imitate the

opinion of the trader at the center. The second ring represents their neigh-

bors, who are indirectly influenced by the opinion of the first trader, and so

on. This aims to illustrate how imitation could possibly propagate resulting

into global coordination.

Sornette has argued that it is plausible to model the propagation of infor-

mation in social structures using hierarchical lattices, and also that there is

independent empirical support for doing so (Sornette 2003, Ch. 4). But it is

not claimed – nor is it necessary to claim – that under general circumstances,

the network of traders is fractal, or that it corresponds to some exact hierar-

chical lattice. Instead, what is claimed is that under general circumstances,

the network of traders lies in the basin of attraction of a hierarchical model

under RG transformations, so that its critical behavior is the same as that of

a hierarchical network, i.e., so that near a crash markets exhibit LPPLs. In

other words, interactions between traders must be “approximately” hierar-

chical, in the sense of lying in the same universality class as some hierarchical

network (with imitative dynamics). It is here that RG methods enter explic-

itly into the JLS model. One might think of the role played by RG methods

here as establishing that crashes form a universality class in a more general

sense than that discussed above, namely by showing how a wide range of

systems flow to fixed points characterized by hierarchical networks of one

sort or another. (We will return to this idea below.)

We claim that it is the inference from observed LPPLs to discrete scale

invariance of an underlying network structure (or, more generally, from power

laws of any kind to scale invariance) that forms the explanatory core of the

JLS model. In more detail, what we find here is an explanation of (endoge-
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nous) market crashes as arising from the structure of the network of traders

at the time the crash occurs. Markets crash in the absence of any exter-

nal, coordinating event because the network of traders can spontaneously

evolve into states that are (discretely) scale invariant, i.e., which have long

correlation lengths, so that small, essentially arbitrary perturbations, can

propagate rapidly across scales. Perhaps surprisingly given the literature on

universality and explanation, this explanation, as we understand it, is causal,

in the sense of Woodward’s interventionist account of causation (Woodward

2003).23 On Woodward?s account, causes are variables that one could in-

tervene on in order to reliably influence a system. More precisely, one says

that A causes B if (given some background conditions) there is a conditional

of the form “if A, then (likely) B”, where A can be understood as a single

variable that one could, in principle, manipulate. On this account of causa-

tion, a relationship such as the one between LPPLs, discrete scale invariance,

and transitions, which holds across a range of different condition, can serve

as a guide to identifying causal relations. As Woodward puts it, “When a

relationship is invariant under at least some interventions...it is potentially

usable in the sense that...if an intervention on X were to occur, this would be

a way of manipulating or controlling the value of Y” (16). We take it that the

moral of the JLS model in its most general form is as follows: if the network

of agents participating in a market approaches a (discretely) scale-invariant

23Sornette also speaks of this explanation as “causal”: for instance, when he writes “?the

market anticipates the crash in a subtle self-organized and cooperative fashion, hence

releasing precursory “fingerprints” observable in the stock market prices?. we propose

that the underlying cause of the crash must be searched years before it in the progressive

accelerating ascent of the market price, reflecting an increasing build-up of the market

cooperativity” (Sornette 2003 p. 279). As we noted in footnote 8, we do not take the

claim that this explanation is causal to be in conflict with the views defended by Batterman

(2000; 2002), Reutlinger (2014), or others. The claim is not that there is an explanation

of universality in this model that is causal. Rather, the claim is that the explanation of a

given crash, or even crashes in general, is causal, because the JLS model identifies how to

intervene to produce a crash, or to prevent one – namely, by changing network structure.
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state, as signaled by the appearance of LPPLs in price, then (it is likely

that) a crash will occur. In other words, the model says that crashes occur

in many different systems precisely when their (coarse-grained) dynamics be-

come approximately discretely scale invariant. And so, it is the emergence of

discrete scale invariance (or, perhaps, scale invariance more generally) that

should be identified as the proper cause of the crash. On this view, it is the

state of the network as a whole that should be understood as the cause of

the crash. But one might worry that this is not an ?event? or ?variable?

of the sort that one can intervene on. We believe it is. First, observe that

on Woodward?s account, it need not be possible to actually manipulate the

variable; it need only be the case that one could imagine, within the model,

changing just this feature. And indeed, in the present case, one certainly

can change the state of the network so that it is no longer scale invariant

(discretely or otherwise), and in doing so, one ipso facto moves away from

the transition point. This is precisely what is needed. More can be said on

this point, however. As we will explore in the final section of the paper, we

believe there are mechanisms by which an agent – say, a regulatory body –

can in fact intervene on the network structure of market participants in order

to disrupt scale invariance. If this is possible, then the conditional above not

only bears a clear causal interpretation, but in fact has policy implications

regarding how to deal with an impending market crash. Before turning to

this point, however, we will consider how the analysis of both the logic of the

JLS model and its explanatory properties that we have just provided bears

on recent debates concerning explanation and universality in the philosophy

of science literature. 5. Infinite idealizations, universality, and explanation

in the JLS model In the last section, we argued that the JLS model, though

bearing important relationships to models of phase transitions in physics,

relied on an argument that was importantly different, both in the sense of

“universality” at play and in how inferences are drawn about the micro- and

macrodynamics of markets. We also presented a positive account of both the
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logic of the model and the character of the explanation it offers of market

crashes. As we argued, this explanation is best construed as causal, in the

interventionist sense of Woodward (2003).

We made these arguments largely independently of the recent literature

on the character of explanations in statistical physics that make use of the

methods the JLS model borrows. There was good reason for this: our main

contention above was that the logic of the JLS model is different from that

of the models of phase transitions on which it is based. That said, there are

some features of the JLS model that make it salient from the perspective

of recent debates on explanation in philosophy of science. In particular, the

JLS model is arguably a minimal model in the sense of Batterman and Rice

(2014).24 A minimal model, according to Batterman and Rice, is one that

“...is used to explain patterns of macroscopic behavior across systems that are

heterogeneous at small scales” (p. 349). More importantly, minimal models

are “thoroughgoing caricatures of real systems” whose explanatory power

does not depend on their “representational accuracy” (p. 350). Instead, the

key feature of a minimal model is that it allows us to say why many different

systems turn out to be saliently similar, despite their significant differences

at a microscopic level.

The model of critical phase transitions discussed above is a paradigm

example of a minimal model in the Batterman and Rice sense. There, the

24See Lange (2015) for a different critique of Batterman and Rice (2014) than we give

here. Lange argues that Batterman and Rice cannot sustain the distinction they draw

between their account and “common feature” accounts such as Weisberg’s (discussed be-

low). We take it that one can sustain a distinction between different explanatory goals,

one of which might well be to explain why many different systems should be expected

to be saliently similar to some highly idealized model, and we think that Batterman and

Rice do an adequate job of explaining both how that explanatory goal can be met, and

why the strategies for meeting it do not look like they are appealing to common features

of a model and a target system. That said, as we will argue, in some cases a single model,

including the JLS model, can be used to achieve more than one explanatory goal.
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goal is to explain why many different systems have the same behavior near

transition points, and moreover, to show why highly idealized models, such

as the Ising model, capture the essential behavior of all of these different

systems. The RG played an essential role in this story. But Batterman and

Rice are clear that it is not only models that use the RG in this way that

are to count as minimal models: they also describe an example from biology

– the Fisher sex ratio model - and argue that it is a minimal model as well.

The essential feature in both cases is that one has a universality class, in

the general sense of a collection of models that are all similar in some salient

way, and an explanation of why all of the systems in question fall into that

universality class.

We argued above that even though the RG plays a different role in the

JLS model than in models of critical phase transitions, there is still a sense in

which market crashes form a universality class, according to the JLS model.

This universality class does not correspond to the basin of attraction of a

single non-trivial fixed point under iterated applications of an RG transfor-

mation. Instead, it is a collection of systems that are all saliently similar, in

the sense that they exhibit LPPLs.

Still, one can explain why a wide range of systems exhibit this same uni-

versal behavior: they all exhibit discrete scale invariance near their transition

points. Moreover, RG methods play an important role in this argument. Al-

though RG transformations do not take all of the relevant similar systems

to the same non-trivial fixed point, they do take such systems to non-trivial

fixed points with complex critical exponents, and thus LPPLs. So in this

sense, the RG establishes the universality class in the salient (generalized)

sense. Finally, although one cannot show that there is some idealized model

that has the same critical exponent as every market crash –since not all mar-

ket crashes have the same critical exponent! – one can show that there are

highly idealized models, each exhibiting discrete scale invariance near tran-

sition points, that give rise to LPPLs near their transition points. It is on
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these grounds that we take the JLS model to be a minimal model in the

Batterman-Rice sense.

The JLS model also has another feature that, though not part of the

official definition of minimal models, seems characteristic of them (Batterman

2005; 2009): the JLS model relies on an infinite idealization. (This provides

one sense in which the model “caricatures” real markets.) That is, the JLS

model assumes that the network of market participants includes infinitely

many agents. Moreover, this feature is necessary for the model as we have

described it, and it is assumed in all versions of the model we know of in

the literature. The reason it is necessary is that scale invariance, including

discrete scale invariance, means that some property of the model must hold

– i.e., be “invariant” – at all scales, no matter how large. Thus only an

infinite model may be truly scale invariant. Likewise, only an infinite model

can exhibit the sort of infinite correlation lengths that we identify with a

transition point.25

These features of the JLS model, and especially the role that the infinite

idealization plays in establishing scale invariance near the critical point, are

common across applications of the RG methods. And Batterman puts con-

siderable weight on the infinities that arise in models that use these methods:

rather than anomalies to be avoided or removed, they are sources of impor-

tant information.

I’m suggesting that an important lesson from the renormalization

group successes is that we rethink the use of models in physics.

25This is not to say that the model could not be reconfigured as one that is invariant

across some scales, but not under arbitrary scale transformations. In other words, we do

not mean to deny what is sometimes known as “Earman’s principle”, that idealized models

can only be explanatory if one can imagine removing the idealization and still being able

to explain the same phenomenon (Earman 2004; J. Butterfield 2011). But doing so would

require substantial changes in the analysis, and would effectively produce a different model

from the one under consideration. Our interest is in the explanatory role of the infinite

idealization in the present version of the model.
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If we include mathematical features as essential parts of physical

modeling then we will see that blowups or singularities are often

sources of information. (Batterman 2009, p. 11)

It seems that something similar is going on in the JLS model: there,

too, one encounters not only infinite systems, but also divergent quantities –

including both the hazard rate and the correlation length between traders.

And it is these blowups that signal that a crash is impending. This singular

behavior is at the very core of the model.

So it seems that the JLS model has the hallmarks of a minimal model.

But if so, there is a tension between what we say above and Batterman and

Rice’s account of how minimal models explain. In particular, Batterman

and Rice emphasize that the sorts of explanations they consider are non-

causal and non-reductive.26 Moreover, they argue minimal models are not

representational, in the sense that their success does not depend on “some

kind of accurate mirroring, or mapping, or representation relation between

model and target” (351). On our view, however, the JLS model does provide

a causal explanation; moreover, this explanation is arguably both reductive

and representational. We have already seen the sense in which the JLS model

provides a causal explanation: it may be understood to yield a conditional

statement, the antecedent of which is a variable on which one can, in prin-

ciple, intervene. Thus, on an interventionist account of causal explanation,

the model appears to allow us to say that it is (discrete) scale invariance that

causes market crashes – or, to put it in more evocative terms, it is herding at

all scales that causes market crashes. Some readers will balk at this claim:

after all, as just noted, only infinite systems can be truly scale invariant, and

realistic markets are not infinite. So, in what sense could a feature that no

actual market could have cause a behavior that realistic markets exhibit? Or

to put it another way, how could actual market crashes be caused by scale

invariance? The answer, as we see it, is that the JLS model explains crashes

26See also Morrison (2006) for a related point.
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by showing that in some networks, correlation lengths can become long, rel-

ative to the overall size of the network, and that when this happens, crashes

become likely. It is the infinite idealization that allows one to precisely char-

acterize the relationship between long correlation lengths, scale invariance,

and crashes, and it is not clear that one could establish this relationship as

neatly in a finite system as one can in the infinite system. But what the

infinite system is ultimately telling us is something about the causal rela-

tionship between correlations between traders and market-wide crashes. 27

We should emphasize that, although we take this explanation to be causal,

it is only on a particular account of causation (i.e., the Woodward (2003) ac-

count). Of course, there are many other analyses of causation on which this

may well not be a causal explanation (Salmon 1984; Strevens 2008). More

importantly, we do not claim that crashes are being explained, here, by ap-

peal to particular details concerning interactions between individual agents.

In this sense, it is not a “causal-mechanical” or “mechanistic” explanation

(Craver 2006; Kaplan 2011; Kaplan and Craver 2011). Indeed, the model

is not committed to any particular network model at the microscale, just a

class of models that exhibit discrete scale invariance. Sornette puts the point

as follows.

It turns out that there is not a unique cause but several mech-

anisms may lead to DSI. Since DSI is a partial breaking of a

continuous symmetry, this is hardly surprising as there are many

ways to break down a symmetry. We describe the mechanisms

that have been studied and are still under investigation. The list

of mechanisms is by no mean exhaustive and other mechanisms

may exist. (Sornette 1998, p. 247)

27Here there is a relationship both to “Earman’s principle”, as noted in footnote 35, and

also to Butterfield (2011), who argues that in cases where one takes an unrealistic infinite

limit, one should expect to see the qualitative behavior that arises in the limit appearing

already on the way to the limit.
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Thus, the model does not even include a specific account of how agents

interact with one another. It is rather a generic feature of a range of possible

networks that plays the causal role.

This last point is also closely related to the senses in which we take

the JLS model to be reductive and representational. The antecedent of the

conditional described above refers to the micro-constituents of the market.

It is in this sense that we take the explanation to be reductive. But it does

not follow that the model supposes an atomistic conception of the economy,

i.e. it does not determine the law governing the behavior of any arbitrary

agent. But, given some behavioral assumptions, it does constrain the kinds

of structures they might reside in. In this case: hierarchical structures that

(sometimes) exhibit discrete scale invariance. This does not require any

particular arrangement of individuals because those particular details are in

some sense irrelevant; what does matter are these structural details.

Likewise, the model is representational in the sense that its success de-

pends on the fact that it represents certain stylized facts about market par-

ticipants: they influence one another, at least sometimes, by imitation, and

their interactions are hierarchical, in the sense that some traders are able

to influence larger groups than other traders. Of course, this is far from a

complete or accurate representation of market participants. But if actual

market participants do not bear relations to one another that are adequately

represented by a network with these features – or if markets are not dis-

cretely invariant across at least some scales – then the JLS model would fail

to support the causal explanation we have described here. And so, it seems

that the success of the explanation does depend on the representational ac-

curacy of the model, at least with regard to these particular features. This

weak sense of being “representational” indicates that the JLS model may

(also) be understood as an example of what Weisberg (2007) calls “minimal-

ist models”: “[A] minimalist model contains only those factors that make

a difference to the occurrence and essential character of the phenomenon in
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question” (Weisberg 2007, p. 642). It also invokes Strevens’ (2008) account

of idealized models: “the content of an idealized model, then, can be divided

into two parts. The first part contains the difference- makers for the explana-

tory target... The second part is all idealization; its overt claims are false but

its role is to point to parts of the actual world that do not make a difference

to the explanatory target” (318). Strevens, too, argues that this sort of ide-

alization is compatible with causal explanation. Of course, Batterman and

Rice’s minimal models and Weisberg’s minimalist models are supposed to be

fundamentally different; worse, those philosophers who have mistaken mini-

mal models for minimalist models have “almost universally misunderstood”

the explanatory structure of these models (Batterman and Rice 2014, 349).

And yet, it would seem that the JLS model is an example of both. How could

this be? The tension can be resolved if one distinguishes between, on the one

hand, features of a model – what sorts of idealizations it involves; in what

senses, if any, it is representational; what sorts of mathematical relationships

and methods it relies on – from the sorts of explanations one can give by

appealing to the model, i.e., the why questions one is able to answer (citealt-

Vanfraassen1980). 28 Batterman and Rice define minimal models as models

used to give certain sorts of explanations involving universality classes. Since

the JLS model can be used to explain why market crashes form a universality

class (in the broad sense), the JLS model counts as a minimal model. These

explanations, they argue, are neither causal nor reductive, and their success

does not depend on the accuracy with which the models represent target

systems; using the JLS model to explain the universal behaviors associated

with crashes (namely, LPPLs, discrete scale invariance, etc.) is presumably

also non-causal, at least insofar as Batterman and Rice’s arguments are con-

28This point mirrors one made by O’Connor and Weatherall (2016): there are many

different purposes for which models may be constructed, and to which they may be put.

This includes different explanatory purposes, and so one should be cautious about attempts

to classify or taxonomize models on the basis of how they may be used to explain.
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vincing. 29 But the fact that the JLS model can be used for this sort of

explanation does not bear on whether one can also use it to provide other

explanations; nor does it bear on which explanations seem most salient in the

context in which the JLS model was developed. In other words, we claim that

the JLS model may be used to answer the question, ‘Why do markets gener-

ically exhibit volatility clustering, log-periodic oscillations, etc. near market

crashes, even though market conditions otherwise vary dramatically?” To do

so, one uses RG methods to show that a large variety of different networks

exhibit discrete scale invariance and satisfy LPPLs near transitions points.

In answering this question, we give the sort of explanation that Batterman

and Rice are pointing to, and it is for this reason that the JLS model is a

minimal model. But we claim that we can also use the JLS model to answer

the question, “Why do stock markets crash?”, where this question is under-

stood to be about the causes of crashes. And in this case, the answer is:

because hierarchical networks can spontaneously evolve into states featuring

discrete scale invariance, and scale invariance of any sort allows vanishingly

small perturbations to cascade across scales.30 It is in answering this question

that the Woodwardian conditional described above is crucially invoked. And

it is in answering this question that the minimalist representational features

of the JLS model matter. There are several points to emphasize here. The

29We tend to think that they are convincing, or at least, we agree that explanations of

universality of the sort Batterman and Rice discuss are non-causal. (See also Reutlinger

2014 for a different argument concerning why these explanations are non-causal.)
30Note that there is another interpretation of “Why do stock markets crash?” that

does not demand a causal explanation, but rather another minimal model explanation:

namely, “Why do markets fall into a universality class of systems that exhibit crashes,

as opposed to tamer sorts of transitions?” Of course, this is a legitimate explanatory

demand, and the answer, invoking the JLS model, would look more like the answer to

the first question than the second. The difference between these two understandings of

the question “Why do stock market crash?” invokes van Fraassen’s (1980) analysis of the

logic of why questions. Explanatory demands, van Fraassen convincingly argues, involve,

in addition to the explinandum, both a contrast class and a relevance relation.
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first is just to clarify our argument, lest our claims above be misconstrued:

As should now be clear, when we argued above that the JLS model pro-

vides a causal explanation, we did not mean to imply that the explanation

one can give for why market crashes form a universality class is a causal

explanation (contra Batterman and Rice), nor (ipso facto) that all explana-

tions are causal.31 The point is rather that the JLS model, despite having

the characteristic features of a minimal model, may nonetheless be used to

give causal explanations (in addition to minimal model explanations). And

pulling apart these different explanatory tasks requires careful attention to

precisely what question one is trying to answer. A second point to emphasize

is that, even though the why questions described above are distinct, there

is a subtle interplay between them. It is precisely because the JLS model

can be used to explain why market crashes form a universality class in the

relevant sense that it can (also) be used to provide a certain kind of causal

explanation of market crashes, since it is the relationship picked out by this

universality class, between discrete scale invariance and LPPLs near tran-

sition points, that makes true the conditional that forms the basis of the

causal explanation. More, for precisely the same reason, the infinite idealiza-

tion in the JLS model is essential precisely because it helps one identify the

common mechanism underlying the phenomenon of interest ? and thus, it is

the infinite idealization that permits the causal explanation. Conversely, it

is precisely because the relationship encoded by the Woodwardian condition

holds that market crashes fall in a universality class (in the broad sense) in

the first place.

This situation raises a question. If the JLS model can be both a minimal

model and also a minimalist model, can we understand the other models that

Batterman and Rice discuss, including models of critical phase transitions,

as also providing interventionist causal explanations (in addition to minimal

31For other examples of explanations that seem to be even more clearly non-causal, see

Weatherall (2011; 2017).
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model explanations)? In a sense, the answer must be “yes”, at least if what

we argue above is correct. For instance, in the phase transition case, one

can use the Ising model to answer the question, “Why do critical phase

transitions occur?”, construed causally, by showing that the Ising model,

and a wide range of other models in its universality class, can evolve into

states that are (approximately) scale invariant, and thus vanishingly small

perturbations can cascade across scales. This explanation is causal in just

the same sense that the corresponding explanation invoking the JLS model

is. Once again, there is a subtle interplay between this explanation and the

minimal model explanation using the same model, since the fact that real

systems are in the same universality class as the Ising model is precisely

what isolates scale invariance as the difference-maker (or, perhaps better,

the manipulable variable).

All that said, there is still a difference between the JLS model and critical

phase transitions in this regard. It concerns which explanatory demands

seem most salient. As we noted above, one of the most striking features of

critical phase transitions is the fact that many different systems have the

same critical exponents. The salient issue is not to explain why transitions

occur at all, but rather to explain why transitions in different systems are so

similar. Of course, this does not prohibit one from asking the other question;

it is just a matter of emphasis. (Besides, background theory, such as mean

field theory, seems to explain this well, without explaining universality.) In

the case of financial markets, the situation seems to be reversed: there, one

wants to explain why (endogenous) market crashes occur at all, particularly

given that crashes are often taken to be in tension with the EMH and other

standard market modeling assumptions. And for this reason, it is the causal

explanation using the JLS model that seems to be the salient one.
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4.5 Policy Implications

We argued above, particularly in section 4.2, that the sense in which we

take the JLS model to provide a causal explanation is interventionist: it

depends on identifying a potential conditional relationship, the antecedent

of which can be understood as a variable that can be manipulated, at least

in principle. Moreover, the JLS model provides an observable signal of when

that antecedent obtains. But having identified such a variable means that

we have also identified a potential target for policy intervention. If we accept

the JLS model, how might a regulatory agency intervene to prevent crashes?

The answer is to disrupt the network structure on which traders reside.

How might one do this? One possibility would be through structural

changes. Hierarchical networks have interesting dynamical properties be-

cause their inhabitants tend to cluster together and thus disseminate risk in

particular ways.

...hierarchical networks are resilient to peripheral crises, but very

fragile in the face of crises in the center. In these systems, the

risk of contagion falls as the system integrates around the center.

(Oatley, Winecoff, Pennock, and Danzman 2013, p. 135)

Thus, one possible intervention would be to try to identify regions of the

network that are peripheral, and try to introduce further connections – i.e.,

increase integration –between them, as this can make hierarchical networks

more resilient to contagion.

It is not clear that this sort of proposal could serve as a response to an

impending crash, however. Another proposal that might be more effective

in this regard is given by Petter, Kim, Yoon, and Han. (2002). They borrow

from computer science to suggest that sometimes the performance of a system

can be improved by selectively deleting vertices and edges in a network (i.e.

the relationships between nodes/agents):
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If one wants to protect the network by guarding or by a tempo-

rary isolation of some vertices (edges), the most important ver-

tices (edges), breaking of which makes the whole network mal-

functioning, should be identified. (1)

Here the suggestion would be to identify, in advance, particular rela-

tionships – say, relationships between major banks, or within banks – and

intervene on them when LPPLs appear in market data, perhaps by blocking

information from being exchanged between particular actors.

The JLS model can also be used as a diagnostic tool for evaluating current

regulatory tools. For instance, one type of intervention that is actually used

as a financial regulatory tool is the “trading curb”. A trading curb works by

temporarily halting activity if a very large, sudden drop occurs in the stock

market. For instance, the New York Stock Exchange (NYSE) currently has

in place several “circuit breakers”, which kick in depending on how much the

Dow Jones Industrial Average (DJIA) has moved within a short period of

time, with longer time-out periods for larger sudden drops.

[T]he circuit-breaker halt for a Level 1 (7%) or Level 2 (13%)

decline occurring after 9:30 a.m. Eastern and up to and includ-

ing 3:25 p.m. Eastern, or in the case of an early scheduled close,

12:25 p.m. Eastern, would result in a trading halt in all stocks

for 15 minutes. If the market declined by 20%, triggering a Level

3 circuit-breaker, at any time, trading would be halted for the re-

mainder of the day. (“NYSE: NYSE Trading Information” 2016)

Circuit breakers may also be assigned to a particular stock, rather than

to the market as a whole. For instance, “limit up, limit down” measures

employed in some markets prevent a stock from being traded outside a certain

price band for a few minutes (Pisani 2013). For instance, a 5 % movement

within five minutes (e.g. say a stock drops to $5 at that time) would mean

that for 15 minutes, it would not be allowed to trade for less than $5.
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One motivation behind trading curbs is that in the period during the

halt, investors will “calm down,” i.e. behave more rationally rather than

contributing further to a bubble of irrational exuberance (or pessimism).

Unfortunately, some studies indicate that curbs can actually encourage such

behavior, especially if agents know what the trading curbs are and whether

the relevant limits are being approached (Goldstein and Kavajecz. 2004).

The JLS model provides some insight into why this might be. In particular,

if stock markets crash because of long-range correlations between traders,

then a trading curb merely slows down trading, without disrupting the un-

derlying network state that causes the crash. Worse, the trading curb itself

can serve as a coordinating signal to the entire network that the market is

in a precarious state, in a way that actually increases correlations.

4.6 Conclusion

In the foregoing, we have argued that the JLS model provides a compelling

causal explanation of market crashes, with potential predictive power. The

model is consistent with mainstream models in financial economics, but

clearly goes beyond them – and does so by exploiting an analogy with physics.

As noted in the introduction, we take this as a proof of concept: econophysics

at least has the capacity to contribute to our understanding of economic

phenomena, even while remaining within the general realm of mainstream

economic thought.

We have also used the JLS model to explore how idealized models that

use the physics of phase transitions may be used to provide a reductive expla-

nation. We argue that the JLS model may be understood as both a minimal

model and a minimalist model, and that the apparent tension between these

accounts dissolves once one recognizes the different explanatory demands

that a single model may be used to answer. The JLS model offers a causal

explanation of why markets crash: namely, they crash because markets can
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evolve into states that are approximately discretely scale invariant, with long

correlation lengths, such that small perturbations can have outsized effects.

But this is not the only explanation one can give using the JLS model; one

can also explain why crashes generically exhibit certain features, such as

volatility clustering, by showing that crashes lie in a universality class, in

the generalized sense described in the paper. That the same model may be

used to offer two different explanations – one causal, and one, presumably,

non-causal –points to the importance of separating questions concerning the

explanatory purposes to which a model can be put from attempts to classify

or characterize models themselves.
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Chapter 5

Conclusion

5.1 Prospectus

Before summing up the main points of this dissertation, I would like to

mention some problems associated with phase transitions that remain open

in the philosophical literature and that I could not address here.

5.1.1 Universal Explanations

Critical phase transitions are a well-established case of universal behavior,

in which one can demonstrate that systems as diverse as fluids and magnets

have exactly the same critical exponents, which means that they instantiate

the same macrobehavior. The existence of universal behavior is the result of

the insensitivity of critical exponents to short scale effects, which is demon-

strated using renormalisation group techniques. An important discussion in

philosophy in the last years regards the kind of explanation that renormaliza-

tion group approaches provide. Many (Batterman 2000, Reutlinger (2014)

and Lange 2015) agree that renormalization group explanations are scientific

examples of non-causal explanations. However, they disagree with respect

to why RG explanations are non-causal. For some (Batterman 2000, Bat-
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terman and Rice 2014), renormalization group explanations are non-causal

because they ignore causal details. For others (Reutlinger 2013, 2015 and

Lange 2015), they are non-causal explanations because their explanatory

power is due to the application of mathematical operations, which do not

serve the purpose of representing causal relations. Questions that deserve

to be addressed in future research are: what are the core aspects involved

in renormalization group approaches that make them constitute non-causal

explanations? Are all explanations involving renormalization group methods

non-causal or does this depend on the question that we are asking?

5.1.2 Quantum Phase Transitons

All what has been said in this dissertation concerns classical phase transi-

tions, but important questions arise when we consider quantum phase tran-

sitions. Landsman (2012) argues, for instance, that quantum phase transi-

tions impose more philosophical challenges than classical phase transitions.

It would be interesting to investigate to what extent the solutions to the

problems that we have offered here also apply to quantum phase transitions.

Another interesting question would be whether a quantum foundation

of thermodynamics can give us different insights on the problems that arise

when we consider classical phase transitions. In particular, D. . Wallace

(2014), 2015 argues that quantum mechanics is in a better position than

classical statistical mechanics to explain many of the foundational problems

that arise in the context of thermodynamics. A question that remains to

be addressed is whether quantum mechanics can actually solve problems

surrounding phase transitions better than classical statistical mechanics.

5.1.3 Finite Theories of Phase Transitions

Very recently, physicists have suggested alternative microscopic explanations

of phase transitions that do not invoke the thermodynamic limit. At least
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two approaches are especially relevant for the questions that have been ad-

dressed in this dissertation: (i) the proposal that relates phase transitions

with microcanonical singularities (e.g. Franzosi, Pettini, and Spinelli 2007)

and (ii) the proposal that relates these processes with the topology of con-

figuration space (Casetti and Kastner 2006). The importance of these new

programs lies in the fact that they can be applied to finite systems. Given

that the main problem of reducing phase transitions regards the assump-

tion of the thermodynamic limit, the question that arises quite naturally is

to what extent these new proposals provide a decisive argument in favor of

the reduction of phase transitions. Philosophers taking an antireductionist

position have not addressed this question yet. Similarly, the literature de-

fending the reduction of phase transitions has generally overlooked these new

approaches.

5.1.4 Defining Equilibrium for Symmetry-breaking Phase

Transitions

An interesting issue that has been addressed recently concerns the differ-

ences in Boltzmann and Gibbsian’s approaches to give an account for the

phenomenon of spontaneous magnetization (ferromagnetic phase transition).

Werndl and Frigg (2018) point out that whereas in the Gibbsian framework

of statistical mechanics there can be no spontaneous magnetization (because

the magnetization is zero for any arbitrary value of the temperature and any

arbitrary value of N), in the Boltzmannian framework, for any arbitrary N,

the magnetization will be non zero at a certain temperature, which means

that using Boltzmannian framework will allow us to define spontaneous mag-

netization also for finite N . The latter rises many interesting questions. The

first, which is addressed by Werndl and Frigg 2017, is whether this means

that Gibbsian and Boltzmannian frameworks lead to different empirical re-

sults. The second, that remains to be addressed, is whether this implies that
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Botzmannian approach offers a more suitable framework to account for phase

transitions that involve symmetry-breaking than the Gibssian approach. Fur-

thermore, whether this is related with the the property of ergodicity-breaking

that is associated with symmetry-breaking phase transitions.

5.1.5 Analogue Experiments

During the past years, physicists have tried to gain insight into domains of

nature that are beyond experimental reach by testing the hypotheses at stake

in systems that are analogous to, but not identical with, the target system.

For instance, in order to study properties of black holes, which are empir-

ically inaccessible, they have recently performed experiments in analogue

systems, such as fluids, which have the methodological advantage of being

manipulable in the laboratory. The philosophical question that arises then

is: what does justify the confirmatory power of such indirect experimental

procedures? A common justification that is found in the literature hinges

on the notion of universality, according to which the target and analogue

systems, despite their differences, instantiate the same macroscopic behav-

ior (Unruh and Schützhold 2005, Dardashti, Hartmann, and Thebault 2015,

Dardashti, Thebault, and Winsberg 2015. However, how to demonstrate the

relevant universal behavior in this context remains an outstanding problem.

Questions that deserve to be addressed in future research are: How can we

demonstrate the existence of universal behavior, for example in the case of

black holes? Is the notion of universality present in the case of black holes

the same as the one that characterizes critical phase transitions? How can

we compare the strength of different notions of universality? And in what

sense this a affects the confirmatory power of analogous experiments?
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5.2 Summing up

An important lesson from what has been discussed here is that, when we con-

sider the case of phase transitions, the concept of emergence must be taken

with a grain of salt. Although it is true that there are good reasons to believe

that phase transitions are “emergent” in some sense, this does not necessarily

imply that phase transitions undermine important notions of reduction that

have been at stake in the philosophical literature. In particular, in Chapter

2, I have argued that the physics of classical phase transitions are not ad

odds with a notion of inter-theory reduction that compares the values of the

relevant quantities in two different theories. This notion of reduction may ap-

pear weak to some philosophers, but it is enough to justify the success of the

thermodynamics of phase transitions and to establish a connection between

thermodynamics and statistical mechanics. More importantly, it allows us

to build a connection between the macroscopic behavior of phase transitions

that we observe everyday with the cooperative behavior of interacting lower

level entities.

Another claim that it was made here was that the justification of infinite

limits is primarily an empirical task that can be achieved if it can be shown

that the limit is controllable. Although in Chapter 2 and 3, I have defended

the view that we are justified in using the thermodynamic limit in the theory

of phase transitions, this does not imply that we have the same justification

for the use other limits in statistical mechanics. As it was shown in Chapter

3, the infinite-time limit is particularly hard to justify, because generally one

does not have control over how fast this limit approaches the experimental

values. It would valuable to continue investigating the role of the infinite-time

limit and the possibility of offering an empirical justification for it.

Finally, in Chapter 4 I have argued that the physics of phase transi-

tions could actually help us provide reductive explanations for stock market

crashes. It would be worth investigating whether similar interpretations can
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be given to other models that use physics to explain cooperative behavior

in social sciences such as models for vehicular traffic (e.g. Chowdhury et al.

2000) and Galam models for the process of workers’ strike in big companies

(Galam et al 1982) .

As we saw, the topic of phase transitions raises many foundational ques-

tions that are of interest for both physicists and philosophers. Fortunately,

in the last years philosophers have begun paying attention to some of these

issues, but it is clear that more work needs to be done in the future.
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