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 I - Summary 

1 

I Summary 

Transmission of the human immunodeficiency virus (HIV) across anogenital epithelial tissue is 

the primary route of HIV dissemination worldwide. Genital human papillomavirus (HPV) infec-

tion is the most common sexually transmitted disease (STD) with global prevalence of above 

10%. It is well established that sexually transmitted infections of the anogenital tract are im-

portant cofactors for HIV transmission in both men and women, and epidemiological studies 

indicate that preexisting infections by mucotropic HPV types enhance the risk of HIV acquisi-

tion by up to 5-fold. It has been speculated that HPV-induced inflammatory lesions in the mu-

cosal barrier and the recruitment of HIV-susceptible immune cells might be involved, yet little 

is known about molecular mechanisms in the cross-talk of these pathogens that may be in-

volved in the increased rate of HIV transmission. Specific peptides present in seminal fluid, 

including SEVI, are able to form amyloid fibrils and enhance HIV infection. Interestingly, the 

E4 protein of HPV, which accumulates to high levels in infected, disintegrating keratinocytes 

in the outermost layers of the anogenital mucosa, spontaneously aggegrates into amyloids. 

Here we find that the E4 protein of oncogenic and non-oncogenic HPV types enhances HIV 

infection of CD4 T cells by up to 300-fold. Naturally occurring, N-terminally cleaved E4 self-

assembled into cationic, intermediate amyloid fibrils that captured and concentrated HIV par-

ticles, protecting virion infectivity, impairing the efficiency of HIV broadly neutralizing antibodies 

and promoting fusion to and infection of multiple types of primary target cells. E4 drastically 

lowered the virus titer required for productive HIV infection in ex vivo-lymphoid organ cultures 

and infection enhancement occurred efficiently in vaginal fluid. Low amounts of E4 induced the 

amyloid formation and functionality of SEVI. Analysis of structural HPV16 E4 mutants identified 

the C-terminal 22 amino acids to be critical for HIV infection enhancement. Moreover, exposure 

of other clinically relevant viruses, i.e. herpes simplex virus type 1, rabies virus, measles virus 

and adenoviruses, to E4 amyloids also increased their ability to infect target cells. Comparison 

of the impact of E4 and a panel of naturally occurring amyloids (SEVI, β-amyloid, α-synuclein, 

islet amyloid polypeptide) on infection of this set of viruses revealed a broad, yet variable de-

gree of enhancement. 

These results demonstrate the potency of the papillomaviral E4 protein to boost virus infec-

tions, most notably HIV, and suggest a potential cross-talk of pathogen-associated and physi-

ological infection-enhancing peptides for transmission and disease induction of viruses. To-

gether with epidemiological evidence these findings provide a strong rationale for the develop-

ment of polyvalent prophylactic HPV vaccines that protect from infection with all circulating 

mucosal HPV types as a strategy to lower the risk of HIV transmission and confine the pan-

demic. 
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II Zusammenfassung 

Die Übertragung des Humanen Immundefizienz-Viruses (HIV) über die anogenitale Schleim-

haut ist weltweit die häufigste Art der Verbreitung. Die verbreitetste sexuell übertragbare In-

fektion (STI) stellt mit einer globalen Prävalenz von mehr als 10% die Gruppe der genital vor-

kommenden humanen Papillomaviren (HPV) dar. Es ist allgemein anerkannt, dass sowohl bei 

Männer als auch bei Frauen Koinkfetionen mit anderen STIs im Anogenitaltrakt die HIV-Über-

tragung begünstigen können. Epidemiologische Studien zeigen zudem, dass eine vorbeste-

hende Infektion mit mukotropen HPV-Typen das Risiko eine HIV-Infektion um bis zu 5-fach 

erhöht. Als mögliche Ursache hierfür werden u.a. die HPV-induzierten entzündlichen Läsionen 

der mukosalen Schutzschicht und die damit verbundene Rekrutierung von HIV-suszeptiblen 

Immunzellen genannt. Über die zugrundeliegenden molekularen Mechanismen, die bei der 

Wechselwirkung der beiden Pathogene im Hinblick auf die erhöhte HIV-Übertragung eine 

Rolle spielen, ist bisher noch wenig bekannt. Samenflüssigkeit enthält speziellen Peptide, wie 

z.B. SEVI, die in der Lage sind, amyloide Fibrillen auszubilden und hierdurch die HIV-Infektion 

von Zielzellen zu verstärken. Das E4-Protein von HPV, welches in großen Mengen in infizier-

ten, abschilfernden Keratinozyten der äußersten Schichten der anogenitalen Mukosa zu finden 

ist, aggregiert spontan zu solchen Amyloiden.  

In der vorliegenden Arbeit wird gezeigt, dass das E4-Protein von onkogenen und nicht-onko-

genen HPV-Typen die Infektion von CD4 T-Zellen mit HIV um bis zu 300-fach erhöht. Natürlich 

vorkommendes, N-terminal prozessiertes E4 bildet kationische, intermediäre amyloide Fibril-

len, welche HIV-Partikel binden und konzentrieren können, die Infektiosität der Virionen ver-

längern, die Effizienz von breitneutralisierenden Antikörpern gegen HIV beeinträchtigen, und 

sowohl die virale Fusion als auch die Infektion verschiedener primären Zielzelltypen erhöhen 

können. E4 ist zudem in der Lage, die Virustiter, welche benötigt werden, um ein produktive 

HIV-Infektion in lymphatischen Organkulturen ex vivo auszulösen, deutlich zu senken. Außer-

dem ist die E4-vermittele Infektionsverstärkung von HIV in Gegenwart von Vaginalsekret mög-

lich. Kleine Mengen E4-Protein sind in der Lage, die Aggregation von monomerem SEVI aus-

zulösen. Die Analyse verschiedener struktureller HPV16 E4-Mutanten konnte darüber hinaus 

die 22 C-terminalen Aminosäuren des Proteins als wichtig für die Verstärkung der HIV-Infek-

tion identifizieren. Ferner konnte die HPV E4-Exposition anderer klinisch relevanter Viren, wie 

z.B. Herpes simples Virus 1, Tollwut-Virus, Masern-Virus und Adenovirus, die Infektion ihrer 

Zielzellen erhöhen. Vergleichende Experiment mit E4 und einer Gruppe anderer natürlich vor-

kommender Amyloide (SEVI, β-Amyloid, α-Synuclein, Insel-Amyloid-Polypeptid) zeigten einen 

breiten, jedoch variablen Einfluss auf die Verstärkung der Infektion mit den zuvor genannten 

Viren.  
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Die dargestellten Ergebnisse belegen die Wirksamkeit von HPV-E4, die Infektion von Viren, 

insbesondere von HIV, zu verstärken. Auch deuten sie auf ein mögliches Wechselspiel zwi-

schen Pathogen-assoziierten and physiologischen infektionsverstärkenden Peptiden im Hin-

blick auf Übertragung und Ausprägung des jeweiligen Virus-assoziierten Krankheitsbildes hin. 

Zusammen mit epidemiologischen Studien untermauern diese neuen Erkenntnisse die Forde-

rung nach der Entwicklung eines polyvalenten, prophylaktischen HPV-Impfstoffes, welcher vor 

der Infektion mit allen zirkulierenden mukosalen HPV-Typen schützt. Diese Strategie könnte 

das Risiko der HIV-Übertragung minimieren und damit die weltweite HIV-Pandemie eindäm-

men. 
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1 Introduction  
 

1.1 The human immunodeficiency virus - HIV 

1.1.1 The HIV pandemic - a global burden 

In the early 1980s, “homosexual men in urban centers began presenting with advanced and 

unexplained immunodeficiency” [1], which was later termed acquired immunodeficiency syn-

drome (AIDS) and has been attributed in 1983 to the etiologic agent human immunodeficiency 

virus type 1 (HIV-1). In 1986, a second HIV-related retrovirus was discovered, termed HIV type 

2 (HIV-2). HIV-1 is the virus responsible for the majority of today’s pandemic of approximately 

36.9 million people living with HIV and 1.8 million people becoming newly infected in 2017. 

More than half of the HIV-infected individuals are women. HIV infection has caused so far more 

than 35 million deaths and, although numbers are declining (-38% between 2000 and 2017), 

940,000 people still died in 2017. The increasing availability of antiretroviral therapy (ART) has 

helped to ban HIV from the “global top 10 list” of disease-related death; however, HIV can still 

be found in this group in low-income countries. To date, 59% of adults and 52% of children 

infected with HIV are under ART treatment. The main region of the HIV pandemic is located in 

Africa, especially sub-Saharan Africa, which accounts for over two thirds of the global HIV 

burden [1, 2] (“WHO HIV update”/ “The top 10 causes of death”/ “HIV/AIDS key facts”, WHO 

2018).  

Similarities to the monkey-derived simian immunodeficiency virus (SIV) and epidemiological 

evidence strongly suggest that HIV was the consequence of zoonotic transmissions. Since 

both viruses can spread through blood, the species transfer could have occurred during hunt-

ing and butching of monkey “bush meat”. Interestingly, the collection of fecal samples from 

several monkeys and subsequent phylogenetic analysis revealed that HIV-1 is closely related 

to SIV strains in chimpanzee (SIVcpz) as well as gorilla (SIVgor), and HIV-2 to SIV strains in 

sooty mangabeys (SIVsmm). In addition, these studies indicated that for both, HIV-1 and HIV-

2, independent transmission events likely occurred several times, which is represented by the 

four HIV-1 groups (M, N, O and P) and at least eight HIV-2 groups (A-H). HIV-1 group M, which 

accounts for the majority of the global HIV burden, can be divided into multiple subtypes (A-D, 

F-H, J and K). Since recombination of the viral genome is an intrinsic feature of HIV, genetical 

exchange between subtypes as well as groups can occur, resulting in so-called CRFs (circu-

lating recombinant form) or URF (unique recombinant form), depending on their property to 

spread in the population. Looking at the worldwide contribution to the pandemic (Fig. 1), HIV-

1 group M subtype C (Africa, India) dominates, followed by subtype A (Africa, Eastern Europe) 

and subtype B (America, Western Europe, Australia). In contrast, HIV-2 being less pathogenic 
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and less transmittable, is mostly restricted to West Africa, where it is in most cases represented 

by group A and B [2].  

 

     

 

Figure 1: Geographic distribution of HIV-1 group M. Depicted is the regional prevalence of the dif-

ferent subtypes and CRFs of HIV-1group M in 2007. The main subtypes found are clade C, followed by 
A and B. CRFs are also largely present especially in eastern Asia. Graphic taken from Peeters et al. [2]. 

 

1.1.2 HIV transmission and interplay with the host 

Transmission of HIV occurs mainly through heterosexual intercourse, which accounts for 

around 70% of HIV infections worldwide and a risk of transmission of 1:200-3,000. The re-

maining transmission events can be attributed to man having sex with men (MSM, transmis-

sion risk 1:20-300), mother-to-child transmission (in utero, perinatal and post-natal by breast-

feeding) and needle sharing during injection drug use (IDU). Importantly, the transmission risk 

can be markedly increased, up to 10-fold, by confounding risk factors like other sexually trans-

mitted diseases (STDs) or surgery impairing the mucosal integrity, the stage of HIV disease 

and the corresponding viral load (vL) of the donor as well as the exposure route. Moreover, 

certain groups have an increased risk including people with low-income or sex workers. Both, 

MSM and heterosexual individuals have an increased risk for HIV acquisition related to a fre-

quent change of partners. In all cases, early diagnosis of HIV infection plays a crucial role, 

since it allows early onset of ART. Afterwards, continuous as well as for efficiency monitored 

(avoiding viral escape and drug resistance) ART is important, because only in that way efficient 

control of viral replication is possible, lowering the plasma viral load in infected individuals and 
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thereby also decreasing the risk of sexual transmission by >96%. Additional ways to limit trans-

mission can be the use of condoms, monogamy, treatment of co-infections and circumcision 

[3, 4].  

Other factors that can affect the efficiency of the transmission event are characteristics of the 

transmitted virus itself, the environment present within the transmission fluid, the composition 

and fitness of the mucosa at the transmission site as well as the presence of HIV target cells 

[4]. To study the characteristics of recently transmitted viruses in more detail, methods were 

established to create viral consensus sequences from patients recently infected with HIV, 

which were termed transmitted/ founder (T/F) viruses. HIV requires interaction of viral Env 

(envelope) surface receptor with two different cellular receptors to infect new cells: the initial 

binding of the primary receptor CD4 and subsequent interaction with one of the two major co-

receptors, CCR5 or CXCR4 (both chemokine receptors). Analysis of the T/F and their chronic 

counterparts showed that the T/F viruses almost exclusively target cells expressing CCR5, 

hence are termed as R5-tropic. Only in few rare cases, the T/F viruses are dual-tropic (R5X4). 

The trimeric HIV Env consists of heterodimers formed by the viral proteins gp (glycoprotein) 

41 and gp120, the latter containing several variable loops. Typically, chronic HIV variants pre-

sent few Env molecules on their surface, which exhibit long variable loops and are extensively 

glycosylated, whereas T/F viruses frequently display the opposite phenotype. This indicates 

that features of the virus acquired within the chronically infected host, may protect important 

conserved regions and support evasion from immune recognition, but might be detrimental for 

transmission. A context where this could conceivably be of importance is the transmission fluid, 

which can possibly select for the transmitted viruses by factors present in semen or cervi-

covaginal fluid, such as lectins (able to bind glycosylated proteins) or neutralizing antibodies. 

Furthermore, T/F viruses did not exhibit an altered behavior compared to their chronic coun-

terparts in studies examining tiered-neutralization using bNAbs (see chapter 1.1.7) [3-5].  

The mucosa present at transmission sites imposes as a first line of defense a barrier to incom-

ing pathogens. In the case of the female genital tract, the thin single-layered endocervix can 

be discriminated from the multi-layered ectocervix and vagina, the latter being under constant 

change in thickness due to hormonal changes as part of the menstrual cycle. Thinning of the 

mucosa can be important, since it brings incoming pathogens in proximity to target cells. It was 

reported that infection with HIV could occur within both regions as well as the transition zone 

[3, 6]. Besides antibodies and lectins, the mucus present at the transmission site may play an 

important role, due to its ability to immobilize pathogens including HIV [4, 6].  
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1.1.3 HIV-1 - establishment of infection and development of AIDS 

After conquering the mucosa, the availability of target cells is crucial to establish infection in 

the new host. Comparing vaginal and anal sub-mucosa, the former contains lower numbers of 

CD4 T cells [3]. Studies in monkeys aiming to detect the first cells infected after transmission 

yielded controversial results, with some indicating that CD4+ CCR5+ T cells may be involved 

[7]. In contrast, dendritic cells (DCs) or Langerhans cells (LCs), which sample with their den-

drites the lumen of the vaginal or anal tract, display low CD4 levels, which in most cases might 

allow attachment of HIV particles, but not infection [6]. The presence of CD4 T cells in the 

mucosa frequently occurs during inflammation, caused by microlesions due to sexual inter-

course or other STDs. Productively infected CD4 T cells can lead to spread through either free 

virus particles or cell-to-cell transmission (virological synapse). Alternatively, DCs/ LCs with 

bound or internalized HIV particles can start migrating to the underlying lamina propria or drain-

ing lymph nodes, wherein infectious synapse formation can lead to infection of resident CD4 

positive T helper cells or T follicular helper cells. This may also lead to B cell dysfunction and 

reduce the adaptive immune response to HIV. Nevertheless, all of these scenarios of initial 

spread have in common, that replication within these cells usually causes their death, creating 

a pro-inflammatory milieu leading to influx of additional target cells and local tissue destruction 

[3, 4, 6, 8]. Interestingly, all of the described factors important during transmission result in 60 

to 80% of cases in the establishment of infection by only a single virus in the new host, although 

many different viruses might have been present at the transmission site or even transmitted 

initially [3, 4].  

After establishing local infection, HIV spreads usually to other lymphatic organs, most im-

portantly, the gut-associated lymphatic tissue (GALT), but eventually also to non-lymphatic 

tissues such as the brain [6]. This initial clinically in many cases silent phase of systemic spread 

in the new host is referred to as the “eclipse phase” and is also the time where the HIV reservoir 

is formed. As a retrovirus, HIV can integrate into the genome of an infected activated CD4 T 

cell, which can in some cases reconvert into a resting state, hence become a memory T cell. 

Here, HIV can reside as a latent provirus, from which it can rebound after direct or bystander 

activation. The next phase towards developing AIDS is the “acute phase”, where the initial 

systemic depletion of immune cells in various lymphatic organs occurs and flu-like symptoms 

are frequently reported. Destruction of CD4 T cells within the GALT is one of the most fatal 

actions during this period, causing an imbalance of the tightly regulated gut homeostasis, fol-

lowed by the breakdown of the intestinal lining. Besides changing the mucosal microbiome, 

this event leads to microbial translocation and systemic immune activation, which is a hallmark 

of HIV infection. Afterwards, CD8 T cells as wells as NK cells in combination with antibodies 

against HIV manage to control the viremia and the “chronic phase” starts. Nevertheless, a 

constant low level of viral replication persists, which at its initial point is termed “virological set 
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Figure 2: Stages of HIV infection leading to AIDS and related disease. (A) Different stages of HIV 

infection. Right after transmission, the “eclipse phase” takes place, where the viral reservoir is formed, 
and which is followed by the viremic/ symptomatic “acute phase”. The immune response controls the 
viremia to a certain degree, defining the “virological set point”, which is predictive for the further disease 

progression. The “chronic phase” is typically asymptomatic during the first years, but increasing CD4 T 
cell loss facilitates occurrence of opportunistic infections. (B) CD4 T cell decline and associated symp-

toms. HIV infection leads initially to a dramatic loss of CD4 T cells, which can recover to a certain degree 
due to the immune response controlling the “acute phase”. Over time, ongoing HIV replication and de-
pletion of CD4 T cells leads to the development of AIDS. Figure modified from Deeks et al. [1]. 

 

point” and predictive for disease progression in infected patients. Control of HIV replication in 

this phase causes a partial recovery of CD4 T cell numbers, but gradual loss of CD4 T cells 

over several years leads to the development of AIDS (Fig. 2A) [1, 9].  

Progressive immune dysfunction and exhaustion make the host permissive to opportunistic 

infections and certain types of cancer. Classical opportunistic co-infections are caused e.g. by 

candida albicans, cryptococcus neoformans or mycobacterium tuberculosis, different viruses 

including kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8 (HHV-8)) 

and cytomegalovirus (CMV) and parasites like toxoplasma gondii. In addition, the incidence of 

several tumors, including Kaposi sarcoma and certain lymphomas, but also HPV-associated 
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cervical as well as anal cancers is increased in HIV-immunocompromised hosts (Fig. 2B). 

There are several non-AIDS defining but HIV-associated organ syndromes likely due to im-

mune activation or endothelial dysfunction including ischemic heart disease, stroke, liver fibro-

sis and cognitive disorders [1, 9, 10]. Additionally, the immune reconstitution inflammatory re-

sponse (IRIS), which occurs during the partial recovery of CD4 T cell counts, leads to local 

immune dysbalance and thereby aggravating previously suppressed disease manifestations 

[9]. 

 

1.1.4 HIV-patients not developing AIDS 

Despite the fact that most HIV patients progress to AIDS if not treated with ART, there are 

several reports of individuals not developing a clinically relevant immunodeficiency. The most 

interesting ones are the group of elite controllers, which represent <1% of HIV-infected patients 

and which maintain low to undetectable levels of virus in the absence of treatment. Their pro-

tection seems to be associated with certain variants of the human leukocyte antigen (HLA) 

class I, indicating the importance of CD8 T cell and NK cell responses. In addition, the devel-

opment of broadly neutralizing antibodies (bNAbs), which target a broad variety of HIV strains, 

as well as HIV-specific protective (cytolytic) CD4 T cell responses, were reported within this 

population. Other hypotheses include an initial transmission of viruses with low fitness or a low 

“virological set point” as reasons for this phenotype [1, 6]. Another interesting population in the 

context of HLA class I-association was found in a population in Africa, where in cases of verti-

cally (mother-to-child) transmitted HIV infection a long-term survival of so far unknown reasons 

was observed [11]. Finally, an interesting group of patients was reported in the context of ART: 

Post-treatment controller are patients, in whom early HIV diagnosis and initiation of ART fol-

lowed by long-term treatment resulted in an apparent control when therapy was discontinued. 

These patients do not show a CD8 T cell-mediated protection but are characterized by very 

low levels of proviral DNA, indicating a small reservoir, and low levels of  immune activation 

[1]. 

 

1.1.5 HIV-1 structure and replication cycle  

The human immunodeficiency virus 1 and 2 belong to the genus Lentivirus, which are part of 

the family of Retroviridae, bearing two copies of a positive single stranded RNA (+ssRNA) 

genome. The latter has a size of 9-10 kb (HIV-1: 9.2-9.6kb; HIV-2: 9.8kb) and consists of the 

gag, the pol as well as the env region, which are flanked by the 5’- and the 3’-LTR (long terminal 

repeat). Initiation and regulation of viral replication is mediated by the promoter region within 

the 5’-LTR. HIV-1 gag encodes for several structural proteins (capsid, matrix, nucleoprotein 

and p6), pol for enzymes involved in viral replication (protease, reverse transcriptase, RNase 
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H and integrase) and env for the particle’s surface proteins involved in viral entry as well as 

fusion (gp120 and gp41). In addition, the genome of HIV encodes for two factors regulating 

replication – the HIV-derived transcription factor Tat (transactivator of transcription) and the 

splicing factor Rev (Regulator of expression of virion proteins). Finally, HIV encodes several 

accessory proteins: Vif (viral infectivity factor), Vpu (viral protein U) (HIV-1)/ Vpx (HIV-2) and 

Nef (negative regulatory factor). These proteins restrict the host defense and modulate the 

cellular metabolism to support HIV replication [12].  

As an enveloped virus, HIV is covered by a lipid bilayer, which displays on its surface only few 

Env molecules (around 10 [13], between 4-35 Env molecules reported corresponding to an 

average of 7 Env trimers [14]), and at the inner side the matrix and p6 proteins. The two viral 

RNAs are bound by nucleoproteins as well as the reverse transcriptase, and are further pro-

tected by the cone-shaped capsid (consisting of hexamers/ pentamers of the capsid protein). 

In addition, this structure contains the viral integrase and accessory proteins (Fig. 3) [12, 15, 

16]. 

 

                            

 

Figure 3: Schematic representation of the HIV-1 particle. Shown are the lipid bilayer carrying Env 

(gp41/gp120 trimer) spikes and matrix protein, forming the shell of the virion. Inside the HIV-1 particle, 
the capsid harboring the two viral RNA as well as the different indicated proteins can be found. Sche-

matic modified from Chen et al. [17]. 

 

HIV attachment and fusion is mediated by interaction of the HIV Env trimer with cellular recep-

tor, first CD4 (primary receptor) and then the chemokine receptors CCR5 or CXCR4 (co-re-

ceptors). After entering the cytoplasm, transport to the nucleus, reverse transcription (RT) and 

uncoating take place. It is so far under debate, if the latter occurs directly after release of the 
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capsid core into the cytoplasm (early uncoating) or if the RT reaction takes place within the 

capsid core and uncoating occurs briefly before nuclear import (late uncoating). In both cases, 

reverse transcription requires the formation of an RTC (reverse transcription complex), which 

involves the viral RNA, the RNaseH as well as the reverse transcriptase and leads to the pro-

duction of a viral cDNA (complementary DNA). The cDNA forms together with the viral inte-

grase the PIC (pre-integration complex), which is subsequently imported into the nucleus. After 

integration into the host genome, the provirus can serve as a template for transcription of viral 

RNAs by using the cellular RNA polymerase in combination with the Tat and Rev proteins as 

well as other cellular factors. After translation of viral proteins, Gag (group-specific antigen), 

Gag-Pol (Gag-polymerase polyprotein), regulatory and accessory proteins, they are subse-

quently shuttled, together with the viral RNAs, to the Env-decorated plasma membrane. Here, 

assembly and budding of immature particles take place, by hijacking of the cellular ESCRT 

(endosomal sorting complexes required for transport)-machinery. To infect new target cells a 

process called maturation has to take place, which requires cleavage of Gag and Gag-Pol 

proteins by the viral protease, resulting in viral particles of the described structure (Fig. 4) [1, 

15, 16]. 

 

          

 

Figure 4: Replication cycle of HIV and potential therapeutic targets. Schematic showing the steps 

of the viral replication cycle and the different drugs used in ART (boxes): attachment and fusion (1), 

reverse transcription (2), integration of the viral cDNA after nuclear import (3), transcription of viral 
mRNA (4), translation of viral proteins in the cytoplasm (5) and finally budding as well as maturation of 
viral particles (6). Abbreviations, NRTIs: nucleoside reverse transcriptase inhibitor, NNRTIs: non-nucle-
oside reverse transcriptase inhibitor, INSTIs: integrase strand transfer inhibitor. Schematic modified 
from Deeks et al. [1]. 
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During the replication cycle of HIV, several cellular restriction factors are induced for example 

by PRR (pattern recognition receptor)-mediated sensing. Here, receptors such as TLRs (Toll- 

like receptor), cGAS (cGAMP synthase), PQBP1 (polyglutamine-binding protein 1), IFI16 

(gamma-interferon-inducible protein 16), and RIG-I (retinoic acid inducible gene I) cause an 

IFN (Interferon)-response [18]. The HIV accessory proteins counteract most of these so-called 

Interferon-stimulated genes (ISGs) [1]. For example, Vif inhibits APOBEC3 proteins (apolipo-

protein B mRNA-editing catalytic polypeptide-like 3), which can cause G to A hyper-mutations 

in the viral genome during reverse transcription [19]. Vpu targets CD317 (BST-2 (bone marrow 

stromal antigen 2)/ tetherin), which represents a cellular factor that can retain budding particles 

at the cell surface [20]. Vpx encoded by HIV-2 and certain SIV strains, can induce proteasomal 

degradation of SAMHD1 (sterile alpha motif and histidine/aspartic domain containing protein 

1), which is involved in the modulation of cellular dNTP pools and thereby indirectly also re-

verse transcription [21-24]. The Nef protein has several functions: it downregulates MHC (ma-

jor histocompatibility complex) class I to avoid immune recognition, but also decreases cellular 

CD4 levels, likely contributing to the prevention of super-infection by other HI-viruses or infec-

tion of the same cell by budding virus particles. Recently, Nef-mediated inhibition of incorpo-

ration of SERINC (serine incorporator) proteins into virions was reported to counteract a loss 

of particle infectivity [25, 26]. SERINC 3 and 5 are supposed to change the flexibility of the viral 

membrane and the formation of the fusion pore, which interferes with virus entry [27]. 

Similar to cellular restriction factors, drugs used in antiretroviral therapy block different steps 

of the viral replication cycle. For example, inhibitors targeting attachment (maraviroc, CCR5), 

fusion (enfuvirtide/ T20), RT reaction (tenofovir, NRTI – nucleoside reverse transcriptase in-

hibitor; efavirenz, NNRTI – non-nucleoside reverse transcriptase inhibitor), integration (ralte-

gravir) or the viral protease (atazanavir) (Fig. 4). In most cases, a combined ART (cART) is 

used, where Truvada® (NRTIs: tenofovir and emtricitabine) is used in combination with a drug 

of the other classes. More recently, for individuals that have a high risk to acquire HIV, a 

prophylactic treatment called PrEP (pre-exposure prophylaxis) has become available. In con-

trast to PEP (post-exposure prophylaxis) is given to individuals, who may have recently been 

exposed to HIV to either prevent infection of start ART extremely early to improve outcome [1, 

9]. Nowadays, ART is in most cases well tolerated and highly efficient, as for example reported 

in PrEP studies examining transmission of HIV in gay couples [28-31]. 

 

1.1.6 Entry of HIV - a more detailed look 

Both the composition of HIV Env and the processes occurring during viral entry will be im-

portant in the context of amyloid enhancers of infection and bNAbs. Therefore, a more detailed 

description will be given in the following paragraph. Entry of HIV into a target cell is mediated 

by the trimeric Env molecule on the virion surface, which is composed of heterodimers of gp41 
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and gp120. The gp120 subunit consists of five conserved regions (C1-5) and five variable 

loops (V1-V5) and is responsible for the receptor binding, whereas the gp41 subunit links the 

Env protein complex to the membrane by MPER (membrane-proximal external region) and 

contains the fusion peptide [32].  

HIV entry includes the following steps: attachment to the target cell, fusion of viral and cellular 

membranes followed by the release of the capsid core into the cytoplasm. Initial binding to the 

target cell can occur in a rather unspecific manner through interaction of HIV Env with heparan 

sulfate proteoglycans (HSPG), α4β7 integrins (high expression on gut and mucosal CD4 T 

cells), or the pattern recognition receptor (PRR) DC-SIGN (dendritic cell-specific intercellular 

adhesion molecular 3-grabbing non-integrin). This brings Env in proximity to the cellular mem-

brane and allows interaction of the CD4 binding site (CD4bs) within gp120 and the primary 

receptor for HIV, CD4. Next, conformational changes in the variable loops V1/V2 lead to a 

repositioning of V3, in parallel to the formation of a bridging sheet, which consists of two dou-

ble-stranded β-sheets. Such rearrangements within gp120, allow the engagement and binding 

to one of the two co-receptors CCR5 or CXCR4, leading to the exposure of the hydrophobic 

fusion peptide within gp41. After insertion into the host cell membrane and formation of the six-

helix bundle (6HB), the fusion pore forms because of close proximity of both membranes and 

the viral core is release into the cytoplasm of the target cell [32].  

The requirement for specific receptors determines the cellular tropism, which is in most patients 

defined by the presence of CD4 and CCR5 on the surface of target cells. This complex is 

mainly found on activated CD4 T cells, monocytes, macrophages and DCs. The genome of 

HIV is highly variable, which has the biggest effect on the Env spike. Due to the high error rate 

of the reverse transcriptase, mutations occur constantly. Consequently, Env molecules of 

chronic HIV patients display long and heavily glycosylated variable loops allowing escape from 

immune recognition. In addition, the depletion of CCR5-positive target cells can drive the de-

velopment of viruses, which use CXCR4 (X4-tropic) as a co-receptor. These occur in ~8% of 

patients [33]. Interestingly, a special mutation within the ccr5 gene referred to as Δ32 

(ccr5Δ32), which can be found with an allelic frequency of on average ~10% in the Caucasian 

population, is under homozygous conditions highly protective from HIV infection [1, 32]. Other 

studies report a north-south decline of the ccr5Δ32 mutation, with for example countries from 

northern Europe showing frequencies of up to 16% and countries from southern Europe of 4 

to 6% allelic frequency [34].  

 

1.1.7 HIV vaccination and bNAbs 

Besides ART, generation of an efficient vaccine to cure and/or prevent HIV infections would 

be the ultimate goal in HIV research. The main epitopes used in the development of the differ-

ent HIV vaccine trials are structures within the Env surface molecule, which is as described 
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above highly variable. Further variation comes from the fact, that the HIV Env is not static, with 

the gp120 subunits undergoing conformational changes also in the absence of CD4 or any co-

receptor [1, 35, 36].  

This makes the development of a potent vaccine difficult, which is reflected by so far only one 

at least partially successful field study - the “Thai trail” (RV144). This study was conducted in 

Thailand and used the so-called “prime-boost” strategy: participants were first primed with the 

Canarypox-vector ALVAC-HIV, followed by a boost using AIDSVAX (both vaccines contained 

antigens derived from HIV group M subtype A and E) [37, 38]. Analysis of the study revealed 

a partial protection (efficacy of 31.2%), the generation of neutralizing antibodies against the 

Env V1V2 region, as well as detection of polyfunctional memory CD4 T cells, targeting specific 

epitopes within the V2 region  [37-40]. Although IgA antibodies are thought to lead to mucosal 

protection [41], and this at a first glance is important to protect from infection with a STD, the 

presence of monomeric Env-specific plasma IgA correlated with a risk of infection in RV144. 

This might have been due to the fact of pre-bound IgA, directly or indirectly inhibiting further 

IgG binding, which would otherwise be able to mediate ADCC (antibody-dependent cell-medi-

ated cytotoxity) [37-40].  

Although in the past adenovirus (AdV)-based HIV vaccine trials were not successful, the more 

recent study “APPROACH” used an AdV strain 26 (AdV26)-based strategy, which is believed 

to be more potent and safe than the previously used AdV5 vectors. In addition to applying a 

bivalent approach (antigens of HIV-1 subtype B and C), the usage of mosaic antigens was 

supposed to increase potency of the vaccine and elicit a broader immune response. As in the 

“RV144 trial” a “prime-boost” regimen was used, being the most successful in a scenario where 

priming and boosting was done using an AdV26-HIV-mosaic vector. On top, the boost was 

supplemented with adjuvanted gp140 (Ad26-Ad26 plus gp140). A special feature of this study 

was the parallel application to healthy individuals from the USA, east-/ south-Africa and Thai-

land as well as in the rhesus monkey model. The latter was used as a proof-of-concept study, 

in which repeated intrarectal SHIV challenge was performed following vaccination. Besides 

being well tolerated in both sub-studies, the vaccination strategy generated neutralizing anti-

bodies against HIV, ADCP (antibody-dependent cellular phagocytosis) and HIV-specific T cell 

responses. However, although two thirds of the monkeys were protected from infection, neither 

in monkeys nor in humans, antibodies with broadly neutralizing activity could thus far be de-

tected, longitudinal evaluations are ongoing [42-44]. 

Another strategy to prevent or treat HIV infection is the passive immunization using broadly 

neutralizing antibodies (bNAbs), which target a variety of HIV strains. Most HIV patients show 

autologous, strain-specific neutralizing antibody (NAbs) responses 3 to 12 month post infec-

tion, which can further develop to the broadly neutralizing phenotype, requiring somatic hyper-

mutation causing affinity maturation. Here, extended HCDR3s (heavy-chain complementary-
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determining regions 3) cause additional polyreactivity. Development of bNAbs occurs in ~20% 

of chronically infected individuals two to four years post infection, and is until now not inducible 

by vaccination [45-48].  

Scientific progress has resulted in new isolation and screening methods, allowing establish-

ment of plasma cell lines from HIV-infected patients, and these produce large amounts of 

highly potent anti-HIV antibodies, required for laboratory as well as clinical studies [49, 50]. 

Both NAbs and bNAbs usually can be separated into three groups according to their epitopes 

recognized: gp120 (V1/V2 loops, V3 loops and CD4bs), gp41/MPER as well as  

 

     

 

Figure 5: Schematic representation of an HIV Env spike and bNAb epitopes. Env structure and 

overview of the epitopes on Env as well as the corresponding bNAbs: gp120 (CD4 binding site, V1/V2 

loops, V3 loops), gp41/ MPER and gp120/gp41 bridging. Image taken from Mouquet [51].  

 

epitopes that span/bridge or are found at the interface of gp41/gp120, the latter so far being 

reported only for bNAbs (Fig. 5) [52, 53]. A described escape mechanism of HIV Env is the 

immune evasion through Env’s glycan shield, which can surprisingly also be a target for bNAbs 

[45, 54]. In addition, antibodies against HIV are distinguished according to their neutralizing 

potency and while there are different ways of classification, in most cases the tiered-classifi-

cation is used: starting from highly sensitive (tier-1 viruses) over more resistant, but genetically 

matched (tier-2 viruses) and ending with more resistant, genetically mismatched viruses (tier-
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3 viruses) [55]. Moreover, there are also non-neutralizing antibodies, which show ADCC and 

ADCP [45]. Under lab conditions, the potency of bNAbs was assessed in cell culture, where 

infection with free viruses but also cell-to-cell spread could be inhibited [46, 55, 56]. In vivo 

studies in mice and primates indicated that infusions of bNAbs can mediate protection from 

virus transmission and thus represent a conceptional alternative to PrEP [47, 57-59]. In most 

cases, higher in vivo efficiency of antibodies was associated with a functional Fc-part, presum-

ably also in association with ADCC/ ADCP, and modification of this antibody domain even 

increased the duration of protection [60]. Further, the use of antibodies targeting several 

epitopes on Env (e.g. “tri-mix”) enhanced the potency in vitro as well as in vivo, hindering viral 

escape [49, 61, 62]. Finally, studies in humans using single as well as combinations of different 

bNAbs were well tolerated and showed control of viral loads in patients where ART was dis-

continued [63-65].  

 

1.2 Amyloids are potent enhancers of viral infection 

1.2.1 Amyloids - an overview 

Amyloid fibrils are elongated unbranched protein aggregates of 6 to 12 nm diameter, which 

are characterized by a β-sheet secondary structure, where β-strands are orientated upright to 

the fibril axis [66]. These amyloids are generated in a two-step nucleation polymerization pro-

cess, requiring initially a partial un- or misfolding of a protein, forming an amyloid precursor. 

Interestingly, misfolded proteins can induce the unfolding of other proteins, thereby starting a 

chain reaction that creates several oligomers, which can range in size anywhere from dimers 

to large fibril-like aggregates (protofibril). Generation of a nucleus can either originate directly 

from amyloid precursors, or from protofibrils. This process represents the first step of amyloi-

dogenesis, is rather slow and can under laboratory conditions be accelerated by agitation or 

seeding with already pre-formed aggregates. In a final step, conformational changes within the 

nucleus are required to form short amyloid fibrils, which can than elongate in a self-templated 

fashion (Fig. 6) [66-68].  

The presence of biological membranes or hydrophobic surfaces can support the formation of 

amyloid fibrils. Extracellular accumulation of amyloid fibrils are a sign of amyloidosis, like Alz-

heimer’s disease, and intracellular aggregation of proteins is typical for Parkinson’s disease 

[68]. Prions, also termed infectious proteins, which can cause for example the bovine spongi-

form encephalopathy (BSE), are based on the principles of amyloidogenesis. To counteract 

the formation of amyloid fibrils, several attempts to control amyloid formation exist, for example 

stabilization of the native state or off-pathway oligomers, β-sheet breakers as wells as clear-

ance by antibodies [66-68]. In addition, as found in many proteins of non-pathogenic origin and 

having an affinity to membranes as well as nucleic acids, the amyloid fold present  
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Figure 6: Schematic of amyloidogenesis. Refolding of peptides or proteins leads to formation of an 

amyloid precursor that can build oligomers/ protofibrils further creating a nucleus. The establishment of 
the latter creates a certain lag time and is required to generate short amyloid fibrils, which can afterwards 
elongate in a self-catalyzed fashion. Picture modified from Lee and Ramamoorthy et al. [67]. 

 

in many fibrils is “believed to represent a biological structure of early life” [69]. Interestingly, 

amyloids can also have a physiological function like the human defensin 6 (HD6), having anti-

microbial function at mucosal surfaces and being able to form fibrillary nanonets, which can 

bind for example bacterial flagellae [70]. In contrast to being mostly pathogenic for eukaryotes, 

bacterial amyloids like the ones derived from Curli (found in enterobacteria, e.g. E.coli [71]), 

are part of the extracellular matrix and required for adhesion and biofilm formation. Since these 

aggregates are PAMPs (pathogen-associated molecular patterns), they can be recognized by 

the immune system in a TLR (toll-like receptor)-2-dependent fashion and as a consequence 

cause immune activation as well as clearance [72]. Taken together, this makes amyloids a 

very interesting field of research and the following chapters will give an overview on recently 

studied amyloids important in disease, but also as functional proteins within the body. Special 

attention will be given to amyloids already published to enhance viral infection and new poten-

tially interesting candidates will be highlighted. 

 

1.2.2 Semen-derived amyloids enhancing HIV and other viral infections 

As described in chapter 1.1.2, HIV transmission by sexual intercourse is a process with rela-

tively poor efficiency and neither the presence of lesions caused by STDs nor sexual practices 

can adequately explain the ongoing and fatal HIV pandemic. In the context of “semen being 

the main vector for HIV dissemination worldwide” [73], proteins present in the male ejaculate 
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as well as proteins present in the female genital tract or at anal mucosal surfaces might inter-

fere with HIV infection in a supporting or inhibitory way. Hence, a group of scientists around 

Jan Münch and Frank Kirchhoff performed a huge screening approach to identify such proteins 

in pools of human seminal fluid derived from several donors. By using a fractionated testing 

approach, they found that certain cleavage products of the prostatic acidic phosphatase (PAP) 

were able to enhance HIV infection in a dose-dependent manner. The most potent and abun-

dant enhancer was PAP 248-286, which was inactive when freshly prepared from synthesized 

peptides, but became active after overnight agitation. This finding, together with EM analysis, 

positive Thioflavin T staining (dye that intercalates into amyloid fibrils) as wells as several other 

methods, identified this peptide to form amyloid fibrils. The latter were able to enhance HIV 

infection as previously published for classical amyloids, like for example β-amyloid, and were  

termed Semen-derived enhancer of virus infection (SEVI) [74, 75]. More detailed analysis of 

the interplay between HIV particles, target cells and the peptide revealed that the fibrils of SEVI 

are cationic, and likely bind due to their positive charge efficiently to negatively charged cell as 

well as virion surfaces. Together with the local formation of helical structures, these amyloids 

increase attachment and fusion of HIV to its target cells, in a HIV Env-independent manner. 

Reflecting the most likely in vivo scenario of low viral loads being transmitted, infection en-

hancement potency was highest at low MOIs of HIV. In addition, infection enhancement was 

possible at different physiological pH, within ex vivo culture models and also in in vivo systems, 

where HIV together with SEVI was injected intravenously into hCD4/hCCR5 transgenic rats 

[67, 74, 76, 77]. The latter approach being interesting as a proof-of-concept, but not predictive 

for a mucosal route of HIV transmission, more physiologically relevant approaches were cho-

sen. However, neither intra-vaginal challenge of rhesus macaques with SIV nor rectal chal-

lenge of humanized mice with HIV exhibited enhancing effects, possibly related to the im-

portance of the protective mucosal barrier. The latter has to be disrupted in its integrity by 

mechanical, chemical or biological means to allow SEVI-dependent effects, being the main 

problem in finding an adequate in vivo model (Fig. 7) [78, 79].  

In addition, these initial studies already suggested the presence of factors other than SEVI 

present in semen to play a role in enhancing HIV infection [80]. This was supported by studies 

monitoring presence of amyloids already in seminal vesicles, where PAP is absent [81]. Fur-

ther analysis of semen by mass spectrometry revealed that cleavage products of semenogelin 

1 (SEM1) and SEM2, which are responsible for the viscous gel-like structure of the male co-

agulum, could form amyloid fibrils [80]. This happens during a process called liquefaction, 

which transforms the ejaculate to a more fluid-like consistency, what is mainly due to prostate-

specific antigen (PSA)-mediated proteolytic cleavage of SEM1/2. Also, PAP plays a role in 

degradation of semenogelins. Studies analyzing the temporal dynamics of this process 

showed that this process is fast and leads to the production of SEM(86-107) peptides at early  
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Figure 7: SEVI enhances HIV infection. (A) Schematic model of generation of SEVI (PAP248-286) 

from PAP and interaction of HIV with SEVI. This leads to increased virion fusion and subsequently 
enhanced infection. EM analysis of SEVI pre (B) and post agitation (C). Schematic from Roan and 
Greene, 2007 [82] (A) and EM images from Münch et al. [74] (B+C).  

 
time points after ejaculation, which are the essential SEM peptide for amyloid fibril formation 

and in turn enhancement of HIV infection. Afterwards, this peptide is further degraded leading 

to a loss of the peptide and related infection enhancement after around 24h. In addition, kinetic 

analysis demonstrated a window of ~8 h post ejaculation for efficient HIV infection enhance-

ment [83]. In contrast, other studies revealed that fragments derived from degradation of SEM 

and resulting cationic polypeptides can also have anti-HIV activity and block infection enhance-

ment [84].  

SEM1 amyloids as well as SEVI act synergistically with the extracellular matrix protein fibron-

ectin. The latter, able to bind amyloid folds (also of the bacterial protein Curli), is known to 

inhibit HIV infection by blocking the gp120-CD4 interaction, but in this particular context was 

shown to boost SEVI- or SEM-dependent effects, possibly by facilitating interaction with HSPG 

on target cells [85]. Both SEVI and SEM amyloids have been demonstrated in the past to 

enhance sexually transmitted viruses other than HIV, including HSV (herpes simplex virus), 

CMV (cytomegalovirus) or Ebola [86-88]. Although, semen and the containing amyloids were 

shown to enhance infection of several viruses, infection with Zika virus seems to be inhibited 

in the presence of extracellular vesicles, of so far unknown nature, within ejaculates [89].  
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Unexpectedly, semen from HIV-infected men showed strongly reduced enhancing potential, 

apparently due to the presence of RANTES (CCL5), which can block infection with R5-tropic 

HI-viruses. Those semen samples contained also several proinflammatory cytokines (IL-1β, 

TNFα), indicating that HIV infection shapes a certain cytokine milieu in genital fluids that can 

affect transmission [90]. Semen also causes a proinflammatory response within the genital 

mucosa, leading to influx of immune cells and promoting conception as well as pregnancy, but 

also attracting HIV target cells. This is in part due to the presence of several proinflammatory 

cytokines in seminal plasma (also in healthy patients) that stimulate immune cells as well as 

epithelial cells within the female reproductive tract (FRT). As described by Münch et al. [74], 

seminal plasma can harm HIV target cells, e.g. through reactive oxygen species, which are 

toxic to cells and thereby exhibit antiviral activity. In addition, seminal plasma is able to down-

regulate CD4 and CXCR4 expression on CD4 T cells, however, causing an upregulation of 

CCR5. Thus, semen tightly co-regulates proliferation and apoptosis of immune and epithelial 

cells. This is important for reproduction, yet sometimes beneficial or unfavorable to establish 

HIV infection [91-93]. 

After the finding that semen contains several amyloids and that even an evolutionary selection 

pressure on SEM proteins has been reported [94, 95], it was of course of interest, if these 

amyloids have a biological function, which explains their presence. Being only part of a degra-

dation pathway hijacked by viruses seems unlikely given that there are several “functional am-

yloids” known to play important roles during reproduction. Characterized by a fast transition 

from monomer to mature amyloids, “functional amyloids” exhibit important roles for example 

during gametogenesis, germline specification, the acrosome reaction and maturation of the 

sperm as well as the structure of the zona pellucida of the egg [69]. Functional analysis of 

semen-derived amyloids revealed that especially SEVI and SEM amyloids, but not β-amyloid 

were able to entrap and immobilize sperm within semen, thereby enhancing phagocytosis by 

macrophages. The latter are responsible for clearance of spermatozoa from the FRT and seem 

to preferentially deplete damaged sperm, which can be further enhanced by the presence of 

semen amyloids (fibrils also target preferentially damaged spermatozoa). Due to dynamics of 

for example SEM amyloid levels in semen this amyloid-dependent sorting function of macro-

phages takes place early after ejaculation. Another interesting finding was that increasing con-

centrations of semen amyloids inhibited in vitro fertilization. Thus, semen amyloids together 

with macrophages seem to play an important role in the quality control of spermatozoa during 

reproduction [96]. 

Several attempts have been undertaken to inhibit formation of amyloid fibrils within the repro-

ductive tract. For example, SEVI-mediated infection enhancement can be blocked by addition 

of anionic polymers, the aminoquinoline surfen or gallic acid, which inhibit the interaction be-

tween virus particles and the amyloid [67, 76, 97, 98]. Other ways to block the effect of semen 
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amyloids, are the inhibition of amyloid formation or the destruction of amyloid fibrils: the former 

can be achieved by for example non-natural amino acid (aa) inhibitors (computational design 

according to aa sequence of the amyloid) or D-amino acid peptide D3, known to treat Alz-

heimer’s disease. Substances such as epigallocatechin-3-gallate - a component of green tea, 

can accomplish destruction and remodeling of amyloid fibrils [67, 99, 100]. All of these treat-

ments seem to be promising, but have to be revised taking into account the findings described 

on non-pathological functions of semen/genital amyloids important during reproduction and 

clearance of bacteria from genital tract [96]. 

 

1.2.3 Human Papillomaviruses (HPV) 

1.2.3.1 HPV facts 

The family of Papillomaviridiae covers several genera, which can be found in humans, but also 

other mammals and birds [101]. In humans there are more than 207 different HPV types clas-

sified, most of which are represented by the sexually transmitted mucosa-related alpha-papil-

lomaviruses, followed by the less abundant beta- and gamma-papillomaviruses, which have a 

cutaneous association [102, 103]. Human papillomaviruses are non-enveloped, icosahedral 

viruses that harbor a circular (episomal) double stranded (ds) DNA. The capsid is formed by 

pentameric capsomers (major capsid protein L1), which are connected inside of the particle by 

the minor capsid protein L2 (5:1 ratio L1 to L2), protecting the genome of 8 kb size encoding 

for the seven early genes (E1, E2, E4, E5, E6, E7, E8) and the two late genes (L1 and L2). In 

addition, the LCR (long control region) contains regulatory sequences for viral transcription 

and replication [103-105].  

HPV is mainly transmitted through direct contact, and “HPV16 is the most prevalent sexually 

transmitted viral infection worldwide” [106], indicating the importance of HPV as an STD. As 

shown by Harald zur Hausen (awarded with the Nobel prize in 2008), and in context of many 

historical observations linking sexual intercourse, a persistent HPV infection and development 

of cervical cancer, HPV was identified as one of the main causes of cervical cancer (reviewed 

by zur Hausen [107]). This lead to further subdivision of alpha-papillomaviruses into genotypes 

that cause cancer and hence were termed “high-risk” HPV types (HR-HPV: 16, 18, 31, 33, 35, 

39, 45, 51, 52, 56, 58, 68, 82). In contrast, genotypes causing anogenital warts or benign 

neoplasia, were called “low-risk” types (LR-HPV) [103]. Around 55% of cervical cancers can 

be attributed to HR-HPV HPV16, an additional 15% to HR-HPV HPV18 [108]. Development of 

cancer due to HPV infection is a rare event, since most of the frequently occurring transient 

HPV infections in the human body, but also CIN1 (cervical intraepithelial neoplasia) or LSIL 

(low-grade squamous intraepithelial lesion) pathologies, regress [109]. In rare cases, HPV in-

fection can cause lesions of grade CIN2/3 or HSIL (high-grade SIL). Even these pre-cancerous 

stages regress in about 60% of cases [109], but can progress to cancer, if for example a failure 
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of clearance by the immune system takes place. Also, the vaginal microbiome of a suppressed 

immune system, like for example in HIV patients, can shift the balance towards cancer devel-

opment [103].  

HR-HPV can cause cancer in tissues other than cervix, including anus, penis, vagina or vulva, 

but also in the oropharyngeal tract, which is mainly due to sexual practices. Beta-papilloma-

viruses are present in the skin causing for example warts (hands) or verrucae (feet) and can 

cause cancer in immunocompromised patients [103]. In addition, beta- and gamma-papilloma-

viruses were reported to be present in the oral cavity [102]. Unrelated to a specific HPV type, 

recurrent respiratory papillomatosis (RRP) is causally linked to HPV infections [103, 110, 111].  

To reduce the number of HPV-induced (cervix) carcinomas and warts several vaccines have 

been developed. In the past, a bivalent vaccine was used targeting HPV16/18 (Cervarix®), 

which was later on replaced by a quadrivalent vaccine, additionally targeting the LR-HPVs 

HPV6/11 (Gardasil®). Presently, the vaccine Gardasil®9 is used (https://www.msd. de/filead-

min/files/fachinformationen/gardasil_9.pdf), which targets several LR- and HR-HPV types 

(HPV6/11/16/18/31/33/45/52/58). All of these vaccines are based on HPV L1-based virus like 

particles (VLPs), which are obtained by overexpression of L1 proteins that in turn self-assem-

ble into VLPs. Ongoing research tries to further increase the cross-reactivity of antibody re-

sponses elicited by vaccination. Thus, one approach is to create L1-fusion proteins that display 

highly immunogenic fragments of the minor capsid protein L2 on the surface of the VLPs, which 

causes broader immune responses. Finally, other epitopes, like the viral oncogenes E6/7 are 

in the focus as targets for therapeutic vaccines [103, 112-114].  

 

1.2.3.2 HPV replication cycle 

HPV enters the mucosa or skin mainly through lesions that allow access to the basal cell layer 

or by infection of the cells at the transition zone from ecto- to endocervix at the squamous 

cellular junction (Fig. 8). Here, the HPV major capsid protein L1 is thought to interact with 

HSPG on the cell surface, causing exposure of the N-terminus and cleavage of the minor 

capsid protein L2. This allows further binding to one of several secondary receptors like for 

example epidermal growth factor receptor (EGFR), integrins or laminins, which is followed by 

a micropinocytosis-like entry into the target cell [103, 104, 115].  

Transport of the viral DNA occurs in a Golgi- as wells as tubulin-dependent fashion and entry 

into the nucleus happens through nuclear pores or collapse of the nuclear membrane during 

mitosis. Inside of the nucleus, the viral DNA co-localizes with PML (promyelocytic leukemia) 

bodies and the first phase of viral DNA replication takes place. After production of the viral 

transcription factors E1 and E2, which form heterodimers and bind to the early promoter within 

the LCR, low-level expression of HPV E6 and E7 proteins is induced. These two factors act 

cooperatively, tightly regulating cellular survival and viral genome maintenance by interaction 
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with several cellular factors. Of note, the integration of the DNA encoding for these two genes 

is the hallmark of progression from HPV-induced neoplasia to cancer. In parallel, E1/E2 induce 

the amplification of the episomal genomic DNA. Subsequently, resulting products are linked to 

host chromatin in an E2-dependent fashion can be passed to daughter cells. Another function 

of E2 is the suppression of expression of high amounts of viral proteins in the basal cell layer 

to avoid activation of the host immune defense. HPV DNA is present in differentiating keratino-

cytes (mid layers of the epithelium), and persistence of viral infection is mediated by E6/E7 

(inhibition of apoptosis/ immune recognition and control of cell signaling/RNA  

 

    

 

Figure 8: Entry and replication of HPV within the cervical mucosa. Shown are the different ways of 

entry as well as the expression levels of different HPV proteins during the differentiation of the keratino-

cytes. Also, the layer-specific steps of the viral replication cycle are indicated. Schematic taken from 

Graham [103]. 

 

polymerase II) (Fig. 8). In the late, vegetative phase of viral DNA replication HPV E1, E2, E4 

and E5 have important  functions in regulating viral gene expression as well as replication 

(rolling circle), DNA repair or cell division. Expression of the highly immunogenic capsid pro-

teins L1 as well as L2 is suppressed until the upper layers of the epithelium to avoid recognition 

by the immune system and assembly of the capsid takes place in the nucleus (pre-assembly 

of pentameric L1 capsomers in the cytoplasm). Packaging of the viral DNA into the capsid is 

mediated by the L2 protein. As a final step of keratinocyte differentiation, a process called 

desquamation takes place, in which the cell looses the nucleus and dead cells are shed from 

the surface of the mucosa. This mode of cell death is used by HPV for the egress of viral 
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particles. Thus, papillomaviruses have perfectly adopted their replication cycle to the differen-

tiation of the mucosal keratinocytes (Fig. 8) [103, 116, 117]. Interestingly, there are some re-

ports that HPV may also be able to spread through aerosols between patients and that after 

infection is established also leukocytes can become infected, allowing spread of HPV through 

the blood stream [118]. 

 

1.2.3.3 HPV and HIV 

There are several STDs, whose manifestations can lead to a reduction of the barrier function 

of the anogenital mucosa. In addition, a pre-existing HIV infection usually leads to a weakening 

of the host immune defense, which in turn allows survival of incoming pathogens. Putting this 

in the context of papillomavirus infection, HIV-induced immune suppression can support the 

development of HPV-induced cancer due to reduced clearance of HPV-infected cells [1, 9, 10, 

119]. In contrast, it was also reported in epidemiological studies that for example an ongoing 

HSV-2 infection and the linked reduction of mucosal integrity can facilitate transmission of HIV 

[120]. Similar studies performed for papillomaviruses, most of them corrected for other STDs, 

showed that individuals especially infected with HR-HPV types exhibited an on average  

3.3-fold (1.7- to 4.9-fold) increased risk to become infected with HIV [121-128]. Another finding 

was that the risk was dramatically increased, the more different HPV types were present within 

the anogenital tract [129]. This increase might have several reasons: besides the mucosal 

lesion, causing breakdown of the protective physical barrier, immune activation due to infection 

leads to influx of immune cells such as CD4 T cells, which are targets for HIV. Also, HIV infec-

tion can benefit from the pre-existing immune suppression associated with HPV infection [103, 

130]. Finally, it was reported that HPV16 E7 can downregulate the expression of epithelial 

adhesion molecule E-cadherin inflicting an additional disturbance of the mucosal integrity 

[131].  

 

1.2.3.4 The HPV E4 protein 

In the context of amyloid-mediated enhancement of HIV infection [74-76, 80, 83], the HPV E4 

protein may be of particular interest, since it is expressed at the anogenital mucosa and has 

the reported property to form amyloid fibrils [132, 133]. This protein is translated from an in 

frame splice RNA of exon one and four (E1^E4), of which the former contributes the five amino 

acids at the N-terminus. Although initially grouped to the early genes of HPV (lies within the 

early cassette of genes), its function is required for the late phases of the viral replication cycle. 

Comparison of E4 proteins from different HPV types reveals that while the amino acid se-

quence is largely different, it still shares structural similarities between the different types. In 

this way, the protein can be divided into N-terminus (helix), loop and C-terminus (β–sheet), of 
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which the latter can be further subdivided into β-strand, multimerization and β-aggregation 

domains [132, 134].  

The E4 protein is expressed in the middle to upper layers of the epithelium (Fig. 8), stored in 

inclusion granulae with nuclear or cytoskeletal association [135], and can make up to 20 to 

30% of the total protein content [132]. E4 has several important roles including stabilization of 

the E2 transcription factor, thus regulating HPV transcription [136]. In addition, E4 expression 

is able to arrest cells in the G2-phase of the cell cycle, which counteracts the E7-mediated G1- 

to S-phase transition [137, 138]. Also, processing of viral mRNA is thought to be co-regulated 

by E4 [139, 140]. The most important function thus far attributed to E4 is the rearrangement of 

the cytokeratin skeleton, which is believed to support virus egress [132, 135].  

 

 

 

Figure 9: HPV E4 protein processing and mode of action. HPV E4 is expressed in middle to upper 

layers of the epithelium and is processed by several kinases and proteases. In the lower layers, E4 is 

mainly bound to cytokeratin, whereas in upper layers unbound E4 is cleaved by calpain, allowing multi-
merization (A). Schematic overview of (I) initial binding to keratin filaments, (II) multimerization of full 
length and N-terminally truncated E4 and (III) reorganization of cytoskeleton by crosslinking of keratin 
filaments (B). Schematics modified from Doorbar [132] (A) and Khan et al. [141] (B). 

 

During the differentiation of keratinocytes a full-length E4 protein is expressed, which is present 

in the cytoplasm and further modified by phosphorylation and proteolytic removal of the N-

terminus and the C-terminus. The full-length protein is rather short-lived and prone to bind to 

cytokeratin due to the presence of the N-terminal keratin-binding motif. Calpain cleavage in 

the upper layer of the epithelium causes removal of this domain (e.g. HPV16 ΔN1-17 E4), 

which shields the C-terminus (Fig. 9A). Next, multimerization can take place in a C-terminus-

dependent fashion and stable amyloid fibrils are formed. Initially, full length E4 is bound to 

cytokeratin, thus preventing calpain cleavage, but accumulation of E4 in the cytoplasm of in-

fected cells leads to E4, which is not bound to cytokeratin. These proteins can be N-terminally 

cleaved, hence allowing generation of E4 peptides that can lead to multimerization/ formation 
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of amyloids, composed of full length and truncated E4 peptides. In a next step, these aggre-

gates can bind to cytokeratin and inhibit rearrangement of filaments due to crosslinking  

(Fig. 9B) [103, 132-135, 141]. 

 

1.2.4 Other amyloids and related pathogenesis 

Beside amyloids derived from semen or papillomaviruses, also other classical amyloids like 

the brain-derived β-amyloids or α-synuclein, as well as the pancreatic islet amyloid polypeptide 

will be investigated in this study to gain a broader overview of the potency of amyloids poten-

tially enhancing viral infection. The following paragraphs will give an overview about these 

candidates and related diseases (Table 1). 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and one of the main 

causes of dementia in patients older than 65 years. There are two main neuropathological 

characteristics for Alzheimer’s disease (AD), the formation of extracellular plaques composed 

of β-amyloid (Aβ) and the microtubule binding protein tau in neurofibrillary tangles. Although 

Aβ and the precursor APP are present in healthy individuals, Aβ was shown to be involved in 

synaptic dysfunction, loss of neuronal connectivity and neuronal death. Imprecise processing 

of APP generates Aβ peptides of different length (e.g. Aβ40 consisting of 40 amino acids), 

which can aggregate and form plaques. The latter can be degraded by proteolytic cleavage, 

followed by clearance by macrophages or microglia. Nevertheless, a large amount of Aβ re-

mains undegraded, but bi-directional transport of the peptide across the blood-brain-barrier 

can lead to further regulation of Aβ pools [142-144]. 

Another cause of dementia is Parkinson’s disease (PD) and the related α-synuclein. Being the 

second common neurodegenerative disease leading to movement disorder, outbreak starts 

usually at the same age as AD and exhibits additional symptoms like bradykinesia, rigidity or 

resting tremor. There are several isoforms of α-synuclein produced by alternative splicing, of 

which the shorter proteins seem to be prone for aggregation. Formation of filaments in cyto-

plasmic inclusions can build so-called Lewy bodies, causing degeneration of subcortical struc-

tures especially dopaminergic neurons. In addition, posttranslational modifications like phos-

phorylation can lead to conformational changes of the protein, further supporting aggregation 

and formation of cytoplasmic inclusions [143, 145]. 

Diabetes mellitus (DM) is characterized by hyperglycemia, which causes damage to several 

organs, and is represented by either type 1 or type 2. Type 1 DM is caused by the lack of 

insulin, usually starts at the juvenile age and has an autoimmune background, which causes 

the destruction of the insulin-producing β-cells. In contrast, the onset of type 2 DM is typical 

for older people, developing an obesity-related insulin resistance. This is caused by a reduced 

sensitivity of insulin receptors in the periphery [146, 147]. Islet amyloid polypeptide (IAPP) 

aggregates have been reported to be associated with type 2 and possibly also type 1 DM. 
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IAPP is stored together with insulin (ratio 50:1-2) in secretory granules within pancreatic β-

cells. Both insulin and IAPP are able to form insoluble amyloid fibrils, the β-chain of insulin 

being able to block the aggregation of IAPP. Amyloid fibrils derived from secreted IAPP can 

induce apoptosis of β-cells by for example blocking of autophagy, inflammasome activation or 

destruction of membrane integrity because of growing fibrils. In addition, inefficient processing 

of proIAPP can lead to ER stress, and thus also to apoptosis [148, 149]. Interestingly, epide-

miological studies revealed an increased risk for patients suffering from DM in developing de-

mentia and especially Alzheimer’s disease. Of note, IAPP is able to cross the blood-brain-

barrier and in in vitro-experiments, IAPP was able to seed the amyloid formation of β-amyloid 

[147, 148, 150]. 

 

Table 1: Overview of different other amyloids tested. Shown are different amyloids tested within this 

thesis, giving an overview on the related diseases and genes, whose mutation is related with disease. 
In addition, information on the life cycle of the different amyloids as well as their physiological function 
in healthy individuals are listed. Abbreviations: APP (amyloid progenitor protein), IAPP = islet amyloid 
polypeptide, IDE = insulin degrading enzyme, HSPG = heparan sulfate proteoglycan, PSEN1/2 = pre-

senilin 1/2 (part of the catalytic subunit of γ-secretases). Table represents a summary of the following 
literature: Masters et al. [144], Murphy and LeVine [142], Goedert [143], Atik et al. [145], Ninomiya [147], 
Akter et al. [148], Westermark et al. [149], Ge et al. [150]. 

 

     

Disease Alzheimer’s disease Parkinson’s disease Diabetes mellitus 

Amyloid Aβ40 Aβ42 α-synuclein IAPP 

Precursor APP  preproIAPP  proIAPP 

Related genes APP, PSEN1/2 SCNA  

Processing β- and γ-secretases  in Golgi apparatus 

Tissue/ organ brain brain/ CSF/ plasma pancreas 

Localization 
extracellular plaques/  

vascular inclusion 
cytoplasmic inclusions 
(Lewy bodies) 

secretory granules in  
β-cells/ blood 

Degradation 
IDE (insulin can inhibit),  

neprilysin 
 IDE 

Physiological 
function 

synaptic function 
 found in pre-synaptic 

nerve terminal  
 neurotransmission 

 hormone  
 regulation of metabolism  
 glucose homeostasis  
 gastric emptying  
 regulation of satiety 

Other 

 abun-
dancy: 80 
to 90% 

 

 abundancy: 
~5 to 10% 

 hydropho-
bic, highly fi-
brillogenic 

 binds to lipids  
(C-terminus)  

 aggregation is medi-
ated by N-terminus 

 membrane-associ-
ated and cytoplasmic  

 membrane binding 
inhibits aggregation 

 hydrophobic, positively 
charged  

 seeded after binding to 
anionic membranes/ 
HSPG 

 amyloid formation is nucle-
ated by extracellular matrix/ 
on cell surfaces  

 large plaques serve as a res-
ervoir for oligomeric forms 
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1.3 Other viruses of neurotropic and respiratory origin 

To characterize the potency of the different amyloid enhancers used in this study and to test 

for potential virus-specific differences, a panel of DNA and RNA viruses was chosen. Since 

many of the previously examined amyloid enhancers were of neurological origin, several vi-

ruses attacking the nervous system were picked also here. Additionally, also a family of non-

enveloped virus was included to test the role of structural requirements necessary for infection 

enhancement. Below, a short overview of the structure, replication cycle, associated diseases 

as well as the use in research or the clinics, of members of this virus panel will be given. 

Herpes simplex virus 1 (HSV-1) (Table 2, Fig. 10A) is known as a pathogen in the context of 

the oral mucosa and the eyes, where infection can lead to severe disease up to blindness. 

90% of the adult human population is infected with HSV-1, which is far higher than the preva-

lence for HSV-2 (around 25%), which infects mainly the genital tract (Herpes genitalis). Trans-

mission of HSV-1 occurs by direct contact with a virus-induced lesion or contaminated objects, 

leading to infection of epithelial cells or keratinocytes. Afterwards, latent infection of the pe-

ripheral nervous system (PNS) is established, where HSV spreads from a portal of entry in a 

retrograde fashion. Certain triggers, as for example stress or UV light can lead to recurrent 

reactivations, which initiate anterograde spread and hence formation of Herpes liabilis (cold 

sores). In rare cases, retrograde or antero-/retrograde spread can cause an infection of the 

central nervous system (CNS), resulting in an encephalitis. In addition, HSV has been reported 

to enhance susceptibility to co-infections such as HIV [151].  

Rabies virus (RABV) (Table 2, Fig. 10D) has several hosts including human, bats, dogs, and 

foxes. The annual infection by RABV leads to around 55,000 deaths per year, due to lack of 

systematic vaccination in developing countries and high prevalence in particular in dogs [152]. 

Symptoms of rabies infection are initially fever, pruritus as well as paraesthesia and can later 

be divided in two subgroups - the furious and the paralytic rabies. The latter is characterized 

by drowsiness, whereas the furious outcome of RABV infection shows hyperactivity, confusion 

as well as agitation [153]. Rabid animals usually bite humans, thereby injecting virus particles 

into the muscle tissue, followed by entry of RABV into the PNS and retrograde spread. The 

variety of viruses studied comprises primary isolates, which are often referred to as “street 

viruses”, lab-adapted viruses and attenuated vaccination strains. Often, there are considerable 

discrepancies between viruses of these three origins, including cytotoxicity or neurotropism, 

making it essential to cover different isolates in study approaches [152]. 

Measles virus (MeV) (Table 2, Fig. 10C) is an exclusively human pathogen that arose from a 

zoonotic transmission. Before the introduction of a measles vaccine, MeV caused more than 

2 million death per year. Symptoms of an ongoing MeV infection are skin rash, fever, cough, 

coryza, conjunctivitis and so-called Koplik spots. Due to a good vaccination coverage (usually 
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during childhood) and survivors of wild type infections, a strong herd immunity within the hu-

man population has been reached in many countries [154]. MeV is a highly contagious virus 

and is transmitted in chains between patients, mainly in an airborne fashion, but also by direct 

infection through contaminated objects. Within the host, this virus can infect several cell types 

of the immune system (macrophages, DCs, T and B cells), epithelial cells of the respiratory 

tract and neurons, the latter causing in rare cases measles’ encephalitis [154, 155]. A key 

feature of acute MeV infection is a transient lymphopenia, which resolves soon after the clear-

ance of infection. Nevertheless, a persistent impairment of the immune system that can last 

for several years, with an increased risk to secondary infections, can in some patients be cre-

ated. This severe immunosuppression (“immune amnesia”) in combination with a lifelong im-

munity against MeV is called “measles paradox” [154]. 

 

Table 2: Overview of DNA and RNA viruses tested. Shown is a comparative overview of the taxon-

omy, the particle properties, the tissue tropism and the replication cycle of the different viruses. Abbre-
viations: “-“ = negative-stranded, CAR = coxsackievirus and adenovirus receptor, CD = cluster of differ-
entiation, ds = double stranded), F = fusion protein, g or G = glycoprotein, H = hemagglutinin protein, 

HVEM = herpesvirus entry mediator (tumor necrosis factor receptor superfamily member 14 
(TNFRSF14)), IR = inverted repeats, IGR = intergenic region, ITR = inverted terminal repeats, kb = 
kilobase pairs, L = RdRp (large RNA-dependent RNA polymerase), LATs = latency-associated tran-
scripts, M = matrixprotein, N = nucleoprotein, nAChR = nicotinic acetylcholine receptor, NCAM =  neural 
cell adhesion molecule, P = phosphoprotein, p75NTR = p75 neurotrophin receptor, Pol = polymerase, 

R = receptor, SLAM = signaling lymphocytic activation molecule, ss = single stranded, (p)TP = (precur-
sor) terminal protein. Table represents a summary of the following literature: Kukhanova et al. [156], 
Kollias et al. [151], Su et al. [157]. Weller et al. [158], Albertini et al. [159], Ghanem and Conzelmann 
[152], Rota et al. [154], Bhattacharjee et al. [160], Delpeut et al. [155], Goncalves and de Vries [161], 
Ison and Hayden [162]. 

 

 
Virus 

Herpes simplex  
virus 1 

Adenovirus Measles virus Rabies virus 

Order Herpesvirales  Mononegavirales Mononegavirales 

Family Herpesviridae Adenoviridae Paramyxoviridae Rhabdoviridae 

Subfamily Alphaherpesvirinae    

Genus  Mastadenovirus Morbillivirus Lyssavirus 

Envelope  yes no yes yes 

Virion shape spherical icosahedral round bullet-like 

Tissue neuronal, genital 
respiratory, anal, 
urinary 

epithelial, neuronal, 
immune cells 

neuronal 

G
e

n
o

m
e

  

 

  organization 
 

  size 

  dsDNA, linear,   
 ITR/ IR, LATs  

  150 kb 

  dsDNA   
 ITR, TP  

  36 kb 

  -ssRNA, non-  
 segmented  

  16 kb 

  -ssRNA, non- 
 segmented  

  12 kb 
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Adenoviruses (AdV) (Table 2, Fig. 10B) are the only non-enveloped virus family within this 

thesis used to analyze amyloid-mediated enhancement of infection. Besides humans, other 

mammals and birds are hosts of this virus family [163]. Adenovirus transmission occurs by 

aerosols or direct contact and can lead to severe infections of the respiratory, urinary as well 

as anogenital tract, but also of the eye (conjunctivitis). As all adenoviruses have some sort of 

tissue specificity, the primary isolates used within this study, adenovirus serotype 2/5 (species 

C) as well as serotype 3/7 (species B), can both be found in the respiratory tract. The latter 

species was also reported to be present in the urinary tract [162].  

Besides causing disease, several viruses within this panel are used as tools in the clinics or in 

laboratories. For example, treatment of cancer patients was achieved by using oncolytic vi-

ruses based on HSV-1, which was used to treat e.g. gliomas, glioblastomas, head and neck 

cancer, melanomas, pancreatic or breast cancer. Here, several properties of herpes simplex 

viruses are beneficial, like infecting replicating and non-replicating cells as well as a fast repli-

E
n

tr
y

 

 
  viral R 
 

  cellular R  
  mode 

  gB/gC, gD, gB,  
 gH/gL 

  nectin-1/-2,  
 HVEM 

  fusion at the  
 plasma mem- 
 brane 

  penton base/  
 fibre 

  CAR, CD46,   
 CD80/86 

  clathrin-medi- 
 ated endocyto- 
 sis, fusion in  
 endosome 

  H-/F-protein 
  SLAM (CD150),  

 CD46, nectin-4 
  fusion at the 

 plasma me- 
 brane  

  G-protein 
  nAChR, NCAM, 

 p75NTR 
  clathrin-medi- 

 ated endocyto- 
 sis, fusion in  
 endosome  
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o
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components 

  viral  

  cellular 

  Tegument 
  Microtubules 

  
 Microtubules 

  

R
e

p
li

c
a

ti
o

n
 

 

  transcription 
 

  replication 
 

  hierarchic organi- 
 zation: α/β/γ-  
 genes, by Pol II 

  circularization of  
 genome (θ-type/ 
 rolling-circle- 
 type), by viral  
 DNA Pol (U30)/  
 processivity fac- 
 tor (UL42) 

  transcription of 
 early and late  
 genes in most   
 cases by Pol II 

  pTP mediated  
 initiation of rep- 
 lication of viral  
 DNA 

 Negri bodies 

mode of transcription: “start-stop”-mode 
(genome organization + IGR), by L-P-
complex, transcript a abundancy regu-
lated by order of genes 

  N>P>M>H>F>L 
  alternative ORF  

 of P: accessory   
 proteins V/C  

  N>P>M>G>L 

 

genome amplification by L-P complex 

Assembly 
  capsid: nucleus 
  virus particle:  

 cytoplasm 

assembly and 
maturation in the 
nucleus 

RNP-formation   
(N/P/L proteins + viral RNA) 

 M-protein medi-
ated assembly 
(together with ac-
tin) 

 M-protein-me-
diated packag-
ing 

Exit exocytosis 
lysis of infected 

cell 
budding budding 

Specialties 
latent persistence in 
PNS (circular ge-
nome, LATs) 

   retrograde 
spread through 
transsynaptic 
transmission  

 “stealth mode” 
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cation cycle, which leads to rapid lysis of tumor cells [164, 165]. MeV is also used as an onco-

lytic virus. In this context, especially CD46 as a receptor is interesting, since this molecule is 

overexpressed on many cancer cells [160]. To make the two described viruses even more 

efficient, viral receptors can be modified or viruses can be “armed” by delivering pro-inflamma-

tory mediators, PAMPs (pathogen associated molecular patterns), or prodrug convertases 

[160, 164, 165]. AdV is widely used as vector in different settings and is applied for example 

to different vaccination studies for e.g. HIV, Ebola and other hemorrhagic fevers. Due to the 

long persistence of the virus in cells, lifelong correction of metabolic disorders has been 

achieved in some cases. Also, their role as oncolytic viruses in the context of cancer is studied 

[161, 162]. Rabies viruses can be used to analyze neuronal circuits. Depending on the virus 

modifications, transsynaptic or monosynaptic tracing can be done. The low cytotoxicity of 

RABV allows several rounds of replication within the brain of the respective animal, enabling 

mapping of huge areas, making RABV an interesting tool for neurosciences [152]. 

 

                

 

Figure 10: Virion structure of different neurotropic and respiratory viruses tested. (A) The HSV 

virus particle consist of a capsid, which encloses the viral dsDNA. Both are surrounded by the tegument, 
which fills the space in-between capsid and the glycoprotein-containing lipid bilayer. (B) Shown are 

different proteins forming the AdV capsid as well as the inner structural proteins of the virion. (C) Illus-

tration of MeV particle: nucleoprotein covering viral -ssRNA, phosphoprotein, large RNA-dependent 
RNA polymerase (RdRp), matrix protein, hemagglutinin protein and fusion protein. (D) The bullet-

shaped particle contains a 12 kb -ssRNA that forms together with N, P and L proteins the ribonucleo-
protein (RNP). The latter is covered by a lipid bilayer envelope that contains the glycoprotein. The ma-
trixprotein links trimeric G protein and RNP. Abbreviations are the same as in Table 2. Schematics taken 

from Kukhanova et al., 2014 [156], Albertini et al., 2011 [159], Rota et al., 2016 [154] and Russel, 2009 
[166]. 
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1.4 Aim of this study 

HIV transmission in a relatively inefficient process (chapter 1.1.2), but recent studies under-

lined the role of semen-derived amyloids in enhancement of HIV infection and most likely also 

HIV transmission (chapter 1.2.2). Human alpha-papillomaviruses were in the past intensively 

studied in the context of their potential to induce cancer development in various tissues (chap-

ter 1.2.3.1). In addition, several epidemiological studies highlighted the interplay between HIV 

and HPV infections, each facilitating subsequent acquisition of the other. Importantly, HPV 

seems to create a milieu at the transmission site, which is beneficial for HIV transmission 

(chapter 1.2.3.3). It has been reported that the HPV-derived E4 protein, which has several 

important functions during the viral replication cycle, is able to form amyloids (chapter 1.2.3.4).  

It is the aim of this study to characterize amyloids derived from the HPV E4 protein for their 

ability to modulate HIV infection in vitro. Furthermore, it will be elucidated at which step of the 

HIV replication cycle, this putative amyloid enhancer could be relevant. Moreover, experiments 

mimicking conditions present during HIV transmission will be used to investigate functionality 

of the E4-derived amyloids under physiological conditions. Also, the structural and physio-

chemical properties of this amyloidogenic peptide, eventually influencing HIV infection, will be 

studied. In addition, this thesis will try to get insight into the impact of this potential amyloid 

enhancer of infection on HIV therapy. Finally, the effect of amyloids derived from HPV E4 and 

other known amyloids (chapter 1.2.4) on infection with HIV and a panel of pathologically or 

structurally relevant viruses (HSV, RABV, MeV, AdV) (chapter 1.3), will be examined. 
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2 Material and Methods 

 

2.1 Chemicals 

Compound/Reagent   Company/Distributor 

Agarose   Sigma-Aldrich, St. Louis, USA 

Ampicillin sodium salt   Roth, Karlsruhe, Germany 

Di-methylsulfoxid (DMSO)     Roth, Karlsruhe, Germany 

Ethanol, 98-99% p.a.      Sigma-Aldrich, St. Louis, USA 

Fetal calf serum (FCS)     Sigma-Aldrich, St. Louis, USA 

Fluoroshield Mounting medium with DAPI   Sigma-Aldrich, St. Louis, USA 

Glycine       Roth, Karlsruhe, Germany 

Hydrochloric acid 37%     Roth, Karlsruhe, Germany 

Isopropanol, p.a.      Sigma-Aldrich, St. Louis, USA 

Kanamycin sulphate   Roth, Karlsruhe, Germany 

Magnesium chloride      Sigma-Aldrich, St. Louis, USA 

Mayer’s haematoxylin solution     Roth, Karlsruhe, Germany 

MS2 RNA (0.8 µg/µl)      Roche, Rotkreuz, Swizerland 

Paraformaldehyde (PFA)     Applichem, Darmstadt, Germany 

Perm/ Wash buffer  BD Biosciences, Franklin Lakes,  

USA 

Phytohemagglutinin P (PHA-P)    Sigma-Aldrich, St. Louis, USA 

Polyethylenimine (PEI)     Polysciences, Eppelheim 

Potassium ferricyanide     Sigma-Aldrich, St. Louis, USA 

Potassium ferrocyanide     Sigma-Aldrich, St. Louis, USA 

Saponin       Sigma-Aldrich, St. Louis, USA 

Sodium azide       Merck, Darmstadt, Germany 

Sodium hydroxide pellets     Sigma-Aldrich, St. Louis, USA 

Sucrose       Sigma-Aldrich, St. Louis, USA 

SYBR Green, 10.000x     Invitrogen, Carlsbad, USA 

SYBR Safe       Thermo Scientific, Waltham, USA 

Ribolock       MBI Fermentas, St. Leon-Rot 

Rotiphorese 50x TAE buffer     Roth, Karlsruhe, Germany 

Thioflavin T       Sigma-Aldrich, St. Louis, USA 

Tris        Roth, Karlsruhe, Germany 

Triton X-100       Roth, Karlsruhe, Germany 
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Trypsin-EDTA (0.25%)     Biochrom, Berlin, Germany 

Trypan blue       Roth, Karlsruhe, Germany 

X-Gal        MBI Fermentas, St. Leon-Rot,  

Germany 

 

Media and buffers (pre-casted) 

CO2-independent Medium     Thermo Scientific, Waltham, USA 

DMEM, GlutaMAX™, pyruvate    Thermo Scientific, Waltham, USA 

DMEM F-12 Medium, GlutaMAX™    Thermo Scientific, Waltham, USA 

1x PBS (Phosphate buffered saline)    Thermo Scientific, Waltham, USA 

10x PBS (Phosphate buffered saline)   Thermo Scientific, Waltham, USA 

RPMI Medium 1640, GlutaMAX™    Thermo Scientific, Waltham, USA 

LB-Medium       Roth, Karlsruhe, Germany 

LB-Agar       Roth, Karlsruhe, Germany 

TB-Medium       Roth, Karlsruhe, Germany 

 

Peptides 

E4 (mutants and variants)     Anaspec, Fremont, USA 

SEVI and SEVI Ctrl      Anaspec, Fremont, USA 

Beta-amyloid 40 (Aβ40)     Abcam, Cambridge, UK 

Beta-amyloid 42 (Aβ42)     Abcam, Cambridge, UK 

α-Synuclein        Abcam, Cambridge, UK 

Diabetes associated peptide amide human (IAPP)  Sigma-Aldrich, St. Louis, USA 

 

Drugs and inhibitors 

AMD3100       Sigma-Aldrich, St. Louis, USA 

Maraviroc       Sigma-Aldrich, St. Louis, USA 

T20/ Enfuvirtide (Fuzeon)     Roche, Rotkreuz, Switzerland 

anti-CD4 antibody (SK3)     Biolegend, San Diego, USA  

Isotype IgG1 antibody (MPOC-21)    Biolegend, San Diego, USA 

bNAbs/ NAbs       kindly provided by Prof. F. Klein 

        Laboratory of experimental Immu- 

nology (Cologne, Germany) 
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Dyes and antibodies 

anti-Adenovirus antibody (20/11)    Merck, Darmstadt, Germany 

anti-p24 antibody KC57-FITC    Beckmann Coulter, Brea, USA  

anti-E4 mouse monoclonal antibody (NA7-AA5)  Eurogentec, Lüttich, Belgium 

(immunogen bacterially expressed HPV16 E4)   

goat anti-mouse Alexa Fluor 568    Thermo Scientific, Waltham, USA 

goat anti-mouse Alexa Fluor 488    Thermo Scientific, Waltham, USA 

CCF2        Thermo Scientific, Waltham, USA 

Alexa Fluor 647 Phalloidin     Thermo Scientific, Waltham, USA 

DAPI        Thermo Scientific, Waltham, USA 

 

Other reagents 

Vaginal fluid       Lee Biosolutions, Maryland Heights 

USA 

 

Kits 

LifeBLAzer FRET-B/G Loading Kit with CCF2-AM  Thermo Scientific, Waltham, USA 

NucleoBond® Xtra Midi EF     Macherey-Nagel, Rölsdorf,  

Germany 

One Shot™ Stbl3™ Chemically Competent E. coli  Thermo Scientific, Waltham, USA 

RosetteSep™ Human CD4+ T Cell Enrichment Cocktail Stemcell, Vancouver, Kanada 

 

2.2 Machines 

C1000/CFX96 Thermal Cycler   BioRad, Hercules, USA 

CLARIOstar plate reader   BMG Labtech, Ortenberg 

Eclipse Ti2 microscope + DS-Qi2 camera   Nikon, Tokyo, Japan 

Eclipse Ts2 microscope   Nikon, Tokyo, Japan 

FACS Lyric  BD Biosciences, Franklin Lakes,  

USA 

TCS SP5 confocal microscope   Leica, Wetzlar, Germany 
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2.3 Buffers and reagents 

2.3.1 General buffers and reagents 

Antibiotics for the selection of bacteria: ampicillin/ kanamycin 

Stock solutions of 50 mg/ml in Milli-Q water were prepared, sterile filtered (0.22 µm) and stored 

at -20°C. 

 

Freezing medium 

DMEM        300 ml 

FCS        150 ml 

DMSO        50 ml 

 

4% Paraformaldehyde (PFA) solution 

All working steps were performed under a chemical hood. First, 450 ml of Milli-Q water were 

heated to 60°C on a magnet stirrer, followed by addition of 20 g PFA (Applichem). Suspension 

was stirred for several minutes at constant temperature and then one pellet of NaOH was 

added. After cooling down to room temperature 50 ml of 10x PBS were added and pH was 

adjusted to 7.2 using HCl. Afterwards, the solution was filtered with a 0.22 µm Stericup (Milli-

pore) to get rid of precipitates and stored at -20°C. 

 

Polyethylenimine (PEI) transfection reagent (working solution) 

To produce a 1 mg/ml stock solution, 250 ml Milli-Q water were heated to 70°C and 250 mg 

PEI (Polysciences, MW 25000) was added. Following cooling down to room temperature, pH 

was adjusted to 7 via HCl. Finally, the solution was sterile filtered (0.22 µm) and stored at  

-20°C. 

 

2.3.2 Assay specific buffers and reagents 

2.3.2.1 T cell activation 

IL-2 (Biomol) 

A stock of 200 µg/ml in 0.02 M acetic acid was prepared and stored at -20°C. For activation of 

primary CD4 T cells, a final concentration of 5.88 ng/ml was used. 
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PHA-P (Sigma-Aldrich) 

A 1 mg/ml stock in 1x PBS was prepared and stored at store -20°C. To activate primary CD4 

T cells, a final concentration of 2 µg/ml was used. 

 

2.3.2.2 Blue Cell Assay 

β-Gal reaction solution 

in 1x PBS 

Potassium ferricyanide     3 mM 

Potassium ferrocyanide     3 mM 

MgCl2        1 mM 

 

X-Gal solution 

X-Gal (Fermentas) was solved in di-methyl-formamide to prepare a stock solution of 20 mg/ml 

and store at -20°C, protected from light. 

 

2.3.2.3 HIV-1 capsid (p24) ELISA 

Special reagents 

 Monoclonal anti-p24 antibody (mAb183, stock 0.5 mg/ml, obtained from Hans-Georg 

Kräusslich, Heidelberg, Germany ) as catching antibody 

 HIV-1 p24 capsid stock (Analytic Jena, #PR-1201) as standard 

 Polyclonal rabbit anti-p24 antibody (rbαCA) as primary antibody 

 anti-rabbit horseradish peroxidase (α-rb-PO) as secondary antibody 

 TMB (10 mg/ml in DMSO, store at -20°C) 

 

Buffers 

ELISA washing buffer 

1x PBS 

Tween 20       0.05% 

 

ELISA blocking buffer 

1x PBS 

Fetal calf serum (FCS)     10% 
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ELISA dilution buffer 

1x PBS 

Tween 20       0.05% 

TritonX-100       0.05% 

 

Na-Acetat (NaAc) buffer 

Stock solution was prepared by dissolving 4.1 g NaAc in 500 ml Milli-Q water and adjusting 

pH6 using acetic acid. 

 

2.3.2.4 SG-PERT 

Special reagents: 

 pCHIV #528 virus supernatant as standard 

 GoTaq Hot Start DNA polymerase  

 MS2 RNA 0.8 µg/µl 

 Ribolock 40 U/µl 

 dNTP Set (Fermentas) 4x1 ml 100 mM each 

 SYBR Green 500 µl 10,000x stock 

 100x BSA (NEB) 

 

Primers: 

RT-Assay-forward: TCCTGCTCAACTTCCTGTCGAG 

RT-Assay-reverse: CACAGGTCAAACCTCCTAGGAATG 

 

Buffers 

2x SG-PERT lysis buffer 

KCl        50 mM 

Tris-HCl (pH 7.4)      100 mM 

Glycerol       40% 

TritonX-100       1% 
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10x PCR/ dilution buffer  

(NH4)2SO4       50 mM 

KCl        200 mM 

Tris-HCl (pH 8.3)      200 mM 

 

2x Reaction buffer 

1x PCR Buffer 

2x bovine serum albumin (BSA Fraktion IV, Carl Roth) 

1x SYBR Green 

MgCl2        10 mM 

dATP/ dTTP/ dGTP/ dCTP     400 µM (each) 

RT-Assay-forward      1 pmol 

RT-Assay-reverse      1 pmol 

MS2 RNA       8 ng 

 

2.3.2.5 Microscopy (Confocal) 

Quenching buffer 

1x PBS 

Glycine       25 mM 

 

Permeabilization buffer 

1x PBS 

TritonX-100       0.1% 

 

Microscopy washing buffer 

1x PBS 

BSA        1% 

 

Microscopy blocking buffer  

1x PBS 

Tween20       0.1% 

BSA        1% 

Horse serum        2.5% 
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2.4 Methods 

2.4.1 Cell culture and production of virus stocks 

2.4.1.1 Amplification of plasmid DNA 

Proviral constructs and other plasmid DNAs (see Table 3) were amplified using different com-

petent E. coli cells: Stbl2 for HIV-1 lab strain plasmids or Stbl3 One shot for HIV-1 T/F strain 

plasmids. First, an aliquot of bacteria was thawed on ice, then 1 µg of DNA was added and 

incubated for 30 min. Afterwards, heat shock was performed for 45 sec at 42°C followed by 

another 2 min incubation on ice. Next, 250 µl of pre-warmed SOC medium (Thermo Scientific, 

T/F plasmids) or 800 µl of pre-warmed LB medium (all other plasmids) were added and the 

bacteria were shaken for 1 h at 37°C, 800 rpm on a Thermoshaker. Following, cells were spun 

down for 20 sec at 20,000 x g in a tabletop centrifuge (5427R, Eppendorf) and plated on a LB 

agar plate with the corresponding antibiotic for selection: Ampicillin or kanamycin at a final 

concentration of 50 µg/ml. After 18 h to 24 h, single colonies were picked and added to 5 ml of 

TB medium with the corresponding antibiotic for selection (50 µg/ml), in a 15 ml reaction tube 

(pre-culture). Pre-cultures were shaken for 6 h to 8 h and then added to 400 ml of pre-warmed 

TB medium supplemented with the corresponding antibiotics (main culture). Main cultures 

were shaken for 18 h to 24 h. As a last step, cultures were spun down at 3,400 x g for 10 min 

(5920R, Eppendorf) and stored at -20°C until plasmid DNA isolation. Plasmid DNA isolation 

was performed using the NucleoBond® Xtra Midi EF Kit (Macherey Nagel). After isolation, 

plasmid DNA concentration was measured using the NanoDrop One (Thermo Scientific) and 

adjusted to 1 µg/µl.  

 

2.4.1.2 Restriction digest of plasmid DNA and gel electrophoresis  

Quality control of amplified plasmid DNA was done via a restriction digest using the FastDigest 

system (Thermo Scientific) according to manufacturer’s instructions. Here, 2 µl of the re-

striction buffer (FastDigest Green Buffer) were mixed with 1 µl plasmid DNA, 1 µl of each 

restriction enzyme (see Table 3 below) and the corresponding amount of water to reach a total 

volume of 20 µl. Next, mixes were incubated for 30 min at room temperature, followed by gel 

electrophoresis (Compact XS/S, Biometra, Analytik Jena) on a 1% Agarose gel. The Agarose 

gel was prepared in 1x TAE containing SYBR Safe (1:10,000). Gel was run at 120 V (Powerpac 

HC, BioRad) for 1 h and afterwards imaged with the UVP UV solo touch system (Analytik 

Jena). After comparing fragment sizes of input DNA and amplified DNA, correctly amplified 

plasmid DNA was stored at -20°C.  
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Table 3: DNA plasmids and properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proviral plasmids YU-2, WITO, CH040, CH058, CH077, CH106, RHPA, THRO and TRJO were 

obtained from the NIH AIDS reagent program. Other HIV-1 plasmids were derived from various 

origin: NL4-3 (Nathaniel Landau, Alexandria Center for Life Science, USA), NL4-3 ΔEnv (Oliver 

T. Fackler, Universitätsklinikum Heidelberg, Germany), 49.5, R7/3 GFP (Mark Goldsmith, 

UCSF, USA), NL4-3 ΔNef GFP (Frank Kirchhoff, Universitätsklinikum Ulm, Germany), BlaM-

Vpr (D. von Laer, Medical University, Innsbruck, Austria) and eGFP-Vpr (Tom Hope, North-

western University, USA). 

 

2.4.1.3 Cell culture 

All cell culture work was done under sterile conditions using a sterile hood (Safe2020, Thermo 

Scientific). Most of the adherent cells were cultured in DMEM plus 10% FCS and 1% Penicil-

lin/Streptomycin (P/S, 10,000 U/ml, Biochrom), which will be referred to as “DMEM complete”. 

Suspension cells were cultivated in RPMI 1640 with 10% FCS and in the case of CD4 T cells  

Plasmid 
type 

Name 
Bacterial 
background 

Antibiotic  
resistance 

Restriction  
enzymes 

H
IV

-1
 la

b
 s

tr
a
in

s 

NL4-3 

Stbl2 

Ampicillin (Amp) EcoRI/ HindIII 

NL4-3 ΔEnv Amp   

YU-2 Amp EcoRI/ HindIII 

49.5 Amp HindIII 

NL4-3 ΔNef GFP Amp EcoRI/ HindIII 

R7/3 GFP Amp HindIII 

H
IV

-1
 T

/F
 s

tr
a
in

s 

WITO 

Stbl3 

Kanamycin (Kana) BamH1/ Not1 

CH040 Kana BamH1/ Not1 

CH058 Kana BamH1/ Not1 

CH077 Kana 
EcoRI/ 
BamH1 

CH106 Kana BamH1 

RHPA Kana EcoRI 

THRO Kana BamH1/ Not1 

TRJO Amp Xho1 

o
th

e
r BlaM-Vpr 

Stbl2 
Amp   

eGFP-Vpr Kana   
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Table 4: Overview of used cell lines and primary cells.  

 

with 1% P/S (“RPMI complete”) or 0.31 µg/ml puromycin in the case of SupT1.CCR5 cells (see 

Table 4). Cell lines were derived from various origin: TZM-bl cells (NIH AIDS reagent program), 

HEK293T, A549 and SH-SY5Y cells (ATCC), HFF cells (Barbara Adler, LMU Munich), and 

SupT1.CCR5 cells (Robert Doms, University of Pennsylvania). 

 

2.4.1.4 Cultivation of cell lines 

All cells were split according to the speed of cell growth 1-2 times per week. In case of adherent 

cells, cells were first washed with 1x PBS and then treated with Trypsin/EDTA (0.5%/ 0.2%, 

Biochrom). By pipetting, a single cell suspension was created and transferred into a new cell 

culture flask with fresh medium. Dilution of the cell suspension was chosen according to cell 

Name Description Adherent (A)/ 

Suspension (S) 

Cultivation medium 

HEK293T 

cells 

Human embryonic kidney 

cells, epithelial cell line 

A “DMEM complete” 

TZM-bl cells Hela cell-derived cell line 

containing HIV Tat-de-

pendent expression cas-

settes for luciferase and β-

galactosidase 

A “DMEM complete” 

A549 cells Adenocarcinoma cell line, 

Type II pneumocyte 

A “DMEM complete” 

HFF Human foreskin fibro-

blasts, primary cell line 

A “DMEM complete” 

SH-SY5Y Neuroblasts from neural 

tissue 

A DMEM F-12 Medium,  

10% FCS, 1% non-es-

sential amino acids, P/S 

SupT1.CCR5 

cells 

Human T cell lympho-

blastic  lymphoma-derived 

cell line, stable overex-

pression of human CCR5 

S RPMI, 10 % FCS, Puro-

mycin 

Primary acti-

vated CD4 T 

cells 

Purified from PBMCs from 

Healthy human blood do-

nor 

S “RPMI complete” + IL-2 
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type and growth speed. In case of suspension cells, cells were split 1:10 and resuspended in 

fresh medium. 

 

2.4.1.5 Freezing and thawing of cell lines 

Cell lines were frozen down at a density of 5 x 106 cells/ ml. Therefore, a single cells suspen-

sion was created if necessary. Next, cells were spun down (600 x g, 5 min room temperature) 

and resuspended in the adequate volume of freezing medium (for composition, please see 

general buffers and reagents). Aliquots of 1 ml were prepared in cryotubes (Sarstedt). The 

latter were put in a special cell freezing container (Cell Camper Mini) that allows constant cool-

ing of 1°C per minute. Freezing was done by first putting the container for 24 h at -80°C and 

then transferring the tubes into a liquid nitrogen tank. 

Thawing of cells in a 37°C water bath was performed by adding 1 ml of pre-warmed medium 

to avoid freeze/thaw effects. Finally, the cell suspension was added to 10 ml of fresh pre-

warmed medium, followed by centrifugation (see above), resuspension in the cell type specific 

medium and plating according to cell properties.  

 

2.4.1.6 Cultivation of primary cells 

Blood cones (Terumo BCT leukocyte reduction system) containing red blood cells as well as 

enriched leukocytes were received from the Hospital of the University of Munich, Dept. of Im-

munohematology, infection screening and blood bank (ATMZH). Blood cells were derived ex-

clusively from anonymized healthy donors in the age of 20 to 55 years. The ethics committee 

of the LMU München, Munich, Germany with the project No. 17-202-UE, approved usage of 

blood cones.  

Primary CD4 T cells were isolated via the CD4 T cell enrichment Rosette Sep Kit (Stemcell) 

according to manufacturer’s instructions. In brief, blood cones were flushed with 30 ml 1x PBS 

per cone into a 50 ml reaction tube (total volume of ~40 ml) and incubated with 2 ml of the 

antibody enrichment cocktail for 20 min at room temperature. During this time, the antibodies 

within the cocktail bind to all cell types except CD4 T cells and attach them to red blood cells. 

Afterwards, the antibody-blood mix was further diluted with 1x PBS, mounted on Biocoll (den-

sity 1,077 g/L, Biochrom) and spun at 700 x g for 35 min with slow acceleration and decelera-

tion. As a result, the erythrocyte fraction can be found at the bottom of the tube, on top the 

Biocoll and at the phase border of Biocoll and plasma the thin layer of CD4 T cells. After re-

moving most of the plasma, CD4 T cells were collected, washed twice with 1x PBS, and finally 

resuspended in RPMI containing 10% FCS, 1% P/S (“RPMI complete”). Cell number was de-

termined using the Vi-Cell XR cell counter (Beckmann Coulter) and adjusted to 2 x 106 cells/ 

ml. To generate activated CD4 T cells, cells were cultured in medium supplemented with IL-2 

(final concentration of 5.88 ng/ml) and PHA-P (final concentration of 2 µg/ml) for 3 to 4 days. 
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After this time cells were spun down at 500 x g for 5 min and kept in “RPMI complete” with  

IL-2 (concentration see above) for further experiments. For infection experiments, pools of 2 

to 4 donors were created, where equal cell numbers/ volumes (2 x106 cells/ ml) of activated 

cells from different donors were mixed.  

Primary human foreskin fibroblasts (HFF), isolated from circumcision-derived foreskins, were 

a kind gift of the Adler lab (Munich, Germany). Cells were cultivated in “DMEM complete” and 

split 1:4 once per week in fresh DMEM, the procedure was the same as for other adherent cell 

lines. 

 

2.4.1.7 Production of HIV-1 lab strains and Transmitted/ Founder (T/F) strains on 

HEK293T cells  

All work with HIV was done in a P3** or P3 laboratory. To produce HIV-1 by transfection of 

HEK293T cells, plating of the cells in a 15 cm dish at a density of 8 x 106 cells was required at 

one before manipulation. Next, the transfection mix had to be prepared: 1 ml of plain DMEM 

was mixed with the plasmid DNA (concentration 1 µg/µl) and PEI transfection reagent (see 

Table 5 below). After 45 min, incubation at room temperature DNA-PEI-aggregates had been 

formed and 2.5 ml of transfection mix were applied to each cell culture plate.  

 

Table 5: Overview of different transfection mixes.  

 

 

 

 

 

 

 

 

48 h later, supernatants were collected and filtered with a 0.45 µm Stericup (Millipore) to re-

move floating dead cells as well as cellular fragments. In the next step, 28 ml of supernatant 

were mounted on 6 ml of sucrose (25% in 1x PBS) in a 35 ml ultracentrifuge tube. Purification 

of virus particles was done via centrifugation at 24,000 rpm at 4°C for 1.5 h (Sorvall WX+ Ultra 

series; rotor: SW32, Beckmann Coulter). Afterwards, the supernatant was discarded and pel-

lets were resuspended in 100 µl 1x PBS per ultracentrifuge tube. As a final step, the contents 

of all tubes were pooled, aliquoted and frozen down at -80°C.  

 

 Normal Virus Virus + BlaM-Vpr Virus + eGFP-Vpr 

DMEM 1 ml 1 ml 1 ml 

proviral DNA  15 µg 15 µg 15 µg 

BlaM-Vpr DNA  5 µg  

eGFP-Vpr DNA   1,5 µg 

PEI 45 µg 60 µg 49,5 µg 
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2.4.1.8 Expansion of HIV primary isolates 

All work with HIV was done in a P3** or P3 laboratory. For the expansion of HIV-1 and HIV-2 

primary isolates (see Table 6), virus isolates (provided by Josef Eberle, Max von Pettenkofer 

Institute, LMU Munich, Diagnostic and NRZ strain collection) were mixed with 5 to 10 x 106 

primary activated CD4 T cells (four donor pool) and plated on a 6-well plate (total volume ~5 

ml). After 2 to 4 days, the culture was transferred into a T75 flask and supplied with 4 x 107 

primary activated CD4 T cells (total volume ~25 ml). Every 3 to 4 days supernatants were 

harvested and fresh cells were supplemented. In addition, ultracentrifugation was performed 

in the same way as for HIV labstrains (see chapter 2.4.1.7). Supernatants as well as concen-

trated viruses were aliquoted, stored at -80°C, ready to be used in different quantification meth-

ods of their virus titer and for infection experiments (see below).  

 

Table 6: Overview of expanded HIV primary isolates. 

 

 

 

 

 

 

2.4.1.9 Expansion of adenovirus (AdV) primary isolates and herpes simplex virus  

(HSV)-1 YFP 

In the case of adenovirus primary isolates (obtained from Jindrich Cinatl, Uniklinikum Frankfurt) 

A549 cells and for the expansion of HSV-1 YFP (obtained from Barbara Adler, LMU München) 

HFF cells were used. Therefore, a confluent T175 cm flask of cells was split 1:2 in two new 

flasks with fresh medium. The next day, the corresponding virus was inoculated, and  

24 h later YFP expression (HSV-1) and/or cytopathic effect (CPE, HSV-1 and AdV) were as-

sessed via microscopy (Eclipse Ts2, Nikon). Detecting successful virus expansion, virus was 

harvested by freeze/thaw cycles. For HSV-1 YFP, in that way generated suspensions were 

collected, transferred into a 50 ml reaction tube and spun down at 3,400 x g, 4°C for 10 min. 

Thus cleaned up supernatants, were aliquoted and stored at -80°C. To process expansion of 

AdV primary isolates, freeze/thaw suspensions were first filtered using a 0.45 µm Stericup 

(Millipore) and then enriched via ultracentrifugation (24,000 rpm at 4°C for 1.5 h). Pellets were 

each resuspended in 100 µl 1x PBS, pooled, aliquoted and stored at -80°C. 

 

Name  Tropism  Additional information 

13127 CCR5 (R5) HIV-1, group O 

RW9 R5 HIV-1, group M 

2044 CXCR4 (X4) HIV-1, group M 

2005 X4 HIV-1, group M 

V1818215 X4 HIV-2, group A 
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2.4.2 Quantification of virus stocks 

2.4.2.1 SG-PERT: Quantification of HIV RT activity 

This method was published by Pizzato et al. [167] and uses the reverse transcriptase (RT) of 

HIV to transcribe a defined synthetic RNA template, the product of which is afterwards ampli-

fied by quantitative polymerase chain reaction (PCR). For composition of buffers, see buffers 

and reagents section. First, 20 µl of virus-containing supernatant were lysed via incubation 

with 20 µl of the 2x Lysis buffer (containing Ribolock 1:100), for 10 min at room temperature 

and then transferred outside of the P3 laboratory. Samples were stored until analysis at -80°C. 

For the quantification of RT activity, pCHIV #528 virus supernatant was used as a standard. 

The standard was prepared in a 1x PCR/ dilution buffer in dilution steps of 1:10, starting with 

the 1:10 dilution of the stock solution as highest concentration. Also, a non-target control (NTC, 

supernatant of untransfected HEK 293T cells) was used. Both standard and NTC were lysed 

in the same way as the samples before. During the lysis period, the pre-mixed 2x reaction 

buffer was supplemented with the GoTaq Hot Start DNA Polymerase (1:100) and 10 µl per 

well were plated in a 96-well PCR plate (BioRad). Next, 10 µl of standard, NTC and samples 

were added to the reaction buffer polymerase mix. All measurements were performed in du-

plicates. As a last step, plates were sealed and SG-PERT analysis was performed using the 

C1000/CFX96 system by BioRad (for protocol see Fig. 11). After the run, data was analyzed 

using the CFX Manager analysis software provided by BioRad. Starting dilution of the standard 

was set to 1.06 x 108 RT Units/ µl and based on the titration steps a standard curve was gen-

erated. The latter was used to estimate RT activity of the different samples. Data were plotted 

using GraphPad Prism. 

 

 

 

Figure 11: Running parameters SG-PERT. 
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2.4.2.2 Titration of HI-Viruses on the HIV reporter cell line TZM-bl 

TZM-bl cells are a HIV reporter cell line that contains two reporter cassettes (β-galactosidase 

and firefly luciferase), which are HIV-Tat-dependent. For the following experiments, only the 

β-galactosidase cassette was used, which is expressed upon HIV infection and leads to cleav-

age of X-Gal, thereby forming a blue dye inside of the cells. First, cells were detached as 

described above, counted and plated in a density of 5 x 103 cells per well in volume of 100 µl 

in a 96-well flat bottom plate. Dilution series of different HIV strains were performed in “DMEM 

complete” in a 96-well round bottom plate (see Fig. 12). Next, the plating medium on the TZM-

bl cells was removed and replaced with 100 µl of each dilution step. Infection experiments 

were performed in duplicates. 48 h post infection supernatants were removed and cells were 

fixed for 10 min with 4% paraformaldehyde (PFA). After removal of PFA, 100 µl of the “blue 

cell assay” (BCA) substrate solution (10 ml β-Gal reaction solution plus 100 µl X-Gal solution) 

were added. After 4 to 6 h incubation at 37°C, a blue staining of infected cells could be detected 

by light microscopy (Eclipse Ts2, Nikon). Wells of a dilution step with around 40 to 200 infected 

(blue) cells were counted and the mean was calculated. Due to the dilution procedure the 

dilution step (e.g. 104) was multiplied by ten and the calculated mean of infected cells per well. 

The results represent the infectious units per ml (IU/ ml) of the virus stock. Data were plotted 

using GraphPad Prism. 

 

 

 

Figure 12: Dilution scheme used for the infection of TZM-bl cells. 

 

2.4.2.3 Titration of HIV on primary CD4 T cells or the T cell line SupT1.CCR5 

2.4.2.3.1 HIV infection assay 

A pool of primary activated CD4 T cells or SupT1.CCR5 cells was plated at a density of  

2 x 105 cells per well in a 96-well conical plate in a total volume of 90 µl of the corresponding 

medium (see above). Virus stocks were diluted in 1x PBS and then added in a volume of 10 µl 

to the cells. 4 h post infection, a medium change was performed. Cells were spun down at  

600 x g for 5 min at room temperature and then resuspended in 200 µl of the respective 

medium. In experiments where only single-round infection or input virus were analyzed, the 

fusion inhibitor T20 (final concentration on cells: 50 µM) was added. 48 h post infection, cells 

were spun down as before, resuspended in 4% PFA/PBS. After 90 min fixation at room 

temperature in the dark, cells were spun down (1,000 x g, room temperature, 8 min) and 

washed once with 1x PBS. In the case of experiments, where productive virus infection lead 
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to expression of GFP in target cells, cells were directly resuspended in 120 µl 1x PBS and 

analyzed by flow cytometry. In infection experiments with viruses that carry no reporter gene, 

an antibody staining had to be performed (see section antibody stain of infected cells for flow 

cytometric analysis). 

 

2.4.2.3.2 Virion-fusion assay 

This assay determines fusion of viral particles to target cells as published by Cavrois et al. 

[168]. Virus particles, containing the HIV-1 Vpr protein fused to β-lactamase (BlaM), had to be 

produced (see paragraph virus production above). After fusion of these viral particles to target 

cells, the incorporated BlaM-Vpr fusion protein is released into the cytoplasm and is able to 

cleave the CCF2 dye. This leads to a shift of the dye’s emission maximum from 520 nm to 447 

nm, which can be measured by flow cytometry. Fusion experiments were performed in a similar 

way (cell types, cell numbers, medium volume, virus titrations) as infection experiments with 

the difference that after 4 h instead of a medium change a special staining procedure was 

performed. Cells were spun down (600 x g, 5 min, room temperature) and washed with 200 µl 

CO2-independent medium supplemented 10% FCS, a medium which allowed survival of cells 

outside of a CO2 incubator. Afterwards, cells were resuspended in 100 µl CCF2 staining 

solution (composition see Table 7), plates were wrapped into a wet tissue, and incubated over 

night in the dark at room temperature. The next day, 100 µl 1x PBS was added per well, cells 

were spun down and resuspended in 4% PFA/PBS. After 90 min fixation, cells were washed 

in 1x PBS, resuspended in 120 µl 1x PBS and virion fusion determined by flow cytometry (see 

section for flow cytometric analysis). 

 

Table 7: Pipetting scheme for CCF2 staining solution. 

 

 

 

 

 

2.4.2.3.3 Virion-attachment assay 

Measurement of binding/ attachment of virus particles to primary CD4 T cells requires 

production of GFP-carrying virus particles [169]. To generate these, a similar technique as for 

the virion-fusion assay was used: an eGFP-Vpr encoding plasmid was co-expressed during 

virus production. The administration of virus particles to the cells was done in a similar way as 

for infection and fusion experiments (cell types, cell numbers, medium volume, virus titrations) 

Reagent Volume 

CO2-independent medium 1 ml 

Solution B 8 µl 

Probenecide 10 µl 

CCF2 dye 2 µl 
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but with the subsequent modifications. All steps (starting from virus production), were 

performed with as little light exposure as possible, to avoid bleaching of the viral particles. 

Another important parameter was the presence of the fusion inhibitor T20 in all conditions to 

block fusion of virus particles and arrest them at the binding stage. Cells plus fluorescent 

particles were incubated for 60 min at 20°C. Afterwards, 100 µl of 1x PBS was added, cells 

were spun down and washed one more time with 200 µl 1x PBS. After fixation (4% PFA/PBS), 

attachment was analyzed by flow cytometry.  

 

2.4.2.4 Detection of HIV capsid (CA) protein: p24 CA ELISA (Enzyme linked immuno-

sorbent assay)  

Virus supernatants from virus production or infection experiments, which should be analyzed 

by p24 CA ELISA, were inactivated 1:10 (v/v) in 1x PBS containing TritonX-100 (final concen-

tration 0.5%). Composition of all buffers can be found in the buffers and reagents section. Next, 

an ELISA plate had to be coated with the catching antibody. 10 ml 1x PBS were mixed with 10 

µl of the mAb183 anti-p24 antibody (0.5 µg) and plated in a volume of 100 µl in a 96-well Nunc 

Immuno Plate (Maxi Sorp Surface). Plates were sealed with parafilm and incubated overnight 

in a wet chamber. The next day, plates were washed three times with washing buffer, followed 

by blocking of unspecific epitopes using 200 µl per well blocking buffer and incubating for 2 h 

at 37°C. Meanwhile, a p24 CA standard was prepared by serial dilution of the HIV-1 p24 CA 

stock (Analytic Jena) in stages of 1:2 using the ELISA standard dilution buffer. The first four 

dilution steps were discarded. Dilutions 5-11 were used in combination with a blank (only 

ELISA dilution buffer) on every plate for comparability between different plates (Fig. 13). 

 

 

 

Figure 13: Schematic representation of serial dilution of the HIV-1 p24 CA standard. 

 

Afterwards, the blocking buffer was removed from the ELISA plates and the latter were washed 

three times with washing buffer. Next, 50 µl of each dilution step of the standard were pipetted 

in duplicates on the ELISA plate. At the same time, inactivated samples were applied and 

further diluted in steps of 1:10 in ELISA dilution buffer (Fig. 14). Samples were pipetted in 

duplicates, except samples of TCID50 experiments (see section endpoint titration:  TCID50 

below), where each sample is already represented by a quadruplicate. Following overnight 



   2 – Material and Methods 
 

 
 

50 

 

incubation in a wet chamber at room temperature, plates were washed three times with wash-

ing buffer and 100 µl per well primary antibody solution (rbαCA, 1:1,000 in blocking buffer) 

were added. Detection of antigen was done by a 1 h-incubation at 37°C followed by extensive 

washing (as done before) and another 1 h incubation at 37°C with the secondary antibody 

solution (α-rb-PO). After three rounds of washing, first with washing buffer and then three 

rounds with distilled water the freshly prepared substrate solution (10 ml NaAc 0.1 M, 100 µl 

TMB, 2 µl H2O2) was added in a volume of 100 µl per well. Monitoring the standard, each 

ELISA plate was incubated until different stages of blue staining were visible. The reaction was 

stopped by addition of 50 µl of 0.5 M H2SO4 per well. Absorption measurement of the resulting 

yellowish staining was done using the CLARIOstar plate reader with two different filters. The 

450 nm filter was used to measure the background and the 630 nm filter to measure the stain-

ing due to antigen-binding and resulting PO activity. In brief, gain adjustment and focal height 

were set according to the brightest sample. Then the absorbance was measured. As a final 

step, background (absorption at 450 nm) was subtracted and a standard curved was generated 

via linear regression. The latter was used to calculate absolute concentrations of p24 CA in 

sample wells. Data were plotted using GraphPad Prism. 

 

 

 

Figure 14: Plate scheme p24 CA ELISA. 

 

2.4.2.5 Titration of AdV, HSV-1 YFP, rabies* and measles*  

Similar to virus expansion, infection experiments with AdV were performed on A549 cells. For 

infection experiments using HSV-1 YFP, rabies* (ΔG, pseudotyped with the corresponding 

glycoprotein (G)) or measles* (attenuated) HEK293T and SH-SY5Y cells were chosen as 

target cells (see Table 8). The different cell types were plated at a density of 1 x 105 cells per 
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well in a 24-well flat bottom plate in a volume of 500 µl “DMEM complete”. The next day, 

medium was removed and replaced with 190 µl of the respective medium with low FCS (2% 

FCS, 1% P/S). Next, virus dilutions were performed in 1x PBS and added in a volume of 10 µl 

to the target cells. 2 h post infection, a medium change was performed (aspiration of old 

medium) and cells were supplemented with 500 µl of fresh medium containing 10% FCS. 18 

h (AdV) or 20 h (HSV-1, measles*, rabies*) later, infection levels were checked via CPE (AdV) 

or YFP/GFP expression (HSV-1, measles*, rabies*) via light or fluorescent microcopy (Eclipse 

Ts2, Nikon). Subsequently, cells were detached by removal of the medium, addition of 150 µl 

of Trypsin/ EDTA and incubation of the cells for 5 min in the incubator. Afterwards, 100 µl 1x 

PBS was added, single cell suspension was created and transferred into a 96-well conical 

plate. Following centrifugation (600 x g) for 5 min at room temperatur, cells were resuspended 

in 200 µl 4% PFA/PBS and pipetted into a fresh 96-well conical plate. Infected cells were fixed 

for 90 min at room temperature in the dark, cells were spun down at 1,000 x g at room 

temperature for 8 min and for further procession washed with 1x PBS. Cells infected with 

reporter viruses (HSV-1, measles*, rabies*) were resuspended in 120 µl 1x PBS and analyzed 

via flow cytometry. For experiments with adenovirus, an antibody staining was performed (see 

section antibody staining of infected cells for flow cytometric analysis). 

 

Table 8: Overview of used neurotropic and respiratory viruses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Virus  Target cell  
Reporter gene  

(Y/ N) 
Additional information 

Measles* 
HEK 293T cells 

SH-SY5Y cells 
Y (GFP) 

Measles vac strain  

(attenuated) 

HSV-1 
HEK 293T cells 

SH-SY5Y cells 
Y (YFP)  

Rabies*  
HEK 293T cells 

SH-SY5Y cells 
Y (GFP) 

SAD L16 or N2C ΔGlycopro-

tein (G) viruses pseudotyped 

with SAD L16 or N2C G-pro-

tein respectively, (single-

round) 

Adenovirus A549 cells N Used strains: AdV2/3/5/7 
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2.4.3 Characterization of amyloids 

2.4.3.1 Preparation of amyloid stocks 

HPV E4 from different HPV types as well HPV16 E4 mutants were synthesized by Anaspec 

after sequences obtained from the “PaVE” (https://pave.niaid.nih.gov/), which had been N-ter-

minally truncated according to Doorbar et al. [132]. Reconstitution of peptides was done by 

adding 100 µl DMSO to 10 mg lyophilized peptide and further preparation of aliquots with a 

volume of 20 µl, which were stored at -20°C until usage. To prepare E4 peptide working solu-

tions addition of 180 µl 1x PBS was necessary to create stocks of 10 mg/ml (1.2 mM).  

SEVI was synthesized according to Münch et al. [74] also by Anaspec. Peptide powders were 

reconstituted in 1x PBS to a concentration of 10 mg/ml and stored at -20°C. Upon usage, 

stocks had to be further diluted in PBS to a final concentration of 2.5 mg/ml (549 µM) and 

shaken overnight at 37°C, 1,400 rpm on a thermoshaker until the solution was turbid. 

Amyloid beta 1-40 (Aβ40) and amyloid beta 1-42 (Aβ42) were purchased from Abcam, dis-

solved in DMSO in a concentration for Aβ40 of 2.22 mM as well as for Aβ42 of 2.31 mM and 

frozen at -20°C. Before usage, stocks were further diluted in 1x PBS to a final concentration of 

100µM and shaken for five days at 37°C, 1,400 rpm on a thermoshaker. 

Islet amyloid polypeptide (Sigma Aldrich) was reconstituted in DMSO to a concentration of 

1mM (storage at -20°C). To prepare working solutions stocks were further diluted in 1x PBS to 

a final concentration of 100 µM and shaken for five days at 25°C, 1,400 rpm on a thermoshaker. 

Human α-synuclein was purchased from Sigma-Aldrich and shaken for five days at 37°C, 

1,400 rpm on a thermoshaker after thawing. All thawed and finally prepared peptide stocks 

were kept at 4°C. 

 

2.4.3.2 Quantification of amyloids 

For staining and quantification of amyloids the Thioflavin T stain was used based on the meth-

ods used in Münch et al. [74]. The Thioflavin T dye intercalates into the amyloid fibrils and 

leads to an emission shift, which can be quantified. First, a 2.5 mM stock of Thioflavin T (Sigma 

Aldrich) in 1x PBS was prepared, aliquoted and stored at -20°C. Upon usage a 50 µM working 

solution was prepared in 1x PBS and equilibrated to room temperature. Amyloids were plated 

in a volume of 20 µl in a 384-blackwell plate (Corning) and mixed in a 1:1 ratio with the Thio-

flavin T working solution. Plates were spun down (3,400 x g, 5 min), shaken for 2 min on a 

Thermoshaker and fluorescence was measured at 483 nm on the CLARIOstar plate reader. 

Gain and focal height adjustments were performed as described in the p24 CA ELISA section.  
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2.4.3.3 Experiments using amyloid enhancers of infection 

Previously described infection, fusion and attachment experiments were also performed in the 

presence of amyloid enhancers of infection. To facilitate a setup for maximum infection en-

hancement of infection, low multiplicities of infection (MOIs) were chosen. Identifying peptide 

concentrations for optimal infection enhancement, titrations of the different amyloid enhancers 

were performed as indicated (see exemplary pipetting scheme in Table 9). Amyloid concen-

trations were calculated relative to the final volume of medium on the cells. Virus stocks and 

different dilutions of amyloid enhancers were mixed and incubated for 10 min in the incubator 

prior to administration to cells. In cases where inhibitors were supposed to be effective already 

at the start of an experiment, the drug or antibody was added 1 h prior to infection to the cells. 

In experiments aimed at determining the thermo-stability and infectivity of viral particles, virus 

stocks were pre-incubated with different amyloid peptide or control solutions for the indicated 

periods. Afterwards, solutions were added to cells and a medium change was performed 4 h 

post infection with medium supplemented with T20, to restrict the infectivity readout to the first 

round of infection. Then the protocol of the corresponding assay was followed.  

 

Table 9: Example of pipetting scheme for a HIV-1 amyloid enhancer experiment. Shown is a pipet-

ting scheme for three technical replicates (each 10 µl) and an additional volume (5 µl). Indicated values 

are pipetted volumes (µl) of PBS, virus/peptide stock or the respective dilutions (dil.). Italic numbers 
represent volume of peptide stock, which was replaced by the respective dilution of the peptide (bold). 
Final concentrations [µM] on cells of each amyloid condition are indicated below the name of the peptide 
(E4/SEVI). 

 

 

2.4.3.4 Endpoint titration: TCID50  

To asses changes of TCID50/ ml of an HIV stock in the presence of amyloid enhancers, a four 

donor pool of primary activated CD4 T cells was plated in a 96-well conical plate in a volume 

of 22.5 µl at a density of 1 x 105 cells/ well. Next, 2.5 µl of 1x PBS or the HPV16 E4 stock 

(corresponding to a final concentration on cells of 12 µM) were added. Subsequently, a dilution 

Pre-incubation  

(3.5-fold) 
Virus 

E4  

0.12 

E4  

1.2 

E4  

6 

E4 

12  

SEVI  

0.22 

SEVI 

2.2 

SEVI 

11 

SEVI 

22 

PBS 28  24.5  24.5 26.25 24.5 14 14 21 14 

Virus: NL4-3  7  7 7 7 7 7 7 7 7 

SEVI-Stock      0.14 1.4 7 14 

E4-Stock  0.035 0.35 1.75 3.5     

E4 1:10 dil.   3.5       

E4 1:100 dil.  3.5        

SEVI 1:10 dil.       14   

SEVI 1:100 dil.      14    
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series of different HIV-1 strains and isolates was performed in 1x PBS, starting as highest 

concentration with the original stock and going down in dilution factors of 3.3 for 15 steps 

(range: 101 to 10-6). 25 µl of each dilution were added to the previously plated cells, mixed and 

incubated for 3 h. The experiment was performed in quadruplicates. Afterwards, 225 µl of 

“RPMI complete” + IL-2 medium were added and plates were incubated further. After five days, 

cells were spun down (600 x g, 5 min, room temperature) and supernatants were transferred 

into a new 96-well conical plate. This procedure was repeated one more time to get rid of all 

cells. As a final step, supernatants were diluted 1:10 in 1x PBS containing 5% TritonX-100 

(final concentration 0.5%). Inactivated samples were analyzed by p24 CA ELISA. HIV p24 CA-

positive wells (with concentration >= 50 pg/ml) were counted and plotted against the differents 

dilution steps. Additionaly, TCID50/ ml values were calculated using an Excel makro TCID50 

calculator (https://www.klinikum.uni-heidelberg.de/fileadmin/inst_hygiene/molekulare_virolo 

gie/Downloads/TCID50_calculator_v2_17-01-20_MB.xlsx). Fold changes of TCID50/ ml 

values were calculated using Excel. Data were plotted using GraphPad Prism. 

  

2.4.3.5 Cell viability assay 

Living cells reduce the dye resazurin to the fluorescent resorufin (emission max at 585 nm), as 

reviewed by Riss et al. [170], which can be measured via the CLARIOstar plate reader. To 

quantify the potential intrisic toxicity of amyloids, appropriate cell numbers (see Table 10) were 

plated in a volume of 29 µl medium in a 384-blackwell plate. Amyloid stock dilutions were 

added (in a volume of 3.2 to 9 µl, medium volume was adjusted). Besides a blank, containing 

only medium, also untreated cells were used as reference controls. In addition, DMSO controls, 

which correspond in their DMSO concentration to those in amyloid stock dilutions, were used. 

The same was done for the carrier of α-synuclein (0.0095% magnesium chloride, 0.316% Tris 

HCl, 0.58% sodium chloride, pH 7.5). Afterwards, cells were incubated for the same periods 

as in infection experiments (20 to 44h). Next, 6 µl of resazurin solution (0.15 µg/µl in 1x PBS) 

were added using the Mantis pipetting robot (Formulatrix), followed by 4 h incubation at 37°C. 

After adjustment of gain and focal height, emission at 590 +/- 8 nm was aquired. The blank 

value was substracted from the data of specific samples and subsequently, data were 

normalized to untreated cells, which were set as 100% viable cells. Data were plotted using 

GraphPad Prism. 

 

 

 

 

 

 



   2 – Material and Methods 
 

 
 

55 

 

Table 10: Overview of cell types used in cell viability assays. 

 

 

 

 

 

 

 

2.4.4 Flow cytometry 

2.4.4.1 Antibody staining of infected cells for flow cytometric analysis  

To detect productively HIV-1 infected cells, a staining with a directly labelled anti-p24 CA anti-

body was used. To detect AdV antigen in AdV-infected cells a two-step staining procedure was 

performed, using a primary mouse antibody against AdV and a secondary goat anti-mouse 

Alexa Fluor 488 antibody. Fixed cells were spun down at 1,000 x g at 4°C for 5 min and washed 

with 1x PBS. Subsequently, cells were spun down at 1,000 x g at 4°C for 5 min (same 

parameters for all following centrifugation steps) and resuspended in 200 µl 1x BD Perm/Wash 

(P/W) buffer. After 15 min of permeabilization at 4°C in the dark, cells were spun down washed 

one time with 200 µl P/W buffer and resuspended in 50 µl primary antibody solution (AdV: anti-

Adenovirus 1:500 in P/W buffer; HIV: anti-p24 KC57 FITC 1:100 in P/W buffer). After 30 min 

incubation in the dark, 150 µl P/W Buffer were added, cells spun down and washed again with 

200 µl P/W buffer. Cells from HIV infection experiments were resuspended in 120 µl  

1x PBS and used for flow cytometric analysis. A549 cells from adenovirus experiments were 

incubated in 50 µl secondary antibody solution (goat anti-mouse Alexa Fluor 488: 1:200 in P/W 

buffer) and processed further analogous to the staining with the primary antibody. As a final 

step, cells were resuspended in 120 µl 1x PBS and analyzed by flow cytometry. 

 

2.4.4.2 Flow cytometric analysis 

For analysis of infection, virion fusion and attachment the BD FACSLyric in combination with 

the FACSuite software were used. Therefore, the standard settings of the instrument had to 

be adjusted for the autofluorescence of the particular cell line and an experiment-specific gat-

ing strategy was developed. The principles of flow cytometry will not be explained in detail. 

The used FACSLyric (lasers: red (635 nm), blue (488 nm) and violet laser (405 nm)) allowed 

characterization of the cells in size (forward scatter, FSC) and granularity (side scatter, SSC) 

also enabling a preselection of live as well as single cells. In addition, this instrument allows 

detection of the presence of different fluorescent dyes, which can be directly bound to cellular 

structures as well as be present in the cytoplasm or nucleus. Finally, fluorochromes can be 

Cell type Cell density ( x103) Incubation time (h) 

Primary activated CD4 T cells 50 44 

SupT1.CCR5 cells 25 44 

HEK293T cells 5 20 

SH-SY5Y 5 20 
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linked to antibodies targeting different epitopes inside or outside of the cell, allowing a more 

specific analysis.  

 

2.4.4.3 Analysis of infection levels and virus attachment by flow cytometry 

For experiments with GFP expressing reporter viruses as well as GFP-fusion protein carrying 

viruses, uninfected cells were used to calibrate the flow cytometer. In other experiments where 

an antibody staining had been performed, uninfected cells with and without antibody staining 

had to be used as calibration controls. In a first step, the living cell population was defined by 

the FSC/SSC dot plot. After gating for single cells (FSC-A/FSC-H), a dot plot with FITC on the 

x-axis and APC as a reference channel on the y-axis was used to analyze infection or virus 

binding. The latter channel was chosen to correct for debris and autofluorescence. The gate 

defining cells as positive for HIV infection (GFP expressing or p24 CA positive cells) was set 

according to uninfected control cells. The background was set to be < 0.1%. After the meas-

urement, FCS files were exported and analyzed by FlowJo software using the same gating 

strategy (Fig. 15). Data were plotted using GraphPad Prism. 

 

   

 

Figure 15: Gating strategy for HIV infection and virion-attachment experiments. Depicted are 

SupT1.CCR5 cells, gated for the “live cell population”, followed by “single cells”. This pre-selection al-
lows subsequent gating for infected cells (using uninfected controls) and hence detection of HIV-positive 
cells in samples infected with HIV-1NL4-3. 
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2.4.4.4 Analysis of virion fusion by flow cytometry 

Adjustment of the flow cytometer for this assay requires uninfected controls with and without 

CCF2 dye treatment as calibration controls. Gating was performed analogous to infection ex-

periments with the difference that fusion was detected by plotting the V500 (CCF2 uncleaved) 

against the V450 (CCF2 cleaved) channel. HIV fusion-positive cells were gated based on un-

infected controls, T20 controls and, if necessary, cells treated with the respective amyloid. 

Background was set to be < 0.1%. After measurement, FCS files were exported and analyzed 

by FlowJo software using the same gating strategy (Fig. 16). Data were plotted using 

GraphPad Prism. 

 

    

 

Figure 16: Gating strategy for HIV-1 virion-fusion experiments using appropriate controls. De-

picted are in the upper panel uninfected CD4 T cells, cells challenged with BlaM-Vpr-carrying HIV-1NL4-

3 pre-incubated with either PBS (+HIV-1), or HPV16 E4 (+HIV-1, +E4). In the lower panel the corre-
sponding T20 (50 µM) controls are shown. 
 

2.4.5 Microscopy 

2.4.5.1 Visualization of HIV-1 attachment by confocal microscopy 

To visualize attachment of HIV-1 eGFP-Vpr virions to E4 and cells, the identical virus particle 

preparations used in the virion-attachment assay were applied. First, round coverslips were 

coated with poly-L-lysine overnight at 37°C. Next, coverslips were washed with 1x PBS and 
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placed in a fresh 12-well plate. Then, 4 x 106 primary activated CD4 T cells (four donor pool) 

in a volume of 380 µl medium were added to each well and incubated for 1 h, allowing cells to 

adhere to the coated coverslips. Afterwards, 20 µl of virus stocks in combination with either 

PBS, E4 or control peptide, which had been treated as described above, were added to the 

wells (see Table 11).  

Table 11: Pipetting scheme for HIV attachment experiments (microscopy). Shown is a pipetting 

scheme for two technical replicates (each 20 µl) and an additional volume (10 µl). 

Cells and different conditions (see table above) were incubated for 90 min at 37°C, followed 

by addition of 133 µl 16% PFA/PBS (final concentration 4%). After this initial fixation for 10 min 

in the dark, coverslips were transferred into a new 24-well plate with fresh 4% PFA/PBS and 

incubated for 80 min. All following incubation steps were performed at room temperature and 

in the dark to omit bleaching of fluorescent dyes. The buffer compositions can be found in the 

section “assay specific buffers and reagents”. After fixation, the PFA solution was removed 

and its activity was stopped by incubation for 5 min in 200 µl quenching buffer. Next, cells were 

permeabilized for 3 min by addition of 500 µl permeabilization buffer followed by washing three 

times with microscopy washing buffer. Staining was performed by addition of the different 

staining solutions (composition and incubation time see Table 12) followed by three times 

washing with the microscopy washing buffer. After the last staining step, coverslips were 

washed with Milli-Q water, followed by careful removal of the remaining liquid and mounting 

slides using the Prolong Diamond Antifade Mountant (Thermo Fisher Scientific). Finally, after 

drying overnight in the dark at room temperature, slides were stored at 4°C until imaging with 

the Leika confocal microscope (Leica TCS SP5). Acquired data were processed using the 

Imaris software and Adobe illustrator. 

Pre-incubation 

(2.5-fold) 
Virus 

E4 

100 µM 

E4 scr. 

100 µM 
Uninfected 

Virus: NL4-3 eGFP-Vpr 40 µl 40 µl 40 µl 

E4-stock 10 µl 10 µl 

PBS 10 µl 50 µl 
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Table 12: Staining solutions for HIV attachment experiments. 

2.4.5.2 Visualization of virus infection by fluorescence microscopy 

One way of visualizing HIV-1 infection of target cells was to use HIV-1 NL4-3 GFP reporter 

viruses. Here, 2x106 SupT1.CCR5 cells per well were plated in a volume of 400 µl in a 12-well 

plate and infected with 20 µl of the different solutions indicated below (Table 13). 48 h after 

infection, cells were resuspended in the culture medium and 200 µl of this cell suspension 

were pipetted onto a round coverslip, which had previously been coated overnight with PEI (1 

mg/ml). Following a 30 min incubation at 37°C that allowed sedimentation and binding of cells 

to coverslips, the latter were transferred into a new 24-well plate containing 1 ml of fresh 4% 

PFA/PBS. The remaining cells of each treatment were transferred to a 96-well conical plate, 

spun down (600 x g, 5 min, room temperature) and resuspended in 4% PFA/PBS. After 90 min 

fixation, coverslips were incubated for 5 min in 200 µl quenching buffer and subsequently 

washed once with 1 ml 1x PBS. Finally, coverslips were washed with Milli-Q water and 

mounted using Fluoroshield with DAPI mounting medium. Fixed cells in 96-well conical plates, 

were washed once with 1x PBS and then resuspended in 120 µl 1x PBS. Infection levels were 

determined by flow cytometry as described above for HIV reporter viruses. 

Table 13: Pipetting scheme of HIV infection experiments (microscopy). Shown is a pipetting 

scheme for two technical replicates (each 20 µl) and an additional volume (10 µl). 

Antibody dilution in   

microscopy blocking 

buffer 

Antibody Target 
Incubation 

time 

Stain 1 
1:40 

Alexa Fluor 647 

Phalloidin 
F-actin 30 min 

Stain 2 1:500 NA7-AA5 (mouse) HPV16-E4 30 min 

Stain 3 
1:2,500 

goat anti-mouse 

Alexa Fluor 568 
mouse IgG 30 min 

Stain 4 1:1,000 DAPI chromatin 6 min 

Pre-incubation 

(2.5-fold) 
Virus 

E4 

100 µM 

E4 scr. 

100 µM 
Uninfected 

Virus: NL4-3 eGFP 15 µl 15 µl 15 µl 

E4-Stock 10 µl 10 µl 

PBS 35 µl 25 µl 25 µl 50 µl 
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To visualize adenoviral infection, 1x105 A549 cells were plated on poly-L-lysine-coated co-

verslips in a 24-well plate. Infection was performed at the indicated conditions for 18 h, followed 

by fixation (90 min, room temperature) of the samples with 4% PFA/PBS and storage in 1x 

PBS at 4°C. All staining steps were performed in the dark in a wet chamber at room tempera-

ture. 40 µl drops of AdV staining blocking buffer (1x PBS, 0.1% saponin, 1% horse serum) 

were placed on parafilm and coverslips were mounted upside down. Blocking was done for 30 

min, followed by two times washing with AdV staining washing buffer (1x PBS, 0.1% saponin) 

and one time washing with 1x PBS. Afterwards, coverslips were mounted on drops (25 µl) of 

the primary antibody solution (anti-adenovirus antibody 1:500 in AdV staining blocking buffer). 

After 1 h of incubation, the washing procedure was repeated and coverslips were mounted on 

drops (40 µl) of the secondary antibody solution (goat anti-mouse Alexa Fluor 488 1:200 in 

AdV staining blocking buffer). Staining was done for 50 min, followed by washing of coverslips 

as described above, with an additional washing step in Milli-Q water. As a final step, coverslips 

were mounted using Fluoroshield with DAPI mounting medium. Slides were dried overnight at 

room temperature in the dark and analyzed using the Nikon Eclipse Ti2 fluorescence micro-

scope. Fluorescent images were created using the DS-Qi2 (Nikon) camera.  
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3 Results 

3.1 Basic characterization of HIV-1 strains and primary isolates in different T cell 

systems 

To study HIV-1 replication in vitro, two different cell systems were used: primary activated CD4 

T cells and the T cell line SupT1.CCR5. In all experiments, pools of primary activated CD4 T 

cells derived from two to four blood donors were used, which have the benefit that they are as 

primary cells more close to the in vivo scenario. Using pools of different donors helped to 

reduce the impact of donor variability and thus made the outcome of already a single experi-

ment meaningful. Additionally, in many experiments the T cell lymphoma cell line SupT1.CCR5 

was used. This cell line constantly overexpresses the HIV-1 co-receptor CCR5 on the cell 

surface, which facilitates entry of R5-tropic viruses. First, the behavior of HIV-1 in infecting 

these two cell systems was characterized. The standard X4-tropic lab strain HIV-1NL4-3 was 

titrated on primary activated CD4 T cells and the infection was stopped after either 24, 48, or 

72 h (Fig. 17A, black symbols). Analysis of intracellular p24 levels of HIV-1 revealed ~4.1% 

positive cells after 24 h, 17.8% after 48 h and 48% after 72 h of infection. Addition of the fusion 

inhibitor T20, a peptidic drug targeting the formation of the six-helix-bundle of the 

HIV-1 Env protein during the fusion process [171], at the time point of medium change, re-

stricted the infection to a single round, leading to 2.5% p24-positive cells 48 h post infection. 

This experiment showed how HIV-1 spreads within a cell culture system in the initial three days 

after infection and that, as already published [172], one round of HIV replication takes approx-

imately 24 h. When investigating the behavior of HIV-1 in the context of transmission, the first 

rounds of infection are the most interesting that is why for most of the following experiments a 

time point of harvest of 48 h was chosen. Similar to primary CD4 T cells, also the performance 

of HIV-1 for infecting the T cell line SupT1.CCR5 was tested (Fig. 17B). HIV-1NL4-3 was titrated 

on SupT1.CCR5 cells and T20 was added after medium change 4 h post infection. After 48 h 

of infection, this resulted in a maximum infection of 42.9% in conditions where T20 was added 

(single-round infection), whereas in the absence of the drug (multiple rounds of infection) 

79.9% infection was detected. These results were in line with the data of the experiments in 

activated CD4 T cells, showing that viral spread is possible in both systems. Comparing the 

two cell models, SupT1.CCR5 cells were generally more permissive to infection, reflected also 

by a bigger dynamic range. Primary activated CD4 T cells were less susceptible to HIV infec-

tion as well as related cytopathic effect of the virus and therefore often more robust as a cell 

system for infection.  

Next, a broader virus panel of HIV-1 strains and primary isolates including various X4- and R5-

tropic strains, was used to characterize infection kinetics in these two cell systems. Besides  
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Figure 17: Titration and replication kinetic of HIV-1NL4-3 on primary activated CD4 T cells and the 

T cell line SupT1.CCR5. Evaluation of virus spread on different cell types. (A) A four donor pool of 

primary activated CD4 T cells was infected with increasing volumes of an HIV-1NL4-3 stock. Four hours 
post infection, a medium change was performed to synchronize infection. In the condition indicated, the 
fusion inhibitor T20 was added at medium change to inhibit virus spread (white squares). Infected cells 
were harvested at the indicated time points, fixed and stained for intracellular p24. Analysis of infection 
levels was done by flow cytometry. (B) SupT1.CCR5 cells were infected with HIV-1NL4-3. A medium 

change was performed four hours post infection and cells were subsequently cultivated in medium with 
or without T20. 48 h post infection, intracellular p24 expression was determined by flow cytometry. 
Shown are the arithmetic mean and standard deviation of three technical replicates from one experi-
ment. 

classical HIV-1 lab strains and GFP expressing reporter viruses, also different Transmitted/ 

Founder (T/F) viruses were screened, each representing a consensus sequence of the differ-

ent HIV-1 sequences isolated briefly after infection of one HIV patient. In the context of HIV 

transmission, these viruses are of great interest, because HIV-1 lab strains have often under-

gone adaptations by passaging on cell lines for several years. Access to the NRC collection 

for retrovirus samples, allowed testing of several HIV-1 primary isolates and one HIV-2 primary 

isolate. That way the virus panel covered not only several subtypes of HIV-1 group M, but also 

an HIV-1 group O virus and finally also an HIV-2 primary isolate, allowing us to investigate a 

broader spectrum of HIV diversity (Fig. 18). 

HIV-1 lab strains, HIV-1 GFP expressing reporter viruses as well as HIV-1 T/F viruses were 

titrated on primary activated CD4 T cells and SupT1.CCR5 cells, whereas HIV-1 primary iso-

lates were titrated only on CD4 T cells (Fig. 19A-D, S1). Overall the maximum degree of in-

fection on primary activated CD4 T cells was lower than on SupT1.CCR5 cells (Fig. 19A,B,D). 

Levels of HIV-1 infected CD4 T cells at 48 h post infection ranged between ~1% (HIV-1YU.2) to 

~10% (HIV-1NL4-3), when exposed to HIV-1 lab strains (Fig. 19A, S1A-C). HIV-1 GFP reporter 

viruses, HIV-1 T/F viruses and primary isolates fell into a similar range (Fig. 19B-D, S1D-N). 

Interestingly, the X4-tropic primary isolate HIV-12005 represented with 10.6% p24-positive cells 
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Figure 18: Overview of HIV-1 strains and isolates tested. Depicted is the simplified systematic over-

view of HIV-1 groups and subtypes. Within this thesis several lab strains, GFP reporter viruses and 
Transmitted/Founder viruses (T/F) of subtype B were used. The R5-tropic HIV-1YU-2 represents a special 
strain in this overview, since it was isolated from the brain of an HIV-infected patient and directly cloned 

into a proviral expression construct. Therefore, although often declared as a lab strain, is rather a pri-
mary isolate. In addition, primary isolates from patients infected with subtype A and B (both group M) as 
well as one group O isolate were used. To study the impact of co-receptor usage, the HIV-1NL4-3 isogenic 
virus 49.5 was applied. Tropism of viruses is indicated in brackets. Lab strains and GFP reporter viruses 
were produced by transfection of HEK293T cells with HIV-1 proviral constructs. Primary isolates were 

expanded on donor pools of primary activated CD4 T cells. 

a highly potent virus on primary cells (Fig. 19C, S1N). SupT1.CCR5 cells covered with 9.4% 

(HIV-1YU.2) to 51.1% (HIV-1NL4-3) in the case of lab strains a much wider susceptibility range 

(Fig. 19A, S1A-C). While the GFP reporter viruses behaved similar, the T/F strains exhibited 

with 2.8% (HIV-1CH058) to 19.1% (HIV-1CH077) a lower infectivity on this cell line (Fig. 19B-

D, S1D-N). In parallel, the different HIV-1 lab strains, GFP reporter viruses or T/F strains were 

characterized by p24 CA ELISA, SG-PERT (RT activity) assay or titrated on the HIV reporter 

cell line TZM-bl (BCA titer) (Fig. S2A). Although RT activity and p24 concentrations of HIV-1 

stocks were typically comparable, their infectious titer varied considerably. Also, for HIV-1 pri-

mary isolates a disconnect of p24 concentrations and infectious titers was observed 

(Fig. S2C).  

Unconcentrated supernatants of the HIV-2 primary isolate V1818215 (further called HIV-2V18) 

were titrated on primary activated CD4 T cells. Here, only a low RT activity 72 h post infection 

could be observed (data not shown). However, the infectivity of the HIV-2 primary isolate 

stocks could be validated by examining the supernatants harvested at different time points 
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Figure 19: Infection of primary activated CD4 T cells and SupT1.CCR5 cells with different HIV 

strains and isolates. Four donor pools of primary activated CD4 T cells (black bars, A-D) or 
SupT1.CCR5 cells (grey bars, A,B,D) were infected for 48 h with increasing volumes of different HIV-1 
lab strains (A), HIV-1 GFP-reporter viruses (B), HIV-1 primary isolates (C) and HIV-1 Transmit-

ted/Founder viruses (D). For titration graphs of the different virus stocks, see Fig. S1. Identity of proviral 
plasmids was validated by restriction digest (Fig. S2B). Productive infection was scored either by GFP-

expression, or intracellular p24 by flow cytometry. Shown are the maximum infection levels reached on 
indicated cell types. Depicted are the arithmetic mean and standard deviation of three technical repli-
cates. Data shown represent either one experiment (C) or are representative data of two independent 

experiments (A,B,D). 

 

during virus expansion. Presence of infectious virus in generated stocks was indicated by 

steadily increasing infectious titers (from 1x104 to 1.1x106 IU/ml) as measured on the HIV re-

porter cell line TZM-bl (Fig. S3A). In addition, the RT activity was also constantly increasing 

during virus expansion (3.9x104 to 5.9x106) (Fig. S3B). Taken together, these results show 

that primary CD4 T cells supported infection of all HIV strains or primary isolates tested and 
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that SupT1.CCR5 cells could be used in experiments where a bigger dynamic range of infec-

tion was required. 

 

3.2 The N-terminally truncated E4 peptide from HPV16 can enhance HIV infection 

As described in the introduction, HPV16 ΔN1-17 E4 (HPV16 E4) has been reported to form 

large aggregates [132, 133], which led to the hypothesis that this peptide might cause similar 

effects as the already published Semen-derived enhancer of virus infection (SEVI) [74]. In 

contrast to SEVI, E4 spontaneously forms aggregates, which can be detected by an increased 

turbidity of the solution. To test the ability of E4 to enhance HIV-1 infection, different dilutions 

of E4 were first incubated with a low volume of HIV-1NL4-3 stock and the mixes then added to 

primary activated CD4 T cells (Fig. 20). Analysis of infection levels revealed a concentration-

dependent enhancement of HIV-1 infection by the HPV-derived E4 with a maximum enhance-

ment of infection of 81.6-fold (Fig. 20A) at a concentration of 12 µM. A similar degree of infec-

tion enhancement (82-fold) was observed for SEVI peaking in this experiment at a concentra-

tion of 5.5 µM (Fig. 20B). Both peptides were completely non-toxic (Fig. S4). To analyze the 

phenotype of enhanced infection levels in more detail, HIV-1-positive cells were scored in par-

allel by microscopy and flow cytometry (Fig. 20C,D). SupT1.CCR5 cells were infected with a 

low virus inoculum of the reporter virus HIV-1NL4-3GFP, which had been pre-incubated with PBS 

or HPV16 E4 (12 µM). In this experiment, 3.3% HIV-positive cells were found in the absence 

of E4 and 30.4% in the presence of the amyloid enhancer. As an important control, the same 

concentration of a peptide was used, which consisted of the same amino acids as HPV16 E4, 

but in a scrambled order. This so-called “E4 scrambled” (E4 scr.) peptide had no or only a 

minor effect on HIV infection enhancement.  

Further validation of specificity of infection enhancement included drugs, which target different 

steps of the replication cycle. As it was possible that the peptidic aggregates might affect the 

first steps of virus-cell interaction, a panel of binding and entry inhibitors was evaluated. This 

included anti-CD4 receptor antibodies, the co-receptor antagonizing drugs AMD3100 

(CXCR4), Maraviroc (MVC, CCR5), as well as the fusion inhibitor T20. Primary activated CD4 

T cells were treated with these inhibitors before being exposed to HIV-1NL4-3 pre-incubated with 

either PBS, E4 or E4 scrambled. Two days post infection, a 128-fold increase of HIV-1-positive 

cells in the presence of E4 was observed, compared to PBS controls. Treatment with E4 scr. 

did not enhance HIV infection (Fig. 21). The anti-CD4 receptor antibodies blocked infection in 

all three scenarios (PBS, E4, E4 scr.), whereas the isotype control antibodies had no effect. 

To elucidate the role of co-receptor usage, two co-receptor blocking drugs were used. The HIV 

strain used in this experiment was X4-tropic and, expectedly, only AMD3100 was able to block 

infection, whereas MVC-pretreated cells showed infection levels comparable to untreated con-

trols. Of note, E4 or E4 scr. had no effect on autofluorescence of cells (Fig. 21A, left panel). 
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The same experimental setup (n=2) was performed using SupT1.CCR5 cells obtaining similar 

results (data not shown). 

 

    

 

Figure 20: HPV16 E4 enhances HIV-1NL4-3 infection to a comparable degree as Semen-derived 

enhancer of virus infection (SEVI). HIV-1NL4-3 particles were incubated with increasing concentrations 
of HPV16 E4 (A) or SEVI (B). Next, primary activated CD4 T cells (donor pool) were challenged and 

intracellular p24 levels were measured by flow cytometry. Depicted are the arithmetic mean and stand-
ard deviation of three technical replicates. Data shown are representative data of 11 experiments. The 

factor of enhancement of infection is indicated on top of the histogram bars with the highest infection. 
(C,D) Visualization and quantification of HIV infection by microscopy and flow cytometry. SupT1.CCR5 

cells were infected with HIV-1NL4-3 GFP alone, in the presence of HPV16 E4 (12 µM final concentration 
on cells) or the corresponding control peptide (E4 scrambled). 48 h post infection, cells were either 
processed for microscopy (C), or GFP expression was analyzed by flow cytometry (D). (C) Cells were 

loaded on PEI-coated coverslips and mounted with DAPI-containing medium. Scale bars represent 50 
µm. Data shown are representative data of two experiments. 
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Figure 21: HPV16 E4-enhanced infection of primary activated CD4 T cells with HIV-1NL4-3 can be 

blocked by specific binding and entry inhibitors. Primary activated CD4 T cells (four donor pool) 

were infected with HIV-1NL4-3 in the absence (PBS/ white bars) or presence of E4 (black bars) or E4 

scrambled (E4 scr., grey bars). Cells were pre-treated with different binding and entry inhibitors: primary 
HIV receptor-blocking anti-CD4 antibodies and corresponding isotype control antibodies 
(100 µg/ml), the co-receptor antagonizing AMD3100 (20 µM, CXCR4) or Maraviroc (MVC, 20 µM, 
CCR5) or the fusion inhibitor T20 (50 µM). Infection levels were analyzed 48 h post infection by intra-
cellular p24 staining and subsequent flow cytometric analysis. Depicted are representative dot plots of 
flow cytometric measurements (A) and corresponding summary of analysis (B) from one experiment. 

The factor of enhancement of infection is indicated on top of each histogram bar. Shown are the arith-
metic mean and standard deviation of three technical replicates.  

After describing that HPV16 E4 can specifically enhance HIV-1 infection, the next step was to 

check the potency of the two amyloid enhancers, E4 and SEVI, for infection enhancement of 



 3 – Results 

68 

a panel of HIV strains and isolates. Analogous to the above described experimental setup, a 

low virus inoculum of HIV-1 lab strains, HIV-1 GFP reporter viruses, HIV-1 primary isolates, 

HIV-1 T/F viruses as well as the HIV-2V18 primary isolate was pre-incubated with increasing 

concentrations of E4 or SEVI and used to infect primary activated CD4 T cells. In general, the 

infection of all HIV strains and isolates tested could be enhanced, albeit to varying degrees 

(titration data see Fig. S5, S6; maximum factor of enhancement Fig. 22). For HIV-1 lab strains 

(Fig. 22A, S5A-C), the X4-tropic HIV-1NL4-3 reached the highest factors of increase, i.e. 98-fold 

for E4 and 118-fold for SEVI. The R5-tropic lab strains displayed lower factors of infection 

enhancement ranging from 10-fold for HIV-1YU-2 to 20-fold for HIV-149.5. The latter represents 

an HIV-1NL4-3 isogenic virus, what means that only the V3 loop of HIV-1NL4-3 has been replaced 

with the V3 loop of R5 HIV-1BaL. Together, this demonstrated that peptidic infection enhance-

ment was independent of co-receptor usage. HIV-1 GFP reporter viruses showed infection 

enhancements in the order of 10- to 20-fold (Fig. 22B, S5D,E). Analysis of the different HIV-1 

primary isolates revealed that R5-tropic viruses (HIV-113127 and HIV-1RW9) displayed lower ab-

solute infection levels in the presence of amyloids (~18 to 31%) compared to X4-tropic isolates 

(HIV-12044 and HIV-12005, ~46 to 77%). Overall, infection with X4-tropic viruses was boosted to 

a lower degree than infection with R5-tropic strains (Fig. 22C, S5N-Q). Evaluation of maximum 

enhancement levels of infection of T/F viruses showed a range from 6- to 55-fold 

(Fig. 22D, S5F-M). Remarkably, the dual-tropic HIV-1CH077 T/F virus reached infection levels 

of 40 to 70% in CD4 T cells in the presence of amyloid enhancers, which was comparable to 

HIV-1NL4-3.  

To investigate E4-/SEVI-mediated infection enhancement of the HIV-2V18 primary isolate 

changes in RT activity of culture supernatants at the time of medium change (4 h input) and 

the time of harvest (“72 h p. i.") were analyzed by SG-PERT (Fig. 22E, S6). Also here, a con-

centration-dependent enhancement of RT activity was found, reflecting release of HIV-2 parti-

cles: 724-fold for E4 (12 µM) and 3821-fold for SEVI (22 µM, Fig. 22E, S6B,C). Interestingly, 

E4 and SEVI both seemed to clear free virus from the supernatant, because the presence of 

amyloid enhancer dropped the RT activity in the “4 h input” samples in a concentration-de-

pendent manner (Fig. S6A,C). This decrease (~5- to 10-fold) is, however, considerably smaller 

than the detected enhancement of RT activity at “72 h p. i.” (Fig. S6C). The specificity of the 

enhancement of RT activity was validated using CD4 blocking antibodies. The presence of the 

anti-CD4 antibodies dramatically reduced RT activity in culture supernatants, whereas the iso-

type control antibodies had no significant effect (Fig. 22E). As a control, neither the CD4 block-

ing antibodies nor the isotype control antibodies had an effect on RT activity in the “4 h input” 

samples (Fig. S6A). Taken together, the infection of a broad range of different HIV-1 strains 

and primary isolates as well as one HIV-2 primary isolate tested  
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Figure 22: Effect of amyloid enhancers on infection of primary activated CD4 T cells with various 

HIV strains and isolates. Four donor pools of primary activated CD4 T cells were infected with a con-

stant inoculum of the indicated HIV-1 strains or isolates as well as HIV-2V18 isolate in the absence (white 
bars) or presence of increasing concentrations of HPV16 E4 (black bars) or SEVI (grey bars). Infection 
enhancement was evaluated for different HIV-1 lab strains (A), HIV-1 GFP reporter viruses (B), HIV-1 
primary isolates (C), HIV-1 T/F viruses (D) or HIV-2V18 primary isolate (E). Viruses were pre-incubated 

with PBS or one of the two amyloid enhancers for 10 min at 37°C before addition to cells. Shown are 
the maximum infection levels from titration experiments (for titration see Fig. S5). Medium change was 

performed four hours post infection, and infection levels (GFP-expression/ intracellular p24 levels) were 

measured 48 h later by flow cytometry. The factor of increase of infection is depicted on top of each 
histogram bar. (E) A donor pool of activated CD4 T cells was pre-treated with either no inhibitor, CD4 

blocking antibodies, or corresponding isotype control antibodies for the highest enhancer concentra-
tions. Next, the HIV-2V18 primary isolate was incubated with either PBS, E4, or SEVI, followed by chal-
lenging cells with the different solutions. 72 h post infection, supernatants were harvested and analyzed 

for RT activity. Depicted are the highest RT activities measured, for titrations and further controls see 
Fig. S6. The factor of enhancement of RT activity is indicated on top of each histogram bar. Depicted 

are the arithmetic mean and standard deviation of three technical replicates. Data shown represent 
either one experiment (E) or are representative data of two experiments (A-D). 

were enhanced by amyloids in a concentration-dependent manner. In addition, the concentra-

tions for optimal infection enhancement of most of the HIV-1 strains and isolates was deter-

mined: the optimum concentration for E4 was typically 12 µM and for SEVI typically 11 µM.  
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An observation during the testing of different HIV strains and isolates was that the absolute 

infection levels that could be reached in the presence of amyloids were often comparable, but 

the factor of enhancement varied dramatically. Assessing the infection levels in the absence 

of enhancing amyloids, revealed a marked variability in the basal infectivity of different strains 

and isolates. To further investigate this phenomenon, the X4-tropic HIV-1NL4-3 and the R5-tropic 

HIV-1YU-2 were chosen. Infection of primary activated CD4 T cells was performed using two 

different volumes of virus inoculum, which were each incubated with either PBS or constant 

concentrations of E4 or SEVI. This infection experiment was performed in parallel as a “normal” 

infection (no spin) and as a “spinoculation” (spin). In the “normal” infection condition, cells were 

exposed to the different infection solutions and incubated for 48 h. The “spinoculation” protocol  

 

 

 

Figure 23: HPV16 E4-mediated infection enhancement is virus- and context-dependent. A donor 
pool of primary activated CD4 T cells was infected with two different volumes of HIV-1NL4-3 (A) and HIV-

1YU-2 (B) in absence (white bar) or presence of E4 (black bar, 12 µM final concentration on cells) or SEVI 

(grey bar, 11 µM final concentration on cells). In parallel, normal infection (no spin) or “spinoculation” 
(spin) at 300 x g, 1.5 h, 37°C was performed. After a medium change four hours post infection, cells 
were incubated for in total 48 h, fixed and stained for intracellular p24. Flow cytometric analysis was 
performed. The factor of enhancement of infection is indicated on top of each histogram bar. Shown are 

arithmetic mean and standard deviation or three technical replicates from one experiment. 

 

included an additional centrifugation (“spinning”) step (90 min at 37°C) within the first four hours 

of incubation, which is supposed to facilitate HIV infection as published by Guo et al. [173] 

(Fig. 23).  

Analysis of the data revealed that the infection of both viruses incubated with PBS alone 

(Fig. 23, white bars) could be markedly enhanced by “spinoculation”, although the degree of 

spinning-induced infection enhancement was larger for HIV-1NL4-3 (Fig.  23A) than for  
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HIV-1YU-2 (Fig. 23B). Surprisingly, in the presence of E4 or SEVI no further infection enhance-

ment of absolute levels of infection by “spinoculation” was visible. Additionally, infection levels 

seemed to saturate at a certain “virus-specific” percentage, irrespective of the initial virus in-

oculum or mode of infection. For HIV-1NL4-3, this was in the range of 20 to 40% (Fig. 23A) and 

for HIV-1YU-2 in the range of 5 to 8% (Fig. 23B) cells positive for intracellular p24 antigen. 

Comparing effects that could be attributed to the virus input, differences in amyloid-mediated 

infection enhancement were larger for HIV-1NL4-3, where an increase of MOI resulted in a ~4-

fold reduced level of infection enhancement (Fig. 23A). For HIV-1YU-2, infection enhancement 

was attenuated at most by 2.5-fold (Fig. 23B). This experiment mirrors the phenotype ob-

served in the larger HIV panel, where an inverse correlation between the basal infection level 

of a strain or isolate and the magnitude of infection enhancement was observed.  

Figure 24: HPV16 E4 potentiates HIV-1 infection and spread in cell culture in an inoculum-de-

pendent manner. The indicated volumes of HIV-1NL4-3 were pre-incubated with (black) or without 

HPV16 E4 (grey), added to SupT1.CCR5 cells and cells kept as described in material and methods 
section (chapter 2.4.1.8) for expansion of HIV-1 primary isolates. Five days post infection, cell aliquots 
of each treatment were collected, fixed, stained and analyzed for intracellular p24 levels by flow cytom-
etry. Depicted are arithmetic mean and standard deviation of four technical replicates from one experi-
ment. The factor of enhancement is depicted on top of the respective histogram bar. 
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After studying early time points of infection, it was interesting to test whether amyloid enhanc-

ers could support also a spreading HIV-1 infection. Hence, an experiment mimicking virus ex-

pansion was performed. Different volumes of HIV-1NL4-3 inoculum were applied, of which one 

was thought to be sub-infectious, one to establish a low-level infection and one a high-level 

infection in the absence of amyloids. These virus inocula were pre-incubated with either PBS 

or E4, then added to SupT1.CCR5 cells and five days later infection levels were determined 

(Fig. 24).  

Experimental conditions without amyloid enhancer gave either no (<0.1%), low (0.6%) or high 

(56.8%) levels of infection (grey bars). In the presence of E4, the percentage of HIV-1-positive 

cells could be enhanced ~20-fold at initially low infection levels in the absence of the amyloid 

enhancer. Consistent with the previous observations, under conditions of maximal viral infec-

tion, no infection enhancement was achieved by E4 addition (Fig. 24). Interestingly, the pres-

ence of E4 facilitated the establishment of a productive infection, where virus alone was not 

infectious (0.1µl inoculum, Fig. 24). These data also support that amyloids could be an im-

portant experimental and diagnostic tool to allow more efficient isolation of viruses from patient 

with low viral loads. 

To gain deeper insight into the potency of HPV16 E4 in the context of spreading infection, an 

endpoint titration experiment was performed (Fig. 25). In brief, serial dilutions of HIV-1 were 

added to primary activated CD4 T cells, which had been incubated with a constant concentra-

tion E4 (12 µM) or the corresponding volume of PBS. Five days later, the supernatant of each 

quadruplicate was analyzed for presence of p24 by ELISA and used to calculate TCID50 per 

ml as well as the factor of change of this value (PBS vs. E4 condition).  

As reflected by images of the p24-ELISA plates (Fig. 25A,B) and quantified by colorimetric 

readout, the infectivity of the HIV-113127 primary isolate could be dramatically increased, when 

cells had been challenged with the inoculum dilution in the presence of E4 (Fig. 25C). In the 

absence of E4, particle release (p24-positive wells, defined as ≥ 35pg/ml p24) was detectable 

until a virus dilution of 0.033 µl of stock, whereas in the presence of amyloid enhancer still one 

well was still positive for p24 at a virus inoculum of 0.00033 µl of stock. Analysis of the factor 

of change of TCID50/ml based on the colorimetric readout of the plates supported this, show-

ing a 161-fold increase for the E4-exposed cells. The same experiment was performed for 

other HIV-1 strains and isolates (Fig. 25D, S7). Also here, marked changes of the TCID50/ml 

were observed: for the HIV-1NL4-3 lab strain (Fig. 25D, S7A,B,G) 89-fold, for the HIV-1CH058 T/F 

strain (Fig. 25D, S7C,D,H) 49-fold and for the HIV-12005 primary isolate (Fig. 25D, S7E,F,I) 66-

fold. Taken together, E4 did not only lead to infection enhancement in experiments investigat-

ing early time points after inoculation, but also increased spreading of different HIV-1 strains 

and isolates, allowing otherwise sub-infectious inocula to establish infection. 
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Figure 25: HPV16 E4 drastically increases HIV-1 infection in endpoint titration experiments. Pri-

mary activated CD4 T cells (four donor pool) were plated and mixed with a constant concentration of 
HPV16 E4 (12 µM) or the corresponding volume of PBS. Serial dilutions of HIV-113127 primary isolate 
(other viruses see Fig. S7) were added and incubated for five days. The infection experiment was per-

formed in quadruplicates. The number of HIV-1 p24-positive wells was evaluated by p24 CA ELISA. 
Images depict ELISA plates analyzing supernatants of the infection in presence of PBS (A) or E4 (B). 

A color code, based on the colorimetric readout of the plate, defines virus concentrations at which either 
all wells were positive (numbers in black), one to three wells were positive (numbers in blue) or no wells 
were positive (numbers in grey). (C) Number of p24-positive wells was determined by p24 CA ELISA 

and plotted against the dilutions of the inoculum. Based on these data TCID50/ml values and factors of 
change of TCID50/ml comparing PBS- and E4-treated cells were determined (D). 

3.3 E4 peptides derived from different HPV types can enhance HIV-1 infection 

After showing that: (i) HPV16 E4 mediated infection enhancement of a broad panel of different 

HI-viruses, (ii) each virus had an individual infection plateau to which it could be enhanced, 

and (iii) infection enhancement could be seen at early time points after infection as well as in 

spreading infection, it was important to study whether E4 peptides from other HPV types had 

similar properties. HPV16 belongs to the group of human alpha-papillomaviruses, consisting 

of 64 members (Fig. 26A), of which around 40 are known to be present at anogenital mucosa 

[103]. Hence, a broad panel of E4 ΔN (N-terminally truncated) peptides from different HPV 

types was chosen, covering HR-HPV (“high-risk”-HPV) and LR-HPV (“low-risk”-HPV) types in 

the context of cervix carcinoma.  
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Analogous to previous experiments (e.g. Fig.  22, S5), a titration of the different HPV E4 vari-

ants (Fig. S8A-M) as well as SEVI (Fig. S8N) was performed. Primary activated CD4 T cells 

were infected with different MOIs of HIV-1NL4-3 (0.4, 1.3 and 13) of which the lowest was used 

to test the concentration-dependent enhancement of infection after incubation with the different 

E4 peptides. Analysis of the maximum infection levels demonstrated that E4 variants derived 

from both HR-HPV (red) as well as LR-HPV (blue) could enhance HIV-1 infection, with different 

efficiencies ranging from 2- to 184-fold (Fig. 26B). Next, we wondered whether these varia-

tions are dependent on the physiochemical properties of the different E4 peptides. To this end, 

the “ProtParam” tool was employed (Fig. S9, used variants marked with black bars and bigger 

labelling). Comparing the number of amino acids (Fig. S9A), the isoelectric point (Fig. S9B), 

the number of negatively (Fig. S9C) or positively (Fig. S9D) charged amino acid, the resulting 

net charge (Fig. S9E) and other parameters (instability index, aliphatic index, grand average 

of hydropathy (GRAVY), Fig. S9F-G), no apparent correlation with the different infection  

 

 

 

Figure 26: Enhancement of HIV-1 infection is a conserved function of HPV E4 proteins. (A) Over-
view of all human alpha-papillomaviruses, of which HPV variants used in this study are colored. Cervix 

carcinoma “high-risk” HPV (HR-HPV) variants are marked in red and “low-risk” (LR-HPV) types in blue. 
HPV E4 amino acid sequences were obtained from the collection database: “PaVE: the papillomavirus 
knowledge source” (https://pave.niaid.nih.gov/) and truncated based on John Doorbar [132]. Sequences 
were aligned using Clustal omega and tree files were plotted using TreeFig v1.4.3. (B) Primary activated 

CD4 T cells (four donor pool) were challenged with HIV-1NL4-3 at different MOIs (depicted is the lowest 
MOI of 0.4), of which the lowest MOI was pre-incubated with either PBS (white bar), or increasing con-
centrations of HPV E4 from different variants or SEVI. 48 h later, infections levels were quantified by 
intracellular p24 staining and subsequent flow cytometric analysis. HPV variants used for infection en-
hancement experiments are marked in the same color code as in (A). Shown are the highest infection 
levels reached for each peptide, for titrations and other MOIs see Fig. S8. Depicted are the arithmetic 

mean and standard deviation of three technical replicates. Data are representative of two experiments. 
The factor of enhancement of infection is plotted on top of each histogram bar.  
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enhancement properties was observed. Comparing the amino acid heterogeneity of several 

proteins of the different HPV types showed no striking differences between either full-length 

(Fig. S10A) or N-terminally truncated (Fig. S10B) E4 peptides. The highest conservation of 

amino acid sequence was found within HPV L1 (Fig. S10C) and HPV L2 proteins (Fig. S10D), 

with the latter displaying a slightly higher heterogeneity. Both HPV L1 and L2 are by far more 

conserved than HPV E4 proteins. Strikingly, although all these data suggest a huge variation 

between the different E4 proteins tested, they still exhibited a similar HIV infection enhance-

ment function.  

Additionally, most of the E4 peptides (HPV 2, 11, 18, 31, 33, 34, 45, 52) saturated infection 

enhancement at a similar concentration as HPV16 (~10 µM), whereas HPV 28, 57 and 70 

saturated at a 10-fold lower concentration (Fig. S8). Comparing the maximal E4-enhanced 

infection levels to the highest used MOI of 13 in the absence of amyloid enhancer, which con-

tained a 32.5-fold higher virus inoculum, in most of the cases, a higher infection level was 

reached with the low MOI of 0.4 plus E4 (HPV2, 11, 16, 28, 34, 45, 57). For some E4 variants 

a similar magnitude of infection (HPV31, 33, 52, 70) and only for HPV18 an infection level 

lower than the highest MOI was reached. Of note, the E4 peptide derived from HPV42 was 

able to enhance infection by only 2-fold, and thus to a far lesser degree than the other tested 

variants (Fig. S8I). The decline of infection enhancement in the case of HPV28 at the highest 

concentration was observed in two independent experiments (data not shown) and might be 

explained by a concentration-dependent decrease of vital cells due to higher rates of infection. 

SEVI, analyzed in parallel, peaked in these experiments at a concentration of 2.2 µM and at 

infection levels higher than achieved with the MOI of 13. Agitation of SEVI is dependent on 

many factors (e.g. synthesis specific differences, plastic, etc.) and therefore can result in stocks 

of varying potential to enhance HIV infection. In conclusion, the phenotype of HIV-1 infection 

enhancement is not restricted to the E4 ΔN peptide from HPV 16, but is a conserved charac-

teristic of N-terminally truncated E4 from alpha-papillomaviruses. 

 

3.4 Characterization of the initial interaction of virus, cell, and infection enhanc-

ers 

The potency of E4 and SEVI has in this thesis thus far been primarily studied at the level of 

productive infection of cells. Here, we wanted to characterize the earliest steps of the interac-

tion of virus and amyloid enhancers with target cells. In a first approach, we sought to visualize 

this early interaction. To this end, HIV-1 particles carrying eGFP-Vpr [169], generating green 

fluorescent virions, were produced. These particles were pre-incubated with either PBS, E4, 

or E4 scrambled, before adding them to a donor pool of primary activated CD4 T cells. After 

short-time incubation, cells were fixed and stained for actin, chromatin as well as E4. Analysis 

of the merged images showed, that E4 locally accumulated together with large amounts of 
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virus particles (Fig. 27). In the condition where virus was pre-incubated with PBS or the E4 

scrambled control peptide, this phenomenon was not detectable (Fig. 27, S11). When com-

paring the signals for E4 and HIV-1 eGFP-Vpr (Fig. S11) a frequent co-localization is apparent. 

Cells appeared to closely interact with the E4-virus-clusters. E4 aggregates seemed to locally 

concentrate HIV-1 particles, looking almost like the latter could be presented to target cells.  

 

         

 

Figure 27: HPV16 E4 is able to concentrate HIV-1 particles locally. Cells of a donor pool of primary 

activated CD4 T cells were plated on poly-L-lysine-coated coverslips and incubated for 90 min with 

eGFP-Vpr-carrying HIV-1NL4-3 particles, which were pre-treated with either PBS, E4, or E4 scrambled  
(12 µM final concentration on cells). After fixation, cells were stained on the coverslips for actin (light 
blue, Alexa Fluor 647 Phalloidin), E4 (red, anti-E4 NA7-AA5 plus goat anti-mouse Alexa Fluor 568) and 
chromatin (dark blue, DAPI). Shown are the conditions with E4 scr. (upper panel) or E4 (lower panel). 
Right columns show a magnification of the inset marked in the left columns. Other conditions are shown 
in Fig. S11. Scale bars: 10 µm (inset: 2 µm). 
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Figure 28: Peptidic enhancers of infection increase attachment of HIV-1 virions to target cells. 

Attachment of viral particles is partially Env-dependent. A donor pool of primary activated CD4 T cells 
was incubated for 1 h with eGFP-Vpr-carrying HIV-1NL4-3wt and HIV-1NL4-3ΔEnv particles pre-treated with 
either PBS, 12 µM E4/ E4scr., or 2.2 µM SEVI (final concentration on cells). Incubation of viruses with 
cells was carried out in the presence of T20 (50 µM) and at 20°C. Depicted are the arithmetic mean and 

standard deviation of three technical replicates of one representative experiment. The factor of enhance-
ment of eGFP-Vpr-positive cells is indicated on top of the respective histogram bar. 

 

First binding of viruses to cells can occur via heparansulfate proteoglycans (HSPG) or in a 

virus receptor-dependent fashion, both being dependent on Env. To further evaluate the data 

obtained by microscopy, a virion-attachment assay using either HIV-1NL4-3wt or HIV-1NL4-3ΔEnv  

was performed. The two viruses were incubated with E4 or SEVI, with PBS and E4 scr. serving 

as negative controls. Both in the absence of amyloid enhancers E4/SEVI or in the presence of 

the control peptide, virus particles were able to bind to target cells. Attachment of HIV-1NL4-3wt 

was enhanced after incubation with E4 by 32-fold, whereas binding of HIV-1NL4-3ΔEnv was 

boosted by ~5-fold (Fig. 28). The enhancement of HIV-1NL4-3wt virion binding in the presence 

of 11 µM SEVI was ~80-fold (data not shown). For better comparison, the concentration of 

SEVI (2.2 µM) leading to a similar magnitude of attachment (20-fold) as E4, is depicted. Here, 

the same phenotype as for E4 was visible when comparing HIV-1NL4-3wt and HIV-1NL4-3ΔEnv, 

suggesting that the loss of Env allowed only a reduced, but still significant increase of virion 

binding. Of note, if higher concentrations of SEVI (11 µM) were applied differences between 

HIV-1NL4-3wt and HIV-1NL4-3ΔEnv in the numbers of eGFP-Vpr-positive primary activated CD4 

T cells could no longer be detected (data not shown). Similar observations were made using 

SupT1.CCR5 cells, where absolute levels of attachment for Env-deficient particles were low 

for low SEVI concentrations, but not when high concentrations of SEVI were used (data not 

shown).  
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Next, a larger panel of HIV-1 strains was used to assess enhancement of virion attachment in 

the presence of HPV16 E4: besides HIV-1NL4-3wt and HIV-1NL4-3ΔEnv these included HIV-1YU-2 

and the T/F strains HIV-1CH058 as well as HIV-1CH077. These eGFP-Vpr-carrying viruses were 

also characterized for infectivity (Fig. S12A,C) and presence of p24 antigen in virus stocks 

(Fig. S12B), demonstrating that all viruses, but HIV-1NL4-3ΔEnv, were infectious. Incubating 

increasing volumes of either HIV-1NL4-3wt (Fig. S13A), HIV-1NL4-3ΔEnv (Fig. S13B), HIV-1YU-2 

(Fig. S13C), HIV-1CH058 (Fig. S13D) and HIV-1CH077 (Fig. S13E) with either PBS, E4, or E4scr., 

revealed that E4 could specifically enhance virion attachment. The degree of attachment in 

most scenarios depended on the MOI. For HIV-1NL4-3, it is likely that this experimental system 

was already saturated and therefore not MOI-dependent. For HIV-1YU-2 (Fig. S13C), virus only 

or in presence of the control peptide, no virion attachment was detectable. In contrast, the 

presence of E4 led to a detectable binding of virus particles, whose degree was dependent on 

the virus input. Taken together, these results indicate that HPV16 E4-mediated enhancement 

of virion attachment is partially dependent on the envelope glycoprotein. For SEVI, Env de-

pendency was overcome by higher concentrations of the seminal peptide. 

As the next step in the replication cycle of HIV following attachment is the fusion of the virus 

particle with the target cell, we investigated whether HPV16 E4 enhanced this process. Thus, 

a virion-fusion assay was employed, in which a fusion protein of the HIV-1 Vpr protein and a 

beta-lactamase (BlaM) was incorporated into virus particles during production in HEK293T 

cells [168]. After fusion of HI-viruses carrying BlaM-Vpr to the cells, the latter were incubated 

with the CCF2 dye, whose BlaM-dependent cleavage can be measured by flow cytometry 

(Fig. S14A). T20 served as a specificity control, since it efficiently inhibits gp41-dependent 

fusion of HIV-1. Virion fusion was assessed for the following HIV-1 strains: 

HIV-1NL4-3BlaM, HIV-1YU-2BlaM, HIV-1CH058BlaM and HIV-1CH077BlaM.  

First, we characterized their fusion to primary activated CD4 T cells and to SupT1.CCR5 cells. 

Maximum virion fusion levels for the X4-tropic HIV-1NL4-3BlaM, reached 11% for CD4 T cells 

and 59% for SupT1.CCR5 cells (Fig. S14B). The fusion rate of the R5-tropic lab strain 

HIV-1YU-2BlaM (Fig. S14C) was generally low (10% at maximum on SupT1.CCR5 cells). Inter-

estingly, the T/F strains HIV-1CH058BlaM (R5-tropic, Fig. S14D) and HIV-1CH077BlaM (dual-

tropic, Fig. S14E) showed maximum fusion levels of ~75 to 91% on SupT1.CCR5 cells. Of 

note, BlaM-Vpr-carrying viruses displayed strongly reduced infectivity, as seen e.g. for 

HIV-1NL4-3 and HIV-1YU-2, resulting in maximum infection levels of 0.1% on primary activated 

CD4 T cells and of 0.5% on SupT1.CCR5 cells (data not shown). This was also reflected by 

lowered titers on the HIV reporter cell line TZM-bl (BCA titer) (Fig. S14F).  

To determine whether virion fusion of these strains could also be altered by amyloids, increas-

ing concentrations of E4 or SEVI were incubated with BlaM-Vpr-carrying HIV-1NL4-3, HIV-1YU-2, 

HIV-1CH058 or HIV-1CH077. Similar to infection experiments (Fig. 22), also fusion of virions to 
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primary activated CD4 T cells was markedly enhanced in a concentration-dependent manner. 

Analyses demonstrated for HIV-1NL4-3BlaM ~42- to 64-fold (Fig. S15A), for HIV-1YU-2BlaM ~33- 

to 43-fold (Fig. S15B), for HIV-1CH058BlaM ~15- to 18-fold (Fig. S15C), and for HIV-1CH077BlaM 

~32- to 35-fold (Fig. S15D) increase in the percentage of fusion-positive cells. 

After basic characterization these reporter virions, they were employed in an enhancer-inhibitor 

experiment using primary activated CD4 T cells, which had been pre-treated with the previ-

ously used panel of binding and entry inhibitors: anti-CD4 antibodies, isotype control antibod-

ies, AMD3100, MVC, or T20 (Fig. 29, S16). A constant concentration of E4 or E4 scr. 

(Fig. 29A,C, S16A,C) as well as SEVI or SEVI control (SEVI Ctrl) (Fig. 29B,D, S16B,D) was  

 

 

 

Figure 29: Enhancers of infection potentiate virion fusion of particles from different HIV-1 strains 

to target cells in a receptor-dependent manner. HIV-1NL4-3 (A,B) or HIV-1CH058 (C,D) virions carrying 
BlaM-Vpr were pre-incubated in the presence or absence of HPV16 E4/ E4scr (12 µM) (A,C) or SEVI 
(11 µM)/ SEVI Ctrl (25.9 µM) (B,D) and then used to infect primary activated CD4 T cells. These peptide 
concentrations represent final concentrations on cells. For other viruses used, see Fig. S16. Cells were 

pre-treated with different binding and entry inhibitors: anti-CD4 antibodies and corresponding isotype 

control antibodies (100 µg/ml), AMD3100 (20 µM, CXCR4 antagonist) or Maraviroc (MVC, 20 µM, CCR5 
antagonist) or the fusion inhibitor T20 (50 µM). Four hours later, cells were washed and incubated with 
the CCF2 staining solution. After overnight incubation, cells were fixed and BlaM-Vpr-dependent cleav-
age of CCF2 in infected cells was quantified by flow cytometry. Depicted are the arithmetic mean and 
standard deviation of three technical replicates from one experiment. Data represent one experiment 
(C,D) or are representative of two experiments (A,B) The factor of enhancement of virion fusion is indi-

cated on top of the histogram bar of the no drug condition. 
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incubated with HIV-1NL4-3, HIV-1YU-2, HIV-1CH058 or HIV-1CH077 all carrying BlaM-Vpr. SEVI Ctrl, 

(PAP267-282) represents a shorter peptide fragment of PAP, which is unable to form amyloids 

and has been shown by Münch et al. [74] to not enhance infection. Fusion of all viruses could 

be enhanced by E4 and SEVI up to ~40-fold, whereas the respective control peptides had no 

effect (Fig. S16E). More detailed analysis revealed that for X4 HIV-1NL4-3 (Fig. 29A,B) E4 and 

SEVI increased fusion by ~30-fold, which could be specifically blocked by either CD4 blocking 

antibodies, AMD3100 or T20. The respective controls (isotype antibodies and MVC) did not 

alter the fusion efficiency. The R5 T/F strain HIV-1CH058 (Fig. 29C,D) and the lab strain  

HIV-1YU-2 (Fig. S16A,B) showed enhanced fusion in the range of 24- to 28- fold in the presence 

of amyloid enhancers. All drugs, apart from the co-receptor targeting ones, behaved as seen 

for HIV-1NL4-3. Due to the CCR5 tropism of these two viruses AMD3100 had no effect, whereas 

MVC specifically blocked infection. As a side note, MVC was not as potent as AMD3100 in the 

presence of amyloid enhancers for their respective viruses, still allowing 0.5 to 0.6% fusion. 

Studying tropism-dependent effects was most interesting for HIV-1CH077 carrying BlaM-Vpr 

(Fig. S16C,D), an isolate described to be dual-tropic [174]. In line with this, neither AMD3100 

nor MVC blocked infection efficiently. Only the anti-CD4 antibodies and T20 were able to com-

pletely suppress virion fusion of this isolate to primary activated CD4 T cells. Taken together 

these data indicated that (i) E4 and SEVI can enhance fusion of viral particles to target cells, 

(ii) the enhancement is independent of co-receptor tropism but (iii) can be blocked using spe-

cific binding and entry inhibitors of HIV infection. 

 

3.5 Elucidation of the interplay of HPV16 E4 and HIV and of HPV16 E4 and SEVI 

HPV E4 is present at HIV transmission sites [3, 103, 115] and can be found in HPV-induced 

lesions of cervix (Fig. 30A), anus (Fig. 30B) and penis (Fig. 30C), where keratinocytes at the 

epithelial surface as well as the lower regions contain large amounts of E4 protein, as shown 

by immunohistochemistry. Data were obtained in collaboration with Prof. M. Dürst (Department 

of Gynecology, Jena University Hospital – Friedrich Schiller University, Jena, Germany) and 

Prof. N. Brockmeyer, (Department of Dermatology, St. Josef-Hospital, Ruhr-University Bo-

chum, Bochum, Germany). Further characterization by multi-epitope ligand cartography 

(MELC), which allowed staining of a large number of different epitopes on the same tissue 

slide, revealed close proximity of HIV target cells (CD4 T cells and macrophages) and HPV E4 

within a CIN lesion (data obtained in collaboration with Prof. A. Baur, Department of Dermatol-

ogy, University Hospital Erlangen, Erlangen, Germany) (Fig. 30D,E). Taken together, these 

data demonstrated that within HPV-induced lesions of the anogenital mucosa, which represent 

potential HIV transmission sites, both desquamating keratinocytes expressing large amounts 

of E4 as well as infiltrating HIV target cells could be monitored.  
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Figure 30: Immunocharacterization of E4 expression in HPV-positive lesions in anogenital tis-

sue. (A-C) Detection of E4 (brown staining) by immunohistochemistry (IHC) in epithelial biopsy samples, 
previously characterized as HPV DNA-positive CIN (A), AIN (B) and PIN (C) lesions. (D+E) Analysis of 

protein expression and distribution of immune cells in a frozen section of a HPV16-positive CIN lesion 

by multi epitope ligand cartography (MELC). Images represent overlays of the indicated epitopes/mark-
ers for the identical position of the tissue section: (D) Propidium iodide (PI, nuclei), Collagen-IV (Col-IV/ 
collagen in basal lamina), Collagen-VII (Col-VII/ collagen in basement membrane); (E) HPV-E4 (E4), 

CD4 (primarily CD4-positive T cells), CD68 (macrophages). Scale bars: 200 μm. IHC data were gener-
ated in collaboration with Prof. M. Dürst (Department of Gynecology, Jena University Hospital – Friedrich 

Schiller University, Jena, Germany) and Prof. N. Brockmeyer (Department of Dermatology, St. Josef-
Hospital, Ruhr-University Bochum, Bochum, Germany) and MELC data in collaboration with Prof. A. 
Baur (Department of Dermatology, University Hospital Erlangen, Erlangen, Germany). 

 

The results shown so far indicate that E4 is able to locally concentrate HIV particles and in that 

way serve as a platform for target cells to get exposed to virus and then infected. In vivo, the 

time-span until free infectious virus particles encounter conceivably a target cell can vary con-

siderably. The same is true for the time until a cell binds to E4-virus-clusters, what led to the 

question whether the amyloid enhancer could alter the “infectious half-life” of HI-viruses. To 

investigate this, a thermostability assay was conducted, in which HIV-1NL4-3 virions were incu-

bated at 37°C for increasing time periods (0 to 48 h) with PBS alone or in the presence of E4 

or E4 scrambled. In parallel, a “high MOI” reference condition was used, which contained ~15-

fold more virus in the absence of amyloid enhancer. SupT1.CCR5 cells were challenged  
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Figure 31: HPV16 E4 increases the temperature stability of HIV-1 particles. A “low MOI” (2.2) of 

HIV-1NL4-3 particles was incubated with PBS, E4/ E4 scr. (12 µM final concentration on cells) for the 
indicated time periods (0 to 48 h) at 37°C. Also a “high MOI” (33.5) reference control incubated with PBS 
was used. SupT1.CCR5 cells were exposed to the different solutions and, four hours later, a medium 
change was performed. Subsequently, cells were supplied with fresh medium containing the fusion in-
hibitor T20 (50 µM). Infection levels, as shown in (A), were determined 48 h post infection by flow cy-

tometric analysis of intracellular p24 levels. Data were normalized and using GraphPad Prism fitting to 
a non-linear dose response curve allowed calculation of the different half-lifes, t1-t3 (B). Depicted are 

the arithmetic mean and standard deviation of three technical replicates from one experiment.  

with the different conditions and four hours later, cells were supplied with fresh medium con-

taining T20, allowing the assessment of the infectivity of solely the input virus. Infection levels 

were determined and data were normalized, allowing comparison of the half-lifes of virion in-

fectivity for the different conditions. Prolonged incubation (>24 h) of HIV-1NL4-3 at an MOI of 2.2 

at 37°C with PBS or E4 scr. dropped infectivity almost to background levels (Fig. 31). For MOI 

33.5, infectivity dropped by 32.6-fold. Interestingly, after 48 h of incubation at 37°C, the high 

virus inoculum still allowed for a productive infection of ~1% of CD4 T cells. Most remarkably, 

the “low MOI” in combination with E4 led at all time points of pre-incubation at 37°C to a higher 

level of infection than the “high MOI” reference, and only a 6.3-fold loss of infection was noted 

at 48 h. The fact that after 48 h of incubation of HIV-1NL4-3 with E4, virus could still lead to an 

infection of 10.3% was outstanding, since this level was ~10-fold higher than for the “high MOI” 

condition and ~60-fold higher than the “low MOI” together with E4 scrambled. The “low MOI” 

plus PBS, resulted in ~100-fold lower numbers of p24-positive T cells than in the presence of 

E4 (Fig. 31A). This experiment was also performed for primary activated CD4 T cells, but 

without the addition of T20, with similar effects being observed (data not shown). The “low 

MOI” condition incubated with PBS or E4 scr. displayed a half-life of ~6 h (t1), the “high MOI” 

condition of 8.4 h (t2) (Fig. 31B). The presence of E4 increased the half-life of virus particles  
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Figure 32: An infection-enhancing interaction of HPV16 E4 and HIV-1NL4-3 is possible in a wide 

range of pH environments and in vaginal fluid. (A) Effect of pH on interaction between HIV-1 and 

E4. HIV-1NL4-3 was pre-incubated in the absence or presence of HPV16 E4/ E4 scr. (12 µM final con-
centration on cells) in PBS or RPMI with the indicated pH values (4.2, 7.4, 8.9). (B) Effect of vaginal fluid 

on the E4-mediated enhancement of HIV-1 infection. HIV-1NL4-3 was pre-incubated alone or together 
with HPV16 E4/ E4 scr. (12 µM final concentration on cells) in PBS or vaginal fluid from four different 
donors. Afterwards, a donor pool of primary activated CD4 T cells was challenged for 48 h with the 
different mixes from (A,B). A medium change was performed four hours post challenge to synchronize 

infection. Infection levels were analyzed by intracellular p24 staining followed by flow cytometry. De-

picted are the arithmetic mean and standard deviation of three technical replicates. Data represent one 
experiment (A) or are representative of three experiments (B). Factor of enhancement of infection is 

indicated on top of each histogram bar. 

at “low MOI” by ~4.4-fold (t3=26.2 h). Thus, the presence of HPV16 E4 can markedly prolong 

the infectivity of HIV-1 particles.  

In the context of sexual transmission, virus particles may have to resist different pH environ-

ments: whereas the vaginal pH is rather acidic (~4.5) [175], it is more or less neutralized if 

semen is present (semen has a pH of 7.2 to 8.2 [176]) , and the anal pH is slightly basic (7.9) 

[177]. Since pH can affect folding and in that way, also the structure of proteins, the next step 

was to study, whether the interaction between HIV-1 and E4 and the resulting infection en-

hancement could be altered by pH (Fig. 32A). To test this, HIV-1NL4-3 was pre-incubated for 

10 min either alone or with E4/E4 scr., in either PBS or in RPMI medium with pH values ad-

justed to either 4.2, 7.4 or 8.9. Mixes were then used to challenge primary activated CD4 T 

cells. E4 and virus incubated in PBS led to a 72-fold enhancement of infection. In line with 

previous experiments, the E4 scr. control peptide did not enhance infection. The different pH 

exposures did not markedly alter the degree of infection enhancement, which was in the range 

of 95- to 137-fold. Also, absolute infection levels under different pH environments in the pres-

ence of E4 showed only small variations.  

To further investigate whether the infection-enhancing E4-HIV interaction could take place un-

der physiological conditions, the interaction was allowed to occur in vaginal fluid of several 
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donors. HIV-1NL4-3 was incubated alone or with E4/ E4 scr. either in PBS or in vaginal 

(Fig. 32B). Again, enhanced infection of primary activated CD4 T cells was visible at all treat-

ments where E4 was present, with 78-fold enhancement of infection in the PBS reference 

control. Incubation in vaginal fluid resulted in an overall reduction in absolute infection levels 

in the presence of E4 (~1.5- to 29.4-fold lower levels of p24-positive cells), still allowing infec-

tion enhancement of ~6- to 29-fold. Moreover, the percentage of p24-positive cells was mod-

ulated by incubation with vaginal fluid when virus was used either alone or pre-treated with E4 

scrambled. Interestingly, in the case of donor T4669 infection in both control scenarios was 

elevated by ~6-fold compared to the PBS control, indicating the presence of other factors in 

vaginal fluid that can modulate the susceptibility of cells to HIV infection. In line with this, vag-

inal fluid of donor T4961 caused a reduction of infection in the virus only condition and an 

increased infection when E4 scr. was present. Interestingly, for some donors the infection 

enhancement capability varied for samples taken on different time points (data not shown). 

Taken together, these data suggested that interactions between HPV16 E4 and HIV-1 that can 

lead to enhanced infection, can take place at acidic, neutral and basic pH as well as in vaginal 

fluid. 

Given the fact that semen is the main vector for transmission of HIV [73], that SEVI requires 

seeding to be active [74] and that E4 forms aggregates in aqueous solution spontaneously, it 

was of interest, whether E4 could facilitate the amyloid fibril formation of SEVI. This kind of 

cross-peptide-species seeding is also known from other amyloids, as e.g. the diabetes-asso-

ciated islet amyloid peptide (IAPP) can seed β-amyloid implicated in Alzheimer’s disease [150]. 

As a note, co-administration of E4 and SEVI in infection experiments was neither reducing 

enhancement nor causing synergistic effects (data not shown). As described above, amyloid 

formation of SEVI in a lab environment requires seeding and agitation by overnight shaking at 

37°C. To investigate E4-mediated seeding of SEVI, an experimental setup was designed, in 

which low concentrations of E4, E4 scr. or the respective volume of PBS were spiked into a 

large volume of a non-seeded SEVI solution. A titration of E4 and the control peptide (0.024 to 

0.6 µM), was performed to test for concentration dependency and mixes were incubated over-

night without shaking at 37°C (Fig. 33A). The highest E4 concentration was chosen based on 

previous titrations, with the aim to reach a low but significant infection enhancement. Next, 

HIV-1NL4-3 was incubated with the different seeding mixes, and primary activated CD4 T cells 

were challenged. Analysis of infection two days post challenge showed that the highest con-

centration of E4 (0.6 µM) incubated with PBS led to a small but significant, 4-fold infection 

enhancement, whereas all lower E4 concentrations did not show increased infection (grey 

bars). Remarkably, seeding of SEVI was titratable, as seen by E4 concentration-dependent 

enhancement of infection (Fig. 33A). At the lowest E4 concentration, no infection enhance-

ment was observed, but 0.12 µM of E4 increased infection already by 3.5-fold and 0.6 µM of 
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E4 by even 27.7-fold. Comparing the infection levels of different E4 concentrations spiked into 

SEVI to the same E4 concentrations spiked into PBS, only the highest E4 concentration re-

sulted in a significant increase (p=0.0084). In the presence of SEVI, this was 6.9-fold higher. 

The control E4 scr. did neither enhance infection (grey bars) nor induce any 

Figure 33: HPV16 E4 can initiate seeding of SEVI in a concentration-dependent manner. (A) In-

creasing concentrations of E4/ E4 scr. (final concentration on cells: 0.024 µM, 0.12 µM, 0.6 µM) or the 
corresponding volume of PBS were spiked into a large volume of SEVI or PBS and incubated overnight 
at 37°C without shaking (see schematic). Next, HIV-1NL4-3 was incubated with the different mixes (SEVI 
concentration of 11 µM). Afterwards, primary activated CD4 T cells were challenged with the different 
conditions. 48 h post challenge, intracellular p24 staining was performed and infection levels were de-

termined by flow cytometry. Depicted are the arithmetic mean and standard deviation of three technical 
replicates from one experiment. Data shown are representative of three experiments. The factor of en-
hancement of infection is indicated on top of each histogram bar. (B) In parallel, amyloid formation in 

different solutions was measured by Thioflavin T staining. Data shown are representative of two exper-
iments. Factor of increase of Thioflavin T staining is plotted on top of the respective histogram bars. (C) 

Representative data of infection levels plotted against Thioflavin T staining. Different PBS/E4/E4scr. 
concentrations are indicated through color code (white = 0.024 µM, grey = 0.12 µM, black = 0.6 µM). 



 3 – Results 

86 

enhancement in the presence of non-seeded SEVI (black bars, Fig. 33A). Addition of the re-

spective volumes of PBS to unseeded SEVI did also not alter infection levels. 

In parallel, a staining with Thioflavin T, a dye that intercalates into certain types of amyloids 

and thereby changes its fluorescence [178], was performed (Fig. 33B). Here, a concentration-

dependent effect was seen for E4-mediated seeding of SEVI with a maximum increase of 

emission at OD 485 nm of 2.2-fold. Again, controls showed no alteration of SEVI seeding, and 

E4 as well as E4 scr. alone indicated at the concentrations used a very low intrinsic Thioflavin 

T staining. When plotting Thioflavin T (ThT) fluorescence against infection levels, two major 

groups can be observed: conditions with large volumes of PBS with small volumes of E4/E4 

scr. (very left group) and large volumes of SEVI together with PBS/E4 scrambled. Both groups 

displayed similarly low infection levels. A slight shift to the right of the group where SEVI was 

present, was likely due to higher basal ThT staining of SEVI (Fig. 33C). The lowest concen-

tration of E4 (0.024 µM) spiked into SEVI grouped with the other SEVI controls, whereas the 

medium E4 concentration (0.12 µM) showed a slight increase in HIV-1 infection as well as in 

ThT fluorescence. The highest E4 concentration (0.6 µM) led to the strongest increase of HIV-

1 infection and ThT staining.  

In parallel, also the effect of pH on the E4-mediated seeding of SEVI was assessed. Here, only 

minor pH-dependent effects (4.2, 7.2, and 8.7) on HIV-1 infection as well a ThT staining were 

observed (data not shown). In conclusion, a 20-fold lower E4 concentration as generally used 

in infection enhancer experiments was able to induce amyloid formation of non-seeded SEVI, 

adding a new potential mode of action to the spectrum of HPV-mediated HIV infection en-

hancement. 

3.6 Analysis of infection enhancement potential of HPV16 E4 protein mutants as 

well as different HPV E4 variants 

As described in the introduction, the HPV E4 protein consists of several domains. Moreover, 

during the differentiation of keratinocytes, E4 is processed by calpain, which causes removal 

of almost the whole N-terminal domain of the protein [132]. To further analyze, which parts of 

this N-terminally truncated peptide are responsible for the characterized HIV-1 infection en-

hancement, several mutants with combinations of different domains (N-terminus, loop, β-

strand, multimerization and β-aggregation) were generated based on a structural model pro-

posed by John Doorbar [132]. Since the net charge of E4 is cationic and it was known from 

SEVI that the positive charge may have functional relevance [76], also alanine (Ala) mutants 

neutralizing the positive charge were created. In addition, the E4 scrambled control peptide 

was included into this analysis (Fig. 34A).  

To assess their functional potency, HIV-1NL4-3 was pre-incubated with the different mutants 

and, subsequently, solutions were used to infect primary activated CD4 T cells. Infection data 
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were collected (Fig. S17) and normalized to the PBS control (Fig. 34B). An infection enhance-

ment of 175-fold was observed for the N-terminally truncated E4 peptide (aa position 18-92), 

whereas the E4 scrambled control peptide did not significantly affect infection levels. The de-

letion of the β-aggregation (aa position 18-81) domain led to a ~7-fold reduction of infection 

enhancement, while the additional removal of the multimerization (aa position 18-70) domain 

did not further affect the infection increase. Further deletion of the β-strand (aa position 18-62) 

domain, as well as the loop domain (aa position 26-60) or the N-terminus (aa position 18-25) 

domain alone, completely abolished infection enhancement (Fig. 34B). These data, indicating 

the importance of the C-terminus, were supported by the fact that peptides consisting of the  

 

 

 

Figure 34: HPV16 E4-mediated HIV-1 infection enhancement is mainly determined by the C-ter-

minal domain. (A) Different domain and charge mutants of the calpain-cleaved (N-terminally truncated) 
HPV16 E4 peptide were created. (B) HIV-1NL4-3 was pre-incubated with the different peptides at a con-

centration of 1 mg/ml (100 µg/ml final concentration on cells). Primary activated CD4 T cells (four donor 
pools) were challenged with the different virus-peptide mixes and intracellular p24 levels were measured 
48 h post infection by flow cytometry to score infection (see Fig. S17). Shown is the calculated factor of 

enhancement of infection. Depicted are the arithmetic mean and standard deviation of three technical 
replicates from one experiment. Data shown are representative of two experiments. 
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C-terminus alone, which consists of the three domains β-strand, multimerization and β-aggre-

gation, led to an infection enhancement of about 156-fold. The partial (aa position 66-92) or 

the complete deletion (aa position 71-92) of the β-strand from the C-terminus slightly reduced 

the enhancement of infection by 1.9- or 1.6-fold, respectively. The β-strand (aa position 63-70) 

domain alone enhanced infection by ~15-fold, which is an 11.7-fold reduction compared to the 

N-terminally truncated E4 peptide (aa position 18-92). In contrast, the removal of the β-aggre-

gation (aa position 63-81) domain from the C-term dropped enhancement of infection by 5.4-

fold, while addition of the β-aggregation domain alone (aa position 82-92) led to a 67-fold in-

fection enhancement (2.6-fold reduction from maximum), implying the importance of this do-

main. Similarly, the multimerization domain alone (aa position 71-81) increased infection by 

66.5-fold (2.6-fold reduction from maximum). Interestingly, when looking at the data described 

before, the multimerization (aa position 71-81) and β-aggregation (aa position 82-92) domain 

together (aa position 71-92) showed almost an additive functional effect (107-fold). Of note, 

deletion of the positive charge from the N-terminally truncated E4 (E4 (Ala)) allowed only a 6-

fold enhancement of infection (28.7-fold reduction compared to E4) indicating the overall im-

portance of charge for infection enhancement. A not as drastic reduction due to removal of a 

single positive charge was observed when using an alanine mutant of the C-terminus peptide 

(aa position 66-92 K81A), which still led to a 51-fold increase of infection. This represents a 

reduction of 3.4-fold compared to the N-terminally truncated E4 and of 1.8- to 3-fold (aa posi-

tion 66-92 K81A and 63-92, respectively) compared to the C-terminus. Taken together, the C-

terminus as well as, in part, the positive charge are crucial for the capacity of HPV E4 to en-

hance HIV-1 infection.  

In a next step, the amyloid structure of the different HPV16 E4 mutants as well as HPV variants 

was characterized in a collaboration with Dr. M. Neßling and Dr. K. Richter (Core Facility Elec-

tron Microscopy, W230, German Cancer Research Center (DKFZ), Heidelberg, Germany) by 

electron microscopy (EM). This analysis revealed an amyloid-like phenotype for most of the 

peptides imaged, which were grouped according to their morphological structure irrespective 

of knowledge of their potency to influence HIV infection (Fig.  35A). This unbiased approach 

allowed classification of five major ultrastructural morphotypes: starting with amyloid-unrelated 

protein aggregations (EM morphotype 0), over intermediate stages of amyloidogenesis (EM 

morphotypes I to III) and ending with mature amyloid fibrils (EM morphotype IV). The HPV 

variants found to be enhancing in infection experiments (Fig. 35B) mainly grouped with the 

intermediate morphotypes (II+III), only HPV2 and HPV33 showed a less amyloid-like structure. 

The different domain mutants of HPV16 E4 grouped within all five morphotypes (Fig. 35C): 

The super dense mature amyloid fibrils (IV) were found only if the β-strand, the loop domain 

or the peptide with the deleted C-terminus (aa position 18-62) were present. The intermediate 

morphotype stage III was covered by the peptides of the multimerization domain alone or E4  
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Figure 35: Intermediate stage of amyloid formation is associated with enhancing potential of HPV 

E4 variants and HPV16 E4 mutants. (A) Data obtained from a collaboration with Dr. M. Neßling and 

Dr. K. Richter (Core Facility Electron Microscopy, W230, German Cancer Research Center (DKFZ), 

Heidelberg, Germany). HPV E4 variants as wells as HPV16 E4 mutants were imaged by EM and ran-
domly assigned to different morphotypes of amyloid formation. Shown are representative images of the 
found morphotypes analyzing the mutants of HPV16-E4, 0: Amyloid-unrelated protein aggregation; I: 
Monotypic background or early side products of amyloidogenesis; II: “A-type” short, tube-like amyloid 
fibrils; III: “B-type” long, conglomerated amyloid fibrils, and IV: Mature amyloid fibrils. Scale bar: 100 nm. 
(B,C) Correlation of EM morphotype and HIV-1NL4-3 factor of enhancement of infection for HPV E4 vari-
ants from Fig. 13 (B) and HPV16 E4 mutants from Fig 17 (C). 

 

lacking the β-aggregation domain and the intermediate stage II was represented by the N-

terminally truncated E4 (aa position 18-92), the C-terminus as well as the C-terminus lacking 

either the β-strand or the β-aggregation domain. The N-terminus alone or the E4 (Ala) mutant 

exhibited the lowest stage of amyloidogenesis (I), whereas the deletion of multimerization and 

β-aggregation domain (aa position 18-70) as well as the E4 scrambled peptides showed pro-

tein aggregation, which was not amyloid-related (0). Correlating factor of enhancement of HIV-

1 infection of the different mutants to the EM morphotypes demonstrated that mainly mor-

photype II and III were associated with enhancement. These peptides mainly represented mu-

tants of the C-terminus. This implies that the structure provided by the C-terminus is critical 

and that the minimum requirement for infection enhancement lies in the multimerization and/or 



   3 – Results 
 

 
 

90 

 

β-aggregation domain of E4. The deletion of charge (E4 (Ala)) and the destruction of the orig-

inal sequence (E4 scr.) resulted in low or no amyloidogenesis. Since all HPV variants were 

enhancing infection to some degree no such comparison was possible, but the fact that the 

majority grouped within EM morphotype II and III underlined the finding that amyloids of inter-

mediate density mediate HIV infection enhancement (Fig. 35B). Taken together, these data 

support that (i) the C-terminus of HPV16 E4 is crucial for the infection enhancement, (ii) that 

functional E4 forms amyloids of intermediate density, and (iii) that not only charge, but also the 

folding structure of the peptides is important. 

In summary, this study has thus far extensively characterized HPV E4 as a new amyloid en-

hancer of HIV infection, reflected by the breadth across HIV isolates/strains and E4 peptides 

derived from different HPV types. Enhancement of infection was observed for early virus-cell 

interaction events, but also for spreading infection. Imaging suggested a model, in which ag-

gregated E4 can bind and concentrate viral particles and enhance attachment by serving as a 

presentation platform for viruses to target cells. The increased virion fusion is dependent on 

HIV-specific cellular receptors, while HIV-1 Env is only partially required for enhancement of 

attachment. In the context of an anogenital transmission scenario, the presence of E4 at mu-

cosal surfaces was monitored in tissue samples and the potency of low concentrations of E4 

to seed amyloid formation of SEVI was revealed. In addition, it was shown, that E4 can stabilize 

viral particles and prolong their infectivity. The functional interaction of E4 and HIV particles is 

possible at different pH as well as in vaginal fluid. Finally, the C-terminal domain of E4 and 

positive charge together with intermediately densely packed amyloid structure are important 

for the observed enhancement of HIV infection.  

 

3.7 Effect of amyloid enhancers of HIV infection on therapeutic approaches 

So far it was demonstrated that HPV E4 as wells as SEVI can massively increase the infectivity 

of a low virus inoculum. Since development of new drugs always includes the stage of deter-

mining optimal concentrations in a relevant cell system and since it was already published, that 

SEVI was able to alter the efficiency of certain antiviral drugs [179], it was of interest whether 

HPV E4 might have a similar effect. Broadly neutralizing antibodies (bNAbs) against HIV rep-

resent a new treatment approach, which has been studied in different animal models as well 

as in clinical trials (see chapter 1.1.7). 

In a first experiment the efficiency of a panel of bNAbs and neutralizing antibodies (NAbs), 

targeting different epitopes on Env were tested for their neutralizing capacity: the variable loops 

V2 and V3, the CD4 binding site (CD4bs), MPER, gp41 as well as gp41/gp120 bridging. Here, 

a panel of different HIV-1 strains was used: the lab strains X4 HIV-1NL4-3, R5 HIV-149.5, the R5 

virus HIV-1YU-2 cloned directly from the brain of an AIDS patient, and the two T/F strains R5  
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Figure 36: Screening for neutralization capacity of different broadly neutralizing antibodies 

(bNAbs) and neutralizing antibodies (NAb) on different HIV-1 lab strains, a primary molecular 

clone and Transmitted/ Founder strains. For the evaluation of the neutralization behavior of the 

(b)NAb panel (kindly provided by the lab of Prof. F. Klein, Laboratory of experimental Immunology, Co-

logne, Germany), a high virus inoculum was used in combination with increasing concentrations of 
bNAbs (bold) and NAbs (italic). Therefore, HIV-1NL4-3, HIV-149.5, HIV-1YU-2, HIV-1CH058 and HIV-1CH077 
were pre-incubated with different dilutions of antibodies before addition to primary activated CD4 T cells 
(four donor pool). 48 h later, infection levels were quantified by intracellular p24 staining and subsequent 
flow cytometric analysis (A-C). (D-F) Graphs display the percent inhibition of HIV infection, as it was 

calculated from (A-C). Shown are examples for different neutralization capacity: the highly and broadly 
neutralizing 3BNC117 (A,D), the intermediate neutralizing bNAb 8ANC195 (B,E) and the control NAb 
4-95 (C,F). Depicted are the arithmetic mean and standard deviation of three technical replicates from 
one experiment. (G) Overview of bNAbs (bold)/NAbs (italic) and HIV-1 strains screened including the 

efficiency of neutralization. The degree of inhibition/neutralization is indicated by symbols: <50% = -, 

50%-75% = +, 75%-99% = ++, >99% = +++.  
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Figure 37: Presence of amyloid enhancers can alter the potency of bNAbs in an epitope-depend-

ent manner. HIV-1NL4-3 (A,D), HIV-1YU-2 (B,E) and HIV-1CH058 (C,F) were first pre-incubated with HPV16 

E4 (12 µM, black bars), SEVI (11 µM, grey bars) or PBS (white bars), followed by incubation with the 
indicated dilutions of different bNAbs. Shown is the CD4 binding site (CD4bs) antibody 3BNC117 (A-C) 

and the epitope spanning antibody 8ANC195 (D-F). Please see Fig. S18, for the other CD4bs antibody 

VRC01 and the NAb 4-95. Depicted are the arithmetic mean and standard deviation of three technical 
replicates from one experiment. The factor of enhancement of infection is indicated on top of each his-
togram bar at no antibody condition. 

 

HIV-1CH058 and R5/X4 HIV-1CH077 (Fig. 36). A virus concentration aiming to yield ~1 to 10% 

infected T cells was chosen and virus was incubated with increasing concentrations of the 

different antibodies before adding them to primary activated CD4 T cells. Analysis of the data 

revealed that it was possible to define three groups: highly neutralizing bNAbs (Fig. 36A,D), 

bNAbs with intermediate efficiency (Fig. 36B,E) and NAbs with low or no neutralizing activity 

(Fig. 36C,F). bNAbs targeting the CD4bs were all highly neutralizing (+++), whereas all other 

bNAbs targeting the variable loops, gp41, MPER as well as the gp41/gp120 epitope spanning 

antibodies showed rather variable and often intermediate neutralizing capacity. Most of the 

tested NAbs had a neutralizing capacity of less than 50% and only the CD4bs antibody 11-989 

displayed an efficiency of 75 to 99% in the context of HIV-1NL4-3 (Fig. 36G). Interestingly, the 

antibodies 10-1074 and PGT128 targeting the V3 loop, which determines the co-receptor tro-

pism of HIV, seemed to be less efficient for the X4-tropic HIV-1NL4-3 and the dual-tropic HIV-

1CH077. Another observation was that the PGT151 antibody, targeting the gp41/gp120 interface, 
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seemed to be efficient only for HIV-1NL4-3 and its isogenic counterpart HIV-149.5, which has the 

same Env except for an exchange of the V3 loop, derived from HIV-1BaL. Additionally, the gp41 

and gp120 epitope bridging antibody 8ANC195, was severely impaired in its neutralizing ac-

tivity in the context of infection with the chimeric HIV-149.5.  

The next step, was to combine amyloid enhancers and (b)NAbs in one experiment, to examine 

whether the amyloids can alter the antibody efficiency. To test this, a constant volume of either  

HIV-1NL4-3 (Fig. 37A,D, S18A,D), HIV-1YU-2 (Fig. 37B,E, S18B,E), or HIV-1CH058 (Fig. 37C,F, 

S18C,F) was first incubated with a constant concentration of E4, SEVI or the corresponding 

volume of PBS. Subsequently, increasing concentrations of different bNAbs were added: the 

two CD4bs antibodies 3BNC117 (Fig. 37A-C) or VRC01 (Fig. S18A-C) or the gp41/gp120 tar-

geting antibody 8ANC195 (Fig. 37D-F). The gp41-targeting NAb 4-95 (Fig. S18D-F) was used 

as a control. Next, primary activated CD4 T cells were challenged with these mixes. In absence 

or presence of amyloid enhancers, all bNAbs were able to modulate infection, but to varying 

degrees, whereas NAb 4-95 had no effect (Fig. 37, S18). Comparing the CD4bs to the 

gp41/gp120 bridging antibody showed that the latter was much less efficient. In the PBS con-

dition, CD4bs antibodies dropped the infection of all viruses tested to background levels at a 

concentration of 1 µg/ml, whereas for 8ANC195 a 50-fold higher antibody concentration  

(50 µg/ml) was required to achieve the same effect (Fig. 37, S18A-C).  

Analysis of the infection conditions at which amyloid enhancers were present, revealed a more 

diverse picture: 3BNC117 was able to block infection for all viruses at a concentration of  

1 µg/ml (Fig. 37A-C), while VRC01 only reached this efficiency for HIV-1YU-2; for HIV-1NL4-3 and 

HIV-1CH058 a 10-fold higher concentration of antibody was required (Fig. S18A-C). A similar 

observation was made for 8ANC195, where the maximum antibody concentration of 50 µg/ml 

was able to neutralize infection only for HIV-1YU-2 in the presence of E4 or SEVI. Neither HIV-

1NL4-3 nor HIV-1CH058 infection could be blocked by 8ANC195 completely in the presence of 

amyloids (Fig. 37D-F). Calculation of a factor of change of IC50 values based on four data 

points revealed only minor differences in the context of HIV-1NL4-3 and HIV-1YU-2, but for the T/F 

virus HIV-1CH058 an overall increase of IC50 in the range of 4.4- to 16.1-fold (Fig. S19A). Fur-

ther analyses of loss of neutralization capacity in the presence of amyloids were performed, 

by calculating the factors of infection increase in the presence of amyloid enhancers, when 

infection levels of the “virus alone” condition were reduced by the antibodies by at least 50% 

(Fig. S19B-D). Interestingly, a ~7-fold (HIV-1CH058/VRC01) to 54-fold (HIV-1NL4-3/3BNC117) 

higher infection was still possible in the presence of E4. For SEVI a ~8-fold (HIV-1CH058/VRC01) 

to 45-fold (HIV-1NL4-3/3BNC117) higher infection was possible. An analogous titration experi-

ment was performed for the binding and entry inhibitors (AMD3100, MVC, anti-CD4 antibodies, 

T20) previously used in this study, where a 10- to 100-fold higher concentration of inhibitors 

had been required to block infection of primary activated CD4 T cells with HIV-1NL4-3 or HIV-
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1YU-2 in the presence of E4 or SEVI (data not shown). Taken together, these data indicate that 

amyloid enhancers can dramatically increase in most cases the concentration of drugs or 

bNAbs necessary to neutralize infection with HIV-1. 

3.8 Characterization of different naturally occurring amyloids in the context of 

HIV-1 infection 

Based on literature analysis potentially interesting amyloids were identified, which were mainly 

of neurological origin, including β-amyloid (Aβ) [142], but also the pancreatic islet amyloid 

polypeptide (IAPP) [149]. The potential of β-amyloid to enhance infection of cell lines with 

pseudotyped viruses was studied in the past by Münch et al. [74] and Wojtowicz et al. [75]. In 

contrast, IAPP is not a candidate known to have physiological relevance in the context of HIV 

infection. Here, HIV was used as virus for an initial screening approach, since the virus appears 

to be very sensitive to amyloid-mediated infection enhancement. 

In a pilot experiment it was tested whether Aβ42, which is known to be strongly amyloidogenic 

[142], and IAPP can enhance HIV-1 infection. Primary activated CD4 T cells were challenged 

with a low virus inoculum of HIV-1NL4-3 carrying BlaM-Vpr or HIV-1NL4-3, which had been pre-

incubated with increasing concentrations of either E4, SEVI, Aβ42, or IAPP. Virion fusion or 

infection levels, respectively, were determined, revealing that virion fusion of HIV particles was 

enhanced by ~41-fold for (12 µM) or SEVI (11 µM) and by ~28-fold at the highest concentration 

of Aβ42 (10 µM). The Diabetes mellitus-associated IAPP (10 µM) showed a maximum increase 

of virion fusion of 3.3-fold (Fig. 38A). Analysis of infection enhancement displayed a ~300-fold 

increase for E4 (12 µM) and Aβ42 (10 µM), and 186-fold for SEVI (11 µM). Similar to effects 

seen for virion fusion, the presence of IAPP (10 µM) elevated infection levels only to a lower 

degree of ~30-fold (Fig. 38B). 

After this initial observation, the amyloid panel was broadened, covering now with Aβ40 and 

Aβ42 the most relevant amyloids in the context of Alzheimer’s disease [142]. Also, another 

amyloid with neurological association, the Parkinson’s disease-related α-synuclein [145], was 

included. Titrating theses amyloids in infection experiments, in which primary activated CD4 T 

cells were infected with HIV-1NL4-3 (Fig. 38C) and SupT1.CCR5 cells with HIV-1NL4-3GFP 

(Fig. 38D), it was possible to define two groups of amyloids according to their infection en-

hancement potency. The first group, consisting of E4 (12 µM), SEVI (11 µM), Aβ40 (10 µM) as 

well as Aβ42 (10 µM) led to an HIV-1 infection enhancement of 128- to 140-fold on CD4 T cells 

and of 11- to 32-fold on the T cell line, respectively. In contrast, the second group, comprised 

of α-synuclein and IAPP increased infection levels on primary CD4 T cells by only 15- to 21-

fold and on SupT1.CCR5 cells by 3- to 7-fold (Fig. 38E). These data were in line with the 

described observation [74] that enhancement of infection potency of amyloids correlated in 
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Figure 38: Different amyloids are able to enhance HIV-1 virion fusion to and infection of T cells.  
HIV-1NL4-3 carrying BlaM-Vpr (A) or HIV-1NL4-3 (B) were pre-incubated with the indicated concentration 

of HPV16 E4, SEVI, Aβ42, or IAPP and mixes used to challenge primary activated CD4 T cells (donor 
pool). Virion fusion (A) and infection (B) were determined as described above by flow cytometry. De-

picted are the arithmetic mean and standard deviation of three technical replicates from one experiment. 
HIV-1NL4-3 (C) or HIV-1NL4-3 GFP (D) were pre-incubated with increasing concentrations of HPV16 E4, 

SEVI, Aβ40, Aβ42, α-synuclein or IAPP and used to infect a four donor pool of primary activated CD4 T 
cells (C) or SupT1.CCR5 cells (D). Infection levels (GFP or intracellular p24 expression) were measured 

by flow cytometry. Depicted are the arithmetic mean and standard deviation of three technical replicates 
from one experiment. Data shown represent one experiment (C,D) or are representative of three exper-

iments (A,B). (E) Overview of maximum factor of enhancement of infection from (C) and (D). 
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part with turbidity of the peptide dissolved in aqueous solution, since β-amyloids were compa-

rable in this regard to E4 and SEVI. The stock of α-synuclein was only slightly turbid and IAPP 

stocks were rather transparent (data not shown). The observed infection enhancement was 

not caused by any toxic effects of the amyloids that may have made the cells more permissive 

to infection, since all concentrations used did not alter viability (>85% viable cells) 

(Fig. S20A,B). The apparent reduction of viability in SupT1.CCR5 cells exposed to high con-

centrations of IAPP is likely due to an increased sensitivity of this cell type to DMSO solvent 

concentration of 1% (Fig. S20E). Together, also amyloids (β-amyloids, α-synuclein and IAPP) 

other than E4 and SEVI enhanced HIV-1 infection of human CD4 T cells, although, the degree 

of infection enhancement varied considerably. 

 

3.9 Characterization of the amyloid panel in the context of neurotropic viruses 

Many of the previously used amyloids have a neurological background. Therefore, we next 

screened several neuro-associated viruses (HSV-1, measles and rabies) for the ability of am-

yloids to enhance their infection. To study herpes virus infection, a HSV-1 VP26-YFP reporter 

virus was used, for measles, an attenuated vaccination strain (Measles vac GFP reporter virus/ 

measles*) was employed. Finally, for rabies two different virus isolates were used: the SAD 

(Street Alabama Dufferin) L16 strain, which is an attenuated vaccination strain, and the N2C 

strain, which represents a lab-adapted strain that is more neurotropic, but less cytotoxic than 

SAD L16. Both replication-incompetent viruses were GFP reporter viruses, which had been 

deleted for the glycoprotein G gene (replaced by GFP) and rescued by ectopic expression of 

G-proteins of either SAD L16 or N2C, respectively (rabies*). Measles* and rabies* viruses were 

kind gifts of Max Eizinger and Alexandru Hennrich (AG Conzelmann).  

To get a first impression of the behavior of these viruses, HEK293T cells were chosen and 

HSV-1, measles* as well as rabies* viruses were titrated to determine the optimal inoculum to 

study subsequent enhancement of infection (data not shown). Afterwards, the four reporter 

viruses were incubated with increasing concentrations of the six amyloids and infection of 

HEK293T cells was analyzed 20 h post challenge (Fig. 39). Interestingly, in many of the dif-

ferent virus-enhancer combinations an infection enhancement in the range of 2.1- to 6.2-fold 

was observed (Fig. 39E). The optimal concentration of amyloids for infection enhancement of 

these viruses was more diverse compared to HIV (typically ~10 µM), ranging from 1 to 10 µM. 

Infection of HSV-1 YFP (Fig. 39A,E) was increased by all amyloid enhancers by 4- to 6-fold, 

except for α-synuclein (1.3-fold). This is in line with a previous report that seminal amyloids 

can enhance HSV-1 infection [87]. Also for measles vac GFP (Fig. 39B,E), amyloids enhanced 

infection by 2- (IAPP) to 6.1-fold (E4). Analysis of rabies* virus infection experiments revealed 

less pronounced effects, given that N2C (Fig. 39C,E) allowed infection enhancement 
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Figure 39: Different amyloids enhance infection of HEK293T cells with neurotropic viruses. HSV-
1 YFP (A), measles vac GFP (measles*) (B) and the two rabies* strains, SAD L16ΔG GFP + SAD L16-
G (C) and N2CΔG GFP + N2C-G (D), were pre-incubated with increasing concentrations of HPV16 E4, 

SEVI, Aβ40, Aβ42, α-synuclein, or IAPP. Subsequently, HEK293T cells were infected with the different 
mixes. 20 h post challenge, cells were harvested, fixed and infection levels (YFP/ GFP expression) were 
analyzed by flow cytometry. Data shown represent the arithmetic mean of two technical replicates from 
one experiment. (E) Summary of maximum factor of infection enhancement from panels (A-D). 
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Figure 40: The enhancing efficiency of brain-related amyloids on infection of SH-SY5Y cells with 

different neurotropic viruses depends on the specific virus-amyloid combination. Increasing con-

centrations of Aβ40, Aβ42, or α-synuclein were pre-incubated with HSV-1 YFP (A), measles vac GFP 
(measles*) (B) and the two rabies* strains, SAD L16ΔG GFP + SAD L16-G (C) or N2CΔG GFP + N2C-
G (D). Next, SH-SY5Y cells were challenged with the different mixes. 20 h post challenge, YFP/ GFP 

expression of viable cells was analyzed by flow cytometry. Depicted are the arithmetic mean and stand-
ard deviation of three technical replicates from one experiment. (E) Overview of maximum factor of 

infection enhancement from panels (A-D). 
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by 1.7- (Aβ42) to 4.9-fold (α-synuclein) and SAD L16 (Fig. 39D,E) by 1.4- (SEVI and Aβ42) to 

2.4-fold (E4). For both rabies* strains the Diabetes mellitus-associated IAPP showed no infec-

tion enhancement. All peptides within the amyloid panel were non-toxic to HEK293T cells, 

which were more than 85% viable at all concentrations used (Fig. S20C,E). Of note, the de-

crease of the infection rate at higher amyloid concentrations was not due to higher levels of 

dying cells, as assessed by flow cytometry (data not shown). Taken together, not only E4 and 

SEVI, but also the β-amyloid peptides, α-synuclein and IAPP enhanced infection of HEK293T 

cells with HSV-1 and measles* virus, and to a lesser extent also of rabies* virus.  

The thus far examined HEK293T cells are a widely used cell system to study various biological 

effects, e.g. effects of protein overexpression, protein-protein interactions. SH-SY5Y cells are 

a cell line derived from a neuroblastoma and therefore more similar to the in vivo targets of 

neurotropic viruses than epithelial kidney cells. Next, viruses were incubated with increasing 

concentrations of either one of the two β-amyloids (Aβ40 and Aβ42) or α-synuclein, and used 

to challenge SH-SY5Y cells (Fig. 40). Also for these experiments, the optimal enhancing con-

centration of amyloids was much more variable (~1 µM to 5 µM) than seen for HIV. This neuro-

associated amyloid panel had a low to intermediate enhancing effect on infection with mea-

sles* or HSV-1 (Fig. 40A,B,E), ranging from ~1.5- to 2.9-fold enhancement, with the exception 

that α-synuclein had no detectable effect on HSV-1 infection. The most interesting virus in this 

preliminary set-up turned out to be the rabies* strain N2C (Fig. 40C,E), for which all amyloids 

increased infection by 2.5- (Aβ42), 3.2-fold (α-synuclein) to 4.2-fold (Aβ40). In contrast, the 

panel had almost no effect on the infection levels of rabies* strain SAD L16 (Fig. 40D,E). The 

neuro-associated amyloid panel was not toxic to SH-SY5Y cells at all concentrations used 

(Fig. S20D,E). As seen for HEK293T cells, decreasing percentages of infected cells at high 

amyloid concentrations were not due to a general loss of cells in the culture, as determined by 

flow cytometry (data not shown). Thus, also viruses other than HIV can be increased in their 

infectivity using amyloid enhancers of different origin, although to a less pronounced degree. 

 

3.10 Enhancement of adenoviral infection by amyloids 

While the so far used viruses largely differed in their target cell and tissue tropism, they were 

all surrounded by a lipid bilayer, which contains the viral envelope glycoproteins. Different from 

these so-called enveloped viruses are the non-enveloped viruses, represented e.g. by the fam-

ily of adenoviruses (AdV). These viruses are of mainly respiratory origin and their target cells 

in the conducted experiments were A549 cells derived from type II pneumocytes.  

Several primary AdV isolates (AdV2/3/5/7) were incubated with increasing concentrations of 

E4 or SEVI prior to infection of A549 cells for 18 h. We observed a maximum infection en-

hancement of 8.1-fold for E4 (1.8 µM) and 3.9-fold for SEVI (1.1 µM). For the other AdV strains 

(inset table, AdV3/5/7) tested, a similar observation was made, with E4 resulting in 2.7- to 3.3- 
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Figure 41: E4- and SEVI-mediated enhancement of adenoviral infection. (A) Adenovirus (AdV) pri-

mary isolate AdV2 was pre-incubated with increasing concentrations of HPV16 E4 (0.012, 0.06, 0.6, 
1.2, 1.8, 2.4, 3, 3.6, 4.2, 5.4, 6, 12, 24 µM) or SEVI (0.022, 0.11, 1.1, 2.2, 4.4, 6.6, 11 µM) and afterwards 

used to infect A549 cells. 18 h post infection, cells were harvested, fixed and stained with a primary 
monoclonal mouse anti-AdV antibody followed by a secondary goat anti-mouse Alexa Fluor 488 anti-
body. Infection levels were determined by flow cytometry. Maximum factor of enhancement is depicted 
on top of the respective histogram bar. Inset table shows maximum factor of enhancement of other 
adenoviral isolates (AdV3/5/7) tested. Depicted are the arithmetic mean and standard deviation of three 

technical replicates from one representative experiment. Shown are representative experiments of AdV2 
(n=4), AdV3 (n=1), AdV5 (n=2), AdV7 (n=1). (B) Increasing volumes of virus inoculum were pre-incu-

bated with a constant amount of PBS, HPV16 E4 (1.8 µM) of SEVI (1.1 µM) and then used to challenge 
A549 cells. 18 h post infection, cells were treated as described before and infection levels were deter-
mined by flow cytometry. The factor of enhancement of infection is indicated by numbers above the 

respective data points. Depicted are the arithmetic mean and standard deviation of three technical rep-
licates from one experiment. 
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Figure 42: Visualization of enhancement of adenoviral infection.  Microscopy pictures showing in-

fection of A549 cells with AdV2, which was pre-incubated with either PBS, HPV16 E4 (1.8 µM), or SEVI 

(1.1 µM). Cells were grown overnight on poly-L-lysine-coated coverslips. After fixation of cells 18 h post 
infection, a staining with a primary mouse monoclonal anti-AdV antibody and a secondary goat anti-
mouse Alexa Fluor 488 antibody was performed. Coverslips were mounted in DAPI-containing medium. 
Virus-infected cells in green, nuclei in blue. Shown are the merge as well as the single channels for 
DAPI and Alexa Fluor 488. Scale bar: 20 µm. 

fold and SEVI in 1.2- to 2.6-fold infection enhancement, respectively (Fig. 41A). Typically, the 

titration of amyloids in experiments of adenoviral infection resulted in a “bell-shaped” picture, 

of increasing infection to a certain degree, followed by a stepwise loss of productively infected 

cells at higher amyloid concentrations. This decrease was not due to reduced viability of the 

cells as assessed by flow cytometry (data not shown).  

After defining optimal enhancing amyloid concentrations at one MOI, it was tested, whether 

enhancement of infection could be boosted depending on the input virus concentration. Hence, 
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in a follow-up experiment AdV2 was titrated alone (PBS) or together with a constant concen-

tration of E4 (1.8 µM) or SEVI (1.1 µM), and infection of A549 cells was performed (Fig. 41B). 

Here, a ~9-fold infection enhancement by E4 and a ~5-fold infection enhancement by SEVI 

was found at the optimal amyloid-virus combination. In addition, this experiment confirmed a 

phenotype observed in HIV experiments, where the factor of enhancement decreased with 

increasing MOI. Here, for E4 a 4.8-fold and for SEVI a 5.9-fold reduction of infection enhance-

ment was measured for the highest virus inoculum compared to optimal amyloid-virus combi-

nation. Of note, at the highest MOI SEVI was not able to further enhance infection, whereas 

E4 still boosted by 1.9-fold. The same experiment was performed for the AdV5 strain, giving 

similar results, where E4 was able to lead to a 4.4-fold infection enhancement and SEVI did 

no longer enhance at highest MOI (data not shown).  

Finally, E4- and SEVI-mediated infection enhancement for AdV was visualized by fluorescent 

microscopy. A549 cells were infected with the combination of optimal inoculum of AdV2 and 

either E4 or SEVI, determined in the previous infection experiments (Fig. 42). Also here, a 

comparable degree of infection enhancement was visible: E4 lead to a ~5.5-fold infection in-

crease and SEVI to a ~3-fold increase of AdV-infected cells (green). Taken together, envel-

oped as well as non-enveloped viruses can be enhanced in their infectivity in the presence of 

appropriate concentrations of amyloidic peptides. 
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4 Discussion 

 

4.1 The N-terminally truncated HPV E4 enhances HIV infection in vitro 

Although HIV itself is no longer among the “global top 10 causes of death”, several AIDS-

defining as well as non-AIDS-defining, HIV-associated diseases are still found within this list. 

Thus, research not only for better understanding of the HIV replication cycle including cellular 

restriction factors, accessory viral proteins, drug targets, but also on extracellular factors that 

can modulate viral entry, is crucial for an optimized treatment or future cure of HIV infection. 

Mucosal surfaces represent an effective barrier against invading pathogens at transmission 

sites, which require chemical, biological or mechanical disruption to overcome them [3, 4, 6]. 

Human papillomaviruses have been identified as a confounding risk factor during epidemio-

logical studies indicating that a pre-existing HPV infection can increase the risk to acquire an 

HIV infection by 1.7- to 4.9-fold (see chapter 1.2.3.3). So far, it is believed that this enhanced 

susceptibility of HIV is mainly due to HPV-derived lesions, which cause inflammation and dis-

ruption of the mucosal barrier. Consequently, HIV is able to invade the protective mucosa and 

infiltrating immune cells may serve as HIV targets [125, 180]. 

Data published by the lab of John Doorbar [103, 132, 135, 141] identify HPV E4, a protein 

involved in the regulation of the cell cycle and cytokeratin rearrangement, as being able to form 

amyloidic structures. Up to date there are several studies showing that semen-derived (SEM-

amyloids, SEVI), but also other amyloids (e.g. β-amyloid), are able to enhance HIV infection 

[74, 75, 78, 80, 83]. We hypothesized that HPV E4 could be another candidate exhibiting such 

a potential. Within this thesis, the role of HPV E4 as a potential enhancer of viral infection was 

characterized in detail. 

Testing the effect of HPV16 E4 and SEVI on HIV infection revealed similar enhancing potential 

of the two peptides in the range of ~100-fold (Fig. 20A,B). The specificity of the E4-mediated 

enhancement of infection was verified using inhibitors targeting HIV entry (anti-CD4 antibodies/ 

co-receptor-antagonizing AMD3100/ fusion inhibitor T20) (Fig. 21). Screening of a broad panel 

of HIV-1 lab, T/F strains as well as both HIV-1 and HIV-2 primary isolates revealed that neither 

lab adaption, nor differences between T/F and chronic viruses significantly affected their po-

tential to be enhanced by amyloids. Covering R5-, X4- and dual-tropic HIV strains as well as 

primary isolates, a possible restriction of enhancement related to co-receptor usage could be 

excluded. Besides variations between the different HIV-1 viruses concerning maximum infec-

tion and amyloid-mediated enhancement levels (Fig. 22A-D), titration of E4 and SEVI amyloids 

revealed individual characteristics for each strain/isolate (Fig. S5). Of note, within this screen 

infection enhancement levels of up to 137-fold for HIV-1 and of up to 3821-fold for HIV-2 

(Fig. 22, S6) were observed. Another observation of the screening is the inverse correlation of 
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virus input and the degree of infection enhancement by amyloids. Likely, this is due to the 

limited fraction of cells that are infectable within such a culture. This is in particular true for 

primary cells, which do not allow infection of the entire culture. Experiments using “spinocula-

tion” could only increase infection without amyloid enhancers, whereas enhancers led in most 

cases to infection of all susceptible cells independent of “spinoculation” (Fig. 23). In addition, 

these data suggest a maximum level of infection, which is defined by the cell type and HIV 

strain used. This plateau cannot be altered by the addition of E4 or SEVI. 

Critical for establishing infection in a new host is the viral load within the transmission fluid. 

Amyloid enhancers of viral infection like SEVI are thought to serve as some sort of catalyzers 

enabling sub-infectious virus loads to cause a productive infection [74]. In spreading infection 

experiments performed herein, HPV E4 was able to mediate this function and its potency was 

quantified by an endpoint titration/ TCID50 assay on primary activated CD4 T cells 

(Fig. 24, 25, S7). Using a panel of HIV-1 strains and primary isolates (HIV-1NL4-3, HIV-1CH058, 

HIV-113127, HIV-12005) an increase of the TCID50 of up to 161-fold was detected. In addition, 

the endpoint titration assays showed that the E4-mediated increase of infection does not re-

quire pre-incubation of the amyloid with the virus before adding to cells. This is in contrast to 

semen or seminal plasma, where small volume pre-incubation followed by dilution is essential 

to avoid toxicity effects [74]. Of note, also the conducted experiments benefited from this ap-

proach, because the small pre-incubation volume makes virus-enhancer interaction more effi-

cient.  

All experiments discussed so far, had been performed with E4 peptide derived from HPV16, 

which is the most extensively studied type since it accounts for around 55% of cervical cancers 

[108]. To test the potential of E4 peptides derived from other alpha-papillomaviruses to en-

hance HIV infection an E4 peptide panel containing HR (“high risk”)- and LR (“low risk”)-HPV 

types was designed. Here, all variants tested were able to enhance HIV-1 infection in a range 

of 2- to 184-fold, independent of their related cancer risk (Fig. 26). This is interesting, as it has 

been reported that the presence of several HPV types at transmission sites correlated with an 

increased risk of acquiring HIV [129, 181, 182]. Previous studies showed that administration 

of semen amyloids and SIV/HIV at anogenital sites without mucosal disruption failed to en-

hance transmission [78, 79]. This may indicate that the quality of the lesion, the related inflam-

mation, and influx of immune cells could differ dependent on the plethora of consequences 

inflicted by HPV type infections at transmission sites. Titration of the different HPV E4 variants 

provided additional insight into the dynamics of infection enhancement, with saturation of en-

hanced infection for some types (HPV 28, 57 and 70) occurring already at much lower peptide 

concentrations as observed for HPV16 (Fig. S8). In addition, the different variants were also 

analyzed for their physiochemical properties showing no apparent rule or correlation of infec-

tion enhancement with any of the evaluated parameters (Fig. S9). Specifically, although E4 is 
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cationic (based on the theoretical pI, Fig. S9B), no correlation between higher cationicity and 

infection enhancement, as found for semen-derived amyloids, could be detected. Neverthe-

less, the positive net charge is likely to be important to overcome the repulsion forces imposed 

by the negatively charged target cell as well as virus membranes [76]. Remarkably, E4 proteins 

of the different HPV types display a large heterogeneity concerning their amino acid (aa) se-

quence (Fig. S10), but are still all able to enhance HIV infection. This is likely due to the fact 

that all of them are composed of aa-sequence-independent, conserved domains, which medi-

ate this functionality (Fig. 34A) [132]. The fact that several HPV types may be present at trans-

mission sites, could result in an additive infection-enhancing effect of E4 proteins derived from 

several HPV types. Interestingly, reflecting a scenario potentially occurring during in vivo trans-

mission, co-administration of E4 and SEVI in vitro had neither inhibiting nor synergistic, but 

additive effects, reflecting rather the absolute concentration of amyloid critical for the observed 

infection enhancement (data not shown). Further studies combining E4 proteins from different 

HPV types could still reveal combinations, which act differently in their infection-modulating 

characteristics.  

Trying to elucidate the amyloid’s mode of action in more detail, confocal microscopy showed 

that E4 efficiently binds free HIV particles (carrying eGFP-Vpr) in a “sponge”-like fashion likely 

mediating an efficient presentation to HIV target cells, thereby increasing the likelihood of virus-

cell interaction (Fig. 27, 43, S11). Further assessment of the E4-mediated increase of virion 

binding/attachment to primary activated CD4 T cells revealed that HIV Env (HIV-1NL4-3 wt vs. 

ΔEnv) is of partial importance (Fig. 28). In previous infection experiments, E4 and SEVI 

showed optimal enhancement of infection at a concentration of ~10 µM. Here, SEVI-mediated 

virion binding behaved completely different, saturating at this concentration independent of 

Env. However, at a lower amyloid concentration (2.2 µM) also for SEVI a reduced enhance-

ment in the absence of HIV Env was detected (data not shown). Thus, similar Env-dependent 

effects could be observed for both amyloids. This suggests that the initial facilitating steps of 

the two amyloid enhancers may be different, but create a similar functional outcome. Enhance-

ment of virion attachment was also observed for other HIV strains tested (HIV-1NL4-3,  

HIV-1YU-2, HIV-1CH058, HIV-1CH077, Fig. S13).  

To further analyze the effect of amyloids on HIV entry, enhancement of virion fusion by either 

E4 or SEVI was analyzed using HIV-1 particles containing BlaM-Vpr (same set of strains as 

for the virion attachment assay). At the conditions chosen, a ~30-fold increase of virion fusion 

was detected. In addition, inhibitors targeting CD4 (anti-CD4 antibodies), the HIV co-receptors 

(MVC/ AMD3100) and fusion (T20) (Fig. 29, S16) were included, confirming the tropism of the 

different HIV-1 strains tested and the dependence of infection enhancement on canonical  
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Figure 43: Model of HPV E4-bound HIV particles and infection enhancement. (A) Confocal images 

of primary activated CD4 T cells incubated with HIV-1NL4-3 eGFP-Vpr alone or pre-treated with HPV16 
E4 (for detailed information see Fig. 27, S11). (B) Proposed model of HPV E4-mediated infection en-

hancement effect with (i) reflecting the virus alone scenario, with few virus particles reaching the cellular 
membrane which are often unable to attach, because of repulsion forces and low receptor density. In 
contrast, (ii) showing the virus pre-treated with E4 condition, where a huge E4 aggregate concentrates 

a large amount of virus particles and subsequently mediates efficient presentation to target cells. Con-
ceivably, negatively charged virus and cell membrane are forced to interact, thereby overcoming repul-
sion forces. 

steps of the virion entry process within this assay. Together with the data from experiments 

monitoring the effect of amyloid enhancers on infection levels in the presence of these inhibi-

tors (Fig. 21), these results indicate that infection in the presence of amyloids does not occur 

using an alternative entry pathway (CD4-independent, alternative co-receptors, endocytosis, 

etc.). Furthermore, these experiments showed that only blockage of CD4 binding or fusion 

(T20) completely inhibited fusion of amyloid-exposed viruses. The co-receptor-blocking drugs 

failed in most cases to inhibit virion fusion completely in the presence of amyloid enhancers. 
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However, the low remaining virion fusion/infection is negligible in comparison to the high virion 

fusion/infection (~40-/130-fold higher, respectively) in the absence of inhibitor 

(Fig. 21, 29, S16). The issue of targeting the co-receptors to prevent infection becomes even 

more relevant when looking at the dual-tropic T/F virus HIV-1CH077 used in this study, indicating 

that these kind of receptor antagonists are less efficient tools to treat or prevent HIV infection. 

This is contrast to the results published by Zirafi et al. [179], which suggested MVC as the only 

fully effective drug in the presence of semen-derived amyloids, when analyzing changes of 

IC50 values. Thus, also in the presence of amyloid enhancers, binding and entry inhibitors can 

effectively block both virion fusion and infection. This further supports the observation of an at 

least partial requirement of Env for enhancement of virus attachment and largely excludes 

alternative entry pathways for the infection of primary activated CD4 T cells.  

In the context of virion entry, two other points could play important roles for the infection en-

hancement mediated by the amyloids used. As described in chapter 1.1.6, HIV Env is not a 

static molecule that only undergoes structural changes after receptor engagement [36] and 

conformational changes at initial steps of virus-cell interaction could probably switch back. Fol-

lowing this idea, one may hypothesize, that the Env molecule itself with its bridging-sheet β-

sheet structures [32] could be stabilized by the β-sheets of the amyloids, thereby supporting 

co-receptor engagement and subsequent fusion. 

Finally, besides all assays within this thesis focusing on the effect of HPV E4 on infection with 

cell-free virus, in earlier experiments, colleagues examined the impact of this amyloid enhancer 

on cell-to-cell transmission. These experiments revealed enhanced transfer of virus particles 

from DC or LC to CD4 T cells, but not between T cells (data not shown). According to literature, 

virological synapse (VS) formation during cell-to-cell transmission (infected T cell to uninfected 

T cell), or infectious synapse (IS) formation (uninfected DC/LC, harboring HIV particles at-

tached to the cell surface in crypt-like structures, to uninfected T cell), can lead to enhancement 

of infection [8, 32]. Interestingly, when comparing these two infection models to the proposed 

mode of action of amyloid enhancers, some parallels can be observed. All three scenarios 

cause (i) a locally high concentration of virus particles, which is (ii) protected from the sur-

rounding cells, creating a microenvironment and which (iii) forces viruses and cells to interact. 

This is further reflected by the observation that in VS, IS, and amyloid-containing scenarios RT 

inhibitors and integrase inhibitors are dramatically reduced in their efficiency. This might be 

due to multiple virus particles infecting one cell overrunning of the block imposed by the drug 

[8] (data for amyloids not shown). 

 



   4 – Discussion 
 

 
 

108 

 

4.2 Relevance of E4-mediated enhancement of HIV infection under in vivo-like 

conditions 

Human papillomaviruses have adapted their replication cycle to the differentiation of keratino-

cytes and use the final step, the desquamation of the keratinocytes from the mucosa, for the 

egress of viral particles. HPV-infected keratinocytes contain large amounts of E4 protein (up 

to 30% of total protein) [132], most likely creating a scenario with dead cells and cellular frag-

ments covered with E4 at the mucosal surface, conceivably allowing interaction with incoming 

pathogens like HIV. Subsequently, accumulation of virus particles, with efficient presentation 

to target cells could take place. Indeed, the crosslinking of cytokeratin with E4 (chapter 1.2.3.4), 

important for the release of HPV particles, could serve as a scaffold, supporting the formation 

of large aggregates in an environment “protected” from extracellular proteases. This scenario 

seems plausible and argues against potential concerns that HPV E4 is not actively secreted. 

Another interesting finding is that although both viruses were found to infect the cervical mu-

cosa at several places, HIV as well as HPV seem to preferentially infect their targets at the 

transition zone from ecto- to endocervix [3, 115]. Whether similar preferences exist within other 

mucosal tissues has to be evaluated by future studies. Further relevance of this model was 

added by IHC as well as MELC images, obtained from collaborations with Prof. M. Dürst/ Prof. 

N. Brockmeyer, and Prof. A. Baur, respectively. These data showed not only the presence of 

large amounts of E4 at different transmission sites, but also proximity of HIV target cells and 

E4 within an HPV-induced lesion (Fig. 30, 44).  

During transmission of HIV, several parameters can potentially influence the infectivity of viral 

particles. In a thermostability assay, the “infectious half-life” of HIV particles incubated at 37°C 

was assessed. Here, HPV E4 was able to prolong the infectivity of a small virus inoculum by 

4.4-fold and resulting after 48 h of incubation still in a 10-fold higher infection rate than the 

untreated control with a 15-fold higher MOI (“high MOI” reference) (Fig. 31). These data are 

of great interest, because in that way the time span, during which HIV is able to establish 

infection may be dramatically increased. Under in vivo conditions, the E4-mediated increase 

of particle’s “infectious half-life” might be different due to the presence of other factors, includ-

ing proteases. The large E4 amyloids are probably able to withstand degradation, allowing 

infection enhancement. In this context, it would be also interesting, which infection levels could 

be achieved upon incubating different MOIs at 37°C for different time spans, and afterwards 

trying to boost their infectious potency with amyloid enhancers. Such experiments could give 

additional insight into the mechanisms of how E4 stabilizes virus particles but also enhances 

infection in general.  

Another factor of potential importance during HIV transmission is the pH within the different 

transmission fluids at the mucosae, e.g. an acidic pH in the vagina, a rather neutral pH in 

semen and a slightly basic pH at the anorectal mucosa [175-177]. The performed experiments 
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showed infection enhancement (72- to 140-fold) at all three pre-incubation pH conditions (pH 

4.2, 7.4, 8.9), with neutral and basic pH showing a slightly higher infection enhancement than  

 

                            

 

Figure 44: Model of HPV E4-mediated effect at transmission sites. (A) Immunohistochemical anal-

ysis of an HPV DNA-positive CIN lesion for the presence of E4 (brown staining). Data obtained in a 
collaboration with Prof. M. Dürst. For more detailed information, see Fig. 30. (B) Model of the mucosa 

with desquamating keratinocytes and an HPV-induced lesion with infiltrating HIV targets cells, E4 (brown 
cells/ extracellular aggregates) as well as incoming HIV particles. HPV E4 concentrates HIV particles in 

a “sponge”-like fashion and subsequently presents them to target cells, thereby increasing the likelihood 
to establish infection in the new host. 
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acidic pH (Fig. 32A). Notably, the different pH conditions apparently did not cause irreversible 

conformational changes, either to HPV E4 aggregates or to HIV particles. This hypothesis is 

based on the observation that the infection was carried out in RPMI medium, which neutralizes 

the pH previously used for pre-incubation of virus and E4, during the subsequent cell infection. 

The most physiological in vitro experiment for HIV transmission performed within this thesis 

was the pre-incubation of HPV16 E4 and HIV-1NL4-3 in the presence of vaginal fluid derived 

from different donors (Fig. 32B). This experiment combines several aspects: (thermo) stability 

of HIV particles in the presence of a transmission fluid, which likely contains proteases, im-

mune mediators (e.g. cytokines/ chemokines/ antimicrobial peptides) as well as potentially 

other pathogens, and a physiological pH. Furthermore, the vaginal mucus could influence the 

interaction between HIV and HPV E4, since it was shown to entrap HIV particles thereby pre-

venting infection [6]. In most tested donor fluids, amyloid-mediated enhancement of HIV infec-

tion was possible. For one donor two longitudinal samples were available, of which one allowed 

infection enhancement and the other did not, potentially indicating a different composition of 

the fluid, which could be due to one of the above listed parameters or also a factor related to 

the stage of the menstruation cycle. Few donor fluids did not support infection enhancement. 

Unfortunately, it was not possible to study details of the composition (e.g. by ELISA/ PCR to 

check for immune mediators/ pathogens) of the vaginal fluids, because of the small sample 

size. Concerning pH-dependent effects on infection enhancement, these experiments provided 

further information, since the pH indicator within the medium displayed an acidic pH (yellow 

staining of the medium), which was present from the step of adding the pre-incubation mix to 

the cell suspension until harvest of the experiment two days later. This suggests that not only 

E4/HIV pre-incubation can take place at acidic pH, but also the later steps of infection of target 

cells, still allowing enhancement. As in many previous experiments, differences in absolute 

infection as well as the starting infection were observed (comparing the different vaginal fluid 

donors) and are the cause of the variation in enhancement of infection levels. Thus, usage of 

these vaginal fluid samples is a very interesting tool, because they represent a relevant ap-

proach to mimic some of the conditions during transmission in vitro, but handling of these 

samples is generally difficult and permits no replicates due to limited sample volumes.  

As mentioned above, in experiments applying co-administration of E4 and agitated SEVI, only 

the total concentration of amyloid was important for the degree of infection enhancement, in-

dicating no obvious synergistic effect of the effective amyloids on each other. Interestingly, 

small amounts of E4 aggregates were able to seed SEVI amyloid formation in a dose-depend-

ent manner and caused increased infection (around 28-fold) (Fig. 33). Experimentally, these 

observations were made without shaking, which is likely more physiological and stands in con-

trast to the usual way of SEVI agitation. This type of “cross-seeding” has already been de-

scribed in the literature, e.g. for IAPP being able to seed Aβ, or bacterial Curli, which can 
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initiated the amyloid formation of SEVI [67, 150]. The data of this study, together with the re-

ported observations, indicate the importance of pathogen-associated amyloids, maybe also of 

other so far unknown ones, both directly and indirectly, e.g. by seeding of seminal amyloids, 

enhancing HIV infection at transmission sites. In addition, the genital tract itself contains sev-

eral amyloids, termed “functional amyloids”, which play important roles during reproduction, 

e.g. gametogenesis or maturation of sperm [69]. These “functional amyloids” are characterized 

by a fast transition from monomer to mature amyloids (see chapter 1.2.2), and potentially also 

support seeding of SEVI or pathogen-associated amyloids. 

Concerning amyloids at transmission sites, several other aspects might be interesting for future 

studies: for example, during “compartmentalized” replication of HIV at the mucosa [4] of the 

infected host, the presence of HPV E4 may lead to a higher viral load in the transmission fluid. 

Such a scenario could increase the likelihood of establishing a HIV infection in the new host, 

and would probably be boosted further by the presence of cellular debris and immune media-

tors, due to the high local virus replication. Another interesting point is raised by the recently 

published data on semen amyloids and their function during reproduction in helping to immo-

bilize and clear damaged sperm from the ejaculate, with the help of macrophages [96]. In the 

context of “functional amyloids”, it would be interesting whether E4 aggregates, with their pref-

erential location at the cervix, could also participate within the described selection process 

during reproduction. Of note, amyloids within the anogenital tract can play somewhat contro-

versial roles, with for example SEM amyloids exhibiting bivalent functions. Here, certain cleav-

age products have been reported to be antiviral, whereas others are able to enhance HIV 

infection [80, 83, 84]. Approaches trying to lower the amyloid load within the genital tract by 

applying inhibitors of amyloid formation or amyloid breakers [66-68] with the aim to reduce the 

risk of amyloid-related increase of HIV transmission have to be considered with care. Not least 

because, besides many pathogen-associated amyloids, also the diverse set of “functional am-

yloids” could be harmed, and hence might interfere with the fine-tuned functions as well as 

homeostasis of the anogenital tract environment. Based on the current study, a “broader” HPV 

vaccine would be beneficial, because it allows the specific abrogation of infection by HPV [103, 

112, 114], thereby lowering the abundance of E4 at transmission sites, without any side effects 

on the physiological amyloids. 

4.3 HPV E4’s structural requirement for infection enhancement 

The amino acid sequences of the E4 proteins from different HPV types show large variations, 

but share structural similarities, which are supposed to mediate the functions required during 

HPV replication. Generation of several structural as well as charge mutants, aimed at narrow-

ing down the residues relevant for HIV infection enhancement, allowed identification of the C-
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terminus. The minimal requirement could be linked to a mutant containing, with the multimeri-

zation and the β-aggregation domain, the 22 C-terminal amino acids of the HPV16 E4 protein 

(Fig. 34, 45, S17). In addition, the importance of charge for the E4-mediated enhancement of 

infection was supported by the use of alanine mutants. The role of positive/cationic net charge 

in enhancing HIV infection was already studied by the Roan et al., which analyzed semen 

amyloids and could block infection enhancement effects using anions [76]. Within this thesis 

 

       

 

Figure 45: HPV E4-mediated enhancement of HIV infection is dependent on E4’s C-terminus. E4 

is processed during keratinocyte differentiation (I.), which results in the deletion of almost the complete 
N-terminal keratin-binding motif (grey shading). Based on the N-terminally truncated E4 protein (II.) a 

set of mutants (III.) was created to study the relevance of the different structural domains in the context 
of infection enhancement. Enhancement of HIV infection is dependent on the C-terminus (III.) and can 

be mapped within the region of the amyloid fold (IV.). Schematics in (I.) and (IV.) are modified from 
Doorbar [132].  
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similar experiments were conducted, but due to the fact that anions interfere with HIV infection 

even in the absence of amyloid enhancers, were not included and will require further studies. 

A caveat of the current experimental setup was the usage of the same weight per volume of 

the peptides within the HPV16 E4 mutant panel in this screening. This might over- or underes-

timate the HIV infection enhancement in some cases, due to the variable length of the different 

mutants resulting in different molarities. Further studies will have to include this point, but the 

fact of gradual C-terminal deletion causing stepwise abrogation of infection enhancement and 

only specific subunits (or combinations) of the C-terminus leading to enhancement, supports 

the importance of this part of the peptide for E4’s function. Finally, the amino acid sequence-

related structural organization of E4 plays an important role, which is indicated by the loss of 

infection enhancement in the E4 scrambled peptide (and in part the E4 Ala mutant). The im-

portance of structure in addition to charge was supported by EM studies (data obtained in 

collaboration with Dr. M. Neßling and Dr. K. Richter (Core Facility Electron Microscopy, DKFZ, 

Heidelberg, Germany)) of the different HPV E4 variants and HPV16 E4 mutants. These data 

revealed a requirement of intermediately packaged amyloid structures, referred to as mor-

photype II and III, which correlated with HIV infection enhancement (Fig. 35).  

Taken together, the data discussed so far suggest that the HPV E4-mediated enhancement 

causes accumulation of HIV particles, which requires defined amyloid structure of the peptide, 

and is to some degree dependent on charge. This leads to enhanced attachment and fusion 

of viral particles, through the classical HIV entry pathway. Moreover, HPV E4 is able to in-

crease the duration of particle infectivity, can mediate enhancement of infection under different 

pH conditions as well as in vaginal fluid and induce amyloid formation of SEVI. 

 

4.4 HPV E4 as a potential tool for research 

HPV E4 was shown to potently enhance HIV infection, which could also be an interesting tool 

for research. For example, enhancement of retroviral infection during spreading infection 

(Fig. 24, 25), could be beneficial for cell-culture virus propagation assays. Moreover, amyloids 

could be useful for the isolation of viruses from serum/plasma or other body fluids. In particular, 

a more efficient isolation from transmission fluids may be possible, since the activity of HPV 

E4 was shown also in vaginal fluid (Fig. 32B). Incubation of patient samples with amyloids like 

E4, followed by spinning of the sample and subsequent addition to target cells could help to 

isolate otherwise “sub-infectious” virus loads. For most experiments performed within this 

study, virus-amyloid incubation was performed in a small volume, to make the interaction more 

efficient. In case of bigger volumes of body fluids, interaction between virus and amyloid can 

be facilitated by shaking the sample during pre-incubation, as performed for infection enhance-

ment experiments using cell culture supernatants of the HIV-2V18 primary isolate (Fig. 22E). 

Another interesting application of amyloid enhancers of infection could be their application in 
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viral outgrowth assays, where co-culture of target cells with leukocytes of an HIV-infected host 

could boost infection and thereby make the read out more sensitive.  

The E4 peptides used within this thesis were synthesized, and due to their length, were rather 

complicated and expensive. Here, the much shorter mutants HPV16 E4 (71-92) and E4 (63-

92) could be the solution, since those were also able to enhance HIV infection efficiently. As 

shown by previous studies for synthetic nanofibrils [183], such short peptidic fragments can be 

used in different experimental approaches, requiring for example enhancement of lentiviral 

transduction. 

 

4.5 Amyloid enhancers might alter the efficiency of therapeutic approaches 

Up to date there is still no potent active vaccine available but initial clinical studies using bNAbs 

(broadly neutralizing antibodies) to treat HIV-infected patients seem to be promising as a pas-

sive immunization approach (see chapter 1.1.7). HPV E4 is abundantly expressed at transmis-

sion sites, potentially increasing HIV loads in the transmission fluid of donors. In a worst-case 

scenario, additional HPV infections in the recipient could subsequently also increase the trans-

mission rates. In the context of PrEP, PEP, ART or passive immunization with bNAbs such 

altered conditions could be of great importance [1, 9, 63-65]. Within this study, (b)NAbs were 

kindly provided by the lab of Prof. F. Klein (Laboratory of experimental Immunology, Cologne, 

Germany) and tested with a small panel of different HIV-1 strains (HIV-1NL4-3, HIV-1YU-2, HIV-

149.5, HIV-1CH058, HIV-1CH077) to validate their functionality. Analyzing the general neutralization 

capacity of this bNAb panel in a pre-screen without amyloid enhancer demonstrated large dif-

ferences in neutralization potency dependent on the targeted epitope, with antibodies targeting 

the CD4 binding site (CD4bs, 3BNC117/ VRC01) being the most potent ones (Fig. 36).  

In the presence of the amyloid enhancers E4 and SEVI, still CD4bs antibodies were much 

more potent than the gp41/gp120 bridging antibody 8ANC195 (Fig. 37, S18). The latter al-

lowed no complete neutralization of infection with HIV-1NL4-3 and HIV-1CH058 at the highest an-

tibody concentration (5-fold higher than the highest concentration used of CD4bs antibodies) 

when E4 or SEVI were present. The overall potency of CD4bs antibodies reflects the im-

portance of the initial CD4-Env interaction during HIV entry, which is supported by the previ-

ously described data, using antibodies causing neutralization of CD4 on the target cell. Ac-

cording to the literature, 8ANC195 preferentially binds to closed Env trimers (leads to a stabi-

lization of this conformation), but it could also interact with several other Env conformations. 

Interestingly, it was described that this bNAb could also bind Env molecules, which are already 

bound to CD4, which “partially recloses the trimer or captures and stabilizes a pre-existing 

conformation” [53, 184]. Accordingly, there are at least two possible explanations for the ob-

served phenomenon: (i) shielding of the 8ANC195 epitope or (ii) stabilization of an altered 

conformation by the amyloid enhancers, which does no longer allow efficient antibody binding. 
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The latter could be due to high mobility of the Env trimer also in absence of CD4 and the 

potential stabilization of the Env bridging sheet [32, 36]. Specificity of the data obtained was 

supported by the 4-95 NAb, which had no effects.  

More detailed analysis of the data and calculating simplified IC50 values, revealed the most 

dramatic changes for the T/F virus HIV-1CH058 (4.2- to 16.1-fold, Fig. S19A) in the presence of 

amyloid enhancers. This is interesting, since current translational approaches also propose 

applicability of bNAbs in the context of PrEP. This preliminary finding suggests the need to 

include more T/F viruses in future bNAb screening projects. Experiments titrating the previ-

ously used binding and entry inhibitors in combination with the lab strains HIV-1NL4-3 and 

HIV-1YU-2 showed comparable tendencies, requiring 10- to 100-fold higher inhibitor concentra-

tions to block infection in the presence of amyloid enhancers (data not shown). Another way 

of evaluating potency of bNAbs in the presence of amyloid enhancers was to calculate the 

factors of infection increase in the presence of amyloids, when infection levels of the “virus 

alone” condition were reduced by at least 50%. This analysis highlighted the potency of the 

amyloid enhancers used, since for E4 up to 54-fold and for SEVI up to 45-fold higher infection 

was observed (Fig. S19B-D). Unfortunately, this way of analysis has a certain caveat. The 

concentration of antibodies targeting the CD4bs (0.1 µg/ml) was 100-fold lower than for the 

8ANC195 antibodies (10 µg/ml). Even though this underlines the high efficiency of bNAbs tar-

geting the CD4bs, it makes a direct comparison to 8ANC195 more difficult.  

Taken together, these data demonstrate that higher concentrations of bNAbs as well as bind-

ing and entry inhibitors are required in the presence of amyloid enhancers like HPV E4 or 

SEVI. These data are of importance for future in vitro screening trials analyzing the potency of 

new drugs and bNAbs. Consequently, such data should be included when choosing for exam-

ple bNAb panels for clinical studies. In addition, theses enhancers of viral infection could, due 

to more efficient replication of HI-viruses, potentially cause faster viral escape, supplying an-

other important argument for applying combined therapies using antibodies targeting several 

epitopes on Env (bi-/tri-mix) [49, 61, 63]. Future studies with broader panels of bNAbs will 

enhance our understanding of the mechanisms involved in both viral entry and functionality of 

amyloid enhancers of viral infection. 

4.6 Amyloids of various origin enhance infection with HIV, neurotropic and res-

piratory viruses 

Besides the anogenital tract, amyloids can play important roles within other tissues, frequently 

having regulatory functions, but can become pathologic under certain conditions (chapter 

1.2.1/1.2.2/1.2.4). After studying extensively the effect of E4 and SEVI on HIV infection, this 

last section will discuss results obtained from experiments using different neuro-associated 

amyloids (Aβ, α-synuclein) as well as the pancreatic IAPP. HIV-1 with its great sensitivity to 
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amyloid-mediated enhancement of infection was chosen for the initial screening, revealing in-

creased infection for all amyloids tested (Fig. 38). Interestingly, E4, SEVI as well as β-amyloids 

led to a comparable degree of enhancement of HIV infection (around 130-fold on primary ac-

tivated CD4 T cells), whereas the amyloids of α-synuclein and IAPP displayed a lower degree 

of infection enhancement (15- to 21-fold). 

Although HIV was primarily used as a sensitive experimental tool in this context, it is also 

known that HIV can enter the brain, which usually happens quite early after transmission, 

where it can infect a set of cell types. Among these, microglia are believed to play the most 

important role, but also astrocytes and oligodendrocytes have been shown to be susceptible 

to HIV infection. HIV replication in the brain has been reported to be associated with stroke, 

neurocognitive impairment and dementia. This might be caused by infection of the above cell 

types or the HIV-related endothelial dysfunction [9, 185]. Hence, extracellular aggregates of 

Aβ could support the HIV infection of different cells in the brain, thereby contributing to the 

described pathologies and potentially helping to establish the HIV reservoir in this compart-

ment [186]. Another interesting hypothesis could be related to the beta and gamma HPV types 

present in the oral cavity [102], which could lead to increased replication of HIV in oral lym-

phatic tissue, thereby increasing spread and systemic viral loads. Whether amyloid networks 

enhancing viral loads locally exist, and which viruses can benefit from them in vivo has to be 

evaluated by further studies. Also the less potent α-synuclein, which is not actively secreted, 

but might be set free by dying cells, could be of importance in this context, either by cross-

seeding of other amyloids or by increasing with its presence the local total amyloid concentra-

tion. 

For the Alzheimer’s disease-associated Aβ peptides and the Parkinson’s disease-related α-

synuclein several mechanisms of causing these diseases have been proposed [142-145]. A 

so far underestimated role in this regard could play neuro-associated viruses like HSV-1, 

HHV6/7 or MeV, which are so far mainly known to cause encephalitis [151, 154, 155, 187, 

188]. Analysis of infection data generated on HEK293T cells (up to 6.2-fold) and the neuronal 

cell line SH-SY5Y (up to 2.9-fold) exhibited much lower levels of infection enhancement when 

using these viruses than observed for HIV. Nevertheless, these results may be of physiological 

relevance, because the former viruses are more cytopathic aggressive in infection than HIV 

(Fig. 39, 40 each A,B,E). Interestingly, it was reported that HSV-1 and Aβ peptides seem to 

have an interplay during Alzheimer’s disease. Stress-induced HSV-1 reactivation was demon-

strated to cause accumulation of Aβ and brain damage. Other reports have indicated an anti-

viral role for β-amyloid [189, 190]. A typical observation, made for many of the viruses other 

that HIV used in this thesis is a “bell”-shaped pattern of infection enhancement in response to 

amyloid concentrations, exhibiting a distinct loss of infection enhancement when exceeding a 

certain amyloid concentration. This phenomenon is most likely not due to cytotoxicity (based 
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on not shown flow cytometry data) and might be a sign of virus entrapment within larger ag-

gregates. One can hypothesize a scenario in which an initially low virus infection, in vivo leads 

to a self-propagating interplay of virus replication and Aβ deposition. The resulting high amyloid 

concentrations could cause inhibition of further virus infection. Similar self-perpetuating mech-

anisms could be factor in the development of encephalitis caused by HSV-1 or MeV infection 

of the brain. Local presence of amyloids may in part explain reduced efficiency of antiviral 

therapies, as seen for HIV. Besides HSV-1, also other herpes viruses have been shown to be 

associated with neurological disorders (also epilepsy), including HHV6/7, and should be in-

cluded in future studies. The same is true for CMV, which is able to induce HSV reactivation 

by causing immune dysregulation, and whose enhanced infection in the presence of semen 

amyloids has been reported [86, 189].  

As described by others, pancreatic IAPP is associated with the loss of β-cells in diabetes type 

2, but could be also one of the missing links causing depletion of those very cells leading to 

diabetes type 1 [148, 149]. There are several reports indicating the presence of HHV6b but 

also enteroviruses in the pancreas of patients with diabetes [191-194]. Infection and replication 

of these viruses could be facilitated by the presence of IAPP, leading to the described tissue 

destruction. Neuro-associated amyloids could also play an important role in the pathogenesis 

of RABV infection, which could fuel the infection and damage of the brain after the retrograde 

transport. In this context, this thesis provided interesting findings revealing an up to 4.9-fold (α-

synuclein) infection enhancement on HEK293T cells, and up to 4.2-fold (Aβ40) on the neuronal 

cell line SH-SY5Y, using the lab-adapted rabies virus* strain N2C. The attenuated rabies virus* 

strain SAD L16 showed lower increase of infection on both cell lines (maximum 2.4-fold) 

(Fig. 39, 40 each C-E). Whether these data may suggest a preferential effect of specific amy-

loids depending on the virus has to be elucidated by future studies.  

The potential of these amyloids to enhance viral infections or transductions has to be taken 

into account, since both HSV and MeV are used in the clinic as therapeutic oncolytic viruses 

[160, 164, 165]. In addition, the usage of RABV to trace neuronal connections under lab con-

ditions has to consider these data also during experimental design and interpretation of data. 

Furthermore, E4 and SEVI could play important roles in the transmission (oral/sexual) and 

local replication of HSV-1/-2.  

Finally, E4 and SEVI amyloids were capable of enhancing also adenoviral infection up to 8.1-

fold, when applying AdV2 in combination with E4 (Fig. 41A, 42). Besides recapitulating the 

previously described “bell”-shaped infection enhancement pattern, the experiments suggested 

a saturation of infection (E4) or an entrapping of virus particles (SEVI)-phenotype (Fig. 41B). 

The potential entrapment of viral particles may be important for viruses other than HIV. This 

notion is based on the observation that the amyloid concentrations leading to the strongest 

infection enhancement are often lower for these viruses than for HIV. The actual reason for 
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this observation has to be examined in future studies. Although mechanistically interesting, 

since adenoviruses represent the only non-enveloped virus in this study, enhancement of in-

fection for this virus family may be of relevance in the respiratory tract. HPV has been reported 

to be present in the respiratory tract examining for example lung cancer or recurrent respiratory 

papillomatosis (RRP). Beta-papillomaviruses replicating in the oral cavity supplying desqua-

mating cells with large amounts of E4 may support infection in the respiratory tract by other 

viruses (see chapter 1.2.3.1) [102, 110, 118]. Preliminary data, excluded from this thesis, imply 

the presence of HPV E4 in respiratory samples (BAL, sputum, etc.), but have to be validated 

by more detailed studies. Taken together, the amyloid panel used in this thesis enhanced in-

fection of viruses studied, covering a broad spectrum of diseases, in a dose-dependent man-

ner. 

 

4.7 Outlook 

The present thesis intensively characterized properties of HPV E4 proteins as enhancers of 

HIV infection under in vitro as well as ex vivo conditions. HPV E4 was shown to increase 

attachment and fusion of HIV particles to target cells, which resulted in enhanced productive 

infection in vitro. Moreover, HPV E4 was able to mediate infection enhancement within a broad 

range of pHs, impair efficacy of bNAbs and induce seeding of non-agitated SEVI. Structural 

analysis revealed the 22 C-terminal residues of E4 to be crucial for HIV infection enhancement. 

Experiments performed in this thesis and by others show that E4-mediated infection enhance-

ment works also in more complex ex vivo systems, e.g. incubation of virus and HPV E4 in the 

presence of vaginal fluid prior to infection of target cells, or incubation of HIV and E4 prior to 

infection of HLAC (human lymphocyte aggregate culture), respectively. These ex vivo models, 

trying to mimic the complex milieu at transmission sites, are inevitable to validate in vitro data. 

Still, these models are unable to recapitulate the complexity of events involved in HIV trans-

mission. As reported for SEVI [74, 78, 79], there are unfortunately currently no appropriate in 

vivo models available, which would allow the validation of the obtained in vitro and ex vivo data 

on the HPV-mediated HIV infection enhancement. Here, longitudinal follow-up studies such as 

the “HISIS (HIV superinfection study) cohort” consisting of HIV-negative female bar workers, 

which were regularly checked for their HIV/ STD status by vaginal swaps, may increase our 

understanding. Retrospective correlative analyses of HIV status and vaginal co-infections such 

as HPV, will provide interesting insight into the potential cross-talk of STIs causing disease 

[195]. 

Besides providing a new perspective on possible limitations of current preventive and thera-

peutic approaches for HIV, this thesis gives an overview on the potential of amyloids of ano-

genital (E4/ SEVI), neuronal (Aβ40/Aβ42/α-synuclein) and pancreatic (IAPP) origin to increase 

infection of different viruses. This encompasses HIV, HSV, MeV, RABV and AdV, which all 



 4 – Discussion 

119 

can target multiple organs and are the causative agents of important diseases placing a con-

siderable burden on the human population. Their effect on viral infection together with the fact 

of many of the amyloids studied cause diseases likely on their own, underlines the importance 

of finding ways to eliminate accumulations of such amyloids. However, despite their patholog-

ical role many of these amyloids also have distinct physiological functions, making their overall 

depletion difficult. In contrast, the HPV vaccine (Gardasil®9), which is at the current stage able 

to target nine different HPV types (oncogenic and non-oncogenic, see chapter 1.2.3.1), offers 

in this context a promising tool, due to its potential of specifically preventing HPV infections, 

thereby also lowering the abundance of E4-derived aggregates at mucosal surfaces. Based 

on our study the development of new vaccination regimens with the goal of targeting the more 

than 40 genitally transmitted HPV types (https://www.cancer.gov/about-cancer/causes-pre-

vention/risk/infectious-agents/hpv-vaccine-fact-sheet) should be supported. Ongoing studies 

could provide a big step in this direction by generating more broadly acting vaccines containing 

fusion peptides of L1, which self-assembles into VLPs, and highly immunogenic fragments of 

the minor capsid protein L2 [112, 114]. Interesting in this context, will be the outcome of HPV 

vaccination on the potential decline of the HIV pandemic in retrospective field studies in sub-

Saharan Africa.  

The effect of the different amyloid enhancers analyzed in this study, will be of importance for 

future screening approaches as well as the subsequent design of clinical studies evaluating 

the potency of new drugs against transmission of HIV, but also other pathogens. In addition, 

viral outgrowth assays as well as isolation of new virus strains from patient material will be 

likely more sensitive when using amyloid enhancers. Further, the data on infection enhance-

ment of viruses than HIV could help to understand so far poorly understood pathologies. Here, 

the role of neuro-associated amyloids in combination with MeV and herpesviruses, supporting 

the progression of encephalitis, dementia as well as epilepsy, will have to be studied in more 

detail. Also, a better understanding of the impact of IAPP, with regard to viral (herpesvirus and 

enterovirus) infections, on the development of diabetes has to be elucidated. Finally, screening 

studies uncovering additional amyloids either originating from the host or pathogens (e.g. bac-

terial Curli) as well as deciphering potential network functions of different amyloids are re-

quired, and will potentially allow an improved treatment of different diseases. 
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5 Supplemental figures 

Figure S1: Overview of titrations of different HIV-1 lab strains, T/F strains and primary isolates. 

Donor pools of primary activated CD4 T cells (A-N) or SupT1.CCR5 cells (A-M) were infected with 
increasing virus inoculum of different HIV-1 lab strains (A-E), T/F strains (F-M) or primary isolates (N). 
48 h post challenge, infection levels were determined by measuring intracellular p24 (A-C, F-N) or GFP 
expression (D+E) by flow cytometry. Depicted are the arithmetic mean and standard deviation of three 

technical replicates. Data shown represent either one experiment (N), or are representative of two ex-
periments (A-M). Supplementary figure for Fig. 19. 
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Figure S2: Characterization of HIV-1 lab strains, T/F strains and primary isolates. (A) The stocks 

of the different HIV-1 lab strains and T/F strains were characterized with different assays: HIV reporter 
cell assay (TZM-bl cells, BCA titer), measurement of RT activity (SG-PERT) and p24 CA ELISA were 
performed. (B) Restriction digest of the proviral plasmids used to produce viruses characterized in (A). 

For restriction enzymes, see chapter 2.4.1.2. (C) p24 CA ELISA and HIV-1 reporter cell assay of virus 
stocks of HIV-1 primary isolates. Supplementary figure for Fig. 19. 



 5 – Supplemental figures 

122 

Figure S3: Infectivity and RT activity of the HIV-2V18 primary isolate stock. Expansion of the 

HIV-2V18 primary isolate was performed using donor pools of primary activated CD4 T cells. At the indi-
cated time points post inoculation, virus-containing supernatants were harvested and fresh target cells 
were added. Virus-containing supernatants were aliquoted and stored at -80°C. All collected virus-con-
taining supernatants were characterized for their infectious titer (A) and RT activity (B). 
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Figure S4: HPV16 E4 and SEVI are not cytotoxic to primary activated CD4 T cells and 

SupT1.CCR5 cells. A three donor pool of primary activated CD4 T cells (A) or SupT1.CCR5 cells (B) 

were incubated for 44 h with increasing concentrations of either HPV16 E4, or SEVI. Solvent controls 
were used (C). Next, Resazurin was added to cell suspension at a final concentration of 24 µg/ml fol-

lowed by incubation for four hours in the dark in a cell culture incubator. Fluorescence was measured 
using the Clariostar plate reader. Background was subtracted and data were normalized to untreated 

cells, which were set to be 100% viable. Depicted are the arithmetic mean and standard deviation of 
three technical replicates. Data shown represent one experiment (C) or are representative of two exper-
iments (A,B). Supplementary figure for Fig. 20. 
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Figure S5: Overview of concentration-dependent effect of HPV16 E4 and SEVI on enhancement 

of infection with HIV-1 lab strains, T/F strains and primary isolates. A low virus inoculum of different 
HIV-1 lab strains (A-E), T/F strains (F-M) or primary isolates (N-Q) was pre-incubated with either PBS 

(black bar), a titration of HPV16 E4 (0.12, 1.2, 6, 12 µM, light grey bars), or SEVI (0.22, 2.2, 11, 22 µM, 
dark grey bars). Next, donor pools of primary activated CD4 T cells were challenged for 48 h. Infection 
was quantified by flow cytometry by either intracellular p24 (A-C, F-Q), or GFP expression (D+E). As a 

reference, uninfected cells are shown (white bar). Depicted are the arithmetic mean and standard devi-
ation of three technical replicates. Data shown represent either one experiment (N-Q), or are repre-
sentative of two experiments (A-M). Supplementary figure for Fig. 22. 
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Figure S6: Effect of amyloid enhancers on infection of primary activated CD4 T cells with  

HIV-2V18 primary isolate. A donor pool of primary activated CD4 T cells was pre-treated with either no 

drug, CD4 blocking antibodies (100µg/ml), or isotype control antibodies for highest enhancer concen-

trations. Next, the HIV-2V18 primary isolate was incubated with either PBS, E4 (0.12, 1.2, 6, 12 µM), or 
SEVI (0.22, 2.2, 11, 22 µM) and then cells were challenged with the different mixes. Four hours post 
infection, a medium change was performed, of which the virus-containing medium was kept for analysis 
(“4 h input”). 72 h post infection (“72 h p. i.”), supernatants were harvested. “4 h input” and “72 h p. i.” 
samples were analyzed for RT activity. (A) Analysis of “4 h input” samples by SG-PERT. HIV-2V18 pri-

mary isolate was pre-incubated with either E4 (12 µM), or SEVI (11 µM or 22 µM) previously to infection 
of a donor pool of primary activated CD4 T cells. Cells were treated with either PBS, anti-CD4 antibodies, 
or isotype control antibodies prior to infection. (B) SG-PERT analysis of the “72 h p. i.” samples, showing 

RT activity of the virus alone (black bar) and in the presence of increasing concentrations of E4 (light 
grey) or SEVI (dark grey). Also, the background of the assay is shown (white bar). The factor of en-
hancement of infection is depicted on top of the respective histogram bar. (C) Overlay of SG-PERT data 

from “4 h input” (white symbols) and “72 h p. i.” (black symbols) samples. Depicted is the effect of E4 
(circles) and SEVI (squares) titrations on infection of primary activated CD4 T cells with HIV-2V18. Shown 
are the arithmetic mean and standard deviation of three technical replicates. Supplementary figure for 
Fig. 22. 
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Figure S7: Effect of amyloid enhancers in endpoint titration experiments of an HIV-1 lab strain, 

a T/F strain and a primary isolate. Images of ELISA plates before absorption measurement (A-F) and 
analyzed data sets (G-H). Primary activated CD4 T cells were incubated with either PBS, or HPV16 E4 

(12 µM final concentration on cells). Next, decreasing concentrations of the lab strain HIV-1NL4-3 (A,B,G), 
the T/F strain HIV-1CH058 (C,D,H) or the primary isolate HIV-12005 (E,F,I) were added. Infection experi-

ment was performed in quadruplicates. Five days post challenge, supernatants were harvested and p24 
positive wells were determined by p24 CA ELISA. Number of positive wells was plotted against the 
different dilutions (G-H). TCID50/ ml and subsequently factor of change of TCID50/ml comparing PBS- 

and E4-treated cells (indicated on top of the arrow in each graph) were calculated. Supplementary figure 
for Fig. 25. 
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Figure S8: Enhancement of infection with HIV-1 is not restricted to HPV16 E4. (A-N) Primary acti-

vated CD4 T cells (four donor pool) were challenged with HIV-1NL4-3 at different MOIs (0.4, 1.3, 13). In 
parallel, the lowest MOI of 0.4 was pre-incubated with either PBS, increasing concentrations of HPV E4 
from different variants (A-M), or SEVI (N) and used to infect the cells. 48 h post challenge, intracellular 

p24 staining was performed and infections levels were assessed by flow cytometry. Depicted are the 
arithmetic mean and standard deviation of three technical replicates. Data are representative of two 

experiments. Factor of enhancement of infection is plotted on top of respective histogram bars. Supple-
mentary figure for Fig. 26. 
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Figure S9. Physiochemical data on the N-terminally truncated E4 proteins of all human alpha-

papillomaviruses. E4 (E1^E4) amino acid sequence files were retrieved from the collection database 

“PaVE: the papillomavirus knowledge source“ (https://pave.niaid.nih.gov/) and truncated based on liter-

ature by John Doorbar [132]. Physiochemical analysis was done using the ProtParam Tool (therapueti-
cal). Depicted are the number of amino acids (aa, A), theoretical isoelectric point (pI, B), number of 
negatively (C) and positively (D) charged aa, net charge (E), instability index (F), aliphatic index (G) and 
the grand average of hydropathy (GRAVY, H). Marked with bigger letters and black graphs are E4 pep-
tides of HPV variants used in infection enhancement experiments. Supplementary figure for Fig. 26. 
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Figure S10. Phylogenetic comparison of amino acid sequences of HPV E4 (E1^E4), L1 and L2 

proteins of human alpha-papillomaviruses. Comparison of heterogeneity of amino acid sequences 

of HPV E4 (E1^E4), L1 and L2 proteins of human alpha-papillomaviruses. Sequences were obtained 
from PaVe (see above), aligned using Clustal Omega and trees drawn using TreeFig v1.4.3. Shown are 
the phylogenetic trees of full-length E4 (A), N-terminally truncated E4 (B), L1 (C) and L2 (C) proteins. 
Scales were matched in size. Supplementary figure for Fig. 26. 
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Figure S11: HPV16 E4 is able to concentrate HIV-1 particles locally. Cells of a donor pool of primary 

activated CD4 T cells were placed on poly-L-lysine-coated coverslips and incubated with eGFP-Vpr-
carrying HIV-1NL4-3 particles, which were pre-incubated either with PBS, E4, or E4 scrambled (12 µM 

final concentration on cells). After fixation, cells were stained on the coverslips for actin (light blue, Alexa 
Fluor 647 Phalloidin), E4 (red, anti-E4 NA7-AA5 + goat anti-mouse Alexa Fluor 568) and chromatin 
(dark blue, DAPI). Shown are the conditions with PBS (Virus only), E4 and E4 scrambled. The very left 
column shows the merge and directly next to it the higher magnification of the marked inset (Merge: 
Inset). Right to the two merge columns the different single channels for DAPI, actin, anti-E4 and NL4-3 

eGFP-Vpr of the magnified inset are depicted. Scale bars: 10 µm (inset: 2 µm). Supplementary figure 
for Fig. 27. 
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Figure S12: Characterization of eGFP-Vpr-carrying HIV-1 particles. Different HIV-1 lab strains (HIV-

1NL4-3wt, HIV-1YU-2), a mutant (HIV-1NL4-3ΔEnv) and T/F strains (HIV-1CH058, HIV-1CH077), all carrying 
eGFP-Vpr, were checked for their infectivity on a three donor pool of primary activated CD4 T cells (A) 
and the HIV reporter cell line TZM-bl (C, BCA titer). Depicted are the arithmetic mean and standard 
deviation of three technical replicates (A). p24 CA ELISA was performed to check for the presence of 
HIV-1 capsid protein in virus stocks (B). Supplementary figure for Fig. 28. 
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Figure S13: HPV16 E4 leads to enhanced virion attachment of different HIV-1 strains to primary 

activated CD4 T cells. Primary activated CD4 T cells were incubated with eGFP-Vpr-carrying  
HIV-1NL4-3wt (A), HIV-1NL4-3ΔEnv (B), HIV-1YU-2 (C), HIV-1CH058 (D), HIV-1CH077 (E) pre-incubated with ei-

ther PBS, HPV16 E4, or E4scr. (12 µM final concentration on cells). Indicated volumes of virus were 
used. Incubation of viruses with cells was done in the presence of T20 (50 µM) and at 20°C. After 
fixation, virion attachment was quantified by flow cytometry. Depicted are the arithmetic mean and stand-
ard deviation of three technical replicates. Supplementary figure for Fig. 28. 
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Figure S14: Characterization of BlaM-Vpr-carrying HIV-1 particles. (A) Gating strategy of the virion-

fusion assay for virion fusion-positive cells. For detailed description, see chapter 2.4.4.4. Shown are 
primary activated CD4 T cells (four donor pool), challenged for four hours with either PBS, or  
HIV-1NL4-3BlaM. As control, cells were pre-treated with the fusion inhibitor T20 (50 µM) before infection 
with BlaM-Vpr-carrying HIV-1NL4-3. Depicted are titrations of BlaM-Vpr-carrying HIV-1NL4-3 (B), HIV-1YU-2 
(C), HIV-1CH058 (D) and HIV-1CH077 (E) on primary activated CD4 T cells and SupT1.CCR5 cells. Virion 

fusion was quantified by flow cytometry. Depicted are the arithmetic mean and standard deviation of 
three technical replicates. (F) Infectivity of BlaM-Vpr-carrying HIV-1 lab strains and T/F strains on the 
HIV report cell line TZM-bl (BCA titer). Supplementary figure for Fig. 29. 
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Figure S15: Amyloid enhancers increase virion fusion of different BlaM-Vpr-carrying HIV-1 lab 

strains and T/F strains. A low inoculum of the HIV-1 lab strains HIV-1NL4-3 (A) and HIV-1YU-2 (B) as well 
as the T/F strains HIV-1CH058 (C) and HIV-1CH077 (D), all carrying BlaM-Vpr, was pre-incubated with either 

PBS (black bar), a titration of HPV16 E4 (0.12, 1.2, 6, 12 µM, light grey bars), or SEVI (0.22, 2.2, 11, 22 
µM, dark grey bars). Next, primary activated CD4 T cells (four donor pool) were challenged for four 
hours and virion fusion was analyzed by flow cytometry. As a reference, untreated cells are shown (white 
bar). Depicted are the arithmetic mean and standard deviation of three technical replicates. Data are 
representative of two experiments. Highest factor of enhancement of infection is indicated on top of the 
respective histogram bar. Supplementary figure for Fig. 29. 
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Figure S16: Binding and entry inhibitors can block enhancing effect of amyloids on virion fusion 

of HIV-1 particles. Primary activated CD4 T cells (four donor pool) were pre-treated with different bind-

ing and entry inhibitors: anti-CD4 antibodies and isotype control antibodies (100 µg/ml), AMD3100 (20 
µM), Maraviroc (MVC, 20 µM), or the fusion inhibitor T20 (50 µM). BlaM-Vpr-carrying HIV-1YU-2 (A+B) 

or HIV-1CH077 (C+D) were pre-incubated with either PBS, HPV16 E4/ E4 scr. (12 µM) (A+C), or SEVI 
(11 µM)/ SEVI Ctrl (25.9 µM) (B+D). Subsequently, mixes were used to infect the pre-treated cells. 

Indicated concentrations represent final concentration on cells. Virion fusion was quantified by flow cy-
tometry. Factor of enhancement of infection is indicated on top of the no drug condition. Depicted are 
the arithmetic mean and standard deviation of three technical replicates from one experiment. Data 
represent one experiment (C,D) of are representative of two experiments (A,B). (E) Shows an overview 
of virion fusion of the no drug condition of viruses used in Fig. 29A-D and supplementary Fig. S15A-D. 
Supplementary figure for Fig. 29. 
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Figure S17: HPV16 E4-mediated HIV infection enhancement is mainly restricted to the C-termi-

nus of the N-terminally truncated peptide. HIV-1NL4-3 was pre-incubated with the different mutants of 
the N-terminally truncated HPV16 E4 peptide at a concentration of 1 mg/ml (100 µg/ml final concentra-

tion on cells). Primary activated CD4 T cells were challenged with the different conditions and intracel-

lular p24 levels were quantified 48 h post infection by flow cytometry. Data are representative of two 
experiments. Depicted are the arithmetic mean and standard deviation of three technical replicates. 
Supplementary figure for Fig. 34. 
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Figure S18: Presence of amyloid enhancers can alter the potency of bNAbs in an epitope-de-

pendent manner. A low volume of either HIV-1NL4-3 (A,D), HIV-1YU-2 (B,E), or HIV-1CH058 (C,F) was first 

pre-incubated with a constant amount of either HPV16 E4 (12 µM, black), SEVI (11 µM, grey) or PBS 

(white), followed by incubation with the indicated dilutions of different bNAbs/ NAbs. Shown is the CD4 
binding site (CD4bs) bNAb VRC01 (A-C) and the NAb 4-95 as control (D-F). Depicted are the arithmetic 

mean and standard deviation of three technical replicates. Factor of enhancement of infection is indi-
cated on top of respective histogram bars at no antibody condition. Supplementary figure for Fig. 37. 
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Figure S19: Factors of change of IC50 values and factors of infection increase in the presence 

of amyloid enhancers when virus only condition is reduced by at least 50%. (A) Factors of change 

of IC50 values of the indicated bNAb-virus combinations in the presence of E4 or SEVI. Infection data 

were normalized and IC50 values based on four data points were calculated using non-linear curve 
fitting (GraphPad Prism). Based on this, factors of change of IC50 values were calculated. (B-D) Shown 
are the factors of infection increase of HIV-1NL4-3 (B), HIV-1YU-2 (C) and HIV-1CH058 (D) in the presence of 

amyloid enhancers when infection levels in virus only conditions were reduced by the antibodies by at 
least 50% (from Fig. 37). For the CD4bs antibodies 3BNC117 and VRC01 this was reached at a con-

centration of 0.1 µg/ml, for 8ANC195 at a concentration of 10 µg/ml. Supplementary figure for Fig. 37. 
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Figure S20: Amyloid enhancers used in infection experiments are not cytotoxic to cells types 

used in infection enhancement experiments. Primary activated CD4 T cells (three donor pool) (A), 
SupT1.CCR5 cells (B), HEK293T cells (C) or SH-SY5Y cells (D) were incubated with increasing con-
centrations of either HPV16 E4, SEVI, Aβ40, Aβ42, α-synuclein, or IAPP and incubated for 44 h (A+B) 

or 20 h (C+D). Solvent controls were used (E). Next, Resazurin (final concentration of 24 µg/ml) was 

added and incubated for 4 h in the dark in a cell culture incubator. Fluorescence (590 +/- 8 nm) was 
measured using the Clariostar plate reader. Background was subtracted and data were normalized for 
untreated cells, which were set to be 100% viable. Depicted are the arithmetic mean and standard de-
viation of three technical replicates. Supplementary figure for Fig. 38-40.
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