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CHAPTER I

Background
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Duchenne muscular dystrophy and dystrophin

Duchenne muscular dystrophy (DMD) is one of the most common and devastating

neuromuscular disorders.  DMD is a progressive skeletal muscle disease that is inherited as an

X-linked trait and affects 1/3500 newborn boy worldwide.  DMD is normally diagnosed

before the sixth year of life.  Affected boys are usually confined to a wheelchair before the

age of 12 and die in their early twenties by respiratory or cardiac failure.  The women and

girls are carriers and some of them manifest limb weakness and cardiomyopathy.  Diagnosis

of DMD is suspected by the detection of elevated serum creatine kinase levels and by the

muscle histology, which shows myopathic features: variation in diameter of muscle fibers,

necrotic and regenerative fibers, and replacement of muscle tissue by adipose and connective

tissue.  DMD is confirmed by a complete absence of functional dystrophin (427 kDa) caused

by point mutations or out-of-frame deletions in the 2.5 megabases spanning gene 1.

Dystrophin is a member of the α-actinin-β-spectrin family of proteins.  Dystrophin is a rod-

shaped protein divided into 4 structural domains: the N-terminal contains an actin-binding

domain followed by a large rod-domain that is composed of spectrin-like repeats, followed by

a cysteine-rich domain (CR) and C-terminal region (CT).  The N-terminal domain shows

sequence homology to the actin-binding domains (ABD) of α-actinin, β-spectrin and fimbrin;

the crystal structure of the dystrophin ABD has been resolved recently 2.  The rod domain is

composed of 24 repeating units and is interrupted by 4 proline-rich hinge regions (H1-H4)

which may confer elasticity and flexibility3.  The cysteine-rich and the C-terminal regions

contain a multitude of protein binding sites: the WW domain, two putative Ca2+-binding EF-

hand motifs, a coiled-coil domain and a ZZ (zinc finger) domain 4-7.  The gene gives rise to

several dystrophin isoforms through alternative splicing and are driven by different promoters.

Isoforms of dystrophin sharing both the cysteine-rich and C-terminal domains are found in

skeletal muscle, cardiac muscle, smooth muscle, brain, Purkinje neurons, retina, kidney,

peripheral nerve and one isoform that is ubiquitously expressed 8.

Dystrophin was reported to constitute only 0,002% of total skeletal muscle protein, but it

constitutes 2% of total sarcolemmal protein and 5% of subsarcolemmal cytoskeletal protein.  
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This suggested that dystrophin plays a major structural role in the cell membrane of skeletal

muscle 9-11.  In muscle, dystrophin is located at the subsarcolemma and is associated with an

oligomeric protein complex, the dystrophin-glycoprotein complex (DGC) which spans the

plasma membrane and links the cytoskeleton to the extracellular matrix (Figure 1)12-16.  The

DGC can be divided into three sub-complexes: the dystroglycan, the sarcoglycan and the

cytoplasmic complexes.  The cysteine-rich and the C-terminal part of dystrophin binds to the

transmembrane protein β-dystroglycan (43 kDa), which then binds to the extracellular

protein, α-dystroglycan 17-20.  A detailed analysis of the dystrophin DBR (dystroglycan-

binding region) demonstrated that β-dystroglycan binds to a region of dystrophin formed by

the WW domain and the EF-hand-like domains 17;21.  The α-dystroglycan (156 kDa) makes

the final link to the extracellular matrix upon its binding to the α2 subunit of laminin

(merosin) 15;22.  The transmembrane sarcoglycan complex is composed of four glycoproteins,

α−(50  kDa), β−(43 kDa), γ−(35 kDa) and δ−sarcoglycan (35 kDa) and the sarcospan (25

kDa) 23.  Although members of the sarcoglycan complex are severely reduced in dystrophin-

deficient muscle, direct binding to dystrophin or to other proteins of the dystrophin associated

complex have not been proven 18.  The C-terminus of dystrophin is also a binding site for the

cytoplasmic complex, composed of α−  and β1− syntrophins (60 kDa), dystrobrevin (90 kDa)

which bind to dystrophin via the coiled-coil domain, and neuronal nitric oxide synthase

(nNOS) 24-29.  Furthermore, α-syntrophin binds directly to the N-terminal part of nNOS 30;31.

Dystrophin plays an essential role in maintaining the integrity of skeletal and cardiac muscle

cells via the dystrophin-glycoprotein complex.  The dystrophin complex is thought to protect

the muscle membrane from the mechanical stress of contraction and relaxation 32;33.

Immunohistochemical analysis revealed a drastic reduction in all of the dystrophin-associated

proteins (DAPs)(sarcoglycans, dystroglycans, nNOS, syntrophins, dystrobrevins and

sarcospans) in both DMD patients and the mouse model for DMD, the mdx mouse
15;23;26;27;31;34-42.  The absence of dystrophin causes the disruption of the linkage of the DAPs to

the subsarcolemmal actin cytoskeleton, which leads to a drastic reduction in all of the DAPs40.

DAPs mRNA levels are normal but the complex is not properly assembled and/or integrated

into the sarcolemma or are degraded in the absence of dystrophin 15;43-45.  The resulting

disruption of the linkage between the subsarcolemmal cytoskeleton and the extracellular 
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Figure 1.  Organization of the dystrophin-glycoprotein complex (DGC) at the sarcolemma of

muscle fibers.  The dystrophin makes the link between the actin filaments and the extracellular

matrix, upon its binding to the dystroglycan complex.  Animal models of muscular dystrophies

are also depicted  (adapted from Allamand and Campbell  2000).
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matrix may lead to sarcolemmal instability and eventually to muscle cell necrosis and muscle

weakness 37;41.  This may be the case especially during muscle contraction, which may cause

physical breaks of the sarcolemma 32;41.  The contribution of dystrophin to membrane

structural integrity suggests that myofibers undergoing great physical stress may be the most

affected by the absence of dystrophin 32;46.  The deficiency of dystrophin causes recurrent

necrosis of muscle fiber segments 47.  While regeneration is vigorous, it cannot fully keep up

with necrosis and as a result, progressive loss of muscle fibers occurs.  

Becker muscular dystrophy (BMD) is an allelic disorder that is less severe than DMD,

characterized by later onset and longer survival.  Mutations that produce decreased amounts

or abnormal molecular weight proteins are associated with BMD, while a complete absence of

dystrophin correlates with the more severe form of muscular dystrophy, i.e. DMD 48-51.  Some

patients with very large rod domain deletions showed only mild clinical phenotype.  One

patient who was still ambulant at age 61 was found to have exons 17-48 deleted

corresponding to 46% of the protein, giving rise to a molecule of ≈ 200 kDa only 52.

Recently, patients with even larger intragenic dystrophin deletions (exons 17-51 and exons

13-48) corresponding to a loss of more than 50% of the molecule and having mild BMD

phenotype were found 53;54. 

DMD and animal models

The mouse model for DMD is the mdx mouse, which is dystrophin deficient 55;56.  DNA

sequence analysis of normal and mdx dystrophin cDNAs revealed a nonsense mutation in mdx

mice when compared to normal animals.  mdx mice are viable, have normal body weight and

are fertile 57.  Although they don't display severe progressive myopathy, mdx mice have

biochemical and histological defects characteristic of dystrophin deficiency: elevated serum

creatine kinase, cycles of necrosis followed by regeneration and persistence of central nuclei
55;57.  The necrosis-regeneration process of mdx skeletal muscle fibers starts at 15 days of age

and still is present at 360-day-old animals, peaking between the ages of 45 and 60 days 58.

The mouse mdx diaphragm undergoes progressive degeneration and fibrosis comparable to

that of DMD limb muscle, although aging mice show no overt respiratory compromise 59.
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Golden retriever muscular dystrophy (GRMD) is a spontaneous and X-linked disease of dog

that is a homologue of Duchenne muscular dystrophy.  Analysis of the canine dystrophin gene

reveals a splice site mutation that results in exon 7 skipping and premature termination of the

reading frame 60. These dogs share many similarities to Duchenne boys: elevated creatine

kinase in serum, muscle atrophy, muscle necrosis, degeneration/regeneration, and

cardiomyopathy.  Clinical signs appear between the age of 6 to 8 weeks as shown by a

progressive stiffness of limb muscles, mainly the hind limbs 61.

Utrophin is a cytoskeletal protein that is highly homologous to dystrophin (400 kDa, 4

structural domains) that is expressed in all normal tissues.  In normal mature skeletal muscle

fibers, utrophin is localized exclusively at the neuromuscular junction (NMJ).  However, in

regenerating fibers of adult muscles (DMD patients and mdx mice) or in embryonic muscle

cells, utrophin is distributed throughout the sarcolemma 62.  Utrophin-deficient mice are

healthy, have a normal life span and show no signs of weakness.  They only display a very

mild myasthenia 63;64.  However, when utrophin deficiency is combined with the dystrophin-

deficient mdx mouse (dko or double knockout), a more severe progressive muscular dystrophy

is produced.  These dko mice display marked myopathy, leading to weight loss and breathing

difficulties, resulting in premature death by 20 weeks of age 65;66.  

Treatments for DMD

Because of the lack of effective treatments for Duchenne muscular dystrophy, novel

approaches including gene therapy have been explored.  Gene therapy may consist of

providing a wild-type copy of a defective gene.  For gene delivery so-called “vectors” such as

plasmids or modified viruses are used.  Most of the approaches using “naked” DNA

expression vectors show poor delivery efficiency and only transient gene expression 67-69.  The

use of viruses as vectors for human gene therapy is a powerful technique, since many of them

have evolved a specific machinery to deliver DNA to host cells.  The best-studied viruses

include Adenoviruses, Retroviruses and Adeno-associated viruses.

Adeno-associated-viruses (AAV) are promising vectors for gene therapy since they permit

efficient and long-term transgene expression in a variety of tissues in vivo without significant

immune response 70.  Many reports have demonstrated the efficiency and the persistence of a
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reporter gene (lacZ) expression for up to 19 months in skeletal muscle after a single injection

of rAAV in immunocompetent animals 71-74.  There is an increasing interest in AAV-mediated

gene therapy for genetic muscle disorders.  Recent studies have shown a functional rescue in

two dystrophic rodent models (delta-sarcoglycan deficient hamsters (Bio14.6) and dystrophin-

deficient mouse (mdx)) by intramuscular injection of rAAV vectors containing sarcoglycan or

dystrophin cDNAs 75-77.  One major drawback of using AAV vectors is the limited insert

capacity of ≈ 4.6 kb 78, that preclude the use of the mini-dystrophin gene (cDNA = 6.3 kb).

rAAV vectors also need a helper virus (adenovirus or herpesvirus) for optimal growth and

multiplication, cannot be grown at high titers and the recombinant vectors lack site-specific

integration 70;79.  

Retroviral vectors are RNA viruses that can accommodate up to 8.0 kb of foreign genes and

are mainly used for ex vivo gene delivery since they can infect only proliferating cells.  They

are able to integrate randomly into the host genome and thus should permit long-term

transgene expression, but they tend to be silenced by either methylation or by incorporation

into condensed chromatin.  They are still difficult to grow at high titers and to retain their

infectivity during concentration and storage.  Moreover, the random integration may lead to

insertional mutagenesis 80.

Adenoviral vectors

Recombinant adenoviruses (AdV) are well-defined vectors for in vivo gene transfer.  The viral

life cycle is well characterized and the AdV genome is easy to manipulate.  E1/E3-deleted

AdV can accommodate cassettes of ≈ 8 kb, while third generation AdV (gutted or gutless) can

accommodate up to 36 kb of foreign DNA 81-86.  AdV can be produced at very high titers,

have a broad host tropism and can infect both dividing and non-dividing cells.  The transport

of AdV to the nucleus is rapid in both dividing and non-dividing cells 87. 

Adenovirus is composed of one copy of a double-stranded, linear DNA molecule of 36 kb,

which contains in each terminus a 100 bp inverted terminal region (ITR).  The E1A region, in

the 5' part of the viral genome, encodes proteins that are involved in transactivation of the

majority of other viral genes, and also repress the transcription of some cellular promoters 88.  
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E1B region gene products drive the regulation of late gene expression and the transport of

mRNA to the cytoplasm.  This region is also required for replication of the viral DNA.  The

E2 region encodes different proteins involved in DNA replication: DNA binding protein,

DNA polymerase and a terminal protein, while the E2B gene product serves as a primer for

DNA synthesis.  The E3 region is not necessary for viral replication but is involved directly in

modulating the immune response of the host in vivo 88.  Finally, the protein products of the E4

region are required for efficient viral DNA replication as well as late gene expression.

Adenovirus is able to package a maximum of 105% of its total genome length 87;88.

When an adenovirus particle enters a target cell, the fiber knob of the capsid binds first to the

attachment receptor CAR on the cell surface.  CAR is a high-affinity receptor shared by

Coxsackie B virus and Adenovirus (CAR) and was recently cloned 89-92.  Then the penton

base binds to low-affinity internalization receptors, such as αvβ3, αvβ5 and α5β1 integrins, and

the particles are rapidly internalized into clathrin-coated vesicles 93-95.  The adenovirus

binding to the integrins is mediated by the Arg-Gly-Asp (RGD) sequences present in the

penton base 96;97.  Recent analysis of the crystal structure of the CAR-Ad fiber knob complex

has shown that three CAR monomers bind each knob trimer 90.  The cellular receptor CAR is

used by different adenovirus serotypes from subgroups A, C, D, E and F 98.  

CAR is encoded by a single gene located on chromosome 21 99, giving rise to a 46 kDa

transmembrane glycoprotein with 2 extracellular immunoglobulin-like domains, a

transmembrane spanning domain and a cytoplasmic tail 89;92.  The cellular function of CAR is

still unknown.  Physiologically, CAR mRNA is detectable in liver, lung, heart and kidney in

mouse and in brain, heart, pancreas and liver in human 89;92;100. 

A major drawback of E1-deleted adenoviral vectors is the relatively short transgene

expression after injection into adult animals.  This is mainly due to immune clearance of

transduced cells by cellular and humoral immune responses.  The transgene antigenicity as

well as a low level expression of AdV gene products have been shown to be responsible for

triggering immune response 101-105. 
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Transgene to be used for gene therapy in DMD

It has been demonstrated that introducing a functional version of the dystrophin gene (full-

length and mini-dystrophin cDNA) into the germ line of mdx mice, resulted in improvements

in muscle histology (protection from necrosis, restoration of the DGC at the membrane) as

well as strength of dystrophic muscles 106-111.  Also, first generation and high-capacity

adenovirus vectors (AdV) have been used successfully to transfer human dystrophin genes to

skeletal muscle of mdx mice and dystrophin-deficient golden retriever (GRMD) 33;82;84;85;112-

119.  

Studies using transgenic animals have demonstrated that expression of the truncated or full-

length utrophin could also significantly improve the histology and function of mdx and dko

muscles 120-123.  Utrophin is then localized at the entire sarcolemma, restores the expression of

the DPC at the cell surface, reduces muscle necrosis, improves force generation and even dko

animals have normal life span.  First-generation adenovirus expressing truncated utrophin

delivered to mdx or dystrophin/utrophin-deficient (dko) neonates improves the morphology of

the dystrophic muscle.  Utrophin is evenly distributed at the cell surface, protects muscle from

subsequent dystrophic damage by restoration of members of the DPC, as evidenced by

reduction in the number of centrally nucleated fibers and improvement in force generation 124-

126.

Promoter/enhancer to be used for gene therapy in DMD

The ideal promoter and/or enhancer for driving expression of a therapeutic gene in skeletal

muscle should be highly active and show specific activity in target cells to minimize possible

toxicity and immunogenicity in non target-cells.  In addition, for use in viral vectors, the

regulatory sequences should be confined to a DNA fragment of small size.

The natural muscle promoter of dystrophin should theoretically be an ideal promoter but it

was found that this promoter is very weak 127.  The constitutive viral promoters (Rous

sarcoma virus late promoter, RSV-LTR, or the cytomegalovirus immediate early gene

enhancer/promoter, CMV) are very active in muscle cells 67;69;128 and are relatively small (<1

kb), but their activity is not restricted to muscle cells 128;129.
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Many muscle-specific genes have been cloned and their regulatory sequences are being

mapped and characterized. These include α-skeletal actin 130-132, α-cardiac actin 133-135,

troponin I 136, myosin light chain 2 137;138, myosin heavy chain 139 and muscle creatine kinase

(MCK) promoters 140.  The α-skeletal actin promoter is relatively weak 141, while myosin light

chain, myosin heavy chain and troponin I promoters are fiber-type specific 142-147, which is a

drawback for gene therapy in DMD.  Muscle creatine kinase has high expression levels in

muscle and its promoter/enhancer region is small enough to make it suitable for inclusion in

viral vectors.  The muscle creatine kinase promoter/enhancer is very active and may tend to

“overproduce” dystrophin, but even a marked excess of the gene product did not seem to be

deleterious for mature skeletal muscle fibers in transgenic mice 106.

High level of muscle creatine kinase (MCK) expression is restricted to differentiated skeletal

and cardiac muscles 148.  In undifferentiated dividing myoblasts, MCK is not expressed, but

early after myoblast fusion into myotubes MCK mRNA expression is induced and continues

to increase until MCK becomes the predominant creatine kinase isoform 149;150. 

The muscle creatine kinase gene is composed of 8 exons and the translation begins in exon 2,

3.2 kb downstream of the transcription initiation site 140.  The full length MCK

promoter/enhancer (6.5 kb) consists of a muscle specific enhancer (E1)(-1256 to -1050 bp), a

358 bp proximal promoter (-358 to 0), and a second enhancer (E2)(+738 to +1599) in the first

intron (Figure 2)151-154.  While sequences between -4800 and -1800 bp do not significantly

affect MCK gene expression 151;154, the E1 enhancer influences overall MCK expression and

confers muscle specificity 151;152;154.  Although the E2 enhancer is not essential for MCK gene

activity, it does increase expression levels of the basal promoter 152.  Transgenic mice carrying

wild type or mutated 5'-flanking regions of the mouse MCK gene were generated 152.  Adult

transgenic mice containing -3300 MCKCAT construct (CAT=Chloramphenicol

acetlytransferase gene), showed high CAT activity only in skeletal and cardiac muscles.  By

deleting sequences between -3300 to -1256 nt, CAT expression in cardiac muscle decreased

200-fold compared to 10-fold in skeletal muscle, suggesting a cardiac regulatory element in

this region 152.  -1256MCKCAT transgene exhibited lower CAT activity in skeletal and

cardiac muscle compared to the –3300, but transgene activity detected in liver was extremely 
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low 152;155.  Transgene expression by the intronic E2 enhancer was also evaluated: it does

activate expression in skeletal muscle, but not in heart 152.  

Several cis-elements in the first enhancer (E1) have been identified that regulate expression of

MCK: CArG, AP2, AT-rich, left and right (MEF-1) E boxes, MEF-2 sites, and Trex

(Transcriptional regulatory element x)(Figure 2)154;156-160.  The MCK 5’ (E1) enhancer

contains many transcriptional regulatory elements that are target sites for DNA-binding

factors.  The CArG sequence is the binding site for serum response factors (SRF)161, while the

AT-rich element is thought to bind the homeoprotein MHox, MEF-2 and Oct-1 factors 162;163.

Left and right (MEF-1 site) E-boxes contain the consensus CAnnTG sequence and bind

members of the MyoD family 157;164;165.  The MEF-2 region, rich in adenine and thymine, is

the site for MEF2 proteins and BBF-1, a skeletal serum-inducible factor 159;161;166;167.  A Trex-

specific binding factor (TrexBF) complex has been identified in skeletal but not in cardiac

myocytes 158.  

This 206 bp enhancer region has been delineated into several motifs which, when mutated,

lead to diminished promoter activity in skeletal and cardiac muscle 156.  Mutations of the

MCK right E box (MEF-1) site decreases dramatically enhancer activity in skeletal (30-90

fold) compared to cardiac muscle cells (up to 7 fold).  On the other hand, mutations of the

CArG or the MEF-2 sites seem more deleterious in cardiac (up to 20 fold) than in skeletal

muscle cells (2-10 fold) 156.  In contrast to these differential effects, mutations of the AT-rich

site or the left E box site decrease enhancer activity to about the same level in both skeletal

and cardiac myocytes 156.  The presence of the AP2 site is thought to repress transcription in

cultured skeletal and cardiac muscle cells since its mutation leads to an increased expression

in both cell types 156.  When Trex is mutated in the -1256 MCKCAT construct, it decreases

expression in skeletal muscle, but no significant effect is observed in cardiomyocytes.  This

suggests that the Trex element is required for skeletal muscle but not for cardiac muscle

expression of the MCK gene 158.

In summary, expression levels driven by muscle creatine kinase promoter/enhancer are high

and restricted to differentiated muscle cells.  Furthermore, the E1 enhancer of MCK is

sufficient to confer muscle specificity and this fragment is small enough to be included in 
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viral vectors
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Rationale and objectives of the study (Summary)

At present, there are only few reports on successfully applying gene therapy to human

diseases.  This is in part due to our poor understanding of the various biochemical, genetical

and immunological interactions of the host cell/organism with the transferred gene and

transfer method/vector.  Gene transfer to skeletal muscle of various animal models has been

hampered in particular by relatively low efficiency and relatively high toxicity and

immunogenicity.  Therefore, the main objective of this study was to examine some of the

above-mentioned interactions in murine models.  Specifically, the attachment of adenoviral

vectors to skeletal muscle fibers, the use of a muscle-specific promoter to regulate transgene

expression, and the potential of germ line transmission through genomic integration of

adenoviral sequences were studied in detail (see below).  This may also allow for an improved

design of gene therapy vectors and protocols to combat human muscular dystrophy in the

future.

Adenoviral vectors are one of the best studied viral vectors for gene therapy.  Their primary

attachment receptor CAR has been cloned recently 89;92.  Highly efficient adenovirus-mediated

gene transfer occurs in immature or in regenerating muscle, but not in adult muscle 112;168-171.

To evaluate how CAR expression may affect the transduction efficiency by AdV in skeletal

muscle, transgenic mice expressing the CAR cDNA under the control of the MCK1350

promoter/enhancer were generated.  Distribution and level of CAR expression were evaluated

in different tissues of transgenic and non-transgenic animals.  The susceptibility to AdV

transduction was assessed in transgenic and non-transgenic littermates by intramuscular

injection of AdVlacZ in adult animals.  Transgene expression (lacZ) was quantified and

visualized eight days post-injection using different adenoviral titers.  

Gene therapy for Duchenne muscular dystrophy is envisaged to introduce an additional copy

of the dystrophin gene/cDNA into skeletal muscle fibers to protect cells from necrosis, and to

prevent their eventual loss that leads to muscle weakness.  In most studies using adenoviral

vectors, strong viral promoters such as the cytomegalovirus promoter/enhancer (CMV) or

Rous Sarcoma Virus long terminal repeat (RSV-LTR) are used to drive dystrophin expression
33;112;115;118;119.  Since the tropism of adenovirus is non-selective, an ideal promoter and/or
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enhancer for driving the expression of dystrophin for DMD gene therapy should be highly

active in skeletal muscle cells and show muscle-specific activity.  The muscle creatine kinase

promoter/enhancer confers high level and restricted expression in differentiated muscle cells.

It was previously shown that the MCK1350 promoter/enhancer confers muscle-specific

expression of the luciferase transgene in newborn scid mice using AdV 172.  Moreover,

MCK1350 gave strong transgene expression (luciferase), corresponding to 40% of the

constitutive RSV promoter (RSV-LTR).  

To determine the potential applicability of this short MCK promoter/enhancer for gene

therapy of DMD, adenoviral recombinants containing the luciferase or the dystrophin gene

under the control of the muscle-specific MCK1350 promoter/enhancer (AdVMCKlux and the

AdVMCKdys) were used to determine the level and the pattern of transgene expression in

dystrophic muscles.  The AdV recombinants were directly injected into skeletal muscles of

neonates and adult mdx mice, and transgene expression was assessed up to 60 days post-

injection.  

An important safety issue concerning the use of viral vectors as a vehicle for gene therapy is

the integration of adenoviral DNA into the host genome and the possible germ-line

transmission.  In vitro, it has been shown that recombinant AdV may integrate into the cell

genome at low frequency (≈10-3 to 10-5 per cell)173.  Administrated at high doses intravenously

into mouse, AdV is distributed to both ovaries and testis of mice, but it does not lead to

transmission to 578 offspring tested 174.  In contrast, transgenesis has been reported as a

consequence of adenovirus-mediated gene transfer into mouse zona-free eggs 175.  Similarly,

Kubisch and colleagues had evaluated the embryo survival rate and transgene expression after

AdV microinjection into the perivitelline, but did not perform any studies in adult animals 176.

These studies showed that AdV DNA may integrate into the germ cells under certain

circumstances.  To assess the potential of integration of AdV, first generation and gutless

adenoviral vectors containing different reporter genes (GFP, green fluorescent protein; lux,

luciferase and lacZ, β-galactosidase) under the control of a constitutive promoter (CMV,

cytomegalovirus promoter) or the muscle-specific promoter/enhancer MCK1350 were

microinjected into early embryos.  Different dilutions of AdV stocks were microinjected 
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under the zona pellucida of mouse embryos.  Resulting mice were screened for the presence

of the transgene and/or AdV sequences.  Positive founders were mated and the offsprings

were tested for the germ-line transmission and transgene expression.
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CHAPTER II

Muscle-specific overexpression of the adenovirus primary receptor CAR overcomes low

efficiency of gene transfer to mature skeletal muscle
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Summary

Significant levels of adenovirus (AdV)-mediated gene transfer occur only in immature muscle

or in regenerating muscle indicating that a developmentally regulated event plays a major role

in limiting gene transfer into mature skeletal muscle.  In developing mouse muscle,

expression of the primary adenovirus receptor CAR is severely downregulated during muscle

maturation.  To evaluate how global expression of CAR throughout muscle affects AdV-

mediated gene transfer into mature skeletal muscle, we produced transgenic mice that express

the CAR cDNA under the control of the muscle-specific creatine kinase promoter.  Five-

month old transgenic mice were compared to their non-transgenic littermates for their

susceptibility to AdV transduction.  In CAR transgenics that had been injected in the tibialis

anterior muscle with an AdVCMVlacZ, increased gene transfer was demonstrated by the

increase in the number of transduced muscle fibers (433 ± 121 versus 8 ± 4 fibers) as well as

the 25-fold increase in overall β-galactosidase activity.  Even when the reporter gene was

driven by a more efficient promoter (CMV enhancer/chicken β-actin gene promoter),

differential transducibility was still evident (893 ± 149 fibers versus 153 ± 30 fibers,

p<0.001).  Furthermore, a five-fold decrease in the titer of injected AdV still resulted in

significant transduction of muscle (253 ± 130 versus 14 ± 4 fibers).  The dramatic

enhancement in AdV-mediated gene transfer to mature skeletal muscle that is observed in the

CAR transgenics indicates that prior modulation of the level of CAR expression can

overcome the poor AdV transducibility of mature skeletal muscle and significant transduction

can be obtained at low titers of AdV.
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Introduction

Viral vectors used for gene transfer to skeletal muscle must be able to infect post-mitotic cells.

In addition, replacement therapy of genetic diseases such as Duchenne muscular dystrophy

requires a large viral insert capacity in order to accommodate large cDNAs (e.g., the 13.9 kb

dystrophin cDNA).  Adenovirus vectors (AdV) fulfill both criteria and have proven to be

useful in gene therapy applications directed at muscle 177.  However, a major constraint in the

use of AdV is that efficient gene transfer occurs only in immature muscle or in regenerating

muscle 169-171;178.  The low level of transducibility of mature skeletal muscle may be partly due

to inefficient binding of adenoviral particles to the cell surface. 

The entry of AdV into cells involves two different types of receptors: a high affinity primary

receptor, the Coxsackie and adenovirus receptor CAR 89;92and lower affinity secondary

receptors that consist of the αV-containing integrins [αVβ3, αVβ5] 95;97 and perhaps also α5β1
93.

The structural features of adenovirus capsid that are implicated in AdV binding to the cell

surface are the fiber protein and the penton base protein. AdV binds to its primary receptor

through the knob domain at the tip of the fiber proteins projecting from the adenoviral capsid
90;91;179;180.  Analysis of the crystal structure of the CAR/adenovirus fiber knob complex has

recently shown that three CAR monomers bind each knob trimer 90. The N-terminal portion of

CAR (amino acids 25-125, the Ig V domain) is sufficient for binding knob in solution and acts

as a potent inhibitor of viral infection for cells in culture 181.

The AdV penton base consists of five identical RGD-containing subunits 182 that mediate

binding to the heterodimeric cell surface receptors, integrins.  Once bound, AdV is

internalized via clathrin-coated pits 94.  Not only does recombinant penton base protein block

internalization of AdV but RGD-containing peptides also inhibit AdV-mediated

transduction97.  However, prior incubation of cells with the penton base protein does not

prevent AdV attachment to the cell surface97.  Thus, the first stage of AdV infection has been

viewed as consisting of two sequential steps involving an attachment receptor (CAR) and an

internalization receptor (integrins).  At high input doses of AdV (high multiplicity of

infection), cells that do not express CAR can still be infected, albeit with a much lower



25

transduction efficiency.  Under these conditions the low affinity binding of penton base to

integrins may be sufficient for some CAR-independent binding and uptake of AdV.

Conversely there is some evidence that CAR can mediate AdV uptake through an integrin-

independent pathway, as AdV in which the RGD site in the penton base has been ablated can

still be internalized, at a rate dependent upon the fiber receptor concentration183.

The decrease in gene transfer that occurs with maturation of skeletal muscle suggests that a

developmentally regulated event plays a major role in limiting transgene expression in mature

skeletal muscle.  Earlier studies had shown that although αVβ3 and αVβ5 levels decrease by

about 70% during myogenesis and maturation of muscle fibers in the mouse168, their lower

levels could not account for the 95% decrease in AdV transduction between the neonate

period and 4-6 weeks of age178.  In developing mouse muscle, expression of the primary

adenovirus receptor CAR is severely downregulated during muscle maturation, with CAR

transcripts being barely detectable in the adult muscle184.  Furthermore, it has been

demonstrated that forced expression of CAR in mouse myoblasts, followed by transfer of

these myoblasts to syngeneic host muscle, resulted in the formation of myofibers with

increased susceptibility to AdV transduction184.  These results suggested that CAR expression

limits the susceptibility of myofibers to AdV transduction.  The myoblast transfer experiments

however did not permit to address certain issues.  For example, a relatively small number of

CAR-expressing myofibers were obtained by this approach, making it impossible to

determine the level of CAR expression required to increase the susceptibility of individual

myofibers to AdV transduction.  In addition, the majority of CAR-expressing myofibers with

increased susceptibility to AdV transduction were of lower diameter than non-transduced

fibers.  This raised the possibility that fibers with increased susceptibility to AdV transduction

were forming predominantly from injected myoblasts and may not have been fully

representative of myofibers in intact, mature skeletal muscle.  Several factors, including the

extensive basal lamina surrounding mature myofibers, may limit the access of exogenously

introduced virus to the muscle fiber plasma membrane.  To evaluate how global expression of

CAR throughout muscle affects AdV-mediated gene transfer into mature skeletal muscle, we

produced transgenic mice that express the CAR cDNA in a muscle-specific manner.  In these 
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mice, we evaluated the transducibility of mature skeletal muscle by AdV.  Indeed, the

continued expression of CAR on muscle plasma membrane markedly improved the extent of

AdV-mediated gene transfer to skeletal muscle of 5-6 month old transgenic mice.



27

Material and Methods

Production and genotyping of transgenic mice

A cDNA containing the full-length coding sequence for Mus musculus CAR mRNA

(GenBank accession number Y10320) that was generated by reverse transcriptase-polymerase

chain reaction was described previously184.  The full-length CAR cDNA (nucleotides 1 to

1098) was cloned downstream of regulatory sequences of the muscle specific creatine kinase

(MCK) gene (GenBank accession number AF188002).  This fragment which spans the region

from -1354 to +1 base pairs from the transcription initiation site has previously been

described172, and contains the MCK E1 enhancer and promoter, but not the E2 enhancer found

in the first intron of the gene.  Transgenic mice were generated by pronuclear microinjection.

Founder mice were identified by genotyping of tail DNA for the presence of MCK/CAR

fusion sequences.  The founders were bred with B6C3F1 mice to verify transgene expression

by Northern and Western blot analyses.  A single founder expressed CAR mRNA and protein.

Subsequently, all mice were genotyped for the presence of CAR cDNA by Southern blot

analysis of tail DNA following digestion with BamH1 which yielded an ~ 1kb fragment

(Figure 3).  Hemizygous CAR transgenic mice were used for AdV transduction experiments

between the ages of 5 and 6 months.  These animals were normal in development, growth and

behaviour.

Analysis of CAR transgene expression 

To determine the level of CAR expression, skeletal muscle was homogenized in Trizol (Life

Technologies, Burlington, ON, Canada) to extract total RNA according to the manufacturer’s

instructions.  Northern blot analysis was performed as described previously 184using total

RNA (10 µg per sample) that was electrophoresed on a formaldehyde agarose gel, transferred

to nitrocellulose membrane and followed by hybridization to the CAR cDNA probe.  Equal

loading of samples was verified by hybridization with a cDNA probe for the housekeeping

gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

For Western blot analysis, muscles were excised from mice and homogenized in sample

buffer as described 184.  Protein samples (10 µg) were analyzed by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS) using 10% (w/v) acrylamide gels, followed by
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electrotransfer to nitrocellulose as described previously 184.  The production, purification and

characterization of the polyclonal antibody against CAR has been described in detail

previously184.

In vivo AdV transduction

The recombinant AdVCMVlacZ has been described previously178.  The AdV recombinant

containing an E.coli lacZ reporter gene driven by the CMV enhancer/chicken β-actin gene

promoter was a kind gift of Dr. James Wilson (Philadelphia)103.  The AdV preparations were

purified by two centrifugations over discontinuous cesium chloride gradients178.  The viral

band was collected, diluted in phosphate buffered saline and desalted on a Sephadex G25

column (Pharmacia). All injections were performed with freshly purified AdV and within

each experiment, all groups of animals received the same preparation of AdV at the indicated

titer.  For all preparations of AdV, the ratio of total particles (as determined by optical

density) to infectious titer (as determined by total cytopathic effect on 293 A cells) was

between 50:1 to 100:1.  Immunosuppression was carried out as described previously 185.  All

mice received daily subcutaneous injections of FK506 (5 mg/kg body weight) starting two

days prior to AdV administration and continuing until they were euthanized.  Hindlimbs

(tibialis anterior) of adult mice (5-6 months old) were injected percutaneously with a single

deposit of 25 µl of recombinant AdV at a titer of 1X1012 particles/ml.  In some animals, the

contralateral tibialis anterior was injected with AdV at a titer of 2X1011 particles/ml.  Eight

days after AdV injection, the animals were euthanized and AdV-transduced muscle fibers

were identified by histochemistry for β-galactosidase activity.  The number of β-

galactosidase-positive fibers in the entire tibialis anterior and extensor digitorum longus

(EDL) muscles were quantitated by counting the positive fibers under light microscopy.  For

quantitation of β-galactosidase activity, sixty sections of 10 µm thickness were prepared from

the region immediately adjacent to the one that had been sampled for histochemistry.  After

homogenizing the frozen muscle sections in 100 mM phosphate buffer, pH, 7.8, containing

0.2% Triton X-100, chemiluminescent detection of β-galactosidase was performed according

to the manufacturer’s instructions (Galactolight, Tropix Inc., Bedford, MA). A BioOrbit

luminometer (Turku, Finland) was used to measure light emission.  A standard curve was

generated by serial dilutions of pure β-galactosidase  (Boehringer-Mannheim, Laval, Quebec)

and the muscle β-galactosidase activity was converted to ng of enzyme.  Differences between
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groups were determined either by t-test (unpaired) for the AdVCMVlacZ-injected groups or

by analysis of variance (ANOVA) for all other groups, with statistical significances being

defined as p < 0.05.
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Results

We had previously demonstrated that high level, muscle-specific transgene expression can be

obtained using 5’ regulatory sequences from the muscle-specific creatine kinase (MCK) gene
172.  In this study we used the same 1354 base pair fragment from the MCK gene to regulate

the expression of a full-length CAR cDNA in transgenic mice (Figure 3).  Transgenic mice

were produced that expressed moderately high levels of CAR in skeletal muscle as assessed

by Northern and Western blotting.  As shown in Figure 4, little or no expression of the

endogenous CAR transcript or protein was detected in the adult control, non-transgenic mouse

littermates, confirming previous results 100;184;186.  In contrast, the CAR transgene that was

under the control of the MCK1354 promoter had sustained expression even in adult tissue.

Furthermore, of several tissues tested, significant expression of CAR was only detectable in

skeletal muscle (Figure 5A).  To some extent this is a question of antibody sensitivity, as on

prolonged exposure, traces of CAR expression could be seen in liver and heart tissue (data not

shown).  Failure to detect more substantial expression of CAR protein in lung, liver, and heart

is somewhat surprising as CAR transcripts are readily detectable in these tissues in

nontransgenic mice 92;100, and some protein accumulation would be expected from the

endogenous gene.  Clearly, CAR expression in muscles of adult transgenic mice far exceeds

levels of endogenous expression seen in any adult tissue tested.  However, expression of CAR

in muscles of the transgenic mice is of the same order of magnitude as expression from the

endogenous gene in 10-day postnatal mouse brain (Figure 5B).

The transducibility by recombinant AdV of adult mouse skeletal muscle is much lower than

that of skeletal muscle of neonates 169,170;178;187;188.  This decrease in transducibility is evident

as early as two weeks of age.  To determine the susceptibility of the CAR transgenic mice to

transduction by AdV, 5-6 month old transgenic mice were compared to their non-transgenic

littermates that served as controls.  Animals were injected with a recombinant (E1 and E3

deleted) AdV carrying a CMVlacZ expression cassette.  To minimize immune reaction to

transgene expression, animals were treated with FK506.  Euthanasia was performed eight

days later; the injected muscles were sectioned and stained histochemically for β-

galactosidase activity.  Muscle samples from CAR transgenic mice had a significantly higher 
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number of β-galactosidase-positive fibers than those of nontransgenic controls (Figure 6A).

In accordance with previous data, nontransgenic adult mice had 8 ± 4 positive fibers; in

contrast, the CAR transgenics had 433 ± 121 positive fibers (p=0.0015, unpaired t-test).  The

increase in the number of transduced fibers was accompanied by a similar increase in overall

β-galactosidase activity (Figure 6B). 

Adenovirus-mediated gene expression in adult muscle is affected by the nature of the

promoter that is used to regulate the transferred gene.  It had previously been shown that the

use of a hybrid promoter comprised of the chicken β-actin promoter and the CMV enhancer

resulted in better gene expression in adult skeletal muscle than that obtained with the CMV

promoter 189.  To test whether sustained expression of CAR in adult skeletal muscle influences

the transducibility by AdV carrying the lacZ gene under the control of this alternative

promoter, 5-month old animals were injected in the tibialis anterior muscle with an AdV

recombinant containing an E.coli lacZ reporter gene driven by the CMV enhancer/chicken β-

actin gene promoter.  Even with this more efficient promoter there was differential

transducibility of skeletal muscle that depended on CAR expression: although nontransgenic

littermates had an average of 153 ± 30 positive fibers, CAR transgenics had 893 ± 149

positive fibers (p<0.001, ANOVA) (Figure 7).  In one animal, a single 25 µl injection of the

AdV resulted in the transduction of the entire tibialis anterior and EDL muscles (3000 muscle

fibers) (Figure 8A).

We hypothesized that the presence of increased numbers of AdV attachment receptors might

obviate the need to inject large doses of AdV to obtain a meaningful number of transduced

muscle fibers.  The mice that had been injected in the above experiment with AdV at 1X1012

particles/ml also received AdV in the contralateral tibialis anterior muscle at the lower titer of

2X1011 particles/ml (injectate containing a total of 5X109 particles).  Increased transduction

due to expression of CAR was obtained even at these lower titers (Figures 7 and 8B) with an

average of 253 ± 130 fibers being positive in the CAR transgenics as opposed to 14 ± 4 fibers

in the nontransgenic littermates. 
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Figure 3.  Depiction of the construct used to generate the transgenic mice (A) and results of genotyping of the

mice by Southern blot analysis (B).  (B) Genomic DNA was digested with the restriction enzyme BamHI,

electrophoresed on a 1% agarose gel, transferred to a nylon membrane, and hybridized with CAR cDNA. A

BamHI fragment of ~1 kb is present in transgenic mice (TG) but absent in control, nontransgenic littermates

(C).  The high-molecular-weight fragment (~9 kb) that is visible in all lanes represents the endogenous CAR

gene that cross-hybridizes with the CAR cDNA.  Numbers on the left indicate the position of molecular

weight markers (1-kb ladder) included in a flanking lane.
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Figure 4.  Expression of CAR in transgenic mice and control, nontransgenic littermates as analyzed by

Western (A) and Northern (B) blotting.  (A) Samples (10 µg of protein each) of gastrocnemius muscle from

an adult mouse (TG) and a control nontransgenic littermate (C) were run on an SDS-10% polyacrylamide

gel.  Proteins in the gel were transferred to nitrocellulose and incubated with antiserum to the extracellular

domain of mouse CAR.  A major band corresponding to CAR is visible at ~46 kDa in the transgenic muscle

but absent in control muscle.  (B) Samples (10 µg of total RNA each) from the gastrocnemius and tibialis

anterior muscles of three transgenic mice (TG) and one control nontransgenic littermate (C) were

electrophoresed on a formaldehyde agarose gel and hybridized with CAR cDNA and glyceraldehyde-3-

phosphate dehydrogenase cDNA probes as indicated.
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Figure 5.  (A) Expression of CAR in various tissues of adult (5-month-old) transgenic mice.  Samples (10 µg

of protein each) of tissue dissolved in Laemmli sample buffer were loaded in each lane of an SDS-10% PAGE

gel.  Proteins in the gel were transferred to nitrocellulose and incubated with antiserum to the extracellular

domain of mouse CAR.  From left to right, the samples were from tibialis anterior (TA), quadriceps (Q), soleus

(S), diaphragm (D), heart (H), lung (Lg), liver (L), and spleen (Sp) tissue.  Numbers on the left indicate the

position of molecular weight markers included in a flanking lane.  (B) Comparison of the level of expression of

CAR in tibialis anterior muscle from a 5-month-old transgenic mouse (lane TA) with expression in brain of a

10-day-old control, nontransgenic littermate (lane B).  Samples (5 µg of protein each) of tissue dissolved in

Laemmli sample buffer were loaded in each lane of an SDS-10% PAGE gel.  Proteins in the gel were

transferred to nitrocellulose and incubated with antiserum to the extracellular domain of mouse CAR.

Numbers on the right panel indicate the position of molecular weight markers included in a flanking lane.
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Figure 6.  AdV transducibility of CAR transgenics by AdVCMVlacz.  (A) Quantitation of the number of

β−galactosidase-positive fibers, following a single injection of AdVCMVlacz (1012 particles/ml) into the

tibialis anterior muscle of 5- to 6-month-old hemizygous CAR transgenic mice compared to control,

nontransgenic littermates (P= 0.0015; unpaired t test).  (B) The muscles that had been examined in the

results shown in panel A were sectioned, and β-galactosidase activity was determined as described in

Material and Methods.  Results are means ± standard error.
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Figure 7.  AdV transducibility of CAR transgenics by AdV expressing lacz under the control of the CMV

enhancer-β-actin promoter.  Quantification of the number of β−galactosidase-positive fibers following a

single 25-µl injection of either 1X1012 or 2X1011 particles/ml into the tibialis anterior muscle of 5- to 6-

month-old hemizygous CAR transgenic mice compared to control, nontransgenic littermates.  At the higher

dose, differences between the control group and the CAR transgenics were significant (P< 0.001; ANOVA).

Note that the transducibility obtained with the CAR transgenics injected with the lower dose is similar to that

with controls receiving the higher dose of AdV (differences between these two groups are not significant by

ANOVA), followed by the Bonferroni posttest).  Results are means ± standard error.
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Figure 8.  AdV transducibility of CAR transgenics by AdV expressing lacZ under control of CMV

enhancer/β−actin promoter.  Photomicrographs of mouse tibialis anterior muscle showing histochemical

staining of muscle fibers for β-galactosidase activity subsequent to a single injection of AdV at a titer of

1x1012 (A and C) or 2x1011 (B and D) particles/ml in the contralateral muscle are shown.  Note that at the

higher dose of AdV, all fibers are expressing β-galactosidase.
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Discussion

A major issue in gene therapy is efficient and widespread delivery of the therapeutic gene to

the target tissue.  AdV-mediated gene transfer occurs inefficiently in adult skeletal muscle.

The transcript for the primary AdV receptor CAR is undetectable by Northern blot analysis of

skeletal muscle tissue of human 89;92;190, mouse 92;100;184;191;192 and rat 193 origin.  Even when

sensitive detection methods are used such as reverse transcriptase/polymerase chain reaction

(RT-PCR) 184 and competitive RT-PCR 193to estimate the abundance of the CAR mRNA, the

levels of CAR transcript are extremely low in adult mouse skeletal muscle.  Thus, the lack of

CAR may be a major impediment to efficient gene transfer to mature skeletal muscle.

Forced expression of exogenous CAR has recently been used to facilitate the entry of AdV

serotype 5 into a number of cell types that are not generally susceptible to AdV such as

primary fibroblasts 194, lymphocytes 195, myoblasts 184 and tumor cells 196.  However, it was

unclear whether CAR could effect an increase in gene transfer in vivo where presumably

greater barriers exist that can hinder the interaction between AdV and the cell surface.  In this

regard, mature skeletal muscle fibers are surrounded by a well-developed basal lamina that

could theoretically limit the access of AdV to the muscle fiber plasmalemma.  In order to

address the question of whether the absence of CAR is a major limiting factor in AdV-

mediated gene transfer in vivo to mature skeletal muscle, we produced transgenic mice that

maintained a relatively high level of CAR expression in their skeletal muscle.  In the present

study, when AdVCMVlacZ was injected intramuscularly at a single site into the tibialis

anterior of 5-6 month old animals, the number of β-galactosidase positive fibers was

consistently higher in the CAR-expressing transgenics as compared to their non-transgenic

littermates (Figure 6A).  The dramatic enhancement in AdV transducibility indicates that

upregulation of CAR can overcome local constraints to tissue penetration by the AdV in these

relatively old animals.

The experimental results obtained in vivo measure the transducibility of the tissue: the final

readout is a consequence of both the entry of AdV and the subsequent expression of the

expression cassette contained within the viral vector.  Thus, a low level of transducibility as
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determined by low transgene expression may result from lack of virus

attachment/internalization and/or transcriptional inefficiency within specific tissues of the

transgene promoter that is used.  We specifically examined this issue by comparing in CAR

transgenic mice and control littermates the transduction efficiency that was obtained when the

E. coli lacZ reporter gene was placed under the control of the hybrid β-actin/CMV promoter.

As expected, this transcriptional unit is expressed at higher levels in mature skeletal muscle
189, resulting in a higher number of β-galactosidase positive fibers in the control mice (153 ±

30) than in muscles of those injected with AdVCMVlacZ (8 ± 4) [Figures 6 and 7].

Remarkably, the presence of CAR also influenced the levels of transducibility that was

attained in this experiment with an average of six-fold increase in the number of β-

galactosidase positive fibers in the CAR transgenics.  In addition, in one transgenic mouse, a

single injection of 2.5X1010 viral particles resulted in the transduction of the entire tibialis and

EDL muscle, achieving the same extent of transduction that is usually only observed in

neonate mice (Figure 8).  In this context, the efficiency of AdV-mediated gene transfer has

been ascribed to the presence of myoblasts in the developing muscle 197.  Moreover, it was

suggested that multinucleated myofibers were incapable of being transduced by AdV 186.

However, our results clearly demonstrate that under appropriate biological conditions,

extremely efficient AdV transduction of mature skeletal muscle can be achieved.

Furthermore, these results also suggest that modulation of CAR levels can significantly

decrease the dose of administered vector needed to obtain acceptable levels of gene transfer

for therapeutic purposes.

A potential means of circumventing the poor transducibility of adult skeletal muscle would be

through the use of adenoviral vectors engineered to have modified tissue tropism.  One such

vector is the AdZ.F(pK7) in which lysine moieties have been incorporated into the AdV fiber

protein to target surface receptors containing heparan sulfate 198;199;200.  Although no

significant difference was observed in transduction efficiency between AdV with wild-type

fiber protein (AdZ) and AdZ.F(pK7) in neonatal mice injected in the hind limb, there was a

four-fold-increase in the adult mice (4 to 5 month of age) that were injected in the EDL

muscle 201.  Curiously, in the neonates, unlike the relatively even distribution of AdZ, the

fibers that were transduced with AdZ.F(pK7) were those at the periphery of muscle fascicles
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and the perimysial connective tissue 201.  In the adult, only a proportion of muscle fibers were

transduced perhaps as a consequence of the occupancy of the receptors by endogenous ligands

and components of the extracellular matrix.  In a separate study by van Deutekom and

colleagues, the efficiency of transduction of adult normal and dystrophic muscle with

AdZ.F(pK7) was shown to be significantly lower than what is commonly obtained with wild-

type fiber-containing AdV in neonate skeletal muscle 186.  In this regard, our results clearly

show that upregulation of CAR can lead to complete transduction of the tibialis anterior and

EDL of adult 5-to 6-month-old mice (Figure 8A). 

We produced transgenic mice that express CAR in order to address specific issues in AdV-

mediated gene transfer to adult skeletal muscle (lack of AdV receptors, presence of physical

barriers).  The dramatic enhancement in AdV-mediated gene transfer to mature skeletal

muscle that is observed in these CAR transgenics indicates that prior modulation of the level

of CAR expression results in extremely efficient AdV transducibility of mature skeletal

muscle.  In the context of gene therapy directed to human muscle, a transient increase in CAR

expression could be achieved either through activation of the transcription of endogenous

CAR gene, or as part of a two-step gene therapy protocol, by regulatable expression of CAR

delivered through a different viral vector such as the adeno-associated virus.
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CHAPTER III

The short MCK1350 promoter/enhancer allows for sufficient dystrophin expression in

skeletal muscles of mdx mice
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Summary

First generation adenovirus vectors (AdV) have been used successfully to transfer a human

dystrophin minigene to skeletal muscle of mdx mice.  In most studies, strong viral promoters

such as the cytomegalovirus promoter/enhancer were used to drive dystrophin expression.

More recently, a short version of the muscle creatine kinase promoter (MCK1350) has been

shown to provide muscle-specific reporter gene expression after AdV-mediated gene delivery.

Therefore, we generated an AdV where dystrophin expression is controlled by MCK1350

(AdVMCKdys).  AdVMCKdys was injected by the intramuscular route into anterior tibialis

muscle of mdx mice shortly after birth.  Dystrophin expression was assessed at 20, 30 and 60

days after AdV-injection.  At 20 days, muscles of AdVMCKdys injected mdx mice showed a

high number of dystrophin-positive fibers (mean: 365).  At 60 days, the number of

dystrophin-positive fibers was not only maintained, but increased significantly (mean: 600).

In conclusion, MCK1350 allows for sustained dystrophin-expression after AdV-mediated

gene transfer to skeletal muscle of newborn mdx mice.  In contrast to previous studies, where

strong viral promoters were used, dystrophin expression driven by MCK1350 peaks at later

time points.  This may have implications for the future use of muscle-specific promoters for

gene therapy of Duchenne muscular dystrophy.
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Introduction

Duchenne muscular dystrophy (DMD) is a progressive skeletal muscle disease that is

inherited as an X-linked trait and affects 1/3500 newborn boys.  Affected boys are usually

confined to a wheelchair before the age of 12 and die in their early twenties by respiratory or

cardiac failure.  DMD is characterized by a complete absence of functional dystrophin (427

kDa) caused by various mutations of the dystrophin gene 202.  As in DMD patients, mdx mice

lack dystrophin in their muscle fibers due to a stop codon.  Although mdx mice do not show a

severe clinic phenotype, their skeletal muscles exhibit degeneration and necrosis throughout

life which makes them a good animal model for DMD 56.  Becker muscular dystrophy (BMD)

is an allelic disorder that is less severe with later onset and longer survival.  A “mini-

dystrophin” has been isolated from a benign BMD patient lacking a large part of the central

region including exons 17 to 48 52.  Studies in transgenic mice have shown that the dystrophic

phenotype improves dramatically in mdx mice expressing the 6.3 kb mini-dystrophin gene 110.

First generation and high-capacity adenovirus vectors (AdV) have been used successfully to

transfer human dystrophin genes to skeletal muscle of mdx mice 82;112;118;119.  In most studies,

strong viral promoters such as the cytomegalovirus promoter/enhancer (CMV) or Rous

Sarcoma Virus long terminal repeat (RSV-LTR) were used to drive dystrophin expression.

Since the tropism of adenovirus is non-selective, an ideal promoter and/or enhancer for

driving the expression of dystrophin for DMD gene therapy should be sufficiently active in all

skeletal muscle cells, but not in other inadvertently transduced cells.

We have shown that a short version of the muscle creatine kinase promoter/enhancer

(MCK1350) provides muscle-specific reporter gene expression after adenovirus-mediated

gene transfer in newborn scid mice 172.  Moreover, MCK1350 gave strong transgene

expression (luciferase), corresponding to 40% of the constitutive RSV promoter (RSV-LTR).

We next tested this reporter construct (AdVMCKlux) in mdx animals in order to assess

efficacy of expression in dystrophic muscle.  We also generated an adenoviral recombinant in

which the mini-dystrophin gene was placed under the control of MCK1350 (AdVMCKdys).

Our results indicate that the short MCK promoter/enhancer functions very efficiently in the

extended first-generation adenoviral backbone.
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Material and methods

Construction of recombinant adenoviruses

The MCK fragment contains the region from -1354 to +1 bp from the transcription initiation

site, as described previously 172.  We have previously described the adenoviral recombinants

AdVMCKlux and AdVRSVlux that express luciferase 172.  The 6.3 kb mini-dystrophin was

cloned under the control of the MCK promoter/enhancer fragment as an expression cassette

into a plasmid containing sequences from human adenovirus type 5.  The homologous

recombination of the replication-defective human adenovirus type 5 with the cassetted gene

was performed using an adenovirus in which the entire E1- and E3-regions were deleted to

accommodate the 8.5 kb expression cassette 203.  Plaque-purified AdVMCKdys was used to

infect 293 cells grown in spinner cultures at a density of 106 cells/ml by using a multiplicity of

infection (moi) of 3.  The large-scale production, purification and titration of the recombinant

AdV have been described in detail previously 178.  The absence of E1-containing replication-

competent AdV was confirmed using a sensitive PCR screening assay as previously described
204. 

Injection of adenoviral recombinants into mdx mice

Experiments were performed on groups of mdx mice (Jackson Laboratories, Bar Harbour,

ME, USA).  The animal studies were conducted in accordance with the guidelines of the

Canadian and the German Council of Animal Care.  mdx mice were anesthetized by

intraperitoneal injection with 0.3-0.4 ml of avertin (2.5% tribromoethyl alcohol and 2.5%

amyl alcohol) in normal saline.  Bilateral tibialis anterior muscles (TA) were injected

percutaneously with AdV suspension (1X1012 particles per ml) in a volume of either 5 µl

(newborn 3-5 day old mice) or 25 µl (adult 6 week old mice).  Animals were euthanized at 20,

30 and 60 days post-injection.  

Immunohistochemistry

The muscles were embedded on blocks, then frozen in liquid nitrogen-cooled isopentane.

Six-micrometer serial cross sections were obtained in a cryostat (Zeiss), placed on gelatinized

slides and fixed with acetone for 1 minute.  Immunohistochemical procedures were carried

out for dystrophin using a rabbit anti-dystrophin (carboxy-terminus) polyclonal antibody (kind
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gift of Dr. Paul Holland, Montreal Neurological Institute, Canada).  Biotinylated anti-rabbit

secondary antibody was applied and visualized by horseradish peroxidase.  In animals injected

with adenoviral recombinants, the total number of dystrophin-positive fibers was counted for

each TA.  The extent of central nucleation was quantified in dystrophin-positive fibers by

lightly counterstaining immunostained sections with hematoxylin to visualize all skeletal

muscle nuclei.  The data were then statistically analyzed by ANOVA (Analysis of variance)

tests.

Luciferase assay

For luciferase quantification, the dissected muscles were homogenized and centrifuged as

described 178.  For each individual sample the luciferase activity (given in mV equals the

integrated light emission for 20 sec.) was calculated for the total sample volume of 200 µl and

converted to picograms of pure luciferase protein (ALL) using a standard curve for luciferase.

The data were then statistically analyzed by ANOVA (Analysis of variance) tests.
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Results

The MCK1350 promoter/enhancer used in this study contains the MCK E1 enhancer and

promoter, but not the E2 enhancer that is present within intron 1 of the MCK gene 154.  The

MCK1350 regulatory sequences were shown previously to drive the expression of the

luciferase reporter gene in a muscle-specific manner in newborn scid mice 172.  

Injection of AdVMCKlux into adult mdx skeletal muscle was undertaken to determine levels

of expression that could be achieved in the mdx model through the use of the MCK1350

promoter /enhancer in an adenoviral recombinant.  Similar levels of luciferase activity were

detected after injection of either AdVRSVlux or AdVMCKlux into anterior tibialis muscles

(Figure 9).  However, in comparison to the pattern of expression obtained with AdVRSVlux,

luciferase expression that is regulated by the MCK1350 promoter/enhancer peaked later,

being very low at the 10 day time point, and reaching a maximum at the 30 day time point,

comparable to the levels attained at 10 days after injection of AdVRSVlux.

We then generated adenoviral recombinants in which MCK1350 was used to regulate the

expression of the 6.3 kb human mini-dystrophin gene.  To compare the distribution and level

of expression of the mini-dystrophin, in vivo experiments were carried out in newborn 3-5 day

old mdx mice.  AdV recombinants were injected directly into tibialis anterior muscles, which

were sampled at 20, 30 and 60 days after injection.  Young mice were chosen to enhance

transduction efficiency of muscle by AdV 178, and to minimize immune reaction that may

compromise long-term transgene expression, as demonstrated previously 112.  As shown in

Figure 10, a high number of dystrophin-positive muscle fibers was detected at 20 days post-

injection (mean=365).  At 30 days, the number of dystrophin-positive fibers was significantly

increased (p<0.05) and sustained up to 60 days (mean=600).  These results parallel the same

temporal pattern of expression that had previously been observed with AdVMCKlux (Figure

9).

Dystrophin staining after AdVMCKdys injection was confined to the subsarcolemmal region

of muscle fibers (Figure 11a).  In contrast, dystrophin staining after AdVdys injection using a

strong viral promoter (CMV) was detected in the cytoplasm in addition to the subsarcolemmal



47

region (Figure 11b).  Such cytoplasmic staining, which is visualized best in smaller size fibers

in which the accumulation yields more intense signal, may result from an overexpression of

the transgene by the viral promoter as has been reported previously 112;118.

In mdx muscle, multiple cycles of necrosis and regeneration result in the presence of

centralized myonuclei which are characteristics of regenerated fibers.  To determine whether

the level of dystrophin expression obtained by injection of AdVMCKdys is sufficient to

restore the dystrophin-glycoprotein complex and to avoid multiple cycles of

regeneration/degeneration of the muscle fibers, the number of central nuclei was quantified in

dystrophin-positive fibers (Table 1).  The low percentage of central nuclei in the

AdVMCKdys-transduced fibers, which reflects the lower prevalence of regenerated fibers,

indicates that the dystrophin levels produced by this adenoviral recombinant can efficiently

protect muscle fibers from necrosis.
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Figure 9.  Expression of luciferase in TA of adult mdx mice analyzed 10, 30 and 60 days after

direct injection of AdVRSVlux (A) or AdVMCKlux (B).  Total luciferase activity (mean ±

standard error) was calculated as described in Material and Methods.
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Figure 10.  Number of dystrophin-positive fibers in tibialis anterior of newborn mdx mice 20, 30

and 60 days post-injection with a viral suspension of AdVMCKdys.  The number of dystrophin-

positive fibers is high in animals analyzed at 30 and 60 days after AdV injection if compared to

animals analyzed at 20 days (P<0.05).  Results are means ± standard error.
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Figure 11.  Dystrophin staining of tibialis anterior muscle of mdx mice injected at the age of 3-5

days with A) AdVMCKdys or B) AdVCMVdys analyzed at 60 days post-injection.
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Table 1.  Quantitative analysis of central nuclei (cn) in dystrophin-positive and dystrophin-

negative fibers after AdVMCKDys injection into mdx muscles (numbers of cn in dystrophin-

positive fibers were counted in the great majority of the positive fibers for dystrophin).

Numbers of central nuclei in dystrophin-negative fibers (approximately 500 fibers in

uninjected controls) were as previously published 126 and are similar to Torres and Duchen,

1987 57.

End point

measurement

# of dystrophin-

positive fibers

counted for cn 

# of cn in

dystrophin-

positive fibers 

Central nuclei

in dystrophin-

positive fibers

Central nuclei

in dystrophin-

negative fibers

20 days 277 +/- 36 6.3 +/- 1.3 2.3 %+/- 0.4 ~45 % (57)

30 days 585 +/- 111 11.3 +/- 4.4 2.0 %+/- 0.5 ~48-56 %
(57;126)

60 days 433 +/- 43 21.9 +/- 3.5 5.4 % +/- 0.7 ~56-60 %

 (57;126)
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Discussion

First generation AdV are widely used as vectors for gene therapy.  Since the tropism of AdV

is not restricted to muscle, a muscle-specific promoter/enhancer to drive dystrophin

expression is desirable for future gene therapy for DMD.  Previously, we had shown that the

MCK1350 promoter/enhancer confers muscle-specific expression of the luciferase transgene

in newborn scid mice using AdV 172.  This conclusion was reached after direct injection of

AdVMCKlux into various organs, followed by a sensitive luminometric assay for the reporter

gene (luciferase).  These studies indicated that while AdVMCKlux had transduced the various

organs (as assessed by in situ PCR assays for detection of AdV genomes), minimal or no

luciferase activity was present in tissues other than skeletal muscle.  In this model, MCK1350

also showed strong transgene expression, corresponding to 40% of the constitutive RSV

promoter 172. 

The present results also confirm the robustness of the MCK1350 regulatory sequences in

driving the expression of the mini-dystrophin gene (Figures 10 and 11).  It has previously

been demonstrated that the full-length MCK promoter/enhancer (6.5 kb) or upstream

regulatory elements of 3.3 kb containing the E1 enhancer driving dystrophin genes rescued

the dystrophic phenotype in transgenic mdx mice 106;107;109;111.  However, larger deletions of

the MCK promoter/enhancer resulted in a severe diminution of transgene expression and loss

of muscle specificity as ascertained in mice transgenic for reporter genes driven by various

truncated promoter constructs.  It was thus concluded that the E1 enhancer (positioned

between –1256 and –1049) plays an important role in muscle-specific expression.

Interestingly, MCK1256 conferred only low levels of expression in transgenic mice 152;155 or

within the context of a first generation AdV 205.  In transgenic mice expressing reporter

constructs, depending on the site of integration, MCK1256 provided 10 to 100-fold lower

expression than MCK3300 152.  In contrast, as demonstrated in this study, MCK1350 is

extremely efficient.  Although the additional ~ 100 bp fragment does not contain additional

positive transcriptional activity 151, we hypothesize that the presence of this fragment may

allow for a better interaction of trans-acting factors with the E1 enhancer in these situations. 
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The effectiveness of MCK1350 was further demonstrated when we produced a first

generation AdV in which expression of the mini-dystrophin gene was regulated by these

sequences (AdVMCKdys).  Dystrophin staining was confined to the subsarcolemmal region

of muscle fibers after injection of AdVMCKDys.  In contrast to previous experiments using

AdVDys containing constitutive promoters 112, dystrophin was not observed in the cytoplasm

when using MCK1350.  This suggests that overexpression of dystrophin did not occur in

skeletal muscle after AdVMCKdys transduction.  Nevertheless, the sustained low percentage

of central nuclei in AdVMCKdys-transduced muscle fibers (2-5%) shows that these fibers are

protected against the ongoing dystrophic process of dystrophin-deficient muscle (Table 1).  In

comparison, mdx mice have ~56% central nucleation at 2 months of age and ~88% central

nucleation at 3 months of age 109;110;112;126.  Importantly, these results indicate that the level of

dystrophin expression provided by the MCK promoter in the context of the AdV is

sufficiently high to protect dystrophic fibers from necrosis.

When newborn mdx mice were administered a single injection of AdVMCKdys, the number

of dystrophin-positive fibers increased significantly with time, from 20 to 30 days and

remained high at 60 days post-injection (p<0.05).  In previous studies, the use of strong

constitutive promoters such as CMV or RSV led to an earlier expression of the transgene,

with the number of dystrophin-positive fibers reaching a maximum at 10-20 days post-

injection, followed by a decrease at later time points 112;118.  The observed delay in peak

expression of dystrophin under the regulation of MCK1350 is neither due to the dystrophin

transgene nor due to the developmental stage of the mice at the time of injection since similar

findings were obtained using MCK1350 driving the luciferase reporter gene in older mdx

mice (Figure 9).  Furthermore, when Hauser and colleagues 205 examined the time course of

AdV-mediated β-galactosidase expression in adult mdx using a short MCK promoter/enhancer

which was comprised of a fusion of the E1 enhancer (-1256 to -1050) with the proximal

promoter region extending from –358 to +7 (CK6), they observed a similar delay in transgene

expression, being low at 3 to 14 days and reaching a maximum at the 30 day time point.

Moreover, a similar delay in expression may also occur with the longer MCK promoter

fragment which includes the first intron 82.  Thus, this delay in expression may be a

characteristic of the MCK E1 enhancer or the proximal MCK promoter.
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In adult mdx animals, expression of the reporter luciferase peaked at 30 days but was not

maintained after this period, decreasing by 95 % at 60 days.  A similar decrease of 90% of the

β-galactosidase activity was observed 60 days after intramuscular injection of the CK6 driven

transgene by Hauser and colleagues 205.  This suggests that the use of a muscle-specific

promoter in adult skeletal muscle may not be sufficient if the transgene itself is immunogenic.

In the present study, we observed a high number of dystrophin-positive muscle fibers for up to

60 days after injection of AdVMCKdys in skeletal muscles of very young mdx mice.  Most

likely, the high stability of transgene expression is due to the immature state of immune

system at the time of injection 112;118;119.  

In conclusion, the muscle-specific MCK1350 promoter/enhancer allows for high level and

sustained expression for up to 60 days of dystrophin in dystrophic (mdx) muscles using

adenoviral vectors.  In addition, the transgene expression peaked at later time points when

compared to strong viral promoters, and overexpression of dystrophin was not observed.

Moreover, the MCK1350 promoter/enhancer used in this study allows for a sufficiently high

level of gene expression in dystrophic muscles as well as normal muscles as demonstrated in a

line of transgenic mice produced using MCK1350 driving the expression of the AdV primary

receptor CAR 206.
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CHAPTER IV

Genomic integration of adenoviral gene transfer vectors following infection of fertilized

mouse oocytes
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Summary

Adenoviral vectors (AdV) are popular tools to deliver foreign genes into a wide range of cells.

More recently, AdV have also been used in clinical gene therapy trials.  The rate of

integration of AdV sequences into the host cell genome appears to be low.  This – together

with triggering an adverse immune response - explains the short duration of transgene

expression after AdV-mediated gene transfer in vivo.  However, lack of chromosomal

integration is regarded as a positive safety characteristic, in particular to prevent

cancerogenesis and longitudinal transmission of genes.  Recently, AdV-mediated gene

transfer to mammalian oocytes and transmission through the germ-line has been reported

controversially.  Therefore, we wanted to investigate the integration of AdV sequences into

the mouse genome by microinjecting AdV into the perivitelline space of fertilized oocytes.

We demonstrate that under optimized conditions fertilized mouse oocytes are infected

efficiently by AdV and give rise to founder animals that are transgenic for AdV sequences.

Also, the great majority of these founders transmitted the transgene to their offspring.

Southern blot analysis demonstrated that only one AdV copy was integrated into the mouse

genome.  Using first-generation AdV, none of the transgenic mice expressed the transgene

(GFP or luciferase).  In contrast, third-generation AdV devoid of all viral genes resulted in a

low rate of transgenic founders, but in expression of the transgene.  
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Introduction

Most gene therapy protocols of recessive disorders require the delivery of a gene or DNA.

Approaches using “naked” DNA frequently suffer from low gene transfer efficiency and

transient gene expression 67;68;69.  Recombinant viruses (vectors) are powerful tools for gene

delivery due to a sophisticated machinery of inherent molecular mechanisms.  A major safety

concern using viral vectors is the possibility of DNA integration into the host genome that

may cause heritable alterations in offspring or the activation of oncogenes and inactivation of

tumor-suppressor genes. 

Recombinant adenoviruses (AdV) are commonly used vectors for in vivo gene transfer.  First-

generation (E1/E3-deleted) AdV may accommodate transgene cassettes of ≈ 8-10 kb, while

third-generation (gutted or gutless) AdV is deleted of most viral genes and may accommodate

up to 36 kb of foreign DNA 85;86;207.  Frequently, transgene expression is only transient after

AdV-mediated gene transfer.  This is due to the lack of viral DNA integration into the host

cell genome, as well as the induction of host immune reactions against viral gene products and

the transgene product 101;104;105;112.  

In vitro, it has been shown that AdV may integrate into the cell genome at low frequency of

approximately 10-3 to 10-5 173.  Exposure of oocytes with intact zona pellucida and sperm with

AdV did neither result in genomic integration of AdV sequences or in transgenic animals
208;209.  Chromosomal integration, transgene expression and germ-line transmission has been

reported after AdV-mediated gene transfer into zona-free oocytes of mice 175.  In contrast,

Kubisch and colleagues were not able to demonstrate transgenesis in different mammalian

species in a similar experimental approach 176. 

The goal of this study was to determine the probability and characteristics of genomic

integration of AdV by infecting fertilized mouse oocytes at the one-cell stage.  Our results

show that first-generation AdV may integrate efficiently into the mouse genome and AdV

sequences may be inherited to the progeny.  Interestingly, expression of the transgene was not

detected using AdV constructs with different promoters and transgenes.  In contrast, third-
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generation AdV resulted in a low rate of transgenic founders, but in expression of the

transgene.
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Material and methods

Construction of recombinant AdV

The homologous recombination of the replication-defective human adenovirus type 5 with

reporter gene cassettes, the large-scale production, purification and titration of the first-

generation AdV have been described in detail 178.  The CMV promoter driving the expression

of the green fluorescent gene or the muscle creatine kinase enhancer/promoter (MCK1350)

driving the expression of the luciferase gene (AdVCMVGFP and AdVMCKlux) were cloned

as expression cassettes into plasmid containing sequences from human adenovirus type 5 172.

First-generation AdV were produced and titrated in 293 cells as described elsewhere 178.  The

third-generation AdV (AdGS46) has been described previously 210.  Briefly, AdGS46 contains

the Ad5 left terminus, HPRT stuffer (nt. 17853-1799), the CMV promoter driving the lacZ

expression cassette, C346 stuffer (nt. 21484-12421), and the Ad5 right terminus.  AdGS46

was produced in 293-based cre66 (Schiedner et al., manuscript in preparation) cells which

were coinfected with the loxP helper virus AdLC8cluc 86.  Subsequent amplification steps,

large scale production and purification were performed as described 211. The infectious titer of

AdGS46 was determined by slot blot. 

Generation of fertilized mouse oocytes

All animal procedures have been carried out according to local and provincial animal care

regulations.  B6D2F1 females (C57BL/6 x DBA/2 hybrid mice) were hormonally

superovulated and mated with B6D2F1 males.  The next morning, fertilized one-cell eggs

were flushed from the oviduct with M2 medium 212.  The eggs were then kept in M2 culture

medium droplets under mineral oil for microinjection.

Titration of AdV for infection of fertilized oocytes 

AdVCMVGFP was diluted in PBS to concentrations ranging from 1 plaque forming unit

(pfu)/100 pl to 1x103 pfu/100 pl.  Fertilized oocytes were visualized under a microscope and

microinjected with approximately 100 pl into the perivitelline space.  The plasmalemma was

not penetrated by the needle.  The embryos were kept in culture overnight in M16 culture

medium 212 at 37°C and 5% CO2.  Embryos were then assessed for GFP expression using a

fluorescent microscope with a blue filter and for viability and developmental rate under white

light.  
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Dilution of the different adenoviral vectors used for microinjection 

First-generation vectors AdVCMVGFP and AdVMCKlux were diluted in PBS (without

calcium and magnesium) to a concentration of 5-100 pfu/100 pl.  Furthermore, third-

generation AdVCMVlacZ was diluted in PBS to a concentration of 2x101-1x103 infectious

units (IU)/100 pl.  Fertilized oocytes were microinjected into the perivitelline space and

transferred to the oviduct of pseudopregnant females at the same day.  

Identification of transgenic animals

Mice derived from AdV-infected oocytes were ear tagged at 4 weeks of age, and tail tips were

cut.  The genomic DNA was extracted and the optical density was done at 260 and 280 nm to

determine the concentration and the purity of the genomic DNA.  PCR analysis was

performed on 500 ng DNA using primers specific for the E4 region of AdV, the luciferase

gene or the human HPRT gene (E4-sense: 5'-GTAGAGTCATAATCGTGCATCAGG-3' and

E4-antisense: 5'-TTTATATGGTACCGGGAGGTGGTG-3'; Lux-sense: 5’-

CCGACCGCGCCCGGTTTA-3’ and Lux-antisense: 5’-GGGTTACCTAAGGGTGTG-3’;

HPRT sense: 5’-GCTGGCCTCCCTCCTCAACCG-3’ and HPRT antisense: 5’-

CCCCGCCAGGGGCCATGCAAG-3’).  The 50-µl polymerase chain reaction (PCR)

contained 50 pmol of each primer, 5 µl of 2.5 mM dNTPs, 5 µl DMSO and 5 µl 10x Taq

polymerase buffer containing 15 mM magnesium chloride.  PCR was carried out for 40 cycles

(annealing at 54°C for 1 minute and extension at 72°C for 90 seconds) using a Perkin Elmer

2400 thermocycler.  The PCR products were then separated on a 2% agarose gel containing

EtBr and visualized with ultraviolet light.  

Study of germ-line transmission of the transgene (F1 generation)

Three transgenic founders for AdVCMVGFP, 14 founders for AdVMCKlux and 1 founder for

AdVCMVlacZ were mated with C57BL/6 males or females.  One transgenic founder for each

AdVCMVGFP and AdVMCKlux did not generate offspring.  F1 animals from the various

transgenic lines were analyzed by PCR.
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Analysis of transgene expression

Transgenic (AdVCMVGFP) and non-transgenic littermates were sacrificed, various organs

were dissected, fixed on cork blocks and frozen in liquid nitrogen-cooled isopentane.  10 µm

thick tissue sections were prepared and assessed for GFP expression under a fluorescent

microscope using a blue filter.  Similarly, various organs of AdVMCKlux transgenic mice

were dissected and analyzed for luciferase expression using the Promega Luciferase Assay

System (Promega, cat.# E4030) as described previously 178.  The light emission was measured

for a period of 10 seconds using a luminometer Lumat LB 9501.  For each individual sample

the luciferase activity (given in relative light units, RLU) was calculated for the total sample

volume of 200 µl.  Tibialis anterior (TA), quadriceps, soleus, diaphragm, heart, lung, liver,

kidney, spleen, brain, stomach, intercostal muscles and spinal cord from AdVCMVlacZ

transgenic and non-transgenic littermates were extracted and analyzed for β-galactosidase

expression as described earlier 172.  Light emission was measured for a period of 10 seconds

using a Lumat LB 9501 luminometer.  For each individual sample the β-galactosidase activity

(given in relative light units, RLU) was converted into picograms of lacZ using a standard

curve.  The data were then statistically analyzed by ANOVA (analysis of variance).  The β-

galactosidase staining on embedded tissues was done as described earlier 178.

Southern blot analysis

Genomic DNA isolated from the liver of transgenic and nontransgenic mice was digested with

EcoRV, electrophoresed on a 1% agarose gel and transferred onto nylon membrane.  The

membrane was subsequently hybridized with radiolabeled GFP probe, using (α-32P)dATP and

(α-32P)dCTP by random hexamer priming.  EcoRV cuts the linear AdVCMVGFP genome at

the following nucleotide positions: 2349, 9266, 10504, 18143, 22689, 24741, 27364 and

30695.  Only the 5’ fragment (2349 bp) hybridizes with the GFP probe (data not shown).
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Validation of the AdVlux stocks

Newborn nontransgenic mice (3-5 day-old) were directly injected into both tibialis anterior

(TA) with 10-15 µl/muscle of AdVMCKlux (1x107 pfu/µl).  Animals were sacrificed 11 days

post-injection, TAs were extracted and luciferase assay was done as described above.  

Preparation of satellite cells from AdVMCKlux transgenic mice

Muscle satellite cells from TA of transgenic mice were extracted as described 213.  Briefly,

muscles were cut into small pieces using a sterile scalpel and trypsinized in a Wheaton

trypsinizing flask.  After 3 rounds of trypsinization, the cells were spun at 500 g and kept in

culture at 37°C, 5% CO2 in Skeletal Muscle Cell Growth Medium (PromoCell, cat.# C-23060)

supplemented with 15% FBS.  

Exposure of cell cultures to 5-aza-cytidine and trichostatin A

Three primary cell cultures derived from different AdVMCKlux transgenic mice were used

for demethylation and deacetylation experiments.  1x103 cells were plated in each well of a

12-well plate and kept in culture for 13 days.  At day 2 and day 10, 5-aza-cytidine (2.5 and 5

µM) or trichostatin A (75 nM-3 µM) was added to the medium and incubated for a 5-hour

period 214;215.  After the 5-hour incubation period medium containing 5-aza-cytidine or

trichostatin A was replaced with fresh medium.  The cells were harvested at day 13 in 200 µl

luciferase lysis solution and 20 µl of supernatant was used to measure luciferase activity as

described above. 
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Results

In a first experiment we wanted to determine the conditions under which fertilized mouse

oocytes could be efficiently infected with AdV.  Fertilized mouse oocytes with intact zona

pellucida were exposed to AdV in droplets containing increasing titers of AdVCMVGFP

under mineral oil.  The green fluorescent protein gene (GFP) was used, since transgene

expression can be detected in viable embryos.  None of the eggs were infected or showed GFP

expression (data not shown).  This is in accordance with previous reports demonstrating that

for efficient AdV infection the zona pellucida needs to surmounted by various methods such

as acidic Tyrode solution, pronase or microinjection 176;209.  All 3 methods allowed for AdV

infection and GFP expression, but the microinjection method showed higher rates for

development and survival of embryos regardless of AdV titer if compared to the other

methods (data not shown).  

To determine the infectability of fertilized mouse oocytes by subzonal AdV-microinjection,

different AdV titers varying from 1 pfu/100 pl to 1x103 pfu/100 pl of AdVCMVGFP were

microinjected into the perivitelline space.  The microinjected embryos were kept in culture

and transgene expression was visualized (Figure 12).  The rate of embryos expressing GFP

increased with increasing AdV titer.  However, very high titers led to developmental arrest

and degeneration of embryos (data not shown).  Control embryos that received PBS only did

not show any fluorescence.

Second, we wished to determine whether AdV sequences would remain episomally located or

integrate chromosomally in the mouse genome.  In the first case offspring derived from

infected mouse embryos would have undetectable or mosaic AdV sequences, while in the

second case offspring and following generations would be transgenic for AdV sequences.

Therefore, the AdV-microinjected eggs (5 to 10 pfu/100 pl of AdVCMVGFP) were

transferred into pseudopregnant foster mothers.  Of 21 live-born animals, 3 were positive for

AdV-sequences as shown by PCR analysis of genomic DNA purified from the tail.  The 3

AdV-transgenic mice (founders) were mated with C57BL/6 mice and the F1 mice were also

tested for AdV-sequences by PCR to show germ-line transmission (Table 2).  One animal was

bred twice and all 16 progenies were found negative for AdV sequences.  The 2 other
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founders transmitted the transgene to the F1 generation according to a Mendelian distribution

(11 positive offspring out of 20).  To further confirm chromosomal integration of AdV-

sequences into the genome of AdV-transgenic mice, Southern blot on genomic DNA isolated

from liver was performed (Figure 13).  We show that approximately one AdV-copy per

genome of AdV-transgenic animals is integrated.  A 15-16 kb band hybridizing with GFP-

sequences is found that cannot be generated from linear or circular AdV genomes.  To test

whether the transgene was expressed, different tissues of transgenic and non-transgenic

control mice were frozen, sectioned and visualized under fluorescent microscope.  None of the

animals tested (3 different lines) showed GFP expression (data not shown).  

We reasoned that failure to detect transgene expression in AdV-transgenic animals despite

demonstration of embryonal transgene expression could be due to one or a combination of the

following factors: 1) low detection sensitivity for the transgene (GFP) in adult mouse tissues;

2) toxicity of widespread transgene expression (GFP) during development; 3) shut-off of the

viral promoter (CMV) during development; 4) other biological factors independent of the

transgene and promoter used.  To exclude 1)-3) AdVMCKlux was used in the same

experimental paradigm since the MCK1350 promoter/enhancer restricts the expression of the

transgene to skeletal muscle 172, and the luciferase expression can be easily detected using a

sensitive chemiluminescence assay.  To validate whether AdVMCKlux would result in robust

and detectable luciferase expression in skeletal muscle, non-transgenic control mice received

i.m. injections of AdVMCKlux into both tibialis anterior (TA).  As expected, the luciferase

transgene was highly expressed in skeletal muscle after direct AdV-mediated gene transfer

(Figure 15).  Consecutively, AdVMCKlux (10 to 100 pfu/100 pl) was microinjected into the

perivitelline space of fertilized mouse oocytes.  Of 24 live-born animals derived from

AdVMCKlux-infected oocytes, 19 animals were shown to be transgenic for luciferase

sequence by PCR.  Thirteen positive founders were bred with C57BL/6 mice and resulted in a

total of 113 offspring.  All 13 mouse lines showed transmission of luciferase sequences to the

F1-generation in a Mendelian distribution (Figure 14 and Table 2).  To test whether the

luciferase reporter gene was expressed, 9 different tissues of 13 AdV-transgenic lines were

extracted (total of 19 PCR-positive and 7 PCR-negative animals), lysed and assayed for

luciferase activity.  Surprisingly, there was no detectable luciferase expression for any of the

animals/tissues tested (Figure 15 and data not shown).  Therefore, we concluded that other
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factors than the promoter and the transgene used were responsible for the lack of transgene

expression.  We hypothesized that the transgene may be methylated and/or integrated in a

chromosomal region where the histones are deacetylated and/or methylated causing gene

silencing 216;217.  Primary muscle cells of 3 AdVMCKlux-transgenic animals were treated by

incubation with 5-aza-cytidine and with the histone deacetylase inhibitor trichostatin A 214;215.

However, luciferase activity was not detected even after extended treatment (data not shown). 

We hypothesized that AdV genes present in first-generation AdV may be responsible for the

lack of transgene expression in AdV-transgenic animals.  To verify this hypothesis, we used

third-generation AdVCMVlacZ that does not contain any viral sequences, except for the

inverted terminal repeat (ITR) and the packaging signal, in the same experimental paradigm.

One AdV-transgenic animal was detected (Table 2) and found to express the transgene in

various tissues such as skeletal muscles (tibialis anterior, quadriceps, soleus), heart, lung,

diaphragm, intercostal muscles and tail (Figure 16).  Quantification showed an 80000-fold

increase of β-galactosidase activity in skeletal muscles of the transgenic animal if compared to

nontransgenic controls.  Other organs such as lung, intercostal muscles and heart showed a

100 to 500-fold increase of activity.  However, no increase of β-galactosidase activity was

seen in liver, spleen and brain.  The AdV-transgenic animal was bred three times, but none of

the offsprings (21 totally) was found positive for the HPRT sequences by PCR analysis and

for the β–galactosidase activity.  We concluded that the integrated sequence in the founder

animal was mosaic.
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Figure 12.  Mouse embryos microinjected with AdVCMVGFP (10 pfu/100 pl) into the perivitelline

space at one-cell stage.  Embryos were kept in culture and GFP expression was assessed 48 hours

post-injection using a fluorescent microscope.  Photomicrographs were taken on the same field with

fluorescence light (left panel) or with bright light (right panel) at a magnification of 400X.  The

arrows point to the corresponding embryo.
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Figure 13. Southern blot analysis using genomic DN
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484 bp

F0
F1

+

Figure 14. Result of PCR performed on genomic DNA extracted from mouse tails of a founder

animal (F0) and its respective offsprings (F1).  PCR products were separated electrophoretically on

2% agarose gel containing EtBr.  Plasmid DNA containing luciferase transgene was used as positive

control (+).  The expected amplification product at 484 bp is indicated.
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Figure 15.  Luciferase expression measured in relative light units (RLU)/muscle in newborn non

transgenic mice injected in both TAs with AdVMCKlux.  Also, luciferase expression in muscle

tissues of AdVMCKlux-tg animals and in negative non-injected controls.
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Figure 16.  Histochemical β-galactosidase staining on tissue sections from the transgenic

founder for AdVCMVlacz (Tg) and negative control.  Photomicrographs showing transgene

expression in about 50% of heart cells and in muscle cells from tail section (Magnification

200X).
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Table 2. Results of AdV-transgenesis following microinjection of different AdV vectors into the

perivitelline of early embryos.

AdVCMVGFP AdVMCKlux AdVCMVlacz

Titer 5-10 10-100 20-1000

(infectious units/100 pl)

Transgenic founders/viable

animals

3/21 (14%) 19/24 (79%) 1/34 (3%)

Transmission to F1/transgenic

founders

2/3 (66%) 13/13 (100%) 0/1

Number of offsprings

positive/total

11/20 (55%) 71/113 (63%) n/a

AdV integration confirmed by Southern blot nd nd

Transgene expression no no yes

nd= not determined 

n/a= not applicable
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Discussion

Recombinant viruses such as retrovirus, adenovirus and adeno-associated (AAV) virus are

frequently used to transfer genes into mammalian cells, they also serve as gene therapy

vectors for human disease.  The best vector for a given application is determined by many

factors, but mainly through the biological interactions of the vector with the host.

Chromosomal integration of vector DNA has been described for retroviral and AAV-based

vectors, and allows for long-term persistence of a transgene even in dividing cells, but brings

about the additional risks of cancerogenesis and germ-line transmission.  Therefore, the rate

and pattern of integration (random vs. site-specific integration) of a given vector is an

important safety characteristic.  Adenoviral vectors (AdV) are generally regarded as non-

integrating vectors.  The lack of genomic integration together with a host immune response

leads to transient gene expression in numerous gene transfer applications.  However, there has

been recent demonstration of low-level AdV integration in vitro 173.  Furthermore, there have

been conflicting reports of AdV-mediated transgenesis and germ-line transmission following

infection of mammalian oocytes 175;176.  Therefore, we investigated the biology of AdV-

mediated gene transfer to fertilized mouse embryos and discuss the consequences for

transgenic animal biology and gene therapy.

Efficient AdV-infection of fertilized mouse oocytes occurs only if the barrier of the zona

pellucida is surmounted, an intact zona pellucida prevents infection 176;209.  We demonstrate

that infection of fertilized mouse oocytes is dependent on AdV titer, efficient infection is

obtained at MOI’s (multiplicity of infection) of 10-100 that is similar to other primary,

mammalian cells susceptible for AdV such as fibroblasts or myoblasts 168;218.  Infectability of

cells by AdV depends largely on the expression of primary (CAR, i.e. Coxsackie and

Adenovirus Receptor) and secondary (αvβ3 integrins) receptors on the cell surface 89;92;97.

Therefore, we speculate that these receptors may be expressed on fertilized mouse embryos.

Very high AdV titers led to strong transgene expression, but also to developmental arrest and

degeneration of early embryos.  This may be caused by toxic effects of either transgene or

AdV gene expression, or by the high load of toxic AdV capsid proteins.  However, we were

able to determine an intermediate range of AdV titers that led to moderate gene expression,

high survival rate of embryos, and ultimately transgenic offspring.
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We also demonstrate that AdV sequences frequently integrate into the host genome following

infection of fertilized mouse oocytes.  The AdV-transgene is transmitted to the progeny

according to Mendelian rules.  Since all AdV used were replication-deficient, the passage of

AdV and transgene sequences to the progeny can only be explained by early integration into

the mouse genome.  This is confirmed by Tsukui and colleagues who infected murine zona-

free eggs with first-generation AdV and demonstrated germ-line transmission of the AdV-

transgene 175.  In contrast, Kubisch et al. did not find AdV-mediated transgenesis following

infection of fertilized oocytes of various mammalian species.  Therefore, different mammalian

species appear to differ substantially in their susceptibility to AdV-mediated transgenesis.  In

addition, we show that approximately one AdV copy is integrated into the mouse genome

using Southern blot analysis.  Similar findings have been obtained by Tsukui and colleagues
175.  This reinforces our hypothesis that transgenesis is mediated by a “bona fide” infection

where only one copy of the AdV genome is delivered by the capsid.  Therefore, AdV-

mediated transgenesis may be useful where gene dosage is of concern.  Conventional

transgenesis using naked DNA injection into the pronucleus often results in multiple

integrated copies 219.

Tsukui and colleagues observed transgene expression (β-galactosidase) in 2 out of 3 AdV-

transgenic lines 175.  In contrast, we did not observe transgene expression in a total of 17 AdV-

transgenic lines using different validated promoter and reporter gene constructs

(AdVCMVGFP or AdVMCKlux).  Since we were able to detect transgene expression in

infected embryos but not in adult animals, we hypothesize that transgene expression has been

lost during embryonic/fetal development.  However, we were not able to demonstrate

methylation 220 or histone acetylation 216  of the transgene in AdV-transgenic animals that

could have explained the silencing of transgene expression.  In addition, mouse genetic

background may also affect transgene expression.  In general, transgenes inserted into inbred

C57BL/6 or BALB/c mice tend to be highly methylated correlating with frequent silencing of

transgenes 221.  While our experiments were carried out in B6D2 hybrids that were

backcrossed to C57BL/6, Tsukui’s experiments were done in a C57BL/6-C3H background.

Furthermore, leaky expression from AdV genes may interfere with embryonic/fetal

development.  Therefore, only embryos that have insertions of AdV and transgene sequences
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in genomic regions that do neither allow for leaky AdV gene expression nor for transgene

expression may develop fully and give rise to live-born animals.  The first-generation AdV

used in this study (AdVCMVGFP or AdVMCKlux) contain various early and late AdV genes.

Leaky expression of AdV genes from first-generation AdV has been demonstrated in various

cells and tissues 101;105.  Indeed, using a third-generation AdV (AdVCMVlacZ) that lacks most

viral genes we were able to demonstrate transgene expression in various tissues of an AdV-

transgenic animal. 

It will remain a matter of further investigations whether AdV-mediated transgenesis may be a

useful alternative to generate transgenic animals compared to standard methods.  Pronuclear

injection does not limit the size of the transgene, the proportion of born transgenic is usually

around 10-20%, and many copies of the transgene tend to integrate at one site 219.  In this

study, AdV-infection of fertilized mouse oocytes resulted in high levels of transgenesis (up to

79%) and germ line transmission (66%-100%).  In addition, low copy numbers of the

transgene (approximately 1) are integrated into the genome.  Unfortunately, first-generation

AdV did not allow for transgene expression in transgenic animals.  This problem may be

overcome by the use of third-generation AdV. 

The dogma of AdV as a non-integrating vector requires revision.  This is an important safety

aspect for gene therapy protocols that use AdV in humans.  Harui and colleagues had

demonstrated low-level genomic integration of AdV in vitro 173.  We and others show

genomic integration of AdV following infection of fertilized mouse oocytes and transmission

to the progeny 175.  However, this requires the removal or bypass of the zona pellucida and

reasonably high local AdV titers.  In contrast, systemic or local infection of adult animals with

AdV did not result in germ-line transmission.  Despite direct exposure of mouse

spermatogenic cells to high doses of replication-defective AdV prior to in vivo fertilization,

introduction of the vector into embryos via the fertilizing sperm was not documented 208.

Paielli and colleagues directly injected high titers of replication-competent human AdV into

mouse testis.  This resulted in transgene expression and possibly replication in the testis, but

germ line transmission was not detected in offspring 222.  Furthermore, AdV were directly

injected into the mouse ovary or used for infection of zona-free oocytes prior to in vitro

fertilization 223.  In this study, less than 2% of infected zona-free eggs used for in vitro
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fertilization showed transgene expression, AdV-mediated transgenesis and germ-line

transmission was not observed.  After systemic administration high titer AdV is distributed to

both ovaries and testis, but does not lead to transmission to offspring 174.  These findings

provide strong evidence that the risk of AdV transduction into adult male and female germ

cells is an unlikely event in a gene therapy regimen.  However, AdV-mediated germ-line

transduction may depend upon additional factors such as species differences.  Therefore,

adequate precautions should be taken in gene therapy protocols of reproductive patients since

infection of oocytes or early embryos and subsequent chromosomal integration cannot be

ruled out entirely.
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