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SXPPaU\ 

Schizophrenia (SCZ) is a serious brain disorder that affects around 1% of the world population. 

Despite a long history of research in diagnosis and treatment of SCZ, we are still far from being able 

to explain the origin of the disease and the interindividual differences in the trajectory of the disease. 

The neurodevelopmental hypothesis states that SCZ is caused by early maturational abnormalities, 

which interact with later brain development.   

Neuroimaging provides a noninvasive opportunity to study this theory in vivo. Traditionally, 

Magnetic resonance imaging (MRI) has been used to examine macrostructural gray matter features 

such as gray matter volume or cortical thickness and SCZ has been established as a brain disorder 

hereinafter. Diffusion tensor imaging (DTI) allows to investigate the microstructure of brain tissue. It 

measures the magnitude and direction of water molecule`s diffusion and is highly sensitive to altera-

tions of gray and white matter organization. Gray matter contains the neurons and the white matter 

contains myelinated axons and provides long and middle range connectivity between cortical neurons. 

White matter alterations observed in SCZ therefore support the disconnection theory stating that SCZ 

is a brain disorder with disrupted integration of different brain systems.  

Finally, while early imaging research focused on chronic states of SCZ a shift of the field towards 

studying early stages can be observed in more recent years. Understanding early course SCZ raises the 

hope to improve diagnosis and subsequently prevention and intervention.  

In line with this research the aim of the presented studies is to characterize microstructural white 

and gray matter alterations in early course SCZ using diffusion MRI combined with advanced post-

processing techniques, which are sufficiently sensitive to detect subtle brain conspicuities. Implica-

tions of and associations with neuropsychological and clinical symptoms and diagnosis of SCZ will 

be discussed subsequently.  

 

Paper 1 

The purpose of the first project is to characterize white matter organization in patients with early 

course SCZ. To my knowledge this is the first study investigating five main intra-hemispheric cortico-

cortical white matter tracts using manual guided tractography in early course SCZ. The tracts were 

selected based on previous findings: uncinate fasciculus (UF), cingulum bundle (CB), inferior longi-

tudinal fasciculus (ILF), superior longitudinal fasciculus (SLF) and arcuate fasciculus (AF). Diffusion 

parameters (fractional anisotropy [FA], trace, axial diffusivity [AD] and radial diffusivity [RD]) were 

computed for each tract and compared between patients with early course SCZ (number [n]=30) and 

healthy controls (HC) (n=30). The association of the diffusion parameters of the tracts with clinical 
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symptoms, memory performance, and processing speed was examined afterwards. A significant group 

effect, represented by reduced FA and increased RD and trace in the patients¶ groXp compared to HC 

was observed for the right AF (FA [F=5.94, df=1, p=.016]; RD [F=5.60, df=1, p=.020]), CB (FA 

[F=9.35, df=1, p=.003]; RD [F=11.55, df=1, p=.0010] and ILF (FA [F=14.77, df=1, p=.004]; RD 

[F=13.25, df=1, p<.0001]). The pattern of lower FA and higher RD is indicative for myelin abnormal-

ities. Structural alterations were correlated with positive symptoms (ILF, AF), and cognitive perfor-

mance (CB), which points to the clinical relevance of the observed white matter conspicuities.  

 

Paper 2 

In the past, DTI has mainly been used to study white mater, because technical challenges limited 

the use of DTI for the characterization of gray matter organization. However, as an extension of the 

classical disconnection theory one would not only expect dysconnectivity in white matter, but also a 

disruption of gray matter organization. The aim of this study therefore is to use novel DTI method- 

heterogeneity- to study the microstructural gray matter organization over the course of SCZ. In com-

parison to traditional diffusion indices, which focus on intra-voxel diffusion properties, heterogeneity 

captures the microstructural organization of a larger cortical area. After applying a free water correc-

tion to control for partial volume effects, T1 and diffusion images were registered to each other and 

the variability (=heterogeneity) of diffusion parameters within the four brain lobes defined by auto-

matic parcellation method was calculated. Patients with chronic SCZ (n=27) did not show differences 

of cortical organization when compared to HC (n=22). However, patients with early course SCZ 

(n=19) showed increased heterogeneity in the frontal lobe when compared to HC (n=15) (F=10.68, 

df=1, p<.0030). This indicates a lower grade of cortical organization in patients than in HC. It is sug-

gested that this can be explained by neurodevelopmental abnormalities, plausibly caused by abnormal 

synaptic reorganization and pruning during adolescence and early adulthood in SCZ.  
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ZXVaPPeQIaVVXQJ 

Schizophrenie ist eine schwerwiegende Erkrankung des Gehirns, die ungefähr 1% der Bevölkerung 

betrifft. Trotz jahrzehntelanger Erforschung der Ätiologie, Diagnose und Therapie der Erkrankung 

können wir bisher weder die Ursache noch inter-individuelle Unterschiede im Krankheitsverlauf suf-

fizient erklären. Die neurodevelopmental hypothesis besagt, dass Schizophrenie eine Krankheit der 

Gehirnentwicklung ist, bei der frühe strukturelle Anomalitäten die weitere Reifung des Gehirns beein-

trächtigen.  

Magnetresonanztomographie ermöglicht es diese vermuteten Pathomechanismen in vivo und nicht 

invasiv zu untersuchen. In der Vergangenheit wurde vor allem der Kortex (kortikale Dicke und Volu-

men) mit Hilfe der Magnetresonanztomographie untersucht und aufgrund der gefundenen Unter-

schiede zu Kontrollgruppen wurde Schizophrenie daraufhin erstmals als Gehirnerkrankung charakte-

risiert. Diffusions-Tensor-Magnetresonanztomographie (engl. Diffusion tensor imgaging [DTI]) er-

laubt es die Mikrostruktur des Gehirngewebes der grauen und weißen Substanz zu untersuchen. Das 

Signal basiert hierbei auf der Diffusion von Wassermolekülen im Gehirn. Während die graue Substanz 

auch aus Neuronen und ihren Verbindungen besteht, stellt die weiße Gehirnsubstanz die Faserbündel 

des Gehirns dar, welche verschiedene kortikale Areale miteinander verbinden. Veränderungen der 

weißen Substanz unterstützen die disconnection theory, welche Schizophrenie als Erkrankung be-

schreibt, bei der die Integration verschiedener kognitiver und psychologischer Domänen gestört ist.  

Während sich die neuroradiologische Forschung lange Zeit auf die chronischen Stadien der Schi-

zophrenie fokussiert hat, werden in letzter Zeit vermehrt frühe Krankheitsstadien erforscht. Hiervon 

erhofft man sich neue Erkenntnisse für Diagnostik, Prävention und Behandlung zu gewinnen.  

Im Sinne dieser Strömung ist das Ziel der vorliegenden Arbeit, sowohl die mikrostrukturelle Or-

ganisation der weißen als auch der grauen Gehirnsubstanz in frühen Stadien der Schizophrenie zu 

untersuchen. Die hierfür verwendeten innovativen Methoden sind ausreichend sensitiv, um bereits ge-

ringfügige Veränderungen des Gehirns aufzuzeigen. Darüber hinaus wird der Zusammenhang mit neu-

ropsychologischen und psychiatrischen Symptomen diskutiert, um die Bedeutung von strukturellen 

Auffälligkeiten zu erfassen. 

 

1.Arbeit 

Das erste Projekt dient der Charakterisierung der Organisation der weißen Substanz bei Patienten 

mit frühen Schizophrenie Stadien. Dabei ist dies meines Wissens nach die erste Arbeit, welche die 

fünf wichtigsten intra-hemisphärischen kortiko-kortikalen Faserbündel des Gehirns und ihre Verände-

rung in frühen Schizophreniestadien untersucht und hierfür manuelle Traktographie verwendet. 
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Basierend auf bisherigen Befunden wurden der Fasciculus uncinatus (engl. Uncinate fasciculus 

[UF]), das Cingulum (englisch cingulum bundle [CB]), der Fasciculus longitudinalis inferior (englisch 

inferior longitudinal fasciculus [ILF]), der Fasciculus longitudinalis superior (englisch superior lon-

gitudinal fasciculus [SLF]) und der Fasciculus arcuatus (englisch arcuate fasciculus [AF]) gewählt. 

Die wichtigsten Diffusionsparameter (englisch fractional anisotropy [FA], trace, axial diffusivity [AD] 

and radial diffusivity [RD]) wurden für diese Faserbündel ermittelt und zwischen Patienten (n=30) und 

gesunden Kontrollen (n=30) verglichen. Zusätzlich prüften wir den Zusammenhang zwischen struktu-

rellen AnomaliWlWen Xnd kliniVchen S\mpWomen, VoZie LeiVWXngen in den kogniWiYen Domlnen ÄAr-

beiWVgedlchWniV³ Xnd ÄVerarbeiWXngVgeVchZindigkeiW³. Verglichen miW den KonWrollen ]eigWen PaWien-

ten mit Schizophrenie signifikant reduzierte FA, sowie gesteigerte RD Werte im Bereich des rechten 

AF (FA [F=5.94, df=1, p=.016]; RD [F=5.60, df=1, p=.020]), des rechten CB (FA [F=9.35, df=1, 

p=.003]; RD [F=11.55, df=1, p=.0010]) und des rechten ILF (FA [F=14.77, df=1, p=.004]; RD 

[F=13.25, df=1, p<.0001]). Dies wird wahrscheinlich durch pathologische Veränderungen der Mye-

linscheide verursacht. Die Assoziation der strukturellen Anomalitäten mit klinischen Symptomen 

(ILF, AF) und kognitiver Leistung (CB) untermauert die klinische Relevanz dieser Arbeit.  

 

2. Arbeit 

Bisher wurde DTI auf Grund von technischen Schwierigkeiten selten für die Untersuchung der 

grauen Substanz eingesetzt. Allerdings ist im Sinne einer erweiterten disconnection theory nicht nur 

eine Veränderung der Mikrostruktur der weißen Substanz, sondern auch der grauen Substanz zu er-

warten. Deshalb ist es das Ziel dieser Arbeit mit Hilfe einer neuen DTI Methodik- Heterogenität- 

mikrostrukturelle Veränderungen der grauen Substanz bei Patienten mit Schizophrenie aufzudecken. 

Im Gegensatz zu klassischen Diffusionsparametern, bezieht sich Heterogeneität nicht auf das Diffusi-

onsverhalten innerhalb eines Voxels, sondern erfasst die Organisation innerhalb eines größeren korti-

kalen Gebietes. Nach Korrektur für freies Wasser wurden T1 und Diffusions-gewichtete Bilder aufei-

nander registriert und die Variabilität von Diffusionsparametern (=Heterogenität) innerhalb eines Kor-

texareals ermittelt. Patienten mit chronischer Schizophrenie (n=27) unterschieden sich bezüglich ihrer 

kortikalen Organisation nicht von gleichaltrigen Kontrollen (n=22). Im Gegensatz dazu war die Hete-

rogenität bei Patienten zu Beginn der Krankheit (n=19) im Bereich des frontalen Kortex größer als bei 

den Gesunden (n=15) (F=10.68, df=1, p<.0030). Dies deutet darauf hin, dass das Frontalhirn bei Pati-

enten mit Schizophrenie weniger gut organisiert ist als bei Gesunden. Wobei diese Auffälligkeiten auf 

Grund des frühen Auftretens Entwicklungs- und nicht degenerativ bedingt sind. Sie könnten möglich-

erweise durch anormale synaptische Reorganisation verursacht werden, welche in post-mortem 
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Studien junger Patienten mit Schizophrenie beobachtet wurde. Zukünftige Forschung muss untersu-

chen, inwiefern sich Heterogenität als ein Biomarker für das Risiko an Schizophrenie zu erkranken 

eignet.   
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I. IQWURdXcWLRQ 

I.1 ScKL]RSKUeQLa 

I.1.1 Prevalence, Diagnosis and Treatment 

Schizophrenia (SCZ) is a serious disorder with a lifetime prevalence of 0.3-1% 1-4 across different 

cultures and countries 5. Both sexes are affected equally 6, while men show an earlier average age of 

onset 7. SCZ can break out during the whole lifespan 8, with the first episode normally occurring be-

tween 16 and 30 years of age 9. Only 5% of patients experience their first episode before the age of 15 
10. A secondary peak of disease onset can be observed after the age of 45 especially for women 11. SCZ 

has significant consequences for the quality of life of patients, caregivers, and society and is therefore 

listed as one of the top ten causes of loss of healthy life years by the World Health organization 12-14. 

Morbidity and mortality are increased 15 and patients¶ life expectancy is reduced by 15-20 years 16, 17. 

Patients with SCZ  are more likely to commit suicide 18-20, are involved in more accidents 21, live more 

often in poor social circumstances 22, 23 and suffer from comorbidities 24-26 than healthy individuals. 

The prevalence of somatic diagnoses, such as cardiovascular 27, infectious 28 or neoplastic 3 disorders 

is substantially increased and patients with SCZ receive poorer treatment for the aforementioned ill-

nesses which leads to inferior long term outcome. Additionally, axis one (e.g. depression or depend-

ency) 29-31 and axis two (e.g. personality disorders) 32 psychiatric diseases are often seen as co-diagno-

sis in patients. Not only patients 33, 34, but also their relatives experience stigma and exclusion 35 which 

increases the strain for caregivers 36. For society SCZ poses a burden by entailing high economical 

costs 37, 38 and presenting a risk of increased violent behavior of patients 39.  

The first report of symptoms resembling what we know as SCZ today can be found in the Ebers 

papyrus from over 1500 years before Christ and SCZ like symptoms are described throughout whole 

mankind history 40. However, it took until the late 19th century when Kraepelin was the first to distin-

guish psychosis, which he called dementia praecox, from other psychiatric disorders 41, 42. Bleuler 

coined the phrase schizophrenia for Kraepelin`s dementia praecox shortly afterwards and introduced 

the concept of primary and secondary symptoms 43. This was later adapted by Schneider and is to some 

extend still valid to date 44. Diagnosis is based on either the DSM V (diagnostic and statistical manual 

of mental disorders) 45 or the ICD 10 (international classification of diseases) 46 (Table 1). In compar-

ison to the predecessor DSM IV, a conceptual psychosis continuum was introduced in the DSM V and 

classical SCZ subtypes were eliminated 47. Various approaches of grouping the different symptoms 

into dimensions have been suggested 48-50. The most accepted models are either the three dimensional 

model (with psychotic, negative and disorganized symptoms) 51, 52 or the two dimensional model (with 
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positive and negative symptoms) 53. Positive symptoms like hallucinations and delusions are often 

considered as core concept of SCZ. Both occur in the healthy population 54, 55. However, they are more 

common, more extreme and more often unpleasant or frightening in patients with SCZ 56, 57. Negative 

symptoms (presented by diminished basic emotional and behavioral processes) can arise even before 

disease onset and are more relevant for long-term outcome than positive symptoms 53, 58. The variety 

of symptoms nevertheless challenges diagnostic possibilities and the boundaries towards other disor-

ders or healthy behavior are often blurred 59-61. Newer approaches aim on tackling these challenges by 

using advanced methodical approaches62 such as multimodal (imaging) studies63, 64 or machine learn-

ing 65-69. 

 

Table 1: Diagnostic criteria for SCZ 

 DSM V 45 ICD 10 46 
 
DXUaWLRQ  

 
6 monWh of diVWXrbance 
1 monWh of V\mpWomV 
 

 
1 monWh of diVWXrbance/ V\mpWomV 

S\PSWRPV 1. DelXVionV 
2. HallXcinaWionV 
3. DiVorgani]ed Vpeech 
4. GroVVl\ diVorgani]ed or caWaWonic 
behaYior  
5. NegaWiYe V\mpWomV  

1. ThoXghW echo, inVerWion, ZiWhdraZal or 
broadcaVWing 
2. DelXVionV (bod\, Vpecific WhoXghWV, 
acWion or VenVaWion relaWed), delXVional 
percepWion 
3. HallXcinaWor\ YoiceV 
4. PerViVWenW delXVionV of oWher kindV 
5. PerViVWenW hallXcinaWionV 
6. NeologiVmV, breakV or inWerpolaWionV in 
WhoXghW or Vpeech 
7. CaWaWonic behaYior 
8. NegaWiYe V\mpWomV 
 

 TZo or more V\mpWomV 
AW leaVW one of 1-3 
 

AW leaVW one: 1-4 
AW leaVW WZo: 5-8 

FXUWKeU 
cULWeULa 

Social/occXpaWional d\VfXncWion 
No Vchi]oaffecWiYe or major mood 
diVorder 
No VXbVWance/ general medical 
condiWion 
If global deYelopmenWal dela\ or 
aXWiVWic diVeaVe: delXVionV or 
hallXcinaWionV 

Social/occXpaWional d\VfXncWion 
No major mood diVorder 
 
NoW alcohol or drXg relaWed 
No organic brain diVeaVe 
 

 

While there is no curative therapy available 70 psychopharmacological and non-psychopharmaco-

logical treatments can positively modulate the course and outcome of SCZ 71-73. Therapy options can 
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grossly be categorized into three different types: antipsychotic medication, non- antipsychotic medi-

cation and other biological, psychological and social interventions. Antipsychotics are the basis of 

treatment. Early medication studies showed the involvement of the dopamine system in SCZ 74, 75, 

whereby hyperactivity in subcortical and hypoactivity in prefrontal regions and an association with 

positive symptoms 76 has been suggested. The contribution of the glutamate 77-79, GABAergic 80, 81 and 

acetylcholinergic 82 transmitter systems has been shown subsequently. Antipsychotics can either be 

classified as first generation or conventional antipsychotics or as second generation or atypical anti-

psychotics 83. Low potency first generation antipsychotics show more anticholinergic effects than high 

potency first generation antipsychotics which mainly work as dopamine antagonist. Second generation 

antipsychotics are more specific for serotonin and dopamine receptors 83-85. Newer second generation 

antipsychotics additionally effect some receptors as agonists rather than as antagonists 86-88. On aver-

age all first generation antipsychotics cause similar outcomes 89 and side effects are often extrapyram-

idal symptoms such as akathisia or parkinsonism 90, 91. Second generation agents are in general asso-

ciated with more metabolic and less motoric side effects than first generation antipsychotics. While 

the effectiveness between different agents is again comparable, Clozapine, is considered as superior 

for treatment refractory SCZ 92, 93. It is recommended to start antipsychotic treatment as early as pos-

sible in an episode 94 and maintain therapy for at least five years ± if not lifelong- to prevent psychotic 

relapse and manage functional impairments 95-101. Newer developments suggest the advantage for med-

ical adherence of long lasting injectable agents 102, however safety risks still need to be evaluated 103. 

Additionally to antipsychotics other medications are promising for the treatment of symptoms - such 

as antidepressants for depressive 104, 105 and obsessive compulsive symptoms 106 , anti-inflammatory 

medication 107, 108 or agents which interact with the nicotine-cholinergic 109 or oxytonergic 110, 111 sys-

tem. Newest studies also suggest histone-deacetylase 1 inhibition as potential medication 112.  Further 

biological therapy approaches include non-invasive brain stimulation (e.g. electroconvulsive ther-

apy/transcranial magnetic stimulation 113-119) or experimental efforts for interneuron transplants 120. 

Psychosocial  and cognitive behavioral therapy supports the recovery, increases the compliance and 

reinforces the stabilization 121-123, and is especially suitable for children and adolescents 124, patients 

with treatment resistant SCZ 125 or older patients 126. Psychoeducation for affected people and their 

family members 127-129, nutritional approaches 130 and physical exercise 131-135 can support recovery, 

improve medication adherence, clinical symptoms, quality of life and functioning 136, 137. 

I.1.2 Etiology 

Given that SCZ is an incurable disorder with comparable high prevalence and early onset 138 an 

improvement of diagnostic skills seems essential 139. Additionally, although there is a wide range of 
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therapeutic options, we are far from understanding individual responses and non- responses to treat-

ment. Moreover, despite all treatment options described above the rate of recovery from SCZ is not 

increasing 140 - leading to a ³pressing need for more effective treatmentV and deliYer\ of VerYiceV´ 141. 

Therefore it seems suitable to focus on underlying neurobiological pathologies rather than mere de-

scription of symptom clusters to study the heterogenous group of SCZ 142 and hopefully be able to use 

neurobiological findings for optimizing diagnosis and treatment. Several models and hypotheses about 

the etiology of SCZ have been proposed (Figure 1).  

 

Figure 1: Etiology of SCZ 

 
 

The early neurodevelopmental hypothesis suggests that genetic (Figure 1, A) and early environ-

mental risk factors (Figure 1, B) cause early developmental abnormalities 143 leading to behavioral 144-

148, intellectual 149, 150 , and morphological conspicuities 151 and finally to disease onset. Others empha-

size the importance of late developmental events (Figure 1, C) like dysfunctional synaptic pruning 

during adolescence 152. The two-hit hypothesis combines these two attempts by assuming that SCZ is 

the final state of a neurodevelopmental disorder where early neurodevelopmental abnormalities inter-

act with later maturational abnormalities 153-155. Recent clinical, epidemiological and experimental 

studies emphasize the importance of inflammatory conditions for SCZ (Figure 1, D) 156-158. Neuroin-

flammation may be present at onset 159, 160 and prolonged inflammation may promote subsequent de-

generation 161, 162. The potentially degenerative effects (Figure 1, E) of SCZ are discussed controver-

sially. Though Kraepelin 41 introduced SCZ as dementia praecox, post mortem studies do not find 

typical degenerative abnormalities like gliosis 163 or neurofibrillary tangles 164. Nevertheless SCZ may 

be a syndrome of acceleraWed aging (FigXre 1, F) Zere ³a VWaWe of decreaVed cerebral reVerYe («) caXVeV 

persons with schizophrenia to be more vulnerable to the toxic effects of even normal accumulations 

of age-relaWed neXrodegeneraWiYe leVionV´ 165. This idea is being supported by genetic 166, 167, metabolic 
168, 169, immunological 170 and morphological171 172 (especially for white matter173, 174) similarities be-

tween patients with SCZ and healthy aging people. Some authors even assume SCZ to be a whole-
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body progeria syndrome 175, 176. However other clinical, (neuro)psychological and morphological find-

ings do not clearly support the idea of accelerated aging 177-190.  

Taken together patients with SCZ show an atypical maturational trajectory during their whole life 

span, most certainly caused by early neurodevelopmental abnormalities and influenced by genetic sus-

ceptibility, environmental risk factors, neuroinflammation and the state of being chronically ill (for an 

overview on factors associated with SCZ please see Table 2).   

 

Table 2: Factors potentially influencing SCZ 
GeQeWLc VXVceSWLbLOLW\ 

HeULWabLOLW\ Appro[imaWl\ 80% conWribXWion 191 
Children of parenWV ZiWh SCZ haYe a Wen WimeV higher riVk Wo geW SCZ, 
eYen if Whe\ Zere adopWed VhorW afWer birWh 192-194 
 

PoVVible geneV 
 
 
 
 
Gender 

No Vingle gene haV a large effecW, VeYeral common geneWic YarianWV ZiWh 
Vmall effecWV (microdeleWionV, microdXplicaWion, Vingle- nXcleoWide 
pol\morphiVmV) 195, 196 197-201 
Role of micro RNA alWeraWionV202, epigeneWicV 203,  
 
Female gender aVVociaWed ZiWh beWWer oXWcome, leVV deficiWV V\ndromV 204 

AVVRcLaWLRQ ZLWK eQYLURQPeQWaO IacWRUV  
EaUO\ eQYLURQPeQWaO 
IacWRUV 

PaWernal Age 205 
MaWernal illneVV, infecWionV and inflammaWion dXring pregnanc\ 206-208 
ObVWeWric complicaWionV (e.g.h\po[ia) 209, 210 
WinWer birWh in norWhern hemiVphere 211 
Urban birWh and liYing 212, 213 
 

LaWeU eQYLURQPeQWaO 
IacWRUV 214, 215 

MigraWion 216, 217 
EWhnic minoriW\ VWaWXV 218 
Role of Wo[oplaVmoViV 219 
NegaWiYe famil\ emoWional enYironmenW, Vingle VWaWXV 220  
ParenWal VeparaWion or deaWh 221 
TraXma 221, Ve[Xal abXVe 194, 222 
LoZ inWelligence, pV\chopaWholog\, cogniWiYe or moWor d\VfXncWion 
dXring childhood 206, 223 
CannabiV and oWher VXbVWance abXVe 224 
Poor edXcaWion 225, Unemplo\menW 226 

 

I.2 NeXURLPaJLQJ 
Though Bleuler and Kraepelin already assumed that SCZ is a brain disorder 227, early post mortem 

studies did not find significant alterations in brain tissue 228 and therefore researchers dropped the idea 

of a brain disorder until the first computed tomography (CT) study showed enlarged ventricles in 

patients with SCZ 229. Neuroimaging provided a new approach, because it allowed to study the brain 
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in vivo, it is non-invasive, and provides three-dimensional, high contrast picture of the entire brain at 

once. 

I.2.2 Classical MRI 

The discovery of nuclear magnetic resonance in the 1970s by Mansfield and Lauterbur and the 

following development of magnet resonance imaging (MRI) supplied an even more powerful tool than 

CT for brain research. MRI is more sensitive for soft tissue contrast than CT, does not require ionizing 

radiation, and no adverse effects and only few contra-indications are known. Using MRI several brain 

abnormalities in SCZ have been detected, with enlarged ventricles, cavum septum pellucidum abnor-

malities and loss of cortical substance being the most prominent ones for review see 230. Loss of cortical 

volume and thickness is most pronounced in prefrontal areas (Figure 2, areas in dark red) already 

occurring before onset and being influenced by genetic load 231-235. DXring Whe firVW epiVode (=period 

of firVW onVeW of diVeaVe) addiWional corWical decreaVe can be obVerYed in Whe inferior fronWal regionV, 

cingXlaWe, VXperior Wemporal g\rXV, inVXla and precenWral g\rXV 179, 180 (FigXre 2, middle red). WiWh 

progreVVion of diVeaVe changeV geW more noWiceable in Whe Wemporal and parieWal lobeV (FigXre 2, lighW 

red) 230. HoZeYer, one needV Wo noWice WhaW findingV are noW XnambigoXV236, 237 and WhaW man\ qXeVWionV 

remain XnreVolYed: e.g. ZhaW are Whe e[acW locaWionV, e[Wend and progreVVion of VWrXcWXral alWeraWionV 
173, 174? While MRI ZaV eVVenWial Wo eVWabliVh Whe concepW of SCZ aV bUain diVRUdeU, aYailable 

meaVXremenWV are qXiWe nonVpecific and XnpreciVe and Wherfore poWenWiall\ noW VXiWable Wo idenWf\ earl\ 

VXbWle changeV 238 and anVZer Whe aformenWioned qXeVWionV. (FigXre 2 iV adapWed from figXre creaWed 

b\ Whe aXWhor in239)   

 

Figure 2: Brain areas often affected in SCZ 

 
 
I.2.3 DTI 

A method more sensitive to changes in brain microstructure than conventional MRI is diffusion 

tensor imaging (DTI). DTI was introduced by Basser and colleagues and it provides a way of indirectly 

examining tissue microstructure. Brain water molecules move (diffusely) in the tissue following 
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Brownian motion rules. DTI measures the magnitude and main directionality of diffusion 240-242. There-

fore a diffusion tensor (a tree-dimensional vector) is estimated from the data for each voxel of the brain 

for three perpendicular axes 243. The magnitude of diffusion along each axis is represented b\ an ³ei-

genYalXe´ and Whe direcWionaliW\ b\ an ³eigenYecWor´. The diffXVion iV called iVoWropic, or Vpherical if 

it is more or less the same along all axes (Figure 3). Isotropic diffusion can be found in the cerebrospi-

nal fluid. In white matter diffusion is affected and restricted by the organization of tissue in fiber bun-

dles. Water molecules most likely diffuse along the main direction of the fibers. This is called aniso-

tropic or ellipsoidal diffusion. 

From the diffusion tensor, several diffusion indices like fractional anisotropy (FA), mean diffusiv-

ity (MD), trace, axial diffusivity (AD), or radial diffusivity (RD)244 can be computed to quantify dif-

fusion behavior. FA represents the normalized variance of the diffusivity along all three axes estimat-

ing how anisotropic the diffusion is in an examined voxel. Values range between 0 and 1, with values 

close to 0 indicating isotropic diffusion and values close to 1 indicating anisotropic diffusion 245. FA 

is often used as an index for overall white matter organization. Trace and MD are indices for the overall 

magnitude of diffusion in a voxel. Trace is calculated by summing up the eigenvalues of all three 

directions, while MD represents the averaged diffusivity over all three directions. AD and RD can give 

further insights into possible underlying neuropathology. It is assumed that AD (³the magnitude of 

diffusion parallel to the fiber a[iV´246) represents the axon integrity, while RD (the magnitude of the 

diffusion perpendicular to the main diffusion direction) provides an index for myelin integrity247. Us-

ing these indices, microstructure of a region-of-interest can be quantitatively described. An enlarged 

extracellular space for example will lead to enhanced mean diffusivity of water molecules (and there-

fore larger MD and trace) and less restriction of diffusion direction (and therefore lower FA). However 

one needs to keep in mind that these measurements are indirect rather than direct indices for micro-

structural characteristics 159, 248, 249.   

 
Figure 3: Isotropic and anisotropic diffusion figure adapted from 250 
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FA, MD/trace, RD and AD brain maps can be analyzed in different ways. In the context of this 

work the main analysis approaches- voxel based, tractography and regions-of-interest approaches are 

introduced hereafter. 

 

Voxel based morphometry (VBM) 

VBM attempts to compare whole brains- voxel by voxel using parametric mapping. All datasets 

are therefore registered to a template and brain images are smoothed afterwards. Diffusion parameters 

are then compared at each voxel. TBSS is an optimized, white matter specific VBM analysis, which 

uses the registered datasets to create a mean white matter skeleton (skeletonized average of all FA 

values at one voxel). All individual FA maps can be projected onto that skeleton afterwards and voxels 

which are part of the skeleton are used for individual statistics. Using TBSS minimizes the need for 

data smoothing and therefore leads to less partial volume effects and greater statistical power than 

classical VBM 251. However since tract extraction is performed automatically and does not use prior 

anatomical information, this method is susceptible to misalignment/registration errors 252. Further, 

given that TBSS is based on the maximal value projection, it is less suitable to study subtle changes or 

pathologies which show high- inter-individual variability.  

 

Tractography 

Tractography provides the opportunity to delineates tracts and analyze diffusion properties (please 

see Figure 4 figure adapted from253 ). In tractography fiber bundles are usually calculated from a seeding 

region. Using manual guided streamline tractography 254 seeding regions are either drawn manually on 

diffusion images guided by anatomical knowledge 255 or derived from automated segmentation tech-

niques. Additional inclusion and exclusion regions can be determined. The tractography than follows 

two criteria: the FA value of each voxel and the curvature of the fibers between voxels. Fibers termi-

nate if either the radius of curvature gets below a certain threshold (Figure 4-C) or if FA undercuts a 

certain value (Figure 4-D). Diffusion parameters can be extracted for the identified fiber tracts after-

wards and if necessary averaged over each tract or for subsections along the tract for each subject and 

used for statistics. Manual tractography is the anatomically most accurate way to determine tracts 

based on diffusion MRI, however it requires high resolution diffusion MRI data, computational power, 

profound anatomical knowledge and is time consuming.   
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Figure 4: Schematic representation of streamline tractography figure adapted from 253 

 
 

 Region of interest approaches 

ROI analyses are analyses were brain areas of interest are selected (similar to seeding and inclusion 

ROIs in tractography) and diffusion values are extracted and averaged for each subject over the se-

lected regions. Brain regions can be identified manually, semi-automatically or automatically by seg-

mentation software (e.g., FreeSurfer). Comparable to tractography and in contrast to VBM manually 

traced ROI analyses are anatomically more accurate and better suitable for data sets with high inter-

individual variability. ROI analyses may not include whole tracts but may include a region with several 

tracts 256.   

As opposed to TBSS or tractography approaches, which are specific to white matter, ROI anal-

ysis can also be used to study gray matter. As aforementioned, conventional macrostructural gray mat-

ter MRI studies may not be sensitive enough to study subtle brain alterations, whereas DTI may capture 

those 257. However, very few studies using DTI to examine gray matter in SCZ have been conducted 
258-262. This is due to several reasons: Even when using high resolution data, DTI is especially prone to 

partial volume effects. Additionally, gray matter is organized in a very different way with cell bodies 

and processes determining water diffusion rather than bundles of axons. This leads to no preferred 

direction of diffusion in a voxel of gray matter and rather isotropic diffusion properties. Finally, diffu-

sion properties vary significantly between voxels in gray matter 263, which makes them insensitive for 

detecting subtle group differences. If one would still like to use DTI to study gray matter microstruc-

ture, one needs to look at parameters that do not cover intra-voxel diffusion parameters, but overall 

inter-voxel diffusion properties to study overall cortical organization 264-266. 
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Diffusion findings in patients with SCZ  

Using the above described methods several studies suggest that SCZ is a disorder were white matter 

integrity is disrupted267, 268. This is in line with genetic, neuropathological, functional MRI and elec-

tro/magnetoencephalography studies 269-272. Most of those studies have focused on chronic disease 

state. In chronic SCZ FA is reduced all over the white matter 273, while this decrease is particularly 

pronounced in frontal, temporal, and cingulate areas 274. It seems that the disruption of the corpus 

callosum, fronto-temporal, limbic and cerebello-thalamo-cortical fibers 275-280 is characteristic for 

chronic SCZ. The magnitude of white matter alterations is thereby associated with clinical symptoms 
281-283, cognitive impairments 284 and global functioning 285. Findings are influenced by many factors 

such as sex 286, 287 288, medication 289-291, age 292-295 and potentially illness duration 296-298. Recently a 

shift of the research field towards studying earlier stages of disease can be observed, driven by the 

hope to understand early abnormalities that are not confounded by illness chronicity or medication, 

and subsequently improve early diagnosis, prevention and intervention. Studies find white matter al-

terations in healthy individuals with family risk for SCZ, which are similar but less pronounced than 

findings in patients 299. Additionally, wide-spread white matter changes 300-302 can be observed in pa-

tients with risk for SCZ based on clinical presentation (e.g., individuals with psychotic experiences) 

and a progression of brain abnormalities is associated with and predictive for a progression of symp-

toms 303-306. These findings indicate that connectivity abnormalities, influenced by neurodevelopmen-

tal factors, are not primarily a consequence of psychosis, but may represent vulnerability to develop 

psychosis. However, alterations before onset may not be specific for SCZ or psychotic risk 307, but 

rather reflect a general state of vulnerability of the brain. It is therefore informative to also study 

patients with early course/first episode SCZ. Those individuals already show SCZ specific symptoms 

but have not been suffering from a chronic disorder or received long-term medication. Reduced FA 

has been reported in early course/first episode SCZ in several areas including the corpus callosum, 

cerebellum, brainstem, internal capsule, cingulum bundle, corona radiata, superior longitudinal fasci-

culus, inferior longitudinal fasciculus, fornix, uncinate fasciculus and anterior commissure 308-317 and 

again an association with symptom severity has been observed 318-320. 

I.3 MRWLYaWLRQ IRU WKLV ZRUN 

The aim of this study is to identify conspicuities of microstructural brain organization in early 

course SCZ. Given the inconsistency of findings in the literature e.g.236, 237 and the fact that brain alter-

ations are suspected to be less pronounced in patients with early course SCZ 238 anatomically precise 

methods are chosen. As described above, the most anatomically accurate way of studying white matter 
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is tractography. Nevertheless, given the time-consuming nature of manual tractography, most early 

course SCZ studies have either not used it and those few studies that did perform manual tractography 

only looked at a small number of tracts 321-323, even though it is widely accepted that structural abnor-

malities in SCZ are rather widespread than regional 275-277. For technical reasons 324 even fewer studies 

used DTI to examine gray matter changes in SCZ 258-262 , and most importantly, there is no study in 

early course SCZ. Given the differential organization of gray matter when compared to white matter, 

it is important to capture cortical organization on a bigger scale. Promising methods to study gray 

matter microstructure are therefore based on inter-, rather than intra-voxel organization. A promising 

inter-voxel method is heterogeneity 325, which reflects the variability of diffusion properties within a 

given cortical area. 

The presented work intends on combing the aforementioned methods in a unique way to study 

brain microstructure in both white and gray matter organization in patients with early course SCZ. 

Additionally, driven by the hope that better understanding of neurobiological features will in the long-

term improve diagnosis, prevention and intervention 326, the work also focuses on associations of struc-

tural abnormalities with clinical symptoms, cognitive impairments and diagnosis categories. To reach 

these aims, two studies were conducted:  

1. The first study investigates the most important cortical intra-hemispheric white matter bun-

dles: uncinate fasciculus (UF), cingulum bundle (CB) , inferior longitudinal fasciculus (ILF) , 

superior longitudinal fasciculus (SLF) and arcuate fasciculus (AF) using manual tractog-

raphy. We assumed that diffusion measures of these tracts would be most likely associated 

with core cognitive domains disturbed in early course SCZ (working memory and processing 

speed), as well as early occurring neuropsychological symptoms.  

2. The second aim was to gain in vivo insights into the microstructural organization of gray mat-

ter in patients with SCZ in comparison to HC. We therefore used heterogeneity, which we 

expected to be more sensitive to gray matter microstructural pathology than traditional 

measures. 
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II PaSeU 1 

II.1 BacNJURXQd  

 To our knowledge this is the first paper examining the five main intra-hemispheric fiber associa-

tions at once in early course SCZ using manually guided tractography. The UF - associated with acous-

tic memory, visual information and emotional response 327- is often altered in patients with SCZ who 

show negative symptoms and poor outcome 328-331. The CB ± ³involved in emotional expression, at-

tention, motivation and working memory´ 327- is most likely associated with the impairment in exec-

utive functions in SCZ 282, 331-335. The ILF ± ³implicated in visual representation, facial recognition, 

and emotional perception´ 327- has often been reported to be disrupted in SCZ, where this seems to be 

associated with positive symptoms 336-338. Though being two distinct structures, many studies so far 

examined the SLF and the AF together and abnormalities in SCZ have often been reported 338, 339. 

However these tracts are separate neuroanatomical structures 340, where the SLF is related to spatial 

attention and memory 327 and the AF is linked with language and spatial information 327. Additionally, 

an association of the AF with positive symptoms in SCZ has been found 341, 342.  

While our first aim is to detect structural alterations of these tracts, the second aim of the pre-

sented study is to investigate the association of potential structural abnormalities with symptom sever-

ity and neuropsychological measurements. Symptom severity is measured by the Scale for the assess-

ment of negative symptoms (SANS) 343 and the Scale for the assessment of positive symptoms (SAPS 
344). For cognitive measures, we are focusing on working memory and processing speed. These are 

basic cognitive processes which are needed for several other cognitive operations 345-347 and influence 

one and another 348, 349. They are ³associated with white matter integrity and development´ 345, 350-352 

and impairments in SCZ have been reported 353-355. Impairments furthermore seem to be typical for 

SCZ 356, 357 and specific for early disease stages 358, 359, or even SCZ risk 355, 360. Additionally, both 

measurements are clinical relevant, because performance in these domains is related to later poorer 

functional outcome in patients with SCZ 361-363. 

 

II.2 Methods 

Diffusion MRI was acquired in 30 patients with early course SCZ and 30 HC on a 3 Tesla whole 

body scanner (General Electric Medical Systems, Milwaukee, WI) using a high spatial resolution twice 

refocused echoplanar sequence (Repetition time [TR]=17 s, echo time [TE]=80 ms, flip angle 90°, 

field of view [FOV] 240 x 240 mm, 85 slices, 1.7 mm x 1.7 mm in-plane, 1.7 mm slice thickness, 51 



 28 

gradient directions with b= 900 s/mm2, and eight baseline scans with b= 0). Patients and HC were age, 

gender, handedness, parental socioeconomic status and premorbid IQ matched. To account for a scan-

ner update, this was included as a covariate in analyses. Trained neuropsychological testers conducted 

the clinical and neuropsychological tests. Diffusion tensors were estimated from the images using a 

weighted least square approach and manually guided tractography was performed. We extracted the 

five main intra-hemispheric association bundles: UF, CB, ILF, SLF and AF (Figure 5) using manual 

guided tractography. Diffusion parameters (FA, trace, RD and AD) were extracted for each tract with 

MATLAB 364. Group differences were examined using a MANCOVA- with dependent variables 

FA/trace/AD/RD of the five fiber bundles, independent variables group, hemisphere, and group x hem-

isphere and covariates gender, age, handedness and scanner software upgrade. Additionally, post hoc 

ANCOVAs and t-tests were conducted. A discriminant analysis was performed to see if FA of tracts 

predicts group affiliation (HC versus patients with SCZ) and correlation analysis (Spearman R) be-

tween DTI measure sand clinical test results were calculated. All statistical tests, except for the post 

hoc tests, are Bonferroni corrected.    

 

Figure 5: ILF (dark blue), SLF (green), AF (red), UF (light blue) and CB (yellow) as modeled by 
manual tractography adapted from Paper 1, 352. 

 

II.3 Results 

 MANCOVAs showed significant group and hemisphere effects for FA, trace and RD and signifi-

cant hemisphere effects for AD. Post hoc ANCOVAs and t-tests were significant for the right AF, right 

CB and right ILF (Table 3, adapted from Paper 1 352). Using the given white matter properties 80% of 

the population could be classified right, whereby the right ILF, right AF and right CB were most im-

portant for predicting group affiliation. FA and RD of the right ILF and AF showed an association 

with positive symptoms, while CB white matter properties were correlated with memory performance 

and processing speed.   
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II.4 Conclusion 

The study presented here aimed to investigate five major association bundles in early course SCZ 

using high resolution diffusion data and manual guided tractography. An alteration of white matter- of 

the CB, ILF and AF was found. The pattern of diminished FA values and elevated trace and RD is 

indicative for white matter disruption most likely caused by myelin abnormalities 247. Diffusion meas-

urements of the CB were associated with speed of processing and memory. Furthermore, an association 

of the white matter of the ILF and AF with positive symptoms was found. This clearly demonstrates 

the clinical relevance of the presented structural abnormalities.   

In contrary to other studies, no alterations of the UF 328-331 and the SLF 338, 339 were observed. 

Alterations of the UF in SCZ are being discussed controversially 365, 366 and are most likely associated 

with deficit SCZ and negative symptoms 285, 331 and therefore chronical disease states. The lack of SLF 

findings can be explained by the fact that unlike other studies, the SLF and AF were considered as two 

separate tracts in this study. The separation of the SLF and AF is only possible when using tractog-

raphy. We found differences for the AF, which proves how essential it is to investigate these two tracts 

separately. 

  Interestingly almost all group differences were observed for the right hemisphere only, which is in 

accordance with other studies in individuals at risk 367, or in early course SCZ 312, 368-370 suggesting that 

these abnormalities might be dominant in early course SCZ.  

Taken together we observed alterations of the white matter of three major tracts in the right 

hemisphere in early course SCZ indicating that white matter changes take place very early during 

disease. Manual guided tractography seems to be a valid method to investigate these early changes. 

The association with clinical impairments and the high ability to predict group affiliation based on 

diffusion properties shows that these early changes are clinically relevant. Future studies should in-

clude potential confounding variables like duration of illness, medication or kind of symptoms 321, 322, 

328, 371-375. Additionally, methods need to be improved further (e.g. use of two tensor tractography 376) 

so that the presented findings may be used as prognostic factors in the future.  
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Table 3: Significant differences between HC and patients with SCZ adapted from Paper 1, 352 
  FA TUace AD RD 

MANOVA HemiVphere (F=44.46, df=5, 
p<.0001) 

(F=12.99, df=5, 
p<.0001) 

(F=27.23, 
df=5, 
p<.0001) 

(F=16.30, df=5, 
p<.0001) 

GroXp (F=5.27, df=5, 
p<.0001) 

(F=3.33, df=5, 
p=.008) 

 (F=4.92, df=5, 
p<.0001) 

PRVW KRc ANOVA 
(GroXp) 

AF (F=5.94, 
df=1, p=.016) 

                                                                                        AF (F=5.60, 
df=1, p=.020) 

CB (F=9.35, 
df=1, p=.003) 

CB (F=8.15, 
df=1, p=.005) 

 CB (F=11.55, 
df=1, p=.0010) 

ILF (F=14.77, 
df=1, p=.004) 

ILF (F=11.17, 
df=1, p=.001) 

 ILF (F=13.25, 
df=1, p<.0001) 

PRVW KRc WZR-WaLOed W-
WeVWV 

RighW AF 
(W=2.87, 
df=55,p=.0061) 

  RighW AF 
(W=2.46, df=55, 
p=.018) 

RighW CB 
(W=2.29, df=58, 
p=.027) 

RighW CB 
(W=2.02,df=58, 
p=.048) 

 RighW CB 
(W=2.49, df=58, 
p=.017) 

RighW ILF 
(W=3.28, df=58, 
p=.0020) 

RighW ILF  
(W=2.54, df=58, 
p=.014) 

LefW ILF 
(W=2.13, df=58, 
p=.038) 

 RighW ILF 
(W=3.40, df=58, 
p=.001) 

LefW ILF 
(W=2.27, df=58, 
p=.028) 
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III PaSeU 2 

III.1 Background  

The study presented here suggests the use of a novel DTI measurement- heterogeneity 325- to in-

vestigate cortical organization on a microstructural level. Heterogeneity is a way to statistically deter-

mine the variability of diffusion parameters in a brain region rather than looking at single values within 

a voxel. The heterogeneity of FA for example, represents the variability of FA values within a region 

(e.g. a cortical lobe). Heterogeneity is therefore able to overcome difficulties of using DTI in gray 

matter (please see Introduction I.2.3 DTI - Region of interest approaches). First it considers the varia-

tion of diffusion properties between voxels 263 which makes it more sensitive for detecting group dif-

ferences. Secondly, it copes with the special nature of gray matter organization: rather than focusing 

on the tensor shape in a voxel which is isotropic in gray matter, it captures cortical organization on a 

bigger scale. Last, the method introduced here corrects for partial volume effects (please see method 

description below).  

The healthy cortex is characterized by low heterogeneity, indicating a relatively consistent organ-

ization of tissue within a region. One would predict that pathological reorganization processes of the 

brain would in some areas disrupt this consistent organization leading to higher variability and there-

fore higher heterogeneity of diffusion properties. Given that SCZ is proposed to be a disorder where 

the brain is less connected/ less organized the aim of this study was to investigate this potential disor-

ganization in patients with SCZ. In addition studying early course SCZ (using a subset of the cohort 

of paper 1), we also include a comparison group of patients with chronic SCZ. 

 

III.2 Methods 

Fourty-six patients with SCZ and 37 HC matched on age, sex, parental socioeconomic status, and 

estimated premorbid IQ matched HC were scanned on a 3 Tesla whole body General Electric MRI 

scanner (GE Medical Systems, Milwaukee). A high-resolution 3D T1 (IR-FSPGR, TR 7.8 ms, TE 3 

ms, TI 600 ms, flip angle 10°, FOV matrix size 256x256, 176 slices, 1mm slice thickness) and a high 

spatial resolution twice refocused echoplanar DTI sequence (TR=17 s, TE=80 ms, flip angle 90°, FOV 

240 x 240 mm, 85 slices, 1.7 mm x 1.7 mm in-plane, 1.7 mm slice thickness, 51 gradient directions 

with b= 900 s/mm2, and eight baseline scans with b= 0) were acquired. As described above a scanner 

update took place during the study and was therefore included as covariate. The sample consisted of 

two subsamples: patients with early course SCZ (19 patients, 15 HC) and patients with chronic SCZ 

(27 patients, 22 HC). For image processing please see also Figure 6 (adapted from paper 2 377). T1 
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images were visually inspected, realigned and parcellated using FreeSurfer (Figure 6 A). Diffusion 

images were corrected for motion, rotation and distortion and registered to the FreeSurfer parcellations 

(Figure 6 B). We applied a freewater correction 378, 379 to the diffusion images. This is, additionally to 

high spatial resolution, a way to control for partial volume effects. The diffusion signal is therefore 

separated into two signals- one from the free water compartment (were the diffusion of water mole-

cules is not restricted at all, and follows the self-diffusion coefficient of 3x10-3mm2/s 380, 381) and one 

from the tissue compartment (Figure 6 C). After removing the freewater component from the overall 

signal one can model the diffusion tensors as previously described 382. After obtaining diffusion prop-

erties for each voxel (Figure 6 D), heterogeneity can be calculated for a predefined brain region (Figure 

6 E). 

We calculated heterogeneity for the four cortical lobes (frontal, parietal, temporal and occipital 

lobe) and analyzed group differences between patients and HC for early course and chronic SCZ sep-

arated using MANCOVAs. Independent variable was group affiliation (patient versus HC), dependent 

variables were FA, MD, volume, heterogeneity of FA of the cortical lobes. Age, gender, and scanner 

update were included as covariates. Afterwards post hoc ANCOVS and receiver operating character-

istic curves were conducted. Areas under the receiver operating characteristic curves were used to 

quantify of how well dependent variables predicted group affiliation. All analyses are Bonferroni cor-

rected for multiple testing.  
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Figure 6: Data processing adapted from paper 2, 377 

 
 

III.3 Results 

For patients with chronic SCZ none of the MANCOVAs showed significant group differences. For 

patients with early course SCZ the MANCOVA for heterogeneity of FA (F=5.50, df1=4, df2=26, 

p<.0020), but not for FA (F=2.83, df1=4, df2=28, p<.048), MD (F=3.02, df1=4, df2=26, p<.036) or 

volume (F=2.04, df1=4, df2=26, p<12) showed significant group differences. Subsequently, we con-

ducted ANCOVAs for the four cortical lobes for heterogeneity of FA. Heterogeneity of the frontal 

lobe showed significant group differences between patients with early course SCZ and HC (F=10.68, 

df=1, p<.0030). Additionally, heterogeneity of the frontal lobe appeared as excellent group discrimi-

nator (AUC=0.82, p<.023).  

 

III.4 Conclusion 

The presented work used a novel DTI measure to investigate age dependent cellular microstructural 

gray matter changes in SCZ. We saw group differences for heterogeneity of FA in the frontal lobe. 

Higher heterogeneity in the frontal lobe in patients is indicative for late neurodevelopmental abnor-

malities. Post mortem studies show that the synaptic reorganization in frontal regions is ongoing be-

yond adolescence 383-386 and that disruptions of these late neurodevelopmental processes are associated 
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with SCZ 154, 387. Heterogeneity may reflect these neurodevelopmental abnormalities of the matura-

tional trajectory of the brain and may therefore serve as a potential biomarker for early disease stages 

and SCZ risk.   

The absence of group differences in the chronic cohort compared to HC suggests no progressive 

neurodegeneration of microstructural gray matter organization. Consequently, progressive neuro-

degeneration in SCZ, if existing, may rather be related to extracellular gray matter (e.g. enlarged ven-

tricles) or to white matter pathologies than to microstructural cellular gray matter alterations.  

To establish heterogeneity as a biomarker for SCZ risk further studies are needed, which need to 

include patients at risk to develop SCZ as well as patients with prodromal SCZ and unmedicated SCZ 

to determine if heterogeneity is altered before disease onset- Finally, heterogeneity could also be used 

to study the influence of microstructural cellular gray matter and extracellular gray matter changes in 

other brain disorders  like Alzheimer disease or tumors 388, 389 to get deeper insights into underlying 

pathologies.  
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Purpose: Tractography is the most anatomically accurate 
method for delineating white matter tracts in the brain, yet 
few studies have examined multiple tracts using tractogra-
phy in patients with schizophrenia (SCZ). We analyze 5 
white matter connections important in the pathophysiol-
ogy of SCZ: uncinate fasciculus, cingulum bundle (CB), 
inferior longitudinal fasciculus (ILF), superior longitudi-
nal fasciculus, and arcuate fasciculus (AF). Additionally, 
we investigate the relationship between diffusion tensor 
imaging (DTI) markers and neuropsychological mea-
sures. Methods: High-resolution DTI data were acquired 
on a 3 Tesla scanner in 30 patients with early-course SCZ 
and 30 healthy controls (HC) from the Boston Center for 
Intervention Development and Applied Research study. 
After manually guided tracts delineation, fractional anisot-
ropy (FA), trace, radial diffusivity (RD), and axial diffusiv-
ity (AD) were calculated and averaged along each tract. 
The association of DTI measures with the Scales for the 
Assessment of Negative and Positive Symptoms and neuro-
psychological measures was evaluated. Results: Compared 
to HC, patients exhibited reduced FA and increased trace 
and RD in the right AF, CB, and ILF. A discriminant anal-
ysis showed the possible use of FA of these tracts for better 
future group membership classi"cations. FA and RD of the 

right ILF and AF were associated with positive symptoms 
while FA and RD of the right CB were associated with 
memory performance and processing speed. Conclusion: 
We observed white matter alterations in the right CB, ILF, 
and AF, possibly caused by myelin disruptions. The struc-
tural abnormalities interact with cognitive performance, 
and are linked to clinical symptoms.

Key words:  diffusion MRI/positive symptoms/cognitive 
impairments/lateralization/uncinate fasciculus/cingulum 
bundle/inferior longitudinal fasciculus/superior 
longitudinal fasciculus/arcuate fasciculus

Introduction

Although the etiology of schizophrenia (SCZ) remains 
unknown, pathophysiological evidence from various 
studies supports the disconnection hypothesis, in which 
SCZ is proposed to be a syndrome of abnormal integra-
tion of functional brain systems eg, Friston1 and Schmitt 
et  al.2 It is further suggested that structural changes in 
the cerebral white matter underlie connectivity abnor-
malities that result in clinical symptoms and cognitive 
impairments. Diffusion tensor imaging (DTI) provides a 
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noninvasive window to investigate tissue microstructure 
in vivo and makes it possible to study white matter and 
its microstructural alterations.3,4 Previous DTI studies of 
patients with SCZ have reported disruptions in cerebello-
thalamo-cortical and fronto-temporal networks.5–7 Most 
of these SCZ DTI studies have used fractional anisotropy 
(FA), an index of white matter organization, and trace, 
an index of the magnitude of water diffusion, to quantify 
white matter abnormalities in vivo.

DTI quantitative measurements can be extracted from 
the diffusion data in several ways. Studies using voxel-
based morphometry (VBM) register the brain of  every 
subject to a template, and diffusion measurements are 
extracted from the corresponding voxels across the entire 
sample. Though this allows for the study of  the entire 
brain, the required data smoothing and registration steps 
are problematic.8 Registration is always performed auto-
matically, without prior anatomical knowledge, and thus 
misregistration errors are common. To account for such 
errors, studies use a great variety of  smoothing "lter 
sizes. This not only makes results dif"cult to compare, 
but also, after smoothing, many voxels do not show a 
Gaussianity of  residuals, a main assumption for para-
metric statistical approaches, which are used commonly 
in such analyses. Another approach to data analysis is 
to use Tract-Based Spatial Statistics (TBSS), which uti-
lizes a white matter skeleton template and results in a 
lower risk of  partial volume effects and greater statistical 
power.9 Nonetheless, automatic registration can still lead 
to misalignment, as it is solely based on FA maps that 
do not include orientation information.10 Furthermore, 
TBSS represents the maximal value projections, which 
may not be related to potential, subtle structural abnor-
malities. Finally, DTI measurements can be extracted 
and compared through manually drawn regions of  inter-
est (ROIs). However, implementation of  ROI methods 
can be problematic because a single ROI can include sev-
eral tracts.11

Currently, tractography is the only in vivo method that 
makes it possible to investigate entire white matter tracts. 
With this method, unlike with other available tools, 
microstructural properties of white matter can be mea-
sured and averaged over the entire anatomical structure 
(tracts), which provides greater anatomical speci"city 
and allows for investigating anatomo-functional relation-
ships. To date, however, most SCZ studies have not used 
tractography because it requires high-resolution data, is 
computationally expensive, and requires a high degree 
of anatomical knowledge. Thus, despite many reports 
of widespread structural white matter abnormalities in 
patients with SCZ, very few studies12–14 have combined 
tractography of several tracts, and, to our knowledge, 
none have investigated early-course SCZ.

Investigating early-course SCZ is important for under-
standing the pathophysiology of SCZ, because it mini-
mizes the in#uence of medication and illness chronicity. 

Additionally, any potential intervention strategies are 
likely to have the most impact early in the course of ill-
ness, before further alterations occur in the brain.15 In 
this study, we investigate 5 major association tracts using 
tractography in early-course SCZ. We measure FA, trace, 
radial diffusivity (RD), and axial diffusivity (AD). While 
FA and trace are often used to describe microstructural 
white matter pathologies in general, RD and AD can 
provide greater insights into the potential underlying 
neuropathology. AD describes the diffusion along the 
main diffusion direction, while RD captures the diffusion 
perpendicular to it. AD changes have been reported to 
be associated with axonal alterations, while RD changes 
have been reported to be associated with myelin damage.16 
The 5 selected bilateral tracts have all been proposed to 
play an important role in the pathophysiology of SCZ, 
including the uncinate fasciculus (UF), cingulum bundle 
(CB), inferior longitudinal fasciculus (ILF), superior 
longitudinal fasciculus (SLF), and the arcuate fascicu-
lus (AF).17–19 We focused our analysis only on the main 
cortico-cortical long association intra-hemispheric "ber 
tracts, as we believe that these discrete tracts are associ-
ated with cognitive domains that are disrupted in SCZ. In 
this selection process, we excluded other tracts such as the 
corpus callosum, which have also been associated with 
SCZ pathophysiology.20,21

More speci"cally, the UF interconnects regions that 
support acoustic memory, visual information, and emo-
tional response.22 Studies have reported a reduction in FA 
in patients with SCZ as well as an association with poorer 
outcome and negative symptoms (although somewhat 
inconsistently).17,18,23,24 The CB is involved in emotional 
expression, attention, motivation, and working memory 
processing.22 Studies have shown DTI abnormalities in 
CB in "rst episode and chronic SCZ, but the results are 
not consistent. Further, an association of DTI measures 
in CB with executive functioning has been reported.18,25–29 
The ILF is implicated in visual representation, facial rec-
ognition, and emotional perception.22 DTI abnormalities 
of the ILF appear at different stages of the disease and 
are likely related to positive symptoms.19,30,31 White matter 
abnormalities in SCZ have also frequently been reported 
in the SLF.19,32 The SLF is important for spatial attention 
and memory.22 Interestingly, most studies investigated 
the AF and the SLF together, although they are distinct 
anatomical structures.30,31 The AF connects cortical areas 
that are involved in spatial information and language pro-
cessing and studies have shown that the AF is impaired in 
SCZ and is associated more with positive symptoms.33,34

The inconsistency of the aforementioned reported 
"ndings may be due to differences in data acquisition 
and population characteristics. However, it is also likely 
that such discrepancies might be the result of differences 
in study design (eg, the use of VBM methods like TBSS 
or analysis based on a single ROI which can, as previ-
ously noted, lead to imprecise results). Accordingly, using 
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high-resolution DTI data and tractography to study 5 
tracts in a group of patients with early-course SCZ and 
HC, we matched groups on age, gender, and handedness. 
We predicted decreased FA and increased trace, RD, and 
AD in patients with early-course SCZ compared to HC.

We also explored associations between DTI indices 
and symptom severity and cognitive impairments. Here, 
we were especially interested in the association of white 
matter alterations with working memory and processing 
speed. Both are basic cognitive processes that are critical 
for a number of higher level operations35 such as learn-
ing, reasoning,36 encoding and retrieval, and decision 
making.37 Furthermore working memory and processing 
speed in#uence each other.38,39 On the one hand both have 
been reported to be clearly associated with white matter 
integrity and development.35,40,41 On the other hand many 
studies show that these functions are impaired in SCZ.42–44 
In fact, memory and processing speed are the most prom-
inent neurocognitive impairments in early-course SCZ45,46 
and they seem to be more speci"c to SCZ than other cog-
nitive measurements.47,48 Additionally, such impairments 
have also been shown to be common in ultra high-risk 
individuals who go on to develop psychosis.44,49 Finally, 
these cognitive impairments have been associated with 
poorer functional outcome.50–52

Methods

Participants

Thirty individuals with early-course SCZ (1–39 months 
after disease onset) and 30 HCs were selected based on 
DTI data availability from the larger sample recruited 
via the Boston Center for Intervention Development 
and Applied Research study (CIDAR) study (www. 
bostoncidar.org, accessed November 19, 2015) (see 

table 1 and supplementary material 1). SCZ participants 
were recruited from local hospitals and outpatient clinics, 
referrals from clinicians, advertisements, and outreach 
presentations. HCs were recruited from the general com-
munity via advertisements.

Clinical diagnoses were based on interviews with 
the Structured Clinical Interview for the DSM-IV-TR, 
Research Version (SCID)53 for ages >18, or the KID–
SCID54 for subjects 13–17 years of age, as well as informa-
tion from available medical records. All SCZ participants 
met DSM-IV-TR criteria for SCZ, schizoaffective dis-
order or schizophreniform disorder. HCs were drawn 
from the same geographic base as the SCZ group with 
comparable age, gender, race and ethnicity, handedness, 
and parental socioeconomic status, and were screened 
for Axis I  disorders using the SCID for DSM-IV-TR, 
Nonpatient Edition.55 No HCs met criteria for any cur-
rent major DSM-IV-TR Axis I disorders, or any history 
of psychosis, Major Depression (recurrent), Bipolar dis-
order, Obsessive Compulsive Disorder, Post Traumatic 
Stress Disorder, or developmental disorders. HCs were 
also excluded for any history of psychiatric hospital-
izations, prodromal symptoms, schizotypal, or other 
Cluster A  personality disorders, "rst-degree relatives 
with psychosis, or any current or past use of antipsychot-
ics (other past psychotropic medication use was accept-
able, but the individual must have been off  medicine 
for at least 6  months before participating in the study, 
except for p.r.n. medications such as sleeping or anxio-
lytic medications). Exclusion criteria for all participants 
were: sensory-motor handicaps, neurological disorders, 
medical illnesses that signi"cantly impair neurocogni-
tive function, diagnosis of mental retardation, education 
<5th grade if  <18 years or <9th grade if  ≥18, not #uent in 
English, DSM-IV-TR substance abuse in the past month, 

Table 1. Sample Characteristics of Early-Course SCZ and HC Groups

SCZ (n = 30) HC (n = 30)

Statistical Test

t Df P

Age (y) 21.76 ± 4.73a 21.88 ± 3.38a 0.12 58 .91
Age range (y) 13.92–31.67 14.67–29.25 — — —
Gender (male/female) 20/10 18/12 Fisher`s exact test: P = .79
Race (Caucasian/not Caucasian) 21/9 16/14 Fisher`s exact test: P = .29
Ethnicity (Hispanic or Latino/not 
Hispanic or Latino)

6/24 4/26 Fisher`s exact test: P = .73

Handedness (right/nonright) 24/5 27/3 Fisher`s exact test: P = .47
Parental socioeconomic statusb 2.10 ± 1.09a 1.83 ± 0.91a −1.03 58 .32
WRAT-4 Reading subtest87 105.10 ± 2.45a 103.30 ± 2.56a −0.039 57 .97
Education (y) 13.20 ± 2.95a 14.17 ± 2.39a 1.39 58 .17
WASI 109.3 ± 13.94 115.7 ± 14.16 1.73 56 .0090

Note: SCZ, Schizophrenia; HC, Healthy Controls; WRAT-4, Wide Range Achievement Test-4 (premorbid IQ estimate based on Reading 
subtest); WASI, Wechsler Abbreviated Scale of Intelligence (current IQ estimate based on Vocabulary and Block Design subtests).
aMean ± SD.
bHollingshead score (1–5 scale, 1 highest).
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DSM-IV-TR substance dependence, excluding nicotine, 
in the past 3  months, current suicidality, a history of 
ECT within the past 5 years for patients and a history of 
ECT ever for controls, or study participation by another 
family member. Prior to MRI scanning, all subjects were 
screened for foreign metal in their body, pacemakers, 
pregnancy, claustrophobia, or any other health risks.

This study was approved by the local institutional 
review board committees at Beth Israel Deaconess 
Medical Center, the Veterans Affairs Boston Healthcare 
System (Brockton campus), Harvard Medical School, 
Brigham and Women’s Hospital, and Massachusetts 
General Hospital. Each subject, or legal guardian for 
those under 18 years, provided written informed consent 
before participating.

Image Acquisition

Images were acquired on a 3T whole body scanner 
(General Electric Medical Systems). Diffusion weighted 
images were acquired with a high-spatial resolution twice 
refocused echo-planar imaging sequence (TR  =  17 s, 
TE = 80 ms, #ip angle 90°, FOV 240 × 240 mm, 85 slices, 
1.7 × 1.7 mm in-plane, 1.7 mm slice thickness, 51 gradient 
directions with b = 900 s/mm2, and 8 baseline scans with 
b = 0). One scanner software upgrade took place during 
the course of the study. We, therefore, included a covari-
ate for scanner upgrade in our statistical analysis.

Image Processing

Diffusion images were visually inspected, and then cor-
rected for head motion and eddy current distortion by per-
forming an af"ne registration of each gradient weighted 
image to the baseline using FLIRT (FSL, Oxford; http://
fsl.fmrib.ox.ac.uk/fsl56, accessed November 19, 2015). 
A  custom in-house script reoriented the corresponding 
gradient direction based on the computed af"ne transfor-
mation. The resulting corrected images were then input 
into 3D slicer (www.slicer.org, accessed November 19, 
2015), which was used for weighted least square tensor 
estimation followed by human expert supervised stream-
line tractography (neuroanatomist NM). ROIs for de"ning 
the tracts were drawn, blind to diagnosis, guided by color 
orientation maps.57 For further information about the trac-
tography see "gures 1 and 2. FA, trace, RD, and AD were 
calculated and averaged over each tract using MATLAB.58 
To determine reliability, 2 additional raters performed 
tractography in 10 randomly selected subjects. The intra-
class correlation coef"cients for FA were greater than 0.79.

Clinical Symptoms and Cognitive Tests

Trained and skilled interviewers and neuropsychological 
testers conducted all clinical and cognitive assessments. 
The Scale for the Assessment of Negative Symptoms 
(SANS)59 and the Scale for the Assessment of Positive 

Symptoms (SAPS)60 were used to measure symptom sever-
ity. In addition to the total scores, SANS and SAPS global 
ratings were examined (supplementary material 1). The 
symbol coding test and the Trail Making Test-Part A were 
used for processing speed, and the Spatial Span and 
Letter-Number Span tests were used for assessing working 
memory (table  2), following standardized guidelines for 
examining these functions in SCZ.35,36 All tests were part of 
an extensive neuropsychological test battery for all studies 
that were part of the Boston CIDAR studies.

Statistical Analysis

Statistical analyses were conducted using the Statistical 
Package for Social Sciences version 22.061 and Prism.62

Group Differences. We conducted 4 separate 
MANCOVAs (1 for each FA, trace, RD, and AD). 
Dependent variables were, respectively, diffusion param-
eters of the 5 tracts (eg, dependent variables in the FA 
MANCOVA were FA of AF, FA of UF, FA of SLF, 
FA of CB, and FA of ILF). For each test, independent 
variables of interest were group, hemisphere, and group 
× hemisphere, with scanner upgrade, gender, age, and 
handedness as covariates. In case of a signi"cant group 
effect (P < .013- Bonferroni corrected for 4 tests) post 
hoc ANCOVAs were calculated for each tract separately. 
Dependent variables were FA/trace/RD/AD, and inde-
pendent variables and covariates were the same as in the 
MANCOVA. In case of a signi"cant group effect for a 
tract in the ANCOVA, 2-tailed t tests were performed to 
investigate whether group differences appeared for both 
or for 1 hemisphere only.

Since we wanted to explore the clinical relevance of 
white matter abnormalities found with DTI and their 
potential use for future group membership, we conducted 

Fig. 1. Tractography of 5 white matter tracts. Sagittal view of the 
tractography of the inferior longitudinal fasciculus (green), the 
superior longitudinal fasciculus (blue), arcuate fasciculus (red), 
uncinate fasciculus (pink), and the cingulum bundle (yellow).
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a discriminant analyses. Discriminant analyses are used 
to predict memberships to mutually exclusive groups (the 
grouping variable here was: HC vs patients with SCZ). 
The independent variables were the FA values of the 10 
tracts. Since we were interested in the possible impact of 
all these variables, we entered them all together, rather 
than choosing a stepwise approach.

Clinical Symptoms and Cognitive Tests. We conducted 
Spearman’s correlation analyses between overall SANS 
and SAPS scores, SANS/SAPS subscales, and cognitive 
measures, with DTI measurements. We chose Spearman`s 
rank-order correlations, instead of Pearson product 
moment correlation, because clinical symptom and cog-
nitive test results are ordinal, rather than continuous vari-
ables and, therefore, not necessarily normally distributed. 
This analysis was followed by the Fisher`s Exact Score 
to test whether these correlation coef"cients signi"cantly 
differ from 0.

Additional Analyses. We used correlation analysis to 
investigate associations between DTI measurements and 
duration of illness, medication dose, and age of onset. We 

used Spearman’s R to examine the correlations, because 
not all measurements were normally distributed (as 
shown by Shapiro-Wilk tests).

Results

Group Differences

The MANCOVA for FA (table 2 and "gure 3) revealed 
signi"cant main effects for group and hemisphere but 
no signi"cant group × hemisphere interaction. Post hoc 
ANCOVAS for each of the 5 tracts separately showed 
signi"cant group effects for AF, CB, and ILF. Post hoc 
2 tailed t tests for the left and right AF, CB, and ILF 
showed signi"cant group differences for the right hemi-
sphere only. The MANCOVA for trace showed sig-
ni"cant main effects for group and hemisphere, but no 
group × hemisphere interaction. Post hoc ANCOVAS 
revealed signi"cant group effects for CB and ILF. Post 
hoc 2-tailed t tests for left and right CB and ILF revealed 
signi"cant group differences for right CB, right ILF, and 
left ILF. The same MANCOVA for AD revealed a signi"-
cant main effect for hemisphere only. The MANCOVA 
for RD showed signi"cant group and hemisphere main 

Fig. 2. Region of interest (ROI) placement. ROIs were drawn blind to diagnosis, guided by color orientation maps,54 and supervised 
by a neuroanatomist (NM). Uncinate fasciculus: 1 seeding (green and yellow) and 1 inclusion (red and blue) ROI 2 slices anterior to 
the coronal slice where the temporal stem no longer connects to the rest of the temporal lobe (A). Cingulum bundle: 1 seeding ROI on 
approximately 20 axial slices (B). Superior longitudinal fasciculus (SLF) and arcuate fasciculus (AF): Initial seeding ROI on 5 axial slices 
lateral to the corona radiata for both tracts (C), additional ROI where the AF curves down into the temporal lobe (exclusion ROI for the 
SLF and inclusion ROI for the AF) (D). Inferior longitudinal fasciculus: Occipital ROI on 12 axial slices (E) and temporal ROI on 5 axial 
slices in the anterior portion of the temporal lobe (F).
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effects, but no group × hemisphere interaction. Post hoc 
ANCOVAs showed signi"cant group effects for AF, CB, 
and ILF. Post hoc 2-tailed t tests were signi"cant for right 
AF, right CB, right ILF, and left ILF.

In the discriminant analysis, 80% of the popula-
tion could be classi"ed correctly into groups (Wilks 
Lambda = .63, X2 = 22.45, df = 10, P = .013). The pro-
portion of variance explained by FA was 60% (indicated 
by an eigenvalue of .60). The right ILF (correlation with 
discriminant function = .53), right AF (correlation with 
discriminant function  =  .45) and right CB (correlation 
with discriminant function =  .31) contributed the most 
for predicting group af"liation. These "ndings suggest 
that the FA values of the 3 tracts which showed white 
matter alterations have the most potential for future 
group membership classi"cations.

Clinical Symptoms and Cognitive Tests

The P values for all reported results were signi"cant by 
Bonferroni correction (supplementary material 2).

The correlation of  FA of the right ILF, AF, and CB 
with the SANS and SAPS total scores revealed a sig-
ni"cant correlation between right ILF and SAPS score 
(ρ = −0.37, P = .0034). Further correlation analyses of  the 
right ILF with the 4 SAPS subscales showed signi"cant 
correlations with hallucinations (ρ = −0.36, P =  .0050) 
and delusions (ρ  =  −0.37, P  =  .0039). Correlations 
between RD of the right ILF, AF, CB, and the left ILF 
with the SAPS and SANS total scores revealed a signi"-
cant correlation between right AF (ρ = 0.37, P = .0046) 
and right ILF with total SAPS score (ρ = 0.40, P = .0016). 
Further correlation analysis of  these 2 tracts with the 4 

SAPS subscales revealed a signi"cant correlation for the 
right ILF with delusions (ρ = 0.41, P = .0011).

When correlating the FA of the right AF, CB, and ILF 
with the results from the neuropsychological tests, we 
found statistically signi"cant correlations between right 
CB with symbol coding (ρ = 0.37, P < .0039) and letter 
number sequencing test (ρ = 0.38, P < .0034). The same 
correlation analysis for RD of the right AF, CB, ILF, and 
left ILF showed a signi"cant correlation between the right 
CB and the symbol coding test (ρ = −0.38, P < .0031).

Additional Analysis

The correlation analysis of DTI measurements with age 
of onset, duration of illness, and chlorpromazine equiva-
lent medication dose did not reveal any signi"cant results 
(supplementary material 3).

Discussion

Using tractography, we reported white matter abnor-
malities in 3 out of  5 major "ber bundles (ILF, AF, and 
CB, but not SLF and UF) in early-course SCZ com-
pared to a well-matched HC group. To the best of  our 
knowledge, this is the "rst comprehensive study of  white 
matter association "ber tracts to investigate connectiv-
ity disturbances in early-course SCZ. More speci"cally, 
we observed FA reduction with trace and RD increase 
for the CB, ILF, and AF tracts in the right hemisphere. 
A  reduction of  FA is thought to indicate alterations 
in white matter organization. A signi"cant increase of 
RD with no concomitant changes in AD suggests that 
the alterations could be related to disrupted myelin.16 

Table 2. Signi"cant Group Differences Between Patients With SCZ and HC

FA Trace AD RD

MANCOVA Hemisphere (F = 44.46, df = 5,  
P < .0001)

(F = 12.99, df = 5,  
P < .0001)

(F = 27.23, df = 5, 
P < .0001)

(F = 16.30, df = 5,  
P < .0001)

Group (F = 5.27, df = 5,  
P < .0001)

(F = 3.33, df = 5, 
P = .008)

— (F = 4.92, df = 5,  
P < .0001)

Post hoc ANCOVA Group AF (F = 5.94, df = 1, 
P = .016)

CB (F = 8.15, df = 1, 
P = .005)

— AF (F = 5.60, df = 1,  
P = .020)

CB (F = 9.35, df = 1, 
P = .003)

ILF (F = 11.17, df = 1, 
P = .001)

CB (F = 11.55, df = 1, 
P = .0010)

ILF (F = 14.77, df = 1, 
P = .004)

ILF (F = 13.25, df = 1,  
P < .0001)

Post hoc 2-tailed 
t tests

Group Right AF (t = 2.87, 
df = 55, P = .0061)

Right CB (t = 2.02, 
df = 58, P = .048)

— Right AF (t = 2.46, df = 55, 
P = .018) 

Right CB (t = 2.29, 
df = 58, P = .027)

Right ILF (t = 2.54, 
df = 58, P= .014)

Right CB (t = 2.49, df = 58, 
P = .017) 

Right ILF (t = −3.28, 
df = 58, P = .0020)

Left ILF (t = 2.13, 
df = 58, P = .038)

Right ILF (t = 3.40, df = 58, 
P = .001)
Left ILF (t = 2.27, df = 58, 
P = .028)

Note: FA, Fractional Anisotropy; AD, Axial Diffusivity; RD, Radial Diffusivity; AF, Arcuate Fasciculus; CB, Cingulum Bundle; ILF, 
Inferior Longitudinal Fasciculus.
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While one needs to be careful in interpreting diffusion 
measures63 as other anatomical (micro and macro struc-
tural) changes could also explain the abnormalities in 
these indices,64,65 the associations of  these measures with 
clinical and cognitive performance increase the likeli-
hood that the observed patterns of  abnormalities por-
tray structural de"ciencies that affect the function of  the 
"bers.

We found that diffusion measures of the right CB were 
associated with performance on 2 cognitive tests (symbol 

coding and letter-number sequencing test). Structural 
abnormalities of the CB25 and an association with execu-
tive functioning28,29,66 have been reported previously. Our 
study adds to the current literature by showing an asso-
ciation between white matter alterations of the CB and 
processing speed and working memory, arguably mea-
sures of executive functioning. Finally, reduced FA in the 
right ILF and increased trace and RD in the right and left 
ILF were correlated with positive symptom scores.

Contrary to previous studies, we did not "nd any group 
differences for the SLF.67,68 With respect to SLF, as men-
tioned previously, since SLF and AF are 2 separate ana-
tomical structures that are involved in different cognitive 
processes, we analyzed them separately, whereas most 
previous studies have combined them for further analy-
ses. Diffusion measures of the AF were associated with 
positive symptoms, which may re#ect an impairment of 
the language processing system leading to hallucinations 
and delusions. This "nding demonstrates the importance 
of separating SLF and AF in future studies.

We did not report any group differences for the UF. 
Results of previously published studies investigating UF 
are also inconsistent.24,69 Some studies suggest that abnor-
malities in this structure are very subtle,69,70 and might 
be associated with poor outcome and negative symp-
toms.18,71 Of further note, poorer outcome and negative 
symptoms are more frequently found in chronic than in 
early-course SCZ. UF may thus be more relevant to pro-
gressive changes observed at later stages of the disease in 
those who evince a chronic course of illness.

It is important to note that almost all group differ-
ences in our study are observed in the right hemisphere. 
A similar lateralization pattern has been found in stud-
ies of  individuals at clinical high risk of  psychosis for 
white72 and gray matter73 and in patients with a "rst epi-
sode of  SCZ,74–76 but not in chronic SCZ. It has also been 
demonstrated that the right AF is particularly associated 
with positive symptom scores.34,77 This may further sug-
gest that white matter changes in the right hemisphere 
are typical for early stages of  disease, suggesting a lack 
of  lateralization or a particular (probably neurodevel-
opmental) early pathological disruption of  white mat-
ter maturation in the right hemisphere. However, it has 
to be noted that most of  our subjects are right-handed. 
Therefore, even though we controlled for the effect of 
handedness in our analysis, future studies need to inves-
tigate further the in#uence of  handedness on white mat-
ter tracts in early-course SCZ.

Limitations and Future Directions

White matter changes in SCZ can be in#uenced by many 
potential factors, such as gender, age,12,13 duration of 
illness,17,19,78 age of onset,79 type and severity of symp-
toms,80,81 and medication.67,82 Since every cohort varies on 
these parameters, it is dif"cult to generalize the results. 

Fig. 3. Group differences of FA between patients with 
schizophrenia (SCZ) and healthy control individuals (HC). Group 
differences of fractional anisotropy of the right arcuate fasciculus 
(FA_AF_r), the right cingulum bundle (FA_CB_r) and the right 
inferior longitudinal fasciculus (FA_ILF_r) between patients with 
SCZ and HC.
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However, in our study, we controlled for gender and age, 
and our analyses showed that neither duration of illness, 
medication dosage, nor age of onset affected the DTI 
measures.

By choosing 5 white matter tracts, we excluded other 
tracts such as the corpus callosum,20,21 the fornix,83 or the 
internal capsule,84 which have been reported to play a role 
in the pathophysiology of SCZ. Future studies should 
include even more tracts to have a more complete picture 
of the underlying white matter architecture.

Finally, tractography, although currently the most 
accurate method for investigating white matter in vivo, 
has its own limitations.85 For example, averaging all 
voxels over the tract leads to loss of local information. 
Additionally, single tensor tractography is limited in the 
case of crossing "bers, suggesting that future studies need 
to attend to more precise methods for modeling water dif-
fusion within a voxel, such as multi-tensor tractography.86

Conclusion

This is, to our knowledge, one of the "rst comprehen-
sive investigations of white matter anatomy, pathology, 
and function in early-course SCZ. In this study, we used 
manually guided diffusion tractography, the most ana-
tomically accurate way to investigate white matter struc-
tures, to examine 5 major association white matter tracts 
in a population of early-course SCZ, compared to HC. 
Changes observed were anatomically speci"c to ILF, CB, 
and AF, and only to the right side. We demonstrated fur-
ther functional speci"city of observed pathology, ie, CB 
was associated with processing speed and working mem-
ory, and ILF was associated with delusions. We, there-
fore, believe that our study will add to establishing DTI as 
a viable tool for investigating the nature of early pathol-
ogy in SCZ, and as such may lead to imaging biomarkers 
that might prove useful for the detection of white matter 
disconnectivity, treatment monitoring, and outcome pre-
diction in SCZ.

Supplementary Material

Supplementary material is available at http://schizophre-
niabulletin.oxfordjournals.org.
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Abstract Neuroimaging studies demonstrate gray matter
(GM) macrostructural abnormalities in patients with schizophre-
nia (SCZ). While ex-vivo and genetic studies suggest cellular
pathology associated with abnormal neurodevelopmental pro-
cesses in SCZ, few in-vivo measures have been proposed to
target microstructural GM organization. Here, we use diffusion
heterogeneity- to study GM microstructure in SCZ. Structural
and diffusion magnetic resonance imaging (MRI) were acquired
on a 3 Tesla scanner in 46 patients with SCZ and 37 matched
healthy controls (HC). After correction for free water, diffusion
heterogeneity as well as commonly used diffusion measures FA
and MD and volume were calculated for the four cortical lobes
on each hemisphere, and compared between groups. Patients
with early course SCZ exhibited higher diffusion heterogeneity
in the GM of the frontal lobes compared to controls. Diffusion
heterogeneity of the frontal lobe showed excellent discrimination
between patients and HC, while none of the commonly used

diffusion measures such as FA or MD did. Higher diffusion
heterogeneity in the frontal lobes in early SCZ may be due to
abnormal brain maturation (migration, pruning) before and dur-
ing adolescence and early adulthood. Further studies are needed
to investigate the role of heterogeneity as potential biomarker for
SCZ risk.

Keywords DiffusionMRI . Heterogeneity . Schizophrenia .

Neurodevelopment . Graymatter

Introduction

Schizophrenia (SCZ) is a severe psychiatric disorder with sig-
nificant consequences for affected patients and society as a
whole (Ratnasingham et al. 2013; Rössler et al. 2005;
Whiteford et al. 2013). Patients with SCZ exhibit several
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macrostructural brain abnormalities including reduced region-
al gray matter volume and enlarged ventricles. The biological
interpretations of these macrostructural gray matter alterations
include abnormal cortical development, differential matura-
tional trajectories (e.g., Nesvag et al. 2014; Vogeley et al.
2000), and possible neurodegeneration and/or accelerated ag-
ing (Assunção Leme et al. 2013; Egashira et al. 2014;
Hulshoff Pol and Kahn 2008). However, since volumetric
measures are biologically non-specific and appear to be pres-
ent at all stages of the illness, associations of macrostructural
changes with potential microstructural pathology have been
difficult.

Diffusion tensor imaging (DTI) (Basser et al. 1996;
Pierpaoli and Basser 1996) has been demonstrated to be sen-
sitive to microstructural alterations (Spoletini et al. 2011). DTI
provides information about the motion of water within brain
tissue by quantifying the extent and directional preference of
diffusion. Brain alterations at the cellular level lead to local
modifications in water diffusion and can be detected by DTI
even when macrostructural features do not change (Fjell et al.
2008). So far, DTI has primarily been used to evaluate white
matter microstructure in SCZ (Kubicki et al. 2007) and very
few SCZ gray matter DTI studies have been conducted
(Anderson et al. 2013; Lee et al. 2009; Moriya et al. 2010;
Park et al. 2014; Shin et al. 2006).

The most common DTI metrics that are being used to eval-
uate microstructural brain alterations include fractional anisot-
ropy (FA), an index of white matter axonal organization and
coherence, and mean diffusivity (MD), an index of overall
white matter water content. While diffusion anisotropy and
orientation of the fibers are of interest in white matter, both
these measures are less relevant in gray matter. This is because
the diffusion properties of gray matter reflect the diffusion of
water hindered by cell bodies and their processes, while in
white matter diffusion properties reflect the diffusion of water
within bundles of long myelinated axons. Therefore, in gray
matter there is no preferred direction of orientation that can be
measured with current clinical imaging data resolution. It has
been shown that the diffusion measures within the same ana-
tomical structure in gray matter vary from voxel to voxel
much more than in white matter (Vollmar et al. 2010). This
variance in diffusion properties does not only indicate that FA
or MD of a single voxel may not be appropriate to study gray
matter, but it also makes these metrics insensitive to the de-
tection of subtle abnormalities in the cortex, even when aver-
aged over larger regions.

Therefore, we suggest that in addition to existing diffusion
indices, it is important to consider DTI measurements that
would capture cortical organization on a bigger scale, i.e. inter,
rather than intra-voxel. For example, Kalus et al. (Kalus et al.
2004; Kalus et al. 2005a, 2005b) conducted inter-voxel coher-
ence studies and they report reduced coherence in the amyg-
dala and parahippocampical regions in patients with SCZ,

which they interpreted to represent differences in local con-
tents of ordered fiber systems.

Another possible measurement capturing inter-voxel orga-
nization was recently introduced by Rathi et al. (2014). It is
derived from the diffusion signal and called Bheterogeneity .̂
Heterogeneity is a statistical measure that determines the var-
iability of microstructural gray matter tissue properties
reflected by diffusion measures within a given region of inter-
est (ROI); e.g. the heterogeneity of FA (HFA) reflects the
variability of FA within a defined ROI. It can therefore sepa-
rate the effect of anisotropic diffusion from that of overall
measure of diffusivity (MD). In contrast to other inter-voxel
coherence measurements, one does not need to choose refer-
ence voxels and it can therefore be computed in arbitrarily
large or small regions (e.g. for the four cortical lobes).

Normal, healthy cortex is characterized by relatively low
heterogeneity of diffusion properties in gray matter, suggest-
ing a consistent uniform tissue organization (Rathi et al.
2014). However, less consistent cellular organization within
gray matter tissue, a result of possible age-dependent reorga-
nization or faulty neurodevelopment of the cortex, would lead
to more heterogeneous diffusion behavior that would be
reflected as greater variability of diffusion properties, resulting
in increased heterogeneity. Thus, heterogeneity has the poten-
tial to serve as a more sensitive indicator of microstructural
organization of gray matter tissue than FA or MD to detect
alterations in tissue organization, even in the absence of mac-
rostructural volumetric changes.

The aim of the current study is to use heterogeneity to
investigate gray matter microstructural organization in pa-
tients with SCZ. For reasons mentioned above, we expect
our method to be more sensitive for differentiating between
groups than traditional diffusion measurements, such as FA,
MD or macrostructural gray matter measurements, i.e., corti-
cal volume (Arnold 2001). We will apply heterogeneity in a
cross-sectional study design to patients at different disease
stages (early course and chronic) and well matched healthy
control (HC) group. We predict higher gray matter heteroge-
neity in patients with SCZ (but not necessarily higher FA or
MD), which we propose would reflect abnormal cortical or-
ganization in SCZ (Teffer and Semendeferi 2012).

Methods

Participants

Forty-six patients (9 females, 37 males) with SCZ and thirty-
seven healthy control subjects (HC) (10 females, 27 males)
were recruited from the Boston area. The entire sample was
separated into two sub groups- patients within three years of
onset of SCZ (19 patients, 15 HC) and patients with chronic
SCZ (27 patients, 22 HC) (Supplement 1). Patients with early
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course SCZ were recruited via the Boston Center for
Intervention Development and Applied Research (CIDAR
study) from outpatient clinics. Patients with a more chronic
illness were recruited from the Veteran Affairs Boston
Healthcare System, Brockton Division, MA.

Groups were matched on age, sex, handedness, parental
socioeconomic status, and estimated premorbid intelligence
(Reading scale of Wide Range Achievement Test- 3
(Wilkinson 1993)) (Table 1). Diagnoses were based on a di-
agnostic interview using the Structured Clinical Interview for
the DSM-IV-TR, Research Version (SCID) (First et al. 2002b)
for ages >18, or the KID–SCID (Hien et al. 1994) (for subjects
15–17 years of age). Patients were excluded if they had a
history of electroconvulsive therapy within the past 5 years.
Control subjects were screened for the presence of an Axis I
disorder using the Structured Clinical Interview for DSM-IV-
TR, Non-patient Edition (First et al. 2002a) andwere excluded
if they: 1) currently met criteria for any psychosis, major de-
pressive disorder, dysthymic disorder, bipolar disorder, obses-
sive compulsive disorder, post-traumatic stress disorder, dis-
sociative disorders, anorexia nervosa, bulimia nervosa, or de-
velopmental disorders; 2) had a history of any psychosis, ma-
jor depression (recurrent), bipolar disorder, obsessive compul-
sive disorder, post-traumatic stress disorder, developmental
disorder, or psychiatry hospitalization; 3) had current or past
use of antipsychotics for any psychiatric condition (other past
psychotropic medication use acceptable, but must been off

medicine for at least 6 months before participating in the
study, except for as the circumstances required medications
such as sleeping medications or anxiolytic agents, or
beta-blockers for performance anxiety, tremors, etc.); 4)
had any history of ECT; 5) had evidence of any pro-
dromal symptoms, or schizotypal or other Cluster A
personality disorders; or 6) reported having a first-
degree relative with psychosis.

For all subjects, exclusion criteria included sensory-motor
handicaps (e.g. severe visual or auditory problems), neurolog-
ical disorders, medical illnesses that significantly affect neu-
rological functioning, diagnosis of mental retardation, educa-
tion of less than 9th grade (or less than 5th grade for subjects
under 18), non-fluency in English (exposure to English by age
6), substance abuse in the past month as defined by the DSM-
IV-TR, substance dependence (excluding nicotine) in the past
3 months as defined by the DSM-IV-TR, and current
suicidality. For their safety during the MRI scanning, all sub-
jects were screened for foreign metal in their body, pace-
makers, pregnancy, claustrophobia, or any other circumstance
that might pose a health risk.

The Institutional Review Boards of the Veteran Affairs
Boston Healthcare System, Brigham and Women’s Hospital,
Beth Israel Deaconess Medical Center, Massachusetts
Department of Mental Health Central Office Research
Review Committee, and Harvard Medical School approved
the study. Each subject or legal guardian for those under

Table 1 Demographic characteristics for patients with schizophrenia (SCZ) and healthy control individuals (HC)

SCZ HC Two sample t-test or Pearson-Chi-square test
(2-tailed)

t df p

Number 46 37 - - -

Age (years)
(Age range)

36.07 ± 14.01a

(15.63–56.92)
36.27 ± 12.51a

(17.37–53.42)
-.070
-

81
-

.95
-

Gender 9f, 36 m 10f, 27 m .65 1 .42

Handedness 40 left, 3 both, 3 right 36 right 1 both 3.27 2 .20

Parental socioeconomic status (PSES)b 2.52 ± 0.19a 2.25 ± 0.16a 1.07 80 .29

premorbid IQ (Wilkinson 1993) 105.80 ± 2.69a 104.50 ± 2.93a 0.31 61 .76

Scanner update (before/after) 25/21 17/20 .58 1 .45

Age of onset 24.26 ± 7.59a - - - -

Duration of illness SCZ 9.15 ± 10.25a - - - -

Medication dose SCZ (chlorpromazine equivalent dose)c 603.40 ± 913.90a - - - -

SANS d 32.05 ± 16.95a - - - -

SAPS e 27.18 ± 24.03a - - - -

aMean ± Standard deviation ; b Higher numbers represent lower PSES; c Following the international consensus study of antipsychotic dosing (Gardner
et al. 2010);
d SANS = The Scale for the Assessment of Negative Symptoms (N. C. Andreasen 1984a); e SAPS = Scale for the Assessment of Positive Symptoms (N.
C. Andreasen 1984b)

Clinical and demographical information was not available for all subjects participating in this study
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18 years provided understanding and written informed con-
sent before participating.

Image acquisition

All images were acquired on a 3 Tesla whole body General
ElectricMRI scanner (GEMedical Systems, Milwaukee). The
MRI sequences included a high-resolution 3D T1 (IR-
FSPGR, TR 7.8 ms, TE 3 ms, TI 600 ms, flip angle 10°,
FOVmatrix size 256 × 256, 176 slices, 1 mm slice thickness).
Diffusion weighted images (DWIs) were acquired using a
twice refocused echo-planar imaging sequence (TR 17 s, TE
80 ms, flip angle 90°, FOV matrix size 144 × 144, 85 slices,
1.7 mm slice thickness, 51 gradient directions with b = 900 s/
mm2 and eight baseline scans with b = 0 stacked at the begin-
ning of the image sequence). During the course of the study a
scanner software upgrade took place. Even so HC and patients
with SCZ did not differ in how many subjects were scanned
before and after scanner upgrade (see Table 1), we included
scanner update as a covariate in our analysis.

Image processing

For further information on the imaging process, see Fig. 1. The
data was visually inspected for artifacts and signal drops. We
checked our data for outliers (3 x interquartile range) and found
that no subjects needed to be excluded from the analyses.

The T1 images were manually realigned and parcellated
into 176 Gy matter, white matter, and cerebrospinal fluid re-
gions using the FreeSurfer software (http://surfer.nmr.mgh.
harvard.edu/). The DWIs were corrected for motion by
means of affine registration with a reference b0 volume
(FLIRT, FSL, Oxford; http://fsl.fmrib.ox.ac.uk/fsl (Jenkinson
et al. 2002)). Diffusion gradients were compensated for rota-
tion and distortion. Next, the T1 FreeSurfer segmentations
were registered to the DWIs using non-linear registration
(FN IRT, FSL , Ox fo r d ; h t t p : / / f s l . fm r i b . o x . a c .
uk/fsl/fslwiki/FNIRT).

To minimize the impact of partial volume effects on diffusion
measures, we applied a free water correction to the DWI data
(Pasternak et al. 2009). The removal of the free water influence is
especially important for gray matter studies, because it allows for
more accurate diffusion parameters that are less influenced by the
partial volume effects of extracellular components, and are thus
more specific to cellular gray matter structure (Koo et al. 2009).
For the free water correction, the diffusion signal is separated into
two compartments - the free water and the tissue compartment. It
is assumed that the diffusion of water molecules in the free water
compartment is not restricted by any surroundings and can there-
fore be described as Gaussian distributed Brownian motion
(Beaulieu 2002) with a self-diffusion coefficient of approximate-
ly 3× 10−3mm2/s (Holz et al. 2000;Mills 1973). The diffusion in
this environment is much greater than in cortical tissue where

cellular processes lead to a hindered displacement profile (Assaf
and Basser 2005; Helenius et al. 2002). This free water contribu-
tion can be removed from the overall diffusion signal, which is
then described by the classical diffusion tensor model (Basser
and Pierpaoli 1996). The diffusion parameters, such as FA and
MD, are then calculated for this remaining tissue compartment
for each voxel. These free water corrected diffusion measures
will most likely capture tissue processes or extracellular process-
es in proximity to cellular membranes and therefore also specific
to tissue changes (Pasternak et al. 2009).

Afterward free water correction, heterogeneity was calcu-
lated. Heterogeneity is mathematically defined as:

H mð Þ ¼ 1
N 2

XN

i¼1

XN

j¼1

!!!
!!!mi−mj

!!!
!!!

where N is the number of voxels in the ROI, andm is the value
of a given diffusion measurement (such as FA) in a voxel,
indexed by i or j. Heterogeneity describes the statistical vari-
ability of a diffusion measurement in an ROI, while being
more robust than classical variability measures like variance
(Rathi et al. 2014).

The heterogeneity of FA (HFA) for four cortical lobes
(frontal, parietal, temporal, occipital) was calculated using
Matlab (TheMathWorks). The four cortical lobes were delin-
eated by combining all corresponding FreeSurfer ROIs (e.g.
the frontal lobe was generated by combining the 12 right fron-
tal gray matter FreeSurfer ROIs with the 12 left frontal gray
matter FreeSurfer ROIs) (Desikan et al. 2006).

Statistical analysis

Statistical Analyses were performed with GraphPad Prism 6
(GraphPadSoftware 2014) and the Statistical Package for
Social Sciences version 22.0 (IBMCorp 2013).

To replicate and extend the findings of Rathi et al. (2014),
we focused our initial analysis on the association of HFA, FA,
MD, and volume with age by calculating correlations
(Pearson r) for the entire SCZ and HC group separately, then
testing with an F-Test if the correlation coefficients were sig-
nificantly different from zero (adjusted p < .0063).

Next, we separated the entire sample into the two sub-
groups (patients within three years of onset versus patients
with chronic SCZ and their matched HCs).

We analyzed group differences using MANCOVAs (one
for each measurement- HFA, FA, MD, volume) for both
sub-groups. The independent variable of interest was group
affiliation (SCZ versus HC), whereas the dependent variables
were HFA/FA/MD/volume of the frontal, parietal, temporal,
and occipital regions, while age, gender and scanner update
were included as covariates. In the case of a significant group
difference, we examined this further using post hoc

Brain Imaging and Behavior (2018) 12:54–63 57



ANCOVAs for the four cortical lobes with group as indepen-
dent variable, HFA as dependent variable, and age, scanner
update, and gender as covariates.

In the case of a significant ANCOVA, receiver operating char-
acteristics (ROC) curves were created for HFA, FA, MD, and
volume and then the areas under the ROC curve (AUCs) were
calculated. ROC curves provide a way to quantify how well a
measure, for instance heterogeneity, can discriminate between
two groups, in our case the HC and patient groups. AUCs were
interpreted following Hosmer and Lemeshow (Hosmer and
Lemeshow 2000), where higher values stand for better prediction.

To further elucidate the association of group differences
with clinical variables, we used partial correlation analysis
(corrected for age) in case of significant group differences be-
tween diffusion measurements and duration of illness, medica-
tion dose, and age of onset for patients with early course SCZ.

Results

Correlation of HFAwith age

There was a positive association between both HFA
and FA with age, whereas MD and volume exhibited

negative correlations with age in patients and HC
(Table 2).

Difference between SCZ and HC

Patients with chronic SCZ

None of the MANCOVAs showed a significant group differ-
ence (p < .013, Bonferroni corrected for four tests) for HFA,
FA, MD, and volume between patients with chronic SCZ and
controls (Table 3).

Patients with early course SCZ

The MANCOVA for HFA showed significant group differ-
ences (p < .013, Bonferroni corrected for four tests)
(F = 5.50, df1 = 4, df2 = 26, p = .0020), whereas the
MANCOVAs for FA, MD, and volume did not (Table 3).

Due to the significant group effect, we conducted post hoc
ANCOVAs for the frontal, parietal, temporal, and occipital
regions with group as the independent variable, HFA as the
dependent variable, and age, scanner update, and gender as
covariates. Only the HFA of the frontal region showed signif-
icant (p < .013, Bonferroni corrected for four tests) group

Fig. 1 Image processing (a) Diffusion images were motion, distortion
and rotation corrected (FLIRT, FSL, Oxford; http://fsl.fmrib.ox.ac.uk/fsl
(Jenkinson et al. 2002)) and (b) structural images were realigned and
parcellated using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). (c)
This segmentation was non-linearly registered (FNIRT, FSL, Oxford;
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT) to the diffusion images. A

free water correction was applied to separate the signal into a Bfree
water^ signal (d) and the tissue tensor map (e). FA and MD were
calculated for each voxel of this tissue tensor map. Afterwards
heterogeneities of FA and MD were computed for the frontal, parietal,
temporal and occipital lobes
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differences (F = 10.68, df = 1, p = .0030) while the
HFA of the occipital (F = 6.44, df = 1, p = .017),
parietal (F = .15, df = 1, p = .70) and temporal
(F = 6.44, df = 1, p = .28) regions were not significant.
For descriptive statistics please see Table 4.

Furthermore, HFA of the frontal region demonstrated ex-
cellent discrimination (AUC = 0.82, p = .023) between pa-
tients with SCZ and HC (Fig. 2). Whereas AUC analyses of
FA frontal (AUC = 0.73, p = .43), MD frontal (AUC = .58,
p = .43) and volume frontal (AUC = .55, p = .64) showed
poorer discrimination.

Additional analyses

The correlation analysis between HFA and age of onset
(r(10) = .24 p < .45), duration of illness (r(10) = .38,
p < .22), and medication dose (r(10) = .24, p < .45) did not
show any significant results.

Discussion

The results of the present study show that patients with early
course SCZ exhibit significantly greater HFA in the frontal
lobe compared to HC and that HFA is very sensitive in group
discrimination. We did not find any group differences for any
other parameter, nor for the patients with chronic SCZ.
Heterogeneity is a way of statistically determining the distri-
bution of diffusion properties. Please keep in mind that the
term Bheterogeneity^ has widely been used to describe genetic

or clinical Bheterogeneity^ in patients with chronic schizo-
phrenia (Dacquino et al. 2015; Jouan et al. 2013; Liang and
Greenwood 2015). However, we refer to our statistical method
of data evaluation which we believe can provide insights into
the microstructure of gray matter.

Higher heterogeneity in frontal areas in early course
SCZ patients could be indicative of aberrant maturation-
al processes that preceded the transition to psychosis. A
number of post mortem studies have reported that pa-
tients with SCZ have fewer inhibitory synapses and dis-
play excessive pruning of excitatory synapses in pre-
frontal areas, resulting in increased neuronal density
and fewer dendrites and synapses (N. C. Andreasen
2010; Rapoport et al. 2012; Roberts et al. 2015).
These changes, in turn, could result in cortical micro-
structural disorganization in patients with SCZ, occur-
ring during brain maturation which might be reflected
as increased heterogeneity in the gray matter.

The findings of early microstructural alterations in
SCZ are in line with the neurodevelopmental theory,
which postulates that genetic susceptibility and early
environmental risk factors may alter the normal matura-
tional trajectory of the brain development, which then
leads to the onset of SCZ (Feinberg 1983; Lewis and
Levitt 2002; Nonaka et al. 2013; Rapoport et al. 2005;
Rapoport et al. 2012; Sipos et al. 2004; Sullivan et al.
2003; Thermenos et al. 2013; Weinberger 1987). It is
also well established that frontal regions are the last to
develop and that the elimination of synapses in frontal
lobe regions continues beyond adolescence into the

Table 2 Correlation coefficients
(Pearson) for patients with
schizophrenia (SCZ) and healthy
control individuals (HC) of HFA,
FA, MD and Vol with age

HFA SCZ HFA HC FA SCZ FA HC MD SCZ MD HC Vol SCZ Vol HC

Frontal 0.63* 0.77* 0.54* 0.66* -0.69* -0.58* -0.58* -0.46*

Parietal 0.67* 0.51* 0.71* 0.54* -0.57* -0.48* -0.41* -0.44*

Temporal 0.41* 0.34 0.48* 0.56* -0.50* -0.40 -0.47* -0.47*

Occipital 0.63* 0.25 0.67* 0.48* -0.55* -0.21 -0.032 -0.39

*indicates statistically significant correlation with p < .0063 (Bonferroni Correction, n = 8)

HFA = heterogeneity of fractional anisotropy; FA = fractional anisotropy; MD = mean diffusivity (in 10-3 mm2 /
s); Vol = gray matter volume

Table 3 Group differences
between patients with
schizophrenia (SCZ) and healthy
control individuals (HC) demon-
strated by MANCOVAS

Patients with chronic SCZ Patients with early course SCZ

HFA F = 1.78, df1 = 4, df2 = 41, p = .15 F = 5.50, df1 = 4, df2 = 26, p = .0020*

FA F = 2.67, df1 = 4, df2 = 41, p = .046 F = 2.83, df1 = 4, df2 = 28, p = .045

MD F = .33, df1 = 4, df2 = 41, p = .86 F = 3.02, df1 = 4, df2 = 26, p = .036

Volume F = 1.30, df1 = 4, df2 = 41, P = .29 F = 2.04, df1 = 4, df = 26, p = .12

*indicates statistically significant correlation with p < .013 (Bonferroni Correction, n = 4)

HFA = heterogeneity of fractional anisotropy; FA = fractional anisotropy;MD =mean diffusivity (in 10-3mm2 /s);
Vol = gray matter volume
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second decade of life (Gogtay et al. 2004; Huttenlocher
and Dabholkar 1997; Lebel et al. 2008; Petanjek et al.
2011). Our findings are in line with these studies, show-
ing group differences in the frontal lobe only.
Heterogeneity may thus reflect these maturational
changes and it may therefore be a potential biomarker
for early disease stages, or maybe even increased risk
for transition to psychosis.

More importantly, heterogeneity is also a useful tool be-
cause it allows excellent discrimination between patients with
early course SCZ and HC, and in this regard outperforms
classical measurements, such as FA, MD and volume. It is
crucial to find early diagnostic biomarker of SCZ, because
intervention strategies are more likely to be successful in early
disease states (McEvoy 2007), and as such, heterogeneity
might be a promising in vivo biomarker for increased risk
for schizophrenia.

The absence of group differences in the chronic SCZ
patients may indicate a lack of progressive cellular pa-
thology in the gray matter. The existence of progressive,
neurodegenerative cellular pathology continues to be the
matter of active debate in SCZ. Although there are no
classical neurodegenerative signs such as gliosis (G.
Roberts and Harrison 2000) or neurofibrillary tangles
reported (Bozikas et al. 2002), cortical thinning in
SCZ has been suggested to be the result of accelerated
aging (Arnold 2001). Present MRI evidence, however,
does not clearly support the neurodegenerative hypothe-
sis. Multiple studies show progressive gray matter re-
ductions (in widespread cortical areas), while others find
either stable or minimal gray matter group differences
with age (Brans et al. 2008; Hulshoff Pol and Kahn
2008; Kubota et al. 2011; Olabi et al. 2011; van
Haren et al. 2008). However, even this progressive vol-
ume loss, if present, is being argued to be more accen-
tuated during first few years after disease onset, and
then normalizing afterwards (N. C Andreasen et al.,
2011; Bose et al. 2009; Kubota et al. 2011). This view
is also consistent with the clinical profile of the disease,
where after the stabilization of symptoms, no observable
cognitive deterioration is seen (Jeste et al. 2011; Napal
et al. 2012).

Limitations and future directions

Our study has several limitations. First, we employ a cross-
sectional study design, which limits our ability to draw con-
clusions about the developmental trajectories of SCZ patho-
physiology. Second, our population does not include at-risk
subjects, it is thus possible that the changes described herein
might reflect acute alterations related to disease-onset, stress,
or an acute reaction to antipsychotic treatment, rather than a
neurodevelopmental pathology.

Additionally, using diffusion imaging in gray matter
may lead to partial volume effects. As described in the
method section, we have taken multiple precautions to
minimize this effect. We used high resolution diffusion
data and a free water correction. This correction mini-
mizes partial volume effects, and therefore ensures that
changes in gray matter heterogeneity are less influenced
by edema, atrophy or neuroinflammation (Pasternak
et al. 2009). However, even though free water has wide-
ly been used (Bergamino et al. 2016; Metzler-Baddeley
et al. 2012; Pasternak et al. 2014; Pasternak et al. 2015)
the model has limitations itself. The assumption that
there is no exchange between compartments is a simpli-
fication not accounting for potential differences in mem-
brane permeability (Kochunov et al. 2014). Further stud-
ies are therefore needed to combine our model with

Fig. 2 Area under the curve analysis. HFA of the frontal region
demonstrated excellent discrimination between patients with SCZ
and HC

Table 4 Descriptive statistics (mean ± standard deviation) of
heterogeneity for patients with early course schizophrenia (SCZ) and
healthy control individuals (HC)

Patients with early course SCZ HC

HFA frontal .1190 ± .006474 .1113 ± .005676

HFA parietal .1047 ± .005366 .1043 ± .005810

HFA temporal .1140 ± .006606 .1148 ± .007776

HFA occipital .09391 ± .004783 .09668 ± .007865

HFA = heterogeneity of fractional anisotropy
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more sophisticated approaches (Kochunov et al. 2014;
Zhu et al. 2014).

Additional longitudinal studies are needed to determine the
role of heterogeneity as a potential biomarker for alterations
relating to onset of SCZ. Furthermore, it is unclear which
effect chronic administration of medication has on heteroge-
neity. It is therefore possible that a longer period of medication
could influence the lack of findings in the chronic group (Ho
et al. 2011). Future studies that include a group of un-
medicated patients with SCZ are thus needed.

Finally, heterogeneity may be useful not only for the inves-
tigation of SCZ, but also in other diseases, such as brain tumor
or Alzheimer’s disease, to help detecting early changes in
cellular organization. In fact, a recent study (Walker-Samuel
et al. 2011) has shown subtle changes in tissue organization in
brain tumor, measured through heterogeneity of MR signal.

Conclusion

In summary, we observed higher heterogeneity, a novel mea-
sure of microstructure, in the gray matter of the frontal lobe in
patients with early course SCZ, whereas commonly usedmea-
sures, such as FA, MD or volume lacked sensitivity. These
findings suggest that gray matter alterations in early course
SCZ may be associated with abnormalities in synaptic orga-
nization or pruning. Future studies are needed to establish
heterogeneity as a neuroimaging marker of SCZ risk.

Acknowledgments This study was part of the doctoral thesis of
Johanna Seitz. We thank all subjects for their participation. We also thank
the clinical, research assistant, and data management staff from the
Boston CIDAR study, including Bryant C, Cousin A, Francis G, Franz
M, Friedman-Yakoobian M, Gibson L, Gnong-Granato A, Hiraldo M,
Hornbach S, Klein K, Min G, Pilo C, Rodenhiser-Hill J, Schutt J,
Sorenson S, Szent-Imry R, Thomas A, Tucker L, Wakeham C,
Woodberry K. We are grateful for the hard work of many research vol-
unteers, including Donodoe D, Feder Z, Khromina S, Molokotos E,
Oldershaw A, Reading J, Piazza E, and Schanz O. Finally, we would like
to thank Zuo A and Eckbo R for their support with data processing.

Compliance with ethical standards

Funding This work was supported by the National Institutes of Health
(grant number P50MH080272 (to MN, LJS, TP, RM, JW, RM, MES,
MK), R01 MH102377 (to MK), T32MH016259–35 (to AL),
K05MH070047 (to MES)); the Veterans Affairs Merit Awards (to RM,
MES); R01MH074794; P41EB015902; NARSAD young investigator
award (to OP); by the Else Kroener-Fresenius Stiftung, Deutschland (to
IK); by the Commonwealth Research Center (SCDMH82101008006
(to RM, JW, LJS)); and by a Clinical Translational Science Award
(UL1RR025758 to Harvard University and Beth Israel Deaconess
Medical Center from the National Center for Research Resources
(to LJS)).

Disclosure of potential conflicts of interest The Authors Seitz
Johanna, Rathi Yogesh, Lyall Amanda, Pasternak Ofer, del Re
Elisabetta C, Niznikiewicz Margaret, Nestor Paul, Seidman Larry J,

Petryshen Tracey L, Mesholam-Gately Raquelle I, Wojcik Joanne,
McCarley Robert W, Shenton Martha E, Koerte Inga K, and Kubicki
Marek have declared that there are no conflicts of interest in relation to
the subject of this study.

Research involving human participants and/or animals All proce-
dures performed in studies involving human participants were in accor-
dance with the ethical standards of the institutional and/or national re-
search committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual
participants included in the study.

References

Anderson, D., Ardekani, B. A., Burdick, K. E., Robinson, D. G., John,
M., Malhotra, A. K., & Szeszko, P. R. (2013). Overlapping and
distinct gray and white matter abnormalities in schizophrenia and
bipolar I disorder. Bipolar Disorders, 15(6), 680–693. doi:10.1111
/bdi.12096.

Andreasen, N. C. (1984a). The scale for the assessment of negative symp-
toms (SANS). Iowa City: University of Iowa.

Andreasen, N. C. (1984b). The scale for the assessment of positive symp-
toms (SAPS). Iowa City: University of Iowa.

Andreasen, N. C. (2010). The lifetime trajectory of schizophrenia and the
concept of neurodevelopment. Dialogues in Clinical Neuroscience,
12(3), 409–415.

Arnold, S. E. (2001). Contributions of neuropathology to understanding
schizophrenia in late life. Harvard Review of Psychiatry, 9(2), 69–
76.

Assaf, Y., & Basser, P. J. (2005). Composite hindered and restricted mod-
el of diffusion (CHARMED) MR imaging of the human brain.
NeuroImage, 27(1), 48–58.

Assunção Leme, I. B., Gadelha, A., Sato, J. R., Ota, V. K., Mari, J.,
Melaragno, M. I.,… Jackowski, A. P. (2013). Is there an association
between cortical thickness, age of onset, and duration of illness in
schizophrenia? CNS Spectr, 18(6), 315–321.

Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological
features of tissues elucidated by quantitative-diffusion-tensor MRI.
Journal of Magnetic Resonance. Series B, 111(3), 209–219.

Basser, P. J., Matielo, B., & Bihan, D. L. (1996). MR diffusion tensor
spectroscopy and imaging. Biophs, 66, 259–267.

Beaulieu, C. (2002). The basis of anisotropic water diffusion in the ner-
vous system - a technical review. NMR in Biomedicine, 15(7–8),
435–455. doi:10.1002/nbm.782.

Bergamino, M., Pasternak, O., Farmer, M., Shenton, M. E., & Hamilton,
J. P. (2016). Applying a free-water correction to diffusion imaging
data uncovers stress-related neural pathology in depression.
Neurologic Clinics, 10, 336–342. doi:10.1016/j.nicl.2015.11.020.

Bose, S. K., Mackinnon, T., Mehta, M. A., Turkheimer, F. E., Howes, O.
D., Selvaraj, S., et al. (2009). The effect of ageing on grey and white
matter reductions in schizophrenia. Schizophrenia Research, 112(1–
3), 7–13.

Bozikas, V. P., Kovari, E., Bouras, C., & Karavatos, A. (2002).
Neurofibrillary tangles in elderly patients with late onset schizophre-
nia. Neuroscience Letters, 324(2), 109–112.

Brans, R. G. H., van Haren, N. E. M., van Baal, G. C. M., Staal, W. G.,
Schnack, H. G., Kahn, R. S., & Hulshoff Pol, H. E. (2008).
Longitudinal MRI study in schizophrenia patients and their healthy
siblings. The British Journal of Psychiatry, 193(5), 422–423.

Brain Imaging and Behavior (2018) 12:54–63 61



Dacquino, C., De Rossi, P., & Spalletta, G. (2015). Schizophrenia and
bipolar disorder: the road from similarities and clinical heterogeneity
to neurobiological types. Clinica Chimica Acta, 449, 49–59.
doi:10.1016/j.cca.2015.02.029.

Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C.,
Blacker, D., et al. (2006). An automated labeling system for
subdividing the human cerebral cortex on MRI scans into gyral
based regions of interest. NeuroImage, 31(3), 968–980.

Egashira, K., Matsuo, K., Mihara, T., Nakano, M., Nakashima, M.,
Watanuki, T., et al. (2014). Different and Shared Brain Volume
Abnormalities in Late- and Early-Onset Schizophrenia.
Neuropsychobiology, 70(3), 142–151.

Feinberg, I. (1983). Schizophrenia: caused by a fault in programmed
synaptic elimination during adolescence? Journal of Psychiatric
Research, 17(4), 319–334.

First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002a).
Structured Clinical Interview for DSM-IV-TR Axis I Disorders,
Research Version, Non-patient Edition. (SCID-I/NP). In N. Y. S. P.
Institute (Ed.), Biometrics Research. New York.

First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002b).
Structured Clinical Interview for DSM-IV-TR Axis I Disorders,
Research Version, Patient Edition. (SCID-I/P) Biometrics
Research. New York: New York State Psychiatric Institute.

Fjell, A. M., Westlye, L. T., Greve, D. N., Fischl, B., Benner, T.,
van der Kouwe, A. J., et al. (2008). The relationship between
diffusion tensor imaging and volumetry as measures of white
mat ter proper t i es . NeuroImage, 42 (4) , 1654–1668.
doi:10.1016/j.neuroimage.2008.06.005.

Gardner, D. M., Murphy, A. L., O'Donnell, H., Centorrino, F., &
Baldessarini, R. J. (2010). International consensus study of antipsy-
chotic dosing. The American Journal of Psychiatry, 167(6), 686–
693. doi:10.1176/appi.ajp.2009.09060802.

Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D.,
Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical
development during childhood through early adulthood.
Proceedings of the National Academy of Sciences of the United
States of America, 101(21), 8174–8179.

GraphPadSoftware. (2014). GraphPad Prism version 6.00 for Windows.
San Diego California USA GraphPadSoftware. Retrieved from
www.graphpad.com

Helenius, J., Soinne, L., Perkio, J., Salonen, O., Kangasmaki, A., Kaste,
M., et al. (2002). Diffusion-weighted MR imaging in normal human
brains in various age groups. AJNR. American Journal of
Neuroradiology, 23(2), 194–199.

Hien, D., Matzner, F. J., First, M. B., Spitzer, R. L., Gibbon, M., &
Williams, J. B. W. (1994). Structured clinical interview for DSM-
IV-child edition (1.0 ed.). New York: Columbia University.

Ho, B. C., Andreasen, N. C., Ziebell, S., Pierson, R., & Magnotta, V.
(2011). Long-term antipsychotic treatment and brain volumes: a
longitudinal study of first-episode schizophrenia. Archives of
General Psychiatry, 68(2), 128–137.

Holz, M., Heil, S. R., & Sacco, A. (2000). Temperature-dependent self-
di†usion coefficients of water and six selected molecular liquids for
calibration in accurate 1H NMR PFG measurements. PCCP, 2,
4740–4742.

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression
(Wiley Ed.). Hoboken, NJ.

Hulshoff Pol, H., & Kahn, R. S. (2008). What happens after the first
episode? A review of progressive brain changes in chronically ill
patients with schizophrenia. Schizophrenia Bulletin, 34(2), 354–
366.

Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in
synaptogenesis in human cerebral cortex. The Journal of
Comparative Neurology, 387(2), 167–178.

IBMCorp (2013). IBM SPSS statistics for windows, version 22.0.
Armonk: IBMCorp.

Jenkinson, M., Bannister, P., Brady, J. M., & Smith, S. M. (2002).
Improved optimization for the robust and accurate linear registration
and motion correction of brain images. NeuroImage, 17(2), 825–
841.

Jeste, D. V., Wolkowitz, O. M., & Palmer, B. W. (2011). Divergent tra-
jectories of physical, cognitive, and psychosocial aging in schizo-
phrenia. Schizophrenia Bulletin, 37(3), 451–455. doi:10.1093
/schbul/sbr026.

Jouan, L., Girard, S. L., Dobrzeniecka, S., Ambalavanan, A., Krebs, M.
O., Joober, R., … Rouleau, G. A. (2013). Investigation of rare var-
iants in LRP1, KPNA1, ALS2CL and ZNF480 genes in schizophre-
nia patients reflects genetic heterogeneity of the disease. Behav
Brain Funct, 9, 9. doi:10.1186/1744-9081-9-9

Kalus, P., Buri, C., Slotboom, J., Gralla, J., Remonda, L., Dierks, T., et al.
(2004). Volumetry and diffusion tensor imaging of hippocampal
subregions in schizophrenia. Neuroreport, 15(5), 867–871.

Kalus, P., Slotboom, J., Gallinat, J., Federspiel, A., Gralla, J., Remonda,
L., et al. (2005a). New evidence for involvement of the entorhinal
region in schizophrenia: a combinedMRI volumetric and DTI study.
NeuroImage, 24(4), 1122–1129.

Kalus, P., Slotboom, J., Gallinat, J., Wiest, R., Ozdoba, C., Federspiel, A.,
et al. (2005b). The amygdala in schizophrenia: a trimodal magnetic
resonance imaging study. Neuroscience Letters, 375(3), 151–156.
doi:10.1016/j.neulet.2004.11.004.

Kochunov, P., Chiappelli, J., Wright, S. N., Rowland, L. M., Patel, B.,
Wijtenburg, S. A., et al. (2014). Multimodal white matter imaging to
investigate reduced fractional anisotropy and its age-related decline
in schizophrenia. Psychiatry Research, 223(2), 148–156.
doi:10.1016/j.pscychresns.2014.05.004.

Koo, B. B., Hua, N., Choi, C. H., Ronen, I., Lee, J. M., & Kim, D. S.
(2009). A framework to analyze partial volume effect on gray matter
mean diffusivity measurements. NeuroImage, 44(1), 136–144.
doi:10.1016/j.neuroimage.2008.07.064.

Kubicki, M., McCarley, R., Westin, C. F., Park, H. J., Maier, S., Kikinis,
R., et al. (2007). A review of diffusion tensor imaging studies in
schizophrenia. Journal of Psychiatric Research, 41(1–2), 15–30.

Kubota, M., Miyata, J., Yoshida, H., Hirao, K., Fujiwara, H., Kawada, R.,
et al. (2011). Age-related cortical thinning in schizophrenia.
Schizophrenia Research, 125(1), 21–29. doi:10.1016/j.
schres.2010.10.004.

Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008).
Microstructural maturation of the human brain from childhood to
adulthood. NeuroImage, 40(3), 1044–1055. doi:10.1016/j.
neuroimage.2007.12.053.

Lee, K., Yoshida, T., Kubicki, M., Bouix, S., Westin, C. F., Kindlmann,
G., et al. (2009). Increased diffusivity in superior temporal gyrus in
patients with schizophrenia: a Diffusion Tensor Imaging study.
Schizophrenia Research, 108(1–3), 33–40.

Lewis, D. A., & Levitt, P. (2002). Schizophrenia as a disorder of
neurodevelopment. Annual Review of Neuroscience, 25(1), 409–
432.

Liang, S. G., & Greenwood, T. A. (2015). The impact of clinical hetero-
geneity in schizophrenia on genomic analyses. Schizophrenia
Research, 161(2–3), 490–495. doi:10.1016/j.schres.2014.11.019.

McEvoy, J. P. (2007). The importance of early treatment of schizophrenia.
Behavioral Healthcare, 27(4), 40–43.

Metzler-Baddeley, C., O’Sullivan, M. J., Bells, S., Pasternak, O., &
Jones, D. K. (2012). How and how not to correct for CSF-
contamination in diffusion MRI. NeuroImage, 59(2), 1394–1403.

Mills, R. (1973). Self-Diffusion in Normal and HeavyWater. The Journal
of Physical Chemistry, 77(5).

Moriya, J., Kakeda, S., Abe, O., Goto, N., Yoshimura, R., Hori, H., et al.
(2010). Gray and white matter volumetric and diffusion tensor im-
aging (DTI) analyses in the early stage of first-episode schizophre-
nia. Schizophrenia Research, 116(2–3), 196–203.

62 Brain Imaging and Behavior (2018) 12:54–63



Napal, O., Ojeda, N., Elizagárate, E., Peña, J., Ezcurra, J., &Gutiérrez,M.
(2012). The course of the schizophrenia and its impact on cognition:
a review of literature. Actas Españolas de Psiquiatría, 40(4), 198–
220.

Nesvag, R., Schaer, M., Haukvik, U. K., Westlye, L. T., Rimol, L. M.,
Lange, E. H., et al. (2014). Reduced brain cortical folding in schizo-
phrenia revealed in two independent samples. Schizophrenia
Research, 152(2–3), 333–338.

Nonaka, S., Ichinose, H., Kinoshita, H., & Nakane, H. (2013).
Epidemiology of schizophrenia. Nihon Rinsho, 71(4), 583–588.

Olabi, B., Ellison-Wright, I., McIntosh, A. M., Wood, S. J., Bullmore, E.,
& Lawrie, S. M. (2011). Are there progressive brain changes in
schizophrenia? A meta-analysis of structural magnetic resonance
imaging studies. Biological Psychiatry, 70(1), 88–96.

Park, J. Y., Park, H. J., Kim, D. J., & Kim, J. J. (2014). Positive symptoms
and water diffusivity of the prefrontal and temporal cortices in
schizophrenia patients: a pilot study. Psychiatry Research, 224(1),
49–57. doi:10.1016/j.pscychresns.2014.07.003.

Pasternak, O., Sochen, N., Gur, Y., Intrator, N., & Assaf, Y. (2009). Free
water elimination and mapping from diffusion MRI. Magnetic
Resonance in Medicine, 62(3), 717–730. doi:10.1002/mrm.22055.

Pasternak, O., Koerte, I. K., Bouix, S., Fredman, E., Sasaki, T.,
Mayinger, M., et al. (2014). Hockey Concussion Education
Project, Part 2. Microstructural white matter alterations in
acutely concussed ice hockey players: a longitudinal free-
water MRI study. Journal of Neurosurgery, 120(4), 873–
881. doi:10.3171/2013.12.JNS132090.

Pasternak, O., Westin, C. F., Dahlben, B., Bouix, S., & Kubicki, M.
(2015). The extent of diffusion MRI markers of neuroinflammation
and white matter deterioration in chronic schizophrenia.
Schizophrenia Research, 161(1), 113–118. doi:10.1016/j.
schres.2014.07.031.

Petanjek, Z., Judas,M., Simic, G., Rasin,M. R., Uylings, H. B., Rakic, P.,
& Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in
the human prefrontal cortex. Proceedings of the National Academy
of Sciences of the United States of America, 108(32), 13281–13286.

Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of
diffusion anisotropy.Magnetic Resonance in Medicine, 36(6), 893–
906.

(2011) Progressive brain change in schizophrenia: a prospective longitu-
dinal study of first-episode schizophrenia, 7, 70 Cong. Rec. 672–
679.

Rapoport, J. L., Addington, A. M., Frangou, S., & Psych, M. R. (2005).
The neurodevelopmental model of schizophrenia: update 2005.
Molecular Psychiatry, 10(5), 434–449.

Rapoport, J. L., Giedd, J. N., & Gogtay, N. (2012). Neurodevelopmental
model of schizophrenia: update 2012.Molecular Psychiatry, 17(12),
1228–1238.

Rathi, Y., Pasternak, O., Savadjiev, P., Michailovich, O., Bouix, S.,
Kubicki, M., et al. (2014). Gray matter alterations in early aging: a
diffusion magnetic resonance imaging study. Human Brain
Mapping, 35(8), 3841–3856. doi:10.1002/hbm.22441.

Ratnasingham, S., Cairney, J., Manson, H., Rehm, J., Lin, E., &Kurdyak,
P. (2013). The burden of mental illness and addiction in Ontario.
Canadian Journal of Psychiatry, 58(9), 529–537.

Roberts, G., & Harrison, B. J. (2000). Gliosis and its implications for the
disease process. In B. J. Harrison & G. Roberts (Eds.), The neuro-
pathology of schizophrenia: Progress and interpretation (pp. 137–
150). New York: Oxford Univ. Press.

Roberts, R. C., Barksdale, K. A., Roche, J. K., & Lahti, A. C. (2015).
Decreased synaptic and mitochondrial density in the postmortem
anterior cingulate cortex in schizophrenia. Schizophr Res.

Rössler, W., Salize, H. J., van Os, J., & Riecher-Rössler, A. (2005). Size
of burden of schizophrenia and psychotic disorders. European
Neuropsychopharmacology: The Journal of the Eurpoean College
of Neuropsychopharmacology, 15(4), 399–400. doi:10.1016/j.
euroneuro.2005.04.009.

Shin, Y. W., Kwon, J. S., Ha, T. H., Park, H. J., Kim, D. J., Hong, S. B.,
et al. (2006). Increased water diffusivity in the frontal and temporal
cortices of schizophrenic patients. NeuroImage, 30(4), 1285–1291.

Sipos, A., Rasmussen, F., Harrison, G., Tynelius, P., Lewis, G., Leon, D.
A., & Gunnell, D. (2004). Paternal age and schizophrenia: a popu-
lation based cohort study. BMJ, 329(7474), 1070.

Spoletini, I., Cherubini, A., Banfi, G., Rubino, I. A., Peran, P.,
Caltagirone, C., & Spalletta, G. (2011). Hippocampi, thalami, and
accumbens microstructural damage in schizophrenia: a volumetry,
diffusivity, and neuropsychological study. Schizophrenia Bulletin,
37(1), 118–130.

Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a
complex trait: evidence from a meta-analysis of twin studies.
Archives of General Psychiatry, 60(12), 1187–1192.

Teffer, K., & Semendeferi, K. (2012). Human prefrontal cortex: evolu-
tion, development, and pathology. Progress in Brain Research, 195,
191–218. doi:10.1016/B978-0-444-53860-4.00009-X.

TheMathWorks. MATLAB and Statistics Toolbox Release 2012b.
Natick, Massachusetts, United States: TheMathWorks.

Thermenos, H. W., Keshavan, M. S., Juelich, R. J., Molokotos, E.,
Whitfield-Gabrieli, S., Brent, B. K., et al. (2013). A review of neu-
roimaging studies of young relatives of individuals with schizophre-
nia: a developmental perspective from schizotaxia to schizophrenia.
American Journal of Medical Genetics. Part B, Neuropsychiatric
Genetics, 162B(7), 604–635. doi:10.1002/ajmg.b.32170.

van Haren, N. E. M., Hulshoff Pol, H. E., Schnack, H. G., Cahn, W.,
Brans, R., Carati, I., et al. (2008). Progressive brain volume loss in
schizophrenia over the course of the illness: evidence of maturation-
al abnormalities in early adulthood. Biological Psychiatry, 63(1),
106–113.

Vogeley, K., Schneider-Axmann, T., Pfeiffer, U., Tepest, R., Bayer, T. A.,
Bogerts, B., et al. (2000). Disturbed gyrification of the prefrontal
region in male schizophrenic patients: A morphometric postmortem
study. The American Journal of Psychiatry, 157(1), 34–39.

Vollmar, C., O'Muircheartaigh, J., Barker, G. J., Symms, M. R.,
Thompson, P., Kumari, V., et al. (2010). Identical, but not the same:
intra-site and inter-site reproducibility of fractional anisotropy mea-
sures on two 3.0 T scanners. NeuroImage, 51(4), 1384–1394.

Walker-Samuel, S., Orton, M., Boult, J. K., & Robinson, S. P. (2011).
Improving apparent diffusion coefficient estimates and elucidating
tumor heterogeneity using Bayesian adaptive smoothing. Magnetic
Resonance in Medicine, 65(2), 438–447. doi:10.1002/mrm.22572.

Weinberger, D. R. (1987). Implications of normal brain development for
the pathogenesis of schizophrenia. Archives of General Psychiatry,
44(7), 660–669.

Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J.,
Erskine, H. E., et al. (2013). Global burden of disease attributable to
mental and substance use disorders: findings from the Global
Burden of Disease Study 2010. Lancet, 382(9904), 1575–1586.
doi:10.1016/S0140-6736(13)61611-6.

Wilkinson, G. (1993). The wide range achievement test- revision 3.
Wilmington: Jastak Association.

Zhu, J., Zhuo, C., Qin, W., Wang, D., Ma, X., Zhou, Y., & Yu, C. (2014).
Performances of diffusion kurtosis imaging and diffusion tensor
imaging in detecting white matter abnormality in schizophrenia.
Neurologic Clinics, 7, 7170–7176.

Brain Imaging and Behavior (2018) 12:54–63 63



 56 

ReIeUeQceV 

1. WorldHealthOrganization. Schizophrenia. Available at: 
http://www.who.int/mental_health/management/schizophrenia/en/. Accessed 19.06.2015, 
2015. 

2. Mueser KT, Mc Gurk SR. Schizophrenia. Lancet 2004;363(9426):2063-2072. 
3. Chou FH, Tsai KY, Wu HC, Shen SP. Cancer in patients with schizophrenia: What is the next 

step? Psychiatry Clin Neurosci Nov 2016;70(11):473-488. 
4. Simeone JC, Ward AJ, Rotella P, Collins J, Windisch R. An evaluation of variation in 

published estimates of schizophrenia prevalence from 1990 horizontal line 2013: a systematic 
literature review. BMC Psychiatry Aug 12 2015;15:193. 

5. Jablensky A, Sartorius N, Ernberg G, Anker M, Korten A, Cooper JE, Day R, Bertelsen A. 
Schizophrenia: manifestations, incidence and course in different cultures: A World Health 
Organization Ten-Country Study. Psychological Medicine Monograph Supplement 1992:1-97. 

6. van der Werf M, Hanssen M, Kohler S, Verkaaik M, Verhey FR, van Winkel R, van Os J, 
Allardyce J. Systematic review and collaborative recalculation of 133,693 incident cases of 
schizophrenia. Psychol Med Jan 2014;44(1):9-16. 

7. Cascio MT, Cella M, Preti A, Meneghelli A, Cocchi A. Gender and duration of untreated 
psychosis: a systematic review and meta-analysis. Early Interv Psychiatry May 2012;6(2):115-
127. 

8. Rapoport JL, Gogtay N. Childhood onset schizophrenia: support for a progressive 
neurodevelopmental disorder. International journal of developmental neuroscience : the 
official journal of the International Society for Developmental Neuroscience Jun 
2011;29(3):251-258. 

9. Vinokur D, Levine SZ, Roe D, Krivoy A, Fischel T. Age of onset group characteristics in 
forensic patients with schizophrenia. Eur Psychiatry Mar 2014;29(3):149-152. 

10. Pakyurek M, Yarnal R, Carter C. Treatment of psychosis in children and adolescents: a review. 
Adolesc Med State Art Rev Aug 2013;24(2):420-432, ix. 

11. Kirkbride JB, Errazuriz A, Croudace TJ, Morgan C, Jackson D, Boydell J, Murray RM, Jones 
PB. Incidence of schizophrenia and other psychoses in England, 1950-2009: a systematic 
review and meta-analyses. PLoS One 2012;7(3):e31660. 

12. Ratnasingham S, Cairney J, Manson H, Rehm J, Lin E, Kurdyak P. The burden of mental illness 
and addiction in ontario. Can J Psychiatry Sep 2013;58(9):529-537. 

13. Murray RM, Lopez A. Global Burden of Disease: A comprehensive assessment of mortality 
and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. 
Cambridge, MA: Harvard University Press; 1996. 

14. Whiteford HA, Degenhardt L, Rehm J, et al. Global burden of disease attributable to mental 
and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 
Nov 9 2013;382(9904):1575-1586. 

15. Lwin A, Symeon C, Jan F, Sule A. Morbidity and mortality in schizophrenia. Br J Hosp Med 
(Lond) Nov 2011;72(11):628-630. 

16. Haller CS, Padmanabhan JL, Lizano P, Torous J, Keshavan M. Recent advances in 
understanding schizophrenia. F1000Prime Rep 2014;6:57. 

17. Ringen PA, Engh JA, Birkenaes AB, Dieset I, Andreassen OA. Increased mortality in 
schizophrenia due to cardiovascular disease - a non-systematic review of epidemiology, 
possible causes, and interventions. Front Psychiatry 2014;5:137. 

18. Pompili M, Amador XF, Girardi P, et al. Suicide risk in schizophrenia: learning from the past 
to change the future. Ann Gen Psychiatry 2007;6:10. 



 57 

19. Jaaskelainen E, Haapea M, Rautio N, et al. Twenty Years of Schizophrenia Research in the 
Northern Finland Birth Cohort 1966: A Systematic Review. Schizophr Res Treatment 
2015;2015:524875. 

20. Nordentoft M, Madsen T, Fedyszyn I. Suicidal behavior and mortality in first-episode 
psychosis. J Nerv Ment Dis May 2015;203(5):387-392. 

21. Brown S. Excess mortality of schizophrenia. A meta-analysis. Br J Psychiatry Dec 
1997;171:502-508. 

22. Dipasquale S, Pariante CM, Dazzan P, Aguglia E, McGuire P, Mondelli V. The dietary pattern 
of patients with schizophrenia: a systematic review. J Psychiatr Res Feb 2013;47(2):197-207. 

23. Foster A, Gable J, Buckley J. Homelessness in schizophrenia. Psychiatr Clin North Am Sep 
2012;35(3):717-734. 

24. Laursen TM. Life expectancy among persons with schizophrenia or bipolar affective disorder. 
Schizophr Res Sep 2011;131(1-3):101-104. 

25. Janssen EM, McGinty EE, Azrin ST, Juliano-Bult D, Daumit GL. Review of the evidence: 
prevalence of medical conditions in the United States population with serious mental illness. 
Gen Hosp Psychiatry May-Jun 2015;37(3):199-222. 

26. Balhara YP, Verma R. Schizophrenia and suicide. East Asian Arch Psychiatry Sep 
2012;22(3):126-133. 

27. Azad MC, Shoesmith WD, Al Mamun M, Abdullah AF, Naing DK, Phanindranath M, Turin 
TC. Cardiovascular diseases among patients with schizophrenia. Asian J Psychiatr Feb 
2016;19:28-36. 

28. McGinty EE, Baller J, Azrin ST, Juliano-Bult D, Daumit GL. Quality of medical care for 
persons with serious mental illness: A comprehensive review. Schizophr Res Jul 2015;165(2-
3):227-235. 

29. Temmingh H, Stein DJ. Anxiety in Patients with Schizophrenia: Epidemiology and 
Management. CNS Drugs 2015;29(10):819-832. 

30. Bosanac P, Castle DJ. Schizophrenia and depression. Med J Aust Sep 16 2013;199(6 
Suppl):S36-39. 

31. Ross S, Peselow E. Co-occurring psychotic and addictive disorders: neurobiology and 
diagnosis. Clin Neuropharmacol Sep-Oct 2012;35(5):235-243. 

32. Volavka J. Comorbid personality disorders and violent behavior in psychotic patients. 
Psychiatr Q Mar 2014;85(1):65-78. 

33. Zaske H, Degner D, Jockers-Scherubl M, et al. [Experiences of stigma and discrimination in 
patients with first-episode schizophrenia]. Nervenarzt Jan 2016;87(1):82-87. 

34. Zaske H, Linden M, Degner D, et al. Stigma experiences and perceived stigma in patients with 
first-episode schizophrenia in the course of 1 year after their first in-patient treatment. Eur Arch 
Psychiatry Clin Neurosci Apr 25 2018. 

35. Thirthalli J, Kumar CN. Stigma and disability in schizophrenia: developing countries' 
perspective. Int Rev Psychiatry Oct 2012;24(5):423-440. 

36. Millier A, Schmidt U, Angermeyer MC, Chauhan D, Murthy V, Toumi M, Cadi-Soussi N. 
Humanistic burden in schizophrenia: a literature review. J Psychiatr Res Jul 2014;54:85-93. 

37. Kennedy JL, Altar CA, Taylor DL, Degtiar I, Hornberger JC. The social and economic burden 
of treatment-resistant schizophrenia: a systematic literature review. Int Clin Psychopharmacol 
Mar 2014;29(2):63-76. 

38. Rössler W, Salize HJ, van Os J, Riecher-Rössler A. Size of burden of schizophrenia and 
psychotic disorders. European Neuropsychopharmacology: The Journal of the Eurpoean 
College of Neuropsychopharmacology 2005;15(4):399-400. 

39. Nielssen OB, Malhi GS, McGorry PD, Large MM. Overview of violence to self and others 
during the first episode of psychosis. J Clin Psychiatry May 2012;73(5):e580-587. 



 58 

40. Dieguez S. Balzac's Louis Lambert: schizophrenia before Kraepelin and Bleuler. Front Neurol 
Neurosci 2013;31:10-34. 

41. Kraepelin E. Dementia Praecox. Edinburgh, UK: Livingstone; 1919. 
42. Moller HJ. Systematic of psychiatric disorders between categorical and dimensional 

approaches: Kraepelin's dichotomy and beyond. Eur Arch Psychiatry Clin Neurosci Jun 
2008;258 Suppl 2:48-73. 

43. Bleuler E. Dementia praecox or the group of schizophrenias. New York: International 
Universities Press; 1950. 

44. Schneider K. Primary & secondary symptoms in schizophrenia. Fortschr Neurol Psychiatr Sep 
1957;25(9):487-490. 

45. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th 
ed. Arlington, VA: American Psychiatric Publishing; 2013. 

46. WorldHealthOrganization. International Statistical Classification of Diseases and Related 
Health Problems. 4 ed: WorldHealthOrganization Press; 2010. 

47. Tan N, van Os J. The schizophrenia spectrum and other psychotic disorders in the DSM-5. 
Tijdschr Psychiatr 2014;56(3):167-172. 

48. Peralta V, Cuesta MJ. How many and which are the psychopathological dimensions in 
schizophrenia? Issues influencing their ascertainment. Schizophr Res Apr 30 2001;49(3):269-
285. 

49. Schaefer J, Giangrande E, Weinberger DR, Dickinson D. The global cognitive impairment in 
schizophrenia: consistent over decades and around the world. Schizophr Res Oct 
2013;150(1):42-50. 

50. Walther S, Strik W. Motor symptoms and schizophrenia. Neuropsychobiology 2012;66(2):77-
92. 

51. Bilder RM, Mukherjee S, Rieder RO, Pandurangi AK. Symptomatic and neuropsychological 
components of defect states. Schizophr Bull 1985;11(3):409-419. 

52. Liddle PF. The symptoms of chronic schizophrenia. A re-examination of the positive-negative 
dichotomy. Br J Psychiatry Aug 1987;151:145-151. 

53. Crow TJ. The two-syndrome concept: origins and current status. Schizophr Bull 
1985;11(3):471-486. 

54. Ohayon MM. Prevalence of hallucinations and their pathological associations in the general 
population. Psychiatry Res Dec 27 2000;97(2-3):153-164. 

55. Beavan V, Read J, Cartwright C. The prevalence of voice-hearers in the general population: a 
literature review. J Ment Health Jun 2011;20(3):281-292. 

56. Laroi F, Sommer IE, Blom JD, et al. The characteristic features of auditory verbal 
hallucinations in clinical and nonclinical groups: state-of-the-art overview and future 
directions. Schizophr Bull Jun 2012;38(4):724-733. 

57. Garety PA, Freeman D. The past and future of delusions research: from the inexplicable to the 
treatable. Br J Psychiatry Nov 2013;203(5):327-333. 

58. Moller HJ. The Relevance of Negative Symptoms in Schizophrenia and How to Treat Them 
with Psychopharmaceuticals? Psychiatr Danub Dec 2016;28(4):435-440. 

59. Tandon R, Gaebel W, Barch DM, et al. Definition and description of schizophrenia in the 
DSM-5. Schizophr Res Oct 2013;150(1):3-10. 

60. Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry 
in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance 
neuroimaging literature. NPJ schizophrenia 2017;3:15. 

61. Hawco C, Voineskos AN, Radhu N, Rotenberg D, Ameis S, Backhouse FA, Semeralul M, 
Daskalakis ZJ. Age and gender interactions in white matter of schizophrenia and obsessive 
compulsive disorder compared to non-psychiatric controls: commonalities across disorders. 
Brain Imaging Behav Dec 2017;11(6):1836-1848. 



 59 

62. Grazioplene RG, Bearden CE, Subotnik KL, Ventura J, Haut K, Nuechterlein KH, Cannon TD. 
Connectivity-enhanced diffusion analysis reveals white matter density disruptions in first 
episode and chronic schizophrenia. Neuroimage Clin 2018;18:608-616. 

63. Liang S, Li Y, Zhang Z, et al. Classification of First-Episode Schizophrenia Using Multimodal 
Brain Features: A Combined Structural and Diffusion Imaging Study. Schizophr Bull Jun 27 
2018. 

64. Lottman KK, White DM, Kraguljac NV, Reid MA, Calhoun VD, Catao F, Lahti AC. Four-way 
multimodal fusion of 7 T imaging data using an mCCA+jICA model in first-episode 
schizophrenia. Hum Brain Mapp Apr 2018;39(4):1475-1488. 

65. Dwyer DB, Cabral C, Kambeitz-Ilankovic L, et al. Brain Subtyping Enhances The 
Neuroanatomical Discrimination of Schizophrenia. Schizophr Bull Aug 20 2018;44(5):1060-
1069. 

66. Honnorat N, Dong A, Meisenzahl-Lechner E, Koutsouleris N, Davatzikos C. Neuroanatomical 
heterogeneity of schizophrenia revealed by semi-supervised machine learning methods. 
Schizophr Res Dec 20 2017. 

67. Rozycki M, Satterthwaite TD, Koutsouleris N, et al. Multisite Machine Learning Analysis 
Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse 
Patient Populations and Within Individuals. Schizophr Bull Aug 20 2018;44(5):1035-1044. 

68. Chen YJ, Liu CM, Hsu YC, Lo YC, Hwang TJ, Hwu HG, Lin YT, Tseng WI. Individualized 
prediction of schizophrenia based on the whole-brain pattern of altered white matter tract 
integrity. Hum Brain Mapp Jan 2018;39(1):575-587. 

69. Mikolas P, Hlinka J, Skoch A, Pitra Z, Frodl T, Spaniel F, Hajek T. Machine learning 
classification of first-episode schizophrenia spectrum disorders and controls using whole brain 
white matter fractional anisotropy. BMC Psychiatry Apr 10 2018;18(1):97. 

70. Hyman SE, Fenton WS. Medicine. What are the right targets for psychopharmacology? Science 
Jan 17 2003;299(5605):350-351. 

71. Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Thibaut F, Moller HJ. 
World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological 
treatment of schizophrenia - a short version for primary care. International journal of 
psychiatry in clinical practice Jun 2017;21(2):82-90. 

72. Leucht S, Chaimani A, Leucht C, et al. 60years of placebo-controlled antipsychotic drug trials 
in acute schizophrenia: Meta-regression of predictors of placebo response. Schizophr Res Nov 
2018;201:315-323. 

73. Zhu Y, Krause M, Huhn M, et al. Antipsychotic drugs for the acute treatment of patients with 
a first episode of schizophrenia: a systematic review with pairwise and network meta-analyses. 
Lancet Psychiatry Sep 2017;4(9):694-705. 

74. Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and 
reconceptualization. Am J Psychiatry Nov 1991;148(11):1474-1486. 

75. Holcomb HH, Cascella NG, Thaker GK, Medoff DR, Dannals RF, Tamminga CA. Functional 
sites of neuroleptic drug action in the human brain: PET/FDG studies with and without 
haloperidol. Am J Psychiatry Jan 1996;153(1):41-49. 

76. Crow TJ. Molecular pathology of schizophrenia: more than one disease process? Br Med J Jan 
12 1980;280(6207):66-68. 

77. Meador-Woodruff JH, Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain 
Res Brain Res Rev Mar 2000;31(2-3):288-294. 

78. Coyle JT, Tsai G, Goff D. Converging evidence of NMDA receptor hypofunction in the 
pathophysiology of schizophrenia. Ann N Y Acad Sci Nov 2003;1003:318-327. 

79. Bustillo JR, Jones T, Chen H, et al. Glutamatergic and Neuronal Dysfunction in Gray and 
White Matter: A Spectroscopic Imaging Study in a Large Schizophrenia Sample. Schizophr 
Bull May 1 2017;43(3):611-619. 



 60 

80. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev 
Neurosci Apr 2005;6(4):312-324. 

81. Volk DW, Matsubara T, Li S, et al. Deficits in transcriptional regulators of cortical 
parvalbumin neurons in schizophrenia. Am J Psychiatry Oct 2012;169(10):1082-1091. 

82. Hyde TM, Crook JM. Cholinergic systems and schizophrenia: primary pathology or 
epiphenomena? J Chem Neuroanat Jul 2001;22(1-2):53-63. 

83. Bruijnzeel D, Suryadevara U, Tandon R. Antipsychotic treatment of schizophrenia: An update. 
Asian J Psychiatr Aug 13 2014. 

84. Hasan A, Wobrock T, Gaebel W, Janssen B, Zielasek J, Falkai P. National and international 
schizophrenia guidelines. Update 2013 regarding recommendations about antipsychotic 
pharmacotherapy. Nervenarzt Nov 2013;84(11):1359-1360, 1362-1354, 1366-1358. 

85. Leucht S, Heres S, Kissling W, Davis JM. Pharmacological treatment of schizophrenia. 
Fortschr Neurol Psychiatr May 2013;81(5):1-13. 

86. Bruijnzeel D, Yazdanpanah M, Suryadevara U, Tandon R. Lurasidone in the treatment of 
schizophrenia: a critical evaluation. Expert Opin Pharmacother 2015;16(10):1559-1565. 

87. Citrome L. Cariprazine for the Treatment of Schizophrenia: A Review of this Dopamine D3-
Preferring D3/D2 Receptor Partial Agonist. Clin Schizophr Relat Psychoses Summer 
2016;10(2):109-119. 

88. Hsu WY, Lane HY, Lin CH. Brexpiprazole for the treatment of schizophrenia. Expert Opin 
Pharmacother Feb 2017;18(2):217-223. 

89. Dold M, Samara MT, Li C, Tardy M, Leucht S. Haloperidol versus first-generation 
antipsychotics for the treatment of schizophrenia and other psychotic disorders. Cochrane 
Database Syst Rev Jan 16 2015;1:CD009831. 

90. Tonin FS, Wiens A, Fernandez-Llimos F, Pontarolo R. Iloperidone in the treatment of 
schizophrenia: an evidence-based review of its place in therapy. Core Evid 2016;11:49-61. 

91. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC, Weiden PJ. 
Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry Nov 
1999;156(11):1686-1696. 

92. Siskind D, McCartney L, Goldschlager R, Kisely S. Clozapine v. first- and second-generation 
antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. Br 
J Psychiatry Nov 2016;209(5):385-392. 

93. Okhuijsen-Pfeifer C, Huijsman EAH, Hasan A, Sommer IEC, Leucht S, Kahn RS, Luykx JJ. 
Clozapine as a first- or second-line treatment in schizophrenia: a systematic review and meta-
analysis. Acta Psychiatr Scand Oct 2018;138(4):281-288. 

94. Karson C, Duffy RA, Eramo A, Nylander AG, Offord SJ. Long-term outcomes of antipsychotic 
treatment in patients with first-episode schizophrenia: a systematic review. Neuropsychiatr Dis 
Treat 2016;12:57-67. 

95. Hogarty GE, Anderson CM, Reiss DJ, Kornblith SJ, Greenwald DP, Javna CD, Madonia MJ. 
Family psychoeducation, social skills training, and maintenance chemotherapy in the aftercare 
treatment of schizophrenia. I. One-year effects of a controlled study on relapse and expressed 
emotion. Arch Gen Psychiatry Jul 1986;43(7):633-642. 

96. Hogarty GE, Anderson CM, Reiss DJ. Family psychoeducation, social skills training, and 
medication in schizophrenia: the long and short of it. Psychopharmacol Bull 1987;23(1):12-
13. 

97. Hogarty GE, Anderson CM, Reiss DJ, Kornblith SJ, Greenwald DP, Ulrich RF, Carter M. 
Family psychoeducation, social skills training, and maintenance chemotherapy in the aftercare 
treatment of schizophrenia. II. Two-year effects of a controlled study on relapse and 
adjustment. Environmental-Personal Indicators in the Course of Schizophrenia (EPICS) 
Research Group. Arch Gen Psychiatry Apr 1991;48(4):340-347. 



 61 

98. Leucht S, Barnes TR, Kissling W, Engel RR, Correll C, Kane JM. Relapse prevention in 
schizophrenia with new-generation antipsychotics: a systematic review and exploratory meta-
analysis of randomized, controlled trials. Am J Psychiatry Jul 2003;160(7):1209-1222. 

99. Catts SV, O'Toole BI. The treatment of schizophrenia: Can we raise the standard of care? Aust 
N Z J Psychiatry Dec 2016;50(12):1128-1138. 

100. Emsley R, Kilian S, Phahladira L. How long should antipsychotic treatment be continued after 
a single episode of schizophrenia? Curr Opin Psychiatry May 2016;29(3):224-229. 

101. Goff DC, Falkai P, Fleischhacker WW, Girgis RR, Kahn RM, Uchida H, Zhao J, Lieberman 
JA. The Long-Term Effects of Antipsychotic Medication on Clinical Course in Schizophrenia. 
Am J Psychiatry Sep 1 2017;174(9):840-849. 

102. Mauri MC, Reggiori A, Paletta S, Di Pace C, Altamura AC. Paliperidone for the treatment of 
schizophrenia and schizoaffective disorders - a drug safety evaluation. Expert Opin Drug Saf 
Mar 2017;16(3):365-379. 

103. Gentile S. Adverse effects associated with second-generation antipsychotic long-acting 
injection treatment: a comprehensive systematic review. Pharmacotherapy Oct 
2013;33(10):1087-1106. 

104. Helfer B, Samara MT, Huhn M, Klupp E, Leucht C, Zhu Y, Engel RR, Leucht S. Efficacy and 
Safety of Antidepressants Added to Antipsychotics for Schizophrenia: A Systematic Review 
and Meta-Analysis. Am J Psychiatry Sep 01 2016;173(9):876-886. 

105. Schennach R, Obermeier M, Seemuller F, et al. Add-on Antidepressants in the Naturalistic 
Treatment of Schizophrenia Spectrum Disorder - When, Who, and How? Pharmacopsychiatry 
Jul 2017;50(4):136-144. 

106. Buoli M, Serati M, Ciappolino V, Altamura AC. May selective serotonin reuptake inhibitors 
(SSRIs) provide some benefit for the treatment of schizophrenia? Expert Opin Pharmacother 
Jul 2016;17(10):1375-1385. 

107. Shim S, Shuman M, Duncan E. An emerging role of cGMP in the treatment of schizophrenia: 
A review. Schizophr Res Jan 2016;170(1):226-231. 

108. Muller N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic 
Considerations. Schizophr Bull Aug 20 2018;44(5):973-982. 

109. Vinogradov S, Schulz SC. Behavioral and emerging pharmacologic treatment options for 
cognitive impairment in schizophrenia. J Clin Psychiatry Feb 2016;77 Suppl 2:12-16. 

110. Rich ME, Caldwell HK. A Role for Oxytocin in the Etiology and Treatment of Schizophrenia. 
Front Endocrinol (Lausanne) 2015;6:90. 

111. Uhrig S, Hirth N, Broccoli L, et al. Reduced oxytocin receptor gene expression and binding 
sites in different brain regions in schizophrenia: A post-mortem study. Schizophr Res Nov 
2016;177(1-3):59-66. 

112. Bahari-Javan S, Varbanov H, Halder R, et al. HDAC1 links early life stress to schizophrenia-
like phenotypes. Proc Natl Acad Sci U S A Jun 6 2017;114(23):E4686-e4694. 

113. Kubera KM, Barth A, Hirjak D, Thomann PA, Wolf RC. Noninvasive brain stimulation for the 
treatment of auditory verbal hallucinations in schizophrenia: methods, effects and challenges. 
Front Syst Neurosci 2015;9:131. 

114. Hasan A, Wobrock T, Palm U, Strube W, Padberg F, Falkai P, Fallgatter A, Plewnia C. [Non-
invasive brain stimulation for treatment of schizophrenic psychoses]. Nervenarzt Dec 
2015;86(12):1481-1491. 

115. Palm U, Keeser D, Hasan A, et al. Prefrontal Transcranial Direct Current Stimulation for 
Treatment of Schizophrenia With Predominant Negative Symptoms: A Double-Blind, Sham-
Controlled Proof-of-Concept Study. Schizophr Bull Sep 2016;42(5):1253-1261. 

116. Hasan A, Guse B, Cordes J, et al. Cognitive Effects of High-Frequency rTMS in Schizophrenia 
Patients With Predominant Negative Symptoms: Results From a Multicenter Randomized 
Sham-Controlled Trial. Schizophr Bull May 2016;42(3):608-618. 



 62 

117. Wobrock T, Guse B, Cordes J, et al. Left prefrontal high-frequency repetitive transcranial 
magnetic stimulation for the treatment of schizophrenia with predominant negative symptoms: 
a sham-controlled, randomized multicenter trial. Biol Psychiatry Jun 01 2015;77(11):979-988. 

118. Hasan A, Wobrock T, Guse B, et al. Structural brain changes are associated with response of 
negative symptoms to prefrontal repetitive transcranial magnetic stimulation in patients with 
schizophrenia. Mol Psychiatry Jun 2017;22(6):857-864. 

119. Koutsouleris N, Wobrock T, Guse B, et al. Predicting Response to Repetitive Transcranial 
Magnetic Stimulation in Patients With Schizophrenia Using Structural Magnetic Resonance 
Imaging: A Multisite Machine Learning Analysis. Schizophr Bull Aug 20 2018;44(5):1021-
1034. 

120. Donegan JJ, Lodge DJ. Cell-based therapies for the treatment of schizophrenia. Brain Res Jan 
15 2017;1655:262-269. 

121. Health N. Achieving the promise: Transforming mental health care in America 
Publication SMA-03-3832. Final Report. Rockville, MD: Department of Health and Human 
Services; 2003. 

122. Bighelli I, Huhn M, Schneider-Thoma J, et al. Response rates in patients with schizophrenia 
and positive symptoms receiving cognitive behavioural therapy: a systematic review and 
single-group meta-analysis. BMC Psychiatry Dec 4 2018;18(1):380. 

123. Bighelli I, Salanti G, Huhn M, et al. Psychological interventions to reduce positive symptoms 
in schizophrenia: systematic review and network meta-analysis. World Psychiatry Oct 
2018;17(3):316-329. 

124. Stafford MR, Mayo-Wilson E, Loucas CE, James A, Hollis C, Birchwood M, Kendall T. 
Efficacy and safety of pharmacological and psychological interventions for the treatment of 
psychosis and schizophrenia in children, adolescents and young adults: a systematic review 
and meta-analysis. PLoS One 2015;10(2):e0117166. 

125. Matei VP, Mihailescu AI, Davidson M. Is non-pharmacological treatment an option for certain 
schizophrenia patients? Psychiatr Danub Dec 2014;26(4):308-313. 

126. Cohen CI, Meesters PD, Zhao J. New perspectives on schizophrenia in later life: implications 
for treatment, policy, and research. Lancet Psychiatry Apr 2015;2(4):340-350. 

127. Duckworth K, Halpern L. Peer support and peer-led family support for persons living with 
schizophrenia. Curr Opin Psychiatry May 2014;27(3):216-221. 

128. Sin J, Norman I. Psychoeducational interventions for family members of people with 
schizophrenia: a mixed-method systematic review. J Clin Psychiatry Dec 2013;74(12):e1145-
1162. 

129. Schaub A, Hippius H, Moller HJ, Falkai P. Psychoeducational and Cognitive Behavioral 
Treatment Programs: Implementation and Evaluation From 1995 to 2015 in Kraepelin's Former 
Hospital. Schizophr Bull Jul 2016;42 Suppl 1:S81-89. 

130. Arroll MA, Wilder L, Neil J. Nutritional interventions for the adjunctive treatment of 
schizophrenia: a brief review. Nutr J Sep 16 2014;13:91. 

131. Firth J, Cotter J, Carney R, Yung AR. The Pro-Cognitive Mechanisms of Physical Exercise in 
People with Schizophrenia. Br J Pharmacol Mar 05 2017. 

132. Spielman LJ, Little JP, Klegeris A. Physical activity and exercise attenuate neuroinflammation 
in neurological diseases. Brain Res Bull Jul 2016;125:19-29. 

133. Falkai P, Malchow B, Schmitt A. Aerobic exercise and its effects on cognition in 
schizophrenia. Curr Opin Psychiatry Feb 21 2017. 

134. Malchow B, Keller K, Hasan A, et al. Effects of Endurance Training Combined With Cognitive 
Remediation on Everyday Functioning, Symptoms, and Cognition in Multiepisode 
Schizophrenia Patients. Schizophr Bull Jul 2015;41(4):847-858. 



 63 

135. Firth J, Stubbs B, Rosenbaum S, et al. Aerobic Exercise Improves Cognitive Functioning in 
People With Schizophrenia: A Systematic Review and Meta-Analysis. Schizophr Bull May 1 
2017;43(3):546-556. 

136. Dauwan M, Begemann MJ, Heringa SM, Sommer IE. Exercise Improves Clinical Symptoms, 
Quality of Life, Global Functioning, and Depression in Schizophrenia: A Systematic Review 
and Meta-analysis. Schizophr Bull May 2016;42(3):588-599. 

137. Tham XC, Xie H, Chng CM, Seah XY, Lopez V, Klainin-Yobas P. Factors Affecting 
Medication Adherence Among Adults with Schizophrenia: A Literature Review. Arch 
Psychiatr Nurs Dec 2016;30(6):797-809. 

138. Jones PB. Adult mental health disorders and their age at onset. Br J Psychiatry Suppl Jan 
2013;54:s5-10. 

139. Tsuang MT, Van Os J, Tandon R, et al. Attenuated psychosis syndrome in DSM-5. Schizophr 
Res Oct 2013;150(1):31-35. 

140. Jaaskelainen E, Juola P, Hirvonen N, McGrath JJ, Saha S, Isohanni M, Veijola J, Miettunen J. 
A systematic review and meta-analysis of recovery in schizophrenia. Schizophr Bull Nov 
2013;39(6):1296-1306. 

141. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet Jul 02 2016;388(10039):86-97. 
142. Buckley PF, Miller BJ. Schizophrenia Research: A Progress Report. Psychiatr Clin North Am 

Sep 2015;38(3):373-377. 
143. Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 

2002;25(1):409-432. 
144. Walker EF, Savoie T, Davis D. Neuromotor precursors of schizophrenia. Schizophr Bull 

1994;20(3):441-451. 
145. Fish B, Marcus J, Hans SL, Auerbach JG, Perdue S. Infants at risk for schizophrenia: sequelae 

of a genetic neurointegrative defect. A review and replication analysis of pandysmaturation in 
the Jerusalem Infant Development Study. Arch Gen Psychiatry Apr 1992;49(3):221-235. 

146. Marcus J, Auerbach JG, Wilkinson L, Burack CM. Infants at risk for schizophrenia. The 
Jerusalem Infant Development Study. Arch Gen Psychiatry Jul 1981;38(6):703-713. 

147. Jones P, Rodgers B, Murray R, Marmot M. Child development risk factors for adult 
schizophrenia in the British 1946 birth cohort. Lancet Nov 19 1994;344(8934):1398-1402. 

148. Done DJ, Crow TJ, Johnstone EC, Sacker A. Childhood antecedents of schizophrenia and 
affective illness: social adjustment at ages 7 and 11. BMJ Sep 17 1994;309(6956):699-703. 

149. Kremen WS, Seidman LJ, Pepple JR, Lyons MJ, Tsuang MT, Faraone SV. Neuropsychological 
risk indicators for schizophrenia: a review of family studies. Schizophr Bull 1994;20(1):103-
119. 

150. Seidman LJ, Buka SL, Goldstein JM, Tsuang MT. Intellectual decline in schizophrenia: 
evidence from a prospective birth cohort 28 year follow-up study. J Clin Exp Neuropsychol 
Feb 2006;28(2):225-242. 

151. Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Bayer TA, Bogerts B, Honer WG, 
Falkai P. Disturbed gyrification of the prefrontal region in male schizophrenic patients: A 
morphometric postmortem study. Am J Psychiatry Feb 2000;157(1):34-39. 

152. Feinberg I. Schizophrenia: Caused by a fault in programmed synaptic elimination during 
adolescence? Journal of Psychiatric Research Apr 03 1983;17(4):319-334. 

153. Weinberger DR. Implications of normal brain development for the pathogenesis of 
schizophrenia. Arch Gen Psychiatry Jul 1987;44(7):660-669. 

154. Rapoport JL, Giedd JN, Gogtay N. Neurodevelopmental model of schizophrenia: update 2012. 
Mol Psychiatry Dec 2012;17(12):1228-1238. 

155. Rapoport JL, Addington A, Frangou S. The neurodevelopmental model of schizophrenia: what 
can very early onset cases tell us? Curr Psychiatry Rep Apr 2005;7(2):81-82. 



 64 

156. Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of 
schizophrenia. Neurosci Biobehav Rev Jan 2014;38:72-93. 

157. Muller N, Myint AM, Schwarz MJ. Inflammation in schizophrenia. Advances in protein 
chemistry and structural biology 2012;88:49-68. 

158. Braun S, Bridler R, Muller N, Schwarz MJ, Seifritz E, Weisbrod M, Zgraggen A, Stassen HH. 
Inflammatory processes and schizophrenia: two independent lines of evidence from a study of 
twins discordant and concordant for schizophrenic disorders. Eur Arch Psychiatry Clin 
Neurosci Aug 2017;267(5):377-389. 

159. Pasternak O, Westin CF, Bouix S, et al. Excessive extracellular volume reveals a 
neurodegenerative pattern in schizophrenia onset. J Neurosci Nov 28 2012;32(48):17365-
17372. 

160. Wyatt RJ. Neuroleptics and the natural course of schizophrenia. Schizophr Bull 
1991;17(2):325-351. 

161. Rao JS, Kim HW, Harry GJ, Rapoport SI, Reese EA. Increased neuroinflammatory and 
arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal 
cortex from schizophrenia patients. Schizophr Res Jun 2013;147(1):24-31. 

162. Muller N. Neuroprogression in Schizophrenia and Psychotic Disorders: The Possible Role of 
Inflammation. Modern trends in pharmacopsychiatry 2017;31:1-9. 

163. Roberts G, Harrison BJ. Gliosis and its implications for the disease process. In: Harrison BJ, 
Roberts G, eds. The Neuropathology of Schizophrenia: Progress and Interpretation. New 
York: Oxford Univ. Press; 2000:137-150. 

164. Bozikas VP, Kovari E, Bouras C, Karavatos A. Neurofibrillary tangles in elderly patients with 
late onset schizophrenia. Neurosci Lett May 17 2002;324(2):109-112. 

165. Arnold SE. Contributions of neuropathology to understanding schizophrenia in late life. Harv 
Rev Psychiatry 2001;9(2):69-76. 

166. Tang B, Chang WL, Lanigan CM, Dean B, Sutcliffe JG, Thomas EA. Normal human aging 
and early-stage schizophrenia share common molecular profiles. Aging Cell Jun 
2009;8(3):339-342. 

167. van Mierlo HC, Wichers CGK, He Y, Sneeboer MAM, Radstake T, Kahn RS, Broen JCA, de 
Witte LD. Telomere quantification in frontal and temporal brain tissue of patients with 
schizophrenia. J Psychiatr Res Dec 2017;95:231-234. 

168. Theberge J, Al-Semaan Y, Williamson PC, et al. Glutamate and glutamine in the anterior 
cingulate and thalamus of medicated patients with chronic schizophrenia and healthy 
comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry Dec 
2003;160(12):2231-2233. 

169. Dassati S, Waldner A, Schweigreiter R. Apolipoprotein D takes center stage in the stress 
response of the aging and degenerative brain. Neurobiol Aging Jul 2014;35(7):1632-1642. 

170. Shivakumar V, Kalmady SV, Venkatasubramanian G, Ravi V, Gangadhar BN. Do 
schizophrenia patients age early? Asian J Psychiatr Aug 2014;10:3-9. 

171. Koutsouleris N, Davatzikos C, Borgwardt S, et al. Accelerated brain aging in schizophrenia 
and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull Sep 
2014;40(5):1140-1153. 

172. Alloza C, Cox SR, Blesa Cabez M, et al. Polygenic risk score for schizophrenia and structural 
brain connectivity in older age: A longitudinal connectome and tractography study. 
Neuroimage Dec 2018;183:884-896. 

173. Cropley VL, Klauser P, Lenroot RK, et al. Accelerated Gray and White Matter Deterioration 
With Age in Schizophrenia. Am J Psychiatry Mar 1 2017;174(3):286-295. 

174. Di Biase MA, Cropley VL, Baune BT, et al. White matter connectivity disruptions in early and 
chronic schizophrenia. Psychol Med Dec 2017;47(16):2797-2810. 



 65 

175. Kirkpatrick B, Messias E, Harvey PD, Fernandez-Egea E, Bowie CR. Is schizophrenia a 
syndrome of accelerated aging? Schizophr Bull Nov 2008;34(6):1024-1032. 

176. Papanastasiou E, Gaughran F, Smith S. Schizophrenia as segmental progeria. J R Soc Med Nov 
2011;104(11):475-484. 

177. Mathalon DH, Ford JM, Rosenbloom M, Pfefferbaum A. P300 reduction and prolongation with 
illness duration in schizophrenia. Biol Psychiatry Mar 1 2000;47(5):413-427. 

178. Song MH, Hamada H, Mimura M. Semiological differences between late-life schizophrenia 
and senile dementia. Keio J Med 2014;63(2):34-38. 

179. Loewenstein DA, Czaja SJ, Bowie CR, Harvey PD. Age-associated differences in cognitive 
performance in older patients with schizophrenia: a comparison with healthy older adults. Am 
J Geriatr Psychiatry Jan 2012;20(1):29-40. 

180. Napal O, Ojeda N, Elizagárate E, Peña J, Ezcurra J, Gutiérrez M. The course of the 
schizophrenia and its impact on cognition: a review of literature. Actas Esp Psiquiatr Jul 
2012;40(4):198-220. 

181. Zipursky RB, Reilly TJ, Murray RM. The myth of schizophrenia as a progressive brain disease. 
Schizophrenia Bulletin Nov 2013;39(6):1363-1372. 

182. Bose SK, Mackinnon T, Mehta MA, Turkheimer FE, Howes OD, Selvaraj S, Kempton MJ, 
Grasby PM. The effect of ageing on grey and white matter reductions in schizophrenia. 
Schizophrenia Research Jul 2009;112(1-3):7-13. 

183. van Haren NEM, Hulshoff Pol HE, Schnack HG, Cahn W, Brans R, Carati I, Rais M, Kahn 
RS. Progressive brain volume loss in schizophrenia over the course of the illness: evidence of 
maturational abnormalities in early adulthood. Biol Psychiatry Feb 01 2008;63(1):106-113. 

184. Hulshoff Pol H, Kahn RS. What happens after the first episode? A review of progressive brain 
changes in chronically ill patients with schizophrenia. Schizophr Bull 2008;34(2):354-366. 

185. Torii Y, Iritani S, Sekiguchi H, et al. Effects of aging on the morphologies of Heschl's gyrus 
and the superior temporal gyrus in schizophrenia: a postmortem study. Schizophr Res Feb 
2012;134(2-3):137-142. 

186. Brans RGH, van Haren NEM, van Baal GCM, Staal WG, Schnack HG, Kahn RS, Hulshoff Pol 
HE. Longitudinal MRI study in schizophrenia patients and their healthy siblings. Br J 
Psychiatry Nov 2008;193(5):422-423. 

187. Assunção Leme IB, Gadelha A, Sato JR, et al. Is there an association between cortical 
thickness, age of onset, and duration of illness in schizophrenia? CNS Spectr Dec 
2013;18(6):315-321. 

188. Egashira K, Matsuo K, Mihara T, Nakano M, Nakashima M, Watanuki T, Matsubara T, 
Watanabe Y. Different and Shared Brain Volume Abnormalities in Late- and Early-Onset 
Schizophrenia. Neuropsychobiology Oct 24 2014;70(3):142-151. 

189. Selemon LD, Kleinman JE, Herman MM, Goldman-Rakic PS. Smaller frontal gray matter 
volume in postmortem schizophrenic brains. Am J Psychiatry Dec 2002;159(12):1983-1991. 

190. Kanaan RA, Picchioni MM, McDonald C, Shergill SS, McGuire PK. White matter deficits in 
schizophrenia are global and don't progress with age. Aust N Z J Psychiatry Oct 
2017;51(10):1020-1031. 

191. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-
analysis of twin studies. Arch Gen Psychiatry Dec 2003;60(12):1187-1192. 

192. Ingraham LJ, Kety SS. Adoption studies of schizophrenia. Am J Med Genet Spring 
2000;97(1):18-22. 

193. Leo J. Schizophrenia adoption studies. PLoS Med Aug 2006;3(8):366. 
194. Janoutova J, Janackova P, Sery O, et al. Epidemiology and risk factors of schizophrenia. Neuro 

Endocrinol Lett 2016;37(1):1-8. 
195. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on 

the matter of their convergence. Mol Psychiatry Jan 2005;10(1):40-68. 



 66 

196. InternationalSchizophreniaConsortium. Rare chromosomal deletions and duplications increase 
risk of schizophrenia. Nature Sep 11 2008;455(7210):237-241. 

197. Kotlar AV, Mercer KB, Zwick ME, Mulle JG. New discoveries in schizophrenia genetics 
reveal neurobiological pathways: A review of recent findings. Eur J Med Genet Dec 
2015;58(12):704-714. 

198. Giegling I, Hosak L, Mossner R, et al. Genetics of schizophrenia: A consensus paper of the 
WFSBP Task Force on Genetics. World J Biol Psychiatry Oct 2017;18(7):492-505. 

199. Pardinas AF, Holmans P, Pocklington AJ, et al. Common schizophrenia alleles are enriched in 
mutation-intolerant genes and in regions under strong background selection. Nat Genet Mar 
2018;50(3):381-389. 

200. Bousman CA, Cropley V, Klauser P, et al. Neuregulin-1 (NRG1) polymorphisms linked with 
psychosis transition are associated with enlarged lateral ventricles and white matter disruption 
in schizophrenia. Psychol Med Apr 2018;48(5):801-809. 

201. Mallas E, Carletti F, Chaddock CA, et al. The impact of CACNA1C gene, and its epistasis with 
ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder(1). 
Genes, brain, and behavior Apr 2017;16(4):479-488. 

202. Ahmad R, Sportelli V, Ziller M, Spengler D, Hoffmann A. Tracing Early Neurodevelopment 
in Schizophrenia with Induced Pluripotent Stem Cells. Cells Sep 17 2018;7(9). 

203. Hoffmann A, Sportelli V, Ziller M, Spengler D. Epigenomics of Major Depressive Disorders 
and Schizophrenia: Early Life Decides. Int J Mol Sci Aug 4 2017;18(8). 

204. Bottlender R, Wegner U, Wittmann J, Strauss A, Moller HJ. Deficit syndromes in 
schizophrenic patients 15 years after their first hospitalisation: preliminary results of a follow-
up study. Eur Arch Psychiatry Clin Neurosci 1999;249 Suppl 4:27-36. 

205. Sipos A, Rasmussen F, Harrison G, Tynelius P, Lewis G, Leon DA, Gunnell D. Paternal age 
and schizophrenia: a population based cohort study. BMJ Nov 6 2004;329(7474):1070. 

206. Laurens KR, Luo L, Matheson SL, Carr VJ, Raudino A, Harris F, Green MJ. Common or 
distinct pathways to psychosis? A systematic review of evidence from prospective studies for 
developmental risk factors and antecedents of the schizophrenia spectrum disorders and 
affective psychoses. BMC Psychiatry Aug 25 2015;15:205. 

207. Miller BJ, Culpepper N, Rapaport MH, Buckley P. Prenatal inflammation and 
neurodevelopment in schizophrenia: a review of human studies. Prog Neuropsychopharmacol 
Biol Psychiatry Apr 05 2013;42:92-100. 

208. Meyer U. Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol 
Biol Psychiatry. Vol 42; 2013:20-34. 

209. Nonaka S, Ichinose H, Kinoshita H, Nakane H. Epidemiology of schizophrenia. Nihon Rinsho 
Apr 2013;71(4):583-588. 

210. Schmitt A, Malchow B, Hasan A, Falkai P. The impact of environmental factors in severe 
psychiatric disorders. Front Neurosci 2014;8:19. 

211. Davies G, Welham J, Chant D, Torrey EF, McGrath J. A systematic review and meta-analysis 
of Northern Hemisphere season of birth studies in schizophrenia. Schizophr Bull 
2003;29(3):587-593. 

212. Allardyce J, Boydell J. Review: the wider social environment and schizophrenia. Schizophr 
Bull Oct 2006;32(4):592-598. 

213. Vassos E, Pedersen CB, Murray RM, Collier DA, Lewis CM. Meta-analysis of the association 
of urbanicity with schizophrenia. Schizophr Bull Nov 2012;38(6):1118-1123. 

214. Beards S, Gayer-Anderson C, Borges S, Dewey ME, Fisher HL, Morgan C. Life events and 
psychosis: a review and meta-analysis. Schizophr Bull Jul 2013;39(4):740-747. 

215. Oviedo-Salcedo T, de Witte L, Kumpfel T, Kahn RS, Falkai P, Eichhorn P, Luykx J, Hasan A. 
Absence of cerebrospinal fluid antineuronal antibodies in schizophrenia spectrum disorders. 
Br J Psychiatry May 2018;212(5):318-320. 



 67 

216. Cantor-Graae E, Selten JP. Schizophrenia and migration: a meta-analysis and review. Am J 
Psychiatry Jan 2005;162(1):12-24. 

217. McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D. A systematic review of the 
incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, 
migrant status and methodology. BMC Med Apr 28 2004;2:13-35. 

218. Veling W. Ethnic minority position and risk for psychotic disorders. Curr Opin Psychiatry Mar 
2013;26(2):166-171. 

219. Torrey EF, Yolken RH. The urban risk and migration risk factors for schizophrenia: are cats 
the answer? Schizophr Res Nov 2014;159(2-3):299-302. 

220. Selten JP, van der Ven E, Rutten BP, Cantor-Graae E. The social defeat hypothesis of 
schizophrenia: an update. Schizophr Bull Nov 2013;39(6):1180-1186. 

221. Morgan C, Fisher H. Environment and schizophrenia: environmental factors in schizophrenia: 
childhood trauma--a critical review. Schizophr Bull Jan 2007;33(1):3-10. 

222. Cutajar MC, Mullen PE, Ogloff JR, Thomas SD, Wells DL, Spataro J. Schizophrenia and other 
psychotic disorders in a cohort of sexually abused children. Arch Gen Psychiatry Nov 
2010;67(11):1114-1119. 

223. Filatova S, Koivumaa-Honkanen H, Hirvonen N, et al. Early motor developmental milestones 
and schizophrenia: A systematic review and meta-analysis. Schizophr Res Oct 2017;188:13-
20. 

224. James A, Hough M, James S, Winmill L, Burge L, Nijhawan S, Matthews PM, Zarei M. Greater 
white and grey matter changes associated with early cannabis use in adolescent-onset 
schizophrenia (AOS). Schizophr Res May 2011;128(1-3):91-97. 

225. Koutsouleris N, Kahn RS, Chekroud AM, et al. Multisite prediction of 4-week and 52-week 
treatment outcomes in patients with first-episode psychosis: a machine learning approach. 
Lancet Psychiatry Oct 2016;3(10):935-946. 

226. Luciano A, Bond GR, Drake RE. Does employment alter the course and outcome of 
schizophrenia and other severe mental illnesses? A systematic review of longitudinal research. 
Schizophr Res Nov 2014;159(2-3):312-321. 

227. Hippius H, Muller N. The work of Emil Kraepelin and his research group in Munchen. Eur 
Arch Psychiatry Clin Neurosci Jun 2008;258 Suppl 2:3-11. 

228. Harrison PJ, Freemantle N, Geddes JR. Meta-analysis of brain weight in schizophrenia. 
Schizophr Res Nov 1 2003;64(1):25-34. 

229. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L. Cerebral ventricular size and cognitive 
impairment in chronic schizophrenia. Lancet Oct 30 1976;2(7992):924-926. 

230. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in 
schizophrenia. Schizophr Res Apr 15 2001;49(1-2):1-52. 

231. Pantelis C, Yucel M, Wood SJ, et al. Structural brain imaging evidence for multiple 
pathological processes at different stages of brain development in schizophrenia. Schizophr 
Bull Jul 2005;31(3):672-696. 

232. Cannon TD, Chung Y, He G, et al. Progressive reduction in cortical thickness as psychosis 
develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol 
Psychiatry Jan 15 2015;77(2):147-157. 

233. Owens DG, Johnstone EC. Precursors and prodromata of schizophrenia: findings from the 
Edinburgh High Risk Study and their literature context. Psychol Med Nov 2006;36(11):1501-
1514. 

234. Bois C, Whalley H, McIntosh A, Lawrie S. Structural magnetic resonance imaging markers of 
susceptibility and transition to schizophrenia: A review of familial and clinical high risk 
population studies. J Psychopharmacol Feb 2015;29(2):144-154. 

235. Malchow B, Hasan A, Meyer K, et al. Family load impacts orbitofrontal volume in first-episode 
schizophrenia. Psychiatry Res Apr 30 2015;232(1):130-133. 



 68 

236. Wiegand LC, Warfield SK, Levitt JJ, et al. Prefrontal cortical thickness in first-episode 
psychosis: a magnetic resonance imaging study. Biol Psychiatry Jan 15 2004;55(2):131-140. 

237. Rimol LM, Nesvag R, Hagler DJ, Jr., et al. Cortical volume, surface area, and thickness in 
schizophrenia and bipolar disorder. Biol Psychiatry Mar 15 2012;71(6):552-560. 

238. Nakamura M, Salisbury DF, Hirayasu Y, et al. Neocortical gray matter volume in first-episode 
schizophrenia and first-episode affective psychosis: a cross-sectional and longitudinal MRI 
study. Biol Psychiatry Oct 1 2007;62(7):773-783. 

239. D. HG, Salisbury D. Neurobiology of Schizophrenia In: Marcsisin MJ, Rosenstock JB, Gannon 
JM, eds. Schizophrenia and related disorders. New York, USA: Oxford University Press; ,. 

240. Basser PJ, Matielo B, Bihan  DL. MR diffusion tensor spectroscopy and imaging. Biophs 
1996;66:259-267. 

241. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson 
Med Dec 1996;36(6):893-906. 

242. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic 
neuroscience research. Neuron Sep 7 2006;51(5):527-539. 

243. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by 
quantitative-diffusion-tensor MRI. J Magn Reson B Jun 1996;111(3):209-219. 

244. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a 
technical review. NMR Biomed Nov-Dec 2002;15(7-8):456-467. 

245. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain 
research: a review. J Mol Neurosci 2008;34(1):51-61. 

246. Squeglia LM, Sorg SF, Jacobus J, Brumback T, Taylor CT, Tapert SF. Structural connectivity 
of neural reward networks in youth at risk for substance use disorders. Psychopharmacology 
(Berl) Jul 2015;232(13):2217-2226. 

247. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH. Diffusion tensor imaging detects 
and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. 
Neuroimage Nov 2003;20(3):1714-1722. 

248. Jones DK, Knosche TR, Turner R. White matter integrity, fiber count, and other fallacies: the 
do's and don'ts of diffusion MRI. Neuroimage Jun 2013;73:239-254. 

249. O'Donnell LJ, Pasternak O. Does diffusion MRI tell us anything about the white matter? An 
overview of methods and pitfalls. Schizophrenia Research 2015;161(1):133-141. 

250. Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R. Processing and visualization 
for diffusion tensor MRI. Med Image Anal Jun 2002;6(2):93-108. 

251. Bach M, Laun FB, Leemans A, Tax CM, Biessels GJ, Stieltjes B, Maier-Hein KH. 
Methodological considerations on tract-based spatial statistics (TBSS). Neuroimage Oct 15 
2014;100:358-369. 

252. Zalesky A. Moderating registration misalignment in voxelwise comparisons of DTI data: a 
performance evaluation of skeleton projection. Magn Reson Imaging Jan 2011;29(1):111-125. 

253. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-
MRI data. Magn Reson Med 2000;44(4):625-632. 

254. Nucifora PG, Verma R, Lee SK, Melhem ER. Diffusion-tensor MR imaging and tractography: 
exploring brain microstructure and connectivity. Radiology Nov 2007;245(2):367-384. 

255. Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in 
vivo dissections. Cortex Sep 2008;44(8):1105-1132. 

256. Snook L, Plewes C, Beaulieu C. Voxel based versus region of interest analysis in diffusion 
tensor imaging of neurodevelopment. Neuroimage Jan 1 2007;34(1):243-252. 

257. Fjell AM, Westlye LT, Greve DN, et al. The relationship between diffusion tensor imaging and 
volumetry as measures of white matter properties. Neuroimage Oct 1 2008;42(4):1654-1668. 



 69 

258. Anderson D, Ardekani BA, Burdick KE, Robinson DG, John M, Malhotra AK, Szeszko PR. 
Overlapping and distinct gray and white matter abnormalities in schizophrenia and bipolar I 
disorder. Bipolar Disord Sep 2013;15(6):680-693. 

259. Lee K, Yoshida T, Kubicki M, et al. Increased diffusivity in superior temporal gyrus in patients 
with schizophrenia: a Diffusion Tensor Imaging study. Schizophr Res Mar 2009;108(1-3):33-
40. 

260. Moriya J, Kakeda S, Abe O, et al. Gray and white matter volumetric and diffusion tensor 
imaging (DTI) analyses in the early stage of first-episode schizophrenia. Schizophr Res Feb 
2010;116(2-3):196-203. 

261. Park JY, Park HJ, Kim DJ, Kim JJ. Positive symptoms and water diffusivity of the prefrontal 
and temporal cortices in schizophrenia patients: a pilot study. Psychiatry Res Oct 30 
2014;224(1):49-57. 

262. Shin YW, Kwon JS, Ha TH, et al. Increased water diffusivity in the frontal and temporal 
cortices of schizophrenic patients. Neuroimage May 1 2006;30(4):1285-1291. 

263. Vollmar C, O'Muircheartaigh J, Barker GJ, et al. Identical, but not the same: intra-site and 
inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage 
Jul 15 2010;51(4):1384-1394. 

264. Kalus P, Buri C, Slotboom J, et al. Volumetry and diffusion tensor imaging of hippocampal 
subregions in schizophrenia. Neuroreport Apr 9 2004;15(5):867-871. 

265. Kalus P, Slotboom J, Gallinat J, et al. New evidence for involvement of the entorhinal region 
in schizophrenia: a combined MRI volumetric and DTI study. Neuroimage Feb 15 
2005;24(4):1122-1129. 

266. Kalus P, Slotboom J, Gallinat J, et al. The amygdala in schizophrenia: a trimodal magnetic 
resonance imaging study. Neurosci Lett Mar 3 2005;375(3):151-156. 

267. Kelly S, Jahanshad N, Zalesky A, et al. Widespread white matter microstructural differences 
in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI 
Working Group. Mol Psychiatry May 2018;23(5):1261-1269. 

268. Klauser P, Baker ST, Cropley VL, et al. White Matter Disruptions in Schizophrenia Are 
Spatially Widespread and Topologically Converge on Brain Network Hubs. Schizophr Bull 
Mar 1 2017;43(2):425-435. 

269. Friston KJ. The disconnection hypothesis. Schizophr Res Mar 10 1998;30(2):115-125. 
270. Schmitt A, Hasan A, Gruber O, Falkai P. Schizophrenia as a disorder of disconnectivity. Eur 

Arch Psychiatry Clin Neurosci Nov 2011;261 (2):150-154. 
271. Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu H, Hao Y. Widespread functional disconnectivity 

in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport Feb 6 
2006;17(2):209-213. 

272. Kambeitz J, Kambeitz-Ilankovic L, Cabral C, et al. Aberrant Functional Whole-Brain Network 
Architecture in Patients With Schizophrenia: A Meta-analysis. Schizophr Bull Jul 2016;42 
Suppl 1:S13-21. 

273. Mitelman SA, Newmark RE, Torosjan Y, et al. White matter fractional anisotropy and outcome 
in schizophrenia. Schizophr Res Oct 2006;87(1-3):138-159. 

274. Schneiderman JS, Hazlett EA, Chu KW, et al. Brodmann area analysis of white matter 
anisotropy and age in schizophrenia. Schizophr Res Aug 2011;130(1-3):57-67. 

275. Kubicki M, Westin CF, McCarley RW, Shenton ME. The application of DTI to investigate 
white matter abnormalities in schizophrenia. Ann N Y Acad Sci Dec 2005;1064:134-148. 

276. Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in 
schizophrenia. Schizophr Res Mar 2009;108(1-3):3-10. 

277. Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A. Dysconnectivity in 
schizophrenia: where are we now? Neurosci Biobehav Rev Apr 2011;35(5):1110-1124. 



 70 

278. Holleran L, Ahmed M, Anderson-Schmidt H, et al. Altered Interhemispheric and Temporal 
Lobe White Matter Microstructural Organization in Severe Chronic Schizophrenia. Vol 39: 
Nature Publishing Group; 2014:944-954. 

279. Ellison-Wright I, Nathan PJ, Bullmore ET, et al. Distribution of tract deficits in schizophrenia. 
BMC Psychiatry 2014;14:99. 

280. Kanaan RA, Borgwardt S, McGuire PK, et al. Microstructural organization of cerebellar tracts 
in schizophrenia. Biol Psychiatry Dec 01 2009;66(11):1067-1069. 

281. Oestreich LK, Pasternak O, Shenton ME, Kubicki M, Gong X, McCarthy-Jones S, Whitford 
TJ. Abnormal white matter microstructure and increased extracellular free-water in the 
cingulum bundle associated with delusions in chronic schizophrenia. Neuroimage Clin 
2016;12:405-414. 

282. Whitford TJ, Kubicki M, Pelavin PE, Lucia D, Schneiderman JS, Pantelis C, McCarley RW, 
Shenton ME. Cingulum bundle integrity associated with delusions of control in schizophrenia: 
Preliminary evidence from diffusion-tensor tractography. Schizophr Res Jan 2015;161(1):36-
41. 

283. Lee JS, Han K, Lee SK, Seok JH, Kim JJ. Altered structural connectivity and trait anhedonia 
in patients with schizophrenia. Neurosci Lett Sep 05 2014;579:7-11. 

284. Singh S, Singh K, Trivedi R, et al. Microstructural abnormalities of uncinate fasciculus as a 
function of impaired cognition in schizophrenia: A DTI study. Journal of biosciences Sep 
2016;41(3):419-426. 

285. Kitis O, Ozalay O, Zengin EB, et al. Reduced left uncinate fasciculus fractional anisotropy in 
deficit schizophrenia bXW noW in nonဨdeficiW Vchi]ophrenia. Psychiatry and Clinical 
Neurosciences 2012;66(1):34-43  

286. Savadjiev P, Whitford TJ, Hough ME, et al. Sexually dimorphic white matter geometry 
abnormalities in adolescent onset schizophrenia. Cereb Cortex May 2014;24(5):1389-1396. 

287. Lang XE, Zhu D, Zhang G, et al. Sex difference in association of symptoms and white matter 
deficits in first-episode and drug-naive schizophrenia. Transl Psychiatry Dec 18 
2018;8(1):281. 

288. Shahab S, Stefanik L, Foussias G, Lai MC, Anderson KK, Voineskos AN. Sex and Diffusion 
Tensor Imaging of White Matter in Schizophrenia: A Systematic Review Plus Meta-analysis 
of the Corpus Callosum. Schizophr Bull Jan 13 2018;44(1):203-221. 

289. Ebdrup BH, Raghava JM, Nielsen MO, Rostrup E, Glenthoj B. Frontal fasciculi and psychotic 
symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of 
selective dopamine D2/3 receptor blockade. J Psychiatry Neurosci Mar 2016;41(2):133-141. 

290. Leroux E, Vandevelde A, Trehout M, Dollfus S. Abnormalities of fronto-subcortical pathways 
in schizophrenia and the differential impacts of antipsychotic treatment: a DTI-based 
tractography study. Psychiatry Res Neuroimaging Oct 30 2018;280:22-29. 

291. Meng L, Li K, Li W, Xiao Y, Lui S, Sweeney JA, Gong Q. Widespread white-matter 
microstructure integrity reduction in first-episode schizophrenia patients after acute 
antipsychotic treatment. Schizophr Res Aug 31 2018. 

292. Kochunov P, Ganjgahi H, Winkler A, et al. Heterochronicity of white matter development and 
aging explains regional patient control differences in schizophrenia. Hum Brain Mapp Dec 
2016;37(12):4673-4688. 

293. Kochunov P, Glahn DC, Rowland LM, et al. Testing the hypothesis of accelerated cerebral 
white matter aging in schizophrenia and major depression. Biol Psychiatry Mar 1 
2013;73(5):482-491. 

294. Boos HB, Mandl RC, van Haren NE, Cahn W, van Baal GC, Kahn RS, Hulshoff Pol HE. Tract-
based diffusion tensor imaging in patients with schizophrenia and their non-psychotic siblings. 
Eur Neuropsychopharmacol Apr 2013;23(4):295-304. 



 71 

295. Voineskos AN, Lobaugh NJ, Bouix S, et al. Diffusion tensor tractography findings in 
schizophrenia across the adult lifespan. Brain. Vol 133; 2010:1494-1504. 

296. Zhang F, Qiu L, Yuan L, et al. Evidence for progressive brain abnormalities in early 
schizophrenia: a cross-sectional structural and functional connectivity study. Schizophr Res 
Oct 2014;159(1):31-35. 

297. Wu CH, Hwang TJ, Chen YJ, et al. Primary and secondary alterations of white matter 
connectivity in schizophrenia: A study on first-episode and chronic patients using whole-brain 
tractography-based analysis. Schizophr Res Dec 2015;169(1-3):54-61. 

298. Kanaan R, Barker G, Brammer M, et al. White matter microstructure in schizophrenia: effects 
of disorder, duration and medication. Br J Psychiatry Mar 2009;194(3):236-242. 

299. Wu CH, Hwang TJ, Chen YJ, et al. Altered integrity of the right arcuate fasciculus as a trait 
marker of schizophrenia: a sibling study using tractography-based analysis of the whole brain. 
Hum Brain Mapp Mar 2015;36(3):1065-1076. 

300. Drakesmith M, Dutt A, Fonville L, et al. Mediation of Developmental Risk Factors for 
Psychosis by White Matter Microstructure in Young Adults With Psychotic Experiences. 
JAMA Psychiatry Apr 2016;73(4):396-406. 

301. Karlsgodt KH, Niendam TA, Bearden CE, Cannon TD. White matter integrity and prediction 
of social and role functioning in subjects at ultra-high risk for psychosis. Biol Psychiatry Sep 
15 2009;66(6):562-569. 

302. O'Hanlon E, Leemans A, Kelleher I, et al. White Matter Differences Among Adolescents 
Reporting Psychotic Experiences: A Population-Based Diffusion Magnetic Resonance 
Imaging Study. JAMA Psychiatry Jul 2015;72(7):668-677. 

303. Carletti F, Woolley JB, Bhattacharyya S, et al. Alterations in white matter evident before the 
onset of psychosis. Schizophr Bull Nov 2012;38(6):1170-1179. 

304. Bernard JA, Orr JM, Mittal VA. Abnormal hippocampal-thalamic white matter tract 
development and positive symptom course in individuals at ultra-high risk for psychosis. NPJ 
schizophrenia 2015;1. 

305. Saito J, Hori M, Nemoto T, et al. Longitudinal study examining abnormal white matter integrity 
using a tract-specific analysis in individuals with a high risk for psychosis. Psychiatry Clin 
Neurosci Feb 20 2017. 

306. Katagiri N, Pantelis C, Nemoto T, et al. A longitudinal study investigating sub-threshold 
symptoms and white matter changes in individuals with an 'at risk mental state' (ARMS). 
Schizophr Res Mar 2015;162(1-3):7-13. 

307. Gogtay N, Sporn A, Clasen LS, et al. Comparison of progressive cortical gray matter loss in 
childhood-onset schizophrenia with that in childhood-onset atypical psychoses. Arch Gen 
Psychiatry Feb 2004;61(1):17-22. 

308. Zhang XY, Fan FM, Chen DC, et al. Extensive white matter abnormalities and clinical 
symptoms in drug-naive patients with first-episode schizophrenia: a voxel-based diffusion 
tensor imaging study. J Clin Psychiatry Feb 2016;77(2):205-211. 

309. Hao Y, Liu Z, Jiang T, et al. White matter integrity of the whole brain is disrupted in first-
episode schizophrenia. Neuroreport 2006;17(1):23-26  

310. Karlsgodt KH, van Erp TG, Poldrack RA, Bearden CE, Nuechterlein KH, Cannon TD. 
Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in 
recent-onset schizophrenia. Biol Psychiatry Mar 01 2008;63(5):512-518. 

311. Ashtari M, Cottone J, Ardekani BA, Cervellione K, Szeszko PR, Wu J, Chen S, Kumra S. 
Disruption of white matter integrity in the inferior longitudinal fasciculus in adolescents with 
schizophrenia as revealed by fiber tractography. Arch Gen Psychiat 2007;64(11):1270-1280. 

312. Guo W, Liu F, Liu Z, Gao K, Xiao C, Chen H, Zhao J. Right lateralized white matter 
abnormalities in first-episode, drug-naive paranoid schizophrenia. Neurosci Lett Nov 30 
2012;531(1):5-9. 



 72 

313. Voineskos AN, Foussias G, Lerch J, et al. Neuroimaging evidence for the deficit subtype of 
schizophrenia. JAMA Psychiatry May 2013;70(5):472-480. 

314. Hatton SN, Lagopoulos J, Hermens DF, Hickie IB, Scott E, Bennett MR. White matter 
tractography in early psychosis: clinical and neurocognitive associations. J Psychiatry 
Neurosci Nov 2014;39(6):417-427. 

315. Kikinis Z, Fitzsimmons J, Dunn C, et al. Anterior commissural white matter fiber abnormalities 
in first-episode psychosis: A tractography study. Schizophr Res Mar 2015;162(1-3):29-34. 

316. Zhuo C, Liu M, Wang L, Tian H, Tang J. Diffusion Tensor MR Imaging Evaluation of Callosal 
Abnormalities in Schizophrenia: A Meta-Analysis. PLoS One 2016;11(8):e0161406. 

317. Henze R, Brunner R, Thiemann U, Parzer P, Klein J, Resch F, Stieltjes B. White matter 
alterations in the corpus callosum of adolescents with first-admission schizophrenia. Neurosci 
Lett Apr 04 2012;513(2):178-182. 

318. Gu C, Zhang Y, Wei F, Cheng Y, Cao Y, Hou H. Magnetic resonance imaging DTI-FT study 
on schizophrenic patients with typical negative first symptoms. Experimental and therapeutic 
medicine Sep 2016;12(3):1450-1454. 

319. Xi YB, Guo F, Li H, et al. The structural connectivity pathology of first-episode schizophrenia 
based on the cardinal symptom of auditory verbal hallucinations. Psychiatry Res Nov 30 
2016;257:25-30. 

320. Hovington CL, Bodnar M, Chakravarty MM, Joober R, Malla AK, Lepage M. Investigation of 
white matter abnormalities in first episode psychosis patients with persistent negative 
symptoms. Psychiatry Res Sep 30 2015;233(3):402-408. 

321. Jones DK, Catani M, Pierpaoli C, et al. Age effects on diffusion tensor magnetic resonance 
imaging tractography measures of frontal cortex connections in schizophrenia. Hum Brain 
Mapp Mar 2006;27(3):230-238. 

322. Rosenberger G, Kubicki M, Nestor PG, et al. Age-related deficits in fronto-temporal 
connections in schizophrenia: a diffusion tensor imaging study. Schizophr Res Jul 2008;102(1-
3):181-188. 

323. Kunimatsu N, Aoki S, Kunimatsu A, et al. Tract-specific analysis of white matter integrity 
disruption in schizophrenia. Psychiatry Res Feb 28 2012;201(2):136-143. 

324. D'Arceuil H, De Crespigny A. Diffusion Imaging in Grey Matter. In: Jones DK, ed. Diffusion 
MRI- Theory, Methods and Applications. Oxford: University Press; 2011. 

325. Rathi Y, Pasternak O, Savadjiev P, et al. Gray matter alterations in early aging: a diffusion 
magnetic resonance imaging study. Hum Brain Mapp Aug 2014;35(8):3841-3856. 

326. Takahashi T, Suzuki M. Progress in MRI studies of the schizophrenia spectrum. Seishin 
Shinkeigaku Zasshi 2013;115(8):874-879. 

327. Schmahmann JD, Pandya DN. Fiber Pathways of the Brain: Oxford University Press; 2006. 
328. Szeszko PR, Robinson DG, Ashtari M, et al. Clinical and Neuropsychological Correlates of 

White Matter Abnormalities in Recent Onset Schizophrenia. Neuropsychopharmacology 
2008;33(5):976-984  

329. Peters BD, de Haan L, Dekker N, et al. White matter fibertracking in first-episode 
schizophrenia, schizoaffective patients and subjects at ultra-high risk of psychosis. 
Neuropsychobiology 2008;58(1):19-28. 

330. Kawashima T, Nakamura M, Bouix S, Kubicki M, Salisbury DF, Westin CF, McCarley RW, 
Shenton ME. Uncinate fasciculus abnormalities in recent onset schizophrenia and affective 
psychosis: a diffusion tensor imaging study. Schizophr Res May 2009;110(1-3):119-126. 

331. Luck D, Buchy L, Czechowska Y, et al. Fronto-temporal disconnectivity and clinical short-
term outcome in first episode psychosis: A DTI-tractography study. Journal of Psychiatric 
Research 2011;45(3):369-377  

332. Lener MS, Wong E, Tang CY, et al. White matter abnormalities in schizophrenia and 
schizotypal personality disorder. Schizophr Bull Jan 2015;41(1):300-310. 



 73 

333. Fujiwara H, Namiki C, Hirao K, et al. Anterior and posterior cingulum abnormalities and their 
association with psychopathology in schizophrenia: A diffusion tensor imaging study. 
Schizophrenia Research Sep 2007;95(1-3):215-222. 

334. Kubicki M, Niznikiewicz M, Connor E, et al. Relationship Between White Matter Integrity, 
Attention, and Memory in Schizophrenia: A Diffusion Tensor Imaging Study. Brain Imaging 
Behav Jul 01 2009;3(2):191-201. 

335. Nestor PG, Kubicki M, Gurrera RJ, Niznikiewicz M, Frumin M, McCarley RW, Shenton ME. 
Neuropsychological correlates of diffusion tensor imaging in schizophrenia. Neuropsychology 
Oct 2004;18(4):629-637. 

336. Cheung V, Chiu CP, Law CW, et al. Positive symptoms and white matter microstructure in 
never-medicated first episode schizophrenia. Psychol Med Aug 2011;41(8):1709-1719. 

337. Phillips OR, Nuechterlein KH, Clark KA, Hamilton LS, Asarnow RF, Hageman NS, Toga AW, 
Narr KL. Fiber tractography reveals disruption of temporal lobe white matter tracts in 
schizophrenia. Schizophrenia Research 2009;107(1):30-38  

338. Filippi M, Canu E, Gasparotti R, et al. Patterns of brain structural changes in first-contact, 
antipsychotic drug-naive patients with schizophrenia. AJNR Am J Neuroradiol Jan 
2014;35(1):30-37. 

339. Nakamura K, Kawasaki Y, Takahashi T, Furuichi A, Noguchi K, Seto H, Suzuki M. Reduced 
white matter fractional anisotropy and clinical symptoms in schizophrenia: a voxel-based 
diffusion tensor imaging study. Psychiatry Res Jun 30 2012;202(3):233-238. 

340. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Jr., Pandya DN. 
Segmentation of subcomponents within the superior longitudinal fascicle in humans: a 
quantitative, in vivo, DT-MRI study. Cereb Cortex Jun 2005;15(6):854-869. 

341. Hubl D, Koenig T, Strik W, et al. Pathways That Make Voices: White Matter Changes in 
Auditory Hallucinations. Arch Gen Psychiatry 2004;61(7):658-668  

342. Wu CH, Hwang TJ, Chen YJ, et al. Altered integrity of the right arcuate fasciculus as a trait 
marker of schizophrenia: A sibling study using tractography-based analysis of the whole brain. 
Hum Brain Mapp Mar 2015;36(3):1065-1076. 

343. Andreasen NC. The Scale for the Assessment of Negative Symptoms (SANS). Iowa City: 
University of Iowa; 1984. 

344. Andreasen NC. The Scale for the Assessment of Positive Symptoms (SAPS). Iowa City: 
University of Iowa; 1984. 

345. Karlsgodt KH, Bachman P, Winkler AM, Bearden CE, Glahn DC. Genetic influence on the 
working memory circuitry: behavior, structure, function and extensions to illness. Behav Brain 
Res Dec 1 2011;225(2):610-622. 

346. Miller G, Galanter E, Pribram K. Plans and the Structure of Behavior. New York: Holt, 
Rinehart & Winston; ^1960. 

347. Reichenberg A. The assessment of neuropsychological functioning in schizophrenia. 
Dialogues Clin Neurosci 2010;12(3):383-392. 

348. Haenschel C, Bittner RA, Haertling F, Rotarska-Jagiela A, Maurer K, Singer W, Linden DE. 
Contribution of impaired early-stage visual processing to working memory dysfunction in 
adolescents with schizophrenia: a study with event-related potentials and functional magnetic 
resonance imaging. Arch Gen Psychiatry Nov 2007;64(11):1229-1240. 

349. Krieger S, Lis S, Janik H, Cetin T, Gallhofer B, Meyer-Lindenberg A. Executive function and 
cognitive subprocesses in first-episode, drug-naive schizophrenia: an analysis of N-back 
performance. Am J Psychiatry Jun 2005;162(6):1206-1208. 

350. Short SJ, Elison JT, Goldman BD, et al. Associations between white matter microstructure and 
infants' working memory. Neuroimage Jan 1 2013;64:156-166. 



 74 

351. Peters BD, Ikuta T, DeRosse P, et al. Age-related differences in white matter tract 
microstructure are associated with cognitive performance from childhood to adulthood. Biol 
Psychiatry Feb 1 2014;75(3):248-256. 

352. Seitz J, Zuo JX, Lyall AE, et al. Tractography Analysis of 5 White Matter Bundles and Their 
Clinical and Cognitive Correlates in Early-Course Schizophrenia. Schizophr Bull Mar 23 2016. 

353. Aleman A, Hijman R, de Haan EH, Kahn RS. Memory impairment in schizophrenia: a meta-
analysis. Am J Psychiatry Sep 1999;156(9):1358-1366. 

354. Lee J, Park S. Working memory impairments in schizophrenia: a meta-analysis. J Abnorm 
Psychol Nov 2005;114(4):599-611. 

355. Jahshan C, Heaton RK, Golshan S, Cadenhead KS. Course of neurocognitive deficits in the 
prodrome and first episode of schizophrenia. Neuropsychology Jan 2010;24(1):109-120. 

356. Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-
episode schizophrenia: a meta-analytic review. Neuropsychology May 2009;23(3):315-336. 

357. White T, Schmidt M, Karatekin C. Verbal and visuospatial working memory development and 
deficits in children and adolescents with schizophrenia. Early Interv Psychiatry Nov 
2010;4(4):305-313. 

358. Dickinson D, Ramsey ME, Gold JM. Overlooking the obvious: a meta-analytic comparison of 
digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry 
May 2007;64(5):532-542. 

359. Barch DM, Sheline YI, Csernansky JG, Snyder AZ. Working memory and prefrontal cortex 
dysfunction: specificity to schizophrenia compared with major depression. Biol Psychiatry Mar 
1 2003;53(5):376-384. 

360. Giuliano AJ, Li H, Mesholam-Gately RI, Sorenson SM, Woodberry KA, Seidman LJ. 
Neurocognition in the psychosis risk syndrome: a quantitative and qualitative review. Curr 
Pharm Des 2012;18(4):399-415. 

361. Goghari VM, Brett C, Tabraham P, et al. Spatial working memory ability in individuals at ultra 
high risk for psychosis. J Psychiatr Res Mar 2014;50:100-105. 

362. Lin A, Wood SJ, Nelson B, et al. Neurocognitive predictors of functional outcome two to 13 
years after identification as ultra-high risk for psychosis. Schizophr Res Oct 2011;132(1):1-7. 

363. Meyer EC, Carrion RE, Cornblatt BA, et al. The relationship of neurocognition and negative 
symptoms to social and role functioning over time in individuals at clinical high risk in the first 
phase of the North American Prodrome Longitudinal Study. Schizophr Bull Nov 
2014;40(6):1452-1461. 

364. MATLAB and Statistics Toolbox Release 2012b [computer program]. Version. Natick, 
Massachusetts, United States: TheMathWorks; 2012. 

365. Price G, Cercignani M, Parker GJM, Altmann DR, Barnes TRE, Barker GJ, Joyce EM, Ron 
MA. White matter tracts in first-episode psychosis: A DTI tractography study of the uncinate 
fasciculus. NeuroImage 2008;39(3):949-955  

366. Kubicki M, Westin CF, Maier SE, et al. Uncinate fasciculus findings in schizophrenia: a 
magnetic resonance diffusion tensor imaging study. Am J Psychiatry May 2002;159(5):813-
820. 

367. von Hohenberg CC, Pasternak O, Kubicki M, et al. White matter microstructure in individuals 
at clinical high risk of psychosis: a whole-brain diffusion tensor imaging study. Schizophr Bull 
Jul 2014;40(4):895-903. 

368. Federspiel A, Begre S, Kiefer C, Schroth G, Strik WK, Dierks T. Alterations of white matter 
connectivity in first episode schizophrenia. Neurobiol Dis Jun 2006;22(3):702-709. 

369. Matsumoto H, Simmons A, Williams S, Hadjulis M, Pipe R, Murray R, Frangou S. Superior 
temporal gyrus abnormalities in early-onset schizophrenia: similarities and differences with 
adult-onset schizophrenia. Am J Psychiatry Aug 2001;158(8):1299-1304. 



 75 

370. Hasan A, Kremer L, Gruber O, Schneider-Axmann T, Guse B, Reith W, Falkai P, Wobrock T. 
Planum temporale asymmetry to the right hemisphere in first-episode schizophrenia. 
Psychiatry Res Jul 30 2011;193(1):56-59. 

371. Reis Marques T, Taylor H, Chaddock C, et al. White matter integrity as a predictor of response 
to treatment in first episode psychosis. Brain Jan 2014;137(1):172-182. 

372. Samartzis L, Dima D, Fusar-Poli P, Kyriakopoulos M. White Matter Alterations in Early Stages 
of Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. Journal of 
Neuroimaging 2013:101-110. 

373. Heinrichs RW. Meta-analysis and the science of schizophrenia: variant evidence or evidence 
of variants? Neuroscience & Biobehavioral Reviews 2004;28(4):379-394  

374. Canu E, Agosta F, Filippi M. A selective review of structural connectivity abnormalities of 
schizophrenic patients at different stages of the disease. Schizophr Res Jan 2015;161(1):19-28. 

375. Bartzokis G, Lu PH, Nuechterlein KH, et al. Differential effects of typical and atypical 
antipsychotics on brain myelination in schizophrenia. Schizophr Res Jul 2007;93(1-3):13-22. 

376. Rathi Y, Kubicki M, Bouix S, et al. Statistical analysis of fiber bundles using multi-tensor 
tractography: application to first-episode schizophrenia. Magn Reson Imaging May 
2011;29(4):507-515. 

377. Seitz J, Rathi Y, Lyall A, et al. Alteration of gray matter microstructure in schizophrenia. Brain 
Imaging Behav Jan 19 2017. 

378. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from 
diffusion MRI. Magn Reson Med Sep 2009;62(3):717-730. 

379. Pasternak O, Shenton ME, Westin CF. Estimation of extracellular volume from regularized 
multi-shell diffusion MRI. Med Image Comput Comput Assist Interv 2012;15(2):305-312. 

380. Holz M, Heil SR, Sacco A. Temperature-dependent self-di�usion coefficients of water and six 
selected molecular liquids for calibration in accurate 1H NMR PFG measurements. PCCP 
2000;2:4740-4742. 

381. Mills R. Self-Diffusion in Normal and Heavy Water. The Journal of Physical Chemistry 
1973;77(5). 

382. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the 
NMR spin echo. J Magn Reson B Mar 1994;103(3):247-254. 

383. Gogtay N, Giedd JN, Lusk L, et al. Dynamic mapping of human cortical development during 
childhood through early adulthood. Proc Natl Acad Sci U S A May 25 2004;101(21):8174-
8179. 

384. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. Microstructural maturation of the 
human brain from childhood to adulthood. Neuroimage Apr 15 2008;40(3):1044-1055. 

385. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral 
cortex. J Comp Neurol Oct 20 1997;387(2):167-178. 

386. Petanjek Z, Judas M, Simic G, Rasin MR, Uylings HB, Rakic P, Kostovic I. Extraordinary 
neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci U S A Aug 9 
2011;108(32):13281-13286. 

387. Andreasen NC. The lifetime trajectory of schizophrenia and the concept of neurodevelopment. 
Dialogues Clin Neurosci 2010;12(3):409-415. 

388. Walker-Samuel S, Orton M, Boult JK, Robinson SP. Improving apparent diffusion coefficient 
estimates and elucidating tumor heterogeneity using Bayesian adaptive smoothing. Magn 
Reson Med Feb 2011;65(2):438-447. 

389. Larkin TJ, Canuto HC, Kettunen MI, et al. Analysis of image heterogeneity using 2D 
Minkowski functionals detects tumor responses to treatment. Magn Reson Med Jan 
2014;71(1):402-410. 

 

 



 76 

AcNQRZOedJPeQWV 

 
First and foremost, I am grateful to my family (I would not be anywhere near where I am without 
you Mom and Dad), Sanni, boyfriend John and friends (especially Johannes) for their support, help 
and patience. 
 
On the scientific side, I would like to thank my amazing supervisors Prof. Inga Koerte and Prof. Ma-
rek Kubicki- you supported me through the last years and showed me how much fun research can be.  
 
Additionally, I would like to thank everyone else who was involved in the presented work, all my co-
authors and collaborator for their fantastic input and the other inspiring researcher I met on the way. 
Amanda thanks for being there when I discovered the man behind the curtain (and so many other 
times), German team (especially Anna, Jakob, Marc, Timmy) thanks for giving me a home abroad! 
 
Most importantly, I wish to express my deepest respect and gratitude for the patients who partici-
pated in this study-there is so much we can learn from you! 
 
 
 
 


