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SUMMARY 

 

The (GGGGCC)n repeat expansion within the first intron of the C9orf72 gene is the most common 

known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). So far, 

three non-exclusive potential mechanisms underlying C9orf72-mediated neurodegeneration are 

described. First, reduced expression of the mutated C9orf72 allele may impair the physiological 

function of the C9orf72 protein. Second, the repeat-containing RNA accumulates in nuclear foci and 

sequesters RNA-binding proteins, which might trigger a loss-of-function mechanism. And third, 

unconventional repeat associated non-ATG (RAN) translation of the expanded repeat results in 

aggregation-prone dipeptide repeat (DPR) proteins, namely, poly-GA, poly-GP, poly-GR, poly-PR, and 

poly-PA, which are potentially toxic. These DPR proteins are found in cytoplasmic inclusions 

throughout the patient brain. While poly-GA is the most abundant species, poly-GR and poly-PR 

expression is most toxic in many model systems. Although extensive in vitro work has been done on 

the characterization of DPR proteins, their role in disease pathogenesis remains unclear. In order to 

elucidate potential toxic mechanisms underlying the arginine-rich DPR proteins poly-GR and poly-PR, I 

analyzed their interactome in primary neurons and HEK293 cells and validated the results in patient 

tissue.  

I identified close to 600 GFP-(GR)149 and (PR)175-GFP interacting proteins in primary neurons with 

significant overlap, particularly in RNA-binding proteins. Analysis revealed that interactors are 

especially enriched for components of stress granules, the nucleolus, the ribosome, and the splicing 

machinery. Stress granules are cellular membrane-less compartments which form upon cellular stress 

and mainly contain stalled translation pre-initiation complexes. The nucleolus represents the site of 

ribosome biogenesis, while the ribosome itself is a complex molecular machinery responsible for 

protein synthesis. The interactomes of poly-GR and poly-PR in HEK293 corroborate the pathways and 

compartments identified in neurons. 

In order to validate individual interactors, I performed overexpression experiments with over 30 

interacting proteins. I mainly tested interactors associated with stress granules, the nucleolus, and the 

ribosome and their effect on poly-GR/poly-PR localization as well as expression and vice versa. Under 

control conditions, poly-GR is expressed in the nucleolus and diffusely distributes in the cytoplasm, 

whereas poly-PR mainly localizes to the nucleolus in HEK293 cells. In neurons, poly-GR is mainly found 

in the cytoplasm and poly-PR exclusively localizes to the nucleolus. To assess the role of stress granules, 

I co-expressed the poly-GR/PR interacting stress granule proteins STAU1, STAU2, and YBX1 together 
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with poly-GR/poly-PR in both cell systems. Interestingly, all tested stress granule proteins rerouted 

poly-GR/PR into large cytoplasmic granules which were positive for the stress granule marker G3BP1. 

Importantly, STAU2 colocalizes with poly-GR in C9orf72 patient brains suggesting it is a disease-

relevant interactor. Moreover, closer examination of the nucleolus revealed that poly-PR expression 

disrupts uniform distribution of nucleolar proteins such as NOP56 and Fibrillarin suggesting that also 

nucleolar functions, such as assembly of ribosomes, might be comprised. In addition, expression of the 

nucleolar component NPM1 recruited otherwise cytoplasmic poly-(GR)149 into the nucleolus. 

Regarding the ribosome, expression of toxic nucleolar poly-(PR)175, but not cytoplasmic poly-(GR)149, 

significantly reduced levels of several ribosomal subunits which was accompanied by a comparable 

reduction in overall protein synthesis. Surprisingly, truncated poly-GR versions localized to the 

nucleolus and inhibited translation – like poly-PR. In accordance, boosting protein synthesis by 

overexpression of MEK1 blunted poly-GR/PR toxicity. Most importantly, I detected ribosomal proteins 

in poly-GR/PR inclusions in C9orf72 ALS/FTD brains. This direct interaction between poly-GR/PR and 

the ribosome was confirmed in vitro. 

In summary, this study provides the first poly-PR/GR interactome in primary neurons and 

identifies ribosomes as a direct link between the toxicity of poly-GR/PR in vitro and in C9orf72 patients. 

It shows that the two arginine-rich DPR proteins alter stress granule formation, disrupt nucleolar 

organization and reduce ribosomal subunits as well as protein synthesis. Together these findings 

suggest that impaired ribosome biogenesis and/or function may drive acute neurotoxicity underlying 

poly-GR and poly-PR expression in vitro and contribute to chronic toxicity in vivo. These intriguing 

findings might pave ways for new therapeutic strategies targeting C9orf72-mediated ALS/FTD.  
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ZUSAMMENFASSUNG 

 

Eine Verlängerung der (GGGGCC)n Repeatsequenz im nicht-kodierenden Bereich des C9orf72-Gens ist 

als die häufigste genetische Ursache Amyotropher Lateralsklerose (ALS) und Frontotemporaler 

Demenz (FTD) bekannt. Umfangreiche Forschungsarbeiten konnten bisher drei mögliche nicht-

exklusive Mechanismen der C9orf72-assoziierten Neurodegeneration aufdecken. Erstens, wird das 

mutierte C9orf72 Allel geringer exprimiert, so dass die physiologische C9orf72-Funktion beeinträchtigt 

sein könnte. Zweitens, könnte die Akkumulation der Repeat-RNA in nukleäre Foci, durch die 

Sequestrierung von RNA-bindenden Proteinen, zu Neurodegeneration führen. Drittens, entstehen 

durch unkonventionelle Translation der Repeatsequenz fünf aggregationsanfällige Dipeptid Repeat 

(DPR)-Proteine, genauer poly-GA, poly-GP, poly-GR, poly-PR und poly-PA, welche neuronale 

zytoplasmatische Einschlüsse bilden und ebenfalls zu neuronalem Zelltod beitragen könnten. Während 

poly-GA die am häufigsten vorkommende DPR-Protein-Spezies ist, gelten poly-GR und poly-PR 

allgemein als die toxischsten Aggregat-Typen in vielen Modelsystemen. Obwohl intensiv an der 

Charakterisierung von DPR-Proteinen und deren Auswirkungen gearbeitet wird, bleibt ihre exakte 

Rolle im Krankheitsverlauf weiterhin unklar. Um den Beitrag der Arginin-reichen DPR Proteine poly-GR 

und poly-PR zur zellulären Toxizität zu entschlüsseln, habe ich in dieser Arbeit umfangreiche 

Interaktom-Studien in primären Neuronen und HEK293 Zellen durchgeführt und die Ergebnisse in 

Patientengewebe validiert.  

Ich konnte nahezu 600 GFP-(GR)149- und (PR)175-GFP-interagierende Proteine in primären 

Neuronen identifizieren und zeigen, dass die beiden DPR-Proteine zahlreiche RNA-bindende 

Interaktoren gemeinsam haben, darunter Splicing-, Stress Granule-, Nukleoli- und 

Ribosomkomponenten. Sogenannte Stress Granules sind zelluläre membranlose Kompartimente, 

welche sich aufgrund von zellulärem Stress bilden und hauptsächlich aus blockierten 

Translationskomplexen bestehen. Der Nukleolus stellt den Ort der Ribosombiogenese dar und das 

Ribosom ist die molekulare Maschine, welche für die Proteinsynthese zuständig ist. In den poly-GR/PR-

Interaktomen von HEK293-Zellen waren Proteine mit Funktionen in ähnlichen zellulären Vorgängen 

und Kompartimenten angereichert.  

Um verschiedene Interaktoren individuell zu validieren, führte ich Überexpressionsexperimente 

mit über 30 poly-GR- und poly-PR-bindenden Proteinen durch. Dabei untersuchte ich hauptsächlich 

Proteine aus Stress Granules, dem Nukleolus und Ribosomen. Unter Kontroll-Bedingungen war poly-

GR in HEK293-Zellen im Nukleolus und diffus im Zytoplasma zu finden, während poly-PR primär im 
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Nukleolus lokalisierte. In Neuronen verteilte sich poly-GR gleichmäßig im Zytoplasma. Poly-PR 

lokalisierte ausschließlich im Nukleolus. Um die Rolle der Stress Granules in poly-GR/PR-vermittelter 

Toxizität aufzudecken, ko-exprimierte ich die Stress Granule-Proteine STAU1, STAU2 und YBX1 

zusammen mit poly-GR/poly-PR in beiden Zellsystemen. Interessanterweise führte dies zu der Bildung 

großer zytoplasmatischer Einschlüsse, in welchen nicht nur die jeweiligen Stress Granule-Proteine, 

sondern auch poly-GR und poly-PR akkumulierten. Darüber hinaus kolokalisierte STAU2 mit poly-GR-

Einschlüssen in C9orf72-ALS/FTD-Patienten und wurde so auch im menschlichen Gewebe als Interaktor 

validiert. Weiterhin ergab die Untersuchung des Nukleolus in Neuronen, dass poly-PR die ansonsten 

gleichmäßige Verteilung nukleolärer Proteine wie NOP56 oder Fibrillarin erheblich stört und somit 

auch nukleoläre Funktionen, wie die Zusammensetzung der Ribosomen, beeinträchtig sein könnten. 

Zudem wurde zytoplasmatisches poly-(GR)149 von NPM1, einem Protein, welches Aufgaben in der 

Ribosombiogenese übernimmt, in den Nukleolus rekrutiert. Anschließend ergab die detaillierte 

Analyse ribosomaler Proteine, dass die Expression des toxischen, nukleolären poly-(PR)175, aber nicht 

die des zytoplasmatischen poly-(GR)149, die Proteinmenge von mehreren ribosomalen Untereinheiten 

in Neuronen herabsetzt und dies mit vergleichbarer Reduktion der Proteinsynthese einhergeht. 

Interessanterweise wurden ähnliche Effekte mit einer verkürzten poly-GR-Version erzielt, welche im 

Nukleolus lokalisierte und nachweislich toxisch war. Steigerung der Proteinsynthese durch MEK1 

reduzierte die zelluläre DPR-Toxizität. Die bedeutendste Beobachtung dieser Arbeit jedoch ist, dass 

ribosomale Untereinheiten in poly-GR/PR Einschlüssen in C9orf72-ALS/FTD Gehirnen zu finden sind. 

Diese direkte Interaktion konnte ich auch in vitro bestätigen. 

Insgesamt enthält diese Arbeit die erste poly-PR/GR-Interaktom-Studie in primären Neuronen 

und identifiziert Ribosomen als direkte Verbindung zwischen poly-GR/PR-Toxizität in vitro und in 

C9orf72-Patienten. Sie zeigt, dass die beiden Arginin-reichen DPR-Proteine Stress Granules 

beeinflussen, die Organisation des Nukleolus stören und sowohl Ribosom-Menge als auch 

Proteinsynthese reduzieren. Zusammen implizieren diese Beobachtungen, dass eine beeinträchtigte 

Ribosombiogenese und/oder -funktion die Ursache von poly-GR- und poly-PR-vermittelter 

Neurotoxizität sind. Diese Erkenntnisse könnten zu neuen Therapiestrategien für C9orf72-ALS/FTD 

führen.  
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1. INTRODUCTION 

 

 Amyotrophic lateral sclerosis and frontotemporal dementia  
 

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTD) are two devastating 

neurodegenerative diseases with no available cure or causal therapy so far. Both diseases are rapidly 

progressing with a typical onset at ~55 and <65 years, respectively (Chio et al., 2013; Vieira et al., 2013). 

With an incidence of 5.4/100,000 per year, ALS is considered the most common neurological disorder 

affecting the upper and lower motor neurons (Chio et al., 2013). FTD occurs with an incidence of 2.7-

4.1 per 100,000 and represents the third most common form of dementia following Alzheimer’s 

disease and Lewy bodies-associated dementia (Onyike and Diehl-Schmid, 2013; Vieira et al., 2013). 

Over the years it became clear that ALS and FTD are linked by overlapping clinical symptoms, pathology 

and genetics and thereby represent two extremes in a disease spectrum. 

 Clinical features of ALS and FTD  

In 1869, Jean-Martin Charcot described ALS as a separate disease for the first time. The French 

neurologist observed progressive paralysis with and without contractures as well as muscle atrophy in 

affected individuals and linked these symptoms to motor neurons in the brain and spinal cord (Kumar 

et al., 2011). Today, hyperreflexia, spasticity, progressive muscle weakness and atrophy are considered 

the major symptoms of ALS. Disease often starts in the limbs, rapidly spreads to other muscle groups 

and ultimately leads to respiratory failure (Van Damme and Robberecht, 2009) defining ALS as a 

relentlessly progressive disease (Talbot, 2009). After symptom onset, 50% of patients die within 30 

months and about 20% of patients survive 5 years. After 10 years, only a small percentage of patients 

is alive. 

 In FTD, first described by Arnold Pick, three different variants are distinguished based on the 

predominant clinical symptoms, namely behavioral variant FTD (bvFTD) and primary progressive 

aphasia (PPA). The latter is subdivided in semantic dementia (SD) and progressive non-fluent aphasia 

(PNFA). The most common form of FTD, bvFTD, is characterized by changes in social conduct and 

personality expressed by apathy, inappropriate or ritualistic behaviors, inertia or loss of sympathy 

emerging from degeneration in the frontal lobe. (Bang et al., 2015). The most pronounced symptoms 

of SD are impaired naming and word comprehension resulting from early asymmetrical degeneration 

of anterior temporal lobes and amygdala (Josephs et al., 2008; Seeley et al., 2005). Lastly, patients with 

PNFA show slow, effortful and halted speech production as well as agrammatism. Over time, all three 
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FTD syndromes converge and lead to global cognitive impairment. The bed-ridden patients usually die 

from pneumonia or secondary infections (Bang et al., 2015).  

Interestingly, 15% of FTD diagnosed patients are estimated are estimated to develop 

symptoms consistent with a typical definition of ALS (Goldman et al., 2005; Rosso et al., 2003) and vice 

versa, up to 50% of ALS patients present some FTD-like symptoms (Abrahams et al., 2004; Mackenzie 

and Feldman, 2005) providing evidence that ALS and FTD are two distinct ends of a broad disease 

spectrum. Therefore, patients representing both ALS and FTD symptoms are referred to as ALS/FTD 

patients.  

 Pathological features and genetics of ALS/FTD 

Pathologically, ALS shows loss of upper motor neurons, located in the cerebral cortex, and lower motor 

neurons, found in the brainstem and spinal cord while FTD is associated with degeneration of the 

frontal and temporal lobe. Nonetheless, in both disorders, common pathological protein inclusions are 

found in different areas of the brain which are thought to eventually cause cell death (Ferrari et al., 

2011). In ALS, the pathological hallmarks are mainly transactive response (TAR) DNA binding protein 

(TDP-43), superoxide dismutase (SOD1) and Fused in sarcoma (FUS) inclusions being present in 97%, 

2% and <1% of patient brains, respectively (Ling et al., 2013). In FTD, 45% of cases display TDP-43 

aggregates and another 45% have mainly hyperphosphorylated TAU inclusions. FUS aggregates 

account for 9% of FTD cases, the remaining 1% show aggregates that can only be stained with markers 

for the ubiquitin proteasome system. Together, TDP-43 and FUS pathological inclusions are most 

abundant in both ALS and FTD (Figure 1-1A and B).  

However, ALS and FTD do not only share similar types of neuropathological inclusions, but also 

show overlapping genetic features. Although most ALS and FTD cases are sporadic, familial ALS (fALS) 

and FTD (fFTD) caused by mutations in various genes, account for approximately 10% and 40% of 

patients, respectively, and are mostly inherited in an autosomal-dominant manner (Boylan, 2015; 

Rohrer et al., 2009). In the last years, a variety of genes was linked to either pure ALS, pure FTD or 

mixed ALS/FTD. SOD1 is the gene which is most strongly associated with pure ALS and is found to be 

mutated in up to 20% of familial and up to 2% of sporadic cases (Al-Chalabi et al., 2012). Also mutations 

in the genes TARDBP, encoding for TDP-43, and FUS are connected specifically to ALS in 9% of familial 

patients (Renton et al., 2014). As both TDP-43 and FUS harbor RNA-binding domains and have 

important functions in RNA processing, genetics suggests that RNA homeostasis might be 

dysfunctional in ALS disease pathogenesis.  
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Genes associated with pure FTD are microtubule-associated protein Tau (MAPT) and progranulin (GRN) 

as well as charged multivesicular body protein 2b (CHMP2B) and triggered receptor expressed on 

myeloid cells 2 (TREM2) (Borroni et al., 2014; Isaacs et al., 2011; Le Ber, 2013; Rayaprolu et al., 2013). 

Beyond the mutations linked to either ALS or FTD, several genes provide a direct molecular link 

between the two disorders. Among others, mutations in sequestosome 1 (SQSTM1), optineurin (OPT), 

valosin-containing protein (VCP) and ubiquilin 2 (UBQLN2) were identified in both diseases. Since all of 

the commonly affected proteins are involved in major clearance pathways of the cell, impairment of 

protein homeostasis is suggested to be a shared toxic mechanism of ALS and FTD. Most importantly, 

mutations in chromosome 9 open reading frame 72 (C9orf72) were discovered to be highly abundant 

in patients with ALS, FTD, and ALS/FTD. The C9orf72 mutation can explain up to 40% of fALS and 25% 

of fFTD (Majounie et al., 2012) thereby representing the most common known causal mutation in both 

neurological disorders (Figure 1-1C). 

45%
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Figure 1-1: ALS and FTD are two ends of a disease spectrum - schematic illustration of neuropathological inclusions and genes 
associated with ALS and FTD.  

(A, B) Neuropathological inclusions found in ALS and FTD classified according to the main accumulated protein. TDP-43 and 
FUS represent common inclusions (C) The ALS and FTD phenotypes are presented along the Y- and X-axis. Genetic mutations 
in SOD1, TDP-43 and FUS result in a pure ALS phenotype, TREM2, CHMP2B, GRN and MAPT in a pure FTD one. Genes depicted 
in violet result in ALS/FTD. The more the gene is located towards the end of the axis, the more frequent the mutation is. The 
most frequent gene mutated in both ALS and FTD is C9orf72. Adapted from Ling et al. (2013). 
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 The C9orf72 nucleotide repeat expansion 
 

The hexanucleotide GGGGCC repeat expansion within the non-coding region of the C9orf72 gene was 

first discovered in 2011 (DeJesus-Hernandez et al., 2011; Renton et al., 2011). Depending on which of 

the three C9orf72 transcript variants is formed, the repeat is located either in the first intron between 

exon 1a and 1b or in the promoter region of the gene. While the sequence only harbors up to 23 

repeats in healthy individuals, the repeat in C9orf72-mediated ALS/FTD cases is expanded to hundreds 

or even thousands of base pairs (DeJesus-Hernandez et al., 2011; Renton et al., 2011). However, the 

exact repeat length is not inherited as it has been shown that the GGGGCC sequence is unstable at a 

length above 20 repeats and might shrink or expand during germline or somatic transmission (Beck et 

al., 2013). Since most people harbor either very short (2-3) or very long repeats (>400), an exact cutoff 

for pathogenicity is not known. Surprisingly, there is no strong correlation between repeat length and 

clinical phenotype (Beck et al., 2013; Gijselinck et al., 2016).  

 Clinical and pathological representation of C9orf72-mediated ALS/FTD 

Nonetheless, independent of repeat length, patients carrying the C9orf72 mutation show an earlier 

age of onset, shorter survival and a higher decline of cognitive and behavior functions compared to 

ALS/FTD cases without C9orf72 expansion (Byrne et al., 2012; Chio et al., 2012) underlining the 

importance of the expansion in disease progression. Although patients harboring the C9orf72 repeat 

expansion initially present highly heterogeneous clinical symptoms, the mutation typically leads to ALS 

and FTD in the end – an observation which differs from non-C9orf72 ALS and FTD patients (Byrne et 

al., 2012; Stewart et al., 2012).  

Nearly all C9orf72 mutation carriers show TDP-43 cytoplasmic inclusions in the frontal and 

temporal or motor cortex, as well as the spinal cord reflecting the main regions of neurodegeneration 

(Hsiung et al., 2012; Stewart et al., 2012). In addition to TDP-43 pathology, other neuronal cytoplasmic 

inclusions were found which are positive for markers of the UPS system, such as p62, but are TDP-43 

negative. These inclusions are present in the cerebellar cortex, hippocampus and, all neocortical 

regions and are unique to patient brains with the C9orf72 mutation (Al-Sarraj et al., 2011). The nature 

of these p62-positive/TDP-43-negative inclusions will be discussed in more detail in 1.2.4.2. 
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 Toxic mechanisms underlying the C9orf72 repeat expansion 

Currently, three main non-exclusive mechanisms are suspected to cause C9orf72-associated 

neurodegeneration. The first potential pathomechanism implies that the C9orf72 protein loses its 

function due to decreased transcription and therefore expression of the repeat containing gene 

(haploinsufficiency). The second mechanism infers that the (GGGGCC)n expansion might gain toxic 

function upon transcription and accumulation of repeat RNA which potentially sequesters RNA-binding 

proteins (RBPs)(RNA mediated toxicity). Finally, it has been shown that unconventional bi-directional 

transcription and translation of the C9orf72 repeat leads to expression of aggregation-prone dipeptide 

repeat (DPR) proteins. These proteins are toxic in various model systems and may interfere with 

several cellular pathways (protein mediated toxicity) (Fehler! Verweisquelle konnte nicht gefunden 

werden.). In the following chapters, these three mechanisms are described in more detail.  
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Figure 1-2: Postulated pathomechanisms underlying C9orf72-mediated ALS/FTD.  

Schematic illustrations with overview of three potential mechanisms how the C9orf72 repeat might cause neurodegeneration. 
The C9orf72 repeat is depicted in grey, the non-coding region in blue and the coding region in violet. (A) The C9orf72 repeat 
expansion hinders transcription of the gene which may impair C9orf72 protein function (haploinsufficiency). (B) Two gain of 
function mechanisms are postulated: The repeat RNA is forming secondary structures and binds RNA-binding proteins (RBPs, 
in red) (RNA mediated gain of function) or the repeat RNA is translated (in sense and antisense direction) into aggregation-
prone DPR proteins, namely poly-GA, poly-GP, poly-GR, poly-PR and poly-PA (DPR protein mediated gain of function). 
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 C9orf72 loss of function 

Alternative splicing of the C9orf72 transcript results in three transcript variants with variant 1 encoding 

a short protein isoform and variants 2 and 3 encoding the full-length isoform (Figure 1-3). Already the 

initial report of the C9orf72 mutation showed that the repeat expansion leads to reduced variant 2 

C9orf72 transcript levels in the frontal cortex and lymphoblast cells of individuals harboring the repeat 

(DeJesus-Hernandez et al., 2011).  

 

 
 

Figure 1-3: Scheme of genomic C9orf72 structure and its pre-mRNA splicing products. 

Transcript variant 1 encodes for the short C9orf72 isoform, whereas transcript variant 2 and 3 encode for the long C9orf72 
isoforms. Blue boxes represent noncoding and violet boxes represent coding exons. Positions of the (GGGGCC)n repeat 
(grey), the start codon (ATG) and the 3’UTR are indicated. 

 

Others confirmed decreased C9orf72 transcript as well as protein levels in affected brain tissues and 

cultured cells of mutation carriers (Belzil et al., 2013; Frick et al., 2018; Gijselinck et al., 2016; Renton 

et al., 2011). This reduction in C9orf72 expression suggests haploinsufficiency may play a role in disease 

pathogenesis. However, the exact function of the C9orf72 protein is just emerging.  

C9orf72 is most closely related to the DENN (differentially expressed in normal and neoplastic 

cells) domain containing proteins. Therefore, it is predicted to have functions as a GDP/GTP exchange 

factor (GEF) that activates Rab-GTPases (Levine et al., 2013; Zhang et al., 2012). In line with this, it was 

reported that C9orf72 activates Rab1a thereby mediating trafficking of the ULK1 autophagy initiation 
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complex to the phagophore (Webster et al., 2016; Yang et al., 2016). In addition, C9orf72 forms a 

complex with SMRC8 and WDR41 directly linking it to the autophagy pathway (Jung et al., 2017; Sellier 

et al., 2016; Yang et al., 2016). Concomitantly, depletion of C9orf72 in vitro mitigates autophagy 

leading to build-up of p62-positive inclusions as well as TDP-43 (Sellier et al., 2016; Webster et al., 

2016) suggesting that loss of C9orf72 plays a role in disease development. Knockdown of C9orf72 in 

zebrafish, for example, mediated by injection with antisense morpholino oligonucleotides, leads to 

altered axonal branching and locomotion impairment further strengthening this hypothesis (Ciura et 

al., 2013). Furthermore, Shi and colleagues confirm that reduced C9orf72 protein levels are sufficient 

to cause neurodegeneration by accumulation of glutamate receptors leading to excitotoxicity (Shi et 

al., 2018) 

Conversely, in mice, neither knockdown nor knockout of C9orf72 results in neurodegeneration 

or ALS/FTD-related phenotype such as TDP-43 pathology (Atanasio et al., 2016; Burberry et al., 2016; 

O'Rourke et al., 2016). Instead, these mice show enlarged spleens and lymph nodes linking the C9orf72 

protein to the immune system (Atanasio et al., 2016). Also, C9orf72 knockout in mice leads to an 

altered immune response of microglia (O'Rourke et al., 2016). However, instead of showing a more 

severe phenotype, the clinical symptoms of a patient homozygous for the C9orf72 repeat expansion 

does not differ from the ones in heterozygote patients (Fratta et al., 2013). Taken together, the 

observations made in mice and diseased human individuals strongly indicate that loss of C9orf72 is not 

sufficient to trigger full disease pathology including neurodegeneration.  

 C9orf72 gain of function 

A second way how the C9orf72 nucleotide repeat expansion might contribute to disease pathogenesis 

is through gain of toxic function of repeat containing RNA or dipeptide repeat proteins. 

 RNA mediated toxicity 

One pathological feature typical for many diseases associated with repeat expansions is the formation 

of RNA foci containing the repeat RNA. Also in myotonic dystrophy, RNA foci emerging from the CTG 

nucleotide repeat are toxic as they interfere with normal cellular functions of several RNA binding 

factors, such as the muscleblind-like proteins (Miller et al., 2000). An initial study shows that these foci 

also accumulate in nuclei within the cortex and spinal cord of C9orf72-associated FTD patients 

(DeJesus-Hernandez et al., 2011). Subsequently, RNA foci, which form after transcription of the sense 

and antisense strand, were found in neurons, but also astrocytes, microglia and oligodendrocytes of 

ALS/FTD patients as well as cell culture models expressing the repeat (Cooper-Knock et al., 2015; 

Donnelly et al., 2013; Gendron et al., 2013; Lagier-Tourenne et al., 2013; Mizielinska et al., 2013; Mori 

et al., 2013a; Sareen et al., 2013; Zu et al., 2013). Here, RNA foci predominantly localize to the nucleus 
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but are also found in the cytoplasm of patient derived fibroblasts (Donnelly et al., 2013; Lagier-

Tourenne et al., 2013; Sareen et al., 2013). Generally, these RNA foci are highly stable as they form 

secondary and tertiary structures, which may include G-quadruplexes and hairpins.  

The repeat containing RNA foci might cause toxicity similar to sequestration of muscleblind-

like protein 1 (MBNL1) by (CUG)n RNA in myotonic dystrophy type 1. The (GGGCC)n repeat may 

sequester essential RNA-binding proteins (RBPs) leading to impairment of their normal function in 

various molecular cascades such as RNA processing, RNA localization or translation. One major protein 

family trapped by the GGGGCC and CCCCGG repeat are the heterogeneous nuclear ribonucleoproteins 

(hnRNPs) (Cooper-Knock et al., 2015; Cooper-Knock et al., 2014; Lee et al., 2013; Mori et al., 2013b). 

Additional proteins which are found to colocalize with C9orf72 RNA foci including the splicing factors 

ALYREF (Cooper-Knock et al., 2015; Cooper-Knock et al., 2014) and SRSF2 (Cooper-Knock et al., 2015; 

Cooper-Knock et al., 2014), the transcriptional regulator Pur-α (Sareen et al., 2013; Xu et al., 2013), the 

nucleolar protein Nucleolin (NCL) (Haeusler et al., 2014) and RanGAP1 (Zhang et al., 2015), a protein 

involved in nucleocytoplasmic transport. Although dysregulation of splicing and alternative 

polyadenylation have been reported in C9orf72 patient brains (Conlon et al., 2016; Prudencio et al., 

2015), none of the RNA interactors have been connected to neuronal injury and it remains to be 

elucidated whether loss of one or more of the sequestered RBPs contributes to disease pathology.  

 Protein mediated toxicity 

As mentioned earlier, abundant p62-positive/TDP-43-negative inclusions are found in C9orf72 patient 

brains. These inclusions remained uncharacterized until it was found that the repeat is being 

transcribed and translated. The ability of repeat containing RNA to form secondary structures such as 

hairpins enables the transcript to undergo so-called repeat-associated non-ATG (RAN) translation. This 

type of unconventional translation was first identified in the microsatellite expansion disease 

spinocerebellar ataxia type 8 (SCA8) and was found to occur in absence of an ATG start codon (Zu et 

al., 2011).  

RAN translation of the hexanucleotide repeat in C9orf72 gives rise to five different dipeptide 

repeat (DPR) protein species from six different reading frames. Translation of the sense transcript 

results in poly-glycine-proline (poly-GP), poly-glycine-alanine (poly-GA) and poly-glycine-arginine 

(poly-GR) peptides and translation of the antisense strand leads to poly-proline-arginine (poly-PR), 

poly-proline-alanine (PA) and further poly-glycine-proline (poly-GP) peptides (Ash et al., 2013; Mori et 

al., 2013a; Mori et al., 2013c; Zu et al., 2013). The DPR proteins are prone to aggregation and 

accumulate throughout the brain of C9orf72 mutation carriers showing highest abundance in the 

cerebellum, hippocampus, thalamus, amygdala, and the motor, temporal and frontal cortex (Figure 

1-4). They show only moderate pathology in subcortical areas and are infrequent in lower motor 
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neurons of the spinal cord (Ash et al., 2013; Mackenzie et al., 2013; Mori et al., 2013a; Zu et al., 2013). 

This neuroanatomical distribution is highly consistent among C9orf72 positive cases irrespective of 

clinical symptoms. Notably, there is no correlation observed between DPR expression and areas of 

neurodegeneration (Mackenzie et al., 2013). However, one has to keep in mind that DPR proteins are 

also present in soluble forms and may, therefore, be difficult to visualize in patient tissue. Additionally, 

highly toxic DPRs might not be detectable anymore due to loss of degenerating neurons. 

DPR proteins form typical star- or dot-shaped neuronal inclusions positive for p62 but show 

little colocalization with phospho-TDP-43 aggregates (Mackenzie et al., 2013; Mann et al., 2013; Mori 

et al., 2013a; Mori et al., 2013c). Furthermore, it has been shown that although the majority of DPR 

proteins is found in large cytoplasmic inclusions in post-mortem tissue they can also be sparsely 

detected in p62-negative para-nucleolar aggregates (Schludi et al., 2015a). 

How individual DPR species contribute to cellular toxicity and thereby neurodegeneration is 

still under intense debate. In the following sections, the specific DPR proteins are examined in more 

detail.  

 Poly-GA is the most abundant DPR species in patients 

Among the five DPR species in C9orf72-ALS/FTD, only poly-GA is found in nearly all TDP-43 negative 

inclusions. Short poly-GA peptides form amyloid-like structures containing characteristic cross-β 

sheets (Chang et al., 2016). Cryo-electron tomography of poly-GA inclusions in cultured neurons 

revealed densely packed twisted ribbons that are highly enriched in 26S proteasome, linking poly-GA 

to impaired proteasomal degradation (Guo et al., 2018). Supporting this connection, poly-GA also 

sequesters several proteasome-linked proteins in vitro, with p62 and UBQLN1 among them (May et 

al., 2014; Schludi et al., 2015a). Thus, disruption of the ubiquitin-proteasome system (UPS) might 

trigger the toxicity seen in cell culture and flies upon poly-GA expression (May et al., 2014; Mizielinska 

et al., 2014; Yamakawa et al., 2015; Zhang et al., 2014). Consistent with the toxicity observed in cellular 

models, mice expressing GFP-(GA)50 show neuronal loss and astrogliosis along with motor and 

cognitive deficits (Zhang et al., 2016). Furthermore, poly-GA expression shortens life span in transgenic 

flies (Mizielinska et al., 2014)  
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Figure 1-4: Dipeptide repeat proteins in the human cortex of C9orf72 brains tissue  

Immunofluorescence images of three different dipeptide repeat protein species in the human brain of C9orf72 patients. Poly-
GA, poly-PR and poly-GR aggregates are depicted in green. The nuclei are stained with DAPI in blue.  



INTRODUCTION 

23 
 

Besides UPS impairment, poly-GA aggregation causes mislocalization of nuclear pore 

components such as Pom121 and RanGAP1 in vivo (Zhang et al., 2016). In addition, we have shown 

that poly-GA expression hinders nuclear import of a fluorescent reporter containing the TDP-43 

nuclear localization (NLS) signal. Importantly, expression of poly-(GA)175 significantly shifted 

predominantly nuclear TDP-43 into small cytoplasmic TDP-43 granules in primary neurons further 

indicating that poly-GA impairs nucleocytoplasmic transport (Khosravi et al., 2017). Importantly, with 

these findings, we and others could causally connect two major aggregating proteins, namely TDP-43 

and poly-GA, in C9orf72-mediated ALS/FTLD disease.  

Taken together, poly-GA is the most abundant DPR protein species in brains and spinal cord of 

C9orf72 mutation carriers and may contribute to human disease by inhibiting the UPS or 

nucleocytoplasmic transport.  

 Poly-GR and poly-PR are the most toxic DPR species in model systems  

Although there is a general agreement that poly-GA is toxic in several biological systems (May et al., 

2014; Zhang et al., 2014), the arginine-rich DPR proteins poly-GR and poly-PR show significantly higher 

toxicity in side by side comparisons. In fact, they induce toxicity in multiple cell culture and animal 

models including U2OS cells, human astrocytes (Kwon et al., 2014), HEK293T cells, NSC34 cells 

(Kanekura et al., 2016; Tao et al., 2015), primary cortical and motor neurons (Wen et al., 2014), 

neurons derived from induced pluripotent stem cells (iPSCs) (Lopez-Gonzalez et al., 2016; Wen et al., 

2014) and Drosophila (Boeynaems et al., 2016; Freibaum et al., 2015; Lee et al., 2016a; Mizielinska et 

al., 2014; Wen et al., 2014). In the majority of cellular systems, both poly-GR and poly-PR localize to 

the nucleolus, the assembly site of ribosomes. However, in C9orf72-ALS/FTD patient brains poly-GR 

and poly-PR are predominantly found in compact cytoplasmic inclusions and to a lesser extent in para-

nucleolar compartments. When looking at the overall distribution of the two DPR species within the 

brain, poly-GR and poly-PR are most abundant in the frontal, occipital and motor cortex as well as the 

thalamus, hippocampus, and the cerebellar regions. Of note, poly-PR inclusions have been noted to be 

extremely rare and represent about 1% of DPR protein inclusions (Mackenzie et al., 2013; Schludi et 

al., 2015a).  

So far, little is known about the effects of poly-GR and poly-PR on cellular function and the 

mechanisms underlying poly-GR/PR toxicity are just emerging. Initial reports describe how the two 

arginine-rich DPR protein species might interfere with the physiology of the cell in different cell culture 

systems. These findings are described in the next paragraphs.  
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Poly-GR/PR expression impairs the dynamics of membrane-less organelles  

In order to approach the mechanisms contributing to poly-GR and poly-PR associated 

neurodegeneration, Lee and colleagues performed a proteomic study in poly-GR and poly-PR 

expressing HEK293 cells. Analysis revealed that poly-GR/PR interactors are enriched in RNA-binding 

proteins containing low complexity domains (LCDs). While only 35.8% of human proteins harbor LCDs, 

up to 67.9% of poly-GR/PR interactors contained low complexity sequences (Lee et al., 2016a). LCDs 

show low amino acid diversity and often harbor mainly glycine and serine interspersed with aromatic 

and charged residues (Uversky et al., 2015). Proteins with LCDs can undergo low-affinity interactions 

which are important for them to become rapidly and reversibly concentrated in discrete spots within 

the cell. These interactions are crucial in the formation and function of membrane-less organelles such 

as nuclear speckles, the nuclear pore complex (NPC), stress granules, and the nucleolus which 

represent sites of splicing, nucleocytoplasmic transport, stalled translation complexes, and ribosome 

biogenesis, respectively. Under certain conditions, these intermolecular biophysical interactions, 

however, drive phase separation of the LCD containing proteins and clustering in liquid droplets which 

have the property to propagate into hydrogels comprised of amyloid-like fibers. This process is called 

liquid-liquid phase separation (LLPS).  

Liquid phase transition has been shown to occur in a variety of poly-GR and poly-PR interactors 

with NPM1, TIA1 or FUS being among them (Lee et al., 2016a; Lin et al., 2016). Moreover, the ALS-

linked RBPs hnRNPA1 and TDP-43 are able to assemble into protein-rich droplets by LLPS (Molliex et 

al., 2015). Thus, several proteins aggregating in ALS/FTD patients are found to undergo LLPS in vitro. 

As disease-causing mutations in these genes are mostly located within LCDs (Taylor et al., 2016) and 

have the ability to disturb their biophysical properties it is proposed that LLPS is a general disease 

mechanism.  

Both poly-GR and poly-PR are highly charged, basic and polar due to the incorporation of 

arginine residues and have a disordered nature. Thus, they are expected to form flexible structures 

that remain soluble. In vitro, the two DPR species induce liquid droplet formation of NPM1, hnRNPA1, 

and TIA1, proteins found in the nucleolus and SGs, when applied in the right ratios suggesting that 

poly-GR/PR disturb low-affinity interactions. Also, poly-(GR)20 and poly-(PR)20 do phase separate by 

themselves in vitro following the addition of a molecular crowder (Boeynaems et al., 2017).  

Thus, a complementary mechanism how poly-GR and poly-PR might contribute to C9orf72 

pathogenesis is by disruption of the assembly and dynamics of membrane-less organelles such as 

nuclear speckles, the NPC, stress granules or the nucleolus through disturbance of the LLPS properties 

of their resident proteins. However, all approaches so far were performed in vitro, with pure proteins 

and/or in high molecular ranges and no co-aggregation was reported in patient tissue. Consequently, 
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further experiments are needed in order to prove that these relations occur under physiological 

conditions.  

 

Poly-GR and poly-PR lead to aberrant splicing in cell culture systems 

Another putative mechanism by which the two DPR species might lead to toxicity is their effect on 

mRNA splicing. The first study describing altered splicing in vitro was by Kwon and colleagues who 

exposed human astrocytes to PR20 synthetic peptide and subsequently analyzed the extracted RNA by 

deep sequencing. Analysis revealed ~5,000 mis-spliced RNA transcripts resulting from altered RNA 

processing such as exon skipping or intron retention (Kwon et al., 2014). In concordance, classification 

analysis of the interactome of poly-PR20 in treated NSC34 cells revealed mRNA splicing as the second 

most enriched gene ontology category (Kanekura et al., 2016). This was also true for a more recent 

study with GR20 or PR20 peptides in which mostly the U2 snRNP complex was enriched. In line with the 

findings in vitro, also in C9orf72 patient cerebella and cortices, U2-dependent exons, mostly linked to 

mitochondrial functions, were preferentially mis-spliced (Yin et al., 2017). Together with the 

widespread transcriptome changes found in familial and sporadic ALS patient brains (Prudencio et al., 

2015) splicing could further be shown to be deregulated in C9orf72-mediated ALS/FTD, but it is not 

known whether poly-GR and poly-PR play a role in disruption of this process in patients.  

 

Poly-GR and poly-PR cause oxidative and ER stress in vitro 

Poly-GR and poly-PR have also been associated with toxic effects in mitochondria and the endoplasmic 

reticulum (ER). As mentioned above, transcripts of mitochondrial genes were found to undergo 

aberrant splicing, including COX16 and TIMM9 and the mitochondrial ribosomal proteins MRPL52 and 

MRPS31 suggesting that mitochondrial function may be comprised. And indeed, mitochondria in 

patient-derived C9orf72 iPSC motor neurons and neurons expressing poly-(GR)80 show increased 

membrane potential accompanied by elevated production of reactive oxygen species (ROS) and 

increase in DNA damage (Lopez-Gonzalez et al. 2016) suggesting a role of poly-GR in oxidative stress. 

Whether these defective mitochondria also show altered mitochondrial respiration or morphology has 

not been addressed. Additionally, these in vitro effects have not been validated in patient tissue.  

 Besides oxidative stress, also ER stress was linked to cellular toxicity in (GR)20/(PR)20 peptide 

treated human cells and mouse primary cortical neurons. In a CRISPR/Cas9 knockout screen, Kramer 

et al identified ER-resident proteins and almost all members of the ER-membrane to modulate poly-

GR/PR toxicity, with transmembrane thioredoxin protein (TMX2) being the strongest protective hit. 

Knock-down of TMX2, a protein enriched at the mitochondria-associated membrane of the ER, 

decreased Caspase 3/7 activity and increased ATP levels in poly-PR20 treated neuronal cells suggesting 
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a role of ER stress in DPR-mediated toxicity in cell culture (Kramer et al., 2018). Although IRE1 signaling 

positively correlates with TDP-43 pathology in familial C9orf72-ALS cases (Lee et al., 2016b), there is 

no evidence for a connection between ER stress and poly-GR/poly-PR in patients so far. 

Nucleocytoplasmic transport is comprised in poly-GR/PR expressing cells 

Recently, the nuclear pore complex was linked to poly-GR and poly-PR toxicity. Jovičić et al. identified 

modifier genes involved in nucleocytoplasmic transport in a gain and loss of function screen in yeast. 

In this study, poly-(PR)50 toxicity was mainly modified by nuclear import receptors, NPC components 

and regulators of the Ran-GTPase cycle (Jovicic et al., 2015). To validate hits in vivo, an RNAi screen 

was performed in Drosophila expressing a poly-PR version with 25 repeats. Also here, similar proteins 

were found to be modifiers of poly-PR toxicity (Boeynaems et al., 2016). In line with these findings, 

flies expressing 58 repeats of the GGGGCC expansion showed an abnormal nuclear envelope. Next to 

the defects in architecture of the nuclear envelope, disruption of the Ran-GTP gradient between 

nucleus and cytoplasm was observed in patient derived iPSC neurons. (Freibaum et al., 2015).  

 Overall, these data indicate that the nuclear pore is at least partly dysfunctional in cell culture 

systems harboring the hexanucleotide repeat. In C9orf72-associated ALS motor cortex, RanGAP1, a 

protein that stimulates Ran to hydrolase GTP to GDP, and Nup205, an extremely long-lived NPC 

scaffold protein, exhibit mislocalization (Zhang et al., 2015). However, if these phenotypes ultimately 

lead to nucleocytoplasmic trafficking defects also in patients and if DPR proteins are contributors to 

these findings has not been addressed.  

Poly-GR and poly-PR impair stress granule and nucleolus dynamics 

Stress granules (SGs) are membrane-less cytoplasmic compartments with a very dynamic nature which 

form in response to cellular stress. Upon stress, translational control allows for the regulation of mRNA 

expression and is the mechanism by which the cell protects itself from environmental changes. After 

phosphorylation of the translation initiation factor eIF2α, a variety of proteins, such as RNA-binding 

proteins, transcription factors, and RNA helicases, as well as mRNA accumulate. Binding of the RNPs 

to the mRNA transcripts subsequently prevents translation initiation. These translation inhibition 

complexes are routed into SGs and thus, translational programming is closely linked to SG assembly 

(Anderson and Kedersha, 2009). Importantly, cytoplasmic TDP-43 was found to be trapped in SGs. This 

was validated by colocalization with SG markers (TIA-1, eIF3) in postmortem brains from ALS and FTD 

patients linking SGs to disease (Liu-Yesucevitz et al., 2010). With the finding that mutations in TIA-1 

(Mackenzie et al., 2017) and Ataxin 2 (Elden et al., 2010), two important components of SGs, increase 

the risk for ALS, evidence exists linking C9orf72-mediated toxicity to stress granules also in vivo. 
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 Nucleoli are distinct subnuclear components associated with ribosome biogenesis that consist 

of three separate regions. The fibrillar center (FC) is surrounded by a dense fibrillar component (DFC) 

where pre-ribosomal RNA transcripts are spliced and modified. FC and DFC are both enclosed by the 

granular component (GC) where ribosomal proteins and the ribosomal RNA (rRNA) are assembled 

(Boisvert et al., 2007).  

Although SGs and the nucleolus are in a rapid dynamic equilibrium with the cytoplasm, poly-

GR, as well as poly-PR, have the property to impair this dynamic and stabilize molecular interactions 

as suggested by fluorescence recovery after photobleaching (FRAP) experiments (Figure 1-5A and B). 

Here, nucleolin (NCL), an important protein involved in pre-rRNA transcription and ribosome assembly 

and nucleophosmin 1 (NPM1), connected with ribosome biogenesis and nucleolar export, exhibit 

reduced mobility upon poly-(GR)20/(PR)20 expression (Lee et al., 2016a). Whether these poly-GR/PR 

dependent changes in dynamics affect SG and nucleolar function, such as translational control and 

ribosome assembly, respectively, has not been addressed.  

 
Figure 1-5: Scheme of the impact of poly-GR and poly-PR expression on SGs and the nucleolus in vitro. 

(A) The expression of poly-GR20 and poly-PR20 results in impaired stress granule dynamics as suggested by FRAP experiments 
with SG markers such as TIA-1, eIF3, Stau1 or G3BP. (B) The nucleolus is subdivided into three separate regions – the fibrillary 
center (FC), the dense fibrillar component (DFC) and the granular component. The letter contains several proteins involved in 
ribosome biogenesis or rRNA processing with NCL and NPM1 among them. These two proteins are less mobile upon poly-
GR/PR expression. (C) The pre-ribosomal 45S rRNA is processed into mature 5.8S, 18S and 28S rRNA in the nucleolus. Poly-GR 
and poly-PR expressing cells show reduced levels of mature rRNAs suggesting disturbed rRNA processing.  

 

Interestingly, overexpressed poly-PR exclusively localizes within the nucleolus and poly-GR is 

seen in both, nucleolus and cytoplasm in all in vitro model systems regardless of whether the DPR 

proteins are expressed from a vector or added as synthetic peptides (Boeynaems et al., 2017; Kramer 
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et al., 2018; Kwon et al., 2014; Lee et al., 2016a; Schludi et al., 2015a; Tao et al., 2015; Wen et al., 2014; 

Zhang et al., 2018b). Super-resolution fluorescent imaging revealed that GFP-(GR)50 is recruited to the 

GC and the DFC, while poly-(PR)50 is solely found in the GC (Lee et al., 2016a). Thus, both poly-GR and 

poly-PR are localized to the outer layer of the nucleolus where ribosome assembly takes place (Lee et 

al., 2016a). 

However, so far, none of the DPR protein species was detected in stress granules or the 

nucleolus in patients and therefore validation experiments are needed in order to link poly-GR/PR to 

the two compartments in C9orf72-ALS/FTD pathogenesis.  

 

Poly-GR and poly-PR alter rRNA processing 

One of the first studies linking DPR protein toxicity to the ribosome showed that administration of the 

PR20 peptide to human astrocytes alters RNAs encoding ribosomal proteins and indeed impairs 

processing of the pre-ribosomal 45S rRNA (Kwon et al., 2014). In eukaryotic cells, rRNA processing is a 

tightly regulated process in which the 45S rRNA precursor is first methylated and subsequently cleaved 

and processed into mature 18S, 5.8S, and 28S rRNA. These rRNAs then serve as a scaffold for the 

assembly of ribosomal proteins and execute catalytic functions in translation initiation, elongation, and 

termination (Henras et al., 2015). In poly-PR treated cells, the levels of 5.8S rRNA are reduced by 70% 

providing evidence that altered rRNA processing is underlying DPR toxicity (Kwon et al., 2014). 

Likewise, 18S and 28S rRNA is remarkably decreased upon poly-GR/PR expression in NSC-34 cells (Tao 

et al., 2015). Thus, these findings indicate, that poly-GR and poly-PR comprise rRNA processing in vitro 

(Figure 1-5C). However, many open questions remain: Does this reduction in rRNA processing products 

lead to overall impairment of ribosome biogenesis and if yes, is also protein synthesis altered? Would 

restorage of rRNA processing products rescue poly-GR/PR-mediated toxicity? Is the ribosome also 

affected in C9orf72-ALS/FTD? 

Taken together, the exact mechanism(s) by which the arginine-rich DPR proteins poly-GR and poly-PR 

induce toxicity in C9orf72 pathogenesis are still not quite understood. So far, alternative splicing, 

oxidative and ER stress, mitochondrial and NPC dysfunction, alterations in nucleolus and SG dynamics, 

as well as reduced rRNA processing, have been implicated, nevertheless, detailed analysis of these 

putative toxic mechanisms is missing. Most importantly, all experiments have been performed in 

cellular or animal models and thus, there is no evidence for the significance of these mechanisms in 

C9orf72-ALS/FTD patients yet. 
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 The role of poly-GP and poly-PA  

Poly-GP and poly-PA are two DPR species translated from the antisense C9orf72 transcript. While poly-

GP inclusions are highly abundant in C9orf72-associated ALS/FTD brains, poly-PA inclusions are rare. 

Under individual expression in vitro, poly-GP localization is mainly cytoplasmic and poly-PA is localized 

to the nucleus as well as the cytoplasm. Following poly-GP/PA expression or treatment, NCS-34 and 

HEK93 cells, cultured neurons and yeast as well as flies show similar survival as their respective controls 

(Jovicic et al., 2015; Lee et al., 2016a; May et al., 2014; Tao et al., 2015; Wen et al., 2014; Yamakawa 

et al., 2015). Only in zebrafish, poly-PA with a repeat length of 1000 shows an effect on larvae survival 

(Swaminathan et al., 2018). Due to their amino acid residues, these DPR proteins have an uncharged 

nature and might therefore not undergo strong interactions with endogenous cellular proteins (Lee et 

al., 2016a). Therefore, poly-GP and pol-PA are thought to contribute the least to toxicity.  

 Biomarkers in C9orf72-associated ALS/FTD 

Although there is general agreement that DPR proteins contribute to toxicity in cellular and animal 

models, their overall significance in C9orf72-mediated ALS/FTD remains unresolved. To better address 

their role in C9orf72-ALS/FTD pathogenesis it is crucial to monitor individual DPR proteins in patients 

over time. As studies in post mortem tissue cannot provide temporal information, a DPR dependent 

biomarker could serve as a useful tool. Interestingly, in patients with C9orf72-FTD, widespread 

accumulation of DPR proteins within neurons occurs much earlier than TDP-43 pathology (Baborie et 

al., 2015). Thus, it is possible that DPR proteins already exist early in disease or even before its onset 

and therefore might be used as pharmacodynamic biomarkers.  

 So far, poly-GP has been discovered as a potential biomarker candidate as it was shown to be 

readily detectable in the cerebrospinal fluid (CSF) in a small case series of symptomatic ALS patients 

harboring the C9orf72 mutation (Su et al., 2014). Recently, two larger studies built up on this finding 

and showed that poly-GP can indeed be detected in immunoassays and thus serve as a biomarker 

signaling the onset and progression of C9orf72-ALS/FTD. Importantly, poly-GP levels were already 

measurable in asymptomatic C9orf72 mutation carriers and thus can be used to detect target 

engagement of applied C9orf72-directed drugs (Gendron et al., 2017a; Lehmer et al., 2017). In 

contrast, phosphorylated neurofilament heavy chain (pNFH), a marker for axonal damage, was only 

elevated in the symptomatic patients and showed similar levels in ALS cases with or without C9orf72 

mutation. Nonetheless, pNFH levels predict disease progression of ALS patients over time (Gendron et 

al., 2017b) and thus serve as an additional, DPR-independent and prognostic biomarker.  

As poly-GR and poly-PR show far greater toxicity than poly-GP in vitro and in vivo, it is of great 

importance to develop immunoassays also monitoring their protein levels in patients. This may help 

to clarify the defined role of poly-GR and poly-PR in C9orf72-disease progression.  
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 C9orf72 repeat expansion-directed therapies  

Although the exact mechanisms underlying C9orf72-mediated ALS/FTD are not quite understood, gain-

of-function of the repeat-containing RNA is likely essential for pathogenesis as not only potentially 

toxic RNA foci, but also DPR proteins can emerge from it. Therefore, reduction of the repeat-containing 

RNA is a therapeutic option. However, lowering of global C9orf72 transcripts in order to treat RNA-

dependent toxic mechanisms might be disadvantageous in case haploinsufficiency significantly 

contributes to disease pathogenesis.  

 Therefore, antisense oligonucleotides (ASOs), which can be designed to target and inactivate 

specific mRNA sequences, are suitable for therapeutic treatment. Recently, ASOs have been proven to 

be safe in humans and are already applied for therapy of spinal muscular atrophy (Chiriboga et al., 

2016). In a study from April 2018, Liu and colleagues could show that their C9orf72-ASO sequence 

preferentially reduced repeat-containing transcripts in patient-derived iPSC neurons and fibroblasts 

and validated their promising results in C9orf72 BAC transgenic mice. Here, they observed a reduction 

of both RNA foci and DPR proteins without affecting total C9orf72 levels (Liu et al. 2018). Further 

investigation will be needed for their ASO treatment to be approved for therapy as correct targeting, 

efficacy, and efficiency remain to be confirmed also in patients. 

 Another therapeutic approach might emerge from targeting secondary structures occurring in 

repeat containing RNA or specifically inhibit RAN-translation by other means. Here, structure-specific 

small molecules recognize and bind to nucleotides with a defined RNA conformation, such as RNA 

hairpins or G-quadruplexes, as seen in the C9orf72 hexanucleotide repeat transcript. Most recently, it 

was shown that application of compounds binding to the C9orf72 repeat RNA reduced RNA foci and 

poly-GP expression in iPSC-derived spinal motor neurons, cortical neurons, and flies (Simone et al., 

2018). However, it remains an open question whether these compounds might also bind off target or 

inhibit ATG-initiated translation of regular repetitive RNA. Even so, Simone and colleagues pave the 

way for new C9orf72-associated treatment opportunities and provide a serious therapy option to ASOs 

which, in contrast to small molecules, require invasive application.  

 

Although ASOs, RNA-targeting small molecules or other compounds might be viable treatment options 

for C9orf72-ALS/FTD, only clinical trials can show their suitability and efficacy in patients. Ultimately, 

patients can only profit from the fast evolving C9orf72 research field which shows great interest in 

C9orf72-associated therapies.  
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 Translation deregulation in human disease 
 

The ribosome is one of the most accurately constructed and most complex molecular machines of the 

cell. It is the workplace for protein synthesis which itself is a finely tuned process. Translation factors, 

transfer RNAs (tRNAs) and ribosomes need to be coordinated precisely in order to translate the 

information contained in mRNA into a polypeptide chain. Thus, the ribosome, as well as the process of 

translation, are both highly susceptible to malfunction on multiple levels. Consequently, a variety of 

human diseases exist which are linked to ribosome structure and biogenesis, ribosome assembly, tRNA 

modifications, tRNA synthetases and other proteins involved in protein translation (Figure 1-6). 

 Ribosomopathies 

Alterations in ribosomal structure and function can lead to a heterogeneous class of disease termed 

ribosomopathies. Usually, the ribosome is built up of four rRNAs and a large number of ribosomal 

proteins forming a ribonucleoprotein. It comprises two subunits of different size that work as one: the 

small 40S subunit, which binds to the mRNA template, and the large 60S subunit, which binds to the 

tRNA and the amino acids. In eukaryotes, the biogenesis of ribosomes occurs in the nucleolus. For 

transcription of ribosomal proteins, ribosome maturation, rRNA modification, folding and processing 

(described in ‘Poly-GR and poly-PR alter rRNA processing’) as well as ribosome assembly, a plethora of 

factors are needed (Fromont-Racine et al., 2003; Henras et al., 2008; Kressler et al., 2010). Mutations 

in these factors or in ribosomal proteins themselves might result in genetic ribosomopathy.  

In 1999 for example, a mutation in the RPS19 gene was discovered to account for 25% of 

patients suffering from Diamond-Backfan Anemia (DBA) (Draptchinskaia et al., 1999). Since then, more 

mutations have been identified to lead to DBA – 50% to 70% of those affected genes encoding 

ribosomal proteins (Gerrard et al., 2013). The deficiencies in ribosomal proteins result in impaired 

ribosome assembly and decreased translation in cells of both hematopoietic and non-hematopoietic 

lineage, although the disease is characterized by low red cell count (Gazda et al., 2006). Similarly, also 

the 5q-syndrome, which shares clinical and pathologic features with DBA including anemia, is linked to 

haploinsufficiency of another ribosomal protein, namely RPS14 (Ebert et al., 2008). Mutations in DKC1 

and TCOF1, both involved in ribosome biogenesis, play a role in X-linked Dyskeratosis Congenita (Heiss 

et al., 1998) and the Treacher-Collins Syndrome (Dixon, 1996), respectively.  
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Figure 1-6: Scheme of translation deregulation in human disease. 

Translation deregulation in human disease can occur on multiple levels. Disrupted tRNA maturation, dysfunctional aminoacyl tRNA synthases 
or impaired ribosome assembly can all result in disease. Pontocerebellar hypoplasia, for example, is caused by defective tRNA splicing due 
to mutations in components of the tRNA-splicing endonuclease (TSEN) complex and in the polynucleotide kinase CLP1 (also part of TSEN). 
Uridine and adenosine bases are modified by the Elongator Complex and the KEOPS-EKC proteins, respectively. Mutations in these proteins 
cause familial dysautonomia and the Galloway-Mowat syndrome. Mutated ARSs result in disease in two ways: either by non-functional 
synthase activities (Charcot Marie Tooth disease) or non-functional proof-reading activities leading to amino acid (AA) misincorporation and 
misfolded proteins. Ribosomopathies like Diamond-Backfan anemia and the Treacher-Collins syndrome are defined by mutations in either 
ribosomal proteins themselves or proteins associated with ribosome biogenesis such as DKC1 and TCOF1.  

 

 Deregulation of tRNA function is often connected to neurodegenerative diseases 

tRNAs are the adaptor molecules between the information encoded by nucleic acids and the 

information on a protein level. They show a highly conserved as well as complex secondary and tertiary 

structure which is crucial to ensure efficient translation by correct codon-anticodon interactions. tRNA 
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biogenesis involves a multistep maturation process with a cascade of enzymatic reactions. Currently, 

93 post-transcriptional modifications are known (Cantara et al., 2011). These are executed by a variety 

of modulators such as endo- and exonucleases, ligases, kinases, and transferases. The functionality of 

these factors is of major importance as their modifications can lead to enormous tRNA structural 

rearrangements and with it tRNA dysfunction. Mutations in tRNA modifying factors lead to several 

human disorders.  

 For example, pontocerebellar hypoplasia (PCH) is a spectrum of early onset neurodegenerative 

diseases commonly characterized by impaired brain development, muscle weakness and motor 

deficits (Ryan et al., 2000). It is caused by mutations in proteins of the tRNA splicing endonuclease 

complex (TSEN) with TSEN54, TSEN34, TSEN15, and TSEN2 among them (Breuss et al., 2016; Budde et 

al., 2008). Also homozygous mutations in CLP1, an additional factor required for tRNA intron removal 

and ligation, are reported in individuals with PCH (Karaca et al., 2014; Schaffer et al., 2014). These 

mutations result in reduced affinity of individual components of the complex which leads to altered 

enzymatic activity and defects in tRNA splicing. Schaffer et al. suggest a subsequent accumulation of 

tRNA fragments including ‘half’ tRNAs which are known to inhibit protein translation (Sobala and 

Hutvagner, 2013). Further neurodegenerative diseases associated with dysfunctional tRNA include 

Familial Dysautonomia (mutation in the Elongator complex which is in charge of uridine modifications) 

(Anderson et al., 2001) and Galloway-Mowat syndrome (mutation in the KEOPS-EKC complex which is 

in charge of adenosine modifications) (Braun et al., 2017).  

 Mutant aminoacyl tRNA synthetases cause disease in multiple ways 

Aminoacyl tRNA synthetases (ARS) are the enzymes that ligate amino acids (AAs) to their 

corresponding tRNA. These multidomain proteins catalyze the covalent attachment of the AAs to the 

tRNA in a two-step reaction. To ensure the correct translation of mRNA, accurate function of the ARS 

catalytic, as well as editing, activity is necessary (Pang et al., 2014). Predominantly mutations in glycyl-

tRNA, tyrosyl-tRNA, and alanyl-tRNA synthetase have been reported to cause Charcot Marie Tooth 

(CMT) disease (Antonellis et al., 2003; Jordanova et al., 2006; Latour et al., 2010). CMT is the most 

common heritable disorder of the peripheral nervous system and patients suffer from progressive 

muscle weakness and wasting as well as loss of touch sensation. It is hypothesized that the common 

underlying pathogenic mechanism of ARS mutations is inhibition of translation (Storkebaum, 2016).  

 Not only translational inhibition but also misincorporation of false AAs into the nascent poly-

peptide chain can be an outcome of mutations in ARS. Lee et al. report a mutation within the active 

site of the alanyl-ARS editing domain. Normally, mischarged tRNAs would be cleared by the editing 

function of ARS, however, this ARS mutant shows proofreading defects. The subsequent AA 

misincorporation during protein synthesis leads to misfolded or unfolded proteins which accumulate 
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and stress the proteostasis system. Concomitant with the knowledge that protein aggregation 

commonly leads to neuron loss, the most prominent phenotype in their mouse model is 

neurodegeneration (Lee et al., 2006).  

 Evidence for protein translation defects in ALS and FTD 

Experiments in cellular models of ALS/FTD point to a role of in these diseases. TDP-43 knockdown, for 

example, results in alternative splicing of SKAR, an exon junction complex. Subsequently, S6 kinase 

activity is enhanced which in turn leads to increased translation and cell size. Thus, mutant TDP-43 

might regulate translation on a global level (Fiesel et al., 2012). Interestingly, the lysyl-ARS binds to 

mutant but not wild type SOD1, further connecting ALS to translation. In this scenario, lysyl-ARS might 

co-aggregate with mutant SOD1 and thereby be impaired in performing its normal function (Kunst et 

al., 1997). Whether also the DPR proteins poly-GR and poly-PR contribute to alterations in protein 

translation remains elusive. As so far only altered rRNA processing has been implicated, more evidence 

is needed to link the two arginine rich DPR protein species to translation deregulation.  

Taken together, disorders associated with deregulation of protein translation often belong to the 

group of neurodegenerative diseases. It would be rewarding for the ALS/FTD field to elucidate whether 

altered protein synthesis also contributes to neurodegeneration in these patients.  
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2. AIM OF THIS WORK 

 

Despite several proposed pathomechanisms, it is still largely unclear how the C9orf72 repeat 

expansion and in particular the individual dipeptide repeat (DPR) proteins mediate toxicity ultimately 

leading to neurodegeneration in patients. Several studies showed that poly-GA impairs the ubiquitin 

proteasome system and interferes with nucleocytoplasmic transport (Guo et al., 2018; Khosravi et al., 

2017; May et al., 2014; Mizielinska et al., 2014; Yamakawa et al., 2015). However, while poly-GA is the 

most abundant DPR species in patient brains, poly-GR and poly-PR are more toxic in cell culture and 

animal models (Kanekura et al., 2016; Kwon et al., 2014; Lee et al., 2016a; Lopez-Gonzalez et al., 2016; 

Tao et al., 2015; Wen et al., 2014). When I started my dissertation in the Edbauer lab, little was known 

about the role of arginine-rich DPR proteins in relation to neurodegeneration. At that time, only two 

groups had published their results on the mechanistic contribution of poly-GR/PR to disease pathology. 

Their studies revealed that the two DPR protein bind nucleoli, induce stress granule formation, impair 

mRNA splicing and disrupt rRNA processing in vitro (Kwon et al., 2014; Wen et al., 2014).  

Based on these findings, the major aim of my work was to further elucidate by which 

mechanisms poly-GR and poly-PR contribute to cellular toxicity and determine their relevance in 

C9orf72 patients. An extensive interactome study based on mass spectrometry in primary neurons and 

HEK293 cells should identify the major proteins sequestered by the arginine-rich DPR proteins. In 

parallel, the global effects of poly-GR/PR on the neuronal proteome should be monitored. A system 

level enrichment analysis of the protein networks should be used to prioritize specific interactors from 

key cellular compartments for individual detailed analysis using a variety of methods including 

validation of co-aggregation in patient tissue. Finally, specific interactors and common identified 

pathways should be tested for modulation of poly-GR and poly-PR toxicity.  

Since my aim was to reveal potential pathogenic disease mechanisms, the used models should 

resemble the disease context in C9orf72-ALS/FTD patients as closely as possible. Therefore, it was of 

great importance to conduct the interactome study as well as the subsequent validation experiments 

in primary hippocampal and cortical neurons. Validation of poly-GR/PR interactors directly in patient 

tissue was critical to connect cell culture models to human disease.  

Another aim was to address the importance of subcellular localization of poly-GR/PR toxicity as 

several groups reported poly-GR as well as poly-PR to be predominantly localized to the nucleolus in 

vitro, while both proteins are almost exclusively found in cytoplasmic inclusions in patient brains.  
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Taken together, the mechanisms of poly-GR and poly-PR toxicity should be investigated in vitro 

and subsequently be linked to C9orf72 disease pathogenesis in patients starting with an interactome 

study in primary neurons.  
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3. MATERIALS 

 

 Instruments, devices and equipment 

 General equipment 

Equipment Supplier 

scale BP3100S Sartorius 

Certomat BS-1 incubator B. Braun Biotech International 

developing machine Cawomat 2000 IR CaWo 

filter trap slot blot Hoefer Scientific Instruments 

forceps FST 

freezer (-20°C) Liebherr 

freezer (-80°C) HFU-T Series Hareus 

fridge Liebherr 

glassware VWR, Hirschmann 

incubator for bacteria Binder 

liquid Nitrogen tank Messer Griesheim 

microwave inverter Sharp 

MilliQ plus filtration system QPod Merck Millipore 

multichannel pipettes VWR 

multichannel pipettes - automated Rainin 

NanoPhotometerTM Implen 

pH meter Five Easy Mettler-Toledo 

pipette boy Brand 

pipettes Gilson, Rainin  

scanner V700 Photo Epson 

shaker Edmund Bühler 

Thermomixer® comfort Eppendorf 

vortex-Genie 2 Scientific Industries 
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 Centrifuges 

(a) Beckman Coulter Ultracentrifuge Optima XpN90 with SW28 rotor; (b) Heraeus Multifuge 3 SR with 

a swing-out rotor for Falcon Tubes and 96-well plates; (c) Heraeus Megafuge 16; (d) Heraeus Megafuge 

40R (e) Eppendorf Centrifuge 5427R for centrifugation of 1.5 and 2 mL reaction tubes at 4°C or RT; 

(f) Eppendorf Centrifuge 5417R for centrifugation of 1.5 and 2 mL reaction tubes at 4°C or RT.  

 Microscope equipment 

(a) BioTek Cytation 3 imaging reader; (b) Hund Wetzlar Light Microscope WilovertS Mikro; (c) Olympus 

CKX41 Fluorescent Microscope with (d) Olympus RFL-T Mercury Burner MSH-1030L; (e) Zeiss LSM 710 

Confocal Laser Scanning Microscope; with (f) LASOS RMC 7812 Z2 remote control; (g) Zeiss Illuminator 

HXP 120 V; (h) Zeiss Stage Controller XY CD MC 2008; (i) Zeiss Objective Plan Apochromat 40x/1.4 oil 

DIC; (j) Zeiss Objective Plan Apochromat 63x/1.4 oil DIC.  

 Devices for (qRT-)PCR experiments 

(a) Bio Rad PowerPac Basic Power Supply; (b) Bio Rad CFX384 TouchTM Real-Time PCR Detection 

System; (c) Eppendorf PCR thermal cycler nexus (gradient eco) (d) INTAS UV Transilluminator; 

(e) Mitsubishi P93D printer (f) peqlab and owl separation systems gel chambers and combs; (g) Rainin 

EDP3 Multichannel Pipette E3-8-20. 

 Cell culture  

(a) Agilent Seahorse XF96 extracellular flux analyzer; (b) Agilent Seahorse XF prep station; (c) GFL 

waterbath; (d) Heraeus Hera cell culture hood Safe2020; (e) Heraeus Hera incubator Safe Cell 150; 

(f) Heraeus Bunsen burner; (g) LifeTechnologies Countess II.  

 Protein biochemistry 

(a) Bio-Rad glass plates for electrophoresis gels; (b) Bio-Rad electrophoresis gel casting system; (c) Bio-

Rad Mini-PROTEAN Tetra Cell Electrophoresis system; (d) Bio-Rad Mini-PROTEAN Trans-Blot Transfer 

Cell; (e) Bio-Rad foam pads; (f) Branson Digital Sonifier 250; (g) Fuji X-ray films; (h) G. Kisker X-ray film 

chamber.  

 Mass spectrometry 

(a) Maisch GmbH Inhouse 1.9 µm C18 particle packed columns with 75µm inner diameter and 20 cm 

length; (b) Thermo Fisher Easy-nLC 1000 HPLC system; (c) Thermo Fisher Orbitrap Elite. 
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 Software 
(a) Adobe Systems Incorporated - Adobe Acrobat Pro; (b) Bio Rad – CFX Manager for qRT-PCR data 

analysis; (c) CLC bio – CLC Main Workbench for DNA, RNA, and protein analysis; (d) Ensemble online 

data base (http://www.ensembl.org/index.html); (e) Fiji for image processing; (f) Graphpad Software, 

Inc. – GraphPad PRISM for statistical analysis; (g) Microsoft Corporation – Microsoft Office 2016; 

(h) Primer 3 online tool for qPCR primer design (http://bioinfo.ut.ee/primer3/); (i) NCBI online data 

base (http://www.ncbi.nlm.nih.gov/); (j) Thomson Reuters - EndNote X8. 

 Services 
(a) DNA Sequencing: GATC Biotech; (b) Oligonucleotide Synthesis: Sigma-Aldrich. 

 Consumable supplies 

 General consumables 

equipment supplier 

Biosphere® Filtertips Sarstedt 

gloves (Latex) Semperit 

gloves (Nitrile) Meditrade 

Parafilm ‘M’ Pechiney Plastic Packaging 

pH indicator strips Merck Millipore 

Pipette Tips, UltrafineTM VWR 

scalpel Braun 

serological pipettes (2 mL, 5 mL, 10 mL, 25 mL) Sarstedt 

Tubes (1.5 mL, 2 mL) Sarstedt 

Tubes (15 mL, 50 mL) Sarstedt 

LoBind Tubes (1.5 mL) Eppendorf 

 Cell culture 

equipment supplier 

cell counting chambers Countess II Life Technologies 

cell culture dish (3.5 cm, 6 cm, 10 cm) Nunc 

cell culture plate (6 well, 12 well, 96 well) Nunc 

microscope cover glasses (20 mm) VWR 

PES membrane filter, 0.45 µm VWR 

syringe (50 mL) VWR 
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 Molecular biology 

equipment supplier 

FrameStar 384 4titude 

MicroAmp Optical 8-Tube strip Applied Biosystems 

Microseal® ‘B’ Adhesive Seal Bio Rad 

PCR Strip tubes VWR 

 Protein biochemistry 

equipment supplier 

0.2 μm cellulose acetate membrane GE Healthcare 

Blotting Paper Macherey-Nagel 

Immobilon-P membrane, PVDF, 0.45 µM Merck Millipore 

Novex™ 10-20% Tricine Protein Gels Thermo Fisher 

MaxiSorb 96-well plate Thermo Fisher 

 Chemicals and reagents 

 General consumables 

equipment supplier 

2-propanol Merck Millipore 

Boric acid Merck Millipore 

Brij® 35 Sigma-Aldrich 

citric acid Sigma-Aldrich 

dimethyl sulfoxide (DMSO) Roth 

ethanol Merck Millipore 

ethylenediaminetetraacetic acid (EDTA) USB 

fetal calf serum (FCS) Life Technologies 

fish gelatin Sigma-Aldrich 

formic acid Sigma-Aldrich 

gelatin Sigma-Aldrich 

Glycerole Biomol 

glycine Biomol 

Hepes BioMol 

KCl USB 

KH2PO4 Merck Millipore 
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methanol Merck Millipore 

MgCl2 Roth 

Na2[B4O5(OH)4] (Borax) Sigma-Aldrich 

Na2HPO4 Merck Millipore 

H2SO4 Merck Millipore 

Na2HPO4 Merck Millipore 

NaCl Merck Millipore 

paraformaldehyde (PFA) SERVA 

sodium citrate Sigma-Aldrich 

sodium dodecyl sulfate (SDS) Roth 

sucrose Sigma-Aldrich 

Sudan Black B Sigma-Aldrich 

Tris AppliChem 

Triton X-100 Merck Millipore 

Tryptone BD Bioscience 

Tween 20 Sigma-Aldrich 

Xylol Merck Millipore 

 Cell culture 

equipment supplier 

Bovine serum albumin (BSA) Sigma-Aldrich 

DMEM Glutamax Life Technologies 

L-Glutamate Sigma-Aldrich 

L-Glutamine Sigma-Aldrich 

Lipofectamine2000 Life Technologies 

Neurobasal Life Technologies 

Non-essential amino acids (NEAA) Life Technologies 

OptiMEM Life Technologies 

Penicillin/Streptomycin Life Technologies 

Poly-D-Lysine (PDL) Sigma-Aldrich 

Seahorse XF Assay-Medium agilent technologies 

Seahorse XF Calibrant agilent technologies 

tetracycline Sigma-Aldrich 

Trypsin (2.5%) Life Technologies 
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 Molecular biology 

equipment supplier 

1 kb Plus DNA Ladder Invitrogen 

4′,6-Diamidin-2-phenylindol (DAPI) Roche Applied Science 

Ampiciline Boehringer Ingelheim 

Antimycin Sigma-Aldrich 

Bromphenol blue Merck Millipore 

calf intestine alkaline phosphatase (CIP) NEB 

dNTP Mix, 10 mM  Thermo Scientific 

FCCP Sigma-Aldrich 

GelRedTM  Biotium 

Oligomycin Sigma-Aldrich 

Q5 DNA polymerase NEB 

Random Hexamer Primer Sigma-Aldrich 

restriction enzymes NEB 

RiboLock RNase Inhibitor Thermo Scientific 

Rotenone Sigma-Aldrich 

SsoFastTM Eva Green® Supermix Bio Rad 

T4 Ligase NEB 

Taq DNA polymerase Promega 

TO-PRO-3 Life Technologies 

UltraPureTM Agarose Life Technologies 

Proteinase K Sigma-Aldrich 

 Protein biochemistry 

equipment supplier 

ammonium persulfate Sigma-Aldrich 

Benzonase Sigma-Aldrich 

dithiothreitol (DTT) Sigma-Aldrich 

DNase Sigma-Aldrich 

Dynabeads™ Protein G invitrogen 

ECL plus Thermo Scientific 

enhanced chemiluminescence (ECL) Thermo Scientific 

i-Block Tropix 
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NaN3 Merck Millipore  

protease inhibitor cocktail Sigma-Aldrich 

SeeBlue Prestained Protein Ladder Plus 2 Life Technologies 

puromycin Merck Millipore 

tetramethylethylendiamin (TEMED) USB 

tricine Sigma-Aldrich 

β-mercaptoethanol Merck Millipore 

Acrylamid (37.5:1/40% (w/v)) BioRad 

3,3′,5,5′-Tetramethylbenzidine (TMB) Sigma-Aldrich 

GFP magnetic beads chromotek 

 

 Antibodies 

 Primary antibodies 

antigen supplier usage 

mouse α GFP Clonetech WB 

mouse α HA Sigma-Aldrich IF 

mouse α HA, clone R001 Elisabeth Kremmer WB, immunoassay 

mouse α MTCO1 abcam WB, IF 

mouse α MTCO2 abcam IF 

mouse α PR, clone 32B3 Elisabeth Kremmer WB, IF 

mouse α puromycin Merck Millipore WB 

mouse α RPL19 Santa Cruz Biotechnology WB, IF 

mouse α RPS25 Santa Cruz Biotechnology WB, IF 

mouse α RPS36A Santa Cruz Biotechnology WB, IF 

mouse α RPS6 Santa Cruz Biotechnology WB, IF 

mouse α TIAR Santa Cruz Biotechnology IF 

rabbit α BOP1 abcam WB 

rabbit α Calnexin Proteintech WB 

rabbit α Fibrillarin abcam IF 

rabbit α FMRP abcam IF 

rabbit α G3BP abcam IF 
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 Secondary antibodies 

 

  

rabbit α G3BP2 abcam IF 

rabbit α GFP, clone N38/8 Neuromab WB 

rabbit α GFP, clone N86/8 Neuromab IF, IP 

rabbit α GTPBP4 abcam IF 

rabbit α H4R3me2A abcam WB 

rabbit α MAGOHB abcam IF 

rabbit α mono methylated 
arginine 

Cell Signaling WB 

rabbit α MRPL19 abcam IF 

rabbit α MRPS9 abcam IF 

rabbit α NOP56 Atlas Antibodies IF 

rabbit α PES1 Thermo Fisher WB 

rabbit α PRMT1 abcam IF 

rabbit α STAU2 abcam IF 

rabbit α symmetric di-methyl 
arginine 

Cell Signaling WB 

rabbit α TRA2A abcam IF 

rabbit α WDR77 Atlas Antibodies IF 

rabbit α YBX1 abcam IF 

rat α GR, clone 7H1 Elisabeth Kremmer IF 

rat α GST, clone 6G9 Elisabeth Kremmer immunoassay 

antigen supplier label usage 

goat α mouse IgG Life Technologies Alexa488, 555 or 647 IF 

goat α rabbit IgG Life Technologies Alexa488, 555 or 647 IF 

goat α rat IgG Life Technologies Alexa488, 555 or 647 IF 

goat α mouse IgG Promega horse radish peroxidase 

(HRP) 

WB 

goat α rabbit IgG Promega HRP WB 

goat α rat IgG Merck Millipore HRP WB, ELISA 
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 Kits 
(a) Applied Biosystems TaqMan MicroRNA Reverse Transcription Kit; (b) DCS SuperVision 2 Kit 

(c) Macherey-Nagel Extract II Kit; (d) Macherey-Nagel NucleoBond®Xtra Midi; (e) Macherey-Nagel 

NucleoBond® Plasmid; (f) Macherey-Nagel NucleoSpin® Gel and PCR Cleanup; (g) Qiagen RNeasy Mini 

Kit; (h) Roche Cell Proliferation Kit II (XTT); (i) Promega CytoTox 96® Non-Radioactive Cytotoxicity 

(LDH);  

 Buffers 
Components of buffers were dissolved in MilliQ water unless stated otherwise.  

 Buffers for cell culture experiments 

equipment supplier 

borate buffer 40 mM boric acid 

10 mM sodium tetra borate 

adjusted to pH 8.5 

Coating solution for glass cover slips 1.5% PDL dissolved in borate buffer 

HEK293 and HeLa medium 1% Penicillin/Streptomycin 

1% NEAA 

10% FCS 

in DMEM Glutamax 

phosphate-buffered saline (PBS) 0.14 M NaCl 

10 mM Na2HPO4 

2.8 mM KH2PO4 

2.7 mM KCl 

adjusted to pH 7.4 

 Buffers for molecular biology experiments 

equipment supplier 

5x DNA loading buffer 50% Glycerol 

50 mM Na2EDTA 

0.05% Bromophenol blue 

adjusted to pH 8.0 

LB agar 1.5% agar 

1% Tryptone 

0.5% Yeast extract 
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86 mM NaCl 

lysogeny broth (LB) medium 1% Tryptone 

0.5% Yeast extract 

86 mM NaCl 

sodium borate buffer (SB) 5 mM Na2[B4O5(OH)4] 

adjusted to pH 8.0 with H3BO3 

immunoprecipitation lysis buffer 2% Triton X-100 

0.75 M NaCl 

1 mM KH2PO4 

3 mM Na2HPO4 

immunoprecipitation basic buffer 50 mM Tris-HCl pH 7.5 

150 mM NaCl 

5% glycerol 

 Buffers for biochemical experiments 

equipment supplier 

4x Lämmli sample buffer 4% SDS 

20% glycerol 

5% β-mercaptoethanol 

200 mM Na2HPO4 

blocking buffer 0.2% i-Block in TBSTx 

tricine gel running buffer 0.1 M Tris-HCl 

0.1 M Tricine 

0.1% SDS 

RIPA buffer 50 mM Tris-HCl 

150 mM NaCl 

2 mM EDTA 

1% NP-40 

0.1% SDS 

TBSTx 20 mM Tris 

0.14 M NaCl 

0.2% Triton X-100 

adjusted to pH 7.6 

tricine buffer 0.1 M Tris-HCl 

0.1 M Tricine 
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0.1% SDS 

transfer buffer 25 mM Tris 

0.2 M Glycine 

ribosome assay buffer 20 mM Hepes pH 7.4 

100 mM KOAc 

20 mM MgCl2 

2 mM DTT (add freshly) 

 Buffers for immunofluorescence and immunohistochemistry 

equipment supplier 

citrate buffer A 0.1 M citric acid 

citrate buffer B 0.1 M sodium citrate 

fixing solution 4% PFA 

0.15 mM NaOH 

0.13 mM NaH2PO4 

0.12 mM sucrose 

adjusted to pH 7.5 

immunohistochemistry blocking buffer 2% FCS dissolved in PBS 

immunohistochemistry wash buffer 0.05% Brij dissolved in PBS 

immunofluorescence blocking buffer 2% fetal bovine serum 

2% bovine serum albumin 

0.2% fish gelatin 

dissolve in PBS 

permeabilisation buffer 0.2% Triton-X-100 

50 mM NH4Cl 

dissolve in PBS 

 

 Bacteria strains and cell lines 
equipment supplier 

DH5α and Stbl3 E.coli competent cells Life Technologies 

HEK293-FT Life Technologies 

HeLa Life Technologies 
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 DNA oligonucleotides and plasmids 

 Primers for cloning 

name  sequence 

GFP-GR15/GR53 sense tcgagaggatccgccaccATGGTGAGCAAGGGC 

 antisense atactcgagttaTCTGCCTCGCCCCCGTCCCCGTCC, 

atactcgagttaCCTGCCTCGTCCGCGTCCCCTTCC, and 

atactcgagttaTCTGCCTCTGCCCCTGCCCCTGCC 

RFP-hTRA2A sense ATAggcgcgccTATGAGTGATGTGGAGGAAAACAACTTCGAGGGC 

 antisense tatgcggccgcTCAATAGCGTCTTGGGCTGTAGGAACGAGATC 

RFP-hTRA2B sense ATAggcgcgccTATGAGCGACAGCGGCGAGCAGAA 

 antisense tatgcggccgcTTAATAGCGACGAGGTGAGTATGATCGAGATCTGGAAC 

RFP-hSRSF1 iso1 sense ataggcgcgcctATGTCGGGAGGTGGTGTGAT 

 antisense gatcctgcaggTTATGTACGAGAGCGAGATCTGCT 

RFP-hSRSF10 sense ATAggcgcgccTATGTCCCGCTACCTGCGTCCC 

 antisense tatgcggccgcTCAGATCTTTCTTGAAGTGTAGTAAGCAGAACTGTAC 

RFP-hNPM1 sense ATAggcgcgccTATGGAAGATTCGATGGACATGGACATGAGCC 

 antisense tatgcggccgcTTAAAGAGACTTCCTCCACTGCCAGAGATCTTGAATA 

RFP-hNOP56 sense ATAggcgcgccTATGGTGCTGTTGCACGTGCTGTTTG 

 antisense tatgcggccgcCTAATCTTCCTGGGATGCTTTATGGAACTTTTTCTTC 

RFP-hSTAU1 sense ATAggcgcgccTATGAAACTTGGAAAAAAACCAATGTATAAGCCTGTTGA 

 antisense tatgcggccgcTCAGCACCTCCCACACACAGACATT 

RFP-hYBX1 sense ATAggcgcgccTATGAGCAGCGAGGCCGAGACCCAGC 

 antisense tatgcggccgcTTACTCAGCCCCGCCCTGCTCAGCC 

RFP-hBRIX1 sense ATAggcgcgccTATGGCGGCAACCAAGAGGAAACGG 

 antisense tatgcggccgcTTATTTTGTTTTCCCACTGTCCATCCTCTGTTTCATT 

RFP-hGTPBP4 sense ATAggcgcgccTATGGCACATTACAACTTCAAGAAAATTACGGTGGTGCC 

 antisense tatgcggccgcCTATCTCCTGTCCTTTTTACCAGCTTTCCTCTTCC 
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 qPCR primers 

target sense sequence antisense sequence 

18S rRNA GATGGTAGTCGCCGTGCC GCCTGCTGCCTTCCTTGG 

5.8S rRNA ACTCGGCTCGTGCGTC GCGACGCTCAGACAGG 

BOP1  AGAGAAGACCTCTGAGGAGCA TCATCTCTGGTCAGAGCACCTG 

PES1 CCTCCATGAACCCATCGTCAA ACTCGCTCTTCCCATAGGCT 

 

 Plasmids 

construct cloning strategy 

FhSynW GFP-GA50-GR50-myc Dieter Edbauer 

FhSynW GFP-GA50-PR50-myc Dieter Edbauer 

FhSynW GFP Dieter Edbauer 

FhSynW PR175-GFP NES Dieter Edbauer 

FhSynW-175xPR-GFP Dieter Edbauer 

FhSynW2 GFP-GR149 Dieter Edbauer 

FhSynW2 GFP-GR149 NES Dieter Edbauer 

FhSynW2 GFP-GR53 PCR from FhSynW2 GFP-GR149c  

BamHI/XhoI cloning into FhSynW2 GFP-GR149c 

FU2 HA-hMEK1 constitutive active Dieter Edbauer 

FU3a tagRFP-hBRIX1 PCR from ORF clone (Daniel Hornburg) 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 

FU3a tagRFP-hEIF4A3 Dieter Edbauer 

FU3a tagRFP-hGTPBP4 PCR from ORF clone (Daniel Hornburg) 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 

FU3a tagRFP-hNOP56 PCR from ORF clone (Daniel Hornburg) 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 

FU3a tagRFP-hNPM1 PCR from ORF clone (Daniel Hornburg) 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 

FU3a tagRFP-hSTAU1 PCR from ORF clone (Daniel Hornburg) 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 

FU3a tagRFP-rStau2-LL Dieter Edbauer 

FU3a tagRFP-hYBX1 PCR from ORF clone (Daniel Hornburg) 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 
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FU3a tagRFP-hSRSF1 iso1 PCR from cDNA 

AscI/SfbI cloning into FU3a-tagRFP-T2 2b 

FU3a tagRFP-hSRSF10  PCR from cDNA 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 

FU3a tagRFP-hTRA2A PCR from ORF clone (Daniel Hornburg) 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 

FU3a tagRFP-hTRA2B PCR from ORF clone (Daniel Hornburg) 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 

FU3a tagRFP-hYBX1 PCR from ORF clone (Daniel Hornburg) 

AscI/NotI cloning into FU3a-tagRFP-T2 2b 

FU3a-H2B-mEGFP Dieter Edbauer 

FU3a-tagRFP-T2 2b  Dieter Edbauer 

FU3a-tagRFP-T2 n1  Dieter Edbauer 

pEF6 GFP  Dieter Edbauer 

pEF6 GFP-GR149 Dieter Edbauer 

pEF6 GFP-GR53 BamHI/EcoV cloning into pEF6 triple-tag control 

pEF6 triple-tag control Dieter Edbauer 

pEF6-175xPR-GFP Dieter Edbauer 
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4. METHODS 

 

 Molecular biology 

 Molecular cloning 

 Cloning strategy 

Complementary DNA (cDNA) sequences of interest were either excised with restriction enzymes or 

polymerase chain reaction (PCR) amplified from a plasmid template or prepared cDNA. In order to 

insert cDNA sequences into a desired vector, restriction sites were chosen according to available 

restriction sequences in the multiple cloning site of the acceptor vector. Therefore, PCR primers were 

designed with restriction sites attached to the original primer sequences.  

 Polymerase chain reaction  

For standard PCR reactions Taq, Pwo or the high fidelity Q5 polymerase were used according to the 

standard conditions given in the tables below. For optimization these protocols were modified with 

regard to annealing temperature.  

Table 1:Taq/Pwo polymerase PCR standard components and temperature profile 

components volume 

̴150 ng template DNA ~ 2 µL 

primer forward (10 µM) 0.2 µL 

primer reverse (10 µM) 0.2 µL 

dNTPs (10 mM each) 1 µL 

10x Taq Buffer 5 µL 

DNA Polymerase (5U/µL) 0.2 µL 

MilliQ water ad 50 µL 

 

 

  

 temperature time 

initial denaturation 94°C 2 min 

denaturation 94°C 30 sec 

annealing Tm(primer)-5°C 30 sec 

elongation 73°C 1 min/1kb 

final elongation 73°C 10 min 

36 cycles   
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Table 2: Q5 polymerase PCR standard components and temperature profile 

components volume 

̴50 ng template DNA ~ 2 µL 

primer forward (10 µM) 0.25 µL 

primer reverse (10 µM) 0.25 µL 

dNTPs (10 mM each) 1 µL 

10x Taq Buffer 10 µL 

DNA Polymerase (5U/µL) 0.5 µL 

MilliQ water ad 50 µL 

 

 Gel electrophoresis and isolation of DNA fragments 

In order to analyze and separate DNA fragments one dimensional agarose gel electrophoresis was 

performed. Gels containing 0.7% to 2% agarose in Sodium Borate (SB) buffer dependent on the 

expected DNA length were supplemented with GelRed (1:50,000) and subsequently loaded with DNA 

samples premixed with the respective amount of 5x DNA loading buffer. Gels were run at constant 

300 V. DNA fragments were visualized by transillumination with ultraviolet light and analyzed by 

comparison of fragments to the DNA ladder. Finally, the DNA of interest was purified with the 

NucleoSpin® Gel and PCR Cleanup Kit (Macherey-Nagel) according to the manufacturer’s instructions. 

 Digest of DNA by restriction endonucleases and dephosphorylation  

Typically, plasmids or PCR products were digested at 37°C for 1 h or overnight, respectively, in a 50 µL 

reaction with the respective endonucleases. The amount of enzyme, the buffer system and the 

conditions required for a complete digest were chosen according to the information provided by the 

manufacturer (NEB). To prevent self-ligation of plasmid backbones 5’ phosphoryl termini were 

removed by calf intestine phosphatase (CIP). In a typical reaction 1 unit phosphatase was used for 3 µg 

of vector DNA at 37°C for 1 h. Subsequently, processed plasmids or PCR fragments were purified by 

gel electrophoresis or on column (see 4.1.1.3). 

 Ligation  

A typical 20 µL ligation reaction comprised 3 µL vector backbone, 9 µL PCR product or plasmid 

fragment, 2 µL T4 DNA Ligase catalyzing the formation of a phosphodiester bond between 

5’ phosphorylated and 3’ hydroxylated termini, 2 µL reaction buffer and water. The reaction was 

incubated for 1 h at room temperature (RT).  

 temperature time 

initial denaturation 98°C 30 sec 

denaturation 98°C 30 sec 

annealing Tm(primer)-5°C 30 sec 

elongation 72°C 30 sec/1kb 

final elongation 72°C 2 min 

36 cycles   
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 Transformation  

The complete volume of the ligation reaction was used for transformation into chemically competent 

DH5α cells. First, 100 µL bacteria cells were thawed on ice and DNA was added gently. Afterwards, 

cells were incubated on ice for 20 min, heat shocked for 30 sec at 42°C and again incubated on ice for 

3 min. 400 µL antibiotic free LB medium was added prior to horizontal shaking (300 rpm) at 37°C for 

1 hour. Thereafter, each transformation reaction was plated on a prewarmed antibiotic selective agar 

plate and incubated overnight at 37°C. For all repeat containing and therefore recombination prone 

inserts the temperature was set to 30°C. 

 Plasmid preparation and determination of DNA concentration 

In order to inoculate a 4 mL culture (mini preparation) or 100 mL culture (midi preparation) single 

colonies were picked from agar plates using a sterile pipette tip and transferred to LB (antibiotic 

selective) medium. For further amplification the cultures were incubated overnight at 37°C (or 30°C 

for repeat containing DNA). The next day, cells were pelleted by centrifugation at 3000 g for 10 min at 

4°C and plasmid DNA was extracted using the NucleoSpin® Plasmid kit (Macherey-Nagel) for mini 

preparation or the NucleoBond®Xtra Midi kit (Macherey-Nagel) for midi preparation according to the 

manufacturer’s instructions. Finally, the DNA was eluted in MilliQ water and stored at -20°C. 

Concentrations were determined by measurement of absorbance at 260 nm (NanoPhotometerTM, 

Implen). 

 Sequencing 

In order to verify successful cloning, purified plasmids were sent to GATC Biotech for sequencing. 

Standard primers binding in the backbone were provided by the company.  

 Quantitative real time PCR (qRT-PCR) 

 RNA isolation  

Total RNA isolation including DNase treatment was performed using the RNeasy Mini Kit (Qiagen) 

according to the protocol provided by the manufacturer. Purified RNA was eluted in 40 µL RNase-free 

water. Also, RNase-free consumables and solutions were used during all isolation steps. 

Concentrations were measured on the NanoPhotometer at 260 nm. RNA samples were stored at -80°C. 

 cDNA synthesis 

In order to transcribe RNA into cDNA the protocol provided with the TaqMan MicroRNA Reverse 

Transcription Kit was followed. cDNA was typically synthesized from 50 ng RNA using random hexamer 

primers (N6) according to Table 3. For generation of a standard curve equal amounts of each RNA 
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sample were pooled and diluted to a 1:10, 1:100, 1:1000 and 1:10,000 ratio. Freshly prepared cDNA 

was subsequently used as template in the qRT-PCR reaction. 

Table 3: cDNA synthesis standard components and temperature profile 

components volume 

dNTPs (100 mM) 0.3 µL 

RNA (50 ng) 10 µL 

N6 primer (50 ng/µL) 0.2 µL 

RNase inhibitor 0.38 µL 

10x RT Buffer 3 µL 

MultiScribe™ Reverse 

Transcriptase (50 U/µL) 

2 µL 

RNse-free water ad 30 µL 

 

 Quantitative PCR primer design 

Primers for the qRT-PCR reaction were designed to bind in exon-intron border regions, span an intron 

larger than 1000 bases and show no to little off target effects. Furthermore, the optimal product size 

was set to be 80 to 100 base pairs with a primer melting temperature of optimally 60°C and a primer 

size of 20 bases. Therefore, mRNA sequences were taken from the NCBI database and analyzed for 

suitable primers using the Primer3 web tool (http://bioinfo.ut.ee/primer3/). 

 qRT-PCR 

For a single qRT-PCR reaction 2 µl of 1:5 diluted cDNA were used as a template. For each primer pair a 

SsoFast™ EvaGreen (Bio Rad) containing reaction mix according to Table 4 was prepared. The reaction 

was performed using the CFX384 Real-Time System (Bio Rad) with the temperature profile depicted in 

Table 4. Primer pair specificity was verified by a single peak in melting curve analysis from 60°C to 

95°C with increases of 0.5°C every 5 sec in advance. Each reaction was performed as triplicate. Mean 

relative mRNA expression values were calculated with the Δ-Δ-Ct using YWHAZ and GAPDH as 

housekeeping genes. 

 

 

 

 

temperature time 

4°C 5 min 

25°C 10 min 

48°C 30 min 

95°C 5 min 
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Table 4: qRT-PCR standard components and temperature profile 

components volume 

SsoFast™ EvaGreen 2.5 µL 

primer forward (20 µM) 0.125 µL 

primer reverse (20 µM) 0.125 µL 

RNase-free water 0.25 µL 

DNA Polymerase (5U/µL) 0.2 µL 

reaction volume 5 µL 

 

 Cell Biology 

 Maintenance of cells  

 Cultivation of Human Embryonic Kidney (HEK293-FT) and HeLa cells 

HEK293-FT and HeLa cells were cultivated in DMEM Glutamax medium supplemented with 10% FCS, 

1% Penicillin/Streptomycin (Pen/Strep) and 1% non-essential amino acids (NEAA) at 37°C and 5% CO2. 

At a confluency of 80%, cells were split in a ratio of 1:10. For passaging, cells were washed once with 

PBS, detached with 1 mL 0.05% Trypsin/EDTA and replated in new medium.  

 Cultivation of primary neurons 

Primary cortical and hippocampal neurons were cultured from embryonic day 19 Sprague-Dawley rats 

and cultivated in Neurobasal medium at 37°C and 5% CO2. For cortical neurons the medium was 

supplemented with 2% B27, 1% Pen/Strep and 0.25% glutamine, for hippocampal neurons 0.125% 

glutamate was additionally added. Neurons were either plated in plastic dishes or on cover slips 

treated with 65% nitric acid and sterilized at 200°C for 6h. 85,000 and 400,000 cells were seeded for 

hippocampal and cortical neurons, respectively. Typically, primary neurons were transduced or 

transfected at 7 days in vitro (DIV7). 

 PDL coating of cell culture dishes 

In order to avoid detachment of cells, both, plastic dishes and cover slip containing plastic dishes, were 

coated with 1.5% PDL in 0.1 M borate buffer for 4°h and washed with water three times before plating 

HEK293 or neuronal cells. For neurons a final equilibration step with Neurobasal medium followed. 

Dishes were kept in the cell culture incubator until cells were seeded.  

 temperature time 

initial denaturation 95°C 30 sec 

denaturation 95°C 5 sec 

annealing 60°C 5 sec 

elongation 95°C 10 sec 

50 cycles   
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 Transfection 

 Transfection of HEK293-FT and HeLa cells 

In order to introduce foreign DNA into HEK293-FT or HeLa cells, 200,000 cells per mL were seeded the 

day before transfection. The transfection mix for one well of a 12-well plate was set up as follows:  

component amount for 1 well in 12-well plate 

DNA in total 1 µg 

OptiMEM 125 µL 

combine with:  

Lipofectamin 2000 2.5 µL 

OptiMEM 125 µL 

 

For other plate formats the volumes were adjusted accordingly. After 20 min incubation time at RT, 

the mix was gently added into the cell culture medium and incubated for 48 h before cells were 

harvested for analysis.  

 Transfection of primary neurons 

Just as HEK293 cells, neurons were transfected with Lipofectamin 2000 according to the 

manufacturer’s instruction. The following table shows the setup of the neuronal transfection mix: 

component amount for 1 well in 12-well plate 

DNA in total 1.8 µg 

OptiMEM 100 µL 

combine with:  

Lipofectamin 2000 3.2 µL 

OptiMEM 100 µL 

 

During the 20 min incubation time of the transfection mix, hippocampal neurons on glass cover slips 

were removed from the original plate, dipped into warm Neurobasal medium and transferred into a 

new plastic dish containing prewarmed Neurobasal medium supplemented with 1% Pen/Strep and 

0.25% glutamine. Then, the transfection mix was added drop-wise into the new dish. 45 min later, 

cover slips were again removed, dipped in warm Neurobasal medium twice and transferred back into 

the original plate. Analysis followed three to five days after transfection.  
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 Usage of lentivirus 

 Lentivirus production 

In order to produce lentiviruses with high virus titer, low passage HEK293-FT cells were used for 

packaging. Per LTR vector, three 10 cm were plated with 5.5 million cells 24  before transfection with 

Lipofectamin 2000. Three essential constructs were needed to set up the transfection mix: pVSVg as 

envelope protein and psPAX as Gag-Pol-Rev containing plasmid which allows for the formation of the 

virus as well as the LTR vector harboring the construct of interest. The transfection mix was set up as 

follows:  

component amount for three 10 cm dishes 

LTR vector 18.6 µg 

pSPAX2 11 µg 

pVSVg 6.4 µg 

OptiMEM 4.5 mL 

combine with:  

Lipofectamin 2000 108 µL 

OptiMEM 4.5 mL 

 

Again, the mixture was incubated for 20 min. In the meantime, medium in the 10 cm dishes was 

changed to 5 mL OptiMEM supplemented with 10% FCS. Then, 3 mL of the transfection mix per dish 

were slowly added and incubated with the cells for 24 h. Thereafter, medium was exchanged to 10 mL 

DMEM Glutamax plus 10% FCS, 1% Pen/Strep, 1% NEAA and 1.3% BSA. 24 h later, the virus containing 

medium was collected, filtered through a sterile 0.45 µm PES membrane filter and centrifuged at 

66,000 g for 2 h at 4°C. The pellet was resuspended in 120 µL Neurobasal medium, aliquoted and 

stored at -80°C until usage.  

 Transduction 

In order to transduce neurons with lentivirus, 1 µL of virus preperation was added to one well of a 12-

well plate. For other plate formats the volume was adjusted accordingly. Cells were incubated for at 

least 7 days in case of DPR proteins to allow proper aggregate formation. 
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 Cell viability assays 

 XTT assay 

To assess cell viability, the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide 

(XTT) assay from Roche was used according to the manufacturer’s instructions. For this purpose, cells 

were cultivated in 96-well plates and after 48 h 50 µL of the freshly thawed XTT labeling reagent mixed 

with the electron-coupling reagent were added. After 24 h absorption was measured 

spectrophotometrically at 480 nm with a plate reader.  

 LDH activity assay 

Toxicity assays in transduced primary cortical neurons (DIV7+14) and HEK293FT cells were performed 

in 96-well plates using the lactate dehydrogenase (LDH) cytotoxicity assay from Promega following the 

manufacturer’s protocol. Therefore, first, the whole cell supernatants were transferred into a new 

plate and the remaining cells were frozen for 30 min at -80°C in order to lyse them. Then, cells were 

thawed again and resuspended in 100 µL medium. In a new 96-well plate 50 µL of the cell supernatant 

as well as the cell suspension was added to 50 µL of the substrate mix. After 10 to 20 min incubation 

at RT in the dark, the enzymatic reaction was stopped and absorption was measured at 490 nm 

wavelength. To calculate relative toxicity, first the mean background value was subtracted. Then the 

experimental LDH release was divided by the maximum LDH release and further normalized to the 

respective control.  

 Cell respiration assay 

Cellular respiration was measured on the Seahorse XF96 extracellular flux analyzer (Agilent). The day 

before the assay, primary neurons were plated in PDL-coated 96-well Seahorse assay plates. One hour 

before cell respiration measurements started, cells were washed and the growth medium was 

exchanged with pre-warmed XF assay medium supplemented with 10 mM pyruvate and 10 mM 

glucose using the Seahorse XF prep station. The cells were then incubated at 37°C without CO2 for at 

least 45 min. Oxygen consumption rates (OCR) were recorded at baseline and after Oligomycin, FCCP 

and a mixture of antimycin A and rotenone addition through the injector ports. Oligomycin (1 µM 

diluted in assay medium) injection allowed for calculation of ATP-linked OCR and the OCR due to 

proton leak. The maximal respiration was determined after adding FCCP (0.75 µM). The OCR 

independent of complex IV could be measured after Rotenone and antimycin A (10 μM each) injection. 

The analyzer was set to obtain three data points per respiratory stadium including 4 min of mixing and 

4 min of measurement.  



METHODS 

59 
 

 Protein biochemistry 

 Immunoblotting 

 Cell lysate sample preparation 

HEK293-FT cells growing in a 12-well plastic dish were harvested in 1x PBS and centrifuged at 800 g for 

5 min. The cell pellet was resuspended in 300 µL RIPA buffer supplemented with protease inhibitor 

cocktail (1:500) and incubated for 20 min on ice. Afterwards, the lysate was centrifuged at 17,000 g for 

15 min at 4°C. However, when cells were harboring DPR proteins the lysate was only centrifuged at 

1,000 g for 10 min. Finally, 4x Laemmli sample buffer was added to the supernatant in a 1:4 ratio and 

samples were boiled at 95°C for 5 min.  

In order to prepare lysate from neurons, cells were directly harvested in 180 µL 2x Laemmli 

sample buffer per well.  

 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

In order to separate proteins by their molecular masses, SDS-PAGE was performed. Therefore, lysate 

samples were run under denaturizing conditions using discontinuous ready-to-use 10-20% Tris-Tricine 

polyacrylamide gels from Novex. Gels were loaded with 10 to 20 µL of lysate samples and 

electrophoresis was carried out in tricine buffer with a voltage of 80 V until the dye front reached the 

stacking gel. Afterwards, the gel was run at 120 V. For comparison of molecular weights, the SeeBlue 

Protein marker was run side by side to the samples.  

 Immunoblotting and immunodetection 

Previously separated proteins were blotted on an isopropanol activated polyvinylidene difluoride 

(PVDF) membrane at a constant current of 400 mA for 75 min using a wet blotting chamber. 

Subsequently, the membrane was blocked in 0.2% i-Block in TBSTx for 1 h at RT in order to reduce non-

specific binding sites and afterwards incubated in primary antibody solution at 200 rpm and 4°C 

overnight. The next day, five washing steps with TBSTx followed. Then, the membrane was incubated 

for 1 h at RT with an HRP coupled secondary antibody appropriate for the species of the first antibody 

used and washed another five times. For detection of the protein of interest, the membrane was 

incubated with the chemiluminescence substrate ECL for 2 min. Directly afterwards, an X-ray film was 

exposed to the membrane in complete darkness and developed on an X-ray film processor.  

 SUnSET assay 

In order to monitor total protein synthesis a Surface sensing of translation (SUnSET) assay was 

performed. Therefore, primary cortical neurons were treated with 10 µg/mL puromycin for 10 min at 



METHODS 

60 
 

37°C and 5% CO2 in order to allow puromycin, as structural analogue of aminoacyl-transfer RNA, to 

incorporate into the newly synthesized peptide chains. Afterwards, cells were lysed and 

immunoblotted as described above and protein synthesis was analyzed by detection with a puromycin 

specific antibody.  

 Immunoprecipitation of GFP-tagged poly-GR and poly-PR aggregates 

In order to analyze the whole proteome as well as the interacting proteins of GFP-(GR)149, (PR)175-GFP 

or GFP in infected cortical neurons (DIV7+8) and transfected HEK293FT cells quadruplicates of 

immunoprecipitation samples were prepared. Cells were harvested in 1 mL IP lysis buffer substituted 

with Benzonase (67 U/mL) per 10 cm dish. Lysates were rotated for 45 min at 4°C. For whole proteome 

analysis 10% of the samples were kept while the remaining lysate was centrifuged at 1000 g for 5 min 

at 4°C. In the meantime, 10 µg of GFP antibody were incubated with 50 µL Protein-G Dynabeads. 

Afterwards, lysate supernatant was united with the beads and incubated for 3 h at 4°C. Three washing 

steps in 1 mL IP basic buffer followed. 80% of the sample was used for further sample preparation for 

mass spectrometry analysis. 20% of the beads was boiled in 4x Laemmli sample buffer at 95°C in order 

to release the protein from the antibody and the resulting samples were run on a gel followed by 

immunoblotting.  

 Ribosome binding assay 

For investigation of the binding capacity of a protein of interest (antigen) to a specific other target 

protein, in this case the ribosome, immunoassays were carried out. Importantly, all assay steps 

including blocking and washing, were performed with ribosome assay buffer (RB) in order to keep the 

Mg2+ concentration at 20 mM thereby guaranteeing an intact ribosome. Also, if not indicated 

otherwise, each incubation step was carried out on a horizontal shaker at 220 rpm for 1 h at RT. First, 

MaxiSorb 96-well plates were coated with 100 µL of 80S yeast ribosome (5-500 ng/well) at 4°C 

overnight. The next day, plates were washed three times with RB, blocked with 300 µL 1% BSA in RB 

and washed again. Then, the antigen (0.1-10 µg/well) was added for 1 h at RT, plates were washed 

three times and incubation with a primary antibody detecting the antigen started. After three more 

washing steps the plates were incubated with an HRP coupled secondary antibody. Thereafter, plates 

were washed again and incubated with 100 µL 3,3′,5,5′-Tetramethylbenzidine (TMB), a liquid substrate 

for HRP, for 5 min in the dark. Finally, the reaction was stopped with 2 M sulfuric acid and absorption 

was measured at 450 nm or 630 nm on a plate reader.  

 Chromatin immunoprecipitation (ChIP) from HEK293 cells 

In order to elucidate the binding of proteins of interest to certain chromatin regions, ChIP experiments 

were performed with the MAGnify Chromatin Immunoprecipitation System kit (Life Technologies). For 
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all reaction steps Lo-bind tubes were used. 1 million HEK293-FT cells served as starting material. The 

chromatin binding protein Histone 2B (H2B) was used as positive control. In a final step the eluted DNA 

binding to the protein of interest was amplified by PCR with specific primers prior to analysis by gel 

electrophoresis. 

 Crosslinking 

Cells were harvested from 6-well plates in 5 mL medium and centrifuged 5 min at 200 g. After 

resuspension of the pellet in PBS, cells were counted and diluted to 1 million cells in 500 µL PBS. 13.5 µL 

37% Formaldehyde was added and incubated for 10 min prior to the addition of 57 µL 1.25 M glycine 

and 5 min incubation in order to stop the reaction. Afterwards, the solution was centrifuged at 2800 g 

for 10 min at 4°C. Then, the pellet was washed with cold PBS and centrifuged again.  

 Cell lysis and chromatin shearing 

The pellet was taken up in 50 µL PI containing lysis buffer (1:200) per 1 million cells, vortexed and 

incubated on ice for 10 min. 300 µL dilution buffer was added prior to sonication. The following 

sonication protocol was chosen: 30% amplitude with 0.6 sec duty cycle and 4 cycles of 30 sec pulse 

with 1 min pause. Thereafter, a centrifugation step of 20,000 g for 5 min at 4°C followed. In order to 

verify chromatin shearing into 200 base pair long fragments, 10 µL of the supernatant was incubated 

with 1 µL proteinase K at 55°C for 20 min and run on a 1.5% agarose gel. The rest of the supernatant 

was split into three aliquots with 100 µL each, 10% of the samples were kept as input.  

 Immunoprecipitation 

To each sample 10 µL antibody precoupled Dynabeads were added and incubated on a rotator for 2 h 

at 4°C. For GFP-tagged proteins GFP-Trap®_M beads (chromotek) were used. Afterwards, beads were 

separated from the solution by a magnet, the supernatant was removed, and the beads were washed 

three times with 100 µL IP Buffer 1 and two times with IP Buffer 2.  

 Reverse crosslinking and DNA isolation 

In order to separate proteins from DNA, 53 µL or 43 µL Reverse Crosslinking Buffer supplemented with 

Proteinase K (1 µL per sample) were added to IP or input samples, respectively, and incubated for 

15 min at 55°C. Thereafter IP sample supernatants were harvested. Finally, all samples were incubated 

for 15 min at 65°C. DNA was isolated using DNA-binding magnetic beads. Therefore, 20 µL beads 

together with 50 µL DNA purification buffer were added to each sample and incubated for 5 min at RT. 

Then, beads were washed two times with 150 µL DNA wash buffer prior to incubation for 5 min at 55°C 

with 150 µL DNA elution buffer. The eluted DNA was separated from the beads and transferred into a 

new tube and stored at -20°C.  
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 Imaging 

 Immunofluorescent stainings in patient tissue  

The tissue was first de-paraffinated and rehydrated by incubating the tissue slides in xylene for 20 min 

and subsequently rinsing them 10x in 100% ethanol twice, once in 96% ethanol and finally twice in 

70% ethanol. To retrieve the antigen, slides were boiled four times 5 min in citrate buffer pH 6.0 using 

a microwave and cooled down for 20 min. Blocking in inhibiting endogenous peroxidase was 

performed with 5% H2O2 in methanol for 15 min prior to a brief rinse with deionized water. After 

sections were washed in PBS/0.05% Brij35, blocking with 2% fetal calf serum in PBS for 5 min followed. 

Thereafter, primary antibody solution was applied over night at 4°C. The next day, the tissue was 

washed twice in PBS/0.05% Brij35 prior to incubation with Alexa-coupled secondary antibodies (1:500 

in blocking buffer) for 1 h at RT in the dark. Thereafter, the brain sections were washed again, stained 

with DAPI (1:5000 in blocking buffer) 15 min and washed twice in 0.05% Brij35 in PBS and twice in PBS 

only. The tissue was treated with Sudan Black B for 1 min at RT, rinsed in PBS and mounted with 

Fluoromount Aqueous mounting medium.  

 Immunofluorescent stainings in cell culture 

For immunostainings in cell culture, hippocampal neurons, HEK293-FT or HeLa cells were grown on 

PDL coated glass cover slips. All incubation steps were performed in a wet chamber in the dark. First, 

cells were fixed with 4% paraformaldehyde for 15 min and the nuclei were subsequently permeabilized 

by incubation with permeabilization buffer for 5 min. After three washing steps using PBS, the cover 

slips were blocked in blocking solution for 30 min and then incubated in primary antibody solution 

(blocking buffer diluted 1:10 in water containing the primary antibody) at RT for 1 h. Next, they were 

again washed with PBS and incubated in Alexa-coupled secondary antibody solution (1:400 in blocking 

buffer diluted 1:10 in water) for 1 h. Finally, the cells on cover slips were treated with DAPI or TO-PRO-

3 (1:5000 in PBS) for 15 min in order to stain the nuclei and mounted on a glass microscope slides using 

Vectashield mounting medium.  

 Image acquisition 

Single plane images from immunofluorescent stainings were acquired with the laser scanning 

microscope LSM 710 system from Carl Zeiss together with the ZEN 2010 software. Plan-Apochromat 

40x and 63x oil objectives were used. For colocalization experiments the pinhole was set to 1 Airy Unit 

for the longest wavelength and adjusted for the others accordingly. The scanning speed was chosen 

according to the quality of the staining. In general, the scanning speed was much lower for patient 

tissue stainings and additionally, it was averaged over 2 or 4 images allowing for better quality. Images 
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were acquired at 1024 x 1024 pixels. In order to allow meaningful comparison between groups, all 

samples of one experiment were imaged with the same settings.  

 Image analysis  

All images were processed with the ImageJ software. When required, brightness and contrast were 

adapted by lower fixed grey value for thresholding the signal. For retaining comparability, same 

thresholds were applied for images of one channel. Whenever possible, images were analyzed blinded 

to the experimental conditions. Counting of aggregates and cells was done without software image 

analysis programs.  

 Statistical analysis 
Statistical analysis was conducted with the GraphPad Prism software. Depending on the experimental 

setting and distribution of the data points the appropriate test including post-test was performed. 

Initially, it was tested for normal distribution. Mostly, multiple data groups should be compared to a 

control group. Here, the one-way ANOVA was used for normally distributed data points, whereas for 

non-normal distributed data, the Kruskal Wallis test was used. These tests are specified in the figure 

legends. Statistical significance was indicated as p-value as follows: * p<0.05, ** p<0.01, *** p<0.001. 
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5. RESULTS  

Since the discovery that the (GGGGCC)n repeat expansion within the first intron of C9orf72 in ALS/FTD 

patients is translated, DPR proteins have come into the focus of researchers. At the beginning of my 

PhD, the relative contribution of the two arginine-rich DPR species poly-GR and poly-PR to 

neurodegeneration was just starting to emerge. Besides impairment of splicing and disruption of rRNA 

processing only little was known. In order to address the role of poly-GR and poly-PR in ALS/FTD 

disease pathogenesis, my aim was to elucidate the mechanisms underlying DPR toxicity by analysis of 

an extensive interactome study in different cell culture systems. Importantly, the validation of poly-

GR/PR interactors was aimed to be extended to patient tissue.  

In order to express the two DPR species in different cell types, I used ATG-initiated synthetic 

poly-GR and poly-PR constructs during the whole study. The repeat sequences were harboring 

alternative codons preventing RNA based toxicity and reducing genomic repeat instability. The poly-

GR sequence was C-terminally tagged with GFP containing 149 repeats resulting in GFP-(GR)149, while 

poly-PR was tagged on the N-terminus and comprised 175 repeats resulting in (PR)175-GFP. A GFP-only 

construct served as negative control in all experiments.  

 Subcellular localization and toxicity of poly-GR and poly-PR  

I first analyzed general characteristics of poly-GR as well as poly-PR in two cell culture systems. For this 

purpose, I expressed GFP-(GR)149 and (PR)175-GFP in HEK293 cells and primary rat neurons and studied 

localization as well as toxicity.  

 Poly-GR and poly-PR localization differs between cell types 

Consistent with previous results (Schludi et al., 2015b), in transfected HEK293 cells, GFP-(GR)149 was 

found in both nucleolus and cytoplasm while (PR)175-GFP mainly localized to the nucleolus. Surprisingly, 

in contrast to previous studies, lentiviral expression of GFP-(GR)149 in primary neurons resulted in 

predominantly diffuse cytoplasmic localization and only little nucleolar expression suggesting different 

poly-GR interacting proteins in neurons and HEK293 cells may affect its subcellular localization. (PR)175-

GFP was mostly localized to the nucleolus as in HEK293 cells (Figure 5-1A and B).  

Although the repeat length of poly-GR and poly-PR with 149 and 175 repeats, respectively, is 

considerably longer compared to previous studies, it is probably still shorter than in patients. Since 

poly-GR and poly-PR are found in the cytoplasm in patients and aberrant localization potentially alters 

the downstream toxic effects, I attempted to relocalize poly-GR and poly-PR to the cytoplasm in our 

cell culture system. Thus, I fused the constructs to a nuclear export signal (NES) from p53 

(MFRELNEALELK) or (GA)50, which by itself forms large cytoplasmic aggregates. Surprisingly, fusion with 
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(GA)50 only led to even bigger nucleolar aggregates and also the NES failed to form poly-GR and poly-

PR inclusions in the cytoplasm (Figure 5-1C). 

 

 

 

 

 Nucleolar poly-GR and poly-PR show significant toxicity in vitro 

As reported in previous studies, poly-GR and poly-PR are toxic in various cell culture systems. Also in 

my hands, expression of both, (PR)175-GFP and GFP-(GR)149, showed growth impairment of HEK293 cells 

in an XTT proliferation assay. This test is measuring the activity of the succinate-tetrazolium reductase 

system which belongs to the respiratory chain of mitochondria and is only active in metabolically intact 

cells (Figure 5-2A). Next, active cell death was measured by an LDH colorimetric assay, detecting the 

presence of the LDH enzyme in the culture medium being released from cells where membrane 

integrity is compromised. However, (PR)175-GFP and GFP-(GR)149 expression in HEK293 cells did not lead 

to active cell death (Figure 5-2B). In neurons, surprisingly only nucleolar (PR)175-GFP but not 

cytoplasmic GFP-(GR)149 induced significant neuronal loss (Figure 5-2C) leading to the hypothesis that 

only nucleolar localization may be driving the poly-GR/PR toxicity observed in vitro. This would be in 

line with previous studies in which poly-GR was exclusively localized to the nucleolus and was 

notoriously toxic compared to the cytoplasmic GFP-(GR)149 in this study. To further validate this 

hypothesis, I also performed a toxicity assay in GFP-(GA)50-(GR)50 and GFP-(GA)50-(PR)50 expressing 

neurons, which harbor big nucleolar inclusions with dense fluorescence signal. Here, GFP-(GA)50-(GR)50 

and GFP-(GA)50-(PR)50 transduced neurons displayed even higher toxicity as measured by LDH release 

assay than (PR)175-GFP transduction (Figure 5-2D).  

Figure 5-1: Poly-GR and poly-PR show nucleolar and cytoplasmic expression in HEK293 cells and neurons.  

(A, B) GFP, GFP-(GR)149 or (PR)175-GFP were transduced or transfected in primary rat neurons and HEK293 cells, respectively. 
(A) Images show a single confocal plane depicting GFP fluorescence and anti-fibrillarin (red) staining to visualize nucleoli in cells 
stained with DAPI (blue). Scale bar denotes 20 µm. (B) Quantitative analysis of GFP-(GR)149 or (PR)175-GFP colocalization with 
fibrillarin-labeled nucleoli, n=17 for GFP-(GR)149, n=13 for (PR)175-GFP images in neurons and n=6 for GFP-(GR)149, n=6 for 
(PR)175-GFP images in HEK cells from two independent experiments, mean ± SEM is shown. (C) Images show GFP fluorescence 
of a single confocal plane of GFP-(GA)50-(GR)50, GFP-(GA)50-(PR)50, GFP-(GR)149-NES or (PR)175-GFP-NES expressing primary 
hippocampal neurons. Nuclei are visualized with DAPI. Scale bar denotes 20 µm. 
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Figure 5-2: Nucleolar poly-GR and poly-PR show significant toxicity in HEK293 cells and neurons.  

(A, B) GFP, GFP-(GR)149 or (PR)175-GFP were expressed in HEK293 cells. (A) 3 days after transfection cell viability was measured 
by XTT assay. GFP-(GR)149 and (PR)175-GFP showed significantly reduced cell growth compared to GFP control (12 replicates 
from 2 independent experiments, box plot is shown with 25th percentile, median and 75th percentile and whiskers 
representing minimum and maximum, *** denotes p<0.001 in one-way ANOVA with Dunnett's post-test). (B) LDH release 
assay detects no significant cell death upon expression of (PR)175-GFP and GFP-(GR)149 compared to GFP control (n=2 
independent experiments with 6 replicates each, box plot is shown, n.s. denotes not significant in one-way ANOVA with 
Dunnett's post-test). (C, D) Primary cortical rat neurons were infected with indicated constructs. (C) LDH release assay detects 
significant toxic effect upon (PR)175-GFP, but not GFP-(GR)149 expression compared to GFP control. (18 replicates from 3 
independent experiments, box plot is shown, *** denotes p<0.001 in one-way ANOVA with Dunnett's post-test). (D) LDH 
release assay reveals toxic effect comparable to (PR)175-GFP upon expression of nucleolar GFP-(GA)50-(GR)50 and GFP-(GA)50-
(PR)50 (12 replicates from 2 independent experiments, box plot is shown, *** denotes p<0.001 in one-way ANOVA with 
Dunnett's post-test). 
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 GFP-(GR)149 and (PR)175-GFP bind DNA 

Besides localization and toxicity, I also investigated the capacity of GFP-(GR)149 and (PR)175-GFP to bind 
negatively charged DNA as it is known that the positively charged arginine residues within the two DPR 
protein species have the ability to bind negatively charged RNA (Lipfert et al., 2014). Therefore, I isolated 
crosslinked DNA from HEK293 cells expressing poly-GR/-PR, and GFP as negative control and performed 
chromatin immunoprecipitation (ChIP) experiments with three replicates each. Histone 2B as DNA-binding 
protein served as positive control. After the last purification step, the DNA was amplified with primers 
specific for Presenilin 2 exon 7 and visualized on an agarose gel. The intensity of the PCR products shows that 
in comparison to the GFP control, GFP-(GR)149 and (PR)175-GFP have a higher binding capacity to DNA 
suggesting that the positively charged residues of arginine bind to the negatively charged phosphate group of 
the DNA ( 

 

Figure 5-3). As expected, the positive control H2B had the highest binding capacity.  

 

 

Figure 5-3: Poly-GR and poly-PR bind DNA in HEK293 cells. 

ChIP assay performed with DNA extracted from cell lysates of GFP-(GR)149, (PR)175-GFP, GFP or H2B-GFP expressing HEK293 
cells 3 days after transfection. Histone 2B served as positive control and GFP as negative control. DNA was amplified with 
primers specific for Presenilin 2 exon 7 and visualized on an agarose gel. Note that in comparison to the GFP control, GFP-
(GR)149 and (PR)175-GFP have a higher DNA binding capacity. 

 

Overall, the two DPR species analyzed in this study show both cytoplasmic and nucleolar localization 

upon expression in HEK293 cells and primary rat neurons. In HEK293 cells, both bind to DNA. 

Importantly, expression of nucleolar GFP-(GR)149 and (PR)175-GFP is accompanied by cellular toxicity in 

vitro, while cytoplasmic poly-GR is not. 
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 Poly-GR/PR preferentially interact with RNA-binding proteins 

The main focus of this work was to identify the mechanisms driving poly-GR/PR toxicity in cellular 

models and ultimately in C9orf72-ALS/FTD. In order to understand the physiological and functional 

consequences of poly-GR/PR expression in ALS/FTD patients, my first approach was to set up a 

proteome study in cell culture. Therefore, I first conducted an immunoprecipitation (IP) experiment 

using a GFP antibody in order to pull down GFP-(GR)149, (PR)175-GFP or GFP from transduced cortical 

neurons (DIV7+8) and transfected HEK293FT cells. To reduce indirect RNA-mediated interactions, the 

lysates were treated with benzonase before IP. Immunoblotting validated the enrichment of poly-GR 

and poly-PR as well as the GFP control in the IP samples (Figure 5-4A and B). In a second step, label-

free quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed in 

collaboration with Daniel Hornburg and Jakob Bader from the Max-Planck Institute for Neurobiology. 

That way it was possible to identify a plethora of poly-GR/PR interacting proteins. In order to analyze 

differences in global protein expression between poly-GR/PR and GFP expressing cells, additionally, 

whole proteome analysis was performed from the neuronal extracts.  

 

Figure 5-4: Poly-GR and poly-PR can be immunoprecipitated from neuron and HEK293 cell lysates.  

Primary cortical rat neurons (DIV7+8) (A) and HEK293 cells (B) expressing GFP, GFP-(GR)149 or (PR)175-GFP were subjected to 
anti-GFP immunoprecipitation. Immunoblotting with a GFP specific antibody confirms pull-down of GFP, GFP-(GR)149 as well as 
(PR)175-GFP in the GFP-IP lanes. 
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 Poly-GR/PR predominantly interact with ribosomes in primary neurons 

In primary cortical neurons, we discovered in total close to 600 proteins binding to GFP-(GR)149 and 
(PR)175-GFP, but not the GFP control. In detail, we found 89 proteins significantly enriched in poly-GR 
expressing neurons and 104 in poly-PR expressing neurons, of which 39 were shared interactors 
mostly associated with stress granules and the ribosome (Figure 5-5A and Table S1/  
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Table S2). Among the poly-GR and poly-PR interacting proteins CCDC40, a dynein regulator, as well as 

C1QBP, a multifunctional protein involved in protein synthesis, splicing and apoptosis, were found to 

show the highest enrichment (Figure 5-5B). Moreover, analysis of interactors showed significant 

enrichment in proteins containing low complexity domains (LCD) (Figure 5-5C) in poly-GR and poly-PR 

expressing neurons, which is consistent with previous observations (Lee et al., 2016a; Lin et al., 2016). 

In line with the role of LCD containing proteins in assembly of membrane-less organelles, ~60% of the 

enriched proteins were annotated as RNA-binding (Gerstberger et al., 2014). They can be clustered 

into components of the nucleolus and stress granules, with interactors such as NPM1, STAU2, and 

YBX1, as well as proteins involved in splicing and methylation, like PRMT1/5, WDR77, and SRSF 

proteins. Furthermore, functional classification analysis revealed that the most abundant class of 

interacting proteins were ribosomal subunits. About 30% of them were identified as mitochondrial 

ribosomal proteins that are required for translation of the 13 subunits of respiratory chain complexes.  
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Figure 5-5: Poly-GR/PR predominantly interact with ribosomes in primary neurons.  

(A, B, C) Quantitative proteomic analysis of GFP immunoprecipitations from cortical neurons expressing GFP, GFP-
(GR)149 or (PR)175-GFP (DIV7+8). (A) Graph showing proteins with significant enrichment in poly-GR and pol-PR 
interactomes compared to GFP control. Interactors were manually grouped into functional categories. Note that the 
ribosome is the class with most interactors. Orthologs of proteins in italics were also found in the poly-GR/PR 
interactomes from HEK293 cells. (B) Proportion of low complexity regions (IUPred-L) of all proteins identified in the 
neuronal interactome analysis, the poly-GR interactome and the poly-GR interactome, ** denotes p < 0.01 in Mann-
Whitney-Wilcoxon test. (C) Volcano plots show interacting proteins plotted as log2 fold change versus the −log10 of 
the P-value. Grey line indicates significance cut-off. Enriched protein families are color coded: cytoplasmic ribosome 
(blue), mitochondrial ribosome (red), stress granules (brown) (Jain et al., 2016) and methylosome (green). The top 
enriched proteins (sorted by fold-change) and the proteins analyzed in this study are labeled with gene names. Filled 
circles indicate proteins significantly altered in HEK293 cells. 



RESULTS 

72 
 

 Mitochondrial ribosomal proteins are the most abundant interactors in the poly-GR/PR 

interactome of HEK293 cells 

In order to compare the neuronal interactome of GFP-(GR)149 and (PR)175-GFP with an additional 

cellular system, I analyzed the poly-GR/PR interactome in HEK293 cells. Here, 394 proteins were 

associated with poly-GR and 50 were identified being enriched in poly-PR (Figure 5-6 and Table 

S3/Table S4). The two DPR species had 49 interactors in common while CD2AP was the only protein 

exclusively interacting with poly-PR (Figure 5-7A). Classification revealed that poly-GR associates with 

methyltransferases, such as PRMT1 and PRMT5, and numerous proteins from the 80S ribosome. In 

addition, both, poly-GR and poly-PR interactors were related to splicing with DDX/DHX and SRSF 

proteins being examples for RNA helicases and RNA splicing factors. Also stress granule associated 

proteins were enriched in both DPR interactomes with STAU1 being among them (Figure 5-5A proteins 

marked in italics). With ~15% of poly-GR interactors and ~67% of poly-PR interactors, mitochondrial 

ribosomal proteins were the most represented interactors. Moreover, about 80% of the interacting 

proteins were annotated as RNA-binding proteins, similar to the interactors of the neuronal 

interactome.  
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Figure 5-6: Mitochondrial ribosomal proteins are the most abundant interactors in the poly-GR/PR interactome of HEK293 cells.  

Quantitative proteomic analysis of GFP immunoprecipitations from HEK293 cells transduced with GFP, GFP-(GR)149 or (PR)175-GFP. 
Volcano plots show all significantly enriched interactors. The data for all proteins are plotted as log2 fold change versus the −log10 of 
the P-value. Grey line indicates significance cut-off. Enriched protein families are color coded: cytoplasmic ribosome (blue), 
mitochondrial ribosome (red), stress granules (brown) (Jain et al., 2016) and methylosome (green). The top enriched proteins (sorted 
by fold-change) and the proteins analyzed in this study are labeled with gene names. Filled circles indicate proteins significantly 
altered also in neurons.  
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 The interactomes of poly-GR/PR identify overlapping interactors in the two cell culture 

systems 

Figure 5-7: Poly-GR and poly-PR interact with similar RNA-binding proteins in neurons and HEK293 cells. 

(A, B) Comparison of poly-GR/PR interactomes of HEK293 cells and neurons expressing GFP, GFP-(GR)149 or (PR)175-GFP. 
(A) Venn diagram directly comparing individual interactors of poly-GR and poly-PR between cell types. (B) 2D analysis of gene 
ontology terms (GOMF, GOCC, GOCC, GOPB, KEGG, Uniprot Keywords) and stress granule proteins (Jain et al., 2016) for 
proteins identified in the poly-GR and poly-PR interactome in primary neurons and HEK293 cells (Fig. 5.5B and 5.6). Dots with 
nearly identical position and annotation were removed for clarity. Related terms from the main enriched protein families are 
color coded: ribosome (blue), nucleolus and stress granules (purple)(Jain et al., 2016), methylosome (green), splicing (yellow) 
and others (black). Annotation terms with a Benjamini-Hochberg FDR (q-value) smaller than 0.1 and comprising at least six 
proteins quantified by mass spectrometry are shown. 1D annotation scores close to 1 indicate strongest enrichment over the 
GFP control, scores close to 0 depict no enrichment and scores close to -1 strongest depletion. The analysis was performed in 
the Perseus software (Tyanova et al., 2016). 
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To elucidate whether primary rat neurons and human HEK293 cells show similar interactors which can 

be grouped into parallel pathways, I compared their interactomes directly. Detailed analysis revealed 

that neurons and HEK293 cells have 33 proteins in common in GFP-(GR)149 immunoprecipitates, such 

as NCL, C1QBP, and PRMT5. The poly-PR interactomes from both cell types on the other hand only 

share 11 identical proteins mostly being ribosomal subunits from mitochondria (C1QBP, MRPL3, 

MRPL17, MRPL22, MRPL27, MRPL28, MRPL41, MRPS30, MRPS9, SRSF10, YBX1) (compare Figure 5-5B 

with Figure 5-6 and Figure 5-7A). All four interactomes share C1QBP, MRPL3, MRPL28, and YBX1. When 

comparing gene ontology (GO) terms enriched in poly-GR interactors of the two cell types it becomes 

clear that there is a high selectivity for proteins associated with the nucleolus, ribosomes, the 

spliceosome, stress granules, and the methylosome. On the other hand, poly-PR interactors were 

mostly enriched in proteins connected to the U1 and U4 snRNP, the exon junction complex and the 

large ribosomal subunit from mitochondria (Figure 5-7B).  

Taken together, the poly-GR and poly-PR interactomes of primary rat neurons and human HEK293 cells 

revealed RNA-binding proteins as the most abundant interactors. In line with this finding, functional 

classification analysis showed that these interactors were associated with the cytosolic and 

mitochondrial ribosome, the nucleolus, the spliceosome and stress granules.  

 

 Whole proteome analysis of poly-PR expressing cells shows 

reduction of ribosomal proteins 
 

Although the analysis of the GFP-(GR)149 and (PR)175-GFP interactomes could already give new insights 

into the variety of interactors associated with poly-GR/PR, I was also interested in the changes on 

global protein levels in poly-GR/PR expressing cells. Therefore, we additionally analyzed global protein 

expression using quantitative LC-MS/MS in primary cortical neurons transduced with GFP-(GR)149, 

(PR)175-GFP and GFP. In poly-GR transduced neurons the expression of individual proteins was not 

obviously affected. After correction for multiple comparison only CSPG4 and NIFK were statistically 

different. In contrast, (PR)175-GFP expression significantly altered expression of numerous proteins 

compared to the GFP control (Figure 5-8A). Here, reduction of protein expression was very prominent 

and enrichment analysis revealed that especially cytosolic ribosome protein levels were reduced which 

was accompanied by a strong downregulation of synaptic and axonal proteins (Figure 5-8B). 

Interestingly, at the same time, expression of proteins associated with ribosomal biogenesis, such as 

BOP1 and PES1 were upregulated suggesting a compensatory effect. Also, proteins of the nucleolus 

and mitochondria were found to be slightly increased. Expression of stress granule components was 
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neither altered in (PR)175-GFP expressing nor in GFP-(GR)149 expressing neurons. Finally, GO annotation 

analysis showed a slight decrease in ribosomal proteins also in poly-GR transduced neurons (Figure 

5-8B). 

Overall, these observations suggest that poly-PR expression leads to the loss of ribosomal proteins 

which might directly affect global protein expression in neurons. Furthermore, the striking effect of 

nucleolar poly-PR, but not cytoplasmic poly-GR, on the whole neuronal proteome strongly supports 

the toxic effect of only (PR)175-GFP in neurons.  
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Figure 5-8: Poly-PR expression alters the whole proteome in neurons.  

(A) Volcano plot showing individual proteins quantified in whole proteome of GFP-(GR)149 and (PR)175-GFP transduced primary 
cortical neurons from the same mass spectrometry samples used for the interactome studies in Figures 5.5 to 5.7. The data 
for all proteins identified in whole cell lysates are plotted as log2 fold change versus the −log10 of the P-value. Significantly 
altered proteins (q-value <5%) are highlighted as black dots. Interactors significantly enriched (q-value <5%) are shown in red. 
Transparent black and red dots denote proteins that are not significantly changed. (B) 1D annotation enrichment analysis for 
comparison of gene ontology terms of respective proteome. GOMF, GOCC, GOCC, GOPB, KEGG, Uniprot Keywords, stress 
granule proteins (Jain et al., 2016) and proteins enriched in the neuronal poly-GR/PR interactome are shown. Annotations 
indicated in color or black are Benjamini-Hochberg FDR significant (q-value <5%). The analysis was performed in the Perseus 
software. 
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 Functional analysis of poly-GR/PR interactors reveals multiple 

pathways to be involved in C9orf72-associated toxicity 

Even though the analysis of the GFP-(GR)149 and (PR)175-GFP interactomes in primary neurons and 

HEK293 cells already revealed possible mechanisms involved in DPR toxicity, my aim was to further 

elucidate the connection of poly-GR/PR with the underlying pathways and validate interacting proteins 

involved. Thus, the following functional analysis focuses on the proteins associated with methylation, 

splicing, mitochondria, the nucleolus, stress granules and ribosomes as suggested by enrichment 

analysis of the interactome of both poly-GR and poly-PR. In order to functionally confirm putative poly-

GR/PR interacting proteins and their connection to C9orf72 pathogenesis, the major method was to 

co-express RFP-tagged interactors together with GFP-(GR)149, (PR)175-GFP or control GFP in neurons 

and HEK293 cells and study their effect on the localization of the DPR proteins and vice versa. 

Additionally, various other methods such as qRT-PCR, toxicity assays, immunoblotting and 

immunofluorescent stainings in cell culture and patient tissue were used. 

 Effects of poly-GR and poly-PR on methylation and splicing 

 Expression of various splicing factors leads to diffused nuclear poly-PR  

First, I tested the splicing factors SRSF1, SRSF10, TRA2A and TRA2B which we identified as interactors 

in both GFP-(GR)149 and (PR)175-GFP expressing HEK293 cells, but not in neurons. As expected, in 

HEK293 cells, all RFP-tagged interacting proteins involved in splicing localized to the nucleus. 

Compared to the GFP control, co-expression of GFP-(GR)149 did not lead to obvious changes in poly-GR 

or in RFP-SRSF1/SRFS10/TRA2A/TRA2B expression or localization. In contrast, all four interactors 

recruited otherwise nucleolar poly-PR into the remaining parts of the nucleus thereby leading to a 

diffuse expression pattern and colocalization with the respective splicing factor (Figure 5-9A). An 

explanation for changed (PR)175-GFP localization might be the spatial proximity of the DPR protein with 

the splicing factors within the nucleus compared to more cytoplasmic poly-GR. Thus, SRSF1, SRSF10, 

TRA2A and TRA2B, which are representing the group of proteins involved in splicing, could be validated 

as interacting proteins in poly-PR expressing HEK293 cells.  
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 Poly-GR does not affect methylation in neurons 

To assess the role of the methylosome, which was suggested to be potentially altered in GFP-(GR)149 

expressing cells, I had a closer look at methylation in primary neurons. Therefore, I conducted western 

blot analysis using antibodies detecting Histone H4 asymmetric di-methylation, general mono-

methylation and symmetric di-methylation of arginines. In cortical neurons transduced with GFP-

(GR)149, the methylation pattern and methylation intensity were indistinguishable from the one in the 

GFP control. Thus, interaction of poly-GR with PRMT5/WDR77 may reflect arginine-methylation of 

poly-GR itself. In contrast, (PR)175-GFP expressing cells showed a general reduction of methylated 
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Figure 5-9: Expression of splicing factors alter poly-PR 
distribution while poly-PR expression alters arginine 
methylation patterns.  

(A) HEK293 cells co-expressing GFP, GFP-(GR)149 or 
(PR)175-GFP and RFP tagged splicing factors. Single plane 
images were obtained on a confocal microscope. Left 
columns show GFP fluorescence and right columns show 
merge of GFP, RFP-tagged proteins and nuclear DAPI 
staining (blue). Scale bar denotes 20 µm. Note that poly-
PR shows diffuse nuclear localization upon expression of 
splicing factors. (B) Primary rat cortical neurons (DIV6+7) 
were transduced with GFP, GFP-(GR)149 or (PR)175-GFP. 
Immunoblots show reduced methylation in poly-PR 
expressing neurons detected with antibodies specific for 
histone methylation as well as general single and di-
methylation. Calnexin was used as loading control. 
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proteins (Figure 5-9B) which is probably a secondary effect of overall reduction of protein expression 

already revealed by whole proteome analysis.  

 Mitochondria are stressed upon poly-GR/PR expression 

 Poly-GR and poly-PR do not alter the mitochondrial ribosome 

Given the wide-spread interaction of the mitochondrial ribosome with both poly-GR and poly-PR, I 

next analyzed if expression of GFP-(GR)149 or (PR)175-GFP alters localization or distribution of subunits 

of the mitochondrial ribosome in HEK293 cells as well as in neurons. Immunofluorescence stainings 

showed that, as expected, MRPL19 and MRPS9 localize to the cytoplasm in a dot-like manner in cells 

expressing the GFP control. Also upon transfection or transduction of GFP-(GR)149 or (PR)175-GFP, the 
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Figure 5-10: The mitochondrial ribosome is not altered upon poly-GR or poly-PR expression in neurons. 

(A, B) Hippocampal and cortical rat neurons transduced with GFP, GFP-(GR)149 or (PR)175-GFP lentivirus (DIV6+7). 
(A) Immunofluorescent stainings of components of the small (MRPS9) and large (MRPL19) ribosomal subunits of mitochondria. 
Single confocal planes are shown. Left columns visualize mitochondrial ribosomal proteins and right columns show merge of 
GFP, MRP (red) and nuclear DAPI staining (blue). Scale bar denotes 20 µm. (B) Immunoblots show no changes in MRPS9 
expression in poly-GR or poly-PR expressing neurons. Calnexin was used as loading control. 
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distribution pattern, as well as the expression levels of the endogenous proteins of the small ribosomal 

subunits of mitochondria, remained unchanged (Figure 5-10A). In addition, immunoblotting analysis 

showed that MRPS9 protein levels were not significantly altered in cortical neurons upon poly-GR and 

poly-PR transduction (Figure 5-10B) confirming the observations from immunofluorescence.  

 Poly-PR transduced neurons show respiratory deficits  

Although poly-GR and poly-PR did not seem to have an effect on localization and expression levels of 

the mitochondrial ribosome, I was curious whether the extensive interaction of the two DPR proteins 

with MRPS/L proteins identified in the MS analysis is affecting mitochondria directly. As previous 

studies only reported oxidative stress without showing effects on mitochondrial morphology or 

respiration, I assessed subcellular localization and checked for mitochondrial integrity. I first stained 

HeLa cells and hippocampal neurons using antibodies specific for the mitochondrial proteins MTCO2 

and MTCO1, two cytochrome c oxidase components of the respiratory chain, respectively. GFP 

expressing HeLa cells maintained healthy mitochondria membranes and showed mitochondria-specific 

tubular, cytoplasmic MTCO2 staining. Interestingly, upon transfection with GFP-(GR)149 and also 

(PR)175-GFP, mitochondrial morphology was changed to a string-like, hyper-fused distribution (Figure 

5-11A) indicating mitochondrial stress. In hippocampal neurons transduced with GFP or GFP-(GR)149, 

MTCO1 showed a dot-like mitochondrial pattern. This pattern remained unchanged upon expression 

of (PR)175-GFP, but overall MTCO1 signal was reduced (Figure 5-11A) suggesting that poly-PR toxicity 

may be associated with loss of mitochondria. 

This strong downregulation of the mitochondria related MTCO1 protein detected in 

immunofluorescence stainings was also validated by immunoblotting experiments. Here, MTCO1 

expression levels were significantly reduced in poly-PR transduced cortical neurons, while poly-GR 

expressing neurons showed similar MTCO1 levels as the GFP control (Figure 5-11B).  
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In order to elucidate whether this downregulation of the cytochrome c subunit, which 

catalyzes the reduction of oxygen to water, has a direct effect on mitochondrial respiration, I measured 

oxygen consumption rates (OCR) using the Seahorse analyzer. Quantification of cellular respiration in 

GFP-(GR)149 and GFP expressing neurons showed the typical OCR pattern. (PR)175-GFP expressing 

neurons, however, displayed reduced basal respiration accompanied by reduced maximal respiration 

upon uncoupling with FCCP, resulting in an overall significant lower respiratory capacity (Figure 5-11C).  
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Figure 5-11: Mitochondria are stressed especially in poly-PR expressing cells. 

(A, B, C) HeLa cells, hippocampal and cortical rat neurons (DIV6+7) were transfected or transduced with GFP, GFP-(GR)149 or 
(PR)175-GFP. (A) Immunofluorescent stainings of subunits 1 and 2 of the mitochondrial cytochrome c complex of the inner 
mitochondrial membrane in HeLa cells and hippocampal neurons. Left columns show single confocal planes of MTCO2 or 
MTCO1 stainings and right columns show merge of GFP, the cytochrome c complex (red) and DAPI marking nuclei (blue). Scale 
bar denotes 20 µm. (B) Immunoblot shows reduction of MTCO1 levels in cortical neurons expressing (PR)175-GFP. Calnexin was 
used as loading control. (C) Mitochondrial respiration was quantified in hippocampal and cortical neurons in real-time using 
the Seahorse analyzer. The oxygen consumption rate (OCR) was normalized to total protein concentration. After recording 
basal respiration, oligomycin (final concentration 1 μM) was added to inhibit ATP synthase (proton leak). Thereafter injection 
of FCCP followed to measure maximal respiration and antimycin A/rotenone was added to calculate non-mitochondrial oxygen 
consumption. Mean ± SEM is shown. (6 replicates from 1 experiment, * denotes p<0.05, ** denotes p<0.01 and *** denotes 
p<0.001 in two-way ANOVA, only shown for significant data points in poly-PR expressing neurons.) (D) Immunofluorescent 
staining of MTCO1 in C9orf72 patient cortex and control. DAPI stains nuclei in blue. Single confocal planes are shown. Scale bar 
depicts 20 µm. 
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Lastly, I wanted to assess the role of mitochondria in C9orf72 patients. Therefore, I probed 

brain slices from patients with an MTCO1 specific antibody. Immunofluorescence stainings showed 

that MTCO1 distribution was unchanged in C9orf72 patient compared to healthy control. 

Furthermore, MTCO1 did not co-aggregate with poly-GR (Figure 5-11D).  

Although the interactome of poly-GR and poly-PR shows extensive interaction of the two DPR species 

with mitochondrial ribosomal subunits, the analysis in vitro reveals no clear role of the mitochondrial 

ribosome in disease pathogenesis so far. However, mitochondria themselves seem to be stressed upon 

poly-GR and poly-PR expression showing changed morphology in HeLa cells and respiratory deficits in 

primary neurons. In C9orf72 patients, there is no evidence for altered mitochondrial morphology. In 

accordance to the stress phenotype of the mitochondria observed in these experiments, also Lopez-

Gonzalez and colleagues found increased mitochondrial reactive oxygen species (ROS) in patient 

derived iPSC neurons (Lopez-Gonzalez et al., 2016). Nevertheless, together with the findings in this 

work, that study is the only one making involvement of mitochondria a subject of discussion in poly-

GR/PR mediated toxicity although mitochondrial ribosomal proteins were associated with the two 

arginine-rich DPR proteins in previous proteome and interactome studies (Lopez-Gonzalez et al., 2016; 

Yin et al., 2017; Zhang et al., 2018b). Thus, it remains to be elucidated whether stress in this cellular 

compartment is indeed involved in a pathogenic mechanism.  

 Poly-PR expression alters nucleolar structure 

Next, I examined the nucleolar proteins NOP56 and NPM1, which we identified as poly-PR/GR 

interacting proteins in both HEK293 cells and neurons, respectively. In HEK293 cells, expression of RFP-

NOP56 and RFP-NPM1 resulted in colocalization with GFP-(GR)149 and (PR)175-GFP in the nucleolus as 

expected, but had no effect on localization or expression of either DPR protein (Figure 5-12A). In 

hippocampal neurons, however, expression of RFP-NPM1 surprisingly shifted otherwise cytoplasmic 

GFP-(GR)149 into the nucleolus showing colocalization in nearly every cell (Figure 5-12B and D). In 

contrast, in RFP-NOP56 transduced neurons, poly-GR was not affected and remained in the cytosol 

similar to cells with RFP expression (Figure 5-12B and D). Furthermore, RFP-NOP56 co-expression did 

not change (PR)175-GFP localization in neurons. Interestingly, vice versa, (PR)175-GFP expression altered 

the distribution of RFP-NOP56 within the nucleolus compared to GFP or GFP-(GR)149 co-transfected 

cells (Figure 5-12C close-up). While RFP-NOP56 would typically be evenly distributed in the nucleolus, 

expression of poly-PR led to the formation of a granular pattern with granules surrounding the PR 

aggregate. This result is in line with the specific interaction of poly-PR with NOP56 in neurons (Figure 

5-5A).  
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Figure 5-12: Nucleolar interactors colocalize with poly-GR/PR in HEK293 cells and neurons.  

(A-D) HEK293 cells and hippocampal neurons (DIV6+7) co-expressing GFP, GFP-(GR)149 or (PR)175-GFP and the RFP-tagged 
nucleolar interacting proteins NPM1 and NOP56. Single focal planes were analyzed. RFP was used as negative control. Scale 
bars denote 20 µm. (A, B, C) Left columns show GFP fluorescence and columns labeled with ‘merge’ show merge of GFP, RFP-
tagged proteins and nuclear DAPI staining (blue). (A) Poly-GR and poly-PR colocalize with RFP-NPM1 and RFP-NOP56 in nucleoli 
in HEK293 cells (red arrows). White arrows indicate poly-GR/PR granules occasionally seen the cytoplasm. (B) RFP-NPM1 is 
localizing to nucleolar poly-PR in hippocampal neurons. Note that NPM1 expression recruits poly-GR into the nucleolus (white 
arrow). (C) Poly-PR expression in neurons results in altered RFP-NOP56 distribution (RFP-NOP56 channel and close-up). 
(D) Percentage of neurons with poly-GR localized to the nucleolus in NPM1- and NOP56-expressing neurons compared to the 
RFP control (RFP: n=9; RFP-NPM1: n=11; RFP-NOP56: n=10 images (40x objective) from 3 independent experiments, mean ± 
SEM, *** denotes p<0.001 in one-way ANOVA with Dunnett's post-test). 

To further validate that poly-PR expression has an influence on nucleolar structure, I analyzed 

the nucleolar markers proteins fibrillarin and GTPBP4 in hippocampal neurons by 

immunofluorescence. Also here, the nucleolar disorganization was clearly visible in (PR)175-GFP 

expressing neurons. Cells transduced with GFP-(GR)149 and GFP showed a ring-like or even distribution 

of fibrillarin as well as GTPBP4, whereas poly-PR expression resulted in granule-like dots within the 

nucleolus (Figure 5-13).  

Overall, these findings suggest that the nucleolus, which emerged from the enrichment analysis of 

both interactomes, is indeed a cellular compartment affected by DPR protein expression in vitro. This 

is underlined by the observations that the interaction of poly-GR/PR with co-expressed nucleolar 

proteins has sufficient affinity to alter the subcellular distribution of either binding partner and that 

especially poly-PR has direct effect on nucleolar structure also on an endogenous level in vitro. 

 

Figure 5-13: Poly-PR expressing neurons show altered nucleolar distribution in hippocampal neurons. 

Hippocampal rat neurons (DIV6+7) were infected with GFP, GFP-(GR)149 or (PR)175-GFP. Single confocal planes of 
immunofluorescent stainings of the nucleolar marker proteins fibrillarin and GTPBP4 were analyzed. Left columns show GFP 
fluorescence, middle columns visualize stainings of fibrillarin/GTPBP4 and right columns show merge of GFP, nucleoli (red) and 
DAPI marks nuclei (blue). Scale bar denotes 20 µm. Note that poly-PR expression results in disruption of the nucleolus. 
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 Cytoplasmic poly-GR/PR clusters resemble stress granules  

 Poly-GR/PR forms large granule-like structures in the cytoplasm 

As various proteins linked to stress granules were found to interact with poly-GR/PR in both HEK293 

cells and neurons, I again conducted co-expression experiments to elucidate their role in DPR protein 

toxicity. Therefore, I expressed the interactors RFP-STAU1, RFP-STAU2, RFP-YBX1, and RFP-EIF4A3 

together with GFP-(GR)149, (PR)175-GFP or a GFP control in HEK293 cells and neurons. Under RFP control 

conditions, transfection of both poly-GR and -PR occasionally resulted not only in nucleolar 

aggregation, but also formation of small cytoplasmic granules in HEK293 cells (white arrows in Figure 

5-12A). Interestingly, upon co-expression of RFP-STAU1/STAU2 and RFP-YBX1, these cytoplasmic 

granules were significantly increased in number, size, and intensity. Of note, not only poly-GR/PR were 

rerouted to the cytoplasm, but also the stress granule associated proteins themselves clustered into 

the large cytoplasmic inclusions leading to colocalization of the two DPR species and 

STAU1/STAU2/YBX1 (white arrows in Figure 5-14A). Among the tested stress granule components only 

EIF4A3, identified in the poly-PR interactome, did not alter cytoplasmic poly-GR/PR proteins. 

Quantitative analysis confirmed that the GFP-(GR)149 and (PR)175-GFP inclusions in the cytoplasm are 

increased in number and also the average size upon expression of RFP-STAU1, RFP-STAU2 and RFP-

YBX1, but not RFP-EIF4A3 (Figure 5-14B).  

Next, I repeated this experiment in primary hippocampal neurons to elucidate whether dense 

cytoplasmic poly-GR or -PR granules can also be detected in this cellular system. To allow higher 

expression levels I co-transfected GFP-(GR)149, (PR)175-GFP or a GFP control with RFP-STAU1/STAU2 and 

RFP-YBX1. While transfection of (PR)175-GFP resulted in high toxicity (compared to the lower expression 

in transduced neurons) and probably killed all poly-PR expressing neurons, poly-GR transfected 

neurons showed similar colocalization with the stress granule associated proteins in the cytoplasm as 

seen in HEK293 cells. Also here, the even cytoplasmic distribution was disrupted and resulted in 

granule like inclusions (Figure 5-14C). In transduced neurons, expression levels were presumably too 

low to affect poly-GR/PR distribution (data not shown). 
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 The large cytoplasmic poly-GR/PR granules are G3BP1 positive 

To assess the nature of these cytoplasmic poly-GR/PR clusters detected in both HEK293 cells and 

neurons, I analyzed classical stress granule markers G3BP1, TIAR and FMRP in HEK293 cells co-

transfected with GFP-(GR)149, (PR)175-GFP or a GFP control and RFP-STAU1 or RFP-YBX1 by 

immunofluorescence. Strikingly, all three markers colocalized with the poly-GR/PR granules in RFP-

STAU1 and RFP-YBX1 transfected HEK293 cells indicating that the large cytoplasmic inclusions 

represent bona fide stress granules (white arrows in Figure 5-15A and B, FMRP not shown, YBX1 

transfected cells not shown). In addition, also an antibody against YBX1 itself nicely detected the 

granules (data not shown). However, the less frequent small cytoplasmic poly-GR/PR inclusions formed 

in RFP control conditions were also predominantly G3BP1, TIAR and FMRP-positive suggesting that 

expression of the RFP-tagged stress granule associated proteins enhances the formation of stress 

granules by boosting the process existing under basal conditions.  

  

Figure 5-14: STAU1/2 and YBX1 recruit poly-GR/PR into large cytoplasmic granules.  

HEK293 cells and primary cortical neurons co-expressing GFP, GFP-(GR)149 or (PR)175-GFP and RFP-tagged interactors related 
to stress granules. (A) Single confocal planes of immunofluorescence images of HEK293 cells showing co-expression of RFP-
STAU1/2, RFP-YBX1 or RFP-EIF4A3 together with the two DPR proteins or GFP are shown. Left columns visualize GFP 
fluorescence, right columns show merge of GFP, RFP-tagged proteins and nuclear DAPI staining (blue). Scale bar denotes 
20 µm. Note that STAU1/2 and YBX1 reroute poly-GR and -PR into large cytoplasmic granules (white arrows). (B) Quantifications 
of cytoplasmic poly-GR/PR structures seen in (A). Left bar graph represents percentage of cytoplasmic granules out of all 
analyzed granules in both, nucleolus and cytoplasm in poly-GR (red bars) and poly-PR (blue bars). RFP served as control 
(GR/RFP: n=16; PR/RFP: n=14; GR/RFP-STAU1: n=19; PR/RFP-STAU1: n=20; GR/RFP-STAU2: n=10; PR/RFP-STAU2: n=8; GR/RFP-
YBX1: n=14; PR/RFP-YBX1: n=14; GR/RFP-EIF4A3: n=6; PR/RFP-EIF4A3: n=6 images (40x) from two independent experiments). 
Cytoplasmic granule size is visualized by the right bar graph (GR/RFP: n=130; PR/RFP: n=132; GR/RFP-STAU1: n=104; PR/RFP-
STAU1: n=132; GR/RFP-STAU2: n=123; PR/RFP-STAU2: n=65; GR/RFP-YBX1: n=119; PR/RFP-YBX1: n=53; GR/RFP-EIF4A3: n=93; 
PR/RFP-EIF4A3: n=71 aggregates from two independent experiments). Mean ± SEM is shown, *** denotes p<0.001 and ** 
denotes p<0.01 in one-way ANOVA with Dunnett's post-test. (C) Immunofluorescence images of neurons (DIV7+3) co-
transfected with RFP-STAU1, RFP-STAU2 or RFP-YBX1 and GFP-(GR)149 or GFP. Single focal planes are shown. Top rows show 
GFP signal, middle rows visualize RFP fluorescence of stress granule proteins or RFP control and bottom rows show merged 
signals including DAPI marking nuclei (blue). Note that the largely homogenous poly-GR pattern in the RFP control is largely 
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Figure 5-15: Cytoplasmic poly-GR/PR granules are identified as stress granules in HEK293.  

HEK293 cells were co-transfected with GFP, GFP-(GR)149 or (PR)175-GFP and RFP-STAU1. Immunofluorescence images show colocalization 
of cytoplasmic poly-GR/PR with the stress granule markers (A) G3BP1 and (B) TIAR in HEK293 cells co-transfected with RFP-STAU1. Left 
three columns show individual channels as indicated. Right columns visualize merge with additional nuclear DAPI staining in white. Arrows 
indicate cytoplasmic inclusions co-labeled with G3BP1 or TIAR. Single confocal planes were taken. Scale bar depicts 20 µm. 
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 STAU2 but no other SG proteins are found in poly-GR aggregates in C9orf72 patient brain 

In order to elucidate whether stress granules also play a role in FTD/ALS patients, I additionally probed 

FTD patient brains with C9orf72 repeat expansion and healthy control brains with two different stress 

granule markers and antibodies detecting the poly-GR/PR interacting proteins YBX1 and STAU2. As 

expected, the C9orf72 FTD case showed widespread poly-GR and sparse poly-PR cytoplasmic inclusions 

in the frontal cortex. Cytoplasmic G3BP2 and nuclear TIAR did not show convincing colocalization with 

aggregates stained with a poly-GR antibody. Also, the interactor YBX1 could not be discovered in 

cytoplasmic poly-GR inclusions. Only STAU2 colocalized with approximately 25% of the poly-GR 

aggregates in the frontal cortex of two C9orf72 patients (Figure 5-16A).  

 

In conclusion, although poly-GR and poly-PR interact with various stress granule related proteins and 

are recruited into stress granules upon expression of STAU1/2 and YBX1, classical stress granule 

markers are not labeling the poly-GR inclusions in patient brains. Here, only STAU2 was convincingly 

co-aggregating with poly-GR. These findings indicate that a more transient interaction exists between 

stress granule proteins and the two DPR proteins in C9orf72 patients. 
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Figure 5-16: STAU2 colocalizes with poly-GR 
aggregates in C9orf72 patient brain. 

C9orf72 patients and a healthy controls were 
analyzed in immunofluorescence images of frontal 
cortex. Stress granule components TIAR, G3BP2, 
YBX1 and STAU2 were stained in red while poly-GR 
was labeled in green. Merge shows additional DAPI 
staining (blue) marking nuclei. Arrows point to poly-
GR aggregates. Single confocal planes were taken. 
Scale bar depicts 20 µm. 
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 Poly-GR and poly-PR bind the cytosolic ribosome and inhibit translation 

 Ribosomal proteins are absent from cytoplasmic stress granule-like inclusions 

Next, I wondered whether the poly-GR/PR cytoplasmic stress granule-like inclusions found upon 

STAU1/2 and YBX1 expression are also recruiting parts of the ribosome, as ribosomal proteins were 

the most prominent interactors of poly-GR and poly-PR in both primary neurons and HEK293 cells. 

Therefore, I stained HEK293 cells co-expressing poly-GR/PR and RFP-STAU1, as representative 

example, with an antibody directed against the 40S ribosomal protein RPS6. As expected, the small 

ribosomal subunit was diffusely distributed throughout the cytoplasm in control RFP cells independent 

of GFP or poly-GR/PR expression (Figure 5-17 lower image). Co-expression of the stress granule 

component RFP-STAU1 with poly-GR/PR did not change the localization of RPS6 and only modest 

amounts of RPS6 were detected in cytoplasmic poly-GR/PR inclusions (Figure 5-17 upper image). 
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Figure 5-17: RPS6 does not label large 
cytoplasmic poly-GR/PR inclusions in vitro.  

HEK293 co-expressing GFP, GFP-(GR)149 or 
(PR)175-GFP and RFP-STAU1 were imaged on 
a confocal microscope. Endogenous staining 
of the ribosomal subunit RPS6 was analyzed. 
Left three columns show individual channels 
as indicated. Right columns visualize merge 
with additional nuclear DAPI staining in 
white. Scale bar depicts 20 µm. Note that the 
large cytoplasmic poly-GR/PR granules 
induced by STAU1 expression are not clearly 
stained with RPS6 when comparing 
intensities to the cytoplasm. 
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 Poly-PR expression reduces ribosomal proteins in neurons 

In order to validate and investigate individual poly-GR/PR interactors I so far mainly used co-expression 

of RFP-tagged proteins, but tagging of ribosomal proteins without affecting their function is difficult. 

Therefore, I first analyzed expression of endogenous ribosomal proteins in immunoblotting 

experiments. Strikingly, primary cortical neurons transduced with (PR)175-GFP showed significant 

reduction of RPS6, RPL19, and RPL36A levels compared to the GFP control, while GFP-(GR)149 

expression had no overt effect (Figure 5-18A). This finding was confirmed by quantification of the 

respective immunoblots (Figure 5-18B).  

To further study the effects of the two DPR proteins on the cytosolic ribosome, I additionally 

examined the localization of ribosomal subunits in neurons expressing GFP-(GR)149 and (PR)175-GFP 

using immunofluorescence stainings. As expected, RPS6 as well as RPL19 diffusely localized to the 

cytoplasm in control GFP conditions. While expression of GFP-(GR)149 had no effect on the localization 

or the expression level of the two ribosomal subunits, expression of poly-PR was causing a more 

disordered and granular pattern of RPS6. In line with the findings from the immunoblotting 

experiments, poly-PR strongly reduced RPL19 staining intensity (Figure 5-19A).  

To examine the role of cytosolic ribosomes in vivo, I performed immunofluorescence stainings 

of ribosomal proteins in FTD patient brains harboring the C9orf72 repeat and controls. In contrast to 

the results from neuronal cell culture, immunofluorescence analysis of RPS6 and RPL19 in C9orf72 

patients did not reveal differences in protein levels compared to healthy controls (Figure 5-19B).  
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Figure 5-18: Subunits of the cytoplasmic ribosome are reduced upon poly-PR expression in neurons. 

(A) Cortical rat neurons were transduced with GFP, GFP-(GR)149 or (PR)175-GFP lentiviral constructs (DIV6+7) and analyzed on 
immunoblots. Poly-PR expressing neurons show reduction of several ribosomal subunits compared to GFP and poly-GR. 
Calnexin was used as loading control. (B) Quantification of RPS6 signal normalized to Calnexin (n=6 from 3 independent 
experiments, mean ± SEM, ** denotes p<0.01 in one-way ANOVA with Dunnett's post-test), RPL19 signal normalized to 
Calnexin (n=6 from 3 independent experiments, mean ± SEM, *** denotes p<0.001 in Kruskal-Wallis test with Dunn’s post-
test) and RPL36A signal normalized to Calnexin (n=6 from 3 independent experiments, mean ± SEM, ** denotes p<0.01 in 
Kruskal-Wallis test with Dunn’s post-test). 
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Thus, especially poly-PR expression results in an overall reduction of the cytosolic ribosome which 

could be validated on protein level by immunoblotting and immunofluorescence stainings in primary 

neurons, but not in neurons bearing poly-GR/PR inclusions in C9orf72 patient brains.  
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Figure 5-19: The cytosolic ribosome is not reduced in C9orf72 patient brain.  

(A) Hippocampal primary neurons (DIV6+7) were infected with GFP, GFP-(GR)149 or (PR)175-GFP lentiviral constructs. Single 
focal images of immunofluorescence stainings of the ribosomal subunits S6 and L19 were analyzed. Upper rows show GFP 
fluorescence, middle rows visualize ribosomal proteins (RP) in red and in merge DAPI marks nuclei (blue) additionally. 
Compare ordered RPS6 staining in GFP and poly-GR with unstructured RPS signal in poly-PR. Also, note that RPL19 signal is 
reduced in poly-PR expressing neurons. Scale bar denotes 20 µm. (B) Immunofluorescence stainings of RPS6 and RPL19 in 
C9orf72 patient cortex and healthy control. DAPI stains nuclei in blue. Single confocal planes are shown. Scale bar depicts 
50 µm. 
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 Ribosomal subunits are found in poly-GR/PR inclusions in patients 

Although the reduction of ribosomal proteins could not be validated in patient tissue, interestingly, I 

noticed that RPS6, RPL19 as well as RPS25 and RPL36A showed condensed spots within the cytoplasm 

which colocalized with poly-GR inclusions in double immunofluorescent stainings. In contrast, 

ribosomal subunits were evenly distributed in healthy controls (Figure 5-20A and B). Quantification 

revealed that strikingly about one-third of cytoplasmic poly-GR inclusions in the cortex were positive 

for ribosomal proteins (Figure 5-20C and D). This enrichment of ribosomal proteins was less in poly-PR 

aggregates (Figure 5-20A) and the low number of aggregates did not allow reliable quantification. 

Overall, this observation suggests that the ribosome is not only affected by poly-GR/PR in vitro, but 

also plays a significant role in C9orf72 patients. 

Figure 5-20: Ribosomal proteins co-aggregate with poly-GR and -PR in C9orf72 patient brain.  

Confocal images of immunofluorescent stainings of (A) RPS6, RPL19, (B) RPS25 and RPL36 in C9orf72 patient cortex and healthy control. 
Note that ribosomal proteins are sequestered into poly-GR/PR inclusions. DAPI marks nuclei in blue. Single confocal planes are shown. 
Scale bar depicts 20 µm. (C, D) Quantitative analysis of colocalization of ribosomal proteins with poly-GR aggregates (n=3 sections with 
100 poly-GR aggregates counted each from C9orf72 cortex, mean ± SEM is shown). 
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 Translation is impaired by poly-PR in primary neurons  

Next, I was curious whether the reduction of ribosomal proteins detected in vitro would also affect 

translation. This would be in line with the proteomics finding that in poly-PR expressing neurons 

hundreds of proteins, including the ribosome itself, were downregulated. To verify this hypothesis, I 

performed a so-called ‘surface sensing of translation’ (SUnSET) assay, which measures puromycin 

incorporation into newly synthesized proteins using a puromycin specific antibody. Immunoblotting 

showed that translation was substantially reduced in neurons expressing (PR)175-GFP after 10 min and 

20 min of puromycin incubation compared to the GFP control and poly-GR (Figure 5-21A). This 

significant reduction in protein expression was quantified in Figure 5-21B. Hence, the loss of ribosomal 

subunits led to an overall translational repression suggesting that poly-PR expression leads to a 

reduction of functional/assembled ribosomes.  

 

 rRNA processing is not changed in DPR expressing cells 

The observations that poly-PR expression disrupts nucleolar structure and reduces translation in 

neurons imply that rRNA processing might also be impaired. To test this, I performed quantitative PCR 

on RNA extracted from GFP-(GR)149, (PR)175-GFP and GFP transduced neurons. The primers I used 

covered the 18S and 5.8S rRNA. Primers specific for the whole unprocessed 45S rRNA and the 28S part 

only resulted in melting curves with multiple maxima or irregular standard curves making them 
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Figure 5-21: Poly-PR expression in neurons inhibits translation.  

(A) Cortical rat neurons were transduced with GFP, GFP-(GR)149 or (PR)175-GFP lentiviral constructs (DIV6+7) and incubated with 
1 µM puromycin (puro) for 0, 10 and 20 min prior to sample preparation in order to quantify global translation. Immunoblot 
of SUnSET assay shows that poly-PR expressing neurons have less puromycin incorporated in newly synthesized proteins 
compared to poly-GR and GFP control. (B) Quantification of RPS6 signal normalized to Calnexin (n=3, mean ± SEM, Kruskal-
Wallis test with Dunn’s post-test, not significant) and puromycin signal normalized to Calnexin (n=6, mean ± SEM, one-way 
ANOVA with Dunnett's post-test, *** denotes p<0.001). 
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impracticable for analysis (Figure 5-22A). Relative expression levels of 18S and 5.8S rRNA revealed that 

none of the tested rRNA fragments was significantly altered upon poly-GR or poly-PR expression in 

primary neurons (Figure 5-22B) suggesting that aberrant rRNA processing is not the major pathway 

driving impaired translation under physiological conditions.  

Figure 5-22: Reduction in ribosomal proteins is independent of rRNA maturation, but may trigger ribosomal biogenesis.  

(A)  Schematic of rRNA primer binding sites depicted in grey. (B-D) Cortical rat neurons were transduced with GFP, GFP-(GR)149 
or (PR)175-GFP lentiviral constructs (DIV6+7). (B) Analysis of quantitative RT-PCR showing rRNA levels of the 18S and 5.8S 
fragments relative to PGK (n=4 from 2 individual experiments, mean ± SEM, one-way ANOVA with Dunnett's post-test). 
(C) Immunoblots of neuronal lysates were exposed to antibodies specific for BOP1 and PES1. Calnexin was used as a control. 
Note that the 83 kDa BOP1 protein is increased upon poly-PR expression. The 71 kDa large isoform 2 of BOP1 is marked with 
asterisks. All other bands are unspecific. (D) qRT-PCR analysis visualizing mRNA levels of the ribosome biogenensis proteins 
BOP1 and PES1 relative to PGK (n=4 from 2 individual experiments, mean ± SEM, one-way ANOVA with Dunnett's post-test). 
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GO term analysis of differentially expressed proteins in the whole proteome of poly-PR 

transduced primary cortical neurons showed upregulation of proteins involved in ribosome biogenesis, 

including NSA2, RRP1, BRIX1, NOC2L, WDR75 and TSR1 suggesting neurons may trigger a 

compensatory response to evade cell death (Figure 5-8C). BOP1 and PES1, two of the three proteins 

of the PeBoW complex involved in processing the 28S and 5.8S rRNA and subsequent maturation of 

the large 60S ribosomal subunit were significantly upregulated in the proteome analysis. WDR12 was 

not altered in the proteome. To validate this finding, I analyzed expression levels by immunoblotting 

experiment and qPCR in GFP-(GR)149, (PR)175-GFP and GFP transduced neurons. Here, the 83 kDa large 

BOP1 protein was indeed upregulated in poly-PR expressing cells, but the small increase in mRNA levels 

did not reach significance (Figure 5-22C and D). This modest effect, however, is in line with 1.66-fold 

enrichment of BOP1 in neurons expressing poly-PR. Although PES1 was also enriched at the same level 

in the mass spectrometry analysis of poly-PR expressing neurons, it did not show elevated protein or 

mRNA levels (Figure 5-22C and D).  

 NPM1 has no rescue effect, but MEK1 does 

The next step was to determine whether boosting translation would prevent neuronal death in poly-

PR expressing neurons. Thus, I first tested whether expression of poly-GR or poly-PR interactors is able 

to reverse the translational impairment seen in (PR)175-GFP transduced neurons. As the nucleolus is 

the major compartment associated with ribosome biogenesis, I first tested interactors which are 

nucleolar and linked to ribosomes, namely NOP56, NPM1, GTPBP4 and BRIX1. NOP56 and GTPBP are 

involved in the assembly of the 60S ribosomal subunit, NPM1 is chaperoning ribosomal proteins, and 

BRIX1 also functions in biogenesis of the 60S ribosomal subunit. However, co-expression of poly-PR 

with the four nucleolar proteins did not restore translation efficiency in the SUnSET assay compared 

to the poly-PR/RFP control (Figure 5-23A).  

The next step was to test whether expression of proteins other than poly-GR/PR interactors 

could rescue impaired ribosome biogenesis. Therefore, I chose MEK1, the main activator of the 

MAPK/ERK/S6K pathway which boosts translation by phosphorylation of RPS6. The effect on 

translation of the constitutive active form (S218D and S222D mutations) of MEK1 in GFP-(GR)149, 

(PR)175-GFP and GFP transduced neurons was again analyzed by the SUnSET assay as before. Here, 

expression of MEK1 resulted in increased puromycin signal in poly-GR as well as in poly-PR and GFP 

expressing neurons compared to the empty vector control. Notably, in poly-PR expressing neurons the 

puromycin signal was restored to control levels (Figure 5-23B) and similarly, also RPS6 levels were 

almost restored suggesting that poly-PR toxicity induced by impaired protein synthesis could be 

rescued by overexpression of MEK1. To substantiate this hypothesis, I performed an LDH toxicity assay 

in neurons (DIV7+14) in the same experimental settings. Here, MEK1 expression slightly inhibited basal 
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cell death in GFP and (non-significantly) also in poly-GR expressing neurons. This is not surprising as 

MEK1 positively regulates ERK1/2 which activate anti-apoptotic proteins (Lu and Xu, 2006). Strikingly, 

MEK1 overexpression reduced cell death induced by poly-PR expression nearly to GFP control levels 

suggesting impaired translation contributes to cell death.  

Taken together, MEK1, a key regulator of translation and cell growth, was able to reverse poly-PR 

induced translational impairment and toxicity in neurons, while overexpression of poly-GR/PR 

interacting proteins associated with ribosome biogenesis had no effect.  

Figure 5-23: Reduction of ribosomal proteins can only be rescued by the constitutive active form of MEK1. 

(A, B) Cortical rat neurons were co-transduced with GFP, GFP-(GR)149 or (PR)175-GFP lentiviral constructs and RFP tagged rescue 
constructs (DIV6+7). (A) Immunoblots of SUnSET assays in neurons expressing poly-GR/PR and ctrl or nucleolar RFP-
NOP56/NPM1/GTPBP4/BRIX1 detecting newly synthesized proteins by puromycin incorporation. Calnexin was used as a 
control. (B)  SUnSET assay in poly-GR/PR and ctrl/MEK1 transduced neurons. Purocmycin, RPS6 and Calnexin immunoblots are 
shown. Note elevated RPS6 and translation levels in MEK1 expressing neurons. (C) LDH release assay detects significant 
reduction in cell death upon expression of MEK1 in neurons (DIV7+14) transduced with (PR)175-GFP compared to (PR)175-GFP 
only control (n=2 independent experiments with 6 replicates each, mean ± SEM, *** denotes p<0.001 in one-way ANOVA with 
Dunnett's post-test). 
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 PR and GR proteins/peptides bind to the yeast ribosome 

To further elucidate the connection between the ribosome and poly-GR/poly-PR, I tested whether the 

two DPR species directly interact with ribosomes. In a first experiment, I coated 96-well plates with 

500 ng of the purified 80S yeast ribosome and then added recombinant GR25-GST, PR25-GST or GST 

protein in a concentration series. Finally, I detected the interaction with an antibody specific for GST. 

A secondary antibody together with 3,3′,5,5′-Tetramethylbenzidine (TMB) led to a reaction product 

that was read at 450 nm or 630 nm. At 100 ng, GR25-GST bound the ribosome specifically compared to 

the GST control. The higher the amount of protein was, the more protein was binding (Figure 5-24A). 

I speculated this signal may be due to residual RNA co-purified with GST from E. coli. In order to obviate 

this, I repeated the ribosome binding assay with chemically synthesized DPR peptides harboring 20 

repeats and an HA tag to exclude RNA contamination. Strikingly, the GR20-HA peptide also significantly 

bound to the yeast ribosome in all three tested concentrations compared to the HA control peptide. 

At the highest concentration (10 µg) PR20-HA binding did not reach significance, although there was a 

small trend towards elevated binding capacity (Figure 5-24B). This experiment suggests that poly-GR 

and possibly also poly-PR induce toxicity by effectively binding to the ribosome and thereby preventing 

it from performing its normal function.  
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Figure 5-24: Purified poly-GR/PR bind to the yeast ribosome.  

Increasing amounts of purified (A) GR25-GST/PR25-GST/GST or (B) GR20-HA/PR20-HA/HA protein were incubated with 500 ng 
purified 80S yeast ribosome in an immunoassay. Binding of proteins to the ribosome was detected by HRP-labeled secondary 
antibody which was bound by 3,3′,5,5′-Tetramethylbenzidine (TMB) leading to a reaction product that was read at 450 nm or 
630 nm. Bar graphs depict absolute absorbance signal. Note that especially poly-GR binds the yeast ribosome significantly 
compared to the GFP control. (n=4 replicates for GST assay and n=2 for HA assay, mean ± SEM, *** denotes p<0.001, ** 
denotes p<0.01, * denotes p<0.05 in one-way ANOVA with Dunnett's post-test). 
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 Most poly-GR and poly-PR interactors are not enriched in DPR inclusions in C9orf72 

patients 

After extensive testing of interesting interacting proteins identified in the poly-GR and poly-PR 

interactomes in vitro, it was particularly important to elucidate whether these poly-PR/GR interactors 

would also be altered in C9orf72 patient brain.  

Therefore, I analyzed the distribution of several other poly-GR/PR interactors in C9orf72 patients and 

controls by immunofluorescence. Apart from the experiments shown above, I tested antibodies for 22 

Figure 5-25: Several tested interactors do not colocalize with poly-GR in C9Orf72 patient brain.  

Immunofluorescence stainings of the frontal cortex of a C9orf72 patient and a healthy control case to analyze colocalization of 
poly-GR with the interacting proteins GTPBP4, NOP56, PRMT1, WDR77, MAGOHB and TRA2A. 
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additional proteins, among which 6 showed convincing staining of endogenous protein distribution. 

However, I could not detect co-aggregation of the nucleolar proteins GTPBP4 or NOP56, PRMT1 or 

WDR77, two proteins involved in methylation, or the splicing factors MAGOHB or TRA2A with poly-GR 

in the cortex of C9orf72 patients (Figure 5-25B and 4.4.1). 

Summing up, among the ~30 tested poly-GR/PR interacting proteins, STAU2 and subunits of the 

cytosolic ribosome are relevant co-aggregating proteins in C9orf72 patients in this study. 

 Nucleolar poly-GR shows poly-PR characteristics in neurons 

 Rerouting poly-GR into the nucleolus disrupts nucleolar architecture 

As described before, basic characterization of GFP-(GR)149 and (PR)175-GFP showed that both DPR 

species are impairing cell growth in HEK293 cells and that only (PR)175-GFP is toxic in primary rat 

neurons (Figure 5-1A and B). In HEK293 cells, GFP-(GR)149 and (PR)175-GFP localize to the nucleolus, 

while in neurons only (PR)175-GFP expression resulted in nucleolar localization (Figure 5-2A and B). 

Given these findings, I wondered whether the absence of GFP-(GR)149 from the nucleolus in primary 

neurons, despite a significant overlap of interacting proteins with (PR)175-GFP, might explain lack of 

toxicity. Therefore, my aim was to shift diffuse cytoplasmic localization of GFP-(GR)149 into the 

nucleolus and investigate the outcome of this relocalization in neurons. Since other groups reported 

toxicity for shorter poly-GR repeat constructs, I truncated the GFP-(GR)149 construct. A poly-GR version 

with 53 repeats showed diffuse cytoplasmic localization as well as strong localization to the nucleolus 

in 77.5% of GFP-(GR)53 transduced neurons (Figure 5-26A). Additionally, I analyzed nucleolar 

organization itself using immunofluorescence stainings of fibrillarin. While in GFP-(GR)149 and GFP 

expressing neurons most nucleoli showed homogeneous distribution of the nucleolar marker, 

interestingly, GFP-(GR)53 expression resulted mostly in a ring-like fibrillarin staining and occasionally in 

a granular pattern. This disrupted nucleolar organization was even more pronounced in (PR)175-GFP 

expressing neurons as described above (compare Figure 5-13A and Figure 5-26A and B). Moreover, 

acute toxicity was significantly induced upon GFP-(GR)53 expression although not as strong as in 

neurons transduced with (PR)175-GFP (Figure 5-26C).  
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Figure 5-26: Nucleolar poly-GR53 disrupts nucleolar structure and inhibits translation.  

Primary rat neurons were transduced with GFP, GFP-(GR)53, GFP-(GR)149 or (PR)175-GFP lentiviral constructs. (A) Confocal 
images show immunofluorescence staining of fibrillarin in hippocampal neurons. Left two columns visualize GFP signal and 
fibrillarin staining (red) in various DPR species as indicated. Right column shows merge depicting nuclei with DAPI staining in 
blue additionally. Scale bar denotes 20 µm. (B) Classification and quantification of fibrillarin distribution within the nucleolus 
from (A) n= 6 to 16 images were analyzed. (C) LDH release assay detects significant cell death upon lentiviral expression of 
(PR)175-GFP and GFP-(GR)53, but not GFP-(GR)149 compared to GFP control in primary rat neurons (DIV7+14) (n=3 individual 
experiments with 6 replicates each, box plot is shown with 25th percentile, median and 75th percentile and whiskers 
representing minimum and maximum, *** denotes p<0.001 and ** denotes p<0.01 in one-way ANOVA with Dunnett's post-
test). (D) Immunoblot showing SUnSET assay in GFP-(GR)53, GFP-(GR)149, (PR)175-GFP or GFP-expressing primary cortical 
neurons (DIV6+7). Cortical neurons were exposed to 1 µM puromycin (puro) for 10 min or not treated (nt). Note the reduced 
synthesis of proteins indicated by puromycin signal in neurons expressing GFP-(GR)53 and (PR)175-GFP. (E) Quantification of 
puromycin signal normalized to Calnexin (n=6 from 3 independent experiments, mean ± SEM, *** denotes p<0.001 and ** 
denotes p<0.01 in one-way ANOVA with Dunnett's post-test). 
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 Nucleolar poly-GR impairs ribosome biogenesis 

The effects of nucleolar GFP-(GR)53 on nucleolar structure and toxicity in primary neurons are 

comparable to the effects seen in (PR)175-GFP neurons suggesting that other poly-PR specific 

deficiencies might also be found in poly-GR53 expressing cells. To test this hypothesis, I conducted 

another SUnSET assay and analyzed expression levels of the small ribosomal subunit with an antibody 

specific to RPS6. Lentiviral expression of GFP-(GR)53 indeed significantly reduced protein synthesis as 

well as RPS6 levels similar to (PR)175-GFP, while GFP-(GR)149 had no effect (Figure 5-26D and E).  

Thus, nucleolar localization of poly-GR/PR may be required for the toxicity observed in vitro.  
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6. DISCUSSION AND OUTLOOK 

 

In this study, I analyzed the interactomes of poly-GR and poly-PR in transduced rat cortical neurons 

and transfected HEK293 cells using GFP-(GR)149 and (PR)175-GFP immunoprecipitation. In both cell lines, 

poly-GR and poly-PR interact with RNA-binding proteins including numerous components of stress 

granules, the nucleolus, and the ribosome. Interestingly, overexpression of the interactors STAU1, 

STAU2, and YBX1 reroutes poly-GR and poly-PR into large stress granule-like structures. In addition, 

NPM1 overexpression leads to relocalization of poly-GR into the nucleolus. Strikingly, expression of 

poly-PR disrupts nucleolar organization, reduces levels of ribosomal subunits and impairs translation 

in vitro. The latter effects are dependent on nucleolar localization of poly-GR and poly-PR. Most 

importantly, ribosomal proteins are present in cytoplasmic DPR inclusions in C9orf72-ALS/FTD patient 

brains suggesting that sequestration of ribosomes may chronically affect protein synthesis even in 

absence of nucleolar localization.  

Compared to several competing reports, my data most accurately reflects the patient situation 

for several reasons. First, the constructs I used in this work are significantly longer than in all other 

studies and thus, better replicate the situation in patients, which typically harbor hundreds of repeats. 

While I used poly-GR and poly-PR containing 149 and 175 repeats, respectively, previous groups report 

expression of only 80 repeats or less (Lee et al., 2016a; Lopez-Gonzalez et al., 2016). Second, as other 

studies also administered 20-mer or 30-mer poly-GR and poly-PR peptides at high concentrations, my 

experiments more precisely mirror the low abundance of poly-GR/PR expression in patients 

(Boeynaems et al., 2017; Kanekura et al., 2016; Lin et al., 2016; Yin et al., 2017). Third, GFP-(GR)149 

almost exclusively localized to the cytoplasm in neurons, as observed in patient brains, arguing that 

other groups with nucleolar poly-GR expression possibly study in vitro artifacts. The increased toxicity 

of truncated poly-GR constructs with nucleolar localization also in my hands strongly support this 

concern. Finally, I performed my experiments and validated the findings in primary cortical neurons, 

while most other groups studied poly-GR/poly-PR mainly in non-neuronal cell lines. Thus, the system I 

used in this work is the most physiologically accurate among all competing studies. On top of this, only 

I extended my validation efforts to patient brains, representing the most important validation step.  
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 Poly-GR and poly-PR interactomes 
 

The interactomes of GFP-(GR)149 and (PR)175-GFP identified numerous RNA-binding proteins enriched 

in splicing factors, stress granule, and nucleolar components as well as in the mitochondrial and 

cytoplasmic ribosome in neurons and HEK293 cells. These results are consistent with previous 

interactome studies which reveal similar poly-GR/PR associated cellular pathways and protein groups 

to be enriched independent of cell type (Boeynaems et al., 2017; Kanekura et al., 2016; Lee et al., 

2016a; Lin et al., 2016; Lopez-Gonzalez et al., 2016). Thus, the poly-GR and poly-PR interactomes of my 

work, which were performed under physiological conditions, support previous interactome data and 

indicate that the cellular components and biological processes found might be indeed disease relevant.  

Regarding the DPR proteins individually, enrichment analysis revealed that poly-GR expressing 

cells show a high selectivity for ribosomes, stress granules, and the methylosome. The poly-PR 

interactomes from HEK293 cells and neurons are most enriched in proteins connected to the U1 and 

U4 snRNP consistent with reported effects of poly-PR on splicing (Kwon et al., 2014). Nonetheless, 

poly-GR and poly-PR overall share a large set of interacting proteins. This interesting observation was 

made throughout all other interactome studies in which up to 40% of interactors were overlapping 

(Lee et al., 2016a). This may reflect the preferential binding of both poly-GR and poly-PR to LCD 

containing proteins. 

 In the following, especially the difference in poly-GR and poly-PR toxicity in my neuron model 

and possible toxic mechanism emerging from the interactomes and my validation experiments will be 

discussed.  

 Poly-GR and poly-PR toxicity depends on subcellular localization 

In this study, (PR)175-GFP localized to the nucleolus resulting in impairment of cell growth as well as 

toxicity in both HEK293 cells and neurons, respectively. Expression of nucleolar GFP-(GR)175 led to less 

proliferation in HEK293 cells. In neurons, however, cytoplasmic GFP-(GR)149 caused no cell death within 

14 days. Thus, these data strongly indicate that mainly nucleolar localization is triggering the acute 

poly-GR/PR mediated toxicity observed in many in vitro systems. I designed several DPR protein 

constructs to enhance or reduce nucleolar localization of poly-GR/PR, but all variants either promoted 

nucleolar localization or had no effect. All DPR variants with enhanced nucleolar expression, like GFP-

(GR)53, GFP-(GA)50-(GR)50 and GFP-(GA)50-(PR)50, caused toxicity in an LDH assay. Strikingly, their 

expression additionally resulted in reduced RPS6 levels and impaired protein synthesis just as in (PR)175-

GFP transduced neurons (Figure 5-26 and data not shown) providing evidence that also toxic 

mechanisms are mediated by nucleolar localization alone.  
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Nearly every study analyzing individual DPR proteins reports poly-PR to be almost exclusively 

localized within the nucleolus independent of cell type or expression system, whereas poly-GR is 

typically found both in the nucleolus and the cytoplasm (Kramer et al., 2018; Kwon et al., 2014; Lee et 

al., 2016a; Tao et al., 2015; Wen et al., 2014; Yamakawa et al., 2015; Zhang et al., 2018b). However, 

C9orf72-ALS/FTD post mortem brains do not display any evidence for nucleolar poly-PR or other DPR 

species. Most DPR inclusions are cytoplasmic and most nuclear DPR inclusions are para-nucleolar 

(Schludi et al., 2015a). Thus, I propose that acute poly-GR/PR toxicity seen in many model systems is 

mainly due to aberrant nucleolar localization. A reason for nucleolar localization in cellular models 

might be that unphysiologically high DPR amounts more likely lead to relocalization as the effect of 

poly-GR and poly-PR mimicking the nuclear localization signals (NLS) is more prominent. Therefore, the 

data deriving from in vitro experiments in which DPR proteins localize to the nucleolus likely 

exaggerate the patient situation or might even be artifacts. Nonetheless, it cannot be excluded that 

during the ALS/FTD time course, poly-GR and poly-PR temporarily localize to the nucleolus triggering 

some of the effects seen in cell culture models. 

Regarding the interactome studies of this work, the overlap in poly-GR and poly-PR interactors 

in neurons is striking despite differential toxicity as measured by LDH release assays and evident from 

the whole proteome data (see below). A reason for this discrepancy might be that a small percentage 

of GFP-(GR)175 transduced neurons additionally showed nucleolar localization - enough to detect 

interactors by mass spectrometry but too little to induce significant neuronal death. It would be 

interesting to compare the interactomes of purely nucleolar to purely cytoplasmic poly-GR, but we 

were not able to generate such constructs so far. 

To understand the toxicity exclusive to poly-PR, I analyzed the proteins which selectively 

interact with poly-PR, e.g. CD2AP. However, the analysis did not lead to a clear mechanism of toxicity 

due to these interactors. My data is most consistent with nucleolar localization as the main driver of 

poly-PR mediated toxicity in vitro. Poly-PR expression results in dramatic down-regulation of numerous 

proteins in neurons. In fact, gene ontology analysis reveals that especially the expression of ribosomal 

subunits is significantly reduced. This finding suggests that poly-PR mediated reduction of ribosome 

numbers directly affects global protein translation leading to reduced expression of hundreds of 

proteins, including axonal and synaptic proteins, and finally cell death. Comparable calnexin levels and 

therefore total cell numbers between poly-PR and control expressing cells validate this. Poly-GR 

expressing neurons do not show alterations in global protein expression which is consistent with the 

observation that poly-GR expression does not lead to cellular toxicity in this system. In HEK293 cells, 

high-level expression of poly-GR and poly-PR through transient transfection inhibit cell growth to a 

similar extent. It would be interesting to see whether poly-PR has the ability to reduce global protein 

levels in this cell system although there is no active cell death detected. If so, nucleolar poly-GR 
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expression might result in comparable effects. Eventually, however, the strict distinction between 

poly-GR and poly-PR toxicity might not be relevant for C9orf72 pathogenesis as poly-PR almost 

completely co-aggregates with poly-GR and the other DPR proteins in C9orf72-mediated ALS/FTD 

brains (Mori et al., 2013a).  

 No evidence for nucleocytoplasmic transport deficits in the interactomes of poly-GR/PR 

In recent studies, disruption of the nuclear pore complex and nucleocytoplasmic transport has 

emerged as a cellular mechanism underlying C9orf72-mediated toxicity. Not only have different 

genetic modifier screens identified numerous proteins linked to the nuclear pore to be enhancers or 

suppressors of C9orf72-associated toxicity, but also have interactome studies shown various NPC, 

import and export proteins to interact with poly-GR and -PR (Boeynaems et al., 2016; Freibaum et al., 

2015; Jovicic et al., 2015; Lee et al., 2016a; Lin et al., 2016; Zhang et al., 2015). However, our mass 

spectrometry-based proteome studies in poly-GR/PR bearing cells could not detect components of the 

nuclear pore interacting with these two DPR protein species similar to other reports (Kanekura et al., 

2016; Lopez-Gonzalez et al., 2016). Also, the transcriptome profile of poly-(GR)100 expressing mice did 

not identify any NPC-associated transcript to be altered (Zhang et al., 2018a). Poly-GA expression, 

however, leads to a transport deficit particularly of TDP-43 leading to enhanced cytoplasmic 

localization. This effect was not significant in poly-GR and poly-PR expressing neurons (Khosravi et al., 

2017). Thus, my data provide no evidence supporting dysfunctional nucleocytoplasmic transport due 

to poly-GR/PR and therefore I suggest that poly-PR/GR toxicity is mostly triggered by other 

mechanisms.  

 Poly-GR/PR and their link to nucleoli and stress granules  

My interactome study could convincingly show that a large set of nucleolar and stress granules 

components are binding partners of poly-GR and poly-PR which is consistent with other reports 

(Boeynaems et al., 2017; Lee et al., 2016a; Tao et al., 2015). Lee, Boeynaems, and colleagues support 

these physical interactions by reporting impaired NPM1, NCL and G3BP1 dynamics upon expression of 

poly-(GR)50 and poly-(PR)50 (Boeynaems et al., 2017; Lee et al., 2016a). In contrast, my validation efforts 

concentrated on the impact of interactors on poly-GR/PR expression, aggregation as well as 

localization and most importantly, their alterations in C9orf72 patient brain.  

Co-expression of nucleolar candidates and poly-GR/PR in primary neurons showed that NPM1 

recruits otherwise predominantly cytosolic GFP-(GR)149 into the nucleolus, whereas NOP56 had no 

such effect. Higher endogenous NPM1 levels in HEK293 cells compared to primary neurons may 

contribute to the differential localization of poly-GR in both cell types. The other way around, poly-PR 

strikingly altered the distribution of NOP56 and other nucleolar proteins. This observation was 
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confirmed in other reports in which NCL displayed disrupted distribution in patient-derived 

lymphoblasts as well as iPS motor neurons. Also in hippocampal neurons expressing poly-PR, the 

majority of nucleoli appeared fragmented (Haeusler et al., 2014; Schludi et al., 2015a). Disorganization 

of the nucleolus likely reflects functional impairment. And indeed, numerous proteins associated with 

the nucleolus were found to modulate poly-GR and poly-PR toxicity in a modifier screen in flies (Lee et 

al., 2016a). Since super-resolution microscopy revealed that poly-GR/PR localize to the outer 

subregions of the nucleolus where ribosome assembly takes place, specifically this step of ribosome 

biogenesis might be affected (Lee et al., 2016a). Also the interference of poly-GR/PR with NOP56 and 

NPM1, observed in this study, most likely leads to impaired biogenesis of ribosomes as the two 

nucleolar proteins play a role in assembly of the 60S subunit and chaperoning ribosomal subunits 

(Hayano et al., 2003; Maggi et al., 2008). Hence, my observations provide first evidence that poly-GR 

and poly-PR toxicity may ultimately emerge from impaired translation mediated by nucleolar 

dysfunction. To gain deeper insight into the role of the nucleolus in C9orf72-mediated ALS/FTD, 

detailed nucleolar organization would be worth investigating to find the connection between this 

compartment and translation inhibition. Importantly, in C9orf72 patient post mortem brains, DPR 

protein inclusions do not localize to the nucleolus (Schludi et al., 2015a; Vatsavayai et al., 2016). 

However, larger nucleoli have been reported in poly-GR expressing neurons (Mizielinska et al., 2017) 

suggesting that the effects of poly-GR/PR on the nucleolus observed in vitro are of a more subtle nature 

in patients.  

 I showed that co-expression of the stress granule components STAU1, STAU2, and YBX1 leads 

to striking colocalization with poly-GR and poly-PR in large cytoplasmic granules. Since the two DPR 

proteins already form small cytoplasmic inclusions in control situations (Figure 5-14) in HEK293 cells, 

it is likely that expression of STAU1, STAU2, and YBX1 promotes expansion of these structures. I 

propose that these inclusions are stress granules since they are positive for G3BP1, YBX1 as well as 

STAU1 (Figure 5-15), all representing proteins found in this cellular compartment (Jain et al., 2016; 

Thomas et al., 2009). In line with my findings, several other groups made similar observations linking 

stress granules to poly-GR and poly-PR: In poly-(PR)100 expressing HeLa cells, aggregated cytoplasmic 

poly-PR could be co-stained with the stress granule marker protein G3BP. Zhang et al. additionally 

show that both poly-GR and poly-PR significantly induce the formation of SGs compared to controls 

(Boeynaems et al., 2017; Zhang et al., 2018b). Also, poly-PR preferentially interacts with proteins 

localized to stress granules (Boeynaems et al., 2017; Lee et al., 2016a) and several SG associated 

proteins like YBX1 and Ataxin2 are altered upon poly-PR expression in cell culture (Boeynaems et al., 

2017). Moreover, numerous proteins linked to stress granules were found to be enhancers or 

suppressors of poly-GR/PR50 toxicity in a Drosophila in vivo screen. Summarizing, my observations 
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together with other studies clearly suggest a significant role of stress granules in cellular and animal 

models. 

There are many ways how co-expression of the DPR proteins with stress granule components 

might lead to enhanced stress granule formation. STAU1, for example, functions in dissolution of the 

latter by stabilization of polysomes (Thomas et al., 2009). It is possible that after recruitment to the 

stress granules, STAU1 is sequestered by poly-GR and poly-PR. The interaction with the two DPR 

species might prevent STAU1 from performing its normal function which ultimately leads to 

accumulation of STAU1 and expansion of the inclusions. However, it is not clear whether these stress 

granule proteins are recruited into the granule-like poly-GR/PR clusters or vice versa.  

Overall, it is also possible that poly-GR and poly-PR disrupt stress granule protein function 

through liquid-liquid phase separation. Several groups could validate these relations by showing 

disturbed dynamics of nucleolar and stress granule components such as NPM1, NCL, and G3BP1. In 

addition, poly-GR and poly-PR changed phase transition of FUS, NPM1, TIA1, hnRNPA1 or intermediate 

filaments (Boeynaems et al., 2017; Lee et al., 2016a; Lin et al., 2016). Moreover, (PR)30 increased β-

sheet content in FUS droplets over time (Boeynaems et al., 2017). Consequently, poly-GR/PR may 

interfere with liquid-liquid phase separation by enhancing the formation of amyloid-like structures. 

Since poly-GR and poly-PR preferentially bind to intrinsically disordered proteins, disturbed phase 

transition might impair formation and function of membrane-less organelles as another toxic 

mechanism in C9orf72-ALS/FTD. 

Interestingly, G3BP1 knockdown strongly enhanced poly-GR toxicity in an RNAi screen in flies 

(Lee et al., 2016a). Since G3BP1 is required for SG formation, this observation, in turn, indicates that 

the appearance of SGs upon poly-GR/PR expression might be protective. However, it is known that 

stress granules occur upon cellular stress and typically contain mRNA as well as 40S ribosomal subunits 

(Buchan and Parker, 2009) which are kept in an inactive state. Therefore, it is conceivable that DPR 

induced formation of SGs alone or the sequestration of key components of translation via DPR proteins 

lead to stalled protein synthesis. Thus, SG formation might still be harmful to the cell. This hypothesis 

is in line with a study from Zhang and colleagues showing colocalization of the small ribosomal subunit 

RPS6 and poly-GR100 in eIF3η-positive cytoplasmic inclusions (Zhang et al., 2018b). How arginine-rich 

DPR proteins are further connected to translational inhibition is discussed in the following chapter.  

Although the data of my interactome study are consistent with other reports uncovering 

numerous stress granule constituents to bind to poly-GR and poly-PR (Lee et al., 2016a; Lin et al., 2016; 

Lopez-Gonzalez et al., 2016), I could not detect classical stress granule markers in poly-GR aggregates 

in C9orf72 patient brains. Similarly, Zhang et al. observed cytoplasmic TIA-1 co-aggregation with poly-

GR inclusions in C9orf72 repeat expressing mice but failed to show such results in patients (Zhang et 

al., 2018b). Among the non-ribosomal interactors I tested, only STAU2 colocalized with poly-GR in the 
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frontal cortex of C9orf72 patient brain, suggesting that STAU2 binding may be involved in poly-GR 

aggregation in vivo.  

Taken together, the observations made in terms of both the nucleolus and stress granules upon poly-

GR/PR expression raise the possibility that the two DPR proteins indirectly affect ribosomal biogenesis 

or function by interacting with proteins within the two compartments.  

 Poly-PR toxicity is linked to impaired translation 

Kwon and colleagues provided the first evidence that poly-GR and poly-PR interfere with ribosome 

biogenesis by showing that some of the 45S rRNA processing products were strongly reduced upon 

administration of 30 µM GR20 or PR20 peptide to U2OS cells. In particular, the 5.8S rRNA was decreased 

by 70% (Kwon et al., 2014). However, upon transduction of poly-GR or poly-PR in primary rat neurons, 

I could not observe such an effect. There might be two explanations why poly-GR/PR expressing 

neurons do not show impaired rRNA maturation. First, the conditions found in my cellular system are 

in contrast to the non-physiologically conditions in which poly-GR or poly-PR peptides are added in 

high molecular concentrations localize predominantly to the nucleolus- potentially leading to spurious 

effects. Second, in primary neurons transduced with poly-PR, two components of the PeBoW complex, 

BOP1 and PES1, are upregulated as shown by MS. These two proteins are known to be associated with 

rRNA splicing and the assembly of the large ribosomal subunit. In fact, it was shown that depletion of 

BOP1 or PES1 leads to inhibition of 36S pre-rRNA processing and therefore, the maturation of the 

downstream rRNA fragments (Rohrmoser et al., 2007). Thus, the upregulation of BOP1 and PES1 in 

neurons might boost rRNA processing preventing reduction of 5.8S rRNA as seen in U2OS cells in Kwon 

et al. Together, these data suggest that impairment of rRNA synthesis is not the main mechanism 

underlying poly-GR and poly-PR toxicity in neurons. 

In this work, I show significantly decreased protein synthesis in a SUnSET assay in poly-PR 

transduced primary neurons. These findings are confirmed in in vitro translation assays monitoring 

incorporation of S35 as well as puromycin into newly synthesized proteins following expression of poly-

PR and poly-GR in NSC-34 cells, astrocytes and HeLa cells (Kanekura et al., 2016; Lee et al., 2016a). As 

the poly-PR construct used in this study is highly toxic to neurons, in contrast to poly-GR, and its 

expression results in diminished protein translation, one can conclude that impaired protein synthesis 

is a major mechanism by which poly-PR drives toxicity. Kanekura and colleagues provide evidence that 

this effect is not caused by changed phosphorylation of the translation initiation factors, as cells 

treated with (PR)20 did not show altered levels of phospho-eIF4B, phospho-eIF4E or phospho-eIF4G. 

Thus, distinct pathways need to be involved. Kanekura et al. further suggest that direct binding of 

(PR)20 to mRNA might block access of translation factors (Kanekura et al., 2016). However, in my 

experiments, only nucleolar poly-(GR)53 and poly-PR show strong reduction of protein synthesis 
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compared to the cytoplasmic poly-(GR)149. Considering the cytoplasm being the compartment where 

mature mRNA is located, these observations argue against Kanekura et al.’s hypothesis.  

Interestingly, I found that the cytosolic ribosome is the top hit in gene enrichment analysis of 

the interactomes, which is also true for all other interactome studies elucidating the binding partners 

of poly-GR and poly-PR (Tao et al. 2015; Lopez-Gonzalez et al. 2016; Kanekura et al. 2016; Lee et al. 

2016; Boeynaems et al. 2017). Subsequently, I confirmed direct interaction between the ribosome and 

the two DPR species by a ribosome binding assay with purified (PR)15/(GR)15 and yeast ribosomes. 

Binding was also observed with synthetic peptides encoding poly-GR/PR, confirming that the 

interaction of DPR proteins with the ribosome is independent of poly-GR/PR bound RNA. However, I 

cannot exclude that the peptides bound yeast rRNA. Most importantly, I found that small and large 

subunits of the ribosome colocalize with 30% of poly-GR/PR in the cortex of C9orf72-FTD/ALS patient 

brains. This finding provides strong support for the in vivo relevance of poly-GR/PR impaired 

translation. It suggests that cytoplasmic poly-GR and poly-PR chronically impair protein synthesis even 

in absence of nucleolar localization. At the same time, Zhang and colleagues independently reported 

colocalization of cytoplasmic poly-GR to RPS6, RPL21 and the translation initiation factor eIF3η in 

transgenic mouse cortex and C9orf72-ALS/FTD brain (Zhang et al. 2018). Thus, in C9orf72-ALS/FTD, 

poly-GR/PR may lead to milder translational inhibition and slower neurodegeneration than in the acute 

cellular models.  

I can only speculate whether poly-GR/PR mediated toxicity emerges from impaired ribosome 

biogenesis or the loss of active ribosomes which might even differ in vitro and in vivo. On the one hand, 

my study provides strong evidence for the inhibition of ribosome biogenesis: ribosomal protein levels 

are reduced, ribosome biogenesis factors are interactors of poly-GR/PR and the structure as well as 

dynamics of the ribosome assembly associated nucleolus is disturbed. On the other hand, the neuronal 

interactome of poly-GR indicates that the entire ribosome is assembled, suggesting that the existing 

ribosomes may not be functional. It has previously been shown that comprised function of amino acyl 

tRNA synthetases (ARS) leads to repression of protein synthesis and neurodegeneration (Latour et al., 

2010; Lee et al., 2006; Storkebaum, 2016). Thus, it is also possible, that poly-GR and poly-PR 

dysfunctionalize the ribosome by affecting these amino acid transferases. For the future, it would be 

rewarding investigate direct interaction of poly-GR/PR with ribosomes using electron microscopy 

experiments in order to clarify these hypotheses. Identifying the exact binding site of the DPR proteins 

on the ribosome would shed light on the interference. It is possible that poly-GR/PR are blocking the 

sites important for the assembly of the ribosome with the mRNA or that the two DPR species are 

binding to the E, P or A site which are for example needed for ARS docking and subsequent maturation 

of the polypeptide chain. In this scenario, poly-GR/PR would impair ribosome activity. However, the 

two DPR protein species might only bind the ribosomal subunits at multiple sites and thus, hinder 
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ribosome assembly. Regardless, both scenarios would lead to the same outcome, namely less 

translation.  

Analysis of the whole proteome of poly-PR cell lysates suggests that neurons try to compensate 

for this translational repression through upregulation of ribosome biogenesis factors such as NSA2, 

RRP1, BRIX1, NOC2L, WDR77, TSR and as mentioned earlier also BOP1 and PES1. This effect could be 

validated in immunoblotting experiments for BOP1, but not PES1. Quantitative PCR experiments only 

showed non-significant trends. The reason for this might be that this method is not sensitive enough 

and that subtle effects can only be seen by mass spectrometry which allows detection of analytes at 

concentrations in the attomolar range (Annesley et al., 2009). 

Although neurons transduced with poly-PR appeared to counteract translational repression, 

poly-PR still reduced net ribosomal protein expression and caused pronounced cellular toxicity. 

Therefore, I hypothesized that the overexpression of poly-GR/PR interactors involved in ribosome 

biogenesis, which might be sequestered by the DPR proteins and thereby prevented from performing 

their regular function, should boost protein synthesis and reduce poly-PR mediated toxicity. However, 

expression of neither of the nucleolar proteins NOP56, NPM1, GTBP4, and BRIX1 could obviate 

neuronal death. NOP56 is participating in rRNA methylation, NPM1 is a ribosomal chaperone 

facilitating interactions between ribosomal proteins and rRNA and GTPBP4 as well as BRIX1 are 

involved in the biogenesis of the 60S subunit. Despite covering several pathways of ribosome 

biogenesis, none of the proteins alone was sufficient to restore reduced translation. Possibly, the 

combination of more ribosome biogenesis factors would be more effective. In a previous study in 

yeast, overexpression of the ribosome biogenesis factors NOB1 (human ortholog: NOB1) and STM1 

(no human ortholog) suppressed poly-PR toxicity (Jovicic et al., 2015).  

Thus, I overexpressed constitutively active MEK1 as an upstream regulator of translation. It is 

one of the main components of the MAPK/ERK pathway. It is activated by RAF and further 

phosphorylates its many downstream targets, thereby promoting cell growth and proliferation 

(McCubrey et al., 2007). By indirect phosphorylation of eIF4E and RPS6, MEK1 triggers translation 

initiation. Therefore, overexpression of the constitutive active form of MEK1 represents a more general 

approach to enhance protein synthesis. Indeed, MEK1 not only rescued translational repression but 

also prevented cellular toxicity in poly-PR expressing neurons. Furthermore, RPS6 protein expression 

was elevated upon MEK1 transduction. These findings suggest that inhibition of protein synthesis is 

connected to RPS6 levels as well as neuronal death, and that restoration of translation be 

neuroprotective.  

However, MEK1 is a protein known to have carcinogenic properties as it can drive ERK1/ERK2 

activation and lead to inappropriate cell proliferation and survival, precluding its therapeutic utility in 

patients. Alternatively, it might be advantageous to block the interaction of poly-GR and poly-PR with 
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the ribosome directly. Again, the exact binding site determined by electron microscopy might help for 

further elucidation of therapeutic strategies.  

Overall, this study proposes direct binding of poly-GR and poly-PR proteins to the ribosome, disturbed 

nucleolar organization and accompanied ribosomal biogenesis as the most relevant toxic mechanisms 

of the two examined DPR protein species. Although the processes occurring in vitro represent a very 

acute situation, my co-aggregation data in C9orf72-FTD/ALS patients suggests a similar mechanism 

may contribute to human pathogenesis. As DPR proteins are present long before symptom onset and 

brain atrophy, these processes might trigger toxicity less obtrusively. It is unquestionable that the 

ribosome is physiologically significant as patients show colocalization of all tested ribosomal subunits 

with 30% of poly-GR aggregates. The next important step will be to directly show translation repression 

in patient tissue due to poly-GR/PR. 

 The role of poly-GR and poly-PR toxicity in disease 

 Translation centered model of poly-GR and poly-PR mediated neurodegeneration 

The discovery of five DPR proteins species translated from the C9orf72 repeat expansion had major 

impact on ALS and FTD research. Extensive studies investigated the mechanisms by which the two DPR 

proteins poly-GR and poly-PR trigger neurodegeneration. The present study convincingly shows that 

the nucleolus, stress granules, and protein synthesis are the main targets of poly-GR/PR. These results 

emerged from proteomic analysis as well as validation experiments in vitro and, in contrast to most 

other groups, post mortem brains. From my data, I propose the following model for poly-GR/PR related 

ALS/FTD pathomechanisms (Figure 6-1).  

 Poly-GR and poly-PR toxicity could inhibit protein translation by interfering with three parallel 

cellular pathways. RAN translation of the C9orf72 repeat leads to formation of cytoplasmic poly-GR 

and poly-PR inclusions. These protein aggregates are causing cellular stress, thereby triggering the 

assembly of stress granules. Colocalization of poly-GR/PR with the membrane-less compartments 

impairs stress granule dynamics and disassembly. SGs are made from RNA and RNA-binding proteins 

and keep the messenger ribonucleoproteins in stalled translation pre-initiation complexes in order to 

protect them from harmful conditions. Consequently, the accumulation of SGs reduces overall protein 

synthesis. (Figure 6-1A). A parallel toxic mechanism is initiated by poly-GR/PR mediated sequestration 

of ribosomal subunits. I hypothesize that direct binding of the two DPR protein species to ribosomal 

proteins leads to a lack of ribosome components at the site where ribosome assembly takes place, 

namely the nucleolus. Additionally, poly-GR/PR might also bind whole ribosomes. As a result, fewer 

ribosomes are available finally causing impaired ribosomal assembly and subsequently, less 

translation. The sequestration of key factors associated with ribosome biogenesis might support this 
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mechanism of toxicity (Figure 6-1B). Furthermore, the interference of poly-GR and poly-PR with the 

nucleolus might pose a more direct link to reduced protein synthesis. In this situation, disorganization 

of the nucleolus, possibly emerging from binding to nucleolar proteins, would lead to nucleolar 

dysfunction (Figure 6-1C). As ribosome assembly occurs within the outer layers of the nucleolus, again, 

ribosome biogenesis is likely to be altered. Ultimately, all three pathways impair translation. 

 

 

Figure 6-1: Schematic model of poly-GR/PR induced toxicity in C9orf72-ALS/FTD  

The two arginine-rich DPR protein species poly-GR and poly-PR (glycine depicted in blue, proline in violet and arginine in red) 
are found in the cytoplasm of C9orf72-patient neurons and initiate three potential toxic pathways: (A) Stress-induced assembly 
of stress granules might lead to co-aggregation of poly-GR/PR and stress granule proteins. (B) Sequestration of ribosomal 
subunits (depicted as two grey ovals) in the cytoplasm potentially results in a lack of ribosomes in the nucleolus. (C) Poly-GR/PR 
bind nucleolar components leading to dysfunction of the nucleolus (grey circle in blue background (nucleus)). Ultimately, all 
three mechanisms comprise translation.  

 

 Concluding remarks and future directions 

This work importantly contributes to the understanding of pathological mechanisms underlying 

C9orf72-associated ALS/FTD. My data is consistent with parallel reports by other groups showing the 

association of poly-GR/PR with stress granules, the nucleolus and, most importantly, inhibition of 
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protein translation. It is the first study successfully validating poly-GR/PR interacting proteins in patient 

tissue and highlights the importance of the ribosome in disease pathogenesis. Furthermore, this work 

represents the first interactome study performed in neurons and thereby reflects the patient situation 

most accurately.  

Since neither individual poly-GR expression nor C9orf72 knockout in mice is sufficient to mimic 

all features of ALS/FTD, synergistic effects of the C9orf72-associated pathomechanisms are most likely. 

For example, the other DPR proteins may contribute to toxicity. Notably, poly-GA and poly-GP are the 

most abundant DPR species in ALS/FTD brains harboring the C9orf72 repeat and although poly-PR was 

shown to be the most toxic one in vitro, it is extremely rare (Schludi et al., 2015a). An explanation for 

this disconnect might be that rapid poly-PR-induced neurodegeneration may preclude its detection. 

However, RAN-translation of the anti-sense strand seems to be less efficient than from the sense 

strand as the inert poly-PA is also low abundance (Mori et al., 2013a; Mori et al., 2013c). Analysis of a 

poly-PR mouse model could be rewarding. In contrast, poly-GA toxicity, comprising nucleocytoplasmic 

transport (Khosravi et al., 2017) and proteasome function (Guo et al., 2018; May et al., 2014), seems 

to be slower. Furthermore, the repeat RNA itself is known to bind to several RNA-binding proteins, but 

a clear loss-of-function of any of these proteins has not been reported. Moreover, C9orf72 

haploinsufficiency, particularly in immune cells, might play a crucial role.  

As besides DPR protein pathology, post mortem C9orf72 ALS/FTD patient brains harbor 

characteristic cytoplasmic TDP-43 inclusions, additional pathomechanisms leading to 

neurodegeneration exist. Strikingly, the regional distribution of TDP-43 inclusions strongly correlates 

with neurodegeneration and the clinical phenotype (ALS vs. FTD). In contrast, DPR protein inclusions 

are also present in several non-degenerating brain regions (Mackenzie et al., 2013). This disconnect 

between DPR protein pathology (as well as RNA foci and reduced C9orf72 expression) and TDP-43 

pathology is the main open question in C9orf72-ALS/FTD research. Previous findings suggest that DPR 

proteins precede TDP-43 inclusions in cellular models as well as patient brains: Occasionally, poly-GA 

is surrounded by phosphorylated TDP-43 and C9orf72 patients who died of other conditions before 

reaching end stage of ALS/FTD show abundant DPR pathology while TDP-43 aggregates are rare 

(Mackenzie et al., 2013; Nonaka et al., 2018; Vatsavayai et al., 2016). And the finding that poly-GA 

partially reroutes nuclear TDP-43 into cytoplasmic granules in primary neurons and HeLa cells 

additionally supports a causal role of DPR proteins in TDP-43 pathology (Khosravi et al., 2017). In the 

end, neuronal death in C9orf72 mediated ALS/FTD likely results from the interplay of the two types of 

pathological inclusions and various toxic mechanisms. Thus, the relative contribution of the DPR 

proteins, particularly of poly-GR and poly-PR, and the synergistic effects remain to be defined. 

Ultimately, only a drug targeting specific DPR protein species, other pathological inclusions, RNA-
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toxicity or C9orf72 haploinsufficiency in patients can tell which pathway is most critical for C9orf72-

ALS/FTD pathogenesis. 

Taken together, my work provides strong evidence that poly-GR and poly-PR contribute to 

disease pathogenesis by direct binding of the ribosome in C9orf72-ALS/FTD patients probably leading 

to chronic toxicity, which may ultimately trigger a second disease stage with TDP-43 pathology 

(Edbauer and Haass, 2016). In cellular models, nucleolar poly-GR/PR reduce expression of ribosomal 

proteins as well as overall protein synthesis. Boosting translation and expression of ribosomal proteins 

using MEK1 overexpression rescued cellular toxicity in vitro. Hence, restoring chronically impaired 

translation, ribosome biogenesis or related pathways could serve as a novel therapeutic strategy in 

patients. Since overactivation of the MEK1/MAPK pathways would likely promote cancer, inhibiting 

the interaction of poly-GR and poly-PR with ribosomes might be a less harmful therapeutic strategy. 

As mentioned earlier, electron microscopy of ribosomes could help discover specific poly-GR binding 

sites, thereby unraveling the mode of action leading to rational drug design.  
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7. APPENDIX 

 Supplementary Tables  
Table S1: Proteins enriched in the neuronal interactome, T-test difference poly-GR vs GFP 

 

  

Welch's T-test  
s0=1, fdr=5% 

PR-enriched? protein ID protein name 

Difference LFQ 
intensity 
pGR_LFQ 
intensity GFP 

   

11.21805954 PR-enriched O35796 C1qbp 
10.14376736 PR-enriched Q4QR85;Q7TPI7 Wdr77 
9.776339531 

 
D4A0E8 Prmt5 

7.359214306 
 

A0A0G2JUV5;M0RBW5 Ccdc40 
6.141866207 

 
F1LRU1;Q9JIL3-2 Ilf3 

5.795619965 
 

P13383;Q5U328 Ncl 
5.287992477 PR-enriched F1M403 Ube2o 
5.082045078 PR-enriched B5DF95;A0A0G2K782 Zc2hc1a 
4.955165863 PR-enriched A0A0G2K9I8 Prmt1 
4.936328411 PR-enriched G3V7R1;O08587 Nup50 
4.934625626 PR-enriched Q4V898 Rbmx 
4.810759544 PR-enriched D3ZXH7 Alyref 
4.55553627 PR-enriched P15865 Hist1h1e 
4.25990057 PR-enriched P62961;F1LPL7 Ybx1 
4.255776405 PR-enriched P21707;P29101 Syt1 
4.249275684 PR-enriched D3ZBN0 Hist1h1b 
4.193473339 

 
P84586;A0A0G2K8K9 Rbmxrtl 

4.117208958 
 

D3ZXF9 Mrpl12 
3.950805664 PR-enriched P43278 H1f0 
3.944224834 PR-enriched P55770;H7C5X3 Nhp2l1 
3.841823101 

 
F1LNK0;P15146 Map2 

3.822192192 
 

A0A0G2JY73;D4A554 Eif4g3 
3.754371643 

 
P61314;D3ZXA2 Rpl15 

3.735926628 PR-enriched Q6AY68 Aurkaip1 
3.627151489 

 
P19944;A0A0G2K4Q1 Rplp1 

3.609757423 PR-enriched Q63827;F1LM54 Fgfr1 
3.590438366 

 
A0A0G2K1R5;F1LR80 Camkv 

3.587795258 PR-enriched D3ZVA5 Fbll1 
3.582002163 

 
D3ZIF0 Zfp512 

3.532605171 
 

P02401;D4A4D5 Rplp2 
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Table S2: Proteins enriched in the neuronal interactome, T-test difference poly-PR vs GFP 

Welch's T-test  
s0=1, fdr=5% 

GR-enriched? protein ID protein name 

Difference LFQ 
intensity 
pPR_LFQ 
intensity GFP 

   

8.999781132 GR-enriched A0A0G2JUV5;M0RBW5 Ccdc40 
8.753255844 GR-enriched O35796 C1qbp 
5.80452919 

 
Q925Q9;Q925Q9-2 Sh3kbp1 

5.536819935 GR-enriched P15865 Hist1h1e 
5.257129669 GR-enriched D3ZXF9 Mrpl12 
5.249002934 GR-enriched P19139 Csnk2a1 
5.138173103 GR-enriched F1LRJ2;A0A0G2K2M9 Srrm2 
4.720638752 GR-enriched D3ZBN0 Hist1h1b 
4.530203819 GR-enriched P43278 H1f0 
4.521471024 

 
P04218 Cd200 

4.518064976 
 

Q27W01 Rbm8a 
4.401230335 GR-enriched P55770;H7C5X3 Nhp2l1 
4.318847179 

 
Q5M7V8;F1M3X4 Thrap3 

4.27340889 GR-enriched P62961;F1LPL7 Ybx1 
4.254295826 

 
M0R907;M0R8M3 Snrpd3 

4.130423546 GR-enriched Q68SB1-2;Q68SB1 Stau2 
4.084741592 GR-enriched D4A3K5 Hist1h1a 
4.065413952 GR-enriched P13383;Q5U328 Ncl 
4.05639267 GR-enriched Q4V898 Rbmx 
3.973850727 

 
D3ZTW8 Mrpl27 

3.90845108 
 

Q5BJX1;D3ZH23 Mrpl41 
3.899531841 

 
B5DES0;M0R8K2 Snrpd2 

3.853073597 
 

P63170;A0A0G2JU43 Dynll1 
3.726355076 

 
D3ZFQ8 Cyc1 

3.698761463 GR-enriched P84586;A0A0G2K8K9 Rbmxrtl;Rbmxl1 
3.552656651 GR-enriched D3ZJY1 Mrpl28 
3.538584709 GR-enriched M0R7B4 LOC684828 
3.514945984 GR-enriched A0A0G2K654;P06349 
3.481257439 

 
D3ZGM1;A0A0G2JU15 Ptcd3 

3.480280876 
 

Q3B8Q2 Eif4a3 
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Table S3: Proteins enriched in the HEK293 cell interactome, T-test difference poly-GR vs GFP 

Welch's T-test  
s0=1, fdr=5% 

PR-enriched? protein ID protein name 

Difference LFQ 
intensity 
pGR_LFQ 
intensity GFP 

   

9.33267212 
 

O14744;O14744-2 PRMT5 
8.64189434 PR-enriched Q9HCE1;Q5JR04 MOV10 
7.17884731 

 
Q9BQA1;H0Y711 WDR77 

7.06018829 PR-enriched Q5T653;C9IY40 MRPL2 
6.6750226 PR-enriched Q07021 C1QBP 
6.49605656 PR-enriched Q96A35;X6RJ73 MRPL24 
6.41339779 PR-enriched P09001;H0Y9G6 MRPL3 
6.40069199 PR-enriched Q9H9J2 MRPL44 
6.36713791 PR-enriched Q8IXM3 MRPL41 
6.28270912 PR-enriched Q9P015;E5RIZ4 MRPL15 
6.27818775 PR-enriched Q9BYD2;Q5SZR1 MRPL9 
6.26837015 PR-enriched Q9BYD3;K7ES61 MRPL4 
6.13568354 PR-enriched Q9NRX2;E9PKV2 MRPL17 
5.85481071 PR-enriched Q8N5N7;Q8N5N7-2 MRPL50 
5.8260293 PR-enriched Q9BZE1;S4R369 MRPL37 
5.76797581 PR-enriched Q9NYK5;Q9NYK5-2 MRPL39 
5.74533319 PR-enriched Q13405;H0YDP7 MRPL49 
5.69108677 

 
Q7L2E3-2;Q7L2E3 DHX30 

5.67733049 PR-enriched Q96DV4;Q96DV4-2 MRPL38 
5.66948223 PR-enriched Q9BYD6;H0Y8N7 MRPL1 
5.61673355 PR-enriched Q8N983-4;Q8N983 MRPL43 
5.57176733 PR-enriched O95793;O95793-2 STAU1 
5.52799082 PR-enriched Q9Y2S7;B4DEM9 POLDIP2 
5.51922655 PR-enriched Q9NP92;A0A087WV52 MRPS30 
5.42335987 PR-enriched Q16540;A6NJD9 MRPL23 
5.2685895 PR-enriched Q8TAE8 GADD45GIP1 
5.20731497 PR-enriched Q96GQ7;B7Z6D5 DDX27 
5.19266939 

 
O15234;J3KSY7 CASC3 

5.16271877 PR-enriched Q13084;A2IDC6 MRPL28 
5.14378309 

 
Q14690;S4R3Q4 PDCD11 
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Table S4: Proteins enriched in the HEK293 cell interactome, T-test difference poly-PR vs GFP 

Welch's T-test  
s0=1, fdr=5% 

GR-enriched? protein ID protein name 

Difference LFQ 
intensity 
pPR_LFQ 
intensity GFP 

   

5.06309128 GR-enriched Q5T653;C9IY40 MRPL2 
4.91249514 GR-enriched Q07021 C1QBP 
4.88959026 GR-enriched P09001;H0Y9G6 MRPL3 
4.80967426 GR-enriched Q9H9J2 MRPL44 
4.66591167 GR-enriched Q9BYD3;K7ES61 MRPL4 
4.63696957 GR-enriched Q96A35;X6RJ73 MRPL24 
4.50121355 GR-enriched Q8IXM3 MRPL41 
4.29837513 

 
Q9Y5K6 CD2AP 

4.23110867 GR-enriched Q9BYD2;Q5SZR1 MRPL9 
4.0637455 GR-enriched Q13405;H0YDP7 MRPL49 
3.97548103 GR-enriched Q9BYD6;H0Y8N7 MRPL1 
3.65711308 GR-enriched Q9NYK5;Q9NYK5-2 MRPL39 
3.64774752 GR-enriched Q16540;A6NJD9 MRPL23 
3.41399431 GR-enriched Q9P015;E5RIZ4 MRPL15 
3.25861359 GR-enriched Q9NRX2;E9PKV2 MRPL17 
3.19250822 GR-enriched Q9H0U6 MRPL18 
3.18459654 GR-enriched Q8N983-4;Q8N983 MRPL43 
3.18127441 GR-enriched Q9BRJ2;A0A087X2D5 MRPL45 
3.16544533 GR-enriched Q96DV4;Q96DV4-2 MRPL38 
3.04626703 GR-enriched Q8TAE8 GADD45GIP1 
3.01187754 GR-enriched Q9BYD1;E5RJI7 MRPL13 
3.01071358 GR-enriched Q9NWU5;E7ESL0 MRPL22 
2.97999954 GR-enriched Q9BZE1;S4R369 MRPL37 
2.95969963 GR-enriched P68431 HIST1H3A 
2.91059303 GR-enriched Q13084;A2IDC6 MRPL28 
2.8484726 GR-enriched Q9P0M9;D6RAN8 MRPL27 
2.80497026 GR-enriched Q9NP92;A0A087WV52 MRPS30 
2.65388632 GR-enriched Q8N5N7;Q8N5N7-2 MRPL50 
2.62585402 GR-enriched Q14197;J3KS15 ICT1 
2.62239504 GR-enriched Q9HD33;Q9HD33-2 MRPL47 

 

  



APPENDIX 

120 
 

 Table of Abbreviations 
abbreviation explanation 
°C degree Celsius 
µg micro gram 
µL micro liter 
µM micro molar 
A adenine 
AA amino acid 
ALS Amyotrophic Lateral Sclerosis 
ARS amino acyl tRNA synthetase 
ASO antisense oligo nucleotide 
ATP adenosine tri-phosphate 
BAC bacterial artificial chromosome 
BOP1 block of proliferation 1 
bp base pairs 
bp base pairs 
BSA bovine serum albumin 
bvFTD Behavioral FTD 
C cytosine 
c concentration 
C1QBP Complement 1q binding protein 
C9orf72 Chromosome 9 open reading frame 72 
Cas CRISPR associated 
CCDC40 Coiled-coil domain containing 40 
CD2AP CD2 associated protein 
cDNA complementary deoxyribonucleic acid 
ChIP chromatin immunoprecipitation 
CHMP2b Charged multivesicular body protein 2b 
CIP calf intestine phosphatase 
CLP1 Cleavage And Polyadenylation Factor 1 
cm centi meter 
CMT Charcot Marie Tooth (disease) 
CNS central nervous system 
COX16 cyclooxygenase 16 
CRISPR clustered regulatory intersperse short 

palindromic repeats 
CSF cerebrospinal fluid 
DAPI 4′,6-Diamidin-2-phenylindol 
DBA Diamond Backfan Anemia  
dd double destilled 
DENN Differentially expressed in normal and 

neoplastic cells 
DFC dense fibrillar compartment 
DIV days in vitro 
DNA deoxyribonucleic acid 
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dNTP deoxyribonucleotides 
DPR Dipeptide repeat 
DTT dithiothreitol 
EAAT2 excitatory amino acid transporter 2 
EDTA Ethylenediaminetetraacetic acid 
eIF eukaryotic initiation factor 
ELISA enzyme-linked immunosorbent assay 
ER Endoplasmic Reticulum  
ERK extracellular signal-regulated kinase 
FC fibrillar core 
FCCP Mesoxalonitrile  

4-trifluoromethoxyphenylhydrazone 
FCS fetal calf serum 
fig. Figure 
FMRP fragile X mental retardation protein 
FTD Frontotemporal Dementia 
FUS Fused in sarcoma 
G guanine 
G3BP Ras GTPase-activating protein-binding protein 1 
GA glycine-alanine 
GADD45A DNA damage inducible 45A 
GAPDH glycerinaldehyd-3-phosphat-dehydrogenase  
GC granular compartment 
GDP Guanosine di-phosphate 
GEF Guanosine exchange factor 
GFP green fluorescent protein 
GO gene ontology 
GP glycine-proline 
GR glycine-arginine 
GRN progranulin 
GTP Guanosine tri-phosphate 
GTPBP4 GTP binding protein 4 
h hour 
HA hemaglutinin tag 
HEK human embryonic kidney 
hnRNP heterogeneous nuclear ribonucleoprotein 
HRP horseradish peroxidase 
IF immunofluorescence 
IgG immunoglobulin G 
iPSC induced pluripotent stem cell 
IP immunoprecipitation 
kb kilo base pairs 
kDa kilo Dalton 
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KEOPS-EKC Endopeptidase and Other Proteins of small Size 
(KEOPS)/Endopeptidase-like and Kinase 
associated to transcribed Chromatin 

KO knock out 
L  liter 
LB lysogeny broth 
LCD low complexity domain 
LC-MS/MS liquid chromatography mass spectrometry 
LDH lactate dehydrogenase 
LLPS liquid liquid phase separation 
M molarity (mol/L)  
mA milli ampere 
MAGOHB mago nashi 
MAPT Microtubule-associated protein Tau 
MBNL1 muscleblind-like protein 1 
MEK1 mitogen-activated protein kinase kinase 

(MAP2K) 
min minute(s) 
mL milli liter 
mm milli meter 
mRNA messenger RNA 
MRPL mitochondrial ribosomal protein large subunit 
MRPS mitochondrial ribosomal protein small subunit 
MTCO1 mitochondrially encoded Cytochrome C oxidase 

I 
n quantity 
NACA nascent polypeptide-associated complex 

subunit alpha 
NCL nucleolin 
NEAA non-essential amino acid 
NES nuclear export sequence 
ng nano gram 
NLS nuclear localization signal 
nm nano meter 
NOC2L nucleolar complex protein 2 homolog 
NOP56 NucleOlar protein of 56.8 kDa 
NP-40 Nonidet-P40, nonylphenylpolyethylenglycol 
NPC nuclear pore complex 
NPM1 nucleophosmin 1 
NSC34 Neuroblastoma hybrid cell line 34 
nt nucleotides 
Nup nucleoporin 
OCR oxygen consumption rate 
OPT optineurin 
p probability value 
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PA proline-alanine 
PAGE poly-acrylamide gel electrophoresis 
PBS phosphate buffered saline 
PCH Pontocerebellar Hypoplasia 
PCR polymerase chain reaction 
PES1 Pescadillo homolog 
pH measure of the activity of the solvated hydrogen 

ion 
PNFA Progressive non-fluent aphasia 
pNFH phosphorylated neurofilament heavy chain 
Pom121 nuclear pore membrane protein 121 kDa 
PPA Primary progressive aphasia 
PR proline-arginine 
PRMT protein arginine methyltransferase 
Pur-a purine-riche element binding alpha 
qRT-PCR quantitative real time polymerase chain 

reaction 
Rab Ras-related in brain 
Ran RAs-related nuclear  
RanGAP GTPase-activating protein 
RBP RNA binding protein  
RCC1 regulator of chromosome condensation 1 
RNA ribonucleic acid 
ROS reactive oxygen species 
RPL ribosomal protein large subunit 
rpm revolution per minute 
RPS ribosomal protein small subunit 
rRNA ribosomal RNA 
RRP1 ribosomal RNA processing protein 1 
RT room temperature 
SCA8 Spinocerebellar ataxia type 8 
SDS sodium dodecyl sulfate 
sec second(s) 
SF3 splicing factor 3 
SG stress granule 
SMCR8 Smith-Magenis syndrome chromosomal region 

candidate gene 8 
SNRPB2 U2 small nuclear ribonucleoprotein B 
SOD1 Superoxide dismutase 1 
SQSTM1 Sequestome 1 
SRSF Serine and arginine rich splicing factors  
STAU Staufen 
SUnSET surface sensing of translation 
T thymidine 
TAR Transactive response 
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TCOF1 treacle ribosome biogenesis factor 1 
TDP Tar DNA binding protein 
TEMED N,N,N',N'-tetramethylethylenediamine 
TIA1 T-cell-restricted intracellular antigen-1 
TIMM9 translocase of the inner mitochondrial 

membrane 
TMP 3,3‘,5,5‘ tetramethylbenzidine 
TMX2 thioredoxin protein 2 
TNPO1 transportin 1 
TRA2 transformer 2 protein 
TREM2 Triggered receptor expressed on myeloid cells 
tRNA transfer RNA 
TSEN tRNA splicing endonuclease 
UBQLN Ubiquilin 
ULK1 Unc51-like kinase 
UPS Ubiquitin proteasome system 
UV ultraviolet  
V  volt 
V Volt 
VCP Valosin-containing protein 
WB  western blot 
WDR WD repeat domain 
wt wild type 
YBX1 Y-box binding protein 1 
YWHAZ Tyrosine 3-Monooxygenase/Tryptophan 5-

Monooxygenase Activation Protein Zeta 
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