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1 Introduction 

 
Cardiovascular diseases were the most common cause of death in the year 2017, since 37,0 % 

of all deaths in Germany were due to chronic ischemic heart disease and acute myocardial 

infarction (heart attack) (DESTATIS, 2019). The only cure for patients with cardiac end stage 

disease is heart transplantation, but the number of available human donor organs is anywhere 

near from the clinical need (LUND et al., 2017; EUROTRANSPLANT, 2018; 

ORGANTRANSPLANTATION, 2019). The demographic change and the advanced possibilities of 

modern society and medicine have led to an increase of elderly persons, who are even more 

susceptible to cardiovascular diseases. Moreover, not only the increase of elderly, but also the 

growth of diabetic and overweight people adds to the expanding demand for donor organs. 

Heart transplantation is not only performed in adults, but in pediatric patients, too, and the 

annual number of transplants has risen since the first transplant was performed in 1967 

(ROSSANO et al., 2017). Regarding pediatric transplants, infants (under 1 year of age) have 

accounted for the greatest number, with more than 1600 infant transplants reported from 

2004 to 2016 to the Registry of the International Society for Heart and Lung Transplantation 

(ISHLT). In infants, the most common diagnosis leading to transplantation was congenital 

heart disease (CHD). Usage of mechanical circulatory support (MCS) has continued as bridging 

to a transplant, with ventricular assist devices being the primary support modality. 

Nevertheless, in patients with CHD, especially among infants, the use of MCS was rarer. Only 

12% of infants with CHD were bridged to transplant on some form of MCS (ROSSANO et al., 

2017). The ongoing sensitization problem is an issue, in pediatric patients as well as in adult 

patients. 

Here, xenotransplantation can be an alternative to the classic bridge solutions, since when pig 

organs are used as bridge, there should be no occurrence of this phenomenon (overviewed in 

COOPER et al., 2004). After all, the rising demand for deceased donor organs urges a solution 

with we cannot offer from one day to another, but the very promising results in the field of 

xenotransplantation over the last years promise, that this may be a feasible and perceptible 

alternative to allotransplantation. First steps may be the usage of pig organs as bridges to 

transplants with lesser complications. If this succeeds, pig organs may replace whole human 

organs and not only serve as a bridge. There are plenty of possible applications for xenografts, 

e.g. the heart, the kidney, the cornea, the skin, the lung, the small intestine, and even the liver. 
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To reach this goal, we have to conduct clinical trials with the safest pig organs available. In 

order to establish a xenotransplantation donor herd, which fits the strict requirements 

demanded by regulatory authorities and experts in the various fields of the 

xenotransplantation context, a hygiene management was established in our 

xenotransplantation donor herd as a first step towards safe pig organs, a clean and pathogen 

free herd, to provide safe donor pigs and therefore paving the way towards clinical 

xenotransplantation trials. 
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2 Literature 

 
2.1 Introduction to xenotransplantation 

 

2.1.1  Beginning of xenotransplantation 
 

The idea of xenotransplantation, the transplantation of organs, tissue and cells between 

phylogenetically different species is not new. The very first blood transfusion between a 

human being, who suffered from severe fever, and a lamb took place in 1667 in Paris 

(reviewed in ROUX et al., 2007). The French physician Jean-Baptiste Denis performed several 

such xenotransfusions, but the procedure was prohibited, when one of the patients died 

(reviewed in DESCHAMPS et al., 2005; reviewed in ROUX et al., 2007). 

The next step towards xenotransplantation to humans was the transplantation of skin in the 

19th century. There were two different techniques for skin transplantation, free grafts and 

pedicled grafts. In the latter case, grafts were only partially detached from the donor and 

applied to the recipient. During engraftment donor and recipient had to be fixed together until 

the graft was fully vascularized on the recipient’s transplantation site (GIBSON, 1955; COOPER, 

1997). The fact that many donor species had appendages on the skin, e.g. feathers, wool or 

fur led to the use of frogs as preferred donors (GIBSON, 1955; reviewed in MOU et al.,  2015). 

Another significant development was the first corneal xenotransplantation performed by 

Richard Sharp Kissam in 1838 from pig to human. This experiment was followed by various 

attempts which involved alternative donor species like dog, sheep and cows, whereas the first 

corneal allotransplantation took place only about half a century later in 1905 (reviewed in 

HARA & COOPER, 2010; reviewed in COOPER et al., 2015). 

A major step forward towards transplantation of whole organs was the development of blood 

vessel anastomosis by Nobelprize winner Alexis Carrel in 1912 (reviewed in DESCHAMPS et al., 

2005; reviewed in MOU et al., 2015). A student of Alexis Carrel, Serge Voronoff, was a pioneer 

in endocrinotherapy. He transplanted slices of chimpanzees’ testicles into the human 

recipient’s scrotum in June 1920. Voronoff aimed for a “rejuvenation” by his surgical 

procedure (AUGIER et al., 1996). Remarkably, Voronoff was also the first person who struggled 

with the limited availability of apes, which he overcame by building so-called ape houses in 
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French Guinea to rear apes for exporting (reviewed in DESCHAMPS et al., 2005; reviewed in 

ARISTIZABAL et al., 2017). Since then primates were inevitable for xenotransplantation, either 

as donors or as recipients in preclinical studies. 

 
2.1.2  Transplantation of whole organs 

 

In the 2nd half of the 20th century replacement of organs became a valuable treatment of 

patients suffering from end stage organ failure. Initially, pioneers in the field followed both, 

allo- as well as xenotransplantation approaches. 

Using the anastomosing technique introduced by Carrel, the kidney was the first solid organ 

to be xenotransplanted, because it is a paired organ, it is vascularized by one single artery and 

its function is proven by urine production (reviewed in DESCHAMPS et al., 2005). From 1963 

to 1964, Keith Reemtsma performed 13 chimpanzee to human kidney xenotransplantations. 

There, an immunosuppression regimen with azathioprine, actinomycin C, steroids and x- 

radiation was included for the first time. However, none of the patients lived longer than 4-8 

weeks. Only a 23-year old woman remained at good health for up to nine months until she 

suddenly collapsed and died (REEMTSMA et al., 1964). 

About 30 years after Reemtsma’s kidney xenotransplantations, in June 1992, Tom Starzl and 

his team did a baboon to human liver transplantation, with the 35-year old male recipient 

surviving for 70 days (STARZL et al., 1993). 

Nearly at the same time as Reemtsma, James Hardy, performed not only the first human lung 

allotransplant, but was also drawn to carry out the first clinical heart allotransplantation. As 

his patient was in dreadful and semi-comatose state and no allograft was available, Hardy 

transplanted a chimpanzee heart (HARDY et al., 1963; HARDY et al., 1964). The contradictory 

response to this heart xenotransplantation however discouraged Hardy from further tries. 

Only four years later the first successful cardiac allotransplantation was famously introduced 

in 1967 in Cape Town by Christiaan Barnard and his colleagues (BARNARD, 1967). Barnard also 

aimed at the usage of xenografts for the heterotopic cardiac xenotransplantations. He 

performed two, one with a baboon heart and one with a chimpanzee’s heart, mainly due to 

shortage of human donor organs (BARNARD et al., 1977). 
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Barnard’s work was followed by another famous clinical cardiac xenotransplantation in 1983. 

Leonard Bailey carried out the first cardiac xenotransplantation in a neonate, “Baby Fae”. She 

suffered from hypoplastic left heart syndrome, received a baboon heart and survived for 20 

days, as the graft experienced acute rejection (BAILEY et al., 1985; reviewed in MOU et al., 

2015). Additionally, the graft was ABO-incompatible, because the blood-type O is rarely seen 

in baboons (DIAMOND et al., 1997). Even the innovative and highly potent 

immunosuppressive agent cyclosporine could not prevent cross -species rejection (reviewed 

in MURTHY et al., 2016). Eventually, allotransplantation of human organs became clinic 

routine, while xenotransplantation remained a research objective. Nonetheless, the interest 

in xenotransplantation remained. The main reasons are the predicted extended availability of 

donors and the proposed planning of transplantations. Importantly, the role of nonhuman 

primates changed from donors to recipients in preclinical studies and the pig, especially if 

genetically modified, became the preferred organ source (WEISS, 2018). The main reasons are 

the lower ethical concerns, well-established housing conditions and their high reproductive 

capacity. 

The latter is highly relevant, as we are still battling shortage of deceased organ donors. In 

Germany for example, in 2018, 955 donors provided 3.113 organs, in contrast to 9.697 organs 

in demand (ORGANTRANSPLANTATION, 2019). For hearts we are facing a gap between 295 

donated organs and 719 required hearts (ORGANTRANSPLANTATION, 2019). Within the 

Eurotransplant member states there were 619 hearts from deceased donors used, but still at 

the end of 2018 there were 1158 people on the active waiting lists (EUROTRANSPLANT, 2018). 

Alternative mechanical circulatory assist devices have greatly improved with new design and 

better patient survival (KIRKLIN et al., 2013; KIRKLIN et al., 2015). However, the main 

limitations of the mechanical assist devices are gastrointestinal bleeding, followed by heart 

failure and arrhythmia, infections, thrombosis and power supply limitation (HASIN et al., 2013; 

PATEL et al., 2014). 

Furthermore, more patients would profit from a donor organ and they would profit from it at 

an earlier timepoint, if only there was greater availability (MOHIUDDIN et al., 2015). Before 

clinical application of xenotransplantation is realistic, however, solid and convincing 

preclinical pig-to-nonhuman primate studies are necessary. 
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2.1.3  Steps towards clinical trials 
 

The first hurdle to overcome in pig-to-nonhuman primate cardiac xenotransplantation (CXTx) 

was hyperacute xenograft rejection (HAR), which is a complement mediated vascular injury 

caused by pre-formed antibodies in the recipient against galactose α-1,3galactose (αGal) 

epitopes on the endothelium of the graft (BUHLER et al., 1999) (reviewed in YANG & SYKES, 

2007). These epitopes are synthetized by the enzyme α-1,3-galactoseyltransferase, encoded 

by GGTA1, which is functional in most of the species, including pigs, but not in Old World 

monkeys, apes and man (GALILI et al., 1988b; GALILI, 1993). Therefore, these species produce 

naturally anti- αGal antibodies, since they are exposed to αGal epitopes from gastrointestinal 

bacteria (GALILI et al., 1988a). The first idea to overcome HAR was to develop pigs expressing 

human complement regulatory proteins (MCCURRY et al., 1995; MCCURRY et al., 1996), like 

the membrane cofactor protein CD46 (DIAMOND et al., 2001) (hCD46), the membrane 

inhibitor of reactive lysis CD59 (DIAMOND et al., 1996) (hCD59) and the decay acceleration 

factor CD55 (LANGFORD et al., 1994) (hCD55). Additionally, pigs with various combinations  of 

these genetic modifications were established (BYRNE et al., 1997; COWAN et al., 2000; 

RAMSOONDAR et al., 2003). 

Rejection time of xenografts from pigs transgenic for human complement regulatory proteins 

varied from one week to three weeks, depending on whether immunosuppression agents 

were used or not (GODDARD et al., 2002; EKSER et al., 2009). Alternative approaches such as 

blocking the anti-Gal antibodies by in vivo removal (TANIGUCHI et al., 1996), intravenous 

infusion with carbohydrates (YE et al., 1994), conjugation of polyethylene glycol to αGal- 

oligosaccharides in order to achieve a prolonged action of inhibitors were tested (NAGASAKA 

et al., 1997). In addition, other glycoconjugates and combinations of them were compared to 

their ability to block anti-Gal antibody binding (BYRNE et al., 2002). Longest survival, with 139 

days, was achieved by administering immunosuppression with e.g. mycophenolate mofetil, 

methylprednisolone, cobra venom factor and anti-CD154 mAbs on top of continuous 

intravenous infusion with αGal glycoconjugates (KUWAKI et al., 2004). 

The ultimate solution for overcoming HAR, however, required the removal of the preformed 

antibody target, the αGal epitope. In 2002, the first four live heterozygous α-1,3-GGTA1 knock- 

out pigs were produced by somatic cell nuclear transfer (DAI et al., 2002; LAI et al., 2002) and 

shortly after, the production of homozygous GGTA1 knock-out (GTKO) pigs was reported in 
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2003 (PHELPS et al., 2003). The first promising results using these pigs as donors were 

published in 2005, with maximum graft survival of 179 days (median of 78 days) (KUWAKI et 

al., 2005). However, xenotransplantation experiments carried out by other groups showed 

varying survival times (AZIMZADEH et al., 2015), probably related to differences in the 

immunosuppression regimens (AZIMZADEH et al., 2015), the health status of the recipient as 

well as of the donor (MOHIUDDIN et al., 2012; HIGGINBOTHAM et al., 2015), or the infection 

status of certain pathogens, e.g. porcine cytomegalovirus (YAMADA et al., 2014). 

Another antibody mediated process, which had to be overcome is acute humoral xenograft 

rejection (AHXR) (reviewed in KLYMIUK et al., 2010). AHXR is also known as “acute vascular 

rejection” or “delayed xenograft rejection”, but AHXR reflects most closely the presumed 

pathogenesis of an antibody-mediated rejection, with likely involvement of complement 

(reviewed in SCHUURMAN et al., 2003). It appears that AHXR cannot be completely avoided, 

even if animals receive continuous treatment and even if the donor organ is from an animal 

transgenic for a human complement regulatory protein (reviewed in SCHUURMAN et al., 

2003). The multifactorial aspects of AHXR like endothelial cell activation and injury, destroying 

the anticoagulant features of the endothelium and so leading to thrombotic microangiopathy 

and disseminated intravascular coagulopathy are also reflected in histopathologic features. 

The best documented case is the description of AHXR in a pig-to-nonhuman primate kidney 

xenotransplantation model, where the histology fully resembled glomerular thrombotic 

microangiopathy (SHIMIZU et al., 2000). Several strategies to improve graft survival were 

discussed, like transgenic pigs for human ecto-ADPase (CD39), human thrombomodulin 

(THBD), endothelial protein C receptor (EPCR), heme oxygenase 1 and tissue factor pathway 

inhibitor (TFPI) (reviewed in D'APICE & COWAN, 2009). But the best success was achieved by 

pigs expressing human THBD gene (hTBM) under the control of the porcine THBD promoter, 

to overcome the impaired activation of protein C on the porcine endothelium (WUENSCH et 

al., 2014). Such pigs were generated in 2014 at our institute, on the background of a GGTA1 

knock-out (PHELPS et al., 2003) and human CD46 transgenic (LOVELAND et al., 2004) (hCD46) 

pig, according to our established work flows (KUROME et al., 2006; KLYMIUK et al., 2012b; 

RICHTER et al., 2012; KUROME et al., 2013; KUROME et al., 2015) (reviewed in AIGNER et al., 

2010b; reviewed in AIGNER et al., 2010a; reviewed in KLYMIUK et al., 2010). In vitro studies 

from different groups show beneficial effects of cells from pigs expressing hTBM (WUENSCH 

et al., 2014; BONGONI et al., 2016; BONGONI et al., 2017). 
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The beneficial effect of hTBM transgene expression can also be seen in few heterotopic 

cardiac xenotransplantation (hCXTx) studies, using hTBM transgenic pigs (ABICHT et al., 2015). 

Here, donor hearts transgenic for hTBM showed undoubtedly the best graft survival, with 

minimal thrombocytopenia and bleeding, compared to anti-CD154 treated recipients 

(MOHIUDDIN et al., 2014; MOHIUDDIN et al., 2016). Additionally to the findings, a very recent 

study compared the survival of grafts from pigs transgenic for GTKO.hCD46.hTBM 

(MOHIUDDIN et al., 2016) to those only transgenic for GTKO.hCD46 (SINGH et al., 2019), with 

the conclusion that all grafts show reduced survival in the absence of THBD transgene 

expression. 

As the median survival time in hCXTx is now 298 days long (minimum 159 days to maximum 

945 days) (MOHIUDDIN et al., 2016), it is more than 2-fold longer than recommended by the 

ISHLT committee on Xenotransplantation for the duration of life-supporting preclinical studies 

(COOPER et al., 2000). The next logical step was to bring orthotopic cardiac 

xenotransplantation (oCXTx) to the same level of survival time. But this procedure is far more 

complex and critical to perform, so there have been relatively few live supporting oCXTs 

studies (SCHMOECKEL et al., 1998; WATERWORTH et al., 1998; XU et al., 1998; VIAL et al., 

2000; BRANDL et al., 2005; BRANDL et al., 2007; MCGREGOR et al., 2008; MCGREGOR et al., 

2009). These studies used GTKO.hCD46 transgenic pigs or pigs only transgenic for human 

complement regulatory proteins, with and without αGal-oligosaccharides to block anti-Gal 

antibodies. 

Xenograft survival in oCXTx studies ranged from 1 to 57 days and in most cases the recipient 

died because of postoperative complications rather than graft rejection. Although the grafts 

showed limited histological signs of rejection, gene expression analysis revealed that the 

hearts were exposed to ongoing immune challenge and endothelial cell activation (BYRNE et 

al., 2011). These earlier studies, which did not employ the latest immunosuppression regimens 

from the hCXTx studies indicated, that oCXTx is not limited by cardiac function, but by 

challenges of immune rejection and postoperative management (MOHIUDDIN et al., 2015). 



2 LITERATURE 28 
 

 

2.2 Safety aspects 
 

2.2.1  Exogenous pathogens 
 

As post-transplantation infections are commonly seen as side effects in allotransplantations, 

they might occur in any immunocompromised transplant recipient. The risk of infections is 

based on the interaction of the immune system of the recipient and the virulence, dose and 

intensity of specific organisms that are present in the donor graft (reviewed in FISHMAN, 

2018). 

In allotransplantation, the prevention of donor-derived infections is achieved by donor 

screening and selection (NELLORE & FISHMAN, 2018). There are multiple existing guidelines 

for screening, but the time within which organs may be used is limited and so is 

microbiological screening from either serologies or nucleic acid tests. Furthermore, the data 

from samples taken for culture are only available after transplantation and therefore only an 

advice for choosing the fitting antimicrobial treatment of the recipients. Screening criteria may 

be adapted, respecting the geographic region, travelling history of donor and recipient, local 

microbiologic epidemiology or individual donor exposures, for example Chikungunya virus 

(DALLA GASPERINA et al., 2015; PIERELLI et al., 2018), West Nile virus (RAZONABLE, 2016; 

VELATI et al., 2017) or the severe acute respiratory syndrome (SARS). Sudden clusters of 

infections among recipients sharing a common donor, or when recipients develop a disease 

for which they had no exposure, may lead to the conclusion of donor-derived infections. 

Recent cases of dengue virus (GUPTA et al., 2016), hepatitis C virus (HCV) (ANONYMUS, 2011), 

and human immunodeficiency virus (HIV) (ANONYMUS, 2011) have shown, not only deceased 

organ donors pose a risk for such infections, but also living organ donors. Regardless of all the 

limitations, unexpected donor-derived infections are estimated to occur in 0,2% of solid organ 

transplant recipients (WOLFE et al., 2019) (reviewed in ISON & NALESNIK, 2011). 

With clinical xenotransplantation studies being more and more within the grasp of 

researchers, the demand for safe and nonhazardous donor pigs has, thus, become a widely 

discussed topic. These zoonotic infections, in the xenotransplantation context called 

“xenozoonosis” or “xenosis” to underline the unique epidemiology, comprise known as well 

as unknown pathogens. Therefore, the goal of pig husbandry for xenotransplantation is to 

exclude potential pathogens and to obviate the introduction of any new safety risks, as for 
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many pig pathogens the potential to cross the species barrier to humans in an 

immunocompromised patient is not known and for many pathogens microbiological assays 

have not yet been developed. 

But once validated, these assays can be run on a herd or on single donor animals. In contrast 

to deceased human donor organs, pigs can be screened on a routine basis and even more 

intensive. Eventually, screening schemes might be created to exclude organisms of risk to 

human transplant recipients, which allows the selection of swine, free of selected potential 

pathogens, termed “designated pathogen free” (DPF) (FISHMAN, 1997, 1998, 2001) (reviewed 

in FISHMAN & PATIENCE, 2004). Some pig pathogens have known zoonotic potential and are 

known to infect both, human and swine, like hepatitis E virus and influenza virus, many 

bacteria, like Salmonella species, Pasteurella species, Pseudomonas species, Yersinia species, 

Campylobacter species and Listeria monocytogenes and fungi, like Aspergillus species and 

Candida species. Bacterial and viral infections predominate the scientific literature in the risk 

analysis, though parasites are increasingly being recognized for their potential to influence on 

the outcome of a transplantation (FABIANI et al., 2018; LA HOZ & MORRIS, 2019). 

Toxoplasmosis, for example may be the most prevalent infection in human, with an estimated 

30-50% of the world’s population previously exposed (FLEGR et al., 2014). Toxoplasmosis is 

caused by a protozoan, called Toxoplasma gondii and infection can be foodborne, zoonotic, 

congenital, from blood transfusion or organ transplants from infected donors (Center for 

Disease Control, CDC). Screening of all organ donors, not only for allo- but also for 

xenotransplantation, and recipients is recommended. The most frequent transmission occurs 

in seronegative recipients from a heart of a Toxoplasma IgG-positive donor, unless they 

receive prophylaxis (LUFT et al., 1983; WREGHITT et al., 1989). 

Chagas, an infection with the protozoan parasite Trypanosoma cruzi, which is transmitted to 

humans by reduviid bugs of the subfamily Triatominae, causes one of the world’s most 

neglected tropical diseases, as listed by the World Health Organization (WHO) (COMMITTEE, 

2002; HOTEZ et al., 2007; LA HOZ & MORRIS, 2019). After feeding on the host, these blood- 

sucking insects release infectious trypomastigotes in their feces, which enter the host through 

the wound, conjunctiva or adjacent mucosa. But infection can also occur through vertical 

transmission, oral ingestion of contaminated food or water, as well as blood transfusion or 

organ transplantation (reviewed in BERN et al., 2007; RASSI et al., 2010). Considerations on 
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screening recipients and donors, should be taken, because of the overall epidemiologic shifts 

of diseases, as well as more and more people travelling to foreign countries and with more 

immigrants of foreign countries becoming possible organ donors in developed countries, thus 

bringing unknown diseases and pathogens with them. 

Babesia, another species of protozoan parasites, are transmitted through tick vectors. They 

are common in most domestic animals (overviewed in UILENBERG, 2006), as well as in 

humans. Healthy people may clear the infection without treatment, but the resolution of the 

infection depends on the innate and adaptive immune system. Therefore, infection with 

Babesia is more severe in persons under immunosuppression, asplenic patients or those 

infected with certain species (VANNIER & KRAUSE, 2012). 

Porcine cytomegalovirus (PCMV), a β- herpesvirus related to the human cytomegalovirus is 

acquired by piglets very early in life and leads to a lifelong seroconversion and latent viral 

infection (reviewed in MUELLER & FISHMAN, 2004). PCMV causes systemic disease and 

eventually leads to transplant failure of xenografts in preclinical studies (YAMADA et al., 2014), 

like human cytomegalovirus in allotransplantation. Whether PCMV can infect human cells is 

adversely discussed, with two studies showing on the one hand, possible in vitro infection 

(WHITTEKER et al., 2008) and the other study showing no evidence for this (TUCKER et al., 

1999). Available antiviral therapy, for example cidofovir and foscarnet may have therapeutic 

effect on PCMV viral load in achievable concentrations, but in these concentrations these 

agents often carry significant toxicity for the transplant recipients (MUELLER et al., 2003). 

Ganciclovir failed to prevent PCMV infection in various pig-to-baboon solid organ 

xenotransplantation models. The lack of therapeutic agents makes the establishment of PCMV 

free swine herd of utmost importance for xenotransplantation. 

Hepatitis E virus (HEV) is the main course of acute viral hepatitis worldwide (reviewed in 

CLEMENTE-CASARES et al., 2016). It is a pathogen of both, humans and swine and often 

associated with contaminated food or water. It is estimated that one-third of the world 

population has been exposed to the agent (REIN et al., 2012). Pigs, wild boars and deer are 

the reservoirs of HEV genotype 3 and 4 (reviewed in KHUROO & KHUROO, 2016). Most human 

infections occur through intake of undercooked or uncooked meat of infected species, like 

domestic pigs, especially pig liver and liver products. But also human to human transmission 
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is possible, through infected blood transfusions and blood component transfusions. Donor 

screening for HEV in allotransplantation is under serious consideration. 

Considering all the pathogens described here and all the potentially hazardous but yet 

unknown pathogens, the basis of producing donors for xenotransplantation will always be 

good veterinary practice, good laboratory practice and good manufacturing practice. Pigs 

might be bred under special conditions, in so-called biosecure environments, with hygiene 

sluices adapted to the level of biosecurity. The employees and caretakers have to be trained 

to follow certain steps when entering the housing, maybe showering with full cloth change 

afterwards, going through air sluices even in the housing, from the highest hygiene level to 

the lowest. Some authors suggest the use of routine vaccines (GAZDA et al., 2016) and a more 

or less wide screening program to achieve microbiological safety for clinical trials 

(GARKAVENKO et al., 2004a; GARKAVENKO et al., 2008a; WYNYARD et al., 2014; SPIZZO et al., 

2016; FISHMAN, 2018). 

 

 

Following, Table 1 shows a summary of important publications regarding screening concepts 

for pig herds bred for xenotransplantation. 

 

 
Fishman 

2018 
Spizzio 2016 

(IXA) 

Wynyard 
2014 

New Zealand 

Garkavenko 
2004a+2008a 

Bacteria     

Leptospira 
Serovar Tarrasovi 

  
 

Leptospira 
Serovar Hardjo 

  

 

Leptospira 
Serovar Pomona 

  
 

Mycoplasma 
hyopneumoniae 

  

 

Campylobacter 
  

 

Yersinia     

E.coli K88     

Salmonella spp.     

Mycobacterium 
tuberculosis 



   

Shigella     

nontuberculous 
mycobacteria 
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+ M.bovis     

Listeria 
monocytogenes 


   

Brucella suis     

     

Viruses     

MRV     

HERV-K     

PCV1     

PCV2    

PLHV    

PLHV2     

PCMV    

Rotavirus A-C     

Reovirus     

PTV     

PEVB     

PHEV     

HEV     

BVD     

SuHV-1 (AujD)     

PPV     

PRRSV     

EMCV     

PERV    

Adenovirus     

Rabies virus     

Influenza virus 
(human) 



   

Influenza virus 
(swine) 


   

     

Protozoa/ 
Parasites 

    

Toxoplasma 
gondii 

  
 

Ascaris suum     

Cryptosporidium/ 
Microsporidium 

spp. 

 


 


 


 

Echinococcus 
spp. 


   

Giardia spp.     

Isospora sp.     

Strongyloides sp.     

Trichinella 
spiralis 
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Trypanosoma 

spp. 


   

     

Fungi     

Aspergillus sp.     

Candida sp.     

Cryptococcus 
neoformans 



   

Histoplasma 
capsulatum 



   

 
 

Table 1 Pathogens that should be excluded from a designated pathogen free pig herd for 

xenotransplantation, adapted from references (GARKAVENKO et al., 2004a; GARKAVENKO et 
al., 2008a; WYNYARD et al., 2014; SPIZZO et al., 2016; FISHMAN, 2018). 

(MRV: mammalian orthoreovirus, HERV-K: Human endogenous retrovirus K, PCV1 /2: porcine circovirus 1/2, 

PLHV: porcine lymphotropic herpesvirus, PLHV2: porcine lymphotropic herpesvirus 2, PCMV: porcine 

cytomegalovirus, PTV: porcine teschovirus, PEVB: porcine enterovirus, PHEV: porcine hemagglutinating 

encephalomyelitis virus, HEV: hepatitis E virus, BVD: bovine virus diarrhea, SuHV-1 /AujD: suid alphaherpesvirus 

1/ Aujezsky’s disease, PPV: porcine parvovirus, PRRSV: porcine reproductive and respiratory syndrome virus, 

EMCV: encephalomyocarditis virus, PERV: porcine endogenous retrovirus) 
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2.2.2  Endogenous pathogens 
 

Discussing safety aspects, not only the exogenous pathogens are to consider, but also the 

endogenous pathogens, above all, the porcine endogenous retroviruses (PERVs). Considering  

that the human acquired immune deficiency syndrome (AIDS) viruses were zoonotic 

transmission of primate lentiviruses, the transmission characteristics of PERVs have to be 

studied very carefully (SHARP PAUL et al., 1995; GAO et al., 1999). 

According to the current classification of the International Committee on Taxonomy of Viruses 

(ICTV) PERVs belong the Retroviridae family, subfamily of Orthoretrovirinae, the genus 

Gammaretrovirus and the species Porcine type – C oncovirus (ICTV, 2019). 

Resembling virus-like particles as those seen in baby hamster kidney cell line (BHK-21) and 

murine cells infected with murine leukemia virus (MLV) PERVs were first described in 1970 

(BREESE, 1970). They are close related to MLV, feline leukemia virus (FeLV), gibbon ape 

leukemia virus (GaLV) and koala retrovirus (KoRV) (reviewed in DENNER, 2007; reviewed in 

DENNER, 2008a). Sequences similar to mouse endogenous retroviruses indicate that PERVs 

originated from mouse endogenous retroviruses about 7.4-8.3 million years ago, which 

correlates with the point of separation between pigs and peccaries (TONJES & NIEBERT, 2003; 

NIEBERT & TONJES, 2005; TANG et al., 2016). Recent scientific findings reveal, that 

retroviruses themselves are much more older, have ancient marine roots and originated over 

450 million years ago in the early Palaeozoic Era (AIEWSAKUN & KATZOURAKIS, 2017). 

PERVs are characterized by the possession of the enzyme reverse transcriptase (RT) (reviewed 

in LOPATA et al., 2018). RT transcribes genomic ribonucleic acid (RNA) into double stranded 

deoxyribonucleic acid (DNA). This double stranded DNA, which is then called the provirus, 

integrates itself unperceived into the host’s genome. This also affects the germ line of the 

host, which gives the provirus the possibility to be passed from one generation to another, 

thus becoming an endogenous retrovirus (ERV) (HAYWARD & KATZOURAKIS, 2015; 

HAYWARD, 2017) (reviewed in WEISS, 2006). The once into the germline integrated provirus 

is inherited as retroviral insertion to the host’s descendants following the Mendelian rules, 

which characterizes ERVs. 

This presents us with the challenge that PERVs cannot be eliminated by the standard hygiene 

measurements and methods, like cleaning, disinfection or air filtration but other methods  
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than currently employed in barrier facilities to exclude exogenous pathogens (SCHUURMAN, 

2009) (reviewed in SCOBIE & TAKEUCHI, 2009). 

With porcine kidney cell lines spontaneously producing C-type retrovirus particles 

(ARMSTRONG et al., 1971), the question if they can infect human cells arose (PATIENCE et al., 

1997). Followingly, the three replication-competent subfamilies PERV-A, PERV-B and PERV-C 

were identified (TAKEUCHI et al., 1998). The two subfamilies PERV-A and PERV-B were found 

of being capable to infect human cells in vitro (LE TISSIER et al., 1997). These two human-tropic 

PERVs can be found in all pigs (DENNER & SCOBIE, 2019). PERV-C on the other hand, is not 

ubiquitous in the pig population and can only infect pig cells. 

As it is not yet sure, if PERVs can infect human cells in vivo, they have to be seen as a thread 

to xenotransplant recipients, especially, as mentioned above, that it was shown, that PERVs 

can infect human cells in vitro (LE TISSIER et al., 1997; PATIENCE et al., 1997; TAKEUCHI et al., 

1998; SCOBIE & TAKEUCHI, 2009). But still it has to be kept in mind, that the envelop (env) 

gene determines the viral tropism, consequently the virus receptor (TAKEUCHI et al., 1998; 

LEE et al., 2006) and so far, only the receptor for PERV-A has been identified (reviewed in 

LOPATA et al., 2018). In pigs it is called porcine PERV-A receptor (PoPAR), in baboons, baboon 

PERV-A receptor 2 (BaPAR-2) and in humans are two known receptors, human PERV-A 

receptor 1 (HuPAR-1) and human PERV-A receptor 2 (HuPAR-2) (ERICSSON et al., 2003). 

HuPAR-1 expression is more widespread (YONEZAWA et al., 2008; MARCUCCI et al., 2009; YAO 

et al., 2010), but it is peculiarly enhanced in the brain and the salivary glands (NAKAYA et al., 

2011). Contradictory, the expression of HuPAR-2 is elevated in the placenta and the small 

intestine. Although expression of these receptors is nearly ubiquitous in most human tissues 

examined in the study by Ericsson et al., other in vitro studies have shown, that only few 

human and nonhuman primate cells were permissive for productive PERV-A infection, even if 

they were susceptible for PERV-A entry (WILSON et al., 2000; RITZHAUPT et al., 2002). It was 

shown that HuPAR-2 is on average 11-fold more functional than HuPAR-1 regarding PERV-A 

infection and this increase in infectivity was no matter of any difference in viral envelope 

binding, but in fact is due to the inherent biological variability of viral infection testing 

strategies (MARCUCCI et al., 2009). PERV transmission has been confirmed to human 

peripheral blood mononuclear cells (PBMCs) (CLEMENCEAU et al., 2001; SPECKE et al., 2001), 

primary endothelial cells and primary aortic smooth muscle cells (SPECKE et al., 2001), 

vascular fibroblasts and mesangial cells (MARTIN et al., 2000), human embryonic kidney (HEK) 

https://de.langenscheidt.com/englisch-deutsch/peculiarly
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293 cells (MARTIN et al., 1998; LEE et al., 2008) and normal dermal human fibroblasts (NHDFs) 

(KIMSA et al., 2013). Nonetheless, in vivo, PERV transmission has never been observed among 

patients after pancreatic islets xenografts (HENEINE et al., 1998; GARKAVENKO et al., 2004b; 

VALDES-GONZALEZ et al., 2010; MOROZOV et al., 2017), patients upon receipt of fetal porcine 

neuronal cells (FINK et al., 2000), recipients of porcine liver cell -based bioartificial liver (DI 

NICUOLO et al., 2005; DI NICUOLO et al., 2010), porcine skin graft recipients (SCOBIE et al., 

2013) and lastly butchers, who are on a daily basis in close contact with pig tissue (PARADIS et 

al., 1999; DENNER, 2008b; DENNER & TONJES, 2012). Therefore, it still is questionable if the 

human cells used in in vitro studies, for example the widely used HEK293 cells are 

representative, because of different virus receptors and different levels of expression in 

different tissues, which too, are very likely to be influenced by various factors, like dependency 

networks, that cannot be mimicked in cell culture in exact the same way as it is in a living 

organism. 

Recently, studies with inbred miniature swine and melanoma-bearing pigs described a human- 

tropic, replication competent, recombinant, high-titer PERV-A/C, which de novo integrated 

into the genome of the spleens of the pigs, but was not found in the germ line (BARTOSCH et 

al., 2004; WOOD et al., 2004; MARTIN et al., 2006; DIECKHOFF et al., 2007; DENNER, 2008c; 

KARLAS et al., 2010). PERV-A/C was transmitted to human cells in vitro, with the receptor 

binding domain of PERV-A combined with PERV-C related sequences (OLDMIXON et al., 2002; 

BARTOSCH et al., 2004). Most of the studies used PBMCs derived from miniature pigs, to 

demonstrate the transmission of recombinant PERV-A/C. These experiments have been 

repeated with PBMCs from the Auckland Islands pigs of New Zealand with the result, that no 

PERV was transmitted, either to human or to pig cells (GARKAVENKO et al., 2008c; 

GARKAVENKO et al., 2008b). In a preclinical pig-to-primate islet cell xenotransplantation study 

drawn out in 2008, where also cells from the Auckland Islands pigs were used, there was no 

evidence of virus transmission to the nonhuman primates (GARKAVENKO et al., 2008a). To 

simulate the situation after a possible xenotransplantation to humans in vitro, serial cell-free 

passages were performed on human cells, which resulted in the increase of the titer of the 

virus (WILSON et al., 2000; DENNER et al., 2003). This increase was associated with genetic 

changes in the viral long terminal repeats (LTR), which was similar when PERV-A was passaged 

(WILSON et al., 2000; SCHEEF et al., 2001). But when compared with the paternal PERV-A, 

mutations in the env gene were identified, that also might be responsible for high titers 
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(HARRISON et al., 2004). Furthermore, shows PERV-A/C an enhanced RT activity compared to 

PERV-A (WOOD et al., 2009). To avoid the assembly of recombinant, high-titer PERV-A/C it is 

strongly recommended to avoid pig strains carrying ecotropic PERV-C for breeding animals for 

xenotransplantation (DENNER et al., 2009). 

Several efforts to minimizes the risk of PERV transmission have been made, but all only had 

limited success. To increase viral safety by RNA interference, transgenic pigs expressing a 

PERV-specific small hairpin RNA were generated, in which expression of PERVs was  reduced 

(DIECKHOFF et al., 2008; RAMSOONDAR et al., 2009; SEMAAN et al., 2012). Another attempt 

was the design of vaccines (FIEBIG et al., 2003; KAULITZ et al., 2011) or the use of antiretroviral 

drugs (such as azidothymidine) (QARI et al., 2001; STEPHAN et al., 2001; SHI et al., 2007) 

(reviewed in DENNER, 2017) and PERV elimination by using zinc finger nucleases (SEMAAN et 

al., 2015) (ZFNs) and transcription activator-like effector nucleases (DUNN et al., 2015) 

(TALENs). 

A successful inactivation of all 62 copies of the PERV pol gene in the PK15 cell line (YANG et 

al., 2015) was achieved by usage of the RNA-guided clustered regularly interspaced short 

palindromic repeats (CRISPR)/CRISPR-associated (Cas) system (JINEK et al., 2012; CONG et al., 

2013; MALI et al., 2013). With this approach it was possible to effect a 1000-fold reduction of 

infectivity of PERV of human cells (YANG et al., 2015), which demonstrates, that PERVs can be 

inactivated in pig genomes for clinical application of pig-to-human xenotransplantation. With 

only little adaption, this technique was used to produce 37 PERV-inactivated piglets by somatic 

cell nuclear transfer (SCNT), from which 15 piglets remained alive to conduct long term studies 

to monitor the impact of PERV-inactivation and gene editing on animals (NIU et al., 2017). 
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2.3 Requirements claimed by regulatory authorities 
 

2.3.1  World Health Organization (WHO) 
 

In the documentation center on the WHO website, there are several guides, 

recommendations and regulations available, dealing with xenotransplantation and different 

topics regarding xenotransplantation. 

The “Guide on Infectious Disease Prevention and Management” from 1998 deals with the 

requirements for xenotransplantation (WHO, 1998). It discusses the possible dangers of 

introducing animal-origin infectious agents into human population and how to best avoid 

these and related dangers. It guides the reader through the process of developing a 

xenotransplantation infectious agent exclusion list and designing a surveillance program. 

First, the risk of exposure, the potential for introducing the infectious agent into the recipient, 

must be recognized and assessed. If a risk of exposure is given, the potential for establishment 

in the new host must be then considered and evaluated: Does the establishment only require 

direct contact or is adaption or genetic alteration required? Is the establishment restricted to 

the transplanted tissue or is there a possibility to disseminate throughout the new host? If this 

could be the case, the likelihood of disease production in the general population must be 

assessed (WHO, 1998). 

In Annex I a list is attached with suggested criteria for consideration when developing a 

xenotransplantation infectious-agent exclusion list. But any list must be drafted with 

professional judgement and cautious flexibility, to assure the list reflects the best possible 

integration of technical feasibility and risk acceptability. These two factors will, to a large 

extent, dictate the number and type of agents in the xenotransplantation context (WHO, 

1998). Further, should the list be generated by a consortium of experts representing all 

scientific fields involved in xenotransplantation. Periodic reviews and updates of the list 

should be out of question. Obviously, the generation of the specific agent exclusion list will be 

or is, an enormous but necessary task (WHO, 1998). 

The “Guide on Infectious Disease Prevention and Management” also discusses how to 

minimize the risk to public health, which includes, among others, the establishment and 

implementation of stringent selection requirements for prospective tissue and organ donor- 
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animals (WHO, 1998). This implies the maintenance, licensing of xeno-dedicated animal 

colonies, which are closely monitored in a surveillance program. 

To give the best possible infectious disease prevention, in the case of xenotransplantation, the 

surveillance program should not be restricted to be donor animals, but also a practical and 

clinically feasible recipient follow-up must be designed, to detect and contain unrecognized 

or emerging infectious agents (WHO, 1998). 

The “OECD/WHO Consultation on Xenotransplantation Surveillance: Summary Report” from 

2001 (WHO, 2001b) summarizes the topics, issues and considerations discussed at the 

OECD/WHO Consultation on Xenotransplantation Surveillance held in Paris on 4-6 October 

2000. The purpose was to bring together epidemiologists, infectious disease specialists, 

clinicians, industry, government and international organization representatives and others 

working in public health and xenotransplantation research to discuss the following topics: 

 “What is a xenogeneic infectious disease event? What are some of the  problems 

associated with the development of standardized case definition?” 

 “What can be learned about characteristics of already existing and successful 

surveillance systems that might be applicable?” 

 “What are particular characteristics associated with xenotransplantation that must 

be accommodated in any developed surveillance systems for xenogeneic disease 

events?” 

 “What ethical considerations will need to be incorporated into a xenogeneic disease 

event surveillance system?” 

 “What might be a practical framework for international  surveillance?” 

 
Concluding, it can be said that the broad view of participants was, that an international 

surveillance system for xeno-associated infectious disease events is needed, regarding the 

number of clinical trials and the potential risk of xenogeneic pathogens (WHO, 2001b). 

The “WHO Guidance on Xenogeneic Infection/Disease Surveillance and Response: A Strategy 

for International Cooperation and Coordination” (WHO, 2001a) aims at facilitating the 

considerations for development and implementation of an international xenogeneic infection 

or disease event surveillance network for efficiently and effectively detecting, reporting and 

responding to such events using internationally harmonized, cooperative and coordinated 

surveillance activities (WHO, 2001a). 
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The resolution WHA57.18 of the 57th World Health Assembly (WHO, 2004) urges member 

states to carry out xenogeneic transplantation only when effective national regulatory control 

and surveillance mechanisms are in place, to cooperate in the formulation of 

recommendations and guidelines and to support international collaboration and coordination 

for the prevention and surveillance of xenogeneic infections. But it also requests the Director- 

General, amongst others, to provide technical support in strengthening capacity and expertise 

in the field of xenogeneic transplantation. 

This was followed by first Xenotransplantation Advisory Consultation in Geneva in 2005 (WHO, 

2005), succeeded by the “First WHO Global Consultation on Regulatory Requirements for 

Xenotransplantation Clinical Trials”, whose recommendations were published as the 

“Changsha Communiqué” in 2008 (WHO, 2009). 

The “Second WHO Global Consultation on Regulatory Requirements for Xenotransplantation 

Clinical Trials” was held in Geneva, Switzerland in October 2011 (WHO, 2011) and deals, 

among other topics, with the current status of xenotransplantation science and practice and 

the discussion and refinement of draft guidance for infectious disease surveillance, prevention 

and response. 

In collaboration between WHO, International Xenotransplantation Association (IXA), and the 

Third Xiangya Hospital of the Central South University, Changsha, Hunan, China, the 10‐year 

anniversary of the “Changsha Communiqué” was celebrated with the organization of the 

“Third WHO Global Consultation on Regulatory Requirements for Xenotransplantation Clinical 

Trials” in December 12‐14, 2018 (HAWTHORNE et al., 2019). The proposed revisions of the 

WHO documents resulted in the formulation of the draft “Third WHO Global Consultation on 

Regulatory Requirements for Xenotransplantation Clinical Trials, The 2018 Changsha 

Communiqué.”, which was submitted to WHO in February 2019 for WHO and World Health 

Assembly consideration. If it obtains approval, the 2018 Changsha Communiqué will be posted 

on the websites of WHO, IXA, and The Transplantation Society (TTS), and published in 

Xenotransplantation (HAWTHORNE et al., 2019). 
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2.3.2  Food and Drug Administration (FDA) 
 

The U.S. Food and Drug Administration (FDA) currently has three guidance documents 

regarding xenotransplantation published. 

The “Guidance For Industry: Public Health Issues Posed by the Use of Nonhuman Primate 

Xenografts in Humans” provides guidance to industry and researchers concerning the use of 

nonhuman primates as the source of cells, tissues and organs, the potential public health risks 

posed by nonhuman primate xenografts, the need for further scientific research and 

evaluation of these risks, particularly infectious agents and the need for public discussion 

concerning these issues (FDA, 1999). 

This guidance was followed by the U.S. Public Health Service (PHS) “PHS Guideline On 

Infectious Disease Issues in Xenotransplantation” in 2001 (FDA, 2001), which was developed 

to identify general principles of prevention and control of xenogeneic infectious diseases that 

may pose a risk to public health. It addresses the public health issues related to 

xenotransplantation and recommends procedures to minimize the risk of transmis sion of 

infectious agents to the recipients, medicinal personnel, close contacts and the general public. 

The recommendations given in the “Guidance for Industry: Source Animal, Product, 

Preclinical, and Clinical Issues Concerning the Use of Xenotransplantation Products in 

Humans” by the Food and Drug Administration (FDA), from 2003 and updated in 2016 claim, 

among others, that you should only derive animals from closed herds with documented health 

screening programs, that are accredited by the Association for Assessment and Accreditation 

of Laboratory Animal Care (AAALAC) (FDA, 2003). Furthermore, should the facilities not be 

built near any other agricultural or manufacturing facilities, as they are a source of infection. 

You should provide standard operation procedures (SOPs) for any activity that has in the 

broadest sense to be done with the animals or the animal facility. For example, to define the 

DPF status of the donor animals and the facility, initial screening and routine monitoring have 

to be done and therefore protocols and SOPs of these monitoring schemes should exist. In 

order to establish a list of pathogens to be screened for and which diagnostic test is 

appropriate, the FDA suggest to consult experts, such as infectious disease consultants, 

virologists, microbiologists, accredited microbiological laboratories, and veterinarians (FDA, 

2003). 
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Also, the storage and delivery of feed, water and any other consumables should be described, 

as well as it is advised to keep recordkeeping of the manufacturer, batch numbers in order to 

allow backtracking (FDA, 2003). 

SOPs for caretakers should include entry and exit procedures, clothing requirements and all 

other interactions that may take place between them and the animals. A documented training 

program for the caretakers and personnel according to current good manufacturing practices 

should regularly take place (FDA, 2003). 

Those are just few examples of the recommendations given in the “Guidance for Industry: 

Source Animal, Product, Preclinical, and Clinical Issues Concerning the Use of 

Xenotransplantation Products in Humans” by the FDA, which guides through the whole 

product manufacturing process, starting with the source animal and also advising on how to 

store the samples. 

 
2.3.3  European Medicines Agency (EMA) 

 

The “Committee For Medicinal Products For Human Use (CHMP)” from the European 

Medicines Agency (EMA) issued the “Guideline On Xenogeneic Cell-Based Medicinal Products” 

in 2009 (EMA, January 1, 2010). The guideline should be read together with the introduction 

and general principles (4) and part 4 of the Annex I to Directive 2001/83/EC, the Regulation 

(EC) No 1394/2007 on Advanced Therapy Medicinal Products and the Directive 2001/18/EC, 

when cells are obtained from genetically modified animals. First, the authors define 

xenogeneic cell-based therapy as the use of viable animal somatic cell preparations, which are 

suitably adapted for either implantation/infusion into a human recipient or extracorporeal 

treatment by bringing animal cells into contact with human body fluids, tissue or organs, 

where the principal objective is reconstitution of cell, tissue or organ functions (EMA, January 

1, 2010). This guideline is an annex to the guideline EMEA/CHMP/41086/2006 and deals 

specifically with scientific requirements unique for xenogeneic cell-based medicinal products . 

The main issues of the “Guideline On Xenogeneic Cell-Based Medicinal Products” are the 

source and the testing of the animals, manufacture and quality control and non-clinical and 

clinical development of xenogeneic cell-based medicinal products. Furthermore, it deals with 

public health aspects to ensure proper surveillance for infections, especially zoonoses. Sources 

for xenogeneic material can be non-transgenic, transgenic and genetically-modified animals. 
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Regarding quality and manufacturing aspects, there are three critical points given in the 

guideline: the source animals, the procurement and the processing of the organs, tissues and 

cells (EMA, January 1, 2010). The manufacturing facility should be good manufacturing 

practice (GMP) approved and separated from the animal facility. The health status of the 

animals should be monitored and documented, with special attention to organ and tissue 

specific pathogens. Further should the origin of the animals be fully described, e.g. typically 

for consumption or for laboratory use and they should be at least be specific pathogen free 

(SPF) and held under SPF conditions. The cells, tissues  and organs for manufacturing 

xenogeneic cell-based medicinal products should only be produced from animals bred in 

captivity, in a barrier facility, and only bred for this special purpose. Under no circumstances 

should cells, tissues and organs from wild animals or from abattoirs be used. Additionally, the 

tissue of founder animals should not be used. 

Cells, tissues or organs may be obtained from genetically modified animals, or may be 

obtained by ex vivo genetic modification. In any case, genetically modified animals must be 

fully characterized and have to comply with applicable European legislation. Animal cells from 

genetically modified animals used as active substance should comply with “Note for Guidance 

on the Quality, Preclinical and Clinical aspects of Gene Transfer Medicinal Products 

(CPMP/BWP/3088/99) (EMA, January 1, 2010). The guidance on risk assessment of gene 

therapy medicinal products in the guideline EMEA/CHMP/GTWP/125491/2006 can be useful 

for xenogeneic cell-based medicinal products as well. 

SOPs for the following procedures should be installed to avoid incidents that negatively affect 

the health of the herd or colony and thus could negatively impact on the barrier facility or the 

SPF status of the herd (EMA, January 1, 2010) : detailing the housing of the animals and the 

containment conditions. Water, bedding, source and handling of feed, including feeding. Entry 

and exit of the animals, animal transportation, identifying individual animals and recording 

their movements to, through and out of the facility. Disposition of animal tissues and dead 

animals and removal from production and disposal of the animals and their by-products. 

Performance and monitoring of health screening and isolation and quarantine. 

The “Guideline On Xenogeneic Cell-Based Medicinal Products” advises to use protocols for 

monitoring the herd and to introduce a herd health surveillance system with a complete 

documentation of all veterinary care that the animals received. The specific screening routines 
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should include physical examination and laboratory tests, where all infectious agents known 

to potentially infect the source species have to be considered. It recommends that there is no 

use of any antibiotics or vaccines in the source animals. But, if treatment of animals with any 

medicines is necessary for animal welfare reasons, the impact on the product should be 

evaluated and discussed with the competent authority. Any use of vaccines must be justified 

(EMA, January 1, 2010). 

As mentioned above the testing programs for source animals should be tailored for the 

purpose of the product and updated periodically to reflect advances in the knowledge of 

infectious disease. Adequate and validated diagnostic assays and methods have to be 

available before initiating clinical trials. Some pathogens to be considered are given in the 

“Guideline On Xenogeneic Cell-Based Medicinal Products”, e.g. endogenous retroviruses (ERV 

e.g. porcine ERV), infectious agents of humans relating to receptors expressed by transgenic 

animals (CD46 (membrane cofactor protein, MCP-1) as the cell-surface receptor for measles 

virus), antibiotic-resistant bacteria, geographically important infectious agents such as 

Trypanosoma cruzi or African Swine Fever. 

Adequate archiving is another crucial point to be discussed, because long-term archiving of 

tissue samples, cell preparations and paper records will be necessary (EMA, January 1, 2010). 

Records should be kept for 30 years, which makes an established and validated archiving plan 

inevitable, to ensure traceability and the possibility for look-back. All records concerning the 

herd, e.g. feeding and health records, source animal health documentation, should be 

archived for a period at least equal to that of the archived tissue samples. 

Giving a very good overview of the regulatory landscape, especially of cell therapy products in 

Europe, for example pancreatic islets and hepatocytes, the Review “Regulatory aspects of 

clinical xenotransplantation” from Henk-Jan Schuurman (reviewed in SCHUURMAN, 2015) has 

to be mentioned at this place. 
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2.3.4  Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) 

The Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) 

International is a private, nonprofit organization that promotes the humane treatment of 

animals in science through voluntary accreditation and assessment programs (AAALAC, 2019). 

It is proposed that facilities should achieve accreditation by AAALAC (reviewed in 

SCHUURMAN, 2015). By earning a voluntary AAALAC accreditation, the companies, 

universities, hospitals, government agencies and other research institutions show their 

commitment to responsible animal care and use (AAALAC, 2019). This is done through the 

accreditation process in which research programs demonstrate that they meet the minimum 

standards required by law, and are even going the extra step to achieve excellence in animal 

care and use. To acquire accreditation the “Guide for the Care and Use of Laboratory Animals” 

shall serve as a basic guide to the establishment of specific standards. 

In the “Guide for the Care and Use of Laboratory Animals” one of the key-concepts is, that all 

the people working, using, producing or caring for animals for testing, research or teaching 

must assume that they are responsible for the well-being of these animals (NRC, 2011). It 

establishes the minimum ethical, practice and care standards for researchers and their 

institutions. 

In chapter one, laboratory animals are defined as any vertebrate animal, e.g. traditional 

laboratory animals, agricultural animals, wildlife and aquatic species, produced for or used in 

research, testing or teaching (NRC, 2011). All personnel involved with the care and use of 

animals must be adequately educated, trained and/ or qualified in the basic principle of 

laboratory animal science to help ensure high-quality science and animal well-being. The 

opportunity and the support for regular professional development, training and continuing 

education should be given by the institutions (COLBY et al., 2007). 

Further, in chapter two with the heading “Animal Care and Use Program”, it is stated, that the 

selection of appropriate housing systems for the experimental animals should be carried out 

by specialists, as it needs professional knowledge and depends on the expected hazards and 

experiments that will be carried out. When experiments involving hazards are performed, 

special attention should be given to procedures for animal care and housing, storage and 

distribution of the agents, dose preparation and administration, body fluid and tissue 
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handling, waste and carcass disposal, items that might be used temporarily and removed from 

the site and of course personnel protection (NRC, 2011). 

Chapter three deals with environment, housing and management. Here the aspects like 

temperature, humidity, ventilation, air quality and illumination are described and the 

importance of environmental enrichment to enhance the animal well-being is stressed-out. It 

is further described how to estimate the space needs of animals correctly and what factors 

need to be considered regarding space estimation. The same issues are discussed for aquatic 

animals. 

Chapter four, “Veterinary Care”, is dedicated to the employment of an adequate veterinary 

care program, which consists of the assessment of animal well -being and the effective 

management of: animal procurement and transportation, preventive medicine, clinical 

disease, disability or related health issues, protocol-associated disease, surgery and 

perioperative care, anesthesia and analgesia and euthanasia (NRC, 2011). 

The last chapter deals with the physical plant itself and gives advice on how to plan, design, 

construct and properly maintain an animal experimental facility. It discusses the advantages 

and disadvantages of a centralized animal facility versus a decentralized facility and illustrates  

what has to be considered when special facilities, like a surgery, imaging or a whole body 

irradiation unit have to be built (NRC, 2011). 

As pigs are the preferred donor species in xenotransplantation, another very useful guide for 

animal housing, especially for agricultural animals is the “Guide for the Care and Use of 

Agricultural Animals in Research and Teaching” by the Federation of Animal Science Societies 

(FASS) (FASS, January 2010). In the USA, the “Guide for the Care and Use of Laboratory 

Animals” by the National Research Council (NRC) (NRC, 2011) and the “Guide for the Care and 

Use of Agricultural Animals in Research and Teaching” (FASS, January 2010) are the two 

guidelines which may be utilized when managing programs engaged in research, testing, and 

teaching with agricultural animals (SWANSON et al., 2018). Also, chapter 23 “Agricultural 

Animals” from the book “Management of Animal Care and Use Programs in Research, 

Education, and Testing” (2nd edition) by Janice C. Swanson, Larry T. Chapin, and F. Claire 

Hankenson provides an overview of the considerations regarding the care and use of 

agricultural animals, their environment and housing and it highlights the available resources 

to assist program managers, veterinarians, and research staff (SWANSON et al.,  2018). 
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2.3.5  Federation of European Laboratory Animal Science Associations (FELASA) 
 

The Federation of European Laboratory Animal Science Associations (FELASA) is an association 

from different European societies working in the field of laboratory animal science (BFR, 

2019). FELASA was founded in 1978 and the German “Gesellschaft für 

Versuchstierkunde/Society of Laboratory Animal Science” (GV-SOLAS) is also a member. 

FELASA organizes scientific congresses on a regular basis and publishes guidelines and 

recommendations regarding the whole field of laboratory animal science. GV-SOLAS is a 

registered society, which deploys itself for the responsible handling of laboratory animals (GV- 

SOLAS, 2013). 

In the report “FELASA recommendations for the health monitoring of breeding colonies and 

experimental units of cats, dogs and pigs” of the FELASA Working Group on Animal Health 

(REHBINDER et al., 1998) the authors give detailed information about the importance of an 

animal health monitoring program and the purpose of this recommendations, namely to 

harmonize the procedures, achieve similar standards  of testing and that reports have a 

common standard and format within the FELASA member countries (REHBINDER et al., 1998). 

Eleven general considerations have to be made according to the recommendations. For 

example, that the local variations through Europe affect the number of agents that have to be 

monitored, or, if diseases are declared absent by a national authority, they do not need to be 

monitored. Depending on local circumstances, e.g. colony size, regional prevalence of specific 

organisms or existence of national monitoring schemes, actual practice may exceed these 

recommendations. 

These recommendations are intended for all breeding colonies and experimental units of cats, 

dogs and pigs in biomedical research (REHBINDER et al., 1998). Further should each breeding 

unit be considered as a self-contained microbiological entity. SOPs must be available in the 

monitoring laboratories. Furthermore, should they follow GLP principles and participate in a 

Quality Assurance Program. 

If a pathogen is identified or antibodies to it are detected it must be declared as present, with 

the exception of vaccinated animals. The presence of antibodies against organisms for which 

it has not been vaccinated is an indicator of infection in the colony. It should be kept in mind, 

that negative results only state, that the presence of an agent monitored has not been 



2 LITERATURE 48 
 

 

demonstrated in the animals screened by the tests used. Therefore, the results are not 

necessarily a reflection of the health status of all animals in the unit (REHBINDER et al., 1998). 

The written copies of vaccination and deworming policies should be provided and the brand, 

date and dose must be recorded when deworming or vaccination is done. Further should the 

information on the manufacturer, batch number and expiry date of the product be recorded. 

In non-barrier facilities most cats, dogs and pigs are vaccinated according to general conditions  

of the breeding colony, buyers’ requirements, on request and according to import/export 

regulations (REHBINDER et al., 1998). 

The health inspection of the colony should be assessed by a veterinarian at least every month 

and all animals must be observed daily by an animal technician (REHBINDER et al., 1998).  The 

samples for the routine health monitoring have to be taken from live animals, however they 

can be extended by samples obtained from dead or euthanized animals. Bacteriology, 

serology and parasitology are preferably monitored individually. 

At least every three months not less than ten randomly selected animals should be sampled, 

or sampling should take place according to the respective national disease control programs 

and import/export regulations. The main purpose of this health monitoring of experimental 

units is to provide the researchers with data on variables (pathogens, agents, diseases) that 

might influence their experiments (REHBINDER et al., 1998). These data are part of their work 

and have to be considered when interpreting the results. Therefore, results of health 

monitoring programs should be included in scientific publications. 

Where breeders or users of laboratory animals are reporting the results of a health monitoring 

program, which is in full accordance with the recommendations published by FELASA, the 

report should be titled “FELASA-Approved Health Monitoring Report” or they may also use the 

words “in accordance with FELASA recommendations” (REHBINDER et al., 1998). But this 

wording can only be used if the methods, frequency, sample size, species -list of organism 

monitored and reported are in full accordance with the recommendations published by 

FELASA (REHBINDER et al., 1998). 

In the report “FELASA recommendations for the health monitoring of breeding colonies and 

experimental units of cats, dogs and pigs” are lay-out advises for the “FELASA-Approved 

Health Monitoring Report” for each species, namely cat, dog and pig given (REHBINDER et al., 
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1998). Additionally, there are tables of the viral, bacterial and parasitic agents and suitable 

test methods for each pathogen shown. 
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3 Material and Methods 
 

Major elements of my thesis have been included in different publications. For those parts, the 

relevant Material and Methods have been described in the respective manuscripts. The 

following section describes the Material and Methods used for tracing PERV-C proviruses in 

the genomes of the xenotransplantation breeding herds. 

 
3.1 PERV-C detection 

 

PCRs have been run on DNA isolated from porcine tissue by using Nexttec™ 1-Step Tissue & 

Cells DNA isolation kit (Nexttec™ Biotechnologie GmbH, Leverkusen, Germany) or the 

DNAeasy® Blood&Tissue kit (Qiagen, Hilden, Germany), according to the manufacturers´ 

protocols. For each PERV-C integration site, several primer pairs have been designed to detect 

either the abundance of solo-LTR, the entire provirus or the untouched genomic sites prior to 

integration. Eventually, one primer pair was optimized for reliable detection of each PCR. 

Sequences of the primers are listed in Table 2. Eventually, for each PCR a pair of primers have 

been chosen for routine detection under standard running conditions (Table 3 and Table 4). 

Each PCR was composed of the same constituents at the same volumes (Table 5). 

Primers used to establish PCRs to detect LTR and provirus sequences in the pigs, as well as to 

investigate the sites in the pigs’ genomes without PERV-C, where other pigs have PERV-C 

integrated are listed in Table 2. Primers used with the cycler protocol “PERVC1” are marked 

green and primers used with the cycler protocol “PERVC3” are marked blue.  

 

primer manufacturer sequence 

chr14:62_LTR_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-TGTGGAATGATAGATACTGGTTAAGAG 

chr14:62_LTR_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-AGACTAGGAGTCAGCAGAGTTTA 

chr14:62_LTR_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-GACAATTTGCACATAGCAGTGTA 

chr14:62_LTR_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-GGTGAGCTGAGGAAGGATTT 

chr14:62_prov_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-TGATCACTACAGTCTGCCAAAG 

chr14:62_prov_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-GTCCAATGGTCGAGAGTCAAA 
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chr14:62_prov_f_2 biomers.net GmbH, 

Ulm, Germany 
5'-GTACATGCAGCCAACTGGTCA 

chr14:62_prov_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-AAGCAGGCAAAAGAGTCGGA 

chr4:48_LTR_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-AAGTGTCCTTGACTCCAGAAAG 

chr4:48_LTR_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-GGCCAGTGTCCCATCTTAAA 

chr4:48_LTR_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-GACTCCAGAAAGCCACAGTT 

chr4:48_LTR_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-GCCTTGACACAACAAGAGTTTC 

chr4:48_prov_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-TCAGGGAATGGTCAATGTATGG 

chr4:48_prov_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-ACTGCTTTAATAGCCAGGATAA 

chr4:48_prov_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-AGGATGCAGGCTTGAGACAG 

chr4:48_prov_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-CCTGAGAGGACAGCTGCAAA 

scf200_LTR_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-GCTGTCCGTTCTCATCTCAAA 

scf200_LTR_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-CAAGTAGCAGTTCCACCTTGTA 

scf200_LTR_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-TCCTGAAGACGGTGTCCTCT 

scf200_LTR_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-TTAAAACTGCCGAGGGAGCC 

scf200_prov_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-CATGGCCTCCTAAGCTTTCT 

scf200_prov_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-TGCCAAGGTCCCTTCTTAAC 

scf200_prov_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-GTGCATACGCGGTTTCCTTC 

scf200_prov_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-GGACAGCTGCAAACCGAAAG 

chr11:29_LTR_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-TCTTGAACTACACACAGACATCA 

chr11:29_LTR_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-TCTTGTGACAGAGTATTTCCAGCA 

chr11:29_LTR_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-TATTTAAACCATATGCCAGATAAGCAC 

chr11:29_LTR_r_2 biomers.net GmbH, 
Ulm, Germany 

5'- 
TGCTAAGTATACATAACATTTGACATTCT 

chr11:29_prov_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-TCTTGAACTACACACAGACATCATA 
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chr11:29_prov_r_1 biomers.net GmbH, 

Ulm, Germany 
5'-TGCCAAGGTCCCTTCTTAAC 

chr11:29_prov_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-TTCTTGAACTACACACAGACATCA 

chr11:29_prov_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-GTTTAACCCATGGCGGAGGA 

scf141_LTR_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-CTGCATTCTGCAAAGGGAAAC 

scf141_LTR_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-CTGAGCCAAGCCGCATTA 

scf_141_LTR_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-CACTGCTGCTTGGCTGGTGGTA 

scf_141_LTR_r2 biomers.net GmbH, 
Ulm, Germany 

5'-ACACAAAGCGCGCTTCTAGGA 

scf_141_prov_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-CCTATCAGGAGAAAGAGACTT 

scf_141_prov_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-TAATGCGGCTTGGCTCAG 

scf_141_prov_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-CCAAAGCCCGTCTAGCAGGAAA 

scf_141_prov_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-ACACAAAGCGCGCTTCTAGGA 

chr7:23_LTR_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-GTATTGTTCTGGAGGGCTTGTG 

chr7:23_LTR_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-GTAAACCATATATTATTC 

chr7:23_LTR_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-ATCTTCACCACGGCTGTAGCT 

chr7:23_LTR_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-ATGGAACTTCCCAGGC 

chr7:23_prov_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-CACGGCTGTAGCTCAATCTTAT 

chr7:23_prov_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-GGTCCCTTCTTAACCTGAACTG 

chr7:23_prov_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-TCTGCCTGGTGGGTTGAAAG 

chr7:23_prov_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-GGACAGCTGCAAACCGAAAG 

chrX:32_LTR_f_1 biomers.net GmbH, 
Ulm, Germany 

5'-GTGTGAGAGTGTGTTCTAGT 

chrX:23_LTR_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-GAATCCTTCCCTGGAATAC 

chrX:32_LTR_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-AATATTCATGAGGTTGATG 

chrX:32_LTR_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-TTCACAAAACTAGAACAATCG 
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chrX:32_prov_f_1 biomers.net GmbH, 

Ulm, Germany 
5'-GATGGTGTCCTGTCGTA 

chrX:32_prov_r_1 biomers.net GmbH, 
Ulm, Germany 

5'-TCGGTCCTCTGACCG 

chrX:32_prov_f_2 biomers.net GmbH, 
Ulm, Germany 

5'-TAAGCCCTTGTCAGTTGCA 

chrX:32_prov_r_2 biomers.net GmbH, 
Ulm, Germany 

5'-AGATCCAGACACACGTGACC 

PervCexc1.3_1f biomers.net GmbH, 
Ulm, Germany 

5'-CGGAAGTGACGACACAGGAA 

PervCexc1.3_1r biomers.net GmbH, 
Ulm, Germany 

5'-TGAATGTGCACGACGGGTTA 

PervCexc1.3_2f biomers.net GmbH, 
Ulm, Germany 

5'-CTGACAGGTAATGGGTCATCAG 

PervCexc1.3_2r biomers.net GmbH, 
Ulm, Germany 

5'-GACGGGTTCAAGAGGTGAAA 

PervCexc1.3_3f biomers.net GmbH, 
Ulm, Germany 

5'-TTTCCGCATCCGATAGCCTC 

PervCexc1.3_3r biomers.net GmbH, 
Ulm, Germany 

5'-GGGACCCCTGTTTCTACAGC 

PervCexc1.3_4f biomers.net GmbH, 
Ulm, Germany 

5'-AGCCACGCTAATCCGAAACA 

PervCexc1.3_4r biomers.net GmbH, 
Ulm, Germany 

5'-TTTCCTTTCTCCCGCTTCCC 

PervCexc1.20_1f biomers.net GmbH, 
Ulm, Germany 

5'-TTGCCTGCCTTGCTAATCTC 

PervCexc1.20_1r biomers.net GmbH, 
Ulm, Germany 

5'-GCTTCTGGTTGTCCCTTCTATG 

PervCexc1.20_2f biomers.net GmbH, 
Ulm, Germany 

5'-TCGGTTCTCCCTCTTTCTCT 

PervCexc1.20_2r biomers.net GmbH, 
Ulm, Germany 

5'-TTTAAGCAGGGCTGGTAAGG 

PervCexc1.20_3f biomers.net GmbH, 
Ulm, Germany 

5'-CCTTCGCTCTCCCAGGATTC 

PervCexc1.20_3r biomers.net GmbH, 
Ulm, Germany 

5'-ATAAAGCACCCTGGAGGCAC 

PervCexc1.20_4f biomers.net GmbH, 
Ulm, Germany 

5'-CAACTGTCCTGTCCATCCCC 

PervCexc1.20_4r biomers.net GmbH, 
Ulm, Germany 

5'-CCCCTTTTCCTGACATCCCC 

PervCexc5.23_1f biomers.net GmbH, 
Ulm, Germany 

5'-AGCTTTACCCTCCCATCCCT 

PervCexc5.23_1r biomers.net GmbH, 
Ulm, Germany 

5'-TCAGGGATCGAACCTGCAAC 

PervCexc5.23_2f biomers.net GmbH, 
Ulm, Germany 

5'-GTTCAGACCATCAGGGCTCC 
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PervCexc5.23_2r biomers.net GmbH, 
Ulm, Germany 

5'-GTCAGGGATCGAACCTGCAA 

PervCexc5.23_3f biomers.net GmbH, 
Ulm, Germany 

5'-CTTCTGAATCTGGCAGGTAAGG 

PervCexc5.23_3r biomers.net GmbH, 
Ulm, Germany 

5'-GTCTTCAGCCCAAGAAGTATGT 

PervCexc5.23_4f biomers.net GmbH, 
Ulm, Germany 

5'-CTGACTCTGCTCCACCAATAG 

PervCexc5.23_4r biomers.net GmbH, 
Ulm, Germany 

5'-ACCAGGCTCTTAAACCATCTC 

PervCexc5.23seq1f biomers.net GmbH, 
Ulm, Germany 

5'-TGATACTCTTTTACAATTTTGGG 

PervCexc5.23seq1r biomers.net GmbH, 
Ulm, Germany 

5'-AGACAACAGGAATGCTGAAGAAGGG 

PervCexc1.20seq1f biomers.net GmbH, 
Ulm, Germany 

5'-CCAATGTATCCATGTAAATTTCCC 

PervCexc1.20seq1r biomers.net GmbH, 
Ulm, Germany 

5'-GGGTGTGTGCAAAGGGGAGTGAG 

PervCexc1.3seq1f biomers.net GmbH, 
Ulm, Germany 

5'-GCGTTTGGGAAGAGGGAGGG 

PervCexc1.3seq1r biomers.net GmbH, 
Ulm, Germany 

5'-GCCAGCTTCAGCCTGGGC 

 
 

Table 2 Primers used for establishing PCRs to detect PERV-C sites in the pig genome. Primers  
of optimized PCRs are marked in green when used with the cycler protocol “PERVC1” or 
marked in blue when eventually used with the cycler protocol “PERVC3”. Primers located 
within the respective amplicons used for Sanger sequencing carry the abbreviation “seq”.  

 
 
 
 
 

Established PCR protocols and mastermix for the later used primer pairs: 
 
 
 
 

 

Table 3 Cycler protocol “PERVC1” used for 
various primer pairs. 

Table 4 Cycler protocol “PERVC3” used for 
two primer pairs. 
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94°C 30 sec 
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number of samples 1 5 

H2O 14 70 

dNTPs 2 10 

10x CoralLoad PCR buffer 2 10 

MgCl 0 0 

For primer 0,4 2 

Rev primer 0,4 2 

HST Taq 0,2 1 

 
 

Table 5 Mastermix for PCRs with HotStarTaq Plus DNA Polymerase. 
 
 
 

 
Sanger sequencing was done according to the established protocol in our laboratory. PCR 

products were extracted from blocks of agarose that have been excised from electrophorese 

gels by a scalpel under UV-light control by using either the “Double Pure Kombi Kit” (Bio&Sell 

GmbH, Feucht/Nürnberg, Germany) or “NucleoSpin® Gel and PCR Clean-up” (Macherey- 

Nagel, Düren, Germany). The chain termination reaction was performed by using BigDye™ 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems™, Waltham, Massachusetts, USA) 

(Table 6 and Table 7). Cleanup of the sequencing reaction was performed by high-salt/Ethanol 

precipitation (Table 8). Capillary electrophoresis of the purified sequencing reactions was 

performed at the Helmholtz Center Munich (Neuherberg, Germany). 

 
 
 

 
number of samples+2  

 x 4µl 5xSequencing Buffer 
 x 1µl BigDye 
 x 1µl Primer (10µM Stock) 
 x 2µl H2O 
 + 2µl Template 

 
 

Table 6 Composition of Sanger sequencing reaction. 
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  95°C  1 min  

95°C 10 sec 

} 40 x 
n               

54°C 10 sec 

  60°C  4 mi 

4°C 15 min  

 

 

Table 7 Cycler protocol of the Sanger sequencing reaction. 
 

 
 

 
Always fresh preparing of precipitation mix: 

number of samples + 5 x 10µl H2O 

x 5µl 125mM Ethylendiamintetraazetat (EDTA) 

x 60µl 100% Ethanol (EtOH) = total amount 

Mix each sequencing sample with 75µl of precipitation mix and transfer to a new, labelled 

1.5ml Eppendorf tube 

Let it incubate on ice for 15 minutes 

Centrifugate at 13000 rounds per minute (rpm) at 4°C for 30 minutes  

Pay attention to the direction in which the Eppendorf tubes were placed into the centrifuge, 

because of the pellet, which will be there on the ground of the tube 

Take off the supernatant carefully with two pipet tips, without filter, placed on top of each 

other 

Afterwards, wash the pellet with 70% EtOH, which means shortly vortexing the pellet with 

the EtOH on top of it 

Then, centrifugate again at 13000 rpm for 2,5 minutes  

Take off the supernatant EtOH with the two-pipet tip technique 

Let the pellet air dry for exactly 6 minutes 

Resolve again in 30µl H2O, vortex shortly, spin down in the centrifuge for a few seconds  

afterwards and transfer to 96-well sequencing plate 

 
 

Table 8 Clean-up protocol of the Sanger sequencing reaction. 
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Sequencing data were analyzed as electropherograms by using FinchTV v.1.3.1/ FinchTV 

v.1.4.0 software and aligned compared to the corresponding sequences from the SusScrofa 

reference genome 11.1 (www.ensembl.org) in BioEdit. 

 

 
 
 

 

Materials used in the laboratory and stable to acquire and process the samples: 
 

product manufacturer 

Thermocycler GeneAmp® PCR System 9700 Applied Biosystems™, Waltham, 

Massachusetts, USA 

Gel Doc 2000 BioRad, Hercules, California, USA 

power supply unit Powerpack 300 BioRad, Hercules, California, USA 

Thermoshaker TS100 / Block SC-24n bioSan, Riga, Lettland 

PCR Strips of 8 caps Brand, Wertheim, Germany 

PCR Strips of 8 tubes Brand, Wertheim, Germany 

Microwave Severin 900 Severin, Sundern, Germany 

Eppendorf Centrifuge 5424 Eppendorf, Hamburg, Germany 

Eppendorf Centrifuge 5417 R Eppendorf, Hamburg, Germany 

Pipet tips epT.I.P.S.® Standard, Eppendorf 

Quality™, 2 – 200 µL, 53 mm, yellow 

Eppendorf, Hamburg, Germany 

Pipet tips epT.I.P.S.® Standard, Eppendorf 

Quality™, 50 – 1000 µL, 71 mm, blue 

Eppendorf, Hamburg, Germany 

Pipet tips epT.I.P.S.® Standard, Eppendorf 

Quality™, 0.1 – 10 µL S, 34 mm, dark grey 

Eppendorf, Hamburg, Germany 

Pipets Gilson (P2, P10, P20, P100, P200, 

P1000) 

Gilson Inc., Middleton, WI 53562- 

0027, USA 

Water bad JBN 5 Grant Instruments LTD, Shepreth, 

Royston SG8 6GB, UK 

Pipet tips A20S Kisker, Steinfurt, Germany 

Pipet tips A200S Kisker, Steinfurt, Germany 

Pipet tips A1000S Kisker, Steinfurt, Germany 
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Pipet tips A300SX Kisker, Steinfurt, Germany 

Pipet tips A100S Kisker, Steinfurt, Germany 

Rotina 380 R Hettich Zentrifugen, Tuttlingen, 

Germany 

Microcentrifuge CarlRoth, Karlsruhe, Germany 

Labcycler Basic SensoQuest, Göttingen, Germany 

Labcycler Gradient SensoQuest, Göttingen, Germany 

Sony UP-895CE (photo printer) Sony, Minato, Tokio, Japan 

OWL EASYCAST™ B2 (gel chamber with tray 

and combs) 

ThermoScientific, Waltham, 

Massachusetts, USA 

OWL EASYCAST™ A1B (gel chamber with tray 

and combs) 

ThermoScientific, Waltham, 

Massachusetts, USA 

VWR Labdancer VWR International GmbH, 

Darmstadt, Germany 

MK-2000B (scale) Chyo, Japan 

Spectrometer SimpliNano with printer GE Healthcare Life Sciences, UK 

Safe-Lock Tubes (1,5 ml, 2 ml, 5 ml) Eppendorf, Hamburg, Germany 

Measuring cylinder Labsolute® Th. Geyer, Renningen, Germany 

Erlenmeyer flask Simax® Kavalierglass, 285 06 Sázava, Czech 

Republic 

glasbottles Duran® (1l, 500ml, 250ml) DWK Life Sciences, Wertheim, 

Germany 

Autoklav Varioklav 400 HP Medizintechnik, 

Oberschleißheim, Germany 

gloves SafeGrip Süd-Laborbedarf, Gauting, 

Germany 

Ethanol ROTIPURAN ® ≥99,8%, p.a.; Art.-Nr. 

9065.4 (EtOH) 

CarlRoth, Karlsruhe, Germany 

Agarose universal; Art.-Nr. BS20.46.500 BIO&SELL, Feucht/Nürnberg, 

Germany 

Tris Pufferan ≥99,9%, p.a.; 2M; Art.-Nr. 4855.2 CarlRoth, Karlsruhe, Germany 



3 MATERIAL AND METHODS 59 
 

 
 

 
EDTA ≥99% 50mM, p.a., ACS; Art.-Nr. 8043.2 CarlRoth, Karlsruhe, Germany 

100 mM dNTP Set, PCR Grade Invitrogen, Karlsruhe, Germany 

GeneRuler 1 kb DNA Ladder ThermoScientific, Waltham, 

Massachusetts, USA 

GELRED 10000x in water Biotium, Fremont, CA 94538, USA 

Bromophenol blue sodium salt for 

electrophoresis; Art.-Nr. A512.1 

CarlRoth, Karlsruhe, Germany 

Dry ice AirLiquid, France 

Trichloromethane/chloroform 

ROTIPURAN® ≥99 %, p.a. (CHCl3) 

CarlRoth, Karlsruhe, Germany 

caustic soda 5 mol/l (NaOH) CarlRoth, Karlsruhe, Germany 

DNeasy® Blood&Tissue Kit Qiagen, Hilden, Germany 

Nexttec™ 1-Step Tissue & Cells 

DNA isolation Kit 

Nexttec™ Biotechnologie GmbH, 

Leverkusen, Germany 

NucleoSpin® Gel and PCR Clean-up (250 preps) Macherey-Nagel, Düren, Germany 

HotStarTaq Plus DNA Polymerase Qiagen, Hilden, Germany 

Herculase II Fusion DNA Polymerase Agilent, USA 

BigDye™ Terminator v3.1 Cycle Sequencing Kit Applied Biosystems™, Waltham, 

Massachusetts, USA 

Double Pure Kombi Kit Bio&Sell GmbH, Feucht/Nürnberg, 

Germany 

Tailcropping-transfomer 230 V 

(„Schwanzkupiertrafo “) 

BEG Schulze Bremer GmbH, 

Dülmen-Rorup, Germany 

 

 

Programmes used: 

 
name of the programme provider 

BioEdit Sequence Alignment Editor 7.0.5.2/7.0.5.3 BioEdit 

FinchTV v.1.3.1/ FinchTV v.1.4.0 Geospiza Inc. 

Quantity One Bio-Rad 

Jalview (WATERHOUSE et al., 2009) www.jalview.org 

http://www.jalview.org/
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4 Results 
 

During the preparation of my doctoral thesis, I worked on the multi-genetically modified 

breeding herd of donor pigs for xenotransplantation. The main focus of my work was laid in 

the examination of the hygiene status of the existing xenotransplantation donor herds at the 

Lehr- und Versuchsgut Oberschleißheim (LVG) and the sanitation of the hygiene status during 

the population of CiMM. This included exogenous as well as endogenous pathogens. This work 

was accompanied by the management of the existing donor herds at the LVG and the 

production of multi-modified piglets for pre-clinical research (Figure 1). Imbedded in the CRC 

TRR 127 there are two projects that I supplied with pigs. The C8 project managed by Prof. 

Reichart performing the pig-to-baboon xenotransplantation trials (LANGIN et al., 2018) (Table 

9) and the C3 project, conducted by Prof. Seissler transplanting neonatal pig islet-like cell 

clusters, expressing LEA29Y into diabetic mice (KLYMIUK et al., 2012a; BUERCK et al., 2017) 

(Table 10). During my thesis I contributed to 4 accepted publications, on one of them I am the 

sole first author (see 4.1 – 4.4). In addition, I worked on the examination of PERV-C proviral 

integration sites (see 4.5). 

 

 
 

 
Figure 1 Establishing multi-modified donor pigs for xenotransplantation by combinatorial 
breeding. (provided by N.Klymiuk) 
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boar sow date piglets desired genotyp used in C8 

4667 4775 28.02.2017 11 8x GTKO.hCD46.hTBM 4x --> C8 

5001 4776 20.07.2017 7 2xGTKO.hCD46.hTBM 2x --> C8 

5001 5022 02.08.2017 6 3xGTKO.hCD46.hTBM / 

5001 5297 04.09.2017 8  / 

5001 4775 26.09.2017 6 1xGTKO.hCD46.hTBM 1x --> C8 

5003 5160 28.09.2017 6 4xGTKO.hCD46.hTBM 2x --> C8 

5154 4672 24.10.2017 10 4xGTKO.hCD46.hTBM / 

5155 5295 14.12.2017 3 1xGTKO.hCD46.hTBM / 

5154 4776 18.12.2017 5 5xGTKO.hCD46.hTBM 5x --> C8 

5001 5022 22.12.2017 4  / 

5154 5019 16.01.2018 13 8xGTKO.hCD46.hTBM / 

5154 5426 26.01.2018 2 2xGTKO.hCD46.hTBM / 

5001 5160 01.03.2018 8 1xGTKO.hCD46.hTBM / 

5001 4775 15.03.2018 9 4xGTKO.hCD46.hTBM / 

WT 4776 02.08.2018 7  / 

5411 5426 20.07.2018 3 2xGTKO.hCD46.hTBM / 

5001 4775 02.08.2018 8 3xGTKO.hCD46.hTBM / 

5411 5637 10.08.2018 3 3xGTKO.hCD46.hTBM 3x --> C8 

5001 5295 10.10.2018 7 2xGTKO.hCD46.hTBM 2x --> C8 

5625 5700 31.10.2018 7 2xGTKO.hCD46.hTBM / 

5001 5160 02.11.2018 6  / 

5625 5806 28.11.2018 9 5xGTKO.hCD46.hTBM 3x --> C8 

5001 4776 17.12.2018 3 1xGTKO.hCD46.hTBM / 

5001 5637 09.03.2019 14 2xGTKO.hCD46.hTBM 2x --> C8 

5625 5700 28.03.2019 9 2xGTKO.hCD46.hTBM 2x --> C8 

5411 WT 13.06.2019 13  / 

5001 6087 07.07.2019 4 1xGTKO.hCD46.hTBM / 

5411 5019 11.08.2019 4 2xGTKO.hCD46.hTBM 2x --> C8 

5625 5700 21.08.2019 9 5xGTKO.hCD46.hTBM 3x --> C8 

 

Table 9 All matings and offspring generated for the C8 project of the CRC TRR 127. 
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boar sow date piglets desired genotypes used in C3 

4682 5019 09.07.2017 9 8xGTKO   / 

5003 5160 28.09.2017 6    / 

5003 5297 16.03.2018 9 1xGTKO 3xGTKO.bLEA 2xGTKO.hCD46.bLEA 3x --> C3 

5003 5019 13.06.2018 9 2xGTKO 1xGTKO.bLEA 3xGTKO.hCD46.bLEA 4x --> C3 

5003 5297 17.08.2018 8 1xGTKO 3xGTKO.bLEA 4xGTKO.hCD46.bLEA 3x --> C3 

5625 WT 10.01.2019 12    / 

5003 5019 08.02.2019 12 1xGTKO 1xGTKO.bLEA 3xGTKO.hCD46.bLEA / 

5626 5297 08.02.2019 9   4xGTKO.hCD46.bLEA / 

5626 WT 14.06.2019 10     

5626 5297 01.07.2019 2     

 

Table 10 All matings and offspring generated for the project C3 of the CRC TRR 127. 
 
 

 
4.1 Population and raising up the xenotransplantation herd at CiMM 

 

In the manuscript “Early weaning completely eliminates porcine cytomegalovirus from a 

newly established pig donor facility for xenotransplantation” we document the ability to 

sanitate the hygiene status of an existing herd comprising multiple genetic modification by 

populating a new facility with pregnant sows from a barrier facility, the motherless raising of 

their offspring and the usage of the female offspring as recipients of genetically modified 

embryos. I contributed personally by aiding the veterinary herd management of both the 

embryo transfer recipient as well as the genetically modified offspring; by taking blood, stool 

and nasal samples and the orchestration of their analysis; by co-writing of the manuscript. 

(The supplementary table S1 can be found in the appendix) 
 

The approved manuscript can be found at Xenotransplantation. 2018 Jul;25(4):e12449. doi: 

10.1111/xen.12449. 

https://doi.org/10.1111/xen.12449 
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ABSTRACT 

For clinical xenotransplantation, transplants must be free of porcine cytomegalovirus 

(PCMV). Piglets become infected primarily in the perinatal period by the mother sow. While 

individual donor animals can be protected from infection by isolation husbandry, success is 

not guaranteed and this strategy poses the risk of undetected infections and raises animal 

welfare questions. Here, we present the establishment of a completely PCMV- negative pig 

herd for breeding donor animals for xenotransplantation. Eleven pregnant DanAvl Basic  
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hybrid sows were purchased from a designated pathogen- free (DPF), PCMV- positive colony 

and transferred to a new pig facility at the Centre for Innovative Medical Models (CiMM) 4 

weeks prior to farrowing. At the age of 24 hours, piglets were early- weaned and transferred 

to a commercially available Rescue Deck system dedicated to motherless rearing of piglets. 

Sows were removed from the facility. The PCMV status of F1- generation animals was 

determined at regular intervals over a period of 14 months by a sensitive real- time PCR- 

based detection method testing blood, nasal swabs and cultured peripheral blood 

mononuclear cells (PBMCs). F1 sows were used as recipients of genetically modified 

embryos to generate a xenotransplant donor herd. Offspring were tested for PCMV 

accordingly. All offspring have remained PCMV negative over the whole observation period 

of 14 months. A completely PCMV- negative pig herd for xenotransplantation has thus been 

successfully established. 

 

KEYWORDS 

early weaning, pig-to-human xenotransplantation, porcine cytomegalovirus, virus safety 
 
 

 
 

 
 

1. INTRODUCTION 

With recent successes in overcoming the major immunological hurdles in 

xenotransplantation1-4, the goal of reaching clinically feasible pig-to-human transplantation 

has become imminent. With this, the second great obstacle, the microbiological safety of 

potential donor tissues and organs, demands attention. After organ allotransplantation, 

opportunistic exogenous viral infections are rare, but happen, as the antiviral immune 

response is diminished by immunosuppression. Over almost 20 years, this issue has been 

discussed in the field of xenotransplantation and, over time, a number of consensus papers 

and pathogen lists have been published regarding potentially harmful microorganisms in the 

context of xenotransplantation5-7. Additionally, transmission of pathogens with viable cells 

poses a very efficient direct infection route via the transplant8. In a very recent publication, 

Fishman9 draws an updated list of pathogens that may be considered in the development of 

a screening program for xenotransplant donor pigs. 



4 RESULTS 65 
 

 

While most of these pathogens are sufficiently controlled by housing animals within 

barrier facilities and thus protecting them from exogenous infections, porcine endogenous 

retroviruses (PERVs) are a more precarious issue as they can be transmitted via the germline. 

Consequently, PERVs have caused considerable concern for clinical xenotransplantation. But 

to date there has been no report of PERVs being actually transmitted to the recipient of a 

xenograft or having caused detectable adverse reactions within a transplant10. Recent 

successes in eliminating PERVs from the genome of pig lines have further diminished this 

potential hazard11,12. Other pathogens, however, provoke lifelong, latent, transmittable 

infections, and are prevalent in most, if not all, pig populations and are thus difficult to control. 

These include the porcine cytomegalovirus (PCMV), a β-herpesvirus related to the human 

cytomegaloviruses that causes systemic disease and potentially leads to graft failure in human 

allotransplantation13. In xenotransplantation, the PCMV has also been associated with 

transplant injury. This has been largely attributed to virus activation within the graft following 

transplantation but initially was not thought to cause invasive disease in the recipient14,15. It 

is still unclear whether PCMV can infect human cells, with one in vitro study suggesting the 

possibility16 and a different study presenting evidence for the opposite17. There are indications 

that while in vitro PCMV appears susceptible to standard antiviral medication comparable to 

that employed in allotransplantation18, in vivo data from pig-to-baboon xenotransplantation 

suggest that the commonly used ganciclovir has no therapeutic efficacy against PCMV at 

standard doses19. Agents that do prevent or treat PCMV infection effectively, such as foscarnet 

or cidofovir, carry significant toxic potential for the transplant recipient and are thus of limited 

usefulness. Consequently, there is consensus that potential donor animals for 

xenotransplantation should be free of PCMV. 

Pigs are mostly infected with PCMV in the perinatal period by the mother sow or 

postnatally through oronasal secretions of virus shedding animals 20. The virus is endemic in 

pig herds worldwide20,21. To avoid transmission of virus from infected mother sows to 

offspring, contact between sows and piglets has to be minimized. With strategies of early 

weaning within the first 2 weeks after birth and separate rearing of early-weaned piglets, it 

has previously been possible to generate individual PCMV-negative pigs as organ donors20-2 4 . 

However, success was not reliably predictable and came at the immense effort of having to 

raise all potential donor animals motherless in isolation. 
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In this study, we report on the design and implementation of a strategy of very early 

weaning to generate a completely PCMV-free donor breeding herd for xenotransplantation in 

a newly established pig facility for biomedical research at the Centre for Innovative Medical 

Models (CiMM), LMU Munich, Germany. We show that with weaning at an age of 24 hours 

and subsequent immediate removal of all PCMV-positive mother sows from the facility, we 

have been able to generate a herd of PCMV-negative sows. In a subsequent step, we utilized 

these sows as recipients for embryo transfer to introduce all our genetically modified (gm) pig 

lines for xenotransplantation into the facility. All recipient sows and all gm offspring have 

stayed PCMV negative over the total observation period of 14 months. To our knowledge, this 

is the first report of a completely PCMV-negative pig facility that allows for conventional 

breeding of donor animals for xenotransplantation without further need for separate rearing 

of individual animals in isolation. 

 

2. MATERIAL AND METHODS 
 
 

2.1 Ethics Statement 

All animal work was performed with the permission of the local regulatory authority, 

Regierung von Oberbayern (ROB), Sachgebiet 54, 80534 München (approval number: 55.2-1- 

54-2532.0-82-2016). Applications were reviewed by the ethics committee according to §15 

TSchG (German Animal Welfare Act). 

2.2 Populating CiMM 

For establishing the breeding herd for xenontransplantation, eleven pregnant PCMV-positive 

DanAvl basic hybrid sows were purchased from a designated pathogen-free (DPF) barrier 

facility (Vermarktungsgemeinschaft für Zucht- und Nutzvieh e.G., Fehmarn Hof 

Schweinehaltungs KG, Fehmarn, Germany) located on the island of Fehmarn in the Baltic Sea 

and introduced into CiMM 4 weeks prior to their farrowing date (Figure 1). These sows were 

the founder population for CiMM (F0 generation). They were screened for PCMV 28 days 

before and 1 day after farrowing (Table 1). On gestation day 114, birth was induced by 

intramuscular administration of 0.175 mg cloprostenol (Estrumate®, Intervet GmbH, 

Unterschleissheim, Germany). After birth, offspring (F1 generation) were separated from the 

mother sow immediately and held in groups in isolation boxes under infrared light. Once every 

2 hours, piglets were allowed to suckle colostrum under supervision to prevent oronasal 
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contact between sows and their litters. After 24 hours, all F0 sows were removed from CiMM 

and the 91 F1 piglets were weaned to a motherless rearing system (Rescue Deck, Provimi 

Rescue Decks). Here, they were raised with designated milk replacers (Bonimal SB Powermilk, 

BayWa, Germany) and mash feed (Bonimal SB Liquidstart 2.0, BayWa, Germany) over a period 

of 3 weeks after which they were transferred to the regular holding pens within the facility 

(Figure 1). All F1-generation animals were screened for PCMV at different time points over a 

total time period of 14 months (Table S1). Upon reaching sexual maturity, PCMV-negative F1 

sows were utilized as recipients for embryo transfer to introduce gm-modified pig lines into 

CiMM. Embryos were produced by either somatic cell nuclear transfer (SCNT) 25 or in vitro 

fertilization (IVF) 26. For SCNT, pig primary kidney cells were isolated from existing gm pig 

lines27 and used as nuclear donor cells. For IVF, epididymidal sperm was collected from gm 

boars to fertilize oocytes isolated from slaughterhouse ovaries. SCNT and IVF embryos were 

treated with 0.25% trypsin according to the International Embryo Technology Society (IETS) 

embryo-treatment protocol28 and transferred to the estrus-synchronized recipient sows 

(Figure 2). 

Gm-modified offspring farrowed from the PCMV-negative F1 sows were then tested 

for PCMV at one single time point (Table 2). 

 
 
 

 
2. 3 In vivo sampling of pigs 

Blood sampling from adult sows was performed without sedation under manual 

fixation. Whole blood was drawn from the jugular vein with single-use needles (Ehrhardt 

Medizinprodukte, Geislingen, Germany) into lithium heparin and serum Monovettes® 

(Sarstedt, Nümbrecht, Germany). Nasal swabs were taken during the same procedure by 

inserting sterile dry swabs into one nostril, without touching outer skin, to collect nasal 

mucosa and capillary blood (Henry Schein, Hamburg, Germany). Lithium heparin blood and 

swabs were then cooled to 4°C and used freshly for analysis. Serum was centrifuged at 6°C, 

1800 g for 10 minutes, then aliquoted to 1mL samples and stored at -80°C. For piglets, all 

blood sampling was performed accordingly. Oral swabs were taken during the firs t sampling 

procedure at an age of 1 day. For this, similar swabs as employed for nasal probing were 

inserted into the mouth of the piglets to collect mucous membrane from the palate. 
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2. 4 Ex vivo sampling of pigs 

ET-recipient F1 sows were euthanized under ketamine (Ursotamin®, Serumwerk Bernburg, 

Germany) and azaperone (Stresnil®, Elanco Animal Health, Bad Homburg, Germany) 

anesthesia by intravenous injection of T61® (Intervet GmbH), according to the manufacturer’s 

instructions. Whole blood was drawn directly from the heart, and the following organs were 

sampled: liver, lung, heart, pancreas, spleen, kidney, and lymph nodes. Small pieces of about 

5x5x5 mm in size were excised from each organ and frozen to the core by placing them on dry 

ice plates. They were then transferred to pre-cooled Eppendorf tubes (Eppendorf, Hamburg, 

Germany) and stored at -80°C. Whole blood was aliquoted in 1mL Eppendorf tubes and also 

stored at -80°C. Organ samples from stillborn, dead, or euthanized offspring were collected as 

described above. For these animals, sampling of liver, spleen, whole blood, serum, and, if 

possible, bile was performed. All samples were stored at -80°C until analysis. 

 
2. 5 Screening Strategy 

Blood and nasal swabs of F0 sows were tested for PCMV 28 days before and 1 day after 

farrowing (Table 1). All 91 F1 piglets were screened repeatedly over a period of 14 months for 

the presence of PCMV (Table S1). Nineteen piglets born from these animals were tested at 

one time point when piglets were between 14 and 30 days old (Table 2). Additionally, organs 

of stillborn, dead, or euthanized piglets were sampled and examined for PCMV infection. 

Regular hygiene monitoring is performed, and representative numbers of the present 

pig population within the facility are examined for the presence of a range of pathogens on 

serological and antigenic level. Serological testing for Actinobacillus pleuropneumoniae, 

Haemophilus parasuis, Lawsonia intracellularis, Leptospira spp., Mycoplasma 

hyopneumoniae, Pasteurella multocida, porcine reproductive and respiratory syndrome virus, 

swine influenza virus, transmissible gastroenteritis, and hepatitis E virus, as well as antigen 

testing for Brachyspira hyodysenteriae, Lawsonia intracellularis, salmonella and swine 

influenza virus, and evaluation of bacteriological and endoparasitic content of feces, is 

performed on serum, EDTA whole blood, and fecal samples by a commercial laboratory 

(Vaxxinova GmbH, Münster, Germany) employing their standardized ELISA- and PCR- based 

test systems. 
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2. 6 Peripheral blood mononuclear cell (PBMC) isolation and cultivation 

Porcine PBMCs were isolated by Ficoll gradient centrifugation (lymphocyte separation 

medium, PromoCell, Heidelberg, Germany), using Falcon tubes without porous barriers. The 

isolated PBMCs were washed and cultured in RPMI1640 medium supplemented with 10% fetal 

calf serum (FCS) (Merck Millipore, Darmstadt, Germany). DNA was isolated before and after 

incubation. 

 
2. 7 DNA extraction 

DNA was extracted from blood, purified PBMCs, nasal and oral swabs, or tissues using DNeasy 

Blood and Tissue kit (Qiagen GmbH, Hilden, Germany). DNA was quantified using a NanoDrop 

ND-1000 (Thermo Fisher Scientific Inc., Worcester, MA, USA). 

 

2. 8 Real-time PCR 

PCMV-specific real-time PCR testing was performed as described15,29,30 using specific primers 

PCMV real fw 5’ ACTTCGTCGCAGCTCATCTGA, PCMV real rev 5’ GTTCTGGGATTCCGAGGTTG,  

and PCMV probe FAM- 5’ CAGGGCGGCGGTCGAGCTC –BHQ15. To improve PCMV detection in 

blood or in purified PBMCs, PBMCs were incubated in culture medium previously shown to 

increase PCMV expression29 and PCR analysis was performed twice, before and after 

incubation of PBMCs in culture medium. Detection limit of the real-time PCR was two-to-five 

copies of PCMV and was performed using a SensiFast Probe No ROX One-step Kit, according 

to supplier recommendations (Bioline GmbH, Germany). Sixty ng of DNA was used for testing. 

The reaction mixture contained 400 nmol/L of both primers and 100 nmol/L of the probe in a  

final volume of 20 μL. The following conditions for amplification were used: denaturation at 

95°C for 5 minutes, 45 cycles of amplification with denaturation at 95°C for 10 seconds, 

annealing at 59°C for 20 seconds, and extension at 60°C for 25 seconds. Reporter fluorescence 

was measured using an Mx3005P Multiplex Quantitative PCR System (Stratagene, La Jolla, 

CA, USA). 
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3. RESULTS 

3.1 Establishment of the herd 

In this study, we aimed at establishing a PCMV-free breeding herd of gm pigs for 

xenotransplantation. Pregnant F0 sows were purchased from an external designated 

pathogen-free barrier facility and introduced into CiMM (Figure 1). CiMM was opened in 

December 2016 as a newly built pig barrier facility. Quarantine requirements of 48 hours  

without outside pig contact before entry are in place. Cleanroom showers are used, and a full 

change of clothes is performed upon entering the facility. Schönhammer ventilation system 

was installed (Schönhammer, Mengkofen, Germany) to discharge pollutants  and odors from 

the stable, target temperature stability and control humidity levels to prevent precipitation. 

F0 sows were the first pigs to enter this facility. In addition to PCMV screening, all animals 

were examined for the presence of the following pathogens on a serological and/or antigen 

basis: Serological testing was performed for Actinobacillus pleuropneumoniae, Haemophilus 

parasuis, Lawsonia intracellularis, Leptospira spp., Mycoplasma hyopneumoniae, Pasteurella 

multocida, porcine reproductive and respiratory syndrome virus, swine influenza virus, 

transmissible gastroenteritis, and hepatitis E virus. In addition, antigen testing took place for 

Brachyspira hyodysenteriae, Lawsonia intracellularis, salmonella and swine influenza virus, 

and fecal swabs were examined for bacteriological content and endoparasites. All testing is 

repeated continuously every 6 months on a representative proportion of the current pig 

population within CiMM to ensure adequate hygiene monitoring. To date, antigen detection 

of Brachyspira hyodysenteriae, Lawsonia intracellularis, and salmonella and swine influenza 

virus has remained negative. Serologically, the cohort is positive only for Actinobacillus 

pleuropneumoniae and Lawsonia intracellularis. 

 

3.2 Screening for and elimination of PCMV 

When testing for PCMV using a sensitive real- time PCR, seven of eleven F0 sows were at least 

once tested positive for PCMV (Table 1). Because of the premature death of sow 91107, no 

samples from this animal were available at the time of farrowing. When screening all 91 F1 

piglets born from the F0 founder sows, we found no PCMV- positive animal at any time point 

over the whole observation period of 14 months. Detailed results of repeated PCMV screens 

are depicted in Table S1. Two F1 animals were euthanized at the age of 4 months for collection 

of a full- organ set, one born from a PCMV- positive (#13) and the other born from a PCMV- 
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negative mother sow (#27). As control, an age- matched pig from a cohort without early 

weaning was used (#5157). Both piglets derived from the early weaning procedure were 

shown PCMV negative in all tested organs (Figure 3). 

Further, the gm offspring farrowed from the F1 PCMV-negative sows were tested for 

PCMV at one single time point, at which piglets were between 14 and 30 days old (Table 2). 

All 19 tested piglets were negative for PCMV, as were their respective mothers at the same 

time point. In addition, organ and blood samples were taken from stillborn, dead, or 

euthanized piglets and liver and spleen tissue was screened by real-time PCR for the presence 

of PCMV. All samples were tested negative, indicating the complete elimination of the virus 

from the breeding herd. 

 

4. DISCUSSION 

There is general consensus in the research community that potential donor animals must be 

free of PCMV if clinical xenotransplantation is to become reality. We present here the 

successful elimination of this virus from a complete breeding herd of gm pigs for biomedical 

research applications including xenotransplant donor animals. The pig population in this newly 

built and established research facility has remained free of detectable PCMV over the whole 

monitoring period of 14 months. This allows for the conventional breeding of experimental 

animals within the facility without having to employ measures such as isolated rearing of 

individual piglets as xenodonors. 

Determination of the PCMV status in this study has been made via PCR-based detection 

of the virus genome. For testing, PCR-based methods31 and immunologic methods detecting 

PCMV-specific antibodies32 can be used. Furthermore, screening for PCMV using non- 

invasively taken samples was found effective33. Even though antibody titers have been 

reported from piglets infected very early in life20, there is some evidence that no 

seroconversion takes place in piglets infected congenitally or neonatally34, making serological 

testing ineffective in cases where such infection routes are suspected. We thus chose to 

attempt direct virus detection to examine successful elimination of PCMV from the breeding 

herd. Because PCMV titers can be low or even close to the detection limit13, a PBMC culture 

system was established to promote virus replication and facilitate detection. As is 

demonstrated here, this cultivation step results in significantly higher virus titers in cells of 

animals that are positive for PCMV, reaching as far as providing positive results for animals 
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that on native blood samples had been below the detection limit (Table 1). Multiple testing of 

animals employing highly sensitive methods can thus be termed a necessity for confidently 

determining a PCMV-negative status within a pig cohort 

Other research groups have given account of PCMV elimination by early weaning in 

piglets destined as donors for pig-to-primate transplantations20-24. Tucker et al 35 report that 

not in all cases has it been possible to retain all animals free of PCMV. This has been attributed 

to the possibility of transplacental fetal PCMV infections, as postulated by Edington et al34 in 

1977. In this work, intrauterine transmission of PCMV could be detected in fetuses of 

serologically negative mother sows that had become infected during pregnancy. Today, it is 

common sense that intrauterine PCMV infection of fetuses can take place. However, to our 

knowledge, there are no definitive reports of transplacental PCMV transmission to fetuses 

aside from experimentally induced infection in previously seronegative sows. While there 

seems to be indeed the chance of opportunistic infection due to first contact of sows with the 

virus during pregnancy, this appears not to be the case often. Moreover, piglets infected 

congenitally are usually weak and die within weeks of birth21. Consequently, early weaning 

programs for elimination of PCMV might more likely fail by accidental transmission of 

infectious material between different cohorts of isolated pigs through caretaker or research 

personnel than by congenital transmission of the virus. Our own findings of an albeit rather 

low number of PCMV-positive sows that nevertheless all gave birth to completely PCMV- 

negative offspring, support this notion. However, the incidence of inadvertent PCMV 

infections during previous attempts of generating PCMV-negative xenograft donors highlights 

the importance of barrier facilities completely devoid of the virus. 

As PCMV is distributed by oronasal secretions and consequently airborne infection36, 

all contact with potentially infectious discharge and aerosols must be avoided if transmiss ion 

is to be excluded. That results in immense effort on the side of personnel coming into contact 

with the animals. Great care has to be taken when switching from one animal or animal cohort 

to the next. Typically, barrier animal housing facilities require individuals accessing the facility 

to follow some kind of quarantine procedure (eg, no contact to animals of the same species 

outside the facility within the past 48 hours) in addition to showering and complete change of 

clothes upon entering. Something similar would have to be employed within the facility if strict 

separation of individual pigs for infection protection is to be performed adequately, thus 

requiring such man power as can only be provided at enormous costs. PCMV sanitation of a 
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complete facility offers the great benefit of having to undertake complicated isolation 

measures only once as opposed to repeatedly protecting specific animals from PCMV infection 

by early weaning and rearing in isolators. 

Finally, developments in recent years have shown that legislation concerning animal 

welfare has become ever stricter. This can surely be attributed to an increased perception of 

such issues within modern Western society that is not willing to tolerate unnecessary strain 

on experimental animals. The pig as a sociable animal falls under great stress if separated from 

its peers37. Isolation husbandry can thus already only be employed in exceptional cases, and 

the assessment of such cases is likely to become even more severe in the future. This is 

especially true if the procedure not only demands avoidance of direct physical contact 

between animals but also requires protection from the air space of other animals, meaning 

that it is difficult, if not impossible, to at least allow for visual and audio contact between pigs. 

By eliminating PCMV completely from a whole pig research facility and thus allowing 

for animal production by conventional breeding, the grounds for regularly supplying 

xenotransplant donors have been strengthened. The cohort of xenopigs presented here may 

be utilized as a basis for deeper examination of their status regarding known and emerging 

infectious agents and subsequently improving the herd toward a supply chain for clinical 

xenotransplantation. 
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TABLE 1 PCMV screen of 11 Fehmarn mother sows 
 

 

Time point PPDa -28 PPD 0  PPD 0 

Sample Blood 
Nasal 

swab 
Blood 

PBMCs 5 d 
cultivation 

PBMCs 7 d 
cultivation 

#89030 –b +c – – – 

#91106 + + +d + ++ + + 

#91107 – n.d.e
 n.d. n.d. n.d. 

#91108 + + – – + + + + 

#91111 – – + + + + + 

#91112 – – – – – 

#91114 – – – – – 

#91117 + – – + + 

#91118 – – – – – 

#91119 – + + + + + + 

#91122 + – – – + 
aPostpartal day.     

bNegative result.     
cPositive result.     
dStrongly positive result.     
eNot determined.     

 

All eleven DanAvl hybrid sows purchased from the barrier facility on Fehmarn were tested for 

PCMV 28 d prior to (PPD – 28) and 1d after farrowing (PPD 0) using sensitive real-time PCR. 

Seven of eleven F0 sows were tested positive for PCMV at least once. Because of the 

premature death of sow 91107, no samples from this animal were available at the time of 

farrowing. PBMC isolation and cultivation was performed from PPD 0 lithium heparin whole 

blood. PBMC cultivation increases virus production and detectability of PCMV. 
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TABLE 2 PCMV screen of genetically modified offspring 
 

 

#10001 79 Oct 30, 2017 30 d –b
 

#10002 
#10003 

#10004 

  30 d 
30 d 

30 d 

– 
– 

– 

#10005 

#10006 

#10007 

50 Nov 7, 2017 22 d 

22 d 

22 d 

– 

– 

– 

#10008 70 Nov 8, 2017 21 d – 

#10010 

#10011 

#10013 

52 Nov 8, 2017 21 d 

21 d 

21 d 

– 

– 

– 

#10022 

#10023 

#10024 

#10026 

#10027 

42 Nov 14, 2017 15 d 

15 d 

15 d 

15 d 

15 d 

– 

– 

– 

– 

– 

#10032 

#10034 

#10037 

43 Nov 15, 2017 14 d 

14 d 

14 d 

– 

– 

– 
aAll piglets were sampled Nov 28, 2017. 
bNegative result. 

 

Nineteen genetically modified offspring animals aged between 14 and 30 d and their 

respective F1- generation mother sows were tested negative for PCMV on cultivated PBMCs. 

Pig Mother sow Day of litter Age of pigleta PCMV 
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FIGURE 1 Establishment of CiMM. Eight pregnant PCMV-positive and 3 pregnant PCMV- 

negative DanAvl hybrid sows (F0) were purchased from a DPF barrier facility on the island of 

Fehmarn (1) and transferred to the newly established CiMM 4 wk prior to their farrowing 

date (2). Offspring (F1 generation) and sows were separated immediately after birth, and 

piglets were allowed to suckle colostrum under controlled conditions every 2 h for 24 h 

postpartum (3). Piglets were then transferred to a Rescue Deck system with milk replacer 

feeding, and sows were removed from the facility (4). F1 piglets were screened periodically 

for PCMV over a total period of 14 mo (5) and raised to serve as recipients for gm embryos 

(6). 
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FIGURE 2 Establishment of PCMV negative xenograft donor herd. In vitro fertilization (IVF) 

was performed using in vitro matured (IVM) oocytes collected from slaughterhouse material. 

Genetically modified (gm) epididymal sperm collected from gm boars was used to fertilize 

the IVM oocytes. After fertilization, cumulus cells  and excess sperm were removed and only 

oocytes with one or two visible polar bodies were used for embryo transfer to estrus - 

synchronized PCMV-negative F1 sows. For somatic cell nuclear transfer (SCNT), porcine 

oocytes were enucleated and gm porcine primary cells were injected into enucleated 

oocytes. After electric fusion and activation, embryos were transferred into the oviducts of 

estrus- synchronized PCMV-negative F1 sows. 
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FIGURE 3 PCMV is eliminated from all organs of early weaned piglets. 

Organ sets from two F1 animals were tested for PCMV. Piglet #13 was born from a PCMV- 

positive F0 mother sow, and piglet #27 was born from a PCMV-negative F0 mother sow. 

Both animals are negative for PCMV in all tested organs with zero copy numbers of PCMV 

detectable. Animal #5157 raised without early weaning in standard agricultural environment 

is clearly PCMV positive, with the highest copy numbers in liver tissue. Quantities are 

depicted as virus genome copy numbers per cell. 

 
 
 

“Copyright 2018 Wiley. Used with the permission from Stefanie Egerer, Uwe Fiebig, Barbara 

Kessler, Valeri Zakhartchenko, Mayuko Kurome, Bruno Reichart, Christian Kupatt, Nikolai 

Klymiuk, Eckhard Wolf, Joachim Denner and Andrea Bähr, Early weaning completely 

eliminates porcine cytomegalovirus from a newly established pig donor facility for 

xenotransplantation and Wiley / Xenotransplantation.” 



4 RESULTS 82 
 

 

4.2 Consistent success in life-supporting porcine cardiac 

xenotransplantation 

This article documents the long-time survival of baboon xenograft recipients after receiving a 

fully life-supporting heart from donor pigs that were raised and maintained at the Chair of 

Molecular Animals Breeding and Biotechnology (LANGIN et al., 2018). After decade-long 

struggling with orthotopic heart transplantations, three factors finally led to the success with 

the pig-to-primate xenotransplantation model. First, the genetic constellation of 

GTKO.hCD46.hTBM generated at the Chair for Molecular Animal Breeding and Biotechnology 

is obviously a simple but optimal basis for preventing antibody-mediated rejection and 

microthrombosis (MOHIUDDIN et al., 2016; SINGH et al., 2019). Second, the switch from the 

cold ischemic preservation (static preservation with 4°C cold crystalloid solutions, e.g. 

Custodiol®) to the non-ischemic preservation method developed by Steen et al. (STEEN et al., 

2016) improved the weaning of the recipient baboons from the cardiopulmonary-bypass 

(CPB). Finally, another vital factor was the inhibition of the growth of the pigs’ hearts in the 

recipients by a trinomial therapy approach: antihypertensive treatment for the baboons to 

match the blood pressure of the pigs, earlier weaning of cortisone and treatment with 

temsirolimus, the prodrug of sirolimus to attenuate heart overgrowth (LANGIN et al., 2018). 

My contribution to this work was the veterinary herd management of the pigs, the planning 

and scheduling of matings, the genotyping of offspring and the supply of healthy animals to 

the Walter-Brendel-Center for Experimental Surgery. The finally approved manuscript can be 

found at Nature. 2018 Dec;564(7736):430-433. doi: 10.1038/s41586-018-0765-z. 

https://www.nature.com/articles/s41586-018-0765-z 

 

 
 
 

4.3 Targeting αGal epitopes for multi-species embryo immunosurgery 
 

In this paper we investigated whether serum of GTKO pigs is a sufficient and reliable source of 

anti-Gal antibodies for inducing complement-mediated lysis of the trophectoderm cells. In 

previous attempts, immuno-surgery had proven potential by first coating the trophectoderm 

with antibodies and second by lysing the trophectoderm by the complement system via the 

classical, antibody-mediated complement activating pathway. Blood serum should normally 

provide both, the antibodies against the embryo and the complement components. The 

http://www.nature.com/articles/s41586-018-0765-z
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efficacy of the process, however, was unstable, depending on the serum used. The idea behind 

our approach was that most mammalian species carry αGal epitopes, whereas the few species 

that lack these epitopes develop high levels of antibodies against αGal as a result of 

permanent stimulation by αGal-carrying bacteria. Thus, it was evident to test the potential of 

serum from αGal-lacking individuals in immunosurgery. As GTKO animals have been 

developed at the Chair of Molecular Animal Breeding and Biotechnology, it was tempting to 

use their serum in such an approach. In the study, it was first examined, if the four mammalian 

species used in the study, mouse, rabbit, cattle and pig had αGal epitopes on their blastocysts, 

as it was only known for pig embryos, that αGal epitopes appear first at the 8-cell stage (CHI 

et al., 2012). Then, the αGal-antibody levels were determined in different GTKO animals. 

Finally, the concept of immunosurgery was confirmed by treating embryos from all three 

species with GTKO serum. With this approach the inner cell masses of blastocysts from all 

species could be isolated and though they were exposed to the complement s erum before 

lysis, they showed satisfactory levels of purity. My contribution to this work was sampling of 

blood, preparation of serum, undertaking sections of the GTKO animals and preparation of 

samples for immunohistochemistry (IHC). The finally approved manuscript can be found at 

Reprod Fertil Dev. 2019 Apr;31(4):820-826. doi: 10.1071/RD18120. 

https://www.publish.csiro.au/RD/RD18120 

 

 
 
 

4.4 Transmission of porcine circovirus 3 (PCV3) by xenotransplantation of pig 

hearts into baboons 

This manuscript described the first trans-species transmission of PCV3, as well as the 

abundance of PCV3 in our breeding herd. Due to its mild and ambiguous clinical course, PCV3 

has been detected in pig herds only recently, but in the meanwhile, it turned out that the virus 

is pandemic in a significant proportion of herds all over the world. Evidently, it has been found 

in our existing xenotransplantation donor herd at LVG. In the xenotransplantation context it 

is important to consider that we here document the transmission of PCV3 to four baboons 

after transplantation of a heart from an infected donor pig. As PCV3 was found in all organs 

of the baboons, with even more virus load the longer the survival time of the baboon was, an 

active replication of the virus in the transplant and/or the recipient can be suggested. My 

http://www.publish.csiro.au/RD/RD18120
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contribution was providing frequent blood samples of the pigs and coordination of sample 

analysis, as I could specify where exactly the animals were and so help investigation and 

discuss possible transmission and infection routes of PCV3 in our herd. Further investigations 

on the PCV3 transmission in our herd and further infection trials are currently ongoing. The 

approved manuscript can be found at Viruses. 2019 Jul 16;11(7). pii: E650. doi: 

10.3390/v11070650. 

https://www.mdpi.com/1999-4915/11/7/650 
 

4.5Inheritance of porcine endogenous proviruses in the xenotransplantation 

breeding herd at MABB 

One of the most critical characteristics of xenotransplantation donor animals is their status of 

PERV, particularly PERV-C. Ideally donor pigs should be free of PERV-C (DENNER et al., 2009). 

For clarifying the occupancy of the genomes of our xenotransplantation donor pig breeding 

herd, we followed two different strategies. 

First, the porcine reference genome was examined for the PERV-A, -B and -C subfamilies. In 

total 24 PERV-A and 18 PERV-B were identified on the basis of their env gene sequences, but 

no PERV-C env was identified. On the basis of LTR-sequences, however, 69 PERV-A, 98 PERV- 

B and 25 PERV-C elements were found. Not all proviral-like structures contained a full provirus, 

rather they were regularly disrupted by larger gaps within the provirus or at one of their ends. 

In the latter case, they comprise only one single LTR and a determination of their age, based 

on the differences between the up- and downstream elements is not anymore possible. 

Unrooted phylogeny PERV LTR elements show a clear separation of the A-, B- and C- 

subfamilies (Figure 2). All up- and downstream pairs of LTR of given proviruses fall into the 

very same cluster. An interesting side-finding was that all proviruses with LTR clustering to the 

A-subfamily contained an env sequence similar or identical to the commonly used PERV-A 

reference virus (GenBank annotation AJ253656). In contrast, proviruses with LTR clustering to 

the B-subfamily) contained either env sequences similar or identical to the commonly used 

PERV B reference virus (GenBank no. AJ253657) or PERV-A env. 

Most important for the PERV-C subfamily, however, was that many LTR clustered with the 

PERV-C reference virus (GenBank no. AF038600), but those comprised either solo-LTR or, 

http://www.mdpi.com/1999-4915/11/7/650
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surprisingly, proviruses that lack large parts of the env gene. Thus, none of the proviruses in 

the SusScrofa reference genome 11.1 constituted a tropism of PERV-C. 

 

 

 

 
 

Figure 2 Phylogeny of PERV from the pig reference genome SusScrofa 11.1. LTR sequences 
were extracted from the genome and aligned. The tree is based on a maximum likelihood tree, 
with branches occurring also in most parsimony depicted in bold and branch nodes that 

occurred more often in 70 out of 100 genetic distance trees indicated. For better resolution, 
the solo-LTR are not indicated by name, but pairs of LTR that flank a provirus are given by their 

chromosomal position, the differences between the two LTR and the characterization of the 
sub-family based on the env genes. For better indication, proviruses with env of the PERV-A 

are marked in green, PERV-B is marked in magenta and PERV-C is marked in blue. If one end 
of the provirus has been affected by large genomic deletions, the difference of LTR cannot be 

determined (“nd”). If the sequence quality of the env gene was improper it is indicated by a 
“?” and if the env gene is affected by larger deletions the env gene is unknown (“-“). In both 

cases, the proviruses are marked in grey. (analysis done by N. Klymiuk) 
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In the second attempt, PERV-C proviruses were identified by Targeted Locus Amplification 

(TLA) sequencing (DE VREE et al., 2014) on a commercial basis by Cergentis (Cergentis, Utrecht, 

the Netherlands). The load of PERV-C was determined in four different individuals (pig number 

1476, 3990, 4504 and 4686) from our breeding herd (Figure 3). In total, 11 proviruses of PERV- 

C have been identified and sequenced and specific PCRs for each integration site have been 

established by I.Kola during the preparation of her doctoral thesis “Deleting PERV-C infectious 

potential of donor pigs for xenotransplantation”. 

 

 
Figure 3 PERV-C identified in 4 genetically modified pigs from LMU, data provided by 
Cergentis, Utrecht, the Netherlands. 

 
 

Based on the striking difference of PERV-C abundance in the reference genome versus four of 

our multi-modified piglets, the phylogenetic relationship between any LTR clustering with the 

PERV-C reference AF038600 was determined (Figure 4). Based on phylogenetic trees there is 

a clear separation of PERV-C LTR from the references of A, B. Although all PERV-C sequences 

appear highly homologous, there is a further clustering of the almost identical reference 

sequence, all PERV-C identified by TLA sequencing and the provirus remnant at 
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chr14:62.55Mb. The other LTR form a more diverse cluster, characterized by an ambiguous 

pattern of polymorphic sites and a significant number of unique positions. This interpretation 

of a highly homologous sub-cluster and a more diverse group is also supported by principle- 

component analysis. 

 
 
 
 
 

 
Figure 4 Analysis of LTR clustering with the reference PERV-C AF038600. A phylogenetic tree 

was generated according to the procedure described in Fig. 2 and rooted with LTR from the 

reference viruses of PERV-A and B (left panel). Designation of the LTR was done according 
their integration in the reference genome. Proviral sequences were designated as “C”, if the 

env was corresponding to the reference virus (blue) and “-“ if the env was largely lacking 
(grey). If both LTR of a provirus were entirely abundant, the difference between them is 

indicated versus their length. A position-wise comparison of the polymorphic sites in the 
alignment of all LTR is given in the middle panel. All positions identical to the reference virus 

are in blue whereas deviations occurring in more than a single sequence are given in pale. 
Differences that occur only in a single sequence are removed from the alignment and the 

numbers of such unique positions are given for each sequence in columns. Finally, principle 
component analysis of the alignment was performed by Jalview (right panel) and the clusters 

identified are correlated to the other two methods. (analysis done by N.Klymiuk) 
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The finding of two different clusters within PERV-C LTR was not really surprising, when one 

considers, that on one hand a group of proviruses lacking large parts of the env C has been 

found in the reference genome, whereas another group of largely intact proviruses has been 

identified by TLA sequencing. Surprisingly, however, one of the disrupted proviruses, 

chr14:62.55Mb strongly groups with the intact PERV-C whereas the other cluster showed a 

much higher diversity. It is important to consider that this higher divergence did not clearly 

support the assumption of an older age of this cluster, because differences between up- and 

down-stream LTR are relatively low. Still, based on this data set, one might come to the 

conclusion that the full PERV-C have appeared in the genome more recently, and it appears 

that they have come in at once, whereas the truncated PERV-C have populated the porcine 

genome during a longer period of time. Considering the impotence of these proviruses to 

spread in the genome on their own competence, the main question was then, by which way 

these proviruses have integrated in the pig genome. As proviral integration of gamma 

retroviruses results in a typical duplication of 4bp at the integration site due to integrase 

activity, I clarified the flanking sequences of the proviruses chr.14:62.55, chr.11:29.09, 

chr.2:0.23 and scf141. Consistently, all four integration sites revealed identical 4bp sections 

up- and downstream of the provirus, but the 4bp sections differed between each provirus 

(Figure 5). This finding matched the analysis of the 11 intact PERV-C, which has been 

performed previously by I.Kola (Figure 6). Other PERV-C proviruses either lacked one of their 

terminal ends, or were embedded in highly repetitive genomic regions, which prevented the 

independent amplification of the proviral ends. Taken together, this analysis shows that the 

truncated PERV-C are rather the product of integrase-mediated colonization of the genome, 

than a product of transposon-mediated accumulation or the product of pseudogene-like 

reverse transcription. 
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Figure 5 Flanking regions of the truncated PERV-C-like proviruses. The transitions from the 

provirus (capital letters) into the adjacent genomic region (small letters) is indicated for the 
proviruses at chr14:62.55, chr11:29.09, chr2:0.23 and scf141. The intimately adjacent 

positions are underlined and depicted in bold. The structure for each provirus is given 
schematically, with the positions and lengths of larger deletions indicated. At the very right, 

mismatches between LTR are shown. 
 
 

 

 

Figure 6 Flanking regions and 4 bp duplications of the 11 PERV-C proviruses identified by 

I.Kola. 
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As both, the intact PERV-C, as well as the disrupted proviruses appear to be the product of 

retroviral integration, we followed their pattern of inheritance throughout the history of our 

xenotransplantation donor herd. Each of a total of 148 animals was examined for the 

abundance of 11 PERV-C proviruses and 3 proviral remnants (Table 13 and Table 14). Basically, 

it appeared that none of the animals had all of the proviruses in their genome and none of the 

proviruses appeared in all of the animals. In more detail, it became evident that any proviral 

integration was inherited to the offspring in a strictly Mendelian pattern throughout 8 

generations of breeding (Figure 7). Following the stochastical principles behind inheritance 

and the relatively strong inbreeding within our donor herd, it was not surprising that some of 

the proviruses were lost by time, whereas others increased in their frequency within the herd 

as long as no attention was paid to the PERV-C-population, when animals were selected for 

breeding. After identification of the integration sites, breeding animals were selected for their 

PERV-C load, and a slow decrease of PERV-C in the herd has been achieved in the meanwhile. 
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Figure 7 Inheritance of proviral sites in the xenotransplantation donor herd. The breeding 
history started by mating a cloned GTKO.hCD46 boar (Rev) with HLAE-transgenic sows. Later 

on, boars being transgenic for hTBM or INS-LEA (bLEA) were introduced into the mating 
scheme. For the ease of understanding, the genetic constellation of the animals is not 

indicated. Circles symbolize sows and boxes represent boars. Individuals that have been used 
for TLA-sequencing are depicted in magenta; individuals that are entirely free of PERV-C env 

are highlighted in light blue. The inheritance pattern of proviruses at specific nodes and for 
selected integration sites (marked by capital letters) is shown in separate tables.  
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5 Discussion 
 

My working on the maintenance and sanitation of the LMU´s breeding herds for 

xenotransplantation, the veterinary management of the animals, as well as the providing of 

animals, tissue, or blood samples to different research projects allowed the contribution to 

distinct studies and facilitated insight into different aspects of xenotransplantation, ranging 

from hygiene aspects to preclinical research and molecular details of antibody-mediated 

complement activation. 

 
 

 
5.1 Perspectives of xenotransplantation in comparison to alternatives 

 

As a result of the enormous relevance of life-threatening heart diseases, in particular in the 

Western World, tremendous efforts are being undertaken in providing treatments to human 

patients. Evidently, many more attempts than xenotransplantation are being considered, and 

some of them are clinically used. Maybe the most widely used are left (or biventricular) assist 

devices (KIRKLIN, 2014; PATEL et al., 2014; KIRKLIN et al., 2015), which have been initially 

inserted as a bridge-to-transplant support, but the devices are increasingly used, also as 

destination therapy, implying that no allotransplant will be carried out (reviewed in MOU et 

al., 2015). An unfortunate complication of mechanical assist devices is very often sensitization 

to human leucocyte antigens (HLA) antigens, as a consequence of the multiple blood 

transfusions needed during the process. This normally exacerbates the search for a fitting 

deceased donor heart and compromises the value of mechanical assist devices as bridging 

therapy (COOPER & TEUTEBERG, 2010). The total artificial heart (TAH) is another, or, in many 

cases, the last option for those patients, who cannot be rescued by assist devices alone 

(COPELAND et al., 2012) or when allografts fail (QUADER et al., 2013). However, TAHs have 

their limitations due to limited durability (in average less than 5 years) (reviewed in GOERLICH 

et al., 2016) and impairment of their users’ well-being and comfort with their sizeable external 

parts and noisy, large pump (SUNAGAWA et al., 2016). 

A popular approach for treating many diseases is the application of pluripotent stem cells 

(PSCs) (CARPENTER et al., 2009; FOX et al., 2014). Basically, there are three categories of stem 

cells: first, there are permanent stem cells in most mature tissues with high turn-over rates, 

https://www.dict.cc/englisch-deutsch/exacerbate.html
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which are responsible of taking care of tissue preservation. Then embryonic stem cells from 

culture of preimplantation embryos, which are seen as pluripotent, as they can differentiate 

in any cells existing in the human body. And lastly reprogrammed adult cells, referred to as 

induced PSCs (iPSCs) (reviewed in LANE et al., 2014). The PSCs can be obtained by 

manipulating the stem cell microenvironment, or “niche”, to facilitate repair by endogenous 

stem cells (reviewed in LANE et al., 2014). The niche was first described by R. Schofield in 1978 

(SCHOFIELD, 1978) as hypothetical interaction of stem cells and their environmental cells. 

There are niches in many tissues, for example in skin (FUCHS, 2009), intestines (BARKER, 2014; 

TAN & BARKER, 2014), and the nervous system (CONOVER & NOTTI, 2008). Regarding the 

heart or the myocardial tissue, it was shown, that PSCs can differentiate into cardiomyocytes 

in animal models (LAFLAMME et al., 2007; XIONG et al., 2013). Improvement of the function 

of infarcted hearts, that were transplanted with mouse and guinea pig PSC-derived cardiac 

progenitors (SHIBA et al., 2012) and even long-term benefit has been reported in the repair of 

a damaged heart (HARRIS et al., 2007; SCHOLL et al., 2010). Importantly, induced PSCs proved 

as an innovative and attractive source of PSCs, simply generated from differentiated cells by 

somatic cell reprogramming (TAKAHASHI & YAMANAKA, 2006). Still, in many cases organs are 

so severely damaged that cellular regeneration is believed to be of little use and replacement 

by a “new” heart is the only chance to save patients´ lives (reviewed in MOU et al., 2015). 

On the other hand, the availability of personalized, autologous iPSC, stimulated also the field 

of tissue engineering (reviewed in BERTHIAUME et al., 2011). The term tissue engineering 

comprises living cells, biocompatible materials and suitable biochemical factors for creating 

tissue-like structures. State-of-the-art approaches use scaffolds made from naturally derived 

and synthetic polymers, bioresorbable inorganic materials, hybrids, or decellularized tissue 

scaffolds (reviewed in PINA et al., 2019), which are then cellularized either with iPSCs or donor 

cells. This was done, for example with rat kidneys and discarded human transplant kidneys, 

using human inducible pluripotent stem cell–derived endothelial cells for re‐ 

endothelialization (LEUNING et al., 2019). This may be a possible application in the future, but, 

as the heart is a very complex organ and consisting of multiple cell types, with various 

functions, an appropriate multi-cellular composition, which resembles the heart does not exist 

until now (OWEN & HARDING, 2019). 

Another development in the growing field of tissue regeneration is blastocyst 

complementation (CHEN et al., 1993). The generation of a whole functioning human organ, 
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solely derived by the patient’s iPSCs is the ultimate goal, as it would significantly reduce the 

immune response (reviewed in MOU et al., 2015; reviewed in OLDANI et al., 2017). The basic 

idea is that organs are formed, by cells from a complementary individual, if a developmental 

niche is provided by the host. Concept was proven when mouse iPSC-derived kidneys were 

generated in mice (USUI et al., 2012). In a further study, cross -species chimeras were 

generated, when rat-derived iPSCs formed the pancreas in mice (KOBAYASHI et al., 2010). 

Later it was shown, that the blastocyst complementation technique can be applied to the pig 

(MATSUNARI et al., 2013). Further, human-pig chimeras were reported at embryonic stage 

(WU & IZPISUA BELMONTE, 2015; WU et al., 2017), but the experiments were not carried out 

until birth. Thus, the viability of such individuals remains elusive and the practicable terms of 

this approach are unclear. Very importantly, the concept of blastocyst complementation has 

also raised significant ethical concerns (HERMERÉN, 2015; SHAW et al., 2015). 

The latest innovation in the expanding field of bioengineering is 3D tissue printing (reviewed 

in MURPHY & ATALA, 2014). As the used technologies for 3D printing were originally not 

intended for the use with biological materials, the first printers used for bioprinting were 

modified, commercially available, ink-based printers (XU et al., 2008) and the selection of the 

materials is one major task. Not only do they have to withstand the printing process, but they 

should supply the wanted characteristics for the tissue to be composed. Only recently a proof- 

of-concept study was performed where contractile cardiac tissue constructs were printed, 

which were able to perform synchronal contractions (WANG et al., 2018). Additionally, two 

very promising studies printed human “hearts”. One printed small-scale human hearts, as a 

proof-of-concept, that anatomical, volumetric and complex structures can be printed, using a 

personalized hydrogel as matrix (NOOR et al., 2019) and the other group was able to directly 

print collagen and thus bioengineer tissue parts of the human heart at various sizes and even 

a neonatal-sized human heart (LEE et al., 2019). Though these are very encouraging results, 

the 3D bioprinting technology still needs to overcome significant obstacles, like the generation 

of countless millions of cells needed to print large tissues or the creation of a feasible workflow 

for clinical adaption and still the most challenging, is the creation of a fully functional 3D bio 

printed organ. 

In the context of many promising, but not yet clinically applicable approaches, the recent 

publication of consistent long-term survival of xenotransplanted pig hearts in primates  for up 

to 6 months resembles a major breakthrough (LANGIN et al., 2018). Not only would pig  
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breeding facilitate the regular, reliable, and continuous production of donor individuals, but 

also allow a much better planning of transplantation events and the application of techniques, 

that are well established in the course of allotransplantation. Importantly, the physiological 

function of a pig heart is apparently life-supporting in a living primate, a fact that has not been 

yet proven for any of the above described biological replacements. Some aspects such as the 

controlling of the pig heart´s intrinsic growth potential need definitely further consideration, 

but the induction of a genetically induced dwarfism in the donor pigs (HINRICHS et al., 2018) 

might be a sufficient approach to tailor the size of the donor pigs. Similarly, the so far 

significant immunosuppressive burden might be decreased, when local T-cell control is 

induced, such as by the expression of PDL1 (BUERMANN et al., 2018) or by the secretion of 

LEA29Y (BAHR et al., 2016). The most critical point of supplying donor animals for 

xenotransplantation, however, is the threat of transmitting pathogens from the donor to the 

recipient, and, if becoming pandemic, among the human population. Therefore, a strict 

hygiene standard of the donor pig is necessary and the exemplified sanitation of the hygiene 

status in a donor herd was the core of my thesis. 

 
5.2 The way towards an approved barrier facility for clinical trials 

 

It is important to mention, that so far, no specific regulations exist that describe the 

maintenance of donor pigs for xenotransplantation, rather there are only recommendations 

or guides, most notably in the context of clinical trials. Most of the guidelines published by 

WHO, FDA or EMA deal with more general considerations, such as standards for facility 

construction or the importance of keeping notes about feeding, water supply, deposition of 

waste and so on. As such, the “Guidance for Industry: Source Animal, Product, Preclinical, and 

Clinical Issues Concerning the Use of Xenotransplantation Products in Humans” (FDA, 2003) 

claims, for example, that barrier facilities should be built, accredited by the AAALAC and run 

in accordance with the “Guide for the Care and Use of Laboratory Animals” from the National 

Research Council (NRC, 2011). Being claimed as the “Gold Standard” of laboratory animal care 

(SPIZZO et al., 2016) the “Guide for the Care and Use of Laboratory Animals”, is, however, 

rather written for specialized mouse or small rodent barrier facilities, so that only the basic 

principles defining documentation, training of employees, veterinary care, etc. are helpful. On 

the other hand, the “Guide for the Care and Use of Agricultural Animals in Research and 

Teaching” by the Federation of Animal Science Societies (FASS) (FASS, January 2010) gives 
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more specific advice for keeping pigs as an agricultural animal. But the guide has been mainly 

written for the use of large animals in e.g. field research for agricultural purposes or teaching. 

Although it has been updated, only little information is given on the specific demands in 

biomedical research, and therefore the described standards of biosecurity, SOPs, veterinary 

practice and GMP standards are helpful for general maintenance principles, but they do clearly 

not fully cover the demands of donor pigs for xenotransplantation. 

One obviously critical point of housing donor pigs for xenotransplantation will be the 

regulation of access to the pigs. It is well known, that the number of individuals entering the 

facility and the frequency of entry must be minimized. At least a complete documentation of 

external people visiting the facility should be kept. Therefore, we installed a sort of 

“Guestbook” at the entry of CiMM where every guest, external technician and member of any 

other workgroup have to declare, that he/she had no contact to pigs for at least 2 days and 

that he/she is not ill at the moment or was not ill in the past days. Furthermore, he/she 

declares his/her agreement with the use of the double door changing system, including the 

use of the shower and the change of clothes included in this system. A further 

recommendation from the “Guidance for Industry: Source Animal, Product, Preclinical, and 

Clinical Issues Concerning the Use of Xenotransplantation Products in Humans” by the Food 

and Drug Administration (FDA, 2003) proposes to even limit the traffic of caretakers between 

distinct compartments of the facility or between different groups of animals. Working with 

more than one herd on a single day should only be done if validated SOPs for disinfection and 

decontamination are employed. This regulation, however, cannot be executed at CiMM at the 

present timepoint, because this is only possible at very high personal and monetary expense. 

Surprisingly, European regulations, so far, consider only the production of cellular 

xenotransplantation products in the clinical xenotransplantation context, the so-called 

Advanced Therapy Medicinal Product (ATMP), and in detail describe requirements for 

isolation, treatment and cultivation of those products, based on the EU Regulation 1394/2007 

(PARLIAMENT, 2007) (reviewed in SCHUURMAN, 2015). Unfortunately, this regulation is, 

coincidentally with any other regulations, not very informative on the requirements under 

which donor animals should to be kept. In very common and general terms regulatory 

authorities like WHO (WHO, 1998), EMA (EMA, January 1, 2010) or FDA (FDA, 2003) claim, 

that the test regimen should be tailored to the purpose of the animals’ use, the test regimen 

should be established in accordance with experts from the fields of veterinary medicine, 
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virology and epidemiology and thus, the established regimen should be reviewed at given 

timepoints to keep it up with the advance of scientific knowledge. It is, however, evident that 

there are a lot of different opinions on these scientific considerations, and there is little to no 

consensus of an adequate and feasible hygiene monitoring. With a certain reputation, the 

International Xenotransplantation Association (IXA) has made recommendations which are 

extremely extensive, covering more or less any pathogen that has been associated with pig  at 

any time (SCHUURMAN, 2009). Meanwhile, their current version “First update of the 

International Xenotransplantation Association consensus statement on conditions for 

undertaking clinical trials of porcine islet products in type 1 diabetes--Chapter 2a: source pigs- 

-preventing xenozoonoses.” (SPIZZO et al., 2016) condensed this initially proposed test 

regimen to a more practicable extent. Other authors aimed at the same purpose and 

published their personal suggestion of test regimen (GARKAVENKO et al., 2004a; 

GARKAVENKO et al., 2008a; WYNYARD et al., 2014; FISHMAN, 2018). Regarding bacteria and 

viruses there is certain coincidence between these studies and the updated IXA consensus 

statement, whereas the agreement is less pronounced regarding fungi or protozoa (Table 11). 

 
 

 
 

Fishman 
2018 

Spizzio 2016 
(IXA) 

Wynyard 
2014 

New Zealand 

Garkavenko 
2004+2008 

 

CiMM 

Bacteria      

Leptospira 
Serovar Tarrasovi 

  
  

Leptospira 
Serovar Hardjo 

  
  

Leptospira Serovar 
Pomona 

  
  

Leptospira 
interrogans 

    


Mycoplasma 
hyopneumoniae 

  
 



Campylobacter 
  

  

Yersinia      

E.coli K88      

Salmonella spp.     

Mycobacterium 
tuberculosis 


    

Shigella      

nontuberculous 
mycobacteria 
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+ M.bovis      

Listeria 
monocytogenes 


    

Brachyspira 
hyodysenteriae 

/pilosicoli 

     


Lawsonia 
intracellularis 

    


Pasteurella 
multocida 

    


Actinobacillus 
pleuropneumoniae 

    


C. perfringens     

Haemophilus 
parasuis 

    


bact. pool 
examination from 

feces 

     


Brucella suis      

      

Viruses      

MRV      

HERV-K      

PCV2      

PCV1      

PLHV      

PLHV2      

PCMV     

Rotavirus A-C     

Reovirus      

PTV      

PEVB      

PHEV      

HEV     

BVD      

SuHV-1 (AujD)      

PPV      

PRRSV     

EMCV      

PERV     

Adenovirus      

Rabies virus      

TGEV     

Influenza virus 
(human) 


    

Influenza virus 
(swine) 
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Protozoa/ 
Parasites 

     

Toxoplasma gondii      

Ascaris suum      

Cryptosporidium/ 
Microsporidium 

spp. 

 


 


 


  

Echinococcus spp.      

Giardia spp.      

Isospora sp.      

Strongyloides sp.      

Trichinella spiralis      

endoparasites 
(flotation and 

sedimentation) 

     


Trypanosoma spp.      

      

Fungi      

Aspergillus sp.      

Candida sp.      

Cryptococcus 
neoformans 



    

Histoplasma 
capsulatum 



    

 

 

Table 11 Proposed test regimens adapted from different authors (GARKAVENKO et al., 2004a; 

GARKAVENKO et al., 2008a; WYNYARD et al., 2014; FISHMAN, 2018) and IXA (SPIZZO et al., 
2016) compared to the test regimen of CiMM. (refer to Table 1) 

(MRV: mammalian orthoreovirus, HERV-K: Human endogenous retrovirus K, PCV1 /2: porcine circovirus 1/2, 

PLHV: porcine lymphotropic herpesvirus, PLHV2: porcine lymphotropic herpesvirus 2, PCMV: porcine 

cytomegalovirus, PTV: porcine teschovirus, PEVB: porcine enterovirus, PHEV: porcine hemagglutinating 

encephalomyelitis virus, HEV: hepatitis E virus, BVD: bovine virus diarrhea, SuHV-1 /AujD: suid alphaherpesvirus 

1/ Aujezsky’s disease, PPV: porcine parvovirus, PRRSV: porc ine reproductive and respiratory syndrome virus, 

EMCV: encephalomyocarditis virus, PERV: porcine endogenous retrovirus, TGEV: Transmissible gastroenteritis 

coronavirus) 
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As explained in our study on hygiene sanitation during the population of CiMM, we did not 

only screen for PCMV but also for a various number of other pathogens, listed exemplary in 

Table 12 (EGERER et al., 2018). Within the study, the 91 F1 piglets, and consequently all gilts 

which became ET recipients, were monitored very tightly over a period of 14 months. This 

extent has not been achieved in the F2 generation, i.e. the first gm offspring, due to several 

reasons. First, the sequential farrowing of ET recipients logistically complicated the sampling 

of each animal at the same age and prevented the testing of all animals at the same timepoint 

(Figure 8). Second, with increasing numbers of pigs in CiMM, individual testing becomes very 

cost-intensive and, third, the establishment of breeding herds out of only a few founding 

animals is a critical undertaking. Loss of animals needs to be avoided under any circumstance, 

which is further complicated when certain pig lines are stress sensitive such as the Duchenne 

muscular dystrophy (DMD) pig model (KLYMIUK et al., 2013) or Laron animals (HINRICHS et 

al., 2018). Thus, only partial blood sampling has been carried out on representative animals. 

Still, all of the 19 F2 animals tested in the study have been proven free of the tested pathogens. 

In the meanwhile, and during the continuing settlement of the different breeding lines, the 

test regimen is being continued according to the publication. The reduced frequency and scale 

of sampling is, importantly, not only dictated by the available resources at CiMM, but also 

according to the intentions of animal welfare: while the tight monitoring of animals during the 

population of CiMM was necessary to prove the effect of the sanitation, it would meanwhile 

resemble a significant burden for the animals without essential gain of knowledge. This 

condition might change, once donor animals for clinical xenotransplantation will be delivered, 

but at the moment the required hygiene standard has not been finally clarified. Furthermore, 

and according to the FDA “Guidance for Industry: Source Animal, Product, Preclinical, and 

Clinical Issues Concerning the Use of Xenotransplantation Products in Humans” (FDA, 2003) it 

might become obligatory to maintain donor animals separated from any other pigs that are 

not being dedicated for this purpose. Thus, at the present timepoint, maintenance and 

surveillance of a common hygiene standard for experimental animals under the “FELASA 

recommendations for the health monitoring of breeding colonies and experimental units of 

cats, dogs and pigs” (REHBINDER et al., 1998), is the opportune way to go, both, from the 

economic point of view as well as from the standpoint of animal welfare. 
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Table 12 Exemplary screening results table, adapted from the ones we receive from 
Vaxxinova. (Vaxxinova GmbH, Münster, Germany) 

 
 

 

 

Figure 8 Showing coarsely the different sampling time-points for Vaxxinova and the Robert- 

Koch-Institute (RKI) of the three different pig generations, populating CiMM to establish a 

PCMV free pig herd. 
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5.3 Novel pathogens to be considered for donor herd safety 
 

Eventually, the definition of a test regimen will depend on the responsible authority, which in 

Germany is the Paul-Ehrlich-Institut (PEI). Evidently, any initial test regimen definition will be 

based on the expert opinions in the field, but evidently as well, the requirements for testing 

animals will be refined after initial definition, according to the Fishman statement “It seems 

likely that the way in which the level of safety is achieved need not be uniform so long as the 

transplanted tissues do not pose a microbiologic hazard to the recipient”(FISHMAN, 2018). The 

recent discovery of Porcine Circovirus 3 (PCV3), a new possible pathogen in our previous 

breeding herd at LVG (KRUGER et al., 2019) might serve as a good example for developing 

standards in hygiene monitoring. PCV3 was first described in 2016 in pigs with cardiac and 

multi-systemic inflammation (PHAN et al., 2017), in mummified fetuses aborted from sows 

with porcine dermatitis and nephropathy syndrome (PDNS)-like lesions and in sows that died 

acutely with PDNS-like clinical signs (PALINSKI et al., 2017). However, PCV3 is not a new virus , 

but has been found in retrospective studies on samples dating back to 1993 in Sweden (YE et 

al., 2018) and to 1996 in Spain (KLAUMANN et al., 2018) and China (SUN et al., 2018). Although 

so far, the relevance of PCV3 for xenotransplantation remains elusive, its recent appearance 

in pig populations illustrates the dynamics of pathogen evolution. It is their very nature that 

viruses in general, and circoviruses in particular, are genetically diverse and can infect a wide 

range of hosts, with documented cross-species transmission (LI et al., 2010; LI et al., 2011). 

For better understanding the forces behind the latter, the idea of a “host‐agent‐environment 

triangle” has been developed (reviewed in DAVIES, 2012). This is a conceptual model that 

takes into account the interactions between environment, host and an infectious (or abiotic) 

agent (SCHOLTHOF, 2006). This model can be used to predict epidemiological outcomes in 

plant health and public health and was first established by George McNew in the 1960s 

(MCNEW, 1960). According to McNew, six interacting factors determine the development of 

an economically important disease: the climate of the physical environment (for example 

drought or humidity), the duration of the infection period, prevalence of the pathogen, 

virulence of the pathogen, the age or maturity of the host and its particular susceptibility to 

disease. By reduction to these parameters a host-agent-environment triangle can be used as 

a predictor of new or variant pathogens, spreading in a dense population, which definitely 

reflects the present conditions of agricultural pig housing. In addition, in the growing 

agricultural sector, genetic selection of the potential host species has led to almost genetic 
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uniformity (EDFORS-LILJA et al., 1998), which must also be considered as essential factor for 

disease resistance and the development of newly emerging diseases. Livestock production in 

large herds represents an excellent environment to alleviate the transmission and expansion 

of viruses, contributing to the pathogen evolution through mutation, recombination and 

reassortment (NICHOL et al., 2000; LA ROSA et al., 2012; CORREA-FIZ et al., 2018). The 

continuing intensification of agricultural production might have been a major driver for 

establishing PCV3 in the pig, and the extensive exchange of animals, human beings being in 

contact with the animals, and material from agricultural facilities might have supported the 

spreading of PCV3 in pig population all over the planet. Therefore, raising large livestock herds 

without implementing enhanced biosecurity may lead to populations particularly vulnerable 

to disease emergence (PULLIAM JULIET et al., 2012) (reviewed in DAVIES, 2012). Emerging 

disease events, particularly in Asia, underline the importance of biosecurity measurements, 

as it still remains a hot-spot for novel zoonotic diseases, arising from inter-species contact, for 

example new influenza strains (WEBSTER, 2002), Nipah virus (PULLIAM JULIET et al., 2012) or 

SARS (LI et al., 2005). In contrast to the situation in Asia, where inter-species contact is 

common and enables the development of zoonotic diseases, the trend in developed countries 

has led to increased herd sizes with only one species kept, condensed at one place. As a 

consequence of dense livestock populations, pathogens often show high virulence in 

individual species, but due to the diminished inter-species contact, pathogens appear 

relatively host specific (reviewed in DAVIES, 2012). However, recent findings show that this is 

not true in all cases. For example, porcine circovirus type 1 (PCV1) and porcine circovirus type 

2 (PCV2) have been shown to infect human cells (HATTERMANN et al., 2004; LIU et al., 2019) 

and thus circoviruses may pose a risk on a xenotransplant recipient (reviewed in DENNER & 

MANKERTZ, 2017). For PCV3 the picture is less clear. Evidently, the virus was also found in wild 

boars (FRANZO et al., 2018a; KLAUMANN et al., 2019; PRINZ et al., 2019) and it is suggested 

that wild boars may be a potential reservoir for PCV3 infection. To fill the missing 

epidemiological data, plenty of studies were carried out to expand the knowledge on PCV3 

evolution, transmission, spreading patterns and impact on pig health. It was possible to detect 

PCV3 by PCR in nasal swabs (FRANZO et al., 2018c), oral fluids (KWON et al., 2017), feces 

(COLLINS et al., 2017; KLAUMANN et al., 2019), semen (KU et al., 2017), in sow colostrum 

(KEDKOVID et al., 2018) and even in sponges collected from trucks after sanitation (FRANZO 

et al., 2018b). Further, PCV3 was detected in dog sera in China (ZHANG et al., 2018) and in all 
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organs of the recipient baboons in the pig-to-primate xenotransplantation model (KRUGER et 

al., 2019), which suggests trans-species transmission. But up to now, there is no other (than 

these two) evidence that PCV3 is capable of infecting other species. It can be only s uggested, 

that there was replication of PCV3 in the baboons, since the virus was found in all organs from 

the four baboons and the virus load increased with the survival time (KRUGER et al., 2019). As 

“transmission” describes the way or circumstances a pathogen needs to get from its current 

host to the next healthy individual and there are five big categories of means of transmission: 

contact, food- or water-borne, air-borne, vector-borne and perinatal (NELSON et al., 2001) 

and PCV3 was further detected on so many different body fluids and even sponges, it can 

hardly be guessed which transmission routes PCV3 takes. 

Regarding xenotransplantation, transmission, infection and disease potential of PCV3 remains 

totally unclear at the moment. Experiments to infect human cell line 293 were not successful 

in our study (KRUGER et al., 2019), but does evidently not prove that PCV3 is not capable of 

infecting any human cells at all. Further investigations have to be done to understand the 

possible risk that PCV3 may pose on xenograft recipients, but at the moment it appears that 

testing for PCV3 in our breeding herd might be senseful, but not ultimately necessary. 

 
5.4 Heredity of PERV-C proviruses in our xenotransplantation donor herd 

 

Due to their endogenous nature, PERVs resemble a special aspect of xenotransplantation 

safety. Their integral constitution in the genome complicates their removal. A very important 

aspect is also that the threat that PERVs are representing is not fully clear. Evidently, the 

infection assays that have been documented decades ago (ARMSTRONG et al., 1971; LE 

TISSIER et al., 1997; PATIENCE et al., 1997; TAKEUCHI et al., 1998; SCOBIE & TAKEUCHI, 2009), 

were so far not confirmed by in vivo experiments. Evaluation of clinical xenotransplantation 

studies using capsulated islet grafts did not show evidence for virus transmission to patients 

(GARKAVENKO et al., 2004b; WYNYARD et al., 2014; MOROZOV et al., 2017; reviewed in 

DENNER, 2018).In addition, there is no animal model displaying the in vivo trans-species 

transmission situation of PERVs, and until now, no assays for monitoring and for the detection 

of PERV transmission in vivo have been certified. However, it is clearly recommended to use 

PERV-C free animals as donors for xenotransplantation, to avoid the possibility of recombinant 

PERV-A/C occurrence (DENNER et al., 2009). We therefore wanted to assess the amount of 

PERV-C in our herd of donor pigs for xenotransplantation. We could not identify any PERV-C 



5 DISCUSSION 105 
 

 

in the reference genome of the pig by scanning it with the env sequence, whereas PERV-C 

proviruses were found when examining the reference genome for the associated LTR 

sequences. The finding, that some of these LTR descend from truncated proviruses, raised the 

question how these truncated proviruses (the proviruses chr.14:62.55, chr.11:29.09, 

chr.2:0.23 and scf141) could have colonized the genome of the pig. A very important hallmark 

of endogenization of retrovirus is its integration into the genome of germ cells after which the 

retrovirus can endure as stable provirus for multiple generations (BOEKE & STOYE, 1997). A 

typical sign for retroviral integrase activity, amongst others, is a duplication of a certain 

number of host bp DNA (HISHINUMA et al., 1981), being characteristic for different viruses, 

for example, a 6 bp duplication for avian sarcoma/leukosis virus (ASLV), 4 bp duplication for 

MLV and 5 bp duplication for HIV-1 (reviewed in ANDRAKE & SKALKA, 2015). Although there 

are studies that suggest that solo-LTR, the most truncated form of a provirus, can amplify in 

the genome via classical retrotransposition (HEIDMANN et al., 1988; JUNGMANN & TÖNJES, 

2008), we conclude from the consistent 4 bp duplication in their flanking region, that the 

truncated proviruses, similar to the full-length PERV-C, have entered the pig genome by 

retroviral integration. It is clear that a truncation of the env gene might have happened during 

reverse transcription, after a retroviral particle has entered a germ cell or that, even later, the 

truncation has occurred at the proviral stage. In both cases, such a provirus might then 

represent an evolutionary dead end, from the retroviral point of view, being incompetent for 

replication. The finding that all truncated PERV-C-like proviruses have an identical gap in the 

env gene, however, challenge this terminal faith hypothesis. As the provirus is truncated and 

lacks parts of its env gene, an amplification by retroviral re-infection depends on the 

generation of infectious particles by intact proviruses and the packaging of the truncated 

proviral transcript into such particles. From such particles new truncated proviruses might 

accumulate in germ cells after infection and reverse transcription. Although I did not find 

evidence in the literature for such a “hitchhiking” scenario, this is the most conclusive 

explanation for our finding of independent retroviral integration of truncated proviruses. 

Another interesting aspect of our examination of PERV-C is the timepoint of their integration. 

Based on the molecular-clock hypothesis (reviewed in HO & DUCHENE, 2014) the age of a 

provirus can be estimated by the mutations in the two LTR sequences flanking the proviral 

genome, as they develop separately from each other after integration into the host’s genome 

(KLYMIUK et al., 2006). It has been estimated that PERVs persists in the pig genome for 7.6 
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million years, at most (TONJES & NIEBERT, 2003). The fully identical LTR pairs of the full length 

PERV-C and the maximum number of 4 mismatches between the LTR in truncated proviruses, 

however, suggests a much younger age of this specific subfamily. This is also consistent with 

the very diverse pattern of PERV-C integration sites in our breeding herd. Of note, none of the 

PERV-C proviruses were found in all animals. Even, if it is considered that our breeding herd is  

a mixture of different more or less “modern” agricultural breeds, such as German Landrace, 

German Large-White, Duroc, Piétrain, Schwäbisch-Hällisch, and others, and might have 

introduced the different proviruses, these breeds are quite young in evolutionary terms, very 

likely a few hundred years at most. Although, the domestication lineages of European pig 

breeds are difficult to follow and might have been mixed occasionally with wild-boar genomes 

(FRANTZ et al., 2019), it is likely that PERV-C proviruses have not only entered the genome of 

domestic pigs via domestication of wild-boars, but also via infection in agricultural pigs. 

By following the different PERV-C provirus integration sites in the animals used for 

establishing and maintaining the breeding herd at MABB, we revealed that the different PERV- 

C provirus integration sites were inherited vertically from parents to offspring in a Mendelian 

manner (Figure 7), which is consistent to endogenous retroviruses in chicken and mouse lines 

(VOGT, 1997; PATIENCE et al., 2001). Together with the finding that none of the PERV-C 

proviruses is present in all animals, this is an extremely useful finding because, this would 

facilitate the outbreeding of PERV-C proviruses from our donor pigs for xenotransplantation. 

Although, this would be a really time-consuming approach, limited in its power by the low 

numbers of animals produced, and the difficulties to balance the desire for low PERV-C copy 

numbers with the required combination of genetic modifications when choosing future 

breeding animals. Still, the proven feasibility to get rid of PERV-C simply by breeding makes 

this approach practicable, whereas alternatives such as the excision of given PERV-C 

proviruses (see Doctoral thesis “Deleting PERV-C infectious potential of donor pigs for 

xenotransplantation” by Ingrid Kola) or the global inactivation of PERV by deleterious 

mutations within the provirus (YANG et al., 2015; NIU et al., 2017) resemble a tremendous 

effort. In the future perspectives of generating novel models for xenotransplantation from 

scratch, it is also relevant to have PERV-C free individuals identified, as such will form the basis  

of generating PERV-C-free genetically modified lines. 
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5.5 Anti-Gal antibodies – a vital heritage 
 

Immunosurgery is a very sophisticated and effective way to isolate the inner cell mass (ICM) 

from blastocysts, by complement-mediated lysis of the antibody-coated trophectoderm (TE), 

but the choice of the antiserum is one of the most critical factors determining the isolation 

efficiency (KUROME et al., 2019). As the enzyme GGTA1 is functional in most species, but not 

in Old World Monkeys, apes and men (GALILI et al., 1988b; GALILI, 1993), the usage of serum 

of GTKO pigs and therefore the anti-Gal antibodies contained in the serum of these pigs, are, 

in contrast to the previously used antisera in the field of immunosurgery, well defined to one 

specific epitope and applicable to all species that express αGal epitopes (KUROME et al., 2019). 

The serum from our GTKO pigs, collected for this study, proved as a reliable and effective 

source of anti-Gal antibodies to target the αGal epitopes on the surface of the blastocysts from 

the different (mammalian) species used in this study. Even the youngest GTKO pigs, with only 

5 months, had enough natural anti-Gal antibodies in their serum to induce complement- 

mediated lysis, though the serum of a two-year-old pig, showed an even stronger activity, 

which indicates, that the number of antibodies circulating in the blood increases over the time. 

This is in line with the idea that individuals lacking the αGal epitopes start to produce anti-Gal 

antibodies at a very early stage in life, after immune stimulation by bacterial carbohydrate 

epitopes at the age of 6 weeks (DOR et al., 2004; FANG et al., 2012; GALILI, 2013). 

Of note, the effect we took advantage of, namely that anti-Gal antibodies induce complement- 

mediated lysis resembled its very natural function, the destruction and neutralizing of viruses 

presenting αGal epitopes which was seen in murine C retrovirus (ROTHER et al., 1995), PERV 

(TAKEUCHI et al., 1996), pseudorabies virus (HAYASHI et al., 2004), HIV (NEIL et al., 2005) and 

some others. This leads to the suggestion, that Old World Monkeys, apes and men, who are 

the only ones that lack the αGal epitopes, but produce natural anti-Gal antibodies somehow 

took advantage of this situation. The present theory about this advantage is, that an 

evolutionary mechanism named “catastrophic-selection” (LEWIS, 1962), by which entire 

parental populations are replaced by very few mutated offspring, which manage to survive a 

natural disaster, for example extinction by viral epidemics, took place 20-30 million years ago 

(reviewed in GALILI, 2019). Here, the parental population of ancestral Old World Monkeys and 

apes were replaced by their GTKO offspring, who was capable of destroying the viruses 

circulating, and thus was protected from extinction. Later in evolutionary history, the same 

scenario was repeated when early ancestors of Homo sapiens, synthesizing N-5-glycolyl- 
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neuraminic acid (Neu5Gc), were replaced by offspring lacking Neu5Gc and instead now only 

synthesizing N-acetyl-5-neuraminic acid (Neu5Ac), because of inactivation of their cytidine- 

monophosphate-N-acetyl-neuraminic acid hydroxylase (CMAH) gene (SHAW & SCHAUER, 

1989; CHOU et al., 1998; IRIE et al., 1998; MUCHMORE et al., 1998; VARKI, 2010; SPRINGER et 

al., 2014). The event of catastrophic-selection sets apart from Darwinian natural selection and 

from genetic drift, as they occur as gradual changes during many generations, as a result from 

continuous selection (reviewed in GALILI, 2019), whereas in catastrophic-selection, one 

mutation accidentally appearing in a very small population of offspring, leads to resistance in 

a selective event that eliminates all of the parental population, lacking the required mutation 

within a short period of time. The synthetization of αGal epitopes in nonprimate mammals, 

lemurs and New World Monkeys indicates, that ancestral Old World Monkeys and apes were 

also capable of synthesizing αGal epitopes in early periods after the split from New World 

Monkeys, which is estimated to have occurred about 30-43 million years ago (STEIPER et al., 

2004; SCHRAGO et al., 2013), but they went extinct, as mentioned above, because of lethal 

virus infection, most likely by an airborne, highly virulent, enveloped virus. These enveloped 

viruses have phospholipids and glycoproteins which form together the envelope (GALILI et al., 

1996). To synthesize the carbohydrate chain portion of the glycoproteins, the virus depends 

on the enzymes of the Golgi apparatus of the host (ROBBINS et al., 1977; KORNFELD & 

KORNFELD, 1985). The glycosyltransferases in the host’s Golgi apparatus add carbohydrate 

units to the developing chain of glycoproteins as it moves through the compartments of the 

Golgi apparatus. GGTA1 adds the terminal galactose, provided by uridine-diphosphate 

galactose (UDP-Gal), synthesizing the αGal epitope on cellular, as well as on viral carbohydrate 

chains (GEYER et al., 1984; REPIK et al., 1994). Consequently, these viruses, which infected 

cells containing active GGTA1 had multiple αGal epitopes on their envelope gylcoproteins 

(GALILI et al., 1996; PATIENCE et al., 1997; DURRBACH et al., 2007). Thus, the virulent 

enveloped viruses, provided with αGal epitopes by the ancestral parental primate population 

were then neutralized and destroyed by the offspring that lost this epitope and produced anti- 

Gal antibodies, in contrast to their parental generation, which were susceptible to the viruses  

and underwent extinction. 

Evidently, the possibility of genetically modifying genomes facilitates the recapitulation of an 

evolutionary process. The tailoring of donor pigs for xenotransplantation by disruption of 

genes involved in the glycosylation process can be seen as the bringing together of genetic  
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constellations that drifted apart by natural selection. It is of note, however, that evolutionary 

fundamental events such as the deletion of the GGTA1 gene in old-world primates are rare 

and manifest within generations. In much shorter terms, evolution is quite stable. This is 

illustrated by the stable inheritance of the hCD46 and the hTBM transgenes in our breeding 

herd for meanwhile 8 generations. Moreover, the expression profile of the transgenes, and 

thus, the quality of the donor pigs remains stable through many generations of breeding 

(LANGIN et al., 2018). Therefore, it is not necessary to produce xenotransplantation donor 

animals by SCNT, but to provide them in a rather easy way, by breeding. 
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6 Summary 
 

With the growing demand for deceased organ donors and the steady increase of an aging 

population, a solution to the organ shortage has to be found. Xenotransplantation can offer a 

feasible solution within the near future, based on the potential, documented in recent 

preclinical trials. To further promote these perspectives, the aim of this doctoral thesis was to 

evaluate and improve the hygiene status of donor pigs for preclinical trials of collaboration 

projects embedded in the CRC TRR 127. 

Major parts of my work on hygiene sanitation have been done during the population of a new 

facility, the Center of innovative Medical Models (CiMM), at the Chair of Molecular Animals 

Breeding and Biotechnology (MABB) (EGERER et al., 2018). For this, pregnant DPF sows from 

a barrier facility were introduced to the new facility, CiMM, and quickly removed after 

farrowing, with the piglets only being able to suckle colostrum every 2 hours for 24 hours 

under supervision, to avoid any further contact with the mother sows. The motherless reared 

female piglets became the foster mothers of SCNT and IVF derived genetically-multimodified 

pig lines, which were introduced solely by embryo transfer (ET). With this approach we were 

able to establish a PCMV-free pig facility. But not only screening for PCMV was done, in the 

progress of the herd sanitation we screened for other exogenous pathogens, as listed in Table 

12 . 

Another step for the provision of safe donor pigs is the continuing assessment of potential 

new threats for xenograft recipients, as it was exemplified by the detection of PCV3 in our 

herd and in four baboons, after being transplanted with infected porcine hearts (KRUGER et 

al., 2019). Permanent maintenance of a breeding herd for xenotransplantation donors is, 

however, necessary for the constant supply of safe donor pigs, which is one of the essential 

prerequisites for robust pre-clinical studies, as it has been recently documented in a 

groundbreaking pig-to-baboon heart transplantation study (LANGIN et al., 2018). The 

continuous production of pigs by breeding was also a good opportunity to address another 

safety aspect in xenotransplantation, the abundance of PERVs, specifically of the subfamily C. 

I was clearly able to document that none of the PERV-C proviruses was abundant in all animals 

and that the proviruses are inherited in a Mendelian manner. In some of the animals this 

resulted in a PERV-C free status, suggesting that breeding-out of PERV-C is possible, albeit this  

will take some time, due to the low number of animals being produced and the long 
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generation time of pigs. Another remarkable finding was, that there are truncated PERV-C 

proviruses, which have very likely accumulated in the pig genome by retroviral hitchhiking, as 

the respective proviruses were flanked by 4 bp duplications, a very characteristic feature of 

retroviral infection. Finally, the presence of breeding herds for xenotransplantation facilitated 

also the ability to gain materials for other projects. A good example for that, was a study on 

immunosurgery of blastocysts, which is profoundly promoted by serum the from GTKO pigs, 

which contains high levels of anti-Gal-antibodies to induce complement-mediated lysis of 

blastocysts, expressing the αGal epitope (KUROME et al., 2019). 

Thus, my doctoral thesis illustrates the high relevance of continuous production of genetically 

modified pigs for xenotransplantation by breeding and documents the ability to remove 

exogenous as well endogenous pathogens from an existing herd. These findings will be 

essential aspects for paving the way towards eventually supplying donor pigs also for clinical 

research. 
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7 Zusammenfassung 
 

Bereitstellung sicherer Spenderschweine für die Xenotransplantation 
 

Aufgrund des steigenden Bedarfs an Organen verstorbenen Organspendern und einer stetig 

wachsenden und alternden Bevölkerung, muss eine Lösung für diese Spenderorganknappheit 

gefunden werden. Die Xenotransplantation könnte hierfür eine machbare Lösung in naher 

Zukunft sein, was sich auf den Leistungen begründet, die in der aktuellen vorklinischen 

Forschung dokumentiert wurden. Um diese Aussichten weiter voranzutreiben, war das Ziel 

dieser Doktorarbeit, den Hygienestatuts von Spenderschweinen für präklinische 

Forschungsprojekte innerhalb des Sonderforschungsbereich 127 zu evaluieren und zu 

verbessern. 

Große Teile meiner Arbeit an der Hygienesanierung, fanden während der Neubesiedlung 

unserer neuen Stallanlage, dem „Center of innovative Medical Models (CiMM) am Lehrstuhl 

für Molekulare Tierzucht und Biotechnologie (MABB), statt (EGERER et al., 2018). Dafür 

wurden trächtige DPF Sauen von einer Stallanlage mit strikt geregeltem und eingeschränktem 

Zugang, in unsere neue Anlage, CiMM, gebracht und sofort nach dem Abferkeln wieder 

entfernt, wobei die Ferkel für 24 Stunden alle 2 Stunden Kolostrum unter Aufsicht trinken 

konnten, um jeglichen weiteren Kontakt mit den Muttersauen zu vermeiden. Die mutterlos- 

aufgezogenen weiblichen Ferkel wurden Ziehmütter von SCNT und IVF generierten, genetisch- 

multimodifizierten Schweinelinien, die ausschließlich durch Embryotransfer (ET) eingebracht 

wurden. Durch diese Herangehensweise konnten wir einen PCMV-freien Schweinestall 

aufbauen. Außerdem wurde nicht nur auf PCMV untersucht, sondern während der 

Herdenerneuerung und -bereinigung, wurde auch auf andere exogene Pathogene untersucht, 

die in Table 12 aufgeführt sind. 

Der nächste Schritt, bei der Bereitstellung von sicheren Spenderschweinen, ist die 

fortlaufende Einschätzung potenzieller neuer Gefahren für Xenotransplantatempfänger, wie 

es der Nachweis von PCV3 in unserer Herde und in vier Pavianen, nach der Transplantation 

mit infizierten Schweineherzen, veranschaulicht hat (KRUGER et al., 2019). Die andauernde 

und fortlaufende Instandhaltung einer Zuchtherde von Spenderschweinen für die 

Xenotransplantation ist, trotz allem und gerade für die konstante Versorgung mit sicheren 

Spenderschweinen, eine notwendige, essentielle und unabdingbare Grundvoraussetzung für 
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robuste präklinische Studien, wie es kürzlich erst gezeigt wurde, in einer wegweisenden 

Schwein-zu-Pavian Herztransplantationsstudie (LANGIN et al., 2018). Die ständige Nachzucht 

von Schweinen, durch Unterhaltung einer Zuchtherde, war auch eine gute Möglichkeit, um 

einen anderen Sicherheitsaspekt der Xenotransplantation, die Anzahl von PERVs, im 

Speziellen von der Unterfamilie C, zu behandeln. Es war mir möglich klar zu dokumentieren, 

dass keiner der PERV-C Proviren in allen Tieren vorkam und dass die Proviren nach den 

Mendelschen Regeln vererbt werden. Bei manchen Tieren führte das zu einem PERV-C freien 

Status, was die Schlussfolgerung zulässt, dass man PERV-C durch Zucht elimieren kann, 

wenngleich das einige Zeit dauern wird, wegen der geringen Tierzahlen die produziert werden 

und der langen Generationsdauer von Schweinen. Eine weitere hervorzuhebende Erkenntnis 

war, dass es „kaputte“ PERV-C Proviren gibt, die sich höchstwahrscheinlich als retroviraler 

Anhalter/Mitfahrer im Schweinegenom angereichert haben, da die betreffenden Proviren von 

4bp Verdoppelungen flankiert waren, was ein charakteristisches Zeichen für eine retrovirale 

Infektion ist. Zuletzt hat die Existenz von Zuchtherden für die Xenotransplantation die 

Möglichkeit gegeben, Material für andere Projekte zu sammeln. Ein gutes Beispiel ist die 

Studie über „Immunchirurgie“ an Blastozysten, die ungemein vom Serum der GTKO 

Schweinen profitiert hat, da das Serum hohe Level an anti-Gal-Antikörpern enthält, welche die 

Komplement-mediierte Lyse von Blastozysten, die αGal-Oberflächenepitope exprimieren, 

induzieren (KUROME et al., 2019). 

Folglich veranschaulicht meine Doktorarbeit die hohe Relevanz der kontinuierlichen 

Produktion genetisch-modifizierter Schweine für die Xenotransplantation durch Zucht und 

belegt, dass man sowohl exogene, als endogene Pathogene von einer bereits existierenden 

Herde beseitigen kann. Um den Weg für eine mögliche Bereitstellung von Spenderschweinen 

auch für die klinische Forschung, zu ebnen, werden diese Erkenntnisse essentielle 

Gesichtspunkte sein. 
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Figure 1 Establishing multi-modified donor pigs for xenotransplantation by combinatorial  

breeding. (provided by N.Klymiuk)........................................................................................... 60 

Figure 2 Phylogeny of PERV from the pig reference genome SusScrofa 11.1. LTR sequences  

were extracted from the genome and aligned. The tree is based on a maximum likelihood tree, 

with branches occurring also in most parsimony depicted in bold and branch nodes that 

occurred more often in 70 out of 100 genetic distance trees indicated. For better resolution, 

the solo-LTR are not indicated by name, but pairs of LTR that flank a provirus are given by their 

chromosomal position, the differences between the two LTR and the characterization of the 

sub-family based on the env genes. For better indication, proviruses with env of the PERV-A 

are marked in green, PERV-B is marked in magenta and PERV-C is marked in blue. If one end 

of the provirus has been affected by large genomic deletions, the difference of LTR cannot be 

determined (“nd”). If the sequence quality of the env gene was improper it is indicated by a 

“?” and if the env gene is affected by larger deletions the env gene is unknown (“-“). In both 

cases, the proviruses are marked in grey. (analysis done by N. Klymiuk)................................ 85 

Figure 3 PERV-C identified in 4 genetically modified pigs from LMU, data provided by 

Cergentis, Utrecht, the Netherlands. ....................................................................................... 86 

Figure 4 Analysis of LTR clustering with the reference PERV-C AF038600. A phylogenetic tree 

was generated according to the procedure described in Fig. 2 and rooted with LTR from the 

reference viruses of PERV-A and B (left panel). Designation of the LTR was done according 
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Figure 5 Flanking regions of the truncated PERV-C-like proviruses. The transitions from the 

provirus (capital letters) into the adjacent genomic region (small letters) is indicated for the  

proviruses at chr14:62.55, chr11:29.09, chr2:0.23 and scf141. The intimately adjacent 

positions are underlined and depicted in bold. The structure for each provirus is given 

schematically, with the positions and lengths of larger deletions indicated. At the very right, 

mismatches between LTR are shown ....................................................................................... 89 

Figure 6 Flanking regions and 4 bp duplications of the 11 PERV-C proviruses identified by 
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Pig 
 

Day 1 
 

Day 6 
 

Day 12 
 

Day 26 
 

Day 50 
 

Day 73 
 

Day 135 
 

Day 230 > 1 Year † 

#1 –§ – – – – dead    

#2 – – – – – – – dead  

#3 – dead        

#4 – – – – – – – – dead 

#5 – dead        

#6 – – – – – – – – – 

#7 – – – – – – – – – 

#8 – – – – – – – – – 

#9 – – – – – – – – dead 

#10 – – – – – – – – n.d. ‡
 

#11 – dead        

#12 dead         

#13 – – – – – – – dead  

#14 – dead        

#15 – – – – – – – – – 

#16 – dead        

#17 – – – – – – – – dead 

#18 – – – – – – – – dead 

#19 – – – – – dead    

#20 – dead        

#21 – – – – – – – – – 

#22 – – – – – – – – – 

#23 – – – – – – – dead  

#24 – – – – – – – – n.d. 

#25 – – – – – – – dead  

#26 – – – – – – – – dead 

#27 – – – – – – – dead  

#28 – – – – – dead    

#29 – – – – – – – – – 

#30 – – – – – – – – n.d. 

#31 – – – – – – – – – 

#32 – – – – – dead    

#33 – – – – – – – dead  

#34 – – – – – – – dead  

#35 – – – – – dead    

#36 – – – – – – – dead  

#37 – – – – – – – – – 

#38 – – – – – – – – n.d. 

#39 – – – – – – – – n.d. 

#40 – – – – – – dead   

#41 – – – – – – – – n.d. 

#42 – – – – – – – – – 
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#43 – – – – – – – – – 

#44 – – – – – – – – – 

#45 – – – – – – – – – 

#46 – – – – – – – – – 

#47 – dead        

#48 – – – – – – – – – 

#49 – – – – – – – – n.d. 

#50 – – – – – – – – – 

#51 – dead        

#52 – – – – – – – – – 

#53 – – – – – – – – – 

#54 – – – – – – – – – 

#55 – – – – – – – – dead 

#56 – – – – – – – – – 

#57 – dead        

#58 – – – – – – – – – 

#59 – – – – – dead    

#60 dead         

#61 – – – – – – dead   

#62 – – – – – – – – n.d. 

#63 – – – – – dead    

#64 – – – – – – – – – 

#65 – – – – – – – – – 

#66 – – – – – – – – – 

#67 – – – – – – – – – 

#68 – – – – – – – – – 

#69 – – – – – – – – – 

#70 – – – – – – – – – 

#71 – – – – – dead    

#72 – – – – – – – – – 

#73 – – – – – – – – dead 

#74 – – – – – – – – n.d. 

#75 – – – – – – dead   

#76 – – – – – – – – dead 

#77 – – – – – – – – n.d. 

#78 – dead        

#79 – – – – – – – – – 

#80 – dead        

#81 – dead        

#82 – dead        

#83 – dead        

#84 – – – – – – dead   

#85 – – – – – – dead   

#86 – dead        

#87 – – – – – – – – – 

#88 dead         

#89 dead         
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#91 – – – – – – – – n.d. 
 

† tested on DNA extracted directly from tissue, blood or serum without PBMC cultivation  
‡not determined 
§negative result 

 

SUPPLEMENTARY TABLE 1 PCMV screen of all F1 generation offspring. 

F1 generation offspring was screened at regular intervals over the whole observation period 

of 14 months. All F1 animals are negative for PCMV at all tested time points. (Taken from 

EGERER et al., 2018) 

#90 – dead 
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number 
chr1:20 chr1:41 chr1:3 chr2:10 chr4:135 chr5:23 chr6:41 chr7:18 chr11:29 chr13:104 chr14:62 Chr16:79 chrX:14 scf200 

LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV 

1410 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg 

1481 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg 

1511 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg pos pos 

1621 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg 

1622 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg 

1761 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos pos 

1929 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos pos pos neg pos neg pos neg pos neg pos neg 

1938 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos pos 

1974 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos pos 

2017 pos pos pos pos pos pos pos neg pos neg pos neg pos neg pos pos pos pos pos neg pos neg pos pos neg pos pos pos 

2041 neg pos pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos pos 

2074 pos pos pos pos pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg pos pos 

2909 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg 

3360 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos pos pos pos 

3603 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos pos pos neg pos pos 

4667 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos 

4679 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos 

4682 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos pos 

4686 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos 

4688 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos 

4689 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos 

4775 pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos pos neg pos pos neg pos neg pos pos pos pos pos neg 

4791 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg pos neg 

5004 neg neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos pos 

5006 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos pos 

5411 pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos pos neg pos pos neg pos neg pos neg pos neg pos pos 

5426 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos pos 

6182 pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos pos pos pos pos neg pos neg pos neg pos neg pos neg 
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6183 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg pos pos 

6184 pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos pos pos neg pos neg pos neg pos neg pos neg 

6185 pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg pos pos 

6186 pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos pos neg pos pos neg pos neg pos neg pos neg pos pos 

9781 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg pos neg 

9864 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg 

X101 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg 

X102 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos 

X126 pos pos pos pos pos pos pos neg pos neg pos neg pos neg pos pos pos pos pos neg pos neg pos pos pos neg pos pos 

X127 pos pos pos pos pos pos pos neg pos pos pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos 

X129 pos pos pos pos pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos pos pos neg pos pos 

X149 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos pos pos pos pos neg pos neg pos pos pos pos pos pos 

X155 pos neg pos pos pos neg pos neg pos pos pos neg pos neg pos pos pos pos pos neg pos neg pos pos pos pos pos pos 

Y108 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos pos 

1476 pos pos pos pos pos neg pos neg pos pos pos pos pos neg pos neg pos pos pos pos pos neg pos neg pos neg pos pos 

4504 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos pos neg pos pos neg pos neg pos pos pos pos pos neg 

4505 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos pos pos pos pos neg 

1044 pos neg pos neg pos pos pos neg pos pos pos neg pos neg pos neg n.d. neg pos neg n.d. n.d. pos neg pos neg pos neg 

3043 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg n.d. pos pos neg n.d. n.d. pos neg pos neg pos pos 

3047 pos neg pos neg pos pos pos neg pos pos pos neg pos neg pos neg n.d. pos pos neg n.d. n.d. pos neg pos neg pos pos 

9753 pos neg pos neg pos pos pos neg pos pos pos neg pos neg pos neg n.d. neg pos neg n.d. n.d. pos neg pos neg pos pos 

9781 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg n.d. pos pos neg n.d. n.d. pos neg pos neg pos neg 

9874 pos neg pos neg pos pos pos neg pos pos pos neg pos neg pos neg n.d. neg pos neg n.d. n.d. pos neg pos neg pos neg 

9875 pos neg pos neg pos pos pos neg pos pos pos neg neg neg pos neg n.d. neg pos neg n.d. n.d. pos neg pos neg pos pos 

9943 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg n.d. pos pos neg n.d. n.d. pos neg pos neg pos neg 

1476-Z pos pos pos pos pos pos pos neg pos pos pos pos pos neg pos neg n.d. neg pos pos n.d. n.d. pos pos pos neg pos pos 

4504-Z pos pos pos pos pos pos pos pos pos neg pos neg neg pos pos pos n.d. neg pos neg n.d. n.d. pos pos pos pos pos neg 

9869 neg neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg n.d. n.d. pos neg n.d. n.d. neg neg pos neg pos neg 

Table 13 All important animals from the pedigree shown in Figure 7 were examined for the presence of the 11 PERV-C and the 3 PERV-C-like proviral 
remnants. 
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number 
chr1:20 chr1:41 chr1:3 chr2:10 chr4:135 chr5:23 chr6:41 chr7:18 chr11:29 chr13:104 chr14:62 Chr16:79 chrX:14 scf200 

LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV LTR PV 

6202 pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos pos pos pos pos neg pos neg pos neg pos pos WT pos 

6203 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg neg pos WT pos 

6204 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos pos pos neg WT pos 

6205 pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos pos neg pos pos neg pos neg pos pos pos neg wt/lt neg 

6206 pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT neg 

6207 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos pos neg pos pos neg pos neg pos neg neg pos wt/lt neg 

6208 pos neg pos neg pos neg pos neg pos pos neg neg pos neg pos pos neg pos pos neg pos neg pos neg pos pos WT pos 

6209 pos pos pos neg pos neg pos neg pos pos neg neg pos neg pos pos neg pos pos neg pos neg pos neg pos pos WT pos 

6210 pos pos pos neg pos neg pos neg pos pos neg neg pos neg pos neg neg pos pos neg pos neg pos pos pos pos WT pos 

6211 pos neg pos neg pos neg pos neg pos pos neg neg pos neg pos pos pos pos pos neg pos neg pos pos pos pos WT pos 

6246 pos pos pos neg pos neg pos neg pos neg neg neg pos neg pos pos neg pos pos neg pos neg pos neg pos neg WT neg 

6247 pos neg pos neg pos neg pos neg pos pos neg neg pos neg pos pos neg pos pos neg pos neg pos neg pos neg wt/lt neg 

6248 pos neg pos neg pos neg pos neg pos neg neg neg pos neg neg pos neg pos pos neg pos neg neg neg pos neg wt/lt neg 

6249 pos neg pos neg pos neg pos neg pos neg neg neg pos neg pos pos pos pos pos neg pos neg pos neg pos neg WT neg 

6250 pos neg pos neg pos neg pos neg pos neg neg neg pos neg pos pos neg pos pos neg pos neg pos neg pos neg wt/lt neg 

6251 pos neg pos neg pos neg pos neg pos pos neg neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6252 pos neg pos neg pos neg pos neg pos neg neg neg pos neg pos pos neg pos pos neg pos neg pos neg pos neg WT pos 

6253 pos neg pos neg pos neg pos neg pos neg neg neg pos neg pos pos pos pos pos neg pos neg pos neg pos neg WT pos 

6254 pos neg pos neg pos neg pos neg pos neg neg neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6255 pos pos pos neg pos pos pos neg pos neg neg neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg WT neg 

6256 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos pos pos neg WT pos 

6257 pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6258 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg WT neg 

6259 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6260 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT neg 

6261 pos neg pos neg pos pos pos neg pos neg neg neg neg neg pos neg pos neg pos neg pos neg pos pos pos neg WT neg 

6262 pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg WT pos 
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6263 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg WT pos 

6327 neg neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos pos pos neg WT pos 

6328 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6329 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6330 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6331 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos pos pos neg WT pos 

6332 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6333 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos pos pos neg WT pos 

6334 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6335 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos pos pos neg WT pos 

6336 pos pos pos neg pos pos pos neg pos neg neg neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6354 pos pos pos neg pos pos pos neg pos pos neg neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6355 pos pos pos neg pos pos pos neg pos neg neg neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6356 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT pos 

6357 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6358 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6359 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6360 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6361 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6362 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT pos 

6391 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT neg 

6392 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT neg 

6393 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6394 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT pos 

6395 pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT neg 

6396 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT neg 

6467 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT neg 

6468 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT neg 

6469 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT neg 

6470 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT neg 
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6471 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6472 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6473 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT neg 

6474 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT neg 

6475 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg wt/lt neg 

6492 pos neg pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg neg neg pos neg pos neg WT pos 

6493 pos pos pos neg pos pos pos neg pos pos pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6494 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg wt/lt neg 

6510 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT neg 

6511 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT neg 

6512 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6513 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT neg 

6514 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6515 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg wt/lt neg 

6516 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT neg 

6517 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg wt/lt pos 

6518 pos neg neg neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT neg 

6519 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg wt/lt neg 

6520 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg wt/lt pos 

6521 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg neg pos pos neg pos neg pos neg pos neg WT pos 

6522 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT pos 

6542 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6543 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT pos 

6544 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6545 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6546 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT pos 

6547 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT pos 

6548 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6549 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6550 pos neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 
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6551 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT pos 

6552 pos pos pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos pos pos neg pos neg pos neg pos neg WT pos 

6553 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT neg 

6554 neg neg pos neg pos pos pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT neg 

6555 pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg pos neg WT neg 

 
 

Table 14 Additionally to the important animals from the pedigree of Figure 7, all offspring was examined for the presence of the 11 PERV-C and the 
3 PERV-C-like proviral remnants, too. 
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