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Summary  

Plastid ribosomes are derived from ancestral endosymbiontic cyanobacteria and are composed 

of a large (50S) and a small (30S) subunit. Each subunit contains ribosomal proteins and 

ribosomal RNAs. The majority of these ribosomal proteins are also involved with ribosome 

biogenesis and functioning and are encoded in the nucleus. However only a small percentage 

of ribosomal proteins are chloroplast encoded. The first part of this doctoral thesis reports the 

identification and characterization of the Arabidopsis thaliana nuclear encoded 

CHLOROPLAST RIBOSOME ASSOCIATED (CRASS) protein. This protein has emerged 

during embryophyta evolution and resides in the chloroplast stroma of land plants but not in 

green algae or cyanobacteria. Under optimal growth conditions CRASS is not required for 

plant survival and crass mutants show minor defects in photosynthesis and plant fitness. On 

the other hand, translation inhibitors (lincomycin and chloramphenicol) and cold stress 

exacerbate the mutant plant phenotype. In co-immuno-precipitation experiments, CRASS is 

pulled down with 16S RNA and with the small ribosomal subunits PRPS1 and PRPS5. 

CRASS interacts with ribosomal proteins independently of ribosomal RNAs, suggesting a 

protein-protein interaction with other subunits or structural components of the ribosome. 

Double mutants have a synergistic mutant phenotype confirming that CRASS plays a role in 

the stability of the chloroplast and becomes crucial when stress conditions interfere with 

ribosome biogenesis and activity.  

An additional crucial role in the development of the chloroplasts is played by the assembly 

factors which allow correct formation of thylakoid membrane complexes needed to sustain 

phototrophic growth. The second part of this dissertation focuses on a DNAJ related protein, 

SNOWY COTYLEDON2 (SCO2), required for thylakoid complex assembly and protein 

interaction with the light-harvesting chlorophyll-binding protein LHCB1. Its role in 

chloroplast biogenesis in true leaves of Arabidopsis thaliana and Lotus japonicus, previously 

thought to be a protein acting exclusively in cotyledon greening, is here analysed. The lack of 

SCO2 in Arabidopsis results in a drastic decrease in plant growth and photosynthesis 

efficiency under short-day conditions, while SCO2 disruption in Lotus induces white and 

green variegated leaves and stunted growth. In this case, inhibition of translation rates does 

not decrease the variegation phenotype as in other variegated mutants. Furthermore, in 

Arabidopsis, the combined absence of SCO2 and ClpR1 causes a severe variegated 

phenotype. These effects suggest that SCO2 can be considered a new component able to 

suppress leaf variegation. 

Taken together, the results of this thesis highlight the possibility to discover new gene 

functions, such as CRASS and SCO2. These genes have been functionally characterized by 

inducing stresses that enhanced otherwise undetected phenotypes.           

 



  SUMMARY 

 9 

Zusammenfassung 

Plastide Ribosomen stammen von endosymbiontischen Cyanobakterien ab und bestehen aus 

einer großen (50S) und einer kleinen (30S) Untereinheit. Jede Untereinheit enthält ribosomale 

Proteine und ribosomale RNAs. Die Mehrzahl dieser ribosomalen Proteine, die auch an der 

Ribosomenbiogenese und -funktion beteiligt sein könnten, wird im Kern kodiert, während nur 

ein geringer Prozentsatz im Chloroplasten kodiert wird. Im ersten Teil dieser Doktorarbeit 

wird über die Identifizierung und Charakterisierung des durch Arabidopsis thaliana 

kerncodierten Proteins CHLOROPLAST RIBOSOME ASSOCIATED (CRASS) berichtet. 

Dieses Protein wurde während der Embryophyten-Evolution erworben und befindet sich im 

Chloroplastenstroma von Landpflanzen, jedoch nicht in Grünalgen oder Cyanobakterien. 

Unter optimalen Wachstumsbedingungen ist CRASS für das Überleben der Pflanze nicht 

erforderlich. Arabidopsis thaliana Mutanten weisen nur geringfügige Defekte in der 

Photosyntheseeffizienz und der Fitness der Pflanze auf. Allerdings verstärken 

Translationsinhibitoren (Lincomycin und Chloramphenicol) und Kältestress den Phänotyp der 

mutierten Pflanzen. In Co-immunpräzipitationsexperimenten wandert CRASS mit 16S-RNA 

und dementsprechend mit den Proteinen der kleinen ribosomalen Untereinheit, insbesondere 

PRPS1 und PRPS5. Trotzdem interagiert CRASS mit ribosomalen Proteinen unabhängig von 

ribosomalen RNAs, was auf eine Protein-Protein-Interaktion mit anderen Untereinheiten oder 

Strukturkomponenten des Ribosoms schließen lässt. Doppel Mutanten haben einen 

synergystisch Mutanten Phänotyp. Dieser bestätigt dass CRASS eine Rolle für die Stabilität 

des Chloroplasten spielt und entscheidend wird, wenn Stressbedingungen die 

Ribosomenbiogenese und -aktivität beeinträchtigen. 

Eine weitere entscheidende Rolle bei der Entwicklung der Chloroplasten spielen die 

Assemblierungsfaktoren, die die korrekte Bildung von Thylakoid-Membrankomplexen 

ermöglichen, die zur Aufrechterhaltung des phototrophen Wachstums erforderlich sind. In 

diesem Zusammenhang konzentriert sich der zweite Teil dieser Dissertation auf ein DNA-J-

verwandtes Protein, SNOWY COTYLEDON2 (SCO2), das für die Thylakoid-Assemblierung 

und die Interaktion mit dem Lichtsammel-Chlorophyll-Bindungsprotein LHCB1 benötigt 

wird. Bisher wurde davon ausgegangen, dass es ein Protein ist, das ausschließlich in der 

Cotyledon-Begrünung wirkt. Hier wird seine Rolle bei der Chloroplastenbiogenese in echten 

Blättern von Arabidopsis thaliana und Lotus japonicus analysiert. Das Fehlen von SCO2 bei 

Arabidopsis führt zu einer drastischen Abnahme des Pflanzenwachstums und der 

Photosyntheseeffizienz unter kurzen Tagesbedingungen, während in Lotus weiße und grüne 

Blätter und Wachstumsstörungen induziert werden. In diesem Fall verringert die Inhibierung 

der Translationsraten den Variationsphänotyp nicht wie bei anderen enlichen Mutanten. 

Darüber hinaus induziert in Arabidopsis die Kombination der Abwesenheit von SCO2 und 

ClpR1 einen stärker mutierten Phänotyp. Diese Effekte legen nahe, dass SCO2 als neue 

Komponente betrachtet werden kann, die die Färbung des blattes unterdrückt. Die Ergebnisse 

dieser Arbeit haben gezeigt, dass neue Genfunktionen entdeckt werden können, wie im Fall 

von CRASS und SCO2. Diese wurden dadurch charakterisiert, dass Stress ausgeübt wurde 

und das unentdeckte Phänotypen verstärkt wurden.                                        .   
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Abbreviations 

°C    Celsius degrees 

µ    Micro 

ATP    Adenosine triphosphate 

Bp    Base pairs 

cDNA    Complementary deoxyribonucleic acid 

CDS    Coding sequence 

Col    Arabidopsis thaliana. var. Columbia 

CRASS   CHLOROPLAST RIBOSOME ASSOCIATED protein 

CTP                   Chloroplast transit peptide 

Da    Dalton 

ddH2O    distilled water 

DEPC     Di-ethylpyrocarbonate 

DNA    Deoxiribonucleic acid 

dNTPs     Deoxyribonucleotides 

DTT    Dithiothreitol 

E. coli    Escherichia coli 

ECL    Enhanced chemiluminescence 

EDTA    Ethylendiamintetraacetate 

ETR    Electron transport rate 

g    Gram 

g    Gravity force 

GFP    Green Fluorescent Protein 
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h    Hour 

l    Liter 

LIN    Lincomycin 

M    Mol per liter 

mol    Mol 

MS    Mass spectrometry 

PAGE    Polyacrylamide Gel electrophoresis 

PCR    Polymerase chain reaction 

PVDF    Polyvinylidene difluoride 

rRNA    Ribosomal RNA 

RT    Room temperature 

SDS    Sodium dodecylsulfate 

T-DNA   Transfer DNA 

TRIS       Tris (hydroxymethyl) aminomethane 

tRNA    Transfer RNA 

WT    Wild type 

YFP    Yellow Fluorescent Protein 
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1. Introduction 

1.1 The identification of a putative chloroplast ribosome subunit  

Plastids of plants and algae evolved from a single endosymbiontic event involving the 

incorporation of an ancient photosynthetic cyanobacterium into a eukaryotic host. The name 

“plastids” has been given to these organelles because of their plasticity, since there are many 

plastid types with very different functions such as amyloplasts, leucoplasts, chromoplasts and 

chloroplasts, which differentiate from proplastids (Lopez-Juez & Pyke 2005; Sakamoto et al. 

2008). For instance, the transition from a small undifferentiated proplastid to a mature 

chloroplast is characterized by a large increase in size, an accumulation of plastid-specific 

pigments (carotenoids and chlorophylls), a rapid production of photosynthetic proteins and 

formation of the thylakoid membranes. The last step is the assembly of the light harvesting 

antenna complexes (LHCs) to allow photosynthesis in the mature chloroplast (Jarvis & 

López-Juez 2013).  

 Many features of the original bacterial ancestor are still present in the modern chloroplast 

(Moreira et al. 2000). These include a circular genome with about 120 genes encoding 

ribosomal RNA (rRNA), transfer RNA (tRNA), subunits of the translational apparatus 

(polymerases, ribosomal proteins and assembly factors), components of the two photosystems 

such as ATP synthase, NADH dehydrogenase, cytochrome b6f, subunits of the ATP synthase 

and the Rubisco large subunit which is likely the most abundant protein on Earth. The 

abundance of Rubisco and other crucial components of the photosynthetic machinery might 

be the reason why their protein synthesis takes place in the chloroplast by plastidial 

ribosomes, even if 95 % of the plastid proteins are nuclear encoded (Barbrook et al. 2006). 

The ancestral cyanobacterial genome was composed of 1500-3000 genes of which only a 

minor fraction (usually less than 150) is still present in the current chloroplasts genomes of 

higher plants. The strong reduction of gene number is the consequence of symbiosis that made 

many genes become dispensable and of a massive gene transfer to the host’s nuclear genome 

(Bock & Timmis 2008; Kleine et al. 2009). As a consequence, nucleus-encoded proteins have 

to be transported into the chloroplast. Thus chloroplast biogenesis depends on anterograde 

signaling from nucleus to chloroplast, and vice versa, retrograde signaling to properly 

coordinate the assembly of the photosynthetic apparatus starting from proteins encoded in 

different compartments (Ruckle & Larkin 2009). Two RNA polymerases are present in the 
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plastids: a nuclear-encoded bacteriophage-type and a plastid-encoded, bacterial-type which 

transcribes most of the plastid genes (Fristedt et al. 2014). 

Ribosomes were first found in 1953 by George Emil Palade using an electron microscope on 

rat liver homogenates, while their name has been given few years later to abbreviate 

‘microsomal ribonucleoproteins’ (Oota & Takata 1959; Palade & Siekevitz 1956). Ribosomes 

are a macromolecular complex inside eukaryotic and prokaryotic cells responsible for protein 

synthesis. 

Eukaryotic ribosomes are larger than their prokaryotic counterparts, which differ from 

mitochondrial (called mitoribosomes) and chloroplastic ribosomes. Plastid ribosomes are of 

cyanobacterial origin and are composed of a small subunit with a 30S sedimentation factor 

and a large 50S subunit which together form the 70S ribosome that decodes and translates 

mRNAs into the corresponding polypeptide chains (Harris et al. 1994). Both subunits are 

composed of RNA and proteins forming a macromolecular complex. To date more than 50 

plastid ribosomal proteins (PRP) and four ribosomal RNAs (rRNAs) are known while only 

few ribosome-associated proteins and assembly factors have identified.  

 

Figure 1.1 Chloroplast ribosome subunits  

Graphic representation of the 50S large subunit and the 30S small subunit of plastidial ribosomes. Adapted from: 

bifi.es/~jsancho/estructuramacromoleculas/ 

 

Even if very distant in evolutionary terms, most plastid encoded genes are organized in  

operons and are transcribed as polycistronic transcriptional units. Moreover, the chloroplast 

rRNA is composed of 16S, 23S, 4.5S, and 5S rRNAs, and three tRNAs, thus maintaining the 
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same order as found in the bacterial operons (Strittmatter & Kossel 1984). The three tRNAs 

are located between the 30S and 50s subunits and their binding sites are called A (aminoacyl), 

P (peptidyl), and E (exit). The mRNA is asssociated to the 30S subunit and is bound to the A 

and P site to two tRNAs. The third tRNA is bound to the E site which is the last position of 

the tRNA before it exits the ribosome (Rogalski et al. 2008). 

Although ribosome biogenesis involves a tight coordination with cell growth and proliferation 

and is regulated by a plethora of evolutionarily conserved assembly factors, including small 

nucleolar ribonucleoproteins (SnoRNPs), nucleases, RNA helicases, RNA chaperones, 

kinases, ATPases, and GTPases, only a few have been functionally characterized (Pendle et al. 

2005; Weis et al. 2014). For many years, rRNAs have been considered to function mainly as a 

scaffold for ribosomal proteins to be properly positioned for protein synthesis. However, this 

view has changed considerably since the discovery of catalytically active rRNA granules. This 

observation led to the assumption that rRNAs play a major posttranscriptional role while 

associated proteins act in modulating ribosome activity (Anderson & Kedersha 2006). 

Currently, ribosome assembly and mRNA processing are thought to occur in association with 

nucleoids (Chotewutmontri & Barkan 2016). Plastid nucleoids are DNA-rich structures in 

proximity of thylakoids or envelope membranes. Proteomic studies of nucleoids revealed a 

diverse and heterogeneous amount of proteins. Therefore, the lack of a membrane 

surrounding the nucleoid might allow a very dynamic organization with transitory 

interactions. However in the nucleoid proteome, ribosomal subunits, RNA processing proteins 

and ribosome assembly factors are always abundant, suggesting that ribosome biogenesis 

takes place in close association with the nucleoids (Powikrowska et al. 2014; Melonek et al. 

2016). 

Interestingly, many of the chloroplast ribosomal proteins are larger than their bacterial 

orthologues, mainly due to short insertions or extensions at their N- or C-termini (Marín-

Navarro et al. 2007) while only minor differences occur in the large and small subunit rRNAs. 

Regulation of translation, together with its initiation and elongation modulates gene 

expression in such a way that minor defects in ribosome assembly generally lead to a plethora 

of pleiotropic mutant phenotypes (Pesaresi 2006). 

Furthermore, it is well known that defects in ribosomal subunits in chloroplasts lead to a 

different and often stronger phenotype than their prokaryotic counterpart in bacteria. For 

instance, several mutants for ribosomal proteins in bacteria lead to a mild phenotype, such as 
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a slower growth rate, whilst their plastidial orthologs lead to embryo lethality also with a 

complete loss of the ability to perform protein translation (Fleischmann et al. 2011). Reasons 

for such diversity probably reside in the higher specialization and complexity of eukaryotic 

organisms which need the transfer of proteins across compartments within the cell (Dinman 

2009).  

PRPL11, for example, is a subunit localized in the ribosome near to the GTPase binding site 

and the 23S rRNA (Ban et al. 1999). Plants with a reduced expression of PRPL11 show pale 

green true leaves and cotyledons together with a delay in plant growth and senescence 

(Pesaresi et al. 2001). This mutant lacks completely the subunit and its phenotype confirms a 

key role in ribosome stability. Similarly to their plant counterparts, bacterial mutants lacking 

PRPL11, show an increased generation time and decreased rates of in vitro protein synthesis 

(Stark & Cundliffe 1979). 

 A knockdown insertion in the PRPS17 gene results in a delayed leaf senescence (Woo et al. 

2002), supposedly caused by a decreased translation rate similar to what happens after cold 

stress. This has been shown also in C. elegans where a reduced messenger RNA translation 

rate leads to an extension of life span (Arquier et al. 2005; Hansen et al. 2007; Syntichaki et 

al. 2007). Cold stress sensitivity found in PRPS17 mutants might be associated to a delay in 

ribosome assembly or defective retrograde signalling pathway involving cold responsive 

genes (Yu et al. 2012).  

Cold sensitivity is a common ribosome-associated phenotype because the translation rate is 

reduced at low temperatures and hence it is further affected in plants which lack parts of the 

ribosomal machinery (Rogalski et al. 2008). Plants lacking another 30S subunit, PRPS5, show 

pale inner leaves and a retarded growth, typical phenotypes induced by plastidial ribosome 

defects especially under cold stress. On the other hand, lack of PRPS5 induces defects in the 

whole chloroplast biogenesis, this might modify expression levels of target nuclear genes 

through a retrograde plastid-to-nucleus signaling affecting nuclear gene expression (Zhang et 

al. 2016). 

The largest ribosomal protein in E. coli, PRPS1, consists of a series of repetitions of the same 

domain called S1 domain which can be found across kingdoms and is involved in RNA 

metabolism (Salah et al. 2009). In E. coli, it allows the binding of the transcripts with the 30S 

small subunit (Sørensen et al. 1998). In Arabidopsis, knocking down PRPS1 resulted in pale 

and heat sensitive mutants likely due to a down regulation of the expression of heat 
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responsive genes suggesting the existence of a retrograde signaling pathway (Yu et al. 2012). 

Further studies demonstrated that PRPS1 interacts with GUN1 (GENOMES UNCOUPLED 

1), one of the best known master regulators of retrograde signaling (Tadini et al. 2016). 

Interestingly, PRPS1 is the only ribosomal subunit which is found both in ribosome-bound 

and ribosome-free forms (Merendino et al. 2003; Delvillani et al. 2011). However, double 

mutants gun1 prps1 showed no sensitivity to heat shock treatments, suggesting that GUN1  

delivers the signal of delayed ribosome biogenesis to the nucleus thus regulating PRPS1 

expression levels post-transcriptionally (Colombo et al. 2016; Tadini et al. 2016).  

RBD1 is an RNA-binding protein found in chloroplast nucleoids involved in ribosome 

assembly through 23S rRNA processing. Cold stress experiments leads to a deficient greening 

in young leaves in mutant plants which is restored under normal growth temperature 

conditions (Wang et al. 2016c). Although it is not clear how low temperatures are affecting 

translation, it is hypothesized that the presence of an RNA-binding protein might prevent the 

formation of unstable RNA secondary structures which are frequent under low temperatures 

(Lorsch 2002; Jones & Inouye 1996). 

RBF1 Ribosome Binding Factor 1 has a role in the biogenesis and coordination of the 30S 

subunit of the plastidial ribosome (Fristedt et al. 2014). Knocking down RBF1 impairs 

chloroplast development as a consequence of a reduced translation rate (Fristedt et al. 2014). 

Minor defects in the translation apparatus can yield a delay in greening in new leaves. Older 

leaves require low translational activity that allows them to reach wild type quantities of 

chlorophyll and photosynthesis efficiency (Fleischmann et al. 2011). 

Transcriptomics studies led to the comparison of patterns and intensities of expression of all 

the mRNAs in different cells or tissues. Using a ‘guilt-by-association‘ approach, it is possible 

to have an indication of protein function by comparing gene expression across tissues and 

developmental stages. Co-regulation of gene expression can be seen as a mechanism to 

provide the correct amount of proteins belonging to the same metabolic pathway at the right 

time in processes such as photosynthesis. 101 conditions have been clustered and then sub-

divided in 23 regulons based on their mRNA expression profiles (Richly et al. 2003; Biehl et 

al. 2005). On average, regulon 1 and 2 are very distant in localization compared to the rest of 

the dataset because they are mainly chloroplast targeted. While regulon 1 could be assigned to 

photosynthesis, most of the genes in regulon 2 encode subunits of the chloroplast ribosome or 

proteins presumably involved in the transcription or translation of plastid genes.  
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During this doctoral thesis it has been characterized CHLOROPLAST RIBOSOME 

ASSOCIATED (CRASS), a nuclear encoded gene belonging to regulon 2 encoding for a 16 

kD protein characterized by the presence of a putative heavy-metal-associated domain (HMA) 

and a chloroplast transit peptide at the C-terminus. The HMA is a well conserved sequence of 

20-40 amino acids found in a plethora of ATP dependent proteins, from Archea to mammals, 

trafficking or detoxifying heavy metals. The binding site for metals resides within the HMA 

domain and consists of two cysteins. These two cysteins, are absent in CRASS. Thus the 

protein might have lost the metal coordination function during evolution or evolved a 

different role specific for plants. In fact, CRASS is only present in Embryophytae and no 

orthologues can be found in bacteria or animals.  

1.2 A hypothetical link between leaf variegation and a DNA-J like protein. 

Correct chloroplast biogenesis is essential for plant fitness. Mutants affected in chloroplast 

biogenesis often display severe pale or albino phenotypes that can lead to plant death. 

However, in some cases these mutants display a phenotype called “variegated phenotype”, i.e. 

leaves are characterized by white and green sectors distributed without a predictable pattern. 

In some plant species these sectors can also overlap yielding to different shades of green. The 

common characteristic is that chloroplasts develop normally and are fully functional in the 

green areas, while chlorophyll synthesis is aborted in the white areas (Aluru et al. 2006; 

Putarjunan et al. 2013) 

Several hypothesis exist to explain this phenomenon at the molecular level, but most lack a 

precise molecular explanation. 

The best studied type of leaf variegation occurs in var1 and var2 mutants which are lacking 

FTSH5 and FTSH2 respectively, two proteins belonging to the FTSH (filamentation 

temperature sensitive H) protease family. FTSH heterocomplexes have several functions 

ranging from chaperone activity to ATPases and are crucial for photodamaged D1 degradation 

(Lu 2016). At least two minor isoforms are present in these complexes, FTSH1 and FTSH8, 

whose mutants do not show obvious phenotypes (Sakamoto 2003; Zaltsman et al. 2005). 

Their expression levels instead determine the functionality of the complex when one of the 

main isoforms is lacking, indicating a high (but not complete) level of redundancy among the 

12 FTSH gene family members. In fact, the hypothesis from Yu et al. (2004) for the var1 and 

var2 variegated phenotype is based on a “molecular threshold”, implying that there is a 
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minimum amount of FTSH complexes needed in the thylakoid membrane to efficiently carry 

out the repair of degraded photosystem II reaction center protein D1. Below a certain level, 

the repair rate of damaged D1 is too low, inducing photooxidation and non photosynthetic 

white chloroplasts. Interestingly, both types of chloroplasts are viable and capable of division 

giving rise to white or green groups of cells in distinct sectors of the leaf. This model assumes 

that the expression of certain FTSHs is rather “patchy”, otherwise the sectors would present a 

clearly defined pattern based on the initial concentration of specific FtsHs in the meristem. 

The hypothesis has been further strengthened by the consideration that several suppressors of 

variegated phenotype act by slowing down protein biosynthesis in the plastid which affects 

D1 turnover and the amounts of reactive oxygen species (ROS) (Miura et al. 2007; Kato et al. 

2009). 

Cotyledons are usually not affected by this phenotype, because if seed quality is normal, there 

is sufficient energy stored for a regular chloroplast biogenesis (Stoynova-Bakalova et al. 

2004). An exception is a class of mutants called SNOWY COTYLEDONS (SCO) which are 

exclusively affected at their cotyledon stage but display unaffected green true leaves that carry 

out WT levels of photosynthesis (Albrecht et al. 2006). 

The gene SNOWY COTYLEDON 2 (SCO2)/CYO1 encodes a DNAJ-related protein with a 

conserved zinc-finger domain, and is required for normal accumulation of the photosynthetic 

machinery in cotyledons (Shimada et al. 2007; Albrecht et al. 2008). Other chloroplastic 

members of the DNAJE clade (Pulido & Leister 2018) have been shown to exhibit 

chaperone/assembly activity even when lacking the J-domain required for HSP70 binding. 

For instance, PSA2 is required for proper photosystem I (PSI) assembly (Fristedt et al. 2014), 

LQY1 for photosystem II (PSII) repair after stress (Lu et al. 2011), and OR for accumulation 

of its substrate phytoene synthase in carotenoid biosynthesis (Zhou et al. 2015). Similarly, 

SCO2/CYO1 is required for the accumulation of the light harvesting chlorophyll-binding 

protein LHCB1 (Tanz et al. 2012). However, SCO2/CYO1 has been proposed to facilitate 

targeting of LHCB1 to the thylakoid membrane rather than having a function in the assembly 

of the photosynthetic complexes (Tanz et al. 2012). In addition, SCO2/CYO1 was found to 

interact with several PSI and PSII subunits in yeast two-hybrid experiments (Muranaka et al. 

2012). 

PSII assembly has yet to be fully unravelled. Its main components and steps involved are 

known but we are far from fully deciphering the construction of such a complicated 
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machinery. Several approaches have been tried to get closer to a full picture of all the 

components involved in the photosystems and in their assembly. Classical genetics yielded 

and continue to provide the characterization of new components by knocking out genes and 

assessing the resulting mutant phenotypes. Functionality of assembly factors is different 

across species and the importance of a specific component is sometimes overrated when its 

presence is demonstrated in a single species. Since more and more plants or algae are fully 

sequenced and used as model organism, the accuracy of the information is higher and the 

pleiotropic effects caused by the improper assembly of a crucial machinery are diminished by 

using different plant backgrounds with different physiology and assembly quality control 

systems. Another approach is a bottom up way, in which a synthetic scaffold is used to 

generate an artificial photosynthetic organism with functional photosystems. Missing or 

undiscovered genes can be provided through a cDNA library. Technical difficulties arise with 

the increase of the complexity of the host organism which has to be engineered, such as 

cyanobacteria or plants. E. coli instead can carry out homologous recombination of large 

synthetically designed DNA fragments potentially providing a scaffold more efficient than 

photosynthetic organisms.  (Rühle & Leister 2016)  

Since its mechanism of action is well known, the use of lincomycin (LIN) at sub-lethal levels 

is often used to study the effects of a reduced protein translation. LIN is a lincosamide 

antibiotic which inhibits the peptidyl transferase reaction by competing for several binding 

sites in common with those of the peptidyl transferase substrates (Tenson et al. 2003). This 

crucial reaction carried out by ribosomal RNA in the major subunit of the ribosome binds 

adjacent amino acids thus constituting the core of protein biosynthesis. When there is a minor 

defect in ribosome assembly or in chloroplast biogenesis the LIN-induced reduction of 

proteins leads to an evident pale or variegated phenotype (Llamas et al. 2017).  

In this work, we report that the mutations in SCO2 in Lotus japonicus, besides paler 

cotyledons, result in variegated true leaves. Similarly, the absence of SCO2 in A. thaliana 

affects true leaf development, specially under short-day conditions. In both plant species, we 

demonstrate a role for SCO2 in the assembly or repair of photosystem complexes. 

Furthermore, an A. thaliana double mutant in which atsco2 is combined with a mutation in 

SUPPRESSOR OF VARIEGATION2 (svr2/atclpr1) shows an unexpected additive variegated 

phenotype. Therefore, we propose a mechanistic model for SCO2-dependent variegation, 

which is insensitive to previously described suppressors of variegation. 
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2. Materials and Methods 

2.1 Plant material, propagation and growth conditions 

The Arabidopsis thaliana crass-1 (line 84-776) and crass-2 (line: 72-131) mutants in Col-0 

background have been obtained from the Koncz (Max Planck Institut, Köln) collection (Ríos 

et al. 2002). To generate the oeCRASS-YFP overexpressing lines, the coding sequence of 

CRASS (At5G14910) was PCR-amplified using a gene specific primer pair (Supplemental 

Table 6.3) and the gel-purified PCR product was used for BP and LR Clonase reactions 

(Invitrogen). The resulting product was cloned in-frame into the Gateway binary vector 

pGWB641 containing a 35S promoter and YFP (Invitrogen). Agrobacterium tumefaciens 

mediated transformation has been performed by floral dipping densely sown plants in a 

solution of transformed Agrobacterium tumefaciens (strain GV3101). Transgenic plants were 

selected on the basis of their resistance to BASTA, propagated and genotyped. Mutants 

prpl11-1 and prps17-1 have been described before (Pesaresi et al. 2001; Tadini et al. 2016). 

After stratification for 3 days in darkness at 4 °C, wild-type and mutant plants were grown on 

soil or MS agar plates with 1% sucrose. Plants were grown under controlled conditions in 

growth chambers at 22°C in long day (LD, 16 h light/8 h dark, 100 μmol photons m2 s−1) or 

short day (SD, 8 h light/16 h dark, 100 μmol photons m2 s−1). 21 days after germination, plants 

were harvested for weight measurement or in liquid nitrogen for protein extraction. For co-

immunoprecipitation experiments, wild-type (WT) and oeCRASS lines were grown on soil in 

a 12 h light/12 h dark cycle (100 μmol photons  m2 s−1) for two weeks. For cold stress 

experiments in soil, adult plants were grown on soil in long day (16 h light / 8 h dark) for two 

weeks at 22ºC and moved to a 4 ºC chamber (Percival Scientific LED 41HL2) equipped with 

white and red LEDs set at 18% intensity (equivalent to 100  μmol photons m2 s−1) for 5 weeks. 

Alternatively, plants were germinated and grown on plates for six weeks in the same chamber 

and conditions. Seedlings were otherwise grown for 10 days in plates supplemented with the 

indicated concentrations of lincomycin (LIN). 

Lotus japonicus sco2 mutants in the Gifu genetic background originate from the LORE1 

endogenous retrotransposon mutant population (www.lotus.au.dk) (Małolepszy et al. 2016). 

Three independent lines with a similar variegated phenotype identified as ljsco2-1 

(30096086), ljsco2-2 (30099994), and ljsco2-3 (30006602) were found to disrupt the coding 

region of the LjSCO2 gene (Lj3g3v0537380.1). The ecotype Gifu B-129 served as the WT 
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control. Lotus seeds were surface sterilized (Handberg & Stougaard 1992) and grown on soil 

or solid Murashige and Skoog (MS) medium. For greening experiments, plants were exposed 

to light (100 µmol photons m2 s-1) for 4 h, then incubated in the dark at 22 °C for 8 days. 

Pigments were extracted from whole seedlings immediately, and after 1 and 8 days of growth 

under long-day conditions (100 µmol photons m2 s-1). The A. thaliana sco2 mutant (NASC: 

N68145) in the Landsberg erecta background was initially isolated in an ethyl 

methanesulfonate screen for plants with pale cotyledons and green true leaves (Albrecht et al. 

2008). The atclpr1 mutant (SALK_088407) in the Columbia-0 background has been 

described previously (Koussevitzky et al. 2007; Pulido et al. 2016). After stratification for 3 

days at 4 °C, WT and mutant plants were grown on soil or MS agar plates with 1% sucrose. 

Both Arabidopsis and Lotus plants were grown under controlled conditions in growth 

chambers at 22 °C in long-day (16 h light/8 h dark, 100 µmol photons m2 s-1), short-day (8 h 

Light/16 h dark, 100 µmol photons m2 s-1), continuous light (100 µmol photons m2 s-1), or 

high light (16 h light/8 h dark, 400 µmol photons m2 s-1). When specified, Arabidopsis and 

Lotus were grown on plates supplemented with the indicated concentrations of 

chloramphenicol or lincomycin.  

2.2 Nucleic acid analysis 

Arabidopsis genomic DNA was isolated by a phenol and chloroform free method (Edwards et 

al. 1991). The crass-1 and crass-2 T-DNA insertion-junction sites were recovered by PCR 

using combinations of insertion- and gene-specific primers, and then sequenced. Total RNA 

was isolated using TRIzol reagent (Invitrogen). Briefly, 1 mL of TRIzol was added to 

pulverized tissue in liquid nitrogen (50-100 mg). The resuspended sample was centrifuged at 

12,000g for 10 min at 4ºC. Supernatant was extracted with 200 μL of chloroform mixing 

vigorously. After 2 min at room temperature, the sample was centrifuged at 12,000 g for 15 

min at 4ºC. 500 μL of isopropanol was added to the upper aqueous phase and incubated at 

room temperature for 10 min. Subsequent centrifugation at 12,000 g for 10 min at 4ºC 

precipitate the RNA pellet, that was washed with 1 mL of 75% ethanol. After centrifugation at 

7,500 g for 5 min at 4ºC, the pellet was dried under hood for 5 min and resuspended in 20 μL 

of DEPC water. Total RNA was treated with 2 units of DNase I (New England Biolabs) in a 

final volume of 100 μL at 37ºC for 10 min. RNA sample was supplemented with 1 μL of 0.5 

M EDTA, heat inactivated at 75ºC for 10 min, and precipitated with 10 μL of sodium acetate 

(pH 5.0) and 200 μL of 100% ethanol over night. Then, RNA was again precipitated (12,000 g 
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for 10 min at 4ºC), washed with 75% ethanol (7,500 g for 5 min at 4ºC), dried and 

resuspended in 20μL of DEPC water. One microgram of RNA was reverse-transcribed using 

iScript cDNA Synthesis Kit (Bio-Rad). Quantitative PCR experiments were performed using 

7.5 μL of iQ SYBR Green Supermix solution (Bio-Rad), cDNA derived from 15 ng of input 

RNA, and 0.5 μM of sense and antisense primers in a final volume of 15 μL. A standard 

thermal profile (95ºC for 5 min, 40 cycles of 95ºC for 10 s, 55ºC for 30 s, and 72ºC for 20 s) 

was used in an IQ5 real-time PCR detection system (Bio-Rad).  

The atclpr1 T-DNA insertion-junction sites were recovered by PCR using combinations of 

insertion- and gene specific primers (Supplemental Table 6.3) and then sequenced. The whole 

AtSCO2 gene was amplified and the band sequenced to detect the point mutation 

(Supplemental Figure 6.17). L. japonicus DNA extraction and library preparation was 

performed as described earlier, and the sequencing output was analyzed using FSTpoolit 

v.0.33 software (Urbański et al. 2012). Total RNA was isolated from seedlings and leaf 

samples frozen in liquid nitrogen using TRIzol reagent (Invitrogen) according to the 

manufacturer’s protocol. For each RNA sample, a pool of at least three individuals was used. 

One microgram of RNA was primed with oligo(dT) and reverse transcribed into 

complementary DNA using Superscript III reverse transcriptase (Invitrogen). Relative levels 

of LjSCO2 transcripts in WT cotyledons and true leaves (from 25-day-old WT and mutant 

Lotus plants) were determined by quantitative real-time PCR (for primer sequences see 

Supplemental Table 6.3), which was performed with iQ SYBR Green Supermix using an IQ5 

multicolor real-time PCR detection system (Bio-Rad) following a standard thermal profile (95 

°C for 5 min, 40 cycles of 95 °C for 10 s, 55 °C for 30 s, and 72 °C for 20 s). The relative 

level of each transcript was referred to the level of the corresponding UBIQUITIN transcript. 

Analysis of the threshold cycles (Ct) with the iQ5 software (Bio-Rad) was performed for 

determining relative expression. 

2.3 Fluorescence measurements 

In vivo room temperature chlorophyll a fluorescence of leaves of 3-week-old plants and 6-

weeks-old plants grown in long day and short day, respectively, were analyzed using an 

Imaging PAM chlorophyll fluorometer equipped with the computer-operated PAM control 

unit IMAG-MAXI (Walz) as described previously (Zagari et al. 2017). After a minimum of  

30 min of dark adaptation, the minimal fluorescence (F0) was measured. For cold tolerance 

experiments, dark adaptation has been carried out at 4ºC. To determine the maximum 
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fluorescence (Fm), a pulse (0.8 sec) of saturating white light (5000 μmol photons m2 s-1) was 

applied. The ratio (Fm-F0)/Fm was calculated as Fv/Fm , the maximum quantum yield of PSII. 

False-color images representing Fv/Fm levels in wild-type (WT) and mutant leaves were 

produced by the Imaging PAM and representative pictures were selected. 

In vivo room temperature chlorophyll a fluorescence of leaves of 8-week-old Lotus plants was 

measured using a Dual-PAM 100 (Walz) as described previously (Pesaresi et al. 2009). After a 

minimum of 30 min of dark adaptation, the minimal fluorescence (F0) was measured. To 

determine the maximum fluorescence (Fm), a pulse (0.8 s) of saturating white light (5000 

µmol photons m2 s-1) was applied. The ratio (Fm-F0)/Fm was calculated as Fv/Fm, the 

maximum quantum yield of PSII. The electron transport rate through PSII (ETR II) was 

monitored at increasing light intensities and plotted as a light response curve. 

For NPQ induction, plants were dark-adapted overnight and slow kinetics were determined 

with Dual PAM by applying red actinic light (830 µmol photons m2 s-1) for 30 min, followed 

by a succession of white light pulses (8000 µmol photons m2 s-1, duration 600 ms) 

administered at 60 seconds intervals. NPQ was calculated as (FmFm0)/Fm0 and FII as (Fm 

Fs)/Fm. False-color images representing Fv/Fm levels in WT and mutant leaves were produced 

using an Imaging PAM chlorophyll fluorometer equipped with the computer-operated PAM 

control unit IMAG-MAXI (Walz). State transitions were measured by pulse-amplitude 

modulation fluorometry (PAM) as described previously (Pribil et al. 2010). Five plants of 

each genotype growing under long-day conditions were dark-adapted and analyzed using the 

Dual-PAM (Walz). Pulses of red light (5000 µmol photons m2 s-1, 0.5 s) were used to 

determine the maximum fluorescence. After illumination with red light (35 µmol photons m2 

s-1, 15 min), state 1 was induced by adding far-red light (maximal light intensity 

corresponding to level 20 in the Dual-PAM setting, 15 min) and FM1 was determined. Next, 

state 2 was induced by switching off the far-red light (only red light, 15 min) and FM2 was 

measured. qT was calculated as (FM1 FM2)/FM1 (Ruban & Johnson 2009). 

2.4 Pigments 

Chlorophyll quantification was performed as described previously (Lichtenthaler & Wellburn 

1983). Briefly, pigments were extracted by shaking 50 mg (fresh weight) of pulverized 

samples with 1 ml of 80% (v/v) ice-cold acetone in the dark at 4 °C for 30 min. After 

centrifugation (10,000 g, 10 min, 4 °C), A663, A647 and A470 were recorded with a 
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spectrophotometer (Ultrospec3100, Amersham Biosciences) and pigment levels were 

calculated according to the following equation: chlorophyll a = 12.25 A663 – 2.79 A647; 

chlorophyll b = 21.50 A647 – 5.10 A663; chlorophyll tot = 7.15 A663 + 18.71 A647; carotenoids = 

(1000 A470 – 1.82 Cla – 85.02 Clb)/198. 

2.5 Metabolite analysis 

Standard chlorophyll determinations were performed as described previously (Lichtenthaler & 

Wellburn 1983). Alternatively, HPLC analysis of chlorophylls, carotenoids, and tocopherols 

was performed as described by Rodriguez-Concepcion (2004) using 4 mg of lyophilized 45-

day-old Lotus samples and an Agilent 1200 series HPLC system (Agilent Technologies, 

http://www.agilent.com). Canthaxanthin was used as an internal standard for normalization, 

and appropriate carotenoid and tocopherol standards were used for quantification. 

2.6 Phylogenetic analysis 

CRASS orthologous proteins were identified using BLAST (http://blast.ncbi.nlm.nih.gov). 

Sequences were aligned with MUSCLE (www.ebi.ac.uk/Tools/msa/muscle) and BioEdit 

Sequence Alignment Editor version 7.0.5. Phylogenetic trees rooted at midpoint were 

constructed using the neighbour-joining method in MEGA6 (megasoftware.net). The 

evolutionary distances were computed using the Poisson correction method, and the bootstrap 

test was performed with 2000 replications. 

For sequence comparisons, orthologs of AtSCO2 (AT3G19220) were identified by BLAST. 

Sequences were aligned with MUSCLE (www.ebi.ac.uk/tools/msa/muscle), and a 

phylogenetic tree rooted at midpoint was constructed using the neighbour-joining method in 

MEGA6 (megasoftware.net). The RNA evolutionary distances were computed using the 

Poisson correction method, and the bootstrap test was performed with 2000 replications. Data 

used to create Supplemental Figure 6.9 can be retrieved under the following accession 

numbers: A. thaliana (AtSCO2, At3g19220; LQY1, AT1G75690; TSIP1, AT2G24860; BSD2, 

AT3G47650), Brassica napus (CDX92309), Vitis vinifera (XP_003631671), Nicotiana 

sylvestris (XP_009772536; XP_009761846), Theobroma cacao (XP_007042421) Solanum 

tuberosum (XP_006346429), Populus trichocarpa (XP_002313849), L.japonicus 

(Lj3g3v0537380), Cucumis melo (XP_008456126), Cucumis sativus (XP_004140700), 

Solanum lycopersicum (XP_010315236), Malus domestica (XP_017189504), Glycine max 
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(NP_001242534; XP_003518841), Zea mays (NP_001144163), Oryza sativa 

(NP_001063376), Hordeum vulgare (BAJ85952), and Phaseolus vulgaris (XP_007156517).  

2.7 Protein isolation and immunoblot analysis 

Protein analyses were performed as described (Pulido et al. 2013). Briefly, total plant protein 

extracts were obtained from 50 mg of 21-day-old fresh tissue by grinding samples in liquid 

nitrogen. The powder was resuspended in 100 μL of ice-cold TKMES homogenization buffer 

(100 mM Tricine-KOH, pH 7.5, 10 mM KCl, 1 mM MgCl2, 1 mM EDTA, and 10% [w/v] 

sucrose) supplemented with 0.2% (v/v) Triton X-100, 1 mM DTT, and 20 μL/mL protease 

inhibitor cocktail (Sigma-Aldrich). The resuspended sample was centrifuged at 2,300 g for 10 

min at 4 °C, and the supernatant recovered for a second step of centrifugation. Supernatant 

protein concentration was determined using the Bio-Rad protein assay. After SDS-PAGE, the 

proteins were electrotransferred to Hybond-P polyvinylidene difluoride membranes 

(Amersham). After protein transfer was complete, membranes were incubated overnight at 4 

°C with the respective specific primary antibody (Agrisera) diluted 1:1000 for ClpC, LHCB1, 

PsaB, PsaL, PsbO, Cpn60, PsbQ, SVR4, SVR4L, and FNR;  diluted 1:5000 for YFP, PRPS1, 

PRPS5, PRPL2, PRPL11, ClpC, ClpB3, CPN60-1, PSBC, PSBD, PSBR, PSAL, Cytf, Cytb6, 

actin, LHCB2, LHCB4 and 1:10,000 for HSP70, LHCA1, LHCB2, RBCL, and ATPB. 

Incubation with the horseradish peroxidase–conjugated secondary antibody (diluted 1:10,000) 

was performed for 1 h at room temperature. Detection of immunoreactive bands was 

performed using the ECL Plus reagent (Amersham). Chemiluminescent signals were 

visualized using a ChemiDoc MP analyzer (Bio-Rad). 

2.8 Thylakoid Isolation and SDS–PAGE 

Four-week-old A. thaliana plants (grown under short-day conditions, 100–120 µmol photons 

m2 s-1, 22 °C), or L. japonicus plants (grown under long-day conditions, 100–120 µmol 

photons m2 s-1, 22 °C) were used. Thylakoids were isolated in the dark, following a previously 

described protocol (Järvi et al., 2011). The grinding buffer contained 50 mM HEPES–KOH 

(pH 7.5), 330 mM sorbitol, 2 mM EDTA, 1 mM MgCl2, 5 mM ascorbate, 0.05% BSA, and 10 

mM sodium fluoride; shock buffer contained 50 mM HEPES–KOH (pH 7.5), 5 mM sorbitol, 

and 5 mM MgCl2; and storage buffer contained 50 mM HEPES–KOH (pH 7.5), 100 mM 

sorbitol, and 10 mM MgCl2. Total chlorophyll in the thylakoid fractions was determined after 
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extraction with 80% acetone as described above. For SDS–PAGE, samples containing 0.5, 1, 

2, and 3 mg of chlorophyll were resuspended in SDS–PAGE loading buffer supplemented 

with 200 mM DTT, and boiled at 95 °C for 5 min. The samples were then centrifuged at 

21000 g for 2 min and loaded in SDS–PAGE gels. For Large-Pore Blue-Native PAGE (lpBN-

PAGE), 12 mg of chlorophyll from the thylakoid membranes were incubated with 1% 

digitonin or 1% β-DM according to Järvi et al. (2011) and the solubilized fraction was loaded 

on a native gradient gel (3.5%–12.5% [w/v], acrylamide/bisacrylamide ratio 32:1) topped 

with a 3% (w/v) stacking gel (ratio 1:4). After electrophoresis, the native gel was treated with 

Laemmli buffer (138 mM Tris–HCl [pH 6.8], 6 M urea, 22.2% [v/v] glycerol, 4.3% [w/v] 

SDS, and 200 mM DTT), and the separated protein complexes were transferred to a 

polyvinylidene fluoride membrane using the Turbo Transfer system (Bio-Rad). 

2.9 Low-Temperature (77-K) Fluorescence Measurements 

The accumulation of PSI and PSII was evaluated by using the low-temperature (77-K) 

fluorescence emission spectra of intact leaves frozen in liquid nitrogen. The fluorescence 

emission spectra were recorded in vivo from 600 to 800 nm using a spectrofluorometer 

(Photon Technology International, Lawrenceville, NJ) and an excitation wavelength of 435 

nm. The peak level of the PSI fluorescence at 730 nm was compared with the fluorescence 

maximum of PSII at 680 nm. 

2.10 Immunoprecipitation analysis 

For co-immunoprecipitation, total proteins were extracted with RIPA buffer (50 mM Tris HCl, 

150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) with complete protease 

inhibitor (Roche). Magnetic separation was performed using µMACS GFP beads (Macs 

Miltenyi Biotec) according to manufacturer’s protocol. The eluates were then used for RNA 

extraction and sequencing or run on a SDS-PAGE gel (12% polyacrylamide) and stained with 

colloidal coomassie for mass spectrometry analyses. 

2.11 Size exclusion chromatography (SEC) and sucrose gradient 

Chloroplasts were isolated from 2-week-old plants as described previously (Stoppel et al. 

2012). Chloroplasts were lysed in extraction buffer (10 mm HEPES-KOH, pH 8.0, 5 mm 
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MgCl2, and protease inhibitor cocktail (Roche, Basel, Switzerland) by passing the suspension 

20 times through a 0.5 mm needle. Membranes were pelleted by centrifugation at 45,000 g for 

30 min at 4 °C. SEC of WT stroma extracts was performed as described recently (Meurer et 

al. 2017) with minor changes. Three milligrams of stroma were used. Extracts were 

centrifuged for 10 min at 4 °C / 16000 g after treatment with 300 µg RNase A to pellet 

precipitates prior SEC. 

2.12 In vivo protein labeling 

In vivo labeling of newly synthesized chloroplast proteins with [35S]methionine was 

essentially performed as described recently (Meurer et al. 2017) with some modifications. 

Plants were grown on sucrose-containing MS plates at 4 °C under long-day conditions (16 h 

light/8 h dark, 100 μmol photons m2 s−1) for six weeks and subsequently transferred to 22 °C 

under same long-day conditions for 3 days. Labeling was performed for 15 min at ambient 

light. Soluble and insoluble fractions were prepared as described previously (Torabi et al. 

2014) and proteins were loaded onto 12% SDS PAGE gels according to the calculated total 

counts (100% corresponds to 100,000 cpm for insoluble and 1,000,000 for soluble proteins, 

respectively). Gels were stained for 1 h with Roti-Blue quick (Carl Roth, Karlsruhe, 

Germany) and dried.  

2.13 Polysome analyses 

Polysome loading analyses were carried out as described previously (Barkan, 1993). The 

psaA probe was amplified with following primers Fw: 

AAACTGTGGAAGCCTAGAAATATACA; Rev: ACTCACATTGGACCTAGTGC. For rbcL, 

an 80-mer oligonucleotide was used as a probe. Labeling was performed as described 

(Manavski et al. 2015). 

2.14 Mass spectrometry 

The in-gel tryptic digestion was done according to (Shevchenko et al. 2007). The peptides 

were resolubilized in 2.5% Acetonitrile and 0.5% Trifluoracetic acid. They were desalted in 

the nano RSLC Ultimate 3000 system from Dionex via a Acclaim PepMap C18 500 mm 

length particle size 3 µm nano viper fingertight and separated with a Acclaim PepMap C18 
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150 mm length particle size 2 µm using the following gradient linear gradient with the 

following solvents: solvent A: 0.1% Formic acid in water; solvent B: 0.1% Formic acid in 

90%, acetonitrile and 10% water. The gradient went from 2% B to 45% B in 30 min. For 

eluting and washing the column the C was increased to 90% in one minute and hold for 5 

min. A 15 min re-equilibration step followed. The connected ion trap AmZon ETD instrument 

(Bruker) measured the peptides with the factory proteomics AutoMS/MS CID method 

(Capillary voltage 1300, temperature 180 °C, mode Ultrascan for parental masses, Xtreme 

Scan for fragmented masses with Smart fragmentation on, top4 fragmentation, dynamic 

exclusion 0.2 min). 5,000 compound spectra with a TIC intensity higher than 10,000 were 

converted by the DataAnalysis software (Bruker) to mgf files and searched against the 

TAIR10 peptide database including contaminants with the Mascot Daemon 2.5.1. An error of 

0.5 Da was allowed for the parental mass and the fragmented masses. Carbamidomethylation 

was set as a fixed modification and oxidation as a variable one. Peptides were taken as 

identified with a Score above 21. Proteins were taken as identified with two peptides for one 

protein or one reproducible peptide between the experiments with a Score above 60. As 

significance threshold (P< 0.01) was used. 

2.15 RNA gel blot analysis and polysome loading 

RNA extraction, electrophoresis, transfer, and probe labeling were performed as described 

recently (Manavski et al. 2015). Blots were stripped and reprobed. For primer information see 

supplemental Table 6.3. rRNA quantification was performed on Nanodrop (Thermo 

Scientific) using 1 μg of total RNA. Polysome loading experiments were performed as 

described (Barkan 1993). 

2.16 RNA sequencing, mapping and slot-blot analysis 

Total RNA was extracted as previously described from 3-weeks-old plants grown in long day 

conditions. Samples from two independent experiments using oeCRASS#1 line were subjected 

to strand-specific transcriptome sequencing without mRNA enrichment (without polyT 

oligos) and without rRNA depletion (Beijing Genomics Institute). The RNA was fragmented 

to 160-180 nt, reverse transcribed, dATP was added, the fragments were size selected by gel 

electrophoresis and the selected fragments were PCR amplified. The sequencing was done 

using a paired-end 100 nt protocol on a Illumina HiSeqTM 4000. Paired-end reads were 
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mapped to the TAIR10 Arabidopsis genome (version 31) using STAR aligner 2.5.0 (Dobin et 

al., 2013) with the following options: -alignIntronMax 5000 - outFilterMismatchNmax 4 - 

outSAMmultNmax 1 - outMultimapperOrder Random. Next, the bam file was loaded into R 

and reads were counted with the summarizeOverlaps function from GenomicAlignments 

package (Lawrence et al., 2013). For further analysis, genes with at least 10 mapped reads 

were used. FPKM values (fragments per kilobase per million mapped fragments) were 

calculated using fpkm function from DEseq2 package (Love et al. 2014). Slot-blot 

experiments were performed as recently described (Manavski et al. 2015). Primers for PCR 

probes are listed in Supplemental Table 6.3. 

2.17 Yeast two-hybrid analysis 

The coding sequence of CRASS, PRPS5 and PRPS8 excluding the transit peptide were cloned 

into pGKBT7 (CRASS) and pGADT7 (PRPS5, PRPS8) vectors (Clontech). Interactions in 

yeast were analysed as previously described (DalCorso et al. 2008) 

2.18 In vivo translation assay 

The in vivo translation assay was performed as previously described (Paieri et al. 2017). In 

brief, to block cytosolic translation, ten seedlings growing for 6 weeks at 4 °C and recovered 

for 3 days at 22 °C were incubated in the presence of 20 μg/mL cycloheximide, 1 mM 

K2HP04/KH2PO4 (pH 6.3), and 0.1% (w/v) Tween-20. After labeled [35S]-methionine was 

supplemented (0.1 mCi mL-1), vacuum was applied under low light (20 μmol photons m2 s-1) 

for 15 min. After protein extraction and SDS-PAGE protein separation, signals were detected 

using a PhosphoImager (GE Healthcare).  

2.19 Confocal microscopy 

Transgenic 7-day-old plants were analyzed for YFP fluorescence by confocal laser scanning 

microscopy using a Leica TCS SP2 (Leica, www.leica-microsystems.com). Samples were 

excited at 514 nm and fluorescence detected in the range 550-600 for YFP and 600-700 nm 

for Chl emission. 
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2.20 Accession numbers 

Data used to create Figure 3.1B can be retrieved under the following accession numbers: 

AT5G14910 CRASS Arabidopsis thaliana, XP_006286392 Capsella rubella, XP_002871636 

Arabidopsis lyrata, XP_010453619 Camelina sativa, CDX85578 Brassica napus, 

XP_009131426 Brassica rapa, XP_008341487 Malus domestica, KDO72385 Citrus sinensis, 

XP_002275276 Vitis vinifera, KNA24776 Spinacia oleracea, XP_008443474 Cucumis melo, 

XP_004147445 Cucumis sativus, XP_006338529 Solanum tuberosum, KMZ72790 Zostera 

marina, AFK34041 Lotus japonicus, XP_004232276 Solanum lycopersicum, XP_009786795 

Nicotiana sylvestris, KRH18591 Glycine max, XP_013450869 Medicago truncatula, 

EEE63302 Oryza sativa, NP_001143959 Zea mays, BAJ98599 Hordeum vulgare, ABK23791 

Picea sitchensis, XP_001772064 Physcomitrella patens, XP_002968622 Selaginella 

moellendorffii, XP_001758023 Physcomitrella patens, XP_001763071 Physcomitrella patens. 

Data use to create the sequence alignment of CRASS with heavy metal associated (HMA) 

proteins (Supplemental Figure 6.2) can be retrieved under the following accession numbers: 

AT5G14910 CRASS Arabidopsis thaliana, XP_002275276 Vitis vinifera, XP_002968622 

Selaginella moellendorffii, WP_003720172 Listeria ivanovii, WP_014093194 Listeria 

ivanovii, WP_051872593 Chryseobacterium haifense, WP_059344219 Elizabethkingia 

genomosp. 2, WP_007292244 Delta proteobacterium MLMS-1, ANC24349 Streptococcus 

pyogenes. 
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3. Results CRASS 

3.1 CRASS is coregulated with plastidial ribosomal proteins 

With the help of transcriptomics, it is possible to investigate protein expression in different 

tissues and growth conditions for thousands of genes. When a gene is expressed in the same 

conditions, tissues and amounts, it is likely that this co-expression has a functional reason. For 

example, genes coding for the photosynthetic apparatus tend to be highly coexpressed, 

because the availability of correct amounts of different components is crucial for an efficient 

assembly of the photosystem. In previous guilt-by-association studies, 101 conditions have 

been selected to modulate gene expression (Biehl et al. 2005). The resulting 23 coexpression 

groups were named regulons and provided useful hints for identifying new proteins involved 

in different pathways. Interestingly, regulon 2 contains mostly ribosomal proteins or 

components of the RNA metabolism. Among them our interest was drawn to a protein of 

unknown function, AT5G14910. In order to create a coexpression network, we selected all the 

known plastid ribosomal proteins encoded in the nucleus as bait and run a condition 

independent coexpression analysis. We found genes involved in RNA metabolism such as the 

31-kDa RNA binding protein CP31A (Tillich et al. 2009), the ribosome recycling factor 

(RRF) (Wang et al. 2010) and several with unknown function. Among these AT5G14910 was 

highly coexpressed with ribosomal proteins and at the centre of this wide network 

(Supplemental Figure 6.1). Furthermore, selecting AT5G14910 as bait almost all its predicted 

interaction partners are also chloroplastic ribosomal subunits (Figure 3.1A). Thus we renamed 

AT5G14910 as CRASS (CHLOROPLAST RIBOSOME ASSOCIATED).   
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3.2 CRASS is present in green plants but not in Charophyta or Chlorophyta 

The CRASS sequence has no clear homology with any conserved domain or known motif. 

The only exception is a weak homology with a bacterial Heavy Metal Associated domain 

(HMA) (Supplemental Figure 6.2). This 25 residues domain, present across all kingdoms, 

especially in bacteria, usually indicates an involvement in metal ion transport and 

detoxification. However, the two cysteines responsible for this cation binding (Lutsenko et al. 

1997) are not conserved in CRASS (Supplemental Figure 6.2). Therefore, it is likely that 

during the course of evolution this protein has lost its catalytic activity and gained a different 

function. The sequence of CRASS is exclusively found in Embryophyta and is not present in 

Figure 3.1 Coexpression and phylogeny of CRASS 

(A) Coexpression of CRASS transcripts was analyzed using hierarchical clustering with single linkage method 

provided by the HCluster tool (http:/atted.jp). (B) Phylogenetic tree made with the full sequences of Arabidopsis 

CRASS and orthologues from other species. The tree was rooted at midpoint using the neighbor-joining method in 

MEGA6. Bootstrap values (as a percentage of 2,000 replicates) are indicated at the branches. Accession numbers 

are reported in “Materials and Methods”.  
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yeast or photosynthetic bacteria or algae (Figure 3.1B). These results suggest a plant specific 

function for CRASS. 

3.3 CRASS is a non-essential protein localized in the chloroplast stroma 

Two mutant lines from the “Koncz collection” (Ríos et al. 2002) were selected for the T-DNA 

insertion on the CRASS first exon (crass-1) and third intron (crass-2) in order to investigate 

the effect of the absence or reduced amounts of CRASS on plant fitness (Figure 3.2A). In 

addition, to analyse overexpression and subcellular localisation, two CRASS-YFP 

overexpressing lines (oeCRASS-YFP#1 and oeCRASS-YFP#2) were generated. In order to 

verify that the T-DNA lines were knock out alleles, we performed qPCR which confirmed that 

crass-1 is a null allele while crass-2 accumulates about 20% of WT amounts of CRASS. 

Transgenic overexpressor YFP-tagged lines displayed approximately double levels of CRASS 

compared to WT plants (Figure 3.2B). Plants grown for three weeks in long day conditions 

showed a slight growth impairment with a significant reduction of fresh weight in crass-1 and 

crass-2 plants (approx. 15%) compared to WT or to YFP lines (Figures 3.2B and 3.2C). When 

testing photosynthesis efficiency with the Imaging PAM, the mutants yielded the same Fv/Fm 

(maximum quantum yield of PSII) compared to WT and oeCRASS-YFP lines (Supplemental 

figure 6.3).  

A chloroplast transit peptide is predicted in the CRASS N-terminus (ChloroP). In fact, 

CRASS has been found in chloroplast fractions in proteomic studies (Friso et al. 2004; 

Zybailov et al. 2008). Confocal microscopy experiments demonstrate that the YFP 

fluorescence of the oeCRASS-YFP line clearly overlaps with the chlorophyll autofluorescence 

of the chloroplasts (Figure 3.2D). Accordingly, experiments of subcellular localisation using 

fractionated chloroplasts in stroma and thylakoids, allowed to localize CRASS exclusively in 

the stroma fractions of chloroplasts (Figure 3.2E). 
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Figure 3.2 Characterization of CRASS mutants and analysis of subcellular localization. 

(A) Gene model of CRASS (AT5G14910). Exons are shown as black boxes, introns as lines. Position of T-DNA 

insertions are indicated. (B), Transcript levels of CRASS were analyzed in the mutants and transgenic lines using 

UBIQUITIN10 gene as control (see “Materials and Methods”). (C) Representative images of 3-week-old T-DNA 

insertion lines (crass-1, crass-2) wild-type (Col-0) and YFP-tagged overexpressor lines (oeCRASS#1 and 

oeCRASS#2). (D) Fresh weight data correspond to the mean percentage of the WT and values of n ≥ 6 

independent experiments with ≥15 plants grown for 3 weeks in long day (Student’s t-test: *P < 0.05). (E) 

Mesophyll cells of oeCRASS#1 plants analysed with a laser scanning confocal microscope. The merging of the 

YFP signal and the chloroplast autofluorescence (chlorophyll) demonstrated colocalization. F, Subcellular 

localization of CRASS using isolated chloroplast and subsequent fractioning into stroma and thylakoids fractions 

as described in “Materials and Methods” confirmed that CRASS is a stromal protein. The core protein from the 

photosystem II PsbA served as control for thylakoid membrane, absent in the stroma fraction in the Coomassie 

Brilliant Blue (C.B.B.) gel 
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3.4 CRASS does not alter rRNA accumulation under control conditions 

Plants lacking ribosomal subunits or assembly factors often display severe phenotypes due to 

an impairment in rRNA processing. We analyzed the rRNA abundance and detected no 

significant differences between CRASS mutants, WT and CRASS overexpressing lines 

(Figure 3.3A). Alternatively, chloroplastic ribosomal subunits could be directly affected but 

we found no evident alteration of the protein levels of PRPS1, PRPS5, plastidial chaperones 

(HSP70, CPN60α1) or Rubisco large subunit (RbcL) in any of the lines tested (Figure 3.3B). 

Similarly, psaA and rbcL RNA association to polysomes did not result in clear differences in 

sucrose gradients between WT and CRASS mutant plants (Supplemental figure 6.4) 

 

 

Figure 3.3. Analysis of the effect of CRASS on the accumulation of plastid rRNA and protein levels. 

(A) RNA gel-blot analysis of 10 g of total RNA samples from 3-week-old plants with probes specific for plastid 

rRNAs (23S, 16S, 5S and 4.5S). The sizes of the transcripts are given in kilobases on the right. (B) The accumulation 

of chloroplastic proteins was analyzed by western blotting of samples from 3-week-old plants. Representative images 

of immunoblot analyses with the indicated antibodies are shown. Total protein extracts from wild-type (Col-0), 

CRASS mutants and transgenic lines were examined, together with a dilution series of the Col-0 sample as indicated.  
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3.5 The absence of CRASS triggers a reduced translational activity 

In order to trigger an evident phenotype in mutant plants, we tested the growth on MS media 

supplemented with increasing amounts of lincomycin (LIN), a chloroplast translation 

inhibitor, at sublethal concentrations. LIN targets specifically plastid protein synthesis by 

binding the 50S ribosome thus reducing translation rate and protein biosynthesis (Liao et al. 

2016). After one week of growth under long day conditions and in presence of LIN, both 

CRASS mutants were paler than the WT (Figure 3.4A). Statistical significance was confirmed 

by chlorophyll and pigment quantification (Figure 3.4B and 3.4C). Moreover the recombinant 

CRASS-YFP construct efficiently complemented the crass-1 mutant (Supplemental Figure 

6.6), reinforcing the hypothesis that CRASS has a role in ribosome function. 

 

3.6 CRASS is necessary for cold stress tolerance 

As discussed in the introduction, several mutants lacking ribosomal subunits show an 

increased sensitivity to cold stress. This is caused by a cold induced slower translation rate 

summed to an incomplete ribosome assembly (Rogalski et al. 2008; Kupsch et al. 2012). 

Moreover, a general impairment of the plastid ribosome induces a retrograde signaling which 

pleiotropically alter plant fitness (Zhang et al. 2016; Leister 2012). To test wether CRASS is 

Figure 3.4. Effects of the inhibition of chloroplast translation by lincomycin on CRASS mutants. 

(A) Representative images of 10-day-old wild-type (Col-0) and crass-1 and crass-2 mutant plants germinated on 

MS medium containing the indicated concentrations of lincomycin (LIN) are shown. Quantification of total 

chlorophyll (B) and carotenoid (C) levels demonstrate significant differences between wild-type and mutant 

plants in the presence of LIN. Relative data are shown (wild-type plants grown in the absence of LIN = 100%). 

Average and SE values (n = 4) are provided. Student’s t-test (*P < 0.05 and **P < 0.01) was used for statistical 

analysis.  
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involved in cold tolerance, 2 week old plants were grown in standard long day condition and 

then transferred to a chamber set at 4 °C for 4 weeks (see Methods). After the cold treatment, 

plants were  immediately measured with an Imaging PAM and the younger leaves of crass-1 

and crass-2 showed lower Fv/Fm values compared to WT or complemented lines crass-1 

oeCRASS:YFP (Figure 3.5A). We observed the same behaviour also when germinating and 

growing seedlings for 6 weeks at 4 °C (Figure 3.5C). The recovery appeared significantly 

slower in plants lacking CRASS and was further verified by in vivo [35S]-methionine 

labelling (Figure 3.5D). RNA gel-blot analysis of soluble RBCL and membrane PSBA/PSBD 

(PSII core proteins D1/D2) showed that incorporation of radioactively labelled methionine 

was reduced in crass-1 mutant compared to WT or oeCRASS-YFP#1 line. Protein levels were 

analysed after three days of recovery at 22 °C (Figure 3.5E) and a clear reduction is present 

regarding the ribosome small subunit proteins tested (PRPS1 and PRPS5) and chloroplast 

encoded proteins (PSAD, CYTf, CYTb6, ATPβ, RBCL). Interestingly also nuclear encoded 

photosynthetic proteins were affected (PSBR, PSAL, LHCA1, LHCB2) probably as an effect 

of a retrograde signalling from a defective chloroplast to the nucleus (Romani et al. 2012; 

Tadini et al. 2016). Levels of a 50S ribosomal subunit (PRPL2) and chaperones (HSP70, 

CLPC, CLPB3, CPN60α1) were unaffected, thus confirming the activity of CRASS in the 

small ribosome subunit.  
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3.7 Chloroplast 16S rRNA specifically coimmunoprecipitates with CRASS 

To confirm the interaction with ribosomal subunits we performed RNA co-

immunoprecipitation using GFP antibody with the oeCRASS-YFP#1 line and WT as negative 

control. We then isolated the RNA for deep sequencing (RIP-seq). The majority of RNA 

Figure 3.5. CRASS is required for cold stress tolerance. 

(A) Representative images and Imaging PAM images of wild-type (Col-0), crass-1 and crass-2 mutants, and 

overexpressor line oeCRASS#1 crass-1 grown on soil for 2 weeks at 22º C, followed by 5 weeks at 4ºC. (B) 

Quantification of Fv/Fm demonstrated that both crass-1 and crass-2 show reduced efficiency of PSII after the 

cold treatment (Student’s t-test: **P < 0.01). (C) Representative images of wild-type (WT), crass-1 and crass-2 

mutant plant grown on MS plates for 6 weeks at 22ºC followed by 1 or 3 days at 22ºC. (D), Translation analysis 

Seedlings from the cold treatments were treated with [35S]methionine under low-level illumination (20 μmol 

photons m2 s−1) for 15 minutes in the presence of cycloheximide (to inhibit cytosolic protein synthesis). The 

Coomassie Brilliant Blue (C.B.B.) gel of total proteins analyzed by SDS-PAGE and detected by autoradiography 

is showed. (E) Total protein extracts were analysed by western blot using material from cold treatments in MS 

plates. Representative images of immunoblot analyses with the indicated antibodies are shown. 
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extracted from the CRASS-YFP lines resulted to be 16S ribosomal RNA while only traces of 

RNA were pulled down in the WT control (Figure 3.6A and Supplemental Table 6.2). We 

further confirmed this by hybridizing the immunoprecipitated RNA to rRNA probes and we 

obtained again a clear enrichment with the 16S probe (Figure 3.6B). 

 

Figure 3.6. RNA coimmunoprecipitation with CRASS. 

(A) The identification of RNA species associated with CRASS was performed by RNA immunoprecipitation in 

combination with high throughput RNA sequencing (RIP-seq) using plants overexpressing CRASS-YFP 

(oeCRASS#1). Fragments per kilobase of exon per million reads mapped (FPKM) values of the 20 most 

abundant immunoprecipitated RNAs among two independent RIP-seq experiments on transgenic line 

oeCRASS#1 are shown. The remaining 153 genes with less than 1500 FPKMs are combined into “Others”. Trace 

amounts of RNA from the wild-type (Col-0) control are not shown in the chart. (B), Coprecipitated RNAs of the 

supernatant (Sup) and the pellet were applied to slot-blots. Filters were hybridized with the rrn16S and rrn23S-

region-specific probes. The quantification of the signal showed a specific enrichment of rrn16S was found when 

overexpressing CRASS.  

 

 CRASS interacts preferentially with ribosomal small subunit isoforms 

In addition to RIP-seq analysis, for the identification of interaction partners, CRASS was 

overexpressed fused to YFP and epitope-based affinity purification with a monoclonal GFP 

antibody was carried out. The samples were analysed by LC-MS/MS. The results show a 

strong signal of the CRASS bait protein and evidence a clear enrichment of plastidial 

ribosomal proteins (Table 3.1). 87 proteins were identified with high confidence from two 

independent experiments, of which the 10 strongest hits after the bait (CRASS) were all 

chloroplast ribosomal subunits (Table 3.1). In comparison, CRASS-GFP fusion protein and 

plastidial ribosomal proteins were absent in the WT control sample plant. A repeat of the 

experiment confirmed the result. To validate this result, we attempted a reciprocal 

immunoprecipitation experiments with oePRPS17-YFP plants, which also pulled down 
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CRASS among its putative interaction partners (Supplemental Table 6.1). This is an indication 

that CRASS interacts or is part of the small subunit of the chloroplast ribosomes.   

To verify the direct interaction with specific targets, we performed western blot analysis on 

the immunoprecipitation eluates with antibodies raised against ribosomal subunits from the 

small and large ribosomal subunit. The elution fractions showed a strong signal from small 

subunit proteins (PRPS1 and PRPS5) while no signal came from large subunit ones (PRPL11 

and PRPL2). Interestingly, CRASS was also found in a PRPS5 immunoprecipitation (Zhang 

et al. 2016 supplementary information), supporting the hypothesis that  the CRASS protein is 

able to interact with the ribosome in chloroplasts. 

 

Figure 3.7. Crass coimmunoprecipitation analysis 

Coimmunoprecipitation experiments were performed using 3-week-old wild-type (Col-0) and plants 

overexpressing CRASS-YFP (oeCRASS#1). Western blot analysis of input, supernatant and elution fractions 

confirmed the interaction of CRASS with the 30S proteins PRPS1 and PSPS5.  
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3.8 CRASS interacts with PRPS1 in a RNA-independent manner 

At this stage, to further unravel the interaction CRASS – ribosome, we performed size 

exclusion chromatography (SEC) experiments aimed at clarifying if CRASS interacts with 

RNA during assembly or with fully assembled ribosomes (Figure 3.8). We fractionated native 

stroma in 20 fractions by SEC according to their molecular weight and ran those on 

SDS_PAGE. We then performed western blot analysis of the distribution of CRASS-YFP and 

selected ribosomal proteins with and without RNase A treatment. RNase is expected to 

disassemble ribosomes and actually the same shift from high molecular weight to low 

molecular weight fractions due to the RNA degradation happening in ribosomal proteins was 

obtained also in CRASS-YFP (Figure 3.8A). This supports the hypothesis that CRASS is 

associated to fully mature ribosomes in vivo. In order to understand if the association occurs 

via RNA or not we carried out another immunoprecipitation after RNase treatment. The 

addition of RNase did not affect the pulling down of PRPS1 (Figure 3.8B), indicating that 

CRASS interacts with the 30S subunits via protein-protein interaction. Therefore, the 

presence of 16S RNA in the RIP-seq experiments was probably due to the 

immunoprecipitation of the native ribosomal complex, comprising ribosomal proteins and 

rRNAs. Direct protein interaction with PRPS1 and PRPS5 is not shown by yeast two-hybrid 

analysis supposedly because it happens in a multimeric binding or via another ribosomal 

subunit (Supplemental figure 6.5).  
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Figure 3.8. Analysis of RNA-dependency of CRASS interaction with ribosomal proteins. 

(A) Size exclusion chromatography (SEC) analysis was performed as described in “Materials and Methods” with 

native stroma extracts from 3-week-old oeCRASS#1 transgenic lines. Western blot analysis show that YFP-tagged 

CRASS co-migrates with ribosomal proteins, typically present in the first higher molecular weight fractions 

(ribosomal complexes) but also in the lower molecular weight complexes (LMWC) fractions. Treatments of 

samples with RNase A cause the shift of CRASS, PRPS5 and PRPL11 to LMWC fractions, presumably by the 

disassembly of the ribosomal complexes. (B) Coimmunoprecipitation experiments were performed using 3-week-

old wild-type (WT) and transgenic line oeCRASS#1 plants. Western blot analysis of input, supernatant and elution 

fractions demonstrated that CRASS interacts with PRPS1 independently of the presence or absence of RNAse A. 

Experiments performed under technical assistance of Dr. Nikolay Manavski. 
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3.9 Synergistic effect between CRASS and PRPS17 

 In order to verify the interaction at a genetic level, we characterized the effects of the absence 

of CRASS in the background of other ribosomal mutants. We successfully generated viable 

double mutants crossing crass-1 with prps17 and prpl11. Interestingly, a synergistic effect 

was present with an evident phenotype when the small subunit was affected (as in prps17) 

rather than the large one (as in prpl11) where differences were not significant (figure 3.9). In 

adult plants the double mutant crass prps17 was clearly retarded in growth (Figure 3.9A) and 

displayed significantly lower Fv/Fm values (Figure 3.9B) under both long and short day 

conditions (Supplemental Figures 6.7A and 6.7B). All these results together point to a role of 

CRASS in biogenesis and/or stabilization of the 30S subunit of the chloroplastic ribosome.  

 

 

Figure 3.9. Genetic interactions between CRASS and ribosomal proteins. 

(A) Representative image of the indicated genoptypes after 21 days in long day conditions (left panel). The 

photosynthetic parameter Fv/Fm (maximum quantum yield of PSII) was measured using an Imaging PAM system 

as described in “Materials and Methods” (right panel). (B) Quantification of Fv/Fm measures demonstrated an 

additive effect in the double mutant crass-1 prps17-1 but not in crass-1 prpl11-1. Average and SE (n = 20) are 

provided. Student’s t-test (**P < 0.01) was used for statistical analysis.  
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Table 3-1 CRASS coimmunoprecipitates with plastid ribosomal proteins. 

Proteins immunoprecipitated with an antibody against GFP from the transgenic line oeCRASS#1 were separated 

by SDS-PAGE. Gel fractions were analysed by MALDI TOF mass spectrometry in order to identify CRASS 

bound proteins. To check for unspecific contaminants the output has been compared to the immunoprecipitation of 

wild-type plants as described in “Materials and Methods.” Analysis has been performed on two independent 

biological replicates. For these two biological replicates, the 10 best candidates are shown. Dr. Lars Scharff 

supervised the immunoprecipitation experiments, Dr. Piotr Gawronsky performed bioinformatic analysis and Dr. 

Annemarie Matthes produced the mass spectrometry data. 
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4. Results SCO2 

4.1 Absence of SCO2 results in leaf variegation in L. japonicus 

Lotus japonicus is a model legume, for which mutant lines based on the endogenous 

retrotransposon LORE1 have been made publicly available (Fukai et al. 2012; Urbański et al. 

2012). New mutants were recently released, some of which display albino or variegated 

phenotypes (Małolepszy et al. 2016). In this work, we identified three different mutant lines, 

ljsco2-1 (30096086), ljsco2-2 (30099994) and ljsco2-3 (30006602), in which the coding 

region of the SCO2 gene (LjSCO2; Lj3g3v0537380) is disrupted (Supplemental Figure 6.8). 

The open reading frame of LjSCO2 consists of three exons, coding for a protein of 190 amino 

acids. In Arabidopsis thaliana, loss of SCO2 (atsco2) results in pale/albino cotyledons, but 

normal true leaves (Albrecht et al. 2008; Shimada et al. 2007). Similarly, ljsco2 mutants 

displayed paler cotyledons with lower Fv/Fm , indicating functional impairment of PSII (Figure 

4.1A). However, the defects in chloroplast development in ljsco2 mutants also extended to 

true leaves, which exhibit a variegated phenotype and lower maximum quantum yield of PSII 

(Fv/Fm) in the white areas (Figure 4.1B). Among 48 ljsco2-1 and 70 ljsco2-2 plants obtained 

by selfing of plants hemizygous for the respective LORE1 insertion in the LjSCO2 gene, we 

identified 15 and 17 variegated plants, respectively, which were all homozygous for the 

LORE1 insertion, demonstrating perfect linkage between disruption of the LjSCO2 gene and 

the leaf phenotype. The analysis of LjSCO2 expression demonstrated that all three mutants are 

knockouts for the LjSCO2 gene (Supplemental Figure 6.8B). Interestingly, transcript 

expression of LjSCO2 is higher in cotyledons compared to true leaves, similarly to as 

described in Arabidopsis (Shimada et al. 2007) with higher transcript and protein levels in 5-

day-old seedlings compared to rosette or cauline leaves. Mutants are also characterized by 

stunted root and shoot growth (Supplemental Figure 6.8D) and reduced size (Supplemental 

Figure 6.8E). Variegation in leaves is independent of developmental stage. Therefore, these 

results indicate that SCO2 is involved in leaf variegation in Lotus. The different phenotypes 

observed in Arabidopsis and Lotus sco2 mutants raised the question whether the function of 

the protein is conserved. An alignment with orthologous protein sequences from various plant 

species revealed that, in all species investigated, SCO2 has a C-terminal DNAJ-related zinc-

finger domain, which contains two pairs of cysteines (CXXC) and three additional, highly 

conserved Cys residues (Supplemental Figure 6.9A). These cysteines have been proposed to 

play an important role in the interaction with AtSCO2 substrates (Muranaka et al. 2012). 
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Phylogenetic analysis of AtSCO2 orthologues and other reported DNAJ-related proteins from 

Arabidopsis demonstrated that all SCO2 proteins belong to the same clade (Supplemental 

Figure 6.9B). These results suggest that SCO2 from Arabidopsis and Lotus may be true 

functional orthologues.  

SCO2 function is conserved between A. thaliana and L. japonicus 

 In order to test whether the SCO2 function is indeed conserved in L. japonicus, we performed 

greening experiments. Seedlings kept in darkness for 8 days were exposed to light for 1 or 8 

days (Figure 4.2A). Like the Arabidopsis mutant (Albrecht et al. 2008), plants lacking 

LjSCO2 failed to accumulate pigments upon exposure to light. Quantification of total 

chlorophyll clearly showed a reduction in chlorophyll accumulation (Figure 4.2B). To further 

investigate photosystem functionality, we carried out measurements of the 77K fluorescence 

emission spectra, which allowed us to quantify PSI (peak at 737 nm) and PSII (peak at 693 

nm) levels in Lotus cotyledons and true leaves. As previously reported for Arabidopsis 

(Albrecht et al. 2008), in the ljsco2-1 mutant, the height of the PSI-specific peak was 

markedly reduced in both cotyledons and true leaves (Figure 4.2C). Analysis of isolated 

chloroplasts using the same amount of chlorophyll confirmed the results obtained directly on 

true leaves (Supplemental Figure 6.10). Although variegation in the Arabidopsis atsco2 

mutant has not been observed in photosynthetically competent leaves, we measured the 

effects of different light regimes on growth. Strikingly, under short-day conditions, atsco2 

plants showed a decrease in growth, as well as paler coloration (Figure 4.2D). Fv/Fm values 

were lower in true leaves in atsco2 mutant compared with WT plants, in particular under short 

day conditions (Figure 4.2D). We thus conclude that, as in ljsco2 plants, cotyledons and true 

leaves are affected in atsco2 mutants. Moreover, we found that atsco2 cotyledons are not only 

paler in plants grown under short-day conditions, but also under continuous light 

(Supplemental Figure 6.11A). Quantification of chlorophylls and carotenoids showed that 

levels of both pigments are higher in atsco2 plants, under the long-day regime, whereas in 

WT seedlings pigment levels were maximized in continuous light (Supplemental Figures 

6.11B and 4C). To study the effects of growth conditions and light intensity on leaf 

variegation of Lotus mutants, we grew WT and ljsco2-1 mutant under different light regimes 

(see Methods). Similar to the Arabidopsis mutant, ljsco2-1 is paler and smaller under short 

day conditions (Figure 4.3A). Accordingly, quantification of chlorophylls and carotenoids 

showed that ljsco2-1 accumulates less than 50% of WT pigment levels (Figures 4.3B and 

4.3C). Interestingly, although true leaves are variegated in all conditions tested, this 
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phenotype is less pronounced when plants were grown under high light, resulting in lower 

differences in pigment levels between WT and ljsco2-1 plants.  

 

 

 

 

Figure 4.1 Mutation of LjSCO2 impairs chloroplast development in cotyledons and true leaves in Lotus 

japonicus. 

Representative pictures of 4-day-old cotyledons (A) and 3-week-old (B) Lotus wild-type (WT) plants and ljsco2 

mutants are shown (top panels). The photosynthetic parameter Fv/Fm (maximum quantum yield of PSII) was 

measured using an Imaging PAM system as described in Methods (lower panels). Signal intensities for Fv/Fm are 

indicated in accordance with the color scale (right bar).  
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Figure 4.2 Greening and photosynthetic measures confirm conserved roles of SCO2 between A. thaliana and 

L. japonicus. 

(A) In the greening experiments, Lotus wild-type (WT) and ljsco2-1 were grown in darkness for 8 days and then 

exposed to light for 1 or 8 days. (B) Quantification of total chlorophyll accumulation during the greening 

experiments was carried out as described in Methods. Data correspond to the mean and SD values of 3 independent 

experiments and are expressed as relative levels (WT plants after 8 days of light = 100%). Statistically significant 

differences relative to WT in darkness are indicated (*P<0.05, t-test). (C) The 77K fluorescence emission spectrum 

was analyzed for Lotus cotyledons and true leaves. The fluorescence emission signals were normalized to the 

minimum at 670 nm. Representative experiments are shown for the WT (black lines) and the ljsco2-1 mutant (gray 

lines). (D) Phenotype of 24-day-old (long day) and 8-week-old (short day) Arabidopsis WT and the atsco2 mutant. 

Signal intensities for Fv/Fm are indicated in accordance with the color scale (right bar). 
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Figure 4.3 Analysis of the leaf phenotype of the ljsco2-1 mutant under different growth conditions.  

 (A) Phenotypes of representative leaves of 45-day-old Lotus wild-type (WT) and ljsco2-1 mutant grown under 

short-day (SD), long-day (LD), continuous light (CL) or high light (HL) conditions. Plant material was collected 

and standard pigment amounts were determined as described in Methods. Relative values of total chlorophyll (B) 

and carotenoids (C) are provided (WT grown in CL = 100%). Data correspond to the mean and SD values of n=4 

independent experiments (Student’s t test: *P < 0.05 and **P < 0.01). 

 

4.2 LjSCO2 is essential for photosynthetic activity in L. japonicus 

Changes in 77-K fluorescence emission demonstrated that PSI is affected in the ljsco2-1 

mutant. Furthermore, measurements of Fv/Fm in plants that had been dark-adapted for 30 min 

showed that PSII photosynthetic efficiency is also reduced in ljsco2-1 leaves (0.64 ± 0.07) 

compared with WT (0.76 ± 0.02), similarly to cotyledons (Figure 4.1A). Light-response 

experiments using increasing light intensities confirmed lower electron transport rates for PSII 

(ETR II) in the ljsco2-1 mutant compared to WT (Figure 4.4A). The ljsco2-1 mutant also 

differs from the WT with respect to the kinetics of transient NPQ (non-photochemical 

quenching) induction (Figure 4.4B). NPQ was analyzed in dark-adapted plants by exposing 

them to high light levels (830 μmol photons m2 s−1) for 30 min, followed by 15 min of 

darkness. At the beginning of the light period, NPQ was higher in the ljsco2-1 mutant than in 

WT, whereas after 10 min NPQ levels decreased in the WT . In the subsequent dark period 

(relaxation), values of NPQ dropped in both genotypes, but remained higher in the mutant. 

The faster NPQ induction in the mutant suggested a pre-accumulation of zeaxanthin in the 

mutant. Indeed, HPLC experiments confirmed that zeaxanthin highly accumulates in the 

ljsco2-1 mutant under low light conditions, whereas it is only detected in WT plants when 

grown under high light (Figure 4.4C and Supplemental Figure 6.12). Interestingly, 
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tocopherols were also present at higher levels in the mutant suggesting a constitutive up-

regulation of antioxidant metabolism. NPQ includes several components, one of which may 

involve LHC antenna proteins (Niyogi and Truong, 2013). Because SCO2 interacts with 

LHCB1 (Tanz et al. 2012), it was not surprising to find that absence of SCO2 can affect NPQ 

formation. However, while antisense lines for LHCB1 are compromised in NPQ, the kinetics 

of NPQ has been shown to be similar to WT (Pietrzykowska et al. 2014). Therefore, SCO2 

might have additional roles in modulating photosynthesis. 
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Figure 4.4 L. japonicus ljsco2-1 mutant displays impaired photosynthesis. 

Chlorophyll fluorescence parameters of 6-week-old Lotus WT and ljsco2-1 mutant grown under long-day 

conditions were analyzed using a DUAL PAM system as described in Methods. (A) Electron transport rate of 

photosystem II (ETRII) was calculated at different light intensities in light response curve. (B) For non-

photochemical quenching (NPQ) analysis, plants were kept in the dark overnight prior to measurements. Gray 

and black bars indicate periods of illumination with actinic light and intervals in the dark, respectively. Data 

in (A) and (B) are representative of at least 3 independent experiments. Means and SD values are for n≥5 

different plants. (C) Metabolite analyses by HPLC was performed with the L. japonicus plants as described in 

Methods. Except in the case of zeaxanthin, relative values to the WT plants are provided (absolute values in 

Supplemental Figure 6.12). Data correspond to the mean and SD values of n=4 independent experiments 

(Student’s t test: *P < 0.05 and **P < 0.01). HPLC analyses (C) performed by the laboratory of Prof. Dr. 

Manuel Rodriguez-Concepcion  
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4.3 Variegated leaves display altered protein profiles in L. japonicus 

In order to compare the effects of the absence of LjSCO2 in cotyledons and variegated true 

leaves, several chloroplastic pathways were analyzed by immunoblotting using specific 

antibodies (see Methods). Since SCO2 is a DNAJ-related protein, with potential 

chaperone/protein disulphide isomerase activity (Albrecht et al. 2008; Muranaka et al. 2012; 

Shimada et al. 2007), we first looked at components of the protein quality control system, 

including chaperones and proteases (Figure 4.5). Although there is no clear difference 

between mutant and WT cotyledons, chaperones and proteases levels are increased in 

variegated true leaves in the ljsco2-1 mutant. These results, together with zeaxanthin and 

tocopherol accumulation, appear to confirm the up-regulation of the anti-stress machinery in 

the true leaves in the ljsco2-1 mutant. Less LHCB1 was detected in the mutant than in the 

wild-type (WT) (Figure 4.5), as reported for the atsco2 mutant of Arabidopsis (Albrecht et al. 

2008; Shimada et al. 2007; Tanz et al. 2012). The down-regulation of LHCB1 was confirmed 

in the other two ljsco2 mutants (in contrast to higher levels of Hsp70) (Supplemental Figure 

6.13A). The up-regulation of LHCB4 in ljsco2-1 suggests the activation of compensatory 

mechanisms, while amounts of the PSI and PSII components PsaB, PsaL, PsbD, PsbC were 

lower than in WT, in agreement with previous reports for the atsco2 mutant. However, 

accumulation of PsbQ and PsbO was enhanced in variegated ljsco2-1 leaves. Both proteins 

form part of the oxygen-evolving complex and play a role in the supramolecular organization 

of PSII (Allahverdiyeva et al. 2013). Similarly, SUPPRESSOR OF VARIEGATION4 (SVR4) 

and its homologue SVR4L are both also overexpressed in variegated ljsco2-1 leaves. 

Interestingly, ATPB is clearly downregulated in both cotyledons and true leaves, whereas 

other chloroplastic proteins like FNR and RBCL were slightly down-regulated in the ljsco2-1 

mutant and mitochondrial COXII and cytosolic ACT was virtually unchanged. In conclusion, 

absence of LjSCO2 causes mild responses in cotyledons but has more marked effects in true 

leaves. 
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4.4 SCO2 is involved in the assembly or repair of PSII complexes 

We next performed lpBN-PAGE (large-pore blue-native PAGE) on thylakoid samples isolated 

from true leaves of Arabidopsis (Figure 4.6A) and Lotus (Figure 4.6B), using as detergent 

either digitonin (left panels) or dodecyl-β-D-maltoside (β-DM, right panels). Digitonin 

facilitates the analysis of the labile PSI–LHCII megacomplexes, while β-DM permits efficient 

solubilization without disassembling PSII–LHCII supercomplexes (Järvi et al. 2011). In order 

to address the impact of lower levels of LHCB1 or PSBD (D2), samples containing equal 

amounts of chlorophyll were loaded, to compensate for the quantitative differences in the 

latter between WT and sco2 mutants (Supplemental Figure 6.13B). After denaturation of the 

Figure 4.5 Western-blot analyses of cotyledons and true leaves in L. japonicus. 

The accumulation of proteins involved in protein quality control, photosynthesis and other processes was 

analysed by western blotting of samples from 5-day-old cotyledons and 25-day-old true leaves of Lotus. 

Representative images of immunoblot analyses with the indicated antibodies are shown. Total protein extracts (10 

μg of protein) from WT and the ljsco2-1 mutant were examined, together with a dilution series of the WT sample 

as indicated. 
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lpBN gels, immunoblot experiments using a specific antibody directed against the PSBD (D2) 

protein from the PSII reaction center permitted the detection of all PSII complexes (Figure 

4.6A and 4.6B, Supplemental Figure 6.13C). In particular, when digitonin was used as 

detergent, a reduction in PSII-LHCII super- and megacomplexes, together with a general 

increase in the PSII assembly complexes reaction centers RC, RC47, RCC1 and RCC2, was 

observed in sco2 mutants of both plant species. This suggests that the formation of super- and 

megacomplexes may be especially impaired in the absence of SCO2. Silver staining of the 

second-dimension gels corroborated that sco2 mutants in both species proportionally 

accumulate less high-molecular complexes than smaller intermediate-sized complexes 

compared to WT plants (Supplemental Figure 6.14). In addition, an over-accumulation of 

LHCII trimers was noted in sco2 mutants, which is compatible with the involvement of SCO2 

in the assembly of LHCs into the photosystems (Figures 4.6A and 4.6B). Because SCO2 was 

found in complexes compatible in size with PSI-LHCII and PSII-LHCII (Shimada et al. 

2007), our results indicate that SCO2 has a role in the assembly or repair of PSII.  

To determine whether loss of SCO2 can affect state transitions, we determined the maximum 

fluorescence in state 2 (plants under red light) or state 1 (plants exposed to red and far-red 

light) (Bellafiore et al. 2005; Pribil et al. 2010). Although ljsco2-1 mutant plants generally 

displayed lower chlorophyll fluorescence (accordingly to the decrease in chlorophyll levels), 

they showed a WT-like response during the transition between state 2 and state 1 

(Supplemental Figure 6.15). The degree of quenching of chlorophyll fluorescence can be 

quantified by calculating the parameter qT (Pribil et al. 2010; Ruban & Johnson 2009). The 

qT values obtained for WT (0.083 ± 0.008) and ljsco2-1 mutant (0.084 ± 0.008) plants were 

almost identical, indicating that in the absence of LjSCO2 the plants are still able to undergo 

reversible state transitions. Inhibition of protein synthesis in the chloroplast does not suppress 

variegation in ljsco2 mutants. The widely accepted threshold model for variegation postulates 

that an imbalance in the levels of chloroplast and nucleus-encoded photosynthetic proteins is 

responsible for the impairments in chloroplast development (Liu et al. 2010b; Putarjunan et 

al. 2013). In line with this, the variegated phenotype of several mutants defective for nucleus-

encoded proteins can be suppressed by mutations that reduce rates of protein synthesis in the 

chloroplast (Hu et al. 2015; Liu et al. 2010a; Liu et al. 2010c). Sub-lethal concentrations of 

chloroplast translation inhibitors are also able to suppress variegation (Yu et al. 2008). 

Therefore, we tested whether the chloroplast translation inhibitor lincomycin (LIN) 

suppresses variegation in ljsco2 mutants. Surprisingly, none of the concentrations tested 

restored normal chloroplast development (Figures 7A and Supplemental Figure 6.16A). In 
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fact, the ljsco2 mutant is hypersensitive to LIN, unlike variegated Arabidopsis mutants such 

as var1 (ftsh5) and var2 (ftsh2) (Figure 4.7B) (Yu et al. 2008). Chloramphenicol (CAP), an 

alternative chloroplast translation inhibitor, was similarly unable to suppress leaf variegation 

in ljsco2 mutants (Supplemental Figures 6.16B and 6.16C), implying that the molecular 

mechanism underlying ljsco2 variegation might differ substantially from that responsible for 

other instances of variegation. 

 

Figure 4.6 SCO2 is required for PSII supercomplex and megacomplex accumulation. 

Thylakoid membranes from Arabidopsis (A) and Lotus (B) were solubilized in 1% digitonin (w/v) (left 

panels) or 1% -DM (w/v) (right panels). Samples were fractionated by 5 to 12% lpBN-PAGE as described in 

Methods. Subsequent denaturation and immunoblot analysis with a PsbD-specific antibody allows to 

compare PSII complex pattern in WT and sco2 mutants in both Arabidopsis and Lotus. The major protein 

complexes were assigned to individual bands as described (Järvi et al. 2011). Supercomplexes (sc) and 

megacomplexes (mc) are indicated.  

 



  RESULTS 

 56 

 

 

 

 

 

 

 

 

 

Figure 4.7 Inhibition of translation in the chloroplast does not suppress variegation in ljsco2 mutants 

(A) Representative examples of Lotus WT, and ljsco2-1 and ljsco2-2 mutant plants germinated and grown 

for 20 days on MS medium supplemented with increasing concentrations (from left to right: 0, 10, 50, 250 

and 2500 µM) of lincomycin (LIN). None of the concentrations tested suppressed leaf variegation in the 

ljsco2 mutants. On the contrary, the mutants proved to be abnormally sensitive to LIN-induced bleaching. 

(B) Representative examples of A. thaliana WT, var1 (ftsh5) and var2 (ftsh2) mutants grown in the 

presence or absence of 10 µM LIN. The variegation of true leaves in ftsh mutants is suppressed in the 

presence of LIN.  

. 
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4.5 SCO2 has also a role in variegation in A. thaliana 

The finding that atsco2 leaves are smaller and paler than their WT counterparts under short-

day conditions (Figure 4.2D), and that assembly of PSII complexes is impaired in the mutant 

(Figure 4.6A), demonstrates that the AtSCO2 function also extends beyond the cotyledon 

stage in Arabidopsis. The enhanced sensitivity of ljsco2 mutants to lincomycin (LIN) suggests 

a link between SCO2 and protein synthesis in the chloroplast. Therefore, a double mutant was 

generated in Arabidopsis by crossing atsco2 with the atclpr1 mutant (also named svr2) 

(Supplemental Figure 6.17), which was previously shown to suppress the variegation 

phenotype of the var2 (ftsh2) mutant (Yu et al. 2008). In fact, atclpr1 is impaired in 

chloroplast rRNA processing, a feature shared by several suppressors of variegation (Yu et al. 

2008). As a consequence, chloroplast translation is inhibited in atclpr1 and several 

representative plastid genes display normal levels of transcripts but reduced protein 

accumulation (Koussevitzky et al. 2007). Strikingly, the double mutant atsco2 atclpr1 

exhibited very pale and variegated true leaves (Figure 4.8A), which supports a function for 

AtSCO2 in photosynthetically competent leaves in Arabidopsis. The additive phenotype in the 

double mutant already becomes manifest at the seedling stage (Figure 4.8B). This is in 

striking contrast to the variegated mutants var2 (Yu et al. 2008) and thf1 (Ma et al. 2015), 

which display reduced leaf variegation when the corresponding mutations are introduced into 

a background in which protein synthesis in chloroplasts is compromised. Taken together, 

these results point to a distinct mechanism of action for SCO2. 

Figure 4.8 Arabidopsis thaliana double mutant atsco2 atclpr1 displays a variegated phenotype. 

Representative 3-week-old Arabidopsis plants (A) and 10-day-old seedlings (B) grown in long-day conditions. 

Genotypes: WT, atsco2, atclpr1 and atsco2 atclpr1.  
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5. Discussion 

5.1 CRASS is located in the stroma of Arabidopsis thaliana chloroplasts   

In this study we have identified the Arabidopsis thaliana protein CRASS as an important 

factor involved in the stability and activity of the 30S subunit of the chloroplast ribosome. We 

have demonstrated that the lack of CRASS leads to a lower fitness under optimal growth 

conditions and to severe phenotypes when ribosome activity is challenged (Figures 3.4 and 

3.5). Chloroplast development is characterized by a very high demand for de novo protein 

synthesis since the crucial photosynthetic machinery has to be built rapidly to sustain plant 

growth. Defects in the translational machinery generally lead to evident phenotypes especially 

in young tissues. The lack of any obvious phenotype among CRASS knockout plants even in 

developing leaves indicates that CRASS does not play any essential role for ribosome 

biogenesis, stability or activity under optimal growth conditions. A guilt-by-association 

approach helped us identifying this protein which was probably overlooked by previous 

studies even if it was found from different groups in mass spectrometry of chloroplast 

ribosomes (Friso et al. 2004; J. Wang et al. 2016; Zybailov et al. 2008) and it is evident from 

databases search that it is also strongly coexpressed with ribosomal proteins (Figure 4.1A). 

The predicted chloroplast localization was suggested by its cTP and several groups reported 

CRASS in the stroma fraction with abundance levels comparable to those of chloroplastic 

ribosome proteins (Olinares et al. 2010; Zybailov et al. 2008; Zhang et al. 2016). We 

confirmed its localization by confocal microscopy with a recombinant CRASS-YFP line. 

Stroma localization was confirmed also by western blot and it is in agreement with the 

localization of most ribosomal proteins which often form aggregates around the nucleoid 

fractions. CRASS has not been identified so far in nucleoid co-immunoprecipitation 

experiments even if YFP aggregates in the chloroplast were often found during preliminary 

confocal microscopy analysis. This might suggest a transient binding with proteins that can be 

easily broken during nucleoid extraction. Sporadic observations of CRASS-YFP within 

chloroplast stromules further suggests that the binding to the nucleoids is not permanent since 

so far nucleoids are not known to be present in stromule fractions (Newell et al. 2012). At this 

stage of the work though, we consider the presence of punctuate patterns of YFP expression in 

the chloroplasts as an artefact due to the excess of recombinant protein induced by the strong 

35S promoter leading to the formation of non functional YFP aggregates within the 

chloroplasts (Llamas et al. 2017).    
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5.2 The HMA domain of CRASS lost its function during evolution 

CRASS is present in land plants and generally in Embryophytae but it is absent in 

Chlamydomonas and other photosynthetic organisms. However, we found no CRASS 

homolog in bacteria, algae or yeast, with the exception of bacterial HMA proteins with only 

partial homology. Therefore, it is likely that CRASS protein might have evolved from a HMA 

protein, after a gene transfer from bacteria occurred millions of years ago. 

The lack of the essential cysteins makes the domain unable to bind the metals and perform 

any transport or detoxification activity. Probably, CRASS gained during evolution a 

completely different function in the binding of specific ribosomal proteins or assisting the 

assembly of the ribosome. Examples of similar conserved domains with lost or changed 

function can be found in several proteins. One example is the group of glutaredoxin-like 

domain proteins lacking the essential cysteine in the active site and thus seems to have lost 

glutaredoxin activity (Pulido and Leister, 2017). An alternative RNA related predicted 

function has been described showing a strong similarity between the RNA recognition motif 

(RRM) and HMA domains since both are composed of tandem repeats with an oligomeric 

structure that is usually associated with the binding of single stranded RNA (Aloy et al. 2002). 

5.3 CRASS assists ribosome assembly when stress is applied  

In order to challenge our mutants, we looked for conditions in which translation is reduced. 

Several ribosomal subunit mutants show evident phenotypes only in cold stress conditions 

(Zhang et al. 2016; Rogalski et al. 2008). Two main reasons have been proposed to explain 

this sensitivity to cold stress. First, in these conditions, molecules trafficking within the 

chloroplast is slowed down so that an unstable structure caused by a missing subunit ends up 

in an impaired rRNA folding and processing that in turn will delay plant growth (Ehrnthaler et 

al. 2014). Secondly, an unstable ribosome induces a retrograde signaling from chloroplast to 

nucleus further reducing plant fitness (Leister 2012). Knocking out a retrograde signaling 

modulator like GUN1, in fact, leads to a milder phenotype in a prps1 mutant background 

(Tadini et al. 2016). In this regard, we tested cold stress at both seedling and adult stage and in 

each of the two cases the mutant phenotype was clearly distinct from the WT one. Mutant 

seedlings after 6 weeks of growth at 4 °C almost lost their ability to sustain chloroplast 

biogenesis when transferred to 22 °C. Young leaves of adult mutant plants transferred to cold 

chamber showed a lower photosynthetic efficiency compared to WT leaves. This was less 
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evident in older leaves, where translational capacity decreases and the unpaired machinery 

manages to produce anyway wild type like amounts of proteins (Fleischmann et al. 2011). 

Thus, the lower Fv/Fm in young leaves is presumably the effect of a limited translational 

capacity which in turn slows down chloroplast biogenesis. Complementation with the 

recombinant YFP fusion gene restores WT levels of photosynthesis efficiency. It would be 

interesting to characterize double knockouts crass x gun1 in order to investigate or rule out a 

potential retrograde signaling function of CRASS as occurs in other ribosomal components.  

An additional layer of evidence for CRASS involvement with ribosomal activity was given by 

tests with lincomycin, a specific chloroplast translation inhibitor (Tenson et al. 2003; Llamas 

et al. 2017). Growing mutants and WT on MS supplemented with lincomycin yielded a 

decrease in seedling vitality more critical where CRASS was knocked out (Figure 3.4). 

Chlorophyll and carotenoid levels were significantly different and genetic complementation 

also in this case evidenced the hypersensitivity directly caused by the absence of the CRASS 

protein (Supplemental Figure 6.6). On the other hand, similarly to ribosomal mutants with 

very mild phenotype as psrp2 and psrp6 which show no differences on polysome loading 

(Tiller et al. 2012) we found no reliable difference between WT and crass mutants.  

5.4 CRASS interacts with chloroplastic small ribosomal proteins  

The YFP tagged oeCRASS#1 line has been used for phenotype complementation by crossing it 

with crass-1, demonstrating that the recombinant CRASS-YFP is active in vivo (Figure 3.2). 

Therefore, it was also analysed in coimmunoprecipitation experiments that pulled down both 

proteins and RNA which we investigated by mass spectrometry and deep sequencing (Table 

3.1 and Figure 3.6). RNA extraction from the WT control using GFP beads rescued only 

traces amounts of RNA. The RNA in the eluate of the transgenic line instead was composed 

almost exclusively by chloroplastic ribosomal RNA, mainly 16S (Figure 3.6A and 

Supplemental Table 6.2). Slot blot analysis further confirmed that 16S rRNA was pulled down 

significantly in higher amounts compared to WT or other RNAs tested (Figure 3.6B). 

 The eluates were also used for protein identification yielding a great abundance of 

chloroplastic ribosomal proteins. In order to verify the actual presence of the ribosomal 

proteins we run a western blot with antibodies raised against ribosomal proteins and strikingly 

only those from the 30S subunit gave a clear signal. Additionally the PRPS1 interaction 

remained stable even after RNAse treatment pointing more toward a direct protein-protein 
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interaction rather than a CRASS-RNA interaction. The RNA that was isolated is very likely 

the effect of pulling down native 30S ribosomal complexes.  

Size exclusion chromatography has been used to detect binding with assembled ribosomes 

(Figure 3.8A). Looking at the accumulation of PRPS5 and PRPL11 there is an indication that 

after RNase treatment most of the ribosomes were degraded but a strong CRASS GFP band 

larger than Rubisco is present. This suggests that CRASS binding to the ribosomes is direct 

and not dependent on mRNA or rRNA. 

5.5 CRASS is directly involved in ribosome functionality 

A final proof for an interaction between ribosomal proteins and CRASS comes from the 

double mutants crass-1 prps17 and crass-1 prpl11 where the genetic interaction leads to a 

clear synergistic phenotype.  

PRPL11 is a nonessential subunit whose mutant phenotype is characterized by a mild 

impairment in growth and photosynthesis efficiency (Pesaresi et al. 2001). When in this 

background also CRASS is missing, the additive phenotype is only visible in young leaves 

where the Fv/Fm is slightly decreased while the rest of growth parameters are unchanged. The 

double mutant crass prps17 is instead strongly delayed in growth, photosynthesis efficiency 

and seed viability, especially in short day where plants have less time per day to build up 

photosynthetic machinery and the genetic interaction leads to a clear synergistic phenotype. 

(Figure 3.9 and Supplemental Figure 6.7). 

More experiments are required to elucidate the exact molecular mechanism that makes 

CRASS vital for the plant during cold stress or translation inhibition. One hypothesis is that 

the CRASS mutation affects directly the translation rate, already reduced at chilling 

temperature causing the impaired protein synthesis and photosynthesis capacity. Alternatively, 

instead of affecting the entire translation process by itself, it might alter the folding or 

structural localization of a ribosomal subunit, e.g. PRPS1, inducing a more severe defect in 

translation and ribosome assembly. 
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5.6 SCO2 is a DNAJ-related protein involved in chloroplast biogenesis 

The group of SNOWY COTYLEDON mutants is composed by several mutants whose role is 

supposed to be exclusive for cotyledon biogenesis and greening with a rather unaltered 

growth of the rest of the plant. In this study, we showed that SNOWY COTYLEDON 2, 

(SCO2), previously characterized as a cotyledon specific factor (Albrecht et al., 2008; 

Shimada et al., 2007), is indeed playing a key role when the plant is forming cotyledons, but 

differently to what was reported previously, we found that SCO2 is also crucial in true leaves 

since its lack leads to stunted growth in short day conditions. In addition, we here reported 

three Lotus japonicus mutant lines with knocked out expression of SCO2, all of them clearly 

characterized by pale cotyledons and variegated true leaves (Figure 4.1 and Supplemental 

Figure 6.8). Ljsco2 mutants are also affected during the transition from dark (etioplast) to 

light (chloroplast) and in the accumulation of PSI (Figure 4.2A). These findings reveal a new 

role in leaf development for SCO2, and support the hypothesis that it has a deeper importance 

than previously expected.  

The SCO2 gene shows some similarities to the DNA-J clade, a group of molecular chaperone 

proteins, but lacks the central J-domain needed for direct interaction with the Hsp70 

chaperones. It maintained instead the CXXCXGXG zinc finger domain which is needed for 

protein binding and allows conformational changes by oxidizing thiol groups (Shimada et al. 

2007; Muranaka et al. 2012; Rajan & D’Silva 2009). The closest paralogue to SCO2 is LOW 

QUANTUM YIELD 1 (LQY1), the mutant of which does not display either albino cotyledons 

or an obvious defect in chloroplast biogenesis (Lu et al. 2011).  

5.7 SCO2 is required for the assembly or repair of LHC 

Chaperones and proteases act co-ordinately as constituents of the protein quality control 

system that is essential for plant survival (Lee et al. 2009; Pulido et al. 2016). In chloroplasts, 

it is well known that the chaperone Hsp70 post-translationally regulates PSII assembly and 

repair, and contributes to the heat-shock response and protein import into the chloroplast 

(Schroda 1999; Shi & Theg 2010; Su & Li 2010; Su & Li 2008). The specificity of Hsp70 is 

known to be determined by its DNAJ partners, which act as adaptors that recognize unfolded 

substrates and transfer them to the chaperone for refolding. In classical A-type DNAJ 

proteins, the J-domain is responsible for the interaction with Hsp70, while the zinc finger 

interacts with the substrate (Kampinga & Craig 2010; Miernyk 2001; Rajan & D’Silva 2009). 
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In the absence of a conserved J-domain, DNAJ-related proteins are assumed to exhibit a 

chaperone-like activity independently of Hsp70, interacting with and stabilizing client 

substrates, such as the ORANGE (OR) proteins required for accumulation of phytoene 

synthase (PSY) and the biosynthesis of carotenoids (Zhou et al. 2015). Interestingly, the 

closest homolog of SCO2, LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), 

shows disulphide isomerase activity and interacts with the PSII core complex (Lu et al. 2011). 

Indeed, AtSCO2 itself reduces cysteines in artificial substrates in vitro (Muranaka et al. 2012; 

Shimada et al. 2007). Both LQY1 and AtSCO2 participate in the assembly or repair of PSII 

complexes, but they differ in the number of pairs of cysteines conserved (only 2 in SCO2, 

Supplemental Figure 6.9), and in their interaction partners, as revealed by BN-PAGE analyses 

(Lu et al., 2011; Shimada et al., 2007). LQY1 was found to comigrate with the PSII core 

monomer (RCC1) and the CP43-less PSII monomer (RC47) after exposure to high light 

levels, which suggests a role in repair and reassembly of PSII complexes (Lu et al., 2011). 

AtSCO2 associates with PSI-LHCII and PSII-LHCII complexes, but further experiments are 

required to characterise these complexes. We have demonstrated that sco2 mutants in both 

Arabidopsis and Lotus not only accumulate reduced amounts of PSII components, but are 

defective in the biogenesis or repair of the PSII complexes in true leaves (Figure 4.6, 

Supplemental Figure 6.13C and 6.14). Thus, there is a general increase of the levels of 

intermediate complexes RC, RC47, RCC1 and RCC2, with a concomitant build-up of LHCII 

trimers in sco2 mutants. Accordingly, maximum quantum yield and electron transport rate of 

PSII are both reduced in ljsco2 mutants (Figure 4.4A). However, PSI accumulation is also 

affected, as can be deduced from 77K fluorescence emission experiments (Figure 4.2A) and 

previous reports (Figure 4.5) (Albrecht et al., 2008; Shimada et al., 2007). Additionally, the 

levels of the ATP synthase subunit AtpB are decreased in the absence of LjSCO2 (Figure 4.5) 

such that other roles of LjSCO2 in thylakoid biogenesis and functioning, in addition to 

photosystem-related processes, cannot be ruled out. Although the only substrate known to 

interact with AtSCO2 in vivo is LHCB1 (Tanz et al., 2012), other putative targets have been 

proposed. Thus analysis with the split-ubiquitin system has suggested the interaction of 

AtSCO2 with PSI (A1 and A2 subunits), as well as PSII (CP43 and CP47 subunits) 

(Muranaka et al., 2012). However, the in vivo relevance of these interactions remains to be 

studied. The effects on NPQ noted in sco2 mutants might result from these complex 

interactions. The Lotus ljsco2-1 mutant displays a rapid increase in NPQ values upon 

illumination, but the values remain below the WT average until the situation is reversed in the 

relaxation phase (Figure 4.4B). Faster NPQ induction may be linked to pre-accumulation of 
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zeaxanthin in the ljsco2-1 mutant (Figure 4.4C), which is only detected in WT plants under 

high light conditions (Supplemental Figure 6.12). Given that AtSCO2 interacts with LHCB1, 

it is not surprising that LjSCO2 has a role in the regulation of NPQ. LHCII is involved in 

thermal dissipation of the excess light energy absorbed during photosynthesis (Niyogi and 

Truong, 2013) and the down-regulation of LHCB1 produces a decrease in NPQ values 

(Pietrzykowska et al. 2014). Interestingly, wild-type plants also show an increase in NPQ at 

higher temperatures (Bilger & Bjorkman 1991) and after heat shock (Marutani et al. 2014). 

Moreover, paraquat treatment causes NPQ to peak at the beginning of the quenching phase 

(Moustaka et al. 2015), as in the ljsco2-1 mutant. Therefore, maybe other stress situations can 

also induce zeaxanthin levels. The fact that the ljsco2-1 mutant is under constitutive stress, as 

indicated by the accumulation of zeaxanthin and tocopherols (Figure 4.4C and Supplemental 

Figure 6.12) and higher levels of chaperones and proteases (Figure 4.5), might contribute to 

the observed alterations in NPQ.  

5.8 SCO2 constitutes a novel factor involved in leaf variegation 

Multiple factors have been reported to control leaf variegation. In Arabidopsis, immutans (im) 

and variegated 2 (var2) mutants, which are defective in plastid terminal oxidase (PTOX) and 

the thylakoid protease FtsH2, respectively, are the best characterized chloroplast biogenesis 

mutants (Foudree et al. 2012; Aluru et al. 2006; Putarjunan et al. 2013). Loss of PTOX 

impairs the activity of phytoene desaturase (PDS), an enzyme in the carotenoid biosynthesis 

pathway (Ruiz-Sola & Rodríguez-Concepción 2012). PTOX is a central regulator of thylakoid 

redox and PSII excitation pressure, modulating the redox state of the PQ pool. Thus the 

variegation seen in the absence of PTOX has been attributed to a redox imbalance in 

Arabidopsis (Rosso et al. 2009). Mutational inactivation of PROTON GRADIENT 

REGULATION5 (PGR5) or CHLORORESPIRATORY REDUCTION2 (CRR2) suppresses 

variegation in im mutants by reducing the excitation pressure (Hashimoto et al. 2003; 

Munekage et al. 2002; Okegawa et al. 2010). The suppression of variegation in var2 mutants 

has uncovered a link with protein biosynthesis in the chloroplast. Several mutations affecting 

chloroplast translation or chloroplast RNA processing have been reported to suppress 

variegation in plants lacking FtsH2 (Liu et al., 2010a; Miura et al., 2007; Park and Rodermel, 

2004; Yu et al., 2008; Yu et al., 2011). Furthermore, the variegated phenotype of a mutant 

named thylakoid formation 1 (thf1) is also suppressed when chloroplast protein biosynthesis is 

impaired (Hu et al. 2015; Ma et al. 2015). Interestingly, THF1, like AtSCO2, interacts with 
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LHCB1. However, the inhibition of chloroplast translation (Figure 4.7 and Supplemental 

Figure 6.16) does not suppress the variegation in ljsco2. Furthermore, the clearly additive 

effect seen in variegated true leaves in atsco2 atclpr1 plants demonstrates that reducing rates 

of protein biosynthesis in the chloroplast actually exacerbates the defect in chloroplast 

biogenesis observed in the absence of SCO2 alone. Hence, we suggest that variegation in 

ljsco2 mutants is controlled by a distinct molecular mechanism.  

Since the variegation phenotype is based on the incorrect balance of quantity and type of FtsH 

subunits, it is possible that SCO2 acts as a helper in delivering the required FtsHs from 

stroma-exposed lamellae to grana margins where D1 degradation takes place (Adam et al. 

2005; Järvi et al. 2016). The zinc finger domain might have a cochaperone activity similar to 

DNAJ proteins assisting the precise assembly and activity of the FtsHs. The carrier activity 

hypothesis is supported by the previously reported vesicle formation in sco2 cotyledons (Tanz 

et al. 2012) where the lack of SCO2 affects strongly the transport of proteins toward the 

interior of the chloroplast. 

Interestingly FtsH4 mutants, defective for a mitochondrial targeted protease, (Gibala et al. 

2009) show several characteristics in common with sco2 phenotypes. Namely, a short day 

specific phenotype, chloroplast defect and an overexpression of HSP70. In the model 

proposed here (Figure 4.8C), THF1 and FtsH affect the accumulation of LHCs and the PSII 

reaction-center protein D1, respectively. In both cases, the balance required for the assembly 

of photosynthetic mega-complexes is disrupted, hence producing variegation. Decreasing 

protein biosynthesis in the chloroplast (by deleting ClpR1 or applying inhibitors of 

chloroplast translation such as LIN) reduces the levels of chloroplast-encoded components of 

the photosynthetic machinery, partially restoring the stoichiometry required for complex 

assembly and supressing variegation. However, the absence of SCO2 impaired the attachment 

of LHCs to PSI and PSII. In this genetic situation, the reduction of chloroplast translation 

with inhibitors or the introduction of the atclpr1 mutation further aggravates the perturbation 

in the assembly of the photosystems with the antenna complexes (Figure 4.8C). 

5.9 Stressful environmental conditions facilitate protein characterization 

In conclusion, this thesis puts the emphasis on the possibility to discover new gene functions 

by artificially altering plant growth conditions. Under optimal greenhouse conditions crass 

mutants would be undistinguishable from the WT and, except for the pale cotyledons, the 
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same holds true for sco2 plants. Both CRASS and SCO2 have been characterized by inducing 

stresses that enhanced otherwise undetectable phenotypes. Especially for those proteins that 

interact transiently, or only under a specific stress, with their targets, such an approach 

extends the likelihood of correctly identifying interaction partners and protein function. In this 

regard, the guilt-by-association approach we used is crucial to select candidate genes whose 

function can be partially predicted but which has never been demonstrated and which can 

potentially be characterized at molecular level with the available expertise. Further co-

immunoprecipitation and biochemical studies are necessary to finalize the understanding of 

the precise function of these proteins and their mechanism of action, being now clear that 

their presence in the chloroplast is not as disposable as previously thought.     
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6. Appendix  

  

Supplemental Figure 6.1 The coexpression regulon of plastid ribosomal proteins. 

Nuclear encoded plastid ribosomal proteins (PRPs) and plastid specific ribosomal proteins (PSRPs) genes 

(Tiller and Bock, 2014) were selected for “guilt-by-association” analysis: PRPS1 (AT5G30510), PRPS5 

(AT2G33800), PRPS6 (AT1G64510), PRPS7 (AT5G30510), PRPS9 (AT1G74970), PRPS10 (AT3G13120), 

PRPS13 (AT5G14320), PRPS17 (AT1G79850), PRPS20 (AT3G15190), PRPS21 (AT3G27160), PRPL1 

(AT3G63490), PRPL3 (AT2G43030), PRPL4 (AT1G07320), PRPL5 (AT4G01310), PRPL6 (AT1G05190), 

PRPL9 (AT3G44890), PRPL10 (AT5G13510), PRPL11 (AT1G32990), PRPL13 (AT1G78630), PRPL15 

(AT3G25920), PRPL17 (AT3G54210), PRPL18 (AT1G48350), PRPL19 (AT5G47190, AT4G17560), 

PRPL21 (AT1G35680), PRPL24 (AT5G54600), PRPL27 (AT5G40950), PRPL28 (AT2G33450), PRPL29 

(AT5G65220), PRPL31 (AT1G75350), PRPL34 (AT1G29070), PRPL35 (AT2G24090), PSRP2 

(AT3G52150), PSRP3 (AT1G68590), PSRP4 (AT2G38140), PSRP5 (AT3G56910) and PSRP6 

(AT5G17870). The co-regulation gene network derived from condition-independent co-expression analysis 

was generated using the ATTED-II tool (www.atted.jp). Input genes are marked with a thicker line. CRASS 

protein target is highlighted in grey.  
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Supplemental Figure 6.2 Sequence alignment of CRASS and bacterial heavy metal associated (HMA) 

proteins. 

An alignment of the full sequence of CRASS proteins and HMA proteins is shown. The sequences were aligned 

using MUSCLE (http://www.ebi.ac.uk/Tools/msa/muscle) and Bioedit editor (see “Materials and Methods”). 

The consensus sequence is indicated with identical residues marked by asterisks. Arrows mark the two cysteines 

conserved in the active site of HMA domain, absent in CRASS proteins. 
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Supplemental Figure 6.3 Altered CRASS levels do not affect to photosynthetic efficiency. 

(A) Representative picture of 21-days-old wild-type (WT), crass-1, crass-2, oeCRASS#1 and oeCRASS#2 plants 

grown in long day conditions were analyzed using an Imaging PAM system as described in “Materials and 

Methods.” The photosynthetic parameter Fv/Fm (maximum quantum yield of PSII) was measured as indicated by 

the color scale (bar on the right). (B) Quantification of Fv/Fm values confirmed that the different lines do not 

exhibit differences growing in control conditions.  

 

Supplemental Figure 6.4 Analysis of the effect of CRASS on polysome loading of psaA and rbcL. 

RNA gel blot analysis of polysome fractions from a 15 to 55% sucrose gradient of the wild-type (Col-0) and 

crass-1 plants as indicated in “Materials and Methods.” rRNA was stained with methylene blue.  
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Supplemental Figure 6.6 Yeast two hybrid analysis of CRASS and ribosomal proteins. 

Yeast cells were cotransformed with a plasmid expressing mature CRASS-BD as bait protein and plasmids expressing 

ribosomal proteins PRPS1-AD, PRPS5-AD and PRPL24-AD as prey proteins. Interaction was tested on media double 

drop out (DDO) lacking tryptophane (Trp) and leucine (Leu) and quadruple drop out (QDO) additionally lacking 

histidine (his) and adenine (ade) with a dilution series 1:10 starting with an OD600 of 2. Although the presence of both 

plasmids allowed the yeast to grow in DDO media, none of the combinations survived on QDO media. Although the 

presence of both plasmids allowed the yeast to grow except for GUN1-BD/PRPS1-AD, which served as the positive 

control. GUN1 was previously shown to interact with PRPS1 in yeast-two-hybrid experiments (Tadini et al., 2016). 

Therefore, direct interactions between CRASS and the ribosomal proteins could not be demonstrated by yeast two 

hybrid analysis.  

 

Supplemental Figure 6.5 Analysis of the inhibition of chloroplast translation in overexpressor lines. 

Representative pictures of wild-type (Col-0), crass-1, crass-2 and overexpressor lines oeCRASS#1 crass-1 growing in 

plates for 10 days in control conditions or under lincomycin treatments as indicated. Significantly the overexpression 

of CRASS-YFP suppress the hypersensitivity of crass-1 to LIN-induced bleaching, confirming the activity of the 

fusion protein in the transgenic line. 
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Supplemental Figure 6.7 Analysis of plant development in short day conditions in the absence of plastidial 

ribosomal proteins. 

(A) Representative picture of the indicated backgrounds after 60 days in short day conditions (left panel). The 

photosynthetic parameter Fv/Fm (maximum quantum yield of PSII) was measured using an Imaging PAM system as 

described in “Materials and Methods” (right panel). (B) Quantification of Fv/Fm measures demonstrated an additive 

effect in the double mutant crass-1 prps17-1 but not in crass-1 prpl11-1. Average and SE (n = 20) are provided. 

Student’s t-test (**P < 0.01) was used for statistical analysis. 
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Supplemental Figure 6.8 Characterization of three independent mutant lines for SCO2 in Lotus 

japonicus. 

(A) Schematic representation of the structure of the LjSCO2 gene (Lj3g3v0537380) showing the positions of 

the LORE1 retrotransposon in the lines ljsco2-1 (30096086), ljsco2-2 (30099994) and ljsco2-3 (30006602). 

All mutations disrupt the LjSCO2 ORF. (B) RNA samples from WT and ljsco2 mutants were used for 

quantitative PCR analysis of LjSCO2 transcript levels using the LjUBQ gene as a control (see Methods). (C) 

Transcript levels of LjSCO2 was compared between 4-days-old cotyledons and 25-days-old true leaves for 

WT plants. The graphs show mean and SD values of n=4 independent experiments. Phenotypes of 

representative Lotus wild-type (WT), ljsco2-1, ljsco2-2 and ljsco2-3 mutants are shown at the ages of 14 days 

(D) and 60 days (E). In addition to the variegation phenotype, ljsco2 mutants display stunted root and shoot 

growth. 
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Supplemental Figure 6.9 Sequence and phylogenetic analysis of SCO2. 

(A) The sequence of the C-terminal zinc finger of LjSCO2 from L. japonicus was compared with related 

sequences from A. thaliana and other plants. The sequences were aligned using MUSCLE and Bioedit (see 

Methods). The consensus sequence is indicated with identical residues marked by asterisks. Cysteines are 

highlighted in yellow. (B) Phylogenetic tree based on the complete sequences of the SCO2 proteins shown 

in (A), together with those of other DNAJ-like proteins reported from Arabidopsis: BSD2 (Brutnell 1999), 

LQY1 (Lu et al., 2011) and TSIP1 (Ham et al. 2006). The tree was rooted at midpoint using the neighbor-

joining method in MEGA6. Bootstrap values (as a percentage of 2,000 replicates) are indicated at the 

branches.  

 

Supplemental Figure 6.10 77K fluorescence emission spectra of thylakoid samples. 

The 77K fluorescence emission spectrum was analyzed for isolated thylakoids of Lotus true leaves. The 

fluorescence emission signals were normalized to the minimum at 670 nm. Representative experiments are shown 

for the WT (black lines) and the ljsco2-1 mutant (grey lines). Experiments performed with technical assistance of 

Dr. Chiara Gandini. 
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Supplemental Figure 6.11 Analysis of the cotyledon phenotype of the atsco2 mutant under different light 

regimes. 

(A) Phenotypes of representative 7-day-old Arabidopsis wild-type (WT) and atsco2 mutant seedlings grown on 

MS plates under short-day (SD) or long-day (LD) conditions or in continuous light (CL). Plant material was 

collected and standard pigment amounts were determined as described in Methods. Relative values of total 

chlorophyll (B) and carotenoids (C) are provided (WT grown in CL = 100%). Data correspond to the mean and 

SEM values of n=3 independent experiments. Although both chlorophyll and carotenoid levels increase in WT 

proportionally to the hours of light, maximum pigment accumulation in the atsco2 mutant is observed under LD 

conditions. 
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Supplemental Figure 6.12 Metabolic analyses of L. japonicus plants. 

Metabolite analyses by HPLC was performed with 45-day-old L. japonicus plants as described in Methods. 

Absolute values are referred to dry tissue. Data correspond to the mean and SD values of n=4 independent 

experiments (Student’s t test: *P < 0.05 and **P < 0.01). Experiments performed by the lab of Prof. Dr. 

Manuel Rodriguez-Concepcion. 
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Supplemental Figure 6.13 PsbD and LHCB1 accumulation in L. japonicus true leaves. 

(A) Levels of LHCB1 and Hsp70 were analysed in total extracts from true leaves of WT and the three ljsco2 

mutants. (B) Thylakoid membranes from Arabidopsis and Lotus were submitted to immunoblot analyses with 

specific antibodies against the D2 protein from PSII and LHCB1. Coomassie blue-stained gels were used as 

loading control (LC) showing the representative RbcL band. Samples containing 2 and 0.4 μg of chlorophyll 

were loaded for atsco2 and ljsco2-1 mutants, respectively. In addition, a dilution series of the wild-type sample 

was loaded as indicated. (C) Thylakoid membranes from Arabidopsis and Lotus were solubilized in 1% 

digitonin (w/v) (left panels) or 1% -DM (w/v) (right panels). Samples were fractionated by 5 to 12% lpBN-

PAGE similarly to Figure 4.6. Membranes were over-exposed to visualize the smaller complexes (RCC1, RC47 

and RC). Experiments performed with technical assistance of Dr. Omar Sandoval-Ibanez. 
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Supplemental Figure 6.14 SCO2 is required for PSII megacomplex accumulation. 

Thylakoid membranes from Arabidopsis and Lotus were solubilized in 1% digitonin (w/v). Samples were 

fractionated by 5 to 12% lpBN-PAGE as described in Methods. Subsequent second dimension gel 

electrophoresis and silver staining was performed. PSII-LHCII megacomplexes are marked in green, whereas 

small intermediate-sized complexes are marked in blue.  
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Supplemental Figure 6.15 LjSCO2 is not required for state transitions. 

Red light (R) and red light supplemented with far-red (FR) were used to induce transitions to state 2 and state 1, 

respectively. FM1 and FM2 represent maximal chlorophyll fluorescence levels in states 1 and 2, respectively. 

Horizontal bars indicate the length of illumination. Data correspond to the mean values of n≥4 independent 

experiments. 
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Supplemental Figure 6.16 Chloroplast translation inhibitors do not suppress variegation in ljsco2 mutants. 

(A) Lotus wild-type (WT) and ljsco2-1 mutant plants were germinated and grown for 20 days on MS medium 

supplemented with increasing concentrations (from left to right: 0, 10, 50, 250 and 2500 µM) of lincomycin (LIN). 

Note the reduction in root length and pigment concentration with increasing amounts of LIN. Similarly, none of 

the different concentrations (from left to right: 0, 15, 50, 100 and 300 µM) of chloramphenicol (CAP) tested could 

suppress the variegation seen in the sco2 mutants. Representative images of plants (B) and close-ups of the leaf 

phenotype (C) show that LIN and CAP have similar effects.  
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Supplemental Figure 6.17 The Arabidopsis thaliana double mutant atsco2 atclpr1 contains the same point 

mutation as the sco2 single mutant. 

The Arabidopsis atsco2 mutant was obtained by ethyl-methylsulfonate (EMS) mutagenesis (Albrecht et al., 2008). 

Comparison of wild-type (WT) and atsco2 mutant sequences revealed the replacement of a C by a T in the DNA 

sequence of the SCO2 gene. After crossing atsco2 and atclpr1 mutants, F1 double heterozygous plants sequence 

showed a peak that could not be assigned to any nucleotide, likely due to the overlapping of the signals of both C 

and T. However, F2 double homozygous atsco2 atclpr1 plants displayed a clear single peak corresponding to T, 

like homozygous atsco2 single mutants. 

 



  APPENDIX 

 82 

 

 

 

 

Ranking Name Description Score Mass Coverage Peptide

1 PRPS17-venus S17-venusYFP 1833 44926 41,5 TFVAVPVPPR

49 AT5G14910.1 CRASS 184 19059 29,8 QTTVQATGVASNLVETIQGAGFK

Supplemental Figure 6.18 Model of SCO2 function in the assembly or repair of photosynthetic complexes. 

In the proposed model, THF1 and FtsH affect the accumulation of LHC (PSI and PSII) and the reaction center 

protein D1 (PSII), respectively. In both cases the balance required for the assembly of photosynthetic complexes 

is disrupted, hence producing variegation. Decreasing protein biosynthesis in the chloroplast (absence of ClpR1 

or applying LIN) reduce the levels of several chloroplast-encoded photosynthetic proteins, partially restoring the 

proper ratio for complexes assembly and supressing variegation. However, SCO2 acts in a later step of the 

pathway, assisting to the assembly or repair of LHC with PSI and PSII. Therefore, the role in variegation of 

SCO2 cannot be suppressed by the downregulation of protein biosynthesis in the chloroplast.  

 

Supplemental Table 6-1 Data set of protein coimmunoprecipitation experiments. 

Wild-type (Col-0) and PRPS17-YFP were used in coimmunoprecipitation experiments. Proteins 

immunoprecipitated with an antibody against YFP from the transgenic line PRPS17-YFP were separated by 

SDS-PAGE. Gel fractions were analysed by MALDI TOF mass spectrometry in order to identify PRPS17 bound 

proteins (see “Materials and Methods”). To check for unspecific contaminants the output has been compared to 

the wild-type immunoprecipitation. Partial data from PRPS17-YFP immunoprecipitation demonstrates that 

CRASS was identified as a putative interactor of PRPS17. Dr. Lars Scharff performed the immunoprecipitation 

experiments, Dr. Piotr Gawronsky performed bioinformatic analysis and Dr. Annemarie Matthes produced the 

mass spectrometry data.  
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Supplemental Table 6-2 Data set of RNA coimmunoprecipitation with CRASS. 

Transgenic line oeCRASS#1 overexpressing the recombinant protein CRASS-YFP was used for RNA 

coimmunoprecipitation experiments with a specific antibody (see “Materials and Methods”). Fragments per 

kilobase of exon per million reads mapped (FPKM) values of two independent experiments of high throughput 

RNA sequencing (RIP-seq) were analyzed and exclusion of duplicated genes was performed. Average of both 

experiments was calculated and the 20 most abundant immunoprecipitated RNAs were selected for presentation in 

Figure 3.6A. Dr. Lars Scharff supervised the immunoprecipitation experiments, Dr. Piotr Gawronsky performed 

bioinformatic analysis and Dr. Annemarie Matthes produced the mass spectrometry data.  
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Supplemental Table 6-3 List of primers used in this work 

Sense (SP) and antisense (ASP) primers (5’→3’) were employed for the WT alleles, for RNA probes or for 

cloning, whereas T-DNA specific primers were used in combination with either with SP or ASP for the mutant 

alleles.  
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Supplemental Table 6-4 List of primers used in this work 

Forward and reverse primers were employed for the WT alleles or for RNA probes whereas T-DNA specific 

primer LORE1 P2 was used in combination with either forward or reverse primers for the mutant alleles in Lotus 

japonicus. 

 

Mutant line Forward Primer Reverse Primer 

ljsco2-1 GCGGTTGGGTGATTTCCAGTTTGA CTCTCCCCCTTCCCTCGCCTCTTC 

ljsco2-2 CAATAGACCGTGAATTCCCGATGTTAAGAA GATCCTGCCGCCCCTTCCTTGTAA 

ljsco2-3 TTTCTTCACGCGAAACAGGCGAGG TCCCCCTCAACTCTAACGCCTAACTCCA 

atclpr1 CTTAGCGACCCATTTATCTGC ACTGCAGGTACGATCTGCAAG 

atsco2 ATGTTCCGATTATACCCTA TCAAGATGGTTCATTATCC 

LORE1 P2 CCATGGCGGTTCCGTGAATCTTAGG  

qPCR Forward Primer Reverse Primer 

LjSCO2 GCATTCCTTGCATGGGA CACGGTGGTTTCCCATT 

LjUBQ ATGCAGATCTTCGTCAAGACCTTG ACCTCCCCTCAGACGAAG 
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