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x Zusammenfassung



Zusammenfassung:
Kosmologische Untersuchungen mit
Galaxienhaufen in Röntgen-,
optischen und
Millimeterwellenlängen

Die Anzahl an Halos als Funktion der Masse und Rotverschiebung enthält viel kosmo-
logische Information. Die massenreichsten Halos sind von Galaxienhaufen bevölkert, de-
ren beobachtbare Eigenschaften mit der Masse und Rotverschiebung des beherbergenden
Halos skalieren. Diese Eigenschaften erlauben ausserdem die Selektion von Galaxienhau-
fen anhand von Erhebungen in Röntgen-, optischen und Millimeterwellenlängen. In dieser
Promotionsarbeit stellen wir unter Beweis, wie man kosmologische Information aus Ga-
laxienhaufenkatalogen extrahiert. Die wichtigsten begrenzenden Faktoren dieser Messung
sind die Unsicherheit im Verhältnis zwischen den beobachteten Eigenschaften und der Halo-
masse und die Unsicherheit in der Modellierung der Selektion. Durch die Einführung neuer
und der Weiterentwicklung etablierter Untersuchungsmethoden zeigen wir auf, wie diese
Unsicherheiten empirisch kalibriert werden können. Des Weiteren stellen wir unter Beweis,
wie sich empirische Validierung für die Rückschlussfolgerung kosmologischer Information
aus Galaxienhaufenkatalogen durchführen lassen.
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Abstract

The number of halos as a function of mass and redshift is a powerful cosmological probe.
The most massive halos are inhabited by clusters of galaxies, whose observational features
scale with the host’s halo mass and redshift with some scatter. These features allow us to
select galaxy clusters in X-ray, optical and millimeter wavelength. We demonstrate in this
thesis how to extract cosmological information from a cluster sample. The major limiting
factors to this measurement are the uncertainty in the mapping between observable and
mass, and the uncertainties in the modelling of the selection function. We demonstrate,
introducing novel techniques and developing established ones, how to empirically calibra-
te these sources of systematic uncertainty. We furthermore demonstrate how to set up
empirical validation tests for the cosmological inference from cluster samples.
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Kapitel 1

Introduction

This thesis focuses on cosmological studies with galaxy clusters in the different wavelengths
in which we find predominant observational signatures of these objects. Before delving into
the scientific results we obtained, we aim to shortly review the following points:

• What are galaxy clusters? How many are there at any given cosmic epoch? And how
does this number of clusters depend on cosmology?

• What are the most pronounced observational features of galaxy clusters? How can
large samples of clusters be selected?

• How can one extract information on the composition and evolution of the Universe
from cluster samples?

We caution the reader here that we do not intend to discuss all of the answers in
exhaustive detail. Nevertheless, references are provided for more complete and detailed
treatments. We will also assume a certain degree of familiarity with the field of observa-
tional cosmology. Therefore, we will not review the basic physical concepts of the current
cosmological model.

1.1 Formation of Halos
While the distribution of matter in the Universe is assumed to be homogeneous and isotro-
pic at cosmic scales, on a local level inhomogeneities are the rule rather than the exception.
This can indeed be appreciated by the simple observation that the mean density around
us on Earth is many orders of magnitude larger than the average density of the Cosmos.
The formation of structure in the Universe is however a natural consequence of even small
initial inhomogeneities. Under the attraction of their own gravity, and under the right
pressure conditions, small over-densities increase in density. The initial only minimal inho-
mogeneous matter distribution arranges itself under the influence of its own gravitational
field into a web like structure: the aptly named Cosmic Web. At the intersection of the
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filamentary structure constituting the Cosmic Web, purely gravitational dissipative proces-
ses are strong enough to lead to the formation of approximately round, bound structures
called halos (Lynden-Bell, 1967).

The number density of halos as a function of halo mass at any given time is called the
halo mass function. Its main features are described by the model of gravitational collapse,
which we will quickly review in a qualitative fashion following Press and Schechter (1974).
The starting point of the gravitational collapse model is the fact that the gravitational
potential on the surface of any reasonably defined volume depends exclusively on the matter
contained within that volume. Considering now a spherical volume enclosing an over-dense
region, the collapse of this region will decouple it from the background expansion of the
Universe. In this region, space-time no longer expands like in the rest of the Universe.
Instead it contracts. Classically speaking, the potential well deepens as more and more
matter is accreted. The fractional over-density of the collapsing region increases with time
as it attracts more and more matter, and as the surrounding Universe expands and becomes
less and less dense.

At an over-density of ∼ 200 times the average density of the Universe the collapsing
object attains Virial Equilibrium. Further collapse is halted purely by gravitational dissipa-
tion, such as violent relaxation (particles lose energy when falling into a quickly deepening
gravitational potential) or dynamical friction (the gravitational attraction of a passing
particle accumulates matter behind, which in turn slows it down). A halo forms.

In virial equilibrium the kinetic energyK of the system and gravitational binding energy
V follow the relation

2K + V = 0. (1.1)
The setting of a characteristic over-density ∆ for a halo allows one to define its mass M∆
as the mass of a sphere with ∆-times the average density of the Universe. This in turn also
defines a typical size of the halo, the radius of the aforementioned sphere. Thus

M∆ = 4π
3 ∆ρR3

∆, (1.2)

where ρ is the average density of the Universe. Specific application vary in the choice of
over-density (176, 200 or 500) and the density to be used as the average density of the
Universe. Some works employing the critical density ρcrit(z) = 8πG

3 H2(z) of the Universe
at the epoch determined by the cosmological redshift z, while other use the matter density
ρM = ΩMρcrit(z). We can note here for later use that R ∼M1/3E(z)−2/3. Here H(z) is the
expansion rate at the redshift z and E(z) = H(z)/H0 the expansion at redshift z relative
to the current day expansion rate.

1.2 The Halo Mass Function and its Cosmological De-
pendence

The concept of spherical over-density mass can be used to identify halos in large N-body
simulations performed with different cosmological models. From such simulations the dif-
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ferential number density dn
dM

∣∣∣
M,z

of halos at a mass M in a cosmic epoch given by the
redshift z is calibrated. Until the recent advent of emulators (McClintock et al., 2019b),
these calibrations where performed in the spirit of the Press-Schechter formalism (Jenkins
et al., 2001; Evrard et al., 2002; Tinker et al., 2008; Bocquet et al., 2016, and others). This
formalism builds on the spherical collapse model. It computes the time that passes between
two events: 1) the over-density starts to collapse under its own gravitational influence and
no longer expands like the surrounding space, and 2) the object reaches virialization. Given
this time, one can estimate how much the perturbation would have grown, if it had con-
tinued linear growth. The resulting over-density is called barrier over-density. Given this
set-up, the number of virialized objects equals the number of linear over-densities that pas-
sed the barrier. Linear growth is characterized by the variance σ2(R) of the over-densities
around the mean over-density of zero, and follows by numerical integration of the Einstein-
Boltzmann equations for any set of cosmological parameters. The fraction of over-densities
that exceed the barrier can thus be easily computed if the variance is known, as can the
number density of such over-densities. The link to mass is finally made by choosing the
linear radius R such that it encloses a mass M .

The shape of the resulting function is rather simple: at low masses it follows a power
law and it has an exponential cut off. The cut-off mass increases the later the cosmic epoch,
as more and more massive objects form. Also the amplitude of the function increases with
time, as the general growth of the amplitude of fluctuations pushes ever more over-densities
past the barrier. As such, the halo mass function is sensitive to the amplitude of matter
fluctuations and its growth, as well as to the overall density of the Universe. Finally, further
cosmological sensitivity is introduced by considering the differential number of objects as a
function of mass M and redshift z in a survey of solid angle Asurvey, which can be computed

dN
dM

∣∣∣∣
M,z

= dn
dM

∣∣∣∣
M,z

d3V

dzd2θ

∣∣∣∣
z
Asurvey, (1.3)

where d3V
dzd2θ

∣∣∣
z

is the cosmological volume element. It carries strong cosmological dependence
on the expansion history of the Universe (see for instance Albrecht et al., 2006). In summary
then, the number of galaxy clusters probes the high tail of the cosmic inhomogeneity
distribution at different scales, the growth of these inhomogeneities with redshift and the
expansion of the Universe itself (for instance, see Koester et al., 2007; Vikhlinin et al.,
2009b; Mantz et al., 2010; Rozo et al., 2010; Benson et al., 2013; Mantz et al., 2015;
Bocquet et al., 2015; Planck Collaboration et al., 2016b; de Haan et al., 2016; Bocquet
et al., 2019a).

1.3 Observational Signatures of Galaxy Clusters
At different masses, halos are occupied by different astrophysical objects. Halos above a
mass of M ∼ 1014M� are occupied by galaxy clusters, while lower mass halos are occupied
by galaxy groups and individual galaxies. Galaxy clusters set themselves apart from other
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astrophysical objects by the fact that their different observational features are dominated,
to first order, by the depth of the gravitational potential (Kravtsov and Borgani, 2012,
for a review). Consequently, the strength of their signatures in X-rays, in optical, near
infrared and in sub-millimeter wavelengths correlates with mass (see Pratt et al., 2019,
and references therein), as discussed below in more detail. Calibrating this relation between
the observable and the halo mass, and the scatter around it, then allows one to constrain
the number of halos as a function of mass and redshift (see Allen, Evrard, and Mantz,
2011, for a review). This is, as discussed above, a powerful cosmological probe. The major
observational signatures at various wavelength that are used for the identification and mass
estimation shall be reviewed in the following. Besides presenting the observational features
most relevant to this work, we also derive their scaling with mass following self-similar
collapse theory (Kaiser, 1986).

1.3.1 X-ray
Galaxy clusters are associated with deep potential wells as they live in the most massive
halos. These deep potential wells cause the baryonic matter falling into them to heat to
temperatures above T ∼ 2 keV. The resulting hot plasma, called inter cluster medium
(ICM), emits thermally with a bremsstrahlung spectrum (for reviews, see Sarazin, 1988;
Böhringer and Werner, 2010). The temperature of this emission is a direct tracer of the
gravitational potentials depth. Its scaling with mass can be estimated from the virial theo-
rem, by noting that V ∼ M2/R ∼ M2/3E(z)2/3. In a hot thermalized plasma, the kinetic
energy is proportional to the temperature, leading to the scaling

T ∼M2/3E(z)2/3 (1.4)

Observationally, the temperature of the gas is costly to extract, as it requires high
photon counts and a good understanding of the background to perform a spectral fit.
Much easier to access is the X-ray surface brightness. Given the collisional emission, the
surface brightness SX (in units of in units of erg s−1cm−2steradian−1) reads

SX = 1
4π(1 + z)4

∫
dl nenHΛeV(T, Z), (1.5)

where ne is the number density of free electrons, nH the number density of ionized hydro-
gen, ΛeV(T, Z) the emissivity in a chosen band as a function of temperature T and ICM
metallicity Z. The integral goes over the line of sight. We shall focus here on soft X-ray
bands (either [0.1, 2.4]keV or [0.5, 2.]keV), where the emissivity is temperature independent
to good approximation.

De-projecting or parametric fitting of the surface brightness profile allows one to deter-
mine the electron density profile. Integrating the electron number density out to the radius
R∆ provides an estimate of the ICM gas mass M∆,gas. Under the simplistic assumption
that the ratio between the ICM mass and total mass follows the cosmic baryon fraction,
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we arrive at the scaling

Mgas ∼M. (1.6)

Deviations from this scaling can be interpreted as mass and redshift dependent deviations
from the assumption that the baryon fraction in clusters corresponds to the cosmic fraction.
Several interesting physical effects such as AGN feedback and star formation are already
recognized today as playing a major role in setting the mass trend of the gas mass (Tozzi
and Norman, 2001; Borgani et al., 2004; Kravtsov, Nagai, and Vikhlinin, 2005; Nagai,
Kravtsov, and Vikhlinin, 2007).

Integration of the surface brightness profile in an angular aperture corresponding to R∆
provides the X-ray flux f∆,X within that radius. In soft X-rays, the emissivity is indepen-
dent of temperature, and thus the flux scales as fX ∼ ρ2

gasR
3dL(z)−2, where dL(z) is the

luminosity distance. This leads to the scaling

fX ∼ME(z)2dL(z)−2. (1.7)

As in the case of the gas mass, deviations from this scaling are indicative of astrophysical
processes beyond gravitational collapse and adiabatic hydrodynamics. Most prominent in
the case of the flux are cooling effects in the core of clusters (Tozzi and Norman, 2001;
Borgani et al., 2004; Kravtsov, Nagai, and Vikhlinin, 2005; Nagai, Kravtsov, and Vikhlinin,
2007).

At an even simpler observational level as the flux fX is the count rate η. The conversion
from flux to count rate depends on the spectral sensitivity of the instrument, usually called
effective area or ancillary response function (ARF). While this introduces a joint redshift
temperature dependence, as we will see in a specific application later, at first order η ∼ fX.

1.3.2 Optical and near infrared
In the optical and near infrared regime clusters appear as over-densities of predominantly
red galaxies. The most distinct features in these wavelengths are the Brightest Central
Galaxy (BCG) and the presence of a red sequence (RS) of galaxy colors (Dressler, 1984).
While the BCG is of central importance in the study of the astrophysics of clusters, the
presence of the red sequence is pivotal in cosmological studies.

Several physical processes suppress star formation in galaxies in clusters. As a result,
quiescent galaxies occupy the red sequence, which sets itself apart through its narrow color
range as a function of redshift. Calibrating this relation as a redshift dependent color
filter on spectroscopic data allows one to filter photometric data. Adding a spatial filter,
over-densities of galaxies with colors consistent with a given redshift can be selected. This
technique provides a photometric redshift estimate, necessary for cosmological studies of
clusters. The amplitude in the color-spatial filter is called richness λ (Rozo et al., 2009). It
roughly scales like the number of galaxies in the cluster above a given magnitude. Assuming
a mean stellar mass m? per galaxy, and a total stellar mass in the cluster M?, under the
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simplification that the star mass fraction in clusters is constant with mass and redshift, we
find the scaling

λ ∼ M?

m?

∼M. (1.8)

Another important observational signature of galaxy clusters which is extracted from
optical photometric data is the weak gravitational lensing (WL) distortion of the shapes of
background galaxies by the gravitational potential of the clusters (for a review, see Hoekstra
et al., 2013). With the exception of the central region of the most massive systems, the WL
distortion is of the order of a few percent. This signal has to be extracted from galaxies
which intrinsically have a dispersion in ellipticities of 25%–30%. Given that the intrinsic
ellipticity follows to good approximation a Gaussian random field, statistically significant
WL shear signals can be extracted by radially binning large numbers of galaxy shapes,
resulting in a reduced tangential shear profile gt(θi) in radial bins. The reduced tangential
shear can be expressed as

gt(θ) = γ(θ)
1− κ(θ) , (1.9)

where γ(θ) is the tangential shear and κ(θ) is the convergence. Given a cylindrical projection
of the matter profile Σ(R) both the convergence and the shear can be estimated as

κ(θ) = Σ(dA(z)θ)
〈Σcrit〉

and γ(θ) = Σ(< dA(z)θ)− Σ(dA(z)θ)
〈Σcrit〉

, (1.10)

where dA(z) is the angular diameter distance to the cluster redshift z, and 〈Σcrit〉 takes ac-
count of the lens configuration between the cluster and the background sources. It therefore
requires knowledge of the redshift distribution of the background galaxies.

By fitting a mass profile to the measured reduced shear, direct mass estimates can be
extracted. This is made possible by the fact that the density profile of clusters follows the
Navarro-Frenk-White profile (Navarro, Frenk, and White, 1996), which can be parametrized
as

ρ(r) = ρ0

r
rS

(
1 + r

rS

)2 , (1.11)

where ρ0 and rS are free parameters. Alternatively the profile can be parameterized by
the total mass M∆ and the concentration c∆ = R∆/rS. Fitting for the mass under so-
me assumptions of the concentration provides a mass estimate called weak lensing mass
MWL. While it traces the halo mass, it displays bias and scatter with respect to it due to
morphological variety and correlated large scale structure (Becker and Kravtsov, 2011).

1.3.3 Millimeter regime
Galaxy clusters have a distinct signature in the millimeter and sub-millimeter regime called
the Sunyaev-Zel’dovich effect (SZe, Sunyaev and Zeldovich, 1972): Cosmic Microwave
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background (CMB) photons travelling through the ICM get inverse Compton scattered to
higher frequencies, leading to a frequency dependent change in the CMB temperature

∆T
TCMB

= G(ν)yc = G(ν)kBσT

mec2

∫
dl neTe, (1.12)

where G(ν) encodes the distinctive spectral feature as a function of frequency ν, and yc
is the Comptonization parameter. Furthermore, kB is the Boltzmann constant, σT the
Thomson cross-section, me the electron mass, and c the speed of light.

Of interest for this work is the unbiased signal to noise ζ with which a cluster is
extracted from a CMB map. An extraction aperture θext is selected by maximising the
Comptonization YSZ(> θext) within that aperture with respect to the instrumental and
CMB noise σmm. This leads to the definition

ζ = YSZ(> θext)
σmmπθ2

ext
. (1.13)

Assuming that the extraction aperture corresponds to the angular scale of the radius R∆,
we can derive the self-similar scaling

ζ ∼ME2 (1.14)

Practically, a multi-wavelength filter that compensates the typical scale of CMB fluctuati-
ons is employed. In the low signal to noise regime in which most clusters are detected, the
extraction area is a very noisy tracer of the angular scale of the clusters extent.

1.4 Selection of Cluster Samples
The main observational features of clusters discussed above allow one to select cluster
samples based on these signatures. In the following section, we shall quickly discuss the
complications arising from the selection in either observing band.

Two major concerns arise in cluster selection: the completeness of the sample, and the
contamination of the sample. As will be discussed in more detail below, cluster cosmolo-
gical studies assume that for any halo with given mass and redshift there is a range of
possible observables. The mean observable is given by a functional form of mass, redshift
and cosmology, while the scatter around that relation captures both the instrumental and
observational uncertainties of the observables measurement, as well as the intrinsic hete-
rogeneity of the cluster population. Both the mean relation and the scatter around it need
to be empirically calibrated. In light of this framework, if a sample is selected above a
given cut in observable, its mass incompleteness can be easily modelled by considering the
distribution of mass associated to a given observable, which in turn can be obtained from
the distribution of observables associated with a given mass.

The issue of contamination on the other hand is harder to handle. In principle, conta-
mination could be modelled: the number density of contaminating noise fluctuations can
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be determined from the noise properties, while astrophysical contaminants would alter the
mass observable relation and the scatter around it. In practise, such modelling choices have
however proven less successful than the selection of possibly pure samples. For this reason,
we shall quickly outline how pure cluster samples can be constructed from observations in
different wavelengths and what effects complicate such selections.

In the millimeter regime the selection of pure cluster samples is arguably the most
controllable: clusters leave a distinctive spectral feature in the CMB, most noticeably as
a shadow in given frequencies. Besides random noise fluctuation, there is no other way to
create such a shadow. Any such signal of sufficient statistical significance is thus highly
likely to be a cluster. Possible caveats in the millimeter regime are emitting sources that
could fill up the shadowy signature of the SZ effect, thereby reducing it (most recently
Gupta et al., 2017). This could lead to an alteration of the observable mass relation and
the scatter around it. Two main modes need to be distinguished here: first, fractionally
small signals with little cluster by cluster variation. These signals would simply alter the
observable mass relation. Second, and more importantly, emitters that are only present in a
subset of the clusters, but cancel an important part of the SZe signal if present. The latter
class would lead to excess incompleteness beyond the incompleteness due to the observable
mass scatter. We shall discuss in later chapters how to detect such excess incompleteness.

In the X-rays, cluster selection has to content not only with noise fluctuations, but also
with the fact that active galactic nuclei (AGN) with strong X-ray emission are more fre-
quent than clusters by at least one order of magnitude. A catalog of statistically significant
X-ray sources thus contains a majority of AGN and a minority of clusters. Crucially, ho-
wever, AGN appear as point sources, while clusters have a diffuse emission. Consequently,
traditionally X-ray cluster surveys selected extended sources (e.g. Vikhlinin et al., 1998;
Böhringer et al., 2001; Romer et al., 2001; Clerc et al., 2014). Still, multiple blended AGN
or AGN in clusters lead to contamination at a ∼ 10% level.

Both SZe and X-ray selection provide rather pure cluster samples. Yet, in these wa-
velengths information on the cluster redshift is hard or impossible to obtain. As a con-
sequence, optical follow up of X-ray and SZe cluster samples is the norm. The quest of
determining the cluster redshifts via the presence of red galaxies allows one to further im-
prove the purity of a sample (for a most recent application, see Klein et al., 2018; Klein
et al., 2019). Indeed, if an optical structure was not found at a given magnitude limit, this
implied that the source was either a contaminant or at a redshift large enough that the
cluster galaxies fall below the magnitude limit. While such studies were performed traditio-
nally with pointed observations, recently the advent of wide and deep photometric surveys
and the increasing size of X-ray and SZe candidate lists have made automated confirmation
tools necessary. As we will show below, such automated optical confirmation tools allow
one to construct predominantly X-ray selected cluster samples without selection based on
the extent of sources.

The final form of cluster selection is direct optical selection. This selection type sets
itself apart from the X-ray or SZe selection by the fact that the instrumental noise of the
photometry does not impact the mass limit but only the redshift completeness. This is due
to the fact that the limiting magnitude of photometric surveys allows for high signal to
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noise detection of even individual galaxies below a typical redshift. If the cluster search is
limited to appropriately low redshifts, in principle every halo should be detected. Indeed,
the argument can be reversed to say that any over-density of red galaxies is associated
to a halo of some mass, namely to the halo that hosts the brightest galaxy (this popular
argument was tested on simulation by Farahi et al., 2016). The observed richness is then a
result of the actual richness of the cluster and alterations due to projection effects. Indeed,
the color filters used for optical selection subtend are large range of physical distances
along the line of sight, which can lead to significant richness contributions by galaxies
in the correlated LSS surrounding the cluster (Cohn et al., 2007; Costanzi et al., 2019).
When talking about contamination of optically selected samples one should thus consider
contaminants as objects with a mass that is surprisingly low compared to their richness in
light of the richness–mass relation and scatter assumed.

1.5 Cosmological Inference from Cluster Samples
As anticipated above, the crucial ingredient for the cosmological exploitation of a cluster
sample is to understand the mapping between halo mass and selection observable. Formally
speaking, let Ôi be the measured value of an observable, say the X-ray flux. Following
Mantz et al. (2010) and Bocquet et al. (2015), we can relate this measured observable to
the intrinsic observable O by taking account of the instrumental noise and systematics,
leading to a distribution

P (Ôi|O, zi, ~θi), (1.15)

describing the likelihood of the measured observable Ôi, given the intrinsic observable O,
the clusters redshift zi and the position on the sky ~θi, which can impact the instrumental
noise via the local observing condition, for instance the local exposure time.

1.5.1 Observable-Mass Relation
As discussed above intrinsic observables of clusters at a given mass scatter around a given
observable–mass relation. This relation is a priori not known, as it depends only to first
order physics which is relatively easy to simulate. As such, a parameterized form of the mean
observable mass relation is required 〈lnO〉(M, z, ~pO, ~pC), and a scatter σO(M, z, ~pO, ~pC),
which are not only functions of mass and redshift, but depend on the parameters of the
observable–mass relation ~pO, and on cosmological parameters ~pC. As an empirical approach
we then assume the population of clusters to be described by a log-normal distribution in
observable given mass and redshift

P (lnO|M, z, ~pO, ~pC) = lnN (lnO; 〈lnO〉, σ2
O), (1.16)

where lnN (x;µ, σ2) stands for a log-normal distribution in x with mean µ and variance
σ2. The exact forms of relations used shall be discussed in the respective chapters below.
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Given the mapping between measured and intrinsic observable, as well as the mapping
between intrinsic observable and mass, the distribution of masses associated with any
measured observable can be determined as

P (M |Ôi, zi, ~pO, ~pC, ~θi) ∝ P (Ôi|M, zi, ~pO, ~pC, ~θ
i) dN

dM

∣∣∣∣
M,z,~pC

∝
∫

dO P (Ôi|O, zi, ~θi)P (lnO|M, z, ~pO, ~pC)
dN
dM

∣∣∣∣
M,z,~pC

,

(1.17)

where the proportionality constant is given by the condition that the expression averages
to one if integrated in mass. The first line follows from Bayes’ Theorem for the inversion
of conditional probabilities, i.e. P (A|B) ∝ P (B|A)P (A), where in this case, the number
of clusters as a function of mass acts as the prior for the cluster mass. It encodes the fact
that lower mass halos are more frequent than higher mass halos. It is thus more probable
that a low mass halo scatters high to the measured observable, than that a high mass halo
scatters low. This effect is called Eddington bias and results in 〈lnM〉 < M̂ i

O: the expected
value for the mass is always lower than the mass obtained by inverting the observable mass
relation at the measured observable value, i.e. ln Ôi = 〈lnO〉(M̂ i

O, z).

1.5.2 Predicted Number of Objects
The formalism of the observable–mass relation can be used to compute the differential
number of objects dN

dÔ

∣∣∣
Ôi,zi

as a function of measured observable Ôi and redshift zi. This
computation is done by transforming the differential number of halos as a function of mass
into the space of measured observable using the mappings described above, and reads

dN
dÔ

∣∣∣∣
Ôi,zi,~θi

= P (sel|Ôi, zi, ~θi, ~pS)
∫

dO P (Ôi|O, zi, ~θi)∫
dM P (lnO|M, z, ~pO, ~pC)

dN
dM

∣∣∣∣
M,z,~pC

,

(1.18)

where P (sel|Ôi, zi, ~θi, ~pS) defines the probability of detecting a cluster with measured ob-
servable Ôi, redshift zi at a position ~θi on the sky, which is traditionally called selection
function. It can depend on parameters ~pS , which encode the systematic uncertainty on the
selection function.

The total number of clusters in a survey can be predicted as

Ntot =
∫

d2~θ
∫

dÔ
∫

dz dN
dÔ

∣∣∣∣
Ô,z,~θ

. (1.19)

Note that computing the total number of objects requires to evaluate the observational
error model P (Ô|O, z, ~θ) and the selection function P (sel|Ô, z, ~θ, ~pS) at input values where
no clusters have been observed.
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Similarly, the differential number of clusters can also be predicted as a function of two
observables Ô1 and Ô2 with their respective selection functions P (selα|Ôα, z, ~θ, ~pSα) and
observational error models P (Ôα|Oα, z, ~θ), as

d2N

dÔ1dÔ2

∣∣∣∣
Ôi1,Ô

i
2,z

i,~θi
=P (sel1|Ôi1, zi, ~θi, ~pS1)

∫
dO1 P (Ôi1|O1, z

i, ~θi)

P (sel2|Ôi2, zi, ~θi, ~pS2)
∫

dO2 P (Ôi2|O2, z
i, ~θi)∫

dM P (lnO1, lnO2|M, z, ~pO1 , ~pO2 , ~pC)
dN
dM

∣∣∣∣
M,z,~pC

,

(1.20)

where we introduce the multi-variate scaling relation

P (lnO1, lnO2|M, z, ~pO1 , ~pO2 , ~pC) = lnN
[lnO1

lnO2

]
;
[
ln〈O1〉
ln〈O2〉

]
,

[
σ2
O1 σO1σO1ρ

σO1σO2ρ σ2
O2

],
(1.21)

where lnN (~x; ~µ,C) is a multi-variate log-normal in ~x with mean ~µ and covariance C.
Note that in this formalism we introduce the correlation coefficient ρ = σO(M, z, ~pO, ~pC)
between the scatters of the two observables, which, in principle, could be a function of mass,
redshift, additional scaling relation parameters and even cosmology. In practise, however, it
is usually assumed to be an unknown constant that is fitted for. From a physical perspective,
correlated scatter has the potential to reveal interesting aspects of cluster astrophysics,
highlighting if the processes driving the scatter in one observable also contributes to the
scatter in the other observable.

One can easily obtain the differential number of objects in only one observable, despite
the selection on two observables, by marginalizing the equation above over the second
observable, i.e.

dN
dÔ1

∣∣∣∣
Ôi1,zi,~θi

=
∫

dÔ2
d2N

dÔ1dÔ2

∣∣∣∣
Ôi1,Ô2,zi,~θi

=

= P (sel1|Ôi1, zi, ~θi, ~pS1)
∫

dO1 P (Ôi1|O1, z
i, ~θi)∫

dO2 P (sel2|O2, z
i, ~θi, ~pS2)∫

dM P (lnO1, lnO2|M, z, ~pO1 , ~pO2 , ~pC)
dN
dM

∣∣∣∣
M,z,~pC

,

with P (sel2|O2, z
i, ~θi, ~pS2) =

∫
dÔ2 P (sel2|Ôi2, zi, ~θi, ~pS2)P (Ôi2|O2, z

i, ~θi)

(1.22)

In the case of no selection based on the second observable, that is P (sel2|O2, z
i, ~θi, ~pS2) = 1,

we find that the expression above becomes the same as derived for the single observable
case.
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1.5.3 Mass Calibration
The final element used in the description of cluster populations is the conditional probabi-
lity of one observable Ô2 given another Ô1 at given redshift and position on the sky. This
distribution is of great use if priors of the observable mass relation for one observable exist
and one seeks to transfer that mass calibration to another observable. The most obvious
case is weak lensing mass calibration, where the distribution of tangential shear profiles for
a given observable is constructed. Mathematically, the aforementioned distribution is

P (Ô2|Ô1, z
i, θi, ~pO1 , ~pO2 , ~pC, ~pS2) ∝P (sel2|Ô2, z

i, ~θi, ~pS2)
∫

dO2 P (Ô2|O2, z
i, ~θi)

P (O2|Ôi1, zi, θi, ~pO1 , ~pO2 , ~pC, ~pS2),
(1.23)

the first and the second term on the left hand side are given above, while the third term
describes the expected values of the intrinsic observables Ô2 given the measured first ob-
servable Ô1, the redshift zi. Crucially, this prediction can only be undertaken for a set
of scaling relation parameters (~pO1 , ~pO2) for both observables. Consequently, evaluating
equation 1.24 measures the level of agreement between the prediction for Ô2 based on the
measured Ôi1 and a set of scaling relation parameters, and the actual measured value Ôi2.

The prediction for the range of intrinsic observables O2 given the measured observable
Ô1 is constructed as follows

P (O2|Ô1, z
i, θi, ~pO1 , ~pO2 , ~pC, ~pS2) ∝

∫
dO1 P (Ôi1|O1, z

i, ~θi)∫
dM P (lnO1, lnO2|M, z, ~pO1 , ~pO2 , ~pC)

dN
dM

∣∣∣∣
M,z,~pC

.

(1.24)
Equation 1.24 needs to be normalized in such a way as to be a probability distribution

in Ô2. The presence of the selection function in the second observable ensures proper
accounting for the Malmquist Bias: close to the selection threshold sel2, not the entire
range of Ô2’s associated to Ôi1 is detected. Only the objects that scatter high make it past
the selection. Note that this kind of bias is only relevant if there is an actual selection on Ô2.
If the second observable is instead obtained by a follow up, even of a random sub-sample,
this effect does not appear. Mathematically, we would then have P (sel2|Ô2, z

i, ~θi, ~pS2) = 1.
Inspection of the equations above reveals the Bayesian nature of this treatment of the

cluster population. Indeed,

P (Ôi2|Ôi1, zi, θi) = P (Ôi2, Ôi1, zi, θi)
P (Ôi1, zi, θi)

with P (Ôi2, Ôi1, zi, θi) = d2N

dÔ1dÔ2

∣∣∣∣
Ôi1,Ô

i
2,z

i,~θi

and P (Ôi1, zi, θi) = dN
dÔ1

∣∣∣∣
Ôi1,zi,~θi

,

(1.25)

which follows exactly the definition of conditional probability.
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1.5.4 Fitting
The population model outlined above has several free parameters:

• the cosmological parameters ~pC,

• the parameters of the observable mass relation used, together with the associated
scatters and correlation coefficients, ~pOα , and

• the parameters encoding the systematic uncertainty in the selection functions ~pSα .

Constraints on these parameters have to be derived from the data with the use of
likelihoods. The basic concept behind this is: given a catalog of objects with properties
zi, Ôi1 and Ôi2 for a random subset, for all or for a subset with well a defined selection
function, how probable is the population distribution, given the population model defined
by a set of the aforementioned parameters. How to turn the likelihood into a constraint on
the parameters is left to the preference of the reader between Frequentism and Bayesianism.
Observational cosmologist are in the majority Bayesians, and so the likelihoods we present
below will be sampled with priors to obtain posteriors on the parameters.

The most important likelihood in cluster cosmological studies is the Poisson Likelihood.
The likelihood of finding a catalog with properties zi, Ôi1 as a function of cosmological
parameters, scaling relation parameters and selection function parameters is given by

lnL1d nc(~pC, ~pO1 , ~pS1) =
∑
i

ln dN
dÔ1

∣∣∣∣
Ôi1,zi,~θi

−Ntot. (1.26)

Given a catalog with two observables and two selections, this naturally extends to

lnL2d nc(~pC, ~pOα , ~pSα) =
∑
i

ln d2N

dÔ1dÔ2

∣∣∣∣
Ôi1,Ô

i
2,z

i,~θi
−Ntot. (1.27)

Consider now the relation we established between the mass calibration probability and
the number of objects in equation 1.25. Plugging it into equation 1.27 gives

lnL2d nc(~pC, ~pOα , ~pSα) =
∑
i

ln dN
dÔ1

∣∣∣∣
Ôi1,zi,~θi

−Ntot +
∑
i

lnP (Ôi2|Ôi1, zi, θi)

= lnL2d nc(~pC, ~pOα , ~pSα) + lnLmssclbr(~pC, ~pOα , ~pSα),
(1.28)

where we defined the mass calibration likelihood as

lnLmssclbr(~pC, ~pOα , ~pSα) =
∑
i

lnP (Ôi2|Ôi1, zi, θi), (1.29)

as originally demonstrated by Bocquet et al. (2015).
The latter needs not to include all objects for which we have measured Ô1, but is also

well-defined for a random sub-sample or a sub-sample with a well-defined selection. We
shall see in practice in the later chapters, that most of these parameters are degenerate
with each other, and some external priors are required to extract cosmological information.
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1.6 Outline

In this introduction, we outlined the physical picture of how halos form. This leads to the
important concept that their number as a function of mass and redshift in a survey is a
sensitive function of cosmological parameters. We then discussed that the most massive
halos are inhabited by a specific type of physical object: galaxy clusters. Given the large
halo mass, the observational signatures of these objects in different wavelengths scale with
mass in a way that, to first order, can be derived from the virial equilibrium condition and
adiabatic hydrodynamics, and to second order still follows a simple relation, which, howe-
ver, has to be empirically calibrated. We then summarized how these signatures can be
used to selected samples of clusters. Finally, we discussed the model employed to simulta-
neously extract cosmological information and to empirically calibrate the observable–mass
relation. We shall now move to three applications of the model. The following material,
with exception of the conclusion, draws directly from Grandis et al. (2019), Grandis et al.
(in prep.[a]), and Grandis et al. (in prep.[b]).

1.6.1 Application 1

In the first application (Grandis et al., 2019) we forecast the impact of weak lensing (WL)
cluster mass calibration on the cosmological constraints from the X-ray selected galaxy
cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pi-
peline to analyze mock cluster catalogs. Each cluster is sampled from the mass function
in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates
are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and
the scatter and form of the observed X-ray luminosity– and temperature–mass–redshift
relations. A subset of clusters have mock shear profiles to mimic either those from DES
and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we
generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892 deg2

of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at
low redshift. Forecast parameter uncertainties for ΩM, σ8 and w are 0.023 (0.016; 0.014),
0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL
(Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy
between the distance–redshift relation and the parameters of the observable–mass scaling
relation limits the impact of the WL calibration on the w constraints, but with BAO mea-
surements from DESI an improved determination of w to 0.043 becomes possible. With
Planck CMB priors, ΩM (σ8) can be determined to 0.005 (0.007), and the summed neutrino
mass limited to ∑mν < 0.241 eV (at 95%). If systematics on the group mass scale can be
controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could
constrain ΩM and σ8 to 0.007 and w to 0.050.
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1.6.2 Application 2
In the second application (Grandis et al., in prep.[a]) we construct and validate the selecti-
on function of the MARD-Y3 sample. This sample was selected through optical follow-up
of the 2nd ROSAT faint source catalog (2RXS) with Dark Energy Survey year 3 (DES-Y3)
data. The selection function is modeled by combining an empirically constructed X-ray
selection function with an incompleteness model for the optical cleaning. We validate the
joint selection function by testing the consistency of the constraints on the X-ray flux–mass
and richness–mass scaling relation parameters derived from different sources of mass infor-
mation: (1) cross-calibration using SPT-SZ clusters, (2) calibration using number counts
in X-ray, in optical and in both X-ray and optical while marginalizing over cosmological
parameters, and (3) other published analyses. We find that the constraints on the scaling
relation from the number counts and SPT-SZ cross-calibration agree, indicating that our
modeling of the selection function is adequate. Furthermore, we apply a largely cosmology
independent method to validate selection functions via the computation of the probability
of finding each cluster in the SPT-SZ sample in the MARD-Y3 sample and vice-versa.
This test reveals no evidence for MARD-Y3 contamination or SPT-SZ incompleteness.
However, we determine an outlier fraction from the scaling relation of ∼ 10%. We present
evidence that these outlier fraction is likely explained by clusters with lower than expected
SPT-SZ signals rather than higher than expected X-ray signals. Finally, we discuss the
prospects of the techniques presented here to limit systematic selection effects in future
cluster cosmological studies.

1.6.3 Application 3
In the third application (Grandis et al., in prep.[b]) we perform a cross validation of the
cluster catalog selected by the red-sequence Matched-filter Probabilistic Percolation algo-
rithm (RM) in the Dark Energy Survey year 1 (DES-Y1) data by matching it with the
Sunyaev-Zel’dovich effect (SZe) selected cluster catalog from the South Pole Telescope
(SPT) SZ survey. Using the mass information of the SZe signal, we calibrate the richness–
mass relation above richness λ̂ > 40 using a Bayesian cluster population model. We find a
mass trend consistent with unity, no significant redshift evolution and an intrinsic scatter
in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact
of projection effects on the richness–mass relation and the scatter around it, confirming
that it is smaller than current systematic uncertainties. By comparing the SPT detection
probability of RM objects derived from the mass information and the actual occurrence of
detection for the RM-(λ̂ > 40) sample, we find a purity consistent with unity and outlier
fraction from the assumed scatter model consistent with 0. Extrapolating this relation to
lower richness λ̂ > 20 over-predicts the stacked weak lensing mass by 30%, at more than
2 sigma significance when accounting for systematic and statistical uncertainties. At the
current level of systematic uncertainties, the number counts of RM objects are consistent
with our richness–mass relation and cosmological constraints from SPT number counts.
We discuss possible sources for the tension between ICM based richness–mass relation and
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current stacked weak lensing measurements. While current sensitivities in SZe and X-rays
do not allow us to discriminate between the different hypotheses, we outline how upcoming
surveys like SPT-3G and eROSITA make this mass regime testable by multi-wavelength
studies.



Kapitel 2

Application 1: Impact of Weak
Lensing Mass Calibration on
eROSITA Galaxy Cluster
Cosmological Studies – a Forecast

2.1 Experimental setup
To constrain the impact of direct mass calibration through WL tangential shear measure-
ments on eROSITA cluster cosmology, we create an eROSITA mock cluster catalog. The
actual eROSITA cluster candidate catalog will be extracted from the eROSITA X-ray sky
survey using specially designed detection and characterization tools (Brunner et al., 2018).

Each candidate source will be assigned a detection significance, an extent significance,
an X-ray count rate and uncertainty, and other more physical parameters such as the flux
within various observing bands (Merloni et al., 2012). For a subset of this sample, precise
X-ray temperatures and rough X-ray redshifts will also be available (Borm et al., 2014;
Hofmann et al., 2017).

This X-ray cluster candidate catalog will then be studied in the optical to identify one or
more optical counterparts (assigning a probability to each) and to estimate a photometric
redshift. A special purpose Multi-Component-Matched-Filter (MCMF) optical followup
tool (Klein et al., 2018) has been designed for eROSITA cluster analysis and has been
tested on available X-ray and SZE catalogs. It has been shown in RASS+DES analyses
that one can reliably obtain both cluster and group redshifts over the relevant ranges of
redshift (Klein et al., 2019), and thus for the analysis undertaken here we assume redshifts
are available for all the eROSITA clusters.

The MCMF tool also allows one to quantify the probability of chance superposition
between X-ray cluster candidates and optical counterparts, using the statistics of optical
systems along random lines of sight together with estimates of the initial contamination
in the X-ray cluster candidate catalog. Synthetic sky simulations by Clerc et al. (2018)
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Abbildung 2.1: Distribution in halo mass M500c and cluster redshift z of the mock, X-ray
selected cluster catalogs used in this analysis. Left: Above redshift ∼ 0.7, the 13k cluster
baseline sample is selected using the fiducial count rate cut η = 2.5 × 10−2 cts s−1 that
corresponds approximately to 40 photons at the median exposure time and a signal to noise
ξdet > 7. Below that redshift the observable cut is pushed upward to mimic a mass exclusion
atM500c ∼ 2×1014M�. Due to intrinsic and observational scatter between halo mass and the
observable count rate, the cuts in observable used to create these samples appear smoothed
in halo mass-redshift space. Right: The 43k sample that includes groups is selected similarly
but the count rate cut is adjusted to mimic a mass exclusion at M500c ∼ 5× 1013M�.

have shown that the initial X-ray cluster candidate list selected on both detection and
extent significance will be contaminated at the 10% level, consistent with experience in
X-ray selection from archival ROSAT PSPC data that have a similar angular resolution to
eROSITA (Vikhlinin et al., 1998). After processing with MCMF the resulting eROSITA
X-ray cluster catalog is expected to have contamination at the sub-percent level. Therefore,
we do not include contamination in the mock catalogs produced for this study.

For the WL mass calibration we will be using shear and photometric redshift catalogs
from wide field, deep extragalactic surveys, including DES and HSC in the near term and
Euclid and LSST on the longer term. The label “Euclid” refers to the nominal requirements
for Euclid (Laureijs et al., 2011), although these requirements will realistically be met when
combining Euclid with LSST, where the LSST data would be used for the photometric
redshifts. We also explore the impact of LSST WL alone, where we adopt the requirements
described in the following references(LSST DESC, 2012; LSST DESC et al., 2018). There
is also the promise of CMB lensing as another method of mass calibration that is expected
to be especially helpful for the highest redshift end of our cluster sample, but in our current
analysis we do not model the impact of CMB lensing.

Our strategy in the analysis that follows is to adopt direct, cosmology independent
cluster observables, including the cluster (1) X-ray detection significance or count rate,
(2) photometric redshift, (3) WL tangential shear profile and (4) shear source redshift
distributions for use in the cosmological analysis of the cluster sample. A benefit of using
the count rate rather than the physical flux is that uncertainties in effective area and
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the temperature dependence of the conversion from count rate to physical flux do not
contribute to cosmological uncertainties.

Empirically mapping these observables to mass as a function of redshift and testing
consistency of observed and theoretical cluster distributions as a function of cosmological
parameters is described in Section 2.2. Below, in Section 2.1.1, we describe how the mock
cluster catalog is generated and how the X-ray and optical cluster properties are assigned.
In Section 2.1.2 we describe how we model the shear profiles that are produced for an
appropriate subset of the mock eROSITA cluster sample. We discuss briefly our choice of
fiducial cosmology and input X-ray scaling relations in Section 2.1.3.

2.1.1 Creating the mock cluster catalog
To create the X-ray catalog, we perform the following calculations.

1. For our choice of input cosmology (see Table 2.1 and Section 2.1.3), we compute the
number of expected clusters as a function of halo mass M500c and redshift z using
the halo mass function (Tinker et al., 2008). We then draw a Poisson realization
of the number of expected clusters, obtaining a mass selected cluster sample with
M500c > 1.3 × 1013M� and 0.05 < z < 1.8. For this calculation we assume a survey
solid angle of AreaDE = 0.361× 4π, corresponding to regions of the western galactic
hemisphere with a galactic hydrogen column NH < 1021 cm−2 (Kalberla et al., 2005).
This corresponds approximately to a galactic latitude cut of |b| > 20 deg. We adopt
the cluster true redshift as the photometric redshift, because the MCMF optical
followup tool has been demonstrated to achieve photometric redshift uncertainties
with the DES dataset with an accuracy of σz/(z+1) . 0.01 (Klein et al., 2018; Klein
et al., 2019) out to redshifts z ∼ 1.1. Photometric redshift uncertainties at this level
are small enough to play no role in the cosmological analysis of the eROSITA cluster
counts.

2. We use the scaling between X-ray luminosity L[0.5−2]keV (LX hereafter) in the rest
frame 0.5− 2 keV band and halo mass

LX
L0

= elnAL

(
M500c

M0

)BL
(
E(z)
E0

)2 ( 1 + z

1 + z0

)γL

e∆L , (2.1)

that was extracted from a large sample of SPT selected clusters with pointed XMM-
Newton observations (Bulbul et al., 2019). In this relation E(z) = H(z)/H0 encodes
the expansion history of the universe and is used to calculate the impact of changes
in the critical density of the Universe (ρcrit ∝ E2(z)), lnAL, BL and γL are the
amplitude, the mass trend and the non-self-similar redshift trend parameters of the
luminosity–mass scaling relation, and ∆L ∼ N (0, σ2

L) is a random number drawn
from a Gaussian with standard deviation σL, which models the log-normal intrinsic
scatter of the relation.
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The Bulbul et al. (2019) X-ray scaling relations are derived from the Sunyaev-
Zel’dovich effect (SZE) selected cluster sample from the SPT-SZ 2500 deg2 survey
(Carlstrom et al., 2011; Bleem et al., 2015) that have available XMM-Newton ob-
servations. This is a sample of 59 clusters with 0.2 ≤ z ≤ 1.5 and masses M500c >
3 × 1014M�. These halo masses have been calibrated separately in a cosmological
analysis (de Haan et al., 2016) and exhibit a characteristic uncertainty of ∼20% (sta-
tistical) and ∼ 15% (systematic). The scaling relation parameter uncertainties from
Bulbul et al. (2019) include both statistical and systematic uncertainties.
We also utilize the temperature mass relation

T

T0
= elnAT

(
M500c

M0

)BT
(
E(z)
E0

) 2
3 ( 1 + z

1 + z0

)γT

e∆T , (2.2)

from the same analysis (Bulbul et al., 2019), where the parameters (lnAT, BT, γT)
have the same meaning as in the luminosity scaling relation, with ∆T ∼ N (0, σ2

T)
for the scatter σT. The only difference is the scaling with the critical density, derived
from self similar collapse theory.
Following these relations, we attribute to each cluster an X-ray luminosity LX and
a temperature T , randomly applying the respective intrinsic log normal scatter and
assuming that the two scatters are uncorrelated.

3. Given the cluster rest frame 0.5-2 keV luminosity LX and its redshift z, we compute
the rest frame 0.5-2 keV flux

fX = LX
4πd2

L(z) , (2.3)

where dL(z) is the luminosity distance.

4. For each cluster we calculate the X-ray spectrum assuming an APEC plasma emission
model (Smith et al., 2001) with temperature T and metallicity Z = 0.3 Z�1. This
spectrum is normalized to the cluster rest frame 0.5-2 keV flux.

5. We compute the eROSITA count rate η for each cluster by shifting the spectrum
to the observed frame and by averaging it with the eROSITA Ancillary Response
Function (hereafter ARF) in the observed frame 0.5-2 keV band2. For simplicity,
we do not follow the variation in neutral hydrogen column across the eROSITA-DE
field. In fact, we ignore the impact of Galactic absorption altogether in our count rate
calculation, which for the median neutral hydrogen column density in our footprint,
NH = 3× 1020 cm−2 would lead on average to 5% lower rates.

1For simplicity, we do not apply any scatter to the metallicity, and assume it is constant as a function
of redshift, as recent measurements of the metallicity of SPT selected clusters suggest (McDonald et al.,
2016). We assume the solar abundances model of Anders and Grevesse (1989)

2Of the seven eROSITA cameras, two have a 100 nm Al and 200 nm Pl filter, while the remaining five
have a 200 nm Al and 200 nm Pl filter (Predehl et al., 2010; Merloni et al., 2012). Consequently, the total
ARF is the sum of two (100 nm Al + 200 nm Pl)-ARFs and five (200 nm Al + 200 nm Pl)-ARFs.
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6. To model the measurement uncertainty on the rate, we draw a Poisson realization
of the expected rate η̂ = η ±

√
η/texp, where texp = 1600 s is the expected median

exposure time of the 4 year eROSITA survey (Pillepich, Porciani, and Reiprich, 2012).
With this we account for the Poisson noise in the rate measurement. The count rate
uncertainty for each cluster will be included in the real eROSITA cluster catalogs.

7. Finally, we select our baseline cluster sample using the count rate η > 2.5×10−2 ct s−1

(corresponding for our median exposure to n̂γ > 40). For reference, given the back-
ground expectations, survey PSF and clusters modeled as β models with core radii
that are 20% of the virial radius r500, this selection threshold corresponds approxima-
tely to a cut in detection significance of ξdet > 7, irrespective of the cluster redshift.
Simple mock observations (see discussion in Appendix ??) indicate that at this thres-
hold and above the extent likelihood for the eROSITA sample is ξext > 2.5, enabling
an initial eROSITA cluster candidate list after X-ray selection (but prior to optical
followup) that is contaminated at the ∼10% level. At low redshift (z < 0.7), we raise
the detection threshold above the nominal level in such a way as to exclude most
clusters with masses M500c / 2×1014M� at each redshift. We create a second sample
to examine the impact of lower mass clusters and groups (see Section 2.3.6) by adju-
sting the low redshift count rate cut so that systems with masses M500c / 5×1013M�
are excluded at each redshift. We discuss the X-ray selection in more detail in Ap-
pendix ??. The reasons for excluding lower mass systems are discussed below (cf.
Section 2.3.6).

The procedure described above provides us with a baseline cosmology catalog of ∼ 13k
clusters. Their distribution in halo mass3 and redshift is shown in the left panel of Fig. 2.1.
They span a redshift range z ∈ (0.05, 1.6). The total number of clusters and their redshift
range are mainly impacted by the choice of the input cosmology, the observed luminosity
mass relation, and the choice of cut in eROSITA count rate for selection. The sample has
a median redshift z̄ = 0.51 and median halo mass of M̄500c = 2.5 × 1014M�. This sample
extends to high redshift with 3% of the sample, corresponding to 420 clusters, at z > 1.

The sample of 43k objects with the count rate cut that only excludes lower mass systems
with M500c ≤ 5× 1013M� is shown in Fig. 2.1 (right). The bulk of the additional low mass
systems in this sample appear at redshifts z ≤ 0.7. As with the overall number of clusters,
the median mass and redshift depend on the observable cut used to exclude low mass
objects, with these being z̄ = 0.30, and M̄500c = 1.4× 1014M�. We discuss the implications
of lowering the mass limit in Section 2.3.6.

The number of objects in this ξdet > 7 group dominated sample is in good agreement
with the numbers presented in previous discussions of the eROSITA cluster sample (Merloni
et al., 2012; Pillepich, Porciani, and Reiprich, 2012; Pillepich et al., 2018). Importantly,

3We use this binning in mass just to visualize our sample, the number counts analysis will be performed
on a fixed grid of observed rate η̂ and redshift, as specified in Section 2.2.2. The corresponding mass grid
depends on the cosmological and the scaling relation parameters, and is thus recomputed every time the
likelihood function is called on a specific set of parameters.
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there are significantly more eROSITA clusters that can be detected if one reduces the
detection threshold below ∼ 7σ. But at that level there will be little extent information
for each X-ray source, and so the candidate sample will be highly contaminated by AGN.
Interestingly, Klein et al. (2018) have demonstrated that for the RASS faint source catalog
where the survey PSF was so poor that little extent information is available, it is possible
to filter out the non-cluster sources to produce low contamination cluster catalogs. The
price for this filtering is that one introduces incompleteness for those systems that contain
few galaxies (i.e., low mass clusters and groups at each redshift; see Klein et al., 2019).

2.1.2 Forecasting the WL signal
We adopt the cosmology independent tangential reduced shear profile ĝt(θi) in radial bins
θi around the cluster as the observable for cluster WL mass calibration. A crucial comple-
mentary observable is the redshift distribution of the source galaxies N(zs, zcl) behind the
galaxy cluster, where zs is the source redshift, and zcl the cluster redshift. Assuming that
the galaxy cluster mass profile is consistent with a Navarro-Frenk-White model (Navarro,
Frenk, and White, 1996, hereafter NFW), these two observables can be combined into a
measurement of the halo mass.

Although, in theory, WL mass calibration provides a direct mass measurement, in
practice we refer to the mass resulting from an NFW fit to the shear profile as the WL
mass MWL. Following Becker and Kravtsov (2011), the WL mass is related to the halo
mass by

MWL = bWLM200ce
∆WL , (2.4)

with ∆WL ∼ N (0, σ2
WL), where σWL is the intrinsic log- normal scatter between WL mass

and halo mass, induced by the morphological deviation of observed galaxy cluster mass
profiles from the NFW profile, and bWL is the WL mass bias describing the characteristic
bias in the WL mass compared to the halo mass. This bias encodes several theoretical and
observational systematics, as discussed below in Section 2.2.4.

Given that DES, HSC, Euclid and LSST will not overlap completely with the German
eROSITA sky, only a fraction fWL of the galaxy clusters of our X-ray mock catalog will
have WL information available. Comparing the survey footprints, we estimate fWL = 0.3
for DES, fWL = 0.05 for HSC, fWL = 0.5 for Euclid, and fWL = 0.62 for LSST. For the
LSST case we also assume that the northern celestial hemisphere portion of the German
eROSITA sky with 0◦ < δ < 30◦ will be observed. For this northern extension of LSST,
we adopt fWL = 0.2 and treat it as if it has the equivalent of DES depth. Therefore, we
assign a WL mass only to a corresponding fraction of the eROSITA clusters in our mock
catalogs, by drawing from equation (2.4).

Besides the WL mass and the cluster redshift, the background source distribution of
the survey N(zs) in redshift and the background source density nε are necessary to predict
the WL signal. For DES, we project nε = 10 arcmin−2 and utilize the redshift distribution
presented in Stern et al. (2019), whose median redshift is zs,m = 0.74. These parameters are
derived from the Science Verification Data and their extrapolation to Y5 data will depend
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Abbildung 2.2: Left: Example of a shear profile in DES (orange), Euclid (blue) and LSST
(green) data quality for a cluster. We show both the measured shear profile (dots with error
bars) and the prediction (line). For all data quality cases, the measurement uncertainty is
larger than the actual signal. Right: Distribution of WL signal to noise for DES+HSC (oran-
ge), Euclid (blue) and LSST (green), computed for each single cluster from the measured
shear profile and the covariance matrix. While Euclid and LSST provide both more objects
and higher signal to noise, objects with a clear WL mass measurement (e.g., S/N> 5) are
rare for all datasets.

on the details of the future calibration (Gruen, priv. comm.). For HSC we assume nε =
21 arcmin−2, and for the redshift distribution of HSC sources we adapt the parametrization
by Smail, Ellis, and Fitchett (1994) with a median redshift zs,m = 1.1. For Euclid, we use
nε = 30 arcmin−2 (Laureijs et al., 2011). For the source redshift distribution we assume the
parametric form proposed by Smail, Ellis, and Fitchett (1994) and utilized by Giannantonio
et al. (2012), adopting a median redshift of zs,m = 0.9 (Laureijs et al., 2011). For LSST
we assume nε = 40 arcmin−2 and parametrise the source redshift distribution as p(zs) =
1./(2z0)(zs/z0)2 exp(−zs/z0) with median redshift zm,s = 2.67z0 = 0.84.

The actual redshift distribution behind a galaxy cluster is assumed to be the survey
redshift distribution with the cut N(zs < zcl + 0.1) = 0, where zcl is the cluster redshift.
This cut is helpful in reducing the contamination of the background source galaxies by
cluster galaxies (that are not distorted by the cluster potential). This cut also leads to a
reduction of the source density nε(zs > zcl + 0.1) used to infer the observational noise on
the cluster shear signal.

Given a redshift distribution, the mean reduced shear signal can be estimated, following
Seitz and Schneider (1997), as

gt(θi) = γ(θi)
1− κ(θi)

(
1 + κ(θi)

〈β2〉
〈β〉2

)
, (2.5)

where γ(θi) and κ(θi) are the shear and the convergence of an NFW mass profile, θi
the angular bins corresponding to radii between 0.25 and 5.0 Mpc at the cluster redshift

4These specification are taken from https://www.lsst.org/sites/default/files/docs/
sciencebook/SB_3.pdf, Section 3.7.2

https://www.lsst.org/sites/default/files/docs/sciencebook/SB_3.pdf
https://www.lsst.org/sites/default/files/docs/sciencebook/SB_3.pdf
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in our fiducial cosmology. This has the effect that low redshift clusters will have larger
angular bins than high redshift clusters in to probe the similar physical scales. Also note
that the inner radius, which we probe (0.25 Mpc), is smaller than in some previous studies
(0.75 Mpc in Applegate et al., 2014; Stern et al., 2019; Dietrich et al., 2019). While this will
require a more precise treatment of systematic effects such a cluster member contamination,
miscentering and the impact of intra-cluster light on the shape and redshift measurements,
theoretical predictions for the resulting WL mass bias and WL mass scatter associated
with these smaller inner radii have already been presented (Lee et al., 2018). Furthermore,
Gruen et al. (2019) investigated the impact of intra-cluster light on the photometric redshift
measurement of background galaxies. We therefore assume that ongoing and future studies
will demonstrate the possibility of exploiting shear information at smaller cluster radii,
thereby increasing the amount of extracted mass information.

Following Bartelmann (1996), the shear and the convergence can be computed ana-
lytically for any halo, given the mass, the concentration, and the source galaxy redshift
distribution N(zs, zcl). Throughout this work, the concentration of any cluster will be deri-
ved from its halo mass, following the relation presented by Duffy et al. (2008). The scatter
in concentration at fixed halo mass is a contributor to the bias bWL and scatter σWL in the
WL mass to halo mass relation (equation 2.4). The lensing efficiency β = dA(zcl, zs)/dA(zs)
is the ratio between the angular diameter distance dA(zcl, zs) from the cluster to the source,
and the angular diameter distance dA(zs) from the observer to the source. In equation (2.5)
the symbol 〈·〉 denotes averaging over the source redshift distribution N(zs, zcl).

The covariance of the measurement uncertainty on the reduced shear is

Ci,j = Cov[gt(θi), gt(θj)] = σ2
ε

Ωinε(zcl)
δi,j + (CuLSS)i,j (2.6)

where δi,j = 1, if i = j, and δi,j = 0 else. The first term accounts for the shape noise
in each radial bin, estimated by scaling the intrinsic shape noise of the source galaxies
σε = 0.27 by the number of source galaxies in each radial bin, taking into account the
reduction of source galaxy density nε(zcl) = nε(zs > zcl + 0.1) and the angular area of
the i-th radial bin Ωi. We also add a contribution coming from uncorrelated large scale
structure (CuLSS)i,j (Hoekstra, 2003). We draw the measured reduced shear profile ĝt from
the Gaussian multivariate distribution with mean gt and covariance C.

For each cluster with WL information, we thus save the source redshift distribution
N(zs, zcl), the measured reduced shear profile ĝt, and the covariance C. We show an example
for a measured reduced shear profile, both in DES, in Euclid and in LSST data quality in
the left panel of Fig. 2.2.

The WL signal around individual galaxy clusters derived from wide and deep photo-
metric surveys is typically low signal to noise. In the right panel of Fig. 2.2, we explore the
distribution of WL signal to noise for the subsamples with DES+HSC WL data, Euclid WL
data and LSST WL data. To this end we define the signal to noise as S/N =

√
0.5 ĝTt C−1gt.

While the Euclid and LSST data provide a higher signal to noise on average, it rarely ex-
ceeds S/N > 5. Thus, we confirm that WL mass calibration provides a low signal to noise,
direct mass measurement for a large subset of our cluster catalog.
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Tabelle 2.1: Input parameters for our analysis. The exact definition of the parameters listed
below is given in Section 2.2.3, Section 2.2.1 and Section 2.1.2 for the cosmological para-
meters, the scaling relation parameters and the WL calibration parameters, respectively.
Comments: a) This value is determined to match σ8 = 0.768 by de Haan et al. (2016).
b) We utilize here the value corresponding to the minimal model of a Cosmological Con-
stant causing the accelerated expansion. c) This is the minimal value allowed by flavor
neutrino oscillations, as reviewed by Tanabashi et al. (2018).

Cosmological Parameters
H0 73.02 Riess et al. (2016)
ωb 0.02202 Cooke et al. (2014)
ΩM 0.306 de Haan et al. (2016)
AS 1.5792e-9 a)
nS 0.9655 Planck Collaboration et al. (2016a)
w -1.00 b)∑
mν 0.06 eV c)

ΩK 0.
Luminosity–Mass–Redshift Relation
lnAL 1.52 Bulbul et al. (2019)
BL 1.95
γL -0.20
σL 0.237
Temperature–Mass–Redshift Relation
lnAT 1.83 Bulbul et al. (2019)
BT 0.849
γT -0.28
σT 0.177
WL Mass Bias and Scatter
bWL 0.94 Dietrich et al. (2019) &
σWL 0.24 Lee et al. (2018)
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2.1.3 Fiducial cosmology and scaling relations

Several steps in the above outlined creation of the mock data are cosmology sensitive.
Therefore, the choice of input cosmology will impact the catalog properties. As an input
cosmology, we choose the best fitting ΩM and σ8 results from the most recent SPT galaxy
cluster cosmology analysis (de Haan et al., 2016). We also assumed that dark energy can be
described by a cosmological constant, i.e. that the dark energy equation of state parameter
w = −1. Furthermore, we adopt the minimal neutrino mass allowed by flavor neutrino
oscillation measurements, ∑mν = 0.06 eV (Tanabashi et al., 2018). The parameter values
are listed in Table 2.1.

It is worth noting here that these input values for ΩM and σ8 are somewhat different (at
less than 2σ significance) from the best fit values derived from the Planck CMB anisotropy
measurements (Planck Collaboration et al., 2016a). This choice is intentional, as the masses
of SPT clusters derived from a mass function fit with Planck CMB priors have been shown
to be systematically high by studies of their WL signal (Dietrich et al., 2019; Stern et al.,
2019), their dynamical mass (Capasso et al., 2019a) and their baryon content (Chiu et al.,
2018). Furthermore, the input X-ray scaling relations by Bulbul et al. (2019), adapted to
determine the X-ray properties of our catalog entries, assume an SZE signature–mass–
redshift scaling relation consistent with the best fit results from the SPT galaxy cluster
cosmology analysis. In summary, the input values for our analysis are chosen from the
latest results of the SPT galaxy cluster sample, guaranteeing consistency between the
assumed cosmology and the input X-ray scaling relations that we use to construct the
mock eROSITA sample. Given that SPT covers a mass range of M500c & 3 × 1014M�,
and a redshift range of z ∈ (0.20, 1.7), adopting SPT results within the eROSITA context
implies only a modest extrapolation in mass and redshift.

On the other hand, the minimal neutrino mass is slightly inconsistent with recent results
from joint fits to number counts of SPT selected clusters and Planck CMB measurements
(de Haan et al., 2016; Bocquet et al., 2019a), which detect the neutrino mass at 2-3 sigma.
This detection is likely sourced by the slight inconsistency in the (ΩM, σ8) plane discussed
above. For the sake of this work, we adapt the minimal neutrino mass to predict improve-
ment on the upper limits obtained, if cluster number counts and CMB measurements were
in perfect agreement.

2.2 Cosmology analysis method
In this section we describe the method we have developed for the cosmological analysis
of an eROSITA cluster sample in the presence of WL mass calibration information. This
method builds upon a method developed and used for the analysis of the SPT SZE selected
cluster sample (Bocquet et al., 2015; Dietrich et al., 2019; Stern et al., 2019; Bocquet et al.,
2019a). We start with a description of the minimal scaling relation to describe the mapping
of the selection observable to halo mass as a function of redshift (Section 2.2.1), present
the likelihoods in Section 2.2.2 and discuss the likelihood sampling tool and our adopted
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priors in Sections 2.2.3 and 2.2.4.

2.2.1 Cluster selection scaling relation
The cosmological analysis of a galaxy cluster sample requires a model for the relation
between the halo mass and the observable. In this work, we take an approach which is
conceptually similar to the modeling of the scaling relation used for the SPT galaxy cluster
sample first presented and applied to derive cosmological constraints by Vanderlinde et
al. (2010) (for further applications, see for instance Benson et al. (2013), Bocquet et al.
(2015), de Haan et al. (2016), and Bocquet et al. (2019a)). We empirically calibrate a
scaling relation between the selection observable, i.e. the eROSITA count rate η, and the
halo mass and redshift. As motivated in Appendix ??, we adopt the following scaling of
the count rate with mass and redshift:

η

η0
=elnAX

(
M500c

M0

)B(z) (E(z)
E0

)2 (
dL(z)
dL,0

)−2 ( 1 + z

1 + z0

)γX

e∆X , (2.7)

where the amplitude is AX, the redshift dependent mass slope is given by

B(z) = BX +B′X ln
( 1 + z

1 + z0

)
, (2.8)

the redshift trend describing departures from self-similar evolution is γX, and the deviation
of a particular cluster from the mean scaling relation is described as ∆X ∼ N (0, σ2

X), with
scatter σX (i.e., log-normal scatter in observable at fixed halo mass). As pivot points we
choose M0 = 2× 1014 M�, z0 = 0.5, E0 = 1.314, dL,0 = 2710 Mpc, and η0 = 0.06 cts s−1.

Empirical calibration of the scaling relation has some major advantages compared to
trying to measure accurate physical cluster quantities such as the flux. In doing the latter,
the one might suffer biases (e.g. the effect of substructures in the context of eROSITA found
by Hofmann et al., 2017) or additional sources of scatter from lack of knowledge about the
cluster physical state. Furthermore, any such biases might themselves have trends with
mass or redshift. An alternative approach, which has been adopted with success within
SPT, is to use mass calibration to empirically determine the values of the scaling relation
parameters. In this approach, an unbiased solution is found assuming the correct likelihood
is adopted (see Section 2.2.2) and that the form of the observable mass scaling relation that
is adopted has sufficient flexibility to describe the cluster population. One can examine this
using goodness of fit tests (see Bocquet et al., 2015; de Haan et al., 2016). There is now
considerable evidence in the literature that empirical calibration leads to a more robust
cosmological experiment.

In summary, our model for the rate mass scaling assumes that the rate is a power
law in mass and redshift with log-normal intrinsic scatter that is independent of mass and
redshift. Our model allows the mass slope to vary with redshift, which is required given the
redshift dependence of the eROSITA counts to physical flux conversion (see discussion in
Appendix ??). Natural extensions of this model to, e.g., follow mass or redshift dependent
scatter are possible, but for the analysis presented here we adopt a scaling relation with
the following five free parameters: (lnAX, BX, γX, σX, B

′
X).
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2.2.2 Likelihood functions
The likelihood functions we employ to analyze our mock eROSITA and WL data are hier-
archical, Bayesian models, introduced in this form by Bocquet et al. (2015). The functions
account self-consistently for (1) the Eddington and Malmquist bias, (2) the cosmological
dependencies of both the direct mass measurements and of the cluster number counts, and
(3) systematic uncertainties in the halo mass of objects observed with a particular rate
and redshift. Given that we utilize a realistic mock catalog, these likelihoods constitute
a prototype of the eROSITA cosmological analysis pipeline. Using this scheme, we design
three likelihoods: (1) mass calibration with perfect masses, (2) mass calibration with WL
observables and (3) number counts. In the following, to ensure a concise notation, we will
refer to the halo mass M500c as M , and specify when we mean a mass defined w.r.t. any
other overdensity.

Mass calibration with perfect masses

The likelihood that a cluster of measured rate η̂ and redshift z has a given mass M is given
by

P (M |η̂, z) ∝
∫

dη P (η̂|η, z)P (η|M, z) dN
dM (M, z), (2.9)

where

1. P (η̂|η, z) is the probability density function (hereafter pdf) encoding the measure-
ment error on the rate,

2. P (η|M, z) is the pdf describing the scaling relation between rate and halo mass at a
given redshift. We model it as a log-normal distribution with central value given by
equation (2.7) with scatter σX,

3. dN
dM (M, z) is the derivative of the number of clusters w.r.t. to the mass at that redshift,
which is the product of the halo mass function dn

dM (M, z) by Tinker et al. (2008), the
co- moving volume element dV

dz (z) and the survey solid angle ΩDE.

These quantities, with the exception of the rate measurement uncertainty kernel, depend
on scaling relation parameters, mass function parameters and cosmological parameters.
Also note, that equation (2.9) needs to be properly normalized to be a pdf in halo mass
M .

The total log-likelihood for mass calibration with perfect masses is then given by the
sum of the natural logarithms of the likelihoods of the single clusters

lnLpfct =
∑
j

lnP (M (j)|η̂(j), z(j)), (2.10)

where j runs over all clusters whose halo mass is known. Note that the perfect mass is only
accessible in the case of a mock catalogue. This likelihood is thus not applicable to real
data. Nevertheless, it is a function of the scaling relation and the cosmological parameters
and can be used to extract the true underlying scaling relation from a mock dataset.
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WL mass calibration

The likelihood that a cluster with measured rate η̂ and redshift z has an observed tangential
shear profile ĝt(θi) can be computed as

P (ĝt|η̂, z) =
∫

dMWL P (ĝt(θi)|MWL, zcl)P (MWL|η̂, z), (2.11)

where

1. the probability of a cluster with measured rate η̂ and redshift z to have a WL mass
MWL is

P (MWL|η̂, z) ∝
∫

dM
∫

dη P (η̂|η, z)P (MWL, η|M, z) dN
dM (M, z), (2.12)

with P (MWL, η|M, z) being the joint pdf describing the scaling relations for the rate
and the WL mass, given in equations (2.7 and 2.4), respectively,

2. the probability of a cluster of WL mass MWL having an observed reduced shear profile
ĝt,i = ĝt(θi) is given by a Gaussian likelihood

lnP (ĝt|MWL, z) = −1
2 ln

(
2π det C

)
− 1

2∆ĝTt C−1∆ĝt, (2.13)

with ∆ĝt = ĝt − gt, where gt is the tangential shear profile computed following
equation (2.5) for a cluster of mass MWL and the redshift distribution N(zs, zcl = z).

The total log-likelihood for mass calibration with WL then reads

lnLWL mssclbr =
∑
j

lnP (ĝ(j)
t |η̂(j), z(j)), (2.14)

where j runs over all clusters with WL information.

Number counts

We also model the observed number of clusters N̂ in bins of measured rate η̂ and redshift
z. We predict this number by computing the expected number of clusters in each bin, given
the scaling relation, halo mass function and cosmological parameters

N(η̂, z) =P (det|η̂, z)
∫

dM
∫

dη P (η̂|η, z)P (η|M, z) dN
dM (M, z), (2.15)

where P (det|η̂, z) is a binary function parameterizing if the bin falls within the selection
criteria or not. Assuming a pure rate selection might be a simplification compared to the
actual cluster selection function of the forthcoming eROSITA survey (for a study of this
selection function, c.f. Clerc et al. (2018)). In summary, the expected number of clusters
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in observable space can be computed using the cosmology dependent halo mass function,
volume– redshift relation and observable–mass relation.

The number counts likelihood for the entire sample is the sum of the Poisson log-
likelihoods in the individual bins

lnLnmbr cts =
∑
bins

N̂ lnN −N. (2.16)

As above, this likelihood is a function of the scaling relation, halo mass function and the
cosmological parameters.

Validation

To validated these likelihoods, we create a mock which is ten times larger than the eROSITA
mock (by considering the unphysical survey footprint Areatest = 10 AreaDE). This leads to
a reduction of the statistical uncertainties that enables us to better constrain systematic
biases. We analyze this mock with the number counts and the Euclid WL mass calibration
likelihood. We find that all parameters are consistent with the input values within less
then two sigma. Scaling this up to the normal sized mock, we conclude that our code is
unbiased at or below ∼ 2

3 sigma. We present for inspection a plot showing the results of the
validation run as Fig. 2.13 at the end of the paper. The plot shows the marginal contours
of the posterior distributions for the parameters with the input values marked.

Given that our mock catalog is a random realization of the stochastic processes modeled
by the above described likelihoods, and that these likelihoods retrieve the input values
even for a ten times larger mock, we take the liberty to shift best fit parameter values
of the posterior samples presented in the following sections. These shifts are of the order
of one sigma. Putting all posteriors to the same central value allows us to highlight the
improvement of constraining power visible in the shrinking of the contours.

2.2.3 Comments on sampling and model choice
Various combinations of the above described likelihood functions are sampled using pymultinest
(Buchner et al., 2014), a python wrapper of the nested sampling code multinest (Feroz,
Hobson, and Bridges, 2009). Nested sampling was originally developed to compute the
evidence, or marginal likelihood, but has the added advantage of providing a converged
posterior sample in the process (Skilling, 2006).

The parameters we sample depend on the specific application. In all cases considered,
we sample the parameters of the X-ray selection scaling relation: (lnAX, BX, γX, σX, B

′
X).

When the WL mass calibration likelihood is sampled in Section 2.3.2, also the parameters
governing the WL mass scaling relation are sampled: (bWL, σWL).

We explore two different flat cosmological models: (1) ν-ΛCDM, and (2) ν-wCDM. For
both, we consider the following parameters: H0, the current expansion rate of the Universe
in units of km s−1 Mpc−1; ωb, the current day co-moving density of baryons w.r.t. the
critical density of the Universe; ΩM , the current day density of matter w.r.t. the critical
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density; AS, the amplitude of primordial curvature fluctuations; nS, the spectral index of
primordial curvature fluctuations; and the sum of neutrino masses ∑mν in eV.

The cosmological model where only these parameters are allowed to vary is called ν-
ΛCDM, because we allow for massive neutrinos of yet unknown mass, and assume that the
agent of the late time accelerated expansion is a cosmological constant Λ.

As a more complex model ν-wCDM, we also consider the case that the late time ac-
celeration is not caused by the cosmological constant, but by an as yet unknown form of
energy, usually referred to as dark energy. The properties of dark energy are described here
by a single equation of state parameter w.

For better comparison, with other Large Scale Structure experiments, in both models,
we also compute σ8, the root mean square of linear matter fluctuations in a spherical
region of 8 h−1Mpc radius, as a derived quantity in each step of the chain and present
the posterior distribution in this quantity rather than in the primordial power spectrum
fluctuation amplitude AS.

2.2.4 Choice of priors
In general, any Bayesian analysis, and more specifically pymultinest, requires the specifi-
cation of priors for all parameters one intends to sample. In the following, we present our
choice of priors. If the parameter is not mentioned below, it has a uniform prior in a range
that is larger than the typical posterior uncertainties of that parameter. The prior choices
are summarized in Table 2.2.

Current priors on scaling relation

As mentioned above– and discussed in detail in Appendix 2.6.2– the eROSITA count rate
scaling relation is described by five parameters: (lnAX, BX, γX, σX, B

′
X). We put Gaussian

priors on these parameters. The mean values are obtained in Section ?? by determining the
maximum likelihood points of the mass calibration likelihood when using perfect masses.
The corresponding uncertainties in the priors are taken to match the uncertainties on the
respective parameters presented in Table 5 of Bulbul et al. (2019) for the core included
0.5-2.0 keV luminosity-mass-redshift relation when fit with the scaling relation of Form
II. These parameter uncertainties were extracted using a sample of 59 SPT selected ga-
laxy clusters observed with XMM-Newton together with the SPT SZE-based halo masses
calculated using the calibration from de Haan et al. (2016, see Table 3 results column 2).

When we extract cosmological constraints only with these priors (i.e., without any
WL information) we consider that a “baseline” result representing a currently achievable
knowledge of the parameters of the eROSITA rate-mass relation.

Priors on WL calibration

The priors on the parameters of the WL mass – halo mass relation reflect the understanding
of both the observational and theoretical systematics of the WL mass calibration. In this
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Tabelle 2.2: Priors used in our analysis. U(a, b) is a uniform flat prior in the interval (a, b),
lnU(a, b) a uniform flat prior in log space, N (µ, σ2) refers to a Gaussian distribution with
mean µ and variance σ2, N>a(µ, σ2) to a Gaussian distribution truncated for values smaller
than a.
Comment: a) Numerical stability when computing the equations (2.9, 2.11, 2.12 and 2.15),
requires the scatter to be larger than the sampling size of the numerical integrals.

Cosmology for Number counts w/o CMB
H0 U(40, 120) cf. Section 2.2.4
ωb U(0.020, 0.024)
ΩM U(0.1, 0.5)
AS lnU(0.6e− 9, 2.5e− 9)
nS U(0.94, 1.0)∑
mν [eV ] U(0., 1.)

w U(−1.6,−0.6)
Cosmology for Number counts w/ CMB

cf. Section 2.2.4
X-ray Selection Scaling Relation
lnAX N (−0.33, 0.232) cf. Appendix ??
BX N (2.00, 0.172)
γX N (0.45, 0.422)
σX N>0.1(0.28, 0.112) a)
B′X N (0.36, 0.782)
DES/HSC WL
bWL N (0.94, 0.0512) cf. Section 2.2.4
σWL N>0.1(0.24, 0.022) a)
Euclid WL
bWL N (0.94, 0.0132) cf. Section 2.2.4
σWL N>0.1(0.24, 0.0082) a)
LSST WL
bWL N (0.94, 0.0152) cf. Section 2.2.4
σWL N>0.1(0.24, 0.0082) a)
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work, we consider, the following sources of systematic uncertainty:

1. the accuracy of the shape measurement in the optical survey parameterized as the
uncertainty on the multiplicative shear bias δm,

2. the systematic mis-estimation of the lensing efficiency 〈β〉 due to the bias in the
photometric redshift estimation bẑ,

3. the uncertainty in the estimation of the contamination by cluster members fcl which
results from the statistical uncertainty of the photometric redshifts σẑ and the back-
ground galaxy selection,

4. the statistical uncertainty with which the theoretical bias and scatter of the WL
mass δbWL, sim, and δσWL, sim, respectively, can be constrained with large structure
formation simulations.

The first three effects do not directly induce a bias in the mass estimation, but affect the
NFW fitting procedure. To estimate their impact on the WL mass estimate, we consider a
shear profile for WL mass 3× 1014 M� and z = 0.4, add the systematic shifts, and fit for
the mass again. The difference in input and output masses is then taken as the WL mass
systematic uncertainty induced by these effects. This technique provides an overall estimate
of the systematic uncertainty level, while ignoring potential dependences on cluster redshift
and mass.

For DES, we assume δm = 0.013 (Zuntz et al., 2018). The bias on the photometric
redshift estimation of the source galaxies is bẑ = 0.02 (Cooke et al., 2014) which, considering
the source redshift distribution of DES (cf. Section 2.1.2), leads to an uncertainty on
the lensing efficiency δ〈β〉 = 0.02. For the uncertainty on the contamination, we project
δfcl = 0.01 based on Dietrich et al. (2019). Taken all together, these uncertainties propagate
to a WL mass uncertainty of δbWL, obs, DES = 0.045.

The current uncertainty on the theoretical WL mass bias is δbWL, sim, to day = 0.05 in
Dietrich et al. (2019), when considering the effects of halo triaxiality, morphological variety,
uncertainties in the mass-concentration relation and mis-centering. Due to larger available
simulations (Lee et al., 2018), a better measurement of the mis-centering distribution and
an improvement of the understanding of the mass– concentration relation, for DES we
project a reduction of this uncertainty by a factor 2, yielding δbWL, sim, DES = 0.025. The
same scaling is applied to the uncertainty on the scatter, yielding δσWL, DES = 0.02.

Given the level of observational uncertainty, this projection can also be read as a neces-
sity to improve the understanding of the theoretical biases. The estimates above provide a
total uncertainty of the bias of the WL mass

δbWL, DES =
√
b2

WL, sim, DES + b2
WL, obs, DES

= 0.051,
(2.17)

and an uncertainty on the scatter of the WL mass δσWL, DES = 0.02. This amounts to a
5.1% mass uncertainty from systematic effects, which is a conservative assumption, given
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that McClintock et al. (2019a) already achieved such a level of systematics control for DES
cluster mass calibration. For sake of simplicity, we assume that the final level of systematics
in HSC is of the same as in DES. This assumption will be inadequate for the actual analysis
of the data. We postpone the discussion about the difference between the analysis methods
to the respective future works.

The specifications for Euclid are given in Laureijs et al. (2011). The requirement for the
shape measurement is δm = 0.001. For the bias on the photometric redshift estimation, the
requirement is bẑ = 0.002, which translates into δ〈β〉 = 0.0014. For the projection of the
uncertainty on the contamination, we assume that in the case of DES it has equal contri-
bution from (1) the number of clusters used for to characterize it and (2) the photometric
redshift uncertainty. Thus, for Euclid we estimate

δf 2
cl, Eu =

δf 2
cl, DES

2
NDES

NEu
+
δf 2

cl, DES

2

(
σẑ, Eu

σẑ, DES

)2

= 0.00652,

(2.18)

where NDES ≈ 3.8k, and NEu ≈ 6.4k, are the number of clusters with DES and Euclid
shear information in our catalog (cf. Section 2.1.2), σẑ, Eu = 0.06 is the photometric redshift
uncertainty for Euclid (Laureijs et al., 2011), and σẑ, DES = 0.1 is the photometric redshift
uncertainty for DES (Sánchez et al., 2014). Taking all the above mentioned values together,
we find δbWL, obs, Eu = 0.0085 for Euclid. To match this improvement in data quality, we
project an improvement in the understanding of the theoretical biases by a factor of 5,
providing δbWL, sim, Eu = 0.01, and δσWL, Eu = 0.008. Thus, the total uncertainty on the
WL mass bias for Euclid is

δbWL, Eu = 0.013. (2.19)

The specifications for LSST systematics are summarized in LSST DESC et al. (2018).
The requirement for the shape measurement is δm = 0.003, while the requirement for
the bias on the photometric redshift estimation bẑ = 0.001, leading to δ〈β〉 = 0.0007.
Using NLSST ≈ 11k, and σẑ, LSST = 0.02, we find an uncertainty on the cluster member
contamination of δfcl, LSST = 0.0044. Summing all the above mentioned values together, we
get δbWL, obs, LSST = 0.011. We project the same understanding in theoretical systematics
for LSST as for Euclid. Thus, the total uncertainty on the WL mass bias for LSST is

δbWL, LSST = 0.015. (2.20)

These values are adopted throughout this work as priors for the WL mass scaling relati-
on parameters, as summarized in Table 2.2. We note that the effort required to theoretically
constrain the WL bias and scatter parameters with this accuracy is considerable.

Cosmological priors

When sampling the number counts likelihood, we assume flat priors on all cosmological
parameters except for AS, for which we use a flat prior in log-space, as is good practice for
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Abbildung 2.3: Predicted constraints on the scaling relation and cosmological parameters
in wCDM. In red the constraints from the number counts alone (eROSITA+Baseline),
in orange the constraints from number counts and DES+HSC WL calibration (eROSI-
TA+DES+HSC), in green number counts and Euclid WL calibration (eROSITA+Euclid),
and in blue number counts and LSTT WL calibration (eROSITA+LSST). The median
values, all statistically consistent with the input values, are shifted to the input values to
better highlight the increase in constraining power.
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strictly positive amplitudes. Similarly, we use priors on ΩM, H0 and w that are larger than
the typical uncertainties on these parameters. For ∑mν we only explore the regime up to
1 eV, as current cosmological measurements, such as Planck Collaboration et al. (2016a)
give upper limits on the summed neutrino mass around and below that value.

For ωb and nS we use tight flat priors around the measured values of these parameters
by the CMB experiments (Planck Collaboration et al., 2016a) and Big Bang Nucleosyn-
thesis constraints derived from deuterium abundances (Cooke et al., 2014). We confirm
that cluster number counts are not sensitive to these parameters within these tight ranges
(Bocquet et al., 2019a). It is thus not necessary to use informative priors on these parame-
ters, as previous studies have done (see for instance Bocquet et al., 2015; de Haan et al.,
2016).

In Section 2.3.3 we will consider the synergies between eROSITA number counts and
WL mass calibration, and CMB temperature and polarization anisotropy measurements,
which to date provide us with a significant amount of information about the cosmological
parameters. In the models of interest, where either w or ∑mν are free parameters, the
CMB constraints from the Planck mission (Planck Collaboration et al., 2016a) display
large degeneracies between the parameters we choose to sample. 5 For this reason, we
cannot approximate the CMB posterior as a Gaussian distribution. To capture the non-
Gaussian feature, we calibrate a nearest-neighbor kernel density estimator (KDE) on the
publicly available6 posterior sample. We utilize Gaussian kernels and, for each model, we
tune the bandwidth through cross calibration to provide maximum likelihood of the KDE
on a test subsample. As discussed in Section 2.1.3, our choice of input cosmology is slightly
inconsistent with the CMB constraints. As we are only interested in the reduction of the
uncertainties when combining CMB and eROSITA, we shift the CMB posteriors so that
they are consistent with our input values at less than one sigma. The resulting estimator
reproduces the parameter uncertainties and the degeneracies accurately.

2.3 Results
In the following subsections we first calculate how accurately the observable–mass scaling
relation parameters must be constrained to enable the best possible cosmological cons-
traints from the sample (Section 2.3.1). Thereafter we explore the impact of the WL mass
calibration on the cosmological constraints that can be extracted from an analysis of the
eROSITA galaxy cluster counts (Section 2.3.2). In Section 2.3.3 we explore synergies of the
eROSITA dataset with the CMB and in Section 2.3.4 we examine the impact of combining
the eROSITA dataset with BAO measurements from DESI. In Section 2.3.5 we examine
the constraints derived when combining with both these external data sets, and the fi-

5These degeneracies are partially due to our choice of sampling parameters. The CMB does not directly
constrain H0, which is a present day quantity. Consequently, also ΩM is weakly constrained. The same
holds for w, which has predominantly a late time impact on the expansion rate. In contrast, co- moving
densities like ωb, or primordial quantities like AS and nS are narrowed down with high precision.

6https://pla.esac.esa.int/pla/#cosmology, where we utilized the TTTEE lowTEB samples.

https://pla.esac.esa.int/pla/#cosmology
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nal subsection focuses on the impact of an eROSITA sample where the minimum mass is
allowed to fall from our baseline value of M500c & 2 × 1014M� to M500c & 5 × 1013M�,
corresponding to a sample that is ∼ 3.5 times larger.

2.3.1 Optimal mass calibration
The number counts likelihood depends both on the scaling relation parameters, and–
through the mass function, the cosmological volume and their changes with redshift– also
on the cosmological parameters. Furthermore, there are significant degeneracies between
the mass scale of the cluster sample (i.e., the parameters of the observable mass relation)
and the cosmological parameters, as demonstrated already in the earliest studies (Haiman,
Mohr, and Holder, 2001). A full self-calibration of the number counts (i.e., including no
direct mass measurement information) that allows full cosmological and scaling relation
freedom, results in only very weak cosmological constraints (e.g., Majumdar and Mohr,
2003; Majumdar and Mohr, 2004). Thus, before forecasting the cosmological constraints
from the eROSITA sample, we estimate how accurate the mass calibration needs to be so
that the information contained in the number counts is primarily resulting in the reduction
of uncertainties on the cosmological parameters rather than the observable mass scaling
relation parameters.

To estimate this required level of mass calibration, which we refer to as ‘optimal mass
calibration’, we quantify how much the number counts constrain the scaling relation pa-
rameters when the cosmological parameters are fixed to fiducial values. In such a case, all
the information contained in the number counts likelihood informs our posterior on the
scaling relation parameters. If this level of information, or more, were provided by direct
mass calibration, then the number counts information would predominantly constrain the
cosmology. In this sense, the optimal mass calibration then provides a threshold or goal
for the amount and precision of external mass calibration we should strive for in our direct
mass calibration through, e.g., weak lensing.

We find that in fact the number counts alone do not contain enough information to
meaningfully constrain all five scaling relation parameters even in the presence of full
cosmological information. Our scaling relation parametrization includes two additional
parameters beyond those explored in Majumdar and Mohr (2003), the scatter σX and the
redshift evolution of the mass trend B′X. Thus, as a next test, we examine the constraints
from number counts with fixed cosmology while assuming priors only on B′X. Interestingly,
in this case we find that the constraints lead to an upper limit on the scatter of the
scaling relation σX < 0.44 (at 95%), which is weaker than our current knowledge of that
parameter, which we infer from the scatter in the X-ray luminosity–mass relation from
Bulbul et al. (2019, see discussions in Section 2.2.4 and Appendix ??). We therefore adopt
this external prior on the scatter parameter and allow full freedom for all other parameters
(including B′X). Results in this case are more interesting, providing constraints that we
adopt as our estimate of optimal mass calibration. The uncertainties are δ lnAX = 0.042,
δBX = 0.024, δγX = 0.053, and δB′X = 0.116. We take this to mean that an optimal
cosmological exploitation of the eROSITA cluster number counts will require that we know
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the parameters of the observable mass relation to at least these levels of precision. We will
discuss in the following how this can be accomplished.

2.3.2 Forecasts: eROSITA+WL

ν-wCDM constraints

As a first cosmological model we investigate ν-wCDM, a flat cold Dark Matter cosmology
with dark energy with constant but free equation of state parameter w and massive neu-
trinos. In this Section, we present the constraints on the cosmological parameters for three
different cases: number counts alone combined with baseline priors on the X-ray observable
mass scaling relation that we derive from the latest analysis within SPT (Bulbul et al.,
2019) (eROSITA+Baseline), number counts with DES+HSC WL mass calibration (eRO-
SITA+DES+HSC), number counts with Euclid WL mass calibration (eROSITA+Euclid),
and number counts with LSST WL mass calibration (eROSITA+LSST) . The respective
marginal contour plot is shown in Fig. 2.3, and the corresponding uncertainties are listed
in Table 2.3.

Considering the current knowledge of the X-ray scaling relation, we find that eROSITA
number counts constrain ΩM to ±0.032, σ8 to ±0.052, w to ±0.101, and H0 to ±10.72
km s−1 Mpc−1, while marginalizing over the summed neutrino mass ∑mν < 1 eV without
constraining it. We also find no constraints on ωb and nS within the prior ranges that we
assumed.

The addition of mass information consistently reduces the uncertainties on the cosmo-
logical parameters: the knowledge on ΩM is improved by factors of 1.4, 2.0 and 2.3 when
adding DES+HSC, Euclid, and LSST WL information, respectively; for σ8 the improve-
ments are 3.1, 4.3 and 5.2, whereas for the dark energy equation of state parameter they are
1.2, 1.4 and 1.4, respectively. In summary, weak lensing calibration provides the strongest
improvement of the determination of σ8, followed by ΩM . The improvements on the dark
energy equation of state parameter w are clearly weaker.

ν-ΛCDM constraints

We also investigate a model in which the equation of state parameter w is kept constant:
ν ΛCDM. The corresponding uncertainties are shown in Table 2.3. In this model, we find
that the constraints on ΩM and σ8 are 0.019 and 0.032, respectively, which is tighter than
in the ν-wCDM model. However, the constraint on H0 is comparable in the two models.

We also find that the addition of WL mass information improves the constraints on
ΩM by factors of 1.6, 2.4 and 2.9 for DES+HSC, Euclid and LSST, respectively. The
determination of σ8 improves by factors 2.4, 4.7 and 4.7. It is especially worth highlighting
how eROSITA with Euclid or LSST WL information will be able to determine σ8 at a
sub-percent level. Nevertheless, also in this simpler model we find that eROSITA number
counts do not constrain the summed neutrino mass in the sub-eV regime.
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Tabelle 2.3: Forecast parameter constraints for eROSITA number counts with current,
best available calibration (eROSITA+Baseline), with DES+HSC WL calibration (eROSI-
TA+DES+HSC), with Euclid WL calibration (eROSITA+Euclid), and with LSST WL ca-
libration (eROSITA+LSST) are presented in two different models, ν-wCDM and ν-ΛCDM
within three different scenarios. From top to bottom they are eROSITA+WL alone, in
combination with Planck CMB constraints (Pl15) and in combination with DESI BAO
and Alcock-Pacynzki test constraints. Also shown are the scaling relation parameter un-
certainties for an optimal mass calibration. In addition to the five cosmological parameters
who constraints are presented, each model includes the parameters nS and ωb marginalized
over weak priors (see Table 2.2). The units of the column “∑mν” and “H0” are eV and
km s−1 Mpc−1, respectively. Comments: a) This parameter is not constrained within the
prior ranges. When reporting upper limits “<”, we refer to the 95th percentile, while lower
limits “>” refer to the 5th percentile. When a parameter is kept fixed in that model, we
use “–”.

ΩM σ8 w
∑
mν H0 lnAX BX γX σX B′X

optimal mass calibration 0.042 0.024 0.053 0.116
eROSITA + WL calibration

ν-wCDM priors 0.23 0.17 0.42 0.11 0.78
eROSITA+Baseline 0.032 0.052 0.101 a) 10.72 0.165 0.073 0.209 0.083 0.128
eROSITA+DES+HSC 0.023 0.017 0.085 a) 6.449 0.099 0.053 0.121 0.062 0.111
eROSITA+Euclid 0.016 0.012 0.074 a) 5.210 0.059 0.037 0.090 0.034 0.107
eROSITA+LSST 0.014 0.010 0.071 a) 4.918 0.058 0.031 0.089 0.030 0.107

ν-ΛCDM priors – 0.23 0.17 0.42 0.11 0.78
eROSITA+Baseline 0.026 0.033 – a) 10.18 0.157 0.069 0.192 0.078 0.110
eROSITA+DES+HSC 0.016 0.014 – a) 5.664 0.091 0.049 0.103 0.059 0.104
eROSITA+Euclid 0.011 0.007 – a) 4.691 0.040 0.035 0.065 0.033 0.104
eROSITA+LSST 0.009 0.007 – a) 4.691 0.039 0.032 0.058 0.029 0.104

eROSITA + WL calibration + Pl15 (TTTEE lowTEB)
ν-wCDM priors (incl. CMB) <0.393 0.063 0.242 <0.667 >62.25 0.23 0.17 0.42 0.11 0.78

eROSITA+Baseline 0.019 0.032 0.087 <0.590 2.857 0.165 0.026 0.132 0.083 0.121
eROSITA+DES+HSC 0.018 0.019 0.085 <0.554 2.206 0.099 0.024 0.118 0.062 0.107
eROSITA+Euclid 0.014 0.010 0.074 <0.392 1.789 0.059 0.020 0.090 0.034 0.107
eROSITA+LSST 0.013 0.009 0.069 <0.383 1.662 0.058 0.018 0.080 0.030 0.103

ν-ΛCDM priors (incl. CMB) 0.024 0.035 – <0.514 1.723 0.23 0.17 0.42 0.11 0.78
eROSITA+Baseline 0.016 0.018 – <0.425 1.192 0.122 0.025 0.101 0.077 0.110
eROSITA+DES+HSC 0.013 0.015 – <0.401 1.067 0.086 0.023 0.098 0.060 0.104
eROSITA+Euclid 0.011 0.007 – <0.291 0.978 0.039 0.020 0.065 0.033 0.103
eROSITA+LSST 0.009 0.007 – <0.285 0.767 0.038 0.020 0.054 0.030 0.103

eROSITA + WL calibration + DESI (BAO)
ν-wCDM priors (incl. BAO) 0.007 a) 0.086 a) a) 0.23 0.17 0.42 0.11 0.78

eROSITA+Baseline 0.007 0.030 0.063 a) 1.987 0.164 0.043 0.139 0.083 0.128
eROSITA+DES+HSC 0.006 0.010 0.051 a) 1.597 0.086 0.037 0.110 0.056 0.101
eROSITA+Euclid 0.006 0.005 0.047 a) 1.463 0.040 0.030 0.086 0.032 0.096
eROSITA+LSST 0.006 0.005 0.043 a) 1.403 0.040 0.026 0.076 0.029 0.095

ν-ΛCDM priors (incl. BAO) 0.006 a) – a) a) 0.23 0.17 0.42 0.11 0.78
eROSITA+Baseline 0.006 0.015 – a) 0.943 0.094 0.041 0.109 0.078 0.110
eROSITA+DES+HSC 0.006 0.010 – a) 0.925 0.074 0.040 0.077 0.055 0.104
eROSITA+Euclid 0.006 0.005 – a) 0.910 0.040 0.029 0.054 0.032 0.089
eROSITA+LSST 0.006 0.005 – a) 0.910 0.035 0.025 0.053 0.027 0.089

eROSITA + WL calibration + DESI + Pl15
ν-wCDM priors (incl. CMB+BAO) 0.007 0.027 0.049 <0.284 1.118 0.23 0.17 0.42 0.11 0.78

eROSITA+Baseline 0.006 0.026 0.049 <0.281 1.103 0.161 0.023 0.079 0.083 0.128
eROSITA+DES+HSC 0.006 0.011 0.048 <0.245 1.050 0.085 0.023 0.071 0.061 0.104
eROSITA+Euclid 0.005 0.006 0.047 <0.241 1.023 0.039 0.017 0.064 0.032 0.095
eROSITA+LSST 0.005 0.006 0.039 <0.223 0.870 0.038 0.017 0.064 0.029 0.089

ν-ΛCDM priors (incl. CMB+BAO) 0.004 0.020 – <0.256 0.255 0.23 0.17 0.42 0.11 0.78
eROSITA+Baseline 0.004 0.016 – <0.254 0.253 0.093 0.024 0.067 0.074 0.110
eROSITA+DES+HSC 0.004 0.009 – <0.218 0.251 0.072 0.021 0.062 0.051 0.095
eROSITA+Euclid 0.003 0.004 – <0.211 0.148 0.035 0.020 0.050 0.033 0.071
eROSITA+LSST 0.002 0.003 – <0.185 0.145 0.033 0.017 0.050 0.033 0.069
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Abbildung 2.4: Two dimensional marginalized posterior sample of the amplitude of the sca-
ling relation AX and the luminosity distance to the median redshift of our sample DL(0.51)
in Mpc, as derived from the cosmological parameters in the posterior sample in the wCDM
model. In red, orange, green and blue we present the constraints from the number counts
alone (eROSITA+Baseline), from number counts and DES+HSC WL calibration (eROSI-
TA+DES+HSC), Euclid WL calibration (eROSITA+Euclid), and LSST WL calibration
(eROSITA+LSST), respecitvely. When no direct mass information is present, as in the ca-
se of number counts only, the two quantities are not degenerate with each other. As mass
information is added, the underlying parameter degeneracy between the amplitude of the
X-ray observable mass relation and the cosmological distance information emerges.
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Limiting parameter degeneracy

We have studied the causes of the weaker improvement in w when calibrating with Euclid
or LSST WL, and we have discovered an interesting degeneracy due to the w sensitivity
of the distance. Remember that our WL calibration dataset consists of observations of
the shear profiles and the redshift distributions of the background galaxies. To turn these
into masses, one needs the cosmology sensitive angular diameter distances (see discussion
below equation 2.5). Moreover, our selection observable is the eROSITA count rate (similar
to X-ray flux) that is related to the underlying X-ray luminosity through the luminosity
distance (see equation 2.7). This leads to a degeneracy between w, governing the redshift
evolution of distances, and the amplitude and redshift trend of the selection observable–
mass relation.

The degeneracy between w and (lnAX, γX) can be easily understood by considering the
parametric form of the rate mass scaling relation in equation (2.7). Ignore for a moment
the distance dependence of the mass. Then for a given redshift z and rate η, a shift in
w leads to a shift in the luminosity distance DL(z), and, to a minor degree, to a shift in
the co-moving expansion rate E(z). Such a shift can be compensated by a shift in lnAX
and γX, resulting in the same mass, and consequently the same number of clusters, making
it indiscernible. The distance dependence of the shear to mass mapping and the power
law dependence of the rate on mass leads to a somewhat different dependence, and so the
parameter degeneracy is not catastrophic.

This effect is demonstrated in Fig. 2.4, where the joint posterior of the luminosity
distance to the median cluster redshift DL(0.51) and of the amplitude of the scaling relation
lnAX is shown. In the case of no direct mass information, when we fit the number counts
with priors on the scaling relation parameters, the median distance and the amplitude are
uncorrelated. As one adds more mass information, e.g., the +DES-HSC WL, and +Euclid
WL or +LSST WL cases, the underlying correlation between the median distance and
the amplitude becomes apparent. This degeneracy provides a limitation to improving the
w constraint from the number counts by means of mass calibration. Given that it affects
the halo masses directly, and not only the WL signal, we expect these degeneracies to be
present also in other mass calibration methods, although to a different extent, given the
different scaling of the selection observables with mass.

As a side note, these degeneracies highlight the importance of fitting for mass calibra-
tion and number counts simultaneously and self consistently. A mass calibration done at
fixed cosmology would miss these correlations and lead to underestimated uncertainties on
the scaling relation parameters. More worrisome, modeling mass calibration by simply ad-
opting priors on the observable mass scaling relation parameters would miss the underlying
physical degeneracies altogether (e.g., Sartoris et al., 2016; Pillepich et al., 2018).

The degeneracies between the distance redshift relation and the scaling relation para-
meters in the mass calibration explain why the impact of WL mass calibration in weaker
in the ν-wCDM model, compared to the ν ΛCDM model: in the latter w is kept fixed, and
the redshift evolution of distances and critical densities is controlled predominantly by a
single variable: ΩM. With one degenerate degree of freedom less, WL mass calibration can
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put tighter constraints on lnAX and γX in the ν-ΛCDM than in the ν-wCDM model.

2.3.3 Synergies with Planck CMB
It is customary in observational cosmology to combine the statistical power of different
experiments to further constrain the cosmological parameters. An important part of these
improvements is due to the fact that each experiment has distinctive parameter degene-
racies that can be broken in combination with constraints from another experiment. This
is especially true for CMB temperature and polarization anisotropy measurements, which
constrain the cosmological parameters in the early Universe, but display important dege-
neracies on late time parameters such as ΩM, σ8 and w (for a recent study applicable to
current CMB measurements, see Howlett et al., 2012). We will discuss in the following the
synergies between the Planck cosmological constraints from temperature and polarization
anisotropy (Planck Collaboration et al., 2016a) and those from the eROSITA cluster counts
analysis.

ν-wCDM constraints

In the ν-wCDM model, the CMB suffers from the so called geometrical degeneracy (Ef-
stathiou and Bond, 1999), that arises because the CMB anisotropy primarily constrains
the ratio of the sound horizon at recombination and the angular diameter distance to that
epoch. As a consequence, for example, the current day expansion rate H0 is degenerate
with the equation of state parameter w. This uncertainty in the expansion history of the
Universe leads to large uncertainties on late time properties such as ΩM and σ8. Addition of
a late time probe that constrains these quantities allows one to break the degeneracies and
put tighter constraints on w. This can be nicely seen for the case of eROSITA in Fig. 2.5,
where the red CMB degeneracy between σ8 and w is broken by the addition of cluster
information. The corresponding uncertainties are shown in Table 2.3.

While in this model the CMB alone is not able to determine ΩM, the addition of
eROSITA number counts allows a constraint of ±0.019. Inclusion of WL mass information
further reduces the uncertainty to 0.018, 0.014 and 0.013 for DES+HSC, Euclid and LSST,
respectively. The uncertainty in σ8 is reduced from 0.065 when considering only the CMB,
to 0.032 with number counts, 0.019 with number counts and DES+HSC WL, and 0.010 with
number counts and Euclid, and 0.009 with LSST WL. Noticeably, the determination of the
equation of state parameter w is improved from 0.242 from CMB data alone, to 0.087 when
adding number counts. Even more remarkable is the fact that WL calibrated eROSITA
constraints on w are only margimally improved by the addition of CMB information.

Constraints on sum of the neutrino masses

We showed earlier that cluster number counts, even when they are WL calibrated, provide
little information about the sum of the neutrino masses in the regime < 1 eV. On the other
hand, the CMB posteriors on σ8 and ΩM are strongly degenerate with the neutrino mass,
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Abbildung 2.5: Marginalized posterior sample of σ8 and w in the wCDM model. In purple
the constraints from Planck CMB alone (Pl15), in red the constraints from the num-
ber counts and Planck (eROSITA+Baseline+Pl15), in orange the constraints from the
addition of DES+HSC WL calibration (eROSITA+DES+HSC+Pl15), in green for the ad-
dition Euclid WL calibration (eROSITA+Euclid+Pl15), in blue for the addition LSST
WL calibration (eROSITA+LSST+Pl15). Cluster information breaks the inherent CMB
degeneracies and allows to constrain the late time parameters to high precision.
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Abbildung 2.6: Marginalized posterior sample of H0, ΩM, σ8 and ∑
mν in the ν-ΛCDM

model. In red the constraints from Planck CMB alone (Pl15) and the constraints from
eROSITA number counts and DES WL calibration without CMB priors in blue (eROSI-
TA+DES), and with CMB priors in purple (eROSITA+DES+Pl15). By measuring σ8 and
ΩM independently of the sum of neutrino masses, WL calibrated cluster number counts
break the degeneracy among these parameters in the CMB posteriors.



2.3 Results 45

as can be seen in Fig. 2.6. Contrary to the CMB, the number counts of galaxy clusters
are only weakly affected by the sum of the neutrino mass. Recent studies have shown
that the halo mass function is a function of the power spectrum of baryons and dark
matter only (Costanzi et al., 2013; Castorina et al., 2014). Effectively, this means that
number counts can be used to constrain the density Ωcoll and fluctuation amplitude σ8,coll
of baryons and dark matter independently of the neutrino mass. If one considers matter as
cold dark matter, baryons and neutrinos, as is customarily done, then ΩM = Ωcoll + Ων and
σ2

8 = σ2
8,coll +σ2

8,ν , where Ων is the density parameter of neutrinos and σ2
8,ν is the amplitude

of their clustering on 8h−1 Mpc scales. The counts derived constraints on Ωcoll and σ8,coll
then lead to only very weak degeneracies between the sum of the neutrino masses and ΩM
and σ8, respectively, because neutrinos constitute a tiny fraction of the total matter density
and the total matter fluctuations on 8h−1 Mpc scales. In Fig. 2.6 we can see how these
very different parameter degeneracies in the CMB and cluster counts manifest themselves.
Combining these weaker degeneracies arising from eROSITA+DES WL with the more
pronounced degeneracies in the CMB posteriors allows us to break the latter and to better
constrain the sum of the neutrino masses.

Consistently, we find that in the ν-ΛCDM model, the addition of CMB priors only
marginally improves the constraints eROSITA will put on σ8 and ΩM. However, while the
CMB alone puts an upper limit of ∑mν < 0.514 eV (at 95%) we determine that the
combination of Planck CMB and eROSITA number counts will constrain the neutrino
masses to < 0.425 eV, which will improve to < 0.401 eV, < 0.291 eV and < 0.285 eV with
the addition of WL information from DES+HSC, Euclid and LSST, respectively.

2.3.4 Synergies with DESI BAO measurements
From the discussion in Section 2.3.2, it is apparent that the flux based X-ray selection
and the distance dependent WL mass information lead to an inherent degeneracy between
distances to the clusters and scaling relation parameters that ultimately limits the cons-
traint on w. It would be desirable to utilize CMB independent constraints on the distance
redshift relation, to allow for more stringent consistency checks between cluster derived
constraints and CMB constraints. Some previous cosmological studies of X-ray clusters
have used the distance information gleaned from the assumption of constant intracluster
medium (ICM) mass fraction with redshift (Mantz et al., 2015; Schellenberger and Rei-
prich, 2017). While these results are encouraging, a challenge with this method is that it
only provides accurate distance information if in fact the ICM mass fraction is constant
at all redshifts. It has been established for decades now that the ICM mass fraction varies
with cluster mass (e.g., Mohr, Mathiesen, and Evrard, 1999), but direct studies of how the
ICM mass fraction varies over the redshift range of the eROSITA survey (i.e., extending
beyond z = 1) have only recently been undertaken (Lin et al., 2012; Chiu et al., 2016;
Chiu et al., 2018; Bulbul et al., 2019). The evolution is consistent with constant ICM mass
fraction, but the uncertainties are still large. Further study is clearly needed. Another in-
teresting eROSITA internal prospect for better constraining the distance redshift relation
is to utilize the clustering of clusters to determine the BAO scale (for a recent application,
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Abbildung 2.7: 2 dimensional marginal contours of the posteriors in (ΩM,σ8) (left panel)
and (w,σ8) (right panel), showing the incremental improvement of constraining power when
first adding WL information and second combining with external cosmological data sets
(“Pl15” stands for the CMB fluctuation measurements by the Planck satellite, while “DESI”
refers only to the BAO constraints). These posteriors are derived while simultaneously
marginalizing over the summed neutrino mass.
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see Marulli et al., 2018, and references therein.)
As an alternative, we consider constraints from other low redshift experiments, more

precisely the measurement of the Baryonic Acoustic Oscillations (hereafter BAO) in fu-
ture spectroscopy galaxy surveys. In this work, we consider the forecast for the constraints
provided by the Dark Energy Spectroscopy Instrument7 (DESI; Levi et al., 2013) as the
relative error on the transversal BAO measurement dA/rS and the radial BAO measure-
ment H(z) rS as functions of redshift, where dA is the angular diameter distance, H(z) the
expansion rate, and rS is the sound horizon. The values adopted in this work are reported
in Table V of Font-Ribera et al. (2014). Furthermore, we follow the authors indications
and assume that in each redshift bin, the measurement error on the two quantities are
correlated with correlation coefficient ρ = 0.4. Using this information we perform an im-
portance sampling of the posterior samples presented above and summarize the resulting
uncertainties in Table 2.3.

When considering the uncertainties on the different parameters obtained by sampling
these observables, we find that the BAO measurement dominates the uncertainty on ΩM.
The addition of number counts, or number counts and WL information does not lead to
major improvements on this parameter either in ν-wCDM or in ν-ΛCDM. However, the
uncertainty on the dark energy equation of state parameter w is reduced from 0.086 in
the BAO only case, to 0.065 when adding just number counts, 0.054 and 0.047 when ad-
ding DES+HSC and Euclid WL information, respectively. Remarkably, eROSITA counts
with BAO priors on the expansion history outperforms eROSITA counts with CMB priors
when it comes to constraining the parameters ΩM, σ8 and w, while simultaneously margi-
nalizing over the summed neutrino mass. The latter is unconstrained by eROSITA+BAO,
even when considering WL mass information. Furthermore, eROSITA+BAO allows us to
measure the Hubble constant H0 to varying degrees of precision, depending on the quality
of the WL data. While these constraints never go below the present precision from other
methods (see for instance Riess et al., 2016), they will provide a valuable systematics cross-
check (for an example of systematics in SNe Ia that impact local H0 measurements, see,
e.g., Rigault et al., 2013; Rigault et al., 2015; Rigault et al., 2018).

2.3.5 Combining all datasets
It is current practice in cosmology to first test consistency of constraints from different data
sets as a check on systematics and to then combine the constraints as possible to provide
the most precise cosmological parameter constraints possible. In the case of a forecast work
like this, agreement is guaranteed by the choice of input cosmology for the mock creation,
while statistical independence can be assumed for eROSITA with WL data, DESI and the
CMB measurement from Planck.

We provide the results of this combination at the bottom of Table 2.3. In ν-wCDM,
already the combination of Planck CMB measurements and DESI BAOs allows us to
determine ΩM and w to 0.007 and 0.049, respectively, while simultaneously putting an upper

7https://www.desi.lbl.gov

https://www.desi.lbl.gov
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limit of < 0.284 eV on the summed neutrino mass. Addition of eROSITA+Euclid WL only
marginally improves these constraints to 0.005 and 0.047 for ΩM and w, respectively, and
leads to the 95% confidence upper limit ∑mν < 0.241 eV. In this configuration, however,
the added value of eROSITA number counts and WL mass calibration lies in the ability to
constrain σ8: while CMB and BAO put a constraint of 0.027, addition of eROSITA improves
this to 0.026, 0.011 and 0.006, when considering the baseline mass information, DES+HSC
WL, Euclid WL or LSST WL, respectively. In summary, using BAO and CMB priors
together increases the constraining power of eROSITA cluster cosmology considerably, as
can be seen in the shrinking of the 2 dimensional marginal contours in (ΩM,σ8) and (w,σ8)
space, shown in the left and the right panel of Fig. 2.7, respectively.

2.3.6 Inclusion of low mass clusters and groups
In this work, we have taken the conservative approach of excluding all systems with a halo
mass . 2 × 1014M� by means of increasing the eROSITA cluster count rate threshold at
low redshift (cf. Section 2.1.1 and Appendix ??). There are several good reasons to do so,
all of them related, in one way or another, to an increase in systematic uncertainty when
going to lower mass systems that are not as well studied. However, to enable comparison
to previous work, and as a motivation to further investigate and control the systematic
uncertainties in low mass clusters and groups, we also examine the impact of WL mass
calibration on the constraining power for a cluster sample where the count rate threshold is
reduced at low redshift so that only clusters with masses M500c / 5×1013M� are excluded.

Systematics of low mass clusters and groups

There are several important systematic concerns. For instance, Bocquet et al. (2016) find
in a study using hydrodynamical structure formation simulations that for masses below
1014M�, baryonic feedback effects reduce the halo mass function by up to 10% compared
to halo mass functions extracted from dark matter only simulations. The magnitude of
this effect depends on the feedback model, and therefore needs be treated as a systematic
uncertainty in the cosmological modeling. The magnitude of this uncertainty awaits further
study.

Baryonic feedback effects also impact the mass profiles of clusters. Lee et al. (2018)
show how active galactic nuclei feedback induces a deficit of mass in the cluster center
when compared to gravity only simulations. The partial evacuation of baryons is strong
enough to modify also the matter profile. Lee et al. (2018) demonstrate how this effect
impacts the WL bias bWL and the WL scatter σWL, making them mass dependent. Such
effects will need to be taken into account, especially when considering lower mass systems.

Similarly, the thermodynamic structure of low mass systems, generally called groups, is
more complex than for massive galaxy clusters, showing a larger impact of non gravitatio-
nal physics (Eckmiller, Hudson, and Reiprich, 2011; Bharadwaj et al., 2014; Barnes et al.,
2017). Lovisari, Reiprich, and Schellenberger (2015) showed that the mass slope of the
luminosity mass relation is significantly steeper for groups than for clusters. Schellenberger
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Tabelle 2.4: Parameter uncertainties, for number counts (eROSITA+Baseline), number
counts and DES+HSC WL calibration (eROSITA+DES+HSC), number counts and Euclid
WL calibration (eROSITA+Euclid), and number counts and LSST WL calibration (eRO-
SITA+LSST) in the ν-wCDM model when including low mass clusters. The units of the
column “∑mν” and “H0” are eV and km s−1 Mpc−1, respectively. Comments: a) This
parameter is not constrained within the prior ranges. When reporting upper limits “<”,
we refer to the 95th percentile, while lower limits “>” refer to the 5th percentile. When a
parameter is kept fixed in that model, we use “–”.

ΩM σ8 w
∑
mν H0 lnAX BX γX σX B′X

optimal mass calibration 0.028 0.021 0.050 0.116
eROSITA + WL

ν-wCDM priors 0.23 0.17 0.42 0.11 0.78
eROSITA+Baseline 0.025 0.038 0.079 a) 8.081 0.113 0.071 0.202 0.078 0.086
eROSITA+DES+HSC 0.012 0.012 0.069 a) 4.572 0.081 0.028 0.097 0.052 0.072
eROSITA+Euclid 0.009 0.007 0.056 a) 3.762 0.042 0.019 0.073 0.027 0.058
eROSITA+LSST 0.007 0.006 0.050 a) 2.707 0.042 0.016 0.068 0.023 0.051

eROSITA + WL + Pl15 (TTTEE lowTEB)
ν-wCDM priors (incl. CMB) <0.393 0.063 0.242 <0.667 >62.25 0.23 0.17 0.42 0.11 0.78

eROSITA+Baseline 0.017 0.028 0.078 <0.580 2.745 0.131 0.026 0.128 0.083 0.087
eROSITA+DES+HSC 0.010 0.012 0.069 <0.542 1.587 0.092 0.017 0.102 0.052 0.065
eROSITA+Euclid 0.007 0.006 0.060 <0.381 1.401 0.046 0.013 0.076 0.021 0.054
eROSITA+LSST 0.006 0.005 0.051 <0.365 1.317 0.045 0.012 0.065 0.021 0.050

eROSITA + WL + DESI (BAO)
ν-wCDM priors (incl. BAO) 0.007 a) 0.086 a) a) 0.23 0.17 0.42 0.11 0.78

eROSITA+Baseline 0.006 0.016 0.051 a) 1.703 0.136 0.036 0.090 0.068 0.070
eROSITA+DES+HSC 0.006 0.009 0.048 a) 1.425 0.080 0.025 0.084 0.050 0.059
eROSITA+Euclid 0.005 0.005 0.038 a) 1.379 0.036 0.016 0.063 0.021 0.050
eROSITA+LSST 0.004 0.005 0.038 a) 1.303 0.036 0.014 0.061 0.021 0.049

eROSITA + WL + DESI + Pl15
ν-wCDM priors (incl. CMB+BAO) 0.007 0.027 0.049 <0.284 1.118 0.23 0.17 0.42 0.11 0.78

eROSITA+Baseline 0.005 0.015 0.046 <0.279 1.114 0.134 0.022 0.079 0.067 0.067
eROSITA+DES+HSC 0.005 0.010 0.044 <0.242 1.040 0.078 0.014 0.067 0.049 0.056
eROSITA+Euclid 0.005 0.005 0.037 <0.237 1.015 0.039 0.012 0.058 0.021 0.049
eROSITA+LSST 0.004 0.005 0.034 <0.224 0.790 0.039 0.010 0.053 0.021 0.047
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and Reiprich (2017) demonstrate how such a break in the power law might bias the cos-
mological results derived from an X-ray selected cluster sample. We have thus chosen the
conservative approach of excluding these systems from our primary eROSITA forecasts,
thereby reducing the sensitivity of the forecast cosmological parameter constraints to these
important complications at low masses.

Improvement of the constraints

Nevertheless, the controlled environment of mock data analysis allows us to investigate
how much constraining power could ideally be gained by lowering the mass limit if all
the above described systematics where well understood and controlled. To this end, we
select a low mass sample by imposing an observable selection with redshift that enforces
M500c & 5 × 1013M�, assuming that the scaling relation and the mass function used for
the fiducial sample are still valid also at this lower mass scale. This increases the sample
size to 43k clusters, with a median redshift z̄ = 0.31 and a median halo mass of M̄500c =
1.4 × 1014M�. The resulting constraints on the parameters of the ν-wCDM model are
shown in Table 2.4. The constraints both on the cosmological parameters, as well as on
the scaling relation parameters show a strong improvement compared to those from the
higher mass sample. For eROSITA number counts we determine that the uncertainty on
ΩM, σ8 and w will be reduced by factors of 1.3, 1.4 and 1.3, respectively. When calibrating
masses with DES+HSC, we find improvements of factor 1.9, 1.4 and 1.2, when considering
Euclid the inclusion of low mass systems will reduce the uncertainties by 1.8, 1.7 and 1.3,
while using LSST leads to reductions by 2.0, 1.7 and 1.4. In absolute terms, eROSITA
including low mass systems, calibrated with Euclid will provide constraints on ΩM, σ8 and
w of 0.009, 0.007 and 0.056, respectively. We emphasize that these tight constraints can
only be obtained if the aforementioned systematic effects are adequately controlled.

2.4 Discussion

The above presented results on the constraining power of the eROSITA cluster sample
demonstrate its value as a cosmological probe. They also underline the crucial impact of
WL mass calibration on the constraining power of cluster number counts. However, they
also give some clear indications of how this impact manifests itself in detail.

In the following subsections we discuss first how the constraints on the scaling relation
parameters are affected by the addition of better WL data, by the choice of the model and
by the choice of cosmological priors, resulting in an assessment of the conditions under
which we can attain an optimal mass calibration. We then determine the sensitivity of our
observable to the different input parameters. Finally, we compare our prediction to the
constraints from current and future experiments.
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2.4.1 Impact of WL on scaling relation parameters
In the previous section we discussed in detail the impact of WL mass calibration on the
eROSITA cosmological parameter constraints. Naturally, adding WL information will also
improve the constraints on the scaling relation parameters. The resulting uncertainties are
reported in Table 2.3. In the following, we will focus on two interesting aspects of these
results: first, we assess under which circumstances eROSITA will be optimally calibrated;
second, we comment on the constraints on the scatter in observable at fixed mass.

Which mass calibration is optimal?

In Section 2.3.1, we introduced the concept of the optimal mass calibration. Comparing the
bounds on the parameter uncertainties derived there to the forecasts for DES+HSC, we
find that, independent of the presence of external cosmological priors and in both models
we consider, DES WL will not provide an optimal calibration of the eROSITA observable
mass relation. Only the calibration of the mass slope BX when considering CMB and BAO
data is an exception to this. This is not to say that, as shown above, the inclusion of
DES+HSC WL information does not improve the cosmological constraints. It is to say
that some part of the information contained in the number counts is used to constrain the
scaling relation parameters instead of the cosmological parameters.

The optimal nature of the Euclid or LSST mass calibration is more subtle. When
the dark energy equation of state parameter is kept fixed in the ν-ΛCDM model, Euclid
provides an optimal mass calibration on the amplitude of the scaling relation, both with
and without external cosmological priors from CMB or BAO observations. However, in the
ν-wCDM model without external priors, Euclid or LSST WL does not constrain the scaling
relation parameters optimally. The amplitude is calibrated optimally after the inclusion of
BAO data. On the other hand, including CMB priors makes an optimal calibration of the
mass trend possible. In the presence of dark energy with free but constant equation of
state, the redshift slope is never calibrated optimally. Nevertheless, as demonstrated in the
previous section, even in the limit of sub-optimal mass calibration, the eROSITA dataset
provides cosmological information complementary to these other cosmological experiments.
Furthermore, the calibration of the redshift trend could be improved by complementary
direct mass calibration methods. At high redshift, the most promising options would be
pointed observations of high-z clusters (Schrabback et al., 2018a; Schrabback et al., 2018b)
and CMB-WL calibration (Baxter et al., 2015; Planck Collaboration et al., 2016b; Baxter
et al., 2018).

Scatter in the count rate to mass relation

One may imagine that the inclusion of low scatter mass proxies in the number counts and
mass calibration analysis may tighten the constraints on the scatter and thereby reduce
the uncertainties on the cosmological parameters. Our present work does not seem to
support this hypothesis. First, we show that even an arguably weak constraint on the
scatter can be considered an optimal calibration (cf. Section 2.3.1). In other words, even
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Abbildung 2.8: Sensitivity in terms of change in log likelihood of the number counts li-
kelihood to various parameters as a function of redshift. From left to right, each panel
represents a higher count rate bin. The total number of clusters for the fiducial parameter
values is shown as a dashed line. The parameters are varied from the fiducial values as no-
ted at the top of the figure. The grey area shows the redshift range where we exclude low
mass clusters by raising the selection threshold. Notably, we find that the number counts
likelihood is most sensitive to the parameters ΩM and AS with comparable sensitivity to
w and AX.

at fixed cosmology, the number counts are unable to constrain the scatter. Consequently,
our ability to constrain the cosmology using the number counts is not expected to depend
strongly on the knowledge of the scatter. This can also be seen by the fact that there is
little correlation between the scatter and any other parameter of interest in the ν-wCDM
posterior sample, as shown in Fig. 2.3 and Fig. 2.10. We conclude that constraining the
scatter to high precision, although of astrophysical interest, is not required to perform an
optimal cosmological analysis.

Furthermore, our results indicate that DES+HSC, Euclid and LSST WL mass cali-
bration will be able to determine the scatter to 0.062, 0.034, and 0.030, respectively (see
Table 2.3). This may seem surprising, because WL mass calibration has large observatio-
nal uncertainties and a large intrinsic scatter when compared to typical low scatter mass
proxies such as the ICM mass or temperature. However, the final constraining power stems
in our analysis from the large number of cluster with WL information and the relative-
ly small prior uncertainty on the intrinsic WL scatter σWL. In summary, given that the
knowledge of the scatter does not impact the constraints on the cosmological parameters,
and that WL mass calibration is able to constrain the scatter directly, it is not clear that
a dedicated scatter calibration through the inclusion of low scatter mass proxies like the
ICM mass will significantly impact eROSITA cluster cosmology constraints. Further study
would be required to confirm this.

2.4.2 Parameter sensitivities
To investigate in more detail how our observables– i.e. the number counts of clusters
as a function of rate and redshift together with the WL mass calibration information–
depend on the model parameters, we perform the following experiment: we vary the model
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Abbildung 2.9: Sensitivity of different mass observables to the parameters considered in this
work. On the x-axis, we plot the redshift and each column represents a different count rate.
The parameters are varied around the input values. The grey area shows the observable
range which is excluded by the approximate mass cut. From the top, the first row shows
the fractional change in mass. The second and third rows show the difference in tangential
shear for a single cluster, weighted by the observational WL uncertainty for a single cluster
at that redshift, for DES and Euclid, respectively. We also see that both for the halo masses
and for the shear signal, ΩM and w lead to changes comparable to the change in amplitude
lnAX and γX. We conclude that these parameters must be degenerate with each other.
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Abbildung 2.10: Absolute values of the correlation matrices of the posterior samples in the
wCDM model, for number count (eROSITA+Baseline), number counts with DES+HSC
WL information (eROSITA+DES+HSC) and number counts with Euclid WL informati-
on (eROSITA+Euclid). Noticeably, we find that the initial correlations between the pairs
(ΩM, σ8) and (BX, γX) (in eROSITA+Baseline) is gradually broken by the addition of bet-
ter mass information (eROSITA+DES+HSC and eROSITA+Euclid). However, the better
the mass information, the clearer the inherent correlations between w, ΩM, AX and γX.
They indicate the degeneracies among these parameters stemming from the cosmology
dependence of the rate mass mapping, as discussed in Section 2.4.2.

parameters one by one and examine how the number counts, the masses and the WL signals
change. The results of this test are shown in Figs. 2.8 and 2.9. At three different fixed rates
(increasing from left to right in the three columns), we investigate the sensitivity as a
function of redshift with respect to the input parameter of the likelihood of the number
counts (Fig. 2.8), as well as the masses, and the WL signals (Fig. 2.9). We grey out the
part of rate–redshift space that is rejected due to our mass cut.

Number counts

Fig. 2.8 shows the sensitivity of the number counts with respect to shifts in the input
parameters. We decide here to plot the difference in log likelihood between the fiducial
number counts Nfid and the number counts Ñ if one parameter is varied. The difference in
log likelihood in each bin reads

δ lnL = Nfid ln
(
Nfid

Ñ

)
−Nfid + Ñ , (2.21)

which can be simply obtained by taking the Poisson log likelihoods in that bin. We find
that the number counts are most sensitive to the parameters ΩM and AS. The sensitivity
to the parameters w, AX, BX, and γX is much lower. This is reflected also in our results
for the parameter uncertainties (Tables 2.3 and 2.4). The number counts do put tighter
constraints on ΩM and σ8, than on w, consistent with results from the first forecast studies
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for large scale cluster surveys (Haiman, Mohr, and Holder, 2001; Holder, Haiman, and
Mohr, 2001).

For comparison we also plot the total number of objects Nfid (dashed line), on a scale
proportional to the difference in log likelihood. We can readily see that the difference in log
likelihood is not simply proportional to the number of objects: the rarer, higher redshift,
and consequently, at fixed rate, higher mass objects contribute more log likelihood per
cluster than the lower redshift, lower mass systems. This trend is especially true for the
constraints on ΩM and σ8 (AS), as noted in previous studies of cluster number counts
(Haiman, Mohr, and Holder, 2001; Majumdar and Mohr, 2004). The sensitivity to 10%
shifts in w and AX are comparable. The more similar the shapes of the sensitivity curves
for two parameters, the stronger the parameter degeneracy one could expect between those
parameters.

Masses and WL observables

The first row of Fig. 2.9 shows how much the masses are impacted by changes in input
parameters. To this end, we plot the ratio between the input mass and the mass determined
at the shifted parameters. In the range of interest for our study, the white area, we find
that all parameters (except for AS, of course, which we do not include in this figure) have a
comparably large impact on the masses. Most remarkably, both shifts in ΩM and w change
the masses associated to a given rate and redshift. This is because the rate mass relation
has a strong distance dependence and also some critical density dependence. Both ΩM and
w alter the redshift dependence of distances and critical densities.

More precisely, the shift to more positive w leads to a shift to higher masses, which
mirrors the effect of changing the amplitude of the scaling relation lnAX and the redshift
slope γX. Similarly, the redshift dependent mass shift induced by ΩM could be compensated
by a shift in the redshift slope γX and lnAX. We therefore conclude that within the context
of the masses corresponding to a fixed eROSITA count rate, the parameters w and ΩM are
degenerate with a combinations of lnAX and γX. This degeneracy impacts the predicted
halo masses. The mass slope parameter BX, however, seems to impact the masses in a
distinctively different way, leading to no obvious parameter degeneracy. The same can be
said for its redshift trend B′X.

In our main experiment, we do not consider perfect halo masses, but WL signal. The-
refore, we explore also the sensitivity of the WL signal for a single cluster to the input
parameters. For the sake of simplicity, we do not consider the entire profile, but just assu-
me one large radial bin spanning the fixed metric range corresponding to 0.25 – 5.0 Mpc in
our fiducial cosmology. Given the constant metric size of the area considered, the WL mea-
surement uncertainty for a single cluster due to shape noise can be computed by considering
the background source density as a function of cluster redshift nε(zcl) = nε(zs > zcl + 0.1).
In addition, the mapping from halo mass to tangential shear is non-linear and cosmolo-
gy dependent. Consequently, the shear signal associated with a given rate and redshift is
expected to have strong dependencies on cosmological parameters and, through the mass,
also on the scaling relation parameters.
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We visualize these effects in the second and third rows of Fig. 2.9 by plotting the
difference between the WL signal for a single cluster in the fiducial model and the shifted
model, divided by the expected magnitude of the shape noise for a single cluster. Indeed,
one can readily see how the sensitivity per cluster of DES WL (second row) is generally
lower, but also decreases more quickly with redshift than the sensitivity of Euclid WL
(third row). This is due to the larger Euclid source galaxy sample and its extension to
higher redshift as compared to DES. The trends we discuss above for the difference in halo
mass do apply also to the sensitivity of the WL signal as a function of redshift.

We find the same degeneracies in the covariance matrices of our posterior samples
in the ν-wCDM model for the three cases of eROSITA+baseline, eROSITA+DES+HSC,
and eROSITA+Euclid, shown in Fig. 2.10. In the case of number counts alone, we find
a strong correlation between the pairs (ΩM, σ8) and (BX, γX). The latter degeneracy is
strongly reduced by the addition of WL mass information, and is not present in the case
of Euclid WL calibration. This is due to the fact that WL is quite sensitive to BX. This is
in line with improvements of both the (ΩM, σ8) and BX constraints when adding WL mass
information. However, when w is free to vary, the degeneracies between w, lnAX and γX
lead to stronger correlations between these parameters for better mass information. They
are most pronounced in the case of number counts with Euclid WL mass calibration.

2.4.3 Comparison to previous work
Finally, we compare our results to the constraints of recent and future experiments, with
the intention of exploring how competitive eROSITA will be.

Current probes

The most up to date number counts analysis of an X-ray selected sample with WL mass
calibration has been presented by Mantz et al. (2015, called Weighing the Giants, hereafter
WtG). It consists of 224 clusters, 51 of which have a WL mass measurement, and 91 of
which have ICM mass measurements. The analysis method is similar to the one described
in this paper, with the exception that we did not consider cosmological constraints from
the measurement of the ICM mass fraction. In the wCDM model (i.e. fixing the neutrino
mass), when considering only X- ray and WL data, the uncertainties on ΩM, σ8 and w are
0.036, 0.031 and 0.15, respectively. The direct comparison to our work is made difficult
by the addition of the distance sensitive gas fraction measurements, which by themselves
constrain δΩM = 0.04 and δw = 0.26 (Mantz et al., 2014). This measure clearly dominates
the error budget on ΩM and provides valuable distance information. Nevertheless, eROSITA
cluster cosmology is evenly matched with WtG when considering just the number counts.
It will outperform the constraining power of WtG when calibrated with DES+HSC WL
information. In the case of LSST WL calibration, we project that the uncertainties on ΩM,
σ8 and w are smaller by factors 2.6, 3.1 and 2.1, respectively. These projections ignore
distance information from the eROSITA clusters and AGN, which would further improve
the constraints.
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Another recent cluster cosmology study has been presented by de Haan et al. (2016).
Therein, the cosmological constraints from 377 Sunyaev-Zeldovich selected clusters detec-
ted by the South Pole Telescope (hereafter SPT) above redshift > 0.25 are determined.
From the number counts alone, the dark energy equation of state parameter is constrained
to a precision of δw = 0.31, which is a factor 3.1 worse than our prediction for the number
counts from eROSITA alone. Furthermore, de Haan et al. (2016) find δΩM = 0.042 and
δσ8 = 0.039, while keeping the summed neutrino mass fixed at its minimal value. By com-
parison, in the baseline configuration eROSITA will improve the constrain on ΩM and σ8
by a factor 1.5 and 1.2, however while marginalizing over the summed neutrino mass. Also
note that the priors used for the de Haan et al. (2016) analysis encode the mass uncertainty
over which Bulbul et al. (2019) marginalized when deriving the uncertainties on the X-ray
scaling relation parameters we employ as our eROSITA+Baseline.

When the SPT number counts are combined with the CMB constraints from Planck,
de Haan et al. (2016) report constraints on σ8 and w of 0.045 and 0.17 respectively. We
find that eROSITA number counts alone, in combination with Planck, will do better by a
factor 2.8 on σ8 and a factor 2.0 on the equation of state parameter w, while additionally
marginalizing over the summed neutrino mass. These numbers improve even more, if we
consider the WL mass calibration by DES+HSC, Euclid and LSST.

Comparing our forecasts on the improvement of the upper limit on the summed neutrino
mass to previous results from the combination of Planck CMB measurements with either
SPT cluster number counts or WtG is complicated by several factors. First, we considere the
full mission results for Planck (Planck Collaboration et al., 2016a), while SPT (de Haan et
al., 2016) used the half mission data (Planck Collaboration et al., 2014) in addition to BAO
data, and WtG (Mantz et al., 2015) additionally added ground based CMB measurements
and supernova data. SPT reports the measurement ∑mν = 0.14 ± 0.08 eV, which is
impacted to some degree by the statistically insignificant shift between their constraint
and the CMB constraints in the (ΩM, σ8) plane. Comparison to this result is complicated
by our choice to use the minimal neutrino mass as input value. On the other hand, WtG
reports∑mν ≤ 0.22 at 95% confidence, which is comparable with our result from eROSITA
number counts, DES+HSC WL, Planck CMB and DESI BAO.

The latest cosmological constraints from measurements of the Large Scale Structure
(LSS) of the Universe were presented by the Abbott et al. (2018) for the first year of ob-
servations (Y1), where the joint constraints from the cosmic shear and photometric galaxy
angular auto- and crosscorrelation functions are derived. In the ν-wCDM model, the un-
certainties on ΩM, σ8 and w are 0.036, 0.028 and 0.21, respectively. This is better than
the constraints from eROSITA number counts alone, except for the dark energy equati-
on of state parameter, which will be constrained better by eROSITA. However, utilizing
DES+HSC to calibrate the cluster masses, we forecast that eROSITA will outperform the
DES-Y1 analysis. In combination with Planck CMB data, DES-Y1 puts a 95% upper li-
mit of 0.62 eV on the sum of the neutrino masses, whereas we forecast an upper limit of
0.424 (0.401) when combining eROSITA number counts (and DES+HSC WL calibration)
with Planck data. Considering that our DES WL analysis assumes year 5 data, it will be
interesting to see whether the DES Y5 LSS measurements or eROSITA with DES WL
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calibration will provide the tighter cosmological constraints.
As can be seen from Table 2.3, eROSITA will clearly outperform Planck CMB measure-

ments on several cosmological parameters. In the ν-ΛCDM model, eROSITA with WL mass
information will outperform Planck on the parameters ΩM and σ8, and in the ν-wCDM
eROSITA with WL case will also outperform Planck on the equation of state parameter w.
However, for constraints on the sum of the neutrino mass, Planck alone offers much more
than eROSITA alone. Given, however, that eROSITA and Planck extract their constraints
at low redshift and high redshift, respectively, the true benefit of these two experiments lies
in assessing the mutual consistency and thereby probing whether our evolutionary model
of the Universe is correct. If this is the case, their joint constraints will tightly constrain
the cosmological model, and provide improved constraints on the sum of neutrino masses.

Previous forecasts for eROSITA

This work elaborates further on the forecast of the eROSITA cosmological constraints first
presented in Merloni et al. (2012), and subsequently discussed in more detail in P18. The
direct comparison to the latter is complicated by several diverging assumptions, including
that we only consider the German half of the sky. Perhaps the most significant difference
is their approach of using Fisher matrix estimation and modeling mass calibration as
simply being independent priors on the various scaling relation parameters, whereas we
have developed a working prototype for the eROSITA cosmology pipeline and used it to
analyze a mock sample with shear profiles in a self-consistent manner.

Other differences include their use of different input scaling relations from older work at
lower redshift and different fiducial cosmological parameters. P18 includes constraints from
the angular clustering of eROSITA clusters, although these constraints are subdominant
in comparison to counts except for parameters associated with non-Gaussianity in the
initial density fluctuations (see Pillepich, Porciani, and Reiprich, 2012). In our analysis, we
marginalize over the sum of the neutrino mass as well as relatively weak priors on ωb and
nS.

Following what P18 call the pessimistic case with an approximate limiting mass of
5× 1013M�h

−1, they predict 89 k clusters, which is in good agreement with our forecast of
43 k clusters when including clusters down to masses of 5×1013M�. Under the assumption
of a 0.1 % amplitude prior, 14 % mass slope prior and 42 % redshift slope prior, they
forecast a constraint of 0.017, 0.014 and 0.059 on σ8, ΩM and w, respectively. P18 also
consider an optimistic case, in which clusters down to masses of 1 × 1013M�h

−1 are used
under the assumption of 4 times better priors on the scaling relation parameters. For this
case, the constraints on σ8, ΩM and w are 0.011, 0.008 and 0.037, respectively.

A quantitative comparison to our work is complicated by the fact that we find a cons-
traint on the amplitude of the scaling relation (through direct modeling of the WL cali-
bration from Euclid or LSST) that is worse than their pessimistic case, but our constraint
on the mass and redshift trends is better than their optimistic case. Consistently, we pre-
dict tighter constraints of σ8 and ΩM, which are sensitive to the mass and redshift trends
of the scaling relation, while we predict lower precision on w, which we demonstrate to
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be degenerate with the amplitude of the scaling relation through the amplitude distance
degeneracy. Important here is the realization that the observed shear profiles map into
cluster mass constraints in a distance dependent fashion (this is true for all direct mass
constraints; Majumdar and Mohr, 2003). It is not straightforward to capture this crucial
subtlety by simply adopting priors on observable mass scaling relation parameters.

Euclid cosmological forecasts

The Euclid survey will not only provide shear catalogs to calibrate the masses of clusters,
but will also allow the direct detection of galaxy clusters via their red galaxies (Sartoris
et al., 2016), and the measurement of the auto- and cross-correlation of red galaxies and
cosmic shear (Giannantonio et al., 2012). For the optically selected Euclid cluster sample,
Sartoris et al. (2016) forecast 2× 106 galaxy clusters with limiting mass of 7× 1013M� up
to redshift z = 2, yielding constraints on ΩM, σ8, and w of 0.0019 (0.0011), 0.0032 (0.0014),
and 0.037 (0.034), respectively, when assuming no knowledge on the scaling relation pa-
rameter (perfect knowledge of the scaling relation parameters). Under these assumptions,
the number counts and the angular clustering of Euclid selected clusters would outperform
eROSITA cluster cosmology. Nevertheless, cross comparisons between the X-ray based
eROSITA selection and the optically based Euclid cluster selection will provide chances to
validate the resulting cluster samples.

Giannantonio et al. (2012) forecast that the auto- and cross-correlations between red
galaxies and cosmic shear in the Euclid survey will provide constraints on ΩM, σ8, and
w of 0.005, 0.033 and 0.050, respectively. Such a precision on σ8 would be achieved by
the baseline eROSITA+Euclid analysis, too. However, to achieve similar precisions in ΩM
and w, it would be necessary to consider eROSITA detected clusters down to masses of
5× 1013M�.

2.5 Conclusions
In this work, we study the impact of WL mass calibration on the cosmological constraints
from an eROSITA cluster cosmology analysis. To this end, we create a mock eROSITA
catalog of galaxy clusters. We assign luminosities and ICM temperatures to each cluster
using the latest measurements of the X-ray scaling relations over the relevant redshift range
(Bulbul et al., 2019). Considering the eROSITA ARF, we then compute the eROSITA
count rate for all clusters in this sample. We apply a selection on the eROSITA count rate,
corresponding to a ∼ 6σ detection limit given current background estimates, to define
a sample for a cosmological forecast. This detection limit ensures both high likelihood
of existence and angular extent, and – through raising the detection threshold at low
redshift – also excludes low mass objects at low redshift. We assume all cluster redshifts
are measured photometrically using red sequence galaxies (see discussion in, e.g. Klein
et al., 2018; Klein et al., 2019). We forecast that in the 14,892 deg2 of the low Galactic
extinction sky accessible to the eROSITA-DE collaboration, when raising the detection
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threshold at low redshift to exclude clusters with M500c / 2 × 1014M�, we predict that
eROSITA will detect 13k clusters. This baseline cosmology sample has a median mass of
M̄500c = 2.5× 1014M� and a median redshift of z̄ = 0.51. For the case where we adjust the
low redshift detection threshold to exclude clusters with M500c / 5 × 1013M�, we predict
43k clusters. This sample has a median mass M̄500c = 1.4× 1014M�, and a median redshift
z̄ = 0.31. Both samples extend to high redshift with ∼ 400 clusters at z > 1.

We then analyze these mock samples using a prototype of the eROSITA cluster cosmo-
logy code that is an extension of the code initially developed for SPT cluster cosmology
analyses (Bocquet et al., 2015; de Haan et al., 2016; Bocquet et al., 2019a). This codes em-
ploys a Bayesian framework for simultaneously evaluating the likelihoods of cosmological
and scaling relation parameters given the distribution of clusters in observable and redshift
together with any direct mass measurement information. The scaling relation between the
selection observable (eROSITA count rate) and the mass and redshift is parametrized as
a power law with log-normal intrinsic scatter. Final parameter constraints are margina-
lized over the uncertainties (systematic and statistical) in the parameters of the mass–
observable scaling relation.

We first estimate the optimal level of mass calibration necessary for the number counts
of eROSITA clusters to mainly inform the constraints on the cosmological parameters.
This requires a calibration of the amplitude of the mass observable relation at 4.2%, the
mass trend of the scaling relation at 2.4%, and the redshift trend at 5.3%. These numbers
are derived using current knowledge of the scatter around the mass luminosity relation.
Furthermore, we determine that the mass trend of the rate mass relation has to be allowed
to vary with redshift to enable the recovery of unbiased cosmological results.

We then examine cosmological constraints in three different cluster mass calibration
contexts: (1) using ‘baseline’ constraints existing today that are taken from the recent
SPT analysis of the X-ray luminosity and temperature mass relations (Bulbul et al., 2019),
(2) using WL information from the DES+HSC survey and (3) using WL information from
the future Euclid and LSST survey. For the subset of the two catalogs that overlap the
DES, HSC, Euclid or LSST survey footprints, we produce tangential shear profiles with
appropriate characteristics for these surveys. We also estimate the level of systematic mass
uncertainties in the WL masses that would result from the data quality of these two
surveys and from theoretical uncertainties in the impact of mis-centering and mis-fitting
the shear profiles. We adopt mass uncertainties of 5.1%, 1.3% and 1.5% for DES+HSC,
Euclid, and LSST, respectively. These levels of systematic mass uncertainty will require
that our understanding of the theoretical mass bias from simulations be improved by factors
of 2 and 5 for DES+HSC and Euclid/LSST, respectively, in comparison to current work
(Dietrich et al., 2019). We note that achieving these improvements will require a significant
investment of effort.

Throughout this work, we allow the summed neutrino mass to vary. All results are thus
marginalized over the summed neutrino mass. In the ν-wCDM model, we forecast that
eROSITA number counts will constrain the density of matter in the Universe ΩM to 0.032,
the amplitude of fluctuation σ8 to 0.052, and the equation of state parameter of the dark
energy w to 0.101. Calibrating the masses of eROSITA clusters with DES+HSC (Euclid;
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LSST) WL will reduce these uncertainties to 0.023 (0.016; 0.014), 0.017 (0.012; 0.010),
and 0.085 (0.074; 0.071), respectively. We also find that eROSITA clusters alone will not
provide appreciable constraints on the sum of the neutrino masses.

eROSITA number counts will be able to break several degeneracies in current CMB
constraints, especially on late time parameters such as ΩM, σ8 and w. In combination
with Planck constraints from the measurement of the angular auto- and crosscorrelation
functions of CMB temperature and polarization anisotropies, we determine that eROSITA
will constrain these parameters to 0.019, 0.032 and 0.087 when adopting ‘baseline’ priors
on the scaling relation parameters. These uncertainties shrink to 0.018 (0.014; 0.013),
0.019 (0.010; 0.009) and 0.085 (0.074; 0.069) when calibrating the masses with DES+HSC
(Euclid; LSST) WL information.

When considering the ν-ΛCDM model, the upper limit on the neutrino mass of 0.514 eV
from CMB alone can be improved to a constraint of 0.425 eV when utilizing number counts
with the ‘baseline’ priors, 0.404 eV when also considering DES WL calibration, and to
0.291 eV when calibrating with Euclid WL, and 0.285 eV when calibrating with LSST WL.

We find that the constraining power of eROSITA cluster cosmology, even when calibra-
ted with high quality shear profiles, is limited by a degeneracy between the scaling relation
parameters and the cosmological distance to the clusters. This degeneracy arises, because
the luminosity distance is necessary to transform observed count rates into luminosities,
whose absolute and redshift dependent scaling with mass needs to be fitted simultaneously
with the cosmological parameters that alter the redshift distance relation. This leads to
the assessment that even the Euclid or LSST WL mass calibration will, by itself, not reach
what we have defined as optimal levels in the ν-wCDM model.

However, we demonstrate that, with the inclusion of BAO measurements that constrain
the redshift distance relation, the Euclid or LSST WL dataset can be used to calibrate
cluster masses at an optimal level. Considering DESI-like BAO measurements, we project
that eROSITA with Euclid WL mass calibration will constrain σ8 to 0.005 and w to 0.047,
while the uncertainty on ΩM will be dominated by the BAO measurement.

Furthermore, we investigate the impact of lowering the mass limit to M500c & 5 ×
1013M�. Given the larger number of low mass clusters or groups, the eROSITA counts
with Euclid WL can optimistically be used to determine ΩM to 0.009, σ8 to 0.007, and w
to 0.056, if these low mass systems are simple extrapolations of the high mass systems.
The expected additional complexity of these low mass systems would have to be modeled,
and this additional modeling would likely weaken the cosmological constraints.

In summary, WL mass calibration from DES+HSC, Euclid, and LSST will significantly
improve cosmological constraints from eROSITA cluster number counts, enabling a precise
and independent cross-check of constraints from other measurements. The constraining
power on w suffers from an inherent degeneracy between the distance redshift relation
and the scaling relation between the X-ray observable, mass and redshift. This degeneracy
can be lifted by inclusion of other cosmological measurements, such as BAO or CMB
measurements. In turn eROSITA cluster cosmology can break degeneracies in these other
observations, underscoring the synergies between different cosmological experiments.
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Abbildung 2.11: Estimated significance of detection (left panel) and significance of extent
(right panel) as functions of redshift for a cluster with 15, 40, and 100 photons, and
clusters of halo mass M500c = 5× 1013 M�, and 2× 1014 M� for median exposure time and
background brightness. We find that 40 (15, 100) photon counts corresponds, at least, to
a 8σ (3σ, ¿10σ) detection and a 3.5σ (2 σ, 9σ) significance of extent, rather independently
of the cluster redshift.

2.6 Appendix

2.6.1 Comments on selection
In this work, we assume two selection criteria for our X-ray cluster sample:

• a cut in measured number of photons n̂γ > 40 cts, which for the median eROSITA
field with an exposure time of 1.6 ks translates into a measured rate cut η̂ > 2.5×10−2

cts s−1,

• a cut in the observed mass

Mobs =M0 e
− lnAX

B(z)

(
η̂

η0

) 1
B(z)

(
E(z)
E0

)− 2
B(z)

(
DL(z)
DL(z0)

) 2
B(z) ( 1 + z

1 + z0

)− γ(z)
B(z)

, (2.22)

which is derived from the rate-mass scaling relation equation (2.7). It is evaluated
for the fiducial cosmology and the fiducial scaling relation parameters derived in
Appendix 2.6.2. The cut Mobs > 2× 1014M�, or Mobs > 5× 1013M� is thus provided
by a function of redshift, which is independent of cosmology and of the scaling relation
parameters, and leads to the above mentioned cuts M500c ' 2× 1014M� or M500c '
5 × 1013M�. The low mass cut is thus implemented as a redshift dependent cut in
observables (as for instance also in Vikhlinin et al., 2009a; Pillepich, Porciani, and
Reiprich, 2012).

The cut at n̂γ > 40 cts is justified by the following considerations on X-ray cluster
detection. Detection of galaxy clusters hinges on the assumption that galaxy clusters are
extended sources in the extragalactic X-ray sky, as discussed, for instance, by Vikhlinin
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et al. (1998) in the case of the ROSAT PSPC, Pacaud et al. (2006) in the case of XMM-
Newton, and Clerc et al. (2018) in the context of eROSITA. For this reason, their extraction
is usually divided into two steps: first all X-ray sources are identified, then, among the
identified source, those who are extended are selected. As outlined in Clerc et al. (2018),
eROSITA will follow a similar procedure.

Following Pacaud et al. (2006), consider an X-ray image with a number of photons in
each pixel i given by n̂i, and define the following three likelihoods:

• the likelihood that the image is simply background with background brightness µbkg,
which reads

lnLbkg =
∑
i

n̂i ln(µbkg Ai)− µbkg Ai, (2.23)

where Ai is the area of each pixel i;

• the likelihood of being a point source centered in xps with total number of photons
nps, given by

lnLps =
∑
i

n̂i ln(npsPFS(xps)i + µbkg Ai)− npsPFS(xps)i − µbkg Ai (2.24)

where PFS(x)i is the value in the pixel i of the average survey point spread function
(PSF) centered in x;

• the likelihood of being a cluster with total number of photons nγ, modeled as the
convolution of a β-model (Cavaliere and Fusco-Femiano, 1976) with the PSF, which,
for a cluster position x and cluster core radius θc, reads

lnLcl =
∑
i

n̂i ln(nγS(x; θc)i + µbkg Ai)− nγS(x; θc)i − µbkg Ai, (2.25)

where S(x; θc)i stands for the value of the PSF convolved beta-profile with center x
and core radius θc.

For the median eROSITA field, we expect µbkg = 3.6 cts arcmin−2 (Clerc et al., 2018).
To estimate the approximate significances of clusters with nγ = (15, 40, 100) at different
redshifts, we use the rate- mass relation derived in this work (c.f. Section ??). Furthermore,
we assume that the core radius is given by θc = 0.2θ500c, where θ500c is the angular extent
of the radius inclosing an over density 500 times the critical density of the Universe. We
take the PSF to be a gaussian with half energy width of 24 arcsec. Assuming β = 2/3, we
create an X-ray 10-by-10 arcmin image of the expected number of photons n̂, by computing
n̂i = nγS(x; θc)i+µbkg Ai. We intentionally do not draw a Poisson realization of the model,
in order to capture the mean behavior of the extraction procedure.

On this image, the three likelihoods are then maximized by varying (nps, xps), and
(nγ, θc, x), respectively. We shall denote the maximum likelihood ln L̂α for α ∈ (bkg, ps,
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cl). To create an analogy to the SZE case8, which can be interpreted as ‘sigmas’, both for
detection ξdet =

√
2(ln L̂cl − ln L̂bkg), and for extent ξext =

√
2(ln L̂cl − ln L̂ps). Note that

for well detected point sources, the best fit core radius θc ≈ 0, such that ln L̂cl ≈ ln L̂ps
and ξext ≈ 0, while ξdet � 0. In contrast, for well detected extended sources, ξdet � 0 and
ξext � 0. For practical purposes, the region in which the likelihood is maximized is often
pre-selected.

We repeat this exercise for different redshifts. The results are shown in Fig. 2.11. We
find that a source with 40 (15, 100) photons will be detected, at least, at 8σ (3σ, 10σ) for
redshifts above 0.5. Furthermore, we determine that these clusters will have a significance
of extent of 3.5σ (2σ, 9σ). The significance of extension at, e.g., 15 or 40 photons, is rather
low. Extent acts as a secondary selection on a sample which contains approximately 10%
clusters and 90% point sources. Considering that 3.5σ (2σ) corresponds to a p-value of
2.3× 10−4 (2.3× 10−2), the extent cut would create a cluster sample with an approximate
contamination of 0.2% (17%) by point sources after the X-ray selection. With the optical
followup of a tool like MCMF, any X-ray cluster candidate without an associated overden-
sity of red galaxies can be easily removed from the sample (Klein et al., 2018; Klein et al.,
2019).

Fig. 2.11 also shows the redshift evolution of the significances for a cluster of fixed mass.
The characterization of this evolution, especially its dependence on distance both through
the flux and the angular extent, might be worth further investigation, as its knowledge
would allow us to use the significance as a the primary X-ray observable. Such a study is
currently limited by the somewhat simplistic assumption that the core radius is a multiple
of the virial radius θ500c. Furthermore, a study of the measurement uncertainty on the
significance would be necessary.

2.6.2 Comments on the count rate to mass relation

To obtain unbiased cosmological results, the parametric form of the scaling relation needs
to provide accurate mass predictions over the mass and redshift range of interest for the
sample considered. This is necessary, as systematic biases in mass lead to a systematic
misestimation of the abundance of clusters in a given observable redshift range. These mi-
sestimations of cluster abundance will then be compensated by shifts in the cosmological
parameters, which would generically lead to systematic biases in the best fitting cosmolo-
gical parameters. Therefore, it is of paramount importance to utilize a parametric form for
the scaling relation that has adequate freedom to describe the sample being modeled.

8In the SZE case, the likelihoods above take the form of χ2 thanks to the Gaussian nature of the noise.
Their maximization w.r.t. to the amplitude of the templates simplifies the problem to a maximization of
the signal to noise as a function of scale and position. Maximizing the signal to noise is thus formally
equivalent to maximizing the likelihood. As can readily be seen, this simplification does not apply to the
Poissonian case of X-ray images. In both cases, however, we can define the maximum signal to noise, or
significance, as ξ =

√
2 ln L̂.
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Abbildung 2.12: Cosmological constraints derived from a ten times larger sample in four
cases: free B′X and γ′X, free B′X and γ′X = 0, B′X = 0 and free γ′X, and B′X = γ′X = 0.
Noticeable shift in the inferred cosmological parameters occur once B′X = 0, whereas the
case of free B′X and γ′X = 0 is very similar to the maximal case.
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Abbildung 2.13: Posterior constraints of the number counts and the Euclid WL mass ca-
libration of the 10 times larger validation mock (blue), and the constraints on the scaling
relation parameters from the perfect masses mass calibration (green). All values are con-
sistent within two sigma, indicating that our likelihoods are unbiased at a level which is
small compared to the Poisson noise in our mock eROSITA sample.
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2.6.3 Scaling relation form
It is worth noting that even though the observed X-ray luminosity to mass and tempera-
ture to mass relations show no evidence supporting a redshift dependent mass trend or a
changing power law in the redshift trend (Bulbul et al., 2019), the mass and redshift de-
pendences of the eROSITA count rate to flux conversion could introduce these additional
trends into the count rate to mass scaling relation (equation 2.7). Here we explore whether
these additional freedoms are needed in the forecasts we perform.

The ratio between the eROSITA count rate of a cluster and its rest frame 0.5-2 keV
flux, which we shall call K = η/fX, parameterizes the response of the eROSITA cameras
to a specific spectral form and the k-correction necessary to account for the transformation
from rest frame 0.5-2 keV to the observed frame. As such, one would expect it to be both
redshift and temperature dependent. The rate can be written as

η = K fX = K
LX

4πd2
L(z) . (2.26)

Thus, conceptually, the rate mass redshift scaling equals the luminosity mass redshift
scaling, with the addition of the luminosity distance dependence and the mass and redshift
trends of the flux to rate conversion.

K has a noticeable but weak redshift dependence, and this redshift dependence is dif-
ferent for clusters of different temperature. The redshift dependence leads to the difference
between the redshift trends of the rate and luminosity to mass relations (i.e., parameters
γX and γL), while the temperature dependence of this redshift trend combined with the
temperature to mass redshift scaling leads to a non vanishing redshift variation in the mass
trend of the rate scaling relation.

The baseline scaling relation for our analysis (equation 2.7) already has a redshift
dependent mass trend parameter B′X (equation 2.8). Here we introduce a generalization to
equation (2.7) by allowing a redshift trend γ′X in the redshift slope

γ(z) = γX + γ′X ln
( 1 + z

1 + z0

)
, (2.27)

which allows for the power law index in redshift to change with redshift.
We examine the importance of this additional redshift dependence by fitting the scaling

relation described by the full parameter set (lnAX, BX, γX, σX, B
′
X, γ

′
X) using both true

masses and Euclid WL mass constraints and allowing the parameter values to vary within
large priors. Such an analysis is straightforward in the controlled regime of a mock catalog
analysis where true masses and therefore the underlying form of the scaling known. In
analyzing the real eROSITA dataset, one must use direct mass constraints like those from
WL or dynamical masses to carry out a goodness of fit test for any proposed scaling relation
form (as done in the SPT analyses; Bocquet et al., 2015; de Haan et al., 2016).

We analyze the number counts with perfect and with Euclid WL constraints for the
10 times larger validation mock (cf. Section 2.2.2) using effectively four different mass
observable relations. As a baseline we sample both B′X and γ′X, the two parameters that
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Tabelle 2.5: Results for the scaling relation parameters when using the perfect halo mass
M500c to calibrate the mass observable relation. These values are used as fiducial values for
the scaling relation parameters in the rest of the work.

lnAX BX γX σX B′X
-0.328 1.997 0.446 0.278 0.355

allow for redshift variation of the mass and redshift trends. We then also consider the cases
where either or both of the two extra parameters are set to zero. The resulting constraints
on the cosmological parameters of interest are shown in Fig. 2.12. We find that the run with
γ′X = 0 has constraints comparable to the baseline case where both B′X and γ′X are free.
On the other hand, the run with B′X = 0 produces biased cosmological parameters. This
finding is consistent with the conclusions of Pillepich, Porciani, and Reiprich (2012), who–
although not using a rate mass scaling with empirical calibration, noted nonetheless that
the effective rate mass scaling they derived had a mass slope which varied with redshift.
We thus conclude that the parameter B′X needs to be sampled, while the parameter γ′X can
be fixed to zero without biasing the cosmological inference at a level that is important,
given the statistical uncertainties. In principle this parameter could also be left free to float
without any bias implications, but adding more free parameters than needed in the mass
observable relation tends to reduce the precision of the constraints on all parameters.

Fiducial parameter values

To determine the fiducial values for the parameters of the scaling between rate and mass,
we sample the mass calibration likelihood with perfect masses. We adopt the form justified
in the previous section, where γ′X = 0 (see equation 2.7). The best fit scaling relation
parameters when perfect masses are used are reported in Table 2.5. They are used as
fiducial values in several occasions during this work. The value of lnAX can be rescaled
arbitrarily by changing the pivot points η0, M0 and z0. BX and σX take values very similar
to the mass slope of the luminosity mass relation BL and the scatter around that relation
σL, respectively. For the values presented in Table ??, we have sampled the mass calibration
likelihood for perfect masses discussed in Eq. (2.10). The value for γX is larger then the
redshift slope of the luminosity–mass scaling. Also, there is a clear preference for redshift
evolution of the mass trend.



Kapitel 3

Application 2: Validation of Selection
Function, Sample Contamination and
Mass Calibration in Galaxy Cluster
Samples

3.1 Conceptual Framework for Cluster Cosmology Ana-
lyses

In the following section we will present in mathematical details the model of the cluster
population used in this work to describe the properties of the cluster samples. This dis-
cussion follows the Bayesian hierarchical framework established by Bocquet et al. (2015).
The cluster population is modeled by a forward modeling approach which transforms the
differential number of clusters as a function of halo mass M500c

1 and redshift z to the space
of observed cluster properties, such as the measured X-ray flux f̂X, the measured richness
λ̂ and the measured SZE signal to noise ξ. This transformation is performed in two steps.
First, utilising scaling relations with intrinsic scatter to compute the number in intrinsic
flux, richness and SZE signal to noise. These relations have several free parameters such
as amplitudes, mass and redshift trends, intrinsic scatter around the mean relation, and
correlation coefficients among the intrinsic scatter on different observables. Constraining
these free parameters is the aim of this work, as these constraints characterise the systema-
tic uncertainty in the observable–mass relations. A second modeling step we apply models
of the measurement uncertainty to construct the number density in observed cluster pro-
perties. We also present the modeling of the selection function and of the likelihood used
to infer the parameters governing the scaling relations.

1M500,c is the mass enclosed in a spherical over density with average density 500 times the critical
density of the Universe.
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3.1.1 Modeling the cluster population
The starting point of our modeling of the cluster population is the differential number as
function of halo mass M500c and redshift z, given by

dN
dM

∣∣∣∣
M,z

= dn
dM

∣∣∣∣
M,z

d2V

dzdΩdzdΩ, (3.1)

where dn
dM

∣∣∣
M,z

is the halo mass function describing the differential number density of halos at
mass M and redshift z, as presented by Tinker et al. (2008)2; d2V

dzdΩdzdΩ is the cosmological
volume subtended by the redshift bin dz and the survey angular footprint dΩ.

The mapping from halo mass to intrinsic cluster properties is modeled by scaling re-
lations, which are characterised by a mean relation with free parameters and a correlated
scatter. The mean intrinsic relations we use read as

〈fX〉 = L0AX

4πd2
L(z)

(
M h

M0,X

)BX
(
E(z)
E(z0,X)

)2( 1 + z

1 + z0,X

)CX

(3.2)

for the X-ray flux3,
〈λ〉 = Aλ

(
M h

M0,λ

)Bλ( E(z)
E(z0,λ)

)Cλ
(3.3)

for the richness, and
〈ζ〉 = ASZ

(
M h

M0,SZ

)BSZ
(

E(z)
E(z0,SZ)

)CSZ

(3.4)

for the SZE signal. h is numerical value the present day expansion rate if expressed in units
of 100m s−1 Mpc−1, and E(z) the ratio between the expansion rate at redshift z and the
current day expansion rate. The form of the redshift evolution adopted in equations (3.3)
and (3.4) has explicit cosmological dependence in the redshift evolution that is not well
motivated (see discussion in Bulbul et al., 2019, hereafter Bu19), but we nevertheless adopt
these forms for consistency with previous studies (e.g. S15). The pivot points in mass
M0,X = 6.35× 1014hM�h

−1, M0,λ = 3.× 1014M�h
−1 = M0,SZ, in luminosity L0 = 1044 erg

s−1, and in redshift z0,X = 0.45, z0,λ = 0.6 = z0,SZ are constants in our analysis. In contrast,
the parameters Aℵ, Bℵ and Cℵ for ℵ ∈ (X, λ, SZ) are free parameters of the likelihoods
described below. These parameters encode the systematic uncertainty in the mass derived
from each observable.

The inherent stochasticity in the cluster populations is modeled by assuming that the
intrinsic observable scatters log-normally around the mean intrinsic relation4. Consequent-
ly, given mass M and redshift z, the probability for the intrinsic cluster observables (fX,

2We present here the entire formalism with distributions of M and of observables. In practice, we work
with the natural logarithm of mass and of observables.

3The flux in this form makes explicit the cosmological dependencies due to distances and to self-similar
evolution while allowing for departures from that self-similar evolution.

4The notation utilised here is imprecise. The scaling relation describes the mean of the natural logarithm
of the intrinsic observable, not the natural logarithm of the mean, as suggested by the notation. Not
interpreting 〈·〉 as an average ensures a fully consistent notation.
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λ, ζ) is given by

P (fX, λ, ζ|M, z) = 1√
(2π)3 det C

1
fXλζ

exp
{
− 1

2∆xTC−1∆x
}
, (3.5)

with
∆xT = (ln fX − ln〈fX〉, ln λ− ln〈λ〉, ln ζ − ln〈ζ〉) (3.6)

and

C =

 σ2
X σXσλρX,λ σXσSZρX,SZ

σXσλρX,λ σ2
λ σλσSZρλ,SZ

σXσSZρX,SZ σλσSZρλ,SZ σ2
SZ

 , (3.7)

where σℵ for ℵ ∈ (X, λ, SZ) encodes the magnitude of the intrinsic log-normal scatter in the
respective observable, while the correlation coefficients ρℵ,ℵ′ encode the degree of correlation
between the intrinsic scatters on the respective observables. The scatter parameters and the
correlation coefficients are free parameters of our analysis. The probability density above
is written as a probability density in the natural logarithm of the intrinsic observables.
However, for sake of brevity, we omit the natural logarithm in the notation.

The differential number of objects as a function of intrinsic observables can be computed
by applying the stochastic mapping from mass to intrinsic observables to the differential
number of cluster as a function of mass, i.e

d3N

dfXdλdζ

∣∣∣∣
fX,λ,ζ,z

=
∫

dMP (fX, λ, ζ|M, z) dN
dM

∣∣∣∣
M,z

. (3.8)

In some parts of our subsequent analysis, we do not require the distribution in SZE
signal to noise. The differential number of objects as a function of intrinsic X-ray flux
and richness can be obtained either by marginalising equation (3.8) over the intrinsic SZE
signal ζ, or by defining P (fX, λ|M, z) just for the X-ray and optical observable by omitting
the SZE part,

d2N

dfXdλ

∣∣∣∣
fX,λ,z

=
∫

dζ d3N

dfXdλdζ

∣∣∣∣
fX,λ,ζ,z

=
∫

dMP (fX, λ|M, z) dN
dM

∣∣∣∣
M,z

.

(3.9)

3.1.2 Modeling measurement uncertainties
The intrinsic cluster observables are not directly accessible as only their measured values
are known. We thus need to characterise the mapping between intrinsic and measured
observables.

For the X-ray flux, we assume that the relative error on the flux σ̂X is the same as the
relative error in the count rate. For each object (i) in our catalog we can determine

P (f̂ (i)
X |fX) = 1√

2π(σ̂(i)
X )2

1
f̂

(i)
X

exp
{
− 1

2
(ln f̂ (i)

X − ln fX)2

(σ̂(i)
X )2

}
. (3.10)
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For an application described below, it is necessary to know the measurement uncertainty
on the X-ray flux for arbitrary f̂X, also those fluxes for which there is no corresponding
entry in the catalog. As described in more detail in Appendix 3.7.1, we extrapolate the
relative measurement uncertainty rescaled to the median exposure time in our footprint,
creating a function σ̂2

X(f̂X, z, texp), which in turn allows us to compute

P (f̂X|fX, z, texp) = 1√
2πσ̂2

X(f̂X, z, texp)
1
f̂X

exp
{
− 1

2
(ln f̂X − ln fX)2

σ̂2
X(f̂X, z, texp)

}
. (3.11)

Following S15, the measurement uncertainty on the optical richness is modeled as Pois-
son noise in the Gaussian limit, that is

P (λ̂|λ) = 1√
2πλ

exp
{
− 1

2
(λ̂− λ)2

λ

}
. (3.12)

The measurement uncertainty on the SZE signal to noise follows the prescription of
Vanderlinde et al. (2010), who have determined the relation between measured SZE signal
to noise ξ and the intrinsic signal to noise, as a function of the effective field depth γf

5,
namely

P (ξ|ζ, γf) = 1√
2π

exp
{
− 1

2

(
ξ −

√
γ2

f ζ
2 + 3

)2}
. (3.13)

3.1.3 Modeling selection functions
The selection functions in optical and SZe observables are easy to model as the mapping
between measured and intrinsic observables is known and the selection criterion is a sharp
cut in measured observable. For the optical case, the removal of random superpositions by
imposing fc < 0.05 in the optical followup leads to a redshift dependent minimal measured
richness λmin(z), as discussed in K19. This leads to an optical selection function which is
a step function in measured richness

P (DES|λ̂, z) = Θ(λ̂− λmin(z)), (3.14)
where Θ(x) is the Heavyside step function with value 0 at x < 0, and 1 at x ≥ 0. Using the
measurement uncertainty on richness (equation 3.12), we construct the optical selection
function in terms of intrinsic richness λ as

P (DES|λ, z) = P (λ̂ > λmin(z)|λ) =
∫ ∞
λmin(z)

dλ̂P (λ̂|λ) (3.15)

The SPT-selected catalog we use in this work is selected by imposing that the measured
signal to noise is ξ > 4.5, which, analogously to the optical case, is a step function in ξ
and leads to an SZE selection function on ζ given by

P (SPT|ζ, γf) = P (ξ > 4.5|ζ, γf) =
∫ ∞

4.5
dξP (ξ|ζ, γf). (3.16)

5In de Haan et al. (2016) these factors are presented as renormalizations of the amplitude of the SZE-
signal–mass relation. Our notation here is equivalent, but highlights that they describe a property of the
mapping between intrinsic SZE-signal and measured signal, and not between intrinsic signal and mass.
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Abbildung 3.1: The measured X-ray flux f̂X and the X-ray detection probability ξX, color
coded the exposure time. As a black line the X-ray selection ξX > 6.5. While X-ray flux and
significance clearly display scaling, the scatter around this scaling correlates with exposure
time.
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Constraining the X-ray selection function

The selection of the 2RXS catalog is given by the cut ξX > 6.5, where ξX is the significance
of existence of a source, computed by maximizing the likelihood that a given source is not
a background fluctuation (Boller et al., 2016). In the space of this observable, the selection
function is a simple step function. However, in X-ray studies the selection function in a
space of intrinsic X-ray flux is traditionally determined by image simulations (Vikhlinin
et al., 1998; Pacaud et al., 2006; Clerc et al., 2018). In such an analysis, the emission from
simulated clusters is used to create simulated X-ray images or event files, which are then
analyzed with the same source extraction tools that are employed on the actual data. As
a function of intrinsic flux, the fraction of recovered clusters is then used to estimate the
selection function P (X-det|fX, ...). This process captures, to the degree that the adopted
X-ray surface brightness model is consistent with that of the observed population, the
impact of morphological variation on the selection.

In this work, we take a novel approach, inspired by the treatment of optical and SZe
selection functions outlined above. This approach is based on the concept that the tra-
ditional selection function can be described as a combination of two distinct statistical
processes: the mapping between measured detection significance ξX and measured flux f̂X,
and the mapping between measured flux f̂X and intrinsic flux fX, i.e.

P (X-det|fX, ...) =
∫

df̂XP (X-det|f̂X, ..)P (f̂X|fX, ...), (3.17)

The second part of the integrand is the description of the measurement uncertainty of the X-
ray flux. This mapping is required to perform the number counts and any mass calibration.
It should therefore be readily accessible. Its construction is described in Appendix 3.7.1.
The first term can be easily computed from the mapping between measured flux f̂X and
X-ray significance ξX, P (ξX|f̂X, ..). Indeed, it is just the cumulative distribution of that
mapping for ξX > 6.5.

The mapping between measured flux f̂X and X-ray significance ξX can be seen in Fig. 3.1
for the MARD-Y3 clusters, where we plot the detection significance against the measured
fluxes. The relation displays significant scatter, which is partially due to the different
exposure times (color-coded). Also clearly visible is the selection at ξX > 6.5 (black line).
As an empirical model for this relation we make the ansatz

〈ξX〉 = ξ0(z)eα0

(
f̂X

f0(z)

)α1( texp

400s

)α2

, (3.18)

where ξ0(z) and f0(z) are the median significance and measured flux in redshift bins.
To reduce measurement noise, we smooth them in redshift. We then assume that the
significance of each cluster scatters around the mean significance with a log-normal scatter
σα. This provides the distribution P (ξX|f̂X, z, texp).

To fit the free parameters of this relation, namely (α0, α1, α2, σα), we determine the
likelihood of each cluster i as

Lα,i =
P (ξ(i)

X |f̂
(i)
X , z(i), t(i)exp)

P (ξX > 6.5|f̂ (i)
X , z(i), t

(i)
exp)

, (3.19)
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where the numerator is given by evaluating P (ξX|f̂X, z, texp) for each cluster, while the
denominator ensures proper normalization for the actually observable data, i.e. clusters
with ξX > 6.5. In properly normalising we account for the Malmquist bias introduced by
the X-ray selection. Note also that we do not require the distribution of objects as a function
of f̂X to perform this fit, as it would multiply both the numerator and the denominator
and hence cancel out.

The total log-likelihood of the parameters (α0, α1, α2, σα) is given by the sum of
the log-likelihoods lnLα = ∑

i lnLα,i. This likelihood provides stringent constraints on
the parameters (α0, α1, α2, σα). We find the best fitting values α0 = −0.113 ± 0.020,
α1 = 1.275± 0.031, α2 = 0.799± 0.038 and σα = 0.328± 0.012. Noticeably, the constraints
are very tight, indicating that the sample itself provides precise information about this
relation.

Given this relation, the X-ray selection function can be computed as

P (RASS|f̂X, z, texp) = P (ξX > 6.5|f̂X, texp, z)

=
∫ ∞

6.5
dξXP (ξX|f̂X, texp, z)

(3.20)

Whenever the X-ray selection function is required, we sample the extra nuisance parameters
with the ancillary likelihood (Eq. 3.19), marginalizing over the systematic uncertainties in
this element of the X-ray selection function. Further discussion of the parameter posteriors
and their use to test for systematics in the selection function can be found in section 3.5.1.

Testing for additional dependencies

Empirically calibrating the relation governing the X-ray selection function has several be-
nefits: (1) we take full account of the marginal uncertainty in the X-ray selection function.
(2) Compared to image simulation, we do not rely on the realism of the clusters put into
the simulation. Indeed, we use the data themselves to infer the relation. Together with
the aforementioned marginalisation this ensures that we do not artificially bias our selec-
tion function. (3) We can empirically explore any further trends of the residuals of the
significance–flux relation with respect to other quantities.

The latter is shown in Fig. 3.2, where the residual σ−1
α ln(ξ(i)

X /〈ξX〉(i)) is plotted against
redshift (upper left panel), Galactic hydrogen column density (upper right), background
count rate in an aperture of 5’ radius (lower left) and measured extent (lower right). As
black dots we show the means if the populations in bins along the x axis. We find a
weak trend with hydrogen column density. For simplicity we let this trend contribute to
the overall scatter σα. We find no correlation with the background brightness. There is a
clear trend with measured extent, as can be expected for extended sources like clusters.
However, we do not follow up on this trend, as 442 of the 708 cluster that we consider have
a measured extent of 0 (due to the large PSF of RASS).

Most troublingly, we find a trend with redshift which is not captured by our model,
as can be seen in the upper left panel of Fig. 3.2. At the lowest redshifts, we tend to
over predict the significance given flux and exposure time, while at intermediate and high
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Abbildung 3.2: Residuals of the fitted significance–flux relation against redshift (upper
left panel), neutral hydrogen column density (upper right), background counts rate in the
aperture (lower left) and measured extent. This plot indicates that the addition of a redshift
trend or and extent trend would be natural extension of our model. The current level of
systematic and statistical uncertainties however does not require these extensions.
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redshifts we tend to underestimate it. This residual systematic manifests itself at different
stages in our analysis, and we discuss this as it arises and again in section 3.1.3.

3.2 Validation methods
As described above, the selection model for the clusters is specified by the form of the
mass–observable relation and the intrinsic and observational scatter of the cluster popu-
lation around the mean relation. The choice of the form of this relation should be driven
primarily by what the data themselves demand, with guidance from the principle of pre-
ferred simplicity (Occam’s razor) and informed by predictions from structure formation
simulations. This scaling relation should be empirically calibrated using methods such as
weak lensing and dynamical masses, whose systematics can be calibrated and corrected
using tests on structure formation simulations. Finally, a key step in cosmological analyses
of cluster samples is to check consistency of the cluster sample with the best fit model of
cosmology and mass–observable relation (e.g., goodness of fit; see Bocquet et al., 2015).

Given that the mass-observable relation can be calibrated using multiple sources of mass
information, including direct mass information and from the cluster counts themselves,
which is the distribution in observable and redshift of the cluster sample, there is ample
opportunity for validation of the scaling relation and the selection function. In future
cosmology analyses, blinding of the cosmological and nuissance parameters will be the
norm, and cluster cosmology is no exception. The validation of a cluster sample through
the requirement that all different reservoirs of information about the scaling relation lead
to consistent results can be carried out in a blinded manner and should lead to improved
stability and robustness in the final, unblinded cosmological results. We note that given
the sensitivity of mass measurements to the distance-redshift relation and the sensitivity
of the counts to both distance-redshift and growth of structure, these blinded tests should
in general be carried out within each family of cosmological models considered (e.g., flat
or curved ν-ΛCDM, flat or curved ν-wCDM, etc).

In this work we seek to perform the following tests to validate the selection function
modeling of the MARD-Y3 sample: (1) we investigate whether the X-ray flux–mass and
richness–mass relation obtained by cross calibration using SPT-SZ mass information is
consistent with the relation derived from the number counts of the MARD-Y3 sample;
(2) we compare the scaling relation constraints from different flavours of number counts
with each other (e.g., number counts in X-ray flux and redshift, in optical richness and
redshift, and in both X-ray flux, optical richness and redshift); (3) finally, we constrain
the probability of incompleteness in the SPT-SZ sample or contamination in the MARD-
Y3 sample by comparing the clusters with and without counterparts in the other survey
to the probabilities of having or not having counterparts as estimated using the selection
functions. We take advantage in these validation tests of the fact that these scaling relations
have been previously studied, and so we can compare our results not only internally but
also externally to the literature. Finally, a key validation test could be carried out with the
weak lensing information from DES, but we delay that to a future analysis where we hope
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also to present unblinded cosmological results.
Given the stochastic description of the cluster population outlined above, we set-up

different likelihood functions for each of these tests. These likelihoods are functions of the
parameters determining the mapping between intrinsic observables and mass, the scatter
around these relations and the correlation coefficients among the different components of
scatter. Consequently, sampling these likelihoods with the data constrains the parameters.
In the following sections we present the likelihoods used for each of the three validation
methods listed above.

3.2.1 SPT-SZ cross calibration
For each object in the matched MARD-Y3 – SPT-SZ sample, we seek to predict the
likelihood of observing the measured SZE signal to noise ξ(i) given the measured X-ray
flux f̂

(i)
X , measured richness λ̂(i) and the scaling relation parameters. This likelihood is

constructed by first making a prediction of the intrinsic SZE-signal to noise ζ that is
consistent with the measured X-ray flux f̂ (i)

X and measured richness λ̂(i), depending on the
scaling relation parameters. To this end, the joint distribution of intrinsic properties is
evaluated at the intrinsic fluxes and richnesses consistent with the measurements

P (ζ|f̂ (i)
X , λ̂(i), z(i)) ∝

∫
dλP (λ̂(i)|λ)

∫
dfXP (f̂ (i)

X |fX)

d3N

dfXdλdζ

∣∣∣∣
fX,λ,ζ,z(i)

.
(3.21)

This expression of expected intrinsic SZE-signal takes account of the Eddington bias indu-
ced by the observational and intrinsic scatter in the X-ray and optical observable acting
in combination with the fractionally larger number of objects at low mass, encoded in the
last term of the expression.

To evaluate the likelihood of the measured SZE signal to noise ξ(i) given the measured
X-ray flux f̂ (i)

X and measured richness λ̂(i), we need to compare the predicted distribution
P (ζ|f̂ (i)

X , λ̂(i), z(i)) with the likely values of intrinsic SZE-signal derived from the measure-
ment ξ(i) and the measurement uncertainty. This is written

P (ξ(i)|f̂ (i)
X , λ̂(i), z(i)) =∫

dζ P (ξ(i)|ζ, γ(i)
f )P (ζ|f̂ (i)

X , λ̂(i), z(i))∫
dζ P (SPT|ζ, γ(i)

f )P (ζ|f̂ (i)
X , λ̂(i), z(i))

.
(3.22)

Notably, the denominator ensures the proper normalisation and also takes into account
the Malmquist bias introduced by the SPT-SZ selection. Also note that the normalization
cancels the dependence of this likelihood on the amplitude of the number of objects at
the redshift z(i), measured flux f̂

(i)
X and measured richness λ̂(i). This strongly weakens its

cosmological dependence and makes it independent of the X-ray and the optical selection
function (see also Liu et al., 2015). For sake of brevity we omitted that this likelihood
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depends on the scaling relation parameters and the cosmological parameters, all needed to
compute the distribution of intrinsic properties.

The total log-likelihood of SPT-SZ cross calibration over the matched sample is given
by the sum of the individual log likelihoods

lnLSPTcc =
∑

i∈matched
lnP (ξ(i)|f̂ (i)

X , λ̂(i), z(i)), (3.23)

which is a function of the scaling relation parameters and cosmology. Sampling it with
priors on the SZE scaling relation parameters that come from an external calibration will
then transfer that calibration to the X-ray flux and richness scaling relations.

3.2.2 Calibration with number counts
The number of clusters as a function of measured observable and redshift is a powerful way
to constrain the mapping between observable and mass, because the number of clusters
as a function of mass is known for a given cosmology (see self-calibration discussions in
Majumdar and Mohr, 2003; Hu, 2003; Majumdar and Mohr, 2004).

X-ray number counts

The likelihood of number counts is given by
lnLnc X =

∑
i

lnN
∣∣∣
f̂

(i)
X ,z(i)

−Ntot, (3.24)

where the expected number of objects as a function of measured flux f̂ (i)
X and redshift z(i)

is
N
∣∣∣
f̂

(i)
X ,z(i)

= P (RASS|f̂ (i)
X , z(i), t(i)exp)

∫
dfXP (f̂ (i)

X |fX)∫
dλP (DES|λ, z(i)) d2N

dfXdλ

∣∣∣∣
fX,λ,z(i)

df̂X,
(3.25)

where the first factor takes into account the X-ray selection, the second factor models
the measurement uncertainty on the X-ray flux and the third factor models the optical
incompleteness.

The total number of objects is computed as

Ntot =
∫

dtexpP (texp)
∫

dz
∫

df̂XP (RASS|f̂X, z, texp)∫
dfXP (f̂X|fX, z, texp)

∫
dλP (DES|λ, z)

d2N

dfXdλ

∣∣∣∣
fX,λ,z

,

(3.26)

where P (texp) is the solid angle weighted exposure time distribution. We highlight here
that differently from previous work, we explicitly model not only the selection on the X-
ray observable, but also fold in the incompleteness correction due to the MCMF optical
cleaning via the term P (DES|λ, z).
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Optical number counts

While not customary for a predominantly X-ray selected sample, the number counts of
clusters can also be performed in measured richness. In this case, the likelihood reads

lnLnc λ =
∑
i

lnN
∣∣∣
λ̂(i),z(i)

−Ntot, (3.27)

where Ntot is given by equation( 3.26), whereas the expected number of clusters as a
function of measured richness λ̂(i) and redshift z(i) is computed as follows

N
∣∣∣
λ̂(i),z(i)

=
∫

dtexpP (texp)
∫

df̂XP (RASS|f̂X, z, texp)∫
dfXP (f̂X|fX, z, texp)

∫
dλP (λ̂(i)|λ, z) d2N

dfXdλ

∣∣∣∣
fX,λ,z

dλ̂,
(3.28)

where the first three integrals take account of the X-ray selection, whereas the last integral
models the measurement uncertainty on the richness.

Combined X-ray and optical number counts

Besides performing the number counts in only one observable, one can also perform the
number counts in more than one observable (e.g. Mantz et al., 2010), in our case by fitting
for the number of objects as a function of both measured flux f̂ (i)

X and richness λ̂(i). In that
case the likelihood reads

lnLnc X,λ =
∑
i

lnN
∣∣∣
f̂

(i)
X ,λ̂(i),z(i)

−Ntot, (3.29)

where the expected number of objects as a function of measured flux f̂ (i)
X and richness λ̂(i)

is computed as

N
∣∣∣
f̂

(i)
X ,λ̂(i),z(i)

=P (RASS|f̂ (i)
X , z(i), t(i)exp)

∫
dfXP (f̂ (i)

X |fX)∫
dλP (λ̂(i)|λ) d2N

dfXdλ

∣∣∣∣
fX,λ,z(i)

df̂Xdλ̂,
(3.30)

computed by folding the intrinsic number density with the measurement uncertainties on
flux and richness.

3.2.3 Consistency check using two cluster samples
Given the selection functions for two cluster samples, one can calculate the probability that
any member of one sample is present in the other. This provides a powerful consistency
check of the two selections functions, and if anomalies are found this approach can be
used, for example, to probe for contamination or unexplained incompleteness in the cluster
samples.
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SPT-SZ cluster
ξ(i), z(i)

should not be
in MARD-Y3

should be in
MARD-Y3

is not in
MARD-Y3 is in MARD-Y3

1− p(i)
M,S p

(i)
M,S

1− πt πt 1

(1− p(i)
M,S)(1− πt) (1− p(i)

M,S)πt + p
(i)
M,S

Abbildung 3.3: Probability tree describing the probability of an SPT-SZ cluster being de-
tected in MARD-Y3. Besides the matching probability computed from the scaling between
intrinsic observables and mass, the scatter around this relation, the observational uncer-
tainties on the observables and the selection functions p(i)

M,S, we also introduce the chance of
either X-ray flux boosting or SZE signal dimming πt, which would lead to the MARD-Y3
detection of SPT-SZ cluster that should otherwise not have been matched. Summarized at
the end of each branch are the probabilities of matching or of not matching.
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MARD-Y3 detection probability for SPT-SZ clusters

For any SPT-SZ cluster with measured SZE signal to noise ξ(i) and redshift z(i) in the joint
SPT–DES-Y3 footprint we can compute the probability of being detected by MARD-Y3
as follows. We first predict the probability distribution of intrinsic fluxes and richnesses
associated with the measured SZE-signal to noise as

P (fX, λ|ξ(i), z(i)) ∝
∫

dζ P (ξ(i)|ζ, γ(i)
f ) d3N

dfXdλdζ

∣∣∣∣
fX,λ,ζ,z(i)

. (3.31)

This expression needs to be properly normalised to be a distribution in intrinsic flux and
richness. This is achieved by imposing

∫
dfX

∫
dλP (fX, λ|ξ(i), z(i)) = 1, which sets the

proportionality constant of the equation above. Note that this normalization cancels the
dependence of this expression on the number of clusters observed. The predicted distri-
bution of intrinsic fluxes and richnesses needs to be folded with the selection functions to
compute the detection probability. The optical selection function is simply given by equa-
tion (3.15) evaluated at the cluster redshift z(i). On the other hand, when computing the
X-ray selection function we take the RASS exposure time at the SPT-SZ position into ac-
count, while marginalising over all possible measured fluxes. The X-ray selection function
thus reads

P (RASS|fX, t
(i)
exp, z

(i)) =
∫

df̂X P (RASS|f̂X, t
(i)
exp, z

(i))P (f̂X|fX, t
(i)
exp, z

(i)), (3.32)

where the second factor is taken from equation (3.11), the expression for the X-ray mea-
surement error at arbitrary measured flux f̂X.

The probability of detecting in MARD-Y3 a SPT-SZ cluster with measured SZE-signal
to noise ξ(i) and redshift z(i) can then be computed by folding the predicted distribution
of fluxes and richnesses with the selection functions in flux and richness as follows

p
(i)
M,S := P (RASS,DES|ξ(i), z(i)) =

∫
dfXP (RASS|fX, t

(i)
exp, z

(i))
∫

dλP (DES|λ, z(i))P (fX, λ|ξ(i), z(i)),
(3.33)

where we omit the dependence on the SPT-SZ field depth γ(i)
f at the position of the SPT-SZ

selected cluster.
Given these probabilities, we can define two interesting classes of objects: (1) SPT-SZ

clusters that should not have a MARD-Y3 match given their low probability but have been
nonetheless matched, and (2) SPT-SZ clusters with a very high chance of being matched
that have nonetheless not been matched. For the discussion in this paper we adopt a
low probability threshold of p(i)

M,S < 0.025 for the first class and call them SPT-SZ false
positives, and we adopt a high probabilty threshold of p(i)

M,S > 0.975 for the second class
and call them SPT-SZ true negatives.

Anticipating that we find several SPT-SZ false positives and no SPT-SZ true negative,
we introduce here the probability πt that an SPT-SZ cluster has a SZE signature lower
than expected by the scaling relation (which includes the effects of intrinsic and observed
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scatter), or equivalently an X-ray flux that is larger than expected, effectively leading to
an underestimation of p(i)

M,S or a matched detection despite low p
(i)
M,S. The likelihood of

πt can be computed by following the probability tree shown in Fig 3.3. The probability
of being matched is (1 − p

(i)
M,S)πt + p

(i)
M,S, while the probability of not being matched is

(1− p(i)
M,S)(1− πt). Thus, the log-likelihood is given by

lnL(πt) =
∑

i∈match
ln
(
(1− p(i)

M,S)πt + p
(i)
M,S

)
+

+
∑

i∈!match
ln
(
(1− p(i)

M,S)(1− πt)
) (3.34)

This likelihood also depends on the scaling relation parameters through the detection
probabilities p(i)

M,S. Marginalizing over these scaling relation parameters accounts for the
systematic uncertainty on the observable–mass relations.

This approach allows us to go beyond a consistency check and use the cross-matched
cluster samples to quantify the inadequacy of the adopted and calibrated selection functions
to describe the samples.

SPT-SZ detection probability for MARD-Y3 clusters

Similarly to the case in the previous section, for each MARD-Y3 cluster with measured
X-ray flux f̂

(i)
X , measured richness λ̂(i) and redshift z(i) in the joint SPT-SZ – DES Y3

footprint, we can compute the probability of it being detected by SPT

p
(i)
S,M : = P (SPT|f̂ (i)

X , λ̂(i), z(i))

=
∫

dζP (SPT|ζ, γ(i)
f )P (ζ|f̂ (i)

X , λ̂(i), z(i)),
(3.35)

where the first factor in the integrand is the SPT-SZ selection function evaluated for the
field depth at the MARD-Y3 cluster position, while the second factor is the prediction for
the intrinsic SZE-signal to noise consistent with the measured X-ray and optical properties.
The latter is taken from equation (3.21) while ensuring that it is properly normalized,∫

dζP (ζ|f̂ (i)
X , λ̂(i)) = 1.

MARD-Y3 false positives and MARD-Y3 true negatives can be defined as for the SPT-
SZ cases discussed in Section 3.2.3. In this case, we introduce the probability of each
individual MARD-Y3 cluster being a contaminant πc, and the probability that a SPT-SZ
cluster that should be detected has not been detected, leading to SPT-SZ incompleteness,
πi. From the probability tree shown in Fig. 3.4 we can determine the probability of a
MARD-Y3 cluster being matched by SPT-SZ as (1− πc)p(i)

S,M(1− πi), and the probability
of a cluster not being matched as πc + (1− πc)(1− p(i)

S,M + πip
(i)
S,M). Thus, the log-likelihood

is given by

lnL(πc, πi) =
∑

i∈match
ln
(
(1− πc)p(i)

S,M(1− πi)
)

+
∑

i∈!match
ln(πc + (1− πc)(1− p(i)

S,M + πip
(i)
S,M)).

(3.36)
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X , λ̂(i), z(i)

is contaminant is cluster

should not be
in SPT-SZ

should be
in SPT-SZ

is not in SPT-SZ is in SPT-SZ

πc 1− πc

1− p(i)
S,M p

(i)
S,M

1 πi 1− πi

1

πc + (1− πc)(1− p(i)
S,M + πip

(i)
S,M) (1− πc)p(i)

S,M(1− πi)

Abbildung 3.4: Probability tree describing the probability of a MARD-Y3 cluster being
detected by SPT. Besides the matching probability computed from the scaling between
intrinsic observables and mass, the scatter around this relation, the observational uncer-
tainties on the observables and the selection functions p(i)

SM, we also introduce the chance
that a MARD-Y3 cluster is a contaminant πc, and the chance that SPT-SZ misses a clu-
ster it should detect, indicating incompleteness in SPT, πi. Summarized at the end of each
branch are the probabilities of being matched or not matched.
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This likelihood also depends on the scaling relation parameter through the detection pro-
babilities p(i)

M,S. Marginalizing over the scaling relation parameters accounts for the the
systematic uncertainties on the observable–mass relations.

3.3 Dataset and Priors
We present here the cluster samples and then the priors used in obtaining the results
presented in the following section.

3.3.1 Cluster samples
Here we summarize not only the main properties of the prime focus of our validation, the
MARD-Y3 cluster sample, but also the SPT-SZ sample that we use for validation and for
cross-matching with MARD-Y3.

MARD-Y3 X-ray selected clusters

In this work we seek to validate the mass information and the selection function modeling
of the MARD-Y3 cluster sample, presented in K19. In that work, optical follow-up with the
MCMF algorithm (Klein et al., 2018) of the RASS 2nd faint source catalog (hereafter 2RXS,
Boller et al., 2016) is performed by scanning the DES photometric data with a spatial filter
based on X-ray candidate position and inferred mass, and a color filter based on the red-
sequence model at a putative redshift. This process provides a cluster richness estimate
λ̂ and photometric redshift z. Comparison to the richness distribution in lines of sight
without X-ray candidates allows one to estimate the probability fc that the X-ray source
and optical system identified by MCMF are a random superposition (contamination). In
cases of multiple richness peaks along a line of sight toward a 2RXS candidate, the redshift
with lowest fc is identified as the optical counterpart. The redshifts display sub-percent level
scatter w.r.t. spectroscopic redshifts, and the richnesses λ̂ can be adopted as an additional
cluster mass proxy.

In K19, careful comparison of the luminosities from 2RXS to luminosities reported by
Piffaretti et al. (2011) for the MCXC catalog allows one to transform the 2RXS luminosity
measured in a fixed aperture with radius of 5′ into a luminosity within R500c, the radius
enclosing an over-density of 500 w.r.t. to the critical density. This correction is only reliable
at z > 0.15.

In this work we focus on the z > 0.15 sample with fc < 0.05 with an additional
rejection of luminosity–richness outliers with an infra-red signature compatible with an
active galactic nucleus (c.f. K19, Section 3.11). Our MARD-Y3 sample is then 708 clusters
in a footprint of 5204 deg2 with an expected contamination of 2.6% (K19).

In Figure 3.5 we show the redshift–X-ray inferred mass distribution of this sample, color
coded to reflect the cluster richnesses. We also show as a black line the mass corresponding
to 40 photon counts in the first eROSITA full sky survey (eRASS1), computed using the
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Abbildung 3.5: MARD-Y3 sample of 708 cluster constructed by cleaning the 2nd RASS
faint source catalog with DES data. While not used in the rest of the analysis, the X-ray
inferred mass MX is used here to highlight the mass range of our sample. The color encodes
the measured richness of the counterpart in the DES data. The black line indicates the
forecast of the mass corresponding to 40 photon counts in the first eROSITA full sky survey
after half a year of observing time.
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eROSITA count rate–mass relation forecast by Grandis et al. (2019). This indicates that
the MARD-Y3 sample we study here is comparable to the one we expect to study in the
eRASS1 survey.

Finally, several other X-ray properties, such as the detection significance ξX and the
RASS exposure time texp are available from 2RXS. The X-ray flux f̂X we employ in the
following is computed as f̂X = LX/(4πd2

L(z)), where LX is the X-ray luminosity within
R500c, and dL(z) is the luminosity distance evaluated at the reference cosmology. This
leads to the fact that technically our X-ray flux corresponds to the rest frame [0.5,2] keV.
The transformation from the observed [0.1,2.4] keV band to this band is discussed in K19.
It is also noteworthy that MCMF allows one to detect the presence of more than one
significant optical structure along the line of sight towards an X-ray candidate.

SPT-SZ SZE selected clusters

We adopt the catalog of clusters selected via their SZE signatures in the SPT-SZ 2500 deg2

survey Bleem et al. (2015). Utilising this sample to an SZE signal to noise of 4.5, we
confirm the clusters in the DES-Y3 footprint using MCMF (Klein et al., in prep.). The low
contamination level of the parent sample allows one to achieve a low level of contamination
by imposing the weak cut of fc < 0.2. Above a redshift of z < 0.2 this provides us with
a sample of 436 clusters. The X-ray properties, as well as the optical properties of these
objects have been extensively studied (see for instance McDonald et al., 2014; Saro et al.,
2015; Hennig et al., 2017; Chiu et al., 2018; Bulbul et al., 2019; Capasso et al., 2019b, and
references therein). Furthermore, successful cosmological studies have been performed with
this sample (Bocquet et al., 2015; de Haan et al., 2016; Bocquet et al., 2019b), indicating
that the survey selection function is well understood and that the mass information derived
from the SZE is reliable. This motivates us to employ this sample as a reference for our
validation of the observable mass relations and the selection function of the MARD-Y3
sample.

Cross-matched sample

To identify clusters selected both by SPT-SZ and by MARD-Y3, we perform a positional
matching within the angular scale of 2 Mpc at the MARD-Y3 cluster redshift. We match
120 clusters in the redshift range z ∈ (0.2, 1.1). We identify 3 clusters where the redshift
determined by the MCMF run on RASS, zRASS, is significantly different from the redshift
MCMF assigns for the SPT-SZ candidate, zSPT. While for all three cases zRASS < zSPT, in
all cases the MCMF run on the SPT-SZ candidate list identifies optical structures at zRASS
as well. While we consider these clusters as matched, we do not employ them in SPT-SZ
cross calibration of the X-ray flux and richness mass information. Both their X-ray fluxes
and SZE signals are likely biased w.r.t. to the nominal relation for individual clusters due
to the presence of several structures along the line of sight. Disentangling the respective
contributions of the different structures along the line of sight is complicated by different
scaling of X-ray flux and SZE signal with distance.



88 3. Cluster Sample Validation

Tabelle 3.1: Summary of the priors employed in this work. These priors are implemented
as Gaussians. In Section 3.4 we will specify which priors are used for which analysis.

Cosmological Parameters
H0 70.6±2.6 Rigault et al. (2018)
ΩM 0.276±0.047 SPT (Bo19)
σ8 0.781±0.037 SPT (Bo19)
SZE ζ–mass Relation
ASZ 5.24±0.85 SPT (Bo19)
BSZ 1.53±0.10
CSZ 0.47±0.41
σSZ 0.16±0.08
X-ray LX–mass Relation
AX 4.15±1.01 SPT (Bu19)
BX 1.91±0.17
CX 0.20±0.42
σX 0.25±0.10
Optical λ–mass Relation
Aλ 71.9±6.1 SPT-DES (S15)
Bλ 1.14±0.20
Cλ 0.73±0.76
σλ 0.15±0.08

In only one case, two MARD-Y3 clusters are associated with the same SPT-SZ cluster:
‘SPT-CL J2358-6129’, zSPT = 0.403. Visual inspection (c.f. Fig 3.7.2) reveals that one
of the MARD-Y3 clusters, zRASS = 0.398, is well centered on the SZE signal, and also
coincides with a peak in the galaxy density distribution. The second MARD-Y3 cluster in
the north–northwest, zRASS = 0.405, is offset from the peaks in galaxy density, and does
not correspond to any SZE signal. Given the lack of the SZ-counterpart, we do consider
this MARD-Y3 cluster not being matched by SPT. Our final matched sample therefore
contains 123 clusters. Including the aforementioned clusters in our analysis does not change
the posterior results in a noticeable manner.

3.3.2 Priors
Our priors reflect the assumptions we make for each analysis. On one side we calibrate the
X-ray flux–mass and richness–mass relation assuming SPT-SZ mass information. On the
other hand, we investigate which X-ray flux–mass and richness–mass relation reproduce
the observed abundance of objects when assuming an SPT-SZ derived cosmology. Con-
tingent upon the validity of both the SPT-SZ cosmology and the mass information, when
can therefore establish whether the mass information contained in our X-ray fluxes and
richnesses is consistent with the abundances of clusters as a function of these observables.
We implement the SPT-SZ masses and cosmological parameters as priors described below
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and summarized in Table 3.1.

Priors on cosmology

Throughout this work, we marginalise over the following cosmological parameters to propa-
gate our uncertainty on these parameters. We adopt the prior on the present day expansion
rate, also called the Hubble constant, H0 = 70.6 ± 2.6 km s−1 Mpc−1 from cepheid cali-
brated distance ladder measurements presented by Rigault et al. (2018)6. Marginalising
over the Hubble constant is necessary, because the X-ray flux–mass scaling relation (equa-
tion 3.2) has a distance dependence. Therefore, inference of the amplitude of the X-ray
scaling relation is systematically limited by our knowledge of the distance–redshift relati-
on.

When inferring the scaling relation parameters from number counts, we need to account
for the fact that the halo mass function is cosmology dependent, especially on the matter
density parameter ΩM and the amplitude of matter fluctuations on the scale of 8 Mpc
h−1, σ8. Under the assumption of a cosmological constant, flatness and minimal neutrino
mass, the other cosmological parameters have a minor impact on the halo mass function.
For this reason, in this work we marginalise over the priors ΩM = 0.276± 0.047 and σ8 =
0.781± 0.037, derived by Bocquet et al. (2019b, hereafter Bo19) from the number counts
analysis of 343 SZE selected galaxy clusters supplemented with gas mass measurements
for 89 clusters and weak lensing shear profile measurement for 32 clusters.

Priors on SZE ζ-mass relation

When performing the SPT-SZ cross calibration, we require priors on the SZE scaling relati-
on parameters to infer the X-ray flux–mass and richness–mass scaling relation parameters.
These priors are derived from the X-ray and WL calibrated number counts of SPT-SZ
selected clusters as described in Bo19. The adopted values are reported in Table 3.1. The-
se priors were derived simultaneously with the cosmological priors discussed above, and
both rely on the assumption that the SPT-SZ selection function is well characterised and
that the SZE-signal–mass relation is well described by equation (3.4). Note that Bo19 only
considered SPT-SZ clusters with SZE-signal to noise ξ > 5 and z > 0.25, while we adopt
their results to characterize a sample with ξ > 4.5 and z > 0.2. Considering that this is an
extrapolation from typical masses of ∼ 3.6 1014 M� for ξ = 5 to ∼ 3.3 1014 M� for ξ = 4.5
we view this as a minor extrapolation.

Priors on X-ray LX-mass relation

Our priors on the X-ray flux–mass relation (c.f. Table 3.1) have been determined by
Bu19, who studied the X-ray luminosities of 59 SPT-SZ selected clusters observed with
XXM-Newton. The authors then use priors on the SZE -signal–mass relation to infer the

6Given the still unresolved controversy on the exact value of the Hubble constant, the value adopted
here has the benefit of not being in significant tension with any other published result.



90 3. Cluster Sample Validation

Tabelle 3.2: Mean and standard deviation estimated from the one dimensional marginal
posterior plots for the parameters of the X-ray scaling relation and the richness scaling
relation. Besides the constraints of the mass trend of the X-ray–mass relation and the cor-
responding intrinsic scatter, we find good agreement among our different analysis methods
and with the literature values. This provides strong evidence that our selection function
modeling is adequate.

AX BX CX σX Aλ Bλ Cλ σλ
liter. 4.15±1.01 1.91±0.17 0.20±0.42 0.25±0.10 71.9±6.1 1.14±0.20 0.73±0.76 0.15±0.08
SPT calibr. 5.14±2.29 1.31±0.42 – 0.42±0.21 80.2±18.9 1.01±0.25 0.41±1.58 0.26±0.11
X NC 3.81±0.81 1.85±0.12 -0.29±0.32 0.22±0.15
opt NC 74.8±14.0 1.03±0.17 0.73±0.40 0.28±0.15
2d NC 3.00±1.37 1.19±0.11 -0.07±0.41 0.44±0.18 87.2±20.0 0.80±0.07 1.06±0.39 0.18±0.12

luminosity–mass relation parameters. Given that we are ourselves interested in determi-
ning the X-ray scaling relation parameters, we adopt priors on these parameters only when
carrying out the number counts experiment in optical richness, where we need to account
for the X-ray selection of our sample without being able to directly constrain it. Further-
more, we employ these priors when determining the systematic uncertainty on the outlier
probability πt, the MARD-Y3 contamination πc and the SPT-SZ incompleteness πi (see
definitions of these in Section 3.2.3).

Priors on optical λ-mass scaling relation

When analysing the number counts as a function of flux and redshift we adopt priors on
the richness–mass relation derived by S15 from a sample of 25 SPT-SZ selected cluster,
matched with DES redmapper selected clusters. In that work the SZE-signal–mass relati-
on parameters were determined by fitting the SPT-SZ selected cluster number counts at
fixed cosmology. The resulting constraints on the richness–mass relation are reported in
Table 3.1. These priors are also utilised when estimating the systematic uncertainty on the
outlier probability πt, the MARD-Y3 contamination πc and the SPT-SZ incompleteness πi
(Section 3.2.3).

3.4 Application to MARD-Y3 and SPT-SZ
In this section we present the results of validation tests on the MARD-Y3 sample by way of
examining the consistency of the X-ray–mass and the richness– mass scaling relations de-
rived using different methods. First, we present the cross calibration of the fluxes and rich-
nesses using the externally calibrated SPT-SZ sample (Section 3.4.1). Then in Section 3.4.2,
we derive the parameters of the X-ray–mass scaling relation from the X-ray number counts,
the parameters of the richness–mass scaling relation from the optical number counts, and
then explore the constraints on both scaling relations from a joint 2-dimensional X-ray and
optical number counts analysis. We explore the implied cluster masses in Section 3.4.3, and
in Section 3.4.4 we validate our selection functions by computing the probabilities of each
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Abbildung 3.6: Marginal posterior contours of the free parameters in the SPT-SZ cross
calibration (SPT calibr., red), the number counts in X-ray flux and redshift (X NC, green),
the number counts in richness and redshift (opt NC, orange), and the number counts in
X-ray flux, richness and redshift (2d NC, blue). In black the literature values from Bu19
and S15. The SPT-SZ cross calibration shows good agreement with the different number
counts constraints and the literature. With the exception of the mass slope of the X-ray
flux–mass relation inferred from 2d number counts, also the constraints from the different
number count experiments show good agreement with the literature values. This provides
strong evidence that our selection function modeling is adequate.
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Abbildung 3.7: Black points mark the intrinsic X-ray flux fX and SZE-signal to noise ζ
inferred from the respective error models for our cross-matched sample. The X-ray flux–
SZE-signal relation is shown either marginalized over the literature priors (black and grey)
or over the posterior of our cross calibration to SPT-SZ (red). While both sets of scaling
relation parameters are consistent, we find a tendency for a weaker mass trend in the
X-ray observable than reported in the literature. Marked as red points are MARD-Y3
false positives (an SPT-SZ cluster with < 0.025 MARD-Y3 detection probability that is
nonetheless is in MARD-Y3).
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Abbildung 3.8: Black points mark the the intrinsic richness λ and SZE-signal to noise ζ
inferred from the respective error models for our cross-matched sample. The richness–SZE-
signal relation is shown either marginalized over the literature priors (black) or over the
posterior of our cross calibration to SPT-SZ (red). Both sets of scaling relation parame-
ters are consistent, however, at intermediate redshift they fail to describe a part of the
population with low SZE-signal and high richness. Marked as red points are MARD-Y3
false positives (SPT-SZ clusters with < 0.025 MARD-Y3 detection probability that are
nonetheless in MARD-Y3).
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cluster in one sample having a counterpart in the other and comparing these probabilities
to the actual set of matched pairs and unmatched single clusters in each sample. This last
exercise allows us to study outliers in observable beyond the measured scaling relation and
observational scatter and has implications for the incompleteness in the SPT-SZ sample
and the contamination in the MARD-Y3 sample.

3.4.1 Validation using SPT-SZ cross calibration
As implied in the methods discussion in Section 3.2.1, the results of the SPT-SZ cross
calibration of the MARD-Y3 mass indicators X-ray flux and richness are extracted by
sampling the likelihood in equation (3.23). The free parameters of this fit are the parameters
of the X-ray scaling relation (AX, BX, CX, σX), of the richness scaling relation (Aλ, Bλ,
Cλ, σλ) and the correlation coefficients between the intrinsic scatters (ρX,λ, ρX,SZ, ρλ,SZ).
We put priors on the parameters of the SZE-signal–mass relation (ASZ, BSZ, CSZ, σSZ) and
on the cosmological parameters (H0, ΩM, σ8), as described in Section 4.2.6.

The resulting marginal posterior contours on the parameters without priors are shown
in red (SPT calibr.) in Fig. 3.6 and in Table 4.1. The same figure also shows as a black line
the literature values for these parameters, where we use Bu19 for the X-ray parameters,
and S15 for the optical parameters. Our constraints are in agreement with these works,
but display comparable or larger uncertainties despite the larger number of objects. This
is due to different effects.

The difference between these constraints on the richness–mass relation from S15 are
mainly due to the tighter priors on the SZE-signal–mass relation parameters utilized in
that work. For instance, the prior on the amplitude of the SZE-signal–mass relation is four
times smaller than the one used in this work. On the other side, we analyze a 4 times larger
sample, which warrants at best an improvement of the constraints by a factor of 2. Our
larger uncertainties on the richness–mass relation parameters are thus reflecting our more
conservative treatment of systematic uncertainties on the SZE inferred masses.

This issue does however not explain why our constraints on the luminosity–mass relation
are weaker than those reported by Bu19, as that work used priors on the SZE-signal–mass
relation comparable to ours. Two different effects play a role in this case. Firstly, the
measurement uncertainty on the luminosities extracted from pointed XMM observations
is much smaller than on RASS based luminosities, especially at high redshift. Secondly,
we marginalize over the systematic uncertainty in the luminosity distance resulting from
imperfect knowledge of the matter density ΩM and the Hubble parameter H0. This source
of uncertainty in not considered in Bu19. Both these effects are especially important at high
redshift, likely resulting in our much weaker constraint on the redshift evolution parameter
CX.

In Fig. 3.7 we show the results for the cross calibration of the X-ray fluxes. In different
redshift bins we plot the intrinsic X-ray flux inferred from the X-ray flux error model
(equation 3.10) against the intrinsic SZE signal to noise inferred from the SZE error model
(equation 3.13), as black points with 1 and 2 sigma uncertainties. We also plot the X-ray
flux–SZE-signal relation obtained by combining the respective scaling relations. We show
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Abbildung 3.9: Measured number of clusters in bins of measured X-ray flux for different
redshift bins as black points with Poissonian error bars. We over-plot the prediction for the
number of objects with the uncertainties derived from the literature values (black and gray),
from our 1 d fit (green), and from our 2d fit (blue). The latter captures adequately both the
increasing rarity of high redshift objects, as well as the effect of X-ray incompleteness at low
flux. The measurement is also consistent with the literature values, although as discussed
in Section 3.4.2, our assumption that cosmological and scaling relation parameters are
uncorrelated leads to an over-estimation of the uncertainty.

(black and grey) their marginalization over the Bo19 cosmological parameter and SZE-
scaling parameter priors, the Bu19 X-ray-scaling parameter priors, and over the posterior
of the SPT-SZ cross calibration (red). As already noted from the contour plots of the
marginal posteriors, our inferred scaling relation parameters are statistically consistent
with the literature. However, our calibration prefers a steeper relation, resulting from a
lower inferred value on the X-ray mass trend BX.

The results for the SPT-SZ cross calibration of the richness–mass relation are shown in
Fig. 3.8. In different redshift bins we plot as black point the intrinsic richness λ and the
intrinsic SZE-signal ζ inferred from the respective error models (equations 3.12 and 3.13).
We also plot the richness-SZE scaling derived from combining the richness–mass and the
SZE-signal–mass relation. The resulting relation is shown with the uncertainties derived
from the literature priors and the cross calibration posteriors. The two constraints are is
very good agreement. Yet, at high redshift z > 0.5, we note the presence of a high richness,
low SZE-signal population, not well described by the both the literature relation and our
cross calibrated relation. These objects will be discussed in more detail in Section 3.4.4.

3.4.2 Validation using number counts
As described in the method discussion in Section 3.2.2, we perform three different number
counts experiments in this work: (1) we infer the X-ray flux–mass relation by fitting for the



96 3. Cluster Sample Validation

Abbildung 3.10: Examples of two 3 dimensional degeneracies between pairs of scaling rela-
tion parameters and cosmological parameters. For instance (lower panel), the lower right
half of the (AX, CX) marginal plot is populated preferably by low ΩM points, while the
contrary is true for the upper left half. The posterior thus lives on a relatively thin volume
extending from the lower left for low ΩM to the upper right for large ΩM, leaving a signi-
ficant fraction of the volume of the parameter space unpopulated. Similar behaviour can
be seen in the upper panel. In summary, the posterior distribution occupies less parameter
space volume than the expected from the marginal contours.

number counts of cluster as a function of measured flux and redshift, (2) we constrain the
richness–mass relation by fitting for the number counts as a function of measured richness
and redshift, and (3) we determine both relations by fitting the number of objects as a
function measured flux, measured richness and redshift.

X-ray number counts

While sampling the likelihood of the number counts in X-ray flux (equation 3.24), we let
the parameters of the X-ray flux–mass relation (AX, BX, CX, σX) float within wide, flat
priors. We adopt priors on the relevant cosmological parameters (H0, ΩM, σ8) as described
in Table 3.1. We also put priors on the richness-mass relation parameter (Aλ, Bλ, Cλ, σλ).
Furthermore, we empirically constrain the relation between X-ray detection significance
ξX, measured flux f̂X and exposure time texp from the sample. As described in more detail
in Sections 3.1.3 and 3.5.1, this results in four tightly constrained nuisance parameters that
impact the X-ray selection function. The resulting posteriors on the X-ray scaling relation
parameters are shown in green in Fig. 3.6. We find tight agreement with the literature
values, at comparable accuracy on the marginal uncertainties.

In Fig. 3.9 we plot the number counts in measured X-ray flux bins in three different
redshift bins with the respective Poissonian errors. We also plot the prediction for the
number of objects in the same bins, once marginalized over the literature values (black and
grey), and over our 1d fit (green). While for high fluxes the number of objects decreases
due to the increasing rarity of such high mass objects, at low fluxes the decrease is due to
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Abbildung 3.11: Number of objects in bins of measured richness λ̂ in different redshift bins
as black points with Poissonian error bars. Over-plotted is the expected number of objects
as a function of measured richness for the same bins marginalized over the uncertainties
from the literature (black and grey) and from our fit (orange). The shape of the abundance
at low richness would in principle be closer to a power-law, but at low richness the X-ray
selection of the samples leads to a decrease in the number of objects, which is well fit by
our selection model.

the incompleteness introduced by the X-ray selection. In both regimes, our model provides
an adequate description of the abundance of clusters.

Similarly also the prediction from the literature provides a statistically consistent de-
scription of the data, albeit systematically one sigma low. Furthermore, this systematic
uncertainty is larger than in the case of our own fit. This might seem to contradict the
fact that the marginal posterior constraints are of comparable width as the constraints
reported by the literature. However, note that when computing the prediction from the
literature, we assume that the constraints on the cosmological parameters are indepen-
dent from the constraints on the scaling relation parameters. While this holds true for any
single pair of cosmological and scaling relation parameters, the number counts likelihood
leads to hidden high dimensional degeneracies among scaling relation parameters and cos-
mological parameters, as can be seen in Fig. 3.10. In the upper panel, we show the well
known amplitude-scatter degeneracy of number counts. Noticeably, the position along the
degeneracy correlates with the value of H0, as can be seen by the colour coding. Thus, in
3-d, the posterior occupies a relatively thin surface for each value of H0, which however
appears as an uncorrelated structure when projected in 2-d. This can also be noted in the
lower panel of Fig. 3.10, which demonstrates that while AX and CX might be uncorrelated
when marginalized over ΩM, parameter values with similar ΩM show stronger correlation.
Consequently, the posterior from the number counts occupies a much smaller part of the
parameter space than the prior from the literature, which assumes that all parameters are
uncorrelated. These effects manifest themselves most drastically in the space of predicted
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number of objects, which through its dependence on the different parameters dictates the
high dimensional geometrical form of the hidden degeneracies.

Optical number counts

Just as the number counts as a function of measured flux can be used to infer the X-
ray scaling relation parameters, the number counts in richness can be used to infer the
richness–mass relation parameters. To this end, we sample the likelihood of number counts
in richness bins (equation 3.27). We let the parameters of the richness–mass relation (Aλ,
Bλ, Cλ, σλ) free, while we adopt priors from the literature on the cosmological parameters
(H0, ΩM, σ8). Importantly, modeling the X-ray incompleteness in the space on measured
richness requires a way to transform from measured richness to X-ray flux. Thus, while
the transformation from richness to mass is fit, we need to assume a transformation from
mass to X-ray flux. This is done by putting priors on the X-ray scaling relation parameters
(AX, BX, CX, σX). As for the X-ray number counts, we empirically constrain the relation
between X-ray detection significance ξX, measured flux f̂X and exposure time texp from the
sample and predict the X-ray selection function on the fly.

The resulting marginal posterior contours are shown in Fig. 3.6 in orange. We find
good agreement with the literature values and with the SPT-SZ cross calibration. The
marginal uncertainties are comparable to the literature values, despite being marginalized
over cosmological parameters. We also find that the constraints from the number counts
are more stringent than those derived from the SPT-SZ cross calibration.

One can visually assess the quality of the resulting fit in Fig. 3.11, where we plot the
number of objects in measured richness for different redshift bins as black points with
Poissonian error bars. We also plot the predicted number of objects with the uncertainties
derived from the literature priors (black and grey) and from our fit (orange). As noted
earlier with the X-ray number counts, the prediction from our fit has smaller uncertainties
than those derived from the literature despite the comparable size of the marginal uncer-
tainties on the underlying parameters. Given the very similar structure of the employed
likelihood when compared to the X-ray number counts, this effect is most likely also ex-
plained by degeneracies between cosmology and scaling relation parameters that are not
captured by assuming uncorrelated priors from the literature. Also in this case we note
that the literature prediction is systematically 1 sigma low.

Combined X-ray and optical number counts

We also fit for the abundance of clusters as a function of measured X-ray flux f̂X, measured
richness λ̂ and redshift, which we will refer to a ‘2d number counts’, by sampling the
likelihood in equation (3.30). We allow the parameters of both the X-ray scaling relation
(AX, BX, CX, σX) and the richness scaling relation (Aλ, Bλ, Cλ, σλ) float within wide,
flat priors. We adopt priors on the cosmological parameters from Table 3.1. Furthermore,
we empirically constrain the relation between X-ray detection significance ξX, measured
flux f̂X and exposure time texp from the MARD-Y3 sample and predict the X-ray selection
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Abbildung 3.12: Number counts in both measured richness λ̂ and measured X-ray flux
f̂X visualized by presenting in different redshift bins the distribution of our sample (black
stars), the contours of the 2-dimensional predicted number of objects for the literature
values (grey, liter.) and for the mean of the posterior of our fit to the data (blue, 2d NC).
Our 2d fit prefers larger scatter and provides a better description of the data than does the
literature prediction. Marked as red points are SPT-SZ false positives (SPT-SZ clusters
with a MARD-Y3 detection probability < 0.025 that are nonetheless in MARD-Y3).

function on the fly (c.f. Sections 3.1.3 and 3.5.1).
In Fig. 3.6 we show the marginal posterior contours on the scaling relation parameters

in blue. We find good agreement with the results from the SPT-SZ cross calibration on
all parameters. When comparing the constraints from 2d number counts (blue) on the
X-ray scaling relation parameters to the constraints from the number counts in X-ray flux
(green), we find good agreement on the values of the amplitude and redshift evolution.
However, we find a shallower X-ray observable mass trend than from the X-ray number
counts, and we see a similar shift in the optical mass trend parameter, although in this case
the statistical significance is small. Given the agreement of the X-ray number counts result
is with Bu19, the results from the 2d number counts are in some tension with both. As show
in Section 3.4.3 below, these constraints however do not results in statistically inconsistent
mass estimates. Nevertheless, possible systematic effects impacting our validation tests are
discussed in section 3.5.1 and 3.5.2.

Of interest is also the constraint the 2d number counts put on the two intrinsic scatters
in X-ray flux and richness. Inspecting their joint marginal posterior in Fig. 3.6 reveals a
distinct degeneracy in the form of an arc. This is the natural result of the fact that the 2d
number counts can only constraint the total scatter between the two observables, but not
the two individual scatters between each observable and mass. The total scatter between
observables, being the squared sum of the individual scatter, sets the radius of the arc.
Noticeably, this arc-like degeneracy excludes the possibility that both the X-ray and the
richness scatter are small.
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For visual inspection of the 2d number counts fit in Fig. 3.12 we present the distribution
in measured X-ray flux and measured richness of our sample in different redshift bins as
black stars. We also plot the contours of the predicted number of objects in equally spaced
logarithmic bins: in blue the prediction for the best fit value of the 2d number counts, while
in grey the prediction from the literature. The selection in richness due to the fc < 0.05
cut is at every redshift a sharp cut in measured richness, as can be seen up to the intra bin
scatter due to the large bins used for plotting. The effect of the X-ray selection function
is harder to see, but can be appreciated in the shape of the contours at low flux: they
show a bend, predicting very small numbers of objects at the lowest fluxes. Notably, the
distribution of the data displays a large dispersion, which is better captured by our fit (blue)
than by the prediction from the literature (grey). This confirms that the measurement of
a larger X-ray scatter is indeed a feature of the data visible in the 2 dimensional cluster
abundance. Despite the larger intrinsic scatter, 2d number counts posterior provide also
an prediction of the X-ray and optical 1d number counts that is consistent with the data
within the systematic and statistical uncertainties, as can be see by the blue predictions
in Fig 3.9 and 3.11.

3.4.3 Validation using cluster masses
In this section we investigate the prediction of the individual halo masses derived from the
different constraints on the scaling relation parameters extracted above.

To estimate the masses for each cluster given its measured X-ray flux f̂ (i)
X (or analogously

the measured richness λ̂(i)), we compute the distribution of probable masses

P (M |f̂ (i)
X , z(i), ~p) ∝

∫
dfXP (f̂ (i)

X |fX)P (fX|M, z(i), ~p) dN
dM

∣∣∣∣
M,z(i),~p

, (3.37)

where P (fX|M, z(i)) is the mapping between intrinsic flux and mass obtained by only consi-
dering the first component of equation (3.5). Note also that the above equation needs to be
normalized in such a way that

∫
dM P (M |f̂ (i)

X , z(i), ~p) = 1, which sets the proportionality
constant.

The X-ray mass MX (and analogously the optical mass Mλ) can then be estimated as

lnM (i)
X |~p =

∫
dMP (M |f̂ (i)

X , z(i), ~p) lnM. (3.38)

Note that these masses naturally take account of the Eddington bias, which is fully des-
cribed by equation (3.37).

The X-ray and optical masses are affected by systematic uncertainties in the scaling
relation and cosmological parameters. We capture this uncertainty in each case by margi-
nalising the mass posterior over the appropriate posterior distribution of the parameters
that we determined above. We marginalize the mass over different scaling relation para-
meter posteriors, including those from the literature (liter.), those from the SPT-SZ cross
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Abbildung 3.13: Ratio of the masses derived by our analysis methods and the masses
derived from the literature values, for masses inferred from their measured X-ray flux (MX,
upper row) and their measured richness (Mλ, lower row), as functions of mass (left column)
and of redshift (right column), together with the 1 and 2-sigma systematic uncertainties on
the individual masses due to the incomplete knowledge of the scaling relation parameters.
The masses we recover from SPT-SZ cross calibration (SPT calibr, red) and different
flavours of number counts, while being in most cases systematically low, are statistically
consistent with the masses inferred by adopting the literature values. Tension beyond 1
sigma, but still smaller than 2 sigma appear at the low mass end of the inferred X-ray
masses.
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calibration (SPT calibr.), and those from the combined X-ray and optical number counts
(2d NC), the X-ray number counts (X NC) and the optical number counts (opt NC). The
mass posteriors are derived for all clusters in the MARD-Y3 sample.

In the upper row of Fig. 3.13 we present the ratio between the X-ray masses derived
from our posteriors to the X-ray masses derived from the literature (Bu19) as a function
of inferred literature mass (left panel) and of redshift (right panel). We find that the mass
inferred from the number counts in X-ray flux is consistent with the literature values, while
the masses inferred from the 2d number counts and the SPT-SZ calibration are lower than
the literature masses. In the case of the SPT masses the difference never exceeds one sigma
at all redshifts and masses we considered. For the 2d number count masses, we that they
are 1 sigma low at all redshifts, and up to 2 sigma low at masses of 1-2 1014 M�. At masses
of around 1015 M� they are im perfect agreement with the other mass estimates. This is
due to the different values of inferred mass trend. As a function of redshift, the masses
inferred from 2d number counts and the SPT-SZ calibration are also lower, reflecting on
one side the prevalence of low mass systems. Furthermore, this shift is also be due to the
larger intrinsic scatter recovered from the 2d number counts and the SPT-SZ calibration,
that together with the shallower mass slope leads to a larger intrinsic mass scatter. This
results in larger Eddington bias corrections and ultimately lower inferred masses. At the
current level of statistical and systematic uncertainty we conclude that different methods
predict mutually consistent individual masses from the X-ray flux at less than 2 sigma. Yet,
the magnitude of the intrinsic scatter of the X-ray luminosity at fixed mass and redshift,
together with its mass trend, are indications of possible internal tensions and unresolved
systematics (c.f. Section 3.5.2).

In the lower row of Fig. 3.13 we also show the ratio between the optical mass inferred
from our fits to the one inferred from the literature value (S15). Here we find that all our
methods provide a lower, yet statistically consistent mass estimate. The difference is likely
due to an analysis choice in the literature values. Namely, S15 utilizes priors for the SZE-
scaling relation parameters derived from fitting the SZE number counts at fixed cosmology.
In that work, however, the CMB derived cosmology from Planck Collaboration et al. (2014)
was used, which results in ASZ, S15 = 4.02 ± 0.16, and therefore is an overestimation of
masses by ∼ 18% compared to our work. This shift accounts for most of the shifts seen in
Mλ here. Even without this correction, at the current level of systematical uncertainties,
the individual optical masses inferred from our different analysis methods are mutually
consistent. This is expected because our ASZ prior is consistent with the value used by
S15. Furthermore, while 2d number counts predict a shallower mass trend than all other
methods, in the mass range we consider this does not lead to significant tension with the
other analysis methods.

This consistency check of mass estimates underscores the importance of weak lensing
mass calibration as a component of the validation of cluster samples. If the cosmology
marginalized constraints on cluster masses from weak lensing are not consistent with those
from cluster counts, then this would be clear evidence of an inadequacy in the selection
model or an unaccounted for bias in the weak lensing calibration analysis. As noted pre-
viously, we will examine the validation with the weak lensing constraints in a forthcoming



3.4 Application to MARD-Y3 and SPT-SZ 103

Abbildung 3.14: MARD-Y3 sample in the joint SPT-DES Y3 footprint at redshift z >
0.2. Color encodes the probability of an SPT-SZ detection for each object, showing the
characteristic mass selection of the SPT-SZ catalog. Black circles indicate matched clusters,
while the cross marks MARD-Y3 true negatives (clusters with high SPT-SZ detection
probability and yet no match).

analysis.

3.4.4 Validation using independent cluster samples

Having established in the section above that our selection function modeling allows us to
infer the masses of the MARD-Y3 clusters consistently to within the systematic uncertain-
ties, we now move to a further test of the selection functions of the two samples.

As described in the methods Section 3.2.3, we investigate the SPT-SZ and MARD-Y3
selection functions by comparing the probability of each MARD-Y3 object being detected
by SPT-SZ to the actual occurrence of such a detection. As established earlier, there are
123 clusters in the cross-matched sample, but the validation we do here also uses informa-
tion from unmatched clusters. This will provide an estimate of SPT-SZ incompleteness as
well as MARD-Y3 contamination. We then consider the SPT-SZ sample and compute the
probability that an SPT-SZ cluster is detected in MARD-Y3. In this case, we also constrain



104 3. Cluster Sample Validation

Tabelle 3.3: List of MARDY-Y3 true negatives (those with high SPT-SZ detection proba-
bility but no detection). Probabilities are given as the 16th percentile.
2RXS name RA [o] DEC [o] zRASS f̂X [erg s−1 cm−2] λ̂ LX [erg s−1] pliter.

S,M pSPT c.
S,M p2d NC

S,M Fig.
2RXS J042056.4-524651 52.69 -52.48 0.428 2.249e-12 110.3 1.609 1045 >0.976 >0.994 >0.99997 3.7.2

Tabelle 3.4: List of SPT-SZ false positives (SPT-SZ clusters with low MARF-Y3 detection
probability that were nevertheless detected). Probabilities are given as the 68th percen-
tile. Comments: 1) classified only when marginalising over the SPT-SZ cross calibration
posterior. 2) classified only with the literature priors or the 2d number counts posterior.
3) different redshifts, discussed in Section 3.3.1.
SPT-SZ name RA [o] DEC [o] zSPT ξ pliter.

M,S pSPT c.
M,S p2d NC

M,S Fig. visual inspection
SPT-CL J0218-4233 34.55 -42.55 0.638 4.517 <0.007 <0.015 <0.018 3.7.2
SPT-CL J0202-54013) 30.57 -54.02 0.711 5.653 <0.001 <0.003 <0.003 3.7.2 2 structures in LoS, c.f. K19, Fig.18
SPT-CL J0111-5518 17.84 -55.31 0.495 4.544 <0.031 >0.045 <0.026 3.7.2 radio source nearby
SPT-CL J0048-4548 12.25 -45.80 0.476 4.831 <0.024 <0.041 <0.017 3.7.2 radio source nearby
SPT-CL J0041-5107 10.29 -51.13 0.510 4.598 <0.028 <0.043 <0.023 3.7.2 radio source nearby
SPT-CL J2332-50533) 353.02 -50.89 0.567 4.581 <0.003 <0.008 <0.007 3.7.2 mismatch
SPT-CL J2034-59363) 308.54 -59.60 0.916 8.529 <0.022 <0.052 <0.012 3.7.2 mismatch
SPT-CL J0324-6236 51.05 -62.60 0.755 8.755 <0.013 <0.024 <0.018 3.7.2 X-ray point sources (Chandra)
SPT-CL J0430-6251 67.71 -62.85 0.782 5.292 <0.001 <0.002 <0.006 3.7.2 mismatch
SPT-CL J0010-5112 1) 2.74 -51.21 0.210 4.515 <0.112 <0.06 <0.042 3.7.2
SPT-CL J2146-5736 2) 326.69 -57.61 0.608 6.190 <0.020 <0.055 <0.030 3.7.2 complex X-ray structure
SPT-CL J0233-5819 2) 38.25 -58.33 0.657 6.546 <0.031 <0.068 <0.047 3.7.2 radio source nearby

the outlier fraction beyond the log-normal scatter, more precisely the fraction of objects
with an abnormally high X-ray flux or optical richness, or a surprisingly low SZE-signal.

SPT-SZ detection of MARD-Y3 clusters

In Fig. 3.14 we show the MARD-Y3 cluster sample in the joint SPT-DES Y1 footprint,
plotted as a function of the X-ray derived mass and the redshift presented by K19. Note
that the mass used in this plot is used solely for presentation purposes, and does not go
into any further calculation. We color-code the MARD-Y3 clusters based on their SPT-SZ
detection probability p(i)

S,M, computed following equation (3.35). This prediction reflects the
mass information contained in each cluster’s measured flux f̂ (i)

X and measured richness λ̂(i).
It also nicely visualizes the approximate mass selection at M ' 3× 1014M� of the SPT-SZ
sample.

We place black circles around the matched clusters. When determining the detection
probabilities using the literature values for the scaling relation parameters, we identify six
clusters that have high detection probability, but are not matched, so called true- negative.
However, when determining the detection probabilities either from the posterior of our
SPT-SZ cross-calibration or the 2d number counts, only one of these systems is confirmed
as a MARD-Y3 true negative: 2RXS J042056.4-524651.

Several characteristic quantities for this object are presented in Table 3.3. We visually
inspect its DES image, its RASS count rate map, its SPT-SZ signal-to-noise map and its
MCMF galaxy density map in Fig 3.7.2. The line of sight is occupied by one part of the
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merging cluster system A 3126 at z ∼ 0.05 (white ellipticals all over the picture) and by a
massive cluster with a strong lensing arc at z ∼ 0.43 (yellow, diffuse galaxy in the upper
left quadrant with a blue arc to the south east). Both application of MCMF to RASS and
SPT-SZ find these optical structures with fc = 0. Exactly for this reason, however, the
automated redshift assignment fails: MCMF on RASS selects zRASS = 0.428, while MCMF
on SPT-SZ on the other hand selects zSPT = 0.056. Given zSPT = 0.056, the SPT-SZ object
does not fall into our redshift selection zSPT ∈ (0.2, 1.)

More generally, in the case of practically equal fcs random rounding errors determine
which redshift is selected with smaller fc. This automated redshift assignment is likely
inaccurate in this specific case, as the X-ray flux is probably dominated by the z ∼ 0.05
cluster, while the SPT-SZ signal most likely originates from the z ∼ 0.43 cluster, as also
reported by Bleem et al. (2015). Such alignments are rare due to the inherent sparsity of
clusters on the sky. To keep the pipeline automated and avoid human decision making,
and the resulting biases, we do not apply any special treatment to this object. It is just an
outlier that does not bias our statistical analysis, as shown in the following7.

We also aim to constrain the occurrence of contamination in the MARD-Y3 sample by
introducing the probability πc that a MARD-Y3 object is not a cluster, and should therefore
not be detected by SPT. Simultaneously, we also introduce the probability of SPT-SZ in-
completeness πi that any MARD-Y3 cluster that should be detected by SPT, is not detected
(c.f. Fig. 3.4). This allows us to use the actual list of detections and non-detections together
with the raw probabilities of detection, to constrain these extra probabilities, as discussed
in equation (3.36). We find that πc and πi are degenerate parameters, with the difference
between the two being constrained by our data. Under the assumption of a MARD-Y3
contamination of πc = 0.025 , as derived by K19 for the fc < 0.05 sample used here,
we find πi = 0.278± 0.043(stat.)+0.108

−0.146(sys.), when marginalising over the literature priors.
When marginalizing over the SPT-SZ calibration posterior we find πi < 0.027 (stat.) and
πi < 0.030 (sys.) at 68% confidence, while we find πi < 0.030 (stat.) and πi < 0.242 (sys.)
at 68% confidence when marginalising over the 2d number counts constraints together with
the priors from Bo19 on the SZE-signal scaling relation.

The difference in inferred central value for the SPT-SZ incompleteness is due to the
different mass predictions when using the literature priors as compared to our fits. As dis-
cussed in Section 3.4.3, our SPT-SZ cross calibration and our 2d number counts analysis
imply lower X-ray and optically derived masses than the literature priors. This systemati-
cally lowers the SPT-SZ detection probability of MARD-Y3 clusters, resulting in different
incompleteness probabilities when comparing to the actual number of matched objects.
We interpret this as another piece of evidence that the SPT-SZ cross calibration and the
2d number counts provide a more accurate picture of the observable–mass relation than

7For completeness it is worth mentioning that an XMM observation by Werner et al. (2007) identified
the high redshift structure via a redshifted Fe-line with z = 0.44 in the X-ray spectrum, confirmed by
optical spectroscopy of the central galaxy with Magellan. Furthermore, the central galaxy hosts a radio
loud AGN, and is also detected in the Sydney University Molonglo Sky Survey (SUMSS, Mauch et al.,
2003). To the authors knowledge, the impact of this radio source on the SZE-signal in SPT-SZ has not
been investigated.
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the literature priors. In fact, they reveal that the scatter around our luminosity–mass re-
lation is larger than the scatter found by Bu19. Yet, within the statistical and systematic
uncertainties the results are still in agreement.

Another interesting aspect is the magnitude of the statistical and systematic uncertain-
ty on the SPT-SZ contamination. Note that the statistical uncertainties when marginalizing
over the different posteriors are comparable. This reflects the fact that they are derived
from a sample of a given size. The minor differences can be appreciated by noting that
in equation (3.36) the individual clusters likelihood of πi are weighted by the detection
probabilities p(i)

S,M, which are different depending on which posterior is used to compu-
te them. On the other hand, the magnitude of the systematic uncertainty introduced by
the marginalization over the different posteriors is quite different. Marginalizing over the
SPT-SZ cross calibration posterior provides the smallest systematic uncertainty. This is
expected when considering that the SPT-SZ cross calibration constrains P (ζ|f̂ (i)

X , λ̂(i), z(i))
(c.f. equations 3.21-3.23), which is the major source of systematic uncertainty when com-
puting the SPT-SZ detection probabilities of MARD-Y3 cluster (c.f. equation 3.35). We
also expect that this introduces high dimensional degeneracies among the sampled para-
meters. The fact that both the literature priors and the 2d number counts do not follow
these degeneracies leads to larger systematic uncertainties on the SPT-SZ incompleteness.

MARD-Y3 detection of SPT-SZ clusters

We also test the MARD-Y3 selection function by computing the probability of detecting
each of the SPT-SZ clusters in the DES-Y3 footprint. In Fig. 3.15 we show the SPT-SZ
sample as a function of redshift and SZE derived mass. Note that the SZE derived mass
shown in this figure is only used for presentation purposes. Color encodes the MARD-Y3
detection probability, computed following equation (3.33). The color coding reflects the
approximate flux selection of the MARD-Y3 sample. As black circles we highlight the
matched clusters.

Out of the 123 clusters in the cross-matched sample, we identify 11 false-positives,
which are SPT-SZ clusters that show up in MARD-Y3 even though they have a < 0.025
MARD-Y3 detection probability, calculated by marginalising over the literature values or
the 2d number counts posterior. These clusters are marked in Fig. 3.15 with crosses. When
marginalising over the SPT-SZ cross calibration posterior, we find 10 false positives, 9 of
which are in common with the aforementioned. In Table 3.4 we present several properties
of these objects, while we visually inspect (see Fig. 3.7.2-3.7.2).

Among the 12 false positives (10 + 2 unique from the original 11), 1 object (Fig. 3.7.2) is
in a line of sight with two optical structures and is already discussed in K19 (see figure 18).
Both X-ray flux and SPT-signal are likely due to contributions from both objects, and
thus unreliable. This object is not included in the SPT-SZ cross calibration, as discussed in
Section 3.3.1. Inspection of the galaxy density maps at the two redshifts reveals that these
two structure salign almost perfectly. Three objects furthermore are mismatches due to too
generous positional matching. Two of these objects where excluded from the SPT-SZ cross
calibration due to the significant difference between the SPT-SZ and MARD-Y3 redshift
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Abbildung 3.15: SPT-SZ selected sample in the joint SPT-DES Y3 footprint. Color encodes
the probability of MARD-Y3 detection, showing the characteristic flux selection of an X-ray
survey. Black circles indicate matched clusters, while crosses mark false negative (SPT-SZ
clusters with < 0.025 MARD-Y3 detection probability that were matched nonetheless).
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(c.f. 3.3.1).
The remaining 8 objects are shown as red circles in Fig 3.7 and Fig 3.8, from which

we conclude that they are predominantly members of the already discussed class of low
SZE-signal / high X-ray or richness objects. We find that these objects do not display any
special properties in the X-ray flux–lambda plot, as can be seen by the red point marking
them in Fig. 3.12. The clusters outside of the redshift bins chosen for visualisation similarly
are not outliers in the X-ray flux – richness population. This gives an indication that these
objects likely have an unexpectedly low SZE-signal, rather than a too high X-ray flux. If
the latter were the case, we would expect them to populate the low richness – high X-ray
flux part of the population.

Furthermore, in the visual inspection these objects look like genuine clusters in X-ray,
SZE and optical. In the optical they show a diffuse and bright central galaxy surrounded
by similarly coloured smaller galaxies. Their SZE-signal also displays a clear round and
extended structure. Their X-ray signatures are more irregular, at a lower contrast but still
clearly visible.

Noticeably, however, 4 of them (SPT-CL J0111-5518, SPT-CL J0048-4548, SPT-CL
J0041-5107, SPT-CL J0233-5819) are in the vicinity of radio sources identified in the
Sydney University Molonglo Sky Survey (SUMSS, Mauch et al., 2003). This may lead
to a bias in their SZE-signals, depending on the flux of these radio galaxies at the SPT
frequencies of 90 and 150 GHz. One object (SPT-CL J0324-6236) reveals the presence of
X-ray point sources in the Chandra image. This could bias the X-ray flux high. For the
other objects, no high resolution X-ray imaging is available.

Given that most of the false positives are not accounted for, but display typical contami-
nation signature beyond the log normal scatter around the scaling relations, we further in-
vestigate the probability that an SPT-SZ object that should not be matched by MARD-Y3
is matched anyway. It cannot a priori be excluded that, intrinsically, the distribution of X-
ray luminosities or SZE-signals at fixed mass displays tails beyond the assumed log-normal
scatter model. Such tails would lead to unexpected detections. The probability of a cluster
living in such a tail, i.e. being an outlier, is given by the parameter πt. Taking account of the
detection probabilities and the actual occurrence of detections, we use the likelihood presen-
ted in equation (3.34). We find πt = 0.082+0.018

−0.017(stat.)±0.025(sys.), when marginalising over
the literature priors. When marginalizing over the SPT-SZ cross calibration posterior we
find πt = 0.090+0.018

−0.017(stat.)± 0.038(sys.), while we find πt = 0.101+0.019
−0.018(stat.)± 0.026(sys.)

when marginalising over the 2d number counts constraints together with the priors from
Bo19 on the SZE-signal scaling relation.

Note that the outlier probability is stable with respect to the posterior we marginalise
over. While this might be surprising at first, it is actually due to the fact that we use the
SZE-signal to predict the expected fluxes and richnesses (c.f. equations 3.31- 3.33). Using
the same prior on the SZE–mass scaling relation parameters in all three cases, we predict
comparable fluxes and richnesses, although with larger scatter in the case of the SPT-SZ
cross calibration and the 2d number counts. We thus determine with some confidence that
∼ 10% of the SPT-SZ clusters display either abnormally high X-ray fluxes or abnormally
low SZE-signals that are not adequately explained by the selection models we explore here.
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In their section 4.2.2, K19 study the subset of MARD-Y3 clusters containing WISE
sources (thus, clusters that are candidates for containing AGN) showing evidence of AGN
boosting of the X-ray flux, given their optical richnesses, in only ∼1% of clusters. Indeed,
all these SPT-SZ false positives show X-ray properties consistent with those expected
given their richnesses. On the other hand, a recent study of the high frequency radio
galaxy luminosity function in low redshift X-ray selected clusters indicates that ∼5% of
the SZE selected clusters could be removed from the SPT-SZ sample due to radio AGN
flux reducing their SZE signatures (Gupta et al., 2017). Contextual evidence and visual
inspection suggest that a bias in the SZE-signal is the more likely explanation for these
false positives. In our opinion this population of objects merits further study, because it
might systematically bias the X-ray flux–mass or the SZE-signal–mass relation.

3.5 Discussion
Here we first summarize the findings from the previous section and then discuss impli-
cations. We focus on different aspects, including: (1) internal indications for unresolved
systematics in the selection function modelling, (2) the outcome of our validation, (3) the
impact of optical incompleteness and the resulting benefits from its modeling, and finally
(4) the implications of this work for cosmological studies.

3.5.1 X-ray selection function systematics
In section 3.1.3 we discussed potential unresolved redshift trends of the selection function
fit. This systematic manifests itself in different places, as discussed in the following.

When sampling the X-ray number counts (c.f. Section 3.4.2) we sample the parameters
of the richness–mass scaling relation with priors from the literature to estimate the impact
of optical incompleteness of the sample. While the prior on the redshift evolution is Cλ =
0.73 ± 0.76, the posterior is Cλ = 0.42 ± 0.47, indicating that the X-ray number counts
likelihoods slightly prefers a weaker redshift trend of the richness, effectively making the
optical incompleteness stronger at low redshift and weaker at high redshift. This preference
may be compensation for the fact that our model seems to predict a too large X-ray
selection function at low redshift and a too small X-ray selection function at high redshift.
Similarly, when sampling the optical number counts, we rely on priors on the X-ray flux–
mass scaling relation to propagate the X-ray selection function to the space of measured
richness. Also in this case the prior CX = 0.20 ± 0.42 is altered to a posterior CX =
−0.21 ± 0.31. Consequently, a weaker redshift trend is preferred by the number counts,
possibly as in an attempt to compensate the same residual systematic effect. Lastly, we
find that both the X-ray, as well as the optical number counts, pull the prior we placed
on ΩM = 0.276± 0.047 to a posterior ΩM = 0.325± 0.026 from X-ray number count, and
ΩM = 0.318±0.028 from optical number counts, respectively. If these shifts result in biases
of the cosmological results once direct mass information from weak lensing is available,
they will be further investigated.
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Abbildung 3.16: Marginal posterior contours on the extra nuisance parameters controlling
the mapping between X-ray flux and detection significance, and hence the X-ray selection
function from the direct fit to the data (red), the sampling of that fit with the 2d num-
ber counts (blue), with the X-ray number counts (green), and the optical number counts
(orange). Shifts of the contours with respect to the constraints from the data alone are
indicative of residual systematics.



3.5 Discussion 111

As described above in the case of a putative redshift residual, the empirical calibra-
tion of the selection function provides an opportunity to uncover unresolved systematics.
From this perspective it offers advantages in comparison to selection functions determined
from image simulations. For instance, consider in Fig. 3.16 the posterior constraints on the
significance–flux scaling parameters resulting from fitting directly to the relevant catalog
data by sampling equation 3.19 (red), and with different number counts likelihoods (2d in
blue, X-ray in green, and optical in orange). In principle, we expect no extra information
from the number counts on the scaling governing the X-ray selection function. Yet, espe-
cially the posterior of the X-ray number counts displays shifts with respect to the direct
fit. This might hint at unresolved systematic effects in the X-ray number counts. Indeed,
we find that the X-ray number counts predict a smaller intrinsic scatter σX than both the
SPT-SZ cross calibration and the 2d number counts. While at the current stage these puta-
tive systematics are smaller than the statistical uncertainties, the empirical methods here
already prove to be potent tools for validating the number counts. We plan to include such
tests as unblinding conditions for the forthcoming cosmological analysis of this catalog.

3.5.2 Outcome of the validation
As outlined in Section 3.4.3, different methods with different sensitivities to the selecti-
on function provide statistically consistent masses. This provides strong evidence for the
adequacy of the selection functions we constructed in this work. Interestingly, however,
non-significant tensions appear on different parameters, mainly in the scaling relation pa-
rameters derived from 1d X-ray number counts and 2d number counts. We identify two
main scenarios: low intrinsic scatter and steep luminosityâĂŞmass trend, preferred by X-
ray number counts, and large intrinsic scatter and shallow slope, preferred by 2d number
counts. In the following, we will discuss evidence for these two scenarios.

Comparison to the literature does not provide clear guidance on which scenario is more
plausible, as can be seen in Fig. 3.17. The low scatter scenario is in very good agreement
with the results from Bu19 on XMM luminosities of SPT-SZ selected clusters. On the
other side, weak lensing calibrated measurements of the luminosity–mass relation on RASS
selected clusters by Mantz et al. (2015) and Mulroy et al. (2019) find shallower mass trends
and larger intrinsic scatter in good agreement with our large scatter scenario. In analysing
number counts of RASS selected clusters with X-ray mass information, Vikhlinin et al.
(2009a) found a mass trend and scatter value consistent with both scenarios.

Further evidence for the amount of intrinsic scatter can be obtained by comparing
different measurements of the luminosities. K19 show that there is significant scatter among
the luminosities measured by Boller et al. (2016) and those reported by Piffaretti et al.
(2011). Namely, a log- normal scatter of 0.48± 0.05 for 0.15 < z < 0.3 and 0.40± 0.10 for
0.3 < z. This in unsettling, considering that the luminosities reported by Piffaretti et al.
(2011) are measured on the same ROSAT data as the ones by Boller et al. (2016). Further
investigation of the systematics in flux measurement methods is clearly required.

The hypothesis of larger scatter in the X-ray mass scaling is further supported by
the constraints on the SPT-SZ incompleteness derived from the different posteriors (see
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Abbildung 3.17: Compilation of results on the mass trend BX and the intrinsic scatter σX
of the luminosity–mass relation, compared to our results. While all our results lay within
the dispersion of the literature results, this dispersion among the results is larger than the
reported error bars, indicating that no consensus has yet been reached.
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Abbildung 3.18: X-ray (red), optical (blue) and combined (black and grey) selection functi-
ons as functions of mass for different redshift bins, plotted with the systematic uncertainties
derived from the 2d number counts posterior on the scaling relation parameters. While the
combined selection of the sample is clearly dominated by the X-ray selection function at
most masses, the optical cleaning introduces some extra incompleteness at low masses,
especially at low redshift.

Section 3.4.4). Compared to the literature priors, which prefer small scatter but predict
high incompleteness, both the SPT-SZ cross calibration and the 2d number counts predict
incompletenesses consistent with zero, mainly due to the larger X-ray intrinsic scatter. On
the other side, the mass calibrations of the SZE-mass scaling determined using different,
independent methods (Capasso et al., 2019b; Stern et al., 2019; Dietrich et al., 2019; Chiu et
al., 2018) match with the masses emerging from a fully self-consistent cosmological analysis
of the SPT-SZ cluster sample (Bocquet et al., 2015; de Haan et al., 2016; Bocquet et al.,
2019b). In the presence of high incompleteness, this agreement would be coincidental.
Larger X-ray scatter is thus made even more plausible, because it predicts low SPT-SZ
incompleteness.

In summary, the large scatter scenario is supported by evidence from comparing dif-
ferent luminosity measurements, different literature results and the implications of these
scenarios on the inferred SPT-SZ incompleteness. Furthermore, we find that the 2d number
count fits introduce less internal tension on the parameters of the significance-flux scaling
governing the X-ray selection function.

3.5.3 Impact of the optical incompleteness
As shown throughout this work, we model the selection of the MARD-Y3 sample in a two
staged approach, which mirrors the operational creation of the catalog: (1) we determine
an X-ray selection function based on the fact that the candidate catalog is selected with
a X-ray detection significance threshold, and (2) we model the optical cleaning, which is
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operationally equivalent to a redshift dependent minimum value for the measured richness.
The two result in selection functions in the space of X-ray flux and richness, respectively
(c.f. Section 3.1.3).

For ease of representation, we utilise the observable–mass scaling relation to transform
these observable selection functions into mass selection functions. This introduces syste-
matic uncertainty through the widths of the posteriors on the scaling relation parameters.
The mass selection functions in three redshift bins are shown in Fig. 3.18. As stated already
above, the X-ray selection is dominant at most masses. Yet, the optical cleaning introduces
an excess incompleteness at the lowest masses, leading to a suppression of the selection
probability at those masses.

The fact that the optical selection can not be completely ignored can be appreciated
also from Fig. 3.11 and Fig. 3.12. Given that in these plots we show the number of clusters
also as a function of measured richness, we can appreciate that the MARD-Y3 sample
displays a sharp, redshift dependent cut in measured richness. This is the result of the
optical cleaning process. It sets in before the X-ray selection probability is close to zero.

The fact that we can consistently infer the masses when marginalizing over a fiducial
cosmology indicates that the two stage selection function modeling is adequately describing
the sample. This in turn means that optical cleaning with MCMF can provide clean cluster
samples also from highly contaminated candidate samples. At the cost of tracking an extra
scaling relation, the richness–mass relation, this has the potential to significantly lowering
the limiting mass of ongoing and future surveys with SPT, eROSITA or similar ICM
observable based surveys while maintaining a similar contamination level. Given that all
selected clusters in such samples would have not only an X-ray or SZE observable, but
also a richness, in the context of direct mass calibration the richness–mass relation would
be calibrated along side the X-ray or SZE observable, as we demonstrate with our SPT-
SZ cross calibration. Furthermore, the possibility to perform number counts not only in
the X-ray or SZE observable, but also in richness alone, or even in the combination of
multiple observables, provides additional consistency checks that could be used to reveal
unappreciated systematics.

3.5.4 Implications for cosmological studies
In this work we explore several techniques that allow us to validate the selection function
of a cluster survey. However, we would like to caution that in this work we never directly
determined the masses of our clusters. This would require either the measurement of the
weak lensing signal around our clusters, or the study of the projected phase space dis-
tribution of spectroscopically observed cluster members. From a formal perspective, such
studies can be treated analogously to our SPT-SZ cross calibration. They will allow us to
determine the parameters of the scaling relations to high accuracy, enabling the use of the
number counts to study cosmology.

In contrast, our current work assumes the cosmology derived by Bo19 to determine
the scaling relation parameters from the number counts of the MARD-Y3 sample. Also
the indirect mass information we use in form of the priors on the SZE–mass relation were
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derived by Bo19 in the same analysis. So they, too, are contingent upon that analysis. The
consistency of their result with our modeling is supported by the fact that we do not find
a significant level of SPT-SZ incompleteness.

Our work then demonstrates several techniques that we anticipate will be important
for controlling systematics in future X-ray selected cluster samples, especially the sample
detected by eROSITA (Predehl et al., 2010; Merloni et al., 2012). First, we have shown
that the X-ray selection function can be determined empirically from the selected sample.
As such, the simplistic assumptions made in forecast works (e.g. Grandis et al., 2019) can
be easily replaced by a more accurate description without introducing much numerical
complexity. The empirical determination of the selection function also allows one to check
for unresolved systematic effects, as demonstrated in Section 3.1.3. As an addition to the
set of systematics tests, such techniques are likely to improve the systematics control within
eROSITA cluster cosmological studies.

Our work also highlights the use of secondary mass proxies to inform the number counts
experiment. We demonstrate that performing the number counts in optical richness despite
the X-ray selection provides a valuable source of mass information. In the presence of a
direct mass calibration, that mass information would be provided externally, and optical
number counts would provide independent cosmological constraints. This in turn allows
one to set up another important consistency check, ensuring a higher level of systematics
control. On the same note, we also clearly demonstrate the value of additional mass proxies
to put direct constraints on the scatter. Indeed, the analysis of the number counts in X-
ray flux and richness space was central to revealing the larger scatter in X-ray observable.
Given the planned application of MCMF to eROSITA such multi-observable number counts
experiments can be undertaken also in that context.

Furthermore, we present here an expansion of earlier work by S15 on detection proba-
bilities of clusters selected by one survey in another survey. Our formalism allows us to test
the selection functions of different surveys and thereby gain precious empirical constraints
on the selection function. This method depends on the shape of the mass function for
the Eddington bias correction, and on the redshift–distance relation for the X-ray scaling
relation. Importantly, however, it is independent of the distribution of clusters in observa-
ble and redshift. In turn, these are the major sources of cosmological information in the
number counts experiment. Consequently, in the presence of direct mass information to
constrain the scaling relation parameters, this technique provides a selection function test
that is insensitive to the predicted number of clusters and its redshift evolution. As such
this test is ideally suited to validated cluster number counts experiments.

This approach would not only benefit the systematics control in future X-ray and SZE
surveys, but also future optical surveys . The selection function in optical surveys remains
a source of systematic uncertainty that has been mainly studied through simulations (Co-
stanzi et al., 2019). Applying techniques like ours to empirically validate an optical survey
cluster selection function offers important advantages and will become more relevant with
the upcoming next generation surveys from Euclid and LSST.
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3.6 Conclusions
We perform a multi-wavelength analysis of the MARD-Y3 sample (K19). This sample was
selected by performing an optical follow up of the X-ray selected 2nd ROSAT faint source
catalog (Boller et al., 2016) using DES-Y3 data. The optical followup was carried out using
MCMF (Klein et al., 2018), which is a tool that includes spatial and colour filters designed
to identify optical counterparts of ICM selected cluster candidates and to exclude random
superpositions of X-ray and optical systems. The multi-wavelength dataset allows for an
extensive set of cross-checks and systematics probes of the MARD-Y3 sample, its selection
function and the associated observable–mass scaling relations.

We model the selection function (see Section 3.1.3) of the MARD-Y3 sample as the
combination of the X-ray selection function of the candidate sample together with a model
of the incompleteness introduced by the optical cleaning of that sample. We then proceed
to calibrate the X-ray luminosity–mass and optical richness–mass relation using different
sources of mass information to test whether there is tension in the dataset or a flaw in the
selection function.

First, we cross-match the MARD-Y3 and the SZE selected SPT-SZ cluster samples,
and calibrate the MARD-Y3 scaling relations using the published calibration of the SZE
signal-to-noise–mass relation (see Section 3.4.1). Second, assuming priors on the cosmo-
logical parameters from the most recent SPT-SZ cluster cosmology analysis (Bocquet et
al., 2019b), we calibrate the observable mass scaling relations from the number counts of
MARD-Y3 clusters (see Section 3.4.2). In addition to the traditional number counts as a
function of X-ray flux and redshift, we also use the number counts as a function of richness
and redshift and the number counts as a function of X-ray flux, richness and redshift.

We find that the different flavours of number counts provide scaling relation constraints
that are statistically consistent with the constraints from the SPT-SZ calibration performed
on the cross-matched sample. This validates the MARD-Y3 selection function, because the
SPT-SZ calibration is independent of the MARD-Y3 selection function, while the number
count experiments are highly sensitive to it. This leads us to the main conclusion of this
work: optical cleaning with MCMF allows one to create a clean cluster sample with a
controllable selection function. Once direct mass information is available, we will be able
to study cosmology using the MARD-Y3 number counts. The fact that the incompleteness
(primarily at low masses) introduced by optical cleaning can be modeled using the richness-
mass relation implies that much larger, reliable cluster samples extending to higher redshift
and lower masses can be constructed from ICM based surveys if appropriately deep optical
and NIR data are available.

In these tests we identify some moderate tension between constraints on the luminosity–
mass relation from X-ray number counts and 2d (optical+X-ray) number counts: while the
former prefers small intrinsic X-ray scatter and a steep mass trend, the latter prefers a
shallower mass trend and larger intrinsic scatter. This hints at some unresolved systematic
on the X-ray side. As discussed in Section 3.5.2, the high scatter scenario is supported
by the scatter among different measurements of luminosity on the same X-ray raw data
highlighted in K19, a further indicator of systematics in the flux measurement. Neverthe-
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less, the individual masses derived from the different scenarios are consistent within the
uncertainties. Because there is no consensus in the literature, this question merits further
investigation once direct mass information is available.

In Section 3.4.3 we present the implications for MARD-Y3 masses from different scaling
relations that emerge from the tests described above. There is a tendency for these masses
to lie below those calculated using externally calibrated relations from the literature (Saro
et al., 2015; Bulbul et al., 2019), and the largest tensions occur at low masses.

We also study the MARD-Y3 selection function by comparing the matched and unmat-
ched MARD-Y3 clusters in the SPT-SZ sample and vice-versa. If the selection functions
(also that for SPT-SZ in this case) are well understood then the number of matched and
unmatched clusters should be fully consistent with the statistical expectations. Simply
stated, this test allows us to constrain MARD-Y3 contamination or SPT-SZ incompleten-
ess (the two effects are degenerate in this test). As discussed in Section 3.4.4, in the large
scatter luminosity–mass scenario, we find no evidence for either effect, while in the low
scatter scenario we find evidence at the 2 sigma level for either contamination or incom-
pleteness. Given that the MARD-Y3 sample contamination is estimated to be 2.5% (K19)
and given that the SPT-SZ sample has been used to produce cosmological constraints in
good agreement with independent probes (de Haan et al., 2016; Bocquet et al., 2019b), we
take this as further evidence supporting the large scatter scenario.

Looking at the probability of a MARD-Y3 confirmation of an SPT-SZ selected cluster
we find a subsample of clusters whose SZE properties suggest they should not have been
detected in MARD-Y3, but they are. As discussed in Section 3.4.4, if we model this as an
outlier fraction in the distribution of scatter about the mass–observable relations (either ab-
normally high X-ray flux or low SZE signature), we find a preference for an outlier fraction
of ∼ 10% ad a significance between 2 and 3 sigma. The locations of these most extreme
clusters in the richness–luminosity–SZE signal scatter plots indicate that this sample is
most likely caused by low SZE-signal rather than high X-ray flux, but further study is
warranted.

From a methodological perspective we demonstrate several new techniques:
1. Optical follow-up allows for three different flavours of number counts. While we de-

monstrate the potential of multi-observable number counts, the real novelty is that
one can perform number counts as a function of optical richness for a predominantly
X-ray selected sample in a consistent manner. In a blinded WL calibrated cosmologi-
cal analysis we would demand that the blinded cosmology from these three likelihoods
be consistent.

2. We improve the technique of studying matched and unmatched clusters in two inde-
pendent samples by including binomial statistics and marginalizing over the systema-
tic uncertainties associated with lack of knowledge of the observable–mass relation
parameters. With the use of probability trees, extra probabilities, such as contami-
nation, incompleteness or outlier fractions, can all be constrained in a statistically
sound way. This technique does not depend on the amplitude and redshift evolution
of the number of objects, reducing its cosmological sensitivity.
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3. We present a flexible empirical method to determine the X-ray selection function
from the data itself. It does not require any assumptions about cluster morphology.
The empirical nature of the constraint also marginalizes over the inherent uncertainty
of the selection function by sampling extra nuisance parameters. Shifts in these nui-
sance parameters when, for example, calibrating the observable–mass relation using
different sources of information can serve as a further test of systematic.

The techniques highlighted here have the potential to enable better control of syste-
matic effects in cosmological studies of current and upcoming cluster surveys. They also
demonstrate the potential of multi-wavelength analysis of cluster samples not only to in-
form the selection function modeling of individual surveys, but also to identify interesting
cluster populations. This will help exploit the wealth of information provided by deep and
wide surveys in X-ray, optical, NIR and millimeter wavelengths.

3.7 Appendix

3.7.1 X-ray flux error model
As outlined in Section 3.1.2 in some application it is not sufficient to know the measure-
ment uncertainty only for the objects in the catalog, but the measurement uncertainty is
also needed for arbitrary values of measured flux f̂X and redshift z. We therefore seek to
predict σ̂2

X(f̂X, z, texp) from the measured entries σ̂(i)
X . First we note that the measurement

uncertainties in the catalog scale with the exposure time approximately like σ̂(i)
X ∼ t−0.5

exp .
We thus bin the quantity (σ̂(i)

X )2 texp/400s in fine redshift and measured flux bins, as shown
in the upper panel of Fig. 3.19. This is then extrapolated and smoothed to provide a predic-
tion of the measurement uncertainty σ2

pred(f̂X, z) at each measured flux f̂X and redshift z,
if the exposure time was texp = 400s, shown in the lower panel of Fig. 3.19. This prediction
can than be scaled to the desired exposure time assuming the scaling above, i.e.

σ̂2
X(f̂X, z, texp) = σ2

pred(f̂X, z)
400s
texp

. (3.39)

Applying this prediction the cluster in our catalog and comparing the resulting un-
certainties to the actual measurement uncertainty leads to a mean relative error of 5.6%.
Furthermore, these residuals display no strong trends with background brightness, neutral
hydrogen column density or measured extent. Given the small magnitude, we choose to
ignore this source of systematic uncertainty, which could be included at the cost of sampling
extra nuisance parameters.

3.7.2 Gallery of Multi-wavelength Cluster Images
For each of the clusters we show four different maps: the DES rgb-pseudo color image in
the upper left, the RASS count rate in the upper right, the SPT-SZ signal to noise in the
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Abbildung 3.19: Construction of the expected measurement uncertainty at the median
redshift (lower panel) as a function of redshift (y axis) and measured flux (x axis), from
the normalized measurement uncertainties reported in the catalog (upper panel). In the
range where we have data, the predicted observational measurement uncertainty nicely
extrapolates the trends in the catalog.
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smallest filter scale in the lower left and the galaxy density map at the redshift noted in the
respective caption in the lower right. We discourage inspection of the DES color image in
printed version and recommend to inspect it by zooming into at PDF format of the paper.
Some clusters are show twice with galaxy density maps at different redshifts.
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Fig. 3.7.2: z = 0.403
Fig. 3.7.2: z = 0.43 (left panel), z = 0.05 (right panel)

Fig. 3.7.2: z = 0.64 Fig. 3.7.2: z = 0.71 Fig. 3.7.2: z = 0.50

Fig. 3.7.2: z = 0.48 Fig. 3.7.2: z = 0.510 Fig. 3.7.2: z = 0.57

Fig. 3.7.2: z = 0.20 (left panel), z = 0.92 (right panel)
Fig. 3.7.2: z = 0.76
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Fig. 3.7.2: z = 0.20 (left), z = 0.78 (right) Fig. 3.7.2: z = 0.76

Fig. 3.7.2: z = 0.61 Fig. 3.7.2: z = 0.66



Kapitel 4

Empirical cross calibration of the
DES-Y1 Cluster Sample with
SPT-SZ selected clusters.

4.1 Cluster samples

In this work we investigate the scatter model, the purity and the outlier fraction w.r.t. the
mean scaling relation of the optically selected sample based on the DES-Y1 observations.
These measurements are performed by cross matching and cross calibration of the optical
sample with the selected cluster from the SPT-SZ survey. This limits this analysis to the
joint footprint of SPT-SZ and DES-Y1, which is shown in Fig. 4.1 with the relative SPT
field depth color coded. It comprises an area of 1463 deg2. In the following, we will touch
on the main aspects of the two samples relevant to our analysis.

4.1.1 Optically selected samples

We employ the optically selected cluster sample extracted from DES-Y1 data (Drlica-
Wagner et al., 2018) with the RM algorithm (Rykoff et al., 2014; Rykoff et al., 2016; Dark
Energy Survey Collaboration, in prep.). This sample provides a measured cluster richness
λ̂i with associated measurement uncertainty δλi , and photometric redshift zi for each
cluster i. The photometric redshifts display percent scatter around spectroscopic redshifts.
In the joint DES-Y1–SPT-SZ footprint, this sample consists of 1005 objects above λ̂ > 40,
shown are gray points in Fig. 4.2. For all of these objects we extract the relative SPT field
depth γif .

After our cross matching studies, we extrapolate our results to the cosmological sample.
It is defined over the entire DES-Y1 footprint, is selected by λ̂ > 20, and comprises 7066
objects. Both samples span the redshift range z ∈ (0.2, 0.7).
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Abbildung 4.1: Joint SPT-SZ DES-Y1 footprint with color coded the relative field depth
as reported in de Haan et al. (2016).

4.1.2 SPT matched sample

We match the λ̂ > 40 RM sample with the SPT-SZ selected sample selected above SZe
signal to noise ξ > 4 (Bleem et al., 2015). To reduce the contamination by noise fluctuations,
we employ the SPT-SZ catalog that was cleaned by the automated cluster confirmation and
redshift measurement tool by MCMF by Klein et al. (in prep.) (see also Klein et al., 2018;
Klein et al., 2019, for recent applictions), using DES-Y3 photometric data. MCMF allows
one to select based of the change of random superposition fcont < 0.1, which enables us to
produce an uncontaminated SZe selected sample down to signal to noise ξ > 4. However,
at low signal to noise the optical confirmation introduces optical incompleteness. We show
in Appendix 4.6.1 that for objects with λ̂ > 40 this incompleteness is always < 2.5%. For
the RM-λ̂ > 40 sample the SPT-SZe selection is thus solely given by the SZ signal to noise.

We match the two sample by positional matching within a radius of 1.0 Mpc. We match
207 objects, shown as color circles in Fig. 4.2, where the color represents their SZe signal
to noise. 2 SPT clusters are matched to 2 RM λ̂ > 40 objects each. We confirm that in
these cases, both RM objects correspond to a significant detection by MCMF of an optical
structure along the line of sight of the SPT cluster. The redshift and the MCMF-richness
of these objects match the RM redshifts and richnesses. The SZe signals from these objects
might likely have contribution from both cluster along the line of sight. Consequently, it
would be biased high for every single object. Given their rarity, we do not treat these
objects in a special way.
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Abbildung 4.2: Distribution in measured richness and reshift of the optically selected RM
sample with measured richness λ̂ > 40 in the joint SPT-SZ–DES-Y1 footprint as gray point.
In colored circles the objects matched by SPT-SZ, with their SZe detection significance
color coded.
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4.2 Methods
In this section we will outline our modelling framework. We will describe how we utilize
the SPT mass information and its systematic uncertainty to constrain the richness–mass
relation and the scatter around that relation. This calibration is done for two distinct error
model, which are shortly summarized. We then proceed to present our statistical formalism
to constrain the RM purity and the outlier fractions of the scatter model. Furthermore, we
discuss how our inferred richness–mass relation, in combination with cosmological priors,
allows us to predict the number counts of RM clusters and their stacked weak lensing
measurements. Finally, we outline how these predictions, together with measurements of
these quantities can be transformed into estimated of the RM purity beyond the sensitivity
of the SPT confirmation.

4.2.1 General cluster population model
The cluster population model adapted in this work follows closely the model present in
(Grandis et al., in prep.[a]), which conceptually build on work by Bocquet et al. (2015).
Given a differential number of cluster dN

dM

∣∣∣
M,z

as a function of mass M at a redshift z for
a specific survey area, we determine the differential number of cluster in the joint space of
intrinsic SZe signal ζ and richness λ as

d2N

dζ dλ

∣∣∣∣
z

=
∫

dM P (ζ, λ|M, z) dN
dM

∣∣∣∣
M,z

(4.1)

where P (ζ, λ|M, z) describes the scatter around the mean SZe signal and mean richness.
A graphic representation of the differential number of objects as a function of the two
intrinsic observables is shown in the central panel of Fig. 4.3. For these mean relations we
adopt the same powerlaw behaviour as outlined in S15, reading

〈ζ〉 = ASZ

(
M

M0

)BSZ
(
E(z)
E(z0)

)CSZ

, (4.2)

with M0 = 3.0 1014M�h
−1 and z0 = 0.6.

We define an analogous relation for the mean intrinsic richness,

〈λ〉 = Aλ

(
M

M0

)Bλ( E(z)
E(z0)

)Cλ
. (4.3)

Following again S15 the scatter in SZe signal is modeled a log-normal distribition with
dispersion σSZ, while the scatter in richness also has a Poissonion contribution. We thus
have four free parameters for each relation: an a amplitude ASZ/λ, a mass slope BSZ/λ,
redshift evolution CSZ/λ and an intrinsic scatter σSZ/λ. We also introduce the correlation
coefficient ρ between the scatter in SZe signal and in richness as a free parameter of our
analysis.
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Abbildung 4.3: Graphic representation of the differential number density in space of intrin-
sic observables SZe signal ζ and richness λ (central panel). In red the result of conditioning
that distribution on a given value of SZe observable ζ0, with the resulting conditional pro-
bability in richness (right insert). The shape of the distribution are the richnesses consistent
with ζ0, while the amplitude is the differential number of objects at ζ0. The same argument
is repeated when conditioning on a richness λ0 in blue and in the lower insert.
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4.2.2 Observation error models
Having established our population model as a function of intrinsic observable, we need to
account for the observational uncertainty affecting our actual measurements of the SZe
signal and the richness.

In the case of the SZe signal, the measured signal ξ follows the distribution established
by Vanderlinde et al. (2010), which reads

P (ξ|ζ, γf ) = 1√
2π

exp
{
− 1

2

(
ξ −

√
γ2

f ζ
2 + 3

)2}
, (4.4)

where γf is the normalized field depth at the cluster position.
For the observational error on the richness, we follow two prescriptions. The first follows

the method used in S15. Together with the measured richness λ̂i, the RM cluster catalog
provides an estimate on the error of the richness δλi for each entry i, which is interpreted
as a Gaussian standard deviation, yielding

PS15(λ̂i|λ, δλi) = 1√
2π(δλi)2

exp
{
− 1

2

(
λ̂i − λ
δλi

)2}
. (4.5)

For applications where the average measurement uncertainty as a function of arbitrary
measured richness λ̂ is required, we adopt the extrapolation scheme presented in Grandis
et al. (in prep.[a]), appendix A to estimate δλ(λ̂, z) directly from the catalog.

A detailed study of projection effects on simulations by Costanzi et al. (2019, hereafter
C19), expanded the prescription above to provide an accurate description of the impact of
correlated structures on mapping between intrinsic and measured richness. This effect is
summarized by the fitted probability density function which we call PC19(λ̂|λ, z). For the
exact definition of this function see Eq. 15 in C19.

All analysis steps that follow are performed for both models in an attempt to grasp the
impact projection effects might have on our inference.

4.2.3 SPT cross calibration
All objects of the matched RM-SPT sample have, besides a redshift zi, both a measured
SZe signal ξi and a measured richness λ̂i. For each set of scaling relation parameters, we
then use the measured SZe signal ξi to predict the distribution of intrinsic richnesses λ, by
convolving the joint distribution of intrinsic observables with the measurement uncertainty
of the SZe signal, i.e.

P (λ|ξi, γif , zi) ∝
∫

dζ P (ξi|ζ, γif )
d2N

dζ dλ

∣∣∣∣
zi
. (4.6)

This equation depends on the scaling relation parameters through the last term, the diffe-
rential number of objects. As can be seen in Fig. 4.3, for each intrinsic SZe signal to noise
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this expression selects a range intrinsic richness, which correspond to the distribution of
richnesses for clusters with that SZe signal.

The equation above can be propagated into the space of observed richness by folding
with the optical error model, i.e.

P (λ̂|ξi, γif , zi) ∝
∫

dλP (λ̂|λ, z)P (λ|ξi, γif , zi). (4.7)

The proportionality constant is determined by ensuring that the equation above is properly
normalized for all possible measured richnesses, that is for λ̂ > 40. This is achieved by
imposing

∫∞
40 dλ̂P (λ̂|ξi, γif , zi) = 1. Note that this normalization cancels the dependence

on the absolute number of objects, strongly reducing the cosmological dependence in this
analysis.

Evaluation of the properly normalized Eq. 4.7 at the measured richness λ̂i gives the
single cluster likelihood

lnLi = lnP (λ̂i|ξi, γif , zi) (4.8)

The total log-likelihood then results from summing the log-likelihoods of the individual
clusters. Sampling it with priors on the SZe scaling relation parameters provides constraints
on the richness–mass scaling relation parameters.

4.2.4 Constraining outlier fractions and purity
The analysis outlined in the previous section can only be performed on a matched SPT-
RM sample, as for any cluster both a measurement of the richness and the SZe signal
are required. Considering instead the entire RM sample above λ̂ > 40, we can view being
matched or not being matched by SPT as a measurement, just in this case of boolean
nature and not a number. We can also seek to predict the outcome of this event for each
single RM cluster i based on the observed richness λ̂i, the redshift zi, and the values of the
scaling relation parameters. Indeed, given a λ̂i, we can predict the probable intrinsic SZe
signal associated to it by computing

P (ζ|λ̂i, zi) ∝
∫

dλP (λ̂i|λ, zi) d2N

dζ dλ

∣∣∣∣
zi
, (4.9)

where in this case the proportionality constant is set by
∫

dζ P (ζ|λ̂i, zi) = 1, as no selec-
tion of SZe properties was performed. For a graphical representation of this equation, see
Fig. 4.3, where we highlight how conditioning on a given richness selects a range of intrinsic
SZe signal to noises, based on the joint number density as a function of both observables.
Note that in this case too the normalization cancels the dependence on the absolute number
of objects, strongly reducing the cosmological dependence in this analysis.

Given the relative field depth of SPT γif at the RM cluster position, we can compute
the probability pi that the cluster will have a measured SZe signal ξ > 4 as

pi =
∫

dζ P (ξ > 4|ζ, γif )P (ζ|λ̂i, zi) (4.10)
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p(!SPT|λ̂(i), z(i)) p(SPT|λ̂(i), z(i))

Abbildung 4.4: Probability tree describing the different possibilities for a RM object with
measured richness λ̂(i) and redshift z(i) to be detected by SPT p(SPT|λ̂(i), z(i)) and not
being detected p(!SPT|λ̂(i), z(i)). These probabilities depend not only on the raw detection
probabilities pi as obtained from the observable–mass relations and the selection function,
but also on the purity πpur and the outlier fractions πlow/high.
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In this simple example, the likelihood of matching a system is given by the probability
of being detected pi, as we remind the reader than in a Bayesian context the likelihood is
defined as the probability of the data given the model. Similarly, the likelihood of a not
matched system is given by the probability of not being detected, that is 1− pi.

As in Grandis et al. (in prep.[a]), we expand this formalism in order to investigate
different properties of the selection function. To do so we introduce the probability tree
shown in Fig. 4.4. For every RM object, we first entertain the possibility that the object
in a contaminant. This is modelled by the purity πpur. Every RM object has only a chance
πpur to be an actual cluster, and, conversely, a chance 1 − πpur of being a contaminant.
Anticipating the constraining power of this experiment, we do not investigate possible
trends of the purity with richness or redshift at this stage. If the object is a cluster,
the detection probability pi modulates if it should be detected by SPT or not. We then
introduce two further probabilities: first πlow for cluster with a surprisingly low richness
leading to an underestimation of the detection probability and thus a detection in SPT
despite the cluster should not have been detected. The same physical effect on detection
could be achieved by a boosting of the SZe signal, which however is highly unlikely due to its
distinct spectral feature. Second, we also allow clusters that we thought should have been
detected by SPT to be missed with probability πhigh. This can be due to surprisingly high
richness, and consequently an overestimated detection probability, or due to a surprisingly
low SZe signal due to phenomena such as radio or dust emission in the cluster. Following
the probability tree and adding up the weight of all the branches leading to a none detection
(represented by the notation ‘!SPT’), we find

p(!SPT|λ̂(i), z(i)) = 1− πpur + πpur((1− pi)(1− πlow) + piπhigh). (4.11)

For matched objects, i.e. SPT detected objects, the likelihood is

p(SPT|λ̂(i), z(i)) = πpur((1− pi)πhigh + (1− pi)(1− πlow)). (4.12)

The total likelihood for the RM sample can then be obtained by summing the log-likelihood
of the individual clusters based on whether they were detected or not, reading

lnL =
∑

i∈matched
ln p(SPT|λ̂(i), z(i)) +

∑
i∈!matched

ln p(!SPT|λ̂(i), z(i)). (4.13)

This likelihood depends on the scaling relation parameters, on the purity, and the outlier
fractions.

4.2.5 Predictions
After having determined the richness–mass scaling relation parameters, we employ the
different posteriors on these parameters to predict several quantities which we compare
with data: 1) the fraction of SPT detected RM clusters as a function of redshift and
measured richness, 2) the number density of RM cluster in redshift and measured richness
bins, and 3) the mean mass of clusters in redshift and richness bins. We also outline how



132 4. DES-Y1 cross calibration with SPT

predictions and measurements of both the number counts of RM clusters and the mean
mass can be transformed in estimates of the purity.

SPT confirmation fraction

When working in a bin j defined by λ̂j− < λ̂ < λ̂j+ and zj− < z < zj+, we can determine the
range of intrinsic richnesses λ that fall into that bin due to observational error as

P (j|λ, z) = χzj−,z
j
+

(z)dz
∫ λ̂j+

λ̂j−

dλ̂ P (λ̂|λ, z) =

= χzj−,z
j
+

(z)
[
P (λ̂ > λ̂j−|λ, z)− P (λ̂ > λ̂j+|λ, z)

]
.

(4.14)

Note that in the limit of infinitely small bins around a measured richness λ̂i and redshift
zi, that is λ̂j+/− → λ̂i and zj+/− → zi, this equation tends towards the error model for a
single clusters given in Eq. 4.5. Also, χzj−,zj+(z) = 1 for zj− < z < zj+, and = 0 else.

Predicting the distribution of SZe signals ζ in the bin then follows closely the expression
for a single cluster given in Eq. 4.9, reading

P (ζ|j) ∝
∫

dλ
∫

dz P (j|λ, z) d2N

dζ dλ

∣∣∣∣
z
, (4.15)

where the normalization is given by the condition
∫

dζ P (ζ|j, z) = 1. As above, this nor-
malization makes this expression loose much of its dependence on cosmology.

The confirmation fraction f(SPT|j) is then obtained by folding the predicted distribu-
tion of intrinsic SZe signal to noises with the SPT selection function given by the condition
ξ > 4, that is

f(SPT|j) = 1∑
f Af

∑
f

AfP (ξ > 4|ζ, γf )P (ζ|j), (4.16)

where Af is the area of the field f in the joint footprint. The weighted sum over the
fields properly accounts for the spatially varying SPT observing conditions.

Mean mass

The prediction for the mean mass in a bin j defined by λ̂j− < λ̂ < λ̂j+ and zj− < z < zj+ can
be computed from the predicted distribution of masses

P (M |j) ∝
∫

dz
∫

dλP (j|λ, z)P (λ|M, z) dN
dM

∣∣∣∣
M,z

, (4.17)

where the normalization is given by
∫

dM P (M |j) = 1. The mean mass M̄(j) is then simply

M̄(j) =
∫

dMM P (M |j). (4.18)
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Number counts

The number of objects N(j) in a bin j defined by λ̂j− < λ̂ < λ̂j+ and zj− < z < zj+ is given
by

N(j) =
∫

dz
∫

dλP (j|λ, z)
∫

dM P (λ|M, z) dN
dM

∣∣∣∣
M,z

A(z), (4.19)

where A(z) is the fraction of the survey area in which an object with redshift z can be
detected (Dark Energy Survey Collaboration, in prep.). We compared our prediction to
other code available within DES and found that the numerical difference are clearly smaller
than the systematic uncertainty on this quantity.

Purity

We can utilize the prediction for the mean mass in a bin j defined by λ̂j− < λ̂ < λ̂j+ and
zj− < z < zj+ in combination with the stacked WL measurement of the mean mass M̂WL(j)
in that bin by McClintock et al. (2019a, hereafter McC19) to estimate the purity of the RM
λ̂ > 20. We assume that a contaminant would contribute Mcont = 0, at least on average.
It then follows that

πpur,WL(j)M̄(j) = MWL(j), (4.20)

as the predicted mean mass M̄(j) is extrapolated from the SPT matched sample. In light
of their SZe signal these objects can safely be considered clusters. This estimate of the
low mass contamination is conservative, as in reality the WL signal associated to a low
mass contaminant is larger or equal to that of a typical large elliptical galaxy. These
objects populate the tails of the richness distribution beyond the modelled scatter, which
we call low mass contaminants. Due to their mass they contribute less to the dilution of
the WL signal than a putative Mcont = 0 object. As a consequence, the fraction of low
mass contaminants required to bring extrapolated and measured WL mass in agreement
is larger then the fraction inferred for putative Mcont = 0 objects.

Practically, to account for systematic and statistical uncertainties on the inferred purity,
we draw 500 random point from the posterior of the richness–mass scaling relation parame-
ters derived using derived using Eq. 4.20 to predict a sample of M̄(j). This propagates the
systematic uncertainty of the mass calibration onto our prediction. We then resample the
WL measurement MWL(j) employing the measurement uncertainties reported in McC19
500 times to take account of the correct statistical uncertainties. Finally for each element
of the two samples, we estimate of πpur,WL(j), obtaining a sample thereof. The dispersion
in this sample characterizes the systematic and statistical uncertainties on πpur,WL(j).

An alternative method is to consider the number counts. While we expect N(j) cluster
in each bin, contamination might increase this number (and excess incompleteness reduce
it). We therefore assume

N(j) = πpur,NC(j)NRM(j), (4.21)

where NRM(j) is the expected number of RM objects in the bin j. We only have access
to a Poisson realisation N̂RM(j). We create a sample of NRM(j) by sampling from the
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Abbildung 4.5: Scatter plot of the richnesses and SZe signals of the matched sample (black
dot with errorbars) in redshift bins. Overplotted the mean richness–SZe signal relation
resulting with systematic uncertainties from the fit with the two error models (blue: S15,
red: C19). The small deviation in the mean relation reflect the impact of projection effects.
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distribution
P (n|N̂RM(j)) ∝ e−nnNRM(j), (4.22)

which, if interpreted as a distribution in N̂RM(j) would be the aforementioned Poissonian,
but for given N̂RM(j) is a distribution in NRM(j). This provides as sample of NRM(j).
We then use our posterior on the scaling relation parameters to create a sample of N(j).
We also use ΩM = 0.276 ± 0.047 and σ8 = 0.781 ± 0.037 from Bocquet et al. (2019a) to
properly account for uncertainties in cosmology when sampling N(j). For pairs of entries
from the NRM(j) sample and the N(j) sample we estimate πpur,NC(j), thus creating a
sample thereof which account for systematic uncertainties on the richness–mass relation
and on cosmology as well as the statistical uncertainties of the number counts. Note that
under these assumptions, the inferred purity can also be larger than 1, indicating excess
incompleteness instead.

4.2.6 Priors

We use priors on the SZe signal–mass scaling relation parameters derived from Bocquet
et al. (2019a). In that work, constraints on the SZe signal–mass scaling relation para-
meters are derived by jointly fitting the number counts of SZe selected clusters, and the
mass calibration by means of pointed weak lensing follow up measurements. The resulting
constraints in the baseline ν-ΛCDM model read ASZ = 5.25 ± 1.01, BSZ = 1.53 ± 0.10,
CSZ = 0.47± 0.41, and σSZ = 0.16± 0.08. These priors encode the systematic mass uncer-
tainty on the SZe derived masses. We like to stress here that these masses do not assume
hydrostatic equilibrium, but are instead empirically calibrated using number counts and
weak lensing information.

4.3 Results

In this section we present our main results, starting with the calibration of the richness–
mass relation based on the SPT cross matching. We then proceed to constrain the RM
purity and the outlier fractions, subsequently showing that the SPT confirmation fraction
of RM cluster matched with our prediction based on the cross calibration. We finally seek to
extent the measurement of the RM purity to lower richnesses, by comparing measurement
and prediction for the number counts of optically selected clusters and their stacked WL
signal.

4.3.1 Cross Calibration

We shall focus first on the measurement of the richness–mass scaling relation parameters,
the purity and the outlier fraction from our analysis of the cross matched sample.
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Abbildung 4.6: Posteriors on the parameters of the richness–mass scaling relation, the
scatter around that relation and the correlation coefficient between the intrinsic scatter in
SZe signal and in richness. Furthermore, where applicable, also the purities and the outlier
fractions posterior are shown. We show the results for different combinations of likelihoods
and optical error models: blue and yellow the C19 model, and the S15 model, respectively,
when sampling just the cross calibration likelihood, while in green and red the C19 model,
and the S15 model, respectively, when also considering the detection probability likelihood.
In black the richness mass relation obtained by S15 from a SPT-DES matched sample of
25 clusters.
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Tabelle 4.1: Mean and standard deviation estimated from the one dimensional marginal
posterior plots for the parameters the richness scaling relation, the purity and the outlier
fractions.

Aλ Bλ Cλ σλ ρ πpur πlow πhigh
SPT calibr. (C19) 75.7±8.8 0.91±0.07 0.34±0.34 0.18±0.05 – – – –
+ det. prob. 69.9±9.2 1.04±0.07 -0.09±0.31 0.22±0.06 – ¿0.80 ¡0.20 0.022±0.016
SPT calibr. (S15) 83.7±11.5 1.03±0.10 0.71±0.41 0.22±0.06 – – – –
+ det. prob. 78.6±10.1 0.94±0.07 0.28±0.28 0.22±0.06 – ¿0.76 ¡0.22 0.033±0.018
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Abbildung 4.7: SPT confirmation fraction as a function of measured richness, predicted
from the posteriors on the scaling relation parameters for the S15 error model (blue) and
when considering projection effects (red), overlaid with the measurement as black points.
This comparison reveals no indication for significant contamination or low purity above
measured richness λ̂ > 40, consistent with our statistical analysis.
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Scaling relation

As outlined in section 4.2.3 the measured richnesses and measured SZe signals for clusters
in the cross matched RM-SPT sample can be used to transfer the calibration of the SZe
signal–mass relation given by the priors discussed in section 4.2.6 onto the richness–mass
relation. To this end, the sum of the likelihoods given in equation 4.8 are sampled with the
aforementioned priors. The scatter plot of the matched sample in redshift bins is shown in
figure 4.5 with black points.

The resulting posteriors on the parameters of the richness–mass scaling relation are
summarized in terms of their means and standard deviations in Table 4.1 and shown
with their marginal distributions in Fig. 4.6. In blue the constraints from adopting the
C19 optical error model and sampling the cross calibration likelihood, while in yellow
the posteriors when using the S15 optical error model. The constraints are in very good
agreement, highlighting that at the level of statistical constraining power of the cross
matched sample the two error models are not distinguishable. The minor changes induced
by the projection effects can be seen on the mean relation over plotting the data scatter
plot in figure 4.5. We also plot in black previous results by S15 on DES-SV.

Purity and Outlier Fraction

As discussed at length in section 4.2.4 the probability of detecting a RM cluster is SPT
is very sensitive on the respective scaling relation parameters of the two selection obser-
vables. Consequently, one needs to marginalize over a reasonable range of scaling relation
parameters when inferring the purity of the RM sample and the outlier fractions with
the likelihood given in equation 4.13. This is accomplished by sampling the likelihood of
detection probabilities simultaneously with the cross calibration likelihood (equation 4.8).
This ensures proper accounting for the systematic uncertainties on the scaling relation
when inferring the purity and outlier fraction. The resulting posteriors, depending on the
assumed optical error model, are shown as green and red contours in Fig. 4.6 for the C19
and the S15 model, respectively, and summarized in Table 4.1.

The posteriors on the scaling relation parameters are generally in good agreement with
the results without the detection probability likelihood. We find a upper limit πlow < 0.20
and πlow < 0.22 (at 97.5%) on the low outlier fraction for the C19 model and the S15
model, respectively. We also find an lower limit for the purity of πpur > 0.80 and πpur >
0.76 (at 2.5%) for the C19 model and the S15 model, respectively. For the high outlier
fraction, we find πhigh = 0.022± 0.016 and πhigh = 0.033± 0.018 for the two error models.
Neither of the two measurements in statistically significant. Yet the projection effect model
shows consistently larger purity and smaller outlier fraction, hinting at a more adequate
description of the scatter.

Interestingly, the detection probability likelihood slightly alters the posteriors on the
scaling relation parameters, with the largest impact on the slope and the redshift evolution.
This is not surprising when considering that not detecting a RM object in SPT is equivalent
to the measurement ξ < 4, which given priors on the SZe signal–mass relation carries some



4.3 Results 139

mass information, at least in the form of an upper limit. This information is however quite
weak, as can be seen by directly comparing the improvement in measurement uncertainties.
Furthermore, it is consistent with the information recovered from the matched sample
alone, as the shifts is mean values also do not exceed 1 σ.

The measurement of purity consistent with unity is confirmed when comparing the SPT
confirmation fraction of RM objects as a function of richness to the measured fraction, as
done in Fig. 4.7. Following equation 4.16, we predict the SPT confirmation fraction of
the RM (λ̂ > 40) sample as a function of measured richness. The shaded region reflects
the 1 σ systematic uncertainty as propagated from the posterior samples. Note also here
that the difference between the predictions for the two error models is small. As discussed
by C19 the values of the scaling relation and scatter around it absorb a majority of the
differences between the two error models. We over plot the predicted fraction with the mea-
sured fraction in richness bins and associated statistical uncertainties. Within the statistic
and systematic uncertainties the prediction and the measurement are in good agreement,
confirming the high purity of the RM (λ̂ > 40) sample.

4.3.2 Comparison to λ̂ > 20
In the previous section we determined the systematic uncertainty on the richness–mass
relation in the regime of measured richness ¿40, that is at the high mass end. In this
section we extrapolate the relation determined at high masses to lower masses. We first
compare our prediction for the mean mass in richness bins to a measurement thereof from
stacked weak lensing by McC19. Second we predict the number counts of RM clusters in
redshift and richness bins to our prediction. Finally, both these comparison are turned into
estimates of purity as a function of redshift and richness, extending to λ̂ > 20.

Stacked Weak Lensing

The mean mass in redshift and richness bin for our scaling relation parameters constraints
are derived following equation 4.18 for the richness bins with edges (20, 30, 45, 60, 300)
and redshift bins with edges (0.20, 0.35, 0.50, 0.60) as in McC19. The resulting masses are
shown in Fig. 4.8 with the systematic uncertainties as blue and red boxes for the S15 and
the C19 error model, respectively. Over plotted are also the measurements by McC19 with
statistical uncertainties. The resulting tension T (j) in the bin j between the measurements
M̂WL(j)± σ̂ and the prediction M̄(j)± σsys is estimated as

T = M̂WL(j)− M̄(j)√
σ̂2 + σ2

sys
. (4.23)

We report the resulting tension as numbers in the plot. While at high mass the agreement is
good, it worsens when moving to lower richness and higher redshift. In the lowest richness,
highest redshift bin it clearly exceeds 2 σ for both optical models.
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Abbildung 4.8: Mean mass in redshift and richness bins predicted from our posteriors for
the S15 error model (blue), and the C19 error model (red), where the filled region represents
1 σ and the empty one 2 σ. Over plotted the mean masses reported by McC19 from stacked
weak lensing as black points with errorbars. We also report the levels of tension between
our prediction and the measurement as numbers next to the respective predictions (red for
C19, blue for S15). In the lowest richness bins the tension exceeds 2 σ for the C19 model,
while for the S15 model it does so in the highest redshift, lowest richness bin.
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Abbildung 4.9: Number of RM objects in bins of richness and redshift. In color the predic-
tion from our richness–mass relation constraints and SPT cluster number counts for the
different optical error models (blue S15, red C19). The shaded region represents the 1 σ sy-
stematic uncertainty. Over plotted in black the number of RM objects with the associated
Poissonian error bar. The prediction matched the data within 1 σ systematic uncertainty.
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Number counts

We also compare the number of RM clusters predicted by our error model to the measured
number of cluster in richness and redshift bins. To this end, we predict the number of RM
clusters following equation 4.19. As stated above, we do not only propagate the uncertainty
on the richness–mass scaling relation parameters, but also on the cosmological parameters.
This results in a prediction the number of objects with large systematic uncertainties, as
shown in the red (C19) and blue (S15) bands in Fig. 4.9. In the same figure we also plot
as black points with error bars the number of RM objects with their statistical Poisson
uncertainties, which are considerably smaller than the systematic uncertainties for almost
all richnesses. Noticeably, the data is in good agreement with our prediction, independently
on the error model. SPT derived cosmology and our richness–mass relation are thus able
to predict the number counts of RM objects. This in turn means that if direct mass in-
formation was to confirm our calibration of the richness–mass relation, the combination of
that calibration and the RM number counts would provide a cosmology that is consistent
with SPT constraints.

4.4 Discussion
In the following, we discuss the major results presented above. Based on a comparison of
literature results, we confirm that our recovered scatter values are consistent with those
from other works. Thus, larger scatter does not provide an alternative for the mismatch
between our scaling relation and the stacked weak lensing results. We then review the mea-
surements of the mass trend linking it to our measurement of contamination. Thereafter,
we discuss other possible sources of the tension between between SPT cross calibration
and stacked weak lensing. Finally, we outline upcoming improvements in observation that
likely will help to discriminated among the proposed scenarios.

4.4.1 Comparison to literature
Our comparison to the literature focusses on the two scaling relation parameters which are
most closely linked to the purity, that is the intrinsic scatter and the mass slope. In the
following, we will consider also results based on RM on the Sloan Digital Sky Survey (SDSS,
see Rykoff et al., 2014, for the discussion of the RM application), as those richnesses are
consistent with the richnesses extracted from (DES see, McC19, equations 66-67).

Constraints on scatter

A larger intrinsic scatter increases the range of masses associated to a given measured
richness, thereby reducing the amount of objects which are classified as contamination due
to their low mass. This is especially true for optical cluster finding, as every red galaxy
lives in a halo of some mass (Cohn et al., 2007; Farahi et al., 2016). The presence of a red
galaxy thus indicates the presence of a halo. This situation is different in the SZ, where
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noise fluctuation are not necessarily associated to real halos, or in the X-ray, where AGNs,
although themselves living in halos, do not display the same luminosity–mass relation as
clusters.

Measurements of the scatter are made all the more relevant, as traditionally stacked
weak lensing is used in studies of optically selected clusters (e.g. Simet et al., 2017; Murata
et al., 2018; McClintock et al., 2019a; Murata et al., 2019). Due to the stacking, such
studies loose leverage on the scatter, while Bayesian population modeling retains some
constraining power (Grandis et al., 2019). Cross calibration with ICM based mass proxies,
like the one done in this work, are thus used to constrain the scatter. Rozo et al. (2015)
cross calibrated the SDSS-RM sample (Rykoff et al., 2014) with the Planck 13 SZ selected
cluster catalog (Planck Collaboration et al., 2015), investigating the scaling between the
richness and the SZ-inferred mass for 191 cluster. The scatter around that relation is
σlnλ|MSZ = 0.266 ± 0.017. Investigating the relation between the DES-RM richness and
the temperature in 58 archival Chandra observations and 110 XMM observation, Farahi
et al. (2019) find σlnλ|M = 0.20+0.10

−0.08. Both of these measurements are in good agreement
with our results, for instance σλ = 0.22± 0.06. We furthermore confirm that the impact of
the projection model is small compared to the current uncertainties. Also deviation from
log-normality as probed by the outlier fraction are not detected. Note, however, that all
these results were derived on the high richness end of the population. It remains open to
see if they can be extrapolated to lower richnesses. As such, the variance and the deviation
from log-normality in the range λ̂ < 40 are currently, to the authors knowledge, unknown.

Mass trend of richness

The mis-match between our prediction for the mean mass in richness-redshift bins and its
measurement trough stacked weak lensing by McC19 can also be stated as a difference in
mass trend. Indeed, McC19 finds a mass trend of Bλ,McC19 = 0.73± 0.03. The tension with
our results is representative of the varying results reported in recent years in different works
(see McClintock et al., 2019a; Capasso et al., 2019c, for summaries). Given the variety of
methods employed we propose to separate the works along the following criterion: is the
an ICM based selection, that is SZe or X-ray, involved in the sample selections, or is the
selection exclusively optical. Note also that we will ignore works that used the number
counts at fixed cosmology to determine the mass slope, such as Murata et al. (2018), as
the choice of cosmology is directly degenerate with the resulting slope. In the following
and in Fig. 4.10 we present a representative selection. In the class of works based on ICM
selection we find:

• Rozo et al. (2015) cross calibrating of SDSS-RM with Planck 13 SZe selected clusters
finding Bλ = 0.965± 0.067;

• Mantz et al. (2016) determining λ ∼M0.75±0.12
gas on a sample ROSAT selected cluster.

Combining this with the scaling Mgas ∼ M1.29±0.09 for the gas mass content of SPT
selected clusters (Chiu et al., 2018) results in Bλ = 0.97± 0.17 . Note here that this
inference is based upon the relation between halo mass and gas mass. It is generally
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Abbildung 4.10: Comparison of the constraints on the richness–mass slope from different
works to our own results. The color coding represents the selection method used: blue for
SZe, magenta for X-rays and red for solely optical selection. The discrepancy between the
results based on ICM selection (SZe and X-rays) can clearly be seen. This difference might
be due to low richness contamination in analyses based on optical selection.
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accepted from an empirical and theoretical prospective that the gas mass fraction of
low mass systems falls, see for instance the discussion in Bulbul et al. (2019, section
5.2.2.);

• a dynamical analysis of ROSAT selected, SDSS-RM confirmed cluster by Capasso
et al. (2019c), reporting Bλ = 0.99± 0.08.

On the other side, constraints obtained on purely optically selected samples are:

• Stacked spectroscopic analysis of SDSS-RM cluster by Farahi et al. (2016), which
finds Bλ = 0.76± 0.11.

• Stacked weak lensing of SDSS-RM clusters by Simet et al. (2017), with Bλ = 0.74±
0.06;

• Stacked weak lensing of DES-RM clusters by McC19 with Bλ = 0.73± 0.03;

• Stacked analysis of the CMB lensing signal around DES-RM clusters by Baxter et al.
(2018) currently do not constrain the mass trend of richness, as they recover the prior
imposed on that parameter with no improvement on the uncertainty.

Noticeably, constraints on ICM selected samples are in good agreement with our own
results and generally indicate Bλ ∼ 1, while results based in stacking methods of optically
selected samples suggest Bλ ∼ 0.75, as can be clearly seen in Fig. 4.10. As discussed above,
this difference could be caused by an increased contamination by low mass systems at low
richness which would bias the stacked signals low due to the inclusion of contaminants into
the stacks. Caution is however warranted, as in most cases the ICM selected measurements
did not reach the richness range λ̂ < 40, were conversely most of the objects in the stacked,
optically selected analyses lay.

4.4.2 Inferred Purity
Another way of explore the richness range λ̂ < 40, is to extrapolate our results. Both the
comparison of predicted and measured stack weak lensing mass, as well as the number
of RM objects can be turned into an estimated of the purity of the sample, as discussed
in section 4.2.5. The results of this prediction are shown in Fig. 4.11 as points for the
estimation from number counts and boxes for stacked weak lensing. The color encodes the
optical error model used: red for C19 and blue for S15. In both cases the error bars reflect
both systematic and statistical uncertainties. In the case of stacked weak lensing the two
contributions are of approximately the same magnitude, while the error bar for the number
counts estimation are dominated by systematic uncertainties. The two predictions are in
mutual agreement. The overestimation of the mean mass compared to the weak lensing is
reflected in an estimated purity that deviates at more than 2σ from unity.

This provides some support to the idea that the purity of the RM sample might worsen
when going to low richness and high redshift. Noticeably, it does so in a manner that is
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Abbildung 4.11: Estimation of the purity πpur as a function of richness for different redshift
bins. In red the prediction from the C19 error model, while in blue the prediction for the S15
model. Points represent the estimation from number counts, with error bars reflecting the
systematic and statistical uncertainties (the latter are however subdominant). As shaded
regions the estimates from stacked weak lensing. While the two estimates are in mutual
agreement, the purity from stacked weak lensing deviated from 1 at more than 2σ for low
richness and high redshifts.
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consistent between number counts and weak lensing. Assuming up to 30% contamination
at low richness would make our richness–mass relation consistent with stacked WL mea-
surements, while being compatible within the systematic uncertainties with the measured
number of clusters. It is thus a natural conclusion from extrapolating our richness–mass
relation to low richness.

Similar studies by the (Dark Energy Survey Collaboration, in prep.) distinguish them-
selves by smaller systematic uncertainties, as the richness–mass relation is inferred from
the RM number counts itself. In that work, the authors suggest by an analytical argument,
that stronger projection effects, being equivalent to contamination by low mass object can
not account for all of the observed tension. Empirical confirmation of the project effect
model via spectroscopic studies of SDSS-RM objects in the redshift range 0.08 < z < 0.12
by (Myles et al., in prep) are currently undertaken. Furthermore, a follow up of the objects
in that redshfit range with 20 < λ̂ < 30 by (von der Linden et al., in prep.) in the X-ray
with Swift will also shed light on the mass distribution at low richnesses.

4.4.3 Alternative Explanations
Contamination of the low richness range by even lower mass systems is not the only possible
explanation. Alternatively, one could consider the mass range covered by the ICM selected
samples, as shown exemplary in Fig. 4.12. Given current sensitivities, it does not extend
to such low masses as the optical selection. Indeed, our cross calibration work is limited
to λ̂ > 40. Considering the different mass ranges, the stacking results might be dominated
by the more frequent low mass systems. A mass dependent slope might thus describe the
results from both the ICM selected and the purely optically selected samples. The main
difficulty of this scenario is to accommodate existing constraints on the stellar mass–halo
mass relation, indicating a power law trend down to halo masses of Mhalo ∼ 1012M�
(Behroozi et al., 2019). Nevertheless, comparison to these works is hindered by the amount
of stellar mass stripped from galaxies into the intra-cluster light and by the definition of
the extraction aperture in the direct RM extraction, which is optimized for selection and
not to trace the virial region.

Another possible source of the disagreement between stacked weak lensing results and
ICM based cross calibration can be the correlation between the scatter sources of the weak
lensing signal and the scatter sources of richness. Both are, for instance affected by mis-
centering (for the effect of richness see Rykoff et al. (2014), while for weak lensing consider,
among others Yang et al. (2006) and Johnston et al. (2007)). Furthermore, at the same
halo mass triaxiality impacts both observables similarly (Dietrich et al., 2014). Finally, a
part of the lensing signal comes from the two halo term describing the correlation between
halos and neighboring structure. This signal is known to display large scatter based on the
alignment of the surrounding structure (Osato et al., 2018). It could, furthermore correlate
with the percolation procedure in the RM extraction or with the strength of projection
effects. Importantly, to explain the current discrepancy on the mass trend, these effects
need to be mass dependent, as also pointed out in (Dark Energy Survey Collaboration,
in prep.). These effects are currently studied on simulations in preparation for DES-Y3, and
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Abbildung 4.12: Current (dotted lines) and future (full and dashed-dotted) mass limits in
magenta for X-ray surveys and in blue for SZe surveys. Red the mass corresponding to
λ̂ > 20. Deeper photometric surveys do not lower the mass limit of optical selection but
enable detections to higher redshift. As can be seen in the projected mass limits, eROSITA
and SPT-3G will extent the ICM leverage on low mass systems significantly.

LSST. Inference from simulations in these cases is only reliable if the simulations are able
to reproduce a realistic distribution of galaxy colors as a function of environmental density
(Cohn et al., 2007; Farahi et al., 2016; Costanzi et al., 2019). Even if the prediction was
right, simulations still struggle to give a realistic account of the systematic uncertainties in-
duced by the choices in sub grid physics or post-processing. From an empirical perspective,
the mass limits of ICM based cluster surveys currently make such studies impossible.

4.4.4 Prospects
As mentioned earlier, direct measurement of contamination in the richness range 20 < λ̂ <
40, of the mass trend of those richnesses and of the correlation between the scatter in those
richnesses and the scatter weak lensing signal currently lays below the sensitivity of X-ray
and SZe based cluster surveys. This can be seen clearly by the mass limits of current ICM
based cluster surveys, e.g. SPT-SZ (Bleem et al., 2015) and ROSAT (Böhringer et al., 2004)
in Fig. 4.12. This situation is however going to change in the next years. In SZ, the third
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generation of SPT detectors are currently performing the SPT-3G survey over 1500 deg2

(Benson et al., 2014). It will lower the limiting mass of SZ detection by a factor of 2. In X-
rays the recent ‘first light’1 of the eROSITA2 X-ray telescope (Predehl et al., 2010; Merloni
et al., 2012) on board the Russian ‘Spectrum-Roentgen-Gamma’ satellite will drastically
improve the sensitivity of X-ray cluster surveys. We present in Fig. 4.12 the mass limits
for 15 counts in the first eROSITA All-Sky-Survey (eRASS 1, 0.5 yr of observation) and
eighth eROSITA All-Sky-Survey (eRASS 8, 4 yr of observation) following the prediction
by Grandis et al. (2019). This would allow us to follow up optically selected objects up
to z ∼ 0.5 individually. The presence or absence of X-ray emission in eROSITA from
optically selected objects will be a powerful tool to extent the kind of analysis presented in
this work to lower richnesses. It will most likely help to discriminate the different scenarios
we identified earlier.

4.5 Conclusions
In this work we empirically validate the RM selected DES-Y1 survey by cross calibration
with SPT-SZ selected clusters. We first limit ourselves to the high richness regime (λ̂ > 40)
to avoid optical incompleteness in the SPT confirmation. We produce a matched sample
by positional matching between the RM-(λ̂ > 40) and the SPT-SZ selected clusters (Bleem
et al., 2015). On the matched sample, we model the distribution in SZe-signal, richness and
redshift with a Bayesian cluster population model. The free parameters of this model, the
parameters controlling the scaling between richness and mass, and the scatters around this
relation, are constrained from our analysis. We employ prior from previous SPT studies
on the parameters on the SZe signal–mass relation, effectively transferring the vetted SPT
mass calibration onto the richness–mass relation.

In an attempt to explore the effect of projection effects on the richness–mass we employ
two different error models: the first by Saro et al. (2015) uses the error bars reported in
the RM catalog, while the second by Costanzi et al. (2019) which includes projection
effects. Our cross calibration of the richness–mass relation and the scatter around it is not
significantly affected by the optical error model. Furthermore, it is consistent with previous
cross calibration by (Saro et al., 2015).

We then turn to exploiting the information contained in the fact that some RM-(λ̂ > 40)
in the joint SPT-DES Y1 footprint have been matched by SPT-SZ and some not. By
extracting the relative SPT field depth at the RM position, we employ the mass information
contained in the richness and the SPT selection function to predict the detection probability
by SPT. We expand the probability of SPT detection by accounting for RM purity and
outlier fractions with respect to the scatter around the mean relation. Comparing these
detection probabilities with the actual occurrence of matches constrains the purity and
outlier fractions. We find a purity consistent with 1 and outlier fraction consistent with 0.
Accounting for projection effects slightly improves the upper limits on these measurements.

1http://www.mpe.mpg.de/7362095/news20191022
2http://www.mpe.mpg.de/eROSITA

http://www.mpe.mpg.de/7362095/news20191022
http://www.mpe.mpg.de/eROSITA
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The high purity of the RM-(λ̂ > 40) sample is confirmed by comparing our prediction of the
fraction of SPT detections as a function of measured richness with the measured fraction
of matches.

We then extrapolate our richness–mass relation to lower richnesses. Comparison with
the mean masses in redshift–richness bins reveals a 2 sigma tension between our relation and
stack weak lensing measurements by McClintock et al. (2019a), when considering statistical
uncertainties from that work and systematic uncertainties from our cross calibration. Our
prediction for the number counts of RM objects based on our richness–mass relation and
SPT cosmological constraints is consistent within large systematic error bars with the
measured number counts. Interpreting the mis-match in mean mass at low richness as
up to 30% contamination at low richness diluting the stack weak lensing signal is also
consistent with the comparison between the measured and predicted number counts, due
to the large systematic error bars on the latter.

In line with the hypothesis of low richness contamination we discuss how ICM selec-
ted measurement of the richness–mass trend are coherently different from studies based
exclusively on optical selection. While this effect might indeed be due to the larger con-
tamination the purely optically selected samples, we also discuss that to date, the mass
sensitivity of ICM selections does not extend to the mass range spanned by the richnes-
ses between 20 < λ̂ < 40. As such, we can not exclude alternative explanation for the
tension between our relation and the stack weak lensing masses. We then discuss some
of these possibilities and highlight how upcoming X-ray surveys like eROSITA, and SZe
surveys like SPT-3G will improve the ICM based selection sensitivities to probe the mass
regime associated to these lower richnesses, making the different hypothesis we discussed
empirically discernable.

4.6 Appendix

4.6.1 Optical completeness of the SPT sample
As discussed above, we employ an SPT sample that has been confirmed with MCMF by
imposing a cut in the probability of random superposition between an optical structure
and the SZ candidate, fcont < 0.1. As discussed by Klein et al. (2019), Klein et al. (in
prep.), and Grandis et al. (in prep.[a]), this cut is equivalent to a redshift dependent cut in
the MCMF richness λ̂MCMF > λmin(z). Note that the richness λ̂MCMF extracted by MCMF
is not identical to the RM richness λ̂ = λ̂RM, as MCMF employs a prior from the SZ
candidate on the position and the aperture. The ratio between the two richnesses on the
matched sample is shown in Fig. 4.13. When fitting this relation we find

λ̂MCMF

λ̂RM
=
(
1.07± 0.02

)( E(z)
E(0.6)

)−0.24±0.02
, (4.24)

with intrinsic log-normal scatter 0.23± 0.01.
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Abbildung 4.13: Ratio between the MCMF richness λ̂MCMF employed in the optical confir-
mation of SPT-SZ cluster to the RM richness λ̂RM as a function redshift for the matched
sample. In blue the mean relation between the two with the intrinsic scatter show by the
shaded (1 sigma) and transparent lines (2 sigma). Different centering and apertures lead
to intrinsic scatter, a deviation from unity and redshift trend.
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Using this relation we estimate that objects with λ̂RM > 40 are always more than 2
sigma above the minimal MCMF richness for all at redshift we consider. This implies at
least 97.5% completeness. Every RM-(λ̂ > 40) object therefore (almost) certainly makes it
past the SPT optical confirmation. In the case of the matched sample, where all objects
have λ̂ > 40, we therefore can safely ignore optical incompleteness in SPT. The same holds
for the study of the SPT detection of RM-(λ̂ > 40), which we model as solely dependent
on the SZe signal. We intentionally omit studying the RM detection probability of SPT
objects. The probability of not finding an optically confirmed SPT cluster is given by the
probability of λ̂MCMF > λmin(z) and λ̂ < 40 at the clusters SZe signal and redshift, and
thus depends on the optical incompleteness of the SPT sample.



Kapitel 5

Conclusion

After having discussed in detail the individual works that make up this thesis, we now
summarize in a more overarching manner the scientific results of these works. Taken to-
gether, in this thesis we present several contributions to the field of observational cluster
cosmology:

• We demonstrate how to extract cosmological information from an X-ray selected clu-
ster survey while simultaneously calibrating an observable–mass relation with weak
lensing measurements in an empirical fashion. The relation is intentionally chosen to
be possibly similar to the selection criterion and requiring only a minimal amount
of data processing. This method has the promise to reduce the amount of post-
processing needed to extract mass information from X-ray observations of clusters,
thereby reducing the chance of introducing systematic effects.

• We demonstrate a new method to assess the optimal level of mass calibration for clu-
ster number counts experiments. At this level of mass calibration, all of the statistical
power of the number counts contributes towards constraining the cosmology. The sca-
ling relation parameters, which are degenerate with the cosmological information, are
thus constrained optimally in this regime.

• We discovered and explored a degeneracy between the scaling relation parameters and
the distance–redshift relation in the case of X-ray selected, weak lensing calibrated
cluster number count experiments. This degeneracy limits X-ray clusters’ potential
to explore the expansion of the Universe. It is likely present also in other selection
methods, albeit currently not considered.

• We introduce a method to empirically construct the selection function of X-ray se-
lected surveys. This method has the benefit of being completely empirical: it does
not rely on image simulations and the resulting assumptions on cluster morphology.
The free parameters of this model, which are calibrated in the data directly, provide
an indicator of possible internal tensions. This is a valuable asset to assess the level
of internal consistency of cluster cosmological inference.
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• We demonstrate how to account for the optical incompleteness introduced by strong
optical cleaning of highly contaminated cluster candidate lists. This opens the way
to significantly increase the depth of SZe and X-ray cluster surveys, allowing us to
construct larger samples extending to higher redshift.

• We further developed and successfully applied a coherent formalism to fit cluster num-
ber counts as a function of different combinations of observables. Besides the main
X-ray observable, we also fitted number counts in the optical follow-up observable
richness alone and in both observables. The resulting consistent mass information
validates the selection function modelling. In the presence of external direct mass
information, this technique can be used to vet ones cosmological results.

• We invented a statistically sound method to empirically determine the contamina-
tion, the incompleteness and the outlier fraction of a mass calibration and selection
function modeling by cross-matching two cluster samples. This method computes
the probabilities for any cluster in one sample to be detected in the other. Conta-
mination, incompleteness and outlier fractions are then measured by comparing the
predicted detection probability to the actual occurrence of detections. This method
naturally takes account of the uncertainty in the observable–mass relation, which
impacts the uncertainty on the detection probabilities. Furthermore, this method is
independent on absolute number of clusters and its redshift evolution, making it an
ideal validation test for cluster number count experiments.

As outlined above, in this thesis we touch on all major aspects of the extraction of
cosmological information from the number of galaxy clusters and their multi-wavelength
signatures: calibration of the observable–mass relation, fitting for cosmology, construction
of the surveys selection function, and empirical validation thereof. We developed new tech-
niques and improved established ones, in the quest to better control the systematic effects
that impact cluster cosmological studies. The plethora of ongoing and future surveys in
all the wavelength regimes that we employed is going to provide ample occasion for the
application of these methods in the near future.
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