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C Bézier interpolation 122
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Zusammenfassung

Von der Entstehung bis zu ihrem Ende als Supernovae bilden heiße, massereiche Sterne einen Grund-

pfeiler unseres Verständnisses über das Universum als Ganzes. Aufgrund der hohen Leuchtkräfte

spielen dabei verschiedene ‘feedback’-Mechanismen (z. B. in Form von kinetischer Energie und ioni-

sierender Strahlung) eine zentrale Rolle, welche die Entwicklung ganzer Galaxien sowohl im heutigen

als auch im frühen Universum beeinflussen.

Zur Quantifizierung dieser ‘feedback’-Mechanismen müssen heiße, massereiche Sterne während

all ihrer Entwicklungsstufen möglichst genau beschrieben werden, wobei unser heutiges Verständnis

auf detaillierten Analysen von beobachteten und numerisch modellierten Sternspektren basiert. Unter

der Annahme von sphärischer Symmetrie berücksichtigen moderne Spektralanalyse-Codes Abwei-

chungen vom lokalen thermischen Gleichgewicht (NLTE), um die Interaktion des Strahlungsfelds mit

den Besetzungszahlen einer Vielzahl von Elementen zu bestimmen. Allerdings gibt es viele Effekte,

die zu räumlichen Asymmetrien führen, und dementsprechend mit mehrdimensionalen Analysewerk-

zeugen behandelt werden sollten.

In vorliegender Arbeit werden zu diesem Zweck numerische Methoden entwickelt, die einen

ersten Schritt in Richtung selbst-konsistenter 3D NLTE Modelle darstellen. Wir stellen einen neu

entwickelten 3D Strahlungstransport-Code vor, welcher in den Winden heißer, massereicher Ster-

ne sowohl Resonanzlinien-Übergänge als auch ein vereinfachtes Kontinuum behandelt. Um das

Strahlungsfeld zu berechnen, implementieren wir mit der Finite-Volumen-Methode (FVM) und der

‘Short-Characteristics (SC) Methode’ einen differentiellen und einen integralen Ansatz, wobei wir

für beide Lösungsschemata ein unregelmäßiges kartesisches Gitter verwenden. Streuprozesse wer-

den vermittels der ‘beschleunigten Λ-Iteration’ eingebunden. Um ein stabiles Konvergenzverhalten

zu gewährleisten, entwickeln wir entsprechende nicht-lokale Operatoren.

Ein zweites zentrales Ziel dieser Dissertation ist die Untersuchung beider Methoden hinsicht-

lich ihrer Genauigkeit. Bezüglich sphärisch symmetrischer Test-Atmosphären erhielten wir zumeist

sehr überzeugende Ergebnisse. Im Gegensatz zur SC-Methode scheitert die FVM allerdings an der

Berechnung von Kontinua hoher optischer Tiefe. Bei der Berechnung von Resonanzlinien liefern da-

gegen beide Lösungsmethoden eine hohe Genauigkeit für alle betrachteten Test-Modelle, wobei die

SC Methode in der Regel zu etwas besseren Ergebnissen führt.

Im dritten Teil dieser Arbeit wenden wir die 3D Strahlungstransport-Methoden auf verschiedene

Problemstellungen in nicht-sphärischen Windschichtungen an, um einerseits das Leistungsvermögen

unseres Codes unter realistischen Bedingungen zu überprüfen, und andererseits aktuellen Fragestel-

lungen nachzugehen. Als erste Anwendung des 3D Kontinuum-Strahlungstransports betrachteten wir



das sogenannte ‘Wind-Ablations-Modell’, welches nach heutigem Stand der Forschung die Interakti-

on einer Akkretionsscheibe mit einem strahlungsdruck-getriebenen Sternwind beschreibt. Unter Ver-

wendung unseres 3D Codes konnten wir zeigen, dass die Linienstärkenverteilung (welche zur Berech-

nung der Linien-Strahlungsbeschleunigung benötigt wird und selbst vom Strahlungsfeld abhängt) zu-

mindest in den oberen Scheibenschichten, also dort wo Wind-Ablation eine zentrale Rolle spielt, von

1D Modellen adaptiert werden kann. Dies war eine bis dato unbestätigte Grundannahme innerhalb

gegenwärtiger hydrodynamischer Simulationen.

Desweiteren analysierten wir die Auswirkungen von schneller Rotation und von dynamischen

Magnetosphären auf die Spektraldiagnostik von UV Resonanzlinien. So zeigten wir, dass die

Linienprofile von schnell rotierenden Sternwinden aufgrund der spezifischen Windstruktur und der

Gravitationsverdunkelung stark von der Rotationsrate und der Inklination abhängen. Zur Unter-

suchung von dynamischen Magnetosphären beschrieben wir die Windschichtung einerseits durch

magneto-hydrodynamische Simulationen und andererseits durch eine oftmals verwendete, vereinfach-

te Beschreibung von magnetischen Winden, dem sogenannten ‘analytic dynamical magnetosphere’-

Modell. Durch den Vergleich der daraus resultierenden Linienprofile zeigten wir, dass manche An-

nahmen innerhalb der vereinfachten Beschreibung überarbeitet werden müssen.

Zusammenfassend schließen wir, dass unsere 3D Strahlungstransport-Methoden für eine Viel-

zahl von asymmetrischen (nicht-relativistischen) Sternwinden verwendet werden kann. Während die

FVM qualitative Untersuchungen von UV Resonanzlinien zulässt, sollte die SC-Methode angewendet

werden, um quantitative Analysen durchzuführen. Desweiteren ist die FVM lediglich zur Berechnung

von optisch dünnen oder geringfügig optisch dichten Kontinua geeignet, wohingegen die SC-Methode

auch bei hohen optischen Tiefen realistische Ergebnisse liefert.



Abstract

Hot, massive stars form a keystone for understanding our Universe as a whole. During their lifetime,

and also when they finally explode as a supernova, such objects shape their surroundings by feedback

of kinetic energy, ionizing radiation, and nuclear processed material. Thus, hot, massive stars are

frequently considered as ‘cosmic engines’ (see Bresolin et al. 2008), influencing the evolution of

galaxies within the present and the early Universe.

To quantify such feedback effects, hot, massive stars need to be correctly described during all

their evolutionary phases. Current knowledge is usually inferred by modelling their atmospheres

(photosphere + wind), and by comparing the resulting synthetic spectra with observations. State-

of-the-art spectrum-synthesis codes typically determine the radiation field and level populations in

parallel, by assuming 1D spherical symmetry, and accounting for non-equilibrium (NLTE) conditions.

Specific effects such as magnetic fields, however, can lead to deviations from spherical symmetry,

rendering the results from 1D codes questionable.

The major objective of this thesis work is therefore defined by the development of 3D radiative

transfer tools, which shall serve as a first step towards a full 3D NLTE modelling. We present a newly

developed 3D code, considering the UV resonance-line formation and a simplified description of the

continuum in the winds of hot, massive stars. To calculate the radiation field, we implement two

independent methods, a finite-volume method (FVM) and a short-characteristics (SC) method, and

discretize the equation of radiative transfer on a non-uniform Cartesian grid. For scattering-dominated

problems, both solution schemes are augmented by an ‘accelerated Λ-iteration’ scheme, using newly

developed non-local operators to ensure convergence.

Besides the development of the code, particular emphasis has been put on extensive tests of our

radiative transfer modules, focussing on certain advantages and disadvantages of the developed tools.

For spherically symmetric test models, we mostly found reasonable results. When calculating opti-

cally thick continua, however, the FVM breaks down, contrasted to the more elaborate SC method.

The UV resonance-line formation, on the other hand, performs excellently for all applied methods

and models, with slight advantages for the SC method when compared with the FVM.

Convinced about the performance of our 3D solution schemes, we applied the code to non-

spherical wind models, in order to test the capabilities of the developed tools under realistic conditions,

and to tackle specific questions related to current research. As a first application of our continuum

solver, we considered the ‘wind-ablation’ model (describing the interaction of an accretion disc with

a radiation-driven stellar wind). For such models, we validated an important assumption of cur-

rent radiation-hydrodynamic simulations, namely that the so-called line-strength distribution function



(which is required for calculating the radiative line acceleration, and which depends on the radiation

field) can indeed be adapted from 1D calculations, at least in the outer disc layers where wind ablation

plays a primary role.

Further, we analysed the UV resonance-line formation both in fast rotating winds and in dynami-

cal magnetospheres of hot, massive stars. For rapidly rotating wind models, the predicted line-profile

shapes depend on the considered rotation rate, and on inclination. Their distinct behaviour is re-

lated to the description of gravity darkening, and the specific wind structure. When investigating the

line formation in dynamical magnetospheres, we considered the wind structure as determined from

magneto-hydrodynamic simulations, or calculated from a simplified – though frequently applied –

description via the so-called ‘analytic dynamical magnetosphere’ (ADM) framework. By comparing

the resulting line profiles obtained from our 3D code, we showed that the ADM needs to be partly

revised, to enable a proper description of all relevant processes.

In summary, our 3D radiative transfer methods can be readily applied to (arbitrary, non-relativistic)

winds of hot, massive stars that deviate from spherical symmetry. While the FVM allows us to qual-

itatively investigate the UV resonance-line formation, the SC method should be used for quantitative

studies. Moreover, the FVM should be only applied to optically thin or marginally optically thick

continua, whereas the SC method gives reliable results also for large optical depths.



Preamble

This thesis is about the numerical solution of 3D radiative-transfer problems in the winds of hot,

massive stars, with particular emphasis on the development and extensive testing of a code using

two independent solution schemes, the finite-volume method and the short-characteristics method.

The discussion and first applications of each method have already been published in peer-reviewed

journals:

• Hennicker L., Puls J., Kee N. D., Sundqvist J. O., 2018: “3D radiative transfer: Continuum

and line scattering in non-spherical winds from OB stars” (A&A, 616, A140);

• Hennicker L., Puls J., Kee N. D., Sundqvist J. O., 2019: “A 3D short-characteristics method

for continuum and line scattering problems in the winds of hot stars” (accepted for publication

in A&A);

Since a re-formulation of the (already published) text would – in most cases – blur the major argumen-

tation, parts of this thesis have been adopted from these two papers. Sections and subsections have

been rearranged in order to enable a clear structure within this thesis, and to avoid overlaps. Further,

we have re-formulated some paragraphs to enable a correct referencing, and to provide additional

explanations.

To ensure an appropriate citation convention, we apply the following rules:

(i) If a complete chapter within this thesis is based, to a major part, on Hennicker et al. (2018)

and/or Hennicker et al. (2019), we explicitly point this out at the beginning of the chapter.

(ii) If a section or subsection within this thesis is based, to a major part, on Hennicker et al. (2018)

and/or Hennicker et al. (2019), we explicitly cite the corresponding publication with a footnote

attached to the section title.

(iii) If only individual sentences have been copied from Hennicker et al. (2018) or Hennicker et al.

(2019), we mark these sentences by † . . .† or ‡ . . .‡, respectively.





Chapter 1

Introduction

1.1 Hot, massive stars in the context of modern astrophysics

The understanding of hot, massive stars is a basic prerequisite for interpreting fundamental properties

of our Universe throughout its history. Already the first generation of hot, massive stars (Pop III

stars) is thought to have contributed significantly to the reionization1 of the Universe due to their

strong, ionizing radiation field. The details, however, strongly depend on the initial mass function

(IMF, i.e., the initial mass distribution for a stellar population), and are only poorly understood due to

the lack of observations. Particularly the upper-mass limit and the slope of the IMF play a key role

for constraining the reionization from stellar feedback quantitatively, since the luminosity typically

depends over-proportionally on the stellar mass (L∗ ∝ Mα∗ , α ∈ [1,3], e.g., Owocki 2010, with L∗
and M∗ the stellar luminosity and mass, respectively). Additionally, Pop III stars are thought to be

responsible for the first metal2 enrichment of the early Universe, thus affecting the star formation rates

of later stellar populations by shaping the cooling properties of star-forming regions. For a detailed

understanding of the reionization and the first metal enrichment, a sound theoretical description of

Pop III stars is required, together with observations.

But also in later epochs, hot, massive stars are of central importance, particularly regarding star-

formation rates (again), and the chemical evolution of galaxies. On the one hand side, the strong

radiation field of hot, massive stars can heat nearby star-forming regions, possibly preventing the

collapse of molecular clouds from which stars are typically formed. On the other hand, the ionizing

radiation and the resulting dynamical effects can also amplify over-densities within the interstellar

medium (ISM), thus inducing star formation (Gritschneder et al. 2009). In this respect, both the

deaths of hot, massive stars and their (supersonic) stellar winds are even more important. Since such

objects typically end their lives as core-collapse supernovae (CC-SN), the associated shock fronts

1 White et al. (2003) detected a complete Gunn-Peterson trough (i.e., a vanishing flux at wavelengths below the red-shifted

Lyman-α line) for a quasar at redshift z = 6.28, whereas no such trough could be observed for quasars at z . 6. These

findings suggest that the Universe entered the reionization epoch at red-shifts z≈ 6. We note, that (at least) the reionization

of hydrogen cannot be explained by the number of ionizing photons emitted from quasars alone (Willott et al. 2005). A

quantitative assessment in the early Universe, however, is difficult since the radiative feedback of both (massive) stars and

quasars can only be estimated to date.
2 The term ‘metals’ refers to all elements heavier than Helium, as commonly defined in astronomy.
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possibly trigger star formation, resulting in a new generation of (massive) stars. Since the competition

between heating and triggering is not completely clarified to date, particularly this topic is subject of

current research. Additionally, the ISM becomes enriched with metals by supernovae explosions, thus

affecting the chemical evolution of the host galaxy. Consequently, the cooling rates within following

star-formation epochs become modified, again impacting the IMF of following stellar generations.

To enable quantitative predictions about the effects described above, a detailed understanding of

hot, massive stars is required. In this respect, particularly the theory of star formation (determining

the IMF) and stellar evolution (affecting the end products) are of key importance in both the early and

the present Universe.

Star formation

In general, stars are formed by the collapse of molecular clouds, when gravitational forces overwhelm

all counteracting forces (e.g., centrifugal forces, pressure gradients from thermal and turbulent mo-

tions, and, in later phases, possibly from radiation pressure). Since gravitational energy is transformed

to heat during collapse, efficient cooling channels are required to keep the gas pressure on a reason-

able scale. In the present Universe, cooling is typically realized by collisional excitation and radiative

de-excitation of metals and molecules, as well as by dust radiation (e.g., Bodenheimer 2011). In the

early Universe, however, neither metals nor dust were abundant. From a theoretical point of view,

cooling in the early epochs has possibly been realized via the dissociation of molecular hydrogen and

by atomic/molecular line cooling of hydrogen (see again Bodenheimer 2011). Since the ability of

forming a star crucially depends on the cooling rate, the existence of massive stars in the early Uni-

verse is still under debate. Besides efficient cooling mechanisms, also external heating of molecular

clouds, for instance by nearby hot stars, cosmic rays, or, in the early Universe, by the cosmic mi-

crowave background, plays a key role as well, and possibly halts or even prevents the collapse of a

molecular cloud. The star-formation rate is thus constrained by the delicate interplay of various heat-

ing and cooling processes, and obviously depends on the occurrence and mass distribution of massive

stars in the vicinity of star-forming regions.

When both heating and cooling allow for a collapse, a protostar develops which typically accretes

mass further through a disc, and eventually starts nuclear fusion of hydrogen to helium within the core.

An important difference between the formation of hot, massive stars, and cooler, less massive ones, is

the timescale for accretion. While cool stars typically accrete the complete gas/dust reservoir before

the collapse of the protostar onto the main sequence (MS)3 has finished, massive stars typically still

accrete mass during their early MS evolution (e.g., Bodenheimer 2011). Thus, massive stars are born

within a cocoon of dust, and are therefore difficult to be observed directly during such evolutionary

phases. A sound theoretical description is required, which – at least in the late formation phases

– needs to account for the coupling of the hydrodynamic equations with radiation pressure terms,

and the resulting competition between outflow and accretion rate (e.g., Kuiper et al. 2015, Kuiper &

Hosokawa 2018). Since numerical modelling the complete problem is computationally challenging,

these studies rely on certain simplifications, which need to be checked, and possibly relaxed in future

3 The main sequence describes stars during core hydrogen burning. The begin and end of hydrogen burning in the core is

entitled with zero-age main sequence (ZAMS) and terminal-age main sequence (TAMS), respectively.
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studies.

The complete picture becomes complicated further, when additionally accounting for fragmenta-

tion. While the IMF needs to be constrained from the fragmentation on large scales (i.e., from the

collapse of giant molecular clouds), the formation of multi-star systems and the occurrence of plan-

etary systems needs to be explained on small scales. Thus, fragmentation is also an urgent topic of

current research.

Finally, the question for the upper-mass limit of massive stars has not been answered to date.

While in the present Universe, an upper-mass limit can be qualitatively defined by the strong radiation

pressure originating from scattering and absorption at metal-lines, the maximum possible stellar mass

in the early Universe (and in low-metallicity environments) is probably much larger, if there existed a

strict upper limit at all (e.g., Crowther et al. 2012)4.

Stellar evolution

Besides a detailed understanding of star-formation processes, also the evolution and late phases of hot,

massive stars are of key interest in current research. Particularly the chemical and dynamical evolution

of galaxies can be severely affected by stellar evolution, and even more by the deaths of hot, massive

stars. Unlike cold stars, such stars develop a strong stellar wind (see below) with mass-loss rates up

to Ṁ ≈ 10−6 · · ·10−4M⊙yr−1, and terminal velocities of v∞ ≈ 200 · · ·3000kms−1. Thus, already during

their lifetime (≈ 107 yr), hot, massive stars can loose the major part of their initial mass, enriching the

ISM with metals that have been produced in their cores by nuclear fusion processes. Additionally,

the mass-loss significantly reduces the rotational rates due to the transport of angular momentum,

thus affecting internal mixing processes, and possibly the wind-outflow due to decreased centrifugal

forces. Although the MS evolution is relatively well understood (at least for spherically symmetric

objects), there are still a lot of problems that need to be solved. Particularly, effects resulting from

rotation, convection, mixing, core-overshoots, and magnetic fields can significantly impact current

stellar evolution models, and need to be investigated.

Evenly (or even more) important is a sound quantitative description of the mass loss, which defines

the mass of a star during its MS and post-MS evolution, and consequently the final fate of a considered

star (see below), thus affecting the metal enrichment of the ISM. From a theoretical point of view, there

exist various difficulties of mass-loss prescriptions already during the MS evolution, which are mainly

related to clumping, (fast) rotation, magnetic fields, and pulsations. After core-hydrogen burning,

eruptive explosions (with mass-loss rates of several solar masses per decade, as observed for the

luminous blue variable η Car, e.g., Smith & Owocki 2006) complicate the complete picture even

further. In these late evolutionary stages, large parts of the stellar envelope can be expelled into the

ISM. To date, the nature of such violent eruptions is still under debate. One possibility is, that those

are triggered by continuum driven outbursts (Smith & Owocki 2006) when a star approaches the

Eddington limit5.

4 From an observational perspective, the largest stellar mass measured to date has been found in the star-forming region

R136 of the Tarantula Nebula in the Large Magellanic Cloud, with M∗ . 170 M⊙ corresponding to an initial mass M∗ .
195 M⊙ (Rubio-Dı́ez et al. 2017).

5 At the Eddington limit, gravity is exactly balanced by radiation pressure from Thomson scattering (i.e., coherent electron
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After core-hydrogen burning, heavier elements are successively produced, until the core consists

only of iron6, while nuclear fusion of Si, O, Ne, C, He, and H is still maintained in onion-like shell

structures. Mixing processes, however, might play a significant role. For instance, rotationally in-

duced mixing in (fast) rotating stars could prevent the formation of shell-structures, motivating a

(chemically) homogeneous evolution. Within standard-evolutionary models, hot, massive stars evolve

on the post-MS to red supergiants (RSG), blue supergiants (BSG), luminous blue variables (LBV),

Wolf-Rayet (WR) stars, or to a sequence of some of these types.

In the early Universe, the evolution of massive stars is thought to be somewhat different due to the

lack of metals and an inefficient radiative driving of a (steady) stellar wind (see below). Consequently,

such stars presumably are fast rotators, since no angular momentum is lost with the stellar wind. We

note, however, that when the star expands to the supergiant phase, conservation of angular momentum

certainly forces the star to spin down. Additionally, the ZAMS and TAMS masses presumably coin-

cide, such that those stars are thought to be more massive than their counterparts in the local Universe.

The above mentioned continuum driven outbursts, however, might play a significant role also for Pop

III stars. Due to the lack of observations, one can only theoretically speculate about such objects.

With future observations by the James Webb Space Telescope (JWST), direct observations of Pop III

stars might become possible.

The fate of hot, massive stars

When the nuclear fuel in the stellar core is exhausted, the star collapses due to gravity, and with the

only (significantly) counteracting force originating from electron degeneracy pressure. At sufficiently

high temperatures and densities, as found in the cores of collapsing massive stars, electrons are cap-

tured by protons (within the heavy nuclei), forming neutrons and neutrinos. Thus, while neutrons

are accumulated, the electron degeneracy pressure becomes diminished, enabling a further collapse

of the stellar core, until the pressure exerted by the neutrons (primarily originating from the repulsive

component of the short-range nuclear force, see, e.g., Woosley & Janka 2005) potentially stops further

collapse. At high stellar masses, the neutron pressure cannot overcome gravity, and the star collapses

directly into a black hole.

During electron capture, a large amount of energy is released by the emission of neutrinos, which

can interact with the (dense) infalling stellar envelope (although the cross section and thus the inter-

action probability is small). Due to the transfer of momentum, and due to reverse shocks originating

from the infalling material crashing onto the neutron core, the outer layers can be expelled in a su-

pernova explosion leaving behind a neutron star. If the (kinetic and potential) energy of the infalling

layers overwhelms the transferred energy from the neutrinos, a black hole is produced by fallback.

The transition between neutron star and black-hole formation depends sensitively on the mass of the

star during collapse, and thus on the initial mass and on the various mass-loss mechanisms (see Heger

et al. 2003).

We emphasize that, at least in theory, very massive stars could end their lives also as so-called

scattering).
6 Since the binding energy per nucleon is largest for iron group elements, energy can only be produced by nuclear fusion

of lighter elements, or by nuclear fission of heavier ones.



1.1. HOT, MASSIVE STARS IN THE CONTEXT OF MODERN ASTROPHYSICS 5

‘pair-instability supernovae’ (e.g., Kozyreva 2014). In such objects, electron-positron pairs are cre-

ated after core-carbon burning by pair production and the destruction of high-energy photons. The

radiation pressure becomes diminished and the stellar core is heated by contraction. With the sudden

begin of nuclear fusion, the star can be completely disrupted. When assuming negligible mass loss of

Pop III stars, pair-instability SN could have played a key role in the early Universe. To date, however,

only few observed SN have been proposed to originate from the pair-instability scenario (e.g., Gal-

Yam et al. 2009), indicating that Pop III stars possibly suffer from severe mass-loss mechanisms,

which still need to be investigated in detail.

Therefore, the chemical enrichment of the ISM crucially depends on the end product of massive

stars, with pair-instability SN ejecting the complete initial mass, whereas BH progenitors barely con-

tribute at all. Additionally, one could aim at measuring the primordial IMF by counting different SN

types and black holes in the early Universe (the latter possibly enabled by lensing techniques). To in-

fer the IMF from such observables, a detailed understanding of the evolution of the progenitor objects

is required.

Further complications

Thus far, we essentially neglected additional effects such as magnetic fields or (fast) rotation. Due to

the transport of angular momentum with the stellar wind, the latter assumption seems to be reasonable

for the later evolutionary phases of hot, massive stars in the present Universe. In the early Universe,

however, rotation probably played a key role. For instance, the most energetic flashes in the Universe,

the so-called ‘long-duration Gamma-ray bursts’ are thought to form by the collapse of rapidly rotating

WR stars, and an associated accretion disc around a black hole (e.g., Woosley 1993, Woosley & Heger

2006). To date, the theoretical description is still far from being complete.
‡With the advent of gravitational wave (GW) observations (e.g., the black hole merger GW150914

with masses M1 ≈ 36 M⊙, M2 ≈ 29 M⊙, and redshift z ≈ 0.1, observed at the advanced Laser Interfero-

metric Gravitational-Wave Observatory (aLIGO), Abbott et al. 2016), the formation of heavy stellar-

mass black holes became of key interest also in the (quasi) local Universe. Since massive stars are

frequently found to be members of multiple star systems (see, e.g., Mason et al. 2009, Sana et al.

2013), they might explain the occurrence of GW events in the correct mass range. At least the forma-

tion of heavy black holes from single-star evolution, however, requires comparatively moderate mass

loss rates (e.g., in low metalicity environments, or mass-loss quenching by magnetic fields, Petit et al.

2017, Keszthelyi et al. 2017).‡

Another issue of stellar evolution is the occurrence of (close) binaries, suffering from Roche-lobe

overflow, common-envelope phases, and possibly even merging (e.g., de Mink et al. 2013). Particu-

larly internal mixing and the rotation rates of the individual stars in a multi-star system can be severely

affected.

To push the understanding of the present and early Universe further, a detailed understanding of

hot, massive stars is required, particularly regarding the interplay of star formation, stellar evolution

and feedback effects after stellar death. To date, there are still many open questions (as described

above), that need to be answered. The general strategy to understand the complete picture consists of:

(i) Developing a sound theoretical description of stellar populations, with particular emphasis on
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star formation, stellar evolution, and on the effects of mass-loss and the final fate of hot, massive

stars. Due to the complexity of all these problems, a numerical approach needs to be applied,

in order to evaluate the coupling of hydrodynamics with the radiation field, and possibly with

small- and large-scale magnetic fields.

(ii) Developing numerical tools to translate the theoretical description into observable quantities

(e.g., the spectra of single stars and multiple stellar systems, or composite spectra of whole

galaxies). ‡For hot, massive stars, current knowledge is thus inferred from quantitative spec-

troscopy, i.e., by comparing observed spectra with synthetic ones, the latter obtained from nu-

merically modelling their stellar atmospheres (photosphere + wind). State of the art atmo-

spheric modelling is still performed by assuming spherical symmetry (e.g., CMFGEN: Hillier

& Miller 1998; PHOENIX: Hauschildt 1992; PoWR: Gräfener et al. 2002; WM-basic: Paul-

drach et al. 2001; FASTWIND: Puls et al. 2005 and Rivero González et al. 2012).‡

(iii) Observing hot, massive stars at each evolutionary stage in the present and early Universe, to

rate the theoretical predictions.

For both points (i) and (ii), an adequate description of the radiative transfer is required. Since many

problems deviate from spherical or other symmetries, results from 1D codes are questionable for such

objects. In this thesis, we therefore aim at developing radiative transfer tools in 3D, which can be

used for both consistent hydrodynamical modelling (in the distant future), and for spectral synthesis

models (with certain simplifications, see Sect. 1.3, already now). Additionally, we consider only a

small piece of the complete picture, by focussing on stellar winds during the MS evolution of hot,

massive stars. Since a major uncertainty in the determination of the final mass of a star is mass-loss,

we provide a brief introduction about typical mass-loss mechanisms in the following, focussing on

the standard theory of line-driven stellar winds and various deviations from this description.

1.2 Stellar winds

In cool stars (e.g., the Sun, and similar stellar types), a thermally-driven wind can be generated by gas-

pressure gradients within and from the hot corona (& 106 K) to the interstellar medium (e.g., Hubeny

& Mihalas 2014). With typical mass-loss rates of few 10−14M⊙yr−1, such winds are too weak to

effectively influence the evolution of their host stars.

Dust-driven stellar winds typically arise in asymptotic giant branch (AGB) stars, and possibly also

in cool supergiants (e.g., in RSGs). Such winds are primarily accelerated by the absorption of photons

at dust grains, which can be formed in the outer atmospheric layers in shock waves generated by

pulsations. The quantitative description of dust-driven winds strongly depends on the condensation of

the dust particles, and on their absorption properties. For RSGs, the mass-loss rate is typically on the

same order as the mass-loss rate for line-driven stellar winds (e.g., van Loon 2010). Therefore, such

stellar winds can have a severe impact during the late evolutionary stages of hot, massive stars.

As described above, the most violent ejecta during massive star evolution are found in LBVs, and

presumably result from stars that approach or even exceed the Eddington limit. Since homogeneous,
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super-Eddington stars are – independent of their radius7 – unstable, such objects should not exist, at

least theoretically. In clumped, porous media, however, some regions of the atmosphere might exceed

the Eddington-limit, whereas others stay below, eventually resulting in massive continuum-driven

outbursts (Shaviv 1998, see also Owocki et al. 2004).

In this thesis, we are primarily concerned with another type of mass-loss, namely with winds

driven by the transfer of momentum due to scattering, absorption and emission of photons in atomic

line transitions. Due to symmetry, the net momentum transferred by emission processes can be ne-

glected. In the following, we briefly discuss the standard (spherically symmetric) line-driven wind

theory to explain the basic physics, and describe various deviations from spherical symmetry that are

to be discussed in this thesis.

1.2.1 Spherically symmetric line-driven stellar winds

Generally, an (arbitrary, multi-D) wind structure can be calculated by simultaneously solving the

equation of continuity, momentum equation, energy equation, and the equation of state, accounting

for all involved forces and energy reservoirs (originating from, e.g., gravity, rotation, magnetic fields8,

shear stresses, and radiation). Typically, these equations can only be solved numerically, which be-

comes computationally challenging particularly when considering expanding atmospheres. The major

problem is introduced when radiation and flow quantities are coupled non-locally by, e.g., scattering

of photons at free electrons or non-locally coupled line transitions (as occurring for non-monotonic

velocity fields). Indeed, a fully consistent, multi-dimensional treatment of the radiation field together

with the (time-dependent) hydrodynamic equations governing mass, momentum, and energy conser-

vation, is computationally prohibitive to date.

To understand the underlying physics in the winds of hot stars, however, several simplifying as-

sumptions can be applied. To this end, we follow Castor et al. (1975, hereafter CAK), and consider

a stationary, spherically symmetric, line-driven stellar wind, with an optically thin background con-

tinuum such that the radiation emitted from the wind becomes negligible compared to the radiation

emitted from the stellar core. For simplicity, we further neglect the finite-cone angle effect resulting

from the different directions of incoming photons emitted from an extended stellar disc, only noting

that an extension accounting for this effect has meanwhile been included within present day wind the-

ory by Pauldrach et al. (1986) and Friend & Abbott (1986). Using the Sobolev method9 to calculate

radiation variables, and applying a prescribed distribution of available line transitions in frequency as

well as line-strength range, the total acceleration exerted by all line transitions reads (see also Puls

et al. 2000):

grad ∝
N0

∫
Lν fν(ν)νdν

r2

[
1

ρ

dv

dr

]α
, (1.1)

7 Similar to the inwards directed gravitational force, the outwards directed radiative force from Thomson scattering scales

with 1/r2 due to the dilution of the radiation field. Thus, the ratio of radiative to gravitational acceleration remains

spatially constant.
8 To include magnetic fields, the Maxwell equations need to be accounted for as well.
9 In Sobolev theory, the radiation field can be expressed by purely local quantities, assuming that the interaction region of

the radiation field with the atmosphere is limited to a narrow spatial range. For more details, we refer to Sect. 2.2.6.
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with r the radial coordinate, ρ, v the density and (radial) velocity of the wind, ν the frequency, Lν

the luminosity in the frequency interval [ν,ν+ dν], fν(ν) the spectral distribution of available line

transitions, α ∈ [0,1] the power-law index (related to the distribution of the line-strength), and N0 the

normalization constant for the complete distribution function (related to the total number of lines).

Eq. (1.1) has the following implications for a stellar wind:

(i) Due to the Sobolev approximation, the line force can be described by purely local quanti-

ties, simplifying the solution of the radiation hydrodynamic equations significantly. However, multi-

resonances and line-overlaps have been intrinsically neglected, introducing severe uncertainties of the

solution, when compared with models accounting for this effect, or when calculating time-dependent

or magnetic winds, for instance.

(ii) The radiative force depends on the luminosity and the spectral distribution of available line

transitions. In contrast to cool stars, a line-driven wind can be launched in the atmospheres of hot,

massive stars due to the high luminosity and the occurrence of (strong) line transitions in the appro-

priate frequency range.

(iii) The line-strength becomes diminished with decreasing metallicity, resulting in a reduction of

the line acceleration and mass loss. This effect can be deduced when considering the normalization

constant, N0. The number of lines within the contributing line-strength intervals scales as N0(z) ∝ z1−α

(see Puls et al. 2000, their Eq. 79), with z the metallicity. Thus, in low-metallicity environments

(e.g., in the early Universe), the mass-loss rate becomes significantly reduced.

(iv) The line force depends on the gradient of the velocity field. This (in the entire Universe

presumably) unique dependence is introduced by the Doppler effect, since the interaction of a photon

with a given line transition is limited to the width of the profile function. For expanding atmospheres,

the profile width is related to a length scale (the so-called Sobolev length) defined by the velocity

gradient.

With the line acceleration given by Eq. (1.1), CAK were able to solve the radiation hydrodynamic

equations for stationary problems. Based on their solution, present wind modelling is performed by

applying a generalized form for the velocity field, the so-called β-velocity law:

v(r) = v∞
(
1−b

R∗
r

)β
, b = 1−

(vmin

v∞

)1/β
, ρ(r) =

Ṁ

4πr2v(r)
, (1.2)

with R∗ the stellar radius, vmin and v∞ the terminal and (photospheric) minimum velocity, respectively,

and with the density derived from the continuity equation for a given mass-loss rate, Ṁ.

While the analytic description of the winds in hot, massive stars by means of Eq. (1.2) avoids

elaborate numerical simulations for determining the wind structure, the resulting solution certainly

oversimplifies the problem. For instance, it became evident from both a theoretical and observational

point of view that the winds of hot stars often deviate from spherical symmetry, show time-dependent

variations of observed UV line profiles induced by, e.g., magnetic fields (Marcolino et al. 2013) or

co-rotating interaction regions (Lobel & Blomme 2008), and typically are clumped. In the following,

we summarize some of such problems, focussing on those topics that are to be examined within this

thesis (i.e., fast rotation, magnetic winds, and wind ablation).
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1.2.2 Time-dependent winds: Wind clumping

Already decades ago, Lamers & Morton (1976) noted that certain observations in the winds of hot,

massive stars (e.g., the occurrence of highly ionized elements such as O vi) cannot be explained by a

stationary wind, since the radiation energy is not sufficient to heat the wind to the necessary temper-

atures of T & 105 K. Furthermore, hot, massive stars are typically soft X-ray emitters (see, e.g., the

review by Kudritzki & Puls 2000 and references therein), which again cannot be explained by a

smooth wind structure. These findings are meanwhile assumed to originate from a clumpy wind by

clump-clump collisions, and from wind-embedded shocks induced by the line-driven instability (LDI,

e.g., Lucy & Solomon 1970, Owocki & Rybicki 1984, Feldmeier et al. 1995).

From a theoretical point of view, the LDI is an intrinsic instability that is generally caused by the

line-driving in expanding atmospheres. Formally, the LDI arises from Eq. (1.1)10 and a small per-

turbation of the velocity field, which becomes amplified by the resulting perturbation of the radiative

acceleration. Physically, the local comoving-frame transition frequencies at a given point in the wind

are shifted out of the shadow of neighbouring material by a small perturbation of the velocity field.

The number of line-driving photons, and consequently also the radiative acceleration, thus becomes

significantly enhanced, until a shock is formed, with high temperatures (& 106 K) and high densities

in the post-shock regime. A clumpy wind structure develops, consisting of dense clumps within a

fast and rarefied medium. Due to the shift of line-transition frequencies, the LDI is also named ‘line

de-shadowing instability’.

Since a time- and space-averaged clumped wind is quite similar to the smooth description of the

wind (e.g., Feldmeier et al. 1995), the mass-loss is (if at all) only mildly affected, and evolutionary

models should be independent of wind clumping. On the other hand, the line diagnostics for both

recombination and UV resonance lines are severely influenced, and strongly depend on the assumed

distribution of clumps (e.g., Sundqvist et al. 2010). Thus, current 1D spectral synthesis codes typi-

cally use a statistical approach to account for the clumped nature of the line-driven stellar wind by

incorporating the so-called clumping factor, 〈ρ2〉/〈ρ〉2 (e.g., Owocki et al. 1988), while the velocity

field is assumed to still follow a smooth description, particularly because non-monotonic velocity

fields are very difficult to implement in current (typically comoving-frame) spectral synthesis codes

(see Sect 2.2.2). While recombination lines (such as Hα), which quadratically depend on density, give

very accurate estimates for the mass-loss rates in a smooth wind, the derived mass-loss rates from this

diagnostic react sensitively on the distribution of clumps.

Besides the assumed smooth velocity field, a major drawback of the above described statistical

approach is the definition of clumps as spherical shells within current 1D models. As shown by

Sundqvist et al. (2018) using 2D radiation hydrodynamic simulations, however, the LDI in multi

dimensions rather leads to complex 2D structures of the velocity and density. The impact of such

structures on line synthesis models still needs to be investigated, which requires a consistent modelling

of multi-D radiative transfer.

10 Strictly speaking, Eq. (1.1) only holds for perturbations on scales larger than the Sobolev-length. For a qualitative expla-

nation of the LDI, however, we can still use the radiative acceleration as given by Eq. (1.1).
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1.2.3 Fast rotation

As outlined in Sect. 1.1, stars are formed from the collapse of a molecular cloud. During collapse, an

initially slowly rotating cloud spins up due to conservation of angular momentum. The distribution

of rotational velocities at the ZAMS depends on the details of the collapse, particularly on the initial

angular momentum of the cloud, shear stresses, magnetic torques, and fragmentation processes. Due

to the complexity of the problem, and because direct observations of hot, massive stars just entering

the ZAMS are difficult (see above), the actual distribution of rotational velocities on the ZAMS is still

not known.

At later evolutionary stages, hot, massive stars are expected to spin down due to the transport of

angular momentum in the stellar interior (by, e.g., differential rotation) and with the stellar wind, by

magnetic braking (if magnetic fields play a significant role), and/or by the expansion of the envelope

when evolving to the blue or red supergiant phases. Thus, a wide variety of observed rotational

velocities is to be expected.

Indeed, observations of O stars in the Large Magellanic Cloud (LMC) within the VLT-FLAMES

Tarantula survey (VFTS) show a distribution of projected rotational velocities peaking at relatively

low values (v sin i ≈ 50− 100kms−1), and an extended tail towards higher ones (Ramı́rez-Agudelo

et al. 2013). Within this sample one also finds those (hot, massive) stars hosting the highest rotation

rates known to date, VFTS102 (O9 Vnnne, Dufton et al. 2011) and VFTS285 (O7.5 Vnnn, Walborn

et al. 2012), rotating with a projected velocity v sin i . 600kms−1. In both, the Small Magellanic

Cloud (SMC) and in the Milky Way, a similar picture shows up, with maximum rotational speeds

at somewhat lower values (v sin i ≈ 400kms−1, e.g., Penny & Gies 2009). When considering the B-

star population within the VFTS, Dufton et al. (2013) showed that the projected velocities follow a

bi-modal distribution with peaks at v sin i ≈ 40kms−1 and v sin i ≈ 175kms−1, and an extended high-

velocity tail. In this study, the generally rapidly rotating Be stars have been excluded. From such and

similar observations of hot, massive stars with different mass, metallicity, and multiplicity properties at

different evolutionary stages, the distribution of rotational velocities at the ZAMS might be inferred,

if all mass-loss and angular-momentum transport mechanisms were understood (e.g., Simón-Dı́az

& Herrero 2014), which might allow us to conclude about different angular-momentum transport

mechanisms during star formation.

Although the rotational velocities on the ZAMS are not known, one might argue that newly born,

hot, massive stars rotate at nearly their breakup velocity, due to the typically high initial angular

momentum of the parental molecular clouds (Ramı́rez-Agudelo et al. 2013). If hot, massive stars

were born with such high rotation rates, however, the stellar wind of (at least) B and late O type stars

is neither efficient enough to reduce the stellar rotation rate to the observed low velocity peak, nor

is it that inefficient to explain the observed maximum rotational velocities. While the low velocity

peak may be explained by magnetic breaking (e.g., Dufton et al. 2013), the high rotation tail could

originate from binary interactions by Roche-lobe overflow and the resulting spin-up of the companion

(mass receiver) star. Both of these statements are speculative, and topic of current research. In any

case, (fast) rotating stars show highly interesting phenomena, that affect the stellar interior via mixing

processes, the stellar surface due to centrifugal forces, the stellar wind, and thus also the evolution

and end products.
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Figure 1.1: Left panel: Stellar surface distortion for different rotational parameters Ω, in units of the

polar radius Rp. Right panel: Effective temperature variation (scaled by the polar effective tempera-

ture) for models with different rotational parameters Ω. The solid and dashed lines correspond to the

von-Zeipel and ω-model, respectively (see text).

Surface distortion

Due to centrifugal forces, the surface of any rotating star becomes distorted. Assuming that the cen-

trifugal force can be derived from a potential (e.g., for uniform or cylindrical rotation), and that the

mass within the stellar surface can be approximated as a point mass located at the origin, the effective

gravitational potential can be described by a Roche model (e.g., Collins 1963):

Φ(r,Θ) = −GM∗
r
− ω

2r2 sin2(Θ)

2
, (1.3)

with angular velocity ω, and co-latitude Θ. The stellar radius as a function of co-latitude can then

be found on equipotential lines, Φ(R∗(Θ),Θ) = const.We emphasize that the stellar mass in Eq. (1.3)

should be corrected for the Eddington parameter to account (at least) for the radiation pressure from

Thomson scattering. Since, however, the radiative flux – and thus also the radiative acceleration –

depends on the local gravity due to gravity darkening (see below), the Eddington parameter becomes

a function of the potential. For simplicity, a correction due to electron scattering has therefore been

discarded, rendering Eq. (1.3) only valid for low Eddington parameters. For supergiants, Eq. (1.3)

needs certainly to be revised, although such objects should be only slow rotators. Under the above

assumptions, the left panel of Fig. 1.1 shows the distorted stellar surface for different rotational pa-

rameters Ω = vrot/vcrit, where vrot is the rotational speed of a considered star, and vcrit =
√

GM∗/Req is

its critical velocity with equatorial radius Req. We have defined the critical velocity as the rotational

velocity for which the centrifugal acceleration at the equator exactly balances gravity, again neglect-

ing additional outward radiative accelerations, e.g., from Thomson scattering, however for a different

reason: Since at near breakup rotation rates, the equatorial flux at the equator becomes diminished in

any case (see below), radiation pressure can indeed be neglected in equatorial regions. For Ω→ 1 the

surface becomes highly distorted, with the ratio Req/Rpole→ 3/2.
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Gravity darkening and von Zeipel’s theorem

von Zeipel (1924) showed that the radiative flux of rotating stars depends on the effective gravity

(corrected for centrifugal accelerations). When the centrifugal force can be derived from a potential

(e.g., within the Roche model, Eq. 1.3), the equation governing hydrostatic equilibrium reads:

∇pg = −ρ∇Φ , (1.4)

where ρ is the density, pg describes the gas pressure, and Φ is the effective potential. The hydrostatic

equilibrium condition requires that ∇pg is anti-parallel to ∇Φ. Thus, equipotential lines and isobars

coincide, and the gas pressure can be described as a function of the potential alone, pg = pg(Φ).

Additionally, noting that ∇× (∇φ) = 0 for an arbitrary scalar field φ, one can easily show that also

∇ρ is parallel (or anti-parallel) to the gradient of the potential, and therefore can be described as a

function of the potential as well:

∇×
(
∇pg

)
= 0 = − (∇ρ)× (∇Φ)−ρ∇× (∇Φ)︸     ︷︷     ︸

0

⇐⇒ ∇ρ ‖ ∇Φ . (1.5)

Finally, the temperature can be calculated from the equation of state. Since pg = pg(Φ) and ρ = ρ(Φ),

also the temperature can be written as a function of the potential, T = T (Φ), for an ideal, chemically

homogeneous gas (with mean molecular weight µ = const.). Thus, from the hydrostatic equilibrium

assumption, we find that equipotential lines, isobars, isodensities and isotherms all coincide, resulting

in a ‘barotropic’ stellar structure. To deduce von Zeipel’s theorem, we assume that energy is com-

pletely transported by radiation (radiative equilibrium), and that no energy is produced by, e.g., nuclear

fusion processes. Assuming further that the energy transport can be described by a diffusive process

(e.g., at large optical depths in 1D, F ∝ T 3

χ̄R

dT

dr
, with χ̄R the Rosseland opacity), one obtains:

∇F = ∇(D∇T ) = 0 , (1.6)

where T is the temperature, F is the total radiative flux, and D = D(ρ,T ) = D(Φ) is the diffusion

coefficient that again can be described as a function of the potential. The radiative flux is then easily

calculated as

F = D∇T = D
dT

dΦ
∇Φ = −D

dT

dΦ
geff =Cgeff =⇒ Teff ∝ |geff |1/4 , (1.7)

with Teff the effective temperature, and C = const. on equipotential lines. Since the effective gravity

becomes reduced towards the equator due to increasing centrifugal forces, the radiative flux, and

thus also the surface temperature, becomes reduced. The right panel of Fig. 1.1 shows the surface

temperature (scaled by the polar value) for different rotational speeds.

Eddington (1925) suggested that the latitude-dependent temperature stratification could give rise

to global, meridional circulating flows by generating a latitudinal pressure gradient (see also Sweet

1950). This effect would then affect the mixing in the stellar interior, and therefore possibly has a se-

vere impact on stellar evolution. We emphasize, however, that both the original von-Zeipel-theory and

the ‘Eddington-Sweet’ circulation are purely theoretical predictions, and still need to be confirmed by
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observations. Particularly the underlying assumptions might need to be revised. For instance, Zahn

(1992) generalized von-Zeipel’s theorem for the case of a shellular rotation law (with ω = const. on

horizontal surfaces, and including shear viscosity from the differential rotation). The qualitative pic-

ture, however, remains the same. Espinosa Lara & Rieutord (2011) presented an independent descrip-

tion of the gravity darkening by introducing the so-called ω-model, using an Ansatz F = − f (r,Θ)geff ,

and solving for the unknown function f (r,Θ). The resulting gravity darkening law compares very

well with solutions obtained from numerical modelling using the ESTER (Evolution STEllaire en

Rotation, see Rieutord et al. 2016 and references therein for a description of the numerical implemen-

tation) code, at least for a 3 M⊙ star with a convective core and a radiative envelope, and assuming

solid-body rotation at the stellar surface. The latitudinal variation of the surface temperature when

calculated from the ω-model is weaker than in the ‘standard’ von Zeipel model (see Fig. 1.1).

From an observational point of view, the gravity darkening law is often approximated by Teff(Θ) ∝
|geff(Θ)|βZ , where βZ is used as a fit parameter. Indeed, βZ is generally found to be smaller than the

expected von-Zeipel value, βZ = 1/4 (e.g., Domiciano de Souza et al. 2014), more consistent with the

ω-model. For stars with a convective envelope, gravity darkening is thought to be suppressed with

βZ . 0.08 (Lucy 1967).

For a further understanding, observations of rapidly rotating stars are required. Since a latitude-

dependent radiative surface flux should also affect the stellar wind in hot, massive stars, observations

of wind lines might possibly serve as an indirect probe of the gravity darkening law.

Effects on the stellar wind11

The first attempt to model the winds of fast rotating OB stars was made by Bjorkman & Cassinelli

(1993). These authors considered a purely radial line force, and neglected gravity darkening and the

surface distortion. Within these approximations, a ‘wind compressed disc’ is formed in the equato-

rial plane. Cranmer & Owocki (1995) and Owocki et al. (1996) included the effects of non-radial

line-forces into their 2D radiation-hydrodynamic simulations, and showed that the formation of the

disc becomes suppressed due to a small, but significant polewards acceleration, giving rise to an as-

sociated polar velocity component that prevents the formation of a disc. When also accounting for

gravity darkening (i.e., a decreased radial acceleration in equatorial regions), Owocki et al. (1996) fur-

ther showed that a prolate wind structure develops, with decreased equatorial mass loss and velocity

(see also the review by Owocki et al. 1998). Maeder (1999) proposed that an oblate wind structure

might still be possible, when accounting for a polar variation of the ionization equilibrium induced

by gravity darkening. This effect becomes particularly important when the local effective temperature

drops below the bi-stability jump temperature12. Petrenz & Puls (2000) extended the hydrodynamic

calculations from above by allowing for spatially varying line force multipliers, and showed that no

major differences from the prolate wind structure arise, at least for OB stars above Teff & 20kK with

an optically thin Lyman continuum. Recently, Gagnier et al. (2019) reinvestigated the effects of rota-

11 This Section has been copied – to a major part – from Hennicker et al. (2019, Sect. 5).
12 The jump temperature is theoretically motivated by a stronger radiative line-driving due to lower ionization stages of

iron for Teff . Tjump ≈ 25kK (Vink et al. 1999). More recently, Petrov et al. (2016) predicted a somewhat lower jump

temperature, Tjump ≈ 20kK.
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tion using 2D ESTER models, and predict either a ‘single-wind regime’ (with enhanced polar mass

loss) or a ‘two-wind regime’ (with enhanced mass loss at latitudes where the effective temperature

drops below the bi-stability jump temperature). However, the bi-stability jump is a purely theoretical

prediction, that – at least quantitatively – has not been directly confirmed by observations to date. Fur-

thermore, not even the actual shape of line-driven winds of (fast) rotating stars is completely clarified

yet. While the Be phenomenon can clearly be associated with a disc, theory would (at least if the

bi-stability plays only a minor role) predict a prolate wind structure. Since particularly the angular

momentum loss depends strongly on the different descriptions of the stellar wind, the evolution of

rotational velocities and thus the stellar evolution as a whole and the resulting end products of (fast)

rotating, hot, massive stars are severely affected (e.g., by rotational mixing). Thus, rotating massive

stars need to be further investigated. To understand which of the different models represents reality

best (in different temperature regimes), one needs to compare synthetic profiles with observations. In

this respect, investigating the effects of prolate and oblate wind structures is particularly important to

distinguish between different theories.

1.2.4 Binary interaction

During star formation, fragmentation of a collapsing molecular cloud often leads to multi-star systems

that can be found in a wide range of separations and mass ratios. Indeed, more than 50% of the

observed O-star population in the Tarantula nebula (Sana et al. 2013) are members of binary (or

multiple) star systems. A similar picture arises for Galactic O stars (e.g., Mason et al. 2009), which

additionally show a clear trend to smaller binary fractions for field stars when compared with stars

located in clusters and associations.

Depending on separation and mass ratio, the individual stars in a multi-star system can interact

already during the MS via tidal forces, Roche-lobe overflow or even merging (see, e.g., Vanbeveren

1991, de Mink et al. 2013). Considering the Roche-lobe overflow, the transport of angular momen-

tum is particularly interesting: While the donor star spins down, the companion spins up, possibly

yielding rotational velocities near the critical one. Thus, binary interactions could be responsible for

the high-velocity tail of vrot described in Sect. 1.2.3, and all its (theoretical predicted) implications.

Furthermore, the evolution of both the primary and the secondary star is affected by the evolution of

rotational velocities and related mixing processes.

Additionally, binary star systems are X-ray sources. One typically distinguishes between low-

mass X-ray binaries (where the source of X-ray emission originates from the gravitational energy of

a typically low-mass star filling its Roche lobe while orbiting a neutron star or a black hole) and high-

mass X-ray binaries (where the X-rays are thought to be produced by wind-accretion from a massive

star).

Further, X-ray emission can also be generated from the shock-heated gas when the stellar wind

of a hot, massive star either collides with the surface of the companion, or within a wind-wind col-

lision zone (if the companion has a significant stellar wind by itself, see Prilutskii & Usov 1976,

Cherepashchuk 1976). Due to the dilution of the wind material, the X-ray flux depends on the separa-

tion of the binary system. Stevens et al. (1992) and Pittard (2009) investigated the dynamical effects

of such wind-wind collisions using 2D and 3D hydrodynamical models, respectively. Again, depend-
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ing on the separation and mass ratio, these authors predict a distinct density and velocity structure,

that deviates from spherical symmetry. Thus, one can expect a variation of wind lines with orbital

phase, and a dependence on inclination angle with respect to (w.r.t.) the observer. Future observa-

tions of such wind lines could provide an independent measurement of orbital parameters, if correctly

modelled and interpreted.

1.2.5 Magnetic winds

Within the Magnetism in Massive Stars (MiMeS) survey, Wade et al. (2012) showed that . 10% of

OB stars in the Milky Way have detectable magnetic fields ranging from ≈ 100G to several kG (see

also Grunhut et al. 2017 for Galactic O stars). The origin of such large-scale magnetic fields, which

mainly show an ordered dipole configuration, is still under debate (see, e.g., the review by Walder

et al. 2012).

While the magnetic fields of cool stars typically originate from subsurface convection layers and

a resulting dynamo mechanism, such a scenario is not efficient in the radiative envelope of hot, mas-

sive stars. Although magnetic fields of OB stars could be generated within the convective core (see

Charbonneau & MacGregor 2001), the major challenge from a theoretical point of view is the trans-

port of the magnetic field from the interior to the stellar surface. Thus, also this type of dynamo is

typically ruled out for explaining the surface magnetic fields (e.g., Neiner et al. 2015). Another sce-

nario is provided by the generation of a magnetic field in the radiative envelope by differential rotation

and the so-called Tayler-Spruit dynamo (see Spruit 1999, Spruit 2002, Maeder & Meynet 2004). A

correlation of rotational properties with the magnetic field would then be expected, which has not

been observed to date. Furthermore, independent numerical simulations by Braithwaite (2006) and

Zahn et al. (2007) give contradictory conclusions about the existence of a self-stabilising dynamo ef-

fect. Thus, the Tayler-Spruit dynamo appears to be ‘unlikely’ for generating the large-scale magnetic

fields in hot, massive stars, which are therefore commonly thought to be of fossil origin (e.g., Alecian

et al. 2013), where the fossil field is possibly imparted from the molecular cloud during the forma-

tion phase, and is amplified/preserved during the (fully convective) pre main-sequence evolution by

a dynamo mechanism. This scenario, however, needs to explain why only a subset of hot, massive

stars is hosting detectable surface magnetic fields, although the involved physical processes should

be the same for all stars during star formation. Alternatively, the magnetic fields of OB stars could

also originate from binary interactions (merging or mass-transfer) during the pre-MS and MS evolu-

tion, resulting in a period of strong differential rotation that possibly gives rise to large-scale magnetic

fields (e.g., Ferrario et al. 2009, see also Schneider et al. 2016). The above described problem of the

fossil-field scenario would then automatically be avoided. Particularly for the most plausible scenarios

(fossil-field and binaries), however, the details are still not clarified and need further investigations.

Due to the interaction of the (highly ionized) wind with the magnetic field, one expects deviations

from the standard line-driven wind theory in any case, thus altering mass-loss rates, and the evolution

and final fate of magnetic OB stars. †Indeed, magneto-hydrodynamic (MHD) calculations from ud-

Doula & Owocki (2002) and ud-Doula et al. (2008) revealed that large-scale magnetic fields have a

direct impact on the stellar wind, by channeling the wind outflow along magnetic-field lines, often

producing disc-like structures around the magnetic equator.† These authors describe the competition
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between the magnetic field energy and the kinetic wind energy by

η (r,Θ) =
B ·B
4πρv2

=
v2

A

v2
=

1

M2
A

, (1.8)

where Θ is the co-latitude measured from the magnetic pole, B(r,Θ) is the magnetic flux den-

sity, and vA(r,Θ), MA(r,Θ) is the Alfvén speed (describing the propagation velocity of a magneto-

hydrodynamic wave, the so-called Alfvén wave) and the Alfvénic Mach number, respectively. In

regions where η≫ 1 (i.e., MA≪ 1), the magnetic field will channel the wind outflow, while for η≪ 1

(i.e., MA ≫ 1), the magnetic field lines are guided by the wind. In the winds of hot stars, η(r,Θ) can

be estimated by considering a dipole magnetic field in competition with a spherically symmetric wind

described by a β-velocity law (Eq. 1.2). At the magnetic equator, we easily obtain (see also ud-Doula

& Owocki 2002):

ηeq (r) =
B2

pR2
∗

4ṀB=0v∞

1
(

r

R∗

)4 (
1−b

R∗
r

)β =: η∗
1

(
r

R∗

)4 (
1−b

R∗
r

)β , (1.9)

with wind-confinement parameter η∗, polar magnetic field Bp, and ṀB=0, v∞ the mass-loss rate and

terminal velocity of the star if no B-field was present. With Eq. (1.9), the transition point where the

magnetic field lines are guided by the wind is then found where the Alfvénic Mach number at the

equator becomes unity, MA(Θ = 90◦) = 1. For the associated, so-called Alfvén-radius, RA, we find:

RA

R∗
:=

r
(
ηeq = 1

)

R∗
≈ 0.3+

(
η∗+

1

4

)1/4

, (1.10)

where the second equality is obtained from numerical fitting, assuming β = 1 and b = 1 (see ud-Doula

et al. 2008). Thus, magnetic field lines with apex-radius13 rm . RA are dominated by the (dipole)

magnetic field, and the wind becomes essentially trapped. Furthermore, material originating from

opposite footpoints eventually shocks in the equatorial plane, resulting in enhanced X-ray emission.

The radiative force (∝ ρ−α, see Eq. 1.1 for the qualitative scaling) exerted on the dense post-shock

material becomes diminished. If stellar rotation is negligible, the trapped material therefore falls back

onto the stellar surface in a ‘snake-like’ pattern, and a ‘dynamical magnetosphere’ is formed. For high

rotation rates, on the other hand, the trapped material is supported by centrifugal forces, forming a

quite stable and strongly confined disc structure, a so-called ‘centrifugal magnetosphere’. Since the

magnetic field (at least within closed magnetic field lines) holds the material in rigid body rotation,

we can define a limiting radius, RK, where centrifugal and gravitational forces exactly balance (see

ud-Doula et al. 2008):

GM∗

R2
K

=
v2
Φ

(RK)

RK
⇐⇒

vΦ=vrotr/R∗

RK

R∗
=

(
GM∗

R∗

1

v2rot

)1/3

, (1.11)

13 The apex radius is here defined as the distance between the intersection point of a closed magnetic-field line with the

equatorial plane, to the origin.
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Figure 1.2: Illustration for the dynamical (left panel, DM) and centrifugal (right panel, CM) mag-

netosphere. For RA < RK, one obtains a dynamical magnetosphere where wind material becomes

trapped in closed magnetic field regions, and falls back onto the stellar surface in a snake-like pat-

tern. If RA > RK, material becomes centrifugally supported for r > RK, and a strongly confined and

stable centrifugal magnetosphere exhibits. For apex radii rm > RA, the magnetic field lines follow the

(nearly) spherical stellar wind. Only this region contributes to the mass-loss. Adapted from Petit et al.

(2013).

with vrot the rotational velocity at the stellar surface. Thus, material is typically not supported by

centrifugal accelerations for r < RK, whereas material at r > RK is pulled outwards. Fig. 1.2 illustrates

the formation of both the dynamical and centrifugal magnetosphere, with a dynamical magnetosphere

obtained for r < RA < RK, and a centrifugal one in regions RK < r < RA (see also Petit et al. 2013).

Since outflowing material is trapped within closed magnetic field lines, the mass-loss becomes

significantly reduced (see, e.g., Babel & Montmerle 1997, Owocki & ud-Doula 2004, ud-Doula et al.

2008, Petit et al. 2017 for this and related effects). Thus, the final fate of magnetic OB stars is ex-

pected to be altered when compared with ‘standard’ evolutionary models. For quantitative predictions,

however, the theoretical model needs to be rated against observations.

†Townsend & Owocki (2005) were able to explain the observed Balmer-line variability in σ Ori

E, a magnetic Bp star, by applying the oblique-rotator model (with a tilt between the rotation and

magnetic axes). Recently, Owocki et al. (2016) developed a simplified model, the ‘analytic dynam-

ical magnetosphere’ (ADM), in order to provide a framework for the analysis of magnetic winds,

and were able to reproduce the observed Hα-line variations of the magnetic Of?p star HD191612

(see Sect. 5.2).† Independent investigations using, e.g., UV resonance lines, however, have only been

performed (if at all) in an approximate way (e.g., Marcolino et al. 2013).
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1.2.6 Wind ablation

During the collapse of a molecular cloud, mass is typically accreted onto the protostellar core through

a disc (e.g., Yorke & Sonnhalter 2002, Bodenheimer 2011). For hot, massive stars that have already

ignited hydrogen, the nuclear energy can then be released by bipolar outflows and non-isotropic radia-

tion, in contrast to a purely spherical accretion scenario where radiation pressure would halt accretion.

Such objects, that are formally on the main sequence while still accreting through a disc will be named

‘accreting high-mass stars’ within this thesis. Depending on the luminosity of a considered star, the

disc will be dissipated shortly after hydrogen ignition by radiative feedback (dominated by photoe-

vaporation and radiative forces). The details, however, are still under investigation (see also Kuiper &

Hosokawa 2018). In this respect, the implementation of radiation forces within their multi-D hydro-

dynamic numerical solution schemes is particularly challenging.

Furthermore, since accreting high-mass stars are both relatively scarce in number and difficult

to be observed directly, current knowledge is typically based on purely theoretical investigations.

The theoretical predictions for the interaction of a strong radiation field with a circumstellar disc,

however, could be tested by comparing with observations of classical Be stars. Such stars constitute

a significant fraction of main-sequence B stars, that harbour discs from which material is decreted by

various (still unknown) processes (see, e.g., the review by Rivinius et al. 2013). Both the generation

and the destruction of such decretion discs is still not completely clarified. While the occurrence of

decretion discs is probably related to the (typically) high rotation rates of Be stars (at nearly critical

rotational velocities, see Townsend et al. 2004) together with non-radial pulsations, the destruction

of the circumstellar disc is thought to result from wind-ablation, i.e., from radiative forces along the

disc surface (Kee et al. 2016). The latter process presumably plays also a significant role for accreting

high-mass stars. Kee et al. (2016) applied certain assumptions (further discussed in Sect. 5.1, see

also Kee 2015) to efficiently calculate the line force at the disc’s surface layers. For instance, these

authors applied a line-strength distribution function based on 1D spherically symmetric models even

within the disc layers, although particularly the (local) ionization stages possibly strongly differ in

such regions due to the shadow of the disc (that essentially blocks the irradiation from the star’s

backward hemisphere). Since, however, the line-strength distribution function – and thus also the line

force – crucially depends on the ionizations stages, a consistent treatment of the continuum radiative

transfer is required, at least to check the validity of the above mentioned assumptions.

1.3 Outline of the thesis

As described in the previous sections, extending our knowledge about hot, massive stars is required

to understand our Universe as a whole. In this respect, mass loss plays a key role by affecting stellar

evolution, stellar death, and stellar birth of new generations. To push our understanding about hot,

massive stars further, such objects need to be modelled numerically, and the resulting synthetic spectra

are to be compared with observations. An accurate treatment of radiative transfer becomes particularly

important for both the numerical model (by affecting radiative forces and the energy budget within

radiation hydrodynamic simulations) and for the calculation of synthetic spectra. Since many objects

differ from the typically applied spherical symmetry, the radiative transfer needs to be calculated in
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multi-D.

This thesis is a first step towards a 3D treatment of fully-consistent radiative transfer problems

in the winds of hot, massive stars, where we focus on the development, implementation and exten-

sive tests of various numerical tools. We aim at developing a 3D code to solve the time-independent

equation of radiative transfer on a non-uniform Cartesian grid, applying the observer’s frame formu-

lation. To minimize turn-around times for determining the formal solution (i.e., the calculation of

the radiation field for given sources and sink terms), we implement a finite-volume method (FVM,

e.g., Patankar 1980 in the context of heat transfer), and a short-characteristics method (SC, Kunasz

& Auer 1988) using different kinds of interpolations14. While the 3D FVM has already been applied

in the context of 3D expanding wind structures (e.g., Adam 1990, Stenholm et al. 1991, Lobel &

Blomme 2008), the 3D SC method has only been implemented for test cases (Ibgui et al. 2013a).

These studies, however, are lacking a suitable accelerated Λ-iteration scheme (ALI). Thus, in this

thesis, we implement an ALI scheme using newly-developed non-local operators, in order to calculate

scattering dominated problems in optically thick environments.

Due to the computational complexity of 3D radiative transfer in expanding atmospheres with non-

monotonic velocity fields, we follow the philosophy of simplifying the problem as much as possible,

while still allowing us to analyse numerical inaccuracies inherent to each solution scheme, and to an-

swer particular questions related to current research. To this end, we consider the line formation with

an optically thin background continuum, and the continuum transfer in the absence of a line. While

line-transitions are treated within the two-level-atom approach, the continuum will be calculated by

accounting for electron scattering and thermal processes (described by the thermalization parameter,

ǫC). The developed methods, however, will be extended for future applications.

This thesis is structured as follows:

(i) In Chapter 2, we introduce the basic theory of radiative transfer, discuss advantages and disad-

vantages of various numerical solution methods, and motivate several applied techniques (such

as the observer’s frame formulation, or the usage of Cartesian coordinates).

(ii) In Chapter 3, the actually applied numerical tools for obtaining the formal solution (including

frequency and angular integrals) are discussed in more detail, together with the implementation

of the ALI scheme, the spatial grid-construction procedure, and a long-characteristics post-

processing routine for calculating synthetic line profiles. Additionally, we briefly present the

applied parallelization strategy, and comment on the required computation time of each method.

(iii) In Chapter 4, we answer questions related to the reliability of the applied methods. To this

end, we perform extensive tests, beginning with the searchlight-beam test and the calculation

of zero-opacity models. For scattering dominated problems, we test our code by considering

1D spherically symmetric atmospheres. We discuss the convergence behaviour for different

approximate Λ-operators, applied to different regimes, and rate the solutions obtained from the

3D FVM and SC method against solutions calculated with an accurate 1D code.

14 As described in Sect. 2.2.4, the computation time of the so-called long-characteristics method can be significantly reduced

when massively parallelized. We believe, however, that the (finally published) code shall also be used by those parts of

the community that have no access to massively parallelizable architectures.
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(iv) In Chapter 5, we apply our 3D solver to non-spherical stellar winds, in order to show the capa-

bility of our code, and to tackle some open questions of current research. As a first application to

continuum transfer problems, we study specific aspects related to wind ablation in circumstel-

lar discs of accreting high-mass stars. Further, we calculate the UV resonance-line formation in

magnetically confined winds, and discuss the implications on magnetic-wind theory. Addition-

ally, we predict UV resonance-line profiles for rapidly rotating stars, with the wind described

by a prolate structure.

(v) In Chapter 6, we finish this thesis, by giving an outlook to future investigations, and point

towards future extensions of the code developed during this thesis project.



Chapter 2

Theory of radiative transfer in expanding

atmospheres

Since the primary objective of this thesis is the development of numerical methods for the solution of

multi-D radiative transfer problems in the winds of hot stars, we discuss the basic theory of radiative

transfer in the first part of this Chapter. Most derivations can also be found in textbooks, e.g., Mihalas

(1978), Hubeny & Mihalas (2014). In the second part of this Chapter, we comment on various pe-

culiarities of the radiative transfer in expanding atmospheres, and briefly review different numerical

approaches for solving radiative transfer problems in multi-D.

2.1 Basic theory

2.1.1 The equation of radiative transfer

To derive a meaningful description of the radiation field within a stellar atmosphere, we start with the

Boltzmann equation (e.g., Mihalas 1978, p. 33):

∂ f

∂t
+ u ·∇ f +F ·∇p f =

[
δ f

δt

]

coll

, (2.1)

which describes the temporal evolution of the particle distribution f (r, p, t) in phase-space, with

spatial- and momentum-coordinates r and p. u describes the corresponding velocity coordinates, F is

an external force acting on the particles, ∇p is the gradient with respect to the momentum coordinates,

and [δ f /δt]coll is the change of the particle distribution function due to (generalized) collisions. Iden-

tifying now f (r, p, t) with the distribution of photons, we find for the total number of photons within a

phase-space volume element [r+dr, p+dp]:

δN = f (r, p, t)d3r d3 p . (2.2)

When considering a particular direction of propagation n (with u = cn, and the speed of light, c), the

phase-space volume element can be transformed as

d3r d3 p = n ·dScdt p2 dpdΩ =
h3ν2

c2
n ·dSdt dνdΩ , (2.3)
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where dS is a (spatial) surface element through which the photons are propagating, dΩ is the solid

angle into which the photons are propagating, and dν is the frequency interval of the photons with

momentum p = hν/c. For the transported energy, we obtain with Eq. (2.2) and Eq. (2.3):

δE = hνδN =
h4ν3

c2
f (r, p, t) n ·dSdt dνdΩ =: Iνn ·dSdt dνdΩ . (2.4)

The specific intensity, Iν, is thus a distribution function, and defines the radiation energy in the fre-

quency interval [ν,ν+dν], that is transported per time dt and solid angle dΩ into a direction n through

a surface dS, and has units [Iν] = ergcm−2Hz−1s−1sr−1. With this definition, and neglecting effects

from general relativity such that external forces vanish, we can rewrite the Boltzmann equation in

terms of the specific intensity:

∂Iν

∂t
+ cn ·∇Iν = c

δI+ν −δI−ν
ds

, (2.5)

again using u = cn. The collisional term describes the interaction of photons with matter along a path

length ds = cdt, and is composed of emission and absorption terms. Defining macroscopic emission

and absorption coefficients as

δE+ =: ηνn ·dSdt dνdΩds ⇐⇒ δI+ = ηνds (2.6)

δE− =: χνIνn ·dSdt dνdΩds ⇐⇒ δI− = χνIνds (2.7)

the equation of radiative transfer finally reads:

1

c

∂Iν(n, r, t)

∂t
+ n ·∇Iν(n, r, t) = ην(n, r, t)−χν(n, r, t)Iν(n, r, t)

= χν(n, r, t)
(
S ν(n, r, t)− Iν(n, r, t)

)
, (2.8)

where we have introduced the source function S ν = ην/χν, which generally depends on frequency,

direction vector, spatial coordinate, and time. For a particular direction n, the equation of radiative

transfer can also be formulated along a path s, yielding:

1

c

∂Iν(s, t)

∂t
+
∂Iν(s, t)

∂s
= ην(s, t)−χν(s, t)Iν(s, t) . (2.9)

2.1.2 Moments of the specific intensity

With the definition of the specific intensity, Eq. (2.4), we define the zeroth and first angular moment

as:

Jν :=
1

4π

∫
IνdΩ (2.10)

Hν :=
1

4π

∫
IνndΩ , (2.11)

called the ‘mean intensity’ and the ‘Eddington flux’, respectively. The mean intensity is related to the

spectral energy density (per volume and frequency) of the radiation field via

uν =

∫

Ω

δE

d3r dν
=

∫

Ω

h4ν3

c3
f dΩ =

1

c

∫

Ω

IνdΩ =
4π

c
Jν , (2.12)
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and the radiative flux through a surface (and per frequency) is related to the Eddington flux1:

Fν =

∫

Ω

δE

dνdtdS
=

∫

Ω

IνndΩ = 4πHν . (2.13)

A discussion of the second angular moment, Kν, is skipped here for simplicity. We note, however, that

Kν is related to the radiation pressure, and thus is required when calculating the radiative force within

(fully consistent) radiation-hydrodynamic simulations.

2.1.3 Rate equations

To describe the state of the gas, we apply the Boltzmann equation, Eq. (2.1), to material of a species i

with corresponding particle distribution function fi, where the subscript i corresponds to a particular

element in a particular ionization stage and excitation state. When integrating over momentum space,

we obtain:

∂

∂t

∫
fid

3 p

︸       ︷︷       ︸
(I)

+

∫
u ·∇ fid

3 p

︸         ︷︷         ︸
(II)

+

∫
F ·∇p fid

3 p

︸            ︷︷            ︸
(III)

=

∫ [
δ fi

δt

]

coll

d3 p

︸            ︷︷            ︸
(IV)

. (2.14)

With the particle density as a function of r, t

ni(r, t) =

∫
fid

3 p , (2.15)

the average value of any quantity q is given by

〈q〉(r, t) =

∫
f̃iqd3 p =

∫
fi∫

fid3 p
qd3 p =

∫
fiqd3 p

∫
fid3 p

=

∫
fiqd3 p

ni

, (2.16)

where f̃i is the distribution function normalized with respect to momentum. Since in phase space,

the momentum coordinates (with corresponding velocity coordinates u) and spatial coordinates are

independent, such that ∇u = 0, the individual terms in Eq. (2.14) are easily calculated as:

(I) =
∂ni

∂t
(2.17)

(II) =

∫
∇(u fi)d

3 p−
∫

fi ∇u︸︷︷︸
=0

d3 p = ∇ ·
∫
u fid

3 p = ∇ ·
(
ni〈u〉

)
(2.18)

(III) =
∑

j

∫
F j

∂

∂p j

fid
3 p =

∫ [
F1 fi

]∞
−∞︸    ︷︷    ︸

=0

dp2dp3+ · · · −
∑

j

∫
fi
∂F j

∂p j︸︷︷︸
=0

d3 p = 0 , (2.19)

where we have used that the phase-space density, fi, approaches zero at infinite momentum since no

particles with infinite momentum are allowed to exist, and that external forces should be independent

1 Although Fν is actually a flux density, i.e., the radiation energy per time, per frequency, and per surface element, in

astrophysics, Fν is commonly labelled simply as ‘flux’.
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of the particle’s momentum-coordinates, such that ∇pF = 0. Finally, the collisional term can be

written as:

(IV) =

[
δni

δt

]

coll

= −ni

∑

j,i

Pi j+
∑

j,i

n jP ji , (2.20)

with the so-called rate coefficients, Pi j = Ri j+Ci j and P ji = R ji+C ji, describing the rates per particle

for depopulating and populating a given species i by radiative and collisional transitions. The NLTE2

rate equations are then given by:

∂ni

∂t
+∇

(
ni〈u〉

)
=

∑

j,i

n j(R ji+C ji)−ni

∑

j,i

(Ri j+Ci j) . (2.21)

Throughout this thesis, we assume that (i) the level population are time-independent (stationary case),

and (ii) that the kinematic timescale is much larger than the transition timescale. Then, the left-

hand side of Eq. (2.21) becomes zero. Particularly when calculating level-populations including very

high velocity fields (e.g., for supernovae), the latter assumption may have to be revised. We have

sketched the most prominent radiative and collisional transitions occurring in hot stars and their winds

in Fig. 2.1. Among those, one can distinguish between:

• Bound-bound transitions: An atom in an electron configuration i can be excited to an electron

configuration j by absorbing a photon with corresponding transition frequency, or by a collision

with a free electron. In the former case, the absorbed energy may be either re-emitted into a

different direction (and possibly frequency through down-cascading), or be transferred to the

thermal energy of the gas by collisional de-excitation. After collisional excitation, thermal

energy from the gas can either be transformed to radiation energy by spontaneous emission, or,

again, be re-transferred to the thermal pool by collisional de-excitation.

• Bound-free transitions: Energy can either be removed from the radiation field by photo-

ionization, or added to the radiation field through recombination processes followed by ra-

diative de-excitations of high electron configuration states. Similarly, collisional recombination

processes can add energy from the thermal pool of the gas to the radiation field.

• Electron scattering: Photons are scattered, and become redistributed over angle (and frequency).

In the winds of hot stars, the transitions are dominated by radiative bound-bound and bound-free pro-

cesses, since collisional processes are rare in such low-density environments, as well as by ‘Thomson

scattering’ (i.e., coherent electron scattering, see Sect. 2.1.5).

2.1.4 Bound-bound transitions

To calculate the radiative rates for bound-bound transitions with levels i < j, one can use the Einstein

coefficients for emission and absorption. The Einstein coefficient for absorption, Bi j, is defined such

2 NLTE=non-LTE=non local-thermal-equilibrium, i.e., a deviation of occupation numbers from the equilibrium values

defined by the local temperature.
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Figure 2.1: Most prominent (radiative and collisional) transitions occurring in the winds of hot stars.

The reaction equations describe an element X with charge Z and at level i or level j, with γ, γ̃, e−,

ẽ− and ê− describing photons and electrons of (potentially) different energy and direction. The red

dots represent the electron either in a bound state or within the continuum (indicated by the grey

shaded area). Collisions with other atoms can been neglected, since the collisions with free electrons

dominate in the (highly) ionized plasma. Auto-ionizations and dielectronic recombination are not

shown here.

that

δNabs

d3r dt
= niBi jIνΦi j(ν)dν

dΩ

4π
(2.22)

gives the transition rate from level i to level j produced by absorption of radiative energy with specific

intensity Iν in a frequency interval [ν,ν+ dν] and solid angle [Ω,Ω+ dΩ]. ni is the particle density

in level i, and Φi j(ν) is the profile function for absorption in the comoving frame. Φi j(ν) describes

the conditional probability for absorbing a photon in the frequency range [ν,ν+ dν], if an absorption

event has happened. Since the corresponding radiative rate coefficient is given by the total number of

absorptions divided by the total number of absorbers, we obtain, by integrating Eq. (2.22) over solid

angle and frequency:

Ri j = Bi j

1

4π

∫
ΦνIνdνdΩ =: Bi j J̄ , (2.23)
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with J̄ the ‘scattering integral’. Analogously, one may define the Einstein coefficient for stimulated

emission, B ji, by

δNstim. em

d3rdt
= n jB jiIνΨi j(ν)dν

dΩ

4π
, (2.24)

where Ψi j(ν) is the emission profile describing the conditional probability that a photon is emitted in a

frequency range [ν,ν+dν]. For simplicity, we assume complete redistribution throughout this thesis,

i.e., the frequency and angular distribution of an emitted photon shall be independent of the process

that excited the atom to a state j in the first place. Then, Ψi j = Φi j. To calculate the total rate, we

additionally need to account for spontaneous emission events. For those, the corresponding Einstein

coefficient, A ji, is defined as

δNspont. em

d3rdt
= n jA jiΨi j(ν)dν

dΩ

4π
→ n jA jiΦi j(ν)dν

dΩ

4π
, (2.25)

where again we have assumed complete redistribution. Noting that the profile function is normalized,

we find for the downward transition rate coefficient after some algebra:

R ji = A ji+B ji

1

4π

∫
ΦνIνdνdΩ = A ji+B ji J̄ . (2.26)

When identifying induced emission processes as ‘negative’ absorption, the net absorbed energy for a

bound-bound transition can be calculated using Eqs. (2.22) and (2.24):

δE−

d3r dt
= hνi j

[δNabs

d3r dt
− δNstim. em

d3r dt

]
=

hνi j

4π
Φi j(ν)

(
niBi j−n jB ji

)
IνdνdΩ , (2.27)

with νi j the rest-frame frequency of the considered line transition. Thus, the corresponding opacity can

be found by comparing the absorbed energy with the definition of the absorption coefficient (Eq. 2.7):

χi j =
hνi j

4π
Φi j(ν)

(
niBi j−n jB ji

)
=
πe2

mec
(g f )

[
ni

gi

−
n j

g j

]
Φi j(ν) , (2.28)

where the Einstein coefficients (that can be calculated from quantum mechanics and are therefore

determined solely from atomic properties3) have been expressed by means of the oscillator strength f ,

(g f ) is the gf-value of the considered transition, gi, g j are the statistical weights of the lower and upper

level, respectively, and me, e are the electron’s rest mass and the elementary charge. The opacity for a

single line transition is given by the profile function and a frequency-independent part (the so-called

‘frequency integrated opacity’, due to the normalization of the line profile). In analogy, the emission

coefficient is simply given by:

ηi j =
hνi j

4π
Φi j(ν)n jA ji . (2.29)

3 Following, e.g., Hubeny & Mihalas (2014, p. 136),
hνi j

4π
Bi j =

πe2

mec

∑
i′ j′ gi′ fi′ j′

gi
=
πe2

mec

(g f )

gi
, with the summation performed

over all substates of the transition i→ j. Further, the Einstein coefficients are related by giBi j = g jB ji and A ji =
2hν3

i j

c2
B ji

(e.g., Hubeny & Mihalas 2014, p. 120).
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The above equations already show the basic problem of radiative transfer: On the one hand side, the

intensity depends on the occupation numbers via the opacity and emissivity occurring in the equation

of radiative transfer (Eq. 2.8). On the other hand, the occupation numbers depend on the specific

intensity (integrated over frequency and solid angle) through the rate equations and corresponding

radiative rates (Eqs. 2.21, 2.23, 2.26). If collisional transitions are dominating, LTE is obtained,

and this problem can be avoided. In the winds of hot stars, however, the radiative rates typically

dominate over the collisional ones, giving rise to profound non-LTE effects. Furthermore, one needs

to account for a large number of elements and lines, in order to correctly describe the full problem.

For current computer power, a full treatment in three (spatial) dimensions is still prohibitive. Thus, in

this thesis, we focus on the so-called two-level-atom (TLA) approach (see Sect. 2.2.1 and Sect. 2.3),

that considerably simplifies the problem while still allowing us to analyse resonance-line transitions,

which can be described by the transition rates between the ground and a (strongly dominating) excited

state. At least for testing different numerical tools, the TLA approach already provides a reasonable

framework. For simplicity, we additionally neglect photo-ionization and recombination rates, and

(sensibly) assume almost constant ionization stages within the line-driven stellar wind.

2.1.5 Continuum scattering

From a classical point of view, charged particles oscillate in the presence of a radiation field, which

consequently becomes redistributed in angle (and frequency). Due to the powerful radiation field of

hot stars, most elements occurring in the wind are either completely ionized (e.g., H, He), or in high

ionization stages. Thus, the major contribution to the continuum comes from the interaction of light

with free electrons. From simple kinematics, it can be shown that the re-distribution in frequency

follows from (e.g., Rybicki & Lightman 1986, p. 196):

ν =
ν̃

1+
hν̃

mec2
(1− cos(θ))

, (2.30)

where ν and ν̃ are the frequency of the scattered and incoming photon, respectively, and θ is the

scattering angle. For the frequency range considered within this thesis (corresponding to wavelengths

λ > 100 Å), the scattering at free electrons is nearly coherent, ν ≈ ν̃. The corresponding cross section

is given by the Klein-Nishina formula, which then reduces to:

σTh =
8πe4

3m2
ec4
≈ 6.65 ·10−25cm2 . (2.31)

We note that the cross section for protons or other ions in a completely ionized stage can be calculated

by simply replacing the elementary charge and the electron’s mass with the ion’s charge and mass,

respectively. The resulting cross-sections, however, are very low (at least for moderate charges), and

corresponding scattering events can be neglected. Since highly ionized elements typically have low

abundances, such ions do not contribute to the continuum scattering either. Also, Raman/Rayleigh

scattering (i.e., line scattering far away from the line centre, where virtual states of bound electrons

can be excited) is negligible in the winds of hot stars, since most abundant elements (H, He) are
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completely ionized. In summary, continuum scattering in the winds of hot stars is therefore mainly

controlled by Thomson scattering.

Because the cross section for Thomson scattering is, to a good approximation, isotropic and co-

herent, the energy absorbed (i.e., scattered out) from a beam with direction n is given by

δE−

d3r dt
= neσThIν(n)dνdΩ ⇐⇒ χTh = neσTh , (2.32)

with ne the electron density (corresponding to the number of available scattering centres). Accounting

for all incoming beams with directions ñ, the energy emitted (i.e., added) to a beam with direction n

is accordingly:

δE+

d3r dt
=

[∫
neσThg(ñ,n)Iν(ñ)

dΩ̃

4π

]
dνdΩ , (2.33)

where g(ñ,n) is the angular phase function describing the angular redistribution of a scattering event.

Throughout this thesis, we assume isotropic scattering with g(ñ,n) = 1. The associated error intro-

duced by this approximation should be very small (Mihalas 1978, p. 30). Then, the emissivity for

Thomson-scattering is simply given by:

ηTh = neσThJν . (2.34)

As was the case for the bound-bound transitions, continuum scattering complicates the solution of the

equation of radiative transfer significantly, since the emissivity depends again on the radiation field,

and vice versa. This dependency corresponds to a non-local coupling of the radiation field.

2.2 Numerical treatment of 3D radiative transfer problems

To solve the coupled problem of unknown occupation numbers and the unknown radiation field, an

iteration scheme is required (the so-calledΛ-iteration scheme and associated acceleration techniques).

Particularly for 3D problems, a direct inversion is prohibitive due to memory limitations. Generally,

one starts with an initial guess for the opacity and emissivity, and numerically solves the equation

of radiative transfer for many angles and frequencies (the so-called formal solution). The scattering

integrals, J̄, and mean intensities, Jν, are then obtained by integrating the specific intensity over

frequency and/or solid angle, and the rate equations can be solved. With the new occupation numbers,

the emissivities and opacities are updated, and the iteration cycle starts from the beginning. Thus,

NΩ ×Nν formal solutions are required on a 3D grid with N3 grid points, where NΩ and Nν describe

the number of angular and frequency points, respectively. To solve this computationally challenging

problem, efficient solution methods are required. In the following, we briefly discuss some simplifying

assumptions used within this thesis, and give an overview of available techniques for the solution of

the equation of radiative transfer. We note already here, that we will use 3D Cartesian coordinates

within this thesis, and refer to Sect. 2.2.7 for a discussion about alternative coordinate systems.



2.2. NUMERICAL TREATMENT OF 3D RADIATIVE TRANSFER PROBLEMS 29

2.2.1 Simplifying assumptions

As one aim of this thesis is to test different numerical methods, we use certain simplifying assumptions

that allow us to consider test problems under realistic conditions, while avoiding the solution of the

complete rate equations. Generally, we consider the continuum formation in the absence of a line, and

approximate the line formation by a two-level atom assuming an optically thin continuum.

Continuum

To calculate the continuum, we account for Thomson scattering, and consider all other processes as

interacting with the thermal pool (‘true processes’). For the opacity and emissivity, we then find:

χν = χtrue+χTh (2.35)

ην = ηtrue+ηTh = χtrueBν+χThJν , (2.36)

where the Kirchhoff-Plank law (ηtrue = χtrueBν) states that in thermal equilibrium (and often also in

LTE), the true emissivity is related to the Planck function Bν. The continuum source function can then

be calculated as:

S C =
ην

χν
= (1− ǫC)Jν+ ǫCBν , (2.37)

with thermalization parameter ǫC = χtrue/(χtrue + χTh) describing the photon-destruction probability.

In the absence of a line, and considering only a narrow frequency band, we only need to consider one

frequency point, and the amount of required calculations becomes considerably reduced.

Line

The line source function for a two-level atom can be calculated from Eqs. (2.28) and (2.29), and is

given as (see also, e.g., Mihalas (1978)):

S L = (1− ǫL)J̄+ ǫLBνi j
(2.38)

ǫL =
ǫ′

1+ ǫ′
, ǫ′ =

C ji

A ji

[
1− exp

(
−

hνi j

kBT

)]
,

†with C ji and A ji being the collisional rate coefficient (from the upper to the lower level) and the

Einstein-coefficient for spontaneous emission, respectively.† We note that the line source function is

independent of the (observer’s frame) frequency. As in the continuum case, ǫL can be interpreted as a

photon-destruction probability (per scattering event).

2.2.2 Comoving and observer’s frame

Within the two-level approach, the number of required frequency points is limited to a reasonable

resolution of the profile function in the comoving frame. Since photons appear red/blue shifted for

atoms moving with a velocity relative to the emitting source due to the Doppler effect, the number

of (observer’s frame) frequency points can be relatively large, in order to cover the complete profile
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Figure 2.2: Resonance regions in the observer’s frame along a given ray. The left panel shows an

artificial velocity law along the ray, here assumed to be linear. The right panel shows the profile

function as a function of the observer’s frame frequency at three distinct positions s1, s2, s3. In the

observer’s frame, the frequency grid (indicated by the vertical dashed lines) needs to cover a large

region.

function (including all Doppler shifts). Thus, a first possibility to minimize the computation time

is to solve the equation of radiative transfer in the comoving frame. Then, the number of required

frequency grid points becomes significantly reduced. If we consider a single line transition that can

be described by a Doppler profile4,

Φi j =
1

√
π∆νD

exp
[
−
(
νcmf − νi j

∆νD

)2
]
, (2.39)

where νcmf is the comoving-frame frequency w.r.t. the global velocity field, νi j is the transition fre-

quency in the atom’s rest frame, and ∆νD = νi jvth/c is the Doppler-width with thermal velocity vth,

a frequency range νcmf ∈ [νi j − 3∆νD, νi j + 3∆νD] is usually sufficient to capture the complete profile.

Using a reasonable resolution of ∆νcmf =∆νD/3 in the following work, the number of frequency points

in the comoving frame is then fixed at Nν = 19.

On the other hand, when using the observer’s frame with the (non-relativistic) transformation

νcmf = νobs− νi j

n · u
c
, (2.40)

where u is the velocity vector, one would have to cover the complete range νobs ∈ [νi j − 3∆νD −
∆νD max(n · u/vth), νi j+3∆νD+∆νD max(n · u/vth)], yielding a number of Nν ≈ 18+6max(n · u/vth)+1

required frequency grid points (see also Fig. 2.2). Thus, the number of frequency points in the ob-

server’s frame depends on the maximum (projected) velocity within the wind, and on the thermal

speed. For carbon, e.g., this would require Nν ≈ 1600 grid points for maximum projected velocities

max(n·u)= 2000kms−1, and a thermal velocity (neglecting micro-turbulent velocities), vth ≈ 8kms−1.

4 For a Doppler profile, the (microscopic) random motion of the gas has to follow a Maxwellian distribution, and the

(shallow) profile wings introduced by pressure broadening are neglected.
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On the other hand, a comoving-frame formulation becomes complicated since the equation of ra-

diative transfer together with all quantities ην, χν, Iν, n, and the ∇-operator need to be transformed by

applying Lorentz transformations (e.g., Castor 1972 for spherically symmetric flows). In the follow-

ing, we skip a detailed derivation, and only explain (in a somewhat heuristic way) the major problem

of comoving-frame radiative transfer when applied to non-monotonic velocity fields as aimed at in

this thesis. The spatial derivative at constant observer’s frame frequency (as required to solve the

equation of radiative transfer) can be transformed via:

(
∂

∂s

)

νobs=const.
→

(
∂

∂s

)

νcmf=const.
+

(
∂νcmf

∂s

)

νobs=const.

(
∂

∂νcmf

)

s=const.
. (2.41)

The second term arises since the comoving-frame frequency varies as a function of s, when a ray

passes through an expanding atmosphere at constant observer’s frame frequency. Using Eq. (2.40) to

calculate the variation of the comoving-frame frequency along the ray, the time-independent radiative

transfer equation in the comoving frame becomes to first order in (nu/c) (e.g., Lucy 1971):

∂Iνcmf

∂s
−
νi j

c

∂(nu)

∂s

∂Iνcmf

∂νcmf
= ηνcmf

−χνcmf
Iνcmf
. (2.42)

Eq. (2.42) is an initial boundary problem, for which a spatial boundary condition is required, together

with a spectral initial condition at all grid points. The condition that photons can interact with the

atmosphere at a given position, s, is:

νcmf(s) ∈
[
νi j−3∆νD, νi j+3∆νD

]
⇐⇒ νobs(s) ∈

[
νi j

(
1+
vn(s)

c

)
−3∆νD, νi j

(
1+
vn(s)

c

)
+3∆νD

]
,

(2.43)

with vn the projected velocity along a considered ray. Thus, two different positions, s and s′, can only

interact with each other if

∃νobs(s′) such that νobs(s′) ∈
[
νi j

(
1+
vn(s)

c

)
−3∆νD, νi j

(
1+
vn(s)

c

)
+3∆νD

]
. (2.44)

In the following, we consider two examples considering a monotonic increasing and a non-monotonic

velocity field specified at three given points s1, s2, s3 (see Fig. 2.3).

(i) For monotonic increasing velocity fields, photons emitted from the inner parts of an at-

mosphere always appear red-shifted for a (comoving) observer located in the outer parts. Since

vn(s1)< vn(s2)< vn(s3), one can easily show that the blue-wing frequency defined as ν
(blue)

cmf
= νi j+3∆νD

gives ν
(blue)

obs
(s1) < ν

(blue)

obs
(s2) < ν

(blue)

obs
(s3) in the observer’s frame. Thus, there is no interaction of the

blue-wing photons with the inner layers, and the initial condition is simply given by specifying the

intensity I(s, νi j + 3∆νD) either from a precalculated continuum, or from the irradiation by the cen-

tral star. We note that for monotonic decreasing velocity fields (e.g., when considering the opposite

direction), one can accordingly define the initial condition at the red wing.

(ii) For non-monotonic velocity fields, the situation becomes much more complicated, because, in

terms of the example from Fig. 2.3, one obtains for the blue and red wings:

ν
(blue,red)

obs
(s1) < ν

(blue,red)

obs
(s2) and ν

(blue,red)

obs
(s2) > ν

(blue,red)

obs
(s3) ,
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given that vn(s1) < vn(s2) and vn(s2) > vn(s3). Since, for a given direction, blue-wing photons at point

s3 now can interact with the previous grid point s2, and because the red-wing photons at point s2 can

interact with the previous point s1, the initial condition becomes very cumbersome to formulate (if it

is possible at all). The only simple possibility to solve this issue would be to extend the comoving-

frame frequency range to essentially the same frequency range as used within the observer’s frame,

and nothing would have been won. Furthermore, the switch of the sign, as introduced in front of the

frequency derivative term in Eq. (2.42) by the non-monotonic velocity field, complicates the complete

situation even further, since the different regions (with positive or negative projected velocities) would

need to be treated separately.

Finally, a third problem, although not as severe as the previously mentioned ones, arises when

considering a multitude of lines, which potentially can overlap due to the involved velocity fields and

the Doppler effect. Already for monotonic velocity fields, different wind regions can then be coupled

via different line transitions. We therefore will apply an observer’s frame formulation within this

thesis, since both non-monotonic velocity fields and wind-induced line overlaps are ‘automatically’

accounted for.

2.2.3 Differential methods

The most easy approach to solve the equation of radiative transfer numerically is to replace the ∇-

operator in Eq. (2.8) by finite differences:

∇Iν→
Ii jk − Ii−1, j,k

xi− xi−1
ex+

Ii jk − Ii, j−1,k

y j−y j−1
ey+

Ii jk − Ii, j,k−1

zk − zk−1
ez . (2.45)

where the indices i, j,k describe the position on a 3D Cartesian grid with unit vectors ex, ey, ez. Math-

ematically, this method corresponds to the group of finite-volume methods. Basically, the radiative

transfer equation is integrated over a finite control volume surrounding a given grid point (vertex-

centred), or spanned by the grid points (cell-centred, see Fig. 2.4). The resulting integrals can be

solved by applying certain assumptions regarding the behaviour of the intensity, opacity and source

function within the control volume. We note that the cell-centred method can yield negative – thus

prohibited – intensities in special situations (see Appendix B). Therefore, the vertex-centred approach

is typically applied, and one assumes that all quantities are constant within the control volume, yield-

ing a very simple and stable discretization of the equation of radiative transfer (see Sect. 3.1 for the

detailed implementation of this method within our code). The intensity for a given frequency and

direction at any point in the atmosphere then depends solely on the local opacity and source func-

tion, as well as on the illuminating intensities at the neighbouring grid points on the upstream side

of a given direction. Thus, one can simply sweep through the Cartesian grid along the specified di-

rection (Fig. 2.4). Since the FVM has already been applied to 3D astrophysical radiative transfer

problems by Adam (1990), and Lobel & Blomme (2008), we implement a similar technique as a first

step (Sect. 3.1). In Chapter 4, we focus on the accuracy of this simple discretization technique, and

show that the method suffers from various numerical inaccuracies, mainly related to numerical dif-

fusion introduced by assuming constant intensities within each control volume. Applying high-order

interpolation schemes (e.g., a trilinear interpolation), however, can, similarly to the cell-centred FVM,

yield negative intensities (see Appendix B), and are therefore prohibitive as well.
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Figure 2.3: Initial conditions for the comoving-frame radiative transport with a monotonic increasing

velocity field (upper panel) and a non-monotonic velocity field (lower panel). The comoving-frame

frequency for three distinct positions s1, s2, s3 is shown as a function of the observer’s frame frequency

in the right panels, together with the observer’s frame frequency range where the spatial grid points

can interact with each other. While photons on the blue wing at νcmf = νi j + 3∆νD never interact

with previous layers for monotonic velocity fields, the formulation of the initial condition becomes

problematic for non-monotonic velocity fields.

2.2.4 Integral methods

Within the integral methods, the radiative transfer equation for a given frequency is solved along a

particular ray (the so-called ‘characteristic’) until a grid point is hit. Defining the optical depth along

the ray as

dτν = χνds ⇐⇒ ∆τν =

∫ ∆s

0

χν ds , (2.46)

where ∆s is the path-length, and ∆τν is measured along the path, the time-independent equation of

radiative transfer, Eq. (2.9), can be solved analytically by using integrating factors. Along a ray, we

obtain:

Iν(∆τν) = Iince−∆τν +

∫ ∆τν

0

e−(∆τν−tν)S ν(tν)dtν , (2.47)
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Figure 2.4: Different solution methods for multi-D radiative transfer problems. The upper left and

upper right panels show the cell-centred and vertex-centred finite-volume method, respectively, with

the control-volume indicated by the blue-shaded area. The equation of radiative transfer can be solved

for a given direction and frequency by sweeping through the grid from points 1→ 2→ 3→ 4 or

1→ 3→ 2→ 4. Lower left panel: short-characteristics method with upwind points u1,u2,u3,u4. For

point u4, the interpolation of the source function, opacity and intensity is indicated. In order that

the intensity at all upwind points can be interpolated, the sweeping through the grid needs to be be

performed again from 1→ 2→ 3→ 4 or from 1→ 3→ 2→ 4. Lower right panel: long-characteristics

method following a particular ray from the boundary to a given grid point. Depending on the required

accuracy, the source functions and opacities need to be interpolated onto each ray. Since the incident

intensity is specified only at the grid boundary, the order of the sweep can be chosen arbitrarily.

with Iinc the incident intensity at the starting point of the ray. Eq. (2.47) needs then to be solved for

characteristics intersecting all grid points, and for many frequencies and directions.

Long characteristics

One possibility to obtain the formal solution is by applying the long-characteristics method (LC,

see Jones & Skumanich 1973, Jones 1973, and Fig. 2.4). Within the LC method, the characteris-

tic is defined from the boundary of the spatial domain to a considered grid point. To calculate the

intensity, both the stratification of the source function and of the opacity (to calculate the optical
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depth) is required along a considered ray. Typically, one discretizes the characteristic such that the

(still unknown) ∆τν and ∆S ν steps ideally become equidistant. If the 3D spatial grid represents the

3D stratification of opacities and source functions, one could, for instance, define a mesh along the

ray by the intersections of the ray with the 3D spatial grid, with corresponding opacities and source-

functions obtained from interpolation. Along the characteristic, all quantities are then approximated

by piecewise linear functions in τν, or with polynomials of higher order, and Eq. (2.47) can be solved

analytically. For a 3D grid with N3 grid points, the number of points along the ray is, on average,

N/2. Thus, roughly N4/2 operations are required to solve the equation of radiative transfer along a

ray together with another N4/2 operations for interpolating all quantities onto the ray. The N4 scal-

ing of the computational effort can be circumvented by applying an effective parallelization strategy.

In this respect, we emphasize that the intensities at all 3D grid points are independent of the formal

solution at neighbouring grid points, and the LC solution scheme can be easily parallelized for each

ray. In principle, if enough CPU’s are available, all N3 rays (per frequency and solid angle) can be

calculated in parallel. The overhead, however, might be significant since grid points located far from

the boundary require much more operations than grid points located near to the boundary.

Short characteristics

Alternatively, one may apply the short-characteristics method (SC, Kunasz & Auer 1988) to reduce the

N4 scaling of required operations. Within this method, the radiative transfer equation is solved only

for each grid cell (Fig. 2.4, lower left panel). The starting point of each characteristic (‘upwind point’)

is then defined at the intersection of a considered ray with the neighbouring grid layers. In addition

to the opacities and source functions at the upwind point, also the intensity needs to be determined

by interpolation from neighbouring grid points. The interpolation of intensities, however, may be

problematic (e.g., when the intensity has sharp edges), possibly giving rise to numerical diffusion

errors. On the other hand, only N3 evaluations of the radiative transfer equation are required together

with N3 interpolations (including upwind intensities) to obtain the formal solution at all 3D grid

points. Thus, when comparing SC and LC method, the computational complexity of the problem is

reduced by a factor of N/2. We note, however, that the parallelization strategy needs to be changed

since the intensity at each grid point explicitly depends on the intensities at the neighbouring grid

points. The most reasonable approach is to parallelize the problem in the spectral or directional

domain, where a private copy of the 3D intensity is required for each (parallel) frequency or solid-

angle node. When using super-computers, such private copies are typically not allowed due to memory

limitations. Since our code shall be executed on personal computers anyway, and because we are

convinced by the reduction of computational cost by the factor of N/2, we develop and implement the

SC method with corresponding tools in Sect 3.2, and apply the LC method only to calculate synthetic

line profiles (Sect. 3.7).
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Figure 2.5: Random walk of a photon packet within the Monte-Carlo radiative transfer method. Grid

points are indicated as red dots with the corresponding grid cells represented by the black solid lines.

The photon packet undergoes numerous coherent scattering (blue stars) or absorption/re-emission

(magenta stars) events. In the former case, only the direction becomes redistributed, while in the latter

case, also the frequency changes. The complete trajectory is indicated by the green arrows.

2.2.5 Stochastic methods

To solve the coupled problem of the microscopic interaction of matter with the radiation field, also

a statistical approach can be applied by using Monte-Carlo simulations5. Particularly for 2D and

3D problems, this approach may be advantageous since the overall NνNΩN3 scaling of the computa-

tional effort could be further reduced. Within the Monte-Carlo method for radiative transfer (MC-RT,

e.g., Lucy 1999a, Ercolano et al. 2003, Ercolano et al. 2005), photon packets of random frequency are

released from the inner boundary into random direction, and their trajectories are calculated account-

ing for (in principle) all microphysical processes (scattering, absorption and re-emission), until each

photon packet escapes from the computational domain, or is back-scattered onto the inner boundary.

The numerical accuracy then depends solely on the number of released photon packets, NMC. Since

the computational effort is proportional to NMCNevent, where Nevent is the number of events (including

the crossing of a grid cell) until the photon packet escapes, the MC-RT method can (but not neces-

sarily has to!) be more efficient in terms of computational cost than the (above described) classical

methods.

To set up the MC-RT method, the spatial domain is initially discretized similarly to the vertex-

centred finite-volume method. All quantities describing the state of the gas are given at each grid

point, and are assumed to be constant within the surrounding cell. To calculate the trajectory of a

released photon packet, we consider the probability that a packet is absorbed (or scattered) within an

interval [0, τν] along the packet’s path. Using only the absorption part of Eq. (2.47), we obtain:

P(τν) = 1− # photons survived along τν

# incident photons
= 1− Iν(τν)

Iu
= 1− e−τν . (2.48)

By drawing a random number r from a uniform distribution, we obtain the optical depth that is realized

5 The name indeed refers to the Monte Carlo Casino in Monaco.
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when an absorption or scattering event has happened:

τν = − ln(1− r) = χν∆s , (2.49)

with corresponding length-scale ∆s. For large ∆s, the photon packet potentially crosses the grid-cell

boundary. Then, a new random number is picked, and a new path length is calculated within the next

grid cell starting at the cell boundary6. On the other hand, if ∆s is smaller than the distance to the

grid-cell boundary, the photon-packet undergoes an event either by coherent scattering or by absorp-

tion (and immediate re-emission). In the former case, only the direction becomes redistributed (again

by drawing random numbers), while in the latter case, also the frequency of the photon-packet be-

comes redistributed by considering the (thermal) emissivity in the considered grid cell. An exemplary

trajectory for a photon packet suffering from different events is shown in Fig. 2.5. Defining the energy

of absorbed and re-emitted radiation as ǫ(νa) = ǫ(νe) = ǫ0 = const., i.e., only the photon number of

the packet in each frequency interval changes, the total radiation energy is automatically conserved

globally (over the complete frequency range). The mean intensity in each cell could then be calculated

by considering the relation between mean intensity and energy density, Eq. (2.10). Since each photon

packet on a trajectory within a given volume carries an energy ǫ0δt/∆t, where δt = ∆s/c is the time

the photon package spends on the trajectory, and ∆t is the duration of the MC experiment, we obtain

(see, e.g., Lucy 1999a):

Jν =
c

4π

∑ ǫ0δt/∆t

V
=

1

4π

ǫ0

∆t

1

V

∑
∆s . (2.50)

V is the volume of the grid cell, and the sum is performed over all trajectories within the volume with

photon packets of frequency ν. For the problem of continuum photons as described here, no iteration

procedure is required (if the temperature stratification was known), and the (diffuse) radiation field

can directly be found from the MC simulation. We note, however, that for optically thick problems,

photon packets can be scattered (or absorbed/re-emitted) very often, increasing Nevent significantly.

Thus, for such problems, the MC-RT method might become inefficient.

Another problem arises when the emissivity is not known. While the continuum is mainly com-

posed of electron scattering and true processes, the thermal emissivity in that case is simply given

by ηtrue = χtrueBν. When considering a line transition, however, the situation becomes much more

complicated due to spontaneous emission events. In that case, one might use the MC-RT approach as

defined above with an initial guess for the emissivity, and using single photons instead of (constant)

energy packets. Since the emissivity depends on the radiation field and vice versa, an iterative pro-

cedure is needed, which might require a large number of iteration steps until convergence. Another

problem in this respect is the calculation of the scattering integral. At least in principle, we can obtain

the scattering integral by counting the number of photons in a given frequency range through a surface

within a given grid-cell, multiplied with the profile function (in the comoving frame). The definition

of the surface, however, is not trivial. Furthermore, we would require a large number of photons

with different frequencies and directions within each volume element in order to obtain an accurate

solution. Finally, the problem of essentially trapped photons with a very large number of scattering

6 Lucy (1999a) noted that no bias is created by picking a new random number, because the probability for an event to

happen is independent of the previous travelling history of a photon packet.
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Figure 2.6: Multiple resonance zones along a ray with a given observer’s frame frequency and with

direction n (green arrow). At the first resonance region, the incident intensity is given by the intensity

emerging from the stellar core, Ic. At the second resonance region, the incident intensity is given by

the emergent intensity from the first resonance region. The profile functions indicate the interaction

regions, and are displayed with red solid lines.

events becomes particularly pronounced for strong resonance lines, since the optical depth can be-

come extremely large in the line core. In this respect, also the accurate description of thermalized

(i.e., thermally destroyed) photons becomes problematic, since already few thermal processes might

be sufficient to thermalize a considered photon during millions of scattering events. We emphasize

that the problem of thermalized photons plays a significant role within optically thick continua as

well.

In summary, the MC-RT can presumably be applied efficiently ‘only’ to pure scattering lines, or

to radiative transfer problems that remain mostly optically thin (but see also Lucy 1999b and Lucy

2002). Since the coupling of the radiation field with the NLTE rate equations becomes complex as

well, and due to the computational effort of essentially trapped photons, we thus preferred to focus on

the deterministic methods within this thesis.

2.2.6 Semi-analytic methods: Sobolev approximation

The Sobolev method (Sobolev 1960) is a very elegant, semi-analytical solution scheme for calculat-

ing line transitions in rapidly expanding atmospheres. In the following, we assume an optically thin

background continuum (though extensions to include continuum processes have been developed by,

e.g., Hummer & Rybicki 1985). Within the Sobolev method (see Appendix A for a detailed deriva-

tion), we consider a position on a ray with direction n satisfying the resonance condition νcmf(r) = νi j.

To calculate the specific intensity at that position analytically, Eq. (2.47) is applied assuming that

(i) all quantities describing the local state of the gas (source function and frequency-independent

part of the opacity) are constant over the width of the profile function (i.e., within the interaction

region of the radiation with the gas). This assumption requires a rather steep gradient of the

projected velocity along the ray, and implies that the Sobolev approximation is valid only where
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vn > vth, with vn the projected velocity along the ray. Thus, the Sobolev method mostly fails to

represent the radiation field in photospheric layers.

(ii) the projected velocity along the considered ray can be approximated by a linear function, at

least over the width of the interaction region. Thus, when curvature terms become important

(e.g., in the transonic region of the atmosphere), the Sobolev method again provides only a

crude approximation of the radiation field.

Under these assumptions, the specific intensity at a given point can be expressed by the incident

intensity at the begin of the resonance region (which for non-monotonic velocity fields depends on

previous resonance regions), and purely local quantities (Eqs. A.12-A.13). For monotonic velocity

fields and an optically thin continuum, the incident intensity is simply given by the intensity emerging

from the stellar core if the considered ray intersects the stellar surface (Fig. 2.6), and zero else. For

such problems, the scattering integral can be calculated by local quantities alone, and the solution for

the source function of the line-scattering problem is readily obtained from Eq. (A.17).

For non-monotonic velocity fields, the incident intensity at the begin of the resonance region is

not known a priori, due to the interaction of the radiation along a given ray in several resonance

regions, and the formulation of the Sobolev method becomes complex (though possible, see Rybicki

& Hummer 1978). Two major problems arise, that destroy many benefits of the method. On the one

hand, an efficient algorithm is required to locate all resonance regions along a ray, which may become

quite time-consuming. On the other hand, analogously to the differential and integral methods, a

Λ-iteration scheme is required to account for the non-local coupling of the radiation field between

multi-resonances (e.g., Puls et al. 1993). Furthermore, the implementation of wind-induced overlaps

from different line transitions can become quite complex (already for monotonic velocity fields). Thus,

and to avoid potentially severe approximations (particularly for shallow velocity gradients, or in the

transonic region where the velocity field shows a strong curvature), we decided to implement the 3D

Sobolev approximation (neglecting multi-resonances for simplicity) only to calculate starting values

for the more elaborate methods discussed above (and in the following).

2.2.7 Coordinate systems

Thus far, we have used a 3D Cartesian grid to describe the global coordinate system. Since the

intensity is a function of spatial coordinate and of direction, the formulation of the FVM and SC

method in other coordinate systems becomes problematic, as shown below.

The FVM in arbitrary orthogonal curvilinear coordinates

Since in curvilinear orthogonal coordinates, the basis vectors are a function of position, the spatial

derivative within the equation of radiative transfer needs to account for the change of the representa-

tion of the direction vector in such a coordinate system. For an arbitrary orthogonal curvilinear system
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Figure 2.7: Spatial gridding for 3D radiative transfer methods in the xz-plane. Red dots represent grid

points within the computational domain, while black dots correspond to grid points on the boundary.

The left panel shows a spherical grid with short characteristics indicated by green arrows. In order

to interpolate intensities onto the upwind points (blue dots), the sweep through the grid needs to be

performed from grid points 1→ ·· · → 12. The right panel shows an arbitrary distribution of grid

points with corresponding triangulation. Long-characteristics are displayed with green arrows, where

source functions and opacities need to interpolated onto the intersection points of each ray with the

triangular grid (blue dots).

(q1,q2,q3), the equation of radiative transfer becomes (see also Rozanov 2001, p. 30):

n ·∇Iν = n ·
3∑

i=1

1

|dr/dqi|
ei

dIν

dqi

= n ·
3∑

i=1

1

|dr/dqi|
ei


(
∂Iν

∂qi

)

n=const.

+

(
∂θ

∂qi

∂Iν

∂θ
+
∂φ

∂qi

∂Iν

∂φ

)

qi=const.

 = χν (S ν− Iν) , (2.51)

with ei the unit-vectors of the curvilinear coordinate system, and θ, φ the angles describing the direc-

tion vector. Within the finite-volume method, the angular derivatives in Eq. (2.51) lead to a severe

complication for the discretization of the radiative transfer equation. On the other hand, when using

Cartesian coordinates, all terms ∂θ/∂qi and ∂φ/∂qi vanish, and the required volume integrals can be

easily performed. We note that only for 1D spherically symmetric problems, the differential approach

can be re-formulated by applying the pz-geometry (e.g., Mihalas 1978), and solving the radiative

transfer along rays with a one-to-one correspondence between impact parameter p and the angular

variation of the radiation field.

The characteristics methods in arbitrary orthogonal curvilinear coordinates

The characteristics methods solve the radiative transfer equation along a given ray with prespecified

direction, independent of the representation of the considered direction vector in an orthogonal curvi-
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linear coordinate system. For a single ray, one can thus always define a local coordinate system with

constant radiation coordinates.

For the SC method, however, the interpolation of upwind intensities becomes problematic (see,

e.g., Busche & Hillier 2000). For instance, if the upwind point is located on a given Θ-level of a

2D spherical grid, where Θ is the co-latitude, the upwind intensity needs to be interpolated along the

radial grid via

Iν (ru, θ(ru)) = Iν (r0, θ(r0))+
dIν (r, θ(r))

dr
(r− r0)

= Iν (r0, θ(r0))

[(
∂Iν

∂r

)

θ=const.

+

(
∂θ

∂r

∂Iν

∂θ

)

r=const.

]
(r− r0) , (2.52)

where we have used a linear interpolation law to describe the variation between the r0 and ru radius-

levels for illustrative reasons. Since a lot of such interpolations need to be performed, the computa-

tion time of the SC method formulated in a curvilinear coordinate system might become significantly

enhanced when compared to a formulation in Cartesian coordinates (for which no such angular in-

terpolations need to be performed). Additionally, when using curvilinear coordinates, the sweeping

through the grid needs to be adapted for each considered direction, in order that neighbouring grid-

points have previously been calculated (see Fig. 2.7, left panel). Thus, a formulation of the SC method

in Cartesian coordinates is clearly advantageous in terms of computation time.

For the LC and Monte-Carlo methods, no interpolations of intensities are required, and the above

described problems are avoided. The calculation of the intersection of a given ray/trajectory with a

grid-cell boundary (required – at least – within the SC and MC method, and potentially also within

the LC method), however, can become computationally challenging (e.g., Hubber et al. 2016, and

Fig. 2.7, right panel).

2.2.8 Available codes7

Meanwhile, various 2D and 3D codes exist, with widely differing assumptions on the underlying ge-

ometry and designated applications. In this respect, one important point is the assumption of LTE,

which cannot be applied in expanding atmospheres, when the radiation field dominates the level pop-

ulations. For the latter problem, the coupling between the NLTE rate equations and radiation field is

mostly performed using the aforementioned acceleration techniques (e.g., the accelerated Λ-iteration,

ALI). We briefly mention specific codes designed for a multi-D radiative transfer in stellar atmo-

spheres (for other applications, there are many more such codes; e.g., for multi-D codes related to the

ionization balance in the interstellar medium, see Weber et al. 2013 and references therein):

Wind3D (Lobel & Blomme 2008) is a 3D FVM code, which has been developed to calculate

the line transport in scattering dominated environments using Cartesian coordinates, and with level

populations approximated by a two-level-atom. It adopts the classical Λ-iteration scheme, which has

poor convergence properties for optically thick, scattering-dominated lines. Wind3D is thus restricted

to the treatment of weak lines. For those, however, Lobel & Blomme (2008) were able to model the

time variations of discrete absorption components (DACs), as observed for the Si iv 1400 Å doublet of

7 This Section has been copied – to a major part – from Hennicker et al. (2018, Sect. 1).
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the B0.5Ib supergiant HD 64760. Together with the hydrodynamic code Zeus3D, these authors have

reproduced the DACs, supporting the suggestion of Mullan (1984), that they arise from co-rotating

interaction regions (see also Cranmer & Owocki 1996).

ASTAROTH (Georgiev et al. 2006 and Zsargó et al. 2006) is a 2D SC code, which is capable of

solving the radiative transfer in parallel with the NLTE rate equations for axisymmetric problems with

non-monotonic velocity fields. It uses spherical coordinates and includes a (local) ALI scheme. Many

tests have been performed by a comparison to 1D spherically symmetric models from CMFGEN,

giving errors of a few percent only. Zsargó et al. (2008) applied the code to investigate the H and He

ionization stages in the envelopes of B[e] supergiants, and modelled, among others, the Hα line.

IRIS (Ibgui et al. 2013a) is a 3D SC code, which, to our knowledge, has been only applied for

studying laboratory-generated radiative shocks (Ibgui et al. 2013b) thus far. Ibgui et al. (2013a) in-

vestigated test problems (searchlight beam test, and 1D plane-parallel models), which show an as-

tonishing accuracy for the solution of intensity, mean intensity, radiative flux, and radiation pressure

tensor, on non-uniform Cartesian coordinates and including velocity field gradients. By now, the code

assumes LTE. However, the inclusion of scattering terms is planned for the future. For the plane layers

as considered in IRIS, only few direction vectors (NΩ ≈ 100) are required to accurately calculate the

moments of the specific intensity. Since the number of required directions becomes significantly en-

hanced (NΩ & 2000) for the problems considered within this thesis (where photons can propagate over

large distances), the high-order interpolation schemes as applied in IRIS might become prohibitive in

terms of computation time.

MULTI3D (Leenaarts & Carlsson 2009) is a 3D SC code developed to accurately solve the NLTE

rate equations in cool FGK-type stars. Amarsi et al. (2016) used this code to predict, among other

lines, the O i 777nm line for a grid of 3D hydrodynamical models, by setting up a 23-level model

atom. This code, however, has been developed (and optimized) for the application to cool stars (with

subsonic velocity fields, at most), and cannot be used in our context. Furthermore, only the plane

layers of the atmosphere are treated, with the angular quadrature performed over solely NΩ = 24

directions.

Phoenix/3D (Hauschildt & Baron 2006 and other papers in this series) is a 3D LC solver, which

is capable of solving the radiative transfer together with the multi-level NLTE rate equations. They

use spherical, cylindrical or Cartesian coordinates, and implemented a non-local ALI scheme. With

the extension from Seelmann et al. (2010), arbitrary velocity fields can be included as well. To our

knowledge, Phoenix/3D has not been applied, thus far, to real, multi-dimensional, problems.

MOCASSIN (Ercolano et al. 2003, Ercolano et al. 2005) is a 3D Monte-Carlo code for calculating

photo-ionization rates and dust radiative transfer within arbitrary density distributions. The original

formulation in Cartesian coordinates has meanwhile been extended to an arbitrary distribution of grid

points using Voronoi cells (Hubber et al. 2016). To date, mocassin is widely applied to, e.g., photoe-

vaporation in protoplanetary discs (Ercolano et al. 2008) or to the ionization feedback in star forming

regions (Ercolano & Gritschneder 2011). For the problems considered in this thesis (e.g., strong scat-

tering lines with a weak thermal component), however, MC-RT methods probably become inefficient

in terms of computation time (see Sect. 2.2.5).
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2.3 Summary of basic assumptions8

The problems considered within this thesis assume an (almost) stationary atmospheric structure,

meaning that the densities, velocities and boundary conditions are assumed to be constant in time,

or are at least changing much slower than the radiation field. Thus, we use the time-independent

equation of radiative transfer:

n ·∇Iν(r,n) = χν(r,n)
(
S ν(r,n)− Iν(r,n)

)
. (2.53)

In the following Chapters, we skip the explicit notation for the spatial (r) and directional (n) dependen-

cies, and keep the notation of the frequency dependence only when appropriate. The source function,

S ν, and the opacity, χν, consist of the sum of continuum and line processes. By splitting the contin-

uum emissivity and opacity into true and scattering processes, the corresponding source function can

be parameterized by the thermalization parameter, ǫC (Eq. 2.37). As a first approach, we treat the line

transfer similarly by considering a TLA (within an optically thin continuum), with the corresponding

source function given by Eq. (2.38). The TLA is well suited to describe resonance lines, but for future

applications the complete rate equations need to be taken into account, of course.

The profile function, Φx, will be approximated by a Doppler profile. Further, we do not calcu-

late the profile in frequency space, but rather in the variable xcmf , describing the comoving-frame

frequency shift from line centre, in units of a fiducial Doppler width, ∆ν∗
D

:

xcmf =
νcmf − νi j

∆ν∗
D

; ∆ν∗D =
νi jv

∗
th

c
, (2.54)

where νi j and v∗
th

are the line-centre transition frequency, and the fiducial thermal velocity, respectively.

The fiducial width is required to enable a depth-independent frequency grid9. xcmf is related to the

corresponding observer’s frame quantity via xcmf = xobs−n·V, with V = u/v∗
th

the local velocity vector

in units of v∗
th

. In most cases, we do not label x explicitly to distinguish between comoving and

observer’s frame (nor from the spatial x-coordinate), since the meaning should be clear wherever it

occurs.

The profile function (in frequency space), Eq. (2.39), then becomes:

Φν =
1

√
π∆νD

exp

[
−
(νcmf − νi j

∆νD

)2
]
=

1
√
π∆νD

exp

[
−
( xcmf

δ

)2
]
, (2.55)

where

δ =
1

v∗
th

√
2kBT

mA
+ v2

turb
(2.56)

is the ratio between the local thermal velocity (including microturbulence, see Sect. 3.4.2) and the

fiducial velocity, T is the local temperature, and mA is the mass of the considered ion. With the profile

8 This Section has been copied – to a major part – from (Hennicker et al. 2018, Sect. 2).
9 The actual profile width depends on the local gas temperature and on micro-turbulent velocities, that can both vary as a

function of position in the atmosphere. Thus, a frequency sampling with equidistant steps of the line-profile width would

become depth-dependent.
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function, normalized in x-space,

Φx =
1
√
πδ

exp

[
−
( xcmf

δ

)2
]
=

1
√
πδ

exp

[
−
( xobs− n ·V

δ

)2
]
, (2.57)

the line opacity, which needs to be described in frequency-space (because the radiative transfer and

Planck function are formulated w.r.t. frequency), is given from Eq. (2.28):

χL(ν) = χ̄0Φν = χ̄LΦx (2.58)

χ̄0 =
πe2

mec
(g f )

[
nl

gl
− nu

gu

]
≈ πe

2

mec
· f ·nl , (2.59)

with nl, nu, gl, gu the occupation numbers and statistical weights of the lower and upper level, respec-

tively. Since nl ≫ nu for resonance lines, we have neglected stimulated emission on the right-hand

side. χ̄0 is the frequency integrated opacity10, and is related to χ̄L by

χ̄L =
δ

∆νD
χ̄0 =

χ̄0

∆ν∗
D

. (2.60)

We finally parameterize the continuum and line opacities in terms of the Thomson-opacity, χTh = neσe,

χL = kL ·χTh ·Φx ⇐⇒ kL :=
χ̄L

χTh
=

χ̄0

∆ν∗
D

neσe
(2.61)

χC = kC ·χTh , (2.62)

where we use kL as a depth-independent parameter, since the ratio nl/ne remains almost constant in

the atmosphere for resonance lines (almost frozen-in ionization).

In the next Chapter, we present (efficient) numerical tools for solving the coupled equations (2.53)

and (2.37)/(2.38). Although this coupled problem could be solved directly, at least in principle, we

note already here that this would require the inversion of a very large matrix, which is computationally

prohibitive in 3D calculations (see Sect. 3.5). Thus, we apply aΛ-iteration, for which a formal solution

of the radiative transfer equation is obtained, given the continuum and line source functions. These

are subsequently updated according to Eq. (2.37) and (2.38), given the formal solution of the previous

iterate. For large optical depths and low ǫC (ǫL), however, the strong non-local coupling between the

source functions and the radiation field results in the well known convergence-problem of the classical

Λ-iteration. This problem is based on the fact that, due to scattering processes, photons can travel over

many mean-free-paths before being destroyed or escaping from the atmosphere. On the other hand,

information is propagated in each iteration step only over roughly one mean-free-path. Therefore, a

large number of iteration steps would be required, until a consistent solution was obtained (if at all).

Thus, acceleration techniques are urgently needed, and developed in this thesis in terms of an ALI

scheme using operator-splitting techniques (Cannon 1973).

Since we aim at modelling non-monotonic velocity fields, for which a comoving-frame formu-

lation, if at all, is very complicated to implement, we solve the equation of radiative transfer in the

observer’s frame. We also use a Cartesian coordinate system, which has the advantage of constant an-

gular directions w.r.t. the spatial grid. Anyhow, a description of the atmospheric structure in spherical

coordinates loses its advantages for the non-spherical problems considered in this (and future) work.

10 We stress that the frequency integrated opacity is often written as χ̄L, and must not be confused with the quantity defined

by the same symbol as defined here (different normalization!).



Chapter 3

Numerical methods

This chapter has been copied - in parts - from Hennicker et al. (2018) and Hennicker et al. (2019).

3.1 Finite-volume method1

3.1.1 The discretized equation of radiative transfer within the FVM

The main ideas of the FVM originate from heat transfer (Patankar 1980), and have been already

applied to radiative transfer problems in accretion discs by Adam (1990), as well as to the formation

of discrete absorption components in hot star winds (Lobel & Blomme 2008). We note that (at least

in principle), a large number of different formulations can be derived, that vary in the definition of

control volumes (cell-centred vs. vertex-centred, see Sect. 2.2.3), or differ in the applied interpolation

technique to solve the volume-integrals. Since the cell-centred approach can result in negative (thus

unphysical) intensities (see Appendix B for an example in 1D), we apply a vertex-centred FVM.

Although the derivation of the discretized equation of radiative transfer can be found, for instance, in

Adam (1990), we outline the basic ideas in more detail in the following. At each grid point, Eq. (2.53)

is integrated over a finite control volume (see Fig. 3.1). Applying Gauss’s theorem, we obtain:

∫

∂V

In ·dS

︸      ︷︷      ︸
(I)

=

∫

V

χ
(
S − I

)
dV

︸            ︷︷            ︸
(II)

. (3.1)

The left-hand side of Eq. (3.1) describes the intensity propagating into and out of the control-volume

surfaces, and the right-hand side corresponds to the grid-cell contribution from sources and sinks.

To solve the volume integral, we assume that all quantities given at the grid points are appropriate

(constant) mean values within the corresponding control volume, since higher order schemes could

lead, similarly to the cell-centred approach, to negative intensities (see Appendix B). Then, the right-

hand side is easily integrated, yielding

(II) =

∫

V

χ(S − I) dV = χi jk(S i jk − Ii jk)(xi+1/2− xi−1/2)(y j+1/2−y j−1/2)(zk+1/2− zk−1/2) , (3.2)

1 based on Hennicker et al. (2018, Sect. 3, Sect. 3.1, and Appendix A).
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i, j+1,ki, j−1,k i, j,k

Figure 3.1: Geometry used within the vertex-centred control-volume approach: The discretized 3D

spatial grid is shown in blue. The dashed lines indicate the control volume, corresponding to a grid-

point (i jk). The control-volume surfaces are located at the centre between the grid-point coordinates.

From Hennicker et al. (2018).

for a grid point (i jk). Since we are using Cartesian coordinates, the integral on the left-hand side can

be readily calculated:

(I) =

∫

∂V

In ·dS = nx

∫ y j+1/2

y j−1/2

∫ zk+1/2

zk−1/2

I(xi+1/2, y,z)− I(xi−1/2, y,z) dydz

+ ny

∫ xi+1/2

xi−1/2

∫ zk+1/2

zk−1/2

I(x, y j+1/2,z)− I(x, y j−1/2,z) dxdz

+ nz

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

I(x, y,zk+1/2)− I(x, y,zk−1/2) dxdy .

Again, assuming that the intensities at the midpoints of the control-volume surfaces are representative

averages of the corresponding surfaces, we obtain:

(I) =

∫

∂V

In ·dS = nx(Ii+1/2, j,k − Ii−1/2, j,k)(y j+1/2−y j−1/2)(zk+1/2− zk−1/2)

+ ny(Ii, j+1/2,k − Ii, j−1/2,k)(xi+1/2− xi−1/2)(zk+1/2− zk−1/2)

+ nz(Ii, j,k+1/2− Ii, j,k−1/2)(xi+1/2− xi−1/2)(y j+1/2−y j−1/2) . (3.3)

Since the control-volume coordinates are positioned at the midpoints of the grid coordinates, we

substitute:

xi+1/2− xi−1/2 =
xi+1− xi−1

2
, y j+1/2−y j−1/2 =

y j+1−y j−1

2
, zk+1/2− zk−1/2 =

zk+1− zk−1

2
. (3.4)
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Finally, we use the upwind approximation to replace the (unknown) intensities at the control-volume

surfaces:

Ii+1/2, j,k→ Ii, j,k

Ii−1/2, j,k→ Ii−1, j,k

α := 1


for nx > 0 ,

Ii+1/2, j,k→ Ii+1, j,k

Ii−1/2, j,k→ Ii, j,k

α := −1


for nx < 0 ,

Ii, j+1/2,k→ Ii, j,k

Ii, j−1/2,k→ Ii, j−1,k

β := 1


for ny > 0 ,

Ii, j+1/2,k→ Ii, j+1,k

Ii, j−1/2,k→ Ii, j,k

β := −1


for ny < 0 ,

Ii, j,k+1/2→ Ii, j,k

Ii, j,k−1/2→ Ii, j,k−1

γ := 1


for nz > 0 ,

Ii, j,k+1/2→ Ii, j,k+1

Ii, j,k−1/2→ Ii, j,k

γ := −1


for nz < 0 .

Combining Eqs. (3.1), (3.2), (3.3), (3.4), and using the definitions of α,β,γ, the discretized equation

of radiative transfer finally reads:

nx

(
Ii jk − Ii−α, j,k

)
∆y j∆zk +ny

(
Ii jk − Ii, j−β,k

)
∆xi∆zk +nz

(
Ii jk − Ii, j,k−γ

)
∆xi∆y j =

=
[
χ

(C)
i jk

S
(C)
i jk
+ χ̄

(L)
i jk
Φ

(i jk)
x S

(L)
i jk
−

(
χ

(C)
i jk
+ χ̄

(L)
i jk
Φ

(i jk)
x

)
Ii jk

]
∆xi∆y j∆zk , (3.5)

with ∆xi := (xi+α − xi−α)/2, ∆y j := (y j+β − y j−β)/2, ∆zk := (zk+γ − zk−γ)/2, and where we already have

separated the continuum and line contribution of the opacity and source function. Collecting terms,

and solving for Ii jk leads to:

Ii jk = ai jkS
(C)
i jk
+bi jkS

(L)
i jk
+ ci jkIi−α, j,k +di jkIi, j−β,k + ei jkIi, j,k−γ , (3.6)

with

fi jk = χ
(C)
i jk
+ χ̄

(L)
i jk
Φ

(i jk)
x +

nx

∆xi

+
ny

∆y j

+
nz

∆zk

,

ai jk =
χ

(C)
i jk

fi jk

, bi jk =
χ̄

(L)
i jk
Φ

(i jk)
x

fi jk

,

ci jk =
nx

∆xi fi jk

, di jk =
ny

∆y j fi jk

, ei jk =
nz

∆zk fi jk

,

and α,β,γ set to ±1 for direction-vector components nx,ny,nz ≷ 0. All quantities except χC, χ̄L, and

the source terms, depend on the considered direction n as well as on frequency. Eq. (3.6) represents

a pure upwind scheme, with projected ∆τ-steps2 calculated from a central-differencing approach (fol-

lowing Patankar 1980). Due to the upwind scheme, and because the coefficients ai jk . . .ei jk ∈ [0,1], the

solution method is unconditionally stable (Adam 1990). On the other hand, the accuracy of the FVM

as formulated above is only of first-order3 in ∆τ. Thus, we emphasize that a large number of grid

2 The projected ∆τ-steps represent the optical depth of the cell for a given direction, and are easily obtained from Eq. (3.6)

and the definition of the coefficients ci jk . . .ei jk, e.g., ci jk =: 1/(1+∆τx).
3 Actually, our FVM is a first-order scheme only for large optical-depth steps. For small optical-depth steps, the method

becomes second-order accurate.
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Figure 3.2: Boundary conditions for two different points, p1, p2, and different directions, n1, n2.

Green: A ray originating from the stellar photosphere. To calculate the intensity at p1 in direction n1,

the intensities at the neighbouring grid points, x
(1)
P

and p′
1
, need to be known. A boundary condition

is required for grid point x
(1)
P

, while the intensity at p′
1

results within the ‘normal’ RT-scheme. Red:

A ray originating from outside the photosphere. For the grid point p2, a boundary condition has to be

specified at the corresponding phantom point, x
(2)
P

. From Hennicker et al. (2018).

points would be required to properly describe the radiation field in the optically thick limit, since a

first-order scheme is generally unable to reproduce the (second-order) diffusion equation. Contrasted

to our central-differencing approach, Adam (1990) and Lobel & Blomme (2008) used backward dif-

ferences for the calculation of the ∆τ-steps. We have tested both methods, and found superior results

when using central differences.

With Eq. (3.6), we are able to calculate the specific intensity for known source-functions and

opacities by simply sweeping through the spatial domain grid point by grid point, when boundary

conditions are specified.

3.1.2 Boundary conditions within the FVM

At the outer boundary, the intensities coming from outside are set to zero, whereas those coming from

inside are calculated within the RT scheme, and need not to be specified. Close to the star, the situa-

tion is more complicated, ‡since the inner boundary is usually not aligned with the 3D Cartesian grid

(e.g., a spherical star at the origin)‡. The intensities at the inner grid points close to the boundary are

calculated by the standard FVM-RT (Eq. 3.6), but using different grid cells, defined by the intersec-

tion(s) of the original grid cell with the (spherical) photosphere (see Fig. 3.2). The intensity for certain

directions needs to be specified at those so-called phantom points. Figure 3.2 displays phantom points

corresponding to two distinct grid points, p1, p2, and different ray directions, n1, n2. For radiation
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originating from the stellar surface (direction n1 in Fig. 3.2), we use a core-halo approximation4, ‡and

set Iphantom−point = I+c = Bν(Trad) at the corresponding phantom point x
(1)
P

, with I+c the emergent inten-

sity from the core, and Trad the radiation temperature. Unless explicitly noted, we assume Trad = Teff

throughout this work.‡ For some grid points and ray directions, however (e.g., direction n2 in Fig. 3.2),

even intensities incident onto the photosphere need to be specified at the corresponding phantom point.

Within the core-halo approximation used here, inwards directed intensities should, in principle,

be set to zero at the lower boundary, that is Iphantom−point = I−c = 0. If, on the other hand, the lower

boundary is located at significant optical depths (as for the majority of the cases considered in this

thesis), a specification within a simplified diffusion approximation, Iphantom−point = I−c ≈ Bν(Trad), is

more appropriate. Although the diffusion approximation is no longer justified when concentrating

on purely scattering atmospheres, backscattering of photons in such environments mimicks a similar

effect, at least if the optical depths are not too low.

We have tested this issue by considering an optically thin model as the most extreme test-bed,

using both alternative descriptions for those critical directions. The mean relative errors for both

alternatives are of the same order, and do not significantly differ from those arising under more phys-

ical conditions discussed later (with larger optical depths at the lower boundary, see Chapter 4 and

Table 4.3). Thus, we apply I−c ≈ Bν(Trad) as the inner boundary condition for those critical rays as

well, also because this procedure is less time-consuming, since it avoids conditional clauses in the

innermost loop of the code.

3.2 Short-characteristics method5

In Chapter 4, we will show that a formal solution obtained using the FVM suffers from various nu-

merical inaccuracies related to numerical diffusion and to the order of accuracy, the latter influencing

the solution particularly in the optically thick regime. To avoid these errors, we implement an integral

method along short characteristics. When compared with a long-characteristics solution scheme, the

computation time becomes reduced by roughly a factor of N/2, with N the number of spatial grid

points per dimension (see Chapter 1).

SC methods have been successfully implemented already for 3D non-LTE (NLTE) radiative trans-

fer problems in cool stars (e.g., Vath 1994, Leenaarts & Carlsson 2009, Hayek et al. 2010, Holzreuter

& Solanki 2012). These codes, however, are mostly designed for planar geometries, and only ac-

count for subsonic and slightly supersonic velocity fields. For scattering problems including highly

supersonic velocity fields, there exist, to our knowledge, only the 2D codes by Dullemond & Turolla

(2000) (planar/spherical), van Noort et al. (2002) (planar/spherical/cylindrical), Georgiev et al. (2006)

and Zsargó et al. (2006) (spherical). The only 3D SC code including arbitrary velocity fields, IRIS

(Ibgui et al. 2013a), has also been formulated for planar geometries, and lacks the implementation of

a Λ-iteration scheme thus far. As has been shown in all these studies, the final performance of the SC

method crucially depends on the choice of the applied interpolation schemes.

4 In future applications, we will include the diffusion limit at the lower boundary.
5 based on Hennicker et al. (2019, Sect. 3).
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3.2.1 The discretized equation of radiative transfer along a ray

The time-independent equation of radiative transfer along a given direction can be written as

dI

dτ
= S − I , (3.7)

where dτ := χds is the optical depth length along a ray segment ds. As before, the notation for the

frequency dependence has been skipped. Further, we explicitly distinguish between continuum and

line only when appropriate. Eq. (3.7) can be solved by using integrating factors:

d(Ieτ)

dτ
= Ieτ+ eτ

dI

dτ
=

Eq. (3.7)
Ieτ+ (S − I)eτ = S eτ . (3.8)

Eq. (3.8) is integrated along a ray propagating through a current grid point p with Cartesian grid

indices (i jk) and corresponding upwind point u(i jk). The geometry for a 3D Cartesian grid is shown in

the upper panel of Fig. 3.3. For such a ray segment, we obtain:

∫ p

u

d
(
Ieτ

)
= Ipeτp − Iueτu =

∫ τp

τu

S (τ)eτdτ . (3.9)

Solving for the (unknown) intensity at point p (with indices i jk), we find the formal solution for the

ray segment. In the following, upwind and downwind quantities corresponding to a considered grid

point (i jk) are indicated by q
(i jk)
u and q

(i jk)

d
, while local quantities are denoted either as q

(i jk)
p or simply

qi jk. We then obtain:

Ii jk = I
(i jk)
u e−(τp−τu)+

∫ τp

τu

e−(τp−τ)S (τ)dτ = I
(i jk)
u e−∆τu + e−∆τu

∫ ∆τu

0

etS (t+τu)dt , (3.10)

with upwind optical-depth increment ∆τu := τp− τu ≥ 0, and t := τ− τu. For the SC solution scheme,

the location of the reference point, τ = 0, plays no role, since only the optical-depth increments, ∆τu

and ∆τd (see below), are required within our calculations. To calculate the source contribution, the

source function is commonly approximated by first- or second-order polynomials (Kunasz & Auer

1988, van Noort et al. 2002), Bézier curves (Hayek et al. 2010, Holzreuter & Solanki 2012, Auer

2003) or cubic Hermite splines (Ibgui et al. 2013a). While the 2nd- (and higher) order methods

reproduce the diffusion limit in optically thick media, they suffer from overshoots and need to be

monotonized with some effort to ensure that any interpolated quantity remains positive between two

given grid points. Monotonicity is usually obtained by manipulating the interpolation scheme when-

ever overshoots occur. Thus, the actual interpolation crucially depends on the specific stratification

of the considered quantity (e.g., the source function). The Λ-operator then becomes non-linear, be-

cause its elements now explicitly depend on the stratification of source functions (via corresponding

interpolation/integration coefficients). Within any Λ-iteration scheme, this non-linearity can lead to

oscillations. In extreme cases, ‘flip-flop situations’ (Holzreuter & Solanki 2012, their Appendix A)

may occur, which do not converge at all.

For the source contribution, we implement both a linear approximation as the fastest and most sta-

ble method (monotonicity is always provided), and a quadratic Bézier approximation (see Appendix
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C.1) for higher accuracy6, which allows us to preserve monotonicity in a rather simple way. The

Bézier interpolation is constructed from two given data points and one control point, the latter setting

the slope of the interpolating curve. The control point is located at the centre of the data-points abscis-

sae, with the ordinate calculated by accounting for the information of a third data point to yield the

parabola intersecting all three data points. Whenever overshoots occur, the value of the control point

will be manipulated to ensure monotonicity (see Fig. C.1). The corresponding formulation is given in

Appendix C.1, Eqs. (C.7)-(C.10). Applying these equations to describe the behaviour of the source

function along the optical path, and identifying the indices (i−1), (i), (i+1) with the upwind, current

and downwind points, we find, after reordering for the t0, t1, t2 terms:

S (t+τu) = S
(i jk)
u +

[
(ω−2)

∆τu
S

(i jk)
u +

(1−ω)∆τu+ (2−ω)∆τd

∆τu∆τd
S

(i jk)
p +

(ω−1)

∆τd
S

(i jk)

d

]
· t

+

[
(1−ω)

∆τ2u
S

(i jk)
u +

(ω−1)(∆τu+∆τd)

∆τ2u∆τd
S

(i jk)
p +

(1−ω)

∆τu∆τd
S

(i jk)

d

]
· t2 , (3.11)

with downwind optical-depth increment, ∆τd = τd − τp ≥ 0. The parameter ω defines the ordinate

of the control point (Eq. C.4). Within the Bézier interpolation, we emphasize that ω may explicitly

depend on S
(i jk)
u , S

(i jk)
p , and S

(i jk)

d
to ensure monotonicity, and not solely on the grid spacing. A

major advantage of this parameterization is that we can globally define a minimum allowed ω that

can be adapted during the iteration process. The flip-flop situations discussed above can then be

avoided by gradually increasing ωmin towards unity (ω ≡ 1 corresponds to a linear interpolation), that

is, by suppressing the curvature of the Bézier interpolation. This way, we can construct an always-

convergent iteration scheme, though with the drawback of using less accurate interpolations.

Integrating Eq. (3.10) together with a source function described by Eq. (3.11), we obtain the

discretized equation of radiative transfer:

Ii jk = ai jkS
(i jk)
u +bi jkS

(i jk)
p + ci jkS

(i jk)

d
+di jkI

(i jk)
u , (3.12)

with

ai jk := e0+
ω−2

∆τu
e1+

1−ω
∆τ2u

e2 , bi jk :=
(1−ω)∆τu+ (2−ω)∆τd

∆τu∆τd
e1+

(ω−1)(∆τu+∆τd)

∆τ2u∆τd
e2 ,

ci jk :=
ω−1

∆τd
e1+

1−ω
∆τu∆τd

e2 , di jk := e−∆τu ,

e0 := e−∆τu
∫ ∆τu

0

etdt = 1− e−∆τu ,

e1 := e−∆τu
∫ ∆τu

0

tetdt = ∆τu− e0 ,

e2 := e−∆τu
∫ ∆τu

0

t2etdt = ∆τ2u−2e1 .

6 In this thesis, different interpolation schemes are tested by considering simplified (though physically relevant) continuum

and line scattering problems. We emphasize that our code will be further developed to enable the solution of more

complex, multi-level problems in 3D. For such problems, highly accurate interpolation schemes are required to describe

the variation of the mean intensities along a ray.
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The calculation of the upwind and downwind ∆τ-steps proceeds similarly, where now the opacity

is integrated using the Bézier interpolation. Using Eqs. (C.3), (C.4) for the upwind interval, and

Eqs. (C.11), (C.12) for the downwind interval, one easily obtains:

∆τu =

∫ p

u

χ(s)ds =
∆su

3
(χu+χ

[u,p]
c +χp) (3.13)

∆τd =

∫ d

p

χ(s)ds =
∆sd

3
(χp+χ

[p,d]
c +χd) , (3.14)

where ∆su, ∆sd describe the path lengths of the upwind and downwind intervals, respectively, and

χ
[u,p]
c , χ

[p,d]
c refer to the opacity at the control points in each interval.

3.2.2 Grid refinement

Since the opacity of a line transition depends on the velocity field through the Doppler effect, regions

of significant opacity may become spatially confined in a highly supersonic wind with strong accel-

eration. Thus, a grid refinement along the short characteristic might be required to correctly account

for all resonance zones. Because the profile function is approximated by a Doppler profile and rapidly

vanishes for |xcmf/δ|& 3, e.g., Φx(|xcmf/δ|= 3)≈ 10−4Φx(xcmf/δ= 0), a resonance zone is here defined

by a region where xcmf/δ ∈ [−3,3].

A numerically sufficient condition to resolve all such resonance zones along a given ray is to

demand that |∆xcmf |/δ = |∆Vn|/δ . 1/3 if a resonance zone lies in between the points [u(i jk),p], where

∆Vn is the projected velocity step along the ray in units of v∗
th

. Assuming a linear dependence of the

projected velocities on the ray coordinate s, this condition directly translates to an equidistant refined

spatial grid along the ray. For short ray segments (as is mostly the case within our calculations),

neglecting the second-order (curvature) terms of the projected velocity influences the solution only

weakly. In the deeper atmospheric layers, where the velocity field is transonic, curvature effects

potentially play an important role, and our grid-refinement method needs to be revised7. The line

source function on the refined grid is obtained by Bézier interpolation in s-space (Eqs. C.7-C.9):

S L(sℓ) = S ℓ = ãℓS
(i jk)
u + b̃ℓS

(i jk)
p + c̃ℓS

(i jk)

d
, (3.15)

where the index ℓ refers to the points on the refined grid, and u(i jk),p(i jk),d(i jk) describe the original

geometry of the short characteristic. χ̄L is obtained analogously, and the required ∆τℓ steps are calcu-

lated with the trapezoidal rule, for simplicity. Contrasted to the Sobolev method (which also assumes

a linear velocity law along the ray segment, e.g., Rybicki & Hummer 1978 and Appendix A), our grid

refinement procedure explicitly accounts for variations of the opacity and the source function.

Using Eq. (3.12) for the inter-grid points, such that the (local) upwind, current, and downwind

7 Ideally, such layers would already be highly resolved by the 3D spatial grid, such that a grid-refinement along the charac-

teristic is not necessarily required.
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quantities are now described by the indices [ℓ−1, ℓ, ℓ+1], we obtain:

Iℓ = Iℓ−1e−∆τℓ +
(
aℓãℓ−1+bℓãℓ + cℓãℓ+1

)
S

(i jk)
u

+
(
aℓb̃ℓ−1+bℓb̃ℓ + cℓb̃ℓ+1

)
S

(i jk)
p

+
(
aℓc̃ℓ−1+bℓc̃ℓ + cℓc̃ℓ+1

)
S

(i jk)

d

:= Iℓ−1e−∆τℓ + α̃ℓS
(i jk)
u + β̃ℓS

(i jk)
p + γ̃ℓS

(i jk)

d
. (3.16)

For a number of Nref refinement points (including the upwind and current point) within the interval

[u(i jk),p(i jk)], the intensity at point p(i jk) is finally given by:

Ii jk = I
(i jk)
u e−

∑Nref
m=2
∆τm +S

(i jk)
u

Nref∑

m=2

α̃me−
∑Nref

n=m+1
∆τn +S

(i jk)
p

Nref∑

m=2

β̃me−
∑Nref

n=m+1
∆τn +S

(i jk)

d

Nref∑

m=2

γ̃me−
∑Nref

n=m+1
∆τn ,

(3.17)

where the upwind and current points always correspond to the indices m= 1 and m= Nref , respectively,

and the sum over m is performed over Nref −1 intervals. The discretized radiative transfer equation for

the refined grid obviously has the same form as for the standard short characteristic (Eq. 3.12), with

different coefficients though.

3.2.3 Upwind and downwind interpolations

To solve the discretized equation of radiative transfer, the opacities χC(u,d), χ̄L(u,d), source functions

S C(u,d), S L(u,d), and velocity vectors, V(u,d), are required at the upwind and downwind points, together

with the incident intensity, Iu. We emphasize that the subscript C describes continuum quantities, and

should not be confused with the subscript c denoting the control points of the interpolation scheme.

All required quantities are obtained from a 2D Bézier interpolation (see Appendix C.2) on the

surfaces that intersect with a given ray. The intersection surfaces depend on the considered direction

and the size of the upwind and downwind grid cells. For a given direction

n=



nx

ny

nz

 =



sin(θ)cos(φ)

sin(θ) sin(φ)

cos(θ)

 , (3.18)

where θ is the co-latitude (measured from the z-axis), and φ is the azimuth (measured from the x-axis),

the distances from a considered grid point to the neighbouring xy-, xz-, and yz-planes are calculated

from trigonometry and yield:

∆s
(u)
xy =

zk − zk−γ

nz

∆s
(u)
xz =

y j−y j−β

ny
∆s

(u)
yz =

xi− xi−α
nx

∆s
(d)
xy =

zk+γ − zk

nz

∆s
(d)
xz =

y j+β−y j

ny
∆s

(d)
yz =

xi+α− xi

nx

,

with α,β,γ set to ±1 for direction-vector components nx,ny,nz ≷ 0, as in Sect. 3.1.1. The intersection

surface on the upwind and downwind side are then found at the minimum of ∆s
(u,d)
xy ,∆s

(u,d)
xz ,∆s

(u,d)
yz ,

and the corresponding coordinates are easily calculated.
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Figure 3.3: Upper panel: Geometry of the SC method for a particular ray with direction n propagating

from the upwind point u(i jk) to a considered grid point p(i jk). The downwind point d(i jk) is required to

set the slope of a Bézier curve representing the opacities and source functions along the ray. The lower

left and lower right panels display all possible upwind and downwind intersection surfaces for a short

characteristic at a grid point (i jk). For rays intersecting the xy-, xz-, and yz-planes, the 2D Bézier

interpolation is obtained from given quantities at grid points located in the cyan, red, and magenta

shaded surfaces, respectively. The coordinate system is indicated at the upper left, where α, β, γ

determine the direction of the coordinate-axes and are defined in Sect. 3.2.3. From Hennicker et al.

(2019).

For each surface, the interpolation requires nine points within the corresponding plane (see Fig. 3.3

and Eq. C.19). In each considered plane, we generally use grid points running from (index-2) to

(index) to determine upwind quantities, while downwind quantities are calculated from (index-1)

to (index+1). Such a formulation greatly simplifies the calculation of the Λ-matrix elements (see

Appendix D). In Fig. 3.3, we show an example for a ray intersecting the xy-plane at the upwind
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side. The 2D Bézier interpolation for the upwind point then consists of three 1D Bézier interpolations

along the x-axis using the points (Ju,Ku,Lu), (Du,Eu,Fu), (Mu,Nu,Ou), followed by another 1D Bézier

interpolation along the y-axis at the upwind x-coordinates. With the 2D Bézier interpolation given by

Eq. (C.19), we find for each required quantity qu,d:

q
(i jk)
u = w

(i jk)

A
qi−2α, j−β,k−2γ +w

(i jk)

B
qi−α, j−β,k−2γ +w

(i jk)

C
qi, j−β,k−2γ

+ w
(i jk)

D
qi−2α, j−β,k−γ +w

(i jk)

E
qi−α, j−β,k−γ +w

(i jk)

F
qi, j−β,k−γ

+ w
(i jk)

G
qi−2α, j−β,k +w

(i jk)

H
qi−α, j−β,k +w

(i jk)

I
qi, j−β,k

+ w
(i jk)

J
qi−2α, j−2β,k−γ +w

(i jk)

K
qi−α, j−2β,k−γ +w

(i jk)

L
qi, j−2β,k−γ

+ w
(i jk)

M
qi−2α,j,k−γ +w

(i jk)

N
qi−α,j,k−γ +w

(i jk)

O
qi, j,k−γ

+ w
(i jk)

P
qi−α, j−2β,k−2γ +w

(i jk)

Q
qi−α, j,k−2γ

+ w
(i jk)

R
qi−α,j−2β,k+w

(i jk)

S
qi−α, j,k +wi jkqi jk (3.19)

q
(i jk)

d
= w̃

(i jk)

A
qi−α, j+β,k−γ + w̃

(i jk)

B
qi, j+β,k−γ + w̃

(i jk)

C
qi+α, j+β,k−γ

+ w̃
(i jk)

D
qi−α, j+β,k + w̃

(i jk)

E
qi, j+β,k + w̃

(i jk)

F
qi+α, j+β,k

+ w̃
(i jk)

G
qi−α, j+β,k+γ + w̃

(i jk)

H
qi, j+β,k+γ + w̃

(i jk)

I
qi+α, j+β,k+γ

+ w̃
(i jk)

J
qi−α, j−β,k+γ + w̃

(i jk)

K
qi, j−β,k+γ + w̃

(i jk)

L
qi+α, j−β,k+γ

+ w̃
(i jk)

M
qi−α, j,k+γ + w̃

(i jk)

N
qi, j,k+γ + w̃

(i jk)

O
qi+α, j,k+γ

+ w̃
(i jk)

P
qi+α, j−β,k−γ + w̃

(i jk)

Q
qi+α, j,k−γ

+ w̃
(i jk)

R
qi+α, j−β,k + w̃

(i jk)

S
qi+α, j,k , (3.20)

where the coefficients w(i jk) and w̃(i jk) refer to the upwind and downwind interpolations corresponding

to a considered point (i jk). Depending on the intersection surface, ten out of these 19 coefficients

are set to zero. For the upwind interpolation, we have already included the local coefficient (i jk),

which is only required when boundary conditions need to be specified (Sect. 3.2.4). We note that all

(non-zero) interpolation coefficients may depend on the specific values of a considered quantity at the

given grid points, via the interpolation parameter ω to ensure monotonicity. As in Sect. 3.2.1, also

these monotonicity constraints result in non-linear Λ-operators.

3.2.4 Boundary conditions within the SC method

Since also our 3D SC method is formulated in Cartesian coordinates, the inner boundary is not nec-

essarily aligned with the spatial grid (cf. Sect. 3.1.2), and the upwind (and downwind) interpolations

need to be adapted near the stellar surface. For the upwind point, two situations may occur (see Fig. 3.4

for an example in the xz-plane): (i) The considered ray originates from the stellar surface (direction n1

in Fig. 3.4). In this case, we again use a core-halo approximation and set Iu = I+c = Bν(Trad). All other

quantities are obtained from trilinear interpolation using the points (Eu,Fu,Hu, Iu,Nu,Ou,Su,p
(i jk)) in

Fig. 3.3, where representative estimates need to be defined at the core points (those points that are lo-

cated inside the star). In hydrodynamic simulations, the analogue of these points are so-called ‘ghost

points’. (ii) The considered ray originates from a plane spanned by grid points that are partially lo-
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Figure 3.4: Left panel (from Hennicker et al. 2019): Boundary conditions for rays propagating in the

xz-plane at y-level ( j) with three different directions n1, n2, n3, and upwind points u1, u2, u3. For point

u1, the intensity is set to Iu = I+c and all remaining quantities are obtained by bilinear interpolation from

points (i−1, j,k−1), (i, j,k−1), (i−1, j,k), and (i jk). The required quantities at point u2 are found

from Bézier interpolation using the values at (i−2, j,k−1), (i−1, j,k−1), (i, j,k−1). The (unknown)

quantities inside the core are indicated by red dots, and need to be reasonably approximated (see text).

Right panel: Tangential rays for different grid points indicated with magenta, green, and blue arrows.

Inward directed intensities, I−c , need to be specified only for directions within the blue shaded areas,

because all other directions either originate directly from the stellar surface, or from outside of the

atmosphere.

cated inside the star (direction n2 in Fig. 3.4). Then, the interpolation is performed as in Sect. 3.2.3,

using again representative estimates at the core-points.

Inside the core, we define I+c = S L = S C = Bν(Trad) and set I−c and all velocity components to zero,

where I−c is the inward directed intensity which needs to be specified only in rare situations (Fig. 3.4,

right panel). The opacities inside the star are found by extrapolation from the known values outside

the star. While this procedure certainly introduces errors (e.g., by over-/underestimating the upwind

source function in optically thin/thick cases, respectively), it is still favourable to extrapolating all

values directly onto the stellar surface, mainly due to performance reasons8. In addition to the error

introduced by the predefined values inside the core, the calculation of ∆sr is a certain issue, where

∆sr is the distance of the current grid point to the stellar surface. Since the radiative transfer near the

stellar surface is (in most cases) very sensitive to the path length of a considered ray, ∆sr needs to be

known exactly. Depending on the shape of the surface, ∆sr can be calculated analytically, or needs to

be determined numerically. A numerical solution, however, might be time consuming and should be

8 For a given grid point, the number of neighbouring grid points that can be used for extrapolation is not a priori clear, and

depends on the shape of the stellar surface, and the considered direction of the ray. Indeed, there are 64 special cases that

would have to be implemented explicitly. This is computationally not feasible.
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x

z

Figure 3.5: Left panel: Example for the distribution of x-coordinates (indicated with red lines) for

a spherical input grid with equidistant (r,Θ) coordinates. Right panel (from Hennicker et al. 2019):

Probability density functions of radial (dashed) and x (solid) coordinates for different spherical and

Cartesian grids. In this example, two spherical grids are given in 2D as input to our 3D code, with

uniformly (black) or logarithmically (red) distributed r-coordinates, and a uniformly distributed polar

angle. The corresponding distributions of x-coordinates are calculated within our grid construction

procedure (see text). Large values of the probability density functions correspond to a high resolution

of x and r-coordinates.

avoided when possible.

Downwind quantities are always calculated from Eq. (3.20), using the estimates at the core points

as defined above when necessary.

3.3 Grid construction9

Since the computation time of the 3D code scales with the number of grid points (per axis) to the third

power, an elaborate grid construction is required to minimize the number of floating point operations,

while enabling a reasonably high spatial resolution. Particularly when using the FVM, a reasonable

grid should provide nearly equidistant step sizes of the optical depth in order to minimize errors

introduced by the (first order) solution scheme. Since no grid refinement has been implemented for

the FVM (yet), also the velocity field needs to be resolved to account for all resonance zones within

the atmosphere. This latter property is also advantageous when the SC method is applied, since a

large number of calls to the (computational expensive) grid refinement procedures can be avoided.

Additionally, the (first or second order) interpolations of source functions and opacities perform best

when the density structure is resolved.

Generally, we assume the wind structure (i.e., density, velocity field and temperature) to be given

by an input model obtained from hydrodynamic simulations or external (semi)-analytic calculations.

9 based on Hennicker et al. (2019, Appendix A).
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Since the input grid is not necessarily compatible with our 3D FVM or SC solver, and to minimize

interpolation errors when calculating upwind and downwind quantities, we construct an own grid

that uses the distribution of the input-grid coordinates in an optimum way. When the input grid uses

spherical coordinates (r,Θ,Φ), we define a joint probability distribution

fxz(x,z) = fr(r) fΘ(Θ)|J| , (3.21)

where fr(r) and fΘ(Θ) are the probability density functions derived from the distribution of the input

coordinates, and |J| =
√

x2+ z2 is the Jacobian determinant. Since we consider only axisymmetric

atmospheres in this thesis, we use the x-coordinate distribution also for the y-coordinates. We note

that an explicit Φ-dependence can be included analogously, that is, by accounting for a different

Jacobian determinant and multiplying Eq. (3.21) with fΦ(Φ). To calculate the probability density

functions for x and z, we simply marginalize fxz(x,z) over z and x, respectively. Fig. 3.5 shows the

probability density functions of the x-coordinates for two different input distributions of the radial

grid. Here, the polar angle Θ has been assumed to be uniformly distributed for both examples.

The discretized coordinates are finally determined by demanding that the probabilities of selecting

a (continuous) coordinate in each (discrete) interval shall be the same. For the x-coordinates, we

obtain:

P (x ∈ [xi−1, xi]) =

∫ xi

xi−1

fx(x)dx
!
=

∫ xi+1

xi

fx(x)dx = P (x ∈ [xi, xi+1])
!
=

!
= const. =


1/Ncore if x ∈ [0,R∗]

1/Nnon−core else
. (3.22)

Since the final number of core and non-core points depends on the slope of the probability density

of the radial grid, yielding in worst cases a much larger number of core points than non-core points,

and because the total number of used points is memory-limited, we define two input parameters Ncore

and Nnon−core to keep control on the final grid. For all test calculations (including those presented

in Sect. 4.2), the best solution has always been found for a number of Ncore/Nnon−core ∈ [0.25,0.5].

An explicit choice of Ncore and Nnon−core corresponds to a re-normalization of the probability density

function in the regimes x,z ∈ [0,R∗] and x,z ∈ [R∗,Rmax], where Rmax defines the border of the com-

putational domain. We note that the same procedure can be used for an input grid given in Cartesian

coordinates, with the probability density function of the input-grid coordinates derived directly from

the corresponding (discrete) distribution.

3.4 Angular and frequency integration10

3.4.1 Angular integration

The mean intensity at each grid point is obtained from the solutions of the radiative transfer equation

for many directions, where the distribution of these directions over the unit sphere depends on the

10 based on Hennicker et al. (2018, Sect. 3.1), and Hennicker et al. (2019, Sect. 3.5).
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Figure 3.6: Different quadrature schemes for integrating the intensity over solid angle. The Trape-

zoidal, Simpson’s, and Boole’s rule use an equidistant quadrilateral grid (upper left panel), while the

approach of Lobel & Blomme (2008) and the Gauss-Legendre quadrature apply a specific sampling

of the solid angle, indicated in the middle and right panel of the upper row, respectively. The lower

left and lower right panels show the triangular grid used for the barycentric interpolation approach,

and the Lebedev nodes. Due to symmetry, we only display the polar angle within φ ∈ [0,π].

used quadrature formula. The resulting intensities are numerically integrated via

Ji jk =
1

4π

∫
Ii jkdΩ =

∑

l

wlIi jk(Ωl) , (3.23)

with wl the integration weight including the projection factor sin(θ), and corresponding to a con-

sidered direction Ωl = (θl,φl). The angular integration is particularly challenging for optically thin

atmospheres, since in such situations each (spatial) grid point is illuminated by the stellar surface, and

the distribution of intensities Ii jk(θ,φ) becomes a 2D step-function in the θ-φ-plane (if no upwind in-

terpolation errors were present). Depending on the considered position, the shape of Ii jk(θ,φ) strongly

varies. Thus, elaborate integration methods are required to resolve the star and its edges at any point

of the atmosphere. Several different techniques and directional distributions have been implemented

(see also Fig. 3.6):

Newton-Cotes quadratures: Within these methods, both the θ- and the φ-domain are discretized

with equidistant steps, and the angular integration is performed using either the Trapezoidal,

Simpson’s or Boole’s rule along the φ direction on each θ-level, followed by the integration
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along θ. Thus, the solid-angle is approximated with quadrilaterals in the θ-φ plane. For equidis-

tant grids, the actual distribution of directions becomes clustered towards the poles.

Trapezoidal rule as used by Lobel & Blomme (2008): This method uses the trapezoidal rule as

described above, but with a decreasing number of azimuth grid points towards the poles to

reasonably distribute the direction vectors on the unit sphere. For an equidistant θ-grid, Lobel

& Blomme (2008) use an ansatz dΩ = const., and obtain different φ-grids on each θ-level. With

∆φeq the φ-steps specified as input parameter at the equator, one easily obtains:

∆Ω ≈ sin(θ)∆θ∆φ = const. = ∆θ∆φeq ⇐⇒ ∆φ (θ) =
∆φeq

sin(θ)
. (3.24)

Gaussian quadrature: To increase the accuracy, we have implemented both a Gauss-Legendre and

a Gauss-Chebyshev integration scheme (along θ and φ). An important property in this respect

is that Gaussian-quadrature rules exactly integrate all (weighted)11 polynomials up to degree

2n− 1, where n is the number of applied integration nodes. While this is (mathematically) the

highest possible accuracy (e.g., Schwarz 1997), the major drawback of the Gaussian-quadrature

schemes is that the integrations nodes are fixed and cannot be chosen arbitrarily. Furthermore,

the directions are clustered towards the integration bounds, resulting in a poor sampling of the

(complete) unit sphere. We note that the calculation of integration nodes for the Gauss-Legendre

quadrature requires the inversion of a large matrix, which directly shows the advantage of a

Cartesian grid, for which the angular nodes and weights are the same at all grid points, and

can be calculated prior to the complete solution scheme. Using a spherical grid, Gaussian

quadrature would become computationally very time-consuming, because the involved angles

w.r.t. the coordinate system depend on position in the atmosphere.

Integration over triangles: All integration schemes mentioned thus far sample the θ-φ distribution

of the specific intensity with quadrilaterals. For a (potentially) better sampling (particularly

of the edges), we have implemented a triangular quadrature scheme, with the integration per-

formed using barycentric coordinates to describe the variation of the specific intensity linearly

within each triangle, or by applying Gaussian quadrature rules over the triangle. We note that

the latter introduces negative integration weights and is therefore discarded to avoid negative

mean intensities. Furthermore, since no additional information is used when compared to the

quadrilateral approach, the triangular quadrature is not expected to give superior results.

Lebedev quadrature (see, e.g., Ahrens & Beylkin 2009, Beentjes 2015 and references therein): Fi-

nally, we have implemented the so-called Lebedev quadrature, which is optimized to exactly

integrate the spherical harmonics up to a certain degree, with a (nearly) optimum distribution of

direction vectors on the unit sphere.

Within the quadrilateral approaches, we split the integration into a sum over all octants to obtain a

‘fair’ angular resolution of the unit sphere (i.e., without preferring certain directions). We note already

11 Within the Legendre and Chebyshev quadratures, the weight functions are defined as w(x) = 1 and w(x) = 1/
√

(1− x2),

respectively.
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here that the best results have been obtained using the Lebedev integration (Sect. 4.1.1 and Table 4.1).

However, even for this (relatively elaborate) method, NΩ & 2000 directions are required to obtain an

acceptable numerical error. The corresponding angular resolution is – independent of the coordinate

system – typical when calculating 3D radiative transfer problems in extended stellar atmospheres. For

instance, Lobel & Blomme (2008) used NΩ = 6400 within their 3D finite-volume method.

Since the computation time for obtaining the mean intensity scales with the number of considered

directions, it may be worth testing alternative quadrature schemes (and directional distributions) to

minimize the number of required directions. For future work, we already plan to implement and test

a (truly) uniform distribution of directions, determined from calculating the equilibrium positions of

N equally charged particles (e.g., electrons) on the unit sphere. Then, each position can be associated

with a direction vector, and might be assigned with an integration weight 1/N.

3.4.2 Frequency integration

To calculate the scattering integral at a given point in the atmosphere, we apply the trapezoidal rule to

integrate the specific intensity for a given direction over frequency. The scattering integral then reads:

J̄i jk =
1

4π

∫ ∫ ∞

−∞
Ii jkΦ

(i jk)
x dxdΩ =

1

4π

∫ ∫ x
(max)
obs

x
(min)
obs

Ii jkΦ
(i jk)
x dxdΩ =

∑

l

wl

∑

x

wxIi jkΦ
(i jk)
x , (3.25)

with wx the frequency integration weight, and x
(min)

obs
and x

(max)

obs
the required frequency shift in the

observer’s frame, derived from the maximum absolute velocity occurring in the atmosphere:

x
(min)

obs
=
−|v|max−3vth (Rmax)

v∗
th

x
(max)

obs
=
|v|max+3vth (Rmax)

v∗
th

. (3.26)

To resolve the profile function at each point in the atmosphere, we demand that

∆xcmf

δ
.

1

3
⇐⇒

[
∆xobs

δ

]

n=const.

.
1

3
(3.27)

at each position. Since the profile function depends on the ratio of fiducial to actual thermal width, the

fiducial velocity should be set to the minimum thermal velocity present in the atmosphere. Then, the

required resolution is found by determining the number of frequency points, Nν, from the condition

that ∆xobs = (x
(max)

obs
− x

(min)

obs
)/(Nν−1) . 1/3. Since the comoving-frame frequency depends on the pro-

jected velocity, the corresponding integration nodes may not be centred around the profile maximum

anymore. This issue is of only minor importance, and has been checked by a comparison to model

calculations that use ∆xobs . 1/6.12 As outlined in Sect. 2.2.2, a number of Nν ≈ 1600 frequency points

would be required for typical wind terminal speeds and thermal velocities (if no micro-turbulent ve-

locities were present). If, on the other hand, the micro-turbulent velocity is high, vturb = 100 kms−1,

Nν can be reduced considerably, by a factor of ten. Such high values are not un-typical in the winds

12 While a highly resolved frequency grid ensures that the frequency nodes are found very near to the line centre, there is

still no guarantee that the line centre is exactly matched. Such a requirement can only be provided by solving the radiative

transfer in the comoving frame.
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of hot stars (see below). Again, when compared to Lobel & Blomme (2008), who used Nν = 100

frequency points for an effective thermal velocity of vth = 30 kms−1, our frequency grid is much better

resolved, with ≈ 15 frequency points distributed over the complete line profile, whereas they resolved

the profile function with three frequency points only.

Microturbulence. To correctly treat the radiative transport in the line, we need to resolve the res-

onance zones, and demand that ∆(n · u/vth) ≈ 1/3 along a given direction. Again, for low micro-

turbulent velocities, we would require a resolution of at least 1600 grid points per spatial dimension

(for a spherical wind accounting for both hemispheres). On the other hand, including a large micro-

turbulent velocity (vturb = 100 kms−1), as applied here, results in a much lower required resolution,

both in space and frequency. Due to the linear (cubic) scaling of computation time with the number

of frequency (spatial) grid points, this results in a reduction of computation time by a factor of 104,

when compared to models without large micro-turbulent velocities. Putting it the other way round,

and already mentioning here that typical model-calculations within the 3D FVM take about 50 min-

utes of wallclock time per iteration (and using 16 processors, see Sect. 3.6), a large micro-turbulent

velocity is needed thus far to keep the computation time on a reasonable scale.

Hamann (1981) showed that such micro-turbulent velocities can indeed be used to correctly model

the black absorption troughs observed in the P Cygni profiles of hot star winds. From a theoretical

point of view, a large velocity dispersion mimicks the effects of multiply non-monotonic velocity

fields, as originating from the line-driven instability (see, e.g., Lucy 1983, Puls et al. 1993).

Angular integration - revisited. When calculating line transitions, the location of resonance zones

at a given observer’s frame frequency depends also on the considered direction. Thus, the profile

function additionally needs to be resolved by the angular grid. Defining ϑ as the angle between the

considered direction and the velocity vector at a given point, the resolution of the profile function is

given as:

[
dxcmf

dϑ

]

xobs=const.

= −d(cos(ϑ)V)

dϑ
= sin(ϑ)V ⇐⇒ [∆xcmf]xobs=const. = V sin(ϑ)∆ϑ, (3.28)

with V the absolute velocity at a given point in units of v∗
th

. Thus, the lowest resolution of the

comoving-frame frequency is found for directions perpendicular to the flow, and depends on the ab-

solute value of the velocity. In extreme cases (e.g., V ≈ 2000kms−1/100kms−1 = 20), we obtain a

resolution of ∆xcmf/δ ≈ 1.5, when assuming that δ ≈ 1, ∆ϑ ≈
√

4π/NΩ, and NΩ ≈ 2000. Obviously,

the profile function is not necessarily resolved by the angular grid. This problem, however, occurs

only in the outermost parts of the wind, where the absolute velocities are large. More importantly,

no resonance zone is completely neglected since ∆xcmf/δ < 6. By performing test calculations using

a much finer angular resolution for spherically symmetric models, we found that the resulting error

is indeed very small. However, for very large absolute velocities (v≫ 2000kms−1), or if the thermal

velocity is small (vth≪ 100kms−1), the angular resolution needs to be revised.
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3.5 Λ-iteration13

By now, we are able to construct a formal solution for a given source function. In this section, we dis-

cuss the iteration procedure. The following discussion considers the line case alone, with a frequency-

independent background continuum (i.e., constant continuum opacity and source function), assumed

to be known (either in form of an optically thin continuum, or from previous calculations in the ab-

sence of the line). For convenience, we summarize the basic ideas and corresponding acceleration

techniques via the accelerated Λ-iteration from first principles.

3.5.1 Matrix equation

To show that the Λ-formalism can also be applied to our 3D FVM and SC formulations, we derive a

matrix equation for the intensity, mean intensity and scattering integral, and show that these equations

are consistent with an affine representation of the Λ-operators. Since, however, the final approximate

Λ-operator (ALO) will be calculated differently, a detailed description of the involved matrices is

skipped in the following.

All 3D quantities are expressed as vectors of length Nx×Ny×Nz, by introducing a unique ordering

of the (i jk)-triple:

m := i+Nx( j−1)+NxNy(k−1) , (3.29)

with i, j,k ∈ [1,Nx,y,z], m ∈ [1,NxNyNz], and Nx, Ny, Nz the number of spatial grid points of the x,

y, and z coordinates. Eq. (3.29) simply transforms a data cube to a 1D array. For the 3D FVM, we

obtain, after replacing the (i, j,k)-indices in Eq. (3.6) with this unique index, m:

1

bm

Im−
cm

bm

Im−α−
dm

bm

Im−βNx
− em

bm

Im−γNxNy
=

am

bm

S
(C)
m +S

(L)
m , (3.30)

where we have collected all intensity terms on the left-hand side. For the 3D SC method, we can pro-

ceed similarly by using the corresponding discretized radiative transfer equation, Eqs. (3.12)/(3.17),

with upwind and downwind quantities substituted from Eqs. (3.19) and (3.20). However, since the in-

terpolation coefficients often depend on the intensity (and source functions) to ensure monotonicity, a

matrix equation similar to Eq. (3.30) can only be formulated after all interpolation parameters ω have

been determined (for a given stratification of source functions and intensities). For further details, we

refer to Sect. 3.5.2 and Appendix D. Eq. (3.30) can be written in matrix form,

T · I = Q ·S(C)+S(L)+ Iinc , (3.31)

where Iinc describes the boundary conditions. Since we use a TLA with given opacity (i.e., the opac-

ity does not change during the iteration), and consider time-independent boundary conditions, we

combine the constant vectors from Eq. (3.31), Ĩinc := Q ·S(C)+ Iinc. Inverting the matrix T yields:

I = T−1 ·S(L)+T−1 · Ĩinc =: ΛΩ,ν ·S(L)+Ξ
(Ω,ν)
B
. (3.32)

13 based on Hennicker et al. (2018, Sect. 3.2), and Hennicker et al. (2019, Sect. 3.6).
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The vector Ξ
(Ω,ν)
B

describes the contribution of the boundary conditions and the background continuum

for a particular direction and frequency. To calculate the mean intensity and scattering integral, we

integrate over all angles (and frequencies):

J =
1

4π

∫
IdΩ =

1

4π

∫
ΛΩ,ν ·S(L)+Ξ

(Ω,ν)
B

dΩ =
1

4π

∫
ΛΩ,νdΩ

︸           ︷︷           ︸
=: Λν

·S(L)+
1

4π

∫
Ξ

(Ω,ν)
B

dΩ

︸             ︷︷             ︸
=: Ξ

(ν)
B

(3.33)

J̄ =
1

4π

∫
Φx · IdxdΩ =

1

4π

∫
Φx ·ΛΩ,ν ·S(L)+Φx ·Ξ(Ω,ν)

B
dxdΩ =

=
1

4π

∫
Φx ·ΛΩ,νdxdΩ

︸                     ︷︷                     ︸
=: Λ

·S(L)+
1

4π

∫
Φx ·Ξ(Ω,ν)

B
dxdΩ

︸                      ︷︷                      ︸
=: ΞB

, (3.34)

with the diagonal matrixΦx describing the local profile function, and Ξ
(ν)
B

, ΞB representing the contri-

bution of the boundary conditions and the background continuum to the mean intensity and scattering

integral, respectively. As later shown in Sect. 3.5.3, an explicit calculation of these quantities is not

required to obtain the finally used ALO. We note that also for the continuum case, which is calculated

close (w.r.t. frequency) to the line, Eq. (3.33) is applicable, with a different Λ-matrix and boundary

contribution though. A comparison of Eqs. (3.32)-(3.34) with the standardΛ-formalism for the formal

solution of the intensity, mean intensity and scattering integral, directly shows that the Λ-operator is

an affine operator, i.e., a linear operator given by the Λ-matrix plus a constant displacement vector ΞB

(see Puls 1991), also for our 3D method:

I = ΛΩ,ν[S C,L] = ΛΩ,ν ·SC,L+Ξ
(Ω,ν)
B
, (3.35)

J = Λν[S C] = Λν ·S(C)+Ξ
(ν)
B
, (3.36)

J̄ = Λ[S L] = Λ ·S(L)+ΞB , (3.37)

with subscriptsΩ and ν defining the dependence of the Λ-operator on direction and frequency, respec-

tively.

From equations (2.38) and (3.34), we could formulate an explicit solution of the radiation field

already now. This, however, would require the calculation, storage and inversion of the complete

Λ-matrix, which is computationally prohibitive:

(i) TheΛ-matrix is a full matrix with NxNyNz×NxNyNz elements, which would require, for typical

grid sizes of N := Nx = Ny = Nz = 93, N6 ≈ 6.5 ·1011 numbers, equivalent to 5.2 TB data to be

stored in memory, when double-precision numbers are used.

(ii) The Λ-matrix elements can be obtained, at least in principle, by inversion (see also Puls 1991),

Λm,n = J̄m(S(L) = en,ΞB = 0) , (3.38)

with the n-th unit vector en, and matrix indices m,n related to the 3D indices (i jk) via Eq. (3.29).

The m,n-th matrix-element thus describes the effect of a non-vanishing source function at grid

point n onto grid point m. We emphasize that within the 3D SC method, Eq. (3.38) holds only
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for pre-calculated interpolation parameters ω, obtained from an already known stratification of

source functions. To calculate the complete Λ-matrix, Nx ×Ny ×Nz formal solutions would be

required, which again is computationally prohibitive on reasonably well-resolved grids.

An iterative solution is therefore the only possibility to solve problems of this kind.

3.5.2 Accelerated Λ-iteration

In the following, we concentrate on the line case, noting that the continuum case can be treated

in close analogy. The classical Λ-iteration scheme is defined by calculating a formal solution for

a given source function using Eq. (3.37), followed by the calculation of a new source function by

means of Eq. (2.38). For optically thick, scattering dominated atmospheres, however, this iteration

scheme suffers from severe convergence problems (see Fig. 4.6 for the convergence behaviour of

spherically symmetric test models). To overcome these problems, we apply an accelerated Λ-iteration

scheme based on operator-splitting methods (Cannon 1973). For completeness, we mention here a

similar approach, the ‘non-linear multi-grid method’ (see Fabiani Bendicho et al. 1997 and references

therein), which has even better convergence properties, and, in contrast to the ALI method, does

not depend on the spatial resolution of the grid14. Since, however, the multi-grid method is both

complicated to implement and expensive in terms of computation time, we focus on the (at least for

1D problems well established) ALI method within this thesis. The original Λ-operator is then split

into the combination:

Λ = Λ(A)+ (Λ−Λ(A)) , (3.39)

where the first term is an appropriately chosen ALO acting on the new source function, S
(k)
L

, and the

second term acts on the previous one, S
(k−1)
L

. For the converged solution, this scheme becomes an exact

relation. Appropriately chosen means that Λ(A) should be easily calculated (preferentially, in parallel

with the formal solution), and easily inverted. Moreover, the ALO should reflect the basic physical

properties of the original Λ-operator, in order to significantly boost the convergence. Using also,

and in analogy to the exact Λ-operator, an affine representation for the approximate one, Λ(A) [S ] =

Λ
∗ ·S+ΞB (see above), and evaluating Λ(A) at the previous iteration step, k−1, we obtain:

S
(k)
L

Eq. (2.38)
= ζ · J̄ (k)

+Ψ
Eq. (3.39)
≈ ζ ·Λ(A)

k−1

[
S

(k)
L

]
+ ζ ·

(
Λk−1−Λ(A)

k−1

) [
S

(k−1)
L

]
+Ψ

= ζ ·
(
Λ
∗
k−1 ·S

(k)
L
+Ξ

(k−1)
B
+ J̄

(k−1)−Λ∗k−1 ·S
(k−1)
L
−Ξ(k−1)

B

)
+Ψ .

Here, the iteration indices k− 1 and k are indicated as sub- or superscripts, ζ := 1− ǫL is a diagonal

matrix, and Ψ := ǫL · Bν(T) is the thermal contribution vector. For multi-level atoms, we emphasize

that Λ and Λ(A) may change within the ALI-cycle due to the variation of opacities (induced by the

subsequently updated occupation numbers). Furthermore, both operators might also change, even

within the simplified TLA approach considered in this thesis, since the corresponding matrix elements

14 Within the ALI method, the convergence behaviour is primarily determined by the optical-depth steps, ∆τx,y,z and ∆τray

within the FVM and SC methods, respectively, that severely affect the Λ-matrix coefficients. The finer the grid, the poorer

the convergence behaviour (Kunasz & Olson 1988).
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depend on the source functions via the interpolation parameters ωk−1, ωk within the SC method using

Bézier interpolations.

Rearranging terms, we find:

(1− ζ ·Λ∗k−1) ·S(k)
L
= ζ ·

(
J̄

(k−1)−Λ∗k−1 ·S
(k−1)
L

)
+Ψ . (3.40)

Eq. (3.40) needs to be solved to obtain a new source function S
(k)
L

. Since for the 3D SC method,

however, Λ∗k−1 has been optimized only to ensure monotonicity in a specific step k − 1 (based on

source function S
(k−1)
L

), the iteration scheme can oscillate due to oscillations in Λ∗k and Λ∗k−1. Even

worse, the new source function might become negative. To overcome these problems, non-linear

situations need to be avoided (by providing almost constant Λ∗-matrices over subsequent iteration

steps). The following approach has proved to lead to a stable and convergent scheme: In the first four

iteration steps, we apply purely linear interpolations (ωk−1 = ωk = 1 and thus Λ∗k =Λ
∗
k−1), to obtain an

already smooth stratification of source functions. Additionally, we globally define a minimum allowed

interpolation parameter and demand that ω > ωmin. Then, ω becomes constant (namely ω = ωmin)

in (most) critical situations, and again, Λ∗k approaches Λ∗k−1. Whenever negative source functions

or oscillations occur within the iteration scheme, ωmin is gradually increased to unity. With this

approach, we obtain an always convergent iteration scheme, with a formal solution obtained by using

linear interpolations only in most challenging cases. Since the Λ∗-matrices within the 3D FVM are

constant over the complete iteration cycle, the above described problem is completely avoided.

The rate of convergence achieved by the accelerated Λ-iteration scheme increases with the num-

ber of Λ-matrix elements included in the ALO. To minimize the computation time of the complete

procedure, the choice of the ALO is always a compromise between the number of matrix-elements to

be calculated, and the resulting convergence speed. We could, for instance, choose Λ(A) = Λ, which

would result in the direct solution via inversion, and is computationally not feasible, as discussed

above. On the other hand, choosing Λ(A) = 0 would result in the classical Λ-iteration, with the known

convergence problems. Olson et al. (1986) showed that an ALO containing only the diagonal of the

exact Λ-matrix is very efficient, because the matrix (1− ζ ·Λ∗) becomes diagonal, and Eq. (3.40)

could be solved by a simple scalar division. Furthermore, the diagonal, i.e., the local part, already

contributes most to the radiative transfer (at least in the critical optically thick case), and thus, is

quite a good approximation for the original Λ-operator. Such an ALO corresponds to the well known

Jacobi-iteration (see also Trujillo Bueno & Fabiani Bendicho 1995 for a thoughtful discussion, also

about a Gauss-Seidel method with successive overrelaxation in the context of the ALI).

In 3D calculations, however, a diagonal ALO will not converge fast enough (see Sect. 4.2.2).

To achieve faster convergence rates, a multi-band ALO is favourable, as already shown by Olson

& Kunasz (1987) for 1D cases, and extended to a 3D, long-characteristics solver by Hauschildt &

Baron (2006), and thus implemented within our 3D FVM and SC framework. For such ALOs, the

matrix (1− ζ ·Λ∗) is sparse, whereas its inverse is a full matrix, and cannot be stored due to the N6

scaling of required memory. Therefore, we have already formulated Eq. (3.40) as a fix-point iteration,

A · S(k) = b, which can be solved for the new iterate by applying Jacobi or Gauss-Seidel methods.

We found that a Jacobi-iteration, coupled with the storage of the iteration-matrix in coordinate-format

(COO), is particularly fast and easy, because its computationally most expensive term is a matrix-
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vector multiplication, which reduces to NNZ operations only, where NNZ is the number of non-zero

elements (see, e.g., Tessem 2013 and Appendix E for further details).

3.5.3 Constructing the ALO

To construct a multi-band ALO as aimed at above, we need to calculate the corresponding elements

of the exact Λ-matrix. This could be done, in principle, by using Eq. (3.32), which would require the

inversion of T. Since the local intensity – whether calculated within the FVM or SC method – depends

solely on the intensities at the upwind side of a given direction (and on the local and neighbouring

source functions), we can alternatively simply use Eq. (3.38), in combination with the discretized

equation of radiative transfer of each method.

The Λ-matrix elements within the FVM. The Λ-matrix elements for the FVM are calculated from

Eq. (3.6). Since the (m,n)-th element of the Λ-matrix describes the impact of a non-vanishing source

term at point n↔ (i′ j′k′) onto a point m↔ (i jk), the local contribution is given by n =m, whereas the

coupling with directly neighbouring points is found from:

n(i−1, j,k) = m−1 for nx > 0 , n(i+1, j,k) = m+1 for nx < 0 ,

n(i, j−1,k) = m−Nx for ny > 0 , n(i, j+1,k) = m+Nx for ny < 0 ,

n(i, j,k−1) = m−NxNy for nz > 0 , n(i, j,k+1) = m+NxNy for nz < 0 .

One big advantage of the 3D FVM is that the exact elements of local and neighbouring terms can be

easily calculated from Eq. (3.6),

Λm,m =
1

4π

∫ ∫
bi jkΦ

(i jk)
x dΩdx (3.41)

Λm,m−1 =
1

4π

∫ ∫

nx>0

bi−1 jkci jkΦ
(i jk)
x dΩdx (3.42)

Λm,m−Nx
=

1

4π

∫ ∫

ny>0

bi j−1kdi jkΦ
(i jk)
x dΩdx (3.43)

Λm,m−NxNy
=

1

4π

∫ ∫

nz>0

bi jk−1ei jkΦ
(i jk)
x dΩdx (3.44)

Λm,m+1 =
1

4π

∫ ∫

nx<0

bi+1 jkci jkΦ
(i jk)
x dΩdx (3.45)

Λm,m+Nx
=

1

4π

∫ ∫

ny<0

bi j+1kdi jkΦ
(i jk)
x dΩdx (3.46)

Λm,m+NxNy
=

1

4π

∫ ∫

nz<0

bi jk+1ei jkΦ
(i jk)
x dΩdx . (3.47)

We call this ALO ‘direct neighbour’ (DN)-ALO, to discriminate from the ‘nearest neighbour’ (NN)-

ALO from Hauschildt & Baron (2006), who use all 26 surrounding grid points and the local term,

whereas we are using the local term and the contribution from the six direct neighbours only15. Al-

though it would be possible to include the other neighbouring terms in our calculations, we note that

15 For tests of the convergence properties in Sect. 4.2.2, we also calculated a purely diagonal ALO by means of Eq. (3.41)

alone.
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the calculation of the ALO elements in parallel to the formal solution requires, in our case, already

50% of the calculation time, which would increase rapidly when including even more terms for the

ALO. On the other hand, the inversion of the ALO, i.e., the calculation of the new iterate via Jacobi-

iterations, requires only about 0.5% of the calculation time needed for the complete formal solution.

We emphasize that the ALO needs to be calculated only once, because the opacity of the (simpli-

fied) TLA remains constant over subsequent iteration cycles. When considering multi-level atoms (as

planned in the future), the situation changes, and the opacity depends on the occupation numbers, and

thus, also on the radiation field. We therefore implemented the calculation of the ALO in parallel to

the formal solution at each iteration step already at the current stage of our code.

The Λ-matrix elements within the SC method. To calculate the Λ-matrix elements within the SC

method (including all upwind and downwind interpolations), we extend the procedure developed by

Olson & Kunasz (1987) and Kunasz & Olson (1988). A detailed derivation is given in Appendix D.

Eqs. (D.1)-(D.27) correspond to the exact Λ-matrix elements for a local point and its 26 neighbours,

and thus should give an excellent rate of convergence when included in the ALO (see, e.g., the 26-

neighbour ALO of Phoenix/3D, Hauschildt & Baron 2006). As for the 3D FVM, all elements can

be calculated in parallel to the formal solution also within our SC method. Again, this property be-

comes important when the ALO varies during the iteration scheme, that is, when applying monotonic

Bézier interpolations (as discussed above), or when accounting for multi-level atoms. For the simpli-

fied continuum and the TLA considered in this thesis, the linear interpolation scheme is particularly

advantageous in terms of computation time, since the corresponding ALO remains (similarly to the

ALO within the FVM method) constant over all iteration steps, and therefore needs (in principle) to

be calculated only once.

In Chapter 4 of this thesis, we analyse the convergence speed of the ALI for (i) a diagonal ALO

given by Eq. (D.14), (ii) a ‘direct-neighbour’ (DN)-ALO given by Eqs. (D.5), (D.11), (D.13), (D.14),

(D.15), (D.17), (D.23) and (iii) a ‘nearest-neighbour’ (NN)-ALO obtained from all Eqs. (D.1)-(D.27).

We note that within our SC method, only a moderate reduction of computation time results when

using the diagonal or DN-ALO, since the diagonal and direct-neighbour elements depend on several

other neighbours through the inclusion of downwind interpolations. Since, however, the downwind-

integration weight is generally negative, neglecting these terms will overestimate the considered ma-

trix elements, potentially resulting in a divergent iteration scheme. On the other hand, when using

purely linear interpolations (for the source contribution and upwind interpolations), the calculation of

the ALO is greatly simplified since all coefficients ci jk and wA, wB, wC, wD, wG, wJ, wK, wL, wM, wP,

wQ, wR vanish. For third-order upwind/downwind interpolations as used in IRIS (Ibgui et al. 2013a),

the calculation of the ALO coefficients becomes computationally prohibitive at some point. Consider-

ing both interpolation techniques used in this thesis, the calculation of the diagonal, DN- and NN-ALO

in parallel to the formal solution requires roughly 20%, 30% and 40% of the total computation time

(of each applied interpolation method).

Ng-extrapolation. To accelerate the iteration scheme further, we implemented the extrapolation

technique from Ng (1974) (see also Olson et al. 1986). In order to use independent extrapolations, the
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Ng-acceleration is applied in each fifth iteration step.

3.6 Timing16

When calculating line transitions, NΩ×Nν formal solutions of the equation of radiative transfer are re-

quired to calculate the scattering integrals. In order to obtain accurate angular and frequency integrals,

the minimum number of integration nodes is basically fixed, and the computation time can only be

further reduced by parallelization. Thus, we have parallelized the code over the frequency grid using

OpenMP. We note that OpenMP creates a local copy of the 3D arrays representing the intensity and

the (nearest-neighbour) Λ-matrix. With 27 Λ-matrix elements (per spatial grid point) included for the

ALO calculations, the (spatial) resolution becomes therefore memory limited. A typical resolution of

Nx = Ny = Nz = 93, however, is still feasible, and gives reasonable results.

As a first inspection of the performance of our methods, we applied a test calculation using the

same grid as Lobel & Blomme (2008), with an equidistant grid-spacing and N = 713 grid points. For

the 3D FVM and SC methods, we find computation times of tFVM ≈ 0.037s, t
(linear)
SC

≈ 0.138s, and

t
(Bézier)
SC

≈ 0.448s per iteration, per CPU, and per angular and frequency grid point on an Intel Xeon

X5650 (2.67 GHz) machine with 16 CPUs. As a reference, Wind3D requires about tWind3D
FVM

≈ 0.045s

on a somewhat slower architecture (Itanium-2 (1.5 GHz) CPUs, see Lobel & Blomme 2008). Since,

however, our FVM algorithms require at least a factor of two more operations due to the calculation of

the (non-local) approximate Λ-operator in parallel to the formal solution, we are convinced of the effi-

ciency of our implementation of the FVM. For the 3D SC methods using linear/Bézier interpolations,

the computation times are increased by a factor of roughly four/twelve, when compared to our 3D

FVM. These differences originate from the computationally more challenging upwind/downwind in-

terpolations, the integration of the discretized radiative transfer equation on (potentially) refined grids

along a given ray, and from the calculation of an ALO including 26 neighbouring elements (instead

of the six direct neighbours as used for the 3D FVM).

When using a non-uniform grid-spacing, the differences between the FVM and SC methods de-

crease, primarily because the number of calls to the SC grid-refinement procedure becomes dimin-

ished. For the models calculated in Sect. 4.2.3, typical computation times are tFVM ≈ 0.8h, t
(linear)
SC

≈ 2h

and t
(Bézier)
SC

≈ 6h per iteration.

3.7 A long-characteristics postprocessing routine

To calculate synthetic line profiles, we implemented a postprocessing LC solver based on Lamers et al.

(1987), Busche & Hillier (2005), and Sundqvist et al. (2012). For an observer located at a distance

d ≫ Rmax, where Rmax is the radius of an emitting sphere (e.g., Rmax = R∗ for a single star without

wind), we can assume all rays incident on the detector to be parallel. The observed radiation flux per

unit area can then be described by the z-component of Eq. (2.13):

Fν =

∫ 2π

0

∫ π/2

0

Iν(ϑ,ϕ,d)cos(ϑ) sin(ϑ)dϑdϕ, (3.48)

16 based on Hennicker et al. (2018, Sect. 3.1), and Hennicker et al. (2019, Sect. 3.7).
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Figure 3.7: Geometry used for the LC postprocessing routine. Left panel (adapted from Mihalas

1978): Definition of ϑ and ϕ angles for calculating the flux in a direction z̃ through a sphere with

radius d. For the considered annulus, p describes the impact parameter. Right panel: Coordinate

system for calculating the emergent flux profile. While the Cartesian coordinate system ex, ey, ez

corresponds to the 3D SC/FVM solver, we use cylindrical coordinates with the z̃-axis aligned with the

observer’s direction under consideration to integrate over impact-parameter p and angle ϕ.

with ϑ,ϕ defined in Fig. 3.7. Since no radiation enters the sphere at a distance d, the ϑ-integral is

limited to ϑ ∈ [0,π/2]. With the impact parameter p = d sin(ϑ), Eq. (3.48) can be rewritten:

dp = d cos(ϑ)dϑ, p(ϑ = 0) = 0 , p(ϑ = π/2) = d

=⇒ Fν =
1

d2

∫ 2π

0

∫ d

0

Iν(p,ϕ,d)pdpdϕ =
1

d2

∫ 2π

0

∫ Rmax

0

Iν(p,ϕ,Rmax)pdpdϕ, (3.49)

where the second equality holds since the emitting region is limited to the radius of the emitting

sphere, and because there is no additional absorption between z̃ ∈ [d,Rmax], such that Iν(p,ϕ,d) =

Iν(p,ϕ,Rmax). To calculate the corresponding integrals numerically, the converged source function is

used to derive the formal solution along characteristics in a cylindrical coordinate system, with the

z̃-axis aligned with the line of sight (see Fig. 3.7). To this end, the p and ϕ-domains are discretized

using Np = 200 and Nϕ = 80 grid points. All quantities required on the rays are found by trilinear

interpolation from the Cartesian 3D grid, and the equation of radiative transfer is integrated using

linear interpolations. Finally, the flux is obtained by numerically integrating the emergent intensity

over the projected disc with radius Rmax.
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Read input model from

input file.h5

Create Cartesian grid

following Sect. 3.3,

and interpolate input

model onto own grid

Create angular and

frequency grid

following Sect. 3.4
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(k)
ν = ΛΩ,ν [S k] ∀Ω, ν
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(k)
ν = Λν [S k] , Λ∗ν,k
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J̄(k) = Λ [S k] , Λ∗k

Calculate new S k+1

(Eq. 3.40)
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er

g
ed

Figure 3.8: Flowchart for describing the program structure of the main part (sc3d.eo) of our 3D

radiative transfer solvers, with W the dilution factor (see Eq. 4.1), and S Sobo the line source function

obtained from Sobolev theory (see Eq. A.17)

3.8 Summary and algorithmic implementation17

In this chapter, we have presented a differential (FVM) and an integral (SC) method tailored for the

solution of 3D continuum- and line-scattering problems in the winds of hot stars. While the FVM

considers all quantities at a given grid point as an average over the corresponding control volume, we

17 based on Hennicker et al. (2019, Sect. 6).
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have implemented both a purely linear interpolation scheme (for calculating upwind quantities and for

the solution of the radiative transfer equation along a ray) within the SC method, as well as a second

order, monotonic, Bézier technique. We use Cartesian coordinates with a non-uniform grid spacing

to ensure a reasonable spatial resolution in important regions (i.e., where velocity and/or density gra-

dients are large). As a first step towards full NLTE radiative transfer models, we consider a single

resonance-line transition (approximated by a two-level-atom) assuming an optically thin background

continuum, whereas for pure continuum problems we use the thermalization parameter, ǫC, and split

the source function into a scattering and a thermal part. A generalization (including multi-level atoms)

is planned for future applications. †An observer’s-frame formulation allows us to consider arbitrary

velocity fields (and density structures).†

To calculate strong scattering lines and optically thick, scattering dominated continua, we have

implemented an accelerated Λ-iteration scheme using different non-local approximate Λ-operators,

together with applying the Ng-extrapolation method for subsequent iterations.

To provide a flexible handling of our code, we have split the complete program into four (inde-

pendent) subprograms:

(i) model.eo: Within this program, the hydrodynamic structure of the wind is set up either from

semi-analytic models, or from hydrodynamic simulations. For the latter, the (input) file-

structure is re-organized to a file structure that can be read in by our FVM and SC solvers.

(ii) sc3d.eo: Here, the wind-structure as obtained in step (i) is read in, and is interpolated onto

a suitable own grid. Then, the radiative transfer is solved with the above described methods.

Fig. 3.8 shows a flowchart summarizing the involved routines and solution methods. When

convergence is obtained, an output-file is created storing the wind model and the (converged)

source functions.

(iii) modelspec.eo: Similar to step (i), this program transforms an input-file (e.g., the output-file

from step (ii)) to a file-structure that can be read in by the long-characteristics formal solver.

For specific tests, we can easily calculate semi-analytic source functions, or even manipulate

the source-function and wind-model obtained in step (ii) within this program.

(iv) spec.eo: This program reads the input-file created in step (iii), and calculates the emergent line

profiles following Sect. 3.7.

With the numerical tools developed in this chapter, we are able to tackle 3D continuum and line

scattering problems for arbitrary velocity fields. †Before applying our methods to first non-spherical

problems though, we discuss the performance of the code by investigating the reliability of the applied

methods in the following.† To this end, we consider several different test problems, for which either

a theoretical solution is known (e.g., for zero-opacity models), or where an accurate solution can be

found (e.g., for spherically symmetric test models).



Chapter 4

Tests and comparison of the FVM and SC

method

This chapter has been copied – in parts – from Hennicker et al. (2018) and Hennicker et al. (2019).

4.1 Zero-opacity models1

4.1.1 Testing the angular integration

In this section, we briefly discuss the performance of different angular integration schemes when

applied within a Cartesian coordinate system, by calculating the mean intensity at each point on the

3D grid for zero-opacity models. For a spherical star with radius R∗, the theoretical solution is simply

given by:

Jtheo =
1

4π

∫

Ωc

I+c dΩ =
I+c

2

1−

√

1−
(
R∗
r

)2

 =: WI+c , (4.1)

with Ωc the solid angle subtended by the stellar disc, dilution factor W, and assuming an angle-

independent intensity, I+c , emerging from the stellar surface. To test the angular integration scheme,

we use the corresponding expression for the specific intensity at each position (i jk) (i.e., Ii jk = I+c or

Ii jk = 0 for rays hitting the core or not, respectively), and numerically integrate over solid angle using

Eq. (3.23):

Jex =
∑

l

wlIi jk(Ωl) =
∑

l

wl


I+c if ray hits the core

0 else
. (4.2)

The mean realtive errors (w.r.t. all grid points, more precisely defined in Sect. 4.2) of the mean in-

tensity as obtained from Eq. (4.2) with different integration methods, are summarized in Table 4.1

for a typical grid with Nx = Ny = Nz = 133 grid points. For the corresponding zero-opacity model

1 Sect. 4.1.2 based on Hennicker et al. (2018, Sect. 4.2), and Hennicker et al. (2019, Sect. 4.1).
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(with boundary condition I+c and consistently applying χ = 0), Table 4.1 additionally shows the mean

relative errors as obtained when the intensities have been calculated with the 3D FVM and SC solvers

using linear or Bézier interpolations (hereafter denoted by SClin and SCbez, respectively). Finally,

in Fig. 4.1, we display the solution for the mean intensity, when calculated from Eq. (4.2) with dif-

ferent integration methods. We emphasize that the indicated error is the minimum error that can be

achieved (for each considered angular resolution and integration method), even if the radiative transfer

equation could be solved exactly, i.e., without numerical inaccuracies introduced by the discretization

scheme. This issue cannot be solved by a simple renormalization of the integration weights, because

the angular integration error becomes reduced for optically thick atmospheric models (see Sect. 4.2.3).

Figure 4.1: Mean intensity and corresponding relative error when calculated with the ‘exact’ solution

for zero-opacity atmospheres (Eq. 4.2). The red, blue, and green dots indicate the mean intensities at

all grid points with corresponding radii, r =
√

x2
i
+y2

j
+ z2

k
, as obtained when applying the Trapezoidal

rule (with nodes from Lobel & Blomme 2008), the Gauss-Legendre quadrature, and the Lebedev

method, respectively. The left and right panels display the solution for NΩ ≈ 1000 and for NΩ ≈ 2000

directions.

Since both the Simpson’s rule and the (linear) integration over triangles have been formulated

only on equidistant angular grids thus far2, the angular resolution within these methods is increased

above the poles and decreased in equatorial regions (for a constant number of direction vectors).

Thus, both methods yield a relatively low accuracy (particularly when compared with more elaborate

integration schemes). For future tests, however, the angular resolution might be adapted by modifying

the distribution of direction vectors to (potentially) increase the accuracy slightly.

The best results have been obtained using the Lebedev quadrature, followed by the Trapezoidal

rule (with nodes from Lobel & Blomme 2008) and the Gauss-Legendre integration scheme. However,

even when applying the Lebedev quadrature with NΩ ≈ 2000 integration nodes, we only achieve an ac-

curacy of ≈ 7−8%, because the angular distribution of the specific intensity at a given point, Ii jk (θ,φ),

2 We have also tested the integration over co-latitude by applying an equidistant µ-grid, with µ = cos(θ). Since, for a given

φ-angle, such a formulation gives a coarser θ-resolution near the poles, thus yielding relatively inaccurate integrals over

co-latitude in polar regions, we preferred to perform the integration in θ-space.
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Table 4.1: Mean relative error (defined in Sect. 4.2) of the mean intensity for a zero-opacity model,

obtained using different angular integration methods: (i) Simpson’s rule with equidistant angular grid

spacing, (ii) Linear interpolations on a triangular grid, (iii) Trapezoidal rule with nodes from Lobel

& Blomme (2008), (iv) Gauss-Legendre integration, and (v) Lebedev integration. For ∆Jex, ∆JSClin,

∆JSCbez, and ∆JFVM, the incident intensities have been calculated exactly, and by the FVM and SC

methods using linear or Bézier upwind interpolations.

Simpson Triangle Trapez Gauss-Legendre Lebedev

NΩ 1035 2145 1073 2186 1037 2105 968 2048 974 2030

∆Jex [%] 17.6 10.4 14.4 9.6 12.1 8.0 14.3 9.4 11.2 7.7

∆JSClin [%] 14.3 11.6 11.8 11.1 11.3 10.8 10.9 10.8 10.8 10.8

∆JSCbez [%] 10.0 9.9 13.9 9.4 10.7 9.0 9.3 8.9 9.1 8.8

∆JFVM [%] 12.5 9.3 9.6 8.8 9.0 8.5 8.6 8.6 8.5 8.5

is theoretically described by a 2D step function in the zero-opacity case. Since the discontinuity is

usually located at angles in between the applied angular nodes3, the numerical integration of such 2D

step functions becomes challenging. In regions far from the star, the solid angle subtended by the

stellar disc is small, and only few directions contribute to the mean intensity. Thus, the angular inte-

gration becomes difficult particularly in such regions, whereas near to the stellar surface (where many

direction vectors contribute), the associated error is less pronounced (see Fig. 4.1). With decreasing

number of integration nodes, almost all integration schemes suffer from the same (severe) problems.
‡Particularly the Gauss-Legendre integration should only be applied when the distribution of inten-

sities can be described by high order polynomials, that is, when Iijk(θ,φ) is smoothed out (e.g., by

numerical diffusion within the FVM/SC solution schemes, see Sect. 4.1.2).‡ When calculating the

specific intensity with the FVM and SC methods (instead of adopting the theoretical value), the solu-

tion for the mean intensity is only slightly improved (if at all) with increasing angular grid resolution,

for all applied integration methods. We note that the mean relative error does not converge to zero,

due to numerical diffusion errors. Since the Lebedev-integration method performs best, also when the

specific intensity has been calculated from the FVM or SC methods, we apply this quadrature scheme

within all our calculations. We use NΩ = 2030 angular grid points throughout this thesis to avoid

numerical artefacts (e.g., oscillations occurring when too few directions are used), and to ensure that

no resonance-zone has been overlooked (see Sect. 3.4.2).

4.1.2 Searchlight-beam test

A first test of our 3D FVM and SC methods using linear and Bézier interpolations is the searchlight-

beam test (e.g., Kunasz & Auer 1988). Within this test, we apply a zero-opacity model, and consider

the illumination of the atmosphere by a central star for a single direction, here set to θ = 45◦ and

φ = 0◦. Since, the discretized equation of radiative transfer for the SC method (Eqs. 3.12/3.17) and

3 While the resolution of the angular grid for NΩ ≈ 2000 is roughly ∆θ ≈ ∆φ ≈ 6◦, corresponding to ∆Ω ≈ 36deg2, the solid

angle subtended by the stellar disc at radii r = 2R∗ and r = 4R∗ is approximately 2763deg2 and 655deg2, respectively.
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for the FVM (Eq. 3.6) reduce (for zero-opacity models) to:

I
(SC)
i jk

= I
(u),(SC)
i jk

, (4.3)

I
(FVM)
i jk

=
1

1+
ny∆xi

nx∆y j
+

nz∆xi

nx∆zk

I
(FVM)
i−α, j,k +

1

1+
nx∆y j

ny∆xi
+

nz∆y j

ny∆zk

I
(FVM)
i, j−β,k +

1

1+ nx∆zk

nz∆xi
+

ny∆zk

nz∆y j

I
(FVM)
i, j−β,k , (4.4)

the searchlight-beam test extracts the effects of the applied interpolation scheme for the upwind in-

tensity, and of the competition between the (finite) ∆xi/∆y j, ∆xi/∆zk, and ∆y j/∆zk terms. Generally,

rays propagating parallel to the grid axes are nearly undisturbed by numerical artefacts, whereas those

propagating at different angles are effectively widened, due to the propagation of intensity into neigh-

bouring cells by ‘numerical diffusion’. The upper panels of Fig. 4.2 show the propagation of the

specific intensity scaled by I+c , in the xz-plane. To obtain a quantitative measure of this effect, the

lower left and lower right panels of Fig. 4.2 display the specific intensity through a circular area per-

pendicular to the ray direction as a function of impact parameter p, and the specific intensity along the

given direction at the centre of the beam, respectively. The corresponding exact solutions are given by

a constant and rectangular function, respectively. Evidently, numerical diffusion plays a crucial role.

Along the beam centre, the SC methods perfectly reproduce the exact solution, whereas the FVM

solution decreases significantly due to the finite grid-cell size. Considering the intensity through the

perpendicular area, both SC methods perform better than the FVM, with slight advantages of the

SCbez method when compared with the SClin method. Since, however, the searchlight beam remains

almost collimated (with a relatively narrow profile across the beam centre, see lower left panel of

Fig. 4.2) also for other directions not shown here, the angular distribution of the specific intensity is

expected to reproduce the (theoretical) 2D step function relatively well, and the angular integration

scheme thus becomes challenging (see Sect. 4.1.1). While this problem can be solved by applying

elaborate integration methods (or by increasing the angular grid resolution), we stress that within the

3D SC methods, energy conservation is violated for our zero-opacity models, because the (nominal)

specific intensity jumps from I+c to zero for rays intersecting the stellar surface or not, due to the core-

halo situation. As a consequence, almost all interpolations (and interpolation schemes) overestimate

the specific intensity. In contrast, the number of photons entering and leaving a given grid cell is

(nearly) conserved within the FVM by definition4. For optically thick models (where a ‘sharp-edged’

I+c at the core plays a negligible or minor role), this effect should decrease though. The associated error

can be quantified by calculating the corresponding flux, i.e., by integrating the specific intensity for

a given direction over a corresponding perpendicular area (defined as a circle with virtually infinite

radius). Such a flux as defined here constitutes the most demanding test case, and should not be

confused with the flux density (i.e., the first moment of the specific intensity). Fig. 4.3 shows the

resulting fluxes (normalized by the nominal value) for searchlight beams with different directions

defined by θ = 45◦ and φ ∈ [0◦,90◦]. For different directions φ, the searchlight beams propagate

through different domains of the spatial grid (with accordingly different grid-cell sizes). Due to the

distinct behaviour of numerical diffusion errors within these domains, the total flux varies as a function

of φ. Overall, the total fluxes for the SClin and SCbez methods are larger than theoretically constrained

4 This statement, however, is not completely true for the FVM as formulated by Adam (1990), Lobel & Blomme (2008),

and within this work, since all these implementations apply an (averaged) upwind approximation.
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Figure 4.2: Searchlight-beam test for direction n = (1,0,1) (corresponding to θ = 45◦, φ = 0◦) and a

typical grid resolution with Nx =Ny =Nz = 133 grid points. Upper panels: Contour plots of the specific

intensity in the xz-plane, when calculated with the FVM and SC methods using linear or Bézier

interpolations, from left to right. Within the stellar core (indicated by the solid circle), the specific

intensity is set by the boundary condition (for the SC methods, see Sect. 3.2.4.). Lower left panel:

Specific intensity through the perpendicular area indicated by the straight line in the upper panels.

The blue, red, and green profiles correspond to the FVM, SClin, and SCbez methods, respectively.

The dashed line indicates the theoretical profile. Lower right panel: As lower left panel, but along the

centre of the searchlight beam. We note that the SC methods reproduce the exact solution at the centre

of the beam, whereas the FVM solution decreases significantly for r & 2.5R∗. Upper left panel from

Hennicker et al. (2018), and the remaining ones from Hennicker et al. (2019).

by Ftheo = 2πR2
∗I
+
c , whereas the FVM gives (despite a small error) reasonable results. This effect is

largest in regions far from the star, and for diagonal directions. Thus, particularly in these regions,

also the mean intensities (for optically thin atmospheres) are expected to become overestimated.

To address the impact of numerical diffusion on the solution for the mean intensity, Fig. 4.4 shows

the mean intensity (scaled by its theoretical value obtained from the dilution factor) for zero-opacity

models, on spherical surfaces at two distinct radii, r = 1.1R∗ and r = 3R∗. We find a clear pattern of

the shape of the mean intensities. For the FVM, and in regions close to the star, the mean intensities

are reasonably accurate on the axes, in contrast to the off-axes regions, where they become overesti-

mated. Far from the star, the situation reverses, with reasonable results away from the axes, and an

overestimate on the axes. This behaviour is explained in the following:
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Figure 4.3: Photon flux as a function of direction angle φ (with fixed θ = 45◦) through corresponding

perpendicular areas, and with the opacity set to zero. The central distance of all areas to the stellar

surface has been set to 2R∗. The same color coding as in Fig. 4.2 has been used. From Hennicker

et al. (2019).

(i) For a given grid point on or close to a coordinate axis, and far from the stellar surface, core-

rays, i.e., those originating from the stellar surface, remain nearly undisturbed by numerical

diffusion. Without diffusion, only such core-rays would contribute to the mean intensity. Due

to numerical diffusion, however, also non-core rays contribute, i.e., those which form a certain

angle w.r.t. the considered grid axis, since they have been fed with intensity by corresponding

core-rays propagating in the same direction (widening of the effective aperture, see above).

Consequently, the mean intensity becomes overestimated.

(ii) For grid points far from the star, and away from the major axes, core-rays and non-core rays are

both affected by numerical diffusion, resulting in an under- and over-estimation of the intensity,

respectively. Consequently, there is a significant cancellation of both effects, and the mean

intensity remains close to its expected value.

(iii) At points located on the grid axes close to the star, numerical diffusion plays only a minor

role, mostly because the contributing non-core rays are propagating almost perpendicular to the

considered axis, i.e., parallel to one of the other axes, with negligible diffusion errors.

(iv) Away from the axes, and close to the star, contributing non-core rays are significantly inclined

w.r.t. the coordinate axes, and thus strongly fed by diffusion effects. Thus, the mean intensities

become overestimated.

A similar behaviour of numerical diffusion is also found for the SC methods. The magnitude

of the error, however, is significantly reduced, due to the higher accuracy of upwind interpolations

(particularly for diagonal directions and close to the stellar surface). In regions far from the star, the

mean intensities become overestimated for both SC methods (see above), with (slight) advantages of

the Bézier technique when compared with the intensities obtained from linear interpolations.
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Figure 4.4: Contours of the mean intensity for a zero-opacity model, normalized by its theoretical

value, on spherical surfaces, r = 1.1R∗ (top row) and r = 3R∗ (bottom row). The mean intensity as

obtained from the FVM, SClin and SCbez methods are shown from left to right. The line of sight is

along the vector n = (1,1,1). Nx = Ny = Nz = 133 grid points have been used. Upper left and lower

left panels from Hennicker et al. (2018).

Due to the different effects for different ray directions and for different regions in the atmosphere,

any underlying (e.g., spherical) symmetry of a specific problem will be broken. We emphasize that

numerical diffusion errors can only be avoided by increasing the grid resolution, by using higher

order upwind-interpolation schemes, or by applying the long-characteristics method for solving the

equation of radiative transfer.

As the important part of the radiative transfer, however, is mainly located near to the star (where

the densities are largest), and the numerical diffusion errors are not too large in this regime (up to a

radius of r . 3− 4R∗), the 3D FVM and SC solution schemes should deliver (at least qualitatively)

correct results. We note that numerical diffusion errors are expected to be most severe when photons

propagate over large distances, for instance, when considering optically thin continua, or, in the line

case, before they hit the resonance zones. Since the resonance zones are mostly quite narrow, while
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Table 4.2: Input parameters used for our spherically symmetric test models. These parameters roughly

correspond to the wind from the O4 supergiant ζ Pup, when assuming an unclumped wind.

Teff [kK] R∗ [R⊙] vmin [kms−1] v∞ [kms−1] β Ṁ [M⊙yr−1] Rmax [R∗] vturb [kms−1]

40 19 10 2000 1 5 ·10−6 12 100

the path-length of freely propagating line photons is usually quite large (at least if the continuum is

comparatively weak, as in most realistic conditions), numerical diffusion errors are of major concern

for the line transfer.

4.2 Spherically symmetric winds5

In the following, we discuss the performance of the code when applied to spherically symmetric,

stationary atmospheres. To this end, we compare the solutions obtained from the 3D FVM and SC

methods, with those obtained from accurate 1D solvers6.

4.2.1 Atmospheric model

The spherically symmetric models to be compared with are calculated from a prescribed β-velocity

law and from the equation of continuity (Eq. 1.2). For stellar and wind parameters summarized in

Table 4.2, the density stratification and the velocity field are completely determined. Effects of the

temperature stratification are negligible for the considered scattering problems (ǫC = ǫL = 10−6). The

continuum and (frequency integrated) line opacities have been calculated from Eqs. (2.61), (2.62),

with the electron density derived for a completely ionized H/He plasma with helium abundance

NHe/NH = 0.1. We have calculated three different continuum models by scaling the electron-scattering

opacity with kC = [1,10,100], respectively. These models correspond to an optically thin, marginally

optically thick, and optically thick atmosphere, with radial optical depths τr = [0.17,1.7,17]. The line

transport has been calculated for a weak, intermediate, and strong generic UV resonance line, with

line-strengths kL = [1,103,105]. To calculate the thermal width, we used mA = 12mp, mp being the

proton mass. The total width of the line profile, however, is mainly controlled by the micro-turbulent

velocity, where we use vturb = 100kms−1 throughout this thesis to minimize the computation time (see

Sect. 3.4.2).

To obtain a reasonable resolution of the (spherically symmetric) wind on a Cartesian grid, we

calculate the wind-model on a spherical grid within our first subprogram model.eo. The radial coor-

dinates are computed such that the (radial) continuum optical-depth -and velocity-steps, ∆τr and ∆vr,

are (nearly) equidistant. The Cartesian x, y, and z-coordinates are then calculated following the grid-

construction procedure described in Sect. 3.3. If not indicated explicitly, we use Nx = Ny = Nz = 133

5 Sects. 4.2.1 to 4.2.3 based on Hennicker et al. (2018, Sect. 4), and Hennicker et al. (2019, Sect. 4.2).
6 The 1D solution for the continuum transport has been found from the Rybicki-algorithm (combined with the solution

of the moment equations using variable Eddington factors, see, e.g., Mihalas 1978). To calculate the line, a comoving-

frame ray-by-ray solution scheme in pz-geometry has been applied, ensuring convergence by means of an accelerated

Λ-iteration scheme using a diagonal ALO.
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Figure 4.5: Spatial grid in the xz-plane with Nx = Ny = Nz = 93 grid points, as obtained from our

grid-construction procedure for the spherically symmetric test models.

grid points for the continuum, and Nx = Ny = Nz = 93 grid points for the line formation, distributed

over the complete range, [−Rmax,Rmax], where Rmax defines the spatial domain. We allow for a higher

grid resolution within the continuum calculations, since only one frequency point needs to be consid-

ered, and we thus have lower computation times anyhow. For comparison, Lobel & Blomme (2008)

used only Nx = Ny = Nz = 71 grid points for their (optically thin) models. A typical grid in the xz-

plane is shown in Fig. 4.5. Particularly for the FVM (where no grid-refinement has been implemented

thus far), the applied grid resolution is required to properly resolve the resonance zones (where the

line opacity in the comoving frame and the corresponding profile function is non-negligible), and to

obtain reasonable discretized optical-depth steps.

4.2.2 Convergence behaviour

To test the convergence behaviour of our ALI implementation with corresponding ALO, we con-

sider the continuum and line formation in the stellar wind as described above. Fig. 4.6 shows the

maximum relative corrections of the mean intensity (left panel) and scattering integral (right panel)

after each iteration step. Different methods (FVM, SClin and SCbez), and different acceleration tech-

niques (classical Λ-iteration, and diagonal-, direct-neighbour-, nearest-neighbour-ALO with the Ng-

extrapolation switched on or off) have been applied. We display the continuum and line calculations

for kC = [10,100] and kL = [10,105], respectively, using Nx = Ny = Nz = 93 spatial and NΩ = 974

angular grid points (to save computation time when calculating the slowly converging classical Λ-

iteration). We usually stop the iteration scheme when the maximum relative corrections become less

than 10−3 between subsequent iteration steps, emphasizing that a truly converged solution is only

found when the curve describing subsequent relative corrections is sufficiently steep7. For instance,

7 For linearly convergent iteration schemes, the steepness of the convergence curve is described by the relative corrections

in subsequent iterations steps, ∆k/∆k−1 = const. =: q. To obtain a solution within a reasonable amount of computation

time, we may demand that q . 0.8, corresponding to a reduction of relative errors by a factor of 10−3 every 30th iteration

step.
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Figure 4.6: Convergence behaviour of the standard spherically symmetric model calculated with the

3D FVM (blue) and the 3D SC method using linear (red) or Bézier (green) interpolations. The left and

right panels show the convergence behaviour of the continuum and line transfer for ǫC = ǫL = 10−6,

respectively, with maximum relative corrections between subsequent iteration steps calculated with

respect to the mean intensity and scattering integral. While the upper row displays the optically thin

models with kC = 10 and kL = 10, the lower row has been calculated using kC = 100 and kL = 105.

Different acceleration techniques have been applied, where the NN-ALO has been implemented only

for the SC method. From Hennicker et al. (2019).

the classical Λ-iteration (with Λ∗ = 0) fails to converge for strong scattering lines (Fig. 4.6, lower

right panel), since the relative corrections become almost constant in each iteration step (‘false con-

vergence’, cf. Hubeny & Mihalas 2014).

Overall, and as expected, the number of iterations needed to obtain the converged solution is

decreasing with increasing number of matrix elements used to define the ALO (see also Hauschildt

et al. 1994 and Hauschildt & Baron 2006 for multi-band ALOs coupled to a 1D-SC and 3D-LC

formal solution scheme, respectively). In most cases, the convergence of the SClin is faster than that

of the SCbez method, because the interpolation scheme is intrinsically more localized (with stronger

weights assigned to local Λ-matrix elements). The FVM always performs best, since only the direct

neighbours directly influence the formal solution within this method. For parameters kC,kL ≤ 10

(Fig. 4.6, upper panels), all ALOs yield a converged solution within Niter ≈ 10 iteration steps. When
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applying the SCbez method, the first peak results from switching the linear interpolations to Bézier

interpolations at the fifth iteration step. This peak is less pronounced for parameters kC,kL = 100,105,

since the maximum relative corrections are still relatively large in the first few iteration steps.

For the optically thick continuum model (Fig. 4.6, lower left panel), the classical Λ-iteration con-

verges only very slowly (if at all), requiring N
(classical)
conv & 90 iterations until our convergence criterion

of maximum relative corrections being less than 10−3 is fulfilled. On the other hand, when using the

diagonal, DN- and NN-ALO within the SClin and SCbez method, the number of iterations until con-

vergence is reduced from N
diag

iter
≈ 75 to NDN

iter
≈ 65 and NNN

iter
≈ 45, respectively. For the FVM method,

already the DN-ALO performs reasonably well with NDN
iter
≈ 45. The Ng-extrapolation significantly

reduces Niter further, and is required to obtain the converged solution in . 20 iteration steps for all

applied methods.

Since the line transport is restricted to the finite widths of the resonance zones, and is therefore

intrinsically much more local than the continuum, the convergence behaviour is accelerated consider-

ably already by the diagonal and multi-band ALOs. For the strong line (Fig. 4.6, lower right panel),

convergence is obtained within N
diag

iter
≈ 50±5 and NDN

iter
≈ 35±5 iteration steps for the diagonal and DN-

ALO, respectively. For the SC methods, the NN-ALO with the Ng-extrapolation scheme switched on

again performs on the same level as the DN-ALO (+ Ng-extrapolation) within the FVM, and reduces

the number of iteration steps until convergence to . 20.

In total, we conclude that a multi-band ALO is required for our implementation of 3D radiative

transfer solvers to obtain a fast convergence behaviour. While a DN-ALO together with the Ng-

extrapolation is typically sufficient for the FVM method, a NN-ALO is required when the SC methods

using linear or Bézier interpolations are applied. These ALOs, however, also perform excellently

for extreme test-cases, that is, for optically thick continua and strong lines in scattering dominated

atmospheres.

4.2.3 Accuracy of continuum and line solutions

Convinced by the sound convergence properties (at least for the non-local ALOs), we investigate the

accuracy of the FVM and SC methods in the following. To this end, we apply the DN- and NN-ALO

for the 3D FVM and SC solution scheme, respectively, together with the Ng-extrapolation, and com-

pare the obtained solutions with (almost) exact results (see begin of Sect. 4.2). For the converged

solution then, all differences between the 1D and 3D FVM/SC methods originate only from the spe-

cific discretization of the radiative transfer equation. Fig. 4.7 shows the continuum and line solutions

together with corresponding relative errors, obtained for the spherically symmetric model when cal-

culated with the FVM, SClin, and SCbez methods and compared to the ‘exact’ 1D solution. The

mean and maximum relative errors are shown for different regions in Table 4.3, where the mean and

maximum relative errors of any quantity are defined throughout this work by

∆q :=
1

N

N∑

i=1

|qi−q
(exact)
i

|

q
(exact)
i

, ∆qmax := max
∀i∈[1,N]

|qi−q
(exact)
i

|

q
(exact)
i

,

with N the number of grid points within the considered region.
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Figure 4.7: Solutions for the standard spherically symmetric model as calculated with the 3D FVM

(blue) and 3D SC methods using linear (red) or Bézier (green) interpolations, compared to an accurate

1D solution (black solid line). The dots represent the solutions at specific grid points (with different

latitudes and longitudes), where only a subset of all grid points is displayed to compress the image.

Corresponding errors are indicated at the bottom of each chart. The top panel shows the mean intensity

for the continuum transfer as a function of radius, with ǫC = 10−6 and kC = [1,10,100] from left to

right. The bottom panel shows the line source function with ǫL = 10−6, and kL = [100,103,105] from

left to right. From Hennicker et al. (2019).

Continuum. For the continuum models, the solutions obtained from the 3D SC methods are superior

to the solution obtained from the FVM in most cases. Particularly near the stellar surface (at r . 3R∗),

both SC methods are in good agreement with the 1D solution (see Fig. 4.7, top panel, and bottom of

each chart for the radial dependence of the relative errors). When considering the most challenging

problem of optically thick, scattering dominated atmospheres, the mean relative errors of the SClin

and SCbez method for the complete calculation region are on the 20- and 10%-level, respectively.

For such models, the FVM breaks down due to the order of accuracy8, and a (high order) SC method

is indeed required to solve the radiative transfer with reasonable accuracy. For marginally optically

thick continua, the mean relative errors of the SClin and SCbez methods are on the 5%-level and

below. While the FVM (with a mean relative error ≈ 20%) allows for a qualitative interpretation of

the radiation field for such models, the SC methods should be used for quantitative discussions. The

optically thin model calculations give mean relative errors on the order of 5% for all methods, with

the maximum relative error being lowest for the FVM. Since, additionally, the computation times of

the SClin and SCbez methods are typically highest (see Sect. 3.6), the FVM is to be preferred when

calculating optically thin continua. For the SC methods, we note that all errors originate from the

interplay between upwind/downwind interpolations of opacities, source functions and intensities, and

8 The first-order FVM is sufficiently accurate if exp(−∆τ) ≈ 1−∆τ, i.e., if the optical-depth steps, ∆τ, are small.
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Table 4.3: Mean and maximum relative errors of the FVM and SClin, SCbez methods, when applied

to the spherically symmetric test models. The mean relative errors are listed for different regions with

r ∈ [R∗,3R∗], r ∈ [3R∗,Rmax] and r ∈ [R∗,Rmax], from top to bottom.

∆J [%] for r ∈ [R∗,3R∗] ∆S L [%] for r ∈ [R∗,3R∗]

kC τr FVM SClin SCbez kL FVM SClin SCbez

100 0.17 3.4 6.2 6.6 100 8.7 2.0 2.4

101 1.17 18 1.2 2.2 103 9.4 2.0 2.6

102 17.0 120 9.7 5.7 105 10 3.3 2.2

∆J [%] for r ∈ [3R∗,Rmax] ∆S L [%] for r ∈ [3R∗,Rmax]

kC τr FVM SClin SCbez kL FVM SClin SCbez

100 0.17 5.2 4.4 4.3 100 4.8 5.9 4.7

101 1.17 22 10 3.7 103 5.9 10 5.1

102 17.0 120 36 16 105 12 19 6.2

∆J [%] for r ∈ [R∗,Rmax] ∆S L [%] for r ∈ [R∗,Rmax]

kC τr FVM SClin SCbez kL FVM SClin SCbez

100 0.17 4.4 5.2 5.4 100 6.3 4.5 3.9

101 1.17 20 6.0 3.0 103 7.2 7.0 4.2

102 17.0 120 2 3 11 105 11 13 4.7

∆Jmax [%] for r ∈ [R∗,Rmax] ∆S L,max [%] for r ∈ [R∗,Rmax]

kC τr FVM SClin SCbez kL FVM SClin SCbez

100 0.17 17 51 49 100 27 46 45

101 1.17 36 39 14 103 73 50 45

102 17.0 150 46 24 105 70 65 55

the integration of the discretized radiative transfer equation. Numerical diffusion and the associated

violation of energy conservation influences the converged solution particularly in the optically thin

regime.

Line transition. The mean relative errors for the line transition are on the order of 5− 10%, with

increasing accuracy from strong to weak lines, and slight advantages of the SCbez method when

compared to the FVM and SClin method (that yield a similar error). Particularly for the FVM, the

errors in the line case are lower than those for the continuum, because the radiative transfer is much

more local9, and thus, the error is not being propagated through the complete grid. On the other hand,

9 We emphasize that for the line transfer, the ratio of the photon destruction probability, ǫL, to the photon escape probability,

is less than unity for all our models, indicating that the line-transfer is, in principle, non-local. However, for the considered

spherically symmetric problems, no multiple resonances arise, and the line is formed within a single, well-localized



86 CHAPTER 4. TESTS AND COMPARISON OF THE FVM AND SC METHOD

Figure 4.8: Emergent flux profiles of an intermediate (kL = 103, left panel) and strong (kL = 105, right

panel) line. The blue, red, and green curves correspond to the solution of the FVM, SClin, and SCbez

methods, respectively. The reference profile (black solid line) has been derived from the ‘exact’ 1D

source function interpolated onto the 3D Cartesian grid. Corresponding relative and absolute errors

are shown at the bottom of each chart. For all profiles, the continuum level has been determined from

a zero-opacity model. From Hennicker et al. (2019).

numerical diffusion plays a larger role (see Sect. 4.1.2), resulting in minimum errors of ≈ 5% even

for very weak lines. The radial stratification of relative errors for each considered line is shown in

the lower panel of Fig. 4.7, bottom of each chart. While the FVM gives largest errors near the stellar

surface (at r . 3R∗), both SC techniques are in excellent agreement with the 1D solution in such

regions. At larger radii, however, the SC solutions are generally overestimated when compared to the

1D solution, due to numerical diffusion errors.

The distinct behaviour of the applied solution schemes in different atmospheric regions finally

determines the quality of emergent flux profiles.

Emergent flux profile. The converged source functions are used to calculate the emergent flux pro-

files using the postprocessing LC solver as described in Sect. 3.7. To extract the error resulting from

the FVM and SC methods alone, we interpolated the ‘exact’ 1D source function onto our 3D grid,

and calculated the reference profile using the same technique. The continuum has been calculated

within the LC postprocessing routine from a zero-opacity model given by the unattenuated illumina-

tion from the projected stellar disc. Then, the differences of line profiles are exclusively related to the

differences of line source functions. Fig. 4.8 shows the line profiles with corresponding absolute and

relative errors for the intermediate (kL = 103) and strong (kL = 105) line, obtained from the converged

source functions from above.

The line profiles are in good agreement with the 1D solution for both applied SC methods, with

resonance region.
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slight advantages of the SCbez method when compared to the SClin. Major (relative) deviations arise

particularly at large frequency shifts on the blue side, due to the enlarged source functions in corre-

sponding resonance regions (i.e., at large radii in front of the star). At such frequency shifts, however,

the line profile is mainly controlled by absorption, and the absolute error remains small. At low fre-

quency shifts, the emission peak becomes slightly overestimated, particularly when considering the

strong line. The corresponding resonance regions are mainly located near to the star (at low absolute

velocities), and in the whole plane perpendicular to the line of sight (with low projected velocities).

For the intermediate line, the emission from this plane at large radii only plays a minor role, due to rel-

atively small optical-depth increments along the line of sight. Thus, both SC methods are in excellent

agreement with the 1D reference profile. With increasing line strength, however, the emission from

the outer wind region contributes significantly to the line formation, and the discrepancies between

the 1D and the SClin/SCbez methods become more pronounced. For the FVM, the emission part

becomes overestimated for all line profiles, due to the typically enhanced source functions close to the

stellar surface (i.e., at low absolute velocities). For all test calculations, the Bézier method performs

best, closely followed by the SClin method and (far behind) the FVM.

With Fig. 4.8 and the argumentation from above, we conclude that (at least) a short-characteristics

solution scheme is required to enable a quantitative interpretation of UV resonance line profiles, where

both the linear and Bézier interpolation techniques perform similarly well. The less accurate (however

computationally cheaper) FVM can still be applied for qualitative discussions.

4.2.4 Flux conservation

As a last test of our 3D solution schemes, we consider purely scattering continua (ǫC = 0) within

the spherically symmetric wind model described above. Since photons are neither thermally created

nor absorbed for such problems, the radiative flux density is conserved (at least in theory). With the

definition of the Eddington flux (Eq. 2.13) and of the mean intensity (Eq. 2.10), flux conservation

can easily be derived by considering the first (angular) moment of the radiative transfer equation

(Eq. 2.53):

1

4π

∫
n ·∇IνdΩ =

1

4π

∫
χνS νdΩ−

1

4π

∫
χνIνdΩ

=⇒ ∇Hν = χνJν
1

4π

∫
dΩ−χν

1

4π

∫
IνdΩ = 0 , (4.5)

where we have used that S ν = Jν for the considered scattering problem, and that the continuum opacity

and mean intensity are independent of solid angle. Additionally, one can easily show, that the ϑ and

ϕ components of the Eddington flux, Hϑ and Hϕ, vanish due to symmetry, where ϑ and ϕ are the

co-latitude and azimuth in a local spherical coordinate system of a considered point (i, j,k) with radial

coordinate pointing along the position vector of that point. The Eddington flux is then solely given by

its radial component, Hr:

∇Hν =
1

r2

∂
(
r2Hr

)

∂r
= 0 ⇐⇒ Hrr

2 = const. . (4.6)

Fig. 4.9 shows the components of the Eddington flux as obtained from the FVM and SC methods,

with the tangential components scaled by the radial ones. For all applied models, the tangential com-
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Figure 4.9: ϕ, ϑ, and r components (from top to bottom) of the Eddington flux as obtained from the

FVM and SC methods, when applied to spherically symmetric atmospheres with ǫC = 0 and kC =

[1,10,100] from left to right. The same color-coding as in Fig. 4.7 has been used, with the black solid

line indicating the 1D solutions (with H
(1D)
ϑ
= H

(1D)
ϕ = 0). The tangential components as obtained

from the 3D solution methods have been scaled by the corresponding radial ones. The bottom panel

shows the relative errors of the radial components of the Eddington flux when compared with the 1D

solution.

ponents of the Eddington flux are small, yielding Hϑ,Hϕ . Hr/20 in most cases, and with somewhat

larger deviations found for the marginally optically thick and optically thick models, when calculated

with the FVM. Also when concentrating on the radial component, the FVM performs reasonably well
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only for the optically thin model with kC = 1. Particularly in regions far from the stellar surface, the

SC methods show a relatively large scatter for this model, due to numerical diffusion errors. With in-

creasing kC, the FVM overestimates the radiative flux, resulting from the order of accuracy. Although

the SC methods show superior results, the relative error, when compared to the 1D solution, are still on

the 10−40% level. Most importantly, however, the Eddington flux (scaled with r2) remains approxi-

mately constant for all applied methods, as theoretically constrained. For the FVM, the scatter of the

radial flux component is largest, and becomes significantly reduced for the SC methods. Particularly

for the SC solution scheme using Bézier interpolations, Hrr
2 is limited to a relatively narrow range.

We conclude that at least the theoretically constrained qualitative behaviour of the flux compo-

nents can be approximately reproduced by our FVM and SC methods. However, as pointed out in

Sect. 1.2.3, already small (tangential) flux components can have a severe impact on the wind structure

(e.g., preventing the formation of a disc in the context of Sect. 1.2.3), and this problem needs to be

solved when our multi-D radiative transfer methods shall be coupled with radiation-hydrodynamic

solution schemes. Thus, a more detailed investigation of the flux components is planned for the fu-

ture. In this respect, increasing the spatial grid resolution, or even reformulating the discretized 3D

radiative transfer equation by applying spherical coordinates, might become inevitable.

4.3 Summary10

In this chapter, we have investigated the reliability of the numerical tools developed in Chapter 3,

mostly by applying our 3D code to spherically symmetric conditions. Several different tests have

been performed to understand certain shortcomings of the one or other method, and to probe the

ALI-cycle and the angular integration schemes:

Angular integration: For zero-opacity models, we showed that the Lebedev quadrature performs

best for obtaining the mean intensity on a typical 3D spatial grid, and that a number of NΩ &

2000 directions is sufficient to accurately perform the solid angle integration within the 3D

FVM and SC methods.

Numerical Diffusion: Due to significant numerical diffusion, intrinsic to both the FVM and SC meth-

ods, we found a minimum error for the mean intensity and line source function of roughly 5%

when considering optically thin continua and weak lines. Additionally, the (e.g., spherical)

symmetry of a considered problem is broken, due to the distinct behaviour of numerical diffu-

sion for different ray directions, and in different regions of the atmosphere. Numerical diffusion

errors, however, can be minimized by increasing the grid resolution.

Convergence behaviour: With increasing complexity of the approximate Λ-operator (i.e., from a

purely diagonal ALO to a direct-neighbour and nearest-neighbour ALO, the latter including

26 neighbouring terms), the rate of convergence is generally improved. When applying the

non-local ALOs within our 3D FVM and SC methods, we obtained a satisfying convergence

behaviour, with relative corrections between subsequent iterates of less than 10−3 within 20

10 based on Hennicker et al. (2018, Sect. 7), and Hennicker et al. (2019, Sect. 6).
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iteration steps, even for the most challenging test cases. Due to this convergence behaviour,

we were able to analyse the performance of our methods for such optically thick, scattering

dominated atmospheres.

Pure continuum: We have estimated the error of the applied methods in different regimes, by in-

vestigating spherically symmetric test models within our 3D SC framework, and with a 3D

finite-volume method, where both solution schemes have been formulated on a 3D Cartesian

grid. To our knowledge, this is the first study, where different 3D solution schemes for spherical

problems have been compared, and their precision explored. When rated against the solution

obtained from (accurate) 1D solvers, we found a mean relative error for the converged con-

tinuum source function of roughly 5− 10% and 5− 20% when using Bézier and linear inter-

polations, respectively. Particularly for optically thick continua, the (first order) FVM method

breaks down, and a (high order) SC or LC method is required to accurately solve the radiative

transfer. This problem, however, arises only at large optical depths (e.g., when considering the

winds of Wolf-Rayet stars), and is of only minor importance for the winds of OB stars with (at

most) marginally optically thick atmospheres.

Line transitions: When considering the solution for the line source function for different line-

strength parameters, the mean relative errors of both SC methods are on the 10%-level and

below, with slight advantages of the Bézier technique, compared to purely linear interpolations.

The resulting synthetic line profiles are calculated with a long-characteristics postprocessing

routine, using the corresponding converged source functions. The SC method using Bézier in-

terpolations almost perfectly matches the 1D reference profiles for all our models (i.e., for weak

and strong lines). When linear interpolations are used, we obtain slight deviations, originating

mainly in the outer wind regions. In contrast, the 3D FVM always overestimates the emission,

due to an overestimation of the line source function in regions near to the stellar surface.

Flux conservation: For purely scattering atmospheres, we investigated in how far our 3D FVM and

SC methods reproduce the theoretically requested conservation of the radiative flux. Within

our 3D solution schemes, we found that the tangential components are – almost consistent with

theory – small (Hϑ,Hϕ . 5% Hr), when compared with the radial one. The radial component,

r2Hr, on the other hand is generally overestimated when compared with an accurate 1D solution,

and remains only approximately constant over the radial coordinate. Particularly for the FVM,

this point requires further investigations.

Overall, the 3D SC methods typically yield a higher accuracy than the FVM, with slight advantages

when using Bézier interpolations instead of linear ones. Nevertheless, all methods have their own ad-

vantages and disadvantages, particularly when also accounting for the computation time (with fastest

turn-around times for the FVM method). Thus, the 3D FVM method should be used for qualitative in-

terpretations and for finding (rough) estimates of the parameters of interest, while the SC methods are

to be preferred when aiming at a quantitative analysis of line profiles, and for optically thick continua.

All methods can readily be applied to non-spherical problems.



Chapter 5

Applications

This chapter has been copied – to a major part – from Hennicker et al. (2018) and Hennicker et al.

(2019).

5.1 Wind ablation1

Using 3D radiation-hydrodynamic simulations, Kee (2015) and Kee et al. (2016) modelled the ab-

lation of circumstellar discs around massive stars, due to radiative line driving. They showed that a

significant line force arises due to the coupling of non-radially streaming photons to the non-radial

velocity field of circumstellar discs (see also Kee et al. 2016, their Figure 1). The line force has been

calculated within a Sobolev approach, by means of line-strength distribution functions. Contrasted to

the original formulation by CAK, they followed the parameterization by Gayley (1995). The full 3D

line acceleration can then be written as2

glines ≈
κeQ̄

(1−α)c(Q0κecρ)α

∫ (
n ·∇ · (n · u)

)α
I(n)ndΩ , (5.1)

where n and u describe the direction of the considered ray and the velocity-vector, respectively. ρ is

the density, Q̄, Q0, and α describe the line-strength distribution, and were taken from the calibration

of Puls et al. (2000, their Table 2), for the considered Teff .

Table 5.1: Stellar and wind parameters for the wind-ablation model. The line-strength parameters

have been set to α = 0.66, Q̄ = 2500, and Q0 = 2200.

Teff [kK] R∗ [R⊙] logg vmin [kms−1] v∞ [kms−1] β Ṁwind [M⊙yr−1]

36 9.4 3.9 22 2200 1 1.5 ·10−7

1 copied from Hennicker et al. (2018, Sect. 5).
2 Strictly speaking, Eq. (5.1) holds only when the strongest line is optically thick. See Kee (2015, Chapter 2), for a complete

derivation and discussion.
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Figure 5.1: Left panel: Density structure for the wind-ablation model with τdisc = 1400, in the xz-

plane. The middle and right panels display the radiation temperatures as obtained by the 3D FVM

and 3D SC method (using linear interpolations), respectively. Additionally, the density contours cor-

responding to a decrease in line force by f = 10 (solid) and f = 100 (dashed) are displayed. Both

contours indicate the transition region from wind to disc (see text). The grey colour corresponds

to radiation temperatures less than the colour-coded minimum value. Left and middle panel from

Hennicker et al. (2018).

For optically thin continua (e.g., in classical Be stars), the incident intensity I(n) can be directly

replaced by the intensity originating from the stellar core3, I+c , and Eq. (5.1) can be solved by quadra-

ture, for a given density and velocity structure. For accreting high-mass stars (see Sect. 1.2.6), that is,

for massive objects in their late formation phases, however, the circumstellar discs are optically thick,

and at least two major problems arise:

Firstly, due to absorption and scattering processes, the incident intensity at a considered point

needs to be calculated by a global solution of the radiation field, which is very time consuming in

hydrodynamic simulations. Kee (2015) developed an efficient method to delimit the contribution by

either calculating the absorption part alone (giving a lower limit of the incident intensity), or assuming

the disc to be optically thin (giving an upper limit). A comparison between the irradiation obtained

from their method to the irradiation obtained from our 3D code (including scattering of photons) will

be presented in future studies, and shall not be discussed here.

In this thesis, we consider the second problem of optically thick environments: Since the disc

partly blocks the irradiation from the star, the radiation field might become considerably reduced.

However, since the density in the wind-ablation regions is not too different from the density in the

wind, it is this (ionizing) radiation field, which mainly determines the ionization stages of the con-

sidered plasma, and consequently might influence the line-strength distribution function. To address

this issue, we proceed as follows: First, the radiation field for a specific hydrodynamic structure (see

3 Due to gravity darkening, the intensity emerging from the stellar core of rapidly rotating stars (e.g., Be stars) becomes

latitude dependent. For the O7 model discussed below, we assumed negligible rotation rates to remain consistent with

Kee et al. (2016).
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below) is computed by our 3D code, and the resulting mean intensity is translated to a corresponding

radiation temperature (using Jν =: W · Bν(Trad) with dilution factor W; the derived radiation temper-

ature would correspond to Teff if the star had an optically thin, spherically symmetric atmosphere).

Corresponding line-strength parameters could again be obtained from Puls et al. (2000). In regions

where the local radiation temperature is similar to the effective one, one can safely assume that the

parameters of the line-strength distribution remain at their original input values, and indeed can be

used to calculate the line force throughout all following hydro-timesteps. If, on the other hand, Trad

differed significantly from Teff , the line-strength distribution would need to be consistently adapted

within the hydrodynamical evolution.

For our analysis, we used a wind+Keplerian-disc model similar to the initial conditions for the

accreting O7-star system as considered by Kee et al. (2016). This model describes such objects as

already defined in Sect. 1.2.6 as accreting high-mass stars (see also Hosokawa et al. 2010, Kuiper

et al. 2016). The wind and stellar parameters are given in Table 5.1, following Kee et al. (2016). A

radial optical depth of the disc, τdisc = 1400, has been adopted. We approximated the continuum by

pure Thomson-scattering, ǫC = 0, to ensure frequency independence. This is a fair assumption for the

500-2000 Å range, where the majority of line-driving happens (e.g., Puls et al. 2000). Of course, we

would expect thermalization in the disc’s deeper layers. Due to the dominating ρ−α-dependence of the

line force (Eq. 5.1) and the large densities inside the disc, however, most of the wind-ablation occurs

at the surface layers, and we do not need to care about the details in the inner parts. This fact is even

more important, since it allows us to apply our 3D FVM method, although being aware of the large

errors of the continuum transfer for optically thick media.

To ensure that the transition region from the wind to the disc is not subject to (larger) numerical

uncertainties, we have performed a test calculation with doubled grid resolution (Ntest
x = Ntest

y = Ntest
z =

265). Although we found, as expected, differences in the inner part of the disc, our results for the

outer part and the wind region are (almost) identical. Furthermore, we have compared the solution as

obtained from the FVM with corresponding ones when calculated with the SC method using linear

interpolations. At least in the considered wind-ablation regions, both solutions are fairly consistent

(see Fig. 5.1, middle and right panel). In these regions, we can therefore safely assume, that the

obtained solutions are only mildly affected by numerical artefacts.

The density structure and radiation temperature (the latter computed by our code) are shown in

Fig. 5.1. The radiation temperature in the wind (here: along the z-axis) exceeds the effective tem-

perature by a factor of roughly 1.25. In order to ensure that this is not a numerical effect, we have

checked this issue by calculating the same wind model, however applying an optically thin disc with

τdisc = 1.4 · 10−3. For such a model, Trad and Teff turned out to be fairly identical. We thus conclude

that the enhancement of radiation temperature in our original model is due to additional irradiation of

the wind from the disc, by scattering off photons from the disc. Most likely, this effect will induce

latitudinal line-force components (also to be addressed in forthcoming investigations).

Wind-ablation dominates in the transition region between wind and disc. We define this region by

calculating the decrease in line force by a certain factor, f , due to density effects alone, that means

assuming the same ionization stages and the same velocity structure. Such a reduction of line force or
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line acceleration is easily cast into an enhancement of density via Eq. (5.1),

g
(disc)

lines
(r,Θ)

g
(wind)

lines
(r)
<

1

f
↔

(
ρdisc(r,Θ)

ρwind(r)

)α
> f , (5.2)

where the radius-dependent quantities from the wind can be measured along the z-axis. In this picture,

f should be chosen such that the corresponding decrease in line force represents the border from the

wind region to the region where the line force is negligible (i.e., inside the disc). As a first guess, we

adopted f = 10, and display the corresponding density contour in Fig. 5.1. Since a factor f = 10 seems

to be somewhat artificial, we additionally display the density contour corresponding to f = 100.

From our simulations, we then find that both contours are located within a range of Trad between

roughly 31 and 33kK, which is of the same order as the effective temperature, Teff = 36kK. We thus

conclude that the ionization stages at the disc surface are not changing too much, when compared

to the ionization stages in the wind, and that the line-strength parameterization of the wind can also

be used to calculate the line force at the surface of such optically thick circumstellar discs. Due to

significant scattering of photons off the disc, a multi-D description of the radiative transfer might need

to be incorporated into the hydrodynamic simulations, to account for all force components.

5.2 Dynamical magnetospheres: HD1916124

As a first application of the FVM to line transitions, we modelled UV resonance lines in dynamical

magnetospheres, that is, in atmospheres which form in slowly rotating magnetic OB stars (in contrast

to the so-called centrifugal magnetospheres, which form in fast rotating magnetic OB stars). As a

prototypical case, we considered the Of?p star HD191612, which has a negligible equatorial rotation

speed of vrot ≈ 1.4kms−1 (Howarth et al. 2007, Sundqvist et al. 2012). Marcolino et al. (2013) already

calculated corresponding resonance lines for this star, by extending the 3D formal solver developed

by Sundqvist et al. (2012) to a ‘3D Sobolev with exact integration’ method (SEI, Lamers et al. 1987),

and applying this method to a set of 100 2D MHD-simulation snapshots, equidistantly distributed

over the azimuth-angle to enable a 3D description of the atmosphere. At least for the Hα line (where

the source function is taken from prototypical 1D NLTE-calculations), such a patching-technique

produces quite similar results as full 3D MHD simulations (see ud-Doula et al. 2013). In Sect. 5.2.1,

we use the same simulations as a benchmark for our 3D code, and compare the obtained line profiles

to those from Marcolino et al. (2013). In Sect. 5.2.2, we calculate analogous line profiles for the ADM

model developed by Owocki et al. (2016), to investigate in how far their simplified description of the

magnetosphere can be used as a reasonable substitute for elaborate MHD simulations. We already note

here, that such a simplified approach would be favourable to MHD simulations, because it provides

(within the applied approximations) an average, steady state solution for the magnetospheric structure,

and avoids time-consuming hydrodynamic simulations.

4 copied from Hennicker et al. (2018, Sect. 6).
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5.2.1 MHD models

To understand the behaviour of the line profiles presented below, we first explain the basic charac-

teristics of (non-rotating) magnetic winds. For a more detailed discussion, we refer the reader to the

seminal work by ud-Doula & Owocki (2002) and ud-Doula et al. (2008). These authors introduced

a magnetic dipole field as an initial condition, and evolved the (initially spherical) stellar wind ac-

cording to the MHD equations. Within ideal MHD5, the material follows the (closed) magnetic-field

lines in regions where the magnetic energy exceeds the kinetic energy of the wind (close to the star),

whereas, in the opposite case, the field lines follow the (almost radial) mass flow (far from the star).

The border of both regions can be roughly described by the Alfvén-Radius, RA ≈ 0.3+ (η∗+0.25)1/4,

with wind-confinement parameter η∗ :=
(
B2

pR2
∗
)
/
(
4ṀB=0v∞

)
, and Bp the polar magnetic-field strength

evaluated at the stellar radius (see ud-Doula et al. 2008, and Sect. 1.2.5).

Within closed-field regions, material originating from opposite footpoints shocks (and accumu-

lates) in the equatorial plane. Due to the 1/ρα-dependence of the line-force (see Eq. 5.1), the net-force

becomes dominated by gravity, and produces an inflow along the magnetic field lines in a ‘snake-like’

pattern.

In the open-field regions, the presence of the magnetic field, together with a frozen-in mass flow,

results in a density decrease when compared with spherically symmetric models, due to the faster-

than-radial expansion of the flow-tube area (see Figure 7 in ud-Doula & Owocki 2002). Consequently,

the line-force becomes increased, resulting in higher terminal velocities than in 1D non-magnetic

models. A single snapshot and an azimuthal average of the applied MHD simulations are shown in

Fig. 5.2.

Based on such MHD simulations, Sundqvist et al. (2012) calculated corresponding Hα-line pro-

files, while Marcolino et al. (2013) investigated the UV resonance-line formation. To remain consis-

tent with the calculations by Marcolino et al. (2013), we apply ǫL = 0, and use their description of the

line-strength parameter, κ0, originally introduced by Hamann (1980). κ0 is related to the line-strength

parameter from Eq. (2.61) by

κ0 =
1

4πmp

Ṁ

R∗v
2
∞

1+ IHeYHe

1+4YHe
σev

∗
thkL , (5.3)

with IHe = 2 and YHe = NHe/NH = 0.1, the number of free electrons per helium atom, and helium

abundance by number, respectively.

Although we use a micro-turbulent velocity of vturb = 100 kms−1 for the determination of the

source function, we calculate the final line profile (somewhat inconsistently) for vturb = 50 kms−1, as

done by Marcolino et al. (2013). The line profiles obtained from our 3D code and the SEI line profiles

from Marcolino et al. (2013) are displayed in Fig. 5.3, for two different line-strength parameters, κ0

= 0.1 and 1.0, respectively.

The agreement between the two methods is excellent. The minor differences in the emission part

are related to two effects: Firstly, the methods for determining the source functions (SEI implying

very narrow resonance lines vs. FVM accounting for much broader ones, due to vturb = 100 kms−1)

are quite different, and a certain deviation must be present. Secondly, the (general) overestimation of

5 Ideal MHD is a fair approximation in hot star winds, due to the high conductivity.
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Figure 5.2: Left panel: density structure for an example snapshot from the MHD simulations for

HD191612, as performed by Sundqvist et al. (2012). Right panel: azimuthal average of the MHD

simulations. In both figures, the density has been normalized by a typical downflow density, ρc :=

ṀB=0/
(
4πR2

∗vesc
)
, with ṀB=0 from Table 5.2, and vesc ≈ 800kms−1 the photospheric escape velocity.

The velocity field is displayed by arrows, with the length of the velocity vectors limited to 0.5 vesc.

We additionally show the dipole magnetic field of the ADM models used in Sect. 5.2.2 (solid lines,

and thick solid line for RA = 2.7R∗). The corresponding magnetic axis is aligned with the z-axis. The

grey colour corresponds to densities outside the range indicated on the right. From Hennicker et al.

(2018).

Figure 5.3: UV resonance-line profiles for the MHD models, as obtained from our 3D FVM code

(black) and from the SEI method by Marcolino et al. (2013) (red). Two different line-strength param-

eters, κ0 = 0.1 and 1.0, have been used. For convenience, the line profiles for κ0 = 0.1 have been

shifted vertically by 1.5. The left and right panels show the synthetic line profiles for pole-on and

equator-on observers, respectively. The abscissa has been scaled to v∞ = 2700 kms−1, the ‘observed’

1D value applied by Marcolino et al. (2013). From Hennicker et al. (2018).

the scattering integrals and thus source functions due to the FVM might play a role as well. Also the

absorption parts of the line profiles observed equator-on (lower panel of Fig. 5.3) are not perfectly

matched. This (small) effect is most likely simply due to different formulations of the numerical

solvers.
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Table 5.2: Stellar and wind parameters of HD191612 (upper row). Teff , logg, R∗, Ṁ, v∞ have been

derived by Howarth et al. (2007), and Bp is adopted from Wade et al. (2011). For the ADM model,

we adapted the mass-loss rate and terminal velocity at the pole (bottom row), to be consistent with the

MHD simulations from Fig. 5.2.

Teff [kK] R∗ [R⊙] logg v∞ [kms−1] Ṁ [M⊙yr−1] Bp [G]

35 14.5 3.5 2700 1.6 ·10−6 2450

v
(pole)
∞ [kms−1] ṀB=0[M⊙yr−1] RA[R∗]

3963 1.1 ·10−6 2.7

A comparison of these line profiles with those from corresponding spherically symmetric models

has already been performed by Marcolino et al. (2013), and we summarize only the most important

characteristics: (1) The absorption trough for pole-on and equator-on observers extends beyond the

1D terminal velocity, as expected from the MHD atmospheric structure. We note that such a large

extension has not been observed for HD191612. (2) The emission for equator-on observers is reduced

(compared to the 1D case), due to the lower densities in the emission plane (e.g., the polar plane for

line-centre frequencies with xobs = 0). (3) The particular form of the line profiles is determined by the

different mapping of projected velocities for different observer directions.

Given the overall agreement of the two different methods, we conclude that the SEI and our 3D

FVM solutions are consistent. Since both methods are completely independent, this result shows two

points: Firstly, our 3D FVM performs well also for non-spherical 3D wind structures, and secondly,

also the 3D SEI method as applied by Marcolino et al. (2013) is validated. We emphasize, however,

that the ‘simple’ Sobolev approach can only be applied for single lines (and steep velocity fields),

whereas situations with line overlap (e.g., resonance doublets) can be computed in a comparatively

simple way only by our 3D method. Being highly confident that the line formation in (arbitrary) wind

structures is described correctly, we are able to study the UV line formation within the ADM model.

5.2.2 ADM models

Owocki et al. (2016) developed an analytic description of dynamical magnetospheres, in order to set

a framework similar to the β-velocity-field prescription for spherically symmetric winds. This ADM

formalism provides a time-independent, steady-state solution for dynamical magnetospheres, which

is comparable to the average of several MHD-simulation snapshots, and has been corroborated by a

comparison of synthetic Hα lines with observations. The formation of resonance lines within the ADM

framework, however, has not been analysed yet, and is the focus of this section. For that purpose, we

aim at modelling the MHD atmospheric structure from above with the ADM method, and compare

the resulting line profiles.

Within the ADM method, Owocki et al. (2016) divide the atmosphere into two major zones. The

border between both regions is given by the condition rm =RA, where the apex-radius, rm, is defined as

the distance between the origin and the intersection of magnetic equator and closed dipole magnetic-

field line attached to a considered point (see left panel of Fig. 5.5 for clarification). In the following,
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Figure 5.4: UV resonance-line profiles obtained from our 3D FVM code, for the MHD simulation

(black, as Fig. 5.3), and the different ADM models, (i) to (iv) (see text). The line-strength parameter

has been set to κ0 = 1. The left and right panels show the synthetic profiles for pole-on and equator-on

view, respectively. As in Fig. 5.3, the abscissa has been scaled to v∞ = 2700 kms−1, the ‘observed’

1D value applied by Marcolino et al. (2013). From Hennicker et al. (2018).

we call these two regions the ‘closed-field region’ (rm < RA) and the ‘outer wind’ (rm > RA). The

closed-field region consists of three different components:

• wind-upflow component: The magnetic loops are fed with material ejected from the stellar sur-

face. The matter flow follows the dipole magnetic-field lines, with absolute velocities calculated

from a β-velocity law, using β = 1.

• post-shock component: The collision of outflows following the B-field lines from opposite

footpoints leads to a shock at the magnetic equator, resulting in a hot and dense post-shock

region. The extent of this region is controlled by a (dimensionless) cooling parameter, χ∞,

where 1/χ∞ describes the efficiency of radiative cooling by X-ray emission (see ud-Doula et al.

2014 for details). In test calculations, however, this component turned out to have only very

small influence on the UV line formation. Thus, and to keep the model as simple as possible,

we neglect the post-shock component in this work.

• cooled-downflow component: As the post-shock gas cools, its density increases, and the line-

force decreases. Thus, the cooled and compressed gas is pulled back onto the stellar surface by

gravity, resulting in a downflow starting at the magnetic equator. The gas is accelerated from

zero velocity along the B-field lines to the escape speed at the stellar surface.

For their Hα analysis, Owocki et al. (2016) only considered the cooled downflow, because of the

mostly larger densities of this component. Since the infall occurs in episodic infall events, the closed-

field region is actually highly structured, and these authors found rather large ‘clumping factors’ (see

Sect. 1.2.2), of the order of several tens. Under the assumption of clumps that are optically thin,

this clumping factor can be used to translate the actual (structured) density-distribution to the mean

opacities and emissivities of recombination lines (ρ2-processes, see e.g., Puls et al. 2008). For the UV
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resonance-line formation (linear in ρ), micro-clumping (i.e., optically thin clumping) has no direct

impact on the mean opacities. Therefore, and because of the different densities and velocities within

the upflow and downflow components, an explicit description of the structured medium is required

when considering UV resonance lines. As it is not a priori clear how to treat the combination of

the above mentioned components, we consider four different approaches, and model the closed-field

region by:

(i) Applying only the cooled-downflow component.

(ii) Introducing a statistical treatment, where the probabilities of using either the wind-upflow or

the cooled downflow-component when calculating the radiative transfer are here defined as

Pw :=
ρw

ρw+ρc
, Pc :=

ρc

ρw+ρc
= 1−Pw .

This approach preferentially chooses the component with higher density and lower velocity6, in

other words, that component with the larger timescale for the matter flow.

(iii) Introducing flux-tubes that alternating consist of the downflow and upflow component.

(iv) Applying only the wind-upflow component.

The models are ordered such that the contribution of the wind-upflow component is increasing from

model (i) to (iv).

As a zeroth-order approximation, Owocki et al. (2016) model the outer wind (at rm > RA) by

the wind-upflow component, that means by a flow following closed magnetic-field lines even in that

region. This is a fair assumption for modelling the polar regions, since it accounts for the faster

than radial decline of the density (see also Owocki & ud-Doula 2004). Moreover, the magnetic field

lines are nearly radial in these regions, thus resulting in a nearly radial outflow similar to the MHD

simulations. On the other hand, the velocity vectors near the equatorial regions are modelled with

a large latitudinal component, whereas they are radially directed within the (more realistic) MHD

simulations. Thus, a match of the ADM and MHD magnetospheric structure in the equatorial region

cannot be achieved within the standard formulation. With respect to UV line formation, this is the

major drawback of the ADM formalism, and will influence the line formation (see below).

To set the base density, Owocki et al. (2016) introduced the mass-loss rate of the star if it had no

magnetic field, ṀB=0, which determines the loop-feeding rate. With the input parameters from Table

5.2, the dynamical magnetosphere can be modelled according to the recipe from Owocki et al. (2016)7.

We used the values of ṀB=0 and v
(pole)
∞ in Table 5.2, right panel, to adapt the ADM model to the MHD

simulations. For our model parameters, the Alfvén-Radius, RA = 2.7 R∗, has been calculated from the

mass-loss rate, terminal velocity, and magnetic-field strength.8 We stress that the adopted mass-loss

6 Both quantities are connected by the continuity equation.
7 We have increased the wind-upflow and cooled-downflow densities by a factor of two, which is missing in their original

equations.
8 For the input parameters given in Table 5.2, we actually would obtain RA ≈ 3R∗. However, taking RA ≈ 2.7R∗ is somewhat

more consistent with the magnetospheric structure obtained within the MHD simulations (cf. Fig. 5.2).
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rate is not necessarily the ‘true’ one, nor the mass-loss rate the star would have if no magnetic field

was present. For the applied ADM models, the resulting density stratification, magnetic-field lines

and velocity vectors in the xz-plane are shown in the left panel of Fig. 5.5. Here and in the following,

the equatorial plane coincides with the plane of the magnetic equator, since we assume the magnetic

axis to be aligned with the z-axis.

Compared to the MHD structure (see Fig. 5.2), the ADM densities in the closed-field region are

best represented by model (ii) and (iii), that is, by a combination of downflow and upflow component.

In the outer wind near the equator, the densities are underestimated due to the aforementioned different

description of the velocity field (see Fig. 5.5, left panel).

Once again we apply ǫL = 0, and compare the corresponding line profiles with line-strength pa-

rameter, κ0 = 1, for equator-on and pole-on observers, with the line profiles obtained from the MHD

simulations (see Fig. 5.4). For clarification, Fig. 5.5 additionally displays all line profiles with their

emission and absorption parts. The differences between the profile-sets can be explained as follows.

For pole-on observers: With increasing contribution from the upflow component, the emission

peak becomes broader, because the emitting volume at intermediate to high velocities increases. Si-

multaneously, the cooled downflow component with only low absolute velocities decreases, resulting

in a lower emission peak near the line centre. An exception is model (i), for which the emission peak

at low frequency shifts is lowest, because the emission of the upflow component near the star (with

high densities and low velocities) is missing. When compared to the line profiles from the MHD

simulations, the best result is obtained for model (ii), that is, for the statistical description of upflow

and downflow component in the closed-field region. Even for this model, however, we only get a rela-

tively poor match with the MHD profiles. Since our ADM models cover a large range of combinations

of upflow and downflow component (including the most extreme cases of a pure upflow and a pure

downflow), this finding suggests that the outer wind region is inadequately modelled. Indeed, the ma-

jor differences of the line profiles can be explained (at least qualitatively) by the different description

of the outer wind: (1) In the ADM models, the emission peaks close to line centre (i.e., at xobs ≈ 0, with

corresponding resonance zones at projected velocities n · u ≈ 0) are underestimated compared to the

MHD model, since within all ADM models also the mass flow in the outer wind is adopted to follow

closed magnetic field lines. This assumption becomes problematic in equatorial regions, since here

the ADM wind flows almost perpendicular to the plane, whereas it is almost radial in the MHD case.

Consequently, when viewed pole on, only large projected velocities are present in the corresponding

area of the equatorial plane, where the latter creates a large part of low-velocity emission in the MHD

model. This part is now missing in the ADM models, and the emitting area is almost limited to the

downflow component (with generally low projected velocities). Thus, the profile becomes shallower

than in the MHD case. (2) Within the blue absorption trough, the absorption column in front of the

star is slightly decreased, because the velocity vectors are once again following the magnetic field

lines, and do not perfectly match the MHD simulations. The differences of the line profiles can thus

be explained by the different description of the outer wind region alone.

For equator-on observers, the emission peak of the ADM models becomes stronger and shifted to

the blue side with increasing contribution of the upflow component. Additionally, the absorption part

on the blue side increases, while it decreases on the red side. This behaviour is readily explained: As

the upflow contribution in front of the star (with projected velocities directed towards the observer,
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Figure 5.5: Left panel: As Fig. 5.2, but for the corresponding ADM model structures. To clarify the

definition of the apex radius, rm, we have displayed a specific value, rm=2 R∗, as a red arrow, where

this value corresponds to all points located on the red magnetic-field line. In the closed-field region

(inside rm=RA, displayed by a thick line), the models contain, from top to bottom: (i) The cooled-

downflow component alone. (ii) A statistical approach for the downflow and upflow component.

(iii) Alternating flux tubes with cooled-downflow and wind-upflow component. (iv) The wind-upflow

component alone. Middle panel: As Fig. 5.4, for pole-on observers, and for the different ADM models

(i) to (iv). The dashed and dotted lines display the emission part and the absorption part of the line

profiles, respectively. Right panel: As middle panel, but for equator-on observers. From Hennicker

et al. (2018).

thus affecting the blue side of the profile) grows, the downwind contribution (with projected velocities

directed away from the observer, and affecting the red side of the profile) is diminished. Consequently,

the absorption in front of the star increases on the blue side, and decreases on the red one. Again, when
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compared to the MHD model, none of the obtained profiles provides a good agreement. While model

(iv) reproduces the absorption part on the blue side relatively well, the red-sided absorption part is

highly underestimated. On the other hand, a better model for the red-sided absorption (e.g., model iii)

underestimates the absorption part on the blue side. In fact, it is not possible to simultaneously model

the blue and red absorption by only tuning the composition of the closed-field region, suggesting that

(at least) the outer wind needs to be treated differently. For instance, assuming a radial outflow in the

equatorial plane of the outer wind region would increase the blue-sided absorption (and emission),

while preserving the rather good behaviour of model (iii) on the red side.

Taking all this evidence together, we conclude that the (present) ADM model needs to be improved

for the modelling of UV resonance lines, at least in the outer wind. Such a re-formulation then needs

to include a consistent description of the actual velocity and density stratification, accounting for the

delicate interplay between B-field and wind.

5.3 Rotating winds9

As a first application of the 3D SC method to non-spherical atmospheres, we consider the UV

resonance-line formation in the winds of (fast) rotating O stars. Fast rotation has two immediate

consequences on the stellar geometry and wind structure: (i) The surface of any rotating star becomes

distorted, with Req/Rpole approaching 3/2 for rotational speeds near the critical velocity (Collins 1963

assuming a Roche model, and the critical velocity defined by Eq. 5.5 forΩ= 1). (ii) The emergent flux

depends on the (local) effective gravity (corrected for the centrifugal acceleration), and thus, decreases

towards the equator (‘gravity darkening’, see von Zeipel 1924, and Maeder 1999, Maeder & Meynet

2000 for uniform and shellular rotation, respectively). As outlined in Sect. 1.2.3, gravity darkening

together with the effects of non-radial line forces predicts a prolate wind structure, whereas latitudinal

variations of ionization stages (particularly near the bi-stability jump) still allow for an oblate rotating

wind.

As a consequence of the distinct wind structure resulting from a particular model, the wind lines

of rotating stars are expected to differ as a function of rotational speed and inclination. To predict

UV resonance-line profiles of fast rotating stars, we calculate the source function of a prototypical

resonance-line transition including the effects of gravity darkening (described here by the von-Zeipel

description) and surface distortion (obtained from a Roche model) for models with different rotational

velocities. As a first step, we use a wind description that is consistent with the prolate wind model.

For all calculations, we apply the SClin method.

5.3.1 Wind model

To obtain a model for the structure of rotating winds, we apply a two-dimensional version of the

VH-1 code10 developed by J. M. Blondin and co-workers. Our model includes the effects of surface

distortion and gravity darkening. Using a 1D input model derived from radiation driven wind theory

including finite cone angle corrections (CAK and Pauldrach et al. 1986) for the first time step, the

9 copied from Hennicker et al. (2019, Sect. 5).
10http://wonka.physics.ncsu.edu/pub/VH-1/

http://wonka.physics.ncsu.edu/pub/VH-1/
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Figure 5.6: Contours of the density in the xz-plane (z being the rotation axis) for a prototypical rotating

O star with L∗ = 106 L⊙, M∗ = 52.5 M⊙, Rp = 19R⊙, and vrot = 432kms−1 (corresponding to Ω = 0.9).

The density has been scaled by values from the non-rotating model with Ω = 0. While the thick solid

line corresponds to the surface of the (distorted) star, the dashed line would correspond to a spherical

surface. Additionally, the velocity vectors are displayed. From Hennicker et al. (2019).

Table 5.3: Specific parameters used and obtained for the rotating wind models. For a given stellar

luminosity L∗ = 106 L⊙, stellar mass M∗ = 52.5 M⊙, and polar radius Rp = 19R⊙, rows two to eight

display the rotation parameter Ω, the equatorial radius Req, the polar and equatorial effective tempera-

ture Teff,p, Teff,eq, the total mass loss rate Ṁ, and the polar and equatorial terminal velocity v∞,p, v∞,eq,

for different equatorial rotation speeds vrot.

vrot [kms−1] 0 210 294 432

Ω 0 0.5 0.7 0.9

Req [Rp] 1 1.04 1.09 1.22

Teff,p [kK] 41.84 42.44 43.07 44.66

Teff,eq [kK] 41.84 40.61 39.28 35.20

Ṁ [10−6 M⊙yr−1] 2.70 2.73 2.79 2.93

v∞,p [kms−1] 2781 2989 3255 3159

v∞,eq [kms−1] 2781 2651 2556 2273

radiation hydrodynamic equations (accounting for non-radial line forces) are solved until a (quasi)

stationary solution is obtained (see Cranmer & Owocki 1995 and Owocki et al. 1996 for the descrip-

tion of the line force). Assuming azimuthal symmetry, the resulting 2D density and velocity structure

is then used as input for our 3D SC code. Table 5.3 summarizes specific parameters used and obtained

for our model calculations. While the surface integrated mass flux, Ṁ, becomes only slightly increased

with increasing rotational speed, the polar (equatorial) terminal velocities are significantly enhanced

(reduced). For the fastest rotating model (vrot = 432kms−1), Fig. 5.6 shows corresponding density

contours in the xz-plane. The z-axis is aligned with the rotation axis. To explicitly show the prolate

wind structure, we have scaled the density by the density resulting from the non-rotating (spherically
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Figure 5.7: Density and radial velocity as a function of distance from the stellar surface in polar (left

panels) and equatorial (right panels) regions, for different rotation parameters Ω. From Hennicker

et al. (2019).

symmetric) model, as a function of distance from the stellar surface. For different rotational speeds,

Fig. 5.7 displays the density and radial velocity along the polar axis and along an (arbitrarily defined)

axis in the equatorial plane. When compared with the spherically symmetric wind, the densities of the

rotating models are enhanced in polar regions, and become reduced in equatorial ones. Further, the

radial velocity along the polar axis remains nearly the same, except in regions far from the star, where

the terminal velocity of all rotating models becomes enhanced with increasing vrot. On the other hand,

the radial velocity in equatorial regions is significantly reduced at all distances, when compared to

the non-rotating wind, and the deviations from spherical symmetry become more pronounced with

increasing rotational velocity. Although we have averaged the hydrodynamic simulations over the last

20 time steps, the atmospheric structure still suffers from small numerical artefacts.

To calculate the stellar surface distortion, we consider the gravitational potential of the star ac-

counting for the effects of centrifugal forces. Under reasonable assumptions, we can approximate

this potential by a Roche model (e.g., Cranmer & Owocki 1995, see also Sect. 1.2.3 and Eq. 1.3).

The surface of the star is then defined on equipotential lines and can be calculated by setting
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Φ(Rp,Θ = 0) = Φ(R∗(Θ),Θ), with Rp the polar radius. Solving the resulting cubic equation, one finds:

R∗(Ω,Θ)

Rp
=

3

Ωsin(Θ)
cos

(π+ cos−1(Ωsin(Θ)
)

3

)
, (5.4)

with Ω = ω/ωcrit the ratio of the actual to the critical (‘breakup’) angular velocity. Defining the

rotational speed at the equator, vrot, as input parameter, one easily obtains (cf. Cranmer & Owocki

1995, their Eq. 27):

Ω =
vrot

Req

1

ωcrit
(5.5)

Req =
Rp

1− v2rotRp/2GM∗
, (5.6)

with equatorial radius Req. Following Maeder & Meynet (2000), we use the actual stellar mass to

calculate the equatorial radius and critical velocity, without correcting for Thomson-accelerations.

Additionally, we note that our stellar models are well below the Eddington limit (Γe ≈ 0.5). Thus,

the critical angular velocity is simply given by ωcrit = (8GM∗/27R3
p)1/2. Instead of using Eq. (5.4)

in our final implementation, we approximate the stellar surface by a spheroid with semi-major axes

a = b = Req and semi-minor axis c = Rp:

R∗ (Θ)

Rp
=

Req√
R2

p sin2 (Θ)+R2
eq cos2 (Θ)

. (5.7)

Such a formulation greatly simplifies the calculation of the intersection of a given ray with the stel-

lar surface (required for the boundary conditions, see Sect. 3.2.4). For the most extreme test case

considered here (Ω = 0.9), the maximum error on R∗(Θ) due to this approximation is well below the

2%-level, and rapidly decreases for lower rotational velocities.

To calculate the intensity emerging from the stellar core, we set I+c (Θ) = Bν(Teff(Θ)), with the

effective temperature as a function of co-latitude. For a given luminosity of the star, L∗, we obtain

(see also Petrenz & Puls 1996):

Teff(Θ) =

[
L∗

2πσBΣ
|g|4βZ

]1/4

(5.8)

Σ =

∫ π

0

|g|4βZ
R2
∗(Θ) sin(Θ)

−gr/|g|
dΘ ,

with σB the Stefan Boltzmann constant, and the surface integrated effective gravity Σ derived

from g(Θ) = −∇Φ(R∗(Θ),Θ). The parameter βZ describes the gravity darkening law in terms of

Teff(Θ) ∝ |g(Θ)|βZ . As originally formulated by von Zeipel (1924), βZ = 1/4. Though βZ might be

lower (e.g., Domiciano de Souza et al. 2014, Gagnier et al. 2019), for simplicity we nevertheless used

βZ = 1/4. As long as we assume constant ionization fractions and a predefined hydro-model (which

strongly depends on βZ), the effect of βZ on the line profiles will be minor anyway, at least if the

von-Zeipel parameter is not too far from its original value (as to be expected in radiative envelopes).
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Figure 5.8: Predicted emergent flux profiles for the rotating star models with Ω = [0,0.5,0.7,0.9] (see

Table 5.3). The upper and lower panels show the intermediate and strong line with kL = 103 and

kL = 105, respectively. The inclination angle has been set to sin(i) = [0,0.707,1] from left to right.

From Hennicker et al. (2019).

5.3.2 Line formation

For our test models, we use vmicro = 100kms−1, and calculate the frequency integrated opacity from

Eq. 2.61 for an intermediate and a strong line with line-strength parameter kL = 103 and kL = 105.

To obtain the source function, we apply the 3D SClin method and set ǫL = 10−6. The resulting (nor-

malized) line profiles are shown in Fig. 5.8 for different rotational velocities and inclination angles.

Additionally, we display the continuum flux used for normalization in Fig. 5.9. Due to gravity dark-

ening and surface distortion, the continuum depends on the rotation rate and inclination, with largest

fluxes found for high rotation rates and low inclinations (resulting from the higher temperatures in

polar regions and a larger projected stellar disc). In Figs. 5.8 and 5.9, the x-axes have been normalized

to an (arbitrarily chosen) terminal velocity v∞ = 3000kms−1.

The behaviour of the line profiles can be qualitatively explained with the hydrodynamic structure:

(i) For pole on observers (sin(i) = 0, left panel of Fig. 5.8), the absorption column in front of the

star is enhanced with increasing rotational velocity due to the larger densities (and opacities)

in polar regions. Thus, the absorption trough (of unsaturated lines) becomes more pronounced.

The absorption edge of the intermediate lines is found at slightly lower velocities than expected

from the hydrodynamic simulations, because the optical depths of the corresponding resonance

regions are too low to efficiently contribute to the absorption. When considering the strong
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lines, the optical depth is larger, and the absorption edge is more consistent with the actual

terminal velocity. For both applied line strength parameters, the emission peak becomes weaker

with increasing rotation rate, particularly at low projected velocities on the red side of the line

centre (for negative xobs). This effect can be partly explained by the reduced emission from the

equatorial plane, due to the lower densities in these regions. More importantly, however, is the

increased continuum flux that mainly determines the (normalized) height of the emission peak.

(ii) When increasing the inclination towards equator-on observers (sin(i) = 1, right panel of

Fig. 5.8), the behaviour is reversed. For such directions, the continuum plays an only mi-

nor role, since the lower (equatorial) effective temperatures of the rotating models are nearly

compensated by the enlarged projected stellar disc. With increasing rotation parameter, the ab-

sorption trough of the intermediate line becomes reduced and shifted towards lower terminal

velocities, consistent with the hydrodynamical model. When considering the strong line, the

absorption becomes saturated, and only the impact of the different terminal velocities can be

observed. Additionally, and for both line strengths, the absorption slightly extends towards the

red side, because of (negative) projected line of sight velocities near the stellar surface induced

by rotation. For the fastest rotating model withΩ= 0.9, this effect becomes suppressed due to an

increased emission from the (dense) prolate wind structure. This latter effect is only moderate

for lower rotational speeds.

Based on the current hydrodynamic wind structure, we would therefore expect to observe either rather

low terminal velocities or relatively deep absorption troughs for fast rotating stars, and we are able –

at least in principle – to check the theory by comparing our synthetic spectra with (past or future) UV

observations, planned for the future.

Finally, if the projected rotational velocity is known (e.g., measured from the broadening of photo-

spheric lines in the optical), one might even estimate the actual rotational velocity from UV resonance

lines. This latter point becomes clear from Fig. 5.10, where we predict the line profiles of models

with different rotational speed for a given vsin(i) (set here to 200kms−1). Since, at least for the inter-

mediate line, the profile shapes differ, sin(i) could be derived if vsin(i) was known. Of course, such

constraints will become feasible only if the underlying models correctly describe the wind structure

(including possibly varying ionization stages) of rotating stars.

5.4 Summary11

In this Chapter, we applied our 3D radiative transfer code to first non-spherical problems, in order to

answer specific questions related to current research, and to show the capabilities of our numerical

tools.

As a first application to continuum-scattering problems, we estimated the radiation temperatures of

wind-ablation models, focussing on the transition region between a line-driven wind and the optically

thick circumstellar disc (as present during the late phases of massive star formation in accreting high

mass stars). We found a reduction of radiation temperatures by only few percent, which indicates

11 based on Hennicker et al. (2018, Sect. 7), and Hennicker et al. (2019, Sect. 6).
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Figure 5.9: Continuum fluxes for different inclinations sin(i) = [0,0.707,1] from left to right, and

different rotation parameters (using the same color coding as in Fig. 5.8). The continuum fluxes have

been scaled by the corresponding flux obtained from the non-rotating model. From Hennicker et al.

(2019).

Figure 5.10: Predicted emergent flux profiles for the rotating star models with Ω =

[0.5,0.6,0.7,0.8,0.9], and different inclination angles such that vsin(i) = 200kms−1 for all models.

The left and right panels display the intermediate (kL = 103) and strong (kL = 105) line, respectively.

From Hennicker et al. (2019).

that the ionization stages in this region should be (almost) the same as in the wind. Thus, a line-

distribution formalism with the same set of line-strength parameters as used in the wind can be applied

to obtain the line acceleration that finally ablates the disc. To analyse the complete evolution of

optically thick circumstellar discs, the impact of continuum scattering on latitudinal forces still needs

to be investigated, and is left to future studies.

As a benchmark for our 3D FVM code regarding the line transfer in non-spherical models, we

considered the same MHD simulations of dynamical magnetospheres as used by Marcolino et al.
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(2013), and compared the resulting UV resonance-line profiles to those obtained from their 3D-SEI

analysis. The profiles as viewed both polar-on and equator-on are in excellent agreement. These

findings validate the 3D-SEI method for such atmospheric models, and further indicate that also our

3D FVM performs well. We emphasize that for more complex problems (e.g., when accounting for

line overlaps of resonance doublets or multiplets), the SEI method becomes complex, and the 3D

FVM presumably is advantageous for calculating corresponding line transitions.

We additionally applied the analytic dynamical magnetosphere framework (ADM, Owocki et al.

2016), and modelled the atmospheric structure by adopting four different descriptions of the closed-

field regions (where the magnetic-field energy exceeds the wind kinetic energy). A comparison be-

tween the obtained line profiles and those for the MHD simulations from above showed significant

differences. These were explained by the (somewhat insufficient) description of the outer wind region

within the (present) ADM formulation, primarily in the equatorial plane. An improvement of the

underlying assumptions is planned for future work.

As a first application of the 3D SC code to non-spherical problems, we considered the resonance-

line formation in the winds of (fast) rotating O stars. Assuming azimuthal symmetry, the hydrody-

namic structure for a prototypical O star with different rotation rates has been calculated by means

of the 2D VH-1 code. We have included the effects of surface distortion and gravity darkening into

our 3D radiative transfer framework. Given the hydrodynamic models, we are able to predict the

shape of line profiles for different rotational speeds and inclination angles. When compared with a

(non-rotating) spherically symmetric wind (obtained using the same stellar parameters), rotating stars

should either show relatively low terminal velocities (for equator-on observers) or deeper absorption

troughs (for pole-on observers). The latter effect, however, would only be observable when consid-

ering intermediate (i.e., unsaturated) lines. Additionally, we showed that the line profile shapes vary

as a function of rotational speed at a given vsin(i). Thus, assuming that vsin(i) was known (e.g., from

photospheric line modelling), one could estimate the rotational speed, though with a rather large un-

certainty, since the differences of the line profiles are only moderate. We emphasize that other effects

(such as clumping or a flatter gravity darkening law) may additionally shape the line profiles. When

analysing UV observations of fast rotating stars, the 3D radiative transfer code developed in this work

certainly will help to understand the manifestations of various (aforementioned) effects, and to distin-

guish between different theoretical predictions (e.g., prolate vs. oblate wind structures).





Chapter 6

Summary and outlook

As outlined in Chapter 1, a detailed understanding of hot, massive stars is required – among other

topics – to explain the feedback of kinetic energy, radiation, and nuclear processed material to their

host galaxies during all evolutionary stages. To push theory forward, a quantitative description of

radiative transfer is required for both hydrodynamical modelling and calculating synthetic spectra.

Nowadays, the physics within 1D spherically symmetric models is relatively well understood, whereas

non-spherical effects need to be analysed with more elaborate, multi-D tools.

In this thesis, we have developed a 3D radiative transfer code, which, in its current state, is able

to calculate both the UV resonance-line formation and a (simplified) continuum, in rapidly expanding

stellar atmospheres (e.g., in the winds of hot, massive stars). We have implemented two indepen-

dent methods, the finite-volume method and the short-characteristics method, which differ in required

computation time, and in obtained accuracy. For both solution schemes, we have performed extensive

tests. Additionally, we have applied our code to first non-spherical problems, related to wind ablation,

rapidly rotating winds, and dynamical magnetospheres. For a more detailed discussion about the im-

plementation, testing, and first applications of the code, we refer to the individual chapter summaries,

Sect. 3.8, Sect. 4.3, and Sect. 5.4, respectively.

In the following, we give an outlook on future projects and plans related to this work, by discussing

further applications and improvements of our 3D code.

6.1 Further applications

In Sect. 5.2, we have shown that a simplified description of (slowly rotating) magnetic winds by

the analytic dynamical magnetosphere framework cannot reproduce the expected line profiles, when

compared with magneto-hydrodynamic models. To avoid such elaborate MHD simulations, the ADM

model needs to be modified. In this respect, the outer wind regions are of prime importance, as shown

in Sect. 5.2.2. To extend the ADM, the magnetic-field lines in such regions need to be re-arranged

(quasi)-radially, and in such a way that the complete outer wind is ‘automatically’ described by only

few input parameters, e.g., the magnetic-field strength and terminal velocity at the magnetic pole,

Bpole, v
(pole)
∞ , and the mass-loss rate of the star if there was no magnetic field present, ṀB=0. Ideally

then, also the latitudinal variation of mass flux and terminal velocity, ṁ(Θ) and v∞(Θ), would be-
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come properly specified for a large parameter space. To validate the (still to be developed) modified

ADM model, one could compare the atmospheric structure with (time-averaged) MHD simulations

(which might themselves suffer from specific numerical inaccuracies), or rate the synthetic line pro-

files against observations. Our 3D code can easily provide such synthetic line profiles for various wind

models. Since, however, UV resonance lines typically appear as multiplets1, as a first, immediate, and

presumably relatively simple objective for future studies, we aim at extending our resonance-line

description (thus far only implemented for singlets) to include resonance doublets.

With the extension to doublet-lines, also rapidly rotating OB stars can be studied in more detail.

For a better understanding of the wind from such objects, corresponding observations for a wide range

of rotational properties and spectral types would be required. ‡Ideal testbeds for future investigations

of fast rotating winds are the stars VFTS102 (O9 Vnnne, Dufton et al. 2011) and VFTS285 (O7.5

Vnnn, Walborn et al. 2012), both rotating at nearly their critical velocity.‡ As a first step, we could

then model synthetic line profiles, focussing on the different description of prolate vs. oblate wind

structures, and on various gravity-darkening prescriptions (e.g., von-Zeipel model with different βZ

exponents, or the ω-model). Unfortunately, however, high signal-to-noise observations of rapidly

rotating OB stars in the UV spectral range are rare (if such observed spectra exist at all), and will

neither be provided in the near future (at least for the required large parameter space), due to missing

UV capabilities of next-generation telescopes. We therefore aim at extending our code to calculate

synthetic line profiles also in the optical regime (e.g., to predict the Hα line, see Sect. 6.3 regarding

future developments), where many more observations exist. To this end, we will need to implement

multi-level atoms in the near future. We note, that current Hα-modelling in rapidly rotating stars

is typically performed by adopting the level populations from 1D calculations, and using a multi-D

formal solution to calculate the synthetic line profiles. A comparison of this simplified (and thus less

time consuming) approach with consistent 3D level populations is also planned for future studies.

Another topic of interest is the impact of clumping on the line formation in the atmospheres of

hot stars. State-of-the art (1D) modelling relies on a statistical 1D description of the clump distri-

bution, discarding inhomogeneities of the velocity field, and the angular distribution of the clumped

and inter-clump medium (porosity). Since, however, clumping severely affects the line diagnostics

of both recombination lines (most importantly, Hα) and UV resonance lines, a correct treatment of

the structured wind is urgently needed. With our 3D radiative transfer solver, we are able to test

various clumping prescriptions via synthetic UV line profiles, accounting for porosity effects and for

inhomogeneities of the velocity field. Due to the small length scale of clumps, however, such investi-

gations require low micro-turbulent velocities, and thus become challenging for our solution methods

in terms of computation time. Before turning towards the investigation of different clumping scenar-

ios, we therefore aim at certain numerical improvements of our code (see Sect. 6.2). Furthermore,

different clumping approaches should also be compared via Hα, again indicating the importance for

implementing multi-level atoms within our 3D framework (see Sect. 6.3).
‡Finally, we note that our tools are, of course, not limited to magnetic or rotating stars. Indeed,

almost any kind of stellar outflows that deviate from spherical symmetry (with non-relativistic velocity

fields) can be investigated‡, e.g., to address open questions related to colliding winds in close binaries,

1 In most cases, the lower state consists of two fine-structure levels.
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the impact of (non-radial) pulsations on the resonance-line formation, or to large-scale variability

induced by co-rotating interaction regions.

Besides the above mentioned applications with respect to spectrum synthesis, we plan to extend

the tools developed in this thesis, such that the non-local coupling of the radiation field with all flow

variables can be incorporated within multi-D hydrodynamic solution methods (see Sect. 6.3). Among

many other problems, we can then investigate, e.g., the impact of latitudinal line-force components on

the wind in accreting high-mass stars.

6.2 Numerical improvements

A major drawback of 3D radiative transfer methods (as developed in this thesis, and in general) is the

required computation time. In the (near) future, we will therefore develop a parallelization strategy

that is suitable also for ‘super-computers’. Additionally, we plan to implement specific numerical

improvements that reduce the number of required floating point operations, while still enabling a

reasonable accuracy.

Achieving this objective, however, is difficult, because the minimum number of spatial grid points,

and of the frequency and angular integration nodes, is basically fixed, in order to resolve all resonance

zones with corresponding profile functions, and to obtain an accurate angular integration. The latter

might be improved, noting that any (accurate) angular integration scheme – at least for optically thin

continua – has to resolve the central star and its edges at each point in the atmosphere. This circum-

stance constitutes the major difficulty within the FVM and SC method, since the specific intensity

for a given direction at a considered grid point depends on the intensity at the neighbouring points.

Thus, in contrast to the LC method (where the intensities at all grid points can be calculated indepen-

dently for each direction), the angular grid needs to be defined globally, yielding a resolution of ‘only’

∆θ ≈ ∆φ ≈ 6◦ even for NΩ ≈ 2000 directions. For future studies, we therefore aim at implementing

and testing a mixed scheme, where the major part of the radiative transfer consists of the FVM/SC

method using only ‘few’ NΩ directions (on the order of few hundreds), extended by a LC method

with N
(LC)

Ω
(x, y,z) ≈ 20 directions independently defined for each grid point, such that the central star

and its edges become resolved. This way, we might be able to reduce the computation time, while

potentially even improving the accuracy. We note, however, that such an approach can only be applied

to the continuum transport, since the line profile at each spatial grid point and each frequency node

needs to be resolved by the angular grid.

In this respect, also the reduction of micro-turbulent velocities (as required for analysing different

clumping laws) poses a severe problem. Probably, solving this issue without a ‘brute-force’ approach

by increasing the number of frequency and angular integration nodes, will turn out to be complex, if

possible at all. Particularly when accounting for a multitude of lines, low micro-turbulent velocities

are presumably not feasible in terms of computation time, except for super-computers.

Another problem that still needs to be solved is the violation of flux conservation introduced by

numerical diffusion and the order of accuracy within the FVM and SC methods (Sect. 4.2.4). To tackle

this issue, we might implement and formulate the SC method on a spherical grid2, and investigate in

2 We remind that the FVM is difficult to formulate in spherical coordinates (Sect. 2.2.7). Furthermore, since the flux-
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how far numerical diffusion affects the finally obtained solution for such coordinate systems. At least

if the stellar surface and wind-structure is ‘almost’ spherical (e.g., for non-magnetic, homogeneous

winds with only moderate rotation rates), a curved grid certainly becomes advantageous to describe all

flow variables. We emphasize, however, that the solution scheme becomes computationally expensive,

by introducing additional angular interpolations for the upwind intensities (which still give rise to

numerical diffusion and are intrinsic to any SC solution scheme). To avoid any numerical diffusion

errors, which are tightly coupled with the flux-conservation problem, we therefore might have to

implement the LC method, combined with a suitable parallelization strategy. In this case, also the

angular integration could be significantly improved, by defining suitable directions that depend on the

considered grid points.

6.3 Future developments

The long-term objective of our work is the development of a 3D atmosphere code, that incorporates

– similarly to state-of-the art 1D spectral synthesis tools – the full NLTE rate equations, in order

to obtain a consistent solution for the radiation field and the level populations in arbitrary stellar

atmospheres. To test the basic methods for solving the radiative transfer including scattering, in

this thesis we presented a first step towards such models by adopting a two-level-atom approach and

a simplified continuum. The obvious next step is the combination of the continuum and the line

transition, to correctly treat the radiative transfer when continuum- and line-opacities are of the same

order (e.g., in the line wings). Additionally, this description will serve as a test case for the accelerated

Λ-iteration scheme when including a multitude of lines with line overlaps. When all tests have been

passed, we plan to successively implement several multi-level atoms (for which the formal solution

of the radiative transfer equation should pose no major problem), focussing on the calculation of new

level populations via the NLTE rate equations coupled with a non-local ALI scheme. Storing the level

populations for a multitude of elements, each possessing a (potentially) large number of levels, might

become problematic in terms of memory capacity though.

Furthermore, we additionally need to account for a consistent description of the photosphere and

the transition to the wind, due to the typically strongly varying formation depths of different line transi-

tions. Thus, including a (reasonable) photospheric model is also planned for the future. In this respect,

the major problem arises from the small scale height of the photosphere, therefore requiring a rather

high resolution in the deep atmospheric layers. As a first step, we plan to include the photosphere with

a ‘brute-force’ approach by applying a high resolution, provided either by mesh-refinement methods,

or with a highly resolved spherical grid. For a distorted photosphere (as found in, e.g., rapidly rotating

stars), however, the formulation in spherical coordinates might loose its advantage in describing the

flow variables. Furthermore, the formulation of the FVM and SC methods would become complex

(see the discussion in Sect. 6.2). Alternatively, we will test to sample the photosphere by several pla-

nar patches distributed over the complete surface. Within the latter approach, curvature effects within

the photosphere are discarded, and the outer boundary conditions need to be provided from the wind

conservation problem within the FVM is primarily introduced by the low-order solution scheme (which cannot be cir-

cumvented), we only discuss the SC method in the following.
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regime.

Another project we are aiming at is the coupling of our 3D radiative transfer solver with hydro-

dynamic solution schemes, in order to consistently solve the radiation-hydrodynamic equations in

various kinds of hot-star atmospheres. In this respect, the major difficulty is introduced by the non-

local character of the radiation field in scattering dominated environments. A detailed treatment of the

non-local radiation field is usually prohibitive within hydrodynamic simulations, due to the immense

computational effort. Thus, current radiation-hydrodynamic codes typically rely on purely local ex-

pressions for all radiation variables (such as the radiative flux, and the radiative forces) by, e.g., apply-

ing the Sobolev method for calculating line forces in (optically thin) rapidly expanding winds, or by

describing the radiation field via ‘flux-limited diffusion’ (FLD)3 when continuum processes contribute

most to the radiation pressure. To validate (or falsify) the FLD approach for scattering dominated at-

mospheres, we plan to extend our continuum radiative-transfer solver to a (still simplified) description

over the complete frequency range, and to couple the developed tools with specific hydrodynamics

codes (e.g., MPI-AMRVAC developed at KU Leuven, see Keppens et al. 2003, Porth et al. 2014, Xia

et al. 2018). By a comparison of our 3D radiative transfer with the FLD approach, we will be able to

understand potential shortcomings of the FLD in more detail, and might even calibrate the FLD such

that it is still applicable also at intermediate optical depths and in scattering dominated environments.

The finally developed radiation-hydrodynamics modules could then be used, e.g., to model, for the

first time, the violent eruptions as observed in Luminous Blue Variables (presumably originating from

inhomogeneous, porous, continuum-driven winds). With the tools presented here (and further devel-

oped in the future), we will thus be able to understand many open questions related to mass loss from

porous atmospheres and continuum-driven outbursts, which, in turn, will provide a better constraint

on, e.g., kinetic energy and radiative feedback, and the end products of nearby and distant (Pop III)

stars.

Of course, there is still a long way to go, until fully consistent 3D NLTE models can either be

applied to the spectrum synthesis of hot, massive stars, or can be coupled with multi-D hydrodynamic

solution schemes. The first step, however, has been taken in this thesis work, and the way ‘only’ needs

to be followed until its end.

3 Within FLD, the radiative transport is treated as a diffusive process reproducing the correct limiting cases for optically

thick and optically thin environments. When scattering processes play a significant role, and in the transition regime from

optically thin to optically thick layers, this approach might have to be revised.





Appendix A

3D Sobolev method

In this chapter, we derive the 3D Sobolev method1 for calculating resonance-line transitions (in the

absence of a background continuum) following Rybicki & Hummer (1978). For this method, we

consider the equation of radiative transfer as given in Eq. (2.47), and assume the line opacity to be

given by a frequency-independent part and the (normalized) profile function, χν = χ̄Φν (e.g., Eq. 2.28).

For any point r under consideration, the specific intensity for a given observer’s frame frequency ν

can then be calculated as:

Iν(r) = Iinc exp

[
−
∫ ∆s

0

χ̄(s)Φν(s)ds

]

︸                 ︷︷                 ︸
(I)

+ exp

[
−
∫ ∆s

0

χ̄(s)Φν(s)ds

︸               ︷︷               ︸
(I)

]
·
∫ ∆s

0

S L(s)exp

[∫ s

0

χ̄(s′)Φν(s′)ds′

︸                 ︷︷                 ︸
(II)

]
χ̄(s)Φν(s)ds

︸                                                        ︷︷                                                        ︸
(III)

, (A.1)

where the geometry of the problem is shown in Fig. A.1. To proceed further, we define the Sobolev

length as the length over which the comoving-frame frequency changes by one Doppler width, ∆νD,

or, in other words, as the length over which the projected velocity changes by vth:

∆νD = νi j

∆ (nu)

c
=:
νi j

c

d(nu)

ds
∆sSobo ⇐⇒ ∆sSobo =

1

d(nV)

ds

, (A.2)

where V is the velocity vector normalized to the thermal velocity. In the following, we consider the

variation of the intensity along a ray, Iν(r), in the vicinity of a resonance region r0 with interaction

length defined by the Sobolev length. For steep velocity gradients, Sobolev (1960) noted that the (fre-

quency integrated) opacity and the source function along the ray can be assumed to be constant over

the interaction region, yielding χ̄(s) ≈ χ̄(r0) = const. and S L(s) ≈ S L(r0) = const.. When additionally

approximating the projected velocity along the ray by a linear function (at least within the contributing

1 The 1D Sobolev method in spherically symmetric, rapidly expanding atmospheres can be deduced from the 3D description

by simply replacing the required derivative of the projected velocity along a ray by the corresponding spherical term.
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x

z
n

r r0

rinc

s

∆s

s = 0

Figure A.1: Geometry for deriving the 3D Sobolev approximation at a given point r indicated by the

red dot with a resonance point r0. The path length s is measured along a given ray with s := 0 at the

beginning of the ray. Adapted from Rybicki & Hummer (1978).

resonance region), and using a Doppler profile for describing the profile function, Eq. (A.1) can be

solved analytically. The optical depth integrals yield:

(I) ≈
∫ ∆s

0

χ̄(s′)Φν(s′)ds′ =
χ̄(r0)
√
π∆νD

∫ ∆s

0

exp

−
(
ν− νi j

∆νD
−Vn(r0)+

dVn

ds

∣∣∣∣∣
r0

∆s0−
dVn

ds

∣∣∣∣∣
r0

s′
)2

ds′

(A.3)

(II) ≈
∫ s

0

χ̄(s′)Φν(s′)ds′ =
χ̄(r0)
√
π∆νD

∫ s

0

exp

−
(
ν− νi j

∆νD
−Vn(r0)+

dVn

ds

∣∣∣∣∣
r0

∆s0−
dVn

ds

∣∣∣∣∣
r0

s′
)2

ds′ ,

(A.4)

where Vn is the projected velocity along the ray, and ∆s0 = |rinc − r0|. Defining x as the argument of

the profile function:

x =
ν− νi j

∆νD
−Vn(r0)+

dVn

ds

∣∣∣∣∣
r0

∆s0−
dVn

ds

∣∣∣∣∣
r0

s′ ⇐⇒ dx = −dVn

ds

∣∣∣∣∣
r0

ds′ (A.5)

x(0) =
ν− νi j

∆νD
−Vn(r0)+

∆s0

∆sSobo(r0)

∆sSobo→0
−→ ∞ (A.6)

x(s) = t (A.7)

x(∆s) = tr =
ν− νi j

∆νD
−Vn(r0)+

dVn

ds

∣∣∣∣∣
r0

∆s0−
dVn

ds

∣∣∣∣∣
r0

∆s , (A.8)

we finally obtain:

(I) = τSobo
1
√
π

∫ ∞

tr

e−x2

dx = τSobo
1

2
erfc(tr) := τSobow(tr) (A.9)

(II) = τSobo
1
√
π

∫ ∞

t

e−x2

dx = τSobo
1

2
erfc(t) := τSobow(t) , (A.10)
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with the complementary error function erfc(t), and the Sobolev optical depth τSobo :=

χ̄(r0)/(∆νD dVn/ds). The Sobolev optical depth describes the typical line optical depth at a given

point r0 after the ray has passed the complete resonance zone, and can become - depending on the

considered line transition - very large. We emphasize that τSobo is independent of the profile width,

since the thermal velocity used for normalization of the projected velocity cancels with the Doppler

width. Using the same substitution as defined in Eqs. (A.5)-(A.8), the source integral (III) yields after

some algebra:

(III) = S L(r0)τSobo
1
√
π

∫ ∞

tr

eτSobow(t)e−t2dt = S L(r0)
(
eτSobow(tr)−1

)
. (A.11)

Inserting Eqs. (A.9)-(A.11) into the original equation, we finally obtain for the specific intensity at a

point r with given observer’s frame frequency such that r0 is a resonance point:

Iν(r) = Iince−τSobow(tr)+S L(r0)
(
1− e−τSobow(tr)

)
, (A.12)

w(tr) =
1

2
erfc(tr) =

1

2
erfc

(
ν− νi j

∆νD
−Vn(r0)+

dVn

ds

∣∣∣∣∣
r0

∆s0−
dVn

ds

∣∣∣∣∣
r0

∆s

)
, (A.13)

τSobo =
cχ̄(r0)

νi j |dvn/ds|r0

. (A.14)

Thus, if the comoving-frame frequency is much larger than the transition frequency, e.g., if con-

sidering a position r in front of the resonance zone with Vn(r) ≪ Vn(r0), then tr → ∞, w(tr)→ 0,

and thus Iν(r)→ Iinc, as required. Similarly, for positions behind the resonance region where the

comoving-frame frequency is much smaller than the line-transition frequency, e.g., if Vn(r)≫ Vn(r0),

then tr → −∞, w(tr)→ 1, and Iν(r)→ Iince−τSobo(r0) + S L(r0)
(
1− e−τSobo(r0)

)
. Thus, the intensity at a

given point behind the resonance zone depends solely on local quantities at the resonance zone, and

on the incident intensity in front of the resonance zone. Of course, these solutions are only valid for

monotonic velocity fields, i.e., if only one resonance point is found along the ray.

The variation of the specific intensity along a ray at a given observer’s frame frequency can also

be expressed as the variation of the specific intensity with frequency at the resonance point r0. Thus,

the scattering integral at r0 can be obtained by integrating the profile weighted intensity at r0 over

frequency:

Īν(r0) =

∫ ∞

0

Iν(r0)Φν(r0)dν

=
1

√
π∆νD

∫ ∞

0

[
Iince−τSobo(r0)w(tr)+S L(r0)

(
1− e−τSobo(r0)w(tr)

)]
exp

−
(
ν− νi j

∆νD
−Vn(r0)

)2
dν

=
1
√
π

∫ ∞

−∞

[
Iince−τSobo(r0)w(tr)+S L(r0)

(
1− e−τSobo(r0)w(tr)

)]
e−t2r dtr

=

∫ 1

0

Iince−τSobo(r0)w+S L(r0)
(
1− e−τSobo(r0)w

)
dw

=Iinc
1− e−τSobo(r0)

τSobo(r0)
+S L(r0)

[
1− 1− e−τSobo(r0)

τSobo(r0)

]
, (A.15)
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where Iinc should be evaluated at the line centre, ν = νi j +Vn∆νD. Eq. (A.15) is a general solution

which also holds for non-monotonic velocity fields, since the coupling of different resonance points

can be incorporated by identifying Iinc with the emergent intensity from a previous resonance region.

This non-local coupling, however, severely complicates the calculation of the scattering integral. For

simplicity, we only consider monotonic flows in the following, such as found in, e.g., smooth 1D

spherically symmetric wind models. Assuming an optically thin background continuum, Iinc is simply

given by the intensity emerging from the stellar core, Ic, if a considered ray originates from the core,

and zero else. Since Eq. (A.15) is valid for each r0, we can replace r0 by r, and find:

J̄(r) =
1

4π

∫
Ī(r)dΩ =

[
1−β (r)

]
S L(r)+βc(r)Ic , (A.16)

with

β(r) =
1

4π

∫

Ω

1− e−τSobo(r,Ω)

τSobo(r,Ω)
dΩ , βc(r) =

1

4π

∫

Ωc

1− e−τSobo(r,Ω)

τSobo(r,Ω)
dΩ ,

and Ωc corresponding to directions intersecting the stellar core. The Ω-dependence of the Sobolev

optical depth is introduced by the gradient of the projected velocity along a given direction. Eq. (A.16)

can be used to calculate the source function, e.g., within the two-level-atom approach, S L = (1−ǫL)J̄+

ǫLB, yielding (see also Rybicki & Hummer 1978):

S L(r) =
(1− ǫL)βc(r)Ic+ ǫLBνi j

ǫL+ (1− ǫL)β(r)
. (A.17)

Thus, for monotonic velocity fields, the source function and scattering integral can be calculated

within the Sobolev approach from purely local quantities, contrasted to the specific intensity, which,

at a considered position r with velocity u, depends on the conditions at the resonance zone r0. We

emphasize that also the radiative force becomes a purely local quantity. Within hydrodynamic simu-

lations of rapidly expanding atmospheres, the radiative force exerted by line-scattering and absorption

is therefore typically calculated from Sobolev theory.
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On the finite-volume methods and

stability

In this chapter, we briefly motivate our decision for implementing the (low-order) vertex-centred

FVM (Sect. 3.1), by showing that (nearly) all other descriptions of the FVM result in an unstable1

solution scheme. To this end, we only consider the 1D case, which already illustrates the fundamental

problems. A formulation in more dimensions can be applied straight-forward, but is beyond the scope

of this discussion. An overview of the stable and unstable finite-volume methods presented in this

Chapter is shown in Fig. B.1.

In 1D, the time-independent equation of radiative transfer for a ray propagating along the x-axis,

integrated over a control volume, Vc, with surface, Sc, yields:
∫

Sc

IdS =

∫

Vc

χ (S − I)dV , (B.1)

where the surface integral in 1D reduces to the difference of the specific intensity at the control-volume

boundaries, and the volume integral within the cell-centred and vertex-centred FVM is performed over

[xi−1, xi] and [xi−1/2, xi+1/2], respectively. From Eq. (B.1), one can derive various solution schemes, by

adopting an (in principle) arbitrary functional behaviour of the opacity, source function, and intensity

within the considered volume. In the following, we present different approximations applied within

the cell-centred and vertex-centred FVM, respectively, and analyse the corresponding discretized ra-

diative transfer equations with respect to ‘stability’. All quantities are assumed to be represented on a

discrete grid, {xi}.

1D cell-centred FVM with linear interpolations. The simplest approach to solve Eq. (B.1) within

the cell-centred FVM, is by applying the Trapezoidal rule. In one dimension, we then find:

Ii− Ii−1 =

∫ xi

xi−1

χ (S − I)dx ≈ (χi−1S i−1+χiS i)
∆x

2
− (χi−1Ii−1+χiIi)

∆x

2
, (B.2)

1 Strictly speaking, the term ‘numerical stability analysis’ refers to the growth/decay of disturbances by the discretization

scheme applied to differential equations. Here, we define an ‘unstable’ solution method as a numerical scheme that

potentially results in negative – thus unphysical – specific intensities.
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Figure B.1: Different 1D finite-volume methods, with the functions (χS )(x) and (χI)(x) within the

indicated control-volume, Vc, approximated by linear (left and middle panel) and piecewise linear in-

terpolations (right panel). While the left panel displays the (low-order) cell-centred FVM, the middle

and right panels represent the stable and an unstable vertex-centred FVM (see text). All quantities are

only stored at the grid points (indicated by the red dots).

with ∆x = xi− xi−1 defining the control volume. Solving for the intensity at a grid point xi, we easily

obtain:

Ii =

(χiS i+χi−1S i−1)
∆x

2

1+
χi∆x

2

+

1− χi−1∆x

2

1+
χi∆x

2

Ii−1 . (B.3)

Considering only absorption terms, the solution scheme obviously gives unphysical (i.e., negative)

results, if the opacity is large (∆τ > 1), and cannot be applied for our purposes. This argumentation

can be extended also to interpolation schemes of higher order (e.g., applying a quadratic interpolation

in the interval [xi−1, xi+1]). Thus, an alternative formulation of the FVM has to be used.

1D vertex-centred FVM with linear interpolations. Using linear interpolations to approximate

the quantities (χI) and (χS ) within the control volume of the vertex-centred FVM, Eq. (B.1) becomes:

Ii+1/2− Ii−1/2 =

∫ xi+1/2

xi−1/2

χ (S − I)dx

≈
(
χi−1/2S i−1/2+χi+1/2S i+1/2

) ∆x

2
−

(
χi−1/2Ii−1/2+χi+1/2Ii+1/2

) ∆x

2
= (χiS i−χiIi)∆x , (B.4)

where the last equality holds only for linearly approximated quantities on an equidistant grid with

∆x = xi+1/2 − xi−1/2 = xi − xi−1. For non-uniform grids, the last line of Eq. (B.4) can be interpreted
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as the integral over a suitable average of the quantities (χI)− (χS ). Using the upwind approximation

(i.e., setting Ii−1/2→ Ii−1 and Ii+1/2→ Ii), and solving Eq. (B.4) for the intensity at a grid point xi, we

find:

Ii =
χi∆xi

1+χi∆xi

S i+
1

1+χi∆xi

Ii , (B.5)

which, in contrast to the corresponding ‘unstable’ vertex-centred method described above, gives al-

ways positive values for the intensity, independent from ∆τ. In this respect, also the upwind approxi-

mation is of prime importance to ensure a stable solution scheme.

1D vertex-centred FVM with piecewise linear interpolations. Since the 1D vertex-centred FVM

from above suffers from severe numerical diffusion errors (see Sect. 4.1.2), one might aim at increas-

ing the accuracy by applying higher order methods. However, as shown in the following, already

extending the FVM with piecewise linear interpolations of the quantities (χI) and (χS ) in the inter-

vals [xi−1, xi], and [xi, xi+1], results again in an unstable solution scheme. With such piecewise linear

approximations, the volume integral can be calculated as:

∫ xi+1/2

xi−1/2

(χS −χI)dx =

∫ xi

xi−1/2

(χS −χI)dx+

∫ xi+1/2

xi

(χS −χI)dx . (B.6)

With the integrals of an arbitrary piecewise linear function f :

∫ xi

xi−1/2

[
fi−1+

fi− fi−1

∆xi

(x− xi−1)

]
dx = · · · = ∆xi

8
fi−1+

3∆xi

8
fi (B.7)

∫ xi+1/2

xi

[
fi+

fi+1− fi

∆xi+1
(x− xi)

]
dx = · · · = 3∆xi+1

8
fi+
∆xi+1

8
fi+1 , (B.8)

we finally obtain for the discretized equation of radiative transfer:

Ii+1/2− Ii−1/2 = 〈χS 〉−
χi−1∆xi

8
Ii−1−

3χi (∆xi+∆xi+1)

8
Ii−
χi+1∆xi+1

8
Ii+1 , (B.9)

where 〈χS 〉 describes the source-integral. Again, using the upwind approximation to calculate the

intensities at the control-volume surfaces, we find for the intensity at a grid point xi+1:

Ii+1 =
8〈χS 〉
χi+1∆xi+1

+
8−χi−1∆xi

χi+1∆xi+1
Ii−1+

8−3χi (∆xi+∆xi+1)

χi+1∆xi+1
Ii . (B.10)

Thus, even for the most trivial (higher order) vertex-centred FVM, i.e., using piecewise linear inter-

polations and the upwind approximation to solve the volume and surface integrals, respectively, we

obtain an ‘unstable’ solution scheme with potentially negative intensities (in the pure absorption case,

here for roughly ∆τ & 16/7 ≈ 2.3).





Appendix C

Bézier interpolation

This chapter has been copied from Hennicker et al. (2019, Appendix B and C).

C.1 1D Bézier interpolation1

In this section, we discuss an interpolation technique using quadratic Bézier curves (e.g., Auer 2003,

Schwarz 1997). Such curves are generally constructed from three given points b0, b1, b2 (see Fig. C.1,

left panel), and have the following useful properties:

(i) The boundary points, b0 and b2 are reproduced exactly by the Bézier curve.

(ii) The straight connections (b1− b0) and (b2− b1) define the tangent lines of the curve at b0 and

b2, respectively.

(iii) Any point on the Bézier curve is located in the convex hull of b0, b1, b2.

In a 2D plane described by coordinates x and y, the quadratic Bézier curve is parameterized as:

b(t) =

(
x(t)

y(t)

)
= (1− t)2 b0+2t (1− t) b1+ t2b2 , (C.1)

with t ∈ [0,1], and b0 = (x0, y0), b1 = (x1, y1), b2 = (x2, y2). With Eq. (C.1), the properties (i)-(iii)

can be exploited to construct a monotonic interpolation scheme by identifying b0,b2 with two given

data points (x0, f0), (x2, f2), and defining b1 as a free (and tunable) parameter. Thus, b1 is commonly

named ‘control point’, and is only required to set the slope of the Bézier curve. To reproduce the

underlying function best, and to preserve monotonicity of the resulting curve, the control point should

be chosen with care.

In the following, we present a Bézier-interpolation technique for an interval x ∈ [xi−1, xi], given

three data points, (xi−1, fi−1), (xi, fi), (xi+1, fi+1). The interpolation formulas corresponding to the

interval x ∈ [xi, xi+1] are given at the end of this section.

1 copied from Hennicker et al. (2019, Appendix B).
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Figure C.1: Left panel: Bézier curves (solid lines) for three given points b0, b1, b2. The blue, red

and green lines represent the resulting curves for different control points b1. The straight connections

of the control points (colored asterisks) with the data points are indicated by the dotted lines. Right

panel: Different interpolation techniques for a set of three data points at x-coordinates indicated by

the dotted vertical lines. The solid and dashed lines correspond to the interpolation in the different

intervals [xi−1, xi] and [xi, xi+1], respectively. Linear interpolations, quadratic interpolations (connect-

ing all three data points), and a monotonic Bézier curve (with ω calculated from Eq. (C.5) in the

interval [xi−1, xi]) are indicated in red, blue and green. Since the quadratic interpolation is already

monotonic in the interval [xi, xi+1], the monotonic Bézier curve coincides with the dashed, blue line.

From Hennicker et al. (2019).

Interval [xi−1, xi]. A quadratic Bézier curve in the interval [xi−1, xi] is given from Eq. (C.1):

(
x(t)

f (x (t))

)
= (1− t)2

(
xi−1

fi−1

)
+2t (1− t)

(
xc

fc

)
+ t2

(
xi

fi

)
, (C.2)

with (xc, fc) the control point. The abscissa of the control point, xc, can be chosen arbitrarily (at least

in principle). To obtain a second-order interpolation scheme, however, xc needs to be located at the

centre of the data-point’s abscissae 2, and is therefore set to xc = (xi−1 + xi)/2. Then, the quadratic

Bézier interpolation scheme is given by:

f (x) = (1− t)2 fi−1+2t(1− t) fc+ t2 fi (C.3)

t = (x− xi−1)/(xi− xi−1) ,

where t has been determined from the definition of xc and Eq. (C.2). Since the straight connection of

the control point (xc, fc) with the data point (xi, fi) defines the tangent line of the Bézier curve at this

data point, fc is calculated as

fc = fi−
d f

dx

∣∣∣∣∣
xi

∆xi

2
,

2 If xc was located at, e.g., xc = xi−1 +3/4(xi − xi−1), one can easily show that the resulting Bézier curve never reproduces

the unit parabola for any ordinate value fc.
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with ∆xi = xi − xi−1. The unknown derivative at xi needs to be approximated. Using also the infor-

mation from the next data point, (xi+1, fi+1), and assigning a weight ω to the forward and backward

derivatives (obtained from finite differences), we find

fc = fi−
∆xi

2

(
ω

fi− fi−1

∆xi
+ (1−ω)

fi+1− fi

∆xi+1

)
, (C.4)

with ∆xi+1 = xi+1− xi. With a proper choice of ω, we can adjust the Bézier curve to our needs by shift-

ing the control point up or down. For instance, setting ω = ∆xi+1/(∆xi +∆xi+1) results in the unique

parabola connecting the three given data points, while ω = 1 would yield the linear interpolation. To

avoid overshoots and negative function values, we demand that the Bézier curve shall be monotonic

in the interval [xi−1, xi]. Noting that monotonicity is obtained when the control point is located in the

interval fc ∈ [ fi−1, fi], corresponding ω-values should lie in between the following limits:

ω
[i−1,i]
i−1

:= ω( f
[i−1,i]
c = fi−1) = 1+

1

1− fi+1− fi
fi− fi−1

∆xi

∆xi+1

(C.5)

ω
[i−1,i]
i

:= ω( f
[i−1,i]
c = fi) =

1

1− fi− fi−1

fi+1− fi

∆xi+1

∆xi

, (C.6)

where the superscript [i−1, i] denotes that ω corresponds to the interpolation scheme in the left inter-

val, [xi−1, xi]. In the final implementation, we avoid the division by zero if fi = fi−1 or fi = fi+1, of

course. Our standard interpolation is then performed as follows: (i) We calculate ω such that we ob-

tain the unique parabola connecting all three data points. (ii) If ω lies outside the allowed limits from

Eq. (C.5) and (C.6), we adjust ω to yield monotonic interpolations. In Fig. C.1, we display the mono-

tonic Bézier curve resulting from a ω-parameter calculated by means of Eq. (C.5), together with linear

and quadratic interpolations (the latter connecting the three data points). Since monotonicity is always

obtained for ω ∈ [ωi−1,ωi], we can define even stricter limits in order to avoid oscillations during the

iteration scheme, by e.g., setting ω = 1 to obtain purely linear interpolations (see Sect. 3.5.2).

To calculate the elements of the (approximate) Λ-matrix, the interpolation coefficients are re-

quired. Combining Eqs. (C.3) and (C.4) then gives:

f
(
x ∈ [xi−1, xi]

)
= ã[i−1,i] fi−1+ b̃[i−1,i] fi+ c̃[i−1,i] fi+1 , (C.7)

with

ã[i−1,i] = 1+ (ω−2)
x− xi−1

xi− xi−1
+ (1−ω)

(
x− xi−1

xi− xi−1

)2

(C.8)

b̃[i−1,i] =
(1−ω)∆xi+ (2−ω)∆xi+1

∆xi+1

x− xi−1

xi− xi−1

+ (ω−1)
∆xi+∆xi+1

∆xi+1

(
x− xi−1

xi− xi−1

)2

(C.9)

c̃[i−1,i] =
(ω−1)∆xi

∆xi+1

x− xi−1

xi− xi−1

− (ω−1)∆xi

∆xi+1

(
x− xi−1

xi− xi−1

)2

. (C.10)
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The interpolation formula for the right interval [xi, xi+1] uses the same data points as above. Since

the value of the control point needs to be calculated at a different x-coordinate, xc = (xi+1+ xi)/2, we

cannot simply substitute indices. Using

f (x) = (1− t)2 fi+2t(1− t) fc+ t2 fi+1 (C.11)

t := (x− xi)/(xi+1− xi)

fc = fi+
∆xi+1

2

(
ω

fi+1− fi

∆xi+1
+ (1−ω)

fi− fi−1

∆xi

)
, (C.12)

we obtain for this interval:

f (x ∈ [xi, xi+1]) = ã[i,i+1] fi−1+ b̃[i,i+1] fi+ c̃[i,i+1] fi+1 , (C.13)

with

ã[i,i+1] =
(ω−1)∆xi+1

∆xi

x− xi

xi+1− xi

− (ω−1)∆xi+1

∆xi

(
x− xi

xi+1− xi

)2

(C.14)

b̃[i,i+1] = 1− ω∆xi+ (ω−1)∆xi+1

∆xi

x− xi

xi+1− xi

+ (ω−1)
∆xi+∆xi+1

∆xi

(
x− xi

xi+1− xi

)2

(C.15)

c̃[i,i+1] = ω
x− xi

xi+1− xi
+ (1−ω)

(
x− xi

xi+1− xi
,

)2

(C.16)

and

ω
[i,i+1]
i

:= ω( f
[i,i+1]
c = fi) =

1

1− fi+1− fi
fi− fi−1

∆xi

∆xi+1

(C.17)

ω
[i,i+1]
i+1

:= ω( f
[i,i+1]
c = fi+1) = 1+

1

1− fi− fi−1

fi+1− fi

∆xi+1

∆xi

. (C.18)

The corresponding Bézier curves for different ω-parameters (ω = 1 for linear and ω = ∆xi/(∆xi +

∆xi+1) for continuous quadratic interpolations) are also shown in Fig. C.1. We note that the Bézier

interpolation gives a continuous function in the complete interval [xi−1, xi+1] only for those ω-values

that define the parabola connecting all three data points.

C.2 2D Bézier interpolation3

To interpolate upwind and downwind quantities, a 2D interpolation scheme is required. Fig. C.2

displays the geometry for a 2D rectangular area, with grid points indicated by the black dots. With

this setup, we perform a 2D Bézier interpolation by applying three 1D Bézier interpolations along the

3 copied from Hennicker et al. (2019, Appendix C).
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i−1, j−1 i, j−1

i+1, j−1

i−1, j

i, j

i+1, j

i−1, j+1 i, j+1 i+1, j+1x, j+1

x, j

x, j−1

(x, y)

Figure C.2: 2D interpolation for upwind or downwind quantities required in the cyan shaded area.

The 2D Bézier interpolation consists of three 1D interpolations to obtain the values at the desired

x-coordinate (indicated by red dots), followed by a 1D interpolation along the y-coordinate using the

obtained values at the red dots. From Hennicker et al. (2019).

x-axis on each y-level at ( j−1), ( j), ( j+1), followed by another 1D Bézier interpolation along y at

the desired x-coordinate. Within the cyan shaded interval, we obtain with the 1D Bézier interpolation

given by Eqs. (C.13)-(C.16):

f (x, y) = ãyã
( j−1)
x fi−1, j−1+ ãyb̃

( j−1)
x fi, j−1+ ãyc̃

( j−1)
x fi+1, j−1

+ b̃yã
( j)
x fi−1, j+ b̃yb̃

( j)
x fi, j+ b̃yc̃

( j)
x fi+1, j

+ c̃yã
( j+1)
x fi−1, j+1+ c̃yb̃

( j+1)
x fi, j+1+ c̃yc̃

( j+1)
x fi+1, j+1 , (C.19)

where the subscripts of the interpolation coefficients indicate the coordinate used for each 1D interpo-

lation. We note that all upwind and downwind interpolations are performed in the upper right interval

of a given surface, in order to obtain a simple representation of the Λ-matrix elements.





Appendix D

ALO coefficients within the 3D SC

method

This chapter has been copied from Hennicker et al. (2019, Appendix D).

In the following, we derive theΛ-matrix coefficients used to construct the approximateΛ-operator.

We note that the obtained matrix elements can also be used for any other (2nd or lower order) inter-

polation scheme using the same geometry, with different interpolation coefficients though.

For a source function set to unity at grid point (i jk) and zero everywhere else, we consider all 27

points ranging from (i−α, j−β,k−γ) to (i+α, j+β,k+γ). The corresponding matrix coefficients are

derived from Eq. (3.38), using the discretized equation of radiative transfer, Eqs. (3.12)/(3.17), with

upwind and downwind interpolations defined by Eqs. (3.19) and (3.20). We further consider only

the ΛΩν-operator, since the integration over frequency and/or solid angle is straightforward. Each Λ-

matrix element then corresponds to the intensity (resulting from S i jk = 1) at a considered grid point p

(not necessarily identical to (i jk)), and consists of an emission term (defined by the interpolated source

functions and optical-depth steps at the corresponding upwind, current and downwind points), and the

irradiation from the upwind point (defined by the upwind intensity and upwind optical-depth step).

The upper and lower panel of Fig. D.1 show an example in 2D considering the points (i−α, j−β) and

(i, j−β) for a source function S i j = 1.

In the following, we sketch the derivation of the (3D) matrix element for the first neighbour,

and only present the solution for the remaining ones. To save space, we skip the indices Ω, ν. The

m,n-th Λ-element is written as Λn
m, with matrix indices n,m calculated from Eq. (3.29). While n

corresponds to the 3D indices of the local grid point (S i jk = S n = 1), m represents the neighbouring
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Ii−2α, j−β = 0

Ii−2α, j−2β = 0

I
i−α, j−β
u = 0

S
i−α, j−β
u = 0

Λ
i j

i−α, j−β = Ii−α, j−β

S
i−α, j−β
p = S i−α, j−β = 0

S
i−α, j−β
d

, 0

S i, j = 1

n

I
i, j−β
u , 0S

i, j−β
u = 0

Λ
i j

i, j−β = Ii, j−β

S
i, j−β
p = S i, j−β = 0

S
i−α, j−β
d

, 0

S i, j = 1

Ii−α, j−β = Λ
i j

i−α, j−β

Ii−α, j−2β = 0

n

(see upper

panel)

Figure D.1: 2D example for calculating the ΛΩ,ν-matrix elements at a grid point i−α, j−β (left panel)

and i, j−β (right panel). The matrix elements correspond to the intensity at the considered grid points

calculated for a source function S ij = 1 and zero everywhere else. For such a configuration, the

downwind source function is interpolated from grid points indicated with the green dots, while the

upwind source function and upwind intensity are obtained from the red dots (for simplicity we here

assume linear interpolations for determining upwind and downwind quantities). We emphasize that

the upwind intensity vanishes only when considering the grid point i−α, j−β. From Hennicker et al.

(2019).

point, (i−α, j−β,k−γ). Applying Eq. (3.38) to the specific intensity at point m, we obtain:

Λn
m = Im (S = en,ΦB = 0)

= Λ
i jk

i−α, j−β,k−γ = Ii−α, j−β,k−γ
(
S i jk = δĩ,iδ j̃, jδk̃,k

)

= ai−α, j−β,k−γS
(i−α, j−β,k−γ)
u

(
S i jk = δĩ,iδ j̃, jδk̃,k

)

+ bi−α, j−β,k−γS
(i−α, j−β,k−γ)
p

(
S i jk = δĩ,iδ j̃, jδk̃,k

)

+ ci−α, j−β,k−γS
(i−α, j−β,k−γ)
d

(
S i jk = δĩ,iδ j̃, jδk̃,k

)

+ di−α, j−β,k−γI
(i−α, j−β,k−γ)
u

(
S i jk = δĩ,iδ j̃, jδk̃,k

)
,

with boundary contribution ΦB, n-th unit vector en and δĩ,i, δ j̃, j, δk̃,k the Kronecker-δ for all possible

xĩ, y j̃ and zk̃ coordinates, respectively. S u and S d are the upwind and downwind source functions cor-

responding to a considered short characteristic at grid point p↔ (i−α, j−β,k−γ), S p is the source

function at the grid point1, Iu is the upwind intensity, and a,b,c,d are the integration coefficients for

this particular short characteristic. All upwind and downwind quantities are to be interpolated from

neighbouring grid points. We use the notation w, ŵ, w̃, to identify different interpolation coefficients

corresponding to the upwind source function, upwind intensity, and downwind source function, re-

1 S p , 0 only when considering the grid point p↔ (i jk). Then, S
(i jk)

d
= 0, and S

(i jk)
u , 0 only when the upwind point is

located on the stellar surface (Eq. D.14).
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spectively. Using Eqs. (3.19) and (3.20) to interpolate upwind and downwind quantities, we find:

Λ
i jk

i−α, j−β,k−γ = ai−α, j−β,k−γ ·
[
wAS i−3α, j−2β,k−3γ +wBS i−2α, j−2β,k−3γ +wCS i−α, j−2β,k−3γ

+ wDS i−3α, j−2β,k−2γ +wES i−2α, j−2β,k−2γ +wFS i−α, j−2β,k−2γ

+ wGS i−3α, j−2β,k−γ +wHS i−2α, j−2β,k−γ +wIS i−α, j−2β,k−γ

+ wJS i−3α, j−3β,k−2γ +wKS i−2α, j−3β,k−2γ +wLS i−α, j−3β,k−2γ

+ wMS i−3α, j−β,k−2γ +wNS i−2α, j−β,k−2γ +wOS i−α, j−β,k−2γ

+ wPS i−2α, j−3β,k−3γ +wQS i−2α, j−β,k−3γ +wRS i−2α, j−3β,k−γ

+ wSS i−2α, j−β,k−γ +wi−α, j−β,k−γS i−α, j−β,k−γ
]

+bi−α, j−β,k−γS i−α, j−β,k−γ

+ ci−α, j−β,k−γ ·
[
w̃AS i−2α, j,k−2γ + w̃BS i−α, j,k−2γ + w̃CS i, j,k−2γ

+ w̃DS i−2α, j,k−γ + w̃ES i−α, j,k−γ + w̃FS i, j,k−γ

+ w̃GS i−2α, j,k + w̃HS i−α, j,k + w̃IS i jk

+ w̃JS i−2α, j−2β,k + w̃KS i−α, j−2β,k + w̃LS i, j−2β,k

+ w̃MS i−2α, j−β,k + w̃NS i−α, j−β,k + w̃OS i, j−β,k

+ w̃PS i, j−2β,k−2γ + w̃QS i, j−β,k−2γ + w̃RS i, j−2β,k−γ + w̃SS i, j−β,k−γ
]

+di−α, j−β,k−γ
[
ŵAIi−3α, j−2β,k−3γ(S i jk = 1)+ · · ·+ ŵSIi−2α, j−β,k−γ(S i jk = 1)

]
,

with the upwind intensity interpolated from the same points as the upwind source function, and a

compact notation for the interpolation coefficients (with skipped superscripts). Since only S i jk = 1

(and zero everywhere else), and because the upwind intensity vanishes (for this particular grid point,

see Fig. D.1 for an example in 2D), we finally obtain:

Λ
i jk

i−α, j−β,k−γ = ci−α, j−β,k−γw̃
(i−α, j−β,k−γ)
I

(D.1)

The matrix element for a point (i−α, j−β,k−γ) with a non-vanishing source function at point (i jk)

is thus solely given by the integration coefficient ci−α, j−β,k−γ from the discretized EQRT multiplied

with the interpolation coefficient for the downwind source function of point I (corresponding to grid

point (i jk), see Fig. 3.3). The other neighbours are obtained analogously, without vanishing incident

intensities, however. Accounting also for the interpolation of upwind source functions and intensities

when necessary, we find:

Λ
i jk

i, j−β,k−γ = ci, j−β,k−γw̃
i, j−β,k−γ
H

+di, j−β,k−γŵ
i, j−β,k−γ
S

Λ
i jk

i−α, j−β,k−γ (D.2)

Λ
i jk

i+α, j−β,k−γ = ci+α, j−β,k−γw̃
i+α, j−β,k−γ
G

+di+α, j−β,k−γŵ
i+α, j−β,k−γ
S

Λ
i jk

i, j−β,k−γ (D.3)

Λ
i jk

i−α, j,k−γ = ci−α, j,k−γw̃
i−α, j,k−γ
O

+di−α, j,k−γŵ
i−α, j,k−γ
I

Λ
i jk

i−α, j−β,k−γ (D.4)
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i, j+β,k−γ
I

Λ
i jk

i, j,k−γ + ŵ
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i−α, j−β,k
O

Λ
i jk

i−α, j−β,k−γ (D.10)

Λ
i jk

i, j−β,k = ci, j−β,kw̃
i, j−β,k
E

+di, j−β,k ·
[
ŵ
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i jk

F
Λ

i jk

i, j−β,k−γ + ŵ
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i+α, j+β,k

H
Λ

i jk

i jk
+ ŵ
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i, j,k+γ

N
Λ

i jk

i−α, j,k + ŵ
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i+α, j,k+γ

G
Λ

i jk

i−α, j−β,k+γ + ŵ
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ŵ

i, j+β,k+γ

B
Λ

i jk

i−α, j,k−γ + ŵ
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Since the integration and interpolation coefficients need to be calculated only once at each consid-

ered grid point (here denoted by (u, v,w), to avoid confusion), we obtain the Λ-matrix coefficients by

substituting indices. For Eq. (D.1), we find:

Λ
i jk

i−α, j−β,k−γ = Λ
u+α,v+β,w+γ
uvw = cuvww̃

uvw
I , (D.28)

and proceed analogously for all other elements in Eqs. (D.2)-(D.27). Thus, the ALO can be calculated

in parallel to the formal solution scheme.



Appendix E

Jacobi iteration with sparse matrices

In this Chapter, we briefly describe the inversion of the non-local approximateΛ-operator (Sect. 3.5.2)

to calculate a new iterate of the source function. To this end, we describe the system of linear equations

(Eq. 3.40) with a matrix equation A · x = b, where A is a diagonally dominant N ×N matrix, and x, b

are vectors of dimension N, with N the total number of grid points within the computational domain.

Such systems can be solved by applying the Jacobi-iteration (e.g., Schwarz 1997):

N∑

j=1

ai jx j−b j = 0 ∀i ∈ [1,N]

solving for xi

=⇒ xi︸︷︷︸
=: new iterate

(k+1)

=
1

aii

[
b j−

N∑

j=1
j,i

ai j x j︸︷︷︸
=: old iterate

(k)

]
∀i ∈ [1,N]

=⇒ x
(k+1)
i
= x

(k)
i
+

1

aii

[
b j−

N∑

j=1

ai jx
(k)
j

]
∀i ∈ [1,N] . (E.1)

Thus, the calculation of x(k+1) mainly consists of a simple matrix-vector multiplication A · x(k). For

non-local approximate Λ-operators, the corresponding matrix A is a sparse matrix, and Eq. (E.1)

can be simplified further by considering sparse matrix-vector multiplication algorithms (e.g., Tessem

2013). In this respect, the storage of A in sparse formats becomes particularly important due to mem-

ory limitations (see the discussion in Sect. 3.5.1). In the following, we apply the coordinate-format

(COO), and store all NNZ non-zero entries of A in a single array, together with the corresponding col-

umn and row indices. Thus, the storage of the (sparse) N×N matrix A is reduced to 3×NNZ elements.

E.g., for an (arbitrary) 3×3 matrix, the COO is defined as:



a11 a12 0

0 a22 0

a31 0 a33

 −→
d = (a11, a12, a22, a31, a33)

r = (1, 1, 2, 3, 3)

c = (1, 2, 2, 1, 3)

, (E.2)

with d, r, c describing the matrix entries with corresponding row and column indices, respectively. To

calculate the matrix-vector multiplication, we can simply loop through the NNZ points, since all other
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terms are zero:

yi =

NNZ∑

j=1

d jxc j
if r j = i ∀i ∈ [1,N] , (E.3)

such that y = A · x. Within the final implementation, the if-statement is not required, and we can

solve the matrix-vector-multiplication in a single loop (see also Algorithm 2 of Tessem 2013, and the

example below):

Algorithm 1 Calculate y = A · x in COO sparse format

initialize y=array(length=N, type=float, entries=0)

initialize x=array(length=N, type=float, entries=x-vector elements)

initialize r=array(length=NNZ, type=integer, entries=row-indices of non-zero matrix elements)

initialize c=array(length=NNZ, type=integer, entries=col-indices of non-zero matrix elements)

initialize d=array(length=NNZ, type=float, entries=non-zero matrix elements)

for i = 1, NNZ do

y
[
r[i]

]
← y

[
r[i]

]
+d[i] · x

[
c[i]

]

end for

For instance, the 3×3 example given in Eq. (E.2) yields:

i = 1 : y
[

1︷︸︸︷
r[1]

]
︸   ︷︷   ︸
y1

← y
[

1︷︸︸︷
r[1]

]
︸   ︷︷   ︸
y1

+ d[1]︸︷︷︸
a11

· x
[

1︷︸︸︷
c[1]

]
︸    ︷︷    ︸

x1

= 0+a11x1

i = 2 : y
[

1︷︸︸︷
r[2]

]
︸   ︷︷   ︸
y1

← y
[

1︷︸︸︷
r[2]

]
︸   ︷︷   ︸
y1

+ d[2]︸︷︷︸
a12

· x
[

2︷︸︸︷
c[2]

]
︸    ︷︷    ︸

x2

= a11x1+a12x2

i = 3 : y
[

2︷︸︸︷
r[3]

]
︸   ︷︷   ︸
y2

← y
[

2︷︸︸︷
r[3]

]
︸   ︷︷   ︸
y2

+ d[3]︸︷︷︸
a22

· x
[

2︷︸︸︷
c[3]

]
︸    ︷︷    ︸

x2

= 0+a22x2

i = 4 : y
[

3︷︸︸︷
r[4]

]
︸   ︷︷   ︸
y3

← y
[

3︷︸︸︷
r[4]

]
︸   ︷︷   ︸
y3

+ d[4]︸︷︷︸
a31

· x
[

1︷︸︸︷
c[4]

]
︸    ︷︷    ︸

x1

= 0+a31x1

i = 5 : y
[

3︷︸︸︷
r[5]

]
︸   ︷︷   ︸
y3

← y
[

3︷︸︸︷
r[5]

]
︸   ︷︷   ︸
y3

+ d[5]︸︷︷︸
a33

· x
[

3︷︸︸︷
c[5]

]
︸    ︷︷    ︸

x3

= a31x1+a33x3 ,

which is just the result of the standard multiplication:



a11 a12 0

0 a22 0

a31 0 a33





x1

x2

x3

 =



a11x1+a12x2

a22x2

a31x1+a33x3

 .



135

Since in each step i, only the ri-th component of y is accessed, Algorithm 1 remains valid also if the

non-zero matrix elements are not ordered according to an increasing row-index. With Eq. E.1, the

Jacobi-iteration for sparse matrices in COO-format finally reads:

x(k+1) = x(k)+
b

diag(A)
− y(k)

diag(A)
, (E.4)

where y(k) is obtained from Algorithm 1 for a given iterate x(k), and b/diag(A), y(k)/diag(A) describe

a component-wise division.
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D., Bond, H., Donati, J.-F., Georgiev, L., et al. 2007: Towards an understanding of the Of?p star

HD 191612: optical spectroscopy, MNRAS, 381, 433



140 BIBLIOGRAPHY

Hubber, D. A., Ercolano, B., & Dale, J. 2016: Observing gas and dust in simulations of star for-

mation with Monte Carlo radiation transport on Voronoi meshes, Monthly Notices of the Royal

Astronomical Society, 456, 756

Hubeny, I. & Mihalas, D. 2014, Theory of Stellar Atmospheres (Princeton University Press)

Hummer, D. G. & Rybicki, G. B. 1985: The Sobolev approximation for line formation with continuous

opacity, ApJ, 293, 258
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