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Preamble 

This cumulative PhD thesis presents two original research articles on the targeting 

mechanism of the dosage compensation complex to the male X chromosome and its transfer 

to target genes in Drosophila melanogaster. The supplementary files of each research article 

are included. Furthermore, one manuscript for an original research article submitted to a 

peer-reviewed journal and deposited on a public preprint server on the targeting mechanism 

and function of the chromosomal kinase JIL-1 in D. melanogaster is presented. The 

contributions of all co-authors to each research article are stated here and before each article 

presented in the chapter ‘Results’. The lists of references and abbreviations for the chapter 

‘Introduction’ can be found at the end of this thesis. 
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Summary 

Dosage compensation of sex chromosomes in Drosophila melanogaster is an excellent 

model system to study various aspects of targeting of protein factors to chromatin. Dosage 

compensation prevents male lethality by up-regulating transcription from the single male 

X chromosome in the ~2-fold range to match the two active X chromosomes in females 

[reviewed in e.g. (Ferrari et al., 2014; Kuroda et al., 2016; Samata and Akhtar, 2018)]. This 

up-regulation is facilitated by the male-specific-lethal (MSL) dosage compensation complex 

(DCC). The DCC binds selectively to ~300 high affinity sites (HAS) on the X chromosome, 

containing a low-complexity GAGA-rich sequence motif, the MSL recognition element (MRE) 

(Alekseyenko et al., 2008; Straub et al., 2008). However, the DCC neglects thousands of 

other similar sequences in the genome outside of HAS. The DNA-binding subunit MSL2 

alone can enrich X chromosomal MREs in vitro, although MSL2 misses most MREs within 

HAS (Villa et al., 2016). The Chromatin-Linked Adaptor for MSL Proteins (CLAMP) binds 

thousands of MREs genome-wide and contributes to DCC targeting to HAS (Kaye et al., 

2018; Soruco et al., 2013). The role of CLAMP in facilitating MSL2 targeting to HAS was 

investigated by several approaches. Monitoring MSL2 chromatin binding in vivo by chromatin 

immunoprecipitation with high-throughput sequencing (ChIP-seq) showed the requirement of 

CLAMP for HAS targeting. Next, the interplay between CLAMP and MSL2 in genome-wide 

in vitro DNA binding was studied by DNA immunoprecipitation with high-throughput 

sequencing (DIP-seq) (Gossett and Lieb, 2008; Liu et al., 2005; Villa et al., 2016). The data 

revealed mutual recruitment of both factors to each other’s binding sites and cooperative 

binding to novel sites. This DNA binding cooperativity extended each other’s binding 

repertoire to facilitate robust binding of MREs located within HAS, although increased binding 

to other non-functional sites was observed. Both factors interacted directly with each other in 

co-IP experiments, providing an explanation for cooperative DNA binding. Whether CLAMP 

and MSL2 are required for keeping HAS nucleosome-free was studied by assay for 

transposase accessibly chromatin with high-throughput sequencing (ATAC-seq) (Buenrostro 

et al., 2013; Buenrostro et al., 2015). Both factors cooperate to stabilize each other’s binding 

and to compete with nucleosome positioning at HAS. 

After successful binding of the DCC to HAS, it interacts with neighboring target genes, which 

are marked by trimethylation of histone H3K36 (H3K36me3). There, the DCC catalyzes 

acetylation of H4K16 (H4K16ac) to boost transcription (Akhtar and Becker, 2000; Gelbart et 

al., 2009; Larschan et al., 2007; Prestel et al., 2010). The DCC employs the chromosome 3D 

organization, which seems to be invariant between males and females, to transfer from HAS 

to active genes (Ramirez et al., 2015; Ulianov et al., 2016). The contribution of HAS to the 

chromosome interaction network was studied by using different chromosome conformation 
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capture techniques. Hi-C analysis on sex-sorted embryos showed that, H4K16ac and 

H3K36me3 correlate well with the active compartments (Sexton et al., 2012). Interestingly, 

compartment switching on the X chromosome between males and females was correlated 

with H4K16ac and therefore attributed to dosage compensation. The involvement of the 

Pioneering sites on the X (PionX), a special sub-class of HAS, in chromosome architecture 

was studied by high-resolution 4C-seq in male and female cells. Chromosomal segments 

containing PionX made frequent contact with many loci within the active compartment and 

even looped over large domains of the inactive compartment (Ghavi-Helm et al., 2014). 

These long-range interactions between PionX with other PionX/HAS were more robust in 

males compared to females, indicating that the dosage compensation machinery reinforced 

them. Moreover, de novo induction of DCC assembly in female cells showed that the DCC 

uses long-range interaction within the active compartment to transfer from PionX to target 

genes marked by H3K36me3 for up-regulation of transcription. 

The chromosomal kinase JIL-1, which catalyzes phosphorylation of histone H3S10, localizes 

also to actively transcribed genes marked by H3K36me3 and is two-fold enriched on the 

male X chromosome (Jin et al., 2000; Regnard et al., 2011; Wang et al., 2001). JIL-1 is 

implicated in maintaining overall chromosome organization and preventing the spreading of 

heterochromatin into the euchromatic part of the X chromosome in both sexes (Cai et al., 

2014; Ebert et al., 2004; Jin et al., 1999). Furthermore, JIL-1 localizes to the non-LTR 

retrotransposon arrays of the telomeres to positively regulate their expression (Andreyeva et 

al., 2005; Silva-Sousa and Casacuberta, 2013; Silva-Sousa et al., 2012). The role of JIL-1 in 

regulating gene expression was studied using various methods. JIL-1 formed a stable 

complex with the novel PWWP domain-containing protein, JIL-1 Anchoring and Stabilizing 

Protein (JASPer). The JIL-1-JASPer (JJ)-complex specifically enriched H3K36me3 modified 

nucleosomes in vitro via JASPer’s PWWP domain from a nucleosome library containing 115 

different nucleosome types. Consistently, ChIP-seq experiments showed that the JJ-complex 

localizes to H3K36me3 chromatin at active gene bodies and at telomeric transposons in vivo. 

As previously described, the JJ-complex is also enriched on the male X chromosome relative 

to autosomes. Loss of JIL-1 resulted in loss of JASPer enrichment, a small increase in 

H3K9me2 and a decrease in H4K16ac on the X chromosome shown by spike-in ChIP-seq. 

Gene expression analysis by RNA-seq showed that the JJ-complex positively regulates 

expression of genes, in particular of genes from the male X chromosome, and of telomeric 

transposons. Furthermore, the JJ-complex associated with the Set1/COMPASS complex and 

with other remodelling complexes as shown by co-IP coupled to mass spectrometry analysis. 

Zusammenfassung 
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Dosiskompensation der Geschlechtschromosomen in Drosophila melanogaster ist ein 

exzellentes Modelsystem um verschiedene Aspekte der gezielten Bindung von 

Proteinfaktoren an Chromatin zu studieren. Dosiskompensation verhindert die Letalität in 

Männchen, durch Hochregulierung der Transkription des einfachen männlichen 

X Chromosoms im ungefähr zweifachen Bereich um es den beiden aktiven X Chromosomen 

der Weibchens anzupassen [rezensiert in z.B. (Ferrari et al., 2014; Kuroda et al., 2016; 

Samata and Akhtar, 2018)]. Diese Hochregulation wird durch den männerspezifisch letalen 

(MSL) Dosiskompensationskomplex (DCC) bewerkstelligt. Der DCC bindet selektiv an ~300 

hochaffine Stelle (HAS) auf dem X Chromosom, welche ein niederkomplexes, GAGA-reiches 

Sequenzmotiv beinhalten, das MSL Erkennungselement (MRE) (Alekseyenko et al., 2008; 

Straub et al., 2008). Jedoch missachtet der DCC tausende ähnliche Sequenzen im Genom, 

die außerhalb von HAS liegen. Die DNA bindende Untereinheit MSL2 kann in vitro alleine 

X chromosomale MREs anreichern, wenngleich MSL2 die meisten MREs in HAS auslässt 

(Villa et al., 2016). Der chromatingebundene Adapter für MSL Proteine (CLAMP) bindet 

tausende MREs genomweit und trägt zur gezielten Bindung des DCC an HAS bei (Kaye et 

al., 2018; Soruco et al., 2013). Die Beitrag von CLAMP zur MSL2 Bindung an HAS wurde 

durch mehrere Ansätze untersucht. Messung der MSL2 Chromatinbindung in vivo durch 

Chromatin-Immunopräzipitation mit Hochdurchsatzsequenzierung (ChIP-seq) zeigte, dass 

CLAMP für die HAS-Bindung benötigt wird. Danach wurde das Zusammenspiel von CLAMP 

und MSL2 bei der genomweiten DNA-Bindung in vitro durch DNA-Immunopräzipitation mit 

Hochdurchsatzsequenzierung (DIP-seq) sudiert (Gossett and Lieb, 2008; Liu et al., 2005; 

Villa et al., 2016). Die Daten zeigten eine gegenseitige Anreicherung beider Faktoren an den 

jeweils anderen Bindestellen und eine kooperative Binding von neuen Stellen. Diese 

DNA-Bindekooperativität vergrößerte das Bindungsrepertoire des jeweils Anderen um eine 

robuste Bindung der MREs in HAS zu ermöglichen, obgleich eine verstärkte Bindung von 

andere nicht-funktionelle Stellen beobachtet wurde. Beide Faktoren interagierten direkt mit 

einander in Ko-IP-Experimenten, was eine Erklärung für die kooperative DNA-Bindung liefert. 

Ob CLAMP und MSL2 benötigt werden um HAS nukleosomfrei zu halten wurde durch den 

Assay für tranposasezugängliches Chromatin mit Hochdurchsatzsequenzierung (ATAC-seq) 

studiert. (Buenrostro et al., 2013; Buenrostro et al., 2015). Beide Faktore kooperieren um 

ihre Bindung gegenseitig zu stabilisieren und mit Nukleosompositionierung an HAS zu 

konkurrieren. 

Nach erfolgreicher Bindung des DCC an HAS geht dieser zu benachbarten Zielgenen über, 

welche durch Trimethylierung von Histon H3K36 (H3K36me3) markiert sind. Dort katalysiert 

der DCC die Acetylierung von H4K16 (H4K16ac) um die Transkription zu erhöhen (Akhtar 

and Becker, 2000; Gelbart et al., 2009; Larschan et al., 2007; Prestel et al., 2010). Der DCC 

bedient sich dabei dem Chromosomeninteraktionsnetzwerk um von HAS zu aktiven Genen 
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zu gelangen, welches invariant zwischen Männchen und Weibchen zu seien scheint 

(Ramirez et al., 2015; Ulianov et al., 2016). Der Beitrag der HAS zum 

Chromosomeninteraktionsnetzwerk wurde durch die Benutzung verschiedene 

Chromosomenkonformationserfassungstechniken studiert. Hi-C-Analysen von nach 

Geschlechtern sortierten Embryos zeigte, dass H4K16ac und H3K36me3 gut mit dem 

aktiven Kompartiment korrelieren (Sexton et al., 2012). Interessanterweise ist ein 

Kompartimentwechsel auf dem X Chromosom zwischen Männchen und Weibchen mit 

H4K16ac korreliert und wird deshalb der Dosiskompensation zu geschrieben. Die Beteiligung 

der Pionierstellen auf dem X (PionX), einer besonderen Subklasse der HAS, zur 

Chromosomenarchitektur wurde durch hochauflösendes 4C-seq in männlichen und 

weiblichen Zellen studiert. Dies zeigte, dass PionX-beinhaltende Chromosomensegmente 

häufigeren Kontakt zu zahlreichen anderen Loci innerhalb des aktiven Kompartiments haben 

und sogar über große Domänen des inaktiven Kompartiments hinweg Schleifen bilden. 

(Ghavi-Helm et al., 2014). Diese weit reichenden Interaktionen zwischen PionX mit anderen 

PionX/HAS sind robuster in Männchen verglichen zu Weibchen, dies deutet darauf hin, dass 

diese durch die Dosiskompensationsmaschinerie verstärkt werden. Darüberhinaus zeigte 

de novo Induktion der DCC-Assemblierung in weiblichen Zellen, dass der DCC 

weitreichende Interaktionen innerhalb des aktiven Kompartimentes nutzt um von PionX zu 

Zielgenen zu transferieren, welche durch H3K36me3 markiert sind, zur Hochregulierung der 

Transkription. 

Die chromosomale Kinase JIL-1, welche die Phosphorylierung von Histone H3S10 

katalysiert, lokalisiert auch an aktiv transkribierte Gene, die durch H3K36me3 markiert sind, 

und ist ungefähr zweifach auf dem männlichen X Chromosom angereichert (Jin et al., 2000; 

Regnard et al., 2011; Wang et al., 2001). Generell trägt JIL-1 zur Aufrechterhaltung der 

allgemeinen Chromosomenorganisation bei und verhindert die Ausbreitung von 

Heterochromatin in den euchromatischen Teil des X Chromosoms in beiden Geschlechtern 

(Cai et al., 2014; Ebert et al., 2004; Jin et al., 1999). Zudem lokalisiert JIL-1 an die nicht-LTR 

Retrotransposonansammlung der Telomere um deren Expression positive zu regulieren 

(Andreyeva et al., 2005; Silva-Sousa and Casacuberta, 2013; Silva-Sousa et al., 2012). Die 

Rolle von JIL-1 bei der Genexpressionsregulation wurde unter Benutzung verschiedener 

Methoden studiert. JIL-1 formt mit dem neuen Protein JIL-1 verankerndes und 

stabilisierendes Protein (JASPer), das eine PWWP-Domäne enthält, einen stabilen Komplex, 

der JIL-1-JASPer (JJ)-Komplex. Der JJ-Komplex erkennt spezifisch H3K36me3 modifizierte 

Nucleosome in vitro über JASPer’s PWWP-Domäne, was durch die Benutzung einer 

Nucleosomenbibliothek gezeigt wurde, die 115 verschieden modifizierte Nucleosome enthält. 

Konsistenter weise lokalisiert der JJ-Komplex an H3K36me3-Chromatin an aktive Genkörper 

und telomerische Transposons in vivo und ist auf dem männlichen X Chromosom 
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angereichert, dies wurde mit ChIP-seq analysiert. Die Anreicherung hängt direkt von JIL-1 

ab, was durch beigespickten ChIP-seq gezeigt wurde. Verlust von JIL-1 führt zu einer kleinen 

Zunahme von H3K9me2 und Abnahme von H4K16ac auf dem männlichen X Chromosom. 

Genexpressionsanalyse durch RNA-seq zeigte, dass der JJ-Komplex die Genexpression 

positiv reguliert, insbesondere vom X Chromosom, und von telomerischen Transposons. 

Außerdem assoziiert der JJ-Komplex mit dem Set1/COMPASS-Komplex und mit anderen 

Remodelulierungskomplexen, was durch Ko-IP gekoppelt an Massenspektrometrieanalyse 

gezeigt wurde. 
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1 Introduction 

Reproduction within all kingdoms of life requires inheritance of genetic information encoded 

in the genomic deoxyribonucleic acid (DNA) between generations (Avery et al., 1944). In 

eukaryotic cells, a rather small nucleus accommodates long DNA molecules, the 

chromosomes, in the form of chromatin. While most cells within a higher multicellular 

organism harbor the identical genetic information, many functional different tissues and cell 

types must be formed. This cell type specific information is stored in the epigenome 

[reviewed in e.g. (Rivera and Ren, 2013; Yadav et al., 2018)]. Sequencing of the human 

genome in the 1990s and early 2000s was still heavily time and cost consuming 

(International Human Genome Sequencing Consortium, 2004; International Human Genome 

Sequencing Consortium et al., 2001; Venter et al., 2001). Recent advances in sequencing 

technologies gave rise to time and cost effective next generation sequencing (NGS) 

approaches allowing the sequencing of millions of DNA molecules in parallel in a 

high-throughput format [reviewed in e.g. (Goodwin et al., 2016; Levy and Myers, 2016)]. 

Approaches by big consortia like the ‘1000 Genomes Project’, ‘Encode’, and ‘modEncode’ 

projects sequenced thousands of human genomes and localized numerous chromatin marks 

and proteins (Celniker et al., 2009; Genomes Project et al., 2015; Stamatoyannopoulos et al., 

2012; Sudmant et al., 2015; The Encode Project Consortium et al., 2012). Most recently, the 

‘Human cell atlas’ project set out to generate a comprehensive map of all human cells using 

the latest single-cell genomic approaches (Regev et al., 2017). NGS provides a powerful tool 

to study various genome- and chromatin-linked aspects on a genome-wide scale. 

 

 

1.1 Chromatin 

At the end of the 19th century, chromatin and its basic building blocks DNA and histones 

were first described [reviewed in (Cremer and Cremer, 1988; Doenecke and Karlson, 1984; 

Olins and Olins, 2003)]. In 1869, Friedrich Miescher isolated a phosphorus-rich substance 

named Nuklein from pus leukocytes in the laboratory of Felix Hoppe-Seyler in Tübingen 

(Miescher, 1871). A few years later, Alfred Kossel, another former student of 

Felix Hoppe-Seyler, described a basic compound isolated from avian erythrocyte nuclei and 

termed it Histon (Kossel, 1884). In 1889, Richard Altman discovered that the non-protein 

portion of the Nuklein has acidic properties and named it therefore Nukleinsäure (= 

nucleic acid) (Altmann, 1889). At the same time, Walther Flemming described a stainable 

substance in the nucleus, which he named Chromatin (Flemming, 1882). In 1888, 

Wilhelm Waldeyer used first the word Chromosom to describe the chromatin structures in the 
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nucleus (Waldeyer, 1888). Only a century later in the 1970s, the basic structural and 

functional units of chromatin, the nucleosomes called ‘ bodies’ at that time were 

independently described by Olins and Olins (Olins and Olins, 1974) and Woodcock et al. 

(Woodcock et al., 1976) visualized by electron microscopy as ‘beads on a string’ [reviewed in 

(Olins and Olins, 2003)]. Around the same time, Hewish and Burgoyne could show by limited 

nuclease digestion of chromatin leading to distinctly sized DNA fragments that chromatin is 

organized in a regular repeating structure (Hewish and Burgoyne, 1973). In 1974, 

Roger Kornberg suggested that these repeating units consist of a ~200 base pairs (bp) 

DNA fragment and two of each of the four main histones (Kornberg, 1974; Kornberg and 

Thomas, 1974). Finally, in 1975, Oudet et al. confirmed the proposed model of 

Roger Kornberg and the fundamental chromatin unit was by then termed ‘nucleosome’ 

(Oudet et al., 1975). 

By now, numerous factors contributing to chromatin organization and chromatin plasticity 

have been described [reviewed in e.g. (Rivera and Ren, 2013; Yadav et al., 2018)]. At a 

glance, besides the canonical histones many different histone variants exist, their exchange 

is facilitated by histone chaperones and nucleosome remodelers, which can also reposition 

nucleosome along the DNA. Histones can be post-transcriptionally modified, e.g. methylation 

or acetylation of lysine residues and phosphorylation of serine residues, by histone modifying 

enzymes, so called ‘writers’. These post-transcriptional modifications (PTMs) can be 

recognized by PTM binding proteins, the ‘readers’. The DNA itself can also be bound by 

transcription factors and modified by DNA-modifying enzymes, most prominent the 

methylation of cytosines. In addition, the chromatin fibre is organized in higher-order 

structures to reach further compaction involving chromatin looping and forming of 

topologically associating domains (TADs). Thereby, all chromatin-related processes, such as 

gene expression, transcription, DNA replication and DNA repair, are regulated at various 

levels. 

 

1.1.1 The nucleosome and higher-order chromatin structures 

The canonical nucleosome core particle builds up from a central histone octamer core, 

containing two of each of the canonical histones H2A, H2B, H3 and H4, entwined with 

147 bp DNA in 1.65 left-handed superhelical turns (Figure 1) (Davey et al., 2002; Luger et 

al., 1997) [reviewed in e.g. (Andrews and Luger, 2011; Cutter and Hayes, 2015; 

Khorasanizadeh, 2004; Luger et al., 2012; Pepenella et al., 2014)]. Each histone possesses 

a globular domain, formed by three -helices arranged into the so-called ‘histone fold’, and 

unstructured N- and C-terminal regions, the ‘histone tails’. By forming a ‘handshake’ 

structure, the histones dimerize giving rise to H2A-H2B and H3-H4 heterodimers, while the 
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later ones further dimerize to form a H3-H4 tetramer. To form the histone octamer, a H3-H4 

tetramer associates with two H2A-H2B dimers on opposite sides of the tetramer. The 

globular domains of the histones within the octamer form a disc-like structure, where 147 bp 

of DNA are wrapped around to form the canonical nucleosome core particle. Basic histone 

residues contact the DNA giving rise to 14 weak protein-DNA interactions, however, summed 

up these interactions stably position the nucleosome. The histone tails emerge between the 

DNA to form an accessible hub for PTMs. In vivo, various histone chaperones are implicated 

in nucleosome formation. 

 

Figure 1. Structure of the canonical core nucleosome.  

Representations of the X-ray crystal structure of the core nucleosome at 1.9 Å resolution (Davey et al., 

2002). Cartoon of the nucleosome structure with H2A in purple, H2B in cyan, H3 in green, H4 in 

orange and DNA in wheat. Figure is reproduced from (Speranzini et al., 2016) with permission from 

John Wiley and Sons. 

As in vivo DNA fragments have the size of chromosomes with tens to thousands of million 

base pairs, numerous nucleosomes are positioned on them forming the basis of chromatin 

[reviewed in e.g. (Bian and Belmont, 2012; Li and Reinberg, 2011; Luger et al., 2012; 
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Robinson and Rhodes, 2006; Tremethick, 2007; Woodcock et al., 2006)]. Therefore, 

neighboring nucleosome core particles are separated by short DNA stretches, the so-called 

‘linker DNA’, to form nucleosome arrays, which have a diameter of 10 nm. The precise 

average linker length (mostly 20 – 40 bp) varies between organisms, but also between 

individual cell types and genomic locations. Binding of the linker histone H1 (or avian histone 

H5) at the nucleosome dyad and contacting both linker-DNAs lead to further compaction 

(Bednar et al., 2017). Histone H1 has an unstructured N-terminal region, a globular internal 

domain with a winged helix DNA-binding fold for binding the nucleosome dyad and a basic 

C-terminal domain. Further compaction of the primary nucleosomal array can be achieved by 

folding into a secondary structure, the 30 nm fiber. The extent to which the 30 nm fiber forms 

in vivo is still under debate. Further compaction is proposed to be alternatively achieved 

through interdigitated 10 nm fibers (Maeshima et al., 2016) [reviewed in e.g. (Ohno et al., 

2018)]. However, based on various in vitro data two major models for the 30 nm fiber have 

been proposed (Figure 2). In the first model, the ‘one-start’ solenoid model, consecutive 

nucleosome form a super-helical path with 6 – 8 nucleosomes per turn involving bending of 

the linker DNA (Robinson et al., 2006). In the second model, the ‘two-start’ zigzag model, two 

nucleosomal rows fold into a two-start helix with straight linker DNA whereby very second 

next nucleosome interact with each other (Schalch et al., 2005). Recently, the special 

nucleosome positioning and orientation in chromosomes in vivo was studied by high-

throughput chromosome conformation capture (Hi-C) resolving individual nucleosomes 

combined with simulated annealing-molecular dynamics in yeast (Ohno et al., 2019). The 

study showed that nucleosomes can fold into two secondary structures, either an 

-tetrahedron or a -rhombus fold, and the 3D nucleosome fold can be further altered 

through epigenetic marks at individual genomic loci. Generally, the secondary chromatin 

structure can be further compacted by folding into a tertiary structure. The highest 

compaction degree is achieved in metaphase chromosomes requiring condensin dependent 

loop formation (Gibcus et al., 2018). In vivo, higher-order chromatin structures are modulated 

and stabilized through binding of additional proteins to the chromatin fiber, including 

methyl-CpG-binding protein 2, heterochromatin protein 1 (HP1), high mobility group (HMG) 

proteins, Polycomb-group proteins. In the cell nucleus two general types of chromatin can be 

distinguished: euchromatin, which is more open and transcriptionally active, and 

heterochromatin, which is more compacted and transcriptionally inactive [reviewed in e.g. 

(Becker et al., 2016; Elgin and Reuter, 2013)]. 
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Figure 2. Models for 30 nm chromatin fibre.  

Schematic representation of the two major structural models for chromatin secondary structure: left 

side, ‘one-start’ solenoid model, consecutive helical gyres are marked in blue and magenta/orange 

and right side, ‘two-start’ zigzag model, consecutive nucleosome pairs are marked in blue and orange. 

Figure is reproduced from (Luger et al., 2012) with permission of Elsevier. 

Regulation apart from chromatin compaction is also achieved through positioning of 

individual nucleosomes along the DNA [reviewed in e.g. (Becker and Workman, 2013; 

Clapier and Cairns, 2009; Clapier et al., 2017; Luger et al., 2012; Radman-Livaja and Rando, 

2010)]. Besides the intrinsic DNA sequence also adenosine triphosphate (ATP)-dependent 

nucleosome remodelers actively alter the nucleosome position and DNA-binding factors 

create local boundaries contributing to the precise positioning of nucleosomes. 

ATP-dependent nucleosome remodelers perform diverse functions to alter the chromatin 

structure such as nucleosome sliding, histone variant exchange and nucleosome eviction. 
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ATP-dependent nucleosome remodelers can be divided into four subfamilies differing in 

protein composition of the remodeling complexes. However, all remodeling complexes 

possess an ATPase ‘motor’ subunit that translocate DNA within the nucleosome. 

 

1.1.2 Histone variants and modifications 

The chromatin structure can be further modified through the exchange of canonical histones 

within the nucleosome with replacement histone variants [reviewed in e.g. (Gurard-Levin et 

al., 2014; Happel and Doenecke, 2009; Henikoff and Smith, 2015; Izzo and Schneider, 2016; 

Maze et al., 2014; Venkatesh and Workman, 2015)]. The genes of the canonical histones are 

present in multiple copies and clustered in the genome. They are only expressed during 

S-phase of the cell cycle and incorporated into chromatin in a replication-dependent manner. 

Their messenger ribonucleic acid (mRNA) lack introns and a polyA tail, instead they have a 

3’ stem loop structure crucial for regulating mRNA stability and translation. In contrast, 

histone variant genes are expressed throughout the whole cell cycle and incorporated in a 

replication independent manner involving specialized nucleosome remodelers and histone 

chaperones. Their mRNA can contain introns and they possess a 3’ polyA tail. Except for 

histone H4, all canonical histones have replacement variants, which can differ at the protein 

level from the canonical histone by only few amino acids but my also contain additional 

non-histone domains. These differences in protein sequence can lead to changes in 

nucleosome stability, chromatin structure, PTM pattern and interaction with specific 

interaction partners. 

The chromatin landscape can be altered at the level of histones not only by the exchange of 

histone variants but also by placing PTMs on histones ( 

Figure 3) [reviewed in e.g. (Andrews et al., 2016; Bannister and Kouzarides, 2011; Gelato 

and Fischle, 2008; Jenuwein and Allis, 2001; Kouzarides, 2007; Musselman et al., 2012; 

Rothbart and Strahl, 2014; Taverna et al., 2007)]. PTMs are often small chemical groups 

added to amino acid residues, e.g. covalent linkage of methyl-groups to lysine and arginine 

residues, acetyl-groups to lysine residues and phosphate-groups to serine and threonine 

residues. Probably methylation is the most wide—spread histone PTM, whereby lysine 

residues can be mono-, di- and trimethylated, while the arginine residues can be mono- and 

dimethylated. Larger groups like ubiquitin and Small Ubiquitin-related Modifier (SUMO) can 

also be post-transcriptionally added to lysine residues. In recent years, many novel histone 

modifications were identified, e.g. adenosine diphosphate (ADP) ribosylation, crotonylation or 

addition of -N-acetylglucosamine. 
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Figure 3. Identified post-transcriptional modifications in histones.  

Modifications are grouped according to the modified amino acid, using the abbreviations: ar - ADP 

ribosylation; cit - citrullination; fo - formylation; glu - glutarylation; ma - malonylation; oh - hydroxylation; 

og - O-GlcNAcylation; su - succinylation; ub - ubiquitination. Figure is reproduced from (Andrews et al., 

2016) with permission from Springer Nature. 

Histone PTMs are often placed at specific amino acid residues in the histone tails, still some 

residues in the globular domain or at the C-terminus can be modified (Figure 4). PTMs are 

placed by site-specific histone modifying enzymes, the ‘writers’, and the presence of specific 

PTMs is a dynamic process as most can also be specifically removed by other histone 

modifying enzymes, the ‘erasers’. Histone modifications can shape the chromatin landscape 

in different ways. The addition of PTMs can cause direct biophysical changes to the 

chromatin fiber, as charges can be added to or removed from the histones. While 

methylation of lysine residues does not alter the positive net charge, acetylation neutralizes 

the charge, which weakens the interaction of the histone tail with the negatively charged 
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DNA and causes a more open chromatin state. Additionally, many chromatin binding 

proteins, the ‘readers’, can specifically recognize individual PTMs as they have modification-

specific binding domains. In many cases, specific PTMs accumulate in distinct genome 

region where they are associated with specific chromatin processes, e.g. constitutive 

heterochromatin is marked by trimethylation of histone H3 at lysine 9 (H3K9me3) and active 

promoters with trimethylation of histone H3 at lysine 4 (H3K4me3). Therefore, the chromatin 

landscape can be separated into discrete chromatin states due to the prevalent histone 

marks and associated chromatin factors (Ernst and Kellis, 2010, 2012; Filion et al., 2010; 

Kharchenko et al., 2011). 

 

Figure 4. Post-transcriptional modifications of histone tails.  

Modifications of specific histone tail residues. Positions are indicated by numbers. Colored ovals 

represent globular histone domains. Figure is reproduced from (Bhaumik et al., 2007) with permission 

from Springer Nature. 
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1.2 Chromatin binding factors 

Chromatin binding proteins often recruit and regulate other chromatin modifying, chromatin 

remodeling, or transcription regulating complexes to target genome loci. Chromatin binders 

can either directly bind to DNA in a chromatin environment or interact with histone PTMs. 

Until now, many distinct protein domain families were discovered to recognize and bind 

specifically to certain histone PTMs [reviewed in e.g. (Musselman et al., 2012; Patel and 

Wang, 2013; Taverna et al., 2007; Weaver et al., 2018; Yun et al., 2011)]. Probably the most 

extensively studied group are the binders of methylated lysine residues, they include ATRX-

DNMT3-DNMT3L (ADD) domain, ankyrin domain, bromo-adjacent homology domain, 

chromo-barrel domain, chromodomain, double chromodomain, malignant brain tumor (MBT) 

domain, plant homeodomain (PHD), PWWP (Pro-Trp-Trp-Pro) domain, tandem Tudor 

domain, Tudor domain, WD40 domain and zinc finger CW domain. The methyl-lysine binding 

domains contain an aromatic cage formed by two to four aromatic residues, which 

specifically recognize the methyl mark. The Tudor domain and WD40 domain are also 

capable in binding to methylated arginine residues. Substantially fewer protein domains are 

known to recognize acetylated lysine residues. So far the bromodomain, double PHD finger 

domain and double pleckstrin homology domain were described to bind acetyl-lysine. 

Similarly, only a few binding domains were identified to specifically interact with 

phosphorylated serine and threonine residues of histones, including tandem BRCT domain, 

BIR domain and the 14-3-3 protein family. 

Some of the histone reader domains, including bromodomains, PHD fingers, PWWP 

domains, chromodomains and Tudor domains, are also described to have additional nucleic 

acid binding activity [reviewed in (Weaver et al., 2018)]. Binding of reader domains to DNA 

and/or RNA is largely sequence-independent. Accordingly, nucleic acid binding may be 

independent of histone binding, or binding to DNA/RNA increases histone binding and the 

other way around. The additional nucleic acid binding of reader domains can result in 

increased affinity for chromatin and retention at target sites. Furthermore, multivalent histone 

and nucleic acid binding can increase the affinity for nucleosomes or enable proper 

positioning on the nucleosome to increase specificity for certain histone residues. Another 

mechanism could be that binding of the reader domain to DNA releases DNA-interacting 

histone tails, to make the histone tail accessible for reader/writer domains. 

Besides histone reader domains, numerous domains with sequence specific DNA binding 

activity are described (Fulton et al., 2009; Vaquerizas et al., 2009) [reviewed in e.g. (Lambert 

et al., 2018; Luscombe et al., 2000)]. Proteins with specific DNA binding activity are often 

transcription factors (TF) as they participate in transcription regulation. The major DNA 

binding domain families include C2H2 zinc finger (ZnF), Homeodomain, basic helix-loop-helix 
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domain, basic leucine zipper domain, and nuclear hormone receptor domain. DNA binding 

domains have two DNA recognition modes to readout the DNA sequence. One form of DNA 

interaction is referred to as ‘direct readout’, whereby amino acid side chains of the DNA 

binding domain directly contact the base pairs via direct or water mediated hydrogen bonds 

and hydrophobic interactions. The other form is known as ‘indirect readout’, whereby the 

binding domain senses the DNA shape, which in turn is a sequence-specific structural 

feature of the DNA. Sequence-specific DNA binding factors usually recognize a set of 

hundreds to thousands similar DNA sequence over a range of affinities within the genome 

[reviewed in e.g. (Inukai et al., 2017; Pan et al., 2010; Rohs et al., 2010; Siggers and 

Gordan, 2014; Slattery et al., 2014)]. The consensus binding site motif of bound DNA 

sequences is commonly modelled by position weight matrix (PWM). However, only a subset 

of DNA sequences which resemble to the binding site motif are bound by the DNA binding 

factor in vivo. Besides the DNA sequence, additional features contribute to binding site 

selection in vivo, including DNA shape, flanking DNA, variable spacing of bipartite binding 

motifs, DNA methylation/modification, multimeric binding, cofactor interaction, 

interaction/cooperation with other DNA binding factors, DNA accessibility, nucleosome 

occupancy and competition with nucleosomes. 

 

1.2.1 Cooperative DNA binding 

DNA binding factors are non-uniformly distributed throughout the genome, they rather form 

clusters or hotspots at distinct loci. Since binding motifs are only slightly enriched within the 

binding clusters, cooperativity between DNA binding factors through various mechanisms 

seems to contribute to the enrichment of factors at binding clusters [reviewed in e.g. 

(Morgunova and Taipale, 2017; Siggers and Gordan, 2014)]. Cooperation can be achieved 

through direct protein-protein interaction of two DNA binding factors in the absence of DNA. 

There, the protein complex poses a higher affinity for DNA as the individual factors. Similarly, 

if the interaction of two factors is too weak to form a stable soluble complex, DNA binding 

can favor this interaction by bringing both factors in close proximity or introducing 

conformational changes required for stable interaction, resulting in increased DNA binding 

affinity. Furthermore, solely DNA-mediated cooperativity between two factors that lack direct 

protein-protein interaction can still strengthen their DNA binding. Changes in DNA shape or 

dynamics induced by binding of one factor can result in increased affinity for DNA of another 

factor. Additionally, an indirect cooperativity mechanism is described that functions through 

competition for DNA binding between binding factors and nucleosomes allowing binding of 

several factors next to each other at the created nucleosome free region (NFR). 
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1.2.2 DNA binding through CXC domains 

The Tesmin/TSO1-like CXC domain is a rather rare protein domain, which can be found in 

the Animalia and Plantae kingdom and is absent in the Fungi kingdom (Marin, 2003). The 

Tesmin/TSO1-like CXC domains are particularly conserved within the C-terminal part with 

the consensus formula [C-(X)4-C-(X)-C-(X)6-C-X4-5-C-(X)2-C], while the N-terminal part is 

more variable. Three subtypes of Tesmin/TSO1-like CXC domains can be distinguished 

(Marin, 2003; Mitchell et al., 2019): (a) “CRC domain” found in the human Tesmin protein 

and in the Arabidopsis thaliana TSO1 protein; Many proteins with “CRC domains” have two 

domains in tandem separated by a RNPXAFXPK linker (Andersen et al., 2007; Song et al., 

2000; Sutou et al., 2003); To this class also the LIN-54 homolog family members belong, in 

Drosophila melanogaster this is mip120 (Beall et al., 2002; Marin, 2003; Schmit et al., 2007); 

(b) “CXC domain” found in the homologs of the polycomb group protein Enhancer of zeste 

[E(z)] (Abel et al., 1996; Chen et al., 1996; Goodrich et al., 1997; Jones and Gelbart, 1993); 

(c) “E3 ubiquitin-protein ligase Msl2, CXC domain” found in the homologs of the D. 

melanogaster male-specific-lethal (MSL) 2 protein (Figure 5) (Bashaw and Baker, 1995; 

Smith et al., 2005; Zhou et al., 1995); However, the “E3 ubiquitin-protein ligase Msl2, CXC 

domain” is specific to animals (Marin, 2003). The CXC domain seems to be a conserved 

DNA binding domain as some protein members are shown to bind DNA, including 

D. melanogaster MSL2 (Fauth et al., 2010; Zheng et al., 2014), human LIN54 (Marceau et 

al., 2016; Schmit et al., 2009) and soybean Cysteine-rich polycomb-like protein 1 belonging 

to the “CRC domain” family too (Cvitanich et al., 2000). Additionally, the DNA binding mode 

of D. melanogaster MSL2 and human LIN54 were studied using X-ray crystallography and 

nuclear magnetic resonance (NMR) (Figure 5) (Marceau et al., 2016; Zheng et al., 2014; 

Zheng et al., 2012). D. melanogaster MSL2 harbors a single CXC fold, which is formed by 

three zinc ions coordinated by nine cysteine residues. The Zn3Cys9 cluster is wrapped by 

flexible loops and a short -helix in a two turn right-handed helix. When bound to DNA, two 

CXC domains bind next to each other on opposite strands making protein-protein contacts. 

Each CXC domain contacts the DNA phosphate backbone by hydrogen bonding and inserts 

two arginine residues, one into the minor and one into major groove, forming base-specific 

hydrogen bonds. The human LIN54 harbors two tandem “CRC domains” with independent 

CXC folds, which are connected by a flexible linker. To form the CXC fold, nine cysteine 

residues coordinate three zinc ions, which are connected by flexible loops and short -helix 

making 1.5 right-handed helical turns. In addition, each fold contains a C-terminal -helix, 

which is absent in the MSL2 CXC fold. The tandem “CRC domains” bind to adjacent, 

opposite sites at the minor grove to the target DNA and the domains make no protein-protein 

contacts. Each domain makes extensive hydrogen bonding to the DNA phosphate backbone 
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and base-specific contacts by inserting two tyrosine residues into the minor groove. The 

tyrosine residues form hydrogen bonds to two adjacent bases from opposite strands. 

 

Figure 5. CXC domain binding to DNA.  

Representation of NMR assembly of MSL2 CXC domain bound to DNA. Cartoon representations of 

four CXC domains of MSL2 binding to DNA. Figure is reproduced from (Zheng et al., 2014) with 

permission of Cold Spring Harbor Laboratory Press. 

 

1.2.3 DNA binding through C2H2 zinc finger domains 

Zinc finger domains are found throughout all kingdoms of life and are one of the most 

abundant protein domains in eukaryotes [reviewed in e.g. (Brayer and Segal, 2008; Brown, 

2005; Iuchi, 2001; Razin et al., 2012; Wolfe et al., 2000)]. Various types of ZnF domains 

exist, which have in common that they use cysteine and/or histidine residues to complex a 

single zinc ion for stabilizing their fold. The founding member of the ZnF superfamily is the 

“classical” C2H2 ZnF domain. The C2H2 ZnF domain consists of ~30 amino acid residues 

with the consensus sequence (F/Y)-X-C-X2-5-C-X3-(F/Y)-X5--X2-H-X3-5-H,  representing 

hydrophobic residues. The first structure of C2H2 ZnF domain was solved in 1989, showing 

that the single zinc ion is tetrahedrally coordinated by two cysteine and two histidine residues 

(Lee et al., 1989; Wolfe et al., 2000). Further, the C2H2 ZnF domain folds into two N-

terminal, antiparallel -sheets with the connecting loop harboring the two cysteine residues 

and one C-terminal -helix with the two histidine residues at the C-terminal part of the -helix 

(Figure 6). C2H2 ZnF domains are involved in DNA binding, RNA binding and protein-protein 
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interaction. Many proteins contain patches of multiple C2H2 ZnF domains, some proteins 

even > 30. Based on the number and distribution of C2H2 ZnF domains within a protein, 

C2H2 ZnF containing proteins can be categorized into three groups (Iuchi, 2001; Razin et al., 

2012): (a) “triple-C2H2 ZnF proteins”, this group includes the Krüppel-like family and SP1-like 

family of TFs; (b) “multiple-adjacent-C2H2 ZnF proteins” is the largest group and the proteins 

contain clusters of > 4 closely spaced C2H2 ZnF domains; one well-studied member of this 

group is the CTCF protein containing a cluster of 11 C2H2 ZnF domains (c) “separated-

paired-C2H2 ZnF proteins”, this group comprises the lowest number of TFs, including 

tramtrack, PRDII-BF1 and basonuclin; This group of ZnF proteins contain one or more pairs 

of C2H2 ZnF domains, where individual pairs are separated by many intervening amino acid 

residues. Alternatively, C2H2 ZnF proteins are classified according to additional domains 

present in the protein, such as the KRAB domain, SCAN domain and BTB/POZ domain. 

 

Figure 6. C2H2 zinc finger domain binding to DNA.  

Representation of NMR assembly of TZD ZnF domain bound to DNA. Left side, cartoon 

representation of three C2H2 ZnF domains of TZD binding to DNA, with side chains at position -1, 2, 3 

and 6 as sticks and balls. Right side, schematic representation of direct DNA base contact of ZnF 

domains. Figure is reproduced from (Chou et al., 2017) with permission of PLOS. 

C2H2 ZnF domains are mostly described in DNA binding, as many TFs contain multiple 

C2H2 ZnF domains. Binding of C2H2 ZnF domains to DNA is studied extensively using 

structural approaches (Elrod-Erickson et al., 1996; Pavletich and Pabo, 1991; Wolfe et al., 

2001; Wolfe et al., 2000; Wuttke et al., 1997). For DNA binding, the C2H2 ZnF domain 

makes numerous contacts to the phosphate back bone and direct base contacts by inserting 

the -helix into the major groove. For direct base contact, the amino acid residues at position 
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-1, 3, and 6 form hydrogen bonds with one DNA strand and the residue at position 2 contacts 

the complementary strand (Figure 6). C2H2 ZnF domains occur often in clusters and 

neighboring C2H2 ZnF domains wrap around DNA when bound. Each C2H2 ZnF domain 

contacts four consecutive bases and adjacent C2H2 ZnF domains are shifted by three base 

pairs, resulting in the overlap by one base pair. Neighboring C2H2 ZnF domains are most 

commonly connected by a five amino acid-linker with the consensus sequence TGEKP. The 

linker contributes to correct spacing of adjacent C2H2 ZnF domains and responsible for 

capping the C-terminus of the preceding -helix in a DNA binding-dependent manner (Laity 

et al., 2000). Capping of the -helix C-terminus provides rigidity and locks the -helix into the 

correct place when bound to DNA, contributing to high affinity binding. While scanning the 

DNA strand for appropriate binding sites, the linker does not fold onto the -helix C-terminus 

providing flexibility between adjacent domains. However, structural studies of GLI and TFIIA 

as well as biochemical and genomic studies of CTCF showed that proteins with multiple 

adjacent C2H2 ZnF domains can just use a subset of their C2H2 ZnF domains to bind DNA, 

allowing certain flexibility and deviation in DNA binding site recognition (Filippova et al., 

1996; Filippova et al., 2002; Nakahashi et al., 2013; Nolte et al., 1998; Pavletich and Pabo, 

1993; Renda et al., 2007). 

 

1.2.4 Nucleosome binding through PWWP domains 

The PWWP domain belongs to the Royal superfamily, which also includes the Tudor domain, 

chromodomain, and MBT domain [reviewed in e.g. (Qin and Min, 2014; Rona et al., 2016; 

Weaver et al., 2018)]. Members of the Royal superfamily can bind specifically to methylated 

lysine and/or arginine residues in histone tails. They share a conserved aromatic cage 

structure, which is responsible for methyl-lysine/arginine binding, present in a -barrel fold 

formed by three to five -sheets. The PWWP domain is named after the characteristic Pro-

Trp-Trp-Pro sequence motif present in the N-terminal part of the domain. However, 

especially the first and second position of the motif is variable. The PWWP domain was first 

described in WHSC1 and is conserved within all eukaryotes (Stec et al., 1998). Over the last 

years, much structural information on PWWP domains and their binding to nucleosomes was 

obtained (Figure 7) (Eidahl et al., 2013; Laguri et al., 2008; Qiu et al., 2002; Sue et al., 2004; 

van Nuland et al., 2013; Vezzoli et al., 2010; Wen et al., 2014; Wu et al., 2011a). 
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Figure 7. Protein structure of PSIP1 PWWP domain.  

Representation of NMR assembly of PSIP1 PWWP domain. Cartoon representation of PSIP1 PWWP 

domain with aromatic side chains in green balls and sticks and basic side chains in purple. Figure is 

reproduced from (van Nuland et al., 2013) with permission of BioMed Central. 

The PWWP domain is formed by a -barrel fold of five antiparallel -sheets and a helix 

bundle of one to six -helices. Within the -barrel, a loop region of variable length and 

secondary structure between 2 and 3 and often a 310 helix between 4 and 5 are 

inserted. Furthermore, three aromatic residues located in the loop between 1 and 2, in the 

PWWP motif and in the 3-strand form an aromatic cage accommodating the methyl-lysine 

side chain. Most PWWP domains are suggested to bind trimethylated histone H3 at lysine 36 

(H3K36me3), also binding to trimethylated histone H3 at lysine 79 (H3K79me3) and 

mono/trimethylated histone H4 at lysine 20 (H4K20me1/3) were described (Dhayalan et al., 

2010; Eidahl et al., 2013; Li et al., 2013a; van Nuland et al., 2013; Vermeulen et al., 2010; 

Wen et al., 2014; Wu et al., 2011a). A second interaction surface is formed by solvent 

exposed basic residues mostly located at 1-2 loop, PWWP motif and 2-strand next to the 

aromatic cage. This positively charged interaction surface mediates sequence-unspecific 

DNA binding through interactions with the phosphate backbone (Figure 8). As shown for 

PWWP domain binding to H3K36me3 nucleosome, the positively charged DNA binding 

surface and methyl-lysine binding aromatic cage synergize for binding with high affinity 

(Eidahl et al., 2013; van Nuland et al., 2013). The PWWP domains contacts the phosphate 

backbone of both DNA gyres next to the H3 tail exit site through its basic surface and the 

aromatic cage engages with the K36me3 residue. 
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Figure 8. PWWP domain binding to H3K36me3 nucleosome.  

Structural model of PSIP1 PWWP domain bound to H3K36me3 nucleosome. Left side and middle, 

cartoon representation of lowest energy structure of PSIP1 PWWP domain docked to H3K36me3 

nucleosome. Right side, detailed view on PSIP1 PWWP domain bound to H3K36me3 nucleosome 

with residues 31 to 38 of the H3 N-terminal tail as balls and sticks in green, DNA a cartoon 

representation and electrostatic potential of molecular surface of PWWP domain. Figure is reproduced 

from (van Nuland et al., 2013) with permission of BioMed Central. 

 

 

1.3 Sex chromosome dosage compensation 

Most metazoans propagate by various means of sexual reproduction. Here, sex 

determination is genetically encoded by sex chromosomes, which often belong to the XY 

system. In the XY system, females have two X chromosomes in addition to a diploid set of 

autosomes, while males have a single X chromosome and an often degenerated, gene-poor 

Y chromosome [reviewed in e.g. (Chandler, 2017; Disteche, 2012, 2016; Gu and Walters, 

2017; Lucchesi, 2018)]. The concept of sex chromosome evolution was already introduced 

one hundred years ago by Hermann J. Muller, who proposed that reduced recombination 

between the X and Y chromosome leads to degeneration of the Y chromosome and later he 

also presented the concept of dosage compensation (Muller, 1914). In 1967, Susumu Ohno 

extended that idea and proposed that the gene-rich X and degenerated Y chromosome 

evolved from a normal pair of autosomes that acquired a sex-determining locus (Ohno, 

1967). The different number of X chromosomes creates an imbalance of X-linked genes 

between males and females and between the single male X chromosome and the diploid 

autosomes. This imbalance is adjusted by a process called dosage compensation, first 

proposed by Hermann J. Muller (Muller, 1932, 1950). During evolution, various mechanisms 

for sex chromosome dosage compensation evolved individually, the best studied systems 

are eutherian mammals (humans/mice), Caenorhabditis elegans and Drosophila 

melanogaster (Figure 9). 



1 Introduction 

35  

 

Figure 9. Dosage compensation of sex chromosomes.  

Schematic representation of sex chromosome dosage compensation in Mus musculus, Drosophila 

melanogaster and Caenorhabditis elegans. Figure is reproduced from (Ferrari et al., 2014) with 

permission of Springer Nature. 

In mammalian dosage compensation, one of the female X chromosomes is inactivated by the 

formation of the heterochromatic Barr body [reviewed in e.g. (Bonora and Disteche, 2017; 

Brockdorff, 2017; Brockdorff and Turner, 2015; Migeon, 2017; Pinheiro and Heard, 2017; 

Sahakyan et al., 2017)]. Inactivation of the X chromosome is triggered through the 

expression of the long non-coding RNA (lncRNA) Xist, which coats the whole chromosome. 

Xist expression leads to the recruitment of polycomb complexes which repress gene 

expression by placing heterochromatic histone marks including trimethylated histone H3 at 

lysine 27 (H3K27me3) and ubiquitylation of histone H2A at lysine 119 (H2AK119ub). 

Furthermore, X chromosome silencing includes incorporation of the histone variant 

macroH2A. Stochastic inactivation of one of the two female X chromosomes leaves females 

with only one active X chromosome like males. This creates an imbalance between X-linked 

genes and autosomal genes in both sexes. Therefore, the gene expression from the single 

active X chromosome is up-regulated in both sexes through a mechanism that involves 

acetylation of histone H4 at lysine 16 (H4K16ac) by males absent on the first (MOF) at 

promoters and enrichment of paused RNA polymerase II and increased RNA stability (Deng 

et al., 2013). 

In C. elegans, males have a single X chromosome and lack a Y chromosome, while 

hermaphrodites have two X chromosomes. In hermaphrodites, the two X chromosomes are 

silenced to 50% during dosage compensation. Dosage compensation in worms is facilitated 

by the dosage compensation complex (DCC), which is a specialized condensin complex 
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[reviewed in e.g. (Albritton and Ercan, 2018; Strome et al., 2014)]. Binding of the DCC to the 

two X chromosomes in hermaphrodites leads to reduced expression of X-linked genes 

through chromosome compaction, reduced H4K16ac level and increased monomethylation 

of histone H4 at lysine 20, which represses RNA polymerase II binding to promoters. As in 

mammals, this silencing by half of both X chromosomes results in an imbalance between 

X-linked and autosomal genes, which is also present in males. Therefore, the expression of 

X-linked genes is up-regulated in both sexes. 

 

1.3.1 Dosage compensation in Drosophila melanogaster 

D. melanogaster dosage compensation differs from mammals and C. elegans as it lacks 

inactivation of the female X chromosomes and only the single male X chromosome is 

upregulated to match the two active female X chromosomes to prevent male lethality 

(Mukherjee and Beermann, 1965) [reviewed in e.g. (Birchler, 2016; Conrad and Akhtar, 

2012; Ferrari et al., 2014; Keller and Akhtar, 2015; Kuroda et al., 2016; Lucchesi and Kuroda, 

2015; Maenner et al., 2012; McElroy et al., 2014; Samata and Akhtar, 2018; Straub and 

Becker, 2007, 2011)]. That male-specific upregulation of X-linked gene expression in the 

two-fold range is facilitated by the so-called dosage compensation complex (DCC). The DCC 

is a ribonucleoprotein complex consisting of five male-specific-lethal (MSL) protein subunits 

and a long, non-coding (lnc) RNA component (Figure 10). The first DCC members, including 

MSL1, MSL2, MSL3 and maleless (MLE), were discovered by genetic screens or isolated in 

nature around the early 1980s (Belote and Lucchesi, 1980a, b; Fukunaga et al., 1975; 

Uchida et al., 1981). Later in the early 1990s, bulk acetylation of H4K16 was described to be 

restricted to the male X chromosome and depending on the presence of MSL proteins (Bone 

et al., 1994; Turner et al., 1992). The remaining DCC components were only discovered in 

the late 1990th, including the fifth MSL protein males absent on the first (MOF), the histone 

acetyltransferase specific for H4K16ac, and the two lncRNA subunits, RNA-on-the-X (roX) 1 

and 2 (Amrein and Axel, 1997; Franke and Baker, 1999; Hilfiker et al., 1997; Meller et al., 

1997). As indicated by their naming, both RNAs roX1 and roX2 are encoded on the X 

chromosome and co-localize with the MSL proteins on the male X chromosome (Kelley et al., 

1999; Meller et al., 2000). Co-immunoprecipitation (IP) experiments indicated that the MSL 

proteins form a stable complex together with the roX RNAs (Alekseyenko et al., 2014; Copps 

et al., 1998; Kelley et al., 1995; Meller et al., 2000; Smith et al., 2000; Wang et al., 2013). 

Furthermore, the DCC assembles exclusively in males, as translation of MSL2 protein is 

restricted to males (Gebauer et al., 1999; Gebauer et al., 2003; Grskovic et al., 2003; Hennig 

et al., 2014; Kelley et al., 1995; Kelley et al., 1997; McDowell et al., 1996; Szostak et al., 

2018). The Sex lethal (SXL) protein, which regulates sex determination through sex-specific 
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splicing, is only functional in females due to female-specific expression and splicing during 

early embryogenesis. SXL prevents translation of msl2 mRNA by a splicing-independent 

mechanism through inhibiting ribosome assembly on msl2 mRNA. In males, a non-functional 

splicing isoform of SXL is expressed allowing msl2 mRNA translation and accumulation of 

MSL2 protein leading to DCC formation and finally dosage compensation. The mechanism of 

dosage compensation in the model organism D. melanogaster is widely conserved 

throughout various Drosophilid species (Alekseyenko et al., 2013; Quinn et al., 2016; Sural et 

al., 2008). 

 

Figure 10. Dosage compensation complex.  

Schematic representation of the DCC in D. melanogaster. Figure is adapted from (Straub and Becker, 

2007) with permission of Springer Nature. 

 

1.3.2 The Dosage Compensation Complex 

The DCC forms most likely a dimeric complex through homodimerization of MSL1 via its 

N-terminal coiled-coil domain (Figure 11) (Hallacli et al., 2012). MSL1 seems to be a rather 

unstructured protein and in addition to the N-terminal coiled-coil domain it has only a 

C-terminal PEHE domain. MSL1 serves as a scaffold for the other DCC members, as it 

interacts via its coiled-coil domain with the really interesting new gene (RING) finger domain 

of MSL2, via the N-terminal half of the PEHE domain with the histone acetyltransferase 

(HAT) domain of MOF and via the C-terminal half of the PEHE domain with the MRG domain 

of MSL3 (Hallacli et al., 2012; Kadlec et al., 2011; Li et al., 2005; Morales et al., 2005; 

Morales et al., 2004; Scott et al., 2000; Wu et al., 2011b). MSL2 is the male-specific subunit 

of the complex and it harbors two domains, the N-terminal RING finger domain and a 

C-terminal CXC domain followed by a proline-rich region including a patch of basic residues. 

MSL2’s RING finger domain possesses an E3 ubiquitin ligase activity besides being required 

for interaction with MSL1 (Kruse and Gu, 2009; Schunter et al., 2017; Villa et al., 2012; Wu et 

al., 2011b). MSL2 can ubiquitylate itself and other members of the DCC, including MSL1, 

MSL3 and MOF. It is thought that MSL2 contributes to DCC homeostasis by ubiquitylating 

surplus DCC and marking it for proteasome-dependent degradation as DCC levels need to 
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be tightly regulated (Demakova et al., 2003; Johansson et al., 2011; Kelley et al., 1995; 

Kelley et al., 1997; Villa et al., 2012). MSL2’s CXC domain is a DNA binding domain required 

for DCC targeting to the X chromosome (Fauth et al., 2010; Villa et al., 2016; Zheng et al., 

2014). MSL3 belongs to the MGR15/MSL3 protein family and has, besides the C-terminal 

MRG domain required for interaction with MSL1, an N-terminal chromodomain (Buscaino et 

al., 2006; Morales et al., 2005). The chromodomain of MSL3 specifically recognizes the 

active chromatin mark H3K36me3 and facilitates DCC binding to its target genes (Bell et al., 

2008; Larschan et al., 2007; Sural et al., 2008). MSL3’s chromodomain is also described to 

bind DNA and RNA as well as methylated H4K20 (Akhtar et al., 2000; Kim et al., 2010; 

Moore et al., 2010). Furthermore, MSL3 recruits MOF via the interaction with MSL1 to 

nucleosomes and triggers acetylation of H4 (Conrad et al., 2012; Morales et al., 2005; 

Morales et al., 2004). MOF belongs to MYST-family of HATs and specifically catalyzes 

H4K16ac (Akhtar and Becker, 2000; Feller et al., 2015; Smith et al., 2000). MOF contains a 

C-terminal HAT domain, which catalyzes H4K16ac and mediates the interaction with MSL1, 

and a C2HC ZnF domain just N-terminal to the HAT domain required for substrate binding 

(Akhtar and Becker, 2001). Additionally, MOF has a chromobarrel domain located in the 

central part of the protein, which binds nucleic acids and stimulates the HAT activity (Akhtar 

et al., 2000; Conrad et al., 2012; Nielsen et al., 2005). 

So far, all DCC subunits are assembled into a protein complex by protein-protein interactions 

with MSL1. The fifth subunit MLE seems to be more transiently connected to the DCC. MLE 

is an ATP-dependent RNA/DNA helicase of the DExH box subfamily and remodels the roX 

RNA for incorporation into the DCC (Ilik et al., 2013; Lee et al., 1997; Maenner et al., 2013; 

Meller et al., 2000; Militti et al., 2014; Morra et al., 2008; Prabu et al., 2015; Quinn et al., 

2014; Richter et al., 1996). MLE has a modular architecture with the central catalytic domain 

consisting of two RecA ATPase domains and a helicase-associated 2 (HA2) domain. On the 

N-terminal site, MLE harbors two double-stranded (ds) RNA binding domains, essential for 

roX binding, and an OB-fold and glycine-rich region at the C-terminus (Ankush Jagtap et al., 

2019; Izzo et al., 2008; Lv et al., 2019; Prabu et al., 2015). MLE especially binds and 

remodels both roX RNAs trough recognition of U-rich roX boxes located in prominent stem 

loop structures at the 3’ end (Ilik et al., 2017; Ilik et al., 2013; Maenner et al., 2013; Park et 

al., 2007; Quinn et al., 2014; Stuckenholz et al., 2003; Sural et al., 2008). Even though, both 

roX RNAs share common features, they are very different in sequence composition and size. 

RoX1 is much longer with ~3.7 kb and roX2 is only ~0.6 kb. However, they appear to be 

genetically redundant as the individual mutants are viable and only the double mutant is 

male-specific-lethal (Meller and Rattner, 2002). While the roX RNAs are required for DCC 

binding to target genes and their up-regulation, the localization of their genes on the X 

chromosome is dispensable for X chromosome recognition (Deng and Meller, 2006; 
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Figueiredo et al., 2014; Ilik et al., 2017; Kageyama et al., 2001; Kelley et al., 1999; Meller, 

2003; Meller et al., 2000; Meller and Rattner, 2002). Until now, it remains elusive, whether 

only one roX RNA is part of one DCC particle at any given time or both roX RNAs associate 

simultaneously. Also their precise function is unknown. 

 

Figure 11. Protein domain architecture of MSL protein.  

Schematic representation and summary table of the D. melanogaster and human MSL proteins. 

Figure is reproduced from (Keller and Akhtar, 2015) with permission of Elsevier. 

 

The DCC combines multiple enzymatic activities and interaction surfaces for X chromosome 

recognition. Binding of the DCC to the X chromosome was studied in more detail by genomic 

approaches using chromatin immunoprecipitation followed by microarray hybridisation 

(ChIP-chip) or high-throughput sequencing (ChIP-seq). The DNA-binding MSL2 is the key 

subunit for DCC targeting to the X chromosome and H3K36me3 binding MSL3 for targeting 

the active genes on the X chromosome for transcription up-regulation through acetylation of 

H4K16 by MOF (Alekseyenko et al., 2012; Alekseyenko et al., 2006; Alekseyenko et al., 

2008; Gelbart et al., 2009; Gilfillan et al., 2006; Kind et al., 2008; Larschan et al., 2007; 

Legube et al., 2006; Straub et al., 2008; Straub et al., 2013; Sural et al., 2008). 
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1.3.3 DCC targeting to the X chromosome 

The DCC must distinguish the X chromosome from autosomes for faithful dosage 

compensation. The DCC targets the X chromosome through binding to ~300 high affinity 

sites (HAS), also referred to as chromosomal entry sites. The terms ‘high affinity sites’ or 

‘chromosomal entry sites’ were defined already by genetic studies analysing MSL2 binding in 

absence of other subunits using immunofluorescence microscopy of polytene chromosome 

spreads (Dahlsveen et al., 2006; Demakova et al., 2003; Gilfillan et al., 2007; Gu et al., 1998; 

Kelley et al., 1999; Lyman et al., 1997). More recent studies using ChIP-seq showed that 

MSL2 is the central DNA binding subunit that recruits the DCC to HAS (Alekseyenko et al., 

2008; Straub et al., 2008; Straub et al., 2013; Villa et al., 2016). Already, the early genetic 

studies noted that HAS are GA-rich. Indeed, the HAS contain a ~21 bp low complexity, 

GAGA-rich consensus sequence motif termed MSL recognition element (MRE) (Figure 12) 

(Alekseyenko et al., 2008; Straub et al., 2008). 

 

 

Figure 12. MSL recognition element.  

Sequence motif of high affinity sites. Figure is adapted from (Villa et al., 2016) with permission of 

Springer Nature. 

 

However, the MRE motif is not sufficient for X chromosome discrimination as the genome 

contains several thousand MRE motifs, which are only slightly enriched on the X 

chromosome. Furthermore, only ~2% of the MRE motifs are bound by the DCC. DCC 

recruitment to its genomic binding sites is modulated by epigenetic factors, as HAS are 

preferentially within the 3’ end of active genes, in an active chromatin environment and 

depleted of nucleosomes (Alekseyenko et al., 2012; Alekseyenko et al., 2008; Ramirez et al., 

2015; Straub et al., 2008; Straub et al., 2013). Furthermore, HAS tend to cluster as a function 

of chromosome domain interactions in the active X-chromosomal compartment, which is 

DCC-independent and invariant between males and females, as revealed by using the 

genome-wide chromosome conformation capture (Hi-C) and loci-specific (4C) approaches 

(Ramirez et al., 2015). However, earlier, more anecdotal DNA fluorescence in situ 

hybridization experiments suggested that the DCC brings some HAS in close proximity 

(Grimaud and Becker, 2009). 
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Most recently, using an in vitro genome-wide DNA immunoprecipitation (DIP) assay, the 

direct genomic binding sites of MSL2 were determined (Villa et al., 2016). Remarkably, 

in vitro, MSL2 selected sites containing the MRE motif and enriched X chromosomal sites, 

including ~20% of the HAS. More interestingly, binding of MSL2 to a subset of these sites 

required the presence of the CXC domain. These CXC-dependent sites were termed 

Pioneering-sites-on-the-X (PionX). The PionX harbour a consensus motif with a 5’ extension 

to the MRE motif and a particular DNA shape with a high DNA roll between the first two base 

pairs. This PionX motif contributes to X chromosome discrimination as it is ~10-fold enriched 

on the X chromosome. However, the PionX signature, consisting of DNA motif and shape, is 

only present in a subset of HAS and therefore per se not sufficient to explain the binding of 

the DCC binding to all HAS. To address whether further proteins contribute to DCC targeting 

to HAS, Larschan and colleagues performed a gene-wide RNA interference (RNAi) screen 

couple to a reporter assay for DCC binding to HAS (Larschan et al., 2012). Besides general 

transcription regulators, they discovered some proteins with potential sequence-specific DNA 

binding activity contributing to DCC recruitment. One of the proteins with potential 

sequence-specific DNA binding activity is the gene product of CG1832. This protein was 

named Chromatin Linked Adaptor for MSL Proteins (CLAMP) as it is implicated in DCC 

recruitment to the X chromosome (Kaye et al., 2018; Larschan et al., 2012; Soruco et al., 

2013). CLAMP is a seven C2H2 ZnF protein, with one N-terminal ZnF and a cluster of six 

ZnF at the C-terminus. The C-terminal six ZnF domains mediate sequence-specific DNA 

binding to the MRE motif (Kaye et al., 2018; Kuzu et al., 2016; Soruco et al., 2013). 

Furthermore, CLAMP is an essential gene in both sexes and binds to thousands of MRE 

sequences genome-wide (Soruco et al., 2013; Urban et al., 2017b). However, CLAMP binds 

to HAS mostly in males and in a DCC-dependent manner. There, CLAMP is suggested to 

interact with the DCC (Lindehell et al., 2015; Wang et al., 2013). Besides being implicated in 

DCC targeting, CLAMP is suggested to have further functions outside dosage compensation 

(Kaye et al., 2017; Rieder et al., 2017; Urban et al., 2017a; Urban et al., 2017c). CLAMP 

promotes long-range chromatin accessibility at its binding sites and increases global 

X chromosome accessibility in males. Furthermore, CLAMP is implicated in histone locus 

regulation and associates with boundary elements. Besides CLAMP, the small interfering 

RNA (siRNA) pathway, in particular siRNAs from the 1.688 g/cm3 satellite repeats, may 

contribute to X chromosome recognition (Deshpande and Meller, 2018; Joshi and Meller, 

2017; Menon et al., 2014; Menon and Meller, 2015). 

Successful X chromosome discrimination and HAS targeting by the DCC is the first step in 

dosage compensation. In the second step, the DCC targets transcribed genes and boosts 

their transcription output. 
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1.3.4 Transcription up-regulation by the DCC 

To prevent male lethality, the DCC must adjust the imbalance of X-linked gene expression 

between males and females. Therefore, the DCC reaches out from HAS to actively 

transcribed genes on the male X chromosome, making use of the chromosome interaction 

network (Ramirez et al., 2015). Genes actively transcribed by RNA polymerase II are marked 

by H3K36me3 at the gene body, a mark placed co-transcriptionally by the histone 

methyltransferase (HMT) Set2 (Bell et al., 2007; Carrozza et al., 2005; Larschan et al., 2007; 

Stabell et al., 2007). H3K36me3 is recognized by MSL3, which targets the DCC to actively 

transcribed genes for up-regulation (Bell et al., 2008; Larschan et al., 2007; Sural et al., 

2008; Wang et al., 2013). There, MOF the histone acetyl transferase within the DCC 

acetylates H4K16 over gene bodies (Conrad et al., 2012; Gelbart et al., 2009; Kind et al., 

2008). Outside of dosage compensation, MOF is also part of the NSL complex placing 

H4K16ac at promoters of housekeeping genes (Cai et al., 2010; Feller et al., 2012; Lam et 

al., 2012; Raja et al., 2010). However, H4K16ac at the gene body in the context of dosage 

compensation induces chromatin decondensation for transcription up-regulation in the 

two-fold range (Akhtar and Becker, 2000; Allahverdi et al., 2011; Bell et al., 2010; Corona et 

al., 2002; Liu et al., 2011; Prestel et al., 2010; Robinson et al., 2008; Shogren-Knaak et al., 

2006; Smith et al., 2001). Transcription activation is achieved through increased transcription 

elongation of RNA polymerase II (Ferrari et al., 2013; Larschan et al., 2011). Further 

mechanisms could contribute to transcription up-regulation, for example reduced negative 

supercoiling mediated by topoisomerase II and supercoiling factor and the interaction of 

MSL1 with the elongation factor SPT5 and the general TF TFIIH via CDK7 (Chlamydas et al., 

2016; Cugusi et al., 2013; Dunlap et al., 2012; Furuhashi et al., 2006; Prabhakaran and 

Kelley, 2012). Additional chromatin regulators are linked to dosage compensation and male 

X chromosome regulation, including the remodeler ISWI, the heterochromatin factors 

suppressor of variegation [Su(var)] 3-7 and HP1, the nuclear pore components Megator and 

Nup153, and the chromosomal kinase JIL-1, which is ~2-fold enriched on the male 

X chromosome (Badenhorst et al., 2002; Corona et al., 2002; de Wit et al., 2005; Jin et al., 

2000; Mendjan et al., 2006; Regnard et al., 2011; Spierer et al., 2008; Spierer et al., 2005; 

Vaquerizas et al., 2010; Wang et al., 2001). 

 

 

1.4 H3K36me3 chromatin 

Methylation of histone lysine residues is associated with gene expression regulation. Up to 

three methyl-groups can be added to a lysine residue, which however retains its positive 

charge. Methylation of histone H3 at lysine 36 is a hallmark of active transcription and 
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increases gradually from mono- over di- to trimethylation from the 5’ to 3’ end of transcribed 

genes [reviewed in e.g. (Huang and Zhu, 2018; Li et al., 2016; McDaniel et al., 2017; 

Venkatesh and Workman, 2013; Wagner and Carpenter, 2012; Woo et al., 2017)]. 

Methylation of H3K36 is catalyzed by specific HMTs containing the common, catalytic SET 

domain. In Saccharomyces cerevisiae, a single HMT, Set2, catalyzes all three methylation 

states of H3K36, while higher eukaryotes have distinct enzymes for mono-/dimethylation and 

trimethylation. In D. melanogaster, Mes-4 mediates H3K36me1/me2, Ash1 mediates 

H3K36me2 and Set2 places H3K36me3 (Bell et al., 2007; Schmahling et al., 2018; Tanaka 

et al., 2007). The Set2 enzymes have a conserved domain architecture from yeast to 

mammals. In S. cerevisiae, the SET domain is located at the N-terminus while higher 

eukaryotes have an extended, low-complexity N-terminus preceding the SET domain. The 

Set2-Rpb1 interaction (SRI) domain is located at the C-terminus, mediating the interaction 

with RNA polymerase II. The SRI domain binds specifically to two consecutive heptapeptide 

repeats in the C-terminal domain (CTD) of RNA polymerase II containing serines at residue 2 

and 5 in each repeat. The CTD of RNA polymerase II becomes differentially phosphorylated 

during the transcription cycle (Komarnitsky et al., 2000; Mayer et al., 2010). The S5 residues 

become phosphorylated during formation of the preinitiation complex by TFIIH, which leads 

to the recruitment of various elongation factors for transition of RNA polymerase II into active 

elongation. During the elongation phase, S5 becomes gradually dephosphorylated towards 

the 3’ end while S2 is gradually phosphorylated by P-TEFb and allows the binding of Set2 

and transcription-coupled trimethylation of H3K36 (Carrozza et al., 2005; Gopalakrishnan et 

al., 2019; Kizer et al., 2005; Li et al., 2003; Stabell et al., 2007). 

H3K36 trimethylation by Set2 and its biological roles are best studied in S. cerevisiae. There, 

other transcription elongation factors and histone chaperons are shown to contribute to the 

regulation of H3K36me3 through Set2. The H3/H4 histone chaperone Spt6, which also binds 

to RNA polymerase II CTD to facilitate nucleosome-reassembly in the wake of the 

transcribing polymerase, is required for binding of Interacts with Spt6‐1 (IWS1), recruiting 

Set2 to the CTD (Gopalakrishnan et al., 2019; Yoh et al., 2008; Youdell et al., 2008). 

Furthermore, the elongation factors facilitates chromatin transcription (FACT) complex, Paf1 

complex and anti-silencing factor 1 are implicated in Set2-mediated H3K36me3 (Chu et al., 

2007; Chu et al., 2006; Lin et al., 2010). Heterogeneous nuclear ribonucleoprotein L 

associates with Set2 and stimulates H3K36me3, while the prolyl isomerase Fpr4 mediates 

H3P38 isomerization, which changes the conformation of H3K36 making trimethylation 

unfavorable (Nelson et al., 2006; Yuan et al., 2009). In addition, H3K36 methylation marks 

can be actively removed by Jumonji C domain containing lysine demethylases (KDM). The 

human KDM2A and KDM4A are shown to demethylate H3K36me2/3, in flies this is mediated 



1 Introduction 

44  

by Kdm2, Kdm4A and Kdm4B (Blackledge et al., 2010; Holowatyj et al., 2015; Whetstine et 

al., 2006; Zhou et al., 2012). 

To translate the H3K36 methylation signal into a biological output, various readers recognize 

the different methylation states of H3K36 and trigger associated pathways. One function of 

Set2-mediated H3K36me3 in yeast is the prevention of aberrant transcription initiation within 

the coding region of transcribed genes (Carrozza et al., 2005; Joshi and Struhl, 2005; Keogh 

et al., 2005; Sun et al., 2008). The histone deacetylase complex reduced potassium 

dependency 3 small (Rpd3S) is recruited to H3K36me3 through the binding of the subunit 

ESA1-associated factor 3 (Esa3) [MORF-related gene 15 (MRG15) in humans and flies] by 

its chromodomain to maintain a hypoacetylated state at the gene body. The Isw1b 

ATP-dependent chromatin remodeling complex contributes to this pathway by properly 

spacing nucleosome providing a suitable substrate for deacetylation (Lee et al., 2013; Maltby 

et al., 2012; Smolle et al., 2012). In the Isw1b complex, Isw1 interacts with Ioc4 a PWWP 

domain containing protein, which recruits the complex to H3K36me3. In humans, a histone 

deacetylase complex is also recruited to H3K36me3 via the chromodomain-containing 

MRG15 subunit (Jelinic et al., 2011; Kumar et al., 2012). In addition, various PWWP 

domain-containing proteins are recruited to H3K36me3, including ZMYND11, which is 

implicated in transcription elongation and mRNA splicing, DNA (cytosine-5)-

methyltransferase 3A and B to establish de novo DNA methylation, and GLYR1 interacting 

with a H3K4 demethylase and responsible for nucleosome-destabilization to facilitate 

transcription. (Baubec et al., 2015; Dhayalan et al., 2010; Fang et al., 2013; Fei et al., 2018; 

Guo et al., 2014; Morselli et al., 2015; Suzuki et al., 2006; Vermeulen et al., 2010; Wen et al., 

2014). H3K36me3 readers include PSIP1, which is implicated in various processes from 

alternative splicing, to DNA double strand repair by homologous recombination, to DNA 

mismatch repair mediated by MSH6, to integration of the human immunodeficiency virus in 

active portions of the genome (Cherepanov et al., 2005; Ciuffi et al., 2005; Daugaard et al., 

2012; Laguri et al., 2008; Li et al., 2013a; Pfister et al., 2014; Pradeepa et al., 2012; Sharma 

et al., 2018). Moreover, the activity of the Polycomb repressive complex 2 (PRC2) is 

modulated by H3K36me3, which is bound by the Tudor domain containing subunits PHF1 

and PHF19 (Ballare et al., 2012; Brien et al., 2012; Cai et al., 2013; Schmitges et al., 2011; 

Yuan et al., 2011). 

In D. melanogaster, MSL3 is the best studied protein shown to bind H3K36me3 via its 

chromodomain for dosage compensation (Larschan et al., 2007; Sural et al., 2008). 

Furthermore, the chromodomain-containing MRG15 is suggested to bind H3K36me3, as 

shown for its yeast homolog (Filion et al., 2010; Joshi and Struhl, 2005; Sun et al., 2008). 

MRG15 in flies is part of the Tip60 HAT complex/Domino remodeling complex and Ash1 

HMT complex (Huang et al., 2017; Kusch et al., 2004; Schmahling et al., 2018). Furthermore, 
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the PWWP domain-containing NDF is suggested to bind H3K36me3, as shown for its human 

homolog GLYR1, to facilitate transcription by destabilizing nucleosomes (Fang et al., 2013; 

Fei et al., 2018; Vermeulen et al., 2010; Wang et al., 2013). Although the chromosomal JIL-1 

kinase is not shown to directly bind H3K36me3, JIL-1 co-localizes genome-wide with the 

H3K36me3 mark (Regnard et al., 2011). 

 

1.4.1 The chromosomal kinase JIL-1 

In the late 1990s, the kinase JIL-1 was discovered in the lab of K. M. Johansen and 

J. Johansen, who most contributed to our understanding of JIL-1 function (Jin et al., 1999). 

JIL-1 harbors two central serine/threonine kinase domains arranged in tandem. The JIL-1 

N-terminus contains an asparagine-rich and an alanine-rich stretch, and a bipartite nuclear 

localization signal. Furthermore, two PEST-related sequences are located in the N-terminus 

and one between the kinase domains, which are implicated in protein degradation (Rogers et 

al., 1986). JIL-1 is expressed ubiquitously at all developmental stages and associates to 

chromatin at all cell cycle phases (Jin et al., 1999; Zhang et al., 2003). Based on polytene 

chromosome squashes, JIL-1 localizes to an active chromatin environment at the 

decondensed interbands and is ~2-fold enriched on the dosage-compensated male X 

chromosome (Jin et al., 2000; Jin et al., 1999). Basal JIL-1 levels at gene bodies correlate 

with H3K36me3 levels and enrichment at male X-linked genes with additional H4K16ac 

levels (Regnard et al., 2011). Since JIL-1 is enriched on the male X chromosome in a DCC 

dependent way, it is linked to dosage compensation. Moreover, JIL-1 binds MSL1 and MSL3 

via its kinase domains and is required for full transcription up-regulation of X-linked genes by 

the DCC (Jin et al., 2000; Regnard et al., 2011; Wang et al., 2013). At active chromatin, JIL-1 

phosphorylates H3 at serine 10 (H3S10ph) during interphase, while H3S10ph in mitosis is 

catalyzed by aurora B kinase (Adams et al., 2001; Giet and Glover, 2001; Regnard et al., 

2011; Wang et al., 2001). JIL-1 is an essential protein in both sexes since it is implicated in 

higher-order chromosome organization and ectopic recruitment causes chromatin 

reorganization (Bao et al., 2008; Deng et al., 2008; Deng et al., 2005; Li et al., 2013b; Wang 

et al., 2001). H3S10 phosphorylation by JIL-1 during interphase counteracts heterochromatin 

spreading by preventing H3K9 di-/trimethylation by Su(var)3-9 and subsequent binding of 

HP1 in euchromatic regions (Figure 13) (Cai et al., 2014; Deng et al., 2007; Wang et al., 

2011a; Wang et al., 2012; Wang et al., 2014; Zhang et al., 2006). The function of JIL-1 in the 

maintainance of the hetero- and euchromatin boundary is best illustrated in the phenomenon 

of position-effect variegation (Bao et al., 2007; Deng et al., 2010; Girton et al., 2013; Lerach 

et al., 2006; Wang et al., 2011b). Indeed, truncations within JIL-1’s C-terminus have a 

Su(var) phenotype, counteracting heterochromatin spreading into euchromatin (Ebert et al., 
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2004). Additionally, JIL-1 is shown to phosphorylate the heterochromatin factor Su(var)3-9, 

the HMT specific for di- and trimethylation of H3 at lysine 9 (H3K9me2/3), at its N-terminus, 

which is implicated in protein-protein interaction and chromatin binding (Boeke et al., 2010; 

Melcher et al., 2000; Schotta et al., 2002). Besides localizing to active H3K36me3 chromatin 

at gene bodies, JIL-1 is also found at the arrays of retrotransposons at telomeres, consisting 

of the non-LTR retrotransposons HeT-A, TART and TAHRE (HTT arrays), to regulates their 

expression (Andreyeva et al., 2005; Silva-Sousa and Casacuberta, 2013; Silva-Sousa et al., 

2012). 

 

Figure 13. Heterochromatin spreading in JIL-1 mutants.  

Left side, polytene squashs from wild type and JIL-1 mutant L3 larvae stained with -H3K9me2 

antibody in red and with Hoechst in blue. Right side, western blots analysis of wild type and JIL-1 

mutant larval extracts for H3S10ph, H3K9me2 and HP1. Figure is reproduced from (Zhang et al., 

2006) with permission of Company of Biologists. 
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2 Aims and objectives 

The first aim was to mechanistically dissect the contribution of CLAMP to MSL2 targeting to 

HAS on the male X chromosome. To this end, MSL2 binding in vivo in absence of CLAMP 

was monitored by high-resolution ChIP-seq, as potentially MSL2 alone could be sufficient to 

bind PionX in vivo. To analyze cooperative effects between CLAMP and MSL2 for HAS 

targeting, in vitro genome-wide DNA immunoprecipitation with high-throughput sequencing 

(DIP-seq) was used (Gossett and Lieb, 2008; Liu et al., 2005). As direct protein-protein 

interactions are implicated in cooperative DNA binding, CLAMP interaction with MSL2 was 

assayed by co-IP experiments to map individual interaction domains. Further, chromatin 

organization could also contribute to binding site selection and cooperativity, genome-wide 

chromatin accessibility was studied in male and female cells after CLAMP and MSL2 

depletion by assay for transposase accessibly chromatin with high-throughput sequencing 

(ATAC-seq) (Buenrostro et al., 2013; Buenrostro et al., 2015). 

The second aim was to refine the role of chromosome architecture in DCC transfer from HAS 

to target genes. Therefore, chromosome architecture and compartmentalization in male and 

female embryos was analyzed by genome-wide chromosome conformation capture (Hi-C) 

(Sexton et al., 2012). To investigate potential sex-dependent differences, Hi-C data were 

connected to H3K36me3 and H4K16ac chromatin marks assayed by ChIP-seq as well as to 

gene expression measured by RNA sequencing (RNA-seq). To more specifically study the 

contact frequency of PionX with the active compartment, locus-specific 4C-seq after MSL2 

depletion in male cells or de novo induction of DCC formation by sxl RNAi in female cells 

was performed and related to gene expression changes (Ghavi-Helm et al., 2014). 

The third aim was to reveal the targeting mechanism of JIL-1 to H3K36me3 chromatin and its 

role in transcription regulation. The interaction of JIL-1 with the new PWWP domain 

containing protein, JIL-1 Anchoring and Stabilizing Protein (JASPer), was identified by co-IP 

experiments. To map the individual interaction domains, the JIL-1-JASPer complex (JJ-

complex) was recombinantly expressed for subsequent co-IP assays. To analyze whether 

JASPer can recruit JIL-1 to H3K36me3 chromatin, in vitro nucleosome pull-down 

experiments using recombinant JASPer and JJ-complex were performed by employing a 

nucleosome library comprising 115 different nucleosome types (Dann et al., 2017). 

Furthermore, the in vivo localization of JASPer and JIL-1 relative to H3K36me3 was studied 

by high-resolution ChIP-seq in male and female cells. To gain mechanistic insight into 

JJ-complex enriched at the male X chromosome, JASPer, H4K16ac and MSL3 ChIP-seq 

after JIL-1 depletion were performed. Potential spreading of H3K9me2 into euchromatin after 

JIL-1 depletion was also studied by ChIP-seq. Moreover, the role of the JJ-complex in gene 

expression regulation and expression of transposable elements was studied by RNA-seq 
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after JASPer and JIL-1 depletion in male and female cells. The association of JJ-complex 

with other chromatin factors was investigated by co-IP coupled to mass spectrometry 

analysis. 
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3.2 Chromosome topology guides the Drosophila Dosage 
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6 Abbreviations 

ADP  adenosine diphosphate 

ATAC-seq  assay for transposase accessibly chromatin with high-throughput sequencing 

ATP  adenosine triphosphate 

bp  base pair 

ChIP-chip chromatin immunoprecipitation followed by microarray hybridisation 

ChIP-seq chromatin immunoprecipitation with high-throughput sequencing 

CLAMP Chromatin Linked Adaptor for MSL Proteins 

CTD  C-terminal domain 

DCC  dosage compensation complex 

DIP-seq DNA immunoprecipitation with high-throughput sequencing 

DNA  deoxyribonucleic acid 

E(z)  Enhancer of zeste 

H3S10ph phosphorylated histone H3 at serine 10 

H3K36me3 trimethylated histone H3 at lysine 36 

H4K16ac  acetylated histone H4 at lysine 16 

HAS  high affinity site 

HAT  histone acetyltransferase 

HMT  histone methyltransferase 

HP1  heterochromatin protein 1 

IP  immunoprecipitation 

JASPer JIL-1 Anchoring and Stabilizing Protein 

JJ-complex  JIL-1-JASPer complex 

KDM  lysine demethylase 

lncRNA  long non-coding RNA 

MBT  malignant brain tumor 

MLE  maleless 

MOF  males absent on the first 
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MRE  MSL recognition element 

MRG15 MORF-related gene 15 

mRNA  messenger ribonucleic acid 

MSL  male-specific-lethal 

NFR  nucleosome free region 

NGS  next generation sequencing 

NMR  nuclear magnetic resonance 

PHD  plant homeodomain 

PionX   Pioneering-sites-on-the-X 

PTM  post-transcriptional modification 

PWM  position weight matrix 

RING  really interesting new gene 

RNA  ribonucleic acid 

RNA-seq RNA sequencing 

RNAi  RNA interference 

roX  RNA on the X 

siRNA  small interfering RNA 

SRI  Set2-Rpb1 interaction 

SUMO  Small Ubiquitin-related Modifier 

Su(var)  suppressor of variegation 

SXL  Sex lethal 

TAD  topologically associating domain 

TF  transcription factor 

ZnF  zinc finger 
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