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Medication-related osteonecrosis of a jaw (MRONJ) [1] is a rare but serious adverse reaction 

of antiresorptive medications and angiogenesis inhibitors, which can cause an extensive and 

progressive bone destruction in the maxillofacial region [2-4].  

Antiresorptive drugs are administrated to patients suffering from osteoporosis, multiple 

myeloma, and breast or prostate cancers involving multiple osteolytic metastases in the bone. 

Among cancer patients under treatment with zoledronate (ZA), the cumulative incidence of 

MRONJ is around 0.7-6.7% [5-7]. 

This study investigates the effects on human osteoblasts (hOBs) and human osteoclasts 

(hOCs) of ZA as a mevalonate pathway (MVP) inhibitor and of geranylgeraniol (GGOH) as 

its antagonist. Zoledronate (a nitrogen-containing bisphosphonate [N-BP]) affects osteolytic 

tumor metastases by inhibiting a key enzyme of MVP, namely farnesyl pyrophosphate 

synthase (FPPS) [8, 9]. The cytotoxic effects of ZA have been attributed to the decreased 

prenylation of small GTPases such as Rap [10], Ras, and Cdc42 [8, 9, 11, 12]. These proteins 

are essential for important cell processes such as cell movement, cytoskeletal rearrangement 

and apoptosis [13, 14]. 

The following thesis hypothesizes that external local supplementation of GGOH may reverse 

the negative effects of ZA. Some studies investigated the role of GGOH on other cell lines 

which were treated with N-BPs, such as human oral keratinocytes (HOKs) and human oral 

fibroblasts and hOBs [15, 16]. However, the effect of various concentrations of GGOH and 

ZA has not been sufficiently tested on human bone cell lines (hOBs and hOCs).  

In this study, the following methods were used to examine the hypothesis:  

cell viability assay (water-soluble tetrazolium salt [WST-1]), live/dead assay (Calcein-AM/ 

ethidium homodimer [EthD-1]), tartrate-resistant acid phosphatase (TRAP) staining and 

western blot analyses. 

The results of our experiments showed that GGOH, having a dose-dependent effect on bone 

cells, may be able to reverse the negative effect of ZA in a dose-dependent manner. Despite 

the positive effects of lower concentrations of GGOH (10-40µM) on bone cells treated with 

ZA, higher concentrations of GGOH showed cytotoxic effects on cell viability. The obtained 

results indicate that GGOH may be used as a local therapy in the treatment of early stages of 

MRONJ, in the form of mouth rinses or appropriate drug delivery systems [17]. However, the 

systemic administration of GGOH, especially to patients with malignant diseases and bone 

metastasis who use or have used intravenous (IV) ZA (N-BP), may suppress the antitumor 

activity of ZA and consequently may lead to the spread of the malignancy. 
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Medikamenten-assoziierte Kiefernekrosen (MRONJ) stellen seltene, aber ernst zu nehmende 

Nebenwirkungen hauptsächlich zweier Gruppen von Medikamenten dar. Antiresorptive 

Medikamente und Angiogenese-Inhibitoren können zu ausgedehnten und progressiven 

Destruktionen der Ober- und/oder Unterkiefer führen [2-4, 18]. Antiresorptive Medikamente 

werden bei Erkrankungen wie Osteoporose, Multiplen Myelomen, oder bei Patienten mit 

Mamma- oder Prostatakarzinom mit osteolytischen Knochenmetastasen gehäuft eingesetzt. 

Bei Patienten mit Tumorerkrankungen, die eine intravenöse Therapie mit Zoledronat (ZA) 

erhalten haben, beträgt die Inzidenz von MRONJ circa 0.7 - 6.7% [5-7].  

Ziel dieser Untersuchung ist es, herauszufinden, ob die inhibitorische Wirkung von ZA, als ein 

potenter Inhibitor des Mevalonatweges (MVP), auf Osteoblasten und Osteoklasten durch 

Geranylgeraniol (GGOH) antagonisiert werden kann. Zoledronat beeinflusst den 

Mevalonatweg durch Blockade eines Schlüsselenzyms, welches als Farnesyl-Pyrophospat-

Synthase (FPPS) bezeichnet [8, 9]. Diese führt zu einer verringerten Prenylierung der kleinen 

GTPase Proteine wie Rap, Ras und Cdc42, die den zytotoxischen Effekt des Zoledronates 

erklären [8, 9, 11, 12]. Kleine GTPasen sind integraler Bestandteil unterschiedlicher zellulärer 

Prozesse mit Einfluß auf Zellmorphologie, Reorganisation des Zytoskelettes und Apoptose 

[13, 14].  

Die vorliegende Promotion basiert auf der Hypothese, dass die lokale Applikation von GGOH 

den negativen Effekt von ZA antagonisieren könnte und aus diesem Grund in der Zukunft als 

eine mögliche lokale Therapie in Form von Mundspüllösungen in früheren Stadien von 

MRONJ eingesetzt werden könnte. Einige Studien haben die Wirkung von ZA/GGOH auf 

verschiedene Zelllinien wie Endothelzellen der menschlichen Nabelschnurvene und auf die 

gingivalen Fibroblasten untersucht [19-22]. Trotzdem ist die Wirkung von unterschiedlichen 

Konzentrationen von ZA/GGOH auf die Knochenzellen (hOBs and hOCs) nicht vollständig 

erforscht.  

Folgende Test-Methoden wurden in unseren Untersuchungen eingesetzt: 

WST-1 Assay, L/D Assay (Calcein-AM/ Ethidium-Homodimer (EthD-1), TRAP-Färbung und 

Western Blot Analysen. 

Die Ergebnisse der Experimente haben gezeigt, dass GGOH den negativen Effekt von ZA 

sowohl auf hOCs als auch auf hOBs antagonisiern kann. Diese Wirkung ist aber stark 

abhängig von der GGOH-Dosis. Während niedrigere GGOH-Konzentrationen (10µM, 20µM, 

40µM) einen positiven Effekt auf die Lebensfähigkeit von hOBs und hOCs (vorbehandelt mit 

ZA) zeigten, wiesen höhere GGOH Konzentrationen eine Verstärkung des zytotoxischen 
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Effekts von ZA auf. Die Ergebnisse dieser Arbeit verdeutlichen, dass GGOH in der Zukunft 

als eine mögliche lokale medikamentöse Therapie in früheren Stadien von MRONJ in Frage 

kommen könnte. 
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Bone function and diseases 

The bone is a connective tissue that supplies mechanical support for stature and mobility and 

also protects various organs [23]. It is regulated by the continuous, highly complex 

mechanism of remodelling in which new bone replaces old ones through bone resorption and 

bone formation [8]. Any imbalance between these two processes results in bone disorders, 

which can be associated with great morbidity. Thus, understanding these mechanisms may 

lead to improvements in bone health [24-26]. 

Bone disorders are classified as either disorders of excess bone deposition, characterized by 

elevated bone density caused by failure of bone resorption by hOCs, as in osteopetrosis, or 

bone resorption disorders, characterized by increased activity of hOCs, as in osteopetrosis or 

bone resorption disorders characterised by an increased hOCs activity such as in osteoporosis, 

lytic bone metastases, multiple myeloma [27], and rheumatoid arthritis [28, 29]. 

Pharmacological substances have begun to be used in drug therapy to optimize bone quality, 

targeting the processes leading to bone formation and inhibiting bone resorption [30, 31]. 

Treatment of bone disorders 

Bone-forming drugs 

Particular interest has been shown to the development of medications able to stimulate bone 

formation [32]. Anabolic drugs such as teriparatide, a biosynthetic human parathyroid 

hormone (PTH), have been shown to increase bone mass and cancellous bone volume. 

Furthermore, teriparatide restores trabecular bone architecture by binding to the G-protein-

dependent parathormone-related peptide receptor (PTHrP) type 1 and activating several 

signaling pathways, stimulating thereby both the formation and resorption of bones, which 

depend on the duration and periodicity of exposure to PTH [33-35]. 

Dual-action bone drugs (strontium ranelate) 

Strontium ranelate acts on bone cells in two different ways [36]. It increaes bone formation by 

stimulating osteoblast precursor replication and simultaneously decreases bone resorption by 

inhibition of osteoclast differentiation and activity [37-39]. 
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Antiresorptive drugs (ARDs) 

A better understanding of complex mechanisms involved in bone resorption has allowed the 

development of therapeutic drugs, namely bisphosphonates (BPs). These drugs interact with 

specific pathways within the bone environment to ensure adequate bone remodelling and 

repair of microdamage to the bone; they also increase bone strength and reduce bone 

resorption without a concomitant decrease in bone formation. Antiresorptive therapies are 

grouped under five different classes: BPs, selective estrogen receptor modulators (SERMs), 

estrogens, monoclonal antibodies such as denosumab and calcitonin [30, 37, 40, 41]. 

Bisphosphonates (BPs) 

Bisphosphonates are used as the leading antiresorptive drugs to prevent pathological fractures 

when treating disorders with elevated bone resorption [42] such as multiple myeloma and 

bone metastases from breast- or prostate cancers, as well as tumor-related hypercalcemia and 

osteoporosis [43-45]. 

Chemical structure of bisphosphonates (BPs) 

Bisphosphonates are derivatives of inorganic pyrophosphate (PPi), in which the oxygen 

molecule has been changed by carbon (P–C–P) [46]. BPs are resistant to hydrolysis and are 

insusceptible to biological degradation [46]. The central atom also has two side chains, 

termed R1 and R2, which can be replaced with different ligands to produce BPs with different 

potencies. The presence of a hydroxy (OH) group at the R1 position enhances the affinity of 

molecule binding to the bone [47], resulting in tridentate binding rather than bidentate 

binding. However, the R2 side chain is responsible for the antiresorptive potency of the drug 

[48]. Small changes in this part of the structure (the R2 chain) can result in large differences in 

their antiresorptive potencies [48-51]. 
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Figure 1: Structure of bisphosphonates [52]. 

The structure of BPs with its similarity to inorganic pyrophosphate. 

 

According to the R2 side chain, BPs can be classified into two main classes regarding to the 

presence or absence of nitrogen [53], and differing in their potencies and kinds of action: the 

low potency non-nitrogen-bisphosphonates (NN-BPs) and higher potency nitrogen-

bisphosphonates (N-BPs) [48, 54-56]. Non-nitrogen BPs have antiresorptive potencies 

ranging from 1-10, while a nitrogen group increases the antiresorptive potency of N-BPs to a 

range of between 100 and 10,000 relatively to the NN-BPs (Table. 1) [48, 52, 54].  

 

Table 1: Classification of bisphosphonates according to their potencies and routes of 
administration [52, 57]. 

Agent Nitrogen-
containing 

R1-side         
chain 

 R2- side  
 chain 

Potency Route of 
administration 

Etidronate No -OH  -CH3 1 oral 
Clodronate No -CL  -Cl 10 oral/iv 
Tiludronate No -H  -H 10 oral 
Pamidronate Yes -OH  (CH2)2NH2 100 iv 
Alendronate Yes -OH  (CH2)3NH2 500 oral 
Ibandronate Yes -OH        H3C 

(CH2)2N(CH2)4CH3 
1,000 oral/iv 

Risedronate Yes -OH 
   

2,000 oral/iv 

Zoledronate Yes -OH 
  

10,000 iv 
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Bisphosphonates' mechanism of action  

The effects of BPs can be analyzed on two levels: cellular and molecular [58]. At the 

molecular level, NN-BPs act differently than N-BPs. At the cellular level, they act on 

different kinds of cells; in particular, hOBs, hOCs and bone marrow mesenchymal stem cells 

(BMMSCs). 

Mechanism of action at the molecular level 

Bisphosphonates bind to the bone, especially to the bone with high turnover rate, modulating 

this process and reducing its remodelling when excessive resorption occurs. The phosphate 

groups gives BPs a high affinity for hydroxyapatite (HA) crystals, whereas the hydroxy group 

further rises BPs' ability to bind calcium [59].  

Non-nitrogen BPs act differently than N-BPs. After NN-BPs are taken in by hOCs, they can 

be integrated into adenosine triphosphate (ATP). Consequently, ATP accumulates in the cells 

and these non-hydrolyzable ATP analogues can have cytotoxic effects on hOCs, leading to 

osteoclast apoptosis due to the inhibition of multiple ATP-dependent cellular processes [60].  

In contrast, the nitrogen-bisphosphonates act primarily by inhibition of the farnesyl 

pyrophosphate (FPP) synthase, a key enzyme in the mevalonate pathway (MVP) [20, 61, 62] 

(Fig. 2). The MVP is a biosynthetic pathway that produces cholesterol and other lipids, and is 

responsible for posttranslational modification of the small GTPases such as Ras, Rho, Rac 

and Cdc42 [63]. Those are essential signaling proteins for the normal osteoclasts' 

morphology, cytoskeleton arrangement, vesicle transport, membrane ruffling and cell survival 

[17, 51, 52, 63-74]. 
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Figure 2: Mevalonate pathway [73]. 

The role of bisphosphonates (preventing of production small GTPases by inhibition of 

farnesyl pyrophosphatesynthase (FFPS).  

Mechanism of action at the cellular level 

At the cellular level, BPs act mainly on hOCs but also on hOBs and BMMSCs. 

Potential effects on hOCs  

At the cellular level, BPs can reduce bone resorption by different mechanisms, such as 

inhibiting hOCs retention to the bone surface and reducing osteoclast differentiation [75, 76]. 

As the bone in which BPs have accumulated starts to be resorbed by hOCs, BPs are released 

from the bone that will eventually be taken up by hOCs. During bone resorption, the 

acidic environment created by the hOCs in the resorption area causes a release of more BPs 

from HA because BPs cannot remain bound to HA at lower pHs. The BPs are then 
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internalized by the hOCs [77]. This results in an impaired ability of the hOCs to form ruffled 

borders and to a decreased bone resorption. Eventually, the hOCs become subject to 

apoptosis. These findings show the negative impact of BPs on osteoclastic differentiation, 

which results in reduced bone resorption [51, 58, 78-93]. 

Potential effects on hOBs 

The primary pharmacological action of BPs is the inhibition of osteoclast-mediated bone 

resorption [94], but they can target also hOBs as well as hOCs [95]. Some studies have 

suggested that BPs stimulate the growth of preosteoblastic cells and thereby increase their 

differentiation by modulating some of the osteoblastic differentiation markers, such as the 

ALP activity. In contrast, other studies have suggested that the continuous exposure of hOBs 

to high-dose BPs could inhibit hOBs function or survival. However, despite the abundant 

research in this area, demonstrating the direct effects of clinically relevant in vivo doses of 

BPs on hOBs has proved to be difficult [49, 90, 96-103]. 

Potential effects on bone marrow mesenchymal stem cells (BMMSCs)  

Bisphosphonates have a dose-dependent impact on the proliferation and osteogenic 

differentiation of BMMSCs. Some studies have shown that ZA at concentrations of 5 µM and 

10 µM inhibits the proliferation and osteogenic differentiation of BMMSCs [78]. In contrast, 

ZA at concentrations of 0.5 µM triggers the proliferation and osteogenic differentiation of 

BMMSCs and upregulates the ALP activity and the expression of bone morphogenic protein-

2 (BMP-2), bone sialoprotein-II, type 1 collagen and osteoprotegerin (OPG) [80, 104-107]. 

Side effects of bisphosphonates (BPs) 

Like any other drug, BPs have advantages and disadvantages. On the one hand, they are 

widely prescribed and highly effective in limiting bone loss in many disorders that are 

characterized by increased bone resorption. On the other hand, since BPs are common 

medications worldwide, the potential side effects of oral and intravenous (IV) administration 

of these drugs are not be underestimated.  

Short-term adverse effects of bisphosphonate therapy  

Gastrointestinal side effects, such as erosive esophagitis, are the most common side effects of 

oral BPs [108]. Patients who receive IV BP therapy may witness inflammatory symptoms 
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such as fever [108]. Acute-phase reactions occur only when IV aminobisphosphonates are 

administered, particularly ZA. Ocular side effects associated with BP therapy include 

conjunctivitis, uveitis, episcleritis, scleritis, and keratitis [108-120]. 

Long-term adverse effects of bisphosphonate therapy  

Bisphosphonates are eliminated renally by glomerular filtration and proximal tubular 

secretion [121]. Renal complications of BPs have been observed, ranging from focal 

segmental glomerular sclerosis with nephrotic syndrome to acute kidney injury and tubular 

necrosis. Current recommendations limit the use of these drugs in patients with renal 

insufficiency depending on the GFR level [122], and suggest creatinine monitoring of their 

use, especially in patients who receive them intravenously [121, 123-126]. 

Atrial fibrillation is another side effect of BPs, seen mainly after IV administration. It may be 

triggered shortly after an infusion with ZA or other IV BPs [127]. 

As previously mentioned, BPs can cause erosive esophagitis, especially in patients who do 

not maintain upright body position after taking BPs. If this condition persists for a long time, 

it may result in Barrett's esophagus (BE), a very serious side effect, since it is known as the 

premalignant precursor lesion in most cases of esophageal adenocarcinoma. Patients with BE 

have higher risks to develop esophageal adenocarcinoma [128]. 

Another long-term side effect of BP therapy is the occurrence of atypical femoral fracture 

(AFF). Long-term BP therapy has been found to possibly suppress the bone remodelling. The 

reduced bone turnover by BP therapy alters bone mineral, leading to a reduced ability to 

repair skeletal microtraumas and an increased skeletal instability [129]. Saito et al. [130] 

mentioned that BP therapy increases the advanced glycation end products of the extracellular 

bone matrix, worsening the mechanical features of the bone [130]. Elongated BP therapy 

causes repetitive microdamage to the bone and reduces the diversity of organic matrix and 

mineral features [130-139]. 

Medication-related osteonecrosis of the jaw (MRONJ) has been widely reported in clinical 

literature as an adverse side effect of BP- and antiangiogenic therapy [108, 140]. The 

incidence of MRONJ is higher for patients receiving IV BPs than those receiving them orally 

[141]. For cancer patients who received ZA intravenously, it is estimated at around 0.7% - 

6.7%. However, for osteoporotic patients who have been treated with ZA orally, it is 

estimated at around 0.017% - 0.04% [5]. 
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Medication-related osteonecrosis of the jaw (MRONJ) 

Medication-related osteonecrosis of the jaw is a serious complication of the use of 

antiresorptive- or antiangiogenic drugs [142]. It involves progressive bone destruction in the 

mandible or maxilla. Marx et al. [143] reported the first cases of bisphosphonate-related 

osteonecrosis of the jaw (BRONJ) in 2003. The American Association of Oral and 

Maxillofacial Surgeons (AAOMS) (update 2014) [5] has defined MRONJ as a necrotic bone 

exposed to the oral cavity [144] for a period of at least eight weeks without signs of the 

wound healing, associated with present or previous treatments with antiresorptive- or 

antiangiogenic drugs and the absence of a radiation therapy or metastatic diseases to the jaw 

[5, 145, 146]. Medication-related osteonecrosis of the jaw was previously known as BRONJ, 

related to the use of BPs only, but AAOMS changed the terminology because of the 

increasing number of ONJ cases related to other antiresorptive- and antiangiogenic 

medications [147]. These include not only BPs, but also denosumab (a RANKL-inhibitor) and 

inhibitors of angiogenesis such as bevacizumab. The incidence of MRONJ depends on several 

factors, including the type of BP used (ZA and pamidronate disodium being the most potent), 

the route of administration (the IV route is associated with a higher risk), and the dosage and 

duration of therapy (the longer the duration and the higher the dose, the higher the risk). 

Medication-related osteonecrosis of the jaw ends in significant morbidity, adversely affecting 

the quality of life, and representing a major clinical challenge for oral and maxillofacial 

surgeons [2, 143, 148-153]. 
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Stages of MRONJ 

Table 2: Stages of MRONJ [5, 154]. 

Stage Description Management 
Stage 0 Asymptomatic patient, radiographic results suggesting 

necrotic bone, but fistula may be present 
 
 
 

Antibacterial mouth rinse  
Pain treatment and 
antibiotic therapy if 
symptomatic 
Patient education 

Stage 1 Exposed necrotic bone without pain or infection 
 
 
 

Antibacterial mouth rinse 
Control every 3-4 months  
Patient education 

Stage 2 Pain and/or infection, exposed necrotic bone or fistula 
 
 
 
 
 

Antibacterial mouth rinse 
Pain treatment and 
antibiotic therapy  
Debridement 
Patient education 

Stage 3 Exposed necrotic bone or fistula with evidence of 
infection and at least one of the following: 
a) Exposed necrotic bone beyond the region of alveolar 
bone 
b) Fracture 
c) Extraoral fistula 
d) Oral-antral or oral-nasal connection 
e) Osteolysis lengthening to the inferior border of 
mandible or sinus floor in the maxilla  

Antibacterial mouth rinse 
Pain medication and 
antibiotics  
Debridement 
Patient education 

 

Why does MRONJ occur almost exclusively in the jaw bones?  

The jaw bones are the most predisposed to MRONJ because of the high bone turnover rate, in 

the alveolar parts [155]. Alveolar bone has a high bone turnover, which means that alveolar 

bone can incorporate far more BPs than other skeleton sites. It appears that tissue 

homeostases in the mandible and maxilla bones are disrupted in MRONJ. However, the exact 

reason why MRONJ specifically affects the jaw is still unknown. The jaw bones are the bones 

least protected from infection in the human skeleton. They are separated from oral pathogens 

only by a thin mucoperiosteal cover, as opposed to deep soft tissues and skin that protect 

other bones. The continuity of the gingiva is interrupted by the presence of teeth, creating a 

potential entrance for bacterial infection. Medication-related osteonecrosis of the jaw is two 

times more frequent in the mandible than in the maxilla [156, 157]. The jaws are also subject 
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to repeated microtraumas due to the presence of teeth and the force of mastication. This may 

be another reason for the occurrence of MRONJ, since there are reports of exposed bones as a 

result of chronic local microtraumas from unfit dentures [156, 158-160]. 

Hypothesis on MRONJ pathophysiology  

A single hypothesis is unlikely to explain the pathophysiology of MRONJ: many hypotheses 

partially explain it from various aspects.  

Inhibition of bone remodelling 

Bisphosphonates attenuate hOCs and, indirectly, the osteoblast-mediated differentiation of 

hOCs, which results in a decreased bone turnover. Osteoclast differentiation plays an 

important role in bone remodeling [161]. Alveolar bone may show a higher remodeling rate 

than other bones in the body, which could explain the predisposition of the jaw to MRONJ [5, 

50, 162-173]. 

Inflammation and infection 

Inflammation and infection are believed to play a role in the development and progress of 

MRONJ. Tooth extraction is usually the most common occasion associated with MRONJ, but 

the teeth are most frequently extracted due to periapical and periodontal infections and 

inflammation [173]. For multiple myeloma and metastatic cancer patients, intensive dental 

hygiene decreases the incidence of MRONJ [173]. Therefore, it is necessary to treat the teeth-

associated inflammation and infection before starting the BP therapy. Following the 

administration of BPs, it is essential to perform regular and frequent dental checks to prevent 

any soft or hard tissue inflammation because of a tooth disease [5, 50, 162-172]. 

Inhibition of angiogenesis 

Angiogenesis is a complex process building new blood vessels. These processes involve 

several signaling molecules which bind to their receptor and activate them. These signals 

induce new blood vessel formation [174]. The interruption of bone blood supply, which may 

be a result of treatment with anti-angiogenesis agents, may consequently lead to avascular 

necrosis of the jaw bones [5, 50, 162-172]. 
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Other hypotheses 

Another hypothesis in MRONJ pathophysiology is the soft tissue toxicity of BPs [173]. In 

vitro studies have demonstrated that N-BPs accumulate not only in the bone, but also in the 

epithelial tissue [162]. According to the position paper (AAOMS) (update 2014) [5], soft 

tissue toxicity has not been reported related to the denosumab [5, 50, 162-172]. 

Treatment of MRONJ 

Depending on the stage of MRONJ, AAOMS (update 2014) [5] recommends either non-

surgical or surgical treatments. Non-surgical treatment has generally been recommended in 

preference to surgery for stages 0 and 1 of MRONJ. Non-surgical treatment includes a 

combination of antiseptic mouth rinses and antibiotics. Bactericidal solutions such as 

chlorhexidine are indicated for patients who have developed an exposed or necrotic bone 

without any symptoms or signs of infection. Patients with soft tissue infections require a 

treatment with antibiotics such as amoxicillin and clavulanic acid or clindamycin [175].  

New and innovative treatment strategies for MRONJ have been developed, such as platelet-

rich plasma and platelet rich fibrin [176, 177]. Mesenchymal stem cell (MSC) concentrates 

can be added to the wound before wound closure. Increased knowledge about MRONJ 

suggests that surgical therapy can stop the MRONJ advancement, allowing a 

histopathological examination of the necrotic bone tissue [178]. Many MRONJ patients have 

been treated according to the staging guidelines in the AAOMS position paper, in which 

surgical intervention was recommended to treat stages II and III. Surgical interventions can 

reach success rates higher than 90% and the detection of the bone fluorescence can assist in 

the surgical treatment of the osteonecrosis [5, 79, 178-185]. 

Geranylgeraniol (GGOH) in the mevalonate pathway (MVP) for treatment of MRONJ 

Geranylgeraniol (GGOH) is an acyclic diterpene alcohol and one of the important constituents 

of essential oils. It is a natural molecule that can be extracted from different plants or 

synthesized industrially and that has been also found in human beings as a metabolite of the 

MVP. It is used not only as one of the ingredients in perfumes, but also as a material for 

synthesis of pharmacological mediators and for synthesis of hydrophobic vitamins, for 

instance A and E [186]. Recent studies have mentioned the anti-inflammatory, anti-

tumorigenic and neuroprotective activities of GGOH [19, 186-198]. Nitrogen-containing 
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bisphosphonates result in inhibition of GGOH production by inhibition of FPPS in the MVP. 

Consequently, the decreased synthesis of the metabolite GGOH facilitates the development of 

MRONJ. Studies have shown that GGOH can reverse the negative effect of BPs on some cell 

lines. Some animal model studies demonstrated the possible positive effect of GGOH on 

wound healing in the early stages of MRONJ  [19, 186-198]. 

Mechanism of action of GGOH on bone cells 

Farnesyl- and geranylgeranyl pyrophosphate GGPP) are precursors for post-translational 

maturation of diverse proteins involved in cell growth [199]. Geranylgeraniol is necessary for 

post-translational maturation and membrane localization of intracellular proteins, particularly 

small GTPase proteins (G-proteins), such as Ras and Rap, which are involved in several 

signaling pathways and influence the cytoskeleton [200, 201]. G-proteins stabilize the 

cytoskeleton and promote the differentiation and formation of hOCs. This finding could be 

relevant to both the function and survival of hOCs.  

Geranylgeraniol can also be used as an antitumor agent inducing apoptosis in different cancer 

cell lines [197]. For example, Takeda et al. [197] have demonstrated that GGOH induces 

apoptotic cell death of human hepatoma cells by stimulating caspase-3 activity, and 

Fernandes et al. [202] showed that it can suppress the viability of human DU145 prostate 

carcinoma cells [197, 202-205]. 
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AIM OF THE STUDY 
Nitrogen-containing BPs inhibit a key enzyme of the MVP namely FPPS [206]. This results 

in a lower production of Geranylgeranyl pyrophosphate (GGPP), which is an important 

metabolite for prenylation of small GTPase proteins. Our research begins with the hypothesis 

that external supplementation of GGOH, which can be converted in the cells to 

Geranylgeranyl pyrophosphate (GGPP), may reverse the previously described negative effect 

of BPs. This study investigates the effect of GGOH on hOBs and hOCs that have been treated 

with various concentrations of ZA/GGOH for a duration of seven days. 
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MATERIALS 

Table 3: Reagents used in our experiments 

Material Catalogue 
Number 

Company Country 

Acid Phosphatase, 
Leukocyte (TRAP) Kit  

386A-1KT Sigma-Aldrich Mannheim, Germany 

Acrylamide solution  1610158 BIO-RAD Munich, Germany 
Anti-GAPDH MAB5718 R&D Systems Minneapolis, USA 
Anti-mouse (H&L) IgG 
antibody 

610-1102 Rockland Hamburg, Germany 

Anti-rabbit IgG, HRP-
linked antibody 

7074P2 Cell Signaling Frankfurt am Main 

Dulbecco’s Modified 
Eagle Medium (DMEM) 

31966-021 Gibco Life Technologies Munich, Germany 

Fetal bovine serum 
(FBS) 

F9665 Sigma-Aldrich Munich, Germany 

Geranylgeraniol 
(GGOH) 

G3278-100MG Sigma-Aldrich Munich, Germany 

Human Osteoblast 
Growth Medium 

C-27001 Lonza Heidelberg, Germany 

Human osteoblasts 
(hOBs) 

C-12720 PromoCell Heidelberg, Germany 

Human osteoclasts 
(hOCs) 

2T-110 Lonza Basel, Switzerland 

Live/Dead staining PK-CA707-30002 Promokine  Heidelberg, Germany 
M-CSF 300-25-10UG PeproTech Hamburg, Germany 
Micro BCA Protein Kit  23235 Thermo Fisher Scientific Munich, Germany 
Page Ruler Plus 26619 Thermo Fisher Scientific Munich, Germany 
Penicillin/Streptomycin A2213 Biochrom GmbH Berlin, Germany 
RANKL 310-01-10UG PeproTech Hamburg, Germany 
Rap 1A/B antibody VPA00481 BIO-RAD Munich, Germany 
RIPA buffer PI89900 Thermo Fisher Scientific Munich, Germany 
TEMED 2367.3 Carl Roth GmbH Karlsruhe, Germany 
Trypsin/EDTA L2153 Biochrom GmbH Berlin, Germany 
TWEEN 20 SLBR3776V Sigma- Aldrich Munich, Germany 
Water soluble 
tetrazolium-1 assay 
(WST-1) 

11644807001 Sigma-Aldrich Mannheim, Germany 

Zoledronate (ZA) 118072-93-8 Chemos Regenstauf, Germany 
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METHODS 

Culture of cells 

Human osteoblasts (hOBs) 

Human osteoblasts (hOBs) were cultured at a density of 1.0 ×106 cells in hOB media in T225 

flasks and incubated at 37°C and 5% CO2 until they reached 80-90% confluency. The cells 

were then trypsinized with 0.5% Trypsin/0.2% EDTA, counted by a hemocytometer and 

cultured in six-well plates at a density of 3.5 × 104 cells/well for the experiments. The culture 

medium was changed twice per week. For our experiments, cells from two different lots were 

used between passages 3 and 6.  

Human osteoclasts (hOCs) 

Human osteoclast precursor cells were cultured in six-well plates in culture media consisting 

of high glucose Dulbecco's modified Eagle medium (HG-DMEM) supplemented with 15% 

fetal bovine serum (FBS), 1% penicillin/streptomycin (Pen/Strep: 10000 U/ml/10000 µg/ml), 

25 ng/ml macrophage colony-stimulating factor (M-CSF) and 50 ng/ml receptor activator of 

nuclear factor-kappaB ligand (RANKL) as the essential cytokines responsible for the 

differentiation of osteoclast precursor cells into mature hOCs [207, 208]. The plates were 

incubated in an incubator at 37°C and 5% CO2 for 14 days. Human osteoclasts at passage 1 

were used in the experiments. Cells were cultured at a density of 1.0 × 104 cells/well, and the 

culture media were changed twice per week. 

Preparation of drugs 

Zoledronate (ZA) 

Zoledronate (ZA) was diluted in 0.9% NaCl (sodium chloride; physiological saline) to make 

stock solutions of 20 µM and 20 mM. The solutions were sterile-filtered and kept at −20°C 

until they were used in the experiments. The stock solutions were diluted in the appropriate 

culture media and final concentrations of 0.1 µM, 25 µM and 100 µM ZA were thereby 

prepared.  
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Geranylgeraniol (GGOH) 

Geranylgeraniol (GGOH) was purchased in liquid form. A stock solution of 5 mM was 

prepared by diluting GGOH in pure undenatured ethanol. It was then sterile-filtered and kept 

at −20°C until it was used in the experiments. The stock solution was then diluted in 

appropriate culture media to gain GGOH concentrations of 10 µM, 20 µM, 40 µM, and 80 

µM [17]. 

Cell culture treatment  

Bone cells were cultured in six-well plates in suitable culture media. Cells without 

administration of any drugs served as a negative control, and those treated with only ZA at 

various concentrations served as a positive control. The experimental group (test group) 

comprised the cells which were co-treated with different concentrations of ZA and GGOH 

[17]. 

 

Figure 3: The setup of the cell culture plates for the experiments. 
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Cell viability by water-soluble tetrazolium-1 assay (WST-1 assay) 

Human osteoblasts and osteoclasts (hOBs and hOCs) were cultured in six-well plates as 

mentioned above. On the next day, the culture medium was changed with fresh media 

containing drugs with the required concentration and incubated for seven days at 37°C and 

5% CO2. The viability of bone cells was determined by measuring the mitochondrial 

dehydrogenase activity using WST-1 assay [209] according to the manufacturer's guidelines. 

In brief, cells were washed with phosphate buffer saline (PBS), after which WST-1 reagent 

was diluted in fresh medium at a ratio of 1:10. The cells were incubated for 4 h at 37°C and 

5% CO2 in an incubator. The absorbance was determined at 450 nm against a reference 

wavelength of 620 nm using an ELISA reader [210] (Thermo Fisher Scientific, Munich, 

Germany) [211]. All measurements were performed in triplicate and repeated three times.  

Cell viability by live/dead staining 

Cell viability was performed using PromoKine’s Live/Dead Cell Staining Kit II according to 

the instructions of the manufacturer. First, the dye stock solutions were warmed up to room 

temperature. After adding 5 µl of 4 mM Calcein-AM and 20 µl of 2 mM EthD-III to 10 ml of 

PBS, a staining solution of 2 µM Calcein-AM/4 µM EthD-III was prepared. The cells were 

washed twice with PBS. For adherent cells, Calcein-AM/EthD-III staining solution was added 

to the cell monolayer. The samples were wrapped in foil and incubated for at least 30 min at 

37°C. Pictures were taken by fluorescent microscope (AxioObserver Z1; Zeiss, Oberkochen, 

Germany). The live/dead assay was performed three times from two different donors [17]. 

Tartrate-resistant acid phosphatase (TRAP staining) 

Tartrate-resistant acid phosphatase (TRAP) staining is a marker of hOCs and it is localized in 

the lysosomal compartment of the macrophages [212]. A positive relationship between 

TRAP-secretion in hOCs and the bone resorption activity has been described [213].  

Human osteoclasts (hOCs) were treated with ZA/GGOH over a period of seven days, and 

culture media were changed twice per week. After one week of cell culture treatment, media 

were discarded, and cells were washed with PBS. Deionized water was prewarmed to 37°C 

and the fixative media were kept at a temperature of 18-26°C. Human osteoclasts (hOCs) 

were then fixed using a fixative solution for 30 seconds and rinsed with deionized water.  

Tartrate-resistant acid phosphatase-staining material was prepared according to the
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manufacturer’s instructions, and cells were incubated for 1 h at 37°C. Nuclear counterstaining 

was then performed with hematoxylin and the cells were rinsed for several minutes in alkaline 

tap water to develop blue nuclei. After TRAP staining, TRAP-positive multinucleated cells 

were visualized under a contrast microscope (Zeiss, Oberkochen, Germany), and pictures 

were taken [17]. 

Western blot analyses of Rap 1A/B protein 

Protein isolation 

Human bone cells were cultured in six-well plates in the appropriate culture medium and then 

treated with ZA/GGOH for seven days. After one week, the medium was discarded, the cells 

were washed with PBS, and 500 µl ice-cold RIPA buffer with protease was added to each 

well. Cells were then scraped off the plate using a plastic cell-scraper. The cell suspensions 

were transferred into a microcentrifuge tube, which was incubated on ice for 30 min. The 

cells were homogenized by sonication (2 × 2 sec) and incubated again for 30 min on ice. After 

incubation, they were centrifuged at 10,000 × g for 10 min in a centrifuge pre-cooled to 4°C. 

The supernatant was transferred to a new microcentrifuge tube, and the pellets were discarded 

[17]. 

Micro BCA protein assay 

The Thermo ScientificTM Micro BCATM Protein Assay Kit was used for colorimetric 

measurement of total protein [214]. Bovine serum albumin (BSA) was diluted through a serial 

dilution in the vials A-H (Figure 5). Protein samples were diluted in distilled water at a 

dilution of 1:10 and prepared for the measurement. The working reagent (WR) was made by 

mixture 25 parts of Micro BCA Reagent A (MA) and 24 parts Reagent B (MB) with one part 

of Reagent C (MC) [215].  

 
Total volume of WR was determined by using the following formula:  

(# Standards + # Unknowns) × (# Replicates) × (Volume of WR per sample) [216]. 

Each standard or unknown sample (100 µl) was pipetted into a 96-well microplate in 

duplicates, incubated at 37°C for 1 h and then measured using an ELISA Reader to measure 

the amount of protein in each well at 562 nm against a standard curve (Thermo Fisher 

Scientific, Munich, Germany). 
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Figure 4: Preparation of diluted bovine serum albumin (BSA) standards  

 

Immunoblotting 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

A separating gel with an optimal concentration of 15% and a thickness of 1.5 mm was 

prepared for western blotting. After preparing resolving and stacking gels, 10 µg of each 

protein sample was mixed with 5 µl of 4× Laemmli buffer/ß-mercapthol. The samples were 

then mixed in a screw-cap microcentrifuge tubes and boiled for 5 min at 100°C. Samples 

were loaded in the desired order, and 7 µl of PAGE Ruler Plus Prestained Protein Ladder was 

added to a separate column as a molecular weight marker. Samples were then run in 1× 

running buffer at a constant electric current of 50 mA for approximately 1 h, until the blue 

dye started to move to the end of the gel. Following SDS-PAGE, wet electroblotting was used 

to transfer the bands from the gel to the Polyvinylidene difluoride (PVDF) membrane. The 

gel, filter paper and fiber pads were equilibrated for 15 min in 1x blotting buffer. The PVDF 

membrane was charged for 5 seconds at RT in methanol and then rinsed with distilled water 

for one minute. After preparing the gel sandwich, the cassette was closed and run in 1× 

blotting buffer on a magnetic stirrer at 30 V overnight at 4°C. 

Immunodetection 

The membrane was rinsed in 5% skimmed milk as a blocking solution for one h at room 

temperature on an orbital shaker. Then, it was washed two times with washing buffer (tris-

buffered saline and polysorbate 20 [TBST]). The primary antibody (Rap 1A/B antibody) was 

diluted in 5% skimmed milk at a dilution of 1:500, and the membrane was incubated with the 
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primary antibody at 4°C on an orbital shaker overnight. The following day, the membrane 

was rinsed twice with washing buffer for 15 min at room temperature and then it was 

incubated with the secondary antibody, goat anti-rabbit IgG, an HRP-linked antibody, which 

was diluted in 5% skimmed milk at a dilution of 1:4000 for one h at room temperature on an 

orbital shaker. After final washing, protein bands were detected with LuminataTM Forte 

Western HRP Substrate and with ImageQuant. The western blot bands were quantified using 

Image J software (https://imagej.nih.gov/ij/, version 1.52d, National Institutes of Health, 

Maryland, USA). 

After detecting Rap 1A/B bands with ImageQuant, the PVDF membrane was washed and 

then stripped in stripping buffer at 50°C for 10 min in a hybridizer with constant rotation. It 

was then rinsed twice with washing buffer for 10 min at room temperature with moderate 

shaking. The membrane was then blocked for 60 min and incubated in the primary antibody 

(anti-glyceraldehyde 3-phosphate dehydrogenase [anti-GAPDH]), which was diluted in 5% 

skimmed milk at a dilution of 1: 2,000 at 4°C overnight. Afterwards, the membrane was 

washed again in washing buffer and incubated with the secondary antibody (anti-mouse 

(H&L) IgG antibody, diluted in 5% skimmed milk at a dilution of 1: 4,000) for one h at room 

temperature. The GAPDH bands were visualized using ImageQuant and quantified with 

Image J software. 

Statistical analysis 

All experiments were performed in triplicate with two different lots. Analysis of variance 

(ANOVA) was used to analyze the data. Data are presented as mean ± standard deviation. 

The significance level of the p-value was set at 0.05. The significance was expressed as 

p<0.05, p<0.01, p<0.001 and p<0.0001. The results were achieved using GraphPad Prism 

version 5.00 for windows (GraphPad Software, San Diego California USA 

(https://www.graphpad.com/) [17].  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Cell viability by WST-1 assay 

Human bone cells (hOBs, hOCs) were treated with ZA, GGOH or a combination of ZA and 

GGOH for a duration of seven days. Bone cells cultured in normal culture media without any 

drug treatment served as a negative control. Bone cells treated with various concentrations of 

ZA/GGOH served as positive controls [17]. 

Effect of ZA on hOBs 

The viability of the cells was 100% at negative control. The lowest concentration of ZA (0.1 

µM) did not significantly affect cell viability; rather, it increased cell viability to about 120%. 

However, higher ZA concentrations, such as 25 µM and 100 µM, decreased the viability to 

around 80% and 20%, respectively, compared to the negative control.  

Effect of GGOH on hOBs 

Treatment of cells with low or moderate concentrations of GGOH (10-40 µM) increased 

viability to almost 140%. However, 80 µM GGOH suppressed the viability compared to other 

concentrations. These findings showed that GGOH increased the cell viability up to certain 

concentrations. However, a higher concentration of GGOH (80 µM) showed a dose-

dependent cytotoxic effect on hOBs [17]. 

Effect of ZA and GGOH on hOBs 

The negative effect of ZA was counteracted by co-treatment of hOBs with ZA and GGOH. 

After the addition of 10 µM and 20 µM GGOH, cell viability was increased at 0.1 µM ZA to 

around 140% and 120%, respectively. However, cell viability was increased at 25 µM treated 

with the same GGOH concentrations to around 220-230% and at 100 µM ZA to 120-130%, 

respectively. The treatment of the cells with 40 µM and 80 µM GGOH increased the viability 

at 0.1 µM ZA to about 120%, almost the same as the positive control. 

Treatment of hOBs with 25 µM ZA and 40 µM GGOH led to an enhanced effect of cell 

viability. The viability was almost the same as when treated with 25 µM ZA and 20 µM 

GGOH. Treatment of hOBs with 80 µM GGOH and 100 µM ZA affected the viability in a 

positive manner in comparison with the negative control. These results demonstrate that 

GGOH had a dose-dependent positive effect on cell viability up to 40 µM. However, higher 
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concentrations of ZA/GGOH (100 µM ZA/40 µM GGOH) led to a coinhibitory and cytotoxic 

effect on bone cells [17]. 

 

 

            

 

             Figure 5: Water-soluble tetrazolium salt assay of hOB [17]. 

Human osteoblasts were cultured at different concentrations of GGOH (10-80 µM), ZA (0.1 
µM, 25 µM, 100 µM) or combined ZA and GGOH for seven days. A two way ANOVA test 

was performed for multiple comparisons. Significant differences were observed between 
controls and test-groups:  

* p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001 
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Effect of ZA on hOCs 

The viability of the cells was considered to be 100% at negative control. The lowest 

concentration of ZA (0.1 µM) did not significantly affect cell viability. However, higher ZA 

concentrations, such as 25 µM and 100 µM, decreased viability to around 80% and 50% 

respectively, compared to the negative control [17].  

Effect of GGOH on hOCs 

Treatment of cells with low or moderate concentrations of GGOH (10-40 µM) increased the 

viability to around 120-135%. However, 80 µM GGOH strongly suppressed viability 

compared to other concentrations. These findings showed that GGOH alone increases 

viability up to certain concentrations. However, a higher concentration of GGOH (80 µM) has 

a dose-dependent cytotoxic effect on hOBs [17]. 

Effect of ZA and GGOH on hOCs  

The negative effect of ZA was counteracted by co-treatment of hOCs with GGOH. After the 

addition of 10 µM, 20 µM and 40 µM GGOH, cell viability at 0.1 µM ZA was almost the 

same as in the positive control. However, viability was increased after addition of 20 µM and 

40 µM GGOH to 25 µM ZA to around 150% ([25 µM ZA, 20 µM GGOH] and [25 µM ZA, 

40 µM GGOH]). The addition of 10 µM, 20 µM, and 40 µM GGOH increased the viability at 

100 µM ZA up to 100% in comparison to positive control (50%). 80 µM GGOH decreased 

the viability at 0.1 µM ZA to be about 40%. 

The treatment of hOCs with 80 µM GGOH and 100µM ZA affected the viability in a negative 

manner. These results demonstrated that GGOH had a dose dependent positive effect on cell 

viability up to 40 µM. However, a higher concentration of ZA/GGOH led to a coinhibitory 

and cytotoxic effect on bone cells [17].  
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Figure 6: WST-1 assay of hOCs [17]. 

HOCs were cultured at different concentrations of GGOH (10-80 µM), ZA (0.1 µM, 25 µM, 
100 µM) or combination of ZA/GGOH for seven days. Two way ANOVA test was done for 

multiple comparisons. Significant difference between controls and test-groups:  

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 
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Cell viability by Live/Dead staining  

Live/dead staining with Calcein-Am and ethidium homodimer was used to examine cell 

viability under fluorescence microscope. 

Live/dead assay of hOBs 

Human osteoblasts (hOBs) cultured in normal osteoblast culture media without any drug 

treatment served as a negative control, and cells treated only with ZA served as a positive 

control [17]. The test group comprised cells treated with a combination of ZA and GGOH. 

In contrast to 0.1 µM ZA, higher concentrations of ZA (25 µM and 100 µM) resulted in 

decreased cell survival, detected by decreases in cell numbers and density of living cells. This 

negative effect was reversed by the addition of GGOH up to 40 µM. However, at a 

concentration of 80 µM GGOH, lower cell density and lower fluorescence activity were 

detected. These results show that GGOH had a dose-dependent positive effect on rescue of 

hOBs treated with various concentrations of ZA. Lower concentrations of GGOH (10, 20, 40 

µM) antagonized the negative effect of ZA. However, higher concentration of GGOH (80 

µM) led to a negative effect on survival of hOBs [17]. 
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Figure 7: Live/dead fluorescence microscopy of hOBs treated with ZA/GGOH 
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Live/dead assay of hOCs 

Human osteoclasts (hOCs) cultured in normal osteoclast culture media without any drug 

treatment served as a negative control, and cells treated only with ZA served as a positive 

control [17].  

In contrast to 0.1 µM ZA, higher concentrations of ZA (25 µM and 100 µM) resulted in 

decreased cell viability, detected by decreases in cell number and density of living cells. This 

negative effect was reversed by the addition of GGOH up to 20 µM. However, at 

concentrations of 40 µM and 80 µM GGOH, lower cell density and fluorescence activity were 

detected. The results of this thesis showed that GGOH could rescue hOCs by reversing the 

negative effects of ZA in a dose-dependent manner. 
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Figure 8: Live/dead fluorescens microscopy of hOCs treated with ZA/GGOH 
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Tartrate-resistant acid phosphatase staining (TRAP-staining) 

Tartrate-resistant acid phosphatase is highly expressed in hOCs and therefore used as a 

histochemical marker for hOCs [217, 218]. In this experiment, the impact of ZA or 

ZA/GGOH on the morphology of the osteoclasts was examined by TRAP staining. As 

demonstrated in Figure 9, hOCs cultured in normal culture media without any drug treatment 

served as a negative control, and hOCs cultured at various concentrations of ZA served as a 

positive control. TRAP+ multinucleated osteoclasts were visualized in great amounts in the 

negative control. The addition of 0.1 µM ZA to the culture media did not affect the osteoclast 

proliferation or morphology. However, a higher ZA concentration of 25 µM caused ruffled 

borders to be lost, the shape of the cells to change to small round forms, and the number of 

hOCs to decrease. The highest concentration of ZA (100 µM) showed the maximal inhibitory 

effect on osteoclasts proliferation, changing the shape of hOCs to small particles. 

After the addition of GGOH at concentrations of 10-40 µM to 0.1 µM and 25 µM ZA, the 

cells maintained their shapes as large multinucleated cells. In contrast, the addition of 40 µM 

GGOH to 100 µM ZA led to a reduced number of TRAP+ multinucleated cells. Human 

osteoclasts (hOCs) treated with the highest concentration of GGOH (80 µM) and various 

concentrations of ZA lost their morphology, changing their shape to small round forms with a 

reduced number of cells. These findings showed that GGOH had a positive effect on 

maintaining of osteoclasts morphology up to certain concentrations, while a higher 

concentration of GGOH (80 µM) with ZA has a dose-dependent and coinhibitory cytotoxic 

effect with ZA on hOCs. 
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Figure 9: Tartrate-resistant acid phosphatase staining of hOCs differentiated in-vitro on 
polystyrene flasks 
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Western blot analyses of Rap 1A/B protein 

To investigate the effects of ZA and its antagonist GGOH on geranylgeranylation, western 

blot analyses were used to quantify the expression of small GTPase-protein Rap 1A/B after 

the treatment of bone cells with various concentrations of ZA and GGOH. The results were 

normalized to GAPDH.  

Rap 1A/B expression in hOBs 

As shown in Figure 10, hOBs treated with ZA at concentrations of 0.1 µM and 25 µM did not 

show a significant effect on Rap 1A/B expression compared to the negative control. At a 

concentration of 100 µM ZA, the expression of Rap 1A/B was strongly reduced to around 

0.2-0.3 folds in comparison to the negative control. After treating the cells with 10 µM 

GGOH at 0.1 µM ZA, the Rap 1 A/B expression was almost half of that seen in positive 

control. The negative effect of ZA at concentrations of 25 µM and 100 µM was reversed after 

the addition of concentration of 10 µM GGOH; by 25 µM ZA it was increased to around 0.75 

folds and by 100 µM ZA it was almost 1.0 folds. 

In contrast, the treatment of hOBs with a higher concentration of GGOH (80µM) increased 

the Rap 1A/B expression at 0.1 µM ZA in comparison to the positive control. However, at 25 

µM ZA, the expression was almost half the one in the positive control, and at 100 µM ZA it 

was nearly the same as in the positive control. 

Rap 1A/B expression in hOCs 

After treating hOCs with various concentrations of ZA, the expression level of Rap 1A/B was 

lower than in the negative control at 0.1 µM and 25 µM ZA. Additionally, at 100 µM ZA, 

Rap 1A/B was almost two times lower than in the negative control. There was no significant 

difference after the treatment of hOCs with 10 µM GGOH at 0.1 µM ZA. On the other hand, 

at higher concentrations of ZA (25 µM, 100 µM) and lower concentration of GGOH (10 µM), 

the Rap 1A/B expression was increased significantly to 0.75 and 1.0 folds, respectively.  

At a higher concentration of GGOH (80 µM) and higher concentrations of ZA (25 µM, 100 

µM), the expression of Rap 1A/B was strongly suppressed. These findings showed that higher 

concentrations of ZA and GGOH have a coinhibitory effect on the expression of Rap 1A/B, 

while lower concentrations of GGOH enhance the expression of this protein. 
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Figure 10: Rap 1A/B expression in hOBs and hOCs [17]. 

Rap1A/B expression in hOBs and hOCs after treatment with various concentrations of ZA 

(0.1µM, 25µM, 100µM) and various concentrations of GGOH (10µM, 20µM, 40µM, 80µM) 

after seven days. GAPDH was used as the loading control. The results are presented as fold 

change of Rap 1A/B. Two-way ANOVA tests were used. P-value: * p<0.05, ** p<0.01. 
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Discussion 

Medication-related osteonecrosis of the jaw (MRONJ) is an uncommon, but serious side 

effect of antiresorptive medications and angiogenesis inhibitors [144, 219]. Of the 

antiresorptives, BPs inhibit a key enzyme in the MVP, and this causes impaired prenylation of 

small GTPases, which are important for cell function and survival [201, 220, 221]. The 

incidence of MRONJ in patients who have received oral BPs due to osteoporosis is estimated 

to be around 0.001-0.1% [53, 222, 223]. However, it is estimated to be around 1-11% in 

cancer patients with a history of IV treatment with BPs [165, 224-228]. According to the 

AAOMS (update 2014) [5], MRONJ occurs 50-100 times more often in patients with a 

history of ZA treatment than in patients without any exposure to antiresorptive medications 

[229-231].  

The aim of this study was to investigate the role of GGOH in the MVP and in reversing one 

of the important side effects of ZA (N-BP). To evaluate this possible effect, we have 

investigated the effects of both ZA and GGOH on hOBs and hOCs, the main cells involved in 

bone turnover. Zoledronate (ZA) was used because it is the most potent IV BP and at the 

same time is associated with increased risk of MRONJ development [5, 17, 47, 74, 232]. It 

has been proven that the more potent N-BPs pose a higher risk compared to NN-BPs; IV 

administration also increases the risk of developing MRONJ, althogh patients who receive 

BPs orally may also be at risk if the duration of treatment is longer than four years [2, 223]. 

In previous studies, it has been shown that higher concentrations of ZA have negative effects 

on cell viability through inhibition of the MVP [233]. Consequently, the production of one 

important end-product of this pathway, GGPP, is impaired. This impairment leads to 

decreased prenylation (geranylgeranylation) of important proteins such as Ras, Rho, Rab and 

Cdc42, which are necessary in cell morphology [62], cytoskeleton arrangement, and cell 

migration, metabolism and survival [62, 234, 235]. The first cases of MRONJ were reported 

by Marx in 2003 [143]. Since then, many in vivo and in vitro studies have been performed to 

identify the conditions under which MRONJ occurs and to determine why the jaw bone is 

almost exclusively affected [236]. There are several theories related to the pathomechanism of 

MRONJ. However, none of them fully explains the mechanism by which MRONJ develops 

[198, 229-231, 237].  
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Studies have indicated that the main factors that increase the risk of MRONJ in patients with a 

history of BP uptake are surgical manipulations of the jaw, such as tooth extraction (44.4%), 

periodontitis (9.5%) and dental implant placement (3.2%) [157, 231, 238, 239]. Hasegawa et 

al. [231] have shown that the incidence of MRONJ in patients receiving IV BP treatment who 

have undergone tooth extraction is about 1.6-40%. Other risk factors for development of 

MRONJ are the type of drug, dosage, duration of treatment, and mode of administration [5].  

Otto et al. [240] have shown a risk of MRONJ occurrence of 4.2% after tooth extraction in 

patients receiving BPs. They propose that the pre-existing infectious conditions may be a 

more important risk factor than tooth extraction for MRONJ development. Soutome et al. 

[241] have reported similar findings, stating that the presence of inflammation may be an 

important risk factor. Many studies have already underlined the importance of periimplantitis 

and periodontal diseases as risk factors for development of MRONJ [242, 243].  

Due to the lack of clear data on the clinical setting of the disease, several cell culture studies 

have investigated MRONJ pathomechanisms. Walter et al. [244] have demonstrated that N-

BPs have a negative effect on cell viability and migration of fibroblasts and induce apoptosis 

in hOBs, fibroblasts, and human umbilical vein endothelial cells (HUVECs). Acil et al. [245] 

demonstrated the cytotoxicity of ZA at concentrations of 0.15625, 0.3125, 0.625, 1.25, and 

2,5 µM to hOBs and fibroblasts, which might increase the risk of MRONJ. Ravosa et al. [246] 

have evaluated the effect of ZA at concentrations of 5, 10, 30, 50, 75, 100 and 300 µM on oral 

epithelium and fibroblasts. They mention that BPs impair wound healing by inhibiting the 

growth and migratory capacity of oral fibroblasts, which are important for reepithelization 

[246]. 

There are data illustrating the important role of macrophages in allowing infection and 

inflammation to occur, resulting later in necrosis of the bone [247, 248]. Kaneko et al. [249] 

have demonstrated that ZA may cause inflammation by inducing M1 but not M2 macrophage 

polarization, resulting in the production of inflammatory cytokines in THP-1 cells. 

Some studies have demonstrated the effect of BPs on cells at various pH levels. Otto et al. 

[250] have investigated the effect of different types of BPs, including two N-BPs (ZA and 

ibandronate) and one NN-BP (clodronate) at various pH-environments on mesenchymal stem 

cells. They suggest that higher concentrations of N-BPs, in combination with the acidic 

environment, common in inflammation, lead to a significant decrease in mesenchymal cell 

viability and activity. However, a similar concentration of clodronate did not show a 
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significant effect on the cells except for the acidic environment itself. Otto et al. [251] 

elucidated that the decreased pH value may lead to protonation of BPs and to their 

transformation to toxic levels. This may be an explanation of why inflammation could be a 

risk factor for development of MRONJ. 

The AAOMS (update 2014) [5] suggests different therapy modalities for MRONJ based on its 

stage. Non-surgical therapies are suggested for stages 0 and I. However, surgical interventions 

are recommended for the more advanced stages of MRONJ (II and III). 

Despite intensive research, no efficient, non-surgical methods of therapy exist for MRONJ 

treatment. Several innovative treatment modalities other than surgery have been explored in 

the literature based on the stage of the disease. It has been shown that ozone therapy induces 

cell proliferation and improves wound healing, reducing pain with promising results in stages 

I and II of MRONJ [252]. Low-intensity laser therapy (LILT) has been shown to have an 

antimicrobial effect and to improve healing of the wound as well. Several studies have 

simulated the biostimulating effect of LILT in MRONJ lesions [253, 254]. Pentoxifylline and 

α-tocopherol have been suggested to assist antimicrobial therapy in early stages of MRONJ 

[253, 255]. Longo et al. [256] have demonstrated that patients in stage II of MRONJ who are 

treated only with surgery, without PRP, show a success rate (17%), much lower than that of 

patients who have been treated with a combination of surgery and PRP group (63%). They 

find that thrombocyte concentrates may improve MRONJ treatment. Calvani et al. [257] have 

illustrated the efficacy of bovine lactoferrin after surgery, suggesting that greasy gauze soaked 

with lactoferrin induces earlier wound closure in comparison to classical surgical treatment. 

Zandi et al. [258] demonstrated that teriparatide therapy may improve MRONJ in both 

clinical and histopathological features in a dose-dependent manner. Future research should 

examine the efficiency of these treatment methods [5]. 

Some of the in vitro studies support the hypothesis that external supplementation of MVP 

mediators, which are strongly affected and reduced by N-BPs, might reverse the negative 

effect of N-BPs [19, 198]. It has been pointed out that one of the mediators that may play a 

important role in the pathomechanism of MRONJ is GGOH, which is downregulated by 

blocking the FPPS, an enzyme in the MVP. Geranylgeraniol (GGOH) is an acyclic diterpene 

alcohol (diterpenoid), which can be extracted from plants or produced synthetically. It is an 

important material for the synthesis of pharmacological mediators and hydrophobic vitamins 

such as vitamins A and E [74, 186].  
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Another possible mediator preventing development of MRONJ has been suggested by 

Camacho-Alonso et al. [259], who investigated the cytoprotective effects of melatonin at 

concentrations of 1, 10, 50, 100, and 200 µM on osteoblast viability previously treated with 1, 

5, 10, 50, 100 and 300 µM ZA. At 24 h incubation with melatonin, the greatest osteoblast 

viability was observed at lower melatonin concentrations. However, 48 h and 72 h incubation 

showed greatest osteoblast viability at higher concentrations of melatonin (100, and 200 µM). 

This study demonstrates that melatonin could be promising as a means of prevention in 

patients at risk of BRONJ.  

Several studies have mentioned the important role of GGOH as a useful mediator reversing 

the negative effect of N-BPs on various types of cells such as bone cell lines, macrophages, 

human oral keratinocytes (HOKs), fibroblasts, and HUVECs [19, 260].  

Some studies have investigated the effects of different isoprenoids, including GGOH, on 

various cell lines treated with ZA. Hagelauer et al. [20] have investigated the effects of 

various isoprenoids, such as eugenol, farnesol and GGOH on the cell function of HUVECs, 

fibroblasts, and osteogenic cells treated with ZA. They treated the cells with different 

concentrations of GGOH (0, 10, 25, 50 and 100 µM) with or without ZA (50 µM) for 72 h. 

They found that only GGOH, as a natural isoprenoid, could reverse the negative effect of ZA 

on viability and wound healing capacity of the cells. However, Zafar et al. [22] have 

demonstrated that FOH can partially reverse the negative effect of ZA on cell viability of 

human gingival fibroblasts (HGFs). They treated the HGFs with two isoprenoids (GGOH [10, 

50 µM] or FOH [10, 50 µM]) and ZA (30 µM) incubated for 72 h. They mention that GGOH 

at concentrations of 10 and 50 µM increases the HGFs viability. They also find, in contrast to 

Hagelauer et al., that not only GGOH but also FOH at concentrations of 30 and 50 µM can 

partially restore the viability of HGFs.  

In another study, Zafar et al. [140] have also investigated also the effect of ZA (30, 50 µM), 

FOH (10, 50 µM), and GGOH (10, 50 µM) on primary hOBs isolated from human alveolar 

bone [140]. They found that the treatment of hOBs with various concentrations of ZA (30, 50 

µM) resulted in a dose-dependent increase in expression of caspase-3/7, a marker for cell 

apoptosis, and in decreased cell viability. After administration of 50 µM GGOH to the hOBs 

treated with ZA, the cell viability was increased and the expression of caspase-3/7 was 

decreased. However, administration of 50 µM FOH did not have any significant effect on 

viability and apoptosis of hOBs. They have also mentioned the down-regulation of pathways 
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related to tissue repair such as angiogenic and osteogenic pathways in hOBs treated with ZA. 

These findings show that higher ZA concentrations (30, 50 µM) contribute to a decrease in 

angiogenic gene expression and consequently to impaired tissue regeneration. These negative 

effects were counteracted after the addition of GGOH at concentrations of 30 and 50 µM 

[140]. 

Cozin et al. [16] have mention that a combination of 10 ng/ml of human platelet-derived 

growth factor BB and 50 µM GGOH was able to increase cell proliferation and migration 

activity and to decrease the apoptosis in HGFs treated with various ZA and pamidronate 

concentrations (such as 0.003, 0.006, 0.008 and 0.1mM). They discovered that N-BPs caused 

a loss of cell adhesion and a reduction of F-actin bundles. These negative effects on HGFs 

treated with BPs were counteracted after the addition of platelet-derived growth factors and 

GGOH [16]. 

Pabst et al. [15] have investigated the positive effect of GGOH at a concentration of 10 µM 

on HOKs treated with various concentrations of different types of BPs (clodronate, 

ibandronate, pamidronate, and zoledronate). They analyzed viability, migration ability, and 

apoptosis of HOKs. Wound healing depends on the intact migration of HOKs from the 

stratum basale to the stratum corneum and on the renewal of the mucosal layer. The authors 

of the study found that BPs influenced the viability and the migration ability of HOKs 

negatively. They treated the HOKs with GGOH to reverse the negative effect of BPs. They 

found that GGOH did not have a significant positive influence on cells treated with clodronate 

(NN-BP). However, it increased the viability and migration ability of HOKs treated with ZA 

and reduced apoptosis of these cells [15]. 

A few studies have investigated the effect of MVP activator GGOH on bone cells that had 

previously been treated with ZA. Ziebart et al. [19] have demonstrated the positive effect of 

GGOH on the viability of hOBs treated with 5 µM and 50 µM ZA. They measured osteoblast 

viability at 5 µM ZA to be around 40% and at 50 µM ZA to be around 10%. After 

administration of 10 µM GGOH to the hOBs, which were previously treated with the 

aforementioned ZA concentrations, cell viability was increased at 5 µM ZA to nearly 55% 

and at 50 µM ZA to nearly 80% [19]. These results are similar to the findings of the present 

study, despite the different concentrations of ZA. 

Only a few animal studies have investigated GGOH and its effect on the occurrence of 

MRONJ [19, 198]. Koneski et al. [198] have evaluated the effect of 5 mM GGOH in the form 
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of local solution on wound healing and development of osteonecrosis in rats treated 

intraperitoneally with ZA at a concentration of 0.06 mg/kg. After three weeks of treatment, 

the rats underwent first molar extraction on the right side of the mandible and were treated 

with drugs (ZA/GGOH) for two more weeks. The study found that 80% of rats treated only 

with ZA developed microscopical osteonecrosis. However, after daily administration of 5 mM 

GGOH to the extraction sockets in the form of local solution, the negative effect of ZA was 

reversed and only 22% of co-treated rats developed microscopical osteonecrosis in 

comparison to the groups treated only with ZA. This study suggests that GGOH could reverse 

the negative effect of ZA and improve wound healing and tissue proliferation. 

Nagaoka et al. [179] have investigated the effect of systemic administration of GGOH/GGPP 

at concentration of 3 µM on osteoclast differentiation of bone marrow cells (isolated from 

mice), and on multinucleation and bone mineral deposition. They have demonstrated that the 

addition of 3 µM GGOH/GGPP reverses the negative effect of ZA (1-10 µM) and that it 

improved zoledronate-induced inhibition of osteoclast differentiation molecule TRAP. They 

also treated mice with intraperitoneally injected ZA (250 µg/kg) and GGOH (250 µg/kg). 

After two weeks of treatment, the right first molar in the maxilla were extracted and the mice 

were treated with ZA/GGOH for two more weeks. Micro-CT analysis of alveolar sockets 

showed a decreased alveolar bone mineral deposition in mice treated only with ZA. However, 

administration of GGOH could reverse the negative effect of ZA, and it could increase the 

alveolar mineral deposition [179].  

In the present study, the effects of various ZA concentrations (0.1, 25, and 100 µM) and 

GGOH (10, 20, 40, and 80 µM) on bone cells (hOBs and hOCs) were investigated. The study 

finds that ZA has a dose-dependent negative effect on human bone cells. Higher 

concentrations of ZA, such as 25 µM and 100 µM, decrease the viability and metabolic 

activity of hOBs and hOCs. However, lower concentrations of ZA, such as 0.1 µM, seem to 

improve viability of these cells. Some other studies have reported similar results to ours [81, 

261, 262]. Bellido et al. [81] have likewise reported that lower concentrations of BPs ranging 

from 0.001 µM to 1 µM ZA, increase osteoblast proliferation and growth. Thibaut et al. [262] 

have found that 0.1 µM ZA increases osteoblast proliferation but does not affect cell growth 

and morphology, and that a higher concentration of ZA (10 µM) induces a reduction of cell 

numbers and caused apoptosis of hOBs. Fromigue et al. [263] illustrated that a ZA 

concentration ranging from 10-8 µM to 10-5 µM could increase the hOB cell proliferation to 
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around  30%. These studies have also shown that higher ZA concentrations inhibit the MVP 

and result in impaired cell function.  

Through our experiments, we have demonstrated that GGOH could reverse the negative effect 

of ZA in a dose-dependent manner. Geranylgeraniol may have beneficial effects on MRONJ 

through the prenylation of small GTPases, which are important for cell viability and survival.  

In this study, WST-1 analysis demonstrated a successful replacement of cell viability, which 

is inhibited dose-dependent by ZA. Our results are similar to those of studies already 

mentioned. A lower concentration of ZA (0.1 µm) did not have a negative effect on cell 

viability. On the contrary, 0.1 µM ZA and a combination of ZA and GGOH (even at higher 

GGOH concentrations) resulted in an increase in hOBs and hOCs viability. Only hOCs at 

concentration of 0.1 µM ZA and 80 µM GGOH resulted in a decrease in cell viability (35-

40%) [17]. First administration of higher ZA concentrations (25, 100 µM) decreased the 

viability of hOBs and hOCs. This negative effect was much more pronounced at higher 

concentrations of both ZA and GGOH.  

Protein prenylation, first identified in fungi [264], is a post-translational modification of 

proteins in eukaryotic cells, and it includes protein farnesylation and geranylgeranylation. It is 

a necessary process for the activity of important proteins from the Ras family, small GTPases, 

and heterotrimeric G-proteins [265, 266]. The hydrophobic prenyl group is important for 

membrane targeting of proteins, and it enables multiple cell signaling pathways [265]. 

Inhibition of protein prenylation suppresses the activity of oncogenic Ras proteins to reach 

high antitumor activity [267]. However, the decreased or ineffective prenylation of Ras-

related proteins (Rap 1), a group of small GTPases, may lead to the development of MRONJ 

[74]. Rap 1, which was discovered by Kitayama et al. [268], plays an important role in cell 

adhesion, including integrin- and cadherin-mediated adhesion. It activates and regulates 

integrin, which plays a key role in various cell processes [268, 269].  

In our experiments, prenylated Rap 1 (a small GTPase) was investigated in hOBs and hOCs 

treated with ZA/GGOH for a period of one week. There are two isoforms of Rap 1 protein, 

Rap 1A and Rap 1B (Rap 1A/B). The expression level of Rap 1A/B was affected after the 

treatment of hOBs and hOCs with various concentrations of ZA/GGOH. As already 

mentioned, ZA inhibits the MVP, and protein prenylation is consequently blocked in a dose-

dependent manner. In the present study, it is demonstrated that the level of prenylated protein 

(Rap 1A/B) increases not only in hOCs but also in hOBs when GGOH is added to the culture 
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of bone cell lines treated with N-BP (ZA). Rap 1 served as a biomarker for post-translational 

modification. This finding shows that GGOH could reverse the negative effect of N-BPs in a 

dose-dependent manner and that this may lead to unimpeded prenylation of the small GTPase 

Rap 1. A new finding of our experiments is that not only a combination of higher ZA/GGOH 

show cytotoxicity, but a higher concentration of GGOH alone also shows a cytotoxic effect 

on bone cells. 

These findings may be important for the development of new therapy methods for the early 

stages of MRONJ. Apart from the dosage and duration of GGOH treatment, there are other 

open questions related to the clinical use of GGOH, such as the route of administration and 

the possible adverse effects associated with it. Systematically administered GGOH may be 

transferred faster to cells, especially to the basal mucosal layers, but this method is potentially 

dangerous because of the likely suppression of the antiresorptive activity of BPs. This may 

lead to neutralization of the effect of BPs, which is important in patients who receive them as 

a treatment for malignant diseases because of the risk of spreading the tumor cells [19, 74, 

195, 196]. However, the local administration of GGOH in the form of mouth rinses may 

increase the concentration of medication in the wound, and this may improve wound healing 

[198]. Future studies should be directed toward developing appropriate local drug delivery 

systems, such as collagen membranes, which will effectively and safely transport the GGOH 

[20, 74]. Further research should also be done into the exact indications for the use of GGOH, 

its optimal concentration, and the duration of treatment. Because this study reveals that higher 

concentrations of GGOH may in fact be harmful to cells, the optimal concentration remains 

one of the most important questions. Future animal studies should be conducted to test these 

issues. Moreover, other possible side effects of GGOH should also be evaluated and taken 

into consideration.  

The main limitation of this study is that it uses an in vitro model in regulated laboratory 

conditions; extrapolating the in vitro results to an in vivo situation may prove challenging. 

Another limitation is that the effects of drugs were investigated only on bone cells without 

any blood supply, in the absence of soft tissue, and without any possible inflammation factors 

or any of the complex immunological or other types of conditions that are present in the 

human body. Also, the interactions between different drugs and concentrations were 

evaluated only on hOBs and hOCs and not on broad spectrums of cells from different donors, 

which would have generated even more relevant data. However, the results of this study may 
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serve as a basis for further development of the possible use of GGOH as a preventive or 

therapeutic approach in the treatment of MRONJ.  
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